

Nature

Sir Norman Lockyer

Nature

A WEEKLY

ILLUSTRATED JOURNAL OF SCIENCE

VOLUME XXXII
MAY $\quad \mathbf{8 8 8 5}$ to OCTOBER 1885

"To the solid ground
Of Nature trusts the mind which builds for aye."-WORDsworth

london and glt \#o wk MACMILLAN AND CO.

```
    \because::# \therefore:*:*:
    \because:\therefore\because:
```



```
    \because:
```


I N DEX

AA (R. van der), "Papuans and Melanesians," 16
D'Abbadie (Antoine), Time-Thunderbolis-Vision-Sunglows, 29
Abdank-Abakanowicz, a New Integraph, 519
Abercromby (Hon. Ralph), U'pper Wind Currents over the Equator, 624
Aberdeen, on the Occurrence of Lumpeuas lampe:rifurmis and Gadiculus argentens off, Francis Day, 223
Aberdeen, Meeting of the British Association at, 437
Aberystwith, Fire at University College of Wales at, 254
Abney (Capt.), Lecture Experiments on Colour Mixtures, 263
Abnormal Development : Dr. J. G. Garson on Abnormal and Arrested Development as an Induction of Evolutionary History, 589
Aboriginals, the "Sakeis" of the Malay Peninsula, 428
Abstract Science, Sir Lyon Playfair on, 445
Academy, the Uses of an, 608
Academy of Science in Indiana, Proposed State, 633
Acland (Kight Hon. Sir Thomas), Review of Agricultural Experiments by the, 362
Acta Mathematica, 302
Actinise, on the Chromatology of, Dr. McMunn, 68
Aeronautics: Proposed Aéronautical Exhibition, 111 ; Aéropautical Society of Great Britain, III ; Gower's Experiments in Aerial Navigation, 133; Supposed Loss of Mr. F. A. Gower, 329. Sac also Baltoons.
Afghan Boundary Commission, Botany of the, 35
Afghan Delimitation Commission, 164 ; Dr. J. E. P. Aitchison, F.R.S., 226

Afghanistan, the Electric Light in, 134
Africa : Proposal for Systematisation of Scientific Observation in, Dr. Habenicht, 64 ; Discovery hy Major Serpa Pinto of Coal-Fields in, 164; Projectel New African Expedition (Geographical Society), 184; Exploration of the Mobangi River, 281 ; Proposed New Political Map of, 355 ; Buonfanti's Journey Across, 357 ; Dr. Oscar Lenz's Expedition, 357 ; the Dutch African Expedition, 403; Portuguese Explorations in, 422; the African Natural History Collections of Dr. Nachiigal, 492: Rumoured Massacre of Massari's Italian African Expedition, 493; Discovery by Licut. Weissmann of Fall of Kassal River into Lake I.copold II., 425; Exploration of Kilima-njaro, s30: Weissmann's Exploration of the Kaseri River, 581 ; Manners and Customs of the Bantu Tribes, 589
"After-Glows," 239

After-Images : on Certain Stag :s of Ocular, L. Frank New a 77: Ocular Images and, W. M. Lauin, 197; Ocular, an Lightning, Shelford Bidwell, 10 ; A. S. Davis, 46

After-Sunglow at Stockholm, 635

Agamemnone (Dr.), Experiments on Density of Gases and Air, 48
Agricultural Experiments by the Right Hon. Sir Thomas Dyke Acland, 362
"Agricultural Grasses of the United States," Dr. Geo. Vasey, Prof. W. Fream, 525
Agricultural Note-Book, W. C. Taylor, 623
Air, Dr. Agamemnone's Experiments on Density of, 48
Airy (llubert), a white Swallow, 523
Aitchison (Dr. J. E. T., F.R.S.), Afghan Delimitation Com-mis-ion, 226
Alaska Glacier, Movement of, 162
Albania, on the Flint-Knappers' Art in, A. J. Evans, F.S.A., 588
Albanian Coast, Austrian Geographical Survey of, 403
Aldebaran: Daylight-Occultation of, on May 22, 1868, 86 ; on July 2t 1885,183 ; Occultation of, on November 22, 610
Alert Expedition to Hudson's Bay, 114 ; Return of the, 6us
Algre, Text-Books on, 10 I
Algebra for Schools, Elemeatary, IL. S. Hall and S. R. Knight, 388
Algebra, Lessons Introductory to the Modern Higher, George Salmon, 411
Algiers, Proposed Use of Electric Light for Night-work at Harvest, 162
Algol, Minima of, 86
Algology of the Black Sea, Reinhardt, 579
Allen (Alfred H.), "Commercial Organic Analysis," 410
Allen (F. J.h" Specielle Physiologie des Embryo," W. Preyer, 267
Alluard (M.), the RSle of Wind in Fertilication, 134
Alphabet, Greek, found in Italy, Signor Barnabei, 220
Alpine and Arctic Animals, Colours of, Lorenzo Camerano, 17 ; Prof. R. Meldola, 172
Alpine Clubs, Congress of, at Turin, 460
Alsace, Waterspout in, 134
Alums, on the Specific Refraction and Dispersion of the, Dr. J. H. Gladstone, 263

America: American Journal of Science, 67, 116, 358, 567 : Was Iron known in America before Columbus ?, $150 ;$ Amencan Naturalist, 116, 568, 598 ; Amer.can Meteorolog cal Jour-

Barometric Variations, Porecasting of, A. N. Pearson, 574
Karrett (Jerry), Monkeys and Water, 367
Barrett ('Prof. W. F.), on a New and Si aple Form of Calori-met-r, 538
Burt (Teisperenc de), Sahara Expedition, 164
Martoli, the Mean Density of a Body conbining all knowa Elements in a Solid siate, 635
Bawn\%, (ireat Ocean, John Murray, 581 , 6u
Bass (Blaci), at Inventions Exhlsition, 375
Bastite-Serpentine, J'rof. T. G. Bonnay, F.R.S., on, in Aberdeenshire, 556
Bat, a New Frugivatous, 374
Hath Natural History and $\frac{\text { Antiquarian Field Club, } 122}{}$
Batho- Iypsographical Maps, with Special Reference to a Combination of the Ordnance and Admiralty Surveys, E. G. Ravenstein, $5_{5} 5$
Batters (Edw.), Notes on Marine Algre, Let
Rayne (Dr. H. A.), the Analysis of Silk, 258
Baynes (Robert E.), Nomenclature in Elastucity, 316
Bedford College for Ladies, $\frac{278}{5}$
Bedfordshire Natural History Society, L_{2}
Hees, Wild, E. Brown, 6
Behrens (Dr. W. J.), "Guide for the Microicopical Investigation of Vegetable Substances," 193: Text-Bsok of General Botany, 123
Relavshy (M.), the New Roupe to Central Asia, 113
Belgian Observati ins of the Transit of Venus in 1532, 254
Belgian Roval Society of Pub ic Medicine, 299
Belgum, Geological Survey of, 15te 122 ; Dr. A. Geikie, F.R.S., 597

Belgium, Bulletrn of Royal Geoz aphical Sxiety of, 232. 356
Belgum, Proposed Excursion of the Cieologists A Asociation to, 208
Be\I(Prof. Alex. Grabam), Preventing Collisions with Icebergs in a foog 373
Bell (Dugald), A mong the Rocks round Glacgow, 624
Bell (F. Jeffery), Comparative Anatomy and Physiology, 5 fo
Bell (1. Lowthian), on the Blast. Furnace Value of Coke, 32 ; Haronetcy Conferred on, 207
Ben Nevis Meteorological Station, 17, 54, 61, 252 ; Meteorological Observations on, 522 ; on the Meteorslogy of, A. Buchan, 536
Benda's (Dr.). Preparations of Sensory and Motory Nerve. Endings, 520
Benevento, Earthquake at, $\$ 15$
Bengal, Proposed Government Inquiry into Castes and Occupa. tions of ''eople of, 36 ; Earthquake in, 272, 303 ; Ceatury of Science in, 638
Bennett (A. W.), Flora of Canada, 294
Bent (J. Theodore), on Insular Greet Custome, 587
Bentham (Georbe), Memorial Portrait of the Late, 513
Berdoe (Edward Robert), B-owning as a Scientific Poet, 36
Bergen, Unprecedentedly Early Appearance of Floating Ice off Cuast of. 515 ; Formation of Society for the Advancement of Science at, 5 So
Berlin: Physiofogical Snciety, 24, 71, 112, 101, 230, 330, 426 519,544 : Physical Society, $\frac{72}{2}, \frac{15}{5}, 160,311$: Gegraphical Sicetetyon, 209 ; Metcorolingical Suciety, $\frac{2.32}{}$; International Geulogical Congress at, 2-8 551 ; International Telegraph Conference at, 35;
Bias, Unconscious, in Walking, Manly Miles, 293
Biaxial Cristals, on Cases of the Production of Ohm's (or Lang. berg's) Eillipses by, ㄴ G. Marlan, 114
Biclwell (Shelford: on Certain Speetral Images Produced by a Kotating Vacsum Tube, 30 : the Changer f'roduced by Mag. netikation in Length of Metal Rods, 45 ; Ocular After Images and Lightning, 10 ; Variations Crused by Magnetiastion in Metal Rods, 167 ; the Action of Lighe in Diminishing the Electrical Resistance of Selenium, 167; Experiments vith Sulphur Cells, 263; Solid Electrolytes, 391 ; Voltai. Cell with a Solid Electrolytc, 345
Binary Stars, 162 ; 70 Ophluchi, 402
Bingham (Chas.), Nesting of Microflernus pheorpps, 53
Biology: Professorship of, at Madras, 181 ; the Marine Biological Association, 278; Station at Chrivtiania, 280; an Atlas of Practical Eleunentary Biology, G. B. Huwes, 388 ; Address on, at the British Association, Prof. W. C, McIntosh, LL.D., F.R.S., 476 ; I'rof. Edward Hull, F.R.S., on the Cause of the Extreme Dissimilarity between the Faunas of the Red Sea and the Mediterranean, notwithstanding their

$N \cap A X$
Aametric Variatimet, Forechatlog of, A. N. Parsob, 324

 Bern Nevi Gheervaikar ati, 5rif Sionery and Motary Nerce.

 w Corlnoin in cony H 1,zke Pr-itict.

 cr. $\quad \times \geq$, r.ap.......
 Wration ors sthorev

 anners ani Conemtion rcetiont, ans
 of the 1>ret is. ases. ys (1)

INDEX

 neolley, Yolue or the Kefaction the Kelizetive of Fontine 539 :

1hater ${ }^{542}$:

 3.60 :

h.W.Wertern
 n, 1. Novn, zena: al Conservis.

Exgiorationm pettivents by 87 liy vircif ive. , 36,3 arfacea ar, rk sor. 11. 11. 130.4
pauven, 3:5
3
oma in Mitforil
37. 254. 375

4Ifunlreith Vinar, Jreliminaty Note rict of the Cientral
anism of the will,

6 Dintance Mesther Mrilignac IGry, 64s, hllumt, 574 mathe rale, irrit. Nornthe: ,85 Misents ami .
45
 ont us sfonitict with ? Chanveno. zes

Gusthom, W, Whitaler wo Derp llotinge at, 555

 439.469 i Nuctelve, Itr. Kowel, 530 . Chenicht Compoution

 1oy Soluse, In, A. Nenin, 5 sy . Pout fewn, ons solution

Cheraiushe linalusgat lateorliveg, the in on

 Cayw Tuwn ithi, on itse chate of the fiblalmias,

 Mny 13, 100, 13, 161, 309, 395: in Cualowe ani Culculth

 14. Fonqumeios, De. Khetl, 199 : Lansquelhe Frued

Kath.Tgpa and Earla. Tiemorn, on the Oliservatina of, Proc, Exitesa Arclijellag

 can, F. R. K. 69
 256; of Angunt, this6, 206; of the Funt, kestill Tutsh, 611
 Etaburgh: ikopth sities

 Findowir ef Engimernig

 In Public Scheod, ss:

 Fonth, thi; W. M. Flanker Fexie's Culletwo of 2espman

 of, 1h, Kinie gee
Inctrizily : to tbe Invenumos Eshulimiun, wo6; "bevondar

 Inforwor of the Flectry Ligh, M. Was, 561

 Aoctrolycie Decomporition, no Cerits Cases of, J. W, Cleth Etr) etrine of the Prof. Beve-Viar Mrridiosal Ovilution of the Aurual Zone it 1 hriagian Arcluiall, 44

 Idandy, ing
 Enibiga Physulang of the W. Projes, F.J. Alla, 昒

 fis

 rniluge, tes

 J.jun chapotel, at?

 Enory of Ken Cosus 530

of,). 5. Mnclay, 7 lu .

 Eurely, Nevala, silver-Lrad is then
gis f.van (C) L Hen llain, 54

Geological Phenomens, Dieulafait, 592: Contradiction of Alleged Illegal Practices in the Gerological Survey of the Unitell Stares, Gos; the Nurth Atlantic as a Geological Basin, Mellard Reade, 609
Geometry, Projective, Prof. Cremona's, 62
Geometry, on Certain New Terms, or Terms used in a New or Unusual Sense in Elementary Universal, I'rof. J. J. Sylvester, F.R.S., 576

Cierman Annexations in Pacific, the, 429
Gierman Anthropological Society, 85
Cierman Association of Naturalists and Physicians, the, 374
German Mission to in juire into Salt Industry in Cheshire, 494
German, 艾c, School Chiklren, I'roportion of, with Dark and Fair (omplexion, 85
Gheyn (M. van den), the European Origin of the Aryas, tif
(ii Tard's (M.), Bequest to French Guvernment for the Benelit of Science, 54t
Gislioli (1)r. Italu), Disinfection of Sewers, $4 t 5$
(iilchrist I.ectures Fund, the, SI4
Gill (I'rif.), "Account of l'rogress of Zoology," 85
Girarl (A.), Rare Mathematical Book by, 30
Glacial Deposits, Ir. J. C. Howden on the, of Montrose, 555
tilacial Fpoch in Australia, the Supposerl, Capt. Hutton, Gto
Glacial Period in Australia, the, 1)r. K. von Lendenfedd, 6y
Glaciation, Direction of, Prof. L Carvill Lewis on the, as ascertained by the Form of the Strix, 557
Glacier, What is a ?, 300
(ilacier (Alaska), Movenuent of, 162
Glacier in Chili, the Reporterl 1) iccovery of $\mathrm{a}, 18_{4}$
Gladstone (1)r. J. 11., F.R.S.), on the Specific Refraction and Dispersion of the Alums, 263; on Chemical Eiducation, 325
Glanville (Miss), her Cataloghe of the Natural History Cullecti ms of the Alhany Muscum, Grahamstown, 30
Cilaser's New Expelition to Southern Aralsia, 88,233
Glacgow University, the Chair of II many at, 6 I
Glasgow, Philosophical Sicicty of, 212
Gilagow, Among the Rocks Round, 1).agald Bell, 624
Gilass, Spectra I'roduced in, by Scratchins, E. F. J. Love, 270
Glazebrook (K. 'T., F.R.S.), on a l'oint in the Thery of I) louble Refraction, 538

Glows, Sky-: Dr. F. X. Forel, 173 ; Robt. C. I.eslie, 245
Glows, Sunset, I'rof, Kiessling's lavestigations of the late, J. Edimund Clark, 637
Gold in British Borneo, 161
G Id, Ilistury of a Lamp of, from the Mine to the Miat, Alex. Watt, zso
Gold in Corea, Dincovery of, 403
Coniometer, a New Form of I'rotractor and, W. F. Stanley, 402
Gordon (Gen.). Massage from, borne to Sweden by a Crane, 208
Goss (1 lerbert), Fossil Insects from Curboniferous and Silurian Rocks, tgo
Cintsche (Prof.). Travels in Corea, 16 \& 232
(Bow (James), a Shert Ilistory of Cireck Mathematics, I
Gower (A. F.): Experiments in Aerial Navigati,n, 133: supposed L.ow of, 329
Graber (1lerr), liffects of Olotous Matters on Invertelarate Animals, 609
Granara, Earthquake at, 609
Girasses, Agricultural, of the United States, Dr. Gico. Vasey, Prof. W. Fream, 525
Grassi Museun, Propused, 60
Graves (Rolert Perceval), life of Sir Willian Rowan Ilami'ton, $6 t 9$
Gravimetric Eixperiments on Action of Tidal Streams on Metals, Thos. Andrews, 189
Gravitational Instruments, Constant, Sir William Thomson, F.R.S., 535

Great Ank, on Gurefowl, its Ilistory, Archacolosy, and Remains, Symington Grieve, 1'rof. Alfred Newton, 1", R.N., 545
Great Gcean Basine, John Murray, $58 \mathrm{t}_{2} 911$
Greck Nathematies, a short Ilistory of, Janes Gow, I
tireek Alphabet found in Italy, Signor larnateci, 120
feek and Figy tian Pottery, whe Connection of, 353
fireek Insular Customs, J. Theorlore Itent on, 587
fireenland, Proponed Fire-h I anish Scientific Eixpestition to, 164; Danialh Researches in, 256 ; Return of one of the Danish Fxpreditions 6, 554

Greenwich, Visitation of the Royal Observatory, 138
Grenfell (Kev. G.), Retarn of, 64 ; Exploratios of the Mobangi River, 281 ; Explomations in Congo Basin, 302
Gresham College, tos
Gijeve (Symingion), "The Great Auk, or Garefowl, its History, Archaeology, and Remains," Prof. Alfred Newton, F.R.S., 545
Griselaach (A.), "Die Vegetation der Ercle nach ihrer Klimatiechen Anordaung," w. l3ottin; llemsley, 315 ; "Vege ation of the Earth," Dr. W. Engelmann, 366
Growth of Cereals, 234
Guessings at Truth, $\frac{252}{62}$
Guiana, British: E. F. in Thurn on the Ked Men about the Roraima, $5^{8} 7$
Guiana, Condrean's Journcys in, 164i Amireau on the I'rairics of, 164
Guinea, I) utch, Exploration of the Surinam River, 356
Guinea, New, Australian Expedition to, 356
Gunther (I)r. Allert, F.R.S.), Hume Cullection of Aviatic Bircls, 500
Guy (W.'A., F.R.S.). Death and Obituary Notice of, 493
Gywno us chechi.us, Viscera of, Irof. Cleland, 561

Haan (Dr. Bieren de), Mathematical Reprincs, 30
Habenicht (Dr.), Proposal for Systematisation of Scientific Ohservations in Africa, 64
Haberlandt (1)r. (i.). "Whysiologische Pilanzenanatomie in Grunlriss dargestellt," 594
Hackney Microscopical and Natural Ilistory Saciety, 182
11 agen (1)r. II. A.), Fossil Insects, 53
11ail, Red, C. Evans, 54 ; Prof. Theotore Schwedoff 432
11ainan, the Island of, Le Monnier on, 233
Hair, Nerve Sensitiveness of, Ir. Blaschtio, 24 ; Development of, on the IHuman Brily, 589
Hall (A.), Stone Axes, I'erab. 626
Ilall (II, S.) and s. R. Knighn, "Elcmentary] Algesra for Schools," 388
Halle Verein für Lirlkunde, 163
Hamilton (D. J.), Is the Commissural Theory of the Corpus Callo um Correct? 56t
Hamilton (Sir William Rowan), Life of, Robert Perceval Graves, 619
Hawks (11. G.), Fourth Annual Report of the State Mineralogist of California, to
Hanksite. W. F. Ilidden, 568
IIann (1)r.), the Temperature of the Austrian Alps, 5 \%o
Har-en ($\%$. Armauer), "Hen Norske Nordhavs-Expelition," 1876 to $1878,5 t$
llarar, Paulitschke and Thanleg se;'s Journey to, 581
"Harloours and Docis," I. I', Vernon-1Iarcourt, 291
Ilarcourt (A. Vernon), on 1'hotometry with the Pentane Standari, 537
Harcraft (1. F. Vernon-), "Harbours and 1bicks," 2y!
Ilargrave (1..), Flying Ma:hin es, 4.32
Harker (Allen), Coloration of the Anterior $\mathbf{s i g m}$ nts of the Maldanidx, 564
llarting (J. E.), the New Birt in Natal, 6
Hartley (l'rof. W. N., F.R.S.), on Molecular Formulee S_{2} : Revearches on the Kelation leeween the Molecular \$ ructurz

11 artog (Dr.), on the New Sax in Androme la, 460
IIarvard College (Observatory, U.S., 37
Harvarl Photometry, the, 368
llarvest in Algiers, Proposed Use of Electric Light for Night Work, 162
11alem (Geo.), Bleavtrement of Evaporation, 357
Ilaycraft (1'of. J. Berry), a New Theory of the Sense of Taste, 562
Ilazen (II. Allen), Thunlerstornts and Air-I'icssure, LSt
Hearl as Developet in the IIjgher Vertebrates, Spiracle of Fishes in its Relation to the, I'rof. Cleland, 564
Health, Iaw of, W. II. Cortiehl, 221
Healhh Science, Manual of, Andrew Wilson, 221
Heat, Radiant Light antl, Irof. Balfour Siewir:, F. R.S., 322, 352.3942 413, 422, 530

Ileaton (Margaret), Seme of Colour, G26
Helley (William), the Inventor of Kailway Iacomo: ${ }^{\prime}$ n on the Preaent I'rinciple, M. Archer, 595

NDFX

0367
slinn, 333 itaclal Preposite of, in the treservntion of 547 , 5 or mperiments on the Vicusity of Wownecin, ire. F. A. sichater Coavis, 13, Fischer, 163
ia uluen Norske Ninvitharv fie F'exunatulula, $7+$ + Frabna of Trout 1,y, 515
t the Mlechanlstor of the WTil, cy of the Preewent Theury of Mapping uf starne 70

A.
ropeluction so the sivily herntetry, lia
Crigaric Cherth
thallaling=. 245 the TermiresIrwayenicus ichty. -437
on $1 \mathrm{n}, 515$
 rerf Fat in stivence of Ancient
 a Monacif

N. Niaral 11 istory. ${ }^{+4} 103$

- Ifavenin in. |terlent

Troncincl Vtunumarnt
 kerkio

 \Rightarrow 居

 sa reracla, cheulugicat of the lulti-1

NDAS

ienliglyy of Prumeavan! etric Variationn*, 57, . 1 Hintesmane
 - Luanilsiliay

+ off, ata a gancis of clami-
Itlarstie Lixametlitiesn, l'uof. -nval ciolat-fixelcls, 190 he, A. Vernun Iliscourt. went of kontifer"is ${ }^{57}$? Milall. Tearal. LH3
C. Healeon. A Jes hin of the
 arum, F, 16.2t.. e115
 - I ixpluarationn of, KN 11 ounc
 anel in 1)aily iverioal in, irr.

 -inge 30 15 I: Arovetwonts
 sce. ni littstawnt were mate, cov way F-joris wand ten pitmren:phatin! 1or. I1. werkt sipirt1, 1.

 helent, $\frac{\operatorname{sog}}{171}$ RS ame cieoleagry or the. you

 riserv.

tond 10.59

 Iteromion Nar, 4 ,

隹

 \qquad) Larane

 soçbyess I ant, 21
$F=\mathrm{Ex}$ Eanc 22: "Tin Capitolo de Psicofisiologia," 413
Fracicc. F tywor, Lescons it Flementary, Prof. Balfour Stewart, F.RS. rid W. W. Haidase Gee, 339

Fre-Eratence acd I css-Exatence of T booght, Dr. Hyde Clarke, ros
Freece W. H2, F.R.S., "Om Charging Secondary Batteries," 142: ©e a kemarkabic Occerrence daring the Thunderstorm

Freane:ixe A merca, Marzes de Nizzillac, Dr. E. B. Jylor, FRS. 523
F:Histric Beria-Groed is. T. A. Archer, 543
Prehasoric Cemetery. 118
Prehatane hemani in Swiczer'and, \&
Preseas Needh ($1=3,433$
Freservacio of Nizyarn 131
Presurre-Finina, Prof. H. Carvill Lewis oe some Examples of Presare-Flaxion in Peanylraniz, 539
Irerwich Proc, F.RS. o oo Kegional Metamorphism, 214
Freyer W.), "Specielie Physiologie des Embryo," F. J. Allen, 257
Prine Meriftian Question, the Freach View of the, 159
Prmarive Peoples of America, the, Alexander von Humboldt,
Itrmitive Race; on the Manifestation of the Esthetic Faculty mong Ir. I. Wilsoa, 259
Prisess, on the Use of Carbon Bisulphide in, Dr. Henry Draper, 62
Prisma, on a Photometer male with Translucent, J. Joly, 537
Frevaliky (Col., his Hoang-Ho Joarney, 15, 63, 253; Thibet Exjectrion, 493. 635
Proceedings of the Enston Natural Mistory Society, 519
1 roceedings of the Linnean Suciety of New South Wales, 591
Proceeling of the Royal Society of Queensland, 495
Products, Mineral, of the United Siates, 404
" Properties of Matter," Prof. Tait's, Lord Rayleigh, F.R.S., 314
Proposed Change in the Astronomical Day, a, M. D. Downing, 523
Protelds in Plants, Digestion of, Sidney Martin, 563
Protoplasm, Chemical Dificrence between Living and Dead, Dr. Uscar Locw, 563
*Protozoa," Butsctilis, Prof. E. Ray Lankester, F. K.S., 145
Protractor and Goniometer, a New Form of, W. F. Stanley,
Pryer (H.), Notes on Mustela itatsi and Corvus jafonewsis, 110 ; Lepidoptera of Great Irritaio and Ja pan compared, 427
Psicutisiologia, un Capitolo di, Enrico dal Pozzo, 413
I'tomaines, Prof. Hrieger on the, 239
P'ublic Opinion and Siate Aid to Science, 497
P'ulsation in the Veins, 4.37 ; J. Hippisley, 389, 574; Dr. J. W. Williams, 466

Pumpelly (Raphael), Composite Portraits of Members of the Natiotial Academy of Sciences, 176

Quain (Dr.), on the Low Popular Estimate of Medicine, 608 (qualitative Inorganic Analysis, a Practical Treatise on Practical Chemisıry and, Frank Clowes, 2
Quarterly Journal of Microscopical Science, 116, 59:
Quatrefages (M. de), the Red Indians, ${ }^{164}$
Queensland, Northern, Meteorological Station in, 279
Queenwood College Mutual Improvement Society, 553
Question of Civil and Astronomical Time, 245
Quinquefoliate Strawberry, E. Lewis Sturtevant, 126

Ralbits in the Western Islands, Are there ?, Herbert Ellis, 575
"Rabenhorst's Kryptogamen Flora von Deutschland, Oesterreich, und der Schweiz," wor
Rabies, Pasteur on Inoculation for, 633
Rackarock, the Hell Gate Explosion and, Dr. H. Sprengel, F.R.S., 625

Radau (K.), Flements of Brooks's Comet, 543
Kadiant Energy Kecorder, on a, Prof. J. W. Clark, 23,3, 343
Kadiant Light and Heat, Prof. Balfour Stewart, F.K.S., 322_{2} 389, 394, 4131422, 55°

Radiant Matter Spectroscopy, W. Crookes, F.R.S., and M. Lecoq de Boisbaudran, 283
Radiation, Molecular, in Incandescent Lamp, Dr. J. A. Fleming, 263
Radlkofer (Prot. L.), Application of the Anatomical Method to the Determination of the Materials of the Linnean and Oid Herbaria, 563
Rae (John, F.R.S.), a Word or Two on the Best and Safer Koute by which to attain a Ifigh Northern Latitude, 565
Railway Congress at Brussels, 401
Railway Locomotion on the Present Principle, William Hedley the Inventor of, M. Archer, 595
Railway Sleepers, the Question of Metal, 40 I
Kainbow, B, de Spinoza's Work on the, 30
Rainbow Phenomenon, Chas. Croft, 30 ; Prof. Silvanas P. Thompson, 54
Rainbow, Tertiary, T. C. Lewis, 523, 626
Rainfall in Norway, 37
Rainfall of N.W. England, Alf, O. Walker, 271
Rainfall for 1884 , British, G. J. Symons, 463
Rainfall in East Indian Archipelago, Statistics of, 494
Rainfall in the Climate of London, on the Sequeace of Mean
Temperature and, Dr. Courteney Fox, 536
Rainfall of the British Islands, A. Buchan, 536
Rains in Eastern Asia, Extraordinary, 461
Range, the Ruahine, New Zealand, 108
Rarities, Five Mathematical Book, 30
Kats at Inventions Exhibition, \boldsymbol{H}_{2}
Raudnitz (Dr.), a Vasomotor Centre in Cortex and Cerebrum, II9
Kavenstein (E. G.), Batho-Hypsographical Maps, with Special
Reference to a Combination of the Ordnance and Admirally Surveys, 565
Rayleigh (Lord, F.R.S.), Self-Induction in Relation to Certain Experiments of Mr. Willoughby Smith and to the Determination of the Ohm, 7; the Theory of Illumination in a Fog, 22; on a Monocfromatic Telescope, 22; Prof. Tain's "Properties of Matter," 314 ; on the Thermodynamic Efficiency of Thermopiles, 536
Rays, Red, after Sunset, Geo. F. Burder, $\frac{s 66}{}$
Reactions, Chemical, Influence of Dilution and Excess on, Urech, 87
Reade (Mellard), the North Atlantic as a Geological Rasin, 609
Reading School, Opening of Chemical Laboratory at, 328
Reale Ãccademia dei Lincei, 47
Recorder, Radiant Energy, Prot. J. W. Clark, 2332 343
Red Glows, Prof. Kicco, 120
Red Hail, C. Evans, 54 ; Prof, Théodore Schwedoff, 437
Red Indians, the, M. de Quatrefages, 164
Red Men, E. F. im Thurn on the, about the Roraima, 58 Z
Red Rays after Sunset, Geo. F. Burder, 466
Red River Route to South-West China, 554
Ked Sea and the Mediterranean, on the Cause of the Extreme Dissimilarity between the Faunas of the, Prof. E.. Holl, F.R.S., 560

Red Spot on Jupiter, W. F. Denning, 626
"Keeckening van Kanssen," 30
Refraction, Atomic, of Sulphur in Various Compounds, Nasini, 87
Refraction, Double, Experiments on, D. S. Stroumbo, 432 ; oa a Puint in the Theory of, K. T. Glazebrook, F. K.S., 535 '
Regional Metamorphism, by Prof. Prestwich, F.R.S., 214
Reian Meris, Projected Restoration of the, and the Province, Lake, and Canals ascribed to the Patriarch Joseph, Cope Whitehouse, 565
Reichardt (Dr. HL W.), Death of, 328
Remsen (Prof. Ira), an Introduction to the Study of the Compounds of Carbon on Organic Chemistry, M. M. Paltison Muir, 99
Renard (Prof. A.), on some Rock Specimens from the Islands of the Fernando Noronha Group, 556.
Rendiconti della R. Accademia deile Scienze di Bologna, IS $_{4}$ 85. 335

Rendiconti del R. Istituto Lombardo, 45, 68, 117, 214, 237, 310, 359, 384,568
Reports of the United States Commission of Fish and Fisheries for $1881-82$, J. T. Cunningham, 79
Research, Zoological, 43
Research, the New Endowment for, Dr. Chas. Sedgwick Minut, 297

Respiration. Prof. Mosso, 47
Resiling Position of Oysiers: J. T. Cunningham, 597 ; Col. H. Stuart Wortley, 625
Revue d'Anthropologie, 615
Rey (Dr. Plitippe), on the Weight of the Cerebral Lohes, 615
Reynolis (P.of. Osbime, F.R.S), on the Sterm In licator, 137; Ou the Dilatancy of Media Composed of Rigid Particles in Contact. 535
Rhine, the, Opening of Direct Steam Traffic between Cologne and Sca. 164
Rhodium. Three New Compounds of 359
kicco (Prof. R.), Red Glows, 120 ; New Star in Andmmeda, 523
Rich (Vrs. Caroline W. D.), Hoar Frost, 30
Kichardson (Clifford), Chemical Composition of American Grasses, Prof. W. Fream, 525
Richmond Park, Trees Struck by Lightning in, 460
Kichmond, Surrey. Notes on Deep Boring at, Prof. Judd, F.R.S., and C. Homersham, 310

Ridgway (K.), "Water-Birds of North America," 521
Riebeck (Dr. Emil), Chittag ong Hill Tribes, 169 ; Death of, 180: "Chittagong Hill Tribes," Zoology of the Gayal and Gaur, W. T. Blanford, F.R.S., 243
Kigid Particles in Contact, on the Dilatancy of Media Composed of, Prof, Oshorne Reynolds, 535
Riley (Prof.), on Crada spplemie im, 253
Riley (James), Kise and Progress of the Scotch Steel Trade, 429 ; an Experimental Cuppla Furnace, 430
Riveted Joints, Prof. Kennedy on, 21
Rivista Seientifico-Industriale, $45,117,189,359.568,615$
Roberts (Prof. Chandler, F.R.S.), on the Development of Technical Instruction in Metallurgy, Gios
Robin (M.), Death of, 578
Robinson (Edward E.) Thotographic Action on Ebonite, 626
Rock \times Round Glasgow, Among the, Dugald Bell, 624
Rocky Mountain Region of Canada, on the Mesoroie Floras of the, Sir W. Dawson, F. R.S., 164
Roman Sanitary Congress, the, 62
Roman Lettering adopted by Japanese Scientific Societies for their Proceedings. 494
Romans, the Topography of Italy under the, 376
Rome : Reale Accademia dei Lincei, 25.1200 ; Discovery of Stores of Eilephants' Tusks and Lentils in, 272 ; International Sanitary Conference in, 217
Romanes (Dr. Geo. J., F.R.S.), Homing Faculty of Hymenoptera, 6,30
Rookwood (Prof. C. G.), American Earthquakes, 300 : Recent l'rogress in Vulcanology and Seismology, 609
Roraima, E, F, in Thurn on the Red Men alowt, 587
Kosce (Lord, F.R.S.), Nebula in Andromeda, 437 ; the New Star in Andromeda, 465
Rotating Vacuum Tiube, on Certain Spectral Images Produced by a, Shelford Bidwell, 30
Roth (11, Ling), Animal Parasites of the Sugar-Cane, 268
Rothansted, Field Experiments at, Prof. J. Wrightson, 58
Rotifers, on the Development of, Miss Pereyaslaviseft, 570
Rougerie (Mgr., Bishop of Pamier), the Anemogene, 512
Rowan (F. J.), the Iron Trade of Scotlan-l, 429
Royal Agricultural Society of England, Journal of, 222
Koyal Aquarium, Dog fivh Ova at, 515
Royal Archeological Instinute, the, 252 ; W. M. Flinders Petrie's Collection of Egyptian Antiquinies at, 353
Royal Geographical Sociely: the New President, 11 ; Annivervary of the, 136
Rnyal Geographical Society of Antwerp. 302
Royal Hortieultural Society and the Exhibition of Cotonial Plants, \&c., 278
Royal Institute of British Architects, 133
Royal Institution, 85
Royal Meteor sogical Society, 23, 118, 190, 287, 552
Royal Observatory, Greenwich, Visitation of the, 1,38
Royal Society, $34, \frac{45}{}, \frac{68}{}, 91,109,117,1,12,142,166,189$, 214. 237. 262 ; New Fellows, 10, 132 ; Conversasion:, 158

Royal Sociely of Canada, 258
Royal Society of New South Wales, 234, 264, 432, 463
Ruabine Ranse, the, New Zealansl, 10 S
Rueker (Prof. A. W.). on the Self-Regulation of the Compound Dynamo, 22 : Liquid Films, 210
Rüdorff (F.), Solubility of Salt Mixtures, $\mathrm{z}_{1} 9$
Rugby School Natural History Society, 62

Rule, the Slide, C. V. Boys, 627
Rule of Road; George Campluell, M. P., on the Rule of the Road from an Anthropological P'ont of View, 587
Rundschau fur Geographic und Statistik, 464
Russell (H. C.), on the Rising of the Eastern Coast of Australia, 234
Rusel I ($\sqrt{\text {. Scott, F.R.S), Wave of Translation in the Oceans }}$ of W.iter, Air, and Eiher, 5.6
Ruseell (Dr. W. J., F.R.S.), Spectroscopic Observations on Dissolved Cobalious Chloride, 143
Rissia: Publications of the Russian Geographical Society, ${ }^{15}$ 61. $163.168,495$: Izvestia of the, 59 ; Fauna of Russian Central Asia, Rev. 1)r. Henry Lansdell, 56 ; Industrisl Elucation in, 63: Thunderstorms in, Klossowki, 160 ; Female Education in, $\frac{162}{162}$; ${ }^{\text {Russian Central Asia, ineluding Kuldja, Bokhara, Khiva, }}$ and Merv," Dr. Henry Lanstlell, 194: Devonian System of Rus-ia, 307 ; Science in Rus ia, 590
Russo-Afighan Boundaries, the, 88
Ryan. Prof. John, 514
Rye (E. C.), Zoological Recor: for 1833, 2
Kzehak (A.), on the Causes of the Andalusian Earthquakes, 133

Sacrificial Stone, an Ancient, of North-West Canada, Jean L'Heureux, 46
Sahara, the Artesian Wells in the, 110 ; Exploration of, Teisserene de Bart, 164 ; Lieut. Palat's Mission to the, 302
St. Andrews Marine Laboratory, Prof. McIntosh, 563
St. John (Charles), "Tour in Sutherlandshire," 355
Sakeis, the, 428
Saline Solutions, Effect of Immersion of Solid Bodies in, J. Thoulet, 87
Salmon (George), Lessons Introductory to the Modern Higher Algebra, 411
Salmon : in the Thames, Landlocked, 254: Marked, taken in Norway, 300 ; the Copati ity of, to Jump Waterfalls, Prof. Landmark, 329 ; Incuthation of Salmon Ova, 609 ; Hybridisation of Salmonider at Howietoun, Francis Day, 562
Salomon (Dr.), Xanthine Bodies in Urine, 496
Salt Industry in Cheshire, German Mission to Inquire into,
Salt Mixtures, Solubility of, F. Rüdorff, 519
Salt Production in America, 207
Sand, Sonorous, Prof. Bolion, 400
Sandhills of Gascony, the, M. Cambrelent, 375
Sanitary Conference in Rome, International, $\underline{62}$, 85, 217
Sanitary Congress, National. 513
Sanitary Insthute of Great Britain, 207 ; Anniversary Meeting, 230 ; Annual Congrest of, 523
Saporia (M.) and M. Marion, "'L'Evolution du Régne VégétalLes Phancrogames," J. Starkie Gardner, 289
Sarjekijakko, the Highest Mountain in Sweden, 404
Satellites of Uranus and Nepune, 553
Saturn, Mars, Jupiter, W. F. Denning, 548
Saunders (Edward), "Dead Humble-Bees under Lime-Trees, 427
Saunders (Trelawney), Retirement of, 426
Schafer (1)r. E. A., F.R S.), Mr. Lowne on the Morphology of Insects' Eyes, 3 ; "Essentials of Histology," Dr. E. Kiein, F.R.S., 388

Schimz (Dr.), Namaqualand or Namaland, 58 I
S.hlaginiweit (Robert von), Death of, $1,3.3$

Schlie uann (Dr. H. F.S.A.), Presentation of Gold Medal of Koyal Institute of Briti,h Architects to, 133
Schmidt (Prof. Firedrich), on the Jrilobites of Eastern S.beria, 208
School, Indian Forest, Major F. Bailey, 56_{4}
Schools, Public, Neglect of Science at, Sir John Luhbock, 552
Schroter ($\mathbf{D r} . \mathrm{J}$.), "Kryptozainen-Flora von schlesien," 76
Sehunck (Edw., F.R.S.), Contributions to the Cliemistry of Chlorophyll, 117
Schuster (Dr. Max), on Some Results of the Crystallographic Sudy of Danburice, 556
Schwedoff (I'rof. Théodore). Red Hail, 437
schweiger (Herr), Baldness am>rg Orientals, 36
Sehweinfuith (Dr.), Prehintoric :Stone Implements of Eastern Egypt, 16 x
Seience: Col. Murioch Smith appointed Director of the Scienc

NがたX \qquad
 atchimg．F．F．J．loove． matimg V＇acumm－Tulve，on 11 maty Murlimal．S aly．M1
 alved Coms M Croolicem，F． $12, \mathrm{~F}$, ，armi M． the l，itser of 1 ran， 253 in an

 lectra I：milted I＇y Thallem． Sular Sivoclicum．
rigin of the $54 t$
avimi，Giks on the trainluow．
the 1teral an leveloped in
plans． 501

contowrila，Racha
Il come 30^{2}

M．Fayc．：32
ancers 51
sion onf， 537
57 t．itactor mini caonlempeter． Pruprotione of imente as ta she FFornanl wisul．
 Ophluch1．4caz＝Tivitile ing：

 of．Nmather，ai $\mathrm{A}=0$
sorinion and．4y7
Wuelk．．f． 54
has，iss
alian，F， 12,4, on， 5007 ，．nn the

 ucture af，II C Chatsen
 －Vfuget： $5+3$ ，of int weasice

 Nohach，214，

 Ilenty A．Nime， 174
 sumerey if a tivursery nf the．to
 stowe
（with， 161
 ine，it．Tylar，is \＄， 593 ． A_{i} e，the Wervhy of，Prot． Nume Wat
 suarchendic：Naol s sames， 578

atwl wher NDNes， 5 ，

4n．Keume Trall kalliee of the，of

Valleri's Joomal in Mathéuntions IBemenulien, 609

Wedhagttrn Majocqtical Society, joo

Writr IIfengy Vand, she, b1
Wath iWm orenlywn, 133

Wive Correens Infivencw of, en the trage of Glallmw Sene

Wak, Cherse Ienect Whus, A. Hutae, 561
Wrocher Cgrkan in Tpisel Sisios, jxs, Ralmy Summer is

 Chasters, 125
Wrbater (14. A), What has been done for the Geography of

Wreloa iWalier, F, RS, L, Desh of, \$Sa
 Wernicke'! (Ty > Esperimints on the Reffection al Light.

 $\mathrm{Weyl}^{5 \mathrm{y}}$ (Du.h Nienter in Human Boly, 1et; Choledaria,
 the Cersical Vertolver of the Govenlasd Kight, Tiof. Sirw Fref. Twoi on Some tion on the Tay Whale and Oclen Receant

Wleat, I specineme in Necertmen mant Proluctive Vorier y of, I. I. Ither-an, ty Whitwist, Trof, Sinver in, 130
 Whise, Rucut and, Cot Win 5 , Warmot, 745 , 55

 Iluber Air. 313.1 . L, Norvacil. 513

 Whatule 565 1. Bomen.

 witlian

 somote Folmilivy Kuory, 819 ?

 Wors ís tClmatmof thir (inale
 Wimera Soment it 7 enth, 656

 190

numbial s \qquad Dlamed by Google

SCOITISH PROVIDENT INSTITUTION.

 the fiepan
latil Vient

New Asannantes tumpletd, el.015,155; with Premiums, ©35.874. Isoome in Year, $\mathbf{2 6 8 8 . 9 2 0 \text { . Claims, } £ 9 6 9 . 5 8 0 . ~}$

WHOLE WORLD LICENCES AND NON FORFEITUHE OF POLICIES.
Toldes are gremil) bie (rvo focm.
 The Advantages whiek Dhis Inetitution eflers to Aasurern are
 Claime cuder Policiea now payable a Manth after Proof.
\qquad

PROPERTIES OF MATTER.
By P. G. TAIT, M.A. Sec R.SE,

 Edinburgh : ADAN \& CHARLES MLACK. ELEMENTARY Lin LESSONS IN THE

THE ENTOMOLOGIST'S MONTHLY MAGAZINR.

OPTICINE,
DOLLOND'S
parce 7 e 6 d , pent tred

ELASTIC STEEL SPECTACLES,

1. LUDGATH HILL, LONDON, EC

BOOKS for the SPRING-TIME.
Publabed by CAssLLLL EL comPaNY.
FAMILTAR WILD FLOWERS, By F: F

FAMILIAR WILD BIRIS 11, W: SWAYs

FAMILIAR GARDEN FLOWERS.

EUROPEAN BUTTERFLIES \& MOTHS
 EUROPEAN FERNS. Thrir Hom, Habit, and

 THE FIELD NATURALIST \& HANDBOOK.

 MINERALS AND STONE IMPLEMENTS.
 MNEKALS AND FTOME, IMPLEMI NTS.

 HKYCF-WKICHT,

 easily mecewable nute, and we liink from the analy wes we bave frrm ture to time gives in these coleanas of other papern by M. Tamsery (in M/awnrt 4 ha Sowhil irs
 aridumetic and geonsetry, our nuthor would lave gatbered uvefiv muntetial in the Hoclurian paper and in the ,Wamenion tho' fint thin to the sint' ence of contisition we have come arrow; the reating Is apparently most thorough, ant the asthor's Groek achatarkhip eazbles hum to improve apom the trandabiatis given by some of these loregign atithenties.
The wreh onnsals of three parts The firse part, entitled "Prolopumen to Ansthmetuc, discosses the secimal scate and Exyptian Aritatnets in a sery thurough mammer. Herv, of romomer, matit wae is made of the Khind papirw," a loook wntirn lyy men Ahmes (nim put at t 700 bCl emtitied " Orrectorns fire Obeniming the Knowirilge of all Dath Things, whelh cunouts malaty of statement of texulth Dime sochl wint wome wite misal. oundt be disuvere! loy the Moursm authonstes for unfolding the "elden leaker toll om it mathematiral subiext "wheth is "sppareatly toa si if io be opened" I moke; P 5
There are murtully wements in theat cally chapers which are falely opem lon nbjretiant, but thes ase riearls put, and the renalts, as Mt. Duw gets them, tite sim

 gistica, or Calenlanum and Alshatetions, of detech Mraily

 |lercal frem bo directum Lesci Sty if that "fiee Law thall be tuesigh calculateit, 3 purvely shlifich art, is

The thint patt treith of T,rech promerty, alid uphon in ier could eapitiate al soone lengrth, hat that is hal 山!: wat baniness wa the preseat occason. We need anly wh that tbere is mach good anek Dr. Ahmanis paweital meriti

 publeration in p : of the Meitends Ahus of the ke
 of the toucbes whach -phen in the flan atomel biven
 by the Bame of thul sentioter. Claperi io disuatich "prothowat thal Egyptian genasery," in whilh os given
 Geornetrs to Euclul" is fior sertioum Df the fytha gireans, the Endemian summar) (which bas in prevous numbers bect seferred to in our embces of Lor. Allman's papers) says ther made gemerry "n libeial edui stion :"
 tbem the anaxum, "A figure and a stade, not a aygure and sipence ganed ${ }^{\circ}$ [p. [53) Is cuwnection with thas chatactrmsic mansen we may gre the stary, whoch, on the charactrmatic maxum we nay give the stary, whach, an the

book, wiz. "A yourth whus had begun to read geomitr with Eucled, whea be lad learnt the first prupostion angured 'What do I jee by loarning thewe things p Evoled called has slave, and said "Givy him stireepeace vince be must maker a satin oet of what he learna' = Many such bays there arc, even th this mineteenth center), whe are ever askinge "Whas in the use of learning Euchid? We thask Mr. Gous for las story from Stubueus, wlich ein possibly make us betver prepored to aniwer tho question the best time we are shled is. There is mucl ather quocalide matter, but or hasten to a close' Chap ter V'li, fives an acoount of Fachid (what linic is known of lnsin, hith entings, hatorg of test of "Elenients" ane modern Instury at the bonok ". Archumeder, and Apollo nius. Chapter 1'ItI is on "Geometry in Secand Cent ary 1 c .. Chapser IX., " From Genumuv to I todemy $:$ and Clupler X.. "Lost Years," principally ocovpier whan an accoust of luppor and luy "Mayhernatica Cullecnomos
Sour ntries of mierese alt thustraled, it the intro
 metr) if ulor: nut wem to be geneially kowarn that the oirst nceinretice of "tangent "and "her ant "is traced by the hef Clamuer : Cerk Nistulan whot had

a \quad I a fow nkhor

OUR ROOK SHERF

 perther elanger ing the atirl of the Krewhions. Prof
 prevenerl the Kev. O. I: (ambrider revalitig ibe lares

年

aly heal analyat，

10fraud he muglit have ceased ro be a sbemist．Ilowever eacellent rules and sabites may be in thear own way，it th posstble to have too puach of them，In facc，the beter
they are the tess one mants to be bound try tiem．The ＂talbles of differcences＂given in the book ase secellent： in thie hands of a good tencloer they might be made the bacis of a really wientific trasing．Biet the ordnairy student will not thouble to develope method trom the facts el befuse lime in there talier：he will pasi on ta the hystenuatic examinatpon of simple cathe，atal be caught in
the fatal whislpoul of＂experiment，＂＂otieryanom，＂ ＂inference．＂${ }^{\text {M．N．I．M．}}$

 ，恠e，
of a recent nomber and xuti，p．raol we pave a stamement
 Natamat Acaderyy of Screncr，W，Whangtrm，by Prof．it Sillithan，who mat wn mun to fovlou hat fiesud to het hong icat．The paper cuncamigig the onginal ancestofations
 reprialed as in his fricpils three memoirs prepured by Sir．Naminn IIr．Michel，and I＇rof silliman ieyertively，fomm th appropinate mitulatum，and pive one a gund glompen ints lis life and clusater．The monk in clealy pointed un good jupref，and well be righly Appreciaice by hit sented by his widus．
A．Avinuat afir Mimneliqu Yo Itr，Gustay Techermulk
 Tans．
Wh are ghoul to loul that a recond edoth on of slas，worls in

 attenting to this eweiken ch waitrt if the worl，and gate as lurtef alatetachat od at courrots：we pau need only remind

 Protestar of Vinctaion at the Danernay of Sieand

 porstion of the it to b of e cratedtion tin de suice the
 thilat in riduchent worh wenten in oor tanflunsve the

LETRENS TOTHE ETYTH－A y and prisclicill if ilie
 to it larte am，wabl mud do he cerlmiv lu，Its．Ibut tho mat wethude of the tomik werer slowbt slie wittithmer of cticmmetrvis file am！ be kearnt by shere． not by aweh inc．ts in the at＂IIncetly sisitront＂，its Iatoratory wht whot he iv a who hrowt he te．s．lice hy
 oratory，expericme whir of se rivate weteringled as trate ast be roxistled the lomerk ve to bind recipee bore lue ＝tian flomish the the we are
any of the lincursie in ealin． hisorcioniviy witentina well ilonc．人s nsutnl， Hachimit record the Gons share fatimg tw
 lex frestuently ghocties ke．，of blum kresups re neat wiclumeit intertemt are the sulsjecth of a metrentint forety shown
 Foclucing we 80 ｜l，de か flifistrire niturelle Fitate－I ois．C）rilion aville eles Istanticies． minurtibits itiennoir
 －kecomal wincinman ave mative for wance of the thew ic，se，elivisyoty nire

 gencan wis subswinero，as blume，wnat tlisk withoun of Tleak．rio lcm． n atrentely ith nus．

Alvancemment witmoncti Sinctery lewewerl it virif

 meivery mend Clmetepiffir nk Claxhery J．and \＆
oubed it fourtls calision.

Mr．Lowne en IDe Morphotury of Iusisto Eye

Googic

NーインVRE

Nn to be true much othe air and passed
o minute organismy pexpect surti fhimys expect hands．fer be many hand＂shate of＂germs．＂ atiofactory means for riheless it ithinterest－ a on Eurupean bink－ indertook is exismine of CAFonconcul and of Caroncametri and this since undertakeat sartous states，with and ofluer objecis as discovered，iceord－ notes examined were
ary and Karshia，and a an abundiant crypter－ vicrobes，＂and olpjecta 1 hair，se
GNO fCT Now，the comminom nongyest innounin，the
remt nutes？btherwhe therent motes，otherwise whyof she，to alluw the species a fine gromis． thous atde th ath thic，lunw－
 enemites are alm．1y con nod earned a worar narue cien Crewnche，there are te．t oe anstated on in the ribedl． have not，se tar．deyribet mexpated whit tise been aquinat the Iranami samif on

servations will be made use of to bring mons fuecibly beffre the numds of etur leen careful bretiren the dungers of handling．＂filhhy hucre＂in tumes of disease．

> STANDAKD PIRH'

N1．SORET rainer the question of muecal pitch，and Mecrrins，of Hencen it in is rater spous that in liel．

 Mium Haels M Meer．If is raticer carrous that in Bel report the Frenrlh pitch s 435 was adopted by kayal decree on March to of tlois jear．There vens to be Wery little ditlerence lietween the IWH：it amoanta，fin fat i，to evactly 12 cents or humbiredish of an equal remitone， of whirh 2t\} nuise a coumat. Nence there is no practical
 no instruments mate fot $A 13$ ，weiformity wmuld be lont， A 437 ，so that the mivandate al ueifornity wmilt be lont， wathit any atvane aremments in to favour are almont struments anshimetral．To Ieegth with the inamdible
 mefical dreath－If ia iroe lilat Nowid，hy a mott ingemoun
 penalutasi in a year．liss succembed in rasking s fark of the days in a memler uf ribrations at that preeve tempera－
that gutectue nut ture．Ihat at is C ，the iensperature manpeal for the rench
 net be 04 ，but，to take knalf charm of the andwaect rise，and iloe pich bias becorne folly solterstion of irmgieratue，and cent thundredifo of a semitoue）sharper．Geramied that t cent（hundrearn inde amumbt，yet it is eauenfle to alter the whole of the atiblumituc．Them the anthmetre is iteril founded if just mituraturn，which is mit，notimed any

 peraniont．II，humewry，ne tank C，yh ho the startwg

 wherl a futrle within acmuma eather way or Habdels fink

 Adepted A +11 betwern M．soret＇s sel I rench peth，

 for the fonthe absulg

 tor，

bave unod Freecl puch, and Finptill composers our bich potch, The find and lat may coropromise with the Handel in modern Eoglash pitch is toundaly wrain votce and spoil the effect urigunally latended. Ifal we subenit to it coen in liandeifescivala, There is a greater dibrinty lave no mbontined Comsmrratairet or shantres to which wolun wy : Ezen regmestal bands are not monpled the expense of the State. A wetw set of iamruments in fery contly, and mote thas thit, it is long bcfore maters question is therefore be wet with dithezultien huge the oflas. Soret.
\qquad THE SCIENCE ASH AKT HLSALDH,
W'E unteremend that Cal. Muritort Sment has been

 Camaskus, and, wbisequently, with Cumarander Percher, ol.N., undertaok the explotations in the Cyremaka which colliestion of welphires now th the lintush Muserme Laterily, Cot Sinuh while emploved at Teheran, han
 is io well hmumit here We belireve Cat. Smith oitaned ant firs Cnmomosun in the Koyal Engumeess fifrect from
 Arademy as Woolmich of Addiscombe.
\qquad We whe ibe lollonomg toon the Timus. The havoriot o the

 eventh wreighe in the Mathesenical Tripee of $\mathrm{iNF}_{\mathrm{F}} \mathrm{J}$. Dof 11. N. Merta, Froc Miloes Manish, and the. Vines wern the reqpertively, whie Dh. Hertert (arpsolier tratand a tif

 Thipon lat of thy3; while the lais Froll. A. It Gimot wh

 due to the inthanct ial example of the line Frol. Closk Mas and of l'rof Mishent Fouter remeriindy.
Wk ar itdormed that 1., traahlobd, F: K.il, has wimas
 ent of ite convert sruive Alplicasions fot the poil shank
 Int Fifly fift Smenal Mecting of the IIrifeh Swoctanke

 a Mier leen, Ihe Very Rev. Irincyal Plite, It Ih, Vice Ch

 if is II Fordsi Writicy, isec, F., ©, iv, I smper

 II man $\mathrm{Na}_{\mathrm{arl}}^{\mathrm{N}}$, Waller, 4 is 'reagraplay. Presilent: Inal "cemernl].

 1. F Mes Y.R.i.s. is, Meclandery, Mespre Probloo

W. Pengelly, F.R.S., Prof. W. Turner, F.K.S. Secretaries: C: W. Bloxam, F.I..S. (Recorder), J. G. Garson, M. D., Watter IIzrst, B.Sc., A. MacGregor, M.B. The First General Meeting will be held on Wednesday, September 9, at 8 p.m. precisely, when the Right Hon. Lord Rayleigh, M.A., D.C.L., LI.. D., F.R.S., F.R.A.S., F.K.G.S., will resign the chair, and the Right Hon. Sir Lyon Playfair, K.C.B., M.P., Ph.D., I.I_D., F.R.S. I. \& E., F.C.S., President-Elect, will assumc the Presidency, and deliver an address. On Thursday evening. September to, at 8 p.m. there will be a Soirec ; on Friday evening, September 11, at $8.30 \mathrm{p} . \mathrm{m}$., a discourse by Prof. W. Ciryills Adams, M.A., F.R.S., F.G.S. ; on Monday evening, September 1t, at $8.30 \mathrm{pm} . \mathrm{m}$, a discourse on "The Great Ocean Basins," by John Murray, F.R.S.E., Director of the Challenger Expedition Commistion; on Tuesday evening, September 15. at $8 \mathrm{p} . \mathrm{m}$., a Soirce ; on Wednesday, September 16, the concluding General Meeting will be held at $2.30 \mathrm{p} . \mathrm{m}$. The lecture to working men will be on the "Nature of Explosions," by Mr. H. B. Dixon, M. A., F.C.S., Fellow of Trinity College, Oxford.

We under tand that the Marquis of Lorne is likely to succeed Lorl Aberdare as President of the Royal Geographical Society.

Sir Jons Lubnock responded to the toast of "Science" at the Royal Academy dinner on Saturday evening, and in doing so adducel one more argument on behalf of science as a training and discipline cven from the standpoint of art. He claimed for the workers in science that the carcful habit of observation and study in which they are necessarily trained enable them to derive peculiar enjoyment from the creations of artistic genius; and he might have suggested in this connection the great advantage to the artist himself of a preliminary training in practical scientific work.

Str Frederick Bahawell has evidently a very high ideal of the training necessary to qualify a civil engineer for the performance of the duties of his calling. At the anniversary dinner last week he told his audience that the ideal engineer-" I am glas to say in many cases the real engineer-of the present day is one who has a scientific knowlelge as the foundation for his technical training, and frequently that scientific knowledge is of a very extended character. Mechanics, it need hardly be said, are essential, but, in addition, many branches of physical science, such as heat, light, sound, hydraulics, pneumatic, magnetism, electricity, are all now within the knowledge of the accomplished engineer. Moreover, although I do not suggest that every engineer should be a chemist, it is quite certain that he should not be without some chemical instruction, even if it be confined to that which is needed to wam him that the time has arrivel when he should seek sound chemical advice."

Dr. NoEttits , of the University of Konigsterg, has been despatched by the Prussian Academy of Sciences to I.ebanon, to stady the geology of the Greater II ermon.

Tue Italians have lost no time in erecting a meteorological station at Massowah, which th'y have occupied quite recently.

Earlis in the afternoon of the 2nd a loud detonation was heard from Mount Vesurius, and two new craters, from which lava issued abundantly, were opened on the southern side at a height of about 200 metres above the upper station of the funienlar railway. The lava flowell in the direction of Pompeii and Torre del Greoo. The stream descends in a straight line for about half a kilometre, and then, turning sideways, is directed towards the crater of $\mathbf{1 8 7 2}$. The new craters present the appearance of a great cleft. The lava has not spread beyond the side of the mountain, and according to the tatest telegram the eruption is not increasing.

At half-past 10 oclock on the morning of the ist inst. two or three rather violent shocks of earthquake were felt at Vienna, accompanied by a rolling noise, and causing a great clattering of lurniture. Shocks of far greater violence were experienced in Styria, where many houses were damaged and some persons were killed. In the we tern districts the shocks were of a slight character. The phen menon appears to have extended southwand as far as Gratz and westward to Bavaria. A shock was also felt at Monte Carlo at 10 minutes to 3 on the morning of the 2nd. The shock was strongest in the districts of Condamone and the Cap d'Aile.
Tite Annual Gener:I Meeting of the nembers of the Iron and Steel Institute commenced yesterday. The Bessener medal for the year was presented to Prof. Richard Akermann by Dr. Parcy, F.R.S., the newly-elected President, who gave his inaugural address. The meeting will be continued to-day and to-morrow. The following is a list of sime of the principal papers:-On the blast furnace value of coke from which the prolucts of distillation have been collected, by Mr. I. Lowthian Bell, F.R.S. ; on the manufacture of steel, by Sir Henry Bessemer, F.R.S.; on the mechanical properties of steel, by Dr. H. Wedding ; on the microscopic structure of steel, by Dr. Sorby; on the causes of failures in steel plates, by Mr. W. Parker, of Lloyd's; on a new description of wrought-iron castings, by Mr. T. Nordenfelt ; on natural gas, and its utilisation for manufacturing parposes in the United States, by Mr. A. Carnegie ; on modified type of the Siemens gavproducer, whereby the gases are enriched and the bye-products recovered, by Mr. J. Head. We propose to draw attention to the scientigic points in some of these papers next week.
Prof. W. Odting will give the firit of two lectures on Organic Scptics and Autiseptics, at the Royal Institution, on Saturday, May 16.

There is an excellent programme for May at the Royal Victorin Hall and Cofice Tavern, Waterloo Bridge Road, S.E. The science lectures on Tuesdays will be given by Dr. Dallinger, on wonderful things we do not personally see, on the $\mathbf{I} 2$ th ; and by Prof. Perry on the spinning tops of Japan and other countries, on the 19th. Owing to the depression in trade and wishing to put enjoyable entertainments within every one's means, the management have deciled to lower the prices of admission during May.

The Russian Geographical Society has awardel, this year, its great Constantine medal to M. A. S. Woeihoff for his important work, "The Climates of the Globe, and especially of Russia." Analysing this work in the "Annual Report for ${ }^{1884}$ " of the Society, Dr. Robert E. Lenz shows how onginal it is in its fundamental idea. Instead of representing the climates as they result from the averages of climatological elements, as is usually done in meteorological works, M. Woeikoff, like Dr. Hann in his "Handluch der Kli natologie," but with much more fullness and details, tries to explain the local alterations which the general meteorological laws are submitte! to in various countries in consequence of the topographical features of these last: and he verifies his conclusions with regard to each country by comparing them with those arrived at as to the climates of neighbouring countries, and establishes thup the elements of a comparaive meteorology. The exter " travels of the author in Asia and America bave enabled ' recognise the leading metcorological features of the clim describes and to become acquainted, by personal know with the topographical features of each separate region. first twenty-two chapters of this volume, 640 pages, are de to a detailed analysis of the chief meteorological elements : heat received from the sun; the dynamical and thermical con
quences of the rising and falling of masses of air ; the hydrometeors and their influence on the climates of separate regionsmany quite new and original remarhs and observations being embodied in these five chapters; the influence of snow and ice-coverings-two chagters again where the meteorologist and geologist will find a series of most interesting suggestions; the temperature of lakes, seas, and oceans; the influence of wind; the variations of temperature with the height-very carefully discussed ; the diurnal changes and the unperiodical ones; and finally, the influence of climate on vegetation, and vice versdagain two chapters full of new appreciations. The elimates of cight separate regions-Adantic, North and Middle Aucrica, Tropical America, Middle and South Africa, Mediterranean basin, North-West and Midlle Europe, South-Eastern Asia, and finally Russia and Northern Asin, are discussed with great detail and with a richness of quite new data in ten separate chapters. Neelless toadd that the author, well acquainted with so many foreign languages, has embolied in his work all that is worthy of notice in meteorological literature. The work is illustrated by ten maps and fourteen drawings, and contains very numerous tables.

Durtag the opposition of Neptune, just passel, we learn from Srience, Prof. Pickering continued the observation of the planet's magnitude with the meridian photometer of the Harvard College Observatory in the same method as previonsly emplnyed. Nine series of observations extend from December 16, 1884, to January 21, 1885, the final result from which, when corrected for atmospheric absorption, instrumental error, and reduction to mean opposition, becomes 7.63 . The residual difference for only one series is as great as two-tenths of a magnitude. The corresponding resulis for two previous seasons are 7\%71 and 777. Contrary to the experience of Mr. Maxwell Hall, of Jamaica, who found evidence for a rotation-periol of Nejtune in sinall variations of the planet's light according to his own observations, Prof. Pickering regards it as improbable that there is any variation in the light of Neptune of a strictly periodic character, and further calls attention to the influence, much neglected by observers, ujon the observed brightness of ohjects when seen east and west of the meridian on the same night. This has to be taken account of in the observations of maxima and minima of many variable stars, and may to some extent account for the variations of Neptune's light detected by Mr. Hall.

TuE report of the Post Office, Telegraph, and Observatory Departments of South Australia for the past year contains a detailed account inter alia of the work of the Observatory Department in that colony since its foundation in 1867 . It would be impossible to do wore than sefer generally here to numerous details given in the ten clowely printed foolscap pages devoted to the subject. Since its establishment the department appears to have kept pace with the strides of the colony to which it helongs. The astronomical observatory at Adelaide is now well supplied with meteorological appliances, having self recorling and other Instruments neces-ary to constitute it a first class station as definet by the Meteorolngical Congress at Vienna. There are also fourteen well-equipped stations of the second order, scattered all over the colony, fiom Port Darwin, in the extreme north of the continent, to Cape Northumberland in the extreme south. Rain-gauges are kept at every telegraph office in the colony; in 1870 there were reports from forty-six stations; in 1883 from 254, and there are still large gap: to be filled up. A syutem of weather telegraphy has been arranged between the Australasian colonies, these leeing divided into disericts or aspects to facilitate the transmission of the messages, and to afford the necessary data for laying down the isphars. The important operations undertaken to determine Australian longitudes are also described in detail. Mr. Todd, the heat of the combined de-
partments-post, telegraph, and observatory-anticipates great assistance in the inter-colonial meteorological part of his work from Mr. Clement E. Wrayge's high-level meteorological station on Mount Lofty, " as he brings to his work great practical experience and almost unbounded enthusiasm."

The last number (vol, v. No. 4, 1885) of the Proceedings of the Bath Natural History and Antiquarian Field Club contains papers on the group of stones at Stanton Drew, in Somersetshire, by Mr. J. Allen Tucker, in which he favours the theory that these huge monuments are the remnants of a temple, either erected by the Druids or by some primeval or prehistoric race, and only used by the Druids, and were not imended to commemorate a battle, which was too common an event in early times; by Rev. L. Blomefield, on a second specimen of the rare Longicorn beetle found in Bath; by Mr. Williams, on the natural history of British owls; and by Mr. Morgan, on watersupply, principally as applied to domestic purposes. There are also several minor contributions noticed in the summary of proceedings at the meetings.

We have received the prospectus of a Field Club for Hampshire, the Honorary Secretary to which is Mr. E. Westlake, Fordingbridge, Salisbury. The first meeting is to be held at Winchester on May 28. The marvel is that a county as varied as any in England in this respect should have been so long without its Naturalists' Field Club. White of Selborne on the east, and Kingsley on the north, have made the county a elassic one for students of nature. With these examples to live up to, and such a fiell as Hampshire (including the Isle of Wight) the Proceedings of the new club should be interesting and successful.

The Report of the Committee of the Kelvingrove Museum of Glasgow for the past year illustrates the truth of a remark of Mr. Higgins in his pamphlet on museums recently noticed in these columns, viz, that the number of muscums in which a sum of money could be best spent in making additions is very small ; that is, as a rule, arrangement is more needed than acquisition. The Committee of the Kelvingrove Muscum report that the establishment has been overcrowded for years, that the enormous amount of specimens of all kinds stored away out of sight is constantly increasing, and that the labour and unremitting watchfulness required to keep such stored specimens from deteriorating grows in proportion, and withdraws from essential and more useful museum work nuch of the time of the small staff, and it has thus become from year to year increasingly difficult to undertake any considerable project for improving the order, classification, or labelling of any section of the muscum. This is cetainly a grave evil, for it threatens to destroy the main object of such a museum, viz, public instruction. It is to be hoped that a wealthy and public-spirited town such as Glasgow will not permit this state of things to continue; for, as the Keport points cut, from the stores already within the museum, supplemented in some departments by inexpensive and easily acquired objects, a natural history museum could be equipped which would satisfactorily illustrate all the range of the animal kingdom, and prove at once of great value to the student of zoology, and a popular attraction to the public. For the rest, there has been "a large, steady, and well-maintained flow of visitors, which does not show any indlication of waning."

Tite lyceum of Natural History of Williams College, Williamstown, Mass., the oldest natural history society but one connected with any college in the United States, will celebrate its fiftieth anniversary on the 24th of this month, at which a former nember, Dr. W. K. Brooks, of the class of 1870 , now Associate of Johns Hopkins University, will deliver an address. The Lyceum propo ed to take advantage of the occasion to raise funds to enable it to undertake expeditions to some spot, similar
to those which it has undertaken in former years to Labrador, Florida, \&c.

We learn from Science that the Leander MeCormick Observatory of the Univensity of Virginia was inaugurated on April 13, the ceremonies taking place in the public hall of the institution, and Prof. Asaph Hall, of the Naval Observatory, Washington, clelivering the aldress. The principal instrument is the great Clark refractor of 26 inches' nperture. The Observatory has a house adjoining for the director, Prof. Stone, and is possessed of a considerable endowment fund, the gift of Mr. W. II. Vanderhilt, of New J'ork.

Capr. L. U. Herendeex, of San Francisco, communicates the following notes on prehistoric structures in Micronesia to Science:-A few years ago I visited Ponapé Island in the Pacific, in E. longitucle $158^{\circ} 22^{\prime}$, and N. latitude $6^{\circ} 50^{\circ}$. The island is surrounded by a reef, with a broad ship-channel between it and the island. At places in the reef there were natural breaks, that served as entrances to the harbours. In these ship-channels there were a number of islands, many of which were ssurrounded by a wall of stone five or six feet high; and on these islands there stood a great many low houses, built of the same kind of stone as the walls about them. These structures seem to have been used as temples and forts. The singular feature of these i -lands is that the walls are a foot or more below the water. When they were built, they were evidently above the water, and connected with the mainland; but they have gradually sunk until the sea has risen a foot or more around them. The natives on the islands do not know when these works were built : it is so far back in the past, that they have even no tradition of the structures. Vet the works show signs of great skill, and certainly prove that whoever built them knew thoroughly how to transpor: and lift heavy blocks of stonc. U'p in the mountains of the island there is a quarry of the same kind of stone that was used in building the wall about the islands; and in that quarry to-day there are great blocks of stune that have been hewn out, reaty for transportation. The natives have no tradition touching the quarry - who hewed the stone, when it was done, or why the work ceased. They are in greater ignorance of the great phenomena that are going on about them than the white man who touches on their island for a few hours for water. There is no doubt in my mind that the island was once inhabited by an intelligent race of people, who built the temples and fo ts of heavy masonry on the high bluffs of the shore of the islan 1, and that, as the land gradually subsided, these bluffs became inlands.

A COkRESPONDENT recently referrel to the use of artificial teeth by the ancient Romans, as shown by a passage from Cicero, where ene of the laws of the Twelve Tables is quoted. The law in question belongs to the Tenth Table (de jure sacro), which deals mainly with funerals, with the object of limiting the display and ceremonies attending them. Thus the bolly must not be burnt in more than three robes, or be attended to the grave by more than ten musicians; women must not tear their faces in time of mourning, nor must the bones be collected to make a new funeral with them, the borlies of slaves could not be embalmed, and the like. Section IX. of Table X., which is the one relating to teeth, reads as follows in Ortolan's text ("Histoire de la Législation Romaine," p. 121): "Nove anoum addits. Quvi anro dentes vinu ti escunt, ast int cum illo sepelire wrereve se frande esto-Add no gold; but if the teeth are bound with gold, then that gold may be buried or burnt with the corpse." The date of the Twelve Tables is put about 450 B.c., and it is thought possible by some writers that some of the provisions relating to funerals were taken from the laws of Solon. It would therefore appear that dentistry was known and practised to some extent in the carliest period of their history by the Romans-to an extent, at any rate, that they used gold for binding the teeth. Ilow the artificial
teeth were made, or whether they had artificial teeth at all, is not appareat. In the case of the Etruscan skul] mentioned recently in Nature, the artificial teeth are made from the teeth of animals.
M. Soroloyf, who continues his regular analyses of the water of the Neva, has come to the conclusion that the difierences between the average monthly content of solid mixture in the water and the yearly average may be expressed by a curve whose characteristics are the opposite to those of the eurve for the average monthly temperatures. The solid inorganic deposit remaining after the evaporation of a given amount of water is also inversely proportionate to the amount of organic matter contained by the water of the Neva. When comparing these curves for the Neva with that showing the amount of solid matter contained by the Thames (as given in the fournal of the London Chemical Society for 1880), it appears that hoth rivers give the same carves, notwithstanding the wide difference of their origins, which coincidence may lead to the supposition that the above might be consilered as a law for the rivers,

TuE additions to the Zoological Society's Gardens during the past week include a Yellow Babcon (Cynocephalus Anbouin 8) from West Africa, pre-ented by Mrs. Wilson; a Lesser Whitenosed Monkey (Cercopithecus petaurista 8) from West Africe, presented by Mr. James S. Jameson ; a Creste 1 Pigeon (O.yphafs lophotes) from Australia, presented by Mr. J. Harrison; a Glaucous Gull (Larus glaurws), European, presented hy Mr. G. V.tison; a Common Viper (Vipera berns), British, presented by Mr, W. II. B. Pain ; four Common lizards (Lucerta tiviA, Bra), British, presented by Mr. H. Hanaucr; a Common Squirrel (Sciurws zulgaris), British, three Wigeons (1/area pentelope 8 8 8), three l'intails (Difila acula 89 9), two Shovellers (SAatult ctypiofa 8 8), five Common Teal (@werguedularrocia of of 8 8), European, purchased ; a Yak (Paphagus grunniens), born in the Gardens.

OUR ASTRONOMICAL COLUMN

TUITLE's Comet. -This comet returns to perihelion in the present year ander circumstances which are not favourable for its re-olservation, without an ephemenis deserving of some degree of reliance. For the last return in 1871 the perturbations during the previous revolution were very accurately determined by Tischler, of Königsberg, who lost his life lefore Metz in the Franco-German war; and the conet was detected at Marseilles about seven weeks before the perihelion passage, and was followed at the Cape of Good Hope for a still longer period after it. So far it does not appear that the ohservations of 1871 72 have been brought to bear upon the predicted elements, nor has it been notified that any one is occupied in ascertaining the effect of planetary attraction since the comet was last observed, Tischler's mean motion for 1871, neglecting perturbation, would hring the comet to perihetion again about i885, September 23 '5 G.M.T., and under this conditi-n the comet's position will by readily commanded during the absence of moonlight in August, but unfortunately the theoretical intensity of light will be below the least value with which it has been thus far oh.erved. Assuming the perihelion passage to fall on September 23, the following would be the rough places of the conet:-

At Creewaich Midmight								
August		R...).	Dect.		nce fr	m		tensity
		$106 \cdot 3$.+33.8	Earh				of Light 0.19
	$14 . .$.	$110^{\circ} 1$..+338 .. .316 189	\cdots	1.19		
	18 ...	1136	... $29^{*} 3$	$\ldots 1.82$...	117		0.22
	$22 \ldots$	$11^{\circ} 0$... $26 \cdot 7$... 178	.	$1 \cdot 14$		
	26 ...	120.4	$\ldots+24^{\circ} \mathrm{O}$... 1'75	...	1.12		0.26

In 1871, when the comet was detected by Morrelly at Marseilles with the aid of Tischler's epbemeris, the intensity of light was $0 \cdot 54$, and at the laxt Cape observation, o.33. On August to the effect of an acceleration of eight days in the time of perihelion passage would be to increase the conct's right ascension rather more than 3°, and to diminish the declination about $4^{\circ} 4$.

Geographical elucation in Sweden has for years left mueh to be desired, but of late steps have been taken for its improverizent. Inthe so-called "Elcmentar-Jarovarken" (classical schools) \#cography has hitherto been classed as an appendix to bistory, and at the "Leltor" (candidate) examinations in history and rengraphy questions are only asked about the former study. Ind while the hours and parts of history-teaching in the schools zre detailed, no such arrangement has been made as regards seography; the hours of teaching are, in some cases, even not lixed. However, at the congress of teachers held in Stockholm last year, a resolution was adopted to the effect that geography ought to form a separate study of the school education. The University of I und is the only institution which possesses an eminent geographer for this Board of Science, viz. Baron von Chverin, who, last year, represented Sweden at the Geographical Congress in 'toulouse.

Tite last Annual Report of the Russian Geographical Sosicty contains extracts from letters addressed by M. Prjevalsky to the Grand Duke Alexander Alexandrovitch, which contains some iurther interesting details about his lloang ho journey. Alrout the end of May he reached, as known, the foot of the Burkhanbudda Mountains, which inclose the bigh Thilet plateau separating it from Tsaidam. leaving there his baggage, be went with only thirteen men to the sources of the Yellow Kiver. The climbing on the 15,700 feet high passage of the Burkhan-budda ridge took three days. The descent, on the contrary, was very short, the plateau of Thibet being there 14,000 to 15,000 feet high. Further 60 miles across the desert plateau brought the traveller to the sources of the Yellow River. They are 13.600 feet above the sea-level, and consist of two rivers coming from the south and west and rising in the hills scattered on the plateau. A wide marshy valley, Odon-tala, 40 miles long and 20 miles wide, feeds numerous sprines. The Ilvang-ho itself is only a rivulet dividing into two or three brancless, each of them but 80 to 100 feet wide, and only 2 feet decp at low water. Some 13 miles below this place the Hoang-loo enters a broad lake, colouring its southern part with its muddy water, and, alter leaving it on the cast, it enters again another lake, whence it flows out as a large river; further down it makes a great eurve to avoid the snow-covered Amis-matehin range, and breaks through, in a wild course, the parallel ridges of the Xuen-lun. On the Thiset plaiean the expedition experienced dreadful cold. In the second half of May snow storms were as strong as in winter, and the night frosts reached -23° Celsius. Still the thin grass covering did not perish and a few flowers reappeared every day under the sun-rays. Even in June and July the thermometer fell during bright nights as low down as -5°. As to rain, it poured every day, sometimes several days wittout interruption. The amonnt of vapour brought by the south-west monsoon and deposited there is so great that, during the summer, Northern Thibet becomes an immense marsh. Needless to say that the advance was difficult for camels. Though uninhabited by man, these deserts were full of herds of yakes, khoulans, antelopes, and mountain sheep; even bears were seen in groups, sottetimes of more than ten at once; some thirty pains were shot down; they are altogether very cowardly, and fly even when wounded. After having sjent a few days at the source of the Hoang-ho, M. Prjevalshy went south to the Blue River, called there Dy-tchou by the Tangoutes. The plateau remained hilly, mostly covered with marshes, where the Thibet rush, hard as iron wire, grows freely. The water-divide between the two rivers has an altitude of 14,500 feet. Further soath the region takes the characters of an Alpine country, still devoid of forests, but with a rieher and more varied grass vegetation. liangoutes, of the Kam branch, were met with, and received the travellers, though not friendlily, yet not as enemies. Some 70 iniles across a mountain region brought M. Prjevalsky to the Dy-tchou River, at an altitnde of 12,700 feet. 'The river, deep and very rapid, is 350 to 420 feet wide. To ford it with camels was quite impossible, so that a further advance to the routh had to be renounced. So it was decided to stay there a
and then return to explore the great lakes of the lionang-ho. y-tchou. Returning to the Moang-ho, M. Vrjevalsky ${ }^{*}$ er route to reach the lakes of this river, finding his guides. The Tangoutes closely followed the party, * suddenly attacked them. This attack, as also - repuised, and the only further difficulties were -w-storms (end of July). On the southern -dda Mountains a party of gold-washers
was met with. They did not dig the soil deeper than one or two feet, and their washing was most primitive. Still they showed handfuls of gold, mostly in corns as large as a pen, or twice and thrice the size. After having thus laid over more than 670 miles the party returned to Tsaidarn, which appeared to them, as desert as it is, a real Eldorado in comparison with the Thibet plateau.

Besines the special medals awarded to M. Woeikoff and M. N. J. Zinger, the other medals of the Russian Geographical Society have been aasarded as follows:-Small gold medals to the members of the last Pamir expedition, Col. Putyata; M. Ivanoff, geologist ; and M. Bendersky, topgrapher, as also to M. Gavriloff for a manuscript on the religions beliefs of the Votyaks, and to Prof. Zomakion for magnetic measurements at Kazan. The great gold medals were awarded this year by the Sections of Ethnography and Stativtics to M. Shein for his - Materials for the Study of the Customs and Language of the Russian Population in the North. West Province; of Russia," and to M. Yanjul on the manufactures of the Government of Moseow. Sixteen silver medals have been awarded for several papers published in the publications of the Society, for observations evtended over more than ten years on thunderstorms and rainfall, to those students who helped Prof. Zomakion in his maguetic measurements, and so on.

Tus eccentricities of the European nomenclature of distant regions is well exemplified in the case of the eastern portion of the Indo-Chinese peninsula to which so much attention is attracted just now by the political events in progress there. On some Englinh maps we find four separate divicions: starting from the north, Tonquin placed next to China; then Annam; then Cochin-China, and finally French Coshin-China. In the inap accompanying Mr. Colquhoun's recent work, "Amongst the Sluans," territory inhabited by independent tribes is inserted between Tonquin and China, which gives five divisions. This latter, however, is wholly incorrect, as the Tonquin frontier proper marches with that of China. In other maps (chiefly in those published in France) Annam and Cochin-China are thrown in together and called indifferently Annam or Cochin-China; while in others, mainly those of from ten to twenty years old, the whole coast from the Chinese frontier to the French colony of Saigon is called sometimes Cochin China, sometimes Annam. We derive the name Cochin-China from tl e early navigators, who applied it to the whole coast round from Siam to China; and varions generations, in search of trade rather than of geographical accuracy, have added to the confusion. Since the beginning of the present century, when the rulers of Annam imposed their yoke on Tonquin, there has been only one political power on this coast, viz. Aunam. As the territories of this State stood twenty-five years ago, it was bounded by Chint, the Shan States, Siam, Cambodia, and the ocean, and, with the exception that France olstained three small States at the extreme south in 1861, 50 it stands at prevent. Tonquin was a feudatory State of Annam when the present war broke out. In a history of Annain recently published by Abbé Launay, a missionary in these regions, we find his title-page runs thus: "Histoire Ancienne et Moterne de l'Ansam-Tong-King et Cochin-Chine -depuis, \&c., \&c. ;" and in some interesting preliminary observations on these names, the explains that the titles Tonquin and Cochin-China are relatively recent, and are employed only by Europreans, and never by the Annamites. Tonquin comes to us from Dons-Linh, formerly the name of the capital, now called IIanoi ; whle Cochin-China comes from Chen-chin, the name given to the ancient State of Ciampa, situated to the extreme south of the peninsula. Chen chin was probably preceded at one time by Cao, an abbreviation of Caotchi (Giadchi), and from Cao-chenchin Europeans have made CochinChina. The name Annain was first given by the Chinese in the third century of our era, It was never used in the official documents between the two countries, but it is that by which the Annamites now call their country. It was at first applied to Tonquin only, but it was extended by conquest to CochinChina, the ancient Ciampa. It should not, says Abbe Launay, be used for Cochin-China as distinct from Tonquin, but to the two united. The term Giao-shi, above alluded to, was that employed in the earliest epochs for the people inhabiting Annam, and was extended to the country. Their historians record that when the Emperor of China, Hoang-ti, formed the Chinese Empire in the twenty-sixth century before our era, he took Giao-chi as his boundary in the south-west. An ancient
sacred book of the Chinese, the "Chou-king," which was collected in the sixth century before our era by Confucius from the remnants of still earlier works, refers to a tribe south of the Chinese frontier as the Giao-chi, which means "toes spread out," or "far apart," a teran which points to a wide separation between the great toe and the others. This curious distinctive racial mark exists to-day, notwithstanding the lapse of time and the social revolutions of twenty-five or thir y centuries amongst the Annamites. We might therefore adopt the native distinctions a) stated by Abbe Launay en bloc, and call the whole region Annam, with sub-divisions Tonquin and Cochin-China; or, making a sacrifice of strict accuracy to long habit, we mighl call the whole Cochin-China, with sub-divisions Tonquin and Annam. But it is probably as hopeless at present to expect strict uniformity in these names as it is to expect it in the orthography of Tonquin, although uniformity even in doing wrong would be better here than the present confusion.

At the meeting of the Dutch Geographical Society on April 18, Mr. Robidee Van der Aa delivered a lecture on "Papuans and Melanesians, and their Relation to the Malay-Polynesian Race." Succinctly stated, the opinions expressed in the lecture were these:-The opinion once prevailed that the Papuans were the autocthones of the Malayan Archipelago, but that they were conquered by the Malays. There is, however, no support for this supposition, since in the interior of none of the Sunda Islands has a tribe been found bearing any resemblance to the Papuans. Since the researches and discoveries of MikluchoMaclay we may not consider their hair or their dark skin as a decisive distinction with regard to other tribes. Moreover, it is now stated that their language is related to the Malayan tongue ; there are still many costoms and usages found amongst them similar to those met with among Malays. From all this Mr. Van der Aa concludes that the Papuans are one of five families, atl of which have descended from one "insular race," and were -eparated from each other at an early date.

Thotgut nothing was said at the Dutch Geographical Society on April 18 about the expedition undertaken to the West Indies Iy Prof. Martin and l'rof. Suringar, we n w learn that tivey left Curaça in March. The former, accompanied by Mr. Van de Poel, arrived at I'aramaribo and intended to make an excursion to the "lheven Suriname" on March 30: the latter intends to go to Venezuela, and after that to some of the Windward Islands, viz. St. Martin's, St. Enstathius, and Saba.

We take from the Annual Report of the Russian Geographical Society the following figures giving the average temperatures for twenty-two months at the Sagastyr l'olar Station at the mouth of the Lena. The following figures are on the Centigrade scale, and the first of them gives the average of the corresponding month for the year 1882-1883, while the second is the average of the same month for the year 1883-1884:-September, $0^{\circ} \cdot 1$ and $0^{\circ} .6$; Octoher, $-15^{\circ} .1$ and $14^{\circ \circ} 1$; November, $-27^{\circ} 9$ and $-25^{\circ} \cdot 7$; Dccember, $-33^{\circ} \cdot 5$ and $-33^{\circ} \cdot 3$; January, $-37^{\circ} \cdot 2$ and $-35^{\circ} .8$; Fcbruary, $-42^{\circ} \cdot 3$ and $-34^{\circ} \circ$; March, $-31^{\circ} .5$ and $-35^{\circ} \cdot 2 ;$ A pril, $20^{\circ} \cdot 7$ and $-21^{\circ} .8^{3} ; \mathrm{May},-8^{\circ} \cdot 1$ and $-9^{\circ} 7$; June, $0^{\circ} 9$ and $-0^{\circ} \cdot 2 ;$ July, $5^{\circ} 4 ;$ August, $3^{\circ} 8$. Average of the first year, $-17^{\circ} 1$; of the second (incomplete), $-16^{\circ} 7$. As seen, both years are closely similar ; the exceedingly low temperatures of Felruary, 1883 , are most remarkable, the average of the month being only $-4 t^{\circ} 3$, and the lowest temperature observed having been $-52^{\circ} 13$ for the first year and $-48^{\circ} \%$ during the second. The auroras were also less frequent, and the magnetic perturbances feebler. The number of hours during which auroras were observed is seen from the following figures:Scptember, 13 hours in 1882 - 888 , and 23 hours in $1883-1884$; October. 87 and 69 ; November, 179 and 83 ; December, 191 and 178 ; January. 194 and $152 ;$ February, 197 and 126; March, 137 and $1 t 8 ;$ April, to and 8 ; none in May to August. Total for the first year, 1008 ; for the second, 756.
It results from the ame report that the delta of the Lena extends, by nearly one-half a degree, further north than on our liest maps. The northern cape of the Danube (Dounay) Island is under $73^{\circ} 55^{\prime}$ north latitude. This determination does not correspond with the Vega map, where Sagastyr, being under $73^{\circ} 21^{\prime}$, the northern extremity of the island is under $73^{\circ} 27^{\prime}$, and the course of the Vega in this longitude is under $74^{\circ} 8^{\prime}$. At any rate, M. Yurgens has been compelled to go for twenty miles nerth of Sagastyr before reaching the extuenity of the Dounay Island.

SOME EXPERIMENTS ON THE VISCOSITT OF ICE

THAT ice will change its form noder the influence of preine is exemplified at large in glaciers, and may be illustmat by experiments in the laboratory. How far this is due to a me viscosity, and how far to a rearrangenent of the particles b melting and regelation, is a question the discussion of white among physicists has been of long continuance, though there there may now perhaps be some signt of permanent yield under the influence of continuous pressre.
In the first volome of Nature (p. 534) Mr, Wm/ Mruthons describes experiments (I 570) in which pianks of ice, suppormal at each end, but free in the middle, become permanently bot:In the first of these experiments the plank was 6 inches mile, 2 inches thick, and supported by bearess 6 feet apart In= temperature of the air was above the freering puint of maner. The plank bent rapidly, so that the total deflection was 7 iocles in about as many hours. "At its lowest point it appeared bee at a sharp angle, and was rigid in its altered form." Jes loves surface showed minute fissures. In a second experiment a phat of somewhat similar dimensions (1 ' 'inch thick, 61 to 61 bedes wide, 6 feet between the supports) became permanently bei The amount of deflection was 31 for the upper surfaoc and 31 for the lower surface. The time was 6 多 hours. The bell perature " never rose above the freering point " $\$$ hut the fact that the thermometer registered $29^{\circ} \cdot \mathrm{S}^{\mathrm{F}}$. one morning at $9^{\prime} 30^{\mathrm{n}} \mathrm{A}$ and $30^{\circ} \mathrm{F}$. the next morning at the same time, would lead w. to suppose that the midday temperature was not for from the freczing point. Similar experiments were subsequently cariod out (1871) by Prof. Tyndall, in Switxerland, and ane mentioned in Nature (vol, ir. p. 447).

In Nature, vol, vi. P. 396, Mr. John -Aithen describes experiunents in which weighted shillings were cuated to sink into blocks of ice. Dut when the block of ice was previonty cooled to about 8° lelow the freezing point, a shilling weigtead with 90 lbs , and left for three and a balf hours, "wras foenal mot to have entered in the slightest degree into the ives," Sd sequently, in 1873 (Natore, vol. vii. 3. 287). Mra Aillial described experiments which showed that ice bends the readily the more air-bubbies it contains. "Temperateres" ${ }^{2}$ says, "seemed to have some infuence on the rate of bendlys ? these beams, but this point was difficalt to determine on aceo. of the different beams bending at different rates at the iexio temperature ; but, so far as could be ascertained front it experiments, the beams bent slower-the lower the temperathes The lawest temperatare osed in these experiments wasing thore than $3^{\circ} \mathrm{F}$. below freezing."

In 1875 Prof. PGaff descrived in Poggenderf's Anmmon p. I60, reported in N'stvre, vol, xii. P. 317) a evertuly. ducted experiment in which a paralellopiped of loe ga cin : 2.5 cm . wide, and 1.3 cm , thick, was sapported in cuch a ? that 5 mm . at each end rested on the betrens. Thi- was for seven days, from February 8 to February 19.flic tumperaly: varying between -12^{*} and $-35^{\circ} \mathrm{C}$. The hulas trend wi. $\mathrm{t}^{\prime} \mathrm{\prime} \mathrm{smm}$. That is to say, to translate the we mitasuremens int. inches for the sake of cotnyarison with flie other results, in ; bar 20 inches in length between the axpinith, 1 inch in walk, and $\frac{b}{2}$ inch is thickness; the total begilung was a little oret " 45 of an inch. When the temperature" wre to stightly, unde $0^{\circ} \mathrm{C}$. the beoding increased, and wavorit ct to 9 mm . (34 ivches) in 24 hours. Other experiments are decrithed by Prof. Efiff in the same paper, and the general conelusiuy to which he is Fod in "that even the smallest pressure of sufficient to dialocate ist particles if it act coutinuously, and if the temperatere of the ice and its surroandings be near the melting point.
In the current volume of Natick: ($\mathrm{P}, 329$) there is n Honet of a paper recently read before the. Koyai society in Mre Cf Troter (to whom ! zm indehted
"On some physical propertiet" or described some experimenas onl the in a glacier grotto at a nea

0° C. In that report we J.

are given for supposing
which ice is sensibly:
So far as I know
very low temperat
the presen: cos
which I have
courtely of 8
clamber of

In this chamber the air, which hav been previously condensed and cooled, is allowed to deposit, in the form of snow, the moisture which it can no longer retain owing to the great diminution of temperature due to expansion. George Punter, whose business it is to look after this snow chamber, rendered the most intelligent assistance in prepraring the bars of ice, and in conducting the experiments. In this mode of experimentation the great variation of temperature, namely, between $-30^{\circ} \% \mathrm{C}$., when the engines are stoppl! in the evening, and $-12^{2} \mathrm{C}$. , as a maximunt when they begin work in the morning is an unavoidable drawback. Still, I think that the experiments, although they give uniformly negative results, are worth putting on recort.

Exferiment 1.-A cylinder of ice was cast with a diameter of 3 inches. Over it was hung, as in the well-known lottomley experiment (Naturf, vol. v. p. 185), a wire loaded with a total weight of 5 lbs . It was left in the freezing-chamber 63 hours. No dent was traceable on the surface of the cylinder.

Experiment 2. With a similar cylinder and wire the load was increased to to Its. and the time to 8 hours, with like negative results.

Exfriment 3.- With a similar cylinder and wire the load was further increased to 14 lls . and the time to $17 \frac{6}{6}$ hours, with the same result or absence of result. This experiment would seem to show that the ice refused to yield to a pressure of 20 to 30 atmospheres, or probably more, applied in this way and for this time.
Experiment 4-A bar of ice $1 \frac{1}{2}$ inches thick, $2 \frac{1}{3}$ inches wide, and supported on bearers $13 \frac{1}{2}$ inches apart, was left in the chamber from 12 n ou on Munday until 12 nion on Saturday. It showed no sign of bending under its own weight.
Exforiment 5.-A similar bar similarly supported was weighted in the middle with 7 lls ., and left for the same time. Nosign of bending.
Experiment 6.-A similar lar sinilarly supported was weighted with is ltw., ant left for the same time. There was no bending perceptible to the eye; but, on removing the apparatus, the bar broke with the jar occasioned by setting it down somewhat carelessly, so that no exact measurement was taken.

Experament 7.-A bar of the same letgin! and width, but thinner, tapering somewhat from $\frac{1}{2}$ to of an inch in thickness, was weighted with 7 lb ., to which, luring the last two days, seven additional pounds were addel, and left for the same time. No bending by measurement.

Such negative rexuits are just what one would expect on theoretical groutuls, and as an inference from previous experiments conducted at temperatures nearer the ntehing. point. But it is well not to rely on theory or on inference where direct experiment is practicalle

The matter, then, would appear to stand at present sumewhat thus. The visco ity of ice, due to whatever cause, is(1) At temperatuies at and above the melting-point...considerable. (2) " " below bit ne.ar ., ${ }^{(2)}$...much less. (3) "" " between-3" 5̧ C. and- 12 C.... very slight.
(4) What seenis now to be wanted is an experimental determina. tion of the lower tensperature-limit of viscusity, which would appear to lie somewhere between -12 C . and $-3^{3} 5 \mathrm{C}$., bitt 1,robably nearer the latter temperature.

University College, Bristol
C. Lt.oyd Murgan

BEN NEVIS

A^{\top}T the meeting of the Royal Society of Edinburgh held on Montlay last, Mr. John Murray, Vice-Pre ident, in the chair, Mr. K. T. Omond, Superintendent of the Meteorological Observatory on Ben Nevis, delivered, at the request of the Council, an address on two years' residence and work there. Mr. Oniond, at the outset, recalled the advantages which Ben Nevis presented as a figh-level meteorological station, the ecrvices of Mr. Clement S. Wragge, and the chief steps that led up to the erection and equipment of the existing permanent ubservatory. Glancing at sotne of their daily experiences luring list suminer and autumn, he mentioned that some 3000 or 4000 t-urists climberl the mountain-sometimes at least too in a single afternoon. Since the middle of October, however, not more than lialf a dozen strangers had ventured up. Some came for information; others were disappointed at finding they could not te fed as well as sheltered; others came to spetid the night, lut were disapiosinted at finding they coull not do so. Nlost of the
visitors, however, were satisfied, though a little astonished, by the explanation that the building on Ben Nevis was primarily a scientilic observatory, and not a hotel. Storms of exceptional and terrific viulence were described. Beautiful optical phenomena that had been witnessed, and the comparative scarcity of animal life on the mountain, were next alluded to. Rainhows are seldomseen. Thunderstorms are very rare. The temperatures during winter are not so low as many people think- $10^{\circ} \mathrm{F}$. is about the lowest recorded as yet, and the ordinary winter temperatures ran from $15^{\prime \prime}$ to 25°. Observing that much must yet be done in the work of the discussion and interpretation of the observations made on Ben Nevis, before the observations could be safely used, he proceeded to state some of the more interesting points which Mr. Buchan had already succeeded in approximately establishing: (t) The normal or average temperature and barometric pressure for each month, and the normal differences between these averages and those at sea-level. (2) The daily variation of temperature and pressure during each month. (3) The daily variation in the average velocity of the wind-this being shown to be greater at night than during the day, exactly the reverse of what holds good at sea-level. (4) Variations in the direction of the winds as compared with those prevalent over Scotland at any given time. A comparison of the Ben Nevis winds with those at low-level stations sometimes shows that both are part of one system, whether cyclonic or anti-cyclonic; but the direction is almost always different, and in the case of cyclonic storms, coming from the west. The observed differences in direction seem to give an indication as to whether the storm centre is to pass to the north or south of Ben Nevis. If this point can be definitely made out, it will obviously lee of immense value in forecnsting weather. (5) The lyygromettic observations indicate that the atmosphere on the ben shows that during ordinary weather a state of persistent saturation, usually accompanied by fog or mint, prevails; but occasionally a sudden and extaaordinary drought sets in, the temperature rises, and the sky clears, not merely of fogn, but often of every vestige of cooud, and at the same time the valleys and lower hills are often shrouded in mist, showing that this dryness coming from alove is not able to penetrate right down to the sea-level. The thorough investigation of these phenomena is one of the mot important pieces of work connceted with the Observatory, and may le expected to throw great light on the question of atmospheric circulation. (7) The rainfall of Ben Nevis is greatly in excess of what several thcories of the distri mtion of rain led them to expect-a result possibly due to the great vertical movements of the atmosphcre indicated by the hygrometnic indications referred to above. Though there are many lugh-level stations in tlifferent parts of the world, none, perhaps, are so favourably situated as Ben Nevis for the investigation of what he had explained is the present great problem in ineteorology, namely, the vertic I movementi of the atmosphere. If the Scotish Meterrological Society were possessed of suff. cient fuods to establish a completely-equipped observatory at the foot of Ben Nevis as well as on the sumnit, he was convinced that the science of meteorology would advance far more in a few years than it weuld by a genetation of ordinary work with low-level stations alone.

SUNLIGHT AND THE EARTH'S ATMOSPHERE ${ }^{1}$

THERE. is, we way rememler, a passage in which Plato inquires what would be the thoughts of a man who, having lived from infancy under the roof of a cavern, where the light outside was infetred only by its shadows, was bruught for the first time iuto the full splendurs of the sun.

We may have enjoyed the metaphor without thinking that it has any physical application to ourselves who appear to have no roof over our heads, and 1' see the sun's face daily; while the fact is that if we do not see that we have a roof over our heads in our almusphere, and do not think of it as one, it is because it seems so transparent and colourless.
Now, I wi-h to ask your attention to-night to consideratiin sonie degree novel, which appear to me to show that it is transparent as it appears, and that this seeming colourlessne a sort of delusion of our senses, owing to which we have n
${ }^{1}$ Lecture delivered al the Royal Intimuion, April 17, 2385, by Langley. Commuticated ty the author.

20

 Whe the fulesras hars are die to mxepoacrgurally fanc line bothine to wecoum Int the sulental play of colour alpermely

 Nut aow I sak yos in llualk iof them noly is ruptections with the

 than lut the mbl-analher switence of the great peoperionste If we ecolhil retture all the lout light in thrse hines, wev thembl

 Remepler, lowever, Alway, that the =-at inip viami poit

 The liwest ther mople to neturat io it of any, asd we all herre
 oluth the leat is 400 times morisur that in thas of a prome, an

 the unter at that eapluyal by my lote busentel frimil. or Wer
 thas through a enhl ose,
Owe great dificily ton to moke the runbecting wie very

 the sobet, woulh make bot one Eaglish inarh. Here is

 Whithe teag for finer than a human hair. I att peop

 (7) At rumbiesal. 1

THE AVSTITUTION IFF MECHNNFC
\qquad

SOCIFTIES AVD ACADEMIFS

Pyleal Loxpor

If an and a are loget, wr lave $A=N=$ an

 protar ine une of tise -irverea in compase loghts of Nilterein takuers, and hated at the poritility of thaquik sume wive

 finen of cocte
of the ferw

$$
-\sum_{i=1}^{n} \sum_{0}
$$

wherse. A. A, wat O ate pubtic: whith ore difurni ia

 loy the nimintan

 tuselmara A, N. R. und \&. Tho fillowitif ladkelium of the

aerve be on oequive mhue of i, so that o diming
ef mo. I hare

$$
f=m^{-}+=-n
$$

Where of a paume $i-\mu-i=a \quad$ i +1

 $u=\theta_{1}, m+d+m i_{1} \theta+a 1 \theta+m$,

haw

and a/won

 Ha thut gre tir catormal E W. W. W, or the romemal

 atianed -1 to the
 thermaneler log wrelang the tostrmeat in an aisl in

 i. lutier what mahil a couple in io miod

 1. k -

 dinal arragenersi of Un Limion dy ys in ive Then

 grimen-pog ind in shew ilat these preparniom, when vxallowed or injectod in umall iones, voluce so muthy symplom, shitosgh

 mined, fienter, thes in its nurasel vate the Moot of man med other inumaks in set

Mratis

 regiarlf found hysung loric arid in the gavere wice. Two
 wenteratith, one of the tares espectally lavilia! anel ing ing.

 tions by meson of alich ibe pusence if hactio weil inghth be couly

 efusach tw the yoce of to to 100 minuter infer the ricemion of The luod in 3 caves. hiew-ver, nol till 1 to mumenes or tone wher

 White bered wos atiac calct lectic acid was demontlented in

 Detas he became voonncol than the hair jupille puraroel aneth

 rowtitel, in the cait of the wowh hairs the lowly to be chl hail, Th the ocutray, tu bu earel orer it. In. Misehis win

cataneoes epots, the woch lallin of the hask an wr elluwy mesuivios, wa the nther binal, wery perlop

 that pary of thy witin weld whe sis hur abooe refore
 anpates rad foiled to comeriner himenels of the nivene ponst d provere, and mentmorried be ther nive sel

 Imperial Acacteny of Bcisnerion

 as quafts by K. 1 anrr--Ilitulugical on the velocur

 lurn. by Mor.

 Jurpult bienaturat by is Siermey.

CONIENTS
Greel Matharavica
Owr Booli Stelf -
"Thr Lnol gicat Kerial IT 0 tesf
Chann's Thesian on Prutical Cheniticy mi ()
reave levoric Analyin
Senil, "Cleginal Krowathes in Minershacy a

Lathers to the Edtor:
 The L.ve whe clatidy Nyen if. Tuktry

 The Nes Hod in Xund -J. E II artaig
Wid liee - B. Brown.
On M Wole o Modificentig
for che Boverusementict of the Veluctity al Appuat Alhen A. Mictherion
 of the OLuchoy Smuth, ind to the Deturnatate The flumotinns Extihhown
Slandur Puch
Ihe Scrince ana
Notre
Our Anerrosomical Column i-
 Geugraprical Notè
C Lloyd Morgan ane Viactostr af lee. ily Prac Ern Nava Morgan
 The /motututioe of Mechinical Zergientis Usiveridy and Educatianol Imetigeron Socleticy and Academina

Messrs. MACMILLAN \& C0.'S NEW B00KS.

IN A FEW DAYS.
TEXTBOOK $\underset{\text { BY }}{\mathrm{O}} \mathrm{F}$ GEOLOGY.
ARCHIBALD GEIKIF, F.R.S.,
Derector-Generat of the Geological Survery of the United King down.
With numerous Illustrations. Second Edition, thoroughty Revised. Medium 8vo.

> CLASS BOOK OF GEOLOGY. for the useof colleges and schools. ${ }^{\mathrm{nr}}$ archibald geikie, f.r.s. Dirctor-General of the Geviggial Sarticy of the l'milnt Sing dom. Fcap. 8vo. BY THE SAME AUTIIOR, PRIMER OF GEOLOGY. PRIMER OF PHYSICAL GEOGRAPH Y'

"The only fautt of this book may be stated unifer one head-there is n t en ?ugh of it . . . Never since the Burns of Eave: England [Rolert Bloomfiell] gave us his genuine recollections of the peasantry among whom his boyh hod was pasied have we e the true Suffolk speech better put into black and white. More of this, and mare al-o of the medical student's experienee, may

lectures on some recent advances in physical.

 SCliNCE. With a Special Lecture on Furce. Dy P. G. TAIT, M.A., Formerly Fellow of St Peter's Colle: Cambrifge. Irofessor of Natural Philovophy in the Univercity of Edinhur,h. Third Edition, Kevised. Crown Svo. 9. PRACTICAL INSTRUCTION IN BOTANY, A COURSE OF. B F. O. BOWER, M.A., F.L.S., Professor of Botany in the University of Glasgow; and SYDNEY II. VINF: M.A., I.Sc., F.L.S., Fellow and Lecturer of Christ's Collese, Cambridpe, and Realer in Rotany in th: University. With a Preface by W. Tuisfleton Dyer, M.A., C.M.G., F.R.S., F.L..S., Assistant-Director of the Koysi Gardens, Kew. Pare 1. PIIANEROGAMAE-PTERIDOPHIYTA. Crown Svo. 6 s.PHYsical ARITHMETIC. By Alexander Macfarlane, M.A. L.Sc., F. R.S.E., Fxaminer in Mathenatics to the University of Fdinburgh. Crown \& wo. 7r. 6.6

LESSONS IN ELEMENTARY PHYSIOLOGY. By Tiomas H
 Hexlex, llail., p.e.s. Rerised Edition. Feap. 8vo. 45. 6\%.
 [Nox: zowt.

Now Publishing, in Crown Svo, price 3r. 6r. each.

THE ENGLISH CITIZEN:

A SERIES OF SHORT BOOKS OI HIS RIGHTS AND RESPO.VSIBILITIES Edited by HENRY CRAIK, M.A. (Oxon), Lt..D. (Glagow).
This serie, in intended to meet the demand for accetsible information on the ordinary conditions and the currint terms of osf political life. The series deals with the details of the machinery wherely our Con titution works, and the liroul lines upon whic it has been constructed.
The following are the Tilles of the Volumes:-
JUSTICE AND POLICE. By F. W. Mattland. [Nez Voluene. CENTRAL GOVERNMENT, By H. D. TMAHLL, D.C.L. THE STATE IN ITS RELATION TO TRADE. By Sir THE EIECTORATE AND THF, LEGISI.ATURE. By Stexctr Walpole.
The puok l.aw. By the Rev. T. W. Fowle, M.A.
THEF NATIONAL BUIか;ET: The National lebty, Taxes, and Rates. By A. J. Wilson.
THE STATE IN REIATION TO LABOUR. By W. sitant.ky Jevons, LI..D., F.R.S.
THE, SIATE AND THE CHURCII. By the IIon. Akthur Enliot.
foreigin reifations. By Spencer Walpole. T. H. FARRER, Bart.

LOCAL GOVERNMENT, By M. D. Chalmeks, M.A. THE STATE IN ITS RELATION TO EDUCATION hy Henry Craik, M. A., LI.D.
TIIE LAND LAWS. By Prof, F, Pohbock.
COLONIES AND DERENDENCIES:-
Part I. India. By J. S. Cuiron, M.A.
Part II. TuE Cotonies. By E. J. Payne, M.A.
THE. PENAL SYSTEM. By Sir Enmund du CaNi. K.C. B .
[/n the Press.
MACMILLAN AND CO., LONDON.

WOODHOUSE \& RAWSON,
 SUPPLIERS OF ALL ELECTRICAL APPLIANCES,

Ocyices-11, Querm Victoria Street, e.c.
Lamps.
Dynamos.
Accumulators.

Fittings. 8 witches. Safety Junctions.

Works-Caday Hall, Hammersmith Road, w. Carbons. Wire. Instruments.

Battery Supplies.
Telephone Supplies.
Electric Bells.

SOLE MANUFACTURERS OF THE WOODHOUSE AND RAWSON INCANDESCENT LAMP. inquiries invited.
 SUCCESSORS TO W. LADD \& CO.,
beak Street, regent street, london, w. MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FOR SCHOOLS, COLLEGES, OR PRIVATE RESEARCH. WIMSHURST AND VOSS INDUCTION MACHINES OF IMPROVED PATTERN.
Illustrated Catalogue, Revised Edition, per post 8 d.

5. IV. strocuri.

In Casks, $12 / 6$ per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts. ${ }^{\circ}$

- Bottles charged z^{\prime} ' per dos,, and allowed at the same rate if retumed; but they must be paid for with the Beer.

Neither sugar, naccharum, nor any of the many new Hrewing Materials are used in the manufacture of the "S. N." Stout; it is Hrewed entirely from the finest Malt and Hops; it is, too, more hopped than Stout is generally; therefore, besides leing very nutritious, it is an excellent Tonic and particulatly suited for invalids, ladies morsang, or thyone requiring a good strengthening beverage. It is a "Sound Nutritivus" Ionic. and very much recotamended by Medical men,

WALTEAMERETHERS,
THE "HALFGUINEA" ALE BREWERY, LONDON, S,W.

WALL PAPERS FREE FROM ARSENIC.

WILLIAM WOOLLAMS \& CO., Manufacturing Paper Stainers, ase the Oniginal. Makias oy
ARTISTIC WALL PAPERS, Guaranteed Free from Arsenic.
Sole Address-iIO, HIGH STREET, MANCHESTER SQUARE, LONDON, W.
May be outained of all Decorators.
Special Prize Medal. Sanitary Institute.
Award of Merit, International Medical and Sanitary Conerens.
Silver Medal, National Health Society, 8883. GOLD MEDAI, INTERNATIONAL HEALTH EXHIBITION.

SCIENTIFIC WORTHIES.

The following is a list of the Portraits that have appeared in the above Series.

MICHAEL FARADAY. THOMAS HENRY HUXLEY. CHARLES DARWIN.
JOHN TYNDALL. GEORGE GABRIEI, STOKES. SIR CHARLES LYELL. SIR CHARLES WHEATSTONE SIR WYVILLE THOMSON. ROBERT WILHELM BUNSEN. ADOLF ERIK NORDENSKJÓLD. SIR WILLIAM THOMSON.

HERMANN L. F. HELMHOLTZ,
SIR JOSEPH DALTON HOOKER. william harvey. SIR GEORGE B. AIRY. J. LOUIS R. AGASSIZ JEAN BAPTISTE ANDRÉ DUMAS RICHARD OWEN. JAMES CLERK MAXWELL. JAMES PRESCOTT JOULE WII.LIAM SPOTTISWOODE, ARTHUR CAYLEY.

SIR C. W. SIEmens.
Proof impressions of these, printed on India paper, way be had from the Publishers, price 5s. each, or the Set of 23 Portraits in a Handsome Portfolio for $\mathcal{L} 6$ os. od. carriage paid.
the portfolio may be had serarately, price 6.
Cheques and P.O.O.'s payable to MACMILLAN or CO.,
OFFICE OF "NATURE," 29, BEDFORD STREET, STRAND.

ASTRONOMICAL TELESCOPE

a fin. Wray leens, best mounting, \&c., \&c. \& o 3 tia. Wray Lens, best mounting, \&c. \& 3 in. do. do do. $\quad, 710 \mid 4 n$. do do do.

THE "EXCELSIOR

paten spring Mattress nwards THE NEW PAT

The prisciple of arnangomant penmits the tree arbiesurtic
 of crimplece indation of euh, and sfarmal's pervints
Tus "EXCELSLOR" \& "MATLOCK" COUCIIS. Retallirom Cublop maten, Uplalsipurs, ac.

CHORLTON \& DUGDALE, MANCHESTER. interesting slides for the mioroso

thation Simete of fint
Hell lave \qquad - vil wat hu anem?

An Vamala fomition CUT SECTIONB READY FOR MOUNTINQ
 W. W ATAON \& S SONS, OHTICHANS TO HER MAJFSTJ'S GOVENSME,

CONSU MPTLON of GAS guaranteed to be 25 to 75 less than ANY other Gas Engine per brake horse-power. CROSSLEYS PATENT TWIN ENOINES.-

The ateadiat rusing Gos Engina yet made.

CROSBLEYB NRW VRRTICAL ENOINES
0R099LBY BRO8. Litaite
CR0SsLBY BROS., Limited, Manchester. London: 34. Pentry, E.C. Olagew iss, Ueien Street

 FOR MOUNTINO $, \omega, \ldots 4$
The lesting preselianity of thro Maureso io priags of A wovine wite etcatral portioe lomito grear ktrchigit and relatide te
 springe atriste iap 1esleacy in nill wown : To betome hollum and to casse oletpers to

\times \qquad COLLEGE

\qquad THE OWENS COLLEGE, MANCHESTER.

 THE YORKSHIRE COLLEGE, LEKDS.

 ART KCwCol, moe ladies prln batty. BEDFORD COLLEGE, LONDON,

\qquad
ROYAL INSTITUTION OF GREAT BRITAIN. aLbevalle sikiet, ticcadiay, w.

ASTRONOMICAL REPLECTING TELE.

 SCIENTIFIC BOOKS.-Speciality. Micro-

NOTICE OF REMOVAL.
\qquad

SIX PRIZE MEDALS

PATEKSON \& COOPER.

SCIENCE AND ART DBPARTME

тномал J. Dоwкimo.
\qquad
C. D. AHRENS,

PRISM WORKER AND PRACtICAL OPTIC 36, GREAT UUSFFLI, STKEET, LOSDON, w.

HuW a CO.'s
Geological Tran-par-ucles lor the Late

SCOTTISH PROVIDENT INSTITUT

the Prupsei
tise Yrat. Wew Ascarneese compted, \&!.015.155: with Premives, $\mathbf{2 3 5 . 2 7 4 .}$ Income in Year. £688,920. Claims, £209,880.
 WHOLS WORLD LICESCES AND XON-FORFEITURE OF POLICIES,

The Advantages which this Institatian offers to Assarers are

1. MUIA EIITCH, Lamina Kerretary. 1fir Affianhers.
 UNDER Now neany.
UNDER THE RAYS OF THE AURORA BOREALIS: in the l.and

 AUTOTYPE PHOTOGRAPHIC BOOK
LLLUSTRATION.

ANTTSTHC DECOR ITIOV OF THE HOME,
AUTOTYPE FINE ART GALLERY,

\qquad

ELASTIC STEEL SPECTACLE
2e. ad, 70 ad, 18\% Mow miv, poot fine.

1. \&UDGATE HILL, LONDON,
erpalusleats of wark which may be pteseated in n very diverve sad harcly reoggniable unasner
In his first Fisugs, Art XXXiX, "On an Ahnolute Thermenafinic Scail, and Arl. XI.t., An Account if Carnot'a Thenty of the Mretive Powrr of Heat, daing from the years theth and 1849 , our author still occupies esvemially Caroots stand point, but he ntrerthelets cals atiention 10 the fict that the atgurbeot adduced by Cannor in sapport of this thearem, appartatly valid thrugh if ans in all points, was get defective if the experiments by funle, whath were jout then made known, thoulal be comAnord, nocrording to which lieat outht be generated anew ly work (vol L A 316). That whirth mare imuedately directed Sir Wulam Thompors atodiet to the subject Eats the potsubtity of attaining. Tn accordance with Connoe's thearem, to an absoline scale of tesoperatire, anal be endeavoared to urilise the obvervatiuna which Ryphault had atorty lefore cartied ond with npecinl care in relerrece th ther presenses and latemt hrat of steam for be purpose of calculating sach a scale. Mor is doing sa he was obliged to apply the hypothesis, not perfectly exact tie this cave, that the deasity of steame wat to be ratco. lited from prestare and tempermure uccording to the laws of gase:
The throry if Carnot nezt obralned highly sorptining ennfirmation from the theoretical deluction druwn by Prof. James Thomsa, the elder bespleer of Sir Witesul, tourhing the alientina of the frovens-puint of orater in conserponew of difference" of pressare. The accuracy in poost of fact of this deduction was enpernumatly demanatrated by Sif W: Thannamin Thlu wsa $\frac{1}{\text { dincorery which }}$ pethap, nuse thas any ather ferved fodraw the attention of physical seientats to the ateuracy and the importance of Curlion's theorem.
 rectness of Robett Mayer and Joole's the tis respacting the equralence of heat and wark, deveneal him erli to the problem of how Joule', and Carnot', lawy might be combined. This qoestion lie answered on lis treatise of Mants, iA5t, "Sh the Phatricat Thenry of Heat," Art. XL'III, Prof, Clasiun, in Germanr, hid, Bnuever, been busied with the tame problem, and had publnued the resultes it which ha alrked before Sir W Themivnn, is May, reya The essential reault of the two investietaimen crienoded exactly ; indy bis harir numerical salues for the abomivie saie of iemprraturs, lie two authorrha started with two differnt hy pontheses, ind had therefore rriched different coarluanme sit the alrably of sesion had, as above mentianed. calcumatio the dirnory of sesm fromp pressare and tempesaruse, as if for connjieth getwen
 up by Kobert Mayer, accurding, to wbich the work of a gas expanding iterfifas exactly empivalent to tis loss of heal Laser on, when lis ouponenis at forth the unsatufictory hasis it this hypuchesis, Rolien Mnyez primetel to an old and very hate-known experiment of Gay-lmyse, mecording in which a gat difusong inell io eispty space without encountering doy resiscance suffered ba dimamation of heat. The same experment was ahefsards carnied out by joule withou has basing aby know. ledge of the earlier observation of a similat antore. Thin form of the experiment was, howsier, as in whole, not firtod to yield very proche recslts, secing that the maste of
air availalle fint it , whaen convimption of hat meabsred, wat nockwarily very small in cotap. inverticalion inis the calorimeter. If was b) a mass of gas made to pasa througt in poroas sub-tance- an investigatlon carried oor bj). P. Joule and Sir W. Thaminn, in +1 Szz, anc wi ArL XLIX, "OD the Thrmal Efferte of
Notion *- that if was elemonitrated how in Motion "-that ir was alemonutruted how, in po
R. Mayer's hypolbesis was wcerrete to wal R. Mayer's hypolbesis was sceurate to wah close degree of opprimimation, althougli not letr prerisina, in reapect of hydrogen and atmois -hereas catbanic acod showed greater deration To this lave to be added eatended isvertip abenno eientict curnetss, enit-the aperations (Appendis to Ari XLV'II, and *Fzperimental Kesearrlif- in Thermo-eloctrici Art. XCr. Bakerian lecture, pph. f, ti., and inc. Ve a thermo-lectric chain which, from its conduc sets inagnets is motion, or generates heat in beat cooducted to the solderng reams in man enurer of the mperations We knam that in acconding to the jenpwiant obwreatouns of Pe disappeary from the warnet andering seam, bit dereloped in the colder. That is, is firr, win arcording to Carnot's law, under which, beas tuansfecsble inta bether forms of wurk Thes pencem wal, huwewer, of special interse for dhen zalidety of the theur, seeing that thy worl of he produced under conctuons altugeiber duifereat of tha seamengine and humenir engins. Our b) this 1areatigation led to the cunclmuan that, at the opimon hitherta eqtertaneil, ft was not in il Ing-seanay of the metals, at nll eventi frut in the but in the whote length of the wires, hy a praci he calli" "rlevtrie convection of hasa," hras the in poomt of fact, he onceeeded by a wenes of wery? and sobtle evperments in demnmtraung thet the tron af hezat is uno poyomeded mate rafoliy re the ef the curren: of negative rlectincuy and as cu) Inthe find wiluine nf the bl
 derchopment of ooc of the numas thas he batia
 all easulple of luow insoverie urr alrmal at ma eot aluays rational. The cource of this beat mincls mas in wome measure of thr invertnnid atic ielricopes. Startieg with the ernemos that the rye of man wav acboomeror, 1.afer unfer Kefraction and dispetion of propimonitity refraction and duxpernion of byht $=13$ Lilue, telesroppes was without fimolatimitity of gove the tereipe for the milinng of Therrup requet-a enerect conclumon from a. 1d-s urailar te thr cane of Camon sith Die dein Alfr att the condintrations whith the tare lenen the different branches of phymes for the valit dedsctions of the corrected Carnat Inv there I
Ienger remmim nay donbe that of luy ther the most enempretiensive and fimperant laye of

3
apot has now been followed snce etpll, and though appurently oo dhe verga is alimentats antinction, 1 may jet lingur on a considerable ume io hs present foesle ayped until posaibly if is agrian enabled to oberude upan general
ootice as an object of yreat pruminence. If may not networn under precisely the wime ourline as formarity, or enbiter the samn depth of toee or digree of calousting. for, doubtiens, suma new derelogment is to be anti. of any dintingt reappearnance it will be to poentant to sifetermane that is ocsurred from the exact pomantion so fordt tennasted hy the old upot. The moturn of thus feature hat beem so thirrougthy follosed dunag the hat acven ynars, that at inll be feauble to compure its predicied place whi
orvat nicety in future montis. In the mean time, and greal nicety in future montis. In the mean time, and
mintil the spon finally withdrais from wach, the same mecesity saisis mo before of recording the times of it, pasanges across the central meridan of Jupuer. Ant evea avomuing rhe tocal extumtioa of the spot, and that teploce nimaediately south of the grteat equitorial saut b beft should resume the onbroken mosal arrangernent textithay in other ocrasional, for truen of any sabsequent outHestr from the same focus
on perood of gh. 55 m jgis the nlyect has given a nota. anithianed througboot eich 15, whelh has leen seadily anvot dusurlaziret paitly dure to errors of obvervation. The first few jears of its exittence n showed an macreasugg retardation of nution, whicia lesegthened the periud from oh 55 m . 34 so that alrewdy quoted, bat, cuotemporarily slacken, and the resulto scoumulated donar the puat few opponisoms prore if to have been equable in a marked degree
With refereace to the equatorial white spot some senking demomena have been presentel during the past minter. appears tu have ficreanoli it an alarmang tatho The apod continotd to rust on far in adrance of ith The opote placel, and all the while eahibiled a more boilliant appearance thall an any precedieg epoch sunce the autuma of The form it first came under wyinematic obserration. The form asd appearance of the spor have been so special as to prevent dny confasiod La wistaking it fur obber white fanuary 13, 1555 , the rotation perioul was 9 ortuber innu
 ward the end of Navember. Detween Navember 3t, 185_{41} and january ${ }^{23}$, itts, the period was only gh. tym. $3 k+15 \mathrm{~s}$,
 shown by the satme spot durify the ints peceding years
Whes the first intmatuen of this great increase of nowrd forced in elf upona niy motice, 1 it memey mevolved to obtain as nuany olservatots at ponsible, in order to asoure maseif move evertandy of the Gict. Mach clopdy, wet weather ensued, but I uborived the opos of faorteen

 place of the spai, compmoded un the band of my prior obserrations, apprarsil ulrowlutel, varana Abous is F,
 oxankerpart of the atue previously aboernwd Then afove so mish retarded in the fortuight's iniernal from Januast t3 tu ग7 as to have occiuloned oo conwderabie a divpluye thent in longitode? From my pborreatson on Junuary tmorvanser disponton to slacken, and. fruet recond. ahealued in pievous years, the motiom was known to fucimaz la the anse unatcomodable manait. In the seventeen days fivm September 30 to October 47 , $185{ }^{\prime}$,
in the aresection of cast longitude. The face y pendenuly conifmed by Iroo. Howgh at Chicaly plumier Williams at frichton. The most ob: parturss from the mean ratn of mocko have been No other imstances, and I ana therefore led to that the objects obverved on Juniary is and
erre, nokmitatandiog thetr ducendanre of pasiti ideneteal objects. The convintent hrilliancy of phene the alluded to, lit meveral monilhs before sthe cloud set in, is enverely pprosed to the idea chat it co oo large as the lumping. And the real diaplaceme an large av the limbing uliwerrations owgesa. the following figures:We following bymes :-
 Nompontin Adopuaf slit mean, we fracicily ingle obser ratwons, and in the present clue it io if I oblained to many transits pest before and a period of clood. The real duppacement is weren fi cimpansan so be only $10^{\circ} \%$. Whicil is quile wil had mot beell renulered a very terable the fart of observatunn, I thoulhl have regarnted Dle forlianat ance if the por and its comparative nemanoon dhaure. Mlureaver, diming the pariod that thas
continued mariveg to continued mowng so rapidly, I oten carefully ea
the place mhere, had no clynge occerna the place mhere, had no change occirred, it man
been presented, luot no obicet having in remo ween presented, hut no object haning a remo
ness to the old spot conld bedelacted fiaving thas fealure on the orsatral meridian on mone o nights, I an familar whi 141 usual aypect, and co poimkly have overrooked in, on the many occasior Ilooked for is in vain, had the spor retived the a maie place assimped to at from the observatioes Let us now
remarkable velocity alluled degror and peniad tuans into shurt intervals, lie fulloumg are the is permels severally derised frimes them.

 The priod of really kreat atrelratioe entendes
 exrect) ine revoluatio uf |upuler relusuly time the rex in fat , the watblen Larrease and stanumun of re 2h $44^{m,}$, *o that there mas a durienirre the red $\operatorname{cod}^{4} 1$ lomgeraile. The insumumas apeal appoirs lo lant sbown berwirs Navember al and ap, when the rou pernudmat oce inmute less thas the mein of the was comsideryd ther my observatum of Nuronb shirt ooe of ouly sis days, mouls me theroal heing a

2 Ewo preceding (.1/amhly Nitices, vol, xliv, Na, gi, baved an the penod af ' $\mathbf{3}$ 37, we get a 9 . 50 m , 1a'3ss. The spot must therefore have mored accordant. central meridian Jantiary is if suddenly retrograded of we aceepe the

 nd the perimil lowety Narth. \qquad
-liveh sulbequently occurnd. The qoention of idently may be definitely artuled of any observatioas of the
apos dunis the limeterval from January is to 27 are apot dunng the linterval from january it the 27 are England the aly eas densely avereast at aigh duripg the whole of that tisue, If Prod Ilough at Chieagn or some osber wystowatic atadent of the planet cas supply
the messing halea for the pervod rriarred to, It will be thont imporatert ta ascertain hoos fat the corroborate the most imprirdatrt ta ascertain boor far ibey corrs
These whie apots are liabie to great variations is apputent btimancy st ahort intervals; on that, unden an approtumately itbusted, he is certain in introduce complicatines into bus results Dut, in ropard to the consprcuon
white spoe pholia has been thr subject of so much commeat dunis, the last fow jeari, I have never foumd unech difiscaliy is following it, tiecause of ite sperial character. Occawonilly smalier opots alighty nearet the equator are sora on ear h mite al at, but the leadoge npot of the trio is runaing from its morth-east side tuwathe the egonior, that it may be readily identitied. Durine the ofvervetionst between October 4, 1814, and January 13, 885,1 of the
jresent opponion the entrenme briltancy of the opua was
 our any lialility to error. I feas, however, hat, mopesing obiervationa brage rendered necessany by the positun of the singular sigaries of the whute upert to have seaterally
eluved in is curione that wipet the end of Jrautry this whis spot has inuatumed a rate very merly kunformable In the from the observations betwren isis a and i $58+$; but there occured a eablen dernalion betwoen Marchis is and is. ansubutime to homan st ${ }^{2}$. These singular dipplacersents and they are far too cnasuderathle io be referitil werries of observation. Ilerwern I charuary 9 and $16,18 \$ z_{4}$ I'rof Howsh nuticed an atreleration of of ; only be rfficiently sought ont by frequent and tery accu rate obervation. Our $0=\mathrm{m}$ clumate is viry lil-sclapted to an avestigation of thri kiad where the manse ersential peint connsts in closely consecutivs rewalis. What we hroped that some attansion wall be tirsoted to thas mpor-

 manats mutural advautagre int thit ouels of ist ouore uncosble if In ubtans souk mon tslazble nudeace loraing an the question of the remarkatie varimtuer affecting the
a hue spons in Jupuer. Nrat the time of appomativi thes might be obvervell every alifht, and of is this anemeculuve
 really minnt of satuductory dix wowlon.
The suestoun anses whel her the whole southern brit partakes in these erratse and apparent) focguent varsebosk of sperat, of the individual spols a d dfferem times If several markings wier made the vubuect of contonjomar stud) it mught soon be delermised whetber they ealibiod uniferm droplicemeots, and, if als, it wionh current is subject to the kongular onrushes and aliernawng Wits which oun reirnt obecriations have dempsestated manthe the mose surking are.(t) The appearance of large, brght spoti indeatung the

their west sides divide the darts bele and war the equator, where they became me
spots thow in rutaron period ooly a few the red spost.
(*) The autbreak of darlc, reddish apot: Iotigimale, upon the murrow belt which
in tiss3, limuredistely outlying the great preswas nonk af the red apot was forment this bet sudidenly dfppog northwards botw
spot were the becanine blended witb tho spurs now vivible here aro very platn the plases and tha belt becomen murh dat
that "The isdividual sposs should be carsfull

 gollow.
\qquad prepaua north of the red upot. This in nos red spor, It remimes to be seen whether uill coatiant aow that rancun other regio The several festures velerrivd to are of ent as macrestive of peculiar formso of asimnop?
ance and as affording frest materislo Jovina phennament it mill be neceivary of these spectal features dunng the Iwo en
and to tecover them, if anill nisible whesapprars in the marnang shy towards apprar
neth \qquad
Na NOTES
aveunc lat wel at it of the Ropal Recirt)

 (Den. sintather, an matrameth five druwug ourver of in graphacel mpessialaina of the hansasic

 be Abeaslecs inetite, and Jisw 3Alnd the nowe
 $\rightarrow 7$ hrowe is
 is the Lecture houks at the Zeoligual (Gutenh who foviot will apeak of the primeipal ofjath of inn

 lecturess are draven for the mowe port froas the wayf of Bettiond are madherratis's, gevdogy. plopinal geography, and hotany. are matherratis, gevdogy. ployical geograpdy, ennl horany, and wrlture on orgatise aod carry out an racetlent plan of this nature for ill henefin)

 mpose. Some oebluries lafk the Meliterimede onfal thatries wive canded an raclumaly hy the Npsniveln, and the prineipsil
 af the externth cemiurt, to escaje the perneoutions to whede they wese eapoest, a large mushar of thent merchants pomowed is
 thined from the Neapolican coant, priodipally froan Teree drl fieeen, hener this phace af an esrly periol became the clitel owt of the onnal fribery, and monat of thr linots eogngod in are sile fitted wot it that port, whonght the inavafnclure of and Gernon. These ormasest arr mort with in almost ewer pant of the warl and in ming osantrles, even in Putope
 ond Africa in ie regwited whih a sorl of religoun venerslion ohile in ladis it is lancely neod for the adornmeat of ourpoes whes pepaned fer crimstona Nat the preweat senanion of her metres in lengh was dacowroos asar ithe intind of scierok, as the mast of Stcil, wal enenequentl) the yeld nf raw material lan tove far in escens of the dematal, ind the tref in still very Gr Grobe being exhasated. A grict deferchation ta valog has
 in oral with Africh where the nutive now pachal cornd ornamesta is place of glast betide of Vettectan mal German manulacturs. The riw cumal mmes fime Niplel and is Egpt being the chiof rustraert for theas.

On April 24 Mf. Filwanl Berloc, M. R.C. \&, tent a paper al Univeruty College, Gower stree, hofore the Itrisaing Sictety,
 posat to prowe that the progren of scimer neel $\mathrm{p}=$, aome had sald, trall to the destruction of the poetic ant

 Millon, alal Cenche, and is our owne times Trayyow ant frownag, white stulests of murimal and phystal Rilewce ito Iusariant giveth of thew peetic fasty. Many of flyowning:

 enshled lim in illmale his Cavourte nteimione loy machi beaitsal inagroy. The poest of the fotan will be denied lins frivite power of dealing otpricicusly wath farts, hat that Nectrust, Rerlow, in conilation, disimed for Ms. Drowruty thm lie roentaing the poer fue the iciestific man! alivnus af she logtest cultare of the tiane, and in choue tench with the great sims it tileter.
 the idep in general that lalloess is the isvengatire of mololen

In rie Eaif, oo the oflet husd, it is the comanan
 switen thame memare to eaplain the ongin of
 lurwa nat haxuifried ia en of nemplos wather it

 nome old wowat, then wrapped to colurend rage valdul cap riesl asuler ther chan. This procion is repe the wituecting weelis once evary twe dap, watill fif
 coll (roas frequent whinge. Siperamion has sulule
 for the nyse. This dirn, mised wtit the secirene
 of hair and devery that alrealy gown. The spen
 pooples of aever, by day anighy, ner upon say sedan-
 aily tetank the growth of the hair, sul tranmansios Fist for maay yearn, fint 3oticel chponic baldersa at ower clamev of the Terks, eopectally the sormalled Alosias

Thi Nubial Foll Culture Rewcation's levelen

 pondatenL.

 bive in the jowet ant will le ilvorly poblalelley Mew
 nil aquaris. be
\qquad

 biack firwarlal to a mavne.
 Goverament duective the ingtititios of st ingeiry.
 rlinugrophical ralae
Tuin enceptiamally beavg runftll it Beryn we done

 Demitara that na Cioter 1 and i, tiss

ASTRONOMFCAL FHENDNFNA FOR THE N'EEK, IRS5, MA A' $17-23$
 employm.

$$
\text { At Gururi it ra May } 17
$$

 Mono thi. 2rm.

19... 4 Cancri 4

1. 6 in 46 it it 2634

Mire-wree of /aphar's Jowllifa

THE IRON ANA STEFL INSTITLTH

 Alter ioniting the cosoperatus at the mernhers in supplyyng hic

 that truch-ubly the ficelt will sovive The uraggle nuy be

 Whirmaghikat, and the Firith Cullege in Shefiech, anal of the Whimenth Schalarifise theund whose add rocentific sastratluu is plecel withia the rexich of the unian clais

Thu wasp jartace of the whirent mat derotel to the Ireusem's renerpeniry of umn snd wesh, and to

 dhyoul incertion of purt live nfier fuwse? What

 cas-hantering mom? to any nilturt of nifryper, iequi

 Copher and thombt, stif lus Iulet hitherm is reverive a ref

 neing to esmperitun, corngrrsive namgernat, and.

 "Frem vectalum 1 -

 wilk it in it- rumes ta the coum a motoor Tel treite pen

would be available for carbonising, oil and ammonia being removed from it by efficient scrubbing. The author was of opinion that nothing was known practically of what happens when coal is distilled, and that the coking of coals and manufactore of gas were now only empirical operations, and could not be conducted scientifically, with our present imperfect knowledge, but that the interests involved were so great, the subject being one of national importance, that failure to initigte and exccute the necessary systematic experiments without further loss of time would be inexcusable.
Oa the last day of the meeting Mr. Carnegie's paper on ** Natural Gas Fuel and its Application to Manufacturing Purposes" was read. This fuel is found in the Pittsburg district, and one of the wells is estimated as yielding $30,003,000$ cubic feet of gas in the twenty four hours; the pressure of the gas as it issues from the mouth of the well is about 200 lbs . to the square inch, and even at the works, nine miles from the wells, it is 75 lbs. per square inch. Eleven lines of pipe convey the gas from the various wells to the manufacturing establishments in and around littsburg. The number of men whose labour will be dispensed with when gas is generally used is 5000 . In the steel-rail mills, for instance, where before would have been seen thirty stokers, stripped to the waist, fring boilers which require a supply of about 400 tons of coal in twenty-four hours-ninety firemen in all being employed, each working eight hours-there would now be found one man walking around the boiler-house, simply watching the water-ganges, and not a particle of smoke is to be seen.

Dr. Hermann Wedding's paper on "The Properties of Mallcable Iron deduced from its Microscopic Structure" draws attention to the value of microscopic analysis, as, though the chemieal and physical properties of iron are closely connected, the one cannot be directly deduced from a knowledge of the other, nor do either of these aid in acquiring a knowledge of the mechanical properties. The pieces of iron to be tested are carefully polished, and then etched with very dilute nitric acid. After etching, the section is carefully heated, whereupon the portions attacked acquire varying tints, mestly golden-yellow, purple-red, violet, or dark bluc. It is the difference of colour that is characteristic. As regards the formation of grains and fibres, the sire of grain increases with slowness of cooling, and decreases with increase in the proportion of carbon up to 2 per cent, Fach individual grain in malleable iron is ductile, the malleability of the entire piece depending on that of the separate grains, which are drawn out int? fibres; the strength of fibrous fron depending on the fact that, like the individual hemp-fibres in a rope, the fibres lie with their ends in various sections. The microscope shows, further, that none of these wires or fibres is directly connected with its neighbours, either in a longitudinal or lateral direction. In fact each fibre may, by careful etching, be picked out like those of a muscle in the human body. The paper treats also of the constitution of individual iron crystals and of welling. The general result of the analysis shows that the strength of a finisbed piece of iron depends on the sectional area of the mass of iron it contains, the slag inclusions in weldaron and blow-holes in ingot-iron being deducted.

It was announced that the autumn meeting of the Institute would be held at Glasgow.

SUNLIGHT AND THE EARTH'S ATMOSPHERE ${ }^{1}$
 II.

WE have been compared to creatures living at the bottom of the sea who frame their deceptive traditional notions of what the sun is like from the feeble changed rays which sift down to then. Though such creatures could nut rise to the surface, they might swim up towards it, and if these rays grew hotter. lmighter, and bluer as they ascended, it would be almost within the capacity of a fish's mind to guess that they are still brighter and blaer at the top.

Since we cliidren of the earth, while dwelling on it, are alwayy at the bottom of a cea, though of another sort, the most direct method of proof I spoke of, is merely to goup as far as we can and observe what happens, though as we are men, and not fishes, something more may fairly be expected of oar intelligence than of theirs.

We will not only guess, but measure and reason, and in par-
' Lectary delivered at the Royal Institution, April ${ }^{27}$, 4850 by S. P. langies. Communcated by the author. Cuntinued from p. \%a.
ticular we will first, while still at the bottom of the moustas draw the light and heat out into a spectum, and analye cray part of it by some method that will enable us to explore the invisible as well as record the visible. Then we will asiod many miles into the air, meeting the rays on the way dow before the sifting process has done its whole work, and the: analyse the light all over again, so as to be able to leara th different proportions in which the different rays have best absorbed, and, by studying the action on each separate pay, 10 prove the state of things which must have existed before tho sifting -this selective absorption-began.

It may seem at first that we cannot ascead far enough to do much good, since the surface of our aerial ocean is hundrels of miles overhead; but we must remember that the air grom thinner as we assend, the lower atmosphere being so mad denser, that about one-half the whole substance or mass of it te within the first four miles, which is a less height than the topo id some mountains. Every high mountain, however, will nax dx for ours must not only be very high, but very steep, so that th station we choose at the bottom may be almost under the satis we are afterwards to occupy at the top.

Besides we are not going to climb a lofty lonely summt tiot tourists to spend an hour, but to spend weeks; so that we men have fire and shelter, and above all we must have dry air to os clear skies. First I thought of the Peak of Teneriffe, but ate wards some point in the territories of the United States seeme preferable, particularly as the Government offered to give the Expedition, through the Signal Service, and under the directiot of its head, Gieneral Hazen, material help in transportation 20. a military escort, if needed, any where in its own dominioni No summit in the eastern part of the United States rises much over 7000 feet, and though the great Rocky Mountuins reach double this, their tops are the home of $\mathrm{fo} z$ and mist, so tha: the desired conditions, if met at all, could only be found on the othe side of the Continent in Southern California, where the summix of the Sierra Nevadas rise precipitously out of the dry air of the great wastes in lonely peaks, which look eastward dow from a height of nearly 15,000 feet upon the desert lands.

This remote region was, at the time I speak of, almost $\mathrm{th}^{\text {t }}$ explored, and its highest peak, Mount Whitney, had been bot once or twice ascended, but was represented to be all we devired could we once clinb it. As there was great doabt whether we apparatus, weighing several thousand pounds, could possibly te taken to the top, and we had to travel 3000 miles even to gr where the chief difficulties would begin, and make a deen journey of 150 miles after leaving the cars, it may be askel aly we committed ourselves to such an immense journey to face sed unknown risks of Gailure. The answer must be that roontim of easy ascent and 15,000 feet high are $n x t$ to be found at ort doors, and tha: tiess risks were involved in the nature of ot novel experiment, so that we started out from no love of mett adventure, but from necessity, much into the unknown. Tix liberality of a citizen of Pittsburgh, to whose encouragemeat the enterprise was due, had furnished the costly and delicate appd ratus for the expedition, and that of the trans-continental rill roads, enabled us to take this precious freight along in a prink car, which carried a kitchen, a steward, a cook, and an ampix larder besides.

In this we crossed the entire continent from ocean to ocens, stopped at San Francisco for the military escort, went 300 mier south so as to get below the inountains, and then turned eart ward again on to the desert, with the Sierras to the north of us after a journey which would have been unalloyed pleasure exced for the anticipation of what was coming as soon as we left of car. 1 do not indeed know that one feels the triumphs of civilisation over the opposing forces of Nature anywhere matr than by the sharp contrasts which the manallout Juxury of reocs railroa:l accommodation gives to the
one is in the centre of one of tr
globe, and, after looking out f
train on its scorehed wastes for lation, turns to his well furnishe ices of his desert, he need no. story who wor- arried acruss drea on the t

commenced oar slow toil northward with a thermometer at 210° in the shade, if any shade there be in the shadeless desert, which seemed to be chiefly inhabited by rattlesnakes of an ashen gray colour, and a peculiarly venomous bite. There is no water save at the rarest intervals, and the soil at a distance seems as though strewed with sheets of salt, which aids the delu-ive show of the mirage. These are, in fact, the ancient bods of dried up salt lakes or dead seas, some of them heing below the level of the ocean ; and such a one on our right, though only about twenty miles wide, bas earned the name of "Death Valley," from the number of human beings who have perished in it. Formerly an emigrant train, when emigrants crossed the Continent in caravans, had passed through the great Arizona deserts in safety until after their half-year's journey, their eyes were gladdened by the snowy peaks of the Sierras looking delusively near. The goal of their long toil seemed before them ; only this one more valley lay between, and into this they descended, thinking to cross it in a day-but they never crossed it. Afterwards the long line of wagons was found with the skeletons of the animals in the harness, and by them those of men, women, and little children dead of thirst, and some relics of the tragedy remained at the time of our journey. I cite this as an indirect evidence of the phenomenal dryness of the region-a dryness which, so far, served our object, which was, in part, to get rid as much as possible of that water-vapour which is so well known to be a ponerful absorber of the solar heat.
Everything has an end, and so had that journey, which finally brought us to the goal of our long travel, at the foot of the highest peak of the Sierras, Mount Whitney, which ruse above us in tremendous precipices, that looked hopelessly insurmountable and wonderfully near. The whole savage mountain region in its slow rises from the west, and its descent to the desert plains in the east, is more like the chain called the Apennines, in the enoon, than anything I know on the earth. The summits are jagged peaks like Alpine "needles," looking in the thin air so delusively near, that, coming on such a scene unprepared, one would almost say they were large grey stones a few fields off, with an occasional little white patch on the top, that might be a handkerchief or a sheet of paper dropped there. But the telescope showed that the seeming stones were of the height of many Snowdons piled on one another, and the white patches occasional snow-fields, looking how invitingly cool, from the torrid heat of the desert, where we were encamped by a littie rivulet that ran down from some unseen ice-lake in that upper air. Here we pitched our tents and fell to work (for you remember we must have two stations, a low and a high one, to compare the resalts), and here we laboured three weeks in almost intolerable heat, the instruments having to be constantly swept clear of the red desert dust which the hot wind brought. Close by these tents a thermometer covered by a single sheet of glass, and surrounded by wool, rose to 237° in the sun, and sometimes in the tent, which was darkened for the study of separate rays, the heat was absolutely beyond human endurance. Finally, our apparatus was taken apart and packed in small picces on the backs of mules, who were to carry it by a ten days' journey through the mountains to the other side of the rocky wall which, though only ten or twelve miles distant, arose miles above our heads; and, leaving these mule trains to go with the escort by this longer route, I started with a guide by a nearer way to those white gleams in the upper skies, that had daily tantalised us below in the desert with suggestions of delicious, unattainable cold. Tbat desert sun had tanned our faces to a leather-like brown, and the change to the cooler air as we ascended was at first delightful. At an altitude of 5000 feet we came to a Wrutched band of nearly naked savarges, crouched around their camp-fire, and at Gooo fuund the first scattered trees; and here the fiectile suggestion of a path stopped, and we descended a thine to the bed of a mountain stream, up which we forced our Aht eutting through the fallen trees with an axe, foghting for hot of advance, and finally pas ing what seemed impassinteresting to speculate as to the fate of our
and other precious freight, now somewhere
tnite useless. We were committed now,
", of it-and, besides, I had begon to
a a wore personal subject. This more the sun burnt the skin*that by the end of the thirl
"d, as I thought, in the Q seared with red hot Hter had fallen to nadoxical eflect
increased : the colder it grew about us, the hotter the sun blazed above.

We have all heard probably of this curious effect of burning in the midst of cold, and some of us may have experienced it in the Alps, where it may be aided by reflection from the snow, which we did not have about us at any time except in scattered patches, but here by the end of the fourth day my face was scarcely recognisable, and it almost seemed as though sunbeams up here were different things, and contained something which the air filters out before they reach us in our customary abodes. Radiation here is increased by the absence of water vapour too, and on the whole this intimate personal experience fell in almost tou well with our anticipations that the air is an even more elaborate trap to catch the sunbeans than had been surmised, and that this effect of selective absorption and radiation was intimately connected with that change of the primal energies and primal colour of the sun which we had climbed towards it to study.

On the fourth day, after break-neck ascents and descents, we finally ascended by a ravine, down which leaped a cataract, till, at nightfall, we reached our upper camp, which was pitched by a little lake, one of the sources of the water-fall, at a height of about 12,000 feet, but where we seemed in the bottom of a valley, nearly surrounded as we were by an amphitheatre of rocky walls which rose perpendicularly to the height of Gibraltar from the sea, and cut off all view of the desert below or even of the peak above us.

The air was wonderfully clear, so that the sun set in a yellow rather than an orange sky, which was reflected in the little icerimmed lakes and from occasi nal snow fields on the distant waste of lonely mountain summits on the west.
The inule train sent of before by another route, hail not arrived when we got to the mountain camp, and we realised that we were far from the appliances of civilisation by our inability to learn about our chief apparatus, for here, without post or telegraph, we were as completely cut of from all knowledge i of what might be going on with it in the next mountain ravine as a ship at sea is of the fate of a vessel that sailed before from the same port. During the enforced idleness we ascended the peak nearly 3000 feet above us, with our lighter apparatus, leaving the question of the ultimate use of the heavy ones to be settled later. There seemed little prospect of carrying it up, as wwe climbed where the granite walls had been split by the earthquakes, letting a stream of great rocks, like a stone river, flow down through the interstices by which we ascended, and, in fact, the heavier apparatus was not carried above the mountain camp.

The view from the very summit was over numberless peaks on the west to an horizon fifly miles away, of unknown moun-tain-tops, for, with the exception of the vast ridge of Mount Tyndall, and one or two less conspicuous ones, these summits are not known to fame, and, wonderful as the view may be, all the charm of association with human interest which we find in the mountain landscape of older lands is here lacking.

It was impossible not to be impressed with the savage solitude of this desert of the upper air, and our remoteness from man and his works, but I turned to the study of the special thinge connected with my mission, Down far below the air seemed filled with reddish dust that looked like an ocean. This dust is really present everywhere (1 have found it in the clear air of Etna), and though we do not realise its presence in looking up through it, to one who looks down on it, the dwellers on the earth seem indeed like creatures at the bottom of a troubled ocean. We had certainly risen towards the surface, for about us the air was of espuisite purity, and above us the sky was of such a decp villet blue, as I have never seen in Egypt or Sicily, and yet even this was not absolutely pure, for separately invisible, the existence of fine particles could yet be inferred from their action on the light near the sun's eilge, so that even here we hat not got alisolutely above that dust shell which seems to encircle our whole planet. But we certainly felt ourselves not only in an upper, but a different region. We were on the ridge of the continent, and the winds which tore by had little in common with the air below, and were beating pat us (according to the geologists) du-t which had once formed part of the soil of China, and been carried across the Pacific Ocean ; for here we were lifted into the great encircling currents of the globe, and, "near to the kun in lonely land.," were in the right conditions to study the differences between his rays at the surlace and at the bottom of that turbid sea where we had left the rest of mankind. We descended the peak and hailed with joy the first arrival of our mule trains with the requisite apparatus at the

 ur, whith wre Nev intikues wry mind gwitr eetige:

 quite de so, in thect, and ly seting tol af that biwe h

"

scale is equal to all that previously anown, visible and invisible, as you will sce better ly this view, faving the same thing on the normal as well as the prismatic fcale. If it be asked which of these is correct, the answer is "tooth of them." Both rightly interpreted mean just the same thing, but in the lower one we can more conveniently compare the ground of the researches of others with these. These great gaps I was at first in doubt about, but more recent researchesat Alleghany make it probable that they are caused by absorption in our own atmosplere, and not in that of the sun.

We would gladly have stayed longer, in spite of plysical discomfort, but the formidable descent and the ensuing desert journey were before us, and certainly the reign of perpetual winter around us grew as hard to bear as the heats of the desert sumnuer hall been. On September 10 we sent onr instruments and the escort back by the former route, and, ourselves unencumbered, started on the adventurous descent of the eastern precipices by a downward climb, which, if successful, would carry us to the plains in a single day. I at least shall never forget that day, nor the scenery of more than Alpine grandeur which we passed in cur descent, after first climbing by frozen lakes in the northern shadow of the great peak, till we crossed the castern ridges, through a door so narrow thas only one could pass it at a time, by clinging with hands and feet as he swung round the shoulder of the rocks-to find that he had passed in a single minute from the view of winter to summer, the prospect of the snowy peaks behind shut mt , and instanily exchanged for that below of the glowing valley and the little oasis where the tents of the lower caunp were still pitched, the tents themselves invisible, but the oasis looking like a green scarf dropped on the broad floor of the devert. We climbed still downward by ecencry unique in my recollection. This view of the ravine on the screen is little mote than a memorandum made by one of the party in a few minutes' halt part-way down, as we followed the ice-stream between the tremendous walls of the defile which rose 2000 feet, and between which we still descended, till, toward night, the ice-brook had grown into a mountain torreut, and, looking up the long vista of our day's descent, we saw it terminated by the Peak of Whitney, once more loncly in the fading light of the upper sky.

This site, in some reapects unequalled for a physical observatory, is likely, I am glad to say, to be wilised, the President of the United States having, on the proper representation of its value to science, orilered the reservation for such purposes of an area of 100 square miles about and inclusive of Mouns Whitney.

There is little more to add about the journey back to civilisation, where we began to gather the results of our observation, and to rerluce theas-to smelt, so to speak, the metal from the ore we had brought home-a slow but necessary process, which las occupied a large part of t wo years.

The results stated in the broadest way mean that the sua is blue-but mean a great deal more than that; this blueness in itself being perhajss a curious fact only, lut in what it implies, of practical moment.

We deduce in connection with it a new value of the solar heat, so far altering the old estimates that we now find it capable of melting a shell of ice sixty yards thick annually over the whole earth, or, what may seem more intelligible on its practical bearings, of exerting over one horse power for each square yard of the normally exposed surface. We bave studied the distribution of this heat in a spectrum whose limits on the normal scale our explontions have carried to an cxtent of rather more than twice what was previously known, and we have found that the total loss hy absorption from atmosphere is nearly duuble what has been heretofore supposed.
We have found it probable that the luman race owes its existence anil preservation even more to the heatstoring action of the atmospliere than has been believed.

The direct detennination of the effect of water-vapour in this did not cone within our acope ; but that the importance of the blanheting action of our atmospheric constitnents has been in mo way overstated, may be inferred when I add that we have found by our experiments that if the planet were allowed to radiate freely into space witlsout any protecting veil, its sunlit surface would probably fall, even in the tropics, below the temperature of freezing mercury.
not go on enumerating the results of these investigaall dow from the fact, which they in turn confirm, atly timpid sea above our heads, and abont us,
is carrying on a wonderfully intricate work on the sunbeam, and on the heat returned from the soil, picking ont selected parts in hundreds of places, soriing out incessantly at a task which would keep the sorting demons of Maxwell busy, and as one result, changing the sunbeant on its way down to us in the way we have seen.

I have alluded to the practical utilities of these researches, but practical or not, I hope ne may feel that such facts as we have leen considering about sunlight and the earth's atmosphere may he stones useful in the future edifice of science, and that if not in our own hands then in those of others, when our day is over, they may find the best justification for the trouble of their search, in the fact that they prove of some use to man.

May I add an expression of my personal gratification in the opportunity with which you have honoured me of bringing these researches before the Royal Institution, and of my thanks for the kindness with which you have associated yourselves for an hour, in retrospect at least, with that climb toward the star which we lave made together, to find, from light in its fullness, what unsuspected agencies are at work to produce for us the light of commun day.

ZOOLOGICAL RESEARCH ${ }^{1}$

TIIE Veffor Pisani is soon expected in our port, on her return from a long voyage of no little scientifie importance. We think we cannot better hail her arrival than by publishing that portion of Prof. Dohrn's report in which he speaks of the scientific mision fulfilled by this vessel-a mission which, be-sides meeting with a success far surpassing the highest expectations, has redounded not a little to the benefit of our "Stazione Zoologica."

The time has now arrived, writes the illustrious Pmfessor, for me to speak of an event which took place towards the end of 1881 , anil which has since borne no inconsiderable fruit. And this, in its turn, takes nee back to a conversation which I had in 1878 wish the Italian Minister of Marine. I had already proprosed that, instead of sending out a young naturalist on board the frigates which sail around the world, a young naval officer should be sent to the "Siazione Zoologica," where, in about fonr months, he might pick up so much knowledge as would enable him to eollect and preserve specimens of marine animals. Owing to a change in the Ministry, my proposition, though accepted in the main, was forgotien; and 1 only suceeeded in getting it put into execution in 188 t .

On December 27, 1881, a young naval lieutenant, Signor Gietano Chierchia, a Neapolitan by birth, introduced himself to me with these words: "I have been sent by the Ministry to learn under your direction at the 'Stazione Zoologica' how to collect and preserve specimens of marine animals. I present myself accordingly, and beg to be allowed to begin work at once." These few words, modest, yet full of energy, made a deep impression on me ; for they not only marked the beginning of a new epoch in the active life of the Zoological Station, but also promised a more intimate connection between it and the officers of the Italian navy-an intimacy to which 1 had looked forward from the very day in which I conceived the idea of the future floating Zoological Station.

With the same modest energy which characterised his first interview with me, Signor Chierchia continued for four months his studies under the special direction of the Curator, Salvatore Lobianco: and all the employes and naturalists of the Zoological Station were astounded at the rapid progress he made in a field so entirely new to him. And when the moment came for establishing iny laboratory on board the corvette Vetlor F'sani (which came most appositely to Naples), and there had been put on board all the fishing apparatus, chemical reagents, alcohol, glass vessels, \&c., we accompanied him as a dear friend, and looked forward to restles which should mark a distinct advance in the culture of our science. And our expectations, far from being disappinted, were widely surpassed. Afser only five months there arrived the first consignment - the product of deep sea work, of dredging and coast-fishery along the shores of Gibraltar, Brazil, and Montevideo. The whole collection was in excellent preservation, carefully labelled and packed, and accompanied by a minute report as to the place and circumstances of each find. And I do not for a moment hesstate to affirm that never has so important a collection of oceanic
'From the Pangolo, April a3, 1889 . Naples, IIaly.
of the Hypodermei and the Gasteromyceses.-Plantax Raddeane Monopetalx, by Ferd. von Herder (continued).-Solution of a problem of the theory of comets, by N. Joukorski (Russian). The geocentric position of a particle of the tail which has left the nucleus since a given time under the action of a given repulsive force, to determine the displacement of the particle for a given change in the repulsive force-such is the problem treated. -Analyses of salt and mud from a volcano of Trans-Caucasia. - An essay on the solution of the geodetical problem, by Th. Sloudsky (in French). The already-known formula already give the possibility of embodying all anomalics less than $30^{\prime \prime}$ in latitude and le-s than 15 oscillations of the pendulum in twentyfours against the calculated ones. The author tries, however, to give a more theoretical formula, which might at the same time embody larger anomalies.-List of the herbaria of the Moscow University and of the Society of Naturalists, by J. Goro-shankin.-Studies on the averages of the relative moistness, by Dr. K. Weihrauch (continued ; in German).-Necrology and Annual Report.

Rendiconli del R. Istituto I.ombardo, March 26.-History of the first century (1783 -1883) of the Reale Istituto, by G. B. Venturi. - On the persistence of the thymus gland in children and adults, by Prof. Giovanni Zoja. - Account of a successful operation performed on a young girl for the purpose of closing an open sore on the left cheek produced by a severe attack of typhoid fever.-Further notes on conformable representations in higher math ematical analysis, by Prof. Giulio Ascoli.-Meteorological observations made at the Royal Observatory of Brera, Milan, during the month of March.

Ritusta Scientifico-Industriale, March 3t.-A new explanation of the red crepuscular lights that have been attributed to the Krakatoa eruption, by Prof. Carlo Marangoni.-Variations in the electric resistance of solid and pure metallic wires according to the temperature (continued), by Prof. Angelo Emo.-A visitation of caterpillars (Lithosia camola, H1.) in Florence during the present season, by P. Bargagli.

SOCIETIES AND ACADEMIES London

Royal Society, April 23.-" On the Changes produced by Magnetisation in the Length of Rols of Iron, Steel, and Nickel." By Shelford Bidwell, M.A., LL. B.
The earliest systematic experimen's on the effects produced by magnetisation upon the length of iron and steel bars are those of Joule, an account of which is published in the Phil. Mag. of 1847. Joule's experiments have many times been repeated, and his general resules confirmed. In particular, Prof. A. M. Mayer carried out a series of very careful observations with apparatus of elaborate construction and great delicacy. The conclusions at which he arrived were in accord with those of Joule, so far as regards iron; in the case of steel there was some apparent discrepancy, which, however, might to a great extent be accounted for by differences in the quality of the metal used and in the manner of conducting the experiments. In 1882 Prof. Barrett published in Nature an account of some erperiments which he had made, not only on iron but also on burs of nickel and cobalt, with the view of ascertaining the effect of magnetisation upon their length.
The knowledge on the subject up to the present time may be summarised as follows :-
(t) Magnetisation causes in iron bars an elongation, the amount of which varies up to a certain point as the square of the magnetising force. When the saturation-point is approached the elongation is less than this law would require. The effect is greater in proportion to the softness of the metal.
(2) When a rod or wire of iron is stretched by a weight, the elongating effect of magnetisation is diminished; and if the ratio of the weight to the section of the wire exceeds a certain limit, magnetisation causes retraction instead of elongation.
(3) Soft steel behaves like iron, but the elongation for a given magnetising force is smaller (Joule). Hard steel is slightly elongated, both when the magnetising current is made and when it is interrupted, provided that the strength of the successive currents is gradually increased (Joule). The first application of the magnetising force causes elongation of a stee bar if it is tempered blue, and retraction if it is tempered yellow: subseqnent applications of the same external magnetising force cause
temporary retraction, whether the temper of the steel is blue or yellow (Mayer).
(4) The lengh of a nickel bar is diminished by magnetisation, the maximum retraction being twice as great as the maximum elongation of iron (Barrett).

In order that the results of Joule and Mayer might be comparable with those obtained by the author, he made an attempt to estimate the magnetising forces with which they worked. From data contained in their paper, it was calculated that the strongest magnetising force used by Joule was about 126 units, while the stiongest used by Mayer did not on the highest probable estimate exceed 118 units. In the author's experiments the magnetising force was carried up to about 312 units. The metal rods, too, were much smaller than any which had been before used for the purpose, ranging in diameter from 1.40 to 6.25 mm . Their length was in every cave 100 mm ., and the apparatus was capable of measuring with tolerable certainty an elongation or retraction equal to a ten-millionth part of this length.
By using thinner iron rods and greater magnetising forces than those previously employed, the following curious and interesting fact was established. If the magnetisation be carried beyond a certain critical point, the consequent elongation, instead of remaining stationary at a maximum, becomes diminished, the diminution increasing with the magnetising force. If the force is sufficiently increased, a point is arrived at where the original length of the rod is totally unaffected by magnetisation: and if the magnetisation be carried still further, the original length of the rod will be reduced. It also appeared that the position of the critical point in steel depended in a very rewarkable manner upon the hardness or temper of the metal ; considerable light is thus thrown on the apparently anomalous results ubtained by Joule and by Mayer. Further experiments disclosed strong reason for believing that the value of the critical magnelsing force in a thin iron rod was greatly reduced by stretching ; this would explain the fact that Joule obtained opposite effects with stretched and unstretched wires.

By ascertaining the relative values of the temporary moments induced by gradually increasing external magnetising forces, an attempt was made to connect the point of maximum elongation with a definite phase of the magnetisation of the several rods in which the elongation had been observed.

Though more experiments must be made before it is possible to generalise from them with perfect safety, the results so far obtained by the author indicate the laws given below. The elongations and magnetisations referred to are temporary only; before the beginning of an experiment the rod was permanently magneti-ed by passing through the magnetising coil a current equal to the strongest subsequently used. In iron the greatest elongation due to permanent magnet sation was generally found to be about one-third of the total elongation, while in nickel the permanent retraction amounted only to about one-twenty-fifth part of the whole.

I. Iron

(1) The length of an iron rod is increased by magnetisation up to a certain critical value of the magnetising force, when a maximum elongation is reached.
(2) If the critical value of the magnetising force is exceeded, the elongation is diminished until with a sufficiently powerful magnetising force the original length of the rod is unaffected, and, if the force is still further increased, the rod undergoes retraction. Shortly after the critical point is passed, the elonzntion diminishes in proportion as the magnetising force incre ses. The greatest actual retraction hitherto observed was ecqual to about half the maximum elongation, but there was no in cation of a limit, and a stronger magnetising force would have p oduced further retraction.
(3) The value of the external magnetising force corresponding to maximum elongation is for a given rod approximately eq al to twice its value at the "turning point."
Definition. - The turning point in the magnetisation of an iron bar is reached when the temporary moment begins to inersese less rapidly than the external magnetixing force.
(4) The external force corresponding to the point of maxim elongation increases (when the quality of the iron is the sa with the diameter of the rod. So also does its value at turning point.
(5) The amount of the maximum elongation appears to v_{1} inversely as the square root of the diameter of the rod, when t. quality of the iron is the same.
eshire, by Francis Nicholson, F.Z.S.-OA Lajenz creniza, Dr. Alcock.-The Post-Glacial Shell-beds at Uddevalla, eden, by Mark Stirrup, F.G.S.

Paris

Academy of Sciences, May 4.-M. Boaley, President, in chair. - Sumnary of the metearological olservations made ing the year at four stations on the Upper Rhine and in the gges district (Schlucht, Munster, Colmar, and Thann), by M. A. Hirn. Tables are given of the actinometric observans, of the prevailing winds with their mean and greatest ocities, of the mean and extreme temperature, of the atmoseric pressure and rainfall for each month of the year at all :se stations. During the period in question the most salient enomena were the severe frosts of the month of April, which sved very destructive, especially to the vines, and the sudden d violent hurricane of July 16, which swept with tremendous sidity over the Vosges, almost unaccompanied by rain, and th very little thunder.-Remarks on the influence exercised scismatic distarbances on Phylloxera, by M. S. Villalongue. ie case is mentioned of a vineyard near Malaga affected by is parasite and supposed to have been destroyed, which nevereless broke into leaf with fresh vigour after the earthquakes hich recently devastated the southern provinces of Spain. pplication of the general laws of the theory of the partition numbers to numerical functions, by M. N. Bougaieff.-On an isy method of controlling the velocity of electric motor currents ine illustration), by M. Marcel Deprez.-Note on the suppression the nitrous vapours of the Bunsen pile, and on a new pile which :comes depolarised in the atmosphere, by M. A. d'Arsonval. n a new variety in the anomalons group of Cyclocephalians, r M. A. Lavocat. This variety, for which the term "ophthalorephalous" is proposed, is illustrated by the recent case of a ill-loon lamb, in which nose and cyes were entirely absent, 3 , in place of the orlits, showing in the median plane a cavity irmed by the union of the two temporal fosses. At the same me the tongue, the ears, and all the parts corresponding with rese organs were in the normal state.-On the system of canalation present in the cellules of plants, and on the comtinuity of e protoplasm in vegetation, by M. L. Olivier. In opposition - the generally accepted views, the author infers from his microopie studies that in the thickness of the membranous walls of ants there is a highly developed network of canals, by means which the continuity of the protoplasm is effected throughout ec cellular system. - An attempt to determine the relative age the Grand'-Combe Carioniferous deposits by means of their ssil vegetation, by M. R. Zeiller.

Rome

Reale Accademia dei Lincei, Jannary 4-On pleasursle and periodic respiration. Irof. Mosso communicated , abstrace of a memoir in which he expounds various bservations made by him on respiration. By means of acings taken from a man in a state of complete rest, e has recognised that in the respiratory movements periods of reater or less depth in breathing alternate with one another, and lat such periods are observalle in all onimals, especially during cep. The author has likewise ascertained that man breathes a reater quantity of air than is necessary, and it is that respiraon that he calls pleasurable (respirasiome di lusso). It is in onsequence of this excess in the ordinary breathing that a man ons not increase the extent of his respiratory movements in scending a mountain or in undergoing a change of atm sepheric ressure. Prof. Mosso has determined the limit of this pleasurble respiration which is manifested in sleep when no cause tould render it necessary. According to the pauses which the erioclic respiration undergoes, the author divides it into remitont (romitten'e) and intermittent (intermittente). These pauses to not depend on the movements of the blood-vessels nor on ssychical factors. It is a recognised fact that respiration has not a single centre, but that various muscles subserve this funcion independently of each other. Prof. Mosso concludes that tot only is periodic respiration a normal physiolozical phenomenon, but that it is nothing else than the respiration of Cheyne and Stokes, which has hitherto been lo sked upon as a mor id ondition. The author closes his own paper with a critical eview of the theories of the nature of the movements of re-piration,-Other communications:-Dr. Piecini described the thalyses and the methods of pieparation of certain fluor salts of titanium, corresponding to the sesquioxide, which had been
obtained by him.-Drs. Cinmician and Silber deseribed the results of the action of nitric acid on pyril-methyl-ketone.-Dra. Ciamician and Magna sui communicated a first note on the action of carlonyl chloride on the potassic compound of pyrrol - The sanction of the Academy was likewise given to the printing, in the Alti Acadentici, of a memoir by I'rof. Belloni, in which the author describes the olfactory and olfactory-auditory apparatus of the teleosteans (the nwilt rotumdi of Frituch).-The Secretary, Signor Blaserna, read a communication by Signor Laure, in which the author insists on the necessity of paying great attention to the barometric variations in cases of earthquakes and voleanic eruptions,

January 18.-Articles belonging to the Stone Age discovered in the commune of Breonio Veronese. Prof. Pigorini observed that of all the localities containing remains of the Stone Age Breonio Veronese is the must interesting and the richest, on account of its numerous caves in which prinitive man has left his traces. The numerous flint implements found in that locality were attributed by ancient writers to the Cimbri. Some of these have common forms, but others are of very singular shape, and the use of the latter cannot be determined. The importanee of such articles, which are found also in the sepulchres of the Stone Age near the caves, but which are there reproduced almost in miniature, consists in the fact that articles of the same form are found among the remains belonging to the prehistoric American stations, which leads us to surmise the existence of a bond of connection in the earliest times between the inhabitams of the Old World and the New. Prof. I'igorini, while dwelling on the great value of the collection of such curiously-shaped articles made by Signor S . de Stefani, and described by him before the Congress at Venice, was glad to be able to announce to the Academy that the collection had been acquired by Prof. L,andberg, whose attachment to Italy and whose philanthropic character were well known, and that it was his generous intention to present the collection to the Prehistoric and Ethnographical Museum at Rome. This valuable scientific material is thus to remain in Italy.-On the olservations on the solar macule and facule made in the Observatory of the Collegio Romano in 1884 . From the observations made, Signor Tacchini believed that he could conclude that the solar activity was diminishing and that it would very soon reach its minimum. Comparing the observations of 1883 with those of 1884, he found that in 1884 chromosperical phenomena attained a considerable development. Signor Tacchini, alt hough be has not yet completed his labours in reducing the observations, i sof opinion that 1884 will have to be remembered as a year of maximum frequency of hydrogenic perturbations, but he intends to return to the question when he has completed the calculations relating to it.-On an ancient vase representing Sappho.Signor Comparetti read some preliminary notes regarding an ancient vaie helonging to the collection of the Archeological Society of Athens. On this vase, the drawing on which is rather rude, Sappho is represented in the midst of her disciples, she herself being in the act of reading some epic lines written on a roll held in her hand. This vase belongs to the fourth century 8.c., and hence to the period in which Sappho was most popular in the refined and gallant society of Athens. According to Prof. Comparetti, the two disciples who are listening to Sappho, must, judging from their names which are written on the vase, be two Athenian hetare.-Discovery of an ancient encyclopsedia, and the plagiarism practised on it. Signor Nanducci announced that he had discovered in the Biblioteca Angelica, at Rome, a parchment MS. belonging to the end of the thirteenth century, containing in its first 129 pages an encyelopaedia, hitherto unknown, compiled by Egidio Colonna, of Rome. After giving an account of the content- of this work, Signor Narducci drew attention to the shameless manner in which the encyelopredia of Colonna had been plagiarised by the Englishman Bartholomew Glanville, commonly called Bartholoweas Anglicus, who flourished about 1630 . This writer acquired the greatest reputation by a book of his called "Liber de proprictatibus rerum," which is in great part copied word for word from the encyclopsedia of Colonna.-Other communications Signor Fiorelli gave an account of the excavations of antiquitiy made during the month of December.-Dr. Nasini made a ce munication regarding some researches he had made on atomic refraction of sulphur, and on the higher value of t refraction. - Dr. Piccini read a note containing some gene considerations on peroxides of the type of peroxide of hydroge and made a communication as to the continuation of his re searches on a new series of titanium compounds.

 nf alown I ocous gramine, and to minan hiscrianiy iff

 tow amuphrm, The nethe, wher dewhing the weibodi ind

Frot. Comsen oxemunicatel a grpet of the and

 Felimury is Oo Felimury is Oa the wimhip of stome urver ment thinl flud bern fommin me of the cave io the

 Io suppoel that this ralosesh apear hesif esuld hav

 ammano pevik ulrituted a criectal ongin so the
 duwe theme that is the veyt tose whm tive se
 the thot of lio sue fulubd, of dimensnms os mall Hike that of livenen Vimuuse, thas licy annot lee of

 iy roer. in thr bope that, hy chating in mines

 Goud that the comperer hat oof hit of he thyporal

 eseemed vercons of the rarows riak. of Cleen.
 the mansecripe in foction

CONTENTS
So Wrlitiara Thamaon'g"Mathemateal and Phy Popertan The Prof Helmhalth, FR :

Wants. "Parmler Fiend
foynan : "Fpury Forcs - Q. B. Baniger

 Thablasial
Mulate cal

A Imly Cural:-Cansul E L Lasath
 Five Mahamatical Kotitrea
On certain Spectat longes profuced by a Intat
 Jeplie
Out Ahtemenival Column

Now Nethiler (IMoy I)
Ansronomkal
Auy is 13 Parnogitna for the Wert ity The Iroo and steei Inatitute
Sunlight and the Earth'a Atmosplert. It if Pi Zoolagizal Remrarsb
Ueiverbity a and Educationel I intelly
Scerace Selowitic Berata
Secietica sad Acal
Socterbes sad Acairenien

SUBSCRIPTIONS to "NATURE."

To the United States, the Continent, and all places within the Postal Union:-

$$
\begin{array}{lllll}
\text { Yearly. } & 30 & 6 \\
\text { Half-yearly } & 15 & 6 \\
\text { Quarterly. } & 8 & 0
\end{array}
$$

CHARGES for ADVERTISEMENTS.

 Three Lines in Colamn 2s. 6d. 9d. per Line after.One-Eighth Page, or Quarter Column
$\begin{array}{lll}6 & 1 & d \\ 0 & 18 & 6\end{array}$
Quarter Page, or Half a Colcmn 15 o
Half a Page, or a Column 350
Whole Page
$\begin{array}{lll}3 & 5 \\ 6 & 6\end{array}$
Part Office Orders payable to MACMILLAN \& CO. OFFICE: 29, Bedford Stregt, Strand, W.C.

Biary of Eorictics

LONDON
THURSDAY, MAY 14
Soctett or Teltgraph Enginezrs, at 3.
Mathematical Societv, at 8.-An Application of Determinants to the Solution of Certain Types of Simultaneous Equations: Rev. T. C. Simmons.
Roval Institution, at 3-Natural Forces and Energies: Prof. Tyndall. FRIDA F, Mav is.
Societv of Arts, at 8.-The Golden Road to South-Western China : Prof R. K. Douglas

Roval Institution, at 9.-Cholera: Prof. Burdon Sanderson.
SATURDAY, Mav 16.
Roval Institution, at 3 --Organic Septics and Antiseptics : Prof. Odling. MONDAY, Mav 18.
Society of Ants, at 8.-Toilet Soaps: Dr. Alder Wright.
Victoria Inspitute, at 8.-The Results of Archacological Research in North America.

TUESDAY, MAV 19.
Zoologtcal Society, at 8. 3a-On Dinornis Oweni: Prof. Julius von Haast, C. M Z.S. - Notes on the Pinnipedia: Dr. Mivart, F.R.S.- Report on the Collection of Birds made during the Voyage of the Yacht Marchicsa. Part IV. On the Collection of Birds from the Island of Sumbawa: Dr. F. H. H. Guillemard. $-\mathrm{On}_{\mathrm{n}}$ Echinoptilum macintoshii, a new Pennatulid from the Japanese Seas: Dr. A. A. W. Hubrecht. C.M Z.S.
Sociery or AkTs, at 8.-New Britain and the adjacent Islands: Wilfred Powell.
Statistical Soctetv, at 7.45.-Indian Railways and Wheat Trade: A. K.
Connell.
Roval Institution, at 3-Digetion and Nutrition: Prof. Gamgee. WEDNESDAY, Mav so.
Roval Mryeonologicat Society, at ${ }^{7}$,-The Temperature Zones of the Farth in connection with its Biological Conditions: Dri W. K.ppen Velocities of Winds and their Measurement: Lieut.-Col. H. S. Knight, Kippen-Note on a peculiar Form of Auroral Cloud seen in Nurthampton. shire, March r_{s} 188今: Rev. James Davis, Communicated by the shire, Ma
Prevident.
Society or Akts, at B-American Oil and Gas-Fields: Prof. Dewar. THURSDAY, May aı.
Roval Society, at 4.30 .
Cremical SociETY, at 8.-Calorimetric Method for Determining Small Quantities of Iron: Andrew Thomson, M.A., B, Sc--On some Compounds of Calciem and Sulphur: V, S. Veley.
Roval Institution, at 3-Poisons: Prof. C. Meymott Tidy.
FRIDAY. Mav 23.
Roval Institution, at 9 --Garrick: W. H. Pollock,
SATURDAY, Mav ${ }_{23}$.
Phystcal Society, at , Experiments showing the Variations caused by Magnetiation in the Length of Iron, Steel, and Nickel Rods; and on the Spectral Image produced by a Slowly-rotating Vacuum Tube: Shelford
Aldwell.-Note on Electrical Symbols, J. Munro-On E.lectrolytic Decomposition: J. W. Clark.
Royal Hotanic Society, at 3.45 .
Roval Institution, at 3-OTganic Septics and Antiseptics : Prof. Odling.

NON-MAGNETISABLE WATCHES.

WATCHES which cannot be "MAGNETIBED," constructed at
the recommendation of W. Cxookns, Esq.. F.R.S, and as exhiblted at the Electrical Exhitition, Paris.
R. DENT \& CO.. Makers of the Prienary Standard Timekeeper of the Rayal Observatory, Greenwich.

Oaly Addresses :-6i, Strand, and 34. Rayal Exchange, Londoa. N. B.-Watches can te converted to this plan.

SANDERSON \& Co.,

Sole Inventore of the Solld Copper Tape
LIGHTNING CONDUCTOR
In Continuous Lengeths, without Joints, as supplied by them to HerMajesty's Government and the Colonies : the Italian Government, the Argentine Republic, and other Foreign Govertmenjs: the R oyal Courts of Juntice, Strane. ign Governmenjs : the Royal Cou
The Jury Comanision, acting on the Reports of the International Juries of the Health Exhibition, have awarded a Bronze Medal in Class 36 to Mesers. Sanverson \& Co. for their Solid Copper Tape Lightning Conductors in Sanverson a Co. for their Solid Copper Tape Lightning Conductor

LEADENHALL HOUSE, Ioz, LEADENHALL STREET, E.C.
SECONDEDITION, GRIFFIN'S CHEMICAL HANDICRAFT.

PRICE 4s. 7d. POST FREE.

A Catalogue of chemical apparatus, ILLUSTRATED, CLASSIFIED, DESCRIPTIVE. Demy 8vo, 480 Pp , Illustrated with 1,600 Woodcuts.
Most Complete and Cheapest List of Apparatus.
JOHN J. GRIFFIN AND SONS, 22, GARRICK STREFT, LONDON, W.C.

105,000 ACCIDENTS por which

two millions have been paid as COMPENSATION

BY тнE
Railway Passengers' Assurance Company, 64, CORNHILL. ACCIDENTS OF ALL KINDS.
Paid-up and Invested Funds, $\mathbb{2} 60,000:-$ Premium Income, $i=235,000$. Chairman HARVIE M. FARQUHAR, Esq.
Apply to the Clerks at the Railway Stations, the Local Agents, or Wast-End Office8, Grand Hotel Buildings, Charing Cross; on at the
Head Office-64, Cornhill, London, E.C.
william J vian. Secretary.

FRY'S

GOLD MEDAL, CALCUTTA, 1884.
COCOA
"Pure Cocoa."-Chas. A. Casezon, Analyst for Dublin.
"Strictly pure, easily assimilated," -W. W. Stoceakt, Analyst for EXTRACT

Nineteen Prize Medals Awarded.

LANTERN READINGS.-DISSOLVING VIEWS.

THE NEW QUADRUPLICON.

New Season, 8884 and 1888 .-Popular Subjects for this Season.
The Channel Islands-The War in the Soudan-The River ThamesDevonshire Scenery-Hereford and the River Wye-The English LakesLondon Poor and How They Live-Egypt and the Nile Expedition-Nor* way-The Lifeboat-The Signal Box-The Maids of Lee-Poor Pa"s Trousers-Shadows on the Blinds, \&e.
The largest and newest Stock of Lanterns and Slides, Scientific and General, on Hire and Sale in this country at the Lowest Prices.
E. MARSHALL, 78, Queen Victoria Street, London, E.C.

INTERNATIONAL HEALTH EXHIBITION. dIVISION-EDUCATION.

A PRIZE MEDAL AWARDED TO THOMAS D. RUSSELL,

78, NEWGATE STREET, LONDON, E.C
For Geological Collections for Science Teac Catalognes Fost frus.

Messrs．MACMILLAT E E SETH BOOKS

1）OK，K F．H：S＇？ い！C＇TIONARIES， 1885
 UNIVERSITY OF CAMBRIDGE．
1．） H （）

NOODHOUSE \& RAWSON

SUPPLIERS OF ALL ELECTRICAL APPLIANCES, Offices-11, Queen Victoria Street, E.c.

Lamps.
Dynamos.
Accumulators.

Fittings.
Switches.
Safety Junctions. Instruments. Carbons. Wire. SOLE MANUFACTURERS OF THE WOODHOUSE AND RAWSON INCANDESCENT LAMP, inquiries invited.

Battery Supplies.
Telephone Supplies.
Electric Bells.
works-Cadby hall, hammersmith road, w. AND

WALL PAPERS FREE FROM ARSENIC.

WIlliam WOOLLAMS \& CO., Manufacturing Paper Stainers, ariz tuz Oniginal Makezs of
ARTISTIC WALL PAPERS, Guaranteed Free from Arsenic.
Sole Address-ino, HIGH STREET, MANCHESTER SQUARE, LONDON, W.
May be oltained of all Decoratorn.
Special Prise Medal, Sanitary Institute.
Salver Medal, National Health Society, 1883.

Award of Merit, International Medical and Sanitary Congress. GOLD MEDAL, INTERNATIONAL HEALTH EXHIBITION.
'RIZE MEDAL
AWARDED

EEAETVEX \& PEAEE,
 [By Appointment to the Royal Instifution of Great Britain,]
 HEALTH EXHIBITION.

BEAK STREET, REGENT STREET, LONDON, W.
UANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FOR
SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.
WIMSHURST AND VOSS INDUCTION MACHINES
OF IMPROVED PATTERN.
Hlustrated Catalogue, Revised Edition, per post $8 d$.

51 IV STMCDTUN.

 SUCCESSORS TO W. LADD \& CO., In Casks, 12,6 per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts.* - Bottlea charged a/- per dor, and allowed at the same rate if returned; but they thest be paid for with the Beer.

Neither sugar, acchanum, nor any of the many new Brewing Materials are uced in the manufacture of the " $\mathrm{S} . \mathrm{N}$." Stout; it is Brewed entirely from the finest Malt and
Hops; it is, too, more hopped than Stout is Hops; it is, 800 , more hopped than Stout is generally: therefore, besides being very butritious, it is an excellent Tonic and particularly suited for invalids, ladies mursing, or anyone requiring a guod strengthening beverage. It is a "Sound Nutritious" Tonic. and very much recommended by Medical men.

THE "HALF.GUINEA" ALE BRFWERY, LONDON. S.W.

SCIENTIFIC W ORTHIES.

The following is a list of the Portraits that have appeared in the above Series.

MICHAEL FARADAY. THOMAS HENRY HUXLEY. CHARLES DARWIN.
JOHN TYNDALL.
GEORGE GABRIEL STOKES.
SIR CHARLES LYELL.
SIR CHARLES WHEATSTONF. SIR WYVILLE THOMSON. RORERT WILIIELM RUNSEN. ADOLF ERIK NORDENSKJÖLD. SIR WILLIAM THOMSON.

HERMANN L. F. HELMHOLTZ. SIR JOSEPH DALTON HOOKER. william harvey. SIR GEORGE B. Alky. J. LOUIS R. AGASSIZ. JEAN BAPTISTE ANDRE DUMAS RICHARD OWEN. JAMES CLERK MAXWEI.L. JAMES PRESCOTT IOULE. WIILIAM SPOTTISWOODE. ARTHUR CAYLEY.

SIR C. W. SIEMENS.
roof impressions of these, printed on India paper, may be had from the Publishers, price 5s. each, the Set of 23 Portraits in a Handsome Portfolio for \mathcal{f} os. od. carriage paid.

THE PORTFOLIO MAY BE HAD SEPARATELY, PRICE $6 s$.
Cheques and P.O.O.'s payable to MACMILLAN \& CO.,

খUMLISHED BY J. \& A. CHURCHILL

Sinth Edition, 2 vols, 8 vo, $\mathcal{L} 22 s$.
Counfy's c.Y(il OPA OIA OF PRACTICAL RECEIPTS AND COLLATERAL INFORMATION I IHF Afis, MANUFACTURES, PROFESSIONS, AND TRADES, Imilmilimb Mriticine, Pharmacy, Domestic Ecomomy, and Hygiene,
 and fiead of a Family.
phitent ing Find IUSON, F.I.C., F.C.S., assisted by several Scientific Contribu:ors.

 Hy VKANKCLOWES, D.Sc. Hy VKANKCLOWES, D.Sc,
, Ftilese, Notlingham. Fourth S.ivini, with is Eingravings, Pust Svo, \%s. $6 d$.

1P = Antross
fisAf.ITATIVE
ANA-
(1) Demonstrator of an y, fal Mihtary Academy; Professor Wilt $a r y$ Academy ; and H. M.

- , , A. A, HHD IHORGANIC CHEMIS.

Efito oun hann

INORGANIC CHEMISTRY. By Edwz: FRANKLAND, Ph.D., D.C.L. LL.D., F.R.S. Profenter of L mastry in the Normal School of Science : and Fravers \mathbb{R} Iaft, N Ph.I., F.I.C, Assistant Professor of Chemiory in the \mathbf{N} urew 5 ces of Science. With Lithographic Plates and Wood-Engravings, twe

FRESENIUS'S QUANTITATIVE ANA

 LYSiS. Vol. 11. Translated from the Sieth German Edion Chatlesis E. Geoves, F.R.S. Part I, with Engravingy, 3 wa, $2 \pm$PRACTICAL CHEMISTRY, INCLUR
ING ANALVSIS. By IOHN E. BOWMAN. Edited by Cmus W. HLoxan. Professor of Chemistry in King's College. Eighth Edr With yo Engravings, Fcap. 8*0, 54. 6d.

CHURCHILL'S TECHNOLOGICAL HANDBOOKS.

L.dited by JOHN GARDNER, F.I C., F.C.S., assisted by Experts Lateh J KR:WINCtical Knowledze of the various subjects treated. rACIL:KE. With Engravings, Crown 8vo, 6v. 6d.
$131 . A C H 11 \mathrm{~N}, \mathrm{DYEING,AND} \mathrm{CALICUPRINTIX}$ With Kusravings, Crown $8 \mathrm{vo}_{3}$ st.
ACEIIC ACID AND VINEGAR, AMMONIA, A ALUM With Engravings, Crowa 8 vo , gs

By PROFFSSOR BENTLEY.
SYSTEMATIC BOTANY, including te ifasifiration of flurts and Descriptive Botany. With 350 Eagrame जTKUCIURAL, MORPHOLOGICAL, an: Mven mhical botany. Wath bon Engraving, Fap braz Ed A MANUAL OF BOTANY. Fourth E d rom, with ofsy liagravings, Crown svo, 258.
fH: MICROTOMIST'S VADE.MECUX

 It in the -... itsuldow Mudera Micrutoray.

 1 sutumbe.

 Hown aty of Whicelt (Whit ; Watcy)

 (16) (Withathac)
 1.aratat Manet at Etap Cobllege

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
" To the solid grownd
Of Nature trusts the mind whick builds for aye."—Wordsworth

THURSDAY, MAY 21,1885
[Price Sixpence

VICTORIA UNIVERSITY.

The Entrance Examination in Arts (Faculty of Medicine) and the PreHinary Examimation (Faculties of Arts, Science, and Law) will hegin on HUKSDAl. June If, at 3 p.m.
Candidates for the Entrance Examination in Arts, if not matriculated, ast produce a letter of recommendation from their last instructor and pay ee of LI, Candidates for the Preliminary Examination must marricalare fore the Examination. The Matriculation Fee is $\langle z$, and includes the Famination Fee.
Faculties of Arts and Science. - The Intermediate and Final Examinations
Degrees will begin on June is as abve. Degrees will begin on June st, as above.
Faculey of Iaw. - The Intermediate and Final Examinations for Degrees

Faculty of Medicine.-The Preliminary Examination in Science and the ermediate M.B. Examination will begin on Monday. July wo and the st Part of the Final M.B. Examination will begin on Friday, July 17 , at
further information as to these Examinations can be obea'ned from the
giserar.
ALFRED T. BENTLEV, M.A, Registraf.
H ancherter, May; i83s.
HE YORKSHIRE COLLEGE, LEEDS.
The Cavendish Professorship of Physics will become Vacant by the resig. ion of Prof. Ri'ccEir, M.A. F.R.S., on SF.PTEMBER 30 nest. peod, L300, with twoothirds of the Fees. Candidates are invited to ford Applications and Testimonials not later than JUNE I . iurther information will be supplied on application to the SECEETAzV.

THE BEST BINOCULAR MADE IS BROWNING'S PANERGETIC.

The superior performance of this celebrated Binocular acknowledged. This year its optical magnifying power hav been increased, and the price has been reduced from $\mathcal{L}_{4} \mathrm{tos}$, to L3 105.
An Illustrated Descriptive List of Binoculars sent free.
TOEIN BROUNINING, 63, STRAND, LONDON, W.C.

NEGRETTI AND ZAMBRA,

SOIE MAKERS OF
JORDAN'S (PATENT) SUNSHINE RECORDER.

THE MASON SCIENCE COLLEGE, BIRMINGHAM.

APPOINTMENT OF PROFESSOR OF MINING.
The Council invite Applications, on or before JUNE a $_{4}$ next, for the above appointment, which is now vacant.
liy a Resolution of the Councit, Candidates are especially requested to abstain frotn canvansing.
Information as to the Terms and Conditions of the Appointment will be forwarded on application to

GEORGE H. MORLEY; Secretary.

ROYAL GEOGRAPHICAL SOCIETY.

The Annivertary Meeting will be beld (by permission of the Chancellor and Senate) in the Hall of the University of London, Marlington Gardens, on MONDA5, June 8, at half-past 2 p.m., the Right Hon. Lord Amerdane, President, in the Chair.
The Dinner will take ploce at Willis's Rooms, King Sireet, St. James's, at 7 p.m. on the same day.

The Right Hon, Lond Aurgdars, President, in the Chair.
Dinner Change, 31s, payable at the door: or Tickets may be had and Places taken at s, Saville Kow, Burlington Gandens, up to noon on Saturday, June 6.
The Friends of Fellows are admissible to the Dinper.

NOTICE OF REMOVAL.

Prof. P. MARTIN DUNCAN, F.R.S., has removed to 6, Grosvenor Road, Gunmernbury, Middlesex.

MEMORY and SUCCESS.-What contributes to success? A good memory. - What causes failure in life? A poor memory, - What can all obtain from Prof. Lenivette's DIS. COVFRIES 9 A good memory-1HE PHYSIOLOGICAL ART OF NEVEK FORGETTING-using none of the "Links," "Pegs," "Localities," of "Associations" of Mnemonics. Lost memories restored - the wornt made good, and the best better. Any loak loummat in one tradtm6. Praspectus POST FKEL giving opinions of Br RICHARD A. PRIXCTOR, Dr. ANDREW WILSON, and others who have studied the System. A Day Class in Never Forgetting and for Cure of Mind. Wandering commences every Monday at 3 p.m. An Fivening Clase every Tuesday at $8 \mathrm{p} . \mathrm{m}$. Jectures in Familiee of the Nobility; abo taught thoroughly by POST. Prof. LOISF.T:TF, 37, Nkw UxYokd Steeet (opponite Mudie' N W.C.

PATERSON \& COOPER.

76, LITTLE BRITAIN, L.ONION, E.C.
Electric Light and Power and Telephone Engineers, New F.lectric Light Catalogue, post free is.
PATERSON \& COOPER heg to give notice that they have disposed of the Mulowophical, Educational, and Experimental Part of their Hasiness 10 Mesars. J. and T.' MAYFIELD, 41, Queen Victoria Street, E. C.

SCIENCE AND ART DEPARTMENT

so PER CENT. GRANT FOR THE PURCHASE OF STANDARD COL.LECTIONS ANI APPARATUS FOR TFACHING GEOLOGV ANI MINERALOGY, NEW LISTS and FORMS on which the Application is to be made snpplied by

THOMAS J. DOWNING,
Grologist, \&r.,
38, WHISKIN STREET, LONDON, E.C. (over Quarter of a Century).

C. D. AHRENS,

PRISM WORKER AND PRACTICAL OPTICIAN,
36, GKE.AT RUSSELL STREET, LONDON, W.C.
SPECIAL NOTICE-Seethe New Polarising Prism.
Can be used over any A \& B Eyepiece. Strongly recommended for Lantern Work; will take in any Object Alno see the New Erecting Microscope, Any Object-Giass and any Eyepiece can be used with it It is the only way of seeing the Objects in their right shape and form. Maker of the Larges Nicol froms in exiatence for the late W. Spotiowoode, Eivy. P.R.S., Re., \&c., and for Frank Crisp. Fis., 1.1. B, B A., \&c., 太c.

Teabe eurrtied with Putsme

HOW \& CO.'S
Geological Transparencies for the Lantern.
Deacnpure Citalogue on Appluration
WALKER'S SPECIFIC (;RAVITY BALANE FOR ROCKS AVD MINERALS.
How a co.'S POEK+T MICKUSCNiP' I-AMP. 8t. od
MICRIIPETROLOGV.-Gections of Pitchstube Jbadians, Granites,
Syealees. Donites, Gabbros, D. lerites. Banall- Tachylites, Prachytes,
pdewtes, Porphyrites, k y-nitrs, lavas. Act ... Sibens, Schists, Lime.
ese. Ac.. price 18.64 . each
1AMES HOW : CO. 13. FARAINGDO
anzt, Londom.

LIVING SPECIMENS FOR THE MICROSCOPE.

GOLD MEDAL awarded at the FISHERIES EXHIBITION t THOMAS BOLTON, 57, NEWHALL STREET. BIRMINGHAY who has last week sent to his subscribers Uroglena volvox, with drave and description. He has aloo sent out Paludicella Ehrenbersi, Syroct frutescens, Melicerta ringens, Rhinops vitrea, Conochilus volvox. Hy= dictyon utriculatum, Volvox globator with Nonommata parasita, Lopt-pr crystallinus ; also Amcrba, Vorticella, Mydra, Crayfish, and other Spec.aco for (Huxley and Martia's) Biological Laboratory wrork.
Weekly Announcements will be made in this place of Organisma I. E, supplying.

Specimen Tube, One Shilling, post free.
Tiventy-six Twbra in cowruc offix Months for Sabscriftion of hitu. or Twelve Twhes for sos. 6 d .
Portfolio of Drawings, Ten Parts, is, each .
EDWARD WARD has pleasure in an nouncing the issue of a new Mlicro-Slide of Zoophyte, with teara out, in the special manner so well known to his nutnerous patrons.
 Also, quise new :-
Gorgonia verrucosa (polype stained) in \quad a
Podalirus typicas (Syectre Shrinp) Podalirus typicus (Syectre Shrimp)
EDWARD WARD, 249. OXFORD STREET, MANCHESTFR

LANTERN READINGS.-DISSOLVING

 VIEWS.THE NEW QUADRUPLICON.
New Season, $\mathbf{1 8 5}_{4}$ and $\mathbf{1 8 8}{ }_{5}$ - Popular Subjects for this Season. The Channel Islands-The War in the Soudan-The River Thamer Devonshire Scenery-Hereford and the River W'ye-The English Lale London Poor and How They Live-Egypt and the Nile Expedition-, way-The Lifeboat-The Signal Box-The Maids of Lee-Poor A Trousern-Shadown on the Blinds, \&c.
The largest and newest Stock of Lanterns and Slides, Scientifc $x<$ General, on Hire and Sale in this country at the Lowest Prices.
E. MARSHALL, 78, Queen Victoria Street, London, E.C.

INTERNATIONAL HEALTH EXHIBITION. DIVISION-EDUCATION.

A PRIZE MEDAL AWARDED TO THOMAS D. RUSSELL,

78, NEWGATE STREET, LONDON, E.C., For Geological Collections for Science Teaching Catalognes Pest /rue.

MINERALOGY AND GEOLOGY.

Mr. HENSON'S I,atent Arrivals are :-
Very Fioe DOUBLYTERMINATED CRYSTAIS of ZIRC.
 RUTILES. CHAMCOSIDERITE, and NATIVE, COPPER wall; POIISHED JADE and GREFN AVENTURINE. GkCl and SINGLE CKYSTALS of STIBNITF, Japao; "SHERK COLOURED TOPAZES, Siberia.
A Large Serien of ROCKS, also MICROSCOPIC SECTIONS of: same. Lists on A/flication 1;ammers, Chisels, and Hammer Strays PRIVATE LESSONS AND EVENING CLASSES BLOWPIPE CASES AND APPARATUS. Catalogues free. SAMUEL HENSON, 277, STRAND, LONDON, Opposite Norfolk Street.
FOR THE STUDY OF COMPARATIVE
ANATOMV: Marsupial An mals of both Seres, preserved in sw of Wine. For price and particulars apply to the Importer, it Jawnacit, 355, East India Ruad, London, F.

SIX PRIZE MEDALS

AWARDED FOR GEOLOGICAI. COLLECTIONS
Geological Collections especially adapted for Teaching as supplied to Sciand Art Irepartment, and used by all lecturers and Teachers in
New and Rare Minerals constantly arriving from all parts for selective Single Specimens.
ROCK SFFCTIONS AND ROCK SPECIMENS:
The Iargest Variety in E.ngland.
New Catalogues and Lists on application to-
JAMES R, GREGORY,
88, Charlotte Street, Fitzroy Square, Lonnot
Established 27 Irars it London.

Fale by Auction.

SHELLS.

MR. J. C. STEVENS will SELL by AUC. TION, at his Great Rooms, $3^{8} \mathrm{King}$ Street, Covent Ciarden, on FRIDA1, May 29, at half-past 12 precisely, a Collection of SHELLS, the property of a Collector who is relinguishinz the pursuit, including many rare and valuable species, chiefly supplied by sowerby, and from the Jennison, Angus, and Norris Sales Amonest others will be found splendid specimens of Rostillaria rectirostris, Halea priamus, Aperrhais occidentalis, Cyprac aurnntia, Voluta sophia, very fine Terebratula lenticularis, fine lots of Unionidx, many fine and rare Shells from New Zealand, \&c. \&c.
On View after a the Day prior and Morning of Sale and Catalogues had.
BOOKS (Secondhand), Miscellaneous, Remainders, \&c-C HERBERT, English and Foreign Rookseller, 319. Goswell Road, London, E. C. Catalogue free on receipt of two stamps. Litraries, Old Books, and Parchment purchased.
NORTH BRITISH AGRICULTURIST, the only Agricultural Journal in Scotland, circulates extensively among Landowners, Farmers, Resident Agents, and others interested in the manazement of land throughout the United Kingdons.
The AGRICUITURIST is published every Wednesday afternoon in time for the Evening Mails, and contains Reports of all the principal Eritish and Irish Markets of the week.

Thespecial attention of Land Agentsis directed to the AGRICULTURIST as one of the best evisting papern for Advertising Farms to be Let and Estates for Sale.
Advertisers addressing themselves to Farmers will find the AGRICUL TUR1ST a first-class medium for reaching that Class,
Price 3d. By post 3ld. Annual Subscription, payable in advance, 14 m . Offices-377, High Street, Edinburgh ; and 145, Queen Victoria Street, London, E.C.
Money Orders payable to Charles Anderson, Jun., Edinburgh.

THE ZOOLOGIST :

A MONTHLY MAGAZINE OF NATURAL HISTORY.
Third Series Edited by J. E. Harting. F.L.S., F.Z.S., Member of the Britich Ornithologists' Union ; contains-
Original Articles by well-known maturalists is every branch of soclogy: habits of animals ; arrival and departure of migratory btrds; occurrence of rave birds : distribution and migration of British fresh-water fish; new or rare birds: distribution and migration of Britnh fresh-water water mollusca, with remarks on the hannts and habits of the species ; and other matiers of general interest to thone who delight in natural history. Keports of the Linnean. Zoolegical, and Entumalogical Societies. Reviews of natural history books. Occasional translations from toreign soological journals of important and interesting articles in various branches of soology. rhere are occasional woodeuts.

JOHN VAN VOORST. r. Paternoster Row.

AUTOTYPE PHOTOGRAPHIC BOOK ILLUSTRATION.

advantages.

rst. They present Faithful Representations of the Subjects.
and. Printed on the paper of the Book itself, mounting nat required.
3rd. For Editions of 1000 and under they are cheap.
Employed by the Trustees of the British Museum and by tbe Learned Societies; also by many of the leading Publishers.

Anowgst the Words reconfly dome, or at present in the press, may be cited: Lady Brassey's "Tahiti"; Prof. Gardner's "The Types of Greek Coins"; Holtzapffell's "Practice of Ornagnental Turning is Audsley's "Ons"; Holtzapffell' "apan" Practice of Ornagnental Turning : Audsley's "Archaological Survey of India "; "Samuel Palmer : a Memoir."
Of tbis last wark the Afhemewo cays:-"This book is admirably illustrated by fourteen autotype reproductions from lovely and characteristic sepia drawinge."

FOR THE

ARTISTIC DECORATION OF THE HOME, VISIT THE
AUTOTYPE FINE ART GALLERY, 74, NEW OXFORD STREET
Twenty Doors West of Mudie's Library). THE NATIONAL GALLERY.

Now ready
The First and Second issue of Autotype Copies of the most celebrated paintings in this Collection. Price szs, each.
Prospectus and Catalogue free by post on application to MANAGER, the AUTOTYFE COMPANY.

Complete in Three Volumes.

TURNER'S "LIBER STUDIORUM"* with Commentaries on eac Plate, by Rev. Storford Brooke, M.A
An Illustrated Paviblet, with Press Notices from the Times, Athenarwn, Academy, Portfolio, Art Joumal, \&c., free per Post.

Fine Art Catalogen, 166 pagrs, price Sirfower, frese fer Past.
THE AUTOTYPE COMPANY, 14, NEW OXFORD STREET, W.C.

THE BREWERS' GUARDIAN :

A Fortaightly Paper devated to the Protection of Brewers' Interests, Licensing, Legal, and Parliamentary Matters.
Reverw of the Malt and Hor Tifadks; and Wine and Spirit Trape Record.
The Organ of the Country Brewers.
"The Rrewers" Guardian " is published on the evenings of every alternate Tresday, and is the only journal officially connected with brewing interests. Subscription, 16 s. 6d. per annum, post free, dating from any quarter-day. Single Copies, 1s. each. Registered for transmission ahroad,

Offices-s. Bond Court, Walbrook, London, E.C.

A New Story, "IN THE LION'S DEN,"
 By the Author of "John Herring ; "

And a Picture Sketch, entitled, "SCHWARTZ: a History,"
By D. CRISTIE MURRAY. See the
ENGLISH ILLUSTRATED MAGAZINE for June.

Profusely Illustrated. Price SIXPENCE, by Post EIGHTPENCE.

The English Fllustrated Sloagazine

For JUNE, 1885, contains-

1. THE YOUNG COWHERD-A NEW FOREST SCENE. Engraved by O. Lacour, from a Drawing by Arthur Lemon.

Frontisficce.
II. IN THE NEW FOREST. Part 1. By Mabel Collins. With Illustrations by Arthur Lemon.
III. SCHWARTZ: A HISTORY. By D. Christie MURRAY.
IV. THE LONDON RAGAMUFFIN. By Dorothy
TENNANT. With Elllustrations by Dorothy
TENNANT.
V. IN THE LION'S DEN (fo be continued). By the Author of "John IIerring."
VI. THE SIRENS THREE (to be continued). By WALTER CRANE. With Illustrations by W. Crane.
VII. A FAMILY AFFAIR (lobe continued). By HUGH CONWAY (Author of " Called Back ").

SCOTTISE PROVIDENT INSTITUTION.

Edinaurgh-6, ST. Andrew sQuare. London Office-i7, King william street, e.c.
At the 47th ANNUAL MEETING on 25th March, 1885, the Directors reported a satisfactory result of the Year's businessthe Proposals received, $£ 1,170,615$ sos., being somewhat above, while the amount accepted is somewhat under, those of last Year.

New Assurances completel, $£ 1,015,155$; with Premiums, $£ 35,274$.
Income in Year, $\mathbf{£ 6 8 8 , 0 2 0}$. Claims, $£ 269,880$.
Realised Funds (increased in ycar by $£ 327,540$) exceed $£ 5,000,000$.
Only two Offices in the Kingdom (both much older) have as large a Fund.
WHOLE WORLD LICENCES AND NON-FORFEITURE OF POLICIES.
l'olicies are gencrally now free from restrictions on residence after five years, and unchallengeable on any ground but fraud. Policies may be revived on payment of premium within the year without proof of health. In case of death, when the valse exceeds the unpain premium, the full sum is payable, under deduction of Arrears.
The Advantages which this Institution offers to Assurers are-
A Larger Original Assurance-say $£ 1200$ or $\mathcal{L} 1250$ for the Premium charged elsewhere (with Profits) for $\mathcal{L} 1000$ only. The Frosedf, to Good Lites, of L.arge Additions-no share being given to those by whose early death there is a loss. Claims under Policies now payable a Month after Proof.

Lisperts, twish Tables of Bemiuns, Evc., on Afflication.
J. MUIK LEITCH, Londen Sceretary.

JAMES WATSON, Manager.

NEW VOLUMIS IN THE:

INTERNATIONAL SCIENTIFIC SERIES.

Crown Bvo, Cloth ss. each Volume.

With so Illustrations.

PHYSICAL EXPRESSION:
ITS MODES AND PRINCIPLES.
by francis Warner, m.D., F.R.C.P.

With 200 Figures.

THE COMMON SENSE OF THE
By the Late William Kingdon Clifford.
JELLY FISH, STAR FISH, AND
heing a research on primitive nervous systems. By G. J. ROMANES, F.R.S.,
ORIGIN OF CULTIVATED PLANTS. BY ALPHONSE DE CANDOLLE

Loadon: KEGAN PAUL, TRENCH * CO.

In Feap. 8ro, Price u od.

ELEMENTARY LESSONS IN THE SCIENCE OF AGRICULTCRAL PRACTICE. By H. TANNER, F.C.S., M.R.A.C., Examiner in the Principles of Agriculture under the Govermment Departmeal of Science, sometime Professor of Agricultural Science, University College, Aberystwith.

MACMILLAN \& CO. London.
THE SCIENTIFIC RESUITS OF THE VOYAGE OF H.M.S,
"CHALLENGER."
Now Ready, "The Narrative (Vol, 1.) of the Cruise," with a General Accound of the Scientific Revalas of the Fixpedition. By Staff-Commander Thari, H. N. Moszery I. Yuchanin, and Juky Mekray, Menslen of the Eapedition, In Two Parts, price 26 16s. 6 d .
-- This work, which is complele in itself, is profusely illustraled with hronio luh hographic and photographic Plater, D!ays, Diagrams, Woodcuts, -nd a large Euthymetric Chart of the World.
REPORT ON THE SCIENTIFIC RE-
SULTS of the VOYAGE of H.M.S. "CHALLENGER" during the VFAKS $1895-96$, under the command of Caytais G. S. Narcs, R.N., F.K.S, and captain F. T. Thomwon, R.N. H'repared under the superF.R.S, and aptain 1ntendence of the late Sir C. W. THonson, F.R.S., and now of Joun Miskav, one of the Naturalista of the t.apedition.
Printed for H. M. Stationery Office: Publithed by Order of H. M. Government: sold by Longewats R (o., John Murray, Macmillan \& Ca, Simpkin \& Ca, Trutimer \& Co. F. sainford, \%. 1) Puter, and Kegan I'aut \& Co., London: A. \& C. Biark and 1housiav \& Foulie, F.dubus! h; and by A. Thon \& Co. and Hodses, Figsiv, nind Co., Dublic.

LA SEMAINE FRANCAISE: a Weekly Newopaper and Review in the French Language. Politics, Literature Science. Art. Varieties, Notes. Price sd., through Booksellers, and at Scieace, Art, Varieties, Notes. Price 3d., through
the Railway Bookstalls. Office, 4t, Strand, W.C.
LA SEMAINE FRANCAISE: Journal Français pour I'Apgleterre: Politique, Lituerature, Sciences, Arts, Variets, Nouvelles. et Notes- Un exemplaire par la poste, ajd., en timbres ponte. Abonnement franeo par la poste-un an, rof, sod, ; six mois, gh. g. Prfx ad ches tous les libraires ef aux gares des chemins defer. Oe s'aboase aux bureaux, 443, Strand, Londres, W.C.
LA SEMAINE FRANCAISE.-"'La Semaine Française "has been brought out in London for the benefit of those Eighash readers whe may wish to study coatemporary French from all points ef vies, instead of confiniog their reading to one particular Gallic prest. It certainly merits succese."-Gnuphic.

Publishing Office, 44I, Strand, W.C.

OPTICIINE.

An almost wnorvakaNe material resembling the finest Tortoise-shell.

DOLLOND'S

Now use OPTICINE for Fye.flass Frames; they will be found almost everlasting.
PRICE 7s. 6d., pont free.
Fitted with Dollond's Finest Crystal Lenses.

ELASTIC STEEL SPECTACLES.
3m. 6d, 7n. 6d, 12n. 6d. per pair, post tree.

1. LUDGATE HILL, LONDON, E.C.

MINERALS AND STONE IMPLEMENTS.

MR. BRYCEWRIGHT begs to call the attention of his Clients and the Public to tins large Series of

MINERALS AND STONE JMPLEMENTS,
from which single specimens can be selected.
Elementary Collections of Mlinerals, Fossils, and Rocks from Ll $_{1}$ upward-
N.B.-These Collections abtained the Friee Mrdat, 1862

GEMS AND PRECIOUS STONES OF EVERY DESCRIITION
BRYCE-WRIGHT,
Mincralogist and Expert in Proicus Stones, 204. REGENT STREET, LONDON, W.

THURSDAY, MAY 21, 1885

THE BRITISH MUSEUM CATALOGUE OF LI\%AKDS

Catalogue of the Lizards in the British .Muscum (Natural History). By George Albert Boulenger. Vol. I. Geckonida, Eublepharide, Uroplatide, Pygopodida, Agamide. Second Edition. (1885.)

IT would be difficult to name any order of vertebrates rore urgently in need of cataloguing than the lizards. The last general work on the group published in any country was Dr. J. E. Gray's Catalogue, which appeared forty years ago, only six years after the completion of the volumes devoted to lizards in Dumeril and Bibron's great work on Reptiles. The additions made in Dr. Gray's Catalogue were considerable, but many of then were of doubtful value. Thus of fourteen new genera therein added by him to the family of Geckoes alone, but three survive in the present edition, the remainder swell the synonymy.
Mr. Boulenger's Catalogue is a boon to herpetologists and to biologists generally, not only because it places within their reach in a few handy volumes descriptions that have hitherto been widely scattered, but also because the classification proposed, whether it be generally accepted or not, is a distinct advance upon the artificial system hitherto in vogue. It is to be hoped that lizards so closely resembling each other as do, for instance, Gongylus, Ablepharus, and Euprepes, will no longer be classed in three distinct families solely because of trivial differences in the form of the nasal shield and in the development of the lower eyelid. At the same time, as naturalists have but rarely access to a collection of lacertilian skeletons, it is to be regretted that a few diagrams have not been added to the present catalogue, to show the cranial characters and the forms of the vertebree, clavicles, \&c., upon which Mr. Boulenger's families are founded.
A considerable change in some well-known reptilian genera is proposed in the present work, and it is probable that the union, for instance, of Stellio and Trapelus with Agama and of Broncheccla with Calotes will not be universally acceptable. But no change appears to have been proposed without valid reasons, and the tendency to excessive multiplication of genera on insufficient grounds has become so serious a nuisance in zoology that a diminution in the number is welcome. It is satisfactory to find, on comparison with the catalogue of 1845 , that whilst the species attributed to the Geckonida have increased from 97 to 270 , the genera have only augmented in number from 40 (or if Eublepharis and Uroplates, now placed in other families, be excluded, 38) to 49 , whilst the Agamida which, in the earlier list, comprised 79 species, distributed amongst no less than 34 genera (35 , including Hatteria) now contain 202 species, but only 30 genera. But six new generic names are proposed by Mr. Boulenger in the present work, and only three of these are used for generic groups not previously recognised, the others being intended to replace terms that are inadmissible.

It is almost impossible to form an adequate opinion of the descriptions and synopses in a catalogue of this kind

Vol. xxxil-No. 812
without testing them extensively, and the only thorough test is to try, by means of them, to identify unknown forms without having a series of specimens of allied species at hand. Most museum publications are deficient in this respect, because the writers do not make sufficient allowance for the difficulties under which those who have occasion to identify animals find themselves. An example or two tnay be taken from the present work. In the synopsis (p. 114) of Hcmidictylus, one of the largest and most difficult genera of Geckoes, two gronps of species are distinguished, the one by having the "free distal joints of all the digits remariably short," the other by having them long. In a museum, with other species for comparison, this is a good distinction, but away from any specimens except the one that he is endeavouring to identify it is difficult for a naturalist to tell whether the joints of the lizard he is examining are remarkably short compared with those of other forms. Again, in Dretio (p. 254) several species are distinguished by having the snout longer or shorter than the diameter of the orbit, bat it is not stated how the snout is measured. It is but right to say that such instances appear exceptional in the present catalogue, and that it is very rare to find a work in zoology from which similar examples might not be taken.
One of the chief desiderata in books like the present is accuracy as to localities. The museum catalogues of a past age left much to be desired in this respect, and their shortcomings have had a pernicious influence on the progress of a study of wide biological and geological interest, that of the geographical distribution of animals. It will probably be a long time before all the erroneous localities are weeded out, but it is satisfactory to note the great improvement that has taken place in British Museum catalogues of late years. Where so much care has been expended on the subject as is shown in the present work, it appears alnost ungracious to point to such trifing shortcomings as appear, though a few mistakes have naturally crept in. Thus the locality for Acanthosaura (Oriocalotes) Kakhienensis is not in the Khasia hills as stated at p. 305, but Ponsee, in the Kakhyen hills, on the borders of Yunan. Again, considering the extensive collections that have been made of late years throughout Bengal, it is very extraordinary, if Heplodactylus duzantcelii and Gonyoccphatus bellii really occur in the province that neither of them has been rediscovered, and the locality should not be recorded without doubt.
Altogether the present volume quite maintains the level that the best recent museum catalogues have led naturalists to expect. Why it should be called a "second edition" is not clear. A comparison of the two editions resembles an antiquarian research. It is necessary to recall a state of zoological knowledge as extinct as the dodo before the conditions under which the so-called first edition was produced can be understood. When the head of the zoological department in the British Museum could propose to divide reptiles into two sections, one called Squamata, comprising the orders of lizards and snakes, and the other, called Cuthaphritita, consisting of tortoises, crocodiles, and anuphisbenians, on the ground that the former were clad with scales and the latter with plates, the knowledge of the animals classified was evidently in a rudimentary stage. As if the classification

 (nita meromelinepolion

 -mon
 ane

 \square $-2=0$ $\rightarrow 2$
 $+2 \pi-2$ $+7 x=0$ $5-208$ $\mathrm{zen}-\mathrm{cos}-\mathrm{in}$ $=$

Nun- - ainenin
 $\pm-2+0$ \square $=$

 $-1 \sim$ $-5-2-2$ $\square-2+0$ $40-7$ $5-2=$
H $-2+0$ 5
 $\square \longrightarrow$ $4-2+8-2+0$ $\underset{\sim 2}{ }$ $\mathrm{arO}-\mathrm{men}$ 2 OHO $\longrightarrow \longrightarrow$

 $2-$ $\rightarrow-$ 5 CO

$-\operatorname{lid}+2$ -
 $=-2+2$ ancol-

 $3-2+2+2$
 $=-2+2$ (1) (2) ar

 $=\tan \cos \cos \cos \cos \cos \cos$ 4 $+1$

 $-=-2-\infty-$ $-2-\infty=$ (a $-2+2$

 4 man $=-2+2$ I: $-\square+\square$ a. $-\ldots+n$

 $-1-2$

he description of the underground workings is scarcely ifficient to enable the reader to appreciate exactly the lue of the author's theoretical conclusions.
11. B.

OUR BOOK SHELF

${ }^{2}$ ien Norske Nordharis-Expedition, 1876 to 1878 . Nill. Spongiadae. Ved G. Armauer Hansen. 2弓 $\mathrm{Pp}, 7$ plates, 1 map. (Christiania, i8S.)
HE thirteenth report on the zoological collections of the orwegian North Sea Expedition treats of the sponges, d is by one who, though well known as a student of her branches of zoology; has not, we fancy, been hitherknown as a spongologist. We do not know whether e may not associate with this fact the somewhat alarmg percentage of new species which he describes; of the rty-five enumerated, thirty, or two-thirds of the whole, c new; many of the species, among which it is interest\because to note there is a new Hyalonema, H. arcticum, are ry brietly described; on the other hand, the figures, as other parts of this report, are well executed, and will of considerable assistance in the detection of the cies by other workers. The author was, unfortunately, able to obtain any preparations in which he could ce out the canal system, or the structure of the soft rts, and he has, therefore, confined himself to an -ount of the spicules. With regard to these he has, are glad to note, made use of the stenographic system ich was invented by Dr. Vosmaer; any and every proition for abbreviating the descriptions of species ought be tested, for the abundance of "literature" is a very eatening tlanger to science. It is not likely that alt methods that have been from time to time suggested be found to be useful : no one, for example, has foled the two methods proposed by the late Prof. Garrod, that adopted by Prof. Jeffrey Bell in the description of cies of starfishes; on the other hand, Dr. Herbert rpenter has taken up and improved the methol sug. ed by Prof. Bell for the species of Comatulies, and - we understand, adopt it in his forthcoming Challonger ort. The chief objections to formula as applied eer to species, or spicules, or other organs, are, of rse, that a particular method has to be learned, and i, if it is too brief, it tells us too little. The latter, for inple, is true of the Owenian methot of formulating lental characters of Mammalia ; it tells us that, while - nura has eight premolars above and below, Evinacues six above and four below, but it does not tell us which missing in the latter. If we desire to register our wledge on this point, we must make use of the more orate system devised by Prof. Flower and Dr. Dobson. , the former objection, we must bear in mind that some tes have had such names as floricomo-hexradiate, or nto-ternate, applied to them, and we can well imagine a formula may well be accepted as a not unpleasant native.

FIuntcrian Oration. Delivered at the Royal College Surgeons, by John Marshall, F.R.S., Sc. (London: nith, Elder, and Co., 1885.)
only the wide range and perennial importance of work of John Humter-the surgeon and anatomist .n the clear judgment of Buckle places second only ristotle among inquirers into organic nature-but The fertility of human ingenuity, is shown by the fact for nearly a century, every year has seen some ent surgeon discourse with more or less variety and ness upon the life and achievements of this graet
e novelties of Mr. Marshall's treatment of the welltheme are, first, recounting the life of his hero wards in successive decennia from his grave to his
cradle ; and, secondly, bringing Hunter into the modern world of science, and imagining the way in which he would be affected by moiern methods and modern results. No doubt he would be delighted to see the splendid collection which has grown out of his "Ilunterian Muscum," but whether he would be more pleased or puzzed by the technics of histology and the elaborate machines of a physiolorical laboratory may perhaps be doubted.

An orator must be an eulogist, and in this case there is ample room for praise; but it wonld be a valuable contribution to criticism if Mr. Marshall, or some equally qualified man, would discuss Hunter's achicvements as an anatomist, compared with Meckel and Cuvier; as a surgeon, with his contemporary Pott, and his successors Astley Cooper and Brodic ; as a physiologist with Haller and Bichat ; and as a naturalist - on the broad ground which includes human and "comparative" anatomy, normal and morbid structure, "the physiology of disease" (to use Hunter's own phrase), as well as that of health-with the only successor he has had, or, we may predict, ever will have, the illustrious Johannes Múller.

To such a critic might be suggested as shades in the intellectual portrait, Hunter's neglect of the aid of magnifying glasses such as were used to good effect before him by Leewenhoeck and Grew ; his want of learning and cultivation, with a certain consequent narrowness of mind; and such occasional obscurity of language as may not unfairly be taken to imply some obscurity of thought. "Definitions," he says, "of all things on the face of the earth are the most cursed." But may not the use of terms without definition sontetimes excuse a choleric word?

After the most exacting criticism, there is no question that Hunter's name would remain one of the glories of this country- to be mentioned next to those of Harvey, Newton, and Darwin. It is therefore most fitting that his fame should be kept green by the annual piety of successive orators, and of these Mr. Marshall is a worthy compeer.

LETTERS TO THE EDITOR

(7 he E.diter ders mod hold himself restonaible for opinions exfressed by his corropponilents. Nizther can he wniotake to ieturn, or to correstiont acith the evribers of, rejected manuscripls. No notice is taken of anomymous communcations.
[The Eifitor wrorntly rquests comspondonts to kert their letters as short as posstble. The fressure on his spate is so grat that it is impossible othersevise to insure the aftearance esen of commenicathurs containing imtersting and movt facts.]

Notes on the Action of the Wimshurst Induction

Machine

As interesting notice on the different influence-machines now in use occurs in Nature, vol. xswiii. p. 12. Of these ingenious instruments, that lately devisel by Mr. Wimshurst is tikely to recommend itself beyond otliers, on account of the ease with which it may be excited, even in a damp atmospbere, and the high tension of the electricity discharged from its accumulators.

The following remarks lay no claim to originality, but they may neverthiless afford some interest to those who woukl withess its effects at a small pecuniary outlay; indeed its construction is well within the powers of the amateur mechanic.

Makers advertise sparks of fabulous length from comparatively small machines, but dense discharges of $4 \frac{1}{2}$ inclies may be obtained under favourable circumstances from di.ks of 15 inches diameter, if care be taken adequately to insulate the collecting apparalus. It is obvious that an unassista' spark of 9 inches cannot be produced from plates whose minimum air-spaces of insulation do not exceed $3 \frac{1}{2}$ inches. The weakest part of insulation in these machines is wasally between the metal inductors and the attachments of the driving-gear and spindle. In the dark, beautiful brushes of light flash across there spaces, and thus they point where the electricity leaks away from the
accumulators. The tendency to form these brushes may be much diminished by cementing a small disk of sheet caoutchoue over the inner ends of each metal-inducing strap.
The machine in full work presents several points of interest, the explanation of which, perhaps, is not very obvious. The first I woald notice is, that although 15 -inch plates will scarcely give an umassisted spark of more than $1 \frac{1}{6}$ inches in length, the interposition of a trifling conlenser, showing only a coated surface of 6 square inches, will entirely change the character of this spark, the almost continuous strean of short sparks giving place to fewer, zigzag, snapping, 4 -inch discharges, of much increased den-ity and brilliance. The attachment of a condensing tube, constructed as follows, will be found a valuable addition to wuch machines as collect separately the positive and negative electricitics.

About 18 inches of thin glass combustion-tubing of 7 -inch diameter is taken. Within, and at 4 inches distance from each end, a space of 2 inches is coated with tinfoil, leaving a space of 5 inches or so of clear glass between them. Two similar pieces of foil are fixed by a thin coat of gold-size on the exterior of this tube. They superpose the inner pieces of foil, and act as the outer coats of two small Leyden jars united as it were in one. These outer coatings are connected by a strip of tinfoil. The inner coats are placed in contact respectively with the plus and minus collectors of the machine, by means of thick brass wires thrust through caoutchouc plugs. The wires are so bent that their ends may drop into suitable holes, from which they may be at any time detached.

A thin coat of spirit lac-varnish spread within and without much favours the insulation of the tube.

Thus arranged, bright angular sparks of 4 or more inches in length will pass between the knobs of the discharger at cerry thresequarter turws of the handle.

Another point of interest offers itself when the knobs of the discharger are placed beyond their usnal striking distance. In such a case the spark very frequently passes within the tube from coating to coating, quite silenily, and with an optical illusion of comparative slowness of transit. When first I noticed these bright flashes of light, they suggested the form of an undulating fire-hall, and this brought to my remembrance the often-describel but obscure phenomenon of "ball-lightning." I could not, however, detect any real retardation of the discharge by a somewhat rough experiment with the ordinary spark - u heel.
When two large jars are connected with the machine the disruptive discharge of 4 inches is accompanied by a sharp report, like that of a small pistol. I was not preparel for the fact that such a noisy discharge made to past through the condeusing-tule is quite silent, just as if it flashed through a partial vacuum. It may also be noted that the spark through the tube may be made much to exceed the length of the discharge in the ordinary way.
The last point I now mention, and concerning which I should value the remarks of Mr. Wimshurst, or any other competent electrician, is the increasing intensity of charge taken up by the metal inducers, or sectors, as they pass each other between the point of their contact with the earth through the metallic brush and the next following comb-collector. In the electrophorus such a contact is required once between the delivery of each spark; whereas in the machine here used, having perhaps twenty-eight sectors, a contact is given only once in seven inductive processes.

It will be found that well-varnished jars, without the usual woorlen topx, are much the most efficient. Nevertheless, even these sometimes become so highly chargel, that the electricity will force itwelf over their edges, doubling back, as it were, over a distance of 5 inches.

A pretty, but somewhat trifling experiment may be made by attaching (wo jars of unequal capacities to the eollectors. Thus a jar of half a pint capacity placed on one side may be flanked by a quart jar on the other. Here the small jar, if the coatings be nol two di taut from the lip, will discharge itself three different times, whilv the large jar is getting sufficient tension to strike, $\pm a y$, at $3 \frac{1}{\text { inches. Tinth jars will then discharge together across }}$ the uplecr knols. It may thus be shown that four half-pints of clectricity make one 'guart of the same, as in liquid measure.
G. B. Buckton

Neating of Micropternus Phzoceps

Iv conumuation of the communication from my frlend, Mr. Wm, laviwin, regarding the nesting of woodpeckers in ants nests, publiabed in AITtIRE (vol. xxxi. 1, 438), perlaps the follow,

Camp Mrplay, Thoung.yeen Valley, Tenasseri is, April 20, 1882

This morning, in going from my camp to the Meplay I res Reserve, I had to pass through several densely overg oaz phonzohs." While making my way along with some diffic uty. I startled a brown woodpecker (A/icroffernus fhecocefs) fr in ${ }^{1}$ small pyingado tree (Xyha dolabriformis). Looking up int , the branches I saw a large ants' nest, in the centre of which app ared a circular hole so exactly like the borings made by woodpe kers ordinarily in the trunks of trees, that I sent up a Kare boy who was with me to ascertain whether it was possibl the Micropternus had heen boring into the ants" nest, as, 1 has heard was the bird's curious habit. The ants' nest was only about ten feet above the ground, placed in a fork of the pyingado, two small branches of which passed clean throu it it Climbing up, putting in his fingers and then a twig, my lares follower announced that there were two eggs. Leaving th. nex alone for the time being, in the evening 1 returned by the sume route, and was able not only to cut off and carry into cam , the whole nest as it was; but I managed to secure also the het bir! as she flew from the eggs. Arrived in camp, I got the twe egr. out, and then very carefully made a cross-section throug 1 bo

*, enfrance tunnel made by woodpecker; δ, relort-shaped nesting-chamer of woodpecker; c, excavalions made by the anis; $d d d \ldots \ldots+d_{\text {, en }} d$ en Irances to shern; fff,..... f, lunnels made by the ants: $E E$; fork of pyingado branch one Iwig passing through the egg-chamber cxcavart by ife woodpecker.
ants' nest so as to divide the boring made by the woodpecker longitudinally.

The accompanying is a rough diagrammatic sketch of the appearance of the cross-section of the nest as hollowed oa: by the woodpeckers. The ants' nest was a large, spherical, solid mass of leaves and clay, the leaves outside being arranged one over the other something like the tiles on the roof of a house, but riddled in many places with the entrance tunnels made by the ants-a small black and red species of Myrmics. the trivial or specific name of which I do not know. It is probably closely allied to the MJrmica mentioned by Sir J. Lubbock in his "Ants, Bees, Wasps" as having been described by Sykes in the Trans. Ent. Soc., vol. i. Very few of the ans
${ }^{1}$ The wild hill.tribes of Burmah and Tenasserin have a wasseful system of cultivation called "toungyah." Yearly, in February, the heads of famios in a vilage choose, each head for himself, a spot of well-grown, of en writ forent, gencrally on a hill-side, and wishin as convenient a distanke or village as is obtainable, cus down all the trecs big and small, and alle of the to dry during the hol months of March, April, and May, and allow there tatter end of the last month set fire to them. The ashes thus when towards th the timber forms a splendid manure for paddy, and fowestr-yal rice is preferm by the Karens to ordinary painure (fold) race. The tow townal rice is preferred alier the paddy has been gathered in, is abandoned, and in, " or clearing nonths, uoder a hot sun and ercessive moisture, becomes in two or thre: jungle, full of thorny bumbond ercessive moisture, becomes an inacceasib: towncyahs are called thow ift, and are not elephant grass. Such deserte fifteen yuary.
remained in the nest, and the few that were about seemed agitated and stung virulently. Probably the mass of them had been driven off or eaten by the woodpeckers. The tunnel the latter had made was about two inches in diameter and four inches long, bored horizontally in, and ending in an irregularshaped cgg-chamber about ten and a half inches in cross diameter, but narrowed by the branch of pyingado which pierced the nest through and through, and crossed the egg-chamber diagonally. The bottom of this chamber alone was smooth, but there waz no lining, and the two translueent white eggs of the woodpecker had rested on the bare boards, so to speak, of the ants' house. In the excavationssce made by the ants themselves there were neither eggs, larver, nor puper ; probably these all had been removed when the woodpeckers invaded the nest.

Charles Bingham,
Deputy Conservator of Forests, British Burmah
Henzada, British Burmah, April 12

Staminody of Petals

The cases of staminody of petals not being very frequent, it may be of interest to draw the attention of the readers of Nature to such a modification as observed in Fuchsia.
The places of the four petals of the flower examined are occupied by four almost colouriess filaments of an average length of three-fifths of an inch. Each of them bears on its top a nearly circular dark red lamina of three-tenths of an inch diameter. These lamine are so strongly vaulted as to have the shape of a segment of a globe, the hollow side being turned outward, the convex inward. At the base of the lamina, i.e. at the top of the filament, a short protuberance is seen, resembling in external shape the lower part of an anther. This anther occupies the concave side of the lamina and is consequently turned outward. Though the anther of one of the petals is only slightly developed, yet it may be admitted as a matter of fact that. instead of petals, this flower has produced four stamens, whose anthers bear a petaloid appendage. A microscopic examination, namely, showed not only the peculiar composition of the antherwall, but also the presence of pollen-grains.

Of the stamens, properly so called, the outer whorl is present, but the inner one is only represented by two of the four One of these two is inserted in the ordinary way, viz. at the base of the petal. The second, however, has grown together half way up with the petal's filament; there it has, in consequence of a spiral turning, arrived at the back side of the petal, whence it bends obliquely outward. By this union the impression is created of a stamen rising from the back of the (modified) petal, concealing its anther in the lamina's coneavity. This occurrence brings to recollection the case of Mimarda fistulosa as cited by Maxwell T. Masters from Turpin ("Vegelable Teratology," p. 298), with this difference, however, that what is probably only adhesion is mistaken for petalody, whilst the case above described offers an antheroid petal grown together with a true stamen.
J. C. Costerus

Amsterdam, May 4

Catalogue of Fossil Mammalia in the British Museum, Part I.

In the review of the above work in a late number of Nature (vol. xxxi. p. 597) the reviewer entertains such a complete misapprehension of my system of naming the premolar teeth of typical heteroclont Eutherian mammals that 1 must beg space to correct it.
The reviewer asserts that this system is untrue because it implies that in general with a smaller number than the full complement of four premolars the diminution must have commenced with the first, proceeded with the second, and so on. In reality it implies nothing of the kind, and if he had taken the trouble to turn to pp. 152 (No. 39.732) and 174 (No. 48.787) he would have seen instances where I have mentioned the absence of the middle teeth ($p m .2$ and $\neq m .3$) and the retention of the terminal teeth ($p m$ m : and $p^{m m}$.4). Similarly in the "Palrontologia Indica," ser. 10, vol. iii. p. 48, I have adopted the same system for the incisors, and have shown that in Hippopotamus it is $i .2$, and not $i .3$, that disappears in some species.
I am well aware that in many of the Insectivora and Chiroptera there is often great difficulty in deciding on the homology of the individual premolars when these are reduced in number; and the reviewer might have noticed that in the former
order I have not ventured to definitely determine the position of any tooth in advance of the last premolar. Among the Chiroptera I have considered the three premolars of Vispertilio (p. 13) as homologous with the last three of the typical scries, as there is apparently no evidence to the contary; the small size of pm, 3 indicates, however, that an allied genus may retain only Pm. 2 and $\neq m .4$: but the minute size of the one tooth in advance of fm. 4 in Rhinolophus has inducel me to regard it as pm. 3. although it may be pm. 2.
The advantage of the system employed in the "Catalogue" is well instancel when we contrast the premolar dentition of Canis, and lepus or Theridomps; the homology of the last tooth of this scries (and there is only one in Theridamys) being at once seen, whereas it is entirely lost if we employ a method like that used in Dr. Dolson's "Catalogue of Chiroptera," where the actual first troth in each genus is called the first of the series. I claim for the system adopted by myself every advantage in those cases where it is possible to determine the homology of the individual premolars in any form in which the number does not exceed four ; and even in cases where such determimation is not absolutcly certain, the error can be but very slight, and dnes not lead to the utter confusion caused by the system (or, muther, the want of system) which I presume the reviewer would prefer.
When we come to those nammals in which the number of premolars is more than four, my systen fails; and, in view of this, some German writers have adopted the plan of numbering the premolars the revensc way-i.e. terming the premolar next the first molar p^{m}. I. and then counting towards the incisors. Although this system would be advantageous if we could always be sure of the division between the premolars and molars in homorodont mammals ; yet it has several di-advantages, and has not, therefore, been adopted.
In refcrence to the suggestion of your reviewer, that instead of making a catalugue of the fossil Mammalia in the collection of the Rritish Museunn (as I was instructed to do by the Museum Authorities), I should have made one of all the known species of fossil Manmalia, any person having the slightest pretence to any knowledge of the present state of mammalian palaontology would have at once known that it would be utterly useless to attempt any such work at the present time, when new species and genera ary being made almost daily, and a host of those already made are as yot but empty names.
As a minor matter, I may mention in regard to the lower jaws of Crossopus, alluded to in the review, that their identification rests solely on the authority of Prof. Sir R. Owen, and that perhaps I have acted in a too conservative spirit in admitting them.

Harpenden Lodge, May 2
RICITARD LYDEKKER

Fossil Insects

"The Earliest Winged Insects of America ; a Re-examination of the Devonian Insects of New Brunswick in the Light of Criticisms and of New Studies of other Palazozoic Types," is the title of a brochure by Mr. S. H. Scudder, of Cambridge, Mass., recently published.

These Devonian insects are fragments of five wings; a sixth is now dropped, as "t too imperfect for any satisfactory discussion," though in 1881 its description filled alout two quarto pages. These insects have been, since 1865 , so often discussed that their literature is a rather voluminous one. A number of far-reaching conclusions elaboratel by the author would have to be abandoned if the determination of the insects should be proved ineorrect. This I endeavoured to do in Ball. A/ws, Comp. Zool,, viii. No. 14. Cambridge. 188i, and in Nature, xxiii p. 483. The principal aim of the author's new paper is to show that my determinations are erroneous. Concerning his statement that 1 have studied in nature only the (in most cases poorer) reverses, I may remark that his paper gives nothing more, after his study of the obver es ; even less for Gerephemera.
These Devonian insects have been decidedly unfortunate from the very outset. Eminent palreontologists demied their Devonian origin, and put them to the Carboniferous or to the "Ursa Stufe" of the sub-Carboniferous. One of the insects, Xenoneura antiquorum, said to possess a stridulating organ on the wing, caused an unusual sensation. Poetic palzontologists were delighted to be introduced by this insect to the sounds of the Devonian woods. Now these woods are silent again, except in some text-books. "It d.res not appear reasonable," said the author, "to maintain
my former hypothesis of a stridulating organ." Everybody acquainted with such organs will he of his opinion.

Another insect, /lumubhetus fossilis, was sail to have a small Jasal vein, considered to be homolugous with the arculus of the Odonata, and therefore to form a connecting link between Neum;itera and Pscudoneuroptera. A new synthetic family, IHonothetide, was prop ised. But now a re-examination of this wing convinces the author "that he had been mistaken about this arculas." It dees not exivt at all.

The third inscet, Plotephemera antiqua, was determined by me as the apical half of the wing of a gigantic dragon-fly. As this is the conly stecties claimed now by the author to belong to the Fiphemeride, he defends vigorousty bis determination by four chljectaons:- (1) "In no dragon-fly, living or fossil, is there foum leyont the nodus hetween the nediana and margin, more than a corofle longitutinal vein, the ararginal vein." If the author will examine any r)tonate wing fiom h/an, he will find such a wein, which is the prolongation of the utbousta, bent on the nombs. to the marginal vein, add unning close to it. Near the n - - lis it is more willely separated in langer species. (2) "The reconstraction of the wiog, after the dimensions given ly 1)r. 1lagen, woukt, on the most favourable showing, make a wing of titic ut-unly extravagant appẹarance." liut such forms occur in livims species of Tramea," Khyothemis, \&c." (3) "The narrowing of the second cubital space is a common feature in Efhem filix (six genera after the Rev. Mr. Eaton's plates are耳uete-1) ; and, as this varics in dititereti (peties of the same genus, it we an- to be a very unimportant mater. I lat purposely stated sudidely marrouinos, and this dree- no: exist at all in Ephemeril:e, namely mot in the six quoted genera, abol cawn it theref, re vary in the difictent species of the varte Letan . It exints in Odonata. (4) "The ecetor subnortalis the: not run unbroken to the tip, as in alt dragon-flies I have exaninect, hat is lont in reticulation as in ally before the margin." This la t-quatel character is a very common feature in dragon-fic- (Tramea, Khyothemis, \&c.). only ver ewaprionafily this sector rum unlos, ken to the tip in the liane sul), family of duchnilix (g). We selgis "Revue de (Ohomate 4' Eurole," p. 122).

Avall ,hject ions have leeen jrowed to be incoriot, and only based upon msuftictent knowlebtec of the venation of Olonata and Efthemernlec, llateph nura beloth: by the simple evidence of facts to the Oblosata. The new propeseal family of Palephemeribee dies unlorn, and the conclu-ions male frum Palephemera are with,ut salue.

The fourth species, ferephimmera. gives mach trouble :s the author, and lie is now inclined toling it into the same group with the I'rotephasmida. As only a part alout 4 mm . boad
 which contd lie comprarel, and as this patt comtains, only a few secters running to the maghit, the relationshay of Protophasma 10 (iercphemera is not at all olvious. The reverse of Gerephemera contains more that the nuthor hav wen. The basal part of a lant wing to the sector trugonali inferion, the parat part of a front wing: with the ame sector, and same seins lelongitge, prolnaly, io anether (frast?) wing. The part fgured and dowthied liy the auther betongs, probably, oo the other hind wing. Xo stublent of Odomata will he in thulte that Gerephemera
 "that the stigerner origho of the liranches of the sector medius is enturely mecoustent with an chlonate hyputhess, and is the mow wilient point in the wing." is directly recorgnived as an error
 gines" (, /. Cles- Vestalis, Neurshoses, \&c.). Thas statement is
 woubl thin ine an elevated, and the methatinal a depressed.
 verne the cornary to what caiss in all whonatn-unless it is juseferred to cxamune the wing fron lorneath.
preferred exists uthl no mone"grapth of the sialisiae; therefore it impowible to make conclutum-anil form new famties for the other thee lhevonat species. The oppinion on the levonian ofter gects gen by Rev. 1. 1., Faton (Naltrex, vol. xuii. p. 507) is sill very just: "Pabsoontologists have alloptat a ridiculous courve with egg in to some invect foscils. Whenever an obseure frabsuent of a well-reticulatel ineet wing is found in a rock, a genus in rasightway set up, nod the fowl named as a new genecies. The species is then referted to the lythemeride, and is immedintely yropunced to to a synthetic type of insects at present dise alated to one alu.ther in organisation. This tylu> iv uften mothing less than a resort
at taniom conjecture respecting the affuinties of animals which the writer is at loss 10 classify. I thought that the Ephes: cride had served quite loug enongh as an asylum for fosw cripples. I wished to intimate gently, that refuse of othe groups of insects shouhd be lienceforth shot elsewhere."

Canibridge, Mass, March 12
H. A. Haciey

High. Level Stations

IN Nituke, vol. xxxii. p. 17, 1 find the ahstract of an aldres by Mr. Omond, on "1ken Nevis." There are many points of interest, but I regret that one was not mentioned-viz ibs excedingly rapid dectease of temperature with elevation frose Fort William to the Ben, anything nearly approa hing, in raid:le latitudes, being only found on the Brocken, anls all high-levd stations of the Alps showing a much smaller decrease. At the Broaken, as well as at the Ben, the great difference from th: Alps is not in summer, but in the colder months of the year. The reaton secms to lie in the nearly constant winds, whick bring air from below, which is cooled by ascension. The caseof great dryness of the air with descending currents in ant:cyclones in the colder monthis of the year, when isolated moretains are often much warmer than the valley- 'l are comparatively rate in the North of Scotland, bat frequent in the $A I_{p} s$, abd certainly must and do have a great influence on the mean tem. perature. Where they are frequent, as in the A1ps-especialit the eastern-the mean amount of decrease of temperature with clevarion must be slower.
1 thinh all meteorologists will concur with me that the greates points of interest in the lien Nevis station is the study of the metcoralogical phenomena near the centres of cyelones, as n. high-level station in the world is s) favourably situated as this for this tody.
A. Wuelkof

St, Petersburg, May I (13)

Rainbow Phenomena

Vutk cortespondent Mr, C. Croft (Nature, No. 8is, p. 301 has noticel phenomena which are perfectly familiar to students of physical optics. The internal bands of colour within the primary bow are the "supernuncrary" Inows due to dilitraction. They were described by Langwith in the P'hilosofthical Trans. a cows for 1722: a partal theory of them was given ly Joung in 1804, and a complete theory by sir G. Airy in 15 36 . The illo mination of the sky in the regions within the primary and with ont the secondary bows, and also the relative darkness of the space lectucen the two trows, Mr. Croft will find the destred explanation in any elementary treatise on optics; Osmund Airys Geometrical Optics may be citel as giving a gourl account of the-e matters. The particular bow seen by Mr. Croft appear Io have been of unusual brilizncy; did he notice any of the radial streaks, which 1 described in 1878 as frequently accom. panying rainhows?

Sluanus P. Thomison
timstary I'echnical College, May if

Aurora

last night at about 10.30 to $10.35 \mathrm{p} . \mathrm{m}$. Here was a weltmarket autora visible from lecre. It dil not last long, the bright bands fating rapidly into a general glow towards the noth. The wind, which was easterly yesterday, has gone round to noth-west to-day with tendency to rain ansid low temperatare

Ruyal College of Scionce for Ircland, Stephen's. O'REILL.
Green, Duldin, May 14

Red Hail

Mr. W. H1. Mitcuet, of Newry, has sent me the accotspraying note, which be thinks may be of interest to the reader. of Nature.
Downshire Itill, Hampstead, N.W., May 18 C. EVANs
On May 7. Mr. R. A. Mullan, solictor, of N
ing in a gig near Caiticucllan, co, Juwn of Newiy, was drivtaken ly a shower of hail. to his surn, when he was over some of the hail-stones-perbapis one in a hundred-erved that
This is well explained in the "H Hedthntred-were of a 1. Hand See alio my paper in the Ceifschr. der Climatologie of
decided red colour, the rest being white, as usual. Taking up some that fell in the gig, Mr. Mullan found that the colour was not merely superficial, but pervaded the sutstance of the hailstone, and, on melting, they stained the fingers. 1te ditl not think, or had not the means, of preserving any of the water resulting. Has the like been obsersed before?

Spectral Images

Mr. Bidwel.l's notice of spectral images (Natuke, vol. xxxii. p. 30) calls to mind certain phenomena I witnessed while nding in a railway train in Kentucky last October. The fence of the railway consisted of posts of about 6 inches in diameter, and twenty paces apart, connected by wires. The posts had newly been painted green. I was seatel on the right side of the carriage, face forwarls; the speed fully twenty miles an hour, with the sun behind my right shoulder, when looking at the posts on the left side, brightly illuminated by the sun, I observel that each post had the appearance of a twin post inmediately in advance of it-touching it-of a red colour. To make myself sure that I was not deceived by some abnormal affection, 1 called the attention of a niece of mine to the phenomenon, and she saw it quite as well as I did. Another niece, however, failed to make it out. I an under the belief that the red post was the complementary colour of the green one, appeating the in stant after the latter had been seen, and though apparently in advance in space of the green post, really was seen later in tirne. The fact of both being apparently seen timultaneossly, is acconnted for by the well-known law of retinal images lingering on vision. Itenry Muraead

Camluslang

THE NEW OUTBCRST OF LAVA FROM VESUVIUS

YESTERDAY', May 2, up to two o'clock, Vesuwius appeared to be in its natural state of activity, such as persisted witli slight variations for some considerable time. At that hour the lava, which was at some height within the cone of eruption, forced a way out at its base, traversing the plain of old lava filling the crater of 1872, and producing a rent alout one quarter the way down the great Vesuvian cone. This rent represents the extension outwards of a volcanic dyke that has been in process of formation for over two years. A visitor during that period who walked around the southern rim of the 1872 crater, might have noticed a fissure varying from a few inches up to 2 feet wide, and extending inwards across the crater plain, until lost beneath the cjectamenta of the cone of eruption. From this fissure issued a powerful current of hot air, and in part of its course an abundance of HCl . This latter was indicated by the continual decomposition of the scoria and ash in its inmediate neighbourhood, so that a large patch of yellow chust filled with the unattached pyroxene crystals was a point of bright colour in the black scoria-covered lava-plain. The lava at first actually issued, or, more properly, welled up from this fissure, but its point of exit was soon lowered by the cutting down of the outer slope. The lava soon commenced to flow down the cone with considerable rapidity, forming two distinct parallel streams averaging fifty metres apart, so that in the evening the landscape was lit up by these two brilliant streaks of fire. This morning I started early, and ascended on foet to the eastern side of the two streams, though often inconvenienced by the hot wind and exhalations blown of the lava. The streams take origin close together, and no doubt conjoin, but are covered by scoria-a vast quantity of lapillo and ash that has been slipped downards and forward, forming a rough annular space which would require a drawing to explain. At the upper end of this we have part of the great cone slipped down, slowing in section the dyke, which I may call hollow; we have a fissure which was filled by lava, and which consolidated and adhered to its sides, forming stilbam; but before the central part solidified, the general level was lowered, and
it drained away, leaving the dyke divided in two by an empty space At 2 p.m. to day the streams of lava had the following dimensions at their exit :-

Eastern		Western
I3readth about $1 \frac{1}{2}$ metres	\cdots	About $2 \frac{1}{2}$ metr
Depth estimated at it mei		at 2 metres

Rate of flow on both, about I metre per second.
The output therefore equals for the eastern stream about go cubic metres per hour, or 2160 cubic metres in 24 hours, whilst that of the western strean represents 300 cubic metres per hour, or 7200 in 24 hours. The two streans, therefore, represent an output of 9360 cubic metres during the 24 hours, from Nay 2 to 3 , at 2 p.m. This quantity would equal a deposit of rock of about 1 km . long, 9 m . broad, and 1 m . thick, which is rather an under-estimation of what now lies on the side of the mountain, for the two streams had at the hour of observation traversed more than two-thirds of the pedimenture. The amount of lava represents far more than what occupied the chimney above the level of the lateral opening, and the mechanism of the increased quantity extruded I have gone into fully in a paper read last week before the Geological Suciety. The cone of eruption only now gives forth vapour, its stone-throwing propensities being stopped by the lowering of the magma level. In consequence of the want of support of its inner walls by disappearance of the fltid column, these are rapidly crumbling in, and the cratetial inner cavity much increased in size. In the s.ame way a breach has been made in the line of the dyke by falling in of that part of loose materials immediately above it.

This change in Vesuvius will no doubt be put down in history as an eruption, and possibly a relationship sought between contemporancons earthquakes, or some other phenomena. It is nothing more nor less than the final giving way of part of the cone before a dyke that has been working its way out for years.

1 send you these few notes afer a long day's climb, exposed to great changes of temperature and mephitic vapours. I ask, therefore, that this will be taken as an excuse for these rough and ready notes, which I thought your readers would be interested to have quickly.
Naples, May 3
H. J. JOHNstux゙-Lavis

ENVERKHEN゙TS WHTH COAL-DUST IT NEUNATRC:IEN', IN GERMANY

IX a former article on this sthbject which appeared in Natere of Nos. 6 last (p.12), 1 described the appa1atus employed by the Prussian Firedamp Commission in making their experiments, and at the same time I gave an account of four experiments that were seen by Mr. Wm. Thomas I.ewis and myself.

No official account of these experiments had been published at that time, but quite recently Herr Hilt and Herr Margraf have made a joint report in the name of the Commission. As this report is intended to be only a preliminary one, it does not give the whole of the details of each experiment, but it shows as far as it goes that everything has been conceived and carried out in a spirit of liberality and thoroughness.

At the outset Ilerr Hilt states that the uncertainty which seemed to surround this important question, and in particular the peculiar views that had been enunciated by MM. Mallad and Le Chatclier, who reported upon it to the Frencli Commission du Grisou, ${ }^{2}$ had induced him to address a letter on the subject, dated December 15 . 1883 , to the Prussian Wetter-Commission, urging them as a matter of duty to take it up and investigate it by a series of large-scale experiments. The French Commissioners, referred to, stated at the end of their report that "they considered it established that coal dust in tr absence of fire-damp does not constitute an element
${ }^{1}$ Ampales dies Mincs, Janvier-Férrier, $18 \$ 2$.
danger." "It may, bonever, play an important part in
 I had mywif ketolj felt bow difficult it would be after a verdist of thaskind, emanating from such high authorities, to make further progreas in the work of convincing practical mining men of the truth of the news I had previously advirated in the pages of the Royal Society's frociedinz. F'or that reason, and in the absence of some prowerful weagon wherewith to meet the French Commissioners with whe chance of success, 1 have hitherto desusted from doung battle with them, although I have been satisfial they were in error from the first. The reģured weapon has leen provided by Herr Hilt, the spobkesman of the 'russian Commission, and may now, I think, be masle une of without much fear of future contradicium.
Speaking of ceal-dubt from Pluto Mine, in Westphalia, Herr llite says, as the outcome of a long series of prartical experiments on the largest scale yet attempted: " Iis katn heinem Zweifel unterliegen dass mann mit dieser Staubsorte bei Verlangerung der Strecke und Streuung auch der Flamme eine beliebige Lange würdegebenkonnen. Ganz ahnlich erhalt sicle der Staub von Nell Iscrlohn." Or: "There can be no doubt that with this kind of dust the flame could be lengthened out to any desired extent, provided the gallery and the layer of dust on its floor were made equally long." "The dust of Neu lsertolm beliaves in exactly the same way." "
After carefully examining the details of this report, I think it not improbable that many, if not most, of the other twenty-four kinds of coal-dust that were subjected to experiment would have given results similar to those whichled to the foregoing remarks had they been employed in the same state of minute subdivision. Differences in chemical composition do not appear to have as much elfect in controlling the length of flame produced by a given dust under a certain set of conditions as the comparative tineness of the particles of which it is composed. In order to show the effect of fineness Herr Margraf has divided the dustr into live classes, as follows:-

Number of llats in each Clacs.

Five, Beginuing with Pluto Twelve, ending whil Camir
hausen hausen Fine ...
Fowr Medium Coarse

Lengih cf Ftarue pros duced by fring 2yo crm. of pownder in cathon texi flewt, the cannon bext hour, the Howir bean Mrewa With cral-duat for
lengeh of 20 m. ... 21 to 31 m .
... 13 to 21 m .
... 12 to 15 m .
*. 6 to 12 m .

Some experiments were also made with dust passed though seves having inesles of various widths, which showed that the tiner the state of suldivision, the longer was the correvponding flame.

From thus It is obvious that before anything definite can be asertained regarding the influence of chemical comprosition, it will be necessary to reduce the dusts to a uniform standaral of tmeness Herr Margraf proposes to dathis by pasang them through a sieve whith meshes inm. wite. I an alfand, however, that some more exact method of elfes ting a arparation of the very tine from the moderately tine partules will have to be resorted to before a sathfartory reault can be leoked for. A current of air axemblogs slowly at a uniform rate would be a better meann thin any concetvalle kind of sieve.

I have oh arieral prevturs occastons pointed out that when a (allici) exploston has been logun in a diy mine We coasser phiticles of coat dust are winnowed from the finer ones by the blast of air which sweeps through the workings in devance of the thame. It seems to me that

under these circumstances experiments made with an other than the finest particles of each kind of dust CL_{2} serve no practicable purpose whatever, and that azy general conclusions drawn from them must necessan ly be misleading. It is further highly probable that this is the rock upon which the French Commission was skipwrecked.

They had ascertained by actual experiment that, as the coarser particles of any given dust were removed by siffing, the flame produced under the same set of conditions became longer and larger in proportion to the fineness of the remaining dust. Yet they failed to carry the argyment to its legitimate conclusion. They appear to hare been misled either by too much speculation, or by the negative results of their experiments, due, it may be, to the smaliness of the scale upon which they were made. They finally pronounced coal-dust to be an element of very secondary importance in colliery explosions, theresy allowing a splendid opportunity to slip from their gras? The Prussian Commissioners were not slow to take advantage of the opening thus afforded them. Thanks partly to the large scale upon which they have set to work, partly to the natural fineness of Pluto and Neu Iserlohn dust, they have been fortunate in obtaining a series of positive results which amply confirm those previously obtained with the somewhat smaller apparatus belonging to the Lords of Committee of Council on Education set up in this country under the auspices of the Royal Society (No. IV. paper, "On the Influence of Coal-dust in Collier Explosions," Proc. Noy. Sioc., 88 1).
The dust brought from Camphausen Colliery does no appear to stand very high on Herr Margrafs list, and yet, since the publication of the menwir, that colliery has been devastated by one of the most violent explosions on record, in which it is admitted, 1 believe, that coal-dust, and not fire-damp, was the principal agent of destruction Are we to conclude from this that the nine dusts which lie between Pluto and Camphausen in the order of relative danger are equally liable to produce a flame of inderinite length under like favourable conditions? and, if so, ${ }^{\text {is }}$ it not obvious that the experiments are not as reliable as might be wished, since they fail to tell us so ?

Before concluding, I might mention that Herr Hik: refers to and agrees with a remark made by MM. Mallard and l.e Chatelier to the effect that the method of experment followed by Sir Frederick Abel and myself wher using the apparatus described in my first paper was "to0 little exact " to determine accurately what percentage of gas is required to render a mixture of coal-dust and air inflammable. My earliest experiments here referred to were made with the view of finding, if possible, some rational explanation of great colliery explosions which up to that time appear to have baffled every attempt to grapple with them, and were not intended to form a kind of counterpart on the large scale of the exact eudiometric processes resorted to in the laboratory. At the same time I may state, however, that, so far as I have been able to ascertain by reading and observation, the methods then employed will compare not unfavourably, as regards exactness, with any that have succeeded them, not exciuding those of the Prussian Wetter-Commission.
W. Galloway

THE FAUNA OF RUSSLAN CENTKAL AS/A

UNTIL within the last thirty years Turkistan has been unknown to science, and what is now ascertained concerning its fauna and flora is for the most part inaccessible to the scientific world because written in Russian. Not that autoptic writers of eminence upon the zoology of the country are numerous. They do not number a dozen, the names most conspicuous being Prjevalsky, Alpherak!, bogdanotf, Severtsotf, and especially Fedchenko. Prjcvalsky's routes do not touch mine, except in the Kuldja
region, where also Alpheraky travelled, and collected Lepidoptera, with a list of which he has favoured me. To Bogdanoff and Severtsoff I an indebted for information not previously published in English, whilst in connection with the immense work that bears Fedchenko's name I have had the valuable help of Madame Olga Fedchenko, who both accompanied her husband on his scientific journeys and, after his lamented death, edited his works. When I add that I have before me proofs of between three and four thousand species of fauna and flora, in about twenty lists with introductions, the scientific reader will not need to be told that in the compass of a single article I can but touch the fringe of the subject. I have ventured to think, however, the readers of Nature might be interested in a plain statement that would give some idea of the little-known fauna of Turkistan, as well as indicate what I hope to publish shortly in fuller form.

The part of Russian Central Asia through which 1 recently travelled, and with which this paper will be mainly coacerned, lies between the Oxus and 1rtish Rivers, and between the 38 th and 5oth parallels of north latitude, which region comprises vertically all altitudes from the salt plains, 600 feet above the sea, to the mountain plateaus of the Pamir, 15,000 fect high.

The species of maminals in Turkistan exceed 80 in number. Among them may be mentioned 7 species of bats, the long-eared hedgehog, and the white-clawed bear. To these must be added the badger, otter, and other Mustelida, including three species of marten. Of the last I was able to secure some skins and skeletons, which are now in the British Museum. The wolf abounds; also a wild dog; 3 species of fox; the tiger, snow-leopard, cheetah, and other cats. The salt-plains are frequented by. the sonslik, and many other rodents, including the hairy-nosed porcupine. To these should be ad led the Persian gazelle, the Saiga antilope, the Siberian ibex, and the Maral stag. 1 saw at Kuldja and Tashkend specimens of the skull and horns of the Thian Shan sheep, which is bigger than a donkey. The horn is more than four times the length of the skull, and the head complete weighs upwards of 70 lbs. The yak is kept by the KaraKirghese. The Russians, ton, as an experiment, have introduced some cross-breeds into the plains.
The birds of Turkistan number nearly 400 species, to which may be added 27 frequenting the Pamir. The diurnal birds of prey, such as vultures, eagles, hawks, $\$ \mathrm{sc}$., number 36 species, some of which the Kirghese train for hunting. Of nocturnal birds of prey there are 9 species of owls. There are thirteen species of crows, and no less than 40 of the finch family, including a new species of sparrow. The thrush family is represented by the blackbird, black-throated, misletoe, and some other thrushes. There are more than 40 of the warbler family, many of them being known in Western Europe, such as the greater nightingale, the bluethroat, redstart, redbreast, and others. Six species of the titmouse family are found in Turkistan, only one of which, however, the well-known oxeye, is common also to England. Two species of dip. per are found throughout the countre, and other small birds are the Nepalese and European wrens, the Syrian nuthatch, and no less than 10 forms of wag-tails. Of pipits there are 7 species, and 14 of larks. The hoopoe I saw when coning south from Sergiopol, and again in the streets of Vierny. Other Turkistan birds are the bee-eaters, the three-toed woodpecker, the ubiquitous cuckoo, and the wonderful Pallas's sand-grouse, which last, some twenty years ago, invaded Europe in such an astonishing way.
Among gallinaceous or game birds are found in Turkistan the black grouse, the capercailie, four species of partridge, the quail, Mongolian pheasant, pea-fowl, and common cock. Of the swan, goose, and duck tribes there are nearly 30 species. Wading-birds, agair., are found in great variety, and among them a
red-billed curlew, thought at first to be a new species. It has red legs, and a remarkably long red beak, bent at the end, and well adapted for picking up worms from between the pebbles of the beds of the mountain streams it frequents.

Reptiles are represented in Turkistan by 33 species of lizards, vipers, and tortoises. Of the last I tried to bring for the Zoological Gardens a species (Homopus horsfieldi), and it travelled asleep with me some hundreds of miles from Tashkend, but on approaching Odessa it was found to be the sleep of death. Almost all the serpents are non-venomous. Of amphibians there are five species, including the edible frog and green toad.

The fishes of Turkistan are composed half of European and half of Asiatic forms. The European forms belong principally to the lower course of the Syr-daria, Amudaria, and part of the Zarafshan, whilst certain genera belong exclusively, so far as is known, to the high mountainous countries of Central Asia. The total number of Turkistan species probably exceeds fifty. Of these twentyfive at least belong to the carp family, and there are taken besides sturgeon, trout, pike, barbels, gudgeon, rudd, roach, bleak, bream, loaches, and perch. The fishes of the Zarafshan are particularly noticeable Of tifteen species found therein not less than five belong to genera met with in numbers in Kabul, Kashmir, Ncpal, and the Himalayas. To one of these genera belongs the Marinka, remarkable for its poisonous eggs. The greatest find, however, among the ichthyological fauna of Turkistan has been the Scaphirkynchus, of great importance, not only from a zoological, but also a biological point of view, on account of the extreme smallness of its eyes and the rudimentary condition of its air bladder. This fish, and certain geological questions connected therewith, wis referred to in Nature in connection with a letter on the Oxus that appeared in the Times on January 7 last.

If for Mollusca we enlarge our area to take in Kashgar and Ladak, then we have in "Central Asia" thus formed 93 species known up to the present time, the land snails being scarce in the desert plains as compared with the larger number and more peculiar forms in the mountain regions. Among the fresh-water Mollusca the predominant feature is the large number of air-breathing species which live in stagnant water, and the almost total absence of the genera living in running water. It has been sug. gested that this scarcity may be due, as in Switzerland, to the low temperature and stony bed of the rivers.

Anong the so species of Crustacea known in Turkistan there was not discovered for a long time a crayfish; but Madame Fedchenko informs me that one of a variety new to the species hitherto known in Russia has been recently found. Annong the Crustacea inhabiting the fresh waters of Russian Central Asia a very large number of West European species is found, and the new species are, in the majority of instances, very similar to the commonest in Central and Southern Europe.
Of the 16 families to which European spiders are said to belong, all, except two groups very limited in number, have their representatives in Turkistan. The 146 species known there belong to 55 genera, which constitute approximately one half of the total of Furopean genera. The Turantule are remarkable in that there are found in the Zarafshan Valley forms which in Europe are met with in countries far apart from each other, and have been reckoned as different species. The most widely distributed form is that with the lower part of the abdome quite black; next comes the form with colvured ed ${ }^{f}$ and, finally, that with the lower part almost en orange. The scorpions of Turkistan are identica those met with in Trans-Caucasia, and the distribut one species (Solpug intrepidte) is remarkable. found in Spain, it was seen later on the Indersk ? tains, then in the Zarafshan Valley, besides which mens of this harvestman have been found in V
ad by application to Sir John Lawes at Rothamsted ark, St. Albans.
The task of reviewing matter of so condensed a charac--r as this is by no means easy. Ever since $18 \not+0$, Sir John .awes has carried out field and stall experiments on a cale well worthy of a national enterprise. Elaborate rapers by this most enterprising of experimentalists, and is equally well-known coadjutor, Dr. T. H. Gilbert, have soured forth from Rothamsted during the entire memory of the present generation. During the last twenty-five fears the scientific staff presided over by Dr. Gilbert has zonsisted of two, and sometimes three, chemists, and as many competent assistants, a botanical assistant, two to four computors and record-keepers, besides laboratory men. From 1847 to 1884 ninety-six memoirs have been contributed upon subjects bearing upon the soil, the plant, the atmosphere, drainage water, and rainfall, utilisation of sewage, animal nutrition, feeding-materials, manures, the occurrence of fairy rings in pastures, \&c., \&c. There is, in fact, scarcely a topic of agricultural or pastoral life which has not been investigated at this great English Agricultural station, and that through the enterprise of one man.

The Memoranda commence with a summary of rainfall and drainage extending backwards to 1851 . Not only is the local rainfall given for each month over a period of nineteen years, but also the amount percolated through gauges of 20,40 , and 60 inches in depth of soil, the amount evaporated, and the amount retained by capillary attraction in the soil. Thus, as a general summary of the total rainfall, we find $45^{\circ} 3$ per cent. percolated through 20 inches depth of soil, $47^{\circ} 4$ per cent. through 40 inches of soil, $41^{\prime \prime} 9$ per cent. through 60 inches of soil, as indicated by rain-or drain-gauge, while the remainder is accounted for by evaporation or retention in the interstices of the soil. The averages obtained by unremitting observation from 1851 to 1870 are used in comparison with subsequent years, as in the case of the last completed record from September, 1882 , to August, 1883 . The three last columns of the tables given are devoted to the nitrogen removed in solution by percolation of drainage-water calculated in pounds per acre, by which we see that, at the depths above-mentioned, from 36 to 44 lbs . of nitrogen per acre are annually carried down from the upper layers of the soil to a depth of 5 feet and more.

One of the most attractive series of experiments, extending now over a period of thirty years, is that carried out upon permanent grass-land in the Park at Rothamsted. Space forbids more than a most cursory sketch of these experiments. Like all the Rothamsted investigations, the first aim is practical and comparative. The questions asked are as follows:- What is the effect of various applications to grass land? Which gives the largest return? What is the effect upon the herbage of continuous and of varied treatment? What is the effect upon the soil of long-continued privation and of long. continued feeding with simple and combined dressings? The investigation is at once chemical, physical, and botanical, and the change wrought in the character of the herbage of various contiguous plots of natural pasture, as well as upon the soil to a great depth, is most remarkable.

Perhaps the chief interest in the experiments upon crop cultivation will still centre around wheat. Broadbalk field, on the Rothamsted estate, is unique, so far as treatment and cropping goes. In 1839 this field carried a
${ }^{n}$ of turnips, manured with farm-yard dung ; in 1840

- barley ; in 18.41 , peas; in 1842, wheat ; in 1843 ,
"the four last crops being unmanured. The field fore, according to all farming rules, in an date when the first experimental crop of wheat
$\therefore 1844$. Every year since 1843 has this field
-nd, with some exceptions, nearly the same nure has been applied to each plot. In during the present summer, will see
the forty-second wheat-crop growing without manure of any description upon the ummanured portion of the field, still keeping up a wonderfully uniform yield of about thirteen bushels per acre-or about the average yield of wheat-lands in the United States of America. This is a striking fact for those who fear the eventual exhaustion of our soils. Equally startling is the result from the continued use of nitrate of soda year after year. This fertiliser is looked upon by many landlords and agents with suspicion as a stimulator and exhauster of the soil ; and yet after forty-one years application of nitrate of soda, and nothing else, we have the astounding result of an average of $23 \frac{1}{2}$ bushels per acre, or double the yield of the unmanured plot. And, although it is true that the yield of the unmanured and nitrate of soda plots is less upon an average from 1868 to 1883 than it was from 1852 to 1867, yet it is equally true of the plot manured with 14 tons of farmyard manure annually; and this falling off is therefore probably due to a succession of bad seasons, more than to any actual exhaustion of the soil. Another striking fact brought out in these experiments is the excellent results achieved by applications of artificial fertilisers as contrasted with those obtained from farm-yard manure. In the latter case, where 14 tons of dung have been annually applied to the wheatplot for forty years in succession, the very satisfactory yield of 33 h bushels per acre has been obtained over the entire period. When, however, a well-compounded mixture of artificial fertilisers has been applied, a larger yield has been obtained. For example, 200 lbs . of sulphate of potash, 100 lbs . of sulphate of soda, 100 lbs . of sulphate of magnesia, $3 \frac{1}{2} \mathrm{cwts}$. of superphosphate, and 600 lbs of ammonia salts, have given upon an average over the same long period 36 bushels per acre year by year. We must not draw these remarks to a conclusion without at least noting the interesting experiments upon barley, the leguminous crops, clover sickness, root crops, and potatoes. The memoranda close with a synopsis of a series of experiments upon rotations of crops commenced in 1848 in order to test the effect of growing crops in rotation, instead of continuously, and so to arrive at precise results when a system of mixed farming is pursued with and without manures, and in conjunction with sheep farming.

John Wrightson

RECENT EXPLORATIONS OF THE PAMIR

T'HE third fasciculus of the Izvestioz of the Russian Geographical Society contains three very interesting papers, by D. L. Ivanoff, on the Pamir, being the results of the expedition of MM. Ivanoff, Putyata, and Bendersky, already mentioned in Nature. The first of these papers deals with the journeys of the members of the expedition; the second contains the author's views on the orography of the Pamir; and the third gives a description of the flora, fauna, and inhabitants of this "Roof of the World." Leaving aside the purely geographical part (M. Ivanoff's papers should be translated into English), I shall sum up the most important orographical results arrived at by the author, as also his observations on the natural history of the Pamir.

As to its limits, so variously determined by geographers, M. Ivanoff places them-rightly in my opinion-as follows :-The Alay Mountains in the north, the Hindukush in the south, and the Kashgar Mountains in the east. As to its western limits, the following remarks ought to be made :- The whole of the highlands on the upper Amu-daria must be divided into two parts-the Eastern Pamir and the Western. The Eastern Pamir is a very high plateau, intersected by numerous valleys, rivers, and lakes, with an average height above the sea-level of 12,000 feet (from 10,000 to 14,000). These valleys are either separated by chains of mountains
or by low swellings which mostly reach only from 1100 to 1500 feet above the level of the surrounding valleys, and very seldom 3000 feet. The slope of these swellings above the vallejs is so gentle that water-sheds only 1100 to 1500 feet high are often twenty to fifty miles distant from their foot. These high valleys strictly correspond to what the inhabitants call " Pamir." "Pamir" signifies, in fact, "a flat roof," and when the inhabitants want to describe it in more detail, they add: "broad valleys between low mountains, so high, however, that nothing but grass may grow on them; where there is nothing," they say, "and the earth is like the palm of the hand, that is the Pamir." So they describe what a geographer would call a High Plateau. This plateau has, on the whole, the shape of a great horse-shoe, in the middle of which are situated the mountains of the Murghab and Alichur. This does not imply, however, that there are absolutely no mountain-ridges on the plateau; no angehaufle Gebirge, as Karl Ritter would say. The Pamir chain of mountains which runs east-north-east between the Pamir and the Alichur rivers in the south belongs to this category. It rises above the Great Lake as a stone wall 3500 to 5000 feet high; but it has its foot in the 10,000 -feet-high valleys which surround the lake, and belongs to the category of the angchaufic Gcbirge. Several other lower chains, such as the Alay, Trans-Alay, Riang-kul, Murghab, Alichur, and Vakhan, run in the same direction over the surface of the great plateau, and have the same character.

As to the Western Pamir, which might be described as the mountainous Pamir, it has quite another character. The whole of the plateau sinks towards the west, but, at the same time, numerous chains of mountains make their appearance. We have there, according to Ritter's classification, an Alpine country. The rivers, which flow lazily in the east, become rapid, their valleys narrow ; crags, rocks, and hills confine them; the routes become diffcult, and the mountain-passes very rare. The rich prairies of the east disappear also, giving place to forests, and, lower down, to agriculture, which rises as high as 8000 feet in the north and 10,000 feet in the south. Even the inhabited valleys are mere mountain-gorges. It is obvious that, under such conditions, the real western limits of the Pamir cannot be deterinined with exactitude; and we consider M. Ivanoff very near the truth when he says that the Western Pamir merges into the Alpine highlands of the Darwaz, Shugnan, and Badakshan. The limits are thus far more undefined in the west than in the north and east. The author considers, thus, that the Shugnan and Darwaz ought not to be included in the Pamir proper; they might be considered rather as a lighland which has risen at the intersection of the eastern with the north-western ones of the Hindu-kush (as border ridges?). The Pamir would thus appear as a mighty plateau about 170 miles long, 200 miles wide in the meridional direction, and covering nearly 34,000 square miles.

As to the much-spoken-of meridional upheaval of the Bolor, M. I vanoff points out that there are absolutely no traces of upheavals having a direction either from north to south, or even towards north-north-west or north-north-east. On the contrary, all his observations on the stratification of rocks-and they are numerous-show that the stratification follows the direction either of east-north-east (that of the whole Central Asian plateaux), or north-west, that is, that of the Hindu-kush. The same is true with regard to longitudinal valleys, which always follow a direction towards north-north-east. As to the Kashgar Mountains, still unexplored, they seem to represent a repetition of shorter chains running towards northwest, and arranged in cihelon.

If this opinion of M. Ivanoff is confirmed-and it most probably will be, as it pretty well corresponds with the broad lines of the structure of the Central Asian plateaux, as also with what is already known
as to their structure-we shall have definitely to re nounce seeking for meridional chains in this part of Asia. We have already been brought to renounce them in North-Eastern Asia, where I believe I have proved that neither the Great Khingan nor the KuznetziAlatau, nor even the Sikhota-alin, have this direction On the contrary, we will perceive that the Pamir is onh the highest terrace of a series of plateaux extendirg throughout the central parts of Asia in a north-easters direction from the source of the Amu to Behring Strait

But let us return to M. Ivanoff's papers, and te his observations on the flora and fauna of the Parnir. The high valley of the Alay already belongs to the Kcot of the World. It is covered with rich prairies, the chie elements of which are Graminere. Nearer to water you find a thick growth of Carex physodes, which has giver its name, Riang, to so many parts of the Pamir highlands. Numerous species of Papilionacere, many of them relations of the flowers of our European meadows, give 2 pleasant aspect to the steppes of the Alay in June. The same character-a mixture of the vegetation of the steppes with that of cold climates and highlands-is found also on the Eastern Pamir as you advance further south. But it is sufficient to descend into the valleys of the west to find immediately a far richer flora and, ver soon, corn-fields.

The animals inhabiting the Pamir are also a mixture of those of the steppes with those of Alpine regions. The tame yak (Bos indicus) is met with the well-known "arkhars." Although their horns are scattered in great numbers on the Pamir, they are far from disappearing, and M. Ivanoff has seen numerous herds of from 100 to 150 , and considers that they ought to be counted by thousands in the neighbourhood of the Great Lake. In the mountains the "kiiks" (Capra, probably sibivica) are numerous, but very difficult to approach; the brown bear is common, and M. Ivanoff's men killed four of them. The wolf of the steppes unavoidably accompanies the herds of arkhars. The yellow marmots (Araticola caudatus) are very numerous; the steppes of the Pamir are their true dwelling-places, and the expedition has met also with great numbers of small Siberian hare, which is common on the lssyk-kul. The Indian goose, the Syrrhaptes of the high steppes, the Mcgaloperdix fibetania in the rocky hills, and the Pordix chukur-this last met with only once at a height of 14,000 feet-are especially worthy of notice.

As to the climate of Pamir, it is, of course, very severe. The winter reigns in full for seven months. As to frosts. there is hardly one single month without them, and even on July and August nights the expedition experienced frosts of 6° below zero. There are places on the l'amir where snow rarely reaches a great depth, but, its distribution depending mostly upon the prevailing winds, there are places where it falls in thick layers. As to the rivers, even the Murghab freezes for some time.

The true inhabitants of the Pamir are the Kirghizes namely, the Kara Kirghizes, who belong to four different stems-Teit, Gadyrsha, Nayman, and Kiptchak. The chief settlements are situated in the valleys of the Northern and Southern Ghezia, about the Riang-kul, on the Ak-baital, the Ak-su, the Alichur, and in the basin of the Kokui-bela. They are found also on the L'pper Tagarma. These Kirghizes are very much like those of the Alay, but a special feature of them-very rare, on the whole, with the Mongolian race-is that they continually suffer from tooth-ache ; perhaps it depends upon the climate; at any rate, common disease-an inflammation of the eyes-obviously depends upon the clouds of salt dust raised on the Pamir by the western winds. They spend the winter, at a height of 11,000 to 12,000 feet, in the same tattered kibitkas, that they inhabit in the summer, and know nothing of the warm dwellings erected for the winter by the Alay Kirghizes.

In the summer they ascend to the hilly tracts, reaching about 14,000 feet, in order to save their cattle from the mosquitoes. Though living chiefly on milk produce, they still are dependent upon the inhabited countries of the west, for they are accustomed to the use of bread. The ther race inhabiting, if not the Painir itself, then its outskirts, are the Tadjiks. In the high valleys of the Shugnan, the Roshan, the Darwaz, and the Karategin, they occupy the narrowest gorges of the mountains, trying to escape there from the persecutions of their khans, who are themselves vassals to the neighbouring larger states like Bokhara, Kokan, or China. Being Shites, they are still more persecuted by their Sunnite rulers. Their dwellings are miserable hovels built of rough stones. Broad wooden platforms, under which fowls and young goats are kept, are divided into numerous compartments, which might be called rooms, each of them having its special destination as a kitchen or as a room for weaving, and so on. Notwithstanding the surrounding poverty, one feels comfortable in their poor hovels, the walls of which are decorated with numerous clay pillars. niches, and a variety of paintings very artistically made by the women, who have found the means of fabricating even boxes from clay mixed with husk. The pottery; all made by women without instrumental aid, is striking in the artistic feeling infused into its fabrication. Their fields are not less striking by the incredible labour which has been spent in clearing them from millions of stones. There are "fields" not larger than a common-sized table, cleared with effort, or artificially made by the side of a mountain stream. They keep some cattle, and, during the summer, mount with it to higher tracts. The Pamir is visited by many savdagars, or traders, from Kashgar, Badakshan, or Ferghana, who supply the Kirghizes and Tadjiks, at very high prices, with manufactured produce, receiving in exchange their own produce.
M. Ivanoff remarks that the small preliminary map published in the IEzestia, to illustrate the explorations of his expedition, is still incomplete, and does not quite correctly represent the results of his investigations. The larger completed map will therefore be welcomed when it appears.
P. K.

NOTES

A meeting of the General Committee of the Darwin Memorial Fund was held last week at the rooms of the Royal Society, Prof. Huxley, Presilent, in the chair, when it was stated by the treasurer, Dr. Evans, that, afier payment for the statuc and other expenses, a balance of about 2200 , would remain. The following resolutions were then passed:-"That the statue of Darwin be made over to the Trustees of the British Museum in trust for the nation." "That the balance of the fund, after payment for the statue and medallion and incidental expenses, be transferred, under the name of the ' Darwin Find,' to the President, Council, and Fellows of the Royal Society in trust to invest the same in or upon any stocks, funds, or securities authorised by law as investments for trust moneys." "That the President and Council of the Royal Society apply from time to time the dividends and interest of sach investments in such a manner as shall to them appear best calculated to promote biological studies and research." "That a list of subscribers and a statement of the accounts be printed and circulated, to gether with the resolntions now passed, and that a woodcut or some other representation of the statue accompany the statement." The statue, by Mr. Boehm. R.A., has been placed in the great hall of the British Museum (Naturat History), Cromwell Road, and arrangements for its unveiling will be made shortly.

Thr vacancy created by Prof. Bayley Balfour's retirement from the Regius Chair of Botany in the University of Glasgow,
which we announced some time back (Nature, March 12, p. 441), has been filled by the appointment of Mr. F. O. Bower, F.L.S , Lecturer on Rotany in the Normal School of Science, South Kensington. Both as a teacher and by his important researches in the morphology of Gymnosperms and the Vascular Cryptogams, Mr. Rower has rapidly assumed a leading position amongst the younger generation of botanists, and the loss of his services to the Normal School is much to be regretted. Mr. kower is an M.A. of Trinity College, Cambridge.
THE Goldsmiths' Company has contributed one hundred pounds towards the fund which is being raised for the family of the late Henry Watts, to which we have already drawa attention in these columns.
ThE Court of Assistants of the Fishmongers' Company has unanimously resolved that a grant of 2000 . be made to the Marine Biological Association of the United Kingdom-1000\%. to be paid this year, and the remainder in annual sums of 200%. during the next five years.
The subject of Mr. Romanes's Rede Lecture on June 2 wil be "Mind and Motion."

The subject of Prof. W. G. Adams's British Association address will be "The Electric Lisht and Atmospheric Absorption."
At a meeting of the directors of the Ren Nevis Otservalory held on Thursday last week, it was agreed to add a printing press to the establishment, for printing each day the hourly observations, with a view to their distribution among the more distinguished meteorologists and prominent metcorological institutions in different parts of the world.
Tue verdict of the jury who considered the case of the U'sworth Colliery explosion, whereby forty men and boys were killed early in the present year, is important as marking what appears to be the commencement of a new era in the history of these phenomena. It is probably the first expression of opinion from a public body of this class to the effect that eoal-dust and a small percentage of fire-damp can play the part that has hitherto been usually ascrited to fire-damp alone. They found that the explosion was caused by a shot, the fire of which acted upon "the coal-dust and a small percentage of $g^{\text {as," }}$. The convenient and time-worn "outburst of gas" theory, which consigned the helpless miner to the vicissitudes of chance, and exonerated colliery owners and their agents from all responsibility, seems on the point of giving way before its rival the coal-dust theory, which points out an easy means of preventing great explosions of this hind. The latter theory has doubtless a hard battle still to fight against prejudice and ignorance, but it has all the advantages of youth and vigour on its side, and is supprorted by a number of facts which appear to be incontrovertible.
Tue Russian Geographical Society has just issued a programme of climatological and phenological observations, which, it is to be hoped, will be adopted by numerous observers. The number of plants and animals enumerated is smaller than in most similar programmes, it being the aim of the Society to make the task of the obse vers as easy as possible. A new feature of this programme are olservations on the condition of the snow covering the ground, the time of its appearance and thawing, the rise of water in the rivers at the melting of the snow, \&c.
M. Faye has been continued on the roll of teachers of the Paris Polytechnic School, in spite of his having passed the time of incapacitation by old age. The exception has been grounded by the Minister of War on the plea of continued services rendered to science. A banquet has been given to the worthy astronomer by his admirers on this occasion.
: been made with some zoological collections; the aquarium, wever, has proved a failure, and the vivarium labours under the advantage of never being reached by the sunlight. Several irt and interesting papers are published with the report.
Pre: Russian Covernment has sent an official of the Education partment to Vienna to study the State commercial and indus1) schools of Austria, these establishments being regarded as dels, and the Russian Government intending to organise vilar ones.

Tire Fish Culture Department at the International Inventions hibition has proved a great success and attracted a large conurse of visitors. During the past week many impurtant addins have leen made, including a magnificent model of a Fish ilure Establishment exhibited by Mr. T. J. Mann, and a ries of oyster lieds, demonstrative of the process of breeding dd fattening oysters. A special feature has been marke of sters this year in the Aquarium, where they are to be seen in smerous varieties imported from various quarters of the glole. 1 close proximity to them are exhibited various dredges and aplements used in this particular fishery.

Ture Count Litke Medal of the Russian Geographical Society as been awarded this year to a work which deserves a special otice. It is Prof. N. J. Zinger's work on the deterinination of me by means of corresponding heights of different stars (transded in German by H. Kelchner, and published at Leipaig with preface of O. W. Struve, under the title: "Die Zeithestimm"ng aus correspondirenden Hohen verschiedener Sterne.") The etermination of time with great exactitude, for telegraphic eterminations of longitudes, by means of easily transportable istruments, has already occupied the Pulkowa antronomers, V. Struve and W. K. Dollen proposed very skilful methods of bservations. The latter had proposed to determine the time y means of a special Repsold's circle from two passages of wo stars in the prime vertical. The exactitude reached by this acans was from 0.05 to 006 of a second; the circle had to emain in an unaltered position for no more than five or six ainutes; but the whole observation took about forty minutes. "rof. Zinger's method. which is a further development of the work begun by Maupertuis, Olbers, llauss, Delamlıre, and Knorre, consists in making two successive observations of two tars chosen for that purpose, at the same altitule, by means of tny instruments which may not be divided with great perfection, ut whose level would only show the changes the telescope may andergo when directed on two different azimuths. This method was met first with some coolness, on account of the difficulty of Inding two stars which would culminate soon after one another at the same altitude. But M. Ziager has shown that even with a moderate telescope it is easy to have two stars casily found and pretty well seen at daylight which pass at the same altitude at an average of no more than nine minutes one after another. llis tables reuder the task of finding such stars very easy, there being in moderate latitudes no less than 160 pairs of stars appropriate to that purpose. As to the ease and accuracy of the method, it is sufficient to say that time is determined with a probable error of no more than $\mathrm{O}^{\prime} \mathrm{O} 4$ of a second in no more than balf an hour, without even making use of the divisions of the Kepsold circle, and with only one reading of the microscope. For several ycars Irof. Zinger's method has been submitted to a rery extensive test by Russian astronomers. So we learn from Gen. Koversky's analysis of it, published in the last "Annual Report " of the Geographical Soctety, that, when determining by means of light-signals the difference of longitudes between Pulkova and P'arlovsk, and using a very plain instrument prepared by M. Brauer on M. Zinger's principles, the difference has been determined with an error of only one-fiftieth of a recond. M. Pyertsoff; in Mongolia; Gen. Stebnitzky, in the

Caucasus, who considers the deterninations of time from corresponding lieights of two stars quite as accurate as that deduced from zenithal distances taken with a Repsold circke, but far shorter and casier; the Russian officers in Bulgaria, who have determined with telegraphic signals the longitudes of thirty-seven places in less than seventy evenings, spentling no more than thrce hours each evening for a determination which gave the longitude with an error of only 0.04 to 0'02 of a second; the measurements around Omsk in 1878 ; those of M. Gladysheff in the Transcaspian, and of M. Mionczyorski on the Ural in $1882-84$-all these have been made on the same nethod of Prof. Zinger, which has now becone the most familiar one with Russian astronomers. The measurements are usually made with a Repsold's circle, which is ready for work half an hour after the astronomer has arrived at the place whose longitude he proposes to cletermine ; and in chronometrical expeditions five minutes to a quarter of an hour of a bright sky give the jossibility of measuring the longitude with an accuracy quite sufficient for geographical purposes.

Tue additions to the Zoological Socicty's Gardens during the past week include a Macaque Monkey (Macazus cymomolgus 8) from India, presented by Mr. James Fleming; a Common Badger (A/cles hives), British, presented by Mr. C. Fthelstone Parke; a Wild Ass (Eyzuus taniopus 8) from the Island of Diego Garcia, Chagos Archipelago, presented by Mr, F. D. Lambert, jun. ; a Common Squirrel (Sciurns qullaris), British, presented by Mrs. G. A. Smith; four Red-faced Weaver Birds (Fivitia crythrops) from South Africa, a Grenadier Weaver Bird (Euplecles ory.x) from West Africa, presented by Mrs. Herman Kuline; a Dominican Kestrel (Tinnuncalus dominicensis), a - Bittern (Ardelfa -), three Martinican Doves (Zewaida martimiana), two Moustache Ground Doves (Gevtrygon mystacca), a Tuberculated Iguana (Igmana twierculata) from the West Indies, presented by Dr. A. P. Boon; two Harvest Mice (Mus minutus), British, presented by Mr. G. W. OIdfiekt ; two Demeraran Cock of the Kocks (Nupicola cnvia \& 8) from Demerara, presented by Mr. T. C. Edwards-Moss; two Mute Swans ($C j$ 'snus olor), British, presented by Mr. J. W. Gibson; a Horned Lizard (Phrynosomal cornwfum) from Texas, presented by Master C. A. Greeven; three Common Vipers (Vipera berws), British, presented by Mr. W. 1H. B. Pain; four White-faced Tree-Duchs (Dendrocysna ividusta), a White Gannet (Sula piscala) from Brazil, deposited; a Dark Green Snake (Zamenis a/rovircns), South European, purchased.

GEOGRA PHICAL NOTES

Tite following message from Col. Prjevalsky, dated Lob Nor, March 15 (probably O.S.), is published in the /nzu'ide Nusse:${ }^{4}$ During the last autumn and winter we visited Fastern Zaidam as tar as Lob Nor. The middle range of the Kuen Lun, hitherto unhnown, has been examined with sufficient care. The ancient route leading from Khoten to China has been found and thoroughly explored. We have also discovered three enormous snow peaks, to which we have given the names of Muscovite, Columbus, and Enigmatical. The most elevated joint of the first-named is Mount Kremlin, of the second Mount Djinri, and of the third the Crown of Monomachus, which are all of a higher elcration than 20,000 feet above the sea. The Thibetan plateau, skirting the middle Kuen I.un, has an average lieight of 4000 feet. No inhabitants were met with except in the Southern Zaidam. Further to the west the flora and fauna of the desert are extremely poor. In the month of December the cold was so intense that the mercury froze. We passed the month of February and the first fortaight of March at Lob Nor. We are just about to set out again, with the intention of crossing Cherchen, for the purpose of reaching Kiria, in the district of Khoten. During the three months of summer we shall traverse Northern Thibet, if the Chinese do not oppose us, and in the autuan we shall return to our own Turkestan. We are all in good health."

 notlowsin fores, ovantistote the lieat kives Lartuic fount af
 foums, tilhen losad no rocpm, boit appur in law theit copeenes

 -On the sigaiticinar of the muitir of the Alrath ley M Itwax

 cation, by sL do Kialle, of $\$ 1$ Mary's accousel wf a gravr,

 (U) Aterual, ly M. Guilart,-On is elochanis. oxe slitained an yon feet nlowe the tevel of helivel tu teling bo a eflalively servor urperentat

 matiastion, if II. Verrin, roperling the war
mina,

 pagherm.

 i. I Pat 4 coppurimen of the mperum theris

 confe jubbl wool, Ly V. A. Awathit

SOCIETIES AND ACADEMIES Reyal sosiety, lis

 Tme mation
(1) dionne

[^0]

 nuroth gho virbse. whocos in the ymakri, eywihnents in

 stoke of hetritigs the curve the ruintionl wealf st okvel

 wosist trote of Highming, and thore Des b.themel wwerd

 marked by the haryerft

vatma

Imperial Academy of Sciences, Manch 5. - L'nniriburtion 10 a kavelelje of Cuntoperrigate, by l louwe- On a ne

 lankrkuml is in 1

 curnit ot en nrogunt, ly y pan Fharr.
 atisablis. lit We

CONTENTS

The Britiah Maseum Cxtalogae ol Lannta The silver Lead Depostia of Nevadi

Letiers to the Editol

$$
\begin{aligned}
& \text { Nos inar G. B Eavikion. FR B }
\end{aligned}
$$

Svumaly in ichals.-J. C. Conteren

Cuangue A Io Mamasilla inte Inuth Mmern
Tail Kichard Ledehkst
Finul lawt
Finullywe De H A. Hagen

Sumai-Prod. j. p o'reilly
Ked |lail,-C. Evana
Red llaid,-C. Evana Henty Murhrai
The New Outburt of Henty Murnal Lava from Vesurzis is
H. J. Johnation Lavis Raperimenta with Coal Duas an Nienamane.
 The Pauna of Rurisa Central Aun 'Hy Rev D! Field Experimenta at Rothatnotid. it Prot Join
Wighrom Wrightsom
Resent Esplotations of the Panis
Notes
Onographleal Noten
Astronomicst Potnomena ler the Weta lills
May May ab 30
memt mid Re Marline Lation atary to ihe Deveiop
 Meizoralogical luatrumit. Fi.
8 Scuentific Jeriala
Soeletiet and Acasemion

Nルフヒハた
$x \times i$

Now Koady, Aledium Sto, Price 21s.
A TEXT-BOOK of PHARMACOLOGY, THERAPEUTICS, and MATERIA MEDIC By T. LAUDER BRUNTON, M.D., D.Sc., F.R.S.,
Fellow of the Royal College of Physicians ; Assistant Fhysician and Lecturer on Materia Medica at St. Bartholomem's Hro Examiner in Materia Medica in the University of London, in the Victoria University, and in the Royal College of Physicians, London; late Examiner in the University of Edinburgh.
ADAPTED TO THE UNITED STATES PHARMACOPGIA BY FRANCIS H. WILLIAMS, M. BOSTON, MASS.

BY THE SAME AUTHOR.
In the Press,
DISORDERS OF DIGESTION: THEIR CONSEQUENCES AND TREATMEY
This work contains, in addition to the Lettsomian Lectures, a number of other Papers by the Author on similar sulys: Demy 8vo.
MACMillaN \& CO., London.

5- IN. sticouric.

In Casks, 12 '6 per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts.*

- Bottles charked a^{\prime}. per doz, and allowed at the same rate if returned; but they musi be paid for with the ficer.

Neither sugar, succharum, nor any of the many new Brewing Materials are used in the manufacture of the "S. N." Stout; it is Brewed enlirely from she finest Mnll and Hops; it is, 1×0, more hopped than Stout is generally; therefore, besides being very nutritious, it is an excellent Tonic and particulariy suited for invalids, ladies nursing, or anyone requing a grodd strengthening beverage. It is a "Sound Nutritious" Tonic. and very much recomumended by Medical men,

WALTEAMEROTRERE,

THE "HALFGUINEA" ALE BREWERY, LONDON. S.W.

WALL PAPERS FREE FROM ARSENIC.

william woollams \& CO., Manufacturing Paper Stainers, ARE The ORIGNAL MAKERS OF
artistic Wall papers, Gaaranteed Free from Arsonic. Sole Address-ifo, HIGH STREET, MANCHESTER SQUARE, LONDON, W.

WOODHOUSE \& RAWSON

SUPPLIERS OF ALL ELECTRICAL APPLIANCES,

Oppices-1t, Queen Victoria Street, E.C.
Lamps. Dynamos. Accumulators. Safety Junctions.

Works-Cadby Hall, Hammersmita roan

Carbons.
Wire. Instruments.

Battery Suppliea
Telephone Supplies Electric Bells. inquiries invited.

The CHEMISTRY of the SECONDARY
BATTERIES of PLANTK and FAURE. By J. H. GLADSTONE.
Ph.D., F.R.S., and ALFRED TRIBE, F.Inst.C., Lecturer on Che: miatry at Dulwieh College. Crown 8vo. 2f. ©d
macmillan * Co., Inndon.
WANTED.-"NATURE," No. 56.-Apply
Nature Office, zg, Bedford Street, Strand, W.C.

On the rst of every Month.
JOURNAL OF BOTANY, BRITISH AND FOREIGN.
Edited by Janers Baitten, F.L.S., Brith Murnab.
 Notices of Books and Memoirs.-Articles in Jourals, - Bowne Proceedines of Societies.

Price 1: 3d. Subscription for One Year, payable is a drases ic 10 London: WEST. NEWMAN, \& CO., 54. Haston Gadit

Messrs. MACMILLAN \& C0.'S NEW B00KS.

$$
\begin{aligned}
& \text { TEXTBOOK OF GEOLOGY. } \\
& \text { archibald geikie, f.r.s. } \\
& \text { Director-Gcneral of the Geological Survery of the United Kingdom. } \\
& \text { With numerous Illustrations. Second Edition, thoroughly Revised. Medium 8vo. } \\
& \text { CLASS BOOK OF GEOLOGY. } \\
& \text { FOR The USEOF COLLEGES AND SCHOOLS. } \\
& { }^{\mathrm{sv}} \\
& \text { ARCHIBALD GEIKIE, F.R.S., } \\
& \text { Diretor-General of the Geological Survery of the United Kingdom. } \\
& \text { Fcap. 8vo. } \\
& \text { BY THE SAME AUTHOR, } \\
& \text { PRIMER OF GEOLOGY. } \\
& \text { With numerous Illustrations. New and thoroughly Revised Edition. 18mo. is. (Science Primers). }
\end{aligned}
$$

PRIMER OF PHYSICAL GEOGRAPHY. With numerous Illustrations. New and thoroughly Revised Edition. With Questions, 18mo. is. (Science Primers).

NEW VOLUME OF THE GOLDEN TREASURY SERIES.
LYRICAL PoEmS. By Alfred, Lord Tennyson. Selected and Annotated by Francts Turner Palgirave, 18 mo . 4 s. $6 d$. NEW BOOK BY EDWIN ABBOTT, D.D.
FRANCIS BACON : an Account of His Life and Works. By Edwin A. ABBOTT, D.D., Author of "Bacon and Essex," Editor of Bacon's "Essays;" formerly Fellow of St. John's College, Cambridge. Demy 8vo. 14s.
CARLYLE, PERSONALLY AND IN HIS WRITINGS. Two Lectures. By DAVID MASSON, M.A., LL.D., Professor of Rhetoric and English Literature in the University of Edinhurgh. Extra Fcap. 8vo. 2s. 6\%
LECTURES ON SOME RECENT ADVANCES IN PHYSICAL SCIENCE, With a Special Lecture on Force. By P. G. TAIT, M.A., Formerly Fellow of St. Peter's College, Cambridge, Professor of Natural Philosophy in the University of Fidinburgh. Third Edition, Revised. Crown 8vo. 9s.
FORENSIC FACTS AND FALLACIES : A Popular Consideration of some Legal Points and Principles. By SYIDNEY E, WILLIAMS, Barrister-at-Law. Globe 8vo. 45.61.
LESSONS IN ELEMENTARY PHYSIOLOGY. By THomas H. HUXLEY, LL. D., P.R.S. Revised Fdition. Fcap. 8vo. 4s. 6 d .
SUPPLEMENT TO EUCLID AND HIS MODERN RIVALS. By CHARLES L. DODGSON, M.A., Student and Jate Mathematical Lecturer of Christ Church, Oxfort. Containing a notice of Henrici's Geometry, together with Selections from the Reviews. Crown 8vo, Sewed. is.

THE ENGLISH CITIZEN SERIES.
 Edited by henry craik, m.a. (Oxon), ll.d. (Glasgow). New Volume, JUSTICE AND POLICE. By F. W. Maitland. Crown 8vo. 3s. Gd.

DICKENS'S DICTIONARIES, 1885 . New Volumes, $18 \mathrm{mo}, 18$, each, paper covers; or together, in cloth, 2 s .6 d.

UNIVERSITY OF OXFORD. | UNIVERSITY OF CAMBRIDGE. In 18mo, paper covers, is. ; cloth, is. 6.l. cach.
LONDON. PARIS.

THE THAMES.
DICKENS'S CONTINENTAL ABC RAILWAY GUIDE,
Published on the 1st of each Month. I8ino, is.
MACMILLAN AND CO., LONDON.

OBJECTS FOR

THE MICRO

2. d.

Yungua of Favus, Achorion Schōaleinii Liver Spota (Chloamma) Mycronporon furfur Acarus of Itch, Male and Female

Do. Do, Efg and Ïarvatom on one Slide
Section through Finger and Nail of Stonkey
Six Stides to illustrate the anatomy of the Buater Prawn, including
Eyes and Rovtrum, Squama, Antennules, Tail Plates, Ambulatory Feet and S wimmserets, a most valuable Set

Eggs of Hoase Fly Ech
 Section of Spine of Echinus
 Section of Brighton Chalk-Shells and Organic Remains ia airm Ringworm of the Head, showing its effect on the hair

Human Flea, Pulex irritanh, Maje find Fimale on ooe Slide -
Anatomy of a Leaf, 9 pieces ou oos Slide .
sexamples of Blood on ooe slide, from Man, Bird, Fish, Sinake, \&s Fros Indian Monquito
the Koyal Society, Price 6234, or, complete with Coil and Batter the Koyal Society, Prics $6 \mathrm{a} 3 \mathrm{SH}_{4}$ or, complete with Coil and Battery, LJ tor.
WATSON \& SONS' \&-inch Homogeneous Immersion Ubjective, C 5 sy . "- This Glass is unsurpaswed at the price
NEW CLASSIFIED LIST of OHJECTS, including the recently acquired Stock of Mr. E. Whester, late of HollowayILLUSTRATED CATALOGUE OF MICROSCOPES AND APPARATUS.

Either of the above sent post free to any part of the world, on application to
W. WATSON \& SONS, opticians to her mayesty's government, 313, HIGH HOLBORN, LONDON, W.C. Established 18

THE "EXCELSIOR"
 THE NEW PATEN
 WOVEN WIRE MATTRESS.

PATENT SPRING MATTRESS. AWARDS:

PrizeMedals,
Fourteen
Certificates
of Merit
The
The principle of arrangement permits the free movement "Excelslor' of one sleeper without inconvenience to the other, admits of complete lsolation of each, and effectwally prevents teprestion in the senfre.
THE "EXCELSIOR"\& "MATLOCK" COUCHES. Retailfrom Cabinet Makers, Upholsterers, ac.

CHORLTON \& DUGDALE, MANCHESTER.

ARMSTRONG

BRACES.

IELASTIC, WITHOUT INDIA-RUBBER.
PATENT SPIRAL SPRING.
SOLD BY ALL HOSIERS AND DRAPERS.

 CONSUMPTION of GAS guaranteed to be 25 to 75% less than ANX other Gas Engine per brake horse-power.

CROSSLEY'S PATENT TWIN ENGINESImpulse every Revolution. The steadlest running Gas Englne yet made. CROSSLEY'S PATENT SELP.STARTERThe Safest, Simplest, and Best. CROSBLEY'S NEW VERTICAL ENGINESRequiting little Ground Space.
cossley'e'YahnossLEY BROS., Limited, Manchester.
ondon: 34, Poultry, E.C. Qlasgow : gs, Union Street.

OVER 15,000 DELIVERED.

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
" To the solid ground
Of Nature trwsts the mind which bwilds for aye "-Wordsworth
No. 813, VoL. 32]
THURSDAY, MAY 28, 1885
[Price Sixpence

AMATEUR PHOTOGRAPHY.

MAXESONT \& ESNAN,
MANUFACTURERS OF PHOTOGRAPHIC DRY plates, Collodions, varnishes, and chemicals,

Have REMOVED their London Store From Watling street,

 To3I, FARRINGDON STREET, (Adjoining Marcus Ward, \& CO.)

```
HEAD OFFICE:-
```

MOSLEY STREET, NEWCASTLE-ON-TYNE.
MEMORY and SUCCESS.-What contributes to success : A good memory - What causes failure in life? A poor memory. - What can all othain from Prof, Loisette's DIS. COVER FORG goo memory-THE PHYSIOLOGICAL ART OF NEVER FORGETTING-using none of the "Liaks," "Pegs," "Lealities," or "Associations" of Mnemonics. Lost memories re.
stored -the worst made good, and the best better. Any dook learne in in stored - the worst made good, and the best better. Any dook canmed in RICHARD A. PROCTOR, DT. ANDREW WILSON, and others who have studied the System. A Day Class in Never Forgetting and for Cure of Mind.Wandering commences every Monday at 3p.m. An Evening Class every Tuesday at $8 \mathrm{p} . \mathrm{m}$. Leecures in Families of the Nobility; also taught thoroughly by POST. Prof. LOISETTE, 37, New Oxpord Street (opposite Mudie'u W.C.

THE MASON SCIENCE COLLEGE,

BIRMINGHAM.

APPOINTMENT OF PROFESSOR OF MINING.
The Council invite Applications, on or before JUNE 24 next, for the above appointment, which is now vacant.
By a Resolution of the Council, Candidates are especially requested to abstain from canvassing.
Information as to the Terus and Conditions of the Appointment will be forwarded on application to

GEORGE H. MORLEY, Secretary.

[^1]
THE BEST BINOCULAR MADE IS

 BROWNING'S PANERGETIC.

The superior performance of this celebrated Binocular is acknowledged. This year its optical magnifying power has been increased, and the price has been reduced from $\chi_{4} 10$ s. to $\mathscr{L} 310$.
An Illustrated Descriplive List of Binoculars sent free.
TOIEN EIROTMNING, 63, STRAND, LONDON, W.C.
NEGRETTI AND ZAMBRA,
SOLE MANERS OF
JORDAN'S (PATENT) SUNSHINE RECORDER.

こここOGICAL SOCIETY OF LONDON．
DAITS LECTURES， 1885.
A ten．iLecturss upon Zoological Subjects will be given in the Lecture． R a o the irietv＇，liardens，in the Regent＇s Park，on Titt kspavs at Fire p．m．cummencing June 4 ．

Lい：2 Sunject
1．Thundsy，June 4 ．．．Rhinoceroses and their）Prof．FLOWFR，I．L．D． h．atinct Allies ．．．．．．．．．$\}$ V．P．R．S．
2 ．．．． 11 ．．．Aper and Lemurs ．．．．．．Dr Sr．Givo Mtvakt，
3．＂\quad t 8 ．．The Siructure of the Swan Prof，Wi，K Parker，
4．＂＂ 25 ．．．The Domentic Cat ．．．．．．J．F．HARTIVC，Fsif．，
5．\quad July 2 ．．．Recent ，Idvancen in Zoology Prof．F．JEVFREY 5．．＂．． 9 ．．．The Ancestors of Birds－5 f．Hinuluses．Esi4．，

 to wher b aton to the liandens．
\＆．．，\Rightarrow ）ievary．
UNIVERSITY COLLEGV，ErISTOL．

 Yr．tk woll be aunantet： of＇he jUV：HAIKI

＂ryer further informati．
A．1．1サない上 slokK，Rekimar．

ROYAL GK＇JGKAPHICAL SOCIETY．

 and Senatr）in the Hall in ．．．．＇．．．．．．．．．1y if（onthom．Ilurlington tiardens，
 Preaslemt，in the than：

 Juirea

TUATERA LIZARDS！！！

 （ill．IV）．

FOR THIG STUDY OF COMPARATIVE ANATOMY．

LIVING SPECIMENS FOR THE MICROSCOPE

GOLD MEDALawarded at the FISHERIES EXHIBITION ta THOMAS BOLTON，s\％．NEWHALL STREET，HIRMINCHAM who has last week seet to his subscribers Paludicella Ehresterth＊ drawing and decription He has also went out byncoryme frur－ Lophopers erystaistus，siephanoceros tichormii，Melicerta，nngens chilus volvov．Aspianchna prodonea，Hjdatina wenta，Volvox \dot{F} Spiroivta；a：so Amsba．Vorticella，Hydra，Crayfish，and other Spocic for（Huxley and Martia＇s）Buological Laboratory work． supplyigg．

Specimen Tabe，One Shilling，post free．

 or Toreled Twier for ior．6d．
Portfolio of Drawings，Ten Parts，15，ench．
G．CALVER has received HIGHES： AW：ARD for＂Fiscellence and Improvements＂in Reflecting Teiesc：$>$ evhibited at the International Exhibition，London－Lescriptive u $^{\text {－}}$ logues，twelve seamps．

G．CALYER，F．R．A．S．，Widford，Chelmsford．
EDWARD WARD has pleasure in ar－ nouncin？the issue of a new Micro－Slide of Zouphyte，with vease out，in the special manner so well hnown to his mumerous patrian
 Al so，quite new ：－
Gorgonia verrucosa（polype stained）
Podalirus typicus（Spectre Shrimp）
EDWARD WARD， 24% ，ONFORD SIKEET，MAN＇CHESTFえ
LANTERN READINGS．－DISSOLVING VIEWS．
The New quadruplicon．
New Season， 183_{4} and 183 s －－Pupular Subjects for this Season． The Channel Islands－The War in the Soudan－The River Thamer Devonshire Scenery－Hereford and the River Wye－The English Las London Puor and How They live－Figypt and the Nile Eapedince－s？ way－The Iifeboat－The Signal Ilox－The Maids of Lee－Foor is Way－The Lifeboat－The bignal Box
Trousers－Shadowy on the Blinds，\＆c． The largent，and newest Stock of Lanterns and Slides，Scientific a General，on Hire and Sale in this country at the Lowest Prices．

E．MARSHALL，78，Queen Vietoria Street，Londen，E．C．
INTERNATIONAL HEALTH EXHIBITION． division－Education．

A PRIZE MEDAL AWARDED TO THOMAS D．RUSSELL，

78，Newgate street，london，e．C．，
For Geological Collections for Science Teaching．
Catalogwes Post frec．

MINERALOGY AND GEOLOGY．

Mr．IIFNSON＇S Latest Arrivalsare：－
Very Fine DOUIIV．VERMINATED CRYSTALS of zIRCol

 K：IIIIS，CHAICOSIDERITE，and NATIVE．COPPER，ist
wall IhliSHFII JAlt：and GREFN AVENTURINE．GROt？ woll ；PhliSHFIt JAHE and GREFN AVENTURINE GROL？ ant SNN：AR CRVSTALS of STIBNITE，Japan：＂SHERR
A laige Series o，KUCKS，also MICROSCOPIC SECTIONS eftb

dish on Application Hammers，Chisels，and Hammer Straps PRIVATE LESSONS AND EVENING CLASSES．
nl．dWHIPE CASES AND APPARATUS．Catalogues free
SAMUEL HENSON， 277，STRAND，I．ONDON．

Opposite Norfolk Street．

SCIENCE AND ART DEPARTMENT

Ti＇ Hit $H H N E$ ANH API＇AKATLS FOR TEACHING GEOLCO
 Asy ilimathete lo ter lie mado supplied by

THOMAS J．DOWNING．
Gowisist，Suc．
to WHIMKIN TTKEET，LONDON，E．C．（over Quarter of a Centy

Now Ready, Price 5 s.

THE JOURNAL OF THE ANTHROPO 1.OGICAI INSTITI TE OF GREAT BRITAIN \& IRELAND, Vol. XIV., Part 4, May, 1885 . contains:-A Aniversary Address by the President, Prof. Flower, on the Classification of the Varieties of the Human Species, and Papers by Sir John Lubbock, Bart, A. W. Howitt, Oldfield Thumas, and A. I. P. Cameron. Anthropological Miscellapea, Title-Page and Index to Vol. Xiv.

London: TRËBNER \& CO., Ludgate Hill.

THE ENTOMOLOGIST'S MONTHLY MAGAZINE.

Price Sixpence, Monthly, 24 pagee 8 vo, with occasional Illustrations. Coducted by C. G. Bakrift. . W. Douglas, R. McLachlan, F.R.S. E. Saundere, F.l.S., and II. T. Stainton, F.r.S.

This Magarine, commenced in $2 \%_{4}$, contains standard articles and note, on all subjects coanected with Entomology, and especially on the Insects of the British Isles.

Subscriplion-Six Shillings per Volume, post frce. The volumes commence with the June number in each year.
Vols. I. to VI. (strongly bound in cloth) may be obeained by purchasers of the edtire set to date, al the increased price of ios each; the succeeding vols. may be had separately or together, at 75 . each.

London: JOHN VAN VOORSI, i, Paternonter Row.
r N.B.-Communicationy, \&ce., sbould be sent to the Editors at the above address.

On the 1 st of every Month, price Sixpence.

THE ENTOMOLOGIST:

 an illustrated journal of british entomology. Elited by Join T. Carrington,With the A sistance of
Frempick Rond, Fiz.S. Jonn A. Powfr, M.D.
Edward A. Fitch, F.i.S. J. Jenner Wetr, F.L.S.
F. Buchanan Whitr, M.D.

Contains Aruicles by well-known Entomologists on all Branches of the Science ; on Insects injurious or beneficial to Farn or Garden; Notes or Habits, Life.Histories; occurrence of Rarities, \&c.; tbere are Monthly Lists of Duplicates and Desiderata,
Numerons Wonlicut ILlustantions, to the printing of which especial altention fs given, and occasional Litrographed and Cнromo-Letregraried Plates.

SIMPKIN, MARSHALL, \& CO., Stationeri' Hall Court.

THE BREWERS' GUARDIAN :

A Fortaightly Paper devoted to the Protection of Brewers' Interests, Licensing, Legal, and Parliamentary Matters.
Review of the Malt and Hop Tradils; and Winieand Stieit Trade Recond.
The Organ of the Country Drewers.
"The Brewers' Guardian " is published on the evenings of every alteraate Tresday, and is the only journal officinlly conrected with brewng interests. Subscription, 16s. 6d. per annum, post free, dating from anyquarter-day, Single Copies, 18. eacb. Registered for transmission abriad.

Offces-5. Bond Court, Walbrook, London, E.C.

On the 1 si of every Month.

JOURNAL OF BOTANY,

BRITISH AND FOREIGN.

Edited by Jamms Britten, F.L.S., British Maseum.
Contemts:-Original Articles by leading Botanlets.-Extracts, and Notices of Books and Memoirs.-Articles in Journaln-Botanical NewsProceedines of Societies.

Price is 3d. Subscription lor One Year, payable inadvance, ist. London: WEST, NEWMAN, \& CO., 54, Hatton Garden, E.C.

LA SEMAINE FRANÇAISE: a Weekly Newnpaper and Review in the French Language. Pollices, Literalure, Science. Art. Varieties, Notes. Price ad., through Booksellers, and at the Railway Bookstalls. Office, 44 2, Strand, W.C.
LA SEMAINE FRANÇAISE: Journal Français pour 1'Angleterre: Politique, Litterature, Sciences, Arts, Varietes, Nouvelles, et Notea Un exemplaire par la poste, afd., en timbres poste. Abonnement franeo par la poste-un an, sof. rod. $;$ six mois, 5f. 5d. Prix ad. ches tous les hibraires et aun gares des chemins de fer. On s'abonne aux bureaux, 44, Strand, Londres, W.C.
LA SEmAINE FRANÇAISE.-"'La Semaine Francples' has been brooght out in London for the beneff of thoie Eng listh coader who may wish 10 study contemprary. French from all points, of view, instead of confining their reading to one particular Gallie priat. If certainly merits success."-Graphic.
SCOTTIS三 ミ三ー・IT T

At the が－い
the

$$
\text { -uis } \rightarrow \quad \operatorname{iox}=v=\frac{1}{\square}=
$$

\cdots 1

MACM:ニンANG

THURSDAY, MAY 28,1885

PRACTICAL INSTRUCTION IN BOTANY

\& Course of Pratical Instruction in Botany. By F. O. Bower, M.A., F.L..S., Lecturer on Botany at the Normal School of Science, South Kensington, and Sidney H. Vines, M.A., D.Sc., F.L.S., Fellow and Lecturer of Christ's College, Cambridge, and Reader in Botany in the University; with a Preface by W. T. Thiselton Dyer, M.A., C.M.G., F.R.S., F.L.S., Assistant Director of the Royal Gardens, Kew Part I. PhanerogamaPteridophyta. (London: Macmillan and Co., 1885.)

I^{T}T is with more than ordinary satisfaction that we welcome this volume. Apart altogether from consideration of its imrinsic excellency, its appearance is gratifying as a first product of the younger school of botanists in this country-a school which for some years past has been doing good work in oral teaching, though up till now it has not contributed to teaching literatureand it is time that its methods were put in a more permanent form and made more generally accessible. The inconsistencies and inaccuracies characterising, with few exceptions, our endemic botanical text-books and our dependence for reasonably safe handbooks with information up to date upon translated works, mostly of German authors, are a reproach for which every botanist would gladly see the cause removed. At last we have a prospect of this, and the volume now before us is an instalment of a work which will in great part do so. The names of Thiselton Dyer, Bower, and Vines on the title-page are a guarantee of its thoroughness and accuracy, and the book certainly bears out their reputation.

The book took origin, as Mr. Thiselton Dyer informs us in the preface, in the work initiated by him at South Kensington in 1873. It is no small merit to have started at that time a system of instruction which embraced the examination by every student of the leading morphological facts of every important type in the vegetable kingdom. And this programme, which Mr. Thiselton Dyer set himself and successfully carried out, has not only eventuated in what, with him, we hope will be per-manent-the institution, in what is now the Normal School of Science, at South Kensington, of a lectureship on botany, but also, in what concerns us here-this volume.
"I had always," says Mr. Thiselton Dyer, "hoped to put together the results of the experience in teaching methods acquired at South Kensington in the form of a handbook, which should save teachers who wished to follow our example from much of the trouble and difficulty which 1, and those who at different times have taught in this way, have had to face. But, in the meanwhile, I had been drawn off to administrative duties which left a steadily decreasing leisure for purely scientific work. Fortunately, my friend Mr. Bower was willing -and with far greater competence-to take up the task which I was unable to perform, and to him are entirely due the laboratory instructions for studying the different types selected. Dr. Vines has very kindly supplied the chapters on methods and on the morphology of the cell. But besides
this he has at every step given the assistance of his own extensive experience in practical teaching." With this book before us we can understand the motive of success of the South Kersington course, for it is the most thorough introduction to the practical study of plant morphology which has yet appeared ; the only book to be mentioned along with it is the recently published "Practicum" of Strasburger-(of which of course the inevitable translation is promised)-and that is laid down on somewhat different lines.

In the first chapter Dr. Vines gives an excellent account of muethods and reagents, delightful in the clearness and conciscness of its language and bearing throughout evidence of the hand of one who is no mere compiler of instruction but who has himself tested and had experience of all that is explained. The manner of setting to work, of inaking preparation, of making cultures, of preparing reagents, is all set forth in such a way that any intelligent tyro may readily equip himself and do good work. And we must congratulate. Dr. Vines on the wise selection of methods and reagents he lias made for notice, and on their arrangement. The multiplicity of new methodsmany with but questionable advantage to recommend them-and their technicalities even in connection with botanical work is, at the present time, somewhat appalling and it is satisfactory to have these sifted by so competent an authority.

Dr. Vines's second chapter, on the Structure and Properties of the Cell, is a very prominent and commendable feature in the book, and will prove an extremely valuable one to all practical students-the micro-chemical portion of it especially, which gives in summarised and terse form the fundamental reactions exhibited by the various elements in the plant body, which are the basis of all further laboratory work. The student finds here at once a guide for testing the dictums of the earlier chapter as well as a graphic code for reference in his future studies. A synoptical arrangement such as this, and so happily worked out, has not been attempted in any previous book.
Mr. Bower's more especial work, the morphology of the various types dealt with, is no less excellent. The examples selected for illustration appear to us particularly well chosen, being readily obtainable in any locality, and their characteristics, macroscopic and microscopic, are explained with precision and in great detail. We shall not dwell at any length upon illustration of the admirable character of this part of the book, but in evidence of its completeness will refer to the section on the vegetative organs of Dicotyledons. Sunflower is selected as the chief type for examination, and we have first of all a brief description of the enibryo and germination ; then its stem in the mature and young condition are gone over, macroscopically and microscopically; but as it shows only the herbaceous type, the arboreous type as seen in Elm is explained, and further, the aquatic type, as in Mare's tail. Sections are next added on the stem of Cucumber and Lime-tree with a view to special illustration of the sieve-tube elements, and upon Dandefion and Spurge for laticiferous elements. In like manner the leaf is treated of, to that of Sunflower, which is the chief type, descriptions of Cherry-luurel and Stonebeing appended. Again, in the case of the root, S runner as well as Sunflower is described. Beside:

E
:- . . . venconed, which are dealt with in detait, -:- "-: -r mones wre made to other examples in which $\because . \quad$: \quad r iurther illustration of special features may - …and Smbar thoroughness runs through the sce..ets if all the types.
E.m- one perusing the volume must be impressed Wreh the high standard of its educational value. Enchar ind otudent in this country are allike to be conscatalaterif upon its publication. The former has now a thurwesinfy trustworthy laboratory guide to place in the handw of pupils, and the latter has a handbonk in h:s own lanzuage to which he can refer with confindonce in bis search after a sound knowledge of plant marph. 'vge.
This is only the first part of the work, and deani; a. is Phanerngams and Pteridophytes. May the $4 ; \cdots+\cdots, n$
 oritiral intention of the authors " to prefarestied : : - . .ns for the study of each type with a shors arroctin . . . of its ealient morphologiral facts" has not been carried a a: in this part; Mr. Thiselton Dier aiters in the profare the reason for its postponemant. Wie vre con- :- erd thast

 such a givie, ard or are zreaty mi wism of * aire: in
 cour 'r",

polvas benog burten. Tiuer are …pariuss ise izt esaping if m their muntis, is in Gora.i.amp The atie new fenus. © sunneria, is founded in a risument or a s:-ge specimen, but it is charactersen! by ie presence $\begin{aligned} \text { if } \\ \text { it }\end{aligned}$ immense quantety of spucules on the bodies of the poivpr ther-*Anactes, and the satrosema. whichlarter forma regiar caicaients crize on the wals of the cells: te

 ti.s respect 1iunner:a appmaches the Gorgnothe: Iet 1s. netarthe:esq. a tote Panaazitit.

The main featare of the memwir 5. bi-xerer. *se $=-$

 Prist horise en it:e 5 e ciuts 1 品

 spar men ublunec was docuzed at m a dezth of \cdots

 on the Late two plates, of aciual sae, coloused and anendioned. The bunch of polyps occupes anth :-", treath ararty the prise lensth of the follon fiate. The ziatesare Gar the firme regtesertatinn of triveluia yet pC sbec

 cairic !ise part of the rachis, and spread tilenseis:wheriort; neer the rachis generaily. The somds $\alpha^{*} e$ do soben as haung each a single protusible tentacle, the "r.- ire when not retracted looking like a penient papi:'s I A.en trioneles sometimes, but not always, bear shots "+-al pinn les, whech are hullow, their cavies comir. \because - "ifre w 'h throse of the tentacles, a2d wh:ch can b: Nrarell x, h them. Küliker. in his azcosent of tbe 'hollonger I'rntatilita, described similat zwor's eact
 ar, A \%. Copponteri, and in the latter spectes found tbe t.: fir tritarles bratohed. He fisures them, but only on a very, thall wale. On looking at the figarcs here given cof therer escands (Tils. X., Figs. 56, 57) it is very difficuit "O 'rithrathen them structure: the position of the mou:h If ri,t thown in any one, and they are drawn as elongate A. A A.t k like in form when expanded, squat and rounded oheri retraterl. The tentacle seems when protruded tw 1, a A Arert mitrow pratongation of the entire borly of the "wnt, atul it apprats as if on retraction this prolongation *rta tolesiperl into the basal region of the berdy. Tbe 1,1.e of the sumple tentar le should abut on one sid: of the month, the no whoth mouthopening is figured. In the Aritrain'l virw of a zonid (Fig. 57) the mouth is neither selontely whental nor referred to in the desoription. the te at is nen at all flear on the point.

The polyps bear the gonads, and are apparently viviparous. Very interesting conclusions are arrived at by the authors by comparison of the various stages at their disposal as to the mode of growth and successive additions of fresh polyps to the colony around the terminal primary polyp, and these are at variance with those of Lindahl. A couple of lateral polyps appear on each side of the terminal polyp, then another pair of laterals are formed, and the rachis expands in breadth. The centrodorsal polyp is formed, and then the dorso-lateral are developed, whilst the lateral polyps become more numerous.
H. N, Moseley

OUR BOOK SHELF

A Flora of the Eng/ish Lake Listrict. By J. G. Baker, F.R.S., F.L.s. (London: George Bell and Sons, Vork Street, Covent Garden, 1885.)
Ir is perhaps surprising that a "Flora" of the Lake district has not before been issued, considering the large number of botanists who have yearly rambled over its fells and dales. It has been left to Mr. J. G. Baker to do so, and with modesty he says "it does not seem likely at present to stand in the way of anything more complete." The limits of the "Flora" cmbrace parts of Cumberland, Westmorelind, and the whole of what is botanically called Lake Lancashire ; but excludes "the northern half of Cumberland and the western slope of the Pennine Chain, through Cumberland and Westmoreland;" the exact boundaries are, however, not very clearly defined

One cannot lielp feeling, directly the book is opened, that it is the work of one used to generalise and deal with facts in a broad way: in no part more so than in the first fourteen pages, where, accepting Mr. H. C. Watson's definitions, he describes the distributive types, zones of altitude, temperature, \&c., with a clearness coming of long and practical acquaintance with the subject, giving comparative tables of the types, \&c., with those of Northern Yorkshire, Northumberland and Durhain, and Britain, and making the Lake Flora about goo species. It should, however, be remembered that this number is based on Mr. H. C. Watson's estimate of 1425 species for Britain as a whole.
Had that estimate to be made nowi by Mr. Watson, the result would probably be the accepting of a larger number, not alone by the discosery of species since made, but by a decided feeling on his part "that there were some species that would eventually have to be divided." It may well be asked $z w h y$ is there this comparatively large amount of difference demanded among our native plants to constitute a "species," and the little often accepted among newly-discovered "species" from distant countries; doubtless knowledge is progressive in the latter case, but still theories and generalisations are built up on them with as much apparent certainty as on floras long known and studied. Mr. Baker then enumerates the species constituting the fora, running up to 234 pages, numbering them according to the sixth edition of the " London Catalngue," showing also (but not numbering) the large number of doubtful plants that have at various times been reported from the district.

Perlaps the most striking fact brought out by this "Flora" is the scarcity of aquatic species compared with the numerous lakes and tarns, of which there must be between sixty and seventy, large and stuali. Whether in this particular district this is from the want of investigation, or from a real paucity of species or specimens, is difficult to say ; but certainly our lakes and waters have not been sufficiently systematically searched, whether from the botanical, zoological, or chemical point of view. In this we should do well to emulate the Swedish naturalists; but in our
case it may well be asked, "Where are we to look for liclp?"

How little we know of the life-histories of our aquatic plants! and it may well be suggested as a study for those hotanists, who, while not being able to take up botany in the way so ably advocated lately by Prof. Bower in Nature, still have some leisure from other occupations and duties, and could really advance the knowledge of our flora beyond mere collecting. It is only necessary to turn over the plates of Dr. T. Irmisch's work on them to understand what is meant and required.

Ar, B.
The Fallacy of the Prisent Theory of Sound. By Henry A. Mott, jun., Ph.D., E. M., \&c., Professor of Chemistry and Physics in the New York Medical College and Hospital for Women; Author of "The Chemist's Manual," "Was Man Created?" "Adulteration of Milk," "Testing the Value of Rifles by Firing under Water," "The Laws of Nature," "The Air We Breathe and Ventilations," \&c. 12mo, (New York: I'rinted for the Author, 1885.)
THIS is a very curious book. Its author appends to his name recognised scientific titles, and scems to hold a responsible position as a teacher; but he has been led into a loopeless and inextricable mudite about wavemotion ; and, starting with a misconception, he naturally obtains results so utterly at variance with common sense and experience, that it is remarkable he cannot see his error.

He begins by admitting that "to attack a theory which has been upheld for 2500 years, and which has been and is sustained by the greatest living scientists, is certainly a very bold undertaking." But he feels bound, nevertheless, "to come to the front and join Dr. A. Wilford Hall in exposing the fallacy." He fulminates, moreover, the following withering defiance at false prophets: "If Profs. Helmholtz, Tyndall, Lord Rayleigh, Sir William Thomson in Europe, and Profs. Rood and Mayer in this country, wish to retain the respect and confidence of thinking people, they will at once endeavour either to defend the theory of sound, or, like men, come boldly to the front and acknowledge that it is fallacious."

There can be no doubt that these various noblemen and gentlemen will at once proceed to adopt humbly the latter and safer alternative ; because it is obvious that if they do not do 50 speedily, creation and nature will come to a premature end. This rather serious occurrence is thus predicted: "The lowest tone of an organ is stated by Prof. Blaserna to have sixteen vibrations to the second, and a consequent wave-length of 70 feet. It thus follows, says Dr. Hatl, that in the sound of such an organ-pipe the air-particles (as a whole) are obliged to travel 35 feet and back sixteen times each second in order to pass from the space occupied by the centre of rarefaction to the centre of condensation and back. They would thus move with a velocity in one direction of 5 fo feet a second, or at the rate of 3^{81} miles an hour, which would produce a tornado of more than doubie the velocity necessary to sweep a village into ruins. If there was the least truth in the wave-theory, the sound of a church-organ should get up a cyclone which would blow a cathedral into atoms."

This is truly very horrible ! far worse than dynamite. Sadlened by these retlections, we can bear with comparative equanimity the revelation that "the prong of a tuning-fork moves at the rate of only about one inch in four years," and "instead of swiftly advancing, as Tyndall says, sounds audibly when moving more than $2 j, 000$ times slower than the hour hand of a family clock, and more than $300,000,000$ times slower than any clock-pendulum ever constructed, instead of very much faster, as Helmholtz teaches."

One more quotation is irresistible: "Imagine," sav our author, who seems to have recovered wonderfully " the terrestrial cataclysin which he and the evi'

$\xrightarrow{-2}$
$=0$
$3=2$
ite different notation is employed-is simply infuriating! I ould urge upon Prof. Pearson that he has now an unrivalled Pportunity of fixing in the language of English (and perhapos reign) mathematicians a really serviceable and significant stem of notation.
The double-suffix notation for strain and stress, which is deveped to perfection in St. Venant's French translation of Clebsch, is many advantages, but seems to be too cumbrous for English ste. Nothing perhays could be more unmeaning than Thomwon ad Tait's notation for "stresses," independent as it is of all =ference to the strain-symbols. Still 1 must confess (in common, dare say, with most men who have derived their first inspiraons from that mathematical epic) that it has secured tox, firm a lace in my mental machinery to be lightly eat out, even in avour of a better.
Cambridge, May 12

The Colours of Arctic and Alpin: Animals

Mr. R. Meldola has maineained, in Nature vol. xasi. P. 505, the idea that the white colour of wome animals, Arctic mammals and birds, must be ascribed to the aboortent and radiating power of the same colorations in relation to the rays of the sun. He maintains also that to a similar cause we owe the seasonal polychromism of several mammals and birds of the Alps, and what would be for these animals a partial return to the characters of the Giacial epoch.

By an analogous theory the author explains the contrary phenomenon that is observed in many insects-that is, the darkening of the coloration, and he speaks principally on this point of the Lepidoptera.
Now I beg to make the following olservations, and to indicate the following facts:-
(1) That a seasonal mutation of echour is ofnervable in many mamals, now more, now lets distinctly, and gerecrally it concars with the change of crat. Alse not seldorn in mammals strictily belonging to the Alper, as, for example, in the Rupicatra muropas, and in the Capra ibex, the coloar changes very little in the summer and in the winter, aithough the length, the thickress, and also the coarieness of the hatro were very different. In ocher cases, ac, for example, in the Cerows mandarimur, ${ }^{1}$ the coat is, in summer, light redlish yellow, with many round white spots, while in winter it is dark brown, and the round spots are less numerous and are light brown.
(2) As to the insects, it is observel that in Colloffera the colours of the Alpine species are trighter than thrae of the warmer plains, as in the genera of Carohuf, furroz'schus, \&ce. Ini several species of Harpalus, Amara, Coundrits, \&C., the individuals that we fiod at the greatets eleraticas of the $A 1$ ps have often lighter colocrs.
(3) A darker colour and wometimes a whole melanism in obs -erved in general in the insects of the desers-fur exsmple, in that of sahara. On the conorary, the mammals of these corontries present in general a tery light coldar. It veern to me that this fact canbot be explained by the thenry of ratiation.
(4) A very remarkatis ovelanisen is alv, orneeved in weral mammals, the Reptilia and Coleoptera that are in i.: ife ivlasts,

 meet with ware caces of larkening. bat the cases of a remarialibe brightening are not very rare, as, for ensmpiet, in the tasfoim of R'ena mula.
16) A sensible fiference iq nbervel in the cribration leraeth the Aretic birfo an ! the Antarctic. io thene last blacic is frach more abosilant.
 for a retoarkable carcering in ste crimars of maty verto of 20imals.

In the Camiron, whith are the masemais that ch.efly present eavical prolychore, 7 and whe criver, 46 bivertol a

 servel.
Hive-Edwarts - Redemben pree senis d , Hac'ers S izete des

, Miferfituarch

The causes, I would say in conclusion, that intervene to modify the colour of animals, are very complicated ; climate has amongtt these a certain importance, but it does not seem to me that, although it be rery attractive, Mr. Meldola's theory of radiation is sufficient.

Lorenzo Camrrano
Zorlogical Muceum of Turin

On Certain Stages of Ocular After-Images

In a short note in the Phil. Mag., 1872 , vol. xliii. p. 343, I'rof. C. A. Voung bas recordell a corious instance of "ifterimage," which seems to me to be of the same order as that observed by Mr. Shelford Bidwell, and recorled in Natukr, (vol. $x \times x i i$. p. 30. I quite from Prof. Young's note, which is named "Note on Kecurrent Vision," a few lines, which will show what bis observation was:-
"In the crupse of wome experiments with a new dooble-plate Holkz machine belonging to the College (fartm ath, America; I have come upen a very curious phenomenon, which 1 for not rememiar ever : have seen noticed. The machine gives eavily intense Iayden.jat starks from 7 to 9 incher in lenget, and of mont fassling halliance, at the rate of verenty a minute, When, in a datkened room, the eye is screeneal from the direct light of the spark, the illumination proflucel is suffricien to render everything in the apartment perfectly vivisle; and, what is remarkable, every conspicuras object is veen troice at least, with an interval of a trifle less than a quarter of a werend-athe first tine vividly, the second time faintly; offen it in ween a thirl, and wometimes (but only with great difficulay) even a fourth time."
Frofl. Voang shows that it is a suljective phenomenon, and measures the interval letween the first and corond weeing of an object, giving as the mean of twelve experiments the interval 0.22 serind for the cave of his owa eyes, and 0.24 wernit fois that of another observer.
Five or six years ago 1 ofinerved andether intiance of what I Inelieve to be the same kind of "after-image," thootgh at firat I was inclined, teing ongzat oprn experments with a view to firding the caze of certain ocsiar "ghents" dae to maltipie reffectron inate the eye (Proc. Roy. Sox.. N'm 223. 14832, to ascribe it to a fifferent catue. It was wern in a romm lighted orly by the bright glow of cralv in the grate. Whenever the eyes were sudiknly fasthed acrest the fircpiace, and then fiand on wane rebect 50° or 60° frotn i:, thete aquared a faint blue light, which eemed to fiath fromo the efigter t, the ghow. This phensmencas was much more strongly mariked at wime turat than erteres, ard variof with wome cause which I nower fontier intenugre-f. Later I came up, hat orher intance of the wame thing : and as this is the eavivt to rejrenture, ar. I one loy which one tayy bes wuly the phenometa, of will tran we it.

Let a match of a voimtes of wind be made to, glow, as for teving toxypen, and ie it be of-ened in a daris meto ; thee ey:d

 cone, and to vary the sue of the curse if charge of viluri'y is

 Deceo-i'y of a cerasn t-gree of briftan ry in the ca o of the

 the reverce is the cave with a pia*.noms w.re carrying a "."ng

glowing-Pmint ; aguin a dark interval follows, shorter than the firs, and behind it a long strip with a dark core and very faintly bright edges ; as one traces backward, the edges appear to clove in together graitually, so that, afier about two inches, the dark core has collapsed, ns it were, and the ellges have conse together to form a narrow and well-define-1 thread of a mauve linge; this gratually dies away as we go further back along the trail, and by the time that the glowing'p, int has travelled over the whole curve once, it has nearly clisappeared.

Secondly, let the figure of eight be as large as can be described in a rectangle 8 inches liy + . Here the phenomena are quite different. It now seems as if the dark intervals at either cunt of the whost as decribed above were absent, and the ghost itself were drawn out into a streak which follows immediately upon the glowing point. Its culour is nuw yellow.green. This gardoally narrows to extinction as one traces the trail lackwards, and is the powitive after-image in its various stages. More prolalaly this streak has no connection with the true 隹解; but is quite divinet from it, whilst the ghost no longer appears, when the point inswes with greater velocity. In fact, there is probably a limiting velocit) of the glowing.point, heyond wbich the ghost is not formeel. This coincides with Mr. Bidwell's obscrvations as to the rate of rotation of the vacuum-tube. As the yellow streak disappears narrowing, one sees a faint blte haze on either side, separated from it by an interval of darkness. When one has tracel backwads so far that the streak has vanished, one sees what was alwore descrilect as a strip with dark core and faint the or mave cilyeve. The edges close in and form a distinet mase the eas, which gradually dies out.
It is very lwautiful to see the ghoctly trail hanging before one ; and, ly thitalle movement of the glowing point, one may fill the "pace, as it were, with a maze of wreathing lines. Perhap the muxt s riking part of the thenomenon, regarded from an eesthetical standpont, is the depts of the figures so proluced: one sealives in the form of the trail that the glowing point has been troving, not in one plane, but in space ; and one sees that some prats are neares than others. After a time the glowing* point seems to le fongotten, and the trail is the only thing observed. The powition of the trail appears to change with any change in the state of accomemotation of the eye ; if the trail koes away from one the cye attenpts to follow it, and exag. griates the moveneent. If there is any irregularity in the curve, as tnay offen be the case from want of proper co-ordination of mandes-equecially if the moving arm is at all subject to rheumatism-it is revealed in a terribly truthful manner by the trail.

A ystematic investigation of the subject would, 1 think, be very valualine as throwing light upou the processes in the retina.

Both l'rof. V'oung ("whatever the true explatation may turn out to be, the phemmenon at least suggests the idea of a refich. tion of fic nerown imfolis at the nerve extremitien, as if the intense imprewion \quad porn the retina, after being the firse time propagated to the brain, were then veflected, returned to the retima, ansl, trasclling, again from the retina to the brain, renewed the senatwo") and Mr. Widwell ("the series of phenomena seem to be due to an affection of the optic nerve which is of an incillateny character," \&e') appear t, incline to what 1 may call a phycical view of the phenomena. The phenennena appesar to me to point to some chemical action on the retim, and to dlepent in a great measure on the bate at which dhas actiom gever ons. It would le of great interest to constater the phenomens in connection with liering's theory of colbur arnatom: Accorling to it shese sensations are due to chamber in a cottain sulntatuce, in such a way that chamges of a destructive or dowimblative chalacter give rise to the sensations of white, red, and yellow, whilst thine of a constructive or assumbative hind prombue the eenoations of black, green, and bue ("Zur I chac vom I nlavinne," Wien, (s;is). It may be that this work hav lieen aliealy clone ; if so I must crave the todalgence of thane whor have male the subhect a special stuily.
11. Irank Newail.

C'romilurne, Wokinghann, May 18

"Speed" and "Velocity"

Somes of wour "general" reallers, like myself, may wish to wee the dotindtimbetwen " velocity" and "spect" more catily Atotined than lyy a ieterence to the calculus of quaternions, to whish I hrlicve the tern "ienwor" appertains.
"Speest" iv nie in the adelea to the new edation of Part 11. of

Thomson and Tait. Maxwell, at p. 26 of " Matter and Motsse says. "The rate or speed of the motion is salled the velocity " the particle." Tate, in his "Properties of Matter," p. writes about " water of motion ; i.e. Specids." It seems thas --
(1) Rate of motion is velocity (Maxwell)
(2) Speed of motion is velocity
(3) Rate of motion is speed (Tate).

From (1) and (3) it appears as if velocity and speed moust be the same, as indeed (2) secms to assert. Bat we are told this is the casc. Cannot the distinction between the two le nasy more generally intelligible than by saying that "speed" is $=$ "tensor" of velocity.
[When Maxwell introduced to junior students the Distrav of Vifocitios, he made velocity include the derection of moviaes well as the mere rate of motion (i.r. speed).-En.)

The Male Sole is not Unknown

In la t week's issue of Nattre is what is said to be at alstract of a paper read at the Socicty of Arts by Prof. Fr Lankester, in aid of a propinsel marine laboratory, an 1, pase ? over what he stated generally requires elucidation, he gives example of zohat is not knozin ament fishes, and which it : first instance wilt be investigated at Plymuth. He is make say "at present absolutely nothing is known as to the swaw of the sole-the male fish is not even recognised."
In times gone by the plaice was asserted to have asesatd from a shrimp, but this, I think, is the first time that the exisence of the male sole has been declined recognition. "amitens references to others, 1 will merely draw attention to the face that in my collection of British fishes in spirit at the "Grest leser national Fisheries Exhbition," and which is now depositel : the Eiconomic Museum at South Kensingt.n, is a fine erampik of the male sole, with the milt quite ripe.

I mast apologise for pointing out the foregoing, ber were sach an error leff unnoticed in a scientific paper, some practiz2 fisherman will possibly direct attention to it, as the comparatr: tarity of the male to the fermale sole has been frequemty olsered upon in our weekly sperting journals during the last few yeas.
Cheltenham, May 23
francts Dat

The Aurora of March 15, 1885

Nature. for March $26(\mathrm{p}, 479)$ contains an account of a fine aurora olserved at Christianin, Sweden, on March 15, by Fraf. Soj hus Tromholt. I would call altestion to the fact that in aurora (a very unusual phenomenon at this place) was visible here on the evening of \$1arch 15 . It was first seen at abe: 7 p.m.
At the above time s veral streamers were noticed ascendies wuewhat cast of north: after a short interval these died lesvis; a white nebalous cloud of lighte at an altitude of ahout 10° nea a point some 10° or 15° east of worth. Shortly afferwards sticamers appeared aicenting some 10° or ${ }^{10} 5^{\circ}$ west of norts: these presently disappeared, leaving a mass of light similar is that left in the east of north. Several times feebler streamers made their appearance west of north. The rays did not attain a greater height than so ne 30°, and by S ! h. all was quiet, suve 24 auroral glow along the horizon some few degrees east of nurtio, which remained thronglout the night. I have thoughe thes night tre interesting in connection with the Christiania amorn

$$
\begin{aligned}
& \text { Longiture west of Washington }=0 \text { oh. } 39 \mathrm{~m} .0 .65 \mathrm{~s} \text {. }
\end{aligned}
$$

F. E. Barnafd

Vanderbilt University Otreervatory, Nashville, Tenn., U'. S.A.

Catalogue of Fossil Mammalia in the British Musesm Part I.

In reply to Mr. I.ydekker's comments on the review of his work (NATURE, vol. xxxi. p. 597) I an glat to fiad that the author repudiates the Owenian system and its errors, though his recognition of the three upper premolars in lesferritio as corresponding, respectively, to fens. 2, 3. and 4 of the typica! series of four, anil the minute anterior upper premolar of R^{\prime} hy moleptens 33 f. 3, adled to the strange alsence of any note on the presence of exceptions to the supposed rule that the premelars decretst in number by reduction from the anterior extremity of the series
roinld certainly lead any one acquainted with the subject to elieve that he had acted on it. The only clues afforded by the orle which indicate that the Owenian system was not alopted n its entirety, now pointed out by Mr. Lydekker as existing at P. 152, 174, would certainly escape the notice of any one who and not actually spelled through the work, as I feel sure who:Ver will take the trouble to refer to will agree with me.

There is no evidence whatever to support Mr. L.ydekker's sssumption that the two anterior premolars in I'spertilio and he anterior piemolar in Khinolophas correspond, respectively, to fmr. 2 and 3 and to $\% 3$ of the typical-serics. On the contrary, the small size of the second premolar in Vespertitio points to reduction by loss from the middle of the scries, as we find in the greater nomber of species of the closely-allied order, Insectivora, and, as we know, takes place in the mandible of several species of Chiropiera.

With reference to the wish expressed in the review thal, instead of writing a mere catalogue of the fossil mammals in the Britinh Museum, Mr. Lydekker had undertaken one of all the known species, and his objection, while regretting that the intended friendly estimate of his capability for such a work has been so hostilely received, 1 maintain that such should have been unlertaken; but Mr. L.ydekker's remarks show how necessary it is, and that the objection that new genera and species are being made almost daily (it is probable that they will continue to be be made to the end of time) might be applied with eq'tal force On behalf of the birds by Mr. Sharpe, who nevertheless continues his excellent catalogue. It is only by the publication of such a work that we can hope to limit the manufacture of " empty pames," such as Mr. Lydekier objects to, and to reduce to orler the vast amount of seattered information and contesting opinions which encumber the study of the subject.

The Reviewer

THE ORCHID EXHIBITION

THE Exhibition held in the Conservatory at South Kensington on the 12 th and 13 th inst, in connection with the Orchid Conference of the Royal Horticultural Society, must have furnished to the least observant visitor some explanation of the fascination exercised by orchids over their cultivators. The beauty, the variety, the strangeness of the flowers of the Orchidea attract and interest the least enthusiastic even of the lovers of nature. But the variation in flower, compatible with botanical inclusion in one family, is not more marked than is the difference in mode of flowering and of growth. Could there be in one natural order a stronger contrast than between the mode of growth and the gorgeous flowers of the genus Cattleya-essentially "flaunting flowers"-and those of the genus Masdevallia, where the conspicuous part of the flower consists of the three sepals, drawn out in many species into thread-like tails many inches long, and ranging in colour through every shade of orange, scarlet, and purple, down to an almost inky black!

While a larger array of specimen plants has often been seen than was shown at the Conference, there has never been gathered together in any country so varied and interesting a collection, nor one containing so many rare and curious plants. Great as was the interest for the cultivator, it was no less great for the botanist. Mr. Ridley, of the Natural History Museum, who, in conjunction with Mr. Burbidge, of the Dublin Botanic Gardens, has undertaken to draw up a report on the Conference Exhibition, found that sixty one genera of orchids were represented. For the first time in the history of flower-shows there was a numerous collection of hybrid orchids, raised by artificial fertilisation, in flower. For the first time was there a large collection of orchids in fruit. The progress of hybridisation, greatly due to the energy and skill of Messrs. Veitch and Sons and their intelligent foremen, Mr. Dominy and Mr. Seden, has already been fertile in valuable results for the cultivator. An excellent little book lately published, ${ }^{1}$ gives a list of eighty-nine hybrids already in cultivation,
t "Orchids: a Review of their Structure and History," Illustrated. By Lewis Castle. (Jonrmai ef Hortionlturr Office, 171, Flieet Street, E.C.)
distributed among twelve genera, but thirty-seven of them belonging to the genus Cypripedium. Those who are privileged to enter the penetralia at Chelsea know that there are there and elsewhere great numbers and varieties of hybrids, which are slowly summounting the dangers and delicacy of infancy and childhood.

But the labours of the hybridiser promise to be of great value to the botanist. Mr. Harry Veitch, in his very suggestive and interesting paper on the "Hybridisation of Orchids," read at the Conference, says: "How will these bigeneric crosses affect the stability of the genera as at present circumscribed?" it is well established alread' that the genera Lœlia and Cattleya cross freely with one another, and Mr. Veitch refers in his paper to two other bigeneric hybrids, which have already flowered, and to others which have been raised, but have not yet dowered.

Unfortunately it must be a long time before orchid cultivators generally can enjoy the results of hybridisation. Mr. Veitch gives the time the hybridist must wait to see the result of his labours, as follows:-

Geras.					Time from Giermination to Flowenig
Nendrobiam	\cdots	-..	.	\%	
Phaius	\cdots	About the same.
Calanthe	..	\ldots	***	*-	About the same.
Masdevallia	\ldots	
Chysis ...	***	\cdots	*.*	...	4 to 5 ycars.
Zygoperalum	5 to 9 years.
Lycaste ...	*..	7 to 8 years.
Jacha	\ldots	10 to 12 years.
Catheya	**	**	**	*-.	

With the exception of the genera Dendrobium and Cypripedium, it is a long time before sufficient plants of a hybrid can be obtained for distribution, even under the most skilful cultivation. For this reason many of the more beautiful hybrids will probably remain scarce and valuable for years. The high prices paid by collectors for orchids in some cases have been a source of merriment to the uninitiated. Speaking generally, orchids were never so cheap or so plentiful. But if a collector must have a h) brid which has been raised by skilful hands and nursed into vigour by years of patient care-or, on the other hand, must have a beautiful natural variety which has been picked out of millions of plants-if he must have them, he must pay for them.
The Royal Horticultural Society is to be congratulated both on the botanical and the horticultural results of the late Conference. The Conference was a new idea, a new departure. It has demonstrated the great, widespread, and, better still, the intelligent interest taken in a singular and beautiful natural order, and the skill brought to bear on its cultivation.
The short scientific contributions of Prof. Reichenbach, whose absence was universally regretted; the paper on "Hybridisation," by Mr. Veitch, and the brief discussion which ensued, were listened to by a large and appreciative conference. The paper on "Cultivation," by Mr. O'Brien, was also interesting and valuable. The very difficult question of nomenclature, which is in so confused and unsatisfactory a state as to ill brook delay, was postponed. It could not be discussed with advantage at the tail of a long meeting, and will be referred, it is to be hoped, to a a scientific committee selected from botanists in and out of the Royal Horticultural Society.
T. L.

WHEAT-PRODUCTION IN /NDIA

INDIA has recently exhibited her extraordinary powers as a wheat-producing area of vast extent. Up to the year 1877 the British wheat-grower looked exhaustless prairies of the far West as his most
1 The wheat-Production and Trade of India. Calcuta
collection of correspondenee in continuation of papers published
able rival in the matter of wheat-growing. A short seven years has greatly altered his feclings in this respect, and we are probably right in considering that the far East is destined to do its part in forcing down the price of wheat to as great a degree as the land of the setting sun. The brochure before us is a thoroughly dry statement of facts composed of numbered despatches, letters, and tables, all bearing upon the capabilities of India as a wheat-producing country. The reader will not, however, obtain information as to extent or area, except in a more or less incidental manner. The principal matters dealt with are (1) the quality and comparative values of the various wheats grown: (2) the modes of cultivation pursued ; (3) the nature of the soils on which wheat is grown; (4) the average yield per acre; (5) the effects of continuous wheat-growing is. diminishing yield; and also other matters relating to the details of wheat-cultivation in India.
With regard to the quality of Indian wheats there is no room for doubt. The conclusions arrived at are based upon actual weight per bushel, value upon the Corn Exchange at Mark Lane, and an elaborate report upon milling and bread-making results furnished by Messrs. McDougall Brothers of to, Mark Lane, London. From whichever of the above points of view we test the quality of the Indian wheat, the result is equally satisfactory, and the more so when we find that from year to year the samples and bulk continue to improve. Messrs. McDougall Brothers go so far as to sum up their experience by saying, "glancing at all the facts, it is evident that these wheats afford a larger margin of profit both to the miller and baker than any other."

The modes of cultivation adopted are of great interest. They usually exhibit vast pains, and are in this respect superior to the system of wheat-cultivation employed at home. Such elaborate cultivation would indeed astonish an English farmer accustomed to plough his lea land or turnip land once for wheat. The comparison is less fair if we take into consideration the fact that one thorough English ploughing may be worth half-a dozen of those "ticklings" of the soil which, under Indian skies, are sufficient to make it "laugl.". Under the head of Systems of Cultivation we read :-" Ploughed in July, and again six or seven times until October. Watered in Noveniber. Again ploughed twice, rolled, ploughed again, and the seed sown through a tube attached to a plough-handle. After twenty-five or thirty days, again watered; and this is repeated until the plants appear fortnightly where irrigation is by lift, and every twentyfive days where it is by flow. In February, when the ears have appeared, water is given weekly until the cars begin to mature." In Armritsiar ; - "Six months before sowing, the land is ploughed five to ten times. After sowing, the crops are watered not less than six or more than nine or or ten times." In Gujrat:-"Land is broken up and ploughed many times between May and September, manured and ploughed and levelled." The average produce per acre after this system of cultivation varies from seven to fourteen or even twenty maunds (nine to twentyseven bushels of 61 lbs .), and yet it is calculated that it is grown at from 8s, to its. per quarter! Wheat-growing appears to be carried on upon all sorts of soils. Upon stiff loams, sandy loams, hard clay, and "every kind of soil." In reply to the question, Has the productive power of the soil begun to fail? the answers are usually in the negative, or that it is not apparent. Still, as might be expected, better crops are grown upon manured and irrigated soils and upon those newly broken up from pasturage.
After reading the details of wheat-cultivation in India and compared its results with those obtained in England with a fifth part of the labour, we are inclined to wonder greatly that this renote field should be able to conpete with us. Why do they plough five to ten times? How is
it that in that sunny land, and after all this enpe: of labour and irrigation, twenty-seven busbels shus a naximum return, while in some cases seren bisde all that is reaped? A painstaking farmer in E, hopes for from thirty-two to forty bushels per aze 0 once ploughing and pressing his clover leys, axi : cannot make both ends meet, nor yet compte s: Indian Ryot.

Johs Wrbet

THE REPORTS OF THE LANTED STIT COMMISSION OF FISII AND FISHEA: FOR 1851 AND $1882{ }^{1}$

THE Report for 1881 was presented to the Serr: Congress of the United States on March $1 ;$, is to be regretted that so long an interval was albore elapse before its publication. The volume is a lis three inches in thickness, and containing neam pages. Scarcely any of this large quantity of lexp: is without interest and value, and we hete g.te: account of the work described in it.

The Commission began the second decade of is: ence in 1881, and the present report shows ber re the organisation has extended itself, and obe results it has achieved in its first ten years The offices of the Commission are at Washington, 2x: the year 1881 were confined to the private toxt its public-spirited chief, Mr. Spencer Baird, wive the greater part of his house to the State semex remuneration. In 1881 a building was created ert the Commissioner's residence, at the public epece: provide space for the increased administrativerd ix stations where the varied operations of the cemar are carried on are scattered throughout the thed yre territory. These operations fall naturally wide $2 x$ heads : (1) Economical statistics and historial duls cerning the fishing industries; (2) the applied sex regulating fish supply and distribution; (3) the science of marine zoology. The part of the wat bot ing to the first of these divisions is conduaced pers: the central offices, partly at the seats of the indasto: question. The two other fields of work are, of ard not always distinctly separate. Since $18 \% 8$ beliber: Fort Wharf, Gloucester, Mass., had been occuph 'r hatcling operations, but in 1881 they passed in possession of a private firm, since which time dit 4 ? ports on the fisheries and records of occan and E spheric temperatures have been obtained from Gloose The principal site of the purely scientific work duryly summer season was Wood's Holl, Mass., where the $=$ mission possessed a sea-side laboratory; Researto the artificial propagation of oysters, \&.c., were carm at St. Jerome, Md., near the mouth of the pood Cultivation of the land-locked or Schoodic stimer. practised on the Grand Lake Stream, near Cals, The Penobscot or Atlantic salmon (Suimo stivi se larly received attention at Buckport, Mc and station, where lake trout, brook trout, Califormi the \&c., were hatched, was at Northville. The mas? hatchery for the Californian salmon was on the Notur. River, a branch of the Sacramento. Shad e^{2}. hatched at Battery 1sland, Md., at North-Eas Md., near the mouth of the Susquehanna, at be ces Station, Armory Buildings, Washington, at Wissimp Navy Yard, on the Potomac river-barges, and at tho N.C. Carp ponds were maintained at Mosument Lal 2 e. the Arsenal, Washington. The Commission acthonkty luable assince reccived from almost ill denartal? able assistance received from almost and dep "fin of the Government, but especially from the Nary which, in compliance with decrees of Congtes tailed steamers fully manned and equipped,
and executed work and repairs at the nary gin

- Washington, 4884
and telegraph companies have also aided in the of the Commission.
, till 1879 the Commission was not in possession of vessel of considerable size : its explorations at sea carried on by means of boats either hired or lent by avy. In 1879 Congress voted money for the building steamer to be entirely devoted to the work of the nisation. This vessel was designed as a floating hing station capable of being moved from place to c according to the season and the opportunities ded, but she was not intended to go to sea in all thers or to any great distance. She was named the t-Hawk, and was built at Wilmington, Del., from the gns of Chas. W. Copeland, consulting engineer of the hthouse Board. A very complete and interesting ort is presented in the volume before us on the coniction of the Fish-Hazwk and the work performed by in 1880 ; and another on her services in 1881. The h-Hawk is 156 feet long over all, 27 feet in the beam, 17 feet 2 inches in draught at the stern. Her ordinary ed is about 9 knots an hour. The hull below the in deck is of iron, sheathed with yellow pine; above : main deck she is of wood. The hatching apparatus d machinery for working it are placed on the main deck mediately abaft the forecastle ; the space thus set apart 47 feet in length. On the after part of the main deck the principal cabin, which contains the Commissioner's ice. Above the main deck, extending from stem to :rn, is a promenade deck, on which are the hoisting and sling engine, the dredging boom, its heel attached to \because foremast, and at the after end the naturalists' labora$\%$. The vessel is rigged as a fore and aft schooner, rrying a fore-staysail, a foresail and mainsail; she s four boats, the largest of which is a steam-cutter.
The Fish-Hawk has been found to fulfil admirably the rpose for which slie was designed, viz. the economical d effective hatching of shad. But it had long been ident that the Commission reguired also a sea-going samer to investigate the conditions and extent of the town, and to discover new, fishing-grounds, to ascertain e complete history of the migrations of food-fishes, to Id, if possible, to the list of species available as foot, and study marine phenomena in general. The reward to : expected from this kind of work was indicated by the story of the discovery of the tile-fish, an entircly new vecies of which some specimens were brought in by a shing-vessel in 1879. The Fish-Haw made a trip to te place where the tile-fish was found, at the western ige of the Gulf Stream, and found that it was as bundant over a large extent of ground, as the cod is in ther places. The area dredged over was found to be 1 so in other respects a valuable fishing-ground, and exremely rich in all forms of life, many new and interesting pecies being discovered. The tule-fish has been found 3 be of great value as food when fresh, and to be as asily salted and preserved as the cod. In consideration Ithese facts Congress voted 103,000 dollars for the milding of an ocean steamer for the work of the Compission, to be called the A/Batross.
In188I the Commission began the publication of another fishal Colume in addition to its Report. It is called the Fish Commaission Bulletin, and the first issue contained a memoir on the development of food-fishes, by John A. Eycter, one on the life-history of the ecl, by G. Brown Coode; one on the salmon disease in English waters, by pol. Huxley and S. Walpole; and other papers on fishbitching and fisherics. Besides this were published in Nify four census bulletins, and a volume of tables conSiring statistics of American fisheriesi, all prepared under s. Litite part of the year a monograph on the oyster industry 2. Titep part of the year a monograph on

1) Tas Thed by M. Emest Ingersoll

79 The results of the year's worlt in the thate several deparments alieady yefred worl in the thrae several de-
appendices to the Commissioner's report. Those belonging to the first department are contained in Appendix \vec{B}, which consists of six memoirs, only two of which refer to American fisheries. The first of these is on the history of the mackerel fishery, by Messrs. Brown Goode, Collins, Earll, and Clarke, and occupies nearly a third of the whole volume. It begins with an account of the natural history of the fish, and of its gcographical distribution, by Mr. Brown Goode. He finds that the species (Scomber scombrus) is confined to the North Atlantic. Its southern limit on the American coast is Cape Hatteras, lat. 35°; its northern limit, the Straits of Belle Isle, lat. 52°, though stragglers may occur further north. Its northern limit on the European coast is North Cape, lat. 71°; its southern, the Mediterranean. The mackerel appears in large shoals on the American coast every summer ; as yet it has not been ascertained where it passes the winter. Prof. Hind, who is a Canadian, believes that the fish hibernates in the mud, near shore. Mr. Brown Goode, with much greater probability, argues that the shoals move out to the deep ocean in autumn. He distinguishes between the littoral and bathic migrations of this and other species, and concludes that this fish, like others of similar habits, is influenred in its movements chiefly by temperature, food, and breeding instincts. The mackerel only remains near shore while the temperature of the water is above $40^{\circ} \mathrm{F}$. Off Cape Hatteras mackerel first appear about March 20 ; in the Gulf of St. Lawrence they are not abundant till June. The shoals disappear in Cetober, though occasionally some are caught in December. The mackerel spawn in water of 15 fathoms and less, and while spawning do not take bait, or rise to the surface. The eggs are pelagic, and the young fish grow to $6 \frac{1}{2}$ or 7 inches in the first season, probably reaching full size in four years. The mackerel's food consists chiefly of pelagic forms, but not so exclusively as in the case of the herring. A great deal of space is given in this account to the evidence of fishermen as to the food of the mackerel, but as no scientific interpretation is given of their somewhat vague descriptions, the reader does not learn much from the discussion. We conclude that the food consists largely of copepoda, crustacean larva, schizopoda, and pteropoda. One paragraph dealing with the food question is, to an English reader, somewhat amusing. The author says that the food of the mackerel is called in England the "mackerel-mint," and consists of" sand-lants [sic] and five other species of fish." We are not sure, but we think "mackerel-mint" is a mistake for "mackerel-midge," which is the young of various species of rockling, but especially of Motella tricirrafa. In the same paragraph it is said that mackerel have been seen to devour the swimming larvie of tape-worms. The first chapter of the essay can only be regarded as a preliminary inquiry to serve as a basis for accurate investigation. It seems strange that I'rof. Brown Goode and Mr. Baird should mention a inysterious membrane over the cye of the mackerel without giving the anatomical meaning of the membrane ; and it is equally unsatisfactory to read an account of the dissection of a mackerel, quoted from Bernard Gilpin, in which the air-bladder and the aorta are inixed up. Next follows a history of the mackerelfishery in the United States, from which we learn that since 1880 the purse-seine has come into gencral use for mackerel-catching. The mackerel fleet consists of 468 vessels, mostly of 60 to Sotons, schooner rigged, and very fast sailers. The old method of hook :fishing is described fully in a historical chapter. Besides the purse-seine. gill-nets are also used in mackerel fishing at the end of the season, off the New England coast. The total catch of mackerel ir. 1881 off the United States coast is estimater. at 204,667,000 fish.

Chapter III. of the essay contains an account legislation affecting the mackerel fishery. Ever time of printing the Report in 18 S , on accoun

 ithat the：

 d，＇which forms oee ：f－ the volume，and so－cesent弓

 Justrics．

 tat an additional grait ans

 placement is 1000 tozi A destr，c ： 0 i

 Holl an inner harbüs．w E：ב a If refuge as well as for the $\bar{r}-7$－ies of tie $\mathrm{C}:=-$ ss：：$=$

 and，consequently，the estal $1.5^{\circ}=2$ of Iclayed for a time．Never：beiess，it ace＇s if ：ins maje the head－quarters of the geaerai sam＝er wath of ：上e

 time．

The central station at Waskirgion was fis：ed up wibh shad－hatching apparatus，and was used as the ceatre from which all young shad ha：ched os the rivers Posor．ac and Susquehanna were d．sirbs：ed ：the ex：reme lim：：of distribution was the Colorado river in Tevas．The number of shad fry distribrted was over $=0,000,000$ ．
The curious history of the tile insh Loshalutio：＂as chamalconticeps；into the distribution of which re－ searches were made in 1088 ，is relased in a report by Capt．Collins in Appendix B．At the beginning of Capt．Collins＇s paper an account of the fish itseif is given，from which we learn that it belongs to the family Latilide，Gill，the representatives of which are mostly inhabitants of tropical seas and of shallow water．The ground where the tile－fish had been found lies between the latitudes of Hatteras and Nantucket，in long． 70° to 71° ，about 100 miles off shore，at a depth of 90 to 125 fathoms．In March and April，1832，vessels arriving at the principal Atlantic sea－ports reported the extraordinary occurrence of vast numbers of large dead and dying fish floating on the surface of the sea over the region where the tile－fish had been found．It was ascertained that a large proportion of these dead fish were tile－fish．In order to determine the extent of the destruction，a steamer was chartered by the Fish Commission，and sent out to the tile－fish ground in September．Not a single Lopho－ latilus could be obtained，but a new fish belonging to the genus Setarches was discovered，which promised to be of

 rreasurenenss be $n g$ asinic

The of spertac cistor．．．．
tented to indiaste the mos

 species，which had teren taic：：＂A，N：N，at haul，havng berome evtremei sollor fine $1: 0$ lieves the remarhalic destatiown
by a very severe somm whoth wlimi ：n
 over the linlf Stue．m sime．

 experiments on the athti．A1 prymis：＂1 ，il
 Prof．Kider at St．Jances Cirik．V1．1，in4t when

 of obtainng a supply ot atthithot
Prof．Ryder and cinl．Macthonad wh we or imo whasler

 Len Live =ree $t 20$ a day or two after the attachment

T=e zrosizz extent of the piscicultural operations of Ee Cominision, as indicated by the Reports in Appendix $\mathrm{E}_{\text {, }}$ is raarvellous. Statistics of the distribution of shadfry doring 1832 are given in a paper by Chas. W. Smiley; the total number distributed was over 30 millions. The total number of catp distributed was 259,000 , of Penebscot salmon 1,716,000, of Schoodic salmon $1,482,000$. It would be extremely interesting to have some information as to the result of all this work, as to the effect produced on the supply of fish in the rivers, and on the productiveness of the fisheries. The Commissioner points out that it is of little use to put anadromous fish into rivers if the waters are obstructed by dams or made uninhabitable by pollution, and a new fish-way to remedy the former difficulty is described by Col. M. MacDonald in Appendix A. But all who are acquainted with the labours of the Anmerican Commission would be grateful if Mr. Chas. Smiley would apply his great power of handling
statistics to exhibiting the economical statistics to exhibiting the economical results of the pisci-
cultural work.
J. T. CeNNINGHAM
J. T. Cunningham

NOTES

The uzize dina-zin will be unveiled in the great hall of the

 "to z"asen ine ℓ ze in wai ve c;ea to the public during the x Nory, x An wher marger than life-size ; it

 "n

 the well kn/ma engithet.

observatory for minor observations, and a large baildian in the dome. The observatory proper consists of a cyite cal building surmounted by a hemispherical dome on five feet in diameter, and a rectangular building axed y library and compating office. The walls are of trick circular portion being heavily butressed, and bearing ates: a coping of Ohio stone. On this rests cast-iron raik, of v the dome revolves. The latter weighs $25,000 \mathrm{lbh}$, and is $=3$ posed of a framework of steel covered with galvanied itas lined with painted canvas, having three openings coreze shatters when not in use. It takes five seconds to opes oue these, and a minute and a quarter to revolve the doen po round. The telescope, which is mounted on a brick peen the centre of the dome, is similar at the Washington 0 on tory. The clear aperture of the object-glass is twenty-sitisu Like so many other imporant scientific and educational ios tions in the United States, this observatory is due to bse gex rosity of a wealthy native of the State, Mr. Leander MiCersa from whom it takes its name. This gentleman presected he telescupe and building to the University. The cost is weec have been about 13.000%, the telescope costing over good is directorship of the observatory, to which post Mr. Ons: Stone, director of the Cincinnati Observatory, has been dees is endowel with a sum of 10,000 ., collected by poblic shat tion; white Mr. W. H. Vanderbilt has given the tninov: further sum of 5000 , as an endowment to pay the sidy 50 assistant observer, the expenses of publication, sic terris to the founder's plan the othervatory is not to be conete? purposes of the University alone, but for generl stiecic research, so that stadents from any part of the tyied Surs who desire to become professional astronomers wy mexie : thorough training there. In accordance with this pian the Pr fessorslhip of Astronomy in the University is a wady tisein post from tha: of Director of the Observalory. Proch A. HI of the National Observatory at Washington, delivered the of ing address, tiking for his theme "The Iostruments asd Wis of Astronomy."
From various publications which we have recenty raers from the Government of Hong Kong Dr. Doberkk, the so nomer, appears to have lost no time in emploging be m observatory. The last batch of observatory papers indotes servations on lunar transits across the meridian of Hong Kity and on the height of V:ctoria Peak. As this eminenit is b most important in the east (with the possible exception d Fry yama) in one sense-the sense in which Richmood Hill is D^{-7}. interesting than Mount Everect-it may be adted that the ace height of the peak is 17106 feet above the Obbervators, an te feet above the mean sea-level. There is also a reporn on fot th? meats of the principal meteorological elements for 18i4 © sructed according to the recommendations of the Interan's) Meteorological Congress, and a complete weather repor fox ty tane year. With four well-equipped observatories (Tiz) St.anghai, Hong Kong, and Manila) at work, the meteonit the China Seas will soon cease from being the sealed booi $x^{2}=$ it practically is at present.
Last year was a tolerably productive one for the ollkend prehusoric remains in Switcerland. Tlie water of the heto so fitorne conctantly below the highest level, which is the $E \pi$ faveurathe state of things for explorations around the int Aweilings. The remains discovered belong mucely to to 要= $=1$ periun, and the chief localities in which they were feed ar laikn Nieachisel and the setllement of $W_{\text {allishofen peat }} \tau=\frac{1}{1}$ the Laver of which is the ooly station of the Brosere pecix is or, in in Fivern Switzerland. Among the moot remitive or the disowered at this settement in tSSy were a splent yy ineurvel honise owidd, several dozens of omare bubso 'ravers, be, of the remains of the Stone perind deveral'
same year the most notable are those obtained at Robenen, including several pretty knife-handles made of yew, e excellent specimens of mechanical industry, such as thread, en falurics, fishing-nets, \&c., and ears of barley and wheat, being a specimen of the rare Triticum turgidum.

HE Zoological Society of Philadelphia, according to the rteenth Report of the Board of Directors, appears to have ered during the past year, like many other institutions dedent on the public for support, from the general depression rade. The financial balance shows a large reduction; neverless the Superintendent is able to report that the collection resents to-day a greater and more typical variety of animal ms , in furtherance of the educational facilities which have :n one of the chief aims of the Society, than at any previous iod of the history of the garden." Among the principal litions during the year was a hippopotamus, the first obtained the Suciety, a collection of European water-fowl, and a ash-turkey (Tallegalla lathami) of New South Wales. The ecimen procured is a female, but it is hoped that a male may so be obtained, and that its extraordinary habit of hatching eggs, by covering them with decomposing vegetable matter, ay be shown in the garden.

It seems that the experiments of Dr. Ferran in inoculation or cholera have been stopped by the Spanish Government.

The Sanitary Congress at Rome has been engaged during the ast week mainly in discussing quarantine regulations.

We have received Prof. Theodore Gill's "Account of the "rogress in Zoology" for $\mathbf{1 8 8 3}$, from the Smithsonian Reportsubstantial pamphlet of over fifty pages. The special disoveries recorded have been selected either on account of the uolifications which the forms considered force on the system, or recause they are or have been deemed of high taxonomic importance, or the animals fer se are of general interest ; or, inally, they are of special interest to the American naturalist. The arrangement of the account is as follows :-General Zoology, rotozoans, Porifers, Calenterates, Echinoderms, Worms, Arthropoids, Mollus coids, Mollusks and Vertebrates. Each of hese divisions is sub-divided according to the discoveries - be noted. At the end, a brief bibliography of notevorthy memoirs and works relating to different classes is uppended. "The statement," Prof. Gill says, " is not intended for the advanced scientific student so much as for those who entertain a general interest in zoology, or in some of the betterknown classes. It is compiled for the many rather than the few, and hence, perhaps, zoologists cultivating limited fields of research may find omissions, as well as notices of discoveries of minor importance."

On May 20 a terrific storm raged in Paris; a stupendous peal of thunder was heard at it a.m. It seems the lightning struck the top of a high furnace at St. Ouens, near Montmartre. It is supposed that it was attracted by a mass of lead which was placed at this elevated situation for some purpose. The peculianity is that no trace of the lead was afterwards found

The centeunial celebration of Blanchard and Jeffries crossing the Channel in a balloon was celebrated on Sunday at Guine, Pas de Calais, where the two travellers landed.

Shocks of earthquake were felt at Wartberg and Kindberg, Austria, on May 20 towards $1.30 \mathrm{a} . \mathrm{m}$. A sharp shock was felt at Smyrna at 7.15 p.m. on May 26.

Prof. Dewar, F.R.S., will give a discourse on "Liquid Air and the Zero of A bsolute Temperature" at the last Friday evening meeting of the season on June 5, at the Royal Institution.

A few years since the German Anthropological Society initiated an exhaustive investigation among German school children as to the proportion of those with dark and with fair complexions. This has been followed by similir investigations in Belgium, Switzerland, and Cislethian Austria, and these have supplied gaps in the German inquiry. The result was, acsording to Dic Nafur, laid before a recent meeting of the Berlin Academy of Sciences hy Herr Virchow. In all, 10,077,635 children were examined as to the colour of the skin, hair, and eyes; $6,758,827$ in Germany, 608,678 in Belgium, 505,609 in Switzeriand, and 2,304,50t in Austria. The geographical boundaries were the Pregel and Dniester on the east to the Vorges on the west ; the Baltic and German Ocean on the north, to the Adriatic and the Al ps on the south. The following is the result:-Of pure blondes there were found in Germany $2,149,027$; in Austria, 456,260; in Switzerland, 44,865 ; a total of $2,690,152$, which, on a total of 9,468,557 (Belgium being onnitted here) children examined, is rather more than onc-fourth. The number of brunettes was: in Germany, 949,822; Austria, 534,09t ; in Belgium, 167,40t; in Switzerland, 104,410; a total of $1,755,724$, or about onesixth of a total of $10,077,6,35$. Hence more than half the scbool children of Central Europe are of the mixed type. The distribution of the pure types is very different. In Germany 31.80 per cent. is fair and 14.05 per cent, daik; in Austria the dark predominate, being $23^{\circ} 17$ per cent., while the fair amount only to 19.79 ; in Switzerland the disparity is still greater, for the blondes are only $11 \cdot 10$ per cent., while the brunettes are 25.7 ; and in Belgium the blondes are 27.50 per cent. In Germany, therefore, the fair complexions predominate ; but even here the proportions vary greatly, getting less and less as we go towards the south. In North Germany the proportion is between 43.35 and 33.5 per cent. ; in Central Germany, abont $25^{\circ 29}$; and in the south, only 18.44 ; while, on the contrary, the proportion of dark children diminishes from 25 per cent. in South Germany, to 7 per cent. in the north. This appears to show the incorrectness of the theory of the French anthropologist that we must seek the real Germans in South Germany, and that North Germans are a dark race, a mixture of Finns and Slavs. The fair people are most numerous in Sleswick-Holstein, Oldenhurg, Pomerania, Mecklenburg, Brun*wick, and Hanover. That this should be the case in Mechlenburg-formorly a Slav district-is due, according to Herr Virchow, to a return-emigration of the Germans. Middle and Western Germany were especially the cradle of this emigration. Flemings, Datch, and Frisians thus reached Holstein, Westphalia, Brunswick, Mecklenburg, and Pomerania. Saxony, Silesia, and Northern Bohemia were colonised through Eastern Franconia, Austria from Bavaria. The emigration of the German tribes took place at two different periods: the first, a movement from south to west, which ended with the foundation of the Frankish monarchy; the other a return to the last, which began with the Karolingian period, and is not yet concluded. The latter has led to a permanent colonisation, and to the formation of a new pure German people. The deep brown colour of the south and middle Germans, as well as of the Swiss, is traced by Herr Virchow to the Romans, Rhetians, and Illyrians, and especially to the remnants of the Celtic or pre-Celtic inhabitants, which have now become mixed with the Germans.

The experiment of acclimatising the American Whitefish (Corgronus albws), lately tried by the National Fish Culture Association, has met with great success. Until now the attempts made were unsatisfactory, the utmost difficulty being experienced in finding suitable lakes for the reception of this valuable edible fish. The whitefish in question were incubated at :South Kens ington in March, and afterwards transferred to ponds at Delwhere they have thrived well ever since.
of their aquaria in large numbers, but they could not keep them alive more than a day or two after the attachment had taken place.
The growing extent of the piscicultural operations of the Commission, as indicated by the Reports in Appendix \mathbf{E}, is marvellous. Statistics of the distribution of shadfry during 1832 are given in a paper by Chas. W. Smiley ; the total number distributed was over jo millions. The total number of carp distributed was 259,000 , of Penebscot salmon $1,716,000$, of Schoodic salmon $1,4^{82,000}$.
It would be extremely interesting to have some information as to the result of all this work, as to the effect produced on the supply of fish in the rivers, and on the productiveness of the fisheries. The Commissioner points out that it is of little use to put anadromous fish into rivers if the waters are obstructed by dams or made uninhabitable by pollution, and a new fish-way to remedy the former difficuly is described by Col. M. MacDonald in Appendix A. But all who are acquainted with the labours of the American Commission would be grateful if Mr. Chas. Smiley would apply his great power of handling statistics to exhibiting the economical results of the piscicultural work.
J. T. Cunningham

NOTES

The statue of Darwin will be unveiled in the great hall of the Natural History Museum, Cromwell Road, on Tuesday, June 9, at $\mathbf{t 2}$ o'clock, when Prof. Huxley, President of the Royal Society, on behalf of the memorial commiltec, will formally transfer it to the care of the Masters of the Museum, who will be represented by His Royal Highness the Prince of Wales. Places will be reserved for the committee and subscribers to the memorial, but the greater part of the hall will be open to the public during the ceremony. The statue, which has been executed by Mr. Boehm, R.A., is of marble, and seated, rather larger than life-size ; it is pronounced by those who have seen it to be an admirable likeness as well as a fine work of art. .

It is now twenty-one years since the Gcological Magazine was first issued. During all that time Dr. H. Woodward, F.K.S., has been an editor, and for almost the whole of it the principal editor, on whom the main burden and chief responsibility of the work has fallen. It has been a work which has not only cost him much time and labour but also has been practically unremunerative. His friends among geolugists accordingly purpose to celebrate the "majority" of the Magazine by presenling to him a testimonial in appreciation of his services to science. A meeting was held last week, at which an influential committee was formed, a list of which will shortly be circulared. The treasurer and secretary is Dr. Hinde, F.G.S.

We greatly regret to recorl the death of the Rev. Thomas W. Webb, Vicar of Hardwick, near Hay, Brecon, well-known for his writings on astronomical subjects. We hope next week to refer to the work he hav done in astronomy.

The denth is announced of Mr. Peter William Barlow, F. R.S., the well-known engineer.
A congress on bydrology and climatology will, it is stated, be held at Biarritz during October next. The French Government has brought the matter to the notice of foreign Governments, in order that the latter may take the necessary steps to be represented at the congress.

ON April 13 the Leander MeCormick Observatory atta -hed to the Univensity of Virginla wan opened by publis Ures ay. The belldings are situnted on a bill celled " ' L witat-ry M an tain," because in 1825 Thomas Jefferson erected a ansil ut-r vatory there, which gradually fell into de ay. They tun ist of residences for the director and I
observatory for minor observations, and a large building for the dome. The observatory proper consists of a cylindrical building surmounted by a hemispherical done fortyfive feet in diameter, and a rectangular building used as a library and computing office. The walls are of brick, the circular portion being heavily buttressed, and bearing at the top a coping of Ohio stone. On tilis rests cast-iron rails, on which the dome revolves. The latter weighs $25,000 \mathrm{lbs}$., and is composed of a framework of steel covered with galvanised iron and lined with painted canvas, having three openings covered by shatters when not in use. It takes five seconds to open one of these, and a minute and a quarter to revolve the dome quite round. The telescope, which is mounted on a brick pier under the centre of the dome, is similar at the Washington Obsernztory. The elear aperture of the object-glass is twenty-six inches. Like so many other important scientific and educational institetions in the United States, this observatory is due to the generosity of a wealthy native of the State, Mr. Leander McCormick, from whom it takes its name. This gentleman presented both telescope and building to the University. The cost is stated to have been aboat 13,000 ., the telescope costing over 90001 . The directorship of the observatory, to which post Mr. Ormoed Stone, director of the Cincinnati Observatory, has been elected, is endowed with a sum of $10,000 /$., collected by public subscription ; while Mr. W. H. Vanderbilt has given the University a further sum of 5000 , as an endowment to pay the salary of an assistant observer, the expenses of publication, \&c. Accorling to the founder's plan the observatory is not to be confined to purposes of the University alone, but for general scientif: research, so that students from any part of the United Statea who desire to become professional astronomers may receive a thorough training there. In accordance with this plan the Professorship of Astronomy in the University is a wholly distinct post from that of Director of the Observatory. Prof. A. Hall of the National Observatory at Washington, delivered the open. ing address, taking for his theme " The Instruments and Work of Astronomy."

From various publications which we have recently received from the Government of Hong Kong Dr. Doberck, the astronomer, appears to have lost no time in employing the ne" observatory. The last batch of observatory papers inclode observations on lunar transits across the meridian of Hong Kong, and on the height of Victoria Peak. As this eminence is the most important in the east (with the possible exception of Fajryama) in one sense-the sense in which Richmond Hill is more interesting than Mount Everest-it may be added that the mean height of the peak is 1710.6 feet above the Observatory, or 1818 feet above the mean sea-level. There is also a report on five-dy means of the principal meteorological elements for 1884 , constructed according to the recommendations of the International Meteorological Congress, and a complete weather report for the same year. With four well-equipped observatories (Tokio, Shanghai, Hong Kong, and Manila) at work, the meteorolsy of the China Seas will soon cease from being the sealed book which it practically is at present.

LAST year was a tolerably productive one for the collectors of prehistoric remains in Switcerland. The water of the lakes ws almost conatantly below the highest level, which is the mosk favourable state of things for explorations around the lake dwellings. The remains divcovered belong mostly to the Bronse penod, and the chief localities in which they were found were Lake Ne thitel and the settlement of Wallishofen near Zurich. \$. 1uw if which is the only station of the Bronze period yed In w in Livtern Switzerland. Among the most remarkable ant les d-covered at this settlement in 1884 were a splendilly pre erved honre iv. rd, several dorens of bronse hatchets. preerred here then ins of the Stone period liscovered is
the same year the most notable are those obsained at Robenhausen, including several pretty knife-handles made of yew, some excellent specimens of mechanical industry, such as thread, woven fabrics, fishing•nets, \&c., and ears of barley and wheat, one being a specimen of the rare Triticum turgidum.

The Zoological Society of Philadelphia, according to the Thirteenth Report of the Board of Directors, appears to have suffered during the past year, like many other institutions dependent on the public for support, from the general depression of trade. The financial balance shows a large reduction; nevertheless the Superintendent is able to report that the collection "presents to-day a greater and more typical variety of animal forms, in fartherance of the educational facilities which have been one of the chief aims of the Society, than at any previous period of the history of the garden." Among the principal additions during the year was a hippopotamus, the first obtained by the Society, a collection of European water-fowl, and a brush-turkey (Tallegalla lathami) of New South Wales. The specimen procured is a female, but it is hoped that a male may also be obtained, and that its extraordinary habit of hatching its eggs, by covering them with decomposing vegetable matter, may be shown in the garden.

It seems that the experiments of Dr. Ferran in inoculation for cholera have been stopped by the Spanish Government.

The Sanitary Congress at Rome has been engaged during the past week mainly in discussing quarantine regulations.

We have received Prof. Theodore Gill's " Account of the Progress in Zoology" for 1883 , from the Smithsonian Report a substantial pamphlet of over fifty pages. The special dis. coveries recorded have been selected either on account of the modifications which the forms considered force on the system, or because they are or have been deemed of high taxonomic im. portance, or the animals fer se are of general interest; or, finally, they are of special interest to the American naturalist. The arrangement of the account is as follows :-General Zoology, Protozoans, Porifers, Colenterates, Echinoderms, Worms, Artbropoids, Molluscoids, Mollusks and Vertebrates. Each of these divisions is sub-divided according to the discoveries to be noted. At the end, a brief bibliography of noteworthy memoirs and works relating to different classes is appended. "The statement," Prof. Gill says, " is not intended for the advanced scientific student so much as for those who entertain a general interest in zoology, or in some of the betterhoswn classes. It is compiled for the many rather than the few, and hence, perhaps, zoologists cultivating limited fields of research may find omissions, as well as notices of discoveries of minor importance."
On May 20 a terrific storm raged in Paris; a stupendous peal of 2 hunder was heard at in a.m. It seems the lightning struck the top of a high furnace at St. Ouens, near Montmartre. It is supa posed that it was attracted by a mass of lead which was pla zed at this elevated situation for some purpose. The pecu-lia-ity is that no trace of the lead was afterwards found

The centeunial celebration of Blanchard and Jeffries crossing the Channel in a balloon was celebrated on Sunday at Guine, P'as de Calais, where the two travellers landed.
Shocks of earthquake were felt at Wartberg and Kindberg, Austria, on May 20 towards I. 30 a.m. A sharp shock was felt 14 Stoyrna at 7.15 p.m. on May 26.
Prop, Dewar, F.R.S., will give a discourse on "Liquid Air and the Zero of Absolute Trmperature" at the last Friday evening meeting of the seasor it the Royal Institution.

AFEW years since the German Anthropological Society initiated an exhaustive investigation among German school children as to the proportion of those with dark and with fair complexions. This has been followed by similar investigations in Belgium, Switzerland, and Cislethian Austria, and these have supplied gaps in the German inquiry. The result was, according to Dic Natur, laid before a recent meeting of the Berlin Academy of Sciences by Herr Virchow. In all, 10,077,635 children were examined as to the colour of the skin, hair, and eyes; $6,758,827$ in Germany, 608,678 in Belgium, 505,609 in Swizerland, and 2,304, 501 in Austria. The geographical boundaries were the Pregel and Dniester on the east to the Vosges on the west ; the Baltic and German Ocean on the north, to the Adriatic and the Alps on the south. The following is the result:-Of pure blondes there were found in Germany 2,149,027; in Austria, 456,260; in Switzerland, 44,865 ; a total of $2,650,152$, which, on a total of 9,468,557 (Belgium being omitted here) children examined, is rather more than one-fourth. The number of brunettes was: in Germany, 949,822; Anstria, 534.091; in Belgium, 167,401; in Switzerland, 104,410; a total of $1,755,724$, or alsout onesixth of a total of $10,077,635$. Hence more than half the school children of Central Europe are of the mixed type. The distribution of the pure types is very different. In Germany $31^{\circ} 80$ per cent. is fair and $14^{\circ} \mathrm{O}$ per cent. daak; in Austria the dark predominate, being $23^{1 / 17}$ per cent., while the fair amount only to 19.79 ; in Switzerland the disparity is still greater, for the blondes are only wi'so per cent., while the brumettes are $25^{\circ} 7$; and in Belgium the blondes are 27.50 per cent. In Germany, therefore, the fair complexions predominate; but even here the proportions vary greatly, getting less and less as we go towards the south. In North Germany the proportion is between 43.35 and 33.5 per cent. ; in Central Germany, about 25.29 ; and in the south, only 18.44; while, on the contrary, the proportion of dark children diminishes from 25 per cent. in South Germany, to 7 per cent. in the north. This appears to show the incorrectness of the theory of the French anthropologist that we must seek the real Germans in South Germany, and that North Germans are a dark race, a mixture of Finns and Shavs. The fair people are most numerous in Sleswick-Holstein, Oldenburg, Pomerania, Mecklenburg, Brun-wick, and Hanover. That this should be the case in Mecklenburg-formerly a Slav district-is due, according to Herr Virchow, to a return-emigration of the Germans. Middle and Western Germany were especially the cradle of this emigration. Flemings, Dutch, and Frisians thus reached Holstein, Westphalia, Brunswick, Mecklenburg, and Pomerania. Saxony, Silesia, and Northern Bohemia were colonised through Eastern Franconia, Austria from Bavaria. The emigration of the German tribes took place at two different periods: the first, a movement from south to west, which ended with the fouadation of the Frankish monarchy ; the other a return to the last, which began with the Karolingian periot, and is not yet concluded. The latter has Ied to a permanent colonisation, and to the formation of a new pure German people. The deep brown colour of the south and middle Germans, as well as of the Swiss, is traced by Herr Virchow to the Romans, Rhetians, and Illyrians, and especially to the remnants of the Celtic or pre-Celtic inhabitants, which have now become mixed with the Germans.

The experiment of acelimatising the Amcrican Whitefish (Coregonus albus), lately tried by the National Fish Culture Association, has met with great success. Until now the attempts made were unsatisfactory, the utmost difficulty being experiencel in finding suitable lakes for the reception of this valuable edible fish. The whitefish in question were incubated at ,South Kensington in March, and afterwards transferred to ponds at Delaford where they have thrived well ever since.

有

 Neibl, fausan, and 11 itrumu in a mular ursey whah

Carz y stiof ot the Koral Engatets, Fat wemant fo

 on live bor matils min

The ar whit, luth) fer ale line rian we proually re

 Kefure 13,

 Hie nith thinges = hor

 the yove isgo, it wis hat -wn I, reptse ale we

 (wative

 wival (ar sting on

 that nave it wralloit nentught, veme tht wore hime the
 ", hivizer
LWHERSITY ANO ANCCITIOWM
MTALLGANCE
 at hune Pitho: Hot mity

 my rbir

colour of the more stable pigment -xanthophyll-preponderates over the green of the metachlorophyll in the newly-hatched larva. The bands of xanthophyll are distinctly seen in an alcoholic extract of crushed ova taken from the bollies of moths which have been preserved for ten years or longer. In blown and dried larvae the greens soon fide, while the yellows persist and the pigment can be detected after many years. The true pigments are also unaltered. In larve preserved in spirit the derive 1 pigments quickly disappear, and the alcohol is yellow with xanthophyll, while the true pigments are unchanged. These facts are also true of phytophagous hymenopterous larva, as well as in the lepidoptera. Thus in Nem ifus curtispimz the green colour is due to derived pigment, while the lroad white dursal band is due to fat collected on each side of the dorsal veivel (and it can be seen to move with the pulsations of the latter). In Critsus Seppentrionatis fat becomes the vehicle for a yellow colour. The few exposed pupe of moths are coloured in the same manner as the larvie (0.8 . the Ephyrifir and E. angularis). In the Ephyridxe, dimorphic larva-green and brownproduce pupe which follow the colour of their respective larvee. Larval markings can often be seen upon the pupa immediately after pupation. Thus the pupa of Sphine ligustri is marked by the obligue stripes of the Larva. The pupe of butterflies are nearly always protectively coloured, and often possess the derived pigments. In Papt?io machaon the derived pigments of the pupl are segregated in a very remariable chitinised (?) subcuticular layer, which is quite opaque, so that no effect is produced hy the bright yellow blood (xanthophyll).

Mfchads of Ivvesfigation and Spectra of derived Pigments.Zeiss's micro-spectroscope was always employed, with bright sunlight as the means of illumination. The blood is obtained by pricking the pupa or the laeva in some situation reunote from the digestive tract. Existing under pressure, most of the blood at once emerges as a clear bright green or yellow liquid (when the derived pigments are present). It is received into a tubesection, with one en.l cemented to a glass slide, and when full a cover glass is placed upon the open end, becoming fixed by the drying of the blood. In most cases the blood s? prepared will keep for montls. The spectrom of metachlorophyll is as foll sws (in the case of the bright green fresh blood of the pupa of Py,izra su*phialus in a thickness of 23 mm .) : -

Chief land in the red, $71^{\circ}-65^{\circ}$, continuous with a less absorption extending to 55°, darkest from $58^{\circ} 5-59^{\circ} 5$; a broad band from $52^{\circ}-48^{\circ}$, with the dimned blue and violet coming throngh $4^{8^{\circ}}-4^{\circ}$, from which latter point the violet end is absorbed. There is no absorption of the extreme red. A Zeiss's scale is allopted in which $1^{\circ}=1 / 100,000 \mathrm{~mm}$.

Comparing this spectrum with that of true chlorophyll, as seen in two fresh calceolaria teaves, the whole spectrum is shifted towards the violet end in the latter case, with the exception of the end absorption, which extends to 43°. The chief land in the red is $70^{\circ}-64.5$, and the the continuous absurption of metachlorophyll is replaced by two ban's: $61^{\circ}-63^{\circ}$ and $57^{\circ} 5$ -60°, and if anything the former is the darker. The brosd band is $47.5-51^{\circ}$, and the dimmed blue and violet $47.5=43^{\circ}$. The chief difference is the continuity of the three bands of the red end in metachlorophyll, and the fact that their darkness is in the order (1) (3) (2) from the red, instead of (1) (2) (3). A similar spectruin (as far as it could be identified by the use of a paraffin lampl was observel in a clear green fluid from the digestive tract of the larva of Phlogonhors meficulosa. In yellow sh green blood (prpa of S. . i;'us'ri) the absorption at the violet en I is aided by the xanthophyll present, which gives two bands if the thickness of blood be sufficiently small. In some cates a third band is also present. Thas the hl od of S. lisustrs in a thich ness of 3 mm . does not give the band of chlorophyll in the rel, but shows three bands in the more refrangible half of the spectrum : $4^{8^{\prime}} 50^{\prime}, 45^{\circ}-46^{\circ} 25$, and $4^{\circ}-43^{\prime}$ the violet end being absorthed at 41°. Between these areas of absorption the spectrum is dimmed The three bands becotne less distinct in the above-mentioned order, and the third can only be seen under favourable conditions of light, and appears to be absent in some cavec. Mr. Sorby states that a third hand, due to another substance, is so netimes present in the xanthophyll spectrum. While the spectrum of metachlorophyll is very constant over a large number of larver and pupee, in the living green pupa of Ephyras punctaria, a forn of chlorophyll with a rather different spectrum was met with, in which the second band of true ehlorophyll is present instead of the continuons absorption, while the thirl hand could not be scen in the slight thickness oltainable. The
term "ephyra-chlorophyll" is given to this pigment, which is dissolved in the blood of the pupa. Metachlorophyll, and probably xanthophyll, are united with a proteid in the blood. The addition of ether to green blood brings down the combined pigment and proteid in the form of a green coagulum, from which the ether does not dissolve the metachloruphyll, but gradually takes up the xanthophyll, becoming bright yellow. Alcohol, on the other hand, decomposes the combined proseind and pizments, the coagulum rapidly becoming decolorised, and the xanthophyll passing at once into solution, while the meta chlorophyll disappears. Hence it seems that the latter pigmest depends upon its association with the proteid for is extreme stability and permanence under the action of light. This parmanence is necessary for the larva, slace any coloar dac to derived pignents implies the penetration of light, and often the complete translucence of the whole organism, and, further, there are long periods (at the eedyses), during which the pigwents cannot be renewed, because no food is taken. Then there arc the extreme cases of the green Ephyra pupre, and the greas pupe of P, machaon, frecly exposed to daylight during :w) thirds of the year. It seems certain that the derived pigmeon are merely protective, and are of no further importance in the physiology of these organisms. Thus it is not probable that there are any marked differences bet ween the phytiological pro cesses of the green and brown larvae from the same batch of eggs, or in the processes of a green larva which has become brown, or tice eversd. The blood of larvae seems to be alway? acid (and so with all pupre examined, except E. fundaris, of which the blood was neutral, in the only instance is which the blood of this pupa was tested), but I have as yet been unable to obtain a sufficient quantity of blood to determine what wid 5 present. The blood forms a solid, black coagulum which is doe to oxidation, and does not take place when the blosd is preservel in the manner deicribed above. The injured parts of larrs which have healed are black. It is probable that the darkesis. of pupere and of the cuticular pigment of larvee is also due to 00 dation. There is great variability in the amount of clot forasel and in the rapidity of the process.

Hisforical,-Mr. Raphael Meldola, in the Prow. Z.wl. SN, Es 1873, and in the editorial notes to his translation of Weismanal "Studies in the Theory of Descent," Part. II., "On the Origs of the Markings of Caterpillars," \&c., argues very conriacingl for the use of plant-pigments by green larva He points oft that internal feeders are nover green unless their foot contin chlorophyll, and that when this is the casc ($V_{\text {pationis crysia }}$ thells, \&c.) they may be green, although the colour cantont be of any advantage to them. Pocklington (contirmed ly in MacMunn) found chlorophyll in the elytra of Cantharides, wh Chaturd secms doubtful about the same pigment in this sits tion (Comft. Remd., Jannary 13, 1873, and AnN. Chim. Paply 5, iii., I 56). Ir. MacMunn found a hand in the red which resembled chlorophyll, by concentrating light on the integreetr of the larva of Picris rasie and examining with a microspetive scope; but both he and Krukenierg refer the pignent to the larval digestive tract. (See Repurts of Iritish Arscituot at Southport, 1883, and a letter by Dr. MacMunn to Sarch for the weck ending January 10,1885). It is very ualikelr thes the green colour of so thick and opaque a larva can he dee to it digestive tract, and it is probable that the blood, with its ds solved n:etachlorophyll, was lost in the manipulation. Fmp memory of the appearance of the larva, and from camiong a blown specimen, I should certainly infer that there are ato derived pigments in the subcuticular tissues.

The K'fations betwoen the Colour of Phytoghasws lariof an that of their Fised. Phants. - Entomologists bave heen long awat! of the fact that the colours of many larver vary (within the limits of the same species) according to the colnur of the plan upon which they are found. Complete references to the olis vations hitherto recorded upon this point occur in Mr. Mellolit writings (mentioned alove). Among the most important od these is a paper by Mr. R. M'achlan (Tram. Ent. S do, tsty p. 453) in which data are given as to Empictacia abynitiota, which were yellowish when found upon. Senerio jacches, redtich upon Cenfaura nigen, whitish upon Matricaria. When pestly full grown they were all given Senccio jacomad without altering the colour of the reddish and whitish varieties From this No. M'I achlan argued (1) that it was neces-ary for the laryx to bane fed on the one kind of plant from the egg to acquire the reete blance; (2) that the colour is not caused by the food show ing through the somewhat transparent integument. Mr. Meldod
scces many jostances in which the larva of S. ligustri has been axened to vary arcording to its food-plant (laurustinus, lilac, rivet, 2h). I have for many years known of the difference xeween the litae and privet forms (the latter being of a brighter rellower green than the former, with lrighter stripes). In 1884 Ihred twelve larvx from the egg upon privet, and the same tmber upon lilac. All the privet and six of the lilae larve mached maturity, and, without exception, showed the differences indicated above. A more remarkable instance is afforded by 5 wruntint ovelatus, Mr. Meldola quotes Mr. E. Botcher as fodiec many yellowish-green varieties of this larva upon Salix naimatio, and many bluish-green varietics upon S_{0} triandir, cinflar to those which are well known to oceur upon apple. The former varicties possessed the rows of reddish-brown spots shich sometimes occur on this variety of the larva. Upon susber species of Salix he found instances of both varieties. In tsio Mr . Boscher condueted some breeding experiments at Mr. Meidola's suggestion, feeding the Jarve from the egy upon Striandra, S. viminalis, and apple, respectively. Only three of the third lot survived, and were all of the bluish-green form. I have also found (Trans. Ent. Soc., Part I., A pril, 1884) that S. ruins and S, civerea produce the yellowish varicty, but S. imindits the bluish form, according to my experience. In ifly I feif five lots of six larva each, from the egg, upon apple, trab, Saix viminalis, S. cinerca, and S. rubra, respectively. On a fet occasions S. babylowica and triandra were substituted fue S. ralird, and ordinary apple for crab. The eggs were hatched July 15 to 18, and most of the larvae were full fed by Angust 23. with the following results:-Apple: the five larvae race typical bluish.green forms. Chab: the five larva were 1so typical bluish-green. S. ziminalis: the four larve were ont is) whitish as the above-mentioned lots, but were almost interediate. S. cinera : the four larve were also intermediate. S. mhera: the four larvae were yellower than any of the others, bit eer not much beyond intermediate forms. The yellowest vis separated on August 14, and fed upon apple, becoming iddla Augurt 26 , by which time it was rather whiter than any cthers of the same fot (S. rubras).
Thas there was no doubt about the effects produeed, but there "ala 2 troog tendeney all through towards the bluish variety, with the food-plant could only overcome to the exient of poducing an intermediate form. The same conclusions were forned by a comparison of larvac found in the field during $\mathbf{8 8 4}$. This two nearly opposite varietics were found upon the same tine (PS. joruginna, Anderson); an intermediate varicty was bond upon S. rwbra, and a bright yellowish variety upon apple. Attbe same time the great majority of larva found were such as Inoold hare anticipated.

Experiments were made upon the younger captured larva, which were fed upon food-plants tending towards a different colous. The results were similar to those indicated by the homer experiments. Some effect could be produced in an arrmediate variety by feeding it for some considerable time apsa a food-plant known to have strong tendencies, but no sod effect is produced upon a larva with a strongly-marked chlocr, i.c. one with strong tendencies itself, and corresponding with those of the food-plant. But the former experiments show that a very strong larval tendency may be counteracted to the event of producing an intermediate form by feeding it from the \% upon a food-plant tending strongly in the other direction. ben thas latter effect has become manifest, it was proved that is appropriate change of the food at a comparatively late period $t{ }^{4}$ ay produce some considerable effect in the direction of the trigital lempency. The most probable explanation of the abovementioned facts is that the effects of the food-plant are hereditary, and accumulate when the larva of suecessive generations led uperp plants with the same tendencies. Conversely feeding upan plants with different tendencies, and interbreeding, acconess for the irregularities observed. Thus in the larvie fed how the egg, it is supposed that the previous generation (or (Torrations) fed upon plants tending towards bluish-green larvas. The yellowish larva found upon apple must have descended from a line fed upon S. rubra, or a plant with the same effects. The localication of a food-plant would overcome both causes of Integurity, the liability to lay eggs on plants with different tendencies, and the chance of interbreeding between the two ratiefies.
This explanation is in accordance with the fact that the larva are of a very uniform tint upon apple trees in gardens, which are to a certain extent locally separated from the various species
ol sallow growing by the banks of streams, and in damp lanes and hedgerows. The strong effeets produeed upon the larve lyy apple, the usual proximity of many trees, and the sluggish flight of the Smerinthi, doubsless all conduce towards the uniformity leetween the larvar upon this food-plant. On the other hand, there is the greatest facility for (the observed) irregularity in the results of sallow upon the larvie, for many so-called species with various tendencies grow close together, so that there must be interbreeding and the deposition of egg' on various species of food-plants, even in the case of very sluggish insects. It is probable that certain conflicting statements as to the effect of the different food plants upon the larva of S. ligwstri are to be explained in the same way. As to the structural cause of the variability in these two larvx, the main factor is a change in the relative amounts of the two derived pigments. Thus these is more xanthophyll in the blood of the pupa of a yellowish S. ocellatus than in the other case ; and more chlcrophyll with less xanthophyll, in the blood of the pupa of S. Jigustri, from the greener larva fed upon lilae than from one fed upon privet. The result of this adjustment of the relative amounts of derived pigment is to produce a eolour which harmonises with the part of the environment imitated-the undersides of the leaves in the case of S. ocellatus, the tout ensemble of the food-plant in the case of S. li/mstri. In neither instance can the effects be due to the most direct and simple action of the food itself-the solution of its pigments in their normal proportion showing through the skin. This is disproved by the fact that S. ocellatess eats the whole leaf, but resembles the ninderside, and imitates in derived pigments an appearance langely due to texture ; further, the effects do not at ence follow a change of food, and a strong larval tenclency may even cause the rearrangement of the derived pigments, so as to produce an effect untike the leaf. The simple view allows no room for larval tendencies or for delayed effects. It has also been rendered very probable that the effects aecumulate during successive generations. In the case of S. ligustri there is the addisional difficulty that the larval pigment of the oblique stripes is affected by the food-plant as welf as the derived pigments. Such effects cannot be explained by any simple theory of phytoplagic effects, but it still holds good that phytophagic pigments play a most important part in larval coloration, and afford the chief material which is moulded by some influence-subtler than that which is ims plied by the term "phytophagie" itself-jnto likeness to a special part of the environment. The little we know of this inflaence points towards a nervous circle whose cfferent effects are seen in the regulation of the passage of altered plant-pigments through the digestive tract into the blood, and finally the tissues, and in the colour of a certain amount of larval pigment, while the afferent part of the eircuit must originate in some surface capable of responding to delicate shades of difference in the colour of the part of the environment imitated This interpretation is rendered unusually diffeule by three facts : the gradual working of the proeess, often incomplete in a single life; the exeessively complex and diverse results, and the special character of the stimulus (for it is only the part of the environment imitated which produces any effect -if. the undersides only of the leaves in the ease of S. ocellatus). During the present year I hope to experiment further upon the subject, and I have a lange number of living pupse of S. ocellatus, with the life-histories of their respective larvec carefully noted

Chemical Society, May 7.-Dr. Hugo Müller, F.R.S., President, in the chair. - The following papers were read :-On some points in the eomposition of soils; with results illustrating the sources of fertility of Manitoba prairie soils, by Sir J. B. I.awes, Bart., LL.D., F.R.S., F.C.S., and J. H. Gilbert, Ph.D., L.L.D., F.R.S., V.P.C.S.-Rescarches on the relation between the molecular structure of carbon compounds and their absorption spectra, by Prof. W. N. Hartley, F.R.S. In continuation of the author's previous rescarches (Trams., 1881, $57-60$ and iti-128; $1883,676-678$), measurements have been made of the wave-lengths of the rays absorbed by the following substances :-(1) Aromatic hydrocarbons: benzene, the three xyleaes, and naphthalene. (2) Aromatic tertiary bases and their salts: pyridine, picoline, quinoline, and their hydrochlor ides. (3) Addition products of tertiary bases and salts: piper idine, tetrahydroquinoline, and its hydrochloride. (4) Primary aromatic bases or amido-derivatives and salts therevi: orthoand para-toluidine and their hydrochlorides. In the preparation of solutions, a milligram-molecale, that is, the molecular weight

time have been united together and formed a single deposit, and shows how that excludes the hypotheses that they ware formed in the place where they are now found, and that they are derived from deposits anterior to the period of volcanic activity. -On the relations between the maxima and minima of the solar protuberances, and the maxima and minima of the diurnal oscillation of the declination magnet. Prof. Tacchini, after giving an account of his own researches already published, on the maxima and minima of the sunspots and solar protuberances, referred to the observations of Prof. Schiapparelli on the values of the range of diurnal oscillation of the declination needle, and from the comparison of the two sets of observations, it appears that of late years the connection between the solar protuberances and terrestrial magnetism is m re strikingly manifest. These and other similar observations, Prof. Tacchini ardded, corroborate the idea entertained by himself and some others, that electricity plays the chief part in the solar protuberances, and that electricity is able to produce corresponding magnetic disturbances on our globe. It may therefore be inferred with certainty that the phenomena of the sunspots, the solar protuberances, and terrestrial magnetism are closely connected together, and that by means of one of these sets of phenomena it is possible to determine with tolerable precision the epoch of the other two. In dealing, however, with phenomena of rather long period continuous observations for at least half a century are necessary to make our researches complete.- On the spectroscopic observations of the limb of the sun and the solar protuberances made in 188i and 1884 at the Royal Observatory of the Capitol,-Prof. Respighi laid before the mecting some considerations of his own, based on observations made in his own cbservatory, and leading him to conclusions different from those of Prof. Tacchini. He maintains that the maximum of solar protuberances occurred towards the end of the thind quarter of 188 t . Holding that the sun-spots are due to partial cooling of the surface of the sun, and the protuberances to the escape of gases from the interior, Prof. Respighi believes that such perturbations are not of a nature to occur in periods, even though tbey retain a certain relation among themselves, and still leas can he admit any connection between the maxima of the solar protuberances and the elements of terrestrial magnetism. - Metcorological ohservations made by Signor P. Orlandi, a physician of Rome, during the years 1809-1820. Signor Narducci called attention to a manuscript in the Bibliotecs Angelica, containing some interesting medico-meteorological observations made by Signor Orlandi, a medical man belonging to Rome, between the years 1809 and 1820. These observations are copious and complete, having been made daily. They also include notices of movements of the earth's crust and inundations of the Tiber. Signor Narducci mentioned that Dr. Orlandi was a maz of science and writer of great renown in his time. Large extracts from the observations of Orlandi are to be published in the Anna/s of the Central Office of Meteorology, and they will thus be able to be compared with those pablished by distinguished astronomers belonging to the same epoch. - On the last and recent maximum of sun-spots and solar protuberances. Prof. Ricob gave an account of his own observations made at Palermo on the phenomenon of the solar protuberances, which was so important on account of its coincidence in time with very singalar manifestations of the solar maculre. Prof. Riced deduced from his own observations, harmonising, as they do, with those of Prof. Tacchini, that, starting from the last maximum in the period of eleven years, the number of the protuberances went on increasing till 188, when a first maximum oceurred. It was further verified that the absolute maximum fell between the end of 1803 and the beginning of 1804 , and that on that occasion the maxiz-m of protuberances continued beyond that of the sun-spots. Finally, leaving out of account secondary oscillations, Prof. Riced asserted that a parallelism nay be observed between the frefuency of sun-spots and pmotuberances, the pifiadpal maxima and minima of both phenomery ronctling wis ie- $\quad-$ Do the relation 2 between the mixina imi r maxima ant wastren rel il Deerle o frish at C ande a comparison betwn
$1-$ of
17 y
medle
mirrar. inerinn perhe mag.
netic influence of this magnetic changes arrives at the concl of the sun-spots min declination needle Action of nascent and Magnaghi hay that pyrrol is con the action of $\mathrm{s}=$ notice of the exy increasing the nu experiments in hydrogen on oth electric calibrati that in accurat length and resi one another, d of his own by fectly calibrate out accessory the resistano from the are Prof. Besso equations of degree. $-\mathrm{P}_{\mathrm{z}}$ mination functions.tions mad various cot

SUBSCRIPTIONS to "NATURE."
 Quarterly. 76
To the United States, the Continent, and all places within the Postal Union:-

| Yearly. | 30 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Halfyearly | 15 | 6 |
| Quarterly. | 8 | 0 |

CHARGES for ADVERTISEMENTS.
Three Lines in Columin 2s. 6d. 9d. per Line after.
One-Eighth Page, or Quarter Column ... 0
Quarter Page, or Half a Colcoid I 150
Half a Page, or a Column
$\begin{array}{ll}1 & 15 \\ 3 & 5\end{array}$
Whole Page
660
Post Office Orilers payable to MACMILLAN \&o CO.
OFFiCE: 29. Bedfukd Street, Strand, W.C.

Biary of Gocicfics

t.onfon

THURSDAF: Mavas.
Societv of Telegmaph Fnginekes, at 8, -Ship Lighting by Glow-Lampe, embodying Results of Trial for Economy in H.Mt S. Colowns: E. I. Farmuharson,-Electric Lighting at the Forth Bridge Work: J. N. Schoollored, B.A.
Royal Institutton, al 3.-Poisons: Prof. C. Meymont Tids. FRIDA). MAr s.
Roval. Institution, at n-Mechaaical Production of Cold, and Effects of Cold on Microphytes: J. J. Coleman and Prof. J. G McKendrick.

SATUCRDAP' Mav 30.
Roval Institution, at 3, "- "The Teaching of the Twelve Aporties "-an Ancient Decument-with Illustrations from the Talmud: Kev. C. Taylor, MOND.A Y, June 1.
Society of Chemetal Indestry, at 8.
Roval Institution, at g^{-}- General Monthly Meeting. TUESDAY' JUNR a.
Zootontal Socirtv, at 8.30 -On the Anatomy of the Sondaic Rhinceeros: Frank F. Reddard, F 7.S., and F. Treves, F. Z.S.-On Megalapteryx hectori: Dr. Julius von Hast, C. M Z.S.-On the Birds collected during the Vigaze of the Vache, Warchesa. Part IV On the Collection of Birts from Celeher Part V. On the Collection of Birds from the Moluccas: Ir. Guillemard, F.Z.S.
Roval institution, at 3-Digestion and Nutrition: Prof. Gamgee. THUNSDA 5, JCNE 4.
Linneax Nociety, at 8.-Vernation and Developenent of Foliage from Buds: Rev, Cieorge Henslow,-Supplementary Notes on Restiaceat: De. Maxwell Masters-(hecurrence of I. ycopodites Vanuxenx in Pritain, with Kemarks on its Affinities: R. Kidston,
Chpmacal Societr, at 8 -Ballot for the Election of Fellows--On the Constitution of the Haloid Naphthaline Derivalives: Prof. Meldola.-On the Action of Ammonia on Aceto-Acetic Ethyl Ether: Norman Collie, Ph. D.
Roval Institution, at 3- Poisons: Prof. C. Meymott Tady.

$$
\text { FRIDAY". JuNK } \mathrm{g}
$$

Grologists' Associattom, at a. - On wome recently diceovered Insecta and Arachnida from Carbonifer us and Sharian Rnck a: Hertert G Mes, F. fus. Futes on the Superficial [eposits of North Kent : J. G. Goodchild, Royal
Roval Institution, al g.-Liquid Aif: Pruf. Dewar. SATVROAY. Junk 6.
Rowal Institerions, at 3--*The Teaching of the Twelve Apostles"-an Ascoent Doevinent-with Mifustrations from the Talmud; Rev. C. Taylor

MICROSCOPIC OBJECTS FOR HIRE, Histologitat, Botaulical, Geological, by the best Muupters. Let out on mout moderate terms. Particulars of B. WeLLs, Dalmain Rond, Forest filt.

HOW \& CO.'S

Geological Transparencies for the Lantern. Descriptive Catalogue on Application.
(\%ALKER'S SPKCIFIC GRAVITY BALANCE FOR ROCKS HOW \& CO."
MICRO-PETILOLOGY,-Syetions ot Phechstonef, Ubidians, Granites, reritex, Dharifet, Gablins, Dolaties, Banslts, Tachyliter. Trachyred, redesitse, Jopphyrites, Rhyolites, Lavas, Aphes, Gnciss, Schints, IJme

AMATEURPHOTOGRAPHYMADE

MICROSCOPES.-English and Foreign
Zeiss Stands and Verified Obiectives it Stock. All Apparatus for Collecting, Mlounting, and Storing Otjects.
Colleges and Schools supplied; Moderato Terms, See Price List. Post Frec. WM. HL'ME, 1, Lothian Street, Edinhurgh.

CHEMICAL APPARATUS, Wholesale and Retait, for Colleges, Schoole, and Cliemical Works.
New Catalogue of 50 Pages and 500 Clear Illustrations. Post Free ad. WILLIAM HLME, 1. Lothian Street, Edinhurgh.

PHOTOGRAPHIC APPARATUS.-Profossibnals and Antateurs supplied from an Entensive Stocio. See New Itlustrated Catalozue, Post Free WHLLIAM FIUME, 1, Lothian Street, Edinburgh

NON-MAGNETISABLE WAICHES.
WATOHES which cannot be "MAGNETISEDD," constructed at the recommendation of W. Cuookns, Esq., F.R.S, and as exhibited at the Electrical Exhibition, Paris.
E. DENT \& CO.. Makers of the Primary Standard Timekeeper of the Royal Observatory, Green wich.

Only Addresses : -61 , Serand, and 34, Royal Exchange, London. N.B.-Watches can to converted in this plan.

SANDERSON \& Co.,

Bole Inventorm of the Solid Copper Tape
LIGHTNING CONDUCTOR
In Continuous Lengths, without Joints, assupplied by them to IlerMajess's Guvernment and the Colonies: the llalan Governament, the Argentupe Re. public, and other Foreign Governments ; the Royal Courts of Justice, Strane, the Houses of Parliament, Ac.
The Jury Commission, acting on the Reports of the International Juries of the Health Exhibition, have awarded a Bronre Medal in Class 36 to Mexsra. Sanuerson \& Co. for their Solid Copper Tape Lighining Conductors in Continuous Lengths, without Joints, and of High Conductivity Copper.

LEADENHALL HUUSE, tot, LEADENHALL STREET, E.C.

SECOND EDITION, GRIFFIN'S CHEMICAL HANDICRAFT

 PRICE 4s. 7d. POST FREE.a catalogue of chemical apparatus,
ILLUSTRATED, CLASSIFIED, DESCRIPTIVE. Demy 8 vo , 4 so pp , 1llustrated with 1,600 Woodcuts.
Most Complete and Cheafest List of Afpuratus,
JOHN J. GRIFFIN AND SONS, 22, GARKICK STREET, LONDON, W.C.
FRY'S
GOLD MEDAL, CALCUTTA, 1884.
COCOA
"Pure Cocoa."-CuAs, A.
Caveron, Analyst for Dublio.

Nineteen Prize Medals Awarded.
THE CELEBRATED

[^2] are. It reguives no nil. Shappen with a opittle or water. Puts on a kcen. charg edge; no humbug abott this. Has stood the test of 100 Jears. Cut Honoser for Axes, Hedge Knives Ragors, Peoknives, atod Prate iroms, ac International Exhibition, ICB4. Aak yonr Ifonmonger or other rehail house internatuoa yoxh and give my addrest; if he won't, drop the a sote.

JOHN C. MONTGOMERIE,
Taunlgilianthe Stotie Hove, Werke, Dalmory, Tarboltoo Suation, R. 5.O., Ayrobire.

ASK AT THE LIBRARIES

H. M. STANLEY'S NEW WORK, THE CONGO

and the founding of its free state.

Two Vols. Demy 8vo. With over 100 Full-page and other Illustrations. Two large Maps and several smaller ones. Cloth extra, $\boldsymbol{L}^{2} 28$.
TIMES.-"The founding of this unique State is the one subject which, during the last seven years, has never lost its interest" ATHENEUM.-"Mr. Stanley may fairly boast of having given to the world two of the most remarkable books of travel. and this second work is in every respect by far the more interesting."
ST. JAMES'S GAZETTE.-"Will prove as successful as the record of it is entertaining,"
GLOBE.-"The traveller's personal adventures will, to many readers, be the most attractive part of the book."
PALL MALL GAZETTE.-" The reader, be he traveller, sportsman, adventurer, or of Manchester, will turn over its pager with delight."
DAILY NEWS. - " Sufficient in itself to have founded a great reputation."
GRAPHIC.- "The book, apart from its interest, is an important contribution to the world's history:"
London: SAMPSON LOW, MARSTON, SEARLE, \& RIVINGTON, i8s, Flect Street, E.C.

WOODHOUSE \& RAWSON,

SUPPLIERS OF ALL ELECTRICAL APPLIANCES,
Grfices-if, queen Victoria Street, e.c.
 SOLE MANUFACTURERS OF THE WOODHOUSE AND RAWSON INCANDESCENT LAMP. inquiries invited.

WALTEAMEROTREES,
THE "HALF.GUINEA" ALE BREWERY, LONDON, S.W.

WALL PAPERS FREE FROM ARSENIC.

 WIlliam WOOLLAMS \& CO., Manufacturing Paper Stainers, are trz Oriainal Makizs on
ARTISTIC WALL PAPERS, Guaranteed Free from Arsenic.
Sole Address-rio, HIGH STREET, MANCHESTER SQUARE, LONDON, W.
May be abtalsed of all Decorators.
Special Prise Medal, Sanitary Inatitute.
Award of Merit, International Medical and Sanitary Congress. Silver Medald National Health Sociry, tily gold medal, international health exhibition.

PRIZE MEDAL
AWARDED

EKARTETE \& PEAEX,
[By Appointment to the Royal Institution of Great Brifain,] SUCCESSORS TO W. LADD \& CO.,
beak Street, regent street, london, w.
MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FOR SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.
WIMSHURST AND VOSS INDUCTION MACHINES OF IMFROVED PATTERN.
Illustrated Catalogue, Rezised Edition, per post 8d.

Messrs. MACMILLAN \& C0.'S NEW B00KS.

now ready.

TEXTBOOK O F GEOLOGY.
${ }^{8 Y}$
ARCHIBAI.D GEIKIE, F.R.S.,
Dircter-General of the Geclogical Suracy of the United K'thsdom.
With numerous Illustrations, Second Edition, thoronghly Revised. Medium 8vo. 28 s.

SHORTLY.
CLASS BOOK O F GEOLOGY.
FOR THE USEOF COLLEGES AND SCHOOLS.
${ }^{\text {ar }}$
archibald geikie, f.r.s.,
Diretor-General of the Gewlegical Survey of the l'mited King dom.
Fcap. 8vo.
by the same author,
PRIMER OF GEOLOGY.
With numerous Illustrations. New and thoroughly Revised Edition. 18mo. Is. (Science Primurs).
PRIMER OF PHYSICAL GEOGRAPHY.
With numerons Illustrations. New and thoroughly Revised Edition. With Questior.s. 18mo. is, (Scaence Primers).
NEW VOLUME OF THE GOIDEN TREASURY SERIES.
LYRiCAL POEMS. By Alfred, Lord Tennsion. Selected and Annotated by Francis Turner Palgrave. 18 mo . 45.6 fl . new book by kidin abbott, d.d.
FRANCIS BACON : an Account of His Life and Works. By Edwin A. ABBOTT, D.D., Author of "Bacon and Essex," Editor of Bacon's "Essays;" formerly Fellow of St. John's College, Cambridge. Demy 8vo. 145.
new book by professor masson.
CARLYLE, PERSONALLY AND IN HIS WRITINGS. Two Lectures. By DAVID MASSON, M.A., LL.D., Professor of Rhetoric and English Literature in the University of Edinhurgh. Extra Fcap. 8vo. 25. 61 .
LECTURES ON SOME RECENT ADVANCES IN PHYSICAL SCIENCE. With a Special Lecture on Force, By P. G. TAIT, M.A., Formerly Fellow of St. Peter's College, Camhridge, Professor of Natural Philosophy in the University of Edinburgh. Third Edition, Revised. Crown 8vo. 9s.
FORENSIC FACTS AND FALLACIES: A Popular Consideration of some Legal Points and Principles. By SYDNEY E. WILLIAMS, Barrister-at-Law. Globe 8vo. 45.64.
LESSONS IN ELEMENTARY PIYSIOLOGY. By Thomas H. HUXLLEY, LL., D., P. P.S. Revised Edition. Fapp. 8ro. 4r. $6 d$.
SUPPLEMENT TO EUCLID AND HIS MODERN RIVALS. By CHARLES L. DODGSON, M.A., Sturlent and late Mathematical Lectarer of Christ Church, Oxford. Containing a Notice of Henrici's (ieometry, tozether with Selections from the Review:. Crown 8vo, Sewel. is

THE ENGLISH CITIZEN SERIES.

Edited by HENRy CRAIK, M.A. (Oxon), LL.D. (Glasgow). New Volume.
JUSTICE AND POLICE. By F. W. Mattland. Crown 8vo. 3c. 6d.

$$
\begin{aligned}
& \text { DICKENS'S DICTIONARIES, } 1885 \text {, } \\
& \text { New Volumes, 18mo, 1s. each, paper covers ; or together, in cloth, } 28.6 d \text {. } \\
& \text { DICKENS'S DICTIONARY OF THE UNIVERSITY OF OXFORD. } \\
& \text { DICKENS'S DICTIONARY OF THE UNIVERSITY OF CAMBRIDGE. } \\
& \text { In ISmo, paper covers, is. ; cloth, is, } 6 d \text {. each. } \\
& \text { DICKENS'S DICTIONARY OF LONDON. } \\
& \text { DICKENS'S DICTIONARY OF PARIS. } \\
& \text { DICKENS'S DICTIONARY OF THE THAMES. } \\
& \text { DICKENS'S CONTINENTAL ABC RAILWAY GUIDE, } \\
& \text { Published on the Ist of each Month. } 18 \mathrm{mo} \text {, is, }
\end{aligned}
$$

OBJECTS FOR
 THE
 F'ungus of Favus, Achorion Schōnleinii
 Eggs of House Fiy

 Eges of House Fly Ech* Liver Spols (Chloasma) M ycrouporon furfur Acaras of Jich. Stale and FemaleDu.
ction through Finger and Nail Egg and Larvar on one Slide" section through Finger and Nail of Monkerm.
Six sitides to illustrate the anatomy of the Bunter Prawn, including
Eyes and Rontrum, Squame, Antenaules, Tail Plates, Ambulatory
Feet and Swimmerets, a most valuable Set
Hinworm of the Head, showing its effect on the hair
Human Flea, Pulex irritans, Male and Female on one Side -. Anatomy of a leal, 9 pieces on one Slide $-m$
Sexamples of Hlood on one slide, from Man, Bird, Fish, Sinake, $\&$ Firug
Indian Mosquito
The Stokes.Watson Spark Apparatus, to show the Combustion of Metals by Electric Spark with the Mïcroscope or Micro-Spectroscope, as exhibited befors the Royal Society, Price L,2 as., or, complete with Coil and Batterr; l_{3} tos.

40,000 first-class specimens illustrative of every branch of xtudy
WATSON \& SONS" Ninch Homogeneous Immersion Objective, $\angle 5 \$ 5 .{ }^{\circ}{ }^{\circ}{ }^{\circ}$ Thist Glass is unsurpassed at the price
NEW CLASSIFIED LIST of OBJECTS, including the recently acquired Stock of Mr. E. Wheeler, late of Holloway. ILLUSTRATED CATALOGUE OF MICROSCOPES AND APPARATUS.
Either of the above sent post free to any part of the world, on application to
W. WATSON \& SONS, opticians to her mayesty's governient,
313, HIGH HOLBORN, LONDON, W.C. Established $183 i$.
THE "EXCELSIOR" THE NEW PATENT
PATENT SPRING MATTRESS. AWARDS:

Ten

The principle of arrangement permits the free movement of one sleeper without inconvenience to the other, admits of complete isolation of each, and effarwally provents seprestion in the centry.

The "EXCELSIOR" \& "MATLOCK" COUCHES.
Retailfrom Cabinet Makers, Upholsterers, \&c.

Thr The leading peculiarity of this Mattress is the unique corExcelsior "bination of a woven wire central portion with helical springs of great strength and reliable temper, giving "Matlock" advantages possessed by no other make. The belicul
Matjock BED-RESTS springs obviate the tendency in all woven wire mattrese to become hollow and so cause sleepers to roll into the middle of the bed.
Illustrated Descrittive Circmlars and Price Lutisfrom CHORLTON \& DUGDALE, MANCHESTER.

ARMSTRONG

 BRACES.ELASTIC, WITHOUT INDIA-RUBBER.

PATENT SPIRAL SPRING.

SOLD BY ALL HOSIERS AND DRAPERS.

baus THE "OTTO" A AS ENGINE "Esivve wemats he OTIO GASE

 CONSUMPTION of GAS guaranteed to be 25 to 75% less than ANY other Gas Engine per brake horse-power.CROSSLEY'S PATENT TWIN ENGINESImpulse every Revolution.
The steadiest running Gas Engine yet made. CROSSLEY'S PATENT SELF.STARTER-

The Safest, Simplest, and Best.
CROSSLEY'B NEW VERTICAL ENGINES -
Requiring little Ground Space.
CROSSLEY BROS., Limited, Manchester. London: 24, Poultry IR C Glagow : 58, Union Sireet.

OVER 15,000 DELIVERED.

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid ground
Of Nature trusts the mind which builds for ayc."-WORDSWORTH

No. 815 , VoL. 32]
THURSDAY, JUNE 11,1885
[Price One Shilling
Registered as a Newspaper at the General Post Office]
[All Rights are Reverved

AMATEUR PHOTOGRAPHY. ${ }^{\text {. }}$

MAUSSON \& EWMAN,

MANUFACTURERS OF PHOTOGRAPHIC DRY PLATES, COLLODIONS, VARNISHES, AND CHEMICALS,

Have REMOVED their London Store From WATLING STREET,
31, FARRINGIDON STREET, (Adjoining MARCUS WARD, \& CO.)

HFAD OFFICE:-

MOSLEY STREET, NEWCASTLE-ON-TYNE. 159
MEMORY and SUCCESS.-What contributes to success ? A good memory.-What causes failure in life? A poor memory.-What can all obtain from Prof. Lofsette's DIS. COVERIES: A good memory-THE PHYSIOLOGICALART OF NEVER FORGETTING-asing none of the "Links" "Pegs." "Localities," or "Associations" of Mnemonics. Lost memories re. stored-the worst made good, and the best better, Any dook learmed in RICHARDA. PROCTOR, Dr. ANDREW WILSON, and others who have studied the System. A Day Class in Never Forgetting and Ever Cure of Mind.Wandering commences every Monday at 3 p.m. An Evening Class every Tuesday at 8 p.m. Lectures in Families of the Nobsity: also taught thoroughly by POST. Prof. LOISETTE, 37, Wew Oxfond Stkeet (opposite Mudie's W.C.

SWINEY LECTURES ON GEOLOGY.

Dr.R. H. TRAQUAIR, F.R.S., F.G.S., will deliver a Course of Twelve bero on "BIRDS and MAMMALS, especially in RELATION to - FOSSIL FOKMS ${ }^{*}$ " in the British Museum (Natural History), CrotnWI Road). Comanenciog MONDAY, June 15, at 4 p.m. and to be -inued each succeeding MONDAY, WEDNESDAY, and FRIDAY, oduling on FRIDAY, July io, r885-
Uniakion to the Course, Frec.
OPEN SCHOLARSHIPS in NATURAL SCIENCE of the value of, 600 and $C 60$ are awarded annually in OCTOBER at SL. Thomas's Hospital Medical School, Albert Embank-
Derpriculari apply to Mr. G. Rendle, Medical Secrelary.

BROWNING'S BINOCULARS.

THE "ECONOMICAL" FIELD GLASS.
This Binocular has achromatic object-glasses sif inches in diameter, and sliding shades to shelter the object-glasses from sun or rain, and is fitted in a solid leather sling case, price 2 i 58 ., sent free.

> Illusiratal Catalogue of Binoculars post free.

JOHN BROWNING, 63, STRAND, LONDON, W.C. NEGRETTI AND ZAMBRA, SOLE MAKERS OF JORDAN'S (PATENT) SUNSHINE RECORDER.
 ZAMBRA, Scikntivic Instaument Makers to the Quenm, HOLBORN VIADUCT.
Branches:-45, Comhill: 1x3, Regent Strent, Londen. Illustraftr' DescriMion Post Frwe.

NRGRETTI E ZAMBRAS Large Illustrated Catalogue,

xlii

CITY AND GUILDS OF LONDON CENTRAL INSTITUTE
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

HUDDERSFIELD TECHNICAL SCHOOL and MECHANICS'INSTITUTE
\qquad

SANITARY CONGRESS AND EXH:BITION.

\qquad
WANTED an ASSISTANT for EXPERI

GEOLOGICAL and other WORKS, Part of

MICROSCOPIC OBJECTS FOR HIRP, Nit
K=0

PATEKSON \& COOPER.

Eleririt Light and Power and Telephone Engineari

SIX PRIZE MEDALS
\qquad
\qquad
\qquad

JAMEA GR, GREGORV,

UYING SPECIMENS FOR THE MICROSCOP

\qquad
\qquad Specimen Tube, Oae Shilling, peat free.
\qquad
 NOTICE OF REMOVAL.
\square 3A HI,K.S.IKD STREF'T, W. Imai
HOW a co.'s
Goolugleal Transparencics for the Lantern Purent Latien $=$ Avithater

 MINERALOGY AND GFOLOGY.

\qquad
\qquad PRIVATE LESSONB ANO EVENING CLASbEB 1-ん1!

8AMUEL HENBON
17, STK 11! IJNEON
SCIENCE AND ART DEPARTMENT
 Arstaranint melsmpled ly
TIIOMAS J. DOWNINO,
 a.

$$
\begin{aligned}
& \text { CALVER has received HIGHEST } \\
& \text { An HAN }
\end{aligned}
$$

EDWARD WAKD has pleasure in an-
\qquad

NAフLKE
Nオ，THE SOC ETY PROCEEDINGS OF RESEAKCH FOR PSYCHICN ．．

ioll．

 ERK，KY AUC

 Connt：

ARDS！！！

gOOKS（Sceondhand）Miscelianeous，Re
 1．．．．HISTOKY of SCIENTIFIC二OMEAKATIVE

\qquad The NOMENCLATURE of DISEASES

BEST BLACK INK KNOWN． BEST BLACK NRAPERS INK DICHROIC）．
 Not．t．ticens

FOSSILS．
 C I I Iond Miries 1,0 and．

t．N．N．．．NATCHES．

 asen 4．Kayet thenhome． 3tvern MEDAL

 AUTOTYPE PHOTOGRAPH．
\pm TRACT
$E \times$ nwarded．
arediats THIS
PILS MEDICINE
Aers of the 2 IVER STOMA
 yyteried in Fowo

 Acje thuntd lie tiken liwarkb the some end
It was icoalivil to thitie salbenjetions, with the slee of
 and tis dewice any worphes to the absurcuent if the boo agical viences
 Braal, Dknanalk, I ance, Cierman?, It illond, Italy

The I'secut ie Commitiec hat then lievn eviblelt in

 Boehar: Anel| th ak that thewe when had the gouel forturas

It apporeal in the Ciqumilese the whether the

 the Traster to its

 onactithe if if the lit रit in

 that uf 11 Im

The fithuming reply wis male by if if it the Prace of Waler.
 a ligh pervilege to beve leen Jepnatel bo the uitannis *ide of my crilleapues. thr Trumees of the Irrisish cimm, in acerpt, ill thew mance, the sift wiuch yout onserval on en lechald of the commatice of the 1) Alemsual. The Conumitee at malorrilocra may arsortal that wee have liost nillimghy a-segned this bot

 the rogh ribe thit , illoritum ralletel bere

 athume : while lhe furt that peotion tof oreet aso sting

 mid. no \& Memulit to ulinh all imen sciene Her of -riti) lite tantubestal fith nol he mume

 cundifo.e hu.

 1. Iratur.t., ambin Ere, nuth the asotilance

7

 Siratle $x+1$ lor
 thin in t-i. lie cidera un the कhale, othid et

matters of affinity between living birds and reptiles should be overlooked. The characters of the mesotarsal joint and of the tarso-metatarsus are imperfectly defined, and those of the pelvis of Apteryx ignored; while among the extinct forms, the Dinosauria-several of whose features we are told on p. 220 "recall mammals, especially the Pachydermata" -the Ornithoscelida, and the Odontornithes, are all dismissed in a few lines. Little would the student, taking his text from this work, dream of the noble array of direct affinities to be found among even living birds and reptiles.

The translators have evidently realised that the statements reproduced on pp. 198 and 215 , concerning the lizard's quadrato-jugal arcade are contradictory, and a supplemental paragraph of their own on p. 198 only serves to increase the perplexity. Chapter IX. is devoted to the Mammalia, but 69 pages of it starting with the assertion (p. 282) that the Monotremes' hemispheres are "still smooth," is poor fare. The cutting down of every group of mammals to a minimum would be in a sense pardonable, if only concise diagnoses were given such as should cover the broad lines of modification ; but when, bearing in mind certain of the more glaring defects of this chapter referred to at the outset, we read (p. 306) that the Whales approach the Ungulates "through the Sirenia," and that the "Sirenia are intermediate, so far as their form is concerned, between the whales and scals" (p.309), our faith is shaken in that which remains. There is the usual confusion concerning the position and movements of the hind-limbs of the Pinnipedia, the condition of the parts in the eared seals being entirely overlooked. In diagnosing a group of animals for purposes such as are here required, where the living and the extinct are both under consideration, it is but fair to assume that special attention should be paid to the hard parts, the teeth not excepted; but we look in vain for statements such as shall embody the extremes of modification of these parts in any one group of living mammals-for example, in dealing with the Rodents the utmost sketchiness prevails, the modifications of even the fibula are not hinted at, and while Hydromys is placed anong the mice with grinders $\frac{3}{3}$, Heliophobius is not mentioned. No wonder, then, that Hycemoschus should go unnoticed, that Hyrax should here be found under the order I'roboscidea (with a caution, it is true), and that the Carnivora, Cheiroptera, Lemurs, and Primates should be treated with disrespect. We are told (p. 301) that the epipubes support the marsupial pouch, and there is no reference at all to the most important facts concerning the marsupial dentition. There is something so specifically English about gross vertebrate anatomy that we search in vain for bare mention, not to say recognition, of discoveries bearing upon the above, and many similar matters of first importance.

From what has been said it will be obvious to Eng. lish students that the vertebrate section of Prof. Claus's manual is weakest where works on the subject already current in our language are strong; and, with all respect to our Continental cousins, we are of opinion that the market is becoming overstocked with translations such as that before us. Their period is past ; the English student in earnest must sooner or later fit himself for access to the originals, and the repeated production of Enghish versions serves only to prolong the fatal day. We
cannot but regret, though reluctantly, the publication of this work in its present form, the more so as it.threatens to encourage the growing tendency to under-estimate the value of gross vertebrate anatomy, a field of labour essentially English, but still the verv backbone of zoological science.

Mr. Sedgwick has performed the task of translation with a thoroughness and skill deserving the thanks of his countrymen. Some few passages in the original, at best clumsy, might have been better rendered than they are ; and setting; such as the "above together," on p. 16, might be advantageously modified. The translators give in Vol. 1. a list of English synonyms for the geological terms employed in the original, but these are not always adopted in Vol. 11.; thus we find the Jurassic beds referred to again and again as the "Jura," a rendering certainly not that of English geologists. The original illustrations are for the most part excellent, and those which remain are admirably selected. That on p. 284, however, certainly does not illustrate the anatomy of the human ear, and the figures selected from the classic of Johannes Muller, in illustration of the anatomy of the lamprey's skull (p. 154) do scant justice to the work of a great genius, and he a German.
G. B. H.

CLIFFORD'S EXACT SCIENCES

The Common Sense of the Exact Sciences. By the late W. K. Clifford. (London : Kegan Paul, Trench, and Co., 1885.)

ONCE more a characteristic record of the work of a most remarkable, but too brief, life lies before us. In rapidity of accurate thinking, even on abstruse matters, Clifford had few equals; in clearness of exposi. tion, on subjects which suited the peculiar bent of his genius and on which he could be persuaded to bestow sufficient attention, still fewer. But the ease with which he mastered the more prominent features of a subject often led him to dispense with important steps which had been taken by some of his less agile concurrents. These steps, however, he was obliged to take when he was engaged in exposition; and he consequently gave them (of course in perfect good faith) without indicating that they were not his own. Thus, especially in matters connected with the development of recent mathematical and kinematical methods, his statements were by no means satisfactory (from the historical point of view) to those who recognised, as their own, some of the best " nuggets" that shine here and there in his pages. His K incmatic was, throughout, specially open to this objection:-and it applies, though by no means to the same extent, to the present work. On the other hand, the specially important and distinctive features of this work, viz. the homely, yet apt and often complete, illustrations of matters intrinsically difficult, are entirely due to the Author himself.

The Editor, in his Preface, tells us the whole story of the difficulties he had to face in completing the volume for press. All will sympathise with him when they find that he had to furnish one entire chapter, and large portions of two others, in addition to thorough revisal of the whole. For Clifford's style is here entirely sui generis. The track to his homely yet hardy expositions often lay in regions where but a single careless step would have led
to the Inconsequent or the Ridiculous. And one who tries to imitate him successfully must possess not only his nerve, but also his wonderful agility and resource of every kind. We shall therefore say no more on the subject of the Editor's additions to the volume, than that his daring has met with comparative immunity from the more obvious dangers of his course.

The original title of the work was, we are told, The First Principles of the Mathematical Sciences Explained to the Non-Dathematical. There can be no doubt that the new title is much to be preferred. We do not believe that the Mathematical Sciences, even in their first principles, can be explained to the Non-Mathematical. Whosoever understands the explanation has, to that extent at least, become Mathematical in the very act of understanding. But this observation is made on the assumption that Non-Mathematical means "uninstructed in mathematics." There is another sense which the term may bear:-viz. "incapable of understanding mathematics." Among mankind there are none who more persistently claim the almost exclusive possession of the highest grade of human intelligence than do the (so-called) Metaphysicians. How many of these selfaccredited possessors of all but superhuman acuteness have been able to cross the Pons A sinnrum? How many have been able to understand even the objects (not the processes) of mathematical investigation? When the answer comes (it probably will not come, as it can not come in a favourable form) it will be time to comment on it.

The chief good of this book, and in many respects it is very good, lies in the fact that the versatility of its gifted author has enabled him to present to his readers many trite things, simple as well as complex, from so novel a point of view that they acquire a perfectly fresh and unexpected interest in the eyes of those to whom they had become commonplace. Surely this was an object worthy of attainment! But it is altogether thrown away on the non-mathematical, to whom neither new nor old points of view are accessible.

Considering the circumstances under which the book has been produced, it would be unfair to comment on the smaller errors. But there are a few very awkward statements, and one or two grave errors, which ought not to have escaped correction. We give an example of each class. Thus, p. 16, the following statement is quite unnecessarily puzzling :-
"If we can fill a box with cubes whose height, length, and breadth are all equal to one another, the sliape of the box will be itself a cube."
This out-germans German itself in the displacement of the words from their natural position in English ; and, at first sight, seems to be nonsense. Read it, however, thus:-
"If we can fill with cubes a box whose height, \&c. .. the shape of the box itsclf will be a cube,"
and the absurdity, suggested by the collocation, disappears.

Again, p. 66, what are we to make of the following, standing, as it does, without comment or explanation of any kind ? -
"The statement that a thing can be moved about without altering its shape may be shown to amount only to this, that two angles which fit in one place will fit also in
another, no matter how they have been brought from the one place to the other."
Several most serious qualifications must be imposed upon this statement before it can possibly be accepted as true.

The chapter on .Motion properly forms a part of this work, so far at least as kinematics is concerned. But it seems to be a mistake to conclude it with a few editorial sentences on the Laivs of Motion. For here we have a perfectly new subject, and one which would require at least a full chapter to itself. It is probable enough that, at some period of his life, Clifford imagined that it might be possible to get rid of the idea of matter as well as of that of force, and so to reduce Dynamics to mere Kinematics. He never so expressed himself to me. But purely physical subjects were, properly speaking, beyond his sphere; his ideas about them were always more or less vagre, because always of a somewhat transitional character, and were much modified at times by the momentary turn of his philosophical speculations. We are told in a foot-note to the first page of the Preface that Clifford left his Kinctic (a companion volume to his Kinematic) in a completed state. Surely, keeping this in view, the introduction of Laws of Motion into the present work was superfluous.

This foot-note unfortunately strikes a jarring chord at the very first opening of the book. We are told that " more serious delay seems likely to attend the publication" of Clifford's completed MS.; this is followed by a inysterious species of protest or remonstrance. Clifford could never have written in this vein. He would either have kept silence, or have blurted out the whole truth. Mystery and insinuation were not weapons of his, and should not be employed in connection with his name. ${ }^{1}$
P. G. TAIT

OUR BOOK SHELF

New Commercial Plants amd Drugs. No. 8. By Thos. Chisty, F.L.S., \&c. (London : Christy and Co., 155, Fenchurch Street, 1885.)
THE eighth number of Mr. Thos, Christy's "New Commercial Plants and Drugs" has recently appeared, and the contents are of a similar character to thuse that have preceded it, the most recently introduced commercial products derived from the vegetable kingdom being enumerated and what has been written about them brought together. The first plant referred to in the book is of course the Kola nut (Cold acuminalit), as being one of the most important, or at least one that has attracted a very large share of attention during the past year. This article is illustrated by a coloured plate of the fruit and seeds of this species, as well as of the Guttiferous plant known as the Bitter Kola. Besides having the property of cleansing or purifying and thus rendering wholesome stagnant or foul water, it has also been used for clarifying beer and spirits. One of its most remarkable properties is in restoring the senses after partaking to excess of intoxicating drinks. The most recent application of the Kola nut, however, is in the preparation of a paste for mixing with cocoa or chocolate, which it is said to improve "both in strength and flavour to an astonishing degree." It is considerably more nutritious and strengthening ; so much so indeed "that a workman can, on a single cup taken at breakfast time, go on with his work through the day without feeling fatigued."

In consequence of this and many other medicinal

[^3] late Prof. Clifford - Fio,

885]

and Mr. Oimsed, and recommended io the legiatatore

 sumbate the parchase bs apprapiatiog the amenim for the paypens of the Awarla it the sum should seena a iedronable price fas the pmpert) Such an Act pawell the

 effual on the part of a few determined frienils of the h.ili

 Thoough the covers of the. Dias sta hats, nown iatuen

 Whillitile thenkeremer in the presi heat if thit boanl , and

 adnpted the pion prypered ly the Soate Suves, The
 by the ioust, the fothal valur of the fiside berne

 गPowed the M!

 pari nul

 Compuny ILewitelt, I witen Eneceinh, Aintmhasa and Chi Telographe Cioupany (Limited, Kailway Clarang House Th
 Cutachue pien bo my lando of the Commulioe of Comencil

 her wlemel.

Ther mand mecting be the actmen rizses of the kop

 II. 2 \&

 Pre

 terngill

艮

ANN/VERSARY OF THE: ROYAL GEOGRAPHICAL SOCIETY

THE Anniversary Meeting of the Royal Geographical Society was held in the theatre of London University on Thursday, the Right Hon. Iord Aberdare, F.K.S., President, in the chair. In his address, Lord Aberdare referred to Mr. Keltie's report on the position of geographical education in England and on the Continent. The Report, Lord Aberdare stated, contains statements and recommendations of the highest interest and importance. Of the state of geographical education in Great Britain Mr. Keltie draws a very dismal picture. "'There is no encouragement to give the subject a prominent place in the school curriculum ; no provision, except at elementary normal schools, for the training of teachers in the facts and principles of the subject, and in the best methods of teaching it ; no inducement to publishers to produce maps, globes, pictures, reliefs, or other apparatus of the quality and in the variety to be found on the Continent; while our ordinary text-books are, as a rule, unskilful compilations by men who have no special knowledge of their subject." This neglect is attributed to the "exigencies of examination." Geography, as a class-subject, "does not pay." It is not recognised at the Univensities by either professorship or readership; it does not find a real place at any of their examinations; while in the Army and Navy examinations it is at a discount ; and such geography as is given is of a very partial character, and is merely left to crammers. These unsatisfactory statements are justified by a large amount of evidence. In striking contrast to this picture is that which Mr. Keltie presents of the state of gengraphical education in Germany, France, Italy, Switzerland, and several other countries of Eurnpe. Germany, as might be expected, takes the lead, and does its work most thoroughly. But the systematic study of geography is even there of recent creation. It prevails in twelve out of the twenty-one universitics of Germany; and nearly all the twelve existing professorships of geography have been founded within the last twelve years. "The ideal aimed at, and being rapilly carriel out, is to have one continuous course of geographical instruction from the youngest school-year up to the university." And Mr. Kelte deals with these ascending courres, showing in detail the teaching from the elementary to the bigher schools, and in the universities. His examples of lessons he himuelf hearl at some of these scloouls are most graphic, and ruggest their high value in any course of intelligent education.
L.ond Aberdare then briefly referred to the conclusions at which Mr. Keltie arrives. These, he stated, are clear, sensible, practical, but by no means encouraging. In all these Euopean ccuntries the curriculum is defined and imposed by the State, which, keeping the purse-strings, dictates the course of in-truction. Except over our elementary schools, the State in this country exercises no such power, direct or indirect. We must be content to bring the force of public opinion to bear upon our schools and umversities ; for with them, and especially with our universities, rests the solution of this great question. Mr. Keltie's Keport will be duly considered by the Council; it will doubtless be published; and tweans, Lord Aberdare ventured to prophesy, will be taken to l,ring home to our educational authorities, with fresh power and urgency, the necessity for not allowing Great Antain to lag lehind our political and commercial rivals, our rivals in haman culture, in the systematic study of geography. In the meantime, during the course of the autumin, an exhibition will be formed of the results of Mr. Keltie's lalwours in collecting specimens of the beat text-books, maps, globes, diagrams, molels, and other apparatus used in teaching the variou branches of gergraphy. This done, it remains for me, Lord Aberlare said, only to express the fervent hope that this latest effort of the suciety to promote the stadies which it was founded to extend, may niect with a large measure of success and tend to lay the basis of a sound and thoroughly national system of instruction in geography in all its brancher, physical, p.litical, and historical.

Lord Aberdare then gave a brief risumd of exploring work since his address in November last. He ajecially referred to the four years explotations in Eastern Tibet of the Pundit Krishna, and to the geographical work done in connection with the Af_{2} han Moundary Commission.

The preliminary map sent home by Major IIoldich rectifies in many important points the erroneous topography in all preexisting maps, and gives us a clear i. iea of the surface-contiguration and physical condition of one of the most interesting slisericts in Central Asia.

Further east the indefatigable Colonel Prjevalsky has been recently again heard of from the centre of the continent, at Lob Nor.

In and around the Zhob valley, areas of about 5500 square miles of reconnaissance on the t-inch scale, and of 400 square miles of topography in the $\frac{1}{2}$-inch scale are reported to have been completed; thus going far to fill in a reproachful hiates in our present maps of Aighanistan. The ascent of certain peaks in the Himalaya by a member of the Alpine Club, Mr. W. W. Grabam, an account of which was read by him at one of the Society's meetings in June last, has attracted considerable attention in India. The classical lands of Asia Minor have again this year been the subject of topographical investigation. In the winter of 1882-3 a fund was raised by public subacription in order to effect explorations that might throw light on the antiquities and eirly history of the regi-n. Mr. W. M. Ramsay was entrusterl with the execution of this scheme, and travelleel with this view, May to October, 1883. He invited a scholar of the American School of Athens, Mr. J. R. S. Sterrett, to accompany him during greal part of the summer. During that year's work the conviction grew uo that no adequate study of the history of Asia Minor was possible till the ancient topography was better known and that no advance in the study of the ancient topography could be made till a better map of the country had been compiled. It was therefore found necessary, week by week, to pay a growing attention to the natural features of the country, the natural routes of communication, and the natural boundaries separating district from district. Lord Aberdare referred to the work done in New Guinea by Mr. Van Braanh Morris, Dutch Resident at Tidore, who has examnined this part of the coast, and ascended the Amberno, which had always been reported by passing navigators, on account of its numerous supposed mouths, to be a large river with an extensive delta, and to the journeys into the interior of the Kev. James Chalmers. Mr. Chalmers has visited many parts of this coast along a line of about 500 miles, and penetrated, at various places further inland, by lanal, than any other European, and his descriptions of the country and the habits of the vivacious, excitable, and pugnacions race of savages with which it is peopled, merit careful attention at the present time. An attempt is about to be made thy the experienced traveller Mr. 11. O. Forbes to penetrate to the summit of the ranges, or plateanx, which extend along the centre of this part of the great tsland. Since he left England on this arduous mission some weeks ago we learn that the Syducy and Met bourne branches of the Geographical Society of Australasia have offered to contribute to the expenses of this experlition, which is supported hy grants by our Society, the Scottish Geographical Society, and the British Association. In other parts of Australasia the chief additions to our knowledge have treen a survey of a large tract of new country in Central Queensland by Mr. C. Winnecke, and the exploration of the King Country in the northern island of New Zealand by Mr. Kerry-Nicholls, of which the explorer himself gave us an account at one of our eveninz meetings.

In Africa Lord Aberdare referred to the work done by Mr. H. H. Johnston at Kilimaujaro. Since then the brothers Denhardt, who had previouly done excellent work in surveying the course of the River Dana, which flows from the southern slopes of Mount Kenia, have left again for Fast Africa. They have been commissioned, as we are informed by the German African Society, to take up a line of exploration similir to that adoped with so much success by Mr. Joseph Thomson, bat to follow it much further to the north than the point reached by our English traveller, namely, to the reported g'reat lake Samburu, north of Lake Bahringo. Further north still the year has witnessed the accomphishment of what may be termed one of the most interesting and difficult feats of all recent African travel. This is the journey of Messrs. F. L. and W. D. James, the authors of the well-known book on the "Wild Triber of the Soudan," who with three Finglish companions, Messrs. G. P. V'. Aylmer, F. Lort Phillips, and J. Godfrey Thrupp, organised an expedition and started last Deceniber to cross the north-eastern angle of Λ frica from Berbera to Mogadoxo. The hostile disposition and uncertain temper of the Somali trites who inhabit this wide region have hillerto offered invincible obstacles to its exploration by Furopeans. Mr. James and his party, however. succeeded in penetrating 400 miles to the south, as far as Barri on the Kiver Webbe, a point about 215 miles distant from Mogadoxo. The interior was found to be a plateau of an average elevation of about 4000 feet.

With regard to the more southerly parts of Eastern Africa, and more especially the region between the Mozaabique coast and Lake Nyassa, our knowledge has lately increased by leaps and bounds. The increase has been principally duc to the systematic explorations of Mr, Consul O'Neill. The general remark may be permitted that, thanks chiefly to Mr. ONeill, we now have for the first time a fairly satisfactory knowledge of a region raried in its physical configuration, well watered, and fertile, which has hitherto remained a blank on our maps, notwithstanding the occupation of the coast by the Portuguese for nearly foor centuries.
M. Giraud has retarned this spring from his exploration of Lake Bangweolo and its outlet, and his unsuccessful attempt to cross Africa by way of the Upper-Congo; Mr. Arnot has crossed from Natal to the Bihe plateau by way of the Upper Zambesi ; Mr. Montagu Kerr has crossed Matabele-land and the Zambesi, and penetrated by a new route to the south western shore of Lake Nyassa: and Mr. Richards has reached from Inhambane the southern districts of Umzila's kingdom. In Wentern Africa further additons have been made to our knowledge of the Congo, chuefly by the publication of Mr. Stanley's long-expected book and the map, which accompany it, and by Messrs, Grentell and Comber's careful survey of the middle course of the Congo and the Bochini trithutary to the junction of the great river Kwango.

The members of the French Expedition on the Ogowé and the Dorthern tributaries of the Congo have also been doing good work in the survey of the territories newly acquired by France.

In South America a striking feat of exploration has been accomplished since my last addeess; the supposell inaccessible summit of M unt Korama, on the confines of British Guiana and Brazil, was reached in December last by Mr. im Thurn and his companion, Mr. Perkins, accomplanied by a small party of Indians.
In conclusion Lord Aberdare gave the following brief sumnury of the Adminalty surveys of the year 1884, for which he *as indebted to the hydrographer, Capt. Wharton, R.N.: The ontinuous prosecutions of marine surveys in different quarters of the glole has been well maintained during the past year. The two home-surveying vessels have been employed, one on the west and the other on the east coast of Great Britain. On foreign surveys 60 officers and 500 men have been employed in foorsteam ships of war and five other smaller vessels. These shijn have been at work in Newfoundland, the Bahama Ishands, Magellan Straits, South Africa, Red Sca, Malay Peninsula, coasts of China and Korea, north-west coast of Australia, and amongst the Pacific islands. The most important additions to our hydrographical knowledge are as follows:-The survey of the Little Bahana Mank will be shortly finished, and the same many be said of the southern shore of Newfoundland. The survey of the main s'rait of Magellan, to which reference was made in the last address, was completed early in the year. Many useful additions have been made to ports and salient parts of the coast of south-east Africa. In the Ked Sea the intricate approaches to Sawakin have been well laid down. On the west coast of the Malay Peninsula, Penang harbour has been re-surveyed and the positions of the i-lands lying 10 the north. west and forming the eastorn boundary of the ondinary route of vessels to Malacca Strait have been accurately determined. The unlnown western shores of Korea, south of the approach to Seoul, for two degrees of latitude have been explored, and the main features of this island-studded shore lad down. New rivers and harbours have leen entered, sotably, the large river Yeun-san-gang, at the entrance to which stands the considerable town of Mohfo. There appears, bowerer, to be little chance of immediate trade with Korea, in conseyuence of the absence of any valuable products and the vanty needs of the population. The southern approach to Haitan Strait on the Chinese coast, much used by British trade, tias been re-charted. On the difficult shores of Western Australia ech progress has been made as the small means at the disposal of the surveyor has permitted. In the Solomon Islands the Evogainville Strait has been charted. This Channel will in the futvre be most probably a highway for traffic between Enstern Ausiralia and Japan. Many additions have been also made to the charts of various groups of other Pacific islands. The survey of the coasts of India carried on by officers of the Royal Navy asd India Marine has been actively progressing. Surveys of Rangorn, Cheduba, and other ports in the Bay of Bengal, as well as harbsurs on the west coast of Hindostan, have been sade. A re-survey of the great Canadian lakes has been com-
menced in Georgian Bay, where trade by water is on the increase.

Lord A berdare then intimated his resignation of the Presidency of the Society, the Marquis of Lorne having been elected to succeed him.

PROF. RE YNOLDS ON THE STEAM INDICATOR ${ }^{2}$

THE object of this paper was to define the causes and extent of the disturbances in indicator diagrams. The theory, as given, had been taught for several years in Owens College; but the publication had been deferred to cnable an extensive series of experiments to be made. These experiments had now been carried out by Mr. A. W. Brightmore, stud. Inst. C. E., late Berkeley Fellow in Owens College. In the first place it was shown that there were five principal causes of disturbance, namely: the inertia of the piston of the indicator and its attached weights; the friction of the pencil on the paper, and its attached mechanism ; varying action of the spring; inertia of the drum ; friction of the drum.

The effect of the inertia of the pencil and its attached mecban ism presented a mathematical problem, by the solution of which it was shown that there were two disturbances from this cause : one, a general enlargement of the mean indicated pressure, depending on the weight of the moving parts of the indlicator, the stiffness of the spring, and the square of the speed. The otber disturbance was a vibration of the pencil. Fivery indicator piston vibrated when disturbed, so that the period of vibration depended on the stiffness of the spring.
'The error which these oscillations caused in the area of the diagram dependel on their magnitude, and, to a greater extent, on the sunallness of the number in a revolution. But the evil of these oscillations was not so much an effect on the area as in the disfigurement and the confusion they produced in the diagram. So long as there were tharty of these oscillations in a cycle, the necessary fluid friction of the indicator piston would so far reduce them as to render a fair diagram possible, but when the number was as low as ten it was all the pencil could do to prevent them npsetting the diagram.
The friction arising from the pressure of the pencil always acted to oppose the motion of the pencil, and therefore rendered it too large during expatsion and exhaust and too snall during compression and admission, and thus the general effect was to increase the size of the diagram. This friction consisted of that of the pencil on the paper; and that of the mechanism, caused by sustaining the pressure of the pencil. The effect of the friction of the pencil was greatly reduced by the motion of the paper. The magnitude of these effects taken together on the area of the diagratn depended on the construction of the instrument and on pencil-pressure. From numerous experiments it would appear possible to make a difference of as much as five per cent, in a locomotive in mid-gear ly pencil-friction.

The couclusions, as regarded the motion of the pencil, were that the general effect of inertia and friction were both to increase the size of the diagram; that so long as the speeds were such that the number of vibrations of the pencil during a revolution of the engine was not greater than fifteen, the effect of inertia was less than one per cent., but that, if the number was greater than thirty, oscillations would show themselves unless the pencil-friction was increased. They might, by this, be kept down till the number of vibrations was equal to fifteen, but not farther, and then the necessary friction would affect the area of the cliagram aboat five per cent. For the diagrams to be sensibly accurate, and free from oscillation, the speeds must not be greater than would make the number of vibrations equal to thirty. These speeds were given in the paper for Richards' indicators.

The effect of the inertia of the drum with an clastic cord was shown to be a nearly uniform elongation of the diagram. The result of the varying stiffness of the drum spring was a nearly uniform contraction. With Richards' indicator these two latter disturbances neutralized each other at a speed of 150 revolutions per mimme. At other speeds the effects were applarent in the length of the diagram ; but, except when the expansion was great and the connecting rod short, they did nut affect the indicated pressure. The friction of the drum with an elastic cord cansed the cord to be longer during the forward stroke than during the
' A Paper read at the Insritution of Civil Engincers, May to ". On the Theory of the Indicat.ir and the E:riors in Indicatur Ihagrams," by Prof. Osborne Reybolds F.R.S.

 Sugn, Fivaul.

 =t.

 Approvanac \#-in wetaly

 thine -1. hal livint

 Wh M -

\qquad
VICTORIA UNIVERSITY.

UNIVERSITY COLLEGK UF SOUTH
WALES ANI MONMOUTHSHIRE

…"
UNIVERSITY COLIFGF, BRISTOL
 amexist Pations

CITY AND GUILDS OF LONDON institute. CENTRAL INSTITUTION
© 4 Fxayther mat,

nent

WANTED, ARTICLES for PERIODICAL

Geologlcal Transparencies for the Labtern

lavis naw a ©

AUTOCOPYIST

LIYING SPECIMENS FOR THE MICROSCOPI

 $\frac{10, ~}{n}$

Specimen Tube, One shilligg, pout free.
 Pecthe th thantige, Tos Fank, at ish
MINEKALOGY AND GEOLOGY
水

 KIVATR LRBSONS AND EVENING CLASYR
 SAMUEL HENSON.

SANDERSON \& Co

SECOND RDITION
GR|FF|N'S
CHEMICAL HANDICRAF?
A GATALOGUE OF CHEMICAL $\angle P P A R A T U:$
 Threr it it ile 2,0. . An Wiotrace

C. D. AHRENS.

PRISM WOKKNK AND DRACTICAL OPTICIA

Dimixat b'r 'Google

 e-searchei of $\$ 1$. Na, its,st evert in th esi his sucoveriterio sn the

 is yielel uphorcoul, w.ky the all atyph

 tuen te iscesmal forr the
 She 「ymb wot

©

号

䉼 that an is
Mys
-

 The macests, whin that iuct ubias in all instices, fer
 Tite, and ahre him lialeuv, chour po ie mutinally, st
 of the wirid alach was bee humen wo thete. What waik

 peagrafing of the firel- watts he numetalion it latiol

 rewet to the craineat
encrian

What, in fart, Ean the pe it al drontute of I whent

 ambug matitume natmens of the severrier th cratan
 turntulatly in the Indies mind theriba
 thinatiet f the thes essereit on the dlatimo of rime
 Fully whitell obea thete win 1 ,

 it te ife foum the pur it if set on vevel

Stul yer liave we real, the relot at thit, das to lor nh ur ast

 the
 Guntepl wilh atber n gool lof which lie lawoured wi

 nevient a pare hie of demarisum, Dut latile to be d

 in ther panil of I vito, dil the lifestulat de in
 Accurd naly, aul in insiot on ther focs, all the yualifir

 II

Dipuxed by Googk

debate, aid ant toniepmently infifitely fiver so cqpien
 of reen of the inlerat af the projected rejorm. The hatay of Nognithy thaw wo ret numerous inta the caves of the falure of thore antempes, tany of them wery thuppoly cuncened, whe is sruct by the fart that losy seem redur ible to twor man cailes, noe of a

 on the thote, prticilaty it the rave of an beland to-
 Hi wai hame 6: reatyle, that the fots esendian de
 whitandure the adramase be aging to libe chatis if a

 divecton th ther revetion loyple were nbly geal to icient

 mite 2 al hime
 salk nnt, -tomen, bl,

 tion of astennemv is thee pucthist of a grind phical
 failber froin 1 E evilect tu be altured.
"The etely of these questions keade on to evablis of very mecelsary dutaction between the meridinr of a stagraptobserviturios mongraplical nature, and ut The meribiow of whe
 tenes to depend on ouch otheicicer the unficiutua of the ofernatuluk. Thry aloo sene as A hans for geodel aed topmganplieal habors eveswled in cunuectroo wit
 chunty provt-wing them. dn ma. then

 at pirt to the usaant ibe ong is of longruse in gea hat - 12 ment ferthea he sint itas at the site of an observe
 as miman if dernsairn a mernato of serpatuen it篗 ${ }^{\text {de }} 13$ iner in wels complichat
 - Sietwe the chercassies to $r \mathrm{sum}$ of the labourd.

 a. hut lownier lie peroeral wink out per cratshy or hy
 uthis we nin tatunte shor ne ale the thaperties und

 ".int

 intal falle -

The little kinematical, or rather quasi-corpuscular, $e x$ cursus to which pp. 71-74 are devoted, is, one of the nchest pieces of paradoxing (in De Morgan's sense) that we have ever met with. Here is a little bit of it :-
"Poaillet, having ascertained the number of thermal units imparted to the water in his pyrheliometer of 3.93 ins. diameter, imagined that he had measured only the energy of the rays contwined in a pencil of 119 square inches section ; whereas, in reality, he had, at the end of his experiment of five minutes' deration, subjected his instrument to the action of the entire number of rays conlained in a passing pencil or sunbeam, the section of which we ascertain by multiplying the orbital atrance of the earth during five minutes, $28,836,000 \mathrm{ft}$., by the diameter of the pyrheliometer, 0.305 ft ."
Thus it is the number of rays, not the time of exposure to one ray, which determines the result !
One more quotation, a very short one, must be given. It is from p. 136, and we put two words in italics:-
"In riew of the fact that projectile force diminishes inversely as the square of the depth of the medium penetrated.
It is not easy to fix on the exact meaning of this very curious statement. Hence we must take it literally, whatever be the consequences. Discussion of penetration would obviously be useless in such a case, for the whole projectile force (even were it infinite) would be gone before penetration had commenced!
The immense expense which has been lavished on this polume, and on its truly wonderful illustrations, is calculated to produce reflections even more painful than those evoked by the perusal of the text itself. From the materials here given, something may yet be made, but certainly not on the lines chosen by the author.
We hope, shortly, to return to our store, and to select for the instruction and warning of our readers a few additional specimens, by no means inferior in quality to those just dealt with.
G. H.

PROFESSOR FLEEMING YENKIN, LL.D., F.R.S.

O^{-}N Friday last, most unexpectedly and greatly to the grief of all his friends, died Prof. Fleeming Jenkin at Edinburgh, at the age of fifty-two. He had been in somewhat delicate health for a considerable time, but was, as usual, personally directing the engineering operations in connection with telpherage in London and Sussex, and seemed to have greatly gained in health and strength when he started for Edinburgh some days before his death. But blood-poisoning succeeded a slight surgical operation, and his death rapidly followed.
He was horn in Kent in 1833, and was the son of the late Capt. Charles Jenkin, R.N. His school-days were spent at Jedburgh, Edinburgh, and Frankfort-on-theMaine, while he took his M.A. degree at the University of Genoa, and began his engineering career in Marseilles, thus acquiring a wide knowledge of languages and of peoples which was most valuable to him afterwards in bis scientific and social life.
In 1851 he returned to England, and was apprenticed to Messrs. Fairbairn's in Manchester, from which time bis progress was rapid. We hope that the interesting and highly creditable history of his subsequent introduction as a well-trained mechanical engineer to sabmarine telegraphy (then in its extreme youth) and to Sir William Thomson, which led to his soon taking charge of the testing of the first Atlantic cable in 1858 , and to a friendship and partnership with Thomson and farley, will yet be told by some one who can do full justice to it. Our grief at Varley's loss is yet fresh, and ve deeply sympathise with Sir William Thomson at the cose of this partnership, the existence of which has been synonymous with the progress of submarine telegraphy.
On the appointment of the Committee of the British Association on Electrical Standards Jenkin's services were
solicited, and the good work that he did as a member of this Committee is amply shown by his large contributions to the Reports on Electrical Standards, and which contain an account of his absolute measurement of the capacity of a condenser, the first such determination ever made ; and the chapters that he wrote in connection with these Reports on the subject of "Absolute Units" formed the only available text-book for the student of mathematical electricity before about the year 1872 . Appended to these reports are the Cantor lectures which he delivered on the construction, laying, and testing of submarine cables, and thece lectures showed as wide an acquaintance with the practice of electrical science as do the other chapters referred to with the theory of the subject.
In 1865 he was elected a Fellow of the Royal Society and Professor of Engincering in University College, London, and in 1868 he became Professor in the University of Edinburgh, where he created a School of Engineering to which considerable numbers of prominent Engineers and Professors of Engineering acknowledge their indebtedness In the following year the Royal Society of Edinburgh elected him a Fellow, and subsequently he became a Member of the Institution of Civil Engineers, having been made an Associate of that Institution as early as 1859 . In 1883 the honorary degree of LL.D. was conferred on him by the University of Glasgow.
Jenkin's book on Electricity and Magnetism, published in 1873, was a revelation to non-mathematical and even to many mathematical men, of the ideas which had until then been wrapped up in the mystery of mathematics or in the practice of the submarine cable testing-rooms. Sir William Thomson had been publishing many detached papers on electricity in the mathematical iournals, and had been applying his knowledge in practice, so that an exact science of electrical quantities had been growing up among submarine cable engineers; but the electricity of the text-books remained as unscientific and primitive as of old: the knowledge of the practical men had become indeed far more scientific than the knowledge of the schools.
Fully recognising this, Prof. Jenkin made in his book a totally new departure, and presented electricity and magnetism for the first time in a text-book as subjects capable of quantitative study. To understand the great effect produced by this book, which has now passed through many editions, it must be remembered that neither Clerk-Maxwell's treatise, nor Thomson's reprint of his Mathematical Papers appeared until 1873 , and that at that time "electric potential," which to-day has its commercial unit, was to every one, except the engineers of submarine telegraphy, a mere mathematical function.

In 1882 a lecture was delivered at the Royal Institution on Electric Railways, and the system devised by Profs. Ayrton and Perry for effecting an absolute block, and thus enabling any number of electric trains to be run without the employment of drivers, guards, or signalmen, was described and exhibited by a working model. An account of this was read by Prof. Jenkin, and he at once saw that it contained the solution of a plan that he had been thinking over for doing on a large scale by electricity what had previously been done on a small scale with pneumatic tubes. Telpherage, or the automatic electric transport of goods, was the outcome, and the development of practical methods of running carriers electrically along a steel rod suspended in the air from wooden posts, occupied him, with the other two inventors, during the last three years of his life, the system being one which needed new invention in every one of its details. His inventive power is described by his assistants as wonderfully active and prolific, and he had energetic characteristics which only seldom accompany inventive genius, and which made his cooperation invaluable to the other directors of the Telpherage Company. It is deeply to be regretted that, having busied himself so actively in the long series of telpherage expe-

Atre
$=\quad 5$ $\stackrel{\square}{5}$
\qquad $=4$
－ 1

Abstract

naner sow in power，and unfortunasely with more $\because-n=-m$ published debate it is clear that the $\cdots=+=\sim=s e$ department the estmate for the Geo－ $\cdots \quad 2=05$ grepared，and who was officially bound ．z＝r：－\＃cmate，sat still without speaking in its 느능 $=x$ se Hoase，taking this silence，no doubt，as $\because \quad=-$－ce We are sure that this retrograde step $\% \approx=-$ by all who wish well to the progress of $\therefore=\pi=\| \geq$ ine personal squabbles connected with the $\therefore \sim$ ve ave no wish to enter．But as a public act of二Trim ze rote of the House of Representatives will， se se escinded and the prosecution of the Survey Fhe e 2．zia allowed to proceed．If any fault is found ze	
：	
which the map has been prepared，surely	e－manission contains talent and energy enough to $\because \because$ ：تe ato this and set matters right without practically $\therefore \therefore \because y^{2}=g$ the Survey to a stand．

THE CONGO

［HESE two welcome volumes from Mr．Stanley testify to the accelerated rate of events in these latter times． \therefore s miy twelve years since Lungstane died in the vain －earcn tor the sources of the Nite jown by Lake Bang． vero．and under the beleer sha：no rover but the Nile ruic sweep past Nyarcwe wris suin a breadth and virme is he found the imuntion 20，bave．He was not wnstuar in cherishing saci i melue，many geographers reareved like him，that the Enngri zulk sot fetch such a swerpang circuit，and etare zty＋haithat must make its ouv Jorthwards in sp．se or dufmemses of level and some－ sow uld its waters to tis $1 . l$ ere $\geqslant 122 z a$ ．It is only

 us a bout six years since be be51．：cecraivons as the agent of
 aarrative of his journey viruss $2 e=x c=n e n t$ ，there was To blacker part of the Biacti Ewe＝seat than the river banks between Nyangwe and the tial2sc，and no more intractable people than muzy of sie＝－bes through whom he and hismen thad to ris sese fac＝iet．liet already， almost solely by his exertives ins most unpromising region has become 4 A lasy we sectiod government，＂at least on paper．It has enygged ：be sucinnued attention of diplomatists from all the sen：＞entes of the world for months，and is the subrect of 15 many treaties as if it had been founded a ceoc：－ 4 －3a

In reality，however，ts is sucoect：＝5 more than a paper State．No one caa resu Mr．Sis－es s arrative without being convinced that all aives the nver from Vivi to Stanley Falls there a ：eady custs bat may fairly be regarded as an organsed Liovercment，carried on from some twenty－four statives $2 s$ ceetres．hiat whth the merely political aspects of this swてtsざ之 deal here．It is certa：iv 40 interess： 2 g experiment，both from a political and scial pout of vew，this attempt to raise into a State a regno soc set redeemed from savagery．What the uitumate resais will be it is hard to say；on the one side a great mass of savagery，and on the other the most advanced Evropean intiuences in politics，in commerce，in indserr，in religion．For already we find bands of missovcaries everywhere，and as among them are many men of pradence，tact，and ability，Mr．Stanley acts wisely in encouraging their efforts；they will certamly be of service in helping him to accomplish the object be has in view．

Without the aid of the latest applications of science， Mr．Stanley could never have succeeded in accomplish． ing all he has done in the bnef period of six years． Steam has been of infinte service to him，and engineer－
i＂The Congs and the Founting of its Froe Sease．By Heary M．

Abstract

ing contrivances in many ways. His flotilla of steamers, some of them most ingeniously contrived for the special marigation of the Congo, may be said to have been ererything to him in carrying out his work; and the Congo Free State nay be fairly set down as another "triumph of steam." Mr. Stanley claims for the Congo Free State an area of over a million square miles and a population of $42,608,000$. As to the area, that is probably sot far out; but the population seems to us excessive. Mr. Stanley reaches this great figure by generalising the density which he finds on the banks of the river itself. Betreen Stanley Pool and Stanley Falls, a distance of about 1000 miles, and including part of the Biyerre and liwa Rivers, he finds a population of 806,300 , and takes lor granted that a similar density will prevail throughout the whole of the Congo Basin. This is very unlikely. In mavilised countries the population naturally crowds itself along the river banks, and it would be very unsafe to calculate on finding regions at a distance frons rivers equally well populated. Throughout the whole of the million square miles claimed by the Congo State only a ife lines of exploration have as yet been run, though we

know that as a whole it is probably the best-watered region in Africa, and possibly therefore the most thickly peopled. But the tendency amsong African geographers recently has been to reduce previous estimates of the population of Africa, and instead of 200 millions it is thought that 170 millions is one more likely to be nearer the mark. But all estimates, except for districts that have been settled for sume time, are necessarily conjectural; and even for Morocco the greatest difference exists between the estimates of different travellers.

On the Lower Congo the Free State has been able to secure only a comparatively narrow strip of territory on the north bank-enough, however, to give it the right of free navigation between the sea and Vivi, where the first series of cataracts begin. From Vivi upwards to Manyanga the State possesses territory on both sides, when France comes in and claims the whole of the right bank of the river to the Likona tributary in $1^{\circ} \mathrm{S}$. lat. Thence the Free State expands into boundless and unknown regions, which we hope it will do its best to explore and open up to science as well as to commerce. The aim in the north has been evidently to draw the boundary of the

Fig. 2. -P lhica. 'Drvis'ons of the Congo Basin.

Suse between the basins of the Nile and the Congo. The Vetern basin of the Upper Nile, no doubt, is fairly well bown, but the region between that and the Upper Congo is恠 that part of Africa about which we know scarcely anybing. The boundary on this side, therefore, has been Lran with the freedon of conjecture. All the rivers that are not known to send their waters to the Nile must, t Mr. Stanley's opinion, come down to the Congo, or, at eass, ought to do so, and are made to conform with Mr. Sanney's idea of what is right and proper, in the large map abich accompanies his work. In spite of Dr. Junker's discorery of the water-shed which separates the Nepoko from the Welle, they are both made to send their waters solhward to swell the magnificent Aruwimi. This may e so ; only actual exploration will decide the matter. It 3 mainly to settle this question that Dr. Lenz is preparing ${ }^{10}$ proceed to the Upper Congo as leader of an expedition tio the region that lies between that region and the ${ }^{l}$ pper Nile tributaries. And here we have one very beneficial result of the work which Mr. Stanley has done on the Congo. His numerous stations form so many
starting-points for further exploration. They can be easily and rapidly reached from the West Coast, and through the agencies at their command, all the men and goods obtained necessary for the conduct of an expedition into the interior. If every station on the river were made the basis of further exploring work, one of the greatest blanks in our knowledge of Africa would soon be filled up. In the interest of the enterprise itselt this must be done. If the manifold products of the wonderful land over which Mr. Stanley is so enthusiastic are to be brought down to the river for shipment to the upper terminus of the future iailway that is to convey them past the cataracts, it is evident that station after station must be pushed on into the interior. Among the white employe's of the Association are many men of education and intelligence ; and while their first duty is to look after the interests of the "Free State," these interests, instead of suffering, are likely to be advanced by a scientific knowledge of the country around the States. Already good meteorological work has beep done at V'ivi by Dr. Danckelmann, whose recently publisf

Fig. a.- Yellala Falls from Left Bank.

observtions we reviewed some time ago. The utility of such osservations is evident from the volumes before us. Mr. Stanley makes considerable use of them in his chaptes on the Climate of the Congo. These chapters are of nuch interest ; they are written mainly with a view
to show that, with reasonable precautions, Central Africa ought to be perfectly tolerable to the European constitution. What these precautions are he describes in minute detail. At the same time he admits that a lengthened residence in such tropical regions must in the end tell on

Fu; 4. - Banks of the U'pjer Congo.
the Europeans, and is only possible with a run home every eighteen months. Thus it is clear that if the resources of the Congo are to be developed, it must be by axive labour, and there is therefore every inducement to treat the population humanely.
of course, Mr. Stanley himself in his frequent journeys

Fig. 5-A Type of the Basoka.
ap and f down the river has added considerably to our mowledge of it. His original sketch of its course, made one rush downwards, seems, however, to have been vonderfully accurate ; though the hundreds of observations as to direction, altitude, depth, and width has
enabled him to lay it down with much greater precision. It is to be hoped that the geology of the basin will be well worked out, and even from a "utilitarian" standpoint it might be useful for the Association to engare one or two competent men to work out the geology. The numerous cataracts on the lower as well as on the upper river prove that there is much here to interest the geologist. (In the lower river, just where the great central plateau begins to shelve down to the coast, they are to be expected ; but what is the exact geological explanation of the numerous cataracts on the upper river and its tributaries, as far south as Bangweolo, let us hope, will ere very long be explained. The banks of the river itself are in many places remarkably picturesque; indeed Mr. Stanley would make us believe that he thinks no other river is equal to it in this respect. Magnificent blulif, he tells us, are met with in many places, and gorges that are almost ctivons. At Stanley Yool and elsewhere the river has broadened out into lake-like reaches studded with islands, and at one place a few miles south of the equator there is a complicated otishoot of lakes and streams which reminds one of what is observed in so many places on the Central and Lower Amazon. This stretch has not, however, been completely explored, though Mr. Stanley's account of his journey up the Kwa and Mfini to Lake Leopold is one of the most interesting chapters in the volume. The Kwa discharges at about $3^{\circ} \mathrm{S}$. lat., and Lake Leopold, Mr. Stanley joins conjecturally to Lake Montumba, which is connected with the Congo at about fifty miles south of the equator.

Fig. a.-Yellala Falls from Left Bank.

Fic. 3-Head of Lake Leopold 11.
observaions we reviewed some time ago. The utility of such osservations is evident from the volumes before us. Mr . Stanley makes considerable use of them in his chaptes on the Climate of the Congo. These chapters are of nuch interest ; they are written mainly with a view
to show that, with reasonable precautions, Central Africa ought to be perfectly tolerable to the European constitution. What these precautions are he describes in minute detail. At the same time he admits that a lengthened residence in such tropical regions must in the end tell on

Ftg. 4.-Banks of the Upper Congo.
the Europeans, and is only possible with a run home every eighteen months. Thus it is clear that if the resources of the Congo are to be developed, it must be by native labour, and there is therefore every inducement to treat the population humancly.
Of course, Mr. Stanley himself in his freguent journeys

Fig. 5-A Type of the Besoka.
up and / down the river has added considerably to our tnowledge of it. His original al ith of lis course, made th one rush downwardy,
wonderfully accurate : ther
tions as to direction at
enabled him to lay it down with much greater precision. It is to be hoped that the geology of the basin will be well worked out, and even from a "utilitarian" standproint it might be useful for the Association to engage one or two competent men to work out the geology. The numerous cataracts on the lower as well as on the upper river prove that there is much here to interest the geologist. Un the lower river, just where the great central plateau begins to shelve down to the conast, they are to be expected; but what is the exact geological explanation of the numerous cataracts on the upper river and its tributaries, as far south as liangweolo, let us hope, will ere very long be explained. The banks of the river itself are in many places remarkably picturesyue: indeed Mr. Stanley would make us believe that he thinks no other river is equal to it in this respect. Magnificent bluffs, he tells us, are met with in many places, and gorges that are almost cañons. At Stanley lool and elsewhere the nver has broadened out into lake-like reaches studded with islands, and at one place a few miles south of the equator there is a complicated offshoot of lakes and streains which reminds one of what is observed in so many places on the Central and Lower Amazon. This stretch has not, however, been completely explored, though Mr. Stanley's account of his journey up the Kwa and Mfini to Lake Leopold is one of the most interesting chapters in the volume. The Kwa discharges at about $3^{\circ} \mathrm{S}$. lat., and Lake Leopold, Mr. a anley joins conjecturally to Lake Montumba, which is -ied with the Congo at about fifty miles south of

With regard to the volume of discharge of the Congo, from careful observations made at Stanley Pool, Mr. Stanley calculated that it reached $\mathbf{1}, 436,8$ 50 cubic feet per second when the river at that point was at its lowest. During flood it rises, he believes, twelve feet higher, giving a volume of $2,529,600$ feet per second. If these estimates are correct, then Mr. Stanley calculates that the river discharges into the sea three million cubic feet of water per second.
${ }^{5}$ Mr. Stanley's new work is so fully occupied with the details of the founding of his numerous stations, his dealings with chiefs and people, his road-making and
other engineering enterprises, and the general work of engineering the enterprise, that there is little space left for geographical details. He does give a list of the products of the Upper Congo region, but as this is entirely from a commercial standpoint, its value to science is not great. The various species of palms, as might be expected, abound on the banks of the river and its islands, the oil-palm being the most valuable from a commercial point of view. Then come the various species of indiarubber plants, besides other gum-producing trees. Ivory, Mr. Stanley reckons only fifth in rank among the natural products of the Congo. He presumes that there are

Fic. 6 - Profile of Couniry bisween the Sca and Ruanda, across the Congo Basin.
almost 200,000 elephants in about 15,00 herds in the Congo basin, each carrying an average of 50 lbs . weight of ivory in bis head. Iron, he tells us, is abundant. The copper mines near Philippeville supply a large portion of Western Africa with their ingots. Plumbago is also abundant, and gold has been found in the beds of streams. Mr. Stanley gives a long list of tropical plants which abound in the Congo basin, while several European vegetables and fruits have been found to thrive. The Arabs, moreover, he tells us, are introducing the largegrained upland rice with extraordinary success. He adds many details concerning the trade, actual and possible, of the Congo region, his object, of course, being to show
that here exists a magnificent field for the European trader, European capital, and European settlers.

Mr. Stanley's work is chiefly of value as telling the story of one of the most unique and interesting enterprises on record. This story he tells with abounding interest: there are many incidents throughout the volume told with the dramatic effect so well known to readers of "Through the Dark Continent." The work of founding the Free State has been well begun, but it is only the beginning; for the sake of its complete success it is to be hoped that nothing may occur to sever Mr. Stanley's connection with it until it has been firmly established.

NOTES

The Royal Society's comerrazione, held on the evening of June to, was a very great suceess, and those who had the labour of bringing the , various things togeth r must have felt themselan anply rewarded by the great interest taken in them - and guests, both ladies and gentlemen, who 3 the objects exhibited we may note the gical map (unpublished) of Palestine and

Arabia Petrax, exhibited by Prof. Edward Hull, F.R.S. ; original drawings of the skeletal, digestive, and vocal organs of birds, made in the years $1842-46$, drawa and exhibited by Prof. W. K. Parker, F.R.S. ; Sketches of the eclipse of the mo in, October 4, 1834, and a very beautiful series of sketches of the wonderful sunsets and after-glows, painted and exhibited by Mr. W. Ascroft ; star-charting by photography (enlarged prints rom negatives made in 1883 and 1884), exhibited by Mr. A. A.

Common, F R.S. ; electrical influence machine, exhibited by Mr. James Wimshurst ; New microrcope with novel fine adjustment snd sub-stage arrangements, exhibited by Mr. Crouch; lange Nicol prism polariscope, for projecting axes of crystals, \&c., on the screen (improved form), exhibited by Messis. Hlarvey and Peak; Tate's calculating machine, exhibited by the inventor. By means of this machine long operations in the fundamental rules of arithmetic can be performed with rapidity and unfailing accuracy. Eight figures can be multiplied by eight figures in about fifteen seconds. New forms of spectroscopes, exhibited by Mr. A. Hilger ; photographs of fractures of railway carriage and waggon axles, te-ted to destruction by Mr. Thos. Andrews, Wortley Iron Works, near Sheffield, exhibited by Mr. Andrews; three cases of living animals: (1) Examples of the Tuatera (Sphenodon functalus) from New Leatand. This reptile is remarkable as deviating from all the lizards in its osseous structure, and is considered by Dr. Gunther (Phit. Trans, 1867, p. 620) to constitute an order by itselfRhynehocephalia. (2) Large bird-eating spider of the genus Mygale from Burmah-prohally M. fasciata. (3) Butterflies and moths, showing the way in which living insects are exhibited in the Zoological Society's Insect House, exhibited by the Zoo${ }^{\text {I }}$ gical Society of London. A series of microscopic sections of regetable tissues, prepared and lent by Mr. J. E. Sunderland, of Hatherlow, near S'ockport, showing remarkable effects of double and triple anilin staining; a series of botanical microscopic preparations, mounted by Charles Vance Smith, of Carmarthen, being part of a series prepared by him to illustrate the textbooks of Julius Sachs and Otto Thomé, exhibited by Prof. Moseley, F.R.S. A series of slides wuth stained specimens of Tania whinecoccus of the dog, prepared and lent for the occasion by Dr. J. Davies Thomas, of Adelaide, Australia, in illustration of his paper on the artificial rearing of this parasite by feeding with human hydatids (to be read liefore the Royal Society, june $\mathbf{t 8}$); a slide showing the same species of tapeworm, reared by Mr. Edward Nettleship, F.R.C.S., by means of hydatids obtained from the lungs of a sheep (Proc, Roy. Sor., 1866). To compare with the above: - Specimens, in bottles, of Tionia serrala, T. margowa.a, and T. cannrus, \&c., artificially reared by Dr. Cobbold, by feeding dogs with the scolices appropriate to each particular species. Also adult examples of Tania cucumerinu and of T. canis lagapodis (T. litera a), the later from Iceland, prepared by Dr. Krabbe, Buthrincephafus dabias, and other species from the cat and dog, exhibited by Dr. Cobbold, F.R.S. Case of gems, including a great Indian diamond, the largest known op,al, a series of cat's eyes, and allied mineralogical specimens, exhilited by Mr. Bryce Wright, F.K.G.S.; "Frith's Selenium Cells," showing the alteration of resistance and photo-electric curren's due to the action of light on selenium, exhibited by Prof. W. Grylls Adams, F.R.S ; a sulphur cell, the electrical resistance of which, like that of selenium, is reduced by light, exhibited by Mr. Shelford Bidwell. The sulphur has been heated while in contact with silver, and therefore contains some sulphide of silver. The electrodes are of silver. The original integrating machine, invented by Mr. C. V. Hoys; engine-power meter which has been developed from the same, exhibited by Mr. Boys.

We give in anoher column, on the andi alleram furlem principle, the first part of an address recently given by Dr. Janssen, putting before us the French view of the I'rime Meridian question. It will be gathered from it that the fecling in France is strongly against the conclusion at which the Washington Congress arrived. Taking the world as it is, however, much as a strictly neutral prime meridian might be to le desired, the general opinion will probably be that the Congress arrived at the only prartical solution.

We are glad to see that University College, Liverpool, is about to appoint a Professor of Engincering. An endowment of 375 / has been raised, and the advertisement of the Chair appears this week in our pages. We understand that a certain amount of professional work, such as is consistent with a due fulfilment of the duties of the Chair, will be permitted, and recognised as enabling the Professor to keep himself in touch with the life of the practical world. The College already has endowed Chairs of Mathematics, Physics, Chemistry, and Biology, in addition to the Literary and Medical Departments: it has lately become a part of the Victoria University, and in many ways it shows signs of hcalth and vitality.

In the production of the first part of the Philological Society's new English Dictionary, the editor, Dr. Murray, was obliged to advance 150 . out of his own resources, and, further, to incur a debt of 500%. The delegates of the Clarendon Press, who are publishing the Dictionary, decline to contribute more than $100 /$ towards the payment of this debt, and the Ccuncil of the Philological Society deem it their duty, therefore, to appeal to the public to relieve Dr. Murray from a debt incurred on behalf of what is really a national undertaking. It is to be hoped that there will be no difficulty in oltaining the sum required; those of our readers who are inclined to help should send their subscriptions to Mr. Renjamin Dawson, the Mount, Hampstead, London, N.W.

Tue Spanish Commission of Merlical Inspection has examined the composition of the liquids and virus employed by Dr. Ferran against cholera. The opinion of the majority of the members is that the presence of Koch's Bacillus virgulus cannot be questioned. After some opposition, the Spanish Government granted the necessary authorisations for inoculation, which has been practised on a number of doctors and four newspaper writers. It is said, moreover, that all the inoculated patients experienced during the first twenty-four hours after the operation all the symptoms of cholera with more or less intensity, but without any fatali'y having occurred. When twenty-four hours had elapsed, a favonrable reaction took place. The question which remains to solve is the extent of the protection resulting from Dr. Feiran's system. The numbers given arc in favour of the new theory, but all the documents coming from Spain on cholera must be received with caution, owing to the intense panic prevailing in that country since the last outbreak of the plague was noticel in Valencia. A fact curious to notice is the tendency of the rural populations of this province to congregate in the cities in spite of all the measures taken against this exodus. El Imparcial states that not less than 7000 people have located themselves in the chief city.

Prof. Pastevr, the Stanturd Paris corresponilent states, has pablished an interesting letter from Dr. Ferran, concerning vaccination for cholera. In this letter Dr. Ferran asserts that the results obtained become every day more irresistibly eloquent. The experience of Alcira had been confirmed in numerous other tewns. Anti-cholera vaccination had been practised upon all classes of society, lout in many places the greater number of those operatel upon leclonged to the panper class, and the results proved no less satisfactory. While of opinion that one inoculation is effective, Dr. Ferran recommends that it be repeated, in order to make assurance doubly sure. In reference to the official prohilition of vaceination for cholera (which has since been cancelled in deference to public opinion), Dr. Ferran intimates that the measure was taken in consequence of two persons belonging to an alrealy ch lera-visited family dying the day after There casualties Dr. Ferran attributes to the a lymph, and states that in 16,000 cases, for whict sonally inspected the lymph, no evil results had fo
not claimed that vaccination for cholera will give actual immunity, but that it will alleviate the attack whenever it may come. Anti-cholera vaccination, affirms Dr. Ferran, can never itself be the cause of an attack. If an attack comes within five days of vaccination it must have been previously contracted. Dr. Ferran attributes the discovery of anti-cholera vaccination to the theories of Prof. Pasteur.
Dr. Corntsu, known for his investigations into the nature of cholera, has proposed (according to Allen's Indian Alail) that as between 300 and 400 persons are every year judicially sentenced to death in the Indian Empire and its dependencies, a number of these, say one-tenth, be made, with their own full knowledge and consent, subjects of experiments as to the spread of cholera, on condition that if they escape their lives be spared. An international commission of experts might, he suggests, be appointed to determine upon the experimental tests needed to ascertain if cholera is or is not a disease capable of being communicated from person to person. This would do more in the space of a few months to help forward the inquiry into the nature of cholera than has been accomplished by indirect observation during the last century. But if the principle underlying this proposal is admitted by the Indian Government, it might be extended to other most important experiments, such as the various causes and cure of cholera, the cure for snake-bites, hydrophobia, and the like.

TuE following is an official statement of the number of visitors to the Whitechapel Fine Art Exhibition during the time it was open in March and April last:-Saturday, March 28, 1008 ; Sunday, March 29, 2494 ; Monday, March 30, 2622 ; Tuesday. March 31, 3332 ; Wednesday, April 1, 3292; Thursday, April 2, 1823 ; Good Friday, April 3. 3703 ; Saturday, April 4, 3269; Easter Sunday, April 5, 2717 ; Easter Monday, April 6, 4332 ; Easter Tuesday, April 7, 3720; Wednesday, April 8, 2944 ; Thursday, April 9, 2872; Friday, April 10, 1942; Saturday, April 11, 3348 ; Sunday, April 12, 3345 ; total for 16 days; 46,763. The Exhibition was opened in the afternoon of March 28 , admission being by ticket anly until $6 \mathrm{pm} ., 6$ to $10 \mathrm{p} . \mathrm{m}$. free ; after that it was opened free from to to to daily (Sundays 2 to 10).

Ar the meeting of the International Committee of Meteoro$\log y$ (instituted by the Congress held at Rome) in the beginning of September next, at Paris, the following topics will be con-sidered:-Report of the Secretary on the work of the Committee since the Copenhagen meeting; report of MM. Brito Capello, Hildebrandson, and I.ey on the observation of Cirrus ; Shoald a third International Congress be convoked? the establishment of stations of the first order on the Congo ; discussion of the meteorological rhumes issued in different countries, and eventual preparation of a miore uniform plan; the utility of American meteorological telegrams proposed by Gen. Hazen, and organisation of their distribution in Europe ; best means of securing the timely reception of meteorological telegrams; ought barometric heights to be reduced to the pressure under 45° of latitude? Should meteorological hours be reckoned from 1 to 24 in conformity with the resolution of the Washington Conference? Designation of a completely covered sky as to the form of clouds; definition of days of rain and snow; shoald not a unifarm height above the ground be recommended for pluviometers? recent progress in the more exact mesuremant of snow; international metcorological tables; modification of the reles for administration of the International Meteorological Committee. Commanications should be addresed to Mr. K. 11. Scott, F. R.S.4 Meteorological Office, 116. Veroma Street, London, S.W.

IN 8 communication to the Physical Society of Berlin, AF Aryl 4 Herr Kayser read a pote concerning bis ex-
periments on the condensation of gases on surfaces, and Bunsen's criticisms thereon. In a paper published last year Bunsen had declared that the previous results under this head were erroneous, inasmuch as the observers had proceeded upon the false assumption that a maximum of condensation was attained in a few hours or days, Bunsen himself finding that the condensation might go on slowly for years. Herr Kayser, however, had, in reply, pointed out that Bunsen had not been suffciently careful in cleaning the glass surfaces on which his experiments were made, and he now had the satisfaction to announce that Bunsen, after repeating his experiments with the necessary precautions, had arrived at the same conclusion as himself, namely, that there was no demonstrably slow condensation, but that the maximum of condensation was reached with extraordinary rapidity.
The project to build a "Grassi-Museum" has now assumed a tangible shape at Leipzig, inasmuch as the site for the new museum has been chosen. The new museum is to contain the collections belonging to the Ethnographical Society, which are now crammed into premises entirely unsuitable for them.

Dr. Otto Zacharias has recently made interesting researches concerning the freshwater fauna of the Silesian Riesengebirge and the county of Glatz. The Royal Prussian Academy of Sciences has just granted him a sum of money towards the continuance of his labours.

Mr. Howard Newton, assistant municipal engineer, of Singapore, has published a series of notes and experiments on the different kinds of timber in ordinary use in the Straits Settlements. The pamphlet contains observations on the forests adjoining our colonies in the Malay Peninsula, and the need already of conservation. The trees are felled in large numbers for ordinary use, and the jungles are cleared and exhausted by the Chinese gambier and pepper planters. Twenty specimens of woods are then described in detail, and finally an account of the mode in which the experiments were conducted and elaborate tables of the results follow. The breaking weights of some of the timbers tested were as follow :- $1850,1836,1656,1374,1286$, and 1284 lbs . Notes on the toughness, fracture, deflection, \&ce., are also given. It is curious to notice that some of the finest trees near Singapore (in the Johore forests) have no botanical equivalents. Mr. Newton specially mentions a tree called by the Malays the ballow, which grows from 60 to 100 feet in height, with a diameter of 3 to 6 feet. It is a close-grained, tenacious, hard, heavy wood, very valuable for building. It is called popularly Johore teak, although it does not belong to the natural order Verbenacsu.

Tue Russian Geographical Society has awarded a gold melal to M. Klossowski for his work on thunderstorms in Russia. We take the following from M. Rykatcher's analysis of this remarkable work. The initiative of thunderstorm observations having been taken by the Geographical Society in 1871, no less than 1821 regular observations were made during the years 1873 to 1882 at 176 different stations. For 145 of them annual and monthly averages were calculated, and gave the following interesting results. The minimum of thunderstorms (5 to 7 per year) is found in the north ; their number increases towards the Gulf of Finland (with a depression south of it) and on the middle Volga, where it reaches 12 to 15 per year, and remains nearly the same throughout middle and southern Russia, with a slight decrease in the Crimea. A rapid increase in the number of thunderstorms is found in Western Russia, especially in Bessarabia (33 at Kishineff), as also in the East, at Tamboff, Penza, and on the Lower Don. The maximum of thunderstorms, 41 per year, is found at Tiflis. As might be expected, the thunderstorms are more frequent where the summer rains and the relative humidity are the greatest. Their diurnal maximum is between

3 and 6 pm ., and the minimum between 3 and $6 \mathrm{a} . \mathrm{m}$. Availing himself of the synoptical maps of Hofmeyer for 1874 to 1876 , the author compares, day after day, the thunderstorms with the cyclones which reach Russia, and he arrives at the important conclusion that thunderstorms in Russia-without exceptionaccompany cyclones, their appearance being influenced at the same time by the local state of temperature and humidity. Marié-Davy, Mohn, and others subdivided thunderstorms into cyclonic and local ones, and the continental ones were reckoned to the second category; but M. Klossowski shows that even in so continental a climate as that of Russia, thunderstorms depend also directly on cyclones. They appear on the borders of the cyclones and mostly in their south-eastern quarters. By further researches, the author arrived at the conclusion that thunderstorms in Russia are secondary or tertiary cyclones appearing on the borders of a eyclone, and thus explains the oscillations of the barometer during thunderstorms, already noticed by Messrs. Scott, Mascart, and others. Hail is obviously closely connected with thunderstorms. It also accompanies cyclones and is always concentrated in its south-eastern quarter, in the zone of 750 to 760 millimetres' pressure. On the whole, the work of M. Klossowski is a valuable contribution to the study of electrical energy in the atmosphere.

In a lecture delivered in the Institute of the Khedive at Cairo, Dr. G. Schweinfurth has given "some account of the seats of manufacture of prehistoric stone implements in the desert of Eastern Egypt discovered by him in 1876 and 1877, and again visited and examined by him in his last journey. The two spots referred to are in the Wadi Sanur and Wadi Warag. The former lies due east of Beni Suef at a distance of thirty miles from that town ; the latter is in the upper portion of the Wadi at the place where this water-course begins to be discernible as a longitudinal depression on the heights of the western part of northern Galala. Dr. Schweinfurth's belief that the two sites in question are really those of ancient manufactories of stone implements is grounded partly on the presence of accumulations of cores in the beds of the streams, partly on the fact that the raw material is found abundantly in the neighbourhood. The source of the raw material is a bed of flints belong. ing to the upper nummulitic limestone corresponding to that which exists behind Cairo. Implements and utensils indicating a stone period have now, Dr, Schweinfurth remarks, been found even in the very heart of Africa, and these show a surprising resemblance in form to those discovered in Europe. Those recently obtained by himself from Sanur and Warag, however, are of a special type, and Dr. Schweinfurth regards them as clearly distinguished from the forms already familiar by the fact that the facets are usually only upon one side and are very seldom seen surcounding the entire core.

In connection with the trial of Pel for poisoning, which has just resulted in Paris in the condemnation of the accused, some interesting experiments were conducted at the Morgue winh a view to testing whether it was porsible, as alleged by the prosecution, that the murderer could have git rid of the bodj of one of his victims loy burning it piece by piece in a common stove. The professional witnesses stated that they procured a body weighing sixty kilogrammes. They removed from it forty kilogrammes of organic matter, and lighted a fire of woorlen logs. They thus ascertained that in an h_{h} sur the complete reduction to ashes of one kilogramme of organic matter could be effected, and in forty hours the complete combustion of a body weighing sixty kilogrammes could be completed. The accompanying smell was not disagrecable. The bearing of this on the question of cremation is obvious. It is possible to consume the human body by fire at a comparatively small expense, as these experiments show. In Japan, where cremation has been practised for
ages, the quantity of wond consumed in the cheapest cremation is so small that European doctors doubtel the evidence of eyewitnesses. Cremation of the lowest class costs only two shillings, on account of the small quantity of wood used, and the operation generally lasts from six to nine hours. The smell for a considerable distance around the crematorium is, however, of a very offensive kind, and the accessories are, as a rule, far from agreeable. There is, however, no doubt that the body can be consumed at a far less expenditure of fuel than is generally considered possible.

Tue following appears in the 7imes:-Last autumn, a bookseller namet Meyer, of Ronneburg, tied a water-proof label under the wing of a swallow which had occupied a nest at his house, and had become comparatively familiar. On it he wrote a query in German to the effect that he wished to know where the swallow would pass the winter. The bird returned to its former nest bearing an exchange label similarly fastened, saying, in German also, "in Florence, at Castellari's house, and I bear many salutations."

The Austrian Government has refused to authorise the establishment of private cremation societies, on the ground that they might encourage crime. The decree states that murders are often detected by the exhumation of bodies, and that, even if bodies were to be examined before cremation, there would be no time to apply in every cave those delicate chemical tests which are used where poisoning is suspected.

A telegram from Tillis states that a severe earthquake has occurred in the Eastern Caucasus. The town of Sikuch is said to have been completely swallowed up. The loss of property is estimated at several million roubles.

The latest telegrams from India state that the Cashmere earthquakes continue to occur with increased severity. It is reported that 2280 persons have perished in the district of Muzufusabad.

Information has been received at the Hague from Java that the state of Krakatol was causing some anxiety. Towards the end of April subterranean sounds were heard in the neighbourhood day after day, and flames arose from the crater. The rocks which emerged from the sea during the last eruption suddenly disappeared.

From a report of Mr. H. Walker, Commissioner of Lands of British North Borneo, it appears that gold exists in considerable quantitiev in that territory. Some natives had brought a little to Sandakan, and Mr. Walker set out to verify its existence in the Sagama district. He searched thirty or forty different places and found gold at almost every place, generally in small distinct specks, large enough to be gathered with the fingers, sometimes larger, and always in conjunction with a black metallic dust and iron or copper pyrites. The rocks met with were granite, gneiss, quartz, limestone, jasper, porphyries, red sandstone. Steps will probably be taken to have the whole region thoroughly examined by a competent geologist. The minerals already ascertained to exist in North Borneo are gold, silver, eopper, chromium, tin, plumbago, lead, and coal. Antimony and cinnabar are reported. On the west coast chromium, copper, and arsenic have been found ; in the neighbourhood of Kinabalu silver ore and pyrites ; a sample of native copper has been sent to London; a rich sample of galena and silver, yielding on assay 115 ounces of silver to the ton, has been found. Hitherto the officials of the Company and the other Europeans on the coast have been dependent for local information respecting these and other minerals on the rough statements of natives. It appears certain, however, that, besides its great forest and agricultural wealth, British North Borneo is also rich in minerals-how
 ＇sen mada．

ivarice , tu wat? e e L

wfore $\operatorname{tS} 6 \mathrm{C}$ winch have been more defiaitively deternined during be past wenty yeart，w：th a lee orbits of ancient comets com－ tusers iof the inst ime or fouaded apoo better data，including Eve inemin Tr scanelli：in a second talle are contained tee most riacle innts of wil ermets discovered since the year sha．The sements ate given in an approximate form only， a：In the wite acempanying each table reference is made to Ze tice it irferi Juchiacion．Prof．Galle＇s risumi will be \＆
 \therefore ．－－eetric wat here wis 00 immedale intention of pub－
 ew．．．etectes zmess if shurt period figure in the second L．e
TVant＂ruzs－－ive vilowing calcalazed angles and dis－ race ：：De mure mputy revoing doable－stars will

 －$=\cdots x=3$.
$\therefore \because, \because \quad$ F：s＝，me mars fince it was shown by

 $=, \cdots=-\cdots e r .2 \% \cdot \mathrm{raj}$ Dere seceas to be sume con－

e wisl a i wnik printed at Palermo，en． urowernit siven in the iirst mastance in a
 ＝sempumer witen by his nephew．Ac
is ： 4 －in as hus ecords his first observation $\because \therefore \sim \sim$ veilam in hue Meskane borizonte mon iun swanem ore tertam boctis horam \＆．．．．．．．te ercrii arctaci，ot distet hic a meo －

．．．．＇ु＂1 ye：anver the jiace of the star for 1573° was

 －in a Luaruiscusat this time that he was＂treravancé en
 Zach sudisht unsuccessfully for the special work －Muriocus as well as for his＂life＂by his nephew ； －INv 之ive se particulars of the former，and hence iccourse D．．：© in ind to Clavius，who，as stated above，made some

ふTKいいい．VICAL PHENO．MENA FOR THE HEEKN，1885，FUNE 21－27

（Fios the reckoning of time the civil day，commencing at （trenuich mean midnight，counting the hours on to 24，is here eaployed．）

Al Gremwich on June 21

Sun rises, 3 h .45 m. ; souths, $12 \mathrm{~h} .1 \mathrm{~m} .30 \cdot 5 \mathrm{~s}$. ; sets, 20 h .18 m . ; decl. on meridian, $23^{\circ} 27^{\circ}$ N. : Sidereal Tiue at Sunset, 14h. 19 m .
Moon (Full on June 27, 1 ih.) rises, 14 h .14 m . ; souths, 19 h .44 m .; sets, $\mathrm{th} .5 \mathrm{~m} .^{\circ}$; deel. on meridian, $8^{\circ} 24^{\prime} \mathrm{S}$.

Planet	Rises		Souths		Sess	Dect. on meridian		
Mercury	${ }_{3} \mathrm{~h}$ m.	\cdots	118	\cdots				
Venus	438	...	1258	...	2118	...		51 N .
Mars	24	\cdots	10.	\cdots	1756	...	202	26 N.
Jupiter		...	1613		9 N
Satura ...	343	...	1152	...	202		22	30 N .

Phenowenas of Yupiter's Satellites

The Phenoasena of Jupiter's Sutellites are such as are visible at Greenwich June
21 h. ... Sun at greatest declination nortla; longest day in northern latitude.
24 ... 8 ... Mercury at least distance from the Sun.
26 ... 20 ... Venus at least distauce from the Sun.
27 ... 15 ... Mcrcury in superior conjunction with the Sun.

GEOGRAPHICAL NOTES

The last issue of the Istresfia of the Russian Geographical Society (xx., 6) contains an interesting paper, by M. Kosyakoff, topographer, who accompanied, in 1882, 1. r. Kegel during his journey through Karategin and Darvaz. The paper tleals alunost exclusively with the topography of the explored region, and thus gives a plain description of the explored routes, containing the necessary toproraphical data for forming an opiution on the much-debated questions as to the orography of that part of the Pamir region. A route nap, on the scale of ten miles to an inch, accompanies the paper. Starting from Penjkent, M. Kosyakoff soon reached the 9800 feet high lake, Knuli-kalam. Then he crossed the 12,000 feet high and snow-coverel Badkhana Mountains which separate the Zarafshan from the upper Surkhab, trilutary of the Fan, and continuin; to make his way amidst deep and rocky mountain-gorges, he soon reached the lake, Iskander-kul, 7120 fect alove the sea-level. Thence, crossing the Mura F'ass, richly clothed with vegetation on its northern slope, the expedition descended to Karatag and 1 Hiscar, and. by a route quite suitable for carriages, they proceeded further to Kabadian. A good route along the Wakhh River brought Dr. Regel and his travelling companions to Kurgantube ; but, to reach Koulab, they had to cruss the Tash-robat Pass, all covered from top to foot with pistach trees. From Kulab, which is more animated than Kaladian, the expedition went to the rich Mumin-abad Valley, peopled with Tadjiks agriculturists; thence to the twenty-five villages of the Dara district, and, conninuing their journey north-east on the right bank of the Pendj, they soon reached Kala-i-khumb. The Pendj River being there but thirty five miles distant from Tavil-dara on the Waksh, the expedition went there before proceeding further up the Pendj, and followed the upper Waksh in a north east clirec tion for some fifty-five nilles, From Kala-i-khumb, M. Kosyakoff made a further very interesting excursion up the I'endj and its tributary, the Vantch, up to its source, whence he was compelled by a fever to return to Kala-i-khumb and thence to Samarcand. The inap published by the /ezestia contains, moreover, the very interesting route from Tavil dara to Bal-juan, and thence to Hissar, and further west to Baisoun, Anar-bulak, and Yar tube.

A nong the works announced for this year by the Kuss "an Geographical Society we see the last fascicule of the valuable "Geographical and Statistical Dictionary of Russia ;" the atlas of maps to accutnpany Baron Kaulbars' work on the delta of the Amu-Daria ; a geo nostic map of the shores of Lake Baikal, by M. Chersky; the work of Dr. Sperck on the Amur region ; and a work by M. de Vollan on the songs of Ugrian Rusians. There is promised, also, the longexpected results of the great survey or Siberia, from the Ural Mountains to Lake Bakal, accomplished in 1874. The commander of the expedition having died since, the work had to be given for caleulations to other pers sus;
but now the name of M. Tillo, who has undertaken its publication, is a guarantee that this capital work will not be lost to science.

Dr. Fischer, of the University of Marburg, the author of a monograph on the climate of Mediterranean countries, read a paper before a recent meeting of the Verein fuir Erdkunde at Halle on the morphology of the coasts of the Mediterranean, which is reprinted in the Halische Zritunf. "The Mediterranean," he said, "was specially important for some investigations into physical geography, for it has been the theatre of a long history, and we have therefore information about its coasts extending over many centuries. Although it washes the shores of three continents, this sea exhibits a striking similarity in its fauma and fiva everywhere. It mus', therefore, in its present form, belong to one of the most recent geological periods, even though particular lasins may be much older. It owes its origin t) great movements in the crust of the earth, and the form of its coasts is attributable to the same cause, modified by more recent influences. In the present coast furmation in the north-western basin, two different types are perceptible, which may most conveniently be designated as the North Sicilian and the Languedoc types. If we follow th: const of Italy from Naples, then the Sicilian and North African coasts ar,und to the Straits of Gibraltar, we meet with twenty-two smaller bays laving the form of a emicircle. Their sizes do not vary greatly, the chord of the smallest being $15 \mathrm{~km}_{\text {, }}$, that of the largest 65 , and that of the great majority between 30 and 35 kms . Over this extent the coast are almost everywhere precipitous, and a short distanee from the shore the sea deepens rapilly. How has this, formation arisen ?" Quoting Suess's "Das Antlizz der Eirde," Dr. Fiseher said, "there appeared to be all along this coast a great fissure in the crust of the earth. The formation of the Appennines, the Atlas and the occurrence of volcanic phenomena alung the whole line would point to this. But this would not account for the bays here mentioned; many of these are probably due to the sea washing away the softer from amongst the harter rocks. The projecting headlands are hard, old, erystalline rocks, while insule are the newer and softer kinds, These inlets, too, are not found everywhere along the coast, but only where the harder rocks are present. That the coasts here are greatly exposed to denudation by the action of the waves is shown by the numerous caves and elifis, and the violent surge which beats against the vast larbour-works of the French on the coast of Algeria. The prevailing winds there are noth and north-east, and thus assist the waves. Another factor iv the current, which flows eastwards along the north coant of Africa from the Straits of Gibraltar. This meets the profecting capes and beadlands, which deflect part of it into the bays, creatiug in the latter a counter-current which acts as a scour, keeping the botiom free from alluviuns, and also exercising its influence on the semi-circular formation of the inlets. The Bay of Tunis is an exception. This is much deeper than the others, and the currents cann t therefore exereise the same influence over it. The alluvium is depersited, the River Medjerda brings down its contribution, and the result is a constant formation of land there. This bay helongs rather, on this account, to the second type, existing on the Mediterranean coasts of Northern Italy and Languedoc. The Tuscan coast wa: originally similar to that of Lower Italy, hut it has now been attered beyond recognition. Here, to the west of the Appennines there is a wide district with easily-denuded rocks. The rivers, especially since man ias so disafforested the region, bring down vast quantities of alluvium. The current which flows into the Tyrrhenian Sea is deflected northward along the coast, and causes the deposit of the alluvium in hore, so that the ancient bays are gradually silting up. In ancient times the shores of this now harbourle s s:a had numerous bays, and 'T'yrrhenians were skilful na' sgators. At the mouth of the Arno the operation is best seen. P'isa, which was founded as the pirt on the sea at the moutt of the river, was no Ionger on the coast in Strabo's time, and is now some distance inland. The land formation on the coasts of I anguedoc is even more striling. In former tumes there ware s'eep shores, protected by a row of ivlands, behind which lay a calm inland sea, on which the city of Narbonne was built. The sea silted up from inside and out-from inside by the rivers, from outside by the currents created by the frequent soath eat winds which conveyed the alluvium of the eastern rivers, especially the Rhone, and deposited it there. The islands became joined to the land, and the inland sea disappeared. Thus arose on these coasts the flat plains, behind which are small lakes and mo.

Ar the meeting of the Paris Geographical Society of May 22 furiber intormation was read respecting the expelition of M. Teisserenc de $\mathbf{B r y}$ to explore the Shara. Leaving Tuggurt, they marched south-suath-wet to Mansi Oaled MilonI, the last point visited by the Flatters mistion. Thence, passin? through Berecoff, they ultimstely reachef Gins.s. Near Ghourd-Kou ned M. de Burt found well-marked trazes of an old lake of sweet water, absut a kilometre lony, and 750 or 803 m wids. In the depression thus created there were evidences of a prehistoric station in numerous flint arrow-heals, and from this point to Gabes the presence of nian at a very ancient epoch was attested by chippel fints.-M. de Qustrefages read a paper on the Red Indians, and on the half breeds of the Unitel States and Cansla. The paition which the writer maintains is that the Indans do not dominish so rapidly av is generally br-lieved, as, for example, the Moris. The half-eastes are put in the cenvas as whites: Indian women marriel to whites are similarly counted. "Placed in favourable conditions, the Redskins, far from diminishing in number, have increase 1 , an I are incressing. Hut they have not preserved their ethnic parity. Mixture with white bloal has taken place even in the mont remxe tribe, ant perhaps now the namber of natives of pare blowd is innignificant everywhere; but, on the other hand, the blond of the nitives is mixing mare and more with that of the whites, and the latter accep: more easily day by day the half-breed as one of themselves." Although the ked Inlians are di-appearing as such, they will still live in the futne true Anglo-Ausrican race. M. Henri Condreas gave a suceinct account of six journeys which he made batween $\mathbf{8 5 1}$ and 1855 in Guiant. The writer is Profesor at the Lycée at Cayenne, and perforined two of these journcy; during vacations; the others were und ertaken at the request of the Gisernor of French Guiana. The inst important one was from Ulanass through the whole of Central Gotana, between the Rio Negro ant Cayenne. He hal alrealy performed two-thirds of his task, an 1 passel the sources of the Trombette, when he lost all his articles for barter am onst the Indiany, and was deseriel by his followers. Daring four months he was alone amo grit savages, ultimstely arriving at his dextina:ion by a forced march of thirty deys throusth the virgin forest.

Hepoze the Saciety of Commarcial Geogrsphy in Paris, M. An-lreas describes the praities of Guiana which he traversed ia his jouracy between the Kis Negro and Cayenne. Hzhiol the enorm us forests which exten I inland from the coists he foand prairies wholly devoul of trees, where the air was dry and the climate mald. Ite strongly aivseatel the establishment of agricultural colonies there, describing the climate as in all respects the reverse of that found on the coast.

The well-known African traveller, Major Serpa Pinto, is stated to have discovered large coal-fields south of the Rovuma River. The Rovuma is a cost river, and its estuary is situated about $11^{\circ} \mathrm{S}$. lat. Along its tanks runs the ancient caravan route from Cape Delgado to Lake Nyassa. The coal-fichls were first claimed by the Sultan of Zanzibar, but have now been taken possession of by the l'ortuguese Government.

A SCIESTIFIC experlition under the charge of Lieut. 1 Iovgaard, of the Dani-h Navy, is being prepared to investigute the eastern coasts of Gireenland. M. Ciamel, the owner of the vessel, las put it at M. Hovgaard's dicposal, an't the Dantsh Goverament will pay the cost of the expedition.
M. Hasen- Blangeted has reported to the Geographical Suciety of l'arss that the first steamer emnin; directly frown the open sea arrised at Cologne on March is. It is called the In fiastry, belongs to a company of Mannheim, and is of 513 tons burten. "This is an event important not only for Cologne, but also for every town on the Rhine."

Pkof. Kart. Gotrscute, of the Univervity of Kiel, has juse returnel from his travels in Eastern A-sa. After lhaving lectured on Mineralozy and Geology for several years at Tokio, he nodertook a scientific exploring expelition in Korea, at the requert of the Korean Government, which lastet until December, 1884 . Wis route extended over 3003 kilometre3. Dr. Gottsche intends shorily to pablish his geological, mineralogical, ant ethnographical invectigations of Kirea. To our knowledge this is the fir scientific investigation of the great Fast-Asiatic peninsula.

Dr. H. Z. C. Ten Kare departed on May is from Southampton. He goes to the interior of Sarinam, where he intends to devote himself to anthropological and ethnological studies.

A grant has been given to him by Dr. Riebeck ($1 f$ alle $a_{i}^{\prime} S$) and Prince Roland Bonaparte.

A telegram dated "near Herat, June 9," states that. pending the settlement of the frontier question, the lirontier Commi-sion is exploring and mapping out the country in all directions.

ON THE MFSOLOIC FLOOR.AS OF THE ROCNY MOUNTAIN REGION UF CANADA

INN a previous memoir, published in the Transations of the Royal Saciety of Canala, vol. i., the author had noticed a lower crelaceoas flora consisting wholly of pines and cycads occurring in the Queen Charlote Islanis, and had described a dicotyledonous flora of Midille Cretaceous age from the country aljacent to the Peace Kiver, and also the rich Upper Cretaceous fora of the coal formation of Vancouver's 1, and-comparing these with the flora of the Laramie series of the North-West Territory, which he believed to constitute a transition group connecting the Upper Cretaceors with the Encene Tertiary.

The present paper referred more particularly to a remarkable Jurasso-Cretaceous flora recently discovered by Dr, G. M. Dawson in the Rocky Mountains, and to intermediate groups of plants between this and the Middle Cretaccous, serving to extend greatly our knowlelge of the Lower Cretaceous fora and to rember more complete the series of plants between this and the faramic.

The oldest of these floras is found in beds which it is proposed to call the Kootanie group, from a tribe of Indians of that name who hunted over that part of the Kocky Mountains between the 4 gila and 52 nd parallels. Illants of this age have been fount on the brancher of the Old Man Kiver, on the Martin Creek, at Coal Creek, and at one locality far to the north-west on the Sowka River. The containing rocks are sandstones, shales, and conglomerates, with seams of coal, in some piaces anthracitic. They mey be traced for 140 miles in a north and south direction and form troughs inclucled in the Palienzoic formations of the mountains. The plants found are conifers, cycals, and ferns, the cycads lseing especially abundant and belonging to the genera Dioonites, Zamites, Porlozamites, and Anonotamites. Some of these cycadaceous plants, as well as of the conifen, are identical with species de cribed by Heer from the Jurassic of Siberia, while others occur in the Lower Cretaceous of Greenland. The almost world-wide Podozamies lancavatus is very characteristic, and there are leaves of Sahsobria sibirica, a Siberian Mesozoic species, and branches of Sesuoia smitfiama, a species characteristic of the L.ower Cretaceous ol Greenland. No dicotyledonous leaves have been found in these beds, whose plants connect in a remarkable way the extinct floras of Asia and America and those of the Jurassic and Cretaceous perioth.

Above these are beds which, with some of the previons species, contain a few dicotyledonous leaves, which may be provisionally referred to the genera Stercula and Laurws; and still higher the formation alonnds in remains of dicotyledonous plants, of which additional collections have teen marle by Mr. T. C. Weston. The beds containing these, though probably divisible into two groups, may be named the Mill Creek series, and are approximately on the horizon of the Dakota group of the United states geologists, as illustrated by Lesquereux and others. The species are deseribed in the paper, and ditfer for the most part from those of the Dunvegan group of the l'eace River series, which is probably of the age of the Niobrara group, and, of conrse, still more from the overlying Laramie group. With reganl to the latter, the author adduced some new facts ennfirmatory of his previously expressed view as to the position of the Laramie at the top of the Cretaceous and base of the Eocene, and al-o tenting to show that some of the plants still held by certain pal.eo-botanists to be of Miocene age are really, in Canads at least, fowils of the Laranie gronp, and consequently considerably older than is currently supposed. The collections of plants studied thy the author had for the most part been placed at his disposal by the Director of the Geological Survey.

HYDROMECHANICS

TIIE: last of the serics of lectures at the Institution of Civil Enzineers during the sessiun of $1884-85$ on "The Theory and Practice of Hydromechanics," was delivered on Thurstay
${ }^{4}$ Reall hefore the Royal Sociely of Canalda, May, $\mathrm{s}^{3} \mathrm{~S}_{5}$, by Sir William Dawwa, C.M.G, LL. D., F.K S.
evening. May 7, by Sir Elward Reed, K.C.B., M.1'., on "The Forms of Shijs." The President, Sir Frederick Braniwell, F.R.S., occupied the chair.

In the course of his address the Lecturer briefly explained the great development which the science of fluid resistance bad undergone of hate year:, largely owing to the labours of Stokes, Rankine and others, but nore largely still to those admirable investigations which hel been carried out under the patronage of the Admiralty by the late Dr. William Froude, and subsequently by his son, Mr. K. E. Froude. He likewise explained the very great effect which those investigations had produced in the Royal Nasy, owing to the judicious and prompt adoption of Froulle's results by the Admiralty Constructors. Stress was laid throughout the lecture upon the importance of adjusting the form and proportions of shije not only to the loads which they have to carry, but likewise to the weight of the materials entering into their structure. It was a conmon error to judge of the merits of stcamships by the relations which exit between their displacement, steam power, and speed, as expressed by formula of various kinds. Approximations to the theoretical form of least resistatice were sought ly some naval tlesigners, and all consiterable departures from that form were regarded as objectionable. The Lecturer, on the contrary, pointed out that no such theoretical form was any true or proper guide for a naval designer, since every change in the average weight of the hull necessitated a corresponding change in the form and proportions of the ship, and the great merit of a designer often was that be adopted forms differing widely from the alstract forms of the schools, and presenting a very inferior appearance when put into what are known as "Constants of Performance." This was illustrated by examples derived partly from actual ships and partly from calculations made for the purpose. 'Two actual warships were compared, one attaining the high figure of 213 marks when examined by the received formulx, and the other gaining but 172 marks ; yet in the Lecturer's view the latter was far and away the better ship, because she performed precisely the same service as the other, being inferior in no respect, and yet had cost less than the other by $\mathcal{L} 114,000$, and expendel no more steampower in attaining an equal speed. The Lecturer remarked that he should probably have regarded the abstract "form of least resistance" with more respect but for the circumstance that the designing of armoured vessels in which he was much engaged is *a branch of naval construction of much too concrete and ponderous a character to admit of any dalliance with abstract or fancy forms." He went on to express his regret that, owing largely to the restrictions which granite docks imposed upon naval constructors, and to the absence of iron flo.ting docks capable of receiving ships of any form, and owing to other causes likewise, the construction of armoured shijs -by which he meant ships which had a sufficient volume protectel above the water to keep them afloat and upright while the armour remained intact-had been abandoned, and the first place upon the sea had been offered to any nation which had the courage and the will to assume it. In his opinion this was a purely voluntary abandonment, and was not the result of any scientific or economic necessity. He admittel that great changes in forms and proportions were very desirable in ourgreat line-of-battle ships; for example, a great increase of breadth was necessary in order to economise the side armour, and to keep the ram and torpedo at ample distance from the boilers and magazines, which should be protected by an inner citadel, so to speak, well removed from the outer one. But so far was true science from presenting obstacles to these and other important changes, it actually invited these very changes, and increase of beam in particular had been shown by Froude to facilisate the attainment of practical invulnerability combined with very high sjeed. Size and cost were among the bugbears of our naval administration; by the true engineer they were always regarded as secondary to great and notble oljects, among which objects he included the naval preeminence of our country. At any rate, there was no engineering obstacle whatever to England constructing and sending to sea, not merely those great and swift but delicate and fragile Atlantic hotels in which the British Navy is now to embark ancl fight, for the want of something better, but also war-ships-real war-shipsalmost as invulnerable as these islands themselves, and capable of bearing the once-proud flag of England boldly into the waters of any eneny whatever.

On the notion of the President, a corlial vute of thanks was passed to Sir Edward Keed for his interestiug and instructive lecture.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Cambridge.- In the second part of the Nateral Science Trijos the examiners have placed the following in the first class in alphabetical order:-Men: Acton (Rotany), St. John's; Eve, 1B.A. (Physics), Penlroke; Fitzpatrick (Pliynics), Christ's; Gordon (Physiology), Trinity ; Shore (Physiology), St. John's ; F. M. Voung, B.A. (Phy-ics), Trinity.

The Senior Wrangler, Mr. Herry, of King's College, was a student at Universily College School and College; the Second Wrangler, Mr. Love, of St. John's, was cilucated at Wolverhampton Grammar school. The Wranglers, thirty four in number, are alone cligible to compete in the third part of the Mathematical Tripos a year hence.

In the Natural Sciences Tripos, Part I, the following were placed in the first class, in alphabetical order :-Men : Bury, Irinity; Couldridge, Emmanuel ; Edgeworth, Caius; Evans, F. P., St. John's ; Oliver, F. W., Trinity: Rollestnn, St. John's; Seward, St. John's; Walters, H. G., Trinity. Women: Freund, J., Girton; Willoughby, C. A. J., Newnham.

The University Lectureship in Mathematics, lately held by Prof. J. J. Thomson, will be filled up by the General Board of Studies and the Special Board for Mathematics early in the Michaelmas Term.
It is proposed, in dealing with the increased income of the Craven Fund, to establi-b a new Studentship of 200%, a year for research in the Languages and History of Ancient Greece and Rome and the Comparative Philology of the Indo-European Languages ; the Studentship to be tenable for one year, but a student might be re-elected on not more than two occacions.

It is proposed still further to systematise and improve the courses of local lectures in populous centres, and to give students University certificates and exemptions in all cases where satisfactory work has been done, instead of confining these specina privileges to affiliated Colleges. The majority of the courses given in the past winter have been scientific, and the work continues to extend, under the energetic administration of Dr. R.D. Rolerts. Mnch difficulty exists in some of the most pronising centres, where the students (miners and artisans) are poor, in providing funds. There ought to be no difficulty in persuading colliery proprietors and manufacturers to find the money needed.

SCIENTIFIC SERIALS

Bulletins de la Soribte d'Anthropalogie de Paris, $5^{\text {me }}$ Fascicule, 1884.-On ancient superstitions still surviving among the Bretons, by M. Bonnemère. An interesting paper, showing among many other proofs of superstition that the peasantry believe in the possession by certain individuals, whom they characterise as "Ribotteurs," of the power of injuring others by causing their milch cows to lose their milk. The so-called "Ribotteurs" are believed to acquire this power by roaming naked through the fields on the night of April 30 to gather, at early dawn, the May dew, in which dwells the malevolent property of drying up the milk of cows.-On the uni-discoidal placenta of a mandrii, by M. Chudzinski.-On the degree of atrophy of the olfactory nerves compatible with the persistence of the sense of smell, by M. Mathias Duval. The writer draws attention to the number of cases in which a post-mortem examination has proved the atrophy, or even total absence, of olfactory nerves, although there had been no apparent defect in the sense of smell during life. M. Dally is of opinion that in such cases an excess of the gray matter of the brain at any one point may serve to supplement a deficiency in some other cerebral region. -M. Topinard presented to the Society a copy of his great chart of the relative heights, registered among the conscripts and in the public schools of different parts of France.-Report of proceedings at the first meeting of the "Conférence Transformiste," organised last year in memory of Darwin. In accordance with the scheme of the Conference an address was to be annually delivered by a member of the Anthropological Society of Paris, who was to indicate the infuence which Darwinian ("Transformist") views had had on the special branch of scientific inquiry which the lecturer prosecuted.-This year's acldress in the Physical Section of the Conference was delivered by M. Duval, who choe for his theme the evolution of the cye from the early development of the visual organs among the lower animals. His treatise is profusely illustrated by admirg'
grammatic woodcuts. - In the Psychical Section of the Conference M. .etourneau treated of the coolution of morality, tracing the rise and progress and various fluctuations of the moral sense among different races, -M Pozzi, in announcing the decision of the Committce for awardinz the Broca prize, explained that he and his colleagues had selected the works of three among the numerous competitors, vir. MM. Collignon, Chudzinski, and Testut, as of pre-eninent merit. The prize was, however, unanimously awardel to the last-named, M. Testut's great work, "Muscular Anomalies in Man explained by Comparative Anatomy," having secured him this distinction both on account of its atile and exhaustive character and its great literary merits. The selectel essays of MM. Collignon and Chudzinski, treated respectively of the "anthropometric differcnces of the leading races of France," and of the "Anatomy of the Negro." In his address M. Pozzi gave a summary of M. Testut's work, of which he spoke in terms of unqualified praise, both as regards the methorls with which his ofbervations had been conductel, and the manner in which the results were compared and tested.Keport of the eulogy on P'aul Broca, delivered lyy M. Dally on the day the Broca prize was awarded for the first time. As an old friend and colleague, M. Dally, in his historical and literary notice of the life and works of f'roca, was able to give many hitherto unknown particulars, which add largely to the interest of his aldress.

Biullrims de la Seviht d'Anthropologie de Paris, $\mathrm{I}^{\text {er }}$ Fascicule, 1885, containing rdum' of the rules, organisation, and actual condition of the Society, with lists of members, affiliated wocieties, and recent obituary, \&c., \&c., \&c. Among the works pre ented to the Society at its inaugural meeting, 1885, special notice is due to the "Elements of General Anthropology," by M . Topinard, who here gives a rfsumf of his lectures at the Schovt of Anthropologie since 1876; the "Gitaños of Spain and P'ortagal," by M. Bataillard; "Ethnic Munilations," by M. Magitot; and "Cannibalism among the Red Shins," by M. Letourneau. In regard to each of these. the authors treated at great length of the objects aimed at in their respective works, the character and scope of which they fully explainecl.-M. Chudzinski presented the Society with the cast of the delooul muscle of a negro, howing an anomalous separation of the bundles, which had a Simian character.-M. Delisle drew attention to an ox's head belonging to Ros indicus of Senegal, in which a perfectly developed horn protruded from between the nasal bones.-A paper by Dr. Hoffman, of Washington, on a curious relic found in South California, supposed to have been a case for keeping the colouring-matters and instruments employed in tattooing. - On the Quaternary deposits of Rosny (Nogent-sur-Marne), by M. Fck. Among these finds are fine teeth of Elephas frimigemins, Shimotros tichor himus, Equas, \&c.-Report by M. Gooin, of Cagliari, on the skulls and objects found by M. Issel in the recently-opened cave at Orreri, in the Island of Sardinia. M. Issel believes, from his study of the prehistoric remains of Western France, Spain, and the basin of the Mediterranean generally, that these and the finds at Orreri all point equally to the diffusion of a primitive race, which was extant in the Canary Isles within historic times. -On lans, by M. P. Neis, who explored the l.aotian territory bordering on Cambolia in 1882.84 . The author, as a Freneb official, enjoyed exceptional alvantages for travelling in Cochin China and the neighlrouring districts, and his careful study of the character and habits of the people has enalled him to collect much interesting information regarding the distinctive anthropological and social characteristics of the different races of IndoChina. M. Neis sees no ground for the opinion that these races exhibit traces of a Negrito element, but he draws attention to the fact that everywhere the Mungol is displacing the Thay and other ancient nationalities, although this is mont evident in the territories between Mam-on and Tonkin, and he believes that, unless the King of Siam takes prompt measures to stop this invasion, Siamese supremacy and French authority will be alike endangered.-Ceylon and its inhabitants in ancient and molern times, by M. Beauregard. The author derives his materials from English sources. - On the caves of Saumoussay, by M. Bonnemere, wholelieves that these grotues served in prehistoric ages as a tannery.-On the measurcments of the long twones as a laasis for the reconstnaction of the entire skeleton, by M. Topinart, with plates of the osteometric instrument used by Broca.-On will, considered from a physiological point of view, by M, Fauvelle.

SOCIETIES AND ACADEMIES London

Royal Society, May 7, with a note added May 12.-"On the Electric Resistance of a New Alloy named Platinoid." By J. T. Bottomley, M.A., F.R.S.E.

In the course of a series of experiments on the electric resistance of various metals and alloys and in particular on the variation of the electric resistance of these metals and alloys with temperature, the author has examined a new alloy (called by the inventor "platinoid"), which has turned out to have important properties.

This alloy is the invention of Mr. F. W. Martino, of Sheffeld, who kindly supplied specimens of the metal, and wires specially drawn down to the finer gauces for experiments.

Platinoid is practically Gernan silver with the addition of a small percentage (t or 2 per cent.) of metallic tnngsten. The tungsten is added in the form of phosphide of tung'en, a considerable percentage of which is in the first place fused with a portion of the copper. The nickel is then added; and then the zinc and the remainder of the copper. The mixture requires to be re-fused more than once, and during the process the phosphorus and a considerable portion of the tungsten originally added is removed as scorix. In the end there is obtained a beautiful white alloy, which is platinoid. When polished the alloy is scarcely distinguishable in appearance from silver. To test the quality claimed for it as to heing untarnishable, the author has been keeping ornamental specimens lying exposed to the ordinary town atmosphere ; and has satisfied himself that the alloy has a very remarkal/le power of resisting the tarnishing influence of the air ' f a large town.

It is, however, the electric resistance of platinoid that has chiefly interested the author. German silver wire has proved of great use in the construction of g •Ivanometer coils and resissance coils, on account of two importantprope rties, viz, its very high resistance and the smallness of the variation of its resistance wihh change of temperature. Both those properties are possessed in a still higher degree by platinoid alloy.

The resistance of German silver differs considerally in dif. ferent specimens. It is commonly stated to be $21.17 \times 10^{-6} \mathrm{~B} . \mathrm{A}$. ohaus between opposite faces of a centimetre cube at $0^{\prime \prime} \mathrm{C}$. $;^{\prime}$ or, reducing to legal ohms, 20.935×10^{-6} legal ohms be ween the opposite faces of a cenimetre cube. The following table shows the resistance of a number of specimens of platinoid wire:

Specifying number	Diameter in decimalt of a centimetre		Crow Section		Recistance legal ohe per metr		Resistance berween орроsite laces of a centimetre cube legal ohms
16	-16to0204300		'18t		36.98×10^{-6}
17	11430	\cdots	0160200		-202	..	3236
18	'1230 Ol19400	...	$\cdot 288$...	34.38
19	' 1110	\cdots	'0096770	\cdots	$\cdot 353$...	$34 \cdot 16$
20	'08650058760	...	555	...:	$32.6 t$
A	0595	+.*	.0027180		1250	\cdots	34.76×10^{-4}
13	0495	\ldots	'0019240		1707	...	32.85
28	0.402	\cdots	${ }^{\circ} \mathrm{COL2} 2690$		2.605	...	$33 \cdot 06$
29	'0340	...	'0009070		3412	...	30.94
32	'0290	.	'0006605		4.37t		28.87
36	-0220	...	${ }^{\circ} 0003801$		S 219	...	3t'24

It appears from these results that the specific resistance of platinoid is about one and a half times that of Gernan silver.

The experiments on the variation of resistance of platinoid with temperature were carried on in the following way. The specimen of platinoid to be tested was wound on a wooden botbin, on the surface of which a screw had been cut, and the spires of the helix were kept separate by lying between the threals of the screw. This coil was immersed in a bath of nil, and was connected in scrics with a known wire of German silver, the temperature of which was kept constant, and with a single Danieil's cell. The differences of potential thetween the two enils of the platinoid wire and the two ends of the German silver wire were determined by applying the electrodes of a a high-resistance galvanometer. The ratio of the differences of potential is the same as the ratio of the resistances of the two wires.

1 Given by Pruf. Fleeming Jenkin, F.R S., as expreasing the results of Mathivescen's caperiments.

In the following table is shown the ratio of the resistances of a specimen of platinoid wire at different temperatures to its roistance at zero. The wire used was the same as that specified as No. 20 in the table of resistances. The length of the wire exferimented on was about four-fifths of a metre. The only trouble in the experiment was the keeping the oil-bath, which was filled with linceed oil, thoroughly stirred, and of uniform temperature throughout.

Temperature.	Kesistance. The Res, at 0^{2} C. 0^{2}				\ldots
10	\ldots	\ldots	\ldots	\ldots	10
being $=1$.					

This gives for the average percentage variation of resictance per $t^{\circ} \mathrm{C} .$. between the temperatures ${ }^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$., the nomber 0 ozo6\%. A sccond wire tested very carefully in a similar way, gave for this average percentage variation belween 0^{2} an 1 100 , 0.022 rer degrec, with a stealily increasing tate of variation from the beginning.

To conapare this increase in resis:ance due to increase of :emperafare with that ohservel in other metals and all-s, we we fial that the percentage increase of reciniance ful $1^{\circ} \mathrm{C} .3: 20^{1} \mathrm{C}$. bor copper is $0.3 \mathbf{S S}$. platioum-silver aily oo31, क्\$ 11 silver aily 0065 . and for German silver oo44 Thene numbers were obrined lyy Matzhieacen in the coure of has es etimin:, if Eading a suitable metal or alby for the prorp we of conatric in ? the Bratish Association starda-3' of cicaric reviance 1: a; ;ean

 metals and alloys then examinet.

The modulus of rigidi:y, the loule's m-1aizs or monati=5 for elastic longitarlinaj exieas onl. atd the Ereaking we.jet if iaripoid wire were alto dectunge The wie iot! was a

 gaoge. and has a diameer of 0.0595 cm.

 er square centimetre.

 ahen dr
copling-

 eazth of iron. Ecel, an : rilicel

 'erictics. The appara:=s e=, :

 tan-ls n a firm scisen : the $=:=0$ en 'ears yruinti 2 bezs irve $15:=$: be fulctam ; the po-: ciral partion of th: keic. arher inniferedge at :1et s ?

 Hing easily derected A fto

tinued decreasing to the limit of the experiments, at which point the retraction was atout double of what the extension had freen, The effect depended ufon the thickness of the bar, an increase of diameter diminishing the maximum extension, and increasing the critical magnetising force, of that force which prov. duced the maximum extension; the revults secmed to how that this extenvion varied inversely as the witare ront of the diameter of the bar. The general behavinar of steel was the same as that of soft iron, but the critical print varierl with the hardness and temper of the metal, appesing tos be a minimum for steel of yellow temper. The renults of expernment upon nickel coincided with those oltained by I'sof. Harrelt, the effect of magnetisation being to cauce a continuous retraction greater than that obtained with soft iron. In answer to F'fuf. IIughes, who believed that the effect of the c.il wat always to produce retrasion of the bar, the cafcusion at firat being due to the molecular arrangement of the partiches during magroctaztivn, Mr. Sidwell further descritied an experiment showing, that the action of the coil was to prodace the ex ernion of a magract. Two thin strips of soff iron fastenel worther at the eni-, their centra! portions being a!r,0t 2 ca. apart, were placed in the coil. (ors making the current the en is were drawa out, the sifles cosming together. P'rof. Forlar, wughereel that the eff ct of thuckions was really owing to the urreigulanty of magne? asation prempund by the ents, and that in future expernmento the nuddle of the bar only shoshd be examinell.- Ina the s, ectral imase prolused by a slowiy rutationg vactumet'she, by Mr, shelfors 15:1apil_ Sote on the action of light in itmainistarg tese rentwase of

 Iny arrived at the concluason that it orfothese-1 rimetroin'waity.
 an element acording to acieptert the rie., ca . an mo. . to expr-

 n \rightarrow 6 -5, i. ary

$\stackrel{\rightharpoonup}{5}$

- i\% fot:

[^4]
into the Society.-Mr. Basset read a paper on the potential of an electrified spherical bowl, and on the motion of an infinite liquid about such a bowl, upon which Prof. Larmor made some remarks. - Mr. Elliott communicated a short paper by M. Z. J. Rogers, entitled, notes on the polism of the inscribed and circumscribing polygon.-Mr. Kempe, F.R.S., made a bricf communication on pairs of collinear points; and a paper by Prof. Mannlieim, liaison géométrique entre les sphères osculatrices de deux courbes qui ont les ménes normales principales, was taken as read.

Chemical Society, June 4.-Dr. Hugo Maller, F.R.S., President, in the chair.-Mr. Harold Follows was admitterl as a Fellow of the Society. - The following paper was read: -On the constitution of the haloid derivatives of naphthalene, by Prof. Meldola.

Anthropological Institute, June 9.- Francis Galton, F.R.S.. President, in the chair.-Prince Roland Bonaparte exhisited a large collection of photographs of lapps.-Mr. I'. A. Holst exhibited three water-coloured photographe out of a collection of 240 , representing all the tribes of the Russian einpire. -Dr. J. G. Garson read a paper on the physical characteri-tics of the Lapps; and by the permission of the anthorities of the Alexandra l'alace, the family of Lapps now being exhibited there were present in the room with their sleigh, reindeer skins, and dog. The group consists of three men, two women, and tno young children. The average height of the men is 5 feet 13 inches, that of the women 4 feet $11 /$ inches. The chief characteristics of the Lapps may be said to be their low stature, round heads, and large cranial capacity.- Prof. Keanc read a paper on the Lapps: after glancing at their origin, ethnical relations aud nomenclature, explaining the perplexing terms Lapp, Finn, Same, \&c., the Vrofessor proceeded to deseribe their present habitat, their national and political divisions, and popmilation ; not more than about 30,000 lapps remain, and their number appears to be diminishing. Their social atages were then described, and allusion made to their reiudeer, dogs, sledges, snow-shoes, and tents, and the paper concluded with an account of their religion, education, present condition, and future prospects.-A paper by Dr. H. Rink on Eskimo dialects was taken as read.

Edineurgh

Mathematical Society, June 12.-Dr. Thomas Muir in the chair.-Prof. Tait gave an address on the detection of amphicheiral knots, with special reference to the mathematical processes involved.

Pakis
Academy of Sciences, June 8.-M. Bouley, President, in the chair. - Action of chloroxicarbonie ether on the cyanate of potas-ium, hy MM. Wurdz and Henninger. In an accomplanying note i: is stated that this important posthumous monograph was mostly prepared in 1875 , but that its pulbication was delayed by the authors in order to complete their researches on various points. After the death of M. Wurtz the work was continued by M. IIcnniger, who was about to publish the revults when he also fell a victim to his arduous labours. In its present form the paper has been prepared and cdited by M. Edouard Grimaux. - Memoir on the temperaure of the atmosphere and ground at the Paris Natural Ilistory Museum daring the years is\$3 and i884. by MM. Edmond Becquerel and Menri Becyuerel. This inemoir forms a continualion of the researches hegun twenty-two years ago at the Museum by M. A. C. Beequerel, by means of the thermo-electric apparatus invented by lim.- On the gecoraphical distribution of animal and vegetable species as affected by the climatic conditions, the character of the soil, the disposition of land and water, the progress of culture, and other outward influences of the environment, by M. Imile I3lanchard.-I'ropagation of the earth. quake shock felt in Andalusia on December 25, iSK4, a rectification, by M. F. Fouqued,-On a new order of metallic spectra, by M. Lecop de Roishaurlsan.-Note on a new vegetatbe type from th: lower coralline formations of Auxes, in the neughbourhool of Baune, Cote d'Or, by M G. de Saporta. This type, by the author named Changarniera, from its fir-t observer, appears to be of lacustrine origin, and to bear a ceitain relation to the Rhizocaulon from the freshwater chalk-formations of the South of France, still surviving in Provence. It may, perhaps, represent one of those proangiosperm types, the existence of which has only begun to be suspected by botanists.- Note on some recently-discovered documents connected with the infancy of Jean Le Rond
d'Alembert, by M. L. Lallemand. These inedited records show that, contrary to Condorcet's statement, d'Alembert was sent to the Maison de la Couche, and placed with a nurse for six weeks in a Picardy village, after which he was consigned to the charge of Jacques Molin (Dumoulin), one of the most distinguished physicians of the time. - On a method of rapidly analysing all the nitrogen contained in substances in the organic, ainnoniacal, and nitric state, by M. A. Houzeau.-On a methor of employing the sextant in such a way as to obtain by a single observation the simultaneous altitules or angles of two stars, of a star and the moon, or of a star and the sun, by M. Gruey.- Onthe convergeuce of a contimuons algebraic fraction, by M. Halphen.- Kemarks on the radiations emitted by incandescent carbons, such ns those prepared for use in lighthouses for the production of voltaic arcs, by M. Félix I.ucas.-Remarks on the apparatus usually em. ployed for the measurement of continuous and other electric currents, ly M. Mascart. - A thermo-chemical study of electric accumulator<, by M. Tscheltzow. - Note on the action of silver, copper, iron, and some other metals on a mixture of acetylene and air, by M. F. Bellamy. The author's experiments show that in the burner these metals, and especially copper, act on acetylene in the same way that platinum does on hylrogen.Note on the sulphurets of cerium and lanthane, by M. Debray. - In a new reaction for digitaline, by M. Ph. Lafon. This reaction, which is extrenely scusitive, will enable the chemist to distinguish more sharply than has hitherto been possible between the numerous products employed in therapeutics under the general name of digitaline. - Note on aseptol (orthoxiphenylsulphurous acid), by M. E. Serrant. For this substance (so named by the author from the Greek negative paraicle \& and onwr δ_{v}, corruption) it is claimed that it will be found three times superior to phenic acid as a practical antiseptic.-On electric alcoholic fermentation, by M. Em. Bourguelot. - Remarks on the tail of the human embryo, by M. H. Fol. From bis researches the author is siti-fied that during the fifth and sixth weeks of its developunent the human embryo is furnished with a tail in the strict anatomical sense of the term. Being destitute of all physiological use, this organ must be classed with all other rudimentary members.-On the natural evolution of the cantharides, by M. 11. Beauregard. The results are here embodied of three years' research, during which the author has succeeded in clearing up many obscure points connected with the physiological life and functions of these insects.-Note on the extrac* tion and comprosition of the gases contained in the leaves of plants, by M.M. N. Grèhaut and P'eyrou.

CONTENTS

Page.
Buitschli's "Protozoa." By Prof. E. Ray Lankester, F.R.S.

145
Phaenology
146
Our Book Shelf:-
"Louis Pasteur, his Life and Iabours."-Dr. E.
Klein, F.K.S. : Lee's" Microtomist's Vale-Mecum."-Dr. E. Klein, F.R.S.

Letters to the Editor:-

The Late Prof. Clifford's Kinetic. - R. Tucker . . 147
Sky-Clows.-P. K.
Flying Fish,-Altred Carpenter
The Universal Meridian. By Dr. Janssen
Guessings at Truth, I.
147

Professor Fleeming Jenkin, LL. ${ }^{\circ}$., F.R.S.
147

The Geological Survey of Belgıum 154
The Congo (tllus/natad) 154
Notes
158
Our Astronomical Column :-
Cometary Orbits
162
Binary, Siars 162
Tycho's Nova of 1572 162
Astronomical Phenomena for the Week 2885 , June 21-27

Geographical Notes
 163

On the Mesozoic Floras of the Rocky Mountain Region of Canada. By Sir William Dawson, C.M.G., F.R.S.

164
Hydromechanics 64
University and Educational Intelligence 165
Scientific Serials
165
Societies and Academies............ 165

SUBSCRIPTIONS to " NATURE."

To the United States, the Continent, and all places within the Postal Union:-

London
 thutsday. June 88.

Royal Socirty, at 4.70, -The Action or Tidal Streams during Diffusion of Salt and Freah Water. Part 11: : T. Andrews - The Removal of Micro organisms from Water: Ir. P. Frankland,-A Memoir introductory to a Geeneral Theory of Mathematical Form : A. R. Kempe, Y. R.S. -On the Influence of Temperature on the Heat of Diseolution of Salta in Water: Prof. Tilden, F.R.S. - O_{o} Radiant Matter Spectroccopy: Pant II. Samarium : W. Crokes, F.R.S. - Regional Metamorphism: Prof. Preawich, F.R.S. - The Vortex Ri=g Theory of Gasea: Prof. J. J. Thom con, F.R.S. - And other Paper:
LanNRAN SocikTV, at a. - Colfornga Siacintohii, a New Sipumeulid from the Coast of Scotland: Prof. E. Ray Lankester-1 1 m the Occurrence of Articulated Lacticiferous Vessels in Hevea : D. H. Scott
Chrmical Society, at 8 - Hallot for the Election of Fellows-On the Decomposition and Genesis of Hydrocarbons at High Temperatures, 1. The Products of the Manufacture of Gas from Petroleum: Dr. Armatrong, F.R.S and Dr. Miller, -On the Non-Crystallisable Product of the Action of Disatase on Starch: H. D. Hrown and G. H. Morris, Ph D.-On the of Dratave on Starch: H. D. Brown and G. H. Morris, Ph D.-On the Decomposition of Carbon Dioxide at High Temperatures: H. B. Dixon. On the Cause of the Decrepitations in Samples ol Explosive Pyrites: B. Blount.-On the Influence of Silicon upon the Properties of Cast Iron: T. Turner.

University Collegr Ctrmicat. and Physical Socifty, at 4 -Some Notes on Hygienic Analysis: C. E. Cassal, F.I.C., F.C S.

MONDAY, JUNE 3 .
Roval Grogararical Society at s.jo. On the Countries and Tribes bordering on the Koh-i-Baba Range : Lieut.-Cen. Sir Peter S. Lumsden, k.C.B.

TUESDAY, TrNe as
Phystcal Soctetv, at 3-On the Specific Kefraction and Dispersion of the Alums: Dr. Gladstone, F.R.S.-On a Form of Standard Daniell Cell, and its Application for measuring Large Currents; and a Note on the Phenomenon of Molecular Radiation in Incandescent Lamps: Prof. J. A. Fleming
Anthronological Institute, at B.-Exhibition of Objects of Ethnological Interest from Polynesia: Iady Brassey.-Fxhibition of Ethoological Objects from New Ireland: Miss North-Exhibition of Australian Implements: Carl Lumholes, - On the Physical Characteristics of the Natives of the Solomon Islands ; 11 |H. Guppy, M1 IB. F.G.S.-On the Sakais: Abraham Hale. - Noteson the Astronomical Customs and Religious Ideas of the Chokitapia or Muckfeet Indians: M. Jean L'Heureux.-Ub. servations on the Mexican Zodiac and Astrology: Hyde Clarke.-On the Primary Ilivisions and Geographical Ilisıribution of Mankind: James Wrimary Divisi

WKDNESDAY, JUNE 3
Grological Socirtv, at 8,-Supplementary Notes on the Deep Boring at Richmond, Surrey: Prof. John W. Judd. F.R.S., and Collett Homers. ham. On the Igncous and Associaied Rucks of the Breidden Hills in East Montgomeryshire and West Shropshire: W. W. Watts-Note on the Zoological Position of the Genus Microctrexius, Wood, and its apparent Iden'ity with Hyopoodus, Leidy: R. Lydekker, B.A.-Obwervations on some iaperfectlyknown Madreporaria from the Cretnceous Formation of England: R. F. Tomes-Correlations of the Curiosity-Shop Reds, Canterhury, New Zealand: Capt. F. W. Hutton, -1) n the Fossil Flura of Sagor in Carniola: Constantin Baron von Ettingshausen.

SATURDAY, JUNE 27 .
Roval Potante Societv, at 3.45 .

DOMESTIC MOTOR

(DAVEY'S PATENT).

The most economical small motor for pumping water and driving small machinery. Cost of fuel one farthing per horse power per hour.
IN USE FOR ELECTRIC LIGHTING.
See Exhibits at Stand No. 1195, West Annexe, and also in the Electric lighting Department, Inventions Exhibution, London.

Catalogues on Application.

HATHORN, DAVEY, \& CO., LEEDS.

SWAN SONNENSCHEIN AND CO.'S LIST.

TEXT-BOOK OF ENTOMOLOGY.

BY W. F. KIRBY
(Of the British Musenm).
Large Square 8vo, handsmely bound, with over 6go Drawing 158.
${ }^{\text {" }}$ It is, in fact, a succinct Fincyclopedia of the subject. Plain and per-spicu-us in language, and profusely illustrated, the insect must be a rare one indeed whose genus-and perhaps even whone species-the reader fails to determine without difficulty. . . The woodeuts are so admirable as almost to cheat the eye familiar with the objects presented into the belief that it is garing upon the colours which it knows so well. . . . Advanced entomotogists will obtain 31r. Kirhy's fine volume as a handy bok of reference: the student will buy it as an excellent introduction to the science, and as an the student will buy it as an excellent introduction to the science,
absolutely trust worthy text-book."-Anowoledige, June 5,1885 .

CLAUS' AND SEDGWICK'S

ELEMENTARY TEXT-BOOK OF ZOOLOGY.

ny w. CLAUS,

Edited by Adam Sebgwick, M.A., Fellow and Lecturer of Trinity College, Cambridge. Assisted by F, G. Heathcote, B. A., Trintty College, Cambridge.

Sectron I.-General Intruduction and Prulozoa in Insecta. 49: Woodeuts Demy sivo. 653 pages and Copious Index, 215 . Section I1.-Mollusca to Man. Now ready, 16 s .
" It would be hard to find a better introduction to practical r ology. . . . We shall te greatly surprised if this does not become the text-book in all schools and collcges."一 inotulcd $/ \xi_{\text {: }}$:

At once our leading text-b ok."-Glasgets flevald.

- The first volume hav a most masterly, general iniroduction to the study of zoology. . . . We would lay enpecial weight on the illustrations of this work. which contains as rich a supply of well-drawn, well engraved, and, wellselected figures as ever man could desire. The volume is admirably printed, and the whole enterprise reflects the greatest credit."-Zoalogist.

Thick Demy 8 vo, cloth, $16 s$.

BIBLIOGRAPHY, GUIDE, AND INDEX TO CLIMATE.

BY ALEX. RAMSAY, F.G.S.

"The plan has been to thoroughly rearch each paper or work lof the last four centuries) and arrange its consents under specific beadings classified in a definite order . . The indices are very complete, and refer to subjects both in the Ribligraphies and the Notes ...it will be a mont valuahle addition to every scsentific, public, and reference-library."-Satwrday K'cvirov.

BY B. PEREZ. With Inlroduction by JAMES SULIV, M.A.

THE FIRST THREE YEARS OF CHILDHOOD.

Crown 8vo, pp, xxxii. 296 , cloth, price 4^{2}. 6 d .
Princtral Chapters:-Faculties before Birth-First Impressions-First Perceptions-Instincts-Sentiments-Veracity, Imitation, Credulity-The Will-Attention, Memory-Assuciation, Imaginatı n-Judgment, Abstraction, Comparis n, Gencralisation, Keasoning, E,rrors and lliusions-Fixpression and Language-Muscal Sense, Sense of Beauty, Constructive Instinct -Dramatic Instinct-Moral Sense.

CRUISE OF H.M.S. "ALERT."

FOUR YEARS IN PATAGONTA, POLYNESIA, AND MASCARENE WATERS.
By R. W. COPPINGER, M.D. Staff Surgeon on board H. \$1 S. Alert.
New and Cheaper Edition, with all the Original Hllustrati ns, Demy Bro , 6 .
"The importance of the Alert"s surveying operations can hardly be overrated. . . . He is a cloue and accurate ubverver. . . . Prominently interest. ing. among modern books of travel." -Asadrony.
${ }^{\text {q. }}$ Every page attests his meth and practical familiarity with the fauna and Alora of tropical and temperate climes."-Safundiy Revirm.

SWAN SONNENSCHEIN AND CO.,
PATERNOSTER SQUARE.

WOODHOUSE \& RAWSON,
 SUPPLIERS OF ALL ELECTRICAL APPLIANCES,

Orfices-1i, Queen Victoria Street, E.C.
Wirrs-Cadby Hall, Hammersmith Road, W.
Lamps. Dynamos. Accumulators.
Fittings. Switches. Safety Junctions. Carbons.
Wire.
Instruments. Battery Supplies. Telephone Supplies. Electric Bells. SOLE MANUFACTURESS OF THE WOODHOUSE AND RAWSON INCANDESCENT LAMP. inquiries invited.

In Casks, 12,6 per θ gals. In Bottle, $3 / 3$ pur doz. Impl. Pts.*

- IWinlesclanged s^{\prime} - per doas, and allowed at the same rate if relurned; but they masal he pasd for wath the Hieer.

Neither sugar, saccharum, nor any of the many new IIrewing Materials are used in the manufacture of the " $S \mathrm{~N}$." Stum: ; is is Hrewed entirely from she finest Malt and tlopn; it is, 100 , more hopped shan Stout is generally: therefure, besides leing very .untoinious, it is an excellent fonic and particalarly suited for itovalids, Laliev nurnans, or an) whe requiring a good sitingthening beverape. It is a "Sound Nutritious" Ionac, and very musch recummended by Medical men.

WALTEAMEROTHERG,
TIIE "HALF.GUINEA" AIEE BHEWERY, LONDON, S.W.
 SUCCESSOKS TO W. LADD \& CO.,
HFAK STREET, REGENT STREET, LONDON, W.
MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FOR SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.
WIMSHURST AND VOSS INDUCTION MACHINES OF IMPROVED PATTERN.
Illustrated Catalogue, Revised Edition, per post 8d. GOLD MFIDAI, INTERNATtONAI HEALTH EXHIBtTION.

IB' TIIE, SAME AUTHOR. In the I'ress,
DISORDERS OF DIGESTION: THEIR CONSEQUENCES AND TREATMENT.
This work contains, in addition to the lettsomian Lectures, a number of other l'apers by the Author on similar subjects, Demy 8vo.
MACMILLAN \& CQ., Iondon.
THE CHEMISTRY OF THE SECOND \RY BATTERIES OF PIANTF, and FAURE. By J. H. GLADSTONE, Ph.D., F.R.S., and Al.IRED TRIBE, F.Inst.C., Lecturer on Chemistry at Dulwich College. Crown Svo. 2s. 6d.
"The little volume is a valuable contribution to our knowledge of secondary batterice, and deservos to be widely circulated. Electrical hirsicte.
" It does not need many words to commend this clear and practical little volume to all whom it may concern." "Ahomatury MACMILLAN \& CO., LONDON, W.C

ASTRONOMICAL TELESCOPES.

FINEST POSSIBI.E QUAIITT.
2 fin. Wray L.ens, best mounting, \&ic., \&c. £5 ○| 3 引in. Wray Lens, best mounting, \&c., \&c. £15 ${ }_{15}$
$2 l$ in. do. tlo. do. $\neq 7104 \mathrm{in}$ do. do. do. £ $25 \circ$ in. do do. do. $£_{12} 10{ }_{4} \frac{1}{2} \mathrm{in}$ do. do. do. $£_{40} \circ$ TIIE STUDENT'S EQUATOREAL, with 3 lm. lens, our own make, 3 Eyepieces, \&c., Equatoreal Stand ... 1212 o New Illustrated Catalogue, 3 stamps.
TIEE "SOLARGRAPHI," a Photographic Camera, with Iustantaneosus Shutter, and an adaptor to fit it to any

"LE MERITOIRE" \& plate complete dry phate ap, aralus, duable rising front, swing back, rack to focus, \&c., \&c. \&1 116
TIIE "INSTANTOGRAPII," whth best lens, instantaneous shutter, screw m"tion totail boaril, and every recent improvement ...

Illustrated Photo Catalogue 2 stamps.
J. LanCASter \& SON, Manufacturing Opticians, Birmingham.

PATENT SPRING MATTRESS. AWARDS:
WOVEN WIRE MATTRESS.
TEN

The principle of arrangement permits the tree movement of one sleeper without inconvenience to the other, admits of complete isolation of each, and efferfually orrvents tepression in the centre.

Prizemedhls, Fourteen Certificates OF MERIT

Tне

Excelsior

 AND " Matlock" ED-RESTThe leading peculiarity of this Mattress is the unique combination of a woven wire central portion with helical springs of great strength and reliable temper, giving advantages possessed by no other make. The helical springs obviate the tendency in all woven wire mattresses to become hollow and so cause sleepers to roll into the middle of the bed.

Illustrated Descriptive Circulars and Price Lists from
The "EXCELSIOR" \& "MatLOCK" COUCIIES.

Retailfrom Cablnet Makers, Upholsterers, \&c.

CHORLTON \& DUGDALE, MANCHESTER. OBJECTS FOR THE MICROSCOPE:

Fungus of Favus, Achorion Schn̂aleinif
Eiver Spots (Chloasma) Mycrosporon furfur Acarus of Itch. Male and Female

Do. Do, Eges and ìs
Section through Finger and Nail of Monkey
Six Slides to illustrate the anatomy of the Busier pran
Eyes and Rostrum, Squame. Antennulen, Tail Plates, Ambulatory
Feet and Swimmerets, a most valuable Set

${ }_{3}{ }^{\text {d. }} 9$ Egge of House Fly

Egge of House Fly
Section of Spine of Fchinus

Section of Brighton Chalk-Shella and Organic Remains in sifu
Ringworm of the Head, showing its effeci on the hair
Human Flea, Pulex irritans, Male and Female on otre Slide ..
Anstomy of a lieaf, 9 pieces on one Slide.

Indian Mosquito
W. WATSON \& SONS, opticians to her mayesty's govervment, 313, HIGH HOLBORN, LONDON, W.C. Established 1837.
 convurprion casas samanatio be 25 to 75% less than ANY other Gas Engine per brake horse-power.

CROSSLEY'S PATENT TWIN ENGINESImpuise every Kevolution.
The steadiest running Gas Engine yet made. CROSSLEY'S PATENT SELF.STARTERThe Safest, Simplest, and Best.
CROSSLEY'S NEW VERTICAL ENGINESKequiting little Ground Space.

CROSSLEY BROS., Limited, Manchester.
London: 24. Poultry, E.C. Glasgow: 19, Renfield St.

OVER 15,000 DELIVERED.
Spletal \$ II.p. OtTo Eingine indicating up to 2 h. P. I.argely tesedin I'rivate Ilouses for Electric light. is?

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid ground
Of Nature trusts the mind which builds for ayc."-WORDSWORTH
No. 817, VoL. 32] THURSDAY, JUNE 25, 1885 [PRICE SIXPENCE

AMATEUR PHOTOGRAPHY.

MIATUSON \& SWVAN

MANUFACTURERS OF PHOTOGRAPIIC LRVY
PLATES, COLLOLHONS, VARNISHES, ANH CHEMICALS,
Have REMOVED their London Store From WAllilNG STREET,

To

31, FARRINGDON STREET, (Adjoining MARCU'S WARD, \& CO.)

HEAD OFFICE:-

MOSLEY STREET, NEWCASTLE-ON-TYNE.
MEMORY and SUCCESS.-What contribates to success: A good memory. - What causes failure in life i A poor memory. What can all obtain from Prof. Loisette's DIS. COVFRIES: A good memory-THE PHYSIOLOGICAL ART OF COVERIES: Agood memory-THE PHYSIOLGGICAL, ARTeOF" "Localitien," or "Asmociations" of Monemonics. Lost memories restored -the worst made good, and the best better. Any book learmed in owichading. Prapectus POST FKEE giving opinions of Mr. RICHARD A. PROCTOR, Dr. ANDREW WIISON, and others who have studied the System. A Day Class in Never Forgetting and for Cure of Mind-Wandering commences every Monday at $3 \mathrm{p} . \mathrm{m}$. An Evening Class every Tuenday at 8 p.m. Iectures in Familics of the Nobility; also laught thoroughly by POST. Prof. LOISETTE., 37, New Oxporv Stueet (opposite Mudie's) W.C.

WANTED.-"NATURE" at Half Price Three Days after Publication-Aldress Akistothe, care of Lister's Library, 113 and 155 , Hammersmith Koad.

VICTORIA UNIVERSITY.

UNIVERSITY COLLEGE, LIVERPOOL. PROFESSORSHIP OF ENGINEERING.

[^5]
BROWNING'S AMATEUR’S SET OF PHOTOGRAPHIC APPARATUS

For Dry. Plate Photography, compriaing every Article shown in the Engraving. Complete in Case, price ea 5 ... Full Illustrated Catalogueor Photographic Apparates sent vree
JOHN BROWNING, 63, STRAND, LONDON, W.C. NEGRETTI AND ZAMBRA, SOLE M.AKERS OF JORDAN'S (PATENT) SUNSHINE RECORDER.

Now Ready， 4 o．Cloth，Price 3 os．
 ENCYCLOPFDIA BRITANNICA．

Edited by

Prof．T．Spencel Baynes，LL．D．，and W．Robretson Smith．LL＿I． Principal Cowtonts．
PHYSICAL，SCIENCES．Prof，J．Clwhx Maxwell．
PHYSIOGNOMY．Frof．A．Macalister．
PHVSIOLOGLES．Prof．J．P．N．Land．
Physiology．Prof．Michael Foster，Prof．J．G．M＊Rendeick，and Pi．Howard Vines，
PIANOFORTE A．J．Hirkins
PIFTISM．Kev．J．S．Swith．
PIGEON．Prof．A．Newton．
Pilfirimace，Rev，R．F．Littizpaly，D．C．I
PINDAR．I＇rof．R．C．JEBe，LL．D．
PINEAR．C．PIEAPOINT JOMNSON．
PINE，C．Pienpotnt Joh
PIQUET．Hrwey Jones．

PISA．Prof．Pasquale Viliaki．
PINANUS．Prof．Monitz CAvtom．
PISCICULTERE．G．Brow v toove．
pisistrates J．G．Fimaken．
Pitt．Lapd macailay．
PITTA．Prof．A．Newton
PIE：11．Richaid Gafnett，LL．D．
Plus IX．J．Hase Mllingere
PladiUE．，J．F．Parne．M．D．
PLAIN SONG．W．S．Kockstmo．
PlANikIANS．Prof L．v．Gearr，Ph．D．
PLANTIN B．A．Tiele．
Elate．J．H．Mindleton
flatinlis．Prof．W．Dittman．
PLATO．Pruf，LEw SA CAMPBELI，LIL－D．
PLATVPUS．W．H．Fioner，LI．I
PLAETU＇S．Prof W Y，YRLAB，1．LD．
PLESIOSUL゙RINNS．E．，T．N＋WTON．
PlFtlkisy J O．Arracki，M．1\％．
PLINY，F，A．Paler，I．L．D．
PLUCKER．Prof，Goo．Cheystal
PIt＂IAkell．F A．Pales
PNFUMATIC DF：－PATCH．JroL J．A．Ewing．
PNFUMAIICS．I＇rof．C，G，K vitt
PNEUNONIA．J．O．AVrLEEK，M．D．
POF．Prof，W：Mivio
POETRV．Theolmine Watth
POifilo，J．A．Svuoves．
POISONS 「MOWAS STFKNSON．M．D．
POKt．K．Hever Junes．
POLAND．W．R MonFILL，（RUSSIAN）．P．A．Kzoroticine
P．A．skiry Prof A．Curw Hown．
POIAR KF．GION＇CLements R．Hanқнам，C．B．
Police．F．Toatrs．
pOLITICAL，ACONOMY．J．K．InGam，LLAD．
POiti，MAKco．Col．Henay Vule，C．B．
poly Mils．F A Palzy．
户口I Yetkli．Prof．A．Hañack．
poivinesia Kev．S．J．Whitmer．
pulizoa．Prof．E．Riv l．Askissten．
POMPFII．E：H ISt xnter
POMPFY，Rev．W．J．Heobmon

IOAR IAWS．J．F DAME
FOPE，ALEXANDIK Frof Minto．

मokISM．I．L．Hratm．
POKNON Rev H．K．I．© ato D．I．

 PrifAcsil＇s．Pryf Whisuar．

POTIEKY ANB POKCELAIN．J．H．MitnekTow．
J欠HI．JRY W．B．TEAETMEIEN．

fRK，SHYIERIANISM．O＜MLND Aikv and Rer．Prof．C．A．Priges 10．1
PRINiOTT，R．Movtatite Winevere．
PRFGKIPTION，J，WILIAAMS and H．Got DV．
PRINILAWS J．Willays
pRIt F，KICHARID．Rev Inon Fowler．

PRIF STIFY．J．AlLav心 PI，TUN，M．P．

PKIsCIAN H J．Rony．
PKIsOV IIs（IfiNE Major Arthill Gaffitma

IROMPICK．Prof JAME，IRWF，D．C．L．，M P．

I＇K（DPACBNJA．Archlinchop II．Jaconiva．

l＇kthritt T．Profs．W．\dot{R} ．Swithand A．Hallvack．

Hellugos．Prof．L．Kav Lananotke．

HRINHCCAI．LANCOLAC，F AND LJTERATURE．Prof．PACL 8）

IKtNERG，BMK UF：Kev．Prof．A．D．Davimenm，D．D．
Filinhurgh：AJAM \＆CIIARLES HLACK．

BIOLOGIA－CENTRALI－AMERICANA：or，Contribu－ tions to the Knowledge of the Fauna and Flora of Mexico and Central Anerica．Edited by F．D．Godman and O．Salvin，Zoological Section．Parts I．to XXXVili．，each ges．Botanical Section，Parts I． to XVIII．，each ias．6d．Detailed Prospectus on application
BOOTH（E T．），ROUGH NOTES ON THE BIRDS ORSERYED DURING TWENTY YEARS SHOOTINT AND COLLECIING IN THE HKITISH ISLES With plates from drawings taken from specimens in the Author＇s collection．Parts I．to VIII．，each $\langle\mathrm{o} 25$ ．
CORY（C．B．）A NATURALIST IN THE MAGDA－
CORY（C．B．）．THE BIRDS OF THE BAHAMA ISLANDS．Roy．Evo．Coloured Plates．$\& 2$ as．
CORY（C．B．）．THE BEAUTIFUL AND CURIOUS BIRLIS OF THE WORLD．Large Folio．Coloured llases． 612128.
CORY（C．B．）．THE BIRDS OF HAITI AND SAN Domingo．Coloured Plates．Complete in IV．Parts，$C_{4} 4^{3}$
CUVIER（BARON）．ANIMAL KINGDOM．Trans－ lated．etc．，by firifrith．Pidgenn and Grav，and other Naturalits if vils．Bva，half calf．\＆ 3 3． $1837 \cdot 35$ ．
DRESSER（HENRY E．）．A HISTORY OF THE BIRDS （1f：ELCROPE． 8 vols．，half moricco royal 4 ith ．London， $187 \mathrm{r}-8 \mathrm{x}$ ． C53 105.
DRESSER（H．E．），A MONOGRAPH OF THE Slekul＇ID．E；or，Family of the Bee－eaters，Parss I．－11I．ready． Iroperial $4^{\text {to．}}$ London．2ra per part．
FORBES（W．A．）．SCIENTIFIC PAPERS．Royal 8vo．，
THE IBIS．A Magazing of Gэneral Ornithology． Complete set from the beginning in 1859 to 188 t including，with General Index． $1859-76.37$ vols．，8vo．，half calf．L5a tor $1899-84$
The＝ave．i86t．${ }^{6} 62,2$ vols．，cloth uncut． 6,2 tof．
1876，＇77，＇75，＇73，t vol．in cloth，the other in parts as issued， 4 vols．，L6．Nearly Rrady．
COLOURED FIGURES OF THE BIRDS OF THE IIKIIISHISLANISS Issued by l．OKD L．ILFURU，F．Z S，etc．， President（he Bratish Omithologists＇Union，
MACGILLIVRAY（W．）HISTORY OF BRITISH LANLIAVD WATFR HMKDS，Indigenous and Migratory ：including their Organication，Habits and Relations，Clastification and Nomen－ ctature，their principal Organs，and Observations relatuve so Ornithology． Nunervus Eingravinge 5 vole．Bvo，cloth， $\mathbf{L 6}$ tod．1837－52．
MADAGASCAR，HISTOIRE PHYSIQUE，NATU－ RFILIE ET PULITIQEE DE．Publiee par ALFRED GKAN． IllleR．
The following parts of this grand and important work are now ready，and the prices affived are thove charged to subscribers to the whote work：－

OATES（EUGENE W．）．A HANDBOOK TO THE BIRDS OF BRITISH BUKMAH，including those found in the adjoining State of Karennee．a vole Royal 8vo．， $\mathcal{L} 2 \mathrm{ze}$ ．
RAY SOCIETY．DR．ALLMANN＇S MONOGRAPH OF THE GYMNOBLASTIC OR TL＇BULARIAN HYIR＇川DS． ${ }^{27}$ fine plates，some coloured．？Parts．Folio，hall cloth boards Li tor（published，63：13n 6． ．）．1878－72．
EAY SOCIETY．DR．W．C．McINTOSH＇S MONO． GKAPH OF THF．BRITISH ANNELIUS．NFME．RIEANS 23 fine large plates sume coloured，a parts．Folio，half cloth boards， Ci 7s．6d．（published $\mathcal{L}_{3} 1356 d$ ）． 1873.74 ．
RAY SOCIETY，LUBBOCK（SIR JOHN，BART．）． MONUKKAPH UF THF COHLEMIIJLA AND TIYSANLKA． Cloth．15s．1875．
RAY SOCIETY．BUCKTON（G．B．）．MONOGRAPH OF IHE ISRITISH APHIDES． 2 vole Cloth， $\mathrm{C} 1268 . \quad 1875.77$.
RAY SOCIETY，BRADY（G．S ）．MONOGRAPH OF

SEEBOHM（HENRY），A HISTORY OF BRITISH IIR RDS，with Cilrured lllustratuons of their Eizas Io be completed in sukparts dis l＇arts I．－Y，now ready．I＇rice each，$C_{1} \mathrm{~L}$ ．
SHELLEY（CAPTAIN G．E．），A MONOGRAPH OF THE，SECIARINIIHAt：or，Family of Sunbirds Koyal 4 ti，with sas finely coluured plases．Half murucco．$C_{9} 98$.
TRISTRAM（CANON），FAUNA AND FLORA OF
 mminco, Q $_{3} 125.6 \mathrm{~d}$ ．
ZOOLOGIST（THE）1st and 2ad s？ries complete． R．H．PORTF．R，6，Tenterden Street，London，W．

Fig. \%.-siathef Nath haliate.

COMPOSITE PORTRAITS OF AMERI

THURSDAY, JUNE 25,$188 ;$

THE CHITTAGONG HILL TRIBES

The Chillagong Hill Tribes. Results of a Gourney in the Year 1882. By Dr. Emil Riebeck. Translated by Prof. A. H. Keane. (Asher, 1885.)

THE visit paid by Dr. Riebeck to the frontier tribes between Chittagong and Independent Burmah in the spring of the year 1882 forned a mere episode in the great expedition to the Far East, from which he has recently returned, laden with ethnological treasures of all sorts. But this episode, carried out at the suggestion of Dr. Bastian, "prince of ethnologists," proved from a variety of causes so unexpectedly fruitful in results, that he has been well advised to publish a separate account of it, pending the appearance of a comprehensive work on his general travels in Somaliland, India, China, Japan, and other Eastern regions. In its arrangement, profusion of coloured and other illustrations, and especially in the treatment of the subject matter, this first instalment almost reaches the standard of ideal perfection-of such perfection as can be achieved only by patient and intelligent observation, and by the cooperation of specialists in their several faculties combined with a generous use of unlimited means. Certainly the principle of division of labour in literary and scientific work has never been more happily illustrated than in the present instance. Wisely limiting his own functions to those of a laborious collector and narrator of his personal experiences, Dr. Ricbeck has placed all his rich materials at the disposal of the foremost naturalists in Germany, by whom the data thus supplied have been made a convenient text for so many separate monographs of great value on the various scientific aspects of the subject.
The work thus comprises, besides the journey itself graphically described by the traveller, four independent treatises-by Dr. A. Grinwedel, on the ethnology ; by Dr. Rudolf Virchow, on the anthropology ; by Prof. Julius Kühn, on the zoology ; and by Herr von Danckelmann, on the meteorology of the hilly region traversed during the expedition.

The trip included altogether two separate excursions, the first from Chittagong up the Karnaphuli river to Pakhoma and Forts Sirtay No. 1 and 2, close to the Burmese frontier; the second, again from Chittagong southwards to the Sangu, up that river nearly to its source, thence across the border to Dalakmey on the Koladan in Arakan, and from that point down the Koladan to its mouth at Akyab. None of these river basins can be described as unknown regions, seeing that they all lie well within British territory, and have been frequently traversed in various directions by Lewin, Hunter, and other explorers, by Government surveyors, and even occasionally by military expeditions. Nevertheless, such is the intricate character of the land, consisting of nearly parallel mountain ranges running close together, mainly north and south, separated by deep interrening river gorges, often densely wooded, and inhabited by a multiplicity of semi-independent hill tribes in almost
every stage of social culture, that the broad physical features both of the country and its inhabitants had hitherto been but imperfectly understood, while few of the details had been fully worked out. Hence a rich harvest still awaited our traveller, and the abundant materials collected by him and carefully sifted by his scientific fellow-workers could not fail to prove useful and help to solve some obscure problems in the natural history of the country.

Thus a comparative study of the two Gayal skulls from Chittagong and Arakan enables Dr. Kihn to clear up several questions touching the mutual relations of the gayal (Bas gavaus, Colebrooke), the arni or true wild buffalo (Buhalus indicus), the gaur (Bos cavifrons, Hodgson), and other members of the ox tribe in India and Indo.China. It now appears evident that the gayal or wild ox of Bengal, Assam and Further India does not differ sperifically from the ganr of India proper, as George Vasey and others wrongly supposed. "While the wild gayals' skulls slow all the features of the gaur, the forms of the tame gayal from the same locality correspond altogether to the nomnal gayal type as described by its best observer, Hodgson. Room is thus afforded for the surmise that bsth types characterise, not two distinct species, but forms only of the same species; that consequently gaur and gayal are specifically one, and that the deviations of the latter in its tame form have merely the value of a variation due to domestication."
Of more general interest are the admirable ethnological and anthropological papers of Dr. Grünwedel and Dr. Virchow, whose learned analysis of the data, and especially of the numerous measurements supplied by Dr. Riebeck, throws a flood of light on the many perplexing questions connected with this obscure ethnical domain. Accepting the already-established broad distinction between the Khyoung-tha or River Tribes, and Toungh-thi, or Hill Tribes (Lowlanders and Highlanders), a distinction which has more than a mere geographical significance, these anthropologists find that, on the whole, the hill tribes are of purer descent, that is, represent the aboriginal element more closely, than the riverain popula'tions. The latter (Maghs, Chakmas, Toungjinyas, \&c.). have become more intermingled with the Bengalese and other intruders from India, and are characterised by a yellower complexion suggestive of Mongol, or perhaps Malay, affinities. The former (Pankhos, Banjogis, Mros. Kumis, Kukis or Lushais, Shos, Shindus, \&c.) are of a darker hue, and seem to approach nearer to the Kolarian aborigines of India. At the same time Dr. Virchow is careful to point out that none of these Hill Tribes lend any support to the theory of an aboriginal Negrito element formerly spread over the whole of India and IndoChina, adsocated especially by De Quatrefages and other French ethnologists. "According to unanimous testimony they have all black, long, and smooth, but by no means straight, hair, and, although not athletic, their stature still at conce separates them from the dwarfish Andamanese and Negritoes. On the other hand, in further inquiry the question cannot be waived whether the Hill Tribes of Chittagong, perhaps also of Nepal, may not, after all, be somewhat nearly related to the primitive 'black skins' of India. The name Dasyu, or

Dasa, recalls in a remarkable manner tite word Dzo, applied both to the Lushais and their spee-h."

On the whole the Lowlanders appear to be dosely related to the Arakanese, and consequently to the Burmese, and are characterised by distinctly Monrolic features. They nay, in fact, be regarded as a Mongoloid people, intermediate between the true Mongols of Northern and Central Asta and the Malays of Malacca and the Eastern Archipelago.

This section of the subject is illustrated by very complete tables of measurements, and by as many as twenty-six photographs of Lushais, Pankhos, Maghs, Chakinas, Tipperahs, and other highland and lowland tribes.

Dr. Riebeck's account of his experiences amongst these children of nature is extremely graphic, and all the more entertaining that the arrangement with his collaborateurs crables him to climsinate all dry technicalities and strictly scientific matter. At the time of his visit a famine prevaled amonzst the border tribes in the upper Karnaphuli bavin, causing an irruption of Lushais and others into British territory. Thanks to this circumstance he was enabled to procure many waluable articles from the halffamished preople in exchange for a little rice and spirts. The circumstances connected with these transactions are related with a frankness which almost savours of excessive candour. "The brandy 1 concocted myself," he tells us, "by dduting spirits of wine with water, and colouring it with burnt sugar, thereby producing a still more alluring drink for their uneducated palate In return, they not only parted with a large quantity of their implements, but also allowed me to take bodily measurements and submutted to be plotographed by my fellow traveller Rosset. If for brandy I had substituted money, this would have somon found its way into the pockets of the liengali dealers, whe cozened and plundered the natives to the umost. I may therefore loe pardoned if I preferred to tickle the palate of the Lushais with fire-water rather than play into the hands of the blood-surking usurers."

A tropical thunderstorm, by which he was overtaken in the Ruma district, is deseribed in exceedingly vivid language. "The spectacle which now presented itself was one of the most supendous imaginable. In a few seconds the firmament lecame completely overcast : then the welion towered up, looking in the glean of the clectrie flashes like mighty sheaves of flame. The weird effect was heighened by the neighbouring woodlands, which were now all ablaze. For the natives had fired the surrounding bamboo-clad hills in order to clear the land for paddy-fields, and sow their rice in the astics. Thus was mongled the crackling of the burning and crashing bambon cancs with the roaring thunder aloft, the whole producing a din like that of a neighbouring battefield."

These pabsares may also serve as sperimens of Prof. Keane's very admirable, fathfol, and idiomatir translation. It may be mentioned thit the German and linglish chitions, both in folio size and splendidly printert, ware issucd smultanconsly by Messers. Asher, of Derlin ent Isondon. The wort: forms a simptumus velume wheb should tind a place in every well-apponted lobaty.

THE METEONOLOGY OF BO.MBAY
Misnetical and Metcorological Obscriations made at the Government Obscrvatory, Bombay, 1883 , unter the Superintendence of Charles Chambers, F.R.S., Reto. Fr. Drechman, S.J., Nimayek Narayen Nene, and Frederick Chambers. (Bombay, 1884.)

O^{F}F the series of volumes entitled "Bombay Magnetical and Meteorological Observations," the present one of forty pages folio is the twenty-fourth. The observations were begun in 1841 , and whether we consider the high class character of the observations themselves, the fulness with which they were made from hour to hour, or the long period over which they extend. hey muit be regarded as among the very best meteorological records we possess. In the discussion of many of the larger questions of Indian meteorology, such as are from time to time deale with by the meterologists of India with so much ability and success, the Bombay observations are simply invaluable; and they are at least of equal importance in the wider questions of the science, and particularly in those coomical inquirics which have largely engaged the attention of physicists in recent years.

In this report a very satisfactory account is given by Mr. Chambers of the observatory; its position, and surroundings, the instruments in use, and the duties of the various inembers of the observing staft, all showing that a trustworthiness and an accuracy is secured for the observations which leaves nothing in be desired. Five eye-observations are made every day without eaception. at 6 and $10 \mathrm{a} . \mathrm{m}$., and 2, 4, and 10 p.m. In addition to these, continuous registrations are obtained by means of automatic recording instruments, consisting of the mag. netographs, the barograph, thermograph, pluvingraph, and anemgraph, the first four registering photographe. cally and the last mechanically.

From these observations and registrations hourly readings of the various instruments are obtained, and from them the daily means are deduced. These daily ineans, together with the monthly means, are published in a series of tables appended to the Report. The daily results of the wind observations are given with more than usual fulness,--these consisting of the mean velocity in miles per hour without regard to the direction from which it blew ; the aggregate and mean velocities and relative frequency of different winds ; and the mean daily velocities of the north or south and east or west components of the winds which blew each dav, in miles per hour At Bombay the greatest mean daily velocity in mileper hour was 31.8 on June 11 , and the least 5% on "ctober 4; whilst the mean hourly velocity from June to August was 16.2 miles, and from September to May it was only 10.9 miles.

Underground observations are made at depths of 1,9 . 20,60 , and 132 inches below the surface, the first two depths loeing observed fise times daily and the last three once a day, inasmuch as at these depths no diumal varia. tion is shown. At depths of 1 and 9 inches the monthly maximum and minimum temperatures occurred in December and May, but at the depth of 132 inches these annual phases were delayed till March and July. The mean annual temperature of the air during 1893 was -8 -8
and of the ground, at a depth of t inch, $80^{\circ} 9 ; 9$ inches, So 7 ; 20 inches, $82^{\circ} \cdot 6 ; 60$ inches, $83^{\circ} \cdot 8$; and 132 inches, $s_{3} \cdot 2$. It is desirable that the errors of these underground thermometers were ascertained.

Down to the close of 1864 the hourly observations made at Bombay were published in extenso, and these twentyfour years" hourly observations furnish data for the prosecution of many inquiries, the value of which it would be difficult to over-estimate. From $186 ;$ to 1872 the individual observations ceased to be published, but the hourly means for the different elements continued to be published. From these the hourly means of pressure, temperature, humidity, cloul, thunderstorins, \&c., can be obtained for a period of more than thirty years. From the beginning of 1873 , however, no hourly observations, or even hourly means, appear in the reports, want of funds presumably being the cause of the omission. Irrespective altogether of the length of time over which the observations have been made and the immense value this single consideration gives to the Rombay observations, the position of this observatory with respect to the monsoons and other vital elements of the meteorology of India render the maintenance of a first-class meteorological observatory in this part of the empire indispensable. It is in truth simply necessary in the interests of Indian meteorology and its satisfactory development that the Bombay Observatory be kept in a state of high eficiency, and that the individual observations made there be published and distributed among men of science at least as liberally as they were previous to 186 g .

OUR BOOK SHELF

Supplement to "Euctid and His Modern Rivals," conhaiming a Notice of Henrici's Gcometry, tegether with Selections from the Reviczus. (London: Macmillan and Co., 485. .)
We noticed the original work at such length in these columns (N.ATLRE, vol. xx. p. 240), that it is not worth while on the present occasion to do more than draw attention to the issue of this "Supplement."

Prof. Henrici's "Congruent Figures" was published tearly contemporaneously with Mr. Dodgson's book, and so he was unable to discuss the methods employed by the Professor, who, in the words of the present preface, is fills the rolle of that popular functionary, dear to Parisian diners, le quatorzi'me."
The discussion forms scene vi. of Act ii., and is headed "Treatment of Parallels by Revolving Lines," and an extract, as usual, Jeads the way from Henrici's Art of Dining (so our humourist puts it), viz. "in order that an aggregate of elements may be called a spread, it is aecessary that they follow continuously."
It will thus readily appear to the readers of the "Euclid and his Modern Rivals," or of our account referred to above-which by the way is honoured by a partial reproduction amongst the review-selections-that Ir. Dodgson is still himself, and that his hand has lost none of its former cunning. We should have liked him to have given his opinions on other parts of the Professor's book, but it has not seemed good to the author to to act, and he has confined himiself mainly, if not entirely, to the Lobatschewky treatment of parallels. With two such combatants now fairly in the arena, we thall be content to act as a mere onlooker whilst the Krife wages fiercely between them, eagerly noting the parry and the thrust, and ready, if need be, to use the uponge as this or that combatant is struck.

It might be a mighty pretty encounter-Modern Treatinent versus the E:ticlidian.

Mr. Dodgson inserts remarks here and there in the text of the reprinted criticisms: he does not notice that a complaint he makes against us was in great part apologised for on p. 404 (vol, xx., see above).
Leilfaden bri zoolorisch-Ecotomischin Prapariviabungen.
Von A. Mojsisovics Edlen von Von A. Mojsisovics Edlen von Mojsvár. and ed. (Leipzig, 1885.)
We are glad to welconie a second edition of this work, which is a very useful matnual for museum curaturs and for demonstrators in the rapidly increasing number of zootomical laboratories. Although it appears to be designed for use in high schools we cannot think that it is likely to displace thic manuals already in use in this country; it wants the didactic character of Huxley and Martin's "Flementary Biology," the simplicity and directness of Prof. Milnes Marshall's admirable little book on the "Frog" (which is, we are glad to learn, to be soon followed by others), or the detailed directions of Prof. T. J. Parker's "Zootony." We may note by the way that these works appear to be unknown to our author, whose knowledge, indeed, of English works on anatotny, or, as Messrs. Wilder and Gage call it, anatomical technology,
is very incomplete. is very incomplete.

So far as German authorities on "Museologie" are concerned, the second edition appears to have been brought up to date; some additions, not always, however, inprovernents, have been made in the illustrations; some of the English authors whose works are neglected would have provided the anthor with a better figure of Astro. pecten than the shocking "representation" which is copied from Bronn. When the third edition is called for we hope we shall find the grave, but perhaps the only important. defect which we have noted corrected and accounted for.

LETTERS TO THE EDITOR

[7 he Esfitor does not hold himene'f restonsible for ofinions expressad by his corresAondents. Atither can he undertuke to peturn, or to correstond woilh the zeriters of, rejected manuscripts. No notice is haten of anonymeus commuwications.
[The Edifor urgently requests cerrestondents to haep their lettiers as short as possitle. The fressure on his sface is so groat that it is impossitle ofterwise to insure the apprarance even of communications cowtaining interesting and novel facts.]

On Watering the Coal-Dust in Mines

Referrtng to an explosion that happened at Lievin Colliery in the Tas de Calais on January 14 last, my friend M. Ed. Sauvage, Ingénicur des Mines, writes as follows:-"Some experiments have been lately made at Lievin Colliery (Pas de Calais), where a disastrous accitent happened a few months ago. I do not think any report of these experiments lass been published ; but they found the coal-dust inflammable, and the watering of the ways in the mine has been resorted to as a precaution against future accidenıs."

Twenty-nine persons were killed by this accident, that is to say, all who were in the mine with the exception of one. The survivor, a miner named Cornet, and one of his comrades, had prepared a blasting-shot for dynamite, and called upon the shot-hier to ignite it. The latter examined the place, provounced it to be free from fire-damp, and lighted the fusc.

At the inquest Cornet stated that he saw the shot go off, and had just time, by a quick movement, to throw himself uuder a heap of straw lying near when the explosion took place. He remembered nothing more, and attributed his escape to the partial protection aflorded by the straw.

Atter investigating the case and hearing Cornet's evidence, the Govermment engineer and those of the Company who owned the mine caine to the conclusion that the explusion was causel by the ignition of the coal-dast that had been lying upon the timbers which formed the supports of the gallery. In corroboration of this opinion they pointed out the fact that the current of air which swept throngh the gallery in which the explosion originated was too swift to admit of firedamp lodging there.

For some ycars past a system of more or less careful watering has been practisel in sume of the largest and driest of the stean coal collieties in South Wales as a precaution against explosions -and the recent occurrences at U'sworth, Lievin, Camphausen, and Pendlchury seem to show that similar measures are greatly wanted elsewhere.

Should watering the dust (locally in the neighbourhood of havting-shots, or generally in the workings) altimately prove to be the panacea for geat colliery explosions, then it is obvious that the responsibility for the holocausts that are now occurring lies alnust as heavily upon those who, having the power, fail to lasten its adoption, as upon those who continue to offer it a selfish or factious opprosition.
W. Galloway

The Colours of Aretic and Alpine Animals

I Mvelt regret that I have been too busy to seply to my friend, Mr. A. K. Wallace (Nature, April 16, p. 552), till the present moment, but this delay, unavoitable on my part, is the less to be regretted, since it has given an opportunity for the interesting facts recently alduced by sig. Lorenzo Camerano (NATtixE, May 28, p. 77) to be taken into consideration. As Mr. Wallace, with that heen penetration so familiar to all who know him and his writings, goes to the root of the matter under discussion and raises a distinct issue, I will now beg permission to offer a few words in reply to both these gentlemen.

First, with respect to the physical side of the question, Mr. Wallace is perfectly correct in supposing that colvur Ar se has no influcnee upon the ralliating or absorbing powers of bollies as far as regards obscure radiation. But 1 world point out that in the present case we are not concerned with colour alone; we have not merely to consider whether black or white is the 'best radiator, but we have for comparison two surfaces, hair or feathers, as the case may be, having, as far as we know at present, the same structure, and differing only in colour. The question before us is whether this colour-difference in the same rubstance is assectiated with any difference in radiating or absorbing power, and the final auswer can only be given ly carefully conducted experiments. I may add that i have long been waiting for an opportunity of conducting the necessary investigation, and with aid that has been kially offered from several quarters I hope lefure long to be in a position to arrive at some satisfactory conclusion. The form of experiment suggested by Mr. Wallace, although decidedly worth the triat, does not appear to the to le very safe, inasmuch as the natural structure and arrangement of the fur would be lost in the process of weaving into cluth. Mr. Wallace's strictures as to the use of artificial dyes ase, however, quite sound, and in these I fully concur. I may fusther state that when this question was raised some years ago, I searched literature (although by no means evhaustisely) to see whether any experiments had been recorded, and although many handreds of ohservations upon the raliative and absorptive powers of different brlies have treen made by various physicists from the time of Iranklin duwnwards, I have not freen ablle to find any experiment bearing directly upon the question under consideration.

The point to be decided is, not only whether dark hair or feathers are better rallators than white haur or feathers, but whether the maliative power of these white coverinys is less for that particular kind of radiation which is most greeclity alisorbed by the substance (snow) among which the animals have to pass their winter existence. Till this problem is solved physically we have, as it seems to me, only the purely biological considera. tions to fall back upon.

Before pasing on to the more strictly zoological side of the sultijet I should like to disclaim the nution to which sig. Camebano's letter may give rise, that the mdative (as distinguished from the protective) theory of Arctic colouring is original as far as concerns myself. With respect to the white covering of the warm-thooded animals, this theory was, as far as I knew at the time, original when first broachet in 1880 ; but Lord Walsingbam afterwants showed that the same conclusion had been arrivel at in 1846 by Craven, with whose name it should be more fairly associated. The appplication of this theory (in a reveriel sense) to explain the melanism of . Iretic insects is entirely due to Lond Walsingham, and as my friend Mr. Wallace is dupwied to give the weight of bis authority to this extension of the thensy, there is no occation to discuss this point further on the 1rerent occasion.

It now remains to point out some of the considerations which
have led me to the belief that the protective theory of white colouring is not wholly sufficient. Thus, among birds there seems to be a tendency among the falcons (F. candizans, F. islandus, Sc.) to becone white in high latitudes-a mole of coloration which does not appear to me to be of much use in such species. These birds, as far as I know, swoop down on their prey fram above, under which circumstances the lighter colouring would be of no advantage in enabling them to approach their prey undetected : on the other hand, it can hardly be maintained that these birds are subject to any persecution which would cause their lighter plumage to be of protective value. When on the wing the back only would be seen by another birtl hovering over the falcon, and it is noteworthy that this part of the falcons in question is darker than the under side. The same considerations apply to the snowy owl (Nyctea scanditica). In many other birds, again, such as the plovers (Chariderius plusialis, Squafarota cincra, $\& \mathrm{cc}$.) and various species of Solloputida (Trimsa variabilis, T. sudarynata, \&c.), the under side only changes to white in winter-a change which it is impossible to associate either with protection from foes or with predatory advantage. On the other hand, it seems not unreasonable to suppose (on the radiation theory) that the under side of the bird, being nearest to the snowcovered surface of the ground, would require the most protection. It is of interest also to bear in mind from the present point of view that many mammals are known to become white on the under side during winter. Thus, Surgeon-Major Leith Adams, F.R.S., states in his olservations on the natural history of Eastern Canada ${ }^{1}$ that "there is, moreover, a seemingly strong disposition for the lower parts of animals to become white in winter -ir, the parts in closest contact with the nnow : thux the under surfaces of the deer tribe are always whitest. And, as if from its halit of constantly digging among the snow with its snout in quest of food, we find the cariloo with a white patch on its lips and around the hoof, \&c." Such facts as these cannot, as it appears to me, be explained on the protection theory ; but if any connection exists between the motle of colouring of an animal and its external eonditions of life, the theory of preventive radiation or even the direct action of low temperature on the formation of the pigment seems to be more applicable.

The oljections raised by Signor Camerano, although supported by some interesting observations, are, I venture to think, somewhat wide of the mark. The writer, indeed, endeavours to bring wit hin the scope of the radiation theory classes of facts which I for one shoull certainly never dream of attributing to this cause, even if it hat been demonstrated on a sound experimental basis. There can be no question as to the truth of his concluding statement that the causes tending to modify the colours are of an extremely complex character. It is this very complexity, indeed, which renders it so highly important to thoroughly investigate any explanation which bears the stamp of truth, though perhap's applicable to but a very limited group of facts. In view of these difficulties, and bearing in mind the inexhaustible resources of nature in adapting organisms to their environment by apparently opposite means, it is not at all surprising that cases should exit which stand apparently opposed to the particular class of cases here dealt with. There are many conseivable ways of enabling an animal to struggle arainst a severe climate besides that of lightening the colour of its fur, and natural selection would take advantage of any and every means presented for securing this end. To say, therefore, that some animak become darker in winter (Cerous mandarinus), or that others do not change colour at all (Nupicafra curopra, Cafins ibex), is no real objection to the radiation theory, but simply an illustration of the principle that there are many ways of securing the same result. Thus, in the case of the two last-named species, Sig. Camerano himself states that there is a great difference in the thickness of the winter covering. Then, again, the statement that a more or less distinct seasonal change of colour is observable in many animals appears to me to have no precise bearing on the question- ell that can be said from the point of view either of aldppation or climatic protection is that in such slight mutations we have given to us a hint as to the method thy which the more striking seasonal clanges have been brought abrout. We must regard such changes either as the incipient stages of a seasonal variation which could, if necessary. be worked up ints a more perfect adaptation (profoctize or climatic). or as the vanishing reunants of a seasonal variation formerly important, but now useless. The facts that some animats which are not pular or alpine are promiancwity white, that the
" "Field and Foresi Rambles," 1873, p. 124.
colours of some Alpine Coleoptera are hrighter than those of the warmer plains, and that the species of small islands often show a tendency to melanism, are at present simply inexplicable, but, as far as I can see, do not tell for or against either theory. It would certainly be a strong case against the "present view if any animal could be named which became white in winter and was not an inhabitant of a country subject to cold winters. As far as my knowledge extends no such species exists. The light colour of desert mammals is most probably due to predatory advantage-the melanism of desert insects mentioned by Sig. Camerano is, I must confess, a new fact to me, and not at all in accordance with my own limited experience. The strongest objection raised by Sig. Camerano is, perhaps, contained in the statement that in the birds of the Antaretic region black is much more prevalent than in those of the Arctic regions. It is unfortunate, however, that the writer adduces in illustration such countries as Australia and New Zealand, which certainly cannot be considered within the Antarctic region.
In conclusion I should like to emphasize that the theory of climatic protection is not, as Mr. Wallace appears to believe, opposel to the theory of adaptation. If my first letter gave rse to this impression, I will take the present opportunity of pointing out that the animal kingdom abounds with cases of what our German colleagues happily call "functional change" (Functionswechsel)-that is, the conversion of a character (or function) originally acquired for one purpose to a totally new use. It is thus not at all improbable that a mode of coloration originally acquired as a climatic protection, may afterwards le found to be of adaptive value, so that climatic and natural selection would in such cases work together. I fully concede that many of the Arctic and Alpine species now derive such advantages from their white covering; the question is whether this colouring was originally acquired solely for this purpose, or whether climatic adaptation may not have had an equal or even a greater influence in its production.
R. Met.bola

Clifford and Professor Tait

May a "(so-called) Mctaphysician" - who has molestly waited to see if some one for whom Prof, Tait could have more respect would anticipate him-venture to remark upon a passage in the review of Clifford's "Exact Sciences" that appeared in Natire of June it?
Prof. Tait first calls "awkward" and "unnecessarily puzzling 'Clifford's statement that 'if we can fill a box with cubes whose height, length and breadth are all equal to one another, the shape of the box will be itself a cube' : and then, declaring with greater emphasis that it "at first sight seems to be nonsense," he adds:-" Read it, however, thus: "If we can fill with cubes a box whose height, \&c. . . . the shape of the box itself will be a cube,' and the absurdity, suggested by the collocation, disappears."

Now Clifford's statement is not sufficiently guarded, being, as it stands, not true of the cube only; but it surely conveys a real meaning, in a "collocation" of words as plain as possible. It is something (whether much or little) to be told that a cube can be made up of a number of equal cubes; especially in view of the context ($\mathrm{p}, 16$). But does Prof. Tait, with his sentence, tell us anything at all, except that a cule is-a cube; or say even that plainly?
R.

June 22

Unusual Atmospheric Phenomenon

THE accompanying drawing-a copy of a sketch taken at the time-represents an unusual atmospheric phenomenon witnessed by several friends and myself during a recent visit to Ireland. It occurred on the 6th inst., a bright warm day, with a light breeze blowing from the east. The sky was free from clouds, acepting a few cirrus and cirro-stratus collections on the northern horizon. Engaged at the time in fishing from a toat on one of the Irish loughs, I was conscious of a change in the character of the light reflected from the water and distant objects and looking towards the sun (f), noticed that it was serrounded by an exceedingly brilliant halo (ab) of about 48° diameter, the contained space $\left(\xi^{h}\right)$ being filled with vapour of a dull leaden blue colour, which, by obscuring some of the solar rays, apparently produced the peculiar light effects that first atracted my attention. The time was 1.30 in the afternoon. Calling the attention of my friend, Dr. Simpson, to the pheno-
menon, 1 recorder the accomplnying details. The primary liula (a b) consisted of a brilliant, well-defined band of about 8 width, composed of the spectral colours in the usual sequence, the rell ring being nearest the sun. The whole band was most vivid, bat the northern half the brightest. At about two o'clock I noticed a hulging (t) of the leaden coloured vapour of the primary halo ($a b$) to the extent of 6° or 7°, and in its sonth eastern quadrant, and this protrusion, at first only faintly fringed with colour, soon was bounded by a spectral bow (c) at least as vivid as the brightest portion of the primary halo. The adjacent portion of a b, whether by comparison with e or whether because partially obscured by the protrusion of the vapour around which e was formed, I cannot be sure, secmed much paler than the rest of $a \mathrm{~b}$. Simultaneously with the formation of this seconclary bow a large white ring, represented in the drawing by $c d$, slowly formed around a centre to the north of the sun, and rapidly assumed a well-defined contour. Its diameter was 72°. Had it been complete it would in its southern portion have passed through the sun, but after cutting the primary halo $(a b)$ at the points (m and n),

which it rendered more faint, it gradually disappeared before reaching the sun. This latter ring ($c d$) began to disappear about a quarter of an hour after 1 first noticed it, its no thwestern portion facling first. I noticed no mock-suns at the points of contact of either of the excentric rings, and was, unfortunately, unprovided with my small pocket polariscope, and therefore unable to ascertain how mnch of the phenomenon was due to double refraction. The portion (e) may have been thus produced, but it certainly appeared, as drawn, to be a portion of a ring of smaller radius than ($a b$). The Rev. T. G. Beaumont, who also observed this spectacle, states that he saw the primary halo ($a b$) gradually start from a much smaller ring around the sun. The accompanying drawing, though rough, is as accurate as compatible with the absence of measuring instruments.

Alex. Hodgkinson
26, King Street, Manchester, June 16

Sky-Glows

Your correspondent of Clairvaux-sur-Aube says (Nature, vol, xxxii. p. 147) the sky-glows are again visible in France. I
can corfuberate the fact as regards the valley of Lake Leman, in Anuembant. It fieneva, a newpaper has describad the abotimal crppuetula: glow of June 2, 3. 4, and 13. At Morges (40 30 N lat.), I'rof. C. II. Dafour and myself have oberved them on the 12 th ant 13 th.

On the 12 th the van disappeared leyonl the fura range about 7 h. 30 mo . p. ml : at 8 h .10 m . my attention was called by the Urillatat illumination of a stange pale yellow, the same which in Ibeceniber, issy, anl January, issis, always foretold slie great creputuistar glowa : at oh. ilie western sky was coloured liy brilhant prorgle sevl mint, which spreat as high as the zeninh; the red colour conly vatiohed from the horiann at gh. $30 \mathrm{~m} .-\mathrm{i} . \mathrm{e}$ iwn full hourv after anwel. The woceesive phase, of the phenomenon were the arme as in the winter 1843.1884 ; the brilliancy of the colourn was, however, fainter, but they wete, perhyps, of gtrater duranson.

Gn the fth the ame glows were otwerved, with decreasing intenuly ; ot the fisllowing days nothing extraorlinary hav licen menturel.

Minges, Swlizetland, June 21

L.OAV COLLEC'T/ON'

TWE stary runs that a countryman, visiting London for the first time, and feeling bound to see Westtrunser Abbes; by a slaght mistake overbooked the Royal fanc, abilittended wervice in St. Margaret's Church hard by. Ite told his friende in the shires on coming bome that the ancient vifie e was sadily oversated. Visactly a parallel fave tos this has just occurred to the whiter of the present lines. Ite wat informed by an unknown friend that the surall collectuon of unlabelled instruments in the basement of the Alloert H.all wis unsorthy of the occasion ; and he only made: wat on close inquiry that the person in question was speakm: of one out of the two "overtlow roons "in wharh the superabundant stores of the Loan Collicction are lonusel, wal had never seen the Loan Collection itself at all. Thos wat the more remarkable as the said indivalual carrued the prosf-sheets of his guide-book to the Inventoniev which he was in the act of sending to the pronters, it is therefore rlearly not supertionot to state that thas, probably the grandest and most complete illustration of the bistory, progress, and development of muste cier furnished, occupies the whole of the circular gallery whel forms the top sterey of Capt. Fowke's gigantic buldang, and runs aver into two large rooms at a lower level.
It is imposible in a short preliminary notice to do more than call earl atention to the vast mass of priceless matenad liege collected, and soon to be again dispersed; nor ran sufficient credit lse accorded to. Mr. Alfred Maskell, who, aded by has learmed father, has been mainly instrumental in arrarging and bringing it into order. He lats been seconded -lgn.illy by Nr. Hipkins, representing the old and houmenel firm of liroadwond and sions, so that the collectmon of ancient spanetts, virganals, claviclaords, harpsichords, and the like is the most remarkable ever brought tugrtier. There is at least one such instrument lent by its noble swner from his family seat in Ireland which is all hut unknown even to connoisseurs.

The lielsian fioverument have most liberally lent the whole of the grand nutseum of the Brussels Cionservasoare of \Usac, (rysionsily presented to that inct.tasom by M. Victur Mabullan. This in trscif is a " Sishturmaz SICrobern," like the starce work of l'otorius. but presenting the sery thmse themselves, not merely theirgraten 1mbers

The reation of the evbuhit is carried to the higliest degies by three beatuful model ramens, desizned with the tave and sceutsis for which Mr. Davidison, bumself an evhbitur on white intinal thlilles, is so justly noted, each tomm shoming furntume, decortithon, and instruments of A

great epoch in musical history. The visitor can, if he choose, yield to the pleasant illusion and revel in the madrigals of Orlando di Lasso, "Il piid doke cigno d'lfizfict" the motetts of the Elizabethan age, the Lulls. inspired melodics of Purcell; or sit at the clavichord with Handel and grand old John Scbastian Bach. Of its kind the thing is as neariy perfect as can be, and the undersigned takes the first possible opportunity of praying his brother and sister amateurs not to let slip the unique privilege of seeing it.
W. If. Stone

THE MEASURE OF゙ FIDGET

IATTERLI-no matter where-1 was present at a crowded and expectant meceing. The communication proved tedious, and I could not hear much of it, so from iny position at the back of the platform I studied the expressions and gestures of the borcd audience.

The feature that an instantaneous photograph, taken at any moment, would have most prominently displayed was the unequal horizontal interspace between he.td and licad. When the audience is intent each person forgeis his muscular weariness and skin discomfort, and he holds himself rigidly in the best position for seeing and hearins. As this is practically identical for persons who sit side by side, their bodies are parallel, and ngain, as they st at much the same distances apart, their beads are correspondingly equidistant. Jut when the audience is bored the several individuals cease to forget themselves and they begin to poy much attention to the discomforts attendan: on sitting long in the same position. They sway from side to side, each in his own way, and the intervals between their faces, which lic at the free end of the radius formed by their bodies, with their seat as the centre of rutation varies greatly. I endeavoured to give numerical expression for this variability of distance, but for the present bave fetiled. I was, however, perfectly succesfful in respect to another sign of mutiny against constraint, inasmuch as 1 fonnd myself able to estimate the frequency of fidget with much precision. It happened that the hall was semicircalarly disposed and that small colunns under the gallery were convenient as points of refcrence. Front where 1 sat, 50 peroons were included in each sector of which my eyc formed the apex and any adjacent parr of columns the boundaries. I watclied tnost of these sections in turn, some of them repeatedly, and counted the number of distinct movements among the persons they severally contained. It was curiously uniform, and about 45 per minute. As the sectors were rather too long for the eye to surely cover at a glance, 1 nudnubtedly misoed some movements on every occasion. Partly on this account and partly for the convenience of using round numbers I will accept 50 movements per minute amons: 50 persons, or an average of 1 movement per minute in each person, as nearly representing the true state of the case. The audience was mostly elderly' ; the young would hiwe been more mobile. Circutnstances now and then occurred that roused the audience to temporary attention, and the effect was twofold. Iirst, the frequency of fidset diminished rather more than half; second, the amplitude and period of each movement were motably reduced. The swayings of head, trunk, and ams had before been wide and sluggish, and when rolling from sule to stide the ind. viduals secnicd to "yaw"; that is to say, they lingered in cxtreme positions. Whenever they became intent ths peculiarity disappeared, and they jerformed their fidgecs smattly. let me suggest to observant platosophers when the meetings they attend may prove dull, to occupy thenselves in estimating the freyuency, amplitude, and du: toun of the tidgets of their tellow-sufferers. They mas: do so during pretiods both of intentness and of indinerence, so as to elimnate what nasy be styled " natural fidget," and thon I think they may acyuire the new art of
giving numerical expression to the amount of boredom expressed by the audience generally during the reading 0 any particular memoir.
F. G.

RECENT EARTHQUAKES

THE shocks of earthquake in Cashmere continue with unabated violence and even appear to increase in frequency and force. Three severe shocks occurred during the night of the 13 th and a smart convulsion on the morning of the $1+$ th. It is now ascertained that 2231 lives were lost in the Muzzafferabad district, where at first it was thought there had been no castalties. The earthquake was also felt in Gilghit. Another very severe shock at Baraınulla on the 17 th demolished all the buildings which escaped former shocks. At Skardo on the 14th and at Srinugur on the 17 th, 1 Sth, and 19 th, shocks were felt. In the Kamraj district the loss of life exceeds 2700. The Jheelum Valley, from Srinugur to Dopatta, appears to have suffered most. It is stated that both sides of the nver from Sopur to Baramula have been seared with cracks, as also the low alluvial hills in the vicinity. The available data fix the centre of the disturbance in the vicinity of Gurais. It thus appears that in extent and amount of destruction the Cashmere earthquake must rank amongst the great seismic catastrophes of the century.
On Thursday morning last (June I 8) a portion of Yorkshire was visited by an earthopuake shock. The reports from outlying districts show that the shock extended from the east coast through the Wolds and westwards as far as Headingley, near Leeds. Signalmen on the North-Eastern Railway speak positively as to the vibration and noise. Crockery and glass rattled on the shelves of houses, and at Kinottingley and Ferrybridge persons ran from their houses from fear. At Easingwold desks and tables were seen to move, and there was a rumbling noise as of thunder. In some cases there was a severe shaking of houses, and doors were moved. The various reports concur as to the time being 10.50 , and it is said there were two shocks. It is a curious coincidence that about an hour previous to this on the same day and in the same regton the frightful explosion at the Clifton Hall Colliery took place. Unhappily our knowledge will not permit tis to connect seismic disturbances with disasters or mishaps in mines, but we have here a violent and unusual disturbance in the crust of the earth in Yorkshire and an almost simultaneous mining catastrophe in Lancashire.

We have received the following communications with reference to the Yorkshire earthquakes :-

A si.IGHT shock of earthquake was felt here yesterday morning in the favourable stillness of the "Friends" " meeting for worship. The time was observed to be about 10.47 am .1 was seated with my back to the north, when a rumbling sound appeared to be swelling onwards for about two seconds from the south or south-west. I then noticed that the hanging leaf of a small table in front of me (its plane lying east and west) was ratting very distinctly, and immediately I became aware that the back of my seat was shaking me perceptibly. Others heard some of the windows rattling on both the east and west sides of the house, and were shaken by their seat moving slightly ; these seats were some of them at right angles to mine. Some of these persons thought the rumbling came from the east ; others from the west. One gentleman, sitting in a corner, thought that his right shoulder, against a north partition, was shaken inore than his left, against the east wall. He also thought that the rumbling cane from the south end of the honse. The place of worship is about two-thirds of a mile to the north-east of our observatory, which is in lat. $53^{\circ} 3 \mathrm{~S}^{\prime} 40^{\prime \prime \prime} 8$, and long. t' $20^{\prime} 32^{\prime \prime} \cdot 75 \mathrm{~W}$. Nothing was noticed at the time by a man and a boy working in our garden. It is reported in
to-day's Leeds. Mercury to have been felt at York, Leeds, and Drifield.

W゙ilima Scarneil Lean
Flounders College, Ackworth, near Pontefract, June 19
Cayc. STaveley, at whose house the recent earthquake of June 18 was felt in a marked degree, gives me the following information respecting it. His house at North Datton (seven miles south-west of Drifield) stands on a slight elevation surrounded with undulating hills common to the Cretaceous formation of the Wolds. The shock occurred between 10.30 and $10.45 \mathrm{a} . \mathrm{in}$. (the exact time was not noted), and lasted about three seconds, travelling from west-south-west to east-north-east. Mrs. Staveley; who was in her bedroom at the time, felt a slight shock, then a rumbling sound as of thunder, and after that another stronger shock. The servants downstairs felt a distinct rocking, and the bricklayer's boy, on a ladder level with the roof, saw the whole roof heave up and down three times. In the dairy some dishes firmly placed on a high shelf were thrown down and broken, and at the inn on the other side of the road the walls trembled perceptibly, and the bottles and glasses were shaken and knocked against each other. The inhabitants of this and neighbouring villages felt the vibrations more or less distinctly, but the shock seems to have been greatest at, and in the direction of, Capt. Staveley's house. The colliery explosion near Manchester happened about an hour earlier; is it possible for there to be any connection between the two?
J. Lovel.t.

Driffield
The following extracts are from the Hull Express of June 20:-

Information which reached us yesterday shows that the earthquake-shocks experienced on Thursday in York and Market Weighton were also felt in more or less degree in other parts of the great shire.

Mr. W. Botterill, of Parliament Street, Hull, writes:"On returning home (Newland Park) from business last evening, my wife informed me that during the morning she had for some seconds very sensibly felt a vibratory motion in the house, which shefully believed to be caused by a slight shock of carthuake, and added that she should confideutly expect to find in this morning's papers notices in confirmation thereof. It was, therefore, no surprise to learn from your current issue, and other papers of to-dny, that similar effects had been experienced at York, Market Weighton, and elsewhere, about the same hour of the day."

A North Cave correspondent says that at about eleven o'clock in the morning nearly every house was subjected to a slight shaking.

A Driffield correspondent says that at the village of Hutton several residents felt a severe shaking of the: houses, and at the same time the inner doors were suddenly moved, crockery upset, and other signs of disturbance were observed. People were so terrified that they camot very accurately describe the shock, but state they felt a "reeling" sensation.
Another correspmondent writing from Driffeld says:"Yesterday mornmg a somewhat severe shock of earthquake was felt at Xorth Dalton, a village about eight miles from Driffield. The shock appears to have been the most distinctly felt at the residence of Capt. Staveley, which stands in an isolated and elevated position, and the house vibrated from basement to roof for several seconds. A bricklayer's apprentice who was repairing the roof had a narrow escape of being thrown down, and the greatest alarm was felt by the villagets, who 'ran out of their houses in fear for their lives.'"
The shock was also distinctly felt in Lecds. In Delph Lane, Wirod-house Ridge, the occupants of three houses which adjoin each other noticed it. It resembled the effect which would be produced by the violent shutting of doors, the windows rattling, and there being a perceptible

Galton reminds us that, during the first days of a traveller's meeting with a very different race, he finds it impossible to distinguish one from another, without making a special effort to do so: to him the whole race looks alike, excepting distinctions of age and sex. The reason of this is that, by short contacts with many individuals, he receives upon his retina, and has recorded upon his memory, a composite picture emphasizing only what is common to the race, and omitting the individualities. This also explains the common fact that resemblances among members of a family are more patent to strangers than to the relatives.

The individuals entering into these composites were all photographed in the same position. Two points were marked on the ground glass of the camera; and the in. strument was moved at each sitting to make the eyes of the sitter exactly coincident with these points. The composites were made by my assistant, Mr. B. T. Putnam, who introduced the negatives successively into an apparatus carefully constructed by himself, and essentially like that designed by Mr. Galton, where they were photographed by transmitted light. The arrangemsents of the conditions of light, \&c., were such that an aggregate exposure of sixty-two seconds would be sufficient to take a good picture. What was wanted, however, was not an impression of one portrait on the plate, but of all the thirty-one ; and to do this required that the aggregate exposure of all the thirty-one should be sixty-two seconds, or only two seconds for each. Now, an exposure of two seconds is, under the adopted conditions, too short to produce a perceptible effect. It results from this, that only those features or lines that are common to all are perfectly given, and that what is common to a small number is only faintly given, while individualities are imperceptible. The greater the physical resemblances among the individuals, the better will be the composites. A composite of a family or of near relatives, where there is an underlying sameness of features, gives a very sharp and individual-looking picture.

It would be difficult to find thirty-one intelligent men more diverse among themselves as regards facial likeness than the academicians entering into this composite. They are a group selected as a type of the higher American intelligence in the field of abstract science, all but one or two being of American birth, and nearly all being of American ancestry for several generations. The faces give to me an idea of perfect equilibrium, of marked intelligence, and, what must be inseparable from the latter in a scientific investigator, of imaginativeness. The expression of absolute repose is doubtless due to the complete neutrality of the portraits.

Fig. 3 contains eighteen naturalists and thirteen mathematicians, whose average age is about 52 years. Fig. 1 contains twelve mathematicians, including both astronomers and physicists, whose average age is about 513 years. Fig. 2 is a composite of sixteen naturalists, including seven biologists, three chemists, and six geologists, with an average age of about $52 \frac{1}{h}$ years.

I may mention, as perhaps only a remarkable coincidence, that the positives of the mathematicians, and also of the thirty-one academicians, suggested to me at once forcibly the face of a member of the Academy who belongs to a family of mathematicians, but who happened not to be among the sitters for the composite. In the prints this resemblance is less strong, but in these it was observed quite independently by many members of the Academy. So, also, in the positive of the naturalists, the face suggested, also quite independently to myself and many others, was that of a very eminent naturalist, deceased several years before the sitting for this composite.

There is given also a composite (Fig. 4) of a differently selected group. It is of twenty-six members of the Corps of the Northern Transcontinental Survey-an organisa-
tion of which I had charge, and the object of which was an economic survey of the North-Western Territories. It was a corps of men carefully selected as thoroughly trained in their respective departments of applied geology, topography, and chemistry, and having the physique and energy, as well as intelligence, needed to execute such a task in face of many obstacles. The average age of this group was 30 years.

Raphael. Pumpelly

HOW THE NORTH-NORWAY FYORDS WERE MADE

INN Nature (vol. xxx. p. 202) there was published an article by me "On Northern Norway under the Glacial Age," in which, among other subjects, I referred to the course of the travelled granite blocks in the neighbourhood of Tromsö. The researches I had then made in this direction were, however, confined to a limited area, whilst last summer I was able to extend the same to the point whence the blocks started. Although one of my assumptions in the former article has not been confirmed by my last researches, the conclusions I then arrived at have in the main been corroborated. And as I believe that this subject is one of considerable importance to science, I venture to give an account of my last researches.

In order to understand the subject, it is necessary to explain the orographical conditions along the course of the travelled blocks from the Swedish frontier to the Arctic Ocean.

From the eastern end of the Alt Lake, near the Swedish frontier, and northwards to the Store Rosta Lake, the country on the Norwegian side assumes the form of an extensive alpine plateau, with broad depressions, the average height of which is about 2000 feet, running between low rounded ridges. In the south-eastern part of these plateaux, not far from the eastern end of the Alt Lake, the Divi River rises. Having for some to graphical English miles followed the plateau, this river flows gradually towards the Divi Valley, which it enters and follows throughout its whole course in a northeasterly direction, flowing eventually into the Maals River at a height of 260 feet (82 m .) above sea-level. Its length, from where it leaves the plateau, to the spot where it joins the Maals River, is about 30 geographical miles. In its upper course, where the Maals River receives the Divi River, the former flows through a wide plain or low plateau, the so-called Overbygd, which gradually slopes down to a distinct valley, the Maals Valley proper, which runs in a westerly direction along the southern slope of the high, island-shaped mountain ridge called Mauken. The latter begins about 5 miles west of the spot where the Divi River enters the Maals River, whence it runs in a direction east-west for a length of about 15 geographical miles, the highest tops being upwards of 4000 feet (1255 m .). On the north-western side, however, the Overbygd gradually rises towards the broad mountain depression filled by the Tag Lake, 7 miles in length, which runs in a direction east-west along the northern slope of Mauken, viz. between the latter and the nore northerly-lying ridge Omasvarre, which, with tops upwards of 1900 feet (596 m .) in height, also runs in a direction east-west. The bottom of this depression is filled with the imposing Tag Lake, which lies on a height of about 600 to 700 feet (188 to 220 m .) above sea-level, and thus about 400 feet (120 m.) higher than the Divi River at the spot where it enters the Maals River. At the western end of the Tag Lake this depression takes the form of a broad mountain basin, the so-called Tag Valley, which in a north-easterly direction descends to Balsfiord. The distance between the Tag Lake and the Balsfjord is about 10 geographical miles. The Tag Valley is, on the western side, bordered by the lofty Maartin peaks, and further to the north-east by the Slet

Mountain, which, like an arn of the Maartin peaks, gradually slopes down to the Balsfjord.

The line of depression from the spot by the frontier where the Divi River rises, to the bottom of the Balsfjord which we have thus followed, is about 50 geographical miles in length. The course of the Balsfjurd is northwesterly, but very crooked, between mountains upwards of 4000 feet (1255 m .) in height. The latter are, however, not continuous, but separated into islind-like parts by deep depressions, which, in a recent geological period, when the level of the sea was 300 to 400 fect (9 t to 126 m .) higher than at present, must have been submerged, thus making each part an island. In spite, therefore, of the typical ford character of the Balsfjord, it was originally only a number of sounds, by which it was once connected with the Malangen Fjord on the western, and the Sorfjord, Ulfsfjord, and Lygenfjord on the eastern side. This is a circumstance of great orographical importance, and which deserves every attention, particularly because it does not apply to the Balsford alone, but is a characteristic of the formation of every ford in the north of Norway from Salten (Bodö) in the south to Lyngen in the north-i,f. from 67° to $70^{\circ} \mathrm{N}$. lat.

From the bottom to the mouth, in a sound betweeli the mainland and the south-eastern side of the great island, Kvalö, the length of the ljalsfjord is about 30 miles. At the Troms Island, which lies about five miles to the north of the mouth of the Balsfjord, this sound is divided into two narrow sounds, about five miles long, on each side of the Troms Island. From the northern point of this island these sounds reunite, and the sound becomes the broad Gröt Sound on one side, which, running in a northerly direction, joins the Ulfsfjord at its mouth by the Fugle Sound-a broad arm of the sea cutting into the land. On the other side, the sound is also connected with the open sea by the Kval Sound, 10 to 15 miles long, which runs in a westerly direction, between the two great islands kivalo and Ringvadso. The length from the mouth of the Balsfjord to the end of the Kval Sound by the ocean is about 30 miles, or about the same as the length to the end of the Gröt Sound. Thus, from the bottom of the Balsfjord to the sea the distance described is about 60 miles.

As regards the depth of the Balsfjord and the adjacent sounds, it myy be mentioned that that of the former varies from 80 to 100 fathoms (480 to 600 feet $=151$ to 188 metres), but from the mouth of the fjorl towards the Troms Island the depth steadily decreases, being, in the sounds on both sides of it, nut more than 20 to 30 fathoms (120 to 180 feet $=38$ to $; 6 \mathrm{~mL}$.). To the north of this island, in the Gröt Sound, on the other hand, the depth increases to 100 or $1 \geq 0$ fathoms. In the eastern half of the Kval Sound the depth is from zo to 30 fathoms, while in the western half it reaches, at the mouth, 120 fathoms. It will therefore be seen that the depth of this channel in the main increases scawards, if we except the two places by the Troms Island and in the Kval Sound, the shallowness of which may be caused by narrowness of the sounds, and the consequent opportunity for the deposit of marine dibris.
Thus, the entire length of the line of depression we have examined from the sources of the Divi River to the ocean is 96 geograplical miles, while the bottom of the same falls from 2000 feet above the level of the sea to 720 feet below it-i.c. a total fall of 2720 feet.

The seological structure of the mountains here is very remarkable. A large mass of granite uhich appears at each end extends inland far into Sweden, and, on the Norwegian side, reaches the upper Divi Valley. The rock is composed of orthoclase, microlin, plagioclase, a great deal of quartz, but very little mica. The colour is reddish, the structure granulated. At the other end of the line we have followed, on the Kivalo and Ringvadsö 1slands, there are several masses of a grayish, streaky
gneiss-granite, rich in mica, closely allied to the gneissmasses found here. Petrographically, the Divi Valley and the coast granites are so different, that it seems at first sight very easy to distinguish them, but this is not so easy with the variations of the two kinds.

The mountains which project into these granite-masses are built of layers of crystalline slate, and travelled blocks of this material may be found everywhere; but as it would be a matter of great difficulty to refer these to their original birthplace, I shall not take thein into account here. We will, therefore, only follow the course of the granite blocks travelling from the Swedish frontier to the coast.

There are two roads by which they might have moved, viz., one from the southern part of the granite-mass along the Alt Lake to Bardö, and so on ; the other more northerly, along the Divi Valley: It is the latter which I intend to discuss here.

The above-mentioned alpine plateaux are strewn with travelled granite blocks, and that the same have travelled westwards from the granite masses by the frontier cannot be doubted. The same applies to all the blocks strewn along the Divi Valley. At the spot where the Disi River joins the Maals River the travelled blocks have followed two courses-viz. one through the Maals Valley, along the mountain Mauken - which we shall not follow-and the other in a north-westerly direction across the $J_{\text {verbygd }}$ to the Tag Lake, the lower parts of the Overbygd being thickly strewn with granite blocks which, judging by their petrographical composition, I am sure belong to the Divi Valley granite. Hence the course of the blocks can be traced along the depression in the mountain by the Tag Lake, not only at the bottom, but high up on the mountain sides. Thus, the northern slope of the Mauken is everywhere, up to a height of 2500 feet $(754 \mathrm{~m})$, strewn with travelled granite blocks; indeed the brink of every terrace looks-seen from below-as if it were faced with travelled blocks, which everywhere seem to belong to the Divi Valley granite. Travelled granite blocks were found, too, strewn up the slopes of the Omasvarre Mountain to a height of 1200 feet (376 ml .) -viz. as far as 1 was able to carry my researches. I believe they would be found right up to the top.

From the western end of the Tag Lake the blocks have moved along the Sag Valley, and then to the bottom of the lialsfjord. The flat stretch of shore, 210 feet broad, high, and covered with loose dibris, is strewn with blocks which without doubt belong to the Divi Valley granite.

From what I have thus explained we may safely assume that an enormous masis of inland ice has once moved from the frontier through the above-described channels, down to the Balsford, and that it must, along the Mauken, a distance of to miles from the fjord, still have maintained a height of at least 2500 feet (784 m .) abose the then sca-level.

Before we follow the course of the blocks further, I will refer to certain circumstances connected with it thus far. About five miles to the westward of the mountain plateau near the frontier rises the isolated mountain Store Jerta to a height of 4500 feet (471 m .) -viz. about 1000 feet $(31.4 \mathrm{~m}$.$) higher than any of the surrounding mountains.$ The Store Jerta is throughout built of hard crystalline slate. On the very sumnit of this peak I found a large block of granite which I feel confident is a travelled block from the granite mass to the east of it. Its birthplace must in that case have been at least 1000 feet (314 m. .) lower, and, as the Store Jerta has been situated right in the track of the ice-stream from the east, I am of the opinion that the ice has been screwed up here to a very great height; but I confess it seems hardly possible to understand that it could be to such an cnormous height.

1 have stated above that the Tag Lake lies 42 feet higher than the spot where the Divi River enters the

Maals River, and supposing that this was also the case during the Glacial age the ice-stream must have moved up an incline before it could reach the depression leading down to the Balsfjord. This cannot, however, have been the case. As long as the ice-stream had perfect liberty to travel down an incline-here present in the shape of the broad Maals River, along the southern slope of the Mauken-it would hardly ever move in the opposite direction up an incline, leaving, however, local accumulations out of consideration. It might therefore be reasonable to suppose that the configuration of the land along the Divi Valley, and especially the Óverbygd, was very different during the Glacial age. A continuous, though slightly inclining, surface must under these circumstances at that period have extended from the alpine plateaux above the Divi Valley to the depression along the Tag Lake, and the present configuration be caused by subsequent erosion. It should be stated that the outlet of this lake does not now follow the course of the icestrean towards the Balsford-which might have been reasonably assumed-but is at the opposite, eastern, end towards the Maals River. This seems to indicate that the present declivity of the Överbygd in an easterly direction in any case cannot be older than the close of the Glacial age.
As stated, travelled granite blocks from the Divi Valley are found in great numbers along the northern slope of the Mauken, towards the Tag Lake, upwards of 2500 feet (784 m .) ; but that these should have been raised from lower levels to their present height seems improbable. The northern slope of this mountain does not lie transversely to the course of the ice-stream, but longitudinally to it. Of course the screwing-up of the ice may also take place in the latter case, but 1 should say only in isolated spots; this cannot have been the case along the Mauken. Neither is it possible that the bottom of the lake lay: at that level in the Glacial age. It must then have lain lower than the alpine plateaux by the frontier, and even if we allow for enormous glacial erosions, it would be impossible to believe that the bottom then lay at such a height. As the blocks on the Mauken cannot thus have been deposited along the botton of the ice-stream, nor brought thither through screwing-up of the ice, we must assume that they have been deposited from the surface of the ice-streain. The latter being strewn with blocks, which at the frontier was above 3000 feet (941 in .) high, has therefore, at 40 or 50 miles therefrom, had a beight of 2500 feet. The surface can, therefore, under this long journey, only have had a very small declivity outwards.

From the western end of the Tag Lake the great icestream has moved forward to the Sag Valley, which, being then as it is at present, has been able to receive it and turn it in a north-westerly direction downwards to the Balsfjord. That the Sag Valley cannot be of glacial origin, produced by crosion, is clear from the very nearly acute angle it forms with the Tag Lake depression. It might also be assumed that the ice-stream here might have moved forward across the Slet Mountain and the long, narrow peninsula between the Malangen and Balsdjord, but that this was not the case is proved clearly by the circumstance that travelled granite blocks are found on this peninsula, or only at low levels, which I shall presently explain.

It may be probable that the ice-stream from the Tag Lake has met another descending from the Maartinder in the Sag Valley, but there is no middle morainc proving this. On the other hand, travelled granite blocks are but sparsely strewn along the north-western side of the Sag Valley, at the foot of the Slet Mountain. Should the Sag Valley, therefore, be of glacial origin, it might more naturally be attributed to the ice-stream from the Maartinder, but even then eroded before the great inland ce-stream entered it. If, however, this was the case, the
former ice-stream must have been in motion long before the latter, of which there is no probability.

We therefore come to the conclusion that the basin of the Balsfjord, viz., the Tag Lake dipression and the Sar Valley, cannot be the result of the erosive action of the inland ice, but that it existed prior to the Glucial agc, and that, in fact, the depression in question was the cause of the ice-strean taking this course.
We will now follow the depression through the fjord and adjacent sounds.

As soon as we leave the true bottom of the fjord the travelled blocks are differently situated to those inland. There are plenty of granite blocks to be found, but thcy are ezcrywhere confined to lower levels, vis., from the share-line up to 120 feel (38 m .). Above, there is none, and the line of disappearance is very marked. My researches have extended, on the eastern side of the fjord, from the botton to the sea; on the western side, though they do not extend so far, they go to show that the conditions there are identical with those on the eastern side. It is particularly significant that neither here are the blocks found above a height of 120 feet along the low, transverse ridge which runs from the Balsfjord on one side westwards to the Malangenfjord, and on the other, eastwards to the Lyngen and U'ifs fjords. Thus, the outer Malang isthnus, which, rising slowly to a height of 400 feet (125 m .), leads from the Bals to the Malang foords, is along the former strewn with blocks, but only at lower levels. Above 120 feet they disappear. From this also it is clear that the inland ice cannot have moved forward across the Slet Mountain and the isthmus between the Bals and Malangen fords, previously referred to. From the bottom of the Nordkjos, a short bye fjord of the Balsfjord, running eastwards, the Balsfjord isthmus, two miles long, with a height of 230 feet $(78 \mathrm{~m}$.$) , leads to$ the bottom of the Storfjord in Lyngen. Here, too, the blocks are confined solely to lower levels towards the Nord and Balfs fords. The blocks have not reached as far as across the isthnuus to the Storford.
The blocks may in the sanie manner be followed along the Ramfjord, which as a bye ford runs from the mouth of the Baisfjord eastward to the Bredvik Isthmus. From the southern side of the mouth of the Ranfford the Anders Valley runs in a southerly direction between lofty mountains and with a steady incline. Here, too, travelled granite blocks are found to a height of 120 feet, but not a single one aboce. The case is the same along the sounds around the town of Tromsö. Further, I have followed the blocks northwards, on the mainland to Tunnes, about five miles from the town, but whether they have travelled further along the Gröt Sound I have not yet been able to ascertain. The same applies to the Kval Sound. But researches made on the islands outside this sound prove beyond a doubt that the granite blocks from the Balsfford cannot have reached these islands by way of the Kval Sound.

The greatest number of travelled blocks along the Balsford belong, judged petrographically, to the Divi Valley granite, blocks which might with certainty be referred to the coast granite not having been found. Along the sounds, too, the greatest number of blocks, if not all, may be referred to the Divi Valley granite; but blocks belonging to the gray, streaky gneiss-granite of the Kval Island are also met with here, some of which may even be referred to exact localities in the island. Among the rocks along the Troms Island and adjacent sounds blocks of a coarsc-grained syenite are also often found. In the Divi Valley no varieties of syenite appear, but they are often encountered combined with gneiss and gneiss-granite on the coast. Although I have not yet succecded in finding syenite in place which with certainty can be said to be petrographically identical with that of these travelled blocks, 1 lave every reason to believe that they hail from the west.

 F mm shat I hose ahosired here－av regarts thr lilock
 Aream if silabil ite．The stary lift tul demarcanon

 huse bowen far mope resulat siuling，I lenuth of itpe than a stream of intand ise prowbly coult to Wr have llocie

 was rzo leet higher lhan of preserg．Anil thr sitm triff of the tee natwands wour haris ov the iva whats up che fruv Eraselied bly
 shorst the mouth of the forit ；fierethe in－and vouthuy nc Ahaty of the Joni tall⿳ a dusibe is amother Impurtani kannive have maneil minnge th．－ Thisk，af ov consider the frowent ilm remeraber what be level ob on－wea shainathe
 at the lvetom of the ire munimg thentegh the if
 stream pual fave teicheimer that is tho minclan ii

 lialofyond dimums rim irarellest flacks wontd
at even lar grealer lievt
luete，sari by wring，
io ilaw rini liguen

\qquad

 Thenry．
Trum

Trimen V／mema \qquad
\qquad

 for what ot the Cotalogue ss followed are guen puiticula the authou of such stars as luie ieceived atcoution fros
 A cutalugue ul this character formu a waluable workin aryeried vanition will in sume iace be proved to is varaties．A．Lam id thon himil might indeed already bl di－1 It was fuyt her menequined is parming that the jitac

\qquad
\qquad

\qquad Te－
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Nots． \qquad
\qquad
\qquad Diguxed by Google

国

国

四

 - Ho meiric

 Guther
 Tum or

\approx tey
te7,

Re4.
$\because . .1$

(1)
国

प्रwe 25, 1885]
NATURE Ixi

SUBSCRIPTIONS to "NATURE."
Yearly,
Hall-yeirly
To the Urinited States: the Contineni, and all places this the Postal Union:-

Yarly
Halfyeyriy:
Quarterty.
HARGES for AIOVERTISEMENTS. Three t.inma in Columan ar. 6.\%. 9.\% per line afier On-Eigbth Tage, of Quacter Column ... is is

SANDERSON \& Co., LIGHTVINO CONDUCTO

 SECOND EDITION. GRIFFIN'S CHEMICAL HANDICRAFT.
a catalogue of chemical apparatus:

"- , mir

C. D. AHRENS.

PRISM WORKRE AND PRACTICAL OPTICIAN 16, GKYIT R! ARELI. STREFET, LONDON, W.C

POLARISATION OF LIGHT By w ken'. wrul wan nolis The MORPHOLOGY of the SKULL. By

AN ATLAS

PRACTICAL ELEMENTARY BIOLOGY．

BY G．B．HOWES，
Dimonstrator of Roclegy，Normal School of Science and Royal School of Alines，Levturcr in Comparative Anatomy，Si．Goorge＇s Hespital Matical School，London．

With a Preface by Professor HUXLEY，P．R．S．
MACMILLAN AND CO．，
LONDON．

MINERALS AND FOSSILS．
 SINGLE SPECIMENS OR COLLECTIONS．
 F．FI．BUTIEF，
 Assoc．R．Sch．Mines Lond．，
 M．A．Oxon．and L．S．A．Lond． Successor to the late R．TALLING．

 180，BROMPTON ROAD，

 180，BROMPTON ROAD， LONDON，s．w．

 LONDON，s．w．}

Five s⿰氵⿱丶inutes＇walk from the Natural History Museum，S，Kensington．

HOLLOWAYS PIILS

THIS medicine

Is a Certain Cure for all Disordery of the LIVER，STOMACH AND BOWELS．A Oreat PURIFIER of the BLOOD；a Powerful Invigorator of the System，in cases of WEAKNE8s AND DEBILIIY，and is unequalled in Female Complaints

On the ist of every Month，price Sixpence．

THEENTOMOLOGIST：
AN ILLUSTRATED JOURNAL OF BRITISH ENTOMOLUGY Edited by Joun T．Camatagton， With the Assistance of
Firdeatce Bond，F．Z．S．\quad fonn A．Powna，M1．D． L．DWAMD A．Fitch，F．L．S． f．JeNNRA Wria，F．LiS． F．Buchanan Wuite，M．D．
Cootains Articles by well－known Entomologints on all Branches of the Science ；on Insects injurious or beneficial to Farm or Garden；Notes on Hahits，Life－Histories；occurrence of Rarities，\＆c．；；there are Monthly Liots of Duplicates and Desiderata．
Numerous Wondiut Illestiations，to the printing of which eapecial attention is given，and occasiona！Litmogaapred and Cиномo－Litmo－ gatarme Plates，

SIMPKIN，MARSHALL，\＆CO．，Stationers＇Hall Court．

THE ZOOLOGIST：

A MONTHLY MAGAZINE OF NATURAL HISTORY．

Third Series．Edited by J．E．Haaring，F．L．S．，F．Z．S．，Member of the Britich Ornithologists ${ }^{\circ}$ Union ；contains－

[^6]JOHN VAN VOORST，f，Paternoster Row，

NORTH BRITISH AGRICULTURIST．
the ooly Agricultural Journa！in Sootland，circulates entensively amona Landowners，Farmens，Resident Agents，and others interested in the management of land throughout the United Kingdom．
The A（iRICUITURIS＇ is published every Wedneslay aliernoon in tiane for the Evening Mails，and contains Reports of all the princijn！British and Irish Markets of the week，
The special attention of Land Agentals directed to the AGRICULTURIST as one ol the best existing papers for Advertixing Farms to be Let and Esstates for Sale．
Advertisers addressing themselves to Farmers will find the AGRICU＇L－ TURIST a first－class medium for reaching that Class．
Price 3d．Dy post 314 ．Annual Subocription，payahle in advance， 148.
Offces－377，High Street，Edinburgh ；and 145，Queen Victoria Street， London，E．C．
Money Orders payable to Chaales Anpmason，Jun，，Ediaburgh．

THE BREWERS＇GUARDIAN：

A Fortalghty Paper devoted to the Protection of Brewers＇loterests， licensing，legal，and Parliamentary Matters Revtew or the Malt and Hor Timades and Wine and Shitt Teape Recoled．
The Organ of the Country Brewers．
＂The Breweri＂Guardion＂is published on the evenings of every alternate Tucaday，and is the only journal officially connected with brewng intereata Subscription， 16 s .6 d ．per annuta，p，ist free，dating from any quarter－das Single Copies， 18 ，each．Registered for transmission abroad．

> Offces-s. Bond Court, Walbrook, London, E.C.

THE＂HANSA，＂

Published since 1864 in Hamburg，is the only independent profetsional paper in Germany dedicated exclusively to Maritime ebjects．F．acay，Critigura， Reviewn，Reporis，Advertisements．Strict eye kept upon the developeneni of Maritime Affairs in every rewpect．Every second Sunday one Number in fto at least；frequent supplements and drawings．Subscription at any time preceding numbers of the year furnished subsequently．Price 115 ．For zweiv months．Advertisements ad．a line widely spread by this paper；considera b， abatement for 3，6， 13 months＇insertion．Business thfice：Aug．Meyet an Dieckmann．Hamburg，Alterwall，38．Edited by W，von Finztikn．M．R． Hambugg，Alexander Street，B．
s6s，per Ann．，wos．Post Firee．
DERNATURERESERERE
Wochenblatt rup Verbreitung der Fortschritte In den
Naturwismenchaften．
Herausgegeben von Dr．Wilmbly Sklakek．
A Weekly Periodicaldevoted to Natural Science． 51 Nun， 15 s ．Specirst Numbera may be had through any Foreign Bookseller．isfacourneng the XVIIth volume．
Berlin：DÜMMLER，77，Charlottenstrasse，S．W．，and all Pookee：le ry
On the ist of every Month
JOURNAL OF BOTANY， BRITISH AND FOREIGN．
Edited by JAnus BatTTEN，F．L．S．，British Museum．
Conterts：－Original Articles by leading Botanlats．－Kstracts． Notices of Books and Mlemoirs．－Articles in Journalk－－Botanical $\mathrm{N}=$ Proceedings of Societies．

Priee 14．3d．Subscription for One Year，payable in and ance，$x=\approx$ Landen：WEST，NEWMAN，R CO．，54，Hinnn Gamea．Fi，
The CHEMISTRY of the SECOND AE BATTERIES of PLANTf，and FAURE．．Iy I II．GI．ADST， Ph．D．F F．S．，and ALPRED TR1BE．，F．Inet．C．，Lecturer ose mistry at Ihulwich College．Crown Ivo，as． 6.1 MACMILLAN \＆CC．，London．

Messrs. MACMILLAN \& C0.'S NEW B00KS.

NOW READY. FIFTH TIOUSAND.

TEXTBOOK OF GEOLOGY.
ARCHIBALD GEIKIE, F.R.S.,
Director-Gencral of the Gcologital Surzoy of the United Kingifom. With numerous Illustrations. Second E.dition, thoroughly Revised. Fifth Thousand. Medium 8vo. 28r.

SHORTLY.

$$
\begin{aligned}
& \text { CLASS BOOK OF GEOLOGY } \\
& \text { for the useof colleges and schools. } \\
& \text { ARCHIBALD GEIKIE, F.R.S., } \\
& \text { Dirctor-Gencral of the Geological Surviy of the Uniled King dom. } \\
& \text { Fcap. 8vo. }
\end{aligned}
$$

THE STORY OF NUNCOMAR AND THE IMPEACHMENT OF SIR ELIJAII IMPEY, By Sir JAMES FITZJAMES STEPHEN, K.C.S.I., D.C.L., a Judge of the High Court of Justice, Qucen's Beach Division. 2 Vols. Crown 8 vo . 15 r,

NEW WORK BY MR. MATTHEW ARNOLD.
discourses in america. By Matthew Arnold, d.C.L., LL.d. Crown 8vo. 4r. $6 d$.
new book by edwiv a. Abbott, ni.D.
FRANCIS BACON : an Account of His Life and Works. By Edwin A. ABBOTT, D.I., Author of "Bacon and Essex," Editor of Bacon's "Essays;" formerly Fellow of St. John's College, Cambridge. Demy 8vo. I4s.
"Drs. Abbott has not mercly studied decply all Pacon's published writings, Eet has also shown great keenness of insight into the character that is revealed in them. Especially he has worked out the results of Macon's hopecullness and self-satiffaction in a way which has never been attempted before."-Prof. S. K GARDINER in the A. ademy.

NEW BOOK BY PROFESSOR MASSON.
CARLYLE, PERSONALLY AND IN HIS WRITINGS. Two Lectores, By DAVID MASSON, M.A., LL.D., Professor of Rhetoric and English Literaturc in the University of Edialurgh. Exira Fcap. 8vo. 2s. 6 d.
"These lectires should be read by all admirers of Carlyle." Safknday Reviev.
ON LIGHT. Being the Burnett Lectures. By George Gabriel STOKTS, M.A., F.R.S., \&c., Fellow of Pembroke College, and Lucasian Professor of Mathematics in the University Cambridge First Course: ON THE NATURE OF LIGIIT. Second Course: OV LIGHT AS THE MEANS OF INYESTIGATION. Crown Bvo. 2s. 6i, each.
MALTHUS AND HIS WORK. By James Bonar, M.A., Balliol College, Oxford. 8vo. 12s. 6 d . pofular edithon, one shilling.

THE NEW TESTAMENT IN THE ORIGINAL GREEK. The Text Revised by BROOKE FOSS WESTCOTT, D.D., and FENTON JOHN ANTHONY HORT, D.D. I2mo, cioth, 4 . $6 d$; 18 mo, roan, red edges, $55.6 d$.
A TREATISE ON THE CALCULUS OF VARIATIONS. Arranged with the purpose of Introducing, as well as Illustrating, its Principles to the Reader by means of Problems, and Designed to present in all Imporsant Particulars a Complete View of the Present state of the Science. By LEWIS BUFFI.TT
A TEXT-BOOK OF THE METHOD OF LEAST SQUARES. By MANSFIELD MERKIMAN, Professor of Civil Engineering at I.chigh University, Member of the American Philosophical Society, American Association for the Advancement of Science, American Society of Civil Engineers' Club of Philadelplia, Deutichen Geometervercins, \&c. Demy 8vo. 8s. 6ud.
CURVE TRACING IN CARTESIAN CO-ORDINATES. By WILLIAM WOOL.SEY JOHNSON. Professor of Math cmatics at the United States Naval Acalemy. Deny 8vo. 45: 6i. a TREATISE ON COMPARATIVE EMBRYOLOGY. By FRancis M. BALFOUR, M.A., F.K.S., Fellow of Trinity College, and Professor of Animal Morphology in the University. In Two Vols. Medium Svo.
Second Edition, reprinted, without alterations, from the First Edition. Vol. I., 18 s. Vol. II., $21 s$ s.

A N
ATLAS
PRACTICAL ELEMENTARY BIOLOGY.
BY G. B. HOWES.

NEW NOVELS.

\qquad

 (h) HF:NKI IIWI:

STORIES REVIVED IN THREF VOLUMFS I HE\%, wh sothor in the By W1L ISM HLALK

B) CIANKLUSTE: M. IINL.

\qquad
A NEW ALGEBRA FOK SCHOOLS
ELEMENTARY ALGEBRA FOR SCH00LS.

\qquad

\qquad

Digzedioy Google

国

国

for the induced current are similarly electrically connected. In constructing the secondary coils, they are fixed together between two insulating surfaces by bolts and nuts, the projections by which the several conducting disks are connected projecting helically or spirally around the coil (the projections of the primary alternating with those of the secondary coil), and form convenient means for connecting up any number of convolutions as required.

The end disks of one of the helices thus formed are connected to the leads of the primary circuit by bindingscrews, and the end disks of the other helix are similarly connected to the leads for the induced or secondary current. In the centre of the disks is a hollow cylinder of paraffined cardboard or other suitable insulating material, around which the helices are arranged, and in this cylinder is a core of soft iron, or of soft iron wires, which is capable of being automatically raised and lowered in the cylinder, so as to regulate as required the current passing through the coil.

The main wire from the dynamo is connected up in series to the primary helices of a group of secondary generators, and, in passing through the primary helices, induces a current in the secondaries, the tension of which, according to the experimental investigations of the inventors, increases first with the intensity or quantity of the primary current, and, secondly, with the rapidity of the interruptions or alternations, or the variations of its potential. Each secondary generator forms a complete installation, and can be put in or out of circuit at pleasure. The secondaries may be connected up in series, in multiple arc, or in multiple series, as desired, the connections being readily altered by means of a switch-board: tension or quantity is thus obtained according to the nature of the current required. The lamps or other receivers fed from the secondary generator can be connected at will to their respective circuits, and are also independent of one another.
These generators are made to work in connection with alternate-current machines, because the latter can be constructed up to almost any power, as no two parts of the machine having great difference of potential need be in close proximity, and the alternation of current may be made as quickly as desired. The generating dynamo is so constructed and operated that the quantity of current is preserved constant, and the tension is varied to carry this current through the primary conductor against the varying counter electromotive force due to variations in the work done in the secondary circuits of a number of secondary generators. If W represents work, C current, $t:$ electromotive force, and R resistance, and if either of these factors be changed, the others must be altered in the same ratio, according to the formula-

$$
W=C E=C^{3} R=\frac{E^{2}}{R}
$$

if uniform effects in the secondary circuits are to be desired.

One of the chief characteristics of this system is that if the primary current be kept constant the loss due to resistance remains fixed, no matter what energy is trans-mitted-so that if an increase of energy is desired, the only factor that has to be increased is the electromotive force, which bears no ratio to the loss in the conductor. This circumstance is of importance in any house-to-house lighting scheme, where a conductor may be laid down to supply a certain area, and if the lights are not taken up at once, the necessary current can be supplied later within the limits of the dynamo, by increasing the electromotive force, without increasing the size of the conductor, the strength of the current, or the loss in the line.

As regards the very high potential required upon the secondary generator system, the danger is limited to the supply statiom, as between the two poles of the main
dynamo there is an unbroken metallic circuit, which maintains the continuity of the flow of current ; and as regards each secondary circuit the work done is represented by a secondary generator, and the only danger would be in grasping both primary terminals at once, which may be made impossible of performance. It will be necessary as regards the dynamo that it shall be insulated from the earth, and also that such parts of the circuit as carry high tension electricity shall be so protected that it shall be impossible to make contact between them and the earth.

In comparing this system, in which there is a loss in the transformation of the energy by the secondary generator, with the direct system, this loss will have to be balanced against that caused by resistance due to distance, whilst as regards the regulation of the supply of energy, this is effected by means of a regulator working the exciting machine of the dynamo at the station; by its means, when a sccondary generator is cut out of circuit, a proportionate amount of power is saved. The secondary generators also regulate the energy absorbed, so that a perfect control of power is obtained, which is especially important for domestic supplies of electricity, as, when a suitable current measurer has been designed, consumers will be able to pay simply according to the amount consumed.
At present the extreme northern end only of the East Arcade at the Exhibition is being lighted on this system ; it is proposed, however, to extend it to the full length of the Fast Arcade and to the concert-room.

THE AFGHAN DELIMITATION CO.M.M/SSION

WE are indebted to the courtesy of the Kew authorities for the opportunity of publishing the accompanying letter from Surgcon-Major Aitchison, C.I.E., F. R.S., which gives the most recent account of his work as naturalist to the Expedition :-

> Camp Tir-Phul, Vorthern A/ghanistan, 6 mile's from K'husan

Dear Sir Josepli Hooker,-
I am now able to write to you with some pleasure, as 1 have been able to put together this year some 300 species in all. The last 100 I obtained on a ten days' trip that I made from this camp. I left this on April $2 ;$ under very bad auspices, as it had blown all night and was blowing a terrible gale with every chance of a heavy fall of rain from the north But I started and got as far as Khusan, in the vicinity of which, beside the ruins of an old "serai," 1 halted. 1 picked up a few odds and ends, the chaci attraction was the Nosa margerik (if a new sp) miki. It covers the whole country in localised patches, and being very dwarf in habit, not above 2 feet, the flowers are seen to perfection ; they open out expanding almost flat, when the brilliant eyes, formed by the claret colour of the bases of the petals, gives it quite a character. Amongst my rose hips sent to you last year this was one of the specics I hope to be able to supply you with a lot more, it would make a lovely flower border.

I marched next to a place on the right bank of the liarirúd River opposite Tomăn-ághá, fifteen miles. Our route lay over a plain that had once been the bed of the river where the river had made a great bend; the river, after silting up this bend, had left it. The most characteristic plant here was a Rhubarb, usually with 3 -root leaves of immense proportion for the size of the flowering stem; these leaves are so pressed flat to the ground that it reminds one more of the lictoria regia leaves (without the margin), and this is the habit of the plant ; the plant was fruiting, having large winged fruit of a most briliant scarlet ; it will make a grand thing in gardens. The
beautiful colour of the fruit is much helped out by the splendid green of the leaf background. There are, one may almost say, no leaves on the flowering stem-one or two most minute. I measured one of the largest on the ground: it was 4 feet from the base to apex and 5 feet across ; the other two with this one were a little smaller ; the three together gave it a very curious look. 1 hope soon to get the seeds home. I have collected a grood deal of the root; it is called "Fool's Rhubarb" owing to its purgative qualities, and curiously enough the fruit is employed in preference to the root as a purgative, given as a decoction. With the exception of an occasional woody shrub that may rise to five feet, the place was covered with a species of Artemisia (probably several) about 2 feet high, and occasional Umbellifera. There were no trees of any sort: these are only to be found in the river bed -viz. Populus cuphratica, and two species of Tamarisk and a Lycium. At Tomann-íghá, in the bed of the river, was a woody salsolaceous shrub which 1 do not know. I got good specimens of the wood and flowering branches.

1 left Tomãn Aghá on the 28 th , passing the remains of some old ruins two miles from my encampment, and turned east by north towards "Galicha" (a carpet). As we marched along, fancy crossing the markings of two pairs of carriage wheels! These had been made some months ago by the carriage of a Persian Prince who had come to our camp at Gulran to be doctored The route lay now across towards the base of the Paropamissus range over a most extensive plain on which the attraction was a miniature forest of a species of Umbelliferee, excessively like, but not the, Assafcetida. This was in full bloom, the stem and flowers being at first all of a light orange yellow; as the fruit ripens, the whole colour changes to a russet brown. Each flowering stem is from 3 to 5 feet high, and there are usually 50 plants to 100 yards square, the interspaces being altogether filled up by a grass of a foot in height. On the 29th, left Galicha for the Kambao Pass to enable me to cross through the range. Our march lay over a plain the continuation of that of yesterday, and which from its extent is lost to the sight. This is celebrated as the plain of the wild donkey, and here 1 counted sixteen herds of at least 10,000 in each. The nearest was a mile off, and their presence was recognised by a cloud of dust rising in a swirl on their galloping-like the smoke from the chimney of a steamer. It was a most extraordinary sight, watching these clumps moring from place to place. They are occasionally shot and eaten. I forgot to tell you that, except my own party, there was probably not a human being within thirty miles of us. The country has no inhabitants, and until the nomads turn up with their flocks from the lower regions it is a desolation. The last part of our march was for six miles within the ridges of the base of the hills, and here in the stream beds Tamarisk was the only (woody) shrub. I halted some five miles to the west of the pass, hoping to make a great haul on the 3oth. From the moment of entering these valleys they scem a mass of colour-one from buttercups (one species only), another from a poppy; the bed of the stream purple with a tall onion, and the interstices green with one grass. I had previously got most of the things so promising here, but saw signs of getting into a very fine new lot. On the morning of the 30 :h a regular hurricane of wind blew from the north, so that I thought the best plan would be to move my camp across the pass, and get a better and more sheltered locality. 1 just managed to get to the north-east side, when it did come down-such a torrent! but as all preparations had been made we were comfortable; had 1 remained on we must have been swept out of our old camp.
May 1 proved a most superb morning, so 1 was ap and out at 6 a.m., went straight back to my' old encampment on the west side, and from there collected back. I got
some thirty-five species-a second Arum ; a Prunus; an Elaragnus, of which I sent you the fruit last year ; one Pistachia bush, a large number of Astragali, which I feel sure will stump Baker ; a curious Rubiaccous shrub, a fine Orobanche, only five grasses, and a most lovely everlasting pea, like the ordinary English cultivated one, only dwarf. 1 believe everything here is dwarfed by exposure to the winds. You cannot understand the dificulty I have with it in collecting. To save my plants at all, i have to put them at ance into paper. It takes three of ns to do this, and not allow paper or plants to blow away. I must say it does not improve one's temper.

I got one or two species of a very nice Gentian like Gentiana Kurroo of Royle, the altitude of Hari-rúd River, 2000 feet ; Kambao Pass, west sitle, 2900 feet; pass itself, 3550 feet; Kambao on northeast, 3250 feet. Not a fern of any sort, not even Ophioglossum, which 1 looked upon as a certain find. 1 spent my second day-viz. May 2-at the camp on the north-east side of pass; here there is a fine hawthorn, from which 1 collected flowers in bud on the ist. Along the whole of this range, well within it, where the water is sweet and the air cool, the hawthorn, a common plum, and Amvgdalus churnea, are more or less plentiful. I picked up an Oxygraphis, and a very pretty geranium with a most curious potato-like root, only the tubers are heaped up on each other when there is more than one to a plant. You know they made me naturalist, 50 , in addition to collecting plants, I have to shoot poor little birds, and I hate it. I got two bee-eaters, the one more lovely than the other, and a nightingale.

On the 3 rd 1 marched to a place $\$$ miles nearer our first Gulran encampment. I had picked up most of the cream, and there was not much, except additions in the way of fruiting species, to be made. This I did, and got a venonous snake which may be a cobra-all but walked on to him-5 feet long and 6 inches at his thickest, fangs three-quarters of an inch; a most unpleasant fellow to meet. I shot him, and after fancying I had killed him, cut off his head and neck to keep (l could not keep his whole body), when lo! his body, minus his head, walked off searching for escape, the head trying to fang its own neck.

On the 4 th I moved still east-by-north some 12 miles to our first encampment at Gulran. I got some nice things en routi, and had just ticketed and arranged them preparatory to great work for the morrow, when in came a letter from sir Peter Lumsden telling me to return at once. Alas for my great expectations! 1 packed up, and we moved camp at $2 \mathrm{a} . \mathrm{m}$. on the 5 th, marched up the valley, passing our second Gulran encampment, and on south to the east-by-nortlt side of the Chashma-sabz Pass. I had no time to halt and collect. I passed a Gladiolus and an immense number of things. On the pass I collected the "Siah-chot," which is to me, in all probability, Cotoneaster numumblaria. I had collected its fruit and sent it to you from these very bushes. I got it in this pass last year. It is from this shrub that "ShirKhist," thie manna of these parts, is collected. I have sent you a bottle of it packed amongst some other things. They have two other kinds-one from a Tamarisk and the other from Alhagi. 1 myself collected it from a Salsola. 1 got across the pass by 2 p.m. ; halted until 8 p.m. and got into Tir-Phul at 8 a.m., the camels at $10 \mathrm{a} . \mathrm{m}$. of the 6 th ; did 60 miles in 34 hours-good going for camels, and men more or less on foot.

I am glad I an in, because my plants had to be looked to. 1 got , as I said before, 100 species in this tour, not less than 1200 specimens. It is much liarder work than Kurram; the fact is, I am not younger, and my back wants a good deal of oiling.

Yours very truly,
J. E. T. Attchison

AN OLD DRAWING OF A MAMMOTH

AS an addendum to the historical review of the mammoth discoveries in Siberia and the traditions to which they have given rise, which I have rendered in the "Voyage of the Vega," 1 have the pleasure of presenting a curious drawing of the animal, discovered among the Benzelian MSS. in the Linköping library. My attention was directed to the original by the president, Herr Hans Forssell, who, in his memoir of Erik Benzelins the younger, has given an account of the proceedings which it occasioned in the Upsala Scientific Society. ${ }^{2}$

The drawing bears the following inscription :-
"The length of this animal, called Behemot, is 50 Russian ells; the height is not known, but a rib being 5 arsin long, it may be estimated. The greatest diameter of the horn is half of an arsin, the length slightly above four; the tusks like a square brick: the foreleg from the shoulder to the knee $1 /$ arsin long, and at the narrowest
part a quarter in diameter. The hole in which the marrow lies is so big that a fist may be inserted, otherwise the legs bear no proportion to the body, being rather short. The heathens living by the River Obi state that they have seen them floating in this river as big as a 'struus,' i.c. a ressel which the Russians use. This animal lives in the earth, and dies as soon as it comes into the air."

On the reverse of the drawing we read:-
"This drawing and description is given by liaron Kagg, who has just returned from captivity in Russia and Siberia, ${ }^{1} 1722$, in Decembri."

This drawing was exhibited by Benzelius at the meeting of the Upsala Scientific Society, December 14, 1722. The statement referring thereto in the fournal of the Society is as follows:-
"Herr Benzelius exhibited a good drawing of an animal, transmitted by Baron Kagg, who has just returned from captivity in Russia and Siberia, which the

Siberiaks call Mehemoth or Mammont, which has caused many to believe that it was identical with Behemoth of Job. Herr Prof. Rudbeck and Dr. Martin maintained that it was a sea animal, moreover as Herr Kagg stated that it was found at the River Obi. To this was added that Capt. Lundius had said that its bones were mostly found in the earth by the river. With regard to the animal being drawn with claws, Prof. Rudbeck pointed out that as yet no animal cornigerum had been found also to be unswiculatum, without being palmifiss or having skin between the toes like geese, \&c. It was decided to write to Herr Kagg, requesting some information about the figure, and asking how he had obtained it, so that it might be ascertained whether it was reliable. There is a

[^7]description about this Mehemot in Capt. Muller's account of the Ostiaks." ${ }^{2}$

At a later meeting, January 11, 1;23, Dr. Martin stated that he had carefully examined works of zoology, whether there existed any sea animal like that shown at the last conference, but had found nothing like it, although the head-excepting the horns-and probably also the feet and the tail, were like those of the hippopotamus of the River Nile. At the same meeting Benzelius announced that Lieut.-Col. Schönström had promised to forward a whole tusk of this remarkable animal.

On later occasions too the animal was discussed by the Society. Thus on January 18,1723 , a letter was read from the learned linguist, Sparfvenfelt, wherein be explains the derivation of the words lichemoth and

[^8]Mammont ; on February 15 a letter was read from Benzelius, stating that Kagg had received the drawing from a Capt. Tabbert, and that he could give no information as to its correctness. Again, on October 3, Benzelius exhibited a large bone, almost petrified, which was the jaw of a Mammont, or as it was called Behemoth, received from Tobolsk in Siberia, through Capt. Clodt von Juirgensburg, and, on November 22, Benzelius exhibited "part of the tusk of a Behemoth, which was exactly like ivory." Finally, Benzelius communicated with the Russian Chief of Mines, Tatischew, who, in a letter dated May 12, 1725, had given long and important information of the history of the mammoth. This letter is printed in "Acta Literaria Suecix" (vol. ii. p. 36, 1725).
A. E. Nordenskiöld

NIAGARA FAILS: THE RATE AT WHICH THEY RECEDE SOUTHWARDS

THE diagrams are from the map issued by the New York Commission for the establishing a State reservation at the Falls, based on surveys made in August and September, 1883 , by Thomas Evershed, under direction of Silas Seymour, State Engineer and Surveyor. The scale of the diagrams is one half that of

the map, which is on a scale of four chains to the inch. To have given all on one diagram with the intervening Goat Island would take up nearly an entire page of Nature, and if the scale were smaller it would fail to show clearly the distinctive features of the changes in progress. Fig. 1 shows the Canadian or Horse-Shoe Fall, Fig. 2 the Eastern or so-called "American" Falla misnomer too deeply rooted in usage to be now supplanted by some more fitting name.
The rate at which the Falls are receding has been a matter of interest to geologists for over fifty years, but the results so far reached have been conflicting and inconclusive. The manner in which the Falls work backward, undermining their brink, is so well known from Lyell's clear description, that I shall not repeat it.

In 1830 , Bakewell, on the basis of such information as he could gather from old inhabitants and from his own observations, concluded that during the previous forty years the Falls had receded at the rate of three feet per annum.

Lyell, from such materials as he could obtain during his own visit in 1841 and 1842, estimated the annual retrograde motion at only a foot. It is sufficient to recite such discordant results arrived at by two careful investigators to show how imperfect were the materials at their disposal, nor will any one who has been on the spot wonder at their differing so greatly. It would be possible to roughly compute the southward movement of the innermost recess of the Canadian Fall by referring its position from time to time to some fixed points on the adjoining shore, but any conclusive determination of the movement of the entire Fall could not be obtained in this way The map referred to gives the outline of the Falls as determined by three surveys: the New York Geological Survey of 1842, the U.S. Lake Survey of 1875 , and Evershed's Survey of 1883 . The contours of the brink as established by these enable us to measure the total movement.
1 divide the contour from β to Goat Island into thirtythree sections, disregarding for obvious reasons the overflow north of β, on the Canadian shore. From β to \boldsymbol{f} are eleven sections, from e to ζ are twelve sections, from ζ to Goat Island are ten sections. It is obvious that much the greater work has been done between $\boldsymbol{\beta}$ and ζ, and that the innermost recess has kept in the same relative position.

The means of the measurements on the sections, along perpendiculars from the contour at the date of each survey, measured on a tracing of the published map, give the following results for the Canadian Fall :-

Mean aggregate recession along contour of 2000 feet, from β to Goat Island $=$..

80	\ldots	-	\ldots	114
-	\ldots	60	\ldots	-
$2 \frac{1}{2}$	\ldots	$7 \frac{1}{2}$	\ldots	27
	118	\ldots	135	\ldots
33	\ldots	253		
161	\ldots	64		

The "American" Fall, measured in ten sections, gave a total mean recession of $37 \frac{1}{2}$ feet in the 41 years ending in 1883 , which is at the rate of about 10 inches per annum.

I do not know that I have seen any estimate attempted of the relative volumes of water passing over the two falls. From such imperfect data as I have, referring to depth and swiftness, I should think that the rate of erosion for each fall gave some approximation to tl
the fishing has in consequence been very bad. Agriculture and cattle-grazing are also very backward in consequence of cold winds and night-frost. In many places cattle have died from starvation, and if things do not soon mend there will probably be famine in the island next winter. In some valleys the snow was 30 feet in depth in the middle of June.

We have receivel the report of the Liverpool Naturalists' Field Clula for the year $\mathbf{1 8 8 4} \mathbf{8 5}$. Steady, quiet prosperity appears to be the order of the day in this and similar associations in this country and in America. An elaborate system of prizes has been carefully organised, and the society appears exceptional in this respect. The report of the committee draws attention to the fact that in botany alone has much work been done; in the wide fields of wology, geology, and microscopy little has been done. The presidential address is very interesting ; it is called "Ornithopolis; bird-life under the shrubs, and what may be seen from my stuly chair." For the rest, there are the ustal reports of excursions and of the evening ineetings, and a list of books and scientific apparatus useful in the pursuit of natural history.

A sharp shock of earthquake, accompanied by a loul rumbling noise, was felt at Kopreinitz in Styria on the night of June 28, which was followel by two others the following morning. Several houses were thrown down, and other damage done.

A NEW theory as to the origin and cause of earthquakes has been propounded by the Viceroy of the Chinese provinces of Sbensi and Kansu. In a recent memorial to the throne, published in the Paking Gasette, this high official describes an earthquake which occurred on January 15 in various parts of Kansu, and summarises briefly the varions reports which he has received on the subject relating to the motion, the damage done (which in some places was extensive), and the measures taken for the relief of the snfferers. He then proceeds to say that for years past earthouake shoeks lave been so frequent in these regions that people have grown quite accustomed to them ; indeed, one officer informs him that in certain villages there were indications of a inovement of the earth every night during the fourth watch, but these always ceased after a heavy fall of snow. The memorialist concludes by attributing the earthyuake to the mildness of the winter, which cansed an excess of the yang, or male element of Nature ; "but it was due in a measure also to the perfunctory performance of their public duties by the local officials, who thereby failed to call down the harmonising influence of Heaven, and the memorialist can only endeavour to remedy this fault by encouraging his subordinates to cultivate habits of introspection and examination of their own shortcornings, himself setting the example."

On the morning of June 15 a lovely mirage was seen at sea from Oxelösund, in Sweden, representing two islands, covered with trees, on one of which there was a building. Two monitors were seen steaming off the islands. It may be of interest to add that two Swedish monitors are at present cruising in the Baltic, and were about that time several degrees further north.

The second annual issue of the " Year-Book of the Scientific and Learned Societies of Great Britain and Ireland" (Griffith and Co.) has appeared. We must still express sarprise at finding the Royal Institution placed alongsitle of the Royal Suciety as a scientific society, while the London Institution is omitted entirely. A list of the papers read at the various societies is given this year ; but it is difficult to see what purpose the publication serves in its present form.

Herr J. Menges describes, in a recent number of Globus, the language of signs employed in trade in Arabia and Eastern

Africa. This appears to have been invented to enable sellers and buyers to arrange their business undisturbel by the host of loafers who interfere in transactions carried on in open markets in Eastern towns, and it enalles people to conclude their business without the bystanders knowing the prices wantel or offered. It is especially in use in the Red Sca, and its characteristic is that beneath a cloth, or inore generally part of the unfolded turban, the hands of the parties meet, and by an arrangement of the fingers the price is understool. If one seizes the outstretched forefinger of the other it means 1,10 , or 100 ; the two first fingers together mean 2,20, or 200 ; the three fint, 3 , 30 , or 300 ; the four, 4,40 , or 400 ; the whole hand, 5,50 , or 500 ; the little finger alone, $6,60,600$; the third finger alone, 7, 70, 700 ; the middlle finger alone, $8,80,800$; the first finger alone and bent, $9,90,900$, while the thumb signifies 1000 . If the forelinger of one of the parties be touched in the middle joint with the thumb of the other, it signifies $\frac{1}{2}$, and if the same finger is rublied with the thunb from the joint to the knuckle it is f more, but if the movement of the thumb be upward to the top insteal of downward to the knuckle it means $\&$ less. An eighth more is marked by cttching the whole nail of the forefinger with the thumb and finger, while the symbol for an eighth less is catching the flesh above the nail-i,e, the extreme tip of the finger in the saue way. It will thus be seen that, by combinations of the fugers of the seller and buyer, a large range of figures can be representel. It is, of course, understoud that average market value of the article is roughly known and that there can be no confusion between, for example, 1, 10, 100, and 1000. This language of symbols is in universal use amongst European, Indian, Arab, and Persian traders on the Red Sea coasts, as well as anoong tribes coming from the interior, such as Abyssinians, Gallas, Somalis, Bedouins, \&e. It is acquired very rapidly, and is more speedly than verbal bargaining; but its main advantages are secrecy and that it protects the parties from the interruption of meddlesome bystanders, who in the East are always ready to give their alvice.

Tue additions to the Zoological Society's Gardens during the past week indule a Collarel P'eccary (Dicotyles tajiosu d) from Sourh America, presentel by Mr. K. Forrester Daly; a Common Peafowl (Pusu cristatus o) from India, presented by Mrs. Courage ; two Black-beliiel Sand-Grouse (iterveles arenarims 88), two Bonham's Partridges (Ammipcodix honhami o \&) from Asia, presented by Mr. W. E. K. Dickson; a Siamese Blue lie (Crocissa magnirosfris) from Sian, a IIunting Crow (Cissa estuthria) from India, presented by Mr. C. Clifton, F.Z.S.; two Rooks (Corvus frugilegus), Byitish, presentel by Mr. C. A. Marriott ; a Lion (Folis leo \&) from Africa, a Great Kaugaroo (Macropus gigantous) from Australia, a Grand Eclectus (Eclectus roratus) from Moluccas, a Red and Yellow Macaw (Ams chloropera) from South America, depositel ; a Striated Coly (Colins striatus) fron South Africa, purchased; a Mule Deer (Carhazus macrotis \&), a Mesopotamian Fallow Deer (Dama mesofornmica), born in the Gardens.

OUK ASTRONO.HICAL COLUIMV

Tise Comer of 1472.-M. Celoria of Milan has discussed the elements of the last comet observed by Toscanclli, which is the celebrated one of 1472 , also oh erved by Regiomontanus, whose description of its path in the heavens enablel llalley to make a rough approximation to its orbit, as lie states in his "Synopsis of Cometary Astronomy." The Chinese account of the Couct's track contained in the supplement to the great collection of Ma Twan Lin, of which Edouarl Biot pullished a translation in the appendix to the "Connaissance de Temps" for 1846, enabled Langier to make a further calculation of the orbit, though the somewhat full description of the comet's course amongst the stars is unfortunately very deficient in dates.
M. Celoria remarks that possibly from the advanced age which Toscanelth had attained, and the inclement season at which the comet was visible, the Florentine astronomer has not left for the comet of 1472 a representation of its track relatively to the stars as he has done for those of 1433, 1449, and 1457, nor an ephemeris of positions as in the cise of the comet of Halley at its appearance in 1456 ; but two pretty definite places are assigned in Toscanelli's manuscript for January 9 and 17, and with the help of provisional elements a third position for January 22 is deducible. Still, in determining the most probable orbit, M. Celoria has found it desimble to utilise the one definite observation on Janvary 20 whech has been left by Kegiomontanus. The principal available data are :-

Two orbits result from the discussion of these positions, and M. Celoria concludes that it is dilficult to decide which is preferable. These orbits are as follows :-

Orbit 11.

Orbit III.
Perihelion passage
Paris mean time $\mathbf{1 4 7 2}^{2}$, Feb. 29.89097 ... Feb. 29.94555

		it " ${ }^{\prime \prime}$, * "
Longitude of perihelion ...		1456	\ldots	394627
", ascending node	296	749	...	2855325
Inclination		1146	...	9954
Log peribelion distance		9.68072	...	9.68654

Both sets of elements have the degree of precision compatible with the nature and number of the observations, and beyond doubt afford a closer approximation to the true orbit than either of the previous computations. Perhaps we may attach a slightly greater weight to M. Celoria's orbit II., from which it appears that the nearest approach to the earth took place at midnight on January 22, when the comet in right ascension $293^{\circ} 5$ and declination $+76^{\circ} 6$ was distant 0.0652 , with an apparent motion of 40 of a great eircle daily. On this day Toscanelli refers to the interference of msonlight, and it appears certain that the presence of the moon must have greatly diminished the imposing aspect of such a comet while in the earth's vicinity. In fact we find that the moon was at the first quarter on January 18, and coniequently at full soon after the nearest approach of the comet, when the theoretical intenvity of light was one huadred tibues greater than at the end of the first week in January.

One of the European chronicles dates the first appearance of the comet on 1ecember 25, 1471, when it will be found from elements (11.) that it was in right ascension 194* 4 , declination $+5^{\circ} 5$ at $6 \mathrm{a} . \mathrm{m}$. in London ; intensity of light, o $\mathrm{O}^{2} \mathrm{~s}$. In a quaint description of the comet's track by Jobn Warkworth, Master of St. P'eter's College, Cambrilge, and a contemporary, which was publibhet is the Philos. Alas. and /vurmal of Science, vol. xiv. (i8 30), we read: "And some nien saide that this sterre was seen ii or iii oures afore the Sunne rysynge in Decembre iij) days before Chrys:ynmase in the Southwest . . .;" calculating for 6 a.m. on Ilecember 21 we find the comet was in right ascension $193^{*} 8$, dechnation $+5^{\circ} \cdot \mathbf{2}$: it would conse fuently be near the merilian two hours or so before sun-rive, insteal of the western quarter of the sky. It is clear that as regards position it might have been fuund three weeks earlier than Tuscanelli's first olservation. Waskworth says the comet disappeared on February 22. The Chinese saw it on February 17 approaching one of their constellations composet of a, 8, ©c., in Piscer, and it is added in Biot's translation "elle fut lougtemps à seffacer;" calculation gives the place in right ascension $11^{\circ} 9$, declination $+0^{\circ} \cdot 7$, intensity of light 3'3, in the early evening at l'ckin on that date.
M. Celoria's notice contains the geocentric track of the comet, acconding to both sets of elements, from January 9 to February 27. There is some reference in Pingre to a comet at the beginning of May. 1472, when the comet of Regiomontanus and Torsanelli would rise in Central liurope before $2 \mathrm{a} . \mathrm{m}$., with an intensity of light about equal to that it possessed at the previous Christmas.

ASTRONOMICAL PHENOMENA FOR THE WEEK, 1885, JULY 12-18

(For the reckoning of time the civil day, commencing at Greenwich mean midnight, counting the hours on to 24, is here employed.)

At Greenwich on July 12

Sun rises, 3 h. 59 m. ; souths, $12 \mathrm{~h} .5 \mathrm{~m} .20 \cdot 7 \mathrm{~s}$; sets, 20 h .18 m . ; decl. on meridian, $21^{\circ} 56^{\prime} \mathrm{N}$. : Sidereal Time at Sunset, 15 h .35 m .
Moon (New on July 12) rises, 4h. 3Im. ; souths, 12h. 20m. ; sets, 20 h .2 m . ; decl. on meridian, $16^{\circ} 47^{\prime} \mathrm{N}$.

GEOGRAPHICAL NOTES

Dr. Gortsche, formerly a professor in the University of Tokio, has, as we have already intimated, returned to Europe after a long journcy in Korea, during which he acquired much information with regard to that country. The length of his jounney was over two thousand miles, and he visited all the eight provinces of Korea, as well as 8,4 out of the 350 districts. The main object of Dr. Gottsche's explorations was to ascertin whether coal and other useful minerals existed in the country ; but, on account of influential support which he received be was able to obtain from the native authorities information with regard to the population, taxation, harvests, trade, \&c. He has also collected much statistical information which is wholly new and which it is expected will show that the recent English consular reprots are quite incorrect. Amongst others the population of the peninsula has been greatly underrated, It has generally been put down at mine millions, whereas it really is over twelve millions, for the official census from which the former estimate is taken only takes into account adults. Dr. Gottsche's principal stations on the journey were Soul, Ichhon, Kwisan, Mangyung, Kyongyn, Pusan, Changwon, Cwangyn, Chinsan, \&c. He was 138 days en route, and, although this was not rapid, he was compelled to neglect some branches of investigation, such as botany and zoology, for his main busine:s was with geology. In this respect Korea appears to belong to the bordering Manchuria. He found but few traces of the high development which the art and science of the country reached in carly ages, and which made it the instructress of Japan. Dr. Gotische. it is said, intends publishing an account of his journey.

Prof. Blumentaitt, in an article in Clobus on the Negritos of the Philippines, points out that the notion which was general at one time that these aborigines of the Archipelago were alnost extinct, or absorbed into the Malay population, is an error. It may be said with certainty that they no longer exist in the Babiuyanes, Batanes, and other groups lying to the north of Luzon : but we know too little of the interior of Samar and

Leyte, as well as of the great island of Mindoro, to say this. We know from Montano's explorations that they live in great nombers in Nindanao and elsewhere; bat nevertheless, the Negrito puro somer or later adopts the dress and customs of his Malay conqueror. All the efforts of the Spanish Government and of the Catholie missionaries tend to efface the peculiarities of the Negrito ; and the Professor therefore states that, before it is too late, some scientific traveller should visit Mindanao to study the Atas and Mamanuas thoroughly; likewise an investigation of the Negritos of Panay and Negros is much to be desired.
M. Le Monnier contributes to the last number of the Doutsike Rundschas fur Gomrotphic, \&c., an article on the 1sland of Hainan, off the coant of China, to which some attention was recently directed on account of the sumboured occupation of it by the French. It has been known to the Chinese since IIO B.C., but it was not till the 13 hh century that it received its present name. From the earliest times to the present the aborigines, the Li, who inhabit the mountains in the centre, have maintained a struggle against the Chinesc. It is even less known than Formosa, for no Europeans have travelled in it. One port, Kiungchow, has recently been openel to foreign trade, the north and south coasts have been surveyed, but there is no survey of the east coast. As to size, it is a little smaller than Formosa, and is larger than either Sicily or Sardinia. The centre is exceedingly mountainous, and from it rivers radiate in all directions to the sea. It is so near the mainland that its tlora and fauma are in all respects continental. The direction of the mountain system is from sututh-west to north-east. Volcanoes have been examinel there, but they appear to be now extinct. Earthquakes are frequent. As in Formoss, the population consists of three elements-the Chinese, the subjugated and the independent natives. Amongt the former are the Miaotsze, who have crossed over the narrow strait from time to time from Kwangsi and We tern Kwangtung, and have taken pos-ession of some of the smaller hills. Their language is said to be similar to that of the Li ; they are gool husbandmen, and are onffiendly terms with both the Li and the Chincse. The independent Li appear to be an aboriginal race which has been driven back to the hills by the Chinese immigrants. Information with regard to them is very scanty, but they appear to have a reddish skin and to be of small stature; their language resembles that of the Miaotsze of the mainland. The women are tattoocd after their marriage, and they paint their faces with indigo. The Li ate expert hunters and shots; the weapons ate baimboo bows and arrows and a shout sword in a sheath. The main sources of information with regard to Hainan are a paper by the late Mr. Mayers in the fournal of the North China Asiatic Society (No. vii., 1873) ; one by Mr. Swinhoe, entitlel " Narrative of an Exploring Visit to Hainan," in the same periodical (No. vii., 1871-2); and a map of the Kwangtung Province, and other publications by Dr. F. Hirth.
Hear Glaser, the Arabian traveller, has returned to Arabia to resume his explorations. This second journcy is to be mainly geographical, but archzology will aloo receive attention. Bevides visits to Marib and Xejdran, Herr Glaser contemplates a long journey through the interior from Hadramant to Omaun, and a econd across Sonth Arabia.
M. Bavx, member of the Geographical Society of Paris, has been despatched on an ethnographical mission to China; and M. Guerne proceeds to Kiel to take part in the labours of the commission for the scientific examination of the German coasts. The-e ruissions are undertahen by direction of the Minister of Public Instruction of France.
Irof. Seelstrang, of the U'niversity of Cordoba, has been appointed by the Argentine Governacnt to sufperimend the pablication of an atlas of the Republic, and a considerable sum has teen appropriated for the work. It is to consist of twentyseven parts, and four of these are already in hand.
AT the last meeting of the Geographical Society of Paris, M. Alphonse Milne-Edwards in the chair, M. de Saint-Pol-Lias, who is now in Cochin China, presented a map of the upper course of the Red River, prepared by the Annamites. Another map of importance is that of the navigable water-ways of southern Indu China, prepared by M. Rueff, who has established a company for navigating these waters. A letter was read from Jeddali stating that the collections of the unfortunate M. Huber, including his remarkable examples of Semitic epigraphy, were
safe in the hands of the French Consul, and that the explorer's remains were buried in Jeddah on May 27.

Tile last number (Band viii. Heft 2) of the Gourraphische Bläter, publithed by the Bremen Geographical Society, contains a study on the Congo region by Dr. Oppel, dealing with the scientitic and economical importance oi this district. The paper is divided into two main sections: (1) The discovery and investigation of the Congo (a) between 1484 and 1872 , (b) the systematic exploration since 1872 ; (2) The extent and boundaries, geology, \&c., of the Congo region. Prof. Seelstrang writes on the Argentine province of Buenos Ayres, its geograplay, fauna, flora, climate, inhabitants, trade, industry, \&c., in short, a kind of encyclopedic article on the province. A nother paper on South American geography, or rather geology, is that by Iir. von Thering on the Lagoa dos Patos, in the province of Rio Grande do Sul, the largest lake in Brazil This is accompanied by a map of the extent of the sea in the province at the leginning of the alluvial epoch. Herr Zoller writes on the Batanga River; the number also contains a report of the late Geograah h.u-fug at Itamburg.

ON A RADIANT ENERGY RECORDER

SUSHINE-RECORDERS may be divided into two classes, viz., those which roughly measure solar energy by the burning of card and wood, and those which, by means of some photographic process, yield a record of the relative intensity of some more or less definite ray. The principle of the instrument which I am about to describe differs from those referred to in this respect-that it depends upon the evaporation of water tu racko, and its indications are therefore readily expressible in heat-units.
The form of instrument with which 1 have sought to test the applicability of the method consists of a Wollaston's cryophorns (of the form pictared in Ganot's "I'hysics," p. 272, edition 1 $\$ 72$), in which the vertical tube and lower bulb are replaced by a simple ghass tube graduated in cubic centimetres. The bulb containing the water to be evajorated is blackened by holding it in the smoke of burning camphor, and is then exposed to the sun, the rest of the apparatus being si'vered or properly protected by bright sheets of tin. At sunset the quantiny of water which has distilled over can be read off on the graduated tube.
An experiment on June 6 showed 1.8 cc . to have passed over from a bulb of about 2 inches in diameter, and to have cundensed in a narrow measaring tube between the hours of 10.40 and 3.20. The instrument seems very sensitive, and may well find many applications. In a suitable form of instrument the total nett solar energy gained by the blackened absorbing surface will be almost exaetly represented in heat-units by multiplying the number of eubic centimetres of water distilled by the latent heat of steam. To measure the loss of the earth's radiation at night a similar iustrument containing alcohol or some other liquid of low freezing-point might be cmployed. In either case, when a continuous time recond is required, the graduated tube might be used as a cylindrical lens to condense light on photographic paper.

The following are the more inportant conditions which the apparatus in a future form should probably fulfil:-
(1) To present a constant and known absorbing surface to the sun.
(2) To preserve a constant surface for evaporation which should the the same in the condenser, so that a reversal of the direction of distillation can take place under the same conditions when the black bulb is lowing energy.
(3) To give rise to the minmum of reflection and convection currents on the absorbing surface.
(4) The apparatus should be so screened as to be at the temperature of the air apart from the gain of energy at the blackened surface.
some of these condition seem likcly to be more or less fulfilled in au apparatus consisting of two glass bulls of equal diameter connected together by a tube bent through an angle of alout 150°, to bring the bulbs near together, and thus keep them in air of the same temperature. In the bulb containing the water to be evaporated, a black bulb might be fixed to absorb the solar radiation, whibt to the upper part of the second tulb should be sealet a graduated tube in which the distilled water might lee measured by inclining the instrument. If metal globes were employed the connecting tube might be made to form the bean of a balance.

The completion of other work will prevent my return to this subject at present-perhaps allogether-but I have ventured to pulatish this incomplete account of an apparently promising method for the measurement of solar radiation, in the hope that it may le of use and interest to others.

University College, liverpool.
J. W. Ctark
P.S.- It may perhaps be found advantageous to use an apparatus like an inverted cryophorus, in which the absortied radiant energy generates a vapour pressure, and is made to lifa a column of water in the tube-the height of the column and the time being registered photographically.

THE GROHTH OF CEREALS

PERIIAP'S nowhere is the influence of the different climatic factors on the rapidity of growth so well illustratel as on the plains of Russia. Therefore W, Kowalew ski's careful rescarches into this subject, summarised in the Jiomoirs of the St. Ietersbungh Society of Naturalists (xv. 1), are especially worthy of allention. The author has gathered all necessary information for showing the periods of growth of various cereals on the soil of Russia, from the far north of Arkhangelsk, to the southern province of Kheron, and he has nirived at most interesting: results, of which the following is a summary. If the periots of growth of the same cereal lie taken throughout Russia, it appears that, altogether, it is in the higher latitudes that it ripens fastest. Oats and sfring wheat take 123 days and barley 110 days to ripen about Khetson, and only 95, S8, and 9S days at Arkhangelsk, the difference in favour of the north being reapectively thus: 25. 35, and 12 days. The intermediate regions show also internectiate differences, while for each latitude the growth of cercals proceeds faster in the eastern parts of Kussia than in the western. It is olvious that if the rapidity of grow th were due to temperature, the phenomena woukl be the reverse of what they are. Moreover, the want of moidure in the sonthern steppes is alro a condition in favour of the rapility of growth: so that it is in the insolation that we moust seek for the cause of the above-slatcel difference. In fact, oats being usually sown alout May 17 at Arhhangelsk, and the harvest usually occurring alout sept. 1, the invelation continues there for 2000 hours in 98 days, not to sreak of the 240 hours of bright nights; while at Kherson, during 123 day $($ (from April 1 to Aug. 1) the insolation lasts only for i\$50 hours. The ditference in favour of Arkhangelsk is thus cqual to 150 hours (to soo hours, if the bright nights be alded), and it compensates for the influence of temperature. It is useless to adat, moreover, that the cercals cultivatet in the north have already undergone a certais accommodation to their conditions. As to the intensity of light, Irof. Famintzin's work on the subject, corroborated ly ukerier researches, shows that the great intensity of light in Southem Russia, combined wih the great tranoparency of the atmonphere, is rather a condition against the rapidity of growth, the intensity of light exceeding the limits of the maximum of decomposition of carbonic acid. Winter rye thows the same differences as the spring cereals. It appears from M. Kowalewski's talles that in the Arkhangelsk dhistrict winter rye takes 375 days to artive at ripeness, of which there are 202 day, of wiater rest, 68 days of autumn growth, and to5 days of spring and summer growth, making thus a total of 173 days of growilh. At Kherson the total growth lasts for 290 days of ubich only 101 days of winter rest and iso days of productive growth (63 during the autumn anit 126 during the summer). The difference reaches thus 16 days in favour of the worth, and it would rise to 20 or 25 days if only spring and summer be taken intu account. The graphical representation of all these data is most interecting. Thus the lines of simultaneous sowing of winter rye from morih west to sonth-cavt correspond to the isochirenes, while the lines of simultancous ripening of the spring cereals-oats, barley, sarrazin, wheat-fun from south.west to morth-east, correeproding to the lines of equal sumber temperatures. The retaviling influence of rain comes out also pretty well.

THE ROIAL SUCIETY OF NEH SOUTH WALES

THE annual general meeting of the members of the Royal Society of New south Wales was held un May 7 . The presilent, Mr. H. C. Nusell, I.A., F.K..I.S., orcupiel the
chair, and delivered an address, from which we give the folluwing exiracts:-
"There is a very general impression, borne out by the evidence which geology has furaithed, that at least the east coast, if not all Australia, is rising in relation to the mean level of the sea. The late Rev. W. B. Clarke, in a report to the Port Jackion Harbour Commission, said 'that the coast has risen in former geolugical epochs, and that it has risen during the present epoch is capable of distinct proof.' "Rained beacher of shells, which are not kitchen middens, may be seen about twenty-five foet above the sea, near Ryde, on the l'aramatta estoary, and at Mossman's Bay, in Fort Jachson, at a height of 132 feet abouve high-water." Again, 'regarding the whole coast from Broken Bay so Botany May as mere penin-wlatic fragments, united only by low isthmuses, bare or covered with sand, as they actually are, one may still see that there must have been oxcillations of level, and finally clevation.' Speating of other portionts of the coast, Mr. Clarke says:-At Adelaide in 1855 the railway between the city and the port was being eonstructed, and Mr_{r} Babbage has since shown that in four years a diffirence of four inches of rise between the levels of tbose places has taken place. And agaiu, 'according to Mr. Ellety, the accomplished and accurate Williamstown obverver, the self-registering: tide-gauge as that place indicated a rise of the bottom of Hobson's flay of four inches in twelve mon:hw, and a deposit of recent shells and imbedfed boncs of sheep and bulfocks which had been thruwn into the bay is now seen at a level above the reach of the staler. Again, quoting from a letter by the late Mr. Johin Kent, of Brisbane :- A survey was made of a shelf of rocks in Brisl ane River in $1 \delta_{42}$ by Captain Gilmore, Mr. Petrie, and myse'f. ant in making a re-survey in 1858 Mr. Koberts found the relathe depths were singularly correct, but that the general depsh of water over the shelf of rock had decreased eighteen inches in sixtecn years since the first survey was made. Sir Konlerick Murchison, in the Procedinn's of the Royal Cengraphical Society of London (vol. vii. P. 42) quotes from a telter he had receivel from the late Mr. Kent, of Brishane:-' 1 have lately drawt the atention of the Kev. W. B. Clarke to the fact that the eastern coast of New Ifolland is rising at the rate of (say) one inch per annum, as ascertained by the height of rocks in the river Briabane aloove tide levels, through a perion of twenty years, and he assures me that to the south the same result has teen inferred, though the observations have not extended over so long a periol. At what rate the rise is now going on there are no data to establich. Till a series of mean tidal levels are marked on the rocks of the harhour, and the alteration trade as distinct as that in Hobson's Bay, any deluction as to the rate of rise must be conjectural and unreliable.' I have lest taken a few extracts from a great mass of evidence which Mr. Clarke brought forward in proof of the rapid elevation of the const of Dustralia. I was deeply interested in this report when it was puthishet in is66, and as soon as 1 hat opportunisy tetermined to make such observations with a self-registering tide-gnuge as would determine the rate of rise, if any, and in collectiag information bearing upon this subject during the past thisteen yeans. I wote to Mr. Eiflery and avkel him for further particulars of the rise going on In Victoria, and in reply he caill that Mr. Clarke had in sonse way misanderstond his remarks, which hat rcference to the silting up of the barbour, not the clevation of the land; and he at the same time sent me a copy of his paper on 'The Tilal datum of Ilohson's Bay,' read before the Koyal socicty of Victoria, August 14. 1879. After giving the himory of the tite-gauge, which was startell in 1858 under the Harbour Department, and was not under his control till i87t. Mr. Eilery say5:--' It is to be regrected that no precise references to mean tide level in the eartier days can be found. Where meacurements to exist in Ilubson's thay they are lacking; in accurate information as to the state of the tiden, and 1 fund nothing trustworthy upon which to bate any statements as to change of sea level since surveys have been mate. I thin' it tesirable that permanent bench marks on the natural faces of the rock in sitm thould be ettablisheel around our bay, carefully connected by accurate levelling with one another and with the tide-gauge, for it is very doubtful if bench marks on tuildings can be assumed to afford a permanent datum.' The first self-registering tide-gauge in Svilncy was erected on Fort Itenison by the late Mr. Surailey in 18u7. Unfortunately the design was so faulty that all the records of the heights of tifes mate liy it are of no value, althonght the times of high and low water are correct. The reason for this fault in its records was that an ordinary hernpen corl was used
to connect the float and the pencil, and this graslually got longer by use, and also varied with the weather. Finding it impossible to remedy this fault satisfactorily in view of the necessity for exact records of the heights of the tides, in 1872 1 hal a new gause made, which, without losing the accuracy of the time record, whith the old one passessed, insured the correct record of the height of the tides. This instrument is fyured and described in the 'Sylney Meteorological volume for 1878,' and to that work I must refer you for partienlars. The record by the new gauge was begun on June 27, 1872, and at that time the precaution was taken of measuring the length of the chain connecting the float and the wheel, on that should any clange take place its exact amount could be ascertained. The wisdom of this has been evident on several occasions when the chain was broken by accident, and the evact length restored. The well made for the tide gauge is in part cut in the solid rock, and from the rock to the surface of the ground the sides of the well are built up (round) with solid niasonry: so that the top ring of the well is practically part of the solid rock, and cannot nove anless the rock does so. On this ring the frame of the tide gauge stands, and the instrument, therefore, has a pemanent relation to the rock, and therecan be no change in its parts which might be mistaken for a change in sea level. I have been particular in detailing the conditions uniter which the tide measurements have been made, to show you that sufficient precautions to ensure accuracy have been taken. In each year the mean of all the tides is taken as the mean sea level for that year, and when these results for the past swelve years are placel sille by side, i is at first sight rather puzzling, for although the greatest departure from the mean of all is only one luch, yet within this sinall range the land seems to rise and fall in an erratic way. The cause of these vaniations, howcver, was fouml in the varying relative positions of sun, moon, and earth, and perhaps, to wone extent, in the effects of heavy gales Taken as a whole, these resultes seem to prove conclusively that no change whatever has taken place in the relation of lan! and sea during the past twelve yeari. Of course the question is not sethled-a slow change that would the visible in centuriemight be altogether hidden in the re-ults hefore us; but so far as they go these results will be interesting to scientifie men, for they ate the first that have been takea with such aecuracy as the investigation demands. Mean Sea Levels: 1873, 2 feet 5.9 inches; $18 \% 4,2$ feet 7 inches; 1875,2 feet 63 inches : is 66,2 feet $5 \cdot 5$ inches; 1877,2 feet 67 inches; 1878,2 feet 6 inches; 1579, 2 feet 5.5 inches; 1850,2 feet 62 inches: 1881, 2 feet $5 \cdot 2$ inches; 1882,2 feet 61 inches: 1883,2 feet 6 S inches ; 1884 , 2 feet 6.95 inches -2 feet 6.11 incher. In examining this question I lowked for some mark of old surveys which might show what the evidence of a langer period would be, but I bave failed to find any mark put in with such care as the investigation demands. There is, however, one mark on the north east face of the round toaer on Fort Denioon which was put in by H.M.S. Herald during her survey of Sydaey harboan. It is cut in the stone three feet above mean sea level, and is marked with the broad arrow under it. 1 have been at some trouble to find out on what observations this mark was based ; but although I have learned that the survey was made in 1857, and that the Heral./ was in port from February 26 to Deeember 21, 1857, 1 eannot learn how long the tide olserva tions were continued, but I hope still to do so. The time and method of taking mean sea level might account for a difference from the true mean of four or five inches, as is shown by the different monthly means from the recording tide gauge, and until I can learn on what observations the Herald's mark depends, it cannet be used as evidunce of change of level of the land. I have, however, connected it earefully with the zero of the tide gange, and if it exactly represents mean sea level in 1857, it proved that the land has ifen five inches in twenty-seven years; but, since the tide gauge shows no change whatever during twelve of these years, 1 think the evidence of the mark cannot be taken without full panticulars of the observations on which it depends. In the course of conversation with the late Kev, W, B, Clarke on the question of the elevation of the coast, he pointed out to me evidence not only of the elevation of this cuast, but also of its sulpsidence, and expressed his conviction that Port Jackson, llawkesbury River, and other places on the coast had been cut ont by the action of freath water, when the coast way mueh higher than it is at present-in fact, that these inlets had been at one time gullice exactly similar in character to those which now exist in the Blue Moontains, and
which have been so obviously cut out by fresh water. Since that time many bridges have leen made along the coast, and the lorings made for foundations for these bridges have special significance in connection with Mr. Clarke's opinion ; and by the kindness of the Engineer-in-chief for Railways and the Fingineer-in-chicf for Roads and Bridges 1 am able to quote here some of these measures, which prove conclusively that the sea was at one tine much lower than it is at present. The soundingy taken for the Parramatta Railway bridge show 26 feet water, 32 feet mud and sill, 8 feet loose sand, 12 feet liard sand, to feet loose sand: total, 88 feet. (icorge's River bridge- 8 feet water, 87 feet mud and sand, 9 feet black clay, 16 feet sand, 4 feet hard sand: lotal, izi feet. Hawkeshury River bridge-44 feet water, $3 t$ feet light mad, 87 feet lhack mud, 8 feet very hard sand: total, 1 zo feet. In the road-hridge over the Parramatta River41 feet water, 16 feet shells and mud, 15 feet sand, 9 feet blue clay, 6 feet chays and shells: total, 87 feet. Ironstone Cove roat-bridge- 26 fect water, 7 feet stiff blue clay, 36 fect very stiff blue elay, 15 feet yellow clay, 5 feet stiff hack clay, 11 feel sand and clay, 2 feet clean sand, 3 feet gravel and wond: total, 105 feet. Shoalhaven Kiver road-bridge-14 feet water, t_{3} feet mud and silt: total, 117 feet. The bottom of the Hawkerbury, therefore, where the railway-bridge is to he, is 170 feet below the level of the sea to-day; and when the rocks were washed away to form the river-bed to that depth, the sea must have been at least 170 feet below its present level, and the bearings in Sydney llarbour and George's River indicate a similar fact, if not to the same extent. Without going further into this question, which is foreign to my presen: purpose, I think I have said enongh to show that the evidence for elevation and subsidence of the land are about equal, the question before us being, In which direction is the change going on now? In estimaling the value of the evidence quoted as to the rate of rise in Queensland and South Australia, we must not forget that when engiaecrs adopt the asual rule as to mean sea level-that is, as to the mean of high and low water at any time of the yearthey assume that all such means are equal or repretent a constant level, when in point of fact two such determinations of sea level may differ by S inches or even more, and in the athence of a self-registering tide-gauge, or constant observations extending over a year, no levelling referred to the sea in the usual way is of any value whatever in such an investigation ns that requited to determine whether the relative level of land and water varics. I have already shown that Mr. Ellery thinks there is no evidence of present rising in llobson's Bay, and the fact that at the time the enginecring levels referred to were taken in South Australia and Queensland there were no self-registering tide-gauges to determine accurately mean sea level, is sufficient to warrant us in hesitating before we receive the evidence as to the rate of elevation furnished from these colunies, which I quoted from Mr. Clarke's report. Some few months since it occerrel to me that it would be desirable to put a self-recording gauge on Lake George, with a view of keeping a contimuos record of evaporation and other changes of level in it; and as som as the instrument could be got ready I put it up on the west side of the lake, in front of Douglas House, which is about a mile from the present southern end. The work of erecting the instrument was completed on the afternoon of February 18, and the pencil was put down on the paper to begin its curious record at 7 p.m. on that day. At the time the lake seemed calth as a millpond, and, looking at its smooth surface, no one would have dreamet that such chaliges were going on in it as legan to reveal themselves so soon as the pencil touched the paper, and in two hours the pencil lad reeorded a rise and fall of nbout 2 inches. This is not a motion like the ordinary wind-made waves, which pass by in two or threc seconds, but a slow and gradual rise, occupying an hour, and then a corresponding fall in about the same time, to do which a current must first have set from north to sonth for an hour, and then reversed; and if we consiler for a moment the force necessary to put a boily of water is miles lon', 5 wicle, and 15 or 20 feet decp, in such motion, we shall get some idea of the magnitute of the forces at work. The record had not been going 24 hours when it became obvious that these periolic motions in the level of the water had a peried of about two hours, and on the afternoon of the second day a heavy thunderstorm passed over the south end of the lake, and threw a li:tle light on the cause of the pulsations. The storm rain was very heavy and muth of it must have sun into the lake, tending to raise the waters there. With the storm there

 airt fell newly os fint as is hat ruase nol thithel is.

 is frenors lerel is is minwal phong the forte is fell z

 If methe in she blar, whuth can ty tiotireth woen in the revent

 Wivoing that the trerwithorre ale of the woo dhmacheras liner
 Ne loce, ard iravel woek of why Cruinly the towe whivel?

 n. gera thinge = the rambll theze hat thowere of yetin,

佂

Ixxviii
NATCRE
[ケ̌uly $9,188_{5}$

WOODHOUSE \& RAWSON,

DEAK STRII, UEGPNT STREET, LONDON, W,
MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FOK SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.

OF IMPROVED PATTERN
St IN= stacievt.

\qquad N:

WALL PAPERS FRIEF FROM ARSENIC. WILLIAM WOOLLAMS \& CO., Manufacturing Paper Stainers, ARTISTIC WALL PAPERS, Owarantped Frne from Arwonto Sole AdAres sie, KIGH 5TREET, MANCHRETER SQUARE, LONDON, \&

tos, 000 ACCIDENTS
TWI MLLIONS HAVE BEEN PEID AS COMPENSATION

Rulwny Passengers* Assurance Compony SA. CORNHILL

Head Omas m Cornmit, 2,ondon, \& C.

NON.MAGNETISABLE WATCHES.

WATCHES =hat ©
Hach

THE WINDS An Essay in Illustration of
 \#

FRY'S CAOLDMKDAL,
COCOA
EXTRACT

HOLCDWAYS FIIS

 MEDICTEE Feworfal tavigutior of the Fraifies of the whood:
 D.g Red by Goog

lxx:
NATURE
$\left[7^{w / y} 9,188_{5}\right.$

Messrs. MACMILLAN \& CO.S NEW BOOKS.

$$
\text { 二 } 11, \text {, } 71
$$

FOR TIIE C'SLOS CULLLGES ANH ARCIIIIAI.D DEIKIE, F.R.S.

OH NONOMAR IND THE IMPEACHMEN'I OF

SOUVENIRs OF SOME ('ONTINENTS. By Ancusnalo Formes,
CARLYLE PERNONALLY INU IN HIS WRITINE:S Two

OX LIGIIT. Being the Bn'm"t Ideturex
By fivohge Giahtifl

MALTII's dNII HIS WOHK By JayEx Bosan, M.A., Balliol

THE NEW TESTAMENT IN THE URH:INAL GIREEK, The

A THEATIXE GN THE CALCULLSOF VARIATHONS. Aranged

A TEXTHOOK थF THE METHO\| OF LEAST NQC IRES. ISy

C'IRVE TRACING IN CAHTEXIAN CO-ORIDNATES, By

ARCIHHALD CiFIKIF, F.R.S.

国

隹

 imultenatce ey the plat employed thwid la ver suvarate If pulic eximstive, vmphaty at the fitst

 ond munc stillimit on it elents. At the perwobl Line,

 purer دif tu wur apramento ramalues with highl of high

Tbe lamp has leen de mned with, were to protect the

finingey h, fresh leasted aur comess in at the bamie tate amo the unner spare aif the hood t centapaing the fatc
 6ind whil mod ay frum the ammaphere below. The bot formed beincen the howlull and 2 will, on arcesant of air
 the lunes 1, thus jrie enung the culd at of the atmanppucre, which is at teant three timet as heith, from risums hevic the hand. I, abone a cerisin level, even is case of a
 fance relless it lich dimenly duwnwards he inacl sarince if toe boot, laere beins countguently on thure Almone eif shatlouk
The lofh can be mure of less conceniratod no difyeets, as sevied, by ias) ing she whape of the lowod vir reflector wout In ame suses, whese at is nequrred to diffuse the halit sulcly, iur to thiminsh the downowal radiation in
 natace rmvinet parabolecill in the downound tifection, restiver eatber tim he refractal in tie be redected hat it the dunw in insh dirared to seduce the smienats of

 What, "pupte hate se reywivie, sunt the tight may be thins
 invelal rang belim. - pol whiult anal whath the netimen the
 wath nui fist Ithun. If alluwa of froe tocess to the

 tep.od unum.

 an-1: $:$ lee noe retirt phy thamefred

 thail I

 the dianm

 w,t - brimit to b

 fuot The duriercuic betweto thes and zitho candles,

geologist of the familiar Liassic Extracrinus, and give a singularly antique aspect to the fauna. Not less interesting is the living Rhizocrimus, which is a dwarfed and degraded descendant of the well-known chalk fossil Bourgecticrinus, as this in turn appears to have been adwarfed representatuve of the Pear-encrinites of the Jurassic rocks. The genus Bathycrinus, previously known only from a single immature specimen, is now shown to have a wide extenstom in the Atlantic, but is not known in the fossil state. Whule the stalked crinoids have been dying out, the Comatulx, or Feather-Stars, are probably more abundant now than at any former geologiral period, no fewer than four hundred species being now known, and three of the six genera into which they are referable having been discovered by the Challenger. In connection with the subject of recent crinoids some interesting observations are given regarding the Myzostomid parasites that infest these creatures and produce sirgular mal-formations. The resemblance of these distortions to those found upon many fos 11 Palazozoic crinoids no doubt indicates the presence of similar parasites even in the waters of the Palizozoic
oceans. From the rich trawlings below water we are led by the narrative to the abundant bird-life of the Southern Ocean and to the conclusions regarding the structure and affinities of the Petrels reached hy that able and lamented naturalist, the late Mr. W. A. Forbes.
From the pages of the narrative a good notion of Kerguelen with its snowfields and lavas, and Heard Island with its ice clifis and glaciers can be obtained. The profusion of life in these southern waters is not a little remarkable-sponges. alcyonarians, holothurians, ophiurids, asterids, echinids, annelids, amphipods, polyzoa, gasteropods, cephalopods, and many other invertebrates. But the Challenger now pushes southward to the Antarctic ice-cliffs, and as these seas are but little known, full details of this part of the navigation are given, with the soundings, dredgings, trawlings, and temperature observations taken along the route. Sumerous woodeuts, phototypes, and chromolithographs of icebergs observed in the Antarctic Ocean are inserted, and a special chapter is devoted to the history of exploration in these seas, and to an account ofobservations made by the scientific staff of

Fich. 5.-New Volcaro, Camiguia 1-land.
the Challenger on Antarctic temperatures, the density of sea-water, the true composition of sea-water ice, Antarctic icebergs, the deposits formed on the sea-bottom in the icy tracts of the Southern Ocean, the surface organisms of these seas, and a detailed summary regarding the hexactinellid and tetractinellid sponges collected.

Escaping from the perils of the ice fields and Antarctic gales the vessel bears away to Australia, touching at Melbourne and Sydney, and then, passing between the North and South Sslands of New Zealand and northwards to the Fiji Islands, turns westwards again, through the Coral, Celebes and China Seas to Hong Kong. The account of this portion of the voyage is enriclied with descriptions of numerous groups of animals collected durng, the expedition, particularly macrurous and brachyurous crustaceans, butterflies and moths, medusec, starfil hes, amphipods, lamellibranchs, annelides, calcareous and homy sponges. The next track, from Hong Kong by Minila, Lebu, and the Admiralty Islands to Japan, takes up nearly roo pages of the narrative. Among the more interesuligg observations recorded are those relating to the volcano of Camuguin Island, which burst forth upon a low
plain in the summer of the year 887 t and in four years and a half rose to 1,950 feet in height, with abundant discharge of steam and with glowing lava at its summit (Fig. 5). The mountain is a dome-shaped mass rising from the seashore. It consists of various andesitic lavas but seems to possess no crater, resembling in this respect some of the trachytic domes of Auvergne. The lava is described as having apparently "issued from a centıal cavity and boiled over, as it were, till it set into the form of the dome." Probably the volcano is an example of the extravasation of viscous lava in successive shells, of which the outer are pushed outwards and upwards by the arrival of fresh material from below, as illustrated experimentally by Reyer. Mr. Busk supplies a risume of his
Report on the Poolyzoa of the expedition. Professor E Report on the Polyzoa of the expedition. Professor E. l'erceval Wright gives one on the Alcyonaria: Dr. Rudolph Bergh, one on the Nudibranchs; Professor Turner, one on the crania of the Admiralty and other Pacific Islanders: Professor G. O. Sars, one on the Schizopods and other crustaceans.
From Japan we are transported to the centre of the Pacific Ocean, and learn much by the way regarding the
distribution of temperature in this vast expanse of water. A series of soundings taken from lat. $40^{\circ} \mathrm{N}$. to lat. $40^{\prime \prime} \mathrm{S}$. affords a section of the very centre of the ocean through the volcanic peaks of Hawai and Tahiti. Perhaps no single part of the sounding work of the expedition offers a more impressive example than this of the boldness and success with which the problems of the deep sea can now be attacked. Down the middle of the widest and deepest ocean on the face of the globe a line of temperature soundings is taken with as much precision as if it had been an inland lake, and information is obtained that furnishes a clear picture of the depth of the water, the form of the bottom, and the manner in which the layers of different temperatures are superposed upon each other from the surface downwards. A careful survey of the coral-reef of Tahiti by Lieutenant Swire and Mr. Murray suggested to the latter observer the view which he has already published-that this reef and coral-reefs in general may be tormed by the outward growth of the living coral
upon a talus of coral-rock broken off by the waves, and do not prove subsidence as was believed by Darwin. Among the corals, brietly described by Mr. Moseley, probably the most beautiful of the madrepores is the delicately fragile Leptopinus trawled from a depth of 2,160 fathoms between Juan Fernandez and Valparaiso (Fig. 6). I'rof. Mubrecht of Utrecht supplies some notes on the Nemertea in anticipation of his detailed Report on this subject. A summary is given of Mr. H. 13. Brady's studies of the Foraminifera, which are so abundant in the surface waters and play so important a part in the formation of deep-sea deposits ; and a digest of the Report of Dr. G. S. Brady on the copepod and ostracod crustaceans. But perhaps the most generally interesting section of this part of the narrative is that which treats of the nature of the organic deposits now forming on the floor of the deeper parts of the ocean. The important results obtained by the Challenger expedition in this novel department of enquiry have already been made familiar

Fig. 6.-Leplofenins hypocilws, Moseley.
by the writings of Messrs. Murray and Renard. But the reader will be glad to have them re-stated in the official account of the voyage, and to find them so admirably illustrated with woodcuts and a lithographic plate, which enable him to realise exactly the nature of the evidence for the extreme slowness of deposition at these great depths and so far from land. From no fewer than 116 sharks' teeth brought up with over two bushels of manganese nodules in a single haul from a depth of 2,385 fathoms, Fig. 7 has been selected for illustration. It differs in no essential particular from the tooth of Carcharndon megralodon, so common in 'Tertiary strata, except that it shows no large base.

Quitting Valparaiso, the Challenger pursues a southerly track to Port Otway, and then winding through the long line of sounds between the islands and the mainland passes through Mlagellan Strait to the Falkland Islands, and thence to Monte Video. During this part of the narrative we learn from Dr. Hoek what he has found out regarding
the Cirripedes and Pycnogonids obtained during the cruise ; from Mr. F. E. Bedfard regarding the Isopods; from Mr. R. B. Watson about the Scaphopods and Gasteropods; from Mr. J. R. Henderson about the Anomurous Crustaceans; from Dr. Guinther respecting the deep-sea fishes ; and from I'rof. E. Selenka regarding the Grphyrea. The course is then shaped eastward from Monte Video, across the South Atlantic to Ascension, and during the account of this traverse we are shown how the foraminiferal deposits of the deep sea were collected and investigated, and are supplied with a useful summary of the results arrived at by Messrs. Murray and Renard regarding deep-sea deposits in general, illustrated with an excellent coloured plate, which, in default of the actual objects themselves, brings their characters very clearly before the eyc. As the narrative proceeds with the account of the homeward voyage from Ascension, we are told about pelagic diatoms, marine infusoria, coccospheres, rhabdospheres, bathybius, and the land-plants

 Hatersed 68, topo nantural miles，and at mitsals at neariy

The tinul cluprer za58 a summaty of the reviles mosamel br the oficers if the 1 ，pectitron，usd the criperth sebuequestly emploped in the invertication ie the density of een－water，the cupup vilueth of the sals of the oreat， the geographiral mind hathomenscal distubution of gecinc gravilg，the cartaicic mod，nimger．and avy hen jreient timhs in thert lieating aputh noremir cercularton．
 thin port）wolames whithe mith min the offirial nawrat ite of

Vmッロー $10-\mathrm{CO}$

 the sletalded Ropowt A, f fuller infirmation，would has
 bus whin winh in learn ti aliat worice ther hase to vorm Cor their oan teymiremems let us loye thit in a future cdition of the narration this wand will be supplied． Meanuhule no nime can me foom the perasal of these

NOTES

 tute－will le＂Co the Nra fiollery uf Valmomiloger of the

 t－15 to the noult B ©

 if）

，Jiensom

 fratthas bo

 of the doys up wank of fous reven net of the Jhy chays fthe twe

 whiber bere th ifth sumb. I merobor if a hand of

 (yeraular नlita)

 atm 1 atil 1 ros

Roysl soctety of New South Woles, May An Annum!

 Y,k

CONTENTS

llis furbin, Arthur K Hent

$$
1-5
$$

$$
\begin{aligned}
& \text { The Voogagr of the Chalienger, it ithilroventar } \\
& \text { inctes }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Notes } \\
& \text { Auromikal Pbeoomonis for the Weel 'tiss, } \\
& \text { July } 1025 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. Teaching Univerinty for Lindoin } \\
& \text { Dashah Mesearches io Gieculand }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Royal Soctely of Cpnada } \\
& \text { On the Oprevition of Earn? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tremera. 1) Prof John Mulne V/ifionghal. } \\
& \text { socleties nind Acmdemiss. }
\end{aligned}
$$

$$
\begin{gathered}
\text { TENT BOOK OFGEOLOGV } \\
\text { CLASE BOOK OF \&EOLOG }
\end{gathered}
$$

inxxvil

N.ITURE

ASTRONOMICAL TELESCOPES.
\qquad 415
+2
215
2
212
\qquad
\qquad
THE - EXCELSIOR"
PATENT SPRING MATTKESS
THE NEW PATENT

WOVEN WIKE MATTRESS

 M.3HOL

CHORLTON \& DUGDALE, MANCHESTER. OBJECTS FOR THE MICROSCOPE,

 THE"OTTO"GASENGINE.
CONSUMPTION of GAS guarantcod to be 25 to 75 less than ANY other Gas Endine per brake horso-power.
:RDSSILEYBPATFNTTWIN OTTO ENGINES

CROSSLEY BROS., Itimited, Mancliester. Hural OVER 11.00 OELIVERED.
 Proud my hinse,

xcii - , ITIK:

MLS. MURTAT゙S THADDBOOKS.

FNGLISH FOLEEIGN
1, HO

(oogle

sogle

roogle

- 11

 Dhinged ay Googla

(oogle

OFFICIAL REPORTS ON WATER PURIFICATION.

SPONGY IRON.

"XIX. Army Medical Report," pp. 170, 171.
"This is a very powerful filtering substance. . . . The water filterel shows no tendency to favour the growth of low forms of life, and may be stored with impunity ; water may also be left in contact with the mellium for an indefinite period without undergoing any deterioration."

ANIMAL CHARCOAL.
"VI. Report on Rivers Pollation," p. 220.
" The property which Animal Charcoal possesses in a high degree, of favouring the growth of the low forms of organic life is a serious drawback to its use as a filtering medium for potable waters."
See also "NTX, Army Medical K'oport," p. 170.

CHARCOAL IN POROUS BLOCKS.

" XIX Army Medical Report," p. 170.

* Water filtered through them and stored shows signs of the formation of low forms of life. . . . After a time the purifying power becomes diminished in a marked degree, and water left in contact with the filtering medium is apt to take up impurity again.

Is it reasonable to assume, without proof, that Animal Charcoal, which upon the above official Evidence FAVOURS the development of Bacteria, will DESTROY such Bacteria as the Bacillus of Cholera or Typhoid?

CHOLERA IS A ZYMOTIC DISEASE.

From "The XIX. Army Medical Report" for 1877, p. 143 :-" Fort George was the only station where symotic diseases throatened to become opidemic, and zehere a positite insanitary condition has been reported-riz. the Water Supply."

From "The XX. Army Medical Report" for 1878 , p. 156:-" Fort George.-The Water at Fort Gcorge has at length been remedied by filtration through Spongy Iron Filters. The analyses after filtration wecre veny fazourable, and all complaints, so loud before, hate ceased."

BY APPOINTMENT.

Reports, Testimonials, Price Lists, \&c., free.

SPONGY IRON FILTER CO.,

 22, NEW OXFORD STREET, LONDON, W.C.Tust Ready, in Three Volumes, Crown 8vo, price 3s. 6d.

A NEW NOVEL

By the Late HUGH CONWAY.
AFAMILY AFFAIR.
By HUGH CONWAY.
Author of "Called Back," "Dark Days," \&c.
MACMILLAN AND CO., LONDON.

A NEW ALGEBRA FOR SCHOOLS.

ELEMENTARY ALGEBRA FOR SCHOOLS.

H. S. HALL, B.A.

Formerly Scholar of Christ's College, Cambridge, Master of the Military and Engineering Side, Clifton College, and S. R. KNIGHT, B.A.,

Formerly Scholar of Trinity College, Cambridge, late Assistant Marter at Marlborough College. Globe 8vo, 3s. 6d.; with Answers, 4s. $6 d$.
This work differs in some important respects from the text-bonks now in use. The early chapters contain an unusually large and raried selection of examples. After the first four rules consideralile prominence is given to easy equations and problems. All the usual algebraical operations are first treated and exemplified in the case of simple expressions, any reference to compound exprestions or resolution into factors being for a time postponed. The writers are thus able to treat resolution into factors, and the operations sebeidiary to it, far more futly than is possible where factors are introciuced and disposed of in a single chapter. Aftez quadratic equations some recapitalatory chapters contain general proofs of the elementary rules and miscellaneous theoreus asd examples illastrating their harder applications. The book deals as fully as is usual in an elementary course with indices, surds, ratio, proportion, variation, and progressions, and concludes with a collection of miscellaneous examples. Fixamples are worked in the text throughoat to illustrate the best methods, and the examples for practice are numerous. As, moreover, they have beea compiled with the advice and assistance of several teachers of great experience, it is hoped that no useful types have been omitted.

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
" To the solid grouna
Of Nature trusts the mind which builds for ayc."-WORDsworth
No. 822, VOL. 32]
THURSDAY, JULY 30,1885
[Price Sixpence

CHATWOOD'S

Have received highest Awards at all International Fxhihitions, including Two Diplomas of Honours and Six Gold Medals.

London Warehouse, 76, NEWGATE STREET, E.C. Lancashire Safe and Lock Works, Bolton.

RIBBON SECTION CUTTING.

The Cambridge Scientific Instrument Company have designed a new and Ample Microtome for cutting continuous Ribbons of Sections of Microscopic Preparations on the plan first adopted by Mr. Caldwell. The new instrumont hat the advantage over the original pattern of dispensing with the eddest band altogether, and consequently not only avoiding the trouble of lifing the series of Sections from the razor, but also of allowing them to fallon to the glass slide in their proper position for monnting. Price of the Microtome, 2585.
The Company are appointed Agents for the Microscopes of Zeiss, a supply of which is kept in stock.
THE CAMBRIDGE SCIFNTIFIC INSTRUMENT CO.,
Cambridge.

UNIVERSITY COLLEGE, LONDON.

The Sewion of the Faculty of Medicine commences on October t . IntroThe Section at \& p.m. by Prof. Sch3fer, F.K.S.
The Section of the Faculties of Arts and Laws and of Science (including loe indian \$chool and the Departments of Applied Science and Technology, in of the Fine Aris) begins on October \& Introductory Iecture at ip mis Vy Prof. T. Roger Smith, F.R.I.B.A. Instruction is provided for Women Arts, Laws, and Science.
Provpectuser and Regulations relatiag to Exhibitions, \&C. (value Crooo), ny be obtained from the College, Gower Street, W.C.
The Examinations for Andrewe, Entrance Prizes (1,anguages and Science) and for Modical and (Gilchrist) Engineering Entrance Exhibitions begin the Ser as
the School Reopens September 38 .
The Collige is close to the Gower Street Station.
TALFOURDELY M.A., Secretary.

THE NEW POCKET METALLIC THERMOMETER
(PATENT)

Is as accurate as a Mercurial Thermometer and far more sensitive, while for portability it is unequalled, and it will be found an invaluable pocket companion. These instruments are not made on the old system of using the disxinnilar contraction and expansion of two metals, but the motion is obtained from the expansion and contraction of a liquid hermetically sealed in a metallic vacuam. Price, in Solid Silver, the size of the engraving, in outer Moroceo Case, 2us., sent post free,

JOETIN BERTNINTG,

 63, STRAND, LONDON, W.C.NEGRETTI AND ZAMBRA,
SOLEE BAAKERS OF
JORDN'S (PATENT) SUNSHINE RECORDER.

PRICE £ 3 3s.

NEGRETTI
ZAMBRA, Scientivic Instaument Makers

To the Quens, HOLBORN VIADÚCT.
Branches:-45, Cornhill;
122, Regent Street, London.
Ihimstratoll Description Pout Fret.
NEGRETTI \& ZAMBRA'S
Large Illustrated Catalogen,
600 Pages,
3200 Engravings 4
Price 34.61 .

xevis
A.ATCKE

THE MASON SCIENCE COLLEGE
GIFMINGHAN

1.1)WAKD WAFI, has pleasure in an
C. D. AHRENS.
PRUNN WOIKER ANH PRACTICAI OPTICIAN

SIX PRIZF: MR,DALS
ST TH MM IS HKMF:TAK. MCHICAI
schoul.
LVING SPECIMENS FOR THE MIGROSCOPE

_3 . Wherb Tobe, One Shilling. post free
$1+$ y $r \quad n+$

-

CABINETS FOR MINERALS 10 OSILC. \&

THOM: \quad D RUSSELL

MINEA Ory A:
privatr heshons and eybring clasers
180. BROMPTON ROAD.

Dhamad by Google

HTVRE
[2nnfy 30, 1885

PTICIME.
DOLLOND'S

ELASTIC STEEL SPECTACLES
3n. A4, 7s 6n, 120 6a per palf, poet free

1. LUDGATE IHLT, LONDON, FC.

DAVEY SAFETY ENGINE "ODMESTIC MOTOR.

ELECIROLVSIS : a Practical Treatise on
 TN USE FOR ELECTRIC LTGHTING.

THE GEOLOGY OF BF:LGIUM AND THE FKENCH ARDENNES

[.1]

\therefore HATHORN, DAVEY, 8 CO.. LEEDS.
AUTOTYPE PHOTOGRAPHIC BOOK ILLUSTRATION. !

THE WINDS An Esh , w.
T1. WINDS An Essay in thustration of ,

THEENTOMOLOGIST:

$\therefore \quad \therefore \quad 1 \quad$, 1

 MINERALS ANO STONE IMPLEMENTS.

MMPLEMENTS

THE AUTOTYPE COMPANY, WANTED-"NATURE," No. $5^{6-A p p l y}$

On,

UR PHOTOGRIPHY.

THE 'EN' I'UGEE " I LLE AEF'IOMETER
JPIIN $1322 G \mathrm{VHNHNG}$, 63, STRAND, LONDON. WC.
2. \& J BECKS
MICROSCOL THE STAR.

> PRICE CI3s.
NEGRETTI ZAMSRA.
'CK, 68, Cornkill, Loadon. E.C.

+11... - , 坔相

318
・リビハ

Abstract

． 1 wigus

$\underline{\square}$

THE MICROTOMISTS VADE-MECUM:

KLINGDON STKERT:

Fict coilege Uzind, anen Jodrell truken

Luater TWab z Ilates 1

W, W\%

al7 mand ay G()Ogle

THURSDAY, AUGUST 13, 188;

DR. LAUDER BRUNTON'S "PHARMACOLOGY"

A Tert-Book of Pharmacology, Therapeutics, and Materia Medica. By T. Lauder Brunton, M.1)., D.Sc., F.R.S., \&c. Pp. 1139 . (London: Macmillan and Co., 1885.)

IT is nearly twenty years since Dr. Brunton, then a student in the University of Edinburgh, commenced, by his researches on the physiological action of digitalis, which were followed soon after by others on nitrite of amyl, a life of laborious work which has been marked at every stage by contributions which testify to his scientific acumen and his burning love for research, and which have enriched physiology and many branches of medicine with newly-discovered facts.

Now, when the second decade of his professional life is drawing to a close, he presents us with a work which stamps him as a teacher in the highest sense of the word.

It may appear to some that an apology is needed for introducing into the columns of Natlire a review of a work dealing with departments of medicine. To any such we would reply that it falls within the scope of this journal to review the progress of all departments of natural science, and that large sections of Dr. Brunton's book are full of interest to all biologists, and almost as much to the specialised physiologist as to the practical physician.

By the term "materia medica" it has long bean the custom to designate the study of the agents, whether derived from the mineral, vegetable, or animal kingdoms, which are employed in the treatment of disease. $13 y$ "therapeutics" we understand the study of the application of these remedial agents to the cure of disease. Until very recently the study of therapeutics was based entirely on pure empiricism, and under conditions where empiricisn (i.e. experiment), uncontrolled by theory and unassisted by proper methods of observation, could not but yield misleading and contradictory results. The physician employed a drug because others had prescribed it before and found it useful in certain diseases, possessing but rarely any knowledge whatever of the mode in which the drug would affect a healthy subject, or of the manner in which it affected the diseased organism. All that was taught concerning the action of drugs was based upon successive individual experiences, accumulated by individuals who were of necessity destitute of the scientific knowledge, as yet unexisting, which alone could make them "empirics" in the best sense of the word.

These observations are not intended to disparage the work of those who, sometimes possessed of marvellous intuition, worked in bygone days, nor to lead to the inference that old therapeutical experience was barren of useful results. However great the knowledge otherwise acquired of the action of a new drug, however stringent the reasoning which leads us to surmise that it is likely to exert a valuable influence in the treatment of disease, yet ultimately it is by a rational empiricism-i.e. by a rational and cautious series of observations on actual cases of disease-that its value will

[^9]be determined; and, further, he alone will be worthy of the name of a good physician who, irrespective of theoretical considerations, bases his use of remedial agents on the results of rational empiricism. To the older therapeutic studies we owe our knowledge of the usefulness of such drugs as iron, cinchona, and digitalis, a statement which of itself is sufficient to express our obligations to the empiricism of bygone days.

There were inany causes which, until lately, stood in the way of a proper study of therapeutics. It was only when the natural history of disease came to be studied by men imbued with physiological knowledge and furnished with all the appliances which physiology has borrowed from chemistry and practical physics that it became possible to lay the foundations of sound therapeutics. From such studies it appears that a morbid process is not to be looked upon as a morbid entity to be destroyed, but usually as the resultant of complex deviations in physiological processes; often, it is true, associated with structural alterations of particular organs which stand more or less closely in the telation of proximate causes of the diseased phenomena. They have shown that, in general, in the treatment of disease, the scope of the physician must be to combat particular phenomena by the use of agents affecting specially the organ and function which are the principal factors in the production of the morbid process.

In order, then, to place medicine on a proper basis, it was needed (1) that the functions of the healthy organism (physiolegy) should be studied in the full light afforded by anatomy, chemistry, and natural philosophy ; (2) that the exact deviations of the several functions from the normal standard which constitute particular diseases should be ascertained with the utmost exactitude, not only so as to permit of accurate recognition (diagnosis) and classification, but to furnish the elements for a philosophical treatment ; (3) that alterations induced in the structure of organs by disease (pathologial anatomy) should be minutely observed, and that by the light of experimental patholog'y, the course of these alterations and, if possible, their proximate as well as their more remote causes shoukd be ascertained ; (4) that the socalled physiological action of drugs and other remedial agents should be submitted to a searching investigation: to this study the vague and misleading term of pharmacology', previously employed by German writers, has, unfortunately as we think, been applied; (5) that the subsequent application of drugs and other remedial agents to treatment (therapeutics) should be studied not only with the object of showing their influence on particular diseases, but also the way in which individual phenomena of disease have been modified.

All the above branches of inquiry are now being pursued by men imbued with the scientific spirit and furnished with all the scientific knowledge of the day. As a result, in spite of the great difficulty of the task, the physician is acquiring more and more that power of anticipating and predicting events which springs out of a knowledge of principles and distinguishes science from mere empiricism.

Until a comparatively recent period the study of the physiological action of drugs and consequently of theran peutics remained in a backward condition,

Google

Google

FORMOSAX ETHVULC. +

 R ECEVT prlainal evens in the Tiae have ditrom Reppith netent on in larmer, uase eycruilly

 lecied ing

 gitiel

 liees ratent is the Malmarat of itir eatly luelo wrem: Chat thete it a vie hital wice in limuma, al greal

wheclert pevhape loren, is in tbe Ihilipplives, we may precture the exutener if an old autochrotbois race, of a toy the the wo whi itut that it miay well be comedem

 Nown live tray thit this. th the liband in order to omie The promin fiser thie clomeve mor the natives have

 Atran surif of the laci, asd weher ethnedugists have Nhe vill
 Yi itho
 pit
 -f muan int twa urequal Imaris by a fofty ratice

 An lif

 O. N Thern then Theticed

 of an

Pepo-hoan do the southern half. The Sek-hoan settlements are mainly in the neighbourhood of Chang hua, slightly to the north of the 24 th parallel, and in the hilly districts dividing the mountains from the plains in the west. They appear to have fully accepted the Chinese yoke, and even the village headmen are appointed by the Chinese authorities. These tribes are absolutely sedentary, and devote themselves wholly to the cultivation of rice, sugar-cane, and indigo, which they have learnt from the Chinese. They have adopted the dress and habits of their masters; they shave the top of the head and wear long queues. The women also dress like the Chinese, but they do not deform the feet. The type of these Sek-hoan appeared quite distinct from that of other Formosans to two travellers, Mr. Bullock and M. Ibis. The former describes them as tall, but feeble, with a comparatively clear skin, large bright eyes, the mouth extremely large, with thick lips, a projecting upper jaw, and teeth long and poominent. The lower part of the face is as ugly as the upper part is prepossessing. But although they bear little resemblance to the aborigines, they have still less to the Chinese and Loochooans, the only peoples antongst whom we should seek for their origin, if they are of different blood from the other Formosans. M. Ibis states that the Sek-hoan present a contrast to the Malay type in the case of the males, although a resemblance may be found among the females. He attributes their anthropological peculiarities to mixture with the Dutch two and a half centuries ago. He states that there are still old Dutch books and documents amongst them, and that the method of cultivating tobacco (which they call trmako, and not by a Chinese name) is similar to that of the Batavian colonies. In the extreme north, around Tamsui and Keclung, there are also groups of Sek hoan. Driven from the coast by the Chinese, and prevented by the savage tribes in the mountains from penetrating into the interior, these have been almost exterminated. The remnants live in scattered communities among the sandy downs or in the rocky islets off the coast. M. Ibis visited one of their villages on a small island in Keelung Bay, where he found them in great destitution, but bearing evident resemblances to the Sek-hoan further south. He also noticed the Caucasian features, which they got from the connection between their ancestors and the Dutch and Spaniards of the seventeenth century. Around Tamsui the Sek-hoan are rapidly becoming extinct ; absorption into the Chinese, and opium, alcohol, and smallpox will soon do their work. Many' of their most prominent features are Malay, but the form of the skull is quite different, if we may rely on two specimens brought to Eurofe in 1868. Dr. Schetelig found the cephalic index of the living males to average 77 , of the females 76 ; but, on the other hand, there were the Malay physiognomy and the language of these Sek-hoan to render dificult their ethnological classification. On his return to London, however, Dr. Schetelig saw the collection of Polynesian and New Zealand skulls in the Museum of the College of Surgeons, and he found amongst these remarkable analogies with the skulls collected by him in the north of Formosa. On the north-east coast, at Suwo IBay and the neighbourhood, there are other subjugated tribes called Kabaran, Sui-hoan, and the like. They are all of the Malay type, and appear to be rapidly disappearing through contact with the Chinese.
The whole mountainous region from the north to the extreme south, forming nearly the eastern half of Formosa, is inhabited by aborigines who have accepted neither the yoke nor civilisation of the Chinese. These are called the Chin hoon, or "green, unripe barbarians," in contradistinction to the Sck-hpan, or "ripe barbarians." These live in a state of perpetual war with the Chinese, and it is alleged that the latter brought tigers to Formosa and set them loose in order that they should prey on their enemies; the latter, however, succeeded in exterminating
them. They are determined head-hunters, the young warrior commencing his career by securing a certain number of Chinese heads. Under these circumstances it is not surprising that our knowledge of these tribes should be exceedingly liinited. A Spanish priest visited some of them in 1875.6, and they have been occasionally visited by Europeans who have touched on the east coast. They are represented as like the Malays, but much fairer in colour than even the Chinese. More, however, is known of the tribes in the extreme south than of those on the east coast or in the mountains. They have been heard of in Europe chiefly by their various murders of shipwrecked seamen.

The various tribes are known as Kalis, Bhotans, Koaluts, \&c., and their districts have been frequently visited by European officials desirous of obtaining from them some as urance of better treatment for mariners thrown on their coast. The late Mr. Swinhoe, who visited them for this purpose, states that some of them approaclied the Mongol type, while in others there was an enormous developinent of the lower jaw. After new observations he described them as resembling the Tagals of Luzon. In 1874 the massacre of the crew of a Loochooan junk by the tribes led to a powerful Japanese expedition being despatched for their chastisement. The Kalis and Bhotans suffered so severely that their subsequent subjugation by the Chinese was rendered easy, and the Clinese Custons established a station and lighthouse on the south cape. An account of the expedition despatched to arrange this latter enterprise was read before the Royal Geographical Society in January last by Mr. Beazeley, the engineer employed in the work. Soon after the Japanese expedition M. Paul Ibis visited the south of Formosa, and has described nine separate tribes differing in linguistic and anthropological details. He thinks their dialects are connected with the Tagal language ; seven of the nine had little physical resemblance to the members of the other two. Several other tribes have been described by other travellers, and in most cases they are marked by important peculiarities. It would be impossible, even if it were likely to serve any useful purpose, to gointo details of the habits of each of these. All that is necessary for our present purpose is to note that there certainly are numerous distinct tribes amongst these independent aborigincs, and that in describing them yarious travellers refer constantly to their resemblance to Malays, Igorrotos, Tagals, Soolooans, Dyaks, and other peoples of the Malay Archipelago. The reader will therefore be prepared for M. de Rialle's conclusion that these aborigines belong to the great ethnic faunily known as Malayo.Polynesian. MM. Quatrefages and Hamy speak of them in the "Crania Fthnica" as "analogous to the Acheenese, Lampongs, and Eastern Sundanis, They are Indonesians, closely allied to Polynesians." But there are ancient mixtures with other anthropological elements. Whether these took place in regions from which the ancient immigrants came, or in Formosa itself, will probably never be known positively. The peopling of Formosa is probably due to successive invasions, doubtless far removed from each other in point of time, by Malayo-Polynesians, and this, M. de Rialle believes, is sufficiently proved by the great differences which, notwithstanding their common anthropological origin, have been observed by travellers amongst the various mountain tribes in the island. Whether a comparative study of the Formosan dialects with those of the Philippines, Borneo, the Celebes and other parts of the Malay Archipelago, will carry the solution of the problem any farther than this remains to be seen; but there appears no immediate prospect of any student being able to study the independent tribes of Formosa. They are as remote from us, for any purpose of accurate investigation, as ever they were, and far more remote than they were from the Dutch and Spaniards nearly three centuries ago.
parallel with the inclination needle. The luminous matter in these sheets is either even, diffuse, or divided into streamers.
"Fverything now depends on the position of the observer in relation to such a zone in order that it may appear in one form or the other. If he be very far from the aurora he will see an arc, diffuse or radiating, according to the nature of the luminous matter. If he approaches he will most probably see several distinct arcs, the phenomenon gathering more force and the colours more life ; and when still nearer, the aurora will appear as a band, and, if the luminous matter be radiating and passes the magnetic zenith of the observer, he will behold the auroral corona."

He thus holds that a "band" is a near are occupying a higher position in the sky :-
"The auroral band is oftenest seen in those parts of
the globe which are considered to be the true home of the Aurora Borealis, but seldom, or hardly ever, in southern latitudes. What is chiefly characteristic of the band in opposition to the arc, although no sharp line of distinction can be drawn here either, is its great height above the horizon, but at what elevation it ceases to be band and becomes arc is naturally an arbitrary determination. The band, as well as the arc, may consist of equi-luminous matter, of streamers, and of so-called luminous clouds, and it is, to a higher degree than is the case with the arc, subject to the most violent changes of position, form, and motion. Particularly when the band consists of streamers it displays the richest variations and greatest beauty, the folds of the streaming drapery, the prismatic play of colour, and the light-waves, which with marvellous rapidity course through the graceful undulating rays, forming a spectacle of light, colour, and form which

C, at 8h. tom.
Fic. 5.-Phases of an auroral arc, December $z_{1} 3878$.
makes this variety of the Aurora Borealis the most charming of all.
"The perspective fundamental form of the arc, and also the band, may, in my opinion, be explained by the aurora forming one or several rings, or fragments of such, which, with the magnetic pole as centre, or, more correctly, with a point in the magnetic axis of the earth-viz. the straight line between the two magnetic poles-lie at a certain height above the earth's surface. On account of the great circumference of the earth, in proportion to the height of the aurora, only a small portion of such a ring would be visible at one time, and each observer only see his own portion, the situation of which in relation to his horizon and the zenith will depend on his position in relation to the auroral ring."

The auroral streamers are closely associated both with
arcs and bands, an arc or band composed of streamers often forming the basis for a colonnade of streamers.

Before we proceed to the consideration of the corona, the following extracts concerning streamers and their apparent motions will be read with interest :-
"The streamers embrace a number of varieties, which have only one peculiarity in common-viz. that the direction is very nearly vertical, and that the length is always greater than the width. The length differs greatly, from 2° and 3° to 30° and 40° or more. The width is very difficult to estimate, on account of the constant motion; a single streamer thus may form only a slender thread of light, while others may have a width of from 10° to 1°, or more. Short streamers form often, as I have mentioned above, bands or arcs. The long streamers gather generally in bunches, which may either remain isolated, or
particularly when the aurora has previously formed an are, stand parallel, in such a manner that the lower, intensest, ends nearly follow the track of the former arc. Bunches of streamers, standing high in the sky, are often fan-shaped, the broadest part pointing downwards. The intensest streamers have very clearly defined edges, but
from these there are all sorts of variations down to the streak of light hardly visible. At the side of, and between very intense and defined streamers, the sky seems, by the contrast, unusually dark, and this may, perhaps, explain the black streamers which some observers claim to have seen.

Fig 6.-Aurora (Koutok xino).

Fiv. 7.-Streamerv (Kout-hxino)

Fico \&-Hands and streamers (Kub:ukatro).

[^10]"The motion of the streamers is twofold. First, longi tudinally, as they strike upwards or downwards; and sccondly, laterally, as they travel parallel either to the left or right. Sometimes this motion is slow, sometimes very quick, and particularly in the latter case the observer obtains the impression that the colonnade of streamers
is furrowed transversely by waves of energy following in rapid succession, under the influence of which the streamers momentarily flare up. If this be the case, or the streamers really move, it is impossible to tell.
"The longitudinal course of the streamers is not apparently only, but in reality, very nearly vertical, as several facts prove that they point in the same direction as the magnetic inclination needle." . . . "In regions near the magnetic pole, where the magnetic inclination is greater, the streamers stand more perpendicularly than in more southern latitudes, where they form a smaller angle with the surface of the earth.
"Some students, as, for instance, Baron Nordenskjöld, bave advanced the theory that the streamers do not occupy this position, but lie more parallel with the earth :
and, indeed, when observing an apparently perpendicular streamer in the north, it may in reality form any angle with the horizon, and still seem to the eye to stand perpendicular. But from various circumstances it is clear that the direction of the streamers is, as I have stated above-viz. parallel with the inclination needle. This is, in fact, demonstrated not only by the streamers high in the sky, which form the upper part of the corona, but also by those which, under intense aurora, stand either in the east or west, and which are then seen 'from the side,' so to speak, i.e. they stand very nearly perpendicularly, as indicated to all appearances by the streamers seen to the north 'in front.'

The auroral corona, the grandest sight of all, is found at the instant a band or broken band forming a colonnade

A

B
FiG. 9--Cororas (Koutukzinol
of streamers reaches the magnetic zenith in its progress from the north :-
"Quick as lightning streamers break forth at the same moment on the southern side of the magnetic zenith, and as the aurora travels further and further southwards, the corona becomes more and more complete. In northern regions, where the aurora frequently appears high in the sky, in a northerly or southerly direction, there is often an opportunity of seeing this form of the phenomenon, when a band of streamers passes the magnetic zenith in its course north or southwards. It is, however, not always that the aurora's passing of the zenith has the effect of producing the corona; it is seldom the case when a band constituted of diffuse luminous matter passes this point. It is, in fact, the streamers which create the corona." . . .
"If it be burne in mind that the course ot the auroral streamers is identical with that of the magnetic inclination needle, it is easy to perceive the origin of the ordinary radiating aurora as well as the corona." . . .
"This form of the Aurora Borealis, which generally indicates, at all events in southern latitudes, the culmination of the aurora as regards splendour, colour, and development, is produced by the streamers shooting from every part of the sky towards a common point-viz. the magnetic zenith. With this point as centre they seem to radiate in every direction ; some are very long, others short, while some form rays or bands one above the other. The heaven thereby assumes the appearance of a huge cupola, or tent of fire. In reality the streamers are all parallel ; their appearance of radiating in all directions from a central point with various angles being due to

OBJECTS FOR THE MICROSCOPE
 Firelly from Triaidat

Commun Blot Butverdy
Gut Ftr（whoie）
Mois＇，Flea withuut Eyes
Tonsue ar hurats
Tracieai yscem of
fecineac ji Tape W yourzs jeerle

lus z truan zan

Bane it very nu Mun－

ectoul ：arous＇1 vaue Fout of Feras very ine ．．．
NEW CLAこSIFIED LITF， 1 int－ctas opecinem

Prehistoric Lava from Mout Somma，Naplas
＇rind ind with＇rurta Ruck－
Aiducliczis shitinat
Rulute Plute frim Myrootochus rinkiï，very nave

Yertion of M ns．M inum burnma，showng Aarherita

pirjiyta zucuda ia voajugarione，sained
Mrictiadatior．
Aus Plantirosian serevisie）
H．umy of a Leaf，a pueces 34 sme Slide
viriot i． 87 （ciernanum sliarum）

> Either of the lhure 2
> W．WATSON \＆SONES，UPTICRAVS TO HER MAデESTY＇S COVERYMEVT 313，HIGH HOLBORN，LONDON，W．C．

THE＂EXCELSIOR

PATENT SPRING MATTRESS．AWARDS：

TEN
PrizeMedals，
Focaress
CEATIFICATES
of Mentr
Tus Theicuing pectianty of this Martress is the wiph is
The proncipie of arangemeat permats the tree movemeat＊Excelsio of one siterper withuat monavenuence so the other，utwi＇s
 iphnowive ive ser neofe．

Retul fram Cubizes Maiker，Upizolsterers，\＆c．
CHORLTON \＆DUGDALE．MANCHESTER．
ARMSTRONG BRACES．
ELASTIC，WITHOUT INDIA－RUBBER．

PATENT SPIRAL SPRING．

SOLD BY all HOSIERS aND DRAPERS．

 CONSUMPTION of GAS guarsnteed to be 25 to 75 ，less than ANY other Gas Engine per brake horse－power．CROSSLEYSPATENTTWIN－OTTO＊ENGINES

The steadiest ruming $G a s$ Eague yet made GROSSLEYS PATENT SELFSTARTER

Tle Sliex．Sm＂iex， 13 d Sex CROSSLEYSNEWVERTICAL－OTTOENGINES Reywreg ：tetic liveod spas
CRgspew BROS．，Limited，Manchester．

JVER 16.000 DELIVERED．

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE:
"To she solid sround
Of Nature irwsts the mind which duilds for aye."-Woensworth
No. 825, Vol. 32]
THURSDAY, AUGUST 20, 1885
[Price: Sixpence

To . MICROSCOPISTS,
 ASTRONOMERS, SURGEON DENTISTS.

THE SWAN LAMP

AND FITTINGS may be purchased at
MAWSON AND SWAN'S STORE, 31. EARRINGDON.STRYEF ETE * MOSLEY STREET.

R. \& J. BECK'S

NEW MICROSCOPE,
 "THE STAR." PRICES. $\quad \leq$ s. d. Stand, with 1.in, Objectglass
Stand, with 1 -in. and f -in, Object-glasses. Stand, with Kack and Pinion, coarne adjutuent, 2 Eyc: pieces, and r -in. Object. glass

330
Full Descriftios Pamplitet sent on Application to
R. \& J. BECK, 68, Cornhill, London, E.C. gold medal
International Inventions Exhibition, 1889.

GRACE'S NEW DIRECT VISION SPEC'TROSCOPE.

Mr. JOHN BROIVNING hegs to direct attention to the advantager of thiv very piowerful, portable, and efficient Instrument, which will divide the Sorlium lines or the 1) lines in the Solar Spectrum, aut show the Kain-Rand as Siparate Lines; it is provided with a fine motion focusing arrangement, and it is ${ }^{\text {anpplicable to }}$ to every purpove for which a Direct Vision Spectrosconve can be u-ed.

Price in Morocco Leather Case, £3 8s, 8d.

 Illusirnatad Catalogus of Sperthossofas urut fout feer, Sixaterncs.
TCIEIN BRROTNING,

 Opical and Physical Inctrwinemi Alaker to II.N. Gevernment, 63, STRAND, LONDON, W.C.NEGRETTI AND ZAMBRA, SOLE MARERS OF
JORDAN'S (PATENI) SUNSHINE RECORDER.

EDWARD WARD has pleasure in ansouncing the issue of a new Micro-Slide of Zoophyte, with tentacles out, in the special mannef so well known to his numerous patrons.

EDW ARD WARD, 242, OXFORD STREET, MANCHESTI:R. (503

MINERALOGY AND GEOLOGY.

PROFESSORS, COLLECTORS and VISITORS to I.ONDON ate INVIIFD to INSPF.CT Mr. HENSON'S STOCK of CHOICE MINF:RALS, \&r, \&c. At the PRESENT TIME he has a PARTICUIIARI. FINF CRYSTAIIISFDNUGGET OFNATINEGOLD, WEIGHT OF: PINK AP PPHYL,LITE, CHESSVLITE, EMERAIISS O NATRIX. PYROMORI'HITE (verv RARE FORU) CERUSSITE, CRYSTALI, ISE, MALACHITF, and BOTRYOIDA1, CHACEEONV. ME. TEORIC IRON'S and STONES. POLISHED AGATES and LABRA. DORITES.
A Large Serien of ROCKS, alvo MICROSCOPIC SECTIONS of the same.

Lists on Afplifation Hammers, Chisels, and Hanner Straps.
PRIVATE LESSONS AND EVENING CLASSES RIOOWPIFE CASES AND APPARATUS. Catalogues free. SAMUEL HENSON,

$$
\begin{aligned}
& \text { 277, STRAND, 1,ONIOON. } \\
& \text { Opposite Norfolk Street. }
\end{aligned}
$$

SIX PRIZE MEDALS
AWARDED FOR GEOL, IGICAL COILEETIONS
ieological Collections especially adapted for Teaching as supplied to Science and Art Department, and used by all Lecturers and Teachers in Great Britain, \& C .
New and Rare 3linerals constantly arriving from all parts for selection of Single Specimens.
ROCK SECTIOVS AND ROCK SPECIMENS: The Largest Variety in England.
Naw Catalogues and Lists on application to-
JAMES R. GREGORY,
88, Charlotte Street, Fitzroy Square, Lendon. Establizhed 27 Years in London.

CABINETS FOR MINERALS, FOSSILS, \&c.

 6 DRAWERS, 20 INCHES HIGH| $\begin{array}{r} 10 \\ 8 \end{array}$ | ** | $\begin{aligned} & 39 \\ & 26 \end{aligned}$ | " ${ }^{\prime \prime}$ | * | ** | **. | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | ${ }^{\prime \prime}$ | 39 | \cdots | - ${ }^{\circ}$ | ... | **' | | RECTANGULVR, FROM ONE SHIII.ING PER DOZEN.

THOMAS D. RUSSELL,
78, Newgate strfet, f.c.

MINERALS AND FOSSILS,
SINGLE: SPECIMENS OR COI.LECTIONS.

F. H. BUTIER,

Assoc. R. Sch. Mines Lond.,
M.A. Oxon. and L.S.A. Lond.,

Suceessor to the late R. TAlling,
180, BROMPTON ROAD,
LONDON, S.W.
Five minutes' walk from the Natural II istory Museum, S. Kensington.

HOW \& CO.'S

Geological Transparencies for the Lantern.

Descriptive Catalogue or Application.
WALKER'S SPECIFIC GRAVITY BALANCE FOR ROCKS AND MINERALS.
HOW \& CO.'S POCKET MICROSCOPE LAMP, 8s. $6 d$.
MICRO-PETROLOGY.-Sections of Pitchstones, Obsidians, Granites, Syenles, Diorites, Gabbros, 'Dolerives, Basalts, Tachylites, Trachytes, Andesites, Porphyritea, Rhyolites, Lavas. Aahes, Gneiss, Schlsts, Limeo stones, \&C.. price is 6d, each.

JAMES HOW \& CU., 73. Farktngdom Sthett, London.

PATERSON \& COOPER,

 76, LITTLE BRITAIN, LONDON, E.C.Electric Light and Power and Telephone Engineers New Electric Light Catalogue, post free $1 t$.
PATERSON \& COOPER beg to give notice that they have disposed of the Phalosophical, Flucational, and Experimental Part of their Business to Messrs, J. and T. M1AYF1ELD, 41, Queen Victoria Street, E.C.

CHEMICAL APPARATUS, Wholesale, Retail, for Colleger, Schools, and Chemical Work \& New Catalogue of on pages and goz elear illustratons, post free, $2 d$-WILLIAM OU Pages and son clear lilustrat.ons

ICROSCOPIC OBJECTS FOR HIRE,

Ilistological, Iotanical, Geological, by the bent Mounters. Let out on most moderate tertas. D'articulars of B. Wenls, Dalenain Koad, Forest It ill.
NORTH BRITISH AGRICULTURIST,
the chief Agricultural Journal in Scothand, circulates extensively among Landowners, Farmers, Resident Agents, and othersinterested in the management of land throughout the United Kingdom,
The AGRICULTURIST is published every Wednesday uftemoon in time for the Evening Mails, and contains Reports of all the principal British and Irish Markets of the week.

The special attention of land A gentsis directed to the AGRICULTURIST as one of the best existing papers for Advertising Farms to be Let and Estates for Sale.
Advertisers addressing themselves to Farmers will find the AGRICUL. TU:RIST a first-class medium for reaching that Class.
Price $3 d$. By post 3 3d. Annual Subecription, payable in advance, $14 s_{0}$
Offices-377, 1igh Street, Edinburgh; and 145, Queen Victoria Street London, E.C. Money Orders payable to C. and R. Anderson.
LA SEMAINE FRANÇAISE: a Weekly Newspaper and Review in the French Language. Politics, Literature, Science, Art. Varieties, Notes. Price ad, through Booksellers, and at the Railway Bookstalls. Office, 44., Strand, W.C.
LA SEMAINE.FRANCYISE: Journal Français pour 1^{\prime} Angleterre: Politique, Litératwre, Sciences, Arts, Variées, Nouvelles, et Notes. Un exemplaire par la poste, afd., en timbres poste. Abonnement franco par la poste-un an, ros. sod. ; six mois, gr. gd. Prix ed. ches tous les Libraires et aux gares des chemins de fer. On s'abonne aux bureaux, 441, Sirand, Londres, W.C.
LA SEMAINE FRANCYAISE.-"La Semaine Fran. calse "has been brought out \ln London for the benefit of those Englisk readers who may wish to study contemporary Freneh from all points of wew, Instead of confiniog they reading to one particular Gallic print. it certainly merits succes. "-Graphic.
P.O.O. payable to A. Catsrim.

Publishing Office, 441, Strand, W.C.

THE ENTOMOLOGIST'S MONTHLY MAGAZINE.

Price Sixpence, Monthly, 34 pages 8vo. with occasional Illustrations. Conducted by C. G. BankFTT, W. Dotiglas, R. McLacmean, F.R.S. E. Saundims, F.L.S., and H.T. Stateton, F.R.S.

This Magarine, commenced in 1864, contains standard articles and notes on all whbects connected with Entomology, and especially on the Insects of the British Isles.
Subscription-Six Shillings per Volume, post free. The volumes com. mence wilh the June namber in each year.
Vols. I. to VI. (strongly bound in cloth) may be sbained by purchasers of the entire set to date, at the increased price of sos each; the succeeding vols. may be had separately or together, at $7 s$. each.

Lond on: JOHN VAN VOORST, i, Paternoster Row.
N.B - Communications, Ac., should be sent to the Editors at the above address.

On the ist of every Month.

JOURNAL OF BOTANY, BRITISH AND FOREIGN.
Edited by Janes Baitten, F.L.S, Brilsh Maseum
Conrmets:-Original Articles by leading Botantate-Extracts, and N tices of Books and Memoirs,-Articles in Journals.-Botandcal News. Proceedines of Socisties.

Price is 3d Subscription for One Year, payable in advance, 128 .
London: WEST, NEWMAN, \& CO., 54. Hatton Garden, E.C.
With namerou I Illustrations, Crown 8vo. 3s. 6d.
POLARISATION OF LIGHT. By W.
SPOTTISWOODE, LL.D. late President of the Royal Society, \&c. New Edition MACMILLAN \& CO., LONDON, [Natwre Serifs.

Messrs. MACMILLAN \& CO.'S NEW BOOKS.

BOOK OF GFOI.OGY.

\qquad

ASS
B
()

K
() F:

G1O L. OG Y

\qquad
A FAMIIV AFFABL, If Itw Coswar. Author of "Culled Buck."

THURSDAY, AUGUST 20, 188 ;

PROFESSOR STOKES ON LIGHT
Burnett Leatures, Second Course. On Light as a Means of Investigation. By G. G. Stokes. (London: Macmillan and Co., 1885 .)

TH1E interest raised by the first series of these lectures is fully sustained by this second instalment, though the subject-matter is of a very different order. Then, the main question was the nature of light itself; now, we are led to deal chiefly with the uses of light as an instrument for indirect exploration. It is one of the most amazing results of modern science that the nature of mechanisms, too minute or too distant to be studied directly with the help of the microscope or the telescope, can be thus, in part at least, revealed to reason. This depends on the fact that a ray of light, like a human being, bears about with it indications alike of its origin and of its history; and can be made to tell whence it sprang and through what vicissitudes it has passed.

The lecturar begins by pointing out that this indirect use of light already forms an extensive subject; and he then specially selects for discussion half-a-dozen important branches of it. Many readers will, we fear, be disappointed when they find that Dispersion (whether ordinary or anomalous) is not included in this list. It is tantalising to feel that we are not (for the present at least) to have the opinion of the author on the classical researches of Cauchy, or on the more recent speculations of Sellmeier, Helmholtz, and W. Thomson. It would, however, be unjustifiable to construe this omission into an indirect assertion that we do not yet know for certain what Dispersion tells us:-though the parts of his wide subject which Prof. Stokes has selected for discussion are, each and all, such as give indications of a defnitely interpretable character.

The first of these is Absorption. Here we have the explanation of the colours of bodies; the testing ray having gone in, and come out " shorn." This leads to the application of the prism in the immediate discrimination of various solutions which, to the unaided eye, appear to have the same colour. It is shown how, by a mere glance, the chemist may often be saved from fruitess toil, occasionally from grave error.

From the study of what rays are absorbed, the transition is an easy and natural one to the study of what hecomes of them when they are absorbed. Here we have heating, chemical clanges, phosphorescence, $\& c$. The remainder of the lecture is devoted to an exceedingly interesting treatment of the beautiful subject of fluorescence.

The second lecture begins with Rotation of the Plane of Polarisation of light by various liquids, with its important application to saccharimetry. Then we have Faraday's discovery of the corresponding phenomenon produced in the Inagnetic field, with its application in the discrimination of various classes of isoneric compounds. But the author, true to his system of mentioning practical applications only, omits all reference to quartz under the first of these heads and to gases under the second. And he does not even allude to the interesting questions recently raised as to the form of the general wave-surface in these curious circumstance ${ }^{2}$.

Then comes the "still vexed" question of the history of Spectrum Analysis. The present view of it must, of course, be carefully read:-it is much too long to be here extracted in full, and to condense would be to mutilate it. Of course the claims of the author himself are the only ones to which scant justice is done. But the President of the British Association of 1871 fortunately gave, in his opening address, the ineans of filling this luctuna. Just as the Gravitation-theory of an early Lucasian Professor was publicly taught in Edinburgh University before it became familiar among scientific men, so the present Lucasian Professor's suggestions for the analysis of the solar atmosphere, by means of the dark lines in the spectrum, werc publicly explained in the University of Glasgow for eight suciessize years before the subject became generally known through the prompt and widespread publicity given to the papers of Bunsen and Kirclihoff 1 The following are Sir William Thomson's words of 1871 :-" 1 It is much to be regretted that this great generalisatom was not miblished to the world twenty years ago . . . because we might now be $[s i]$ in possession of the inconceivalle riches of astronomical results which we expect from the next ten years' investigation by spectrum analysis, had Stokes given his theory to the world when it first occurred to him."

The third lecture is devoted to the information which spectrum analysis afforls as to the chemical composition of the sun's atmosphere, and its physical condition ; the classification of stars, the constitution of nebulie, and the nature of comets. Those who still maintain that the temperature of the sun's loody is comparatively moderate are very summarily dealt with. Then follows a passage describing, in homely language fitted to be understanded of all, the state of the sun's atmosphere. This is specially noteworthy, as showing how efficiently a Master can impress on his readers the most vivid ideas without requiring to nse any but the simplest of language.

The remarks on the nebule and on comets will be read with great avidity ; and, by the majority of readers, with some surprise. For it is stated that the planetary nelbulie, "making abstraction of the stellar points, consist of glowing gas." And of comets we find :-"There can no longer be any doubt that the nucleus consists, in its inner portions at least, of vapour of some kind, and we must add incandescent vapour . . ." An ingenious suggestion as to the source of this incandescence is introduced as the "green-house theory." The nucleus is supposed to be surrounded by an envelope of some kind, transparent to the higher but opaque to the lower forms of radiation. Thus solar heat can get freely at the nucleus, but camot escape until it has raised the nucleus (in part at least) to incandescence. The coma and tailare formed by the condensation of small quantities of this vapour, so that they are mere mists of excessive tenuity. Herschel's sugzestion, that the development of the tail is due to electric repulsion exerted by a charge on the sun, is spoken of with approval ; and the production of the requisite charge of the mist-particles is regarded as a concomitant of condensation. Nothing, however, is said as to the opposite charge which the comet itself inust eceive, nor of the peculiar effects which would arise from this cause:whether in the form of a modification of the shape of the comet's head, or of a modification of its orbit and period

Nevre-
Mer ricturn

made to put a value upon these increased quantities. In valuing wheat at 5 s. per bushel and straw at $2 /$ per ton the compilers of the report made a great mistake, of which their critic has not been slow to avail himself. Here he "shells" them unmercifully and effectually, especially as the straw at 2\%. per ton turns out to be the chief iten for turning loss into profit.
This is, however, entirely an artificial value, the result of restricted supply, and Sir Thomas is perfectly justified in dismissing the item entirely by compounding it with the cost of the farmyard manure, letting straw and manure mutually discharge each other's chaims.
Another foint successfully urged is the smallness of the plots. What possiblereliance can be placed upon plotsit 2 th of an acre in which pounds per plot are at once alleged to represent hundredweights per acre. The multiplication of unavoidable errors, and the exaggerations of extremely local differences in the soil itself, are simply fearful to think of. The larger the area the better. If acre-plots could be used so much the better, and to-acre plots would be better still-the only limit in size being, to our mind, convenience. But 112 th parts of acres must induce a feeling of distrust in the breasts of those who are practically acquainted with land. The sources of error may be enumerated as follows:--imperfect distribution, unavoidable waste in distribution, minute difierences in the soil, iuregular germination of the seed, partial insect attacks, direct accidental injuries or the reverse (as, for example, an animal trespassing upon a plot, or a horse drapping his dung upon it), errors in weighing, errors in severance from the ground, and other unavoidable difficulties which belong to the carrying out of field experiments,-all of these crrors are magnified in the case of small plots, and minimised by the use of large ones. In these directions the criticisms made by Sir Thomas Acland are valuable: but we should like to have seen a greater sympathy with an honest effort, and less anxiety to hol. tup any results of value as stale, antiquated, and unnecessary.
Any one who has lived as long as Sir Thomas 1)yke Acland must know that the proclamation of things old as things new is not confined to agricultural chemists, and he should be more ready to accept as inevitable the dictum of the wise man, that "the thing that hath been, it is that which shall be; and that which is done is that which shall be done."

THE NEII EDITION OF " YARRELL'S BRITISH BIRDS"

A History of Brifish Birds. By the late William Yarrell, V.P.L.S., F.Z.S. Fourth Edition, Revisel to the End of the Second Volume by Alired Newton, M.A., F.R.S., continued by Howard Saunders, F.L.S., F.L.S. Parts xx.-xxx. (London: Van Voorst.)

THE students of British birds have at last received the two final numbers of the new edition of Yarrell's celebrated work on their favourite subject, which was commenced as long ago as 1871. Fourteen years, it must be acknowledged, is a long time to wait, but on the other hand the subscribers to the new "Yarrell" have in compensation of the delay not what would be called in ordinary parlance a new edition, but what is, in fact, a complete and exhaustive summary of the present state of
our knowledge of this subject, prepared by two of the greatest living authorities on British ornithology.
The two first volumes of the fourth elition of "Yarrell's British Birds," which were brought to a conclusion by Prof. Newton in 1882 , were devoted to the birds of prey, the passerine birds, and the picarians. In June of that year Mr. Saunders "undertook to finish the work, "not willingly nor with a light heart," but, as he tells us, "after considerable pressure and at much personal sactifice." Forewarned by what had previously occurred, Mr. Van Voorst insisted that time must be p.rtt of the "essence of the contract," and stipulated with the new editor for the completion of the third and fourth volumes by June 1895 , which, after aliowing for six months' leave of absence, gave Mr. Saunders only two years and a half to prepare his account of nearly two humdred species. It cannot be denied that this was somewhat severe upon the new editor, and that, considering the pressure brought to bear upon him, the mode in which he has completed his task within the time assigned to him, deserves our highest compliments.
As has been already pointed out the so-called new "Yarrell" is, in fact, a new work. The vast amount of knowledge of British birds and their distribution acquired during the forty-two years which have elapsed since Yarrell's original work first appeared, rendered it albsolutely necessary that such should be the case. It would have been much better, in our opinion, to have discarded the name of Yarrell altogether, and to have employed the leading ornithologist of the period to write a new work on British birts. But as Mr. Van Voorst, doubtless for sufficient reasons, preferred to retain the time honoured name of Yarrell on the title-page, the new "editors" as they call themselves have, we think, sumounted the difficulties of their position with singular success. Where practicable, we are told, the original phraseology has been followed with due modifications, the opening wort's of the sentences have been preserved, and extracts from the authors and correspondents qumed by Yarrell have been retained. "This work of selection and adaptation has," we can well believe, "entailed severe labour." It is obvious, in fact, that it would have been a much simpler task to write most of the articles new from the beginning than to alapt those prepared by the original author fifty years ago to present use. The former plan woull also, we think, have been more satisfactory to the reader, who between the "author" and the two "editors" and the friends and correspondents of each of them, is in many cases likely to be misled as to the real authority quoted for a particular statement.

While, as we have already said, the general execution of the "new Yarrell" merits our entire commendation, the systematic arrangement-an unsuccessful effort at a compromise between the old fashion and the new-does not seem to deserve equal praise. No doubt the order adopted by first editor for the three groups treated of in the first two volumes placed the second editor in a difficulty. Diut we cannot think that Mr. Saunders was thercby justified in relegating the Steganopodes, Herodiones and Anseres to the end of the series. With these groups he should have begun the second volume, not finished the third. At the same time it must be borne in mind that the primary object was not a strictly orthodor
classification, but a good and realable "History of British Birds," and this object has, we think, been attained.

OUR BOOK SHELF

Melting and Fiviling-loint Dith. By T. Carnelley, D.Sc., F.C.S. Vol. 1. (London: Harrison and Sons, 1885.)

This is a very large and important work, and one which cannot fail to be useful to the scientific chemist. It is divided into several parts, and contains, or rather consists of, tables of the elements, inorganic and organic compounds, their constitutional and empiric formula, melting- and boiling-points, and the authority and references to the journals, s.c., in which the data are given.

The compilation of work of this nature necessitates an enormous amount of labour and care, which in this case seems to have been expended, for misprints or misquotations appear to be absent.

It is the only one of the kind in English, although there are several German works of the same class, notably one by Richter, but of carbon compounds only. The only fault possible to find with a book like this, designed for use in the laboratory more than any where else, is its large size.

The present volume, the author tells us, contains 19,003 data, melting- and boiling-points, and with the second volume there is to be a total of about 50,000 data of this kind.

Americian Tournal of Mathematics, Pure and Applied. Published under the auspices of the Johns Hopkins University. Vol. vii. Parts 2, 3, 4. (Baltimore: Isaac Friedenwald, January to July, 1885.)
The: first sixty-seven pages of P'art 2 carry on Prof. Cayley's lectures on the abelian and theta functions, before the Johns Hopkins University (see Naturee, vol. xxxi. p. 189) to "the end of Chapter V11." Other papers in this part are "Solution of Solvable Irreducible Quintic Equations, without the Aid of a Resolvent Sextic," by G. P. Young (the same writer furnishes to Part 111." Solvable Irreducible Equations of Prime Degrees"), and "Notes on the Quintic," by J. C. Glashan. Mr. C. S. Peirce commences an article "On the Algebra of Logic," which runs into Part 111. ; it is in part concerned with a discussion of De Morgan's logic of relatives. M. Poincaré contributes a paper of fifty-six pages, "Sur les Eyuations linéaires, aux Différentielles Ordinaires et aux Diftérences Finies." Capt Macmahon adds a short "Second Paper on Perpetuants." The Associate-editor, Dr. Craig, likewise briefly writes "On a Certain Class of Linear Differential Equations." Other short items in this part are: "Prufung krosserer Zahlen auf ihre Eigenschaft als P'rimzahlen," by P. Scelloff; and "Sur les Nombres de Bernoulli" (following up a paper entitled "Some Notes on the Numbers of Bernoulh and Fiuler," by G. S. F.ly, in vol. v.), by I'rof. Teixeira, of Coimbra.

The first thirty-four pages of l'art IV, are taken up with a paper by Mr. A. Buchheim entitled "A Memoir on Biquaternions," in which the author carries on his investigations in a field first opened up by Clifford. In it he auns at giving " a tolerably complete development of Clifford's calculus." Mr. J. Hammond carries on his babours on the lines of some recent papers by Cayley and Sylvester, by contributing at memoir "On the Syzygies of the Isinary Sextic and their Relations." Prof. W. Wookey Johnson writes "On a Formula of Reduction for Alternants of the Third Order," and "Un the Calculation of the Operators of Alternants of the Fourth Order." Short notes are communicated by F. Frankhin "On the Theorer "- cos $x+i \sin x$, ," and a "Proof of a

Theorem of Tchebycheft's on Definite Integrals:" and W. E. Story supplies a paper on "The Addinion Theorem for Elliptic Functions." The remaining article is an additional Dibliography of the kind of which the Fournal has now published some threc or four most useful specinens. On thisoccasion Messrs Nixon and Fields have compiled eleven pages of "Bibliography of Linear Differential Equaions." Ill such lists, if fairly complete, are bound to be most useful. The authors solicit corrections of aud addenda to the list for future publication.
A Guide to the C'niversal Gallery of the British Ifuschom
(Nutural History). By L. Fletcher. (Printed by order (Natural History)
of the Trustecs.)
THIS excellent little guidebook is worthy of the highest praise. It is a good deal more than a book which tells you the primary facts respecting the objects in the cases. inasmuch as it contains a simple and elementary introduction to the study of minerals. For such a purpose the principal crystallographic, physical, and chemical characters should be explained, and the way in which these characters serve as a means of classification should be shown. Mr. Fletcher has done this excellently: He shows how the science of crystallography grew by the discoveries of Steno, Romé de l'Isle, Haüy, and others 10 its present state, in which it serves as a most, if not the most, important element in the discrimination of minerals. 'The way in which Brewster's discoveries in erystat optics confirmed the results of crystallographic investiga. tion is pointed out; and a brief sketch of the progress of chemistry from the days of alchemy is also given.

This all leads up naturally to the ultimate purposethat of classification, which is so essential in the proper display of a mineral collection. Finally, in the decaived account of the minerals in the Museum attention is specially directed to the more unique specimens.
Die Spaltpilze. Von Dr. W. Zopf. 3rd Edition. (Breslaw, 1885.)

THIs, the third edition, differs in no essential respect from its predecessors. Zopf still adheres to the orignal proposition of Von Nageli, that the various forms of schyzomycetes are not permanent species (Cohn), but various stages in the development of the same organism. This proposition is derived from observations of the morpholoxical characters only, and is not based on sufficiently exact methods of pure cultivation.

The sections treating of the physiology and chemist? of the bacteria will be found very valuable. A compleie and alphabetically-arranged bibliography at the end of the work is the best as yet published. E. KIEIs

LETTERS TO THE EDITOR

[The Edifor does net huld himself responsible for opinioms expressed by his courespondents. Netther can he wndertate to etara, or to sorvetand with the turiters of, rejocted manuscrifts. No notice is taken of anonymows commonications.
[The Editor uryently requests correspondonts to keth their leter: as short as posthle. The pressuare on his space is se gma^{\prime} that it is impossithe otherwise to incure the affearance een of communicatuons containunginterestimg and noted factr.]

The Evolution of Phanerogams

Mucn as I dislike contmersy occasions arise when it mu * be faced; and Mr. Starkie Garduct's nolice of the two nev volume by MM. Marion and Saporna (p; 289) calls for a replr Pervonally I am obliged ly Mr. Gandner's obvious decire to 3 , justice to my views; hut he must racuse ine if I say that wome of the "man facts" on which he relies are, like simitar onet etsployed by the two French writern, charmingly indepenteat of anything that I cas tind existing in nature.

Through the kindness of my accouplished fnend, the Manguss of Sapmita, 1 received copiec of his two volumes as won as they were puthithed. Wn perusing his description of the carbotifcroe
plants 1 found numerous statements, with which 1 coukl not agree. Some of these sta:cments refer to guestions of facts; others to inferences drawn from real or imaginary facts. Having long enjoyed the valued privilege of a correspendence with my disting aished friend 1 sent to him a lengthy criticism of parts of his new volume which I thought to be seriously misleading; either because matters of fact were so exhibited as to convey etroneons impressions, and hence, practically, to become not facts-or because they were made to jutify conclusions which the facts themselves, rightly stated, would not do. At the same tince I gave my correspondent warning, that I nuight have to correct what I regarded as his erroneous or misleading staternents.

Mr. Gardner's article leads me to fulfil this announcement sooner than I intendel, since he, in turn, has so far conntenanced sonie of what I regard as the errors of the two l'rench palizontologits as to make them his own. Like Mr. Gatdner, M. Saporta had previously pointed out to me that the aim and object of his volumes did not necessarily involve interference with matters that have so long been in dispute between M. Kenault, M. Grand'Eury, and myself. To this I could only reply that in his new work he had refeatelly shown his acceptance of views of these two palkentolergists involving both facts and inferences, which I believe to be seriousty erroneous. The space which Natuke can afford me will not suffice fully to review all of what I regard as the oljiectionable parts of the two volumes under consideration, 1 ,ut 1 may be allowed to make some comments, including some extracts from my letter to M. Saporta, indicating the nature of my objections lowth to his conclusions and to the comments made upon them by Mr. Gariner.
The latter gentleman makez one statement which 1 cannot endorse. Because MM. Rénault, (Grand'-Eury, and Saporta all adope the views of M Brongniant he thinks it harilly possible that they can all be mistaken. This argument cuts both waysMr. Gardner applies it to the satbject of Calamites verrms Calamadendron. On this suljecet I may retort that when such men as Schimper, Weiss, Stur, and perhaps my prolonged investig.tion of the sulject justifes my addling iny velf, take an opposite view of the matter in debate, it may possobly be equally intpussitle that we, with our vart array of syecimens in our cabinets, should all be mistaken! This argumentum ad homincms therefore falls to the ground. I may be allowed to wonder that it should ever have been advanced.
The first point to which I would call attention shows that such men as those quoted may blunder and have blundered. I now refer to the subject of the relations of Lepidodendron and Sigillaria to each other and to the rest of the plant world. That I have for many years insisted upon the eryptogamic character of, and the close affinity existing between, beth these genera is well known ; and equally so, that mauy of the French palkontolegists have followed M. A. Brongniart in regarding the Lepidociendra as Lycoporiaceous plants whose stems contain no exogenous vascular cylinder, whilst all those plants that possessed such a cylinder (a product of a Cambinm layer) which they belic ved to be the case with Sigillarix must, de facto, be Gymnosperms. That this dispute has now been settled in my favour by an important recent discovery dyes not seem to be known to Mr. Gardner. M. Zeiller has oftained strotidi of Sigiltaria which have settled the matter even in the opinion of most of the Parisian botanists. Those strobili contain spores, not seeds. This discovery demonstrates the eryptogamic character of Sigillaria, and deals a final blow at the Gymnospermous hyparthesis held by the four observers in whose combined infallibility Mr. Gardner expresses such confidence.
My first friendly complaint against the anthors of the "E Evolution of the Phanerogams" is that they disregard proven facts when such facts inconveniently oppose their theories. Imfrimis, they became aware of M. Zeiller's important discovery whilst their volumes were passing through the P'ress. Though this is a sufficient reason for only noticing it in a footnote, it does not justify their very slight recognition of its bearing upon so many pages of their arguments, of which it effectually disposes. It absolutely establi hes the fact that seme Sigillarix, at teast, are not Gymnosperms but Cryptogans; which fact, superatkled to the many identities of stnicture in Sigillaria and Lepidodendron, which I have repeatedly shown to exist, renders it increasingly probable that the above statement is applicable to all Sigillarize. At least, it now throws upon the opponents of that statement the onus of proving the contrary to le true, which they have not done.

Several years ago the late Mr. Binney described what he believel to be two plants-the Lefilitidendron zasiculare and the Sigillaria vasiulares. That the only difference between these two was the possession, by the latter, of an exozenots zone, not seen in the former, was recognised by Mr. Binney: I have shown in a way, which I claim to te unanswerable, that these are one and the wame plant which the external and internal characteristics alike demonstrate to be a Lepidodendron.
Hence I complain to M. Saporta, "You continue to speak of Hence I complain to M. Saporta, "Jout continue to speak of Sisillaria vaveularis. I reply that there is no such plant; and to speak of the Lepidotionaron under that name, after all that I have done in illustration of its organisation, is unfair to me, besides seeming to sypport M. Renault's alwurll conclesion that an exogenous or centrifugal zone is incompatible with the poasibility of a plant massessing such a zone being a lepidodendron." 1 then state "further, after enumerating M. Kenault's three supprosed types of Lepidodendron, from which he excludes all possibility of the existence of an exogenous zone, you say, 'ce sont les traits essentiels des types caulinaires Lepidodendroides."
"I reply in langunge as strong as I can possibly u-e that this is not true. The develogment of an exogenous zone in the more advanced stages of a Lepidodendron's life is the rute mother than the exception."

After citing numerous proofs of this statement 1 say in reference to Sigillaria: "It is further a mistake to say that ' ees tiges nous sont princjpalement connues par les Sigillaria elegans et spinulosia.' We posness the vascular axis of the Sigillaria figured in my Memoir II., Fig. 39. This axis is identical in the minutest details of its organisation with those ol the Diploxyloid Lepidodendra, and I have sections of Sigillarit reniformis which are, in statucture, equally lepitestenilroid. I ask, therefore, what are the 'diversites appretiables' to what y ott refer on $p, 23$, and what groum? have you for saying that this double fibro-ligneus region is 'saus analogie avee ce qui existe daus les tiges connues des Iepidotendrées'?'

On this part of the disputed questions 1 nust object to a statement made by Mr. Gardner, in uhich he says that the structure of Lepidodeniron "presents nothing unuaual to Cryptogams." surely a thick exikicnously deceloped cylinder of scalarifornt vessels, arranged in radiating laminix, veparated by true melullay rays, the entire structure leing promluced by a Cambium zone, is very unusual in Cryptognms. Mr. Gardner then proceels, as M. Saporta would do to describe a contrast which has no real existence. "13ut in Sigillarin, a plant strongly resembling it in nearly every other respect, we find a radiating vascular or woody one in the cellular stem with unmistakable exogenous growth. It is richly supplied with medullary rays, and, Prof. Williamion allows, presents clear evitlence of interrupsions to growth succeeded by perionls of renewed vital activity." I allow, and never have allowed anything of the kint,' if this means my admission that something exists in Sigillaria that does not exist in most I.epidodendra. Mr. Garilner further represents me as believing that "the typical Lepidulendron never produced a ligneons zone." I believe the reverne of this; viz, that a development of such a zone sooner or later was characteristic of most Lepidolendra. True there are some lepidodendra in which I have not yet discovered such a tone ; but I an far from suppusin; that even in them such a zone will not ultimately be discovered. Anyhow the ty ical Lepidodendron can no longer be regarded as one from which this zone is absent. Mr. (iarditer, after the passages quoted aliove, says: "In Diploxylon there is a further development, the woody zone being made up of an inner or merlullary vascular cylinder either interrupted or continuous, componsed of large scalaniformt veweis without detinite order, and an outer cylinder of scalarif orm veswels of smaller size arranged in radiating fasciculi." What does this "further development" mean? This description is simply that of ezery exengenous Lycopretiaccous axis found in the coal measures, whether of Lepidotendron or of Sigillaria. Diploxilon, as af genus, has no longer any existence. The term is now weful only as an adjective descriptive of a condition of growih common alike th Lepidorlendron and to Sigillaria, 2s well as to several other genera of Carboniferous plants. Unless I misunderstand Mr.

- I may here observe that conspicusas or even visible interruptions to growth are very rare among th these cual phants. They are only very consfickowa in my genus Aayclun: hut we aloo find traces of them in Stigmarian ronts and in I.ygenodendroa. Generally theve Carboniferous ateins suggest the reverse of changing aeasons or periodic interruptions of growth.

Preventing Collisions with Icebergs

Astmough it is, I believe, ascernained that fogs are often highly ahermanous, I would, at the sane time, like to ask whetlier a thermal radiation method night not serve to show the presence of a large mass of ice in the netghlwurhood of a ship. I venture to make the sugbestion, as I know of no experiments on the degree of athermancy po-sessed by fogs, as tested by such an instrument as the bolometer of Prof. I augley. The use of this instrmment, or even of the thermopile, in conjunction with a large reflector and an alarm circuit closed by galvanometer deflection, might be worth trial by any one possessing the opportunity.
J. Jol. Y

Engineering School, Trinity College, Dublin, August

Monkeys and Water

Is it a usual thing for monkeys, either in captivity or in their native condition, to take frecly to the water? Some relations of mine have a small monkey that was brought to them from Java, and which is a great pel. One day it was thought that he should be bathed, and he was put on the edge of the bath. In a little while he hung down froun the cige by a foot and hand, and drank the water, and then, plunging in, he swam bach wards and forwards under the water, with his eyes open, with great enjoyment.

After the first time he was frequently bathed, and a day or two ago I saw him go throngh the performance. It was very pretty to see how he enjoyed it, swimming under the water and diving away from a hand put down to lake him: then going head over hecls at the boltom and lying on his back to bite play. fully at a finger; then he would run about on all-fours wilh his head held ous of the water, and then go under again: and after it alt, when he was taken out and dried with a towel, be lay wrapped up in a shawl, sleeping comfortable and happy. I should lihe to know whether he is an exception to the rule in his love of the water.

Jerfy Barrett
15, Avenue Road, Regent's Park, Auguse 6

A Correction

I have very stapilly made it appear in my note on pitcher plants, printed in last week's Natuke (p. 341), that Dr. Miclinile was President of the t innean Socicty in $\mathbf{1 8 5 5}$. I ought to have written, "In $1 \$ 15$ the then President of the I innean Society real a communication from Dr. James McBride," \&c. I suppose Sir James Edward Smidh was at that time President of the Linnean Society, and that Dr. Mebride never was.
W. Watson

August 15

A MODEL UNHERSATY

THE following information for applicants for admission to the Johns Hopkins L'niversity, printel in the University Circulars in response to letters, we are sure will be read with interest and profit:-

How wews the C'nitcrsity Founted.'-The Johns Hopkins University was instituted by the munificence of a citizen of Baltimore, Johns Hopkins, who bequeathed the most of his large estate for the establishment of a University and a Hospital. The foundation of the University is a capital, in land and stocks, estimated in value at more than $3,000,000$ dollars; the capital of the Hospital is not less in amount. The University was incorporated under the laws of the State of Naryland, August 24, 1867, and it was opened for instruction in September, 1876. The Philosophical Faculty (of Letter's and Science) is now organised. A medical department will soon be instituted.

In what is Insiruction Given?-Systematic instruction is offered in English, Anglo-Saxon, German, French, Italian, Spanish, Latin, Greek, Sanskrit, Hebrew, Arabic, and in other languages and literatures; in pure and applied inathematics; in chemistry (inorganic and organic) with laboratory work; in physics (including mechanics, light, heat, sound, electricity, magnetism, \&.c.; with laboratory work; in biology (including physiology
and morphology) with laboratory work : in mineralogy and geology ; in ancient and modern history ; in physical geography; in political economy and in the elements of thternational law ; in logic, ethics, psj chology, pedagogics, \&c. Occasional courses of lectures are also given upon special themes in literature, science, history, archeology, art, \&c.

So whom is this Instuction affiret? - To all young men who are prepared to profit by it and who will conform to the simple regulations which are established by the authorities. Graduate, Undergraduate, and Special Sttdents are received.
Those who have not already received an academic degree, should aim to sccure one by pursuing a liberal and prolonged course of study, at the close of which the degree of Bachelor of Arts will be conferred. Those who may be prevented fromseeking this degree will nevertheless be welcomed to the University, provided that they are in earnest and are mature enough in years, attainments, and character to profit by the adv: ntages which are here afforded. Others who have already taken their first degree are encouraged to go forward in advanced lines of work, and for them unusual facilities are provided. Young men who are to pursue the study of law, medicinc, or theology, or who have entered upon professional lives, and others who expect to become teachers, if they desire to become proficient in literature and science, have easy access to the class-rooms and laboratories. The degree of Doctor of Philosophy may be obtained, after three years of advanced study, by those who have met the required conditions.

How is this /nstruction givent-By all the methods which experience has shown to be useful-varying according to the preferences of the teachers, the subjects taught, and the number of scholars. There are recitations, lectures, conferences, prolonged courses in laboratories, exercises in special hbraries, personal counsel, study of nature out of doors. The usual four-year classes are not maintained, but in all the principal subjects taught there are beginners, intermediate students, and advanced workers; so that every scholar is assigned to that position in each section of the University which will yield him the greatest advantages. He may be far advanced in one subject and only a beginner in another. This result is only secured by the engagement of a large staft of teachers.

What are the Latboratoy and Library Fantilitics :- The scientific laboratories are thice in number. They are open throughout the day and are fulty equipped. For chemistry there is a special building arranged for about ninety workers, and well adapted to all kinds of chemical and mineralogical work. A large building has been recently constructed for a biological laboratory, with complete arrangements for playsiological and mophological work. The physical departasent is furmished with apparatus selected both for demonstration and investigation, and especially valuable for researches in electricity, magnetism, light, and heat. The construction of a new building for a physical laboratory is now under way:
The library includes over 26,600 bound volumes, and 650 serials are regularly received. It is open thirteen hours daly. The hibrary of the Peabody Institute, with 80,000 volumes, and the other Laltimore libraries, are of easy access. W'ashington is so near that the Library of Congress, the National Museum, and the other librarics and museums of the capital may be readily visited.

What are the Necessary Expenses of a Studint?-The charge for tuition in all departments (including the use of the library, and without any extra charges except for materials consumed in the laboratories), is 100 dellars per annum, payable one-half October I, and the other half February 1.

Young men living in any part of Baltimore, of in the immediate vicinity, can lodge at home, 45 the first lessons

corresponding advances in connection with the spectroscope and sidereal photography. The three combined constitute a distinct feature in the more modern methods, by which we are gradually becoming better acquainted with the infinite remote. So soon as molecular physics shall have made, as is promised, a like advance, then the infinite minute also will be brought more distinctly within the human ken.

With regard to the Harvard volume on Sidereal Photometry, without unreservedly conceding to it all the accuracy to which it lays claim, it must be gratefully acknowledged that it provides astronomers with a consistent and valuable catalogue of stellar lustre which, in a complete form, had not hitherto existed. It dispenses with the too often unreliable and discordant estimates of the past, and replaces them by scientific measures possessing, to say the least, considerable precision.

The two parts of the volume contain together no less than 512 closely-printed pages, many of them abounding with models of condensation, and constituting in themselves a remarkable instance of sustained and successful scientific labour. They embrace not only the general history of the subject to which the volume refers, but they at the same time combine elaborate criticism and valuable comparisons of the results of preceding labourers in the same field.

In the first part there is given a description of the meridian photometer, with which the measures of comparative lustre of the stars are obtained. In it are most ingeniously combined the more valuable and least dangerous devices which are found in the instruments devised by Sir John Herschel, Steinheil, and Zöllner. Taken as a whole, the instrument may be properly regarded not only as ingenious but as original. Koughly speaking, it consists of two contiguous telescopes placed horizontally nearly in the meridian, each of the object-glasses being armed with a reflecting prism, so that the light from Polaris and any other star may be brought into the same field of view, after having passed through a double-image prism. The images are then viewed through a Nicol prism, and, by means well known to physicists, the light of the one star is reduced by a measurable amount until it is adjudged to be equal to that of the other star.

We trust we may be pardoned if we suggest that this construction of the instrument may possibly be too complicated to admit of that amount of precision in the measures which could be desired, and which might be obtained by simpler means. In fact, it appears from the volume itself, that at the commencement of operations, it was necessary to abandon the results of several months' work with it ; and although an improvement in the use of it was subsequently adopted, we think there still remain traces of the possibly inherent difficulty of precise adjustment. The rapidity also with which the equalisation of brightness of each star with that of Polaris is made, seems hardly consistent with the requisite precision. It is to be inferred from the volume itself that as many as forty-eight final determinations, each consisting of four equalisations of the light of a star with that of Polaris, are frequently completed within the hour, in addition to the consumption of time required for finding and identifying the successive stars and adjusting them in the field of view. But, we cannot doubt, this point has been well considered by the Harvard astronomers themselves.

In the determination of the magnitude of a star, it is the usual practice to rest content, generally, with the mean of three determinations. Each deternination is made on a different night, and consists of the mean of four equalisations of the lustre of the particular star compared with that of Polaris in the field of the photometer. We venture to think that the general limitation to three only is too restricted for the purposes of accuracy. The reason for this opinion is derived from the fact that on examining the numerous cases in which as many as
fifteen determinations of magnitude are made on as many nights, it is very frequently, and in fact generally, possible to find three consecutive determinations which would of themselves, in the mean, lead to a magnitude widely different from that ultimately assigned. Yet these three consecutive sets furnish no circumstance of inter-discordance among themselves which could lead to suspicion, and which might, consistently with the usual practice, have finally settled the magnitude of the star in question. We regard this not as hypercriticism, but as being the only sufficient means at hand for the examination of accuracy furnished by the volume itself.

Independently of the several catalogues containing the results of three years' unremitting labour and persevering skill, the volume abounds with the intercomparison and reduction to one scale of the work achieved in a similar direction by many preceding astronomers. The result is that astronomers who are desirous of information on the subject of stellar brightness, will probably not be disappointed if they turn to the pages of the Harvard Photometry. Combined with a memoir by Prof. Pritchard, contained in vol. xlvii. of the Memoirs of the Royal Astronomical Society, it is perhaps not too much to say that all that is known upon the subject up to the present date will be found easily accessible to the student.

Towards the conclusion of the volume Prof. Pickering has drawn up a very important table, which, though short, must have given him very considerable labour to compute. It contains in one summary a critical comparison of the average results of all the principal catalogues of stellar magnitude hitherto published. The Harvard Photometry is taken as the basis of the comparison, and the difference between the mean or total results of each catalogue and that of the Harvard volume is given. From the inspection of Table Ixxxiii. it appears that, taken as a whole, the Harvard measures indicate in the mean a brightness of the stars compared greater than that indicated by the estimates in the Durchmustorung of ' 44 mag., brighter than the mean of the Uranometria Nova of Argelander by '10 mag. ; of Heis by 12 mag.; and of Houzeau by ' 11 mag. These differences, it will be observed, are all in one direction, and might appear to indicate that there is a generic difference between estimates of star magnitude by the unaided eye, and measures carefully made with a photometer such as is the meridian photometer at Harvard College, because all the estimates are apparently fainter than the measures. But this can scarcely be the true explanation, since the photometric measures also of Seidel, Zöllner, and Peirce indicate, like the eye estimates, a brightness less than that of the American determinations, Moreover, the photometric measures made by Prof. Pritchard at Oxford agree in the mean of the whole, very closely with the eye estimates in the Durchmusterung and the other catalogues. But, whatever the significance of this fact may be, it cannot be doubted that the Harvard volume will ever remain a most valuable addition to our knowledge in an important branch of astronomical science.

U.S. INDUSTRIAL STATISTICS ${ }^{*}$

TO all who study anxiously social science, this is a very promising publication ; its indirect testimony to the advantages of Republican institutions will be weightier to any reflective $m, 11$ than the eloquent tirades that are so usually bestowed upon them. It defines its object to be the stimulation and assistance of the wageworker in his endeavour to reacli a higher position. lis information respecting working men is all taken from their own contributions, a dozen pages of small print being filled with verbatim quotations from the replies of workpeople in every trade in the State, who give such

[^11]varied accounts of themselves that the independence of the testimony cannot be doubted. That its work is popular is indicated by the wish expressed by one of them that "there should be a National Bureau." Factory legislation is printed in it (even t 884 legislation, although the printer's date is 1883 !) ; the factory inspector has become a popular institution, and much testimony is borne to the smaller hardship of factory laws uniformly than loosely enforced. The more educated and more prosperous workmen are, the more ambitions and aspiring they become, and we seem on the eve of their blending with their masters when complaints are made, as here, that many of their fellow-workmen are satisfied with only 66 shillings a week wages: and a caution is held forth to such not to spend their money in foolishly aping the rich.

Yet, though the teacher here is no longer one of the fatherly governments of the old world using his paternal authority for the good of a rather refractory son, yet the teaching is most satisfactorily similar. Drunkenness could not be set forth as the prevailing cause of pauperism among the men or the evil of a tack of artistic taste among the masters in more vivid or unqualified terms than they are here. The sad combination of progress and poverty is bewailed, but we fear that co-operation urged here as its remedy too nuth overlooks the control of fashion and its effect upon supply and demand. A most practical power put in the hands of this Bureat is that of examining the accounts of co-operative companics. Any five members of a company may require such an examination.

The principal industries of New Jersey are taken, and, after full statistics of their amount, prosperity and prospects, with the wages earned by each class of workers, an interesting account is given, commencing with a short history of the methods, improvements, and general position of the trade in the United States and in other countries, and their experience compared. Any one casting about for an cccupation in which he could take a satisfactury part would tind in this "Book of Trades" much to supply the information first reguired, and much to encourage him. Among them we find a review of the silk trade, which, under the agis of 60 per cent. duty, has made the wealthy city of Yaterson; of glass making, which at present does not extend much beyond window glass and bottles: of the cultivation of sorghum, still in its infancy in New Jersey ; and of the pottery trade-after its account of which it performs the very useful function of a publication like this of appealing to such a trade to take the steps necessary for rasing their standard of art. An appeal is made, not from a Government department, or from an interfering dique as South Kensington is occasionally regarded as being, but by the organ of his late fellow-workers, that the maker of one of those large fortunes so common in America will, for his country's glory and their help, found a teclinical schoon ; while hands are led to feel that intellectual training and not mechanical energy alone is wanted. The idea is shown here also to be making its way that the schoul should be made the basis of technical as well as of mental traineng: that the dextrous use of the body shonld form part of the school, as well as of the phaygromed, teaching. Dore than this, it is felt that they should not be two so distinct branches of cducation as in past days, and that the members and muscles of the bordy, as well as the brain, should rective elementary instruction at the school, and that the former should be placed more deliberately under the controf of the latter. It is felt in America that

> "The culuured mind
> The skilful hand
ought parurally to go together, and not that one should be th mark of the absence of the other; that, theref e should not mican little more than a schanician, able to understand, make or
repair the giant body that is using its limbs to save bis exertions, and therefore a man more on a level with othe: men whose time has been given to the cultivation of ther minds only, and more justified in insistug upon then equality with the latter. It is urged in this Report that elementary technical knowledge vahable to all the Sico Jersey trades may be given in ordinary schools; that technical learning is popalar, frequently most so to biss who are slow at books; and that successful manual occupation improves the morality of the worst of such boys

A very favourable notice of the Reformatory school at Coldwater; a sad tale of jail arrangements, and of methods of keeping the poor, all lead to discussions of economical difficulties felt long ago in England, no: by any means avoided in America, and showing how litic forms of government can modify human nature. A mave hopeful view of that is afforded by the account, illustraed with three engravings and three plans, of a working-man's Institute at Millville. At this one establishment, whicb seems to have cost little more than + oool., are combuned. besicles large grounds used for field sports, bicycling, \&c. a gymnasimm and baths in charge of a barber in the base ment, white on the ground floor are a conversation rove hung round with maps and supplied with musical imxrs ments on which performances are given, where also k tures are delivered, discussions held, and ganes of $\%$ played. Side by side with it is a library and reading-two Up stairs are four class-toons and a lirge hall seanigg ix persons, besides a galiery over the rear half of it. Asse other end of it is a stage with two dressing-rones in: other necessary adjuncts. This room is used on Sabs, as well as on weekdays by various societies-a da class among others-and is a convenient soart. revenue.

It is impossible to lay down our Report without fee:, that if each department of its work is by itself of Limportanee, it will donbtless be a useful ageat in exakiz every inhabitant of New Jersey and of the United Stith a more intelligent worker at his tracle or surveyor of be economies around him.

I'UERCIVG THE /STHVC'S OF PANAMd

TllREE , ears ago the work of cutting through th Panama isthmus had barely commenced. Iv equatorial forests on the neck of land, 73 kibmers long, which marked the axis of the future interoceat canal, had hardly been laid bate. The traveller wa followed the promitive road met here and there som groups of cabins, with roofs of branches on poles, ravkite the site of a sounding or the improvised dwelings a portion of the operators. Culebra, Emperad. Corosita, and Gamboa, which are now fill of atul were then almost desert, and on the coast of Colon alw. the excavator traced in the marshy plains of Gatun t great track. The contrast to-day is great: a long tic workshops covers the space between the Atlantic and:* lacitic. Twenty thousand workmen toll on the 1 dillera, inaking the deep cutting for the canal. sade side with this army, another more powerful arms colossal machines, exavators, dredges, loconne." wagrons, all the materials for transport, thousandpars of whecls, huadreds of kilometres of rails, mos tains of coal, and shiploads of dy namite. Amony twenty-five workshops of the peninsula the attentue chiefly attracted to two points; the great rocky cutsin; Culchra, which is to penetrate to a depth of $1: 0$ metn into the Corditlera, and the dam of the Chagres at t:boa. At Culcbra the previsions of M. de Lesseps hat: been realised: the mountainous mass which the CrI will traverse is, for the most part, composed of rai which are not very hard; repeated soundings by met 2 of diamond petforators have shown that down to
considerable depth the rock takes the form of schists in horitontal strata. There is no doubt that it can be cut through with rapidity ; it is a matter of perforation, either by mining and ordinary explosives, or by shafts with larger quantities of some explosive to displace great masses. Here 30,000 cubic metres of rock have been displaced by an explosion of dynamite ; and unquestionably this colossal channel connecting two seas may be executed by simple methods and with economy.

At the end of the great cutting of Culebra, 6 kilometres from Emperador, is the great workshop for the dam across the Chagres. This gigantic basin, containing about $1,000,000,000$ cubic inetres of water, the surface of which is 60 metres above the water of the canal, has a bank, the content of which is $7,005,000$ cubic metres. The volume of water kept in by this exceeds a hundredfold that of any reservoir in the world. By means of this work inundations in the river are prevented, currents impeding navigation and introducing rough water into the canal are avoided, and there is no fear of the accumulation of alluvion in the bed. By regulating the flow of the Chagres and of the neighbouring streams, the dam at Gamboa assures the regular service of the canal. The method of constructing this work of proportions without precedent in the annals of public works is a very simple onc. From the great cutting at Culebra, near Gamboa, and the neighbouring cuttings, about $50,000,000$ cnbic metres of rock are removed, while only about $7,000,000$ are required for the Chagres dam, and therefore the work is one of transport only-a colossal one, it is true. Even the site of the dam is formed naturally by the disposition of the bed of the torrent, which is contracted at this place between the hills of Ubispo and Santa Cruz, which are distant about 150 metres from each other, and on which will rest the front wall of the great reservoir. Behind this first barrier will be thrown, as they are taken from the Cordillera, the $7,000,000$ metres of rock, and the dam will be complete. The originality of the project is that, strictly speaking, there is no masonry at all in this enormous mass of rock of all sizes and shapes ; the accumulation alone gives the mass firmness. The plan given here enables us to follow the sinuous course of the Chagres River. Like all torrents, and especially all torrents in equatorial regions, it is subject to considerable variations in its flow, and to enormous and violent floods. In winter its fow is 1600 cubic inetres per second, while in spring it is barely 13 metres. Its tributaries, or rios, are of the same character-the rio Trinidad and the rio Gatuncillo have a flow in winter of 400 cubic metres. It would be innpossible to divert these impetuous masses of water into the canal without producing currents and deposits and impeding the navigation. The overflow of exceptional floods will be conducted to the sea by secondary water courses. These latter, which vary in breadth from 8 to 12 , and even to 40 metres near the Atlantic, are easily made by utilising the portions of the bed of the river situated on the same bank, and connecting them by appropriate trenches. The enormous reserve behind the dam will flow regularly in this new bed. Of course, the bed of the canal will be completely protected from these deviating waters, in the trenches by the slopes of the latter, and in the lower parts by bomks which will soon be covered by a rigorous and indestructible tropical vegetation. With the construction of this reservoir, assured by the clearings from the cutting, and the water regulated and controlled by these courses, the work, like that of the cutting it Culebra, is only one of time. One objection which was raised when the public became accuainted with the almost incredible magnitude of the work, in which a reservoir becomes a great lake, was that this latter might itself be filled up with the alluvial deposits, which it was constructed to keep out of the canal. It is true that in its tropical floods the Chagres carries along a large quantity of alluvion; but this, which
would be an insuperable obstacle in the canal, becomes a secondary consideration in the reservoir. It has been calculated by the chief engineer to the work that the Chagres can bring into the lake in a thousand years $30,000,000$ cubic metres of alluvion, while the cubic content of the lake is $1,000,000,000$ cubic metres.

Culebra and the dam at Gamboa have always been the two principal points, the main obstacles to the canal. But there are thirty five other principal working stations, all connected with the railway between Colon and l'anama. As the illustration shows, they are sufficiently near to each other to be considered uninterrupted. Fifty excavators and ten dredges work at the canal. Up to the twenty-fifth kilometre we meet with dredges, at first at Colon for the port, then at Gatın. As far as the Panama Plain there are more than sixty excavators. In the three workshops at Culebra are now installed the contractors who cut the canal from Ainsterdam to the North Sea. At Corosal, at the sixtieth kilometre, the great port for access to the canal from the Pacific is to be placed, and there the great American dredges work in the swampy ground. It has been calculated that the work done up to the present is half that required to complete the urdertaking, and that this new maritime route to the East will be opened in 1838.

The work stands at present in this position: it involves in all the movement of alout $100,000,000$ cubic metres of rocks of varying consistency. Of this, $70,000,000$ are to be raised, according to the contracts, in successive instalments in 183; 1886, and 1887. The remaining 30,000,000, which form the actual canal, will be raised at the expiration of this time either by the same contractors or by new ones. Knowing the amount already raised, the contract periods for rasing a certain other quantity and the amount remaining to be done at the end of the present contracts, we can, by a sum in simple proportion, calculate when the whole should be completed. In 1888 it should be ready for traffic. This simple programme could only be applied to a work so colossal after a long and laborious period of minute study and preparation. The period of installation is always the most important in all these vast enterprises: the study and command of the appropriate matcrial, the reception, testing, arrangement of the machines, the construction of the workshops, accommodation for the workmen, \&c.; it is only when all these have been completed, when all have been made ready for work and tested, that the real work can commence, and that progress becomes sensible. This period of installation lasted, for example, in the case of the St. Gothard tunnel, for fifteen months ; but the Panama canal calls for ten times more capital than the tunnel, it is executed in a country which has first to be cleared of a luxuriant tropical jungle, thousands of miles away from all industrial centres. The preparation for this gigantic work under these circumstances was a most important fraction of the work, and it is the opinion of competent men that what has actually been done during the installation period now brought to a close is equivalent to half of the work necessary to achieve the canal. In the case of the Suez Canal, 70,000,000 cubic metres had to be raised; of these, $30,000,000$ were raised in two years after the apparatus had been put in working order. Seventy million cubic metres must be raised by the drags and excavators of the twenty-one principal contractors; 18,000,000 are to be raised by August i of the current year. These 21 contracts represent an outlay of about $240,000,000$ francs, of which $65,000,000$ have been tendered by French contractors; $35,000,000$ by Americans ; $20,000,000$ by Italian, Swiss, Swedish, and natives, and $90,000,000$ by an Anglo-Dutch Company. All nations are working therefore at the task. The French contractors are at wori at the cutting at Emperador; the Anglo Dutch Company has to remove 13,000,000 cubic metres in the great cutting at Culebra. Practlcal'

[^12]

 od 110 oroal turvellante

is Sin

 E.

 |land
 $5 \mathrm{~B}=\mathrm{ar}=$ に————...—?

 (1) , it

\square

 The le，位，

 ， 4 ：

为

业
 fi．

 Tuhat，hy thim therey．

 and
and

 5resex $2-1=$

Google

Google

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid ground
Of Nature trusts the mind which builds for aye."-WORDSWORTIt
No. 826, Vol. 32] THURSDAY, AUGUST 27, 1885 [Price Sixpence
[All Rights are Reserved

こHATWOOD'S
 BINOCULAR TELESCOPES.

 DUODECUPLE
and LOCKS

Lave received highest Awards at all International Exhibitions, including Two Diplomas of Honour and Six Gold Medals.

London Warchouse, 76, NEWGATE STREET, E.C.
Lancashire Safe and Lock Works, Bolton.

RIBBON SECTION CUTTING.

The Cambridge Scientific Instrument Company have designed a new and imple Microtome for cutting continuous Ribbons of Sections of Microscopic reparations on the plas first adopted by Mr. Caldwell. The new instruaseat has the advantage over the original pattern of dispensing with the andless band altogether, and consequently not only avoiding the trouble of lifting the series of Sections from the razor, but also of allowing them to all on to the glass slide in their proper position for mounting. Price of the Microtome, lass.

The Company are appointed Agents for the Microscopes of Zeiss, a supply of which is kept in stock.
[IIE CAMBRIDGE SCIENTIFIC INSTRUMENT CO., Cambridge.

Prof. Lolmette's DISCOVERIES. THE PHYSIOLOGICAL ART OY NEVER FOROETTING-wholly unlike zunemonics. Lost memorles restored-the wornt manle good, and the lest betcer. Awy book learned in one reading. speaking without for all nukjecta Invalagble to tho Leral other Profestional \&lerical, nemes. The Lestona contain STC CJEA B, One Thmsand Abolicationet! Mr. R. A. PROCTOR. Dr. ANDREW Willso of NEVER FORQETTINO And CURE FOT MIND. WANDERING taumt thoroughly by Pont, in Clasees, and Privately. PROF, LOISETTE. D. New Oxford Bircet, London, W.C,

These Instruments are the most powerful Binoculars that can be made to be sufficiently portable for the tourist's use ; their magnifying power is very great. They should be regarded as T'elescopes; and where there is a sufficient amount of light, objects may be easily made out by them which would be invisible with any ordinary Binocular.
BINOCULAR TELESCOPE, with turning motion in centre to adjust it to the width of the eyes, in Solid Sling Leather Case

Illustrated Catalogue of Bimoculars post free.

TOIEIN EEOTNINING, 63, STRAND, IONDON, W.C.

NEGRETTI AND ZAMBRA, SOLE MAKERS OF YORDAN'S (PATENT)

SUNSHINE RECORDER.
PRICE £3 3 s . NEGRETTI Z A M BRA, Scientific Instrumant Makient то тнх Quexm hol.born viaduct. Branches:-45, Cornhill: t 33 , Regent Street, Londos Illwatratod Descripliow Pont Free.

NEGRETTI \& ZAMBRA'S Large Illustrated Catalogue.

650 Pagos,
1roo Engraving s.
Price se. 6 d
Silver Medal awarded Intentions' Exhibition, 1885

ST. GEORGE'S HOSPITAL MEDICAL SCHOOL, HYDE PARK CORNER, S.W.

The WINTER SESSION will commence on THURSDAY, October t , with an Introductory Address by TIMOTHY HOL.ME.S, Esq., F.R.C.S., at $4 \mathrm{p} . \mathrm{m}$. A Prospectus of the School and further information may be obtained by personal application between I and 3 p.m. ; or by letter addressed to the DEAN at the Hospital.

THE LONDON HOSPITAL AND

MEDICAL COLLEGE, MILE END, E.
The SESSION 1885.6 will COMMENCE on THURSDAV, October t, 1385.

A* the College will be in courne of enlargement there will be no Public Distribution of Prizes this year.
FOUR ENTRANCE, SCHOLARSHIPS, value $\mathcal{L} 60, \mathcal{C}_{40}, \mathcal{L}_{3} 30$, and Cao, will be offered for competition at the end of September to new Students. rees for Lectures and Houpital Practice, 93 Guineas in one payment, or too Guineas in three instalments. All Kesident and other Hospital appointinents are free, and the holders of all the Resident Appointments are provided with rooms and board entirely free of expense. The Resident Appointmenth consist of Five House-Physicianciet, Five House-Surgeoncics, One Accoucheumhip, and One Receiving Room Officer. I'wo Dreasers and Two Maternity Pupilsalso reside in the Hospital. Special Clasves for the Preliminary Scientific and Intermediate M.C. Exampations of the University of Lonson, and for the Primary and Pass Examinations for the Fellowship of the \mathbf{R} (a) al College of Surge ms of E.ngland are held throughout the year. Special entries may be made for Medical and Surgical Iractice.
The London Hospital is now in direct communication by rail and tram with all paris of the Metropolis, and the Metropolitan. Metropolitan 1histrict, East Iondon, and South-Fastern Kailways have Stations withia a minute's walk of the Itoupical and College.
For proupectus and particulars apply personatly or by letter to
Mile Find, E.
MUNRO SCOTT, Warden.

THE MIDDLESEX HOSPITAL.

The WINTER SESSION will open on THURSDAY, October t, with

 an Introductory Address by Dr. J. K. FOWLER, M. A.The Medical School, which has lately beea considerably enlarged, provides the most complete means for the education of Students proparing for the University of Lindon, the College of Physicians and Surgeons, and the other Licensing Bodies. Two Entrance Scholarships of thz annual value of $\mathcal{L} 25$ and $Z 20$, tenable for two years, and an Entrance Science Scholarahip value
 Cgo, will be comveted for on SE.P IFMAFR 39 and following days. Further information may
at the Horpital.

ANDREW CLARK, Dean.

J. ORME \& CO., 65, BARBICAN, LONDON.

MANUFACTURERS and IMPORTERS or
Scientific Apparatus axd CHEMICALS.

BAKER'S PATENT CALORIMETER,
 A NEW APPARATUS

For demonstrating to Science Classes problems in Specific Heat.

For full par'iculars torite to the SOLE AGENTS-

J. ORME \& CO., 65, Barbican, Tondon, E.C.

Complete Price List of Apparatus and Chemicals, 2s. 6 d .

MINERALS AND FOSSILS,

SINGLE SPECIMENS OR COLLECTIONS.

F". FI. BUTIERE,

Assoc. R. Sch. Mines Lond., M.A. Oxon. and L.S.A. Lond., Successor to the late R. TALLING,
180, BROMPTON ROAD, LONDON, S.W.
Five minutes' walk from the Natural History Museum, S. Kensington.

HOW \& CO.'S

Geological Transparencies for the Lantern. Dascriptive Catalogue on Application,
WALKER'S SPECIFIC GRAVITY BALANCE FOR ROCKS AND MINERALS.
HOW 踉 CO.'S POCKET MICROSCOPE LAMP. Bs. $6 d$.
MICRO-PETROLOGY.-Sections of Pitchstones, Obsidians, Granite:, Syenites, Diorites, Gabbros, 'Dolerites, Basalts, Tachylites, 'Trachytes, Andesites, Porphyrites, Rhyolites, Lavas, Ashes, Goeiss, Schlsts, Lime* stones, \& C.. price 15. 6d. each.

TAMES HOW \& CO., 73. FAREmedon SteERT, London.

SIX PRIZE MEDALS

AWARDED FOR GEOLOGICAL, COLLECTIONS.
Geological Collections especially adapted for Teaching as supplied to Science and Art Department, and used by all Lecturers and Teachers in Great Britain, \&c.
New and Rare Minerals constantly arriving from all parts for selection of Single Speciment.
ROCK SECTIONS AND ROCK SPECIMENS:
The Largest Variety in England.
Now Catalogues and Lists on application to-
JAMES R. GREGORY,
88, Charlotte Street, Fitzrov SQuare, London. Established 27 Years in London.

CABINETS FOR MINERALS, FOSSILS, \&c.						
6 drawers, 20 INCHES HIGH						
${ }_{8}^{10}$... ${ }_{26}^{39}$.,						

EDWARD WARD has pleasure in ansouncing the lssue of a new Micro-Slide of Zoophyte, with tentacles out, in the special manner so well known to his numerous patrops.

$$
\begin{aligned}
& \text { Gorgonia verrucosa (polype stained) ", 2 } \\
& \text { Podalirus typicus (Spectre Shrimp) ., i, }
\end{aligned}
$$

EDWARD WARD, 249, OXFORD STREET, MANCHESTFR. [so3

MINERALOGY AND GEOLOGY.

PROFESSORS, COLLECTORS and VISITORS to L.ONDON are INVITED to INSPECT Mr. HENSON'S STOCK of CHOICE MINE. RALS, \&e., \&e. At the PRFSF:NT TIME he has a PARTICULARLY
 PINK APOPHYLLITE, CHESSYLITE, EMERAIISS O MATKIX, PYROMORPHITE (VERV RARE FORM) CERUSSITE, CRYSTAILISED MALACHITE, and BOTRYOIDAL. CIIALCEDONY, ME, TFORIC IKONS and STONES. POLISHED AGATES and LABKA. TF.ORIC
DORITES,
A Large Series of ROCKS, also MICROSCOPIC SECTIONS of the same.
listy on Afplication. Hammery, Chisels, aed Hammer Straps.
PRIVATE LESSONS AND EVENING CLASSES
BLOWPIPE CASES AND APPARATUS.
SAMUEL HENSON,
277, STRAND, L
Opposite Norfol

WESLEY COLLEGE，SHEFFIELD．

（AFFILIATED TO THE LONDON UNTVERSITY，184．）
Gotezot axd Ceathis … ．．．Rev．W．H．DALLINGER，LLD．，F．R．S．the，the
hear Martit－．．．－．．．H．M．Shera，Esp．，M．A．，LLD．
Second Mastiz ．．．．．．．．．．．．JAMES SHEARER，EsQ．，M．A．

Fiast Mathmatical Mastzr … … Thos．HL＇Gh Miller，Eso．，B．A．（Wranglet）（ambh．
And TWENTY ASSISTANT MASTERS and PROFESSORS．
In adison to Clanical，Mathemaseal，Eaglish，and Commereial Subjects，BIOLOGY，PHYSICS，and CHEMISTRY，＂be Moders Langages of Earoge，Hebrew and Syriac，Vocal and Instrumental Music，and Drawing are tanght by Accocoplabed Professors．
The RIt．W．H．DALIINGER，LLD．，F．R．S．，bas andertakes the PROFESSORSHIP of NATURAL SCIENCE ；and g．ves
Weekly Lerares and Clas Instroction in PRACTICAL ZOOLOGY，BOTASY，de．
CHEMISTRY is tazat by R．W．LANCASTER，Ess．，B．A．（tst Class Nat．Science），Christ Church，Oriond ：and a Coarre of LECTC＇RES on PHYSICS is deliveted each Term byA．H．ALLEN，Es？．，F．C．S．SCHOLARSHIPS are AWARI EI．
 The＇TNIDR SCHOCL is ro excelient effciency．Fermanent Staff，T．S．COX，Esp．，B．A．（London），and three other TRAINEL Manen CHEMISTRY，R．W．LANCASTER，ESQ．，B．A．（OxOn）；MLSIC and SINGING．E HL MIDLLETGS，Esp．．Bac．Mas．（Camb．）
PROSPECTL＇SES may be obtained by Application to the GOVERNOR or HEAD MASTER． THE NEXT TERM WILL COMMENCE ON TUESDAY，SEPT． 22.

THE
DAVEY SAFETY ENGINE
OR DOMESTIC MOTOR．
The most ecroomical small motor for pumpteg waser and driving small machinery． Cust of faci one farthang per horse power per haur．
IN USE FOR ELECTRIC LIGHTING．
 and a．x．is＂．．e F sc：ne Lighting Lefarment． Inven：ions Ex：：－t：ion，London．

SILEEW MEDAL，ROVHC
AGRLC゙LTLK゙AL SLCTETV，シAESTC．V． Catalogues on Application．
HATHORN，DAVEY，\＆CO．，LEEDS．

THECELEBRATED

Is umivailed for Gardeoers＇，Foreaters＇，Farmers＇，Joiners＂，and Amatew． sie If recieiren so oil Shapes with a aputile or water．Puts on a keen， thap edve；so hambeg aboo：this Has stood the teat of noo years．Cur h Hoes for Axes，Helse Kzves，Rators．Penhaives，and Plape Iroes，\＆c Honoerable Mention．Paris Exy brtion，os：an Bronse Medal，Londoe
 to get you one，and give my address，if he wun＇

JOHN C．MONTGOMERIE，
Ian O＇sbanter Stone How Workn Da：more，Tarbeltoe Station R．s．O． Arrobire．

The AUTOCOPYIST，from ose ifurawhes exceilent

BLACK COPIES

is Lithographic Sty＇e，of the ORDINARV wRITING（aiw Shorthaed，
 co，is，Loodoa wa．L，Loedue．

SANDERSON \＆Co．， Sole Inventers of the Solid CopperTape LIGHTNING CONDUCTOR

Ia Coselhenes Langtha，withoet Joines，as satplied by theato Herlalesty＇s Gavenpeer and sie Colomin！the Itahas Guwermoent，the Arsoetse Re－ pallis，and other Forelfe Governaurys：she Roval Cowrtin of Jonkicw，Sorand， ile Howes of Pharliamets，ke
The Jary Cemoletion，acting so the Reports of the Intergational Jurles ef the Heanh Eakilitin，Mave＿awneded a Rreme Medal la Clans of to Mesers．
 Cumberse Lastis

LEADENHA

BOOKS（Secondhand），Miscellaneous，Re－ mainders，te C．HERBERT，English and Forrign Bookseller．3ry Gorwell Road．Loedoo，E．C．Catiogse free oe recrept of two statrph Libraries，Old Books，and Parchment purchased．

PATERSON \＆COOPER，

76，LITTLE BRITAIN，LONDON，EC．
Electric Light and Power and Telephone Engineer New Electric Light Catalogve，post fret is．
PATERSON \＆COOPER beg to give sotice that they have diapoeed． the Phulonophical，Edacational，and Experimeatal Part of their Basiees a Mevil．J．and T．MAIFIELD，AT，Qoren Victoris Sereet，E．C．

CHEMICAL APPARATUS，Wholesale．

Rerail，for Colleges，Schools，and Chemical Works New Caralongse el Oo pazes asd 500 clar ILintratiocs post free，ad－WILLLAM
\qquad
SCIENCEMADEEASY．
By T．TWISING，
Author of＂Tecta，zi：Training，＂Ace
A Progresive Courve of Eiementary Lentwer of Phyich，Chemistry，Narys Histhry，and Phyw iv，fue Lectsrir：2－：Linu lastruction on Cooperacov Frawions，for chou．．I e ar．t Home Stody． Sis Pallt
－pecial Sets of Apparates for
4t Tablets and Tiac＿mis，in Fifectire R：Le pecial S．
Lodoa：J．J．Gk1FF1N \＆※CN：z2．Garrick Screet，W．C
Second Engliah Edibus．Rysi Iro，Price ake．
SENSATIONS OF TONE
AS A PHYSIOLOGICAL BASIS FOR THE THEORY OF MU＇SIC． Hy HERMANV L．F．HELMHOLTZ，M．D．， Profewor of Phywcs is the L aiversity of Bertia

 By ALEXANLIER J ELLIS，B．A．F．R．S．，Ac．
With en Figures Engraved on U oot and as Paesages in Musical Noten I smdar：LONGMASS．GREEN，\＆CO．

MINERALS AND STONE IMPLEMENTS．

MR．RRVCE．WRICMT begs to cail the attention of his Clients and th Public to ins large Series of

MINERALS AND STONE IMPLEMENTS，
from which sinfe preciment can be seiected．

GEMS AND PRECIOUS STONES OF EVERY DESCRIPTION．
BRYCE－W゙RIGHT，
Minervisurif and Exfet in Preciows Slowes， ons．KILIENT STREET．LONDON，W．

THURSDAY, AUGUST 27, 1885

THE LIFE OF FRANK BUCNLAND

Life of Frank Buckhind. By his Brother-in-Law, George Bompas. (London: Smith, Elder, and Co., 1885.)

FEW Englishmen were unacquainted with the central figure of this admirably written memoir. His ubiquity as a lecturer and inspector, the happy self-forgetfulness and adaptability of manner which associated him with royal princes as readily as with seaside fishermen, and the strong personality by which he permanently impressed all who came in contact with him, made him beyond all other men of his time the representative and the preacher of the subject to which he devoted all the energies of his life. That subject was natural history, a term not without meaning even in the present day of minute and subdivided scientific work, but conterminous with science half a century ago, when comparative anatomy was hardly known, when the microscope was costly and imperfect, when the provinces of nature had not been mapped nor its workers differentiated.

Frank Ruckland was born a naturalist, into a home crammed with animals, living, preserved, fossil; his mother a woman of rare intellectual accomplishment and scientific taste, his father the first geologist of the age. At three years old he could "go through all the natural history books in the Radeliffe Library"; at four we find him lispingly explaining to a Devonshire parson who had brought with pride to Dr. Buckland "some very curious fossils," that they were the vertebre of an Ichthyosaurus; at five he is rapturous over the teleology of the "tongue-bone" in the skeleton of a whale; and in the archacology of Worcester Cathedral can find only one object of interest-the figure of a lady who had been starved by a disease in the throat.
At twelve he went to Winchester, not the least barbarous school of that barbarous scholastic time. He was "launched," and "tingloved," and "toe-fit-tied," and "tunded," and "clowed," and "watched out" at cricket, and "kicked in" at foot-ball, living for two or three years the wretched life of a college junior amid a mob of boys not overlooked by any master and influenced by the bad traditions of a savage past. He used to say that it had done him good, had cured him of "bumptiousness" and arrogance, but he cherished painful memories of individual tyrants and of special acts of tyranny, and was wont when a senior boy to criticise with a bitterness alien from the ordinary conservatism of schoolboys the coarseness of a system which turned a gentleman's son, bred in the refinement of a cultured home, into an abject domestic serf.

Buckland's fagging days over, he was happy, for he could follow his bent undisturbed, and the pages which describe his later Winchester life are amongst the most amusing in the biography. Fond of school work he was not; he was, in fact, looked upon as a "thick," and his compulsory fagging experiences had given him a dislike for games. But he wired trout and eels in the clear Itchen streams, dug out mice on "Hills," chased badgers on Twyford Down, skinned and dissected cats, moles, and
bats, articulated skeletons, baked squirrel pies, and cooked mice in batter. A buzzard, an owl, and a racoon tenanted his lockers in "Moab," a viper lived in his "scob" amongst his books, his liedgehogs kept open a perpetual fosse at the base of the college wall, and a regiment of tame jackdaws looked up to him as their patron. On "Saints' days" he attended the Winchester Hospital, bringing back gruesome fragments of humanity in his pocket-handkerchief, talked medical language, treated confiding boys professionally. Applying for admission to the sick house on behalf of a patient who had partaken too generously of "husked gooseberry fool," he informed the surprised second master that the invalid had a "stricture of the colon;" he was wont to offer sixpence to any junior who would allow himself to be bled ; and he treated surgically a football-wounded shin with such results that the leg when shown eventually to a doctor was pronounced to be in imminent danger of amputation.
The Winchester life found fuller development at Oxford. No one who knew. Frank Buckland there will forget those merry breakfasts in the corner of Fell's Buildings ; Frank in the blue pea-jacket and the German student's cap, blowing blasts out of a tremendous wooden cow-horn ; the various pets who made it difficult to speak or move: the marmots, and the dove, and the monkey, and the chamæeon, and the snakes, and the guinea-pigs, and the after-breakfast visits to the eagle or the jackal or the bear or the pariah dog in the little yard outside. His Long Vacations were spent in Germany, whence he brought back little besides collections of red slugs and green frogs; in 1848 he entered at St. George's Hospital, and in 1854 was gazetted Assistant-Surgeon to the second Life Guards.
The next eight years were very pleasant ones. His father's position as Dean of Westminster threw open to him all the best society in London: we read of parties at Miss Burdett-Contts's, at the Duke of Wellington's, at Chief Baron Pollock's; microscopic evenings at Dr. Carpenter's ; walks around the Abbey with Prince Albert ; conversations with Sir B. Brodie, Mr. Gladstone, Whewell, Whately, Prof. Owen, Sedgwick, Bunsen, Ruskin. He was beginning to feel his strength and strike out his line in life; in these years lie wrote his first magazine article, delivered his first lecture, published his first book. In 186; he resigned his commission, married, took the house in Albany Street which he has made historic, started Land and Witer, devoted himself to fish culture, became Inspector of Fisheries, and worked in his vocation till 1880 , when he died at the age of fiftyfour, worn out by excessive overwork and by the exposure to wet and cold in all seasons which his professional duties, as he interpreted them, involved.

His power as a lecturer was unrivalled. He could keep an audience in ecstasies of laughing enjoyment for two hours at a stretch. He had inherited his father's remarkable felicity of illustration; his own keen delight in his subject was contagious, his comedy incessant and irresistible. Never was a memory more stored with interesting facts. He was all eyes; noted everything, remembered everything, used everything. Through London stree* as he surveyed them from his favourite seat on the k. board of an omnibus, on the walls of exhibitions, on

 uhbut ic.
 of serl x man uas lernl fry of welt aman wat Lernly fry in in o mothare iturul.

 the vilue it is ise ciovif piri of Itimil, and

 dajstebre! ifath tir eniue the thoul are in he
 by apohber hivit, stiviven the: 4 inter

OUR HOOK SNELA

 Thi) buvt lem *ven up
 "s: and k chumker. is isy

ovimal umissunt yet conturtis, in copseremence of है
 oillo ind firr the wuilent in that wrork Ms . Matie

 grum is gise is the to ss, the pier descripition of the to GHe is, kies is the te as, the jerson who drass lin in frall the tuas who h in emrriveloyent by anochor's manst the incrective upparame of tlre poris la preremal

it 2, ". 1 est

 situmgen in forsy twat leshand and for sudents. If in Ieven unawneri wilh it Nhourt itatenemi of peitolet the numationc examusatiot of stive tistue decorital a the Irwin. All wople "smues and angani are in

E rint

 nothis miv won wily lee pinice in which a soden)

 1
In In in inc of enen

 of nuss

 at is The lutase al penan, at \&

 tavise:
M) $\boldsymbol{r}, \mathrm{R}, \boldsymbol{w}$.

3200 by Googic

That Vawns of the Gisa shors
D,

名

 PK

Nzed by Google
trough ifum Japan by shrit verellyger collertor Mt. C.
Mapmath
 Casiling surule, that the pharr hull been intrinfaced into

 prodses.

 Hane "

 ind in provinng that spe nuent if it aticreding giand

ath purfunate ennugh tes receive a Warlian case foll
 if Slacgonas sent us upsciments grow. Bowdes the jofle-wrise natic frowa it: I cuotm the bollowing passages from the very interoten
commencatum with which Dr. enamith to Givnut us. -it hoyraphical ruage is froun 25° to 30 N . latede digenes. I milke nither varnelice of have beea abte thouts are teveloped th the furtuiwn, nom in ther, in
 mult thes ate arrested by December, cold, by stean grio

 bish purnmin the culms Juristle wourtiech feec. Div the nerund of thind year thentie with whom apites. Whans Dhan when thatured in sequhceness in ho lol

 wirnt in ith has, in lenple cuartis. Sce, ithe larte and

 Hir pures mater her

) nu flumaric siciangno of inc

 2) un . dime in unumath if the in the late Gevel

 Ei. it uncalar of theie whuli if i= tre sealy imat Elimg Net me fion ai

\qquad

Treod br Google

 bier to enence twhane tion the Hur, ur west wile. whee the latuinetel leg on ta fall, the wod turne to

 rotufle: ill.
In thars-r

 ponctice

Anets ath munton of that, how ever carefully the reline

 11.

 11.}T Tumbin
1 lualy he ict ist in an enclu early period ithat fa

 fureutiel wh all sden lo willo which have achowe wolvitut whig winct (100 c^{2}), and lec ua hate thestin thic of simplicity shat there is us or a

 In The Lehar ithe of timi bemm, in vittue of whot to

 r. Fil

 in :

 - 4 uly 3 年

 2- 19 -
 itel an ©
等
 olin hiling to s.ant it thet of itio the foess of

 * the ibe

Fized by Google
the temperarive of $100^{\prime} \mathrm{C}$. The unvite we shat empone to be a vimum I ex us in ilv bete glere li,ing ip in that

 sulumgen the enu berim of enmetatite is bept ap ley an equalify of al unprim

 ibentrive io tuall.
If xil be eotiocd lay this nuhirvion leineen the twa

 a will low fumd thas ibe diachuned therrocmiever co δ_{3}

 moch gwater for the blarkened than lat the whersed

 fint afresty ciun witt omar ins inf ver that if the themet

 the in wat bs fol otilit one civer.

motruay if this sirenni of rachant levat, and nee a

 thection wis runsticie us that thats specilior mishimete purdy of the rahaison stream-must, on well an ahape tie Whanc of the under any changv muke in a
 the h ruricise, , otlestive abourption for vertan min The rneam, shil mul fil whers, then a chance mind

 lir ra4 i1)= atroand by the quiantity and the quaind Finge be mill n the walls nof pach unaltered olese thenverimetr som serd tsetween these walls ust it why, as =at prosed by Provious tran of thoughe me of the rmlisitd and reflected Jivat fromd Densins, ill
 matue) Inst frum Lamp:hlack in unpolan being that is put if ers hust be equil ro the nther bot only to eun-

 Euty cungys from the surface. of froct the treas of le Thom thic purting, up, (u) fit). plate beiween le eviluma our him the putiong up, of a plate beiween the will and
 Aull he mulbered both in suathety folle upoo thermaty
 unilo impl stwelert by ar cold be of a gualin wial
 Wiv ar, ties, why ket fontm a thin slate of rock ed

 \therefore Evi lanin ihat in an he -hamen thart of ith puad

 $\mathrm{h}_{\mathrm{s}} \mathrm{f} 1 \mathrm{~g}$ ale, Eexatire beroves ament of thus increasomg is the that a typer in onuth simant of the easct fursctioe of dr

 steaser wrestragith and womber tefom than fay thene of
the wondrous power of the eye can aid us to an extent far surpassing that of the most delicate pile and galvanometer for the dark rays.

Wollaston and Fraunhofer were the first to show that in the solar spectrum numerous dark bands occur, which indicate the absence of certain definite kinds of light.
Sir David Brewster afterwards showed that similar bands make their appearance when the spectrum is made to pass through nitrous acid gas, and it was thus rendered probable that the bands which appear in the solar spectrum were due to absorption likewise.

Brewster, J. Herschel, Talbot, Wheatstone, and W. A. Miller were amongst the first to make observations upon the luminous spectrum obtained by heating various substances, and it was soon perceived that such spectra consist of bright lines on a dark background, and thus appear to be a reversal of the solar spectrum, which consists of dark lines on a bright background. Fraunhofer was the first to notice a coincidence in spectral position between the dark double line D occurring in the solar spectrum and the bright yellow flame produced by incandescent sodium. Swan afterwards showed that the correspondence between the two black lines and the two bright lines is very exact, and that a very small quantity of salt is sufficient to call forth the bright lines. Angström (Phil. Mag., May, 1855), referring to a conjecture of Euler that a body absorbs all the series of oscillations which it can itself assume, expresses his conviction that the same body, when heated so as to become luminous, must emit the very rays which at ordinary temperatures are absorbed, and that the explanation of the dark lines in the solar spectrum embraces that of luminous lines in the electric spectrum. Probably, however, the first to give definite expression to this conception was Prof. Stokes, who, about the year 1850 , commented on an experiment recently made by Foucault. This observer had found that, when a voltaic arc formed between charcoal poles was placed in the path of a beam of solar light, the double line D is thereby rendered considerably darker. 1f, on the other hand, the sun and the arc jut out the one beyond the other, the line D appears darker than usual in the solar light, and stands out bright in the electric spectrum. Thus the arc, remarks Foucault, presents us with a medium which emits the rays D on its own account, and which at the same time absorbs them when they come from another quarter.

The explanation given by Stokes of this experiment assumes that the vapour of sodium must possess, by its molecular structure, a tendency to vibrate in periods corresponding to the degrees of refrangibility of the double line D .
Hence the presence of sodium in a source of light must tend to originate light of that quality. On the other hand, vapour of sodium in an atmosphere around a source must have a great tendency to absorb light from the source of the precise quality in question.

In the atmosphere around the sun, therefore, there must be present vapour of sodium, which, according to the mechanical explanation thus suggested, being particularly opaque for light of that quality, prevents such of it as is emitted from the sun from penetrating to any considerable distance through the surrounding atmosphere.

It appears, from the historical sketch here given, that two independent lines of research were progressing towards the same conclusion. The one of these had for its basis the theory of exchanges, and endeavoured theoretically and experimentally to render this theory complete. The other was founded upon spectroscopic investigation, and endeavoured to apply to light an analogy deduced from sound, believing that, just as a string or tuning-fork when at rest takes up that note it gives out when struck, so a molecule when cold absorbs that ray which it gives out when hot.

In October, 1859, Prof. Kirchhoff of Heidelberg made
a communication to the Berlin Academy on the subject of Fraunhofer's lines. His observations were made on this occasion by an examination of the spectrum of coloured flames made by Bunsen and himself, and he derived from them the following conclusions:- He concluded that coloured flames in the spectrum of which bright sharp lines present themselves so weaken rays of the colour of these lines, when such rays pass through the flames, that, in place of the bright lines, dark ones appear as soon as there is brought behind the flame a source of light of sufficient intensity in the spectrum of which these lines are otherwise wanting. He concluded further that the dark lines of the solar spectrum which are not evoked by the atmosphere of the earth exist in consequence of the presence in the incandescent atmosphere of the sun of those substances which in the spectrum of a flame produce bright lines in the same place.
Carrying out this train of thought, Kirchhoff, about the end of 1859 , shows that as a mathematical consequence of the theory of exchanges, a definite relation must subsist between the radiating and absorbing power of bodies for individual descriptions of light and heat.

It will be noticed in this historical statement that I made my first experiments on dark heat ; afterwards I proceeded to the subject of light. Meanwhile, however, Kirchhoff had independently been led to experiment in this direction, and, although his memoir slightly preceded mine in publication, I shall now give the experiments which I was led to make, more especially as they are very similar to those of Kirchhoff. In February, 1860, I communicated to the Royal Society of London a paper in which I showed that the light radiated by coloured glasses is intense, in proportion to their depth of colour, transparent glass giving out very little light. I also showed that the radiation from red glass has a greenish tint, while that from green glass has a reddish tint. It was likewise shown that polished metal gives out less light than tarnished metal and that when a piece of black and white porcelain is heated in the fire the black parts give out much more light than the white, thereby producing a curious reversal of the pattern.

Finally, in a paper communicated in May of the same year, it was shown that tourmaline, which absorbs in excess the rays of light polarised in a plane parallel to the axis of the crystal, also radiates, when heated, this kind of light in excess, but that when it is viewed against an illuminated background of the same temperature as itself, this peculiarity disappears. All these facts are a natural consequence of a movable equilibrium of temperature holding separately for every variety of heat, the word "variety" embracing any difference either in wave-length or polarisation which is the cause of unequal absorption.
The theory of exchanges, as here exhibited, has been founded upon the fact that in an enclosure of constant temperature all bodies will ultimately attain the temperature of the walls of the enclosure. This is the experimental foundation upon which our structure has been built, and we have not attempted to work under it or to find whether in its turn it be not founded upon some principle of a still deeper and more fundamental nature. We shall now briefly indicate that such is the case, and that this law of ultimate equality of temperature is a consequence of the theory of energy in which we are told that no work can possibly be got out of heat which is all at the same temperature. For if the ultimate result in our enclosure should be a variety of temperatures, then it would be possible to utilise this temperature-difference and convert heat into work, so that there would practically result a case of perpetual motion. Now, it is one of the most fundamental axioms of physical science that such a motion is impossible.
I have endeavoured to make use of this method of viewing the problem, in order to point out what forms
the natural limit to our conception of a movable heatequilibrium. Suppose, for instance, that we have a large spherical chamber of the temperature of 100 C., and that this chamber is removed from all gravitating influence, so that a solid spherical body, also of the temperature of 100^{\prime} C., may rotate on its axis in the centre of this chamber without requiring the support of an axle. The chamber may likewise be supposed to be void of air, so that there is nothing but the ether to bring the revolving b sdy to rest. Now, if a sort of diaphragm or rim be introduced into the chamber, as in Fig. 9, the result will

Fic. 9
be that the particles of the enclosare to the left of the daphragm will only receive heat from that portion of the revolving body which is approaching them, while those to the right of the daphragm will only receive heat from those portions of the same body which are receding from them.

But the wave-length of light is altered in one way by a body which is approaching us, and in another way by a body which is receding from us, so that the particles to the left of the diaphragm will, in reality, receive a different kind of radiation from those to the right. Here, then, we have something which upsets the temperature equilibrium, and we may even conceive that the particles to the left of the diaphragm will absorb more heat, and therefore become hotter than those to the right. If so, we shall have the possibility of creating work out of this difference of temperature, or, in other words, of starting a kind of perpetual motion.

We thus begin to see that, somehow, the revolving body must lose as much energy as we gan by means of these differeaces of temperature, for otherwise we should have the transmutation of heat originally of the same temperature into work, which we cannot admit. But this means that a revolving body placed under these circumstances must gradually part with its energy of visible motion, alloough it is not in contact with anything else than the ethereal medium.

Before concluding this branch of my sulject let ine say a few words, about phosphorescence and thuorescence.
It is well known that certain substances rema:n lumin-wus-that is to say, continue to emit ligh: for some time after they have been exposed to the light of the sun or of some o:her powerfully luminous body. Such substances are said to be phusphioresient.

It is likewire known that o:her sabitances, imore especially certun hquids, ein t hight in a pecular way while the lumnous source acts upon them, bu: do not enjoy this property for an appreciable tume after it has been withdrawn. Such bodies are said to be fiu resient.

It is manifest that the difference between phosphorescence and tluorescence is one of time, the bidics unplied by the first term continui:g to give out light foe gome tume after the evciting source is withdrawn, while thise implied by the second d, nu: retain thas property for an appreciable time after the willdraw.il of the lumncus source. 1'roL Stokes, who has done mach to advance this sulject, has shown that the ex. ${ }^{2+}$-yye of phosplorescence and fluorescence is of high refrangibility-even ray
visible spectrum. On the other hand, the rays which the body gives out are generally of a lower refrangibility than the exciting rays. Hence invisible rays may, by means of a phosphorescent or fluorescent body on which the! fall, render themselves visible. This phrase, however, is perhaps not strictly correct, inasmuch as, before becoming: visible, they have been changed into other rays of lower refrangibility:
The object of introducing this subject here is rather, however, to discuss its bearing upon the theory of exchanges than to treat it as a separate branch of inquiry : and I may commence by remarking that at first sight it seems to contradict the general law that the quantity and quality of the light and heat given out by a body depend upon its temperature, and upon this only. Thus, a thermometer at $100^{\circ} \mathrm{C}$. is supposed to radiate from the surface of its bulb heat which will be the same in quantity and quality whether the instrument has been heated by the sun's rays or by plunging it into boiling water. Now in such a body as luminous paint we have the light which we usually associate with a high temperature given oas: long after the sun has ceased to shine upon it, and when we know its real temperature to be that of the bodies around it. Do phosphorescent bodies form, therefore, an exception to the general law which represents the qualit? of the radiant heat as a function of the temperature?

1 think we shall find, on examination, that in this general law it is taken for granted that no chemical change is taking place in the body in question, and no other molecular change than that implied in the cooling of the body. In a chemical action we have generally the transmatation of chemical energy into heat, and in molecular action we have generally the transmutation of molecular energy into beat likewise. That is to say, the body undergo.ng these changes becomes heated, and so gives out light and heat peculiar to the temperature to which it has been raised. But there seems to be no reason why molecular energy should not be somehow changed at once into radiant light and heat. In this case there would no doubt be an a pparent breaking of the law above mentioned, which associates a certain temperature with a certain quantity and quality of radiant heat, but the exception would be only apparent. for, as we have stated, the law presupposes that no molecular change of this nature is taking place.
In like manner our argument regarding an enclosare of a constant temperature and the theory of ecchanges in general, while it allows of the greatest possible variety of substance and form in the enclosure, virtually assumes that no chemical or molecular change is going on amongst the substances introduced. We are, in finesupposed to be dealing with radiant energy and absorbed heat, and with no other form of energy, and indeed we have just seen that if we have a body in visible motion in the enclosure, the equilbbrium no longer holds.

Thus we get rid of the difficulty by rejecting the bodies in question as not fultalling st, ictly, our requirements. No doubt the phenomena of phosphorescence and fluorescence are comparatively trivial exceptions, but we may imagine an enclosure in which all the substances are a! the teniperature of 100 , while some one substance is gradually changing its molecular state, until at length we have a viulent explosion accompanied with light and lieat. Here the result is so obvious that we have no hesitation in recognising such a budy as an exception not the tried by the theory of exchanges. We are per-
thesphorescent
tie equally an excep
character of this character of this
that matter during one second is equal to its radiation during the same time, and this holds for all kinds of heat. On the other hand, if we take a single molecule and a billionth of a second, we cannot affirm the same equality. This is no doubt correct ; in fact, if the equality between radiation and absorption were to hold for the smallest conceivable mass and the smallest conceivable increment of time, our equilibrium would in reality be a tensional one instead of being movable or dynamical. I shall con-
clude by repeating the words of Tait (" Heat," p. 253) :"It is vain, at least in the present state of science, to look for a truly rigorous investigation of the relation between radiating, absorbing, and retiecting powers. In all the professedly rigorous investigations which have been given the careful reader will detect one or more steps which are to be justified only by the statistical process of averages."

BAL.FOLR StEWART
(To be continued.)

THE LIFE OF AQUATIC AN/MALS AT HIGH PRESSURE:

THE magnificent expeditions of the Talisman and the Travailleur have called the attention of naturalists and physicists to the conditions of life at the bottom of the sea. A learned physiologist, Dr. Regnard, has conceived the happy idea of studying experimentally these
condition of life at high pressure. With apparatus designed by M. Cailletet, he has subjected aquatic animals to enormous pressure, such as prevails in the depths of the ocean, and has examined the results when those inhabiting the surface are suddenly placed at great depths. Since his first experiments Dr. Regnard has invented an ingenious methoJ by which he can see, notwithstanding the great pressur , what goes on inside the apparatus.

Fig s.-General View of Dr. Regnard's Apparatus.

Hitherto the operator simply placed the animals on solidly fixed a cone of quartz, in, the extremity of which which he experimented in the iron block of the Cailletet pump, and subjected them to the pressure corresponding to a given depth; he then released them, sometimes very slowly (after several days), sometimes rapidly and even instantly. He examined then, plysiologically ard microscopically, the lesions produced. But all the intermediate stages between the entrance of the animals and the time they were taken out escaped the observer. But now the apparatus in Fig. 1 allows him to follow each minute the effects. The following is Dr. Regnard's description of his apparatus to the Academy of Sciences :-

Iwo holes are pierced through and through across the lower part of the Cailletet block, M (Fig. 2). In these wo holes, placed in a straight line, are inserted two tubes These are hollow, and in each of them is

[^13]joins the edges of the hole which is pierced in the screw nut E. A ray of light thrown by the orifice r will thus traverse the apparatus and emerge at r^{\prime}. Experiments have shown that a similar apparatus will resist easily a pressure of 650 atmospheres, which represents that of the greatest depths that have been dredged-about $6 ; 00$ metres. Across one of the quartz cones are sent the concentrated rays of an electric lamp. These rays cross the block full of water, and emerge on the opposite side, where they are received by an achromatic object-glass which projects them on to a screen. The observer therefore works at a distance from the apparatus, where he is sheltered from all danger (Fig. 1). This arrangement has another advantage. The orifice pierced at r is hardly half a centimetre in diameter, and one can experiment with animalculx so small as to be scarcely perceptible
with the naked eye in the vessel immersed in the block 3 . By projecting them with a lens they are increased about 200 times, and it is even possible to see by transparence the state of their organs." In the experiment represented in Fig. 1, one of the operators is occupied in regulating the electric lamp and in setting the microscope of projection, while the other commences to apply the pressure. The animalcule projected on the screen are the Cyclops, small crustaceans which are met with at this time of the year in brooks, and which are scarcely a millimetre in length. These are so enlarged, and appear with such transparency, that we can follow on the screen the movements of their branchia, and even of their heart, during the experiment. Dr. Regnard is pursuing at present his

Fig. 2.-Details of apiaa us:.a Fig. z .
studies into life under high pressures. He showed last year that the unequal compressibility of the liquids and solids which form the organism caused the latter after a long pressure, to be soaked with water, become turgid, and consequently lose their functions. But, with the apparatus here described, he has been able to follow the phenomena which precede this. From the pressure at 1000 metres (about 200 atmospheres) the object show's inquietude, at 2000 metres it falls to the bottom of the vessel struggling ; towards 4000 it remains inert and benumbed. When its normal pressure returns it recommences moving, unless the pressure has been long and its tissues are not soaked. This seems to show that the effect is a compression of the nervous system.

Notes

We understand that Mr. Francis Galton has already obtained valuable results from the Family Records sent him last year in response to his offer of prizes, and that he purposes to make much use of them in his Presidential address to the Anthropological Section of the British Association at Aberdeen.

We have already intimated that Prof. Bonney has decided to retire from the Secretaryship of the Association after the Aberdeen meeting. We understand that Mr. A. T. Atchison will be proposed as his successor.

Masv interesting excursions lave leen arranged by the Local Committee of the Aberdeen mecting of the Association. One of them will, of course, be to the great granite quarries in the neighbourho of of Aberdeen. Her Majesty has invited 150 of the members to Balmoral, where they will be shown over the grounds and have lunch. It is not to be expected that the Queen will personally receive all the members, though it is possible that a few representative men of science may be presented to Her Majesty. Other excursions will be to lladdo House, Dunecht, Dunnottar, Drum and Crathes, Loch Kinerd, on the Saturday ; while on the Welnesday and Thurslay of the second week parties will be taken to Mraemar, Invercauld, Haddo House, Huntly Castle, Elkin, Banff, Portsoy, and other places. The efforts which the Local Committee are making to render the meeting a success are all that could be
desired. It is only to be hoped that they may sucoeed in persuading the Aberdeen hotel and lodging-house keepers to reduce their exorbitant charges. The arrangements for important discussions in Sections A and B we have already referred to.

In connection with the meeting we venture to recommend to our readers the new edition of Baddeley's "Guide to Scotland," Part 1, a copy of which has been sent us. It includes all the country from the Borders to as far north as Aberdeen, Invernes, Gairloch, and Stornoway. No more useful, practical, and trustworthy guide to the region exists, while the thirty-seven admirably executed naps and plans will be found a great comfort and convenience. Dulau and Co. ate the publishers.
M. Janssen will shortly begin a new series of experiments on the influence of gases in spectrum analysis, in continuation of those which he made about fifteen years ago at La Villette gasworks. The tubes in which the gas will be contained and compressed will have a length of more than 100 metres, and te able to bear an unusual a mount of pressure. Thus a new degree of accuracy may be expected from these researches, which are progressing favourably at the Meudon P'hysical Observatory.

For more than a year some important measurements of the altitude and movements of clouds have been carried on at L'pusla by the aid of two theodolites, one of which is mounted in the Linneeus and the other in the Botanical Gardens. These instryments, which belong to the Academy of Science, were used for auroral and cloud measurements by the Swedish expedition to Spitzbergen, 1882-83. The object of the measurements of the altitude and movements of clouds is not so much to obtain thers mean altitude as to derive some knowledge of their m>vements in the upper part of the atmosphere, a matter which is of great importance to meteorology. The researches have advanced so far that it has been found possible to fix astrunomically the movements and altitude of the cirrus clouds.

According to the Tagliche Rundschan the population of Katisbon has been greatly frightened by the sudden disappearance recently of thousands of jackdaws, which dwelt in the spire of the cathedral of the town, on account of a similar phenomenon occurring before the outbreak of the last cholera epidemic in the pace. In Munich a similar phenomenon is also stated to bave taken place.

Referring to "zonorous sand," the report of the secretary of the Smithsonian Institution says that an interesting problem to physicists and geologists has been the sand found in certain localities, which, when placed in motion by sliding, sometimes produces a very sonorous or resonant sound, peculiar in character and difficult of explanation. Prof. Bolton, of Trinity College, Hartford, desirous of making researches on the subject, and especially of studying the microscopical, chemical, and physical peculiarities of the grains, requested the aid of the Institution is obtaining materials for the purpose. A considerable variety of sjecimens was collected in the Sandwich Islands, the coast ai Oregon, Germany, and many other places. These are now in Prof. Holton's hands, and he will prepare a report on the subject.

The Chesapeake Zoological Laboratory, as the marine stanom maintained by the Johns Hopkins University is designated, is Science states, established for the present summer session a: Beaufort, on the coast of North Carolina. Dr. W. K. Brooks, the director, who was prevented last year by ill-health from giving as much time as usual to the laboratory, is fortonaurly quite restured to lus usual strength, and is in futl activiry at ha. post. Twelve collaborators are with him. Several of thens sin already teachers in various branches of soological afinentay all of them are well prepared to make use pf the erportumat
which are afforded at this station. An unusual number are engaged in original researches. The season of 1885 , although uncomfortably hot, has thus far been exceptionally favourable for collection. The weather has been calmer than heretofore in June and July, and specimens were found in June which have usually not appeared until the middle of August. The company, notwithstanding their personal discomfort from the heat, have maintained their full enthusiasm in the work upon which they are engaged ; and it now appears as if the eighth session of the laboratory would be more fruitful in results than its predecessors, good as they have been.

A DUnFERMLINE correspondent writes tu us that one of the most important and certainly the most complete cemetery of the Stone Age which has been laid bare in recent times has just been discovered in the grounds of Pitreavie, Dunfermline, Fifeshire. In connection with rebuilding operations a sand-pit was opened, and here, in a space of 15 yards by 10 yards, no fewer than five cists have been discovered. The cists were constructed of rough sandstone flags, and four of these measured about 42 inches in length, 20 inches in breadth, and 16 inches in depth. The fifth was little more than 88 inches square. A cinerary urn of baked clay was found in each of the large cists, but in the small "grove" nothing was found but a quantity of apparently calcined bones. A couple of flint scrapers and a bottle-shaped piece of limestone-which may have done duty as a hammerwere also among the finds. The urns measure from 5 to 6 inches across the mouth and from $4 \frac{1}{\frac{1}{2}}$ to 6 inches in height, and, strange to say, the construction of the bowls indicate that they have been made at different successive periods. No. I urn is an unshapely piece of sun-dried pottery; No. 2 showed an advance in the shape; and Nos. 3 and 4 are neatly formed and ornamented with a simple dotted pattern. The explorations will be continued, and it is expected that several other important finds will be made. Dr. Munro, the author of "Ancient Scottish Lake Dwellings," has visted the tumuli with a view to place a report in the hands of the Antiquarian Society of Scotland. A tradition exists that the site of the mound was an old graveyard, and some people who have been engaged in the district in agricultural pursuits for the past half a century state that numerous flagstones and pieces of urns have been turned up by the plough or grubbed, and Dr. Munro attaches great importance to the flint scrapers, and was of opinion that the bones found in the small cist were human bones.

At the recent Railway Congress at Brussels the question whether it would be economical and desirable to use iron or steel instead of wooden sleepers was fully discussed. It was stated that metal sleepers of various patterns are being used in Holland and India to a considerable extent, and that they are being tried experimentally in Belgium, England, and other countries. An opinion was expressed that sleepers of the description which is being tried in England would afford good material support for the rails on main lines, although some inconvenience might be felt from a quoin of wood being used with it. It was also considered that other metal sleepers which are being tried in Holland and else where had given satisfactory results, The cost of metal sleepers is higher than that of wood. They require good ballast, and there had not been sufficient experience from their use, in regard to their duration and maintenance, to enable the section to state specifically the relative advantages of the new description of sleepers. It was therefore considered that further experience is necessary. The difficulty of arriving at a conclusion as to what would be applicable in all countries and under all circumstances was exemplified in the discussion of this subject by the representative of the Egyptian railways. He stated that iron or steel sleepers cannot be economically used in Fgypt, because they become corroded by
the sand. The representative of the Indian railways, on the other hand, informed the section that iron or steel sleepers only can be used in India, because the white ant destroys wooden sleepers. Considerable discussion took place as to the construction of railways in regard to the curves, gradients, and works generally, including the question whether lines with a comparatively small traffic should be laid with heavy or light rails. It was, however, found impossible to lay down any general propositions which could be adopted under all the circumstances in which railways have to be made.

It may be remarked that François Arago was born at Estagel in the beginning of February, 1786 , so that a centennial celebration may be expected next year. A statue was erected in this place twenty-nine years ago at the expense of the late M . Pereire.

An exhibition of labour was opened a few weeks ago at the Palais de I'Industrie, Paris. An electrical railway with a single rail was exhibited by M. Lartigue, and is carrying passengers with regularity on a zigzag line of about 200 metres' length. A series of popular exhibitions with magic lanterns on the new features of microscopy is largely attracting public attention. So-called antediluvian music is played on a series of irregular stones which have been selected so that they represent two octaves when suspended by strings.

Tue American Ornithologists' Union will hold its next meeting in New York on Tuesday, November 17.

We have received catalogues of electrical apparatus from two new firms: the first of these is the Kinetic Engineering Company, who are agents in this country for the well-known firm of Breguet. They are now exhibiting Lippmann's ingenious mercurial galvanometer. The second catalogue is that of Messrs. P. Jolin and Co., of Bristol. This enterprising firm describes several instruments of great use in the physical laboratory, especially the dead-beat galvanometer of D'Arsonval's type, and adjuncts therefore. This instrument appears to be specially adapted for private laboratories. We are glad to see new firms taking such good standing in the character of the apparatus they offer to the scientific world.

THE Java newspapers report that volcanic activity in the island continues to increase. Another mountain, called Raun, broke out on June 2t, casting out much steam and ashes. In the eveaing smoke was ejected in such quantities as to darken the horizon on the windward side, until a shower of ashes fell, upon which the sky cleared up. Raun appears to be an active volcano, but no such violent eruption has been known in recent years. On the night of July 8 a new eruption of Mount Smeru took place; it was a heavy explosion followed by a stream of red-hot lava, which came duwn to the same spot which was laid waste by the former eruption. In the evening of July 9 another explosion followed.
"Results of Twenty Y'ears' Olservations on Botany, Entomology, Ornithology, and Metcorology, taken at Marlborough College, $1865-84$," is the title of a large pamphlet embracing a summary of twenty years' work. The tables are accumulations of facts properly registered. In the botanical notices the first appearances in each year are given, the day being noted as the day of the year, not of the month. This method is readiest for comparison and for striking the average. In addition the average for the twenty years, the earliest and latest days, the amplitude and the number of observations are given. The entomological notices are arranged in the same way, except that the earliest and latest appearances and the amplitude are omitted ; these are not a great loss, for they can be ascertained from the tables in a moment by any reader. In ornithology the observations include the date when first seen, and when an egg and the young have
been found. The meteorologieal notices include for each month of each year the highest, lowest, and tmean readings of the barometer, the maximum and minimum temperature in the shade, the number of times the thermometer stood above certain points varying with the seasons of the year, the maximum in the sun, the minimum on the grass, amount of rain collected, and the number of rainy days. The wettest year of the twenty was 1882, when the rainfall was 4579 inehes; the dryest, 1870 , with 23.41 inches. The weather records in these talles have been kept by one observer, with properly verified instruments, and all the observations have been critically examined at the Royal Meteorological Society ; the botanical notices, though obtained by a large staff of observers, have all been recorted by one person, who saw all the specimens; but entomological and ornithological notes were taken by a series of recorders, and there is theicfore not the same uniformity as in the two previous cases.

We have received the annual report of the West Kent Natural History, Microscopical, and Photographic Society for the past year. It contains abstracts of several papers read during the year. It is a pity there is no abstract of the discussion introduced by the presitent at the annual dinner at Gravescind, on "Bacon and Beans." There are two papers on sulbjects connected with photography.

Mr. W. F. Stanley has recently brought out a new form of protractor and goniometer, which has the special metit of measuring an angle right up to the vertex. This new form of protractor will be very convenient tocivil engineers in measuring angles upon ordnance mape which are most frequently subtended by short lines, and many other cases. U'sed as a goniometer, it will be very convenient to measure the angles of large crystals and planes of cleavage, also to draw the same ditrect from the instrument. The instrument consists of two cancentric circles, the outer one carrying the graduation, the inner a Vernier ; each supports an arm with an edge extending to the centre. The angles are measured by slipping the inner circle with its attached arm and Vernier round the groove on the outer circle, which keeps it in position. We believe the instrument has all the good points which Mr. Stanley claims for it, and it will be useful to artists as well in determining angles of perspective.
THE whitefinh (Corgonnes albus) now in the ponis at the Delafort Fishery are growing rapidly, some of them reaching seven inches in length. It will be remembered that the ova of the e fish were brought from America tast spring, and hatched out at south Kensington.

A kemanant of the great forests which once covered the south of Sweden was recently dug out of a beg at Kiuneved, consisting of a boat 6 feet in diameter hollowed out of a \log. The tree from which it was obtained must have been 20 feet in circum. ference. The woond, which was blue in colvur, was very hand, and the boat so heavy that two bullocks eould not move it.

Ma. Henry Putlours, jun, une of the secretaries to the American Philusophical Society, has perforinel a very u efull work in compiling a register of all the papers published in the Tran uctions and Praccolings of the Society since its commencement. The "register" forms a small pamphlet of fifty-six pages, the titles being arranged according to the authors' names. It is therefore an index to all the putlications of the Societybut a name, not a subject, index.

THE additions to the Zoclogical Society's Gardens during the past week include a Rhesus Monkey (.Macacus riesus if) from India, presented loy Mr. E. Pelditch ; a Bosmani Potto (Porodicticus patro 8) from West Africa, presented by Mr. C. R. Williams: two Gerbilles (Gentillos - -) from Suakim, presented by Surgeon-Major J. A. Shaw; two White-faced Tree

Ducks (Dendroygna zidwata) from Wext Africa, presernted : Mr, Cecil Dulley; three Green Turtles (Chelone varidis) frus the West Indies, presented by M. C. Angel, F.Z.s.; a Bonast Monkey (Macacks sinicus 8) from India, pretented by M2 J. C. O'Halloran ; two Narrow-barred Finches (M/umia niburfrom Java, an Indian Silver Bill (A/unia malalariaa) from Insian Amaduvade Finch (Estrelda amandirtw) from Indaa, pre sented by Mr. Horace Sanders; a Short-tued Eagle (Curcactigalicus! from Southern Europe, presented by Mr. Heary Sotheran; a Mona Monkey (Cercopichecus noms 8) from Wert Africa, presented by Mr. White; a White-necked Crow (Cown w: scafularus) from West Africa, depositel; nine Gold Pheasad: (Thanmalez picta), received from the Right Hon. Geary: Sclater-Booth, M.P.; a Barred-shoulderel Dove (Geafmia humeralis), a Coquerel's Lemur (Chirogalens capmerds). Collared Fruit Bat (Cymonycteris collaris), bred in the Gardena.

OUR ASTRONOMICAL COLUMN

The Binary-star 70 Orutucht. - Notwithstanding the catr with which the orbit of this double-star has been discuweri, is companion appears to be again deviating from its preakec position to a considerable extent. It will be remembered ths from the anomalous motion of the stnaller star Madler was): to the suspicion that the law of gravitation does mor apply in et . system, while Jacob thought there was indication of disturbasor from a thind booly.
M. Perrotin gives the following epoch resultiog from L measures mate at Nice in 1503 :

$$
1883 \cdot 49 \text {... Position } 45^{\circ} \cdot 6 \text {... Distance } 2=23
$$

On comparing with the orbit assigned in No. 1 of "As:r nomical Observations made at the U'niversity Obervater Oxford," which accords clocely with the measures ap to 1 (-6 and with the orbits Flammarion, Tiverand, and Schur, we mo the following differences taken in the urder, observation-calculation:-

				Pastios.		Di*uecz
The Oxford orbit	...	\ldots	...	- 909	\ldots	-0.60
Flammation	...	\ldots	...	12.8		.15
Tisserand	-13.5		0.57
Schar	\ldots		-174		-0.

It is very possible that in this case the difficulty of reprexe: ing the position of the companion-star may be attributed to :te paucity of measures near the peri-astron, rather than to z^{-} anomalous motion which har not been remarhed in mont of the other binaries. However this may ke, the object no doale: one deserving of continued attention. The Oxford orlat, shat it will be seen, is the nearest as regards the position angle 4 1883, gives for $1885^{\prime} 5$-postion, +46 ; distance, $2^{\prime \prime} 64$

Tuttle's Comet. -On September to, at midnight, this camer will be in ahout R.A. $13^{\prime} 9^{\prime} 33^{\prime}$, Iec.I. $+3^{\prime} 48^{\prime}$, bising at Greenwich two hours before the -un, and with an intensity of lieh-one-third greater than when first ohserved at Nice on Dugtul 3. It may perlaps be observed after perihelion in the nothern hemisphere if the more powerful teleccopes are utiliset. On August 13 the correction to Herr Kaht's ephemeris was - Ig in right ascension and $+5^{\prime} \cdot 5$ in declination. The come: s about 2^{\prime} in diameter, withont very apparent central condensation.

Tite Cowit of 1652 . - At present we have only one calculs tion of the orthit of this comet-that of Halley, founded upee the observations of Hevelius in the scarce volume of the " Machina Celestis." It would be interesting to inverstigate the orbit anew from the observations made by Kichard What at Kome, though he gives no nearer time for his distances of the comet from stars between I/ecember 21, 1652 , and January ? 1652, than "hora 2 post occasum solis." The observations wall be found in Zritschrift fur it trenomic, vol. iv., where they an entitled " Observationes Cometax, qui exeunte anno $16 ; 2$ cum paruit, habite Komee per Riccardum Albium, Anglum." Zack supposed the observer to be kichard White, and there car N litule doubt that he is the Mr. White repeatedly mentionet by Evelyn in his I hiary. Zach has the remark, "1 Diee Reotecht ungen konnen leicht besser als die des Hevelius seyn, ${ }^{\text {º }}$ and an examination of the latter will show that there is some foumbatore
: or this remark. On December 21, according to Halley's ele$1.2 e n t s$, the distance of the comet from the carth was only 0.14 ; un January 3 it had increased to $0^{\circ} 42$.

The fact that the place of the ascending nole of the comet of 1699, as it is prineed in Halley's "Synopsis of Conetary Astronomys," is 180° in error, or, in other words, the place of the descending node has bcen given for that of the opposite one, furnishes a lint that it is no: safe to accept a single calculation of the orbit of any of the carlier-computed comets wilbout examination.

ASTRONOMICAL PHENOMENA FOR THEWEEK', 1885, AUGUST 30 TU SEPTEMBEK' 5

(FOR the reckoning of time the civil day, commencing at Greenwich mean midnight, counting the hours on to 24, is here :mployed.)

At Gremavich on Alugust 30

jun rises, $5 \mathrm{~h} .11 \mathrm{~m} . ;$; souths, $12 \mathrm{~h} . \mathrm{om} .23$ Os. ; sets, 18 h .49 m . ; decl. on meridian, $8^{3} 52^{\prime}$ N. : Sidereal Time at Sunset, 17 h .26 m .
Moon (at Last Quarter on Sept. 2) rises, 20h. 28m.*; souths, 3h. 15 m . ; sets, 10 h .12 m . ; deel. on meridian, $8^{\prime} 11^{\prime} \mathrm{N}$.

Planel	Rises		Sounhs		Sela	Decl. on meridian		
Mercury	${ }_{6}^{\text {h. m. }} 1$		${ }_{12}{ }_{12} \mathrm{~m} / 7$		L 18.13			
Venus	87	\cdots	1357	...	1947	...		47 S .
Mars	- 36	...	$\mathrm{S}_{4} 8$...	17 \%
Jupiter	548	...	1228	...	19	..		
Saturn	2343^{*}	...	752		16		222	25 N

- Indicates that the rising is that of the preceding day.

Oiswitations of Slars by the Moon

GEOGKAPHICAI, NOTES

SAD news las been received from the Dutch Afriean Expelition; its lealer. Mr. D. D. Veth, died fron disease on May 19, in the camp on the banks of the Kala Kanga River, between Benguella and Humpata. This is a real loss for science as well as to his venerable father, Prof. P. J. Veth, who has given his whole industrious life to scientific work.
The Austrian Government, with the consent of the Porte, has undertaken to make a geographical survey of the Althanian coast, with a view to preparing new maps. Two Austrian gunboats have accordingly left for Corfu with officials of the Chart 1)epartment on board. Here they will be joined by the Turkish officers, under whose superintendence the survey will be matle.

It is stated in the latest Frgimzungsheft to Petermann's Mittheilangen, that there are in Peking four institutions at which astronomical and meteorological observations have been made for a number of years : (1) the Chinese Observatory, called Kiun sang' tai, which has existed for about six centurics. In 1674 the Jesuits provided it with new as'ronomical instruments, with sut lenses, which are well preserved to this day. It is situated on the eastern wall of the Manchu town. (2) Bethang, or the

Northern Church, the Collcgium Galloram, near the Imperial palace. Herc in the middle of the eighteenth century the Jesuits erected an obsetvatory, and made many astronomical observations, amongst them the transit of Venus of June 3. 1769. Besides these Pére Amiot made meteorological observations for six years, from 1757 to 1762 . (3) The Russian Legation, near the southern wall of the Manchu town. The astronomer Fuss, who made a great journcy between 1830 and 1832 from St. P'etersburg to Eastern Siberia, and by Kiachta to Peking, at the orders of the Academy of Sciences of St. Petersburg, spent seven months here, and organised astronomical, geographical, magnetic, and meteorological observations. (4) Beguan, about 300 metres from the north-eastern corner of the wall surrounding the Manchu city. Here the members of the Russian missionary body, and the native Christians under their direction, carried out a series of magnetic and meteorological observations between 1841 and 1860 . In 1864 this Observatory was separated from the missionary establishment, and in $\mathbf{1 8 6 7}$ the St. Petersburg Academy of Sciences selected Dr. H. Fritsche for its director, a position which he held for sixteen years. For twelve of these he lived in Peking, while the other four were spent for the most part in journeying through the Chinese Empire and Siberia, in order to inspect the meteorological stations and the three magnetic observatories at Ekaterinbarg. Barnaul, and Nerchinsk, to establish new stations, and specially to obtain astronomical, geographical, and hypsometric observations in as large a number of places as possible. His investigations into the meteorology of Eastern Asin were published ly the Academy in 1877, and be now publishes in the Ergunzangsheflabove allurled to the results of his stxteen years' observations in other departments. He describes his numerons journeys in China, Mongolia, and Manchuria, and gives a mass of data with regard to the latitude and longitude of places, and their heights above the sea-level. There are also, in the second part of the paper, a large number of measurements connected with earth magnetism. The title of the paper, which is a long one, and represents a vast amount of travel and labour, is "Ein Beitrag zur Geographie und Lehre vom Erdnagnetismus Asiens und Europas," von Dr. H. Fritsche, Ptermann's Mit!heilungon Eygarambishet, No. 78.
Is the current number of Patermann's Mith hilumgen the principal article is an account, historical, and geographical, of "a lava desert in the interior of leeland," and the largest lava area in Europe. The "desert" in question is situate 1 in that part of the plateau in the interior which lies between the Vatnajokull and the rivers Skjalfandatiot and Jokulna. It is known to the inhabitants of the neighbouring coasts as Odadahraun. The autaor, Th. Thoroddsen, describes his journcy from Myvatn in detail. -Prof. Nell explains Fischer's perspective projection for maps, ard gives a map of Asia on this system ; while Herr Flegel describes his journey in 1879 with the Henry Venn expedition up the Pico Grande from the Cameroons.
The Zeitschrift of the Gesellschaft fur Erdkunde at Berlin (Band 20, Heft 3) is almost wholly occupied with an account by Herr Schmidt of the travels of the friar Rubruk between 1253 and 1255 into the heart of Central A sia, and to the borders of China. This remarkable journey is descriled and explained with much painstaking learaing. The only other contribution to the number is a talle of lengths of the principal Russian rivers from General Tillo's survey.

From the latest reports the Australian New Guinea expedition appears to have progressed satisfactorily ss far. The Government of Queensland had offered to hold frequent communication with the party by means of the stemer \boldsymbol{A} ivance, with a view of obtaining information of the progress of the work of exploration. A branch of the Geographical Sosiety of Australasia is to be formed at Brishane.

A Parliamentary bluc-book (Corea, No. 3, 1885) lately publiched contains the report of a journey made ly Mr. Carlen, the Vice-Consul at Seoul, from that place to Phyöng Kang, where some gold mines exist. These lie to the west of the main road between Seoul and Gensan, and were stated to be of greater extent than any existing in Corea. They are in the Yhyong Kang district, in the neighbourhood of the town of l'ai-namou-tjang, about 100 miles from the capital. Part of the road lay across a vast lava-field, which appears to exceed in extent even the largest in leeland. Between Chhölwön and l'ai-namou-tjang, a distance of 40 miles, there is only one break in its bed, which Mr. Carles attributes to the action of

creod by Googic

 - Nat Now

i_{1}

2a - - 302 +50m

药
 N-Me Na,

 Kin+1

 Wh:.. 18

Eecoby Google

8

 Nulew-Lut

 HIM SOCSETHES AND ACADENIES
Socibity of severel. Aurit iq-u. n-ir Mivin

Actany ol citit ce muken if iv, lowe it.

 15-1 erverthen of of I thtur

tok trat trion sturegion to the eorly "how Tept

 1. us 1, is

 Har hy M. 11.1 , phy. Agashet the olyctint ${ }^{4}$
 pal
4

CONTENTS

The Lefe of Frank tsucklesp Ty Rev W, Tuche Coopensutron of Compaspes
Tbe Farts Memp
Out Beek shalf

$$
\text { TK. } \mathrm{B}
$$

exers iotho vianter Hyt,-A meudent: Pror,

$$
\begin{aligned}
& \text { Tya } 2.50 \text { bl } \\
& \text { Notec }
\end{aligned}
$$

Our
to 4 in, hien toinns roch

$$
\text { Teit } 1
$$

Altienomural Mrmemsns for ihe "weil is
Mohtal prodecta in the Unired stale?
irol L Sohecke en the Origin of Thiunde

Messrs. MACMILLAN \& CO'S NEW BOOK\$

A NEW NOVEL BY THE LATE HUGH CONWAY A FAMIV JFFAIR. WV HUGII CONWA

 C"(x) miv.
 ERF, II liXIC : I, ... THE DINIHMENT DSH PREIENTHS OF GHIME By

 - N":

NEVER
SOLD IN ENGLAND BEFORE AT THE PRIC BARBER AND COMPANY'S RICH SIRUPY ONFA CONGO.

 BARBER A CO, ays. Rezent Circus Oxford Sirett, W. or, Bishon ©onten.

THE "EXCELSIOR

PATENT SPRING MATTRESS

 SWantis
TM
Rouncsent

THE NEW PATENT WOVEN WIRE MATTKESS CHORLTON \& DUGDALE OBJECTS FOR THE MICROSEOPE

CROSiley bros., Limited, Manchesier.

BARBER AND CON

 BARERR \& CO, 774. Rege
 Livktoot-1. CItURCH

,

THE "EXCF PATENT SPRINO

The griacigla at ama of coir serpet nutwa of evarinet intank

rue "EXCELS"
anvill foe

OBJ

 Fonvory
 2

\qquad $+2=-$

SHRFYIE1.1) TECHNICAI, SCHOOL +20

ENGLAND.

 STTY COLI. PLCB OF SOUT WALES AND MONMOUTHSHIRE

I

Now Ready, Part XII., tes. 6.d., completing Vol. IV. (Asclepiadex to Amarantaceal), 3 as.

FLORA OF BRITISH INDIA.

By Sir J. D. HOOKER, K.C.C.I., C.B., \&c., Astisted by various Botanists.
[Vole 1. to III. 378 each.
-. Note- Yol. IY., price 3as. Incorrectly printed in former Announcement (August zo)
L. RF.EVE \& CO., 5. Henrietta Street, Covent Garden.

Now Ready, Vole 1, Royal 4 to, Published at 428 .

PHYSICO-CHEMICAL CONSTANTS.

MELTING AND BOILING-POINT TABLES.

BY
T. CARNELLEY, D.Sc.. F.C S., Professor of Chemistry in University College, Dundee.

These Tables, which have taken eight years of almost constant tabour to compile, are the most complete of any yet published, and contain about so,000 melting- and boiling-point data. The Tables will be issued in two volumes, of which the first is now ready. It contains 19,000 data and includes the Elements, Inorganic Compounds, and those Organic Com. pounds containing not more than three elements.

London: IIARRISON \& SONS, 59, I'all Mall, S.W.

Second English F.dition, Royal Bro, Price 28 s.

 SENSATIONS OF TONE

 SENSATIONS OF TONE}AS A PHYSIOLOGICAE, BASIS FOR THE THEOKY OF MUSIC.
By IIERMANN L. F. IIFI.MIIOLTZ. M.D.
Professor of Physics in the L'niversity of Berlin.
Second Eiglish Fdition Translated, Thoruughly Revised and Corrected rendered conformable to the Fourth and last German Edition of 1877 , with numerous Additional Notes and a New Additional Appendix, bringing down Information to 888 , and expecially adapted to the Use of Musical Students, By AI.EXANDER J. ELLIS, B.A., F.R.S., \&c.
With 68 Figures Fingraved on Wood and 42 Passages in Musical Notes london: LONGMANS, GREEN, \& CO.

BOOKS (Secondhand), Miscellaneous, Remainders, \&c.-C. HERBERT, English and Foreign Bookseller, 3r9Goswell Road, London, E.C. Catalogue free on receipt of two stamps, Libraries, Old Books, and Parchment purchased.

KIRKFS PHVSIOLOGY

Eleventh Edition, Revised, with 500 Illustrations. Post 8vo. Price 14s. $^{\text {s }}$. KIRKES' HANDBOOK OF PHYSIO. LOGi: Thoroughly Revied and Fidited by W. MORRANT RAKF.R, F.RC.S., Lecturer on l'hysiolugy, and surgeon to St . Itartholomen" lloapital: and VINCFNT IOKMFR HARKIS. M.D. Lond., Demonstrator of Physiulugy at St. Hartholomew's Hospital. JOIIN MCRRAY, Allemarle Street.

EIGHTH EDITION.

DESCHANEL'S NATURAL PHILOSOPHY.

Translated and Filited by J. D. IVERETT, F.R.S.,
Profeswor of Natural 1Thilosoplyy in the Queen's College, Welfast
Fighth Flition, Revised thmaghut, and Adtitians incerted, hrituinz it up

 4^{4}. ©od each
Part 1-MFCIIANICS, HYDROSTAIICS, and PNETMATICS. Part 11.-1HFAT
lart III-FIH TRICITY MACNE.TIN3
l'art IN゙-sOCNII and I.ICll|

Ia Ecap. Evo, Price u. Gut.

ELEMENTARY LESSONS IN THE SCIENCE OF AGRICULTURAL. PRACTICE. By H.TANNER, F.C.S., A.R.A.C., Enaminer in the Principles of Agriculture unde! the Government llepartment of Science, sometime Professor of Agricult nral Scienee, University College. Aberystwith. MACVILLAN \& CO. Londoa.

CAMBRIDGE UNIVERSITY PRESS.

KINSHIP and MARRIAGE in EARLY
ARABIA. By W. ROHFRTSON SBITH, M.A., LL.D., Lord Almoner's Profecogr of Arabic in the University. 1. Vrarly rrady.
TRAVELS in NORTHERN ARABIA in 1876 and 487 . By CHARIES M. DOUGH TY, of Gronville and Caius College. Illuatrations and Maps. a vols.. demy tvo. |la phis fress.
"From SHAKESPEARE to POPE"; an Inquiry into the Canse4 and Phenomena of the Rise of Classical Poetry in Eingland. By F.1)SIUNO GOSSE, Clark Lecturer in Finglish Literature at Camhridze. Crown Bvo. $1 /$ mewediatrely
The LITERATURE of the FRENCH RENAISSANCF. An Introductory Fsay. By A A. TILLF: M.A.. Fellow and Tutor of King's College, Cambricge. (rown ena ob

A TREATISE on the PHYSIOLOGY of PIANTS. By S. H. VINES, M.A., Fellow of Christ's Coilege.
A CATALOGUE of BOOKS and PAPERS OD PROTOZOA. CEFI FNTERATES, WORMS. BY DARCY W THOMPSON, B.A., Scholar of Trinity College, Cambridge. Demy 8vo. 1238 6id.
MATHEMATICAL and PHYSICAL PAPERS. Hy Sir W. THOMSON, 1.1.D, D.C.L. F.R.S., Professor of Natural 1'hilosophy in the University of Giavzuw Collected from different Scientific Periodicals from May, is, t1, to the present time

A TREA'IISE ON NATURAL PHILO. SOPHY: Ry Sir W, THOMSON, LL.D., D.C.L_, F. R.S.s Profenor of Natural Philosophy in the University of Cilaspow, and P.G. TAIT, M.A. Professor of Natural Philosophy in the University of E.dinburgh. I'art II. Demy orio 16 s . Part 11 . Demy Rvaiv 88 s .
ELEMENTS of NATURAL PHILO. SOl'IIV. ly Profs. Sir W. THOMSON and P. G. TAIT. Part I. MATHEMMATICAL And PHYSICAL PAPFRS. BYGFFORGF, GABRIELSTOKES, M A., D.C.I. LLLD. F.R.S., Fellow of l'embrole College, and Lucasian Professur of Mathe matics in the University of Cambridge. Reprinted from the Origioal Journals and Trausactions, with Additional Notes by the Author

A HISTORY of the MATHEMATICAL THF:ORY of FI.ASTICITY, from Galilei to the Present Time. By the late 1. TOINIUUNTER, D.SC., F.K.S., edited and completed by KARI. PEARSON, M.A.
A TREATISE on the GENERAL PRIN. CIPLES of CIF MISTRY. By M. M. PATTISON MUIR. M.A. Fellow and Prajector in Chemistry of Conville and Caius College. Iemy 8vo. $1: 3$
DIOPHANTOS of ALEXANDRIA: a Study in the History of Greek Algebrn. By T. L. HE.ATH. II.A., Scholar of Trinity College, Cambridge. Itrmy ema. 7 F. 6.
NOTES ON QUALITATIVE ANALYSIS. Concise and Explanatury. By H. J. II FENTINN, M.A., F.L.C. F.C.s. Demumatratur of themantry in the Univeratty, Cr. atu $7^{\text {t. Cad }}$

The SCIENTIFIC PAPERS of the late Prof. J. CIERK. MAXWELL Edited by W. H. NIVEN. M.A In a Vols Royal 410 .
An ELEMENTARY TREATISE on QUATERNIONS Hy P. C. TAIT, M.A., Proferma of Naturai Philo sophy in the Univ. of Adinburgh Srerad Editing. Pemy im. ${ }^{142}$
The ELECTRICAL RESEAKCHES of the Honourable IIFNRY CAVE NDISII, F.R.S. Written between 1771
 of the Touke of lew, ishire, K.f: By the lave J. Cl.ERK.MA.WELL
F.RHOKT HISTORY of GREEK MATHFMATICS liyJ. GOW, Litt. D., Fellow of Triaity College. he ANALYTICAL THEORY of HEAT. Ity JOSEPH FCURIFR. Tramalated, with Nitec, hy A Farw waw.

HYDRODYNAMICS. A Treatise on the Mathematical The try of Flund Mution. Dy HORACF:1.A Mt. M.A.
A TREATISE On the THEORX of DETEKWINANTS and their W'IIICBTIONS in ANALYSIS and GF.ONEIRV. By R. F SCOIT, M.A. Demy 8ve 12 s

Tonbor C.. J. CLAY AND SON, CAUHKIIMF: U'NIVEROTY PRESS WAREHOUSE.

THURSDAY, SEPTEMBER 3, 188 ;

THE ANDA.VAN ISLANDERS

On the Aboriginal Inhabitants of the Andaman Islands. By Edward Horace Man, Assistant Superintendent, Andaman and Nicobar Islands, with Report of Researches into the language of the South Andaman Islands, by A. J. Fllis, F.R.S. Reprinted from the Fournal of the Anthropological Institute of Great Britain and Ireland. (London: Tribner and Co.)

"N considering the habits, customs, and physical peculiarities of a savage race, it is important to acquire as much information as possible regarding the land they inhabit, and also to ascertain the nature and extent of the influences exercised by, or resulting from, their intercourse with other nationalities."

The author of the work from which the above extract is quoted has proved himself fully qualified to treat of this interesting race of people, among whom he resided for four successive years in his capacity of Assistant Superintendent, from the scientific point of view which he lias so well defined in the foregoing passage. The volume before us consists essentially of a series of papers communicated at various times since 1880 to the Anthropological Institute, and now republished, with the sanction of the Institute, in a separate form, with an introduction and fourteen short appendices. The report on the language of the South Andaman Islands concludes the volume, and bears a separate title-page indicating that it has been drawn up by Mr. A. J. Ellis, F.R.S., from the materials furnished by Mr. Man and Lieut. R. C. Temple, of the Bengal Staff Corps.

The Andaman Islands consist of a group situated in the Bay of Bengal between the 10 th and 14th parallels of N. latitude, and comprise Great and Little Andaman, the former consisting of North, Middle, and South Andaman, together with the Archipelago, Interview, Rutland, and many other small islets. The entire area of the islands is estimated at about 2508 square miles, of which about 2000 square miles are comprised in Great Andaman. Some pages of the introduction are devoted to a description of the physical features, climate, and scenery, the author calling special attention to the numerous fine harbours which offer safe anchorage during all seasons. With respect to the population, Mr. Man estimates the total number of the aborigines of Great Andaman as probably about 2000 , and of those inhabiting Little Andaman 1000 to 1500 ; the aggregate population of all races is about 15,000 , nearly four-fifths of this number being made up of the convicts inhabiting the penal settlement. A succinct history of the settlement is given, from which it appears that the modern history of the Andamans dates from 1857, although a previous attempt to found a penal station had been made by the Honorable East India Company, but this was abandoned in 1796 on account of the high death-rate.

The author recognises eight distinct tribes of aboriginal inhabitants in Creat Andaman and one in Little Andaman. The natives with which the officers in charge of the station at first came into contact displayed much hostility and considerably harassed the operations of the working
parties; but improvements have gradually been effected in the relationship between the aborigines and the settlers chiefly through the establishment of Government homes, and now, as Mr. Man states in a passage quoted from Dr. Day, "the convicts are left unmolested, the implements of agriculture are not stolen, the fishing stakes are left undisturbed, the gardens are no longer pillaged, runaway convicts have been recaptured, and shipwrecked sailors assisted." The author, who had charge of one of the homes, also states that these "have elfected good in bringing together members of the various tribes, between whom the way has thus been paved for intermarriages, which were of course formerly of rare occurrence; tribal feuds have also here been amicably arranged, while, through visits paid to Port Blair and other homes by members of all the Great Andaman tribes, as well as by our visits in the station steamer to the more distant encampinents, the knowledge of our power, resources, and kindly intentions has spread throughout their respective territories." The aboriginal inhabitants of Little Andaman are, however, still unreclaimed, and all attempts to civilise them have hitherto failed; their hostility towards strangers is such that any persons unfortuate enough to be cast on their shores would be as ruthlessly slaughtered now as at any period prior to our annexation of the islands.

The effect of the contact with civilisation upon those more friendly tribes who bave accepted the advantages offered by the homes is however similar to that which invariably results from all such attemp:s :-" in proportion as they gain in intelligence and tractability, the more fat and indolent do they become, and, having no incentive towards exertion, frequently lose in great measure their quondam skill in hunting." Still more serious is the moral deterioration which has taken place through contact with the convict population, and Mr. Man is careful to point out that his observations have been confined to those primitive communities which have not yet had time to be affected by the virtues and vices of modern civilisation. One interesting point which has been brought out by an attempt to educate the native children is that up to the age of ten or eleven they are as intelligent and can learn as well as the children of civilised races, but after this age no further progress is possible. This feature in the mental evolution of savage races has, if we remember correctly, been observed in the case of many other uncivilised tribes.

In the succeeding portions of the volume we have an immense amount of detailed information upon all the points which are likely to be of value to the anthropologist. With regard to the vexed question of the origin of the race, Mr. Man considers that the natives are the direct descendants of the prehistoric inhabitants, that they all belong to the same race, and that the tribal differences are the effects of isolation by the natural barriers of the country and the constitutional jealousies and hostilities which formerly prevented the tribes from living on amicable terms with each other. Ethnologically the author regards these people as Negritos, and "racial affinity-if there be any-may possibly some day be found to exist between them and the Semangs of the Malayan Peninsula, or the Aëtas of the Philippine Islands."

Following the section on the ethnology of the Andamanese we have an evcellent description of their form and size, forty-eight males and forty-one females having been most carefully weighed and measured, with the result that the average height of the men is 4 feet 10 l inches and of the women 4 feet $7 f$ inches, and the respective average weights $9^{8} \$ \mathrm{lbs}$. and $93 / \mathrm{lbs}$. To give an idea of the thoroughness with which the author has dealt with his subject, under the heading " Inatomy and Physiology," we have a series of five sets of observations on the temperature and rate per minute of respiration and of the pulse on five subjects ranging in age from seventeen to twenty-two years. Descriptions of the pathology, medicine. physiognomy, physical powers and senses, psychology and morals, magic and witcheraft, of the tribal distribution, topography, arithmetical faculties. and of their habitations, government, laws, crimes, \&c., complete the first part.

With respect to diseases it appears that pilmonary consumption and other peetoral complaints are or were the chicf causes of mortality among these people; to these have unfortunately now to be added that "terrible scourge " which has spread over the greater part of Cireat Andaman, and which, is in Australia, unless successfully dealt with, threatens, as Mr. Man informs us, "the early extermination of the race."

The norals of the Andamanese in their primitive state appear to be of a distinctly high standard, as will appear froin the following extracts:-
" Mucb mutual atrection is displaye 1 in their social relations, and, in their dealings with strangers, the same characteristic is observable when once a good understanding has been established . . . every care and consideration are paid by all classes to the very young, the weak, the aged, and the heipless, and these, being made special objects of interest and attentoon, invariably fare better in regard to the comforts and necessaries of daily life than any of the otherwise more fortunate members of the community. Andmanese children are reproved for being impudent and forward . . . thev are early taught to be generous and self-denying . . . the duties of showing respect and hosputality to friends and visitors being impressed upon them from their early years," \&c. With regard to their modesty Mr. Man states that the esteem ${ }^{11}$ which this virtue is held, "and the self-respect which charactenses their intercourse with each other may even be sad to compare fasomrably in th that eststing in rertain ranks amons civilised races. It 14 nurh so be regretied that the strecalled "civilsation" with which these people have been brouglt into contact should have let to the moral deteroration which the author with scientific candour dies not serruple to diacloce. It is perhaps hardly necescary to add that the stones concerning the prevalence of rannibalism among these tribes have been completely disproved both with respect to the present time and to former periods of t

In the second part of his intere
author treats of the language, relat Hthatury ceremonies, marriage, deat sitiona, religious belicfs, demonology? the therd jpart we have an account of the of the Andamanese, their mode of life, gat
rats, and a description of their weapons, mit

Sc. Want of space forbids anything more than a mere mention of the ground covered by these sections, bust it will suffice to say that they are characterised by the thoroughness which is such a valuable feature of Mr. Man's work. The few slight defects which we have noticed are on matters of quite minor importance, such, for instance, as the statement in the introduction, that "the water in the harbour of Port Blair has been found to be remarkable for its high density, as is evidenced by the rapid ovidation of iron immersed in it $:^{"}$ in its presen: form this reads rather like a case of non sequilur.

It remains only to add that in the fourteen appendices we have a mass of most valuable information on vario as subjects connected with these islands and their inhabitants: mos: of these appendices are philological : one is devoted to a list of the native trees, and another to a bist of the shells.

The Report on the language of the South Andaman Islanders is reprinted from the Tramsutions of the Philslogical Society, before which body it was delivered by its anthor, Mr. A. J. Ellis, F.R.S., as his retiring presidentia! address in 1882. The volume is illustrated by a gond series of typical photographs of the natives and tive plates of weapons, ornaments, \&.c., and a map of the islands forming a frontispiece.

In concluding this notice we must not onit to mention that Mr. Man's mode of treatment is based upon the instructions drawn up by Col. Lane-Fox (now General Pitt-Rivers) on behalf of a Committee of the Bras:h Association, and published among the Reports for \boldsymbol{q}^{8-2} This Report was afterwards issued in an expanded form as a Manual of Anthropological Notes and Queries, and the work now under consideration may be regarded as one of the most important practical resulis of the labours of the Committee referred to. We believe that Mr. Man is at present engaged in a similar study of the inhabitants of the neighbouring Nicobar Islands, one of which-Camorta-was selected as a station by the Eclipse Expedition of 1875. We shall look forward with much interest to the continuation of the author's labours in this new ficld.
R. M.

COMM/ERCIAL ORGANIC ANALYSHS
Commercial Organic Analysis. Vol. I. By Alfred H Allen, F.i.C., F.C S. London: J. and A. Churchill. 2885.

chemical anal
But the truth I
tional qualificatim
ence are necessat
ence are necessag
hinss be thorouphly
quently leads them to devise or modify processes without any record appearing outside their own laboratories. Almost every analyst has his own manuscript " processbook," according to which he expects his assistants or pupils to work, and so it becomes a matter of extreme difficulty for an author to produce a work that shall be gencrally acceptable as a laboratory guide. The too frequently occurring discrepancies in commercial analy :es may in a measure be attributed to the same cause, and there can be no doubt that a unification in the methods of conducting and recording analyses is greatly to be desired. This end will doubtless be greatly furthered by the production of standard books such as the present one.

A first edition of the work before us appeared in 1879. It has undoubtedly taken already a very high position, and has been welcomed as filling a conspicuous gap in the literature of analytical chemistry. The value of a division between organic and inorganic analysis to the ordinary analyst may not be great, but it is useful to the author in enabling him to keep his work within bounds. The first edition of the book appeared in two volumes; in the new edition a rearrangement and extension is being made, and it will notv occupy three volumes. The first volume deals with organic bodies of the fatty series and of vegetable origin, and includes chapters on the alcohols, ethers, and other neutral derivatives of the alcohols, sugars, starch and its isomers, and vegetable acids. The second volume, which is to appear shortly, will be devoted chiefly to coal-tar products and bodies of the aromatic series, to hydrocarbons generally, fixed oils and the products of their saponification, and the tannins. Nitrogenised organic substances, including cyanogen compounds, alkaloids, organic bases, and albumenoids will be treated of in the third and concluding volume. This arrangement of the subject is, we think, a great inprovement on the previous one, and makes the book much more convenient for reference.

Mr. Allen treats his subject in as scientific a manner as possible, and this gives quite a peculiar character to his work. It is not, like so many books on analysis, merely a series of receipts or processes of chemical handicraft ; but a work assuming the possession of some really scientific knowledge on the part of those using it. It would be easy to go too far in attempting to generalise in such a subject as commercial analysis and in introducing theoretical details; but although the author goes so $t \cdot r$, for instance, as to introduce structural formulie for many of the substances dealt with, it cannot be said that he demands more knowledge than should be forthcoming from those engaging in this difficult and often obscurc branch of analysis.
The introduction, extending over thirty-five pages, Ees a description of some general methods, such as termination of specific gravity, of melting- and pints, optical properties, \&c. The rest of the tevoted to a consecutive account of substances uder the several headings. After the author क्aietly but sufficiently what the substance egives the methods for its detection, and intersperses the account uijon as is likely to be of value attempt to enumerate the ef products deale with in
the course of the work. Wines, beers, cordials, tinctures, chloroform, sugars, confectionery, starch, vinegar, the commercial acetates, tartrates, and citrates-arc examples taken at random, which will serve to give some idea of the variety. They are, however, treated in a connected manner, in illustration of which we may refer with special approval to the division on sugars, and starch and its isomers.

With regard to the methods recorded by Mr. Allen we may say that on the whole they are such as have borne the test of experience, whulst new processes or modifications of old ones are duly referred to and discussed. The author acknowledges assistance from many men of experience, and has, we think, used it to the best purpose. His descriptions are clear and concise, and the book is remarkably frec from errors of any kind. We think it really an excellent enterprise, excellently carried out, and congratulate Mr. Allen on having produced a scientific and thoroughly practical book which, we are confident, will find a place in the library of every practical chemist.

RECENT TEXT-BOON'S OF DETERAIINANTS

Lectioncs de Coordinatoria con las Determinantes y sus principales aplicaciones. Por D. Antonio Suarez y D. Luis G. Gascó. (Valencia, 1882.)
Trait' Él'minchtaire des Detcrnuitunts. Par L. Leboulleux. (Genive, 1884.)
Dic Detirminumten, fur deth ersten Unterricht in der Algctra bucurbeitict. Von Dr. H. Kaiser. (Wiesbaden 1854.)

Lessons Introductory to the Modern Higher Algebra. By George Salmon, D.D. Fourth Edition. (Dublin, 1885.)

- ${ }^{H E}$ first of these works is outwardly a very handsome volume, and on examination we find that the authors have also done their part in the most painstaking and methodical way. The main part of the title, "Coordinatoria," is apt at first to mislead, and indeed after a cursory glance at the contents a cosmopolitan reader might be pardoned for thinking that "Coordinatoria" was a misprint for "Combinatoria," for what our grandfathers spoke of as the Ars Combinatoria is the subject of the opening chapters. "Coordinatoria" it is, however, and in the preface it is placed as a science side by side but in contrast with the science of Quantity.
There are in all twenty chapters in the book. The first seven (146 pp .) deal with permutations, combinations derangements or inversions of order, substitutions, and difference-products: they form a lengthy and most carefully prepared introduction to the theory which follows. The next ten chapters (24 pp.) deal with determinants, and expound all the more important propertics in the most methoolical, simple, lucid and ungrudging manner. The learner, for example, is prepared for the evaluation of a determinant whose elements are expressed in figurcs by-
§ 327. Simplification by addition.
\$ 32 S. Simplification by subtraction.
\$ 329. Simplification by addition and subtraction.
\$ 330 . Simplification by multiplication.
And so on, up to-
§ 335. Simplification by inultiplication, addition, and subtraction.
An impatient Briton might be tempted to call this "simplification to the death," but after calmly perusing the whole he might be induced to confess that he had said so in his haste. The last three chapters deal with applications of determinants : one is arithmetical, and is mainly concerned with continuants and magic squaresa rather invidious juxtaposition ; one is algebraical, and gives the determinantal solution of a set of simultaneous linear equations; and the last is geometrical. A very valuable feature of the book is a r'sumet in 40 pp . of all the definitions and theorems given in the preceding 410 pp . No one but a most enthusiastic and painstaking teacher would have thought of adding such an admirable abstract.

The next book on our list might have been more accurately described as a very elementary treatise : it must have been intended for pupils with exceedingly little algebraical training. The first 18 pp . are occupied with determinants of the second order, and they are followed by 33 pp . treating of those of the third order. It may be safely affirmed that the pupil who requires 18 octavo pages to teach him the theory of such abstruse functions as determinants of the second order would do well to redirect the expenditure of his mental energy. The book is carefully and accurately writen, and there is a wealth of simple exercises in it, worked and unworked.

Dr. Kaiser's pamphlet is of the same ultra-elementary character-considerately restricted, however, to 23 pp . On a former occasion (Natcke, vol. xxix. pp. 378, 379) we drew attention to the fact that a new Introduction of this kind appears every year in Germany, and that of late they have not been improving. We merely notify, therefore, that this is the production for 188_{\downarrow}.

The preparation of a new edition of Salmon's "Modern Higher Algebra" has been entrusted to Mr. Cathcart. It contains about $4^{\circ} \mathrm{pp}$. of new matter, the chief increase arising from the expansion of the clapter on " Applications to Binary Quantics" into two chapters, the first with the old title, and the second headed "Applications to Higher Binary (Zuantics." The clanges made on the portion which deals with determinants are slight, and consist chiefly in the insertion here and there of wellchosen examples.

OUR BOOK SHELF

The Three First Years of Childhood. By Bernard Perez. F.dited and translated by Alice M. Christie. With an introduction by James Sully, M.A. (London : W. S. Sonnenschein and Co., 1885.)

The earliest years of infancy are of importance to two classes of inquirers-to the educator who knows how much evil results trom the wrong treatment of young chiluiten, and to the evolutionist who, rejecting the Catula ras,a of Lonke, looks to infancy as the time freest from any effect it artticial training. In the study of other men's minds the observer is as likely as not to be purposely tecenved by ther, whereas deceit is an accomplishinient whith few infants have attained to.

Mr. Hernull ferez seems well to combme these characters. Ile is an educator who has publislied varums wiork - on schon, matters, and he describes man as an anmul which ought to be reasonable, while lie is not necessati. 2 , at criminal scandals and the success
of bad novels prove. He notes that the preponderating elements in a child's will are impulsiveness and stubbornness, incapability of fixed attention, qualities most opposed to the temperament of philosophy and discipline. Much of his book is advice to practical educators, whom he urges to study the manifestations of infancy and to endeavour to lead their youngest pupils by example and not check their behaviour by authority ; their intellect should be helped, not controlled. He specially points out the danger of deceit before even the youngest of children.

But, on the other hand, there is little of the tone of the pedagogue in his book. Far more is it a book of suggestion than one teaching with authority, and it will encourage the spirits of fruitful doubt and inquiry in the mind of every reader. He enters heartily into the teaching of modern science, even to using the argument that infants have not certain sensations because they would be of no use to them at that age; and, thinking it necessary to caution his readers against leaving everything to hereditary dispositions and powers. He urges the mportance of comparing early human life with animal life, thus making cats, dogs, birds, and babies more interest ing than before. We may enjoy his book without accepting the teaching that human language has grown out n such involuntary signs as laughter, sobs, and screams. afterwards performed voluntarily. No doubt these 10 voluntary sounds are of more use to an infant than more sober utterances, and have therefore become innate and involuntary, while language is an artificial acquirement We think that few who have watched their vigorous antics will feel sure that a state of equilibrium, a passive state of health, or even that of moderate and appropriate exercise in moving their limbs, is the most enjoyable sensation to infants, though this latter pleasure is sufficieat to explain many actions of infants for which our autbor seeks a deeper reason. On the other hand, we think tha: the moral sense has become more deeply impressed than he suggests, and is far from entirely the result of approbution and disapprobation.

Attention and vivid perception seem strangely shaken up in his remarks ; the latter faculty explains the dislike which children have to hearing a tale repeated with variations. They have indeed got it all "by heart."

Mr. Sully, in his very suggestive introduction, raises the question, who is best qualified to follow up thus delicate business of observing and rightly explaining al! the movements and utterances of such young objects? Neither father, mother, nurse, nor doctor is completely qualified for the study. Mr. Sully concludes that the father and mother must conjointly undertake the work, the cooler intellect of the one checking and steadying the close and loving knowledge of the other. Let us suggest that an elder sister is most likely to succeed, and thus indicate a path to intellectual usefulness and even emioence well fitted for a lady's sphere. It will elevate every little labour from drudgery into a scientific study of varastions and resemblances of the greatest importance, and add immensely to the interest of nursery life in a large family. On such observations may be based, by herself or by more ambitious philosophers, theories of ractal varieties, of biology, and of education. Sir W. Hamilton points out that the study of the human mind requires no scholarship or costly apparatus, and the principal acquirement necessary for success in the study we suggest is a little close knowledge of one's own thoughts and feelings: In recording observations Darwin's golden rule muss always be strictly adhered to: Theorise freely-every othei ubserver will help to demolish anything that will not huld water, and whether true or not it may be a nos: gestive hypothesis. Be most scrup il
as a fac
prove
trute

Un Capitolo di Psicofisiologias. Da Enrico dal Pozzo. Foligno, 1885.)

A GOOD book on abnormal mental phenomena of all sorts was to be expected from Prof. dal Pozzo, one of the very oldest living investigators of this branch of physiology in Europe. The present excellent little treatise comprises the substance of seven lectures delivered during the current year to the medical students at the University of Perugia on "Hypnotism," "Animal Magnetism," "Somnambulism," "Human Radiation," and "Psychism." The whole field is thus covered from the time of Mesmer down to Mr. Crookes's experiments, and the still more recent "Thought Readings" of Mr. Bishop and Mr. Cumberland. As a philosopher of the monist school, the author naturally rejects the spiritualistic conception, accepts the term "psychism" only in Mr. Crookes's sense, and regards all these manifestations as strictly co-related and explicable on physiological grounds. Human radiation he is also disposed to admit as a biological property, hence has no difficulty in believing in such well-attested facts as may be explained by it. But whatever cannot be so explained he regards as unworthy of credence, and treats the terms "spiritual," "transcendental," and the like, as synonymous with ignorance. The power claimed by paid mediums to hold commune with the departed is, of course, emphatically denied, and it is cogently argued that the medium can tell us nothing regarding present or past facts of which the audience may be ignorant. He cannot, for instance, say how many chairs are in the next room if the number is unknown to all present, whereas the somnambulist will often tell it exactly. Hence if these psychic manifestations did not depend on human radiation, but were the work of spirits, it would follow that these spirits are more ignorant than ordinary somnambulists. And to the assertion that psychism produces phenomena absolutely inexplicable by human radiation, the answer is that who cannot do the less can scarcely do the more in matters of this sort.

At the end of the work a chapter is added on Giordano Bruno, and his philosophic system, which, although not directly connected with the subject, will repay perusal.
Die Nutzbaren Pflanzon und Tiere Amerikas und den
alten Welt zergleichen in Bezug auf ihren Kultureintfluss. Dr. L. Höck. (Leipzig: E. Engelmann, 1884) IN a pamphlet of fifty-eight pages Dr. Höck institutes a comparison between the useful plants and animals employed by man in the two hemispheres. Although the comparison is inade in a somewhat rambling manner in the text, the conclusions arrived at are clearly tabulated in the form of an appendix. The influence of useful plants and animals on civilisation seems almost lost sight of, except on p. 10, where guesses at their mode of influence, rather than evidence proving it, are offered. Only those species considered by Dr. Höck to be the most important to mankind are noticed; hence the comparison can only be regarded as approximate to the truth. The author finds that the Uld World or eastern hemisphere affords 269 useful plants and 58 animals against 52 plants and 13 animals derived from the New World. In consideration, however, of the larger area of the eastern than of the western hemisphere, which he estimates as being in the proportion of 9 to 4 , he concludes that the New World only affords rather more than half so many as the Old.
The tables in the appendix indicate a certain amount of carelessness or confusion, which slightly vitiates the conclusions arrived at. Thus, Citrullus Colocynthis and Momordica Elaterium are classed under fruits used as food, instead of under medicinal plants; Rumex Patentia is indicated as English spinach, and Hucmatoxylum campechianum, which is stated in the text to be a New World plant, is given in the appendix as belonging to the Old World. It is difficult to understand the principle upon which the "more important" plants have
been selected, many of then being by no means so extensively used as others which are omitted : this is particularly noticeable in the list of medicinal plants and those used in the arts. But, in justice to the author, it must be admitted that the task he has undertaken is a most difficult one, and cannot be fully treated in so small a space as he has given to it. His claims that the greater proportion of the present work was already completed before De Candolle's "Origin of Cultivated Plants" fell into his hands must also be allowed due weight.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertuke to י'eturn, or to correspond with the writers of, rejected manuscripts. No notice is taken of anonymous communications.
[The Edifor wrgently requests correstondents to keep their letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the appearance oven of communications containzmg interesting and movel facts.]

lona

BeFque the clowe of the season when there is easy, and indeed luxurious, access to the Island of lona lyy steamers from Oban, 1 would call attention to the high interest which attaches to its geology in connection with the rocks now caller " Archacan."

Although the rocks of Iona are lithologically very distinct from the old gneiss of the Hebrides iwhich is the true "Laurentian" and closely resembles the rocks near Quebec), yet they are equally distinct from the mica slate series of A rgyllshire, and I have always regarded them as undoubtedly belonging to the pre-Cambrian horizons. I had never seen, however, until last week, the beautiful sections exhibited in the precipices of the south-west corner of the island. Tourists often visit the little "Bay of the Coracle," where St. Columba is said to have landed, and I had not myself gone farther west. But the very calm sea of last week tempted tue to boat round the farther coast to the south-west, and I was much struck by the sections there seen. The tocks are quite free from vegetation, and the exhibition of the strata is very striking. They are intensely hard and highly silicious-beautifully coloured with red, green, and black-and the loeds dip at a high angle with remarkable flexures and faults of all kinds.
On the side of the island where the cathelral is, and which tourish visit, the rock is entirely different in its mineral aspect and character-being a dark or black slaty rock, thinly bedded, and with no bright colouring at all. It belongs, however, evidently to the same series, and has generally the same dip and strike as the beds farther west.
I should be very glad if some geolo弓ist acquainted with the different horizons of the Archean weries so largely developed in Canada could visit Jona, and determine to which of these horizons its rocks belong. Between them and the mica slates of the mainland of Argyllshire there i interposed the massive granite of the Ross of Mull-which comes up clo-e to the eastern shore of Iona, and on the other side of which, near Bornepm, the mica schists are in the same relative position ; while underneath the granite itself, and sometimes interbedded with it, there are some beds of a dark homblendic gneiss.
The whole neighbourhood is evilently one of great interest in connection with the oldest metamorphic rocks of our island.
s.s. Columba, Campbelltown, August 30

AkgyLl

Radiant Light and Heat

There are two points in my article of last week which I should like to have the opportunity of discussing at somewhat greater length.
(1) In this article I made use of the following expression, having especial reference to phosphoreicent bodies which continue after excitement to emit luminous rays at a comparatively low temperature:-"There seems to be no veason why molecular encrgy should mot be somekow chansod at once into radtant light and heaf." Let me now explain what I meant by this slatement. The concluding quotation from Prof. Tait leads us to see that the definite connexion between the quantity and quality of the heat and light given out by a body and the temperature of that body, which the theory of exchanges asserts, is only statistically true. I can imagine, therefore, a few neighbouring

Er.iecales of wame F.bopphocscent substance to be in a state of

 fo*ler, I can imsine ac escionare, the wä, of which are coaid if:ernaily witn an eazated phorphore-cen: to ndy ferforms 10e tor all practical pary.ses the part of an enctritine of low ten. eratcre under thee the :? of eachanges, and ies at may be contaung for some time :c exit vivi! :e rays.

12: I can, towever, imasioc :he fullowicg . se-: in :u te plit:

 at the termperat:ure I.
 the in:enxt walls of $4, \ldots, 5$ ase lined in jar: with this phus

 Bu: if the furite: quesits: le asiced in what way dues the

 men:a!/s l:": ie ur … in sict;e of what the ; hurphorexent

 Lalrư゙a stenakT

Te Eleven-Year Meridional Oscillation of the Auroral Zone

Tuts wery retuarias ${ }^{2}$ le !2w, in faverur of whin Mr. Trombalt

 to ciatuluc tie cxate tag't mystenots, beni of unton be:wen the a-to an an! weatner. Nolong av we sim:! hnew that the maniec:avoro of the dumira Ionlariv incresel ord dim:nabel erersicierewth the oloc: eres of the golar surface, we were olliged to crinlutie that there was a nimitiat increace and decreave in. •he electncal eneray of :erre't,al carren: e and $^{\text {a }}$ me:enrol.,ntal evience di! not tarour the atea that the elevenyear variatha in terrestral curferis, was on wh an eversive

 piacetucut of the 2 inne w.utl| caise the annisl averaze n:mier of aurore to incresee or tratnon thy the:r remmal antyant.
 miles, the adruat, average titailer of aurer the So 1040.

 Alian lifumn ar. 1 .others, of utwn the ertra. in ferm letweel, the a"r ra! sure and the $=$ thenem. tros?

 which may, in the hand, of an antellugen: a mond
 to efferts will le yasel :- worm , rate it.

 which i., met دl. ear to have been utabers iy Mr. and which, whice comblinel :n the furm, of pricentas

Tasle I.-. Vo. of Awrore som anmmally of Goditaab and

$1+30 \cdot 10^{\circ} 0^{3}$	${ }^{47}$	41	43	4	45	4.	$4{ }^{4}$	43	e,	50
	60	$\underline{2}$	4.	17	; 4	$\underline{3}$		-	-	
ava.	15	13	18	\% 2	24	31	\%	14	11	

TABLE 11. - The ature mambry of fivgerg noviertad info NT 6 misz's of tiar metres sod compured giticr smowhing =urd smaciked Swnsfov NumNers ${ }^{1}$

The figures in Table II. "reac for themselves
To errohorate this law by further olservation will necessitate 2 prolonged soourn in some region morth of the maximum asmoral wone, and Greenland appears to be almost the only region where this couid be done in the absence of a regular loiar experlition.
E. Lutglas Archimald

Tunluris'e Wells

On Cases of the Production of "Ohm's (or Langberg s) Ellipses " by Biaxial Crystals

Is examinang the macled crystak of potassium chlorate, whech are so extremeiy common th the ordinary crystallined saks, I have found that all th se which consist of imo bemutroure plates oniy. neatly evual in thicineic give the abovementuned *ecobdary in:cr:erence-curves when placed an bumugeneves convergent fime-pwismed light.

Thin reulf to rou mire than we should expect if the erystals
 E :1n:un. 2., 1., 5401 wa:y ycan lefore the curne were

 kuavial croseal, the angeinialet hy the optic axer beins 25 30 kicrmitie.f in o:tve cill, an I I donot tind that the proslation of the carves in sich cryvials has tieen batherto noticed.

The plane of the optac axes, however, makes so lange an angle, vir. 35 30 as determined in olive o:lt, wath the normal in the curfaces of the piates in whict potasium chlorate u*ually cryotall. wes, that the iscabromatic carves in the vacinity of this nivmal Ieling to a vesy hish urier, and dis no: sensibly differ from purtions of carcie, of lange radids Thus in a macle, in which
 1×0^{2} from tha: of the u:her, the p'anes of the optic axes make c:ual angies of in' $^{\prime \prime} 30 \mathrm{wah}$ the normal nn opposate sules of ix, ai.1 su the onn!nsuav !e!ern:re! ! y I arso! erg fo: the proluction of the ecior lary c":mes are fultilet. 1 have, in fact, made artativ:al twing of :hiv in: 1 bacemerning tozether plater of the alt onented as atwore in iccated; and I hin I that they show the ellipses precuely as the natural macles do. On course, in order to see them, the commound plate must te so placed that the flane wh ch ista tos the owsesl an it the two scute beectrices

 wh in in m inim, n , ffers from them in erystalloकradela 1 wh n ly IN". In such caves the secondury intesferen wirves are much more complicated, two setw of dilines beang generally visible, one on each wide of the tentre of the fiold (the exact position, of mores, depenting on She re
Une
Une
$=$
symmetry is either parallel or perpendicular to the plane of polarisation of the light (the analyser being crossed), a few broad, black, curved bands crossing the main black hand lying in the plane of symmetry, which are probably portions of the isochromatic curves of a very thin plate. But, on the other hand, some non-irilescent crystals show these bands, and some iridescent crystals do not show them at all. Also the iridescent crystals which reflect D light at moderate incidences show very perfectly the circular band described by Prof. Stokes (Nattuke for April $\mathbf{1 6}, 1885$, p. 566 , par. 9) as sharp black crescents, the horns of which nearly touch each other at the plane of symmetry.

Almost the whole of the ordinary commercial crystallised potassium chlorate seems to consist of macles ; so that, in order to get a single individual crystal for examination, 1 have always had to cut away one component of a twin.

It seemed worth while to try whether other biaxial crystals would, when similarly combined, give similar phenomena, I took a crystal of barite (barium sulphate), the angle included by the optic axes of which is, according to Groth, 63° in air, and cut a plate of it in such a direction that the plane containing the optic axes made an angle of 53° with the normal to the surfaces of the plate. I then cut it in half and cemented one of the portions upon the other in a reversed position. The compound plate thus produced shows the secondary ellipses (which, however, are very nearly circles) in great perfection. I have also made similar compound plates of borax, nitre, and citric acid, and found them to give similar results.
II. G. Madan

Eton College, August 24

The August Meteors

Between August 4 and 20, 174 shooting stars were recorded here in $16 \frac{1}{2}$ hours of observation. These included abont 37 Perseids, chiefly seen on August 5, 8, and 13, but the shower was not well observed owing to cloudy weather. The following are the chief radiant points determined from the paths regis-tered:-

Many other shower centres were less distinctly shown. Nos. 4 and 9 fall exactly on the equator, and were sharply defined.

As to the shower of Perseids on August 10, I believe it was more brilliant than usual, though I made no regular olservations on that night this year in consequence of overcast sky. Many meteors were, however, noticed in the clear spaces which now and then occurred, and judging from the frequency of the apparitions the display was a finc one. As to the duration of the shower it was still visible, though very feebly, on August 20, for 1 registered 2 undoubted Perseids during a watch of $3 \frac{1}{}$ hours, when 31 meteors were recorded.
With regard to the minor displays of this epoch they are more remarkable for their number than for individual intensity. The most active of these radiants, as recently observed, was No. 10 at $345^{\circ}+53^{\circ}$, which supplied about 10 meteors, but the rate was less than one per hour, so that it cannot be ascribed much importance.
Bristol, August 25

Disinfection of Sewers

In the last number of the Lancet (August 15, 1885) I have read of the measures taken by the Metropolitan Buatil of W irk for the deodorising and disinfecting of London sewers. lketween 30,000 to 40,000 tons of sodium manganate and from 10,000 to 12,000 tons of sulphuric acid are daily poured in the
mandon vewers. ants uted are sufficient, and how is it proved that ints uwed are suficient, and

I need not point out the difference between the deodorising and the di-infecting of sewage. The latter may be peifectly deodotised, and yet be quite adapted to favour the vegetation of bacteria.
The oxidising and deodorising action of sodium manganate cannot be sufficient to prevent bacterial life, unless when the salt is present in large quantities. Considering the enormouivolume of London sewage, it is not to be believed that even such a vast amount of nanganate as 40,000 tons per diem woald suffice to destroy bacterial life in the sewers.
The adding of sulphuric actid to the manganate naust certainly enhance the disinfecting action of the latter. Only, I do not understand why the quantity of sulphuric acid is relatively so small in comparison with the quantiny of manganate. I d not see why manganate should be used at all when sulphuric acid, a more powerful and less contly disinfectant, can be used alonc.
It is well known to all who occupy thenselves with the cultivation and study of bacteria that these micro-organisms do not grow well in acid media, and that the addition of acids, especially of mineral acids, checks their growth completely.
It can be said that the antiseptic action of acids is of household knowledge, for vinegar is constantly usell in the preseryation of animal and vegetable prolucts. That mineral acils have a greater disinfecting action than vegetable acids is also well hnown, unfortunately even by dealers in vinegar, who give durability to this eondiment by the addition of a tiny propurtion of sulpharic acid.
It is probable that pa:hogenic lacteria, even more than the bacteria of ordinary fermentations and of putrefaction, are in need of alkaline media, and therefore are more sensitive to the action of acids. In the animal body bacteria invade those fluidand tissues where the alkaline reaction prevails; and it is proved that the germs of discase are easily spreat by milk, a liquid generally alkaline. Moreover, it has been proved by experiments on some pathogenic bacteria that gastric juice, although of so slight acidity, easily, and sometimes effectively, checks their development.
Sewage contains all the elements necessary for the nourishment of bacteria, and its alkaline reaction renders it very favourable to their growth and preservation. Disinfection means the destruction of existing bacteria and preventing the development of newly sown bacterial germs. Therefore 1 am persuaded that the cheapest and more simple method for effectively disinfecting sewage is to rencler its reaction permancutly $a_{i} i d$ by the addition of a sufficient quantity of mineral acid.
There are of course disinfectants far superior to mineral acids in antibacterial energy. But they are gencrally costly substances, that cannot be applied to the tisinfection of such an enormous quantity of matter as the sewage of a town. As for cheap disinfectants, such as ferrous sulphate, ferric chloride, sodium manganate, their action is inferior to that of mineral acids. Especially of the two former it can be said that their deodorising action is due to their saline constitution, and their disinfecting action to their acil reaction.
The great difficulty in extensive disinfections is to ascertain if the disinfection has been complete-i.!. if the substance disinfected las, leen rendered unfit for the development and preservation of bacteria. Even laboratory experiments, to ascertain the minimumt of disinfectants necessary for the destroying of bacteria, are not casily conclusive. But, in using acids, the disinfection can be considered complete when a permanent acil reaction is obtained.
I do not believe the quantities of sulphuric acid poured in the London sewers sufficient to give a permanent acid reaction to the sewage. Disinfectioll must be done completely, or not at all: there are no half measures in disinfection. Therefore I maintain that the London disinfection is useless, and the sewage remains likely to become the culture fluid of infectious germs, unless the sewage is rendered permanently acid. All the sodium manganate added to a sewage that remains alkaline, gets decomposed; the manganese precipitates as sulphide, or is deposited in combination or mixture with the organic sediment. The sewage will thus be cleared and deodorised for a while; but it still contains in solution all the elements necessary for the nourishment of Bacteria, and is still favourable to their growth and preservation. The disinfecting action of sodium manganate would avail only if large quantitics of the salt remained dissolved in the sewage, over and above of the quantities decomposed in deodorising and clearing the putrid fluid.

It might be objected that, even if mineral acils stop the
development of bacteria-a point that cannot be doubted-they may not kill the spores, thus permituing the germs of discase to escape. There are no experiments (of which 1 am aware) to answer this objection. But there is reason to believe that pathogenic germs do not resist for a very long time when in unfavourable media; even in sewers, that are not over-filled and stagnant, and that are well ventilated, infection does not easily linger. If inside the sewers disinfection is complete, and bacterial growth checked, and all disease germs rendered inactive, until carried for away from all populous centres, I think we can leave it to air, and to the other natural agents, to ultimately destroy the surviving germs, or completely alternate their pathogenic qualities.

Amongst the mineral acids, hydrochloric would, of course, be the cheapest. But I think sulphuric acid ought to be preferred, nitric acid being too costly and too corrusive. Sulphuric acid does not attack easily calcareous cements ; and if the sewers have their walls well plastered, the action of a shight oxcrss of sulpluric acid in the sewage would be very slight indeed. Cements, more resisting than plaster, could be prepared. Moreover, if some portions of teh sulphuric sewage get carried in the air, or are dried in the higher parts of the sewers, the germ-laden particles do not rid themselves of the acid by evaporation; on the contrary, the acid becomes more concemrated and active, and finally must disorgani.e and destroy the noxious germs. This is very important in preventing the effects of sewage air.

Since 1881 Prof. Beilstein of St. Pctersburg (Nituke, vol. xxiii. p. 394), experimentally concluded that sulphuric acid is the best disinfectant, although he did not advise its use because of its currosive action. Sirange to say, Beilstein thought that, practically, aluminous sulphate was to be preferred to the free acid.
It is not only during the fear of cholera invasions, but at all times, that I would wish the sewage to be slight/y acidified wilt sulphuric acid. Strict supervision should be mainained over all the sewers, to ascertain that the whole mass of flowing sewage is permanently acid. I anm persuaded that this simple mode of disinfection would diminish considerably many infectious discases.
During the cholera epidemic of 188_{4}, in Naples, I did my best, in a zeries of letters I then published, to persuade the sanitary authorities of this mole of disinfection. But a strange confusion of ideas was then prevalent in Naples. Through the gorrlwill of Prof. Cantani, Member of the Sanitary Commassion, soine trials of the method 1 proposed were done, but not in a complete and systematic manner. Such experiments cannot be done easily in Naples, and the results cannot be conclusive until the system of sewers is in gookl working order. Indeed, in some parts of the coll of Naples it is difficult to know if there is more sewage inside or outside the sewers. It is no easy problem to disinfect and cleanse such an impure soil, and it is indeesl to be wondered that the ravages of cholera were so linuited in ISS_{4}.

My letier caused sulphuric acid to be used abundantly in the sewers and pozt neri of Portici, Castellamare, Taranto, and, I believe, in other places ; but this, like all other divinfections, was done under prewurc of appreaching cholera, and abandoned as soon as the dauger passet, no othervation being made to measure the influence of the sanitary method adopted on local infectious diveaves. The defective syssem of sewers and of drainage in many lialaan town. render, thorough disinfection vearcely posible, and prevemi, preciatun in testang any kind of disinfechon.
In English towns sewers are generally well arranged, and often well ventilated; and vital statistics have taken sufficient developurent to permit the tevting of sanitary reforms. When it is proved (and I think the prout can be eavily given) that the present systems of oewage dismiection are not sufficient to prevent entirdy bacterial sevelopument in ihe sewers, these systems cannot le considered goorl. I senture to hope that beneficial re-ults would swon become evidem if the sulphuric acid disinfection of sewage weve thoroughly appliet in Inglish sowns.

I'ortict, Augual 20
Italo (inglolt

Ozone at Sea

THE presence of this element in the atmosphere is alleged to be indicaive of its healthiness, and it has been inverstignied on land frequenily by ulsersers with varying and uncertain results.
Recorls of its presence may be seen paily in the Timis, farnished from the Olmervaloy on lien Nevis, hut as yet little
notice has been taken of its prevalence af sea, though it has beeo supposed to be more plentiful there than on land.
During a voyage around the United Kingdom on the sis Ceylon in August last, we entered into the investigation of its exive ence at sea, and used Moffatt's papers for the purpose, obtained from Negretti and Zambra. They were exposed in a perforated light wooden box, hung up in the open air on the deck of the ship in the shade, and noted and changed i wice a day.
It was found most prevalent in Cork Harhowr (4), less so th Bantry Bay (2) and Oban Harbour (2), and nearly absent is Kingutown Harbour (1) and Leith Roads (1).

In the open sea it was most shown in the Irnh Channel (4) and off the Lands End (4); next in the North Seas (3) and is the English Channel (2), and least in the Irish seas (t) and western coasts of Scotland (1).

Ozone was found to be indicated in greater intensity during the prevalence of wosterly toinds in the English and Insh Channels, and Atlantic seas and Datch seas, and less wab asterly winds prevailing in the Irish seas, Firth of Forth, and west coasts of Scotland.
The relucity of the winds seemed also to crease a higher manifestation, as was seen during the gale from the south-wes in Cork Harbour and the fresh porth-westerly breezes on the south coasts of Ireland and east coasts of England. None, however, of the olservations approached thove registered in the Times from Ben Nevis (8-9), which amounted to double thow noticed in the seas around our coasts during the same period (August), supposing that the same papers and scale (Moffazt's) were used for both sets of observations.
Ozone was also found to exist in the cabin of the ship both day and night, but at a half intensity to that on the deck, due probally to the great difference in the movement of the air in the two places.
The degrees of manifestation of ozone at sea here shown by no means some up to expectution that it prevailed in all ins potentiality on the ocean, but of course a whole year's obeerva. tion would be required to enlighten the subject and furnish a comparison with that on the land.
Again, it may be possible that altitude may have something to do with its prevalence, more or less, as it appeared more on the top of Ben Nevis than on the level of the seas of the same coasts near it and at the same period of the year (August).

Should this idea be of any significance it might be as well to searei for manifestations of ozone at the base as well as on the top of m untains, and if similar results followed to these bere pointed out it would establish the reputation of high level siles for great salubrity of atmosphere.
August, 1885

THE IVTEKNATIONAL BOTAN'ICAL AVD HORTICULTUKAL CU.VGESS, ANTHEEKP?, $183 ;$

T-HE International Botanical and Horticultural Congress met at Antwerp on Sunday, August 2, in the hall of the Artistic, Literary and Scientitic Club, the opening meeting being honoured by the presence of a good many ladies. The gathering was a representative one, and included tnany well-known European botanists and horticulturists. The Burgomister of Antwerp opened the proceedings with a few appropriate remarks, and Prof. E.d. Morren, of Liege, having been made President of the Congress, took the chair, and a discussion was held on the tlora of the Congo. After a short discussion the meeting adjourned to the Exhibition building, where the International Horticultural Show was being held, and which was formally opened at one o'clock. Many of the plants exhibited were of great interest, and the whole of the collections were nicely and artustically arranged five o clock the Congress visuted the Plantin Museu old printing office of the I'lantin Moretus family Museuni is full of interest, which the works of Lobel doubly interesting to all of the Burgomaster of off for the members of
presented fill a arume

In the evening there was a concert in the garden of the Exhibition in honour of the members of the Congress.

During Monday, Tuesday, and Wednesday the two sections of the Congress--the Botanical and Horti-cultural-met in the Botanic Garden in the upper and lower hails of the Botanical Institute. The different subjects contained in the programme were duly discussed, and a resolution of Congress on the different points raised terminated each discussion. The method adopted at these meetings was one which might well be followed in other assemblies, and is one which reflects great credit on the President of the Organisation Committee, M. Charles de Bosschere. All the subjects to be discussed were treated of in longer or shorter papers, all of which were printed in the four fasciculi of the Proliminary Repolts issucd to the adherents of the Congress. In this way all the members had the subjects before them in a tangible form, and discussion was easy: Might not the British Association take a hint from this? Without giving up the method at present followed, let the British Association add to their work a discussion on one or two subjects of importance, papers by special men to be printed beforehand, so as to be in the possession of those who can discuss the subject at the meeting.

The subjects of discussion-twenty-two in numberwere mostly of considerable botanical interest, others being purely horticultural, the question of the Congo being general. Perhaps the most important subjects were the discussions on botanical laboratories, on the amount of instruction in cryptogams to be given in different parts of the botanical course of study and the recent progress of botany in different countries. It is important to notice that the general opinion of the Congress was in favour of two kinds of botanical laboratories, those of instruction and those of research, and there can be no doubt that in every so iety research should be encouraged in every way and be the highest object of their organisation.

On the evening of August 3 the Burgomaster of Antwerp held a reception at the Hotel de Ville, which was very largely attended by the members. On the evening of August 4 Dr. Henri Van Heurck, the Director of the Botanic Garden, gave a most interesting series of inicroscopical demonstrations in the meeting-room of the Botanical Section. The application of the electric light to microscopic work was shown, and nothing could exceed the perfection of the arrangement employed by Dr. Van Heurck. Surirclla gemma, Amphipleura pollucidu, and Noberts's 19th band were shown in a manner which left nothing to be desired; and in the case of Amphipleura, not only were the striae shown as distinctly as one is accustomed to see them in Niazicula rhamboides, but, by illumination through the object-glass, the strie were distinctly resolved into beads ; by oil-immersion lenses, of which, as of other object-glasses by all the best makers, Dr. Van Heurck possesses a remarkable series. The electric light employed is obtained by a bichromate battery (Trouve's) and Dr. Helot's photophore. As the photophore works equally well with an accumulator, and where there is no difficulty in getting the accumulators charged, no better illumination can be got, and this 1 would strongly recommend to a!l microscopists. Altogether Ur. Van Heurck's demonstration will be remembered as one of the most interesting things connected with the Congress. On the evening of Wednesday there was a grand banquet, when the members spent a very pleasant evening together.
Un Thursday moming the Congress lett by train for Omarrival, the mentibers went to the Natural - Aluseam, imilurere shown through the building

hot-houses were all inspected, and then the Members of the Congress were entertained in the orangery of the garden to a luncheon given by the Members of the Royal Botanic Society of Belgium. After luncheon the party proceeded by tramway to Laeken, to visit the Winter Garden, which had been opened to them by his Majesty the King of the Belgiums. Mr. Knight, the Inspector of the Royal Gardens, accompanied the party, and pointed out the objects of interest. Friday was to be devoted to an excursion to Ghent, and Saturday to a botanic excursion in the neighbourhood of Herrenthals, Dolen, and Gheel, where the Members of the Congress were to disperse. I left the party at Brussels, spending Friday at Liege with Prof. Morren, who showed me the splendid new laboratory in the pretty little garden under his charge. I afterwards visited Prof. Suringar at Leyden, and saw some of the treasures he has just brought back with him from the Dutch West Indian Islands, where be has been able to make extensive botanic collections of living and dried specimens.
W. R. McNab

August 31

THE FAUNA OF THE SEA-SHORE ${ }^{1}$

THE marine fauna of the globe may conveniently, in the pursuit of certain lines of scientific study, be divided into three groups according to the regions inhabited by it. There is the littoral fauna comprising the animals inhabiting the sea-shore and the shallow waters in its immediate neighbourhood, the deep-sea fauna, and the pelagic fauna, the latter occupying the surface waters of the ocean. Each of these regions presents certain marked peculiarities of conditions of existence, and exhibits, in accordance with these, certain special characteristics in the composition and history of the origin of its fauna. The deep-sea is devoid of sunlight and therefore of plant life. It is dark, cold, and monotonous, being devoid of day and night and periodical or irregular changes of any kind. Its habitation probably dates from no very great antiquity. The ocean surface can support only a peculiar fauna of animals adapted for floating or constant swinming, and affords no shelters nor resting-places.

As Prof. Lovèn writes ": "The littoral region comprises the favoured zones of the sea, where light and shade, a genial temperature, currents changeable in power and direction, a rich vegetation spread over extensive areas, abundance of food, of prey to allure, of enemies to withstand or evade, represent an infinitude of agents competent to call into play the tendencies to vary which are embodied in each species and always ready, by modifying its parts, to respond to the influences of external conditions." It is in this littoral zone where the water is more than elsewhere favourable for respiration because of its aëration by the surf and where constant variation of conditions is produced by the alternation of the tides that the ancestors of all the main groups of the animal kingdom came into existence, and all the primary branches of the animal family tree first commenced to grow. It is here, probably, that the first attached and branching plants were developed, thus establishing a supply of food, and rendering possible the colonisation of the region by animals.

The animals inhabiting the littoral region are adapted in most various ways to withstand and endure the special phesical conditions which they there encounter-the action of the surf, the retreat of the tides, the numerous enemies. Either they burrow deep in the sand, or cling tight to, or even bore into, the rocks, or develop hard shells or skeletons, or protect themselves by other modifications. Probably all hard shells and skeletons of marine invertebrata have thus originated in the littoral

1 A Friday evening lecture at the Royal Institution, delivered January 23. ${ }^{1285} 5$, by Pruf. H N. Nomeley, F. R.S.
"On Pe.urtalesia, a geaus of Lechinoidia." by Svea Lovèn. (Stockholm, 859 In P 86.)

as Appendicularia, have never resought the shore, and consequently have never degenerated to qualify for littoral life. The peculiar breathing apparatus adopted by the vertebrata occurs nowhere else in the animal kingdom except in the extraordinary worm-like Balanoglossus. The apparatus, as is well known, consists of a series of slits, opening from the exterior at the sides of the fore part of the body directly into the throat, the anterior part of the digestive tract. The water to be respired is taken in at the mouth and ejected through the gill slits. The late researches of Mr. W. Bateson, of Cambridge, have shown that Balanoglossus, besides breathing by gill slits, shows many other remarkable affinities, both in structure and development, with the vertebrata. Now, Balanoglossus, a shore-inhabiting form which lives buried in the sand, is developed from a most remarkable larva known as Tornaria, which is intermediate in form between a Truchosphere and a star-fish larva. It is quite possible that this extraordinary larva Tornaria may point to the former existence of a primitive pelagic ancestor common to the Annelids, Echinodermata and Vertebrata. Possibly the use of gill' slits as a respiratory apparatus first arose in a shore-inhabiting ancestral form, such as Balanoglossus, and hence their presence at the anterior extremity of the body, that nearest to the surface when the animal is concealed in the sand.
It appears not impossible that Amphioxus may once have possessed a larval stage somewhat resembling Tornaria, following on its gastrula stage, and has lost it just as one species of Balanoglossus has lost the Tornaria stage. The developmental history of only one species of Auphioxus is as yet known, and investigation of that of other species may yet revenl something of the sind suggested.
The littoral zone not only became itself stocked with in inmmense variety of specially adapted inhabitants, but las given off colonists to the three other faunal regions. The entire terrestrial fauna has sprung from colonists ontributed by the littoral zone. Every terrestrial verterate, every frog, reptile, bird, and mammal, bears in its arly stages of development the gill slits still perforating s throat as in its aquatic ancestor. The tadpole still ies them when young for breathing, though they close , completely in the adult frog and in all the higher artebrates before birth. In some of the tailed Amphibia, :e the Axolotl, the breathing is by external gills and so by lungs which are modifications of the air-bladder of h. In these the gill slits remain open, although they ve no longer any respiratory function. It is amusing watch tame Axolotls when fed in aquariums with large rms. They snap the prey down hurriedly and close :ir mouths, but usually in a moment or two their throat yins to twitch uncomfortably as if intensely tickled, 1 one end of the worm appears out of one of the gill s, and the worm soon wriggles its way out again. en the Axolotl catches it again by the free end before other is completely out of the gill slit, and begins ther attempt to swallow it, and the process is somees repeated several times before actual deglutition is cted. The gill slits are evidently a considerable inconjence to the Axolotl. The frog is much better off in WV them closed, but man himself is not in a position to despise the Axolotl: his lungs are derived
same source originally, nainely, moditications of same source originally, nainely, moditications of St, and they open into the throat just behind Tm man there is a lid to close this opening to pull it under the tongue when
lee; but every one knows the agony wuinb the wrong way-an accident Hof the Axolotl, and similarly He passage for two different At such monents of d to turn traitor and
long that he had been produced in accordance with the hypothesis of special creation rather than evolved under the laws of natural selection. The existing arrangement must not be regarded as of inevitable necessity. The vertebrates are the only animals which breathe through their mouths. All other animals have separate passages for respiration and feeding. The common snail has a separate breathing passage completely apart from its mouth, the land crab breathes by openings at the bases of its legs, the scorpion by openings on its abdomen, and the insect by numerous apertures on the sides of its body. All these animals cannot, like man, choke themselves.
Only the pentadactyle vertebrata have adapted themselves completely for terrestrial respiration, but several fish have, by special modification of their gills, become able to remain out of water for almost indefinite periods. Most remarkable amongst these is Periophthalmus, one of the Gobiade inhabiting mud flats on the sea-shore in Australia, Ceylon. Fiji, and other eastern tropical regions. It hops along the mud with the greatest agility and so fast that it is most difficult to capture, and even refuses to take to the water when driven to it, skipping along its surface, and resting on projecting stones. It even climbs high up the mangrove trees and sits on the branches. All modes of air-breathing are derived by modification from aquatic breathing apparatus, except, perhaps, in the case of the air-breathing tracheata, the insects and their allies, in the ancestor of which, represented by Peripatus, the respiratory tulbes or trachee were probably first formed as modifications of skin glands.
Littoral animals of most various kinds have taken from marine to terrestrial life no doubt by gradual adaptation, owing to exposure by the tides. Crustacea seem to have the greatest power of thus adapting themselves to aërial respiration by slight modification of their gill apparatus, so as to permit it to act as a lung. Nothing is more astonishing to the naturalist in tropical countries than to find large crabs amongst the vegetation far inland and high up mountains. But land crabs are not confined to the tropics: in Japan they may be met with walking across the high roads far inland, and 4000 feet above sea-level. One of the most remarkable instances is that of the cocoanut climbing crab, Birgus latro, which has developed, as Prof. Semper has shown, a regular pair of lungs out of the walls of its gill cavities. The animal was originally a hermit crab, but got too large for any shell, and thus developed hard plates on the surface of its body for protection instead. Close allies, but of much smaller size, swarm in some Pacific islands. They always bear shells, and carry them with them when they climb the trees and bushes. I have caught hold of the shell of one of them as it clung to the top of a branch, thinking that it was a land-mollusk, and have been astonished by receiving a sharp nip from a pair of claws.
The oldest known air-breathing animals, so far as geological evidence goes, are scorpions and insects. In ally of the cockroach and two scorpions have lately been obtained from Silurian strata. The close affinities of the scorpions with the king crabs, and thus with the Trilobites, is a most interesting matter, which has lately been urged by Prof. Ray Lankester. He suggests that the lungs, by means of which the scorpions breathe air, are modifications of the gill plates of the king crab, which have become inverted for the purpose. The lung openings of Scorpio correspond with the gill plates of Limulus in position and number. Hence, possibly, the scorpions, and with them the rest of the Arachnida, are sprung from ancestral allies of the king crab and the Eurypterids, having passed from a littoral to a terrestrial existence.

It seems possible that birds were originally developed in connection with the sea-coast, and were fish-feeders. The tooth-bearing birds discovered by Prof. Marsh, such as Hesperornis and Ichthyornis, were marine aquatic
birds. Hesperornis lived in a shallow tropical sea surrounding the present Rocky Mountains, then a group of islands. The modern penguins show some remarkable points of affinity to reptiles in the structure of their feet, and probably their embryonic development, when worked out, may throw much light on the past history of birds.
Some of the extinct Dinosauria which show remarkable affinities with birds were at least aquatic in habits.
The fauna of the coast has not only given origin to the terrestrial and freshwater faunas, it has throughout all time since life originated given additions to the pelagic fauna in return for having received from it its starting points. It has also received some of these pelagic forms back again to assume a fresh littoral existence. The terrestrial fauna has returned some forms to the shores, such
as certain shore birds, seals, and the Polar bear; and some of these, such as the whales and a small oceanic insect, Halobates, have returned thence to pelagic life.

The deep-sea fauna has probably been formed almost entirely from the littoral, not in most remote antiquity, but only after food derived from the dibris of the littoral and terrestrial faunas and floras became abundant in deep water. It was in the littoral region that all the primary branches of the zoological family tree were formed; all terrestrial and deep-sea forms have passed through a littoral phase, and amongst the representatives of the littoral fauna the recapitulative history, in the form of series of larval conditions, is most completely retained. It is for this reason that the researches carried on at marine laboratories on the coasts have yielded in the last few years such brilliant results.

BALLOON PHOTOGRAPHY

RECENT experiments in photographic açrostation, carried out by M. Caston Tissandier, with the assistance of M. Ducom, have been attended with very complete and satisfactory results. The photograph reproduced by heliogravure in Figs. 1 and 2 was taken at an altitude of 605 metres over Paris; others which were taken did not give such perfect results; nevertheless, some of them surpass
in distinctness any yet taken by the same method. The ascent took place at Auteuil on June 19, M. Ducom attending specially to the photography, while M. Tissandier looked after the balloon. The photographic apparatus arranged in the car is shown in Fig. 3. The ascent took place at $1.40 \mathrm{p} . \mathrm{m}$. with a south-west wind. Ten minutes after starting a first photograph was taken at 670 metres ; soon afterwards another was taken at about the same height, in which a bridge, quay, public

photographs were taken at greater altitudes-one at 1000 , and one at 1100 metres. Hence in crossing Paris, between 1.40 and 2.12 , or in twenty-two minutes, five photographs were obtained. It would be easy to have two or three photographic apparatus with an operator in the car for each, and thes to obtain a series of views. By this method a series of topographical documents of incom-

Fic. 2.- Explanatory plan of above:-x. Gate of the Hotel de Ville. 2. Quay of Hotel de Ville. 3. Rue de Broase t. Old Lobau Barracks 5. Rue de r'Hotel de Ville. 6. Louis Philippe Bridge. 7 and 8 . Rathe. of Rue de Bellay. to Quai de Bourbon. 11. (yual d° Orleans. 12. $\mathcal{F}_{\text {ont }}$ St. Louis i3 and i4. Boats. is. Pier.
parable precision might be obtained. Amongst the views taken during this ascent those which are perfect in point of clearness are those taken at the moment when the rays of the sun fell directly on Paris. Good light is absolutely indispensable, and, in spite of the photographs being instantaneous, the car should be kept perfectly free from oscillation at the moment the picture is being taken.

The operator and occupants of the car must at that moment remain perfectly still. The movement of the balloon has no injurious effect on the clearness of the proofs obtained ; in the present instance the current of

Fig. 3-Arransement of photographic apparatus in the balloon-
air was somewhat rapid, for the balloon traversed Paris at its greatest width, 11 kilometres, in thirty-two minutes. The rapidity of the wind increased subsequently to much more than this. After taking photographs of the earth below, the apparatus was turne 1 upwards to obtain views

Fic. 4-Diagram of the ascent of the "Commandant Rivizre" balloon from Paris to Les Rorais, near Rheines, June 19, $\mathbf{8 6 6 s}$.
nds; but the white clouds which reflect the rays th great intensity, did not give good results. * will require special arrangement for this eir next expedition the aẻronaut-photoubtain something more complete than eir experience on the whole is that enined in a balloon as beautiful tuced on terra firma. Thanks
to the instantaneous process, to the extra-sensitive plates produced to day, and to other modern improvements, aërostatic photography has a great future. It will give plans which will exceed in precision and clearness the most pains-taking maps; it will be a powerful ally of military art, for it will admit of obtaining a reliable plan of fortresses or of hostile works. At a height of 600 metres a balloon has nothing to fear from artillery fire,
and the photographer can operate as safely in his car as in his studio. It will also add to the resources of photcgraphy, for there are no places on the earth's surface inaccessible to a balloon.

The ascent here described had for its main purpnee photography ; but it had also some meteorolegical interest. The ascent began at 1.20 ; and at 320 at an altitude of 1100 metres above Meaux, another balloon, which ascended some time after them, was met with. They were actually in a frequented aeronautical routean aerian river. At Meaux Nadar descended in 1853; M. Tissandier himself landed at the same place in $18 \% 2$, and seteral other descents were made there. A little farther, at Chátcau-Thierry, on a prolongation of the line from Paris to Meaux, M. Tissandier and M. de Fonvielle made an extraordinary descent in a storm in 1869, when they were drasged along the ground four kilometres in five minutes. They travelled from Paris to CháteasThierry, a distance of so kilometres as the crow flies, in 35 minutes-the most rapid balloon voyage on record. On the present ascent, at an altitude of 1000 to $1+\infty$ metres, an aenal current of considerable speed prevailed ; it was estimated at about 40 kilometres an hour. At 1400 metres a mass of white translucid clouds stretched across the sky and floated in the upper part of the aerrial current. Above this, again, the air was calm ; small white clouds remained immovable at 3000 metres, and the sun was very hot. After hiring descended close to the earth above Chiteau-Thierry, it was decided to rise above the clouds anong,t which the aeronauts had just been. At 6 o'clock, at a height of 1900 metres, they observed the shadow of the balloon projected on a white ground of clouds: the latter formed a small greysish circle. surrounded by an aureole of the seven colours of the rainbow: When they approached the clouds, it was only the shadow of the car and of the lower part of the balloon of which the projection could be distinguished, and the aureole assumed a langer diameter. This remarkable and beautiful phenomenon resembles that of the spectre of the Brocken. At 610 the descent commenced; the balloon crossed the bank of clouds, and the surface of the earth. when it came in sight, looked grey and dull compared with the magnificent regiuns of the upper atmosphere.

RADIAVT LIGHT AVD HEAT III.

Radiatton amd Absorption - Terrestrial Applacathons.

HAVING now established the Theory of Exchanges. let us inquire at greater length into the nature of the radiation from bodies of different kinds For this purpose we shall adopt the well-known classification into solids, liquids, and gases, and shall select as the type of a solid buty as far as radiation is concerned a black substance like carbon. We must do this because, in order to obtain the greatest amount of radiation from such a body at a given temperature, it inust be of sufficient depth to be practically opaque, or whermimons, for the heat of that temperature, and it must have a non-reflective surface. Now carbon or lamp-black possesses these properties, if not completely, yet to greater perfection than any other substance that we know of; and on this account we shall select it as the type of radiating solid bodies.

Then as regards liquids, we have no doubt an amount of surface-reflexion, which will have the effect of diminushing the radiation, and also of polarising it, to some extent. In this respect a liquid surlace may be regarded as equivalent to a polished solid surface, so that liquids and polished solids may be classed together as giving out an amount of heat somewhat less than that given out by the typical black surface.

But white there is no marked disunction ial radiation - Continued froma page 7os
between solids and liquids, if only the depth of substance be suriciciently great, the radiation of gases is essentually different. This difference consists in the fact that while solids and liquids radiate all kinds of heat possible to the temperature, gases radiate only a few. We shall best perceive this distinction if we confine ourselves to rays which affect the eve, and view these by means of the spectroscope.

We have already explained how this instrument draws out a thread of white light into a parti-coloured nibbon, red at the one end and violet at the other. Now if our thread of white light be a thread of platinum, or, better still, of carbon rendered incandescent by means of electricity, we shall no doubt obtain the spectrum above mentioned. But if our source of $1:$ hht be a row of incandescent gaseous particles, we shail obtain something very difierent. Instead of a long, contunuous, variouslycoloured ribbon, we shall have a few discontinuous threads of light emerging from a dark background, each such thread or image having of course its proper spectral position; that is to say, If the gas gives out a yellow ray, this will appear in the yellow region of the spectrum ; if a red ray, in the red region, and sis on. Such spectra may either be thrown upon a screen, or viewed through a telescope-sometımes it is possible to throw them upon a screen and render them visible to a large audience, but sometimes this is not possible. In all cases, however, they may be thrown into a telescope and viewed by the individual observer.

We are thus in a position to formulate the distinguishing characteristic between the spectra of solids and liquids, and those of gases, the former giving out a continuous spectrum, consisting of all the rays of light possible to the temperature, while the latter give a discontunuous spectrum, consisting of a few bright lines on a dark background.

We can, in an imperfect manner, assign a reason for this behaviour. In a sold, or even a liyuid, the various molecules are near together, so that no individual is free from the trammels of its neighbour in its vibrations. On the other hand, it is not so in a gas.or at least in a gas of which the molecules are very far from one another.

Here one individual is for the most part of its existence free from the trammels of its neighbours, and is able to vibrate after its own fashion and in a way to surt itself, just as freely as a bell, or the string of a musical instrument. It thus gives out, as it were, its own peculiar note, or series of notes, these noter being here, however, rays which have a definite place in the spectrum, instead of sounds which have a definite place in the musical scale But whilst there is a great amount of freedom amongst the molecules of a gas, we must not carry this conception of things ton far, or suppose that in a compound gas at ordinary temperatures we have nothing but a series of perfectly simar molecules practically independent of one another.

The particles or molecules of such a gas are far from being in a state of rest, and we may imagine them to be running about in straight paths, except when they are dellected by dashing against a neighbour, or against the sides of the containing vessel. It will thus be seen that the molecules are not quite free. In fact, a molecule perfectly remote from neighbours, travelling, for instance, in free space, and remote from the sun, would have no more inducement to vibrate than a bell would have under similar circumstances. It is the collision with its fellows that will generally cause it to vibrate, but independent to sibrate according to its o
we are in a posttion to assert that a gry energy which constitutes ordinary heat
from this motion of the molecules in α.
again, t
of the
of the

Now in a compound gas these collisions sometimes cause dissociation of the compound molecnle into more elementary constituents, which constituents will probably afterwards combine again, so that we may imagine that in such a gas (see "Heat," by Prof. Tait, page 203) equilibrium is maintained by a constant amount of dissociation, accompanied by an equal amount of recombination. It is thus apparent that we have not here perfect simplicity and uniformity of molecular structure, and without discussing the question whether a simple molecule might or might not be expected to vibrate in only one way, we can readily imagine that the spectrum of such a gas should present us with more than one mode of vibration; that is to say, more than one spectral line.

Again, circumstances which conduce to proximity of molecules, and to the action of molecules upon each other, tend to bring about a state of things similar to that which we have in liquids and solids; that is to say, they will favour the emission of various kinds of rays, while on the other hand, the characteristics of a gascous spectrum will be best shown by a perfect gas, that is to say, by a gas which is far removed from any tendency to condensation. A rare gas at a high temperature will possess these properties.

Having now defined the characteristics of the spectra of solids, liquids, and gases, let me say a few words about the methods by which we obtain gaseous particles heated to a high temperature. These are obtained in two ways. First, by means of flames, such as that of a Bunsen's burner, into which the particles are introduced. In such flames we may imagine that we have before us a certain number of the particles of a certain gas all, or nearly all, heated to a temperature somewhat approaching that of the tlame. The substance will probably have been intro. duced into the flame in a different chemical state from ${ }^{\text {that in which it appears in giving out the light; for in- }}$ stance, we may introduce into a spirit-lamp a little chloride of sodium, or into a Bunsen's burner a little bicarbonate of soda. The flame becomes immediately of a yellow nature, giving us the double line D , or the yellow line of incandescent sodium vapour, and this affords us evidence that dissociation lias taken place. In like manner the red line produced by salts of Lithium, the green line produced by those of Thallium, and so on, are indications that the compound saline molecules have become dissociated in the flame.

The second way of producing gascous spectra is by an application of electricity, as when a high tension spark is sent through a tube containing a small quantity of a given gas, or a vacuum tube, as this is sometimes called. We have then a momentary tlash, consisting of the rays which characterise the spectrum of the gas through which the discharge has passed. It is probable that in this case only a portion of the particles filling the tube have been brought to the high temperature which is denoted by the discharge.

Before proceeding further, it may be well to mention that while from the title of our subject we must necessarily consider the spectrum to some extent, yet this is not to be regarded as a treatise on the spectroscope and its applications, which formed the subject of a previous set of essays in the Nature Series by Mr. Lockyer. We shall discuss the subject in a somewhat different manner, and also give more especial attention to those branches which had not yet been developed when Mr. Lockyer wrote his work. With these prelminary remarks, we shall divide the subject before us into two sections.
(1) Kadiation and its consequences.
(2) Absorption and its consequences.

In the first we shall discuss radiant spectra to a conderable extent, but shall not entirely contine our remarks bese phenomena; while in the second we shall dishaorption spectra to a considerable extent, but atirely confine ourselves to spectral absorption.

There is likewise another convenient way of dividing our subject, namely, in its application to terrestrial and celestial phenomena.

Combining, therefore, these two principles of subdivision, we shall, in the first place, treat of terrestrial applications of the laws of radiation and absorption, and in the next place of their celestial applications: and, finally, we shall discuss the light which both of these branches together appear to throw upon the ultinate constitution of matter.

With regard to our own Earth, it is abundantly evident that the great bulk of the heat which it receives is from the radiation of the sun, while, on the other hand, the great bulk of the heat which it loses is througl radiation into space.

There is a sort of baiance kept up between the gain on the one hand and the loss on the other, in virtue of which we are placed under conditions in which life is endurable, and for the most part pleasant. The variations in these conditions in temperate latitudes may sometimes cause distress to the weak, but they are not less the source of enjoyment and vigour to the strong; and, as a matter of fact, the most energetic races of mankind are they which dwell in those favoured regions that are neither too cold nor too hot.

Inasmuch as the regions near the equator are hotter than those near the poles, it follows that there is greater radiation into space from the former of these than from the latter. If, therefore, we could imagine an observer to be placed many thousand miles above the earth, having an eye capable of distinguishing dark rays, and to regard that portion of the earth unilhminated by the sum, his eyc would receive more rays from the equatorial than from the polar regions.

On the other hand, the polar regions being manifestly colder than those of the equator, we have convection currents of hot air passing in the upper atmospheric regions from the equator to the poles, and currents of cold air passing in the lower atmospheric regions from the poles to the equator. These latter are known as the Trade Winds, and the former as the Anti-Trades. In like manner we have in all probability currents of hot water passing in the upper oceanic regions from the equator to the poles, and currents of cold water passing in the lower oceanic regions from the poles to the equator. It is not, however, our object to dwell on these phenomena here; suffice it to say, that our well-being depends on the balance between the radiant heat which we receive from the sun and that which we give out into empty space.

The phenomena of dew form an exceedingly good illustration of the laws of radiation. This subject was first investigated by Dr. Wells, an English physician. When the sun has sunk bencath the horizon of any place, bodies of small mass and great radiating power for dark heat, such as the leaves of plants, become quickly cooled by their uncompensated radiation into space. They thus cool the air around them, until this air becomes so cold that it can no longer retain in the viewless state the aqueous vapour which it holds; part of this is consequently deposited in the form of dew, or of hoar-frost, if the temperature be sufficiently low.

The following are the laws which regulate the deposition of dew :-
(1) Dew is most copiously deposited under a clear sky-
(2) And with a cahm state of the atmosphere.
(3) It is most copiously deposited on those substances which have a clear view of the sky.
(4) And which are good radiators and of small mass.
(5) And which are placed close to the earth.

The first of these conditions is essential, because the cooling which precedes the deposition of dew is owing to radiation into free space.

If there are clouds, these will radiate back to the body,
and thus prevent it from cooling fast enough. We see, likewise, the necessity for a calm atmosphere, when we reflect that dew can only be deposited by means of the body cooling the air around it; now if this air is constantly renewed, it cannot cool this large body of air to any great extent, and hence dew cannot be formed.

It is very manifest why the body must have a clear view of the sky, and why it must be a good radiator in order to promote the deposition of dew. Also why it must not be of a great mass, for, if it were, the heat from the interior might be conducted to the surface, and thus keep up the temperature.

Finally, the substance must be near the earth, for, if not, the cooled air will fall down, giving place to warmer air. The body will thus have a larger mass of air to cool, and it will less easily succeed in bringing this mass below the dew point. I shall return to this subject at a later stage, when the part played by the aqueous vapour of the air is taken into account. Let me here state that there are regions in the earth where dew forms an important factor in agricultural operations.

The artificial warming of our rooms is at present accomplished very much by radiation. An ordinary fire of coal or wood acts by this process. The heated carbonic acid gas which is the product of the combustion is carried up the chimney and out into the air, so that all that remains to heat the room is the light and heat given out by the glowing fire.

It is by no means an economical use of heat, but there are other considerations besides those derived from economy, and an open fire will always be cherished by those nations whose social life is greatly within doors.

The burning of gas in order to obtain illumination has nothing to recommend it. As it is used at present, it gises out a great deal of heat compared to its light, as well as a quantity of carbonic acid, and other products still more deleterious.

It ought to be replaced by some kind of electric light, such as that proposed by Swan, where a thread of carbon is kept at a high temperature in a glass vacuum by means of an electric current. There the luminous effect is very large in comparison with the heat produced, besides which there is no foul air or other hurtful product.

If we regard radiation as a means of increasing our knowledge, apart altogether from its primary and indispensable action in rendering us acquainted by means of vision with the objects around us, we cannot have a better instance than that which is given uts in spectrum analysis. Here, in the first place, a little reflection will convince us that we can gain hardly any knowlege by this means of the nature of a luminous solid or liquid body, for all such bodies at the same temperature will give out all the various rays which are possible to that temperature. There is, therefore, no means afforded us by their spectra of distinguishing one from another, so flate spectrum analysis is here impossible.
It is very different, however, when we come to gases which give out spectra consisting of bright lines in a dark background. Here there are various laws which combine not only to make spectruin analysis jessible, but so constitute it an extremely delicate instrument of research. In the first plair, we have the law than the lines given out by any one elementary vapour are different in spectral position froin those given out by any olher. Sircondly, as a rule such bright lines remain in their places throughoul a great semperature range Thirdly, an exceedingly small amount of the element in question is generally sufficient to produce the lines.
It is stated that by mean; of the spectroscope the presence of less than one two-hundred-millionth part $\left(\frac{1}{200,000,000}\right)$ of a grain of sodium may be detected. Indeed, the difficulty is to get rid of the sodium line in
an insular climate like ours, surrounded by sea-water which contains chloride of sodium.

There are three chief points for consideration in the study of gaseous spectra :-
(1) The effect produced by increasing the pressure of the gas.
(2) The effect produced by giving the gas a motion to or from the observer.
(3) The effect produced by increasing the temperature of the gas.

The effect produced by increase of pressure consists in a widening of the bright lines. This subject was tirst studied by Frankland and Lockyer, who found that all lines are not affected by pressure to nearly the same extent. The F line produced by incandescent hydrogen was found by them to be peculiarly subject to an increase of pressure, widening out in certain cases to a really remarkable extent.

Lockyer, who has since greatly studied this subject, is ot opinion that it is not pressure per se that is influential in thickening the lines, but rather the frequency of encounters of precisely similar molecules. An important application of this law of pressure has been made by Lockyer, who has for this purpose used the electric arc, placing the slit of his spectroscope so as to embrace a section of this are mid-way between its terminals and at right angles to its length. Now in the heart or central axis of this are the gaseous particles which give out the light may be supposed to be somewhat near together, whereas at the border or circumference they are comparatively far apart. When the spectrum of such a transverse section is taken, this is found to consist of a number of bright lines, some long and some short. The long lines are those which remain visible even when the particles are far apart. while the short lines are those which require a greater nearness of particles to come out, and are therefore confined to the central regions of the arc.

Suppose now that we take the spectrum of such an arc, from terminals composed of absolutely pure iron, and that by this means we obtain a number of long and short lines, characterising the spectrum of this metal in the state of vapour.
Suppose next that we obtain the spectrum of some other metal, such as copper, which is not chemically pure. but which, we suspect, contains a little iron. We shali obtain, of coursc, the copper lines well defined and intense, plus an indication of the iron lines; but inasmuch as the iron particles are here few and far between, the iron lines which make their appearance will be those which do not require great nearnes; of particles in order to come out-in other words, they will be the long iron lines, and not the short ones, In searching spectroscopically for an impurity it is thus only necessary to direct our attention to the long lines of the various metals which we suspect to be present. Thus the whole process of comparison is mude much simpler, and we are enabled likewise to obtain with companative ease the true spectra of the various elements
Let me now say a fe by a motion of the rai Suppose that a tram minutes in a certain da briskly tonards this station

advanced one inch during the time that the last blow has advanced 13 inches, and thus the distance between the two blows will be 12 inches, or one foot. If, therefore, an observer be standing on a railway platform and a railway engine be advancing at full speed whistling as it comes, the interval between the blows will be less than usual, or the note will be shriller than if the engine were at rest. On the other hand, when it has passed the station and is rapidly receding from the observer, the interval will be greater than usual, and the note leis shrill.

It is precisely the same with regard to light. If a luminous body emitting rays of definite wave length be moving towards the observer, the wave length will be lessened and the ray pushed forwards to the more refrangible side of the spectrum. If, on the other hand, it be moving from the observer, the wave length will be increased, and the ray pushed backwards to the less refrangible side of the spectrum.

The only difference between light and sound is that the former moves so fast, that in order to get an appreciable alteration in wave length we must have a luminous body moving from or towards us with velocities much greater than we can produce experimentally, whereas in the case of sound we can make the experiment.

Nevertheless if we go to the surface of the sun, or to the fixed stars, we shall find luminous objects moving froms or towards us with velocities sufficiently great to suit our purpose.

Let me now say a few words on the effect produced on some gaseous spectra by increasing the temperature of the gas. It is quite certain that at comparatively low temperatures such spectra are more complicated than they are when the temperature is high. In the former case they frequently present a fluted appearance, while in the latter we have spectra composed of a few bright lines on a dark background.

In some cases an increase of temperature entirely changes the character of the spectrum, so that certain socalled elementary substances may be said to have two or inore spectra. In general, however, we have, notwithstanding these remarks, the great feature already mentioned of a persistence of the more permanent spectral lines, more especially in the case of metals, throughout a large temperature range.

By means of spectrum analysis we have discovered the existence of several new elementary metals, all of which are very sparingly distributed.

Bunsen was the first to detect two new elementary metals, corsium and rubidium. Shortly afterwards Crookes discovered thallium, Messrs. Reich and Richter indium, and other elementary metals have since been discovered by the same means.

It is now time that something should be said about the phenomena of absorption. Since gases have small radiating powers, they may naturally be supposed to have small powers of absorption. We know, for instance, how feeble is the absorption of pure air for luminous rays, or feem for ordinary heat rays. Tyndall has studied the alasorpalve power of gases for low temperature heat, and has conic, to some very interesting conclusions. The following fille embodies the results of his experiments:-

imagines that the molecule of a compound gas may be more inert and less nimble in its vibrations than that of a simple gas. That is to say, the compound molecule will vibrate more slowly than the simple one, and will thus give rise to rays of great wave length ; and inasmuch as its absorption and radiation are connected together, it will be peculiarly liable to absorb rays of great wave length.

Its absorption for dark heat may therefore be very great, even although it may appear perfectly transparent for ordinary light rays.

Tyndall has found, as the result of his inquiries, that aqueous vapour absorbs many more dark rays than dry air, and justly concludes that the aqueous vapour present in the atmosphere plays a very important part in terrestrial econony. Being transparent for rays of high temperature it stops but a small proportion of those which come to us from the sun; on the other hand, being comparatively opaque for rays of low temperature, it stops the radiation into space from the surface of the earth. To speak more accurately, it does not absolutely prevent this radiation, but absorbs it and returns as much or nearly as much again. Its action, in fine, is virtually the same as that of a cloud in preventing the refrigeration which accompanies dew. Tyndall remarks that in those regions where the air is very dry the nights are often intolerably cold, owing to this uncompensated radiation into space.

Such regions are those in Central Asia and the great African desert, in the latter of which water can readily be frozen after the sun has sunk. The glass of a greenhouse acts in the same way as the aqueous vapour of the air. It allows the sun's rays freely to penetrate and to heat the air within; but it stops the dark heat of the plants and of the soil from being radiated outwards into free space. Even a loose frame of glass may save the tender blossoms of the peach, and other wall fruit, from being destroyed by nocturnal refrigeration.

Balfotr Stewart
(To be continued.)

NOTES

ON Monday Prof. Nichel Eugene Chevreul entered upon his sooth year. Apart from the face that among men whose lives have been devoted to active scientific research no one has before attained such an aye, M. Chevreul stands conspicuous for the vast amount of work he has done and for the great practical effect his work has had on the industries of the world. When Dumas in 1852 addressed M. Chevreul on the occasion of handing to him the prix of 12,000 francs accorded to him by the Suciété d'Encouragement pour I'Industric Nationale, he said :"Le prix consacre l'opinion de l'Europe sur des travaux servent de modele de tons les chimiste; ; c'est par centaines des nillions qu'il faudrait nombrer les produits qu'on doit a vos decouvertes." More recently, in 1873, when the award of the Albert medal was made byour Socicty of Arts, the terms in which the Cotucil expressed the grounds of the award were :-" For his chemica! researches, especially in reference to saponification, dyeing, agriculture, and natural history, which for more than half a century bave exercised a wide influence on the industrial arts of the world." His scientific work, apart from its commercial outcome, was in this country recugnised by the Royal Society as far back as 1826, when he was elected a foreign associate. In 1857 the Copley medal was awarded to him. Other countrie, have also paid him honour, while the distunctions of his native land have sbowered upon him. Born in Angers in 1786 (on August 31), where his fatber was a physician of note, he was but seventeen when he went to Paris to be "manipulateur" in the laboratory of the celel)rated Vanquelin. At the age of twenty he published his first chemical paper, and in the next half dozed yeass he lad published more than a score on different subjects. Then began that series of papers (commencing in 1813),

oogle

 SUCCESSOKS TO W. LADO \& CO.
HEAK STREET, KEGYET STERET, LONDON, W.
IANUFACTURERS OF SCIFNTIFIC APPARATUS OF ALL CLASSES FOR W'MNIMHICOLS, COLLEGKS, OR PRIVATE RESEARCH

ANI VONY INDU'TIOS MACHISE OF IMPROVED PATTERN.

$\because \because$ 等

TMF

roogle

$S * \mathcal{N}, 10,18 \mathrm{BK}$,
NATURE:
cxirin
CITY AND GUILDS OF LONDON INSTITUTE

CITY AND GUILDS OF LONDON INSTITUTE.

CITY AND GUILDS OF LONDON INSTITUTR.

CITY AND GUILDS OF LONDON INSTITUTE
 ${ }^{2}+\mathbb{N}^{2} \mathrm{~N}$

CITY AND GUILDS OF LONDON INSTITUTE
in

CITY AND GUILDS OF LONDON INSTITUTE.

OWENS COLLEGE, VICTORIA UNIVERSITY, MANCHESTER.

 Whes "f tor ha of thestip th.

1^{7}

 pt trinl if Imateane of

 क) lin

 , HL

 Wilt in + vink elomery

 She liev if of seen lielclin in the verims of velar

 avie re ilie - - allel troustl noe an leat fun thiterict -hriat - it tivie. in mptupesis use of abich abmer

立us tho

 whin annuje ile gectibun of cernum, lia ibstace, whed In the blut add cinter polisn II rifies Slines than the

0105 L ha apparectly received confirmation in the case of asoriter substance.

Bur aitiongh we have chiefly confined ourselves to the pperanssopic bearing of the work, it is not too much to say or $i=\frac{2 a r}{}$. if this separation be in the sense as indicaterd. is is the most important work in mineral chemistry为 bave haiformany years. By patient work the group ef cer: $\because=\mathrm{m}$, d.dymiom, \&c., metals has yielded several new seecien ovedes, difiering considerably from didymium, \$ut h35, z the same gencral reactions, being members of te satee group in fact. The difference in the ordinary cieciscal reactions of cerium, lanthanum, didymium, s.a-2 :rn, terbium, ytterbium, and probably samarium is generally sery slight, and they can only be separated by foce-coctinued operations, nearly always cases of frac=irnai separation. The close relationship of these metallic er:Ces has been long recognised, and the group has been csenidered pectiour in this respect, and in consequence 32 asusease amount of labour has been expended upon is mose than has ever been expended on groups of other meeztic oxides. Indeed, the notion that heat is the agent of chernical resolition seems to have gained such a hold that apparently for the last two, or three, decades, with the exception of the cerite metals, it is the only reagent the action of which has been taken as definitive in establishing a thing to be an element. We are not aware that any records of patient work on chromium exist, atternpts to isolate any other substance from chromium oxide other than our ordinary chromium. The general properties of this, or these, oxides surely invite to further investigation. And in the case of nickel and cobalt, which appear almost to be isomers, there is a fine field for investigation which might be as profitably cultivated perhaps as an almost infinite series of carbon compounds.

OUR BOOK SHELF

Annwaire géologique uniz." 1 . et Guide atu Gbologic antour de la Terre. Par le Dr. Dagincourt. (Paris:Comptoir géologique de Paris, 1885.)
THIS is the first annual issue of a geological guide edited by the Secretary to the Geological Society of France, which cannot fail in be of the greatest use as a book of reference to those concerned with geology all over the world. Nultum in parto would be a very suitable motio for the book, for the amount of information which it contains in a small space is really marvellous. The editor does not profess to have carried out the whole of the programme which he has set before himself in the present issue; but it was decided to bring out the volume this year on account of the neeting of the Ceological Congress at Berlin, and also in order that be may be able in the ensuing issue to profit by private and public criticism. The best criticism of it will be a bare statement of its contents. It first describes the history, various meetings and utility of the Congress of Geologists, with the proceedings at the meetings in Paris and Bologna. It then takes the continents in alphabetical order, and the countries in them in the same way, and supplies a mass of geological information of all kinds with regard to each. Taking as an example the first country under the head Europe, which is Germany (dliemagne), we find a list of books on the bibliography of German geology, of general (as dis*inguislied fiom special and detarled) geological maps,
of the leading works on certain districts; these are ceded by a general sketch of the geological features sermany, and of the occurrence of the various
geological systems'; then a detailed account of the organisation for the production of geological maps in the various countries and provinces composing the German Empire: then a sketch of the institutions in which geology is taught, the various universities with their professor, laboratories, collections, museums, \&c., the professors at the various polytechnic and agronomical schools, the public and private geological collections, with in some cases, brief descriptions of the principal features (thes occupy a considerable space), then the various geological societies, with their organisations; next the periodical publications, their prices, size, general nature of the cortents, divided into five classes-(t) those specially geological, (2) those containing from time to time geological papers, (3) geographical periodicals containing geological papers, (4) those devoted to mining, (5) collections of geological and palaontological memoirs. These lists are succerded by others which form a very important feature of the work-viz. the names, addresses, and special fields of all the geologists in the German empire: and finally the titles of all the books and papers which have appeared during the past year on mineralogy, petrography, geology, and palaontology, arranged in alphabetical order. This description of the volume under the head "Allemagne," will give an accurate idea of the scope and arrangemest of the book, for although circumstances have prevented the scheme being carried out with the same degree of thoroughness for every part of the globe, the volume will year by year approach nearer to, doubtless even improve upon, this standard. In the case of Great Britain, fou instance, the issue for 1886 will contain a thorough study of our geology, and its teaching in our universitues and other public institutions. Its ultimate completeness mox naturally depend much on the assistance which the editer receives from geologists all over the world in supplying information, making the necessary alterations required by time, offering suggestions and adding corrections; and the volume is so useful and full in design that we have little doube Dr. Dagincourt's fellow-geologists will wallingty help him to carry it out in all its details. We observe that Tasmania has by an error been put amongst Asiatx countries instead of in Australasia.

LETTERS TO THE EDITOR

[The Eiditor does not hold himself responsible for epiniows ex fresum by his correspondents. Nesther can te wndertate to whern. or to correspond with the weriters of, rejected mawnicripct. No notice is taken of anonymous communications.
[The Editor urgently requests correspondents to iecep then ietion as shert as possible. The fresswre on his space is whrorr that it is impossible otherwise to insure the afpeant oct oet of communications containing interesting and norvel farts.]

The Meteoric Cycle and Stonehenge

W. are now passing through the hundredth meteoric cycle d nineteen years, which commenced with A.D. IS82, and will terminate with A.b. 1900. These cycles began with the year of oct Siviour's birth, and our prayer books contain tables showing for many successive years on what days Easter days and oot movable festivals will occur. At the end of every such cyode the new and full moons happen within an bour and a half of the same time of the year as they did at the beginning.

With these cycles is commonly associated the name of Mewo. an astronomer of Athens, who wrote a book on the sabject, by which the Greeks regulated the recurrence of their festivak He flourished 432 years n.C. Bat the knowleige of these syde existed in England centuries before the time of Meton, as if wil presently show, and it is probable that the four very ancest erections supposed to have been temples of the sun peat F'cuzance, had reference to this cycle of nineteen years, as ther each consicted originally of nineteen stones placed uprigh and tising from 3 to 6 feet above the ground in rude circles varyag in liameter from 65 to 80 feet. These temples are stlll exiation. although some of their stones have fallen, and they are mile from each other, but are all called in the promel maps, av wh as immemorially, by one and the same name, vas to tien

Maidens," which is simply an abbeviation for Nineteen Maidins.

The following quotation from Diodorus Siculus (Book II. chap. iii. Booth's Trans., page 139), who flourished about forty-four years B.c., will be an historical confirmation of what I have above stated :-
"Amongst those who have written old stories much like fables, Hecatarus (born 549 years B.C.) and some others say that there is an island in the ocean over against Gaul (as big as Sicily) under the Arctic pole, where the Hyperboreans inhabit, so called because they lie beyond the breezes of the north wind ; that the soil there is very rich and fruitful, and the climate temperate, inasmuch as there are two crops in the year."

This description does not apply to the whole of the island referred to, but represents Mount's Bay; its movt south-western extremity, and we may therefore conclude that those from whom Hecataus and the others derived their information were the Phernician traders who for centuries previously frequented Mount's Bay for tin and fish, and who imagined all Britain to possess the same rich soil and mild climate as Mount's Bay where still "there are two crops in the year." But to proceed with the quotation:-
"They say that Latona was born there, that they worship Apollo above all other gods, and the inhabitanls demean themselves as if they were Apollo's priests, who has there a stately grove and a renowned temple of a round form, and that there is a city likewise consecrated to this god. The sovereignty of this city and the care of the temple (they say) belong to the Boreades."

This city and this "renowned temple of a round form" are doubtless those of Old Sarum and Stonehenge, the inner oval of which, immediately around the altar, consists of precisely nineteen stones (see the plate in Dr. Stukeley's "Stonchenge," page 20). But the four temples of the sun above described of nineteen stones each, placed upright " in a round form" to represent the cycle of nineteen years, are not mentioned by Diodorus, as they were probably deemed not worthy of notice after alluding to the renowned temple of Stonehenge. The passage concludes as follows:-
"They say, moreover, that Apollo once in nineteen years comes into the island, in which space of time the stars perform their courses, and return to the same point, and therefore the Greeks call the revolution of nineteen years "the great year." "

Plymouth, August
R. Enmonivs

Nebula in Andromeda

Last night the nebula in Andromeda was observed here. The stellar-like nucleus was distinctly seen. It appeared to be of a reddish-yellow colour as contrasted with that of the nebula. We think that a change has certainly taken place, no such stellar-like centre having previously been seen in the nucleus. The stellar point was examined with a small prism held between the eye-piece and the eye. A continuous spectrum was seen. Dr. Boeddicher and I were hoth convinced that there were considerable inequalities in its light, and independently formed the impression that there was at times a bright band or line in the green. The colour of the stellar point appeared much the same as that of Aldebaran.

Observatory, Birr Castle, September 8

Sunsets

In July of this year I spent a short time in the Schwarzwald of Baden. Formore than a week the sky was cloudless day and night, yet the heat was not oppressive. The sunsets were beautiful beyond description, and the after-glows magnificent. One evening in particular will always remain impressed upon my memory. It was that of July 26 , and the place was a few miles from the town of Neustadt, nearly in the centre of the forest. Wonderful effects began to appear so soon as the sun touched the crest of the western hills. But these were as nothing compared with what followed. The moment the luminary had disappeared behind the hills long streamers began to radiate high up into the heavens, and for a time, as the daylight diminished, they increased both in length and intensity, rivalling any description or figures of the Arcic auroras that I have ever seen; at the same time the most vivid and ever-changing glow lit up the whole western heavens. The scene lasted more than an hour, and its effect was heightened hy, and perhaps partly fue to, a nearly full moon, which roce from tichind a slight dip
or pass in the hills on the eastern side of the valley. The inbabitants of the Schwarzwald are indubitably phlegmatic, and not easily moved to excitement ; but this display of celestial pyrotechnics was too much for them, and at a small roadside inn the carters and others who were enjoying their beer inside turned out en masse to witness it. I am not a strong admirer of Turner's pictures, but, in comparing nature with art, one idea came uppermost-the scene was "Turneresque."

Lewishatn, S.E., September 3
R. Mciachlan

Pulsation in the Veins

Mr. Hippishey will find a very simple way of showing pulsation in the veins, as well as in the arteries, by fixing a long bristle or thread of sealing-wax over the vessel by means of a little tallow. The end of the lever will vibrate and produce all the movements of the sphygnograph. This method was adopted by Mr. Wilkinson King nearly fifty years ago, and the instrument styled by him the sphygmometer. In his paper in the Guy's Hospital Reports for 1837 , "On the Safety Valve Function of the Kight Ventricle of the Heart," will be found much valuable matter and discussion about venous pulsation.

August 29
S. W.

Red Hail

VU l'intérêt que peut offrir la coloration de la grêle, j'espére que vous voudrez bien insérer ces quelques lignes dans votre journal : " La gréle colorée en rouge, observée par Mr. Mullan et dont il est question dans le No. 812 de ce journal, n'est pas un fait isolé. On a observé un cas analogue en 1880 , le $\frac{2}{14}$ juin, en Russie. Les grẻlons de cette chute-là étaient intéressants sous plus d'un rapport. Leur forme se ramenait à trois types: parallélipipéle, cylindre, sphérotde très-aplati et munide cavité aux bouts de la petite axe. Certains de ces grêlons étaient percés de part en part, le long de la petite axe, ce qui leur donnait l'apparence des anneaux. Certains des grélons ćtaient colorés en rouge-pâle, d'autres avaient la couleur bleu-pale, mais pour la plupart les grélons étaient gris ou blanc. L'observateur, M. Lagounowitch, crut avoir remarqué que la couleur ćtait liée a la forme des grêlons. Je cite ces faits et j'en propose l'explication dans ma brochure, 'Sur l'grigine de la Grêle.'.

Tuiqudore Scuwzdoff,
Professcur de Physique à l'Université d'Odessa
Odessa, le ${ }_{27}^{15}$ août, 1885

On the Terminology of the Mathematical Theory of Electricity

Mr. Sutherland's letter on terminology (Nattre, vol. xxxii. p. 391) leads me to suggest to Mr. Scott the employment of the term low-pression for depression in his weather forecasts sent to the newspapers. It is nearly as easily pronounced and written, and will not have such a tendency to mislead the general public as to there being a depressing of the air where it really ascends.

Henry Mulrhead
Cambuslang

THE BRITISH ASSOCIITION

Aberdeen, Monday

THIS place has evidently been astir for days in anticipation of the present meeting. Already are the directions necessary for visitors finding their way to the various sections put up in conspicuous places in Union Street and the neighbourhood of Marischal College. The accommodation in the fine building for reception rooms, committee rooms, reading, sectional, and other rooms, seems, so far as can be judged at present, everything that could be desired. It is evident that the Local Committee have been working in earnest to make the second Aberdeen meeting a success, and their efforts have been heartily supported by the citizens and country people. Up to Saturday 1000 , worth of tickets had been sold to local people alone, and many more will be sold between this and Wednesday. Of old members of the Associati750 have already written that they intend to be pr

was lost to sight during the revival of letters in the fifteenth and sixteenth centuries. Germany and France, which are now in such active competition in promoting science, have only publicly acknowledged its national importance in recent times. Fiven in the last century, though France had its Lavotsicr and Cicrmany its Leibnitz, their Governments did not know the value of science. When the former was condemned to death in the Reign of Terror, a petition was presented to the rulers that his life might be spared for a few weeks in order that he might complete some important experiments, but the reply was, "The Republic has no need of savants." Earlier in the century the mach-praised Frederick William of Prussia shouted with a loud voice, during a graduation ceremony in the University of Frank. fort, "An ounce of mother-wit is worth a ton of university wisdom." Both France and Germany are now ashamed of these utterances of their rulers, and make energetic efforts to advance science with the aid of their national resources. More remarkable is it to see a young nation like the United States rcserving $150,000,000$ acres of national lands for the promotion of scientific education. In some respects this young country is in advance of all European nations in joining science to its administrative offices. Its scientific publications, like the great palaontclogical work embodying the researches of Prof. Marsh and his associates in the Leological Survey, are an example to other Governments. The Minister of Agriculture is surrounded with a staff of botanists and chemists. The Home Secretary is aided by a special Scientific Commission to investigate the habits, migrations, and food of fishes, and the latter has at its disposal two specially-constructed steamers of large tonnage. The United States and Great Britain promote fisheries on distinct systems. In this country we are perpetually issuing expensive Commssions to visit the coasts in order to ascertain the experiences of fishermen. I have acted as chairman of one of these Royal Commissions, and found that the fishermen, having only a knowledge of a small area, gave the most contradictory and unsatisfactory evidence. In America the questions are put to Nature, and not to fishermen. Exact and searching investigations are made into the life-history of the fishes, into the temperature of the sea in which they live and spawn, into the nature of their food, and into the hatrits of their natural enemies. For this purpose the Government give the co-operation of the navy, and provide the Commission with a special corps of skilled naturalist , some of whom go out with the steamships and others work in the biological laboratories at Wood's Holl, Massachusetta, or at Washington. The different universities send their bent naturalists to and in these investigations, which are under the direction of Mr. Baird, of the Smithsonian Institution. The annual cost of the Federal Commission is about $40,000 \%$., while the separate States spend about 20,000/. in local efforts. The practical results flowing from these sciemific investigations have been important. The inland waters and rivers have been stocked with \mathbf{f}-h of the best and most suitable kinds. Even the great ocean which washes the coasts of the United States is beginning to be affected by the knowledge thus acquired, and a sensible result is already produced upon the most important of its fi-heries. The United Kingdom largely depends upon its fisheries, but as yet our own Government have scarcely realised the value of such scientific investigations as those pursued with success by the United States, Less systematically, but with great benefit to science, our own Government has used the surveying expeditions, and sometimes has equipped special expeditions to promote natural history and solar physics. Some of the latter, like the voyage of the Challenjer, have added largely to the store of knowledge; while the former, though not primarily intended for scientific research, have had an indirect result of infinite value by becoming training-schools for such investigators as Edward Forbes, Darwin, Hooker, Huxley, Wyville Thomson, and others.

In the United Kingdom we are just beginning to understand the wisdom of Washington's farewell address to his countrymen when he said: "Promote as an object of primary importance institutions for the general diffusion of knowledge. In proportion as the structure of a government gives force to public opinion, it is essential that public opinion should be enlightened." It was only in 1870 that our Parliament established a system of national primary education. Secondary education is chaotic, and remains unconnected with the State, while the higher education of the universities is only brought nt distant intervals under the view of the State. All great countries except England have Ministers of Education, but this country has only Ministers who
are the managers of primary schools. We are inferior even to smaller countries in the absence of organised State supervision of education. Greece, Portugal, Egypt, and Japan have distinct Ministers of Education, and so also among our Colonics have Victoria and New Zealand. Gradually England is gathering materials for the e-tablishment of an efticient Education Minister. The Department of Science and Art is doing excellent work in diffusing a taste for elementary science among the working classes. There are now about 78,0c0 persons who annually come under the influence of its science classes, while a sinall number of about 200 , many of them teachers, receive thorough instruction in science at the excellent school in South Kensington, of which Prof. Huxley is the Dean. I do not dwell on the work of this Government department, because my object is chiefly to point ont how it is that science lags in its progress in the United Kingdous owing to the deficient interest taken in it by the middle and upper classes. The working classes are being roused from their indifference. They show this by their selection of scientific men as candidates at the next election. Among these are Profs. Stuart, Koscoe, Maskelyne, and Rucher. It has its significance that such a hunthle representative of science as myself received invitations from worhing-class constituencies in more than a dozen of the leading manufacturing towns. In the nevt Parliament I do not doubt that a Minister of Education will becreated as fa nucleus around which the various elucational materials may crystallise in a definite form.

II1. Sciencrand Srevndary Education. - Various Royal Commissions have made inquiries and issued recommendations in regard to our public and endowed schools. The Commissions of $1861,1864,1868$, and 1873 have expressed the strongest disapproval of the condition of our schools, and, so far as science is concerned, their state is much the same as when the Dukc of Devonshire's Commission in 1873 reported in the following words:- "Considering the increasing importance of science to the material interests of the country, we cannot but regard its almost total exclusion from the training of the upper and niddlle classes as little less than a national misfortune." No doubt there are exceptional cases and some brilliant examples of improvement since these words wcre written, but generally throughout the country teaching in science is a name rather than a reality. The Technical Commission which reported last year can only point to shree schools in Gireat Britain in which science is fully and adequately taught. While the Commission gives us the cunonlation that England is still in advance as an industrial nationt, it wams us that foreign nations, which were not lomg agri far behind, are now making more rapid progress than this country, and will soon pass it in the race of conpetition unless we give increased attention to science in public education. A few of the large towns, notably Manchester, Bradiord, Huddersfield, and Birmingham, are doing so. The working classes are now receiving better in-truction in science than the middle classes. The competition of actual life asserts its own conditions, for the children of the latter find increasing difficulty in obtaining em ployment. The cause of this lics in the fact that the schools for the middle classes have not yet adapted themselves to the need of modern life. It is true that many of the cnelowed achools have been put under new schemes, hut as there is no public supervision or inspection of them, we have no knowledge as tu whether they have prospered or slipped back. Many corporate schools have arisen, some of them, like Clifton, Cheltenham. and Marlborough Colleges, doing excellent educational work, though as regarils all of them the public have no rights and cannot enforce guarantees for efficiency. A return just issuet, on the motion of Sir John Lubbock, shows a lamentable teficiencs in science teaching in a great proportion of the endowed schools. While twelve to sixtecn hours a week are devoted to classics two to three hours are considered anuple for science in a large proportion of the shools. In Scotland there are only six schools in the Return which give more than two hours to science weekly, while in many schools its tencling is wholly omitted. Every other part of the kingdom stands in a better position than Scotland in rclation to the science of its endowed schools. The old traditions of etlucation stick as firmly to schools as a limpet does to a rock; though I do the limpet injustice, for it due make excursions to scek pastures new. Are we to give up in despair because an exclusive system of classical education hav resisted the assaults of such cultivated authors as Milton. Montaignc, Cowley, and! Locke? There was once an enlightened Emperor of China, Chi Hwangti, who knew that his country was kept back by its exclusive devotion to

oogle

the continual increase of those who have received higher educa* tion of some kind or other, and whowe daily occupations give them an interest, direst or indirect, in one or more branches of science.

It uny not be amiss to insist for a little on the a lvantazes to science of a great body of men unofticially engaged in scientific research, in writing regarding science, or esen in merely turning scaientific matter over in their minds. It will not have escaped the notice of those among you who have studied the history of se ience, that few scientitic ideas spring up suddenly without previous trace or history. It is perfectly true that in many cases some mind of unwoned breadth and firmness is required to f rmulate the new doctrine, and carry it to manifold fruition; but a close examination alway= shows that the sprite was in the nir before the Prospero came to catch him. It is very striking to notice, in the history of Algebra for instance, long periods in which great improvements were effected in the science, which cannot be traced to any individual, but scem to have been due merely to the working of the uinds of scientific men generally upon the matter, one giving it this little turn, another that, in the main always for the better. Like every other thing that has the virtue of truth in it, science grows as it goes, not like the idle fossiping tale by the casual accretion of heterogeneous matter, bat by the chemical combination of pure element with pure element in reasonable proportion.

I know of no greater advantage for science than the existence of an army of indepenlent workers sufficiently enlightened for self-criticism, who shall test the results and theories of their day. Great and indispensable as are the uses of professional schools of scientific wookwen, they are open to one great and insidious danger. The temptation there to swear by the word of the master is often irresistible. Not to speak of its being often the readiest avenue to fams and profit, it is the perfectly natural consequence of the contact of smaller mind with greater.

There are few things where the want of an enlightened scientific public strikes an expert more than the matter of scientific text-books. If the British pablic were educated as it ought to be, publishers would not be able to palm oft upon them in this guise the ill-paid work of fifth-rate workmen so often as they do; nor would the scientific articles and reviews in popular journals and magazines so often be writt n by wen so paljably ignorant of their subject.

We all have a great respect for the integrity of our British legislators, whateser doubs:s may haunt us occasionally as to their capacity in practical affairs. The ignorance of many of them regarding some of the most elementary facts that bear on every: day life is very surprising. Scientifically speaking, uneducated themselves, they seem the think that will catch the echo of a fact or the solution of an arithmetical problem by putting their ears to the sounding-shell of uneducated public opinion. When 1 observe the process which many such people employ for arriving at what they consider truth, I often think of a story 1 once heard of an eccentric German studen: of chemistry. This geateman was idle, but, lihe all his nation, systematic. When he had a precipitate to weigh, instend of resorting to his balance, he would go the round of the laloratory, hold up the test-tube before each of his feliow-stuients in turn, and ask him to guess the weight. He then set down all the replies, look the average, and entered the result in his analysis.

I will not take up your time in insisting upon the necessity of the diffusion of science among that large portion of the public who are, or ought to lec, appliers of scientific knowledge to practical life. That part of ny theme is so obvious, and has been of late so tnuch dwclt upon, that I maxy pass it by, and draw your attention to another place in which the shoe pinches. All of you who bave taken any practical interest in the organisation of our elucational institutions matt be aware of the great difficulty in sccuring the service of non-professional men of safficient scientific knowledge to act on School Boards, and undertake the direction of our higher schosls. It is no secret among those who carefully watch the course of the times in these matters that our present organisation is utterly insufficien: ; that it has not solved, and shows every day less likelihoad of solving, the problem: of lugher education. This arise-, to a great extent, from the fact that a scientifically educated public of the extent presupposed by the organisation really does not at present exist.
If the existence of a great scientific public be as important as I thiak I have shown it to be, it mast le worth while to devote a fow moments to the consideration of the means we adopt to proxluce it both in the rising and in the risen generation.

It would naturally be expected that we should look carefully to the scientific education of our youth, to see that the best men and the hert means that could be had were devoted to it ; that we shoutd endeavour to make for them a broad straight roall to the newest and best of our scientific ideas; that we should exercise them when young on the best work of the greatest"masters; familiarise them early with the great men and the great feats of science, both of the past and of the present ; that we should avoid retarding their progress by making the details and illustrations or particular rules and methods end in themselves. Granting that It is impossible to bring every learner within reach of the fullest scientific knowledge of his time, it would surely be reasonable to take care that the little way we lead him should not be alon; some devious by-path, but towards some eminence from which he might at least see the promised land. The end of all scientific training of the great public 1 take to be, to enable each member of it to look reason and nature in the face, and judye for himelf what, considering the circumstances of his day, may be known, and not be deceived regarding what must to him remain unknown. If this be so, surely the ideal of scientific education which I have sketched is the right one: yet it is most certainly not the iifeal of our present system of instruction. To attain conviction on that head it is sufficient to examine the text-book; and examination papers of the day.
Let us confine ourselves for the present to the most elementary of all the exact sciences, viz., geometry and algebra. These two, although among the oldest, are, as Profestor Cayley very justly reminiled the Association last year, perhaps the most progressive and promising of all the sciences. Gireat names of antiquity are associated with them, and in modern times an army of men of genius have aided their advance. Moreover, it cannot be said that this advance concerns the higher parts of these sciences alone. On the contrary, the discoveries of Gauss, Lobatschewsky, and Riemann, and of Poncelet, Mobius, Steiner, Chasles, and Yon standt, in geometry, and the labours of De Morgan, Lamaiton, and Grassman, not to mention many others, in algebra, have thrown a flood of light on the elements of both these subjects. What trace; of all this do we find in our school books? To be sure antiquity is stauped upon our geometry, for we use the text-book of Euclid, which is some two thousand years old; but where can we point to the influence of modern progress in our geometrical teaching? For our teaching of algebra, f am afrais, we can claim neither the sanction of antiquity nor the light of molern times. Whether we look at the elementary, or at what is callel the higher teaching of this subject, the result is unsatisfactory. With respect to the former, my experience justifics the criticism of Professor Ilenrici; and I have no doubt that the remedy he suggests would be effectual. In the higher teaching, which intercsts me most, I have to complain of the utter neplect of the all-important notion of algebraic form. I found, when I first tried to teach University stadents co-ordinate geometry, that I had to go back and teach them algebra over again. The fundamental idea of an integral function of a certain degrec, laving a certain forin and so many coefficients, was to them as much an unknown quantity as the proverbial x. I found that their notion of higher alyebra was the solution of harder and harder equations. The curlous thing is that many examination candidates, who show great facility in reducing exceptional equations to quadratic, appear not to have the remote t idea beforchand of the number of solutions to be expected; and that they will very often produce for you by some fallacious mechanical process a solution which is none at all, In short, the logic of the subject, which, both educationally and scientifically speaking, is the most important part of it, is wholly neglected. The whole training consists in example grinding. What should have been nerely the help to attain the end has become the end itself. The result is that algebra, as we teach it, is neither an art nor a science, but an ill-diyested farrago of ruies, whose object is the solution of examination problems.

The history of this matter of problems, as they are called, illostrates in a singularly instructive way the wcak point of our English system of cducation. They originated, I fancy, in the Caubbridge Mathematical Tripos Lixamination, as a reaction against the abuses of cramming bookwork, and they have spread into almont every branch of science teaching-witness testtubing in chemistry. At first they may have been a good thing at all cvents the tradition at Cambriclige was strung in my day that he that could work the most problems in three or two and half hours was the ablest man, and, be he ever so ignorant of b. subject in its width and breadth, could aroord to despise th

M (se cocspletely have these anticipations of Nicol been ful-5"er- Iaring the last seven years many of the sections of the Westers Highiands have been visited by different geologists, Lr. Hicis leading the way, and not a few papers have been pub1.shed embodying the results of these new studies of some of the divpred prints. Such an able review of this recent work has keea larely drawa up by my friend, Prof. Bonney, in his Aaniversary Address to the Geological Society, that I need not go over the ground again, bot will content myself by referring to that address and to two exhaustive papers read by Dr. Hicks belofe the Geologists' Ass xciation for full details concerning this later work. It will be seen that while new methods of study have enabled them to improve or correct Nicol's petrolagical nomenclature, the principal conclusions of nearly all these writers encerning the relations of the seceral rock-masses entirely support his views on the subject.
But very recently Nicol's work has been tested in the way which he himielf so earnetly desired. Prof. Lapworth, who, like Nicol, was especially prepared for the task by long and patient study of the crampled Silurian rocks of the Borderland, taking adrantage of the newly pablished Ordnance maps of Sutherland, proceerled in the sammer of 1882 to Friboll, bent on the task of unravelling the complicated rocks and of mapping them upon the large scale of 6 inches to the mile. Prof. lapworth's detailed maps and sections were exhibited to the Geolugical Society on May 9. 1883, during the reading of a paper by Dr. Callaway, in which the views of Nicol also received is considerable amount of valuable support.

In the same year, 1883 , a detachment of the Geolozical Survey of Scotland, under the superintendence of Messrs. B. N. Peach and J. Horne, commenced the detailed mapping of the ThurnessEniboll district. How admirably these gentlemen have performed their task we all know, and I hope that some interesting information concerning their conclusions will be laid before the present meeting. In offering them-as I am sure that 1 am empowered by you to do-the hearty congratulations of the Gealogical Section of the British Aswciation upon the auspicious commencement of this great undertaking, I cannot refrain from reminding you that, of the leaders in this important enterprise, one is the son of the discoverer of the Durness fossils, the veteran Mr. Charles I'each to whotn we owe so much, while the other is a very active and efficient local secretary of this Section.

Nor should I do justice to my own sentiments on the subject if 1 failed to bear tribute to the juigment displayed by the present chief of the Geclogical Survey in his choice of a base from which to attack this difficult probliem, to his loyalty in accepting results 30 entirely opponed to his published opinions. and to his promptitude in making his fellow-workers in geology acquainted with these important discoveries. Unfortunately called upon while still young, and with but little of that ripe experience which he has since gained, to grapple with the most intricate of problems-problems which the most practised of field-geologists might be forgiven for failing to solve-his own judgment yielded, though r.ot without serious misgivings (see "Memoirs of Sir Kioderick Murchison" (1875), vol. ii. P. 238) when oppased to the arilent confidence of a companion and friend whose reputation in the scientific world commanded his reapect, and whote previous achievements had won his complete teliance. If, like your own Randolph at Hannockburn, be has "lost a rose from bis chaplet" at the commencement of this great Higbland campaigo, we are well assured that the error will be worthily repaired in is subsequent stages.

The conclusions arrived at by Nicol, by Professor Lapworth, and by the officers of the Geological Survey, are, in all their main features, absolutely identical ; and the Murchsonan theury of Hightand succession is aow, hy universal consent, abandoned.
In the second of the great controversses to which we have alloded as having occupted the attention of this Geological Section in 1859 -that concerning the age and relation of the Reptiliferous Sandstone of Elgin-the comhatants were found ranged in quite a different order. Nicol is seen battling shoulder to shoulder with Murchison, Ramayy, and Harkness, in favour of the Puta mek age of the beds in question ; while Lyell, rapported by Symonds of Pendock and Moore of Rath, is as rtoutly maintaining their Seroudary age.
The finding by Mr. Patricle Duff, in the year 1852, of she
little fossil lizard called TiimAton, and the determination of 8 . true nature by Mantell and Owen, constitute a diccovery $c=$ parable in importance and fruitulees to Mr. Peach's dete: : of the fossiliferous character of the limestone of Durness ; * that time no doabt had ever been entertained as to the ". Ked" age of the yellow sandstone of Elgin. For lnicx together the remarkable fossils of these rocks, geolugist an indebted to the untiring labours of Dr. Gordon of Biraie-ate. full of years and honours, and the object of such univeral royeand love as indeed make grey hairs a "crown of glory, ": rejoice to have still in our midst. Studying Ler. Cordat, a portant collections, Professor Huxley was able, shorly bele the previous meeting of the Association in this city, to anoment that a crocodilian (.Stagonolepis), and a second lizant of Traaffinities (HyACrodapdon), existed at the period when theve bes were deposited, so that even in 1859 the pala-ontological eralact in favour of the Mesoroic age of these rocks was admitted to te almost overwhelming.

But this evidence has been very greatly strengt bened since th: date ; for Professor Huxley has shown that the genus $H / y /$ wir pedow is represeated in the Trias of Warwickshire, of Deno shire, and of India. In the same repriliferous sandstooe. :its abundant footprints, the teeth of Ccrafoduss, a fish mixions in the Palzozoic rocks, have been found, ogether with the π mains of a reptile which Professor Huxley permits me to state ? in his opinion, probably Dinosaurian. I am sure that yoce. all join with me in the hope that the health of the Presidec: the Royal Society may soon be so far restored that be may ty able to return to the examination of these fossil reptites of tira in the study of which some of the earliest of his great palionex logical discoveries were achieved.

The manner in which the yellow sandstones, whed ber yielded these reptilian remains, are at many different por found associated with bets containing Holoptyidass and cle Old Red Sandstone fish, appeared to many geologists altogeter inexplicable on any other hypothesis than that the strati are i' of the same preological age.

In spite, however, of these appearances, and the interssy olservations of Dr. Gordon and Dr. Joass on the rocks of ir Tarbet peninsula, which seemed to support the hypothos IE referred to, I am able to announce that proof of the mot dow and convincing character now exists of the distioction beween the fish-bearing "Old Red" and the reptiliferous "Ner Red of the neighbourhood of Elgin. In the year 18731 showedis rocks, identical in character with the reptiliferous sundtoose e E.igin, and the overlying calcareous and cherty rock of Sindeth exist on the northern side of the Moray Firth, in the covnry d Sutherland, and that they there conformably underlic kirs. and Liassic strata. Very recently Dr. (;ordon has adted : crowning discovery to his long list of previous ones, by deectia in the same quarry the rocks containing the reptilisi and at remains respectively. If find, how cver, that while the twom of beds present well-marked differences in their :nas characters, the yellow sandstones with fish remains ciesty ore lie the undoubted Upper Old Kerl, and are separated froe is by a well-marked bed of conglomerate. In other quarries in iv district, the manner in which these two series of gross bur been thrown side by side by the action of great fates is wor elearly exhibited. I hope that fall details of the endenat this interesting sobject will be laid before you duriag the prent meeling.

The facts relied upon by the Falapontologist and At graphist respectively are thus found to be no Devenian and Triassic sandstones, whisech frupes is be, general resemblanee in their miperal charnters, are toped the
and agaio throwa side by side with one onother in te trict, so that the error into whid) gralogiste की discovery of the distinctive fowill of the swo nnt a very pardonable on
thickness. Kesemblances in mineral character have been proved not only to have been, at their best, very unsafe guides indeed, but to have actually betrayed those who trusted in them into the most serious errors. But for the discoveries of Charles I'each on the one hand, and of Patrick Duff and Dr. Gordon on the other, geologists would probably still continue to class the sandstones of Torridon and Elgin respectively with the "Old Ked."

But perhaps the consideration of greatest importance which is impressed upon us by this retrospect is, that in these Highland districts we must be always prepared to meet with rockmasses of very different geological ages, thrown into puzzling juxtaposition by the gigantic movements to which this part of the earth's crist has been subjected. He who enters on the study of Highland geology without breing preparel to encounter at every step complicated foldings, vast dislocations, and stupendous inversions of the strata, can scarcely fail to be betrayed into the most disastrous and fatal errors.
The early history of Scotland is inextricably interwoven with that of Scandinavia. This proposition, true as it is of the inignificant periods of which human history takes cognizance, applies with even greater force to the vast epochs that fall within the ken of the geologist. To us the separation of Scotland and Scandinavia is an event of very recent date indeed; it is not only an accident, but an uncompleted accident ! The Scottish Highlands, with the Hebrides and Donegal on the one hand, with Orkney and Shetland on the other, must be regarded-to use a technical phrase-as mere "outliers" of the Scandinavian Peninsula.
We must acknowledge, at the outset, that the study of the geological history of this Scandinavian peuinsula and its outliers is a task bristling with difficulties. The problems presented to us in our Scottish Highlands are vast, complicated, and at times seemingly insoluble. But they are precisely the same problems that confront our brother geologists in Scandinavia. And if our tasks, our doubts, our perplesities are the same, we equally share in the advantages and triumphs of discovery.

The geologits of Scandinavia-and right wortby sons of Thor they are-have the advantage of possessing a territory almost limitless in its vastness, and seemingly infinite in its varicty. But the very extent of their splendid country, with its sparse population and restricted means of communication, increases the difficulties of their task. "The harvest truly is plenteous, but the labourers are few !" With our smaller area, If we cannot expect so turch variety, we may hope to gain something from the number of our students and the greater accessibility of our fields of latour.

Nor would I undervalue, in this connection, the importance of the union of this country with England. I allude, of course, not to events of yesterday, like the Accession of James VI. to the English throne and the Parliamentary Act of Union, but to operations that preceded these by many millions of years! It is no small advantage that a country like Scotland, in which the rock-formations are found hopelessly crushed and erumpled together, or broken into a thousandillftting fragments that seem to defy all attempts to reduce them to order, should be united to one like England, where, by comparison, all is orderly and simple, the strata fying in regular sequence tike well-arranged volumes in a library, and only await the touch of the geologist's hammer to display the wealth of their foseil contents.

The great Scandinavian masif. with its outlying fragments, constitates the "basal-wreck "-to employ Darwin"s expressive (arm-nf a great Alpine chaio. On other occasions I bave eadeahariet ith thow bow mach our study of the nature and perofluts of rolvanc action in facilitated by the existence of
imilar " hasal-wrecks." of volcanie mountains, like those which inilar "hasal-wrecks" of volcinie mountains, like those which
"xist in your besutiful Western INe/h In the same way, I
I lelieve wo may leara more by the stwity or this dissected moun-
tain-clain, concenolng the operations in forisch these grand cain-chais, concenolng the operations lys allich these grand
foatongs of oar glabe huve originatal, liail by the moat pros tow hinhinn of the saperficial charactets of the Alps or
 Ity moun
periou
e higher
work so
rapilly that within a very short period-geologically speakingthe vaste-t mountain-chain is razed to its very foundations-
" They melt like mists, the wolld lands,
Like clouds they shape thernselves, and no!"
It is not surprising then to find Powell and Gilbert, fresh from the study of the grand mountain-masses of the American Continent, giving expression to these thoughts in the following words: "All large mountains are young mountains, and, from the point of view of the unifornitarian, it is equally evident that all large mountains must be growing mountains : for if the process of growth is continuous, and if a high mountain meles with exceptional rapidity before the play of the elements, it is illogical to suppose that the uprising of any mountain, which to-day is Iofty, has to day ceased "
The Scandinavian Alps were a living and a growing mountainchain in the far distant l'alzeozoic period. Now it is not only dead, but stretched on the dissecting table of the geologist-its outer integuments and softer tissues stripped away, and its very skeleton barel to our view-a splendid " subject" for the student of mountain anatomy.
One of the first to recognise this value of our Scottish Highlands to the student of Orographic Geology was the late Daniel Sharpe. He had made himself familiar with many of the characteristic details of Alpine architecture-so far as it was then understood-and was able to show that the foliated masses of our 1lighland districts exhibit precisely those relations which would be seen if the contorted and fan-like masses of the Alps were planed away by denudation. Nor in suggestions of this kind, as we have seen, was Jarues Nicol far behind Sharpe ; but at that time many of the most important features of moun-tain-structure were unrecognisel or misinterpreted, and the conclusions of these geological pioneers were little more than guesses-though very valuable and suggestive guesses-after truth.
It is to our geological brethren over the Atlantic that we are especially indebted, not only for many important discoveries in the mechanics of mountain-formation, but for clearing away many of the clouds of error in which the subject had become involved. To Henry Darwin Rogers, who, after a carcer of valuable geological work in his native State of Pennsylvania, accepted the hospitality of this country, and spent the last decade of his useful life as Professer of Natural History and Geology in the sister university of Glasgow, must be assigned the foremost place in that school of orographic geologists which has grown up in America.

The first sketch of the important theory of mountain-building to which Rogers and his fellow-geologists were led by the study of the Appalachian chain, was published in 1842, but it was not till 1858 that the complete evidence on which this theory was founded could be published.

The conclusion at which Rogers arrived was, briefly expressed, as follows:-The Appalachian mountains were carved ly denudation out of an enormously thick mass of stratified deposits, thrown into a series of parallel wave-like folds. To the westward of the mountain sange " the crust-waves flatten out, recede from one another, and vanish into general horizontality; "but towards the beart of the mountain-mass the same flexed strata become greatly erowded together, their "axis-planes," become more and more inclined, till at last their folds, yielding at their apices to the tremendous lateral thrust, fractures iwenty to eighty miles in length, and attended with a displacement of 20,000 feet or more, were produced.

Unfortunately Rogers accompanied these just views of mountain structure with certain crude speculations and untenable hypotheses concerning the methods by which they were produced. Wat in the minds of other American geologists, among whom may especinlly he mentioned Dana, Le Conte, and Vove-the fruitfol ideas of Rogers bave undergone development and expansion, while they bave received abundant illustration through the labours of that active band of pioneers-the United States Geological Survey-inclurting Clarence King, Powell, Emmons, Hague, Dutton, Giibert, and many others.
Nor have the brilliant results attained by these investigators in the New World been without their effect on the geologists of Earope. Lory, Suess, Heim, Baltzer, and others have shown that the clue to the night understanding of the structure of the Atps, which had been so diligently sought and so long missed by Von Buch and De Beaumont, by Studer and Favre, was now

roogle

ASTRONOMICAL NOTES

Niw Comet.-A new comet, disonvered by Mr. Brooks, has teen oinerved by Mr. Wendell, of Harvard College Observatory, and Mr. Ainslie Common, of Killing. On Friday night its approximate ponition was K.A. 13 h .53 m ., and N.P.D. $52^{2} 20^{\prime}$. Its K. A. is increaving and N.P.D. decreasing ; diameter, 9 minuter of arc, and getting brighter.

New Minoz Planet.- On the evening of the 3rd inst. Hetr Paliu, of Vienna, disoovered a minor planet, thus bringing the number of these bodies ts 250 . The following are the particulan of the discovery :-September 3. 9 h .53 s . (Greenwich mean timel; right avension, 23 h .34 m .445 . north polar distance, icf' $9^{\prime} 35^{\prime \prime}$: daily motion in right ascension, 48s. decreasing, in polar datance 3^{\prime} increasing ; mapnitude, tith.

GEOGRAPHICAL NOTES

TuE Caroline Islands, which are attracting so much political attentum now, are described at some length in the Gauctue ifiteraphique. It is generally acknowledged that they were Incovered by a Portuguese navigator in 1526, and doring the rest of the sixteenth century they were frequently visited by spanith and Portuguese explorers. They were called the ' arrolines abrut 1686 by a pilot nasned Lexcano, who saw many slets there, that could not tell to what group they belonged, or indicate their exact position. The name was given to them after tharle II.; they have also been called the New Philippines, that this has never prevailed. Towards the end of the seventeenth century the Spaniards in the Philippines and Mariannes learned something of the Carolines, and in 1705 an imperfect map, of the group was sent to Pope Clement XI., and then the lesuirs of the mission at Manila resolved to establish a branch in the Carolines. In 1710 the missionaries and a few soldiers vet sail, but on arriving at the Pelews were all massacred. UP 101817 the Carolines were visited by navigators of all nations, but the number of the islands, their exact position, and the liydrography of the seas in which they were situated, was tinally unknown. In that year Kotzebue, and subsequently Freycinet, Duperrey, Dumont d'Urville, and others, visited the whole of the Archipelago, and from them we got our first accurate accounts of the Carolines and their inhabitants. The Caroline archipelago forms part of Micronesia, and is situated to the south of the Ladrones, to the west of the Marshalls, and to the north of New Guinea. It consists of about 500 islands, of which the greater number are only afolls. The number of real islands is only forty-eight, but as each of these is surrounded by a certain number of islets, it may be said that the archipelago consists of forty-eight groups ; forty-three of these are low coral islands, while five are composed of basalt with coral at the base. The superficial area over which the archipelago is spread is about fortyfive square leagues. Geographically it may be divided into three main groups, separated by two large channels: the eastern group, of which the principal island is Ascension or Ponape ; the central group, and the western group, the principal island lreing Eap or Jap, of which much is being heard just now. lonape is between 50 and 60 miles round, and has a peak in the centre which rises to a height of 2860 feet. At one part of its coast there are curious ruins which are still a problem for -thnologists: they are apparently the remains of a large building constructed of huge blocks of basalt. The archipelago, although close to the equator, enjoys a temperate climate ; there are two rainy seawons-one in January, the other in August. The islands are of astonishing fertility; the principal productions are the breal-fruit, cucoa-nut, the palm, bamboo, orange, and clove tree, sugar-cane, beetle, sweet potato, \&c. The population is generally estimated at 18,000 to 20,000 , and belongs ethnologically to the Micronesian family. The principal elements are Malay and Maori; but there is also a mixture of Negrito and Papuan, to which in later times was added a Chinese and Japanere element. The language is as mixed as the race ; the grammatical constructions are the same as those of the Maori, but Malay influence is also evident. In some of the islands there are two languages, as in Java-the vulgar and polished. They have no religion properly so-called; they believe in spirits, which are the souls of their deceased ancestors, and they have a great respect. a kind of cult for their dead, whom they preserve till - body falls to pieces. As in all the islands of the Pacific,
is practised. Fach group of islands is governed by a chief ug. Ilis power in time of peace is purely nominal, but
he enjoys the respect of all: but in the frequent hoody $=x$ his authority is unhounded, and all subuit blindly to bis $\begin{aligned} \\ \text { :" }\end{aligned}$

The Pelews or Palans I/lands are quite distinct from thCarolines ; they are the most western islands of Micronesia, 13 : are situated about 600 miles east of the Philippines. The ant: pelago consists of ten principal islands and a number of islets ?:principal one, called Babelthuap, is 30 miles loog, the swern part being very mountainous. All the islands are covere' thick forests, the trees of which are used by the natives to struct their large canoes. Besides the yam and the croca-t. there are also Lananas, oranges, and a large number of axiris: roots. The pupulation is about 3300 souls, belonging 10123 which is quite dustinct from the Caroline Islanders. Tben sent all the characteristics of the Malay and Papoan neen. are probably the result of the mixture of a superior Malay with an inferior aboriginal people. Old travellen speak . well of these natives: they are said to be in every way super to the inhabitants of the Caroline Islands. Here also there two languages: one for addres-ing superions, the orter insen : possibly it would be more correct to syy that there is ooly ' language, with copious honorific forms. The king has as tuted an orler, which he gives or withdraws at his pleaser the insignia is the first cervical vertebra of the fish dacwn:
The Rundschan fur Gongraphie und Statishonk for Septet'r reproduces a forgotien discourse of Alexander von Humba: It was never published, although it was privately printed for t: use of the members of the Society before whom it was delvere: It deals with the primitive peoples of America and the ner ments which they have left behind them, and was dedrex before the Philomatic Society of Berlin in January, 1806 ; thr a few months after his return from his travels. It had grow: be a bibliographical curiosity ; part of its contents was ="e wards reproduced in his "Ansichten der Natur" and "Ien des Cordilleres," and later investigations have materially aliex: some positions taken up; but the discoure is othermise ver interesting, especially after its disappearance for nearly eyta years.

CONTENTS

Pact
Our Present Needs $43 j$
The "Decomposition" of Didymium 43! Our Book Shelf :-

Dagincourt's "Annuaire géologique universel et Guide
du Gcologie autour de la Terre" 4y
Letters to the Editor:-
The Meteoric Cycle and Stonehenge.-R. Edmonds Nebula in Andromeda.-Lord Rosse, F.R.S.
Sunsets.-R. McLachlan, F.R.S.
Pulsation in the Veins,-s. W.
Red Hail,-Prof. Theodore Schwedoff . . . ${ }^{53}$: 45

On the Terminology of the Mathematical Theory of Electricity.-Henry Muirhead
The British Association
45
Inaugural Address by the Right Hon. Sir Lyon Playfair, K.C.B., M.P., F.R.S., President

4
Section A-Mathematical and Physical ScienceOpening Address by Prof. G. Chrystal, M.A., F.R.S.E., President of the Section

46
Section B-Chemical Science-Opening Address by
Prof. Henry E. Armstrong. Ph.D., F.R.S., Sec.C. S., President of the Section
$4{ }^{4}$
Section C-Geology-Opening Address by Prof. J. W. Judd, F.R.S., Sec.G.S., President of the Section

Notes for the Opening of a Discussion on Electrolysis, to be held in Section B, at the British Association in Aberdeen, September, 1885, by Professor Oliver Lodge
 45

Notes

Astronomical Phenomena for the Week 383 s , September 13-19.

Astronomical Notes:-

New Comet
New Minur J'lanet

SUBSCRIPTIONS to＂NATURE．＂

To the United States，the Continent，and all places within the Postal Union：－

| Yearly ．．．．．．．．．．． | 30 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Half－yearly．．．．．．．．．．．．．． | 15 | 6 |
| Quarterly．．．．．．．．．．．． | 8 | 0 |

CHARGES for ADVERTISEMENTS．

Three Lines in Column 2s．6d．9d．per Line after．

tosf Offe Orders payable to MACMILLAN \＆CO． Uf＇ドICE：29，Hedford Street，Strand，W．C．

SANDERSON \＆Co．， Bole Inventors of the Solld Copper Tape LIGHTNING CONDUCTOR

Ia Continuons Lengthe，without Joints，as supplied by them to Her Majesty＇ Hoverament and the Colonies：the Italian Government．the Argentupe Re－ public，and other Yoreign Goveraments；the Royal Courts of Justice，Strand， the Houses of Parliament，\＆c．
The Jury Commission，acting on the Keports of the International Juries of the Heaith Exhibition，have awarded a Bronze Medal in Class 26 to Mesars． Sanderson \＆Co．for their Solid Copper Tape Lightuing Conductors in Contimuous Lengths，without Joints，and of High Conductivity Copper．

LEADENHALL．HOUSE，zoz．LEADENHALL STREET，E．C．

CABINETS FOR MINERALS， FOSSILS，\＆c．

6 DRAWERS， 20 INCHES HIGH ．．．．．．．．． 218

$\begin{array}{r} 10 \\ 8 \end{array}$	＂	$\begin{aligned} & 39 \\ & 26 \end{aligned}$		＂	＊＊	＊＊	－＊＊
12	\％	39	＂	＊	＊＊＊		

RECTANGULAR，FROM ONE SHILLING PER DOZEN，
THOMAS D．RUSSELL，
78，NEWGATE STREET，E．C．

WESLEY COLLEGE，SHEFFIELD．
 （AFFILIATED TO THE LONDON UNIVERSITY，1844．）

Governor and Chaplain ．．．．．．Rev．W．H．Dallinger，Ll．D．，F．R．S．，\＆c．，\＆c．
head Master ．．．．．．．．．．．．H．M．Shera，Esq．，M．A．，LL．D．
Second Master ．．．．．．．．．．．．James Shearer，Esq．，M．A．
First Classical Master ．．．．．．．．．D．J．HUNT，Esq．，M．A．，late Scholar of Jesus College，Oxon．
First Mathematical Master ．．．．．．Thos．HUGil Miller，Esq．，B．A．（Wrangler）Camb．
And TWEN＇TY ASSISTANT MASTERS and PKOFESSORS．
In addition to Classical，Mathematical，English，and Commercial Subjects，BlOLOGY，PHY＇SICS，and CHEMISTRY，the Modern Languages of Europe，Hebrew and Syriac，Vocal and Instrumental Music，and Drawing are taught by Accomplished Professors．
The Kev．W．H．DALLINGER，LL．D．，F．R．S．，has undertaken the PROFESSORSHIP of NATURAL SCIENCE；and gives Weekly Lectures and Class Instruction in PRACTICAL－ZOOLOGY，BOTANY，\＆c．
CHEMISTRY is taught by R．W．LANCASTER，EsQ．，B．A．（Ist Class Nat．Science），Christ Church，Oxford ；and a Course of LECTURES on PIYSICS is delivered each Term by A．H．ALLEN，ESQ．，F．C．S．SCHOI ARSHIPS are AWARDEI＇， worth，in the aggregate，300\％．a year．DRAWING is taught by JOHN THOS．COOK，EsQ．，Head Master Sheffield School of Art． The JUNIOR SCHOOL，is in excellent efficiency．Permanent Staff，T．S．COX，Esq．，B．A．（London），and three other TRAINED Masters．CHEMISTRY，R．W．LANCASTER，ESQ．，B．A．（Oxon）；MUSIC and SINGING，E．H． MIDDLETON，Esq．，Bac．Mus．（Camb．）
PROSPECTUSES may be obtained by Application to the GOVERNOR or HEAD MASTER． THE NEXT TERM WILL COMMENCE ON TUESDAY，SEPT． 22.

Second English Edition with＇dditions．With 291 Woodcuts and 14 Plate （s Coloured），including Angstrom＇s and Cornu＇s Maps．8va．price ${ }^{3} 18$ ． $6 a$ ．

SPECIRUM ANALYSIS

In Its Application to Terrestrial Substances，and the Physical Constitution of the Heavenly Bodies．
Familiarly explained by the late
Dr．H．SCHELLEN．
Translated from the Third Enlarged and Revised German Edinion by JAxk and Cakolise Lasskle．Edited，with Notes，by Capt，W．dE W．Aanky， R．E．，F．R．S．

London：LONGMANS，GREEN \＆CU）

Price One Shilling．

GEOMETRY AND GRAVITATION．
ALFRED JUKEZS ALLEN．
1．－Orbital Mlotion．
II．－Aitraction of a Sphere．
＂All who wish to see the operation of the law of gravitation lucidly ex－ prained by geonetrical methods should get this little book．．．．The term－ pology is of the latent．＂－Knowlodge．
SAMUEL HAKKIS \＆CO．Publishers，5，Bishopagate Street，E．C．
ABRAHAM KINGDON，Finsbury Sereet，E．C． Second English Edition，Royal 8vo，Price a8s．
SENSATIONS OF TONE
AS A PHYSIOLOGICAL BASIS FOR THE THEORY OF MUSIC． By HERMANN L．F．HELMIIOLTZ，M．D．， Profemsor of Physics in the University of Berlin．
Second Engltah Edition Translated，Thoroughly Revined and Corrected rendered conformable to the Fourth and last German Edition of 1877 ，with rendered conformable to the Fourth and last German Edition of 1877 ，with
bumerous Additional Notes and a New Additional Appendix，oringing down information to 185 s，and espocially adapted to the Upendix，of Murical Students， By ALEXANDER J．ELLIS，B．A．，F．R．S．\＆cc
With 64 Figures Eggrived on Wood and as Panages in Musical Notes． London：LONGMANS，GREEN，\＆CO．

MATHEMATICS（London and Suburbs）．－ Students attended（at their own homes if they so prefer）by a High Wrangler，Trin．Coll，M．A．and F．K．S．，on very reasonable terms，－ X．， 9 ，Dorville Road，Hammersmith，W．
EDWARD WARD has pleasure in an－ nouncing the issue of a new Micro－Slide of Zoophyte，with tentacles out，in the special manner so well known to his numerous patrons．
 $\begin{array}{lll}\text { Gorgonia verrucosa（polype stained）} \\ \text { Podalirus typicus（Spectre Shrinsp）} & " & 3 \\ \text { a }\end{array}$ EDWARD WARD，249，OXFORD STREET，MANCHESTER．Iso3

MINERALOGY AND GEOLOGY．

PROFESSORS，COLLECTORS and VISITORS to LONDON are INVITED to INSPECT Mr．HENSON＇S STOCK of CHOICE MINE． RALS，\＆c，\＆c．At the PRESENT TIME he has a PARTICULARLY FINE，CRYSTALLISED NUGGET of NATIVE GOLD，WEIGHT 9 oz， PINK APOPHYLLITE，C゙HESSYLITE，EMERALDS OD MATRIX， PYROMORPHITE（VERY RARE VOMM），CERUSSITE，CRYSTALL PYROMORPHITE（VERY RARE YONM，CERUSSITE，CRYSTALL TEORIC TRONS and STONES．POLISHED AGATES and LABRA－ DORITES．
A Large Series of ROCKS，also MICROSCOPIC SECTIONS of the same．

Lists on Application．Hammers，Chisels，and Hammer Straps．
PRIVATE LESSONS AND EVENING CLASSES blowpipe cases and apparatus．Catalogues free．

SAMUEL HENSON，
277，STRAND，LONDON． O \quad posite Norfolk S：reet．

WOODHOUSE \& RAWSON

SUPPLIERS OF ALL ELECTRICAL APPLIANCES,

Orfices-ir, Queen Victoria Street, E.C.
Lamps.
Dynamos.
Accumalators.

Works-Caday Hall, Hammeasmith Road, II
Carbons.
Wire.
Instruments.

Battery Supplies. Telephone Supplies. Electric Bells.

PRIZE MEDAL AWARDED

 ERAERTETK \& PEAEE,

 ERAERTETK \& PEAEE,

 [By Appointment to the Rcyal Imsilution of Great Britain,]

 [By Appointment to the Rcyal Imsilution of Great Britain,] SUCCESSORS TO W. LADD \& CO.,
 beak Street, regent street, london, w. MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FOR SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.
 WIMSHURST AND VOSS INDUCTION MACHINES OF IMPROVED PATTERN.
 Illustrated Catalogue, Revised Edition, per post $8 d$.

5. IT. ssicouvri.

In Casks, $12 / 6$ per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts.*

- Ilotites charged z^{\prime} - per doz, and allowed at the same rate if returned; but they must be paid for with the bieer.

Neither sugar, saccharum, nor any of the many new Brewing Mtat-rials are used in the manufacture of the "S.N." Stout; ;it is Brewed entirely from the finest Atalt and Hops; it is, too, more hopped than Slout is generally; therefore besides being very nutritious, it is an excellent Tonic and particularly suited for invalids, ladies nuruing, or anyooe requiring a good atrengthening beverage. I_{1} is a "Sound Nutritious" Tonic. and very much recommended by Medical men.

WAETEAMEROTEERE,
THE "HALF-GUINEA" ALE BREWERY, LONDON, S.W.

Now Ready, Medium 8vo, Price 2ts.
 A TEXT-BOOK of PHARMACOLOGY, THERAPEUTICS, and MATERIA MEDICA By T. LAUDER BRUNTON, M.D., D.Sc., F.R.S.,

 Fellow of the Royal College of Physicians; Assistant Physician and Lecturer on Materia Medica at St. Bartholomew's llopin Examiner in Materia Medica in the University of London, in the Victoria University, and in the Royal College of Physicians, London ; late Examiner in the University of Edinburgh.ADAPTED TO THE UNITED STATES PHARMACOPGEIA BY FRANCIS H. WILLIAMS, M.D. BOSTON, MASS.
"It is simply a mine of wealth both for students and practitioners. It is thoroughly practical and thoroughly reluble, undoubtedly the best treatise on the subject in the English language."-British Medical 耳ournal.
"The work has little in common with the old-fashioned books on materia medica. It is not a mere collection of dry ges' x technical details, but a scientific treatise worthy to be ranked with the highest productions in physiology, either in oar own of other language. . . . It is a book of study for the scientist and a work of reference for the practical physician."-Lancd.
${ }^{\text {"4 }} \mathbf{A}$ work which marks a distinct epoch, a turning-point in the history of medicine. It is not a mere compilation, \ldots, th it is essentially a new departure breaking away from well-worn tracks into a new and almost unknown region. "-Nalinal fo and Gazette.

BY THE SAME AUTHOR. In the Press,
DISORDERS OF DIGESTION: THEIR CONSEQUENCES AND TREATMENT.
This work contains, in addition to the Lettsomian Lectures, a number of other Papers by the Author on similas sobject Demy 8vo.

SECONDEDITION, GRIFFIN'S CHEMICAL HANDICRAFT. PRICE 4s. 7d. POST FREE.

 A CATALOGUE OF CHEMICAL APPARATUS; ILLUSTRATED, CLASSIFIED, DESCRIPTIVE. Demy 8vo, 4lo pp., Illustrated with 3,600 Woodcuts.Most Complete and Cheapest List of Apparatus. JOHN J. GRIFFIN AND SONS, 22, GARRICK STREET, LONDON, W.C.

The AUTOCOPYIST (from aor.) furnishes excellent
 BLACK COPIES

in Lithographic Style, of the ORDINARY WRITING (alvo Shorthand, Arabic, ke.), Sketches, Music. Easy, Economical.-The AUI JCOPYIST ©O., 72, London Wall, Londen.
J. ORME \& CO., 65, BRBBCICA, LONOON.

MANUFACTURERS and
IMPORTERS
op
Scientifc Apparatus
CHEMICALS.

BAKER'S PATENT CALORIMETER,

 A NEW APPARATUS For demonslrating to Science Classes problems in Specific Heat.Fer full particulars zurite to the SOLE AGENTS-
J. ORME \& CO., 65, Barbican, London, E.C.

Complete Price List of Apparatus and Chemicals, 2s. 6d.
TERTIARY FOSSILS FOR SALE.-A very choice Collection of Eocene Fousik from Rarton, Bracklesham, Stubington, Ille of Wight, Higheate, Sheppey, \&ec, also a few. Plei-
atorene and Upper Chalk, ail in the finest possible condition. and including many rare and some undescribed species ; in all about 800 to Oo Species, in two Cabinets F, ir particulars and to view (near Condon) ayply in first instance to JAA
Charlotte Street, Fitzroy Square, London.

SPECTACLES V. OPHTHALMIC 1RREGULARITIES.

W. JOHNSON, Ophthalmic Optician, received the H1IGHEST and ONLY AWARD granted for SPECTACLES in LONDO V, International Exhibition, 1862.

Patronised by the most eminent Oculists and Medical Men.
W. JOHNSON, Optician to the Uaiversity Hospital, 288, TOTTENHAM COURT ROAD.
"Remarks on Spectacles," poet-free.

THE VICTORIA UNIVERSITY.
THE OWENS COLLEGE CALENDAR for the SESSION $\mathbf{2 8 8 5 - 6}$. Price $\mathbf{3 s}$. ; by pont, 3s. 6d.
Manchester: J. E. CORNISH. London: MACMILLAN \& CO.

THE CELEBRATED

Is unrivalled for Gardeners', Foresters', Farmers', Joiners', and Amatensa use. It reqnires no oil. Sharpen with a spittle or water. Puts on a keen, sharp edge; no hambug abont this. Has stood the test of 100 years. Cut in Hones for Axes, Hedge Knives, Razors, Penknives, and Plane Irons, 厽c. Honourable Mention, Paris Exhibition, 1678 ; an. Bronze Medal, London International Exhibitign, 388_{4}. Ask your Ironmonger or other retall houv to get you one, and give my address; if he won't, drop me a note. JOHN C. MONTGOMERIE,
Tam O'Shanter Stone Hone Works, Dalmore, Tarbolton Station, R.S.O. A vrshire.
[303

HOLLOWAYS ONTTMENT
 AT
 INFALLIBLE REMEDY

For Bad LEES, BAD BEEASİ, OLD WOUNDS, GORES and ULCERB. If effectually rubbed on the Neck and Chest, it eures SORE THROATS, BRONCHITIS, COUGHS and COLDS; and for GOUT, RHEUMATISM, and all gkin Diseases it is unequalled.
OPPPRENIRINTESE, ${ }^{172}$, ST. JOHN STREET, LONDON, E.C. BRONZE MEDAL Health Exhibition, DYNAMOS for 10 Lights, 620 ; 2o Lights, 430 , INCANIDESCENT IAMP. 22. 6A. each ; all cande-powers. New Pocket Accumulator, complete with Button-hole Lamp, LI 15. Post-free with Instructions.
Temporary Installations. Price Lists, i Stamp: Catalogue, 6d, (Plezank mention this Paper.I Sample Lamps, 2s. 6d. post-free.

SIX PRIZE MEDALS

 AWARDED FOR GEOLOGICAL COLLECTIONS.Geological Collections especially adapted for Teaching as supplied tn Science and Art Department, and used by all Lecturers and Teachers in Great Britain, \&c.
New aid Rare Minerals constantly arriving from all parts for selection of Single Specimens.
ROCK SECTIONS AND ROCK SPECIMENS:
The Largest Variety la England.
New Catalogues and Lists on application to -
JAMES R, GREGORY,
88, Charlotte Street, Fitzroy Square, Lundon.
Established 27 Years in London.

MINERALS AND FOSSILS,

 SINGLE SPECIMENS OR COLLECTIONS.F. HI. BUTIER, Assoc. R. Sch. Mines Lond., M. A. Oxon. and L.S.A. Lond., Successor to the late R. TALLING,
180, BROMPTON ROAD, LONDON, S.W.
Five minutes' walk from the Natural History Museum, S. Kensington.
CHEMICAL APPARATUS, Wholesale,
Retail, for Colleges, Schools, and Chemical Works New Cataloene of oo pares and 500 clear Illustrations, pont free, ad-WILLIAM
HUME, x, Lothian Street, Edinburgh.

OBJECTS FOR

THE MICROSCOPE

THE "EXCELSIOR" THE NEW PATENT
 PATENT SPRING MATTRESS. AWARDS:
 WOVEN WIRE MATTRESS.

The princlple of arrangement permis the Iree movement of one sleeper without ineonvenience th, the other, ailmits of complete laolation of each, anl efficuatly froorvis deprestion in the centro.

Pit "EXCEISAOR" \& "MATLOCK"COUCHES.
Retall from Cabinet Makers, Upholsterers, \&c.

Prizemedals, Fourtern Certificates of Merit

The

Excelsior '

and "Matlock BED-RFSTS

CHORLTON \& DUGDALE, MANCHESTER.
 ARMSTRONG BRACES.

The leading peculiarity of this Mattress is the atiquet: bination of a woven wire central portict with h springs of great strength and reliabie terpet. alvantagee poscessed by no other make. The tr. sprinis olviate the ten tency in all woven wies mem. to becone hollow and so cause slecpers to an it. millie of the bed.

Illwstrated Descriphive Circwlars and Prine Liblim

SOLD BY ALL HOSIERS AND DRAPERS.
 CONSUMPTION of GAS guaranteed to be 25 to 75% less than ANY other Gas Engine per brake horse-power.

CROSSLEY'SPATENTTWIN "OTTO"ENGINES Impuice every Kerolutwo, The stead!ent running $Q_{\text {an }}$ Kigine yet made CROSSLEY'S PATENT SELFSTARTER The Sxiert. Simplest, and liest. CROSSLET'SNEWVERTICAL, "OTTO"ENGINFS K/furaing lutle forvent space

CROSSLEY BROS., Limited, Manchester. London? eq. Poultry. E.C. Olangowi is. Kenfers St.

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid ground
Of Nature trusts the mind which builds for ayc."-WORDSWORTH

NORMAL SCHOOL OF SCIENCE AND ROYAL SCHOOL OF MINES,
south kensington and jermyn street.
Dean.-Phofessor T. H. Huxley, P.R.S.
SESSION 188 s .86.
From the ist October 1885 , till about the middie of June t886, the Laboratories will be open to Students in the following Sciences:-

Chemestiky and Agetculture.
Phrstcs.
Brolocy.
Grolosir.
Mechantes and Mechantcal Drawing.
Metallurgy, Menteg, and Assaving.
The following Courses of Lectures will be given during the Session :Physics, Professor Guthrie, F.R.S., ist Oct. 1885 ; Principles of Agriculture, I. Wrightson, Esq., tst Oct.; Hiology, G. B, Howes, Exq, ist Oct. Mretallurgy, Professor Chandier Roberts, F.R.S., and Oct.; Elementary Organic and Inorganic Chemistry, Profesor T. E. Thorpe, F.R.S., and Oct. Mining, Profensor Warington Smyth, F.R.S. 9 th Nov. AstronomiCal Physica, J. Norman Lockyer, Esq., F.R.S., 1 th une, 1886 ; Elementary Geology, Profensor Judd, F.K.S. ${ }^{\text {isth }}$ Feb. ; Zoology, and Palaoontology, C.. B. Howen, Esq-, 15th Feb.; Botany, D. H. Scott, Esiq; ${ }^{\text {s }}$ th Feb.; Ad vanced Organic and Inorganic Chemistry, Dr. F. R. Japp, F.R.S., F.C.S., 15 th Feb. ; Mineralogy, F. Rutley, Esg, , gth March.

A Course of Mine Surveying, conducted by Mr. B. H. Brough, will begin on the 1 sth Feb., 1886.

In addition to the above, Lectures will be given in the Chemical Depart. ment by Drs. Hodgkinson and Percy Frankland.

For further particulars apply to the ReGistikax, Normal School of Science, South Kensingion.

VICTORIA UNIVERSITY.

'This Univensity confers Degrees in Arts, Science, Law, and Medicine on hrose who have pursued prescribed Courses of Study in a College of the Iniversily, and have pasued the necessary Examinations.
A Proliminary Examination (Faculties of Arts, Science, and Iaw) and an Fintrance Examination in Arts (Fiaculty of Medicine) will take place in October, commencing on Monday, the 5th.
Particulars as to these and other Examinations and as to Courses of Study may be obtained from the Registrar.

Manchester.
A. T. BENTLEY, M.A., Registrar.

OWENS COLLEGE, VICTORIA UNIVERSITY, MANCHESTER.

The Council invite applications for Five Berkeley Fellowships of the value of ℓ too each for the year 1885.86 , to be awarded in one or more of the follow. iny subjects:-1. Classics. 2. English Language and Literature. 3. History. 4. Ihilosophy. 5. Pure Mathematics. 6. Applied Mathemalics, 7. Enineering. 8. Physics, ${ }^{\text {g }}$. Chemistry. 10, Btology (including Physiology), 11. Geology (including Palsontology). The appointments will be made not on the results of examination, but on evidence of ability to prosecute some special study or research.

Applications must be sent to the Registrar on or before September as.
A fuller statement of the conditions of the Fellowships will be forwarded on application.

HENRY WM. HOLDER, M.A., Registrar.

OWENS COLLEGE, VICTORIA UNIVERSITY, MANCHESTER.

I. Arts Science, and Iaw Department.
11. Medical Department (including the Dental and Pharmaceutical courses).
111. Department for Women.

1V. Evening Classes Department.
Prospectuses of the above, and of Entrance Scholarships and Exhibitions 14 in number, and varying from 413 to Lroo per annum, will be forwarded 'ree on application to the Registrar of the College, or may be obtained from Mr. CokNisil, 33. Piccadilly, Manchester.

HENRY WM. HOLDER, Registrar.

VICTORIA UNIVERSITY,
 UNIVERSITY COLLEGE, LIVERPOOL.

SESSION $1383+86$ commences OCTOBER 5
Complete Curriculum provided for Victoria Univensity Degrees in Medicine, Arts, and Science.
Students also prepared for London University, Carnbridge Higher Local and other Examinations.
Physical, Biological, and Chemical Laboratories.
Astistance in Practical Laboratory Work by Demonstrators under the Superistendence of the Profensor of the Department.
All Classes, except Medical open to Male and Female Students of 16 and upwards Students admitted on their 16th year, subject to Preliminary
xamination.
Evening Lectures and Classes, beginning October 12, open to all-comers
apayment of 6 s. fee.

A HEAD MASTER is anxious to recom.

mend a Youth in his 18th year as Assistant to a Naturalist or to the Curator of a Natural History Muscurn, or for some similar employmet.t. Very considerable knowledse in the Collection, Clasuification, and Preservation of Insect and other Specimens; an escellent Practical Chemist; knows French and German-Address Head Mastik, Netchant Taylors' School, Liverpool.

SHEFFIELD TECHNICAL SCHOOL.

The SESSION 1885 -6 commences OCTOBER 6, 2885 . Day and Evening lectures and Courses of Instruction will be given in METALLURGY and METALI.URGICAL LABORATORY PRACTICE, al₹o in MECHAN. ICAL ENGINEERING and MACHINE DRAWING. The Prospectus may be had on application.

ROYAL COLLEGE OF SCIENCE FOR IRELAND,

 STEPHEN'S GREEN, DUBLIN. SCIENTIFIC AND TECHNICAL EDUCATION. SESSION 1885-86.This College supplies a complete Courne of Instruction in Science as applied to the Indusirial Aris, e-pecially those which may be classed broadly applied to the Indusiral Ari\& especially those which may be casce broady
under the heads of CHEMICAL MANUFAC'TURES, MINING, and under the heads of
ENGINEERING.
A Diploma of Associate of the College is grabted at the end of the Three Years' Course.
$T h e r e$ are Four Royal Scholarships, tenable for two years, each of the value of 650 yearly, with free education, including Laboratory Instruction. Two become vacant each year. They are given to Students who have been a year in the College.
The Fees are C a for each Course, of ℓ_{10} for all the Courses of each year, with the exception of Laboratory Practice and Drawing School.
Chemistry (Theoretical and Practical), Metallurgy, \&c.-Professor Haktley,
F.R.S., F.C.S., F.R.S.E.

Mathenatics, Mechanics, and Mechanism-Professer Hrankssv, F.R.S., M.R.I.A.

Descriptive Geometry, Drawing, Engineering, and Surveying-Professur Ploot, C E., M, R. I A.
Experimental Physics (Theoretical and Practical)-Profensor Banesitt, F.R.S.E., M.R.I.A.

Mining and Mineralogy-Prifessor O^{\prime} Retter, C.E. M R.t.A.
Botany-Professor M'Naf, M.D., F. L.S., Dean of Faculty.
Zoology-Professor Hadion, M.A.. F.Z.S., M.R.1.A.
Geology-Professor HULL, M A., LLL.D., F.R.S.
Palzontology-Mr. BaiLr, F.L.S., F.G.S., M.R.I.A.
The Chemical and Physical Laboratories and Drawing School are open daily for Practical Instruction.
Fee for Chemical Laboratory; La for One Month, $\angle 5$ for Three Months, Co for Six Months, or $\mathcal{L}_{6} 1$ for Seasion, Fee for Physical Laboratcry, $\angle 1$ per Moneh, or $\angle 6$ for Session. Fee for Biological Laboratory, \mathcal{L}_{1} for the Term. Fee for Drawing School, L_{3} for Sewsion, or L_{2} for one Term.
The SESSION commences on MONDAY, October 5.
Programmes may be obtained on application at the College; or by lette, addressed to the Secretary, Royal College of Science, Stephen's Greenr Dublun.

Prufessor J. P. O'REILLY, Secretary.

UNIVERSITY COLLEGE, DUNDEE.

The WINTER SESSION will begin on MONDAY, October 12.
In the previous week Examinations will be held for Four Armitstead Scholarships, and for the Smart Bursary in Engineering, also the Entrance Exalarships, and for the Smart Burs.
Examinations for Students under 16 .
Instruction is given in Mathematics, Natural Philosophy, Chemistry, Engineering and Drawing, Biology, Classic and Ancient History, English I anguage and Literature and Modern History, French Language and Literature ; and all Departments, comprising both Day and Evening Clases, are open to Both Sexes on the same Terms. The Laboratories are cquipped with every requisite for Study and Research ; and Special Yacilities are offered for Instruction in Electrical Engineering.
The College is recognised by the University of Ediaburgh for Graduation In Science to the extent of Two out of the Threc Years' Course reguired. The various Courses are suitable for the Degree Examinations of the University of Iondon, the Examination for the Indian Civil Service, and for the L.L. A. Certificate of St. Andrew's University.
The Calendar, containing Full Information, may be had from the Booksellers, or from the Undersigned, price 1s. by Post.

SHILLL \& SMALL, Secretaries.

MERCHANT VENTURERS' SCHOOL, BRISTOL.

Wanted at once in the Mining and Engineering Department an Engineer competent to conduct the Courses of Study in Mining. For particulars apply to Geonge H. Pors, Merchants' Hall, Bristol.

MINERALOGY AND GEOLOGY.

PROFESSORS, COLLECTORS and VISITORS to LONDON are INVITED to INSPECT Mr. HENSON'S STOCK of CHOICE MINERALS, Rc., EC. At the PRESENT TIME he has a PARTICULARLY FINECRYSTALLISED NUGGET OFNATIVE GOLD, WEIGHT 902 , PINK APOPHYILITTE, CHESSYLITE, EMERALDS on MATRIX' PYROMORPHITE (VERY ZARE YORM), CERUSSITE, CRYSTALL ISED MAIACHITE, and BOTRYOIDAL CHALCEDONY, ME. TEORIC IRONS and STONES. POLISHED AGATES and LABRA. DORITES.
A Large Series of ROCKS, also MICROSCOPIC SECTIONS of the same. Lists on Affication. Hammers, Chisels, and Hammer Strapa.
PRIVATE LESSONS AND EVENING CLASSES. BLOWPIPE CASES AND APPARATUS. Catalogues free.

SAMUEL HENSON,
277, STRAND, LONDON. Opposite Norfolk Street.

GUY＇S HOSPITAL．

The MEDICAL SESSION commences on THURSDAY，October I ． The Hoppital contains，besides the beds for Medical and Surgical Cases， wards for（Obwetric，（）phthalmic，and other apecial departments．
Special Classes are held is the Horpital for Students preparing for the Examinations of the University of Londun and of other Examining Boards． Aprotnturnts．－The House Surgeons and House Physicians，the Obste－ tric Kesidents．Clinical Assistants，and Dressers，are selected from the Students according to merit and without payment．There are also a large number of Juni if Appointments，every part of the Hospital Practice being systematically employed for instruction．

Evtrance Scholasshifs．－Open Scholarship of as guineas，in Classics， Mathematics，and Modern Lanquages．Open Scholarship of 125 guineas， in Chemistry，Physics．Botany，and Zoology．
Prices，\＆ for general nefofiency in Medical Study；the Treasurer＇s Gold Medal，In Medncine：the Treasurer＇s Gold Medal，in Surgery ；the Gurney Hoare Prise of C 25 ，for Clinical Study；the Beaney Prize of zo guineas，for Pathology： the Sands Con Scholarnhip of $\delta 15$ per annum for three years，for Physiology： the Joseph Hoare Prises of $\mathcal{L} 5$ and $\mathcal{L} \mathrm{o}$ ；the Michael Harris Prise of $\ell_{1 a}$ for Anatomy：the Mackensie Bacon Prise of $\mathcal{A} 0$, fur Ophthalmoscony；the for Anatomy：the Mackensie Bacon Prise of $\mathcal{L} 10$ ，（or ；the Burdett Prize for Mackensie Racon Prian
Hyiene，value Lio
Fyienc，value 人ta further information apply to the Dean，Dr．F．Tavion． Guy＇s Hospital，london，S．E．，July a88s－

THE FUEL OF THE SUN．

By W．MATTIEU WILLIAMS，

F．R．A．S．，F．C．S．

8vo．，Cloth， 244 pp．．price 75.6 ．
This essay，though avowedly speculative，invokes mo hypothetical entities aor actions，but proceeds enclusively by direct deduction of the cossaic operation of demonstrated and accepted physical laws．
The matter of our atmosphere is shown to be expanded throughout space， and accumulated around every orb proportionally to its gravitation．
Taking our share of this as unity，the atmospheres of the sun and planets are calculated．The accumulation，instirring，sjection，dissociation，and recombination of the enveloping solar gases are shown to originate and maintain the heat and light of the sun；the instirring agent being the eccen－ tric rotation of the solar nucleus effected by the reaction of planetary gravit－ ation；the fresh fuel supplied by the cosmic matter exchanged for that ejected by the prominences in the course of solar translation through space．
The sun－spots，the prominences，the corona，the rodiacal light，and all the minor detaih of nolar disturbances come out as physical results；also a simple explanation of flashing stars，and of the nebule as Acrusanest bodies．
The observed meteorology of the inferior planets，and the semi－solar con－ titution of the larger，follow from the same physical premises．
Anuming that the stam are sums like oun，it is shown that no energy is Assuming the the orbs simply concentrating gained or lost throughout the universe，the solar orbs simply concentrating． London：SIMPKIN，MARSHALL，\＆CO．

EIGHTH EDITION．

DESCHANEL＇S NATURAL PHILOSOPHY．

Translated and Edited by J．D．EVERETT，F．R．S．，
Profesor of Natural Philooophy in the Queen＇s College，Belfast．
Eighth Edition，Revised throughout，and Additions inserted，bringing it up to the Present Time．thustrated by 783 Engravings on Wood and 3 Coloured Plates Medium Sro，Cloth，184．；also in Parts，Limp Cloth， 3s． $6 d$ each
Part 1．－MECHANICS，HYDROSTATICS，and PNEUMATICS． Part 11．－HEAT
Part III．－ELECTRICITY MAGNETISM．
Part IV．－SOUND and LIGHT．
Londua：BLACKIE \＆SON， 49 and 50 ，Old Bailey．
MATHEMATICS（London and Suburbs）．－ Students attended（at their own homes if they so prefer）by a High Wrangler，Trin．Coll．，M．A．and F．R．S．，on very reasonable terma－ X．，90 Dorville Road，Ilammersmith，W．

EDWARD WARD has pleasure in an－ nouncing the lasue of a new Micro－Slide of Zoophyte，with tentacles out，in the special manner so well known to his sumerous patrons．
 Podaliras typicus（Spectre Shrimp）＂，：
EDWARD WARD，s49，OXFORD STREET，MANCHESTER．［gos MICROSCOPY．－MICRO－NATURAL HISTORY（ZOOLOGICAL AND BOTANICAI．）and the ALLIED SCIF．NCES－On October I will be Published and sent Poof Froe liv Two Stampa，W．P．Collins＇s New Catalogue of Bouks（mosily Se hand）．Scientific Liliraries Purchased and Bookk taken un Excha W，P．COLLINS，Sciesce Bookveller，257，Great Portiand Stret Loodon，W，

IMPORTANT NEW SCIENTIFIC BOOKS PL゙BLISMED av
 SWAN SONNENSCHEIN AND CO

THE WANDERINGS OF PLANTS AND

ANIMAIS．By VICTOR HEHN．
This important work is full of leamed and curious revearch into the His on of the Migrations of Cultivated Plants and Domestic Animals frata of the Migrations of Cultivaled and the rest of Europe． home in
gilt， 16 s ．
ELEMENTARY TEXT－BOOK
［．V．art＇y rene
OFENTO
MO1．OGY．By W．F．KIRBY（Brit．Mus）Large Mgowre 17 has
handsnmely bound，with over 6yo Drawning， 15 ．
It is，in fact，a succinct Eacyclopazdia of the inbject spicuras in language，and profusely illustrated，the insect thus raeder fake．
 determine without difficulty．．The woodcuss are so achmarater as at o cheat the eye familiar with the objects presented into the betoef tha： gazing upon the colours which it knows so well．．＂Advancwed erase ogists will obtain Mr．Kirby＇s fine volume as a handy bok of rejernan the stadent will buy it as an excellent introdsuction to the scaence，and as as absolutely trust worthy text－book．＂－${ }^{\prime}$＇nowiledice．
ELEMENTARY TEXT－BOOK OF 700LOGY．By．Profs．W．CLAUS（Univ，Vienna）and ALIMV SEDGWICK（Irin．Coll，Camh）．With go6 New Woodera．Io， cloth．
Section 1．－Protosoa to Insecta．21s．Section II．－Mollanca to Man
＂T Horonghly trustworthy and serviceable，and very well $\mathrm{got} \|$
706 beautifully clear and most judiciously selected woodcuts entas it $=$－ value of the book incalculably，and there can be
universally adopered introduction to zoology．containing as rich a mogph well－drawn fagures as man could desire．＂－2ovigist．
ELEMENTARY TEXT－BOOK OF BOTANY．By Profs．W．PRANTL and S．H．VINES，D Sc wa （Fellow and Lecturer of Christ＇s College，Cambridgel Fourch Eau （1885）．a75 Woodcuts．Demy 8vo，cloth，96．

Thick Demy ${ }^{8} \mathrm{vo}$ ，cloth，gilt，${ }^{168}$ ．

A BIBLIOGRAPHY，GUIDE，
AND
INDEX TO CLIMATE．BY ALEX．RAMSAY，FG．S．
The plan has been to thoroughly search each paper or work，end arre：－ its contents under specific classified beadings．．The syeternationaon $=$ results in the most compendious condensation of all thal is wanter arranged that any particular fact is at once accestible．．．．Lach aurlan allowed to state his own views．．．The indices are very cospipete most valuable addition to every scientific，public，or reforence－blera7 Saturiay Revirtw．
＂It forma a large volume of 500 pages，and tabulates a vaat an interesting and valuable matter bearing os Mateorology．．．．Great reason is exhibited．＂一Times．

SWAN SONNENSCHEIN AND CO．，
PATERNOSTER SQUARE．

Price as． $6 d_{0}$

CHEMICAL EQUILIBRIUM．

THE RESULT OF THE DISSIPATION OF ENERGY
By G．D．LIVEING，M．A．，F．R．S．，
Fellow of St．John＇s College，and Professor of Chemisury is the Univero． of Cambridge．
Cambridge：DEIGHTON BELL \＆CO．
London：GEORGE BELL \＆SUNS．
BRITISH MARINE SHELLS，CRUSTA CEANS，ECHINODERMS BIRDS＇EGGS，Acc．Many thoww of rare and beautiful specimens for Sale Cheap．Lines a stan－ Specimens sent on approval．－J．，is，Warren Street，Tenly．

105,000 ACCIDENTS ров шниси

TWO MILLIONS HAVE BEEN PAID AS
COMPENSATION
av tur

Railway Passengers＇Assurance Company 64，CORNHILL ACCIDENTS OF ALL KIN

stellar point situatel near the central region of the nebula. It is quite free from any blurred appearatice or any aspect of indefiniteness other than that introluced by the nebula on which it is projected.

On later nights the star seened to have slightly decreased ; it, light was feebler and less sparkling, but I marle no exact comparisons for tracing the decline of brilliancy, if any.

During many years the naked eye appearance of this conspicuous netrula has been familiar to me, and I have been accustomel to notice it particularly while engaged in prolonged watches for shooting stars. No sharply-denined nucleus was ever pereeptible, but now the involved star is distinctly visible by slightly averting the vision. When the air is very clear the glowing out of the star now and then is very obvious, and I mention the fact in prowf that the variation of the nebula by this new phenomenon is sufficiently great to affect its nakel-eye aspect.
W. F. Densing

Bristol, September 1_{3}

LETTERS TO THE EDITOR

$\{$ The Editor does wet hold himself responsiblefor opiwions expressed by his correspondents. Neither can he andertake to return, or to sorrespond quith the writers of, rejccted manuscripts. No notice is laken of anonymons communications.
(The Editor wergently requests correspondents to keep their letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the appearance corn of communications containing inleresting and novel facts.)

Red Rays after Sunset

Thrre have lately been seen here some renarkable examples of rose-coloured streamers radiating from the sun at an interval of from 20 to 30 minutes after sunset, particularly on the 3 rd, 5 th, and 6th of this month. On the 3 rl the appearance was especially striking, the contrast of colour between one very broal, vertical ray and the greenish-gray sky which separated it from its neighbours being most marked.

That these rose-coloured rays are essentially identical with the diffused rose-tint observed on other occasions is evident, not only from the smimarity of colour and of interval after sunact at which they appear, but also from the occurrence of intermediate examples, in which the rays are se far and so broad that the radiate character ts almost lost.

It is, however, by no means so clear why the coloured tract of sky should be sometimes split into rays, and it is with a siew to ventilute this question that I desire to call attention to the suliject.

I believe it is generally supposed that the dark spaces between the rays are due to masses of cloud intercepting the sun's lighe. Int there are difficulties in the way of this explanation which i have never seen met.
It need hardly be pointed out that the matter (whatever it be) which reflects the red light must be at an aluitude far above any val I mawes of clond as could intercept the sun's rags; it conld non otherwise receive and refleet those rays half an hoor after the sum hat set to the observer. But although above the level of the clenuts, the rellecting matter would still be subject to intrimatith of the sun's rays by clond at sanset, and it order to Ju'tie whether the phenomenon can be so aceounted for to is new waly tow consibler what kind of horizon that woold be behind whin in thir sun woult see to an olserver at the altitude supposed. My impuramon is that the hotiron as seen from sech a height wemht in w, listant that whatever the irfegulatities of cloud"nfare forming 11 , it wroblit te practically a level line, and that
 Insufinifit tor eas at that divance the enartacu shadows which whalithe hro ensury for actonut for the ritts between the ray

- lifeon, Sepromiors 8

Fiteball

A itet. bieluall wan noible at Mristol and other plac

 here at the tome, with wily lat magnotale otars visille, but the light of the metare ajpatv liw hatr liern onmething atomaking.

Mr. G. T. I farsw, of thano, mat keading, writer me that, when finst seen there. the mielour was neer A Ophiachi, and
seemed to describe a slightly curverl path to the barimo, wha it toucherl apparently under β Serpentis. It echibitel a geetal tinted disk with bright, white aureole around it, and iefien trie: The aureole was at least 16 ' in diameter.
It will the devirable to collect further acouans of this the meterr. The direction of its path sugsects that in may bens to the same system as that of the setonatiog freetoil of spote ber 14, 1875, which hatl a radiant point at a $34^{\prime}, 10^{\circ} \pm 100$, man). During the past fortnight I have otserved a considen: number of showting-starc, and one of the hert ndiunt perveat $a 346,80^{\prime} \pm$, or $2^{3} \mathbf{W}$. of that of Col. Tapran't Ereizio 8 September 14, 1875.
W. F. EExM思

Bristol, September 13

Pulsation in the Veins

If Mr. Hippisley will refer to Landois' text-bank, nif p. 196, he will find it there stated, on the authority of ()-ariz that a venous pulse occurs on rare occasions, bormally, it De veins on the back of the hand and foot, when the pratios ends of the arteries become dilated and iclaxed. But it sin' remembered that the very same phenomenon may $0:+$ abornally, owing to some pathological condition of the ber as stenosis of the mitral orifice, or insufficiency in action of th mitral valve. Mr. Hippisley does not state is his leter wess the heart was in a bealthy condition, or whether anylews that organ was present in those on whom his experimest w tried.
J. W. WHLu:

Middlesex Hospital

" Furculum " or "Furcula "

Is there any authority for the use of farcuium fort to furculatorium of birds? I am told by a contributor ") Procedingy of this Sociely, whove phraseology I have ms to interfere with, that "forcuiwn" has been entiere 4 Balfour, Iluxtey, and Rolleston. Such may be the ox ': is poasible that even these great anatomical writers mea erfed in the use of a Latin termination. No diativent at have been able to refer to contains the word "farculbe"

The Zorlogical Society of Lundon
P. Le sictid

THE BRITISH ASSOCIATIOV

Aberdren, Mfinis

TFHERE have been few meetings of the Britisk fan ciation so crowded with papers in nearly alle sections. On Saturday several sections met which, pien under the greatest pressure, never meet on that ${ }^{\text {d }}$ Section D has been compelled to split up into thesest sections, and probably most of the sections will havel? meet on Wednesday moming. The social dismmet bave been much more numerous than usura, suspect have somewhat seriously interfered legitimate work of the mecting. As might be experd the Music Hall was crowded on Wednesday evens? to hear the f'resident's address, which scems to w produced a great impression on the audience.

It is being mare and noore strongly recogaised such pre-arrangeme *a hose of Sections A ought to become discussions in
grammes have
excited great is
chemistry. It 1.
dracussions will t

- pllme have any g .

Prof. Traill, the nucleus of a valuable local natural history collection has been formed. Prof. Osborne Reynolds's illustrations of compression of solids was one of the most attractive features of the evening. The collection of pictures was large and highly creditable, while the precious collections of old manuscripts and books lent by the Earl of Crawford had many admirers. One of the most successful afternoon parties was given the same day at Tollshill Wood by Mr. David Stewart. Of course, of the numerous Saturday excursions, that to Balmoral was the most popular. In spite of the wretched weather 200 people must have left Aberdeen for Ballater at 1 p.m. and happily by the time the end of the railway journey was reached the weather greatly improved. The drive from Ballater to Balmoral evidently gave great enjoyment to the occupants of the long cavalcade of miscellaneous "machines" which wound along the banks of the Dee, and no less, we may be sure, did the sumptuous five o'clock dinner " lunch," it was called) which was provided in the ball-room of Balmoral. Gen. Gairdner presided at the table, and, atter proposing the Queen's health, drank, by command of Her Majesty, prosperity to the British Association. Under the guidance of Dr. Profeit the guests made a round of the fine grounds of Balmoral, and on driving back to Ballater, passed Her Majesty on her return from a day's outing. The excursion to Dunecht was also a great success, the arrangements at Lord Crawford's observatory exciting much interest.

A deputation from Birmingham is here to make arrangements for the visit to that town next year. It is evident that the Birmingham people mean to make the 1886 meeting a success, though, so far as social arrangements go, it will be difficult to surpass that of Aberdeen. It is expected that Manchester will be the place of meeting in 1887, and for 1888 or 1889 several enterprising members hope to secure the selection of London, in order to have a meeting in common with the American Association. Against this choice, however, there will probably be a strong protest, though of course the American Association will be sure to receive an enthusiastic welcome whenever it chooses to visit the old country.

I'rof. Adams's lecture on Friday attracted a large audience, and on Saturday evening the Music Hall was filled with an enthusiastic audience of genuine working men to listen to Mr. H. B. Dixon's lecture and admire his experiments. Mr. Murray's lecture to-night will certainly be of popular interest, but, summing up as it does the present position of oceanography, it will also be of the highest scientific value. The diagrams are very striking, and certainly original. A full report will no doubt appear in Nature.
The regret at the resignation of the secretaryship of the Association by Prof. Bonney is universal, though it is confidently expected that Mr. Atchison will be a thoroughly competent successor.
The additional arrivals up to this morning will bring the total number present at the meeting up to 2500 .

SECTION B

CHEMICAL SCIENCE

coneing Address hy Prof. Henry E. Armstrong, Pii.D., F.R.S., Sec. C.S., President of the Section ${ }^{\text {a }}$
pass to the consideration of a subject of special interest ion, which I think requires the immediate earnest chemists and physicists combined-that of Chemical "is Presidential Address to the Association last d Rayleigh made only a brief reference to any of us must have felt that his few remarks meaning, especially his reference to the imible of the dissipation of energy in relation year's reflection has led me to think
ness and full of prophecy. I would wed from p. 433.
expecially draw attention to the closing paragraph of this portion of his address: "From the further study of electrolysis we may expect to gain improved views as to the nature of the chemical reactions, and of the forces concerned in bringing them about. I am not qualified-I wish I were-to speak to you on recent progress in general chemistry. Perhaps my feelings towards a first love may blind me, but I cannot help thinking that the next great advance, of which we have already some foreshadowing, will come on this side. And if I might, without presumption, venture a word of recommendation, it would be in favour of a more minute study of the simpler chemical phenomena.

Chemical action may be defined as being any action of which the consequence is an alteration in molecular constitution or composition; the action may concern molecules which are of only one kind-cases of mere decomposition, of isomeric change and of polymerisation; or it may take place between dissimilar molecules-cases of combination and of interchange. Hitherts it appears to have been commonly assumed and almos universally taught by shemists that action takes place directly between \boldsymbol{A} and B , producing AB , or between AB and CD , producing AC and BD, for example. This, at all events, is the impression which the ordinary average student gains. Our text books do not, in fact, as a rule, deign to notice observations of such fundamental importance as those of De La Rive on the behaviour of nearly pure zinc with dilute sulphuric acid, or the later ones of Faraday ("Exp. Researches," Series vii., 1834 , 863 , af seg.) on the insolubility of amalgamated zinc in this acid. Helief in the equation $\mathrm{Zn}+\mathrm{H}_{9} \mathrm{SO}_{4}=\mathrm{II}_{4}+\mathrm{ZnSO}_{4}$ hence becomes a part of the chemist's creed, and it is generally inter preted to mean that zinc will dissolve in sulphuric acid, forming zinc sulphate, not, as shoull be the case, that when zinc dissolves in sulphuric acid it produces zinc sulphate, \&e. In studying the chemistry of carbon compounds we become acquainted with a large number of instances in which a more or less minute quantity of a substance is capable of inducing change in the body or bodies with which it is associated without apparently itself being altered. The polymerisation of a number of cyanogen compounds and of aldehydes, the "condensation" of ketonic compounds and the hydrolysis of carbohydrates are cases in point ; but solittle has been done to ascertain the nature of the influence of the contact-substance, or catalyst, as I would term it, the main object in view being the study of the product of the reaction, that the importance of the catalyst is not duly appreciated. Recent discoveries, however-more particularly Mr. H. B. Dixon's invaluable investigation on conditions of chemical change in gases, and the experiments of Mr. Cowper with chlorine and various metals, and of Mr. Baker on the combustion of carbon and phosphorus-must have given a"rule shock, from which it can never recover, to the belief in the assumed simplicity of chemical change. The inference which I think may Cairly be drawn from Mr. Baker's observations-that pure carbon and phosphorus are incombustible in pure oxygen-is indeed startling, and his experiments must do much to favour that "more minute study of the simpler chemical phenomena" so pertinently advocated by Lord Rayleigh.

But if it be a logical conclusion from the cases now known to us that chemical action is not possible between any two substances other than elementary atoms, and that the presence of a third is necessary, what is the function of the third body-the catalyst-and what must be its character with reference to one or both of the two primary agents? In the discussion which took place at the Chemical Society after the reading of Mr, Baker's paper, I ventured to define chemical action as reversal dectrolysis, stating that in any case in which chemical action was to take place it was essential that the system operated upon should contain a material of the nature of an electrolyte (Chem. Soc. Prac., 1885, P. 40). In short, I believe that the conditions which obtain in any voltaic element are those which must be fulfilled in every case of chemical action. There is nothing new in this ; in fact, it practically was stated by Faraday in 1834 (" Experimental Researches in Electricity," series vii. \$858, 859^{1}); and had due heed been given to Faraday's teachings we

I "Thone bodies which, being interposed belween the metals of the voltaic
 upon the altention of every one engaged in considering this subject, that in those bodies (so essential to the pile) decomponition ard the transmission of a curren! are so intimately connected that one canaot happen withoul the other. If, then, a vottaic Irough have its extremities connected by a body capable of being decomponed, as water, we shall have a contiouous current through the apporalus; and whilst it remains in this state we may look at the part where the acid is acting upon the plales and shat where the curreni

odar Google

Edar Googlc

Edturoogle
marked the practical close of one great series of controversies. The discussions of the present meeting will. I trust, result in the recognition and clear statement of a number of other equally important problems of Highland geology which tull await solution. And I am sanguine enough to hope that when this A-sociation next gathers here, my successor in this chair will have to congratulate his audience upon a very brilliant retrospect of work actually accomplished in the interval.

I am encouraged in this optimism by the fact that in the period which has elapsed since our last meeting here, great ant important improvenients have been made in the methods of geolugical invertigation. We have seen how the discovery of a few fragmentary shells in the limestone of Durness, and of sundry cants of lones in the sandstone of Elgin, have leen the means of profoundly modifying our iuleas concerning the age of vast tracts of rock in the Highlands. The development of modern methods of petrographical research is destined, I believe, to lead to a similar revolutionising of our views concerning the wonderful series of changes which have taken place within ruck-masses, subsequently to their original accumulation.

Eispecially does the application of the microscope to the study of rocks, when employed in due subordination to, and illustration of, work done in the field, promise to be the source of valuable and fruitful discoveries in the field of Highland geolong.

In connection with this suliject. I cannot refrain from reminding you that while the initiative in the application of the palaontelogical method of research was taken by an Einglish landsurveyor, we are indelred to a scutchman in an equally lowly station of life, for overcoming some of the firt dafficulties in connection with petrographical vtuly. Many mucroscopists had empluyed their instruments, and sometimes with weful results, in the study of the jowilors and the jolished surfaces of rocks; but it is to William Nicul, of Fillinburgh, the inventor of the well-known polariving priom which licar, his name, that we owe the discovery of the method of preparing transparent sections of foswils, crystals, and rocks, wherehy their mernal structure may be examined by transmittel light. Nicol horgueathed his preparations to his friend Alevander IBryvon, and some of them are now prewrved in the Itritish Mu eun. It iv interesting. too, to recall the circumstance that it was a thin section of the g^{1} anite of Alserdeen in the collection of lifyon which exhibited to Sorby that wondrous aveemhlite of minute cavites containing linfuids, and lad him, shortly lnelure our previou, meeting here, to write his paper " (In the Hicrocopical stuily of Crystals, imlcating the origin of Minerals and Kocks"-a twaper whoch has indeed prosel epoch-mahing in the histury of geolosy.

Before concluilugg the remarins which liy your hindness I have been permatiel to oflier you to-lay, I cannot fortsear from indulging in a pleasant reminiocence of a personal character. Nearly fifteen years have pawed away since 1 fint violted the Highlands for the purpoise of geculugical stuily; it was at that time I first found mywelf at lixerty to put into practice a wheme cherished by me from boyhoul, that of studying thise secuadary
 pronecr work hall heen done by lohn Maceullech. Kolerich Murchivon, and Itush Miller. I hail en-leavourel to pretare niyvelf for a sonew hat drticult tach, by a rannge partly un th tai an 1 parily official-I will not emilly the serms ". smatew awd " jrofessonal," for of late they have tiecn wi sa lis mas esel-bist when 1 came a stranger among you, I wall l nu have iteverivel, and I certainly lad not anticipate, that cunlial welome that dinlly
 bere to-iday as the crowiang manifelatio th
 of Highland freviogy-and hatherte, I bave fooml that each datts. culty surmounted has tesultert, like the suwll teeth of the slaughtered dragon, in a jlentiful crap of new wese-the many acts of kiudness of my tumerons friends here can never perfe be preest in my mind. Fur not only am I in leht who, like your own Dr. Ciurdon, of listue, and ti Golspic, have been able ont of stores of their ls furnish me with "things new and old," and who has faiting in their aid and sympathr, hot to those at pitied, but neverthelos: helped, the " "laft sallani after the chucky stancs.

I know of nu higher pleavure than thas which the ge experiences in lintung regions of great scientific miterest are new to him, and of grasping the hands of fellow-worken whose lahours and teachings he has learned to admire and to
appreciase. Whatever may be my lot in thit way in foture gean however rich the country visited may be in objects of profoand instructiveness or of surpassing interest, 1 can antscipate ur deire nothi'g more valuable than the lessons, or kinder than the reception which I have met with here.

I'll ank na mair, when I get there,
Than just a Hielsw welcome.

SECTION D

BtoLogy
Openting Address by Prof. W. C. McIntosh, M.D. LIl F.R.Ss. L. \& E., F.L.S., Cor. M.Z.S., Prestdent of the section
I HAVE selected the subject of the phosphorescence of marze animals for a few remarks on the present occasion-the theoe perhaps, being the more appropriate from its congeoual bes surroundings; for, like st. Andrews, Aberdeen is an

*Old Univeraity town
 Looking out on the cold North Sea."

A r.henomenon so striking as the emission of light by emarorganisms could not fail to have attracted notice from very ear times, both in the case of navigators and those who gave taattention in a more systematic manner to the study of na:s: Accordingly we find that the literature of the subjeca is b vaned and extensive-so much so, indeed, that it is impoos on the preient occa ion to give more than a very brief cutlone its leading features. This is a subject of less momens, hovere since the great microsonpist, Ehrenberg, in his trea:isc, it Leuchten des Meeres," published by the Berlin Auder: is 35, has given a very full account of the early liferzit. © phosphorescence, boh in marine and terrestrial animai a . ion than 436 authors being quoted. The limitation jusc nexvees is therefore sufficiently warranted.

Though it is in the warmer seas of the globe that phome 3 encence is observed in its most remarkable forms-as for i2vis. the sheet, of white light caused by Nocalues, and the vis: luminous bars of Brosomz-yet it is a feature which the Br: zoologist need nut leave his native waters to see both in besand perfection. Many luminous animals occur between : marks, and even the stunted sea-weeds near the line of t; water everywhere sparkle with a multitude of brillanat par, As a ship or boat passes through the calm surface of the tes summer and autumn, the wavelets gleam with phosphurewe points, or are crested with light; while the observer. leas over the stern, can watch the long trail of luminous water betus the ship, from the brightly sparkling and seething miss an 12 screw, to the faint glimmer in the distance. On the soathere a western shore; ajain, every stroke of the oar cause, a luman, eddy, and so we of the smaller forms are lifted by the blale a. contillate brightiy a* they roll into the water. The dredge as trawllikewive produce, both in the shallower and deeper par of our veas, many luminous types of great interest and beaw:y

I vhall, in the first instance, glance at the vanous groape marine anisials which possess the property of phosphoreaceace. and therealier make some general remarks on the sabject. It a founl then that thus fer tris is possessed by certain members the I'r tus a, and of wing groups of the Metosos, -miz teventerater, Es Mollu-coilv, Mof? Ihout the mil three species of wid
subsecava, vol. i.
were phospharesceat nutreed that the lumin members of the grodp Michaclis and Ehrenber the Baltic, the latter deseri
moment as the ripple stretches outward, and then disappear; or, still more vividly, when the plunging vessel sends the sparkling spray all around the bow. 1f, on removing the tow-net from such water at night it is suddenly jerked, the whole interior is beautifully lit up with a luminous lining, which glows brightly for a few seconds and then fades. I have been unable, nevertheless, to satisfy myself as to the phosphorescence of isolated examples of Ceraliumr, and Mr. Murray (who is inclited to follow Klebs in considering them algat), tells me that he has not been more successful.

The most conspicuous member of the first group (viz. the Protozoa), however, is Noctiluca, which for a long time has been associated with luminosity in many seas. The minute size of this little transparent gelatinous sphere, which ranges from \& to $\$$ of a millimetre, probably gave origin to some of the ancient views that the phosphorescence of the sea originated from the water, and not from any visible organisms. Amongst the first who clearly made known the relationship of this minute body to the phenomenon we are examining was M. Rigaut, a French naval surgeon, who examined it off various parts of the French coasts as well as off the Autilles, and pointed out in a memoir communicated to the Acalemy that the luminosity of the sea was caused by an immense number of what he termed little spherical polyps, alront a quarter of a line in diameter (Fournal des Sarants, tome xliii, February, 1770, pp. 554-6t). The observations of this acute French surgeon were followed up by many subsequent authors, anongst whom may be mentioned Baker, Martin Slabler, Able Dicquemare, Suriray, Macartney, and Baird; while in more recent times Verhaege, De Quatrefages, and Giglioli have specially studied the phasphorescence of the sea caused by Nostiluca. The light given out by this form is occasionally spread over a large area, and is often evident along the margin of the beach, where the broad belts of Noctiluce gleam in the broken water. It is not uncommon in summer on the southern shores of Britain, while it is race in the northern; but it stretches into most of the great oceans, and is the cause of that diffused and silvery phosphorescence so well known to voyagers in the warmer seas. At Ostend, Verhacge found the maximum number in a given quantity of water in the warm months, few or none appearing in the winter. The observations of De Quatrefages ("Observations sur les Noctiluques," Ann. des Sc. Nato, 3^{e} Séric, Zool. tom. xiv. p. 226) were mate on the shores of France as well as those of Sicily, for he accompauied the distinguished Prof. Henri Milne Ftwards (whose loss science has had so recently to deplore), on his celebrated "Voyage en Sicilc." and they were more extensive than those of the previous author. He attributes the emission of the clear bluish light in quiet water, or the white light with greenish or bluish touches in broken water, to any physical agent which produces contmetion, the scintillations arising from the rupture and rapid contraction of the protoplasmic filaments in the interior. Thus, like Verhaege and others, he found no special luminous organ. Moreover, Ehrenberg and De Quatrefages observed that the light ennited by Nontiluca, though apparently uniform under a lens, was broken up into a number of minute scintillations when highly magnified. Mr. Sorly, in examining the light of this form, has been unable to obtain satisfactory spectroscopic results, apparently from its feelleness.

Besides Noctifuca, which was chichly met with in inshore water, Mr. Murray, of the Chullenzer, de-cribes various species of Pymo cystis (Bror. Roy. Soc., vol. xxiv., p. 553. pl, xxi, ; and .Vizrrative, Zonl., vole L and ii., PP 935-38), a closely-allied form, and indeed sonterof which have been thought to be identical with the former. They abound in the open sea, and are the chief causes of its phosphorescence in the tropical and subtropical oceans. The light is stated to proceed from the nucleus, and in this
waet diverges from that observed by D_{e} Quatrelages in When shakem in a glass they give out, Sir Wyville observes ("A tantic. ${ }^{\text {N }}$ vol. it. p. ${ }^{2} 7$), the uniforta soft illurainated ground-glass globe.
IT, Suriog bee voyaze of the Italian frigate Mogrota, Whatiag Lae voyage of the Italian frigate Magota, mother group of the Protsooa, viz, the RadioWoweat properties. In the Yacific the genera

4.). ini Yi Ye. 81, cr d, is his earlier

No group of marine animals is more prominent in regard to phosphorescence than the Calenterates. The Hydroida are familiar examples (even after many days and in impure water some of these retain this property, a shock to the stem sending off a crowd of luminous points from the trophosome), and, as Mr. Hincks observes, none excels the common Ohelia qeniculata, which forms pigmy forests on the broad blades of Laminariz all around our shores. In the fresh specimen a touch during summer causes a large number of luminous points to appear on the zoophytes, the stems most irritated emitting beautiful flashes, which glitter like fain:ly-dotted lines of fire, the points not being harshly separated, but blending into each other, while the shock imparted by the instrument detaches the minute medusoids, which scintillate upward from the parent stem to the summit of the water. Mere blowing on the surface in July, where Laminariae abound, suffices to produce the emission of light from the pelagic buds. Moreover, these minute bodies, along with the various species of Ceratimm and minute larval forms of diverse kinds, are sometime; swept by the gales landward, and cause phosphorescence where least expected. In the same manner Vaughan Thompson ("'Zoological Researches," vol, i. part i. mem. iii. p. 48, 1829) found luminous patches on the masts and windward yardarms on board ship, and they gradually mounted upward as the gale increased. Many of the free gonosomes of the Hydroids are as luminous as the polypites, and indeed have been described by some of the older naturalists as one of the main causes of the luminosity of the occan. The light in these (c.g. Thaumantias) gleams around the mangin and along the four radii.

The Ascraspedote Medusx have also been signalised as factors in producing the phosphorescence of the sea, such forms as Pelagia noctiluca and Pdagia cyanclla being especially prominent. Spallanzani, indeed, made an elaborate series of experiments on the Iuminosity of the Medusx in his voyage to the Two Sicilies. Some of these, as Dactylometra (Pclagia) quintucirra, Agass., are nocturnal in their habits. They are only occasionally found floating at the surface during the day, while at night, in the same localities, the bottom swarms with these large masses of dull phosphurescence, moving about with the greatest rapidity (Agassiz, "'North American Acalephe,". P. 49, Cambridge, 1865). Species of Rhtzostomts were likewise observed by Giglioli to have a pale bluish luminosity. The two most abundant Meduse of our eastern shores, viz. Aurelin aurita and Cyaned capillats (both in its young purple and a.lult brown condition), so far as I can make out, exhibit no luminosity. This agrees with the views expressed long ago by Ehrenberg.

The oceanic Hydrozoa (Siphonophord) are likewise characterised by their phosphorescence. Thus Giglioli met with luminosily in Jlyla, Diphyes, Firjaxia, Prava and Agtaismoides. Dr. Bennett (" Gathetings of a Naturalist," p. 69, 1860) has also observed luminosity amongst the Coralligenous Actinozoa, the graving of a boat on a coral reef causing a vivid stream of phosphoric light. Similar observations were made on Madrepores by Giglioli (Athi della K_{t} Actad. d. Sc. di Tirinv, vol. v. p. 502), the light in this case being bright greenish and enduriug some minutes.

Anlongst the Alcyonarians the luminosity of the common SeaPen (Pinnatula phosphorat) has been long known, and was studied by Gesner, Bartholin, Adler, and others. In the earlier part of this centory Grant male the well-known and of \cdot quoted description (Frewsfre's Edin. Fourn. vol. vii. p. 330, 1827), in which lie pictures a Fonnatula "with all itsdelicate transparent polypiexpanded and emitting their usual brilliant phonphorescent light, sailing through the still and dark abywes by the regular and syuchronous pulsations of the minute fringed arnis of the whule polypi." But it ought to be balanced by his concluding statement, that the seapens are probably stationary, or "lie at the bottom, and move languilly like Spatangi, Asteria or Actinis" (certainly the specimens in the St. Andrew's Marine Laboratory were very helpless). Edward Forbes again ohserved that the light proceeded from the irritated point to the extremity of the polypiferous portion, and never in the opposite direction. As Dr. George Johnston tells us, Forbes induced Dr. George Wilson to test, along with Professor Swan, the polyjs during phowhorecence by a delicate galvanometer, but without result. He thought the luminosity was due to a spontancously inflammable substance.
More recently a series of interesting observations were made by Panceri on the structure and 1 hysiology of the laminous organs of this form. His concluxions are (1) that the light emanates from the polyps and zoids: (2) that the phosphorescent organs are the eight white cords adhering to the outer surface of
the stomach, and that these are chiefiy composel of ceil, ocetaining a substance of a fatty nature. the caxizuon of =itia eauses the light. Panceri's conclusions further onanderasir moniy Firbes's views about the direction of the wave of poins, if lisht. He supposes that the elements which tran it in the pilce of nerves are capable of producing in the laminses batierio of the polyps a momentary oxidation-more rapisi and more memse -acconpanied by phosphorescence. Like thone examined by Professor Milnes Marshall (" Report on the Oban Pennatai: 1 , p. 49, Birmingbam, 1882, the specimens as Sc ADdrew siter irritation, show a series of brilliant corrications which dawh al.ag the rows of polyps in a somewhat irrecular manner.

Two other Alcyonarians, Finncalina and Umioliw'aria, are equally phosphorescent. Though the former is familar ensogh to some of the long liners of the outer Hebrides and west coast, it is rare that either is procared for scientific inverigation. Fiuniculina quadrangularis, according to Forbes Juhnston's Brit. Zooph. vol. i. p. 166), gives out a vivid blaish light, which comes from the bases of the polyps, and appeans to be connected with the reproductive systen. Wyville Thomson (" Depths of the Sea," p. 149) describes the specimens procared in the Porcupine as resplendent with a steady pale lilac phosphurescence like the flame of cyanogen; and always sufficiently bright to make every portion of a stem caught in the tangles distuctly visible. The same zoologist mentions that the stem and polyps of Umbellwlaria are so brightly phosphorescent, that Captan Maclear found it easy to determine the character of the light by the spectroscope. It gave a restricted spectrum sharply included between the lines b and D ("Atlantic," vol. i. p. $15 t$.
Besiles the foregoing Alcyonarians, Isis and Gorgomia have been indicated as likewise phosphorescent. Dr. Merle Norman and Dr. Giwyn Jeffreys (whose death since the last meeting of the British Association is a serious luss to science) mention a beautifully laminous Isis on boanl the French ship Le Trasailicur: and Sir Wyville Thomson (" Atlantic," vol. i, p. 119), with the facile and genial pen which characterised the lamented naturalist, gives a fascinating picture of a long, delicate, simple Gorgonian which came up in immense numbers in the trawl from 600 fathoms off the Spanish coast. He conjures up this Gorgonian forest as an animated cornfield waving gently in the slow tidal current, and glowing with a soft diffused phosphorescence, scintillating and sparkling on the slightest touch, and now and again breaking into long avenues of vivid light, indicating the paths of fishes or other wandering denizens of these enchanted regions. l'of. Moseley thinks that this brilliant phosphorescence of the Alcyonarians may be regarded as an accilental production, but that it may be of coceasional service. Further, that the deep eea is at any rate lightel up by these Alcyonarians, which would thus form luminots oases round which animals with eyes might possibly congregate ("Notes of a Naturalist on the Challenger," P. 590).

The last group of the Ceelenterates, the Ctemophora, are even more conspicuous than the foregoing in regard to luminosity. It is indeed long since the Abbe Diequemare descanted on Cydifper (Rlourobrachia) and Suriray on Berod, while subsequent authors have made it clear that the majority of this group are phossphorescent. In our own seas, as Prof. Allunan observes, Feriv at various stages is one of the most prominent luminous forms during eertain seatons. Their enormous number, make then effects more striking, though the intensity of the phosphare-cence is less than that of the Meduse. (huiet seas like Brestay found and the rirth of Forth are occasionally coverel by a lenve layer of these animals. Prof. Allman found that Firm did not phosphoresce if suddenly taken from light into darknes, hut that after they had remained ahout twenty minutes in obscurity they becume luminous. Cousiderable variety exists in thit respect at St. Andrews, some emitting light at once, others showing none. It is probable that this uncertainty is connected with the hygienic condttion of the individuals.
In foreign seas many hrightly luminous species are met with Thus I'rof. A. Aga-siz (" Norih American Acalepher," P. 20, Cambridse, 1865) describer Murmiops's Lridyi as "eveerlingly phapharrscent, and when passing through shoals of these Mriluse, varyug in sire from a pin's head to several inches in If ugth, the whole water becomes so brilliantly luminous that at1 vaif slippelt up to the handle can plainly be veen on fork onghto loy the lighte wi prosluced ; the sat of the phoss phanasumen elo comfinet to the lincomotive raws, and in excee! andy onomive are thry that the sughtest shock is sufficient to mote thearn platily vistide hy the light emitted from the eight
phorphorescent ambulacra ${ }^{-}$The same avebor if. ait. f. \&i mestions that Lesu aris has a very pecular bland sict if is exceeding'y pale steel colour, bat very insense Gebodithen, frend that the beautiful riband-like Cestaus shooe wid $4 \pi 1$. yeilow light, bat in Ewciars the latter was wacteir io (Cip, cif, p. 495, 495i.
While many of the preceding groop are pelage at all pen of their existence, the lumunoss star-fishes are in then: condition members of the bottom fauna. The lamal wan the brittle-stars, however, are pasce-f at the surface of the in Where it is probable they add their quera to swell the ras. the phosyhorencent typer. Amongst the firse to scte property in the britic-stars was Prof. Vivani, abo foend ne? shores of Genoa a little brittle-star which be termed f is wastilaca, ${ }^{2}$ and which probably is identical with the A a. : : cegurs of leach. Pernon likewise mentions the phapheraves of his Ophiars fhosfiarea. oir Wivalle Thomwn whene: the Porcupine that the light from Ophiacantia sonusiose :s a brilliant green, coruscating from the centre of the d sis 1 the rays and illamnating the whole outline of the an? (" Depths of the Sea," p. gSi. More recently Prof faof Naples has re-examinet the photphoresoence of the described by Viviani, and he finds that though with 'se momentary glow the whole ray is lit up with a greenct that the luminous puints correspond with the hae. pedicels and are ranged in pairs along the ams 1 . th , 2.4 Accad. d. Sc. Fisiche e Mathem. di Nafoli, 1875, p is id figs. 1, 3). In deep water (between twenty and furty forthe our eastern shores, Ophiothrir gleams all over the traw wet a pale greenish light ; but the adults of the came fora iev-tide-mari- give no trace of luminowity.

The older authors were familiar with censin : annelids which they termed Nercides, such as Nier v. phorans. Ehrenberg paid considerable attention to t-: $\%$ specially referring to Polvnow fulsurums from the Lr: at Nercis moctilura? and Nireis (Photecharis' airriemh bs i'e species having a photugenic structure in it sirri like terecic organ of the Torpecto. The latter form is protahly masel. the ubiquitous Eusj/lis, which, under various names, has lee noticed by many observers. Thus it is very likely the er species that is mentioned by Harmer, in Baker's "Emph-m? for the Microscope," p. 400, as having been found un anver oo. and also by Vianelli, who describes it as a caterpilar-lise for amongst seaweeds. Indeed the syllideans have been owe: ous in the literature of phosphorescence from the time of $I=$ Voie (6665 , file Panceri), and Vianelli (" Nuove Scupent at no le Luci dell' Acqua Marina," Venezia, 1749), to the re " periol of Claparede ("Clanure Zontomique." p. of = Panceri (O P, cif. P. 8). The structure of the cirn of the:phorecent forms, however, gives no support to the of er Ehrenberg that they poseess a special photogenic structure

The luminous annelids group themelves under five fameln viz, the Polynoid.e, Syllidx, Chetopterilax, Terehellols. ts Tomopteridia, and the number may yet be extendel to moty other pelagic typers.

In the first faunily one of the inout abundant is $H^{-2} w^{-w}$ imbricata, which lives both between tide-marks and ilefp wrianll is commopolitan in geographical distribution. binght isreenivh scuntillations foem ite point of atachmeat dit durnal cale ; and thu-, und in pairs aloung the brily. everely pinched the wornit vparks of green light from cales also continue to gleas. facs of attachment (icars), The same phenonemon, antenor or posteric itted, but the light and hy the aghency
F/. Jourdan (Zowlogr
133), has endeatr

As an example of the Syllidx, the common Eusyllis, so often mentioned by previous authors, may be taken. Under irritation a fine green light is emitted from the ventral aspect of each foot, and the scintillations seem to issue from many points at each space, flash along both sides of the worm posterior to the point of stimulation, and then disappear. Under severe irritation the animal remains luminous behind the injured part for nearly lialf a minute, while the surface of granular light on each seg. ment is larger than usual, and in some inctances those of opposite -ides are connected on the ventral aspect by a few phosphorescent loints. The body behind the irritated region has a paler pinkish hue immediately after the emission of light showing that the luminosity is diffused.

In the Ch.ctopteridx the phosphorescence is remarkably beautiful, lright flashes boing emitted from the posterior feet; but the most vivid luminosity is at a point on the dorsum between the lateral wings of the tenth segment. Here the abundant mucus exuded by the animal can be drawn out as bluish-purple fire of great intensity, which, besides, now and then gleams along the edges of the wing-like procevser, and illuminates the surmunding water. A very characteristic odour, somewhat resembling that produced by phosphorus in combustion, is given out by the animal during such experiments. In this connection it may be observed that Quoy and Gaimard mention that an orlour similar to that around an electric machine is given ont by luminous marine annelids.

A mongst the Terebellidx, as first shown by Grube none excel 1 he genus Polycirrus in the brightness of the phosphorescence and the ease with which it is elicited. Mere blowing on the water of the dissecting-trough suffices to cause in the British Polycirrws the inost vivid pale blinish Inminosity, which gleams for a moment along every one of the independent mobile tentacles. Iong lefore Grube, however, had discovered the phosphorescence of Polvcirrus, our patient and laborious countryman, Sir J. Graham Dalyell, had noticed it in the group ("Powers of the Creator," vol. ii. p. 210), for he mentions that when irritated Terchella figulus gave out the most copious blue refulgence, intermingled with a reddish flame. Another member of this family, viz. Thelefus, is only faintly phosphorescent in life, but when decomposition has made progress it gleams in the vessel with a pale lambent light, somewhat like phosphorus in air.

In the pelagic Tomopteridae certain peculiar structures on the parapodia, formerly supposed by some to be eyes, and by others simply glandular organs, were lately found by Professor Greeff (Zovlogiscler Anzeiger, 1882, p. $384-87$) to be luminous ongans, which, though glandular, have a considerable nervous supply, including a ganglion.

Panceri's observations on the luminous annelids of Naples, and the peculiar type Ba/snoglossws (Enteropneusta) have recently added consideratly to our knowledge of the subject. He specially describes, in Chithferws, the stracture of the phosphorescent glands in the great pinnules and other parts, which produce the luminous mucus. With some reason he concludes that two kinds of phosphorescence are present in annelids, viz., one which is the result of purely nervous action, and another which is due to this phus a luminons secretion.

A Turbellarian, viz., Planaria returs, was mentioned by Viviani ($O p$. cit. p. 13) as luminows, but this feature appears to the rare in the group; and the same may be obserred of phosphorescent Kotifers, one of which (Sywhazta baltica) was deWribed by Mhreaberg (Op. cit. p. 128). Giglioli (Op, cit,
 in tevepurterior reglen of the buly.
ite forms amongst the Crustacea (chiefly Copepoda)
das phocjhorescent by Aihanasius Kircher in 1640 , ntioned by most authors who have alluded to the Thus Viviani gives seven species from d Tilesius no less than nineteen luminous

Dr. Baird deacribes the Wet with is hik croises as brilliant in the on athled considerably to our
(the luminous schizopods, an ered thy Sir Joseph Banks, and Cancer fulgess"). such as the Copepods, seaf the water. The Trom ghads placed the Juminous ot part of the
EuNiocfilla,
\&c., 1878) thought it was decomposing food in the stomach, and Prof. Moseley (OP. cit. p. 574.-Naturalist on the Cha/lenger) in certain cases entertained a similar opinion. The phosphorescence of the Euphausiide was a prominent feature in the voyage of the Challenger, brilliant flashes being emitted on capture from a series of spots along the trunk and tail. Mr. Murray also met with a diffused light in the Faröe channel when dredging in the Triton, and he attrituted this to the phosphorescent organs of Nywtiphanes nerocgica, M. Sars, one of the same group. Prof. G. O. Sars describes these organs as composed of a series of coloured globules, the lens-like bolly of which acts as a condenser, and thus enables the animal to produce at will a bright flash of light in a given direction ("Challenger Narrative," Zoology, I. part ii. pp. 740-43).

Marine phosphorescence has some of its most striking examples amongst the Tunicates. One of the best known instances is that of Prrosoma, the light from which has been so graphically described by M. Péron, Prof. Huxley, and other naturalists who have had an opportunity of observing it. It proceeds in each member of the compound organism from two small patehes of cells at the base of each inhalent tube. These cells contain a substance resembling fat. Salpa has frequently been mentioned as a luminous form by many authors, but Delle Chiaje found that in the Mediterranean Salpa pinnata was not phosphorescent ; and amongst the multitudes of Salpee which for some weeks abounded at Lochmaddy in North Uist, neither the former nor the Salfu spinosa of Otto exhibited this property, though a spark was occasionally seen in the nucleus in some specimens, probably from the food. Giglioli likewise is doubtful concerning them, but in one instance a brilliant rose-coloured light appeared in the nucleus. Doliolum, on the other hand, shone with a greenish tint, while examples of Afpendicularia which he eneountered in various seas were chameleon-like in their luminosity, and often gleanel with great brightness.

Various mollusks exhibit the property of phosphorescence. Fabricius ab Aquapendente mentions Sepia, Paneeri Eledome, Adler Chama and "Dictylus." The best known, however, is Pholas dactylus, which possesses two wavy bands and triangular organs of ciliated epithelium on the inner surface of the mantle. These secrete a luminous substance, soluble in ether and alcohol, which light up the excurrent water. The light is also maintained for a long time during putrefaction, as in the case of Thelefus. Panceri found that carlonic acill extinguishel the light, but that air re-illuminated it, just as Johannes Miller had previously observed in a vacuum and in air. The light is monochromatic, the bands baving a constant plaee in connection with the solar spectrum (from line E to line F).

Several Pteropods likewise contribute to the phosphorescence of the sea. Thus Giglioli noticed that a Cloodora gave out a very reddish light, while a Criscis and a Hyalara were luminous at the base of the shell. He mentions also a large unknown Heteropor (Of. cit. p. 497) in the Indian Ocean, which glowed with a reldish phosjhorescence. Amongst the Dermatobranchs, Phyllirrho has the same property, (iiglioli further found that Lolige sagittatw, and a small Octoposs gleamed all over with a whitish luminosity.

Phosphorescence in living fishes appears to have been accurately ohserved within a comparatively recent date, though the luminosity of dead fishes has been known from very early times, not has been the subject of many interesting experiments such as those of Kobert Boyle on dead whitings (Phil. Trans, 1667, Pp. 59t-93), and Dr. Hulme on herrings (Phit. Tranr, 1800, p. 168). I do not mean to say that the literature of the socalled phoqphorescent fishes is scanty, for it extends from the days of Aristotle and Pliny to motern times, but that the writers have had little reliable evidence in regard to living fishes to bring forward. Thus of upwards of fifty fishes enterel by Ehrenberg in his list it is hard to say that one is really luminous during life. In many cases it is probable that the supposed phosphorescence of large forms, such as sword-fishes and sharks, has arisen from the presence of multitudes of minute phosphorescent animals in the water, just as the herring causes a gleam when it darts from the side of a ship. Prof. Moseley, for instance, observed in the Challenger that when large fishes, prpoises, and pengains dashed through phosphorescent water, that it was brilliantly lit up, and their track marked by a trail of light. The same feature is observed in hooked fishes, and it is known that fishermen are doublful of success when the sea is very phosphorescent, for the presence of the net in the water excites the luminosity and scares the herring.

One of the most striking instances of phosphorescence in living finber is that of the laminous shark (Syualus folgens) found by Dr. Bennett. This is a small dark-coloured shark, which was captured on two or three occasions at the surface of the sea It emitted without irritation a vivid greenish luminosity as it swam about at night, and it shone for some hours after death. The phoxphorescence appears to be due to a peculiar secretion of the skin. The eyes of the shark were more prominent than usual in such forms. (The Danish naturalist Reinwardt describes a phoxphorescent fish (Hemiramphess hucens) from the Moluccas Fide Giglioli, Of. cit. p. 503.) Little is known with regard to the luminosity of the "Pearl-sides" (Maurolicus fennamit, Cuv. and Val .) of our own shores, though from its wide distribution this lack of information seems to be remediable.
In recent times phosphorescence has generally been associated with deep-sea fishes. Thus in a narrative of the early part of the voyage of the Challenger (NATtRE, August 28, 1873) Sir Wyville Thomson mentions ranges of spots or glands producing a phosphorescent secretion on the boty of a fish pertaising to the Sternoptychide, a species of which is included by 1.r. F. Ihay in the British list. Of a new Echiostoma (one of the Stomiatidx) it is al-o noted that the two rows of probably phosphorescent dots along the body were red, surrounded by a circle of pale violet ("Challenger Narrative, Zoology," 1. vol. ii. p. 42). Dr. Gunther ("Challenger Nagrative, Zoology, I. part ii. p. 905) observes that many deep-sea fishes have round, shining, mother-of-pearl borlies embedded in the skir. These are supposed to be producers of light, and they have been observed to be phosphorescent in two species of Sternoptychidx. He further states that the whole muciferous system is dilated in deep-sen fishes, that is, fishes inhabiting $t 000$ fathoms or more, and that the entire body seems to be covered with a layer of mucus, the physiological use of which is unknown ; it has been noticed to have phosphorescent properties in perfectly fresh specimens.

Having thus briefly reviewed the leading features of phosphorescence in marine animals, a glance may now be taken at the supposed causes and purposes of this provision.

I do not deem it necessary to go into detail with regard to the numerous views which have been advanced to account for the phosphorescence of marine organisms, for these range over a very wide area-from its prorluction by electricity, the constant agitation of the water, by putrefaction, by luminous imbilistion, to its manifestation as a vital action in the animals, or a secretion of a phosphorescent substance. Ehrentierg considered it a vital act simalar to the development of electricity, and sometimes accompanied by the secretion of a mucilaginous humour which is cliffused around; while others, such as Meyen, thought it only a superficial oxidation of the mucous coat, or a fuminour secretion from certain glands. Some believed that a liquid containing phosphorus was secreted, and that this underwent slow combustion : while others explained that it was a nervous fluid modified by certain organs to appear as light. Coldstream thought it was due to an imponderable agent, and that phosphorus or an analogous substance might enter into the organs prolucing it. De Quatrefages, again, clearly affirmsthat it is produced in two ways: (1) by the secr:tion of a peculiar substance exucling from the entire body or a special organ ; and (2) ly a vital action independent of all material secretion. Janceri was strongly impressel with the importance of fatty matter in the forms he exauninel-such as Permatwlia, the Meduse, Beroules, Pholales, Chafoferi, and Nisfifuicthe phowhorescence arising from the slow oxidation of this substance : the nervous sytem of the living animal, however, being capable of problucing a momentary oxidation more rapis and more intense, accompanied by light.

It will te observed that in the Protozoa the structure of the minute but often very abunclant animals which furnish the luminosity clearly proves that the presence of a well-defined nervous syatem is not requirel for its manifestation, the protoplasm of their lorlies alone oufficing for its development. There are neither glands for secreting it, and in some apparently no fatty matter for slow combustion. In the Cielenterates the phenonsena appear to be more nearly related to nervous manifestations, though in certain cases the luminous matter pissestes inherent properties of its own. While in some annelicts, such as ChiffoNerms and /O/tirras, there are glants which may be charged with the vecretion of a luminous sulatance, it is otherwise with certain I'olynoilie, in which the emt sion of light appears to le an inherent property of the nervoms yutem. The urratablity in the phopplowescent examples of the latter
family, however, varies considerably, some, es. Falymer senipg endrima, being sluggish, while others, like Harmother, are extremely irritable. In the Crastaceans the fuminosity seems: have the nature of a secretion, probably under the control of the nervous system. In Pyrosoma and Phelar dastofins a luminos. secretion is also a prominent feature, and in both the latter ass the annelids decay excites its appearance, as also is the cave :-, a limited extent, in fishes.
It is evident, therefore, that the causation of phospboresceace is complex. In the one group of animals it is due to the prostaction of a substance which can be left behind as a luminoes tra:The ease, for instance, with which in Powna:w'a and oche Carlenterates the phosphorescence can be repeatefly prodocr: by friction on a surface having a minute trace of the masern. clearly points to other causes than nervous agency. The seame moreover, cleariy affects the organic chemical affinities of the tissues engaged. On the other hand again, as in ceras annelids, it is purely a nervous action, probably reseusting : A which gives rise to heat.
With the exception of such as Macartney, the olider aucbarn who in some cases took an imaginative view of the :ae:van connected the emission of light with the special economy of the deep sea. The speculations to this effect are fairly summanse-1 in "Brewster's Edinburgh Encyclopedia," published in is?o (Chiefly the views of Ir. Maccnlloch. Thus it is supposed tity total darkness exists at the depth of tooo feet, and that the ps $>$ phorescence of marine animals is a substitute for the ligbt of :3c sun. Moreover, that by these lights the animals oo the cee hand are guided for attack, and on the other their powe \approx extinguishing them enables them to escape destruct:nn. Fise are known to prey chiefly at night, and the writer suppunet : the phosphorescence of their prey guides them: for, be $=x y m$ this luminosity is particularly brilliant in those inferior animats which from their astonishing powers of reprodnction, and froa a state of feeling little superior to that of vegetables, appea: :have been in a great measure created for the food of the merr: perfect kinds. Dr. Coldstream at a later period $11 \mathrm{M} / \mathrm{T}_{1} \mathrm{rr}$ produced the same views in his article on animal laminos: (Told's "Cyclop, of Anat. and Phys.").
The same notion was brought forward in the ": Report of it: Cruise of the Rurcupine" (Pros. Noy. Sos., No. 121. 15:2. p. 432), and special reference was mate to the young of oertis starfishes, which ate stated to be more luminous ilaan the atwis. that heing part of the gencral plan which provides an exiess the young of many species, apparently as a supply of f(mole ther wholesale destruction being nece sary for the due restricioe the multiplication of the species, while the parent in-ividena on the other hand, are provilell with special applandes a escape or defence. Thus phosphorescence, it is furte asserted ("Depths of the Sea, ${ }^{\text {P. P. 149), in very youas }}$ Ophiacanthre just rid of their plutei, in a sea swarming wit predaceous crustaceans, such as Dorymikus and . 1 wmizia , rith great bright eyes, must be a fatal gift. Some naturalists sti] appear to hold a similar, though perhaps motified view. Mact caution, however, is necessary in theorising on this head.

In the first place, phosphorescent animals do not appear to be more abundant in the depths of the sea than between thle-marka or on the surface, the latter perhaps presenting the maximam development of those exhibiting this phenomenon. Very masy of the young that have been inticatet as so brilliantly Iumanos. become surface-forms soon after leaving the egg, and thas al their several stages more or less affect the three regioas-4 surface, mid-water, and bottom.
A survey of the life-histories of the several phosph vesens groups affiris at present no reliable data for the foundarion of a theory as to the functions of luminosaty, especially in reatiose to fool. No phosphorescent form is more generally devaersd by fivhes or other animals than that which is not: and. wi the other hand, the possessor of luminosity, if otherwise palatable. does not seem to escape capture. An examination of the stomarhe of fishes makes this clear, except perhaps in the cive of the hirrang, which, hawever, is chinfly a surtan Further, it is nit evulent that suss timirs, for it is only under phay men in.

[^14]the
$h n$
between tide-marks (Harmothoe imbricata and Polyno floccosa), and closely resemble each other in habits and appearance ; yet one is brightly luminons, while the other shows no trace. Instead of luring animals for prey, or affording facilities for being easily preyed upon, the possessors of phosphorescence in the annelids are often the inhabitants of tubes, or are commensalistic on starfishes. Indeed, every variety of condition accompanies the presence of phosphorescence in the several groups, so that the greatest care is necessary in making deductions, especially if these are to have a wide application.

In the foregoing brief outline of the remarkable phenomenon of phosphorescence as it affects marine animals, it is apparent that, though a considerable increase in our knowledge has taken place during the last quarter of a century, much more yet remains to be done. 1, however, conficlently look forward for further advances, in this as well as in other departments, to the marine laboratories of the country-I mean such institutions as those now in working order at Granton, St. Andrews, and Tarbet, as well as the larger establishment proposed to be erected by the Biological Association at Plymouth. These laboratories, it is true, have been tardily instituted, but it is satisfactory to think that at last the zeal and methods of the workers have, and will have, a better field for their exercise than formerly, and that the zoology of the fisheries will obtain that attention which its importance to the country necessitate.

SECTION E.

geograrhy.

Opening Address by General J. T. Walker, C.B., LL.D., F.k.S., F.R.G.S., Presinent of the Section.
My predecessors in this chair have claimed for geography a range of science which may be said to be practically unlimited; for it comprehends the history of the earth itself, and of all the life to be met with on the surface of the earth, from the first beginnings of things, and through their sulrequent development onwards to their present conditional status; it is associated in a greater or less degree with every other department of knowledge and is a remarkable exemplification of the mutual interdependence and correlation of the physical sciences, for while all other branches of science are incomplete without some knowledge of geography, it is incomplete without some knowiedge of each and all of them.

Such claims on behalf of geography would, not many years ago, have been considered extravagant and exagyerated; a popular encyclopaedia which is still of some note defines geography to be simply the science which dencribes the surface of the earth, and somewhat querulously complains that geographical treatives contain matter not unfrequently taken from statistics, natural philosophy, and history which it declares to be irrelevant and not properly admissible into such treatises. And in a pepular sense geography is still commonly suggestive only of such a knowledge of locality as may be acquired from maps and charts, with their graphical delineations of whatever exists on the surface of the earth, and of the varions natural or arlificial boundary lines of the peoples and states between whom the surface is divided. But the British Association and the Royal Geographical Society have successfully maintained that scientific geography is not restricted in its scope to a mere knowledge of locality-though that in itself is a very important factor in whatever appertains to the intercourse and mutual relations of man-kind-but embraces all that relates to the structure and existing configuration of the earth, and takes cognisance of the varied conditions of all the life, both animal and vegetable, which is nurtured and supparted by the earth; it studies the side lights which the general configuration of surface throws on the character of each locality as a home and support of life, and it examines with special interest the influence which that character has exerted on the social and political condlitions of different races And peoples $-4 E$ does not merely devote its attention (o) the as now displayed to our gaze ; in alliance history of a distant past, when the * were not precisely as now, and lands a lay deep beneath the ocean, mute recorde we possess in tater as-they are signific--which, after long
lying entombed among the rocks, are presented to modern sight as revelations of life's early dawn; it investigate; what Baron Richtofen describes as the reciprocal causal relations of the three kingdoms-land, water, and atmosphere ; it seeks to determine the processes by which in some parts of the globe continents were built up with their varied sculpture of mountain and valley, of highly elevated plateau and low lying plain, of lakes and inland seas, and grent river systems,-while in other parts land was depressed below the sea level, or broken up into the islands which are now dotting the surface of the ocean; and it endeavours to trace a process of continuous evolution of life from the primary and simplest types which perished in the early ages of the earth's history, to the latest and most highly devel ped types which are now flourishing around us. Going back still further it searches for evidence of the first beginnings of the material universe ; it looks beyond the orbit of the most distant planet of the solar system, and scrutinises the boundless regions of stellar space to find, in the widely scattered particles of the nebule, the beginnings of new solar systems and new worlds such as ours; there it may be said to behold as in a mirror the formation of our own planet as a fluil igneous mass thrown off with great velocity from its sun, and r pidly revolving, and then becoming spheroilal, and slowly cooling and solidifying, and finally acquiring the crust which was to become an abode for life, the stage whereon man was to play out the Irama of his planetary existence, and be held all the while fast imprisoned and out of touch with the surrounding universe.

More then this we wonld seek to know, but in vain; in passing from the early dawn of matter to that of life, science finds its career of wonderful achievement in the one direction exchanged for failure and disappointment in the other ; it cannot discover the origin of life in any of its existing material forms, nor trace to its birthplace the spiritual life which exerts such an influence on what is material ; it cannot aicertain whether man hal a prior exintence as different from his present existence as the first beginnings of his planet home differed from its present condition; it cannot gauge the truth of the poet's prescient conception that
"Our birth is bat a sleep and a forgetning ;
The soul that river with us, our l.fe's star.
Hath had elsewhere its setting
And cometh fr m atar."
It whispers faint suggestions regarding the possible fitture of the planet; but when questionel as to what is to follow the coming soul's setting of man, the planet's chief glory and dignity, it has nothing to reply, but is hopelessly dumb and inarticulate.

Scientific geography embraces a wide range of subjects, wider than can be claimed for any other department of science. Thus the President of this Section has a vast field from which to gather subjects for his opening address. I shall, however, re strict my address to the subject with which I am most familiar, and give you some account of the Survey of India, and more particularly of the labours of the trigonometrical or geodetic branch of that survey, in which the best years of my life have been passed.

I must begin by pointing out that the survey operations in India have leen very varied in nature, and constitute a blending, together of many diverse ingredients. Their origin was purely European, nothing in the shape of a general survey having been executed under the provious Asiatic Governments; lands had been measured in certain lucalities, but merely with a view to acquiring some idea of the relative areas of properties, in assessing on individuals the share of the revenue levied on a community ; but other factors than area-such as richness or poverty of soil, and proximity or absence of water-influenced the assessment, and often in a greater degree, so that very exact measurements of area were not wanted for revenue phrposez, and no other reason then suggested itself why lands should be accurately measured. The value of accurate maps of individual properties, with every houndary clearly and exactly laid down, was not thought of in India in those days, and indeed has only of late years begun to be recognived by even the British (iovernment. The idea of a general geographical survey never suggested itself to the Asiatic mind. Thus when Englishmen came to settle in India, one of their first acts was to make surveys of the tracts of country over which their influence was extending ; and as that influence increased, so the survey became developed from a rude and rapid primary delineation of the broad facts oi
general geography, to an elaborately executed and artistic delineation of the topography of the country, and in some provinces to the mapping of every field and individual property. Thus there have been three orders or classes of survey, and these may be respectively designated geographical, topographical, and cadastral ; all three have frequently been carried on pari p בssu, lut in different regions, demanding more or less elaborate surves according as they happened to be more or less under British inflinence. There is also the Great Trigonometrical or Geodetic Survey, by which the graphical surveys are controlled, collated, and co-ordinated, as I will presently explhin.
Survey operations in India began along the coast-lines before the commencement of the seventeenth century, the sailors preceding the land surveyors by upwards of a century. The Directors of the East India Company, recognising the importance of correct geographical information for their mercantile enterprises, appointed Richard Hakluyt, Archdeacon of Westminster, their historiographer and custodian of the journals of East Indian voyages, in the year 1601 , within a few weeks of the establishment of the company by Royal Charter. Hakluyt gave lectures to the students at Oxford, and is aid by Fuller to lave been the first to exhibit the old and impelfeet maps and the new and revised maps for comparison in the common schoolk, "to the singular pleasure and great contentment of his auditory." The first general inap of India was published in 1752 by the celcbrated French geographer D'Anville, and was a meritorious compilation from the existing charts of epast-lines and itineraries of travellers. But the Father of Indian Geography, as he has been called, was Major Rennell, who landed in India as a midshipman of the Royal Navy in 1760 , distinguichell himself in the Wockade of Pondicherry, was employell for a time in making surveys of the coast het ween the Paumben Passage an 1 Calcuta, was appointed Surveyor of the East India Company's dominions in liengal in 1764, was one of the firt officers to receive a commission in the Bengal Engincers on its formation, and in 1767 was raised to the ponition of Surveyor-General. Bengal was not in thone days the tranquil country we have known it for so many years, but was infested by numerous bands of brigands who professed to be religious devotecs, and with who n Rennell came into collision in the course of one of his survering expeditions, and was desperately wounded; he had to le taken 300 miles in an open boat for medical assistance, the natives meanwhile applying onions to his wounds as a catapla-w. His labours in the survey of Bengal lasted over a period of ninetcen years, and em Irared an area of about 300,000 square miles, extending from the cattern boundaries of l.ower Bengal to Agra, antl from the Ilianalayas to the borders of Bauclelkand and Chota Nagpur. Ill healith then compelled him to retire from the service on a small pension and return to England; but not caring, as be said, to eat the bread of iilleness, he inmediately set hiusself to the utilisation of the large mass of geographical materials laid up and perishing in what was then called the Indin Itouse : he publinhed numerous charts and mapk, and eventually brought out his great work on Indian Geography, the "Memoir of a map of Hindostan," which went through ceveral editions ; this was followed by his Geograplical syste a of Hermototu, and various other works of interest and inpportance. His habours in Englanil extended over a periul of thirty-five years, and their great merits have leen univerally achnowledged.
Lennell's systen of heli-work' in Bengal was a sarvey of routes checked and combine:l by astronomical determinations of the lattude and the longitule, and a similar system was atopted in all other parts of India until the conmencement of the preecnt century. But in course of time the altronomica! bacis was found to lie inalequate to the requirements of a general survey of all Intha, as the errors in the astronomical obsectrations were liable materially to exceed those of the survey, if excentel with fairly good instruments and m xlerate care. Xom this wat no new discovery, fur already eaily in the cighteenth century the French Jesuits who were making a suriey of China-with the hope of securing the protection of the Emperor, which they considmed necessary to favour the progress of Christrinity \rightarrow had tleliberates abandoned the astronomical method and emploved trangulatio instead. Writing in the name of the misionaries wbo wof aswciated with him in the survey, Pére Regis enters fully ivin the relative alvamages of the two methodis, and gives che trigonometrical the preference, as beet swited to enible the work to be executed in a manner worthy the teup a wise prince, who jutged it of the great State. "Thus," he says, "we flater oun
the surest course, and even the only one practicable in prosecury= the greatest geugraphical work that was ever performed accondaz to the rules of art."

What was true in those days is true still; poines wheo relative positions have been fixed by any triangulation of rass rate accuracy present a more satisfactory and reliable bases topographical survey than points fixed astronomically. Thoen the lunar theory has been greatly developed since those day if the labours of eminent mathematicians, and the accuracy of 3 lunar tables and star catalogues is much increased, aholz longitudes are still not susceptible of ready determinatioc σ great exactitude ; moreover, all astronomical observations, whes of latitude or longitude, are liable to other than int rinsic erz. which arise from deflection of the plumb-line under the intase7 of local attractions, and which of themselves materially esor the errors that would be generated in any fairiy ewerz triangulation of a not excessive length, say not expeeding $\mathrm{c}=$ niles.

Thus at the close of the last century Major Lambtos. ar ". 33rd Regiment, drew up a project for a general triangahasse Southern India. It was strongly supported by his comessour officer-Colonel Wellesley, afterwards the Duke of Wellan--and was readily sanctioned by the Madras Government, flange accession of territory in the centre of the perazsulal: been recently acquired, as the result of the Mysote casaran by which free communication had been openel belween the and west coasts of Coromandel and Malabar ; and the pow r^{-1} triangulation would not merely furnish a basis for new terv but connect together various isolated surveys which hall aims been completed or were then in progress. The Great Iz metrical survey of India owes its origin as such, and itd $1=$ tancous inception as a geodetic survey, to Major Lambers. pointed out that the trigonometrical stations must been = their latitudes and longitudes determined for future refer just as the discarded astronomical stations, not however by $\&=$ observation, but by processer of calculation requiring a kr ledge of the earth's hgure and dimensions. But at that tie elements of the earli's figure were not known with much exz tude, for all the best geodetic arcs had been measured is 2 latitudes, the single short and somewhat questionable an Peru being the only one situated in the vicinity of the equas Thus additional arcs in low latitudes, as those of India, we greatly needed and might be furnished by Lambon. Hes. care to set this forth very distinctly in the pronramme whuch: drew up for the consideration of the Madras Goveromes remarking that there was thus something still left as a denabtum for the science of geodesy, which his operations t supply, and that he would rejoice indeed should it come *his province "to make observations ten ing to elacnaze sublime a subject."

Lambion commenced operations by measuring a base lixe k a small meridional arc near Madras, and then, casting a we triangles over the southern peninsula, he converted the tras: on the central meridian into a portion of what is now knowe the tireat Are of India, measuring its angles with extreane ean and checking the triangulation by base lines measured at diesenon of two to three degrees apart in latitude. His principal inere. inents were a steel measuring chain, a great theodolate, an: zenith sector, each of which had a history of its own keter coning into his hands. The chain and zenith sectof were $-z$ from Ensland with Lord Macartney's Embassy to the E, urpeof Chimi, a, gifts for precientation to that potentate. who os fortunately did not appreciate their value and declined to aocer them ; they were then made over to Dr. Dinwiddie, the satpmoner to the emtrassy, who took them to India for was constructed an Englated for Lambtay use on the GrJnance Survey; on iss twed by the French frigate, the I

If demonstrating the astronomical method to be fallacious, or its determination of the breadth of the peninsula in the latitude of Madras was proved by the triangulation to le forty miles in rror. Still, for several years he never received a word of ympathy, encouragement, or advice either from the Governuent or from the Koyal Society. A foreign nation was the first orecognise the importance of his services to science, the French Institute electing him a corresponding member in 1817. After his, honours and applause quichly followed from his own countryaren. In 1818 the Governor-General of India-then the Marquis of Hastings--decided that the survey should be withdrawn from the supervistion of a local Government and placed under the Supreme Government, with a view to its extension over all Inclia, remarking at the same time that he was "not aware that with minds of a certain order he might lay himself open to the idle imputation of vainly seeking to partake the gale of public tavour and applause which the labours of Colonel Lambton had recently attracted; "but as the survey had reached the northern limits of the Madras Presilency, its transfer to the Supreme Government, if it was to be further extended, had become a necessity. He directed the transfer to be made, and the survey to be called in future the Great Trigonometrical Survey of Iudia. Noticing that the intense mental and bodily labour of conducting it was being performed by Lambton alone, that his rank and advancing age demanded some relief from such severe fatigue, and farther, that it was not right that an undertaking of such importance should hang on the life of a single individual, the Governor-General appointed two officers to assist him-Captain Everest, as chief assistant in the geodetic operations; and I r. Voysey, as surgeon and geologist. Five years afterwards I.ambton died, at the age of seventy. The happy possessor of an unusually robust and energetic constitution and a genial temperament, he seems to have scarcely known a day's illness, though he never spared himself nor shrank from subjecting himself to privations and exposure which even Everest thought reckless and unjustifiable. These he accepted as a matter of course, saying little about them, and devoting his life calmly and unostentatiously to the interests of science and the service of his country.

Everest's career in the survey commenced disastrously. He was deputed by Lambton to carry a triangulation from Hydrabad, in the Nizam's territory, castwards to the coast, crossing the forest-clad and fever-haunted basin of the Godavery river, a region which he described as "a dreadful widderness, than which no part of the earth was more dreary, desolate, and fatal." Indignant at being taken there, his escort, a detachment of the Nizam's troope, mutinied, and soon afterwards he and his assistants, and almost all the men of his native establishment, were stricken down by a malignant fever; nany died on the spot, and the survivors had to be carried into Hydrabad, whence litters and vehicles of all descriptions, and the whole of the public elephants, were despatched to their succour. To recover his health Everest was compelled to leave India for a while and proceed to the Cape of Good Hope, where he remained for thiree years. He availed himself of the opportunity to inspect Lacaille's meridional arc, which, when compared with the ares north of the equator, indicated that the opposite hemispheres of the glohe were seemingly of different ellipticities. He succeeded in tracing this anomaly to an error in the astronomical amplitude of the arc, which had been caused by deflection of the plumbline at the ends of the arc, unter the influence of the attraction of neighbouring mountains. Thas he became aware of the necessity of placing the astronomical stations of the Indian arcs at points where the plumb-line would not be liable to material doflection by the attraction of neighbouring mountain manges. Shartly after his retura to India Lambton died, and Everest Wheneeded him, and immediately concentrated bis energies on - ex'ension of the Great Arc northwards. He soon came to Ta concluaten that his instrumentat equipment, though good for I phrmaes, was inadegnate for the requirements of
erally inferior to the equipments of the geodetic progreas in Runopel- He therefore proceeded to dire of the Englishand French surveys, af Directors of the Honourable a muat. Wheral assent to all his
Ahamate cit Trovide himself with : II the mequirements
in 1830, a year that marks the transition of the cbaracter of the operations from an order of accuracy which was sufficient as a basis for the graphical delineation of a comparatively small portion of the earth's surface, to the higher precision and refinement which modern geodesists have deemed essentially necessary for the determination of the figure and dimensions of the earth as a whole. He immediately introduced an important modification of the general design of the principal triangulation, which $u p$ to that tine had been thrown as a network over the country on cither side of the Great Arc, as in the English survey and many others; but he abandoned thi, method, and, adopting that of the French survey instead, he devised a system of meridianal chains to be carried at intervals of about i° apart, and tied together by lonsitulinal chains at intervals of about 5 , the whole forming, from its resemblance to the homely culinary utensil with which we are all familiar, what has been called the gridiron system in contradistinction to the network. The entire triangulation was to rest on base-lines to be measured with the new Colby apparatus of compensation bars and microscopes which had leeen constructed to supersede the measuring chain the Emperor of China had rejected; the base-lines were to be placed at the intersections of the longitudinal chains of triangles with the central meridional or axial chain, and also at the further angles of the gridirons on each side. Latitudes were to be measured at certain of the stations of the central chain, with new a-tronomical circles in place of the old zenith sector, to give the required meridional arcs of amplitude. Two radical improvements on all previous procedure were introduced in the measurement of the principal angles, one affecting the observations, the other the objects observed. The great theodolites were manipulated in such a manner as not merely to reduce the effects of accidental errors by numerous repetitions in the usual way, but absolutely to eliminate all periodic errors of graduation by systematic changes of the position of the azimuthal circle relatively to the telescope, in the courie of the complete series of measures of every angle. The objects formerly observed had lieen cairns of stones or other opaque signals; for these Fiverest substituted luminous signals, lamps by night, and, by day, heliotropes which were nanipulated to reflect the sun's rays through diaphragms of small aperture, in pencils appearing like bright stars, and capable of penetrating a dense atmosphere through which distant opaque objects coukl not be seen.

Everest's programme of procedure furnished the guiding principles on which the operations were carried out during the period of half a century which intervened between their commencement under his superintendence and the completion of the principal triangulation under myself. The external chains have necessarily been taken along the winding course of the frontier and coast lines instead of the direct and more symmetrical lines of the meridians and the parallels of latitude. The number of the internal meridional chains has latterly been diminished by widening the spaces between them, and in two instances a principal chain has been dispensed with because, before it could be taken in hand, a good secondary triangulation had been carriell over the area for which it was intendel to provide. But these are dejartures from the letter rather than the spirit of Everest's programme which has been faithfully followed throughout, first by his immediate successor, Sir Andrew Waugh, and afterwards by myself, thus affording an instance of the impress of a single mind on the work of half a century which is probably unique in the anmals of India; for there, as is well known, changes of personal administration are frequent, and are not uncommonly followed by changes of procedure.

The physical features of a country accessarily exercise a considerable influence on the uperations of any survey that may be carried over it, and more particularly on those of a geodetic survey, of which no portion is allowed to fall below a certain standard of precision. Every variety of feature, of scenery, and of climate that is to be mes with anywhere on the earth's surface between the equator and the arctic regions has its analogue between the higglands of Central Asia and the ocean, which define the limits of the area covered by the Indian survey. Thus in sonse parts the operations were accomplished with case, celerity, and enjoyment, while in others they were very difficult and slow of progress, always entailing great exposure, and at times very deadly. In an open country, dotted with bills and oummanding eminences, they advanced as on velvet; in close country, forest-clad or covered with other obstacles to listaut vision, they were greatly retarded, for there it became necessary
either to raise the stations to a sufficient height to overlook all surrounding obstaeles, or to render them mutually visible by clearing the lines between them; and both these processes are more or less tedious and costly. There are many tracts of forest and jungle which greatly impeded the operations, not merely because of the physical difficulties they presented, but because they teemed with malaria, and were very deadly during the greater portion of the year, and more particularly immediately after the rainy seasons, when the atmosphere is usually clearest and most favourable for elistant observations. At first tracts of forest, covering extensive plains, were considered inpracticable thus Lambton carried his network over the open country, and stopped it whenever it reached a great plain covered with forest and devoid of hills : but Everest's system would not permit of any break of continutity, nor the abandonment of any chain which was required to complete a gridiron; it has been carried out in all its integrity, often with much sacrifice of life, but never with any shrinking on the part of the survey officers from carrying out what it had become a point of honour with them to accomplish, and the accomplishment of which the Government had come to regard as a matter of course. We have already seen how the progress of Everest's first chain of triangles was suddenly arrested because he and all his people were struck down by malaria in the pestilential regions of the Godavery basin. That chain remained untouchel for fifty years; it was then resumed and completed, but with the loss of the executive officer, Mr. George Shelvertwn, who suceumbed when he had not yet reached, but was within sight of, the east coast line, the goal towards which his labours were direeted. Many regions, as the ba-in of the Mahanaditi, the valley of Assam, the hill ranges of Jipperah, Chittagong, Arracan, and Burma, and those to the east of Moulmein and Tennasserim, which form the boundary between the British and the Siamese territories, are covered with dense forest, up to the summits of the peaks which had to be adopted as the sites of the survey stations. As a rule the i eaks were far from the nearest liabitation, and they could not lee reached until pathways to them had been eut through forests tangled with a dense undergrowth of tropical jungle: not unfreguently lange areas had to be cleared on the summits to open ont the view of the surrounding country. Here the physical difficulties to be overcome were very considerable, and they were inereased by the necessity that arose, in almost every instance, of importing labourers from a great distance to perform the necessary clearance's. But the broad belt of forest tract known as the Terai, which is situated in the plains at the feet of the Nepalese llimalayas, was the most formidable region of all, beccause the climate was very deadly for a great portion of the year, and more particularly during the season when the atmo* sphere was unost favourable for the ohservations, though the physical difficulties were not so great as in the hill tracts just mentioned, and labour was more easily procurable. I.ying on the British frontier, at the northern extremities of no less than ten of the meridional chains of triangles, it had necessarily to be operaled in to some estent, ant Everess wished to carry the several chains across it, on to the outer Himalayan range, and then to connect them together by a Iongitndinal claain ruaning along the lange from east to wevt, completing the grisliron in this quarter. Hut the range was a portion of the Nepalese territories, and all Enropeans-excepting those attached to the Hritish embasyy at Khatmandu-were debarred from entering any part of Nepal, by treaty with the British Government. Fiverest hoped that the rulers of Nepal might make an exception in his favour for the prosecution of a scientific surver; and when he found they would not, he urged the Government to compel then to give his surveyorv acces, at least, to their outlying hills; but he urged in vann, for the Government would not run the risk of embarking in a war with Nepal for purely scientific purposes. Thus the connecting chain of trianglesnow known ats the N.E. Longituifinal series-hat to be carried through the whole length of the Terai, a distance of about 5 on anles, which involved the converuction of over tou towerraved to a height of about 30 feet to overlook the earth's corvature-and the clearance of about 2,000 miles of line through torest and jungle to render the tuwers mutualy visible. It vequired no small courspe on liverest's part to plunge his survegors into this region ; he enleavoured to mininise the risk. as much as puosible by taking ap the longitudinal chain in sections, but by bit, on the completion of the successive meriblional chans, and thus apporioning it teetween several survey parties, each opersting in the Terai fur a short time, insteal of avigaing
it to a sinzle party to execute continuously froms end to ens.? all the other chains of triangles. But notwithstanday :s precautions, the peril was great, an I the mortality amoog officers and men was very considerable : greater than in Ea famous battle, say's Mr. Clements Markham, in zo eloy. passage in his Memoir of the Indian Surveys, in whate claims for the surveyors who were employed on these operte -with no hope of reward other than the favoarable atoo their immediate chief and colleagues-merit for more pe and honourable achievement than much of the military be which is plentifully rewarded by the praises of men and onne all kinds.

Everest retired in 1843 , and was succeeded by W_{32}, applied himself energetically to the completion of the + chains of triangles exterior to the Great Arc, for ath obtained a substantial addition to the existing equapo= great theulolites. It was under him that the ferz longitudinal series through the Terai, which had bees by Everest, was chiefly carried out. He jersonally teits determination of the positions and heights of the procipa peaks of the llimalayan ranges; and he did musk be advancement of the general topography of Indix, wan: somewhat languished under his predecessor, who haid himself chiefly to the geokletic operations. He retired an it and I sacceeded to the charge of the Great TrigoveSurvey. The last chain of the princigal triangulam completed in $\mathbf{4} 822$, shortly before iny own retirement

Of the general character of the operattons, it may be aw without hesitation that a degree of accuracy and preciu: been attainel which has been seached thy few and surpornone of the great national surveys carried out in other the world, and which leaves nothing to be deaned ew the requirements of geodesy; a very considerable the principal angles have been measured with the ${ }^{2}$ feal 2 and 36 -inch theodolite, ant ther theoretical probutio averages about a quarter of a second ; of the liocar wr: ments the probable error, so far as calculable, may be is: not cxceeding the two-millionth part of any mesaure: And as regards the extent of the sriangulation, if wr the primary network in Southern India, and all en triangulation, however valuable for geographical part \cdots still have a number of principal chains-\$ter longitudinal, and oblique-of which the aggregate tos 17,300 miles, which contain 9,230 first-class andes served, and rest on eleven base-lines measured w? Colby apparatus of compen-ation bars and mact. 6 This prokligious amount of lield-work furnithes an erf mass of interilepenident angular and linear meavure-: ablect these is fallible in some degree, for, great as wh the $1=$ and care with which they had severally been exteatel s accuracy of meavurement is as yet beyond humes acher: thus every circuit of triangles, every chain closing on s bae and even every single triangle, presented discrejancte th. nitude of which, was greater or less according 29 derred combination of many; or only of a few, of the fallible ti: observation. Thus, when the field operations were apper their termination, the question arose as to how thess im to le harmonised and rendered consistent throughoet, wh: a very serious matter consitlering their great number. Thr ${ }^{\prime}$ application of mathemanical theory to a problem of th: requires the adjustiment to be effected by the appleas correction to every fact of observation, nut arhitisnir such a manner as to give it its proper weisht, neiber . less, in the final invectigation, and in this the whole of t must be treated simultanconsly. That would tare invor: cimultancoas solution of upwards of 4,000 equatiod le'v 9,2 30 unknown quantities, by what is called the mel minimam squares, and I need scarcely say that it to pros. imposibite to solve such a number of equations letaed w? unknown quantinics by any method at all. Thus a cots. had to be ma-le between the theoretically desalie th practically powible. It would be out of place beet 50 a to descritie the method of treatment which was as adopted, after much thought and deliberation: I wis say that the butk of the triangulation was divided of sections, each of which was treatel in succession with t approximation to the mathematically rigoruus nuchal z° practically posible ; but even then the mave of w paluar ? tedependent calculation to be performed in eash intase enormous, I ielicve greatly cxceeding anything of thr ${ }^{2}=$
yet attempted in any other survey. But the happy result of all this labour was that the final corrections of the anules were for the most part very minute, less than the theoretical probalile errors of the angles, and thus fairly applicable without taking any liberties with the facts of observation. If the attribute of beauty may ever be bestowed on such things as small numerical quantities, it may surely be accorded in these notable results of very laborious calculations, which, while in themselves so small, were so admirably effective in introducing harmony and precision throughout the entire triangulation.

If now we turn once more to what I,ambton calls "the sublime science of geodesy," which was held in :uch high regard by troth him and Everest, we shall find that the great meridional arc between Cape Comorin and the Himalayas, on which they taboured with so much energy and devotion, is not the only contribution to that science to which the In ian triangulation is sulservient, but every chain of triangles-meridional, longitudinal, or oblique-may be made to throw light either on geodesy, the science of the figure of the earth, or on geognosy. the science of the earth's interior structure, when combined with corresponding astronomical arcs of auplitude. Thus each of the several meridional chains of triangles may be utilised in this way, av their prototype has been, hy having latitude observations taken at certain of their stations to give meridional arcs : and the several longiudinal chains of triangles may also be utilised-in combination with the main lines of telegraph-by electrotelegraphic determinations of differential longitudes to give arcs of parallel. When the stations of the tiangulation which are resorted to for the astrononvical observations are situated in localities where the normal to the surface coincides fairly with the corresponding normal to the earth's figure, the result is valuable as a contribution to geodey ; when the normal to the suriace is sensibly deflected by local attraction, the result gives a measure of the deflection which is valuable as a contribution to geognosy.
llaving regard to these circumstances, I moved the Government to supply the Trigonometrical Survey with the necessary instruments for the measurement of the supplemental astrosomical arcs; and as officers became svailable on the gradual completion of the successive chains of triangles, I employed some of them in the reguired deterninations of latitule and differential longitule. It so hppened that about the same time geofessists in Europe began to recognise the advantages to acience to be acquired by connecting the triangulations of the different nationalities together, and supplementing them with ares of amplitude. The "International Geodetic Asweiation for the Measurement of Degrees in Europe" was formed in consequence, and it has been, and is still, actively employed in carrying out this object ; in India, however, the triangulation was complete and connected throughout, so that only the astronomical amplitudes were "nanting. They are still in progress, but already meridional chains, aggregating $1, S_{4} 0$ miles in length, and lying to the west of the Gireat Are, have lieen convertel into meridional ares; and the three longitudinal chains, from Madras to Mangalore, from Bombay to Vizagapatam, and from Kurrachee sia Calcutta to Chittagong, of which the aggregate lenyth is 2,600 miles, have been converted into arcs of parallel. In the former the operations follow the meridional course of the chains of triangles; in the latter they follow the principal lines of the electric telegraph, which sometimes diverge greatly from the direction of the longitudinal chains of triangles, the two only intersecting at occasional points: the astronomical stations are therefore placed at the trigonometrical points which may happen to tee nearest the telegraph lines, whether on the meridional or on the longitudinal chains, and their positions are invariably so selected as to form self-verificatory circuits which are usmally of a triangular form, presenting three differentish arci of longitude ; each of these ares 15 measured independently as regards the astronomical workthough for the third arc there is usually no indepentent telegraph line but only a coupling of the lines for the first and second arcs -and this has been proved to give such an execlient check on the acenracy of the operations, that it is n t too much to say that no telegraphic longitude operations are entirely reliable which have not been verified in some such manner.

Through the courtesy of Colonel Stotherl, Director-General of the Ordnance Survey, 1 am enabled to exhibit two charts, one of the triangulation of latia, the other of that of Europe, which have recently been enlarged to the same scale in the Ordnance Survey Office at Southanpton for purposes of comparison. The first is taken from the official chart of the Indian Survey, and
shows the great meridional and longitudinal chains and Lamb. ton's network of principal triangles, the positions of the baselines measured with the Colby apparatus, the latitude and the differential longitude stations, the triangular circuits of the longitulinal arcs, the stations of the pendulum and the tidal operations which will be noticed presently, and the secondary triangulations to fix the peaks of the Himalayan and Sulimani ranges, and the positions of Bangkok in Siam and Kandahar in Afghanistan, the exireme eastern and western points yet reachel. The chart of the European triangulation has been enlarged from one published by the International Geodetic Association of Europe; in it special prominence is given to the Russian meridional are, which extends from the Danube to the Arctic Ocean, and is $25^{\circ} 20^{\circ}$ in length, and to the combined English and French meridional arc, $22^{\circ} 10^{\prime}$ in length, which extends from the Balearic Island of Formentera in the Mediterrancan, to Saxavord in the Shelland Islands. The aggregate length of the meridional arcs already completed in India is about equal to that of the English, French, and Russian aro combinel : but the longest in India is aloout 11° shorter than the Russian. As regards longitudinal ares, I belicve the two which were first measured in India, and were employed shorily aterwards by Colonel Clarke in his last investigation of the figure of the Earth, are the only ones which have as yet been deemed sufficiently accurate to be made use of in such investigations, th ugh arcs of much greater length have been measured in Europe. It would be interesting, if tiwe permitted, to set torth the saltent points of divergence between the systems of the Indian and the European surveys; I will only mention that in the southern part of the Russian are, for a space ot about 8° from the Duna to the Dneister, a vast plain, eovered with immense and almost impenetrable forests, presented great obstacles to the prosecution of the work; the difficulty was overcome by the erection of a large number of lofty stations of observation, wooten scaffoldings which were 820 and even as much as 146 feet high, to overlook the forests, In Indian forests, as the Terai on the borders between Britihh and Nejalese territories, the stations were rarely raised to a greater height than 30 feet, or just sufficient to overtop the curvature, and all trees and other ob-tacles were cleared away on the lines between them; this was found the most expeditious and economical process. The stations were very substantial, with a central masonry pillar, for the support of a great the ululite, which was isolated from the surrounding platform for the support of the otserver. The lofty Russian scaffoldings only sufficed for suall theodolites, and they were so liable to shake and vibration, that the theodolites hat to be fitted with two telescopes to be pointed simultaneously by two observers at the pair of stations, the angle between which was leing neasured.

All the modern geodetic data of the-Indian survey that were available up to the year is8o were utilised by Colonel A. K. Clarke, C. B, of the Ordnance Sursey, in the last of the very valuable investigations of the Figure of the Earth which he has undertaken from time to time. It will lee obvious that new data tent to modify in some degree the conclusions derivel from previous data, for the figure of so large a globe as our earth is not to be exactly determined from measurements carried over a few narrow belts of its superficies. Thus thirty years ago it was inferred that the equator was sensibly elliptic-and not circular, as had been generally assumed-with its major axis in longitude $15^{\circ} 34^{\prime}$ eatt of Greenuich; but later invertigations indicate a far smaller ellipticity, and place the major axis in west longitude $\mathbf{S}^{3} \mathbf{1 5}^{\text {. }}$. More significant evidence of the intluence of new facts of obecrvation in modifying previous conclusions is furnished by the French national standard of length, the metre, which was fixed at the ten-millionth part of the length of the earth's menidinnal quadrant, as deduced from the bent geodetic data available up to the end of the last century; but it is now found to be nearly robath part less than the magnitude which it is supposed to repuesent, the diffierence being about a hundred times greater than what would now lee considered an allowable error in an important national standard of neasure.

The Indan survey has also made valuable contributions to geotesy and geognosy in an elaborate series of pendulum observations for determining variations of gravity, which throws light both on the grand variation from the poles to the equator that governs the ellipticity, and on the local and irregular variations depending on the constitution of the interior of the earth's crust. They were commenced in 1865 by Captain J. P. Basevi, on the recommendation of Genera' Sabine and the Council of the Royal Society, with two pentulums, one of which th: General had
swung in his notable operations which extend from a little below the equator to within 10° of the pole. Captain Basevi had nearly completed the operations in India, and had taken swings at a number of the stations of the Great Arc and at various other points near mountain ranges and coast lines, when he died of exposare in 1871 at a station on the high table-lands of the Himalayzs, while investigating the force of gravity under mountain ranges. Major lleavaside swung the pendulums at the remaining Intian stations, then at Aden and Ismailia on the way back to England, and finally at the base station, the Kew Observatory. Afterwards they an-l a third pendulum were swung at Kew and Cireenwich by Lieutenant-Colonel Herschel, who took all three to Amenca, swung them at Washington, and then handed them over :n ofacers of the C'nited states Coast Survey, by whom they bave been swung at San Francisco, Auckland, Sydney, Singacres, and in \int apan.
The peot:ium operations in India have been successful in re=ori=g from the geodetic operations the reproach whick had Fuerly ceen cast on them, that their value has become much $\therefore=$ =iribed sace the ditcorery that the attraction of the HimaLyon weantars is so mach greater than had previously been "-seced, tha: it may tave materially deflected the plamb-line 2: a iarge $x=m$ ber of the astronomical stations of the Great Arc, as: : : -robsiy inflaeticed the observations. Everest considered Le enects of the Himalayan artraction to be immaterial at any :in+2:-se exceeding sixey miles from the feet of the mountains; \%: to his days the full extent and elevation of the mountain z.2ves was uriknuwn, and their magnituole was greatly under-ev:ma:e-1. Afterwart-, when the magrutude became better $\mathrm{k}=1 / \mathrm{n}$, Archteason Pratt of Calcutta, a mathematician of great ca:sence, casculated that they would materially attract the plumbLse a: porsi, many hundred miles distant ; he also found that eve.pwhere Le: een the Himalayas and the ocean, the excess of for.y'f th= !as. of the consinent as compared with the water of : تe 'ceas witi ! censit.ne with the IImalayan attraction and :F.reave the dete.:! of of the plumb-line northwards, towards
 L.e $H=x i 2 y 20$ ar. 1 the ccean the level of the sea at Kurrachee - \therefore : er ratel 550 fect atrive the level at Cape Comorin.

Y-: 20, 2 matef of fact the Indian are gave a value of the ect: , e...户: ©c: y w...ch agreel sufficiently clurely with the values estied is im the arco meswured in all other quarters of the globe, : i: :A of the plumb-line ; thu it appeared that whereas Everest et -t: have vilshely underetrimated the Himalayan attraction, F-*" mavt have greatly overestimated it. His calculations were 5 werer tavel on reliable data, and were inćabisathly correct. of r wime tule the contradiction remained onerolained, but e: =2:*2ily a:r (neorge A:ry put forward the hypothests that the 1: - -etece of the limalayan masses must be coniteractel by some ormenestory diopaition of the matter of the earth's crust im-me- Larely below them, and in which they are routed ; he sugnested th: : :he taser of the mountains had sunh to some tlepth into a flu:- lava whith he conceived to exi-t teiow the earth's crust, and that the stoking had caused a displacement of dense mater by higher matier telow, which would ten'l to mm encite for the excess of matter alove. Now Pratts calculatuons hat reference only to the riat le mountain and ecceanac maves, and their attractive inftuences-the former purbive, the later negative-in a horix.rn'al direction ; he had no data for investigating the density of the crust of the earth below either the mountains on the one hand, or the ted of the ocean on the other. The fentulum rbservations furnabed the fira firect meavures wf the vertical force of gravity in different localitie- whah were obtained, ard these measeres revealed two hroa! facts regatiling the dioftoint on of the sarishle matter beluw ; first, that the firce of gravity im inten as the mountain- are approchel, and is very much le.. the armait of the highly elerated Himalayan table-lar-1s itos can te accounted for otherwise than by a deficiency of mater Feluw ; secondly, that it increases as the cecan is appricit? ar-1 is greater on islants than can be accounted fur ctherw we tin by an excess of matter telow. A ssuming gravity to te $n-m$ il on the coast lines, the mean c! ecrved increace an the whan at thoas was such as if ca we a conds pendalum to gain tre secomels daily, and the mein inened decrente in the interof I the Continent woold have, 1 the penlaitum to live at weconds dauly at stations averuging 1 . 200 fert alave the seat lete!. 5 secoorls at 3,800 feet, and hoin 22 secun to at 15.400 tedibe higbert elevation reschel -a

Pratt was strongly oppo ef to the hypothesis of a sebti: . or magma, of flurd igneous rock beneath the moentansascumed the earth to be solill throughout, and recuale: mountains as an expansion of the invisible marter below. thus becolues attenuated and lighter than it is ender reg. less elevation, and nore particularly in the depreseions an: tractions below the led of the ocean. And certainly $=\tau \sim$ to have more reason to conclude that the moontains env. from the subjacent matter of the earth's crust than that tr. as wholly independent of it as if they were furmed of wod from passing meteors and asteroids; any severance of cone: 1 and astociation betu cen the visible above and the innsitio .e. appears, on the face of in, to be decidecily i mprobable

The hypothesis of sub-continental atteruation and sub-ce condensatiun of matter is supported by the two arcs of kes: on the parailsls of Madras and Bombay ; for at the 0 : points of these arcs, which are situated on the opposte cue: the borizonial aitraction has, been found to be not landwar. migh have been annicyated, but reawards, showing thut the ticient density of the sea as compared with the land is more compensated by the greater density of the matter uade ocean than of that uncer the land.
While on the subject of the constitution of the earks c. I may diaw attention to the circumstance that the tutal wations which have been carried on at a number of pointa a coasis of India, as a part of the operations of the Serney. to show that the earth is solid to its core, and that the gouthypotheis of a lluid interior is untenable. They hare se analysed by Prof. G. H. Darwin, with a view to the deagz: ation of a numerical estimate of the rigidity of the earth, 2:has asertained that whilst there is some evilence of: yielding of the earth's mass, that yielding is certainly saw, il the effective rigidity is very con-iderable, not so great is ${ }^{2}$ steel, as was at first surmised, but sufficient to afford an mp:confirmation of the justice of sir William Thomson's cuasion. as to the great rigidity.

The Indian pendulum observations have teen emplocic Calonel clarke, in combination with thone saken in obe $;=$ of the gloke, to determine the earth; ellipticity. Formerly was wont to be a material daticrence between the ellipo which were respectively derival from fendulum observation is direct geatetic neasurements, the furmer being somewhat gre: than y_{1} ls, the latter romewhat less than $y \frac{1}{5}$; but as act 5 more exact data became avaulalile, the values derived from tho two ensentialiy independent wurces became more and as accordant, and they puw nearly agree in the value yis.

A, a part of the pendulum uperations, a determination of 1 length of the econds pendulum was male at Kew by M Heavisule. wiah the penilalum which had been emploged be ame purpuse by kiater early in the present century, wheo lad men of saence in England believed that in the event of $\frac{3}{2}$ national -tandard yard teing destroyed or lost, the lengta 56 be reproduced at any time with the aid of a reversible peolilos In cotasequence of this belief an Act of Parliament was paur in 1524 whach defined the reiations betw cen the imperial in te seconds pendulum, the length of the former being to that of $3 x$ latuer-swung in the latitule of Lopilon, in a vacuam and a: is level of the xa-in the proportion of 36 inches to 99.1393 with Thus, while the French look for their unit of length the tof muilivath part of the eartho merillonal quadraat, the Enjos toons the penituiums swing'ing recon.is in the latitude of Loole In case of lows the yard is ubvouriy reciverable more restly al ineymenvively to reierence to the pentulum than the merety reference to the juadrant: it is alw recuverable with great a. ciracy ; sill the ancuracy is not nearly what noold now be deced

The trigonometrical operations fix with extreme accuracy two of the co-ortlinates -the latitude and longitude-which define the positions of the principal stations ; but the third co-ordinate, the heiglit, is not susceptible of being determined by such operations with anything like the same degree of accuracy, because of the variations of refraction to which rays of light passing through the lower strata of the atmosphere are liable, as the temperature of the surface of the ground changes in the course of the day. In the plains the apparent height of a station ten to twelve miles from the observer has licen found to be upwards of 100 feet greater in the cool of the night than in the heat of the day; the refraction being always positive when the lower atmospheric strata are chilled and laden with dew, and negative when they are rareficd by the heat radiated from the surface of the ground. At hill stations the rays of light usually pass high allove the surface of the ground, and the diurnal variations of refiaction are comparatively immaterial, and very good results are ohtained by the expedient of taking the vertical observations between reciprocating stations at the same hour of the day, and as nearly as possible at the time of minimum refraction ; but in the plains this expedient does not usually suffice to give reliable sesults. The hill ranges of central and those of northern India are separated by a broad belt of plains, which embraces the gacater portion of Sind, the Punjab, Rajputana, and the valley of the Ganges, and is crossed by a very large number of the principal chains of triangles, on the lines where the chart shows stretches of comparatively small triangles, which are in most instances of considerable length. Thus it became necessary to run lines of spirit levels over these plains, from sea to sea, to check the trigonometrical heights. The opportunity was taken advantage of to connect all the levels which had been executed f.rirrigation and other public works, and reduce them to a common datum; and eventually lines of level were carried along the coast and from sea to sea to connect the tidal stations. The aggregate length of the standard lines of level executed up to the present time is nearly 10,000 miles, and an extensive serics of charts of the levels derived from other departments of the public service and reduced to the survey datum lias already been jublished.

The survey datutn which has been adopted for all heights, whether deduced trigonometrically or by spirit-levelling, is the mean sea level as determined, either for initiation or verification, ly tidal observations at several points on the cosst lines. At first the observations were restricted to what was necessary for the requirement = of the survey, and their duration was limited to a lunar month at each station. In 1872 more exact determinations were called for, to ascertain whether gradual changes in the relative level of land and sea were taking place at the liead of the Gulf of Cutch, as had been surmised by the geological surveyors, and observations were taken for over a year at three tidal stations on the coasts of the gulf, to be repeated hereafter when a sufficient period had elapsed to permit of a mea wrable change of level having taken place. Finally, in 1875, the Government intimated that as "the great scientific advantages of a syetematic record of tidal observations on Indian coasts had been frequently urged and ad nitted," sach observations should be taken at all the principal portsand at such points on the coast lines as were best suited for investigations of the laws of the ticles. In accordanc \& with the ine instructions, five years' observations have been made at several points, and new stations are taken up as the operations at the first ones are completed.

The initiation of the later and more elaborate operations is due in great measure to the recommendations of the Tidal Committee of the British Association, of which Sir William Thomson was President. The tidal olservations have been treated by the method of harmonic analysis advocated by the Committec. The constants for amplitude and epoch are determined for every sidal componeat, both of long aad of short periods, and with Their aid tide tables are now prepaced and published annually for each of the principal ports; and further, it is with them that Denfaf. W. barwin marle the investigations of the effective which I have already mentionsed. The which were caused by the carthquale on Whe Bay of Bengal, and by the notable whad of Krakatoa and the Straits of 5.j. Were registered at several of aridence has been furaisheit -ivence has been furuished

I must not close this account of the non-graphical, or more purely scientific, operations of the great Trigonometrical Survey of India without saying something of the officers who were em ployed thercon, under the saccessive superintendence of Everest, Waugh, and myself. A considerable majority were military, from all branclies of the army- the cavalry and infantry, as well as the corps of engineers and artillery; the remainder were civilians, mostly promoted from the subordinate grades. Prominent shares in the opelations were taken by Lieutenant Renny, Bengal Engineers, afterwards well known in this neighbourhoorl as Colonel Renny Tailyour, of Borrowfield in Forfarshire, of whom and his contemporary, Lieutenant Waugh, Everest, retiring, reported in terms of the highest commendation; by Reginald Walker, of the Bengal Engineers, George Logan, George Shelverton, and Henry Reverley, all of whom fell victims to jungle fever ; by Strange, F.R.S., of the Madras Cavalry, whose name is associated with the construction of the modern geodetic instruments of the Survey ; by Jacob-afterwards Government Astronomer at Madras-Rivers and Haig, all of the Bombay Engineers; Tennant, C.I.E., F.R.S., Bengal Engineers, afterwards Master of the Mint in Calcutta; Montgomerie, F.K.S., of the Bengal Engineers, whose name is best remembered in connection with the Trans-Himalayan geographical operations; James Basevi, of the Bengal Engineers, who so sadly died of exposure while engaged on the penlulum operations in the higher Himalayas; Branfill, of the Bengal Cavalry; Thuillier, Carter, Camplell. Trotter, Heaviside, Rogers, Hill, and Baird, F.R.S., all engineer officers; also Hennessey, C.I.E.., F.R.S., M.A., Herschel, F.R.S., and Cole, M.A., whose names are intimately associated with the collateral mathematical investigations and the final reduction of the principal triangulation.

The Trigonometrical Survey owes very much to the liberal and even generous support which it has invariably received from the Supreme Government, with the sanction and approval, first of the Directors of the East India Company, and afterwards of the Secretary of State for India. In times of war and financial embarrassment the scope of the operations has been curtailed, the establishments have been reduced, and some of the military officers sent to join the armies in the field; Int whatever the crisis, the operations have never been wholly suspended. Eien during the troubles of 1857.58 , following the mutiny of the native army, they were carried on in some parts of the conntry, though arrested in others; and the then Viceroy, Lord Canning, on recciving the reports of the progress of the operations during that eventful period, immerliately acknowledged them to the Surveyor-General, Colonel Waugh, in a letter from which the following extract is taken :
"I cannot resist telling you at once with how much satisfaction I have seen these papers. It is a pleasure to turn from the trombles and anvieties with which India is still beset, and to find that a gigantic work, of permanent peaceful usefulnese, and one which will assurelly taie the highest rank as a work of scientific labour and skill, has been steadily and rapidly progressing through all the turmoil of the lavt two years."

The operations have been uninfluenced ly changes of fersonmel in the alministration of the Indian Empire, as GovernorGenerals and Viceroys succeeded each other, but have met with uniform and consistent support and encouragement. It may well be floubted whether any similar undertahing, in any other part of the world, has been equally favoured and as munificently maintained.

In conclusion 1 must state that I have purposcly said nothing of the graphical operations executed in the Trigonometrical and other branches of the Survey of India, trecause they are thore generally known, their results appear in maps which sueak for themelves, and time worald not permit of my attempting to decribe them also. They comprise, first, the gencral topograplyy of all India, mostly on the standand scale of 1 inch to the nile ; stomilly, georraphical surveys and explorations of regions beyonl the Ifritish frontier, notably such as are being cartied on at the present time on the Russo-Afghan fronticr, by Major Iloldich and other officers of the Survey ; thirdly, the soncalled Revenue Survey of the British districts in the lbengal I'revilency; which is simply a topographical survey on an enlarged Beale-4 inclies to the mile-showing the boundaries and avas of villages for fiscal rerpurements; and fourthly, the Cadastral Survey of certain of the Britinh districts in the Bengal Presidency, showing fields and the boundaries of all properties, on scales of 16 to 32 incher to the mile. There are also certain
large scale surveys of portions of British districts in the Madras and Bombay Presidencies, which, though undertaken originally for purely fiscal purposes by revenue and settlement officers working independently of the professional survey, have latterly been required to contritute their quota to the general topography of the country. And of late years a survey branch has been alded to the Forest Department, to provide it with working mape constructed for its own requirements on a larger scale than the standard topographical scale, but on a trigonometrical basis, and in co-operation with the Survey Department. But this brief capitulation gives no sort of idea of the vast amount of valuable toprgraphical and other work for the requirements of the local Alministrations and the public at large-always toilome, often perilous-which has been accomplished, quite apart from and in quantity far exceeding the non-graphical and more purely scientific work which I have been deccribing. Its magnitule and variety are such that a mere list of the officers who have taken prominent shares in it, from first to last, would be too long to read to you. Three names, however, I must mention: firsf, that of (ieneral Sir Henry Thuillier, who became Surveyor-General on the same day that I succeelled to the superintendence of the Great Trigonometrical Survey, and with whom I had the honour of cooperating for many years: under his administration a much larger amount of topography was executed than under any of his predeceswors, and a great impetus was given to the lithographic, photographic, engraving and other offices in which the maps of the survey are published; secondly, that of Colonel Sconce, who became Deputy Surveyor-General soon after my accession in 1878 to the Survey-Generalship, and with whom I was associated for some years, much to my gratification and advantage, in various matters, but more particularly in the establishment of cadastral surveys on a professional hasis at a moxlerate cont, to render them more generally feasible, which was a matter of the utmost importance for the administration of the more highly populated portions of the British provinces ; and thirilly, that of Lieutenant-Colonel Waterhouse, who has for many years superintended the offices in which photography is employed, in combination with zincography and lithography, for the speedy reproduction on masse of the maps of the Survey, and has done much to develop the art of photogravure, wherely drawings in brushwork and mezzotint may be reproduced with a degree of excellence rivalling the best copperplate engraving, and almost as speedily and cheaply as drawings in pen and ink work are repmeduced by photo-zineography.

Mr. Clements Markham's.Memoir on the Indian Surveys gives the best account yet publishel of the several graphical surveys up to the year 1878. In that year the Trigonometrical, Topographical, and the Kevenue liranches, which up to that time had constitutel three separate and alruost independent departinents, were amalgamated together into what is now officially tesignated "the Survey of India." In the same year the chronicle so well commencel by Mr. Markham came to an end on his retirement from the India office-unfortunately, for it is a work of excellence in olject and in execution, and mont encouraging to Indian surveyors, who find therr labours recorded in it with intelligent appreciation and kindly recognition.

During the present meeting, several papers by officers of the Survey will be read-one by Colunel harron, in persen, on the calastral surveys in the organisation of which he has taken a lealing share; by Major llairll, on the work of spirit-levelling. which he superintents conjointly with the tilal olmervatious ; by Colonel Gerlwin Awten, on I.ientenant-Colonel Woxsthorpe's recent journey from Upjer Awan to the Irawati river; ly Colonel Itranfill, on the phyvical geography of Suuthern India; and by Colonel Tanner, on portions of the Ilimalayas, and on recent evplurations in Ssuthern Tilet. Major Itailey will aloo read a paper on the forest surveys.

SECTION G

mpcitanical science

Opening Adprens hy I. Makfr, M.Inst.C.F., Prestuent of the Mcton
Two hundred and fifty-seven l'essidential Addresses of one kind and another have lreet delivered at meetings of the Britivh Avsciation since the members last musterel at Ahenleen, I need harilly say that the candlit friend who infommell me of this interesting fact most effectually hispelled any illusion I may
have previously entertained as to the possibility of prepanng = address of sufficient novelity and suggestiveness to be worthy your attention, and I can only hope that any shortcoming: be dealt with leniently by you. One compensating adramiz obviously belongs to my late appearance in the field $-1 \downarrow$ 257 models of style upon which to frame my address. M! tinguished predecessor, Sir Frederick Bramwell, has a Erik his own, in which wit and wisdom are combined in picis proportions; but were 1 to attempt this style I should dos:" incur the rebuke which a dramatic critic of Charles the tar: time administered to a too ambitious imitator of a pry favourite: "He's got his fiddle, but not his hands to plyy oc I must search further back than last year, therefore, for a o of style, and the search reminds me that I labour under a 1disadvantage : firstly, that only two addresses intervene le:-the present one and that of my partner, Mr. John Fowler, $\mathbf{v}^{\text {- }}$ whom I have so long had the honour of being associated whose professional experiences, as set forth in his adder. necessarily so largely identical with my own : and, eec : that within the same period I have read before this Sectur . somewhat lengthy papers on the work which is at present:: engaging the attention of Mr. Fowler and myself-be :Forth Bridge.
Althongh, for the reasons aforesaid, I am conscions the address may fail in novelty, I cannot honestly profess to n difficulty in preparing an address of some kind, for the es embraced under the head of " Mechanical Science" are : exhaustible that even the youngest student might safely a: the responsibility of speaking for an hour on some of 1 Prof. Rankine, addressing you thirty years ago, said it ma" understood that questions of pure or abstract mechanies for part of the subjects dealt with in this Section. With charistic clearness of conception and precision of tanguage be you what the term "mechanical science" meant, and r" thirty years' interval, his worls may be recalled with adma: to every one proposing to prepare an address or report iv Section. "Meclanical science," said Prof. Rankine, " ed" its possessor to plan a structure or machine for a given me: without the necessity of copying some existent exampie. compuie the theoretical limit of the strength and stamian "t structure or the efficiency of a machine of a particalar hto ascertain how far an actual structure or machine faik to al: that limit, and to dliscover the cause and the remely of . shortcoming : to determine to what extent, in layng principles for practical use, it is advantageous for the ei simplicity to deviate from the exactness required by pare on and to judge how far an existing practical rule is founts: reason, how far on custom, and how far on error." Tree thus an ample text for many discourses ; but, as I am no :ing a treatise on engineering, but merely delivering a address, I will confine my attention at present to a pare case of the branch of mechanical science referred to in tbe -. clanse of Prof. Rankine's definition, and will ask you to "? sider how far the evisting practical rules respecting the uresil of metallic bridges are "founded on reason, how far on cas* and how far on etror."
The first question obviously is, What are the roles aloped ? engineers and Government departments at the present time? -D it is one not easily answered. I have for some time pats beos ceiving communications from leading Continental and Asor.3 engineers, asking me what is my practice as regands the sia.ilhe intensity of stress on iron and steel bridges, and in re, 4.5 have invited similar communications from themselves recult I am able to say that at the present time aboolate ey prevaik. The old foundations are shaken, and enginees of not come to any agreement respecting the rebuildiak of bi structure. The variance in the strength of existing belfery such as to be apparent to the educated eye withoat any oizis tion. If the wheels of a miniature brougham were Gited ip s heavy cart the incident would excite the derision erea in n ? street boys, and yet equal want of reacon and method es wis found in hundred- of bridges in all countries, it is 13 and secret that nearly all the lange railway companies are strabe ing their bridges, and necesvarily so , for I could cite cses the working strees on the iron has exceeled by 2 gep that consilered a.lmivible by leading American and Got bridge builelers in similar structures.

In the cave of old brulges the variance in sreagh a do partly due to errors in hyputhe is and miscalculation of smin In the ןresene day engineers of all countries are in monem ${ }^{\prime \prime}$
the principles of estimating the magnitude of the stresses on the different members of a structure, but not so in proportioning the members to resist those stresses. The practical result is that a bridge which would be passed by the English Board of Trade would require to be strengthened 5 per cent. in some parts and 60 per cent. in others before it would be accepted by the German Government or by any of the leading railway companies in America. This undesirable state of affairs arises from the fact that in our own and some other countries nuany engineers still persistently ignore the fact that a bar of iron may be broken in two ways-namely, by the single application of a heavy stress or by the repeated application of a comparatively light stress. An athlete's muscles have often been likened to a bar of iron, but, if "fatigue" be in question, the simile is very wide of the truth. Interinittent action-the alternative pull and thrust of the rower, or of the labourer turning a winch-is what the muscle likes and the bar of iron abhors. Troopers dismount to rest their horse3, but to relieve a bar of iron temporarily of load only serves to fatigue it. Half a century ago Braithwaite correctly attributed the failure of some girders, carrying a large brewery vat, to the vessel being sometimes fill and sometimes empty, the repeated deflection, although imperceptibly slow and wholly free from vibration, deteriorating the metal, until, in the c ourse of years, the girders broke. These girders were of castiron: but it was equally well known that wrought-iron was stuilarly affected, for in 1842 Nasmyth called the attention of this Section to the fact that the "alternate strain "in axles rendered them weak and brittle, and suggested annealing as a remedy, he having found that an axle which would snap with une blow when worn woukd bear eighteen blows when new or after being annealed.
So important a matter as the action of intermittent stresses could not escape the attention of the Royal Commissioners appointed in 1849 to consider the application of iron to railway structures, and some significant and sufficiently conclusive experiments were made by Capt. Douglas Dalton and others. Castiron bars 3 inches square and 13 feet 6 inches span between the suptorts were deffected, both by the slow action of a cam and the percussive action of a swinging pendulum weight. When the defiection was that due to one-thirl of the breaking weight, abrout 50,000 successive bendings by the cam broke one of the hars, and alout 1000 blows from the pendulum another. When the deflection was increased from one-third to one-half, about 500 applications of the cam, and too blows, sufficed to rupture two of the specimens. Slow-moving weights on bars and on a small wrought-iron box girder gave analogous results ; and the deduction drawn by the experimenters at the time was that "iron bars scarcely bear the reiterated application of one-third the breaking weight without injury, hence the prudence of always making beams capable of bearing six times the greatest weight that could be laid upon them."
Although these experiments were entirely confirmatory of all previous experience, they would appear to bave little influenced the practice of engineers, since Fairbairn, more than ten years later, in a communication to this Section, said that opinions were still much divided upon the queition whether the continuous change of load which many wrought-iron structures undergo has any permanent effiect upon their ulimate powers of resistance. To assist in settling the question he communicated to the Association the results of some experiments carried out by himself and Prof. Unwin on a little riveted girder 20 feet span and 16 inches deep. Once more the same important but disregarded facts were enforced on the attention of engineers. About 5000 applications of a load equal to four-tenths of the calculated breaking load fractured the beam with the small ultimate deflection of three-eighths of an inch, and sulsequently, when repaired, the beam broke with one-third of the load and a deflection of but a quarter of an inch, which sufficiently indicated how small a margin the factor of safety of four, when currently adopted, allowed for defective manufacture, inferior material, and errors in calculation. Still nothing was done, and the general practice of engineers and the Board of Trade regulations continued unaltered.

Soon after the introduction of wrought-iron bridges on railways, the testimony of practical working was added to that of experiments. Ia 1848 several girder bridges of unduly light proportions were erected in America, and one of 66 feet span broke down under the action of the rolling load in the same manner as Fairbairn's little experimental girder. Again, in early American timber bridges the vertical tie-rods were often subject to stresses
oscillating between I ton and 10 tons per square inch and upwards. Many of these broke, as did also the suspension bolts in platforms subjected to similar stresses. In my own experience, dozens of broken flange-plates and angle-bars, and hundreds of sheared rivets, have been the silent witnesses of the destructive action of a live load. Like evilence was afforded by early constructed iron ships deficient in girder strength. Under the alternating stresses due to the action of the waves weaknevers not at first apparent would, in the course of time be developed, and alditional strength, in the way of stringers and otherwise, become imperative.
If none of the preceding evidence had been forthcoming, the results of the historical veries of experiments carried out by Wohler for the Prussian Ministry of Commerce would alone be conclasive. For the first time a truly scientific method of investigation was followel, and an attemp was made to determine the laws governing the already proved destructive action of intermittent stresses. In previous experiments the bar or girder was alternately fully loaded and wholly relieved of load, Wohler was not satisfied with this, hut tested also the result of a partial relief of load. The striking fact was soon evidenced on testing specimens under varying tensions, that the amount of the variation was as necessary to be considered as that of the maximum stress. Thus, an iron bar having a tensile strength of 24 tons per syuare inch broke with about 100,000 applications of a stress varying from nil to 21 tons, but resistel 4,000,000 applications of the 21 tons when the minimum stress was varied from nil to $11 \frac{1}{2}$ tons. The alternations of stress in the case ot some test pieces numbered no less than $132,000,000$; and too much credit cannot be bestowed by engineers upon Wohler for the ingenuity and patience which characterised his researches. As a result, it is proved beyond all further question that any bar or beam of cast iron, wrought iron, or steel may be fractured by the continued repetition of comparatively small stresses, and that, as the differences of stress increase, the maximum stress capable of being sustained diminishes.
Various formula based upon the preceling experiments have lieen proposed for the determination of the proper sectional area of the members of inetallic structures. These formulx differ in some essential respects, and doubtless many experiments are still required before any universally accepted rules can be laid down. Probably at the present time the engineers who have given the most attention to the subject are fairly in accord in holding that the admissible stress per square inch in a wroughtiron girder subject to a steady dead load would be one and a half times as great as that in a girder subject to a wholly live load, and three times that allowable in members subject to alternate tensile and compressive stresses of equal intensity, such as the piston-rod of a steam-engine or the central web-bracing of a lattice girder. If the alternations of stress to be guarded against are not assumably infinite in number, but only occasional -as in wind bracing for hurricane pressures, or in a vessel amongst exceptionally high waves-then the aforesaid ratio of 3, 2, and I would not apply, but would more nearly approach the ratios 6,5 , and 4 .
Hundreds of existing railway bridges which carry twenty trains a day with perfect safety would break down quickly under twenty trains per hour. This fact was forced on my attention nearly twenty years ago by the fracture of a number of iron girders of orlinary strength under a five-minute train service. Similarly, when in New York last year I noticed, in the cave of some hundreds of girders on the "Elevated Railway," that the alternate thrust and pull on the central diagonals from trains pascing every two or three minutes had developed weaknesses which necessitated the bars being replaced by stronger ot es after a very short service. Somewhat the same thing had to be done recently in this country with a bridge over the Trent, but the train service being small the life of the bars was meastred by years instead of months. If ships were always amongst great waves the number going to the bottom would be largely increased, for, according to Mr. John, late of I.loyd's, "many large merchant steamers afloat are so deficient in longitudinal strength that they are liable under certain conditions of sea to be strained in the upper works to a tension of from 8 to 9 tons per. square inch, and to a compression of from 6 to 7 tonsstresses which the experiments already referred to proved would cause failure after a definite number of repetitions. Similarly, on taking ground or being dry-docked with a heavy cargo on board, it has been shown that vessels are liable to stresses of over If tons per square inch on the reverse frames, but no
permanent injury results from such high stresses, because the number of repetitions is necessarily very limited.

It appears natural enough to every one that a piece even of the toughest wire should be quickly broken if bent backward and forward to a sharp angle ; but, perhaps, only to locomotive and marine engineers does it appear equally natural that the same sesult would follow in time it the bending were so small as to be quite imperceptible to the eye. A locomotive crank axle bends but $1-34^{\text {th }}$ of an inch, and a straight driving axle the still smaller amount of 1 -64th of an inch under the heaviest bending stresses to which they are subject, and yet their life is limited. During the year $1 \$ 83$ one iron axle in fifty broke in running, and one in fifieen was renewed in consequence of defects. Taking iron and steel axles together, the number then in use on the railways of the United Kingdcman wa 14.848 , and of these, 911 required renewal during the year. Similarly, during the paat three years no less than 228 ocean steamers weie disabled ly broken shafts, the average safe life of which is said to ke about three or four years. In other words, experience has proved that a very modetate stress alternating from tension to compression, if reprated about one hundred million times, will cause fracture as surely as a sharp tending to an angle repeated perhaps only ten times.

I have myself made many experiments with a view to elucidate the laws affecting the strength of iron- and steel-work subject to frequent alternations of stress. Perhaps the most suggestive series was one in which I subjected flat steel bars about 3 feet long, in pairs, to repeated bendings until one bar broke, and then testing the surviving bar under cirect tensile and compressive stresses to ascertain to what extent the metal had deterioratel. It had come under my notice, as a practical engineer, that if the compression members of a structure were unduly weak the fact became quickly evident, perhaps under the test load ; but if, on the other hand, the tension members were weak. no evidence might appear of the fact until frequent repetition of steses during several years had caused them to fracture without any measurable elongation of the metal. In the case of crank-shafts, also, the fracture is invariably due to a tearing and not a crushing action. It appeared to me, therefore, eminently probable that repetition of stresses might be far more prejudicial to tens ion than to compression members, and, if so, the fact ought to be taken account of in proporioning a structure.

This proved to be the case in my experiments. For example, the companion bars to those which had broken with 18,000 reversals of a stress less than half the original breaking weight behaved, when tested as columns thirty diameters in length, preciely the same as similar bars which had done no work at all, whereas when tested in tension the elongation was reduced from the original 25 per cent. to $2^{\circ} 5$ per cent., and the tracture appeared to indicate that the bars had been made of three ditterent kinds of steel imperfectly welded together. With a stres reduced by one-fourth the number of bendings required to break the bars was increased to $\mathbf{8 . 2 0 0 , 0 0 0 \text { . In this instance the }}$ calculatel maximum working stress on the extreme fibres was 43 per cent. of the direct ultimate tensile resistance of the teel, and about 30 per cent. of the stress the tar was capable of sustaning as a beam under the sungle application of a load. Of course, the bars friled by tension, and the extreme fibres had thus deteriorated as regards tensle stresses to the extent indicated by the above percentages. Tested as a column, however, the injury the bar had received from the $1,200,000$ bendings was inappreciable. The ductilty was of coarse very largely reduced. but ductlity is a quality of comparatively little importance when a material is in compression. There is no ductility in the slender (Gothic stone columns of our cathedrals, which, though heavily stresed, have camed their loads for centunes. As if found repeated bendings raised the limit of elastcity, I rather anticirated finding an increased resistance from this cause in long columns. This did not prove to be the cake, por did I find any difference in short columns for diametets in length

In addition to the preceding experiments with na hars I have tested the endorance of many revolving cast iron, wrought iron, and steel, with similar reval)
gooo revernals of a meress equal to onelualf the wati weight vofficed generally to cuase the smapping of a of the above materials. When the stress was redour number of applications increased, 1 found the relative of solid beams to be more nearly proportional to tho
a distinction of great importance where axles, springs, as! similar things are concerned. Many of my expertments mere singularly suggestive. Thus, it was instructive to see a ber cast iron loaded with a weight which, according to Fairbarn experiments, it should have carried for a long series of yearbroken in two minutes when set gently rotating. Also to 6 , a bar of the finest mild steel so changed in constitution by ace. months of rotation as to offer no advantages either in stremp" " or toughness over a new cast-iron bar of the same section.
Although, as already stated, many more experimeats required before universally acceptable roles can be laid down. 1 have thoroughly convineed myself that, where streses of var an intensity occur, tension and compression members should treated on an entirely different basis. If, in the case of a tenu. member, the sectional area be increased jo per cent. tecanthe stress, instead of being constant, ranges from m/to 10 maximum, then I think 20 per cent. increase would be a literi allowance in the case of a compression member. I bave nio satisfied myself that if a metallic railway bridge is to be beilt = a minimum first cost, and be free from all fatore charges structural maintenance, it is essential to vary the morhine ser upon the metal within very wide limits, regard being bad >1 merely to the effect of intermittent stresse, but also to relative limits of elasticity in tension and compression membe even under a steady load.
Why an criginally strong ond ductile metal should teoor yeak and britue under the frequent repetition of a mevers: stess has not yet been explained. Lorl Hacon toncherl ur = the subject two or three centuries ago, but you may comvider kz explanation not wholly satisfactery. He said, "Of tusliec, . . are fragile, and some are tough and not fragile. "If fragulty." cause is an impotency to be extended, and the canse of :t inaptess isthe small quantity of spirits" 1 am sorry to hive. better explanation to offer, but whatever may be the immedia: cause of fragility, no doube exists that it is induced in metals : frequent bendings, such as a railway bridge underioes. Tr fact, however, is not recugnised in our Board of Trade Reel: tions, which remain as they were in the dark ages, as t., th...e of the Ministry of Public Works of France and other countre With us it is simply provided that the stress on an imn 1 m must not exceed 5 tons per square inch on the effective tecti)'? of the metal. In France it is still worse, as the limating ster a of rather under 4 tons per ,quare inch is estimated upon wr gross section, regardless of the extent to which the plates min be perforated by rivet holes. In neither case is ary regaret I \& in the rules to intermittent stresses or the flexure of comprewna memters. In Austria the regulations make a small pruves $=$ for these elements ; and Americin specifications mal:e a lagge ooe. the limiting stresses, instead of being constant at 5 tons, as $=:=3$ us ranging from about 2 j tons to 6$\}$ tons per square indt. according to circumstances. It is harilly necessary that I showsay more to jussify my statement that, as regaris the admumato: intensity of stress on metallic bridges, absolute chaos prevale.
Engineers must remember that if satistactory rules are to be framed, they, and not Govermmental departments, matt take the initiative. In former days the Rritish Association did mech. direct the attention of engineers to this important matter, bat, wo far as I know. the subject has been dropped for the past tweasy years, and I have ventured, therefore, to bring it before na again in some detail. We are here avowedly for the adramere ment of science, and 1 have not been deterred by the drypes a the subject from soliciting your attention to a branch of toaner which is sally in need of advancement.
Hiad I been addressing a less scientific audience I mugbt haw keen tempted rather to boast of the achievememts of e than to pount out their shorterminge. branches of mechanical science during the past fitiy crreede ago the asked asked
improc mider unde
that a year's experience shoued the saving in horseflest to be fully 33 per eent.

Although these views seem ch lillihe enough from our present standpoint, I have no doubt that as able and enterprising eugineers existed prior to the age of steam and steel as exiat now, and their work was as beneficial to monkind, though different in direction, In the important natter of water supply to towns, indeed, I doubt whether, having reference to facility of execution, even greater works were not done 2000 years ago than now. Herodotus speaks of a tunnel 8 feet square, and nearly a mile long, driven through a mountain in order to supply the city of Samos with water; and his statement, though long doubted, was verified in 1882 through the abbit of a neighlouring cloister acsidentally unearthing some stone slalns. The (ie:man Archaological Society sent out Ernst Fahricius to make a complete survey of the work, and the record reads like that of a modern engineering undertaking. Thys, from a covered reservoir in the hills proceeded an arched conduit about $t 000$ yards long, partly driven as a tunnel and partly executed on the "cut and cover" system adopted on the London under. ground railway. The tunnel proper, more than 1100 yards in length, was hewn by hammer and chisel through the solid linestone rock. It was driven from the two enils like the great Alpine tunnels, wi'hout intermerliate shafts, and the engineers of 2,400 years ago might well be congratulated for getting only some dozen feet out of level and little more out of line. From the lower end of the tunnel branches were constructed to supply the city mains and fountains, and the explorer, found ventilating shafts and side entrances, earthenware socket-pipes with cement joints, and other interesting details connected with the watersupply of towns.
In the matter of masonry bridges, also, as great works were undertaken some centuries ago as in recent times. Sir John Rennie stated, in his presidential address at the Institute of Civil Engineers, that tlie bridge acros: the Dee at Chester was the "largest stone arch on record." That is not so. The Dee Iridge consists of a single segmental arch 200 feet splan and 42 feet rise ; but across the Adda, in Northern Italy, was built, in the year 1377 -more than 500 years ago-a similar segmental arch bridge of no less than 237 feet span and 68 feet rise. Ferario not long since published an account of this, for the period, colossal work, from which it would appear that its life was but thirty-nine years, the bringe having been destroyed for military reasons on December 21, 1416. 1 belicve our A merican cousins claim to have built the biggest existing stone arch bridge in the world-that across the Cabin Johns Creek; but the span, after all, is only 215 feet, or to per cent. smaller than the 500 -year-old bridge. In timber bridges, doubtless, the Americans will ever head the list, for the bridge of 340 feet span built ncross the Schuylkill three-quarters of a century ago will pro. bably never be surpassed. Our ancestors were splendid workers in stone and timber, and, if they had been in possession of an unlimited supply of iron and steel I fear there would have been little left for modern bridge-builders to originate.

The labours of the present generation of engineers are lightened beyond all estimate by lalour-saving appliances. To prove how much the world is indebted to students of this branch of mechanical science, and how rapid is the development of a really good mechanical notion, it is only necessary to refer to the numerous hydraulic applianees of the kind first introduced forty years ago by a distinguished past-President, Sir W. G. Arm. strong. Addressing you in 1854, Sir William Armstrong explained that the object he had in view from the first was "to provide, in substitution of wanual labour, a method of working a multiplicity of machines, intermittent in their action and extending over a large area, by means of transmitted power, produced by a steam-engine and accumulated at one central The number of cases in which this method of working desideratum, or even indispensable, would appear to be I should be sorry, indeed, to have anything to do iny the Forth Bridge if hydraulic appliances were not giant's work. Let me shortly describe to you F there at the present time. More than 42,000 4 and bars have to be beat, planed, drilled, * before or after erection, and hydraulic

The plates are handled in the ydraulic cranes of special design, tinidivg sheaves, the whole arm direct-acting ram of 6 feet 60 miles of steel plates,
ranging in thickness from $\frac{1}{4}$ inches to $\frac{1}{2}$ inch, have to be bent to radii of from 6 feet to 9 inches, which is done in heavy cast-iron dies squeezed together by four rams of 24 inches in diameter, and the same stroke. With the ordinary working pressure of 1000 Ihs, per square inch, the power of the press is thus about 1750 tons. Some 3000 pieces, shaped like the lid of a box, 15 inches by 12 inches wide, with a 3 -inch deep rim all round, were reyuired to be made of $\frac{1}{}$-inch steel plate, and this was easily effected in two heats by a couple of strokes of a $I 4$-inch ram. In numberless other instances steady hydraulic pressure has been substituted by Mr. Aırol, our able contractor, for the usual cutting and welding under the blacksmith's hammer.

Hydraulic appliances are also an indispensable part of the scheme for erecting the great 1700 feet spans. Massive girders will be pat together at a low level, and be hoisted as high as the top of St. Paul's Cathedral by hydraulic power. Continuous girders, nearly a third of a mile in length, will be similarly raised. Not only the girders, but workmen, their sheds, cranes, and appliances will be carried up steadily and imperceptilly as the work of erection proceeds, on platforms weighing in some instances more than 1000 tons. It is hardly necessary to say that every rivet in the bridge will be closed up by hydraulie power, the machines being in many instances of novel design, specially adapted to the work. Tlus the bed-plates, which in ordinary bridges are simple castings, in the Forth Bridge are necessarily built up of numerous steel plates, the size of each bed-plate being 37 feet long by 17 feet 6 inches wide. To grip together the 47 separate plates into a solid mass, 3800 rivets If inches in dizmeter with countersunk heads on both sides are required, and, remembering that the least dimension of the ledplate is 17 feet 6 inches, it will be seen that the ordinary "gap". riveter would not be applicable. A special machine was therefore designed by Mr. Arrol, consisting of a pair of girders and a pair of rams, between which the bed-plate to be riveted together lies. A double ram machine had for like reasons to be devised for riveting up the great tubular struts of the bridge.

Not merely in the superstructure, but in the construction of the foundations, were hydraulic appliances of a novel character indispensable at the Forth Bridge. Huge wrought-iron caissons or cylinders, 70 feet diameter and 72 feet high, were taken up and set down as readily as a man would handle a bucket. In sinking these caissons through the mud and clay of the Forth compressed air was used. When the boulder-clay was reached the labour of excavating the extremely hard and tenacious material in the compressed-air chamber proved too exhausting, pickaxes were of fittle avail, and the Italian labourers who were chiefly employed lost heart over the job altogether. But a giant power was at hand, and only required tools fit for the work. Spades with hydraulic rams in the hollow handles were made, and, with the roof of the compressed air-chamber to thrust against, the workmen had merely to hold the handle vertically, turn a little tap, and down went the spade with a force of three tons into the hitherto impracticable clay as sweetly as a knife into butter. Probably, when addressing you thirty years ago, Sir William Armstrong never anticipated that a number of hydraulic sparles would be digging away in an electrically lighted chamber or diving-bell, 70 feet dianeter and 7 feet high, 90 feet below the waves of the sea; but still the spades come strictly within the definition of the class of machines, intermittent in their action and extending over a large area, which it was his aim to introduce. It would be possible, indeed, with the appliances at the Forth Bridge, to arrange that the simple opening of a valve should start digging at the bottom of the sea, riveting at a height of nearly 400 feet above the sea, and all the multifarious operations of bending, forging, and hoisting, extending over a site a mile and a half in length.

It would not only be impossible to build a Forth Bridge, but it would be equally impossible to fight a modern ironclad without the aid of hydraulic appliances. Most of the Presidents of this Section have referred in the course of their addresses to our navy, and certainly the subject is a tempting one, for the progress of mechanical science in recent years could not be better illustrated than by a description of the innumerable appliances which go to the making and working of a modern ironclad. Let me quote a single passage from a pamphlet by a naval officer, which caused a great stir a few years before the Crimean war, that I may recall to your minds what was the speed and what the armament of our fleet at that comparatively recent period. "Conceive," said Capt. Plunkett, R.N." "a British and French fleet issuing simultaneously from Spithead and

Cherbourg : seven hours' steaming at the rate of six miles an hour will bring them together. A single glance at the heavy and well-appointed tiers of a line-of battle ship's guns will satisfy any one that they are no toys to be placed in the hands of novices. Formidable batteries of the heaviest ordnance are there-not a gun under a 32 -pounder, and many 68 -pounder shell guns." In little more than a quarter of a century engineers have changed all that, and adranced to 20 -knot vessels and 120 ton guns. Archeoologists tell us that our predecessors in mechanical science of the Stone Age were apparently a thousand or more years in finding out that the best way of fitting an axe was to slip the handle through the axe and not the axe through the handle. Engineers of the present day may be excused, therefore, for oecasionally illustrating the rapidity of the advance of their science hy contrasting the ships of thirty years ago with our modern ironclads.

The latest type of battle-ship weighs, fully equipped, about 10,000 tons. There are aloout 3400 tons of steel in her hull, apart fron armour, which, with its lacking. will weigh a further 2800 tons. The machinery, largely of steel, is alout 1400 tons; the armament, including ammunition, 1100 tons; the coals, 1 too tons ; and general equipment. 270 tons. A detailed description bristles with the worl "steel," and enthusiastic newspaper reporters sent down to Chatham Ilockyard can no more "spin out their copy " with Cowper's oft-quoted lines on the " Launch of a First-Rate " :
"Giant cak of bold expansion
O'er seven hundred acres fell,
All to build thy noble mansion,
Whete our hearts of oak do dwell."
A latter-day poet might boast of 700 acres being exhansted by a single vessel, but it would be a coal fied and not a forest. Acsepting Prof. Phillips's estimate of the average rate of formation of coal, it may be shown that a hard-worked American liner during her lifetime burns as much coal as would be produced on the area of 700 acres in a period of 2000 yenn. We are thus with our steel ships using up our jpimeval forects at a far more extravagant rate than that at which our inmediate forefathers cleared the onk forests, Coal is the great stimulant of the modern engineer. Pope Pius the Second has left on record an exprestion of the astonishment he felt when visiting Seotland, in the fifteenth century, on reeing poor people in racs begging at church doors, and receiving for alms pieces of black stome, with which they went away contented. To such early familiarity with coal may, however, be due the fict that Scolland has ever Ied the way in the development of the steam-engine, and that at the date of the batte of Waterloo she hal built and registered seven steam-ressels, whilst England could brast of none.

Probably none but a poet or a painter would wish for a return to our olld oak sailing ships. Kome fow people still entertain the illusion that the picturesque old tubs were better sea-boats than our razor-ended steamers; but, speaking of them in 1846, Ahnisal Napier sid: "The ships look very charming in harbour, but to julge of them properly you should see them in a gale of wind, when it would be found they would roll $45^{\circ} \mathrm{lec}$. ward and 43^{\prime} windward." Even our first ironclads were not so had as that, for although, according to the 7imes, when the syuaitron was on trial in the Bay of Biscay, the ships rocked whlly to the rising swell and the sen broke it great hills of surf, yet the maximum roll signalled liy the worst ruller of the lotthe lond Warden-was but 35° lecward and 27° windward -a total range of 62° as compared with 88° in the old liacouf battle ships.
We hase heard much about the stare of the navy twelve months. A dip into the publications of ciation-which in this, as in other respects, aff tion of what is uppermost in peoples mindrsimitar dicetssions have recwn. periodically, at 1530. If we consult Hanse we find the same remark 1830.

It amounts almost to $n \quad$ col to the piond Briton that Providence wi at least equal to that of would be said now of a M adminiseration of the navy by as many line-of batele shipa ss Rou
one less than fifty years ago. Spe
"For the last six months unceasing altacks bave been mun upon our naval administration, describing our nary as in 1 cD of the utmost decrepitude, and Tory papers say that bancs reductions have been made in the navy by the present Goven ment. It will be a consolation to my honourable friemsts assured that we have for years lived unharmed through ciene as great as that to which we are now exposed. In 1817 we te: sail-of-the-line in commission, and Ruscia had 30 ; in 1525 . had 12, and Russia 37 ; in 1832 we had 11, and Kustin \%c. now we have 20, and the Russians 43. having rated os $\%$ to nearly half the number of those of Russia.

Now as to our guns. The past twelve months is by mete the first occasion on which the armament of our navy tis $x=$ attacked. Three years subsequent to the speech of the r tary of the Almiralty just referred to, Sir Charles $\mathrm{N}_{2}+\mathrm{c}=\geq$ a statement from his place in Parliament of to extracc:in7 character that I make no apology for quoting his enat * a reminder of the past and a warning for the future: "1 end of the last war the guns were in such a bad tate thr: " fired, they would scarcely hit an enemy, and during te period of the American war a secret order was muse British ships of war should not engage American ingas. canse the former were in such an incfficient state." A.। elf, said the plain-sposken old admiral, when he get be he put it in "the only place fit to receive it, "\$e ,galley."

Happily, from our insular position, the change whid : 3 gress of mechanical science has wrought in milnary opera. not heen brought home to the perple of this cronstry in " vivid manner that it has to the people of the cmary Enrope and America. In the American war, the Fran man war. and the Russo-Turkish war the conetroc equipment of railway works by engineers was an evee:1 of all great movements. The Ruscians, in $\mathrm{S} \%-\bar{i}$, cuase, railway from Bender to Galatz, iso miles in length, aten working days, or at the rate or more than three min Altogether, in the three latter months of that year the 2 and built alout 240 miles of railway, and purchased w^{\prime} : the line with 1 to locomotives and 2200 waggons the builh numerons trestle liridges, together with an ofeniag and a ferry across the Danube.

We have had recent experience of the slownest of re: mones of transport in the tedioss advance of Lord U lamelfut of men in whate- lorats up the Nile. It wat the tion of the late Khedive, partly from military and part. commercial consifierations, to construct a railway ecaitir line of advance suhsequently followel by Woteley, N. ner, Mr. Fowler, had the railway sent out in 1873, and ! . . were shortly afier commenced. The total length was $3:$ and the evtimated cost, including rolling-stock and tr. shopgs, $4,000,000$? Owing to financial difficulties the worabandoned, but the 64 miler constructel liy Mr. Fowler, :recent extenvions of the same by the military, provel to service to the expedition, even some of the steam-lazocts taken by railway to save delays at the cataracts.

During the siege of Paris the German forces were drget upon supplies drawn from their lase, and the army requre: were fully met by one line of railway running twelve to is:trains per day. Military authorities sate that a trin ${ }^{\text {boh }}$ about 250 tons is equal to two ders ration antil com for a om corps of 37,000 men and tions in Egypt have proved sailways, steamboats, elec offyring of mechanical

American in construction, whilst for girlers of m rulerate span, such as those on the many miles of elevated railway in New York, riveted girders of purely European type are admittedly the cheapest and most durable. From my conversations with leading American bridge builders, I am sativfied that their future practice and our own will approach still more nearly. We should never think of building another Victoria tubular bridge across the St , I.awrence, or repeat the design of the fallen Tay lididge, nor woul. 1 they again imitate in iron an old timber bridge, or repeat the design of the fallen Ashtabula bridje. In one respect the practice in America tends to the proluction of better and cheaper bridges than does our own practice, and it is this: each of the great bridge-building firms adopss by prefcrence a particular type design, and the works are laid out to proluce bridges of this kind. It is an oll adage that practice makes perfect, and by adhering to one type, and not vaguely wantering over the whole fich of design, details are perfected and a really good bridge is the result. Engineers in America therefore need only specify the span of their bridge, and the rolling loal to he provided for, with certain limiting stresses, and they can make sure of obtaining a number of tenders from different makers of brilges, varying somewhat in design, but complying with all the requirements. With us, on the other hand, it is too often the privilege of a pupil to try his 'prentice hand on the design for a bridge, and it is nowonder, therefore, that many curious bies of detail meet the cye of an ulvervant foreigner inspecting our railways.
The magnificent steel wire rope suspension bridge of 1600 feet span built by Roebling across the East River at New York well marks the alvanced state of mechanical science in America as regards bridge-building. It is worthy of note that, at the sccond meeting of the Britivh Association, held so long back as 1832, there was a paper on suspension bridges, and the author entreated the attention of the scientific worls, and particularly of civil enginecrs, to the serious consifleration of the question: "How far ought iron to be hereafter tued for sumpension bridges. since a steel bridge of equal strength and superior durability could be built at much less cost ?" "I earnestly call upon the ironmasters of the United Kingdom," said he, "to lose no time in endeavouring to solve this question." In this, as in many other engineering matters, America has given us a lead. America, is indeed, the paradise of mechanics. When the 1ritish Association was inaugurated, years ago, there was, 1 believe, no intention to have a section for the discussion of mechanical science. Peissibly it may have been ensidered too mean a branch. Even the usually generous Shakespeare speaks contemptuonsly of "mechanic slaves, with greasy aprons, rules, and hanmers :" and our old friend Dr. Johnson's definition of "mechanical" is "mean, servile." We have lived down this feeling of contempt, and the world adnits that the "greasy apron" is as honourable a badge as the pricst's cassock or the warrior's coat of mail, and has played as important a part in the great wosk of civilising humanity and turning bloodthiraty savages into law-abiding citizens.

As I have had oceasion to refer to Canada and America in the course of my remarhs, I cannot refrain from expressing the high appreciation which I am sure every memier of this section entertains of the cordiality and warmth of our reception on the ather side of the Atlantic last year. Such incidents make us forget that differences have ever existed between the two coontries I was amused the other day, on reading in Dr. Lloran's "Ammals of the Stage," that, in the year 1777 . the theatrical company from Edinburgh was captured on its voyage to Aberdeen by an Amserican privateer, and taken off Heaven
pios where, for it did not turn up again. This, you will say, i ling time ago; but, If you glance through the speeches of aculis mpaious Sovereign, yon will fond one in which ber isis lin hka with "deep concern" of insurrection in tower hostlic incursions into Upper Canada by Mhblitants" of the United States of North
bining, after our last-yoar's experience. hiave gurried you with me in some things will all agree with me in this: that suffer ing agight difference of opiniton breach hitween ourselves and bur 4es in Arreftes would, to quote the " qualitied to be directors of the
which might be imitated by other Governments with advantage. It has distributed fifty copies of Prof. de IIollander's "I Iandleiding bij de Beoefening der Land- en Volkenkunde von Neder. Oost Indie" to its officials in all parts of its colonies, and has instructed them to compare their own observations with the statements in the work, and to report the result.

The German Government has despatched a mission under Baron Pring to the Cheshire salt districts, charged with an investigation of the local industry, and expecially of the phenomenon of land subsidence through brine pumping, Prince Bismarck being about to propose certain legislation affecting similar landslips in Germany.

- With reference to Mr. G. J. Symons's letter last week on the subject of the trees in Richmond Park struck by lightning, Mr. Percy Smith writes to the Times that "the must probable cause of the liability of certain trees to be struck by lightning is that they are bad conductors of electricity. The suggestion that oak trees are struck because they contain iron is both erroneous and ahsurd. If oak did contain iron it would in all probability increase its conducting power and act as a preservative. If oak contained an estimable quantity of that metal the wood woalh turn black on exposure to air, on account of the tannin which is present. This blackening may be seen surrounding the iron nails in any oak fence. The contour of the ground, natare of the soil, and the presence or absence of water has more influence in deciding the locality of an electric discharge than the height of a tree. Add to this the difference in conductibility between various woods and we have at once an explanation of the apparent peculiarity of tall trees escaping unharmed while shorter trees are destroyed."
OSE of the proxfscommonly advancel for the theory that the cold in northern regions has increased in historic times is that there is an increase of ise on the eastern shores of Greenland; another is that barley, which was succestfully grown in Iceland from its first settement in 870 down to the middle of the fifieenth century, is no longer cultivated there. It is, therefere, of much interest to learn from Glotu that the Icelandic fovernment lately attempted to grow barley in the island on a considerable scale, and that the results were very favourable. Norwgian barley from Altenfjord, which is on the extreme north of the harley.growing zone, was planted and was fit for cutting fown in eighty-nine days. The decline in the cultivation of barley in Iceland was really due, not to an increave in the cold, but to the fact that cattle.breeding paid better. Attempts are being made to grow other plants : at Reikjavik a botanical garilen has been established, and the seeds of 382 kinds of plants which occur around Christiania have been planted there. It is probable, therefore, that the scanty garden flori of Iceland will be increased in the near future.
At the recent meeting of the Freach Association at Grenoble M. de Mortillet read a paper on Tertiary :man before th anthropulogical section. The question, he said, was not th know whether man already existed in ibetertiary epoch as he exists at the present day. Animals stratum to another, and the higher the variation. It was to be infern vary more rapidly than the other to discover in the Tertiary period predecessor of the man of histaric. affirmed that there were unquestional objects which implied the existence These objects have, in fact, been found of the Tertiary epoch-in the lower Tertiary the Upper Tertiary at Otta, in Portugal, and a Cantal. There objects proved that at there two
there existed in Europe animals acquainted with the see of firo and able more or less to cut stone. Daring the Tertiary periot then, there lived animals less intelligent than ecisting man, $=$ much more intelligent than existing apes. M. de Mortillet gro the name of anthropitheqse, or ape-man, to the species, what be maintains, was an ancestral form of historic man, when skeleton has not yet been discovered, but who has made hiex known to us in the clearest manner by his works. A numba flints were exhibited from the strata in question, which bad beo intentionally chipped and exposed to fire. The general opanes of the sanants assembled at Grenoble was that there com be $=$ longer any doubt of the existence in the Tertiary period of $=$ ancestral form of man.

Ax ingenious instrument for ascertaining the distana if actessible and inaccessible points from the observer and fon each other has been invented by Dr. Laigi Cerebotani a Po fessor of the University of Verona. This apparnses coen mainly of a pair of telescopes mounted on a stand and fruet e a tripod for use. The telescopes are both brought so beur = the object, and a reading is then taken from a gradaated woit on the instrument, which, compared with a set of printed tole gives the distance. By this means the inventor obviato \boldsymbol{b}^{2} necessity for the base line, which has hitherto had to belw down in these operations, and he dispenses with all trige metrical calculations. Distances can be measured betwoen off objects, and, by means of a sheet of paper fixed on a drawis board, a rough plan of the country under meavarement can sketched. In the same way the distances of ships at meat moving objects on land can be determined. The appans appears to be well adapted for land-surveying, and particalart for military purposes. In fact, it is stated to have boes alvent adopted in the German army in the latter connection, and E about to be tried by the authorities of our own War Depes ment. A practical trial was made with this instrument ee 0 Thames Embankment on the 1 th insh, when its varied out ness was demonstrated.

We have received from the Director of the Batavia Obsers tory a volume containing statistics of the rainfall in the Eu Indian Archipelago for the year 188 + Rainfall observane were made dlaring the year at 145 stations withoat internape although at the end of the year there were 172 statioms, 98 which were on the islands of Java and Madura.

It is stated that the Physical and Mathematical Sociect Tokio has decided in future to print its ollicial proceets in Japanese written is Roman lettens instead of Chinese 4 racters, although the authors of papers may employ any meyk a langunge they please. A similar step in in contemplation by Invagese Chemical Society.
position-suspended as they were with the front alge downward - is the most favourable one possible for the retention of water within the gill-cavity, for in this position the elges of the mantle would closely pack against the inner edges of the shell, effectually closing any small leaks, and the retained water would also be in the most favourable position to moisten the gills, even after part had evaporated. It is also possible that when in this position the oyster instinctively keeps the shell tightly closed, to prevent the loss of water. This incident, says Prof. Verrill, may give hint of the best mode of transporting oysters and clams long distances. Perfect shells should be selected, and they should be packed with the front edge downward, and kept moderatcly cool, in a crate or some such receptacle which will allow a free circulation of air. Under such favourable conditions selected oysters ean doubtess be kept from eight to twelve weeks out of water. Mr. Ryder, of Washington, adds that he has had oysters live in the shell for two weeks, where the temperature ranged from 30° to over $80^{\circ} \mathrm{F}$., lying on shelves in the caser in his work-room, exposed the whole time to the air, without showing the slightest tendency to decompose.

The schooner N'osario, at New York, reports than on June 23, in lat. $29^{\circ} 14^{\prime} \mathrm{N}$. and tong. $133^{\circ} 25^{\prime} \mathrm{W}$., at $11 \mathrm{a} . \mathrm{m}$. , two heavy shocks of submarine earthquake were experienced. These were about one minute apart, and the last was much heavier than the first, causing the vessel to tremble violently. The sky was overcavt, and the sea remarkally smooth.

The Russian (jeographical Society is said by the St. Petershurgh journals to contemplate sending a scientific experition to the Amour for the parpose of studying the surronnding region with regard to its geographical, historical, and commercial features, as well as its mineral resources.

It is announced in Brussels that the German Lieutenant Weismann, who is in the service of the African Association, has discovered that the River Kassai, which was always believed to join the Congo above the equator station, forms a curve and falls into Lake Leopold II.

On the night of August 31 to September 1 temperature fell to a lower point in several districts than is known to have ever before happened so early in the season. Over upper and moddle Strathopey in particular the front was very severe. At Kingussie the protected thermometer fell to $24^{\circ} 9$ and the exposel to $18^{\circ} \circ$, while at Grantown the exposed thermometer fell to $15^{\circ} \circ$, these being all compared instruments and in good order. At Kingusaie ice an inch thick was found on the water supplying the hygrometer. In this large district the potnto crop is completely testroyed, not only in low-lying situations but also on the highlying slopes. On the other hand, on ctossing from Invemess--hire into Perthshire, the potato crop is safe, the tops being only -lightly blackened. At the Ben Nevis Observatory on the wane night, with a sky equally clear and cloudless as was over Strathspey, the protected thermometer fell only to $32^{\circ} 9$ and the mposed thermometer to $24^{\circ} 6$, being respectively $8^{\circ} \circ$ and $6^{\circ} 6$ mar then oceurred at Kimgussic on the same night.

ASTRONOMICAL PHENOMENA FOR THE WEEK, 1885 , SEPTE.MBER $20-26$

(For the reckoning of time the civil day, commencing at Greenwich mean midnight, counting the hours on to 24 , is here employed.)

At Greenwish on Seplember 20

Sun rises, 5 h .44 m . ; souths, $1 \mathrm{th} .53 \mathrm{~m} .16 \cdot 2 \mathrm{~s}$; ;ets, 18 h .2 m ; decl. on meridian, $0^{\circ} 56^{\prime}$ N. : Sidereal Time at Sunset, 18h. 1 m .
Moon (Full on Sept. 24) rises, 16h. 21m.; souths, 2th. 21 mm ; sets, $2 \mathrm{~h} .27 \mathrm{~m} .^{\circ}$; decl. on meridian, $12^{\circ} 12^{\prime} \mathrm{S}$.

Planet			ines m.							Deel. on meridian			
Mercury		4	1	...									N.
Venus	-..	9	12	...	14	7		19	2	\cdots	t 3	11	
Mars		0	23		8	21		16	19		20		
Jupiter			52		11	23							
Saturn		22	$27 *$										

- Indicates that the rising is that of the preceding and the vetting that of the following day.

Occullations of Stars by the Moon

Sept.	Star	Mag.		Disap.		Reap.	Corre angles lex to inver	pording roan veright for dimage
				$\mathrm{h}_{\text {c }} \mathrm{m}$.		h. m.		
20 ...	18 Aquarii	... 6	$\ldots 1$	1847		1935	-.. 49	305
21.	B.A.C. 7774	... 6	... 2	228	*.	2322	... 136	283
$24 \ldots$	B. A.C. 8365	$\ldots 6 \frac{1}{2}$	-	512	...	6	... 124	350
$25 \ldots$	μ Piscium...	... 5	2	2012	...	219	... 94	233
26.	B.A.C. 741	... $6 \frac{1}{2}$... 2	2119	...	223	... 26	299

The Occultations of Starn are such as are visible at Greenwich.

Sept.	h.	Mercury at least distance from the Sun.		
20	\ldots	8	\ldots	Mun in equator.
22	\ldots.	-	\ldots.	Sun 24

SCIENTIFIC SERIALS

The Proceeding's of the Royal Society of Queensland, 1884, vol. i. parts $2,3,4$. - We are glad to see that this new Society in one of our leading colonies is advancing rapidly. In the parts before us Mr. Tryon describes certain rock-drawings of the aborigines of Queensland, of a class hitherto undescribed (with plates). Mr. C. W. de Vis, who is one of the most indefatigable contributors, writes on new Australian lizards; on a new form of the genus Therapon ; on new Queensland lizards; oll a new species of Hoplocephalus; on an apparently new species of Halmaturus; on a new species of Hyla; a deacription of new snakes with a synopsis of the genus Hoplocephalus; on the fauna of the Gulf of Carpentaria, and a conspect of the genus Heteropus. Mr. Bailey gives instalments of his contributions to Queensland Flora. Mr. Broadbent writes on the migrations of birds at the Cape York peninsula, which is a peculiarly favourite spot for observing the migrations of birds from and to New Guinea, for the passage is shortest here. Ethnology is well represented in the numbers before us, for. besides the paper by Mr. Tryon mentioned above, we have one by Dr. Bancroft on the food of the aborigines of Central Australia, and one ly Mr. Duffeld on the inhabitants of New Ireland and its archipelago, their fine and industrial arts, customs, and language, especially their tattooing. Mr. Knighi descrites a new species of Parmelia, and Baron von Muller, the Dendrobinm cincinwatom, sp. nov, Mr. Bernays describes exotic fruits new to Queensland. Mr. Pink pleads for the practice of hybridisation of plants ; and Dr. Bancroft describes expertments with Indian wheats in Queensland. There are numernus other minor contributions.

SOCIETIES AND ACADEMIES Paris

Academy of Sciences, Augut 3r.-M. Bouley, President. in the chair. - On the cyclonic character of the solar spots, in reply to M. Tacchini's objection, by M. Faye. In their normal state the spota, like terrestrial cyclones, are described as of circular form, with funnel-shaped penumbra, concentric circumference.,
and vertical axis, varying in size from almost imperceptible pores to abywes large enough to engulph the earth. The mechanical ilentity of the two phenomena is thus established, while the absence of this special dispasition in the penumbra of certain spots proves nothing against the author's theory, which accounts loth for the developtrent and occavional disappearance of the cyclonic form.-Note reppecting M. Bochefontaine'v experiment on the origin of cholera, by M. Trecul. A pill conbaning the comma lacillus having been swallowed by M. Bochefontaine with impunity, the author infer that Kuch's germ may not after all be the active principle of cholera. In any case he protests against the ridicule cast upon the experimenter, whose courageous act is worthy rather of admiration and reward. - On the part played by the hacilli in the ravages of the vine attributed to Phylloxera tastatrix, Ly M. Luiz de Andratle Corvo. From his experiments the author concludes that the disease, to which he gives the name of "tuberculons," in quite distinct from, and independent of. Phylluxeta, that it is constitutional and hereditary, and may also be tranomitted by contagion, the insect merely playing a secondary yart in its propagation.-Octahelrons of sulphur with square base, which is physically a rhombus, by M. Ch. lirame.- On certain points in the phyviological action of tanguin, the poison used at ordeals in Madagascar, by M. Ch. E. Quinquand-Influeace of the sun on the segetation, the vegetable functions and virulence of the cultivated virus of Bacillat anthracis, by M. S. Athing.-A letter was read br the Perpetual secretary from King Ocar of Swelen, to the effect that on attaining his sixtieth year, in 1889 . he proposes offering a prize of 2500 franes, with a goll medal valuel at 1000 frames, to the author of the mont important contribution to mathematical science. The already nominated julyes are a Gernan, a Swiss, and M. Hernite of the Academy. - Fureriments with various kinds of wheat, with a view to ascertain the most proluctive varicty under nomal conditions, by M. 1.' P'. Deherain. Five varieties yielded the following returns wer bectare i2h acres 2 :-

Scholey		Com			Straw$(T \operatorname{cn} A)$
		Quiptuls	Hectuliurea		
Scholey		40'7	49.5		7.323
Scozch red		40'2	48.7		7687
Plerwick	,	377	4.8		6.281
Rorteaux		$32 \cdot 3$	$39 \cdot 8$		$5 \cdot 630$
Noe Blue	\rightarrow	29.6	35%		5.491

-Account of a meteor observed at Fontainebleau, by M. E. P.
Mounrer. This meteor was noticed at 7, 20 n.m. in a clear sky describing a parebolic cusve from north in south at 2 velocits much inferior to that of a showing star. It emieted an intensely white light like that produced by a magnesium wre in combustion. Before disappearing it broke into three fraguents, which for an instant flared with astill more rivid light, and then undeoly became extinguished.

Berlis

Physiological Society, July 3.- Prof. Waldeger reported on an inveragation carried ont io his institure by Hert Fuchelis into the developenent of the thyroid gland The oldest obaervers, Remak, hollikes, and, quate receptly, Hss, had found thas the thyroid gland was dereloped coedianly from the sownd arm, a thickeging of the wall aod then a luttonlike eminetice argatg tbercons, which aflewnards became botlow and pot trausformed into the ghad. Secing the gised was composed of two lateral lobes unted by an insermediste piecr. Hetr His ssoumed that two protnusion arone from the anterior wall of the stowodirram, molescing towneds the middle. Herreo Stied and Woltler had afterwards given an entirely differeat description of the developmeat of this organ. According to thems the thyroid gland anes developed fruas two lateral bods emanating frown the bruechial cleft, probably frum the formth fissare. In riew of this contrediction of nothors Hert hom hat quite receotly renat thus in restigation, and had come to the bighly surpuising clasion that the thrroid glaod oricioated both medual? latcrally, the zuddle part of the fland oxigiosting fry wpercivist part of the stomoderum, tiac biveral portiocs frod branchial cletes. Thin fact baving soabalogy in embryology, Piecherliz hat ecratinisingty traced the developwest of $\frac{3}{3}$ Bum, but aloo to rabbits and binds. The rexalh was the
which was a complete riddle both pbysiologically and histiolo: cally, remained inexplicable phylogenetically as well. It is discussion which followed, the effects of the excistion of t thyroid gland in men and animals were copiously eniarged onProf. Eulenburg spoke on a commanication concerning influence of the cortex of the cerebrum on the tempera: of the body, which had been lately laid before the :cby Dr. Raudnitz, and sought to refute the arguments which been brought forward by the latter in opposition to the concluy at which, in conjunction with Herr Landois, he (Prof. Euleci'had arrived. The speaker maintained both the exactiness of thermo-electric measurementi and the accuracy of his staterore in reference to phenomena he had observed regarting the uf ence of certain parts of the cortex cerebri on the iemperatere the part of the bodylying opposite. His statements were sappor not only by experiments on animals by meads of stimulaztoe x^{2} cutting, but likewise by a large number of clinical esperies -Dr. Mullenhoff spoke of the different methots of iovent... ing the locomotion of animals, and discussed the $\mathrm{a}:$. ages afforded in this study by the photographic represer:1 of a large number of individual moments on the part of azein the act of movement. A rather large series of photorgre prepared by Hert Anschutz in Lissa were shown. They re; duced the movements of men and horses, of storks diof into their nests, lying there, and issuing from them, an pigeons.-Dr. Salomon next exhibited some beautiful prea tions of paraxanthine crystals which he had obtainet frowe $+:$ and set forth some further qualities and reactions of this rax:body discovered by him a year ago in the urinc. I'arasan'h occurred very sparely; one thousand litres of urine cuacian but one grain of paraxanthine. In just as small quanticy a another xanthine body present in urine, a toily which be bl now discovered and had called provisionally " heteruxanthez This bolly was precipitated amoryhously in the form of peow or in the shape of poppy-sedt, and with sorla formet besze. crystals. Certain reactions fserved to discriminate it from pa= xanthine and to range it under the head of xanthine toolies quite peculiar imterest was its chemical composition. So far a the clementary analysis had yet gone, beteroxanthibe wa methylxanthine, while pamanthine was a fituethy $x \times 0: 3=$ isomeric with theobromine. Seeing, as was known, shat speri was a trimethylxanthine, by the dincovery of the simply mes. ated xanthine the gap in the scries of methylazabtiness filled up. We had now xanthise, methylwathine phlete xanthinc, dimethylanthipe $=$ paraxanthine and thenbs.... trimethylsanthine $=$ coffeine.

CONTENTS

The New Star in Andromeda. Fy Lord Ropse F.R.S ; Dr. William Huggins, F.R.S. ; W. F Denning. (Illantratad)

Letters to the Editor:-

 Red Rays after Sunset,-George F. Burdes Firchall-W. W. Denning Pulsation in the Veins-Dr. J. W. Willams "Furculum" or "Furcula. "-Dr. P. L. Sclaket The Bratish Assoctation Sectron B.-Chemical Soence-Opering Adtrests :n Prol Heary E. Armstrong, Ph. D., F/R/S Sec.C. S., Fresideot of the Section Section C-Geolngy-Opening Addrese by Prof J. W. Judd, F.K.S., Sec. © S., Fresiteet of the Section W. C. Mclatom, M.D. IL, D., F.R.S8.L. and E., F.L.S., Cor. M SactionSUBSCRIPTIONS to " NATURE."

| Yearly. | 28 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| Half-yearly | 14 | 6 |
| Quarterly. | 7 | 6 |

To the United States, the Continent, and all places within the Postal Union:-

CHARGES for ADVERTISEMENTS. Three Lines in Column 2s. 6d. 9d. per Line after.
One-Eighth Page, or Quarter Column . . . 0_{0}^{6} is $\begin{aligned} & \text { d. } \\ & 6\end{aligned}$
Quarter Page, or Half a Colkmn 150
Half a Page, or a Column 350
Whole Page
$\begin{array}{lll}3 & 5 & 0 \\ 6 & 6\end{array}$
Pose Office Orders payable to MACMILLAN \&o CO.
OFFICE: 29, Bedpord Strext, Strand, W.C.

BEST BLACK INK KNOWN. DRAPER'S INK (DICHROIC).

DIFFERING FROM ANYTHING ELSE EVER PRODUCED.
Writing becomes a pleasure when this Ink is used. It has been adopted by the principal Benks, Public Ofices, and Rallway Compenies throughout Ireland.
It writes almost instantly Full Black. |Flows easily from the Pen.
Does not corrode Steel Pens. Is cleanly to use, and not liable to Blot. moment of writing.
Can be obtained in London, through Messrs. Banclay \& Sows. Farriag. doa Street; W. Edmands, Old Change; F. Nswaray \& Sows, Newgate Stueet: J. Ausrin \& Co., Duke Street, Liverpool; and to be had of all Stationers.
BEWLEY \& DRAPER (Limited), Dublin.
FRY'S
GOLD MEDAL,
CALCUTTA, 1884.

COCOA
"Pure Cocos."-Chas. A. Cameron, Analyst for Dabim.
"Stricily pure, eavily assimilated,"
Bristol.
B. Stoveakt Analyut for
Nineteen Prize Medals Awarded. MINERALS AND FOSSILS, SINGLE SPECIMENS OR COLLECTIONS.

F. FI. BUTITER,

Assoc. R. Sch. Mines Lond.,
M.A. Oxon. and L.S.A. Lond., Suecessor to the late R. TALLING,

180, BROMPTON ROAD,

LONDON, S.W.

Five minutes' walk from the Natural History Museum, S. Kensiagtoe.
CHEMICAL APPARATUS, Wholesale, Retail, for Colleges, Schools, and Chemical Works. New Catalogue of or pages and 300 clear Illustrations, post free, 3d.-WILLIAM HUME, m, Lothian Street, Edinburgh.

SIX PRIZE MEDALS

AWARDED FOR GEOLOGICAL COLLECTIONS.
Gieological Collections especially adapted for Teaching as supplied so Science
and Art Department, and used by all Lecturers and Teachers in Great Britain, enc.
4 Rare Minerals constantly arriving from all parts for selection of Single Specimens.
OCK SECTIONS AND ROCK SPECIMENS:
The Largest Variety in Eagland.
ad Lists on apptication to-
MES R. GREGORY, reeet, Fitzroy SQuare, London. dis Years In Londons.

SANDERSON \& Co., sole Inventors of the Solid Copper Tape LIGHTNING CONDUCTOR
In Continuons Lengths, without Joints, as supplied by them to HerMajesty' Goverament and the Colonies : the Italian Government. the Argentine Republic, and other Foreign Governments; the Royal Courts of Justice, Strand, the Houses of Partiament, \&c.
The Jury Commission, acting on the Reports of the International Juries of the Heaith Exhibition, have awarded a Bronze Medal in Class as to Mesars. Samdersone Co. for their Solid Copper Tape Lightning Condactors is Continuous Lengths, without Joints, and of High Conductivity Copper.

LEADENHALL HOUSE, roz, LEADENHALL STREET, K.C,

CABINETS FOR MINERALS, FOSSILS, \&c.

J. ORME \& CO., 65, BRRBICAN, LONDON.

MANUFACTURERS AND IMPORTERS Scientific Apparalus AND CHEMICALS.

BAKER'S
PATENT CLLORIMETER,
a new apparatus
For demonstrating to Science Classes problems in Specific Heat.

For full particulars write to the SOLE AGENTS-
J. ORME \& CO., 65, Barbican, London, E.C.

Complete Price List of Apparatus and Chemicals, 2s. 6d.

SECOND EDITION , GRIFFIN'S CHEMICAL HANDICRAFT. PRICE 4s. 7d. POST FREE.
A CATALOGUE OF CHEMICAL APPARATUS; ILLUSTRATED, CLASSIFIED, DESCRIPTIVE. Demy 8vo, 480 pp ., Illustrated with 3,600 Woodcuts.
Most Complde and Cheapest List of Apparatws. JOHN J. GRIFFIN AND SONS, 22, GARRICK STREET, LONDON, W.C.

HALL OF SCIENCE SCHOOLS,

63, FLEET STREET.
Classes, in connection with the Science and Art Department, in Physiography and Geology are conducted by Mr. W. MAWER, F.t.S., on Wedneuday evenings, commencing September 30 Physography, 7.15 to 8 is: Geology, 830 to 29 Fiee, 5 , each fubject for the Session September to May Further particulars of the Secretary.

ICROSCOPIC OBJECTS FOR HIRE, Histological, Botanical, Geological, by the best Mountera. Let out on most moderate terms. Particulars of B. Wells, Dalmain Koad, Forest Hill.
(302

The AUTOCOPYIST (from aon.) furnishes excellent

BLACK COPIES

In Lithographic Style, of the ORDINARY WRITING (elso Shorthang, Arabic, ${ }^{2}$ c.), Sketches, Music. Easy, Economical-The AUTOCOPYISI CO., 7a, London Wall, London.
NORTH BRITISH AGRICULTURIST,
the chief Agricultural Journal in Scotland, circulates extensively among
Landowners, Farmers, Resident Agents, and othersinterested in the management of land shroughout the United Kingdom.
The AGRICULTURIST is published every Wednesday afternoon in time for the Evening Mails, and contains Reports of all the principal British and Irish Markets of the week.
The special atiention of Land Agentsis directed to the AGRICULTURIST as one of the best existing papers for Advertising Farms to be Let and Estatey for Sale.

Advertisers addressing themselves to Farmers will find the AGRICUL. TURIS'T a first-class mediam for reaching that Class.
Price 3d. By post 3jd. Annual Subscription, payable In advance, 348 .
Offices-327, High Street, Edinburgh ; and 345, Queen Victoria Street, London, E.C. Money Orders payable to C. and R. Andeason.

THE VICTORIA UNIVERSITY.

THE OWENS COLLEGE CALENDAR for the SESSSION 1883 -6. Price 3 . ; by post, 3 . 6 .
Manchester : J. E. CORNISH, London: MACMILLAN \& CO.

THE CELEBRATED

Is unrivalled for Gardeners', Foresters', Farmers', Joiners', and Amateurs ase. It requires no oil. Sharpen with a spittle or water. Puts on a keen, sharp edge; no humbug about this. Has ptood the test of 100 years. Cu , shary edge; nombug hout this, Has ntood the test of 100 years, Cui in Hones for Axes, Hedge Kzives, Ranors, Penknivet, and Plane Irons, Ec .
Honourable Mention, Paris Exhibition, If^{8}; an. Bronze Meda, London International Exhibition, $188{ }_{4}$ - Ask your Ironmonger or other retall house to get you one, and give my address; if he wron't, drop me a note.

JOHN C. MONTGOMERIE,
Tam O'Shanter Stone Hone Works, Dalmore, Tarbolion Station, R.S.O, Avrshire.
[303

NON-MAGNETISABLE WATCHES.
WATCEES whleh cannot be "ST AGNLTISED," conatnewi。 tee recommendation of W. Cnookss, Esig., Y.R.S. and as cahimety Electrical Exhibition, Paris.
\& DENT \& CO.. Makers of the Primary Standard Timehepe do R iyal Observatory, Greenwich.

Uniy Addresses :-61, Strand, and 34. Royal Eechase, Lowe N H.-Wetches can be converted to this plas

If a Certain Cure for all Disorders of the LIVEB, fTOME AND BOWELS. A Great PURIFIRR of the $\mathbf{1 7 0 0 2} .1$ Powerfal Invigorator of the System, in cases of WIIIII AXD DEBILITY, and is unequalled in Female Compian

MICROSCOPES AND APPARATUS
W. JOHNSON'S THREF.GU'INEA STEDENTS MICRKC is the best constructed at the price. All Minutia carefully adayod: and fine adjustments, excellent x-inch, f-inch, and f-acd Adra Cabinet complete, $\mathcal{C l}^{3}$.
W. JOHNSUN'SIIISTOLOGICAL. MICROSCOPE, wibh iersu 1 -inch and 4 -inch Objectives, $L_{5} \mathrm{ss}$.
W. JOHNSON, Optician to the University Hotyth t88, TOTTENHAM COURT ROAD. Catalogue Ponde
OPRERIMINNTBROS. 172, ST. JOHN STREET, LONDON, E.C
 RRON2E MF
Heald E E DYNAMOS for to lita is for rotite is solith is. The miler INCANDFP.
Layp. 3. CLenl : candop:ns New Podert tar lator, conping fi is Pret Mith lutn
Temporary Installations. Price Lists, 1 Stamp: Catalogue, 60. mention this Pafkr,] Sample lampa, as. 64. pontine

HOW \& CO.'S
Geological Transparencies for the Lanter Descriptive Catalogue on Applicatios.
WALKER'S SPECIFIC GRAVITY BALANCE FOR BOCT AND MINERALS.
HOW \& CO.'S POCKET MICROSCOPE LAMP. S. *
MICRO-PETROLOGY.-Sections of Pitchstones, Obadan, $G 0$ Syenhes, Diorites, Gabbros, Dolerives. Basalis, Tachylites, twis Andesites, Porphyrites, Rhyolites, Lavas, Ashes, Geeias, Sctias tones. E. C., price is. 6d, each.

JAMES HOW \& CO., 73. Faknngbom Stastr, Lanses

Now Ready, Medium 8vo, Price aIs.

A TEXT-BOOK of PHARMACOLOGY, THERAPEUTICS, and MATERIA MEDIC By T. LAUDER BRUNTON, M.D., D.Sc., F.R.S.,
Fellow of the Royal College of Physicians; Assistant Physician and Lecturer on Materia Medica at St. Bartholomew's Hep
Examiner in Materia Medica in the University of London, in the Victoria University, and in the Royal College of Physicians, London ; late Examiner in the University of Edinburgh.
ADAPTED TO THE UNITED STATES PHARMACOPGEIA BY FRANCIS H. WILLIAMS, M.D. BOSTON, MASS.
"It is simply a mine of wealth both for students and practitioners. It is thoroughly practical and thoroughly relable, undoultedly the best treatise on the subject in the English language."-British Miedical fowrnal.
"The work has little in common with the old fashioned books on materia medica. It is not a mere collection of dry fis technical details, but a scientific treatise worthy to be ranked with the highest productions in physiology, either in our owz a other language. . It is a book of study for the scientist and a work of reference for the practical physician."-Lasck.
" A work which marks a distinct epoch, a turning-point in the history of medicine. It is not a mere compilation, it is essentially a new departure breaking away from well-worn tracks into a new and almost unknown region."-Malkai' : and Gaselte.

BY THE SAME AUTHOR. In the Press,
DISORDERS OF DIGESTION : THEIR CONSEQUENCES AND TREATMEN
This work contains, in addition to the Lettsomian Lectures, a number of other Papers by the Author on similar subjects Demy 8 vo .
MACMILLAN \& CO., London.

Messrs. MACMILLAN \& C0.'S NEW B00KS.

A NEW NOVEL BY THE LATE HUGH CONWAY.

A FAMILY AFFAIR. BY hUGH CONWAY.

Author of "Called Back," " Dark Days," \&c. 3 vols. Crown 8vo. 3us. 6d.

Abstract

"It is done in the manner of a man who has studied his craft, and who knows what he is aiming at. He was an artist, and not an amateur ; and he accomplished a great deal of what he tried to do. 'A Family Affair' is one of the best of recent novels. The story is full of interest and of excitement. The characters are distinct and life-like. In praising this book there is no question of paying a tribute to the memory of a lamented author-the book itself deserves and commands recognition."Athenerum. " 'A Family Affair' is a story extremely clever in its construction, and marked by considerable humour and knowlerlge of lifc. . . It is a novel of very great attractiveness, and one which every one, had its author lived, would rightly have regarded as one of large promise."-SActator. "Mr. Conway's new book, 'A Family Affair,' is a thrilling and exciting romance. :" life-like and full of individuality. 'A Family Affair' will probably become even more popular than Mr. Conway's first works." - Morning Post. "Altogether the novel is good."-Saturday Review.

NEW BOOK bY THE BISHOP OF DURHAM.
THE APOSTOLIC FATHERS. Part II. S. Ignatius-S. Polycarp. Revised Texts, with Introductions, Notes, Dissertations, and Translations. By J. B. LIGHTFOOT, D.D., D.C.L., LL. D., Bishop of Durham. 2 Volumes in 3. Demy 8 vo . 48 s .
LIFE OF ROBERT FAIRFAX OF STEETON, Vice-Admiral, Alderman, and Member for York, a.d. 1666-1725. Compiled from Original Letters and other Documents by CLEMENTS R. MARKIIAM, C.B., F.R.S., Author of "The Life of the Great Lord Fairfax." Demy 8vo. 12s. 6 d .
"Mr. Markham's volume is interesting to the native of Yorkshire as a record of the exploits of many members of its illustrious house. To the student of history it will be welcome for its picture of the life of a fighting Admiral at a fighting epoch in our annals."-Academy.

VERE HENRY, LORD HOBART, ESSAYS AND MISCELLANEOUS

WRITINGS OF. With a Biographical Sketch. Edited by Mary, Lady Hobart. 2 vols. Demy 8vo. 25 s.
"England has not had too many statesmen of Lord Hobart's quality, and the perusal of these volumes will add to the regret felt that an early death brought his career to a premature close."-Athemrum.

ThE ENGLISH CITIZEN SERIES. Edited by Henry Craik, M.A., Oxon., Ll. D., Glasgow. New Volume.
THE PUNISHMENT AND PREVENTION OF CRIME. By Col. Sir EDMUNDF. DU CANE, K.C.B., R.E., Chairman of Commissioners of Prisons, Chairman of Directors of Prisons, Inspector-General of Military Prisons, Surveyor-General of Prisons. Crown 8vo. 3s. 6d.
"Sir Edmund Du Cane's little volume, just published, on 'The Punishment and Prevention of Crime,' gives an interesting account of the state of the criminal law as it has been and as it now is ; of the objects which it has been framed to secure; of the methods resorted to, and of the degree of success by which they have been severally attended."-Times.
MONTCALM AND WOLEE. By Francis Parkman, Author of "Pioneers of France in the New World," \&c. With Portraits and Maps. Two Vols. 8vo. 12s. 6d, each.
The Times says:-"The story of the struggle and its closs has often been told; but never have the facts been set forth so minutely, accurately, and effectively as by Mr. Francis Parkman. He has accomplished his task with such thoroughness that others following in his footsteps will find little to collect and improve. . ., The luminous narrative of Mr. Parkman is fraught with many useful lessons as well as replete with much valuable information."
EUROPEAN BUTTERFLIES, A HANDBOOK OF. By W. F. De
VISMES KANE, M.A., M.R.I.A., Member of the Entomological Society of London, \&c. With Copperplate Illustrations. Crown 8vo. 10s, $6 d$.
MPOUNDS OF CARBON ; or, Organic Chemistry, an Introduction othe Sudy of. By IRA REMSEN, Profesoro of Clemistry in the Johns Hopkins Univenity. Crown Svo. 65.64. EXT-BOOK OF THE PRINCIPLES OF PHYSICS. By
 -mionen. Sccond Eldition. Malium 8vo. 2II.
TSSURE IN HIGH SCHOOLS IN DENMARK. By Hunicipal Medical Officer, Copenhagen. Translated from the Danish by C. GODFREY SÖRENSEN, I. CRICHTON-BROWNE, M.D., LL.D., F.R.S. Crown 8vo. 3s. $6 d$. primary frescil and german renisGgoooks. LA JEUNE SIBERIENNE ET LE LÉPREUX DE with Introduction, Notes, and Vocabulary, by S. BARLET, B.Sc., Assistant Master in Is. 6 d .

ASTRONOMICAL TELESCOPES.

FINEST POSSIBLE QUALITY.

 THE STUDENT'S EQUATOREAL, with 3 lin. lens, our own make, 3 Eyepieces, \&c., Equatoreal Stand ... Lit it New Illustrated Catalogue, 3 stamps.
THE "SOLARGRAPH," a Photographic Camera, with Instantaneous Shutter, and an adaptor to fit it to any telescope for Photographic Solar Spots, \&c., complate ..
"LE MERVEILLEUX" \ddagger plate, complete dry plate apparatus
"LE MERITOIRE" \& plate, complete dry plate apparatus, double rising front, swing back, rack to focus, te, tcal
THE "INSTANTOGRAPH," with best lens, instantaneous shutter, screw motion totail board, and every recent Improvement ...

Illustrated Photo Catalogue 2 stamps.
J. LANCASTER \& SON, Manufacturing Opticians, Birmingham.
THE PATENT BOOK-SHELF FITTINGS, as ased in the PUBLIC libraries of LIva POOL, GLASGOW, BIRMINGHAM, \&c., enable a nice adjustment of Shelves to be made without trouble. HOOKHAM'S PATENT PICTURE LINE \& FASTENERS afford the MOST SECUREAND EASY means of hanging Pian CURRALL'S PATENT VENTILATORS secure a regular supply of fresh air, without draught, at a very small cort.
Illustrations and Particwlars sent POST FREE on Application to
WILILAMI TOINEXS \&z SONSE, MOSELEY STREET, BIRMNGHIU PRIZE MEDALS-London, 1852 ; Paris, 1855 ; London, 1862 ; Paris (Silver), 1867 ; London, 1874

$\begin{aligned} & \text { PRIZE MEDAL } \\ & \text { AWARDED } \end{aligned}$	EEATETET POESE,	$\begin{gathered} \text { HEALTH } \\ \text { EXRIBITTON } \end{gathered}$
AWARDED	[By Appointment to the Ropal Intilution of Great Brilain,]	

[By Appointment to the Rogal Instifwtion of Great Brifain,] SUCCESSORS TO W. LADD \& CO.,
BEAK STREET, REGENT STREET, LONDON, W. MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES POR
SCHOOLS, COLLEGES, OR PRIVATE RESEARCH. WIMSHURST AND VOSS INDUCTION MACHINES OF IMPROVED PATTERN.
Illustrated Calalogwe, Revised Edition, per post $8 d$.

5. IN. shiourn.

In Casks, $12 / 6$ per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts.* - Bottles charged $y / *$ per dor., and allowed at the same rate if returned; but they must be paid for with the Dleer.

Neither sugar, saccharum, nor any of the many new Brewing Matorials are used in the manufacture of the "S. N." Stout; it is Brewed entirely from the finest Malt and nustious, it is excellent Ted than Stout is generally; therefore, besides being very nosment particularly suited for invalics, ladies mursing, or and very much recommended by Meng beverage. It is a "Sound Nutritious" Tonic, and wery much recommended by Medical men.

THE "HALFGUINEA" ALE BREWERY, LONDON, S.W.

WOODHOUSE \& RAWSON

SUPPLIERS OF ALL ELECTRICAL APPLIANCES, Cppiczs-il, Queen Victoria Street, E.C.

Works-Cadby Hall, Hammersmith Roar, ${ }^{\text {s }}$

Lamps.	Fittings.	Carbons.	Wire.
Dynamos.	8witches.	Battery Supplies.	
Accumulators.	8afety Junctions.	Instruments.	Telephone Supplies.
Electric Bells.			

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid grownd
Of Nature trasts the mind which builds for aye."-Wontwwontil

,1No. 830, Vol. 32] THURSDAY, SEPTEMBER 24, 1885 [Price Sixpence

CHATWOOD'S
 DUODECUPLE

 and LOCKS

Have received highest Awards at all International Exhibitions, including Two Diplomas of Honour and Six Gold Medals.

London Warchouse, 76, NEWGATE STREET, E.C. Lancashire Safe and Lock Works, Bolfon. [s 13

RIBBON SECTION CUTTING.

The Cambridge Scientific Instrument Company have designed a new and imple Microtome for cutting continuous Ribbons of Sections of Microscopic Preparations on the plan first adopted by Mr. Caldwell. The new instru: jnent has the advantage over the original pattern of dispensing with the andlean band altogether, and cossequently not only avording the trouble of lifting the series of Sections from the rayor, but alioo of allowing them to Mill on to the glass slide in their proper position for mounting. Price of the Microtome, L\$ sr.
The Company are appointed Agents for the Microscopes of Zeins, a supply If which is kept in stock.
THE CAMBRIDGE SCIENTIFIC INSTRUMENT CO., Cambridge.

[^15]
HOW TO USE OUR EYES, AND HOW TO PRESERVE THEM FROM INFANCY TO OLD AGE.

WITH SPECIAL INFORMATION about SPECTACLE.S. THIRD EDITION.

By JOHN BROWNING,

With 54 Illustmations. Price is.; Cloth, 18.60 . Extrac in from Notices of the Firat Edition :"'How to Use Our Fiyes' by John Browaing, F.R.A.S., is a thoroughly practical limle ananual." - Gmphric. "Gives many a useful hint to those who enjoy good syenight and wioh opreserve it, and gives the advice of an oculist to thone dif if whin upectacles "-Pall Wall Gasefle.
CHATTO \& WINDUS, PICCADILLY, If AND ALL. BOOKSELLERS, Sent free for $15 . \operatorname{dd}$, by the Author, Joum 1 63, Strand, Londom, WC,

NEGRETTI AND Z

SOLE MAKERS OF GORDAN'S

BRITISH MUSEUM

The RLADING. ROOM will be CLOOSFD from THURSDAS: October t, to MONDAY, October 3, both days inclusive.
E.DWARD A. BCND, Principal Sibmrian.

British Museum, September 3a, 128

UNIVERSITY OF LONDON

PRELIMINARY SCIENTIFIC (V.IS.) \& XAMIN.ITION
Instraction is given in all the suhjects of the above I:xamination at GUV's $11 O$ PPITAL, during the Winter and Summer sesainm. The (lass it not confined in Siudents of the Hompital. - For further particulars apply to the 1) is, ('uy's Hospital, Soulhwark, S.F.

UNIVERSITY COLLEGE, BRISTOL.

The SF, $410 N$, $885+35$ will hexin on OCTOBF.R 6. 7 he Collegesupplies for persuhs of either vex alove the ordinary school Age the means of continuing their Stusies in 4 IF VCE. LANGU'AGFS, HISTORY, and

 The Fnginecring Hepartment inelutes Civil, Mechatiral, and Filectric Fingineering, and Survesing and apecial arratigements for prartiral work have heen made with varnons t ngimens in and near Itristol. Infupmation with regard to the lodicing of students may be ubtained on application. Several CHOSAK \rightarrow HII's are tenathle at the College falentar, containing full information, price sv. (by Poat $\mathbf{1 S}, \mathbf{3 d}$). For I'rowpertus and firther infurmation, apply to

> ALFREIIF: STOCK, Kegistrar and Secretary.

THE YORKSHIRE COLLEGE.

I)EPARTMENT OF SCIENCF, TFCIINOI,OGY, ANI ARTS

The TWELFTH SESSION begins TUESDAY, October 6, aP95, in the New Colleue Buthentsis, CullraE Kosd, Livens, receatly uprised by the Prince and Princess of Wales.

The I)ay (laswe prepare for the I.onden U"niversitv and other Examina. tions, and for various Profevions. They include:- Mathemation, Whysice, ('hemistry, dieology, Mineralury, Miring, Coal Mising and Colliery Maus Acement, Zoolucy, Comparalise Mnaloniy. Itotany, Human Phyuology, (ivil. Mechanical, and Mining Linginecring, Clasics, Hivtory, finglish, Fet, German, and Oriental languages and literature, Wravin, Mesis, ing, and Theing, Textill Falirias $R x$. She de, and Dychouse are open daits the College baboraturies, weaving Sheda, and Dyehouse are open daaly for practical work fees, recording to time

UNIVERSITY COLLEGE, LONDON

OKGANIC CHEMISTKV

Tr. H. FORSIER MORLEY will give a Syomatic Cisure of ho
 o am. Firss Term: I lementary. veculad Term: Venzenc Itrivatives, Third Term Advancell. Ihe Conne covers the subjects teyuired fur H.Sc. Fee, $\ell 2$ 128. hid per Term, or \mathcal{L} fy firt the Cousve,

VM.FOCRINEIS, M A., Secretary
MATHEMATICS (London and Suburbs). -
Students attended (at their own homes if they wo prefer) by a High
Wrankler, Trin. Cofl., M.A. and F.R.S, on very reasonable termas, X., 9. Torville Road, Hammersmith, W.

BEDFORD COLLEGE. LONDON, "FOR
1.AllF:, 8 and u, Youk Maie, Buker Sireet, W.-Wichaelmas Term will begin on THIN:MAA, Ontoher is, tfis. Throughout the Evsion practical demon-trations in Putany will be given by Hiss

THE MASON SCIENCE COLLEGE, BIRMINGHAM.

SCHOLARSHIP IN CKEMISTRY OF $\mathcal{L} 30$ PFR ANNUM.
An F wamination for thio ©, hol rohhip will lie helec carty in ontetior. Candi-

VICTORIA UNIVERSITY

UNIVERSITY COLLEGE, LIVERPOOL.

St.SSIOX $\mathbf{8} 89$-86 monmemes OCTORER :

Complete Ceurrirulom provieled for Victoria U'nivervity Degrees in Sleclotine. Aits, and wience
stuifuts almu perpured for Lunalon t'iviverai.y. Cambridge Higher lacal and intier I xaminations
Ilowe al, Itwoloswa: ard Chemical I almenatories
Awstance in F'vartiral Sa'meratory Wirk by Ihemontrators under the Sulecithtrilemre of the Itofr.unt if the Department.

III (Lasces, exrept Medical, if*n to Vale and Femair Stulento of ith and uf:watle studento alunted un their toan gear, auhyect to Preliminary T. amunati an

lusment of of fer.
WANTED- - NATURE, No. 56.-.-Apply

LIIING SPECIMENS FOR THE MICROSCO

GOLDMEDALawarded atthe FISHERIES EXHIBITION to THOMAS BOLTON, s7, NEWHALL STREET, BIRMINCHA
who has last week sent to his subscribers a corions Worm, Pierns...a; . W sitica, with drawing and description. He hasalso sent out Cristatei- ? Fredericella sultana, Cordylophora lacustris, Lacinulana Mria cullon claves. Not emmata spicata, trachionas amphiceron, Khss U'vella virescens, Acineta grandis, Volvox globelor, Dramids: a.s Amaba, Vorticella, Crayfish, and other Specimens for (Huxiey anc 1:- ₹) Biological laboratory work
Weekly Announcements will be made in this place of Oreanisns. nepplying.

Spectmen Tube, One Shilling, post free.
Tucuty-six Tmbesin cowrac offix Mowthr for Swhecriftion of is an Twelve Twies for sos. 6 d.
Portfolio of Drawings, Eleven Parts, if. each.

THE LONDON HOSPITAL AND MEDICAL COLLEGE, MILE END, E

Th

1385 -

As the College will be in course of enlargement these will $\theta=x$ Distribution of l'rizes this year
FOUR ENTRANCE SCHLOLARSHIPS, value Khn, 人 Cao, will be offered for cornpettion at the end of Splemtim100 Guineas in three instalments. All Resident and other if ion ras ments are free, and the holders of all the Kesident A ppuntme with rooms and board entirely free of expense. The KAccoucheurship, asd One Receiving Room Officer. Two 1 Maternity Pupils also reside in the Hospital. Special Cla liminary Scientific and 1nterwedtiate M.B. E.xamenations of liminary Scientific and Phterwedfiate M.B. F.xamenathons of
of London, and for the Primary and Pass Faminations if of the Royal College of Surgenno of E:ngland are held thro of the Royal College of Surgenno Uf England are heical Prays
Special entries may be nazde for Mediral and Surgical Prac ture
The London Houpilal is now in direct communication b) with all parts of the Metropolis, and the Metropelizan, Meerup
Fast London, and Youth. F.averm Railways have stations ovwalk of the Ifoapital and Conlege.
For proapectus and perticulare apply personally or by let*
Mile End, E.
MUNRO SCO11. α_{3},

THE MIDDLESEX HOSPITAL

The WINTER SFSSION will open on THURCDAY',
an Introductory Addreas by Ir. J. K FOW LERR, it A.
The Medical School, which has lately been consinerably en'a-ethe mont cumplete uncans for the education of Sisedents inn , U"niversity of l ondon, the Colliges of Physicians and Surgevan Lirensing Boaties. Two F.ntrance Scholarkhips of the anneal veand $\mathcal{C o}$, tenalile for twn years, and an lintratice Niencr i : tuent Cso, will be competed for on SEPTF.MRER ag and fulluwing ian . infurmation may be obtained from the Dean or the Resident 3tect ic at the Honpital.

ANDRFW CLARK, Tme

ST. THOMAS'S HOSPITAL MEDICA: SCHOOL.

albert fambankment, London, S.e
 when an Introductory Address will be delivered by A. O. Ma hil L. 4 M. Ch, at 3 pm.
 respectively. open to all Grut-jear Students, will be offered for : n. E : The Examanation will be beld on the 3 th, (Gh, and 7 th of Itcoter. an wulfjects will be Chemistry and Physics, with either Botany of Zoal © the option of Cardidater.
 SCINTIFIC" and "INIF
CNIVEKITY ofloNIOON
All Huapstal Appointments are open to Stadents without estre charc Scholarthipe and Money I'rires of consederable value are a wani-! Sevional Fxamunatuotas, at also neveral Medale.
The Fiees may the paid in one sum or by instalments. Intrue made to lecturen or io Hospital Practice, and special arrancenomade fot Studeots entering in their ancood of subeequent year $\&$ |hental Situdents and f.r Prualified Practitioners
several medical practitioners and private families residing in $1 t=$ hourhood receive Stuilento for reutebce and supervianon, and a "egr approved lodgings is kept in the Necretary's office.
Provie tuses and all particulars may be obtained frow the Metho: tary, Mr. Geome Kendte.

W IN ORD. THe

ST. GEORGE'S HOSPITAL MEDICALSCHOOL.

 HYDE PARK CORNER, S.WThe WISTFR SFSSION will commene THURSDAV, Nowe with an Introductory Address by TIMOTHY HOI MFX. Fic., F , at 4 p.m. A Prospertus of the School and forther iatorestaten man to the Ilkan at the Hospical

CALCUTTA.-Wanted an ASSISTANT

MASTER for Ia Martiniere School, Calcutta, to teach Mathomatic and Phyucs. Ile must be a Graduate (unmarried) in honours of a British Univeraity and a layman. A Jublic School man with some years' tcachiug experience preferred. Salary, Rupecs yoo a month and furnished quarters, Should be prepared to start imumediately. Passage money alluwed, 670 . Further particulars can be had from Surgeon. Major Cayley, M.D. Indian Medical Service Fimgrove. Watford, Her1s. Copies only of Certificates of attainment and moral character. hould be sent, as they will not be returned.

ROYAL COLLEGE OF SCIENCE FOR IRELAND,

STEPHEN'S GREEN, DUBLIN. SCIENTIFIC AND TFCHNICAL EDUCATIJN SESSION +8Bs-86.
This College supplies a complete Course of Instruction in Science as applied to the Industrial Ar; evpecially thowe which may be clansed broadly under the heads of CHEMICAL MANUFACTURES, MINING, and ENGINEERING.

A Dipl man of Associate of the College is granted at the end of the Three 'ears' Cuturse.

Therr are Four Royal Scholarshipt, tenable for two years, each of the value of Cso yearly, with frec education. Including Laboratory Instruction. Tw, become vacant each year. They are given to Students who have been a yesr in the College.
The Fiees are $\alpha=$ for each Course, or C so for all the Coursen of each year, with the exception of Laburatury Practice and Drawing School.
Chemistry (Theoretical and Practical). Metallurgy, 表c.-Professor Haktery. F.R.S., F.C.S., F.R.S. K.

Mathematics, Mechanics, and Mechanism-Prsfessor Hennessy, F.R.S., M.R I.A

Descriptive Genmetry. Drawing, Engineering, and Surveying-Professor Pu;ot, C E., M.K. I A
Experimental Physirs ['heoretical and Practical)-Prafespor Bankert, F.R.S.E., M.R.1.A

Mininz and Mineralygy-Pr feser O'Reiley, C.E., M R.I.A. $^{\prime}$.
Botany-Profesvor M'NaM, M 1)., F.L.S., Dean of Faculty.
Z.vology-Prufeswor IIADdov. M.A., F.Z.S., M.R.I.A

Geal -sy-Profeswor Hull.. M A.. LL.i... F.R.S.
Pale ntology-Mr. Haily, F.L.S., F.G S., M.R I.A
The Chemical and Physicai Laboratories and Drawing School are open daily for Practical Inetruction.
Fee for Chemical Lav ratory, La for Onc Month, $\langle 5$ for Three Months, Co for Six Monthn, ri Ciz for Session. Fee for Physical Laboratory, Li per Month, or $\& 6$ for Session. Fee for Biological Labwratory, \mathcal{L}_{2} for the Term. Fee fir Drawing School, ℓ_{3} for Session, of ℓ_{2} for one Term.

The SESSION commetices on MON'IAAY, October 5 .
Programmes may be obtained on application at the College: or by letter addressed to the Secretary, Royal College of Science, Stephen's Green, Dublin.

Professor J. P. O'REILLY. Secretary.

UNIVERSITY COLLEGE, DUNDEE.

The WINTER SFSSSION will begin on MONDAY, October 12.
In the previous week Examinations will be held for Four Armitstead Scholarships, and fir the Smart Bursary in Engineering, also the Entrance Fxaminations for Students under 16.
Instruction is given in Mathematics, Natural Philosophy, Chemistry, Fingineering and Hrawing. Biology, Classic and Ancient Fistory, English Language and Literature and Modern History, French Language and Literature ; and all Departments, comprising both Day and Evening Classes, are open to Hoth Sexes on the same Terms. The Laboratories are equipped with every' requisite for Study and Research: and Special Facilities are offered for Instruction in Flectrical Engineering.

The College is recognised hy the University of Edinburgh for Graduation n Science to the extent of 'Two out of the Three Years' Course required. The various Courses are suitable for the Degree Examinations of the Liniversity of London, the E,xamination for the Indian Civil Service, and for the LI..A. Certificate of St. Andrew's University.
The Culendar, containing Full Information, may be had from the Booksellers, of from the Undersigned, price Is. hy Post.
SHIELL \& SMALL. Secretaries.

UNIVERSITY COLLEGE, LONDON.

PRELIMINARY SCIFNTIFIC (M.II) EXAMINATION OF THE LNIVFRSITV OF LONDOX.
The following Clasmes meet the requirements of Candidates:-
Chemistry.-Prof. Willianson, Ph. Di, F R.S.
Experimental 1'hysics.- Prof G. C Fistyk, F,R,S,
Zoology,-Prof. Rav I.ANKEster, M.A., F.R.S.
Botany and Vegetable Physiology.- Prof. Oltver, F.R.S., F.L.S.
The Coursea of Chemistry, Practical Chemistry, and Botany enter into the Ordinary Medical Curriculum.

Procpectuses, including information as to Classes for Matriculation, may be obtained from the College, Gower Street, W.C.

TALFOURD ELY, M, A.. Secretary,
MICROSCOPY. - MICRO-NATURAL HISTORY (ZOOL.OGICAL. AND BOTANICAL) and the ALI.IED SCIENCES $-O n$ October 1 will be Publiahed and nent Post Free for Two Stamps, W. P. Collinsts New Catalogne of Books (mosely Secondhand). Scaentific Libraries Parchased and Books taken in Exchange. W. P. COL.I.IN'S, Science Bookveller, 157, Great Portland Strent, Londom, W

MINERALOGY AND GEOLOGY.

PROFESSORS, COLLECTORS and VISITORS to LONDON are INVITED to INSPF.CT Mr. HENSON'S STOCK of CHOICE, MINE. RALS, \&e., \&c. At the PRF.SENT TIME he has a PARTICULARLY FINE:CRYSTAILISED NUGGETS TANATIVE GOLD WEIGHT PINK APOPHYLLITE, CHESSYLITE, EMERALDS OD MATRIX' PYYKAPOPHYLLITE, CHESSTLITE, EMERALDS OD MATRIX ISED MALACHITE, and nOTRYOIDAL. CHAICEDONYTALEISED MALACHITE, ANd HOTRYOIDAL. CHALCEDONY, ME-
TEORIC IRONS And STONES. POLISHED AGATES And LABRA. DORITES.
A large Series of ROCKS, also MICROSCOPIC SECTIONS of the same.

Listrom Application. Hammers, Chisels, and Hammer Straps.
PRIVATE LESSONS AND EVENING CLASSES.
hlowpipe cases and apparatus. Catalogues free.

SAMUEL HENSON,

277, STRAND, LONDON.
Opposite Norfolk Street.

CABINETS FOR MINERALS, FOSSILS, \&c.

10	W			GH	s.
	"	39	"	"	458.
8	\cdots	26	"	"	s.
12	"	39	"	"	52 s.

NATURALISTS' GIASS.CAPPED BOXES, ROUND AND
RECTANGULAR, FROM ONE SHILLING PER DOZEN.

THOMAS D. RUSSELL,

78, NEWGATE STRFET, E.C.
BRITISH MARINE SHELLS, CRUSTA-
CEANS, FCHINOIERNS, RIRDS' EGGS, \&c. Many thousands of rare and beautiful specimens for Sale Cheap. Lists 2 stamps. Specimens sent on approval.-J., 15, Warren Street, Tenby.
CHEMICAL APPARATUS, Wholesale, Retail, for Colleges, Schools, and Chernical Works. New Catalogue of 90 pages and 500 clear Illustrations, post free, ad.-WILLIAM HUMF, x, lothiad Street. Edinburgh.

SIX PRIZE MEDALS

AWARDED FOR GEOLOGICAL COLLECTIONS.
Geological Collections especially adapted for Teaching as supplied to Science and Art Department, and used by all Lecturers and Teachers in Great Britain, \&c.
New and Rare Minerals constantly arriving from all parts for selection of Single Specimens.
ROCK SECTIONS AND ROCK SPECIMENS :
The Largest Variety in England.
Now Catalogues and Lists on application to-

JAMES R. GREGORY,

88, Charlotte Street, Fitzroy Square, London.
Established a7 Years in London.
FERNERIES fitted up with Preserved Flowers, Foliage Plantw, and Floral Decorations suitable for IDrawingand Ball Rooms, Churches, Chapels, Theatres, \&e
Sundella, a PATENT Preparation for preserving FERNS (From Maiden-hair to the common Brake), GRASSF.S, FOLIAGE, Rce; sent, securely packed in stout box (with full particulars) on receipt of P.O.O. for $8 s$.

MADAME SUNDELZ,
4. SPUR STREET, LEICESTER SQUARE, LONDON.

MICROSCOPIC OBJECTS FOR HIRE, Histological, Rotanical, Geological by the best Mounterstalrnain out on most moderate terms. Particulars of B. Weles, [30\% Road, Forest Hill.

The AUTOCOPYIST (from nas.) furnishes excellent
 BLACK COPIES

in Lithographic Style, of the ORDINARY WRITING (also Shorthrisise Arabic, \&c.), Sketches, Music. Fasy, Feonomical.- I he AUTOCOI ('O., 79, Lindon Wall, London.
BOOKS (Secondhand), Miscellaneous, Re-
 Goswell Road, London, E.C. Catalogue free on

THE FUEL OF THE SUN.

By W. MATTIEU WILLIAMS, FR.IS., F.C.S

Bvo., Cloth, 244 pp-, price 78 6.t.
This excay, though avowedly speculative, invokes no hypothetical entities or actions, but proceeds exclusively by direct deduction of the cosmic operation of demonstrated and arcepted physical laws.

The matter of our atmosphere is shown to be enpanded thronghout space, and accumulated around every orb proportionally to its gravitation.
Taking our share of this as unity, the atmospheres of the sun and planets are calculated The accumulation, instirring, ejection, dist ciation, and recombination of the enveloping, solar, gaves ate shown is orizinate and maintain the heat and light of the kun: the instirring agent being the eccentric potation of the solar nucleus effected by the reaction of planetary gravitation; the freah fuel supplied by the cosmic matter evchanged for that ejected by the prominences in the counse of solar translation thruugh space.
The un-spots, the prominences, the curona, the rodiacal light, atud all the minor details of solar disturlances conve out as physical results; also a minor detain explanation of faching thars, and of the nebula as frrmewtent simple e:
The observed meteotology of the inferior planets, and the semi-colar constitution of the larger, follow from the same phycical premises.
Avuming that the stars are suns like ours, it is sh wn that no energy is pained or lout throughout the univers-, the whar ortes sumply concentrating. by the machunery described, the energies previously diffused by fadiation. 1.ondon: SIMPKIN, MARSHALL, \& CO.

EIGHTH EDITION.

DESCHANEL'S NATURAL PHILOSOPHY.

Translated and Edited by J. I. EVERETT, F.R.S.,
Professor of Natural Philosophy in the Queen's College, Belfatt. Eighth Flition, Revised throughout, and Nddition inserted, bringing it up to the Irevent Time. Illusirated by 953 Engraving on Wood and 3 Coloured Plates. Medium 8vo, Clulh, izs. ; alwo in Parts, Limp Cloth, 4s. $6 d$ each

Part 1-MECHANICS, HYDROSTAIICS, and PNEUMATICS.
Part II.-HEAT
Part 111 - \&.J.f.TRICITV, MAINE.TISM.
Paft IV - SOUSII and LIGHI
London: BLACKIE \& SON, 49 and 50 , Old Bailey

On the tat of every Month, price sixpence.

THE ENTOMOLOGIST:

AN ILLUSTRATED JOURNAL OF BRITISH ENTOMOIUUY. Edited by John T. Camenngton,

With the Assistance of
FaEderick Bond, F.Z.S.
Edwamt A. Fitcu, F.I..
F. Iucha

John A. Power, M.D.

Contains Articles by well-known Eintomologists on all Pranches of the Seience ; on Insects injurious or benehi ial to Farno or Carden: Notes on Habits, Life Hivtories : occurrence of Karities, \&c.; there are Monthly Lists of Duplicates and Desulerata.
Nomerous Wontiout ILLiv! kATIONs, to the printing of which especial attention is given, and occasional Litmogienfued and Chmomo-Litmogeaphed Platke

SIMPKIN, MARSHAI.I., \& CO., Stationers'Hall Court.

SECOND EDITION GRIFFIN'S CHEMICAL HANDICRAFT. PRICE 4A, yd. POST FREE

a Catalogue of chemical apparatus;
ILLUSTRATED. CLASSIFIED, DESCRIPTIVE. Demy Ivo, 4lo pp, Illustrated with m, 800 Woodcuts. Most Complife and Cheaprest List of Afparatws. JOHN J. GRIFFIN AND SONS, 22, GARRICK STREFT, LONDON, W.C.

Why Use Gas?
 LA MITRAILLEUSE.

A RFTTICH'S Patent Purner for Slineral Oif lam.. giver domble the l,ight of a Duples. eaves to 1 hm and light, inespenave to ure. Sold by all Kespertaile Irrmmencrers and Lomplliarchenses.
Nuy only those Marked
RETTICH'S PATENT.

PROF. TAIT"S WORKS.
 1.

In Crown 8vo., Cloth, price 7f, 6at.

PROPERTIES OF MATTER.

By P. G. TAIT, M.A., SEC.R.S.E.,
Formerly Fellow of St. Peter's College, Cambridge, Profescor of Natural Philorophy in the University of Ediaburgh
11.

By the Same. Crown 8vo, price 6r:

LIGHT.

Edinburgh: ADAM AND CHIARIES BLACK.
DER NATURFORSCHER.
Wochenblatt aur Verbrcitung der Fortschritte in den Naturwissenschaften.
Herausgegeben von Dr. Wilhfim Sklamek.
A Weekly Periodical devoted to Natural Science. 5y Nos., 162 . Specimen Numbers may be had throngh any Foreign Bookseller. ibes comenenced the XV'llth volume.
Berlin: DÜMMLER, 77. Charlottenstrasse, S.W., and all Booksellera

JOURNAL OF BOTANY,
 BRITISH AND FOREIGN.

Kdited by James Buitten, F.L.S , Briush Museom
Contemts:-Original Articles by leading Botanisth-Extracts, aer Notices of Books and Memoirs.-Articles in Journahs-Botanical NewzProceedings of Societies.

Price is 34 . Subseription for One Year, payable in advance, 128.
London: WEST, NEWMAN, \& CO. 54, Hatton Garden, E.C.
LA SEMAINE FRANÇAISE: a Weekly
Newspaper and Review in the French Language. Politics, Literature.
Sclence, Art. Varieties, Notes. Price sa, through Book sellers, and at
the Railway Bookstalls. Offec, 441, Strand, W.C.
LA SEMAINE FRANCAISE: Journal Français pous 1'Angleterre: Politique, Lituérature, Sciences, Arts, Varíetes, Nouvelles. it Notes. Un exemplaire par la poste, sid. en timbres poste. Abonseet Notes. Un exemplaire par an pont, rad.; six mois. ss. sd. Pris ad ment franeo par les hbraires et aur gares des chemias de fer. On s'abease ches tous les hbraires et auz gares aur bur, 441, Surand, Londres, W.C.
LA SFMAINE FRANCYAISE.-"'La Semaine FranSalve " has been brought out in London for the benefit of those Englial readers who may wish to study contempnrary French from all points ef view. instead of confiniog their reading to one particular Galfic priat. is certainly merits succesi."-Graphic.

P.O.O. payable to A. Cristin.

Publishing Office, 44 I, Strand, W.C.

SPECTACLES V. OPHTHALMIC IRREGULARITIES.

W JOHNSON, Ophthalmic Optician, received the IHGGEST ated ONi AWARD granted for SIECTACLES in LONDON, Internatera: Fshithition, 18%.
l'atrouised by the most eminent Oculists and Medical Men.
W. JOHNSON, Optician to the University Hospital, 288, TOTTENHAM COURT ROAD.
"Renarks on spectacles," post-free.

MINERALS AND STONE IMPLEMENTS.

MR. HRYCE.WRIGIIT begs to call the attention of his Clients and tkPublic to his large Seriec of

MINERAIS AND STONF IMPLEMENTS,
from which single specimens can be seiected.
Elementary Colloctions of Minetals, Fossils, and Rocks from La upwarc.
N: R -These Cellectiont absained the Frise Modat, 1 18es.
GFMS AND PRECIOUS STONES OF EVERY DFSCRIMTION ISRYCE-WRIGHT,
Mintralogist and Expert in Preciows Stowes. 204, REGFNT STREET, LONDON, w.

THURSDAY, SEPTEMBER 24,1885

PUBLIC OPINTON AND STATE AID TO SCIENCE

ALTHOUGH Sir Lyon Playfair's address was probably listened to by a large number of members of the British Association as that of a man of science, there can be no doubt that to the vast majority of people outside it came as the utterance of a practical statesman. It was the Chairman of Committees of the House of Commons, the member of Parliament, the man of affairs who spoke, and the address was largely in keeping with these characters, for, ar one writer has expressed it, it smells not so much of the laboratory as of the House of Commons. The subject of the endowment of research, of State aid to science, has been before the public for many years, and has been discussed under various circumstances, but it has never attracted at any one time the same earnest and general attention that it has since Sir Lyon Playfair's address. This is due not less to the pedestal on which the speaker was placed, than to the cloaracter and career of the speaker himself. The result has been that the guides and instructors of public opinion all over the country have felt it necessary to address themselves to the subject, a nd it is therefore possible now to gain some idea of the general drift of the public mind on the question of the chims of science on the State, and of the manner in which these claims should be met. Happily it is a question which men of all shades of opinion can consider without having their vision obscured by party passion and prejudice. As we go on it will be seen that the advocates of the doctrine of haissea fuire are not absent ; but, on the whole, those who have for so long maintained that the country, for the sake of its own happiness and prosperity and in order to maintain its place amongst other nations, must bring the teachings of science to its aid, have every ground for satisfaction.

To gauge public opinion on this question, in some measure, we have taken many of the leading journals of the metropolis, and propose to state briefly their views on this particular part of the Presidential Address. As will be seen, all shades of opinion are represented.

The Times acknowledges the reproach that countries less wealthy than our own make efforts to encourage science, by the side of which the encouragement afforded in England to science by the State sinks into insignificance; but it urges that, after all, the State is very much what the individuals who compose it choose to make it. Until public opinion exists in an organised and effective shape, the demand for the encouragement of science by the State will be addressed, for the most part, to a faithless and unbelieving generation. It points, as do a large number of other writers, to our ancient endowments for the benefit of education, and says that, although it may be conceded that they are still largely misapplied, they could be almost indefinitely increased, without direct assistance from the State, if vested interests and lack of intelligent initiative did not so often stand in the way. Until these obstacles are removed by the pressure of an active and enlightened public opinion, the State itself can hardly be expected to do much more than it does. The Times, therefore, acknowledges the need, and suggests that it should be
met by the proper application of our caisting educational endowments.

The Standerd is as anxious as the President to see our Universities fully, and even lavishly, equipped for the prosecution of research; but it will not allow that they are so miserably starved as he would lead us to believe :-
"Sir Lyon Playfair falls into the vulgar error of reckoning as national expenditure on a given object only the outlay provided from taxation. Our U'niversities have resources which ought to be set against the State provision made in other countries for the same purposes. We are not, therefore, disposed to join in the outcry against the results of our English system. We believe that private benefactions and private enterprise have done much and are capable of doing more, and doing it better, than the State can do. We are not ashamed of the condition of scientific studies in England, and we claim for our countrymen a leading place anong those who have built up the fabric of knowledge and promoted the wellbeing of man."
The Daily Telegraph likewise refers to private munificence which in the past has done in this country what State aid has to do at present in Continental countries, and it urges that scientific people should set before themselves, as their proper aim, to convince public opinion that the teaching of a far greater amount of science is necessary in our schools which are richly enongh endowed.

The Morning Post maintains that Sir Lyon Playfair has conclusively demonstrated that we do not in respect to scientific education keep abreast of other countries, and in the same proportion as we allow ourselves to be distanced do we deny ourselves the means and the opportunities of developing our industrial and physical resources The money laid out in the manner indicated by Dr. Playfair, it says, would be well expended, and woukd in time be returned a hundredfold to the Imperial Exchequer.

The Dicily Nrous regards the address as singularly interesting and practical. It is a powerful and, as many will think, a conclusive plea for giving science a larger and a better place in modern life. Sir Lyon Playfair is a practical statesman, and suggests only practical measures. We must not only greatly enlarge our educational machinery, but must at the same time modernise it and bring it into direct relation to nodern needs.

The Morning Adierliser eulogises the address because every word of it is directed to the one moral, "Educate, educate, educate." Never has the cause of scientific education been urged in a manner which commends itself more to common sense and conviction than in the singularly well-reasoned monologue wherein Sir Lyon Playfair, from the platform of the British Association, hits a national danger at the same time that he shows the means of correcting it.

The Pall , Mall Gazatte pronounces a verdict in favour of Sir Lyon Playfair as clearly and decidedly as the Morning I'osf. It says:-
"No one will be surprised that Sir Lyon Playfair should have selected for the subject 'of his address the ' Relation of Science to the State,' and when that is once explained it goes without saying that he made a very cogent plea for an establishment and endowment of science. This plea, it is perfectly certain, cannot be much longer refused. The Laissez-faire Society must
add a new section to it betimes, for it is ineritable that S.e biberty of ignorance, which is impoverishing the life of the country at home and letting its trade slip through its ir zets abroad, should soon be very rudely interfered with by the State. At present it is a case in this matter of Gireat Pritain con/ra mundum. Every other civilised rountry has come to the conclusion by this time that the competition of the world is now a competition of intellect, and has taken steps accordingly. Either we or they must be wrong: and that it is we is now being brought home 20 us by the conclusive 'argunent to the pocket.' John bull's one ambition, according to Mr. Pumch, is to 'guard his pudding;' but then he is beginning to find wut that he can only fill his stomach by first filling his head. From the recognition of the vital importance of science to its establishunent by the State-in a much less haif-heared fashion than at precent- is in these days a short and inevitable step. The same considerations by which State interference has been justified elsewhere-its greater certainty, its ampler resources, its wider sange are all equally applicable bere, and will come to be equally applied."

The Globe says the "argument" of the address may be conceded. Science deserves from the State all that the State can do for her. Minerva is a sort of alien deity in our intellectual Pantheon, and it is certain that the tendency and pressure of modern conditions impose upon all civilsed States, an increasing obligation to learn or to lag. Hut it questions whether we really are in the evil plight depicted by the President, and points to "the majnificent private endownents of our insular founda-tions"-a source of revenue comparatively non-existent abroad, which, it states. Sir Lyon Playfair strangely ignores,

The St. Fames's Gazetle thinks that reformers might bend some of their energies to sueing that more technical science and more arts likely to be useful to the craftsman and the mechinic, were brought within the rurriculum of the board Schools. For then we could easily spare some of the literary subjects :-
"With the moral of Sir I.yon Playfair's scientific sermon, and the journalistic lectures based on it, most perple will agrec. This is an age of scrence, and you can do nothing effectual in the practical way, from building ironclads to catching mussels, without a knowledge of what are called 'the laws of nature.' If you do not want your ironclads to be sunk by those of other navies, or your mussel trade to be ruined by foreign competition, you will do well to see that the 'laws of nature' are properly studied in your schools and colleges. That technical education in this country is not so good as it mi;ht be, and as it possibly is elsewhere, may be admutted."
But it does not think that this is due to superabundance of classics in our sistem of middle and higher-class education.

The ciuardian, at the conclusion of a lengthy article devoted to the address, sums up its conclustons on the subject of the relations of the State to science thus:-
" On the whole we are inclined to think that the best servire the State can render 10 education is to continue to help it in the unsyotematic and irregular way which has hitherto proved an useful, considering each case as it ances, and adapting its measures to the particular needs whe hare brought before it. Aluch more may, no dombt, Ife dune for Srienee, but it may be done in life same way an lofure, by grants for special purpone: by expeditions Liend out for costly imestigations, perhaps by the foundation
of professorships and scholarships. But it would be a misfortune if the free action of individual thought were repressed by being obliged to conform to the rules of a State imposed system, or if individual exertion and private munificence were discouraged by the habit, already growing upon us too much, of loo'ing to the State rather than to oursetves for the removal of every difficulty and the promotion of every useful end.'

The Aihenatum, refers to what has been done by the State for science since the last meeting of the Britush Asociation at Aberdeen twenty years ago, and instaniez the Science and Art Department, the Natural History Museum, grants to the Royal Society, Sc., proceeds :-
"All this-and much more might be added-show : that British statecraft is not altogether disposed to frown coldly upon science and its devotees. And yet, after a! how little-how miserably little -has been officially done for the promotion of science compared with the magaitude of our scientific interests and the wealth of our country! It is only by looking abroad and observing: what has been accomplished in other lands that we realise our own shortcomings. Germany and France, Switzerland, and some of the other small continental States, have displayed a zeal for scientific progress and a liberal recognition of science which strikingly contrast with our own parsimony. Even when we have undertaken a good work our heart has often faited us in carr. ing it through with dignity and hberality. As a striking and recent cxample we may refer to the Chathenser evpe dition. Here was an expedition splendidly equipped tore scientific work at the expense of the nation; and rel, when the results of the expedition come to be pablished as voluminous reports, they are distributed with so spanng a hand, and are published at so high a price, as to be practically inaccessible to most men of science."

The Suturdy Nerbizu says that Sir I.yon Playfar's words are tempered by the consciousness that he mav some day be called upon to make them goond, and this adds the greater force to the adverse verdict which he in compelled to give, the censure which he cannot help pronouncing on the action of the State towards science in England. The reply to the question, What has the Sta:e done directly for science? the answer is, But little compared with the need, and that little often in the wrong way: As the pocket is said to be the most sensitive part: of our race, it is to be hoped that when the British Asesciation next meets in Aberdeen its future president we:" not be forced to repeat Sir L.yon Playtair's assertuon "English Governments alone fail to grasp the fact thas? the competition of the world has become a competitions in intellect."

The spacituler speaks of the address as like a semmon preached by a popular clergyman on behalf of seience. and wants to know why this brancl of thought need, help so much more than art, literature, or pursuits like archeotogy, or the study of the historic past. It ioubts whether in science, as in an army, honourable pover!! does not conduce to the highest efforts; and whether richly endowed schools will produce the most successf. professors, even in the inferior domain of applied science Wheatstone was great, and was paid? but how much 3 year, it asks, did Friar Bacon get? or did any body evet pay that early expert in natural science who discoveret tire?
"And remembering what the history of thonght bas been, we cannot but deprecate that spirit of sordidnest 17 which for some years past the claims of science have trees
pressed-the desire for salaries which has been so conspicuous whenever professors have descanted on the therits of research. We have not the slightest objection to scientific departments, and quite agrec with Sir Lyon Playfair that if the State wants fishes it could learn how to get them better by inquiring of the fishes-who, at least, tell no lies-than of the fishermen, who often do ; but still the picture he draws of the United States Government, with its dozen departments of inquiry into geology, palwontology, ichthyology, chemistry, and the rest, does not inspire us with enthusiasm. It is all very excellent, no doubt ; but it was all consistent with slavery. France may be handed over to Paul Berts and its judges still take bribes."

The Glasgow Hirald pronounces Sir Lyon Playfair's address a signal success. Those pedantic persuns who fail to see the uses of science might find in the address an admirable lesson against the perpetual snecring at what they are pleased to term the abstractions of scientific teaching. Sir Lyon, in a word, has emphasised the teaching that the safety and the progress of every country are one with scientific advance and the growth of scientific precision.

On the whole, then, it may be pronounced that the movement in favour of State aid to science, in the interest of the State itself rather than of any particular branch of human knowledse, has advanced and has taken a hold of the public mind. The need is universally acknowledged ; in many quarters it is proposed to meet it by the application of endowments, ancient and modern, to the changed requirements of the present day; in others-and these amongst the influential-it is boldly declared that the State must link itself, at whatever cost, with science if this country is to hold its ligh place amongst nations "The same considerations by which State interference has been justified elsewhere-its greater certainty, its anpler resources, its wider range-are all equally applicable here, and will come to be equally applied."

LETTERS TO THE EDITOR

[The Etitor does wot hold himself responsiblefur apinions cxpressad by his correspondents. Neither can he andertake to lefurn, or to correspond with the writers of, rejected manuscripts. No notice is laken of anonymous communications.
〔The Editor nrgenily requests corresfondicnts to keep their letters as short as possible. The pressure on his stace is so greal that it is impossible otherwise 10 insure the afpearance eten of communications containing interesting and novel facts.]

The New Star in Andromeda

On secing the report in yesterday's Stomlard of the remarkable change in the nucleas of the nelula of Andromedn, 1 fecided to write th you to mention that, accidentally noticing the netula on Sumbay evening, the 6th, I was struck by its conspicuousness, and set wondering how the ancients came to overlook an object so prominent. As frequent watching for ineteors has makle that region very fomiliar to me, it seems likely that an increase in general brightness has occurred, and made me specially notice its appearance.

What is of far more interest, however, I have learnt this morning that one of our scholary, Lawrence Richardson, noted and recordet an apparent change in the nebula, as he saw it in our 4f inch Cooke's refractor, almut 9 p.m. Scptember t. I append a verbatim copy from his diary of what is perhaps the first English observation of this remarkable phenomenon.
J. Edmund Clakk

Friends' School, Howtham, York, September 9
(Copy) "Sept. I . . . As a beginning [of the season's work) looked at Polaris, e Lyra and the great nehula of Andromerla. Noticed a small star in the centre of the latter which 1 do not
remember having seen before, and which is not dowil in a small drawing 1 made on September 15 , iSS4.

Nurwegian Testimony to the Aurora-Soun 1

How widespred in our days is the belief in the wand of the Aurora in Nornay, the following may show. In March, 1585, 1 deymatehet some thousand circulars to alf patt of the couniry containing different queties legarding the anrora, and annongot these alwo the following:- llave yon or your acyuaintances ever hearl any sound during aurora, and, in this cave. when and in what manner? Up to this date I have received answers to these queries from ity perions in difierent parts of the country. Of those there are not less than 92 , or 64 per cent., wholecieve in the existence of the 2urorasound, and 53 (3 o per cent.) of these again state they have heard it the onselves, whitst the other 39 cite tevtimonials from other people; only 21 (15 per cent.) dedane they never has : heard the sound or knos anything about $i t$, and the other 31 (22 per cent.) have not noticed the query at all. There are thus 92 affismations against $2 t$ negations.

The sound is describel in these answers in the following manner:-

Sizating (3)
Creaking or sizzling
An intermediate sound between sizzling and whizzing, sometimes as if a piece of paper were torn
A kind of sound as when you tear silk
Sizzling, th-s
Soft whizeing, alternative with sizzling
Soft crackling, sizzling
Hi-sing and crackling
I'artly hissiug, partly as a kind of rushing whiz
Whispering and glistering
Strong whiz 3)
Whis or whispering
Whiz, or distant, soft, continuous whizzing
A rather heavy rash, as from a distant waterfall
Ouict whizzing, hissing
Itissing. or hoy ! boy! hoy!
Whiz 2)
Kush, as from a stream
Soft hot distant crackling, as
from a lighted match-cond
Whizzing (5)
Whizzing in the air
Kush, as when sheep are clased
Soft whiz or hissing
Soft whiz
Soft hivsing, soft whiz
Whizeing or whistling
Rippling
Crackling (4)
Hissing
Hising noise in the air
Crack in the air
Din in the air
Continuous sounding, rolling
din in the air
Clashing
Flapping, as a flag before the wind
Partly as rustling or flapping of knils hanging loose fore the wind, partly as hissing from fire
Like the noise from a distant, before the wind-flapping flag, which now and then sends out a creaking sound
Like the suund from sails of a thip hanging luose in stormy weather

Munotonous whizzing and creaking, as when a sheet flaps before the wind
Like burning juniper-boughs
Brustling or crackling as if burning juniper
As from a feeble barning flame
Like burning dried juuiper
As from the flames of a conflagration
Cutting, hissing as from flame;
Crackling and creaking, a noise as from a large tire-flameav, for instance, burning dried boughs
Like the soand from a flight of birds
Noise as when a bind flaps in the air
Strung flapping noise, as when a bird passes lery near you
Crackling from fire and flapping from wings
As of a bird flying through the air with great velocity
Whizzing noise, as when striking the air with a whip
Noise as from the clart of an artow
Like the buzzing of a bee
Roaring noise, as when strong gualies of wind dart through the tree tops of the wood
Creaking sound as frout the blowing of the wind
Distant roar, as from a storm
Roaring as from a storm
Roaring as from a whirlwind
A; from a solt-blowing wint
soft breeze
Like the soft breeze throngh a wood
Whipping with whisk-brooms
Fanning
Soft noise, as when fanning with a piece of paper from a distance
Soft flapping with a jiece of cloth
Roaring of the sea
Heavy, hollow soar from the sea
Sweeping sound, as when dry show is sweeping over an ice-field
As whell one holds a cloth by two corners and flaps with it

Creaking, at other times, av when a sail strikes against the mast or flaps before the win!
Partly whizzing, partly as when a sail flaps before the wind
As when a sail flaps before the wind
Chrisliania, September 16

As when a thunder-clap passed over us from west to easl oft crackling, as from electric sparks from an electrical machine
Is when stroking a cal"s back against the hair,

Sorites Trosatont

A White Swallow

Durint: our walk to-day on the Kendal Road, near lleversham, my brother and I were very much surprised to see a white swallow annong-1 a number of the orlinary kind. The lird's plumage was entirely white, except the lower part of the breast, which was greyish.

We are quite sure of its identity, as it flew around us several limes.

Can you tell us whether a white swallow is really att uncummon sight?

Mary likigtis
Sandside, near Milnethorpe, Westmoreland, Leptember 4

THE HUHE COLLECTION OF ASIATIC /IKNS

FOR some time past the interest of ornithologists has been aroused by the rumour that $\mathrm{Mr} . \mathrm{A} . \mathrm{O}$. 11 ume, of Simla, had offered, or intended to give, his celebrated collection of Asiatic Birds to the Trustees of the British Museum ; and I am glad to be able to inform the readers of Nature that the whole of this collection is now safely housed in the Natural History Museum, the second half having been delivered by the P. and O. Company on the 18 th of last month.
Those of our readers who are not ornithologists may wish to learn something in the first place about the collection itself and its generous donor.
Mr. A. O. Hume, C.B., occupied formerly a high position in the Bengal Civil Service, and devoted for many years his leisure hours to the study of ornithology, and especially of the birds of India. His aim was to form a collection of birds of every part of the Briish Asian Empire, in which every species should be represented by a complete series of specimens illustrating its range and its variations of colour according to age, season, or locality. For this purpose he organised a system under which a great number of local observers and collectors (in some years numbering nearly 100) worked for and with him. He fitted out expeditions with a staff of collectors and taxidermists, under his own leadership or that of his able former curator, Mr. Davison, into Scinde, Coorg, Manipur, the Malayan P'eninsula, Tennasserim, and the Andaman and Nicobar Islands ; he acquired by purchase or donation the Mandelli collection from Sikkim and Tibet, Hrook's beautiful series from North-Western and Central India, Adam's Sambhur birds, Bingham's collections from Delhi and Tennasserim, Scully's collecton from Turkestan. The expense incurred in forming this collection was in proportion to the enthusiasm with which Mr. Hune worked. He had built at Simla a museum for the reception of the collection which should finally form the basis for the preparation of a comprehensive work on the avifaund of the vast region which he was exploring. But whilst thus engaged Mr. Hume, with his wonderful actuity and ready pen, which had rendered him facile princips in all matters regarding Indian ornithology, published numerous papers in an ornitholengical periodical, stray Feathers, which he founded and conducted for ten or eleven years, as well as several scparate works - viz. "Notes on the Indian Raptores," "Nests and F.ggs of Indian Birds," " List of the Birds of India," " Game Birds of Indra, Burmah, and Ceylon," and others.
However, during the last few years naturalis1s, to their great regret, lne:me aware that Mr. Hume's intetest in
social and political nature ; and finally, the grievous loss by theft of an enormous mass of ornithological manuscripts, comprising his materials for "The Birds of the British Asian Empire," and the whole of his Muscum Catalogue, contributed to his determination to abandon his intention of working out his collection, and to present it to some muscum where others might utilise the materials he had collected.
It is very gratifying that Mr. Hume, "considering the British Museum as the one that has most claims upon him, and Mr. Sharpe as the nan most capable in Europe of doing justice to the collection," offiered to present it to the Trustees of that institution. The Trustees, fully aware of the scientific importance of the collection, had no hesitation in accepting the offer. Still, before actually transferring the collection, Mr. Hume was desirous of completely rearranging and placing it in thorough good order, and also of preparing at the same time a Catalogue of the Birds of the Indian Empire containing the results of his long and careful studies. Unfortunately this project could not be carned out owing to the difficulty of finding a competent coadjutor in the work, or rather of obtaining the means of properly remunerating such a person. And as there was great rick in leaving the collection without due curatorial supervision exposed to the deteriorating influences of another rainy season in India, the Trustes obtained Mr. Hume's consent to transmitting the collection without further delay to England.
Mr. Sharpe, who is always ready to sacrifice his personal comfort to duty, staried for Simla aluost at a moment's notice, and although, unseasoned as he was, he had to travel and work during the hottest part of the year, he seems to hiad to help him in
tion. Ile started completed his wor the Museum on A on his return the ceded him safely lod half was delivered a tw, any The 63,000 packed of 30 c inspectio convey a the Natil such a col will proba enveloped the species labels being skins themsel to the precau likely to hart Specimens whic to which no spec during packing.
The scientinic v. to be measured by the judgment whici history attached to n ness of the series. contains about 2000 sp species is represented number in the majority a fair illustration of its the number of duplicate Mr. Sharpe during the pro probably be much smaller I superficial inspection ; and! carnest wish
intact, will be strictly carried out. No doubt a considerable number of duplicates will be eliminated, and, according to the wish of the donor, of these a complete set has to be transmitted to the Museum of Comparative Zoology of Harvard College, whilst the remainder are to be utilised for the benefit of the ornithological collection generally.
Ornithologists need not go many years back in recalling to their memory the extent of the collection which the late Mr. G. R. Gray had arranged in such a handy fashion in and about his study in the old building at Bloomsbury. What was then regarded a good reference collection has since been enriched by the addition of the Wallace collection from the Indian Archipelago, Capt. Pinwill's Malayan birds, Sharpe's African collection, the Gould collection, Salvin and Godman's Furopean, Australian, and American collections, the Sclater collection, and now by this immense collection from every part of the Indian Empire. Years of unremitting labour will be required to get these vast materials into order and to work them out in a manner which will satisfy the aims of so advanced a branch of science as ornithology is at the present day.

Al.fert Genther

THE FORSTER HERBARIUM

BOTANISTS will learn with pleasure that this herbarium, a portion of the collections of Cook's second voyage, has been accuired by exchange from the Liverpool Corporation for the Kew Herbarium; and it will be incorporated in the general collection. From the introduction to the "Catalogue of Plants" in the Botanic Gardens at Liverpool, published in 1808, it appears that the proprietors of that establishment possessed, at that date, about 3000 specimens of dried plants, "collected by the late Dr. Forster in his voyages to the South Seas, with large and valuable contributions from his friends and correspondents." How these plants came into their possession is uncertain, but they could hardly have been presented to them by Mr. Shepherd, the Curator, as stated by Sir Joseph Hooker in the introductery essay to his Flora Nove-Zealandix," or his name would almost rtainly have been mentioned as the donor. At least may be inferred, because on the very next page a igh tribute is paid to Mr. John Shepherd for his to the Garden. Be that as it may, the collection tly be accessible to botanists generally, thanks verance of Sir Joseph Hooker and the sensible matter taken by the present members of the vhen it was represented to them that these re practically useless where they were, he at a botanical establishment like the Corporation deserves to be rethirty years ago, when Sir Joseph writing his is Flora Nove-Zea--ulien custodians of the collecto Kcw for comparison refused.
m with the Challexistence of was deter-
blivion,
scting
an assistant. On arriving at the Cape of Good Hope they fell in with Sparmann, who, at the instance and expense of Forster, was added to the scientific staff, and continue 1 with them until the return to the Cape in 1775. Considerable collections of plants were made in New Zealand, many parts of Polynesia, and the extreme south of America, and smaller collections in some of the Atlantic Islands, including St. Helena, Cape Verd Islands, and Canaries. On returning to England the Forsters soon commenced publishing the botanical results of the expedition, and an authenticated set of all the published plants at least was deposited in the British Museum. The Cape plants, however, which they did not publish, are apparently not represented there. The first botanical work, "Characteres Genera Plantarum," appeared in 1776, and the title-page bears the names of both father and son, and this was the only one published in England. For the rest, the botany was done by the son alone. His "Florula Insularum Australium Prodromus " appeared at Göttingen in 1786, and "De Plantis Esculentis Insularum Oceani Australis" at Berlin in the same year, followed by "De Plantis Magellanicis et Alanticis" at Göttingen in 1787.

These works, we believe, constitute the whole of the published botany of the expedition, and, though very meagre, are extremely interesting, being the foundation of our knowledge of New Zealand, Antarctic, and Polynesian vegetation. The collection now acquired for Kew is excellently preserved, and the plants mostly named and localised. It comprises altogether 1359 species, 785 of which were collected on the voyage with Cook, and the rest, from various parts of the world, are probably some of those alluded to above as having been presented to Forster by his friends. The collection includes a large proportion of the plants published by the Forsters, but it is not complete. Roughly, there are 187 species from Polynesia, 119 from New Zealand, 21 from the extreme south of America, 23 from the Atlantic 1slands, including all those described by Forster from St. Helena, and 9 from Australia. Besides the foregoing, which are all phanerogams, there are 36 ferns, but they include only a small portion of the species described by Forster.

In addition to this botanical work Ceorge Forster's name appears on the second title-page of the Narrative of the second voyage as joint author with James Cook. He died, a violent death, we believe, at Paris in 1794 four years before the decease of his fatber. The philosophical writings of the latter, entitled "Observations made during a Voyage round the World," London, 1778 , deserve special mention
W. Botting Hemsley

THE INTERVATIONAL METEOROLOGICAL COMM/TTEE

THIS Committee held its third meeting in Paris at the Ministry of Public Instruction on September 1 to 8. The Meeting was attended by the President, Prof. Wild (Russia); the Secretary, Mr. R.H. Scott; Profs, Buys Ballot (Holland), Hann (Austria), Mascart (France), Mohn (Norway), Dr. Neumayer (Germany), and Prof. Tacchini (Italy). M. de Pinto Capello (Portugal), the only remaining member, was unfortunately unable to be present.

In addıtion certain gentlemen were present by invitations at sone of the meetings, among these we may mention Brigadier-General Hazen (Chief Signal Officer, U S.A.), Prof. Hildebrandsson (Upsala), and M. Leon Tesserenc de Bort.

The following is a brief notice of the most important odta discussed, with the action taken on each.
Wrlable report on cirrus observations by the Comaporited at Copenhagen (1882), MM. Capello,
sys:em of reports from ships' $\log s$ which has been carried on since Christmas by the Meteorological Offices of France and this country, and to endeavour to improve it.

At the same time a proposal made by M. L. Teisserenc de Bort for the telegraphic transmission of a daily résumé of the weather in the New England States was considered. General Hazen expressed perfect readiness to furnish such reports, and it was resolved to procure such telegrams provided the cost of the service could be guaranteed by the European offices which would participate in it.

It was decided to recommend that barometrical observations should be corrected for the force of gravity at lat. 45°.

A letter from General Hazen respecting the reduction of barometer readings to sea-level, which has been lately circulated, was considered, and two memoranda on the subject from Hamburg and St. Petersburg respectively were handed in and will be printed.

It was considered disirable, as absolute synchronism in weather observations appears to be unattainable in Europe, that the same hours of local time should be adopted in each country (which would mean a change froni 8 a.m. to 7 a.m. in this country).

It was decided that each of the International Reduction Tables (proposed by the Committee at its meeting at Berne in 1830) as did not involve any question which is still in an undecided state (such as, e S^{5}, hygrometrical tables, or tables of sea-level reduction; should be published.

It was decided to recommend that the next Congress should not take place till 1889, and Prof. Mascart stated that probably the French Government would propose that it should be held in Paris.

THE BRIT/SH ASSOCI.ATIO.V

JUDGED by the quantity of work which the sections have put through their hands the Aberdeen meeting has been successful almost beyond precedent. Moreover much of this work has been of the best quality. The addresses come up to a very high standard, and in the first four sections, at least, not a few of the papers were really important original contributions to science, while the discussions in Sections A and 1 B on certain great questions in physics and chemistry were a marked and conmendable feature - a feature which, it is hoped, will in time become common to all the sections. Mr. Alurray's lecture on deep-sea research has been justly considered one of the leading events of the meetur ; a full repurt will appear in our columns.

At the concluding general meeting a deservedly hearty vote of thanks was accorded to the Alserdonians for their abundant hospitality. Birmingham seems determined to make next year's meeting a memoratbe one: and we may remund our readers that Sur Willimn llawson, of Mçill College, Montreal, wall he the Prewtent

The total number of persuns what attended the Vberdeen meeting was 2:03.
The following is a synupos of granis uf memes appropriated to scientaic purpusce by the lieneral Commatee at the Aberdeen meetug. The names of the members who would be entitled to call on the Cieneral Treasurer for the respective grants are prelived :-

A - Mathemath ant Piy

- Foaler, I'rof. G. Carey - 1 eltral stan
-Stewar1, I'rof. linlisur-Soar Kadiation
- Stewar1, I'rof. Balfour-Metcur ligical Chepretow
Darwin, Prof. (:. II.-Intructi n. foo tun4
*Stewart, I'rof. Halfuur-Comparing and nelic Oliservalson-

- Brown, I'rof. Crurl lter Xevis Olwer
- Arunlring, i'rof,-I'hy*eal and 1: lectranysis

B-Chemistry

Mdeol, Prof.-Silent Dicharge of Electricity into Atmorephere

- Williamson, Frof. A. W.-̈Chemical Nomenclature ...
C-Geolisy
- Blanford, Mr. W. T.-Fossil Plants of the Tertiary and Secondary lied
Hughes, Prof. T. Mck.-Caves of North Wales
- Etheridge, Mr, I.- Volcano Phenomena in Japan
- Graniham, Mr. R. B.-Erocion of Sea Coases

220

* Bannerman, Mr. II.-Volcanic Phenomena of V̈ecuvius
-Evans, Dr. J.-Geological Recorl
*Etherilge, Mr. R.-Fossil Phyllopoda ...
D-Biology
*Stanton, Mr. II. T.-Zoological Record
- Murray, Mr. J.-Marine Biolegical Station at Granton.
- Lankester-Prof. Ray-Zoological Station at Naples...

Cleland, Prof.-Revearches in Food Fishes at St. Andrew's
*Cordeaux, Mr. J.-Migration of Birds
Cleland, Prof.-Mcchanism of Secretion of U'rine

> E-Gcosraphy

Walker, General J. T.-New Guinea Exploration
Watker, General J. T.-Investigation into Depth of I'ermanemly Frozen Snil in Polar Regions...

> F-Economic Sicience and Statistics

Silgwick, Prof.-Regulation of Wages under Sliding scales

> G-M/whanics

Barlow. Mr. W. H.-Effect of Varying Stresses on Metals ...

II -Antiropoley

Garson, Dr.-Investigation into a Prehistoric Race in the Greek Islands

- Tylor, Ir. E. B.-Investigation into North-Wentern Triltes of Canada
- Gatton, Mr. F.-Kacial Characteristics in British Ivles.

- Reappminted.

REPORTS

RiAnt if the Committer, ronsisting of Mr. Rownf H. S .7t (Sare'ary), d/r. J. Nurm,n Lexdym, Prof. G. G. Stahes, Pr... Eatfuar Şcurrt, uni Mr. G. F. Symons, afpoimed jor \& partase of co-oforsting' with the Alicionolusical Swaety of id. Mharitius in thcir propusch publicatwon of Dauly Symopen. Churts of the Indian dian frum the your 1861. Drawn tap ha Alr. R. /1. Siotl. - The Committee forward, for the inglect: : of the members of the Astociation, a copy of the chasts for the memh of Narch, :S01, with wate specimens for Janmary of the same yeat, and th- complele number for February which appearel some yean agn. These documents have reeently amwel frum the Maurisus, As the work has now mad dectiled progress the Commitee have applied for and wbename the grant of 50 . Jlaced at their disposal by the General Ce imitiec. A, soon as the requisite docaments are received
Ir. Meldrum the Committec will submit a formal sccount their expenditure with the necesary vonchers.
comparisons of the instrument proposed by the Committee with an ordinary actinometer, to find whether the arrangement suggested by the Committee is likely to succeed in practice. The Committee would therefore confiue their action for the present to the carrying out of such a series of comparisons. (3) The size of the instrument mighi be the same as that of Prof. Stewart's actinometer. (4) The instrument should have a thick metallic enclosure, as in the actinometer above-mentioned, and in this enclosure there should be inserted a thermometer to record its temperature. Great pains should therefore be taken to construct this enclosure so that its temperature shall be the same throughout. (5) The interior thernometer should be so constructed as to be readily susceptible of solar influences. It is proposed to make it of green glass (a good absorber), and to give it a flattened surface in the direction perpendicular to the light from the hole. (6) It seems desirable to concentrate the sun's light by means of a lens upon the interior thermometer, as in the ordinary instrument. For if there were no lens the hole would require to be large, and it would be more difficult to prevent the heat from the sky around the sun from interfering with the determination. Again, with a lens there would be great facility in adjusting the amount of heat to be received by employing a set of diaphragms. There are thus considerable advantages in a lens, and there does not appear to be any objection to its use.

Third Report of the Committer, consisting of Prafs. G. H. Darwin and F. C. Adams, for the Harmonic Analysis of Tidal Obsercations. Drawn up by Prof. G. 11. Darcin.-"Record of Work during the past Year." The edition of the computation forms referred to in the second report is now completed, and copies are on sale with the Cambridge Scientific Instrument Company, St. Tibbs' Row, Cambridge, at the price of $2 s .6 d$. each. Some copies of the first report, in which the theory and use of these forms are explained, are also on sale at the same price. A few copies of the computation forms have been sent to the librarians of some of the principal scientific academies of Europe and America. In South Africa, Mr. Gill, at the Cape, and Mr. Neison, at Natal, are now engaged in reducing observations with forms supplied from this edition. A memorial has been addressed to the Government of the Dominion of Canada, urging the desirability of systematic tidal observation, and the publication of tide-tables for the Canadian coasts. There seems to be good hope that a number of tide-gauges will shortly be set up on the Atlantic and Pacific consts, and in the Gulf of the St. Lawrence. The observations will probably be reduced according to the methods of the British Association, and the predictions made with the instrument of the Indian Government. Major Baird has completed the reluction of all the tidal results obtained at the Indian stations to the standard forms proposed in the Report of 1883 , and Mr. Rolerts has similarly reduced a few results read before the Association by Sir William Thomson and Capt. Evans in 1878. All these are now being published in the Aroceelings of the Royal Society, in a paper by Major Bairl and myself. A large number of tidal results have been obtained by the United States Coast Survey, and reduced under the superintendence of Prof. Ferrel. Although the methorl pursued by him has been slightly different from that of the British Association, it appears that the American results shoukd he comparable with those at the Indian and European ports. Prof. Ferrel has given an assurance that this is the case; nevertheless, there appears to be strong internal evidence that, at some of the ports, some of the phases should be altered by iso. The doube thus raised will probably be removed, and the paper before the Royal Suciety will afford a table of reference for all -or nearly all-the results of the harmonic nethot up to the date of its publication. The manual of the tidal olservation promised by Major Baird is now completed, and will be published shortly. This work will explain fully all the practical difficulties likely to be encountered in the choice of a station for a tide-gauge, and iu the erection and working of the instrument. Major Bard's great experience in India, and the suecess with which the operations of which he has had charge have loeen carried out, render his advice of great valuc for the prosecution if tidnl ubservation in other countrics. The work also explaius is method of m uring the tide diagrams, entering the figures 4. Conmuta, cowniting of Fnif. Bolfowr

Mr. R. H. Scott, and Mr. Fohnstone Stoncy, appointed for the furpose of confrating zuith A/r. E. 7. Lowe in his projert of establishing a Metconological Obscriatory near Chepsesto on a fermanent and scicntific basis.-Since their re-appointment in ${ }^{1} 885$ this Committee have niet twice, and have placed themselves in correspondence with Mr. Lowe, to whom the following letter was written by their Secretary: "The Committee request me to point out to you that the main feature of your proposal, which interests the British Association and the scientific public generally, is the provpect which it hold, out of the entablishment of a fcrmanchl institution, by means of which meteorological constants could be determined, and any secular change which may take place therein in the course of a long period of year be ascertained. It will be for you and the local authorities to decide what amount of work of local interest should be contemplated, and on this will the scale of the observatory mainly depend. The Committee are therefore unable to say what amount of capital would be required. They would point out four conditions which they hold to be indispensable :-(1) The area of ground appropriated should be sufficient to ensure freedons froms the effects of subsequent building in the neighlowrhood. (2) A sufficicut endownent fund of at least 150 , annually should be created. (3) The control should be in the hands of a body which is in itself permanent as far as can be foreseen. (4) The land for the site shall be handed over absolutely to the ahovementioned governing body. Until the precise amount of the local meteorological requirements is ascertained and further progress is made in the seheme the Conmittee consider that they would not be justified in any more prominent action than that which they have already taken.

Refort of the Committe, consisting of Profs. A. Fonnson (Secretary), 7. G. MacGrgor, 7. B. Cherriman, H. T. Boter, and Mr. C. Carpmact, appointed for the purpose of promoting Tidal Observations in Camada.- The Committee, in orler to strengthen their representation to the Canadian Government on the necessity of estallishing stations for continuous tidal observations, deemed it well to get the opinions of Boards of Trade and ship-owners and ship-masters. On inquiry it appeared that the Montreal Board of Trade were at the very time considering the guestion, which had been brought independently before them. On learning the object of the Committee they gave it their most hearty support, and addrewed a strong memorial on the subject to the Dominion Government. The Boarts of Trate of the other chief ports of the Dominion also sent similar memorials. The ship-owners and masters of ships. to whom application was made, were practically unanimous in their testimony as to the pressing need for knowlelge on the subject. The reprenentations were made through the Ministen of Marine, with whom an interview was obtainet, at which a memorial was submitterl. Copies of the answers of the shijmasters (a large number of which had been receivefl) were submittel at the same time. The reply of the Minister of Marine stated that, owing to the large outlay on the Georgian Bay Survey and on the expeedition to Huckon's Bay during the past summer (1885), the Government did not propose to take action in the matter of tidal olsservations at preent. The Conmitiee have reason to believe that if the financial prospects improve by next session of Parliament the Govermment will take the matter into earnest con-ideration; they therefore uuggest that the Committee be reappointed.

Secentonth Refort of the Commithce, consisting of Profs. Evaret and Sir W. Thomson, Mr. G. F. Symuns, Sir A. C: K'amsay, Dr. A. Grikie, 1/r. 7. Glaisher, Mr. Ponstlly, Prof. Edwald Hinll. Prof. Prstarich, Dr. C. Le Vaer Foster, Prof. A. S. Herschel, Prof. G. A. Letour, Mr. Galloway, Mr. Josefh Dikinson, Mr. G. F. Deacon, MIr. E. Wdhcral, and MIr. A. Strahan, affointal for the purpose of incestigating the Nate of Incrase of C'nderground Timperature downzurds in vartivas Localities of Dry Land and under W'ater. Drawn up by P'rof. Everctt (Secretary). - The present Keport is for the two years since the summer of 1883 . Observations have been taken in a deep bore at Kichmond, Surrey, by Mr. Collett Homerbham, C.E., the engineer of the boring, on the prenises of the Rich mond Vestry Waterworks, on the right bank of the Thames, and about 33 yards Irom high water mark. The surface is 17 feet alove Ordnance datum. The ulyer part consists of a well 253 feet deep, with an internal diameter of 7 feet at top and 5 feet at bottom, which was sunk in 1876 for the purpose of supplying water to the town of Kichmond, and carried down to the
thalk. From the buttom of the well a 24 inch bore-hole was sunk to the total depth of 434 feet, thus penerrating 181 feet into the chalk. This portion of the work was completed in 1877. Alsove the chalk were tertiarics, consisting of 160 feet of Lon. don clay, 60 feet of the Woolwich and Reading beds, and some underlying sands. The water yielded at this stage was about 160 gallons a minute, and, when not depressed by pumping, was able to rise 4 or 5 feet above the surface. Its ordinary level, owing to pumping, was about 130 feet lower. In 885 the Richmond Vestry determined to carry the bore-hole to a much greater depth, and the deepening has been executed under the direction of Mr. Itomershain. The existing bore-hole was first enlarged and straightened, to enable a line of cast-iron pijes, with an internal diameter of $\mathbf{1 6 1}$ inches, having the lower end driven water-tight into the chalk at a depth of 43^{8} feet, to be carried up to the surface. The total thickness of the chalk was 678 feet. Below this was the upper greensand, 16 feet thick; then the gault clay, 201 $\frac{1}{2}$ feet thick; then to feet of a :andy rock, and a thin layer of pho-phatic nodules. Jown to this point the new buring had fielded no water. Then followed a bed 871 feet thick, consisting mainly of hard oolitic limestone. Two small spring of nater were met with in this bed at the deptbs of 1203 and 1210 feet, the yield at the surface being it gallons a minute, with power to rise in a tube and overflow 49 feet above the ground. A partial analysis of this limestone rock showed it to contain 24 jer cent. of sulphisle of iron in the form of pyrites. At the depth of 123) feet this limestone rock ended, and hard red sandstone was found, alternating with beds of variegated sandy marl or clay. After the depth of 1253 feet hat been attained, the yieht of water steadily increased as the boring was deepenel, the overflow at the surface being 2 gall ins a minute at 1254 feet, 8 gallons at 1363 feet, and 11 gallons at 13^{87} feet. It rose to the top of a tulie carried 49 feet above the surface, and overflowerl; and a prewure-gauge showed that it had power to rise tzo feet alouve the surface. The tiameter of the loore was 16 j inches in the chalk, 132 inches in the sault, 11 ? incles, in the coslitic limestone, and at the depth of 1334 feet il wav reluced to a little under 9) inclors. At 1337 feet the melhoot of boring was changed, and, intead of an annular crrangement of stecl cotters, a rotary diamond rockboring machine was employed. The bore-hole, with a diameter of 5$\}_{2}$ inches, was thus carried down to 1369 t leet, at which depth, lining tubes having to tre inserterl, the dhameter was reducet to $7!$ inches, and thin stee was continues 5141447 feet, at which depth the boring was stopped. The bone-lule was lined with stroug iron tube down to the depth of 1,304 feet ; and thove prortion of the tulne that are in proximut? tothe lepths where water was truch were Irtled with fouli to admet the wates nato them Three , breshathon of tempenature taken with an meeted Negrelti maxmum at the dephb oi 1337 fert: ; when the Imore-hole wis tu. 1 if water iecorilet $750^{\circ} \mathrm{F}$ In the trit olmervanun, Match 25. isS. the thermometer was left for an hour and a guarter at the Imettom of the bore hule, and three weehs had elapell sit e the water was disturbell ly be ring: He seeond ofservation wastahen on March 31, when the thermomel r was 51 homs at the Inettom. In the third ulservation opecial !recautions were taken th prevent convection. The thermometer was fixed insule a wrought tron tube, 5 feet long, opeln at tottum. The thernowaster was near the lower end of the lake, and was suopetuled from a water tught novolen phas. uglaly driven inte the tule. There was a space of several inche lietueen the plup, and ine mometer, ant this part of the fulce was pherced wilb bules to allow the escape in any cold water which carried down by the tube. The tulce was une of bollow borng-ruds used in winking the diamond dri By means of these it was lowered very slowly, to ave ance of the water as nuch as ponsible ; and the tube the thermumeter was gradually worked through the bottom of the bore-hule. The lowerng occupael fiv and was completed at noon on Saturday, June 7 mixed with sugar, for the purpuse of slow setting. was diately lowered on to the surface of the sand, and a bove mixture of cement and cand, making a total feet of cement plugging. The thermometer for three full days, the operation of rasing noon of Tuenday. June so, and comple thermometer again registered 754° F., etad two previous observaliuns which were tald ito previous observations which were tald
lower part of the bore prevents any downward convection of colder water from above.

The boring has since been carried to the depth of 1447 feet, with a diameter reduced to $7 \$$ inches, and Mr. Homersham lowered the thernometer to the bottom without plugging. It remained down for six days (February 3 to 9,1885), and gave a reading of $76 \exists^{\circ} F$. The water overilowing at the surface had a temperature of $59^{\circ} \mathrm{F}$. To deduce the mean rate of increase downwards, we shall assume a surface temperature of 30°. This gives for the first 1337 feet an increase of $25 \frac{1}{}^{\circ}$, which is at the rate of $1^{\circ} \mathrm{F}$. in 52.4 feet, and for the whole 1447 feet an increase of 264°, which is at the rate of $1^{\circ} \mathrm{F}$. in $54^{\circ} 1$ feet. These results agree well with the Kentish Town well, where Mr. Symons found in 1100 feet an average increase of 1^{\prime} in 55 feet.

Mr. Galloway has furnished observations taken during the sinking of a shaft to the depth of 1272 feet in or near the Aberdare valley, Glanorganshire. The position of the shaft is un the slope on the east side of the valley, about midway between the bottom of the valley and the summit of the fill which separates it from the Merthyr valley. The mouth of the shaft is about 800 feet above sea-level. Obervations were tahen at four different depths- 546 feet, 7 So feet, 1020 feet, and 1272 feet-the thermometer being in each case inserted, and leff for twenty-four hours, in a hole bored to the depth of 30 inches at 3 distance not excseding 2h yards from the bottom of the shaft for the time being. About eight hours elapsed between the completion of the hole and the insertion of the thermometer. The strata consist mainly of shales and sanilstone, with a dip of 1 in 12, and the flow of water into the shaft was about 250 gallons per hour. The first of the four otnervations was taken in the fireclay under the Abergorkie vein : the second in strong "chin" (a local name for argillaceous shale) in disturbed ground ; the third in hastard firectay under a small rider of coal previously unknown ; the fourth in "clift" ground two yards above the red avh vein, which overlies the 9 -foot seam at a height of frum 9 to 12 yarils. The observations were as follow :-At 546 feet, $56^{\circ} \mathrm{F}$. ; 7 so feet, $504^{\circ} \mathrm{F}$. ; 102) feet, $63^{\circ} \mathrm{F}$, ; 1272 feet, $60 \mathrm{f}^{\mathrm{F}} \mathrm{F}$. Comparing consecutive depths from 546 feet downwards, we have the following increments of temperature :- 33° in 234 feet, giving $1^{\prime \prime}$ for 67 feet ; 33° in 240 feet, giving 1^{\prime} for 69 feet ; 34° it 252 feet, giving 2^{\prime} for 72 feet ; showing a remarkably regrules rate of increase. A comparison of the first and fourth observations gives an increare of 10 f in 726 feet, which is at the rate of ' r, in $6 y^{\prime} t$ feet. Is a clieck upon this result we find that this rate of din rates reckined uformerds from the smallest depth $\left(546\right.$ feet) would give a surface temperature of $\left(56-7.9-14^{7} \mathrm{I}\right.$. whech, av the elevation is sou feet, is probalily very near the truth.
Mr. Gatule hav sent an olserration of temperature taken by himself in the fin f of the Mersey turnel in August, 888 3. The temperature was 53 , the septh below Ordnance datum being Q2 feet A great fuantity of water from the river was percolatins; thengib the owles of the tunnel. On August 13, 1854, be
 Kepoun The ec und olservation was made at the same depth as the firat (1317 figh hell same pit and level, and under the wame -lucumitanc to remann fourt (is hours. Ihe namely 60°, contribation to ground in the E.a
more years' results
wre between them
up by Mr. F. S. Gariner, F.G.S., F.L.S.-The report opens with a list of all the principal works on the British Tertiary flora down to the year 185 : The number of species that hal been more or less describel were :-From the Thanet hels, 3 ; from the Reading beds, 9 : from Sheppey, 10S; from Alum Bay, \&c., 43 : from Bournemouth (fleducting those not peculiar), 11 ; Bovey Tracy, 50 ; Upper E.ocenes, 13 ; Mull, 9 ; Antrim, about 16 ; making a grand total of 262 veccies, not a tenth part of which, Mr. Gardner anticipates, would survive a rigorous examination. The study of only one group of plante-the Gymnosperms-has been the serions business of the past three years; for not only have I had to study, but in the majority of cases to find the specimens as well. I trust that the results attending the expenditure of the grant I have been favoured with may be con-idered satisfactory, atrl these 1 now proceed to detail.

Bracklesham Ficra.-Tuu visits have been made to Selsey. The beds, it is well known, are marine, but a few terrestrial fruits are from time to time 1 rowured from them. I was able to make a large collection of fussil thells while looking for plants, which, leing from the highest beds, are less known, and are interesting as illustrating the panage from the Bracklesham to the Barton fauna, which is more gradual, I think, than is supposed. The surface of one of these beds is dotted over with fossil Posidowias, a marine monocutyledonoas plant identical with the species now inhaliting the Mediterranean. It had not been previously recorded as a British foxsil, though another species is alpundant in the contemporary beds of the Culcaire prossier of the Paris basin. In our species the rhizomes rallate from a centre, whilst in the French and other Eurapean fossil species they are long and branching. They are found among beautiful Tellima shells, preserving, to a lange extent, their banded colours. The only other fossil plant to record here is a Nupadites, which, unlike those of the brournemouth beds, is large, flattened, and oval.

R'adin; Beds.-A consiterable portion of the grant has been expended in working these heds with, 1 am pleased to report, the happiest results. The flors is found in the Katecgrove pit, on the laanks of the Kennet, immerliately beneath the mottled clay. The matrix is a fine porcelainous fuller's earth interstratified with sand, and the beds seem tery local. The limit of the pit lecing reached, it is not probable that any part of the bets will be exposed for long. I have illuntrated a beautiful specimen-one of several-of Antenia sthiretocra, Nape, from these beds. This fern is highly characteristic of the lower Eocenes in France, but had only previously been found in the middle Bagshot beds of Bournemouth in this country. I have also illustrated another fern (?) fiom these beds, of which I have only as yet found a small fragment. The fignes are therefore taken from specimens found nany years ago ly l'rof. I'restwich. Other valuable alditions to the Keading flora are some splendid specimens of a conifer, which I can see no ground for distinguishing frons Tiesstium hetcrophythem of China. Another interesting specimen from Reading is a pine leaf of two needles. about the size and substance of those of P. maritima, the first pine fuliage, I believe, ever found in the English Eocenc. One lear hed is almost wholly marle up of leaves of Piutonis, and a hed alove is fairly sprinkled with fruits of the same. Fruits are very abuslant, and inclufe four kinds of leguminous pods, and there are ining flowers. As a result of this work the Reading no lunger appears so completely distinet from that of 5iplet Bedb.-I regard these as thoroughly distinct in oge Fof Reading- I have not found, in the caurse of two for the piarpose, any bed worth collecting from, puch nuw exist at Lewisham.
4.- We were able to reach a lear bed in the it Studland, ind to obtaio a great number of 1 ill of whieh nie quite new to me. They are 4 leaves and fruits, which will require time Yo no Coniferie among them, and I am mob-a L youdinm, very near to that of endium lankizaniem, procured abunde in a different hed at the same

Mi Salvinia to the furna, not exclusively comaned to
6. from Highclifi was

The bels are rapidly awwuing an angle of repose, and becom. ing deeply buried under dibris, so that some of them are no longer visible exeept by making excavations. Though the Barton scries is one of the most intere-ting of our Eocene formations, the detaited bedding has not been worked out like that of the Brackleshan series below and the Headon series above, and the greatest misconceptions seem to prevail as to the number of species of fossils that it contains,
Bournemumth Bols.-Five series of leaves were obtained this year by Mr. Keeping and myself, the most noteworthy of which are some specimens of Coldya which exceed any I had previously seen. I have illustrated a nex and very distinct species of Afian'um, a fragment of what niay be Gymno rammo, and a trifill group of Polypodium leaves, which seem to be different from either of the species previou-ly recorded.

The London Char.-Mr. Shrubsole has kindly sent me some of the be-t of the fruits that have been fonnd. I have not made any complete studies of them vet, but they promise to afford results of the highest value. Among a few recognised is the very unmistakable seed of Verschaffithin, a genus of palms from Seychelles quite new to fossil floras.

Gurnet biay Bedts.-I have been able to ascertain that another fern rival, dinemia subcrdacra in range, Chrysolinm tondaunem, which evtends from the town of Bagshot upwards into the Bembridge beds. The plants are as a rule dreadfully macerated and chopped up, Anong them are simall fragments of a Clei Aenia, which, though not very beantiful, is a very important fern, coning from the lwotizon. By far the most important discovery, however, is that of Doliostrobur, the first really extinct conifer that I have met with in Iritish Eocenes. It belonged to the trile of Araccarioc, and its identification has been thoroughly confirmed by corresprontence and the interchange of specinenwith Dr. Marion, the well-known botanist of Marseilles. It is certain that during the Eocene periokl, as the temperature increased from the base upward to the Midlle Bagshot, when the maximum of heat seems to have prevaiked, there was a tendency for the plant work to move northward. It is equally certain that in the later balf of the Eocene, as the temperature began to decrease, the movement was in the opposite direction, and we find in the Enropean Miocenes of Switzerland and Italy a number of plants that at an earlier periol were growing in the far nurth.

Report of the Commitler, consisting of H. Baucrman, F. W. Wuiller, and Dr. TI. Johnston Lavis, for the Inezstakation of the Fhatic Phenomicna of lesweius, by l/. Johniton Laveis, M.D., AG.S., Ripolfer. - The unfortunate outbreak of cholera in Naples and the stringent local quarantine measures prevented work on Vesuvius being carried out during the autumn of 1884 . Nevertheless, daily observations were matle of the variations in the actisity of the volcano, of which a careful recorl has been kept. All inportant changes of the crater-plain, and in the cone of eruption, have twen photographed. Descriptions of the small eruption of May 2 of $188{ }_{3}$ have already been given in Nature, and the results of a microscopical examination of the sides of the remarhable hollow dyke then formed will soon be publisherl. The Naples bection of the Italian Alpine Club have generously undertaken to publish a journal of Vesuvius, which will contain reproductiuns of the photographs exhibited. The third sheet of the geological map of Vesuvius and Monte Somnia (scale 1:10,000) has been completed by the reporter, and is exhibited at the meeting. The relationship of the varying actuvity of a volcano in a Stromichian state of activity 10 barometric pressurc, the lunar udes, and rainfall, canout but be regarder as important in solving some questions of vulcanology. Instrumental means of meavuing such present so many practical difficulties that a scale of activity has been drawn up, whlch requires only a few minutes to learn, can be practised by any one with good eyesight and moderate intelligence who is within visual range of the volcano, and, alove all, requires no further outlay than pen, ink, and paper. The objections will be mentioned after describing the process. Ist degree, a faint red glimmer above the main vent interrupted by complete darkness ; and degree, the glimmer is continuous, but the ejection reaches hardly above the central crater rim at the most; 3rd degree, ghmmer continuous and well marked; the ejections are distinctly discernible as they rise and then fall on the slopes of the cone of cruption and roll down its slopes; $4^{\text {th }}$ degree, the ejections reach a considerable height, are brilliant, and light up the top of the great cone; $5^{\text {th }}$ degrec, verging on an actual paroxymmal
eruption, the ejections are shot up very high, being only very slightly or not at all influenced in their course by a strong wind. Fach explosion follows with much rapidity, and corresponds with the "boati" heard all around the west, south, and south-east slopes of the mountain. The objections to this method of regis tering the variations in the activity of a volcano are: $\{a\rangle$ cloudcap, which may for days cut off the view; (b) after a great eruption, resulting in a deep crater, the changer of activity would be invisible from the neighbourhood of the mountain; (c) it is only applicable after dark, so that usalally only one observation a day can be male; (d) should lava be flowing from a lateral outlet, as is often the care, the level of the fluid in the chimney would vary as the outflow took place with greater or less rapidity, dependent on its blocking the passage more or less. The reporter thinks it desiralle to introduce a description of this method into the report, so that it may be male use of in the case of other suitable volcapoes.

Rifort of the Committer, cousisting of Prof. Ray Lamkester, Ifr. P. I. . Sclater, Prof. M. Feticr, Mir. d. Sidguick, Prof. A. 1. Marshall, Prof. A. C. Hadion, Pref. Mesele', and Mr. Pircy Sladen (Scrrctary), afAomtend for the parnuse of arranging for the arrupation of a Table at the Zoological Statiom at Niaples. -In the Report read last year at Montreal it was announced that a ccherne was on foot for the building of a large physiological laboratory in connection with the Zoolggical station at Caples, and for the purchase of a new sea-going steamer, to he equipped as a floating laboratory. Your Commiltee are now able to report that both these project, are steadily advancing towards attaimment. For the physiological laboratory the Municipality of Naples has male a grant of 400 copare metrea of ground, and the italian Parliament has voted the sum of 50,000 lite towards the cost of building. In acklition to this asvistance from the Italian Government, a union of the maritime provinces of south Italy is alvert to be formel for the parperse of contributing towands the cout of the new laboratory, and of maintaining two tables there for the uve of natives of the provinces concerned. The new steamship, which it is hoperl will shortly be in the ponvession of the station, will form a further addition to the capabilities of the establishment This undertaking is in the hands of an influential committce in Germany, organiset for the purpose of collecting sulscriptions, and by whom the ressel will be presented to the station. It is intended that the steancer should be of 300 to 400 tons burden, with engines of 850 to 200 hore-power, and be fitted ap in all reypecs as a foating laboratory. With such a vessel if x ill be perfectly prateicable to remain weeks or months in any desired locality, and distance from home will be no obstacle, as natural fits with live and work on board. Concurnent with these strides of the Zootogical Station, inpprovements in the general matage ment, in methods of work, and in instuments of reacarch are constantly being made. The general efficiency of the catablant reent is so well known that it will suffice to say that the whule organisation of the siation is in a state of active and prosperoos vitality. The be-t evideace of this is furbacted by the secom panying lises:-1: of the naturalists who have occuped tables tariog the pase year, and (2) of the publications resulting from work earmed nut at the station.

7he General Cidecliens.- Andisions thave been again received from Capt. Cherchia, who has, since the last Report, eedt two collections of spectanens from the Facific and Indian Oeerns, Other collections have been likewise received from Lieut. Cercobe, Licut. Orani. and Lieut. Colombo, trom the Vtantre, the Red Sea, ind the Meditermean respectively. some of the resterial prenusuly obsained by Capt. Cherchas has already been stilsed by Count Bein Haller in a payer on the mollucean indery, secently published; anit the same authne is at preselt preparing a monograph on the Fatellos. In like namner the Preropoda buve been anvasticitel by In linas of Copeahngen, shore monagraph upon the subject is ese in the press. Sunce the hat Report the British Asoocionlernigh heen excupied by Mr. Wor. E. Hoyle, who, th in time, wit enabled to provecute researche Cephatopods, and to collect m resalte may be expected. The; is mppenderl:-
Rypurt on the craveromen of tite. Fiofre.-I reacheal Naples on Aprhb 6 ,
 gatsan in a subject of such magritmits
embryology of the Cephatogoda; it sectned, berefore, that the opportanities aftorded me could best be utilised by collecting material for sulsequent examination. Of thas I had an aboedant and irmmediate supply, thanks to the kindly foretbought of yoursecretary, who had given notice to the authorities of the station of the nature of the work I had undertahen, wo that they had a quantity of ova ready for my use. The greater part os my time was spent in everacting embryos frum the egg and pre serving them in various tluids, and a faurly complete series of developmental stages of Lolizo and a good many embrycos of Sepia were thts obtainet. When the young Cephalopuds bave reached a stage at which the ruditnents of the arms are cleardy visible, it is moderately easy, after a little practice, to extricate them by making an incision into the egs-membranc with a fioce scalpel ; but previously to this period they so nearly occupy the whole intelior of the egg that it is almost impoussitile to utrens them uninjured. A quantity of such eges I preserved whole :-v a method suggested to me by Dr. Jatta, who is at work upon a monograph of the Cephalopoda of the liay of Naples. The strings of eggs are placed whole in weak solution of chrornce acid (about 0^{-25} per cent.) for a few hours, and then in distlitice water for twenty-four hours, after which they are prenerved is alcohol. The embryos can then te extractel much more rewaliy than when fresh. Some time was deveted to cxamining as drawing the embryos in the fresh condition, and in watchande the process of segmentation in Lodisp and Srpia. I ulaurved the presence of the "Richtungillaschen" in the former, whach, far as I am aware, has only been noted in a Kussian memour ia the development of Sificia by Csoow. A number of Wasie derms in process of seguentation were preserved acconting to a method proposed by ['ssuw, for the knowledge of which ! $2=$ indebted to Dr. Lifward Meyer, who kindly tratsilatel it for D : from the original. The equ2, without removal of the membrases. is flaced in 2 per cent. solution of chromic acid for two thatics. and then in dotilled water, to which a little acetic sid iub drop to a watchglasaful) has teen adiled, fort wo marute, hunger If an incision be now made into the ege-membrane tbe gilt flows away and the blastoderm remains: if any yulk sell dar; to it, it may be remuvel by pouning away the water and adds"; more. The blastoulerns thus prepared show, when apropriase. stained, fine karyohinetic higures, of which 1 hope shortly publish an account. The retuction of the collectel ea loryu- 's serial section. and their examination will of course uceupryanac time, bot I hupe in a few monshs to prepare some mocoust of the tesults obrained from them.

 Fiamishment ay Merine tialepical Srations an the Ceast हो ehe Unild Aing dums. - The Commatee has teceived the sade frathet (150'.) from the Treasurer of the Association, sand hes pert it to the funds of the Marine Biological Association of the Eatheat Kirgdom, as the mon! direct means of promoting the epeotly establishment of a marine labomator in a most fivourakter sinm

 ciation by Covernment, if Plymouth. A sum of 8acer. hivitsent

Natural History memoir, made from new observations during the same journey. In addition the Committee have received from Mr. Guy Le Strange, and published, observations and notes made by him cluring a recent journey east of Jordan. The results of the survey, so far as it has been completed, will appear in a map redueed to a scale of about three miles to an inch, showing the country on both sides of the river Jordan, instead of on the western side only. This portion of the work is under the direction of Col. Sir Charles Wilson, K.C.M.G., F.R.S. The Society has also issued during the last year a popular account, by Prof. Hule, of his recent journey, called "Mount Seir," and reprints of Capt. Conder's popular books, "Tent Work in Palestine" and "Heth and Maab." Finally, the Committee have completed the issue of their great work, the "Survey of Western Palestine," with the Last volumes of "Jerusalem," the "Flora an! Fauna," and a portfolio of plates showing the excavations and their results.

SECTION H

anthropology

Opentige Address by Francis Gatton, F.R.S., ktc., Preshlent of the Anthrorological. Institutr, Prestdent of the Section
Tine object of the Anthropologist is plain. He seeks to learn what mankind really are in body and mind, how they came to be what they are, and whither their races are tending; but the methods by which this definite inquiry has to be pursued are extremely diverse. Those of the geologist, the antiquarian, the jurist, the historian, the philologist, the traveller, the artist, and the statistician, are all employed, and the Science of Man progresses through the help of specialists. Under these circumstances, I think it hest to follow an example occasionally set by presidents of sections, by giving a lecture rather than an address, selecting for my subject one that has long been my favourite pursait, on which I have been working with fresh data during many recent months, and about which I have something new to say.
My data were the Family Reconls entrusted to me by persons living in all parts of the country, and I am now glad to think that the publication of some first-fruits of their analysis will show to many careful and intelligent correspondents that their painstaking has not been thrown away. I shall refer to only a part of the work already completed, which in due time will be published, and must le satistied if, when thave finished this address, some few ideas that lie at the root of heredity shall have been clearly apprehended, and their wide bearings more or less distinctly perceived. I am the more desirous of speaking on heredity, because, judging from private conversations and inquiries that are ofien put to me, the popular views of what may be expected from inheritance seem neither clear nor just.
The subject of my remarks will be "Types and their Inheritance." I shall discuss the conditions of the stability and in stability of types, and hope in doing so to place beyond doubt the existence of a simple and far-reaching law that governs hereditary transmission, and to which I once before ventured to draw attention, on far more slenter evidence than I now porseas.

It is some years since I made an extensive scries of experiments on the produce of seeds of different size but of the same species. They yiclded results that seemed very noteworthy, and I used them as the basis of a lecture before the Royal Institution on Felmpary 9, 187\%. It appeared from these experiments that the offspring did uor tend to resemble their parent seerls in size, but to be always nore mediocre than they-to be smaller than the parents, if the parents wore large ; to be larger than the parents, if the parents were wery small. The point of convergence was con idasably below the average size of the seeds contamed in the Erf. lisgfil I bought ai woursery-garden, out of which I selected ink wore cown.
I:-xpertments showed furilier that the mean filial regression inelmineitg mes directly proportional to the parental This curious resith. was based on so many T For me by friends living is varions parts of o Nurn th the north to Curnwall in the soath, id Nurn mithe nemerations of the plants, that I
inee generations of the planis, thint 1
of the truath of my conclusions. The
exact ratio of regression remained a little doubtful, owing to variable infuences; therefore I did not attempt to define it. After the lecture had lieen pablished, it oecurred to me that the grounds of my misgivings might be urged as objections to the general conclusions. I diif not think them of moment, but as the inquiry had been surrounded with many small difficulties and matters of detail, it would be scarcely possille to give a brief and yet a full and adequate answer to such objections. Also, I was then blind to what I now perceive to be the simple explanation of the phenomenon, so I thought it better to say no more upon the subject until I should obtain independent evidence. It was anthropological evidence that I desired, caring ooly for the seeds as uneans of throwing light on heredity in man. I tried in vain for a long and weary time to obtain it in sufficient abundance, and my failure was a cugent motive, together with others, in inducing me to make an offer of prizes for family records, which was largely responded to, and furnished me last year with what I wanted. I especially guarded myself against making any allusion to this particular inquiry in my prospectus, lest a bias should be given to the returns. I now can securely contemplate the possibility of the records of height having beed frequently drawn up in a careless fashion, because no amount of unbiassed inaccuracy can account for the results, contrasted in their values but concurrent in their signifcance, that are derived from comparisons between different groups of the returns.
An analysis of the records fully confirms and goes far besoad the conclusions I obtained from the sceds. It gives the numerical value of the regression towards mediocrity as from 1 to $\frac{1}{}$ with unexpected coherence and precision, and it supplies me with the class of facts I wanted to investigate-the degrees of family likeness in different degrees of kinslip, and the steps through which special family peculiarities become merged into the typical characteristics of the race at large.

The subject of the inquiry on which I am about to speak was Hereditary stature. My data consisted of the heights of 930 adult children and of their respective parentages, 205 in number. In every ease I transmuted the female statures to their corresponding male equivalents and used them in their transmuted form, so that no objection grounded on the sexual difference of stature need be raised when I speak of averages. The factor I used was 108 , which is equivalent to adding a little less than one-twelfth to each female height. It differs a very little from the factors employed by other anthropologists, who, moreover, differ a tritle between themselves; anyhow it suits my data better than 1.07 or 109 . The final result is not of a kind to be nffected by these minute details, for it happened that, owing to a mistaken direction, the computer to whom I first entrusted the figures u.ed a somewhat different factor, yet the result came out closely the same.

I shall explain with fulne is why I chose stature for the subject of inquiry, because the peculiarities and points to be attended to in the investigation will manifest themselves best by doing so. Many of its alvantages are obvious enough, such as the ease and frequency with which its measurement is made, its practical constancy during thirty-five year of iniddle life, its small dependence on differences of bringing up, and its inconsiderable influence on the rate of mortality. Other advantages which are not equally olvious are no less great. One of these lies in the fact that stature is not a simple element, but a sum of the accumulated lengths or thicknesses of more than a hundred bodily parts, each s) distinct from the rest as to have carned a nance by which it can be specified. The list of them includes about fifty separate bones, sitmated in the skull, the xpine, the pelvis, the two legs, and the two ankles and feet. The bones in both the lower limbs are connted, because it is the average length of these two limbs that contributes to the general stature. The cartilages interposed between the bones, two at each joint, are rather more numerous than the bones themselves. The fleshy parts of the scalp of the head and of the soles of the feet conclude the list. Account should also be taken of the shape and set of many of the bones which conduce to a more or less arched inslep, strayght back, or high head. I noticed in the skeleton of O'Brien, the Irish giant, at the College of Surgeons, which is, I believe, the tallest skeleton in any museum, that his extrsordinary stature of about 7 feet 7 inches would have been a trifle increased if the faces of his dorsal vertebrec had been more parallel and his back consequently straighter.
The beautiful regularity in the statures of a population, whenever they are statistically marshalled in the order of their heights,
is due to the number of variable elements of which the stature is the sum. The best illustrations I have seen of this regularity were the curves of male and female statures that I obtained from the careful measurements made at my Anthropoinetric Laboratory in the International Health Exhibition last year. They were almost perfect.
The multiplicity of elements, some derived from one progenitor, some from another, must be the cause of a fact that has proved very convenient in the course of my inquiry. It is that the stature of the children depends closely on the average stature of the two parents, and may be considered in practice as having nothing to do with their individual heights. The fact was proved as follows:-After transmuting the female measurements in the way already explained, I sorted the children of parents who severally differed $\mathbf{3}, 2,3,4$, and 5 , or more inches into separate groups. Each group was then divided into wimilar classes, showing the number of cases in which the children differed $\mathbf{5}, 2$, 3. \&c., inches from the common average of the children in their respective familics. 1 confined my inquiry to large families of six children and upwards, that the common average of each might be a trustworthy point of reference. The entries in each of the different groups were then seen to run in the same way, except that in the last of them the children showed a taint tendency to fall into two sets, one taking after the tall parent, the other after the short one. Therefore, when dealing with the transmission of stature from parents to children, the average height of the two parents, or, as I prefer to call it, the " midparental " height, is all we need care to know about them.
It must be noted that I use the word parent without specifying the sex. The methods of statistics permit us to employ this abstract term, because the cases of a tall father being married to a short mother are balancel by those of a short father being married to a tall mother, 1 use the worl "parent" to save a complication due to a fact brought out by these inquiries, that the height of the children of both sexes, but especially that of the daughters, takes after the height of the father more than it does after that of the mother. My present data are insufficient to determine the ratio salisfactrrily.

Another great merit of stature as a subject for inquiries into heretlity is that marriage selection takes little or no account of shortness or tallness. There are undoubtedly sexial preferences for moderate contrast in height, but the matriage choice appears to be guided by so many and more important considerations that questions of stature exert no perceptible influence upon it. This is by no means my only inquiry into this subject, but, as regards the jresent data. my test lay in dividing the 205 male parents and the 205 female parents each into three gromp-tall, medium, and short (medium being taken as 67 inches anst upwards to 70 inches)-and in counting the number of marriages in each poss. ille combination between them. The result was that men and women of contrasted heights, short and tall or tall and short, married just about as frequently as men and women of similar heights, both tall or looth short; there were 32 cases of the one to 27 of the other. In applying the law of protabilinies to investigations into heredity of stature, we may regard the married folk as couples picked out of the general population at haphazard.

The advantages of stature as a subject in which the simple laws of heredity may be studied will now be undentoons. It is a wearly constam value that is frequently measured and recorded, and its divcusson is litie entangied with consialerathons of nurture, of the survival of the fittet, or of marriage selection. We have only to consiller the mid-parentage and not to trouble ourselves about the parents separately. The etatistical variations of stature are extremely regular, wo much oo that their general confurmity with the results of calculations lawed on the abstract law of frequency of error is an accepted fact by anthropologives. I bave mate much use of the propertios of that law in crosotesting my various conclusions, and always with success.
The only diawlack to the use of cature is its small varialifity. One half of the popptation with whom I dealt raried less than 17 inch from the average of all of them, and one-half of the off-pring of similar mul-parentages varied less than 1.5 meh from the average of their own herghts. On the other hantl, the precision of my data is so small, partly due to the uncertainty in many cases whether the height was measured with the shoes on oit off, that I find by means of an indepentent inquiry that each olvervation, taking one wath another, is liable to an error that as offen as not exceets y of an meh.

It must te clearly understood that my inquiry is primarily int.,
the inheritance of different degrees of tallness and shortness. That is to say, of measurements made from the crown of the head to the level of mediocrity, upwards or downwarls as the case may be, and not from the crown of the head to the ground In the popalation with which I deal, the level of mediocrity is 681 inches (without shoes). The same law, anplying with sufficient closeness both to tallness and shortness, we may include both under the single head of deviations, and I shall call any particular deviation a " deviate." By the use of this word and that of "mid-parentage," we can define the law of regrewsion very briefly. It is that the height-deviate of the offsprisg is, on the average, two-thirds of the height-deviate of ita midet parentage.

If this remarkable law had been based only on experiments on the diameters of the seeds, it might well be distrusted antil confirmed by other inquiries. If it were corroborated merely by the observations on human stature, of which 1 am about to speak, some hesitation might be expected before its truth could be recoguised in opposition to the current belief that the childs tends to recemble its pareuts. But more can be urged than this It is easily to be shown that we ought to expect filial regression, and that it should amount to some constant fractional part of the value of the mid-parental deviation. It is because this explanation confirms the previous observations made both on seets ans on men, that I feel justified on the present occastion in drawing attention to this elementary law.
The explanation of it is as follows. The child inherits parsily from his parents, partly from his ancestry. Speaking generally. the further his genealogy goes back, the more numenas ard varied will his ancestry trecome, until they cease to ditfer fimen any equally numerous sample taken at haphazaril from the race at large. Their mean stature will then be the same as that of the race; in other worls, it will be mediocre. Or, to put the same fact into another form, the most probable value of the madancestral deviates in any remote generation is zero.

For the moment let u s confine our attention to the temote ancestry and to the mid-parentages, and ignore the internectiate generations. The combination if the zero of the ancentry wit the deviate of the mid-parentage, is that of nothing with womething, and the result resembler that of pouring a uniform pro pertion of pure water into a vessel of witie. It dilutes the wise to a constant fraction of its original aleohulic ctreng!h, whatever that strength may have lwen.

The intermediate generations will each in their degree do the same. The mid-deviate of any one of them will have a valee intermediate between that of the mid-parentage and the zetn value of the ancestry. Its combination with the mid parents. deviate will be as if, not pure water, hat a mixture of wine and water in some definite proportion had been pourel into the wine The process throughout is one of proportionate dilutions, ans therefure the joint effect of all of them is to weaken the original wine in a constant tatio.
We bave no word to express the form of that ideal and com pxite progenitor, whom the offyping of sinilar mill-parentage most neasly resemble, and from whose stature their uwa re-pect ive heights diverte evenly, above aull below. He, she, of it. may he styled the "generant" of the gropp. I shall bortly explain what my notion of a generant is, but for the m memes: if is sufficient to show that the parents are not iflentical with the generant of their own offipring.

The average regression of the offipring to a constant fraction of their respective nid-parental deviations, which was fine okserved in the diameters of seefs, and then confirmed by otnetra tions on human stature. is now shown to be a peffectly reawn able law which night have beendeductively foreseen. It is of m simple a character that I have made an arrangement with ore movable pulley and two fixell ones by which the probable aves: age height of the chilltren of kuown parents can be mechanically reckoned. This law tells heavily against the full hereforan transmission of any rare and valualise giff, as only a few of many children would revemble their mid-parentage. The more exceptional the gift, the more exceptional will be the grod fortune of a parent who has a son who equals, and still more if he bas a ron who overpastes him. The law is even-handed; it levies the same heavy succewion-tax on the transtaission of hadnest a, well as of gesefness. If it diccourages the extravagant expectations of gifted parents that their children will inherit all their powern. it no less discountenances extravagant feats that they will inberia all their weaknesses and diseaves.

The converse of this law is very tar from being its numerioal
opposite Becau e the most probable deviate of the son is only two-thiri's that of his mid-parentage, it does not in the least follow that the most prohable deviate of the mid-parentage is 3, or $1 \frac{1}{2}$ that of the son. The number of individuals in a population who differ little from mediocrity is so preponderant, that it is mere frequently the case that an exceptional man is the somewhat exceptional son of rather mediocre parents, than the average son of very exceptional parents. It appears from the very same table of observations by which the value of the tulial regression was determined, when it is read in a different way, namely, in vertical columns instead of in horiz ntal lines, that the most prohable mid-parentage of a man is one that deviates only one-third as much as the man does. There is a great difference between this value of $\frac{1}{5}$ and the numerical converse mentioned alove of $\frac{\pi}{2}$; it is four and a half times smaller, since $4 \frac{3}{3}$, or $\frac{9}{2}$, being nultiplied into $\frac{1}{2}$, is equal 10%

Let it not be supposed for a moment that these figures invalidate the general doctrine that the children of a giffed pair are much more likely to be gifted than the children of a mediocre pair. What it asserts is that the able-t child of one giffed pair is not likely to be as gifted as the ablest of all the children of very many mediocre pairs, However, ab, notwithstanding this explanation, some suspicion may remain of a parad x lurhing in these strongly contrasted results, I will explain the form in which he table of data was drawn up, and give an anectote connected with it. Its outline was constructed by ruling a sheet into squares, and writing a series of heights in inches, such as 60 and under 61, 61 and under 62, \&cc, along its top, and another similar series down its side. The former referred to the height of offoprin?, the latter to that of mid-parentages. Each square in the table was formed by the intersection of a vertical column with a horizontal one, and in each square was inserted the number of children ont of the 930 who were of the height indicated by the heading of the vertical column, and who at the same time were born of mid-parentages of the height indlicated at the side of the horizontal culumn. I take an entry out of the table as an example. In the square where the vertioal column headed ${ }^{1}$ 69 - is intersected by the horizontal column by whose side 67- is marked, the entry 38 is found; this means that ont of the 930 children 38 were born of mid-parentages of 69 and under 70 inches, who also were 67 and under 68 inches in height. 1 found it hard at first to catch the full significance of the entries in the talle, which hat curious relations that were very interesting to investigate, Lines drawn through entries of the same value formed a series of concentric and sunilar ellipecs. Their common centre lay at the intersection of the vertical and horizontal lines. :hat correspinded to 681 inches. Their axes were similarly inclined. The points u here each ellipse in sucee-sion was touched by a horizontal tangent, lay in a straight line inclined to the vertical in the ratio of 1 ; thove where they were touched by a vertical tangent, lay in a straight line inclined to the horizontal in the ratio of $\$$. These ratios confirm the values of average regression already ohtained by a different method, of \& from mid-parent to offypring, and of $\{$ from offypring to wid-parent. These and other relatoons were evidently a subject for mathematical analysis and verification. They were all clearly dependent on three elementary data, supposing the law of frequency of error to be applicalle throughout ; these data being (t) the measure of racial varialility, (2) that of co-family variability (counting the offspring of like mid-parentages as members of the same co-family), and (3) the average ratio of regression. 1 noted these values, and phrased the problem in a'butract terms such as a competent mahematician could deal with, disentangled from all reference to heredity, and in that shave submitted it to Mr. J. Hamilton Dickson, of St. Jeter's College, Cambridge. 1 asked him kindly to investigate for me the surface of frequency of error that would result from these three data, and the varions particulars of its sections, one of which would form the ellipes to which 1 have alluded.
1 may be permitted to say that I never felt such a glow of loyalty and respect towards the sovereignty and magnificent sway of mathematical analysis as when his answer reached me, confirming, by parely mathematical reasoning, my varions and laborious statistical conclusions with far more minuteness than I had dared to hope, for the original data ran somewhat roughly, and I had to smooth then with tender caution. His calculation corrected my observed value of mid-parental regression from
A maller of delall is here ignored which hax muthing to do with the main principle, and wutald onl's scrve to perplex if I described is.
${ }_{3}^{1}$ to ${ }^{6} 7^{6} 6^{\text {, }}$ the relation between the major and minor axis of the ellipses was changed 3 per cent., their inclination was changed less than 2°. It is obvions, then, that the law of error holds throughout the investigation with sufficient precision to be of real service, and that the varions results of my statistics are not casual determinations, but strictly interdependent.

In the lecture at the Royal Institution to which I have referred, I pointed out the remarkable way in which one generation was succeeded by another that proved to be its statistical counterpart. I there had to disenss the various agencies of the survival of the fittest, of relative fertility and so forth; but the selection of human stature as the subject of investigation now enables me to get rid of all these complications, and to discuss this very curious question under its simplest form. How is it, l ask, that in each successive generation there proves to be the same number of men per thousand who range between any limits of stature we please to specify, although the tall men are rarely descended from equally tall parents, or the short men from equally short? How is the balance from other sources so nicely made up? The answer is that the process comprives $t w$, opposite sets of actions, one concentrative and the other dispersive, and of such a character that they necessarily neutralice one another, and fall into a state of stalble equilibrium. Isy the first set, a system of scattered elements is replaced by another system which is less scattered; by the second set, each of these new elements hecomes a centre whence a third system of clements are dispersed. The details are as follow: :-In the first of these two stages, the units of the propulation group themselves, as it were by chance, into married couplec, whence the mid parentages are derived, and then by a regression of the values of the mid-parentages the true generants are derived. In the second stage each generant is a centre whence the offipring diverge. The stability of the balance between the opposed tendencies is due to the regression being proportionate to the deviation ; it acts like a spring against a weight.

A simple equation connects the three data of race variability, of the ratio of regrestion, and of co family variability, whence, if any two are given, the third may be found. My observations give separate measures of all three, and their values fit well into the equation, which is of the simple form -

$$
i^{n} \frac{p^{3}}{2}+f^{2}=f^{2}
$$

where $v=1, f=17, f=1.5$.
It will therefore be understond that a complete table of midparental and filial heights may be calculated fom two simple numbers.

It will be gathered from what has leen said, that a midel-parental deviate of one unit implies a mid-graniparental deviate of 1, a mid-ancestral anit in the next generation of 3. and so on. I reckon from these and other data, by methomb that I cannot stop to explain, that the heritage derived on an average from the mid-parental deviate, independently of what it may imply, or of what may be known concerning the previous ancestry, is only $\frac{1}{2}$. Con-efuently, that similarly derived from a single parent is only 1, and that fron a sing!e grandparent is only then 1.

The most elementary data upon which a complete table of mid-parental and filial heights admits of being constructed are (I) the ratio tre:ween the mid-parental and the rest of the ancestral influences, and (2) the measure of the co-family variability.

I cannot now pursue the numerous branches that spring from the data I have given, as from a root. I will not yreak of the continued domination of one tyse over others, nor of the persistency of unimportant characteristics, nor of the inheritance of diseace, which is complicated in many cases by the requisite concurrence of two separate heritages, the one of a susceptible constitution, the other of the germs of the diseave. Still less can I enter upon the subject of fraternal characteristics, which I have also worked out. It will suffice for the present to have shown some of the more important conditions assaciated with the idea of race, and how the vague word "type" may be defined by peculiarities in hereditary transmisvion, at all events when that word is applied to any single quality, such as stature. To include those mumerous qualities that are not strictly measurable, we must omit reference to number and proportion, and frame the definition thus:- "The type is an ideal from towards which the children of those who deviate from it tend to regress."

The stahility of a type would, 1 presume, be measured by the
strength of its tendency to regress ; thus a mean regression from t in the mid-parents to $\}$ in the offspring, would indicate only half as much stability as if it had been to 1 .

The mean regression in stature of a population is easily ascertained, but I do not see much use in knowing it. It has already been statel that half the population vary less than $1 \cdot 7$ inch from mediocrity, this teing what is technically known as the "probable" deviation. The mean deviation is, by a well-known theory, 1.28 times that of the probable deviation, therefore in this cave it is 1.9 inch. The mean loss through regression is 1 of that amount, or a little more than 0.6 inch. That is to say, taking one chidd with another, the mean amount by which they fall short of their mid-parental peculiarity of stature is rather more than six-tenths of an inch.

With respect to these and the other numerical estimates, I wish emphatically to say that I offer them only as being serviceably approximate, thoagh they are mutually consistent, and with the tessue that they may be reinvestigated by the helpof more abondant and much mure accurate measurements than those I have had at command. There are many simple and interesting relations to which I an still unable to assigh numerical values for lack of alequate material, such as that to which I referred some time back of the superior influence of the father over the mother on the stature of their sons and daughters.
The limits of deviation lecyond which there is mo regression, but a new condition of equilibrium is entered into, and a new type come into existence, have still to be explored. Let us consider how much we can infer from undi-puted facts of heredity regarding the conditions amid which any form of stable equilitbrium, sucla as is implied by the word "type," must be established, or night be diwertablised and superseded by another. In doing so 1 will follow cautiously along the same path by which Darwin staitel to construct his provisional theory of pangenesis ; but it is not in the least necessary to go so far as that theory, or to entangle ourselves in any questioned hypothesis.
There can be no doubt that heredity proceeds to a considerable extent, perhaps priacipally, in a pieceureal or pietrald fashion, causing the person of the child to lee to that extent a mosaic of independent ancestral heritages, one part coming with more or less variation from this progenitor and another from that. To express this aspect of inheritance, where particle proceeds from particle, we may conveniently describe it as "particulate."

So far as the tran-mision of any feature may be regarded as an example of ;arliculate inheritance, so far (it reems little more than a truism to assert) the element from which that feature was developed inust have been prarticulate aloo. Therefore, wherever a feature in a child was not personally powessed by either parent, but transmitted through one of them from a mone distant progenitur, the element whence that feature was developed must have exiscd in a particulate, though imperwnal and latent, form in the tandy of the parent. The tutal herituge of that parent will have acluled a greater variety of material than was utilived in the formation of his own personal structure. Unly a portion of it lecame developed; the survival of at lea-t a small part of the remainder is proved, and that of a larger part may be inferred 1, ghs transuitting it to the perton of his chald. Therefore the organised structure of each mdividual should be viewell as the fulfilment of only one out of an indefinite number of mutually exclusive possibilnies. It is the development of a single saraple drawn out of a group of clements. The conditions inaler which each element in the sample liecame velected are, of ecourse, unknown, lut it is reawnable to explect they would fall under one or other of the following agencie: : first, self-selection, where each clement eelects its mons suitable neighbers, as in the theory of pangenesis; secondly, general co-orditation, or the influcace caefted on each element ly many or all of the remamng ones, whether in ts mmediate neighloushome or he: ; finally, a group of diverse agencies, alike only in the fact that they are nut unaformly hefpful or harmful, that they influence with no constant purpowe-in philusophical language, that they are nol teleological; in popular language, that they are accilents or chances. Their inclution renders it impossible to pretict the peculanities of individual children, though it does not prevent the prediction of average se-ults. We now sec something of the genemal character of the courintoss amid which the stablice equilibitum that clerace terises cach race must sulnist.

Politica! Anal, gies of stability and change of type abound. and are uneful to tiv the sdcav, as 1 pointel oet some years 3 Let us take that which is attonled liy the government of a oof hich hav leecome indejeadent. The indurdual colonime
as particulate representatives of families or other grotps is the parent country. The organised colonial government raks as the personality of the colony, being its mouthpiece and executure The government is evolved amid political strile, one elewent prevailing here and another there. The prominent victors hatd themselves into the nucleus of a paty, additions to their number and zevisions of it ensue, until a bolly of men are asocased capable of conducting a completely organised a.lnuinistratico. The kinship between the form of government of the colocy $2 \mathrm{~N} /$ that of the parent state is far from direct, and resembles in a general way that which I conecire to subsist between the chil? and his mil-parentage. We should expect to find many fino ${ }^{\circ}$, of resemblance between the two, and many instances of gres dissimilarity, for our political analongy teaches us only toowel on what slight accidents the character of the governinen! may depend when parties are nearly balanced.

The appearance of a new and useful family peculianity is 3 boon to treeter:, who by selection in mating gradually redoce the preponderance of those ancestral elements that endangs reversiots. The appearance of a new type is due to caases inas lie beyond our reach, so we ought to welcome every useful ito as a happl chance, and do our best to domicile and perpeter: it. When heredity shall have become much better and misc generally understood than now, I can believe that we shall low upon a neglect to conserve any valaable form of family type as wrongful waste of opportunity. The appearance of exch new natural peculiarity is a falteting step in the upward jouroer, evolution, over which, in outward appearance, the whole tifis world is blindly blumbering and stumbling, but whove gener direction man has the intelligence dimly to discem, and wh m progress he has power to faciliate.

THE AMERICAN ASSOCIATTON FOR THE ADVA.NCE.MENT OF SCIENCE ${ }^{1}$

THF, meeting of 188 ; of the Anerican Association fos the Advancement of Science was held at the Ant Arbor University. The total attendance (according Sitienie) of members was not a large one, the number reaching only to 365 ; the number of papers was ${ }^{176}$. Two changes in the organisation were made ; by one, the section of histology and microscopy was abolished, as tt his been urged for some time that a special science of microscopy does not exist, the microscope being ratber a tool to be used by scientific men in various branches The other change was in the name of the section of mechanics, the words "and engincering" being addect to the title, that it inay be more clearly understood by Americans that those interested in all branches of engineering are invited to take part in the proccedings As this was the first mecting since the action of te Govermment in regard to the Coast Survey, the question was generally discussed. The matter was referred to ${ }^{1}$ committue, which offered to a general session of the Association the following resolutions, which were unanimb ously accepted :-
Whereas, The attention of this Association has becn cate? to articlec in the public press, parporting to give-and presum ably by authoritr-an official reqort of a Commission appointed by the Treasury department to investigate the condition of be U' 5 . Coast survey (thice, in which report the value of a certat sclentific wotk is de, ignated as "meagre."

Avt witerbas, This Asociation devires to express a bope that the decision, es to the utility of such scientigic wark, my be referred to scientific men.

Resolted, That the American Association for the Adratectors of Science is in camest sympathy with the Govennment io : every intent to secure the greatest possible elfidien's of ibe puhtic service.
Resulaws, That the ralue of the scientific woth performed is the various depurtments of the Govermuent can be best jivged by scientific men.
by scientific men.
gravity determinations now in progress-and to express the hope that such valuable work may not be interrupted.

A'csolved, 'That this Association expresses, also, the hope that the Government will not allow any technical rule to be established that shall necessarily confine its scientific work to its own emp 'oys.

Reselvel, That in the opinion of the American Association for the Advancement of Science, the head of the Coast Survey -hould be appointed by the President, by and with the advice and consent of the Senate, should liave the highest possible standing among scientific men, and should command their entire confidence.

Resoived, That copies of these resolutions shall be propared by the general secretary, and certified by the President of the Association and by the permanent secretary, and shall be forwarded to the President of the United States, the Secretary of the Treasury, and given to the press.

Various improvements with the object of securing a more rapid despatch of business were either suggested or adopted ; thus members are to be elected by a standing committee instead of in general session, and it is proposed to restrict general sessions of the Association to the beginning and close of the meeting, and to limit the public reading of committee reports in general session to such as seem to the standing committee specially desirable from their interest or importance. The next meeting will be held at Buffalo, beginning August 18,1886 , under the presidency of Erof. Edward S. Morse, of Salem.

We regret much that it is impossible for us to reproduce in full the President's address and the sectional reports; the obvious pressure on our space at the present time will only enable us to refer to a few salient topics. The President's address was delivered by Prof. J. P. Lesley, of Philadelphia. We find the following striking observations on the "dead-work" of science :-

There is a topic which I think should be frequently considered by all who engage in scientific pursuits, and by none so earnestly as by those who are ambitious to reach the higher points of view, from which to survey and describe those systematic combinations of phenomena which are more or less panoramic: I allude of course to generalisers or discoverers of natural laws, and the professional teachers of such laws: while those who deal in itemised science, the mere olservers of isolated facts, discriminating specimens and naming genera and species in the animal, vegetable, or mineral worlds, and especially such as occupy themselves with geographical and geological studies in detail, stand in less need of having it pressed upon their attention, because in their case it insists upon its own necessity.

I allude to what is technically known among experts as "dead-work,"

This topic has to be treated in the most prosaic style. To describe dead-work is to narrate all those portions of our work which consume the most time, give the most trouble, require the greatest patience and endurance, and seem to produce the most insignificant results. It comprises the collection, collation, couparison and adjustment, the elimination, correction, and reselection, the calculation and representation-in a worl, the entire first, second, and third handling of our data in any branch of human learning-wholly perfunctory, preparatory, and mechanical, wholly tentative, experimental, and defensive-without which it is dangerous to proceed a single stage ituto reasoning on the unknown, and futile to imagine that we can advance in science ourselves, or assist in its advancement in the world. It is that tedious, costly, and fatiguing process of laying a good foundation which no eye is ever to see, for a house to be built thereon for safety and enjoyment, for public uses or for monumental beauty. It is the labour of a week to be paill for on Saturday night. It is the slow recruiting, arming, drilling, victualling, and transporting of an entire army to secure victory in one short battle. It is the burden of dead weight which every great discoverer has had to carry for years and years, unknown to the world at large, before the world was electrified by his appearance as its genius. Let us examine it more closely : it will repay our scruting. Those of you who have been more or less successfully at work all your lives may get some satisfac. tion from the retrospect : and those who have coumenced careers should hear what dead-work means, what its uses are,
how indispensable it is, how honourable it is, and what stores of health and strength and happiness it reserves for them.

My propositions, then, are these :-(I) That, without a large amount of this dead-work, there can be no discovery of what is rightly called a scientific truth. (2) That, without a large amount of dead-work on the part of a teacher of science, he will fail in his efforts to impart true science to his scholars. (3) That, without a large amount of dead-work, no professional expert can properly serve, much less inform and command, his clients or employers. (4) That nothing but a habitual performance of dead work can keep the scientific judgment in a safe and sound condition to meet emergencies, or prevent it from falling more or less rapidly into decrepitude; and (5) That in the case of highly-organised thinkers, disposed or obliged to exercise habitually the creative powers of the imagination, or to exhaust the will-power in frequently-recurring decisions of difficult and doubtful questions, dead-work and plenty of it is their only salvation; nay, the most delicious and refreshing recreation; a panacea for disgust, discouragement, and care; an elixir vitz; a fountain of perpetual youth.

First, then, is it so that scientific truths cannot be discovered without a large amount of prcliminary dead-work? Surely no one in this assembly doubts it who has established even one original theory for himself, or won for it the suffrages of judges capable of weighing evidence. Now the immense disproportion in numbers between theories broached and theories accepted is the best proof we could have, not only of the value and necessity of dead-work, but of the scarcity of those who depend upon it as a preparatory stage of theorising. And, moreover, not theories only, but simple statements of fact believed and dis-believed-that is, finally accepted or finally rejected-exhibit the like numerical disproportion, and betray a general carelessness or laziness of observers ; at all events their mannifest lack of appreciation of the value and necessity of the dead-work part of observation, which imperatively must precede any clear mental perception of the simplest phenomenon, before the attempt is made to establish its natural relationships, and present it for accejtance as a part of science.

No; dead work cannot be delegated. The man who cannot him-elf survey and map his field, measure and draw his sections properly, and perfectly represent with his own pencil the characteristic variations of its fossil forms, has no just right to call himself at expert geologist. These are the batges of initiation ; and the only guarantees which one can offer to the world of science that one is a competent observer and a trustworthy generaliser. Nor has one become a true man of science until he has alrealy done a vast amount of this dead work; nor does one continue in his prime, as a man of science, after he has ceased to bring to this test of his own ability to see, to judge, and to theorise, the working and thinking of other men. But enough of this.
My second proposition was that no teacher of science can be successful who does not himself encounter some of the dead work of the explorer and discoverer; who does not discipline his own faculties of perception, reflection, and generalisation, by fieldwork and office-work, independently of all text-book assistance : who does not himself make at least some of the diagrams, tables, and pictures for his class-room, in as original a spirit andl with as much precision of detail as if none such had ever been made before, and these were to remain sole monuments of the genius of investigation. What the true teacher has to do first and foremost is to wake up in youthful minds this spirit of investigation $a b$ inifio. The crusade against scholastic cramming promises to be successful ; but the crusale against pedagogic cramming has hardly yet been organised. How is the scholar to be made an arti-t if the teacher cannot draw? The instinct of innitation in man is irrevistible. Slovenly drawing on the blackboardsufficient evidence of the teacher's imperfect information and inaccurate conception of facts, the nature of which he only thinks he understands-can do little more than raise a eold fog of su-picion in the class-room, by which the temler sprouts of Icarning must be either dwarfed or killed. But even slovenly diagrams are preferable to purchased ones; for whatever diminishes the dead-work of a teacher enervates his investigating. and thercby his demonstrating, powers, and lowers him toward the level of his scholars.

Were I dictator I should drive all teachers of science out into the great field of dead-work; force them to go through all the gymnastics of original research and its description, and not permit them to return to their libraries until their notebooks

5 , ifno measurements and calculations, sietchur - $=-\quad$ wing, severely accurate and longically classiompared with thore recorded in the thooks. "Lu -a -ien tall to keep in mind is this: that learning is not -1. - - - , but at Lessing says : 1 earnang is only oar know\& ${ }^{6}$ " the experience of others; howwiedye is our own. No \therefore scally comprehends, what he himelf has not created
Trchace we know nothing of the universe until we take an preces for inspection, and rebuild it for our underdanthog. Nor can one man do thos lor another ; each must to it for hamself; and all that one can do to help another as to shon him how he himself has mosellased and recomposed his small particular share of concrete nature, and inspire him will those vague but hopeful suggestion' of ideas which we call learning, but which are not science.
My thirl propesition was that an expert in practical science can cummand the respect and contrilence of his professional fellowns, and through their free suffrages thald up his own reputation in the learned and business worlst, only in exact proportion to the amount of good dead-work to which he voluntarily subjects himeelf. For, although the most of it is necessarily done in secrecy and silence, enough of it leahs out to testify to bis honest and diligent self-cultivation; and enough of it must how in the shape of scientific wistom to make self-evident the fact that he is deither a tyro nor a challatan. More than once I have heard the merry jest of the Autralasian judge quoted with siniter application to expers in science, When a young colleague, just arrived fron Englant, asked him for advice, he answered: Pronounce your decisione, but beware of stating your reasons for them. Many an ephemenal reputation for science has treen begot by this shrewd prolicy; fout the lest policy to wear well is hoocsty; and honesty in trave means selling what is genuine, well-made, and durable; and honety in situce means, tirst, facts well pruved, and then conelusions slowly and painfully deduced from facts well provel. in sulficient number and order of arrangement to echaus: alite the subject and the olsciver. Keap your fiek so thoron thly that gleaners must despair. Fortify your position, that your most experienced rival can find no point of attack. Lay your plans with such a superAluity of patient carefulness that fate ite elf c an invent no erious energency. Demonstrate your theory si, utterly and evilently that it shall requiie no defender but itelf. She for your work, that your work may live f or ever. I , get your elf, and your work will make you famons. Envare ymurself to it, and it will plant your feet upon the neck a if king*, and your mere les or Fo will become a law to multitules? 1hiv is what the deadwork of seicnce, when well thone, dees for the expert in science.
My foursh propocition-that only the tortitual performance of dead-work can presene the -uentitic in', Ilect in pristine sigour, and prevent it from lecumings ththeteet with, prejustices, inapt to receive frech truth, and fisetful of himpletke already wonhardly neels discuwion. Humas muwles become atrophied by disuse. Men's fortwien shrink and enaporate by mere investment. I pray you to tuag'ne what ! wihh to say, for it all amounts to thin-that the graw will surely grow over a deserted footpath. t.et me hurry to the clane if this adlifes, which I have found tos serious a duty for niy liking, and prethaps you aloo have f(uared it tos) peet, mala a prea hunent for yours. One more werestiun, then, and I have thone.
My fith prompusition was that the wearied and exhausted ineclect will wively seek refre-lument in deal-work.
The physioldy of the brain is now -ufficiemly well under. sternlt) permit physicians to preconbe with some assurance for its many ill, and to regulate its resturation to a normal yate of
 extrandinary over-balance of decay takes place, il there be po
 mankind, nature provide fors the whuterent wineen on tion nnd reproduction af brain matter, hy the siternation and naght, notse and silence, soctely anil welitule, sull the siltatitution of the filay of fancy in dremm, for the the ewilutution on the pray or fancy in dre try
the julgment and the will in waking hours. leat fo nature when we seek amuement as a retncily \rightarrow th We bring into activity a reved pargeanofibe brio, som the wearied parts of ut to restore?
In Section A Prof. Newton "The Efiret of Surall Bodics p Flaner's Velociry.
The former researches of Pre recognised among astronomers
knowledge absut the character, distribution, and maion of these minute bolies with which the solar sys:eta is filled. especially those which strike our atmosphere and are burned nap as meteors. The possible effect of these upon the mazation of the earth, and the revolution of the earth and moon in their orbits, has been subjected to elaborate investigation at the hand, of several mathernatical astronomers. The reeent pablications of Mr. Denning, of Bristol, claizing the fixity of long continatag radiant points of meteor streams, have raised the quastion of the existence of broad streams of meteoroids moving swifty through stellar space outside of solar attraction; and any new in ressization bearing upon zny of these points is more than assually timely. 1n this paper Prof. Newton has discassed the effers upm the earth's motion of those bodies which do not pais nexs enough to the earth to be drawn into its atmosphere, but stith near enough to be drawn out of their course, and swung for a time in hyperbolic orbits around it. He began hy saying thx the results of the investigation might perhaps be considecel negative as far as measurabie quantities in the solar vystem are concerned, but that they had a mathematical interest, and ma:- his possibly have a bearing upon somewhat similar questions in molecular physics, like the kinetic theory of gased. The mathe natician and astronomer must be referred to the paper 1t-id. and the results of popular interest may be brietly summaricel is follows:-Considering, first, the case of a cylin irical streat of small boties evenly distributed, and all moving in the came direstion with a common velocity past the carth supposed in be in ibe axis of the cylinder, it is thown that they nill commanicate to the earth in each unit of time a velocity along' the avis: (1) that to proportional to the density of the group; ; 2) that decreases as the velocity increases nearly inversely as the sqaare of the velomity (3) that increases as the logarithm of the radius of the cylinder. the radius being measured by a unit differing from the earth radius by a small quantity, which is a function of the velina:s Sccond, in the case of a widely extended group of cmall thathen evenly distributed in space, and having tpeeds all epual, r_{2} directed towards points evenly distributed over the celestis sphere with the earth moving in a right line through them, it . shown that, for those which do not strike the eanh, but vato affect it by their attraction, the effect will be an evceeding: minute acceleration of the earth's motion, if the latter is lesi them that of the badies, even though the group is infinite in evten!. It the earth's velucity is grature than thast of the hadier, their :wsi effect will consist of two parts: a very minute tetardation of : $=$: earth's motion, depending in amount upon the alsolu:e vel.x., of the bodies; and another retarlation depenting ufks the assumed extent of the group. In cenclusion, the effest of batic strativ; the earth or moon is manifold greater than that of th ose only fissing nerr; and since it has before been show n that asy admisible mangnitude of meteroids would make the e.fect upn the moon's mean motion of those which strike it only a unante fraction of the observed acceleration, still lew can any actw, of those passing near the moon bave any appreciable efiect.
l'apers were also read by Prof flarkness on the flexure of transit instruments; by Prof. Hough, descriking some improvements recently introluced in the printing chronograph, fisa designed and brought int, use by himself at the Dulley úberra tory in 1871, by l'rof. Burkitt Welb, describing a tmethoxl uf using polar cowrdinates, by tran-ferring the origin from the centre to the end of the unit radius, thus substituting ($r-1$) for r, asi then using the length of the are and the distance out from is end upon the radius vector, as x and y are used in rectangsizr coordinates. He found this a very convenient tramsformatoon az the application of polar comsdiuates to the discusion of Amses. plannmeter ; anl. werlug out, that by substutulng infinity fer unit ral lius in the equations thas transformed, they were redmel Ia, thore of rectangular snordinates, be thought this tranoforins? We of polar coordinat?
surces of systematic error would scem to be almost wholly -1 to those of varying personal equation in the obvervation 1sits at all speeds and at all inclinations and directions over ontal wires, and to possible systematic difference in atmoc refraction in different azimuths. Mr. Rockwell exhibited results, simply copied from his observing-books, illustratie methods of reduction for time and latitude observations, howing the degree of accuracy that can be attained by the iment in both these directions. They served to show that ostrument when duplicated will give equally good results the one first constructed ; and their consideration gave rise
very interesting discussion, participated in by many ibers, as to the character of work the instrument might be cted to do, in the course of which Mr. Rockwell answered, - very entertaining way, many questions, put by various ibers, as to the details of observing and reducing, which were before clearly understood on account of the novelty of the k. One of the most important problems which the instruit is -pecially adapted to inve-tigate, and one which we hope - Chandler will soon find time to undertake, is the determinai of the declination of fundamental stars south of the equator, Hg them to northern stars at corresponding zenith-distances ow the pole. This would seen to be by far the best, perhaps : only, method of connecting these togetber in a way that all be free from systematic error.
In the I'hysical Section, the first paper read was by Prof. ingley, on the spectra of some sources of invisible radiations, id on the recognition of hitherto unmeasured wave-lengths. his was followed by one by Mr. Brashear on a practical ethot of working rock-salt surfaces for optical purposes.
l'rof. H. S. Carhart presented a paper on surface tran?mission f electrical discharges, which was an ingenious revision of ork by Prof. Henry. Prof. E. L. Nichols presented some arther notes on the chemical behaviour of magnetic iren, a ontinuation of work described in a paper at the Philadelphia neeting. Major H. E. Alvord of Mountainville, New York, resented the results of telemetric observations at Houghton Farm. This is a method by which changes in temperaturc are ransmitted and recorded electrically; and Major Alvord's results show that, with increasing experience, the records followed more and more satisfactorily the observations made on the mercurial thermometer.

Prof. T. C. Mendenhall called attention to the modifications and improvements already made or desired in electrometers, especially with reference to their use in observations on atmospheric electricity. Obecrvations of this kind have been made regularly for the last year or two ; Dut, as Prof. Mendenhall well said, the meaning of the variations recorded is still a mystery. Prof. A. E. Dolbear read three papers: in one he described a method of studying contact-theory of electricity by means of the telephonc. He has found that a click is produced in the telephone every time the circuit is broken between two hetcrogeneous materials, as copper and zinc. In another paper he referred to his success in employing a Bernstein incandescent lamp for projection purpo-es; and in the third he described a new galvanic element of high electromotive force and great constancy, consisting of carbon in a saturated solution of bichromate of potash, and sulphuric acid and zinc in a saturated solution of ammonic chloride ; nitric acid could be used in place of sulphuric. Mr. A. J Rogers presented a paper on electrolysis of the salts of the alkaline earth.

I'rof. E. D. Nicholls has, by means of a spectro-photometer, described at a previous meeting, compared the spectrum of the unclouded shy with that of the light reflected by magnesium carbonate, illuminated by direct sunlight.
Prof. Wead exhibited a combinel spectro-photometer and ophthalmospectrescope.
In the Chemical Section Prof. Nichols de'ivered an address on chemistry in the service of public health. Amongst the papers are:-Prof. Noyes, on para-nitrobenzoic sulphuride ; Dr. Wiley, on a method of estimating lactic and acetic acid in sour milk or konuriss; Mr. Young, on the thermo-chemical reaction between potassic hydrade and common alum. A general discussion took place on the question of what is the best initiatory work for students entering upon laboratory practice, and also, To what extent is a knowledge of molecular physics necessary to one who would teach thsoretical chemistry?
Is the Section of Mechanical Science Prof. Webb delivered Tidreset the second law of thermo-dynamics. Mr. Wagner
ted an elaborate paper on electric light tests, giving ar.
account of his work in testing the efficiency of two electric light plants. Prof. Cooley explained and illustrated a method of testing indicator-springs. Prof. Thurston's paper on cylinder condensation is described as being of great scientific and practical value.

In the Section of Geology and Geography the address was by Prof. Edward Orton, and the subject, Problems in the study of coal, with a sketch of recent progress in geology. There were, in all, twenty-seven papers in this Section, none being geographical. Stratigraphy received the lion's share of attention, the most important paper on this subject being one by Prof. Henry S. W'illiams.

The address to the Biological Section was by Dr. Wilder, on Educational Museums of Vertebrates.

The Section opened with two papers by Prof. L. E. Sturtevant as the result of observations and experiments at the New Y'ork agricultural experiment station. The first, on the hybridisation and cross-fertilisation of plants. In the second"Germination Studies"-the author gives, as a result of many trials with commercial seeds of our common plants, that very extended series of trials must be malle with each species in order to obtain the desired accuracy in results.

An interesting paper on the biological deductions from a comparative study of the influence of cocaine and atropine on the organs of circulation, by Dr. II. (i. Beyer, U.S.N., was read before the Section.
"On the Brain and Auditory Organs of a Permian Theomorph Saurian" was the title of an interesting paper by Prof. E. D. Cope. The author called special attention to the morphology of the brain, the character of the cranial walls and the auditory apparatus.

The disputed question of the bisexuality of the pond-scums (Zygnemacce:) was discussed by Prof. C. E. Bessey, of the University of Nebraska, who concluded that these organisms do not possess true bisexuality.
"On the Process of Cross-fertili-ation in Campanula americana" was the title of a paper presented by C. R. Barnes.
A paper on aquatic respiration in soft-shelled turties (Aspidonectes and Amyda) was presented by Profs. Simon II. and S. Phelps Gage as a contribution to the physiology of respiration in vertebrates.
Prof. C. E. Bessey read a paper on the inflorescence of Cuscuta glomerata.
Prof. Gage addressed the Section (G) on Microscopy and Histology on the limitations and value of histological investigation, and Mr. Dall discoursed to the Anthropological Section on the native tribes of Alaska. The papers in this section were very numerous, many of great interest, and all naturally devoted to anthropological questions connected with the North Amencan continent.

NOTES

The National Sanitary Congress commenced its autumn meeting at Leicester on Tuesday, when the president, Prof. De Chaumont, F.R.S., gave an address on the work of the Sanitary Institute.
THE portrait of the late George Bentham, subscribed for by sevcral of his friends, has been presented to the Herbarium, Royal Gardens, Kew, on behalf of the subscribers, ly Sir John Lubbock. The picture is a successful reproduction, by Miss Merrick, of the original in the possession of the Linnean Society.
We regret to notice the death of M. Breton der Chainps, one of the French Goverument engineers, a mathematician and scientific writer who played a prominent part in connection with the Newtun forgerics. In combination with his friend Leverrier, M. Breton des Champs exploded these frauds, which were so disgraceful to the good name of the French Academy of Sciencer. He discovered the books from which the so-called "forger with long ears" had copied the assumed letter sold to M. Chasles.
The Essex Field Club will hold its sixth annual cryptogamic and botanic meeting in Epping Forest on Friday and Saturday, October 2 and 3. On the Saturday afternoon and evening there

Government as a slight recognition of the presentations of ova made by them to this country. There is a great dearth of flat fishes in the United States, and at the instigation of the Commissioners of Fi,h and Fisheries many attempts have been made to forward young specimens for propagation from England. Ilitherto these efforts have not met with success, it being exceedingly difficult to transmit live soles, as they are less tenacious of life than their congeners. We hope that Prof, Baird, who has received notice of the despatch of this valuable gift, will not be again disappointed. The fish have been placed in charge of an experienced pisciculturist, who will accompany the s.s. Refublic, by which vessel they have been sent, and who will bring back a number of Amcrican species with a view to acclimatising them in this country.

The Royal Commissioners of the Colonial Exhibition, to be held next year at South Kensington, have issuel circulars to the Governors of our Colonies requesting them to send the various species of fish indigenous to their respective countries for exhibition. Special preparations will be made at the elose of October for receiving them. The arrangements will necessarily be of an elaborate nature, as the tanks will have to be constructed in suck a manacr as to provide for the exigencies of each species and the regulation of high and low temperatures according to the climatal necessities of the fish.

Special interest is just now centred at the Aquarium in the inculation of the ova of some of the dogfish which have recently spawned. The eggs, which resemble filbert nuts in shape, are to be seen in a special tank, which presents a sight of much elification. The formation of the fisl inside the ova is plainly perceptible, every part of them bcing apparent. The fish in the Aquarium are now being fed at 6 o'clock, partly on a new dietary specially invented by Mr. W. Burgess, of Malvern Wells.

Tift. Marquis of Lorne has successfully planted some whitefish in a specially constructed lake on the Isle of Mull. The fish form part of those reared by the National Fish Culture Association this year. His Lordhip reports that the fish are doing well.

At a lecture delivered by Mr. W. Oldham Chambers, F.L.S., at the Hull Town Hall last week on fish culture, living specimens of the whitcfish and other foreign species of fish were exhibited, and excited much interest amongst the audience.

A recent Bulletin of the United States Fish Commission contains the following interesting account of the destruction of young trout by mosquitoes: "In the middle or latter part of June, 1882, 1 was prospecting on the head-waters of the Tumichie Creek, in the Gunnicon Valley, Coloradu. About 9 o'clock in the morning I sat down in the shade of some willows that skirted a clear but shallow place in the creek. In a quiet part of the water where their movements were readily discernible, were some fresh-hatchel brook or mountain trout, and circling about over the water wa, a small swarm of inosquitoes. The trout were very young, still having the pellucid sack puffing out from the region of the gills, with the rest of the body almost transparent when they would swin into a portion of the water that was lighted up by direct sunshine. Every few minutes these baly trout-for what purpose 1 do not know, unless to get the benefit of more air-would come to the sarface of the water, so that the top of the head was level with the surface of the water. When this was the case a morquito would light down and immediately transfix the trout by inserting its prolnscis, or bill, into the brain of the fish, which seemed -fible of escaping. The mosquito would hold its victim ntil it had extracted all the life juices, and when this -withed, and it would fly away, the dead trout would
turn over on its back and float down the stream. I was so interested in this before unheard-of destruction of fish that I watchell the depredations of these mosquitoes for more than half an hour, and in that time over twenty trout were sucked dry and their lifeless bodies sent floating away with the current. It was the only occasion when I was ever witness to the fact, and I have been unable by inquiry to ascertain if others have observed a similar destruction of fish. 1 am sure the fish were trout, as the locality was quite near the snow line, and the water was very cold, and no other fish were in the stream at that altitude. From this observation 1 am satisfied that great numbers of trout, and perhaps infant fish of other varieties in clear waters, must come to their death in this way; and if the faet has not been hecetofore recorded it is important to those intcrested in fishculture."

A telegras from Rome, September 21, states that repeated shocks of earthquake have occurred in Benevento. The inhabitants are terror-stricken, and are encamped in the open country.

The Russian Official Mesenger states that the city of Namangan, in Ferghana, has been visited all through the summer by repeated shocks of earthquake, which have hitherto been of very rare occurrence there. The strongest shoeks took place on April 17 and August 4, but no very serious consequences resulted.

ON Scptember 12, at $9.30 \mathrm{p} . \mathrm{m}$. , a magnificent meteor passed over the city of Stockholm, going from south to north. Its light was very brilliant. On account of the limited area of observation it was impossible to tell whether it burst near the city or not.

Durisg the month of August enormous swarms of ants passel over the town of Solothurn in Switzerland. They came from the Jura mountains, and formed a cloud, consisting of seventy-five perpendicular columns, in which the ants circled around in spiral form. The swarm lasted for twenty minutes, the height of the cloud being upwards of ninety feet. Millions of them fell to the ground, however, without making any visible change in the phenomenon.

According to the Bergen Adiresseblad, fishermen at the island of Magster, on the coast of the province of Bergen, on the west coast of Norway, have lately seen targe floating blocks of ice at sea, which are believed to le parts broken off from icebergs in the North Atlantic. Such a phenomenon has never before been observed in these parts.
The Swedish journal Nortbottens Kiuircn states that the water is falling rapislly in the Gulf of Bothnia, a phenomenon to which we have on several occacions referred. As a further proof of this the journal states that a stone in the archipelago by the coast which fifty years ago at lowest tide was barely visible above water is now at mean tide three feet above it.

We have pleasure in noticing the issue of No. 43 of the first part and Nos. 29-31 of the sccond part of the well-known "Encyklopxedie der Naturwissenıchaften" from the house of Eluard Trewendt, Breslau. The former brings forward Dr. A. Reichenow's "Iandworterbuch der Zooleggie, Anthropologie, und Ethnologie," from article "Heteroncreis" to "Itteridre." Among other articles embraced within this interval are valuable contributions on the sevelopment of the organs of hearing by Prof. Gricilach; on "Mypnotimus," hy Prof. Gustav Jager ; on "Januten," " Japauer," " Javanen," by Dr. von Hellwall; on " llisaarlik," " Hohlefels," "Hohllect," by Prof. Mehlis. Nirs. 29 and 38 of the second part, again, continue the "1landworerthuch der Chemie," while the 3 othnumber continue the " 1 Iandworterbuchder Mineralogic,

Geologic, und Palaontologic." The two chemical numbers treat with all the fullness and thoroughness characteristic of this estimable work "Dichte," "Didym," "Diffusion," " Dinte," "Diphenylverbindungen," "Dissociation," "Dinger," and "Eisen," and the accompanying woodcuts illustrating any difficult experiments in the text add materially to the practical value of the articles. The new number, finally, of the Mineralogical, Geological, and Palæontological Dictionary contains important contributions on "Reptilien" and "Rhizopoden," by Rolle ; on "Salze," by Kenngott; on "Schichtenlehre" and "Schwankungen im Niveau vom Meer und Festlande," by von Lasaulx-articles distinguished not more by fullness and compactness of matter than by clearness of dan. ne

WITH unflagging vigour and learning the new Italian quarterly, La Nuoza Sriewsa, prosecutcs the mission it has undertaken of building up an exact philosophy on the foundation of the natural and historical sciences. In the last number for June, 1885, the articles of chief interest, all contributed by the indefatigable editor, Prof. Enrico Caporali, are: Modern Italian thought, Gcrman anticlerical evolution, and the Pithagoric formula in cosmical evolution. The last-mentioned paper deals with the evolution of gravitation, of heat, of electricity, chemical affinity, lower organic force, higher organic force, sentient force, social authority ; fatalist and free evolution. It is held in general that all evolution is due more to internal energy than to outward conditions, in opposition to Herbert Spencer's theory of mechanical causes.

TuE address of Mr. W. H. Dall, vice.president to the Anthropological Section of the American Association for the Advancement of Science at Ann Arbor, last month, has been printed as a separate pamphlet. The subject of the addrens was "The Native Tribes of Alaska."

The additions to the Zoological Society's Gardens during the past week include a Macaque Monkey (.1/ucacws cynomolyus 8) from India, presented by Mr. A. Cornet; a Red Kangaroo (Macropus rufur 8) from Australia, presented by Mr. G. Wylic ; a Bonelli's Eagle (Nisuctus fascintws) from North Africa, presented by Capt. W. R. Taylor, s.s. Empusa; two Tawny Owls (Syrmiwm aluco), European, presented by Mr. H. Lee; a Nightjar (Cafrimulius europurus), European, presented by Mr. Cuthbeth Johnson; a Robben Island Snake (Coronella phocarum) from South Africa, presented by the Rev. (i. II. K. Fisk, C.M.Z.S. ; seven Blue-bearded Jays (Cyannorar (y.m.p.sen) from Para, purchased ; a Beisa Antelope (Orys biria 8), bora in the Gardens.

ASTRONO.MICAL PHENO.MENA FOR THE UEER', 1885, SEPTEMRER 27 TO OCTOAER 3

(For the reckoning of time the civil day, commencing at Greenwich mean midnight, counting the hours on to 24 , is here employed.)

At Greewwich on SeN. 27

Sun rises, 5 h .56 m . ; souths, 1 th .50 m .51 ' 3 s , ; sets, 17 h .46 m . ; decl. on meridian, $1^{\circ} 4 \mathrm{~S}^{\prime} \mathrm{S}$. : Silereal Tine at Sunset, 18 h .13 m .
Moon (three days after Full) rises, 19h. Om.* ; souths, 2h. Im. : sets, 9 h .13 m. ; decl. on meridian, $10^{\circ} 42^{\prime} \mathrm{N}$.

Plane 1		Rises h. m.			Souths h. m.			Sels h. m.	Decl, on meridian		
Mercury			29	...	11	1	\cdots	1733	...	5	36 N
Venus		9	34	...	14	12	..	1850	...		17 S
Mars	\cdots	0	19	...	8	11	\ldots	163	...		47 N
Jupiter		4	33		11	1		1729			46 N.
Saturn	\cdots	22		\ldots	6	9	\cdots	1417			19 N .

Occultations of Stars biy the Moon					
Sept.	Star	Mag.	Disap	Reap.	Comenpodis angles frow wr tex to righ lan iaverted lay
			h. mi.	h. m .	
28 ...	48 Tauri ...	6	2156	2245	33^{273}
$28 \ldots$	$\boldsymbol{\gamma}$ Tauri ...	$\cdots 4$	2346 ...	O 43^{+}	... 3637
$29 . .$.	75 Tauri 6	441 ...	541	... 149268
29 ..	θ^{\prime} Tauri ...	$\ldots 4 \frac{1}{2}$	$44^{8} \ldots$	526	... 54
$29 .$.	B.A.C. 1391	$\cdots 5$	541 .	651	... 10930
$30 .$.	111 Tauri...	... 51 ...	$32 \ldots$	417	73 \%
$30 .$.	117 Tauri...	. 6	515 ..	65	53 ?
Oct.					
$2 \ldots$	λ Geminorum	... 31 ...	- 38 ...	132	.. 30

+ Occurs on the following day.
The Occultations of Stars are such as are visible at Greenwict

Sept. 27	\ldots	9	h.	
Mercury in conjunction with and north of Jupiter.				
Oct.	\ldots	11	\ldots	Saturn in conjunction with and $4^{\prime \prime}$ of the Moon.
$\mathbf{3}$	\ldots	19	\ldots	Mars in conjunction with and 5° of the Moon.

THE ASTRUNO.1//CAL ASSOCIA7

TIIE Astronomical Association held their eleventh ing this year at Cieneva from Aug. 19 to 22 ind representatives of so many nations were present th: fully bore out the character of an international the fifty member, or thereabouts, attending w from Pulkowa; Newcomb, from Washingt from Greenwich; Dunćr, from Lund: Pechule. hagen; Tietjen, from Iserlin; Kruger, from Kie Strassburg; Tiwerand, from Paris; Sporer, The office-bearers were: . Iuwers, from Be Schonfeld, from Bonn, and siceliger, from Mun Bruns, from l.eipzig, Treavurer: while P : Leiden, Gylden, from Stochholm, and Weiss, in honorary members of the Committec. Prof. was also a member of the Committec, attend.

The first sitting was opened by President A of the University at 10 in the forenoAmong the scientific reports of the Committe nications of Prof. Weiss on the present state of the orbits of the comets were of spe the 12 periodical comets returned at difie perilielion, 8 had again been regularly dete' calculators. Or the remaining fonr three wc present care: Bicla*s, which, as was know olservation, and the coniets of Ilalley and next perihelion lay too remote in the future quently, but one periodical comet-Krorse count of, As to the remaining non-ret, 168 which had appeared in this centur garded as settled, 23 liad their orbits P in the case of 58 comets a new calcula desirable for various reasons, and in all culated definitely. There was, therefore open. Prof. Weivs accordingly sough Suciety the establisliment of a common the settlement of the questions at issue, treatment of a particular comet should left to the initiative of a single calculator ing this adrlress, Staa: vrath Struve arg of such a bureau on the ground tha: peculiar a nature in accommorlate the treatment of a cal ulation bureau. the question.

This report was followed by con: character on the great zone undertak: communications were of no great ex:. alrearly in near proyect of complet" vey of the heavens by I'rof. Pickerin by Irof. Anwers, was heard with \$1

Next followed the scientific addre
in the Austrian Triangulation, communicated a table calculated by him, wheh would shortly lre publisherl, a table which materially lightened the approximate calculation of an eclipse for a particular spot on the surface, according to Oppolzer's elements.

Prof. Weiss then communicated the puhlication of the second volume of the Annals of the Vienna Observatory, and followed this up with the remark that the merilian circle, which was sixty years old, was now very much in need of repair ; but, unfortu nately, there was no money at disponal for this purpose,

After the President hall o, iened the second sitting at ten o'clock on August 20, he communicated a report on the photographic mapping of all the stars of the "Bonner-Durchmusterung" which Gill (of the Cape Othervatory) had begun, and of which about 100 plates were alrealy to hand. The time taken for the exposure of each plate amounted on an average to one hour.

After various deliberations of a more private character the discussion turned on Resolution VI. of the Meridian Conference of Washington. The President declared emphatically that the question could be considered in this assembly only from an astronomical standpoint. The question was simply whether it were desirable for the astrononer to transfer the beginning of the day to midnight, and to this question the discussion should be restricted. At the outset the l'resident announced that the Committee of the Society, with the exception of one member not present (Oppolzer)-that is, in the proportion of seven to one-had voted against the adoption of the proposal.

Staatsrath Struve (from Pulkowa) at once opposed the restriction advanced by the President, which, he thought, involved a one-sided treatment of the matter. It was to their advantage, he asserted, not to seclude themselves from the rest of the world. Magnetic and meteorological observers, he said, counted their day from midnight. Many astronomers, moreover, he continued, worked by day, and most ohservations were made between six and twelve in the evening. The change was defended by men eminent in science. The reform assuredly met a deeply-felt want. The question was " Should they make this sacrifice or not ?"

Prof. Sporer, of Potsdam, mentioned that he always counted his observations from midnight.

Prof. Newcomb, of Washington, spoke at considerable length on the question, and rather against than in favour of the adoption of the proposal of universal time.

Prof. Weiss, of Vienna, was of opinion that the sacrifices demanded of astronomers by this reform were too great, and that the advantages were more than counterbalanced by the disadvantages. He laid stress on the fact that astronomers were wont to make their calculation of time from the moment when the time-determining object - the spring point - the mean sun-passed the meridian. That was also the true point of commencement. The observations which were of interest to the public at large, might be given in universal time, whereas with their more esoteric observations they might adhere to the old reckoning. The astronomer should keep by himself, and pay no attention to clains of intercourse.

Prof. Safarik, of Prague, s.id, "Why should we make a sacrifice on behalf of the public that feels no concern with our labours ?"

Prof. Kruger, of Kiel, thought that altogether there were but few neces-ary points of relation between the astronomer and the publie-points, however, which could be readily taken account of if the public desired it.

Dr. Danér, from Lund, argued that by a change of date it would be impossible not to make a sudden break in astronomical labours that had hitherto been carried on uninterruptedly, to whatever time of day or night the commencement of the day was transferred. He concluded by expressing his opinion that the sacrifices demanded were too great.

Geheimrath Auwers expressed himself as personally opposed to the change, principally in order to avoid a discontinuity in the calculation of time which might, later on especially, lead to sen-ible errors.

Prof. Bakhuyzen, of Leiden, was refused a hearing, because he wanted to speak of seamen, who have the reform specially at heart.

Stantmath Struve remonstrated against this proceeding, and argued that the question ought not to be treated onesidedly. At the Washington Conference seamen had the majority of representation, and opinion had there bsen almost unanimously
expressed in favour of the reform. He was swayed by the desire of rendering astronomy useful to the rest of the world.

Prof. Gyldén, of Stockholm, argued that the change must give rise to vexatious errors unless it were universally carried out on one line. As the realisation of this itea was, however, more than could be looked for at "present, he would now have to vote against the universal time. He believed, nevertheless, that in twenty or thirly years hence the majority of astronomers would be in favour of the universal time.

Prof. Tietjen, of Berlin, thought that in the Berlin YearBook at all events, no such change would find place before 1900.

Staatsrath Struve maintained that in the Royal Astronomical Society the majority were in favour of the universal time.

Dr. Pechule, of Copenhagen, was also of opinion that it would be well for astronomy to accommorlate itself to the rest of the world; but only when all were of one mind should the innovation be simultaneously and universally introduced.

Prof. Folie, of 13russels, thought that in all reforms there were some stragglers, and in his opinion it was the duty of astronomers energetically to take the initiative in the good cause.

After some recapitulatory observations of the President the discussion closed. No resolution whatever was passed on the subject.

It may be worth while mentioning here in respect of this subject that in the reading of the protocol it was affirmed that all the members of the Committee who were present were opposed to the adoption of the universal time. Objecting to this declaration, 1)r. P'echule stated that Prof. Gylden had only voted against the immediate adoption, while he entirely approved the principle of the proposed reform. The protocol had accordingly to be altered so as to give effect to this statement.

The series of scientific addresses was resumed by Dr. MittagLefller, from Stockholm, who communicated the mathematical prize exercises which, under the auspices of King Oscar II., had been instituted by a special Commission,

Staatsrath Struve handed, for circulation, photographs of the great refractor of 30 inches aperture, which a short time ago had been mounted in Pulkowa, and expressed his complete satisfaction with the result.

Prof. Newcomb had thoroughly studied the instrument for seven days continuously, and corroborated Staatsrath Struve's views regarding the value of the instrument, entering into various details on the matter.

Prof. Tisserand, of Paris, spoke of a purely theoretical examination of the rotation of the earth.

Dr. Steinheil spoke on the calculations of Galileo's telescopes of new construction.

Prof, Sporer, of Potsdam, gave a somewhat long address on the new views regarding the phyvics of the sun.

The following day was devoted to a common trip around the Lake of Geneva, Col. Emile Gautier, at present Director ot the Geneva Observatory, engaging at his own cost the saloon steamship Winkelried for this purpose. The dinner, which was served on board ship, gave opportunity for expressing the warmly-felt thanks of so many guests to their generous host for the entertainment he had provided them during the continuan : of the Congress.

On the last day of the meeting, Saturday, August 22, the proceedings of a business character were brought to a cline The statutory order respecting the raising of the fee for life nembership to 185 marks was adopted. As the place of mecting for 1887, Kiel was fixed on. The new election of a committce made no change in its former composition.

The scientifie addresses were opened by Prof. Gylden, wh. spoke of a graphic representation of planetary orbits.

Prof. Newcomb followed with an address on perturbations and their numerical calculation.

Prof, Bakhuyzen made communications respecting his treatment of Schröter's observations of Mars. He came to the conclusion that since Schroter's time "Huggin's Inlet" had probably changed considerably, whereby the hypothesis that Mars is in lange purt covered with fluid received material support.

Dr. Muller, of Potslam, spoke on modern photometric apparatuses, and examined in particular those of Zollner,

Google

by Google

WALL PAPERS FREE FROM ARSENIC.

WILliam WOOLLAMS \& CO., Manufacturing Paper Stainers, AER THE Original Maxers Of artistic wall Papers, Gaaranteed Free from Arsenic. Sole Address-irio, High STREET, MANCHESTER SQUARE, LONDON, W. GOID MEDAL, INTERNATIONAL HEALTH EXHIBITION.

WOODHOUSE \& RAWSON,
 SUPPLIERS OF ALL ELECTRICAL APPLIANCES,

Orfices-1i, Quegn Victoria Street, E.C.
Lamps.
Dynamos. Accumulators.
\checkmark
Fittings. Switches. Safety Junctions.

Carbons. Wire. Instruments.

Battery Supplies. Telephone Supplies. Electric Bells.

SOLE MANUFACTURERS OF THE WOODHOUSE AND RAWSON INCANDESCENT LANP. inquiries invited.

5- IV. SHCOUME.

In Casks, $12 / 6$ per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts.*

- Botiles charged a^{t}. per doz., and allowed at the same rate if returned; but tieer must he paid for with the beer.

Neither sukar, succharum, nor any of the many new Prewing Mat-rials are used in the manufacture of the "'S \mathbf{N}." Stout; $i t$ is Hrewed entirely from the finest Malt and Hops; it is, 100, more hopped than Stout is generally ; thereforr, besides being very nutritions, it it an excellent Tonic and particularly suited for invalids, Lalies nurinus, or nnyone requiring a good strengthening beverage. It is a "Sound Nutritions" Tonic, and very much recommended ly Medical men.

VALTEAMEROTRERE,
THE "HALFGUINEA" ALE BREWERY. LONDON. 8.W.

PRIZE MEDAL] AWARDED]

 SUCCESSORS TO W. LADD \& CO.,
beAK Street, REGENT STREET, LONDON, W.
MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FOR
SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.
WIMSHURST AND VOSS INDUCTION MACHINES OF IMPROVED PATTERN.
Illustrated Catalogue, Revised Edition, per post $8 d$.
NOW IS THE TIME TO SUBSCRIBE.
The October Number of THE ENGLISH ILLUSTRATED MAGAZINE begins a New Volume. Single Numbers, 6d., by post, 8d. Yearly Subscription, including Double Number and Postage, 8s. Subscriptions receive by all Booksellers and Newsagents

The $\mathbb{E n g l i s h}$ fllust

1. Rye. Engraved by O. Lacets from a Drawing by /f
2. The Interpreters. A P th Algrinon Charl
3. London Commons. Robert Hunter.
IV. Saucy Kitty Clive.
eo Mollor.
V. Decayed Sea-Ports.
V1. Singing and Loving.
VII. The Incomplete Angle temories of Pea
Basil Field. With Ilesi
VIII. Adventures on the Equate
IX. Aunt Rachel (To be comtinued)

Messrs. MACMILLAN \& C0.'S NEW B00KS.

A FAMILY AFFAIR. BY HUGH CONWAY.

Author of "Called Back," "Dark Days," Sc. 3 vols. Crown 8vo. 315. 6ul.

[^16]
A Treatise on differential EqUations. By Andrew RUSSELL FORSYTH, M.A., Fellow of Trinity College, Cambridge. 8vo. 14.

 NEW BOOK BY TIIE BISHOP OF DURHAM.THE APOSTOLIC FATHERS. Part IL. S. Ignatius-S. Polycarp. Revised Texts, with Introductions, Notes, Disecrations, and Translations. By J. B. Lightroot, D.D.․, D.C.1.., LL. D., Bishop of Durham. 2 Volumes in 3 . Demy 8 vo. 48 .
the english citizen series. Edited ly Henky Ckaik, M.A., Oxon., Ll.d., Glasgow. New Volume.

THE PUNISHMENT AND PREVENTION OF CRIME. By Col. Sir EDMPINDF. DU CANE, K.C.B., K.E., Chairman of Commissioners of Irisons, Chairman of Directors of Prisons, Inspector-Gencral of Military Prisons, Surveyor-General of Prisons. Crown 8vo. 35. 6d.
"A most valuable and interesting inember to the valuable and interesting" series of handbooks designed to instruct the Einglish citizen of the nature and working of the constitution under which helives. . . . Atogether, Sir Edmund Du Cane's book is full of interesting and useful information." 51 . 7ames's Gazettc.

Montcalm AND WOLFE. By Francis Parkman, Author of

 "Pioneers of France in the New World," \&c. With Portraits and Maps. Two Vols. Svo. 12s. Gd. each.The Times says:-"The story of the struggle and its closs has often been told; but never have the facts been set forth so minutely, accurately, and effectively as by Mr. Francis Parkinan. He has accomplished his task with such thoroughness that others following in his footsteps will find little to collect and improve. . .. The luminous narrative of Mr. Parkman is fraught with many useful lessons as well as replete with much valuable information."
EUROPEAN BUTTERFLIES, A HANDBOOK OF.
By W. F. De vismes Kane, M.A., M.R.I.A., Member of the Entomological Society of London, \&c. With Copperplate lllustrations. Crown 8vo. 1os, 6 d .
COMPOUNDS OF CARBON ; or, Organic Chemistry, an Introduction to the Study of. By IRA REMSEN, Professor of Chemistry in the Johns Hopkins University. Crown 8vo. 6s. 6.J.
A TEXT-BOOK OF THE PRINCIPLES OF PHYSICS. By ALFRED D.NIEI.I, M. A., I.L.B.. B.Sc., F.R.S. E., Late Lecturer on Ihysics in the School of Medicine, Edinburgh. With Illustrations. Seconl Edition. Medium 8vo. 2ts.
OVER-PRESSURE IN HIGH SCHOOLS IN DENMARK. By Dr. HERTEL, Municipal Medical Officer, Copenhagen. Translated from the Danish by C. GODFREY SORENSEN, with Introduction by J.CRICMTON-BROWNE, M.D., L.L.D., F,R.S. Crown 8vo. 3s. 6d.

GOLDEN TREASURY SERIES.-LARGE PAPER EDITIONS.
CAL POEMS. By Arared Lord Tennyson, Poet Laureate. ad and Amorated by Franctis ittrner palgrave. A limited Edition on Hand-made Paper. Svo. gs. ETICAL WORKS OF JOHN KEATS. Reprinted from the "itions, with Notes by FRANCIS TURNER PALGRAVE. A limited Edition on Hand-made Pajer.

NEVER BARBER AND COMPANY'S RICH SIRUPY ONFA CONGO.

ONE SHILIIING AND SIXPENCE PER POUND.
A TEA ABOUNDING IN STRENGTH AND QUALITY. COMPARE TIIS WITII TILAT ADVERTISED AT $2 s_{0}$, OR 6lbs. FOR 12%. $3 d$.
 Postal Orders from 1s. 6f. to tos. 6ud. may now be hall for One Penny from all I'ost Offices.
BARBER \& CO., 274, Regent Circus. Oxford Street, W.; 61, Bishopsgate Street, E.C 102, WESTBOURNE GROVE, W.; KING'S CROSS, N. ; 42, GREAT TITCIFIELD STREET, W.; TH: BOROUGH, LONDON BRIDGE; BRIGHTON-147, NORTH STREET: BIRMINGIIAM-QCADRA: LIVERPOOL-1, CHURCH STREET; MANCHESTER-93, MARKET STREET; BRISTOI.-3S, CUSS STREET: PRESTON-FISIIERGATE.

THE "EXCELSIOR"
 PATENT SPRING MATTRESS. AWARDS:
 THE NEW PATENT
 WOVEN WIRE MATTRESS.

The principle of arrangement permits the free movement of one sleeper without inconvenience to the other, admits of complete isolation of each, and effectually privents depression in the centre.
rhe "EXCELSIOR"\&"MATLOCK" COUCHES.

Ten
Prizemedals, Fourteen Certificates of Merit

The

'Excelsior'

"Matlock"

The leading peculiarity of this Mattress is the unqpet et bination of a woven wire central portion wab be spring's of great strength and reliable temper, pro. advantages possessed by no other make. The bebe springs obviate the tendency in all woven wire mattren to become hollow and so cause sleepers to roll ito 3 middle of the bed.
Illustrated Descriptive Corculars and Price Lutifrim

OBJECTS FOR THE MICROSCOPE

Pleurovizma macrum, very rare

 Eiges of Fles.Fibrous Sulphate of Lime, in motion for Polariscope Paranite of Humble Bise
Parasite of Humble Bae
Hematophines of Buffalo
L-matophines of Buffalo -ite
t.unge and ovipustor of 4pider Slide
Inatomy of a Laf, opieces on one

Root of Ibuckweed with sheath
Spirogyra in conjugatho, stained
Antheridia of Moss, Mnium hornutn
Volvos globator, stained
Virefly from Irinidad
irefly from Trinulad
VELV CLSIFIE

Section of tail feather of young Starling in its follicle...
Jaw of Kitten, showing ditplacement of temporary, by developert of permanent, sooth
Transverse section through whole foot of Fictus, very fine --
tarva of Antlion, Ceylon
Fossil human Bone (Guadaloupe)
Very beautiful arranged slidea, composed of wheels of Chirodota Anchors, and Plates of Synapta, Butterfly, Scalen, Ac Tre exceed is beauty anything previously offered to the mionsocia and are specially suitable as Exhibition Sliden for Sourton t:

> W. W ATSON \& Either of the above sent post free to any part of the world, on application to 313, HIGH HOLBORN, LONDON, W.C. be 25 to 75% less than ANY other Gas Engine per brake horse-power.

CROSSLEY'S PATENT TWIN "OTTO"ENGINES Impuise every Revolution.
The steadiest running Gas Engine yet made. CROSSLEY'S PATENT SELF.STARTER

The Safest, Simplest, and Best. CROSSLEY'SNEW VERTICAL"OTTO"ENGINES Requiting little Ground Space.

CROSSLEY BROS., Limited, Manchester. London: 24, Poultry, E.C. Glasgow: 19, Renfield St.

OVER 16,000 DELIVERED.

Special i H.p. otto Engine indicating up toz iol Largely usedin Private Houses for Electric lugits.

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid sround
Of Nature trusts the mind which buills for aye."-WORDSWORTH

No. 831, VoL. 32] THURSDAY, OCTOBER 1, 1885	[PRICE SixPENCE
Registered as a Newspaper al the General Post Office]	

AMATEUR
PHOTOGRAPHERS
SHOULD ALWAYS USE
THE MAWSON PLATE.
The BEST and CHEAPEST in the Market.

Uniform, Reliable, and exceedingly easy to develop.
MIAWEON \& SWUAN,
MOSLEY STREET, NEWCASTLE-ON-TYNE;
and 31, FARRINGDON STREET, LONDON. [sa4
R. \& J. BECK'S

NEW MICROSCOPE,
 "THE STAR."

PRICES. \mathcal{L} s.d.
Stand, with 1 -in. Objectglass
Stand, with $t-i n$ and t-in. Object glasses 3 3
Stand, with Rack and Pinion, coarse adjustment, 2 Eyepieces, and $\mathrm{t}-\mathrm{in}$. Objectglass Full Descripive Pamphlet sent on Applicntion to
R. \& J. BECK, 68, Cornhill, London, E.C. GOLD MEDAL
International Inventions Exhibition, 1835.

OUR EYES.
BROWNING'S IMPROYED METHOD OP SUITING TEE SIGHT WITH SPECTACLES

Either Personally or by Correspondence.
BROWNING'S AXIS.CUT PEBBLES are the most perfect lenses made, being cut from pure crystals of Brazilian pebble at right angles to the axis, and every lens tested separately by the polariscope. Spectacles of superior quality from 4 s. $6 d$. per pair; with pebble lenses in best steel frames, from tor, 6d. pepair; and in gold frames from \mathcal{L} 3r. $6 d$. -Full particulars of Browning's Methol of Suiting the Sight by Correspondence, and Testimonials pust free.

JOEIN BROWNININ, 63, STRAND, LONDON, W.C.
NEGRETTI AND ZAMBRA,
SOLE MAKERS OF YORDAN'S (PATEAT)

Silver Medal aztarded Inventions' Exhibition, 188;

VICTORIA UNIVERSITY， UNIVERSITY COLLEGE，LIVERPOOL．

SESSION s暗s－86 commences OCTOBFR s

Complete Curriculum provided for Victoria University Degrees in Medicine，Arts，and Science．
Students also prepared for London Universi：y，Cambridge Higher Local and other Examinations．
Physical，Biological，and Chemical Laboratories．
Assistance in Practical Laboratory Work by Demonstrators under the Superintendence of the Professor of the Dejartment．
All Classen，except Medical，open to Male and Female Students nf 16 and apwards．Students admitted on their 16th year，subject to Prelimianary Examination．
Evening Lectures and Classes，beginning October z2，open to all－comers on payment of 6 f ．fee．
Fulf Prospectus gratis on application to the Collece Ragistrar．

THE OWENS COLLEGE， MANCHESTER．

The PROFESSORSHIP of IיHVSIOIOOV has become vacant through the resiznation of Prof．Camke：．Candidate for the Chair are invited to frward applications and testimunials，addrested to the（ouncil of the Col－ lege，under cover to the Kegistrar，not later than MONIDAY；November 9 next．Information concerning the terms and conditions of the appointment will be forwarded on application to Dr．Gkenswwood，Principal of the College．

HENRV WM．HOLDER，M．A．，Registrar．

UNIVERSITY COLLEGE，BRISTOL．

The SESSION $3885-86$ will begin on OCTOBER 6．The College supplies for persons of either sex above the ordinary school Age the means of continuing their sturices in SCIF．NCF．．I．ANGUACFIS，IIIGTOR N and CITFRATURF，．The CHEMTCAL，PHICRCAI． GEOLOKICAL，and BHOLXIICAB，LABOR WORIF S are open Daily The Fingineering Department includes Civil，Mechanical，and Electric Engineering，and Surveying ：and veccial arrangements for practical work have heen made with various Fingineern in and wear Bristol．Information with regard to the lodging of Students may be obtained on application Several scliol．AksHil＇s are tenable at the College．Calendar，contain－ ing full infurmation，price is．（by Pust is．3d）．For Prospectus and further intormation，apply to

AIFRED Ki．SHOCK，Kegistras and Secretary．

THE YORKSHIRE COLLEGE．

DEPARTMENT OF SCIENCE，TECHNOIOGV，AND ARTS，
The TWFIIFTH SESSION begins TUESDAY，October 6，IERS，in the
 the Prince and Princess of Wales．
The Day Classes prepare for the Londun＇＇niversity and other Examina． tions and for varioun Profeswions．They include ：－Malhematics，I＇hy vics Chemistry，（ieology，Mineralogy，Mining，Coal Mining and Colliery Man agement，Zuolugy．Comparative Anatotity，Hotany，Human Phvoinlogy， agenarni，Znolugy，Comparative Anatonty，Motany，Human Phvonlogy， Civil，Mechanical，and Mining Fngineeragg，Classis，History，Einslish， French，（iernann，and Oriental Language
ing．and Dyeing．Textite Fabrics，Kr．
The College Laboratories，Weaving Sheds，and Dyehouse are ogen daily for practical work．Fees according to time

NB．－Engineering Students will work in the detached Now Enritnvfa． int；Lamonarony．Prospectuses may be had（free）from the Sectetary．

ST．THOMAS＇S HOSPITAL MEDICAL SCHOOL

ALBERT EMRANKMENT，I．ONDON，S．E．
The WINTER SESSION of $188 \mathrm{~s}-36$ will commence on OCTOBER s． when an Introductory Address will be delivered by A．O．MackELLAR． Eeq．M．Ch．，at 3 p．m．
TWO ENTKANCE，SCIENCE SCHOIARSHIPS of $\angle, 00$ and $\angle 60$ respectively，open to all first－year Students，will be offered for competition． The E tanination will be held on the sith， 6 th，and 7 th of Isctober，and the subjecto will be Chemistry and Physics，with either IIotany or Zoology at the option of Candudates
Sjecial Clases are held throughnut the year for the＂PRELIIMINARY SCIFNTIFIC＂and＂INIF．RMI．DIAIF，M．B．＂Fixaminations of the UNIVERSITY of LONDON
All Hospital Appointments are open to Stuifents without estra charge． ＊chnlarstrips and Money Prites of conuderable value are awarded at the C：Nonal Exarainations，as aloo several Medals
The Fees may be paid in onc sum or by instalments．Entries may le mat！to Ifctures or to Hospital Practice，and special arrangements are m ul－for Students entering in their second or subsequent years；also for

Several medical prartithoners and private families residing in the neigh． hurbool receive Students for residence and mupervision，and a register of apponved lodginge is kept in the Secretary＇s offer
for espertuves and all particulars may be obtained from the Medical Secre． wy，Mr．Geome Kenile．
w M ORD，Dean

TECHNICAL EDUCATION

LIVING SPECIMENS FOR THE MICROSCOP

GOLDMEDAL awarded at the FISHERIES EXHIBITION n THOMAS BOLTON，37，NEWHALL STREET，BIRMINGHA
Who last week sent to his subscribers the Dew Rotifer Pomphoin）
with vetch and description，has also sent out Lophopes
Cristatella mucedo，Fredericelia sultana，Cordylophora lacustris， 1. socialis，Asplanchna priodonta，Volvox globator，Dramids；awo H Amarba，Vorticella，Crayfish，and other Specimess for（Hualey asc N． Biological Laboratory work．
Weekly Announcements will be made in this place of Organise ． supplying．

Specimen Tube，One Shilling，post free．
Twenty－six Twbes in cownse of Six Months for Swberviption of $i_{1} 11$ or Twelve Twdes for ros． 6 d ．
Portfolio of Drawings，Eleven Parts，ts，each，
EDWARD WARD has pleasure in ar nouncing the isane of a new Nicro－Slide of Zoophyte，wrt out，in the special manner so well known to his numerows palf

Plumulariasimilis \ldots ．an \quad（post－fire）${ }^{5}$ in Also，quite new ：－ Porgoma verrucos（（polimes Sypicus（Stectre Shem）
EDWARD WARI．349．OXFMRD STREFT．MANCHEズ1t5
UNIVERSITY COLLEGE OF NORTH

WALES，BANGOR

Session 888.6 will open on FRIDAY，OCTOBER，
DEIPARTMENTS OF PHVSICS，CHEMISTKY，AND $1 / \mathrm{l}$
Physic．．．．\｛ Profosser．A．lirav．M．A．

Brology … Lecfuerr，R．W．Pullits，B．A．，B．e．
The Classes and $L_{\text {abboratory Courses of this College are amer sem }}$ requirenuents of Students preparing with a view to the Prat cations of the above Sciences，as well as of Students preparing fut and other Fsaminations，Two yeara of the Thre Veas＇（iout Gimfluation in Science at the University of Edinborgh may le 1st Collese，and the l．ectures in Chemivtry and Ilotary are rechen Universities of Fdinburgh and Glangow as cuazalying of th l）egreet of thowe Universaites．
The extensive laboratories（Physical，Chemical，and 1if is at equipted for budy and Recearch，and in the Physical I le provston hav tern made for the Teaching of Iliectrical Foz aperial course has been arranged in this subiect．For Mapi abil of Physical and Chetaical Iatoratoric，see NATt Ry for tebrairy Labonatory Fees（res Tiene）

$$
\begin{aligned}
& \text { ATory tees (rea leks) } \\
& \text { Chemsical } \\
& \text { Paboratory } \\
& \text { Latoratory }
\end{aligned}
$$

Six Hours per Week ．．．Liaboratory 19 Latoratory
Tix Hous per Week 11 m
Twellty four or more 11 urs
per Week
Prupurtivaal Charges for more than Six or les than Twemy $=$ per Week．

A considerable number of Ncholarships and Exhibiuions are oprt petition at the neginning of each hewion，and aeveral are aemorn． sluse of each Sesson on the revult of the year＇s work．
For full Infurmation see the College Calendar．
（yrice us．(d) ）on application to the College hectetary
MATHEMATICS（London and Suburbs
students attended（at their onn homes if they no perfer）br Wrangler，Trin．Coll，M．A．and F．K．S．on very rawnstic
X．，g．Vorvitle Koad．Hammermmith， \mathbf{W} ．
WANTED．－A TUTOR to teach Yoult Childrer．To reside in family or in lodginges，Must have grod ${ }^{\prime}$ knowledige of Natural Scuence and be able
A GRADUATE of the UNIVERSITIES Frlinhurgh and Heidetherg，with great experiesie in 2weirs
 N W
BRITISH MARINE SHELLS，CRUSTA
 of rare and heautiful＂preimens for Sale Cheap Toto
WANTED－＂NATURE，No．56．－Apply

With numerouslllustrations．Crown 8 mo, y． 64.
ISATION OF LIGHT． By
POLARISATION OF LIGHT．
SPOTTISW（IODE，L．L．D．，late Piesident of the Rof alker howi New Edition

MACMII．LAN \＆CO．LONDON．

MINERALOGY AND GEOLOGY.

PROFESSORS. COILLECTORS and VISITORS to LONDON are INVITED to INSPECT Mr. HENSON'S STOCK of CHOICE MINE RALS, \& $c_{\text {. \& }}$ \& At the PRESENT TMME he hat a PARTICULAKLY FINECRISTALLISED NUGGET ONATIVEGOLD, WEIGHT GOF. PINKAP,)PHYI,LITE, CHESSYLITE, EMERALDS O MATRIX PYROMORPHITE (VERY EARE FOKY), CERUSSITE, CRYSTALL ISED MALACHITE, and ROTRYOIDAL. CHALCEDONY, ME. TEORIC IRONS and STONES. POIIISHED AGATES and LABRA. DORIIES.
A Large Series of ROCKS, also MICROSCOPIC SECTIONS of the same.

Lists on Afflication. Hammers, Chisels, and Hammer Straps.
PRIVATE LESSONS AND EVENING CLASSES. BLOWPIPE CASES AND APPARATUS. Catalogues free.

SAMUEL HENSON,

277, STRANJ, LONDON. Opposise Norfolk Street.

SIX PRIZE MEDALS

AWARDED FOR GEOLOGICAL COLLECTIONS.
Geological Collections enpecially adapted for Teaching as supplied to Science and Art Department, and used by all Lecturers and Teachers in Great Aritain, \&e.
New and Rare Minerals conssantly arriving from all parts for selection of Single Specimens.
ROCK SECTIOVS AND ROCK SPECIMENS
The Largest Variety in England.
New Catalogues and Lista on application to-
JAMESR, GREGORY,
88, Charlotte Street, Fitzroy Square, Lundon. Established 27 Vears in London.

FERNERIES fitted up with Preserved Flowers. Foliage MInts, and Floral Decorations suitahle for Irawingand Ball Rooms, Churches, Chapels, Thearres, Rc.
Sundella, a PATENT Preparation for preverving FFRNS (from Maiden-hair to the common Brake) GRASSES, FOLIAGE, \&C., sems, securely packed in slout bor (with full particulars) on receipt of P.O.O. secure

MADAME SUNDELL,

4. SPUR SFREET, LEICESTER SQUARE, LONDON

CABINETS FOR MINERALS, FOSSILS, \&c.

6 DRAWERS, 20 INCHES HIGH

NON-MAGNETISABLE WATCHES.
WATCHEB which cannot be "MAGNETIBED," constructed at the recommendation of W. CnookEs, Esq.. F.R.S, and as exhiblted at the Electrical Exhibition, Paris.
E. DENT \& CO., Makers of the Primary Standard Timekeeper of the Royal Observatory, Green wich.

Oaly Addresses:-6x, Strand, and 34. Royal Exchange, Londob. N. B. Watches can be coaverted to this plaa.

MICROSCOPES AND APPARATUS

 is the beat constructed at ahe price. All Minutie carefully adapted; coarse and fine adjustmenta, excellent 1 -inch, -inch, and \mathbf{z}-inch Achromatios.
Cabinet complete, ${ }^{3}$. 38 . JOHASTOLOGICAL MICROSCOPE, with first-class 1 -inch and t-inch Objectives, $\ell 55$.
W. JOHNSON, Optician to the University Hospital,
i8B, TOTTENHAM COL゙RT ROAD. Catalogue Post-free
FRY'S
GOLD MEDAL,
CALCUTTA, 1884.

COCOA
"Pure Cocon."-Chas. A. Canuron, Analyst for Dublin.
shity Bristol.

Nineteen Prize Medals Awarded.

BEST BLACK INK KNOWN. DRAPER'S INK (DICHROIC).
DIFFERING FROM ANVTHING ELSE EVER PRODUCED. Writing becomes a pleasure when this Ink is used. It has been adepted by the prinelpal Banks, Public Offees, and Railway Companies throughost Ireland.
It writes almose instantly Full Black. Flows easily from the Pen. Does not corrode Steel Pens. Bloting-paper may be applied at the Is cleanly to use, and not liable to Blot. moment of writing.
Can be obtained in London, through Messrs. Barclav \& Sons. Farring. don Street; W. Edwakds, Oid Change; F. Newnery \& Sons, Newgate Stieet: J. Austin \& Co., Duke Street, Liverpool ; and to be had of all Stationers.
BEWLEY \& DRAPER (Limited), Dublin.
IO5,000 ACCIDENTS por which
two millions have been paid as COMPENSATION

BY THE

Railway Passengers' Assurance Company 64, CORNHILL.
ACCIDENTS OF ALL KINDS.
Paid-up and Iavested Funds, $\langle 260,000:-$ Premium Income, $\mathbb{K} 235,000$. Chairman \ldots HARVIE M. FARQUHAR, Esq.
Apply to the Clerksat the Railway Stations, the Local Agents, or West-End Officu-8, Grand Hotel Buildings, Charing Cross; on at the
Head Office-64, Cornbill, London, E.C. WILLIAM J VIAN, Secretary.

HOW \& CO.'S

Geological Transparencies for the Lantern.

 Descriptive Catalogue on Application.WALKER'S SPECIFIC GRAVITY BALANCE FOR ROCKS AND MINERALS.
HOW \& CO.'S POCKET MICROSCOPE LAMP. Bs. 6 d .
MICRO-PETROLOGY.-Sections of Pitchstones, Obsidians, Granites Syealtes, Diorites, Gabbros, Dolerites. Basalss, Tachylites, 'Trachytes, Andesitea, Porphyrites, Rhyolites, Lavas, Ashes, Gaeiss, Schists, Lime stones, 角c., price 18.6 d . each.

JAMES HOW \& CO.. 73. Fakingion Sthext, Lowdon.

In Feap. Evo, Price z. 6d.

ELEMENTARY LESSONS IN THE SCIENCE OF AGRICULTURAL PRACTICE. By H. TANNER, F.C.S., M.R.A.C., Examiner in the Principles of Agricultare under the Government Department of Science, sometime Professor of Agricultural Scienee, University College, Aberystwith.|

IMACMHLLAN \& CO. London.

GUY'S HOSPITAL.

The MEDICAI, SESSION commences rn THURSDAY, October The Horpital contains, bewdes the brds fur Medical and Surgical Cases. -ards for (1bstetric, 1 phthalmic, and other special departments.
Special Clasess are held in the Hospital for Students preparing for the Examinations of the University of London and of other Examining Boards.
Apmotrients - The Hou-e Surge int and Huse Physicians, the Obstetric Revidents Clinieal Assistants, and Drewers, are selected from the Students according to meris and without payment There are also a farge number of Junior Arpointmenis, evety part of the Ilospital Practice being syatematically emphyed for insinicti in.

Enteaxce Schotationers -Open 'cholarship of 125 guineas, in Claskics. Mathematics, and M-dern Lanzuages. Open Schofarthip of it5 guineas, in Chemistry, Physics Borany, and Zoology.
Putess, \& C-bix cholanhips, varving in value from fio to <50 each, for general pmiciency in. Mertical Situdy; the Treasurer's G. . M1 Medal, in Medicine: the Treasurer's Gold Medal, in Siurgery, the Gurney Hoare Prize of $\mathcal{C} \mathbf{y s}_{0}$ for Clinical Study; the Beaney Prize of 30 guineas. f P Pathol gy: the Sands Cos Scholarship of \mathcal{L} is per annum for three veark, fir Physiol agy: the Joseph Hoare Prizesip of $\ell 25$ and $\ell, 15$; the Michael Harris Prize of $\mathcal{L} 10$,
 Mackentie Kacon Priace, for Nervous Diseases, of $\ell 15$: the Burdett Prize for Hygiene, value \mathcal{L} ia
or Proapectus and further information apply to the Dean, Dr. F. Tavlor. Guy's Hospital, I.ondon, S.E., July iB8s

THE FUEL OF THE SUN.
 By W. Mattied Williams,
 F.R.A S., F.C.S.

8vo., Cloth, 244 pp-s price 7s. 64 .
This emay, though avowedly speculative, invokes no hypothetical entities sor actions, but proceeds exelunively by direct deduction of the comnic operation of demonstrated and ameepted physical laws.
The matter of our almosphere is shown to te expanded throughout space, and accumulated around : very orb proportionally to ite gravitation

Taking our chare of this as unity, the atmospheres of the sun and planets are calcufated The accumulation, instirring, ejection, dissiciation, and recombination of the enveluping solar gaver are shown to orikirate and maintain the heat and light of the wun; the instirring agent beiuk the eccentric rotation of the whar nucleus efferted hy the reaction of planetary gravitation: the fresh fiel sulislited ly the roorme matter exchanged for that ejected by the prominences in the course of sular translantion thruugh space.
The sun-spots, the prominences, the conoma, the rodiacal light, and all the minor details of wolar disturhaices conie out as physical resilts; also a simple explanation of tasling stars, and of the nebulix as fermawont budies.
The observed meteorology of the inferior planets, and the semi-solar constitution of the larger, follow from the same physical premises
Asumbing that the stars are suns like ours, it is sh-wn t^{2} at no energy bs gained or lont throughout the univers, the solat orbs simply concentrating. by the machnery deccribed, the energies previously diffuced by radiation. London: SIMPKIN, MARSHALL, \& CO

Just Published, Serund Fidition, Revised and Illustrated, price 3. 6 d.
THE OWENS COLLEGE COURSE OF
Es.EMFNTARY I!loliois l'art I, -The Fwnct, an Introduction to Anatomy and H: HeH, Hy A. MIINFS MAKSIAAI.I
 Owens College, Victuria l'ineresty:

Lomion: SMITH, FI.IFR R \& CO.
Mancliever: J. E. CORNISH.
THE GARNER, OCTOBER, 1885.-Con-
tento :-Onr Natural llivtory striplies-I henological suation-The Mofluwa of Surtey, F. H. Kume- 1 he whts at Eventide. J. W. Wil.
 annum. afd for single number.
1ondon: W E. He, WERS, as, Wansey Street, Walworth Ruad, S.F
LA SEMAINE FRANCAISE: a Weckly Newspaper and Review in the French Language. Polltica, Litetature Sclence, Art, Varietias, Notes. Price ad., throumh Booksellern, aed at the Raimby Browatalls. (1)
LA SEMAINE FRANCAISE: Journal Français pour I'Angleterre: Politique, Litterature, Sciences, Arts. Veriftes, Nouvelles, of Notes Uneremplaire par fa ponte, ed d, en timbres poste. Abonne ment franco par la poste-un on, iod iod. - sis mois, gs. gd. Prix sd. chet tous les bleaires eq sur gareo des cheming de fer. On s'mbonger aus bureaus, 441. Strand. Londres, W.C.
LA SEMAINE FRANCAISE.- "La Semaine Fran. galue "hat been brought out In London for the, beneft of thove English readers who mey wish s, aredy coatemporary French from sll points of wlem. tanead of confiniag thoir reading to one partlevlar Gasilic priat. it certninly mastits succese."-Graphic.

P.O.O, paymbleto A. Cwistam.

Publishing Office, 44t, Strand, w, C

THE SPECIALIST'S SERIES

A New Series of Hundhooks for Stuitents and Prartiond Engineers.

Now Published.

Vol. 1., Crown Evo, with 61 Illawrations, cloth, price 6 .

DYNAMO AND MAGNETO-ELECTRIC MACHINES.

With a Description of Electric Accumulators, from the (ieraus GLASER DF. CFW:
By F. KROHN, and Specially Edited by PACET IIICG: 1.L.D., D.Sc.

Vul II., crown 8 vo, with 7 Plates, cloth, price s fol.
GAS ENGINES.
By WILLIAM MACGREGOR.
Vol. III., crown 8vo, with Illustrations, cloth, price as. 68.
BALLOONING:
A Concise Sketch of its History and Principles.
By G. MA '.
oflict Works in Preparation
London: WHITTTAKER \& CO., and G. BELI. \& S6, M
PROFFESSOR TAIT'S WORKS.
1.

In Crown iva., Cloth, price 7r. 64

PROPERTIES OF MATTER

By P. G. TAIT, M.A., SEC.R.S.E.
Formerly Fellow of St. Peter's College, Cambidge, Professor ef \$aco
Philosophy in the Liversity of Fdintrurgh
11.

By the Same. Crown 8vo , price 6r.

LIGHT.

Fidinhurgh: ADAM AND CHARIFS BLACK.
10d. per Ann., zod. Post Free.
DER NATURFORSCHER Wochenblatt zur Verbreitung der Fortschritte in den Naturwissenchaften.
Heraugegeben von Dr. Wilhela Sklarex
A Weekly Periodical deroted to Nataral Science. 53 Nos, its. SpeenNumbers may be had through any Foreign Bookseller. $18 \mathrm{~F}_{4}$ comenen the XVIIth volnme.

Berlin: DUMMLER, 77, Charlottentrasse, S.W., and all Book sellers
thn the tst of every Month.

JOURNAL OF BOTANY.

URITISH AND FOREIGN.
Edited by Jauns Bettren, F.L.S., Brichah Museum.
 Notices of Books and Memoirs.-Articles is Journals--Botenalcal Nirn Proceedings of Societies.

Price su yd Subscription for One Year, payable ta advance, wae london WFST, NEWMAN, \& CO., S4. Hattow Garden EC

ELEGANT SCIENTIFIC PRESENT FACSIMILLS if the crlebrated DIAMONDS of the WORB
 lustre. In handione Morocro Cave with Descriptive Catations Liz t3, - R. DAMON, F.Gi.S., Weymouth.

BLASCHKA

ELS

 Y
THURSDAY, OCTOBER 1,188 ;

NORTH AMERICAN WATER-BIRDS

The Water-Birds of North America. By S. F. Baird, T. M. Brewer, and R. Ridgway. Two Vols., 4to. (Boston: Little, Brown, and Co., 1884.)

EXPECTATION was roused some years since when tidings came that the "North American Birds" of Prof. Baird, Dr. Brewer, and Mr. Ridgway; of which three volumes had been brought out in 1874, was in process of completion, and at last there appeared two quartos of goodly size under the title of "The Water-Birds of North America," which are not only the sequel to the work just named, but are also issued in continuation of the publications of the Geological Survey of California, of which a single volume on the land-birds of that State, edited by Prof. Baird from the notes of Dr. J. G. Cooper, saw the light in 1870 . But, to complicate the matter further, the two quartos now before us form vols. xii. and xiii. of the "Memoirs of the Museum of Comparative Zoology" at Harvard. How all this came about is explained in the introduction by Prof. Whitney, the Californian State Geologist ; but the only part that need concern us is the not surprising but still much-to beregretted fact that the cost of bringing out the volumes treating of the land-birds of North America was so great as to deter the publishers from continuing the work at their own risk. Most fortunately, then, the combination just mentioned was effected with the result we now see; but it still remains a reproach and humiliation to those interested in birds-not only in North America alone but all the world over-that so excellent a performance was not more encouraged by them. The obstinacy of the public in preferring a bad book to a good one is perhaps observable in almost every science, but that this obstinacy is now here more marked than in the case of natural history, and of ornithology in particular may be because it is one of the most popular branches of science, and because ninetenths of those who pursue it hardly realise the fact that it is capable of serious study. Howbeit we may be sure that the old adage, "Populus a'ull decipi," was not first uttered by a man without worldly knowledge, and to this day experience tells us that it is as true as ever. It will take a long time yet to persuade people that they had better be well informed by an author who writes a book because he knows his subject, than by a badly-informed one who gets up his subject in order to write a book about it-though even this is perhaps saying too much, for many an author, on ornithology at least, has never taken the trouble to learn the rudiments of what he pretends to teach, and if he have but enough self-assurance he will get his claim to instruct allowed by those who are more ignorant than he is.

To all who have been concerned in the production of the text of the two volumes before us we must offer our hearty congratulations, as it is impossible for us to apportion to each anything like his proper share of merit. clides the naturalists already named, Frof. Whitney his introduction, that in revising the not wholly Eanuscript he has had the assistance of Mr. hitenown as head of the ornithological
department of the Harvard Museum, and that gentleman is therefore entitled to our thanks as much as any one of the others; but moreover it is also advisable to look back to the original preface of Prof. Baird, in which he states that "the most productive source" of the new information published in this work "laas been the great amount of manuscript contained in the archives of the Smithsonian Institution in the form of correspondence, elaborate reports and the field-notes of coll-ctors and travellers." The most iniportant of these, he goe; on to say, are those by the late Mr. Kennicott, and several residents in the then Hudson's Bay Company's Territory-Messrs. MacFarlane, Ross, Lawrence Clark, Strachan Jones, and others-besides Messrs. Dale, Bannister, and Henry Elliott in regard to Alaska and its islands. Now this being the case with respect to the former volume, which treated of the land-birds only, the importance of the labours of these gentlemen ought to be far more manifest in the present volumes, which deal with the water-birds, since an overwhelming majority of them have their home in the vast northern regions of the continent, and are only winter-visitants to most of the States and Territories of the Union. A good deal to our disappointment we find it otherwise. It may be that the late Dr. Brewer, who is believed to have been responsible for the "biographical "portion of these as of the former volumes, had not at his death completed the examination of the unpublished materials at his disposal ; but certainly there is not so much information from American sources as we had hoped or even expected. On the other hand, European authors are frecly, not to say redundantly, laid under contribution for such species as are common to the two continents, which it is needless to say are many. Of this we do not complain, though we confess we should rather have learned how these species behave themselves on the other side of the Atlantic ; but there is a want of discrimination as to the opportunities possessed by the different observers quoted, and a lack of proportion as to the value of their observations. We do not say that this is not pardonable, perhaps it was unavoidable; but it is unfortunately no less a drawback ; and, to make it worse, several instances might be cited in which absolutely contradictory assertions are reprinted without any attempt to indicate which is thought to be the more worthy of belief; while a good many of the statements to which this objection does not apply are but vain repetitions.

Passing to the descriptive part of the work, we do not hesitate to declare that, so far as we have been able to test it, it is excellent. The "specific characters" given seem really to deserve their name, since they indicate the species, and are not, as has lately become so common, drawn from an individual example. Moreover, they are sufficiently brief to be useful, for we have unfortunately entered upon days when specimens are described at a length that absolutely precludes the practical application of the description. Nothing marks more distinctly the difference between a naturalist and a book-maker than the being able to perceive and to tersely express the characters that are essential to the differentiation of a species. Among ornithologists, merely to cite the example of one who is gone, it seems to have been this faculty that gave the late Mr. Gould such a wonderful pre-eminence among his contemporaries. Others
unquestionably fur surpassed himas scientificornithologists, indeed the scientific value of his works is very slight; but hardly any one had such an eye for a species, or could in a dozen words or so point out how it could be recognised. It is no doubt in consequence of this that so few of the species described by him hive failed to be considered good ly his successors.

The ornitholngists of the New World are in one respect very fortunate. They are not encumbered by the enormous dead weight of synonomy that is so burdensome to their brethren of effete Europe; and, thanks to the steadfastness with which the North Americans follow the use of a nomenclature fixed by authority, they will probably be for ever exempt from much of the evil which afficts the more independent writers of the Old World, almost each of whom likes to be a law unto himself. Whether the nontenclature now accepted in the United States and in Canada be founded on the best principle is a matter that need not lre here discussed. It has been reduced to a practice the real advantage of which none can doubt. But that this state of things is potsibie arises in great measure from the fact that in one sense a very small number of North American birds have an ancient history such as is possessed by nearly all the European species, though of this ancient history the compilers of synonymy in general give but a feeble notion. Few things are more musleading than a long list of synonyms, such as is too often regarded as a test of an author's indusiry and knowledge. It almost always happens that in a list of this kind bad accounts and grod are made to appear as though they stood, as it were, on an equal footing, and it not unfrequently occurs that a reference to the best account of a species may be wholly omitted, while a fantastic name introluced by some compiler or cataloguemaker, who perhaps never exatnined or even set eyes on a specimen, receives notice as if it were an importan n_{t} contribution to the history of the creature. If Americans suffered from this grievance to the same extent as Europeans do, we suspect that the ingenuity of the former would lead them to find some remedy for $i t$, but they may bless their stary that they are comparatively free from it.

Every well-informed ornithologist knows that the systenatic arrangement of birds presents a series of puzzles which as yet defy solution. Still, some steps towards the clearmg away of the old trammels have been taken by vanous persons, and a few positions that may be looked upon as established have been gained. We are sorry to find so little in these volumes suggestive of further advance. The writers seem to be still enchained in the toiln which the artificial systern of Sundevall drew around the subject, and in the very brief space-barely two pages \rightarrow hereto devoted, we have "altricial" and "pracocial," "gymnopredic," and "dasypredic" groups spoken of as if they were to be believed in. It is true that the arrangement adopted is said to be "not strictly natural " " hes in the same paragraph are some other statemes affinities or the reverse that we hope the authon to repent. However we freely admit that the nt of these volumee is not to teach systematic of and therefore perhaps the less said on that ced subject the better. They will, there can be nop udwirably fultill the chief purpose for which they
intended, and enormously further the study of birds is English-speaking America. It would be out of placebere to enter upon any minute criticism of their contents, and, while indicating in a general way, as we have attempel to do and as we conceive we are in duty bound, some of their shortcomings, we can strongly recommend them 16 on the whole justifying the high degrec of expectation that had prevailed concerning them prior to their porth cation. Assuredly we shall have to wait long bel:? another so comprehensive and, taking it all in all, 51 excellent an account of "The Water Birds of Sies America" is likely to make its appearance, and coc: more we tender our thanks to each and every one of ths* who have been concerned in the work, though we mi: perhaps make a reservation in regard to the $w \cdots$ engraver.

LETTERS TO THE EDITOR

[The E.titor does not hold himself responsible for opinimsestrby his correspondents. Neither can he undietake to man or to correspond with the teriters of, rejectid mananty. No notice is takes of anomy mons communucatiom.
〔The Editor urgently requests correspondents to kert them :as short as possible. The fressure on his spacc in : \boldsymbol{R}^{+} that it is impossible otherwise to insure the afteamen," of communications containing intersting and novel fact

The New Star in Andromeda

THE inforantion furnished liy a photograph of the ti Nebula in Andromeda taken lact year may be of valee, nath larly in relation to the presumed variability of the sea -2 An examination shows that no star brighter than abment the magnitude was then in the position now occupiel by be " star.

This photngraph was a trial plate taken on Auguse thiser 10h. and 11 h., with an exposure of 30 minutes of the :reflector. With this exposure the impression of the nebab \quad C.

Fig.i.

quent want of sharpness on one side, but the definition in the centre of the field is not injured.

To give some idea of the stars that can be seen and the value that may be given to photographic evidence of the existence or non-existence of faint stars, 1 give some particulars of this photograph. Without a magnifier 124 stars are to be seen within a raclius of twenty minutes of are from the nucleus.

I have traced these (see Fig. 1) so that they can be identified in the teleseope; some of them may not be less than $\mathbf{t} 3$ th magnitude, possibly fainter ; the bright stars marked B, C, D, and E being shown in Argelander's maps of the Northern Heavens. B and C are at the present time about the same brightness as the new star, and can be well usel to watch any variation in its light (when first seen by me on September 3 the new star was very much brighter than a or C, almost as bright as a star I have called A in my note-book that i i just beyond the smaller netmia).

Using a magnifier to detect any fainter stars I find six near the nucleus: these I have shown as black duts on Fig. 2, using a

Fig. 2.

-

Scale $0^{\circ} 4$ inch $=100^{\prime \prime}$.
circle to show the stars near the nuclens that appear on Fig, I, and a cross (x) to indicate the place of the new star. At this particular place there is not the slightest indication of any difference in the regular shading of the deposited silver from the denser part of the nucleus to the faint edge. The six stars indicated are extremely faint in the photograph and diffeult to see, but I have no doubt of their real existence; from a comparison with other photographs I estimate them of about 15 th magnitude, perhaps fainter. It may be that some of these may Ire itentified at Birr Castle. From the absence of scalc and orientation of the sketch given by Lord Rosse on p. 465 com . parisons cannot be made, but a reference to the note-books would enable this to be done.
A. A. Comston

During last week 1 examinel on three evenings the spectrum of this star apparently in the nebula. It appears in be continuous, extending from aloout D , as far as, or perhaps a little past F. Both Mr. Percy Smith and I are able to confirm Lord Rosse's conviction of the existence of a bright line or band. We compared its position with spark spectra, and feel satisfied that its position is not far from the bright line of the spark in air near to, and on the more refrangible side of D . The slit was of course necessarily wide, and the syectrum faint, so that this must only be considered as approximate.

Geo. M. Seanroke
Temple Observatory, Rughy, September 29

Royal Astronomical Society the majority were in favour of th nniver al day." There appears to be some mistake here: the Royal Astronomical society as a looly has not expressed any opinion on the sulpect. And, judging from the individual expressions of opinion which have been published, I should imagine that here, as at Geneva, the majority of real workers in our science (with the probable exception of those engagel on solar work) would le opposed to the proposed change. But how the maiority of the Fellows of the Royal Astronomical Sociely could vote on the question it is impossille to say. My desire that a wrong impression on this subject, arising from a starement reportel to have leen made by such a high authority as Dr. Strive, shoult not be spreat abroarl, must be my excuse for trespassing thus far on your space.
A. M. D. Downing

Royal Obiervatory, Greenwich, S.E., September 26

A Tertiary Rainbow

Prof. Tatr remarks, in his recently-published work on "Light," that rainhmws due to three or more internal reflections "are too feelile to be olserved." It may therefore be worth recording that a tertiary bow was clearly visible from Thandiani Hill, l'unjab, one evening last week (August 17). The bow extended over an arc greater than a vemicircle, but was broken in two places. The colours were as distinct as in many an ordinary bow.

The conlition of the sky was specially favourable for secing a tertiary bow. The sun was low, and on nearly the same level with it there were several horizontal layers of cloud of eonviderable extent, whose nearer, unilluminated sides were therefore dark enough to serve as a good hackground for the how. There was also a clout in front of the sun itself, partially rellucing tis brightness.
T. C. lewts

August 25

A White Swallow

On August 3 I saw a white swallow flying among its fellows over a mill-pond at Garioch's Ford, Auchterless, Aberdeen ihire. When I repastel on the following lay it was still there, and it appeared to my brither and to me to be cutirdly white: otherwive I should suggest that the one seen in Westmoreland on September 4 (Narnike, No. 830, p. 500) might be the same bird on its southward pilgrimage. If it is true that the albin, bird is never courted or paired ("4 Deseent of Man," chap. xiv.) we are not likely ever to see many white swallows.
Mirfield, Yorks, September 28 Alex. Anderson
The enclusel paragraph from Varmouth, in the Norfolk Vrues of this day, will have interest for your correspondent at Milnethorpe.
llubert Atry
Stoke Honse, Wiorlbridge, September 26
Rara A's.-A cream-coloured specimen of the swallow (Hirumide urbint) was shot on Caister Road, on Monday morning last, by Mr. A. Patterion. It is now in the hands of Mr. 13 . Dye of Row 60 for preservation.

Dukinc; the summer of 1883 Mr . Cooper, of Bromwich, observed a white swallow throughout the season at a place within the city on the banks of the Severn.
J. Lle Buzwart

Worcevter, September 28

THE ANVL'AL CONGRESS OF THE SANITAKV NSTITじZE OF GNEAT BNITA/N

THE subjects dealt with by the Sanitary Institute of Great Britain at its annual meetings cover a wide field, and the l.eicester gathering of this year, under the presidency of Prof. de Chaumont, F.R.S., forms no exception to the rule. The first aim of the Institute is, through its various agencies, to assist and indeed to lead in the improvement of public health, and the Presiden: did well to prove, by mortality statistics, how great a saving of life can be effected by the adoption of efficient sanitary measures, and how remunerative expenditure in this direction proves itself to be. The result of the sanitation carried out in the Army, and which is so much due-
to the labours of the late Dr. Parkes and to those of his successor, Dr. de Chaumont, is that, comparing the results of thirty years ago with those which now obtain, there is a saving in the home Army of two battalions per annum. Some substantial progress is also being made in the same direction as regards the general public, and when it is more fully understood that preventible diseases as a rule destroy those members of the population who are most remunerative in so far as the State is concerned, and that, speaking generally, each such premature death means a loss of at least $100 /$., even parsimonious members of sanitary authorities will not mind expen ling a little more of the public money in so good a cause.
l.eicester was well chosen for this year's gathering, for in many respects the town has acquired some reputation in health matters. It may be regarded as the headquarters of the anti-vaccination party ; it prides itself, not without cause, on the efforts it has made to control the spread of infectious diseases; and it takes precedence amongst those English towns in which autumnal diarrhoea is so fatal to the infantile population. As regards the question of vaccination it would be premature to draw any general inferences from the Leicester results, for although during recent years only a comparatively small portion of the infantile population have been vaccinated, yet a vast majority of the inhabitants are fairly well protected against small-pox, and it is by no means so very strange that a disease which usually recurs in an epidemic form only after a lapse of years, should for a time remain absent from Leicester. Still, we frankly admit that the day of reckoning has been somewhat long in coming ; but there are exceptional reasons for this. And in the tirst place we would note that Leicester is not so free from small-pox as is generally imagined. The Registrar-General's returns have, it is true, long shown an almost absolute blank as regards small-pox mortality there, but it must be remembered that the l.eicester Small pox Hospital, where the deaths from this disease take place, is not in the borough, and hence that the mortality occasioned is resistered in altogether another district. Then again, the sanitary authority of Leicester, by the aid of a systen, of compulsory notıfication of infectious disenses, acquire the earliest knowledge as to the existence of cases of small-pox, and having provided themselves with an isolition hospital, the patients are at once removed, and their houses and clothing are efficiently disinferted. It may be s.nd that any other town could do the same, and so watcination would become unnecessary. But this is not so. Removal to hospital is only compulsory under conditions which, were objection raised to it by the people, woukd make this carly isolation impracticabile, and all populathons are not so proud of their detiat ce of one of the laws of the country as (0) submit without resistance to the steps which .re held necessary in order to prove that this law is a superiluous one. But l.eicester gies much further than this. The authorities not only remove the sick, but they remove the healthy membices of the sack pervon's fambly, and hold them in a specte, of quarantine until they know that they liave escaped infection. Such a step nay be very desirable from a liealth point of view, but it is altogether illegal, and it is yutte certain that if any attempt were made to enforte such a system in ol parts of the kingdom it would be resisted. The maje of the nation would also hold it to be unnecessary ; at recent publuatoon by the Cierman Government a
Report of a Commission showing that nce re-vaccinal was made compulsory in $\mathbf{t} 874$ mall-pox has occurred in th evidence that the simple op fully meet all the difliculty.

But little further light was th that obscure aymotic diarrhosa large a mortality in Leicester.
has made the subject a special study, probably pornte out the essential cause of this fatality by showing how large portion of the population of Leicester was exprex to the influence of a water-logged soil charged with t. composing organic matter. Temperature so lara: influences this mortality that it was at one time regari as its sole cause ; but it is certain that a high temper \rightarrow. alone is powerless to produce it, whereas the effec: temperature on such conditions as obtain in L.eices must be very potent in favouring the developmea' organic germs, such as are now supposed to lie at root of the evil. Extensive inquiry is needed as to subject, and we hope that the results of the invest1ga. which have been conducted for some years past by Medical Department of the Local Government B. will soon be made public.

Amongst the many other matters of interest wh were dealt with at the Congress is that of the prov:of dwelling-accommodation for the working classes, in view of the steadily extending practice of massigether vast numbers of human beings in great build where storey is piled upon storey, the warning uttere: Mr. Gordon Smith, President of the Engineering Architectural section, and the occupant of an impor official appointment which adds weight to his op:should receive careful consideration. He asserts the: this class of buildings there has been an exieinfantile death-rate, and it is certain that the provis.e. ample open space about dwellings, which is, as π ? ordinary dwellings, being more insisted on than eve especially necessary in the interests of child-life, wh, so extremely sensitive to such insanitary surroundin; influence the quality of the air breathed.

The question of a rational system of burial was cussed at the last meeting of the Congress in conne with a paper by the Rev. F. Lawrence, who quote authority of the burial service of the Church of Er. as suggesting a system which would allow of the action of the soil upon the dead, and who adv.. burial at a depth of three or four feet only designed to ensure speedy perishability, and lad $k e z$ at a depth of three or four feet only from the surbst The advocates of cremation were naturally represen but the progress of this method for the disposal dead is hindered by considerations which it is mot wercome. Foremost amongst these stands the da of tracing cases of prisoning, and, even if the pubbe ready to assent generally to post-mortem exam before the cremation was carried into effect. no examination as is usually carried out could be tromart decide whether this species of crime was the camse death or not, Inileced, in many cases of poisoming most skilled pathological and chemical knowleds? required in order to avoid error. On the whole discusvions as have taken place at Leicester tena improvement in matters where change is desirable in interests of public health, and the Institute may be gratulated on the results of their recent meeting. E preservation of our garde the attacks of injurious an
hich Miss E. A. Ormerned
prize offered by her at an agricultural show held at Frome last year, the result of which was satisfactory in drawing a considerable amount of attention to the subject, and one of the outcomes of which has been the preparation of a series of object lessons, so to speak, which have been elaborated from the plan of Mr. W. H. Haley, who took the prize at Frome last year. The plan ot these lessons is as follows:-One insect is taken as an example and the life-history of this particular insect is illustrated by showing the creature in all its stages of developinent where practicable, or by neat and accurate-coloured drawings of pupa, larva, and perfect insect, each stage of which is carefully labelled, then a spray or twig of the plant attacked, or a model showing the insect's ravages is given, and in many cases also the parasites which attack the insect itself. Beneath this is carefully printed the life-history of the particular insect, and an enumeration of the plants upon which it feeds; and, finally, under the head of "Prevention and Remedies," some brief but concise instructions how to proceed to rid one's crops of the pest. All this is arranged on a cardboard mount 12 inches long by 8 inches wide, and placed in a box with a glass cover, so that one insect only is treated of in one case, thus making the information imparted very clear, and preventing all confusion. Of the insects treated in this way are the turnip and cabbage gall weevil, turnip moth, turnip fly, cabbage aphis, large white cabbage butterfly, cabbage moth, vine beetle, bean beetle, pea and bean weevil, winter moth, American blight on apple, magpie moth on gooseberry, celery-leaf miner, silver moth, beet or mangold fly, click beetle and wireworms, goat moth, lacky moth, daddy long-legs, and onion fly.

Twenty of these cases have recently been prepared by Mr. Mosley, of Huddersfield, under the superintendence of Miss Ormerod, and are now in the museum at Kew, and a set of ten of a similar character are to be placed in the Aldersey School of the Haberdashers' Company at Bunbury, Cheshire, where plain teaching on such subjects is being satisfactorily carried on.
J. R. J.

AMERICAN AGRICLLTURAI. GRASSES ${ }^{3}$

HOWEVER complicated the systematic synonymy of the Graminer may be, the popular nomenclature of the grasses is probably in an even more unsatisfactory state. In the former case the name of the author appended to the scientific name of the plant is usually sufficient to dispel any ambignity as to what particular plant is meant, even though that plant may have received half a dozen systematic names from as many different botanists. In the case of the trivial name, however, even this means of identification is lacking, and it is no uncommon circumstance to find the same name applied to several different grasses, each one of which may, moreover, have one or two additional names. To those who are studying the grasses in their agricultural aspect this confusion is very perplexing, particularly as both the English and the American agricultural journals usually refer to a grass by its trivial name. The difficulties which surround this subject are well exemplified in the volume before us. For example, in American agricultural publications the term " salt-grass" is frequently met with, and w, searched this volume in the hope of finding out the ies so denominated. But instead of one we find no han four distinct species, in as many genera, called rass," namely, l'ifia dipauperata, Sporobotus Brizopyrum spicatum (Dtstichlis marifimat), "ina juncea. 'lo an English agriculturist foxtail tocurus pratensis only, whereas in America
"oral Cirasses of the United States" Hy Dr. Geurge I/epartment of Agriculture: also, "The Chemical "Can Cirasses," by Clifford Richardwon, Assistant - Department of Agriculture, s\&E4.)
the name is also given to A. geniculatus, Hordeum murinum, H. juhatum, and Sctaria sctosa. Rye-grass in England is Lolium perenne; in America the term is applied in addition to four species of Elymus. Blue grass is the name given to four distinct species of Poa, varying considerably in their agricultural value, and one of these, P. pratensis, often spoken of as Kentucky bluegrass, is also called "June grass," "spear grass," and "red top," the last name being equally applied to Agrostis vulkaris. Bunch grass is more vague in its application, for it embraces at least six species in five genera, while in Canada the same name is given to two other grasses, Elymus condensafus and K"aleria cristaha, the former of which is known in the United States as "giant rye grass." The term "goose grass," which in England is restricted to the rubiaceous hedgerow weed Galium Aparint, is, in America, applied to Poa annua, which is also called annual spear grass, and to Panicum Tixanum, further known as Texas millet. The grass Holius lanifus, which to all English farmers is known as Yorkshire fog, is variously termed velvet grass, velvet mesquite, satin grass, and meadow soft grass, this last term being also current in England.

There are about 600 species of grasses in the United States, a few only of these having been introduced. The work under notice embraces descriptions of 130 species, each accompanied by a plate. Of these, about forty, included under twenty-six genera, are identical with British species. Five additional British genera are represented, but not by British species; these are Elymus. Melica, Spartina, Stipa, Triodia. About a dozen British genera do not appear, the most noteworthy among these being, perhaps, Brachypodium, Briza, and Cynosurus. Two dozen of the genera enumerated are extra-British; the chief ones are Andropogon, Aristida, Bouteloua, Buchloé, Danthonia, Muhlenbergia, Paspalum, Sorghum, Sporobolus, and Zizania. The so-called buffalo grasses are Boutclout otigoshtchya, Stipa spartea, and Buihlor dactyloides; the first two may be gathered in quantity by any one who travels across the Canadian prairies, but the last-named, which is regarded as the true buffalo grass, does not extend into Canada.

In upwards of 100 pages of text we find collected much information both of botanical and of agricultural interest. The structural and econonic characters of each grass fogured are detaled at some length, but Dr. Vasey has, perhaps wisely in a work of this kind, made no atteinpt at classification. Though systematir synonyms are seldom given, there is a lavish display of trivial ones, for which the igricultural reader, at all events, will be grateful. Orthographic blunders are rather numerous, and the index might be more complete. The term chartacous (" the texture resembling paper or parchment in thickness") is, we believe, not current on this side of the Atlantic; let us hope we may do without it.

The chenical analyses are of much agricultural interest, and readers should compare the results here given with those obtained by Wolff in his analyses of German grasses. The figures before us serve to show how considerably the same gramineous species may vary in composition according to the soil and climate in which it is grown, this point being specially illustrated by analyses of Phlewm pratinse and Ditity/ts flomerata, each from half a dozen different localities. How variable is the composition of gramineous berbage generally is well shown in the following table, in which are given the highest and lowest percentages of the constituents named, obtained in 136 analyses of different species of grasses:-

A process which has been the means of throwing much light on problems in vegetable physiology and agricultural chemistry, namely, a comparison of the analyses of a plant and of its separate members in different stages of growth, has been applied to fifteen familiar species of grasses, and the results are tabulated and brietly discussed.

Many useful suggestions, some of them of the highest practical importance, are to be met with in these pages. Here is one by Prof. Asa Gray which refers to the Tensinte, or Guatemala grass. Euthlan, luizriutus, a native of Mexico and Central America, and has the true ring of progress about it :-
"To make the Tinsinte a most useful plant in Texas and along our whole south-western border the one thing needful is to develop early-flowering varieties, so as to get seed before frost. And this could be done without doubt if some one in Texas or Florida would set about it. What it has taken ages to do in the case of Indian corn, in an unconscious way, might be mainly done in a human lifetime by rightly directed care and vigorous selection."

This solume is highly creditable to its authors, and it adds one more to the many useful publications which have emanated from the United States Department of Agisculture.
W. Frram

THE DEIELUP.ME.IT OF THE C.ECILIA.IS

Ia letter recently puhlished in the Artititicn aus tem anhirisihzaotim:sihen Institut in IIur=hurg. Messrs. 10. 13. and C. F. Sorrasin give a preliminary account of the development of Eftritum siutimosmem as observed at l'eraderinia in Ceylon. where tisese naturalists have taken up their yuarects near the celebrated Botanical tiardens. since the original discowery by Juhances Muller of the larval form of the Cecalims, almost the only information obtanned on this important subject is a short account of the sulled larvie of Cisilit simpressjcissift by Peters, founded on spec:mens procured byJelski in Calenne.

The brothers Sarasin show that Eftrium is not viviparous, as is Ciratit, but oviparous In the most advanced sta;e before hatching the embryo is provided with vern long blowd-red evtern al in. il-filminents, and has also a divinct tati with a strong rin. The gill-filaments are shes! prevorus to the hatching, after which the young Civchans make the:r way to the netghbouring stream, and live in the water, breathing by means of gill slits. After they leave the water their gilloblits close up, and they breathe by lungs. The brothers sarain compare these Cexclians to \mathbb{L} rokleles, in that they pass throush the perennibanchiate sarse in the es. Aslarve they are derotrematous, and m the adalt staje become true land-anmmblike salamancers. "ur authors alon show that the spermatovemin h.ts a spural filument, and that there is a fiurth gisl-arch, from whitit the pulmonary arters is given off lioth these focts tend th show thit the ciections are more nearly ailised to the Cromeles than to the Antrous Imphubestis

THE BEITISH .ISSUC\%.1TMN K\&POKTS

earthquake observations is not likely to involre any erioon bThe number of earthquakes felt during correspooling pend. two previous years and this last year were respectivdy twadj-thiry-nine, and cighty, and not only have the earbquik', numerous, but some of them hase been pretty stiff, a sit to by the fact that on several occa-ions chimney fell and a were cracked. The work done during the last year is bret. follows:-
 in conjunction with Mr. T. Gray in $\mathbf{1 8 S a}$. The mone then reconled were producef by allowing a heavy ball, it in weight, to fall from various beights up to thirty for Subsepuently many experiments were made by enii charges of dynamite and gunpowder placel in bore During the last year, whilst working up the long record, which accumulated, several laboratory expenmen. made to investi;ate the methols to he employed whea as the diagrams of earth motion. The tirst of these ev:rontived in pr viecting a small hall from the tup of a vertically-placed, jpring, an. 1 at the same time causing t. to draw a diagram of i:s motion. From the distana: was thrown its initial ve! aci:y could be calculated. F. diagram, either by calcularion on the asumpuna .. harmonic motion or by direct mexturement, the " velocity of movement could be obsainet. There tbree s: practicatly agreel. The most important terult ...: thece experiment, was that they indicated an impstar to be caiculatel in earthpuake or slynamite dagto. further, that in thee diagranio the cirat ourd den mover invariably has the appearatice of a fuarter-acill. apparently to be conntered as a semi-rcilfat:on. I set of experiments con-ived in letermimang the 't calculated from an earth |ushe thasram wh.ih w thea-ure of the ovenarning or shat:e:ng p° wer of a For this purp xe a istht strip of w...! was caund ing strong apiral yirmizad a heavy wetsht th, move horiand fonh with the perinal of the tirng. On thon : columus of wool were s: wid in ent. and it was de- efar the spring hall to he detlecte! and then sallenvy cause overturning. The mute important reoults is experiwents are:-

1. Fthat y Grownt on (ithration.-(1) Itills hav= effect in stopping vior tions. (2) Exavation. ow. alice influence in stopiins vitor:tioas (3) In wift ids it is eavy to prolsce nalirationt of lange amplatu-te an able duration. (4) In lowe diy gratn I an dynamite yelds a finsurbunce of Large aniplitule duration. 151 In sfir ruin it is dititult to propluce a the amphtute of which is sufficien:ly gieat to bee tee. ordinary setsna oztaph.
 graph with a -ins! in lex first movet:n a twer.nal

 tran*verse miti a. These phases are in tirn dize: the distance of the sei-mneraph ir im the ung:n. 12 ei-m kraph in licaltn; n $n=m 2$: m " is at a given.

 nutrial (5) Ture prints of ground oaly a few fee

2. Virmer M Min- $-(\mathrm{t}) \mathrm{N}$ ootwards it a distance from iawanks (2) At stations n
oscillations inwards are described more rapidly than those out ${ }^{*}$ wards. (7) As a disturtance radiates the period increases. Finally it liecomes equal to the period of the transverve mution. From this it may be inferred that the greater the initial disturb. nnce the greater the frequency of waves. (8) Certain of the inward motions of "shock" have the appearance of having been described in less than no time. (9) The first outwards motion, which on diagrans has the appearance of a quarterwave, must be regarded as a semi-oscillation. (10) The waves on the diagrams taken at different stations do not correspond. (It) At a station near the origin, a notch in the crest of a wave of shock gradually increases as the disturbance spreads, so that at a second station the wave wish n notch has split up into two waves. (12) Near the origin the normal motion has a definite commencement. At a distance the motion commences irregularly, the maximum motion being reached graclually.

1V. Transerse Motion.-(1) Near to an origin the transverse motion commences detinitely but irregularly. (2) Like the normal motion, the first two or three movements are decided, and their amplitude slightly exceeds that of those which follow, (3) The amplitude of transverse motion as the disturbance radiates decreases at a slower rate than that of the normal motion. (4) As a disturbance dies out at any particular station the period decreases. (5) As a disturbances radiates the period increases. This is equivalent to an increase in period as the intensity of the initial disturbance increases. (6) As we recede from an origin the commencentent of the trausverse motion becomes more indefinite.
V. Relation of Niormal to Trinmserrse . Motion. - (t) Near to an origin the amplitude of normal motion is nuch greater than that of the transversc motion. (2) As the disturbance radiates, the amplitude of the traneverse motion decreases at a slower rate than that of the normal motion, so that at a certain distance they may be equal to each other. (3) Near to an origin the period of the transverse motion may lee double that of the normal motion; but as the disturbance dies out at any given station, or as it radiates, the periods of these two sets of vibrations approach each other.
VI. Moximum Volocity and Intensity of Meerment.- (1) An earth particle usually reacles its maximum velocity during the first inward movement. A high velocity is, however, sometimes attained in the first outward semi-oscillation. (2) The intensity of an earthquake is best measured by its destructive power in overturning, shattering, or projecting various bodies. (3) The value

$$
v^{2}={ }_{5}^{4} s^{7} \sqrt{a^{2}+b^{2}} \times\left(\frac{1-\cos \theta}{\cos ^{2} \theta}\right)
$$

${ }_{1}$ sed by Mallet and other scismola ists to express the velocity of hock as determined from the dimevsions of a body which has eeen ovelturned, is a quantity nut obtainable from an earthquake liagram. It represents the effect of a sucdilen impulse. (4) In in earthquake a lody is overturned or shattered by an acceleraion, f, which quantity is calculable for a body of definite fimensions. The quantity f as obtainel from an earthguake iagram lies between $\frac{v}{t}$ and $\frac{v_{2}}{a}$, where v is the mavimum velo. ity, t is the quarter-period, and a is the amplitude. (5) The nitial velocity given in the formula $v^{2}=\frac{2 a^{x}}{b}$ (for lorizontal jroction) used by Mallet as identical with v^{2} in 3, are not identical -1antilies. (6) In discussing the intensity of inovement I have ed the values $\frac{v^{2}}{a}$. (7) The intensity of an carthquake at first screases rapidly as the disturbance radiates; subsequently it :creases more nlowly. (8) A curve of intensitics dednced from servations at a sufticient number of stations would furnish the eans of approximately calculating an absolute value for the tensity of an carthquake.
VII. Ierfical Modion.-(1) In soft ground vertical motion pears to bo a free surface-wave which outraces the horizontal ent of motion. (2) Vertical motion commences with it vibrations, and ends with vibrations which are loog (3) High velocitics of transit may be obtained by wien of this efrmponent of motion. It is possibly an (4) The mughtitude and period of vertical the samse or different stations have been
disturbance radiates. (2) Near to an origin the velocity of transit varies with the intensity of the initial disturbance. (3) The rate at which the normal motion outraces the Iransverse motion is not constant. (4) As the amplitude and period of the normal motion approach in value to those of the transverse motion, so do the velocities of transit of theme motions approach each other. (5) That the ratio of the speed of normal and transverse motions is not constant is shown from a table of these velocities calculated for different rocks from their moduli of ela-ticity.
IX. Miscellantous.-(1) At the time of au earth-disturbance, currents are produced in telegraph lines. (2) The exceerlingly rapid decrease in the intensity of a disturbance in the imnediate neighbourliood of the epicentrum has been illustrated by a diagram. (3) For the duration of a dinturlance due to a given impulse in different kinds of ground, reference must be made to the detailed descriptions of the first four sets of experiments.

Experiments on a Buiding to resist Earthquake Motion. - In the Kejport of last year I described a howe which rested at its foundations upon cast-iron balls. These balls were ro-inch shell. The records obtained from an instrument placed inside this house showed that, although it was subjected to considerable movement at the time of an earthquake, all swidicn motion had been destroyed. Although the balls did very much to mitigate earthquake motion, wind and other causes produced movements of a far more scrious nature than the eartliquake. To give greater steadiness to the house, 8 -inch balls were tried, and then t-inch balls. Finally the house was rested at each of its piers upon a handful of cast-iron shot, each f-inch in sliameter. By this means the building has been rendered astatic, and, in consequence of the great increase in rolling friction, sufficiently stable to resiot all effects lihe those of wind. The shot rest between flat iron plates. That the house hart peculiar foundations would not be noticed unless specially pointed out. From these experiments it seems evident that it is passible to build light one-staried structures of wood or iron in which, relatively to other houses, but little movement will be felt.

Obserations in a Pit 10 fect dicc.-The instrument placed in this pit is similar to all the ofler instruments, and is installed in a similar pusition. Comparing the maxinum amplitudes, maximum velocitics, and maximum accelerations obtained in the pit with those obtained at about thirty feet distance, they are for one particular carthauake respectively in the ratios of $1: 43$, $1: 52$, and $t: S 2$, In most earthquakes the extent of motion has been too small to admit of measurement, and that there h.dd been any movement could only be detected by holding the plate on which the record was written up to the light and glancing along it lengthways. This investigation tends to confirm the vicw which I have previously put forward, that an earthquaice at a short distance from its cpicentrum is practically a surface disturbance, principally consisting of horizontal movements. The vertical motion is small, and is best seen in the preliminary tremors either of an actual earthquake or of a dynamite explosion. From a practical point of view these results must be of the greatest importance to those who have to erect heavy structures in earthyuake districts.

Buildemg' in Eurthquake' Countries.-As during the last few years so much destruction both to life and property has taken place in variots parts of Europe, it seems that an cpitome of the resules of obecrvations and experiment carried on in Japan relative to construction in seismic districts might not only le interesting, but possibly it might al>o be of practical value. When erecting a building it appears that we ought first to reduce as far as possible the quanity of motion which ordinary buildings receive ; and, second, to construct a building so that it will resi-t that purtion of the momentum which we are unable to keep ont. Toreduce the momentum which usually reaches a bnilding the following may be dune :-
(1) Institute a seismic survey of the district or area in which it is intended to build, and select a site where experiment shoss that the motion is rebatively small. (2) For heavy buildings adopt deep foundations (perbaps with lateral freedum), or at least let the buidding be founded on the hardest and most solid ground. It is perhaps because the tops of the bills in Tokico are harder than the plains that they have relatively the least motion. A building only fartial's isolated may be exceedingly dangerous from the fact that motion entering in the unprotected side will make the excavations (cuttings, valleym, \&c.) upon the opposite side into frec surfaces which will swing forward through a range greater than they would have swung had the excavations
not existed. (3) For light buildings, especially if erected on soft ground, where the range of motion is always great, if the structare rests on layers of fine cast-iron slot, it cannot possibly receive the same momentum as a building attached to the moving ground. To resist the effects of momentum which cannot be cut off a building: (t) Bear in mind the fact that it is chiefly stresses and strains which are applied horizontally to a building which have to be encountered. A vertical line of openings like doors or windows in a building constitute a vertical line of weakness to horizontally-applied forces. (2) Av ind coupling together two portions of a building which have different vibrational periods, or which from their position are not lihely to synchronice in their motion. If such parts of a building must of necessity be joined, let thein be so joined that the connecting link will force them to vilrate as a whole, and yet resist fracture. Brick chimneys in contact with the framing of a wooden roof are apt to be shorn off at the point where they pass through the roof. Light archways connecting heavy piers will be crached at the crown. To olviate destruction due to theie causes a system of construction similar to that to be seen in several of the buildings of San Francisco, Tokio, and Yokohama may be adoptel. This essentially consists of tieing the building together at each floor with iron and steel tie-rods crossing each other from back to front and from side to side. (3) Keep the centre of inertia of a building or its parts as low as possible. Heavy tops to chimneys, heavy copings, and balustrades on walls and towers, heavy roofs and the like are all of serious danger to the portion of the structure by which they are supported. When the lower part of a building is moved, the upper part by its inertiatending to remain behind often results in scrious fractares. All the chimness in Tokio and Yokohana which have fallen in consequence of their ornamental heads have been replaced by shorter and thicker chimneys without the usual coping. The rouf of a portion of the Vingimecring College rests loosely on its walls, and has therefore a certain freedom. In Mamila many heavy roofs have been replaced by roofs of theet iron. Walls may be lightened in their upper parts by the uee of hollow bricks. Such vertical motion as may exist is ahas partly obviated by light superstructures. Vertically-placed iron tie-rods give additional security. If there and other roles which are the revult of experiment and observation could be adopted in earthquake countrics, it is certain that the loss of life and property might be greatly dimitnislieel.

Eath Tienors and Earth Pulsations.-Notwithstauding the mutrustworthiness of level observations, they nevertheless have given renults of interest. (1) The hubbles from time to time move back and forth without apparent reason. Consilerable changes have sometines been obwerved before an earthquake (2) The greatest novement of the bubble of a level taken place during the eulder part of the year, which is the season of earthrguakre, and alwo the season when the barometric gratient between sitieria and the Pactife is the steepeet. (3) The trubble of a level cuminues to move long after the sensible
 slow movenents which bring an earthynake to a close. (4) When the larometer is very low. ab, for instatice, durmg a typhoon, the bublble of a level may be divtinctly seen to pulsate back and forth through a range of alout $\mathbf{5} \mathbf{~ m m}$. In teptember of last year, in conjunction with Mr. W. Wilan, C.E., and Mr. Mano, of the limperiat college of Engineering, I carried an instrument to the sommat of I wiyama, which is about 12,365 feet in herght, where I steecolet after many fatures in recording antomatically earth tremot-and carth pulations. Hut we were unable to rematu for more than fise days.

The reoult, of mitetest connected with these olmersations ane:-(1) That the monements on the top of the momnain were mach greater than those whill I usually wherve in Tihher. (2 The tremos, of shin winfelake nosements of the instrument, dal not necowanly ace raymaty the wind. (3) That during the

 over to, the nuth wet My Rtague, Mr I Alexamiter.

 puint 100 fect latisu the apece of the cone. This criculated
 whit 1 mexsuret A. 11 in difficult in imakene that a moum

the fact that deflection actually occurred. It is certainly curious that the results of calculation and olservation should point irs the same direction.

N'efort of the Committee on Eltctrical Shandards, consurting x^{2} Prof. G. C. Foster, Sir W. Thomson, Prof. Ayrion, Prof. 7. Perry, Prof. W. G. Adams, Lord Kaylaish, Prof, O. J. Las ar, Dr. John Hopkinson, Dr. A. Mwirhetl, Mr. Prave Wr. AI Taylor, Prof. Everctl, Prof. Sohustar. Dr. F. A. Alencie. Prof. fi. F. Fïtserald, Mr. R'. T. Glas brook. Poof. Chryre.. Mr. H. Tumlinson, and Praf. Barnelf, with Mr. Glazonask .. Socredary. - The Committee reponed that the Secretary hai tha it constructed a series of coils to serve as standards in terms of the legal ohm. These standards, in accorlance with the resolate.. of the Committee, were con tructed on the supposition that ts ${ }_{4}$ value of the legal ohm is 1 oti2 B.A. units. The comparis. were made by the methots given in the reports for ress a. . 1 1884, and the values found were-

No.		Resistance		Teemperature
100	\cdots	949515	...	141
101	...	'998845	...	$14^{\circ} 1$
102	...	10.00415	**	167
103	...	$10.0035{ }^{2}$	\cdots	16.75
104	...	$100 \% 304$...	16.05
105	-..	$100 \% 436$	\cdots	1605
106	\cdots	$1000 \cdot 694$	\cdots	$17^{\circ} 4$
107	\cdots	$1000 \cdot 677$	-	17.45
108	...	10006.8	...	$17 \cdot 35$
109	...	10006 '8	*.*	17×35

There standards have also been compared with metcury t- e revistances constructed by Mr. Bennit, of Paris, and a differen a of '00049 legal ohm was found. The legal olum standards, 2 . constructed by the committee, exceed by this amount th... constructet in Pais. Six coils have been compared with it stanlards during the year, and the values are given. The \mathbb{C} mittee hope that arrangements may be made for issuing stand ${ }_{4}$. of electromutive force, and for constructing and issuing standa of capacity. In conclusion, they ask to the reappointed. " the addition of the names of Prof. J. J. Thomson and Mr. b N. Straw, with a renewal of the unexpended grant of $50 /$.

Report on Electrical Tharics, by Prof. J. J. Thomwon.-I : report deals exclusively with those theorice which oniy pers -. to give mathematical expressions for the forces fue to a dastr tion of currents. Those theones which profess to give mecharexplanation of these forces are not consulered. There was a sufficient time to consider both clawes of theories, and it is ev te: that the mathematical theory must be setled before we cas: a satisfactory mechanical one. As to the general resuls id inquiry, we may say that all that hav been proved is that :" abmblutely necessary to take into account the currents in dielectric ; and that the action of these, as well as other curre must be given by some form of the potential tiveory-that a, i: A itheory propounded by F. F., Ncumann and gencralsed by 's e Helniholtz. But nuthing definite in known as to what we bbua take as the measure of these clectric currents, ond which on many forms of the potential theory is the right one. We has require experimental prof that alecration in the polarisation the dielectric, at any rate if the dielectric lre other than ether, prowluce effects analogious to those pmonieed by att ordinary current flowing through a conductor. For the polansation of dielectric by an electromotive force profuces a change in the structure of the delectric. This is ahown by the alteration volume experienced by glass and other boblies when places the electric field, and also ty the breaking duwn of the diele.? when the strength of the field is gicat enough. Now, if ar move a magnet we shall, since we proluce an electronstase force in it, neighbourhomil, produce a change in the stracture the dielectric around it because we alter itvotate of polansars e. It tullows, chen, from the principle of action and reaction, the
 alter the atate of mithon of the magne
in the puinrinatum fthe dielectric is Wi- can shou in a whalar way that an thon mase pre tuce all the effects prum dwction current. We know nothing,
change of the electromotive force). The quantity \geqslant has never been experimentally determined, but twa hypotheses have been made as to its value by Maxwell and Helmholtz. According to Maxwell $\eta=\kappa / 4 \pi$, where κ is the specitic inductive capacity, and, according to Helmhultz, η is also a function of κ. There is very little experimental evidence for either of these theories. For Maxuell's theory, perhaps the best evidence is that, if we assume the electro-magnetic theory of light, the refractive index should, if $\eta=\pi / 4 \pi$, equal the square root of a specific inductive capacity, which is very approximately the case for a goud many substances. Maxwell's assumption has the great advantage of getting rid of all discontinuity in the currents; and, when this is the case, all forms of the potential theory lead to the same result. So that, if we could prove Maxwell's theory experimentally, it would be a complete theory of electro-dynamic action. If it should turn out, however, that Maxwell's theory is not true, then we should have to go on further and determine which of the several forms of the potential theory is the true one; as, if the currents are not closed, the clifierent forms of the theory lead to different results. It would seem that the most important thing to be done in electro-dynamic theory is to determine whether $\boldsymbol{\eta}=\boldsymbol{\pi}_{/ 4} 4^{\pi}$ or not, and the author has des.ribed two ways in which this may be done. If Maxwell's theory should prove not to be true, we must go on to determine the value of η for all dielectrics, and which of the forms of the poten:ial theory is the true one.

R'AOrt on Standirds of White Lisht.-Various experiments have been marle by the Committec. The members have come to the conclusion that the standard candle as defined by A cts of Parliament is not in any sense a standard. The spermaceti used is not a definite chemical substance, and is mixed with other substances. Also the constitution of the wick is not properly defined. The Committee have considered the relative merits of different proposel stambards, and have come to the conclusion that for commer.tal purposes the pentane standand of Mr. Vernon Harcourt is the best. Although the Committee wish their opinion on this point to be known to the Board of Trade and the public, they do not recommend the adoption of any particular standard until further experiasents on radiation have been made. Several experiments are enumerated which they propose to make. They ask reappointment, with a grant of 50 . towards the proposed researclics.

Lifort of the Committee on Metcoric Dust.-Experiments have been made at the Scottish Marine Station by means of an apparatus in which the wind blows through gratings of fine platinum wire. The mointure deposited is collected and examined for surpended particles. Funuels lave also been placed at different localities for catching rain. The presence of carbsuaceous matter is most marked. In smaller quantities oceur quartz, felspar, inica, tourmaline, garnet, glassy particles resembling Krakatoa dust or punice, and small round magnetic particles about 1 - jooth of an buch in dameter. They resemble similar larger particles got from deep sea deprasity at the greatest distance from continental land. None are of cosmic origin. Usually they have a small nucleus in the interior, but are frequently hollow. Further observations are to be made at various stations all over the world.

Aiport of the Cummilles on Meirorolugiast Obserzations on Ben $\boldsymbol{N}_{6} \mathrm{~V}_{6 .}$ - The chief alditional observations mate during the year were with regard to raisfall and wind. The amount of water substance deqowited, in whatever form, has been collected by specially-designed gatges and measured every hour since June 24. 1884. In the end of Octuber the anemometers designed by Praf. Chrytal were added to the instruments. Dut during seven months- November, ISS4, to May. ISS5-no anemometer could indicate results, with the exception of thiry days. This is owing to the depoxition of ice-crystals. The greatest speed indicated during three days was on the night of April 24 . The mean speed for 12 hours was 74 miles per hour, the speed for one particular hour heing 81 mile jer hour. The highest temperature reached, $60^{+}+\mathcal{F}$, occurred at 2 p.m., August 9 ; and the lowest, $11^{" 1}$ I F., at midnight, Fubruary 16. The coldest week-average temperature, $16^{2} 2 \mathrm{~F}$.-was the one ending on February 21. The changes of temperature, particularly in winter, were caused, not by dircet solar influence, but by the stormy munth, of winter this may be taken to be aceu. ie casc. In summer the afternoon miniman of ammoessure was 0007 inches above the mean for the whole
day, but in winter it was below the mean. During twelve months there were 464 hours of sunshine, being about in per cent. of the total possible amount. Heavy rainfalls frequently occur. The longest for one hour was on December to, 1884. The largest daily fall occurred then also, being $4^{2} 264$ inches. On an average, a fall of at least one inch occurred one day in seven.

Kisport of the Committer on Solution. Secretary Dr. W. W. J. Nicol. - The subjects dincussed in this Report are:-(1) Molecular volumes, (2) saturation, (3) superiaturation, (4) vapour pressures, and (5) expansion of salt solutions. (1) The results of a series of experiments show the molecular volume of a salt in dilute solution to be a quantity comprosed of two constants: one for the inetal and the other for the salt radical; hence the same volume change is produced by replacement of one metal or salt radical by another metal or salt radical. Wiace of \&ystallisation is not to be distinguished from the solvent water, but the zooter of constitution possesses a volume different from that of the rest of the water-results showing the existence in solu. tion of the anhydrous salt in contradistanction to the view that a hydrate, definite ur indefinite, is formed in solution. (2) Saturation is reached when the further addition of salt would produce diminution of the mean molecular volume of the molecules already present. (3) The so-called sujersaturated solutions are simply saturated or non-saturated solutions of the anhyilrous salis, the only truly supervaturated solutions lieing those which result from the fact that, when a hot solution is cooled, a finite time is required for the excess of sall to crystallise out.

The Report of the Committce appointed to investigste by means of Photography the L'thra-ziolet SAurk Spectra emilted by Mitallic Elements and their Combinations wnder Virying Conditions, drawn up ly I'rof. Hartley, F.R.S., was presented by him to the Section: in it an account is given of the results of the investigation of the changes in the character of the spectra of the metals produced by variation in the strengths of the solutions of their salts-c.g. chlorides, nitrates, or sulphates. The study of a very considerabie number of the phutograph, of such spectra shows the strength of the solution to have a marked effect on their character, the more dilute the solution the smaller the number of lises; further, that under the same spark conditions, similar solutions of the same strength emit the same spectrum. Solutions containing i per cent., I-loth, 1-100th, and 1-1000th of the netal were used; solutions of the latter serength sellom gave a spectrum of more than three or four lines, and with solutions containing less than 1-Icth per cent. the diminution in the number of lines is usually very marked. The spectrum reaction may be utilised for the quantitative analysis of minerals, and yields results more reliable than those obtained loy ordinary methods. The reaction is extremely delicate, and in the case of magnesium one part of the metal in to,000 millions of solution can le detected by the appearance of two characteristic lines.

Third Report of the Commilles, consisting of Prefs. Williamson, Deuar, Franklant, Crum firown, Oifling, and dimstrong, Drs. Huso . Vialle, F. R. Jufp, and H. Forster Morleg, and Missrs. A. G. V'ernum Huicourt, C. E. Goves, J. Millar Thowson, 1f. B. Dixun (Sicrathry) and V. II. Jciry, reafpoinled for the purpuse of drutiong up a Stakment of the Vitrietios of Chemical Names which hase come anto use, for Iudfiating the Ciluses which have led to their. Aitoftion, and for Censidering whot can be done to bring about some Conver jeuce of the I'tews on Chcmical. Vomenciature chainivg among English and Forisin Chemists.- In account of the authorship of some of the various systems of nomenclature which have been devised for the purpone of distinguishing between compounds formed by the union of the same elements in different propontions has lreen given in the " Ilistorical Noses" prefixed to the second Report of this Committec. Amons these systems the use of the termination ows and $i c$, to denote revectively lower or higher degrees of saturation of one element or group with another element or group, is perhaps that which has met with the widest acceptance. This syotem further directs that when electro-negative groups, the names of which end in ws and $t e$, unite with electro-positive groups to form salts, these terminations are to lee changed into ite and afferepectively. It would be ill-advised to attempt on etymolersical grounds to change a system so firmly catablished as that involved in the present use of the prefixes hy/o and hyper. No ambiguity can arise from
the use of terms about the meaning of which every one is agreed, and their mere etymological accuracy is, in view of this allimportant consideration, of secondary importance. As a metal rarely-if ever-forms more than two salifiable oxides, the ous and ic terminations generally suffice for purposes of distinction so far as the salts of metals are concerned. The practice of further employing these terminations in the case of acid-forming oxides does not lead to confusion, since these oxilles are distinguished by the name anhydride (or acid). Thu, we have

$$
\mathrm{CrO}
$$

Chromous oride.
$\mathrm{Cr}_{2} \mathrm{O}_{3}$
Chromic oxide.
Chromic anhydride. (Chromic acid.)
Indifferent oxides have frequently been classified and named by regarding them as compounds of salifiable, with acid forming oxides, $\mathrm{Cr}_{2} \mathrm{O}_{4}$ being termed chromic chromate. Fint stages lower than ows, the prefixes hypo and sub are employed. Custom appears to have retrictel kyfo chiefly to acidsand to acidforming oxides, sub to salifiable and to indifferent oxisles. With regard to the termination ows, the minor question arises, how far this termination ought to be written in the forms iens and ous. The answer is: as seldom as pomible. "Cupreous" has generally given way to "cuprous"; no one writes "chromious" (although the name of the metal is "chront. ium ") ; and there is no reason why such names as "t ruthenious" and "iridious" should not equally be shom of their superAuous penultimate syllable. A further question, concerning which considerable difference of opinion las prevailet, is whether any ows of ic terminations ought to be employerl in the names of salts of which only one class is know n-thu majuesic sulphate instead of magnesium sulphate. There is womething to be said bere for both sstems; and, as the divenity of practice does not lead to comfusion, and consequently dowes but little harm (beyond in each cave offending the ears of thuse accustomed to the opposite syvtem), the quertion neel not lie regardel as a vital une. In the case of carlion compounds, however. there is a di-tinct advantage in affixing is to the names of the positive ralicals in ethereal salts. A neglect of this precaution leads to ambiguity-at all events in the sakn name. Thus, though there is no ambiguity in the name whyl fien)luceluie when written, yet the ear cannot distinguish lietween it and ahy/phenyl acelate. This amliguity is obviated loy the use of the termination ic-thus, shayi. pionylocflale and rehylfhemylic ercelate. In the use of the terminations ous and ic to distingursh different series of aids and ocid-firming cxides, with the eiception of one or two isolated eaves, almost perfect unanimity bas I revalect. To sum up, the owt and is terminations whett ent. ployed for purpane of distinction in cases where two series of oxiden, acid, salts, \&.c., are hnown, have been alenont free from amloguity, and for this reawon teverve to be retaned. (1) the other hand, in caves where only one eries is known. thone chemos who have employed one or other of thene terminations have cecavonally sliffereli av to whelt ought th lee used : the diffulty may lee colvel, av it has leen these by vome chemiso, by avonding the use of any termination in welh chees. In combplex cave where the alovie nuwle of nauning prove inadeguate, recourse may he hat tur numeral alevgmations. Theae appeat epectially autmi-sible in cave where an wule occurs wheh is internediate lectween the cone ant the tr stape, and at the same
 fied and namel. In applying numeral designations it is tumet important to welect only vella aro frece from hypotheow, ant whth affierl currect informatison. In thisteyrect cheloists appear not to have leen suffictently careful of late years, Avan example, arson

 tactly asoumed that the inelecule contum three o..ygen atums.
 the formula on which it is Iavel to le correct, it alfor, 110 information as to the number of arienke atome aometaled wnili the there oxygen atoms: (2) that it involve the awumptron that arsentoms oute thee not valy in molecular wetcht. whenete itphycical state ; and (3) that the fictmula of , wo. in- in

 is therefore impinant to exprea the mumbet if atomvolf eath

 is unknown, or wheh mas vary wuh temp-ratt if the name shoult merely inlleate the relitive prominions in which the constituents are awniated ; ur, nurecyldsitly, the name thuold
indicate the proportion of the radical associated with $* \mathrm{has}^{2}$ be termed the characteristic element of the compoun-:difficulty occurs in the cave of the chloride, or analcen:... pound, of the monad elements generally, these being ver mono-, dit, tri-, tetra. penta-, or hexa-chloride, Asc. a al as combination is in the proportion of $1,2,3,4,5$. or $6=$ of chlorine to t atom of the characteristic element. Ithe a cation of this system would involve the use of the naxe e. dichlorise and iron trichloride (not sesqui-chlun, le) for $2=\mathrm{sr}$ and ferric chloride respectively, names which accurat cir e= the relative proportions of metal and of chlorine in the-prounds without any hypothesi, as to their molecular o sition, which in the cave of the former compound, at all <o certainly depends on temperature. It will, however. is slight departure from the existing practice when apr oxides, sulphides, and other compounds of polyad f.cee thus oxides of the type $\left(\mathrm{K}_{\mathrm{p}}\right)^{\prime O} \mathrm{O}$ would le termed beres... since they consist of the characterivtic element and min. the proportion of ome atom of the former to hatf an at . latter. Oxides of the type ($\mathrm{K},{ }^{\prime \prime} \mathrm{O}$, would be terwe oxides, since the characteristic element and oxygen are in the proportion of ome of the firmer to ame and as tas latier, Oxides of the type $\mathrm{K}_{2} \mathrm{O}_{3}$ would be termel se ser.. as they enntain oxygen and the characteristic elewer. proportion of thu aise a half atoms of the former tes on latter. Ozieles of the type $\mathrm{KO}, \mathrm{KO}_{8}, \mathrm{KO}_{3}$, and KO$)_{4}$. termed repectively mono., d_{t}, tri, and tetr-truxide-

The rewainder of the report treats of the varives. which have been proposed for the naming of acid, :3 double salts.

Report of the Commuttre atAvintet fier the farstore of :- . . in to the N'ate of Erosion of the Sala-Cothts of Em, Wales, and the fitfuene of the Artificurl -doseriut fonn :or Material in that Action (C. Ň. Dd Kimene and il Sicreturies). The Commattee has, during the past year. or several Returns relating to the south and east coasta of $1=7$ Most of those relating to the coast south of the T ha. printed. The thanks of the Committee are elecially Major-Gen. Sir A. Clarke, who has instructerl the efficen Koyal Engineers stationell around the coast to supy ly in. mittce with such information as they may possess or te coltain. Further returns are eyjected from the cane ment and from other oficial sources ; the Comma:les is think it best to defer any general Keport until ature. information is ubtained. The Menorandum drawn. J. 13. Redman so fully sets forth the work of the \mathbb{C}, $=$ and the importanee of the inquiry referrel to it, that th:printerl. The Memoranduni by Mr. G. Wowker, on Eas: gives a sufficiently complete account of the changes of tia: in this district ; changes which are of evpecial historical = ance and interest. Mr. Whitaker hav drawn up a $1 / \sim 2$ relating to the coavt-chanke of England and Wales, wh:be of great service to the Commitee and to thone $=\mathrm{L}$ assist in the work. The Commuttce wuld again ash I aswistance of any who, hy long resulence or other meani. Wecial knowlelge of changes on any part of the EngivWelth coart. I'rinted forms of quetions can be oltaiDed the sectetarics or from any member of the Committee.

Third Eifort wi the Commutter. consistiong of Sir 7. If Dr. Giuniher. Mr. /hosemerd Simuliers, and Mr S.wiver

 presentel at Montreal, the Ciommutter statel the arranger. that they had masie with Mr. H. H. Johnoton for under:av: an expelum to Kilmannaro, and gave extract. trom luhnowis letter thowing the progireor of his expeclition or Wlay, thes. Mr. J.fintinn sive an sccount of his expertasor the Koyal Gengraphual -wiety at their meetong on lana 26, 1soj, in whith he viate- that in consequence oit the dienert. "f twan native whim he had tahen out with him frum \angle agnt wo liretwr, the wif obm- were not wharge

Johnston have aiready been published in the Proccalings of the Zoological Socicty for this year. The botanical collections were handed over to the Royal Herbarium at Kew, where they were arranged, named, and a set sent to the British Museum. The report upon them is ready, and will be presented to the Linnean Sueiety for publication. Prof. Bonney has kindly undertaken to report on the rock and mineral specimens collected ly Mr. Johnston, and his report is presentell herewith, and will be read in the Geological Section. Mr. H. H. Johnston has in preparation a volume containing a narrative of his expedition and a summary of the results arrived at, which will shortly be ready for issue. The sum of 25 l. granted to the Committee at the Montreal meeting has been returned to the treasurer.

A'rpart of the Committer, consistime of Dr. E. B. Tyior, Dr. G. M. Datoswn, Gen. Sir 7. H. Lefroy, Dr. Damial Wilcon, Mr. Horatio Holl, Jr. R. G. Haliburton, anl Mr. Giorge W. Bloxam (Secretary), appointal for the purpuse of imecstisating and Antlishing Keports on the Phystal Characters, Lansuager, Industrial and Sociul Cindition of the North. Western Trithes of the Ditminion of Canada. - The Committee have been in active correspondence with mistionaries and others stationed among the Indians, but the unsettled state of the country during the past year has made it impossible to din inore than collect materials for a preliminary report; the Committee, therefore, avk that they may be reappointel with a continuance of the grant.

Report on the Blackfoot Tribes. Draten up by Mr. Moratio Shale. - The tribes composing the Blackfoot Conferleracy, as it is commonly styled, have been until recently less known than any others. A correspondence was opened with two able and zealons missionaries residing among these Indians. The Rev. Albert Lacombe, widely and favourably known as Father Lacombe, Roman Catholic Missionary among the Siksika, or proper Blackfeet Indians, and the Rev. John McLean, Missionary of the Canadian Methodist Clurch to the Blood and Piegan (or Kena and Pickanè) tribes. Father Lacombe has been many years a misionary in the Canalian North-West, and has a very extenvive knowledige of the tribes of that region. Il is elaborate work, the " (irammar and Dictionary of the Crec Language" manks among the best contribations to American philology. Mr. Miclean has been engaged in his missionary duties for tive Years, has prepared a grammar of the Blackfoot language, and is at present oceupied in translating the Scriptures into that tongue. The unfortunate troubles of the past season have for a time interrapted the correspondence, and the principal portion of the report on these Indians will therefore have to be deferred for another year. Some other sources of information, however, have been examined, particularly the valuable ofticial reports and maps of the Canadian and United States Indian Departments.

Fifty years ago the Blackfoot Confetleracy hed among the western tribes much the same position of superiority which was held two centuries ago by the Iroquois Confederacy among the Indians east of the Mississippi. The mucleus, or main body is still comprosed of three trilies, weaking the proper Blackfoot language: the Siksika, or Blackfeet proper; the Kena, or Blowd Indians; and the Piekane, or Piegans (pronounced Peegans), a naine sometimes corrupted to "Pagan" Indians. To these are to be added the Sarcees from the north, and the Atsinas from the sonth. The Sareees are an oftishoot of the great Athalbascan stock, which is spread over the north of British Americ3, through Oregon and California into Northern Mexico. The Atsinas, who have been variously known as Fall Indians, Rapid Indians, and Ciros Ventres, speak a dialect similar to that of the Arapohoes, who now reside in the "Indian Territory" of the United states, It is a peculiarly harsh and difficult language, and is said to be spoken only by those two tribes. None of the Atsinas are now found on Canadian territory, and no recent information has treen obtained concerning them, eacept from the map which accompanies the United States Indian Report for ISS_{4}, and on which their name appears on the American Blackfoot Reservation, The five tribes were reckoned, fifty years ago, to comprive fot less than 30,000 souls, the terror of all the western Indians on both sides of the ?acky Mountains. It was not uncommon for thirty or forty rties to be out at once against the salish (or Flatheadi) *. the Uprarokas (or Cruws) of the Missouri I'lains, the of the far sonth, and the Crees of the north and untry which the Blackfoot tribes claimed properly
raprised the valleys and plains along the eastern
slope of the Rocky Monntains, between the Missouri and the Saskatchewan, the favourite resort of the buffalo, whose vast herds afforded the Indians their principal means of subsistence. In the year 1836 a terrible visitation of the small-pox swept off two-thirds of the people, and five years later they were supposed to count not thore than 1,500 tents, or about 10,000 souls. Their enemies were then recovering their spirits, and retaliating upon the weakened tribes the ravages which they had formerly committerl.

In 8555 the Ünited States Government humanely interfered to bring about a completc cessation of hostilities between the Blackfoot tribes and the other Indians, and framed a treaty for then, accompanying the act by a large distribution of presents. Dr. F. V. Hayden, in his account of the Indian 'Tribes of the Missouri Valley, states: "From my own experience among then, and from information derived from intelligent men who have spent the greater portion of their lives with them, I am convinced that they are among the most peaceable and honourahle Indians in the West ; ant in an intellectual and moral point of view they take the highest rank among the wild tribes of the plains." This favourable opinion of Dr. Hayden is entirely in accordance with the testimony of the Indian agents and other officials of the Canatlian North-West. At the present time, while constantly harassed on their reserves by the incursions of thievish Crees and other Indians, they forbear to retaliate, and honourably abide by the terms of their treaty, which binds them to leave the redress of such grievances to the Dominion authorities. Since the general peace the numbers of the Blackfeet have apparently qeen on the increase. Dr. Hayden reports the three proper Blackfeet tribes as numbering in 1855 about 7000 souls. The present population of the three Canadian Reserves is computed at about 6000, diviled as follows: Blackfeet proper, 2403: Bloods, 2800; Piegans, Soo. On the American Reservation there are stated to lee about 2300 , mostly Piegans. This would make the total population of the three tribes exceel $\$ 000$ sonls. The adoptet tribe, the Sarcees, have greatly diminished in numbers through the ravages of the small-pox. This tribe, now numbering less than 500 souls, have their Reserve near Calgary. They are reputed to be less cleanly and moral than the proper Blackfeet tribes. In this respect their habits and character correspond with those of other Athabascan tribes. During the past five years, as is well known, a great change lias taken place in the condition of the north-western tribes through the extermination of the buffalo. The Blackfect have been the greatest sufferers from this cause. The buffalo were their inain dependence. Suddenly, almost without warniny, they found themselves stripped of nearly every necessary of life. The change was one of the greatest that could well befall a community. The Governonents both of the United States and of Canada came to the rescue; but in the former country the urgency of the case was not at first fully understood, and much suttering ensued. The agent on the Blackfoot Reservation in Montana (Major Allen) states in his official report that when lie entered upon his duties in April $\mathbf{1 8 8} 4$ he found the Indians in a deplorable condition. The supplies of food which had been rent for them had proved insufficient, and before these could lee renewed many died from actual starvation. Some stripped the bark from the saplings which grew along their creeks, and ate the inner portion to stifle their sense of hunger. On the Canadian side, fortunately, the emergency was better understood. Col. McLeod, an able and vigilant officer, was in charge of the Monnted Police at that time, and throngh his forethought the necessary preparations were made. In 1879 and 1880 the buffalo disappeared from that region. Arrangements were at once made for settling the Indians on Reserves, and for supplying them with food and clothing, and teaching them to erect woonlen bouses and cultivate their lands. Daily rations of meat and flour were seaved out to them. Ploughs, cattle, and horses were furnished to them. Farm instructors were placed anong them. The Indians clisplayed a remarkable reatliness to adapt themselves to the new conditions. According to the reports of all the agents, they have crinced a quickneas to learn and a persevering industry which place then decidetly in advance of the other Indian tribes of that region. In 1882 more than 500,000 lbs. of potatoes were raised by the three Blackfoot tribes, besides considerable quantities of oats, barley, and turnips, The Piegans had sold 1000 dollars worth of gotatocs, and had a large supply on hand. "The manter in which the ladians ha e worked." writes the agent, "is really astonishing, as is ti.e interest they havetaken, and are taking, in farming." Axer ≈ 11 I
other tools were distributed among them, and were put to good use. In November, 1882, log-houses liad "gone up thick and fast on the Reserves, and were most creditable to the builders." In many cases the logs were hewn, and in nearly all the houses fireplaces were built. In the same year another official found comfortable dwellings, well-cultivated gardens, and good supplies of potatoes in root-houses. Most of the families had cooking stoves, for which they had sometimes paid as much as 50 dollars. He "saw many signs of civilikation, such as cups and saucers, knives and forks, coal-oil lamps, and tables ; and several of the women were baking excellent bread and performing other conking operations." Three years before these Indians were wild nomads, who lived in skin tents, hunted the buffalo, and had probally never seen a plough or an axe.

The Blackfeet have been known to the whites for ahout a century, and during that period have dwelt in or near their present abode. There is evidence, however, that they once lived further east than at present. The explorer Mackenzie, in 1789, found them holding the sonth branch of the Saskatchewan, from its source to its junction with the north braneh. He speaks of four tribes-the l'icancaux, Blood, and Blach feet, and the Fall Indians (Atsinas), which latter trile then numbered abmit 700 warriors. Of the three former tribes he says: "They are a distinct people, speak a language of their own, and, I have reason to think, are travelling north-west, as well as the others just mentioned (the Atsinas); nor have I heard of any Indians with whose language that which they speak has any affinity. Mr. McLean's inquiries confirm this opinion of the westward movement of these Indians in comparatively recent times. "The furmer home of these people," he writes, "was in the Red River country, where, from the nature of the soil which hlackened their mocassins, they were called Blackfeet." This, it should be stated, is the exact meaning of Siksika, from siksinam, black, and $k a$, the root of oqkatsh, foot. The meaning of the other tribal names, Kiena and Piekanè, is unknown. This westward movement has probably been due to the pressure of the Crees, who, according to their own tradition, originally dwelt far east of the Red River, in Labrador and abont Hudson's Bay. They have gradually advanced westward, pushing the prior occupants before them by the sheer force of numbers. This will explain the deadly hostility which has always existed between the Crees and the Blackfeet. M. lacombe, however, expresses a douht as to their former sojourn in the Red River region: "They affirm, on the contrary, that they came from the south-west, across the mountains-that is from the direction of Oregon and Washington Territory. There were" (he adds) "bloody contests between the Black: feet and the Nez-perces, as Hancroft relatec, for the right of hunting on the eastern slope of the Rocky Mountains." Mr. Mclean, who mentions the former residence of the Blackfeet in the Red River country as an undoubted fact, also says: "It is upposed that the great ancestor of the Blach fect came across the mountains." Here are two distinct and apparently conflicting traditions, each having good authority and evidence in its favour. One of the best tests of the truth of tradition is to le found in language. Mackenrie, well acquainied with the Crees and Ojibways, who speak dialects of the great Algonkin stock, recognised no connection between their specech and that of the Blackfeet. Another traveller (Umfreville), whose lrook was pullished in 1791, gave a list of forty four words of the Hlackfoot language. Alliert (iallatin, whose "synopwis of the Indian "1rites" "ppeared in 1836 , examined this list of Umfreville, and pronounced it sufficient to show that the language of the Hackfeet was "different from any other known to us," A few years later, having received from an Indian trater a more extended voealulary, he corrected hiv former satement, and showed that there was a clear affinity lietween the Blachfoot yeech and the language of the Algonkin famuly. Mure recently the French missionaries made the same diecovery W. I acombe writes to me: "The Blackfoot language, althinugh far from. belongs to the same tamily as, the Algic, Djphuay, santens, Maskegon. and Cree. We discovered this analugy hy madying the grammatical rules of these languages" Thus "t me of the ablest and mout experienced of North American linguists have at first supponed the Blach frot language to he tlistion from all others, and have only disenvetell its connection sonkin family by careful study. M 1 acoml enough to send me a pretty extensive vocal words, compared with the corresponding wo
Ojilway languages. He has adlled im:
grammatical forms in the Blackfoot, compared with similas fore in the Cree and Ojibway tongues. The Blackfoot languge thus shown to be, in its grammar, purely Algonkin. Tbe m semblance is complete in the minutest forms. Bat when wo turn to the vocabulary, by which the first jadgwen' of a language is necessarily formed, the origin of the eath an. becomes apparent. Many of the most common wond 57 totally different from the corresponding words in the Alyois languages. Others, found on careful examination radicaly ly same as the corresponding Algonkin terms, are yet to chasf and distorted that the resemblance is not at first applareol this variation and distortion the numerals afford a gool eurOther words in ordinary use show the total unlikenes ti cases and the distorted resemblance in others. The pooe-: pronoun "my" is expressed by the same prefix mi (ot $\boldsymbol{m}^{\prime} 1 \mathrm{Z}$. three languages. Pursuing this trace we compare the per : pronouns, and find a close resemblance, the differenie ; ; mainly in the terminations. In the possessive prefixe the semblance is still more notable. Thus in the Blac foon lans 2 n'otas means "my horse, or dog" (the same wird, ce" enough, applying in this form to both animals); aod in $\mathrm{l}^{-}=$ $n^{\prime} f^{\prime} \mathrm{cm}$ has the same meaning. These words are tho is with the possessive pronouns and in the two numbers:-

My horse (or dog)	Blackfoot n'otas	nitem
thy " ."	k 'otas	hitem
his " "	otas	otema
our " "	n'otasinan	n'ternibso
your " "	k 'otasinan	kitemiwaw
their ", "	otasiwaw	ofemauxal
my horses (or clogs)	n'otasiks	n'emsk
thy " ",	k'otasiks	lit emak
his ", ",	otasiks	otem ${ }^{\text {a }}$
our ". "*	notasinaniks	$\mathrm{n}^{\prime \prime} \mathrm{C}$ emmana
your " "	kotasiwaweks	knemuma,
their ., "	otasiwaweks	otemimiai

It will be seen tha: the ciose resemblance in grammu : ? striking as the wide difference in the vocabulary. The admit of but one explanation. They are the preciee pher et to which we are accustomed in the case of mixed languen such languages-our English speech is a notable evami expect the grammar to be derived entirely from one while the words will be drawn from two or more. more, wherever we find a mixed language we infer a cuef-one people by another. In the present instance we nid suppose that when the Blackfoot tribes were finced wes
from the Rel Kiver country to the foot of from the Rel Kiver country to the foot of the Ronk, M.ent they did not find their new abode uninhalited. It is in enough that the f eople whom they found in powession had through the passes froun the country west of those merit If these people ware overcome by the Blachfert. sod women taken as wives by the conquerors, two tesult wi likely to follow. In the firt place, the language womhlin a mixed speech, in grammar purely Algonkin, lut in the $0,0 a^{2}$. lary largely recruited from the peech of the conquered 'v A change in the character of the amalgamatel pe pre su also take jlace. The result of this change might to tre inferred if we knew the characteristics of wath the stituent races. Bat it may be said that a frejuen', if ? a general, result of such a mixture of races is the panduof a people of superior intelligence and force of 4^{3} ant The circumstances thus suggested may account. not whit the 'f peculiarities of the language and chazacter of the Kandex tribes, hut ako for the ditferent traditions which are foom ant them in regard to their origin and former ahode It woll very de irable to trace that portion of the Blach foot nooklder which is not - + . Akin origin to its source in the lampers some it ${ }^{-2}$ 1 lying reseni
inclur
source.
altibuter
(Apistofert)
fied with
fied with the
evinity of
invocations it is designated by the same name, Nittos. Yet it is often said to be the "old woman,' the consort of the sun. The whole of this is confused enough in the minds of the Indians to render them unable to give, when questioned, exact explanations. As to the secondary creation, the Indian account runs: At a certain time all the earth was covered with water. The 'Old Man' (Nafize) was in a canoe, and he thought of causing the easth to come up from the abyss. He used the aid of four animals. The musk-rat dived, and remained so long under water that when he came to the surface he was fainting, but brought a little particle of earth between the toes of his paw. This particle the 'Old Man' blew into the size of the whole earth. It took him four days to complete his work. The 'Old Man 'worked tuo days more to make the first woman, for after the first day's work he had not succeeded in making anything graceful." This Napiw, or "Old Man," adds Father Lacombe, "appears again in many other traditions and legendary accounts, in which he is associated with the various kinds of animals, speaking to them, making use of them, and especially cheating them, and playing every kind of trick. According to the account of the Indians, the "Old Man" came from the south-west, across the mountains; and after a prolonged sojourn in these countries he went toward the north-east, where he disappeared, and nobody has heard of him since. Those who have read Schoolcraft's "Algic Researches," Mr. Leland's "Algonquin Legends," and, alove all, Dr. Brinton's "Myths of the New World," will recognise in Napiw the most genuine and characteristic of all the Algonkin divinities. In every tribe of this widespread family, from Nova Scotia to Virginia, and from the Delaware to the Rocky Mountains, he reappears under various names-Manabosho, Michabo, Wetuks, Glooskap, Wisaketjack, Napiw-but everywhere with the same traits and the same history. While these beliefs are all purely Algonkin, the chief religious ceremony of the Blackfoot tribes is certainly of foreign origin. This is the famous "sun-dance." That this ceremony is not properly Algonkin is clearly shown by the fact that among the trites of that stock, with the sole exception of the Blackfoot and a few of the western Crees, it is unknown. Neither the Ojibways of the lakes nor any of the numerous tribes east of the Mississippi had in their worship a trace of this extraordinary rite. The form of government among the Blackfeet, as among the Algonkin tribes generally, is exceedingly simple, offering a striking contrast to the elaborately complicated systems common among the natlons of the Iroquois stock. Each tribe has a head-chief, and each band of which the tribe is composed has its suborclinate chief; but the authority of these chiefs is little more than nominal. The office is not hereditary, the bravest or richest are commonly chosen; but in what manner the election is made is not stated. The term "confederacy" commonly applied to the union of the Blackfoot tribes is somewhat misleading. There is no regular league or constitution binding them together. "The tribes are separate," writes Mr. McLean, "and the bonds of union are the unity of religi:us belief, social customs, and language. They united against a common enemy, but I have never heard of their fighting against each other." Father Lacombe's account is similar. "The Blackfeet," he writes, " have no league or confederation, properly so-called, with councils and periodical reunions. They consider themselves as forming one family, whose three branches or bands are descended from three brothers. This bond of kinship is sufficient to preserve a good unclerstanding among them." They can hardly be said to have a general name for the whole community, thongh they sometimes speak of themselves as Sazoketakix, or "men of the plains," and occasionally as A'efsepos'? or "people who speak one language."

SECTION A.-Matuematics and Puysics

Discussion on the Kinetic Theory of Gases.-A most valuable and interesting discussion took place in this section on the kinetic theory. As at present applied the theory gives a much larger ratio for the specific heats of a gas than eriment allows. And the more complex a gaseous molecule mes, the greater, according to theory, must he the ratio of is its translational energy. The object of the disdetermine whether the theoretical conclusions t the theoretical conelusions are not correct. -aded upon inadmissible assumptions; and pore thorough investigation.

Prof. Crum Brown opened the discussion upon lines already indicated in our present volume, p. 352. The ratio of the specific heat of mercury vapour at constant pressure to that at constant volume is $5 / 3$. This gives, on the dynamical theory, only three degrees of freedon to the molecules: which must be the three translational freedoms. To prevent rutation, the molecules may be regarded as perfectly smooth, rigid, and spherical. But then the radiation eannot be "accounted for Similarly in diatomic gas the ratio is $7 / 5$-giving three translational and two rotational freedoms: but again, not accounting for vibration of the atoms, either on the one hand, as parts of the molecules, or, on the other hand, in themselves.

Boltzmann's theorem asserts that the energy of a molecule is equally distributed amongst the different degrees of freedom. So if, in addition to the six degrees of freedom of a rigid body in space, the molecules have twenty or thirty others, it would seem that the dynamical theory must be abandoned, as there would not be sufficient energy for translational motion The suggestion that radiation is caused not by vibration of the particles, but by disturbance of the ether due to the motion of the molecule through it, is scarcely admissible.

Difficulties again arise from the theoretical eonclusion that energy of each kind is distributed among the molecules according to some form of the law of probability. For them, in a mixture of gases, we should alway; have some molecules in a condition favourable for combination. Also there should be no such sharp temperature and pressure limits for combination as exist-e.g. in the case of phosphorus and oxygen. Itydrogen and oxygen can be kept very long at a temperature near that of combination, without any chemical action occurring.

Prof. G. D. Liveing, in a paper on kinetic theory, said that the first doctrine leading to difficulties arises from assumptions, and is not a necessary part of the theory. The final distribution is the result not only of circumstances which vary, but of laws of force which are determinate. So there will be a tendency finally to limitation of the distribution of the energy in the different degrees of freedom. The dissipation of energy is the result of such laws limiting the reversibility of transmutations. ISoltzmann's result will not follow if we consider other laws in addition to the conservation of energy. Indeed, the probability for it would be $n^{\prime \%}$. Boltzmann also does not distinguish different kinds of motion-such as those of liquefaction, vaporisation, and dissociation. Those of translation and vibration even are often classed together. Vet the former three take place only after a certain accumulation of energy in the system ; and the same may be true of the different vibrational degrees of freedom.

The constancy of the specific heats of some gases for large ranges of temperature indicates a constant froportional distribution of energy among the different degrees of freedom. But the proportion need not be that of equality. It is quite possible that mercury vapour at those temperatures at which its specific heat has been measured has no sensible vibrational energy. Experiments upon the emissivity of the more perfect gases show that they have, at ordinary temperatures, much less vibrational than translational ener;y; so that they may have only one, or, at most, two modes of vibration. The theoretical relation between the number of degrees of freedom in gases and their specific heats possinly requires revision. Still, it only limits the number of degrees sensibly exercised at the temperatures at which the specific heats were measured.

As regard the di-tribution of energy amongst the molecules, it is almost impossible to evade the conclusion that great differences of motion will exist, even although no particular law of distribution be assumed. Still, it is quite possible that there may be laws regulating the actions in encounters which prevent the excessive accumulation of any one kind of motion. Again, some molecules at 100° may have the average translational motion of molecules at 600°, but not that of vilration. So that very few molecules may have, at the same time, excess of motion of both kinds. Further, since this exces of energy is acquired at the expense of neightourinz molecules, the probability of there being at the same place two atoms of hydrogen and one of oxygen, in a mixture of these gases, in the average condition of those at the higher temperature, is infinitesimal. And yet again degrees of freedom exercised at the higher temperature alone may never be exercised by any molecule at the lower temperature on the average.

Differences of pressure in the two masses of the same gas at the same temperature are on the dynamical theory only differences
of average free paths, so that it is difficult to imagine how any of the molecules in the more compressed gas can be said to be in the slate, as to pressure, of the average molecules in the leas dense gas. The free path of a molecule of the denser gas may at any instant be the same as the average free path of the unolecules of the less dense gas; but its averase free path will not be the same as theirs, and it is this that determines the pressure. In a system consisting of phosphorus and oxygen the persibility of chemical combination implies the pussibility of an atom of phosphorus acquiring the same motion of translation, both as to speed and direction, as several atons of oxygen, and of their jointly taking up the vibrational motions proper to an oxide of phosphorms at the temperature of the system, and that the transformations of energy involved in all this should be attended on the whole with a degradation. Since a diminution of the pressure of a gas means a degralation of its energy, this may facilitate combination when the mere fact of the molecules having instantancous free paths of greater or less length would not suffice to produce such a result.

Sir W. Thomson remarked that Bolizmann's theorem was trae in one particular case, but a pronf of this case could be arrived at witlout the aid of the theorem, so that shis does not prove the truth of the theorem. On the other hand, he had never seen any reason for believing in it at all. If we take an absolutely elastic globe and cause it to rebound between two parallel absolutely smooth and hard planes in a region where Kravity does not act, it will go on moving betweed the two, But he does not believe that this will continue for ever. The eranslational eneryy of the ball will get transformed into energy of higher and higlier moles of vibration, so that at last the ball will come to rest, as it will be impossible for this energy to be retran-formed into translational energy.

Prof. J. J. Thomson said that he iliought the reason that the ratio of the specific heats of a gas, as found by experiment, dud not agree wish the value given by lioltzmann's ihcorem, was because Bolezmann's theerem was not true.

Bolizmann, in his theorem about the disiribation of energy in a gat the molecules of which consisted of dynamical sytem: with n degrees of freedom, assumed that there were no limits to the velocity which any co-orlinates could have, and therefore that the limiting velocity which any co-orlinate coull have was insependent of the velocity of any of the others. Now it was easy to see that in some cases there mast be lonits to the velocinies, for, take the cave of a molecule consisting of two atoms attracting each other with a force varying inversely as the spanare of the distance between them, then, if the relative velocity ex. ceefed a certain value, the atoms wouk describe hyperbolas about their common centre of gravity, and the distance between them would increase indefinitely-in other words, the molecule would break up. Again, if we considered the case of a series of balls connected together by springs and fastened to a sy vem which vilirated much more quickly than the natural period of vibration of the balls, tlien, if all the impacts fell on this syste n, the dynatnics of the ease, as investigated by Stokes and sir William Thomson, showed that any disturbance would not be equally distributed among the balls, but that the energy in the balls would diminish in geometrieal progression as we went away from the system at the end. It seeme I, to say the least, rash in a case of this hind to assume that the velocity of any of the balls far away from the system was independent of thuse preceding it.

11e had devised a molecule which it was eavy to sie wuald not obey Rultaninn's theorem. A was an envelope to the

buntuan of which a feeble spring was fixed, the other ent of which way atsached to a heavy weight, B, To this werght a stong spring was athached, to the other end of which a light wer;ht, C, was fixed. A rod of smail mass was fastened to c , of suchia leugth that it coly extended beyund the eavelupe when the spring were stretched. This system would liave two
periods of vibration-a quick one corresponding to the opper sphere, and a slow one corresponding to the lower one. Thes if all the molecules were staved, so that the amplitude of the quai vibration of c was much greater than the slow one, it was cay to see that the mean energy of the upper sphere would be greater than the meat energy of the lower ones, while, acomerdige to Boltzmann's theorem, these two quantities ought to be the same.

It might be mentioned that any co-or linate which only earerd the expression for the enargy through its differenial coefnart could be eliminated from the expression occurrity it Busitmann's theorem and the method applied to the remaining os ordinates, so that, even if Boltamann's method was unobjectivoable the result need not apply to co-onlinates of this kind.

With regard to the second of the difficulties mentioned ts Prof. Crum Brown, he thonght that the point raised presered no dificulty if we took Williamson and Clausius's new re chenical combination. According to this view it was ncoostr? to consider the number of molecules dissociated as well as toc condition of the molecules ; and though, if we took two gasm 2 any temperature, it was true that there were a finite numbery their molecule's whose energy did not differ much from th mean energy of the molecules at the temperature at which the combined, yet it did not follow that a finite proportion of ther were dissociaterl, and if there were not we could not enjex them to combine. If the collision between two molectles है nearly the same condition was more efficacious in splitting b_{p} the nolecnles into atoms than a collision between molectles . widely different condistons, then we should not expect a fare proportion of the molecules in any state widely different fin the mean to be dissociated.

Prof. W. M. Ilicks said that one of the greasest objection "o Boltzmann's theorem appeared to him to be the difficulty in beler ing that the mean energy of any vibration whatever of an atom as susceptible of unlimited increase, anll eferred to the case of a vortex ring insile a rigit spherical shell, where such everc could not be made to exceed a particular limit. As a nuxter of fact it was not proved that Bultzmann's theorem must correspasd to the actual state, but only that an arrangeanent given by bo theorem, if a possible one, was a permanent one. Hestand that if the fomomenta could not exceel definite limits. Watys, proof could easily be modified to slow that the energy wh 0 divtributed equally amon*st the degrees of freedom. Oo tre other hand, it was nut perabssible to assume all 1 momenta no sistent with the equation of energy as existent. Is an example the case of a system of mutually attracting spheres $\mathrm{m} \mathrm{g}^{\text {bth }}$ be taken. Ilere the equation would admit of the infinite vel cioo due to intinitely near alymroach of the centres, which wodt a the actual case be prevented by the finite sire of the spbers Further, any particular system might passess other integrah of the equations of motion, which woull introdnce further limet tions.

Iraf. O,birne Reynolds remarked that the kinetic theory ? only supposed to be true in as far as the assumptions on whids was based represented the actual eircumstances. In there assumptions no account whatever was taken of any resustance is which the molecules in their motions might be subjected, otbe than that which arose from the motual encounters. Wbereas f was perfectly well known and certain that there imnst be sec) resistances connected with the radiation of heal-these resis. ances, applying only to motions of cernain character, s.6 to th: vibratory motions, whatever these may tie. Neglecting tben resistances, the kinetic theory points to the conclussod that the mean energy in each one of these vibratory motions wouid be the same as in each one of the translatory motions. In the sam way, beglecting resistance, a pendu!am continuously strach a! varyiug intervals with a hamnier of a given weight and moring at a given speed would possess the same mean eacrsy wbetbe the intersals were to be measured by years or scoonds bo exparience at once showed that with friction, the shorter the interval between the blows and the smaller the friction, be ereater would be the mean energy of the pendulum. No taking resistance into account, it would follow from the l:ocs theory that the mean energy in the so-called degreet of fred wo would le greatest in tho e in which the diffusun of enerp wor gieatest and the reststance leant, while it would be lext wo thos in which the rate of communication was least and the revistans greatest. Itence, in any gas, the mean energies of tranolano. in which there is most sapul commumication and no -1ppreastio sesistance, will be much greater that the uean encerge ol
vibation to which there is all the resistance consequent on the radiation, and in all probability but little communication.
The same answ er applies to difficulties rai eed as to the dis. tribution of aotion. The assumed distributions leave out of consideration all resistances, and resistance, however slight, would cut of the extreme velocities.
Mr. II. B. Dixon said that, by a series of observations made on a mixture of oxygen and hydrogen at intervals of roou hours, he hal obtained evidence of combination at temperatures below that of disociation.

Comant Gravitational Insiruments. - Sir W. Tinomson showed and explained constant gravitational instruments for measuring electric currents and potentials, In one instrusont for mexaring eurrents he employs the principle that 1 mass of solt iron of dimensions and shape not differing too much from a sphere, experiences, in a field of magnetic force, a pull from a place of weaker to a place of stronger force. The variation of the field is produced by variation in the dimensions of the conductor through which the current passes. In an instrument for measuriug ligh potentials he used one pair of opposite quadrants placed vertically. The quadrants are connected to one pole of the instrument whose potential is required, and the needle, the lower end of which can be weigbted, is joined to the other pole.

On the Dilalancy of Media composed of Kigul Pirricles in Conlact, by Prof. Osborne Reynolds - In the acconnt which I'rof. Reynolds gave of his paper, he did not sulmit a complete dynamical theory, but discussed a very fundamental property of granular masses. To this property he gives the name of difalancy. It is exhibited in any arrangement of particles where change of balk is dependent upon change of shape. In the case of thid matter, as we know it, change of shape and volume are indepentent. In solids they are somelimes not separable. With granalar masses the result is different-change of shape ahcugys produces change of volume. And further, in every case, f change of volume is prevented any change of form is imossibie.
If we suppose the component granules to be splierical, no granle can change its position without disturbing the adjacent ones -for the granules are all supposed to be perfectly rigitl, and to e absolutely in contact-and the internal particles are fixed if ie external ones are. In illustration Prof. Keynolds thowed a corlel of connected spherical bodies arranged in crystalline rm . This model showed the arrangement of the particles urresponding to (say) the condition of least possible density of e whole mass (about one-half the density of the separate heres). The shape could then be altered to that which cortponis to maximum denwity-ihe clange taking place by tiag of the particles one upon another. Between the extreme tes there are intermediate stages of equilibrium corresponding maximum-minimun positions, where alteration in one direcn produces decrente of density, and in the other increase of isity.
n a complete treatment of the problem, friction must be iely considered; but in the experiment shown it is not of sequence, the result being independent. The above stateits will be true of any continuons mass of granules if we holld boundaries.
his principle of the dilatancy of such granular media ains many phenomena of common occurrence. For example, a sack of corn; if set on end, it remains perfectly Rexibie, f placed on its side it lecomes hard, and its shape will not

Now take an indiarubber sack, fill it with corn-it ins perfectly flexible in all prositions. The reaven for this ence of behaviour is that in the former cave the houndary Egranular mass is inextensible, while in the latter it allows ise of internal volume. So if it be possible with an sible envelope, to impose a maximun volume upon the nts, effects similar to those obtainel with the inextensible lary may be expected: and this can be done. If we place shut (No. 6 was used in the experiment) in a thin india-- liag, and add a certain amount of water, we obtain the wislied. For if the amount of water added be such that lees between the granules when in close arrangement are *) by it, while with a wide arrangement the anount is not 1, a point will be reached in passing from the first to the arrangement such that any further change of shape, and tently of volume, would produce a vacuum. When this reached the whole mass becomes perfectly hard. Prof.

Reynolds illustrated this in a very beautiful manner by means of a loall of shot to which a glass tube open at the end was fitted. With a close arrangenent of the shot, the water, which was coloured, stool high in the tube; but when pressure was applied to the bag, the level was lowered. This was shown also by the lecturer with a ball containing sand instead of shot. The water level sank till the whole was at maximum density, and, still more pressure being applied, the level again rose, the maximum having leen passes?. In these experiments about 6 per cent. of the water was frea at the top of the loall with the close arrangement of granules. When another ball containing 20 per cent. of free water was used, the hard condition could only be approximated to by pressture, and then passed. So long as the maximum is not passed in this case the ball springs back to its original state when the pressure is released. But if the maxinum lee passed, it will not spring back. If some of the water be now let out, the maximum cannot be passed, except by shaking, and, if the flattened ball be then turned on edge, it will bear a pressure of a humberlweight without change of shape.

When the dlatant material, such as shot or sand, is bounded by smooth surfaces, the layer of grains adjacent to the surface is in a condition differing from that of the grains within the mass. This layer can slide letween the one succeeding it and the surface, so that its displacement will cause much less dilatation than would be caused by the slicling of a layer within the mass. Hence, if two parts of the mass are connected by such a surface, certain conditions of strain may be accommodated by a streaming motion of the grains next the surface. Thus, if into a glass funnel partially filled with shot and held in a vertical position more shot be forced from below, the particles will flow up all around the sides-not rising fin the centre as might have been thougltt.

As the foot pretses upon the sand, when the fallingtile leaves it firm, that prortion of it immediately surrounding the foot becomes momentarily dry. When this happens the sand is filled, completely up to its surface, with water raised by capillary attraction. The pressure of the foot causes dilatation of the sand, and so more water is required. This has to be obtained either by depressing its level against the attraction or by drawing it through the intentices of the surrounding sand. As this latter requires time, for the noment the capillary forces are overcone, and the surfice of the water is lowered below that of the sand, leaving it dry until a sufficient supply has been obtained from below, when it again becomes wet. On raising the foot we generally see that the cand under and around it beconmes wet for a little time. This is because the sand contracts when the distorting forces are removed, and the excest of water escapes at the surface.

In referting to the re-nlts which might be expected to follow from a recognition of the property of dilatancy the author satid that it places a hitherto noknown mechanical contrivance at the command of tho-e who would explain the fundamental arrangement of the universe, and one which seems to promise great things besides possescing the inherent advantare of great simplicity. IIe then proceeded to explain, in a general way, how berdies in such a medium woukl-in virtue of the dilation caused in the medium-astract each other at a distance, with a force depending on the distance, which might well correspond with the force of gravitation. Further, owing to the existence of a region close to the body in which the density varies several times from maximum to minimum, the mutual force might undergo a change from attraction to repulsion, and this more than once as the botlies approach $-a$ condition which seems to account for colievion and observed molecular force far better than any previous hypothesis.

The transmission of ristortional waves becomes possible if the metiom be composed of small grains with large grains interspersed. The separation of two such sets of grains lead, to phenomena closely resembling the phenomzna of statical electricity. The susceptibility of such a medium for a state in which the two sets of grainy are in conditions of opposite distortions may explain electrodynamic and magnetic phenomena, while the observed conducting power of a continuons surface for the grains of a simple dilatant merium closely resembles the conduction of electricity.

In remarking upon Prof. Reynolds's paper Sir W. Thomson pointed out an interesting question. Take a cube of spheres in the condition of maximum volume, and let every sphere touching the boundary be glued to it to prevent slipping. Other states are possible in the interior, but can we pass continuously to
another condition, the boundary being hell firm? Prof. Reynolds replied that he believed that he hall got the result that it could not lie done if we have a continuous medium. As other problems for solution, Sir W. Thomson suggested the theory of the hour-glass-what fixes the constant tine for the sand running? and why does a sulestance sink deeper in a quick sand than in a viscous fluid of the same density?

On Calculating the Surftce-7ensions of Liywids by mams of Cyltudrical Drons or Bubtles, by Prof. Pirie. - There are two methods by which the surface-tension of liquids are calculated. One involves the measurement of the height to which the liquid rises in a cylindrical tube of known diameter. The other involves the measurement of the height of a certain point of a drop of the liguid above a flat surface upon which it is placed. This point is the point of contact of the tangent plane when it becomes vertical. The former method is objectionable, because the results might be vitiated by the presence of a very small 'fuantity of grease in the tube, or by electrification, \&c. The latter, too, is not in a satisfactory state, Gay Lussac's restults were in no degree different from thome olnained by the ordinary methool. Quitucke's measurements are gonat, but his mathematics are misleading. To obviate the mathenatical difficulties the author makes use of long drom-that is, drops oltained by placing portions of the liguid upon a concave cylindrical surfuce. The advantage is that the differential equation used in the calculation is immediately integrable. In remarking upon this paper I'rof. Stokes 5 aid that Worthington has shown, by extending; Quincke's result, that the theory agrees with experiment.

On the Sw'face Tension of Winer zwhich contains a Gas dis. soleval in t, by Prof. Pirie...' This question is important, for no liquid is usnally free from gas in solution. Prof. Piric tinds that the surface-tension is unaltered wo long as the specific gravity of the water is unatfected by the discolved gas It is strongest in the pure linuid.

On the Thermaly namic effitency of Thermopeles, by Lont Rayleigh. - The question has often ariven whether or not the dynamo may be replaced by an arrangement of thermopiles. There is a great difficulty due to the combuction of heat. Let t and t_{0} be the temperature of the hot and cold junctions; e the electromotive force of one pair per ilegree Centigrade, and E the total F..M.F., hence we have

$$
n c\left(t-t_{0}\right)=E
$$

From this enfuation the author olrtains by means of Joule's law the expression

$$
\begin{gathered}
n^{2} e^{2}\left(t-t_{s}\right)^{t} \\
4 K_{e}
\end{gathered}
$$

for the useful work done exteraaily. In I again, if $r_{1}, r_{3}, \sigma_{p}, \sigma_{2}$, represent the specific electric rewistance and the crow-wectional asea of the metal bars, while l is their length,

$$
R_{0}=n l\left(\begin{array}{ll}
r_{1} \\
\sigma_{1} & \frac{r_{3}}{\sigma_{2}}
\end{array}\right) .
$$

To obtain the efficiency the above work mast the compared with that tone by the apparatus resurileil a, a peifect heat engine working between the same temperature. The ratio is

$$
i_{i} /{ }_{1}\left(\frac{r_{1}}{\sigma_{1}}+\frac{r_{2}}{\sigma_{2}}\right)\left(\begin{array}{l}
r_{1}+\frac{\sigma_{4}}{r_{1}}
\end{array}\right) .
$$

where :'n i_{2}^{\prime}, are the specific thermal resistances. The efficiency therefore is indepen-lent of $\mid f-f_{n}$, of n. and of f, and alse of the atratues values of $\sigma_{14} \sigma_{z_{2}}, r_{1}, r_{1}^{\prime}, r_{r}$, and r^{\prime}.
l'utung in numerical values for a thermopale of iron and (ierman silver, Dard Kavlengh got 3 : x) as the value of the alwove ratio. Since r^{2} is insolved, this nuater may be somewhat reduced; bat high values of \& are livally aswociatel with high internat revatance. There is thenctore no powsilulaty of the themopile becoming a useful senerat of ofectncity on a lar ${ }^{\text {ge }}$ scale.
 Iamor, - Mr. Larmor's method inulves the electro chemical equivalent of the liquid asest, and wo dofler fowm the two methinls previousty alopted. The has olvained extremely accorilant revults.

Civate: of Wres in fir and Fivaum, by Mr. J. T. Buttumley - Mr. Hontomley finils that the me hom has a most marked cooling effect. In elecuric current pavent through a wire, when surrownled by air at atmmpheric picosure, heated it only (i)
$80^{\circ} \mathrm{C}$. But when the air-pressure was $\frac{1}{19(10)^{4}}$ of an atme sphere, the wire became red hot. The temperature dil nox ate much until the pressure became 1 . Iooth of an atmospbere.

An Account of Lecaline Operations of the Grast fra, w metrical Survey of India, by Major A. W. Baird. -This pa opened with an account of the methods furmerly uted in tbe determinations of relative height by the survey. The ersec. afferting these methods and the means adopted for therr elim : 2 tion were then pointed out. Various lines of level carme! to connect tidal stations lying north and kouth indi. ated $2 \cdot 1.7$ ence of sea-level at the stations. This diffierence cannot be to false levelling of the instruments produceit in convejacte: the illumination of the spirit-level by the sun, for the axte of the line was not always brought out bighest, and along line no difierence of level was perceptible. The discreparar one ease amounted to three feet along the line from Bom's Madras. The two weakest parts of this line were relev: giving the same results as liefore. Consequently it would = that the error is caused by local attractions influenc.s; instrument: in greater degree than the more clistant ocean.

On the Riainfall of the British Islands, by Mr. A. Bochs:Mr. Buchan pointed out that the greatest differences in . climates arise from differences in the rainfall. For eus. the mean temperatures of Skye and the Moray. Firth coscs any month are not much different, but the rainfall in sw alout four times that at the Moray Firth. The formet is ${ }^{2}$ the latest and poorest grain-producing districts in scotlant. : the latter is just the reverse. The inquiry wav lased on servations of rainfall made at roso stations in Englaod Wales, 547 in Scothand, and 223 in Ireland. They erten! the year 1860 to the year 1883 . The regions of heavies ras: giving an average of So inches or upwards anmually, were :eq Skye and a large portion of the inainland to the soott-est. far as Luss, on Loch Lonmonl ; the greater part of the Wistrict ; a long strip, including the more mountainods fa North Wales; and the mountamous district in the south-ex Wales. The West Highlands is the most extensive rg heavy rainfall in the British Islands. Its mountainous cos faces the rain-bringing winds of the Atlantic, and the arf. 's cooled in its pascage up the lochs and valleys, the monsa" precipitated. At Gilencoe, ith this district, the heaviest $\mathrm{F}_{2}:$: in scotland occurred- 128.5 inches. The smallest ranfati n? in a large portion of the south-east of England. The aterh rainfall for the last half of the period from 1800 to $t \${ }^{5}$: comparatively high, chichly in the eastern district.

On a Rcmartuthe Occurroved durings the Thuntirine fu. wosf 6, iN55. by Mr. W. 11. Preece.-A house at A . C ? bert's, ten miles from Wolverhampton, is connected with:town by telephone, and is aloo lighted by electricity. p dining-room was lightel by a single lamp in inuluple are * some others. The telephone wire was connected to the is ning conductor as an earth. When the storm vecurred, th dining-room lamp thashel up and went out, while a luot te? was heard. The lightning-rod made bad carth, and it is ? lieved that it had been struck, and that part of the howes: hal entered the telephone circuit and then sparked across to electric-light circuit. It did not seem to have divaded, br have pas-ed entirely along the one branch, inclutin; the duss; romm light, the platinum wire of which was volatilued it depusited an the interior of the glass, forming a good enarot
 remarked that Ben Nevs powerses great advantages zs meteonolozacal station becauce of its great height and at sumpe leing only a matat four miles horimontally distant from a seadent station. Aso it is in the track of the Atlantic storms, wer exercise so great an eflect on the weather of E:urope, espersin in auturnn and winter. The observations made on the enst $1.11 n$ are for the purpose of determining more fully the grt movements of the atnosphere and the dependeoce of weather upon them. Mr. Buchan called atrention to the $\mathrm{g}^{\text {t2 }}$ '"portance of abourmal values in the thermometrac and bry" "etne obervations especially. The necurring periods of quowt "inractelsitic of Hen Nevis to not oceur at lower station: in .
 liben a cycle
in anticyclo
Ore sow
Tigentaran

Coartene Fox--The laws enunciated in this paper are deduced emprically froe observations extending over the last seventy years, Even at detached laws they are of great value; but iheir imporance is more evident when we convider that, as the aulbor remaris, it is from such material that the future science of urteotrology must be built up by cautious induction. Given that a certain month of scason is in certain condition as regards temperatare or rainfall, Dr. Fox seeks to Jetermine what may be predicted of the succeeding period as regards these qualities. He firis that, if a spring or a summer be very cold, the succeeding seanon will be colll; and warm autumns succeed very wamn summers. The fact of a very dry Augast being followed by a wet September is unique. The following table shows sher results obbained.

Chancteristion	Month.	Month following.
Very cold	Jan, April, Junc, July, Aug., Sept., Dec.	Cold
Very warm	Jan. Junc, July, Ang	Dry
Very dry	June, July,	Warm
Very wet	Jan., Marcl. April, May, July	$\begin{aligned} & \text { Warm } \\ & \text { Cold } \end{aligned}$

In adition the author records what follows when a given wh has maried temperature and mosture characteristics ultaneously.

Characteritios	Month	Month following
Varm and wet	Nov., liec., Jan.	Wet Warm
Carm and dry	Junc, July,	Warm
	Aug.,	Wet
old and wet	July, Aug.,	Cold
iold and dry	Ifec.	Colt

very cold and very wet summer is succeedel usually by a autumn
'mestic Effctric Lighting, by W. H. Preece, F. R.S. Elecin : $:$ P.O.-After referring to the full details of the lighting latoon of his house in Wimbledon, given to the section at neeting at Montreal, Mr. Precee referred generally to the iences he had gained daring the past twelve months. The lary batteries upon which he had mainly relied exceeded (pectations in the services they rendered. They returned cent. of the energy put into them without any apparent ution whatever in their E.M.F. They showed no signs of ration and gave no trouble whatever. He used his gas for charging only two days a week. He had experienced It with the wiring of his house. He bad used only the ist materials, and had attended personally to the insulation ystem. It was periodically tested and found to be gool. cored in severe terms to the cheap and nasty wire which fiequently and ignorantly used, and feared that the prejuainst the electric light would increave when failures from se arose. Nune but the very best materials should be od the joints should be seen to by experts. He had demsiderable attention to the problem of divtributing light, 1 -ucceeded so far that while his rooms were beautifully ted the eye was not irritated by regarding a bright surce

The Lomp he used was a go volt to candle prower glow id it was, ar a rule, so fixed that the cye never saw it. arrived at the nee of these lamps after careful consideraI many trial, of other lamps. They secured greater the leads, and involved less capial in batteries through of low E.M.F. He ran his lamp at an E.M.F. about t. Less than the normal E.M.F. He did this to secure to his lamps. The breakage had been very small. The and current which will give a lamp a normal life of irs and a certain candle power should be determined by ker. The sixth power of the current will kive the wer and the twenty-fifth power the life with any other I He great advantage of batteries is that the proper curdetermined can never be exceeded, and thus elliciency
is ensured. If lamps are ran too low there is a waste of power, if too high there is a waste of lamps. We are now gradually acquiring a thorough knowledge of the number of Watts which thould be expended in each lamp to secure the maximum economic efficiency. Ite had introluced into the charging lead and into the discharging lead a Ferranti meter, so that he was able to recorl exactly the quantity of clectricity passed through the batteries and that passed through the lamps. This beautiful meter is based on Ampere's laws which determine the attraction and repulsion of currents. A small phosphor bronze vane is inmersel in a bath of mercury, through which the current flows radially, fixed in a magnetic field. The me:cury ritates and carries with it the vanc. The rate of retation varies directly with the strength of current and the number of rotations are recorded by a counter, which ean be read off directly. So far he was perfectly satisfied with its performance. As regards expense, exeepting the first cost, he did not find much addition to his expenditure for illumination. His electric light was costing him about 50 /. a year for gas, wages, oil, and lamps. It was the cheapest luxury he indulged in. The great advantages were the confort and cheerfulness it enpendered, and as cheerfulness was the main element of health he thought that the eleetric light would prove a serious rival to the doctor. There was no one who valued health and comfort who should neglect to apply the electric light to his honse, when it was brought, as it has been by the snccess of the seconday batteries, within his means. It was said that he, as an expert, could make things go which would fail in ordinary hands; but he mentioned several cases where coachmen, butlers, gardeners, and grooms had been found perfectly competent and intelligent enough to attend to everything.

Discussion on Standards of White Light.-This discussion was not so well sustained as the discussion on the kinetic theory. All the speakers agreed with the a loption of the pentane standard lor commercial purposes. For scientific purposes a definition in terms of energy was deemed necessary. The eye cannot be used as an accurate instrument. On this point Prof. Stokes referred to the fact that if two equal areas differently coloured seem to have equally intense illomination, we have only to alter the size of the common area to destroy the apparent equality of intensity.
On Photimetry zuth the l'entane Slandard, by Mr. A. Vernon Harcourt.-Mr. Harcourt described the construction of the pentane standard light, and the method of using it for photometric purposes. In the course of his remarks he referred to the meaning of the expression "white light." Any so called standard of white light is more nearly a standard of yellow light. He had never got a sativfactory definition of the expression, but supposed it to be such light as we have in ordinary daylight.

The Constitution of the L.uminificous Ether on the Vortex Athm Thion, by Prof. W. M. Hicks - The simple incompressible fluid necessary on the vorter atom theory is quite incajpable of transmitting vibrations similar to those of light. The author has therefore considered the possibility of transmitting waves through a medium which consists of this fluid modified so as to contan small vortex rings closely packed together. The rings are supposed to be composed of the same material as the rest of the fluid, to be very small comparell with the wave-length, and to be at distances frm one another also small compared with the wave length. Their motion of tramation is als; taken to be so comparatively slow, that very many waves can pass over any one before it has much changed its position. Such a medium nould probably act as a fluid for large motions. The vilration in the wave front may be (1) swinging, such as a ring oscillating on a diameter; (2) transversal vibration of the ring; (3) vilrations perpendicular to the plane of the rings; (4) apertural vilrations. Of these (3) ,eems to be impossible. If r be the ratius of the rings, $/$ the distances of their planes, we their cyclic constant, and v the velocity of transhation, the author found

$$
\begin{aligned}
& \text { For }(1) \ldots . \operatorname{t} \propto \frac{t v}{l}\left(\frac{r}{l}\right)^{4}, \\
& \text { For }(2) \ldots \ldots \propto \frac{w}{l}\left(\frac{r}{l}\right)^{2},
\end{aligned}
$$

whilst for (4) in case of rings arranged parallel to a wave-front-

$$
v \propto \frac{w^{2} l^{2}}{\left(L^{2}+4^{2}\right)^{\frac{1}{2}}}
$$

On a Photometer maile with Translucent Prismis, by Mr. J. Joly. - In this photometer each side of the prism is illuminated
by one of the lights to be compared, the edge being turned to the observer. The great advantage here is that the two illuminated parts are placed in sharp juxtaposition.

On a Point in the Theory of Double Refiaction, by R. T. Glazebrook.-The author suggested that the theory of double refraction given by Lord Rayleigh, in which the ether is supposed to have an effective density different in different directions, might be modified so as to agree with Fresnel's theory, if it be not necessary to assume that the ether offers an infinite resistance to compression, but only that, as comparel with its rigidity, its compressibility is very great, and further that in a crystal the light vibrations are normal to the ray, not to the wave normal, as was pointed out by Boussinesq and referred to by Ketteler in some of his parers.
On a Now and Simple Form of Calorimeter, by Prof. W. F. Barrett.-The bulb of a thermometer is made in the shape of a double cup. In this cup is placed the substance whose specific heat (say) is to be determined. The stem of the thermometer is horizontal, and rests on a fulcrum so that the weight of the substance may be determined by using the apparatus as a balance. Special precautions are taken in determining the temperature of the substance when placed in the cup, and to prevent evaporation, \&c. The specific heat is then given by the ordinary equation,

$$
W S(T-\theta)=C(\theta-t)
$$

the constant C being determined by experiment once for all.

Section R-Chemtstry

On the Non- Existence of Gasccus Nitregen Triaxide, by Prof. Ramsay,-After pointing out the inconclusive character of Lunge's argument in support of the existence of gascous nitrogen trioxide, inasmuch as the use of any reagent may either decompose the gas or react with the products of its dissociation-viz. NO and $\mathrm{N}_{2} \mathrm{O}_{4}\left(\mathrm{NO}_{2}\right)$, as though they consisted of $\mathrm{N}_{8} \mathrm{O}_{3}$ itself, the author shows the only eriterion of the existence of this gas to be its vapour density. He finds that NO_{2} may be mixed with NO without effecting any change in volume, and therefore no combination, or only a very slow combination, can take place between these gases. The vapour density of the first portion of the gas obtained by distilling liquid $\mathrm{N}_{2} \mathrm{O}_{3}$ is found to le 22.35 , a result which accords fairly well with what the densing should lee, supposing it to be a mixture of $\mathrm{N}_{8} \mathrm{O}_{4}, \mathrm{NO}_{2}$, and NO , having the empirical composition $\Sigma_{2} \mathrm{O}_{3}$. Supposing the gas weighed to contain no $\mathrm{N}_{2} \mathrm{O}_{4}$, an assumption not warranted ly facts, and consist of NO and NO_{2}, then, in order to make the specific gravity $22.35,17.63$ per cent. of $\mathbf{N}_{2} \mathrm{O}_{3}$ mutt be added to the mixture. These facts the author conviders as deciding the point against the existence of gaveous nitrugen trioxide.

Obsezuthons on some Actions of a Croti's Gas liattery, by Prof. Ramsay.-The action of an ordinary Grove's gas battery can be explained by supposing that, at the point of contact betucen the platinuin, hydrogen, and liquid, a decomposition of the water molecule takes place, its oxygen uniting with the hydrogengas to form water, whilst the liydrogen is liberated from molecule to molecule until the free gas arrives at the point of contact of the platinum, the oxygen, and liquid: here it unites uith the oxygen gas, forming water. If the loquid in the battery be coloured with indigo sulphuric acid, the author finds the indigo in contact with the hydrogen to undergo no changes, whereas that in contact with the oxygen is discolouret, a change probally due to the oxidation of the indigo to ivatine. Ilydrogen, therefore, in uniting with oxygen, does not beach indigr. Nuw if, in the orlinary gas battery, the ncid he replacel by a saturated solution of sodium chlonide and hydrogen, and chlorine be substituted for lyydrogen and oxygen, the indigo is found to be bleached on both sides, the bleaching taking place from alove downwards, and taking place at once on almitting the chitorine, but some time is required before the reduction by the hydragen is evilent. These experiments show that when hydrogen unites with chlorine it is in a more active state than when it unites with oxygen. To evplain this difference the author suggests that, when a molecule of hydrogen uniter with a molecule of chlorine, atomic hydrugen exists for a mosent, and this, in presence of indigo, relluces it to indigo white. In the case of hydrogen and oxyben the union of two m.decules of the former with one molecule of the latter may be effectel without the hydrogen assuming the atomic condition, whereas the oxygen must assume the atomic or nascent condinion, to which
the bleaching of the indigo may be ascribed ; or it may :ozone or hydrogen peroxide are formed. Theac phers. may, therefore, be regarded as chemical evideoce com: of the following method of expressing the union of thor , with one another:-

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2}=\mathrm{HICl}+\mathrm{HCl}, \quad 2 \mathrm{H}_{2}+\mathrm{O}_{3}=\mathrm{H}_{3} \mathrm{O}=\mathrm{H}
$$

On the Spontanews Pidymerisation of Vovatile Hywr at the Ordinay Almosphcric Temperatures, by Lis HL L. LL.D., F.R.S. - The attention of the author was draw Staveley, of West Bromwich, to a camphor-like solis, from the more velatile liquid hydrocarbons, prodoce: composing crude phenol at a red heat. The change i: liquid to the solid state was, at first, supposed to be dx influence of the oxygen of the air, but investigativn $b z$ the solid to be a hydrocarbon having the formula C,II the change to be one of polymerisation. This carbon undergoes a firther polymeric change wheo be: sealed tube at 180°. The author finds also that the fire: r. of ordinary coal tar, which distal below 30°, are, oo ke. sealed tubes, converted spontaneously into this solid by t . $\mathrm{C}_{10} \mathrm{H}_{12}$.
On some Naw Vanadium Componneds, by J. T. Bneriercompounds described form a series of well-defined in salts of purple or dark green colour, joossessing a metz which contain both the oxides $V_{2} C_{4}$ and $V_{3}()_{3}, 20$ regarded as vanadate-vanadites. These salts are fo adding a caustic alkali to the dark green liequid the adding hypovanadic sulphate to a solution of an alkair vanadate. The composition of the sudium, 1 potact namonium salts are represented by the following , $2 \mathrm{~V}_{2} \mathrm{O}_{4}, \mathrm{~V}_{8} \mathrm{O}_{3}, 2 \mathrm{~N}_{2} \mathrm{O}+13 \mathrm{H}_{2} \mathrm{O} ., 2 \mathrm{~V}_{2} \mathrm{O}_{4}, \mathrm{~V}_{8} \mathrm{O}_{2} \mathrm{~K}_{2} \mathrm{O}$ and $4 \mathrm{~V}_{8} \mathrm{O}_{4} \cdot 2 \mathrm{~V}_{2} \mathrm{O}_{8} \cdot\left(\mathrm{NH}_{4}\right)_{5} \mathrm{O}+14 \mathrm{H}_{2} \mathrm{O}$.

The Essential Food of Plants, by T. Jamieno I F.1.C. Whilst no doubt exists as to the essentisic the elements of carbon, hydrogen, oxygen, and niths stituents of the food of plants, the evidence in ouly elements phosphorus, potassium, magnesimm, calusm iron, and chlorine to be regarded in this light cum silered conclusive. A little consideration show elements, iron anci chlorine, have but little claim : sidered as essential to the food of plants, and the evof which an account was given in this paper, were sab author with the view of vindicating the right of the ins" ing elements to be so considered. These invertiga: , conducted at an experimental station in Susser and ath in Aberdeenshite, the nature of the soil in buth car specially favourable. The methorl aslopter consistel 5 ing the effects on plants grown in similar soil and un ke conditions, when supplied with manures, containing, elements and comparing the results with thuse oblame one or other of these elements was withheld. These ev" seem to provile proof that sulphur must be discarlent list of essentials, while some doubt is thrown on event-magne-ia. At the same lime striking contirmatman of of the evential characters of hoth phosphorus and pota.

A llat fir the Emeiris Namin! of Orvanic Cominat Prof. Cilling, M.A., F.K.S.-Verbal translations af th tural formulee assigned to organie mmpounds poweradvantages as names for the several comprounds T • are applicable to all organic compounds of which the formule are male out ; they are the only wort of name able to complex isomeric compounds; and their uee el dispersed with wholly in the case of even less compry prounds. Notwithitanding thene advantages, structars constitute unsuitable names for general use, nore eft applical to fundamental hydrocarlons, alcohols, and siol are oljectionable for this u*c by reavon of their lensp: plexity, and want of ready indlicativeness; by the cre of the ir luting basell on conecputions of chemical consuiat kind pointed out by experience as eninently lable to anit by the further circumstance of their reprecentinsidet and, so far, an untruthful notion of the bodied de: structural names, expresing other than a distorted vos Cunstitution of all but a tew of the mon simple of ongam ' are impracticable by reason of their length and comb Hence, to avoil the lintortion inseparable from the gre single structural uame for an organic body, the only e is the awignment t, cach holly, in proportion to is a of an indelimte number
tantamount to not assigning is any particular name at all. Although from their number and complexity, organic boties can only be designatel by names which do in some measure describe and characterise them, the primary purpose of a name is undoubtelly to designate, and not to describe. Accordingly, with a view to the prompt mental association of object with name, torief empiric names, based on the origin and properties of bodies, are, wherever practicable, to be preferred to structural names. As regards isomeric bodies, they may to a lange extent be alvantagconsly distinguished from one another by means of significant letters or syllables prefixed to the name common to the difierent isomers. Dut the suggested use of the particular ietter, $\boldsymbol{a}, \boldsymbol{B}, \boldsymbol{\gamma}$, each in a special sense; also a general resort to the particles hydruv, oxi-, and hydroxi- as name-components ; and, more especially, the innovation of sulstituting the word "hydroxide" for the longestablished word "hydrate" are practices open ta grave objection.

The I'criodic L-2io, as illustrated by sertain Phyical Proper. tics el Organic Compuntds, by Prof. Thos. Carnelley, D. Sce-In this paper the anthor shows that the physical properties of the norinal halogen and alkyl compounds of the hydrocarbon ratizals exhihit numerous relationships, which, with one exception, ire similar to those which he has shown to exist between the normal lalogen or the alkyl compoumls of the elements. It appears that the physical properties of the following four classes of compoundk obey the same rules:-(1) The halogen comprounds of the elements-i.e. of elements with clements. (2) The alkyl compounds of the elements. (3) The lialogen compound, of the hydrocarbon radicals. (4) The alkyl compounds If the bydrocartion radicals-i.e. of hydrocarbon radicals with hydrocarbon radicals. The relationslups referred to have been evted in no less than 6117 cases, 5 per cent. only of which are exceptions.

Suserstions as to the Camse of the Perialic Lare, and the Nisture If the Chimicitl Elements, by Prof. Thos. Carnelley, D.Sc,-The ruth of the periodic law of the chemical elements is now gener\$ly allowed by most chemists. Nevertheless, but little has een done towards attaining a rearonable explanation of the law. The object of this paper, therefore, is to ofler a few suggestions in this subject. Granting the trath of the periodic law, we annot help theorising as to its cause, and thence by a natural tep an to the nature of the elements themsclves. Even long celote the discovery of the law many chemists had pointed out ertam numerical relatioaships existing between the atomic veights of bodies belonging to a given groap, and hasl hence upposel that the elements belonging to the several natural :roups were not primary, but were made up of two or more impler elements. These conclusions, however, were more or exs fragmentary, and referred only to particular groups of lements. In the light of the perio.lic law the author has made general extenvion of the fragmentary conclusions of Dumas. ud has brought that law into juxtaposition with an extended eneralisation of the analogy of the elements with the laydroarton radicals. His conclusions are based on the relationships hich he has observed to obtain between certain physical proerties and the atomic weights of the elements, and those of zeir compounds (see previous paper . A careful consideration f the points submitted leads almost mresistibly to the conclusion sat the elements are analogous to the hydrocarbon radicals in oth form and function. This is a conclusion which, if true, oulal further lead w to infer that the clements are not eleent: in the strict sense of the term, but are luilt up of (at ant) two primary elements, A ($=$ carbon at, wt. 12), and 13 ther at. wt. -2), which by their combination protuce a ries of conipounts (viz, our present elements), which are ralogous to the hydrocarbon ralicals. If the above theory of e constitution of the elements be true, the periolic law wouht llow as a matter of course, and we should therefore be able to present the elements by sone such general formula a, n lisin+12-at, annloggots to that for the hydrocarbon radicals, ${ }_{n} H_{n+12-x i}$, in which $n=$ the series, and x the group to which e element or hydrocarhon radical belongs. ${ }^{\text {a }}$ A Asuming the th of the theory bere advanced, it is interesting to observe, at whereas the hydrocarbons are compounds of carbon and drogen, the chemical elements would be compounds of carbon the ether, the two sets of bodies being generated in an exactify alogots manner from their reppective elements. There would
Cf. Atrmey's researches on the infrared abcorptiun spe ira of curbon npounds (Prov. Kuy, Soo, ${ }^{31}, 416$), also the article on the leco mpo itton Dilymium by Welshach in Nutuke, vol. axvii. P ijs-
hence be three primitive elements-viz., carbon, hydrogen, and ether. Finally, it may be stated that this theory would remove the chicf oljections which have been urged against the periorlic law, whilst the existence of elenents of ilentical atomic weights and isomeric with one another would be possible. May not Ni and Co, Ru and Kh, Os and Ir , and some of the rare earth metals be isomers in this sense?

The Value of the R'efraction Gomioneter in Chomical Work, by Dr. J. H. Gladstone, F.R.S.-The principal points illustrated and enforced in this communication were (t) that the index of refraction and length of sjectrum are important physical propertics of any substance ; (2) the specific refraction and specific dispervion may be serviceable: (a) in determining the purity of a substance, (b) in the analysis of such a mixture as ethyl and methyl alcohols, (c) as a guile in the investigation of organic compounds, $\left(d^{\prime}\right)$ as arbiter leetween rival views as to the constitution and structure of particular chemical compounds.

Refraction of fiuorine, by $\mathbf{4}$. Gladstone,-From a comparison of the observations on fluorspar, cryolite, and several artificial fluorine compounls, the author shows the refraction equivalent of Hatine to range from 0.3 to 0.8 , the mean of the whole series of determination being 0.6 . Thus, taking the highest estimate, the specific refraction of this clement is acarcely equal to half that of any other substance.

Notc on the Conditions of the Development and of the Activity of Chlonvh hyll, by Prof. Gilbert, L.L. D., F.K.S. - An account of some experiments male in conjunction with Dr. W, J. Russell, which show a clove connection to exist between the formation of chlorophyil and the amount of nitrogen assimilated by pla'ts; the amonnt of carbon avsimilated is not, however, in proportion to the chlorophyll formed, unless a sufficiency of minesal substances, required by the plants, is available. In cases where both nitrogenous and mineral manures were applied a luwer proportion of nitrogen assimilated and chlorophyll formed over a given area was observed, which is no doubt due to the greater assimilation of carbon and consequent greater formation of non-nitrogenous substances, although the amounts of nitrogen assimilated and chlorophyll formed were as great, if not greater.

On the Aition of Solitum Alcoholates on Fiumaric und . Makic Ethers, by Prol. P'ardie, 1'h. D., 13. Sc. - Ny the action of soltum muthytate on choylic jumarate, methylic methoxysuccinate is fornied, from which meitoryspoctuic acid can be obtained, a crystalline solid melting at $101^{\circ}-103^{\circ}$; this same acid is obtained from the prolucts of the reaction of sulium methylate on ediylue matorle or hydruc methyic maleate. Similarly an ethoxyrsaciutic aci.f is obtained by the action of soditam ethylate on chaylic foutarafo, also by its action on Aydric cthylic mileate. Thus fumaric and maleic acids yield alkyloxy-succinic acils, which are identical with one another, or, if not identical, resemble one another so clovely that their isomerism must be of the same character as that of sulsstanees which differ from one another only in their optical and crystallograplice characters.

On Sulphise Salts derizenf fiom Ethylene Sulphid:, by Orme Masson, M.A., D.Sc. (Edin.)-Eithylene sulphide, when heated at 160°, is converted into diethylene sulphale $S\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)_{5} \mathrm{~S}$, an ethereal solution of which, when mixed with methyl iodile, unites with the latter to form didhylcue sulphade wethy' twi'phone iodtale $\mathrm{S}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)_{2} \mathrm{~S} . \mathrm{CH}_{3} \mathrm{I}_{4}$ which is a crystalline compound soluble in water, but insoluble in alcohol or ether. From this compound a series of the su!phome salts have been prepared, which resemble the sales of trimethyl sulphine in their lehaviour when heated, but differing from these compounds in the ease with which they are decomposed by caustic alkalis with the formation of diathydcue sulphife methyt sulphtme hyaroxite $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{3} \mathrm{~S}_{2} \mathrm{CH}_{3} \mathrm{OH}$. The compounds obtained by lichn (. 2 nherl n, Supp. iv. 83) by heating together ethyl sulphide, ethylene bromile, and water together in sealed qubss, and styled " sulphinic salts" by him, were, in all probability, dimethylene sulphine-methyl-sulphine derivatives.

On an apparently hea Hydrocurbon from Distilled Jupanese Pedrolem, by Lir. Divers and T. Nakanura,- A description of a yellow solid hydrocarbon found amongt the final products of the distillation of the petrolewn from the wells at Sagara. The Iydrocarion melts at $250^{\circ} \cdot 2 \mathrm{~S} 5^{\circ}$, and has a composition expresied ly the formula $\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{n}$.

The Composition of Water by Vilume, by Dr. A. Scott, M. A., 1).Sc.-Nfter pointing ont the desira!ility of renewed determinations of the exact proportions in which bydrogen and oxjgen conbine with one another, inasmuch as neither of these
gases obey Boyle's law exactly, the author gave a description of the apparatus he had employed in making such determinations, which allowed the use of considerable volumes of these gases. The results obtained show the ratio not to be exactly that of t vol. of oxygen to 2 vols. of hydrogen ; but the proportions are t: 1'994 or 1:1.9935; or, if the impurity be supposed to exist in the oxygen alone, then the ratio is 1:1996. The gases were examined as to their purity, the results indicating the presence of ${ }^{2} 2 \mathrm{c} . \mathrm{c}$. to ${ }^{*} 3 \mathrm{c} . \mathrm{c}$. of foreign gas in the $450 \mathrm{c} . \mathrm{c}$. used.

In a communication entitled On Solufionr of Ozome and the Chemical Action of Liguid Oxygen, Prof. Dewar gave a description of the apparatus and method employed by him in the liquefaction of such gases as oxygen, \&c., and after discussing the conditions required for the successful conversion into the liquid state of the so-called permanent gases, he gave an account of some experiments made with liquid oxygen. At -130° liquid oxygen loses the active characters possessed by this element in the gaseous state ; it is withour action on phosphorus, sodiun?, potassium, solid sulphuretted hydrogen, and solid hydriodic acid. Otber substances appear to undergo similar changes at very low temperatures; thus liquid ethylene and solid bromine may be brought in contact without any action taking place, whercas gaveous ethylene and liquid bromine unite directly at the ordinary temperatures. Hautefeuille and Chapuis by subjecting a mixture of carbonic anhydride and ozone to great pressure obtained a blue liquid, the colour of which is due to the ozone. If ozonised air be passed into carbon disulphide at $-\mathbf{1 0 0}$, the liquid assumes a blue colour, which disappears if the temperature be allowed to rise, and at a certain point a decomposition, resulting in the production of sulphur, takes place. The leest solvent for ozone is a mixture of silicon tetrafluoride and Russian petroleum. These solutions of ozone are without action on metallic mercury or silver. Prof. Dewar, in remarking on the liquefaction of nitric oxide, stated that a comparivon of its curve of liquefaction with that of methane shows the pressure toincreave more rapidly with the temperature in the case of nitric oxide than in other gases, a fact which would anpear to indicate, that at low temperatures the molecule of nitric oxide is of greater complexity, and prohably exists as $\mathrm{N}_{2} \mathrm{O}_{4}$. An account was given of some of Cailleter's experiments on the electrical conductivity at low temperatures, which seemed to indica'e that as the limit -220° was approached ordinary elecerical conducturs liecome al.a we jerfect conductors,

On the wie of Sodium or other Soluhle Aluminates for Softenin.' and Parifying Hard and Impure Water, and Deas risine and Proifidators Scuape, Waste Water from Factories, Ewl.. by F, Maxwell L-yte, F.C.S., F.I.C.- The advantages attending the use of solium or other soluble aluminates for the above purposes are dependent upon their easy decomposition with the production of a precipitate of hydrated alumina, which removes organic matter, and further lyy their use the temporary hardness may be completely destroyed, and the permanent hardness reduced.

Sime New Crystallised Combinations of Cefp-r, Zin', an I /ron Sulphates, by J. Spiller, F.C.S.- The author gave an acenunt of the preparation of a large series of touble sulphates of e sper and iron, zinc and iron, and coppor and zinc.

In a communication on fiariam Sulphate as a Cementins Aficrial for Siswdicone Prof. Clowes pinted out that, althuugh Bischof mentioned instances of foreign sandstones in which the material cementing the sand grains together was barium sulphate, it appeared that up to the present time no such sandstone had leen met with in the United Kingdom. Ilaving learned that opinions differel regarding the calcareous nature of certain new red sanktone bels in the neighbourhood of Nottingham, he undertook to examine the chennical composition of these sandstones, and procured specimens of the santlatone from different levels. On being analysed, the sandstone was found to contain barium sulphate in varying proportions, at jresent being determined, while some of the lower beds also cuntained calcium carbonate. In some of the sandione beds the loarium sulphate was very unequally distributed, forming a network or a series of small masoes more or less spherical in shape. In such sandstone the sand grains hetween the sulphate streaks and patches were quite luase, the revult being that the weatherel surface presented a honeycombel appearance. T'o explain the presence of the barium sulphate he suggested that it mught have been d-postted along with the sand; hut if such had fieen the cave it halt certainly un-lergove a phyaical change, as it now existed in a firm, compact, and crystalline condition. It
would, therefore, appear that it had been either deposited frow aqueous solution or that it had been rendered crystalline bo = slow percolation of a solvent liquid through the redimen:ar deposit, or owed its origin to the action of water comtamaze calcium sulphate passing through sandstone cemented orsinaly with barium carbonate.

VOTES

Botantsts will learn with very great regret of the seath re Mr. Edmond Boissier, the learned and indefatigable aketice a the "Flora Orientalis," and many other important wure e Systematic Botany. We have received no particular- Dse we imagine his death must have been somewhat sudden. to $=\geq$? event was quite unexpected ty his friends in this country a recently as the month of August Prof. Oliver heard frou ka=. the communication relating to the Supplements to the " ${ }^{-}$Orientalis," on which the deceased botanist has been for $v=$ time enguged, and in which he wished to uncor; torale :", botanical results of Dr. Aithison's latent investaga'in) = Afghanistan. Boissier's career as a botanist may be wi.1: have commencel with his ravels in Spain in $\mathbf{1 8 . 3 7}$. whes :collected the materials published in his "Voyage IkN" $\because=$: $=$ dans l'Espagne," a richly illustrated work which apquared a intervals from $\mathbf{1 8} 39$ to $\mathbf{1 8 4 5}$. He subsequently trave.ied av botanically explorel various parts of South-eastern Eurnue $1=$ Asia Minor. Independently of his larger works he flished, separately, diagnoses of the exceedingly lange numter unde-cribel species he found from within the limits -1 z "Flora Orientalis," the firvt volume of which appearet in tw and the last in 188t. This work alone is sufficient to pla.e " author in the first rank of a school of distinguishel systeana: x now alas fast disappearing without leaving a corres.? rising generation to take up the work where they have le Like the late Mr. Bentham, M. Boissier was in a "puas: a give his undividerl attention to the science he had chimes= \mathbb{E} like him he laboure I unceasingly; and it is to be h piv :the supplement to the "Flora Orientalis" is in a su"t . Iz forward state for publication. Among other things the n genus Euphorbin furnished materials for several sa's.works, including a monograph of all the species, and a is volume containing figures of 120 species. Mr. Enloee Boissier was a Foreign Member of the Linnean Socicty, havieg been elected in $\mathrm{t} \mathbf{1} 5 \mathrm{o}$: and from his constant readiness in zw others the benefit of hivextensive knowledge, he enjus.al 's esteem and admiration of a wide circle of botanists.

Tue death is announced, at the age of seventy-eaght yean. Mr. John Muirlseasl, one of the very few survivors of the earl, days of telegraphy, and closely connected with its practas development. Mr. Muirhead, in conjunction with Mr. I s'rat Clark and Mr. W. M. Warden, of Birmingham, founde-1 = house now known ts Latiner Clark, Muirhead, and C_{n}., $\mathrm{bo}^{-\infty}$ than a quarter of a century ago. It was from this man ifacton that Mr. Muirheal introliced the form of battery which nez. his name, a form sueminently portable and practical that it ha lecome the model for most of the existing batterics, while coo rinuing itself to be largely employed.

A Tims telegrain dotel Philadelphia, September 27. sace that the President of the U'nited States has asked Prof. Newader Agavsiz to accept the poovt of Superintendent of the \mathbb{C} sast Survey.

A kEMARKABt.E meinuir on the develop in birds, prepared by Miss Beatrice Lind and $\begin{aligned} & \text { and } \\ & \text { in } \\ & \text { to }\end{aligned}$
after close investigation of the embryonic condition of different stages in five types of bird-structure (the ostrich, guillemot, gull, domestic fowl, and gannet), has come to the conclusion that the keel of carinate birds is a special cutgrowth of the true sternum peculiar to birds, and is not homologous with the episternum or interclavicle of reptiles, as has been held by Götte and others. There are no traces whatever in the embryonic stages of the strich, accorling to Miss Lindsay"s observations, of the existtnce of any rutiments of the clavicles or keel. It follows that he view held by some morphologists that the ostrich may be a legraded descendant of some carinate form can no longer be upported.

The Elinburgh International Industrial Exhilition will be pened on May 4 next.
A correspundent of the Times in a recent article on the :w Electorate, describes the fishermen at Staiths, a village on c Yorkshire coast, lying between Whitby and Saltburn. The ople, he says, are imbued with all manner of quaint supertions. They have a firm belief in witcheraft, the witch being tolly unconscious of his or her power of evil. Until recentlydit is said that the custom is still secretly maintained by some the older inhabitants-it was eustomary, when a smack or He had had a protracted run of ill-fortune, for the wives of : crew and owners of the boat to assemble at midnight, and, deep silence, to slay a pigeon, whose heart they extracted, ck full of pins, and burned over a charcoal fire. While this ration was in process the unconscions witch would come to door, dragged thither unwittingly by the irresistible potency he charm, and the conspirators would then make her some pitiatory present. Again, it is of frequent occurrence that, r having caught nothing for many nights, the fishermen keep first fish that comes into the boat and burn it on their return te as a sacrifice to the Fates. All four-footed animals are idered by the Staiths folk as unlucky, but the pig is the till-omened of quadrupeds. If when the men ate putting - nets into the boats the name of pig is by accident menad, they will always desist from their task and turn to some roccupation, hoping thas to avert the evil omen, and in y cases will renounce the day's expedition altogether. The of a drowned dog or kitten, too, as he goes towards his : will always keep a Staiths fisherman at home; and, what It more curious, if as he walks to his boat, his lines on his or a bundle of nets on his shoulder, he chances to meet - face with a woman, be she even his own wife or daughter, nsiders himself doomed to ill-luck. Thus, when a woman I man approaching her under these circumstances she at turns her back on him. If a fisher sends his son to fetch g sea boots, the bearer must be careful to carry them under m . Should he by inadvertence place them on his shoulder her will inevitably refuse to put out to sea that day. An : deemed so unlucky that the fishermen will not even use ord, but call it a roundabout; and, fearless as are the ; in their daily struggling with the dangers of the sea, yet so 1 are they of nameless spirits and bogies that the writer cured he could not find in the whole fishing colony of is volunteer who for a couple of sovereigns would walk ht to the neighbouring village, a couple of miles distant.
have received the report of Miss Pogson, the meteororeporter to the Government of Madrac, for the year 3. It contains remarks on the various stations scattered e Presiclency, together with the usual tables. Part of the r 's work is to train learners, who afterwards take charge ocal stations. One of these, it is interesting to notice, is Laccadives, which islands are inaccessible during a great the year. The assistants in most cases are native

ALL the legal steps have been taken by the French Government for entering into possession of the late M. Giffard's fortune, which is to be devoted to the good of science. The fortune is valued at 200,000 , after paying about $100,0 c 0 /$, in legacies to friends, family, or scientific societies. The decree is ready and will shortly appear in the fournal Officiel. Several projects have been proposed already for utilising this large sum of money, but it is very likely nothing will be done before taking the advice of the French Academy of Sciences.

On September 12, just after sunset, a remarkable inirage was seen at Valla, in the province of Sudermania, Sweden. It appeared first as a great cloud-bank, stretching from south-west to north, which gradually separated, each cloud having the appearance of a monitor. In the course of five minutes one had changed to a great whale blowing a column of water into the air, and the other to a crocodile. From time to time the clouds took the appearance of various animals, and finally that of a small wood. Subsequently they changed to a pavilion, where people were dancing, the players being also clearly visible. Once again the spectacle changed, now into a lovely wooded island with buildings and parks. At about nine o'clock the clouds had disappeared, leaving the sky perfectly clear. The air was calm at the time of the display, the temperature being $6^{\circ} \mathrm{C}$.

THE aquarium at the Inventions Exhibition has lately been entirely restocked, the latest arrivals being a fine selection of bass weighing 10 lbs., some large specimens of Crustaceans, and an assortment of flat-fish of all descriptions. There is also on view a diversified collection of foreign freshwater fish presented by the General Import Company.

Capt. Vipan's aquarium of foreign fishes at Stibbington Hall, Wansford, is a most valuable one, and includes unique and rare specimens of fish from all parts of the world, which are retained with the utmost care, the temperature of the water being regulated to suit the natural necessities of the various fish. This aquarium is considered to be one of the most unique in the United Kingdom, and increases in value annually on account of periodical additions to the collection.

The taxidermist who has had charge of the work upon the body of "Jumbo," who was recently crushed between two trains, states that the elephant's stomach contained many English coins-gold as well as silver and bronze. His tusks had by the collision with the train been driven nearly through the skull. According to later accounts as to the accident, Jumbo at the last moment faced and charged the locomotive. The elephant's skin was found to be an inch and a half thick, and it weighed 1537 lbs . The skeleton weighs 2400 lbs ., and the total weight of the body was over 6 tons.

Messrs. Swan Sonnenscheis and Co. announce, for the season 1885.6 , the following publications:-"A Treatie on Animal Biology," by Prof. Adam Sedgwick, Fellow and Lect. of Trin. Coll., Camb. (illustrated); "Practical Botany," by Prof. Hillhouse, of Mason Coll., Birm., based upon the work of Prof. Stra-burger (largely illustrated); a translation of Profs. Nageli and Schwendener's work, "The Microstope in Theory and Practice," with several hundred woodcuts; an " Alpine Flora," a pocket handbook for botanists and travellers, by Mr. A. W. Bennett, B.Sc., M.A. ; an illustrated " Handbook of Mosses," by Mr. J. E. Bagnall ; a "Star Atlas," by the Rev. T. H. Espin ; further parts of Mr. Howard Hinton's "Scientific Romances"; an entirely new and partly re-written edition of Prof. Prantl and Vines's "Text-Book of Botany"; "From Paris to Pekin over Siberian Snows," an account of the Asiatic wanderings of M. Meignan, by Mr. William Conn; "The Wanderings of Plants and Animals," an adaptation from the German work of Prof. Victor Hehn, by Mr. James Stally-
brass, tracing (chiefly by means of ctymology) the history and the migration of European plants and animals to their hoone in Asia.

Messrs. Crosby Lockwood And Co. make the following announcements for the approaching publishing season :- "ElectroDeprosition," by Alexander Watt, author of "Electro-Metallurgy"; "The Prospector's Handlook, a Guide for the Prospector and Traveller in Search of Metal-bearing or other valuable Minerals," by J. W. Anderson, M.A., F.R.G.S. ; "The Engineman's Companion, a Practical Educator for Enginemen, Boiler Attendants, and Mechanics," by Michael Keynolds; "The Combised Number and Weight Calculator," by Wm. Chatiwick, Puldic Accoantant; "Oar Temperaments, their Stuly and their Teaching, a Jopular Ontline," with illastrations, by F.K.C.S.F.. ; "The Artist's Tables of Pigments," ty II. C. Statulage: "Land and Marine Surveying," by W. lavis Hasionll (entirely new edition); "The Metal Tumer's Handionk, a Practical Manual for Workers at the Foot I athe," by Paul N. Ha-luck (second edition, revised), being the first volume of a new series of "Handtroiks on Handicrafte."

The "Sun" Kinife-cleaner has some points which deserve notice. I_{2} is supportel on a light cast-iron standari, the upper portion of which in bored out and faced to make the bearing where alone perfect fit is required. A cnst-iron spindle is fitted int, this hearing, ant supports upon a flatened face two spring diaks thade of enst steel fincly tempered, dished in the centre ant having rays upen them like the yokes of a wheet, which turn sli, hatly roumaris at their ents, so as to form a tapered space arlaphect to the wedge form of the length of the knife. There suringe are wo moronted upun the spindle that the rays of the one are ofllmste to the space, lietween the rays of the other. The ypinille is terminated by a screw upon which a thumb nut is fixed to hold the handle in position ant keep the working parts thether. Ky means of this serew the springs can be pressed more or less closely tobether as require!. Teather rings are rivetel th the iuncr faces of the springs, and form the surfaces upen which the knives are cleaned and polished; the rivets are in the dished portion of the springs and so out of the way of the knife-blade ; the polishing powder is supplied through a bole in the face of the front spring. The knife whist being cleaned is sapported below a wrought-iron piece cast into the standard and passed in ant ous of the machine. The difficulty in cleaning a knife is due to its doable wedige form. A knife is a long wedge from the tip to the shoulder, and a short wedge from the elge to the back, and it is evitilent that the pressure broughe to bear upon it must be of an elastic claaracter, so as not to grind the knife away. As regards the length of the knife this is effected ly the outward tajeer of the ray* of the springs. The two leather rings between which the blate is passed in and out heing presued against the blate of the knife by the rays of the qurings as iecented, it is evident that there is an elastic pressure upun it : the spring on the one side diminithes in in beaning presure, as that "n the other side increases, and hence an eçuable pressure is applied to all parts of the bede, as is proved by the exceilent polish produced. A small portion of powder beug supplied through the bole in the front spring, the koufe is placed with its edge downwarls below the wrought iton support and passed slowly in and out of the machine betwoen the leather disks with the left hand, whilst the right hand is sumpluged in turoing the bandle of the wachine in the durectives of a clock. In this way from ose inch to two in the suthace of each leatber (depending upon machine) presses elastically upos the blate. reatest frictional resurtance at any moment be od the polishing surfices, the labour of cieanim! andelama, while the koifecan be polished to the est
to the leathers being bevelled. Special to is have beos foyp
 tion, for cutting and bevelling the leathers, and metros o fitting them to the springs. These machine: are tris four sizes.

Is contrast to the weather in Southern Niofway Ire: N and June (Nature, vol. xxxii. p. 354) the weather of Jan a warmer and more normal, the mean temperature of the n \% 2 viz. $17^{\circ} 1^{\circ} \mathrm{C}$. being $0{ }^{\prime} 5^{\prime}$ abose the normal, $16{ }^{\circ} 6^{\prime}$. This: due to the southern winds prevalling in the first par month. On July 2I, however, the weather chatgel, E and north-western winds presailing, with cleat and dry $1^{-}=$ in consequence of the great radiation, the temperasure fille times very low during the second part of the mowh. minimum temperature-viz. $6.4^{\circ} \mathrm{C}$. -was registeredstar on the night of the 22 nd ., and the highest-1i2. $29^{\circ} \mathrm{C}$ 6th. The rainfall was 40 per cent. below the norn. the exception of the crast towards the Nize, the \mathbb{F} been cold throughout the land un the whole, the tose wis able Parts being the west coast, where the temperalure ? below the normal mean. In the mountains and in F_{2} : marken it sank several times below 0°. The tainfal a scouthern and eastern parts was below the average, les: northern and north-western parts it was above it. The, rainfall was registered in Finmarken, where, is die instance, it wat $1+2$ per cent. above the average.
Tite additions to the Zoulogical Society's Garleas dane =
 from India, presented by Mrs. Paterion ; a Humbultions: (Lo,wthrix humbldit) from the Upper Amarons, peece Mr. F. J. Hammoul ; two Macaque Monkey, (3/a2a n
 and Miss Lucy Mcirthur ; two West Indian Agoutis Γ_{1} cristatn), sevell Crab-eating Opossums (Dildfaty camm two Kough Te sapins (Clemmys punctularza), two bra Tortoiser (Tisfuto talulata), two Teguexin Lizando Igruexin), two Tuberculatell Iguanas (//5ama futersaldid Giant Toads (fiufo ayzaa) from Trinidad, preventel by $\mathrm{H}:$ t Gay; two P'alm squirrels (Sciurze palmarnws) from lohts' sented by Mr. A. Beltamy; a Great Kangarow $1 / 1 / 3 / 7$ एigantcas 8), a Rufous Rat Kangaroo (//yAsiprymme os from New South Wales, a Roan Kangaron (Womos hescens 8) from South Austmilia, presented by Mr. C. Cuses A F.Z.S. ; a Common Crossbill (Laxia curvirovtra), Hntiv. sented by Mr. II. S. Syre; a Gireen I izand (Larma
 (C) moceptalus sanions) from West Africa, two Banoet Mooits (Macacks sinicus) from India, two Alian's Wart He, Pes. chasrus africanus \& 8) from Africa, deporitel: a betelo Galago (Gahtso garnetfi) from East Africa, a Harnovel is lope (7 mastaptioes seripuas 8), an Elate Iformbill iCmber elata) from West Africa, a Puff Adter (Li,urs) andmb." South Africa, a Lacertine Snake (Carlogltis lacerrmal). Furcopt an Abtrovandi's Lizard (FYestioden aumstme) from Nafth the Africa, purchaved; a Leopard (FWir Amethet

Moon (New on October 8) rises, th. tom. ; souths, 8h. 3 mm ; sets, 15 h .4 Im . ; decl. on meridian, $12^{\prime} \mathbf{2}^{\prime} \mathrm{N}$.

Planet		Rises h. m.			Souths h. m .	Sets		Dection meridian			
Mercury	.		10	.	1118	\cdots	1726	**	0		N.
Venus	...		55	...	1417	**	1839	\ldots	19		4 S
Mars	...	0	15	...	8 o		1545	...	18		7 N
Jupiter	...		13	..	1038	.	173	\ldots	4		2 N
Saturn	...	21	35*	\ldots	543		1351		22		8 N .

- Indicales that the rising is that of the preceding day.
$\begin{array}{ccccc}\text { Oct. } & & \text { h. } \\ 6 & \ldots & 17 & \text { I.. Jupiter in conjunction with and } 5^{\circ} 25^{\prime} & \text { north }\end{array}$
7 ... 20 ... Mercury in conjunction with and $0^{\circ} 29^{\prime}$ north of the Moon.

HEREEDITY

AT the February meeting of the Swedish Anthropological Society l'rof. Wittroek read a paper on the hereditability of colour of the eyes. The speaker had been requested by I'rof. Alphonse De Candolle, of Ceneva, to make observations on this poim, which. together with those made in Switzerland. North Germany, and Belgium, had formed the material for M. De Candolle's paper, "Héredité de la couleur des yeux dans l'eppéce humaine" (Archives des Scimens Physipwes at Naturelles. 3^{q} periode, t . xii., Geneve, 1884). From the same the remarhable fact was derived that brown eyes were more common in men than women ; of the incliviluals examined $41^{\prime} 6$ per cent. of men and $44^{\prime 2}$ per cent. of women had brown eyes. Further, in families where the parents had the same colour of eyes So per cent. of the zhildren of parents with brown eyes hall brown cyes, whilst of zhildren of parents with blue eyes 93.6 per cent. of them had zyes of that colour. The unconformity was no doubt due to atavisme or the hereditary influence of ancestors. Of the zhildren of parents of whom the father had brown and the mother blue eyes 53.3 per cent. had brown, whilst where the reverse was the case $55^{\circ} 9$ per cent. had iblue cyes. As the percentage of brown-eyed children of parents with bi-coloured cyes was highest. it seemed as if hrown eyes were always on the increase to the detriment of blue ones. It appearel also from these researches that women with brown eyes have hetter prospects of marrying than those with bluc. 52 per cent. of the married women had brown eyes, and only 48 per cent, of them blue-a circumstance which is the more remarkable as the number of women with brown eyes in Italian Switzerland is only 44 per cent. Another remirkable discovery was that the average number of children of parents with eyes similar in colour was 27 , whilxt that of those with different colour was 3.18 , which was an additional proof of the fact that children of parents with similar organisation were as a rale of weak constitution. Comparing the colour of the eyes of the children where the parents were bi-coloured, with those of each of the latter, it was discovered that the eyes of the father were inherited by 48.8 per cent. of the children, and those of the mother by $5 \mathrm{r}^{\prime 2}$ per cent., which, divided between sons and daughters, showed that 47 per cent. of the former and $49^{\circ} 5$ per cent. of the latter inherited the eyes of the father, whereas 53 per cent, of the sons and $50 \cdot 5$ per cent. of the daughters inherited those of the mother. Sinoe Prof. Candolle had pablished his peper, he (the speaker) had continved his researches in Sweden, and from the materiat he had collected he had disooverod results tiffering from Prof. Can* tolle's, Of the individuals reported to him $29^{\circ 6}$ per cent, of the men and $39^{\prime} 7$ per cent. of the women had brown eyes, so that even in that country the latter were more numerous than E. former, but this was co doubt due to the circumstance that Q= Theen most enixious to obualn. particalars from bi-coloured Th accondance with Candolle's results, $7 \frac{1}{6} 6$ per cent. fparents both with brown eyesinherited this oolour, with bue eyes 97 per cent, inherited that colour. thite thin should h> the case in Sweden, where iqated As regards the lif-collowrel parents the 1Swellentoo. If the father had brown and
 were ilst pereme of Candolle's. were por coinment the children had the letter ayetiontheincrease. of the cyevplayed in the
selection of a wife in Sweden, as he had no statistics of the distribution of brown eyes in general, but there was a tenidency similar to that stated above, as, of the parents embraced by these researches, the majority of wives hall brown cyes. With reference to the number of children in Swerlen of con-coloured and bi-coloured parents, that of the former was 4.49 and that of the latter $4^{\circ} 03$, whilst $5^{\circ} 6$ per cent. of the children inherited the eycs of the father and 47.4 per cent. those of the mother; of the sons 51.8 per cent. inherited the eyes of the father, and $48 \cdot 2$ per cent. those of the mother, which figures as regards the daughters were respectively 53.5 and $46 \cdot 5$ per cent. This shows that in sweden the eyes are not predominanily inherited from the mother alone, and that the offspring of equally-constituted parents should not be weaker. The speaker stated in conclusion that he is continuing his researches. He excludes children under ten years of age from the same, and classifies blue-grey or grey eyes as blue.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Prof. W. Grylls Adams, F.R.S., will deliver a Course of Lectures at King's Colle tc, Lonton, on 1leat and Light, Juring the Acalemical Year 1885.6. A Coursc of Practical Work in Electrical Testing and Measurement, with especial reference to Electrical Engineering, will be carried on under his direction in the Wheatstone Laboratory. There will also be a Coune of Lectures on Mechanics and the Principles of Finergy. The Wheatstone laboratory is open daily from it to 4 , except on Saturdays. For furlher particulars apply to Prof. Adams, King's College, London.
THE following appointments have recently been made at the Victoria University, Owens College, Manchester:-To the Professorship of Mathematics: Mr. Horace Lamh, M.A., F.R.S., late Fellow of Trinity College, Cambridge, and Professor of Mathematics in the University of Adelaidc. To the Professorship of Anatomy: Mr. Alfred H. Young, M.B., F.R.C.S.

SOCIETIES AND ACADEMIES Parts

Academy of Sciences, September 21.-M. Bouley, President, in the chair.-On the development of cholera in India, by M. Gustave Le Bon. In support of Prof. Peter's view that Eumpean differs from Asiatic cholera only in the greater intensity of the causes producing it, the author argues that both forms might lreak out spontaneously in any country through the volatile germs arising from putrified organic matter. In his former researches he showell that, apart from these germs, there existe a series of volatile alkaloids which, when introluced by respiration, produce almost fulminating efficts. These researches throw much light on the accidents attending the cxhumation of bodies long buried and on the spread of typhoid or analogous fevers. The facts recently observed by M. Le Bon during a sudden outlreak of cholera at Kombakonum, in the south of Indis, tend to confirm this hypothesis. In India itself cholera rages almost exclusively amongst the native populations; the Egglish, who reside in lange cantonments, where sanitary arrangements are scrupulously attended to, being seldom attacked. That cholera and intermittent fevers are propagated chielly by bad water is a point on which opinion is unanimous in that country, and the author's per-onal experience places it beyond all reasonable doubt.-Elements of Brooks's comet, by M. R. Radau. These clements, according to obscrvations made at Cambridge and Paris, are found to be: :-

$$
\log q=9.87694
$$

-Niote on a new stellar spectroscope, by M. Ch. V. Zenger. This Instrument is constructed on a new principle, and chiefly intended to measure simaltaneously and accurately the angle of position and the distance of double stars situated very close rogether.-On the process of fertilisation in the Cephalopods,

$$
\begin{aligned}
& T^{\prime}=\mathbf{1 8 8 5} \text {, August } 10.30457 \text {; mean Paris time. } \\
& \pi-\Omega=43 \quad 047 \text {) } \\
& \begin{aligned}
a & \left.=\begin{array}{rll}
204 & 33 & 7 \\
i & =\begin{array}{ll}
59 & 22
\end{array} & 30
\end{array}\right\} \text { Mean equinox of } 1885^{\circ} .
\end{aligned}
\end{aligned}
$$

by M. I. Vialleton.-On the anatomical organisation of the urns in Cefhuldotus follicularis, by MM. Jules Chareyre and Edouard I Ieckel.

BERL.tN

Physiological Society, July 31.-Prof. Fritsch spoke on the functions of the sebaceous glands, raising a protest against the conception, represented quite recently by Ilerr U'nna, that these glands served only to lubricate the hairs, while the globiform glands, commonly called the sudoriparous glands, lubricated the skin and induced the formation of the subcutaneous fat, and that, finally, the perspiration was discharged by the sweat-pores, or, rather, the extreme ends of the straight canals into which the sweat found its way out from intercellular spaces throngh the stomata. A whole series of anatomical, histological, and plysiological grounds were brought forward against this view both by the syeaker and, in the course of the discussion on the sulject, by Y'rof. Du Bois-Reymond, Prof. Waldeyer, Dr. Gad, and lir. Lassar. All known olservations and experiments were, on the contrary, they maintained, in favour of the view that the sebaceons glands provided fat for the skin, while the globiform glands had the production of sweat assigned to them.-Dr. Weyl reported on the results of a chemical examination of the cholesterin, the composition of which had not hitherto been ascertained, although this substance had been discovered more than a hundred years ago, and had siace been traced in the most varied organs of the animal boly and even in plants. The most searching investigation down to the present of cholesterin had been made by Herr Zwenger, who, by treatment with sulphuric acid and nitric acid, laad found combinations which he had distinguished and chemically characterised as cholesterylene and cholesterone. 13y repeating these experiments Dr. Weyl had achieved much purcr dcrivatives of the cholesterin, in particular chloric and bromic combinations, in very pure crystals, which rendered exact elementary analysis possible. This led to the result that the derivatives of cholesterin were found to be hydrocarluurets belonging to the great class of the terpenes-that is, they were prowlucts of condensation or polymerisations of the simple terpene $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)$. Even though it were not yet possible to state precisely the number of the $\mathrm{C}_{3} 11_{n}$ which had become polymerived in the several choleterin derivatives, the speaker yet thought he had sufficient ground for a-suming that the composition $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)^{8} \mathrm{H}_{2} \mathrm{O}$ was the one proper to the cholestenin itself. Substances which, both by their reactions and their percentage compositions, were denotable as terpenes, might also be shained from the choleic acill, a circumvance which printed to the more intimate relation between cholesterin and choleic acid.-Dr. Biondi communicated the results of an investigation carried out by him in the Institute of Prof. Waldeyer with a view to throwing light on the origin of the spermatozons in the seminiferous canals-a questi:n on which the views of physiologists were so wildely divergent. By appmpriate use of appliances for haritening, fixing, and colouring. among; which the atvantages of Flemm. ing's tluid had to tre mentioned wulh quite special prominence, 1)r. Biondi arrivel at results which curroborated none of the views formesly put forth, but which explained the earlier ulserved facts. In accorelance with these resulh it hat leeen enteavoured diagrammatically to distriliute the contents of the semmiferons canals into culnmes, which, procereling from the wall sowards the cemral cavily, might le groupel intu three biyers. It she first stage of ievelopment. a stage always met with, in partieular, in ammals not yet rije, the extreme layer lying on the wall of the canal consisted of round, primitive cells, the second layer, proceeding inwards, of round mother. eells, which were very rich in caryokinetic figures, and the third innermost layer consistel of a larger number of small round daughter cells. In a secoud stage of development obscrvable in npe glands the nucleus of the danghter cells were seen converied into spermatozonk, the exterior half of the pucleas becoming the head and the other interior half part and tail of the spermatozoon. The prot dangliter cells took no part in this transformation the boties of the spermatoroa, making them col from which the tails of the spermatozon projec central canal. These mases of protoplasm bodies of the spermatozon altogether resemh) described by the earlier observers as "Spermatob; this stage the above diagrammatically assumed column from the ontside inwards, of the primitive cell, the
cell, and the bundle of spermatozoa. In the nert stace d ... lopment the formation of the spermatozoa, arising alazy I same manner from the nucleus of the daughter cells, wan farther outwards, so that the column now consisted of large round cell on the outside and bundles of speras: the inside. The formation of the seminal corpuscles sdrate further, and a: last the whole column, as far as the wall oft? consisted of spermatozoa, the bodiss of which wete ase: into bundles hy masses of protoplasm, their tails being dire wards. Primitive cells out of neighbouring columns bir calated themselves between the wall of the cand y spermatozoa, pushing the latter towards the midille. ! development of the mother and daughter cells the gers were quite pressed and discharged into the central a:process thus described then begar anew. It mas, bum observed that in nature there was no separation toto and layers such as was here diagrammatically dear was only for the sake of clear representati in that ite succeeding each other in time were thus exhibied as ds space. Dr. Biondi had examined this structure of the ilerons canals, and this development of the spermes. the bull, the swine, the cat, the rablit, the the rat, and other mammalia; and in all tbees an had found alike the same results. Prof. Waldeya that Dr. Biondi had attained to these results quite inderand had communicatel and demonstrated them to ! early as Felruary of this year. It was only on his 2it, Or. Biondi had further examined a longer serie- of 2 before publishing his results. A few days ago, continor Waldeyer, he had received a letter from Prof. Grathe Konigsberg, in accordance with which be (Prof. Gra had attained to the same results on spermatogenev- is bs Biondi, to whom, of the two independent di-coweren . the title of priority.-Dr. Maschko Driefly explained is microsenpic preparations he exhibited, which served that between the epidermis and the cutis there lay no co: substance ; but just as it was long known that in the $=$ the epidermis cells they had processes grovin, th digitately into one another, so here, too, the proessepidermis and cutis cells were seen to intertwine wut e other and form a network, the meshes of which were per large in an cedematous skin.-Ir. Lassar demonstrated scopic preparations of skin which he had exciled fr mid suffering under lichen ruber. In the copious protoplars exudation of the inflammation) surrounding the canals epilermis there were seen, after colouring with fachoo Bismarck-brown, an uncommonly large number of mu distinguishing themselves particularly by their remarkal'z ness.

CONTENTS

North American Water-Birds
Letters to the Editor:-
The New Star in Andromeda--A. A. Commoa F.R.S.; Geo. M.Seabroke; A. Kicco (Illm now The Proposel Change in the Astronomictl Das.A. M D. Downing

A Tertiary Rainlow- T. C. Lewis
A White Swallow:-Alex. Anderson: Huber Airy : J. Ll. Bozward
The Annual Congress of the Sanitary Institute of Grent Byir
1 nsect ${ }^{\text {º }}$
Amer
Fr
The
The 1
Rep.
Sectic.
Section
Notes

CHARGES for ADVERTISEMENTS

.Three Lines in Column 2s. 6d. 9d. per I.ine after.

One-Eighth Page, or Quarter Column	.	.	0	18	6
Quarter Page, or Half a Coltmo	1	15	0
Half a Page, or a Column	3	5	0
Whole Page	6	6	0		

Post Office Orders payable to MACMILLAN \&o CO. OFFICE: 29, Bedpord Street, Strand, W.C.

J. ORME \& CO., 65, BRBBICAN, LONDON.

MANUFACTURERS AND IMPORTERS OF Scientific Apparalus AND CHEMICALS.

BAKER'S PATENT CALORIMETER, A NEW APPARATUS For demonstraling to Science Classes problems in Specific Heat.

For full particulars turite to the SOLE AGENTS-
J. ORME \& CO., 65, Barbican, London, E.C.

Complete Price List of Apparatus and Chemicals, 2s. 6d.

THE CELEBRATED

SECOND EDITION, GRIFFIN'S CHEMICAL HANDICRAFT

PRICE 4s. 7d. POST FREE.
A CATALOGUE OF CHEMICAL APPARATUS
ILLUSTRATED. CI, ASSIFIED, DESCRIPTIVE Demy 8ivo, 480 pp , Illustrated with 1.600 Woodeute.
Most Complete and Cheapest List of Afparatus.
JOHN J. GRIFFIN AND SON゙S, 22, GARRICK STREF'I, L.ONDON, W.C.

SANDERSON \& Co..

sole Inventors of the Solid Copper Tape

LIGHTNING CONDUCTOR

In Continuoss Leng ths, withous Joints, an supplied by them to HerMajesty" Goverament and the Colonies : the Italian Government. the Argentine R. public, and sther Foreign Governments; the Royal Courts of Justice, Strand. the Houses of Pariament, \&c.
The Jury Commission, acting on the Reports of the International Juries of the Heaith Exhibition, have awarded a Bronze Medal in Class 26 to Messm. Sanderson \& Co. for their Solid Copper Tape Lightning Conductors is Continuous Lengths, without Joints, and of High Conductivity Copper.
LEADENHALL HOUSE, IOI, LEADENHALL STREET, E.C.

OPFPERMENENE,

 172, ST. JOHN STREET, LONDON, E.C.

ARONZE MEDAL Ilealth Exhilition, DYNAMOS for to Lights, 680 : Tn Lights, Cyo. The Orramann 1.AMP. 3s. Gol. each : anl candle-powers. New Pockel Accumu lator, complete with Itution hole Iamp, with inslructionn. Temporary Installations. Price Lists. : stamp; Catalogue, 6.d. [Pi.EAst MENTION THIS PAFVN.) :omple Lamps, 3s. 6d. fol.free.

Why Use Gas? LA MITRAILLEUSE.
A. RETTICH'S Patent Burmer for Mineral Oil Lamps gives double the Lught of a Ituplex eany to 1 rim and Dight, inespensave to use Sold by all Respuctakif Ironmengers and Lamp Warehenses.
Buy only thove Marked

RETTICH'S PATENT

 35. GERRARI ST゙REET, SOHO.ICROSCOPIC OBJECTS FOR HIRE. Histological, Botanical, Geological, by the best Mounters. Let out on most moderate terms. Particulars of B. Wiells, Dalmait Road, Forest Hill.

The AUTOCOPYIST (from aos.) furnishes excellent

BLACK COPIES

In Lithographic Style, of the ORDINARV WRITING (also Shorthand Arabic, Ec.), Sketches, Music. Easy, E.conomical-The AUTOCOPYiST CO. 73 , London Wall, London.

BOOKS (Secondhand), Miscellaneous, Re mainders, ake-C. HERBERT. English and Foreign Bookseller, $3 * 9$ Goswell Road, London, E.C. Catalogue free on receipt of two stamp Libraries. Old Bnoks, and Parchment purchased

CHEMICAL APPARATUS, Wholesale.
Retail, for Colleges, Schools, and Chemical Works. New Catalogue ' oo pages and seo clear Illustrations, post free, ad-WILIIIA: HUME, z, Lothian Street. F.dinhurgh

WOODHOUSE \& RAWSON

SUPPLIERS OF ALL ELECTRICAL APPLIANCES,
Orfices-il, Queen Victoria Street, E.C.

Lamps. Dynamos.
Accumulators.

Fittings.
Switches.
Safety Junctions.

Works-Cadby Ifall, Hammersmith Road, W.

Carbons.
Wire.
Instruments.

Battery Supplies. Telephone Supplies
Electric Bells.
inquiries invited.

SI ITE STNOTCN

In Casks, 12,6 per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts.e - Bottes charged a's per doz, and allowed at the same rate if returned; but thes must lie paid for with the Beer.

Ncither sugar, saccharum, nor any of the many new Brewing Mat-sials are used in the manufacture of the "S. N." Stout ; it is Brewed entirely from the finest Mals and Hops ; it is, tuo, nore hopped than Stour is generally; therefore, besides being very nutritiuts, it is an excellent Tonic and particularly suited for invalids, ladies nurning, or anyone reluiring a good strengthening beverage. It is a "Sound Nutritions" Tonic. and very much recommended by Medical men.

VALTEAMEROTEERE,
THE "HALFGUINEA" ALE BREWERY, LONDON, S.W.

FIARVIET \& PEAEK, HEALTH
 [By Appointment to the Royal Institution of Great Brifaim,]

 SUCCESSORS TO W. LADD \& CO.,BEAK STREET, REGENT STREET, LONDON, W. MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FCi

SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.
WIMSHURST AND VOSS INDUCTION MACHINES OF IMPROVED PATTERN.
Illustrated Catalogue, Revised Edition, per post $8 d$.
WALL PAPERS FREE FROM ARSENIC.
 WIlliam WOOLlamS \& CO., Manufacturing Paper Stainers, aze tur Ontinal Maxins oy ARTISTIC WALL PAPERS, Guaranteed Free from Arsenic. Sole Address-irio, HIGH STREET, MANCHESTER SQUARE, LONDON, w. May be olvalined of all Decorators. Special Prive Medal, Sanitary Inatitute A ward of Merit, International Medical and Sanitary Congress Silver Medal, National Health Socerv cold medal, intervational health exhibition.

[^17]
Now Read); Medium 4to., Price 14 s.
 AN ATLAS
 OF
 PRACTICAL ELEMENTARY BIOLOGY.
 BY G. B. HOWES
 Demonsfrator of Biology, Normal Scheol of Science and Royal School of Mines, Lecfurer in Comprtratrve Anatomit, St. Gurge: Hospilal Mfidical Schovl, London.
 With a Preface by THOMAS HENRY HUXLEY, P.R.S.

MACMILLAN AND CO., LONDON .

A NEW ALGEBRA FOR SCHOOLS. ELEMENTARY ALGEBRA FOR SCH00LS.

BY
H. S. HALL, B.A.,
Formerly Scholar of Christ's College, Cambridge, Master of the Military and Engineering Side, Clifton College, and S. R. KNIGHT, B.A.,
Formerly Scholar of Trinity College, Cambrilge, late Assistant Master at Marlborough College. Glotre 8vo, 35. 6d.; with Answers, 4s. $6 d$.

This work difters in some important respects from the text-books now in use. The early chapters contain an unusually large and varied selection of examples. After the first four rules considerable prominence is given to easy equations and probiems. All the usual algebraical operations are first treated and exemplified in the case of simple expressions, any reference to compound expressions or resolution into factors being for a time postponed. The writers are thus able to treat resolution into factors, and the operations subsidiary to it, far more fully than is possible where factors are introdiuced and disposed of in a single chapter, After quadratic equations some recapitulatory chapters contain general proofs of the elemeutary rules and miscellaneous theoreus and examples illustrating their harder applications. The hook deals as fully as is usual in an elementary course with indices, surds, ratio, proportion, variation, and progressions, and concludes with a collection of miscellaneous examples. Examples are worked in the text throughout to illustrate the best methods, and the examples for practice are numerous. As, moreover, they have been compiled with the advice and assistonce of several teachers of great experience, it is hoped that no useful types have been ounitted.

MACMILLAN \& CO., LONDON.

WORKS BY THOMAS HENRY HUXLEY.

PRESIDENT OF THE ROYAL SOCIETY, \&c., \&ec.

LAY SERMONS, ADDRESSES, AND REVIEWS. Seventh Edition. Svo. 7. 6 .

ESSAYS SELECTED FROM LAY SERMONS, ADDRESSES, \& REVIEISS. Second Edition. Crown 8vo. 1
SCIENCE AND CULTURE, AND OTHER ESSAYS. Demy 8vo. ios. 6d.
CRITIQUES AND ADDRESSES. 8vo. ios. 6 d .
AMERICAN ADDRESSES, WITH A LECTURE ON THE STUDY OF biology. 8vo. 6r. 6 .
PHYSIOGRAPHY. An Introduction to the Study of Nature. With Coloured Plates and Woodcuts. New and Cheaper Edition. Crown 8vo. 6s. 6 d.
LESSONS IN ELEMENTARY PHYSIOLOGY. With numerous Illustrations. New Edition, Revised. Fcap. 8vo. 45. 6 d.
INTRODUCTORY PRIMER OF SCIENCE. 18 mo . is.
HUME. Crown 8vo. 2s. 6d. ("English Men of Letters.")
A COURSE OF PRACTICAL INSTRUCTION IN ELEMENTARY BIOLOGY. By T. H. IIUXLEY, LL.D., P.R.S., assisted by II. N. MARTIN, B.A., M.B., D.Sc., Fellow of Chriv's College, Cambridge, New Edition. Crown 8vo. 6s.

[^18]
Messrs. MACMILLAN \& C0.'S NEW BOOKS.

a new book by the late rector of lincol.n college.
SERMONS. By Mark Pattisos, late Rector of Lincoln Colles Oxford. Crown 8vo. 6% EUROPEAN BUTTERFliEs, A HandBOOK OF. By W. F. dy VISMES KANE, M.A., M.R.I.A., Member of the Entomological Society of L.ondon, \&c. With Copperplate llers tions. Crown 8vo. Ios, $6 d$.
COMPOUNDS OF CARBON ; or, Organic Chemistry, an Introduction to the Study of. By IRA REMSEN, Professor of Chenisty in the Johns Hopkins Univesisig. Crown Sm. 6i, 1
A TEXT-BOOK OF THE PRINCIPLES OF PHYSICS B
 With Illustataions. Scoond Eadition, Recised and Enlarged. Melium Svo. 215.
A TREATISE ON DIfferential EQUATIONS. By Asbri RUSSELL FORSYTH, N.A., Fellow and Assisant Twor of Trinity College, Cambridge. 8ro. Iq:-
THE LAW OF THE CONSTITUTION, Lectures Introductory to the Study of. By A. V. DICEY, B.C.L., of the Inner Temple, Barrister-at-Law, Vinerian Professor of Englidid Lav University of Oxford, Fellow of All Souls' College, Hon. LL.D., Glaggow. Demy 8vo.
tile english citizen series. Edited by Henry Craik, M. A., Oxon., Ll. D., Glasgow. Sew Pdure
THE PUNISHMENT AND PREVENTION OF CRIME. Bg cin Sir edmund f. du cane, k.c.b., R.E., Chairman of Commissioners of Prisons, Chairman of Diretors of f : Inspector-General of Military Prisons, Surveyor-General ot Prisons. Crown Svo. 3s. 6 d .
"A most valuable and interesting member to the valuable and interesting series of handbooks designed to ineract the te. citizen of the nature and working of the constitution under which he lives. . . . Altogether, Sir Edmund Du Canes book nth. interesting and useful information."-St. 耳ames's Gazectf.
MONTCALM AND WOLFE. By Francis Parkman, Author

The Times says :-"The story of the struggle and its close has often been told; but never have the facts been wetminutely, accurately, and effectively as by Mr. Francis Parkman. 1ie has accomplished his task with such thoroghoo: others following in his footsteps will find little to collect and improve. . .. The luminous narrative of Mr. Parkman s: with many useful lessons as well as replete with much valuable information."
OVER-PRESSURE IN HIGH SCHOOLS IN DENMARK. Dr. HERTEL, Municipal Mediel Officer Coperhangen. Trandaled frim the Danish by C. GODFREY YÓRE with Introduction by J. CRICHTON-BROWNE, M.D., LL.D., F.R.S. Crown 8vo. 3s. 6d.

goiden treasury series.-Large paper editions.

LYRical PoEMS. By Alfred Lord Tennyson, Poet Laural Selececd and Anootaced by FRANCIS TURNER PALGRAVE. A limited Edition on Hand.made Prper. sma
THE POETICAL WORKS OF JOHN KEATS. Reprinted from th Original Editions, with Notes by francis turver palgrave. a limited Edition on llad. mak l. Sro. و.
THE TENNYSON BIRTHDAY BOOK. Edited by Emily Smai
 THE PHEDO OF PLato. Edited, with Introduction and Nole

an introduction to latin elegiac verse compor
 Glabe 8ro. 21.6 . 6.

CLASSICAL SERIFS.-NEW VOLUME.
LIVY.-Books XXIII. and XXIV. Edited, with Introductipl

AESCHYLUS.-PROMETHEUS

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid ground :
Of Nature trusts the mind which builds for aye."-Wordsworth

> Prof. Ioinette'n DIBCOVERIE8. THE PHYBIOLOOICAL ART OF NEVER FORGETTING-wholly unlliemmemonich. Loust memories restored-the worst made frood, and the best
for all askects. Invalumble to
the Leprnt Medion), Clerical,
SUCCESS.
Mr. R. A. PROCTOR, Dr ANDREW WHiLRD or
NEVER FORGETTINO ADC OURE IOT MIND-WANDER-
TNO Luygt thoroagh by Pout, in cimeen, and Privatoly.
PROF, LOISETTE, 3 , Now Oitord Btreet, Lopdon, W.,

RIBBON SECTION CUTTING.

The Cambridge Scientific Instrument Company have designed a new and impla Microtome for cutting continuous Ribbons of Sections of Microscopic Proparations on the plan first adogted by Mr. Caldwell. The new instru'ment has the advastage over the original paltern of dimpensing with the indleas band alsogether, and consequently nol only avonding the trouble

I lifring the series of Sections from the razor, but also of allowing them to on to the glass stide in their proper position for mounting. Price of the rotorpe, 2559 .
browning's Iuproved method of suting the SICHT WITH SPECTACLES

Either Personally or by Correspondence. BROWNING'S AXIS-CUT PEBBLES are the most perfect lenses made, being cut from pure crystals of Brazilian pebble at right angles to the axis, and every lens tested separately by the polariscope Spectacles of superior quality from 4s. 6d. per pair; with pebble lenses in best steel frames, from $100.6 d$. per pair ; and in gold frames from \&t $33.60 d$.-Full particulars of Browning's Methol of Suiting the Sight by Correspondence and Testimonials post free.

JOIIN BROWNINING, 63, STRAND, LONDON, w.c.

NEGRETTI AND ZAMBRA, SOLE MAKERS OF GORDAN'S (PATENT)

Silver Medal auvarded' Inventions' Exhibition, 1885.

THE PROFESSORSHIP OF NATURAL PHILOSOPHY，

in THE QUEEN＇S COILEGE，GALWAY，
Being now about to hecome vacant，Candidates for that ritice are requestat to forward their Tevimonialy to the Únder－Secretary，Thal lin Cistle，on or before NeTONFK as，in onder that the same may be submituod to his Excellency the lord Lieutensit．

The Caudidate who may be selected for the alove Frofesmonhip will have to enter upen his dutirs brthupth
Dubtin Castle，Ocuober 3， 1885.
CIVIL SERVICE COMMISSION．－Forth－
coming Fxamination－Asistant Fxaminerahips in the Patunt Offire （22－25）．October 23．Salary，E250 to $C 400$
The date specified is the latest at which applications can be received， They must be made on form to he ohtained，with particula：s．imen the Arcontakr，Civil Servace Commivion，Lomdon，S W

BEDFORD COLLEGE，LONDON

 （ $\mathrm{F} \cap \mathrm{OR}$ I．ADHFS），8 and o．YORK PL．ACE，BAKER STREET，W．
The SFSSION will hegin on TILI＇RSDAV，Oet ber is
An Address to the Students and their friend will be given on FRISAYY， Octoher 15，at 4 nelork．by Sir HI：NRV W A（ 1.1 N1），K C．IH．，F＇R．S． Iadies and fiensiemen admitted on pacsentation of their visitump carde． 11．－Hatw ELIL，Hon．Sre．

VICTORIA UNIVERSITY，

UNIVERSITY COLLEGE，LIVERPOOL．

SEVGION E8eq－86 commences OCtO日ER 5

Complete Curticulum pmavided for Victorin Univenity Degrees in Medicine，Arts，atal Science．
Student：aloo prepased for Bomsin Universi．s，Cambridge ligher loonal and other L．xaminations：
Thysiral，Hiolesical，ard Chemical Lahoraturice．
A－oivtaree in Practical lalworatufy Wutk by inemonstrators undet the superinterdence of the trofe wip of the forpoutracht．
 upwards studeato adoutted on their thh year，sulject to Prelitrinany vamination．
Kvening leetures and Claves，beginning Outober $t z$ ，open to allecrmer on payment of os．fee

Fall I＇roopectas gratis on application to the Coleman R matstman．

THE OWENS COLLEGE， MANCHESTEK．

The PROFTSSORSHIP of IIIYSIOt．Ofif hav hecome varant throwsh the resignation of Prof tiamzee．Camfilales for the thair are invitell to
 Irge，unaler cuver to the Resintrar，wat later than WCiNJII，Ninvemiter＇y
 null be forwarded on aypitation to Dr．finerviontis，Prmight if the Coblege．

HI NKV＇WM．HOLDER，M．A，Kegiverar．

ST．THOMAS＇S HOSPITAL MEDICAL SCHOOL．

 when an Introfuctory Whileen will be delivereal by A（）．Man his．i．A K Fisiv．Ch．，at 18 m ．

 Gr－tun al t simmatinto at alciveveral Mculals．
The teermav be gaid in note sum or hy insalmente．Fretire mave le

w virkn llan
ADVERTISER wishes to know where

WANTED－＂NATURE．＂No．s6．－

LIIING SPECIMENS FOR THE MICRECCE

GOLDMEDALawarded at the FISHERIESE：XHIEITK THOMAS BOLTON，57．NEWHALL STREET，BHRMISGFC
Whos has last week ent to his subscribeps Inero docas，wh को description．He has alno sent out Lorbojus cryalirs，
mucedo，Fredericella sulhana，Cordylophora lacpatris，Asjaraler mucedo，Fredericella suliara，Cordylophora lacestris，Aspank Nofommala spicata，Vofrox globator，The Hids；alw hlydra，As
rella，Crayfish，and other Specimens for（Husley and Martini， cella，Crayfish，and
I ahoratnry work．
Weelly Announcements will be made in this place of Orburinc tuptilying

3 pecimen Tube，One Shilling，post free．
Tumenty－sis Tabosin congse of Six Mowths for Swharriftion of bl1 or Tewtye T wies for 10 ． $6 d$ ．
Portfolio of Draw ings．Eleven Parts，is．east．
UNIVERSITY COLLEGE OF NOR： WALES，BANGOR
Sestion $\mathbf{t} 885.6$ will open on FRID，AY，OCTORI R DEPARTMENTS OF PHYSICS，CHEMISTKV，ANHII

Puvetes ．．．Prefoser，A．Gkav，M．A．

The Clasees and Laboratory Course of this C Coilege are nowt ：－ requirements of Students preparitig with a wew to the finc

 and other L：xaminations，In oyear of the Three lean mas
 College，and the lectures in Chemistry abd botary anv mo l／egres of those Univeratica
The estegcive I al oratories（Physiral，Chemiral．Ned Tils nuiped for Study and Resratcll，ard in the Ihowid I＇ prowison has leell made for the Teaching of blowtival ic： －p－cial coure has been arranged in this sulifel．For Fusa－t
 Lahomatuny Fike（ffo Tpku） Physical
Laboratory
R 0.176 $\quad \begin{gathered}\text { Chernal } \\ \text { Latorstorn }\end{gathered}$
Sis Heurs per Week
to 176
I went y－four of more Ilours
per Work
Prmportional Cbarges fir more than $5:$ or lesa than Ters per Weak．
A curiswictalle number of Sthularahips and I shorowne are celtion at the legornmio of earh secoicon，and several are at
 price is (d) on ajtritation to the（olle ac bectelary

UNIVERSITY COLLEGE，BRISTC

 fir pervens of either sex alowe the ordinaty shool Acs it：

 The forinernog lepartment inc atiles（ivol，Mectute Fritinerning，and surveling aind yecial arrangetoents for for
 hith reund th the lating of whlents may be whainef whet

firmations，aprystor
M．FRED F．©［OCK，Kecitrar and

SCIENCE CLASSES．
 YOUNG MEN＇S CHRISTIAN ASSOCIATION，

ッ＂，い．IFRN：AIt．－TKEIII．It

 1 nive．
Itter
 MATHE ＊pondon and Suburls （f）山y＝

BRITIS

LONDON Prelim, Scientific and $\mathrm{H} . \mathrm{Sc}$. Kapid Coaching with great success, Terms Maderate.-11. J. Whns, B Sc., ist Class Honours (Lond), Unversity College. Iondun.
 MINERALS AND STONE IMPLEMENTS.

MR. BRYCE-WRIGHT begs to call the attention of his Clients and the Public to his large Series of

MINERALS AND STONE IMPIFMENTS,
from which single specimens can be seiected
Elementary Colloctions of Minerals, Fossils, and Rocks from 久ı apwards. N B-These Collections ablained the Prize Medat, 1862.
GEMS AND PRECIOUS STONES OF EVERY DESCRIPTION. BRYCE-WRIGHT,
Mincralogist and Expert in Precions Stowes, 204. REGENT STREFT, LONDON, W,

EDWARD WAKD has pleasure in announcing the issue of a new Micro-Slide of Zouphy.s, with tentaclez out, in the special manner so well known to his mumerous patrons.

Plumularia similis (post-free) ${ }^{\boldsymbol{s},} \frac{d}{8}$ Also, quite new:-
Gorgonia verrucova (polype stained) \quad. 2
P dalirus typicus (Spectre Shrimp) "̈ I a
FIDW:ARD WARD, 249. OXFORD STREET, MANCHESTER. 【503

SPECTACLES r : OPHTHALMIC 1RREGULARITIES.

W. JOHNSON, Ophthalmic Optician, received the HIGHEST and ONLS AWARD kranted for SPEC IACLES in LONDON, Intemational Exhilition, 2352.

Patronised by the most eminent Oculists and Medical Men.
W. JOHNSON, Optician to the University Hospital, IS\%, TOTTENHAM COURT ROAD.
" Remarks on Spectacles," post-free.
PROFESSOR TAIT'S WORKS.

In Crown Bvo., Cloth, price 98.6 d .
PROPERTIES OF MATTER.
By P. G. TAIT, M.A., SEC.R.S.E.,
Formerly Fellow of St. Peter's College, Cambridge, Profescor' of Natural Philoophy in the University of Edinburgh.
11.

By the Sime. Crown 8vo., price 6s.

LIGHT.

Edinhurgh: ADAM AND CHARLES BLACK.

HOLLOWAYS OINTMENT
infaclible REMEDY
ior BAD LEGS, BAD BREASİS, OLD WOUNDS, SORES and JLCERB. If effectually rubbed on the Neck and Chest, it oures : ORE THROATS, BRONCHITIS, COUGHS and COLDS; and for GOUT, RHEUMATISY, and all Skin Diseases it is anequalled,

CHEMICAL APPARATUS, Wholesale, Retail, fur Colleges, Schools, and Chemical Works. New Catalogue of oo pages and soo clear Illustrations, post free, ad -WILLIAM HUME, z, Lothtan Street. Edinlurgh

BOOKS (Secondhand), Miscellaneous, Remainders, \&e-C. HERBERT, English and Foreign Pookseller, 319. Goswell Road, London, E. Catalogue free on receipt of two stampy, Libraries, Oid Bonks, and Parchment purchnsed.

The AUTOCOPYIST (from zor.) furnishes excellent
BLACK COPIES
*hographic Style, of the ORDINARI WRITING (also Shorthand 1, Sketcies, Mfusic Easy, Economical-The AUTirCOPIIST

MINERALOGY AND GEOLOGY.

PROFESSORS, COLLECTORS and VISITORS to LONDON are INVIIED to INSPECT Mr. IIF.NSON'S STOCK of CHOICE MINEINVIIED to INSPECT Mr. IIFSSON'S STOCK of CHOICE MINE-
RAIS, \&c., \&c. At the PRESF.NT TIME he has a PARTICULARLY RALS, \&c., \&c. At the PRFSF.NT TIME he has a PARTICULARLY
FINECRISTAILISED. FINECRISTALLISED NUGGET Of NATIVEGOLD, WEIGHT ơ., PINKAP, PHYLLITE, CHESSYLITE, EMERALDS On MATKIX,
PYROMORPIIITE (VER, RARE VOKV), CERUSSITE, CRYSTAI.L PVROMORPIITE (VEFV RARE VONV), CERUSSITE, CRYSTAI.L ISF,I MALACHITE, and BOTRYOIDAL. CHALCEDONY, METEORK 1 KONS and STONES. POLISHED AGATES and LABRADORITES.
A Large Series of ROCKS, also MICROSCOPIC SECTIONS of the same.

Lists on Afpication Hammers, Chisels, and Hammer Straps.
PRIVATE LESSONS AND EVENING CLASSES. BLOWPIPE CASES AND APPARATUS. Catalogues free. SAMUEL HENSON,

277, STRAND, LONDON.
Opposite Norfolk Street.

SIX PRIZE MEDALS
 AWARDED FOR GEOL GGICAL COLLECTIONS.

G-ological Collections especially adapted for Teaching as supplied to Science and Art Department, and used by all lecturers and Teachers in Great Britain, \&c.
New and Rare Minerals constantly arriving from all parts for selection of Single Specimens.
ROCK SECTIONS AND ROCK SPECIMENS:
The Largest Variety in England.
Now Catalogues and Lists on application to-
JAMES R. GREGORY,
88, Charlotte Street, Fitzroy Square, London. Established 27 Years in London.

FERNERIES fitted up with Preserved Flowers, Foliage I'lants, and Floral Decorations stitable for Drawingand Ball Rnoms, Churches. Chapels, Theatrex, \&c.
Sundella, a PATENT Preparation for preserving FERNS (from Maiden-hair to the common Brake), GRASSES, YOLIAGE, Re. sent, recurely packed in stout bov (with full particulars) on receipt of P.O.O. for 3 s.

MADAME SUNDELL,
4. SPUR STREET, LEICESTER SQUARE, LONDON.

CABINETS FOR MINERALS, FOSSILS, \&c.

6 DRAWERS, 20 INCHES HIGH...\quad... ... 215.

NATURAIISTS' GI.ASS.CAPPED HOXES, ROUND AND RECTANGULAR, FROM ONE SHILLING PER DOZEN.

THOMAS D. RUSSELL, 78, NEWGATE STREET, E.C.

MINERALS AND FOSSILS

SINGle SPECIMENS OR COLLECTIONS. F. FI. BUTIEER Assoc. R. Sch. Mines Lond., M. A. Oxon. and L.S.A. Lond., Successor to the late R. TALLING,

180, BROMPTON ROAD, LONDON, S.W.

Five minutes' walk from the Natura! History Mukeum, S. Kensington.

HOW \& CO.'S

Geological Transparencies for the Lanterr. Descriptive Catalogue on Application.
WALKER'S SPECIFIC GRAVITY BALANCE FOR ROCKS AND MINERALS.
HOW \& CO.'S POCKET MICROSCOPE IAMP, 8s. 6d
MICRO-PETROLOGY.-Sections of Pitchstones, Obsidians Granites, Syenltes, Diorites, Gabbros, 'Dolerites, Basalts, Tachylites, Trachytes, Andesites, Porphyrites, Rhyolites, Lavas, Ashes, Gneiss, Schists, Limestones. बC.. price 2s. 6d, each.

JAmES HOW \& CO., 73. Farringdon Strikt, London.

STANDARD SCIENTIFIC WORKS PUBLISHED B MESSRS. LONGMANS, GREEN, \& CO.

 MILLER'S (Dr. W. A.) ELEMENTS OF CHEMISTRY. Part I. Chemical Physics. Revised, with it MILLER'S ELEMENTS OF CHEMISTRY. Part II. Inorganic Chemistry. Sixth Edition, revised MILLER'S ELEMENTS OF CHEMISTRY. Part III. The Chemistry of Carbon Compounds, of Organic Chemistry. With 20 Wodderts Fifro Edition, revised, by H. F. ARMSTRONG, F.R.S., and C. E. GROYES, F.CS in 11 REYNOLDS' (Dr_{w} J. E.) EXPERIMENTAL CHEMISTRY FOR JUNIOR STUDENTS Fcap. 8ro. with numerous W oodeuts,

GANOT'S NATURAL PHILOSOPHY FOR GENERAL READERS AND YOUNG PERSONS a Course of Physios divested of Mathematical Formulze, exprewed in the language of daily hife. Trantlated and Edited from cit vots "Come
 Fifth Edition, with 20 pages of new Matter, 2 Plance, and 45 woodcuts Crova t.u GANOTS ELEMENTARY TREATISE ON PHYSICS, Experimental and Applicd, for the use of Colleges and Echooks Trantated and Edited from GANOTS "Ekiements de Physique," by E ATKINSON, Ph D., F.C.S. Eleverat Edition. revived and enlarged. With 5 Coloured Phates and 8 ? 8 W wodcurs … Crova tra GOODEVES (T. M.) PRINCIPLES OF MECHANICS. New Edition, re-written and enlarged. With 253 Woodcuts... Civen sto GOODEVES ELEMENTS OF MECHANISM. New Edition, re-written and enlarged. With its Woodcuts...
BOURNE'S (J.) CATECHISM OF THE STEAM ENGINE IN ITS VARIOUS APPLICATIONS IN THE Arts, to which is mow added a chapter on Air and Gats. Fnsines, and another devoted to Uiseful Rules, Tables, and Menorandi. s-a Edition, much enlarged, and mustly rewritten. Nilustrated hy $2: 2$ Wobdcuts, for the most part new in this edition London : LONGMANS, GREEN, AND CO.
A Popular Edition of Mr. Hugh Convay's New Novel will be ready on Tucsday next, price Six Skilis,

Author of "Calted Back," "Dark Days," \&c. New and Popular Edition. Crown 8vo. 6s MACMILLAN AND CO. LONDON.

Just Published, with above 200 Wood Engravings, fcap. 8 vo , Cloth, is.

OUTLINES OF NATURAL PHILOSOPHY

FOR SCHOOLS AND GENERAL READERS.
bly. It, EVERETT, IIC.L., FRS.
Profesenr of Natural Philowephy in the Murcs's College. Belfact; Editor of the V.nglach t.dition of "I hesthancl's Natural I'litusophys," \&̌c.s Rc.
Great puins have been taken to make evers statement in this brok as plain as p aible, and to pot every westence into wuch a form as to be readily understood at first reading. Aigehraic formula have been alt gether ex. cluded, and familiar language whenever availatic has been preferred to the we of techoical terme

$$
\text { London: BH.ACKIE: \& SON, } 9 \text { and so, Oid Dailey. }
$$

Second Fingliwh Fidition, with Adeditions, With por Woodcutr and is Plates (s Coloured), including Angitrüan's and Cornu's Mapss 8va. price 31t. 6at.

SPECTRUM ANALYSIS

In Its Application to Terrestrial Substances, and the Physical Constitution of the Heavenly Bodies. Familiarly explained by the late Dr, H. Schellen.
Translated from the Third Enlarged and Revised Perman Eidition by IANR and Cabolte Lasctil Edited, with Notec, by Cape W, de W. Abenv, RE., FR.S.

Iondon: LONGMANS, GREI:N, 胥 C.)
Just I'ublished, Poss Free for Twa Stamps.
NATURAL HISTORY\&SCIENTIFIC BOOKCIRCl'T.AR, No. og. Kecent Purchaure and New Work: Botany, Zonkery. (iecology, Mineralogy. Pationtulnsy. Avtronomy-W WH.SLES \& SoN, 28, Facex Street, Strabd, London.
Just Published, Second Fdition, Kevived and Illustrated, price 3 . 6 k .
THE OWENS COLLEGE COURSE OF FLEMFNTARY Holick:V. Part 1.-Tuk Fsom, an Intrmituction

 Oweni College, Victona Univervity.

> Ioodon: SMITH, ELIIFR, \& CO,
> Manchearet: I. E. CORNISH.
C. J. WOODWARD'S EDUCATIONAL WORKS' Now Ready. Price 3 r.
ARITHMETICAL PHYSICS, PART II

MAGNETISM AND ELECTRIC:

C. J. WOODWARD, B.Sc.

Contrite: $-1 n^{\circ}$ maductery, Force, Energy, Units, Ins Fonctions, Electecthatics. Attrattion, Energy of an Eies Equipotential Surfacra, Electmmotive Force. Presure kincmatics, Ohm's 1 aw, Joule's Iaw, Thermoelectnotr, a Macwefe Flectromacnctiom, Magnetic Measaremeet, chay Miscellanents Exercises
${ }_{51}$ Woodcuts, 4 Lhographic Plates illustrating Iises of f ns London: SIMPKIN, MARSHALL, \& CO.

Important New Work by the Royal Astronomer of 'oll
THE ${ }^{\text {NOW }} \mathbf{S E T O R}$ OF TEE HEAVEN

ROBERTSTAWHEN
L.L.D., F.R.S , F.R.A.S.,
NOYAL ASTAOVO,VER OF IRELAV
Sixteen separate Plates, produced in Chromo-Lithogrt Ninety Wood-Engravinga.

Demy 8vo. 544 pages, cioth, $3^{17 .} 66$.
CASSEL.L. \& COMPANY, I.IMITED. LLIMAATE. HLL, HONION.

THURSDAY, OCTOBER 8, 188 ;

MR. GRIEVE ON THE GAREFOWL

The Great Auk, or Garcfmol (Alca impennis, Linn.), its History, Archaclegy, and Remains. By Symington Grieve, Edinburgh. 4to, pp. x. 14I, and Appendix, pp. 58. (London: Jack, 1885 .)

AGreeably to the wish of the editor of Nature that I should notice in its pages the lately-published volume whose title stands abnve, I undertake a responsibility of a kind which is for me as delicate as can be imposed upon anybody. It has long been no secret that for more than five-and-twenty years-since, indeed, the premature death, in 1859 , of iny friend and fellow-traveller, the late Mr. John Wohley-I have had it in hand to prepare and eventually to produce a monograph of the presumably extinct species of bird, into the investigation of whose history he had thrown himself with all the energy' of his character. During that time I am not conscious of having ever lost an opportunity of adding to my store of information on the subject, in doing which I was for several years assisted by the zeal of the late Mr. G. D. Rowley ; and, though always having in view the ultimate publication of the monograph originally contemplated by Mr. Wolley, I never hesitated to supply any inquirer with the particulars for which he asked -as may be seen on reference to the publications of Dr. Victor Fatio ${ }^{1}$ and of Prof. Wilhelm Blasius ${ }^{\text {- }}$-both of whom 1 rejoice to think I was able in some measure to help. Neverthe-- less, each attempt to elucidate the natural history of the T Garefowl only added to the number of still unanswered or unanswerable questions relating to it ; and, amid numerous If other occupations or duties, I have with difficulty been
5 ano for me not to sec his shortcomings, though many fore wish minght find in him no fault at all. I therework the author has done the best that in him lies, and especially that his book, so far as it goes, is an honest book. If, after working at the subject for more than a quarter of a century, a man still finds himself unable, from one cause or another, to publish the results of his labour, it does not follow that he should be hard upon anybody else who, with perhaps as many distractions, makes a praiseworthy attempt to set before the world what is known of the lost species, though he may not have devoted to the task a tenth of the time. Moreover, Mr.

[^19]Gricve begins his preface with the words: "In submitting these pages to the public, the author has fears that they will not bear severe criticism." I regret to say that regard to truth obliges me to declare that this is so; but I have no wish to be the severe critic, and it will be best here to describe the plan and scope of the work, which is obviously well chosen. Mr. Grieve begins with a very appropriate dedication to Prof. Steenstrup, that venerable biologist who first wrote a history ' -he modestly called it only a "contribntion" to a history-of Alca impennis that was in accordance with facts, and was wortly of the subject, of science, and of himself. The amount of indebtedness to him, due from all his successors in the investigation-but not always acknowledged-is not to be overrated. Hard as they may have found their work, it has almost entirely lain in clothing the form that he constructed; and, though there has been plenty of false tailoring, his outlines have proved to be true in almost every particular. In the dedication Mr. Grieve very justly states that he has not " much to relate that is new to British ornithologists ;" but his desire has been "to bring within the reach of all, materials that at present are difficult of access." "These preliminaries over, the geographical range of the speciesfirst in American and then in European waters-is entered upon, care being taken to warn the reader against the popular inisconception that it was ever a bird of the high north, and then is given a description of its remains as found in the New World and in the Old. Under the last category come four chapters treating respectively of the discovery of its bones in Caithness, and in Oronsay, of the period to which the kitchenmidden on that island containing them presumably belongs, and of the single fragment found near WhitburnLizards, on the coast of Durham, by Mr. Hancock, which fragment, being the greater portion of the maxilla of what seems to have been an exceptionally large example, now in the Museum at Newcastle-on-Tyne, is very delicately figured (p. 64). After this Mr. Grieve enters upon a consideration of the bird's habits and of the regions in which it lived, and then proceeds to catalogue at some length (pp. 76-114) its existing remains-whether bones, skins, or egg-shells. Then follow three chapters on the uses to which the bird was put by man, on the names by which it has been known, with their possible origin and meaning, and on the period during which it lived. No fewer than nine appendices are added-all more or less of the nature of pitces justificatizes-while an excellent index, with remarks on the accompanying chart, completes the volume, which is illustrated by several woodcuts and a couple of coloured plates representing the two eggs that doubtless came to Edinburgh in 1819 with Dufresne's collection, when it was bought by the University there, and, having been transferred to the Museum of Science and Art in the northern capital, were first publicly noticed by Major Feilden in 1869.

There cannot be a dispute as to the great pains which the author has taken with this work, but it would be inexpedient here to attempt any criticisms of its details, to an abundance of which exception may be taken. The

- Here may be added that, if report speaks truly, so strong has been this desire on the part of the author, that the book is sold to the public at lesu Jhan cost price.
fact seems to be that up to a certain point the story of the Cireat Auk can be worked up and told by any one willing to labour at it. Beyond that point the difficulties begin. Mr. Girieve appears to be hardly aware of the evistence of these difficultics, thongh some of them have been hinted at, if not pointed out, by his predecessors. The most serious charge that can be brounht against him is that he has needlessly raise 1 fresh difinculties for future investigators. Mistakes that have taken years of labour to correct, and the correction of which has been published, are again set agoing, just as if no progress in that ditection had been made; and, even worse than this, some new assertions, of at least suggestions, are hazarded that beve, I am persuade i, no firm ground. No doubt on some of these points I may be prejudiced; bat according to my knowledge 1 perceive that on too many questions Mr. Grieve has been unable to distinguish betweengerd evidence and bad. However, there is in thasburk a destiact gain to all historians of the Garefowl, and that is the information here tirst placed on reworl by Mr. Champley of Scarborongh, who is known tw lave interested himalf for many ye irs in all that con"till then species.
I mast nimerely wish that 1 could accord hisher praise 10, tho wonk thou I hawe bren able to do, fire Mr. Grieve's
 Whata that any ore but a Fennimare Coper or at

 AnIl , wr cuntemt the the dead bury their dead. The twatal fermel din won wenture to draw, and in conclusion hate and m, wh pation of the readers of Nature for

Atprtid Niwton

" /H/K N:IVR (OF IRANSKATKON"

Whe Wiate of tramstation in tire Oieans of W'ater, Air, , 1 Itd / thit. Hy John Scott Russell, M.A., F.R.S. (1.andow: Tulber and Co, 1885.)

I"111' hate Str. J Scoth knssell was one of the most pothinent and gified naval architerts which this (1 mbtix pomessed in the midtle of the present century: Its balle will long loe remembered as the builder of the f...Af l.ffion, the early atvoeate of the longitudinal ' Stw of fotaming iron and steel ships: the ingenious .and chopuent expmuder of the "wave line" principle uf dh a;"l ; uml for many improvements in the theory anh pratheof iron tie.un ship construction. His personAhts was at owe stikng and attractive, and his abilities Were of an onizinal and versatile kind. He was the author w1 Wowive work unom naval archisecture; and of

 II |lobnotho: the stuse of setentific education in naval oh heterture, and in stimulating and helping students, by bwhwnus sweches and writing, to arquire a general and - He ar kerawlesli;" of the laws upon which the qualities of shipselepetid.

Wh. sentt Knewills writings were always interesting. If promevol the rarr faculyy of making the driest and mon romploated bi sulyects intelligible, and even
fascinating. Where he may not be correct in the $1: 2$ theses, or justified in the sweeping generalsation to sometimes hastily put forward, he is usually sume ${ }^{\circ}+\cdots$ and provocative of thought upon the part of bis rea:\% Ife was a vigornus and clear-though with a tender" be a too rapid-thinker; and there are no writung naval architecture which have the power of fime attention and stimulating the intellect in a 5 Br measure than those of Mr. Scott Russell.

We regret to say that the present work is not likely: to the reputation of its author. It exhibits $/$ es $d /$ ses quatilís in their most pronounced form ; and if $\overline{z e}$ asked for an example of Mr. Scott Russell at b. . weakest and worst we could hardly do better than r. that portion of this book which has not been befure lished. One-half of the volune is devoted to a rete the Keport mode by Mr. Scott Russell to the Bats ciation in 1843-43, in which a description is grect. "solitary wave of translation," which he disconer. himself in 1834 , and the properties of which he did. to investigate and make known. This Report is my printed in extenso, but Part I. of the work consis-e sively of extracts from it. The satne matter appen: over-once as Part I. of the book, and once as paiw the British Association Report. The Report dethe knowledge possessed by Mr. Scott Russell is ". "the varicties, phenomena, and laws of waves, \sim condetions which affect their genesis and prons. This may be interesting from a biograplueal ir view, but its present scientific value is not grest things have happened since the date of this Fe such as the theoretical investigations of Airy, : Rankine, Froude, eminent French mathematicas others ; and numerous observations have bees E the forms and properties of waves by scientific or our own and foreign navies, These constitute : of information which the present wort coz: ignores.

One half of the book is taken up with the repron: British Association Report referred to, and with th. tracts from it of which Part I is made up. The res: half contains the only new matter now published is divided into two sections, one being "on the 2 " between the sslitary wave in water and the sound $\mathrm{c}_{\text {- }}$ air," and the other "on the great ocean of ether relation to matter." The less said of these chaper better. The following is an instance of how Mr. Russell frames a theory or invents a bypothesis . ${ }^{-1}$. impressed with the truth of this law, that the velo. this solitary wave in any fluid is due to the depth fluid in which it moves, whether thick or rarefied. hazard the lyypothesis, that in the unknown elemeats pervades the universe, and which, though unknow: cause and medium of the most familiar phenocas everyclay life, procee ling on the same basis of calculu as in the air and water occurs ethereal ocean should be give ${ }^{-}$ miles, and that the correspon wave the secor

- ${ }^{\text {A }}$

TI
with
nearness, and I propose to take as the law of repulsive force, the cubs of the nearness. I think I am justified in taking this as the true law of repulsion of atoms of matter, because I find from the researches of eminent chemists that all free gases do so expand as to double their bulk by an increase of the distance of the particles, in the ratio of the cube of their nearness, or as 111 cube to 367 ." Then the theory of heat that is put forward appears to be a kind of material theory : "We may therefore define heat as the cffort of ether to resist croaviting. . . . Ether existing all around us in a normal state may be called free ether. Ether enclosed by force in limited space surrounded by material atoms is imprisoned or stored ether; its greater or less degree of crowding or storing means degrees of he at, and the quantity of crowding among the atoms indicates the specific heat of these atoms, and sometimes the specific heat of that kind of mat ter."
One more extract and we have done:-"Even Sir Isaac Newton's calculations of the speed of sound fell 100 fect short of the truth, and therefore corresponded to an error of a miie in the height of the atmosphere, and he could invent nothing better to account for the error than this sudden inflammation of the atmosphere. To this the reply is that the existence of the solitary wave of translation was not known to Newton, that the nature of its genesis and propagation could not therefore be calculated; but that present knowledge of the nature and laws of this wave completely explain and accurately measure its phenomena without the introduction of any hypothesis contradicted by fact."

We have said enough to show the character of this treatise, and we will conclude by repeating that we are sorry to see a posthumous work by so eminent a man as the late Mr. Scott Russell, containing nothing more to justify its publication than a reprint of his well-known, and imperfect, views in 184; upon wave motion, and a fanciful interpretation of great physical laws. It is a pity that greater skill and discretion were not bronglit to bear upon the production of this volume.

OUR BOON SHELF

Publication of the Noriocerian Cimmission of the . Weasuriment of Degrees in Europe. (t) Geodetical Operations, Part IV. (2) Tidal Observations, Part III.
THE: first of these publications contains an account of the northern portion of the trigonometrical work undert.iken to connect the side Stokvola-Haarskallen with the side Spaatind-Nuverfjeld. The former side is directly connected to the base measured in 1864 near Levanger, as described in Parts I. and 11I. of the "Geodetical Operations,"

A trigonometrical survey of this part of the country had already been made in $1835-6$ by Gen. Bruch, and it was at first hoped that this survey could be utilsed, but on closer investigation it was found that the observations were not of sufficient precision to meet the requirements of the Commission for the Measurement of degrecs in Europe, for which 18 wh was to a great extent under*e, however, utilised in the ; there the signals were the southern portion, cases entircly disA careful descripv case, with one olaced at the
centre of the station ; the usual measurements for reduction were therefore made, and apparently with more than usual care. The observations were taken with a to-inch universal instrument made by Olsen and with a $12 \cdot$ inch theololite made by Reichenbach. It would appear that the gradation of these instruments is not of a very high order; at any rate, the differences in the readings are rather large, frepuently exceeding $10^{\prime \prime}$; but in extenuation it must be said that the instruments were too small for the work and that the observations were made under considerable difficulties, owing to sea-fog and snow. There is nothing special tor remark in the method adopted to adjust the observations, it being the usual method founded on the principle of least squares. It is shown that the mean error of the finally-adjusted angles is

$$
0^{\prime \prime} 547 \pm 0^{\prime} \cdot 029
$$

A diagram of the triangulation is given, from which it is seen that most of the triangles ane well-conditioned; a few, however, are more clongated than they should be for good work, the triangle Munken, Stokvol. Haarskallen, espectally so; for instance, the angle at Munken is $5^{\circ} 122^{\prime} 57^{\circ}+16$. It should also be observed that several of the stations are determined by only two intersections. The longest side ineasures about sixty miles.

The second publicition is the third report of the Norweyian tidal observations, and contains the results of the work done it Oscarsborg in $1880-1$ and at Stavanger, Bergen, Kiblelvang, and Vard; in 1883. This report is simply a contmuation of Reports 1., and 11., already noticed in Natcre: ; it contains nothing but tables, and there is nothing in it that calls for special notice.

LETTERS TO THE EDITOR

[The E.ditor does not hold himself responsible for opinions expressa by his corres, ondents. Neither can he unlertake to ieturn, or to correspond with the writers of, rejected manuscrift:No motice is taken of anomymous communications.
[The Edifor urgently reyuests correspondents to keep their letters as short as possitic. The fressure on his space is so grat that it is impossible otherwise to insure the afpearance cen of communications containing interesting and novel facts.]

On the Influence of Wave Currents on the Fauna of Shallow Seas

For many years past I have endeavoured, without much success, to call attention to the widelyopread influence of waver on the bottoms of shallow seas. To the geologist this action signifies denudition, and accounts, among other things, for the wholesale destruction of marine fanna so often exemplifiesl in the rocks. To the zoologist it signifies a factor in evolution of innteasurable magnitude.
On seeing the abstract of Prof. Moseley's lecture on the fauna of the sea-shore in Nature, I troubled you with my letter of July 6 ; now that the full report has appeared, equally reticent as to the significance of wave-currents, I ask leave io adt somewhat to niy former letter.

The difficulty in arousing interest in this subject arises from the fact that, though the phenomena of wave disturbance are well knowit to mathematicians, natural history text-bonoks connmonly agree in anserting eiher the non-evintence, or unimport. ance, of such disturbance. Thus the question has remainesl unheeded.

My oun experience in the matter is an follows:-llolding the ortholox view of the fenceful reporse exinting on the sea-bottom, I commencel cruiving, sume twenty yearv ago, on that excellent natural experimental tank, Jorbay. I soon found, to my surprive, that the local fivhermen and dredgers were as confident that the waves greatly disturlecl the bottom as naturalists were of the reverse. Waving kept my eyes open in this direction, I whminted a paper to the lhevonashire A sociation in 1878, deveriptive of the levelling action of the waves on the six-fathem ares of Torbay (Trises. Dit. Asser., vol, x. p. 182).

With the kind awivance of I.ord Rayleigh I was enabled In show that theory and olnervation were in conuplete accorl- a
to the energy evinced by the waves in the particular instance under consuteration.

Having learned from Lord Rayleigh that wave-action at the sea-bottom takes the form of reciprocal currents, I was led to make sonse experiments and observations on the formation of ripple-mark. In the course of this investigation I was soon impressed with the conviction that these alternate currents held at their mercy the marine fauna exposed to their attacks, and that the zoological side of the problem was at least as important as the seological. Accordingly, an outline of the sabject in its zoological aspect was included in a paper on ripple-nark read to the Royal society in $\mathbf{1 8 8 2}$ (Proc. R.S., vol. xxxiv. P. 1).

Having cone into possession of confirmatory evidence of the action of waves at a depth of forty fathoms in the English Channel, I submitted the facts 10 the British Association at Southampton in the sanse year. 1882 . This paper, sent in to Section A, was handed on to Section C, a mathematical friend suggesting to me the reason, and a very good reason too, that mathematicians required no evidence on the point contended for. However, the transfer only went to prove that the geologists were as sceptical as to the existence of wave-action at forty fathoms, as the pliyvicists were satisfied as to that fact. This paper, auplified, appeared in the Transactions of the Devonshire Association for 1883 (vol. xv. p. 353).

The zoological aspect of the question was sulmitted to the Rritish Association at Southpon in 1883 ; and again to the Linnean Society in 1884 , in a paper " On_{n} the influence of wave-currents on the fauna inhatiting shallow seas." In this paper, profiting by experience, I made no attempt to prove the fact of wave-action from olservation, but relied entirely on a valuable letter with which I had been favoured by Prof. Stokes, Sec.R.S. Neither at the British Association nor at the Linnean Society was any exception taken to my arguments in support of the importance of wave-action on the fauna affected; nor, so far as I am aware, has iny position been shaken since. Now that Prof. Moseley's important lecture has appeared, discussing the fauna of the sea-shore without reference to the ever-regulating wave-currents, there is considerable risk that less experienced students of natural history will in like manner pass over this promising field of reserch as not wonthy of their attention.

Prof. Moseley states, and states truly, that the littoral fauna is adapted in various ways to withstand "the action of the surf, the retreat of the tides, the numerous enemies" : but, beyond the reach of surf and tidal fall, agents which only affect the narrow belt of sea contiguous to the shore, the alterante currents iel up by ocean waves search out the armour and test the lefences of all small animals living on those extensive marine areas, exposed to the ocean swell, where the depth of water does not exceed fifty fathoms.

With respect to enemies, the waves themselves are perhaps the most furmidable, as they attack and occasionally destroy whole colonies at once, whereas predatory foes rather affect the individual. For instance, let such helpless mollusks as Aflpsia or Pliurdbranifus wander over the sandy bottom of Torbay, as they sometimes do: the first easterly gale will sweep them ont of existence. In fact, the waves so invariably prevent Aflysia purnitaln growing to its full size on the lBritish coast, that a fuilgrown specimen taken in protected Guerney waters has been cotnsilered a divtinct speries-viz. A. degidans. Similar large specimens lave occursel under the shelter of the Torguay harbueur wotics, but these, by a series of olontophores anil shells, I have been able to connect with the commond A. punclahs.

Prima facse it would appear that the shells of certain mollusks are more especially adapted to resist animate foes; but a close examination will often prove the contrary. Take the cases of the oyster, mussel, venus, and limpet : ihese mollusks are all helpless in the prevence of their living enemies: the oyster perislies by the attacks of boring-sponges ; the mussel is destroyed wholesale by starfishes: the venus is perforated by earnivorous gastropouls at their leisure ; whilst the limpet, easily detached when taken unawares, is said to be destroyed by binls. All four are, however, admirahly adapted to resist wave-currents, each in its revpective halintat.

The conclusion that the shells of mollusks are so constructed as to have comparatively lout little reference to living foes is supportas by the interesting fact mentioned by Prof. Moseley, that hard shells tend to disappear in pelagic and deep. sea regions. That is to say, they thisappear where predatory enemies abound, but where the great non-predatory enemics, the waves, are juwerless or not existent. Uccasionally we find the supposed
protection against living enemies to be greaty in arm requirements-e.g. the case of the solen, whose power od bur ing is far greater than requisite for escape from binht, bre: is none too great for the evasion of waves and currenti: $\%$ away the sand in which the mollusk dwelk.

Wave-action tends to differentiate spectes. This an tr in such obvious cases as Carilium aculea/um and C. nric; Vonus dione and V, chione. One of each of these pun chosen the mooring method of defence with anchor like : the other that of facile penetration with swooth, wateshell surfaces. As these two methods are opposite in a and any compromise tend to inefficiency, the wave:s must necessarily influence the mollasks in the dirot. divergence.

Invances of habits and forms protective against wave: $=$ could be multiplied almont ad infinitum, and, as the sab; very interesting one, I still live in hopes that it war ? taken up and worked out by trained observers qualifedi) task.

Akrtus R. 11
Torquay, September 28

Prehistoric Burial-Grounds

The account given in this week's Nattre (p. 318 inf covery of a prehiatoric burial-ground at Pitreave has n to my memory the description of a similar find mase eleventh or twelfth century by the monks of Noyon, and to us us by Guibert, who was abbot of this foundation time. I believe that it is the earliest detailed accuath such discovery that has come down to our days; and it noticed that the leading features of this cemetery $\begin{aligned} & \text { are }\end{aligned}$ exactly identical with those of the Pitreavie one. \& aware that this passage has attracted the attention of writers upon prehistoric times.

Cuibert, the author quoted, was born in ros3 a! 1124, having been Abhot of Noyon for ahout twe After stating his own conviction that his mona extremely old, he continues :-
"Quam opinionem, si nulla litteralis juvaret tadi peteret profecto affatim peregrina, et non, putamon, nominis sepulchrorum inventa contextio. Circa enim if ipsa basilica tantam sarcophagorum copiam conjunsit a in multam loci famositatem tantopere expetiti, cadave congestorum commendat infinitas. Qaia enim now nosirarwow ot do disponifur scfulchrornm, sel ciris modum corollie sepwlchrwm unims ma/ta ambiust, quizdam reperasntwr zasa, quorwm causam nescinnt । lempors. Non possumus aliud credere nusi quo gentium, aut antiquissima Christianorum, sed factagen

Gutberti Novig. de Vifa Swa, L. i
I may add that in Guibert's time there was a very tradition which ascribel the foundation of Noyon it "rex insule Britannie," who was (so ran the lege temporary of our Lord's. This tradition is, of course from a historical point of view, but certainly test extreme antiquity of the place; and shows that, Guilert's time, the inhabitants of Noyon had dim n of their prehistoric greatness, which naturally, in Christian credulity, centred around the era of our $1 \times$
T. A.

158, Walton Street, Oxford, September 30

MARS, JUPITER, AND SATCA

W1TH Mars, Jupiter, and Saturn in the n the telescopist has a varied assortment objects to which he may devote his attention. distance of Mars during the ensuing oppositio the effect of limiting the apparent diametet value, but the chief markings are so conspicuo visible notwithstanding this inimical effect during the preceding opposition, which was favourable, some of the more delicate feature have been recovered. At Milan Signor Schy partly contirmed his previous results as to t duplication of the "canals," and Mr. Knobel th
a series of valuable sketches, which are reproduced in the last volume of the Memoirs of the Royal Astronomical Society: With regard to Jupiter the declination of the planet will be somewhat less than during the opposition of $1884-5$, but the configuration of the belts and the peculiarities of the variable spots will donbtless continue to be exhibited with nearly similar prominence as in previons years. Saturn, situated in Gemini, and having considerable N. declination, will present a grand display, the rings being still widely open and inviting that close and systematic scrutiny which is so much needed either to affirm or negative some of the questionable details suggested by recent observations.

Observers of Mars are extremely fortunate in possessing such valuable memoirs and charts as those of Schiaparelli, Terby, Green, and others, which form a comprehensive and accurate basis of future reference and comparison. The seeming permanency of the chief lineaments on Mars and their distinctness of outline have permitted observers to assign their forms and positions with great nicety. But this has been found practically impossible in respect to any of the other planets of our system. Their markings are of so variable a tendency or so uncertain and ill-defined, owing probably to their atmospheric character, that it is out of the question to frame representative views that will serve to express the appearances observable at any future time. We have accumulated a vast number of delineations, including many peculiar forms, but these exhibit so much discordance as to prove that any attempt to arrange them with the same consistency as those of Mars must for the present be utterly futile.

What is essentially required in furtherance of our knowledge of areographic features are delineations in which the more delicate alternations of light and shade are faithfully portrayed. The ensuing opposition, though not offering the most favourable inducements for attaining this end, may yet be utilised as likely to afford its share of corroborations to old features and perhaps indicate some modification of the outlines attributed them by former observers. Mr. Marth's valuable ephemerides in the Monthly Nofices supply the data wherewith the passages of certain prominent markings across the central line may be readily calculated from night to night. Drawings effected at the telescope and subsequently attested by the charts, or independent projections made on the basis of the new drawings and then compared with previous work will be important as furnishing fresh conhrmations and additions to old records. Whatever plan is adopted, observers must not regard existing delineations as perjectly reliable and prejudice the judgment by endeavours to discern the outlines of the spots precisely as they have already been figured. Our work should be pursued apart from such influences, the aim being rather to correct and extend past results, than to follow them with implicit faith and mould our new seeings on the same pattern. Though much has been accomplished by the consecutive labours of the many able and earnest students of Martian features, the present state of our knowledge is not only incomplete, but considerable uncertainty exists as to the more difficult formations comprised in the physical aspect of this planet.

Jupiter, with so great a diversity of atmospheric phenomena, some of them rapidly variable, and all influenced by the quick rotation of the planet, gives prospect of being the subject of increased investigation. Late in the preceding opposition the great red spot which had so nearly disappeared and had, during the winter of 1884-5, assumed the appearance of a red ellipse with interior light cloud, showed unmistakeable evidences of increasing condensation. The ellipse grew perceptibly darker, and the central light cloud disappeared, so that at the end of the opposition the spot had almost regained the striking aspect it presented a few years ago. The question now
is has this well-known feature continued to gain ascendancy during the time the planet has been lost in the sun's rays? Observations in October will furnish a definite answer to this question, and the planet should be confronted with our best telescopes as early as possible, so that the necessary evidence may be obtained. The spot will pass the central meridian of Jupiter at about the following times, and ought to be well seen in small instrinments unless some great clanges in an unexpected direction have affected its position or appearance in the interim since the last observation made here on the evening of July 8 :-

$\begin{gathered} \text { Mate } \\ \mathbf{1 8 8 5} \end{gathered}$		Red Spot Central		$\begin{aligned} & \text { Date } \\ & 1235 \end{aligned}$		Red Spot Central	
Oct. 7	*-	18	34	Oct. 29	...	16	48
12	**	17	43	31	...	18	26
17	...	16	52	Nov. 3	...	15	56
19	. +	18	30	5	...	17	34
24	...	17	39	7	**	19	13
26	-	19	17	10	...	16	43

With reference to the white spots bordering the dark belts, and the other definite markings, they will doubtless be remarked as heretofore. Their singular vagaries of motion and appearance call for renewed study. The varying intensity and colour of the belts and their disposition in latitude should be carefully assigned on several dates during each opposition. If this method could be persistently followed during many years it would supply the material either for tracing ont periodical recurrences, or proving such changes to be intermittent in character.

During the past opposition of Jupiter much attention was directed to the transits of the satellites and their shadows. When near mid-transit, III. and IV, are often seen as black spots, I. is visible as a grey spot, while II. is rarely, if ever, visible otherwise than as a bright spot. These anomalies have never received a satisfactory explanation, and further observations are much required as to the relative tints of the satellites when on Jupiter and the variations noticeable in different transits.

Saturn, though not presenting such an extent of conspicuous detail as Jupiter, is yet equally deserving of systematic study. The rings and numerous array of satellites compensate for lack of detail in the belts. The outer division in the ring, called after Encke, supplies us with a crucial test object, and one which perhaps has originated more difference of opinion amongst observers than any other planetary detall of which the existence is well assured. Either this division must be liable to fluctuate at short intervals or the eviclence afforded by various telescopes is most conflicting, and suggests how careful we should be before accepting individual results when not corroborated or supported by undeniable testimony.

Buring the last few oppositions a very definite narrow dark belt has bounded the southern side of the equator, and this has attracted more comment than usual owing to its compact and very obvious appearance. This belt exhibits no distinct spots, though one or two observers have delineated it with marked condensations. The fainter belts nearer the pole are so very feeble that their existence is sometimes questionable. Indeed the features of this planet are of extreme delicacy, and require not only very steady air but a thoroughly gond cye and instrument to trace them in their more minute forms. Some of them are doubtless variable and have given rise to the contradictions we have referred to. As to the satellites they comprise test objects for telescopes of all calibre. The identification of these bodies may be suitably effected at any hour by means of Mr. Marth's ephemerides (Monthly Notices, June, 1885).

W, F. DENNINC:

by Google

NATUNE

from the Lower Greensand by means of deep borings at any great distance from its outcrop. Even if Lower Cireensand occur at all in such places, it will probably be in reduced thickness, and therefore with reduced water-capacity.

American Ezideners of Eocene Mamnals of the "Piastic Clay" Period, by Sir Richard Owen, K.C.B., F.R.s., G.S. , de.-In the year 1843 a fragment of a lower jaw with one entire molar of a mammal was drellged up off the Fisex coast. I canine tooth of the same was found in a well-sinking near Camberwell, in piercing the "plastic clay." The authnr had describet the above as belonging to an animal of the Lophiodont family, and proposed for it the generic name Coryphodun. Shortly afterwards De Blainville hat noticed certain fossils as "probably Coryphodont, " but hall referred them to Loftioden anthrasochernam. Ten years later Prof. Hebert had recognived two species of Coryfhison in the plavtic clay of France. Fxplorations by Leidy, Marsh, and Ifayden, in the "Mauvaikes Terres" of Netiraska bad led to the dicovery of a large hoofed mammal allied to Confhodon, to which the name Titmotherium had been given, and P'rof. Cope has now recognived, from Evanstoun, Wyoming, seven species of Coryfhodon. From these materials, which have been rendered accessible to European palarontologists by the superb volume of reports recently issued by the Linted States Government, the author is enabled to give a general description of this family of hoofed mammals of large size which flourished in early Eocene times. To the details of this the major part of the paper is devoted.
Somer Results of the Cryitallographic Study of Danburze, by Dr. Max Schuster. - In studying the characters of the faces and the structure of the I'anburite errystals found in Switzerland the author has met with vicinal faces of a peculiar kind, for which he proposes the term "transitional face" (T.chermak , $1 / 1 m$. Mitthenil., vi, 1884, p. 511). Attention is called to the fact that these faces are easily affected by those canses which produce an unequal development of faces otherwise symmetrically dis. posert, and an illutration is given of the way in which their indices are numerically related to those of the principal faces of the crystal.
 Pcirid, and Falentone, by E.lward Hull, L.1.D., F. K.S. F. G.S -The map erhibited was enlansed from that which accompanie the author's book. "Mount Scir, Sinai, and Western F'alas:!ne." giving a narrative of the expedition ent outt into these countreby the Paletine Exploration Society in $\mathbf{t s 8} 3 \mathrm{~S}_{4}$. It emlraces a region extending from the valley of the Nile on the west to the table land of E.fom (Mount Seir' atid Mrab, inclading the Jordan, Aralah Valley, and the mountains of sinai. It northern limit is the Lehanon. The main lines of fault and dip of the strata are also indicated. A i pographical anil gevl.gical map of the Aratah Valley on a ceale of alwut siv nules to une irch was in preparation, and woull acompany the Cientogical Kepert now in the pres fur the Paiestune Exploratun sutety.

A Prhminary Nive on a Siar Fighl N'anth recinst dis. corrod at Nia Sjymic, naar Elsim, by Ir. K. H. Tri ;llai-F.R.S.-Of this most important forsil the auther that as yet only seen a phot graph sut-mittel to him ty Prof Juht the President of the section. Thisphutograph repreven:'s pre:! mearly a vertical longitudinal sectom of a reptilian shull, of which orie very prominent feature is the pre-ence of a large conical usok in the upper jaw. projecting dnwnwank and forwanls, imme liaseiy behond the premaxillary part of the stull. This tuth is .ern only in impression, lat the cast of the reternal avity u ! is is well hown todicatec hat tt grew from a petmanent !etion crulence fany wher teeth is riwilc, and the while alltounse of the skull at an in this that srapt. with the poostin ind shape of the tavk, mlacie that the re thin hare reprocenedif if actually belonging to the teens Dictomelu, in tethonly a member of the group of Dicyn-limisa. lieol.gists wall bot underrate the imponance of this dhe rety in its hearbey as ale grestion of the age of the repulifetrus candu=ne of E

Un the Arimst Drway of Wh nher rioned the Earsh, by the Kev E. 11 il MA. F.C.E. density of the meternter wlun follen the earth if
he calculated Diferent methodo give is resulie
 particularly large metalliz ofe men The average de earth is usually regariled as $5 a$. Meteotste ate umpd materials of pace. A mass of theni w-id arigegate
body of density not wulels differing then that of the body of density not wulely differing thet that of the
The deasities of the other 1 lanets are mot inconsistent
like origin. Consequently any theory of the gevess vibe es from pre-existing materials involves a probabitiry the as por:ant part of its nuclcu is metalic.
 Promuntory of the Fanad, North DJn:天 \therefore by Prol. E. 11ull, LL.D., F.R.S., Lirector of the Geologzal vire Iteland.- The district in which the Old Rel Cus occurs is formed of ridges and valleys of metamonpthe convi-ting of beds of quartzi:e, schist, crystalline lwac ce trap, chiefly diorite. It lies between Lough swilly an? X. Biy, and is washed on the north by the waters of the The remarkable tract of the Old Red Conglomerze. m - liscovered by the officers of the Geological Sarver, is istrom any mass of the same formation, and it is ense; ~ on any geological map hitherto publishell. The hed : red and purple sandtones and conglomerates, mate: of quartzite pebhles and blochs, but also con'aining. limestone and trap; all derived from the surroanding : phic series. They cocct!y an area of over two miloand half a mile across, extending along the nornbem : Knock Alla, a ridge of quartzite which traverses the per = from side to side. The beds dip against the bave of the : tain, against which they are let down by a large fant, 12 terminate along their northern edge by an unconf. raul. position on beds of quartzite and limestone. Ther reat thickness of a a nout Soo feet. From the position of the becomes evident that they are unconnected with atr recognised hasins of Lower Old Red Sandstone, aiber land or Ireland, and may, therefore, be regartel on been formed in an izolated basin, which, following the of Dr. Geikie, I may be allowed to name "lake it The tract will be a new feature on geologial $=$ Ireland.
 a Nise on the Rivk of the Eiait D3, by Prof. T is I) Sc., LL.1), F. R S., Pres, (;.S.-Eistite-serpentine 1ome time since by Prof. Heddle) occurs near Belbelve the chore near the Black Iog. The author descrites" scopic structure of this showing that it cons ets of . its alheration products, enstatite in various stage of: and a mineral of the spineliid group. Assecisel a: the Hethelvie district is a fairly normal tmktolite. ces a plagioclastic felspar allied to anorthite, Hivine. or - alterest, and a little diallage. It clonely revemble :-Vilper-dorf rock, but has rather less magneis L alumins, errresponding chemically more nearly with 2 scri ed by the author from Coverack Cove, Cornwall opinion that the two rocks darier conewhat in 2 e pmbatly the earlier was still at a high temperatore later was intruled, and he inclines to the viem that pentine is the whler rink of the :wor. The Black Ing: incorrectly describel as cur:owtigig of "crystals of ta: : such onfusion as to furm buth a tough and hard roci mek really ennsits of floztt, sillmanite. two kiens an amn ncide themat:ie? and mot prohably some with perhaps a li:tle civanice. In thert, the rock preer cloce resembianice un ler the m'cruacupe to some spe: the well innonn"c riferite cness" of B denmais.

 Al:eria antl 7 un s. -The atohor evplained that the ww.s 2 mor-m.m.r. as they are not found within the a it ma proper, het in the prov mece of Africa and io 3 Y:- t of in Giallo anticu nsed in Rome was lim
worl
ral
Ora
eri
ner
meas dexcribed in this communication were collected by Mr. J. C. Buchanan, dnring the voyage of the Challenger. The islands have been described by Darwin in his "Ccological Olservations on Volcanic Islands" (2nd edition, p. 27). The author, after having explained the geological structure, gives lithological descriptions of the chief types of the rocks, which may he referred to the phonolites (St. Michael's Mount). These phonolites are composed of sanidine, angite, nepheline, hornblencle, magnctite, noscan, and titanite. The rocks of Rat Island are basalts with nepheline. The constituent minerals are augite and olivine. The ground-mass is almost entircly composed of nepheline. Blotite and apatite occur as accessory constituents, The little island known as Mlatform Island is also basaltic, with a doleritic texture. It is composed of labradorite, augite, olivine, magnetite, and biotite. This rock has undergone alterations.

Preliminary Note on some Traverses of the Crystalline District of the Central A/As, by Prof. 'T. G. Bonney, D.Sic., LL. D., F.R.S., Pres. G.S.-Imring the pact four years 1 have made several traverses of the Central A ps from north to south, and venture to lay before the Section the general results as bearing in some respect on the geology of the Ilighlands. (i) The ordinary rules of stratigraphy as learnt from most lowland districts are commonly quite inapplicable to the Alps, The most highly crystalline and the older beds often form the higher parts of a mountain region, the newer the lower. The newer beds frequently appear to underlie and dip regularly beneath the older. Gigantic folds, overturns, and overthrust faults abound. The true stratigraphy of a district can only be worked out by the exercise of pationt and cantious induction from observations extended over a wile area, (2) The non-crystalline rocks of the Alps are of various ages. 'T here are some of Carboniferous age, but the great period of eontinnous deposition generally begins with some part of the Trias. The conglomerates, which ofien occur at the base of the non-crystalline cieposite, indicate that the principal metamorphism of the crystalline series was anterior to both these epochs. There is at present no reason to suppose that einher in the Central $\mathrm{Alps}^{\text {s }}$ or for some distance on each side are there any representatives of the earlier Palaozoics. I believe that the conglomerates at the base of the Carboniferous contain fraguents of the later crystalline rocks of the Alps as well as of some of the earlier-though I do not assert that these crystalline rocks have undergone no molifications since Carboniferons times. (3) In the beart of the principal Alpine chains, and apparently at the hase of everything, are coarscly crystalline gneisses, These difier little from granites, except that they gencrally-alatost always-exhibit a certain foliation, and occasionally seem to be interbedded with thin seams of micaccous achists or flaggy fine-grainel beds. (4) On examination we find reas in to believe that both the latter are generally due to crushing. Their strike agrees with that of the apparent foliation in these older rocks, and with that of a foliation w hich is also present in the newer crystalline rocks. This corresponds with the strike "f the main physical features of the elistrict, and with the cleavage in the included troughs of sedimentary rock. It runs for great distances with reinarkable uniformity. (5) This apparent foliation is due to the devolopment of extremely thin films of a micaceous mineral. In many cases it causes the rock to bear the aspect of a highly micaceous schist ; yet, on examining a transverse section, the rock is distinctly seen to be a crushed gneiss-i.e. though so conspicuous, it is a mere varnish. As it thus differs materially from a true foliation, it would be convenient to give it a name, and I should propose to call it the "sheen surface." It is, in fact, a kind of "cleavage folia. Lion, "that is, a foliation due to cleavage, and subsequent to it.
(6) The pressure which bas produced this "sheen curface" 6) The pressure which bas produced this "sheen surface" es affected the orientation of the minerals, foliates, ine trae "foliation" layers of the foliated, i.e mineral-banded, rocks, (7) In schists very commonly the "sheen surwith the original foliation surface, as in the e Parnetimes does with the hedding. This is of the great folds often make a very
(8) Thus a pon-foliated crystalline a some exient foliated by pressure (folA mineralipation) : lice some gneisses anites. Wome sclaists out of other e eariser folation, or it may more fissile
because a rock which is now, loth macruscopically and microscopically, a gneis may prove to be a granite which has in sume parts gielded to pressure more than in others, (9) As we pass outwards from the great central gratutoid masee; we come to gueises anl schists where the evidence of some kind of stratification becomes mote marked; hands of crystalline limestone, quartzite, and gramulite being associated with mica zchist of many kinds-simple, garnctiferous, staurolitic, actinolinic, and the likethe bands of ditterent mineral character and composition varying from mere streaks to layers up to many yards in thickness. In fact the above-named rocks are associated exactly as limestoner, sandstones, and clays are associated in the ordinary serlimentaries. (10) Athongh the crushing of a crystalline rock in stru, or the squeczing and shearing of a breccia or conglomerate of crystallthe fragments, occasionally gives rise to local difficulties, these are on a small scale, and sedimentary beds belonging to the Palieozoic or later periods of deposition are generally readily distinguishalle from the whole of the crystalline series. Though folded and faulted in the most extraordinary manner, the members of the two series can generally be separated and in the Alps there is no evidence of a mingling of the one with the other in the process of rolling out or squeezing toge:her ; so that, after patient study and microscopical examination, we can generally decide without hesination whether a particular set of rocks has originated from the crystalline or the sedimentary series. I do not say that we can always decide whether a schist or a gneiss has originated from an igneous rock or from an older schist or gnetis, but I think that in the Alps we can say that it has originated from one of these. Fortunately, intrusive roeks are very rare in the Palaeozoic and later deprosits in this part of the $A_{p s,}$. (ti) Thus, although the Tertiary metamorphism of the Alpine rocks is very important, it is more pretentions than real, and its effects seen to have been the greaiest where it has found a rock already crystalline to act upon. Hence I believe that every true gneiss and schint in the Alps is much older than the Carboniferous, and is protably older than any member of the Palazozoic period.

The Dirction of Glaciation as ascertain d by the Form of the Strice, by Prof. H. Carvill Lewis. - As there seemed to be a disagreement between certain Scotch geologists and the Irish geologists regardin' the infereuces as to direction of glaciation to be deduced from the form of glacial strix, the author was led to bring forward some observations of his own, made in America and in Great Britain, which threw light upon the disputed point. Well-preserverl strixe are frequently blunt at one end and tapering at the other, the shorter ones sometimes resembling the characters usel in the cuneiform inscriptions. This form may be seen in striae of all sizes-from those several yards in length, when the blunt enil may be an inch or more in breadth, to the finest scratches, where a microscope is necessary to detect any difference between the two ends. As shown in the keports of the Boulder Committee of the Koyal Socicty of Edinburgh (Fifth Report, pp. 18-20, 29. 58 ; Scventh Report, p. 1S) and elsewhere, certain Scotelngeologists regard the blunt end as the point of impact of the strating agent, and as therefore facing the direction from which the motion came. On the other thand the Irish geologists (" Memoirs of the Geological Survey of Ireland," Explanation to sheets 86, 87, 88, p. 55 ; Explanation to sheet $193, \mathrm{p} .18$, \&c.) interpret the shape of the strix as indicating motion in the opposite direction, belicving the tapering end to point to the dircction from which glaciation proceedet. The point at issue is of importance, especially in outlying islands and elsewhere, where other indications of the direction of glaciation fatl. In Pennsylvania, which is crossed from east to west by the terminal moraine of the great ice-sheet, and where the glaciation is uniformly in a south ward direction, the author bad ohecryed that the blunt enth of the strix, where that surfaces wete sudied, were always to the soath ("On the Terminal Moraine in Pennsylvania and Western New York." Report Z, Second Geological Survey of Iennsylvania, pp. 33, 85, 86, $\mathbf{t 0 7}$, 275). In certain instances the mode of formation of the strix was also indicated by their shapes, which showed that a stone pushed along under the glacier had ground in deeper and deeper until in some eaves it stopped or hopped out, in other cases was ground down to another cutting edige, and in others turned over, and began its work of engraving by a fresh and sharp corner. The peculiar gorges at the farther end of certain strix showed a sort of slow rocking motion in some stones before they finally turped over. The autbor's olservations in Ireland, both at bealities where there could be no doultt as to the direction of

？

NATURE

等 1 ma

 si E spl the purtion the desmninel wni olecturs the

出落病，

of wimilu mechanical movemment ite

 at sulkors imerred that ragimel ar varily he somphaed to map portioner

 he pootinal mqe sual poosible wote of the
 fillowern on she ont hand，and Mul sive The other，ull las temparary cloor in abhi． 1 the Ityhhant Mewsir of Marchim of nol the wath of ihe Arelowas greverny yw Kalina of lie，C．Callaway＇s perer an ilita virw of the creat plyyical brak betwen in

 oun mary of hur ven virun an dedien tom hat ih．1hme hibsil doatrict is 1382 mod 10 h hr．that comeprion lelag mado of ol \ln / B winet the mely pol formitione io ale Doert

 brinicut ghow appews lo he comper of

 evere gere Ni poump phowal riviond

 $\mathrm{it}_{\mathrm{in}}^{\mathrm{in}} \mathrm{iv}$

[^20]nica aud quartz, are developed. The most intense mechanical netamorphism occurs along the grand dislocation (thrust) planes, where the gneisses and pegmatites resting on those planes are rushed, dragged, and ground out into a finely-laminated schist M/ylowifc, Gr. mylon, a mill) composed of shattered fragments If the original crystals of the rock set in a cement of secondary Iuartz, the lamination being defined by minute inosculating lines fluxion lines) of kaolin or chloritic material and secondary :rystals of mica. Whatever rock rests immediately upon the hrust-plane, whether Archeean, igneous, or Palreozoic, \&c., is imimarly treated, the resulting mylonite varying in colour and somposition according to the material from which it is formed. The variegated schists which form the transitional zones between the Armaboll gneiss and Sutherland mica-schists are all essentially mylonites in origin and structure, and appear to have been formed along many dislocation planes, some of which still show between them patches of recognisable Archrean and Palxozoic rocks. These variegated schists (Phyllites or Mylonites) differ locally in composition according to the material from which they have been derived, and in petrological character according to the special physical accidents to which they have been subjected since their date of origin-forming frilled schists, veined schists, glazed schists, \&c., \&c. The more highly crystalline flaggy mica-schists, \&c,, which lie generally to the east of the zunes of the variegated schists, appear to have been made out of similar mnaterials to those of the variegated schists, but to have been formed under somewhat different conditions. They show the fluxion-structure of the mylonites ; but the differential motion of the component particles seems to have been less, while the chemical change was much greater. In some of these crystalline schists (the augen-schists) the larger crystals of the original rock from which the schist was formed, are still individually recogrisable, while the new matrix containing them is a secondlary crystalline matrix of quartz and mica arranged in the fluxionplanes. While the mylonites may be descriluet as microscopic pressure-breccias with fluxion-structure, in which the inter-titial dusty, siliceous, and kaolinitic paste has only crystallised in part ; the awgen-schists are pressure-breccias, with fluxion-structure, in which the whole of the interstitial paste has crystallised but. The myhmi'cs were formed along the thrust-planes, where the two superposed rock-systems moved over each other as solid masses; the auyen-sikists were probably formed in the more central parts of the moving sy=tem, where the all-surrounding weight and piessure forced the rock to yiell somewhat like a plastic boily. Between these augen-schists there appears to be every gradation, on the one hand to the mylonites, and on the other to the typical mica-schists composed of quartz and mica. Like the mylonites, the crystalline augenites and micalites present us with local differences in chemical composition (calcareous, hornblendic, quartzose, \&c.), suggestive of Archean, igneous, or I'aleozoic origin. They also show similar structural varieties dne to secondary physical changes (frilled, veinetl, glazed, \&c.), as well as others due to the presence of special minerals (garnet, actinolite, \&c., \&c.).

On certan' Diatomacoows Defosi's (Diatomitc) from the Feat of Aberdenshite, by W. Ivison Macadam, F.C.S., F.S.C., \&c., Lecturer on Chemistry, School of Medicine, Fidinburgh. - The material was found below the peat in certain districts of Aberdeenshire, but principally in the tasin in which lie l.ochs Kinnord and Dawin. After removal of the surface peat-fuel, the lower and more highly mineral portion was cut in blocks and air-dried. The sulstance then consisted of almost pure Diatomacea bound together by the remains of Spragnum, Fquisetacea, \&c. Besides being found underlying peat the substance was also obtained on the shores of Loch Kinnorl, and the moe pure Distoms were thickly distributed over the bottom of the deeper tions of the lake; these latter, however, from the want of ding obtained from the marsh plants above mentioned conld rendered readily available for market. An interesting arrling these deposits was that whilst in Loch Kinnori! supply of the Diatoms could be obtained, in the Loch Dawin scarcely a single Iiatom (recent or This was probably due to the fact that whilst of Loch Kinnorel flowed from hilts consisting disintegrated granite, and consequently bable portion of soluble silica, the loch from hornblendic mountains, and in solution. The material was incture of dymamite, and a concearded to the works for this
purpose. Unfortunately, however, dynamite had fallen to a great extent out of use, being replaced by the more powerful blasting gelatine, and thus what hatl at one time appeared as if it would prove an important local industry hat entirely fallen away. Other u-es, however, could be found for the material, such as the manufacture of ultramarine, for which, from the very small proportion of iron present, the diatomite has more especially to be recommended. As an absorbent it was of fully double the value of the ordinary (ierman varieties of "kieselguhr."

On Some Kicont Earthquakes on the Dotunham Coast, and their Psobable Causes, by Prof. G. A. Lebour, M. A., F.G.S.-For the last two years frequent slight shocks, resembling those of earthquakes, and accompanied by rumbling noises, have heen felt at Sunderland. Much discussion has arisen as to the cause of these, but that they are due to natural causes is now quite certain. Sunderland stands upon magnesium limestone, from 300 to 400 feet thick beneath the town; the rock is riddled with cavities of every size, some so small as to give a vesicular character to the stone, some large and forming true caverns. These cavities are partly due to the washing out of marly matter, partly to solution of the limestone. Every thousand gallons of Sunderland water contains one pound of stone ; in this manner about forty cubic yards of magnesian limestone are yearly pumped up by the Water Company, and of course a much larger quantity is removed by natural channels. This action enlarges the cavities ; the sides and roof fall in, thus accounting for the shock. The same explanation applies to the "breccia gashes" which are exposed along the shore. These are fissures filled with breccia. Quite recently similar shocks to those here referred to have been observed at Middlesborough. Pumping the brine from the salt deposits, 1005 to 1200 feet below the surface, may produce cavities into which the rock falls.

Some Examples of Pressure-Flwxiou in Pennsylvania, by Prof. 1I. Carvill Lewis, - The three localities in l'ennsylvania described in this paper lie in an area which had been especially studied by the author for some years back and had led hitn to conclissions similar to some of those recently announced as the result of studies in North. Western Scotland, which have justly attracted widespread attention. (1) a zone of ancient crystalline rochs extends across South-Eastern Pennsylvania, near Philadelphia, which is generally believed to underlie the lowest Cambrian strata and to be of Archeean age. This zone is about a mile wide where it crosses the schuylkill River, south of Conshohocken, and it is from this point to Westchester, some twenty miles westward, that the present remarks especially apply. Although in many portions exhibiting a distinct gneissic lamination, the rocks of this zone are helll by the author to be of purely eruptive origin, con-isting of syenites, acid gabbros, trap granulites, and other igueous rocks, often highly metamorphosed. It is the outer peripheral portion of this zone to which attention is here directed. While the rocks are massive in the centre, this outer portion has been enormously compressed, folled, and faulted, with the result of producing a tough-banded, porphyritic fluxion snciss identical with the "milonite" of Lapworth or the "sheared gneiss" of Peach and Hornc. So perfect is the fluxion structure that the rock resembles a rhyolite. As in the "banded granulite" of I.chmann, elongated feldspar "cyes" lie in flow ing streams of biolite grains and broken quartz, the streains often parting and aggin meeting around the porphyritic "eyes." Occasional crystalline eyes of hornblende remain, but most of it has been converted into biotite. A point of especial interest is that the feldspar of the eyes is quite colourless and free from inclusions, like the sanicline of recent lavas, while, on the other hanl, the feldspars of the inner and massive portions of the zone, out of which this outer portion has been reformed by pressure tluxion, are full of inclusions and have the "dusty's appearance so common in ancient feldspars. The fre-h-looking leldspar eyes are therefore believel to have been subsequently formed as a result of a recrystallisation of the old material under the inth:ence of pressure fiuxion. In similar manner the biotite has been made out of the cld hornblende, garnets have been developed, and the quartz has been granulated and optically distorted by pressure. The influence of pressure is also seen in certain Cambrian strata in the immediate vicinity, where a sandstone containing cylindrical casts of scolithws liwaris, apparently identical with the "pipe-rock" of North-Western Scotland, has, like it, been compressed to such a degree that the vertical cats are flattened out and elongated in the dircetion of lamination
to several times their original leng:h. In the same sandstone quartz pebbles have been pulled out and flattened, while sericite has been largely developed along the cleavage planes. The pressure can be shown to have been directed mainly from the south-cast. (2) The second locality is in the midst of the Laurentian area of Buek's County, and is known as Van Artidalen's Quarry. A mass of crystalline limestone is here mingled with an eruptive tiorite in such manner as to show that it had actually flowed like an igneums rock, and had caught up inclusions, The results of extreme metamorphism are exhibited in the development in the limestone of graphite, wollastonite, and other minerals. The chemical changes and interchange of elements which might result from a loosening of molecular combinations under extreme pressure and their subsequent "regulation" into new compounds were discussed as among the phenomena of mechanical metamorphism. (3) As an American instance of the conversion of an intrusive diabase dyke int, amphibolite schiot, analogous to the case recently described by Teall, a long nawrow belt of sphene-bearing anmphibolite schist in the City of Philadelphia was adduced. This leelt with distinctive mincralogical characters cuts across the metamorphic mica schists of the region unconformably, and is believed by the author to be a highly metamorphosed intrusive dyke of l.ower Silurian age, The original augite or diallage has been completely converted into Gbrous hormblende, and the influence of pressure is shown in the perfectly laminated character of the schist in the close foldings produced, and in the minute structure of the rock. Some interesting details of the latter having been photographed, diagrams coustructel fron these were exhibited. These showed that the rock was traversed by a parallel series of slips and crushings, and that about such lines of fautting and crushing there wa- a peculiar arrangement of the lines of hornblende crystals, not very unlike the arrangement of iron filings about the poles of a magnet, such as could not be satisfactorily explained by any theory of aqueros depresition, but pointed to a lamination by pressure.

SECTION D-Btotogy

On the Cause of the extreme Dissimilarity troteren the Faunas of the Ral Sea amd Mediternanean motaithsfanting their recont connetion, by l'rof. Edward Hull, LL. D., F.R.S. - The faunas of the Meliterranean and of the Ked Sea are so unlike that if the beds of the two seas were upraised, and their contents ex. amined, naturalists would probalily reier them to distinct geological periods. The dissimilarity is greater than was formerly supposed. In Woodward's "Manual of the Mollusca" it is stated that seventy four species of mollusks are common to the two seas, but I'rof. Issel, of Ginoa, places the number at eighteen, or about 2 per cent. Equal ditferences exist if we compare other great groups of life; in fact, as Prof. Hacckel well observes, the fauna of the Red Sea is related to that of the Iudian Ocean, the fauna of the Mediterrancan to that of the Atlantic. This extreme dissimilarity would not surprise us if it were not for the proofs of recent connection between the two seas. Evidence of old sea margins, up to about 220 feet above the present sea-level, are frequently found abong the Nile and in the valleys and plains of I'lilistria. As many of the marine forms found in these deposits still exist, the date of the submergence may be safely referred to that of the Pliocene; but it continued to a later perionl, and (in the author's opinion) it to some extent remained to the time of the Pharaohs. The existing fauna probably date, back to Eocene times, when the ocean spread widely over the area in question. In the Mincene period the main outlines of land and sea as we now find them were marked out, the deposits of this age being here small and local. Under the extremely different conditions existing in the two areas, the fauna during and after the Mosene pertent became diferentiated. The connection re established during and after the lliocene period was insufficient to destroy these differences, although it allowed a naingling of forms to swome extent. The maximum submergence was alrout 220 feet: but as the summit level between the two seas is alosut 50 feet, the depth of water would only be about 170 feet at the uaximum. Only littoral and sballow-water forms would conss in the aduh state ; lout many forms inhabiting deeper water in the adult state might have cressed when in the freeswimming larval state. Whet! the land again rose, and the marine sirats were finally effaced, the different physical conditions of the two seas would again come into effect. The difference
of temperature is now very considerabic, and proleht much greater during the Glacial period, especially if, an appe probalile, the eastern or Ievant hasin of the Mediternaneas separated from the others; for into this would a, whe c waters of the Black Sea and of Central Europe, white the Sea would receive warm water, and be itseli exposed rays of a tropical sun. It would be an interesting sare. inquiry-Which of these faunas most closely resembles the the original stock?

On the Tay Whale (.Megaptera Tongimanis) and aie H_{w} recently obained itt the District, by Prof. Struthen,-Struthers gave a description of the various part, of tos re: of the whale. In addition to the Tay whale member other whales recently obtained in the district wert as for the purpose of comparison, and the analogy of its $=$, to that of other animals was specially referred to is tre show its identity with the mammal. Frof. Flower joiber discussion which followed, as.d remarked that they Doo idea at least as to the origin of the whale : it carried tsp in every part of its body. It liad been thought that the ex:that live upon land had been derived from progea:formerly lived in the sea, and that the mammals $=$ passed through an aquatic or marine stage before they land, but the observations of anatomy showed that the have been the case. Tliere was no doube that the $\mathrm{w}^{2} \rightarrow$ been derived from a four-footed land mammal. AL tions, for example, had shown that at some period of whales have a hairy covering, generally in the regua mouth, that hairy covering being fanctionless add wot lost even before birth. In the same way whales st^{2} at stage of their existence are furnished with a completeeth, the rudiments of the teeth of the land mameorgan of smell, although in a rudimentary state and $=$ species almost entirely gone, also points to the orfs whalc.

Sowe Puints in the Anatomy of Sourerty's Ihei, :Turner. - Prof. Turner remarked that N/csoplouira he Sowerby's whale, of which he had dissected two specase now for the first time dissected so that the viscess of th were seen lyy any anatomist, or that its tail and palisc. had been figured. The tail presents a very materiai from the customary tail in the cetacea in having the :border smouth instead of notehed. Dr. Turner calie! : in detail to the intestinal and linb structure of thro whale, showing the aftinity or resemblance of the ce:ser. reptilious and the amphibious, particularly in refereez corpus. Prof. Flower said he was glad to fod the Turner had found some intention for the muscles of the For all that they were very rudimentary as compared same muscles in other animals, and he thought tha: : have to modify his views on this point as he had has regard to many other things throughout life. I'ruf X Vale College, said the intermediary bone pointed oft Turner interested him much.

On the Corvio al Pert-brie of the Grecmiand $\mathrm{Kig}_{\mathrm{s}}$ II Prof. Struthers- The reduced condition of the u|दet $3>$ transverse processes was commentel on, and the fies their different parts explained; also the completely fodition of the bodies of the seven vertebrec. A peati condition of the neck of the lilot Whale (ciouration was demonstrated, slowing in the young condition the to epiphyses on the rudinentary vertebre. Other sientrated the fibtous condition of the transverse prowe Narwbal and licluga.
 Struthers. - The point was that in the antertor vet neural arches meet lehind the body, covering it dee. thutting it enturely out from forming any part of the w^{2} spinal canal.

On the Iterelopment of the Foot of tine Ilurse by Pris $\alpha=$ -Ir. Struthers called attention to the fact that the eqs,t the rudimentary metacarpal and metataral bone in 8,6 upyer or functional end, but at the relluced cod ou from whichgalsat sleader ligament proceelel

viderell a

of cri
why
fors
The
cetac
specimen was shown of a two-toed horse. The valuable earches of Prof. Marsh on the descent of the horse were ecially alluded to. Dr. Stuuthers demonstrated avother fact anected with the development of the foot of the hon: -that : first phalanx, or pastern bone, has an epiphysis at both ends. On the Visecra of Gymnotus clectricus, by Prof. Cleland. dependent of its electric organs, this fish has a number of narkable internal peculiarities. The curiousspongy protuberces of the mucous membrane of the lmiccal cavity are well own to zoologists. The two swimming-bladders are remark. le for their relation to the kilneys; the anterior swimmingudder being a small structure between their anterior extremities, d the larger posterior swimming bladder being situated altother behind their under hinder enils, while the duct of the ter ascends by the left side of the renal outlet, to be joined the duct of the other bladder before entering the gullet. The lorus also is remarkably contracted. Wut the most striking d altogether curious arrangements are seen on the ventral wall the abdomen. The intestine passes forward the whole length the abdominal cavity to the vent, and on its under side is a ig renal duct as wide as itself, and opening immediately hind the vent; while, opening into this duct close to its out, are the ducts of the two ovaries, which lie one on each side, sir morphologically anterior extremities placed posteriorly, as in process of development these organs had been pulled sund from their proper sub-vertebral position until completely erted.
74e Spiracle of Fishes in its relation to the Hicad, as devel. d in the Wi,her Vertebrates, by I'rof. Cleland. - A very traurlinary mistake can be shown to be prevalent among bryologists, to the effect that the spiracle correspontls with z tyapanum and external auditory meatus in the higher verteates. This is not the case. The spiracle is pre-oral ; the 1pmaum is post-oral. The apparent sequence of the spiracle th the branchial clefts occurs, as Balfour described it, in the bryo of the dog-fish; but for all that, and although it has liusentary external gills attached to its margins in the entryo, s in front of the nandibular arch and above the maxillary x. Hetween the middle anil lateral frontal processer is the stril ; loctween the lateral frontal process and the mandible is : space into the upper part of which the eyeball projects, and m which the lachrymal duct is developed; while between the it and second visceral lobes is the external ear; and it is :hly probable that the upper part of the first brauchial cleft is mologgous with the clefts in front of and behind the literal nital process. Thus a certain amount of homology would ist Jetween the spiracle of fishes and the lachrymal duct. Is the Commissural Theury of the Corpus Callosum Corract? D. J. Hamilton, M. B., I'rofessor of I'athological Anatomy, serdeen University. - The results recorded by the author were tained by certain special methuls of preparation. They -nt to prove that the corpus callosum is not an inter-hemiterical commissure, as is generally supposed, but that it is in slity the decussution of a particular system of fibres on their y downwards to join the inner and onter capsules. These res are not to be confounded with the motor and other direct res derived from the cerchral cortex, and which decussate at the point lower down.
The Kivicence of Comperatrite Anacomy with resurd to calisatuon of Function in the Cortex of the Brain, by Alex. 11, M.A., M.B. Cambridge. - The object of the japer was show that the theory of the localisation of function in the tex of the brain must be submitted eventually to comparative tlomy for proof. The key to the arrangensent of the lower its of the central nervous system is to le found, as the author 1 elsewhere shown, in its seganental disposition: the grey tter is disposed in clamps the cell, of which bear a definite merical relation to the fibres of borly nerves. The problem cussed in the present paper was the relation of the grey tter of the cortex to this lower grey matter, and therefore to - boriy nerves. Is each region of the cortex equally in relan with all the regments of the "central grey tube"? or is corter also diviled up into areas, the superficies of each of ich varies as the amount of grey matter in the clump of the
-ystem with which it is related, and therefore as the bbres in its associated nerve. For this investigation telimitation of the cortex are necessary, and no alic for the paypuse if the fissures fail. The it the fissures is, however, established by the They are reaiarkably constant
in their arrangement throughout animals of the same type, and in animals of different type they are very constant with regard to the order of their appearance, their progressive extension and permanent depth. The author of the paper expressed himself content, on account of the precision with which the fissures respond to the ordinary tests of homology, to place himself unconditionally in their hands, and the boundaries of the various regions of the cortex being thus marked out, it remains to devise a system of men-uration by which the superficial area of each region of the cortex may be determined for comparison with the cross-sections of the several nerves. As yet no satisfactory method of measurement has been devised, but even in the absence of exact data important results can be obtained by the observation of the brains of such animals as are conspicuous for excess or deficiency in the development of the muscular system or of one or more of the senses. As examples of such results Mr. Hill exhibited diagrains of the brai ss of the sheep, cat, pig, dog, and otter, enlarged from tracings of the pictures in I.curet and Gratiolet's Atlas. It was shown that, although it is impossible, as yet, to map out the brain into areas associated with the several nerves, it is quite possible to predict from the appearance of the brain the principal sensory and motor endowinents of the animal to which it belunged. In the main Mr. Hill's results confirm those already obtained by Ferrier and other experimental physislogists; they seem, however, to show that they are open to correction in certain important points with regard to the areas allocated to the senses of smell, hearing, and facial sensation.

The Action of Cold on Microphytes.-Prof. M'Kendrick, Glasgow, gave an interesting account of the methols of trying to destroy small organisms like bacteria, not as is commonly done by heat, but by cold. It is known that by means of Coleman's cooling machine meat may be kept fro n putrefying for a considerable time, but in attempting to sterilise a puirescible solution by means of cold, it was found that, though in some caves putrescence was delayed, in no case were the organisms completely devtroyed. Organic fluids were expose i to temperatures more than $t 20^{\circ}$ below $0^{\circ} \mathrm{F}$., but on thawing they were found to contain liviug organisms still. Thus the hope of preserving putrescible matter by means of cold-an inıportant economical result-is, so far as investigation yet goes, destroyed. The organisms under colll seem to be in a nearly solisl state, though we cannot call it a crystalline state. In a paste solution the water is crystallised under cold, the paste remaining spongy. Possibly cold may separate frum these minute organivms the watcr they contain, and this water is again absorbed on thawing. Meat under coll becomes very friable, while yet minute frag. ments of it show the same microscopic constitution of muscle. It is well known that frogs have been found in blocks of ice and been revived. Frogs have been frozen at $20^{\circ} \mathrm{F}$. in about half an hour. On thawing slowly the animal, in two instances, completely recoverel. When it was frozen for longer than half an hour it did not recover; but, though rellex action was gone, there remained some irritability both in nerves and muscles. It was found also that certain vital functions may be arrested by cold, and thus conceivably higher organisms may be kept vitally inert for an indefinite time. Experiments were also tried on warm-blooded animals. A rabbit subjectel to a temperature 100° below $0^{\circ} \mathrm{F}$. recovered. No temperature lower than 73° lvelow $0^{\circ} \mathrm{F}$. has been obtained in free atmosphere. I'rof. M'Kendrick gave a short sketch of the literature of the subject.

The Acien of Ozmisal dir upon MicronOrzanisur and Albumen in Solution, by J. J Coleman, F.I.C., F.C.S.-This paper described a number of experisients conducted by the author in conjunction with Prof. McKendrick, F. K.S., being supplementary to their joint investigation upon the influence of cold on microphytes. Air artificially impregnated with ozone by means of a Kuhmkorff coil, so as to contain a much larger percentage of ozone than any natural atmospheric air, was passed continuously through a t per cent. solution of white of egg placed in a glass flask, the inlet and outlet tubes of which were carefully plugged with cotton wool previously to commencing the experiment. It was found that a stream of air containing an amount of ozone equal in weight to the albumen in solution passed through 100 c.c. of the liquid for thirty hours, failed in producing the slightest trace of oxidation, and that the ozonised nir passed through the liquid quite unaltered. During the course of the experiment and for six days following the developnent of micru-organisins ceased, but at the end of that time, and notwithstanding the eotton wool plugs, the liquid became slightly
turbid from the presence of organisms. As dilute hydrogen peroxide is without action upon alhumen, the conclusion seems inevitable that albumen is practically indestructible by any atmospheric agency without pievions splitting up by micro-organisms, and further, that x hilst micro-organisms cannot develop, and are probably killed in an czonised atmosphere, these spores are not easily destroyed by its agency. These results confirm the , urmise of the late Dr. Angus Smith that putrefaction is a necestary preliminary to oxitlation in all cases of nafural river purification. Prof. Burdon Sabderson, Dr. W, B. Carpenter and (apt. Douglass Galton all conmented upon the practical value and interest of this paper, Capt. Douglas Galton observing that the sooner organic matter of sewage is got on to land the hetter.

The C'se of Graphic Represcmations of Life-Histories in the Tenching of Bo'any, by Prof. Bower. - This was a paper referring to a series of diagrams prepared by the author to bring in review the chief facts in the life-history of the moss, forn, equisetum. ©daginella, a conifer, and an angiosperm. Prof. Bower pointed out that these diagrams could be extended to include lower forms, and that they are only intended for use afier the stmelent has mastered the facts in detail in the laboratory. Having described the diagrams and referret to some interesting processes of vegetative reproduction in the mosses and ferns, the author then proposed for discussion a series of questions as to the advisability of employing such diagrans, or of extensling their use. The discussion which followed was taken part in by Sir J. Lubbock, Profs. Bailey Balfour (Oxford), M'Nab(I)ublin), Trail (Aberdeen), Mr. Marshall Ward (Owens College), and others, and several suggestions were proposed for rentering Prof. Bower's graphic representations still more graphic.
d Netu Theory of the Sonse of Tirste, by Prof. J. Berry Hay* craft. -The author showed that "quality" in this sene depends upon the nature of the atoms fonnd in the sapid molecule, \boldsymbol{A} stady of the perionlic law demonstrates that similar tastes are profliced by combinations which contain elenents such as fithium, soclum, putasium, which show a perionlic recurence of ordinary, hysical properties. Among the carbon compounds thone which produce , imular tastes are found to contain a common "group," of elements. Thus organic acids contain the group C(O, ()H, the sweet sulstances $\mathrm{ClH}_{8}, \mathrm{OH}$. There is no relation between quality uf ensation and gross molecular weight, except that sulstances of either very sinall or very great molecular weight are not taved at all.

On the /Iybridisation of Salmonilat at /Wracietown, by Francis I'ay.-1)uring the la-t eleven years Sir J. K. Gibson. Maitland, at II wietonn, near Stirling, las devoted much attention to this sulpect, and gone to great expense in onler to etliciently carry out the mathy expetiments he has instituted, while he has likewive atfordet the author facilitics for pernonally watching many of then, and furnished him with data as well as witl specin ens, When we connder that the ova of telerobte an or bony filhes have, as a rule, to lee fertilined liy the wilk of the males diffimesl in the surron in lin water, it is not elifficult to believe that this fluid from the male of one genns might come into contact with the eggs foom fivh of another verecos, genus, or even family, and a hylurid offopring be thin reca ioned.) Isut the size of the micurpyle of the ovum and that of the permato, foobl of the milt mont lee of conforming eapacities, or fertlisation would lie a ply-ital imposalulity: It womll! alysar foum the experiments mate- that the fillowing conclusinas may, with more or les prolalatity, lee drawn ;-(1) almon and tront, trout and char, and dulicron: Apecties of char, may interbiced anl give rice to fersile bshrivls. (2) Ifthrits mined frum 1 oxhleven tront enge fettilticl hy malum nilt, lireed in their fourth year, mimilar to young frmale salan+n ! rpt unter the same conilitions. \{31 The anwhanama instinct is not loot in these treut and solumen hyl rils. $14!$! 1.1 :ing foum the periot of lirceling in the forchaing lyylitht, the male element is prepotent. (5) In hybrids raiwed fratu lande. leven tuont eggs ferthleel by the mitt of the American char, the male element would appear to lie prepertent, if we julge -imyly by the conlour of the offoping. (6) In hylriat rate el fronn
 the female clement would aplear to le prepotent, if we juike smmly liy the culour of the uffioring. 17; In hylirits rai-e. from American clar eqges fertilived ly the milt of the liritos char, the male element would appear to be prepotent, if we may judge siaply by the chlour of the uffining (s) \ln atl instance, of hyliridi-ation between defferent yeccies, av l ctueen salmon and trout, or trout and char. numerous instances of mal.
formation and great mortality occur umong the \therefore. much less when two forms of char are intercrosact crossing hybrids both the eggs and milt were fucad ty but the malformations and mortality very great Tar however, at Howietoun are not yet of sufficaces ace: safe deductions on this head. (10) The age of the pl: cises great intluence on the vitality of the offspme. very young, we may expect a lange percentage of ext as well as dropay and other diseases of the offspring.

Chinese Inscrt White Wox: by A. Hosie. - The tat with a reference to the Eurojean and Chose * mention Chinese insect white wax, andl then procer that, although the province of ssu-chuan, in Wever where be has been stationed for the last three years, wax-iniect and wax-producing country in the Fens. and wax are found in other provinces. Mr. Huse upon by the Foreign Office to collect for Sir Ju: specimens cinnceted with, and all possible informa: subject of this industry, and he states that the proeet revision, with additions, of a Keport already in : Parliamentary paper in February last. He descrite producing country, the tree on which the insects are the insects themselves, and their transit from the railen chang, their breeding-ground, in the west of sas- 3 the mountains to Chiarting Fu, the habitat of the a This tes is then described, and details are given c ment of the incects, their suspension on the trees, the of the wax, and of a parasite on the insects. Ibe removing the wax from the branches of the tree 20 l it for market is then explained. The author then result of an examination of the insects afier the $=21$ fully deporsited, finally passing to the anmual uqua-:white wax prolluced, its value, and uscs.

On the Size of the firuin int Exatind I onemato bry I Marsh.-I'rof. Manh, of Vale College, sand that yeari he had directed his attention to the subject of the i.rain in extinct animale. In every insance he i. the mammal from the lower Tertiary hat very, matile: carried out his investiga:ion into the upper Iertiary. that the brain was much larger in the plinceose :miocene. All the tertiaty nammals had small teuas a grathal increase in the size of the lrain clursig and this increase in the sige was generilly in the ser. splere or higher prostions of the brain. In wase convolution of the lrain liad gralually trecume trove In some the cerebellum and the olfactury lohes hat co° ished in size. There was now evirlence that the sis law of train growth holls goond for birl, and reftuk Jurawic perionl to the present time. The brain of belonging to a vigor, us race fitted for a long survival a than the average brain of that period in the same grow. brain ef a matmmal of a declining race was smalle averige brain of its contemporaries of the satase gt s small animals now exivting lasl propurtionally larger in the langer animals, and young animals harl propertions brains than alult animats. They found sume r. vamples x hich bres hyht on this 'grestion. For inve the I incone they laal an ommal, the oldest known anand the , hinecerns, ar l it has an exceptionally lange brais all the fiste tontether it veenel as blough this t raing an amp"nt.met clement in the survival of animals. If I ectinc lorge and unwichlly with a small brain, it lable :o ntfer from any whange of climate. In other curfy time the lig losin conquered as it is the lig
 f.u tory t , finl a case w lares the facts worked out coincing previnu-ly firmes theoria, becau-e that was not alsp ca-e, aril wactima - the facts or the theories had to pr wall. luthis case they hanl no such difficulty ; and ther than: the Simelicau (iwvernment for the way in whit (ainet "1p I'r. f. Darsh's work and were disteminating i
(1) the
Ifriuth's :
the numh
" "pourate th
with mutrhe

that of ($\left(\mathrm{c}_{3}.\right)$
Lacertalia in the
abence of coraco: :
viele. Equally maried affinities with the Dinosauria may be ced in the carpusand tarsts, sternum, pelvis, and skull. While nilarly the conparatively large size of the cerebellum, the sence of a urinary bladicr, and the presence of pulmonary erticula or rudimentary air-s.ies, are all foreshadowing: of tithic structure.
The Orifine of the Fisties of the Sa of Gaiter, by Prof. Huil.the almondant fishes of the Sea of Thberias nearly one-half of : species are peculiar to the lake and its tributaries, while of z rest only one, Bicunius tufulus, belongs to the ordinary sditerrancan fauna; two others are found in the Nile ; seven ler species occur in the rivers of South. Western Asia; and ten wre are founl in other parts of Syria. Tristram convideced It this assemblage pointed to a clone affinity of the fauna of : Jordanic hasin with that of the rivers of tropical Africa; but ate most struck the obeerver was perhaps the spectality of the ecies to Jordanic waters, sixteen out of a total of thirty-six ecies lecing peculiar. Assuming that the forms which are amon to Jordanic and other waters had been distributed in a anner similar to that by which they had to account for the stribution of lacustrine forms in other parts of the world, they "l yet to account for the presence of the forms which were ccial and pecular. After referring to the formation of the rdanic havin, I'rof. Hull argued that by the subsidence of the nor of the sea along the line of the Jorilan valley an inland se was formed whose waters were first derive 1 from those of e ocean itself, in which were enclosed the fishes, mallusks, "d other forms which inhabi'ed these waters them elves. The w of "descent with mulification" would come into operation, id they might suppose that thronghout the Miocene and Plione period, the procese of m diffication in form, colour, and thit gralually pisceded. The fittest furms would survive, ut differentiation letween those of the nuter and inner seas ould result in an almost ensire specific change l'rof. Hull on read a paper on the cause of the extreme dissimilarity : ween the famnas of the Red Sea and Medtermanean, notwithanding their recent connection.
Tige Sf. Androws Sharime La'ma'm. - Prof. M'Intoih staled iefly the structure and arrmgement of the: marine labratory St. Audrews, and unate some general remarks on the work one during the last nime month, thise. A great many of our roll fisles, he said, were carefully examinel in rezand to the evelopment of the e,sis and the gronth of the young fintes. hout twenty species were examine I in this way. They expeenced some difficulty with some of the forms, on account of aeir voracity, particularly with the coll. They found that a corl P five inches long would s:allow a cod of three incles, and if crould nor ges it all down at oace, it would keep it in its throat If the head pratt was dizested, and then draw in the tail. folluaca were stulied chielly in connection with the developrent of the muvel, but he might say that very hary potions ere held in regard to it. Some larger forms were also es mined, inclaling protyoises and sharks. One porpoise was xtremely interesting. 11e liad noticed it for sone time in the ay, and that its notions were sery peculiar. 11c could mot anke out what it was duing there so constantly in shallow water. hut some days afteran dy a lirie temale was caught in the almon nets, and they found that it was a female giving milk. is milk was of a moat interesting kind, and formed the sulject f examination and analysic by Irrof. I'urdy. It was as dene s cream, and of a deep yellow colour.
(In a Chewical D.picence betwown Livins and Dead Pravo lasm, liy 1/r. Oscar 1.oew, of Munich. -Prutoplasm. it was sund, contains certain allehyd groups, which account for the ${ }_{x}$ treme mobility fod realiness of chinge in living piotoplasm. liece aldehyd groups can the reluced by very dilute a'haline olutious of silver salts. Spiragura, one of the lower a/za, acts a this solution in a peculiar way. Living protoplaver reduces the alt, while dead protophasm does not. The syecific gravity of the rotoplasm of Setirograg was increave l, and was found to c ntain Uler deposited in its interior. Ansyria, or the effect of nitrate A wibger on the haman subject in certail dinerses, was foum in

dead protoplasm, and Dr. Loew took up the question as to what exactly this change was. His investigations are an important step in deciding this most important question. Prof, Stirling said this gave u? a new test for living protoplasm. The chicf thing to scttle was what exactly causes reduction of the silver.
Diestion of /ruterds in /hints, by Sidney Martin, M.D. (Lond.), B. ©c., M.R.C.P.-Of proteolytic ferments occurring in plants two kinds have been described-one acting like animal pepsin, and occurring in carnivorous plants, in the seeds of vetches, hemp, flax, larley, and malt, and the fruit of the fig, Fi,us cerica; the other actirg like aminal trypsin (pancreatia) and occurring in the juice of the green fruit of Carica Aspaya (the papas tree). The use of these ferments in the plant economy has only been surmised by testing their action on animal proteid, frow which they form peptones, It is a question whether they form peptones from the proteid occurring in the individual, and from two considerations. It is doubtfal whether a true peptone exists in plants-by which 1 mean a proteid soluble in water, and not precipiated by boiling, nitric acid, or acetic acil and potassic ferrocyanide. Vines (Fournal of Physiodgr, vol. iii.) concludes that the body called vegetalle peptone is hemialburase (Meissner's a peptone). It is also eviden: that the action of these ferments on the proteids will be stow in comparion to the action of animal proteolytic ferments ; thus there might appear the proteids intermeliate between albumen and peptonc, which Kubne and Chittenden call aloumoses (Zitischrift f. Bio'ostie, BII. xx.). These questions I a tempted to settle in the case of the prapaw juice. I first of all extractel the proteids, which consisted of a glofulim, corresponding to animal paraglobulin; two allumsese, which 1 propoie to call a and B.phytulbumese. The β form is precipitated; the a form is not thrown down by boiling: a vegetable albumen corresponding to egs-albumen. The effect of pure papain (the proteolytic ferment of the papaw jaics) was tested on each of these bodies, but from none of them was a true peptone formed ; only a boly corresponding to Meivaner's c-peptonc. The very slow proteolywis explains the limitation of the formation of the final products of proted chanze. Leeucin and tyroin were formed. Full details of methods and results will be found in the forthcoming Fourwal of Physidegr, Septeinber 14, 1885.

Ont the Afsication of the Anatomical Methest to the Determination of the AMterials of the Litneatn ani did Morbursh, by Prof, 1. Kadlkofer.-I'rof. Kadlkofer spoke generally of the amatomical meibot of botanical study, a xd dwelt on the results that had alrea-ly been accomplished by it. With the aid of the anatomical system he advocated an extensive review of the herbaria of the country with reference to the writing of their former possessorsThie e herbaria should henceforth not merely te preserved; there shonld be the diffusion of new light on their contents so as to hecome useful to every one in a scientific sense, even to those who are unable to look through them. At sonie length he demonstrated the value of anatomical ch uracters in syitematic botany, and conclucled with an appeal to all Engli h botanists to difect their attention and their influence to the accomplishment of the work. In th: accomplishment of this the British Association might, perhaps, give substantial a sivtance.

No'es on Expcrimitn's as to the Firuration of Suarh ith Ilants wnter the Infituenic of the Elatri- Light, by Mr. M. Ward, of the Owens College, Manchester - The experiments, Mr. Waril said. were made not so mach to determine a point already determined generally-that plants can be grown under the intluence of the clectric light-at to discover how far the electric light can be used for teaching: purposes and invertigations in the laloratory so to speak as an artaticial sunlight. It would obviously be of enormous advantage to the vegetabic phrdiolozint if experiments coall be easily performel under the influence of electric light. He explained the experiments he had mate in the laboratories at the Owens Collerse, Mancliester, and at the residence of Mr. W. Crossley, of lowden (who hindly placed a powerful arc lamp at his disposal), on this interesting sub;ect, ant describsd the means that had leen employed in deviving and conducting the experiments. Ender a powerfal are light the results had been fruifful ; but small ciusters of Swan lampi haul yielded no satisfactory results, at any rate at low temperatures. The subject reyuires atill further examination, however. and Mr. Marshall Ward intimated that he intenled to carry on the experiments, so that at a future date he might be a'le tis convey mote detailat inforanation than coull be given in a paper of a preliminary character. The plants employerl were hyacinth prtato, Alg.e,

of this paper, established a depth of $\mathbf{- 1 7 5}$ to $\mathbf{- 1 8 0}$ English feet. The greatest depth is probably under the western cliffs :th of the Ilaram Medhüret el-Berl. No previous explorer neeived it possible that this might have been a lake within
'The level of the ruins, as determined by Caillthat the ancient station of Ptolemais might have cpresented in the text and maps of Claudins Ptolemy, (111- happed lake about 35 miles long and 15 wide, with a
-inum depth of 300 feet, fed by a canal, partly subterranean,
in lichnesa, as well as by a branch of the present l3ahr Jnisuf umounicating with it through the Fayoum. The lower plain if the Fayoum had been, at that time, fully redeemed, and the fresent Lake of the Horn reduced to such insignificant dimensluns as to be unnoticed. The restoration of the Reian basin of Lake Moeris and the drainage by evaporation of the Birket elQuerün would be a repetition in modern times of the best results reached in the Greco-Roman period, perhaps 3000 years after the first effort to utilise these two unique basins for storage and drainage.

On Batho-hypsographical Maps, woith Special Reference to a Combination of the Ordnance and Admiralty Survers, by E.. G. Kavenstein. - The batho-hypsographical map, which exhibits the vertical configuration of the solid surface of the earth, above as well as below the ocean levels, is a product of modern times. It was Gerard Mercator who first inserted soundings upon a chart in 1585 , but nearly two centuries passed away belore Cruquins, in $\mathbf{1 7 2 8}$, introduced the fathom-lines with which we are all familiar. Buache, and after him Ducarla, first suggested the introduction of contours upon maps, and their idea was realived in 1791 by Dupain-Triel on a map of France. The combination of these two descriptions of contoured maps we owe to modern German geographers, and more especially to Berghans, Von Sydow, and Ziegler. Cartographers, in effecting this combination, had hitherto quite lost sight of the fact that the heights on maps are referred to high or mean water, whilst the depths on charts represent soundings reduced to low water. This rough method gave satisfactory results when dealing with maps on a small scale, but a more rigid method would have to be applied when it was desired to combine accurate surveys like those made by the Ordnance and Admiralty Departments. The so-called mean level of the sea was not a suitable datum level, and it would be necessary to carry on tidal and other scientific observations on a far more comprehensive plan than had been done hitherto if a really satisfactory batho-hypsographical map of the British Islands were to become attainable. These various supplementary surveys, tidal observations, \&c., it was to be hoped, would expand into a comprehensive scientific survey of the British seas.

What hus been doue jor the Gcography of Scolizmd, and what remains lo be done, by 11. A. Webster.-After remarking on the unsatisfactory state of the Ordnance Maps, Mr. Webster said that in regarit to the depth of our lakes and rivers-and the submerged portion of a valley is geographically as interesting as the sub-acrial portion-absolutely no data are supplied by the Ordnance Survey. Nor, with a few individual exceptions, do they exist in an accurate and trustworthy form anywhere else. It was an open secret that, when this omission was pointed out to the Government by the Royal Societies of London and Edinhurgh, the Lords of the Treasury refused, and agoin refused, to authorise a bathymetrie lake and river survey being carried out, either by the officers of the Ordnance Survey or by those of the Hydrographic Department. Such a refusal could not be permanently accepted. It was to be hoped that when the Government was next urged to move in the matter they would be asked for more, and not for less. We requir d not only a hydrographic survey done once and for all (thorgh that was worth the doing) ; we required a systematic registration of hydrographic facts throughout the country, in order that the rigime both of lakes and rivers may be known in detal th scientific precision. The ignorant niggardliness of the Government was in striking contrast to the conduct of te foreign countries. In Switzerland, for instance, plar system of inland hydrographic observations, ime of all the principal rivers was annually red easily intelligible by a series of graphic a Swiss river we could tell the volume at several important points, and could for instance, with those of any year wry one knew what a vast body of titions been accumulating about

Fasba, Phasoctus, Dicenfra, and the vine, and some interesting remarks on methods, \&c., were made in the discussion which followed.

On the Coluration of the Anterior Serments of the Maldintide, by Allen Harker, F.I..S., Irofessor of Natural History, Royal Agricultural College, Cirencenter.-The author, while studying the circulation and respiration of annelits at the zoological station at Naples, had been specially interested in the Maldanilac, from their partially tubiculous habit and the brilliant coloration of their anterior segments. The bands of colvur usually ornament the anterior segments, beginning with the second or third, and continuing to the ninth ; but the distribution of the ecloured hands differs widely in the different species. The colour in living or freshly killed specimens is of a rich rose madler colour, shading off in each segment to a brighter rose-pink hue. Quatrefages attributed a physiological value to these coloured bands, describing them as being connected with the respiratory function. In connection with the whole subject of cutaneous respiration in annelids, it appearel important to settle this question, and the author made sections of the anterior segments in the Maldanida, and finds the colour to be due to a special pigment, whose behaviour under various reagents he described. On the other hand the author has studied the blood-vessels and their distribution in the living ehatopod, and is satisfied that it extends equally in those portions of the cuticle which are uncoloured as in those which are. The coloured bands do not appear, therefore, to be in any way connected with the function of respiration.

SECTION E-Geograthy

The Indian Forest School, by Major F. Bailey, F.R.G.S., Royal Engineers, Director of the School.-It is only within the last twenty-five years that a special State department has administered the Indian forests. The staff was at first composed of men who had received no professional education, hut they were able to do all that was then needed, and they accomplished work of great value. But as a result of their work the state hecame pessessed of large forest areas, from which a jermanent supply of produce had to be sccured, and which bad therefore to be managed systematically. At this time nothing was known of systematic forcstry in England or in India, and an arrangement was made in 1866 moder which candidates for the Indian Forest service were tratined on the Continent. The arrangement with the French Government is still in force, but it has now been decided to undertake the instruetion in England. Great progress has been made in Indian forestry, which is mainly due to the profestioually-trainel men with whom the Foreat Wepartment has heen recruited, but op to 1569 nothing bad been done towards the education of the subordinate ranks As work requiring professional skill leccame necessary over lange areas, it was found that the "divisions" must be broken up into a number of smaller executive chargee untler natives of the country, and that they must receive a professional ellucation. In 1860 Mr . Brandis made proposals to organise the sulordinate grades and to train men at the Civil Fingmecring Colleges, and several other attempts were made in the sane direction, but without marked succest. In 1578 Mr . Handis proposed to establish a Central Forest school, and his propmats were accepted by Government. The chief object of the School was then to prepare natives of India for the executive charge of forest rankes, and to qualify them for promotion to the superior statif, tut it was hoped that the school might ultimately be used to train candidates for the controlling branch. The chief forest officers of provinces 'were to select candidates and send them to be trained at the Sthool. None but natives of India were to be ailmitted. A number of forests near lehic Dun were grouped together as a training ground and placel under a separate conservator, who was also appointed disector of the school. A hoarel of inspection was appoinsed. The fint theoretical course was held in 1881, and they have been held every yerr since then. The present system is that the candidates, whi, must be in rollust bealth, are selected by conservators of the forect or by the director of the schoni,. They must serve in the forest, for at least twelve months before entering the school. Ciamblates for the ranger's cerrificate must have passel the entrance examination of an Indian University on the English side: candulates for the forester's certificate pass a lower examination. The course of training for these two classes extends over eighteen and twelve nonths respectively. Men who gain the certiticates
return to their provinces, and are employed there. Thof instruction for the ranger'- ciass embraces vegeatle logy, the elements of plysice and chemistry, mathetrat: making and building, surveying, sylviculture, worknc, forest utilisation. forest botany, the elements of mioers geology, forest law, and the elements of forest ether. course for foresters is much more simple. The prex: manuals is in progress, and a library, museum, chenat tory, observatory, ant furest garden have been estabictperiod of probation in the forest before entry inte*has a iwofoll object: firtly, to enable the theoretica: be understood ; secondly, to eliminate men who are 8 : a forest life before time and money have beet spes: training. As a rulc, the students are emthlyd of to Department, and they draw their salaries and man' 6 selves while at the School. No instruction fees arecta:would not at precent lee possible to get condidates ato tenance and ellucation are entirely paid for by ther Nine men who have left the School have appointmen: 125\%. to 200/, a year, and this ought to draw elygible at Conservators of forests say that the men erained at te are markedly superior to their untrained comrades of reserved fore its has largely incteased of late, and the; of the students are very goonl. During the se-tinn there were forty-sin students of all classes at the School. eight were from Madras, and weven from native States of which bave been inducel by the e-tablishment of t: to take measures for the protection of their forests. T has now been made an imperial institution, and thas: advantage in every way. The expenses of the stho-l are said to have leen 1911/.
On Journegings in Suth Whatern China, by A. It the autumn of i88i Mr. Hosie was appointed Het M Agent in Western China, and reached Chrung-chos: province of Ssilich'uan, in Janunry, 1882. From ths mate three journeys in South-Western China. In the: 1 RS 2 he proceeded through Southern Sua-ch 'uan and ' Kuei-chou, the Chinese "Switzerland," to Kuei-yang capital of the latter province, whence he journeyed wethe footsteps of Margary to the capital of Vunnzm Yünnan Fut he struck north-east through Nortbefa ? following for days here and there the routes of t;arnier: Grosvenor Mission. At last he descendel the Nan-kan ant reached the right bank of the Great River, the 1×3 of the Upyer Zangtsze, at a point below Hsu chne Fe. portant cry at the junction of the Min River and the C Ctriang, or River of Golden Sanil. Here he sook descended the Gireat River to Ch'ung-ch'ing, his startiry In February, $\mathbf{1 8 8}_{3}$. Mr. Husie agan left Ch^{\prime} unget' proceeded north-west to Ch'eng-tu, the capital of the of Sst-ch'uan, by way of the brine and petroleum * Tautliu-ching. From Ch'eng ta he journeyed wes as west through the country of the L.olos, shirting the boundary of Independent Bolodom. From Ning-juze called Chien eh'ang, and lying in a valley famous, amora. things, as the habinat of the white-wax insect, he pase west through the mountainous Cain-du of Marco I habited in great part by Mantzo tribes, and struck the f of the Chin-sha Chiang two months after leaving (b'on' From this point Tali Fu , in Western Yunnan, wareached. From Ta-li Fu Mr. Hosie jurneyel east* Y'unnan l'u, which he hat visitell the year before, on struck north-eact through Western Kuei-chou to the Yor River, which he deacended to the Greal River. 1.0 Cl important city at the junction of this river with the $T^{\text {th }}$ was soon reached, and the Great Kiver was again deseet Ch'ung-ch'ing. This journey occupied four months. I:
 a three days' journey to the north of that city, be stry : ward through a beautifully cultivated and fertile cotntry tin;: Fu, on the right lank of the Min at its junction * T'ung River. Chiatting is famous as the great conife culture in Sinl.ch'uan, and as the chief insect wis. fl . country in the Empire. A day's journey west of (b)a the fainour Mount O -mei, rising 11, 100 feet alme the the sea. This mountain. which is sacred to the wi Huldha, Mr. Hosic accended in company with crowd grims. He then proceeded smath, virting the eastern brof Indepientent Lidodem, to the Kiver of Gellen $\$$ left bank of which was struck at the town of Mani-s is, is
1 "
\qquad
orty and fifty miles above Pring-shan Ilsien-the highest point eached by the Upper Vangtsee Expedition in 1861. From Ian i-ssŭ Mr. Hosie descended the Chin-sha Chiang and the ireat River to Ch'ung-ch "ing.

An'arctic Discotery, by Admiral Sir Erasmus Ommanncy, \therefore IB., F.R.S.- The object of this paper is to draw attenion to the neglect of the Antarctic region as a field for exploraion. The author gives a summary of the work which has Iready been done by Cork, liellingshausen, Weldell, Biscoe, lalleny, Wilkes, Dumont d'Lirville, James Ross, and Nares (in he (hallenger). The author refers to a paper by Dr. Neumayer on the subject, the substance of which was reproduced in fatuke (vol. vii. p, 21). The author concludes as follows :have thus laid before you but a very imperfect description of hese voyages ; to give the details of the scientific results would recupy a separate paper. But I have endeavoured to demontrate how large a field remains open for discovery. I think, rom all we now know, we nay infer that the South Pole is apped by an eternal glacier; and, from the nature of the ounctings obtained by Koss, it would appear that the great icerall along which the ships navigated was the termination of the lacier-the source from which the inexhaustible suplly of iceergs and ice-isl ands are launched into the Southern Ocean, sany of which drift to the low latitude of 42°. The fact of inding the volcanoes of equal proportions to Etna or Mont Blanc creates a zest for further research regarding that awful egion on which neither man nor qualruped ever existed. No nan has ever wintered in the Antarctic zone. The great lesideratum now before us requires that an expedition should ass a winter there, in order to compare the conditions and henomena with our Arctic knowledge. The observations and lata to be collected there thoughout one year conld not fail to srodnce matter of the deepest iuportance to all branches of cience. I believe that such an achievement can be accomplished n these days with ships properly designed and fitted with the neans of steam propulsion ; nor is it chimerical to conceive a ledge party travelling over the glacier of Victoria Land towards he South Pole, after the example of Nordenskjold in Greenand. Another interesting matter requires investigation, from he fact that all the thermometers supplied for deep-sea tempeatures to Ross were faulty in construction, as they were then of adapted to register accurately beneath the weighty oceanic nessure. Moreover, another magnetic survey is inost desirable n order to determine what secular change has been made in the lements of terrestrial magnetism after an interval of forty years and more, when taken by Ross. In fact, there exists a wide ield open for investigation in the unknown South Polar Sea. [his paper will, I trust, be the prelude for others to follow in urousing geographers and this powerful Association in promoting urther research by despatching another South Polar expedition, aving for its object to secure a uintering station. No other lation is so capable of provicling and carrying it out. Even in ne Australian colonies there exists the spirit and the means for uch a noble enterprise.

Projected Ristoration of the Reian M/rris, and the Province, take, and Canals ascribed to the Patriarth Joseph, by Cope Whitehouse, M.A., F.A.G.S.-The Berlin Geographical Soiety has published, in its Zeitschrift for May, $1885\left(\mathrm{~N}_{11}, 116\right)$, he latest map of Egypt, from the Fayoum to Behnesa, and rom the Nile to the Little Oasis. The text by Dr. Ascherson tives credit for a considerable area to the topographical observaions presented to this society at Montreal. So much of the Reian hasin as lies between the Quasr Qerun and the Quasr Reian has not been visited by any European except the author of this paper (1882,1883). It is now an accepted fact that here is a depression south of the Fayoum, not less than 150 feet eelow the level of the Mediterranean, "ith a superficial area at he level of high Nile of several hundred square miles. It is rregular in shape, curving like a horn from a point near Behnesa o the ridge which separates it from the Fayoum. In the south. :rn part are two, and perhaps three, patches of vegetation, wild salm-trees, and ruins of Koman and early Christian date. This sart was visited by Belzoni, May 22, 1819; Caillaud, Novemver 24, 1819; Pacho and Muller, 1823-24; Sir G. Wilkinson, 825 ; Mason Bey, 1870 ; and Ascherson, Maich 27, 1876. Jr. Ascherson determined by aneroid observations that his camp vas 29 metres below the sea. Caillaud found ruins about +38 m , or about the level of high Nile in the valley on the ame latitude. The aneroid, theodolite, and other observations of March 6 and April 4, 1882, and April, 1883, by the author
of this paper, established a depth of -175 to -180 English feet. The greatest depth is probably under the western cliffs south of the Haram Medhüret el-Berl. No previous explorer had conceived it possible that this night have leen a lake within historic tianes. The level of the ruins, as deternined by Caillaud, shows that the ancient station of Ptolemais might have been, as represented in the text and majps of Claudius P'tolemy, on a horn-shaped lake about 35 miles long and 15 wide, with a maximun depth of 300 feet, fed by a canal, partly subterrancan, froni Behnesa, as well as by a branch of the prevent Bahr Jüsuf communicating with it through the Fayoum. 'Ihe lower plain of the Fayoum had been, at that time, fully redeemed, and the present Lake of the Horn reduced to such insignificant dimensions as to be unnoticed. The restoration of the Reian basin of Lake Moris and the drainage by evaporation of the Birket elQuerin would be a repetition in modern times of the best results reached in the Greco-Romian period, perhaps 3000 years after the first effort to utilise these two unique basins for storage and drainage.

On Batho-hypsographical Maps, with Special Reference to a Combination of the Ordmance ard Admiralty Surterss, by E. G. Ravenstein. - The batho-hypsographical map, which exhibits the vertical configuration of the solid surface of the earth, above as well as below the ocean levels, is a product of modern times. It was Gierard Mercator who first inserted soundings upon a chart in 1585 , but nearly two centuries passed away before Cruquins, in 1728 , introluced the fathom-lines with which we are all familiar. Buache, and after him Ducarla, first suggested the iniroduction of contours upon maps, and their idea was realised in 179 t by Dupain-Triel on a map of France. The combination of these two descriptions of contoured maps we owe to modern German geographers, and more especially to Berghans, Von Sydow, and Ziegler. Cartographers, in effecting this combination, had litherto quite lost sight of the fact that the heights on maps are referred to high or mean water, whilst the depths on chatts represent soundings reduced to low water. This rough method gave satisfactory results when dealing with maps on a small scale, but a more rigid method would have to be applied when it was desired to combine accurate surveys like those mule loy the Ordnance and Admiralty Departments. The so-called mean level of the sea was not a suitable datum level, and it would be necessary to carry on tidal and other scientific observations on a far more comprehensive plan than had been done hitherto if a really satisfactory batho-hypsographical map of the British Islands were to become attainable. These various supplementary surveys, tidal observations, \&e., it was to be hoped, would expand into a comprehensive scientific survey of the British seas.

What has been done for the Geography of Scotiand, and what remains to be done, by H. A. Webster,-After remarking on the unsatisfactory state of the Ordnance Maps, Mr. Webster said that in regard to the depth of our lakes and rivers-and the submerged portion of a valley is geographically as interesting as the sub-aerial portion-absolutely no data are supplied by the Ordnance Survey. Nor, with a few individual exceptions, do they exist in an accurate and trustworthy form anywhere else. It was an open secret that, when this omission was pointed out to the Government by the Royal Societies of London and Edinhurgh, the Lords of the Treasury refused, and agzin refused, to authorise a bathymetric lake and river survey being carried out, either by the officers of the Ordnance Survey or by those of the Iydrographic Department. Such a refusal could not be permanently accepted. It was to be hoped that when the Government was next urged to move in the matter they would bee asked for more, and not for less. We requird not only a hydrographic survey done once and for all (thorgh that was worth the doing) ; we required a systematic registration of hydrographic facts throughout the country, in order that the true rigime both of lakes and rivers may be known in detal\} and with scientific precision. The ignorant niggardliness of the British Government was in striking contrast to the conduct of those of some forcign countries. In Switzerland, for instance, there was a regular system of inland hydrographic observations, by which the regime of all the principal rivers was annually recorded and rendered easily intelligible by a series of graphic bulletins. In regarel to a Swiss river we could tell the volume at any period of the year at several important points, and could compare the facts of 1884 , for instance, with those of any year in the last two decalles. Every one knew what a vast body of interesting data had for generations been accumulating about
such rivers as the Po and the Rhone, and many had no doubt heard of the system of hydrographic stations recently established by the Italian Government in the basin of the Tiber. Why should we not endeavour to learn something definite and precine about the character of our own rivers? The investigation was only the natural complement, on the one hand, of the physical structure of the country, and, on the other hand, of its meteorology. Our Scottish Meteorological Society had now succeeted in estahlishing meteorological stations throughout the country ; let hydrozraphic statinn* bear them company along onr principal rivers. Rainfall and river discharge were mutually illustrative.

On Ozrrland Erred tions to the Arctic Coast of Amirica, by John Rae, M.D., F.R.S.-The following table shows the approximate amount of geographical work done by the expeditions ander-
 Grand lotal ... 4029
d Wivil or 7 iov on the Bicst and Sillish Route by which to altuin a lligh Nisthern lativale, by Jobn Kac, M. I., LL. D., F. K.S., F.K.G.S., de.- The plan proposed is that the route by the west whore of Spitabergen thoukl be taken by one, or perhaps two, steamers similar to the fine vensels used in sealing and whaling; at the present time. That after forcing the ice "prack " at the north-west end of Spitzliergen, a north-eavt conrse towards Franz-Josef land slowuld the followed. That a depmit of ewals -houll the placed at a convenient harbuur in Nurth spitzlergen. Fixtracts are given from l'arry" " Narrative," 1827, PP. ICI and $1+5$, thowing how open and small the ice was in latitule $\$ 2^{2} 45^{\prime} \mathrm{N}$, The wuthern drift of the ice that so obstructed the advance of Parry's boats will be no great impertimest to a powerful steamer, whilst if she feets helplesaly fixed in the pack the will drift honewanls with it. No well equip!evl ant jowerful steamer has tricd this route.

ЭADANESE TATTOCJV

THE last number (lleft 32, May, t8S5) I the Mh thrituns ?
 ()"ditiens is almost wholly occupied by a paper of a 11w en cr haustive eharacter by IIr. Itaelz, a phywician in the vervie of the Japanese fiovernment, on the physical qualitice of $\$ \mathrm{~h}$ |ajanese. A previods paper hy the same writer gave th reoult- it hr- in-ve-tugatious into Japanese seletons. For the $\mathrm{f}^{\text {opmess }}$ it the prevent paper he obtained numerous anthriftumetrual casule. ments-about 2500 -havel on a vecheme whats incthate $/ x$ verint wine meavurements in the ease of each individual I is nuewiatif theat Aroca confinel himself to little more than a thint of this number, Virchow's scheme contemplatet thirteen, an 1 at the most thirty-eight, Weissbach sixiy-seven, and thuctelet, in his anthropometry, gives eighty-two measurem n '. The weletun flan of the paper is as follows: t. skin and laur: the cofluur of lose akin and its cause, artiticial colvuring, incluthige 'attome. the characteristics and nature of the hair: 2. The fha your in sencial, inclubleng the carriage and gait rif louth eve. wht ht, -t/e, and frouth ; 3. Mcasurements of the lomly an line In - lee li-cuswon of the resulss eet lorth in this seat in the atthur exprowes the opinann, haset on his own inveoticatmons, that m *-weral the value of these anthroymmetrical m avurements nome h exaggerated thy anthropologists and ethnograyhirn.

Ihe tattening of the skin try Japaneve, generally thone f the lower cla=scs, has attracted nuch observation fromi I urupeans, due portly to the extramolinary eishoratmon and crowic vil thiplayed, partly to the fact that the occtupation and cu to in the class in which tattoming is most prowtivel are ucs as to remiler it necesary frequently to wear no ne hut the mons

Actually son evtwitions-one exot, the wher wort
 enaws before grctiog (i) twe somblis) hul fir
Dew ground at one not res, fint, ther $1, \ldots, 1$.
4 coast, Ar.
indispensable garments. This subject has neve?, . , $\mathrm{S}_{2}=$ are aware, been examined with so much thorouphr co: as by Dr. Back. He says that among the varinas F-... have, in the course of centuries, reached a hish swn culture the Japanese are probably the only race $=$ retained generaily the practice of tatooing and have $t_{1}=$ state of highly artistic development. U'p ts a few your: practice was so widespread that in Tokio alone there are to have been, possibly still are, 30,000 men whes wete ' $\#$ This decoration is not confined, as in Wevern cman: small part of the body, but it covers the whole considerable part of the limbs. The head, ncik, Las feet are never tattooed, a circumstance of importance in es the practice. It was confinel to the lower classes: 12 ? Inetter classes it was consilerel unworthy to ithtizare in this way. It was widely spread amonest the great towns and coolies, and even to-day it is exeet $: 00_{2}$ an old man of either of these occupations whon is $n 8$ a 3 The ohjects illustrated were various : amsungst the in were lange dragons, lions, hatte scenes, heautif.. historical occurrences, flowers, de. Itr. Haele -ta'ce, never saw obscene pictures tattooe.l. The colours m black, which appear blue, and varsou, shate of re.1. obtained from Indian ink, the usual Japane e wr. $\because=2$ the red from cinnabar. When a man wishes to un:process he looks out in a popular picture broots some which takes his fancy, or he evolve, something in 7 imagination, and goes with it in the artist. The la er his arrangements, and sketches the picture on the siis skillful at his calling he sketches the merent cos straightway introluces all the tetails; hut if he is n of . . in himself he first draws the whole pieture on the anis. is no special ceremony attenting the wicrin as in -.7 Wouth sea Inlands, nor is there any religios- - :2nifice -s a ever in the process. The artise use, fur the par, we er =fine, sharp sewing needles, fixed firmiy, four, ethht, :t e'v... or forty together, in a piece of wiol. They are arr-z several row's ; when there are forty they taml in four r.ins. each. The points are quite even, except when $11: 4$ profluce a light or dark slas ling, when the neelles are arr'? correctoonding lengths. This combination is aill totee:yaunful. The skin, at the place where the puncturane n. . - streth il tietween the thumb and first foger al yeratir, w/1, holl, toctween the third anil fourth fingersill anv. Sath a writing hrush with ink or cinnabar, as ang ropurel, on it. It holls the wowl coataining the meedlisa lnv "tht han!, w!, havig pme the colnur on them, be rest ! hanit in the thumb of lus left hanil, onil then proceecte wnt $=$ tramelinary rapidity to puncture the skin, stopping every $=$ an-1 again to put on the thusl anew. Mr. Raels coustell en windinten punctures per seconil. and as there were tem noede
 oo hit. The wander is that with sisch speed exoelleat persers Whh varnu- legrees of thaling, can lee prosloced, bet fir lint. I killful operator can in this way puncture the ea linat onil stomach nf a grownman in a day. A few thou and pundure are necessary for thes parpose. The if he may be ed, eylesf, lines not suffer w much pain as sh rjectel. The punctures are not very painfol, phey tickle lian hurt. V., blewal is drawn: a circumstance which that the meelles dis not reach the cutucle, and which mho e lie shist fan of the operation, and the possibility of e

Ilis, however, is nost the case always, for in many the lyaly where the vkin is tender, or where a deeper filurel, whe dammy himot comes slowly to the fariage the uptavon leccomer prinful. This necers mose freper the kricin and ellows. To be well tattooed, therefore, 15 . ikn of manly vigour and condurance. At soon as

is ouver the irroluces
 than liefor
 tuterest.
 sverish

Jays the
nat it is a larbarous custom unworthy of a civilised people. ut Japanese tattooing is sn superior to that of all other nations 1at European sailors are said to look forward to it as the rincijal advantage in a visit to the land of the Riving Sun. This being the method in which the practice is carried out, is. Paelz comes to discuss its oligin and meaning. The oldest :ference we have to tattooing in Eastern Asia states thint a hinese prince, about three thoisand years ago, who was nomined heir to the throne against his will, had himself tattooed in rder to render his succession impossible. But at the present ay the practice in China ant Korea has fallen into desuetude, file in Burmah it still appears to he in voguc. In 1872, a man as exbibited in liurope who had been a psisoner amongst the iurmese, and who was tattooed from the er iwn of the head to ie sole of the foot. The practice is still prevalent amonget the outh Sea Islanders anel the American Indians. In bis work on ie origin of writing, Wiuttie secks to show that Iattooing is a kind f writing ; but however correct this theory taay be in the case of ac tattooed peoples known to him, it certainly does not holl ood in the case of the Japancse. The signification of the -ractice, says Jr. Jhaelz, amongst the latter isquite distinct from hat which it has amongst orlier peoples. In the first place, mongst the South Sen Islanders and the Intians, tattooing has rehious, a symbolical meaning; it is a ceremonial, frequently a acred process. There is nothing of this in Japan-nether elemony, nor other peculiar merning; it is done for cosmetic urposes and for no other. Again, antongst other peoples attooing was a species of distinction; it marked the heroes, eaders, chiefs, of the tribe. In Japan it marks a man of the wer classes. Elsewhere, also, the uncovered parts of the body, noch as the face, neck, hands, $\& \mathbb{C}$, are the favourite spots for attoring ; in Japan it is only the portions usnally clotherl which re tattoosd. It is noticeable that amonget the Ninos the tattooog takes place on the exposed parts of the londy, and that it is "gely practised by wamen, two circumstances which distinguish from the practice amongst the Japanese, and in which the sinos resemble other northern peoples such as the Esquimaux, lee Ostiaks, and others. In answer to the question, What neaning las the practice amongst the Japanese, as distinct from ther races? the author replies that in Japan tattoving is a garnent, a decoration. Various proofs of this statement are d vanced, amongst them being the following: only those parts of the body are tattoned which are usually covered ; all workmen lo, not tattoo themselves, but exclasively those whose work auses excessive perspiration, and who can, therefore, work liest n a semi-nude state, such as nunners, grooms, bearers, \&c., and mongst these the practice prevails only with those who have onnection with large towns, where nudity would be objection. anle. Their garments are tattoned on their loodies, and they ypear clothed without clothes liefore the public. The peasants ire never tattood. Again, the colours of the tattooing correjonds with that of the dress ; it is the same dirty, dark blue. I his theory never suggested itself to the Japanese : they thought fint it must have cone from China, and that it was a species of vunishment. It was, it is true, at one time the custom to tattoo narkis into criminals, but this was confined to a ring on the thow. It would not explain the spreal of the practice amongst oertain classes in certain directions. Dr. Baelz's theory that it is nerely a substitute for dress, and as the wearing of clothes is now compulsory, tattooing has lost its meaning. As for its nigin, the peoples around the Japanese, the Ainos and the I, erchooans, have practisel it ; and the Japanese navigators who ravelled far and wide in the Ea-tern seas in the sixteenth zentury might well thave seen it elsewhere. The Japanese dissovered, says Dr. Baelz, that man can paint a figure on his skin which the rain cannot wash away, the sun wither, or even alldemming Time deatroy, and with their instinctive artistic skall pey gradually develoned and perfected the original rude fugures in idea and execution. AL frat few canly wore this blise $3 \mathrm{k}: \mathrm{n}$ bat there feys appearal tó llieür companions decorated and ta tagmned. person docs n'x appear actoally naked), and It a garuent wets cheap and lasling, and every man could
it according to lit sera fancy, tattooing liertioe the fashion. it may be sidred lure that among the Igorrotos of the "recigas districts in the nutht Lut Loon fattooing is also picture, Dr' faimean
except ly one trilse. A picture of the sun, as a number of concentric circles on the back of the hand, is the commonest object represented. The process takes place at pulberty, and is a long one, as the punctures (which are made with a three-pointed instrument which is clumsy in comparison with the Japanese needles) become inflamed and tatie a long time to heal. The tattooing of the Bariks, a tritue of Igorrotos, takes three or four months to com-lete.

It may not be out of place here to refer to Dr. Baelz's aocount of the Japanese use of moxa, which, like tattooing, comes into his section dealing with the skin. On the bodies of almo-t every Japanese, and sometimes on every part of the booly, one sees round white spots. These are the moxa spots, produced by burning the flesh with a species of plant, with the object of curing some affection. Thi is a universal popular specific in Japan, which is its hone, although moxa is to lee found used elsewhere. It was introduced from Japan to Europe by the Poriuguese and Sunjards, and the name is Japanese. In May the leaves of the Artemistia Chinewsis are powdered and dried, and the mass cut into small blocks or pieces. One of these is laid on the body and set on fire, burning slowly away. At first it naturally produces a sore, more or less deep, accorsling to the intensity of the heat ; soon this heals, leaving the scar for ever. The belief in the efficacy of this process is universal, and, Dr. Baciz thinks, not altogether misplaced, for the moxa acts much as four blisters do. Moreover, from the accounts of those who have gone through the cure, it is by no means so painful as one would anticipate from the heroic nature of the remedy.

SCIENTIFIC SERIALS

American Fournal of Siener, August.-Origin of coral reefs and islands, by Jame; D. Dana. The arguments recently raised by Dr. A. Geikic against Darwin's theory of subsidence as an explanation of the formation of atolls, or barrier recfs inclosing a lagoon, are discussed and shown to be largely lased on misunderstandings of the facts. It is pointed out that local eleva. tions within the sinking area are not cvidence against a general sulsidence, such local disturhanees and faults being almost necessary concomitants of subsidence. The conclusions as to changes of level in the large I'acific groups south of the equator agrec mainly with Darwin's views, and the subsidence indicated, according to him, by afolls, is shown to be real, not an apparent sinking duc to change of water-level.-On the meteorite of Tomatlan, Jaliseo, Mexico, by Charles Upham Shepard. The striking peculiarity of this stone, which fell in Angust 1879, is the prevalence everywhere of octahedral erystals of nickeliferous iron. The specific gravity of the two fragments examined was 3.47-4.43.-On the widespread occurrence of allanite as an accessory constituent of many rocks, by Joseph 1 I. Iddings and Whitman Cross. From its mode of occtrrence and association the authors conclude that rllanite must now be addel to the group of primary, accessory rock constituents, similar to zircon, spliene, and apatite, thongh much rarer than any of these. In some regions it appears to be quite uniformly di tributed through certain types of rock, such as the porphyrites and allied porphyries of the Ten Mite District, Colorado,-Crystals of analcite from the Phenix Mine, Lake Superior Copper Region, Ly Samuel L. Penfield. These crystals, which occur thickly grouped together on calcite and native copper asenciated with tabular erystals of apophyllite, are of all sizes fiom minute particles up to one centimetre in diameter. The stmall ones are simply tetragonal trisoctahedrons of the form $(218), 2-2$; the larger ones are of the same form, hat with the planes differently arranged. - On a differential resistance thermometer, by T. C. Mendenhall. This instrament has been devised and constructed for the stully of certain problems connected with meteorology, especially the observation of soil and earth temperature, and the use of which would not demand greater skill than that of the ordinary meteorological observer. It consists essentially of a mercurial thermometer, not unlike ordinary forms, except that the bolb is greatly enlarged, so that the stem may have a diancter of ahout a millimetre, s.ill leaving the scale tolerably open. By its means observations may be taken in less than a minute, no time being consumed in the preparation of liquids of known temperature at the observing station, as in the use of the thermo-junction on the resistance enil-Impact friction and faulting, by George F. Becker. The suthor discusses the phenomenon of "step
faults," as dessriberl in Mr. Geikie's "Text-Book of Ceology," P. 532, which he eoncludes to be not merely local, hut of general occurrence.-A standard of light, by John Trowbridge. Objections are raisel to the standard atopted at the Paris Conference of 188 s -4-that is, the light emitted by a surface of platinum at the point of solidification. A more satisfactory standard might be an incandeceent strip of platinum ratiating a definite amount of energy, this energy teing measured at a fixed distance, which will best agree numerically with the absolnte system of measures now universally adopted in heat and elec. tricity. On hanksite, a new anhydrous sulphato-carbonate of sodiam from San Bernardino county. California, by W. Earl Hidden. This new Californian mineral has a density of 2.562 , hardness $3 .-3.5$, and is readily soluble in water, yielding an abonslant precipitate of barium sulphate when tarium chloride is alded to the solution. The author names it "hanksite," after Prof. Henry G. Hanks, whose name is so intimately associated with the mineralogy of the Pacific coast.- Mineralogical notes, by Edward S. Dana and Samuel L. I'enfield. The chief subjects of this paper are the analysis of a large crystal of hanksite from California and an artificial crystallised lead silicate from the Desloge Lead Company, St. Francois County, Mis-souri.-On the amount of moisture which sulphuric acid leaves in a gas, by Edward W. Morley.-Local deflections of the Drift Scratches in Maine, by G. H. Stonc. Traces of these indications of secondary glaciation have heen observel, especially in the Scbasticook Valley, the Belfast and St. Gcorge River districts. - Successional relations of the species in the French Old Tertiary, by Otto Meyer. In these, as well as in the corresponding American formations, many animal and vegetable species can be traced along through the succeeding strata, the latter being apparently connected by descent with the earlier forms. The paper is accompanied by a comprarative table of Lower, Middle, and Upper Eocene and Oligocene forms illustrating this prineiple.

This American Nafuralist for August contains notices of some human remains found near the City of Mexico, by Mariano de la Barcena.-Evolution in the vegetable kingdom, by 1. F. Ward.-The relations of mind and matter, by Charles Morris. - Affinities of Annelids to Vertebrates, by E. A. Andrew 4. -The ase of copper by the Delaware Indian:, by J. C. Abbott. -Notes of recent literature, \&c.

Bullfint de l'Acaid'mie R'eyale de Belsigur, June. - Note on some derivatives of tetrahromuretted hydrocamphenc, by M. De la Royère.-On certain devclopments of algehraic series ; the general formulas of these developments and their application to special cases, by M. J. Jeruyts.-Kiesearcher on the action of a leam fixed at both ends and sutjected to a movable over. charge, by M. G. Leman.-Questions of indetermunate analy by M. E., Catalan.- Note on the motions of the human brain, hy M. Leon Frélerieq.-A new process of vivisection for the physiological study of the thoracic organs, by the same author. -On the optical propertien of Ludwigite ($\mathrm{K}_{4} \mathrm{FeB}_{8} \mathrm{O}_{5}$), by M A. F. Renart.-Determination of the enefficient of compressibility for some fluids and of the varations of this quantity under different temperatures, by M. I'. De Heen.

Rismificonti del R'ale Dstituto Lomiarion, July 23-On the causes and treatment of certain ophthalmic affections (preliminary note), by Dr. R. Rampoldi.-An exporition of the third paragraph of Kiemann's memoir on the theory of the Abelian functions, by Prof. (;iulio Avooli.-Further researches on the neutralising agents of the tubcrcular virus, by Prof, G. Sormani and Dr. E. Anagnatelli,-Toxico-chemical affinities and difierences of gelsewinina and strychaine, by Dr. C. Kaimondi.-On the phenomenon of etherification by double decomposition, by Prof. (i, Bertoni.- The meotal infirmaties and last days of Torquato Tasso, by Prof. A. Corrad.-Note on an artistic palimpest of the fourteenth century, by Prof. G. Mongeri.-Meteorological observations mate in the Brera Olservatory, Milan, for the month of July.
N'itista Srientifuo-Industriale, July. - On the snlar apotsor
their origin, nature, and harmle-s dharacter, by Proff, inatime Ricco.-Application of the telepthone to the study of columns of gas, by Prof. Foncati.-A contrilution
etherification by double decomposition, by
roni.-Geolozical constitution of Mount Vincigis oli range, by C. del Lungo and R. Cocchi.

societies and academies

PARIS

Acaderny of Sciences, Septemher 28.-M. Bnait sident, in the chair.-liquilibriam of the mons. ty Tisserand. In this pafer calculations are submitted is of M. Ch. Simon's theory, supplemented by M. Piow: neglecting the excentricity of the lunar orbit, the am is displaced in the interior of the moon in such 2 wयy stantly to oscillate in the plane perpendicolar to the r. directed toward, the earth.- Note on earthquales, 1 e d'Abhadie. The author gives an account of the seives ments ohserved by him lait winter in Egypt, where th graph was exceptionally active. Ile urges a systemar c these phenemena in France, such as has alrealy ke menced by M. V.. de Rossi in Italy, and by Mr. Milor-- Researches on the nitric cellulose substances (gun ex by M. Ch. Fir. Guignet. The constituents and pr: described of the four distinct nitric cellulose bootdetermined, all of which may be regarderl as derivatme cellanlose $\mathrm{C}_{4 .} \mathrm{H}_{10} \mathrm{O}_{60}$, where $4 \mathrm{eq} \mathrm{J}_{4}$, feq.. Seq.. or tom are replacel by the same number of equivalents of nitric acid.-Memoir on the treatment of plytlosers? of the organic sulphers and the polysulphides of 2: obtained by distolving powdered sulphur in the eb cesspools, by M. J. Jullien. Thiz treatment is as inexpensive, thoroughly efficient, and applicable to C scription of soil.- Note on an unpublishet documen: 4 Venturi, dated February 26,1610 , on the isver: the theory of the telescope, recently edited by M. A. This letter, addressed lyy the writer to the Marquis lake Manso at Naples, is specially iuteresting as teing at the earliest publications of Galileo on the telescope w: just been invented by Lippersheim in IIolland -is. separation of liquefied atmospheric air into two dint by M. S. Wroblewaki-- Description of two new type densing hygrometers, by M. Georges Sire. Tie character of these hygrometers is that the moisture is ated on a bright metallic surface without solution of Perfect equality of temperature is secured in bath ins by the agitation of the volatile fluid and the thinnee walls of the cylindric tulie.- Gencsis of the crystals of in square tables (five illustrations), by M. Ch. lirus author's experiments on the genesis of the square th sulphur show the direct passage from the curve to the line in the development of these crystals- Mira the mandibule of the hymenoptera, by ML Jonaee; This argan of the hymenopteras is shown to be feefect gous in all its parts to that of the grinding insect the application of thermo-chemistry to the exptumpions logical phenomena, continued; iron ores, by Sh? th isit

CONTENTS

Mr. Grieve on the Garefowl. By Prof Albes Newton, F.R.S
"The Wave of Translation"
Our Book Shelf:-
"Pablication of the Norwegian Commispoc of the Measuremaent of Degrees in Europe " Letters to the Editor :-

On the Influence of Wave-Curtents on the Fume of Shallow Seas-Arthur R. Hunt
Prehistoric Plarial-Grounde-T. A. Archer Mars. Jupiter, and Saturn, By W. F. Denxine. . Radiant Light and Heat, 11t. (Comfument)
Balfour Stewart, F,RS
Notes

SUBSCRIPTIONS to "NATURE."

To the United States, the Continent, and all places within the Postal Union :-

| Yearly | 30 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Half-yearly. | 15 | 6 |
| Quarterly. | 8 | 0 |

CHARGES for ADVERTISEMENTS
Three Lines in Column 2s, 6d, 9d. per Line after.

Post Office Orders payable to MACMILLAN \& CO. Office: 29, Bedpord Street, Strand, W.C.

Is unrivalled for Gardeners', Foresters", Farmers', Joiners', and Amateur. ${ }^{\circ}$ nse. It requires no oil. Sharpen with a spittle or water. Puts on a keen, sharp edge; no humbug about this, Has stood the test of 100 years, Cnt in Hones for Axes, Hedge, Knives, Razors, Penknives, and Plane Irons, \&ac. Honourable Mention, Paris Exhibition, 187 7^{3} an. Bronze Medal, Loodon International Exhibition, 1884 . Ask your Ironmonger or other retail house to get you one, and give my address ; if he won't, drop tme a note.

JOHN C. MONTGOMERIE,
Tam O'Shanter Stone Hone Works, Dalmore, Tarbolton Station, R.S.O. Ayrshire.
$[303$

J. ORME \& CO.,

65, BRBBCCAN, LONDON.
MANUFACTURERS AND IMPORTERS of Scientific Apparatus $A \times D$ CHEMICALS.

BAKER'S PATENT CALORIIETER, A NEW APPARATUS
For demonstrating to Science Classes problems in Specific Heat.

For fwll particulars werite to the SOLE AGENTS-
J. ORME \& CO., 66, Baricten, London, E.C.

OPRERIMIANIN BROS., 172, ST. JOHN STREET, LONDON, E.C.

BRONZE MEDAL Health Exhibition, DYNAMOS
for 10 Lights, \boldsymbol{C}_{20}; 20 Lights, L_{30} Ne NTESCENT LAMr, f. ed. each : all candle-powers. New Pocket Accumu lator, complete with Button-hole Lamp. L! ${ }^{13}$. Post-free with Invtructions.
Temporary Installatione. Price Lists, i Stamp; Catalogue, 6d. |PiEask mention this Paper.) Somple Lamps, 28, 6d. post.free.
 Why Use Gas? LA MITRAILLEUSE
A. RETTICH'S Patent Bumer for Minera Oil Lamps gives double the Light of a Duplex. easy to Trim and Light, inexpensive tof use. Sold by all Nexpertable Inommongert and Lamp Warchowics.
Buy only those Marked
RETTICH'S PATENT. 35, GERRARI STREET, SOlIO.

SECONDEDITION, GRIFFIN'S CHEMICAL HANDICRAFT.

 PRICE 4s. $7 d$. POST FREE.a catalogue of chemical apparatus; ILLUSTRATED, CLASSIFIED, DESCRIPTIVE. Derny Ivo, 4to pp., Illustrated with 1,600 Woodcuts.
Most Complete and Cheapest List of Apparatus.
IOHN J. GRIFFIN AND SONS, 22, GARRICK STREET, LONDON, W.C.

SANDERSON \& Co.,

 Bole Inventors of the Solid Copper Tape
LIGHTNING CONDUCTOR

In Contlasous Lengths, without Joints, as snpplied by them to HerMajesty" Government and the Colonies ; the Italian Government, the Argentine Republic, and other Foreign Governments; the Royal Courts of Justice, Strand, the Houses of Parliament, \&c.
The Jery Commission, acting on the Reports of the International Juries of the Heaith Exhibition, have a warded a Bronre Medal in Class at to Messrs. Sanderson \& Co. for thelr Solid Copper Tape Lightning Conductors in Contiouous Lengths, without Joints, and of High Conductivity Copper.

LEADENHALL HOUSE, 10%, LEADENHALL. STREET, E.C.

WOOD'S

LANTERNS \& SLIDES.
The Largest and Best Stock in the Kingdom, ON SALE UR HIRE.
THE "EUPHANERON" LANTERN,
$\zeta_{A} 45$., is unsurpassed for Power, Portability, and Price.
NEW CATALOGUE OF LANTERNS AND SLIDES (60,000 in Stock) Pout froe, One Stamp.
Cameras, Lenses, Stands, Chemicals,
And every requisite for Professional and Amateur.
Complete Catalogue and "A Photograph, and IIow to Take It." by "One Who Knows," Post-free, One Stamp.
E. G. WOOD, 74, Cheapside ; and

HORNE, THORNTHWAITE, \& WOOD
Optirians to the Queen,
416, STRAND, LONDON

WOODHOUSE \& RAWSON

SUPPLIERS OF ALL ELECTRICAL APPLIANCES,

Oqfices-it, Quren Victoria Street, E.C.

Lamps.	Fittings.		
Dynamos.			
Scumulators.		\quad	Switches.
:---			
Safety Junctions.			

Dynamos.
Accumulators.

Fittings.
Switches.
Safety Junctions.

Works-Cadey IIall, Hammersmith Roar,

SOLE MANUFACTURERS OF THE WOODHOUSE AND RAWSON INCANDESCENT LAV?

inguiries inviten.

Carbons.
Wire. Instruments.

Battery Scpplies Telephone Supplies Electric Bells.

st IY . sticauri.

 In Casks, 12,6 per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts. ${ }^{*}$ - Ilottlescliarged g^{\prime}-per doz, and allowed at the same rate if returned; but thev must be paid for with the lieer.Neither sugar, anccharum. nor any of the many new Brewing Materials are used in the manufacture of the "\$ N." stout: it is litewed entirely from the finest Malt and Hops; it is, ton, more hoppod than Stout is generally; therefore, lessides being very nutritious, it is an excellent Sinnic and particularly suited for invalidy, ladies nunung, or anyone requiting a good strengthening lieverage. It is a "Sound Nutritious" Tonic, and very much recommended Ey Mctical men.

WALTEAMEROTEERS.

THE "HALF.GUINEA" ALE BRFWERY, LONDON, s.W.

WALL PAPERS FREE FROM ARSENIC.

WILLiAM WJOLLAMS \& CO., Manufacturing Paper Stainers are the Origimal Makers or
ARTISTIC WALL PAPERS, Guaranteed Free from Arsenic.
Sole Adiress-110, HIGH STREET, MANCHESTER SQUARE,LONDON, W
May be obtained of all Decorators.
Special Prise Medal. Sanitary Institute
Award of Merit, International Medical and Sanitary Congress. Silver Medal, National Health Soom
GOLD MEDAL. INTERNATIONAL HEALTH EXHIBITION.

SCIENTIFIC WORTHIES.

The following is a list of the Portraits that have appeared in the above Series.
michael faraday. THOMAS IIENRY HUXI.EY. CHARIES DARWIN. JOHN TYNDALL. GEORGE,GABRIEL STOKES. SIR CHARLES LYELL. SIR CHARLES WHEATSTONE. SIR-WYVILLE THOMSON. ROIBFRT WILIIEI,M BUNSEN. ADOI.F ERIK NORDENSKJOI.D SIK WILLIAM THOMSON.

HERMANN L. F. HELMHOLTZ. SIR JOSEPII DAITTON HOOKER. WILLIAM HARVEY. SIR GEORGE B. AIRY. J. LOUIS R. AGASSIZ JEAN BAPTISTE ANDRÉ DUWA, RICHARD OWEN. JAMES CLERK MAXWEIL. JAMES PRESCOTT JOULE. WIL.LIAM SPOTTISWOODE. ARTHUR CAJILEY.

Preot impressions of these, printed on India paper, may be had from t the Sel of 23 Pertraits in a Handsome Portfolio for $\mathcal{L} 6$ os. o
the portfolio may be had separately, pil
Cheques and P.O.O.'s payalle to MACMILLAN or
(FFICE ©F "NATURE." 29, BEDFORD STREFT, STRAND.

PRIZE MEDAL AWARDED

〔By Afpainfmenf SUCCES
BEAK STREET, RE
MANUFACTURERS OF SCIENTIF
SCHOOLS, COLLEGES,
WIMSHURST AND VOSS
OF IMPROVED

Messrs. MACMILLAN \& CO.'S NEW B00KS.

SERMONS. By Mark Patrisos, late Rector of Lincoln College, Oxtort. Crown Svo. 6 .
european butterflies, a handbook of. By W. F. De
 tions Crown spo. tor, 66 .
COMPOUNDS OF CARBON ; or, Organic Chemistry, an Introduction to the Study of. By IRA REMSEN, Professor of Chemisty in the Johns Hopkins Univesity. Crown Svo. 6r, 6 6.
A TEXT-BOOK OF THE PRINCIPLES OF PHYSICS. By
 With Illustrations. Scoond Edition, Revised and Enlargect. Melium Svo. 2 th.
1 Treatise on differential EQUATIONS. By Andrew RUSSELL FORSYTII, M.a., Fellow and Assisian Tutur of Tinity College, Cambridge. 8roo. 14 .
THE LAW OF THE CONSTITUTION, Lectures Introductory to the

rhe punishment and prevention of crime. By Col. Sir EDM"NDF. DU CANE, K.C.B., R.E., Chairman of Commissioners of Prisons, Chairman of Directors of Prisons, Inspector-General of Military P'risons, Surveyor-General of Prisons. Crown 8vo. 3f. d.
"A most valuable and interesting member to the valuable and interesting series of handbooks designed to instruct the Finglish itizen of the nature and working of the constitution under which lie lives. . . . Altogether, Sir Edmund Du Cane's book is full of nteresting and usefal information." -5%. Fames's Gaveltc.
montcali AND wolfe. By Francls Parkman, Author of "Fioneers of France in he New World," se. With Portraits and Maps. Two Vols. Svo. 12 , 6 , enech.
The Times says :-" The story of the struggle and its close has often been told; but never have the facts been set forth wo ninutely, accurately, and effectively as by Mr. Francis Parkman. He has accomplished his task with such thoroughness that thers following in his footsteps will find little to collect and improve. . .. The luminous narrative of Mr. Parkman is fraught vith many useful lessons as well as replete with much valuable information."

jVER-PRESSURE IN HIGH SCHOOLS IN DENMARK. By

 Dr. IIERTEL, Municipal Mellical Officer, Copenhagen. Translated from the Danish by C. GODFREY SÖRENSEṄ, with Introluction by J. CRICIITON-BROWNE, M.D., LL.D., F.R.S. Crown 8vo. 3s, 6d.GOIDEN TREASURY SERIES.-LARGE, PAPER EDITIONS.
cYRICAL POEMS. By Alfred Lord Tennyson, Poet Laureate. Seleceded and Annotaced by FRANCIS TURXER PALGRAVE. A limied Edition on Hand.made Paper. Sro. 9F.
rHE POETICAL WORKS OF JOHN KEATS. Reprinted from the Original Editions, with Notes by FRANCIS TURNER PALGRAVE. A limited Edition on Iland-made Paykr. 8 vo , 9 s.
rHe tennyson birthday book. Edited by Emily Shake-

[HE PHADO OF PLATO. Edited, with Introluction and Notes.

TRODUCTION TO LATIN ELEGLAC VERSE COMPOSI-

classical series, -new yolume.
XXII, and XXIV. Edited, with Introduction and

Lavist iry classics - vew volume. WTHEUS VINCTUS. Edited, with Notes am!

© co, London.

OBJECTS FOR

THE

MICROSCOPE

Larva of Bot Fly from Stomach of Horse ... Common Blue Butterfly
Glowworm Beetle, Male or Female ...
Sheep Tick, Male or Female
Ovipositor of I)ragon Fly
Polycistina from Barbadoes, opaque
Group of Trinacria regina
Pollen of Portugal Pine
Section of Ieaf and Petiole-Magnolia grandiffora
Hepatica-Jungermania hyalina
Gruup of Platen and Anchors from Synaptä
Skin of Synapta, with Anchors and Plates in sitn

The Lord's I'rayer engraved on glass with a diamond ia the $1 \cdot g$ gos
 Do. Do. Human istoooth jart of a nquare inch, 3. G8. i 1 -19,owd Foetal in Human skin, with hair follicies and young hain
Foetal involuntary Muscle, the Arteries injected
Scales of Eel, for Polariwcope ... Poläriscope
Cinchonidine, Salicine
Scales and Hairs of Insects arranged to represzat Bouquets and lar of F'lowers, \&c., very beautiful, for Soirées, \&c. Pricrh, th. "\& 78. 6 d., $181 ., 254 .$, and gor.

Eggs of Parasite of Huanuing Bind, on Feather in sifu-
ave of every branch of study, from ts . each.

> NEW CLASSIFIED LIST of OBJECTS, including the recently acquired Sock of Mr. E. WHEELER, late of Hollhr. ILLUSTRATED CATALOGUE OF MICROSCOPES AND APPAR.ITUS.

Either of the above sent post free on application to
> W. WATSON \& SONS, opticians to her mayesty's governyent. 313, HIGH HOLBORN, LONDON, W.C.

THE "EXCELSIOR"
PATENT SPRING MATTRESS.

The principle of arrangement permits the free movement "Excelsior * of one sleeper without inconvenience to the other, admits of complete isolation of each, and effertually frevents depression in the centre.
rhe "EXCELSIOR" \& "MATLOCK" COUCHES. Retail from Cabinet Makers, Upholsterers, \&c.

Ten prizemedals, Fourteen Certificates of MERIT

The The leading peculiarity of this Mattress is the unt $=$

AWARDS: WOVEN WIRE MATTRESS.
 THE NEW PATENT WOVEN WIRE MATTRESS.

 and " Matlock BED-RESTS. springs of great strength and reliable tempe. advantages possessed by no other make. The springs obviate the tendency in all woven wire ner $^{-}$ to become hollow and so cause sleepers to rull amiddle of the bed.

Illustrated Descriplive Circulars and Prior Lus. ".

ARMSTRONG BRACES.
 ELASTIC, WITHOUT INDIA-RUBBER.

 PATENT SPIRAL SPRING.

 PATENT SPIRAL SPRING.}

SOLD BY ALL HOSIERS AND DRAPERS.

 MEDALS AL U U U EIUGME. CONSUMPTION of GAS guaranteed be 25 to 75% less than ANY oth Gas Engine per brake horse-power.
CROSSLEY'SPATENT TWIN"OTTO"ENGINES Impuise every Revolution.
The steadiest running $G a s E y$ yet made.
CROSSLEY'S PATENT SEL
The
CROSSLEY'S NEW VERTIC
Requi:
ROSSLEY BROS., Limited,
Andon: 24. Poultry, E.C. Glasgow

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
 " To the solid growna
 Of Nature trusts the mind which builds for aye."-Wordsworth

No. 833. Vol. 32] THURSDAY, OCTOBER 15, 1885 [PRICE Sixpence
Registered as a Newspaper at the General Post Office]
[All Rights are Reserved
To

E SWAN LAMP
AND FITTINGS may be purchased at
MAWSON AND SWAN'S STORE,
37, FFARRINGDON STREET, E.C. \& MOSLEY STREET NEWCASTLE.ON.TYNE.

R. \& J. BECK'S

PRICES.

Stand, with 1 -in. Objectglass Stand, with $1-\mathrm{in}$. and $\frac{1}{4} \mathrm{in}$. Object-glasses
Stand, with Rack and Pinion, coarse adjustment, 2 F.yepieces, and $8-\mathrm{in}$. Objectglass
Linll Dewriptive Pampatet sent on Afplication to
$\left.{ }^{-4}\right)_{1}$ London, E.C.

220
330

SELF-REGISTERING ANEROID BAROMETER.

This instrument has neither a spring nor chain. The motive power of the Barometer is obtained from seven vacuum chambers.

It will register automatically with ink on a diagram, by means of an eight-day clock motion contained in the drum, the fluctuations of the Barometer for a week. An illustrated clescription sent post free.

PRICE £6 0s. Od.
TOFEIN BIEOTVINTING, 63, STRAND, LONDON, W.C.
NEGRETTI AND ZAMBRA, SOLE MAKERS OF YORDAN'S (PATEAT) SUNSHINE RECORDER. PRICE $£_{3}$ ros. With a supply of Charts. NEGRETTI ZAMBRA, Scientipic Instrumant Makers
To the OUEEN TO THE OUEEN,
hot.born viaduct.
Branches:-45, Cornhill; 123, Regent Street, Loodón Illwatrated Descriftion Post Frer.

NEGRETTI \& ZAMBRA'S Large Illustrated Catalogre.
0 600 Pages,
1200 Engraviag'. Price ge. 6 d.
Silver Medal auvarded Intentions' Exhibition, 1885.

SUNDAY LECTURE SOCIETY．

Prowden：
W．B，CARPENTER，Eres．o C．B．，LL．D．，M．D．，F．R．S． Vice－Presiden：s：

Warren De La Rue，Esq．，M．A． B．C．I．F．K．S
Edoard Frankland，Esq．，D．C．L． PhD．FR．S．
James iteywood．Esq－F．R．S．， F．S．A．
©T．GEORGEF HILL Right Hon Lord Hobhouse， K．C．S 1
Thmase Heary Haxley．Esi， 1．1－N．Prea R．S．F L．S． Benjumin Warl Kichardson．Esq． MIO，F．RS．
Her＇eot Spracer，Esp
J．ha Tympall，Eq．．L．L．D．．F．R．S．
－T，GFORTES HILL，LINGHMM PIICE

 Golwoctater Creuent，II）de Park，W．

Payment at the Door：－
Adminion－One Shillinz（Reserve：＇Seata）．Sixpence，and One Perar．

BEDFORD COLLEGE，LONDON

（FOR LAIHES）．
8 and \％，VORK PL＿ACE，PAKER STRFET，W

 Land an．For turtier particulan afv y to the How ip at the（ iege
f．－HADWELI．H．an．ec．

THE UNIVERSITY OF ADELAIDE．

F．LDER PROFFSCOR OF MATHEMATICS AND， EXPFRIMENTAL PHYSICS．
The COt＇vClL invite appliations for the above Prnfectorntif．Si＇ary，
 t re＂esai at the $\frac{1}{-}<r e t h$ of the Livana il salary will date fin m Mawh t ， As ant the Pr．feren wh expected to enter un his dubes on $t^{2}-a t$ ，late．

 fater than lhecect，erer $1,1:=3$ ．

THE OWENS COLLEGE， MANCHESTER．

The PROFFCSORSHIP UPHV゙ンlOLOCV has berome racant thy 3ith the reaghat on it l＇if i，amger cian，ates for the（Thait are unve

 heat．Infarmatuon concerning the ternavad eviduano of the aps troer： oi be formarited on application to 1 ）r．（inreveiond．Pn iph of the coliege

HF NRV：W HOLDER．M A．Kegistar．
B．Sc．LOND．INTERMEDIATE EXAM． A A sperial Cornc has heen orgarioed fie all the Sobiects requirel froth
 at the Collinge

CIVIL SERVICE COMMISSION．－Forth－ coming Fiamiration－bu stant f sam nershupe in the Patent Olice

 MATHEMATICS（London Scodente attrobed fat their iwn homes if W rangler，Inm Coll，M A and I R G

EDWARD WARD has plea
souncing the isue of a bee Microstide of ta
own，in the opecial mumber wo eell known to his member
Plumularia similis－－－（poen－five）
Alua，quite new ：－
Gorgoaia vwrrucous（polype
Podalirns ifpices（Spectre
EDWARD WARD，ses，OXFORF
With namperoes Illuse
POLARISATION
SpOTTISWOODE，LL．D．，IN
New Editioe
MACMIRLAN A

LIVING SPECIMENS FOR THE MICBOSC

GOLDMEDAL a warded at the FISHERIESEXHIBITIC

 THOMAS BOLTON， 57 ，NEWHALL STREET，BIRMINGWho has last week sent to his subacriters Tero ompa，witt description．He has also eent out Lepherice orvialtre mucedo，Fredericella vultana，Cordyloghora lacustris Asy＇azc Norcmmata rficata，Vo．vor globator，Desmids；also Hycta．Ar cella，Crasfish，and other Specianens for（Haxicy and Martis＇ Laboratory work．
Weekly Announcements will be made in this place of Orgarm： supplying．

Specimen Tube，One Shilling，post free
Tinvary－aix Twicsin cowrie of Six Mowfhg for Smbacriftion of of Twelte Twirs for sos 6d．
Portfolio of Drawings，Eleven Parts，14．each
ICROSCOPIC OBJECTS FOR HII Histological，Rerenscal，Geological，by the best Mo out on most moderate terans．Particulars of B．When Road，Forest Hull．

SIX PRIZE MEDALS

AWARDED FOR GEOL GICAL COLLECTIOS．
Geological Collections especially adapted for Teaching as uapi＂．
and Art Deparmeat，and need by all I ecturers and Ieace－ Great Brixain，Ar．
New and Rare Minerals convtantly arriving from all parts for＝－ Single Specimens．
ROCK SFICTIOVS AND RCNK SPECIMENS
The Largest Variety in England．
New Catalogwes and Lists on application to－

JAMESR．GREGORY．

88，Charlotte Street，Fitzroy Square， Establisbed ay Years in London．

FERNERIES fitted up with Prese？ Flowern．Fitiaze Pluse and Flonal Thecorations seitalat and Bail Kowosis，Crupches．（7aspeis，I heatren，\＆e fimelrila．a PATENT Presoration for preserving FI： Ma＇en－hair in the mmmin firaich GRASSE：FOLIAG sec urely pucked in st．at bux（ \mathbf{w} 保 full particularis）on rort for 2 ．

MADAME SUNDELL．
4．SPUR STREET，LEICESTER SQU＇ARE，LOS：＇
MINERALOGY AND GEOLOGY
PROFFSSORS，COI．LECTORS and VISITORS toll INVITEHEINSPECT Mr．HENSON＇S STOCK of CHOFD KALS，\＆，Ac．At the PRFSENT TIME he hae a PARTIL FINECKISTAILLISHDNLGCET OFNATIVFGOLD WLL PINK APOPHYLLITE，CHESSVLITE，EMERALD5 क PYROMORPHITF，（vary EAME romal CERUSSITE TECRIC IRONS AD ETONES POLISHEDAGATES DOKITES
A Large PS，alao MICROSCOPIC SECT1OM
 L HENSON

Geological Ti

WALKER＇S SPEC
How \＆co．s ro
aganorkrotocy
CHEMICAL APPARATUS, Wholesale, Retail, for Colleges, Schools, and Chemi-nl Works, New Catalogue of po pages and soo clear Illutrations, post free, $2 d$-WILLIAM HUME, 1, Lothian Street. Edinuurgh.
BOOKS (Secondhand), Miscellaneous, Re nuinders, \&c.-C. HERBERT, English and Foreign Bookseller, 319 Liswell Road, London, E.C. Catalogue free on receipt of twa stamps, -ibraries, Old Books, and Parchment purchased.

CABINETS FOR MINERALS, FOSSILS, \&c.

	,		CH	High		
10 8	".	39 28	".	\because		458,
12	,	39	.,				

MINERALS AND FOSSILS

SINGLE SPECIMENS OR COLLECTIONS.

F. EX. BUTIEFR,

Assoc. R. Sch. Mines Lond., M. A. Oxon. and L.S.A. Lond., Successor to the late R. TAlling,

180, BROMPTON ROAD,
 LONDON, S.W.

Five minutes' walk from the Natural History Museum, S. Kensington.

NORTH BRITISH AGRICULTURIST,

 the chief Agricultural Journal in Scotland, circulater extensively among Landowners, Farmers, Resident Agents, and others interested in the management of land throughout the United Kingdoan.The AGRICULTURISTis published every Wednesday afternoon in time for the Evenius Mails, and contains Reports of all the priacipal British and Irish Markets of the week.
The speens attention of Latad Agentsisdirected to the AGRICULTURIST as one of the jest existing papers for Advertising Farmato be Let and Estates for Sale.
Advertisers addressing themselves to Farmers will fad the AGRICUL TURIST a first-class medium for reaching that Class.
Price 3^{d}. By post 3 dd. Annual Subscription, payable in advance, 148 .
Offics-377, High Street, Edinburgh : and 245, Queen Victoria Street London, E.C. Money Orders payable to C. and K. Anberson

THE ENTOMOLOGIST'S MONTHLY MAGAZINE.

Price Sixpence, Monthly, 34 pages 8 ro, with oceasional Iltustrations. Condusted by C. G. BarkeTr, 1. W. Doughe, K, Mchacmban, F.R.S. K. Sauxueka, F.L.S., and H. T. Stainton, F.R.S.

Thas Maganne, conemeoced is 1864, oontains standard arifcles and notes or all subjects connected with Entomology, and ospecialty on the Insects of the Britush Isles.
Subiscripuion-Six Shilliags per Volume, post free. The volumes comunence with the June number in each year.
Vols. I. to VI. (stromply bound in eloth) may be obeained by purchasers of tho entire net to date, at the incressed price of too each; the succeeding vols. novy bo had separately mo thigether. at gr, earh.

London: JOHN VAS VOORS r, s. Faternooter Row
N.B. - Comanumications, ker, whoutd be semt to the Editors at the above didreme.

BEST BLACK. INK KNOWN. RAPER'S INK (DICHROIC).

 (N?TROM ANYTHING BR.SE EVER PRODUCED mes a plezwre oben this lnk is used. It han ween adopted
uly Eult kiack Inel. Fown eavily from the Pen.
1hotrimegaper may be applied at the Blot. phagett of writing.)
quacugh Meseft, Baticlay \& Sons. Farring-
Chape: F, Nnurky \& Sons, Newgate Gupet, Livarpielf aad to bo had of all Hamited), Dutifins

Now Ready, Part 11I. Vol. XLVIII., September, 3885 . Price $\$ 8$.

STATISTICAL SOCIETY'S JOURNAL.

Contents:
Report of the Council to the Fifiy-first Anniversary Meeting of the Statistical Society; held on June 23,1835 , and the I'roceedings thereat.
 M.Inst.C.E.
"Recent Lexislation and E.conomic Science" (the Newmarch Memurial Esuay) By Williat Walt, L.44
Inland Revenue Report.-(1) The Foreizn Frade of (a) The Twenty-eighth Inland Revenue Report- (3) 'The Foreizn Trade of the United Kingdom,(4) 'The Society's Jubilee Meeting.-(5) Quarterly Keport of Addtions to the Library.

London: EDWARD STANFORD, 55. Charing Crosk. S.W
Just Published, with above zoo Wood Engravings, fcap. 8vo, Cloth, 45 .

OUTLINES OF NATURAL

 PHILOSOPHYFOR SCHOOLS AND GENERAL READERS.
By J. 1). EVERETT, D.C.L., F.R.S.,
Professor of Natural Philosophy in the Quectis College. Belfast ; Editor of the English Edition of "Deschanel's Natural ithilusophy," \&c., \&.c.
Great pains have beetl taken to make every starement in this book as plain as p saible, and to put every senteuce into such a foem ac to be readily undentood at first reading. Agebraic formulac have heen altogether exeluded, and familiar language whencrer availatile has been preferred to the use of technical terms.

London: BLACKIE \& SON, 4 ? and 50, OId Bailey.

MICROSCOPES AND APPARATUS

yANEFACTURKD AND KEPATRED.
W. JOHNSON'S THREE-GUINEA STUDENT'S MICROSCOPE is the best construted at the price. All Minutix carefully adapted; coarse and fine adjustments, excellent 1 -inch, f-inch, and f-inch Achromatics. Cabiset complete, L3 3 s.
W. JOHNS JN'S HISTOLOGICAL. MICROSCOPE, with first-chass 1 -inch and 1 -inch Objectives, is 5 r .
W. JOHNSON, Optician to the University Hospital, aB8, TOTTENHAM COLRT ROAD. Catalogue Postofree

FPM, GOLD MEDAL, CALCUTTA, 1884.

COCOA
" Pure Cocoa."-Сиas. A Cameron, Analyst for Dublat

Nineteen Prize Medals Awarded.

HOLLOWAYS PIILS
 THIS medicine

Is a Certain Cure for all Disorderz of the LIVER, STOMACR R.ND BOWELS. A Great PURIFIER of the BLOOD: a Powerful Invigorator of the System, in cates of WEABliESS AND DEBILITY, and is unequalled in Female Complaints.

105,000 ACCIDENTS pon wincu
two millions have been paid as COMPENSATION
\section*{DY тнк}

Railway Passengers' Assurance Company 64, CORNHILL.
ACCIDENTS OF ALL KINDS.
Paid-up and Invested Funds, Co60,000:-Premium Income, \&:35,0 5 Chairman HARVIE M. FARQUHAR, Fs/z.
Apply to the Clerks at the Railway Stationa, the local Agents, or West-End Ofice-8, Grand Jlovel Euiletings, Charing Cress; on AT TMr
Head Office-64, Cornhill, London, E.C
WILIIAM I VIAN, Secretary

A FAMILY AFFAIR. By HUGH CONWAY.

Author of "Called Back," "Dark Days," \&c. New and Popular Edition. Crown 8vo. 6s. MACMILLAN AND CO., LONDON.

14 the Press, Seiont Elition, A tapest to the Nau British Pharmzcopria, 1885, Midium Sivo, Price 21 s.
A TEXT-BOOK of PHARMACOLOGY, THERAPEUTICS, and MATERIA MEDICA By T. LAUDER BRUNTON, M.D., D.Sc., F.R.S.,
Fellow of the Royal College of Physicians; Assistant Physician and Lecturer on Materin Medica at St. Bartholomew's Hopri Examiner in Materia Medica in the Universily of London, in the Victoria University, and in the Royal College of Physicians, London; late Examiner in the University of Edinburgh.

ADAPTED TO THE UNITED STATES PHARMACOPGEIA BY FRANCIS H. WILLIAMS, MD. BOSTON, MASS.

"It is simply a mine of wealth both for students and practitioners. It is thoroughly practical and thoroughly relisbie. undoubtedly the best treatise on the subject in the English language."-British Medical fournal.
"The work has little in common with the old fashioned books on materia medica. It is not a mere collection of dry 6.4 . technical details, but a scientific treatise worthy to be ranked with the highest productions in physiology, either in oar own of th other language. . . . It is a book of study for the scientist and a work of reference for the practical physician."-Lamid.
" A work which marks a distinct epoch, a turning-point in the history of medicine. It is not a mere compilation, it is essentially a new departure breaking away from well-worn tracks into a new and almost unknown region."-Melhisi γ ia and Gazefte.

By THE SAME AUTHOR. In the Press,

DISORDERS OF DIGESTION: THEIR CONSEQUENCES AND TREATMENT
 This work contains, in addition to the Lettsomian Leotures, a number of other Papers by the Author on similar suljects Demy 8 vo .

MACMILLAN \& CO., London.

c. J. Woonward's foducational. Works, f. Now Ready. Price 3 .
 ARITHMETICAL PHYSICS, PART II, b_{0} MAGNETISM AND ELECTRICITY.

By

C. J. WOODWARD, B.Sc.

Contrats:-/menofactory, Force, Fnergy, Units, Trigonometrical Functions, Eiertrostatich, Xitraction, Fincrgy of an Electrical System, Functions, E/erfrosfatict, Attraction, Fincrgy of an Electical Sysem, tguipatential Sariacri, Fleetrumotive Forec, Presure and Ekes end
 Ma/mift, Filectro-magne
Miscellanecus Exetciscs.
s_{2} Woxdcuts, 4 Dithographic Plates illuatrating Lines of Force.
London: SIMPKIN, MARSHAIL, \& CO.
Second English Edition, with Additions. With aror Wondcuts and 14 Plates (s Culuured), includiog Angotrínis and Coms's Mape Bro. price 3 is. 6 .

SPECTRUM ANALYSIS

In Its Application to Terrestrial Substances, and the Physical Constitution of the Heavenly Bodies. Familiarly explained by the late Dr. H. Schellen.
Tranalate ! from the Third Entarged and Revised German Edition by Iank and Cabolise I.asazla Editod, with Notex by Capt. W. de W. Aeney, and CAbolisk

Loodoo: LONGMANS, GREEN, \& C.).

Jask Publithed. Post Frov for Two Stampe

NATURALHISTORY\& SCIENTIFICBOOKCBRCULAR, No. 67. Recent Purchases and New Works: Botany, Zoology; Fieology, Minernlogy. Palmontology. Astrooomy.-W WESL.EY \& SON, is, Esser Stroec. Strand, Londow.

THE OWENS COLLEGE COURSE OF ELFMENTARY BIOLOKV. Fart I.-Tun Facocs an Introdoction so Aratriar and Hitrolocy By A. MILNES MARSHALL, M. D.. FR.S., Profistor of Zoology And Comparative Anatomy la the Onems Coliege, Victoria Ujivatity.

Lopdon: SMITR, E:LOER, \& CO. Manchester: I. E. CORNISH.

TWO YEARS IN THE JUNGLE:

The Experiences of a Hunter and Naturalist in inds. Ceylon, the Malay Peninsula, and Borneo. By W. T. HORNADAY:
Femy 8 mo , with 2 Maps and 51 Illustrations, Cloth, price it
The author, an experieneed taxidermist, hunted, and with rersh auccest, every manner of beasl, fowl, and fich, and his familariti y whole of the brute creation helped him to appreciatively otudy the : of the countrics acrons which he travelied, and to give is the was in of the countrics acronk which he travelied, and the whole atimal his. the F.ast Indies, not excluding its humanity.

Losdon: KEGAN PAUL, TRENC11, \& CO.
This day, 8vo cluth, with $5 s$ Illustrations, 78.

HANDBOOK OF TECHNICAL GAS ANALYSIS.

Containing Concike Instructions for carrying cout Gas.Analytical Meb Iroved Unility
Ey CLEMENS WINKLER, Ph.D. Tranolated. with AdAlitions, by GEORGE LUNGI, Ph, D.E, Asthor of "Distillstion of Coal T Tx, " Axh, AC JOHN VAN VOOKST, i, Fulemuster Row

Price y

TEXT-BOOK OF ELEMENTARY MECHANICS. By Psofesson OLIVER LODGE, D.SC. Ruvied Edidon wiah Addictesel Extercime.
This book ains at a mound

THURSDAY, OCTOBER 15,1885

COMPARATIVE ANATOMY AND PHYSIOLOGY Comparative Anatomy and Physiology. By F. Jeffrey Bell, M.A., Professor of Comparative Anatomy at King's College, London. (London: Cassell and Co., Limited, 1885 .)

THIS work is one of a series of "Manuals for Students of Medicine," each of which is to be " compact and authoritative "-"embodying the most recent discoveries," and also to "contain all the information required for the medical examinations of the various colleges, halls, and universities in the United Kingdom and the Colonies."

On behalf of those of our readers who may be unfamiliar with the demands of certain of the examining bodies referred to above, it may be well to state that nothing but a resumé of all that is known in the subject could meet the requirements of the case. That which the publishers demand, and which the public therefore has a right to expect under the conditions laid down, is an uleracondensed digest of all authoritative work in zoology and physiology. Incredible though this may appear to any one acquainted with the bibliography of the subject, Prof. Bell's manual is so far satisfactory that we cannot but congratulate the publishers upon their choice of an author, whose work in connection with the Fournal of the Royal Microscopical Socicty and the Zoological Record render him par cxcellence the man for this opus mirabilis. When it is stated that there are but $54^{8} \mathrm{pp}$. to the book it will be clear that it must be a vast collection of facts, little being left as to style or originality for that criticism which the author invites. The method of treatment, however, is somewhat novel, and in our opinion open to comment.

The author divides his work into fourteen chapters. Of these the first is introductory; the second is devoted to the Amceba as a physiological study ; the third to "the general structure of animals," that is, to a consideration of the "broader characteristics of the groups into which the animal kingdom has been divided." Those which remain are devoted, each to one of the great systems of organs and to development.

In estimating the value of this volume, it must be clearly borne in mind that it is a book intended for beginners. Chapter 11. is written for biological babes, and it will be clear to any one who reads the volume that the author would have the student familiarise himself with the facts in the order in which they are presented to him. This being so, it is a pity that Chap. I. should have been so largely devoted to the subtle details of cellstructure ; the beginner is lost in descriptions of the " cytod" and the "cell," for each of which broad differences are dogmatically formulated, such as would tend to bias the mind of the average student. Draw hard lines by all means for the beginner, but not in such delicate matters as these. Only by working from the known to the unknown, can the student of science ever hope for success; the order of his elementary studies must be a recapitulation of that in which the science itself has advancedhe must here begin with gross anatomy, and we believe that to treat first of the subtle details of cell structure is
to do violence to the cause of inductive science. A somewhat similar comment may be offered upon the manner in which the great phyla are dealt with in Chap. 111. Having devoted nearly half the chapter to defining these, the author proceeds (pp. 5S, 59) to deal with types of each. He prefers to commence with the Echinodermata, dealing thus "first of all" with the " most aberrant" phylum. If the Echinoderms are dismissed as a stumbling block, why not the Brachiopods, the Polyzoa, and certain other creatures well known to zoologists? These are all wisely relegated to the end of the chapter, as "groups of animals which in the present state of our knowledge cannot be satisfactorily placed with any of the great phyla" (p 100). Just so, but why not put the Echinoderms there also If the student is to be allowed the exercise of any judg ment in the matter, he cannot be expected to deal with the aberrant before he is familiar with the normal, and more stereotyped grades of organisation.

Although the work is professedly a text-book of comparative anatomy and plysiology, the latter branch has suffered much in the process of condensing, necessary we presume in order to keep the book within the prescribed limits. At the commencement of each chapter a concise definition of that system of organs to be dealt with comparatively is given, together with a brief description of their functional activity; but the field of comparative histology is sorely neglected. The author neither furnishes the required information on this subject, nor does he take for granted that his readess have worked through even the broad principles of it. The student is occasionally referred (Ex. pp. 363 and 372) to Klein's " Manual of Histology"-a fellow volume to the one now before us; but as that work deals with the subject altogether from a special human anatomist's point of view, the reader is at a loss to make much of the subtle differences in the comparative anatomy of, say, shells and tecth, until he knows more precisely than he is here informed what is involved in an exoskeleton and a tooth. Similarly, the statements made (p. 258) concerning the vertebrate excretory system are altogether too brief and dogmatic. The student is merely informed that Meso and Metancphres exist ; of their adult structure he learns little or nothing, and in the face of such descriptions of the essential structure of an excretory organ as are given, he would be at a loss to make much of that of the vertebrate at any rate for himself.

Chapters V. and VI. are also at a disadvantage from this curtailing of the histological portion of the subject. The definition of the blood given (p. 181) would not convey to the beginne f 's mind a notion of its real complex nature ; he would rather infer that it is merely "the result of the process of digestion," in function "respiratory as well as nutrient." Least successful of all the definitions given of great systems is that (pp. 393-94) of the nervous system, and it is exceedingly unfortunate that ($\mathrm{p}, 41$) the nerves should be described as bringing or carrying "messages." A fascinating conception of the nervous activity this may be, but it is a commonplace one, well known to every teacher of physiology ; the mischief attendant upon its use is patent, and it is highly desirable that special efforts should be made to secure its abolition. Its adoption in this work is therefore greatly to be regretted.

Prof. Bell's book is fully up to the date of writing, and the subject-matter is for the most part judiciously
selected and arranged ; bat in a volume where so much of fundamental importance to the student is recorded, we could wish to see more discretion used in the transcription of ceriain hypotheses. We frequently find the most elementary facts set down side by side with the most daring generalisations. Nowhere is this more conspicuous than on p. §; where Hubrecht's well-known Nemertean-Vertebrate hypothesis is referred to. The author mentions this with a caution it is true, bat its introduction in the manner adopted, and with the illustrations given, is out of place. Again, a teacher is not justified in telling a novice as a proces zerbal in an elementary textbrok that "the Echinodermata, the Arthropoda, and the Mollusca form (p. 84 three very distinct branches or phyla, the common ancestor of which is to be sousht for only in a simple worm." Neither is he justified in asserting (p. 403) without further qualification than is here given, that "with the exception, then, that in Peripatus and Proncomenia, the anterior end of the nerve-cords is enlarged into a cerebral mass, we should appear to be able to see no essential difference between them and a Craspedote Medusa, save in face that the Medusa has a complete nerve ring." Statements such as the above may prove in the long run to be expressive of the truth, but if introduced into a tevt-book, efforts should bs made to convey to the mind of the student some notion of what they involve. The beginner is too ready to rely upon his teacher and his text-book at all times, and the admoxture of elementary facts with startling lypotheses 15 - in a work of this order-directly opposed to the true scientific principle. The natural tendency to gencralise prematurely needs to be checked rather than otherwise, and of countenanced by a teacher, it must lead to fallacies greater and more mischievous, than were those of the catastrophic school.

There is a dangerous sketchiness about certain portions of this work. For example, on pp .185 to 193 there is mstituted a brief comparison of the great blood-vessels in the leading groups of animals. The descrtptions given would lead one to infer that the antennaty, hepatic, and sternal arterics of the Crustacean, and the auncles of Mollusca, are serial homologues of the carcular commissures of a worm (here called "transverse ; this is in fact stated (pp. 186, 180) to be the case The argument used above applies equally well here, and we are at a loss to imagine the state of him who, with the and of this book, shall try to ascertain the actual condution of these vessels in the admuttedly all-important worm.

When we rellect upon the advisability of placang this work in the hands of the average medical student, it nust be admited that it is not calculated io be of mond service to him during his ordinaty student life, e a crom-bonk for the exanunation-roum. The aif by the terms of his agreement, pledged himself t a fircis of all that is of first importance on the The work will be very valuable as a remembrant? ln, k of reference to those who already know somith detulte of the broad principles of the ssence, atol ronceive of it as calculated to be of especial servical gmingists and others, whose work amang the "dry bones" occamonally needs the hght from within. Sofat as the
dical stident is concerned, it most be phinitated th shor
exist systems of medical education, such as have nexes: tated the production of this book as a "Manuai ; Students of Medicine." The days for "signing ri attendances on long courses of lectures upon zonlog 2^{2} botany are-or oughe to be-numbered; and if. x most desirable, the biological leaven is to be intond into the medical curriculum, it can only be done to C^{2} purpose along lines such as have been suecessfo... . down, mainly by Prof. Huxley:

There is undoubsedly a need of a sound elemerty book, which shall be up to date, on "the general strs of animals," and Chap. 11I. of this volume suppliec want in a measure. The paucity of certain parts of 3 however, is a serious obstacle to its adoption, for dapsuch as are given for the Scaphopoda (p. 82) , w Copepoda (p. 68), and for the Siphonophora, are of avail.

Taking the book as a whole, the success with vi the author has performed his task will be obvious : one cognisant of the immensity of the field Smal: e' cannot well be evcluded from a work of this kind, b; volume contains some which ought to be rectified 2* as possible. For instance, there is no good grout stating (p. 35) that the sesamoids are " no doube explained by a reference to the primitively mule: condition of the vertcbate limb," and there is some: akin to a contradiction in the assertion (p. 140) the th tecth are "developed from cells of epiblastic orlan," that there is " 3 community of origin between whet len been wel: called dermal denticles and what we ent One remarkable instance of the manner in which 6 em of observation may be spread and distorted in the poos of abstracung, is to be found on pp. 3 or and mm , the we read that the telson "sometimes, thoagh wery " (Scyllarus), bears minule appendages." We mentien at the author lavs stress upon it, and unless we att taken in the identity of the paper from which theabmerile has been culced, ${ }^{2}$ in attempt was merely made wo -and that unconclusively-that "the tetron in a ant body segment wath lateral appendages, which are tavel by coheston and adte sion." He wbo abstracts enonet expected to venfy the accuracy of every siatemely reproduces-life is tos short for that-but a mater tise the above should not have been allowed to pass In de? the Araclinida (1", 72) it is stated that " the anmuith if ne: placed so fir the any of the appenilages bec autennary of but one view of a complicas-
and decply

m

rtanfint, and it is morstrous to
imperfect roof" in the region of the fore-brain, hardly accords either with fact or with the characters delineated in Fig. 138. In dealing with another compler matterthe origin of the fretal membranes-the student's attention is abruptly transferred (p. ;og) from the vitelline membrane to the ammion, and that in such a manner that he would scarcely follow what is really meant. Closely allied is the description of the germinal layers, and we doubt if the bare slatement (p. 34) that "the outer and inner layers undertake the functions which their position entails on them" is justifiable.

The work is got up in good style. The technical terms are printed in large type, but the choice of these is not always happy; on p. 5 , for instance, in describing the movements of living protoplasm, we find the words "stream" and "gliding" set up in large letters; while, on p. 12, where the time-honoured terms "ontogeny" and "phylogeny" cannot well be dispensed with, neither they nor equivalents are employed-in fact, but for the aphorisms quoted on p. 13, the arguments used under the head of "development" would hardly carry conviction. Considering the nature of the book there are very fes typographical errors. The more important are: p. 49, the description of Aspidogaster as "ecfoparastic ; " P . 138 , the "rnterior posterior of the digestive tract;" and, p. 501, "the ciphatous Wollusca, such as the mussel," \&c. The illustrations are, for the most part, fairly good. Fig. 11, representing, as it does, only one-half of an anemone, is not easily intelligible to the reader, and the student should be informed what the right half of Fig. 22 is intended to illustrate. Fig. 66 illustrates but feebly part of an important subject-Mamm.ilian odontology-which is poorly dealt with. Figs. $3^{6}, 42,81,82,101,170$, and 192, are all out of place in a work of this kind. They convey little or no impression to the mind of the student, and are bare schemes such as an observer might construct for use in his awn private notebook side by side with actual drawing's of the fiuts observed. Diagrams such as Fig. 101 should never be shaded np, as if indicative of actual appearances.

To sum up. The author has successfully produced, at immense labour, a volume, of service to those who already possess a practical knowledge of the broad principles of the subject. A "Manual for Students of Medicine" it emphatically is not, except under that atrocious and misdirected rigime of parrot-work not yet extinct. For this the system, and not the author, is to blame the has performed a good service, the return for which will but ili repay him.
C. B. H.

BRITISH-DAIRY FARMING

(London
Y readalite volume is from the pen of one who onderstancio the highly technical subject wooted hithrelf, Writing upon agriattermpted by nere theorists, wae practroal men have been forthwith ropesign both more
is happily able to exercise the discernment which comes of knowledge in the marshalling of his facts and the quality of his suggestions. In his introductory chapter he gives solid statistical reasons why we should as a community endeavour to "produce more and import less," and the subsequent chapters are devoted to a review and comparison of our dairy system and those of our Continental neighbours, much to the advantage of the latter. The genius of the F.nglish farmer does not appear to have as yet shone into his dairy. His fields, his machines, his cattle stalls, his animals, have each and all been the admiration and the model of Europe and America. But he pauses on the threshold of his dairy and, we may ald, his hen-house. These are, he thinks, the proper domain of the dairy-maid or the housewife, and the farmer is done with the milk when he has set it down at his dairy door.

It is a case parallel with that of our cuisinc. We produce the finest beef and mutton, but we are only too constanily reminded of the forcible old proverb that while Gud sends meat the Devil sends cooks. There is some ground for hope that we shall, if only by furce of competition, be compelled to further elaborate our products. English cheese is excellent, but it is lamentably wanting in varicty, and certainly is much too apt to be regarded as one of the necessaries rather than as one of the amenities of our daily fare. Butter-making offers fewer facilitics for innovation, but much requires to be done before we can successfully compete with the butter-makers of Denmark, Normandy, and Brittany. It is to cheese-making that Mr. Long devotes the largest share of his space. In England the principal cheeses may be almost told off upon the digits of one hand : they are "Silton, Cheshire, Cheddar, Gloucester, Derby, and Leicester." The two last are, however, a little less definite than the first four. and we do not quite see their right to continue a list so well begun. Derby and Leicester are, no doubt, very good cheese3, but if they are to be admitted to stand in the same relation to English dairying as Stiton and Cheddar, we think Mr. Long might well have increased his list by adding Cutherston, Dorset-blue, North Wilts, and other cheeses well known to thousands of admirers. The principal English cheeses are, however, undoubtedly the first four mentioned in Mr. Long's list, and, with the exception of the Stilton, none of them can compare, in the estimation of an epicure, connoissetur, or gourmand, with the soft, rich, palatable cheeses imported to this country under a puzzling variety of appellations.

The chief interest of Mr. Long's book consists in his minute workable descriptions of the manufacture of a large number of cheeses, which indeed appear to be as numerous and various as are different sorts of wines. The book is well illustrated, and the "plant" required for carrying on the manufacture of some of the cheeses is complicated and expensive. Still, there appears to be no reason why similar cheeses should not be successfully made in England, and it is not improbable that the processes would be further improved in English hands were the matter once taken up.

Take, for example, Camembert:-

${ }^{4}$ The rennet is added to the milk at a temperature similar to that at which it is drawn from the cow : it is heated in a tub, and a portion of the morning's milk is added to the milk
of the previous evening. . . When the rennet is added the milk is gently stirred with a long spoon for two or three minutes ; a wooden cover is then placed on each pan, and it is left for five or six hours. \qquad The curd is then taken out by spoonfuls and put into cylindrical white metal moulds which cost about $45.6 d$. a dozen, and which are open at both ends. These are previously placed upon rush mats upon slightly inclined tables, and which have on the lower extremity a small gutter which carries off the whey into a receptacle beneath. \qquad When the curd has remained two days in moulds the cheese possesses consistency enough to enable it to be moved with ease. Then the left hand is placed beneath it, and, assisted by the right hand, cheese and mould are turned, so that the top face is placed at the bottom, in contact with the mat. At the end of thirty-six to forty-eight hours from filling, the cheeses are taken out of the moulds and salted. . . When salted, they are placed upon the wooden shelves above the draining tables, and here they are left for two or three days until they are ready to be sent to the haloir."

We have quoted the foregoing passage in order to show that there is nothing more complicated in the making of a French Camembert cheese, nor yet so complicated, as in the making of an English Cheddar. Whether by tollowing Mr. Long's directions an English dairyman could produce the correct type and flavour can only be demonstrated by trial, but probably a cheese would be produced sutable to English methods which would add to the variety of our dairy products and find a ready market. Mr. Long also describes the manufacture of various other cheeses, among which are Pont l'Evéque, Livarot, Mignot, Boudon, Irie, Géromé, Coulommiers, Mont d'Or, Void, Suisse, St. Remy, Gervais, St. Marcellin, Jour iac, Gex, and a large number of others, the mere mention of which would occupy more space than we can spare.

Mr. Long has certainly contributed a handy text-book which it is hoped will find its way among and be studied by dairy farmers.

John Wrightson

OUR BOOK SHELF

Chain Cables and Chains. By Thomas W. Traill, C.E., R.N., the Engineer-Surveyor to the Board of Trade. (London: Crosby Lockwood, and Co., 1885.)
In the volume before us we find the business of chain cable-making in its several branches well explained and illustrated; nor does the aim of the author end here. There is information given which is most useful to sur* veyors and inspectors, and we recommend all who have to deal either with the manufacture, inspection, or testing of claain cables to study the work. The volume contains many well executed plates, showing good, bad, and inchifferently-formed links, \&c., for various kinds of cables, also tables of the best dmmensions of each part of each link and slackle used in cables from 7-16th to 2) inches, the dimensions leing given in decimals to two places, and also calculated to thirty-second parts of an inch. We find also exact copies of certificates given by the several public proving establishments, seven plates in all, more than one example being quite unn varying as they do only in colour and the town in which the establishment happens to

After a few pages giving an outline of manufacture and the methods of welding t have a long historical chapter of the early uses chains, in which we are told that their uses date the time of Pharaoh and King Solomon; but it ntil i 808 that chain cables were used on board ship
this time a chain cable was used in a vessel called x Ann and Isabella, of 221 tons, built at Bervick, 22. owned by Joshua Donkin. This cable was made Robert Flinn, in North Shields, perhaps the first arisin chain cables. In the year 1833 the first machire if testing iron cables in a Government yard was put dir at Woolwich, and in 1834 , although chain cables in almost in general use, the rules of Lloyd's Registr specified the length, and it was not until twelve ite afterwards it was part of the surveyor's duty to see: they had been properly tested. The author gives: interesting account of the progress of manufacture A general adoption of iron cables. We then find the wr Acts of Parliament pertaining to their use given of All public proving establishments are now unde management of Lloyd's Committec.

The method of proving chain cables is as follow From every length of 15 fathoms of the cable : proved a piece consisting of three links is taken and 4 jected to an appropriate breaking-strain. If the per:selected fail to withstand such a breaking-strain. 2: piece of three links is taken from the same 15 in length and tested in a like manner. If the first orso of such pieces withstand the breaking-strain, the rect ing portion of the 15 fathoms of cable is then sate to the tensile strain. If it is found that after the as: tion of the tensile strain the cable is without defe: flaws, it is then stamped as proved with the disting marks of the proving establishment ; on the other t. should the cable fail to stand the appropriate tess rejected. Mr. Traill condemns the overtesting of ca considering that the material is injured by so dom; we agree with him in saying:-"A moderate tes that is not detrimental. Proving the iron from whos: cable is made, and breaking a sufficient number of sois what can and should be done to prove the actual - and reliability of a chain."
The volume does great credit to the publishers, y well printed on good paper. We can safely recoc: this work to all in any way connected with the mavi ture of chain cables and chains as a very good book
U'nitced States Coast and Geodetic Surzery. Determs. of Grazity at Stations in Pennsylvania, 18; Appendix No. 19. Report for 1883.
THIS appendix is a portion of the Annual Repr the U.S. Survey, and contains the pendulum obsen-: made in 1879-188o by Mr. C. S. Peirce at three st in Pennsylvania-namely, at the Alleghany Obsen 2 at Ebensburg, and at York. The observations form of a series undertaken in connection with the Gev Survey of the United States. A Repsold reversibe * dulum was used and oscillated in voruo, using 7° kinds of supports. At York a series of experiments rt made to determine the effect of the flexure of the spp? It appears from a previous report (Appendir Na! 1881) that Mr. C. S. Peirce maintained againi llantamour and Hirsch in Switzerland, that the tions of the lave a marked effect on the oscillation (ylum, and he accordingly took an
point, and
experiment
portion, and
No. 14, with
disposed of in
that the flexure
cylnders for the usual knives was also tried, and every care taken to prevent the inclusion of dust, but the restults were very unsatisfactory.

The results obtained are as follows:-
Length of second's pendulum reduced to sea-level at the equator.

At Alleghany, the effect of a valley was not taken into account, as there was no topograplical survey available ; the necessary correction will slightly increase the above value.

LETTERS TO THE EDITOR

[The Editor does wot hold himself responsiblefor opinions expressedt by his correspondents. Neither can he wndertake to peturn, or to correspond with the writers of, rejected manuscripts. No notice is taken of anonymous communications.
[The Editor urgently requests correspondents to ketp their letters as short as possible. The pressure on his spate is so great that it is impossible othervise to insure the afpearance cien of communications containing intercsting and novel facts.]

The Presence of the Remains of Dicynodon in the Triassic Sandstone of Elgin

In my address to the Geological Section of the British Aesociation I was fortunately able to announce a discovery which is of the very greatert interest both to geologists and biologists. As this discovery was made only a few days before the commencement of the meeting at Aberdeen, and after the draft of the address was in type, it does not appear in your columns; I will therefore ask you to insert this note upon the subject. Visiting the "Cutties Hillock" quarry near Elgin early in Septeniber, I found that the workmen had recently ohtained a new specimen of a reptile, in which the head was preserved. On examining this I found that there were clear indications of two large canine teeth in the upper jaw with permanemt pulp cavities. These characters and the general form of the skull left scarcely the smallest doubt in my mind that the remains must belong to a reptile closely allied to Dicynodon. From the examination of a photograph which I submitted to him, my friend Dr. Traquair was able to fully confirm this conclusion, and to lay a preliminary note on the specimen before the (icological Section at Aberdeen. I hope that ere long he will be able to give a complete description of it.

As Dicynolonts have hitherto been only found in South Africa, in India, and in the Ural Mountains, this discovery is an exceedingly important one. Seeing that duubts have been expressed concerning the Triassic age of the South African deposits, the occursence of the very characteristic African form in the Trias of Western Europe is an important link in the chain of evidence by which these beds have been correlated. It is interesting, too, to be able to point out that the sandstones of Elgin, concerning the age of which sach a great amount of controversy has taken place, have now yielded reptiles belonging to no less than four orders-namely, the Lacertilia, the Crocodilla, the Dinosauria, and the Dicynodontia. J. W. JUDD

An Earthquake Invention

necessarily have referred to the work of others, As every report which I have hitherto written for the British Assuciation has leen in the form of notes which have sulsequently been expanded in special papers, an historical account of axeismic tables would have been out of place. Prof. Smyth is apparently only acquainted with the work of Mr. D. Stevenson. Under the head of aseismic tables I include ball and plate seismographs, the lamp tables in ceriain Japanese lighthouses, two moldel houser which 1 constructel in Japan. together with the mowlel lighthouse sposken of by Prof. smyth, and my oun duelling honse. All of these involve the same frinciples, and they onty differ in their dimen sions.
(1) Ball an,t Phate Scisnncyrafhs.- Of these seismographs I have constructed seoveral types. At the time of an earthquake, in consequence of acquirng a surging wovement, they fail to give reliable records. They have been indeferilently invented and described as original by many. Mr. Briggs, of Launceston, Tasmania: Dr. Verbeck, of Tokio, Japan; Mr. T. Gray, of Glaygow ; Mr. D. A. Stevenson, of Edinburgh, 太c., have all been author of such instruments.
Mr. D. A. Stevensin recently figared and described his form of seismograph in the pages of Nature. If we overlook certain mechanical defects in this instrument, as, for instance, attaching a recorling index to the edge of the "steady plate" rather than at its centre of inertia, the resemblance of Mr. Stevenson's contrivance is strikingly like a seismograph the photographs and aleseriptions of whicl existed in several societies and libraries in Britain prior to the appearance of Mr. Stevenson's invention. After reading Mr. Stevenson's stescription I did not ask for the publication of an "interesting" and "well-put " letter, accuslug Mr. Steven on of having appropriated the ideas of others, but I furnished him with copies and references to papers in the Transactions of the Scimological Society and other perioclicals where mention was mate of this type of instrmment.
(2) Lamp Tables.-As I have been an officer in the Public Works Department of Japan for the last ten yeari, where I have every facility of knowing what the perfurmance of the lamp tables at the lighthouses has been at the time of severe earthquakes, I trust that some credence may be given to what I may say on this subject. When I last made inquiries about these tables, I found that they were all regarded as failures and one and all had been clamped. If Mr. Stevenon would like to have details respecting these failures 1 shall, on my return to Japan, have great pleasure in making them public.

Mr. Wallet, in his " Ialmert's Vetwrus," "ery dittinctly states that the ewas consulted by M/r. Stacenson respecting the fapunese sfructures, and that the frinciples indicated by him (1. athet) were followed ous in their constrwe flon.

As Mr. Mallet is dead, perhaps Mr. Stevenson or Prof. Sinyth will kindly enlighten us as to the meaning of this passage. Alshough I have malle seismology a speciality for some years, 1 must confess that 1 am as y yet in the dark as to who was the first inventor of the aseismic joint. To me it appears that there have been many inventors.
13) Moveds.-My first model was about as lange as a grodsized dog kennel. For a short-periol oscillatory movement the house resting on its rollers remained at rest. Prof. Smyth apeaks of Mr. Stevenson having imilated earthquake moti in ty the blows of a sledge-hanmer. Although Prof. Smyth regards the blows of a sledge-hammer as an admirable illustration of earthquake motion, any one acquainted with the true nature of earthquake motion would decline to recognise Mr. Steventon's test as any test whatever.
(4) Brilding. -The only builiting placed on free foundations with which I am acquaintel is the one I have erected in Tokio. At first it rested on balls, and, like Mr. Stevenson's lamp tables, it was for certain reasons a failure. Now it rests on spherical grains of cast-iron sand. It is now astatic, and I regard it as a success. At the tine of an earthquake the motion outside the house is usually about six times what it is inside. A description of it will be found in the Riports of the British Association for 1 S85.

From what I have now said it will be clear that I have no desire to claim the authorship of the ascismatic joint. Detailed reference to the obscure and manifold authorship of what has hitherto proved a failure would certainly; have been out of place in the report to which Prof. Smyth has ieferred.
Had Messrs. Stevenson and Sinyth been acquainted with the nistore of carthquake motion, a few of the more important facts in the history of the ball and plate joint, and the details of the
failure of the table in the Japanese light-houses, If feel sure that much of the objectionable innuendo to which I have been subjected would never have leen penned.

John Milse
s.s. Wahbora, Hobart, Tasmania
P.S. - The above has been written whilst at sca, and 1 have neither had opportunity to refer to books or papers. On ny return to Japan 1 shall be glad to continue the history of the lall and plate joints, should it be required.

Tremble-terre du 26 Septembre, 1885

Une seule secousse a ériconstatée le $\mathbf{2 6}$ Septembre à oh. 58 m . du matin ; elle a été composie de 2 à 3 oscillations, de direetion varialle suivant les localitè. Le centre de la secousse a cé dans le milieu du Valais, oil son inten-ité a été appréciée comme tres-forte, mai ou il n'y a cependant pas eu de degàts matériels; il faut lui attribuer le No. V'I. de t'echelle qui evalue en dix degrés l'intenvite des tremblements de terre.

La secousse sest ctendue vers le nord jusqu'a Schwenden et Zweisimmen dans le Simmenthal, à Chấeau d'Oex, Aigle et Y vorne; dans les Alpes vaudoises elle a eite fort bien sentie dans les vallees de l'Avençon, de la Gryoune, de la Grande-eau, et de la Savine. Dans tout le reste du canton de Vaud le tremble-terte semble avoir passé inaperçu, tandis qu'il nous est signale de deux localitis fort distantes, Geneve et Nidau ; if est ecpendant probable que la secousse de Nidau a preecerede de quelque: minutes la granile secousse du Valais: d'aprés un obmervateur trés preeis la secousse de Nidau a eu lieu à oh. $\mathbf{5 3} \mathrm{m}$.
E.n méne temps que le sol de la Suisse était ainsi ébranle, les appareils tres délicats de l'nbservatoire sismique de Rome, qu avaient èé en repos les jours précédents, ont signale des vilua tions du sol ver. 1 heure du matin; et dans le meme nuit un violent tremblement de terre ravageait la ville de Nicolosi pres de Catane en Sicile.
F.A. Forhl.

Morgec, 8 Octubre

Larve of Cerura vinula

Last year I was rearing up some larve of Cerura trinula, the Puss Muth, from the eges, and I determined, while I liad the chance, to write a life-history of them.
Onexamining the estg closely I found a small hole in the apex of each, and I thought at the time that this was probably caused ly ichneumons, and therefore 1 laid the egse by in a small box that 1 might capture the ichneumons when they mate their appearance. Gifeat was my surprise, then, when I found that the young larvec canic out as usual.
I therefore determined to get some more eges and to find out whether this hole in t'ie apex was caused by the mandibles of the larva inside, but 1 found that the larva ditl not emenge by thi. Hoke, but by a fresh one mate in the side of the egis. And 1 find that all P uss. Moth eges, have this hole in the apees.
I ant now hoping to get tome ege- of moths belonging to the same family (cig. Crura furcula and bifida) to see if they als) are perforated in this way. I should be much obliged if any one who has got any of these eggs woulh hindly let me hnow whether this jo the cave.

This hole eaches throuth the shell of the est, Int is covered. on the mole in the thot well a flan twolle, like that whelh in found in lant, Csik:

 tact.

I unfortunately have netue of throe aree the formard as example, Iett, at they are pethy commen in May, il June on peplar thes. J hase nu dontit that owh it pur ieateri as are
 elve. (ak11 H. II I Mss llunt

Itayent I ©
invariably been able to count the pulse of the intividank, is the experiment detailel in my former letter.
The mirror experiment was tried on my own hand at inedical friend who applied the sphygmograph in the esis : infurmed me that my pulse was free from any aboormaitr.
It is to be borne in mind that the pulsatory iodicans: which my paper is concerned are exceedingly minute ands escape the perception of nine perwons out of ten-rejuirs eye educated to appreciate very minute differences of thate col uur. I do not think that the bristles or sealing wat ${ }^{2}$ which a correspondent ($\mathrm{p}, 437$) kindly suggents, of ert orthorlox sphygmograph would have a chance of e^{A}. exhibiting them. I say shade ant covour: for when a rfrom turgidity, and not sensilly altering the smoxth ert the skin, is seen only hy its blue track, a molificatry tint is perceptible (to an ellucated eye) ; and the bloe ut intensity with the pul-atory action, sufficieatly for the the pulse-coant ng experiment.
J. Il:r:

Stoneaston Park, October 4

Stonebenge

In Natukif, vol. xxaii. p. 436, R. Edmonk , . Stonchenge with the metonic cucle, and quen I liodorus Siculus, whom he says fluariched abot th Would not the latter part of the first century A more accurate? Ile gives in his extract from 1. Siculus a quotation from Hecatous, whom be coof Hecatzus of Miletus, when it was Hecateus of A whom Diodorus referred. Hecataus of Miletus finan500 n. $\mathrm{C}_{\text {. }}$ and Hecatenle of . Ahdera ahout 300 M Etion, M.I', in his "Origins of Einglich Ilivtory," give same extract, and says that "We cannot admit that the Hecataus is on the subject of Ancient Britain," and a its value in the following extract from the works of an Polsh scholar (Lelewel, I'ythcias, 45): "Hecatice a fanieux ouvrage dont le titre decele vine vicille vice rajeunie sous sa plume. Fille devait s'allier aux r decouvertes et y prendre une place eminente at de la seirnce et du lon sens. Hécatee, enumer: les etres mystérieux de la geograplhie septen:no-: richit leur nomenclature d'une riviere Scythizoe ment trouvée en Orient par le conquerant, quil a l'arapamion ; et pluv encore des promuntoire el de iques, 'ju'il a prolaldenent puirese dans los relations de D'ytheas purnr les entrelacer dans les jlages super'en

The quotation frum Ihedorus is from his seonel :* the whole of this se ond book is derlicicted sulely to : tion of Scia; and it is not until the fifth look is reat he decribes the Brituh lises, and with a very com tegree of accuracy. (Siee Fergusion's "Rulle *ater ments," p. S).

1 do unt think, either, that " Nine Mailens" 10 ...
 of Stant in Moor, in Derly hhire, it is a meworial cirde
St ne lisn;e, more wer, is much more pmably a circle, as its original name implies-" Stan Ilengzs" ; 13 nemorate- the nas-acre of Vartigern's chiefs by lle; 462 A.14, The k thisht circle prohably commemonse 1 tons if hello wecr lialwand, circ. 913, whiles Ancle 11.hyen ($5201, \mathrm{Ki}$: Coty 13 (455), Long Mre 1 and 520 , stay 520 , 520), Anther Ariot lime (umrew. No.t. I the velones of

Ine mentent the facts

A. (1) 1 , instantine the G

inia have heen found at o

Milvortun, Leamington
months, and in some cases even twelve months beforehand. The facts brought forward in that paper were of such a nature that, as will be readily inderstookl, I wished very much they could be found to occur generally. But it was undoubnedly better to restrict their application to the area and period dealt with in the pajer. It having been shown, however, that at one period and over a certain area quantitative relations had existed between previous and subsequent barometric variations, it is natural to suppose that quantitative relations may be found to exict at other periods and over other areas also. The question arisex, Can the facts brought forwarl in the above-mentioned paper serve as a guile to future investigation? think to a certain extent they can.

The paper pointed out that there was a remarkable approach to an annual symmetry in the abnormal variations of the harometer in Western Imelia during many of the years under observation. It suppmed that this symmetry would have occurred every year during that period had it not been mavked by larger variations of another character; and it was mainly by acting on this supposition and noting the departure from symmetry in any given gear, and by convidering that departure as being an index of the variation that was about to conce, that the position of the barometer in the subsequent year was calcnlated. The paper attempted to explain the occurrence of this annual symmelty in two ways: (1) By supposing it to be a constant phenomenon connected with the annual touble uscillation known to be present in the normal barometric curve ; and (2) by supposing it to be a chance phenomenon, characterising a phase in the march of harometric varia:ions, and persistent during the period dealt with, bat not necessarily to be found in any othes period. Afier funter reflection 1 an inclined to belicre that the latter ts the correct explanation.

And here I think may be a guide to future investigation. It seems very likely that barometric variations may always be bassing through phases which are persistent for several years. And, cluring the continuance of each phase the abnormal barometric curve will neceisarily approach more or less to a certain annual type. In the cases dealt with in my paper that type chanced to be of a symmetrical form, sufficiently remarkable to strike the eye at once. The regularity of its form made it comparatively easy to be dealt with. An irregular type would of course be leos casy to recognise and less easy to te dealt with. But it is obvious that if such types do exist and persist for several years in saccession, then, by catching the type as the barometric phase comes in and by noting the departures from it each year, in a mamner similar to that adopted with the symmetrical type I had to deal with, these departures may serve also in a similar manner as intices of the coming rariations. Of course the methorls of calculation would have to be purely arbitrary and specially devisel for each barometrie phase. If barolnetrical curves would yielt to strictly mathematical methods, the problem of ceason-forecasting could be regarded as in a fair way of being solved. But it has never yet been fonnd possible to resolve them entirely into regalar periolical oscillations; and I believe they will always have to be arbitrarily dealt with.

Melhourne, July $2 I$
A. N. Peakson

Transmission of Sound

Is connection with the subject of mechanical telephones, which has heen occupying public attention lately, there is a note by Mr. Miller in a recent number of Nature, regaring certall experiments made in 1878 on the propagation of sound. With reference to this, Prof. Wernhold, of Chemnizz, writes to me, saying that as early as is70 he had shown that human monect comid bestansmitted very distinctly through stretehed
 din an article on "The Transmission of Human 4. an Iron. Wire," in Carl's "Repertorium fur
-cik," Band vi, Serie 168. As your correhy like to refor to this, may 1 ask you to W. E. Ayrton Althition Roial, London, October 12
instance, Kerrera, which seems to point to the same conclusion. It would be interesting to know whether this is really the fact or not?

Herbert Elits
112, Regent Koad, Leicester, October 4

THE HELI.GATE EXPLOSIOVV

PROBABLY the largest chemical mechanical experiment ever thought of was successfully performed last week in New York Harbonr by the removal of the obstruction known as Hell Gate, or Flood Kock, a con-siderable-sized istind, as stated by the papers, alout nine acres in extent, in Long Island Sound. The agent employed for this tmmense engineering work is a preparation or preparations of nitro-glycerine, and there is no doubt that this is the only explosive compound which could have been used for the purpose on account of the very enormous quantity required and the peculiar nature of the explosion of this substance. All the compounds or preparations of nitro-glycerine produce by explosion what are hnown as local ettects only, as distinguished from gunpowder, the effects of which are much more gradually developed on ignition, but extend, owing to the slower and larger wave of disturbance, to a much greater distance. The legitimate use of ritro-glycerine is for purposes such as this, where a disruptive action is required.

The operations leadng up to the final explosion have been some years in progress. They have consisted in forming a system of tunnels at a considerable depth under low-water level in the solid rock, and the charging of these tunnels with dynamite and mixtures known as rackarock, of nitro-glycerine with compressed gun-cotton. Twents-four galleries were driven through this island, some of them 1200 feet long, and these were intersected by some forty-six others. These tunnels were about to feet high and 8 feet wide, and the roof of rock above them varied from to to 25 feet in thickness. The quantity of rock to be removed by the explosive was about 275.000 cubic yards, the quantity removed by tunnelling being about 80,000 cubic yards. A good deal of trouble his been occasioned during the course of the mining work by fissures, which have had to be stopped by wooden plugs in most instances. The explosive was charged into holes drilled into the roof and supporting walls and pillars at different angles, with a view to disrupt the strata of rock as much as possible.

The holes to be charged were about 9 feet in length and $2 \frac{1}{3}$ inches in diameter. The holes were charged first with the blasting gelatine or rackarock and filled to the ends with a dynamite cartridge, to which the detonator and electric wire were attached. In all fourteen thousand cartridges of a tutal weight of fourteen tons were employed. Near observers describe the explosion as being accompanied by a dull roar, but with only the slightest shaking of the ground, ever at a moderate distance. An immense quantity of water was bodhly raised up to heights estimated variously at 150 to 200 feet.

The results, as fir as can be ascertained, are very satisfactory, the rock having been very thoroughly broken up, so that it can easily be dredged away.

After the example of an experiment on this scale, carried out without the least accicdent, perhaps it may occur to those in authority that we have on our own coasts dangerous rocks, not of the evtent of Flood Rock, which might with immense advantage be similarly "chenically" removed.
Had gumpowder been the only explosive available, at least fire times the quantity by weight of the nitroglycerine preparations insed in this experiment, would have been necessary and the results would not have been by any means so local or perhaps so satisfactory.

After this the engineer inay find it to his adrantage to cultivate more the acquaintance of the chemist and his products than has been hitherto the case.

SUBMARINE DISTURBANCE

THE following is an extract from the Meteorological F. log kept by Capt. R. J. Balderston on board the ship Belfast :-
\mathcal{E}_{5} "On December 22, 1884 , at about ten minutes to 3 a.m., local ship's time, or 2 Id .19 h .6 m . Greenwich mean time, the ship Belfast, of Liverpool, was shaken by an earthquake which lasted from about 75 to 90 seconds. The vessel at the time was in latitude $34^{\circ} 34^{\prime}$ north and longitude $19^{\circ} 19^{\prime}$ west, the island of Madeira bearing true S.E., distant 145 miles.
"The shaking of the ship was accompanied by a loud rumbling noise, which, as heard from the cabin, resembled the sound which would be made by the rolling of large, empty, iron tanks about the decks, but which, as heard from the upper deck and in the open air, was as that of not very distant thunder, and it appeared to fill the whole of the air.
" 1 did not hear the commencement of the thunderous sound, and cannot say on what compass-bearing of the visible sky it commenced, but it travelled rapidly through the air and towards the S.W.
"The vibration of the vessel and the noise were greatest during the first 50 or 60 seconds; the former then died gradually away and ended in the very faintest tremor, while the latter, as it travelled south-westward through the atmosphere. died out with a low roar as it appeared to sink beyond the horizon.
"The helmsman found the steering wheel much shaken as he held it, and in the cabins and cook-house, tin ware, crockery ware, and other light articles were rattled about.
"This little earthquake occurred three days prior to the commencement of the earthquake which caused so much loss of life and property in Spain.
"Meteorological Office, October 9"

THE BOTANICAL GARDENS IN JAVA

DURING the last few years so many useful and important improvements have been made in the botanical gardens at Buitenzorg and Tsi-Bodas that it might not be amiss if the attention of the readers of Natere, were again drawn to these valuable seats of systematic and philosophical research.

On entering the gardens at lBuitenzorg the stranger is at once struck with the wealth and luxuriance of the vegetation he sees, the great height of the trees whose trunks and branches are in many cases covered with heavy creepers, the dense copses of the different species of bamboo, the eccentric-looking screw-pines and the handsome palm trees; but the scientific observer is also struck with the care that has been taken to arrange all these many varicties of tropical plant life in, as far as possible, their systematic order, and that each specimen has its scientific, and in many cases its Malay name also, clearly and distinctly printed on a little board by its side.

It is not difficult for any one to find his way about the garden, and in a very short time he can discover the particular family or group of plants which he may desire to study. Many families have probably more representatives in these gardens than in any in the world. The Sapatacea, for instance, so rately seen in Europe, are here represented by a great variety of genera and species, and the Palmacest, the Rubiace.e, the Burseracea, the Orchidaces, and other families have now a large number of rare and interesting representatives.

The herbariun which is attached to the garden contains a large collection of dried plants and seeds collected together from the many expeditions into the little or unknown parts of the archipelago and from other sources. Attached to the herbarium there is a comfortable and sonvement little library which contains most of the Ttant botanical books and journals.

The laboratory, which, thanks to the energy of D : Treub, the director, is now completed, is a large, iofy $2 \cdot \mathrm{C}$ for these climes, particularly cool room, and is well jare: out with reagents and apparatus for carrying on boan-is research. The generous invitation which Dr. Treeb issued to naturalists and to which the attention of \geq readers of Nature has already been directed has x tracted several scientific men of different national: $:$ and some excellent research has already been mis = this laboratory.

When 1 arrived in Buitenzorg Dr. Treub was at is Bodas; so, after spending a few days in stady $\mathbb{4}=$ gardens, I made the journey across the mountains th: him a visit. The road from Buitenzorg to $\mathrm{T}_{5}-\mathrm{E}:-$ crosses the Poenchuk Pass and is full of interes beauty. On the way the traveller passes quite dow the Talaga Werner, the crater of an extinct volcanov. is now filled with water, and forms a most beautifu lake hidden in the dense foliage of the mountain; The path from the road to the lake is through a ${ }^{\circ}$ wood of fine forest trees, and amongst the undern ? is found many fine shrubs and plants which are nor: in the low-lying country beneath.

The gardens at Tsi-Bodas are situated on the sine the Gedeh Mountains, at an altitude of 5000 feet. here I found Dr. Treub at work in the comfonatic house which is attached to the gardens.

From this spot a very wide range of vegetation 5 studied, from the rich and varied vegetation of the to the interesting vegetation of the Gedeh and geranso peaks, at an elevation of 10,000 feet 1 gardens themselves a very fine collection of Cor from America, China, Australia, and other parts world has been got together, and spaces have bees cis: for the growth of the various species of Euci Cinchona, and other plants. Year by year the surr. ing forest is being encroached upon by these garde make room for new importations. I was extremel. that I could not prolong my stay at Tsi Bodas, bot to return to Batavia to catch the Molucca bose however, enough to convince me of the great impord of these gardens for the advancement of our be knowledge and the great opportunities they affor: research into all branches of the science.

I need hardly say that the climate in this region tremely pleasant and invigorating, and the neigbov village of Sindanlaya is much resorted to by Euror and others whose health has suffered on the cor-low-lying districts of the Archipelago. At Bate the climate is by no means unpleasant or unheatt as it lies a few thousand feet lower than Tsi-Boda, naturally a good deal warmer; but I am assure: several Europeans have worked there for several without feeling their health the least bit affected.

It is hardly necessary to add that every one wb come over to Java to work in these gardens bus amply repaid for the time spent in the long joume? the sea, for the insight which can be gained ber what tropical botany really is is one which can be ; nowhere else in the world so well, and leaves an wis sion which is not likely to be forgotten in a lifetime

Batavia, July
Sydney J. Hick-

ON CERTAN NEW TERMS OR TERUS IA A NEW OR UNUSUAL SENSE ELEMAENTARY UNIVERSAL GEOMETA

Point, Line, Plane, Space, Extinsion

AI.INE may as usual be understood to meso $1:-1$ line unless the contrary is stated.
Representable extension will comprise the comern corresponding to the first four terms above wrimen.
understood, the term a space is susceptible of a more precise meaning than is usually attributed to it: its intrinsic equation is given by Cayley's theorem of squared distances. It is a homaloid or flat of the 3 rd as a plane is such of the 2 nd, a line of the Ist, and a point of the seroth order.

The phrase space of the $4^{\text {th }}$ order ought accordingly to be superseded if we would avoid using the same word in two different senses-i.e. in a wider and narrower sense. Extension of the $4^{\text {th }}$ order is the proper expression to take its place, and so in general we ought to speak of extension of any given order n, and drop the phrase space of n-dimensions.

Figure, Plasm, Enclosure

A figure may exist in extension of any order. When pervasively limited by homaloids, simple and closed, I had proposed to give to it the provisional name of plasm, but Dr. Ingleby has supplied me with the more appropriate, or at least more simple, term, enclosure.

On the number and nature of simple regular enclosures in extension of any order, consult a remarkable memoir by Prof. Stringham* of the University of California (formerly of the Johns Hopkins University), in the third volume of the American Fournal of Malhematics.

Homaloid, Flat, Niveau, Absolute Measure of Distance

Homaloid, the term long ago introduced by the writer of this note, flat, suggested by the late lamented Clifford, are now well understood, and need no new explanation; but it is well to bear in mind the intrinsic equation which serves to define them to wit

A homaloid in extension of the nth order is definable by means of an equation of the second order (naturally expressible in the language of determinants), in which ($n+1$) points are the standards of reference, and the squared distances from these of any other point in the homaloid are the coordinates.

Observe that the squared length is the absolute measure of distance between two points. The distances of each from the other are not equal but opposite quantities differing in algebraical sign.

A niveaus is a very convenient term to signify the homaloid of the lowest order that can be drawn through a given point-group and is always unique; the order of the homaloid which is the niveau to a group of n points cannot exceed $n-1$.

Curves, surfaces, \&c., of the Ist, 2nd, and nth kind.

A plane (or simple) curve is of the first kind ; "a twisted curve," "courbe gauche," or a curve in extension of the 3 rd order, of the second kind, and in general a curve in extension of the nth order is a curve of the $(n-1)$ th kind.

Similarly we may define a simple surface as one of the first kind, and a surface in extension of the nth order as one of the $(n-2)$ th kind ; and so in general a figure of variety $i+$ (i being if for a curve, 2 for a surface), in extension of the order n, is one of the $(n-i)$ th kind. \ddagger

[^21]
Curve, Locus, Assembly, Envelop, Environment

A curve is that which is common to a locus of points and an assemblage of tangents; the locus is the envelop of the assembly, and the assemblage the environment of the locus.

Lines and Points

A line may be used in the double sense of a locus or direction. In the latter signification an Euclidian or objective line is the union of two lines running in contrary directions and an analytical line is a half-line, a "semdroite," meaning, of course, a half-Euclidian line.

So a point may mean either a position or an infinite assembly of lines (containing or) contained in it ; used in the latter sense, it might temporarily be termed a pencilpoint.

There are half or split points, as there are half or split lines. Thus the infinite extremities of the asymptotes to a hyperbola are half-points, the union of two of them being the correspondent to a single point in any ellipse of which the hyperbola is a perspective image.

Coordinates, Homogeneous and Correlated

Homogeneous systems of coordinates may be distinguished into absolute and proporlional.

In the former the absolute magnitudes of each are material, in the latter their ratios only.

Also into direct and inverse.
Direct coordinates are measured by given multiples of the distances of a variable point from fixed homaloids; inverse by given multiples of the distances of a variable line, plane, \&c., from fixed points.

Correlated systems of direct and inverse coordinates are those in which my "universal mixed concomitant" (Clebsch's conncx) $\xi x+\eta y+\zeta z$ (for greater clearness I confine myself for the moment to a particular diagrammatic case) equalled to zero expresses a line whose inverse coordinates are ξ, η, ζ, when these are made constant and a point (pencil-point) whose direct coordinates (when it is regarded as denoting position) are x, y, z when these in their turn are made constant.

If the distances of a point from the sides of the triangle of reference are l, m, n, and of a line from the angles of the same triangle λ, μ, ν, and if the direct coordinates being $c l, d m, e n$, and the inverse ones $\gamma \lambda, \delta \mu, t v$, and the distances of the angles from the sides $p, q, r-$

$$
c \gamma p=d \Delta q=c e r .
$$

$l, m, n ; \lambda, \mu, \nu$ are correlated systems.
If $l^{\prime \prime} m^{\prime \prime} n^{\prime} p^{\prime} ; l, m, n, p$ the direct coordinates of two corresponding points in a homography are connected by the Matrix M and $\lambda^{\prime} \mu^{\prime} \nu^{\prime} \pi^{\prime} ; \lambda, \mu, \nu, \pi$ (the inverse coordinates of two corresponding planes of the same homography) by the Matrix M^{\prime}, then if the two systems of coordinates are correlated, M and M^{\prime} will be opposite matrices.*

Of course the like will be true in extension of all orders: thus ex. gr. in the case of a plane if for a given homography
$l^{\prime}: a l+b m+c n$
$: m^{\prime}: d l+c m+f n$
$\vdots: n^{\prime}: g l+h m+k n$
Then
$\lambda^{\prime}:(c k-f h) \lambda+(f k-d k) \mu+(d h-e g) \nu$
$:: \mu^{\prime}:(c h-b k) \lambda+(a k-c k) \mu+(b g-a h) \nu$
$:: \nu^{\prime}:(b f-c e) \lambda+(e d-a f) \mu+(a e-b d) \nu$
being that it is sams mirrans. The radial distinction therefore is not between the common Euclidian geometry and its generaliation (the socalled Non-Euclidian) but between the Homaloidal and the Anhomaloidal geometries.

In other words, f.r two point line, point-volume, Nc, schemes bomographically related, einploying correlated systems of proporitional coordinaten, the matrix which serves to express the relation between the direct coordinaten of the first scheme and those of the second may be taken the transverse of the matrix which does the same between the inversecoordinates of the second and those of the first. This is an important and as far as I am a ware a new theorrm,
provided that $l, m, n ; \lambda, \mu, \nu$ are correlated systems of coordinates.

Images : Reciprocals or Polar Reciprocals

It is very convenient to speak of any function which equated to zero expresses a figure as an image* of such figure ; thus ex. gr. $\xi x+\eta y+\zeta$ may be spoken of as an image of the line ξ, η, ζ and of the point x, y, z.

A curve being the concept common to a locus and an assembly (the common ground, so to say, of the existence of each of them), will be capable of being imaged in terms of either direct or inverse coordinates. If the two coordinate systems are supposed to be correlated (as they ought always to be) then any two homogeneous functions which are reciprocal, or, let us say, conjugate to one another (each in common parlance the polar reciprocal of the other) will be images-the one of the curve under its aspect as a locus, the other of the very same curve under its aspect as an assemblage.

Reduced Perpendicular Dishances

An extremely convenient system of homogeneous coordinates of a point is where each coordinate is the distance from one of the boundaries of the fundamental enclosure divided by the distance of that boundary from the opposite angle. Such coordinates may be termed coordinates of reduced distance or reduced coordinates; they are analytically defined by their sum being unity. If a, b be the two vertices which correspond to the coordinates of reduced distances, the squared distance of any two points, $x, y, z, \ldots ; x^{\prime}, y^{\prime} z^{\prime}, \ldots$ in extension of any order is capable of being expressed by the formula $\Sigma(a b)^{2}(x-x)\left(y^{\prime}-y\right)$, which, as far as I have been able to ascertain, is nowhere stated in the books, except for the case of trilinear coordinates.

Exihanzeable Fizures

Two figures indistinguishable from each other by any of their internal properties, but incapable of occupying the same place (such as the left-and right-hand glove or shoe) have received the very awkward and misleading name of symmetrical figures; 1 propose to call them exchangeable figures, inasmuch as in the nature of things, as they are in themselves (without regard to the limitation of the human faculties), they may be made to pass into eachother's places by a semi-revolution about a suitable homaloidal axis.

The Point-Pair at Infinity, Lines and Plones of Niull

It has been already shown in these columns that the "absolute" in a plane has full right to be called the point-pair at infinity, in analogy with the received expression of the line at infinity, and those who have considered what has been here stated under the head of reciprocity will see good grounds for admitting that the line at infinity ought to be regarded as a complete line, i.t. as inade up of two analytical "semi-droites."

Every line through either half of the absolute besides the property of being intinitely distant from any point in the finite region inay be termed a line of 1 ull, in the sense that the distance between any two points in such line is zero.

In like manner any plane ourching the absolute in extension of the 3 rd order, besides being intinitely distant from the finite region, is in the same sense a plone of null; in it, form is divorced from content, for a tigure of any shape being described upon such plane, its content will be nil.

Pluri-dualily: Conlaining and Contained

In extension of i dimensions each continuum of $\boldsymbol{\lambda}$ dimensions stands in a relation of reciprocity to one of

[^22] rroduction of a cobatant laclor.
$i-\lambda-1$ dimensions, the total number of these "cid ities" being $\frac{i+1}{2}$ when i is odd and $\frac{i}{2}$ when t is ea (in the former case the continuum of $\frac{i-1}{2}$ dimenam being its own reciprocal). It is very consenor a connecting reciprocal geometrical statements to p: the difference between (and to regard as exciable and equivalent) the terms containing and consuad in as applied to heterogeneous continua; mded at ordinary distinctive use of these words sugess a erroneous conception; as $e x . g r$. of a line being 4 $u p$ of points or a plane of lines. A point may be $-1: 3$ contain every line or plane which passes through i: a line every point which lies on it, and every plase v:2 passes through it: as an example of this extende. ? tion the order, rank, and class of a surface may be $x=$ ed as follows-viz. the order and class as the number - point and plane elements respectively contained : 2 given line ; the rank as the number of its line ekers contained in common by any given point and plane -1 contain one another.

A plane-section of a surface is the totality of its $p=$ or line-elements contained in a plane and sumir. point-section (an enveloping cone), the totalitr plane- or line-elements contained in a point : bence : differently the class of any plane-section or the onve any point-section of a surface is its rank.*
J. J. SyLvL:iu

NOTES

All the five French academies will celebrate by $a=1$ the ninctieth anniversary of the foundation of the Inscirs..0 was established on October 25, 1795, by the Consel 140 and Directoire Exceutif of the Freach Repablic. The organisation is not quite the ame as the oniginal, great inn tions having been mate in 1814, and only partially abolubed 3 subsequent oceasions.

TuE death took place last month of General J. J. Fier President of the Central Bureau for Luropean Triangelsum : of the Koyal Prussian Cieodetic Institute. General Beega : reached the age of ninely-one years. A biography of some ide will be fuund in the ditronomishe. Viachrichten, No. 30:?
M. Robis, a member of the Faris Acalemy of Scencero the French Scnate, died Jast week. He bad devoted hiverots to microscopy, and was professur to the Schuol of Medicme.

[^23]Hy invitation of the Iieutenant-Governor of the Isle of Man Prof. Boyd Dawkins recently visited that island in order to report on its antiquities and the best means of preserving them. The result is given in a short communcation to the LicutenantGovernor, in which Prof. Dawkins indicates the present condition of the various classes of remains. He points out what should le done for their preservation, and advises that the island Legislature should pass an Act similar to the "Ancient Monuments Act" of the "neighbouring islands" of Great Britain and Ireland. The advice given by Prof. Dawkins is sound, and it is crectitable to the Lieutenant-Governor that he has shown so much intelligent zeal in the matter. We are glad to note that he intends to follow up his action by introducing a bill into the Council with a view to carrying out Prof. Dawkins's recommendations.

THE last publication of the Japanese Meteorological Observatory which has reached us contains the monthly summaries and monthly means for 1884, and is accompanied by forty.one maps, showing the icobars, isotherms, and prevailing winds. These volumes must demand unusual care on the part of the compiler, for they are printed in Japanese as well as English, and contain a mass of metcorological data of all sorts. We observe that three new stations have been adled during the year, one in the north of Yezo, and the other, which should prove a valuable station, is at Fusan, the port of Corea recently opened to Japanese trade. This constant annexation of new territory by the Tohio Meteorological Bureau is to be highly commendel.

A recent issue of Cosmos contains an account of the Jesuit establishments at Zikawei near Shanghai, the meteorological publications of which have frequently been noticed in Nature. The central cotablishment of the Jesuits in China is at Funkatoo in Shanghai, but aloout six miles away at Zikawei (Siccawei) they have a large adjunct, containing their schools, an orphanage, and a college. In the course of its existence the place has been twice sacked, but it was again rebuilt. In 1870 the fathers began with the rudiments of a metcosological observatory, of which Father Dechevrens was the founder, and has been to the present moment the director. Guadually, by purchave and by presentations from various Goveruments, the observatory became tolerably well equipped, and it is now a magnetic and metcorological station of the first order, making wilh excellent instruments obmervations on atmospheric pressure, temperature, humidity, evaporation, rain, winds, solar radiation, terrestrial magnetism in its varions manifestations, \&c. It issues a monthly Bulletin containing the observations, and a rfumf and discussion of the ineteorological events of the month. Thanks of the nu nerous missionaries scattered over the neighbouring provinces, who correypond with the director, the peeuliar atmospheric movements in the China seas are leginning to be understood. Quite recently (as mentioned at the time in Nature) he has taken advantage, with the assistance of Sir Robert Hatt, of the Telegraphs, to establish a regular daily weather service, for the benefit of mariners. The observatory is situated in a vast plain, where the horizon alone stopz the view, and where atmospheric inovements are not complicated by ranges of hills. A tower 33 metres in height has been erected, and the Beckley anemometer, constructed in 1884 by Munto, of London, is placed on a platform 7 metres higher. The observatory has gone on devcloping year by year, and there is little doubt that it will soon include in its field astronomical observations. The Bulloins are printed at the mission printing-press, which is included in the establichments at Zikawei, the printers being young Chinese. The monthly Bulletins furm a conviderable volume at the en 1 of the year, and that for 1884, which has lately been issued, is the tenth io the series.

With regard to the new star in Andromeda Dr. Sophus Tromholt relates the following curious story in a Norwegian journal:-"When the interesting discovery hard been male in 1877 that Mars was accompanied by two moons, it was shortly afterwards pointed out that Swift, in 'Gulliver's Travels,' relates that the Liliputian astronomers had discovered the two satellites (Voltaire, too, in a work in which he describes the experiences of two terrestrial beings on Mars, says that they saw the two moons unknown to mundane astronomers, but he has probably borrowed the idea from Swift). A similar remarkable proof that poets may also be prophets in astronomy has just come to light with regard to the new star in Andromeda. In the Ilangarian periodical Iosonesi Phonir for 1851 is a story by Maurus Jokai, the celebrated author, in which he refers to this star. Jókai makes an o.d Malay (?) telate that the Evil Spirit, Asafiel, revealed to King Saul and his sons the star in the nebula, and predicted that those who could not sec it should perish in the impending battle. The Malay also reveals the star to his li teners and describes its poaition so accurately that there cannot be any doubt of the Andromeda nebula being the one referred to, although it is not named. The story, according to Jokai, rests on a biblical or Jewish legend. On the writer of these lines asking one of the greatest living authorities on biblical research whether the bible contains any reference to the point, he is informed that there is absolutely no such reference in that loook, and that it is hardly possible that the nebula is mentioned in any Jewish legend. It is first mentioned by a l'ersian astronomer of the tenth century, and was first discovered in Europe in $\mathbf{1 6 1 2}$. It would be exceedingly interesting to ascertain whether any Jewish tradition has preserved the mention of a star in the Audromeda nebula, as from this might be concluded that the new star is a variable one with a long period. I intend to inquire of Jókai whether his story is founded on any traditios or only an ouscome of the author's imagination, but even should the latter be the case the story is a very curious one."

Algulogy is becoming a favourite science with some Russian botanists. After the valuable researches of Dr. Gobi on the alge of the Gulf of Finland, several memoirs have been published by MM. Reinhardt and Rishavi on those of the Black Sea, and we find now in the last issue of the Mimoirs of the Novorossian Society of Naturalists (ix. 2) an elaborate paper, by M. Reinhardt, being contributions to the morphology and classification of the Black Sea algic. The paper is the first of a series. Following Bornet and Thuret's example given in their "Notes Algologiques," the author publishes his observations on separate species, without awaiting the time when he will be enabled to publith a more complete work. In the morphological part of his paper, M. Reiuhardt discusses the development of a few Chlorophyllex, and enters into more details with regard to some of the Cyanophycex, and especially the lheospore.e the conjugation of Ectocarpus silicuiosus and the growth of Sthtuclaria). As to the Rhodophycex, only short remork, eqpecially as to pores in their external covering, a e given. The chief attention has been devoted, however, to the Bacillariacex, and the paper contains a good deal of new observations on the structure of gelatinous colonies, the structure of the cell and its protoplasmatic parts, and the auxospores. The systematical part will appear in a next issuc. The paper is accompanied by eleven tables engraved in Germany.

THE same volume contains a very interesting paper on the development of Rotifers, by the Director of the Sebastopol Zoological Station, Miss Pereyaslavtseff. This subject has been rather neglected until now, and M. Zaleiki's paper on the history of the development of the Brachionus urcolaris could not be considered as a complete solution of the question. Miss

Pereyaslavtseff's method differs from most of those hitherto recorded : she does not select one or another phase of development as being the most important, but, placing several Rotifers and Lepadellx under the object-glass of a microscope, she waited until one of them would lay an egg, and the development taking about three days from the beginning of the segmentation until the issue of the new animal from the egg, she observed it continually throughout the first thirty to thirty-five hours, with only short interruptions of two to three hours in the observation of subsequent phases. This method has of course its inconvenience by preventing sleep for two nights. It cannot be applied also to those Rotifers which live an errant life. These last do not survive confinement, and must be kept in watchglasses until they lay their eggs, which last are then brought under microscopic investigation. Ten different species were studied in this way, and proved to undergo the same development, so that Rostifier inflata has been given as a type of the development of the egg. The stages are all figured in fortyeight drawings on a plate accompanying the memoir.

The same volume contains, moreover, three papers on geology : one by M. Sintsoff, on Tertiary fossils from Novorossia, being a description of the following new species: Anolonta unioides, Scrobicularia tellinoides, Ervilia minu'a, Neritina pseudo-Grateloupana, and several others formerly described ; it also contains a list of the fauna of the intermediate PontoSarmatian deposits of the region. Another, by M. Miklashevsky, gives some information on the Government of Tchernigoff; and a third, by M. Andrusoff, deals at length with the geology of the Kertch peninsula, and throws some new light on the confused geology of the Crimea. It appears from the author's researches that the Tertiary deposits of the Crimea may be subdivided into the following: (a) the true Congerrie deposits (Pontri), consisting of iron-bearing clays, equivalent in West Europe to the deposits of Hidas and Arpad, and of limestones, sandstones, and m?s'd equivalent to the Dreissena triangularis deposits of the Vienns basin, the D. rostriformis deposits of Ploeshti and the upper Siebenburgen deposits; (b) the Ponto-Sarmatian intermediate group of the Kerteh limestone, equivalent to the lower Sielienburgen deposits; (c) the Sarmatian group, equivalent to the same of Roumania, Turkey, and Austria-IIungary; and (d) the Upper Mediterranean, equivalent to the Leythakalk, the Badner Tçdl, \&c. It would result from the above, and from what is known about South Russia and the Crimea, that during the older Miocene period both were a continent. Later on they were invaded by a sea penetrating from the west, and a narrow gulf limited in the south by the Yaiba hills, extended towards the East. During the Sarmatian epoch the subsidence continued, followed soon by an upheaval towards the end of that period, which upheaval led to the formation of narrow, less settled bays, like those we see now on the Kuban, at the place formerly occupied by the Sarmatian Gulf.

The Garner and Srience Recorder's Kournal is the title of a new scientific monthly, edited by Mr. A. Ramsay, and published by W. E. Bowers, Walworth.

A Societri for the Advancement of Science has been formed in Bergen, numbering about a hundred members, the President being Dr. Danielsen.

Mr. Arthur S. Pennington's Manual of British Zoophytes, to be pu'lished immeliately by Messrs. L. Reeve and Co., will include not only the Hydroida but also the Actinozoa and I'olyzoa found in Great Britain, Ireland, and the Channel Islands. The same publishers announce an illustrative volume of "Collections and Recollections of Natural IIstory and "port," by the Rev, G. C. Green.

We have reccived the sixteenih annual Repor of the !at and Norwich Naturalists' Society, forming part 1. 1. . 1 the Transactions. Amongst the published papen $A=$ dential address by Mr. Francis Sutton, F.C.s., ∞ the $:=0$ tion of soils by means of minute living organisms : $a: \cdots$, a gentleman also contributes a most valuable pare: - a varieties of sugar, natural and artificial ; Mr. Honce B in $\$$ ward, F.G.S., gives a paper on the earthquake of A;n, - 4 which made itself so severely felt in the counties of S.- a Suffolk; Mr. F. D. Power, who visited the Sorfio \& during the period of the autumnal migration, in his $" 1 \rightarrow$ logical Notes from Cley and Blakeney," shows the os =11 influx of birds, some of which are generally supposec: ,id the greatest rarity, which takes place on the easero cis 1 that period ; amongst Mr. Power's list of rarities occan "- throated warbler, of which he says he must have *e a eighty to one hundred individuals, and the barred $a s:<=a$ warblers. Mr. J. H. Gurney, jun., also contribute , C = able facts bearing upon the vexed question of migrume. 3 observance of which the Norfolk coant is so favoarably -1 Mr. Southwold furnishes his usual review of the beri: $\cdot \boldsymbol{*}$? from the ports of Yarmouth and Lowestoft, fros - it appears that the enorm us number of $505.005,600:=$ taken by the fishermen using those two ports; the sase-man also contributes a paper on the white-beated Cetacean which has been procured on several occasoas a east coast. The "Ornithological Notes" of Mr. Hys. Se- F.L.S., are in continuation of a series extending bacis: years ; and a most interesting memoir of John Scale in : '. buted by Prof. Newton, f srming one of a series of enz naturalists of whom the county of Norfolk has since :s mencement of the present century proluced so many 5 examples.

AN experiment has recently been tried at the Inveat: hibition Aquarium by Mr. W. August Carter with a 10 discovering how far fish are prone to sleep. After close cux tion he found that amongst freshwater fishes the mat gudgcon, carp, tench, minnow, and catfish sleep penvis. common with terrestrial animals. The same invis. found to actuate marine fish, of which the follow wi, observed to be equally influenced by somnolence-0: wrasse, conger eel, dory, dogfish, wrasse bass, and all ye flat fish. Mr. Carter states that, so far as he can da-goldrish, pike, and angler fish never slesp, but rest peni: Desire for sleep amongst fish varie accosding to metenscontitions. Finh do nu: nesessaraly select nightrar* repore.
The specimens of fish collected for the International l: logical Muscum, which is being formed by the Nations Culture Association, now number about 500 . Thes r many rare fish as well as thove of extraondinary grovformation. Many of the specimens are the finest to be n : London, having been specially caught for the Aswor. qualified ichthyologists and agents. The work of wetme fish out in glass jars is now being commencel, and it D !- c to be able to exhibit them to the public shortly.

WE have received the third and concluding part \& 4 Hann's paper before the Berlin Academy of Scieace in 1 temperature of the Austrian . Mpe. The tables contain men and yearly average of temperature for 382 at Austrian Alps and the nelghbourhool reluced er ber (24 -hour) averay'c, and to a thirty-year period (1851 Bathe stations 277 were below 1000 metres, 88 lay ber and 2000, while 17 were over 2000 metres in height ? obtained at all these vations over a period of yran worked up and arrangel. The preseat pert coats,
pages, so that the whole paper would make a considerable volume dealing with temperatures in the Alpine regions of Austria.
M. v'Absadie begs us to state that the carth-tremors observed in his apparatus (Nature, vol. xxxii. p. 568) about two miles north of the Spanish fronticr coincided with the many earthquakes in the south of Spain. There were no such phenomena in Egypt.

The additions to the Zoological Society's Gardens during the past week include a Bonnet Monkey (Macacus sinicus 8) from India, presented by Mr. L. C. Phillips; a Ring-tailed Coati (Nasua rufit δ) from South America, presented by Lieut. W. F. Tunnard, R.N. ; a Black Wallaby (Halmaturws walabatus 8) from South Australia, presented by Mr. R. E. Wootton Isaacson ; a Javan Cat (Felis jazunensis) from Java, presented by Capt. T. H. Franks ; a Puma (Felis concolor 8) from South America, presented by M. Rotlolfo Aranz ; two West Indian Rails (Aramides cayennenis) from Brazil, presented by Mr. J. C. Fraser; a Levaillant's Amazon (Chrysotis levaillanti) from Mexico, presented by Mr. H. D. Astley, F.Z.S.; a Silver Pheasant (Éuplocamus nycthemerus) ifrom China, presented by Mrs. James; three Robben Island Snakes (Coronella phocarum), a Hoary Snake (Coronella cana), a Elaps (Elaps hygic), a Reddish Pentonyx (Pdomedwas subrufis) from South Africa, seven Geometrical Tortoises (Testudo geometrica) from the Orange River, South Africa, presentel by the Rev. G. H. R. Fisk, C.M.Z.S. ; a Rose crested Cockatoo (Cacatua moluccensi) from Moluccas, deposited; a Blue and Yellow Macaw (Ara ararauna) from Trinidad, received in exchange ; eight Summer Ducks ($E x$ sponsa, 48 48) from North America, purchased; a Bennett's Wallaby (Halmatarus benneffi 8), born in the Gardens.

ASTRONOMICAL PHENOMENA FOR THE WEEK, 1885, OCTOBER 18-24

(For the reckoning of time the civil day, commencing at Greenwich mean midnight, counting the hours on to 24, is here employed.)

At Grectwich on October 18

Sun rises, 6 h .3 Im. ; souths, 11 h .45 m .9 .95 . ; sets, 86 h .59 m . ; decl. on meridian, $9^{\circ} 47^{\prime}$ S. : Sidereal Time at Sunset, 18h. 48 m .
Moon (two days after First Quarter) rises, 14 h .51 m. ; souths, 20h. Om. ; sets, th. $17 \mathrm{~m} .{ }^{*}$; decl. on meridian, $10^{\circ} 27^{\prime} \mathrm{S}$.

Planet	Rises			Souths		Sets	Decl. on meridian		
Mercury	..	637	...	If 51	\cdots	17	...		43 S .
Venus	...	1037	...	1430	...	1823	...	23	26 S .
Mars	...			738	...	1510	...	163	38 N.
Jupiter	...	335	\cdots	954	...	1613	...	3	5 N.
Saturn	...	$204{ }^{\text {* }}$...	449		1257		221	17 N.

- Indicates that the rising is that of the preceding and the setting that of the following day.

Phenomena of Jupiler's Satellitis

GEOGRAPHICAL NOTES

THE work done by Lieut. Wissmann in his exploration of the Kumai Rivery Cic greal sruthern tributary of the Congo, is necomifin importacc only to the -liseovery of the Conga itself. It will serimesly modify the conjectural geography of that part of Africk. Taud the river to be of immonnse volume, and navigable
Saukury
the Kassai. As it approaches the Congo Kassai receives the great Koango, and enters the main river by the Kwamouth, after receiving the water of Lake leopold. Thus the river which on Stanley s last map joins the Congo west of Stanley Falls cannot be the Lubilash, and, moreover, must be of no great length. This discovery of Lieut. Wissaann, aloug with that of the Mobangi by Mr. Grenfell, greatly increases the navigable waterway of the Congo system.
The September number of I'termann's Alitheilungon has for its priucipal article the first part of an account of Paulitichke and Hardegser's joutney to Harar, by Dr. Paulitschke. It is accompanierl by a map of the districts traversed. The present instalment describes the circumstances under which the journey was undertaken, the preparations at Zeila, where the English consul was able to put the travellers in friendly communication with Abu Bakr, the Governor of Zeila, who gave them the most important help, and the details of the journey as far as Bussa, on the frontier of the Northern Gallas country. Dr. Schinz asks the question whether Namaqua-Land or Nama-Land is correct, and decides in favour of the latter. "Namaqua" is a Dutch corruption ; the term "Nama" is applied to llottentots in general, without any distinction of sex; "namaqua" is properly " namagu" or "namaga," the nominative and dative plural of "nama"; "qua" is therefore doubly wrong as a suffix, and Namaland is the proper term. M. Rabot writes on the Stor Borgefjeld in Nordland in Norway, asd the nsual literary and geographical news brings the number to a conclusion.
The last number (Band $x \times v i i i$, No. 29) of the Jitthilungen of the Geographical Society of Vienna contains a paper on the ethnic members of the western Somali and north eastern Galla tribes, by Dr. Paulitschke, accompanied by a map; six letters from Dr. Lenz on his Congo expedition, and the first part of a paper by Herr Julg on the crosive action of the sea nn coasts; the bibliography of Africa for the last half year, and the usual notices of geographical works conclude the number.
M. Bran de Saint Pol-Ilas, who was sent on a scientific mission to Tonquin and Java, returned to France towards the close of September. He brought back with him numerous specimens of the flora and fauna of the districts through which he travelled.

THE chief geographical societics in Germany have resolved to erect a monument to the late Dr. Nachtigal on Cape Palmas, where he lies buried. It is intended to have it so large that it will serve as a landmark to seamen.

The Godeffroy Museum at Hamburg, illustrative of the natural hi-tory of the South Sea Islands, has been sold to the Ethnographical Museum of Leeipsic.

7 HE GREAT OCEAN BASINS ${ }^{1}$

I.

T^{1}IIE ancients, down to the time of Aristotle-and most of them for a long time afterwards-regareled the earth as a great plain surrounded on all sides by the mighty, deep, gentlyflowing stream of the ocean.

In the geograplyy of the Homeric age there was not supposed to be any communication between the Mediterranean and this all-encircling ocean river. When, in consequence of the excursions of the Phenicians, the communication through the Pillars of Hercules became known, ideas respeeting the outer sea gradually changed. At first, curiously enough, the Atlantic Ocean was regarded as muddy, shallow, and little agitated by the winds-a belief apparently associated with the supposed subsidence of the legendary island of Aclantis. The world, as known to the ancients down to about 300 years before Christ, is represented in this map of Hecatæus.

There seems to be no dunbt that the spherical form of the earth was known to some philosophers even before the time of Aristotle-the proof that the earth is a xphere being indeed easy to minds that had reeeived a mathematical training-but these have been few in all ages, and an idea so directly opposed to the apparent evidence of the senses could only be expected to win its way with difficulty. Indeed, at the present day the majority of even educated people are unable to give any reason for their belief that the earth is a sphere, other than that navigators are now in the habit of sailing a round it.
${ }^{2}$ Licturc atlivered at the Alerdeen mecting of the Britizh Association by Mr. Johe Murray, Directer of the Challonewr Keports.

However, we find that Erathosthenes, Posidonius, and other learned Greeks, who flourished between one and two centuries lefore our era, were in possession of ideas concerning the figure and position of the terrestrial globe which do not differ mat :rially from those of the moverin geographer. They had considerable knowledge of the great wide sea, a clear perception of the diurnal recurrence of the tides, of their monthly cycles of variation, and correctly ascribed these changes to the influence of the inooh. They speculated on the circumnavigation of the glole, and thus anticipated by many centuries the project of Columbus of sailing direct from Spain to the Indies.

During the century immerliately preceding the C ristian era, and during the dark and middle ages, there was a large acquisition of information with respect to the superficial extent of the ocean. But, when we look back on the history of knowledge concerning our planet, there is to be found no paraltel to the impression proflaced in men's minds and conceptions by the discovery of America, and the circumnavigation of the world, a few years later, by Magellan and Drake. The influence of these events and the great ideas associate. with them, can be Haced throughout the literature of the Elizabethan period; Shakefreare appears to have had the mental picture of the great, sold, floating globe continually before him. His spirit seemed
". . . . H Jwn with restless violence round about
The perdant world."
To the great mass of people the circumnavigation of the globe was the practical denonstration that the eath was swung in space, supported alone by some unseen power; it was the conclusive prouf of its globular form-a fact which must be regarded as the fundamental principle of all scicatific georraphy.

The rage for gengraphical exploration which set in after the discovery of America brought the phenomena of the ocean into greater prominence, but the science of the sea can harilly le said to have commenced till the seventeenth century, when Hooke and Boyle undertook their experiments as to the depth of the sea and the composition of ocean water; and several naturalist, gave descriptions of the animals and plants inhlabiting the shallow waters surrounding the land. During the cighteenth century there was a ain a lange acquisition of hnow. ledtec concerning the ocean, for the navigator was busy with the study of the wints, currents, and tides; while the two Noises with other explorens and scientific men malle mos praiveworthy endeavours to investigate the greater depths of the sca during the first half of the present century.

The rast abysmal regions of the great ocean thasins, however, lay all scientifically unexplored, when about iwenty years ago their systematic examination was undertaken by expeditions sent forthlyy our own country and by the tioveruments of the U'nitel states, Germany; Italy, France, and Nurway.

It is not easy to estimate the relative importance of the events of onc', own time, yet in all prubability the historians of the reign of Victoria will point to the recent discoveries in the great oceans as the must important events of the century with respect to the acquisition of natural kinowledge, as among the mast brilliant conquests of man in his s:ruggle with nature, and doubsless they will be able to trace the effect of these discoverics on the literature and on the philosophic conceptions of our age. A mantle of mystery and $\mathrm{i}_{\mathrm{h}} \mathrm{n}$ rance has been cleared away from the eleven-sixteenthe of the carth's surface covered by the ocean, and in its place we liave much definite and accurate knowledge of the depths of the sea. The last of the great outlines showimg the surface feasures of our globe have been tooldly skethed; the foundations of a physiography of the earth's surface have been firmly haid down.

This evening we will endeavour to pass in review some of the chief phenomena of the great ocean basias, and attempt to bring before you wome of the more important results arrised at by the wany lintinguished men who have heed engaged in occanographical researches during receat years.

If it be remembered that the greatest depth of the ocean is only aloost five miles, and that the height of the highert mumatain is likenies stout five miles atove the level of the res, while the glohe itvelf has a diameter of 8000 mile, the comparative insignificance of all the surface inequalities of the eanh is at once farcel on our attention. A circle 66 fect in diameter baving on its surlace a depression of one inch; or a globe one foot in diameler, with a groove on its surface one-sixtleth of an inch in dejith, would eepresent on a true seale the greatest inequality, of Gountain beught and ocean deep, on the surface of the earth.

Misconceptions often arise, and erroneous condasives are b quently arrived at when these proportions are not rigrdly bure mind. But, unimportant as these surface features may apheu ol. viewed with reference to the diameter of the earth, \mathbb{C} : : superficial area of an ocean several thousand miles to eile still to the geologist and physical geographer the elevato = depressions, foldings and dislocations, vertical and lateri' = form these inequalities are traly gigantic, immane, phe and the more they are studied the more do they apper the result of changes taking place in a very definite an? manner in the course of the earth's developmental bustery

Allow me to direct your attention to the majs repree hemispheres of the earth drawn in equal sarface te The continental land of the world is coloured back, the 1 $^{-}$ mal regions are coloured red, and betweets these two thenboriet or Iransitional area which is uncoloured.

You will observe that the dark-coloured mases of wext t^{\prime} land are, at some one point, more or less closely conseres. similar mases; there is usually a place where adjaceti are not separated by oceans of very great depth. Ath might almont journcy from any one point in these regi bs. other without once losing sight of land. If an exeepane I be made to this statememt it is in the case of New Zetion the Antarctic Continent, for the Challenger's dredges = brought up masses of schist, gneiss, granite, sandstone, 17 pact limestone along the borders of the ice-barrier, th m all doubt that there is a mass of continental land at the prole, Lut, since it is buried beneath perpetual snow, is : extent is a matier of conjecture.
The strfaces of the continents are every where cut toto gorge, inountain and valley, and are continually osde; process of disintegration. Water, frost, ice, sudden ch: emperature, are cver tearing the solid rocks to pieces, nk, transporting the fragments down to the ocean, or carryse the solid earth in solution; the bulik of this material mo in the areas bordering the continents-the unculoured th the maps-tbere to form rock which may once syzit dry land. Sooner "or later the whole of the connmers in this way he reducel below the level of the waven, w. other forces at work producing elevation. Such fone are, and they are probably more potent than the disin. 6 and tran-porting forces, since there are many reas ber lieving that there is now more dry land than at any otbe of the carth's history.
The continents liave an average height of aloogt p. above the level of the sea ; they may be regardei as ws phateaus occupying five-sixteenths of the earth's surfare

The abywal regions of the earth, represented by the re on the mape, occupy eight-sixteenthe, or one lalf of tbe surface, and have an average degth of three miles bean surface of the waves. The greate t depths in the Pa.s. the south and east of Japan, where there are abystefive miles ; and in the Allantic the greatest depht is tot to of the Virgin Islands, where there is a depression of a over four miles.
From all we yet know of these abysmal areas they haret: diversity of peak, gorge, mountain, and valiey compar, thowe which are me: with on land ; they are fundmeoter" of deposition. It is tras that the close sounding' of te engincers appear to show that in some cases there may * cliftiv in the shallower depths of the osean in voleanc ares the general aspect of the abysmal regions must be tha' undulatin \& plains, interrupted here and there by buge cones, with slopes at a very low angle. When these er above the surface they form volcanic oceank island they rise nearly to the surface they are, in the tropas capped by coral atolls; but many of them are far benkwave, and are covered by a white mantle of carbonate is the deat shells and skeletons of pelagic and deep-sea ung-2

The lanil of the oceanic islands is of small exient and widely in the nature of the ruchs, as well as in the char: the terrestrial and marine fauna and flora, from the , No and continental islands. There has not been foust abywnad areas any land made up of gueises, schis's, sh or com tace limestones ; nor bave fragments of these selar: formations been found in the crupted rocks of the , ishank, though they are frequent in the voleanic erugas : the continental areas.
We mas, indeed, compare the oceanic islands to the fee salt water lakes scattered over the surface of the cantoce: D
cut off from direct communication with the ocean. These lal es differ as much from the waters of the occan as do the oceanic islands from the land of the continents.

The surface of the earth may then be divided into three great regions-the abysmal area, occupying, so to speak, the bottom of the basins, covering one-half of the earth's surface; a border region occupying, so to speak, the sides of the basins, covering three-sixteenths of the earth's surface; and lastly, the continents which cover five sixteenths of the carth's surface. The average height of the elevated plateaux of the continents aloove the submerged plains forming the abyssmal regions is fully three miles.

When we pass to a consideration of the water of the ocean, which fills these great hollows of the earth, it is escential to tal e account of the superincumbent atmospheric ocean, which everywhere rets on its surface, for the composition of the ocean water, the currents, the distritution of salinity, density, temperature, and even that of deep-sea deposits, are largely determined by the movements of the atmosphere.

One of the mort important parts played by the ocean in the economy of the globe is to bring about a more equable distribntion of temperature lyy the winds which blow from it over the land and by means of the oceanic currents that are originated and maintained by the winds.

From the smaliness of the daily variation of the temperature of the surface of the sea, which are shown by the Challenger olservations, as discussel by Mr. Buchan, not to exceed s° F., as compared with the large daily variation on land, there result directly the land and sea brecres with all their beneficial consequences. Similarly from the small yoarly variation of the temperature of the sea, as compared with the very large variation of the tempersture of the land surfaces of the glove, result those great annual changes of the prevailing winds-the most important of which, with respect to widespread climatic effects, is the sumner monston of the Europeo-Asiatic continent.

But the most important, as well as the most direct, effect of the unequal distribution of tem erature over the surfaces of the oceans and continents, is an unequal distribution of atmospheric pressure varying more or less with season. On the one hand, in a particular seavon we see a portion of the earth's surface with atmospheric pre sure wuch less than in surrounding regions, and as long as the low pressure is maintained the winds from the regions all around continue to blow inwards upon it, bearing whithem the temperatures and humidities of the regions from which they have come. On the other hand there are other parts of the earth's surface with atmospheric pressure much higher than in adjoining regions, and, as this state of thing' coutinues with little variation throughont the year, the winds blow ont in all directions towards surrounding regions. Of this wo illustrations may be given.

Luring winter months atmospheric pressure is much less in the North Atlantic about Iceland than it is all round, and towards his arca of low pressure the winds from the surrounding sontinents blow vorticosely, thus determining the winter climates of the more important cuuntries of the wurld. Over Canada and the United States the winds are north and north-westerly, by which the rigours of winter are intensified; but in Western Europe the prevailing winds are suth-westeriy, and, as these wind bring "ith them the warmth and moisture of the Alantic, he winter climates of Western Europe contrast :trongly, latitude or latitude, with those of the eastern states of America.

Again, pressure is higher in the Atlantic between the north of Africa and America than it is all round, and out of this unticyclonic area of high pressure observations show that the vinds blow in all directions tuwards surrounding regions where ressure is less. To the west ward of North Africa the prevailing sinds are northerly and north-westerly, but on the south site of bis anticyclonic region the winds are easterly, and on the went he winds are southerly.

Owing to these very different winds, and the oceanic currents o which they give rise, the temperature of the sea is much nigher off the coasts of Florida than it is off the coasts of Africa n the same latitudes. The effect of these differences is re:ognisable in the distribution of marine life and coral reefs, and, sonsequently, of the deposits at the bittom of the sea,

Since over this anticyclonic area, and similar ones in the South Atlantic, North Pacific, and in a less marked degree in he South Pacific, atmospheric pressure remains high throughont he year, not withstanding the outlow of wind all around from them, t follows that aerial upper currents must flow towards these high ressure regions accomipanied by a slow downward movement of
the air through their central portions. Now, as olservations show that in such circumstances the shy is clear, the air dry, the rainfall small, and the evaporation large, it follows that over these parts of the great oceans, where atmospheric pressure is higher than all around, the rainfall is very far from being sufficient in amount to make good the loss arising from evaporationa consideration which has important bearings on the difficult question of oceanic circulation.

As in these anticyclonic regions in the great oceans there is opened up a direct communication between the upper regions of the atmo-phere and the surface of the sea, by means of the descending aerial currents, it is interesting to ask whether this fact may not have some c nnection with the volcanic and cosmic dust fonnd in the $5 a \mathrm{me}$ regions in the deep-sea deposits; especially is this interesting in connection with recent speculations as to the presence of these substances in the higher regions of the atmosphere.

In thus indlicating the positions of the high-prensure areas, and of the winds that blow out from and around them over the great oceans, we have at the same time traced the courses of the great oceanic currents and the positions of the Sargasso seas, for the winds everywhere determine and control the movements of the surface waters.
The moisture taken up from the sea surface by the windsleaving the water salter than before-is borne to the land and eondensel on the mountain-slopes. Eventually this water gathers of the land, passes by rivulet, stream, and river down again to the ocean, bearing alung with it a burclen of earthy matters in solution. In this manner the ocean has most probably becnume salt in the course of ages. The water of the occan now contains, it is almost certain, a portion of every clement in solution. Many of these are present in exceedingly minute iraces. They are detectel either in the sea water or the evaporateddown reilluc by spectrum analysis ; in the copper of ships' bottoms, which have withdrawn them by chemical decomposition ; or, again, in the ashes of sea-weeds aud marine animals, which, during life, exert a selective influence upon the surrounding water.
(A diagram was exhibitel showing the average composition of sea salt.) The individual salts present in sea water are, of conrse, constantly interchanging their metals and acid radicals, so that it is impossible to say aumhoritatively what is the precise amount of the respective chlorides and sulphates of sodium, potassium, calcium, and magnesium actually present. But it has been shown by hundreds of laborious and most delicate experiments that the actual ratio of acids and bases in sea salts-that is, the ratio of the constituents of sea salts-is constant in waters from all depths, with one very significant exception-that of lime-which is present in slightly greater proportion in deep water.

The total amount of dissolved salts in the ocean would, it is calculatel, if extracted, form a pavement 170 feet shick over the entire sea-bed, and of this amnunt if inches would be composel of pure carbon, chiefly present as carbonic acid in the carbonates.

On account of the constancy in its composition the determination of any one of the constituents of sea salt-chlorine, for instance-gives the datum for calculating the salinity-that is, the proportion of total salts to the water in which they are disoolved; though determinations of this nature are more conveniently made by ol servations of density ty means of the hydrometer. (A map was exhibited on which Mr. Buchanan has show in the results of his laborious investigations in this direction.) Anexamination of this shows that the surface water of the ocean is freshest-that is, contains the least salt-at the poles and in the equatorial belt of calns. In the east of the Indian Ocean a change of the monsoons brings aloout a great change in the salinity of the surface water. The centres of the great systems of oceanic currents produced by the trade winds are the areas of bighest salinity in the open ocean ; yet here the water is not so salt as in soinc enclosed seas situated in areas of great evaporation, as the Mediterranean, and especially the Red Sea and Persian Gulf, where the saltext water is found and where a regular circulation is kept up by the outward flow of the denser water. The salinity of the deeper waters is considerably below the average at the surface in the open ocean, especially in the At lantic.
In the equatorial regions the surface water of the ocean has occasionally a temperature of 85° or $86^{\circ} \mathrm{F}$., and the normal temperature in tropical and sub-tropical regions ranges from 60° to So". This warm water is, however, a relatively thin stratum

In the surface, the great mass of the ocean consisting of cold *ver-waver of $45^{\circ}, 40^{\circ}$, and of even a much lower tempernare A: a little over half a mile of depth in the zropics -4e water has a temperature of 40°, and at the bnttom it is $3:-2$:-iser-ice-orill indeed. The ooze which is dredged from "䒑e irstion beneath the barning sun of the equator is so cold Hinat ane hand canoox be held in it for any time without great ivoseitre.

In the open rcean the temperature usually decreases with the 3epe- the cullest water being foand at the bottom; bat some-=-n there are limited areas where the temperature remains ar.íris fre a mile or half a mile above the bottom. This has been sir, wn to depend on the existence of barriers to free circula 3 n. which exlst on the flon of the ocean, and cause in a teakcre a resemblance to the conditions which are so marked in many partialiy enclosed seas, shat off by submarine barriers froz general oceanic circulation, where the temperature is eni-6.:- . it may be, from a few fathoms below the surface to the bre: on-for iestance, in the Mediterranean and Seas of the Maizyan Archipelago.

The low terejerature of deep ocean water was acquired at the unface in hist lautudes, chicfly in the high latitudes of the $w:=3 e r n$ hemishere. The salt warm water of the tropical reg.2.2s, which is driven in relatively rapid currents along the eastern shures of Sorath America, Africa, and Australia by the acticn of the prevailing winds, on reaching a southern latitude of 50 or 55° sinks on being conleri, and spreats over the thon of the ocean. A similar circulation takes place in the norchern hemisphere, though modified in many ways by the peculiar confggaration of the land = for instance, it is almost certain that the cold water at a temperature of $30^{\circ} \mathrm{F}$., which occapies the deeper part of the Norwegian Sea beyond the Wywlle. Thmmson Ringe, is the dense surface water of the Arlantic. which becomes cold and sinks as it passes northward in the extension of the Gulf S'ream. Again, the relatively low temperature found on the eastern coasts of Africa and America seems largely tue to the cold deep water which is drawn up to suppiy the place of the warm surface water driven forwan by the trade winds.

While surface carrents, both warm and cold, have at times coasiferabie relocitses, there is no evidence tha: rapid currents exist anywhere ta the great decps, on the contrary, the movements must be exiremely slow and massive in character, the ooly exception seems to be on the crests of some ridges at moikerate depths between roleanic islands or other simularly situated places.

Through the constant circulation in the ocean the gaves of the atmosphere, which are everywhere absorbed at the surface of the sea acconting to the known laws of eas absorption, are borme down and thus caable mynads of livigg onganisms to carry on their existence at all depths. The nitrogen remains at all times and places nearly constant, bet frequently the proporthon f ourgen ts much reducet tn decp wrter, owing t, the processes of osilation and respiration which are there going on.

The absorbed carbonic acil plays a mont important and intricate ritir in the economy of the ocean, owing to its tendency to redace normal carbenate of lime and magnesta to whlut it in the form of becartonate ; and to the rapid interchanges to which it is subject in consequence of vital proceses. It prohably recenves large a hlitwons from the buttom of the ocean, a, an afterprotuct of volcanic erupkions, and through the respuration of animals.

It is often suppened tha: hydrochemical actions go on with mach greater activity in the decp sea where there may le a pressure of faur or five tons on the square inch, but, while it would be convenient to assume $1 t$, there is no sufficient evidence that is the case. The diuntegrations, dec mposations, and stions which take place in the leposuts are all stoular which tahe place in shallow water or on land, an I any peculianties occurring in inopranic or offanie sututanceldepths are probably due chretly to the low temperature, perfect stilibess, and the absence of light: for, although it we admitted that some rays descend to much greater depths in sea than is esually supposed, yet we must at present believe tha: nooc of them reach the greatest depths. The abworbed gases are probably bat little affectol itw heas pressure of the soperincumbent water, for is nembered that water is bat mhich will sink to the bottan ank to the bottom of the d
for all substances which are more compressilie thas itself. The compressibility of water cansot, howen neglected in oceanographical questions. Is very grix: the lower layers are considerably compressed; for lacce. an ocean five miles deep, were the action of gravily. to cease, the water would rise about 500 feet above $3 "$ level from expansion, a height sufficient to sabmert ter the habitable land of the globe.

It remains to mention the investigations, which have m been made, as to the change of level of the acein, osta; attraction of the masses of c intinental or other landinstance, as that of the Himalayas for the water of te the south, by which the level of the Southern lnfius lowered some handred feet ; the bearing of this ot the: elevation or submengence of land along coass-lises s for the level of the sea, to which we refer all be: depths cannot be regarded as much more stable thas: land itself.
(To be continned.)

NEW PROCESS OF LIQUEFYTNG OXIV:
LIQUID ethylene, the preparation and use of w $\mathrm{L}:$ already explainel, show s, at its boiling point c pressure of the atmosphere, a temperature of at leat only some 10° from the critical temperature of oxygen It is understood how in the expansion of compresed 5
:gulating the expansion so as to maintain a certain pressure in re tube, the oxygen is seen for some time completely liquefied. *When by means of the air-pump the evaporation of liquid thylene is accelerated, as was done by Faraday with protoxide f nitrogen and carbonic acid, its temperature is reduced much clow the critical point of oxygen.
With a view to avoiding the inconveniences and complications svolved in the necessity of working in zacuo, I indicated liquid romene, which with the greatest ease achieves the liquefaction § oxygen and nitrogen. Notwithstanding these advantages, in snsequence of the perfection to which I have recently brought te preparation and management of ethylene, it has seemed to e that this substance should be preferred to formene, and so, y means of boiling ethylene in open vessels, I have succeeded
obtaining a temperature sufficiently low for the complete quefaction of oxygen.
The preparation of ethylene by means of sulphuric acid and cohol is frequently impeded by the frothing of the material, rminating the experiment before the gas has been com--etely liberated. The admixture of sand, recommended by fohler, does not always serve to counteract this frothing, but have found the addition of a small quantity of vaseline efficaous in this respect.

The material I work with consists of 400 grammes of alcohol, 2000 grammes of sulphuric acid, and 15 to 20 grammes of vaseline. This is warmed in a glass globe, of 5 or 6 litres capacity, over a burner in the usual way. The gas is washed in two large flasks of caustic soda, and then collected in a water gasholder. By means of a mercury pump the ethylene is dried by passing through a flask of sulphuric acid and condensed in steel bottles having a screw tap.

Fig. 1 represents the apparatus I made use of to liquefy oxygen by the rapid evaporation of ethylene by means of a current of air or of refrigerated hydrogen. The liquid ethylene is inclosed in the bottle E , which is fixed to a vertical support, with its mouth directed downwards, and is in communication with a copper worm, s s , of 3 mm . to 4 mm . in diameter, closed at its lower extremity by a screw cock, r. After the worm has been cooled to -70° by means of chloride of methylene in the manner I shall explain further on, the ethylene there accumulating possesses at this temperature but a weak tension, and it may therefore be run without sensible loss into the testtube, L , when the cock, r , is opened. This new arrangement I have adopted for ethylene and formene allows the liquefied gas to be cooled as well as though the whole reservoir containing it were of the sinue temperature as the worm.

Fig. 2 .

The glass test-tube L is arranged in a vessel containing, air 'ied by means of pumice and sulphuric G^{\prime}, and in this way hoar-- ost is prevented from being deposited on the refrigerated sides. When the ethylene has been received in the test-tube L , 3 evaporation is accelerated by passing through it a curnt of air, or, still better, of hydrogen dried by its passage in ie vessel c, containing chloride of calcium, and cooled in the orm 5^{\prime}.
The two worms in which the air and the ethylene circulale e plunged into chloride of methylene which is rapidly evapor-
ed by means of dry and cool air, and in this way a temperature
-70° is ohtained.
Fig. a shows the arrangement of the oxygen apparatus and if pression pump. When the tube To is plunged into the * the evaporation of the latter is accelerated by gently Hir cock F, and blowing on to it the air or hydrogen worm 's.
then brought into action, and the oxygen reculess, transparent liquid, separated from the a perfectly sharp meniscus.
figen thermometer, the construction of
which I shall shortly explain, I have m sasured the temperature of the ethylene, which in one of my experiments was found to be $-123^{\circ} \mathrm{C}$. By dint of certain modifications effected in the apparatus I am in hopes of achieving a still lower temperature.

Altogether, I have proved that by quickening the evaporation of the ethylene by means of a current of air or hydrogen cooled to a low degree, its temperature is lowered much under that of the critical point of oxygen, and that in such a medium the oxygen liquefies most easilyr ${ }^{1}$

This experiment is so easy of accomplishment, that the practice of it may be commenced at once in laboratories, and be repeated in public lectures.

The apparatus I have described has been constructed with great care by M. Ducretet, and I have to thank M. JJamin for kindly permitting me to perform the experiments in the Physical Laboratory of the Sorbonne.
${ }^{3}$ M. F. Sainte-Claire Deville, engineer to the Gas Company of Paris, and son of my illustrous master, has now for some time, by my advice, been studying the problem of lowering the temperature by means of the rapid evaporation of chloride of methylene, and has established that, by sufficienily eroting the injecled air, temperatures varying from $=23^{\circ} \mathrm{C}$., $10-73^{\circ} \mathrm{C}$ may be maintained nearly constant for several hours.

NOTES FROM THE OTAGO UNIVERSITY MUSEUM

V. On an "Indicx-Collation" for small Zoological Muscums in the Form of a Genatlogical Tree of the Animal King,tom

EEVEN in the smallest museums it is for many reasons difficult, and often impossible, to arrange the representatives of the various groups of animals in such a way as to bring out clearly their mutual relations. Hence arises the need of an "indexcollection" in which each group is represented by one or more specimens so arranged as to indicate as accurately and cleariy as possible the affinities of the groups they typify. The form which naturally suggests itself as the most suitabie for a small typecollection of the kind indicated is that of a solid phylogenetic diagram or "genealogical tree."
An excellent form of "diagram in three dimensions" for lecture purposes has been devised by Haddon; the model I have recently had constructed appears to me to be more suitable for permanent use in a muscum. ${ }^{2}$
It consists of a vertical wooten rod about 3 feet 6 inches in height, representing the main line of descent from Protozoa to Vertebrata ; from this spring, at various levels, branches representing tyfes which lie off the direct line; these have in most cases an upward direction, but are clirected downwards from their point of origin in the case of degenerate groups. At appropriate points on this framework are placed etther actual specimens or models of one or more examples of each group.
As the Vertebrata inevitably take up the largest share of space in a muscum as well as of public attention, cach of the classes of that group is represented on the model, while in the case of Invertelirata one or two examples only are given to eacit type or sub-kingdom.

For each group-type or class, as the case may be-a label is provided, giving (a) the name of the group, (b) ilie naume of the specinien or madel serving as an example of it, and (c) the place in the Muscum where representatives of the group are to be found.

A more correct mode of construction for a model of this kind would be to make the branches of such a length as to bring the ends of all of them, and consequently the specimens they supprort, to one level; advance of organisation would thus be indicated, not by height above the ground, but by distance from a centre. But such a model would be far less convenient than the form I have adopted.

V1. On the Size and the Extormal Sexual Charactors of the Nitu Scalamd UitcFws (O. maornm, Hutton)

In his work on the octopus, ${ }^{\text {a }}$ as well as in his more recent panmphlet, "Sea-Monsters U'nmashed," ${ }^{3}$ Mr. Henry Lee states that the lagest British specimen he had examinel hal arms $2 \frac{1}{f}$ feet long ; that examples wath arms of alout $4 \frac{1}{2}$ feet had been found in the Meliterrancan ; but that the largest specimens known were those fuund on the coast of North America \{ Vancouver's Island; one of which hat been measured by Mr. J. K. L. ord, who found the length of one arm to be 5 feet.

From this it would seem not to be generally known, even by naturalives, that a species of ectopus is very common on some parts of the cost of New Zealand, and notably in Duneslin llarbmur, the average size of which is fully equal to, while it occasionally exceerls, that of the specimen from Vincouver's Island just referied to.
I have iecently had mounted for this Museum a feniale Oifofus mach in m , the longest arm of which is 4 feet $3 t$ inches, but larger specimens have been frequently seen by my assistants and myself. The folluwing are the dimensions of the largest indi-vidual-a maie - which we have actually measured :-

The morlei referred to was exhribited and uecribed in detail at a moceling of the (rago Invilute on Jupe y
"Hhe thetupus; or, the 'lievil. Fish of Fiction and of Fact." (ChapTan and 11 all, 1:25)
"One of the "Itandbooks" of the Fiahernes F whikition, 888 3 -

3 rd pair		For
	$\left\{\begin{array}{l}\text { Left (..e ... } \\ \text { Kight (he.tocotylised) }\end{array}\right.$	4
	Left	\cdots
	Right +

Diameter of largest suckers (on tst or "doral" arms) \qquad
Resides the hectocotylisation of the third right arm, testriking difference fetween the two series u hich I havementioned. In the nale the suckers simply enkeros diminution in size in passing from the prominal to the ch of the arm ; they retain their characteristic form, $10 \mathrm{~d} \boldsymbol{r}$ r counted up to about half an inch of the tip. In the fethe other hand, the suckers become quite indistinet i. inches, and in some cases for fully a foot, from the cute the arm, taking on the form of sinall tubercle-like elents an instance of this difference I may mention that $\#$ specimen with the first left arm 4 feet $2 \frac{1}{2}$ inches in ief: 202 to 319 suckers could be realily countel on exch arz in a female with the corresponding aran of the sume le: 90 to 115 could be counted on each arm, the diev: bearing tubercles so crowiled as to make it practically If: to count them.
T. Jeffert pa

Dunedin, N.Z., June 19

TIIE BRITISH ASSOCIATION SECTION H-ANthkoroh.og

I'rof. W. Turner read a paper on The Tmiles of the P as a Basis of Chassification. - That the inlet to the :presented variations in outline and in the propsir) conjugate and transverse diatueters has been recogt the publication by Vrolik in 1826, and by 11 T. Wete: of their important memoirs on the petvis in certain tat In 1806 Zaaijer, of I eylen, in his stuily of the pelvis. of Java, recogni eel differences in form in women ú race, and he expressed these differences numerically, transterse diameter as -100 , and then multiplying jugate diameter by 100 , and dividing ly the thanert? numeral wo ottainet is the index of the pelvic brim, of index." By applying this method to the pelvit in races of man, a classitication of races hased on the inbrim may be framed. In carrying out this methot pelvis hould especially le s:adied, as in women the ;* sevual reasons, does not preeent such wide divergerery form of its inlet as in men. To give precision to the claw it will be advivalie to employ special teimas, and to far as possible to bring these terms into acconlance ${ }^{4}$ employed in the ciassfication of crania laved on dirfe the rclations of the length to the brealth of the sh: terms will he emploged. Thus dulichopellic will a pelvis the conjugate diameter of which is lome the transverse, or closely apymaching to it; plat a pelvis in which the transverie diameter greatly the conjugate; and mesatipellic, a pelsis in which th verse diameter is not so fieatly in excess of the a Owing to the comparatively limited number of pehr different race of mien which have been meavurel, etite not he fouctlle to fix definitely at present the numem:of each of these gromps ; but the following were shif" visionally by the author:-dolichopellic, a pelvis with lom above 9.5 : platypellic, one with brim index behw a: mesatipellic, a pelvis with a lrim inter let"ern 90° both inclusive. The number of pelvic measuremente tere the author drew his conclusions were comparatively ${ }^{\text {b }}$, from these it wonllf seem that the dolichopellic division chl Auseralians, Bushmen, Hotientots, Kaffirs, and Andat: whilst Nezroes, Tasmaniams, and New Caledoniane are pellic, anil Furopeans, Clinese, sid probably Amences ir belong to the platypellic group. When a pelvis bas d pellic characters it appoximates in the relations of its an and conjugzte diameters to the form of the pelvic brim we? in mammals lower than man; and in the dolich vellic Auss Bushmen, Kaffirs, and Andamanese. the length of the wion the average greater than the breadth, and this :im animal character.
Mr. W. F. Stanley exhibited a portable scate ul portions of the huaran boily. The instrument is a sef scale or rule of ivory; alout three inches in lengits
livided on each edge of the two faces by lines which represent the proportions of the human body, the male on the one side, and the female on the other. The opposite edge to that on which the proportions are shown is divided into 100 parts in the same ipace as the height of the body. The object aimed at by the ise of this scale is to compare any person, or statue, or photosraph with the model of perfet human form given by John Marshall, or to determine the parts of the body in proportional lecimals of the whole, to facilitate description.

Mr. J. Theodore Bent read a paper on Insular Gresk Customs as seen in the islands of the Jigean Sea. He proeeeded to notice the modern Greek customs concerning birth and childhood, comparing them with ancient ones, among the customs described leing that of fate-telling, and the notions regarding the deleterious influence of Nereids on children. The customs connected with death and burials were next described, and shown to be the same as those of the Greeks 2000 years ago. Some intances wert given of the pretry of death-wails, and it was shown that the Lelief in Charon and Hades existed still in the islanls of the Agean Sea. Among the other customs dencribel in the paper were feas's for the dead, which could be traced to a remote antiquity, and the ancient belief in vampires still survived. Instances were al.o given from agricultural life of the identity between ancient and modern customs, including the ceremony gone through before sowing of seed, the use of skins for grain, the granaries in the ground, in the kind of agricultural implements used, and also in the names used for animals.

Gien. Pitt-Kivers explained the provisions of the Act of Pariament relating to the preservation of ancient monuments. The Act scheduled the most important and best-known ancient monuments in the country, and provided that these should be refistered, and after their registration, although they remained the property of the owner of the land on which they wcre situated, and might be sold along with the land, could not le destroyed by the owners. There were also a vast number of minor monuments of great interest and value well worthy of being preserved. It wat not proposed that the Goverament should meddle with these minor monuments. What he fGen l'itt-Rivers) had done with regard to these uninor monaments wav t," endeavour to see all the principal gentlemen most interested in local archoology, and ask them to let him know when any injury was dose to monuments in their district. In the 1sland of Lewi a the agent of Lady Matheson had promised to assist hitn in every way be possibly could ; and Dr. Aitken, lavemess, had prolusad to him to do the same thing: and he had receivel promi e; of a like kind from a number of otber gentlearen. In his wanderings throughout the country in connection with the working of this Act of Parliament, he had found no ouner of the monuments schednled in the Act unwilling to put his monament under the Act because be wished to destroy it. The feeling of those who were unwilling to put their monuments under the Act had rather been that they considered they were quite as able and willing as the Government to preserve the monuments. What the State desired was to preserve the monuments in the hands of any owners into whose hand, they might fall. In these days there was no knowing to whom land thight belong now that the gospel of plunder was proclaimed, and it was desirable that there should be wome sort of security that the monuments might le preserved hereafter. As the result of his wanderings in order to work this Act in England and Wales, about half of the owners of the scheduled monuments had voluntarily placed the.n under the protection of the Act. In certaia cases the moauments were leased, and the proprietors refused to place them under the Aet withous co pensation, which the Government conld not give.

Miss A. W. Buckland read a paper on Amerioun Stoll-Hwer and its Aforitics. In thits paper the artention of anithoppologisp was called to some remarkible works in shell recently discovered in mounds in various Siates of Nortla Aincrica, is described by Mr. W. H. Holmes in a valuable comtribution to the Pnvenden a of the Durvau of Ethnology, Weshingtan, Thesedhelliwniticon-

reappear slightly aliered on shell gorgets in th: Solomon and Admiralty Islands, and also on the great Japanese drum exhibited this year at the Inventions Exhibition, the author inferred that a commerce existed between the islands of the Pacific and the American continent prior to the Spanish conquest.

Mr. E. F. im Thurn read a paper giving an account of the red men about Roraima, in British Guiana. In the paper an interesting account was given of the journey to Roraima, the scenery being described, as well as the manners and customs of the natives. In some of the villages visited the natiwes had never previously seen white men, and the utmost excitement was caused by the arrival of Mr. im Thurn. The natives of the villages visited were repulsively ugly, and it was almost impossible to distinguish men from women by their dress. The native tribes lived in remarkable isolation from each other, and even the different families in the same village lived in remarkable isolation from each other. There were traces of the Stone Age to be found of high interest. Stones were shaped into adzes and wedges, and they were often made into forms of animals, or of whisties, and models of bottles, which the natives had seen. There was among these trites a revival of the ancient art of making stone impiements, though these implements were simply regarded as ornaments. The natives also made drawing, of rocks, which were used as ornaments, and which were evidently imitations of the drawings seen on the actual rocks. Mr. im Thurn cloved his paper with an acconnt of a number of some very iemarkable games played by the tribe, for the amusement of the visitors, in which the movernents of animals were imitated in dances.

Mr. J. W. Crombie read a paper entitled A Game with a History, which was really an exposition of the antiquity, universality, and signification of the well hnown game of "Hop. Scotch," a term which is probably a corruption of "hop-score." The author commenced by pointing out that as children in their play generally imitate something they have observed to be done by their elders, and a game once introduced is handed down from gederation to generation of children long after its, original has ceased to exist, many innocent-looking children's games conceal strange records of past ages and pagan times; hence the importance of the study of this apparently frivolout subject is now fully recognised by anthropologists. The game of "Hop" Scutch" is one of great antiquity, lisving been known in England for more than two centuries, and it is played all over Europe under difierent names. Signor Pite's solar explanation of its origin appears improbable, for, not only is the evidence in its favour extremely weak, bat it would require the original number of divisions in the figure to have been twelve instead of seven, which is the number indicated by a considerable body of evidence. It would seem more probable that the game at one time represented the progress of the sonl from earth to heaven through various intermednate states, the name given to the last court being most frequently Paradise or an equivalent, such as Crown or Clory, while the mames of the other coarts correspond with the eschatological ideas prevalent in the early days of Christianity. Some such game existed prior to Chrispianity, and the autbor considers that it has been derived from several ancient games; possibly the strange myths of the labyrinths may have had something to do with "Hop-Sootch," and a variety of the game played in England under the name of "Round Hop-Scotch" is almast identical with a game described by Eliny as being played by the boys of his day. The author believes that the carly Cbristians adopted the general idea of the ancient game, bat they not only converted it into an allegory of heaven, with Christian beliefs and Christian nawes, tbey Christianised the figare also; abandoning the heathen labyrinth, they replaced it by the form of the Basilicon, the early Christian church, dividing it into seven partes as thoy believed heaven to lon divided, and placing Paratise, the inner sanctum of heaven, in the postition of the altar, the inoer sanctum of their earthly church.
Mr, Genagy Camphelh, M. P., read is paykr entitled $T_{\text {'ic }}$ Ru'is

 In was the woost scientitio and
 masks and elabonatef fengratied

which scems to bean in From the fact that fil:

 peculiar in the delin peculiar symbole elydrying corn before sending it to the mill. The kiln was conical in shape, joists called cabers iwere taid across, some distance from the ground, and above these were roughly hewn sapplings called simmers; on the top of these was spread straw, and on the straw was laid the corn. A fire was kindled on the ground, and the heat therefrom dried the corn. A stone called a sparker was placed above the fire to catch the sparks, lout in spite of this precaution the kiln sometimes took fire. At an early periosl corn was ground between two millstones, with an iron rod by way of a handle; this primitive mill was called a quern, and was generally turned by two women, as in Eastern lands. In later times querns were used for grinding malt.
Mr. A. J. Evans contributed a paper on The Fiont-K'mafpers' Art in Albania, and exhibited some beautifully-worked gunflints and strike-a-lights, partially cased in ornamented lead sheaths studded with glass gems.
Mr. W. M. Flinders Petrie read a paper on The Discovery of Naukratis, the remains of which city had been brought to light during the work of the Egypt Evploration Fund in the first half of this year.
Mr. Thomas Wilson read a paper on A New Man of Mentone, in which he described the discovery, in March, 1884, in one of the famous caverns at Mentone, of a skeleton, believed to belong to the Palxolithic age. The excavations were made during the winter of 1883-4 by M. Louis Julien, of Marseilles, and at his expense, aided by the advice of M. Bonfils, Curator of the Museum at Mentone. This cavern had been searched many times before, and about 9 or 10 feet in depth had been removed from the original surface, which, however, was plainly marked by a large piece of briche which still adhered to the perpendicular side wall. The formation of the floor of the cavern and the process of its filling up presented all the usual evidences of human occupation and industry : charcoal, burnt earth and ashes, hearthstones, split and broken bones of animals (estimated to the number of 15,000 pieces), flint instruments, chips, nuclei, \&c., \&c., were found in sufficient number, quantity, and distribution to indicate an indefinitely long occupation. No morsel of pottery was found, nor were any of the stone implements polished. At the depth (from the original surface) of 8 metres 40 centimetres was found the skeleton of this " new man of Mentone." He was laid on his back with his limbs extended, and had for funeral equipments three large chips of flint (élats de silex), 6 or 7 inches long and $2 \frac{1}{2}$ inches broad, in the form of the largest scrapers, placed one on each shoulder like epaulettes, and one on the brow. It was evidently an interment. This became more evident when it was found that the body was placed in a sort of natural vault or tomb, formed on one side by the wall of the cavern, and on the other by an immense block of stone with an overhanging edge, which reached to a line perpendicularly over the centre of the skeleton. This placing of the body required an excavation between these rocks of 3 or 4 feet in depth. The skull was broken into sixty fragments by the pick of the workman; it was carefully taken up and put together by M. Bonfils, and is now exposed in the Museum at Mentone. This was a fortunate accident, for while the rest of the skeleton was being exhumed a quaarrel broke out as to ownership, which ended in the theft and utter destruction of all that remainel. Mr. Wilson maintained that the new discovery of the skeleton di-sipated all idea of disturhance, for while disturbance misht exist for one or two, or even five or six feet, to the depth of twenty or thiry feet it would be impossible. It must lee conceded that the human induatry as manifested by the objects found in these caverns, indicated their occupation during the palzeolithic age, for of the thousands found, all bear the impress of that age, while none denote particularly the age of polishell stone. Mr. Pengelly said that he had visited the cavern where M. Riviere's new man of Mentone was found, and he was of cpiuion that the man fount by M. Rivière had not licen interred at all, but hall died where the body was found, and had been buried by the samil blown into the cavern, and the waste of the walls of the cavern. Ile had measured the place himself where the borly was found, and found that it was only eight feet below the surface. The shull of the man was so good that he should have been glad to have possessed such a skull. It was a large skull, ard the measurements he made of the bone showed that the man must have been of ereat stature. The bones of animals found in lie cavern

Ealy those of animals now extinct, and parily thove of ticies. With reference to the age in wh
"iviere lived, his impression was *"
palzeolithic age. He would not say so positively, bowe es from the information they possesiel he did noc that man would be of any value whatever for or against the of human antiquity.
Dr. R. Munro read a paper on The Arch.rdegza' :of Ancient British Lakr-Divellings and then fiL Amalogous Remains in Ewrope Dr. Munro come giving a short introductory notice of the discovery as/ tion of the crannogs of Ireland and the lake-dwelling Europe. He then gave artrums of the more recent af made among the crannogs of Scotland and the r objects recovered from them. From a comparative ch of these relics with other collateral antiquities of the arrived at the conclusion that the lake-dwellings of were essentially the product of Celtic genius, that constructed for defensive purposes, and that thove im west parts of the country attained their greatest deved post-Roman times, after Roman protection was witht:the provincial inhabitants, and they were left single t_{-} contend against the Angles on the east and the Prew on the north. Having established the Celtic ong: craunogs of Ireland and Scotland, Dr. Munro proce inquire if there is any ancestral relationship betwee " the lake-dwellings of Central Europe. Taking into 2 recent discovery of lacustrine abodes in the Holderoefew previous records of their existence in Wales and of England, together with the statement of (xsy Britons were in the habit of making use of wooder marshes in their defensive works, he thought that $13 /$ tions are not merely solitary instances, but the w widely distributed custom which prevailed in the soc of Britain at an earlier date than that assigned to the of Scotland. Hence he suggested the theory that 'se Celts were an offhoot of the founders of the sa dwellings, who emigrated into Britain when thee I aboles were in full vogue, and so retained a knowic, custom long after it had fallen into desuetude in Eu* this hypothesis it would follow that subsequent imanyBritain, such as the Belgre, Angles, \&c., being D acquainted with the subject, would cultivate new abt improved methods of defensive warfare; whilst the f°. invalers, still retaining their primary notions of el when obliged to act on the defensive would nate: recourse to their inherited system of protection. In this hypothesis the author pointed out that the geograil tribution of lake-dwellin!s, so far as they are known w closely corresponds with the area formerly occupue: Celts; that no lake-dwelling thave been yet foond ethenorthern or southern parts of Europe, though the topn . and hydrographical conditions of these regions are not able for such structures; that the fascine dwellings, w were identical in structure with the crannogs ; and thas. the pile-dwellings were not largely used in the Bnt the principles on which they were built were not unkn-p disuse being due to toporgraphical and other conFinally, he argued that the wideness in the chroool:which is supposed to seprarate the crannogs from:: dwellings of Europe is more apparent than real, as is existed during the Roman occupation of Gaul, an:: instance at lea-t the custom survivel to about th century.
Prof. D. J. Cunningham exhibited a large coloared sections of a young chimpanzee, illustrative of some if points of comparison between the chimpanzee and mas. Cunningham said that he had purchased a male chum which was said to have died in the process of secood 3 B . and which he believell to be about six years of age. R of the chimpanzee wav frozen for two days, and be by hibited the sections of the chimpanzee for the purpo cinc or two poiets of comparison between the chimpena
man. Ans ${ }_{\text {region }}{ }^{f}$ ro well
corres
furcibl
An anats
attention as
heautifully beantifully a
different regi
markable that the chimpanzee even at six years of age there as a very manifest lumbar curve. In the Biological Section 13 d day there had been described the spine of a child six years f age, and it was remarkable that the lumbar curve in this uimpanzee of a corresponding age was very much more marked ian in the child. At six years the chimpanzee was much more lvanced in life than a child sis years old, and therefore his ambar curve was correspondingly greater. If they wished to \&t at the distinction between the spine of man and the impanzee they must look lower down at the sacrum. After oticing one or two other points, Dr. Cunningham drew the nelavion that the human child occupied an intermediate posion between the chimpanzee and the human adult. In the plate e now exhibited they would see compared the skull of the impanzee with that of man, bringing out that the cerebral or uger brain -in man extended a good deal further back than in ue chimpanzee; and there was not much difference between the Cew World ape and the chimpanzec in that respect.
Dr. J. G. Garson, one of the secretaries of the Section, read a aper on Abnormal and Arresfod Drechotment as an Induction of izolutionary //istory: Dr. Garson began by stating that, shays, the most fertile source of information regariling the astory of man's evolution was derived from a study of his nhryological development. Another source from which much alualle information regarding the early history of our own recialisation, and that of other animals, might be gleaned, was eratology, which had for its domain the consideration of nnormal conditions of development. Many of the conditions ccluded under this brauch wers of a pathological nature, and se to the effects of disease ; others, lowever, were not-such, ir exainple, as an abnormal and an unusual production of ormal struetures and cases of arrested development. It was to cousideration of some conditions occurring under one or other *these categories that he ventured now to call attention. The camples which he had selected had come more especially under s own observation. Persons were occasionally found with normal development of hair on their bodies. The type of ammal was an animal whose lody was covered with hair. nder certain circumstances the hair might more or less disspear, according to the conditions under which the animal ied. In man it was only feebly developed, except on the sail ; and in the cetacea or whales it had entirely disappeared, ith the exception of a very few bristles near the mouth. Dr. arson proceeded to explain how excessive development of hair kes place in man. In ordinary cases the hair-growing appatits in the embryo remained stationary, instead of keeping ace with the growth and development of the other organs
the body, with the result that no hairy covering such
was found in other mammals was present, but only ort ructimentary hairs appeared at intervals. But in me exceptional cases this stationary condition of the hair Hicles did not occur, and they went on actively developg with the rest of the boily, with the result that a hairy vering was produced over the bedly. The hairless condition w normal in man had evidently been gradually acquired rough a long periocl of time, as such a change could not take ace rapidly and become such a srable condition as it was found be otherwise. Abnormal development of fingers occurred metimes in man, but must be classed entirely apart from such rms of abnormality as had been considered in the hair-growth.
arrested development the abnormal organ or portion of e body, instead of going through the various stages it usually es till it arrives at the conclition it normally assumed in the oup of animals in which it occurs, stops short at one or other uges. The stage at which it stops may correspond to that lich is normal in a lower grade of animal life, and so gives ect evidence that the higher forms of animal life, such as man, as through and beyond the stages at which the lower stop. It ist not be forgotten also that in some respects an animal of a ver grade may possess specialisations in some structures or gans of a higher ground than animals much higher in the ale of life.
Dr-Robert, Laws, from Livingstonia, Lake Nyassa, East intral Africa, read a long and interesting paper deseriptive of : paannens and custorns of the lianta tribes living around Lake is t.atem Central Africa. In the outset of his paper sidt thai labe Nyasa was 330 miles long, and varied
 Though these
tribes had much in common, they differed among themselves in many of their halints, customs, and religious beliefs. He proceeded to notice the names and residences of the leading tribes, and gave a bricf sumnary of what was known of their history. As a rule, he said, the prople of all the e tribes were physically developed, but their vigour and general healthy condition differed considerably, depending chiefly on the climate, soil, and food. Where maize and napira were the staple foods, the natives were strong and harily. Where cassava root was their chief food, and especially if along with that there was a state of actual or dreaded warfare, the people were weak and sickly. On the hills the people werc hardier and more vigorous than on the lake-shores and on the river-banhs. Mental energy was greater on the hills than at the lake-side, and at places where there was most radiated hent this was less than where the breezes played freely. Keenness of vision and acuteness of hearing were spoken of as being remarkable in civilised tribes, and among the lake tribes these faculties attracted the attention of travellers, but Dr. Laws was inclined to attribute these characteristics to training and exercise in given directions rather than to any radical superiority in the organs of sight and hearing among the tribes. All the tribes depended principally on agriculture for their support, and the only appearance of a rudimental division of fabour was to be found in the classes of fishermen and blacksmiths. No traces of a Stone age had been found among these tribes. Yet in certain districts they were to be found cultivating their gardens with tools of hard wood instead of iron, distance from markets being the cause of their use. At the east side of Nyassa many lake-dwellings were found in 1875, and often on war being threatened the inhabitants of the lake shore took refuge by living in such constructions. Iron mines lad been found, and copper had been found in cine of those near the Livingstone range. The iron of the mines was usually near the surface. Charcoal was used for smelting. Dr. Laws went on tis describe the manner in which the triles made their canoes, their nets, and their huts. Fire was procured among them by the rapid rotation of rorls of wool between the hands, the spark heing caught in cloth and kindled into a flame. The natives exhibited great surprise when they saw the traveller strike a lucifer match, and that was regarded by them as an unquestionable proof of his superior knowledge. The natives indicated time by pointing to the position of the sun. They named Sunday as the day of God, Monday as the day for beginning work, Saturday as the day for stopping work. The intermediate days were indicated by numbers. The eclipse of the moon was described as the moon put in a bag, and comets as stars with tails. Slavery was common in all the tribes, and half of its horrors had not been told. Infanticide was not practised, but infant mortality was very high, and cases had leen found of children labouring under a lingering disease having been buried alive. Polygamy was common, and the number of a man's wives taken as an index of his wealth. One chief told him he had a hundred wives, and he (Dr, Laws) believed he was rather unde--estimating than overestimating the number. The early marriage of girls was the rule, and in one tribe a girl was often betrothed before she was born. In buying land they had to buy it first from the chief and then buy the tenant-right from the cultivators. After describing the customs of the tribes relating to the punislument of crime, Dr. Laws concluded his paper by noting the leading peculiarities of the language of the tribes, directing especial attention to the complications in the forms of speech, an l especially to the ex'raordinary number of variations in the verbs.

Mr. E. H. Man contributell a paper on The Nicohar Islanders. - In the interior of Great Nicohar there is a wild race, styling themselves "Shab Dawá," of whom as yet little information has been oltainable; they are distinct from the inhabitants of the other islands and of the villages on their own seaboard, who are of Malay origin, and by whoon they are callet "Shom l'en" ("Shom "denoting tribe," and "Peñ" being the tribal desisnation). It appears certain that they are the descenclants of a very ancient aboriginal population of Mongolian origin. The firse mention that we find of them is from the pen of pastor Rosen, a Dani-h missionary, who, while resident at the Nicobar Islands between the years 1831-34, spoke of them, from hearsay, as in much the same degraded condition as we find them at the present day. He said that "they wear no clothes, possess no bouses, live like animals in the deptbs of the forest, and shun the sight of men, never leaving their lairs except to search for
foosl, which they sometimes steal from such of the coast huts as are temporarily vacated or occupied only by a few aged or infirm folk whom they are able to snrprise or overpower." In $\mathbb{\$ 7 6}$ and 485 t a few members of this tribe living near the north-east of Great Nicobar were seen by the late Mr. de Röepstorff, who was accompanied in the latter year by Col. T. Cadell, V.C. Chief Commissioner of the Andamans and Nicobars, During the last eighteen months Mr. E. H. Man, while in charge of the Nicobar Islands, has paid six visits to Great Nicobar, on four of which he succeeded in seeing and photograhing parties of this tribe, both near Ganges Harbour and on the west coast. On the first of these occasions (viz. February 1884) two youths, aged about eighteen and fourteen ycars respectively, were persuaded to leave their friencls for seven days, at the end of which they were conveyed back from Nancowry in the settlement steamer. During their visit to Mr. Man they proved themselves tractable and timid, and submittel with a good grace to ablutions which were found very necessary. Although this is the firm recuriled instance of a I'eñ having ventured from his savage haunts, these lats exhibitcd the Oriental characteristic alsence of wonderment at all the novel surroundings and tokens of civilisation in the Government settlement. They were fair pecimens of their race, the members of which are found to be u-ually well nourished, of good physique, and, while young, favoured with pleasant features. The height of the males appears to range between 5 feet 2 inches and 5 feet 8 inches; their skin is fairer than that of the generality of the coast people, who, on their part, are less dark than the Malay ; the hands and feet seetn to tie deciledly large, and bear evidence of the rough work of their daily lives; the hair, which is straight, is commonly uom uncut and unkempt, and, as habits of cleanliness are manifestly foreign to their nature, its condition can bettcr be imagined than descriked. As a result of their friendly intercourse in recent years with the coast people, they have acquired the habit, so universally practised among the latter, of chewing the betel-nut (Chat ica bufle) with or without quicklime, and are consequently leginning to be similarly disfigured with black teeth, though not yet to the hideous cxient common among their more civilisel, ir, rather, less savage, reighbours. They likewise now imitate the latter in respect to clothing, the men adopting the narrow loin-cloth and the women a small cloth skirt. Their dwellings are small, and cannot compare with those of the coast people, and are indeed but little, if at all, superior to those of the Negritos in Little Andaman, but they more nearly assimilate the former in design as well as mote of construction, for they are erected on posts; the floors being raised 6 or 7 feet above the ground necessitate the use of ladders. It is impossible, within the limits of this abstract, to make further mention of the dwellings, or to describe the peculiar sack-like cooking-vessels of this strange race. Mr. Man hopes before long to be able to supplement in many particulars the rudimentary information which has hitherto been obtainalle regarling the Peñ, but the task is one of considerable difficulty, for, apart from the dread entertained by this trilie towards aliens, their frequent fcuds place from time to time a temporary barrier to all intercourse between them and our friends on the coast, through whom at present all our communications have to be conducted. The nearest portion of Great Nieclar Island is, moreover, about 60 miles distant from the Government settlement at Nancowry.

SCIENCE: IN RUSSIA

TIIE Karan Socicty of Naturalists continued last year its valualde explorations of Fastern Russia, and we have tefore tu ceveral new faveicules of its Memoirs and Frocodings. ${ }^{1}$ M. Ivanitshy fullishes a lite of plants of the Government of Volrgela, which contains so4 Spermatophytie, (ymnosperme, and sprophytis. As to these last, only 6 Fquisetacer, 5 1 iempretiacere, and 20 ferns Ieing given, the list ohviously will be much extended by subneyuent research. The fora of Vologila, which is situated on the limits of the midtlle and Arctic Kuswian floras, offers a certain special interest, and M. Ivanitsky has nm neglected to mention the willd and cultivated plants which fend their northern limits within the province. It cunsiots chiefly of Comp witex (107 ypecies), 49 Cyperacex. 48 ciraminese, 41 to 34 each of Ranunculacex, Caryophylle.x. Ku-acex, an:l C'rucixerex, 27 to 22 I'apilionacex, Scrophularix,

[^24]Labiale, Salicinex, and Polygonacex, and 21 to $19 \mathrm{UH}^{\prime}=$ ferie, Filices, and Orchidee. The livt of plants is preface a masterly sketch of the physical conditions of separate parthe province. The snme volume contains a paper by. M lavsky on the irritability of the nervous-muscular syotem, , an inquiry into the causes of the well-known differences effects of electrical irritation on the frog, when measures 1 bh methots of Dnbois-Reymond. All causes which may ; upon the conditions of the experiments themuelves havin; climinated, there still remain notable differences which mas ascribed to the state of the system altogether. A paper. "t Tsomakion, on the laws of tran-mission of electricity :hgases, embodies the results of several new experiment : field. In a former inquiry the author. by introslucing in. chain of condensation a discharger where the discharg:take place only at clowe contact of the two electronle, 1 . perimentally proved the law, already deluced by forme!ra 5 Heer, that the whole amount of heat procluced at the of the condensator does not depend upon the compeniti e chain. But as soon as he introducel a layer of gas betwo electrontes, he found that his results wilely ditiered if previonsly obtained by other students; he undertonk s. - . experiments for discovering the vources of that diserep. results, and he has arrived at a long series of conclusseaare of great interest, but ought to be submitted to : inquiry. This last is continued. -To the same vol. = Zaitseff contributes a paper on the petrography of the crv rocks in the neighbonrhond of Kravnovolsk, on the shore of the Caypian. The chief rock in the Shall. Mountains, which reach ahout 600 feet above the *e: mawive, unstratified quariz-dioritic porphyrite (acc-, nolin; clawification of 11 ert Kosenhusch). Between the lay id vioff and soymonoff the roch sare clocely akin to the atanr might bedescribed as a quartz-miea-diorite. The former evzen, for some miles east of Krasnovodsk, and is intervected thy *- a miscovite-granite (according to Herr Kosenbusch's cien (iun) and quartz porphyry of rare occurrence, its mamica being replaced by a potassium mica. - The same . contributes two papers on the petrography of the $\mathrm{s}=$ valley in the south-east part of the district of tikaterts which incloses the 3200 feet high Viurma summit and -. high ridges of mountains. The author makes a detavied into the structure of the crystalline rocks of this locality 'ara: gneises, and various schists), and is inclined to admas tua least une part of the olivine bearing serpentines enduv origin to the metamorphism of the actinolite schists. The ores and gold-bearing deposits are aloo described, the 25 these last being unclonbtedly settled as Post-Pliocene, as contain numerous remains of Mammoth, Bos frinmievenas. vius farandus, and Cosins alies. We nay remark that ite high position of several gold-bearing deposits on the slor the valleys and their structure is one testimony more in fa. of their glacial origin, but the author does not touch ths esting question. He mentions also-a fact which has offes doubted, but is now confirmed more and more-that the these deposits is derived from the decomposition of the ct: slates. The papers are accompanied by a geological maz; the same volume (fasc. 4) we find a preliminary repors. Korzinsky, on a botanical excursion into the dela of the i. The list of plants is not yet given by the author, and be lishes only a valuable sketch of the general characters delta, distinguishing in it two different regions: the delts s p.e. which consivts of fluviatile deposits; and the Steppe re; covered with the so-called homgry, or a hind of heme. described by Karl llear and still bearing his name, abour : howsry the author holds a different opinon as to their " denying-with full right, we suppose-their origin $\mathrm{fr}_{\mathrm{z}}=$ retreat of the Caspian.

As to the Proreming's of the Kazan Society, we are 2-3 Icarn from them that three new metcorological stations (ax pul, Tcherdyn, an 11 eisong have been added to thome organised hy the suciely.

There was a great want of logical oliservations juccisely for that part of North-Ez several shorter papers are embodied in the I'racmaisel:the gecolugy of the Vetluga resion, by P. Krotoff concerning the I'ermian and Trias, bs also the soustorn Su-s the boulders). - (in the fauna of Kaman thetween thet Vyakkal, by N. Varpalhovsky
filies fount in the lakes noul mern -ans and erpents and amphibians of the region.
of tripsine, by V. Nikolaky - On the bunsry of the Caspian, by 1. Zaitseff. They do not have the uniformity of structure suprosed by Baer; they ofien cross one another at angles of 20° to $\rho 0^{\circ}$, and some of them follow a north-eastern direction, while thers, close by, ron west and east ; and they contain not only moken mussels, as aftimed by laaer, but also plenty of quite ull mussels of Cardmom trigonoides, Drissena polymergha, offriformis, and caspia. The theory of Jaer altogether is aased on an insufficient supply of data, and the structure of the mugry ought to be better explored lefore prononncing as to heir origin.-On the sulphur ores at Tetuahi, on the Volga, by 3. Wilenius.

The forrth volume of the "Collection of Materials for he Description of Caucasus" : publisheal by the schoolnasters of Caucasus, contains, as usual, much valuntle inirmation, especially of historical and ethoographical cha. acter. M. Ilahn contributes a most valuable paper of $\mathbf{2 5 0}$ ages, in which he has compiled all information on the Caucasus re was able to discover in authors since llomer up to the fifth entury of our era. The information gathered from Byzantine vriters who have much more written about the Caucasus, will e emborised in a second part of the work. The importance of his very careful work, where textual translations are given of ra sage, dealing with the Caucasus and its inhabitants from no ess than eighty Greek and Latin authors, will be fully ppreciated by all thove who have to deal with the geography of he country. A complete index will much facilitate the reearch. M. Eivaznff gives a deceription of the Aisnres of Kniasar, of their manner of life and customs, followed ly an Aisor dphabet ; and M. Arkannikoff contributes a detailed description of the town 'Temruk and of the Temruk mouth of the Kuban रiver, In the second part of the same collection we find a eries of interesting notes on the Tcholh village in Dughestan, on Daghestan legends, and on the life of Abhbazes ; a collection of Litile Russian sonzs from Kubsin ; and two lectures on the eatutiful seven-centuries-old Georgian poem of Shota Kustaveli.

SCJENTIFIC SERIALS

Tale Fournal of Physiote: p for July contains:- Note on he cause of the firt sound of the heart, by G. F. Veo and J. 3arrett. - In experimental investigation to ascertain the action of veratria on a cariliac contraction, by S. Kinger (plate 2)."oncerning the action of small quantities of calcium, sodium, ad frotavium salts upon the vitality and function of contractile ivace and the cuticular cells of fishes, ly S. Kinger and IV. W. Burton - A study of the action of the depressor nerve, and a on-ileration of the effect of blow preasure upon the heart rearded as a senwery organ, by H. Sewall and 1). W. Steiner polate 3). -On secondary and iertiary degenerations in the spinal ard of the dog, by C. S. Sherrington (plates 4 and 5) =On lie structure and rliythm of the heart in fishes, with especial eference to the heart of the eel, ly $S . A$. M'William (plate 6). -The innervation of the heart of the Sliter terrapin (Psendemy's zevaed, by J. Wesley Mills.-Note on the sound aceompanying loc single contraction of skeletal muecle, by E. F. Herroun and ; F. Ico,

The Fowral of Anatony and Fhyitiny for July contains: sccount of some recent experiments on the effects of very low $\approx m p e r a t u r e s$ on the putrefactive process and some vital phenorena, by J. J. Coleman and J. G. McKendrick, M.1), bcessory lobe to the left Jung, by L. Humphry, M. B. (plate 7) - Case of abnormal development of the reproductive organs I the frog by A. F. S. Kent (plate i81.-Rotation and circumuction, by Thomas Dwight, M.D.-Mowemen's of the ulna in somation and supination, by C. W. Catheart, M. B.-Anatomy if a hydro-monocephaloas brain, by A. Hilt, M.D.-Corpus allowm in the adult human brais, by Dr . I. Hamilion, slates 21 and 21 -Tumoura in animals, by J. B. Suiton
 sotenk ant hmia, by K, Ramsiy Wripht (phate 24), - Ahatomy FSjimm! hifala, by Prol. Humphry. - Notes on sume vartations of ie shoulder mascles, hy W. B. Rancom. - Tarsus and Carpus,

striped muscular filre, by B. Melland (plate 24). -On the development of a freshwater macrurous crustacean (Atyephora compressa), by C. Ishikawa (plates 25-2S), - On the supposed communication of the vascular system with the exterior in Pleurohanchus, by A. G. Bourne, D.Sc. (plate 29).-Observations on the nervous syste.n of Apus, by P. Pelseneer (plate 30). -Note on the chemical composition of the zosocytium of Ophogitum versufal, l,y w, D. Halliburton, M.D.-The development of feripatus capinsis, by A. Sedgwick, M.A. (plates 3 t and 32).

The Fournal of the Roynd Microscopical Socicty for August contains:-The pathogenic history and the history under cultivation of a new bacillu* (B, alvi), the cause of a disease of the hive bee hitherto known a, foul brood, by F. K. Cheshire and W. Watson Cheyne, M.1). (plates 10 and 11),-Experiments on feeding some insects with the curved or "comma " bacillus, and also with another bacillus (B. swhitio?), by K. I.. Maddox, 1.D.-On four new species of the genns Flosentaria and on five other new species of Kotifera, by C. T, Hudson, L.L. D. (plate 12), with the usual summary of current researches.

The Anerican Nituralist for September contains the reputation of the Iantern fly (Fimfora lanfirnaria), by John \mathbb{C}. Brauner. To the bibliugraphical references made in an edito-ial note to this paper may be added the spirited disctssion On the whole cubject in the Entomalsyial Mitgasine of 18.36. The age of forest trees, by J. T. Camplell. - The relations of $\min I$ and matter, by C. Morris - the exhalation of ozone by odurous flants, by J. M. Anders and (3. IB. M. Miller.- (ilacial origin of I'rewne Isle, Lake Erie, by J. 1. Ingersoll.-Kecent literature and general motes.

The Procedings of the Linman Socicty of Size. Swith Wiales, vol. x. Part 1 (June 4).-The papers in this ןart are of great interest, and worthily sustain the credit of this most active and energetic Society. Zuelogy - Irr. K, von Lindenfeld, On Australian sponger, part iv. The Myxospongix, with 5 plates. On Amabia forasifid, a new protuzoon infesting sheep. On the I'ho-iosjongias.-William Macleay, On a new snake from the Jarrow Ranges, and On some reptiles from llerhert River. - A. S. Oliff, On some Ceylonese Coleoptera. - J. Brazier, Synonymy of some shells describet by Dr. Gray,-W, A. 11a-nell, on some Australian Amphipods, with 9 plates, -Captain Hutton, Revision of the Toxuylossate nollusea of New Zealand.-I. Donglas Ogilhy, Some rave fort Jackeon fishes. Fo'any-lir. W. Wioom, dustralian I'ruteacea. Pdocoutwozr-F. Rattle, On a Devonian Australian fossil allied to Wrothenia, with a plate; also on the Glacial period in Australia; and on the theteorology of Mount Koskinsko, by IIr. von Jind:nfeld, with two plates.

Morpholegisches Fahribich, Band 1t, Heft 1, contains:Contribation to a knowledge of the renal organ of the ProsoIranchia, by Dr. 13. Haller (plates 1-4).-On the morphological significance of the nuclens, by Dr. W. P'fitzner (plate 5).-Short contributions to a knowledge of some marine Khizojuds, by O. butschli (plates 6 and 7).-On the significanse of the Limea semicircularis Dowtassa, by Hernhar. 1 Solger. Notes on Apsendes, by J. E.V. Boas.-Shert Notes.

Zeitschrift fior wrissenchafiliche Zoologic. Band 42, Hefi 1, Juty 24, contains :-A biographical sketch of Carl Theodor linst von Siebald, one of the founders of the Zeitschrift, by Ehlers (with a photograph).-On the significance of the nucleus from the poiat of vrew of cvolution, by J'rof. A. Kolliker. Researches on some Flagellates and kindred organisms, by Dr. C. Fisch (plates 1 to 4).-On the anatumy of the Amphisbona, by Dr, Carl Smalian (plotes 5 and 6).

Band 42, Ileft 2, Atgust 18, contains :-An essay on the history of German slugs, and on their European allies, by I)r. 11. Simuth. This monograph is illustrated by five plates, that of the species being coloured.

SOCIETIES AND ACADEMIES

Pakis
Academy of Sciences, Dctober 5.-M. Bonley, President, a the chair.-Spectml analysis of the clements of the terces. inhatamosphere, by M. J. Janssen. The author descriles the

Observatory for the study of the hydrogen, oxygen, and other substances present in the terrestrial atmosphere. Four tubes, one 60 metres long, have already theen fitted up in a chamber in which solar, electric and other lights can be employed under favourable conditions.-Thermic studies of the aromatic series : the phenols of complex function, b,y M. Berthelot. New characters derived from thenno-chemistry have been determined for the purpose of distinguishing the various icomerous groups of the aromatic series and disclosing the phenolic function belonging more particularly to some of these groups. In order to establish the general character and importance of this new instrument of research, the author continues his experiments with the compounds derived from the oxybenzoie acids, to which the synthesis of vanilline and the allied substances has given so much interest. The results already obtained establish a perfect agreement between the thermic indications and the chemical theories respecting the complex phenolic functions, The treatment of mildew and rot with a mixture of lime and sulphate of eopper, by M. A. Millardet. During the presert season M. Nathaniel Johnston has applietl this new process to 50,000 vines in the Medoc district with complete succens. The plants so treated are in a perfectly healthy state, while those not treated are in a wretched condition.-On the destruction of mildew by the sulphate of copper, by M. A. Perres. A solution of 5 per cent. of sulphate of crystallised copper has this year been successfully and economically applied to vineyarls in Burgundy hitherio unsuccessfully treated with sulphur. - Kavages of mildew in the northern districts of Touraine during the present ycar, by M. Larreguy de Civricux. The disease broke out suddenly a few days after a siolent storm in July, attacking several varieties of the vine and the oak trees of the surrounding plantations to the exclusion of all other plants. - Note on the quadratic forms in the theory of the linear differential equations, by M. Halphen.-On the physiologic action of the salts of rubidium, by M. Ch. Kichet. Subcutaneous and intra-venous injections of the chloride of rubidium applied to frogs, fishes, rabbits, guinea-pigs, and pigeons, show that this metal has the same toxic effect as potassium, but somewhat less virulent.-On the internal phenomena of muscular contraction in the striated primitive fasces in Corethra flumicernis and the frog, by M. F. Laulanié, -Line of development followed by the incculated virus of tuberculosis in man, the rabbit, and guiteapig: application to the study of inoculation and re-inoculation for tulerculosis, by M. S. Arloing.-A remarkable vegetable centre in the peninsula of Brittany, by M. L. Cric. Of this vegetable zone the characteristic species appear to be Narcissus reflexas, Lois.; Erymium ziviturum, Gay; Omphatudes litteralis, Leh.; and Liwaria arcmaria, D. C.- Application of thermo-chemistry to the explanation of geological phenomena; general principles; ores of manganese, by M. Dieulafait. The principle is laid down that of all the natural combinations of each metal, that which developes the greatest heat in its formation occurs most extensively in nature, and must be regarded as its principal ore. Applying this principle to the study of manganese, the author finds that the ores of this metal exint in nature in the relative proportions and under the conditions anticipated by the laws of thermo-chemistry, - On the whirlwints olserved by acronauts, by M. Diamilla-Muller. These whirlwinds are attributed to the collision of two atmospheric currents coming frons oppovite directions, and are compared with the edlies produced in streams by analogous causet.-Niote on a meteor observed at Saigon, Cochin-China, on August 22, 1885. by M. Keveillere.-Kinematics of the locomotion of quadrujeds: trajectories and comparative velocities of the pastern and hoof of the horse at the different phases of its motion.

Stockitolm

Academy of Sciences, September 16. - The following paper was presented and accepted for publication in the Procredings: -" Nouvelles Ohnervations sur les Traces d'Animaux et d'autres Phénomènes, d'Origine purement mécanique, dècrits comme Algues fossiles," by Prof. A. G. Nathorst.-Experiments to determine with the galvanometer the limits of elasticity and the alsolute tension of iron wire of different thickness and with varying contents of carbon, by Dr. P, Isberg.- Kescarches on the influence of temperature on the electromotoric force of certain electric pile combinations, by Dr. F. Kahlmeter, both the latter papert being presented and explained by Prof. Edlund. -l'rof. Wittrock referred to a report left by the late Dr.

Lönoroth on his botanical journey to Gothand and iseland, chiefly to study the Hieracia, at the expensed the ta and to a paper presented at a previons meeting ant pas ${ }^{\circ}$ the Polanical Section of the Natural Mistury Mresto R. Boldt.-Contritutions to our knowledge of the phyllophycee of Siberia. He further presented asd te-. the two following papers, viz. :-Contributions to ourts. of the development of the physiological tixuae of same 25 Herr N. Wille, and contributions to the fora of be te Desmidica, by Herr G. Lagerheima. - Prof. Chr Az presented a paper, "Conspectus Generim e: " Microceridarum," and gave n review of the same. He exhibited living specimens of the slare-keepparg 20 .
 presented a paper prepared by himself and I'rod. 0 . Pe: "Nouvelle methode pour déterminer la densite de ar corps volatisables en meme temps que la tempara: pliquée," and gave a review of its contents. - The (Prof. Lindhagen) presentel the following papen os the results of researches made at the U'psala Chersal tory:-On the production and nitrification of iancacid; on the ortoderivates of kumenylacryl acid adts digo and chinolin-derivaces obtained from the same ; ce derivates of kumenylacryl acid, and on derivates of a acryl acid formed through substitution in the groct acryl acid: all four ly Dr. O. Widman,-Recorthe dependence of galsanic resistance in eertain aloy bismuth on time, by Dr. G. Backlin, $=-$ On cupacity α and atomic weight, by Dr. J. R. Rydinerg.-Oe Rur a new mineral from the mine Sjogrufvan, in the pr Orebro, by Herr L. J. Ifelstrom. - Kemarks on the ge teosona, Gisérin-Meneville, by Dr. C. Bovallas- - 5 . ${ }^{2}$ Wettern and the formation of Visingro, an ivand, tr. Holm.

CONTENTS

Comparative Anatomy and Fhysiology
British Dairy Farming. By Prof. John Wrighest Our Book Shelf:-

Traill's "Chain Cables and Chains"
"United States Coast and Ceorletic Sursey"
Letters to the Editor:-
The Presence of the Remains of Thicynodon in te Triassic Sandstone of Elgin.-Prof. J. W. Jout F.R.S.

An Eartlquake Invention,-Prof. John Miline
Tremble-terre du 26 Septembre, 1855_{5}-Prof. F.A Forel
Larve of Corura :inula.-Cyril B. Holman H as Pulsation in the Veins.-J. Hippisley Stonchenge.-Sand. S. Stanley
The Forecasting of Barometric Variations-A. \$ Pearson
Transmission of Sound.-Prof. W. E. Ayrot F.R.S.

Are there Rabbits in the Western 1sliands ?-Herbert Ellis
The Hell Gate Explosion
Submarine Disturbance
The Botanical Gardens in Java, By Dr. Sydoc! Hickson
On Certain New Terms or Terms used in a Nev or Unusual Sense in Elementary Univesu: Geometry. By Prof. J. J. Sylvester, FR.S
Notes
Astronomical Phenomena for the Week tills October ${ }^{18-24}$

The Great Ocean Basins. By John Murray
New Process of Liquefying Oxygen. By $M L$ Cailletet. (Illusfrofed)
Notes from the Otago University Museum b Prof. T. Jeffery Parker .

The British Association:-

Section 11-Anthropology
Science in Russia
Sclentific Serials.
Societies and Academies.

SUBSCRIPTIONS to "NATURE."

| Yearly | 28 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| Half.yearly | 14 | 6 |
| Quarterly. | 7 | 6 |

To the United States, the Continent, and all places thin the Postal Union:-

| Yearly | 30 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Half-yearly | 15 | 6 |
| Quarterly. | 8 | 0 |

HARGES for ADVERTISEMENTS,
Three Lines in Column 2s, 6d. 9d. per Line after.
One-Eighth Page, or Ouarter Column $\quad \int_{0}^{6}$ is ${ }_{6}^{d}$

One-Eighth Page, or Quarter Column . . . 0186
Ouarter Page, or Half a Colvmn

Hall a Page, or a Column 350
Whole Page 660
Fost Office Orders payable to MACMILLAN \& CO. OFFICE: 29, Bedford Street, Strand, W.C.

SECONDEDITION, GRIFFIN'S HEMICAL HANDICRAFT. PRICE 4s. 7d. POST FREE. CATALOGUE OF CHEMICAL APPARATUS; LLUSTRATED. CLASSIFIED, DESCRIPTIVE. Demy 8vo, 480 pp., Illustrated with $\mathbf{1 , 6 0 0}$ Woodcuts.
Most Complett and Cheapest List of Apparatws. IN J. GRIFFIN AND SONS, 22, GARRICK STREFT, LONDON, W.C.
ANDERSON \& Co., 8ole Inventore of the Solid Copper Tape

LIGHTNING CONDUCTOR

satinuous Lengths, without Joints, as supplied by them so HerMajesty's rnment and the Colonies: the Italian Government, the Argentipe Rec_{0} and other Foreign Governments ; the Royal Courts of Justice, Strand, the Houses of Parliament, \&c.
s Jury Commission, acting on the Reports of the International Juries of leaith Exhibition, have awarded a Bronze Medal in Class 66 to Mesary. seson \& Co. for their Solid Copper Tape Lightning Conductors in nuous Lengths, without Joints, and of High Conductivity Copper. .ADENHALL HOUSE, zoz, LEADENHALL STREET, E.C.

PPERIMANTNTROS. ${ }^{172}$, ST. JOHN STREET, LONDON, E.C.

BRONZE MEDAL Health Exhibition, DYNAMOS
for 10 Lights, \& 20 :
20 lights, 230
The Orfermann
INCANDESCENT I.AMP. 25. 6d. each; all candle.powers. New Pocket Accumu. lator, complete witk Button-hole Lamp, Cs ${ }^{35}$. Post-free with Instructions. rary Installations, Price Lists, i Stamp: Catalogue, 6d. (Please mention this Parer.] Sample Lamps, 22. 6d. post-free.

On the ist of every Month.

JOURNAL OF BOTANY, BRITISH AND FOREIGN.
Edited by Jasks Brittme, F. L.S., Britsh Museum.
emes:-Original Articles hy leading Botanlsts.-Extracts, and of Hooks and Memoirs. - Articles in Journals.-Botanical News.ings of Societies.
ce 15.3 f . Subscription for One Year, payable in advance, $32 f$. on: WEST, NEWMAN, \& CO., 54, Hatton Garden, E.C.

INVENTIONS EXHIBITION-GOLD MEDAL AWARDED.

NEW ILLUSTRATED CATALOGUE of HIGII-CLASS WATCHES and CLOCKS at REDUCED PRICES, sent post free on application to E. DENT and Co., Makers to the Queen, 6r, STRAND, LONDON, W.C., or 4 , ROYAL EXCHANGE,

Why Use Gas?

LA MITRAILLEUSE.

A. RETTICH'S Patent Burner for Mineral Oil Lamps gives double the Laght of a Duplex. easy to Trim and Light, inexpensive to, use. Sold by all Respactable Ironnongers and Lamp Warehowses.
Buy only those Marked
RETTICH'S PATENT.
GERRARD STREET, SOHO.

MANUFACTURERS AND IMPORTERS OF Scientific Apparatus AND CHEMICALS.

BAKER'S PATENT CLLORIMETER,
A NEW APPARATUS
For demonstrating to Science Classes problems in Specific Heat.

For full particulars turite to the SOLE AGENTS-

J. ORME \& CO., 65, Barbican, London, E.C.

Complete Price List of Apparatus and Chemicals, 2s. 6 d .
THE CELEBRATED

Is unrivalled for Gardeners", Foresters', Farmers', Joiners', and Amateurs* ase. It requires no oil. Sharpen with a spittle or water. Puts on a keen, sharp edge; no humbug about this. Has siood the test of too years. Cut in Hones for Axes, Hedge Knives, Rarors, Penknives, and Plape Irons, $\mathrm{K}_{\mathrm{K}} \mathrm{c}$. Honourable Mention, Paris Exhibition, sfys ; an. Gronze Medal, Loodon International Exhibition, 8884 . Ask your Ironmonger or other retial house to get you one, and give my address ; if he won't, drop me a note.

JOHN C. MONTGOMERIE,
Tam O'Shanter Stone Hone Works, Dalmore, Tarbolton Station, R.S.O. A vrshire.
t303

PRIZE MEDAL
AWARDED

HIARVIE \& PEAEX,
[By Appointment to the Royal Institution of Greaf Britain,]

HEALTE
EXfibitit SUCCESSORS TO W, LADD \& CO.,
BEAK STREET, REGENT STREET, LONDON, W.
MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALL CLASSES F SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.

WIMSHURST AND VOSS INDUCTION MACHINE OF IMPROVED PATTERN. Illustrated Catalogue, Revised Edition, per post $8 d$.

5. IY. STICOTUR.

In Casks, $12 / 6$ per 9 gals. In Bottle, $3 / 3$ pur doz. Impl. Pts.*

- Botiles charged 3^{\prime} - per doz., and allowed at the same rate if retumed; but ther must be paid for with the lieer.

Neither sugar, saccharum, nor any of the many new Brewing Mat-rials are uned in the manufacture of the "'S N." Stout; it is Hrewed entirely from the finest Malt and Hops; it is, too, mare hopped than Stout is geverally; therefare, becides leing very nutritious, it is an excellent Tooic and particularly suited for invalids. lidiee nursing, or anyone requiring a good strengthening beverage. It is a "Sound Nutritious" Ionic. and very much recommended Ly Medical men.

WALTEAMESROTERES,
THE "MALFGUINEA" ALE BRFWFRY, LONDON, S.W.

WALL PAPERS FREE FROM ARSENIC.

WILLIAM WOOLLAMS \& CO., Manufacturing Paper Stainers. ante the Omianal. Makers of
ARTISTIC WALL PAPERS, Guaranteed Free from Arsente. Sole Address-110, HIGH STREET, MANCHESTER SQUARE, LONDON, * May be obtalned of all Decorators.

Special Prise Medal. Smairary Invitute
Award of Merit, Interaational Medical and Sanitary Congress.
Silver Medal. National Heald 6* GOLD MEDAL。INTERNATIONAL HEALTH EXHIBITION.

WOODHOUSE \& RAWSO

SUPPLIERS OF ALL ELECTRICAL APPLIANCES,
Chfices-ili, queen Victoria Street, E.C.
Works-Cadpy Hall, Hammersmitp ! "
 SOLE MANUFACTURERS OF THE WOODHOUSE AND RAWSON INCANDESCENT U
inQuiries invited.

SCIENTIFIC WORTHIES.

The following is a list of the Portraits that have appeared in the above Series.

MICHAEL FARADAY. THOMAS HENRY HUXLEY. CHARIES DARWIN.
JOHN TYNDALL
GEORGE GABRIEL STORES.
SIR CHARLES LYELL.
SIR CHARLES WHEATSTONE. SIR WYVILLE THOMSON. KOBERT WILHELM BUNSEN. ADOLF ERIK NORDENSKJOI.D. SIR WILLIAM THOMSON.

HERMANN L. F. HELMHOLTZ SIR JOSEPH DALTON HOOKER. WILLIAM HARVEY. SIR GEORGE B. AIRY. J. LOUIS R. AGASSIZ JEAN BAPTISTE ANDRE DUMAS. RICHARD OWEN. JAMES CLEEK MAXWEI.L. JAMES PRESCOTT JOULE. WIH.LIAM SPOTTISWOODE. ARTHUR CAYLEY.

SIR C. W. SIEMENS.
Proof impressions of these, printed on India paper, may be had from the Publishers, frict $\$$ the Set of 33 Portraits in a Handsome Portfolio for $\mathcal{L} 6$ os. od., carriage Arid.

TIEE PORTFOLIO MAY TI Cin \&EPARATELY, R
Cheques and P.O.O.'s
*ICE OF "NATURE" 29, BEDFORD STRE

Messrs. MACMILLAN \& C0.'S NEW B00KS. LOUIS AGASSIZ: HIS LIFE AND CORRESPONDENCE.
 Edited by Elizablitit Caky Agassi\%. Two Vols, Crown Svo, i8r,

 Oxiord. Crown svo. 6 b.
european butterflies, a handbook of. By W. f. De
 tions. Crown sro. ,os, 6 d.
COMPOUNDS OF CARBON; or, Organic Chemistry, an Introduction to the Stady of. By IRA REMSEN, Profesoror of Chenistry in the Johns Hopkins Caivesity. Crown spo. 65, 66
A TEXT-BOOK OF THE PRINCIPLES OF PHYSICS. By

A TREATISE ON DIFFERENTIAL EQUATIONS. By Andrew russilli, Forsyth, M.A., Fellow and Assitant Tutor of Trinity collcge, Camlridge. Svo. 144.
THE LAW OF 'I IHE CONSTITUTION, Lectures Introductory to the Study of. By A. V. DICEY, B.C.I., of the Iner Temple, Barristerat-Law, Vinerian Professor of English L.aw in the Univerity of Oxford, Fellow of AII Soul' College, Hon. LL..D., Glasgow. Demy 8io. 125.6 d .

a new novel by miss yonge.

nUtTIE'S Father. By Charlotte M. Yonge, Author of "The voices crying in tile wilderness. A New Novel. Crown 8vo. 70.6.6
mis. molesworths new story-book for children.
"US": An Old-Fashioned Story. By Mrs. Moleswonth, Author of "Cartus," "The Cuckon Clock," \&c. With illustrations by walter Crase. Crown 8vo. 4s 6d.

THE PUNISHMENT AND PREVENTION OF CRIME. By Col. Sir EDMUND F. DU CANE, K.C.B., R.E., Chairman of Commisisioners of Prioms, Chairman of Pirectors of Prisons, Inpector-General of (Nilitary Prions, Surveyor. General ol Prisons. Crown Svo. 3. 6 .
 citize of the nature and working of the constitation under which helives. . . Allogecter, Sir EAlmmil Du Canc's book is fill of

OVER-PRESSURE IN HIGH SCHOOLS IN DENMARK. By Dr. Hertel, Mumitiplal Mclicial officer, Copernhagen. Trandateel from the Danish by C. GODFREY sor ENSEX, with Introduction by J.cricitrow browxe, M.D., LLLD.D. F.R.S. Crown 8re. 3.6.6.
golden treasury series,-targe paper editions.
LYRICAL POEMS By Alfred Lord Tensyson, Poet Laurcate.

THE POETICAL WORKS OF JOHN KEATS. Reprinted from the
 8vo. 9 .
THE TENNYSON BIRTHDAY BOOK. Edited by Emly Shake-

THE PHADO OF PLATO. Edited, with Introduction and Notes,

an introduction to latin elegiac verse composi-
 Globe Svo. 2r. 6 d .
LIVY.-Books XXIII. and XXIV. Edited, with Introduction and
 macmillan \& co., london.

PUBLISHED BY J. \& A. CHURCHILL

Sixth Edition, 2 vols. 8vo, \&2 25 .

COOLEY'S CYCLOPADIA OF PRAGTICAL RECEIPTS AND COLLATERAL INFORMMTOM THE ARTS, MANUFACTURES, PROFESSIONS, AND TRADES, Including Medicine, Pharmacy, Domestic Economy, and Hygiene; Designed as a Comprehensive Supplenent to the Pharmaconeia and General Book of Reference for the Manufactare, Tralsand 11 eal of a Family.

Edited by Prof. TUSON, F.I.C., F.C.S., assisted by several Scientific Contributor *.

PRACTICAL CHEMISTRY, INCLUD. ING, ANALYSIS. By JOHN E. BOWMAN. Edited by Charies L. Bloxisu, Professor of Chemistry in King's College. Eighth Edition. With go Engravings, Fcap. 8vo, ss. 6 d .

VALENTIN'S QUALITATIVE ANALSIS. Fdited by W. R HODGKINSON, Ph.D., Demonatrator of Practical Chemisary in the Science Schools, South Kensington. Professor of Chemistry and Physics in the Rnyal Military Academy: and If M. CHAPMAN, Assistant Demontrator of Chemistry in the Science Schouls, South Kensington. Sixth Edition, with Eingravings, 8vo, 84, 6d.
PHYSICAL AND INORGANIC CHEMIS. TRY, founded oo the well-known MANUAL, of FOWNES Ry henry watis, b.a, frs with Cotorred Plate of Spectra and 550 Wand Engraviags, Crawn 8 Va , gs.
FOWNES' MANUAL OFF ORGANIC CHEMISTRY, or Chemistry of the Carbon Compsuads. Twelfth Edition, Cruwn $\overline{3}$ vo, 1 tor.

CHEMISTRY, INORGANIC AND ORganic. Witu Expremprye by Chartes io bioxam. Pro fersor of Chemistry in King's College, Londin. Fifih Edition, with aga Engravings, 8vo, t6s.

AN INTRODUCTION TO PHYSICAL

 MEASUREMENT's: with Appentices on Absulate Eilectrical Measurement, \&C, By Dr. F KOHI,RAUSCH, Profestor in the University of Wuraberg. Translated Edition by T. H. Waleer, B A.. B. Se., and H. R. Peocrea, F.C.S. Second Edition, with 37 Engraving4, 8 vo, 15s.A TEXT-BOOK OF MEDICAL PHYSICS, for the Uve of SI= lents and Practitioners NyJOUN C IHRAPER, M.IT. I.I. D., Frofessor of Chemistry and Thysics in the Medral Department of the University of New York. With 377 f.ngravings, $8 \mathrm{vo}_{\mathrm{s}} \mathrm{t} 3 \mathrm{f}$.
INORGANIC CHEMISTRY. By Edward FRANKI, INH, IH.D., D.C.L., L.L.I), F R.S., and travis K IApP U A. Ph.B., F.R.S. Awistant Profecs of of Checaisery in the N ormal chool of Science. With Ilates and Wood-Engravingt, छvo, 24%.

PRACTICAL CHEMISTRY AND QUS LITATIVE 1NORGANIC ANALYSIS Adapted $6:$ Laboratories of Colleges and Schools. By FRANK CWIL Professor of Chemistry in University Culleze, Noxasus Edition, Revised and Enlarged, with 55 Engravingi, focin:
COMMERCIAL ORGANIC ANALYO:?
By ALF'RED H, ALLEN, F.IC.F.CS. Pulbe Aed Porough of Sheffield, \&c. Second Edition, Vol 1., vils Es" 8 vo, sis. Conteuts-Alcohols, Wine. Deer, spirits, Etho Malt, Glucose, Honey, Vegetable Fibres. Stariles, Gea Analysis, Bread, Acetic Acid, Vapegar, Acetates, Iartirs. Analyse, Rrcad, Acets
and Lemon Juice, \&c.

CHURCHILL'S TECHNOLOGICA: HANDBOOKS.

Edited by JOHN GARDNER, F.IC., F.C.S , astived by Litat:
Practical Knowledze of the ratiout subjects treated
BREWING, DISTILLING, AND WINE X: FACTURE. With Eingravings, Crown Bvos 6r, 64
BLEACHING, DYEING, AND CALICOPRIN: With Engravings, Crown Bvo, s.
ACETIC ACID AND VINEGAR, AMMONİ AIU'M. With Engravings, Crown 8 vo, 51 .

By PROFESSOR BENTLEV.
SYSTEMATIC BOTANY, includin! Clastification or Plants and Descriptive fotany. With $3 y^{1}$? Fcap. 8vo, 38. 6d.
STRUCTURAL, MORPHOLOGICAL 1'HYSIOLOGICAI, BOTANY. With bso Engravioga, Fait
A MANUAL OF BOTANY. Fourt tion, with 4185 Engravings, Crown iso, 158.

THE MICROTOMIST'S VADE.MEC

comprising upwards of 600 Forinule and Mothols, colint practice of the best workers. By ARTHUR ROLLESLS: $8 v 0,8$ s. 6.4.

THE QUARTERLY JOURNAL OF MICROSCOPICAL SCIEX

Editel by E. RAY LINKESTER, M.A., F.R.S., F.L.S., Fellow of Eveter College, Osford, an Joleell Praio of Zonlwry in U'niversity College, London.
With the co-operation of W. T. TIIISE1.TON WVER, M.A., C.M.G., F.R.S., F.L.S., Assistant-Director of the Rygl in Kew : E. KL.EIN, M.D., F.R.S., Joint-Lecturer on General Anatomy and Physiology in St. Bartholomewin Merlical Schnol, Iondon; H. N. Moskley, M.A., F.R.S., F.L.S., Linacre Professor of Human and Conze Anatomy in the University of Oxforl : and ADAM SEDGWICK, M.A., Fellow and Assistant-Lecturer of Triaity Cambridge.

CONTENTS OF No. 100.-New Series, Price 10 s.
Oa the Chromatology of the Blool of some Invertebrates, By C. A. Mac Muxv, M.A., M.D. (With Two Pla*e.)
The Cephalic Appendages of the 'iymnosomatous P'terapola, an I especially of Clione. By PAUL PELSE YEER, D S: of P (With Plate.)
Evilence in favour of the View that the Cozal Giand of Limalas and of other Arachnida is a Molifiel Nephratirz Gelland, M.A., B.Sc. (With Plate.)
Notes on the Embryolory of Limulus, By J. S. Kiscoley, D.Sc., Malten, Mass, U.S.A. (With Three Plater)
The Anatony of the Malrepraria. By G. Iferbert Fowler, B.A., Keble College, Derkeley Fellow of Oweas Colles. chester. (Wish Three Ilatec.)
\because The Twen:y Fifth Volume, containing 52 Phoce, an 1 inclading the Supalenent Number of the Year 1853 , it near
heun 1 in Clo.h, Price $\mathcal{L 2} 12 \%$. $6 d$.

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid ground'
Of Nature trusts the mind which builds for aye."-Wordswortit
No. 834, Vol. 32] THURSDAY, OCTOBER 22, 1885
[Price Sixpence

Registered as a Newspaper at the General Post Office]
[All Rights are Reserved

CHATWOOD'S

DUODECUPLE

6^{6}

Have received highest Awards at all International Exhibitions, including Two Diplomas of Honour and Six Gold Medals.

Јondon Warchouse, 76, NEWGATE STREET, E.C. Lancashire Safe and Lock Works, Bollon.
[543
Prof. Loinette's DIBCOVERIRE, THE PHYESOLOOTCAL
ART OF NEVER FORGETTING- Wholly unlike mnemonica,
lost memories reatored-the worst made good, and the beat
better. Any boot learaed in one reading. 8peaking without

> One Thmanand Amolicatinns':. Mr, R. A. PROCTOR, Dr. ANDREW Opinions of
> $\begin{aligned} & \text { Mr. R. A. PROCTOR, Dr. ANDREW WILBON, 昔. } \\ & \text { NERER }\end{aligned}$ PROF tanght thoroughly by Post, in Classes, and Privately.

RIBBON SECTION CUTTING.

The Cambridge Scientific Instrument Company have designed a new and mple Microtome for cutting continuous Ribbons of Sections of Microscopic reparations on the plan first adopted by Mr. Caldwell. The new instruent has the advantage over the original paitern of dispensing with the :diliss band altogether, and consequently not only avoiding the trouble lifting the series of Sections from the razor, but also of allowing them to 11 on to the glass slide in their proper position for mounting. Price of the ticrotome, 25 ss .
The Company are appointed Agents for the Microscopes of Zeiss, a supply - which is kept in stock.
'HE CAMBRIDGE SCIENTIFIC INSTRUMENT CO., Cambridge.

SELF-REGISTERING ANEROID barometer.

This instrument bas neither a spring nor chain. The motive power of the Barometer is obtained from seven vacuum chambers.

It will register automatically with ink on a diagram, by means of an eight-day elock motion contained in the drum, the fluctuations of the Barometer for a wrek. An illustrated tlescription sent post free.

PRICE £6 0s. Od.

JOFIN BROWVINING,

 63, STRAND, LONDON, w.C. NEGRETTI \& ZAMBRA'STHEODOLITES, LEVELS.
Circumferentors,
MINERS'DIALS, POCKET
COMPASSES, Drawing INSTRUMENTS. RULES AND SCALES, ALTITUDE ANEROIDS, \&c. Illustrated Prire Lists posted Free.
NEGRETTI \& ZAMBRA, SCIENTIFIC INSTRUMENT MAKERS TO Her Majesty the Quefn,
Holborn Vinduct ; 45, Cornhill; E- 122, Regent Sl., Londow. PHOTOGRAPHERS-CRYSTAL PALACE, SYDENHAM.

BEDFORD COLLEGE, LONDON

 (FOR L.ADIFS),3 and $\%$ VORK PL.ACE., BAKFR STREFT, W.
The SESSION began on TIIURSDAV, Octoher 15. The Cource of Instruction in Science is arransed to prepare Students for the Preliminary Sciertific, Intermediate and Full B.Sc. Examinatuons of the University of London. For further particulars apply to the Iton, Skc, at the College. B. SHADWEI.I, Hon. Sec.

ROYAL AGRICULTURAL SOCIETY OF ENGLAND.

The Appointment of SENIOR ASSISTANT in the Chemical Laloratory is new vacant, Salary Ciso per Annum, A thorough knowledge of Theoretical and Practical Chemistry is requisite. There is also a vacancy for a JUNIUR ASSISTANT, Salary commencing at 670 Der Annum
Applications (incl)wing Texim?nials) for either of the atove to be made hy letter only to I r. J A cert stis Voelcker, 13, Hanover Square, W

LIGHTNING CONDUCTORS, ELECTRIC HELIS, ELECIRIC LICHT. \&c.-Mesarn IIOWARD and RAic, Filectncal Fngincers, 97, Leadenhall Street, E. C., are prepared to undertake Contracts for the erection of Lightning Conductors and Electric Bell Installations: aleo Temporary Installations of Electric Light undertaken. Lightning Conductors t.xam ned, Tested, and Kepaired. Electrical Kepairs done. Annotations for the supply of material for E.ketrical Wuth. Estimates Free. Special Terns to the materia
Trade

HERMANN HOFFERT, D.Sc. (Medalist, lond n), A.K.S M., prepares P'urile for the Army, Cnoper's Hill. Civil
 Teras moderate.-Apply, Science Schools, :inth Kencingtom.

A GENTLEMAN.(22) DESIRES A POSITION an SCIFNCF MASTER, and alwo able to teach Irawing and Music. Mudest salary only reguired. Willingly go alrhad.Address, "Hotaktuork," care of J. Dry and Co., Wuod Street, Weat minster.

MATHEMATICS (London and Suburbs).Students attended (at their own homes if they so prefer) by a Itigh Wrangler, Trin. Coll. M.A. and F.R.S., on very reasonable terms, X., 9, Dorville Road, Hammersmith, W.

ONSLOW COLLEGE,

183, KING'S ROAI. S.W.
Now COMMENCING,-Day and Fivening, Clanes in Geology, Physics. Chemistry, Physology, Electsc Engineering, and other subjects I.ARGE. CIIIMICAL And HEIAI.LLRIICMI. LAHORAIORIES. Fees 53. to 12s. the Session of 7 months for Evenung Work, Apply for Prospectus to the Purnciral.

TO BE SOLD.-A CLARKE'S WINDOW
TRANDIT INDTKLMENT, but little used.-Apply Llox zo, Post Office Halifax.

CABINETS FOR MINERALS, FOSSILS, \&c.

6108	6							
	"	39	"	',	458.
8	,	26	\because	.,	28.
12	"	39	"	"	52 s .

NATURAI.ISTS GI.ASS-CAPPED HOXES, ROUND ANH RECTANGULAR, FROM ONE SHIIIING PFR TOKFN.

THOMAS D. RUSSELL, 78, newgate strelet, e.c.

MINERALS AND FOSSILS

SINGLE SPECIMENS OR COILECTIONS.

F. EI. BUTIER,

Assoc. R. Sch. Mines Lond., M.A. Oxon., and L.S.A. Lond., Successor to the late R. TAl.LING,

[^25]
LIVING SPECIMENS FOR THE MICFOSCOPE

GOLD MEDALawarded at the FISHERIES EXHIBITION \& THOMAS BOLTON, 57, NEWHALL STREET, BIRMISGFAY

Who las hast week sent to his subscribers Melicerta tyro, ink and description. Ifc has also sent out lophopts crystalluras Pe repens, Melicerta ringens, Stephanocerostichornis, Aurata strpiay plobator, Desmids: also Hydra. Amoeba, Vorticella, Crayhich, asc Spocimens for (Huxley and Martin's) Biological Laborator) work.
Weekly Announcements will be made in this place of Orgminul 7 supplying.

Specimen Tube, One Shilling, post free.
 an Twelve Twhes for sos. 6d.
Portfolio of Drawings, Eleven Parts, 12. earh.
EDWARD WARD has pleasure in $2:$ nouncing the lisue of a new Micro-Slide of Zoophy., wint out, in the special manner so well known to his pumerouspormat

Plamularia similis $\ldots \ldots \ldots$ (post-free) i il
Also, quite new:-

Gorgonia verrucosa (polype stained)
Podalirustypicus (Spectre Shrimp)
EDWARD WARD, 249 , OXFORD STREET, MANCHESTIR

CHEMICAL APPARATUS, Wholesale

Retail, for Colleges, Schools, and Chemical Works, New Cati-: oo pages and 500 clear IHustrations, post free, $2 \mathbb{d}-W 11.1$, HUME, , Lothian Street. Edinburgh.
BOOKS (Secondhand), Miscellaneous, Re mainders, \&e.-C. HERBERT, English and Foreng Reokret Goswell Road, London, F.C. Catalogue free on receiph of twoturt. Libraries, Old Inooks, and Parchment purchased. ASTRONOMERS, SURGEON DENTISTS

THE SWAN LAMF
 ANDFITTINGS may be purchased at MAWSON AND SWAN'S STORE, 3, ${ }^{9}$ FARRIF'GION SIRFET, F.C, A MOSLEV STMI NEWCASILEONTIVNE:

SIX PRIZE MEDALS

AWARDED FOR GEOLOGICAL COLLECTIONS
Geological Collections eopecially adapted for Teaching as supplind to . and Art Department, and ueed by all lecturers and Teachern a Great Hritain, \&r.
New and Rare Minerals constantly arriving from all parts for seiects Single Specimens.
ROCK SFCTIONS AND ROCK SPECIMENS: The Largest Variety in Fingland.
New Catalogues and Lists on application to-
JAMES R. GREGORY.
88, Charlotte. Street, Fitzrov SQuare, Lune Fstabliched 17 Vears in London.
With numerimelllumpatwne. Crown 8vo, w. 64.
POLARISATION OF LIGHT. By
SPOTTISWroone, I I. D. late President of the Royal Cece New t.dition I.lafeen.Ne MACMIILAN \& CO. LDNDON.

FERNERIES fitted up with Preserved
Flowers. Foliage Phants, and Floral Decorationa suitable for Drawing. and Ball Rooms, Churches, Chapels, Theatres, \&ec.
Sundella, a PATENT Preparation for preserving FERNS (from Maiden-hair to the common Brake), GRASSES, FOLIAGE, \& \& ., sent, securely packed in stout box (with full particulars) on receips of P.O.O. for 8.

MADAME SUNDELL

4, SPUR STREET, LEICESTER SQUARE, LONDON.

MINERALOGY AND GEOLOGY.

PROFESSORS, COLLECTORS and VISITORS to LONDON are INVITED to INSPECT Mr. HENSON'S STOCK of CHOICE MINE. RALS, \&c. \&c. At the PRESENT TIME he has a PARTICULARLY FINECRISTALLISED NUGGET ofNATIVE GOLD, WEIGHTgoz, PINK APOPHYLI,ITE, CHESSYLITE, ENERALDS O MATRIX, PYROMORPHITE (VARY RARE YOAW), CERUSSITE, CRYSTALL ISED MALACHITE, and BOTRYOIDAI. CHAICEDUNY, ME. TEORIC IRONS and STONES, POLISHEDAGATES and LABRA. TRORITES.
A Large Series of ROCKS, also MICROSCOPIC SECTIONS of the same.

Lists on diphication. Hammers, Chisels, and Hammer Straps.
PRIVATE LESSONS AND EVENING CLASSES. BLOWPIPE CASES AND APPARATUS. Catalogues free.

SAMUEL HENSON,

277, STRAND, LONDON.
Opposite Norfolk Street.

HOW \& CO.'S
 Geological Transparencies for the Lantern.
 Descriptive Catalogue on Application.
 WALKER'S SPECIFIC GRAVITY BALANCE FOR ROCKS AND MINERALS.
 HOW \& CO.'S POCKET MICROSCOPE LAMP, 8s. 6 d .

MICRO-PETROLOGY.-Sections of Pitchstonee, Obsidians Granites, Syenltes, Diorites, Gabbros, 'Dolerites. Basalts, Tachylites, Trachytes, Andesites, Porphyrites, Rhyolites, Lavas. Ashes, Gneisa, Schists, Limetones. Act.. price $18.6 d$, each.
fames how a CO., 73, Farringdon 9tantt, Lompon.
The AUTOCOPVIST (from zos.) furnishes ereellent

BLACK COPIES

in Lithographic Style, of thn ORDINARY WRITING (also Shorthand Arabic, kc.), Sketches, Mnsic. Easy, Economical.-The AUTOCOPYIST r'O., 72, London Wall, London.

WOOD'S

LANTERNS \& SLIDES,
The Largest and Best Stock in the Kingdom, ON SALE OR HIRE.
THE "EUPHANERON" LANTERN,
$\ell_{4} 4$ r., is unsurpassed for Power, Portability, and Price.
NEW CATALOGUE OF I.ANTERNS AND SLIDES (60,000 ln Stock Pott free, One Stamp.

Cameras, Lenses, Stands, Chemicals,

And every requisite for Professional and Amatear.
Complete Catalogue and "A Photograph, and How to Take It," by "One Who Knows," Pott-free, One Stamp.
E. G. WOOD, 74, Cheapside ; and

HORNE, THORNTHWAITE, \& WOOD
Opticians to the Qneen,
416, STRAND, IONDON.

THEENTOMOLOGIST:

AN II.LUSTRATED JOURNAL OF BRITISH ENTOMOLOEY Fdited by Jomm T. Carmington, With the Assistance of
Frrdretcic Rond, F.Z.S.
Edward A. Fitch, F.I_S.
Jots A. Powen, M.D. Fh, F.LAS.
FUCHANAN Whitr, M.D.
Contains Articles by well-known Entomologists on all Branches of the Science ; on Insects injurions or beneficial to Farm or Garden; Notes on Habits, Life-Histories; occurrence of Raritien, \&c.; there are Monthly Lists of Duplicates and Desiderata.

Namerous Wonocut Illustrations, to the printing of which especial attention is given, and occa*lonal Lithogarphed and Cmomo-LituoGraphed Piatrs.

SIMPKIN, MARSHALL, \& CO., Stationers' Hall Conrt.

Now Ready, price 6r., Vol. XX., Part I., Octoter, 1885 .
THE JOURNAL OF ANATOMY AND
PHYSIOLOGY, NORMAL AND PATHOLOGICAL. Conducted by Professors HUMPIKY, TURNER, and M'KENDRICK. Confents.
2.-Anatony of Muscles, Ligaments, and Farcix of Orbit, by C. BLockwood (Plate I), 2. Two Cases of Abnormal Coronary Artery, by H. Sc. John Brooks (Plate 11.). 3. A Second Bursa Connected with Insertion of Hiceps, by A. W. Collink if Abnormalities of Lobees of Human Lung, by A. Maylard. So Nature of Ligaments (Part 1V.), by J. B. Sutton (Flate III.) 6. Vital Relations of Micro-Organisms to Tissue Elements, by G. Sims Woodhead. M I), and A. W. Hare, M B. 7. Blood.Forming Organs and Blood-Formation, by J. Lockhart Gibson. M. D. (Part I.) 8 . Relationship of Urea Formation to Bile Secretion, by D. Noel. Paton. AI.D. (Part I.). 9. Inder of the Pelvic Brim as a Basis of Classification, by Prof. W. Turner. io. Anatomy of Sowerby's Whate, by Prof. W. Tumer (Plate IV.). 1t. Notices of New Books.

WILLIAMS \& NORGATE, 14. Henrietta Street, Covent Garden, London ; and 30, South Frederick Street, Edinburgh.

NORTH BRITISH AGRICULTURIST,

the chief Agricultural Journal in Scotland, circulates extensively among
Landoweers, Farmers, Resident Agents, and othersinterested in the management of land throughout the United King dom.
The AGRICULTURIST Is published every Wednesday afternoon in time for the Evening Mails, and contains Reports of all the principal British and Irish Markets of the week.
Thespect attention of Land A gentsis directed to the AGRICULTURIST as one of the yest existing papersfor Advertising Farms to be Let and Esiates for Sale.
Advertisers addressing themselves to Farmers will find the AGRICULTURIST a first-class medium for reachingt hat Class.
Price 3d. By post 3\}d. Annual Subscription, payable in advance, 148.
Offices-377, High Street, Edinburgh ; and 845, Qneen Victoria Streit, London, E.C. Money Orders payable to C. and K. Andkason.

THE EN TOMOLOGIST'S MONTHLY MAGAZINE.

Price Sixpence, Monthly, e4 pares 8vo, with occasional Illustrations. Conducted by C. G. Barnkt T, W. Douglas, R. Mclachlan, F.R.S. E. Saundran, F.L.S., and H. T. Stainton, F.R.S.

This Magarine, commenced in 1864 , contains standard articles and notee on all subjecis connected with Entomology. and especially on the Insects of the British Isles.
Subscription-Six Shillings per Volume, post free. The volumee coms nence with the June number in each year.
Vols. I. to VI. (strongly bound in cloth) may be abrained by purchasers of the entire set to date, at the increased price of 108 each; tbe succeeding vols. may be had separately or together, at $7 s$. each,
Loadon: JOHN VAN VOORS r, I. Paternester Row.
N.B. - Communications, \$e., should be sent to the Editore at the above address.

Oa the sst of every Month.
JOURNAL OF BOTANY, BRITISH AND FOREIGN.
Edited by James Betitien, F.L.S., Britisb Mnseum.
Contants:-Original Articlee by leading Botaniste.-Extracts, and Notices of Books and Memoirs.-Articles in Journals-Botanical Newn, Pmiceedings of Socicties.

Price is 3d. Subscription for One Year, payable in advance, ses.
London: WEST, NEWMAN, \& CO., 54, Hatton Garden, E.C.
LA SEMAINE FRANÇAISE: a Weekly
Newspaper and Review in the Preach Language. Politics, Literature, Science, Art, Varieties, Notes. Price ad., through Booksellers, and ot the Railway Booketallis. Office. 41, Strand, W.C.
LA SEMAINE FRANÇAISE: Journal Français pour 1'Angleterre: Politique, Litterature, Sciences, Arts, Variétés, Nouvelles. et Notes. Un exemplaire par la poste, ald., en timbres poste. Abonnement franco par la poste-un an, rof, zod. ; six mois, gr. sd. Prix ea. cher tous les hiraires ot aur gares des chemins de fer. On siabonne cher tous hes hbraires et aur gares des eh
LA SEMAINE FRANCAISE.-" La Semaine Fran. caise "has been brought out in London for the benefit of those English readers who may wieh to estady contemporary Frencb from all points of view, instead of confining their reading to one particular Galitic print It certainly merits success."-Graphic.

$$
\begin{aligned}
& \text { Puhlishing Office. 44r. Strand. W.C. }
\end{aligned}
$$

DER NATURFORSCHER.
Wochenblatt rur Verbreitung der Fortachritte in den Naturwissenschaften. Herausgezeben von Dr. Withelm Sklanek.
A Weekly Periodical devoted to Natural Science. 59 Nos, 16s. Speciroen Numbers may be had throngh any Foreign Rookseller. i 884 commenced the XVIItb volume.

Berlin: DÜMMLER, 77, Charlottenstrasee, S, W., and all Rooksellers.

MEACMIIILAN'E MMAGARZINE
 For NOVEMBER will contain
 A NEW POEM
 ${ }^{\text {BY }}$
 ALFRED, LORD TENNYSON
 (Pod Laurcafe).

The Magazine (Price One Shilling) may be obtained of any Bookseller or Newsagent.
MACMILLAN AND CO., BEDFORD STREET, LONDON.

The Englisb Fllustrated IDagajíne,

(Price Sixpence; by Post, Eightpence.)
THE NOVEMBER NUMRER CONTAINS-

I.-LADY SARAH bunbury. Engraved by T. Johnson, from the Picture by Sir Joshua Revnolds.
il.-An adventure in afgilanistan. by m. laing meason.
iIf.-NEWCAStLE-ON-TYNE, OLD bits in A NEW CITY. By R, J. Charleton. Illustrated by R. Jobimis
IV.-London Commons, Part It. Ry Robert Hunter. Illustrated by Crougit Bromiey.
V.-AlCOMBE'S CHANCE. By Frederick Boyle.
VI.-CHEESE-FARMING; AT CHESTER. With Illastrations hy Aipred Rimmer.
VII.-LoVE AND FANTASY. By C. Midne.

Vili,-AUNT rachel. (Confinued.) By D. Cirrtstie Murray.
Ornamental Friezes, Headings, and Initial Letters.
Lomlon: MACMIIIIAN \& CO.

AN ATLAS

PRACTICAL ELEMENTARY BIOLOGY.

BY G. B. HOWES
Demonstrator of Biology, Normal Scheol of Science aind Riogal School of Nines, Lecturer' in Comifurative Analomy, Ss. Gatzi' Hispital Mcdical School, London.
With a Preface by THOMAS HENRY HUXLEY, P.R.S.
MACMILLAN AND CO., LONDON.

Just Published, with above ano Wood Engrarings, fap. 800, Cloth, at.

OUTLINES OF NATURAL PHILOSOPHY

FOR SCHOOL.S AND GENERAL READERS.
By J. D, EVERETT, D.C.L. F.R S.,
Professor of Natural Philosoghy in the Queen's College, Relfant; Editor of the Finglish Fictivion of "Deuchanel'n Natural Phuksophy," \&c., \&c.

Great pains have been taken to make every starement in this book as plain as p suble, and to put every uentence into such a form mot to be readsly understoed at first reading. Alsebrate formulic have been alh zether ex-
cluded, and familiar languago whenever availaibe hav lieen greferred to the use of technical terms

London: RLACKIE \& SON, 49 and 50 , Old Bailay.
Second Englash Edition with Additions, With 201 Woodcuts and 14 Platel (5 Coloured), inciuding Angstrim's and Comu's Maps. Iro price jss. Ga.

SPECTRUM ANALYSIS

In Its Application to Terrestrial Substances, and the Physical Constitution of the Heavenly Bodies. Familiarly explained by the late Dr. H. Schellen.
कumbatelf from the Third Fnlarged and Revised German Edition by JAvE

'ondon: LONGMANS, GREEN, A C.).

This Day, Sixth Edition, Revised and Enlarged, price of. Cloth (postage sd.)
COAL AND COAL MINING.
By WARINGTON W. SMYTH, M.A., F.R.S. Chief Isspector of the Mines of the (ruwn, Kic. CROSDY 1.OCKWOOD \& CO., 7, Stationers* Hall Cuurt, Limdea, I. © This Day, Third Edition, Revived, with Ablutiona, price sh, Coch
THE RUDIMENTS OF MINERALOGY
A CONCISE VIEW OF THE GENERAL PROPERTIES OF METALS.
By ALEX. RAMSAY, r,GS., Rc. CROSHY LOCKWOOI \& CO.. $\overline{7}$, Stationeri Hall Court, Lomdon E.C.

MINERALS AND STONE IMPLEMENTS.

MR. HRYCE.WRIGHT begs to call the attention of his Clients ad the Public to his large Series of

MINERALS AND STONE IMPLFMENTS,
from which single specimens can be sciected.
Filementary Collections of Minerals, Fossils, and Rocks from 6t opvens
N' B-There Collections oftained fhe P'ores Modat, iscs
GEMS AND PRECIOUS STONES OF EVERY DESCRIPTION BRYCE-WRIGHT,
Mineralogist and Exfert in Precions Stowl', so4. REGENT STREET, LONDON, W

THURSDAY, OCTOBER 22, 1885

AMERICAN ANTHROPOLOGY

Reizen en Onderzoekingen in Noord-Amerika. Van Dr. H. F. C. Ten Kate, Jun. (Leyden : Brill, 1885.)

Prekistoric America. By the Marquis de Nadaillac. Translated by N. D'Anvers. Edited by W. H. Dall. (London : Murray, 1885.)
The Lenape Stone; or, the Indian and the Mammoth. By H. C. Mercer. (New York: Putnam, 1885.)

DR. TEN KATE (son of the celebrated Dutch painter) has published the account of his late anthropological journey in the regions about Arizona and New Mexico. His exploration was supported by the Government of Holland, for whose Rijks Museum at Leyden he brought home a collection illustrating the peculiar civilisation of the Pueblo Indians and their wilder neighbours of the plains; also by several scientific bodies, among them the Anthropological Society of Paris, for which he took body-measurements of the various tribes he met with. Belonging to the school of observers who depend on the measurement of skulls as a means of classing the natives of America into stocks of the general Mongoloid race to which they primarily belong (p .432), he has to deal with the interesting problem, what relation the ruder and fiercer tribes bear to the comparatively cultured and peaceable dwellers in the pueblos. This, however, is confused by the fact that among neither is the type uniform. Dr. Ten Kate (p. 173) recognises among the Apaches two or three varieties, one more Mongolian and especially seen among the women, the others more of the boldfeatured Redskin-type. The brachycephalic and occipitally flattened skull which he considers especially characteristic of the Pueblo Indians, enables him to contradict (p .15 5) the opinion that the handsome Pimas belong to these. But then he finds it necessary to divide the Pueblos into much the same Mongolian and Redskin types (see his remarks on the Moquis, p. 2j3). On the whole his observations do not seem incompatible with the view that the difference between the roving Indians of the skin tents and the tillers of the fields around the towns of mud-brick houses depends less on race than on difference of stage of civilisation, itself due in great measure to the respective circumstances of a wild life of war and plunder or a tame life of peace and industry. That the neighbourhood of the nations of Old Mexico may have influenced the civilisation of the Pueblo tribes is likely enough, but Dr. Ten Kate argues on grounds both of skull-measure and language (pp. 265, 221) against any identification of Zuñis or Moquis with Aztecs. Indeed, it is the general experience of anthropologists, in spite of resemblances in such matters as the step-pattern on the pottery, that the language, customs, and religion which the natives of Zuñi or Tehua have preserved since the Spanish Conquest, show original and peculiar types which are not to be accounted for as borrowed from Mexico. Thus the designs on the earthen water-vessels, when explained, prove not to be copies of Mexican ornaments, but mostly direct symbolic pictures, a spiral for the whirlwind, a semicircle with descending lines for a
rain-cloud, \&c. This even affects the argument that the celebrated "cliff-dwellings" of the district were the strongholds of the ancestors of tribes such as the Moquis, who claim to continue and interpret the designs on their pottery (p .265). Dr. Ten Kate had the good fortune of visiting Hualpé with Major Powell and seeing the Moqui snake dance (p. 242). He was allowed to go down the estufa to see the paraphernalia of the dancers and the vessel of drink taken as prophylactic against rattlesnakebites, and his account of the dance itself, particularly as to the way in which the rattlesnakes are carried in the mouths of one set of dancers while another set by tickling them with feathers prevents their striking, is much in the same terms as that given by Capt. Bourke (see Nature, vol. xxxi. p. 429). Mr. Cushing was still at the pucblo of Zuñi under his Indian name of Ténatsali or "Medicine Flower," and with his guidance Dr. Ten Kate had opportunities of studying the social life of the interesting matriarchal community. The main features of the family system are now clear, as to the young man being chosen by the young woman as "hers to be" (yiluk'ianiha) and his being taken by her father into the house as pupil (lalahi); thus he passes into the position of a husband who can be sent back to his home, and the father of children who belong to their mother and inherit only from her. But in this and other accounts there are indications of what is evident to every traveller who has visited a Zuñi home-that the father after all has real power even in that matriarchal household. It is to be hoped that Mr. Cusling, when he gives the world his long-expected treatise on Zuñi language, manners, and religion, will be able to make the practical working of the matriarchal life more perfectly intelligible to the prejudiced patriarclal mind of the white man. Dr. Ten Kate inspected characteristic tribes throughout the New Mexican district, from these comparatively high Zuñis down to the low Utes, noting details of customs and other anthropological material which at times illustrate the effects of intercourse through a yet wider range of culture. Thus the wooden plough and creaking ox-cart of ancient Rome, introduced into America by the Spanish conquerors, are to be seen at work in the fields around the pueblos; and white men passing near an Indian cairn still throw each a stone upon it for luck (p. 271).

The well-known questions as to America before the time of Columbus may be counted on more than ever to arouse the interest of even the "general reader"-whether and how the natives came across from Asia, whether they made or imported the peculiar civilisations of Mexico and Peru, and so on. Thus it was quite worth while to translate the Marquis de Nadaillac's "Amérique Préhistorique," with its summaries of information and illustrations borrowed from the best sources. The work has been improved by being edited by Mr. W. H. Dall, whose own researches in the Aleutian region form one of the most interesting chapters in the anthropology of America. In the first place, the interesting though as yet hardly clear evidence is fairly given as to man's existence in America before the recent geological period. One of its most curious details is the description by Ameghino the geologist (p .29) of his finding human remains on the banks of the Rio Frias, some twenty leagues from Buenos Ayres, associated with charcoal, potsherds, and stone arrow-

[^26]beads, near the carapaces of gigantic extinct armadillos (Glyptodon) which liad served as ready-made roofs to the pits in the ground which formed the dwellings of the ancient savages of the Prampas. It seems that, though the relater was a well-known geological explorer, his account was received with such incredulity, even in the district, that the Argentine Scientific Socicty refused to allow a paper to be read before them. The present volume, however (p. 477), contains particulars of a further discovery of the same kind, a human skull and most part of the skeleton having been found below an inverted Glyptoton carapace. This is not indeed conclusive, on account of the frequent displacement of the Pampas soil by floods, and even were the contemporancity of man and Glyptolon made out, the upper bed containing the remains of this huge edentate may be more recent than the quaternary date. But no doubt there will be more finds, and it may help the discussion to point out that there seems nothing improbable in a man's living under a Glyptodon shell four or five feet long, inasmuch as there is classical authority for such habitations in the Old World. The natives of Ceylon, according to Alian, could live under their great turtle-shells as roofs; so Pliny mentions the Chelonophagi of the Persian Gulf covering their huts with the shells of turtles and living on the meat. It is to be feared that the late Dr. I.und's rescarches in the limestone caves of Brazil, claimed as proving that the American man was a contemporary of the extinct megatherium and horse, were not made accurately enough to be relied on now, but it is well to keep them in view to encourage similar research. On the narthern continent, Dr. Abbott's rude implements of argillite trap are the most remarkable objects claimed as the work of Glacial man, and they have proper description and drawing here, while every other discovery worthy of any consideration receives it. As is usual in French works, proofs of the high geological age of man are received somewhat more readily than in our more sceptical English literature. An unusually full account is given of the shell-heaps which fringe the consts of both Americas, sometimes fifty fect thick and more, so as even to be valuable for the supply of lime to the builders of neighbouring towns. The high age of some of these rubbishheaps is shown by elevation of the ground having lifted them high above the sea-level where the shell-fish were doubtless cooked and eaten, while the cannibal habits of the rude savages of the shores are shown by the usual evidence of human bones split for the marrow. Probably the more recent heaps are those characterised by tobaccopipes, and stone pestles and mortars like those in which the modern Indians bruise seeds. This seems at least a reasnnable opinion notwithstanding that such stone peatles and mortars have been put forward as evidence of man inhabiting Calformia far back in the Tertiary period. M. de Nadaillac's chapters on the mound-builders and chit-duellers, and the nations of Mexico and Peru, give much popular information The original French work discussed at some length the native American legends of deluges and nther catastrophes, commemorating the mythic forefathers of nations and introducers of religious laws, and arts; but the American editor, with better indignent of the historical value of these tales, has pared hem down, leaving the reader to form his judgments on
more solid matters. Should a new edition of "Prelhstone America" be demanded, it will be well to have the press more carefully corrected. So well known a living aulberts as Prof. Marsh figures as "March," and it is with aeffort that one recognises the ancient Chinese empeatr "Fo-hi "under the designation of "Fo-Fli." difa" M. de Nadaillac yields to the common temptasee at finding the name of the Nithua nation in the name $\%$ the country Anahuac, as if it meant "the country of te Nahuas by the water;" but this is grammatically \quad possible, and indeed the etymology of A n nahur, meary; simply "near the water," is quite indisputable.

The interest felt by Americans in the antiquity of $r v$ on their continent is shown by the appearance of for; relics. The so-called "Lenape Stone" is one of be ${ }^{i^{3}}$ perforated stones known as gorgets, common in $10 t$ graves, but on it is scratched a rude representatiec hunters attacking a mammoth. When it was prowat: Mr. Carvill Lewis at once called attention to the obr. point, that the mammoth is a palpable imitation of t: of the cave of La Madeleine, whereas the hutie) Fimitated from the childish modern American latr pictures on bark or deerskin. The artistic powet $d=$ men of the mammoth-period is shown by its bew; consciously conveyed through the hand of so stap copyist.
F. . . Tn.

PHVSIOLOGICAL PLANT ANATOMT
Physiolugische PRanscnanatomic im Grundriss iergniVon Dr. G. Haberlandt. (T.eiprig: Wilheim Eze mann, 1884.)

WHEN one recognises the immense imporazace continually keeping before the stodent, the " that from whatever standpoint the plant is wies physiological considerations must never be lost wif one cannot but welcome the appearance of Dr. Hir landt's text-book on physiological plant anatomy, m: is disposed to do so with more than ordionery fro recalling those chapters on physiological organmen which appeared some three years ago in Prod S_{v} : "Vorlesungen." The subject is one to whicd : Haberlandt has specially devoted himself, the pro volume being in fact the most recent of a serf detailed publications. On this account it is not prising to find that much of the subject-matte: :" new, and that of the twelve sections into whid book is divided five have already appeared in the x^{4} in Schenk's handbook entitled "Dic physiolons" Leistungen der Planzengewebes." Dr. Haberlandion the present occasion is to publish as complet? account as may be, of the present history of the sy?" and the great point upon which he insists, is the whole anatomical structure and the mode of arraszer of the various tissues composing the plant, are simpl many illustrations of the phenomenon of adappabs physiological needs.
The first two sections are devoted to the enosider: of the cell and the formation of tissues. The thinter: of the tegumentary system, and as far as repant epidermis special stress is laid upon Westermaiet covery that the epidermal cells serve for the sons? water, in addition to their well-known protectiveforct:

The important influence of cuticular wax and epidermal hairs upon transpiration is also discussed.
In Section 11, the mechamical system is considered. With much of the subject-mater of this section we have been acquainted since the appearance of Schwendener's classic "Das mechanische Princip ;" but it is of imerest to note that in the fungi, eg. Usnca bubbuta, evidence exists of a mechanical tissue which in the higher plants takes the form of sclerenchyma, collenchyma, and bast. The absorptive system includes roots, rhizoids, and like structures; attention being also drawn to the absorptive tissue of the scutellum. This organ in Rriza miner is peculiar on account of the pronounced development of the absorptive cells, and their striking resemblance to root hairs.
Section V11. deals with the assimilative system, and one is much struck by the marked manner in which the whole structure of the leaf illustrates the principles of which Dr. Haberlandt is the exponent. The pallisade layers are naturally regarded as being the chief seat of assimilative activity, and it is pointed out that the cells below these layers, which are of the nature of spongy parenchyma, and contain comparatively few chlorophyll grains, are distinguished by the remarkable manner in which they abut on to the palliside cells. Their special function appears to be to conduct or absorb the products of assimilation, and to be the means of conveying them to other parts of the plant. They are in consequence designated as receptive or conducting cells (Aufnahme oder Sammelzellen). The infoldings which occur in numerous pallisade cells and are so well developed in the leaf of the various species of Pinus, have for their object the increasing of surface-area, and consequently also the number of chlorophyll grains in the cell.

Some space is devoted to the consideration of the conslucting system, which includes the parenchyma of the cortex and pith, the inedullary ray parenchyma, \&e., the vascular bundles and laticiferous tissue.

Dealing with the vascular bundles from the point of view of physiological auatomy, a special terminology has been adopted. The whole bundle is known as the Mestom, the xylem as the Hadrom, and the phlam as the Leptom. The idea of Mestom includes purely vascular tissue, and excludes the mechanical sclerenchymatous and fibrous tissue (stereom), consisting usually of prosenchymatous cells (sterëdes), such as occur accompanying the bundles of most monocotyledons. Dr. Haberlandt's experiments denonstrate that in the moss stem the central strand of tissue is to be regarded as consisting of rudimentary hadrom, having for its function the conduction of water. To the layer surrounding the vascular bundle in roots, \&c. (endodermis of De Bary) is applied the term "protective sheath," or "protective layer," on account of its function with relation to the bundle.

For a more complete understanding of the nature of laticifcrous tissue we are again indebted to Dr. Haberlandt, whose observations upon this point appear to be of extreme importance. These observations demonstrate that in many of the thick-leaved Euphorbias, those portions of the laticiferous cells which enter the leaf become repeatedly branched in the leaf-tissue, and in such a manner that the extremities or blind ends of these
branches abut directly on to the pallisade parenchyma cells, and are thus brought into the closest possible relation with the seat of greatest astimilative activity. The naturak inference as to the function of haticiferous tissue has consequently everything to be said in its favour.

In Section IX. the intercellular space system is dealt with, and the various forms of stomata and their mechanism described. Much importance must necessarily be attached to this system when one bears in mind the relation of transpiration and gaseous diffusion to plantlife. The remaining sections are devoted to the secretory and excretory organs, and to the phenomena attending the normal and abnormal mode of increase in thickness of the stem and root.

The few remarks that have already been made are sufficient to show that the book contains numerous points of much interest. It is, moreover, carefully written, and furnisherl with a copious bibliography.

We cannot conclude this review without pointing out as Dr. Haberlandt has so fitly done, the importance of recognising that in every system there is not only the chief, but also the subsidiary, function, and that in considering any one of them which is especially significant, the less pronounce 1 but still existing functions must be kept in mind. By such means alone will the true advance of plysiological anatomy be maintained.
W. G.

HTILIA:" HEDLEV

William Hialey, the Inventor of Riaitway Lotomotion on the Present Principle. By M. Archer. Third Edation. (London: Crosby Lockwood and Co., 1885.)

IN this little book the author endeavours to place on record more exact facts with regard to the invention of the locomotive, and to give prominence to the name of the man who first made the locomotive a practical and financial success.
Richard Trevithick is perhaps the only man, before Hedley's time, who narrowly missed the fame now accredited to Stephenson and Hedley. In 1808 Trevithick constructed a circular railway in a field, now forming the southern half of Euston Square. On this railway he placed a locomotive of his own construction, having flanged wheels, a tubular boiler, and a vertical cylinder, driving by means of a cross head the hinder pair of wheels. This engine was attached to a coach, and the few people who would venture in it were taken round the railway at so much per head. After running for a few weeks, a rail broke, causing the engine to leave the rails, and turn over on its side. At this time Trevithick had expended all his means, and was compelled to give up his endeavours to convince the public of the many advantages to be obtained from the use of the locomotive; had he been backed up by influential men, no doubt he would now be known to fane as its inventor.

Many men before Hedley's time had tried their utmost to make a workable locomotive, such as would supersede horses on a colliery railway. Trevithick, Blenkinsop, and Chapman all exercised great ingenuity in their designs, but success was as far off as ever, owing to the general idea prevailing that some mechanical connection must exist between the engine and the railway, believing
that the mere adhesion between the smooth wheels and smooth rails was completely insufficient to prevent slipping.

In the year 1812 William Hedley was viewer at the Wylam Colliery, and in order to reduce the working expenses he endeavoured to construct an eugine to haul the coal waggons from the colliery to the river, and to do it cheaper than by horse haulage. At this time he had a knowledge of what others had done in this direction, but was forcibly impressed with the idea that the weight of an engine was sufficient for the purpose of enabling it to draw a train of loaded waggons. After having made successful experiments to prove the idea correct, he set to work and constructed his first engine, which, when completed, did not prove a success owing to shortness of steam, and a second one was made. The second one, the well-known "Puffing Billy," was put to work in May, 1813 , and was a complete success. This may be safely called the first practical and efficient locomotive ever constructed. It had a return-tube boiler of wrought iron, vertical cylinders, and was placed on four wheels. Very soon after the engine commenced to work the exhaust steam was turned into the chimney to create a blast on the fire. This engine worked nearly continuously until 1862, when it was bought, and has now found an honourable resting-place in South Kensington Museum.
Puffing Billy was put to work in 1813, nearly a year before Stephenson's first engine was tried at Killingworth in 18 t 4 , thus proving without doubt that William Hedley was the first man to construct the first practically successful locomotive engine, and the first economical substitute for animal power.

It should not be thought that our author claims for Hedley the fame of being the first to develop the railways. Puffing Billy was at work sixteen years before the celebrated Rainhill contest took place, and ten years before locomotives were allowed to work the goods traffic on the Stockton and Darlington Railway.
Stephenson's success may be dated from the Rainhill contest in 1829; and he was one of the first men to bring the present railway system forward and develop it. At the same time Williain James must not be forgotten ; he surveyed the Manchester and Liverpool Railway before Stephenson was placed in charge of the Railway Works, and had it not been for a difference of opinion on certain technical points, William James would have been the engineer of the line until open for traffic. Again, Williatn James went to see Stephenson's engine, before Stephenson came to Liverpool, finding him an intelligent working man and the engine a success, he brought Stephenson to Liverpool, where he eventually commenced his successful career.

The author is to be congratulated on having proved his case, and in the preface he truly says: "Without William Hedley, George Stephenson might have lived in vain. It was William Hedley who gave the locomotive its life and power, and made the work of other men possible."

The book is very interesting, and is useful as a book of reference, the appendix containing extracts from the opinions of many writers, and letters from men able to give information on the subject. This little book will prove useful to all who wish to know the facts concerning Wilhain Iledley and his invenmons.
N. J. L.

LETTERS TO THE EDITOR

〔The Editor does wot hold himself responsible for opinions arprass by his correspondents. Neilher can ke andertake to ther, or 10 correspond with the writers of, rejected manwkivi No notice is taken of a monymous communications.
[The Editor urgently requests correspondents to knp ther liter es shert as possille. The pressure on his spact is so gre that it is impossible otherwisc to ittsure the afteanemen of communications contaiming intcrusting and notel fatl.)

Shotfiring in Mines

Fok some time past I have been conducting a serios of at fring experiments at Dowlais and elsewhere on behal α Royal Coumission on Accidents in Mines. Towards the e of August last Prof. C. G. Kreischer, of Freiberg in 5 ne visited me at Cardiff for the purpose of conferring wuth of : the coal-dust question. The experiments at Dowlen but direct bearing on that subject, so, after pointing out to $F-$ Kreischer the perfectly private nature of the investigation the delicate position in which I would be placed were the wallowed to transpire ihrough any channel other than the $k \cdot$ Commission, and having received his assurance that satal $1: 3$ tingency was impossible as far as he was concerned. 1 wne him to accompany me to Dowlais, so that he might witacto of the experiments on August 28 and September 1.

On the second (?) day Prof. Kreischer asked my permso : write to his friends in Giermany, suggesting that they migte: a few similar experiments privately in an apparaius the a been set up at Zwickau, at the expense of the siton Gref ment, for the purpose of conducting a series of experimes: coal-dust. He again assured me that no publictione of rex would take place until after those obtained bere wet: 2 known, and offered, if I had the least doubt as to the cas: of his friends, not to put it in their power to atatugte $=$ results by not writing to them al all.
I did not feel justified in resisting such an appeal to m! fulness, and agreed to his proposal.

A few days ago I received the following letter, whit ! w be glad if you will kindly publish, along with my ansect.
sur F. A. Abel is the inventor of the dynamite watet-an and not myself, as might be inferred from the w^{2} : Gluckauf.
W. Galpotio

Frriburs, Catatr 2, is
Hochgegierter Freund.-Es war mir unmaglich o" nach Cardiff zuruckzukehren da wir uns zu lange im thre reviere aufgehalten hatten und die Zeit meiner zulassigeo Fir in England sich allzusehr dem Ende zuneigte. I ewerts : dadurch am das Vergnigen gekommen noch einmal mat persunlich verkehren zu konnen, doch hoffe ich, dass sit ss einmal wieder :chen, vielleicht in Zwickan.

Die Schieasversuche mit Warserbesatz und PolverVersuchsstrecke haben sowohl in Zwickau als anf Neunkirchen zu guten Resultaten in so fern gefuhre iv Gasen nicht entzundet wurden. Versuche mul Pulet Wasserbesatz in der Plauitzer Kohle ergelen aber in * keine guten Resultale, als die Schuisse nicht werfen.

Leider hat Assesser Nonne, welcher den Versuchen bein iे ganz gegen unsere Verabredung sogleich die Kesulate, if ersten Versuche in ciner hurzen Notiz im Glmane ve :" licht, jedoch ohne ihre Prioritat zu nah zu treten, da Sur bo po. darin erwahnt sind. Ich hatte ausdrucklich var jelet Pu: tion gewarnt ehe die Ihrige nicht erschienen sei, cim orter Character hummert sich aler um so etwas nicht.

Bei spiterer Veriffentlichung der Zwickauer Vernalde th eventael darauf Bezug genommen werden.

Nochmals fur alle livebe und Freundwhaf, die sie wo vielfaltig erwiesen haben hestens dankend,

Verbleibe ich nut herzlichem Gluckauf,
1 hr ,
Engehenster, C. G. Kantsuth

Herrn Bergingenieur Galloway, Cardiff
Cardiff, (htwe of is
dear Professor Kreisciek, - i have receired gorek of the and inst. I observe that the frients 10 whum yat description of the shol-firing experiments have violated de ditions under which I gave you permission 10 make yorf : munication to them by already publshing their revis: "
they were in some sort original. You mention as a kind of palliative that, although my priority is not distinctly admitted, my name is mentioned in a prominent manner.
Personally I consider this a very small affair. Long experience of having my name mentioned in a similar manner, or mixed up with the names of others, or altogether omitted in connection with certain coal-dust matters in which I have undeniable priority, has harilened me; and I confess that this part of your letter gave me no concern. But although I could afford to pass it over in this way as far as I am myself concerned, I cannot adopt the same course when the interests of some of the members of the Royal Commission on Accidents in Mines are also at stake.

I must therefore ask you to give me a token of your good faith by restraining your friends from publishing anything further until the English Royal Commissioners shall have seen fit to make known the results obtained here. At the same time also I would suggest it as a simple matter of duty on your part to take immediate steps to let it be known to those before whom your friends' communications have appeared that the credit, if any, of the original investigations in this case rests with Sir Frederick Abel and Mr. W. Thomas Lewis quite as much as with me.

Believe me yours very faithfully,
w. Gatloway

Herr Bergrath Kreischer, Professor der Bergbaukunde, Freiberg, Sachsen

The Resting Position of Oysters

In books on Conchology, such as Woodwarl's "Manual of the Mollusca " and Jeffrey's "British Conchology," it is stated that the oyster rests in the natural state on its left valve, which is the larger and more convex. In this respect it is pointed out the oyster differs from the animals belonging to the genera Pecten and Anomia, which rest on the right valve, the Anomias being firmly attached by muscle with the flat right valve applied closely to the surface of attachment. In his lecture on oysters at the Royal Institution, which was published in Nos. 1 and 2 of the English I/lustrated Magazine, Prof. Hnxley also states that oysters rest on the left or convex valve, the flat right valve acting as a kind of operculum. Examination of oysters from the Firth of Forth has convinced me that this statement is erroneous. I do not know on what evidence the current belief of conchologists is founded. The evidence which appears to me conclusive is that the right flat valve is always quite clean, while the convex valve is covered with worm tubes, Stycla grossularia, and Hydroids. The latter are in this connection the most important ; it would be impossible for specimens of Sertularia and Thuiaria 4 or 5 inches long to grow, as I have found them on almost every oyster, in the central part of the left valve, if that valve were the lower in position. On examining Pectens I found that they resembled the oyster in the contrast between the surfaces of the two valves, the upper convex one being covered with Balanus and other fixed animals, the lower being almost clean. It is generally stated that the Pecten lies on its right value; if this statement rests on the evidence afforded by the condition of the surface of the valves the same criterion applied to the oyster leads to the same conclusion, that the right valve is the lower. I have never seen a young oyster in the attached condition: Huxley states that it is the left valve which is fixed ; in papers oft the cmbryology of the oyster I have not yet been able to find any definite information on the point. Whether it is the right or left valve that becomes attached when the larva assumes the sessile condition I cannot therefore say of my own knowledge, but with regard to the adult ogster it seems to me certain that the current belief is caused by the repetition of an error. My attention was first called to this point by my assistant, Mr. John Walker, who tells me that the opinion of the fishermen at Newhaven is diviled on the point, some saying that the convex valve, others that the flat valve, is the lower.
J. T. Cenningham

Scottish Marine Station, Granton, October 14

Two Generalisations

Two generalisations seem to have been staring us in the face for some time, and yet I have seen no one give them is look of recognition; they may be phantasms, but they seem solid enough :-
(1) That the number of elements is infinite; tb
formed types of ethereal vortices being the commonest, but our knowledge of them being only limited by the scarceness of the more complex forms, and not by any limit to the infinite varieties of complexity that may exist. Their relative commonness being analogous to the relative sizes of the bodies of the solar system; a few large, and always recoguisable, and a greater number of examples as we descend in size to mere meteors. We already see that there are far more rare elements known than common ones.
(2) That the reduction of an electric current to heat in an imperfect conductor is solely due to the independent heatmotions of the molecules, which cherk and divert more and more of the current as their motions are larger; if there were no pre-existing beat-motions there would be nothing to resist a complete transmission of the current motion, and hence there would be no limit to conduction at the zero of temperature except the cohesion of the material.
Bromley, Kent
W. M. Flinders Petrie

Meteors

ON the moraing of October 13, at 2 h .26 m . 1 I saw a fine meteor giving a bright flash at the ent point and leaving a streak for about 12 seconds. It shot from the liynx towards the pointers in Ursa Major, and while carefully fixing its direction relatively to the stars near, another conspicuous meteor, about as bright as Jupiter, crossed the lingering streak in a path but slightly inclined to it and of nearly sinilar length. I have never before observed two large meteors alinost simultaneous and with paths so nearly identical.

I subjoin the observed paths of these meteors, also of five other bolides recently noted here during the progress of my habitual watches for shooting stars :-

1835	G. M.T.	Mag.	From	To	Length	Radiant
Sept. 9	h. 15 15 48	2	$149+82$	$152+64$	13	$335+71$
, 15	1511	4	$37+6 h$	$26 \frac{1}{2}+7$	101	$70+4$
Oct. 7	1051	2	$51 \frac{1}{2}+22$	713 +24	18	$31+18$
8	159	2	$155+53$	$162 \hat{l}+46 \frac{1}{2}$	8	$42+55$
,12	1426	8	$119+51$	$151+601$	20	$88+18$
, 12	1426	,	$1193+50$	$143+601$	1612	$103+33$
, 16	1635	2	$213+475$	$226+4 t$	11	$143+49$

The radiant points are derived in each case by combination with many other meteors registered on about the same nights. I have seen 357 meteors since early in September, and those selected in the above table comprise all the brighter specimens estimated to equal Jupiter.
W. F. Denning

Bristol, October 17

Statigrams

The increasing use of graphic representations of statistics by means of lines, areas, $\delta \mathrm{c}$., seems to renter it convenient to have some word which would specially designate diagrams exhibiting the progress and tendencies of the numerous tables of figures which do not pretend to strict scientific accuracy. The word diagram is used in most clastic senses and by all sorts and conditions of men.
May I suggest the word slotigrafh as a definite and convenient one for adoption? This might tre sometimes shortened to grafh; whereas statigram, if preferred, would not admit of this abbreviation. Mow, if not all, graphic results of statists, economists, anthropologists, $\&$ c., might thus be terned grafhr, whilst mathematicians and the experimental men of science would be left with the use of their own words, such as curzes, indicator diagrams, \&c. Each class would posess its own degree and limits of accuracy : mathematical precision and the cloctrine of energy would apply to the latter, but graphs would be understond to involve human elements with intricate factors whose recognition or relationships the statistics are intended to elucidate and compare menther than to define and measure.

12, Meiton St., Oxford
J. F. Heyes

THE GEOLOGICAL SURIEY OF BELGIUM

PROBABLY no country of Europe has had its geology
more attentively studied and mapped than Belgium. From the early labours of the veteran and pioneer
1)(Omalins down to those of Dumont and his contemporanies, the structure of this country has engaged the attention of many able observers, and in its broad features is now well known. The map of Dumont, on the scale of $1-160,000$, is one of the inost excellent geological representations of any part of the European continent. But a gool many years have passed away since its publication, and though it remains essentially accurate, it is now capable of improvement as regards details. Accordingly; after many discussions of the subject, a Commission was appointed to undertake a more detailed and exhaustive geological investigation of the country. This Commission consists of five members of European reputation, viz., M. Brialmont, Inspector-General of Eingmeers, one of the most distinguished engineer officers in Fiurope; N . Maus, Ilonorary: Director Cieneral of liridges, Roads, and Mines, who made the pireliminary plans for the piercing of the Mont Cenis Tunnel; M. Staz, the well known ehemist: M. Lagre, Perpetual Serretary of the Rogal Academy of Belgmm, who measured the geodetic haseline of Belgiuns ; and M . Houzeau, Director of the Koyal Observatory, whose writungs on genlogacal geography are widely apprechated. These able and thoroughly representative men of science were constututed as a Board of Control by which the operations of the survey were to be governed, the practical carrying out of the work heing placed in the hands of 3 . Wupont, Nirector of the Royal Ausemm of Brussel- - a seolegist of entablished reputation.

The work was begun in 18-8 with the topegraphacal map of the Finginecr I) ep.artment on the hate of 1-20,000th, or, roughly, alsom $;$ ukhes to the linush statute mile. It was cotmated that the surver of the whole uf lielatum on tha seale wowhl be completed in seremeen sears from that date This det.uled miph is divided into fion, or, ex clurling the fromber sheets, 3 (6on sheets. Fi.wh of these is oblong in firin, comprismg an area of 10×8 kilometice. or So(x) hectares, or nestry zo,000 Einghoh acress. Tis produce upon this larger scale a map, which showh be only an enlargement athe rectificatom of that of Dumont was very far fromt the olvicet of the Commins on it was determined to adopt a munographec method of surveying. lach important geolegical si stem or gromp of farmations has been enternted to ohe or mate spectialias, who hase given parterwhe attentuon it its imestigntont, and who have been chirged wrh the thuts of th.t ing the same 5 -uten or group completely wtors the on ntry I ith kenlogivt is furmshed with then assactanys who tietach rock yo. mens. collert forols, make bormas, ind in other wats save the tane and thener of the ofticer under whom they serve. livery attlil outionp of rich is marked on the map, and where the rook is finsulifermos the tiossils are noted and the varmous pilatontological snladivisuns of the strata are traced, the bullector beeme aftermards eent back where more ample eollectomsate th whe here-ary

It was frum the tit ! demermest that the detared seohogeal maps thembl be not merels of wentim unker-

 subsuls. and are wiv thelt the evorese then the map the vartatum- in the agereltiral shnateo of the it viend
 wav adopted. I stem ather was comothactol whoh could be thrist a sarif if wi into the eftressl and bring of sample of the soiland entosoil This instrumert is mate we of at intervals of tion metres shong the 1 nes of ertiverse, su that the vanatimes in the superfictal lasers can be accurats noted.

To secure harmony by the work, each officer entrusted with the suncy of a particular serier form time to time oonfers with his colleagu contigumes hands, and this the ture of the country is w rked out

U'p to the present time thirte
engraving and preparation. It is believed that one th:: of the entire work of the survey has been compleed The ordinary topographical maps of the Etat-major in printed from zinc plates, and with their crowded cont: I lines and rather blurred printing are but ill adapted 1 the insertion of further geological details and the recel ${ }_{F}$ tion of colour. The Commission of the Geological M. accordingly decided to engrave this map on coppe: adding new roads and other features, but leaving $\alpha=$ non-essential topographical details. 13y this meases. admirably clear base has been secured for the delines: of the geological structure, while at the same time coppe plate engraving has been introduced as a new rodeinto Belgium. Comparing the ordinary sheets with th geological equivalents we are struck with the great bewand clearness of the latter. Even for every day 0 graphical use they are immeasurably supenor.

The of the great problems of geological cartograp how best to pourtray at once the superficial acome tions and the solid rocks that lie underneath these this country' it has been found practicable on the deatit six-minch maps of the Geological Survey to represest surfice-deposits by varrous kinds of stippling on 0 copper plates, the alluwia and the solid rocks being o pressed by tints of colour. On the one-inch maps, ever, which show the surface features by sbading ${ }^{3}$ method cannet be employed. It has accordingly necessary to issue two versions of each sheet of the $=$ inch map- one showing the solid rocks, the otber tup senting the distribution of the various drifts and $=$ Netrital accumulations. These maps are coloured by la and are often of great beauty, but of course are sootrat expenstic, more especially as two editions are ment t." complete the representation of each distact 1)upont deserves the admiration of geologists fortary sulvel this ditficult problem in an altogether nood $=$ and for having produced a series of maps whe will probably inaugurate a new departure in fr logical rartugraphy His principle is to represes the zicolngical formations of a district, ancient as th in- modern, upon the same shieet. As the superiad accumulathon: exiend across much the largest ata ? gronnd, they are shown by various broad washes of Dier the tracts which they respectively cover. The rolours though they necessartly spread over most of el -hect, are hept so subducd in tone that they interfice with the casy legibility of the stronget emplowat to denote the underlying solid rocks E actu.1 wterop of these rocks is marked by a putch of ewhour chosen for the particular formation we wa note at a glonie the localties where the moks of formaton con be seen at the surface. At these signs are inveried to mark the dip, and any he or pal contohergical sibilivisions which have bees and regardmig which a detated legend on the side ${ }^{\text {an }}$ bottom of the map gues ample explanation. $\$ 111 p$ is nurrely a transcript of what is observed it with liut it is of course neccssary to express the limuts
 colourn
can thus
across the
actual expo
As the mapi
to secure hat
the data on which the geological boundaries have been traced, and can thus judge where and how far these are conjectural. We are not aware of any other published maps where this confession has been so frankly made.
The pale yellows and greys adopted for the superficial deposits cover so much of each sheet as to show at once how large a part of the ground is occupied by them. The detrital material is traced up to its source upon the tablelands, and being of poor agricultural value its colour on the map shows where farming operations are least likely to be successful. Where observations by boring or otherwise have been made on the nature of the soil and subsoil these are marked on the spot by the requisite sign. and as the borings are numerous these indications abound all over the map.
During the progress of the work improvements have been made in the methods of surveving and also in the modes of expressing geological details on the maps. In the Brussels area, for example, besides the ordinary borings into the soil and subsoil, deeper borings have been made to ascertain the nature and succession of the strata underlying the uppermost deposits. Messrs. Rutot and Van den Broeck, two of the staff, have invented an ing enious instrument with which they can ascertain the nature of the formations down to a depth of even 10 metres. By its means they have pierced below the subsoil in all directions, and have accurately traced out the are as of the younger deposits around Brussels. The results obtained by them at each boring are clearly engraved on the map; so that at numerous points all over the district the farmer, the water-engineer, the railwaycontractor, the quarryman, and others can learn precisely through what layers they must pass in any cutting or excavation beneath the surface. By another ingenious device, the section of each artesian well at Brussels is represented on the map beside the position of the well, and so clearly that the succession of rocks bored through may be taken in by the eye at once.
Each sheet of this detailed survey is so crowded with information that to those who have been accustomed only to the ordinary style of geological map making it may at first seem a little confused. But if any one will take the least trouble he will soon find that the confusion is only in appearance. No maps have yet been published in any country giving so large an amount of accurate information with such clearness and precision, and where the actual facts are kept so clearly apart from inference. These sheets are not wall-maps to be looked at from a distance, but detailed maps to be closely studied in the hand. And they will well repay an attentive study. There is probably no national Geological Survey in any part of the world which may not find in them some useful lint or suggestion for its own improvement.
On completion of the detailed survey it is part of the original plan to prepare a smaller or wall-map like that of Dumont. But such a map is hardly needed ; at least its preparation can well stand over until the whole country has been surveyed in detail by the methods so well conceived by M. Dupont. But besides the maps, the work of the Belgian Survey has included the preparation of ample explanations illustrative of the maps. Each sheet is intended to be accompanied with an "Explication" giving the detailed structure of the ground, descriptions of the rocks, natural sections, lists of fossils, and all the information required as supplementary to the geokgical Daps. A number of these nemoirs have already been Each of them contains fundamentally three running N. and S. across the formations, which Gium have a general E and W. strike. These edescribed in detail, and full local references The books are well printed, and the coloured "pons are excellent, while a novel attraction is trtion into the text of coloured engraved Ecalities.

None of the maps or explanations, though they have been ready for some time, have yet been published. They are to be seen, however, in some of the public libraries and museums in Europe. Belgium has every reason to be proud of them, and we trust that the delay in their publication will speedily be followed by the issue of the whole series now ready and by the completion of those in progress. It is impossible to over-estimate the practical utility of such a detaled survey in a country like Belgium. No time should be lost in pushing on and bringing to a conclusion a work which has been so admirably begun.

Аксh. Geikie

THE THIRD INTERNATIONAL GEOLOGICAL CONGRESS

THE third International Congress of Geologists, postponed last year on account of the spread of cholera in southern Europe, has just been held at Berlin. Each successive gathering has far surpassed its predecessors in numbers and in the representative character of its members, the numbers attending the meeting at Berlin being no fewer than 255. Of these of course the large majority were Germans, who mustered in all 163 Italy, however, furnished 18 representatives ; Austria, 16; Great Britain, 11 ; France, 10 ; United States, 9 ; Belgium and Russia, 6 each; Sweden and Switzerland, 3 each; Norway and Holland, 2 each; Spain, 1; Brazil, 1 ; India, 1; Japan, 1; Portugal, 1 ; Roumania, 1. The meetings were held in the buildings of the Reichsrath, or Parliament, the large room set apart for the deliberations of the Congress being that of the Lower House of Representatives, and no little interest was taken by the foreign geologists in the names of the Members of Parliament inscribed on the backs of the seats. The door also was pointed out from which the great Chancellor emerges to launch his philippics against the contumacious opposition. But the genius loci inspired no flights of eloquence nor much disputatiousness among the geologists. The use of French as the language of discussion was no doubt one effective cause of silence on the part of many members who would otherwise only too readily have made themselves heard. Under such circumstances the Latin races have of course a considerable advantage over the Teutonic. One of the Berlin papers gave articulate expression to the complaint that in an audience nearly two-thirds of which were Germans, French should have been chosen, and great was the delight expressed by the German element in the Congress, when the Minister of Public Instruction, who officially welcomed the assembly, gave his eloquent and appropriate address in German. But by common consent, and with much good humour, though often with a disregard for the claims of grammar, idiom, and pronunciation that must have been infinitely ludicrous to the French-speaking members, the international official language was used throughout the proceedings.
The ostensible work of the Congress, which lasted nearly a week, may be divided into five parts. Of these the first in order of treatment and also of importance was the report of the Commission entrusted at the previous (Bologna) meeting with the preparation of a geological map of Europe. During the four years that have elapsed since the Congress determined to undertake this work, satisfactory progress with it has been made. The topographical outlines of the map have been completed and engraved, and the Comuission were able to show upon the wall a mounted copy of the outline map. The materials necessary for filling in the geology have already been supplied for a large part of Europe, and it is expected that in the course of next year the work will be so far advanced that proofs in colour of many of the sheets of the map will be ready. There can be no doubt that the preparation of this great map is the most important and
useful undertaking of the Congress. It is an eminently practical piece of work, with an attainable aim which unites the geologists of all European States in a common definite labour. The engraving and colouring of the map are carried on in Berlin. Judging from the present state of the engraving and from the scheme of colours adopted, we may confidently anticipate that the completed map will be a singularly clear and beautiful specimen of cartography, and will form a noble monument of international co-operation.

The second subject, to which the Congress devoted most of its time, was the unification of geological nomenclature. Reports had been received from different countries as to the names and classification of the various subdivisions of the geological record. But the wide differences of opinion expressed in these reports showed how little prospect there was that anything approaching to unanimity on such a subject would be reached by the Congress. It is to be feared, indeed, that the endeavour to unify stratigraphical nomenclature all over the world is more Utopian than practical. Nature is not everywhere uniform, and it seems almost puerile to strive after a uniformity of classification and terminology which has no counterpart ainong the rocks themselves. The Congress itself appeared to realise this, for it wisely postponed the consideration of all questions about which there could be any serious differences of opinion, and adopted only those propositions which nobody would controvert, and which hardly required an international congress to settle. Thus it was agreed that the Archiean rocks should be divided into sections according merely to petrographical characters and without expressing any opinion as to their relative age. The vexed question of the Cambrian and Silurian classification was postponed until the next Congress three years hence. A day was spent in discussing the position of the Permian system, with the result of leaving it for the present where it is usually placed. The subdivisions of the Mesozoic and Tertiary rocks were rapidly enumerated, but no discussion of them was possible in the time. In truth, it is difficult to see how any real effective discussion of these subjects can be attempted at the ordinary meetings of the Congress. The assembly is so large that probably only a fraction of the audience is really competent to express an opinion on the particular subject under debate. Some of the inembers who might contribute most valuable suggestions are deterred from so doing by their timidity in the use of the French language. To count the heads of so miscellaneous an audience and say that such and such are the decisions which it has soted cin really carry little weight with the geologists of the world at large. Such at least was the opinion freely expressed among the members at Berlin. There was a very general feeling that the less the Congress attempts in the way of authoritative decision or legislation the more likely is it to carry on effectively other functions which are of far more general importance and usefulness.

Thirdly, the reading of communications on geological questions of general interest. Several good papers were read, but the thinned audience showed that this part of the programme was not very popular. There seemed to be no careful selection of papers, for some of those that were read hardly deserved a hearing before an international gathering of geologists. If this section of the proceedings is retained, it mighlt be well to invite beforehand a few men of acknowledged reputation to give discourses, each on his own subject. There would be a strong desire to hear the manters of the science, and if three or four of them of ditierent nationalities could be induced to accede to this proposal, there would be no need for catering among the rank and file of the assembly for papers to fill up the time.

Fourthly, an exhulition of geological maps, sections, specimens, and models. This collection was arranged in
the room of the Bergakademie, and proved a soutte of much interest and instruction. The series of nationi geological surveys represented on the walis embraced 2 large part of Europe, and included some admirabie aamples of cartography. Among the specimens spein' attention was given to those exhibited by Mr. Reusch, sbor ing Silurian fossils in the crystalline schists of Sorsn those of Dr. Lehmann illustrating his work on mexmorphism, the wonderful group of amphibian remmus shown by Prof. Credner, the series of fossils brovet: b Dr. Torell from the Primordial and Lower Silurian rad of Sweden, various collections' from difierent bocat:o among the Cretaceous rocks of Germany, and a remis able assemblage of specimens of northern rocks and iss from the drift of North Germany, exhibited by Dr A Remelé.

Fifthly, excursions to places of geological interese the close of the Congress a large number of the memie proceeded in a special train to Potsdam, and spen: $L L$ seeing the sights of that royal demesne. Next morathey started for Thale in the Harz, whence, under = able guidance of Prof. Lossen, they were enabled to : some of the more interesting features connected wal $\because=$ protrusion of the granite and the metamorphism of $=$ surrounding rocks, likewise the succession of stara. rocks up to the Chalk, thrown against the flanks of = Harr. From Thale the party travelled to Stassfur, descended into the salt mines, which were illumnise: its honour ; thence to Leipzig, where Prof. Credner s the part of host and guide, and from which an intector excursion was made into the Saxon granulite regios

But it is not by its formal and ostensible proces: that the usefulness of the Congress is to be meas There was a widespread feeling which constantry audible expression, that the opportunities it aforso personal intercourse and exchange of views were $2-$ sufficient to justify its existence and to give assr: that it would long continue. The discussions amver: animated groups in the corridors and ante-roome : much more vivacious and probably quite as conis as those held in the large room. But most usefid enjoyable of all was the nightly Kncipe held in some trsaloon. There in a thick and pungent atmospber tobacco-smoke, amid the clattering of beer-jus shoutings for the K'ellner, many of the foremost ged: of the Congress gathered together - stratigrax peirographers, palæontologists, mineralogists-t: scientific enthusiasm and good fellowship. Loow long were the debates in these dim retreats. Tos: that had been shackled by French articulation now themselves free in the unrestrained vernaculut io country. There were no reporters of course, y record remains of the discussions. But the reate of these evenings will not soon pass away for memory of those who took part in them. Mec. distant parts of the world who had only know other's writings, or at most had exchanged letters here brought face to face, and the foundations of ${ }^{+1}$ pleasant and profitable friendship were doubtess 1.
Great praise is due to the organising Commer Berlin, and especially to its indefatigable General:tary, Herr Hauchcorne, for the arrangements mai: the business of the Congress and the comfort visitors. Every detail seemed to have beca is planned, and the result was evident in the smooth :- of the whole machine. It was a great gratificatome the venerable Dr. Yon Dechen presiding over ss assembly of geologists, and to hear his reminis:rets the early days of European geology. The bond, = 1 the President, Prof. Beyrich, put every bed ${ }^{2}$. humour, and the active guidance of the former Prel'rof. Capellini, contributed largely to the sucees Congress.

The next session of the Congress is to meet in :.
between August 15 and September 15, 1888, and Messrs. Blanford, Geikie, Hughes, and Topley have been nominated a committee to make the necessary arrangements.

BOTANICAL EXPLORATION OF THE CHILIAN ANDES

WE are indebted to the Kew authorities for the accompanying extract from a letter dated August 21, 1885, addressed to Sir Joseph Hooker by Dr. R. A. Philippi, the Professor of Botany at Santiago :-
"My son made in the summer during 110 days a voyage from Copiapo to the River Camarones, the actual boundary between Chili and Peru. He went first from Copiapo to Antofagasta de la Sierra ($26^{\prime} 5^{\prime}$ lat., $27^{\prime} 20^{\prime}$ long., 3570 metres above the sea), where about 60 to 100 people are living, and thence (nearly always on the high table-land of the desert at an elevation of 3500 to 4200 metres) to Huasco de Tarapaca, from whence he descended to the tamarugal. The voyage extended over 8 degrees of latitude. This high table-land is nearly a single bed of trachytic lava, on which are scattered a number of extinct volcanoes, three of which are higher than Chimborazo-viz, the Llullaillaco, 6500 metres (I was, twenty-one years ago, at its west foot); the Tumiza, 6540 ; and the Pular, 6500 metres. There are many large salt lakes, several entirely dry. The vegetation in this easterly part of the desert is not so scanty as in the westerly, visited formerly by me, perhaps owing to a slight influence of the trade wind; and the water-places are more numerous and nearer one to the other.
"The number of species of plants brought home exceeds 400 , of which half are not described. Amongst them is one Polylepis (without flowers), found only in one quebrada, and Pilostyles Berterii, a parasitic plant belonging to the same family as Rafflesia, found at the height of 3700 m . !-of course on an Aldesmia. The three species of ferns are : Pellea ternifolit, Cheilanthes microplerus, and a beautiful Cincinnulis which seems to be new. The most numerous family is, of course, Synantherea, with 94 sp. : Graminea has 42 (among them a new species of $1 /$ unroa) ; Leguminosit, 28-29; Verbenace. 15 ; Solanacex, 28 ; Chenopodiacex, 15. Amongst these plants nine or ten must form, in my opinion, new genera. Some are very curious, as a Verbenacea, which grows in small hemispherical tufts and has the aspect of a Synantherea, with sessile flowers and pappus. This pappus proved to be a deeply-divided calyx with long cilia. There is another genus which 1 took at first sight for a Tribulus. I hope that my age, my health, my eyes, and my time will allow me to draw up the generic diagnosis, at least, of these plants."

KRAKATAO

THE publication of the first part of Verbeek's "Krakatiò," which chiefly contained the history of the great eruption of 1883, had raised many expectations regarding the promised description and discussion of the phicnomena then observed. In his completed work. which contains 25 coloured drawings and 43 large and small maps, those expectations are fully realised. Im1mediately after the great outburst of August, 1883, the Dutch Indian Government sent hiin to visit Krakatao and to investigate the causes and effects of this awful catastrophe, more sudden and destructive than the famous eruption of Vesuvius. The great facilities they placed at his disposal enabled him to do this in the most satisfactory manner, and the really beautiful character of his completed work reflects the greatest credit not only on the learned author, but on the zeal and public spirit of the Dutch-Indian Government, who have aided hin in
making so valuable a contribution to scientific knowledge. So murh interest has been taken by the general public, as well as by men of science, in this remarkable eruption, that we feel certain they also will welcome this volume, since it is lucid in style and profusely illustrated. With an expression of his gratitude to various institutions and individuals who have rendered him valuable assistance, the author gives in the preface a list of the weights and ineasures, together with a summary of the most recent ideas that geological science has received from the Krakatão eruption.

Krakatao itself lies on the point of intersection of three fissures or crac's in the earth's crust, and from this position is naturally exposed to volcanic disturbances. The earthquake of September 1, 1880, which damaged the lighthouse on Java's First Point, probably affected the Sunda fissure and facilitated the entrance of greater quantities of water into the volcanic furnace underlying the Straits of Sunda. Accepting the theory that volcanic eruptions are caused by steain at high pressure, we have thus the probable explanation of the terrible outburst of 1883. From the observations of earthquakes in the Indian archipelago during the year 1833, it appears that the eruption was neither preceded nor accompanied by heary shocks. It is even far from certain that any trembling of the surface took place at the time, since the vibration of the air caused by the explosion was sufficient to shake houses and crack walls, and thus might easily have been mistaken for earthquakes. The author further treats of the ejected materials; their thickness, which, on some parts of Krakataõ, amount to 60 metres; their size, varying from bodies of one cubic metre to the finest dust; the velocity with which they were thrown out, which must have been considerably greater than that of projectiles from the heaviest rifled ordnance; the elevation which they reached has been calculated at 50 kilometres, or nearly six times the height of Mount Everest, the highest mountain of the world, and the ashes have fallen over an immense area. From investigations made at fifty different places regarding the thickness of the fallen ashes and also the change in the depth of the sea around Krakatiou, M. Verbeek has calculated that at least 18 cubic kilometres of matter must have been ejected. To give an illustration: imagine a box of ashes as lange as Hyde Park and as high as the dome of St. Paul's, a hundred such boxes will give an idea of the mass of matter thrown out by Krakatao in 1883.

For three days after the eruption various ships to the westward found ashes falling on their decks; the names of these ships are given, as well as a map showing their exact position at the time. Mr. Verbeek believes that the finest particles, forced by the steam into the upper air, did not descend, but were carried westward by strong east winds, making twice the circuit of the earth and causing the phenomena observed at various places of a blue and green sun and moon. The passage of this cloud has been reported from islands and ships in the Pacific Ocean and its velocity must have been as great as that of a hurricane. After the steam and dust-cloud were dispersed over a wider area the beautiful red sunsets occurred, which were owing to the presence of such a large volume of aqueous vapour, while the blue and green colours of the celestial bodies were caused by the solid particles in the air.
The author goes on to elucidate the geology of Krakataio by two maps and four very instructive sections, showing its development during that number of periods. The first period was marked by the destruction of the great cone, probably 2000 metres high; during the second period the peak Rakata was formed by a lateral eruption, while in the third period two parasitic cones, Danau and P'erbvewatan, were added, and these, by their successive eruptions, built up the island of Krakatã. In the fourth
greatest, and it is probable that the air-wave then formed made the tour around the world. Forty places in Europe, America, and Australia are named where the disturbance of the air has been indicated by barometers, and with the help of these data the author has been able to calculate the velocity of the air movement, which has been found to be considerably less than the velocity of sound at $o^{\circ} \mathrm{C}$. ; consequently the movements took place at a great height and in cold-air strata.
According to the author's calculation this air-wave required 35 hours to make the circuit of the earth; it would have been of great interest to know just when the wave returned to Batavia, but, unfortunately, the diagrams of the indicator at the gasworks that might have marked such a return have been lost.
Part of Chapter V. treats of changes in the sea-bottom. The sea now covers to a depth of 200 to 300 metres what was formerly the northern part of Krakataò, and the small island called Polish Hat has also disappeared. Between the remaining islands, which are fragments of the old crater ring, an atea has subsided of at least 41 square kilometres, or about 10,000 acres. Outside these islands, within a triangular space of 34 square kilometres, the sea is also deeper than formerly, so that altogether a surface of 75 square kilometres has subsided, which is clearly shown on maps 1,2 , and \downarrow.

The part of the Peak which has disappeared must have been I cubic kilometre in size, and the fall of such a mass into the sea is quite sufficient to cause the great sea-wave which swept away thousands of human beings. Nowhere is there the slightest vestige of any upheaval, from which we may be certain that no seismic movement of the seabed has occurred. In Bantam and in the Lampong districts, after the disaster, the remains of the macadamised roads along the coast were everywhere as high above the sea as before, and soundings in Sunda Straits showed that no change of sea-bottom has taken place there. The shallower depth in the immediate vicinity of Krakataò, and between Krakatao and Sebesi, has probably been the result of fallen materials, to which also the islands Steers and Calmeyer, which have since disappeared, for the greater part, no doubt owed their existence.

As the last of the phenomen? which accompanied the eruption of 1883 , the movements of the sea are discussed, as shown by the destructive waves which have made this catastrophe so terrible. It is certain that the greatest wave of all started from Krakataio at 10 a.m., and that wave conpleted the destruction of Telok Betong, Anjer, and Tjiringin. This great wave had been preceded by small waves on Sunday afternoon at 6 , and Monday morning at 6 h . 3oin., by which these places were alreadypartly submerged and destroyed; but the really very remarkable phenomenon was observed that not every wave reacher all the places situated along the coasts of the Straits of Sunda. For example; the wave which destroyed on Monday morning, at 6, a part of Anjer, and 6h. 3om. the lower part of Telok Betong, has not been pticed at Tjiringin. The author explains this by the reposition that the preceding waves were not caused by
alling in of parts of the volcano, but by the enormous ties of ejected matter that splashed into the sea. 72 Sunday evening during the eruption of 5 h .7 m . *ity was thrown out on the spot where Calmeyer tilms formed was noticed everywhere around Tijringin, Beneawang, Telok Betong, during the eraption on Monday ther was thrown down on the spot Watre would be obstructed in a Ye, and THingin, lying he wave woild roll to *itle after 6 a.m. In Tanging (6 b .44 m),

Telok Betong by Lagoendie, whilst Beneawang in the Bay of Semangka was nearly destroyed; but the wave of to o'clock being of such enormous magnitude, swept over all obstacles.

Most careful calculations fix the time of the formation of the great wave at $10 \mathrm{a} . \mathrm{m}$. , the same hour at which the heaviest detonation was heard, so that the ejection of a stupendous quantity of ashes, pumice, and mud, the rushing in of the sea upon the mass of glowing lava, and the falling in of half the mountain, must have taken place almost simultancously: From the height registered by the tide-gauges at Tandjong-Priok on Monday at 7h. 3om. p.m. it is evident that Batavia narrowly escaped a second inundation. The data collected from all parts of the world regarding an extraordinary movement of the sea soon after the eruption, made it possible to compute the velocity of the great wave, and this velocity enabled the author to calculate the average depth of the sea along the path the wave travelled. In this way he has ascertained that the depth of the sea between Krakatao and South Africa must amount to 4200 metres; between Krakataò and Rodriguez, 4560: and between Krakataì and South Georgia, 6340 wetres; which shows that west and south-west of Australia there must be a deep-sea basin, the existence of which has not yet been revealed by soundings. Mr. Verbeek considers that, if the irregularities of the tide noticed at Aspinwall happened at the hour reported, they were not caused by the Krakatas wave, but by volcanic activity in the Antilles; that wave, however, was observed on the coast of France, at San Francisco, and even in Alaska. Its velocity was so great that it reached Aden in twelve hours, a distance of 3800 nautical miles, usually traversed by a good steamer in twelve days.

It is greatly to be regretted that our knowledge of this phenomenon beyond the Indian Ocean remains incomplete, on account of the small number of tide.gauges on the Atlantic and Pacific coasts; the author suggests that this want shall be promptly supplied, so that in future no important movement of the sea shall escape notice.

Chapter VI. is devoted to a consideration of the volcanic phenomena which have been observed during the eruption of Krakatao at other \{places within or beyond the Indian Archipelago. Simultaneously the volcano Gonnong Api, on the island of Great Sangi, the Merapi on Java, the Merapi on Sumatra, and also, it is supposed, a volcano in the Moluccas were in activity. A seismic movement of the sea-bottom occurred in the whole region of the Moluccas, which could not have been due to Krakatiồ, and this movement has been noted by three tide gauges in the Straits of Madura. Over a large part of Australia, from August 27 to 29, inore or less serious earthquakes were felt-a phenomenon the more remarkable because Australia suffers very seldom from any shaking of the earth. It is probable that sudden displacements of stean-perlaps of lava-occurred in the sub terrancan cavities, caused by a change of pressure through the great discharge of lava and steam at Kira'sataon. We must therefore conclude that the underground recesses between Krakatair and Australia are in some way connected, so that any change of pressure in one cavity causes a change of pressure in the other.

Even at proints in the neighbourhood of the antipodes of Krakatai, shocks and volcanic effects were noticed, and if, as is probable, some point in the Antilles was in activity, then evidently the whole surface of the earth during the terrible discharge of Krakataô was agitated, and apparently the crust of our earth is not so solid as many of its inhabitants fondly imagine.

The author maintains the doctrine that part of our globe remains still in a molten state, and he disputes the theory, which has been advanced, that the heat of the volcanic furnaces is entirely duc to local chemical action. He, bowever, acknowledges that it is very difficult to explain
why, during the Krakatao outburst, the antipodes was more favourably situated for an eruption than the other volcanic regions of the earth. A similar tendency during former eruptions has not been recorded, and we must wait until another great outburst enables us to decide whether it is of any importance.
The coloured drawings, twenty-five in number, are all by Mr. Schreuders, who accompanied Mr. Verbeck in October 1883 , and give a faithful picture of the devastated regions as they appeared two months after the eruption. The most striking picture is that of the stupendous wall, 832 metres high, which was laid bare by the destruction of the northern part of the peak. No one who has gazed upon this grandest of nature's ruins can forget its solemn desolation.
The careful typographical execution of the work reflects great credit on the Director of the Government Printing Office at Batavia. We can heartily congratulate the learned author on the successful completion of his most valuable and exhaustive work, interesting alike to the scientific and general reader.

ON THE COLOUR-SENSE

THERE is an interesting paper in the Sincteenth Century ${ }^{1}$ for February last in which the colournomenclature in the Homeric poems and that of the modern Hindústání language are compared with modern English usage. The writer traverses to a great extent Mr . Gladstone's suggestion ${ }^{\text { }}$ that the ancient Greeks were deficient in colour-sense (i.e. compared with modern Englishmen), and propounds the idea that the natives of India have a keen colour-sense.

It will be shown below that the use of colour terms in modern English is not only loose, but even incongruous. Illustrations will be taken from both the papers referred to, with additions from the author's experience in India.

Na/ural Otjects.-Uniformity might surely be expected in the use of colour terms with bright-coloured natural objects. There is, however, no uniformity in their use, even when intended to be real colour designations; and opposite and sometimes unnatural colours are-in a figurative sense-ascribed to a single object.

Thus the colour of fresh blood and the tint arising therefrom in the healtly cheek and also in the blushing cheek (of a fair person) are probably among the most well-marked, definite, natural colours. Yet the blood itself is styled blood-rid, gory, crimson, red, scarlef, whilst the healthy cheek is described as curnation, vermeil, red, ruddy, rosy, and pink, and the blushing cheek as scarlet, crimson, rdd, "flame (perhaps rather a heat than a colour term). These terms, though used as real colour designations, are by no means synonymous, whilst in a figurative sense quite different and even unnatural colours are ascribed. Thus b/uc bleed is used of aristocratic descent, bluck blood and twhite or pale blood of descent from dark or fair races.

Again, healthy bile is bright yellow, and a yellowish tinge in the "white" of the eye is often called a brlious colour; yet in the figurative sense black is ascribed to the condition known as meluncholy, atrabiliousness, black bilc.

The colour of good milk is so characteristic as to give rise to the terma milk whilt, whilst skim-milk or poor milk which has merely a blueish tinge is styled sky-blue.

Again, the parts of the human eye and of a bird's egg styled from their characteristic tint the white of the cye and the white of an egg, always bear the name of whitc, although occasionally of a decidedly blucish tinge, than that of skim-milk.

Colour is usually ascribed to the human
1 "Light from the Fat on the Colour Question," by W.

tint of the iris, probably as being the part most subject to colour-variation-c.g. blech, dark, pink, brou'n, hasel. green, biuc, gray, light. Of these, bluck is loosely applied (e.g. in the phrase b/ack-eycd) in the case of any darkcoloured iris, whilst grcen and blue are used in the case of a mere tinge of green or blue.

On the other land the phrase red eyes indicates either redness of the eyes (as from weeping) or a bloodshot state of the "whites," whilst a black eye implies only a dark-coloured bruise of the skin near the eye ; green in the eye is a figurative expression implying freshness or ignorance, and green-eyed is a condition ascribed to jealousy.

The colour of sea-water varies from greenish (aquamarine) to a deep blue (ultramarine); but a wide range of colour-names is applied to various seas-c.f. the flach Sea, Red Sca, Yellow Sca, While Sea, and this in many languages.

The colour of river-water varies from turbid yellow to blueish and colourless; but in this case there is an equally wide range of colour-name-e.g. Bhackadder R., Blackwater R., Red R., Orange R., Green R., Blue R., Blue Nile, Grey R., While R., White Nile, Whiteadier R.

Human Colouring.-Colour-terms, applied to races of men, or to the complexion or hair, are loosely used to cover a wide range of colour. Thus black, dark, dusky, swarthy, and nigger (lit. black), are applied to any merely dark skins; red and coppery to the whole of the North American (so-called) Indians; white and pale to any fair skin. The terms dark and fair (shade- rather than colournames) are loosely applied both to the complexion and to personal description. Thus any complexion darker than the average in a fair race, or fairer than the average in a dark race, is called dark or fair respectively; the two terms being merely relative in this usage.

Also among a fair race, a person with dark eyes and dark hair is called dark, and one with light eyes and fair hair is called fuir, without reference to complexion. Again, the terms red, carroty, fiery are often applied to hair which has merely a reddish tinge.

Among races of different complexion in the same country curious figurative usages of the racial colourterms arise. Thus nigger (lit, black), black, dark, redskin are sometimes used by a (ruling) fair race to denote inferiority, and this usage is sometimes adopted even by the (ruled) dark race-c.g. occasionally by both negroes and natives of India. There is a curious restricted use of the phrase gord \log (lit. fair people) in India to denote the British soldiery, but not the higher classes of English.

Animal Colours.- Colour terms applied to animals have sometimes a technical meaning quite different to the fundamental colour. Thus bay and straziberry, as applied to horses, are very different colours from those of the bay-leaf and strawherry; thus also the Hindústání term sais, usually meaning green, denotes gray when applied to animals. Again, red is applied to animals-eg. Cows deer, foxes, squirrels, \&c, whose coats are any sort of reddish-brown. A similar usage occurs in the Homene
poems--(eg. pown and its derivatives), and in the Hindu-poems-(eg. фonns and it
stáni word /dl (lif. ruby).

Colour-terms are sometimes applied to animals, plants, \&c., even when only slightly atfecter with the named colour, to indicate a particular variety of the object in question. Thus a b/we pigeon, for, or rabbit, is anly slaty bluc; a while elephant is only spofted with white pink patches ; a bluorl orange may be only speckled with blood-markings; a black lion and black leopard are ouly

lied (sometimes apparently by contrast with the racteristic colour). Thus all wines which are not of re red tint are loosely styled white wines, though ir real colours are various shades of yellow, golden, 1 orange. Again, light-coloured hats, usually light y , drab, or brown, are often styled white hats, probably sontrast with the black chimney-pot hat so common in gland. The colour-term green with the figurative ise of "fresh," is applied to unseasoned timber and to shly-quarried stone.
Mctals.-Whilst some few metals have a sufficiently iking colour to give rise to a special colour-name-e.p., spery, bronse, brasen, golden, aureine, steel-blue, leaden, in-grey, argent, silvery, the most of them have a general nilarity of tint, and are loosely called white (probably contrast to the coloured metals), whilst a mere tinge of se in some of them leads to their being called blue (e.g., id, zinc, steel).
Curious applications occur in trade names: thus, white efal is used of any cheap alloy resembling silver in spearance ; white brass is a whitish alloy of copper and ic ; gray iron and white iron are cast iron whose fracre is grey or white ; whilst white lead, sinc white, white senic are the white oxides of the metals in question; d lead is the red oxide of lead, and black lead is really umbago (which resembles lead only in its property of arking paper); while, yellow, orange, and red, when pplied to gold, denote alloys of gold in which the golden slour is modified slightly in the directions indicated; -d-short is an epithet descriptive of malleable metals hich are brittle when hot.
Blue and Black.-There is a curious confusion between ark blue and black in both English and Hindústáni. hus, in English there are blue-black, invisible blue (both sed of a very deep blue almost black), black and blue applied to a bruise), black as ink and inky black (although rost inks are nowadays blueish) often applied to rainlouds (nimbus) and to the deep indigo blue of the deep ea, quite like the Hindústání phrase kidli pant (lit. black vater) used of the sea. Dark blue cloth is by some (even y ladies) habitually called black; the writer has also :nown blackberries miscalled blaeberries (by a Scotchvoman), although blac is literally blue; this is quite like he Hindústánf word $k d / l$, which is used for both black and lark blue, especially in cloth. This confusion is curious n English, wherein the terms jet-black, jefty, coal-black, exist for a true black. In the melody, "The Coal-black Rose," the colour is attributed really to a person of the lame of Rose.
Physical States.-Colour-terms are applied to physical itates, sometimes in an exaggerated sense (the name of a गright colour being ascribed to any faint tint of the same), and sometimes in a special and almost inexplicable sense.

Thus we speak of the black death, as black as death, black looks, looking as black as thunder, scurlet fever, yellow fever, jaundice, turning green with sickness, being beaten black and blue, blue with cold, a fit of blue devils, pale or white with illness or with loss of blood.
Mental, Erec., Stales. - The connection of colour terms with mental and moral emotions, conditions, and actions, is curious and often inexplicable.
Thus black is associated with the idea of evil-e.g. the blackest of lies, black as sin, blackened with crime, as black as the deril; and also with degradation in both English and Hindústání-e.g. to blacken one's face (Hind. munh kild karnd) implies disgrace in both languages. Again black, purple, crimson, red, scarlet, pink, livid, pallid, and while are all ascribed to rage; whilst crimson, red, and scarlet are also ascribed to shame, in both cases doubtless from their effect on the hue of the cheek. Further crimson, red, and scarlet are associated with crime (probably from their connection with blood), and also with sin generally-e.g. red-handed, sins as scarlet, the suarle toman, \&c. Next black, yellow, and blue are all
used of depression of spirits-cg. in the words melancholy, atrabilious, jaundiced, a fit of the blues. Again, green and verdant are used of the freshness of youth and of the state of a novice, and in this use both these colour-terms are oddly attributed to the eye; whilst green is also applied to (unusual) freshness in old age. The terms green, blue (e.g. a blue funk), pale, pallid, livid, ashy, gray, and white are all used as descriptive of fear ; similarly the words $\chi^{\text {Aupos }}$ (commonly translated green) in Homer and zard (commonly translated yellow) in Hindústíní are used of fear.
Again, b/ue is sometimes associated with religious feeling, and also with literary or scientific pursuits among women, e.g., bluc-stocking. Lastly, white is associated with the idea of good (perhaps in contrast to black, which goes with evil), e.g. white fic (i.e. a slight or venial lie), to be whitcwashed (i.e. freed from debt), and extreme whiteness is associated with purity (probably from the pure whiteness of snow) e,g. sins shall be as white as snow, whilc-robed angels, \&c.
Summary.-With such a looseness in the use of colourterms in modern English and Hindústánf as exemplified above, it seems (to the writer) that it is hardly possible to draw inferences as to the strength of the colour-sense in either the past or present from the (supposed) correct or incorrect application of colour-terms by other nations. Paucity of colour-terms is probably fair evidence of a poor colour-sense, whilst an abundance of the same is probably good evidence of a fine colour-sense. Viewed by this test, the colour-sense evidenced in the Homeric poems is certainly poor, and that of the natives of India is also poor compared with that of modern western nations ; as to the latter, it may be said that a great development of colour-sense is now going on, and much more rapidly than in the past. judging from the frequent additions to the stock of dyes and pigments of late years, especially since the discovery of aniline and its derivatives.
Natives of India, - The author of "Light from the "ast on the Colour Question" considers that there is a "highl)-developed colour-sense among the natives of India," and adduces the Indian coloured textile fabrics and works of art as evidence of this. This does not agree with the present writer's experience from a residence extending over twenty-three years in North India, The textile fabrics have certainly a good blending of colours; the cloth dyes and colours laid on pottery and other art-productions are also often beautiful. But the cloth-workers, dyers, potters, and other artisans in colours, and the educated classes, are the few among whom the colour-sense is well developed, and they are few among the $250,000,000$ of India. The colour-terminology of Hindústání is poor, especially out of the classes abovenamed. Moreover, in the writer's experience the eyesight of the uneducated masses in India is defective in every way. They have great difficulty in threading a needle, in reading small type or small MS., also in reading at all except in a strong light, in discriminating colours, and (strangest of all) in making anything out of a picture, engraving, or photograph. This last defect is at first sight most surprising to an Englishman : it would seem as if a certain "picture-education" were necessary to develop a "picture-sense." A villager in India, or a quite uneducated servant, will sometimes examine a picture sideways, or even upside down, and will hazard the most incongruous ideas as to the subject, even when it is that of an object quite familiar to him.

Allan Cunningham

ENSILAGE

W^{E}E have observed with satisfaction, if we may be allowed to say so, the increasing attention which is being devoted to the subject of ensilage in this country, not only in view of the importance of this method of
storing fodder as an auxiliary to the farmer, but because it evokes discussions which tend to the diffusion of the teachings of biologic science, and to widen the search after natural knowledge. The harvesting of ripe crops has become stereotyped by custom reaching back into the dim past ; the practice of ensilage, on the other hand, involves a view of plant life which is not only foreign to our agricultural traditions, but is based upon less obvious teachings of nature, and it therefore demands a more intelligent cooperation of human industry. Notwithstanding these features, which make it a serions innovation, the unprejudiced acceptance of the system and the impartial spirit in which it is being practically investigated, testify to the growth of scientific culture amongst our agriculturists and to the general interest taken by them in the more recondite discussions of natural science which cannot fail to be widened by the study of the profound problems presented by the subject of ensilage. In contributing to the study of these we shall do so rather as observer than investigator, and as the text of our discussion we shall take Mr. Fry's excellent little work on "Sweet Ensilage." Whatever the fate of the theory of the silo expounded by the author-and it is certainly a bold excursion into the lerra incognitit-he furnishes us with a good and clearly expressed working hypothesis for the regulation of the system to the production of "sweet " ensilage, to which his efforts as an agriculturist have converged, he has sought a warrant in the teachings of vegetable physiology; and the theoretical account of the silo which has resulted may be stated in broad outlines as follows:-The crop to be ensiled is cut in the full vigour of the growth of the plant ; the tissues of the plant do not die, but continue to exercise their organic functions for some time after being deposited in the silo. The rise of temperature which ensues in the silo is due to what the author terms "intercellular oxidation," or, from what we gather from the context, to the ovygen respiration of the cells.

In consequence of this increased temperature and its maintenance for a sufficient time, the cells of the plant are deprived of organic activity. The life of the plant under the restricting conditions of ensilation, induces an "intercellular fermentation," which manifests itself in one direction by the trans generation of sugar into alcohol, the sugar being derived from the starch of the plant by hydrolysis. In regard to this function the author goes so far as to say: "When these transgenerations in the silo have been performed, the functions of the veretable cells are at an end and they become inert and moribund." The formation of acatic acid in the silo, as also of lactic and other acids, are referred to ferment actions. The parasitic organisms present in the original mass are reduced to incrtness by exposure to the elevated temperature produced in the silo, provided this is sutriciently high ; nor can they resume their functions when the temperature falls to within the limits favourable to life, The ensiled matter, therefore, lhaving attained and maintained for a sufficient time this suicidal temperature, is thenceforward without the pale of organic change. If, however, from any cause-the author gives prominence to two: viz. insufticient robustness of the cells and tor large a proportion of water, which conditions, e.g., are correlated in an immature growth-this critical temperature fat or about 50° C.) should not be reached, then the contents of the silo will, on cooling, become the prey of the bacterial life which has survived, and is ready to avail itself of favourable conditions for active development. The latter conditions determine the production of "sour" silage-the former of "sweet." In the chapter on the chemir position of silage, in which analyses of varior are given, special attention is directed to t^{\prime} high proportion of albuminoid to amble nitr which may be rangel in the latter class, :

[^27]As a necessary preliminary to our discussion of the phenomena of the silo, in which we shall follow the lines thus laid down by Mr. Fry, we will review a few of the more prominent features of the chemistry of plant life, which no writer on this subject can afford to leave out of consideration.

That they have been considered, to some extent, in the account of the silo above detailed, is evidently due to Mr. Fry's position as an agriculturist writing for agriculturists. The practical purpose of his investigation and description of ensilage was only attainable by aiming at a probable truth to the exclusion of the whole truth. Our attempt will be to do justice to such an aim and its results, at the same time to aid in maintaining the scientific perspective of the question.

Many fruitless definitions of the supposed ultimate distinctions between a plant and an animal have from time to time been advanced; and while the controversies to which they have given rise have but little interest to those who take the broader view of classitication, still there are certain very marked distinctions between the vegetable and animal worlds, considered each as a whole, which are independent of all views as to their abstract import and of all attempts to reduce them to a typical expression. First, in regard to synthetical activity and the power of appropriating carbon and nitrogen-the characteristic elements of living matter-the position of the vegetable world is anterior to that of the animal : or, to attempt a definition, the synthetical work of plants is ultimate, that of animals proximate. Secondly, nitrogenous or proteid substances are not essential constutuents of the more prominent structures, i,e. the fibrous skeleton of a living plant, whereas the tissues of the animal are largely composed of such compounds. With regard to the functions of the protoplasm of the vegetabie as compared with those of the animal organism, we roay guote Michael Foster ("Physiology," 2nd ed., 343):"It is not unreasonable to suppose that the animal is as constructive as the vegetable protoplasin, the difference between the two being that the former, unlike the latter is as destructive as it is constructive." Thirdly, the synthetic activity of plants does not cease with the cessation of life, but persists in some measure in the substances which it has built up. We use the term "synthetic" here in a wide" sense. The vast aggregations of the vegetable life of past ages with which we are so familiar in so many forms sufficiently illustrate our ineaning ; and the study of the everyday work of the retlistributing agencies of N゙ature upon moribund regetable matter, will prove the same refractory relationshapthe possession of a prower of resisting change under their intuence not possessed by animal matter. Resolntuon takes place to a certain extent, in degree depending upon the circumstances of its deposition, and the surrounding physical condtions, but there is always to be observed the tendency to aciumulate the characteristic element carbon, at the expense of the oxygen and hydrogen; we have every reason to regard the processes by which this result is attained as a self-contained re-arrangement of the matter and energy, localised in and by the piant during its life, and as the result, therefore, of the same activity: The lifewistory of a perennial plant also points (1) a high enda the molecules which are built up into its p^{-} for these are not, as in the animal, s
lixed and
run a lona condition which the nee

and the tendency to retain this energy in the form of derived compounds in which the carbon is proportionately accumulated.
Let us consider this endowment of energy of plants from a point of view more nearly that of the subject of these rennarks-viz. the formation of the seed in an anuual. We take it that every cell is impressed with the striving, so to speak, to bring about this result. In regard to the energy necessary, again we may conceive a storing up in the earlier processes of elaboration, together with a continuous supply from the external world. Supposing, now, the organic existence of the plant arrested by cutting during the period of inflorescence ; the one supply is cut off, but what becomes of the other, the intrinsic energy and tendency of the organised matter in this direction? Analogy leads us to conclude that it flows on, expending itself on an unattainable end, until it fails from failure of the co-operative supply.
Now if this account of the relationship of the matter and energy of plants is generally true, we think they demand first consideration at the hands of investigators of ensilage. Mr. Fry attributes the rise of temperature in the silo to "intercellular oxidation." We think the term a good one, as it points to intrinsic oxygen exchanges. But we gather from the context that thic oxydation referred to is at the expense of atmospheric oxygen. We think this qualification weakens the value of the term in diverting attention to a cause inadequate to produce the result. How much oxygen is contained or is supplied to the silo? Supposing it completely burned to carbonic anhydride and all the resulting heat effective in raising 100 times its weight of water $30^{\circ} \mathrm{C}$. in temperature, is this sufficient on the most favourable calculation to raise the whole mass to $60^{\circ}-70^{\circ} \mathrm{C}$., the temperature which usually obtains? Why does the temperature continuc to rise for some weeks after the crop has been ensiled, when from all causes the supply of oxygen must continually diminish? Apart from these considerations the conditions of the matter in the pit are surely unfavourable to oxidation by atmospheric oxygen, chicfly in the impediments to gaseous circulation and the absence of light. As we wish to confine ourselves to suggestions and to ayoid statements of opinion, we do not hazard any conclusions on this point, but we ask for a comparison of the considerations drawn from the study of the intrinsic energy of plants with those from their relationships to the external world, in regard to this first phenomenon of the silo.

In regard to Mr. Fry's theory of "intercellular fermentation," we again think the term conveys a wider truth than his exposition. As an agriculturist he recognises two main kinds of ensilage products-sweet and sour-and we have already alluded to his account of their production.

Now, on what does this terminology turn, in as far as it is correlated with the chemical composition of the silage ? Upon quantities of certain constituents which are a small fraction of the whole. It is, on the other hand, an axiom with the chemist, in his study of reactions, not to be led away by issues which are obviously subordinate. From a number of considerations which follow directly from the previous discussion, the cellulose fabric of the plant studied comparatively with the changes which it undergoes in the silo, is best calculated to throw light on the general nature and tendency of these changes. These changes involve a commerce of molecules, if we may use the expression, of which the appearance of stnall quantithes more or less of particular acids or other compounds ire intpor results. We prefer the term" intercellular cmmoric" as less" specialised than "fermentation"; and 24 in sel war think a study of the mater changes from of view in the order pointed out by relative eq permanence of relationship to the plant
structure, is better calculated to elucidate the nature of these transformations.
In regard to sour ensilage, and the view of it as resulting from bacterial fermentation, we have little to say. The study of the life of such organisms under the very peculiar circumstances of the silo has been thus far very slender. From the later researches of Nageli and others, which have considerably modified the theory of anarobic fermentation as propounded by Pasteur, we are inclined to attach less weight to this probable factor of the changes in the silo than Mr. Fry.

Generally speaking, and as he admits, the whole subject needs a very exhaustive investigation, and as we would point out, on the widest basis, and altogether independently of its special bearings upon agriculture The scientific method must be followed, even though in particular experiments the silage were rendered unfit for food. The factors of the result must be caused to vary artificially that their influence may be severally measured. The silo may be heated in any suitable way, the organic matter may be sterilised as regards parasitic germs, substances may be added to modify the reactions, and many other and similar self-suggestive means employed to test particular issues. In conclusion we revert to our original text, and we congratulate Mr. Fry on having laboured well in a good cause. As an agriculturist he has exceeded in his investigations what was to be expected; but in his endeavour to give a scientific account of the silo simultaneously with the agricultural, we think he has disposed of the complications of the subject by repressing their consideration. It is to the somewhat thankless task of reproducing certain of these that we bave addressed ourselves, with the view, as already stated, of aiding to keep the subject in its true persp ective.

Notes

Themas Davinson, Ll..D., F.R.S., of Muirhotse, Midlothian, died, from an attack of lung disease, at West Brighton, on the 16 h inst., in his sixty-ninth year. Dr. Davidson, who was so well known in the scientific world, more especially for bis work on the "Fosstl Brachiopoda," was a Fellow of the Royal, the Geological, and many other Icarned Societies, foreigu as well as Eritish. In 185 t he legan his description of the "Bratioh Fossil Brachiopoda," which has been published from year to year by the I'alaontological Sociely, the concluding supplements haviug appeared in the last volume of that Society in December iSS 4 . Numerous memoirs on similar subjects have been published in the Transactions of several scientific Societies. Receatly Dr. Davidson prepared a "Report on the Brachiopoda dredged by 11.M.S. Chatilcoger during the Years 1873-76." At the time of his death he was engagel upon a further monograph on recent Brachiopuda, the first part of which is now appearing in the Trasuactions of the Limnean Society. Dr. Davidson latterly reviled a: Brighton, and notwithsaading his other scientific avocations he devoted a cousiderable portion of his time to the perfecting of the sown muscum.

Prestdesi Clefeland's invitation to Prof. Agassiz to assume the direction of the United States Const Survey has been hailed in America as an assurance that the new adminis* tration will encourage scientific work, and is not indifferent to survey, but is desirous of placing it under a head whose name and character would be a guarantee of success. The health of the Professor precluded his acceptance of the post; bat beyoad this he is of opinion that the guidance of the Coast Survey requires an expert. The problems to be decided, the methods to be empioyed, the men to te engaged, should, he thinks, be detemined by one who knows the business. Any other persons would be in danger of failure. In concluding an article on the subject Scunce says :-"Thbe correspondence of Secretary Man-
ning and Prof. Agassiz is to us an assurance that science will not be relardel, and that scientific men will not be slighted by any act of President Cleveland."

Science comments in a recent issue on an extraordinary statement published in certain New York and Boston journals to the effect that a committee which had been approinted to investigate the geological survey of the United States had found that illegal practices prevailed in the work of that department. It appears that no such committee ever sat ; the whole was pure fiction. There was no report, no illegal proceedings, no examination. The officer to whom it was said the committee made this report has no authority to appoint or superintend such a committee, and the whole story had its origin in the fertile brain of an imaginative newspaper correspondent. It is well that this should be understood in this country, in case the baseless statements referred to should have made their way here.

The Annual Meeting of the London Mathematical Society will be held on Thurday evening, November 12, and will be made special for the purpose of considering alterations in the rules, which will be proposed ly the Council. At the same meeting it will be jroposed to elect Mr. C. Leudedorf and Capt. P. A. Macmahon, R. A., as new memliers of the Council in the place of Dr. Hirst, F.R.S., and Mr. R. F. Scott, who retire.

THE following are the conclusions of the Scientific Commission appointed by the Spanish Governinent to examiue Dr. Ferran's method of triating cholera patients. They are abbreviated by the special correspondent of the Times in the cholera districts of Spain, writing from Valencia on October 12: (1) Dr. Ferran's inoculations cannot be consilered inoffensive. (2) The attenuation of the comma bacillus has not been demonstrated. (3) The prophylactic measures conceived by Dr. Ferran are empiric, for they are in no wise governed by scientific rules or laws. (4) By means of the vaccination the epicemic is propagated. (5) It is not demonstrated by the results ascertained that the inoculations secure immunity from cholera. (6) The individual during the first days following his inoculation is rendered more susceptible to contract any other form of disease. (7) This is due to the fact that the inoculation disturbs more or less profoundly the physiological equilibrium which it is so necessary to tnaintain during a period of epidemics. (8) The results as icen by the Commission do not prove immunity from cholera. Neither is it possible to obtain conclusions from statistics relating to inoculations, because general laws cannot be deduced from isolated facts.

Dr. Qc'ain delivered the Harveian oration on Monday afternoon before the Royal College of Physicians. He set himself to answer two questions: first, why it is that among a vast numather of permots, alike in ancient and in modern times, medicine has not enjoyed that high estimate of its value, as an art and as a science, to which it is justly entitied; and, secondly, whether we bave any grounds for anticipating a more satisfactory future for medicine, either in the security of the foundations on which it is laid, or in the conserjuent appreciation of it by the public. In the course of the oration Dr. Quain spube of the progress of medical science before the foundation of the College of Physicians; the advances male in our knowle lge of etiology, especially in the practice of arresting the diffusion of disease by limiting the spread of contagion, and of improveanents in our knowledge of pathology, Having pointed out the progress which science and art have made in every direction, Dr. Quain produced statistical evidence that the improvement bas been productive of suhstantial re-ults. In answer to the second question be quoted the wamls of "one of the most eminent of our statesmen," to the effect that in a generation or two the medical profession would lee far in adsance of the other parned profevions."

We lately quoted in Nature, with a comment on the exsed ingly unusual character of such an announcement from Atperica, a statemient to the effect that the Astronomical Observatory α Beloit College was being closed on account of want of fusd We are very pleased to learn from Science that this statement is quite erroneous. On the contrary, Prof. Bacon, the Director of the Observatory, states that new arrangements have been onde for carrying on additional observations in meteorology, and that especial attention will be paid to solar and spectroscopic wort with grenter facilities than before. This, we may observe, is happily by no means a surprising or novel announcement from across the Atlantic.

The new School of Metallurgy which has recently been abled to the Birmingham and Midland Institute, was formally opeoed on September 24, when Prof. Chandler Roberts, F.R.S., de livered a lecture on the Development of Technical Instruction If Metallurgy. Prof. Roberts pointed out how very recest by been the introduction into this country of systematic instruction 파 metallurgy. After referring to the important share which Ins. Percy has had in the development of metallurgical worl it England, and to the steps taken by the Committee of Council on Education for its practical working. Prof. Roberts insisted on the importance of combining theory and practice, and referred at length to the methods adopted in the School of Mines. A faib report of Prof. Roberts' lectare will be found in the Clomsid News of October 9.

The increasing efficiency with which electric lighting can be applied has recently been shown by Messrs. Woodhouse an? Rawson, who, at a ssirie at Guy's Hospital, lit up the builling with their incandescent lamps, worked off Faure Sellon accemelators, which were only delivered on the morning of the sovrit. Equally efficient was the lighting supplied by the same firm at the Leicester Exhibition of the Sanitary Institute of Grez: Britain. It is certainly a great convenience that such temporary illuminations can be effected under almost any conditions.

Is an article on the use of the French Academy, Sient says :-" But, aside from all personal consideration:, there r mains a question whether an organisation like the Frenct Academy may not perform an important service to the coantry by giving its collective authority to the encouragement of es cellence in the use of language. May not its criticism of an own members, its jadgment of works presented to $i t$, its be stowal of academic honours, its election of associates, its pabis discourses, and its serious scrutiny of the vocabulary and phrase ology of the language in their combined influence, be a very powerful agency in the promotion of literary excellence? May it not become a sort of schoolmaster to the nation, incepable w: making goo! writers out of bad, but helpful in disciftiae? Who can tell what has been the net gain to France from sach society? 1s the clearnes', the precision, the symmetry, the finish of a gool French style worth having? What would the German language be to the world if there ball been a German acailemy at work for 250 years smoothing its roughness ans invisting apon clear, unencumbered, and pleasing forms in expression ?"

The Calendar of the University College of North Wales, at Bangor, has just been published. Beaides the usual informatuo 1 . examination papers and lists, it contains a brief sketch of the establishment of this college, which now enters its second yeas, and which promises to have a success worthy of the efforts it which it was foundel. The thinst of the Welsh perple ins knowledge and for the education of their clrildren is well knswe. and the introduction t's the "Calendar" stater that neve lefore in so short a period have so many pertans, either at England or in Wales, subucribed toward, a mevement for the promotion of higher education. In twelve notsths the liwe rane
to upwards of $30,000 \%$., and by the end of 1884 it had exceeded 37,000/.

We have received Prof. Rockwood's account of the progress in vulcanology and seismology in the years 1883 , 1884 , from the Smithsonian Report for $\mathbf{1 8 8 4}$. Under Vulcanology he treats of the volcanic eruptions during the two years (dealing mainly with the Krakatoa eruption), and of the investigations of former volcanic activity. In seismology he divides his subject into earthquake lists of 1882 and 1883 , special earthquakes of 1883 and 1884, lists of former earthquakes, and theories of earthquakes. In seismometry Prof. Rockwood deals with instruments and their records. The pamphlet, which should be a zale mecum for all engaged in investigating seismic phenomena, concludes with a bibliographical list of all the books and papers relating to the subject, which appeared during the two years under review. This list is surprising for its length and variety.

VUtBERT's Fournal ic Math'matiques Elfonertaires, which has had an existence of nine years in a lithographed form, commences its tenth year in print. It may be called the French schoolboys' mathematical journal, for it is addressed specially to them, and all the solutions are contributed by them. It appears fortnightly from October 1 to July 15, and the terms of subscription are very moderate. We have unfortunately in this country nothing to correspond to it , and it may therefore be useful to signalise its existence to mathematical masters.

Ar a meeting of the Council of the National Fish Culture Association held on Friday last under the presidency of the Marquess of Exeter, it was resolved to take immediate steps to conduct a series of investigations and observations on the ocean in regard to its temperature at various depths; also as to the habits of fish, their spawning grounds, their enemies, and the cause of their erratic migrations. The Duke of Edinburgh, it was stated, had much interested himself in the subject, and had obtained the cooperation of the Admiralty and Trinity Board in ailling the Association to carry out the observations with the view of promoting marine fish culture and undertaking it on a thoroughly scientific basis.

Tue Severn Fishery Board bave made arrangements with the National Fish Culture Association to incubate salnon ova, When hatched out the fry will be placed in the waters under the control of the Board, which is doing its utmost to cultivate all species of Salmonidx. The National Fish Culture Association will, it is understood, render similar service gratuitously to other Boards, in order to assist in developing the inland fisheries of the United Kingdom.

The Institute of Chemistry has obsained a Royal Charter of Incorporation from the Privy Council, and it is intended to celebrate the occasion by a dinner on November 6.

The following Penny Science Lectures will be given at the Royal Victoria Hall and Coffee Tavern, Waterloo Bridge Road, during the ensuing weeks. - On Tuesday, October 27, Mr. W. D. IIalliburton will lecture on the "Circulation of the Blood"; on Tuesday, November 3, Sir John Lubbock will lecture on "Ants"; on Tuesday, November 10, Mr. W. Lant Carpenter will lecture on "Flectrical Firc Alarms in America."

A shock of earthquake was felt at half-past seven o'clock on the morning of the 13 th in Granada and the surrounding country. The movement is described as a long trepidation, with a rumbling noise. At Palermo a shock occurred on the morning of the 15 th. A house, three storeys high, fell in, and a number of persons were buried in the dibris.

In connection with the General Italian Exhibition held in Turin last year, the Italian Meteorological Society has just issued an interesting broshure on the pres:nt state of astronomical,
physical, and meteorological studies in the peninsula. In these departments the show was thoroughly national, special prominence having been given to those branches which are at present most widely cultivated in Italy. Thus in terrestrial physics full scope was given to seismology, vnlcanology, and geodynamics, all which studiev, owing to the special local conditions, have here been associated , with some of the most illustrious names in science. Meteorology was well represented by specimens of the best apparatus from the chief meteorological stations in the country, and in astronomy the progress of all the local observatories was fully illustrated. Amongst the objects on view were astronomical, physical, and meteorological apparatus; charts, maps, designs, photographs; printed and manuscript works on these subjects. Although still far behind some other countries in the production of scientific instruments, the display showed that in recent times Italy has made considerable progress in this branch of mechanics. To illustrate the history of these sciences the exhibition included some curious old instruments associated with the names of illustrious pioneers, who laboriously prepared the way now followed by their more fortunate successors living in better times and enjoying the advantage of more perfect appliances. The pamphlet contains a complete list of the ninety-one meteorological and geodynamic stations already established throughout the peninsula, as well as the names of exhibitors, to whom diplomas, gold and silver medals, and other distinctions were awarded.

Mr. Mellarid Reade's presidential address to the Liverpool Geological Society was on "The North Atlantic as a Geological Basin." After discussing the form and nature of the ocean-bed so far as is disclosed by the latest soundings and dredgings, he pointed out that all along the coast of Spain and North Africa the bottom was exceedingly irregular, as proved by the soundings for the telegraph cables, consisting apparently of mountains and valleys. On the opposite coast of South America, and especially about the mouths of the Amazons, the soundings were comparatively shallow and of nearly uniform depth. Taken together with the known great depth of alluvial deposits at the mouths of all the great rivers where borings had been made, and the undoubted great age of the Amazons Basin, Mr. Reade arrives at the opinion that this plateau is a submarine extension of the delta proper, consisting of geolugically modern sediment probably thousands of feet thick. The same reasoning, he points out, will apply to other great rivers and coasts where similar conditions exist.

From a serics of experiments by IIerr Graber, relating to the effects of odorous matters on invertebrate animals, it appears probable that in the case of many insects neither the antenna nor the palpi can be absolutely pronounced the most sensitive organ of smell, inasmuch as the one organ is most sensitive for some odorous matters, and the other for otbers.

Tue additions to the Zoological Society's Gardens during the past week include a Purple-faced Monkey (Smenopifhecus lenioprymnus 8) from Ceylon, presented by Major Norris; a Rhesus Monkey (Macacus rhesus 8) from India, presented by Mr. J. H. Ficlding ; a Common Marmoset (Hapale jacchus), a Black-eared Marmoset (Hapale fenicillata) from Brazil, presented by Miss Knowlcs ; a Common Marnruset (Hapale jacchus) from Irazil, presented by Lady Cowley; a Common Hare (L.cpus curofieus), British, presented by Mr. V. J. Allpress; a Mexican Soutlik (Sfermephilus mexicames 8) from Mexico, presented by Dr. Stuart; a Herring Gull (Lavas argentatus), British, presented by Mr. J. G. Taylor ; a Macaupe Monkey (Macacus (ynsmolgus \$) from India, a Green Monkey (Cercopithecus callioichur \&) from West Africa, deposited; an Aricl Toucan (Kamphastos ariol) from Brazil, purchased; a Hoolock Gibbon (Hylobates hooluck P), received in exchange.

OUR ASTRONO.MICAL COLU.MN

The Vartabie.star V Cygni.-In Dr. Hartwig's ephemeris of the variable stars for the present year a maximum of V Cygni is cloubtfully assigned to November 15. The change in the brightness of this strihingly red star was notified by the late Mr. Birningham in May, 881 . The several determinations of the time of maximum in the following year were very discordant; thus, Dr. Liudemann (who made an interesting communication on this star to the St. Peterslurg Academy in January t884) fixed it on August 31 " auf wenige Tage sicher"; Schmidt gave July 17, while Prof. Safarik considered it was reached on June 1%. This divergence induced Dr, Lindemann to commence regular olservations of the star in August 1882, details of which will be found in his paper (Bulictin de I'Acaidemic Impertial der Sciones de Sf. Pifersburg, t. xxix.). The variation appeared to be from 6.8 m . to below 10 m ., and the period indicated by the observations of 1882 and 1883 was about a year, though a longer one is now assigned. Several of Dr. Lindemann's notes are worthy of attention. On July $19,188 t$, the stat had a nebulous cometary aspect, with sensible cliameter. On August 13 in the following year it was more stellar, and had no longer the nebulous appearance it presented in 188 t , though a month later this was again suspected. On May 13, i883, we read: " V funkelt sehr stark, leuchtet momentan auf und verschwindet dazwischen beinahe," though a comparison star $\mathrm{DM}+47^{\circ}$, 3162 showed a steady light. On July 27 it shone as steadily as the neighloning stars, without any nebulous appearance. On Octoler 8-" sehr verschwomnien"; a week afterwards, this aspect was not remarked, though the images of surrounding stars were very indificrent. At the end of the same month V was again stellar. Variations in the intensity of the colour were also remarked.

The place of this star for iSS5 ${ }^{\circ}$, according to meridian observation at Fulhowa is in R.A. 20 . $37 \mathrm{~m} .35 \%$. Decl. $+47^{\circ} 43^{\circ} 53^{\prime \prime}$.

Occeltation of Alfebaran on November 22.-The Gricenwich mean times of disappearance and reappearance of this star and the cortcoponding angles from north point, in the occultation on the evening of November 22, may be pretty closely determincel for any place in this country from the following formulx ;-

$$
\begin{aligned}
\text { Time of disap. } & =9 \mathrm{hr}^{\mathrm{m}} .5^{\prime} 7+[0.2259] \mathrm{L}+[9.31 \text { to }] \mathrm{M} \\
\prime \prime \quad \text { reap. } & =105^{\circ} 2+\left[9^{\circ} 5575\right] \mathrm{L}+\left[9^{\circ} 4779\right] \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
\text { Sngle at disap. } & =104^{\prime} 1+[0.358] \mathrm{L}-\left[9^{\circ} 307\right] \mathrm{M} \\
\text { " reap. } & =281.6-\left[0^{\circ} 4 t 2\right] \mathrm{L}+\left[9^{\circ} 246\right] \mathrm{M}
\end{aligned}
$$

In which the latituele of the place is $\mathrm{rut}=50^{\circ}+\mathrm{L}$, and M is the longitude in minates of time counted positive towards the east. The quantitics within brackets are logarithms.

The above equations are founded upon the following resules of direct calculation :-

louncestaks, - Two important serics of incasures of double-stars have lately appearett in the Astromowische Naskrohtow : the first in Nos, 2077-78, 1y Dr. R. Engelmann, of Leip. Bic, in continuation of a serics previously , ublished, the secont by M Perrotin, marle at the oliservatory of Nice, in Nos. 2684.85 . According to the Lespsic observatsons of $\mathbf{\Sigma} 2173$, Jor which Jioff. Duner found a period of 45 years only, calculation is not yet so much in error, as for a First approximation, and so difficult a strr, might well have lieen anticipated Ur. Engelmanns menn resuit is, for $1883 \cdot 88$, position, $24^{\circ} 8$; diblance, $0^{-} \cdot 23$; the orlit gaves 34° and $0^{\prime \prime} z$. The 1 cipsic series contans mexeures of many of Mr. Orto Sinuve's and Mr. Liumham's stars.

ASTROPHYS/CAL NOTES Staks tvith Sregtua of rue Tintab Tive
mospublished en omportant catalogue of stars
spectra. Following I'rof. Vogel's classification he prefen regard the spectra with hands fading away towards the vuit. as a subdivision of the same type as those in which te bands fade away towards the red, rather than, with Secthi, make them into a separate class. Duner's type 111. a, therfure. corresponds to Secchi's third type and his 111. I to Seach:n fourth type. Prof. Duner's purpose in forming this ea'zlugor is to supply the means for future oloservers to detect chugein these spectra should any such occur, for, as be poutiout, these stars are probably in a very advanced state of development, and we may thesefore, perhaps, bope to disione some day changes in their spectra which, carefully stodied. En, lead to important results as to the nature of sums. They are the more interesting, also, because variable stars of long pern' usually belong to this class.

With this view Prof. Duner has carefully examined all the known objects of this type which are visible in his latitude, is for which the optical means at his command were sufficient, as) he has catalogued 297 stars of type III. a, that is, with bands shading off towards the red, and 55 of type II1. 6 , with bosk shading off in the opposite direction. An important sac: follows giving a list of stars which different astrenomet bave regarded as belonging to the third clais, but which Danér cano a so classify. Only in a very few instances, however, is there - 5 good reason to suspect a change in the spectrum. In the gees majority Secchi, whose observation ssupply most of these case discrepancy, had himself at one time or another registere! star as being of the second type, t.e. without hands, or else tuat especially remarked on the extreme feebleness of the bands $* b . d$, he thought he saw. There are, however, three stars observet to D'Arrest for which the evidence of change seems stronger, wh. 24034 L.I., D.M. $+60^{\circ} 146 t$ and 11.M. $+35^{3} 2772$. Prol. I Futir has also failed to find schjellerup No. 249. which is, pertusi a long perical variable, and he draws special attention to K Androniedxe, a star the spectnum of which, though of type 111.2 presents some very marhed peculiarities. Great care bas ers taken in the determination of the pmotions of the bands in tbe different spectra. It is clear, at many spectroscopists bave already olmerved, that the bands of type II I, a, occupy the wor positions in all the spectra of the type, and the same is trae :-4 the bands of type 111. 6 . With retrard to the formet clas, :ta sharp dark edges on the more refrangible sides of the hands fepc rally coincide with strong metallic lines; thus one of the 5 . prominent hands is terminated by the b-lines of magneium. !" mature of the connection between the bands and thete met.2. lines is not at all clear at jresent, the symmetrical arrangement the bands secming to suggest thit they are due to some une wh stance rather than to several. The three principal bando of the spectra of the other type Irof Duner considers to le unmissaha'? thome of a cartoon compound, and to correspont to the brast bands so familiar in the spectra of comets. The detetminathin of the wave-lengths of the banils in specira of this tyfe ave necessarily not quite of accurate as those of the bands in "! of type III. a, but if Prof. Duner's measures are acepted, th most important correspondence may be conwiered fally ect blished. Itut, apaut from the value of these measures, Prot Duner's catalogue, with the full and clear deccriptions he bse appended to every star, will be of the utmost service to futare othervers of these interesting and heautiful objects.
 - Prof. D. Kirkwood has recently pointed ont in a paper π^{2} d before the American I'hilosophical socicty, that there is diatisc: evidence that there are three metcoric swarms traveling in thr orbit of liempel's comet. Of these the preincipes puatu is the tre which prowluced the great showers of 1×33 of which Prof. Aqamis showed to be ahout 33 . Prof. Kirkwood ilentī̄el a second gropes. meteoric showers given by Ilumbald and of wbich swomb he about 33.31 sears. from this groug. ill be due alsour Novernh
:

ASTRONOMICAL PHENOMENA FOR THE WEEK, 1885, OCTOBER $25-3 \mathrm{t}$

(For the reckoning of time the eivil day, commeneing at Greenwich mean midnight, counting the hours on to 24, is here employed.)

At Greentevich on October 25

Sun rises, 6 h .44 m . ; souths, 1 Ih .44 m .7 .5 s. ; sets, 16 h .45 m . ; decl. on meridian, $12^{\circ} 16^{\prime} \mathrm{S} .:$ Sidereal Time at Sunset, 19h. 2 m .
Moon (two days after Full) rises, $17 \mathrm{~h} .32 \mathrm{~m}{ }^{\circ}$; souths, oh. 46 m . sets, Sh. 11 m . ; decl. on meridian, $12^{\circ} 52^{\prime} \mathrm{N}^{*}$.

- Indicates that the rising is that of the preceding day.

Occultations of Stars by the Moon

The Occultations of Stars and Phenomena of Jupiter's Satellites are such as are visible at Greenwich.

Oct
h.

2 S ... 17
Saturn in conjunction with and $4^{\circ} 8^{\prime}$ north of the Moon.

GEOGRAPHICAL NOTES

A kecent Blue-book (Siam, No. I, 1885) contains a report by Mr. Archer, of the Consular service in Siam, on silk-culture in the province of Kabin, which lies on the eastern side of the Siamese delta, at the foot of the mountains separating the Meinam valley from that of the Meiking. In the course of his journey Mr. Archer came across eertain Laos settlements, of which he gives an interesting account which is deserving of note, on occount of the very little known of the Laos. He says the settlements in the provinces of I'achim and Nakon Nayok are, as it were, the south-western oulposts of the Lans race, which forms the bulk of the population of Eastern and Northern Siam, but they are "phung khao," or "white-bellied," and therefore distinct from the "black-bellied," or inhabitants of the Clieng. mai provinces. They are not, however, the original inhabitants of these provinces, but captives from Muang Kalassin, a province to the north east of Korat, formerly dependent on Wien Chan, who, after the war waged successfully by the Siamese against that ancient kingdom about sixty yearn agn, were Iransporled to and allowed to settle in the country extending; from the provinee of Nakon Nayok to that of llattamhong. This country consists, for the most part, of a series of slight and gradual elevations and depressions, the dwellinga, garden-, and any other plantations bring generally situated on the former, whilst rice is cultivated Titter. The popalation is sparse, and consequently the the country is covered with jungle. The inhabitlingly inlolent, and appear unable to exert themIC more than enought rice for their hare sustenance. ing is of the simplest description, and their m any commercial centre and outside any fforeign goods, with the exception of eotton, them. All Las tribes, however, are tedalence. Those living in the promore active, and devote nore to the rearing of silkworms. having a poorer soil at a tabitants to devote more ifivelihoort.

Mr. Coutts Trotter read a paper at the Aberdeen Meeting of the British Association "On Kecent Explorations in New Guinea," bringing up to date the information he laid before the Section two years ago. It deals with eertain hydrographical and other physico-geographical questions on which light has been lately thrown by Mr. Chalmers's journey, and by the ascent of the Amberno River, and points to the conclusions to be drawn from certain temples, with a special priesthood and objects of worship lately discovered-implying an order of religious ideas quite foreign to the Papuan mind. As regards the natives of New Guinea, he believes the conflicting jurisdiction, and different views as to the mode of dealing with them, must be prejudicial to their interests.

Tire Arctic steamer Alert returned to Halifax on October 18 from Hudson Bay with the observation party who have spent fifteen months there testing the practicability of that route for navigation from the Canadian north-west to Europe. The result of the observations shows that the average temperature is not so low as was expected, nor so low as the average winter temperature in the North-West. The lowest monthly average was 30° below zero. The ice observations show that the Hudson Straits and Bay are navigable by progerly built and equipped vessels for from three to four months-from July to October. While this report is somewhat favourable, doubts are expressed in Canada whether the Hudron Bay route can ever be made practicable.

7HE GREAT OCEAN BASINS ${ }^{1}$
 11.

THIE arlvances during recent years in the knowledge of the forms of life inhabiting the floor of the ocean surpass those in any other department of oceanic investigation. Thousands of new organisms have been discovered in all seas and at all depths in the ocean, and cither have been, or are now being, described by specialists in all quarters of the world. There does not seem to be any part of the ocean bed $\$ 3$ deep, so dark, so still, or where the pressure is so great as to have effectually raised a barrier to the invasion of life in some of its many forms. Even in the greater ilepths all the great divisions of the animal king. dom are represented.

As might have been expected, forms of life are most rich and varied in the shallow water surrounding the continents, where there is abundance of food, sunlight, and warmth; where there is motion, rapid change of water through currents, and other congenial conditions. At the depth of half a mile there are still numerous animals, though many of them differ from those of shallower depths, hut plant-life seems to have wholly disap. peared, if we except the diatoms and calcareous algae, whose frustules and skeletons have fallen to the bottom from the surface, carrying with them some of their protoplasm and chlorophyll.

At the depth of one mile there are a few animals which are barely distinguishable from, if they be not identical with, shallow water forms; but the majority of the animals are specifically distinct from those found within the 100 -fathom line, and many of them belong to species peculiar to the deep sea, and are universally distrihuted over the ocean bed in deep water.

As we descend into still deeper water, and proceed further seawards from the borters of the continents, species and the number of individuats become fewer and fewer, though they often present archaic or embryonic characters, till a minimum is reaclied in the greatest depths furthest from continental land. Distance from continental land is, indeed, a much more important factor in the distribution of deep-sea animals than actual depth.

If we neglect the Protozoa and compare the results of twelve of the Challenger's trawlings and dredgings in the central line of the Pacific, in depths greater than 2000 fathoms, on globigerina ooze, radiolarian ooze, and red clay, with twelve trawlings and dredgings taken under similar conditions and depths, but on the blue and green muds within 200 miles of the continents, we find that the Central l'acific stations have yielded 92 specimens of animals belonging to 52 species, all, with two doubiful exceptions, new to science, and among them 13 new genera; on the other hand, the stations near the continents have given over 1000 specimens belonging to 211 species, of which 145 are new species and 66 belong to species previously known from
${ }^{3}$ Lecture delivered at ihe Aberdeen meeting of the British Association by Mr. John Murray, Director of the Challenger Reportn. Conlinued from p. 584.
shallower water. These numbers are not final, but the proportions are not likely to be greatly altered when the whole of the Challenger Reports are completed. These facts may be in part explained by the preater abundance of food present in the continental d/hris which forms the chief constituent of the terrigenous deposits ; but it is probably more closely connected with the greater distance of the seaward stations from the original place of migration. We must suppose that all deep-sea animals have been derived originally from shallow water: those which de scended first into deeper water have, generally speaking, been able to migrate to a greater distance seawards than those which set out later, and being derived from older stocks they have retained in the great deeps some of the characters which are new regarded as archaic and embryonic.

Although no new types of structure have been discovered in organisms from the deep sea, the peculiar modifications which animals have undergone to accommodate themselves to abysmal conditions are sufficiently interesting and remarkable ; the eyes of some fish and crustaceans have become atrophied or have disappeared altogether, while in others they have become of exceedingly large size or have been so modified as to be scarcely recognisable as eyes: for instance, in the case of the scopelid fish Jpmops ; fins and antennae have become extraordinarily elongated and at times*appear to simulate the alcyonarians of the deep sea. The higher crustacea and some families of fish have very few and very large eggs in the deep-sea species, while their shallowwater representatives have a very large number of very small eggs, showing apparently that the deep-sea species have relatively few enemies. While some groups, for instance the Pyenogonids, Tubularians, and Nudibranchs, have much more gigantic representatives in the cleep sea than in shallow water, the representatives of the majority of groups, and especially the Gasteropods and Lamellibranchs, are much smaller, and generally speaking have a dwarfed and delicate appearance, the shells being poorly supplied with carbonate of lime. Indeed the solid tissues of most deep-sea animals are but feebly developed when compared with shallow-water forms. The experienced dredger has, as a rule, little difficulty in recognising a deep-sea species in a dredging from itsugeneral appearance. Many deep-sca animals emit, and some have special organs for the emission of, phosphorescent light, which appears to play a large rM/e in the economy of deep-sea life.

One of the most striking facts with resprect to deep-sea animals is their very wide distribution-the same species being found in all the great ocean basins. At the depth of half a mile identical species are drediged off the coast of Scotland and off the coast of Australia at the Antipooles ; the nearly uniform conditions, exicting everywhere at depths greater than half a mile, facilitates the wide tistribution of species which have once accommodated themselves to a life at that depth. The same consideration probably explains the occurrence of some identical and nearly identical species in the shallow waters of the temperate and polar regions of both hemispheres.

Among the higher crustacea the Brachyurans, which are regarded as a modern group, are found in great numbers in shallow waters, but have very few representatives in deep waters, and appear to be quite absent from the abysmal regions. On the other hand, the representatives of the Schizopoda, Anomoura, and Macrura, which are regarded as older groups, are widely distributed in the deep sea; many similar inslances of this kiod could be given. The stalked Crinoids, the Elpididse amoog the Holothurians, the Poartalesix and Phormosomas among the Echitids, and other groups, have now no representalives in depths less than too fathoms, bot are widely distribated in all groater depths; while many genera are confined to the abysmal regions. We are not as yet, bowever, in a position to fally discuss many curions points in distribution, even did time permit.

If may be unged that after all the few hundred scrapinge of oor small trawls and dredges can give but a very inadequate jeles of the condition of thisgs over the mallions of square mit covered by the ocean, bat against this it may be argued great force that as the same animals and deposits necurre and again with litule variation, we doubtleas have eve tolerably complete knowledge of deep-sea life.

When we turo to the surface waters, one may exclaim dull and stupid soul that would oot rejoice at the first at ance with the texming pelagic life of the ocean, rich in socers and varied colours, or that would ni
forth on a dark night from the surface of an equatorial ocean. like flashes of ${ }^{\text {4t }}$ spirits from the vasty deep."

" Heyond the shadow of the ship
I watched the watet snakes:
They moved in tracks of shining white, And when they reared the elfish light Fell ofí in hoary flakes.
" Wishon the shadow of the ship 1 walched their rich altire ;
Blue, glossy green, and vetvet black,
They coiled and swam, and every track
Was a flash of golden fire.
" Oh, happy living things ! No rongue Their beauty mighi declare.
Apring of love gushed from my heart,

Experiments with tow-nets have shown that life exists in all the intermediate waters of the ocean, between the surface and the bottom, yet sparingly there when compared with what occurs just above the bottom, or nore markedly when compared with the abundant and Juxurious development of life in the surface and sub-surface waters.

In mid-ocean the majority of the organisms are quite distinct from those usually found along the coasts in bays and estuarics, though, like the decp-sea animals, they were, in all probability, originally derived from the shallow waters around the continents. There are species of diatoms, calcareous and other algox, many foraminifera, siphonophora, a few annelids, many crustaceans, numerous pteropods, heteropods, and other molluscs, the pelagic tunicates, and many fishes whose home is in the great systems of oceanic currents. It is only occasionally, or in special localities, that some of the species are borne to continental shores, for the members of this oceanic pelagic fauna and flora appear to be killed off where the ocean is affected by the fresh waters from the land. In the equatorial regions the species and individuals are most abundant, and they vary with temperature, latutude, and the salinity of the water.

In the Antarctic or Southern Ocean diatoms abound at the surface, and in the same region the sea-floor is covered with their dead silice us frustules, which form a diatom oose. In the middle and western Pacific, where the surface water is less salt than in the Atlantic, the radiolarians, which likewise secrete silica from sea water, occur in vast numbers at the surface and in intermediate waters, and in these regions their dead shells and skeletons make up the chief part of the deep-sea deposits, known as rifiohtran noze.

Hut it is those species belonging to the varied pelagic oceanic organisms, which secrete lime for their shells and skeletons that are principally forced on our attention, both from their prodigious numbers and the part played by their remains in the formation of deposits. These species flourish especially in the warmest and saltest waters. In a square mile of equatorial water 600 feet deep it is estimated that there are over 16 tuns of carbonate of lime in the form of shells, which belong to about 30 species of calcarcous Alge, Foraminifera, Pteropods, and lleteropoits. When these surface organisms die and fall to the bottom they form the deposits known as prerapod and gioligerina ewas. In descending they; as well as other surface organisms, carty down with them some of the organic matter of their tissues, which, not decomposing rapidly in the cold deep water, forms the chief source of nounshment for deep-set animals, and the chlorophyll which Prof. Hartley has diecovered in some decp.sea deposits is probably derived from diatoms which have fallen to the bottom in this way.

It is, bowever, a very remarkable fact that the dead shells of these Foraminifers and Pteropods are nos found on the bottom of the sea beseath all the regions where they focurish abundanily at the surface. They are found at greater depths beneath waran equaturial watess than elsewhere, bot there is barely a trace of them in all the greatest depiths, although in as ailjoeent seen, 4 here the नmrina and intermediate conditions are the same, but where the depit. I. Itanshroe miles, they may make tap 75 or even

bottom. Where the depth is not very great only the thinnest and most delicate shells are removed, and the others accumulate, forming vast deposits; with increasing depth other shells disappear, only the thicker ones reaching the botom; but in the very greatest depth nearly every trace of these surface shells is removed, or we find them making up but 1 or 2 per cent. of the deposit. It is possible that this process of solution of the shells may be somewhat accelerated in the deepest layers of water by the great pressure.
In the deepest parts of the abysmal areas, where the carbonate of lime shells are either wholly or partially removed from the bottom, there are met with those peculiar deep-sea clays, the origin of which has been the subject of considerable discussion. They are principally made up of claycy matter resulting from the disintegration of volcanic rocks, and derived chiefly from floating pumice and showers of volcanic ashes. Mixed up with these clayey and volcanic materials are thousands of sharks' teeth, some of them of gigantic size, and evidently belonging to extinct species, also very many ear-bones, and a few of the other bones of whales, some of them also probably belonging to extinct species. These organic fragments are generally much decomposed and surrounded and infiltrated by depositions of peroxide of manganese, which is a secondary product arising from the decomposition of the volcanic material in the deposits. Again, we have in some plaees numerous zeolitic minerals and crystals formed in the clay, also as secondary products. Lastly, there are numerous minute spherules of native iron and other rare substances, covered with a black coating of oxide, which are referred with great certainty to a cosmic origin-probably the dust derived from meteorie stones as they pass through the higher regions of our atmosphere. Quarth, which is so abundant as a clastic element in deposits around the continents, is almost absent from the deposits of the abysmal regions.
In the abysmal regions, then, which cover one half of the earth's surface, which are undulating plains from two to five miles beneath the surface of the sea, we have a very uniform set of conditions: the temperature is near the freezing point of fresh water, and the range of temperature does not exceed 7°, and is constant all the year round in any one locality ; sunlight and plant-life are absent, and although animals belonging to all the great types are present, there is no great variety of form nor abundance of individuals; change of any kind is exceedingly slow. In the more elevated portions of the regions the deposits consist principally of the dead shells and skeletons of surface animals, in the more depressed ones they consist of a rel clay mixed with volcanie fragmental matter, the remains of pelagie vertebrates, cosmic dust, and manganese iron nodules and zeolitic crystals, the latter being secondary products arising from the decomposition of the minerals which have long remained exposed to the hydrochemical action of sea-water. The rate of accumulation is so slow in some of these clays that we find the remains of tertiary species lying on the bottom alongside the remains of those inhabiting the present seas. It has not yet been possible to recognise the analogues of any of the deposits now forming in the abysmal regions in the rocks making up the continents.
It is quite otherwise in the areas bordering the continentsthe uncoloured areas on the maps. Almost all the inatter brought down to the ocean in suspension is deposited in this region, which is that of variety and change with respect to light, temperature, motion, and biological relations. It extends from the sea-shore down, it may be, to a depth of three or four miles, and outwards horizontally from 60 to 300 miles, and includes all partially inclosed seas, such as the Noth Sea, Mediterranean, Caribbean, and many others. The upper or continental margin of the area is clearly defined by the coast line, which is continually changing from breaker action, elevation, and subsidence ; the lower or abysmal margin of the region is less clearly marked out, passing insensibly into the abysmal regions and terminating where the mineral particles from the neighbouring continents disappear from the deposits. In the surface waters the temperature varies from over 80° in the equatorial to 28° in the Polar regions, and from the surface to the ice-cold water at the lower margins of the regions there is in the tropics an equally great range of temperature. Plants and animals flourish luxuriantly near the shore, and animals extend in relatively great abundance down to the lower limits of the region. Here we find now in process of formation deposits which will form rocks similar to those making up the great bulk of continental land, such as celitide, shales, sandstones, marls, greensands, and chalks; the
glauconitic grains of the green muds and phosphatic notules can be traced in all stages of formation, and probably, though much less certainly, the initial stages in the formation of flint.
Throughout all geological time the deposits formed in this border or transitional area appear to have been pusbed, forced, and folded up into dry land, through the secular cooling of the earth and the necessity of the outer crust to accommolate itself to the shrinking solid nucleus within. These depositions do not in themselves cause elevation or subsidence, but most probably the changes of pressure, resulting from them, tend to destroy the existing equilibrium and to produce lines of weakness along the borders of the continents and in the regions of enclosed and partially enelosed seas, with the result that the borders of continental land have been more frequently thrown into folds and have suffered greater lateral thrusts than any other regions on the surface of the earth.
On the other hand, while we know that there are vast deposits of carbonate of lime taking place over some portions of the abysmal regions, and that volcanic outbursts occur in others, still these are not comparable with the great changes which have taken place in the past, and are now taking place, on the continents and along their borders.

When the coral atolls and barrier reefs which are scatterel over the tropical regions of the great occans are examined in the light of recent discoveries, it is found that their peculiar form and structure can be accounted for by the trumcation of some submarine cones through breaker action; by the upwand growth of others through the accumulation of matine deposits ; by the solution of dead coral through the action of sea-water and lastly by a study of the source and direction from which the food supply reaches the reef-building animals. That this in all probability is the true history of the origin of these marvellous structures is further confirmed by the recent examination of the upraised coral atolls of the Pacific by Dr. Guppy, and the researches of Mr. Buchanan into the characters of oceamic banks and shoals. Coral atolls and barrier reefs, instead of pointing out great and general subsidences, must be regarded rather as indicating areas of great permanence and stability.

The results of many lines of investigation, then, seem to show that in the abysmal regions we have the most permanent areas of the earth's surface, and he is a bold man who still argues that in Tertiary times there was a large area of continental land in the Pacific, that there was once a Lemuria in the Indian Ocean, or a continental Atlantis in the Atlantic.
In this rapid review of recent oceanographical researches my chief object has been to show you the wide range of the observations, for every science has been enriched by a large store of new facts. It matters little whether the opinions which I have given as to the bearing of some of these be correct or not ; for the observations are now or will soon be in the hands of scientific men, and errors in interpretation or deduction will soon be exposed. The great point is that there has been a vast addition to human knowledge, and it must be a matter of satisfaction that our own country has taken so large a share in these important investigations as to call forth the admiration of the scientific men of all countries. You have learnt from the President's address that there is usually not much to say in commendation of the Government for its liberality to science. But in the matter of deep-sea investigation, neglecting mere details, we can say that the successive Governments of the Queen during the past twenty years have, either from design or by accident, undertaken a work in the highest interests of the race, have carried it on in no mean or narrow patriotic spirit, and are likely to carry it to a termination in a manner worthy of a great, free, and prosperous people.

ON A SUPPOSED PERIODICITY OF THE CYCLONES OF THE INDIAN OCEAN SOUTH OF THE EQUATOR ${ }^{1}$

IN papers printed in the Reports for 1872, 1873, 1874, and 1876, I endeavoured to show that there were grounds for supposing that the cyclones of the Indian Ocean south of the equator increased in number, extent, and intensity from a minimum in one year to a maxinum in another, and then decreased to a minimum, the period or cycle apparently corresponding with the eleven-year period of solar activity.

From the data given in the last of these papers (Ripurt for

1876, p. 267), it would appear that from 1856 to 1875 the years of minimum cyclone activity were 1856 and 1867 , and the years of maximum activity $\mathbf{1 8 6 1}$ and $\mathbf{1 8 7 2}$, but that the results for each of tho e years did not differ much from the results for the year immediately preceding or following it, the variation near the turning points being small.
Before giving a brief outline of the results which have been obtained since $\mathbf{1 8 7 5}$, it may be well to mention that the sources of information were the same as in former years. Two clerks were constantly occupied in tabulating the meteorological olservations contained in the log-tooks of vessels that arrived in the harlouz of l'ort Louis from different plaecs. The number of days"observations talulated in each year-that is, ohservations extending over twenty-four hours and made in different parts of the ocean-was as follows:-

Veary	Days Observationg	Vears	Ihays' Observations		
1876	\ldots	17,0173	$\mathbf{3 i}$	i881	\ldots
16,473					
1877	\ldots	17,005	1882	\ldots	15,089
1878	\ldots	17,050	1883	\ldots	16,930
1879	\ldots	15,889	1884	\ldots	16,700
1880	\ldots	17,306			

The tables give an average of 46 observations of 24 hours each for every day of the nine years over the frequented parts of the ocean.
All details and reports respecting hurricanes, storms, or gales were recorded in separate registers.
For each day on which there was a gale in any part of the ocean between the equator and the parallel of $34^{\circ} \mathrm{S}$. a chart was prepared, showing as nearly as possible the positions of the vescels the direction and force of the wind, \&e., at a certain hour, namely, noon on the meridian of $60^{\circ} \mathrm{E}$.

From these synopnic charts the details given from hour to hour in the log-looks, and all the information obtained from other sources, the position of the centres of cycloncs at noon on each day were determined, and the tracks laid down on separate charts.

Nine cyclone track charts have thus been prepared, namely, one for each of the years 1876.84
These track-charts, together with the twenty that had previously been preparel for the years 1856-75, show, as far as has yet been ascertained, the tracks of the cyclones of the Indian Occan south of the equator in each of the years 1856-84, and the tracks for the years $1 \$_{4} 8-55$ are nearly ready.

With respect to the period 1876.84 , the arnas of cyclones and the distances traversel have not yet been determined, but upo n the whole the numbsrand duration of the cyclones decreased to a minimum in 1880, and then increaved till, in 1884, they were more than double of what they were in 1880 .

From the accompanying track-charts for the eleven years 1856 , 1857, 1810, 1861, 1867, 1868, 1871, 1872, 1879, 1880, and 1884. it will be seen that the number and duration of the cyclones of 1856 and 1857 were much less than those of the cyclones of 1860 and 1861 ; that the number and duration of the cyclones of 1867 and 1×68 were much less than those of 1860 and 1861 on the one hand, and also than these of 1871 and 1972 on the other; and that the numler anci duration of the cyclones of 1879 and 18So were much less than those of the cyclunes of 1871, 1872, and ESN_{4}.

It would appear, however, that in $\mathbf{1 8 8 4}$ there was less cyclone activity than in IS61 and 1872 .

UVIVERSITY A.VD EDUCATION'AL INTELLIGENCE

Oviorn. - The commencement of Michaelmav Term does nut witnew many changes in the fersennel of scientific departments in Oxforcl. A lecturet in lluman Anatomy has been appointesl, and commences work this term. The opening of the new phy-iolngical laloratorice at the hack of the University Museum complete the scheme for physioligical education which has lieen wo strenuully opposed by the enemies of scientific research in the University.

One of the nust noticeable changes in Oxforl to outward view is the opening of the new buildings in Trinity College. The new block of lmillings, designed ly Mr. Jackson, stretches lackward from kettle liall in Isroall Street to the Bathurst luilding and college chapel, making a new quadrangle bounded on the unth by liroall street and ITrinity Cottages (now thrown into the "quad"), on the west by Balliol, on the north by the
chapel and Bathurst, and to the east by the new buildings. The ncw "quad" is only second in size to "Tom quad" in Christchurch.

With our respect and sorrow for Dr. Bulley, late President of Magdalen, who died during the vacation, is minglen a feeling of intense satisfaction and not a little surprise at the appointment of his succensor.

In Mr. T. I1. Warren, the new President, Magdalen has gained a man no less distingui hell for his scholarhip than for his liberal views on education. Under the virile direction of her new president, Magdalen, already prominent among our Colleges for her recognition of natural science, may well hope to extend her usefulness. In the liberal Oxford of to day-in the teaching as opposed to the voting University-Mr. Warren' election has been received with enthusiasm.

The following courses of lectures and classes in Natural Science will be given during the ensuing term:-In the lhy ical Department of the Museuni l'rof. B. Price lectures on MydroMechanies. Prof. Clifton lectures on Ohm's Law ; Mr. Selby lectures on Electrostatics; and Mr. Walker on Elementary Mechanics. The laboratory is open for practical instruction daily.

At the University observatory Prof. Pritchard gives three courses. Firstly, on the Application of the Theory of Probabilities to Astronomical Observation; secondly, on Spherical Astronomy ; thirdly, on the Astronomy referred to by I'olyhius and other classical writers.

At Claristelurch Mr. Baynes lectures on Condlaction of Heat, and has a class for practical Instruction in Electrical Meavurements.

At Balliol Mr. Dixon lectures on Elementary Magnetism and Electricity.
In the Chemical Department Prof. Ollling lectures on the Phenie Compounds; Dr. Watts gives a course on General Onganie, and Mr. Fisher gives a coursc on General Inorganic Chemistry.
The latroratories are open rlaily for practical instruction.
At Christchurch Mr. Vernon Harcourt has a elass for Quantitative Analysis,
In the Biological Departments Prof. Moseley lectures on the Comparative Anatomy of the Vertebrata ; Mr. Spencer lecture on V:lementary Animal Morphology.
Prof, Burdon-Sanderson lectures on the Physiology of Motion, Mr. Dixey lectures on IIstology, and Mr. Thomson on Human Anatomy.

The Morphological and Physiolugical Laboratories are open daily for practical instruction.
Mr. Jackson lectures on Parthenogenesis, Mr. Thompmon on Oteology, and Mr. I'oulton on the Distribution of Animads
l'rof. Westwoul lectures on the Orders of Winged Arthropoda. Prof. Preatwich lectures on Geulogy: Physical (Questions, Volcanic Action, \&c.

At the Botanic Garden Prof. Gilbert lectures on the Kesults of Ficld Experiments, and Prof. Balfour gives practical instruction in V'getable Morphology and Physiology.
Or. Tylor lectures at the Museum on Social and Religious Systems.

SCIENTIFIC SERIALS

THE only structural paper in the August and September numbers of the Yournal of Botany is by Mr. Thomas llick, on the caulotaxis of British Fumariace:e. "Throughout the whole of this order," he states, "as represented in the British Isles, a remarkable unity of organisation prevails. In all cases, save that of Corydalts ssida, the main stem is a sympodiam or prewd. axis, compmed of bincial caulomeres, except in the basal region, where they are of a higher urter and uften in the apical region also, where they become ununtal." The paper is illestrated by woolcuts. In aldition the student of devcriptive botany will find two papers by Mt ! (. Baker : a monograth of the genus Grfhylhs (with two Hhites), and a synopsis
Cape species of Aniphofin, in n.llton to a continuation Cape species of Aniphofit, in n.llution to a continuation
synopsis of the genus Selaginellit, and the numbers wanting in other papers of interest in descriptive, ग1 and geographical botany.

The numbier for Octulier is an unurually interesting H. N. Kislley gives descriptions and figures of Byo re tions to the Britich flora, hoth belonging to
both from Scotland: Situww ferm

history of the Claremont Islands, by Gervase F. Mathew, K.N. Mr. Mathew gives an interesting account of the fauna and flora met with on these islands, in which he enumerates 23 species of birds and 20 species of lepideplera, of which 2 Lycarnur are probably new. He also gives some notes on the habits of each species enumerated.-An afternoon among the butterflies of Thursday Island, by Gervase F. Mathew, R.N. Mr. Mathew gives an account of a few hours' ramble on Thursday Island, resulting in the capture of 48 species of diurnal butterflies. He gives a detailed description of the larva of Ornithoppera pronomws. He also makes brief mention of the flora and physical geography of the island.-New fishes from the Upper Murrumbingee district, by William Macleay, F.L.S. Two new fishes are here described, and two others, probably new, are noticed. The new ones are a species of Murrayia, from the Murrumbidgee, near Yass, and a very blunt-headed species of Oligorus from the same locality. The two fishes alluded to as probably new are a species of Gadofsis from the Little River and a Galaxias from Yass Kiver.-On a new Diflorrofis, by J. Douglas Ogilby. Mr. Ogilby describes, under the name of Diplocrepis costatus, a species differing considerably from D. fumicrus of Richardson, and he points out that the fish is more nearly allied to the New Zealand genera. Niplecrepis and Trachelochismus, than to the Anstralian genera, Crepidozester.Jottings from the Biological 1.aboratory of Sydney University, by William A. Haswell, M.A., B.Sc., Lecturer on Zoology and Comparative Anatomy.-On a destructive parasite infesting the oyster. Specimens of diseased oysters from the llunter River beds were found to have their shells perforated and destroyed by a small boring annelid-Lencadore cilinala-which, by burrowing through the substance of the shell, causes the disintegration of the valves and the death of the oyster.- On come recent histological methods and their application to the teaching of practical histology.-On the ninute strueture of Pulvmer.

Parts

Academy of Sciences, October 12.-M. Bouley. President, in the chair.-The President announced the death on October 6, at Jasseron (Ain), of the eminent histologist, M. Ch. Robin, Member of the Section for Anatomy and Zonlogy.-Memoir on the botanical work of the late M. Charles Eilmond Boissier, who died at Valleyres, Canton of Vaud, on September 25, by M. P. Duchartre. Born at Geneva, in 1810 , of a French lluguenot family, M. Boissier first devoted his attention to the Swiss Alpine flora. But he will be remembered chiefly for his explorations in the Iberian peninsula (Grenada, Sierra Nevada, \&c.) in 1837, and in the 1evant (Gireece, Anatolia, Syria, Egypt, \&c.) in 1842-46. The results of his labours in these brtanical regions are embolied in his "Elenchus plantarum novarum minusque cognitarum quas in itinere hispanico legit" (Geneva, 1838): "Voyage botanique dans le midl de l'Espagne pendant l'annee 1837 " (Paris, $1839-45$) ; and "Flora orientalis, sive enumeratio plantarum in Oriente a Grecia et Egypto ad Indix fines hucusque olservatarum," five large volumes, 1867-1884. -On the neutralisation of the arountic acils, by M. Berthelot. The results are here given of experiments made on mellic acid, $\mathrm{C}_{24} \mathrm{H}_{6} \mathrm{O}_{24}=342$; meconic acid, $\mathrm{C}_{14} 1_{4} \mathrm{O}_{14}$, $3 \mathrm{H}_{2} \mathrm{O}_{2}=254$, and acrylacetic acid, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{5}\right)^{14}=114.4$ On sundry phenols, by M. Berthelot. The author here passes from the study of normal phenol to that of its homologue e, the cresylols and ordinary thymol, as well as the naphtols or phenols derived fiom naphtaline.- Note on the first volume of the Annalles de l'Obsertatoire de Birdonux, issued by M. Rayet, and presented to the Acallemy by M. Lawy. Besides a fall account of the foundation of the Bordeaux Olservatory in $187 t$ and of the instruments employed in it, this volume contains all the magnetic and meteomogical observations taken in 1880-81 and some of the results of the work begun in IS85 for the purpose of determining the co-ordinates of 23.000 stars in the Southern Ilemisphere between -15° and -30°, already observed by Argelander at the Bonn Observatory in $\mathbf{1 8 5 0}$. Effects of mildew on the vine as shown hy a comparison of the plants successfully treatel with a mixture of lime and sulphate of copper loy M. Nath. Johneton in the Weiloc iliterict, with plants in the same district attacked by the disease and lefe untreated, by MV, Millarilet and Cayon.-Obwervationv on the nature of invertel kugar and of elective fermentation, hy M. F., Maumenc. Further experiments confirm the ennclusion already arrived at that 31. I.eplay's theory of elective alcobolic fermentation is hased on

[^28]Amaba coli in dysenteric secretions, by M. A. Normand.-Observations on Palisn's new planet 251, made at the observatory of Paris (equatorial of the west tower), by M. G. Bigourdan.Observations of Brook's comet and of Palisa's new planet 25_{1}, made at the Observatory of Algiers with the 0.50 m . telescope. by M. Ramband.-Researches on vanadium : properties of vanidic acid, by M. A. Ditte.-Kinematic analysis of the locomotion of the horse by means of M. Marey's chronophotographic apparatus, five illustrations, by M. Pages. In this paper the author explains and illustrates the trajectory and velocity of the foot and pastern in the three principal actions of the borse -the step, trot, and gallop.-Note on the internal phenomena of muscular contraction in the primitive striated fasces, by M. F Laulanié.-On the physiological action of the salts of lithium, potassium, and rubilium, by M. Ch. Richet. The mean toxic dise with the chlorides of these alkaline metals has b een determined for the tench, frog. pigeon, rabbit, and some other organisms. - On the development of Fissurella, by M. L. Boulan. From a study of the biological evolution of this organism the author concludes that it is a true gasteropod, and cannot. therefore, be grouped with the order of worms; further, that the apparent symmetry of the adult Fissurella is, in reality, a disguised progressive asymmetry.-Influence of salt water on the development of the larvze of the frog, by M. E. Yung. The tadpole perishes in three to twenty minutes in the water of the Mediterranean containing 4 per cent. of salts, and in a few hours in a solution of marine salts in the proportion of i per cent. But it may be adapted to this element by a gradual preparation through a progressive series of solutions from 2 to 8 per 1000 .On the apparent rotatory movement of balloons recorded by aeronauts, by M. G. Tissandier.-Memoir on the fermentation of bread-stuffs in connection with M. Aimé Girard's communication on this subject, by M. G. Chicandard.

CONTENTS

Page
American Anthropology. By Dr. E. B. Tylor, F.R.S.593
Physiological Plant Anatomy 594
William Hedley 595
Letters to the Editor :-
Letters to the Editor :-Shot-fring in Mines,-W. Galloway ; Prof. C. G.
Kreischer 596
The Resting Position of Oysters,- J. $\dot{\text { K }}$. Cunning. ham

Two Generalisations.-W. M. Flinders Petrie
Meteors.-W. F. Denning 597
Statigrams.-J. F. Heyes 597
The Geological Survey of Belgium. By A. Geikie,F.R.S., Director-General of the Geological Survey ofGreat Britain and Ireland
597
The Third International Geological Congress 599
Botanical Exploration of the Chilian Andes 601
Krakatão 601
On the Colour-Sense. By Major Allan Cunning. ham 604
Ensilage 605
Notes 607
Our Astronomical Column :-
The Variable Star V Cygni 610
Occultation of Aldebaran on November 22 610
Double-Stars 610
Astrophysical Notes :-
Stars with Spectra of the Third Type 610
The Comet of 1866 and the Meteors of November 14Astronomical Phenomena for the Week, 188 g ,October 25-31611
Geographical Ilotes 611
The Great Ocean Basins. By John Murray 611

On a Supposed Periodicity of the Cyclones of the Indian Ocean South of the Equator. By Charles Meldrum, F.R.S.

University and Educational Ipte

Scientific S

SUBSCRIPTIONS to "NATURE."

| Yearly. | 28 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| Half-yearly | 14 | 6 |
| Quarterly. | 7 | 6 |

To the United States, the Continent, and all places within the Postal Union:-

| Yearly. | 30 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Half-yearly. | 15 | 6 |
| Quarterly. | 8 | 0 |

CHARGES for ADVERTISEMENTS.
Three Lines in Column 2s. 6d. 9d. per Line after.

		6	1	d.		
One-Eighth Page, or Quarter Column	.	.	18	6		
Quarter Page, or Half a Colrmn	.	.	1	15	0	
Half a Page, or a Column	3	5	0
Whole Page	6	6	0			

Fost Office Orders payable to MACMILLAN \& CO. OFFICE: 29, Bedford Street. Strand, W.C.

J. ORME \& CO.,

 65, BRBBICAN, LONDON.MANUFACTURERS and IMPORTERS
or
Scientific Apparatus
and
CHEMICALS.

BAKER'S PATENT CALORINETER,

A NEW APPARATUS
For demonstrating to Science
Classes problems in Specific Heat.

For full particulars worite to the SOLE AGENTS-
J. ORME \& CO., 65, Barbican, London, E.C.
Complete Price List of Apparatus and Chemicals, 2s. 6 d .

Why Use Gas?

 LA MITRAILLEUSE.A. RETTICH'S Patent Burser for Mineral Oil Lampt gives double the light of a Duplex, eary to Trim and Light, inexpensire to use. Sold by all Respoctable Iromonowiers and Lampl IVarchewser.
Buy only those Marked
RETTICH'S PATENT. NANTED-"NATURE," No. 56.-Apply

SPECTACLES V. OPHTHALMIC 1RREGULARITIES.

W. JOHNSON, Ophthalmic Optician, received the HIGHEST and ONLY AWARD granted for SPECTACLES in LONCON, International Exhibition, 1862,

Patronised by the most eminent Oculists and Medical Men.
W. JOHNSON, Optician to the University Hospital, , 88, TOTTENHAM COURT ROAD.
" Remarks on Spectacles," post-free.

SANDERSON \& Co., Sole Inventors of the Solid Copper Tape

LIGHTNING CONDUCTOR

In Contiouous Lengths, without Joints, as supplied by them to HerMajesty"s Government and the Colonies ; the ftalian Government. the Argentine Republic, and other Foreign Governments; the Roya! Courts of Justice, Strand, the Houses of Parliament, \&c.
The Jery Commission, acting on the Reports of the International Juries of the Heaith Exhibition, have awarded a Bronze Medal in Class 26 to Messrs. Sanderson \& Co. for their Solid Copper Tape Lightning Condactors ic Continuous Lengths, without Joints, and of High Coadactivity Copper.
LEADENHALL HOUSE, เоร, LEADENHALL STREET, E.C.

OPRPRIMANIN BROS

172, ST. JOHN STREET, LONDON, E.C.

BRONZE MEDAL Health Exhilition, DYNAMOS for so Lights, $<$ \% ; zo Lights, 430 . The Orfikmann INCANDFSCENT LAMP. 3 . 6 d , each ; all candle-powers. New Pocket Accumalator, complete with Rutton-hole Lamp, 6o ${ }^{12}$. Post.free with Instruction.
Temporary Installations. Price Lists, Stamp; Catalogue, 6d. [Plense MEntion this Parkn.] Sample Lamps, 2N. 68, post-free. : $=0$?

THE CELEBRATED

Is unrivalled for Gardeners ${ }^{\circ}$, Foresters', Farmers', Joiners", and Amatenrs" nse. It requires no oil. Sharpen with a spittle or water. Puts on a keen, sharp edge; no hambog about this. Has stood the test of 100 years. Cni in Hones for Axes, Hedge Knives, Razors, Penknives, and Plane Irons, Rc. Honourable Mention, Paris Exhibition, 878 ; an. Bronze Medal, London International Exhibition, 1884. Ask your Ironmonger or other retail hoose to get you one, and give my address; if he won't, drop me a note.

JOHN C. MONTGOMERIE,
Tam O'Shanter Stone Hone Works, Dalmore, Tarbolten Station, R.S.O. Avrshire.
[30]
SECONDEDITION, $G R|F| F \mid N, S$ CHEMICAL HANDICRAFT. A CATALOGUE OF CHEMICAL APPARATUS; ILLUSTRATED, CLASSIFIED, DESCRIPTIVE, Demy 8ivo, $4^{30} \mathrm{pp}$., Illustrated with 1,600 Woodcuts.
Most Complete and Cheapest List of Apparatus. IOHN J. GRIFFIN AND SONS, 22, GARRICK STREFT, LONDON, W.C.

HOLLOWAYS OINTMENT

AN
 INFALLIBLE REMEDY

For bad Legs, bad breasis, OLD WOUNDS, sores and ULCERE. If effectually rabbed on the Neck and Chent, it oures SORE THROATE, BRONCHITIS, COUGHS and COLDS; and for GODT, RHEUMATISY, and all gkin Diseases it is unequalled.

Messrs. MACMILLAN \& C0.'S NEW B00KS. LOUIS AGASSIZ:

 HIS LIFE AND CORRESPONDENCE. Elited by Elizabetil Cary agassiz. Two Vols. Crown 8vo. 18s.
NEW NOVELS.

Now Ready. A Popular Edition, Price 6r, of the Iate HL゙GH CONWAY'S NEW NOVEL,

A FAMILY AFFAIR.

By HUGH CONWAY,
Author of "Called Back," " Dark Ilays," \&c. Crown 8vo. 6s.

A NEW NOVEL BY MISS VONGE. NUTTIE'S FATHER. By CHARLOTTE M. YONGE., Author of "The Heir of Redelyffe," \&c. 2 Vols. Cmwn Svo. 12 s .

MR. WILLIAM BLACK'S NEW NOVEL. WHITE HEATHER. By WIILLIAM BL.ACK, Author of " A Princess of Thule," "The Strange Adventures of a Phaton." 3 Vols. Crown Svo. 31s. 6d.
MACMILLAN'S POPCLLAR 6r. NOVFLS. New Volumes.
STORIES REVIVED.
By HENRY JAMES,
Author of "The American," "The Europeanc," \&c.
Two Series. Crown 8vo. 6s, each.

VOICES CRYING IN THE WILDERNESS.
 A NEW NOVEL. Crown 8 vo. 7s. $6 d$.

EUROPEAN BUTTERFLIES, A HANDBOOK OF. By W. F. DE VISMES KANF, M.A., M.R.I.A., Member of the Entomological Society of L.ondon, \&.c. With Copperplate Illustrations. Crown 8vo. 10s, $6 d$.
COMPOUNDS OF CARBON ; or, Organic Chemistry, an Introduction to the Study of. By IRA REMSEN, Profestor of Chemistry in the Johns Hopkins University. Crown 8vo. 6s. 6J.
A TEXT-BOOK OF THE PRINCIPLES OF PHYSICS. By ALFRED DANIELLL, M.A., I.I. B., D.Sc., F.R.S. E., I_ate Lecturer on Physics in the School of Medicine, Edinburgh. With Illustrations. Sccond Fidition, Revised and Enlarged. Medium 8vo. $21 s$.

THE LAW OF THE CONSTITUTION, Lectures Introductory to the Study of. By A. V. DICEY, B.C.I., of the Inner Temple, Rarrister-at-Iaw, Vinerian Professor of English Iaw in the University of Oxford, Fellow of All Souls' College, IIon. LI.D., Glasgow. Demy Svo. 12s. 6d.

MRS. MOLESWORTH'S NEW STORI'-BOOK FOR CIIILDREN.
"US": An Old-Fashioned Story. By Mrs. Molesworth, Author of "Carrots," "The Cuckon Clock," \&e. With Illustrations by Ẅalter Crane. Crown Svo. 4. 6i. tile fegitisil CitizeN series, Eilited by Hexry Craik, M.a., Oxon., Ll. d., Glaggow. New Yolame.
THE PUNISHMENT AND PREVENTION OF CRIME. By Col. Sir FIMMUNDF. IUC CANE, K.C.B., R.F., Chairman of Commissioners of Prisons, Chairman of Directors of Prisons. Inspector-General of Military Prisons, Surveyor-Cieneral of Prisons, Crown Svo. 3r. 6d.
"Sir Edmund Du Cane's contribution to Messrs. Macmillan and Co,'s excellent series of handlooks is a succiact and interesting summary of the subject with which it deals. In accorlance with a precedent which the other volumes secm to have establishod, the author treats his matter from an historical, a technical, and a practical point of view respectively, from each of which standpoints he speaks with knowledge and authority. "- Afhemrum.
OVER-PRESSURE IN HIGH SCHOOLS IN DENMARK. By Dr. IIERTEL, Municipal Medical Officer, Copenhagen. Transly te Danish by C. GODFREY SORENSEN, with Introduction by J. CRICIITON-MROWNE. M.D., I.L.J. Ming. 3. 6d.
THE TENNYSON BIRTHDAY BC \&y Fथमу SHakkspfar. In Two Sizes, (t) Fixtra Fcap, 8rn, Edition on 1 Iar.
THE PH EDO OF PLATO. Edited,
AN INTRODUCTION TION. HyJ. II. LIPTON, M.A.,

S. IV. sTICOTI.

In Casks, $12 / 6$ per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts.*

* Bottles charged 2 ' per dor., and allowed at the same rate if returned; but they muat be paid for with the Beer.

Neither sugar, saccharum, nor any of the many new Irewing Mat-rials are used in the manufacture of the " S . N." Stout; it is Brewed entirely from the finest Malt and Hops; it is, too, tnore hopped than Stout is generally ; therefore, besides being very nutritious, it is an excellent Tonic and particularly suited for invalids, ladies nursing, or anyone requiring a good strengthening beverage. It is a "Sound Nutritious" Tonic. and very much recommended by Medical men.

VFALTEAMEROTEERS,

THE "HALFGUINEA" ATE BREWERY, LONDON. S.W.

WALL PAPERS FREE FROM ARSENIC.

WILLIAM WOOLLAMS \& CO., Manufacturing Paper Stainers,

ane the Originas Makers of

ARTISTIC WALL PAPERS, Guaranteed Free from Arsenic.
Sole Address-110, HIGH STREET, MANCHESTER SQUARE, LONDON, W.
May be obealned of all Decorators. Special Prize Medal. Sanitary Institute Award of Merit, International Medical and Sanitary Congress.
silver Medal, Nationa! Healih Society, 18 t GOLD MEDAL, INTERNATIONAL HEALTH EXHIBITION.

WOODHOUSE \& RAWSON.

SUPPLIERS OF ALL ELECTRICAL APPLIANCES,

Orfices-in, Queen Victoria Street, E.C.
Lamps.
Dynamos.
Accumulators.

Lamps.
Accumulators.

Fittings. 8witches. Safety Junctions.

Works-Cadiy Hall, Hammersmith Road, W Carbons. Wire. Instruments.

Battery Supplies. Telephone Supplies. Electric Bells.

SOLE MANUFACTURERS OF THE WOODHOUSE AND RAWSON INCANDESCENT LAMP. INQUIRIES INVITED.

[By Appointment to the Royal Instifution of Great Britatn,] SUCCESSORS TO W. LADD \& CO.,
BEAK STREET, REGENTSTREET, LONDON, W.
MANUFACTURERS OF SCIENTIFIC APPARATUS OF ALI CLASSES FOR SCHOOLS, COLLEGES, OR PRIVATE RESEARCH.
WIMSHURST AND VOSS INDUCTION MACHINES OF IMPROVED PATTERRN.
Illustrated Catalogue, Revised Edition, per post $8 d$.

SCIENTIFIC WORTHIES.

The following is a list of the Portraits that have appeared in the above Series.

MICHAEL FARADAY.
THOMAS HENRY HUXLEY. CHARLES DARWIN.
JOHN TYNDALL.
GEORGE GABRIEL STOKES.
SIR CHARLES LYELL.
SIR CHARLES WHEATSTONE.
SIR-WYVILLE TIIOMSON. ROBERT WILIELM BUNSFN. ADOLF ERIK NORDENSKJOI.D. SIR WILLIAM THOMSON.

HERMANN L. F. HELMHOLTZ.
SIR JOSEPH DALTON HOOKER.
WILLIAM HARVEY.
SIR GEORGE B. AIRY.
J. LOUIS R. AGASSIZ.

JEAN BAPTISTE ANDRE DUMAS.
RICHARD OWEN.
JAMES CLERK MAXWEI.L.
JAMES PRESCOTT JOULE,
WIT.LIAM SPOTTISWOODE. ARTHUR CAYLEY.

SIR C. W. SIEMENS.
Proof impressions of these, printed on India paper, may be had from the Publishers, price 5s. eai\%, wr the Set of 23 Portraits in a Handsome Portfolio for $£ 6$ os. od., carriage paid.

THE PORTFOLIO MAY RE HAD SEPARATELY, PRICE $6 s$.
Cheques and P.O.O.'s payable to MACMILLAN \& CO..
LeA 0 : "NATURE" 29 , BEDFORD STREET, STRAND.

\therefore ．ふNOMICAL TELESCOPES．

${ }^{*}$ ．ALSI＇PUSSIBLE QUALITY．
\therefore N．心c．
 …．．．．．．．tis ，Ihill leas，our own make， 3 Eyepieces，sec．，Equatoreal Stand ．．．Li2 12 。
（4．．．sayuic camera，with Instantaneous Shutter，and an adaptor to fit it to any vis．is．sumplose
Ga：cs，wumpere dry plate apparatus ．．．．．．．．．．．．．．．．．．．．．あ1 10 \therefore ：－vilitese sry phate apparatus，double rising front，swing back，rack to focus，\＆c．，\＆c．\＆1 116 \therefore ，wì bustioes，instantaneous shutter，screw motion to tail board，and every recent

Hhustrated Photo Catalogue 2 stamps．

い

（W\} " EXCELSIOR

 THE NEW PATENT

 THE NEW PATENT}Ten

The The leading peculiarity of this Mattress is the unique cork－

On．Wow．tplv of AnAngewerat permans the free movement
 ．．wochite wolathol we esch，and effectually prevents
 Prizemedals， Fourteen
Certificates of Mertt lua＂кictetsiok＂\＆＂MATLOCK＂COUCHES．

And
＇Matlock＇ BED－RESTS springs of great strength and reliable temper，giving advantages possessed by no other make．The helical springs obviate the tendency in all woven wire matresses

Ketail from Cabinet Makers，Upholsterers，\＆c．
 CHORLTON \＆DUGDALE，MANCHESTER．
 Illustrated Descriptive Circulars and P MANCEESTER．

L2 2 C

OBJECTS FOR THE MICROSCOPE：

The Lord＇s Prayer engraved on glase with a diamond is the e－goeth part of a square inch
Do．Do．in the $8 \cdot 1000$ th part of a square inch， $35,6 \ddot{d} ; 1+10$, ，ooth Section of Human Skin，with hair follicles and young hairs
Firtal involuntary Muscle，the Arteries injected
Srialet of Fiel，for Polaricope
Skin of Sule，Scales in sitn，for Polariscope
Cinchonidine，Salicine
 cales and hiairs of Insecte arraqzed to repreermit Bouquets and Vasea of Flowers，\＆c．，very besutiful，for Ssirtas，Acc．Pricen，68．64，
71．6a．，1or．， 2 ，，and sor．
E．ges of Parasite of Humming Bird，on Feathar in siftu．．．

II．W ATSON \＆SONS，optICIANS TO HER MAYESTY＇S GOVERNMENT， 313，HIGH HOLBORN，LONDON，W．C．

مonaumption of GAS guaranteed to （i） 10.75% loss than ANY other fia R Aithe per brake horse－power．
 Impulse every R
the alesillest running O as Engine whatial in Y＇il PATENT SELF．STAR The Safest，Sim
 Requiting little L

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE
"To the solid grouna
Of Nature trusts the mind which builds for aye."-WORDSWORTH

No. 835 , VoL. 32]

THURSDAY, OCTOBER 29, 1885
[Price Sixpence

AMATEUR PHOTOGRAPHY.

MARION'g Britannia Dry Plates are the Best and miniof's Photographic Ontfis. The Largest and Best Selection for the Tourist, Artist, Bicylist, Military Man, and others. Epecial Outats for Beginnors. Price for Completo get, trom 40s. and upwards.
俭ARION'g Academy Camera.
MARION'SiMiniature Camora,
MARION'B Rectilinear and Portrait Lenses,
RARION'g Ready gonsitised Paper.
EARION's Instantaneous Bhutters.
MARIOT'B Enlarging Apharatus and Magic Imantorn. MARION's Best Fronch Mounte.
maRIOR's Belf-Adjusting Rolling Press and Burnisher, mARION's Practical Guide to Photography. Second Edi-
tion, Revised and Enlarged, giving clear and precise Instructions for Learning and Practising Photography Price 2s. 6d. post free.
Free Lessons in Photographyto Purchasera.-DEarion and Co. have erected a Gallery in Suho Square, specially for giving Lessons. Printing from Amateurs* Negatives, Enlarging.
MARTON's Alpha Paper Prints by Gasilght in One Minute. The printing process of the future. Sample packet 55 .
Photographs Mounted, Arramged, \& Boundinto Volumes. Chemicals, Mounts, Albums, Scrap Books.

PRICED LIST FREE ON APPLICATION.
MARION \& Co., 22 \& 23, Soho Square, London. SHOW ROOM-GROUSD FLOOR.
(519)

R. \& J. BECK'S

NEW MICROSCOPE,

"THE STAR."

PRICES.
Stand, with t -in. Object-
glass
Stand, with $1-i n$, and $\frac{1}{3}-\mathrm{in}$.
Object-glasses
Stand, with Rack and Pinion, coarse adjustment, 2 Eyepieces, and t-in. Objectglass ..

330
Full Deseriptive Pamphlet sent on Applicntion to
Cornhill, London, E.C.
MEDAL

- Exhibition, 1885.

THE BEST MAGIC LANTERN MADE.

New Mineral Oil Russian Iron Lantern, 4 -inch Compound Condensers, Brass Stage and Sliding Front, Compound Achromatic Portrait Iens Olijective with Kack Adjustment, and Improved Four-Wick Lamp in Japanned Block Tin Case. Price $£ 3 \mathbf{I 5 s}$. This Lantern can at any tume be fitted with Limelight Affaratus without Alleration.
new hllustrated catalogue of lanterns post free, 34.
TOEEN EREOWNINEG, 63, STRAND, LONDON, W.C. NEGRETTI \& ZAMBRA'S
THEODOLITES, LEVELS,
Circumferentors, MINERS' DIALS, POCKET COMPASSES, Drawing INSTRUMENTS, RULES AND SCALES, ALTITUDE ANEROIDS, \&c.
 Illustrated Price lists posted Free.

NEGRETTI \& ZAMBRA,

SCIENTIFIC INSTRUMENT MAKERS TO Hen Majesty the Queeno
Ilollarn Viaduct ; 45, Cornhill; © 122, Regent Sh., Lowdon. PHOTOGRAPHERS-CRYSTAL PALACE SYDENHAMK ()Ogle

ROYAL AGRICULTURAL SOCIETY OF ENGLAND.

The Appointment of SENIOR ASSISTANT in the Chersical Iaboratory is ncw varant, Salary Liso fer Annum. A thorough knowledge of Theoretical and Practical Chemetry is requisite. There is also a vacancy for a JUNIOR ASSISIAN1, Salary commencing at $\kappa 70$ per Annum.
Applications (inclosing Testimonials) for either of the above to he made by letter only to Ir. J Accolstis Voklciek, 12, Hanover Square, W.

INTERNATIONAL EXHIBITION or

INDUSTRY, SCIENCE, AND ART.
EDINBURGH-MAY TO OCTORER a8R6.
I'atron-HER MAJFSIY THE QLEEN.
Preadent- The Mawtit of LoTHLA, K.T
The F. ©isL of Alukbers
$\left\{\begin{array}{l}\text { The EAKL or Rorbyvky } \\ \text { The Loky frovoit of t }\end{array}\right.$
The lond frovoit of Eidinn'mote.
The FXHIBITION will be OPEN to the
PRODUCTS, MANLF:NTTERES, \&c, of all C'UNTRIES,
All AI'PIICATIONS f. SPACE must be loalsed with the Secretary, Jampe Marchbank, S.S.C., 2\%. Hanover Stret, Edinburgh, HEFORE: ANCAK 1, 188\%-Manager, H A. TrkutF:
CLASS XI, comprices all kinls of sCII:NTIFIC APPITAVCE:S

EVENING LECTURES TO WORKING MEN.
NORMAL SCHOOL OF SCIENCE AND ROYAL SCHOOL OF MINES.
The Fifst Course, cenvisting of Six I ertures on ${ }^{-1}$ Common Plants, and How They Gitow," by $1 \frac{1}{2}, 11,11$. sidil I, M.A., will he delivered at the Museum of Practical Cie logy in Jermyn Street, S.W., nommencing at

Tickets may lie obrained by Worhing Men only, on application at the Muterm on Mls nday t verning, Nosemler 7 , from 6 to tonictick p.m. Fee for the ("corve, ed. F ach applicant is repursted to lir nig hiv name, adifrese and cecupation written on a puece of paler, for which the Tichet well be exchanged

ONSLOW COLLEGE,

183, KING'S ROAIs, S.W
NOW COMMENCING, - Day and twening Claves in Ceolengy, Physics, Chemistry, thysiology, electric Encineering, ant other anlifects
 Fees 58 , to 12s. the Seswion of 9 monthe for I.venng Wurh, hiply for Troapectos to the l'misutrat.

TO BE SOLD.-A CLARKE'S WINDOW
 Ofice Halifax.

HERMANN HOFFERT, D.Sc. (Medalist, Lond n), A.R.A M., firegare, Topils for the Arm\%, (i=vores Itill, Civil
 Terms muderate - AIply, suctice Schuld, wuth Kelisinston

CHEMICAL APPARATUS. Wholesale, Retail, for Culleges, Schools, and Chemual Worka, New Catalugne of go pases and $5 \cdot \mathrm{~m}$ elear Illustratums, pont free, ad-WII.I.IAM Hume., LDthian Street. Edinhurnh.
BOOKS (Secondhand), Miscellaneous, Re mainders. \&c -C: HERAF:RT. Enislish and Foreign Rook veller, 3 r9. Gorwell Road, L,ondon, F. C. Catalugue free anteceipt of two stamps, Libraries, Olid Hink e, vnd Parchment pon haced.

MATHEMATICS (London and Suburbs)Grvelents attended (at their own homes if they so prefor) hy a lich

HALF.PRICE will be given for "Nature"

FERNERIES fitted up with Preserved
 and liall Koomen Churster (Fajel. T weatres, Ki

LIVING SPECIMENS FOR THE MICROSCOFE

GOLDMEDALawarded at the FISHERIESEXHIBITION to
THOMAS BOLTON, 57, NEWHALL STREET, BIRMINGHAM
Who has last week sent to hie subscriters Rcotlets of Cisws covered with a great varicty of I'cnd Life, ir cluding Acine ta grandia, I'endroscma radiars. Serticella, cargarula. Carchesium rolysirum, Carcliesitum spetat, le Crercilaria ratans. (Ophrydium sesile. Thuricola valvata, Cothurcu

 lata, He has alco sent cut Hy dia, Ancrlia, Vorticelia, Cray fish, and ofter Specimens for (Huxley and Martin's) Wiological Laboratory work.
Weekly Announcements will be made in thin place of Orgenisrr s T. I supplying.

Specimen Tube, One Shilling, post free.

Trecmity-six Tubesin cowrse of Six Months for Swbscriptrow of $L 1$ is or Twelpe Twiss fow ios. 6d.
Portfolio of IJrawings, F leven Parts, 1s, each.

MICROSCOPIC OBJECTS

The folluwing Yeries rave recently been prepared and are ricm en tale
 $j R$ other Series have teen isoled all at 20 . cach. List an Arrlit attus.
EDWARI, W.ARI. 249, Oxforl Siseet, Manchever,

MICROSCOPIC OBJECTS FOR HIRE

Histological, Botanical, Geological, by the best Mounters. I.t out on most moderate terms. Particulars of W. Wrils, Dalra a Koad, Forest Hi!

MINERALOGY AND GEOLOGY.

PROFESSORS, COLIECTORS and VISITORS to LONDON are INVITED to INSPECT Mr. HE NSON'S STOCK of CHOICE MIN KAIS, \&c., Rc. At the PRESENT TBME he has a PokTICLLARI FINE.CKISTALLISFD NUGHEI of NATIVR GOLD, WEIGHT gea PINK AMPPHYILITF, CHESSVLITE, EMFRALDS On MATRIX PYKOMORI'HITE (VERY, WASE FORM), CERUSSITL., CRYSTALI ISFD MALACHITE, and ROTRSOIDAI. CIIAICFI'ONY, Mr TRORICIRONS and STONES. TOIISHED AGAIES and LABRA HORHES.
A Larga Series of ROCKS, almo MICROSCUPIC SECTIONS of tre vame.

Lists on Application. Hammery, Chisels, and Hammer Strape.
PRIVATE LESSONS AND EVENING CLASSES
BLUWIIIPE CASES AND APPARATU'S. Cata'oguer free.

SAMUEL HENSON.

277, STRAND, LONDON.
Opposita Norfolk Street

SIX PRIZE MEDALS

AWARDED FOR GEOLOGICAL COLLECTIONS
Geological Collections especially adapted for Teaching an sopplied to Scieert and Art Iepartment, and used by all Iecturers and Teachers in
Great Britain, \&c.

New and Rare Minerals constantly arriving from all parts for selection if Single Specimens.
ROCK SECTIOVS AND KUCK SPECIMENS :
The largest Variety in Fingland.
New Catalogues and Lists on application to-
JAMESR. GREGORY.
38, Charloite Street, Fitzroy Square, Lundon. Establithed ay V'ears in London.

CABINETS FOR MINERALS, FOSSILS, \&c.

MINERALS AND FOSSILS

SINGLE SPECIMENS OR COILECTIONS.

F. EI. BUTIER,

Assoc. R. Sch. Mines Lond.,
M.A. Oxon, and L.S.A. Lond.,

Successor to the late R. TALling,
180, BROMPTON ROAD,
LONDON, s.w.
Five minutes' walk from the Natural History Muterm, S. Kensington.

HOW \& CO.'S

Geological Transparencies for the Lantern. Descriptive Ciatalogne oa Application.
Walker's specific gravity balance for rocks AND MINERALS.
HOW \& CO.'S POCKET MICRUSCOPE LAMP, 8s. 6d.
alCR. PRTROLOGY.-Sections of Pitchstones, Obsidians Granites Syenites, Diorites, Gabbros, D slerites, Bacalts, Tachylites, Trachytes, Indestes, Porphyrites. Rhy Dites, Lavas. Asher, Gneiss, Sehists, LImet ones. *c.. price m .6 d . each.

> IAMES HOW \& CO., 73. FAalingony Stankt, London

LIGHTNING CONDUCTORS, ELEC-

 to undertale Contrasts for thic erection of Lishtning Conduciors and Electric Bell Inctallations: als, Temporary Installations of Eilectric Lisht undertaken. Lightning Conductors Fxamnel, Tetted and Repairel thlertrical Kepuir, dones Anotations for the supply of material for f.lestrical Wurh, Esvinates Free. Special Tenns to the Trade

LA SEMAINE FRANÇAISE: a Weekly Newepaper and Review in the French Language. Politics, Literature, Newsinceper art. Varieties © Notes. Price ad, through Booksellers, and ai
Scient.

LA SEMAINE FRANÇAISE: Journal Français pour l'Angleterre: Politique, Litterature, Sciences, Ars, Variétes, Nouvelles et Noter Un oxemplaire par la poste, afd , en timbres poste. Abonnement frnneo par la poste-un an, 1oo, iod. ; six mois, ss. sd. Prix sed. ches rous les librares et aux gares des chemins de fer. Un s'ahonn aux bureauk, 44t. Strand, Londres, W.C.
LA SEMAINE FRANCAISE.-"'La Semaine Fran. çaise' has been broaght out in London for the benefit of those Englisi readers who may wish to study contemporary Freneh from all points if lew, instead of confiniog their reading to one particular Gallic prnt. it certainly merito success." $-G$ rafthic.

Publishing Office, 44I, Strand. W.C.
NORTH BRITISH AGRICULTURIST,
the chief Agricultural Journat in Scotland, circulates extensively among Landowners, Farmers, Kesident Agents, and othersinterested in the manazement of land throughout the United Kingdom.
The AGRICU1.TURIST is published every Wednesday afternoon in time For the Evening Mails, and contains Reports of all the principal British and Irish Markets of the week.
Thespecis attentionof Land A gents is directed to the AGRICUI.TURIST as one of the jest existing papers for Advertiving Farmsto be Let and Estate, for Sale.
Advertisem addresting themselves to Farmers will find the AGRICUL. TURIST a first-class medium for reaching that Class,
Price ${ }^{4 d}$. By pote 3 3d. Annual Subseription, payable in advance, 14 f.
Ofices-337, High Street, Edinburgh; and 145. Queen Victoria Street. 1 ondon, F..C.' Money Orders payable to C. and R. AndFreon.

THE GARNER.

november
Covirsts:-England ans Science (A. Kamsay, F.G; S.)-Mollusca (E. H. Kowe)-Burd-Migration-Prairic-Lands.-Notes and Querics, \&c. Post-free, ald: Annua! Subscription, 2r, 6d.
London: W E. LIOWERS, 23, Warsey Street. Walworth Road.

Un the ist of every Mloath.

JUURNAL OF BOTANY, BRITISH AND FOREIGN.

Edited by Janes Battren, F.L.S, Bntuh Museum.

Contants:-Uniginal Articles by leading Botanlats-Extracts, and Notices of Books and Memoirs.-Articles in Journals.-Botanical News.Proceedings of Societies.

London: WESI; VEWMAN, \& CO., s4. Hatton Garden, E.C.
THE ENTOMOLOGIST:
AN ILLUSTRATED JOURNAL OF BRITISH ENTOMOLUGY Edited by Johm T. Caraington, With the Assistance of
Firdeatek Bond, F.Z.S. John A. Power, M.D.
Edwamb A. Fitch, K.L.S.
John A. Powra, M.D.
F, Buchanam White, M.I).
Contains Articles by well-known Entomologisls on all 1ranches of the Science ; on Insects injurious or beneficial to Farmo or tiarden; Notes on Habits, life-llintories; occurrence of Rarities, \&c.; ; there are Monthly Lists of Duplicates and Desiderata.
Numetous Wondevt Illustrations, to the printing of which eapecial attention is given, and occasional Lathograrhed and Chroso-Litho(ivaphet Plates.

SIMI'KIN, MARSHALL, \& CO., Stationers ${ }^{\circ}$ Hall Conrt.
16r. per Ann., zor. Post Free.
DER NATURFORSCHER.
Wochenblatt zur Verbreitung der Fortschritte in den
Naturwisenschafien.
Herausgegeben von Dr. Wit helsh Ski.arkn.
A Weekly l'eriodicaldevoted to Natural Science. $5 \geqslant$ Noa, iss. Specimen Numbers may be had tlirough any Forcign Hookseller, 1854commenced the XV'Itth volume.
Berlin: DÜMMLEER, 77, Charlottenstrasse, S.W., and all Booksellers

THE BREWERS' GUARDIAN:

A Fortnightly Paper dev sted to the Protection of Brewers' Interests,
l.icensing. I.egal, and I'arliamentary Mlatters

Review or the Malt and ilor Thalje ; and W'inf and Spiatt Trape RrC kb.
" The Arewers' Guardian " is published on the evenings of every alteraate Tussday, and is the only journal offially connected with brewing interests. Suhecription, 16 s .6 f fer annum, piat free, dating fr im any quarter-day. single Copies, is, each Registered for transmission abrnad.

OFices-s. Ronif Court, Walhrook, Inndon. F.C.

THE "HANSA,"

Published since 886_{4} in Hamburg, is the only independent profescional paper in Gerinany dedicated exclusively to Maritime Objects, Esay*, Critiques, Reviews, Reporss, Advertisements. Strict eye hept upon the development of Maritime Aflair in every respect. F.very second Sunday one Number in flo at lesst; frequent sugplentert- and drawings. Sulacription at any time ; preceding numbers of the 5 car furnished subsequently. I'rice ins. for twelve monthe. Advertinements ad, a line widely spread by this paper; considerable abalement for 3, 6, 13 months' insertion. Tlusiness Office: Aug. Meyer and Dieckuanh. Hamburg. Alterwall, 2B. Edited by W, von FkVvikN M.K.. Hamburg, Alexander Street. B.

The AUTOCOPYIST (from 208.) furnishes excellent

BLACK COPIES

in Lithographic Style, of the ORDINARY WRITING (also Shorthand Arabic, \&c), Shetches, Music. Kasy, Economical-The AUT,JCOPVIST CO., 72, London Wall, London.

S. IV. STCDIUR.

In Casks, 12,6 per 9 gals. In Bottle, $3 / 3$ per doz. Impl. Pts.* * Bottles cliarged s^{\prime} - per dor., and allowed at the same rate if returned; but they muss be pand for with the fleer.

Neither sugar, sacchanmm, nor any of the many new Irewing Mat-riak are used in the manufacture of the " s . \mathbf{N}." Stout: it is Direwed entirely from the finest State and Hops; it is, too, more hopped than Stout is generally; thierefure. Ievilev lieing very nutntious, it is an excellent Tonic and particularly suited for invalid, lution nursing, or Anyone requiring a good strenpthening beverage. It is a "Sound Nutrious" Ionic. and ver; much recommended by Medical men.

VELTEAMEROTEERS,
THE "HALF.GUINEA" ALE BREWERY, LONDON, s.W.

A NEW POEM BY LORD TENNYSON.
Se macmillan's magazine for novearber.

Now Ready, No. 313. Price One Shilling.
 MACMILIAN'S
 MAGAZINE.

CONTENTS FOR NOVEMBER.
t.-VASTNESS. By IORD TENNYSON.
2.-CULTURE AN'S SCIENCE. ByE. A. SONNENSCHEIN.

3-AUSTRIA'S POLICY IN THE EAST.
4.-ON CLASSIC GKOUND.
5.-THE DEPKESSION OF "ENGLISH." By W. BAPTISTE SCOONES.
6.-SOME AMERICAN NOTES.
7.-GOUVERNEUR MORRIS AND TIIE FRENCH REVOLUTTION.
8.-MRS. INMOND. Chapters XXXII.-XXXV. By MKS. RITCHIE (MISS THACKERAY)
9.-AN INDIAN VILLAGE.

MACMILLAN \& CO., LONDON.

Just Published, Price 13s, 64.

LIGHTNING CONDUCTORS: THEIR IISTORY, NATURE, AND MOWE OF APILICATION, By RICHARD ANIDF.RSON, F C.S., F.G.S., Member of the Suciety of Telegraph Vagineers and of E.lectriciany, Avor. Inst.C.E.., Managing Telegraph Eagineers and of Flecinciant, Awor, Inst.C. E., Managiag Yartiner of Sanderson \& Co., Elecirical Enzineers and Lighithing-Lonductur Manufacturers, london and Huddersfield. Wihh numero
Illustrations. Third Edition, Reviued, Re-arranged, and Einlarged. London: E. \& F. N. SPON, 46, Charing Cruas.

New Vork: 445, Hroome Street
Just Published, Second F.dition, Revised and Illustrated, price 34, 61.
THE OWENS COLLEGE COURSE OF elementary hiology: Part I.-Tue Froc, an Introduction to Anatomy and Ifatolocy. Hy A. MILNi.S MAKSHAL.I, M.I., FR.S., I'rofesmor of luology and Comparative Anatomy in the Owens College, Victuria Lisiversity.
london: SMIIH, ELIIFR, \& CO.
Manchester: I. E. CORNISH.
NEW WORKS ON CLIMATE. By JAMES CROLL., LL. D., F.K.S.
1.

DISCUSSIONS ON CLIMATE AND COSMOLOGY.

CLIMATE AND TIME IN THEIR GEOLOGICAL RELATIONS.

Illustrated.

Is Pust 8vo, Cloth, Price tos. 6ed, each.
Edinturgh: ADAM 量 CHARI.ES BLACK.
Second Fdition, with $=3$ Charts and Diagrams, $8 v o$, an

THE OCEAN.

A TKE:ATISE ON OCEAN CURKEXTS AND TIDES ANI) THEIR CAUSES,

BY WHLLIAM LEIGHTON JORDAN, F.R.G.S.
London: LONG;MANS, GRFEN. \& CO.
ENGLISH WORTHIES.
F.dited by ANILREW LANG, M.A.

Charles DaRWin. By grant allen. Crumen. 2s. 6 d
Ofher Volunes in Preparation. Iondin: LoNGMAVS, (GRERN, \& () , 39, Paternoter Row

With numerous Ilhustrations, Crown Evo, 3. 6d.

POLARISATION OF LIGHT. By W. SpotTISWOUINE, LLL. I) , late I'enendetet of the Koyal Soctery, Ac. New kdition (Sime, Li. Diare Srriff. macmillan a Co., h.ONDON.

Just Publishe 1, Royal 8vo, Cloth.

LONGITUDE BY LUNAR DISTANCES.

- Illustrated.

With Examoles worked out step by step, and with references : work on practical astr snomy and to the "Nautical Almanac." By MAJOR H. WIL.HERFORCE CLARKE, Royal (late Bengal) Engineer. London: W. H. AL.I.EN \& C•1., 13, Waterloo Place.

R. FRIEDLANDER \& SOHN,

 BERLIN,NATURAI. HISTORY PUBIISHERS AND BUOKSEII.EKS. Just Fublisbed.
"Zoological Record for 1888_{4}." by the Z wlozical Station at Niapies "Zoologische Jahresbericht fir 1884 4." Werausgegeben von der Zoslogicchen Station in Neapet. Abtheilung II.-Aぇthmorota.
Kedigirt van Dr. PAUL MAYER und Ir, WILH. GIESBRECHT volume of 586 pages royal 8 vo . Price t 3 s (by Buok Post 14 s .)
Part III. (Mollusca) will be ready sh. rtly: Parts I, and IN', in a few monthz

INTERNATIONAL SCIENTIFIC SERIES.

NOTICE.-The Nea lolume in this Scries on "ANTHROPOID APES", by Professar HAR TMANN, with 63 Illustrations, is now ready. Price 5 s.

London: KEGAN PAUL, TKENCH \& CO.
Just Published, with above soo Wood Engravings, fap. 8vo, Cloth, is.

OUTLINES OF NATURAL

PHILOSOPHY

FOR SCHOOLS AND GENFRAL READERS.
Hy J. I. EVERETT, D.C.L. F.R.S.,
Profewor of Natural Thilusobhy its the Gueen' College. Thelfast: Fditor of the English Fidition of "Theschanel'"Natural Phulosophy," Ac., Ki

Great pains have been taken to make every starement in this thok an plain as probie, and to gut every wrothe into unch a form avto ter readily understood at first reading. Algehrak furmuia have been alt gether es. cluded, and familiar languabe wlienever availatle hav been preferred is the use of technical terme

Iondon: RI.ACKIE, \& SON. 4s and ro, OId Bailey.

Ia Femp. Bvo, Price wod.

ELEMENTARY LESSONS IN THE
SCTENCE OF AGRICULTURAL PRACTICE. By H. TANNEF F.C. S., M R.A.C., Kinaminer in the Principles of Agricultars wed. the Government Departiactit ence, eatmetime Prufesser of A_{F} eultural Science, Univeshen Ff Aberystwinh.

THURSDAY, OCTOBER 29, 1885

THE ANTI-CHOLERA INOCULATIONS OF DR. FERRAN

IN the spring and summer of the present year the public in Europe-lay and medical-have been greatly agitated by the exploits of a Spanish medical gentleman, who, during the cholera epidemic then raging in Spain, claimed to have discovered a means of preventing cholera. He was hailed as a great benefactor, and if his deeds had been equal to his professions, he would no doubt fully deserve to rank with Jenner, the greatest benefactor to mankind. But fortunately the medical world, at any rate the scientific medical world outside Spain, is not guided by the allegations of enthusiasts nor by wonder-doctors either. A Don Quixote, who discerns in a windinill giants, in a flock of sheep a squadron of the enemy's soldiers, may present points of interest to the psychologist : to the disciple of physiology and pathology he demonstrates an aberration of the visual nerve centres. I shall show that Dr. Ferran comes very near in rank, not to Jenner, but to his own illustrious countryman, the Knight of La Mancha.

The method of Ferran is practically this :-Ferran says that by a peculiar mysterious method of cultivationwhich for a long while he was not going to divulge-he has succeeded in attenuating the action of the comma bacillus of Koch. In these cultivations the comma bacillus after very complex morphological changes, unnecessary to detail here, forms spores. Such cultures introduced in sufficient quantities into the subcutaneous tissue of animals (guinea-pigs) or man produce a disease which is a mild and abortive form of cholera ; it manifests itself in local inflammation, and a general constitutional disturbance, febrile rise of the body temperature, headache, nausea, and sickness, and even diarrhcea. After a few days the person inoculated returns to his normal state. Persons once, twice, or thrice inoculated answer, or ought to answer, each inoculation with the said constitutional disturbance. Statistics collected by Ferran and his adherents in the places where these inoculations were practised, notably in Alcira, in and about Valencia, prove, so it is said, that the number of cholera cases and of deaths from cholera decreased in a conspicuous degree after these inoculations had been commenced, and also that those persons that had been inoculated remained almost impervious to cholera, while others not so inoculated fell victims to the plague in large numbers. In these assertions and practices several important questions are involved, each of which demands a direct answer, which ought to be favourable to this theory of Dr. Ferran.

First: is the so-called cholera-bacillus, or Koch's comma-bacillus, found in the intestinal discharges of cholera patients, the vera causa of cholera?

Second: Does this so-called cholera-bacillus form spores, which when introduced into the living tissue germinate into the comma bacilli: in the subcutancous tissue capable of producing only an abortive and mild form, but in the alimentary canal producing severe and malligitunt cholera?

Third: Do the cultivations of Dr. Ferran, when inoculated into the subcutaneous tissue, set up a disturbance which can be considered as an abortive form of cholera?

Fourth: Are persons so inoculated really protected or almost protected against an attack of real cholera; and do the statistics collected by Ferran and his adherents prove this?
(1) The first of these questions, it is obvious, forms the basis of the whole theory; for if the comma bacillus of Koch is not the real cause of cholera all the rest of Ferran's assertions, as far as cholera is concerned, fall to the ground. The claims of the comma bacillus of Koch to be accepted as the true cause of cholera, rests on very insufficient evidence: the epidemiological evidence as to the spread of cholera being dependent on soil and season, the anatomical evidence as to the comma bacilli being limited to the cavity of the cholera intestine, they being absent from the tissues and the blood, the misproportion existing between the number of comma bacilli present in the alimentary cavity, and between the severity and acuteness of the disease in many cases, and a number of other facts not necessary to mention here, prove to my mind that the comma bacillus is not the real cause of cholera. Add to this that Emerich of Munich vindicates this claim to be the real cause of cholera, not to the comma bacilli of Koch, but to small straight bacilli, probably identical with those seen and described by the English cholera Commission in India as constantly present in the alimentary canal of cholera patients, and for which bacilli I did not and cannot claim any real infective power; and further, that Emerich's view is backed up by no less an authority than Von Pettenkoffer himself. There is then at present an interesting contest going or between two rival bacilli: one, having Berlin for the head-quarters of its advocates, may be called the northern bacillus; the other, in Munich, may be called the southern bacillus. As to the actual facts, it seems to me the question is not whose claim is stronger, but whose claim is weaker.
(2) All except Ferran, acquainted practically with the comma bacillus in pure cultivations (Koch, Van Ermengem, myself, Mr. Watson Cheyne, Finkler, Emerich, Buchner, Klebs, and many others) are agreed that the comma bacillus in artificial cultivations never forms spores; having multiplied until all the nutritive material in the cultivation is exhausted, a period arrives when the comma bacilli degenerate and dic; some undergo this long before the point of exhaustion is reached, others retain their vitality longer, but after weeks and months death has involved all the comma bacilli present in the cultivation. [An impurity accidentally present in the culture would effect this death of the comma bacilli in a much shorter period; in fact, in many instances, they would not have much chance of primarily reaching any considerable number.]

When this period has been reached, the culture becomes incapable of starting a new culture; and zic versd: by this means the point of death of the bacilli present in the culture can be tested and accurately determined. I have a large number of tubes of pure cultivations of the comma bacilli, the nutritive medium being broth, or peptone and broth, or gelatine peptone and broth, or gelatine peptone and
meat extract, or Agar-igar peptone and broth, \&c. In each of these media the comma bacilli thrive well and form copious growths. The cultures are pure, contain the comma bacilli only, as all sub-cultures from them yeld again the comma bacilli, and comma bacilli only. Now the remarkable fact about sucliculture tubes is this: that after several months all life in them becomes extinct, as is proved by inoculating from them a series of tubes containing suitable nutritive material, no coama bacillus or any other bacteria making their appearance. I have ascertained this in a great many cases, and it is in perfect agreement with the experience of Koch and many other workers. This clearly proves that there are not present in such tubes spores of the comma bacilli, for, if the comma bacilli, like some other bacilli-c.s. bacillus subtulis of hay infusion, or bacillus anthracis, were capable of forming spores, such a total extinction of life could not t.ake place : the spores, although, owing to exhaustion of wutritive material, incapable of germinating into bacilli while in the tube in which they were formed, would undoubtedly germinate when transferred into a fresh and sutable nutritive medium. This total extunction of life does wecur not only in tubes in which the nutritive medium is in a fluid condition, but a'so in all Agar-Agar peptone broth whes, this material, unlake gelatine, remainiug in its solid state, lnowever luxurint the growils of the comma bacilli m.sy be.
1)r. Ferran claims to have discovered means by which the comma bacilli can be mate to produce spores. In hns cultures be notices a number of peculiar things whith lie considers ans antedents to the formation of -yores and as fully formed spores. But direct ofoervations that these are really spores, that, like vare= they actuolly kerminate into the bacilli, Dr. lerran h.it not deemed it necessary to make. As a matter of fact thoce to whom 1)r. Ferran has shown his sper mens, in which theie allesed spures were supposed tabe present, friled th) see them (see the Report of the Ficulh (onmmsion healed by I)r. Diowardel; see also Ior an limendem's Keport).

The methols of examination and cultivation of bacturbit perfe ted by Koch, whirh, owing to the thoroughly ret mbe tesults they yeld, are now maversally followed 1sy all who wish th acyu:re corrert dies and a sound kinowlectse of the life-hustory, morphology, and activity of bouteris, have led those practically acquainted with the comma bacilli to the conclusion that they do not form -pmes 1)r. leerran is of the contrary opinion; but, 1w上in: from the Repurt of the French Commission, and fown that of van Eirmengem and others, who have visited Ferran and seen him at work, it is pretty clear that this kemtleman is not only uffractised in, but altogether unacyuanted with the elements of technique necessary in barterial pavestigations; more than this according to a eraphe deveraption by the spectal correspondent of the Fiomis, Dr Ferran makes his cultwations in broth in a iemporary laboratory, the kitchen of an untenanted house, recking with the effluvia of an untrapped sewer oyriong (iatir this kutchen. 1)r. Ferran's cultirations evemined microscopically by a Valencia who found that they contained a motley crow frome of bacteria! Dr. Chantemesse in a
4. Paris Académie de Médecine (see

Fournal, Sept. 26, 183;) states that as the result of a microscopic examination of Dr. Ferran's cultures he found the fluid variable in its composition; sometimes it is a cultivation of impure comma bacilli, sometimes it contains masses of different micro-organisms, but the comma bacilli are barely present. Add to this that Dr. Ferran, as the special French Commission attested, possesses neither the skill nor uses the ordinary precautions and apparatus indispensable in investigations of this nature, and all Ferran's extravagant assertions as to the behaviour of the comma bacillus in cultivations, as to its peculiar power of forming spores, must be regarded as sheer nonsense.
3. Notwithstanding this deficiency of Ferran in his mode of preparing his so-called "vaccinc," it might be said, and it has been said by Dr. Cameron in a powerful and very able article in the Nineteenth Century for August 183 , that by subcutaneously inoculating a cultivation of comma bacilli, no matter however impure and contaminated, e.g. such as were at Ferran's disposal, the effect is different from the one produced by introducing them into the alimentary canal. In the former case, i.s. in the subcutancous tissue, they are planted in a soil not congenial to them, and their product is only an abortive form of cholera, whereas in the latter, i.e. in the cavity of the alimentary canal, they find a more suitable soil, a soil which is their natural breeding ground, and the result is virulent real cholera.

What Ferran loy the inoculation of his cultures into the subcutaneous tissue of human beings actually did produce, is, according to a number of witnesses (see she letters of the special correspondent of the Brilish .Medjiall Fournal; the evidence given in detail by the special correspondent of the 7ïmes, October 20, and a number of other independent witnesses, English and French). septic infection, the intensity of which, as might be expected, and as Ferran him-elf admits, depends on the yuantity injected. This result, however, is not always produced, the injection bsing sometimes quite inert, notwithstanding the presence of the comma-bacilli in the "vaccine" fluid. In the very able letter by the special corresponden: of the Times for October 20 we are informed that Dr. Ferran explained to this gentleman in detall that the culture fluid used for inoculation need not contain any comma bacilli at all, in order to produze the desired result : further, that the comma bacilli can be killed by boiling or other wise, without impairing the efficacy of the fluid, and that therefore a chemical substance present in the culture fluid, and probably the product of the organisms, must be regarded as the active principle. While this latest assertion of Ferran clearly shows that he is profoundly ignorant of the lly and practice of protective inoculations, such as \quad by Chauveau, Pastcur, Koch, Gafiky, Arlo and many others in a varicty of sp armia, fowl while it is in fluy

an earlier date, it

Ferran by the ing
as ptomaines, and produced by the growth and activity of putrefactive bacteria in media containing proteids. Brieger (" Die Ptomaine," Hirschwald, Berlin, 183;) has published a most important serics of observations on the production, nature, and action of ptomaines, and has greatly eularged our knowledge of this as yet obscure subject. The description of the symptoms observable on persons inoculated by Ferran (as given by a variety of independent witnesses and by Ferran himself), can leave little doubt that the result of these inoculations is septic poisoning, in severe cases dangerous phlegmon and ulceration, and even death. This is also the opinion of a number of medical men (Spanish, English, and French) who have had the opportunity of seeing and examining such persons, as will be seen from the Report by the Special Commissioner of the British Meifical Fournal, the Report by the Special Commissioner of the Times, the Report by the Special French Commission, and the Report of the Commission sent by the Spanish Coverument. Such being the case, the inoculations practised by Ferran and his coadjutors can have no possible prophylactic effect against cholera, even granting, for the sake of argument, that one mild attack of cholera protects against a second severe one, a question which is still sub judice, since some competent authorities maintain that such immunity, although holding good in a number of infections maladies, does not apply to cholera.
4. Now, are persons inoculated by Ferran furnished with immunity against an attack of cholera? The statistics published by Dr. Ferran and his adherents on the marvellous effects of inoculation in Alcira, Valencia and other places, accepted by Dr. Cameron in his article above referred to, show us a picture of brilliant saccesses, favourably comparing and even sarpassing the statistics of the effect of vaccination against smallpox. Those statistics collected by Ferran being endorsed by several me lical men and other notabilities of the towa of Alcira and elsewhere, Dr. Cameron cannot bring himself to regard as not revealing the trush; he cannot imagine that all these worthy people should conspire to pervert the truth and to prevent the truth from becoming kaown.

The correspondent of the Times in his letter, published October 20, gives a long list of places where the statistics published by the Ferranists are signed and stamped by the Alcalde of the place, the local judge, the priest, the resident doctors, and the notary ; all duly signed and stamped. This Englishman, however, probably knowing what value to attach to the competency and veracity of all those worthics, examined the statistics for himself, and the result of his inquiry may be briefly summarised by saying that Dr. Ferran and his partisans have simply "cooked" those statistics. They have done these things: when a person who had been inoculated by Ferran dicl nevertheless become affected with cholera, and died of it, teath was put down as cansed not by cholera but by some other disease ; false entries were made as to persons who, lixing been inoculated, nevertheless died of cholera, not entered as having been inoculated ; persons heen reftistered as having been "vaccinated" by of on inyuiry were found to have died of cholera vevious to the alleged " vaccination."

EFet itht in Alcira, for instance, the wonderfill effects had not com-
menced until the population had abandoned the impure water supply; that in some places many of the inoculated persons belonging to the well-to do classes (a fee being paid for the inoculation) were therefore less exposed to infection, and those statistics become a gross farce and a shameless imposture. Ind this is practically the opinion of the Special Commission sent by the Spanish Government ; this Commission has reported altogether unfavourably on these innculations, declaring them barren of all scientific value, dangerous inasmuch as persons inoculated and suffering in consequence from a form of septic poisoning become more susceptible to infection from cholera and other diseases, and further condemning them as of no value in giving immunity against cholera.

The fact that Dr. Ferran and his associates took payment for the inoculations-thousands of persons were inoculated and reinoculated in Valencia and elsewhere, for each inoculation a fee of from 5 to 12 francs being charged-gives to the whole business a very ugly look. The Times correspondent (Times, October zo) does not therefore fully express the real value of Dr. Ferran when he says that he (Dr. Ferran) " is the dupe of illusions, conceived in ignorance."
E. Klew

LIFE OF SIR H'TLLIAM ROWAV HABMILTO.I
Life of Sir IIIlliam Ronuan Hamilton, Royat'Astrom,smer of Irchand. By Robert Perceval Graves, M.A., SubDean of the Chapel Royal. Vol. II. pp. 719 With Porsrait. (Hodges, Figgis, and Co.)

IN a former number of this journal it was our duty to notice the first volume of the life of the illustrious Irish mathematician. We have now to congratulate Mr. Graves on the completion of the second instalment of that great work which has evidently been to him a labour of love. This volume, like its predecessor, bears abandant testimony to the conscientious manner in which the author has sought to delincate a picture of Hanilton, told as far as possible by the letters from Hamilton to his friends and by extracts from his journal. We are agtain surprised at the extraordinary copiousness of the materials which were available.

The incidents in the life of Hamilton apart from his literary and scientific activity are but few. The last volume conducted us to the year 1832 , when Hamilton was in his twenty-seventh year. We had there seen the troubled course of his two earlier love affairs, and at the outset of this volume we are introduced to the third with Miss Bayly, to whom he was married in 1 S3j. His domestic happiness was in the course of years clouded over by the ill-healih of his wife, though to the end he remained an attached husband, as she was an attached wife; two sons and one daughter were the issue of this mion.

The reader of this work cim hardly fail to be struck with the number and the worth of the friends to whom Hamilton was endeared : he possessed to a remarkable degree the power of $4 . a n$ forming a casual acquaiatanceship into a true and lasting friendship. His intimacy with Wordsworth has been already referred to, and was carried on by occasional letters and visits until the death of the poet. Among his other literary friends we may mention Maria Edgeworth, who writes to him (p. 384) :-
"Take your head from the stars or from transcendental mathematics and come and enjoy Folly and Friendship."

There are also copious letters to and from Aubrey De Vere, Lord Dunraven, the Marquis of Northampton, and many others, including not a few to his intimate friend the author of the present work; one of these we would specially mention (p. 357), in which Hamilton sketches the obligations of true friendship. The scientific correspondence of Hamilton with many of the leading philosophers of the last generation occupies, as might have been expected, a large proportion of the volume.

At successive meetings of the British Association Hamilton was a well-known and a conspicuous figure. When the Association visited Dublin in 1835 he was but thirty years old, yet he had already attained a scientific renown which made him perhaps the most eminent man at that meeting. It was on this occasion that the Board of Trinity College entertained the distinguished visitors at a banquet. The guests had assembled in the venerable library of the University. The Earl of Mulgrave, then Lord Lieutenant of Ireland, called Hamilton to the centre of a little circle, and, after conferring upon him the honour of knighthood, said :-
" I but set the Royal, and, therefore, the national mark on a distinction already acquired by your genius and labours" (p. 158).

In speaking at the banquet subsequently, Whewell said, in language which the enthusiasm of the moment might perhaps excuse :-
" It was now one hundred and thirty years since a great man in another Trinity College knelt down before his Sovereign and rose up Sir Isaac Newton " (p. 159).

In the year 1842 Sir R. Murchison, then general secretary of the Asiociation, writes to llamilton as follows (p. 3^{97}): -
"Your letter of the 16 th having crossed mine, $I \mathrm{am}$ in despair at your resolution not to visit Manchester; and in order to shal e it if possible, even at the eleventh hour, I enclose you a letter from Herschel, whose resolutions were quite as firm as yours, and who yet has mate them lly before Bessel. Think of this philosopher coming on purpose to see such men as IIerschel, yourself, and two or three others, and finding diry and Baily flown to Italy and Sir William Hamilon lecturing in Dublin! ' Pray put off your class for a week. Make a noble effort and lay it all on Bessel's shoulders, and you will add to your glory."

On this oceasion Hamilton had also the gratification of meeting the great mathematician Jacobi, who, after referring to Hamiton as the "Lagrange of your country," said (p. 388) :-
" Provided that we give to the dynamical equations that remarkable form under which they have been presented for the first time by the illustrious Astronomer Royal of Dublin, and in which they ought to be presented hereafter, in all the general researches of analytical mechanics."

We also read how Hamilton was received at the Oxford meeting in 1847 , in which, to quote his own words from a letter to the author, he says (p. 5851:-
"It has several times happened to me to sit between Struve and Le Verrier (both of whom, somewhat to my surprise, and certainly beyond my deserts, assigned me a high place among British astronomers in speeches at the concluding meeting). And when I
give an account of the application of the calculus of quaternions to the theory of the moon on the Thursday of last week, and saw before me not only those two eminent foreign astronomers, but also Herschel, and Airy, and Adams, and Challis, besides Peacock and Whewell, and others scarcely less distinguished, I could not refrain from acknowledging it to be an alarming and almost an awful thing to speak on any subject of physical astronomy in the presence of such an audience."

Hamilton also records in an unsent letter the following, which refers to the same meeting (p. 585) :-
"My friend Struve, of Russia, at Oxford, 1847, said: that, though I held the title of Royal Astronomer of Ireland, my astronomical brethren on the Continent would decide jly prefer my never looking through the telescope to my giving up or less ardently pursuing mathematics. 'You are,' he was pleased to say, 'our teacher.'"

Hamilton was for many years not only the most distinguished member of the Royal Irish Academy but also its president. Many interesting letters will be found in the volume relating to his election to this distinguished post. His rival, if so he can be called in what Hamilton describes as a "contest of generosity," was the late Provost Lloyd. Lloyd retired in favour of his friend, and Hamilton writes many letters, the character of which is fairly represented by one to Lloyd (p. 218), in which he disclaims
"Entertaining even a thought which could be construed into treason to our long and unclouded friendship, and that the part you have taken (while in some respects it adds to my pain) furnishes a new proof of the justice of the high opinion that 1 have ever entertained of you."

Hamilton discharged in the most exemplary manner the laborious duties of President for several years, until, as he writes (p. 510) :-
"The day has at length arrived when I am to accomplish my desire of retiring from the chair of the R.I.A. How joyously, though not without a feeling of solemnity, I received the news of my being elected to the chair; how gladly now I resign it, yet not without a shade of that sadness which belongs to a farew ell!"

The chief interest in this volume will be found in the account of the great invention of quaternions, with which the name of Hamilton will be for ever associated. His own appreciation of the importance of this achievement is shown in an extract from a letter to Prof. Lloyd in December, 1851 (p. 455):-
"In general, although in one sense I hope that I am actually growing modest about the quaternions, from my sceing so many peeps and vistas into future expansions of their principles, I still must assert that this discovery appears to me to be as important for the middle of the nineteenth century as the discovery of Fluxions was for the close of the seventeenth."

The account of the discovery which, after fifteen years of studious meditation, scems suddenly to have flasheg upon Ilamilton is told in an interesting letter written frof his deathbed
later to his son Archibal
(August 5, ${ }^{\text {n }}$
"On tr
be Mons
walking is
walking wI
not too much to say that I felt at once the importance. An electric circuit seemed to close; and a spark flashed forth, the herald, as 1 foresaw immediately, of many long years to come of definitely directed thought and work, by myself if spared, and at all events on the part of cthers, if 1 should even be allowed to live long enough distinctly to communicate the discovery. Nor could 1 resist the impulse, unphilosophical as it may have been, to cut with a knife on a stone of Brougham Bridge, as we passed it, the fundamental formula with the symbols $i, j, k ;-$ namely, $i^{2}=j^{3}=k^{2}=i j k=-1$, which contains the solution of the problem, but of course, as an inscription, has long since mouldered away. A more durable notice remains, on the council books of the Academy of that day-October 16th, 1843-which records the fact, that I then asked for and obtained leave to read a paper on quaternions at the first general meeting of the session, which reading took place accordingly, on Monday, November 13 ."

Among the most distinguislied disciples of Hamilton is Prof. Tait, though even he has admitted that he has not read the whole of Hamilton's "tremendous volumes" (lives there indeed the man who has?). Another account of the discovery is found in a letter to Prof. Tait on October 15, 1858 (p. 435) :-
"To-morrow will be the fifteenth birthday of the quaternions. They started into life full-grown on the 16 th of October, 1843 , as I was walking with Lady Hamilton to Dublin, and came up to Brougham Bridge-which my boys have since called Quaternion Bridge. I pulled out a pocket-book, which still exists, and made an entry, on which at the zery moment I felt that it might be worth my while to expend the labour of at least ten or fifteen years to come. But then it is fair to say that this was because I felt a problem to have been at that moment solived, an intellectual want relieved which had havnted me for at least fiffect years bcfore."

The unmathematical reader may naturally ask the nature of this notable discovery which Hamilton made at "Quaternion" Bridge.

It would seem that at this moment he solved the longstudied problem of the multiplication of directed straight lines, or vectors as he called them. Let a denote a straight line of determined length and direction. Let b denote another straight line at right angles to a, and radiating from the same origin; then the product $a b$ denotes a third straight line from the same origin perpendicular to the plane of a and b; the product $b a$, however, denotes the perpendicular line on the other side of the plane, so that $b a=-a b$. This formula is eminently characteristic of the method, showing as it does that vector multiplication is non-commutative. It is, however, remarkable that the associative principle obtains in quaternions no less than in ordinary algebra; thus if a, b, c be three vectors, or more, generally quaternions, then $a b \times c=a \times b c$. This theorem, though true in quaternions, is still so far from being obvious that it implies ${ }^{\text {b }}$,
If \bar{y} ingle out one point of special significance
the symbol of a vector. Thus if vector or directed straight line of Etre symbol may also mean an pough a right angle around the - formulx of quaternions the
, be interpreted in this dual e regarded as the operating ector transforms it into
another. This operation requires two quantities to specify the plane of the vectors-one to specify the angle between them and one the ratio of their lengths in all four quantities are required, whence the name quaternion.
An interesting letter (p. 536) to the Rev. John W. Stubbs, Fellow of Trinity College, dated October 19, 1846, gives a sketch of the points which Hamilton thought specially novel in his theory:-
"But did the thouglit of establishing such a system, in which geometrically opposile facturs-namely, two lines (or areas) which are opposite in space give always a positive product-ever come into anybody's head, till I was led to it in October, 1843, by trying to extend my old theory of algebraic couples, and of algebra as the science of pure time? As to my regarding geometrical addifion of lines as equivalent to composition of motions (and as performed by the same rules), that is indeed essential in my theory, but not peculiar to it ; on the contrary I am only one of many who have been led to this view of addition."

A few years later Hamilton commenced the delivery of lectures on quaternions in Trinity College. His own words are (p. 605):-
"It was on WerInesday, June 21,1848 , that I delivered my first lecture on quaternions to a very respectable audience, among the persons composing which were the Rev. George Salmon, Fellow of Trinity College, Dublin, and author of a lately-published treatise on Algebraic Geometry, and Arthur Cayley, Fellow of Trinity College, Cambridge, who first, except inyself, has publicly used the quaternions."

These lectures, rewritten and greatly expanded, formed his first and classical volume-" Lectures on Quaternions." (Dublin, 1853.)
The publication of this work drew from Hamilton's many scientific friends cordial letters of congratulation. His old and intimate friend, Sir John Herschel, thus writes on July 21, 1853 (p. 681):-
"Now most heartily let me congratulate you on getting out your book-on having found utterance ore rotundo for all that labouring and seething mass of thought which has been from time to time sending out sparkles, and gleams, and smokes, and shaking the soil about you-but now breaks into a good honest eruption with a lava stream and a shower of fertilising ashes. I don't mean to say that there is not a grool deal of cloud (albeit full of electric fire)-the good old 'stupendo e orgoglioso pino' of the fiery outbreak surrounding the bright jet, the true product-but the cloud clears as the wind drifts and leaves the hill conspicuous.
"Metaphor and simile apart, there is work for a twelvemonth to any man to read such a book, and for half a lifetime to digest it, and I am quite glad to see it brought to a conclusion."

The intercourse, both social and scientific, between Hamiton and Sir John Herschel gives many interesting pages to this volume. Thus, for instance, we find (p. 492) an account of a mecting between these philosophers at the housc of their common friend, Dr. Peacock, the Dean of Ely. On Sunday they attended service in the Cathedral in company with Prof. James D. Forbes, and Hamilton recorded the incident in a sonnet which he recited to his friends. The next morning he received an acknowledgment in kind from Herschel. We quote here the two poems: that of Hamilton (p, 493) bears the title "In Ely Cathedral" :-
"The unshine, through the lofty window stealing, t.it up that vast and venerable fane, Ely's Cathedral, in dark closuls and rain Wrappet lately, and shut up from joyou* feeling : In 11 soff progreos all around revealing Beauty or majcaly unmarked before, If shed its type of heavenly comfurt $0^{\circ} \mathrm{er}$ Three kindred hingdoms" sons torether kneeliag. Oh, may than Church, Episco; ial and prure. One Mother of that hneelins' company. In evence one, in name and office shree. Mid outward storm and darknes still endure : He comforled of Christ in Guil's gooll time, Anul share the sunshine of a heavenlier clime."
Herschel's sonnet in reply (1 p .494) was handed to Hamilton the following morning :-

"On a Scene tw Ety Catuedral.

"The organ's swell was hushed, but weft and low An echer, more than muvic, rang : when he, The doubly gified. poured form whiveringly, H1,gh-w rought and rich, his heart's exulocrant flow Bencath lhut vav and vaulied canopy. I'lunging anon into the fathomless sea Of thinght, he dived where farer reasure- grow, (ieme of an unvonnel warmls anl deeper klow. Oh: boon for wher sphere: Whone swal can thrill With all that Pocoy has suff or liright, Or wiell the secpire of the wage al will (That mighty mace which lousl, its way to light). Suar a, thon wilt ! or plunge-ihy arden! mind Darts on-but comnot leave our love lehind."

We have introduced these verses not so much on account of the poetical merit they possess, which we confess appears to us to be but slight. They may, however, serve \approx : samples of those poetical effusions with which these volumes teem-indeed they give the impression that there must be some occult synipathy between poetry and astronomy. It is well known that Romney Kobinson was a poet, and though it does not appear that Sir George Airy had plunged into virse, yet when he and Hamilton were together at Parsunstown there was an amusing contest between the two Reyal Astronumers as to which could repeat most Enjlish puetry. The present writer has heard this seene described by the late Earl of Rosse, who said that Sir G. Airy was admitted to have carried off the honours.
A, an illustration of one of the le,s important mathematical labours of Hamilton we maly mention his paper on the Hodograph, communicated to the Royal Irish Acaldemy in 1845 . This elegame conception is a curve whereof the radius vector to any point from the or:gin represents both in direction and in amount the velocity of a moving partucle. Many inte e-thg applicationswere made by 1 hamlon, and are referred to in correspondence with Whewell. A somewhat ludictuas inculent in connection with the hodergraph is recorded (p. 543). It appears that at the some meeting of the Acatcmy in
 lubited I'rof. Mailler's just published work on "The Centall Sun." Thio precarnais speculation was by the reporter inpudicomasty thented with the hoduraph, and an astomblug statemen: went the romed of the papers aserting that Hamilton's wonderful calculus had succeeded in discovering the central puint of the univers: !

It is not, perhaps, gener.illy known that the real disconerer of the henturiaph was Mradkey bee Rugaud's -.litum of Hradley: Memoirs, Wvford, 1832, p. 25%

Bradley has there given a most elegant geometrical investigation of that circle related to elliptic motion which Hamilton afterwards named the hodograph.
The religious side of Hamilton's character demands a few words of notice. He was a member of the Establishment, and many passages show that he had the sympathies of a sound churchman. He seems to have been an admirer of Pusey, with whom he was also personally acyuatinted. We also find occasion..1 reference to the midnight vigils with which he awaited the new year, and to the fating which he sometimes practised for devotional reasons. We slwuld imagine, however, that such exercises were but very occasional to a student so laborious yet so irregular a; Hamiton.

He found time to be president of a local branch of the Society for the Propagation of the Gospel. He assumed the duties of a churchwarden, and vanquished Arehbishop Whateley in a controversy on the orthodoxy of an inscription on the churcle window at Castleknock. At Whitsuntide we find him writing a dynamical theory of the ascension of our Lord, in which in mediaval fashion he proceed, to evaluate the duration of the phenomenon, which he demonstrates to have been less than the interval between Holy Thursday and Whit Sunday.

It is with evident pain that the biographer has felt hinself compelled to tecord the one great failin" of his illustriuus friend. The excessive devotion of Hamilon to study and the engrossing nature of those mathematical reveries in which he indulged led to the formation of very irresular habits. He "too often feund the dawn surprise hint as he looked up to snuff his candics after some nigite of fascmating labour." The necessary hours for resi and refreshment being disregarded, lie was led to the dangees -s practice of an undue recourse to alcohol, and occasional intemperance was the consequence. Two or three scenes arising from this cause have been described in this volume. There is one wheh can lardly have been witnessed eicept by the biographer himelf, but which his conscientiousuess has compelied hinn to record. There is a second on a publac occasion which caused the deepest grief to Hamilton's friends, one of whon called upon him with a kind iemonstrance which was received by Il.multon in a manner worthy of his high character. There is also a thard incident, perhaps the most panful of all, which illustrates the attempt of Hamilton to reform and the circumstan es under which he relapsed.

We cettamly lave no intention of citing these passage, in this place, for if torn from their setting in the life of tlus great man they would probably convey an exaggerated notion of the event of his mtirmaty. We would ruther record the words of Mr. Growes, where be says (p. 335: :-
" it is mouruful that what seems to have been an inconvelerate, and it hirst unconsciously indulged, defect in evieninal resimen of life, for such in the inception was his mimmety, should avail to cast a sbate over qualities so solth anil so splendid as the moral and intellectual qualities of "lamitom."
Ne hat ctill ti, look fowsard to the third and concluklug wo the if llus important work. In it we tre My iead luw 11 ..mblan contimued bis which culumnted in the appearaty work, the "Elements of Quater
promised that extensive correspondence with De Morgan, which will secure the attention of every lover of the "Budget of Paradoxes." At the close of our former notice we insisted on the duty which devolsed on the University of Dublin of publishing in a collected form the mathematical writungs of their illustnous son. This duty has not yet been discharged; let us hope that it will not be left to some foreign mathematician to undertake the work which it should be the glory of Trinity College to complete.

AN AGRICULTURAL NOTE-BOOK

At Agricullural Note-Book. By W. C. Taylor, Aspatria, Carlisle. (I.ondon: Longmans, 1885 .)
I T is not often that note-books are published, and it is well. Notes are in their nature fragmentary, and disposed towards brevity, often lapsing into crudity. They are a sort of skeleton of imparted knowledge, or at least rather anatomical than living, moving, and breathing information. The least and the most that may be reasonably expected of them is that they should be correct. The small book which has just been published by Messrs. Longmans does not commend itself to our judgment. It is crude, fragmentary, and almost inarticulate or unintelligible. It purports to contain a body of teaching and of facts, but it really consists of disjointed sentences, the meaning of which it is often very difficult to gather. The grammatical construction of the sentences is also ferfful and wonderful. To give an idea of this latest contribution to agricultural science, we select the opening passage, page 1, which reads as follows:"The science of agriculture. Definitions and terms. Its definitions. Scientific truths taught by the practice of agriculture." "The practice of the farm teaching the science. The laws of agricultural science best learnt when thus taught, and lead to improvements in the application of science to farm practice." If this is a definition, much has been written in vain as to the difficulty of defining. It not only fiils in clefiniteness, but is curiously involved, as well as untrue, for "the practice of the farm teaching the science" is an impossible and impracticable idea.

The word "its" Before each paragraph of definitions and terms appears to bear reference to the general heading, "The Science of Agriculture," and cannot be supposed to bear a grammatical relation to "definitions and terms." Taking this view of Mr. Taylor's "notes," we read as follows:-
"Its charicter in the soil, as temper, will, and disposition. These to be noted: success of farmer depending much on his knowiedge of above (sister sciences). Hungry, sick, griteful, obstintate, kintly, timker, \&c."

We defy any one to make any sense out of these utterances, whether taken with or without their contex.

Next we have an attempt at further amplification. Thus " 1 HUNGRy-constantly in want of food." Now, be it remarked that the subject is soils, and we are told that a soil is "hungry, constantly in want of food." Also that it is "sick." Here is indeed confusion of metaphor and blind guiding with a vengeance. Only let readers of Natuke endeavour to picture to their minds a frungry and sick soil: No wonder that Mr. Taylor in
the richness of his fancy can further enlarge upon its gratitude, tenderness, and kindliness. Page 1 woul 1 itself furnish ample matter for review, It is as full of difficulties as the Moabitish stone, although it might so well repay deciphering.
Again we read: "Short supply of organic matter improved by adding clay, where practicable, and vegctabie matter." While concurring with the last simply-given advice as remedying the fault in question, we deny that any amount of clay can help towards this end.

Turning p. 1, we come to p. 2 , where we begin at the top as follows:-" 3. TENDER - Hard and baked. Improved by rain, drags and harrows at riglt time." This tender soil is then hard and baked, and it appears alsu that it is improved by certain natural and artificial agencies which we thought were not only and solely unfit for the amelioration of such tender, alloeit hard and baked soils.
On the same page we are thus enlightened as to the primitive rocks:-" The primitive rocks dinter from materials yielded by decay, which is accomplished by oxygen (O) and carbonic acid (CO_{2}), gases invisible and transparent. Both attack rocks and met.ols, however hard; seen in the mould-board of the plough reducing it (?) to a powder whithout noise. Temperature and watce; other two agents acting on the Trititor's iron and pohash, loosening particles from the hard rock." These agents are the friendty helpers to the farmer. The italics are Mr. Taylor's own. We are irresistibly reminded of Mr. Weg and Mr. Venus, those tivis "friendly movers" in "Our Mutual Friend."

Passing onwards through the dreary succession of sentences devoid of subject, predicate, or copulit, we arrive at p . 12, where instruction is given mpon the varions component parts of soils. Here we find the following information reyarding alumina:-"Nlumina. (t) Present in the soil, but not in plant food. 2) Double silicates are (1) silicate of alumina, (2) (rt) lime, (b) potish, (c) or of suda, (d) or of aminonia. (3) Order of compounds, $\mathrm{H}_{3} \mathrm{~N}_{1} \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$. The higher favourite pats out a lower and unites with the silicate of alumina. (4) The powers of vegetable life command an influence over each and all the second-rank partuers. (5) l'erforms work of outdoor servant. (6) Reconstructs broken-up partnerships. (7) Amidst the f.uthless, constant only she. (8) Icts as parveyor of food for the plant."

We leave this extraordinary statement of the eight duties of almmina in the soil to the judgment of any sound scientific man or agriculturist, asking only why young people should be subjected to teaching so completely misleading, erroneons, and unintelligible, on the plea that they are obtaining insight into the principles of agricultural science?

THL PREVENTVUN UF BLIVDNESS

The Causes ant the Frotention of Blinduess. By Dr. Ernst Fuchs, Professor of Ophthalmology in the University of Liege. Translated by Dr. R. E. Dudgcon. 8vo, pp. 23c. (London: Baillière, Tindall, and Cos, 1S85.)

UNDEER the title of "The Causes and Prevention of Blindness," Dr. Dudgeon has translated an essay, written by Dr. F"uchs, of Liege, under the conditions of a

easterly current over the N.W. monsoon and of an upper current over the S.E. trade, more southerly than the surface wind, is not only altogether new, but also quite anomalous.
In Australia, and the Southern Hemisphere generally, the upper current over a N.W. wind is from about W. and over a S. E. wind from about E .

On my way home I ran a section across the Atlantic from Rio to Tenerife, but the absence of cirrus prevented any satisfactory determination of the upper winds in that region.
The matter is, however, so important that I start again in a few days for the hurricane region of Mauritius, where I hope to observe one of these exceptional cyclones. Then I hope to repeat a section of the Indian Ocean between Mauritius and Bombay, and afterwards, if all goes well, to get some sections in the Pacific to see what the meaning of this curious discovery may be.

Ralph Abercromby
21, Chapel Street, S. W., October 26

The Hellgate Explosion and Rackarock

The statement in Nature of the 15 th inst. (p. 575) that rackarock is "blasting, gelatine" or " nitroglycerine with compressed gun-cotton" is incorrect. Rackarock is simply powdered potasium chlorate, impregnated with an inexpensive oily combustible, such as coal-tar oii, and is one of my safetyexplosives, which 1 discovered in 1870, patented in England, April 6 and October 5, 1871, and described more fully in the Yournal of the Chemical Society for August, 1873, under the title : "On a New Class of Explosives, which are non-Explosive during their Manufacture, Storage, and Transport."
I am not responsible for the quaint name which the Americans have been pleased to give to my child.

As the so-called "rackarock" is not very sensitive or easy to explode, it requires a strong primer or detonator to set it off. This property, which I have fully discussed and particularly accentuated in iny paper of 1873 , explains why Gen. Newton, the Chief Engineer of the Hellgate mine, took the precaution of placing as a primer such a powerful charge (33 tons) of ex. pensive dynamite on the cheaper charge of the potassium chlorate mixture (107 tons), a precaution carried here perhaps a little too far.
Still it is satisfactory to see that my safety explosive perfurmed the main part of the labour and rendered good service in the advancement of the works of peace. H. Sprengel.

Savile Club, 107, Piccadilly
[We are very pleased to insert Dr. Sprengel's correction as to the composition of "rackarock." Up to the time of our notice about the explosion going to press the only information we coukl obtain was that it was the same substance as blasting gelatine, but with a less portentous name.-ED.]

An Earthquake Invention

Is your number for October 15 (p . 573) your numerous scientific readers will be interested to find a pretty long letter under the above heading from so able a seismologist as Prof. John Milne, of Tokio, Japan. J'et, his invitation not withstanding, I must decline any discussion with kim , either albout my old tetters which he refers to, or his own much changed opinion on their subject, sinee the occasion for my writing them occurred.
Those points, Mr. D. A. Stevenvon, who is also invitel, may, or may not, take up. My letters were impersonal, and death only with a British Association Report. I desire also to continue to keep them strictly to that, even to the very words of the particular Report as given forth to the world with all the usually unquestioned authority of that mighty Association, in their B.A. volume for 1884, p. 248, Section entilled "Experiments ou a Building to resist Earthquake Motion."
C. I'iazzi Smytu

15, Royal Terrace, Edinburgh, Octolver is)

aviour of Stretched Indiarubber when Heated

 the invariable sutit..it ut often-yuoted Trs of bismuth aul won, intendel to between specific hicat and thermal ${ }^{2} 1$ have made further progress along *ing that if leas is utstiuced for the ying han an theoretically it thould dor
the evil road of scepticism. I should like, in fact, to ask whether it is absolutely true to say without qualification, as is done in many text-books, that india-rubber (when stretched) forms an exception to the general law that the volume of a body is increased when the temperature is increased. The usu:l form of the experiment supposed to prove this is well known : a piece of india-rubber tule or cort is stretched by a weight connected with a long light index-lever, and it is shown that when heat is applied the india-rubber gets decidedly shorter.
I have always had some hesitation in showing and explaining the result of the experiment in the above way, especially as 1 could not find any proof given that the contraction in length was not compensated, or more than compensated, by an expansion in other directions (like that of a worm in its ereeping progress, or of a dry rope when wetted). I had, in fact, lately arranged an apparatus for determining the coefficient of expansion of indiarubber, whether positive or negative, when 1 found that the subject has been very fully investigated by Dr. J. Russner, of Chemnitz (see Carl's Repertorium for $1882, \mathrm{Pp} .161$ and 196).

His results are briefly these:-
(I) That india-rubber (of which several kinds were examined) has without exception a definite coefficient of expansion which is always positive ; experiments made at temperatures varying from 0° to $53^{\circ} 4$ gave, for its value at $10^{\circ}, 0^{\circ} 000657$; at 30°, -'0co670.
(2) That india-rubber in a stretched state expands to the same extent as when it is not stretched. No point of minimum density was observed, such as Puschl supposed to exist.
(3) That the apparently anomalous behaviour of stretched india-rubber when heated is simply a case analogous to those of anisotropic crystals, which expand to different extents in different directions. Iceland spar, for instance, as Mitscherlich showed, actually contracts in a direction at right angles to its principal axis when heated, although its volume is, on the whole, increa.ed.
Although ordinary india-rubber is, of course, isotropic, yet when stretched it becomes anisotropic, as may easily be shown by stretching a piece until it is semi-transparent, and placing it between crossel Nicol; ; the direction of the strain lying at an angle of 45° wilh the plane of polarisation. Distinct colours, as with a selenite film, will be seen, varying from red to blue with the amount of strain.
The fact that india-rubber becomes hot when stretched, and especially if stretched and allowed to contract several times in succesxion, nay perhaps be accounted for by molecular friction. It woald almost seem, then, that in the account given in many books the truth, as well as the india-rubber, has been slightly "stretched."
II. G. Madax

Eton College, October 23

The Resting Position of Oysters

In carrying out a series of experiments on the artificial breeding of oysters in my private aquaria, I noticed that the young oysters born in the tanks rested on the flatter shell when they obtained a flat surface, such as a tile, to adhere to, but when I so arranged that they had irregular surfaces to deal with, such as little bundles of twigs, some adhered one way, and some the other. But where young oysters, nearly two years old, were moved from their original supports, and were compelled to find new ones, they selected the flat shell to rest upon in every instance, except where they were placed on sand, in which case they rested on the convex shell, in order apparently to avoid clogging the mouth of the shell with sand. Is it not possible from these obvervations that adult oysters vary their pooition according to the nature of the ground they are on. I have seen adult oysters on muddy ground lying on the convex shell, white where adhesion to a flat surface coutd be ottained, they were all on the flat shell, and pectens are dredged with Balari and other growths on the flat shell in some instances, and on the convex shell in others, principally, however, on the latter.
II. Stuart-Wortley

South Kensington Museum, October 27

The Value of the Testimony to the Aurora-Sound

I rtave read with much interest the descriptions of this sound as given by Dr. Sophus Tromholt's correspondents in Nature of September 24. I was, however, struck by the similarity of these descriptions to the well-known phenomena of timnilus
curiun, and it occurred to me that since a large number of persons have noises in the head-say one-half the entire adult population-it is probable that, when listening intently, a considerable number of observers hearil the sounds of their own cars only, "This is especially true of "sizzling," "hissing." ant "buzzing" sounds.

If physicians affected with tinnitus are not careful to exclude the noises propagated in their own heads, they may discover many curious physical signs in the chests of their patients in nakking auscultatory examinations.

Samuet. Sexton
12. West Thirty Gifith Street, New York, October 12

The Red Spot on Jupiter

On October 24, at 17 h .32 m ., this object was estimated exactly central on the planet. As seen with my 10 -inch reflector, power 252, the spot was very, plain, though the low altitude of Jupiter renkered the telescopic image far from good.
My impression is that this red spot is now deciledly more conspicuous than it was when I last saw it on July S, and that during the ensuing opposition it will again atiract general olserination as one of the must prominent features of Jovian detail. This well-known marking has now beell watched for nore than seven years, and its present aspect leads to the inference that its existence will be indefinitely prolonged. We may therefore justly regard it as a lineament of singular permanency. Though its motion and appearance (i.e, tint) have been subject to considerable variation, there has been little, if any change in either the shape or size of the spot. The mystery regarding its origin and real nature may perhaps ultimately be revealed on the basis of renewed and more exact observation in foture years.
W. F. Denving

Bristol, October 25

A Remarkable Sunset

Wrute out for a walk this afternoon I was struck by a peen. Harity in the suncet which I do not rememter to have seen noticed befone, The sun set about $4.43 \mathrm{p} . \mathrm{m}$., and there was the usual "after-glow." I began to notice this first aloout five o'clock; there was then in the west a lange bank of cumulus cloud rather low down, ahove this was a luilliant lenoon-yellow, very tright, and this was hounded by a broall are of a pale pink, the latter fading, away int., the light blue of the sky. Very roon afterwards I noticed that the pink arc, insteal of being continuous, wav really made up of a seites of beams of bripht light, whech pointed to the porition of the sum. I counted these, and made out five bright rays at unequal tistarces apart: lehinsl this (as it seemeel) there were a few yellow cirrus clouls. A sunfet like this I have offen noticerl liefore, but what followed is, 1 think, novel. The bright rays were slosly turning round like the spohes of a lutge wheel moving in a direction contrary to the hauds of a watch. I noticed also that the brealt's bre. tween the bright rays altered. two of them seeming to almost coalesce. In alout ten minutev time oue ray turnct approximately through oo, and a new ray brighter than the wher appeared on the right. The altitude of a ray when vertical was from 30 to to', I shumh way. liy 5.15 the ras* beeame very faint and soon vauslevt, though alowe the dark hlan's of clowd I could detect a famt wamen lake glow.

The day hat leeen fite on the whole, except that thete had been a little rain early in the morning, and a very heavy rain shower between 12 , 30 and 1 .roluck. The air wav extremely clear, and the wind wa thowing frestly from the west, or perhapes it was a lat norils of wot. It wav hlowing slighty from right to left acrovs the line jouning me to the :un

This phenomenon of the pink ray revolung secm to be ex-
 humed along ly the htong we-1 wind. I Jumbld like to kisw if any one tiving in a line W.S.W. of Cambritge noticed
 5.0 and $5.151^{\circ} \mathrm{m}$. Geenwh thene.

A Tertiary Rainbow

THE sulymend tettiary tainlow ahout which I vent a wate a month ago must have bieen a hato formed by ice cryotals, as readers of Nateke will perthajn have inferred metely from the corted disimetiness of the colours. It itid not occur to me
that ice crystals would be found in a horizontal direction from here, over the hot plains of the Punjab on the evening of an August clay. But I have since calculated the size of the tertiary rainlow and the orler of colours in it, and the calculation leaves no douts that the phenomenon must have been a solar balo, caused perhaps by a haibtorm over the plains.

Thautiani, Punjab, Sept. 25
T. C. Lewis

The Sense of Colour

In the early English "Lay of Havelok the Dane" the following words occur:-

> "Also he wolke with bem legke
'1 hal weren for hunger /rme and bicike."
Mr. Allan Cunninghaun in his interesting paper (p. 604) does not allude to this old use of the word green. Is it a solitary cave ?

Margarti Heaton
Belvedere, October 24

Stone Axes, Perak

A curious Malay superstition ha, come to my knowletge concerning these implements. They appear to be very rare out here, and thone fomut are treavured by Malays as lucky things to lave about the house. I have as yet only been abte to pimeore two specimens. One of these 1 have described in a paper on the Sakaies read before the Anthropological Society in June lans. This nearly rescmble Fig. 5 ; in Ir. I:vans' "ancient Stone Implements of Gseat Britain, ${ }^{\text {² }}$ and is mate of a soft Ilestiption of slate which can be scratehed with the thumb-rail. The other is of a much harder description of slate almost like greenstone; it much reentbles Fig. 76 of the same work. It is 78 inches tong, if inches wide at the wilest end, which is sharpened, and $1 \frac{1}{2}$ fiches wide at the other enil, which is not sharpeed. The faces are tlater than thooe figuret by Itr. Fivans and the sides perfectly squared. It is beautifully polisherl, but severat depressions are left all , wer it, show irg that it had originally been chipped out. The Malays call then Eatu-lintarh- is. thunder-stones-and account for their 1 resence by sying that they are the missiles uted by angels and demons in their continual warfare.

But the peculiarity of the superstition is this : the Malay-aver that the noft implement which I have described has teen made by an angel or a temon ant buriet in the earth to become hard and fit for use, and support their argument by otyins that the se objects have been found fre-hly made of clay and quite woff, huried in the earth, where they have lately been deposined try wisme angel or demon for a future time of battie. The Malay say that the liatn-limsth is haril to prucure in this state, as it almost invariably drops to pieces. Fior this reacon they do not value it much, and more particulaty because it has never inslicted a wound. The hard polishet cele which I have just decertiol, however, they value very highly, because they wy is has been usel in the aerial warfare and has inflicted a wound on one or moic of the comlatants. They adduce this wppention from the fact of the several depressions left by the chippung out of the implement, and say that thece marks were causet by its contact with the landy of one of the demen comlatants. The la t iolea is very lonely connected with annther Malay telief. and nonst prol ably tnok its rive from it. This belief is that if the blade of a kriss or spear is bent or in any way damaget, it has mont certainly wounded if not killed a man or some wild animal, and is therefore proportionately of mich greater value. A Malay who proferes to be a good julgec of a kiriss will, if asked to apprase the weapon, invariably first glasee along the blade to eec if it is bent ever so slightly, aml if it is he will most certainly add two or three dollars to its value because it has "m'nilam orang" (-truck a man). I have very little doubt that if some of the fine limestone cates of this thetrict were thoroughly cxammed, they woutd yield a rich harvest of anthrofulozical material.

1tatu Gaja, Kiuta, Perak, September 6

Photographic Action on Ebonite

At the lack of one of the cases of lecture apparatus facing a noth window in this laboratury, there happens to bave tieen tanding for six months or more on ebonite plate with a framed glass plate in front of it, the glass having a star-patters done in litule spots of tinfoil all over it. The thickuess of the
frame, say an eighth of an inch, separated the two plates from each other.
On laking the a out of the case the other day I noticed the pattern on the glass clearly and sharply imprinted on the ebonite ; every little circle well marked. Dust had been plentifully deposited on all parts not screened by the tinfoil spots, and the striking clearness of the impression was mainly due to this local absence of dust ; but even on wiping off some of the dust the pattern could still be detected, owing to some difference of surface beiween the exposed and the shaded portions.

It evilently is anolher illustration of Prof. McLeod's observa. tion of the effect of light on ebonite, the modified surface affording an easy lodgment for dust. In case there be anything more in the matter it is proposed to replace the same or similar plates, and observe at intervals.

Finward E. Robinson
Lecture Assistant to the Professor of Physics in University College, Liverpoul

THE SLIDE RULE

IT is a perpetual source of amazement to those who are familiar with this instrument that its use is not almost universal. People of every class have to make simple calculations, while those engaged in scientific work, in designing apparatus, or in invention perpetually cover sheets of paper with figures, all of which trouble and the loss of time which it involves might be saved by the intelligent use of a good slide rule, and yet, for reasons difficult to find out, the habitnal use of this instrument is limited to a very small proportion of the calcul ating community.

Most people know that the scales are logarithmically divided-that is, that the distance between the divisions marked t and 10 being in imagination divided into 10,000 parts, the division marked 2 is at the 3010 th of these parts, the division marked 3 is at the 477 tst of these parts, and so on, 3010 being the log. of 2,4771 the log. of 3 , and so on; and further, that the spaces between these whole numbers are similarly divided into fractional parts, thus 1^{11} is at the $4^{14} 4^{\text {th }}$ of the imaginary parts and 1.01 at thic 43 rd of these parts, 414 and 13 being the logs. of 1.1 and 1 'ol. This is very generally known, but it is mre generally believed that to use the rule involves so much thought and anxiety that it is far simpler to work oat resulis in the usual way, or at any rate that the rule can only be of any real assistance when a great number of similar calculations have to be made; and further that, as the results to be obtained are not absolutely correct, that as an extreme error of $\mathbf{1 , 1 - 1 0 t h , ~ o r ~ 1 - 1 0 0 t h ~ p e r ~ c e n t . ~}$ is possible, according to the nature of the instrament, it is not really to be trusted. These objections are easily answered. As soon as the slight difficulty of reading the rule has been overcome-a difficulty due to the fact that in ascending the scale the divisions become closer, so that if there is room for ten subdivisions between 10 and 11 , there are only five between 20 and 21 , and two between 40 and 41-a difficulty which once overcome never recursthen the simpler calculations, such as multiplication, division, and simple proportion, can at all times without an effort or a thought be instantly performed, while those involving proportions in which some of the terms are squares, cubes, roots, sines, or tangents can, after a moment's reflection, be as easily completed, so that even in the case of single operations time is saved. It is true when many calculations of the same kind present themselves, especially if some of the terms in the scries are identical, that the use of the rule is specially advantageous; but in any case mental labour and time are saved.

As to the probable accuracy of results obtained by the use of the rule, they are in general superior to the accuracy with which the figures which require reduction have been determined, or, if this is not the case, they are in general so nearly correct that the error is of no con-
sequence. For instance, if the marks obtained by several examinees are to be reduced to correspond to a total of 100, the commonest rule, which gives an accuracy of 1 -30oth part, is sufficiently good; for the nearest whole number only, and the right order are all that are needed It would be absurd to doubt the accuracy of the instru ment because it cannot be trusted to give figures correct to one part in a thousand. Or, again, if the weight of a piece of metal has to be determined from its dimensions. a good rule trustworthy to 1 part in 1000 will in almost ever! case be more than good enough ; for, even if the specific gravity of the material be known so truly, it is not often that the piece can be made so near the specified size that the discrepancy which may ultinately be observed will be due more to the error of the rule than to the inaccuracy of constriction. In such a case it would be as absurd to discard the rule as untrustworthy as it is to use 7 -figure logarithms for the calculations of an ordinary chemical analysis. There are cases, of course, where observations can be made with a degree of accuracy beyond that which is obtainable by any rule-for instance, determinations of mass, length, angles, and time can all be made with extraordinary precision. Where, then, uncertainty is not introduced by observations of another kind, where the entire precision to be obtained in any such observations may be expected in the result, as, for instance, in the determination of the refractive index of the glass of a prism, in such cases the slide rule is unsuitable, and tables of logarithms furnish the most obvious means of making the calculations. Or, again, when pounds, shillings, and pence are involved, a result correct to the nearest farthing is generally desired to make accounts come right, and so, unless the sums dealt with are moderate, the slide rule is again unsuitable However, the calculation of interest furnishes a good example of proper and improper use of the rule in making calculations. If it is required to find what a certain sum (s) will be worth at the end of a year at so much (r) percent., the result might be found from the proportion $100: 100+r:: s: x$. Here the amount x would be determined with an accuracy of say $1-1000$ h part, so that if $1000 /$ were involved, an error of 1/. might arise. This is an improper use of the rule. A greater degree of accuracy would be obtained by the proportion $100: r:: s$ the increase of s. Here the interest is found to the same proportionate accuracy, and so in such a case the greatest possible error could only be one shilling, if the rate is 5 per cent. This example, though obvious, is given because it corresponds exactly with cases that arise in the laboratory, where the rule, if used properly, is of service, but, if improperly, is useless.

Calculations involving only the simple arithmetical rules, when extreme accuracy is required, are best performed by the help of a table of logarithms, or with an arithmometer; in fact with an arithmometer a far greater degree of accuracy can be reached than with ordinary 7 -figure logarithms, and though they are also suitable for calculations in which only three or foar significant figures are required, their greal size and expense compare unfavourably with the portability and cheapness of the rule, and, moreover, trigonometrical and logarithmic functions cannot be found with them. These machines are shown at the Inventions Exhibition by Tate and Edmonson, and are worth examining. There is another calculating machine close to Tate's, by which the interest on any sum at any rate per cent. for any time may be found to the nearest halfpenny in an incredibly short space of time, worthy of the attention of those who have to calculate interest. 13ut, to return to the slide-rule, it is astonishing that an instrument like Gravet's, 10 inches long only, with which all calculations, arithnetical, trigonometrical, and logarithmic, can be worked out so easily and with an accuracy of from $1-500$ to $t-1000$, according to the nature of the calculation, should be so little used.

This is not the place to give instructions for using the rule, but an outline of the method is necessary to make it possible to compare the different makes, many of which are shown at the Inventions Exhibition.

With two similar scales of equal parts, as inches divided into tenths or centimetres divided into millimetres, it is possible to add numbers, or, conversely, to subtract numbers; thus, if the zero of one scale is placed opposite, say, 6.5 of the other, opposite every number n on the first will be found $n+65$ on the second, and so addition or subtraction could be performed, but there would be no advantage in so adding or subtracting. In the same way the slide of the ordinary slide rule is employed to add distances, but these distances do not correspond to the figures attached, but to the logarithms of those figures, and so the sum which is found by such an addition is not the sum of the figures apparently added, but their product. If the slide is placed at random, all the pairs of figures which are opposite to one another are in the same proportion, and the multipliers which will change either series into the other will be found on each scale opposite the divisions marked 1 on the other. It requires no great anount of memory to bear this in mind: however the slide may be set, those numbers which are opposite to one another are in the same proportion, i.c. have a common quotient, which may be found opposite any of the divisions marked $1 ;$ and yet this is all that has to be remembered in multiplication, division, and simple proportion. The two top lines of a slide rule are generally identical, and they are used for these simple operations; they are generally distinguished by the letters A and B. In general the botom line of the slide, that is, the third altogether, is identical with the first two, and is labelled C. This arrangement is convenient, for it is possible to insert the slide upside down, in which case all numbers which are opposite one another on A and C have a common product, which may be found opposite any of the divisions marked 1. This furnishes the most ready mode of finding actual or approximate factors of numbers, and is of great use to those who have to calculate wheelwork; further, by the use of the inverted C line under the A line any harmonical progression can at once be read, and any number of harmonic means can be inserted between two quantities. The fourth line is generally made different from the others in that it is on double the scale, and it is then distinguished by the letter D . If the units of the C and D line are placed opposite one another, a table of squares and roots is formed, or if in any other position the squares of the numbers on D) vary in the same proportion as do the numbers that are opposite to them on C. It is in calculations made on the C and D lines that so much time is saved, for proportions in which some of the terms are squares or square roots can be worked out as quickly and as accurately as those in which simple numbers only are employed. If the slide is inverted so as to bring the B line opposite to the 1) line, then the square of any number on $\mathrm{D} \times$ the number opposite to it on B is constant. This product may of course be found in B opposite B^{\prime} in D. Cube roots, among other things, may be found in this way.

These four lines are all that are generally found in a slide rule; occasionally others are added: thus a line on one third of the scale of the D) line (sometimes called an E line) will, with the D line, enable one to directly work proportions in which sonse of the terms are cubes or culse roots, but this is not often required. With the usual four lines all arithmetical processes, except addition and subtraction, can be performed. There are, however, rules in which on the back of the slide are scales in which the distances are log. sines or logg tangents of the angles marked, then these lines being placed against an ordinary A line so that 90 on the line of sines or 45 on the line of tangents is opposite 1 on the A lue, a table of sines ors tangents will be formed: and if the slide is placed in any:
other position, the sines or tangents of the angles denoted by any divisions on either of these special lines will vary in the same proportion as do the numbers which are opposite them on the A line. In those rules in which lines of sines and tangents are given there is generally a scale of equal parts in which the length of the D line is divided into 500 or 1000 parts. If this is placed opposite the D line, with the ends of the two scales opposite one another, a table of logarithms will be seen; thus the logarithm of any number on the D line will be found opposite to it on the scale of equal parts.

Having pointed out the chief uses of a slide rule, it will be possible to describe the differences in construction in the several varieties. The most simple possible form is the original Gunter's scale to be found on any sector. With this and a pair of dividers calculations may be made, for if the dividors are set to the distance between any two numbers, any other pair of numbers which are found by the dividors to be the same distance apart will be in the same proportion, or have a common quotient, just as a common difference would be found if a scale of equal parts were used. This, however, is troublesome ; but if the same principle is applied to a scale in the circular form the result is much more convenient. In this case angular distance takes the place of linear distance, and a pair of arms which can be opened to any angle can be moved round, and every pair of numbers covered will bear to one another a constant proportion depending on the extent of the angle. This is the principle of some of Dixon's rules shown at the Inventions Exhibition, near the arithmometers. In the well-known pocket instrument, the calculating circle of Boucher, an instrument like a watch, one hand is fixed and one is movable, and the face is also movable. There is another instrument of the same kind, in which the scale is drawn on a helical line. Here the scale and one hand are movable, and there is one fixed hand. This, which is Prof. Fuller's spiral rule, is made and exhibited by Stanley Circular instruments are also inade, in which scales slide over one another, which are in this respect like the straight rules. There is more advantage in the circular form than appears at first. In the straight rules the A and B lines are each double, the first and second halves are identical : this repetition of the scale is required in order that, bowever the slide may be placed, the part of each opposite to the other may contain at least a complete scale of numbers. In the circular form, however, the beginning and end of a single logarithmic scale meet, and so the scale itself is its own repetition both above and below. For this reason the openness of the divisors in a circular instrument is the same as in a straight rule, of which the length is six times, instead of three times, the diameter of the circular line.

Of the two types of instrument-one in which one slide works against another, generally straight, sometimes circular, and the other in which there is no slide but only a line divided logarithmically with a pair of hands, which type is always circular-which may be called respectively the slide and the index types, each has certain advantages. The slide form is preferable, in that each setting of the slide furnishes a complete table of pairs of related numbers, as, for instance, of any English and foreign measure, of squares and roots on any scale, such as diameters and areas of circles, or of sines or tangen's on any scale, so that, without moving the slide, an! number of results may be read off, whereas with instruments of the index type the scale must be moved under the hands, or the hands over the scale, for each result. On the other hand, index instruments are more convenient than the usual slide rules in working out long expressions of the form $a \times b \times i \times d$,
Ierms may be squares, culses, sines, or tangents, fo
terms ale taken alterbately from the numerato
nominator and set in order with the fixed and movable hand until all are worked off, when the answer is found under the fixed hand. There is nn necessity to observe any result till the process is complete ; on the other hand, with slide instruments, each result of the form $\frac{a \times b}{c}$, $\frac{a \times b \times c}{c \times f}$, \&c., must be read and set before it can be operated upon by the next pair of factors. In Gravet's rules, however, this disadvantage of the straight form is removed by the addition of a cursor or sliding index, which in other ways is a great comfort.
All instruments of the index type suffer terribly from parallax, owing to the hands being above the face, so that they do not in practice give the accuracy that from the length of scale upon them might be expected.

This is especially the case in small instruments: for instance, Boucher's calculating circle, made in the form of a watch, is probably divided so accurately that on that score an error of one part in a thousand does not exist ; yet, owing to parallax, the practical limit is about $1-300$. This instrument has, besides the ordinary line, one on a double and one on a treble scale for squares and cubes, a line of sines, and another of equal parts for logarithms.

The possible accuracy of any instrument depends upon the length of the scale included between 1 and to, called the radius, and also upon the linear accuracy with which a setting or reading can be made ; this is at least twice as great in slide as in index instruments. In order to obtain great accuracy various means have been adopted whereby a great length of scale is brought within a small compass. Among slide instruments are Prof. Everett's "Universal Proportion Table," published by Longmans, Green, and Co., and General Hannyngton's slide rule, made and exhibited at the Inventions Exhibition by Aston and Mauder. In these the slide is made in the gridiron form. In Everett's instrument there are twenty bars, the total length of which is about 13 feet; a scale of equal parts is also printed, so that logarithms can be read with it. In both of these instruments only simple proportions can be effected, unless special grids, divided on a double scale or trigonometrically, are provided. Far the most ingenious of all devices for obtaining a great length of radius in a comparatively short space is due to Mr. Beauchamp Tower, whose name is well known in connection with the spherical engine. His instrument is a slide instrument consisting of two tapes running side by side over equal and independent rollers, but the tapes have a half twist in them, so that they have each only one surface and one edge. In this instrument, made privately for his own use, each tape is about $12 \frac{2}{2}$ feet long, and as both sides of the tape are used the radius is about 25 feet, and therefore, as far as openness of scale is concerned, it is equivalent to a straight rule 50 fect long, while the instrument itself is only just over 6 feet in length.

Slide rules of the index class can have a great length of scale more readily employed than others. Thus Prof. Fuller's helical instrument has its radius equal to $42 \frac{1}{2}$ feet, and is in openness of scale equivalent to a straight rule $8 ;$ feet long, while the box which contains it is only $17 \times 33 \times 33$ inches inside measure. Dixon exhibits a special rule with the scale extending over 10 concentric circles, but with this form a less degree of accuracy is attainable when using the inner than when using the outer circle. Thus the inner circle is equivalent to a straight rule 30 feet long and the outer to one 60 feet long. There is an outer circle equally and logarithmically divided to find logarithms. In another of Dixon's instruments, similar in siee-and form, there is the same outer
cotangents, secants, and cosecants. Each of these is on a board 14 inches square. Rules with very extended scales do not in practice give results with an accuracy which is proportional to their length, though the working accuracy is very much increased. They have this advantage, that they can be worked to their limit with easc, while with a well-divided pocket rule the errors of construction are beyond the limits of vision, and so the calculator is apt to strain his eyes to get results as accurate as possible. For instance, results obtained by a good pocket-rule one foot long can he trusted to a thousandth part; at the same rate Prof. Everett's should be accurate to a thirteen-thousandth part, and Prof. Fuller's to an eighty-five thousandth part. In practice a four and a ten-thousandth part are their limits. Again, instruments with very extended scales have only room for one line, so that simple proportions only and logarithms are all that can be directly obtained from them. For general use in the laboratory or elsewhere where calculations of every kind have to be made, the straight form, on the whole, seems most convenient, because of its portability, the quickness with which it can be worked, the diversity of operations that it will directly accomplish, and the extraordinary accuracy in comparison with other forms of the results to be obtained. Far the best instruments of this type that the writer has yet seen are those made by Tavernier-Gravet, of Faris, already alluded to. They are different to those generally used in England in that the line in the slide which works against the 1) line is itself a D line, so that squared proportions have to be performed by the aid of the cursor. This form has the further disadvantage that the inverted slide cannot be used for finding factors, which is a great loss; on the other hand, the two lower lines may be used for simple proportions, and they will give a double accuracy. On the whole, the original pattern with an A, B, C and D line seems preferable. Of the straight rules shown at the Inventions Exhibition those made by Stanley exceed all the others in workmanship and they are equal in this respect to the Gravet rule. Among them are rules for special purposes, as Hudson's scales and Ganga Ram's rules. Hudson's scales, which are made in card, each having two slides, are a marvel of constructive skill. Dixon shows his " triple radius double slide rile," with which very complex operations may be readily performed. Heath shows a slide rule for corverting sidereal to mean solar time, or the reverse, correct to about 02 of a second, but this is not a slide rule proper, as the scales are not logarithmic.

There is entirely a different class of slide rule shown by Lieut. Thomson. In this there is, as usual, an A, B, and C line, but instead of the D line there is a " P " line, in which the distances, instead of being logarithmic, are logarithms of logarithms. By this instrument fractional powers may be found as readily as simple products or quotients. It has, however, this defect, that the scale converges so rapidly as the numbers ascend that high numbers can only be obtained with a proportionate accuracy far less than is possible with low numbers. It is one feature in the slide rnle of ordinary construction that an error of reading of, say, $1-1$ ooth of an inch will produce the same proportionate error in any part of the scale. This rule for involution is shown in the straight and circular form. It is right to mention that the same thing exactly was invented by the late Dr. Roget and published by him in the Phil. Trans of 1815.

No attempt has been made to give an account of every special form of rule that is made; those shown at the Exhibition and some other well-known forms, which well illustrate the different kinds of developinent, have been imperfectly described and the general principles on which all depend sufficiently explained to make evident the advantages of each type of instrument.
C. V. Bovs

HOMING FACULTY OF HYAENOPTERA

IN connection with Sir John Lubbock's paper at the British Association, in which this subject is treated, it is perhaps worth while to describe some experiments which 1 made last year. The question to be answered is whether bees find their way home merely by their knowledge of landmarks or by ineans of some mysterious faculty usually termed a sense of direction. The ordinary impression appears to have been that they do so in virtue of some such sense, and are therefore independent of any special knowledge of the district in which they may be suddenly liberated ; and, as Sir John Lubbock observes, this impression was corroborated by the experiments of M . Fabre. The conclusions drawn from these experiments, however, appeared to me, as they appeared to Sir John, unwarranted by the facts; and therefore, like him, I repeated them with certain vatiations. In the result I satisfied myself that the bees depend entirely upon their special knowledge of district or land-marks, and it is because niy experiments thus fully corroborate those which were made by Sir John that it now occurs to me to publish them.

The house where 1 conducted the observations is situated several hundred yards from the coast, with flower gardens on each side and lawns between the house and the sea. Therefore bees starting from the house would find their honey on either side of it, while the lawns in front would be rarely or never visited-being themselves barren of honey and leading only to the sea. Such being the geographical conditions, 1 placed a live of bees in one of the front rooms on the basement of the house. When the bees becane thoroughly well acquainted with their new quartets by flying in and out of the open window for a fortnight, I began the experiments. The modus operandi consisted in closing the window after dark when all the bees were in their hive, and also slipping a glass shutter in front of the hive door, so that all the bees were doubly imprisoned. Next morning 1 slightly raised the glass shutter, thus enabling any desired number of bees to escape. When the desired number had escaped, the glass shutter was again closed, and all the liberated bees were caught as they buzzed about the inside of the shut window. These bees were then counted into a box, the window of the room opened, and a card well smeared over with birdlime placed upon the threshold of the beehive, or just in front of the closed glass shutter. The object of all these arrangements was to obviate the necessity of marking the bees, and so to enable me not merely to experiment with ease upon any number of individuals that I inight desire, but also to feel confident that no one individual could return to the hive unnoticed. For whenever a bee returned it was certain to become elltangled in the bird-lime, and whenever 1 found a bee so entangled, I was certain that it was one which I had taken from the hive, as there were no other hives in the neighbourhood.

Such being the method. I began by taking a score of bees in the box out to sea, where there coukd be no landmarks to guide the insects limne. llad any of these insects returned, I should next hawe taken another score out to sea (after an interval of several days, so as to be sure that the first lot had become permanently lost, and then, before liberating them, have ronated the bov in a sling for a considerable time, in order to see whether this would have confused their sense of direction. But, as none of the bees returned after the first experiment. it was clearly needless to proceed to the sccond. Accordingly I liberated the next lot of bees on the sea-shore, and, as none of these returned, 1 liberated another lot on the lawn between the shore and the house. I was somewhat surprised to find that neither did any of these return, although the distance fron the lawn to the hive was not bove 200 yard4. Lastly, I bberated bees in different
parts of the flower garden, and these 1 always found stuck upon the bird-lime within a few minutes of their liberation. Indeed, they often arrived before I had had time to run fro.n the place where 1 had liberated them to the hive. Now, as the garden was a large one, many of these bees had to fly a greater distance, in order to reach the hive, than was the case with their lost sisters upon the lawn, and therefore 1 could have no doubt that their uniform success in finding their way home so immediately was due to their special knowledge of the flower garden. and not to any general sense of direction.

1 may add that, while in Germany a few weeks ago, I tried on several species of ant the same experiments as Sir John Lubbock describes in his paper as having been tried by him upon English species, and here also I obtained identical results: in all cases the ants were hopelessly lost if liberated more than a moderate distance from their nest.

George J. Romanes

THE HEIGHTS OF CLOLDS

FRuM the Upsala Observatory comes an account of fairly exact measurements of the heights of clouds during the sunmer of last year, and a very interesting publication ir is. It appears that when the circumpolar expeditions were planned the Swedish Meteorological Observatory furnished their station at Spitzbergen with three theodolites, of a somewhat novel though simple construction, for the double purpose of observing the altitude of the aurora and that of clouds. The difficulty that has always been felt in such observations lias been that of easy intercommunication between the different observers, so as to fix on the particular part of the cloud of which the heiglit was to be measured. Thanks to modern invention this difficulty was got over by connecting each station with a telephone. The reported good results obtained at the circumpolar station-the publication of which, by the by, has not been done as yet-induced Herr Hildebrandsson, the director of the meteorological observatory at UPsala, to commence a set of similar observations there. On a couple of pillars, about 450 yards apart, and placed on an approximately north and south line, a couple of theodolites were erected, the stations being connected by telephones. The theodolites employed may be described as ordinary theodolites. the object glass of the telescope being replaced by a large open ring, across which were stretched a couple of cros; wires, whilst the eye-piece consisted of a simple hole of 3 mm . in diameter. When observing near the sun dark glasses would be placed in front of this orifice. As might be expected, there are several unavoidable errors in using these instruments, the principal of which are the uncertainty of an identical point in a cloud being measured at each station, and the want of synchronism of the obser-vation-a very important point when clouds are travelling with any spred The method of observation was somewhat laborious, and was as follows. The two observers, each at a theodolite, argreed as well as they could on the point in the cloud to be observed, and at a particular time. fixed upon in advance, brought the cross wires on this somewhat indefinite spot, and then read their instruments, noted the time of observation, described the cloud, and if possible sietched it. A second observation of the same point gave the direction and rate of motion of the cloud Perhaps one of the most easily observed clonds is the cumulas. .1tid we find from a table given that the
 metr. 1 1m isas netre jut of the uf 101 ubservation. 1.6
metres. The labour to attain even such accuracy is very great. The surprise is that at Upsala they did not adopt a photographic theodolite such as is now, we believe, in daily use at Kew. In the Kew "nephographs," as they are called, the telescope is replaced by a camera, and the observations do not involve half the labour of eye-observations. For instance, when the two nephographs are in a fixed position the manipulations are simplicity itself. One observer telephones to the other the cloud whose height it is desired to ascertain. By means of a very simple pointer both direct their cameras to the cloud, having inserted a dry plate in position. The lenses are closed by shutters, both of which can be opened and then closed with any desired rapidity by an electrical arrangement from one station. The exposures are thus made simultaneously, and the photograph must include every point in the cloud. The position of the cloud is fixed by crossed lines etched on a glass plate which is in contact with the dry plate, and which always occupies the same position, and from these cross lines, which are impressed on the two negatives, any desired point is measured. The readings of the graduated circles of the nephoscope having been taken the height and distance of the cloud is readily calculated. It might be supposed that considerable errors might be made even with this arrangement as the solid angular distance included is somewhere about 55°, and the objects within this are impressed on a plate less than six inches square. As a miatter of fact, such is not the case. Measurements of objects a couple of miles off, and at known distances from the observer, have been observed with an error of less than i per cent., a base of 250 yards having been used-an accuracy which is far greater than could be obtained by eye-observations when the object to be observed is uncertain in outline, and when there is no defivitely fixed point to observe. It must not, however, be supposed that there are no difficulties in photographing clouds of every description. It requires, for instance, a keen judgment to hit off the exposure necessary to differentiate between the white clouds in the higher regions the pale blue sky against which they are projected. All such difficulties are to be overcome with practice. It is to be hoped that before long the Upsala Observatory will adopt such a plan as we have indicated, when the results they obtain will be even more valuable and be less laboriously attained that they are at pre:ent.

The following table gives the height of the different characters of clouds at Upsala :-

Stratus					
Nimbus (lower)				1,115	,
higher				2,185	
Cumulus and cumulo-stratus				top	1,690
				base	1,307
				mean	1,498
Lower alto-cumulus					1,988
Higher , Cirro-cumulus	"				4,242
					5,513
Cirrus					6,823

The authors point out that, according to their observations, apparently there are seven levels, each one occupied by a different species of cloud, viz.: $600,1,100,1,500$, $2,000,42-4,600,58-6,6 \mathrm{co}$, and $80-8,600$ metres : and these levels agree with those deduced by M. Vettin of Berlin, who deduced them from a different mode of obervation. There are several remarkable tables, some of which give the diurnal variation in the height of clouds, others the durnal variation of the frequency of high clouts .t L'psala during the summer, others again which discum the question of the efiect of the height of the barometer on the cloud masses. One of the most interesting sections of the is that on the calculation of the velocity of wind - herghes from the movements of clouds. ehe Observatory at U psala is to be conhhas taken in making systematic
observations of cloud heights and velocities. It is a matter of capital importance to metcorology that such should be undertaken in various localities, not only at or near the sea level, but also at as high altitudes as possible. Were the cloud levels, for instance, the same at all places, mountainous districts would be very much more cloud bound than we know is the case. Observations of clouds in the Alps show that the levels at which the different classes are to be found exceed the heights which are shown in the table above; and it remains to ascertain not only the effect of barometic pressure on the levels, but also the disturbing effect caused by the elevations in the land. Such observations might well be added to the observatory at Ben Nevis, and no doubt some enthusiastic metcorologist would be willing to spend a summer in the Alps to make observations at a still higher station. Until work such as this is undertaken the subject can only be partially discussed on scientific grounds.
W. de W. A.

THE KLCENT TOTAL ECLIPSE OF THE SUN W^{E} have received the following communica-

THE news that bad weather seriously interfered with the work of the Government Survey parties, sent to observe the eclipse of the gth inst. from points on the centre line of totality, induces me to send you the accompanying incomplete sketch and hasty account by to-day's mail :-

I observed the eclipse from Tahoraite, the present southern terminus of the Napier-Wellington Railway, a point well within the belt of totality, but some forty miles north of the centre line.

I went, determined to concentrate my whole attention on the corona, and the corona alone-I did not even take my watch. My eclipse observations are therefore necessarily very incomplete.

After a stormy night (alternate showers of rain and hail, with a bitterly cold wind), day-dawn brought a clear sky; but a heavy bank of clouds far away to the south boded no good to observers in that direction. The cold was bitter, and fresh snow lay very low down on the neighbouring hills.

The first contact occurred not long after sunrise, the atmosphere in the east being rather hazy, and the light pale (other observers say rudidy). At first the temperature of the air seemed to rise steadily, but when the sun's disk was a quarter obscured, it began to fall agan, and as totality approached the cold became severe.

When the occultation of the sun had reached threequarters, the so-called "livid" character of the light became very marked, and about ten minutes before totality a curions and tremulous play of light on the ground-like dark ripples or moving "marblings," if I may use the word, became apparent.

In order to keep my eyes as sensitive as possible to the faint light of the corona when it should become visible, I only watched the sun (through a telescope) for a few minutes after tirst contact, I then averted my gaze, and fixed it persistently on the dark-green bush suriounding the Tahor.nite clearing. All I noticed during my hasty survey of the disk was two small and one large spot, the latter close to the limb at about 90° (see sketch), and surrounded by faculie.

The moment "totality" occurred I turned my gaze towards the sun, and having previously, to save time, drawn disks on several pages of my pocket-book, I hurriedly took sketch after sketch of the sh.1pe of the corona, the rays of which were much better marked than I had been led to expect. My object in taking several sketches was to record any change in the position of the rays. I took five during the short time of totality, and their agreement is so clear as regards the number and relative
position and length of the main rays, that it fully confirms the general impression left on my mind as to the fixity of this phenomenon.

I was just engaged in making a last estimate of the extent of the corona between 35° and 90°, when a cry arose from the bystanders, "Look at the red flame shooting out to the left!" I withstood the temptation, and observed the almost sudden disappearance of the corona on the reappearance of the sun. All I can therefore say of the red protuberance which attracted so much notice is that the emergence of the sun is blended in my mind with a vague and fleeting impression of a narrow streak of red light with a broad streak of white light outside it, between 200° and 290°, and almost symmetrically divided by the position of the dark rift in the corona.

An acquaintance who noticed the rift in the corona told me that the red flame shot out close to it. He described the shape of the flame as rigyred; other intelligent observers compared it to a sugrarlouf; the most intelligent

Corona as observed during sotar eclinte of Septeniber 9, 188 s , as seen frum Tahoraite, North lalaud, New Realand, alrout to males north of centre time of totality:-A, $3 \mathrm{v}^{\prime}$; longest ray, $2-3$ diams. \mathbf{B}, first contact about 285° (vasue). C, Sua apparently reappecars about 260° (vague). D, 285° (vague), in, sorona. E, approximate position of lagge red protuber250° : dark rift in coroua. E., approximate position of jug e red protuber. ance which shot out just before ctose of tutainty, F, coroma, Inot with rather ragged. G, curona, diam., regular. in, large suaspot with
 diam, with some lonjer rays K, longest ray, s] diauk. I., cor na, hardly $\|$ diam. M, and lonkest ray, $1 \| .2$ diamis N, between longest rays corona externdo it to t diam. : a lotig taye if diam. (N.B.-Curona alope was observed relative position and lengths of rays reliable ; abso. lute lengths to be taken with cautivil.
of those I heard, to a drop of wetter lhanging from an object. Other observers, again, stationed two miles off, saw, not " red but a brilliant white flame shoot out.
I leave these discordant statements and comparisons to be reconciled by other inen.

During totality there was a considerable amount of diffused light around the sun. I am unable to state its extent or colour from personal estinate. Some of the bystanders called the colour pearl-grey; others, reddish; others, again, pale blue and white.

The colour of the corona itself seemed to me very pale bluish green.

The sketch I send you should explain itself. I will only mention that the angles are, of course, only estimated, the zero direction being the upper end of the vertical through the centre of disk.

The rift in the corona was very marked, and extended right down to the disk; it was very near to by far the longest of the rays. In conclusion there is nothing that
the coronal rays remind me of so much as an auroral display.
N. A. Graydon

Hastings, Hawkesbay, N.Z., September it
Mr. Henry Bedford, of All Hallow's College, Dublin, sends us a copy of the Marlboroukh Express, New Zealand, of Wednesday, September 9,1885, giving an account of the eclipse as observed at Blenheim and other places in New Zealand.

The eclipse at Blenheim began at $6.30 \mathrm{a} . \mathrm{m}$., and totality occurred at 7.25 .
"The totality-if totality it was-could have lasted but a bare moment : for, to the untrained observer, it seemed that a patch of bright sunlight on the upper edge of is was never absent. It must, however, be remembered that Blenheim is on the very outer edge of the belt, and that the apparent duration of totality was so extremely short that, by an optical illusion, it might seem that sunlight was never totally obscured. The corona and sun's flames were plainly visible, and formed a spectacle which no mechanical contrivance can imitate, and no art can reproduce. Several stars in different quarters of the heavens-and particularly one about four sun's diameters below the eclipse-were seen, and the general appearance of the sky and of the shadows on the hill sides and in the water was that of early dawn. The eclipse was certainly a wonderful phenomenon, and almost as interesting to the non-scientific observer as to the man of science who viewed it in his observatory.
" Observations of the eclipse were taken in the cricket ground at Blenheim by Mr. Dobson, C.E., and ten instantaneous photographs were secured by Mr. W. H. Macey, the two gentlemen acting in conjunction. Mr. Dobson's observations were made by the telescope and theodolite, the powerful telescope belonging to Mr. Cullen of Mahikipawa having been erected in the cricket ground for the purpose."

At Wellington, by the time the total phase was reached the sun was sufficiently clear of clouds to give an uninterrupted view. As totality was reached the scene was most impressive, and as the darkness increased the western heavens became illuminated with a deep orange colour, shading off into the most delicate of yellows. A number of stars were plainly seen during the darkness. After about a minute and a half the sun again shone out, and gradually increased. Pigeons and birds began to fly about in a helpless fashion, and sought their roosts.

Dr. Hector reports:-"Heavy southerly squalls, wath hail, spoiled the observations. We were at Dryertown, on the centre of the line, but got only partial glimpses. A pink patch surrounded the sun, and extended 15° from it, probably due to the same dust film in a high atmosphere that caused the sun-glows last year."

At Masterton a heavy south-west gale with rain set is on the 8th, and the morning broke without any signs of clearing. Messrs. M'Kerrow and party, who had camped at the foot of Otahuao, proceeded to the top and fixed their instruments amid driving snow and hail. Just before totality the sky cleared, and all the phenomena were fairly visible. One photograph was taken before totality, three during, and one after. The corona was visible for fully a minute, encircling a ring of light radiating to a distance of about half a diameter of the sun. It was of a pale white colour, like the electric light ; of uniform width, except a: the sun's equator, where it slightly protruded, and was evidently of greater extent.

We have just received, by the dilatory method of a letter by post, an account of the preparations making and made for the due observation of the Total Solar Eclipse in September, up to within a fortnight of the event coming off; but no more. Our informant, the Venerable the Archdeacon Stock, of Wellington, New Zealand, was momentarily expecting two large auxiliary expeditios,
one from Sydney, the other from Melbourne; and had been himself told off for corona work. But though brimming full of fine enthusiasm to do all that man could do in that department, he yet characteristically adds. " but how can we expect to see any of the more refined and minute features through all this Krakatao haze which the sun has still to shine through? In 1882, before that great volcanic eruption, we could see the comet of that year close up to the sun's limb; but now I am certain that nothing of the kind could be visible."
C. P. S.

15, Royal Terrace, Edinburgh, October 21

NOTES

P'rof. Pasteler read on Monday evening to the Paris Academy of Sciences a statement, of which the following is the substance as telegraphed to the Standard:-M. Pasteur some time ago succeeded in rendering proof against rabies some sixteen out of every twenty dogs experimented upon. But to ascertain that immunity had really been given, he had to wait four months after the inoculation had taken effect. Hetherefore set himself to obtain virus of different degrees of strength, with the object of obtaining prompter and more certain results. This was effected by the following means:-A rabbit was inoculated with a fragment of tissue taken from the spine of a rabid dog. The incubation of the poison occupied fifteen days. As soon as the rabbit was dead a portion of its spinal marrow was in turn inoculated into a second rabbit, and so on until sixty rabbits had been inoculated. At each successive inoculation the virus became of increased potency, and the last period was not more than seven days. Having ascertained that exposure to dried air diminishes the virus, and consequently reduces its force, M. Pasteur supplied himself with a series of loottles containing dried air. In these bottles were placel portions of the inoculated spinal marrow of successive dates, the oldest being the least virulent, and the latest the most so. For an operation M. Pasteur begins by inoculating his subject with the oldest tissue, and finishes by injecting a piece dating from two days only, whose period of incubation would not exceed one week. The subject is then found to be absolutely proof against the disease. At the beginning of July a young Alsatian, named Joseph Meister, who had been severcly bitten in several places by an undoubtedly rabid dog, presented himself at the laboratory. His case, left to itself, being considered hopeless by M. Pasteur, Prof. Vulpian, and other high authorities, the patient was submitted to the same series of inoculations that had been so successful on dogs. As a pronf a series of rabbits were simultaneously subjected to the identical processes. In ten days thirteen inoculations were made with pieces of spinal marrow containing virus of constanely-increasing strength, the last being from the spine of a rabbit which had died only the day before. The youth thus operated upon by the successive administrations of weaker virus was made proof against the virus of the intensest strengih. It is now 100 days since be underwent the last inoculation, and he is in perfect health. Those rabbits, on the contrary, which were at once inoculated with the strong virus, without first being rendered fit to receise it, became affected within the proper incubation periol, and died with the usual symptoms. The first inoculation practised upon Meister was sixty hours after he had been bitten. M. Pateur has, at the present moment, another human patient under treatment who was bitten a few days ago by a mad dog. M. Pasteur said it would now be necessary to provide an establishment where rabbits might always be kept inoculated with the diseave. In this way there would constantly be a supply of spinal tissues, of both ohl and recent inoculation, ready for use. Before the sitting was adjourned M. Pasteur received an enthusia tic ovation from both the Academy and the public present.

THe annual meeting of the five academies forming the French Institute took place at two o'clock on October 24 in the large Ihall of the Institut; M. Bouguereau, President of the Acaderny of Beaux Arts was in the chair. The great prize delivered once every tw, years was awarded to Dr. Brown-Sequard, the wellknown plysiologist. M. Paul Bert had written a paper "On Vivisection," which was expected as a sequel to the delivery of the prize to Dr. Brown-Sequard, but it was not read for want of time. The annual banquet took place in the evening for the second time.
Ir is rumoured that M. Goblet, the Minister of l'ublic Instruction, proposes to return to the former organisation of the Institut, which was regarded as a universal self-electing body, Each class or special academy had not the privilege of choosing its own members as uow, but of proposing a list of candidates to the whole Institut. The increased solemnity given to the annual and quarterly mectings, and the institution of banquets, are considered as preparatory to this important ehange.
M. Bertrand, who was nominated member of the French Academy some months ago, will be received on December to next, at a solemn sitting, when he will read his inaugural address. It will be answered by M. Pasteur.

A very valuable addition has recently been made to the Science Collections now displayed in the Western Gallerics at the South Kenvington Museunt of Science and Art. Mr. Kochfort Connor, of the Inland Kevenue Department, has prepared a number of exquisitely finished pen-and-ink drawings of objects viewed with the microscope, often by the aid of very high powers. The collection, which covers two large screens in the rooms devoted to biology and geology, include drawings of insects and other minute forius of animals, and of various anatomical preparations from them, of curiosities of pond-life, and of the skeletons of many organisms, both recent and fossil. Among these last Mr. Connor's highly-finished representation of some of the more complicated forms of the Diatomacere, such as Heliopelta and Coscinodiscus, are especially worthy of admiration, though some of his drawings of Foraminifera, Bryozoa, and Sponge-spicules are scarcely inferior to these in delicacy of execution. These drawings represent, we understand, the leisure hours of a busy life-time, and their author is now engaged in a series of microscopic drawings illustrating the characters of food-prolucts and their adulterants. A few of these are now exhibited as samples, and the series when complete cannot fail to be of great use to public analysts and others.
AT a mecting of the Brookville (U.S.) Society of Natural llistory, September 22 (according to Science), a committee was appointed to confer with the scientific associations, educational institutions, and with individuals throughout the State of Indiana, concerning the advisability of the formation of a State Academy of Scienee, and if thought alvisable, to co-operate with such persons in favour of the formation of such an association. Free expression of opinion is called for by the committee, both as to the need of such an organisation and as to the best plan for its composition. It is now the plan to hold a meeting at Indianapolis between Cbristmas and New Year's day. It proposed that the organisation shall emable the citizens of Indiana who are engaged in scientific work to meet at certain times "for social intercourse, for the exchange of ideas, and the comparison of results of scientific studies." It would appear from the prospectus that the Academy would be a State society similar to the American Association.
Some theoretical views on the detonation of meteorites have been recently offered by Signor Rombicci in the Royal Accadenia dei Lincei. He supproses the detonation to be that of an explosive gas mixture, formed during the surface-heating of the mass in the atmosphere, and accumulating chiefly in the vacuous
space left behind the mass in its very swift light. The gas mixture is probably of oxygen and hydrogen, and it becomes detonant when the proportions are near those in which the gases form water. The oxygen may be supplied from the air; the hydrogen may come from the meteorite itself, which, having like porous bodies and fused metals, taken it up and condensed it in sume region of space, sets it free again as it becomes very hot by friction of the air, and as an enormous difference of pressure arises between the front and the laack part. Ibut a portion (and perhaps the larger) of the detonating mixture may come from dissociation of the aqueous vapour in contact with the glowing and fased surface of the meteor. To the irlea of an actual explosion of the meteorite by internal energy, signor ISombicci objects that the ball must be shattered to the finest dust, and that fragments would not be coated with a crust. Sometimes meteorite stones remain quite whole in spite of the detonation. Haidinger's idea of the sound being due to air rushing into the vacuum behind the meteurite is thought improlsable because the detonation takes place in very high layers of the atmonphere, where the air is much too rare : moreover the movement of the meteorite until detonation is a quite steady one. The character of the noiee, and its repetition at intervals, also the shattering of the mass into frygments forming a cone of dispenion towarls the earth all agree, in the aultor's opinion, with an explossion of gas behind the meteorite. Referring to another point, Siznor Bombicci thinks that the earth has by virtue of its magnelism a selective action on cosmic mases; ; hence the univeral preaence of iron in meteorites.

Messrs. A. AND C., Black will publish immediatcly a volume by Dr. Croll, F.K.S., entilled "Discussiuns on Climate and Cosmology," and alsu a new evlition of "Climate and Time."

Accorning to the Fown in fritian Art the Government of India has decided to combine the duies of the Archaeological survey and thuve hitherto performed by the curator of Incient Monuments. For this purpove India, exclusive of the Madras and Bembay preaidencies, has been partitioned into three divisions, one of which has been placed unter the control of Major Keith, who superintenled the convtruction of the mag. nificent Gwalior gate which II.1I. Maharajoh scindia has presented to the Suuth Kensington Museum, and which will le a prominent omament uf next year's exhibition.

We have receivel from Mr. Saville Kent, Superintendent and Inspector of Fisherie, in Tasmania, a very encouraging repert of operations for the year ending: July 3t, iSS5. Much of the report is olevoted th ovater fi heriec, which Mr. Kent is enteavouring is develip on cion'fic jrantil. Ite has evtablisherd hatchenes at vart us prats, and a hloofatary fir experiment", antil unile t las sare the wwoter aght ' + twoone in important inslustral prolict in Tarmann. Il. al, ablises the encrutagement of of atie fivheries. With rientel it balmonidix, Mr. K ut o me ilec that no true almen have yet heen evahlested in the lins av1 tiven ot 「awanis. Ilie fish of large are whin ahond in the geeal \mid blat atel uther lange theetsof water are really coventolly the whe as llo fireat l. The "Trout or S.tim' / me of lirea! |hath1s.

Is the Kejort by the Joml of I'rale in ther ir ececting ambl hesinesu uniler the Wwaghs and Meavitev Aut fir the pist year, it to stated this the attention of the dequrtment hat leen
 visling a legal tanilar I meaverefor teving ateam proamur amge. In reference theteto regrel hav heen expreseel that at present Itie Stanilards I separtmem lias no power to do this. The guen lion aprearv io be whether a pressuregauge is a "measure' within the meanung of the ve. The testin; apparatu propine el by the Corpuration is a meavurer of prevure applicatile only fir sfectaf use, and it betongs io a class of measurnig inviruments,
as barometers, thermometers, \&ic., not directly provided for the Act. In the report of last year an opinion was expreor that the time had now arrivel when this country might, on proper conditions, join the International Convention uo Me: Standarls, and in september last Her Majesty's Coveremmade known to the Comite International des loids et Mer at Paris that England was willing to join the こonvention. has now been done ; and the Comite nocepts the reservationIler Majesty's Government as to the iniroduction of the z syvtem into this country, affirming tha: there is nothing in articles of the Convention which implies any obligation as part of a contracting sitate to attempt to molify the swee =s weights and measures legalised at the time in that state. I atherion of lingland, therefore, is not to be regariled as expression of opinion that the adoptiost of the metric sywera this country woull be desirable. I cepy is attached t, Report of a Memoranduin on Metric stamlard, intembe! laboratory use; and also a copy of a scale of errors to be ie mitted on ordinary metric standanls used in testang manaf: turers weights. Metric weights from 20 kdlograms to $0 \cdots$. gram. to lre usel for the purpures of science anit nuwofact or for any lawful parpose not being for the purprese of $1: 3$ have been verificl for the lewll aulhorty of Birminstham.

Mr. Clenest L. Wr.agete, of the Torrens folmersa: near Atclaile, late of then Nevis, has been instrused ly 'queensland (iovernment to " vivit and repart is to the ' means of estalilishing neteorological stations in Queentian. inclucling the Cape York Peninsula and Torres Sirats" N_{1} Wragese, who lately retumed to Ifrishane from Nurlhern Quesen land, will commence his duties early this month, and proes. shortly to Normanton in the Gulf of Carf entaria.

Tue Invtitution of Mechanical Ensineers mel at Coven yesterlay, when the following japeri were real:-1) the s. struction of motern cycles, by Mr. Rolert Edwant Phallips, Lentlon: on the distribution of the wheel lowel in cycles, by N : J. Niteel Griffuhs, of Coventry ; deveription of a hylr bulter step for railways, ly Mr. Alfred A. I.1ngley, of Ilerly

Tife: aynarium at the Inventions Fixhobition hav Istely rece:s woue valuable altitionv in the form of kollen tencli, Ames. salmonidec, and Italian carp, notwithelamling the fact that I:xhbition will shorily clowe. It iv to lee hipel that the ea. from the Buckland Muretum collection whll lee alluwel to re in the aymarium. where they appear to far better afvan:a, than in their previuts licale.

Trte Ich/hvolurical Maveust sow in course of formation Sumily Kovingt on haw iecn lately enriched with further valuable prectmenv of fivl. Sinomgit them are some prawns unique if |12. incisuri) ig tavi:r incher long, which were presented M1. July S. Charles, uf l.iwer ' arosvenor Square.

Iut Givut/a. Imertian, in s recent iveuc, describss the lab sent galsanometer monstructed at Cornell University, from th It is in - if Mr. Intlowiy, the I'mfessor of Physies, to meet th want of a viani anl in trument for the measurement of bear furron', an I far the direct calibeation of the commerciat inatro thent if if.e for measuring the currents employed in electal
 f ir infos, 'wn 2 metred in fiameter, and two it mex m inte I, whe r ling to Ifclmblult, plan, at distances apart e to Ilv'ir mati. The conductors forming these circles are tryen ruls, bree fiurths of an inch indianeterl. The fen-l I liy a sulk filure in a pr
effectual il amper, and r
taphlly: Iby a peculia
the ons are rea.
501
rately turned and adjusted, and the dimensions are all known within one five-thousandth. For the measurement of small currents there are two circles, about $\mathbf{I ' S}_{5}$ metres diameter, each having two conducturs, and comprising altogether 72 turns of No. 12 copper wire.

THE indications of such an instrument of course depend upon the value of the horizontal intensity of the earth's magnetism, and without some means of determining this quantity in the place where the instrument stands, and at the time when a measurement is being made, no great accuracy is attainable. For making this determination, a coil a metre in diameter, consisting of 100 turns of No. 18 wire, is suspended, so that its centre coincides with the centre of the instrument by means of a single phosphor-bronze wire, which is itself attachell to a torsion-head reading to ten seconds of arc. By the aid of this coil, observations may betaken at any moment for the determination of H by the method proposed by Sir William Thom:on. The instrument is mounted in a copper building, from the construction of which all iron has been rigidly excluded. Several conducting, wires connect the building with the dynamo and other rooms of the playsical laboratory, 550 feet distant, and switches in the lmilding serve to send the currents through the several eoils of the galvanometer ingly, in series, or in multiple are, firect or reversed. By thi, means currents from 1 milliampere to 250 amperes ean be aceurately measured.

Tue last number (lleft 33) of the Ditthetungen der Dewtschen Gesallschaft four Natur und Volkerkunde Ostasiens contains a paper lyy Herr 1 uitterott on the Japanese sword, with numerous illustrations of the various forms. It describes the manner in which it is forged, how it reaches the extraordinary degree of excellence for which it is celebrated, in short the technique of the making of a Japanese sword in the feudal days. Herr Mayet concludes his account of a visit to Corea, the first part If which we have already noticed. Dr. Naumann, the director of the Geological Survey of Japan, and Japanese representative at the late Geological Congress at Berlin, communicated an extract from a report of his on the geological structure of the Japanese irlands.

OSF-IENTH of the "Suldentenschaft " at the Zurich University is now female. Twenty-nine young ladies sturly medicine, fourtcen philosophy, and two political economy. Of the forty five female students, fifteen are swiss, and ten Kussian.
Ture after-sunglow has again at times been visible in Stockholm, from the middlle of Nugnt to the midule of September, being distinct from the ordinary evening auroza.

A further telegram ha; jast been received by the Rus-ian Minister of War from Col. I'rjevalsky, dated O.h, September 30 That is, the 12 th inst., new style. Only the concluding passage has as yet been published by the Russian papers:"August 14 (new style, Augu*t 26), Oasis of Tchira.-1 have explored the Keria Mountains. We are now proceeding shig Khoten and $\mathbf{A k s u}$, and we shall arrive in Semiretchia towards the end of October. All is well."
solved air, or lose it very little. The author made arrangements for observing the spheroidal state under different air pressures, and he came to the conclusion that the temperature of each liquid in that state, under a given pressure, is very nearly equal to the least boiling temperature of the liquid under the same pressure.

We have just received from the secretary, Mr. Charles Bailey, F.L.S., of Manchester, the reports of the Botanical Exchange Club for the years $\mathbf{1 8 8} 3$ and $\mathbf{1 8 8} 4$. For 1883 Mr . (6. Nicholson aeted as distributor, and 3735 specimens were received and divided out again among the members. in 1884 Mr. Arthur liennett undertook the labour of distribution, and the number of specimens placed in circulation was 437 t . The two reports contain a series of annotations by the distributors upon the more interesting plants which passed through their hands. For a considerable number of species new counties are registered. The most interesting ndditions to the British flora, of which they make mention, are a Scutcllaria, intermeliate between menor and galeri:wlafa, perhaps a hybrid, found by Mr. Nicholson in a place one would have thought likely to be thoroughly explored long ago-the shores of Virginia Water; Potamoscton Alutans, a prond weed very difficult to recognise, found by Mr. A. Fryer in Huntingdonshire ; and Carex salina, a boreal species known already in Scandinavia, Iceland, the Faroes, Nova Zembla, and North America, which has lately been discovered by Mr. Grant in Caithness. The Rubi of Britain want carefully comparing with those of the Continent, and Mr Arthur Bennet: has done well to send the Club specimens to be verified by Dr. Foche, of Bremen, whose synopsis of the German Rubi has been taken lately by Ilyman a, a basis for his enumeration of the European forms in his most useful geographical conspectus of the European flora.
A currous calculation has been recently made by Signor Bartoli regarding the inean density of a body which should contain all the known elements in a solid state, either uncombined, or, if partly combined, each retaining the density belonging to it in the solidl state. The author makes three suppoxitions-(1) the masses of all the substances equal ; (2) maswes such that the corresponding volumes are equal ; (3) masses in ratio of the atomic weights. The corresponding mean densities he arrives at are $2.698,7.027$, and $3^{\circ} 776$, and it is pointed out that the last value comes very near that got by Cavendish for the mean density of the earth, viz. 5.67 ; possibly an accidental agreement, yet interesting.
We have received from Mr. Francis Day copies of two papers, on a subject on which he also read a paper at the Aberdeen meeting of the British Association. One is entitled " Notes on the Breerling of Salmonidx," being observations on the fish cultural experiments being carried on at Howietown, and on experiments by the author himself at Cheltenham. The second, fron the Transactions of the Limnzan Socicty, is on the Lreeding of salmon from parents which have never vivited the sea. This also describes the results of experiments at Howietown.

We have received the rejort of the Council of the 1 escester literary and Philosophical Society for the past year. Various important additions have been made to the town maseum; the work on the flora of Leicestershire, undertaken and edited by a brotanical sub-committec, is now in the press, and will shortly le published; the resolution, adopted at the last general meeting of the society, for the promotion of science classes in the town has, owing to various circumstances, only bee 1 partially earried out. Two experimental ela-ses, one for pure mathematics, the other for physiology, have been commencel, and have been attended with fair results. The rejorts of the various sections show a considerable amount of work dine during the year.

Short abstracts of various papers read before the society are given in the Transactions.

A MISSION of thirteen youths, belonging to the best families in Camborlia, has arrived in Paris for the purpose of study. They have been placed under the care of M. Pavie, who has constracted a line of telegraphs between Siam and Cambodia. This is the first time since 1864 that Cambodians have come abroad for purposes of education.

The additions to the Zoological Society's Gardens during the past week include a Vervet Monkey (Cercopitherus Ialandii of) from South Africa, presented by Mr. George E. Crisp; a Malbrouck Monkey (Cercopithecus cymosurws 8) from West Africa, presented by Miss Ethel O'Donoghue ; a Kinkajou (Cercoleples caudivolvalus) from Demerara, presented by Mr. John Carder; four Common Squirrels (Sciurns zwlgaris), six Common Dormice (Muscardinus azellanarius), British, presented by Mr. Thomas Weddle; a Tennant's Squirrel (Sciur:us tennanti) from Ceylon, presented by Miss Maude Bovill; two Vulpine Squirrels (Sriurnes zulpinus) from North America, presented by Capt. E. E. Vaill; a Coypa (Myopotamus coypus) from South America, presented by Mrs. Amelia Appleton; a Robben Island Snake (Coronella phocarwm) from South Africa, presented by the Rev. G. II. R. Fisk, C.M.Z.S. ; two Sly Silurus (Silurus glanis), European, presented by the Marquis of Bath, F.Z.S. ; a Red Lory (Eos rubra) from Moluceas, an Alexandrine Parrakeet (Palcornis alexandri) from India, deposited.

OUR ASTRONOMICAL COLUMN

Periodical Comets in 1886. - Of the now somewhat numerous list of comets of short period, two will be due at perihelion in the ensuing year:-(1) The comet Tempel-Swift, or 1869 III. and 1880 IV., which is likely to return under circumstances that will render observations impracticable, so far at least as a judgment can be formed without actual calculation of the perturbations. (2) Winnecke's comet, last observed in $\mathbf{1 8 7 5}$, its track in the heavens near the perihelion passage in December 1880 not allowing of the comet being seen at that return ; the perturbabations may be very sensible during the present revolution: neglecting their effect, the mean motion determined by Prof. Oppolzer, for $\mathbf{1 8 8 0}$, would bring the comet to perihelion again about August $\mathbf{2 4} .5$, under which conclition its path would be as follows:-

		R.A.		Decl.		Distance from Farth		
July	25.5	...	$177^{\circ} 5$	\ldots	+ $10 \cdot 2$	1.17
Sept.	13.5	...	2417	...	-24.9	0.95
	23.5	\cdots	246.1	.	- $30 \cdot 2$	\cdots	.	0.64
Oct.	3.5	...	2648	\ldots	-35.6	$0 \cdot 64$
	$23 \cdot 5$...	$305{ }^{\circ}$...	-36%	0.77

The actual orbit of Winnecke's comet approaches very near to that of the planet Juputer in heliocentric longitude 110°, at which point the comet arrives 720 days or $1 * 97$ years before perihelion passage, the distance between the two orbits is then less than 0 o6 of the carth's mean distance from the sun.

It is very poswible, however, that the e met which may most interest astronomers in IS86 will be that observed in 1815, and known as Olhers' comet, which, according to the elaborate calculations of Dr. Ginzel, will again arrive at perihelion in December 1886. The most probable date that can be inferred from the olservations of 1815 , and the computation of planetary perturbations in the interval is December 16, but unfortunately the observations did not suffice to determine the mean motion in 1815 with precision, and consequently Ginzel found for the limits of the period of revolution $7 \mathbf{2 F}^{\prime} 33$ and $75^{\prime} 68$ years, hence the comet may reach its perihelion many monilhs earlier or later than the date given by calculation. Extensive sweeping ephemerides have been published, and it may not be too soon tis direct attention to a search for the comet at the legginning of the nest year, or as soon as the region in which its orbit is projected at the time can be advantageously examined.
A Catalogete ov 1000 Southeken Stars.-Vol. iii. of "Publications of the Washlurn Olservatory" is to contain a
catalogue of 1000 stars between 18^{2} and 30° of south decimasing formed by Rev. Father Hagen and Prof. Holden frue :2 observations of Prof. Tacchini at Palermo during the Jent 1867-69, which were printed in the Bulldino of that obsera:between April, 1867, and July, 1869, and with which Pi:Holden says he became acquainted through M. Hoams Vade-Mecum. The stars observed are from the 6 ch to the x: magnitudes, and the magnitudes appear to have been very ax fully noted, while it is remarked that the positions are excelier. They are reduced to the year 1850 , but the mean epoch of obvero tion of each star is appended. The copy before us is a rep= from the above-named volume. Tacchini's observationa :made with the Palermo meridian circle fully described in : Bullctino.

ASTRONOMICAL PHENOMEVA FOR THE W'EEK, 1885, NOVEVBER $1-7$

(For the reckoning of time the civil day, commenciay = Greenwich mean midnight, counting the hours on to 24 , is ber employed.)

At Groenwich on Nitember 1
Sun rises, 6 h .56 m. ; souths, 11 h .43 m .40 .9 s ; sets, 16 h .31 m decl. on meridian, $14^{\circ} 35^{\prime} \mathrm{S}$. : Sidereal Time an Sume. 19 h. 15 m .
Moon (two days after Last Quarter) rises, oh. 13 mm ; sowtic 7 h .20 m. ; sets, 14 h .14 m . ; decl. on meridian, $9^{\circ} 37^{\prime}$:

- Indicates that the rising is that of the preceding day

> Phenomena of Jupitcr's Satellites

The Phenomena of Jupiter's Salellites are soch as are visible at Creeans.t
Saturn, Nov. 1.-Outer major axis of outer ring $=44^{\circ} \mathrm{c}$ outer minor axis of outer ring $=\mathbf{1} \mathrm{S}^{\prime \prime} \cdot \mathbf{9}$; southern surface sasti'

Nov.		h.		
1	...	4	...	Mars in conjunction with and $4^{\circ} 16^{\circ}$ nort of the Moon.
3		7	.	Mercury at greatest distance from
3	...	9	...	Jupiter in conjunction with and 0° of the Moon.
7	\ldots	21		Mercury in conjunction with and 6° south of the Moon.

THE SCOTTISH METEORULOGICAL SOCIETY
A^{T} the annual meeting of this Society the Report of the Council stated that thiry-eight new members bs been added to the Society during the year, and the metoherchty now numbered 698 . A new station had heen estahlished no the island of Fidra, at the mouth of the Firth of Forth, and that ofvervations had been made for the Society at San (iorge. Centra: Uruguay. A large number of naturalists and others had availel themselves of the facilities for research offered by the Scottish Marine Station during the summer, there being thirteen wooling at the lahoratorics at the present time. Communications were now going on between the Council and several influential gentle men in Glaggow, which it was hoped would result in the establishment of a permanent station for marine research on the Clyde. Mr. H. .. Dickson, of the Marine Station, commancated the results of experiments and observations which, rumag the past wo months, he had been conducting at Granton, wet the view of collecting data from which to determine the correc tions to be applied to the readings of thermometers exponed an the ordinary Stevenson sereen, in use in many places over the workl. Ilising referrell to the errors to which the anlizary screen gives rise, consequent on the varying atmosphe
and radiation, be proceedel to say
carried on chiclly by means of improye
John Autken of "Warreat -andight
tnd 'wet bults by Glaisher's tables had been compared with hose given by a new form of hygrometer designed by Prof. Chrystal of Edinturgh U'niversity. As regards Mr. Aitken's icreen, in some a fan was introduced in order to secure a proper und uniform circulation of air for the thermometers in all weathers; others were simply sunshades; one consisted of two chermometers, one of which was partially blackened; and another of a thermometer having its bulb inclosed in a tightfitting silver sheath, highly polished. The construction of Prof. Chrystal's hygrometer was explained and a brief account given of the results either already arrived at or suggested during the investigation, and it was intimated the inquiry was to be resumed at the lien Nevis Observatory during August and September. At this Observatory, the climate of which offers unique facilities for the prosecution of such inquiries, an instrument of novel construction would be added, which had been designed by Prof. Tait for hygrometric research. Prof. Ewing, of Dundee, then described the arrangements which had been made for commencing the proposed earthquake observations on Ben Nevis this summer. The investigation was to include earthquakes proper ; earth movements of so very delicate a kind as to be totally indistinguishable without some form of instrumental assistance, which are conveniently called earth tremors; and there were what might be named changes of the vertical, or those tiltings which the earth's surface seemed to be constantly undergoing. The different seismometers to be employed at the Observatory were then described, and in illustration some of the more striking peculiarities of the earthquakes of Japan were referred to.

PROF KIESSLINGS INVESTIGATIONS INTO THE ORIGIN OF THE LATE SUNSET GLOWS ${ }^{1}$

THF. interesting and important experimental demonstrations lately made by Prof. Kiessling of Hamburg to illustrate the artificial formation of all manner of sunset effects are probably well known to meteorologists in general. The September number of Das Weffre contains a valuable series of comparisons tending to show that the conditions under which artificial glows were produced have actually existed whenever the remarkable sunset effects have male themselves prominent. The following abstract may prove of interest to thuse who do not receive the paper itself.

With regard to the "after-glow," or re-illumination, he sug* gests two explanations as possible:-(a) Simple reflection of the refracted rays essential to the formation of the ordinary sun-et-glow (the first glow); or (b) direct diffraction by a second homogeneous haze at much greater elevation. He considers, however, that the calculated heights of the latter place it out of the question. To the former there are only two important objections, the chief one being the slight polarisation, so far as the very scanty records indicate. The observations are, however, exceedingly deficient. Still, Prof. Kiessling has to allow that they do not tell in favour of the proposed explanation. The other difficulty is the position of the glow. It presupposes a mirror-like surface, parallel to the earth, with the intermediate space unusually transparent, conditions at first sight very improbable at the altitudes under consideration. But Prof, Kiessling's own experiments, detailed at the end of his paper on "Die Dammerungserscheinungen im Jahre 1883 ," have shown the possibility. In these he obtained results most remarkably similar to those requiring explanation, and ly methods reproducing in a striking manner the conditions considesed actually to exist in the atmosphere.
A warm, noist stratum of air being prodaced in contact with a cold stratum the resulting haze along the contact surface formed the site of diffraction phenomena, approaching those actually observed in ordinary brilliant sunsets according to the fineness of the haze particles, and also reflections reproducing the "after-glow."
The almost constant saturation of the cold upper strata in winter is indicated by observations at high-level stations and the persistent upper haze. Let a warm [cyclonic] current come beneath such a layer, then the fine haze at the surface of contact will have beneath it the peculiarly transparent atmonphere coninuon - \mathbf{w} h conditir $\boldsymbol{\omega}$ - gequisite for the tranamission of the renult-
*ien Purpurlichtes und die Abhangululi
\&eeprotur, und Fouchugkeit der Cufi
ing diffraction (and reflection) phenomena. This should be found to exist in all brilliant sunsets, 1'rof. Kiessling slating the following law :-An intense purple glow, visible over a consider. able area, may occur whon, in close proximity bencath a lofty and highly-attenuated haze, there is formed an extensive stratum of air at considerably higher temperature.

Although we cannot ever expect direct obvervations of temperature of the common surface producing the sunset glows, yet, ns I'rof. Kiewding shows, if we can prove that the warm undercurrent always accompanies sunnet glows, the proof is practically complete. Such indications may be expected luring the colder sensons in the form of absormal vertical dis'nibution of tempera-
ture, an inercase instead of decrease at higher stations. IIe brings forwand a long array of figure supporting this conclusion, especially for sunrice effects in iS83, as seen from sintis $(2467$ metres), in North-East Switzerland, in the bend of the Rhine. Stations to the east-Manich (528 metres) and Hohen Peissenher: (994 metres) are taken for observation ; on temperature and relative hamitity. The last place is about 35 miles surth-wsent of Munich: both may be considered as bencath the sky resion prodacing glows at Santis. As difirence of fomporature is the most deciave comparion, his tables are here rednced to a series showing the difterence of Whohen Peissenbery relums from Munich, in degreen Centigrade. In some case; one or two other returns are also alded, relucel in like manner. . Werm ai'r, allowing for difference of height, Itohen I'eissenbers shoult register $z^{\circ} \cdot 5$ below Munich.

The final sel of ohacrations refer to some of the earlier afterglows. The greater anomaly with greater elevation (increxes; of $5^{*} 2,10^{\circ} 6,12^{*} 2$, and $17^{\circ} \cdot 1$ reppectively in the figures siven) is very sugrestive. The reason of the nortagreement in May has alrealy been stated.

Fixcept the lavt, these ofsersations refer to ordinary sunrise effecte but the only tiference between them and the recent glows is conatierel to ine that the latter necur by reflection at a higher level and in a more tinely attenuated haze, thus giving the richer effects. The presence of such a baze with the glows was a matter of very common ohiervation.

The question, of course, require, further consideration, especially wath respect to observations of the recent glow. Revides this omnnection with a warin stmtum of air, Erof. Kiessling finds another, almost as general, with barometric maxima, as was noticed with the similar phenomena in SS_{s}.

Keferring, in has conduding paryraph, to the connection of the glows with the Krakatoa eruption, Prof. Kiessling: wrttes that the thousand or so reconk of their geographical distribution, now in his hated", "slouw a perfectly continucuss spread of the anomalous glows, and of the diffraction phenomena of Bishop's King lating from Nugust 26,185 3, and spreallong from the sitrats of Sunda a a centre over the tropical and temperate sones,"
J. Emand Clark

A CEVTURY OF SCIENCE IN BE.\GAL

I^{T}was a happy idea of the Council of the Aviatic Sinciety of lhengal to commemorate the completion of a century of the society's evistence by puhlivhing a review of the prongres matle and the vervices rendered to knowledge by the institution. ${ }^{1}$.The wlea of a learned society componel of Europeans in India sturlying the country and communicatin; to each other at perimblical mectings the results of their reacarches, arose first in the fertle brain of Sir William Jones, who was julge in the Supreme Court at Fort Willian, and who delivered, on January 15, 17)4, to about thiry mentiers of the E.urepran community of Calcutta, a " Discourec on the Instituwn of a boctety for Inquiring into the Ilimory, Civil and Sataral, the Antiquinies, Arte, Sciences, and Literature of Ava." Is a result of thin di-contre, the " A viatick tiociety," the patent of all swh societies, wav founterl. Its motto, which is taken from Sir Willian Jones's discourse here referred to, is this: "The bounds of its investigations will be the geographical limis of A via, and within thesc limits its inguries will be evtenidel to whatever is performed by man or probaced by nature." Mfier many victositudes it has just completed its hundredth year, and the recurd of its work form, the large volume just mentioned. This iv diviled inte) three parts: first, a history of the sonciety, by 1)r. Mitra; its work in archevology, histors, and literature, foy I'r. Ilernle: and the work in natural science, by lakou I'. N. Bove. The charge which has come over the face of India in the course of a century could hardly be leetter marked than by the fact that two out of the three parts into which the velume is diviled-one of these being on natural science-are written loy native pentlemen. In the listory of the Society we notice that in : wis a resolution was proposed by Dr. llare and seconied by Dr. Leyilen (frequently referrest to in Lackbart's " Life of Scot "), "that a Committee be appointed one the purpose of physical investigations, the collection of facts, mens, and corresprodence with individuals whose situations bountry may lof favourable for such discuviuns and ininx." It was then agreed to provile two committeesinary Review of the Avalic sciety of Dengat, 190_{4} to $1083 .{ }^{\text {." }}$ w the Nonery. Calcutta. Thacker, Spisk, and Co., 1385.
one for science, the other for literature ; twenty years laser, : ises, a commitiee was appointed "to promote gerdugical researches, working under the rules then in force for the IthouCommintee," and at the same time the publinhed Trasssusion the society were divided into two pars, one deroted in phy - a the other to literary subjects. Xearly twenty years later' $=$ whole of the work of the Society was delegated to wr cos matees, one having change of zoolnzy aut natural hac: t. another of geology and mineralogy, and a thirl of metersimy and physics. The extablishment of a maseum di.l not we: the founder, but curiosities were constantly coming in f_{r} members, and in 1796 it was proposel to give theve a $\quad 13: \mathrm{L}^{2}$ house. In iSlit Dr. Wallich proposed the formution if museum, ant offered duplicates from his own collections. well as his services in arranging it , and a maseum was uce-ingly started. The story of the growth of the varions w- \sim : of the Natural Itistory 1 aseum is toll by Dr. Mitra. the whole it is one of great progrev, althoush fionanclifficulties beset the museum at first. Hut as somon 2 Society berame able to pay for scientific curatom all w. welt. In is65 the Society, zoological, geulosical, an $1 \mathrm{ar}_{3} 4$ z logical coliections were made over to the Governtment of is. for the public nuseum in Calcuta, I writer in the Cu's Neriew, speaking of the Society's exertions for the catableshn of the national museum, xaid: "1Iad it done notbing eic promote science during the last ten years, it woull have emt utielf to the grouitude of posterity for the vigour with whas has proweuted to success a project frought with so mach if
 published un ler the title " Nixtich Researches," create1 i ee" sation in the literary and scientific worl! in Europe. I Fr trantation was speedity published, with notes on the wien:1purtions by no lesser himis than Cuvier, Lamanth. Inelaza' and Olivier. Of the work of the Suciety in peesersing 又 17 NSis., in transhting and publinhing varios, worin ino is native languages, an! other valuable services 10 Interature, Is Ditra speaks at tength. Amongat the pablications, anart fo or the papers, we notice many of scientitic mterest, wh ctalnotes of various sections of the museum, of the mam na aod bardi of Burmah, of Indian lepilaptera, bevidec tranda'ps: of numerous works of Hindou science. In varaming ops al the conclusion of his historical sketch the trenefits conferred in I7., and the world by the sinciety turng its humlred yeve of ens ence, Hr. Mitra sums up its scientific work (apari from payers and published volumes above referrel (o) thas: ${ }^{* 6}$ It get in is archeological and ethnological matem of conshleratie ex: a seological musenm rich in meterorites and Indian Soselic, an: zoolozical museum all hut complete av regand. the avifians India,"

The lomg review of the work of the society in natural veiens iv, as alrealy mentioned, written by Waboo thene. His meth =: is to take the variou, hranches of weience in sutcecsion, wath as mathematical and physical wience, ge logy, zwology, tmamy. ace graphy, ethnolugy, and chemistry, and tu deccrite un-ler subh- hen t. the paper on these subjects contributed in the Tnzuractions at tis sinciety, logether with a brief bingraphical sketch of the Ewir celchatied or prolific authors. At the end we pers a elan-som inder of all the scientific paperi, an alphabetical list acove La: to the author's names being given at the conctusion af the firpart. Amonget the latter we notice many whose name de finmiliar as contributors to Nitire. In the carly yean of it Society, and down to $1 \mathrm{S28}$, the xcientific contributions to ty Society's Procedingy were almost whally connected with sve branch of pure or mixed mathematics, for ownl of abe men an went out to India, especially in the scientific branches of the military service, had been well groundect in this subject. The aection on the investigations into the mathematical seience of t? Ilindons is of great interest. Sir William Jones put before :*r Society fiom the outtet the object of stadying these terean and he set the example himself, but the initial dutheulty wa find any native capable of assisling him. Haboo Rose recsent that, although anyple stipends wete offered by sir William I ar to any I Iindio astronomer who coukl name in Sanskru s.'l the :stellations which he would point out, and to any Hindon ghywar who could bring him all the plants mentionef in sandint boot he was assured by the Brabmans whom he had commiourasel' search for such instructore, that no Pundit in Bengal ewn pro tended 10 pasaess the knowlelge he repuired. (ientogst at mineralogy flourished in the siociety from the commenkeror while zookngy was at first unduly depressen and discouragndover
to the aversion of Sir William Jones to zoological studies, and it was only about 1829 that the papers of $1 / \mathrm{r}$. Falconer, Col. Tickell, and others began to occupy an important position on behalf of zoology in the Society's transattions. With Indian botany, geography, and ethnology are connected many names of world-wide fame. With regard to chemivtry, it may be said practically there is no chemical research in the Society's publications. Chemistry, as Baboo Bose explains, can only be studied in the laboratory, and until recently India hat but few laboralories, and few competent men with leisure to devste to the subject. A curions statement, by the way, erceprs into the ac:ount of Mr. l'iddington, who stuclied Indian stome, ant pase in acconnt of every cyclone in the East between $1 \$ 39$ and 1851 . Haboo Hose says his experience was most variell, and then quotes the following from some unnamed source:-"11e was one of the few who escaperl from the massacre of Imboyna." Now, as the massacre of Englishmen by the Dutch (isvernor of Amboyna took place in $\mathbf{1 6 2 2}, \mathbf{M r}$. l'iddington, if he was olserving storms in India in $\mathbf{1 8 5 0}$, could hardly have been in the Easeern Archipelago two centuries and a quarter previausly. Many other portions of this volume, such as the chapter on coins, on ancient Indian alphalets, on the study of the languages and literature of India, and on the study of Indian antiqnitics, are of dleep inlerest, but we have confined ourselves to the ehapters on natural -cience.

The dominant feeling producel by an examination of this volume is one of satisfaction that so much has heen done loy this single society towards investigating the past and the present of (or, in the words of Sir William Jones, "man and nature in") our great dependency. For the m 3 t part this has loeen d , ne by private individuals, but on more than one critical oceasion the directors of the East India Company, in accordance with their generous traclitions, came to the aid of the Sixcety with lange contributions; otherwise there appeared no way out of the difficulty except the disolution of the Society and the abandonment of the works in which they were ensagcd. If this were the place it would be intecesting to compare this method of practically leaving everything to private initiative, with that adopted by the French in In lo China, of the Government undertaking a series of literary, arsistic, and scientific investigatrons through competent ypegialints into a ne.v puwestion. Nutswithstanding the great and marked wece of of he A siatic Society of ISengal, the French plan has alvantage- which caanot be overlooked.

U.VHERSITY AND EDCてC.AT/O.VAL. NTELLILENCE

Cambridge.-Among the more noticealle Natura' science Courses this term are P'rof. Dewar's on Dissociation and 'Thermal Chemistry ; Prof. Newton's, on Evolution in the Animal Kingdom ; Dr. Gadow's on Huwan Embryology ; 1r. Vines's, on the Physiology of Plants ; and Prof. Macalister's, on the I'eripheral Nervous bystem.

I'rof. Hughes is lecturing on Mcthod, of Gealogical Surveying ; Dr. K, D. Roberts, on Principles of Geolo'g' ; Mr. Marr, on Eilementary Stratigraphy; Mr. T. Roleris, on Palieontology ; and Mr. Hawker, on Elemenary l'etrology; all at the Woodwardian Museum.

Prof. Roy is lec:uring on General Pathology, and also conducting a lractical Courve in Morbid Anatomy and Itistology.

Prof Stokes is lecturing on Hydrodynamics; I'rof. Cayley, on Hligher Algebra; Prof. Darwin, on Orbi!s nul Perturbations: Mr. Glazebrook, on Waves and Sound; Mr. Hobson, on Planetary Theory ; Mr. Macaulay, on Theory of Structures ; and Mr. Forsyth on Abel's Theorem. Numerous wher c-urses un higher mathematics, open to the University, are being given loy college lecturers.

We are glay to notice that Mr. A. Sheridan Lea. M.A., I.ecturer on Physiology, and formerly Scholar, of Trinity College, his been elected to a Fellowship) at Gonville and Caius College. Mr. Lea's work in connection with I'rof. Michacl Foster's "Text-Book of Physiology" is well kuown. Mr. l.ea was placed in the First Class in the Natural Science Tripos in 1 S 75 , and has since been continuously engaged in the L'niversity teaching of Physiology.

Dr. S. Richemann has been appointed atsistant to Prof. Wewar, Jacksonian Profesiol.

Messrs. E. W. Holson and A, R. Forsyth are appointed

Moderators, and Mr. C. H. Prior Examiner, for the next Mathematical Tripos.
King's College offers a Vintner Exhibition of 70%. per annum for Natural Science. The examination begins on December 10.
St. John's College offers several scholarships, exhibitions, and sizarships for competition on Dccember 10 . Candidates may offer any of the subjects of the Natural Sciences Tripos except Mineralogy, and may be elec:ed on the ground of special proficiency in one only. l'articulars will be furnished by the tutors.
A joint examination for Natural Science Scholarships at Emmanucl, Christ's, and Sidney Sussex Colleges will be held on January 5, IS86, and following days. The subjects are Chemistry, Physics, Vlementary Biology, (ieology, and Mineralogy. Further particulars will be given by the tutors of either colleg:.
Out of the 875 freshinen whose names have appeared in the preliminary livts, albout 104 have announced their intention of studying melicine in the University. A few more may be added when the results of the October Previous Examination are known. The Anatomy School is attended by over 130 students, for whom an exceptionally abundant supply of dissecting material is in hand. The Demonstration lectures have to be repeated from lack of roo'n ; indeed, the necessity for increased accommodation in this department is becoming extremely urgent.

London.- We have received a circular stating that "In view of the adjourned extraordinary meeting of Convocation (of Lond on University) to be held on Tuestlay, November 3, a unmber of graduates met on Wednesulay last to consider the proposed scheme for the establishment of a Teaching University for L.ondon. As the result of their deliberations it was thought desirable that attention should be called to some of the more striking oljections to the proposed scheme; and that, having regard to the grave importance of the questions to le submitted to the menbers of Convocation affectin' the very existence of the University as at present constituted, they should be especially requested to attend on Tuesday next, and to give their support to Mr. Bone's amendment, to recerse the report su' mitted by Lord Justice Fry, without adopting it ' n bluc.* Should this amendment be carried, the following resolutions, expressing what is believed to be the fecling of the majority of the graduates, will be moved:-(t) 'That Convocation, whilst aftrming the general principles of the desirable ness of bringing the teachers and the examiners of the U'niversity into closer relationship with one another and with the Senate, and of uodifying the constitution of the sevate in accordance with the previous recommendations of Consucation, and without giving to the teachers an undue share of representation on the governing body of the University, refers back the scheme to the Special Commintec for further consideration.' (2) "That the number of members on the Special Committee be increased by one-half.' "

SOCIETIES AND ACADEMIES Sydney

Linnean Society of New South Wales, July 29.-The following papers were read:-A monograph of the Australian sponges, part 5, the Auleninx, by R. von Lendenfeld, Ph.D. several sponges from various localities in the Australian region have been included by the author in this new sub-family, the members of which are characterised by a very peculiar structure not met with in any other sponges. The new sub-family Aulenina is placed in the family Spongide, and consists of the two new genera Aulcna and llalme, with three species in all. The anatomy and histology of these is aceurately described and illustrated by numerous plates. The Aulenine form honeycombed or complicated reticulate structures; the cavities form a kind of vestilule and are simple in lialme, where an outer lamella surrounds the whole sponge, or subdivided into numerous small compartments, as in Aulena, where no vuter hamella exists. Into the system of Vestibule-1.acunae both the inhalent and the exhalent canals of the sponge open. The skeleton of Halme is composed of thick main fibres rich in sand, thin, simple and clean connecting fibres, and a hard cortex of sand cemented with spongiolin. The skeleton of Aulena is very peculiar, It consists of a regular network of fine horny threads in the joining points of which large sand grains are found. In the membmanei
of the Vestibule. Lacune of this genus nervous elements,
semitive asd gangla cefla have beem dicorvered by the
 oponge Jeinuctive io ibece interexing ne eponger - On : bs R. von Lendecteld, M.D. In thie paper the suthor dexcribed a now uponge, Chafinuld coxii, which appeared mome yarr aga of them completely.-Note on the Glacetil period to to Xumaine by R ven Leodented, Th. D. The author drawa atention to weear Alanher evideace of ice astion in the Maunt Lofty group mear Adeladic, whit wime fincher polimbel siluro-Deromina phockeraphel.- Jotings from the bewlegical laboratory of Syd
 ray er contion (t) some nutes in to Australtan speciee of Hooel.

 Aosmlia, by Capt. F. W. Hlution. F.C.X. Sc The nothor Incumes the pbenumena whikh have been odduceel an evidence Chown that they are mewretible of a drferent inserperation. He
 conec, owe feridit pevediel ower mech larger diatricts thman it presen, and a Garial rpoch, wach as has hren demonstrated in

 Zeplond is regarted as anterior to the Gilacial epoch of the North,
rank
Academy of Sciencen, thetwher 19--31, Houley. Predibent, Whe that - Kemarhs on lhe pogh holume in the .Cumnain

 becn mule, ly menn off which it it bopel that the calculationo

 War. by Con. Perrief. This pert cunmenet the ane dimsions of

 if the itwoe may

 acw appurav
by M. F. de Lalamis maentric areometer molene, the source is propoins at hleny sensinive and preciolly mina
 the transminities or even of powerful $\overline{\mathrm{C}}$ Note on the electralynis of obe uxt y Combination or the meutrai cartinoute alivenale of potanat by M. R. Finh-a ootion and other oils extracted foy tit doynund. The bichromate of pobeu
 teeth of the cachalot (\$pernanceti phakit y : On the process of development of $\overline{f a}$

 parcly plyytical forces th

 rifle, by Gen. Five. For this rappo il

CONTENTS
The Anti-Cholera Inoculations of Dr: Fi= Life of Kly Wint F, R.B. An A Ericultural Nom Rown Huminen The Prevention of Blindoel

Book Sbelf,-
Among the Koekr round Glawive Nours

Letters to the Editor:-
 Abercromby
 The lielligute

Sprengel Explotion and Ruchandt-at 1
An Earthriuake Inveution- Prot C. Puel Theated.- H. G. Madan
The Kesting Position of Oruen cire
Wartley.
Samuel Sexton
The Ked Spot on

T Tertiary Reinbow, -T. C. Lowls
The Sonve of Colout - Margarel Heam

The slude Rule
Homing Fuculty of My, v. Boys

The Helghte of Clous
The Recent Total Eclipue of the Notes
Our Aatrinomleni Colume -
A Cunsin Comets in 1 悬
Astrononical Phenoment for tio what ill
Novent The Scotish M Meieorological Scith
 A Century of Brience in Bengal Socierina and Educationel lartignst Societina and Academion.

Biary of Eocictics

Lonion

SATURDA1', Octorer 3 3.
(Ex Fizld Clup, at $6.3 a-$ Mosses and their Allies, with Special Refernice to threse of Fasex : Prof. Poolger.-Exhihition of Stone 1 mplements trom Braintree, Essex : Rev. J. W. Kenworthy, M.A. SUNDAY, Novembre I.
ndav Lecture Soctetv, at 4--The Poetry of Science: Miss Catherine 1. Raison.

> MONDAY, November a.
oval Institution, at g - General Monthly Meeting. TUESDAY, Novemerer 3 .
hological Society, at 8. 3a-Descriptions of the Phytophagous Coleopera of Japan obtained by Mr, George Lewis during his vecond Journey, 1980-B1. Part 11. Halticine and Galerucinx: Martin Jacoby.-An Account of Two Collections of Lepidoptera recently received from Somaliand: A. G. Butler- - leccription of a Tooth of Mastodon latidens from Horneo: R. Lydekker.-A Monograph of the Genus Paradoxurus. F. Cuv.: W. T. Blanford, F. R.S. - Description of a new Species of Mus from Sind. (Communicated by Mr. W. T. Blanford): J. A. Murray.-On the Specific haracters and Structure of some New Zealand Lumbricide: F. E, lled dard.

WEDNESDAY. Novemere 4
fological Society at 8.-On the Premaxillaries and Scalpriform Teeth of a Large Extinct Wombat (Phascolomys curvirostris, Ow.): Sir Richard Owen. K.C.B., F.R.S.-On the Structure and Classificatory Position of nome Secondary Madreporaria: Prof. P. Martin Duncan, F.R.S.-On snme Pointsin the Morphology of the Astrocomix of the Sutton Stone in the Infra-Lias of South Wales: Prof. P. Martin Duncan, F.R.S.

THURSDAY, Novemeer 5 .
ainnran Society, at 8.-Flora of the Peruvian Andes, and its History and Origin : Jonn Ball.-Monograph of Recent Brachiopoda, Part 1.: The late Dr. Thomas Davidson.
hemical Society, at 8.-The Influence of Silicon on the Properties of Cast Iron. Part II.; Thomas Turner-Modification of Double Sulphates:S.N. Pickering, M.A.-The Relation of Diazobensene-anilide to Amidoazo-benzene; R. J. Friswell and A. G. Green. -The Phenol Constituents of Mlast Furnace Tar from the Gastsherrie 1ron Works: Watson Smith, J. F. H. ICoutts, and H. E. Brothers.-The First Step in the Decomposition of Potassium Chlorate: F. L. Teed.

$$
\text { FRIDAY, November } 6 .
$$

Geolocists" Assoctation, at 8.-The Carboniferous Rocks of Britain: W. Topley.

THE CELEBRATED

Is unrivalled for Gardeners', Foresters", Farmers", Joiners', and Amateure ase. It requires no oil. Sharpen with a spittle or water. Puts on a keen, sharp edge; no bumbug about this. Has stood the test of 100 years. Cut in Hones for Axes, Hedge Knives, Razors, Penknives, and Plane Irons, \&c. Honourable Mention, Paris Exhibition, 1878 ; an. Bronre Medal, London International Exhibition, $8^{88}{ }_{4}$. Ask your Ironmonger or other retail houve to get you one, and give my address: if he won't, drop me a sote.

JOHN C. MONTGOMERIE,
Tam O'Shanter Stone Hone Works, Dalmore, Tarbolten Siation, R.S.O. Ayrshire.
[30]

J. ORME \& CO., 65, BRBBICAN, LONDON.

MANUFACTURERS AND IMPORTERS OF Scientific Apparalus and CHEMICALS.

BAKER'S PATENT CALORIIETER,

A NEW APPARATUS
For demonstrating to Science Classes problems in Specific Heat.

For full particulars write to the SOLE AGENTS-

J. ORME \& CO., 65, Barbican, London, E.C.

Complete Price List of Apparatus and Chemicals, 2s. 6d.

INVENTIONS EXIIBITION-GOI.D MEDAL AWARDED.

NE W
ILLUSTRATED CATALOGUE of HIGH-CLASS wATCHES and CLOCKS at REDUCED PRICES, sent post free on application to E. DENT and Co., Makers to the Queen, 61, STRAND, LONDON, W.C., or 4, KOYAL EXCHANGE.

SECOND EDITION, GRIFFIN'S CHEMICAL HANDICRAFT.

A CATALOGUE OF CHEMICAL APPARATUS;
illuStrated, classified, descriptive.
Demy 8vo, 480 pp., Illustrated with 1,600 Woodcuts.
Most Complete and Cheapest List of Apparatws.
IOIIN J. GRIFFIN AND SONS, 22, GARRICK STREFT, LONDON, W.C.

Why Use Gas?
 LA MITRAILLEUSE.

A RETTICH'S Patent Burner for Mineral Oil lawpe gives double the Leght of a Duplex. casy to Trim and Light, inexpensave to use. Sold by all Keskertable Ironmowsers and Lamp Warrhoutes.
Buy only those Marked
RETTICH'S PATENT. 35, GERRARD STREET, SOHO.

WANTED.-"NATURE," No. 56.-Apply Nature Office, 29, Bedford Street, Strand, W.C.

105,000 ACCIDENTS ron when
two millions have been paid as COMPENSATION

BY THE
Railway Passengers' Assurance Company 64, CORNHILL.
ACCIDENTS OF ALL KINDS,
Paid-up and Invested Funds, \&o60,000:-Premium Income, \&235,000 Chairman Harvie m FarquHar. Emp.
Apply tn the Clerks at the Railway Stations, the local Agents, or
West-End Office-8, Grand Ifotel Ruildings, Charing Cross; or at the
Head Office-64, Cornbill, London, E.C.
WILLIAMI VIAN, Secretary.

MICROSCOPES AND APPARATUS

 mantractured avd krfatern.W. JOHNSON S THREF.GUINFA STLIFNT'S MCR JSCOPE is the beut ronstructed at the price. All Minutix carefully adapted; coarse and fine adjuitments, exrellent tinch, finch, and $\}$ inch Achromatics. Cabinet ormplete. L3 35 .
W. JOHNS iN'S HISTOIOCICAI. MICROSCOPE, with first elass 1 -inch and d-inch Objectives, 6558 .
W. JOHNSON, Optician to the University Hospital, 833, 1 OIIENHAM COLRT ROAD. Catatogue Postefre

FRY'S PURE

CONCENTRATED SOLUBLE $O B O A$

Prepared by a new and special scientific process, Securing extreme solubility, and developing the finest flavour of the Cocos

OFPERTMIANIN EROS., 172, ST. JOHN STREET, LONDON, E.C.

TROVZE MFTU? Health Eahit

DYNAMOS
for to lighte is To lioha f 2 The Oprimen

IAMP. 2s. Gd, eact a candle-pvere New Pocke: $A=$ Itator, complese Hutton hule Lur
 with Instractive

BEST BLACK INK KNOWN. DRAPER'S INK (DICHROIC).
DIFYERING FROM ANVTHING EESE FVER PRODUCEE. Writing becnmes a pleasure when this Ink is used. It has been adep" by the principal Banks. Public Offices, and Rallway Companies throw? Ireland.
It writes almost instantly Full Hlack. Fluws eacily from the Pee Dues ant curtode Steel Pens. is cleanly to use, and nth liableto Blot. momept of writing.

Can be obtained in London, througb Messrs. Banclay \& Sovs. Famer don Sireet: W. Edwands, Old Change; F, Newnpwr 表 Sonc, New Stieet: J. Austin \& Co., Duke Street, Liverpool; and to be had of Stationers.
BEWLEV \& DRAPER ($l_{\text {imited }}$), $\Gamma_{w^{2}}^{1}$!
Collowars pills
THIS MEDICINE

Is a Certain Cure for all Disorder of the LIVER, STOMACZ AND BOWELS. \triangle Grest PURIFIER of the BLOOD: Powerful Invigorator of the System, in cases of WEAKNES AND DEBILITY, and is unequalled in Female Complaint

WALL PAPERS FREE FROM ARSENIC.

WILLIAM WOOLLAMS \& CO., Manufacturing Paper Stainers,
are tue fatginal. Makens op
ARTISTIC WALL PAPERS, Guaranteed Free from Arsenic.
Sole Address-110, HIGH STREET, MANCHESTER SQUARE, LONDON, W. May be oitalned of a!!Decorators. Special Prize Medal, Sanitary Inviltute Award of Merit, International Medical and Sanitary Congress. Special Prize Medal, Sanitary Institute
Silver Medal, National Ilealeh Smeiets s it GOLD MEDAL, INTERNATIONAI. HEALTH EXHIBITION.

WOODHOUSE \& RAWSON.

SUPPLIERS OF ALL ELECTRICAL APPLIANCES,
Chfices-is, Queen Victoria Street, E.C.
Works-Cabby Hall., Hammersmith Kuap, W

Lamps. Dynamos.
 Accumulators.
 Fittings. Switches. Safety Junctions. Carbons. Wire.
 Instruments.

Battery Supplies.
Telephone Supplies. Electric Bells.

SOLE MANUFACTURERS OF THE WOODHOUSE AND RAWSON INCANDESCENT LA $\because P$ INOUIRIES INviteri.
 SUCCESSORS TO W. LADD \& CO.,
ByAK STREET, KEGENT STREET, LONDON, W.
MANUEP URERS OF SCIENTIFIC APPARATUS OF ALL CLASSES FOF ?HOOLS, COLLEGES, OR PRIVATE RESEARCH.
RST AND VOSS INDUCTION MACHINES
OF IMPROVED PATTEERN.
Illustrated Cataloguc, Revised Editien, per post $8 d$.

Messrs. MACMILLAN \& C0.'S NEW B00KS. LOUIS AGASSIZ:

HIS LIFE AND CORRESPONDENCE.
Elitel by Elizabeth Caky Acissiz. Two Vols. Crown 8xo. 18 s.
The Times cays:-" The task of writing the life of Sjassiz could not have fallen into more competent hands. . . . The work of Agassiz was of the mose multifarious kind, and u hen he died he was the most popular man in America. In the admirable lite befire us we are able to follow the man from his boyhond, through his student days, when he determined to climb to the first ranks among naturalists, through his early investigations and struggles with poverty, his visits to all the museums of England and the Continent, . . . and the accamulation of one series of researches on another."

 VOICES CRYING IN THE WILDERNESS.

A NEW NOVEL. Crown 8vo. 7s.64.
EUROPEAN BUTTERFLIES, A HANDBOOK OF. By W. F. De VISMFS KANE, M.A., M.R.I.A., Memter of the Entomological Society of London, \&c. With Copperplate Illustrationc. Crown 8 vo. $10 s .6 \mathrm{~d}$.
COMPOUNDS OF CARBON ; or, Organic Chemistry, an Introduction to the Study of. Fy IRA REMSEN, Professor nf Chemistry in the Johns Itopkins Univerity. Crown 8vo. 6r. 6\%.
A TEXT-BOOK OF THE PRINCIPLES OF PHYSICS. By ALFRED DANIEILL, M.A., I,I, B., D.Sc., F, R.S.E., Late Lecturer on Physics in the School of Medicinc, Edinburgh. With Illustrations, Second Edition, Revised and Enlarged. Medium 3vo. 2Is.
A TREATISE ON DIFFERENTIAL EQUATIONS. By Andrew RUSSELL FORSYTH, M.A., Fellow and Avaistant Tutor of Trinity College, Cambridge. Svo. 14 .
THE LAW OF THE CONSTITUTION, Lectures Introductory to the Study of. By A. V. DICEY, B,C.L., of the Inner Temple, Barrister-at-Law, Vinerian Profesor of English Law in the University of Oxford, Fellow of All Souls' College, Hon. LL. D., Glaygow. Demy Sro. 12s. 6\%,

MRS. MOIESWORTH'S NEW STORY-BOOK FOR CHILDREN.
"US": An Old-Fashioned Story. By Mrs. Molesivorth, Author of "Carros," " "The Cuckon Clock," sc. With Illustrations by Waleter Crane. Crown Svo. 45. 6%.
OVER-PRESSURE IN HIGH SCHOOLS IN DENMARK. By Dr. HERTEL, Municipal Mellical Offeer, Copenhagen. Translated from the Danish by C. GODFREY SORENSEX, with Introduction hy J. CRICHTON-BROWNE, M.D., LL.I)., F.R.S. Crown 8vo. $3^{\text {r. }}$ 6d.
THE TENNYSON BIRTHDAY BOOK. Edited by Emily Shake-

THE PHADO OF PLATO. Edited, with Introduction and Notes. by W. T. GELHDEs, ILL,D., Professor of Greek in the University of Aberileen. Second Edition. Demy Svo. Ss. Grd.
AN INTRODUCTION TO LATIN ELEGLAC VERSE COMPOSItion. By I. H. Livpton, m.A., Sur.Master of St. Paul's School. Globe Svo. 25. 6 d .

MICREO-SKIDES FOR SCIEINCE

Conidia bearing Hypher of Eurotium repens isolated and stained by a new application of lodine V"afoner and Dahlia root-Chrystalloils of Inulin, ras. IJodder-Penetration of Suckers into Clover, 18. Carmation-Viert. vect. of Stomata, is. Water Lily-Polar Tricheblasts, is.
Dendrobium nobile-Air root, Plerome Sheath, 18.
Anthurium spadt
THE SERIES AS ABOVE, COMPLETE, $8 s$. Remittance with Order.
B. PIFFARD, HILL HOUSE, HEMEL HEMPSTE f

Now Ready, Adduptal to the Now British Pharmacopaia, 1885, Medium 8vo,
A TEXT-BOOK of PHARMACOLOGY, THERAPEUTICS, and : By T. LAUDER BRUNTON, M.D., D.Sc., F.R.S.,
Fellow of the Royal College of Physicians; Assistant Physician and Lecturer on Materia Medica a
Examiner in Materia Medica in the University of London, in the Victoria University. College of Physicians, London; late Examiner in the University of Edinbl.
ADAPTED TO THE UNITED STATES PHARMACOPGEIA BY FRANCIS H BOSTON, MASS.
${ }^{\text {" It }}$ is simply a mine of wealth both for students and practitioners. It is thoroughly practical and podoubtedly the best treatise on the subject in the English language."-British Afducal Yournol.

BY THE SAME AUTHOR. In the Press,
ERS OF DIGESTION: THEIR CONSEQUENCES ANI
rk contains, in addition to the Lettsomian Leotures, a number of other Papers by the Auth Demy 8vo.
MACMILLAN \& CO., London.

$$
\begin{aligned}
& \underset{\substack{c \\
>}}{\text { ur }} \\
& c
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{4}{3} 8
\end{aligned}
$$

[^0]:

 of vinirnce, wht the iservol. wheh norur heweres therg If

 Koyal soticty, Envazizim
 sure of minneum comsers-alitity of werne. Prof. The
 theay.-A bove un tha nownlen ly ploveare of the

 hor work one nt the So noth Mavace Mostimn is thin

 Convi, lemperalue llan that) onc ihb, The stumef
 " Vine di are rat atometh wimine Ger that rainami ut meratur in ar Soth fra loy wod Uhe

 fiveden
 Linncan Serizty of New \$outh Wales, Ither

 Al e chitellem. - On the nighte uf luide Lo K . on I stole In 10
 Academy or Scienasen, May in - \#1. Bolef Perite

[^1]: OPEN SCHOLARSHIPS in NATURAL
 SCIENCE, of the value of Cioo and Cot are awarded anntatly in OCTOBER at St. Thomas's Hospital Medical School, Albert Embankment, S.E.
 For particulars apply to Mr. G. RendLe, Medical Sccretary
 W. M. ORD, Dean.

[^2]: 1s unrivalled for Gardeners", Foresters", Parmers", Joiners', and Amateur

[^3]: In NatukE, vol. x*xi, P. 4, Mtr. Tucker inlimated

[^4]: - Y :

[^5]: Applications are invited for a new Chair of Fingineering, Salary L, 373 a Year, together with two-thinds of the Fees derived from Students The Professor will be required to commence work at the beginning of OCTOBER Dext.
 Applications with Copies of Teatimonials to be sent not later than JULI; 3
 to the College Registras, who will supply full particulars on iaquiry.

[^6]: Original Articles by well－known naturalists in every branch of zoology： habito of animale ；arrival and departure of migratory birds；occurrence of rare birds，dustribution and migration of Pritsh fresh－water fosh；new or rare manine fish：Joeal equaria；British reptiles：British land and fresh． ＊ater mollusen，with remarks on the haunts and hahits of the species；and other matters of generalinterest to those who delight lo natural history． Reports of the Linnean．Zoolerieal，and Entomological Societies．Reviewn of antural hisfory beoka Occasional tranylations from toreign monlogical of antural hisfory books，Occational trantations from foreign anological There are eceasional wrodicuts．

[^7]: ${ }^{\text {t }}$ Fublished in I'mer (Journal of the Swrdish Anthmpological and Cieo' Graphial Sheietyh 18E4. Part4 7 and B. (I rannla'win communcated by the Authot.)
 " Svensha Ahaderniens handlingar" (Pmocrefags of the Swedish Acadeny), Part 55. Stockholm, 158 3. P. 315 .

[^8]: 'Majur I. Kagg was taken priwner at the River Injeper in aros. asd brews th to Tobuthk, whence be retumed in 1732 .
 " \int. H. Müler's "1eben und tiewonheiten der Ontaken unter dem Polo Arctioo wohnende," Ec. Berlin, 1;20.

[^9]: Vot $\times \times X I t,-N O .824$

[^10]: "The points of the streamers are usually faint and with no sharp line of demarcation. The stars shine through the streamers as through all other forms of the aurora, and it may, indeed, be a matter of doubt whether the strength of light of the aurora is ever great enough to outshine a bright star." . . .

[^11]: " "Sixth Annual Report of the
 ndustries of New Jeney, ${ }^{1883}$." I

[^12]:

 il. is mest

[^13]: Frow La Nature

[^14]: II irnver, the irregulari

 ## a wing the -ame structures

[^15]: Prof. Lolsette's DIBCOVERJEB, THEPHTBIOLOOTCAL ART OF NEVER FOROETTINO-wholly untitomnemonics. Lowt memories restored-the worst mall good, and the beti better. Any book learned in anc moding. speating without
 the Leral, Miedieal, Clericel,

 Mr. R. A. PROCTOR, Dr. ANDREW With opiona of
 INO tauche thoroughly PROF, WOIBETTE, 81 , New Oxford Etreet, London, W.C,

[^16]: "It is done in the manner of a man who has studied his craft, and who knows what he is aiming at. He was an artist, and not an amateur; and he accomplisherl a great deal of what he tried to do. 'A Family Affair' is one of the best of recent novels. The story is full of interest and of excitement. The characters are distinct and life-like. In praising this book there is no question of paying a tribute to the memery of a lamented author-the book itself deserves and cornmands recognition." Altishatum.
 "' A Family Affair' is a story extremely clever in its construction, and marked by considerable humour and knowletge of life. . .. It is a novel of very great attractiveness, and one which every one, had its author livell, would rightly have regarded as one of large promise."-Speciator.
 "Mr. Conway's new lrook, 'A Family Affair,' is a thrilling and exciting romance. ., . life-like and fult of individuality. 'A Family Afair will probably becone even more popular than Mr. Conway's first works."-Merning Poss.
 "Altogether the novel is good."-Saturday Review.

[^17]: Notv Kadiy, Mnlium Sto, Price 21 s.
 A TEXT-BOOK of PHARMACOLOGY, THERAPEUTICS, and MATERIA MEDIC By T. LAU'DER BRUNTON, M.D., D.Sc., F.R.S., Fellow of the Royal College of Plwwians: Asivtant Physician and Lecturer on Materia Melica at St. Bartholomew's Hor: $:=$ Exammer in Materas Medica in the U'niversay of London, in the Victoria University, and in the Rogal College of Physicians, London ; late Examiner in the C"niversity of Edinburgh.
 ADAPTED TO THE UNITED STATES PHARMACOPGEIA BY FRANCIS H. WILLIAMS M D BOSTON, MASS.

 #### Abstract

 "It is simply a mine of wealth heth for stuilents and practitioners. It is thoroughly practical and thoronghly undoubsedly the lieat treative on the suhject in the Engliab language."-British Medmal Fowrnal. "The work has little in commen with the old fashioned books on materia medica. It is not a mere volerat technical details, bet a acientific treatise worthy in be ranked with the highest productions in phystolagy, elther other language. .in is a hook of stualy for the sceentist "A work which marks a distinct epoch, a turning'ly it is essentially a new departure howaing away from well and almost unknown regoan and and and Gazilte.

[^18]: E CHEMISTRY OF THE SEOONDARY BATTERIES OF Pl.ANTE, and FAURE, Ry J. H. GLADSTONE, Ph.D., F.R.S., and ALFRED TRTBE, F.Inst.C., Lecturer ot chemistry at Dulwich Collegc. Cruwn Evo. 2f. 6 d . ["Natwre" Scrie" Fittle volutive is a valuable contribotion to our knowiedge of seconflary batteries, and deserves to be widely sirculated." Ninetes.
 macmillan \& CO., LONDON, w.c.

[^19]: ${ }^{1}$ Bull. Sac. Orw. de la Swisse, iit. p! x, pp. 3.70, 73-es.
 ${ }^{2}$ Ver.f. Natwrw. sw Bmanthtwiik, iiit ppo 89-155; fowrn. firl Orn., 1884, pp. 58-976.

[^20]: －

[^21]: " Mr. Stringham, a native of "the boorly land" of Kansas, studied mathematics and fine art under Peirce and Nurton, at Harvard, obtained a fellowwhip at the Johns Hopkins University, and completed his studies under Klein in leipsic. In his memoir he has given penypective drawings of the hounding solids about a vertex of the regular figures in quaternary extension, such solids being supposed to be previously rotated round the vertex into the same spilc, which of course may be done just a : the bounding planes abous a vertex of a regular figure in ternary extension may be rotated round that point into the same plone.
 t A curve may be called a one-dimensional, a surface a two-dimensional, a solid a threc-dimensional continwum and, and so on. Thus a solid is to a space what a surfaic is to a plane and a curtic to a right line.
 IThe ordinary syatems of geometry; whether Euchdian or Non-Euclidian (Ultra-Euclidian would be the more correct teru), contemplate figures as contained in homaloids of some order or another: but this limitation has an empirical origin, and is not an essential ingredient of the pure theory of form ; for instance, a curve, i.. a mmidimensional contivnmem, may, and in general will, be such as cannot be contained in a homaloid of any number of dimensions whatever ; it might be said that the order of its mittrus in such case is infinite; but this would be a mere verbal quibble-the right view

[^22]: - When an imacer is given, its obyet is abolutely determ'ned, has not the trerab, since an image may le magnahed or dimanished at whll by the

[^23]: * The word sprrait to signify an unlimited expanse of to ${ }^{*}$." pwints and wated by Dr. Hennci, is, 1 am informed, ong:hath: late Prof (litifurd. In Igmorance of thic fact, on bearing that the Inen atuached fur his use of the word, 1 stated my belief that ef $=$ enen larrowed frum my use of it to , icturfy a linuted portion of a equl- - paced points, wuch as thal which is turned to 00 provitatile art

 i dod nut know al the time thal Cliffurd had uned the wurd, our Henrinit Ireatise precedell by several years the publectano for ature teferred to. This erroneous oral malement verms to haw in way by wome mu re or less circulturss channel to the ciumno of the Kisirisu is a molike of a criticism, by Mr. Undreon, of Dr. Heen motrical atanual is the Scientitic Sienes. Mr. Ferreri (the Yyere of Cull-ie. Cambridge) was the first to apply a spreal to denorero. uiluely a celebrated ar. thenetical therein of recipruety doe to 11 Mr. Thuffee a quarter of a cenlury later led the way 10 a fortace preinalt use of the same by thrwing how to irisect a cyemetras do 5 uided by two right lines and a broken line intos a revile wive of two quadi.triangular appendagen, 10 which I superadod the ot"
 Jolins Hupkine U'nibersity (Mr. Aly) has laid the foundation dit

 Niy means of the trixection method I obtained intor ald
 l.y means of the inuection met trod 1 obtained minfor alia aser cryw of ($\left.1-x_{-}\right)\left(t-x^{2} s\right) \ldots\left(1-x^{-r} s\right)$, which, or making r onity was
 resules of a totally novel kind by the maltiection methed: w that 14 may jusily be reganded as a potent inatrument of mayiral mimerfreena old and bringing to view new trathy in the mopelicriond of pathen ellipuc.function series.

[^24]:

[^25]: "90, BROMPTON ROAD, LONDON, S.w.
 tev' walk froen the Natural Ilistory Mascam, S Kensington.

[^26]: Vot. xxxil.-No. 834

[^27]: sorir superior feeding value.

[^28]: Foneous assumptions. Note on the constant presence of

