XI. Obfervations made at Beverly, Lat. $42^{\circ} 3^{6}$ N. Long. $70^{\circ}$ $45^{\prime} W$. to determine the Variation of the magnetical Needle. By the Rev. Joserf Willard, Prefident of the Univerfity at Cambridge, V. Pref. A. A.

AN attention to the variation of the magnetical needle, it is well known, is of great importance at fea, nor is it of fmall confequence upon the land; efpecially in NorthAmerica. From the firft fettlement of this country, the lines between towns, and between lots of land appropriated to individuals, have been determined by the magnetical needle. If the variation always continued the fame, no difficulty would enfue, in again tracing the lines, upon the fame magnetical courfe; but as it alters from time to time, the lines run in any fucceeding years muft deviate from the firft, and from one another, unlefs proper allowances are made for the alteration.

From the want of a fufficient number of obfervations, and of attention to this fubject, in thofe who have furveyed the lands in this country, difficulties have arifen at one time and another, between towns and individuals. To remedy this inconvenience for the future, this Academy, fome time ago, recommended magnetical obfervations, to determine the variation, which it is to be hoped will be made in various parts of the country, and at proper intervals of time, and be uniformly attended to by our furveyors. Since this recommendation, I have endeavoured to determine the variation at Beverly, with as much exactnefs as I was able. With this view, I procured an azimuth compars, of Dr. Gowin Knigbt's invention. It appears to be
good of its kind, and is furnifhed with a vernier, pointing out the azimuth to $5^{\prime}$; but the eye may pretty eafily determine by it to $2^{\prime}$, and fometimes to I'. To obferve by this compafs, I afcertained the going of my clock to great exactnefs, and on five different days, took feveral magnetical azimuths, both before and after the fun paffed the meridian, and noted the moments, which I have put down in apparent time. For there times, I have calculated the true azimuths by fpheric trigonometry, and have carried out the variation for each obfervation feparately. On two days, I alfo determined the variation, by taking magnetic azimuths, at correfponding altitudes of the fun, making proper allowances for the change of declination, between the obfervations of the forenoon and afternoon. On each of the days, fome of the obfervations differ feveral minutes from others; but this I cannot attribute to want of attention, as I am confcious that I made them with all the care in my power. The differences, I fufpect, principally arofe from the difficulty of determining, with entire cxactnefs, when the fhadow from the hair was on the line beneath ; and when in two obfervations, the error fhould be on different fides, the fum might make a number of minutes. But I have the fatisfaction of finding the mean refults for the feveral days well agreeing with each other, which is a good evidence that the refult of the whole muft be, at leaft, very near the truth.

Thefe obfervations and deductions are now humbly fubmitted to the Academy, with wihes that they may fubferve the defigned purpofe.
JULY.

|  |  | Juty | 78 r . |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ap. times of obf. | Sun's mag | .az. per obf. | Sun's tru | az. per cal. | Varia. of | he need. |
| II $34^{\prime}$ | S 80 | $2^{\prime} \mathrm{E}$ | S $15^{\circ}$ | $9^{\prime \prime}$ E | $7^{\circ}$ | 7 W |
| $11{ }^{1}$ | 7 | $\bigcirc$ | 14 |  | 7 | 2 |
| II 50 | S 1 | 10 W | 5 | 57 | 7 | 7 |
| 1158 | 5 | 55 | 1 | 15 | 7 | 10 |
| 124 | 9 | 28 | S 2 | 26 W | 7 | 2 |
| 1220 | 18 | 45 | 11 | 45 | 7 | 0 |
| 1226 | 22 | 15 | 15 | 10 | 7 | 5 |
| $12 \quad 28$ | 23 | 30 | 16 | 17 | 7 | 13 |
| Variation of the needle by a mean of 8 obfervations, July $27 \%$ |  |  |  |  | $7 \quad 5$ |  |

JULY 28.



| I1 $2933^{\prime \prime}$ | S:10 | 10 E | S 17 | 7 E | 6 | 57 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| II 3932 | 4 | 35 | 11 | 37 | 7 | 2 |
| 114332 | 2 | 20 | 9 | 23 | 7 | 3 |
| 115132 | S 2 | 5 W | 4 | 51 | 6 | 56 |
| 115532 | 4 | 32 | 2 | 34 | 7 | 6 |
| I1 5932 | 6 | 40 | $\bigcirc$ | 16 | 6 | 56 |
| 12132 | 7 | 50 | - | 53 W | 6 | 57 |
| Variation by the mean of 7 obfervations, of July 31, |  |  |  |  | 6 | $59^{\frac{4}{5}}$ |

August 1.

| II 5352 | S 3 | 32 W | S 3 | 28 | E | 7 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 115952 | 7 | 2 | - | 4 |  | 7 | 6 |
| 12152 | 8 | $\bigcirc$ | 1 | 4 | W | 6 | 56 |
| 12 352 | 9 | 10 | 2 | 12 |  | 6 | 58 |
| $1215{ }^{1}$ | 15 | 58 | 8 | 59 |  | 6 | 59 |
| Variation by the mean of 5 obfervations, of Auguft x , |  |  |  |  |  |  | $\frac{4}{5}$ |

## Variations determined by magnetic azimuths, taken at equal

 altitudes of the fun, forenoon and afternoon.| August 6. |  |  |  |
| :---: | :---: | :---: | :---: |
| A. M. | P. M. | Difference. | $\frac{x}{2}$ Diff $=$ Variation |
| $68^{\circ} 28^{\prime}$ | $82^{\circ} 30^{\prime}$ | $14^{\circ} \quad 21$ | $7^{\circ} \mathrm{I}^{\prime}$ W. |
| 6530 | 7920 | 13 50 | 655 |
| 6350 | $77 \quad 35$ | 1345 | $652 \frac{1}{2}$ |
| 6330 | $77 \quad 15$ | 1345 | $652 \frac{1}{2}$ |
| 63 - | 77 0 | 140 | 7 - |
| 6230 | $76 \quad 32$ | 142 | 7 |
| Mean variation by the above fix obfervations of Auguft 6, |  |  | 657 |
| Equation for change of declination, +4 |  |  |  |
| Variation, |  |  | 7 |

August 15 .

| 67 | 30 | 81 | 30 |
| ---: | ---: | ---: | ---: |
| 67 | 10 | 81 | 5 |
| 66 | 42 | 80 | 40 |
| 66 | 15 | 80 | 18 |
| 66 | 2 | 79 | 55 |
| 64 | 45 | 78 | 40 |
| 64 | 12 | 78 | 8 |
| 63 | 58 | 77 | 48 |
| 63 | 37 | 77 | 35 |
| 63 | 0 | 77 | 6 |
| 61 | 46 | 75 | 45 |
| 61 | 20 | 75 | 26 |
| 60 | 58 | 74 | 50 |
| 58 | 50 | 72 | 45 |
| 58 | 30 | 72 | 25 |
| 58 | 15 | 72 | 10 |
| 57 | 40 | 71 | 30 |
| 57 | 10 | 70 | 58 |
| 56 | 43 | 70 | 42 |

Mean variation by the above nineteen obfervations, Equation for change of declination,

Variation by nineteen obfervations of Augult 15,
Ditto
Ditto five
Ditto feven
July 31,
I,

Ditto five
Ditto feven
30,
28,

| 7 | 0 |
| :---: | :---: |
| 6 | $57^{\frac{1}{2}}$ |
| 6 | 59 |
| 7 | $7^{\frac{1}{2}}$ |
| 6 | $56^{\frac{1}{2}}$ |
| 6 | $57^{\frac{1}{2}}$ |
| 6 | $58^{2}$ |
| 6 | 55 |
| 6 | 59 |
| 7 | 3 |
| 6 | $59^{\frac{\pi}{2}}$ |
| 7 | 3 |
| 6 | 56 |
| 6 | $57^{\frac{1}{2}}$ |
| 6 | $57^{\frac{1}{2}}$ |
| 6 | $57^{\frac{1}{2}}$ |
| 6 | 55 |
| 6 | 54 |
| 6 | $59^{\frac{4}{2}}$ |
| 6 | $58 \frac{1}{4}$ |
| + | 5 |
| 7 | $3 \frac{1}{4}$ |
| 7 | 1 |
| 6 | $59^{\frac{4}{5}}$ |
| 6 | $59^{\frac{4}{7}}$ |
| 7 | $5 \frac{4}{5}$ |
| 7 | 0 |
| 7 | $5 \frac{3}{4}$ |

Varian. by the mean of feven days, containing fifty-feven obf. 7
R r

