Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

THE DANISH

Vol. II A.

PUBIISHEI) AT THE COST (WF THE GOVERNMENT
B
THE DIRECTINNOF THE ZOOLOMICAL MUSELM OF THE LNIVERSITY

```
    C(OHENHACINN
    H. HAGFRNUP.
```



```
    1899-1912
```


Contents of Vol. II A.

1. Chr. Lütkex: The ichthyongical results, p. 1-3! (4 phates). 1899.
II. H. F. E. Jexempen: On the appendices genitales (rlaspers) in the Gremhand shark, sum-

III. R. Bergh: Nudibrancliatp (tasteropola, pr. 1-49 (5 phates). 1900.
IV. An, S. Jexsen: Thu Nurth-European and (irpemant Lycodinae, p. 1-99 (11) phaters), 1904.
I. Ad, S. Jexsex: Lamellibramehiata, Part I, p. 1-119 (1 plates). 1912.

THE DANISH INGOLF EXPEDITION.

VOLUME II.

1.

THE ICHTHYOLOGICAL RESULTS.

BI

CHR. LÜTKEN.

WITH \& PLATES, I MAI, 2 FIGURES IN THE TENT AN1) A LIST OF THE STATIONS.

COPENHAGEN.
BIANCO IUUNO (F, DREYER), PRINTIER TO TIIE COLRT
1898.

The Ichthyological Results of the Expeditions of the "Ingolf".

By Chr. Lütken.

THE oceanic ichthyological earnings of the 2 expeditions of the Ingolf in I 895 and ti8g6 are in so far rather considerable as they comprise c. 29 genera and c. It species; but they do not comprise many types which are new, viz. not known or described in our own days or in earlier times. But they number several forms which were not fommerly known at our minseum or from the northem seas more accessible to 11 s, and there are species annong then which have been known hitherto in few specimens only and thus from a very limited study-material. The knowledge of the distribution of several types is therefore now extended, as also the knowledge of their occurrence over an area litherto little examined, and an addition somewhat considerable is thence procured to the earnings of the earlier expeditions of the Challenger, le Talisman, le Travaillent, the Blake, the Albatross, the Vöringen, the Kinight Eirant, l'Hirondelle and the Princesse Alice etc.

It was so far a disappointment that the expedition did mot forward us several rather well known arctic or abyssal types that might have been expected, f. i. apodal Lophioidei, arctic picked dog-fishes, Aphanofus etc. The inpossibility of using the weel of the prince of Monaco in seas of a northern and tronblesome character and the difficulties, to say the least, of nsing angles must wear the blane for the deficiencies in this respect. The types, which will be specially mentioned in the following sheets and partly fignred in the accompanying plates, are chiefly Cottodet in the wider, older sense of the word), the Lycodes, Lifurides and allied types (Puratiparis), Rhodichthes, Macrurus and other deep-sea Gadoids and deep-sea fishes (. llipociphahus, Ahtimora), deep-sea-Ihuruluoids, Notrconthimi and certain Ruja-species. That the acconnt of Scopelimi is rather scarce is due to the difficulties of capturing those fragile fishes. That the results as liere exposed may be fonnd somewhat mertain in several cases - in certain difficult genera - owing in part to my personal defects, I shall not deny, but I hope that the special difficulties of those cases will be my excuse. 'The number of the plates I have rednced to the most necessary. I have specially made use of the colored sketcher made on board of the Ingolf of anmals still living or freshly canght, which made it possible to produce some colored figures.

Mr. Adolph Jensen has been kind enonglt to assist me with the revision of the mannenipt and in other ways; I owe to hinn several important corrections and emenclations and beatow on limu my best thanks for lis aicl.

Skates (Rays): the genus Raja.

Raja hyperborea Collett.

Collett: Den norske Nordlavs Expedition. Fiskene. p. 9, pl. I, fig. I 2.
(iifinther: Report on the deep-sea fishes. Expedition of the Challenger. p. 8, pl. IV, A, B, C.
Also firyured in Goode \& Bean: Oceanic Iclithyology, pl. IX, fig. 28, and by Smitt in Skandimaviens. Fiskar, p. 1110-if, fig. 31ヶ- i8.

The Norvegian North-sea-expedition canght a male specin1en, abont 20 inches (518 mm) long at a depth of 459 fathoms, 115 kilometres West of Spitzbergen (Norskoerne). The Knight Errant captured in the Faroe-Chamuel a larger male, $24^{\mathrm{r}} 2$ inches long, at 608 fathoms together with 2 smaller females ($6^{1}{ }_{2}$ inches) and a female (8 inches); a very young male was captured at foo fathoms. On the lugolf -expeditions were canglit 3 specimens, 2 females and a male, similar in size to those of the foringen. The localities were the following:
Station 113 (to the south of Jan Mayen1, $69^{-} 3^{1 \prime}$ Lat. North, 7^{\prime} o6' Longitud. West, the depth I 309 fathoms. Temperature at the bottom $\div \mathrm{I} .0 \mathrm{C}$., mature of the bottom: Biloculinu-clay: A female, $24^{3}+$ inches long from the point of the snont to the end of the tail, greatest breadtl $20^{\mathrm{r} / 2} / 2$ inch. Station 140 (North of the Faroe Islands), $63^{\circ} 29^{\prime}$ Lat. North, $6^{\circ} 57^{\prime}$ Long. West, depth 780 fathoms. Temperature at the bottom $\div 0.9 \mathrm{C}$., its nature: gray mud. A female, its length $2 \mathrm{I}^{\mathrm{I}} / 2$ inch, breadth I_{7} inches.
Station 141 (North of the Faroe 1slands), 63 22' Lat. North, $6^{\circ} 58^{\prime}$ Long. West, depth 679 fathoms. Temperature at the bottom $\div 0.6 \mathrm{C}$. Gray 111ud. Male: lengtlı 25 inches, breadth is inches.

The description of l'rof. Collett may be compared with that of Dr. Günther, loco citato. In this Arctic Ray there is apparently no difference according to age in the plysiognomy, contour etc. Neverthcless it should be noted, that the delicate dorsal spinous clothing has a larger or more conplete extension in the young specimen figured by Giunther than in the known larger individuals. The differences attributable to individual variation and appearing by a comparison between the specinens of Collett and (Gifinther are enmmerated by Lilljeborg (Sveriges och Norges Fiskar III, p. (604) and by Smitt (Skandinaviens Fiskar p. ifin).

I shall add sone remarks on the variations in shape, spinnlation etc. which make themselves apparent when comparing the specinens before me, two of which are fenales. The typical specimen of Collett has on both sides 3 larger spines in a series inside of the upper margin of the eye, the first pair before a line between the anterior margin of the eyes, the liindmost close belind a line letween the posterior margin of the parietal foramina. There are further 2 pair of shoulder spines and in the middle line of the body a series of 26 spines and a small spine between the 2 dorsal fins. This little, spine is wanting in all our 3 specimens and shonld therefore be omitted in the specific diagrosis. The suprantbital spines are in all as indicated above, if one of them is not lost on one side, as is apparently the case in one of them. The shonlder spines may be in 2 or 3 pairs. In the unpaired dorsal line the number of spines may be from 21 to $3^{\text {I }}$. The teeth are delicate and acute and , how no sexual difference with the exception that one female (from station I (0) is almost quite trothes. Two of our specinems are on the back minformly dark brown, as are those fron the

Voringen -expedition; the third, a male, is adorned with mumerons light specks which are however not sharply defined. On the belly this specinen is generally dark with some rather regularly distributed smaller or larger light spots; the surroundings of the month are white. The other fenale is light on the lower side of the head and on the whole median party near to the anns, but else dark. The male is generally light on the ventral side with darker patcles in a fashion similar to the specimen of the Voringen, but with greater preponderance of the white or colorless parts. In the female with the dark belly the first dorsal fin is proportionally very small. The cards are relatisely little developed on the back of the pectoral fins of onr male, and its uptendies genitnes are not larger than in the Norregian typical specimen (ab. 2 inches); therefore all the specimens hitherto obtained of this sex and species are relatively yomg, thongh of a rather considerable size. The flat lower surface of the tail is contimmed as a low dermal fold at botli sides.

Raja ingolfiana Ltk. 11. sp. (Tab. 1, fig. 1.).
Thus I nane provisionally a male specinen of Raja -- very young, judging from it. little developed affendices senitale's (scarcely an inch long), captured by the Ingolf expedition at Station 32 (off Holstensborg) at a deptli of 318 fathoms on 6635^{\prime} Lat. Nortlı, $5638^{\prime \prime} \mathrm{Long}$. West, where the bottrin was brownish-gray mud with very numerous Rhabdmmina and some pebbles, the bottom temperature of the water 3.9 C. This probably new species belongs to the less acutely pointed species; measured in the usnal manner the length of the snont equals half the breadth over the middle line of the eyes. The external angles of the disk are more rounded, less acutely pointed, its anterior margins. more straight, less sinnons than in R. hyperborea, the external laps of the ventral fins less narrow. The tail is much stonter, both longer and more robust; its length is 12 inches, the distance from the point of the snont to the origin of the tail $13^{\mathrm{I}}{ }_{2}$ inches, the total lenght thats $25^{\frac{1}{2}}$ inch. $2-4$ supraorbital spines may be comnted, some smaller ones on the back of the smont, and some scapular spines is placed in a triangle); in the median line of the tail and the back a dense series of 47 spines and along the lateral margins of the tail (where the lateral folds are in K . Ifperborm) a dense series of somewhat smaller spines. There are $n 0$ spines between the dorsal fins which are placed close together. Otherwise the dorsal face is only slightly spinulous with few isolated spinnles and the ventral face is quite naked. Between the medial series of spines on the tail and the 2 lateral series is on both sides a zone of mumerons, latdly visible asperities (spinelets); the dorsal fins are clothed in the same manmer, but the ventral ones naked. The teetly are small and pointed. The ventral face of the body is whitish withont spots, only with sone dark parts on the lower face of the tail and the rentral fins, and delicately furrowed; the dorsal surface is brown.

Before this species can be studied in botlo sexes and different ages its place in the series of types in the family of Rays can not be fised. Of the many Fastanerican species only R. Win un and occlata hase been accessible to me, none of the more pointed species. I slall refer the reader w S. IV. Garmans memoir On the Shates ($R_{\text {elfo }}$) of the eastem coast of the United States in the Groceedings of the Boston Suciety of Natural History, Yol. XVII (187t), p, so etc., to (isonde and Beans Oceanic Ichthyology (1895) 1. $24 \quad 30$, to Gibberts The ichithological collcetions of the
I. S. fish commission steamet Albatross (Report U. S. Comm. Fish etc.) I8g6 and to Jordan and Fivermanns: The fishes of North and Middle America (Bulletin United States National Mmsemm

Raja rostro acutiusculo, pinnis pectoralibus antice rotundatis, cauda sat robusta, spinis non1unlis supraorbitalibus, rostralibus et scapularibus, c. 47 in parte mediana dorsi et caudae, interpinnalibuts cande mullis.

Raja Fyllæ L,tk. (Tab. II, fig. 2).

R. ornater Carman?

A male specimen captnred on Station 25 off Godthaab ($63^{\circ} 30^{\prime}$ Lat. North, $54^{\prime 2} 25^{\prime}$ Long. West, at 58_{2} fathoms, at a temperature at the bottom of 3.3 C.), which has a length of 555^{mm} (about 21 inches) and a greatest diameter of the disk of $3 \mathrm{IO}^{\mathrm{mm}}\left(\mathrm{m}^{3} / 4\right.$ inches), and whose large appendices graitules demonstrate that it is adult and capable of procreation, agrees else completely with another specimen somewhat smaller (470^{mm}), taken in 1889 in the Demmark Strait at 426 fathoms, and referred by me (Videnskabelige Meddelelser fra den naturhistoriske Forening 1891, p. 32) to the Ruja Fylla, established not long time before (ibid. 1887 , p. 1 -4, pl. I) by me as a new species on a younger female specimen from the same seas. This specimen, which is thms the proper original specimen of the species, had, to be sure, in many respects another aspect, and it was therefore with some dombt that I identified the adnlt male from the Demmark Strait (1889) with the young female from the Davis Strait (I884). 1 was induced to this determination by the fact, that other species of Rays were not known at that time from the Greenland seas than Ruja Fylla and R. radiutu, and by the examination of a couple of still yonnger males from the Davis Strait (likewise from 1889). The new capture from 1895 induced me to take mp the question again and to examine as far as possible, if the difference of age or sex is so large as supposed by me or if a specific difference had been overlooked. The two elder specimens: I shall mention together, designating however the larger figured Ingolfian specimen (from 1895) as No. I, the somewhat smaller one (from 1889) as No. II.

The incisions of the margins of the disk (at the height of the parietal foramina) are still sharper defined in No. I than in No. II. The other portion of the pectoral fin is romeded in a corresponding manner in both. The genital appendages are 1 romm 101 g in No. I, Io 5^{mm} in No. II. There are larget and smatler spines in a marginal zone more or less broad, commencing at the point of the sunot and terminating somewhat before the terminal portion of the groups of pectoral cards which are generally speaking comprised in the said zone; the following zone, comprising the rest of the back of the pectoral fins and of the trmak, is naked with the exception of the proper median party, which begins at the point of the snont, embraces the interorbital space and is continued over the median portion of the trunk and the whole backside of the tail. Covered with larger spines of the R. radiatotype are especially the back of the snout, the space between the eyes especially the supraorbital margin, a rather broad scapular party with many spines and a broad zone at the median part of the back, contimucd on and covering the whole dorsal part of the tail. According to the more or less prononnced stontness of the tail, there may be cominted 3,4 or 5 spines beside each other, forming rather regular
rows, with mmerons fine or somewhat larger spinules on the lateral margins of this part of the body: The teeth are small, fine and pointed; I comined c. 34 rows from one corner of the month to the other. The dorsal fins are closely approximated, not even completely separated. The specimen No. I is lirrlit grayish on the back, miformly dark on the belly; on the uther hand No. II is quite white on the belly, light brownish-gravish on the back. On the ventral face there are, as most commonly in the Skates, no thorns at all.

A younger male, 201^{mm} long and ro6mm broad, from the Davis Strait (235 fathoms) with minnte genital appendices is mentioned by me previonsly (1. c. I891, p. 32). I therefore restrain miself to some brief remarks on this specimen, compared with the here described adult males. The point of the snont is hardly visible as such. The pectural margin of the disk is slightly sinuous, not forming a quite straight line; but a sharp incision does not occur. The back is quite covered with small spines until towards the posterior margin of the pectoral fins: also the ventral fins are partially thorny, while at a later stage they are naked. But between this miniform clothing of the trunk, the fins and the tail some spines a little larger make their appearance, some on the back of the snont, 3 pairs of supraorbitals, one pair of suprascapulars and a single row of about 37 in the median line of the back, connmencing behind the head and continued almost to the dorsal fins on the tail - accompanied on the back of the tail by middle-sized spines forming the transition to the general clothing with spinelets. Thus during the growth of the animal a rich development of larger spines takes place mutill the

Rajor fiyl/a jun. fem. The typical specinem, somewhat diminisherl. above described stage of evolution is attained. The color of the back is brown with some more or less distinct ronnt specks and 2 lighter parties on each pectoral, rather posteriurly. The ventral surface is light with brownish spots and marbled.

A still younger male, 115^{mm} long and $6 \mathrm{~m}^{\mathrm{mm}}$ broad, likewise from the Daris Strait at $2 \mathrm{~s}, \mathrm{n}$ fathoms depth, has no distinct point of the shont and no sinnation of the margin of the disk. The spinulation is essentially the same as in the first described younger male, with the difference that there are a few more sumaorbital and scapnlar spines (a gromp of three on each side of the median line) and that on the tail only the median series is of a superior size. The dorsal surface is handsmmely painted with larger or smaller romin spots or belts (on the tail) which partially alas) are aprament on the thimer portion of the pectorals and rentrals.

The foung female, previonsly described and figured by me - historically then the type of the species $19^{8 \mathrm{~mm}}$ in length and rormm in breadth - from the Davis Strait at the depth of So fathoms, rescmbles the yonnger males just bespoken, especially the youngest, in shape, spinulation and coloring, which it is not necessary to specify nearer, as the actual reproduction here in the text (p. 5) gives the necessary details. It may be observed however that the colored spots are much smaller than in the smallest male at hand. As older females are not at hand, it can not yet be said if those will habitually be more like the adult male, or how great the difference will turn out between the sexes in the sexually mature state.

Rajin ormata Carman which has only been better known to me from fig. 2.4 of the Oceanic Ichthyology resembles so much to my R. Fylla, that it would desire a closer examination to determine if it is not the same species, what perhaps is not milikely. It must be observed however that of the specimens hitherto bespoken of R. ormutu the typical specimen is from Florida (Alligator Key) at I 38 fathoms, the 3 others from 142 fathoms at 3224^{\prime} Lat. North, $78^{\circ}+4^{\prime}$ Long. W., thus from a much more southern zone, a circumstance that might weaken the presmmption of this identity, for whose confirmation an immediate comparison would be necessary.

Deep-sea-Eels: Synaphobranchus and Nemichthys [Serrivomer].

Of the former gemns of deep-sea-eels the Ingolf has bronght home 2 specimens, that I have been able to compare with a specimen of Symaphobranchus finnaths from the Nortlianerican deep-sea expeditions.

Under the name of simuphobromolus finmotus is mentioned in the Catalogne of fish collected and described of L. Th. Gronov edited by J.E. (irray (1854), a Nurænoid described in the Musenun Ichthyologicum of Gronor, II, p. 11, Nr. I6r, which typical specimen was however wanting in Gronovs collection and therefore not passed to the British Mnsennn, when the musenn1 purchased the said collection. But Johnson \& Lowe obtaned some specinnens at Madeira and the latter described it as Symuphobrunchus L゙utüi (Proceed. Zool. Soc. 1862, p. I69). After Dr. Günther having in his Catalogue of Ifishes in the lmitish Mnsenm (VIII, 187t) renamed it with the specific name of Gray and Gronov, it nccurs now in the ichthyological literature again as Syunthobranchus pimnatus. The American decp-sca-investigations have demonstrated its occurrence at depths of $304-740$ fathoms in the sea off the eastenn shores of the United States (f. inst. between tine St. George bank and Sonth-Carolina). Goode og I'can in Bull. Nns. Comp. Zool. X̌, p. 223 enmmerate St specinens from $33^{\circ} 39^{\text {E }}$ Lat. North and $65 \quad 76$ I.ong. West. Compare the Oceanic Ichthyology p. I43, fig. I64. A great mumber of Stations is chnmerated. The expedition of the Challenger discovered it in greater or smaller mumbers of specimens at different stations (off Prasil, sonth of Japan and sonth of the Phiiipines etc.) At depths of 2141200 fathoms. The French expeditions (le Travailleur, le Talisman) have brought torether a great number (56) of specimens from the coast of Marocco and the west coast of North

Africa, from the Azores and from the Canarian and Capoverdian islands and from depths between fo5 og 3200 Metres. Also the prince of Monaco obtained it at the Azores in great numbers, in several dranghts of the weel, partly in the company of Simenchelys farasitions, relatively 251 and 328 specinnens. Compare: Collett's Résultats des campagrues scientifiques, loissons p. 154. The S. finmatus is figured by Giinther (Report on deep-sea fishes pl. 62, fig. A) and by Tainlant (Expéditions scientifiques p. SS, pl. 6, fig. 2). Other species of the same yenus are fignted and described: S. bathybins Gthr. (south of Japan, in the northern part of the Pacific and between Cape and Kergnelen, Report on deep-sea fishes p. 254, pl. 62, fig. B), at 13752050 fathoms, perhaps identical with Histionbranchus infernulis Gill. (Proc. Ln. St. Nat. Nus. VI, I884, p. 255), The Atlantic: $38^{\circ} 30^{\prime} 30^{\prime \prime}$ Lat. North, 69 of $25^{\prime \prime}$ Long. West, depth 1731 fathoms. Compare also the Oceanic Ichtlyology p. 145, fig. 165. The anthors of this work take the genera Simaphobranchuts and Ifistiobranchus as different, partly also the species of $/ 1$. bathuphins and $/ 1$. informatis, and it would therefore be the most correct thing to retain the later name for the northatlantic type. Further: .S. orcoidorsalis Gilir. (1. c. p. 255, pl. 63, fig. C) from North of New Crinica and Sontlı of Japan (345- Iozo fathoms).

Ingolf captured 2 specinens of a Symphobrumchus for, according to Goode and Bean, of a Histiobranchus), 16 and is $/ 2$ inch. long, at the stations 36 and 37 on 6150^{\prime} Lat. Nortlı, 56 2' Long. West and on $60^{\circ} \mathrm{I} \gamma^{\prime}$ Lat. North, 5405^{\prime} Long. W., depth 1435 and if15 fathoms where the botton was a grayish or light chocolate-coloured mud and the botton-temperature 1.5 or $\mathrm{I}^{\circ} .4 \mathrm{C}$. It will be sufficient to state of those Histiobranchi of the Ingolf, that the small pectorals (of the length of the snont) the position of the anus and the fact that the dorsal fin reaches almost to the head, make it evident that they do not belong to Symophobranchus pinnatus, but either to II. bathybius or to (ivill's H. infernalis, if these are not symonymis.

The geografical distribution of the same species will at the sane time be elncidated as far as it is known at present.

Nemichthys (Serrivomer) Beanii (iill \& Ryder.
Of this species Ingolf captured on the Stations 12 and 20, at $64^{\prime \prime} 38^{\prime}$ Lat. North, 3237^{\prime} Long. West, and on $5^{\circ} 20^{\prime}$ Lat. North, $4^{\prime} 4^{\prime}$ Long. W., in the Denmark Strait and S.S.E. of Cape Farewell, at a depth of 1040 and 1695 fathons, on a botton of soft mutd with pebbles and a botton-tennperature of 0.3 and 1.5 C. two not fully well preserved specinnens of the said deep-sea-eel-genns. A thind someWhat better was obtained at Station 45: 6r 32^{\prime} Lat. N. and 943^{\prime} lomg. W., West of the Faroe lslands on a deptly of 6.4 fathoms, light gray muddy bottonn with Globigerinc-shells and a bottom-temperature of 4.17 C . It is a rather large specinen, 26 incles long; it is noted in the zoological Jonrnal of the expedition in the following manner: lower side of the liead quite black, the sides of the trunk and back bronzeonsly gilt with numerons fine black points.

Goode and Bean have in the Oceanic Ielithyology given a figure (fige if5) of sempen Braniz (rill \& Ryder which agrees well with the 3 specinnens at latid. The shape is much clonsated, the length of the liead from the point of the beak to the branchial fissure being containerl of times in the total length, further on somewhat compressed and tapering to a lonse pointerl tail, whoce lensth
reckoned from the amns is three fourths of the total length. The jaws are moderately elongated, the length of the upper jaw measured from the anterior margin of the eve is contained twice and a half in the whole length of the head. The month reaches backwards under the eyes, which are not absolutely small. The branclial openings are very wide, obliquely placed slits in the median ventral line, almost contimons. The jaws are armed with fine teeth, and the vonier wears a long series of densely placed pointed tecth. The very small pectorals are placed at the upper end of the branchial slit. The dorsal fin is represented by a series of very delicate and short rays beginning somewhat behind the anus, also the rays of the anal fin are very feeble, but perhaps somewhat longer. The soft blue-black skin is more or less lacerated in all the 3 specimens but partially preserved. The measures are the following:

'Iotal lengtlı	$680^{\text {mm }}$	$570^{\text {mm }}$	$510^{\text {mm }}$
The length of the liead to the branchial slit	100	93 -	S5-
The length of the beak to the conners of the mouth	42	37	35 -
Trunk and liead from the point of the snout to the anns	170-	${ }^{135}$ -	123 -
L.ength of the tail from the anns	$510-$	435 -	387 -

The Serrianor Beanii was known litherto from a single specimen cauglnt by the Albatross at 41 fó $30^{\prime \prime}$ Lat. North, $6528^{\prime} 30^{\prime \prime}$ Long. Wh. and at 855 fathoms depth. It is described by Gill and Ryder in 1883 (Proc. U. S. Nat. Mus. VI, p. 260) together with a related type Spimionomer Goodei, also taken by the Albatross in the northern Atlantic likewise in a single specinen. Both the generic nannes are derived from the armature of the vomer with large teeth. Goode and Bean liave in the (Oceanic Ichthyology p. I55 distinguished then as a separate gromp of nemichthyid murenoids: Spinitomeridue, to which is further referred the Nemichthys (Serripes) Richurdi Vaill., captured by the Talisman at the Azores on 2995 fathons and originally considered by Vaillant (Exp. scientifiques 'Travaillent et Talisman, p. 93, pl. VII, fig. I--I a) as identic with Günthers: Nemichthys infuns (Clall. Rep. vol. XXII, p. 264, pl. 63), but in the Appendice. (p. 355) to the said work established as a separate species.

Alepocephalus Agassizii Coode et Pean.

lessides the 4 . rostratus already known to Risso from the Mediterranean and from adjoining parts of the Athantic as far as the Azores, the Canarian and Capoverdian islands for which species besides the older fignres by Risso and Valenciennes I may refer to Vaillants Expéditions scicntifiques (pl. Nl and XIl) and to Oceanic Ichthyology (p. 36 , fig. fi) ane other atlantic species hate been described especially by American ichthyologrists: A. Agassizil Cr. B., A. productus Gill, 1. Baiditi (s. B., Comocurn Mc. I)omaldi G. B. and I. (C.) macropterus Vaill., for which species I may refer to (oceanic lelithyology 1. 37 39, fig. $45,46,47,45$ og 43 . A further addition is A. Giardi (Koehler: Résultats scientifiques de la campagne du Candan , Annales de l'tuiversité de Lyon fasc. Ill, 1).513, pl. XXVI, fig. 1) at a depth of $800-14$ Io metres, Bay of Biscay. On the second cruise wi the Ingolf was obtained an Allpocophatus, $20^{\mathrm{I} / 4}$ inch $\operatorname{long}\left(530^{\mathrm{mm}}\right.$), no doubt an A. Agassizii, at

Station 83: $62^{\circ} 25^{\prime}$ Lat. N., $28^{\circ} 30^{\prime}$ Long. WV., at a depth of $9{ }^{12}$ fathoms, S. W. of Iceland, with al bottonntemperature of 3.5 C . The lieight of the body is contaned sonewhat more than 5 times $(1: 5.3)$ in the total length, reckoned to a line between the points of the candal fin; the lengtl of the head (164^{mm}) is one third of the total length (to the cleft of the candal fin); the diameter of the eve equals the distance from the eve to the point of the snont, not one fourth of the length of the liead; the upper jaw terminates in a line with the posterior border of the pupil; the breadth of the sonewlat hollow front is somewhat sninaller than the ocular dianeter or the snont.

On the sonthern and eastern hemisphere Alcpociphalus is partly represented by Bathytroctes, which should perliaps be minted with Alepocchlalus. Of the io species enmmerated in Oceanic Ichthyology 7 are Atlantic.

Scopelini.

Species of Scopelus are canglit at S stations, but they have almost all suffered so much from their being taken in dredges or the trawls, that the light-spots are only visible in part. Sonne specimens I have identified as .S. clongratus; the others belong to the less elongate species. Tlie following list therefore tells, that in the zone traversed by the Ingolf between $6 I^{\circ}$ and 65° Lat. North are to be found the species of Scopilus enmmerated at the noted depths, on the bottonn, if they are not captured during the liawling up of the inplements used; but experience will also slow that it is not throngl botton fishery, that one may procure a good material of these animals, equalling that furnished by the surface.

I refer the reader to my Bidrag til nordisk Ichthyographi VIII. Nogle nordiske Laxesild (Scopelini) in the Videnskabelige Meddelelser fra den naturhistoriske Forening i Kjobenliavin, is8r, and to Spolia Atlantica, Scopelini Mnsei Zoologici etc. (K. D. Vid. Selsk. Skrifter 6. Række, VII, 6).

```
Stat. Lat. N. Lgtd. W. Fathoms
    12: 64 3S' 32 37' 1040 (Demmark Strait, W. of Iceland) Si. clongratus Risso and Sco glacialis Rhdt.
    17: 62 49' 26 55' T45 (S. W. of Iceland) Scop. arcticus Ltk.
    25: 63 30' 54 25' 582 (W. of Godthaab) Scop. arcticus L.th.
    27: 64'54' 55 ro' 393 (S.W. of Sulkkertoppen) Scop. slucialis Rludt.
    35: 65 I6' 55 O5' 362 (same place).Scot. glacialis R1ndt.
    40: 62 00' 2I 36' S45 (S. of Iceland)Scop.clongatus Risso.
    81: 61 44' 27 00' 485 (S. W. of Iceland) ।
    141: 63'22' 6 58' 679 (East of Iceland), Scop.glacialis R1ndt.
```


Cyclothone (Gonostoma) microdon (itlir.

For this widely diffnsed species I shall refer to my renarks in my Forte Ifidrag til nordisk Ichthyographi VIII (Videnskabelige Meddelelser fra den naturhistoriske Forening 189, p. 21 () 19 . article 5 on Gonostomer (Cyclothonc) microdon Gthr. and to ny description and figure in my Spolia Atlantica, Scopelini Musei Zoologici etc. (K. D. Vid. Selsk. Skr. (6) VII, 6, tab. II, fig. \& 5). At an early tine (1843) we got this little Scopelid fron the Baffin Bay. The Claflenger Mxperition got
it from many places in the Atlantic (both in its northern and sonthern parts) and in the indo-pacific sea (S. of Japan, N . of New Gninea, off Amboina etc.). Other localities are cited by Vaillant (l. c., Siostoma qumlrioculatum), by Alcock (Ann. Mag. Nat. Hist.» 1889, p. 399, the Bengal Bay and the Andanams at $265-485$ fathoms), by Collett (Campagnes scientifiques: p. I30), and by Gilbert (The ichtiyol. Coll. of the U. S. F. C. St. Albatross , Report U. S. Comm. Fish. a. Fisheries for I893, p. 402 , the Bering-Seat and in Oceanic Ichthyology p. Ioo. The distribution of the species turns out to be alniost cosmopolitic. The latter work cites besides the C. microdon (lusca G. \& B.) C. bathyphila Vaill., C. clongata Cithr. (stigmaticus Gill.), C. gracilis Gthr. and C. quadrioculatus Vaill., already mentioned as probably identical with C. microdon. On the expeditions of the Ingolf the C. microdon has several times been captured as appears in rather deep water; some of the specimens are, it is true, rather danaged. The station-list given below will at least illnstrate the frequency of these small fishes in the subarctic zone of which it treats.

The deptlo thus raried, after the trawling journal, from 295 to i 435 fathons. The bottomtemperatures noted varied from 0.3 to 6.1 C. The Ingolf expeditions never got this species north of the ridges betwcen Greenland and Iceland, and between Iceland and the Faroe-Islands. On most of the enmmerated stations there was fished with vertical nets too, reaching to a depth of roo--200 fath. withonth any Cyclothone being canght, althongh snall fishes and young ones were taken.

Cyclothone (?) megalops 11. sp. ad int. (Table 4, fig. 6).
Together with a great number of Cyclothone microdon captured at Station $12-64^{3} 38^{\prime}$ Lat. N.., 3237^{\prime} Long. West, 1040 fathoms - there occurred a single specimen of a length of $70^{m m}$, habitually
looking much like the said species, but differring by the eyes not being particularly small and by totally wanting the light-glands or photosplieres. It can therefore apparently hardly be referred to the same genus. The dorsal and anal fins are very like those of C. microdon, thongh with the difference that the dorsal fin begins somewhat before the anal fin, while this on the other hand ends somewhat farther back than the dorsal fin. Qnite black. A somewhat larger specimen (105^{mm}) from Station 9 - $6 \not{ }^{1}{ }^{18}$ Lat. North and 27^{\prime} Long. W., 295 fathoms - is so badly preserved, that it gives only the information that the eyes are not small and that both jaws are armed with small teeth directed obliquely backwards, with a few longer ones in the formost part of the lower jaw and the foremost part of the palate or the intemaxillary. The nearer determination of this specimen must be reservecl for a future discovery:

It seems evident that these specimens belong to species else muknown, but as the material is so scanty I slaall limit myself to the short preliminary motes made above.

The Notacanths.

For a long tine, only few specimens of the renareable gronp, the Notacanthini, were known of the type termed Compllodon (Bugtetanden) by Otto Fabricius (Skrifter af Naturhistorie Selskabet, Vol. IV, fasc. Il (1798), p. 22-38, pl. 9, fig. r), but inserted in the system as Notactuthus Chemmitaii B1. (Abliandhungen der böhmischen Gesellschaft, ifs7) or as Notucunthus masus IBl. (Ausländische Fische, IS, Allgemeine Naturgeschichte der Fische, NiI, p. 113 (1793), pl. 431); Schneider, Systema ichthyologire. (ISOI), pl. 77. The older Reinhardt designated it in his Ichthyologiske Bidrag (Vidensk. Selsk. Skr. VII) p. r20 as Camfllodon Fobbicio, but now-a-days it is generally better known as Totacanthus nasus. These few specimens are 1) The original Greentand specimen of Fabricins, which, it must be deplored, in the comse of time has been lost I can not say at what time. 2) The specimen received by Bloch from Chemnitz, probably from Iceland, thongh it was stated to come from India. It is described and figured in C'uvier's and Talenciennes's Histoire naturelle des poissons V'III, p. 467 , pl. 2 4 I. It is still preserved, as has been stated subsequently, in the Berlin-Museum in a rather deterionated condition. 3) A third large specinen was received at our musemm in IS7I from Greenland; it is mentioned and party deseribed by me in $18 \% 8$ in the Tidenskabelige Meddelelser fra den naturhistoriske Forening. 4) The specimen obtained from Iceland for the Ansemm of Paris on the voyage of la Recherehe or rather as a eonsequence of this voyage (Gainard: Voyage en Islande et an Gronland, Poissons, pl. XI); Vaillant mentions this specimen (Expéditions scientifiques p. 3^{16}) as being from Greenland, but that is not correct. It is figured twice in the édition illustrée du Règne animal de Cuvier (louissons pl. 55, fig. 2) and in the above quoted itinerary by Gaimard. The question if these + arctic specimens should perhaps repmesent mume than a single species did not attract the attention for a long thne to conle. Fut now some Mediterrancan species were discovered: Aot. Bonapartio Risso (Arehix für Naturgeschichte 18.4), p. 376;

Torino, t. X̌VIII, p. IS7; Vaillant: Recherches scientifiques etc. p. 325, pl. 27, fig. 2). Further an Anstralian species (N. sexspinis Richardson, «Voyage of H. M. ships Erebus and Terror, Fishes p. 54, pl. 32, fig. 4-II; described and fignred again in Cünther's Report on deep-sea fishes" (Challenger) p. 243. pl. 60, fig. 9-15 and pl.6I, fig. A). Then, in deeper water on the eastern side of North America were fonnd 2 species: N. analis (Gill: Proceedings Crinted States National Mnsennn, VI (1883, p. 255) and N. fhusgunorms (Goode: Proe. Un. St. Nat. Insemm, III (188:), p. 435, Oceanie Ichthyology" p. 167, fig. I86). The question did now arise, if the individual or specific variation had not been supposed to be larger than it is in reality, and if not one or sonne of the aretic specinnens ennmerated above could be referred to the species established by the Annerican authors. Léon Vaillant has expressed the opinion that the Icelandic specimens from la Recherche could be referred to N. phasganorus Goode. My own earlier studies of the material at hand or deseribed elsewhere induced me to conclude that the then known Icelandic or Greenlandian specinens should be determined as 1 . Masus. According to Mr. Bean and Goode (Oceanie Ichthyology p. 166) I. Bonapartii and I. meditcrrancus should not be different, bint some authors are of the opinion, that the species from the westcoast of South Aneriea designated with one of these manes (λ^{*}. Bonafartii, Giinthers Report etc. p. 249, tab. 6r, fig. C) is a proper species and genus, now termed Gigliolia Moselevi (Oceanic Ichthyology p. r6g, fig. 187, 193).

To quite another type belongs a Nolacanthus of the subgenus Polyacanthonotus Gthr. and of the particular subdivision termed Macdonaldia, brought home by Ingolfs expedition in is95. The species has already been described twice by Collett (Diagnoses de poissons nouveaux provenant des canpagnes de lHirondelle: Bulletin de la Soeiété zoologique, 1883, p. 307; and Résultats des campagnes seientifiques par Albert $I^{e r}$, prince souverain de Monaco, pars X , Poissons provenant des canpagnes du yacht l'Hirondelle, 1896 , p. 48 , pl. 5 , fig. 2 1) and by Brown Goode \mathbb{E} Tarleton Bean (A revision of the order Heteromi, deep-sea fishes, with a description of the new generic types I/acdonaldia and Lifogenys, Proc. Unit. Stat. National Museunn t. i7 (r894), p. 455, pl. IS, fig. 2; Oceanic Ichthyology: p. I7I pl. 5r, fig. I89 and pl. 52, fig. I95). Of other species belonging to the same type are known the Mediterranean N . rissomus (Filippi \& Verany: Mem. Acad. Sc. Torino, t. XVIII, p. 190; Yaillant: Expéditions seientifiques» p. 335, pl. 27, fig. r, coast of Marocco, 2212 metres) and the Japan form, designated by Giinther (Report on deep-sea fishes p. 250, pl. 61, fig. B; Vaillant 1. e. p. 38 \%) nuder the same nanie, but to which Vaillant and the oft mentioned American scientists now agree to apply a new name (N. Challengeri Vaill.).

As Polvacanthonotus (Macdomaldia) rostratus Coll. is new for the ocean bespoken here the Ingolfian specimen deserves to be mentioned in a more particnlar fashion. As in the related species the body is elongate, somewhat compressed and tapers to a rather flagelliform candal portion; the head is sinall and terminates in a soft, somewhat pointed snont. The total length to the point of the candal fin is 355^{mm}; the greatest hight (over the anus) e. 29^{mm}, approximatively I / m of the total length the specimend deseribed by Collett was 480^{mm}, the tail being 275^{mm}, the greatest height 37^{mm}, the length of the head 46^{mm}). The distance from the point of the snout to the anus is 120^{mm}, or abont $\mathrm{r} / 3$ of the total length, that of the tail the double of the length of the head and the trunk taken together or ${ }_{3}$ of the whole. The eyes are small, their diameter and the distance between then being 5^{min} or I / s
of the length of the head (to the posterior border of the gill-cover); the length of the snont from the eve to the point of the snout is 13^{mm} or $\frac{1}{3}$ of the total length of the head, from the month to the point of the snont abont the half $\left(6^{\mathrm{mm}}\right)$; the mouth is small, semilunar in shape and sitnated on the lower side of the snont, the corners of the month are vertically below the anterior nostrils. The nostrils are placed close together before the eye. The teeth are fine. The upper jaw ends posteriorly: with a rather strong spine.

The peetoral fins have a lengtl of $18^{m m}$; their rays are if. The ventral fins umber io rays, none of which can be terned a spinons ray, the external one being however thin and delicate. The row of spinons dorsal rays begins exactly over the posterior border of the branchostegal membrane; it ntmbers 33 spinons rays (the specimen of Collett had 27 , that of Goode \mathbb{E} Bean 28-3T, N. Challongeri 34, N. rissomms 37), they are short and isolated, their mutual distance somewhat surpassing their length, but they become longer and more distant from each other posteriorly: the commecting dermal part is very slight. The spinons rays of the anal fin are also slort, but nevertheless much longer than those of the dorsal fin, and they are much more closely approximated to each other than the dorsals. As they approach to the soft rayed portion the connecting dermal skin becomes more distinct. The number of these spinous rays can be reckoned to be about 45 (in Collett's specimen 53, in that of Goode and Bean it is given as $42-53$; in N . Chullongeri 54 , in N . rissomus 2%), but an absolute limit can not be drawn between the spinous and the soft-rayed part of the fin, when the rays, preserving their undivided shape, become longer, more delicate, articulate and mited with a full fin-membrane. The number of rays in this anal fin may be counted as about roo (pertiaps 192-93). In the last part of the tail the light of the anal fin considerably exceeds that of the tail itself. A caudal fin of 4 rays may be pointed ont.

The scales are very delicate. A distinct lateral line may be traced forwards from a point muder the last spinous dorsal ray but three; after this point it is less distinct, and is likewise becomes indistinct towards the eye, but reappears then distinctly as an infraorbital line. On the trunk proper its position is nearer to the back than to the belly, but as the body decreases in height its position becomes nearer to the middle height of the body. On the snont are seen several pores, especially a distinct series of snch along the inferior margin of the preopercle and of the lower jaw. The colonr is a light chocolate colomr, somewhat spotted, the opercle is internally black, pellucid towards the margin; also the lips; the inferior portion of the anal fin is also relatively dark.

Onr only specinen of this Polyacanthonotus or Ihecdonaldir was taken at a deptl of 362 fathoms on station $35\left(65^{\circ} 16^{\prime}\right.$ Lat. North, $55^{\circ} 05^{\prime}$ Long. West). The botton was a brownish mud with arenaceous foraminifera and pebbles; the temperature was 3.6 C . 'The specimen of the prince of Monaco was taken off Newfonndland on a depth of 1267 metres, those of Goode and Bean at 551 and 563 fathoms, at $3947-48^{\prime}$ Lat. North and $70^{\circ} 30-36^{\prime}$ Long. West. The vertical distribution may therefore be fixed provisionally at $360-960$ fathoms, the geographical distribution to the western part of the Atlantic from Newforndland to the Baffin Bay

Cyclopterider and Liparidide.

Cyclopterus (Eumicrotremus) spinosus (Fabr.).

Of this well-known arctic species the Ingolf -Expedition has bronght lome a yonng specimen captured southwest of Sukkertoppen on station 33, $67^{\circ} 57^{\prime}$ Lat. North, $55^{\circ} 30^{\prime} \mathrm{L}$ ong. West, at 35 fathoms, sandy bottom, witl a bottom-temperature of $0^{\circ} .8 \mathrm{C}$.

The species is known from Greenland, Norway, Iceland and Spitsbergen and from some parts of the east coast of Anerica (Oceanic Ichthyology. p. 272) and from the Bering-Sea as Cycloptcrus orbis Cuthr. (Catal. Fislies III, p. 158). It is also noted in Gilbert's paper of 1896 on the nortli-pacific fislies (p. 44^{8}) with a note that the identity of Corbis and C. spinosus onght to be confirmed throngh the confrontation of both types, while C. orbis is named withont any further remark in Jordan and Starks's The fislies of Puget Sonnd (1895) p. S29 (Leland Stanford jun. University publications, Proceedings of the California Academy of Sciences, Series II, vol. V).

Liparis Reinhardti and L. micropus Gthr.

Those, who may have consulted my little paper of 1886 on the Liparida (Dijmplna expedition) or that of Collett from 1880 (Norske Nordhavs Expedition), will be aware, that the results arrived at by us with respect to the northern Liparids were generally the following. We know i) a Liparis Montagui Don. and 2) a Liparis lincatus (Lepechin), both of which make their appearance in micoloured, spotted and striated varieties, the latter type perliaps identical as species with L. tumicatus and to be considered as a minor variety or stage of evolution of the arctic form, which can attain a considerable size and be furnished with a sort of small conneous tubercles or scales. 3) Liparis Fabricii Kr. (with the variety L. leprosa mi.), best known from the Kara-Sea, deternined after an original specimen of Kroyer's species, but after my opinion not to be identified with L. tumicatus, as it will be seen has been (lone. 4) I. Rcinhardti Kr., regarded by several as type for a particnlar genus (Careproctus), what I do not find necessary, but further identified with L. gclatinosus Pall., perlnaps correctly, thongh I can not take upon me the responsibility of his identification.

The resnlt arrived at by F. Smitt in his great and handsome work on the «Fishes of Scandinavia. does not differ much, but somewhat fron that exposed above. He has i) a Cyclogaster Monturni; 2) a C. liparis, comprising a) as formu microps" the varieties C. lincatus, zulgaris, barbatus and tunicatus, b) as forma megalops n1y L. Fabricii; 3) C. gelatinosus Pall. э: L. (Carcproctus) Reinhardti, to whicli Liparis (Carcproctus) micropus Gthr. perhaps also must be reckoned as a synonym.

I sliall add a review, as short as possible, of the further and extra-Scandinavian development of the Liparis-question. Garman's monograph of the Discoboli (Cycloptcrida, Liparopsida and Liparidide) (Alemoirs of the Musenn1 of Comparative Zoology at Harvard College vol. XIV, No. 2) distinguislies first a division, Cyclopterider with the genera and species: Cycloptcruts (lumpus), Eumicrotromus (spinosus and orbis) and Cycloptoroides gyrinops. The last mentioned type from St. Paul's Island (Alaska) is distinguished partly by the position of small barbels along the margin of the lower jaw (cl) the figures t. XI, fig. 4 9; p. 37 it is said in a less definite nanner: chin with tubular pores, or
barbels). The second division Liparopsida comprises Cycloptrrichthys antricosus (Pallas) |identified with the Cycloptcrus glabor of Steindachner (Ichthyologische Beiträge X, p. I4, pl. 8) fronn Kannschatka and the sea of Okotsli| and CYclopterns amissus Vaillant (Strait of Magellan, Mission scientifique du Cap Horn p. 33) and Litarops Stilleri (Pallas). Annong the true Liparidider are mentioned of the gemus Liparis i) L. Montagui (t. VII, fig. 6-20 and VIII, fig. S-it) with several symonyms from European and Eastamerican places 2) L. mucosus Ayr. (Tab. V, fig. i 5, Tab. LA, fig. I, Tab. A, fig. A) (California, Alaska etc.); 3) L. calliodon (Pall.) identified with L. cyclopus Gthr.) (t. VI, fig. I-5) (Kamschatha); 4) L. liparis L. (= L. limatus Lepech., Kr.), L. inlgaris Fl., L. borbutus Ekst. (from European and American seas) Tab. VII, fig. $\mathrm{r}-5,21,22$; 5) L. anturction Putn. (t. VI, fig. 6-10), according to Gill an Enantiolifaris (southnuost part of Southamerica). Too the genns or subgenus Careliparis is referred 1) C.liparis Bl. Cuv. (= L. gibbus Bean) (tab. I-III) (Behring's-Strait etc.), 2) C. tmicatus Rhdt. (L.arctica Gill, Fabricil Kr., lincatus Coll. p.p., 3) C.Stcimoni Fischer (Enantioliparis, South-Georgia), 4) L. fuldehcllus Ayt. (t. IV, t. V, fig. 6-S, t. VIlI, fig. 4-7, 12-14), 5) L. pullidus Vaill. (Tierra del Fuego, Missions scientifiques pl. IV, fig. 3). Under Careproctus are noted C. micropus Gthr. (Challenger, Report pl. NII, fig. B); the Gymnolycodes Edzarsii of Vaillant (Expéditions scientifiques t. 26, fig. 3) is thought perhaps to be the same species, further C. mujor (of which nore below) C. gclatinosus (Pall.) and C. Remhardti, which is not identified with C. gelatmosus, but with L. ramula G. \& 13 .

In Oceanic Ichthyology, are named, not only Puralifuris and the nearest allied apodal types, the so called Amittrina, 3 genera of true Liparids, viz i) Liparis (Artedi): Expl. Cycloptorus liparis E . $=$ C. lincatus Lepech., Kr., L. antgaris F1., L. barbutus Ekst. 2) Carcliparis (compare the monograpls of Garman cited above). 3) Carchroctus Kr., distinguished after the old definition by the ventral disk being small and placed below the head. Further is noted L. (C.) Reinhardti Kr., in which some lave meant to recognise the Cychopterus golatimosus of Pallas and which is therefore termed C. gclatinosus (Pall.); an allied type is designed C. spectrum Bean from Alaska; further a C. ramule G. \& B. (fig. 251), fished off Halifax, and C. micropus Gthr; and finally a species terned C. major, answering to the Lifaris or Actinochir major of the Northamerican ichthyologists (the denomination after the Cycloptcrus lifaris atar. major of Fabricius) and identified with the Greenlandian L. tunicuta and with the L. Fabricii described in Kara-Havets Fiske. (after my opinion identical with Kroyer's species of the same name, but in $n o$ way with L.tuncotus Reinhardt). A doubt (well fonnded I believe) is also expressed, whether this Lipuris be really a Carcproctus!

Of other Liparids are named in Jordans and Starks's paper on the fishes of Puget Sound Neolifaris Florce and IT. Grecmi, N. mucosus Ayr., N. callyodon Pall. ($=$ L. mucosus Garm.), L. cyelopus Gthr., L. Demuyi J. St., L. fucencis Gilb. and L. fulchelhus Ayr. Others are further mentioned in Gilbert's 'The ichthyological collections of U. F. C. St. Albatross during isgo 9I from the sea off the coast of California: Carcproctus melamurus (r. witl the rather inuportant remark, that the disk becomes smaller with age, but that its place like that of the anus remains nnaltered. Further are nanned from Unalaska and Alaska etc. a Correproctus cetines Gri., C. Colliti (i., C. phasma C., C. simus G., C. ostcntum Gibb. (the disk reduced to a minnent), Guminchtheys (11. (s.) minytremus, Khinolifaris (1. g.) barbulifer, Bathyphasma (n. g.t origerum Gilb., hifaris fulchilhes Ayr., Lo. G-
clopus Githr., L. Agrassisu Putu., L. crclostigmu Gilb., L. fuconsis ($=$ L. calliodon) Garman, Neolifaris cullyodon Pall. (- L. mucosus Carm.), L. sibbus Bean.

This symopsis shonkl approximatively illustrate the actual floating condition of this rather hopeless Liparis question per tot discrimina rerunn.

Some specimens brought home by the Ingolf expedition (generally in a less good condition) from cold and deep water are perhaps better or equally correctly to be termed L. micropus. Of the relation between this species and L. Remhardti I shall not give a personal opinion. After the localities they are from

Thus all specimens were from depths or under conditions where the temperature at the botton was at the highest 3 C . or below $(\div 0.6)$.

A large and handsome specimen (Tab. III, fig. 3 and 3 a) from the station 139 (63 36' Lat. North, 730^{\prime} Long. West, depth 702 fathoms, gray clay; bottom-temperature $\div 0.6 \mathrm{C}$.) surpasses in size ($27 \mathrm{o}^{\mathrm{mm}}$) widely every other known specimen of L. Reinhardli. I have lad it figured with the aid of a coloured sketch made on the Ingolf. The differences, that may be fonnd between this individual and other existing descriptions of Liparis (Careproctus) Rcinhardti (gclatinosus) should perliaps essentially be attributed to the fact, that with the exception of the original type of Pallas ordinarily only smaller (yomger) specimens have been studied, while we here have the rare success to have before ns an older, adnlt specimen. On the other hand I can not deny the possibility that it may be identical with one of the other established Carcproctus-species, or maintain absolutely its identity with Pallas's L. sclatinosus, on which the older Reinhardt lad already fixed the attention for the type which at a later tinme bore his name. The length of the fish is stated above; the length, breadth and the lieight of the head are $55^{\mathrm{mm}}, 45^{\mathrm{mm}}$ and 55^{mm}. The largest height behind the head is 74^{mm}; when it apparently decreases relatively slowly backwards, this appearance is due to the considerable height of the dorsal and anal fins. The transversal breadth of the month is 35^{mm}; along the upper jaw and between the nostrils 7 pores are seen, along the lower jaw one and in the continnation thereof 7 . A couple of low tubeformed nostrils with a mutual distance of 17^{mm} are seen anterionly on a line, that wonld mite the anterior margins of the eyes; their distance from the eves is 7^{mm}, from the margin of the jaw 12^{mm}. The diameter of the globular eyes is $1 \mathrm{I}^{\mathrm{mm}}$, their mutual distance 32^{mm} and from the jaws' margin $13^{\text {mm }}$, the leeight of the branchial cleft 17^{mm}. The whole number of pectoral rays is 3 I; the pectorals meet approximately below the head; as in the smaller individuals they get \& fringed appearance, the rays continuing beyond the connecting membrane, especially those in the anterior (or undermost) part of the fin, where their free portion may obtain the length of $39^{\text {mm }}$. The
small ventral disk has a dianeter of 12^{mm}; it is situated $11 n d e r$ the centre of the eyes. The dorsal fin numbers c. 40 rays, the candal fin 10 , and the anal fin1 c. 40 rays.

It will perhaps be useful to print here the following extract of Jordan and Starks's consjectus of the American species of Liparis and Neolifaris ("The fishes of Puget Sound" 1). 837 or 834).
a. Liparis: number of vertebre c. 39 ; radii dorsales c. 35 ; radii anates 27-30.
b. The gill-clefts very narrow, entirely over the base of the pectorals; rad. caudales i2. L. liparis.
bb. The gill-clefts larger, partly below the uppermost jectoral ray.
c. Radii pectorales 30 ; rad. caudales 12 . L. cyclopus (1. c. pl. 97).
cc. Radii pectorales 41-43; rad. caudales $15-20$. L. fucensis.
aa. Careliparis Garm.: Number of vertebre c. 46 ; radii dorsales 40-44; radii anales 35-36.
d. Radii pectorales $35-36$.
e. Gill-clefts small, not reaching beyond the first pectoral ray.
f. L. tumicatus.
ff. L. Agassisii.
ee. Gill-clefts large, reaching down to the fourth pectoral ray. L. Dennyi (1. c. pl. 9S).
dd. Radii pectorales 4^{2}; gill-clefts large, reaching to and beyond the upper part of the pectorals. L. cuclostigmat.
aaa. Actinochir: Number of vertebrex c. 52 ; radii dorsales $45-48$, radii anales 38 - 40 , radii pectorales $34-37$. g. A. pulchellus.
gg. A. mujor.

Neotiparis.

a. Gill-clefts very narrow, not reaching beyond the third pectoral ray.
b. Anterior nostril distinctly tuliform.
c. Radii dorsales c. 30 , radii anales $24 . N$. montugui.
cc. Radii dorsales $34-36$, radii anales $25-28$. N. callyodon Pall. (L. mucosus Garm.).
bb. Anterior nostri] not distinctly tubiform. Radii dorsales 32, radii anales 26. N. murosus (1. c. p]. 95).
aa. Gill-clefts relatively large; nostrils not distinctly tubiform.
d. Radii dorsales VI +27 , radii anales $21-23$, radii pectorales 30. N. force (1. c. pl. 96).
dd. Radii dorsales VI +34 , radii anales 30 , radii pectorales 35 . N. grecni (1. c. pl. 96).

Paraliparis bathybii (Coll.).

The establishment of this hitherto minknown form was based upon a single specine $11,20 \mathrm{~S}^{\text {mam }}$ long, taken on the Norwegian North-Sea-Expedition to the North Sea, on a depth of 568 fathonns, west of Beeren-Island; it wanted the ventrals, and it had at that time to be left in donbt, whether this was a constant deficiency or it was only due to an accident. It was therefore referred to the genus Liparis with the annotation, that it wonld perhaps form a proper genus (Den morske Nordhavs-Expedition , Fiskene p. 52, t. 2, fig. 14). Then the British Insenm» also received a specinen, $\mathrm{T}^{\text {t/2 inches long, }}$ fished by the Knight Errant on the North-Sea-Expedition of this vessel in the Faroe Channel on a deptli of 6 fo fathoms (Challenger, deep-sea fishes p. 68, pl. NII, fig. C). It tumed out that it really wanted the rentrals and consequently an adhesive disk, formed by them, but is was not confirmed -. what has not been fonnd by me neither - that under the chief portion of the pectoral are fomnd c. q rudinentary fays; but it was confimed, that the pectoral fin did consist apparently of 2 divisions,

[^0]a greater of 12 rays and a smaller party, divided from the other, of 3 rays. At the same time Goode and liean described a P. Copei $\overline{\mathrm{a}}$. \& B. and a Imitre or Monomitra liparina Goode, which in Oceanic Ichthyology p. 277 is upheld as a proper genns; the localities where these types are fonnd in the northern Atlantic are noted in the said work, where also sketches of them are given1 (fig. 252 and 253). Concerning the small P. membranaceus Gthr. (Challenger, Report etc. p. 69, pl. I2, fig. D) which in the (Iceanic Ichthyology is raised as the type of a proper genns, Ifilgendorfia, it wonld be more correct to postpone onc's judgement until a larger material is at hand. Finally I shail add, that in the Oceanic Ichthyolosy is mentioned (in the Appendix p. 525) a Paralifaris rosaccus Gilb. from the I'acific, and that M. Gilbert (The ichthrological collections of U. St. F. Comm. St. Albatross $18909^{1}, 1896$ further has described a P. holomelas, ulochir and cephulus from the northern part of the Pacific and a P. ductylosus from California.

As M. Collett and Dr. Giunther have given a full account of Paralifaris bathybit there will be no necessity for occupying myself further with it here. The number of vertebre is $10+54$. I shall only give a list of the 6 stations, which have given the 18 more or less well preserved specimens at hand, of which the 2 largest had a length of $185^{\mathrm{mm}}-220^{\mathrm{man}}$.

Stat. Lat. N. Long. WV. Fath. Bottom-temp. Condition of the bottom
104: $66^{\circ} 23^{\prime} \quad 725^{\prime} \quad 957 \div I^{\prime} .1$ Light gravish brown mud. East of Iceland. I specinen.
105: $6534^{\prime} 73 I^{\prime} \quad 762 \div 0.8$ Light brown innd. Likewise. 7 specinnens.
III: 67 If' 8 . $8^{\prime} \quad 860 \div 0.9$ Brown Biloculina-clay: Northeast of Iceland. I specinen.
117: $69^{-1} 3^{\prime} \quad 8^{=} 23^{\prime} 1003 \div I^{\prime} \quad$ Light Bilocnlina-clay: South of Jan Mayen. 6 specinens.
II9: 6753^{\prime} 10 19^{\prime} Io10 $\div 1$ Light Bilocnlina-clay. Between Iceland and Jan Mayen. I specim. 14.0: 63 29' $6^{\circ} 57^{\prime} \quad 780 \div 0^{\circ} .9$ Gray mud. North of the Faroe Islands. 2 specinenens.

Blenniodei, ophidini.

Gymnelis viridis Fabr.

Some few specintens were canght on Ingolf 's expedition at localities, S. W'. off Sulkertoppen, viz: Station Lat. N. Long. IV. Fathoms

29: $6534^{\prime} 5 t^{\prime} 3 \mathrm{I}^{\prime} 68$ Davis Strait. Sandy bottom, Temperature at the bottom o . 2 C.

In the Denmark Strait it is previonsly taken at a deptli of 80 fathoms.
The largest Ingolfian specimen is 136 mm . The ornamental markings, which concist of lighter and darker transversal bands are on the whole not strong. Some of the specimens liave 1,2 or 3 dark spots on the foremost part of the dorsal fin.

The Norwegian North-Sea Expedition got 4 specimens north of Jan Mayen and Spitsbergen, where it also has been fonnd earlier; it is also known fronn the east coast of Greenland, f. i. Heklas port at a sliglit depth (the expedition of Ryder). It has also been fonnd in the Kara-Sea and in Barents-Sea and in the arctic part of the Pacific (Unalaska, at a depth of 49 fathoms).

Lumpenus lampetræformis W`all)

is the only northern Lampenus-species lyought home in few specinens from a locality Sonthwest of Sukkertoppen, Station 34: $6 \sigma^{\prime} 1 \gamma^{\prime}$ Lat. North, $5 f^{\prime} 1 \gamma^{\prime}$ Long. WVest, depth 55 fathoms, temperature at the bottom 0.9 C . The largest specimen had a length of $190^{m m}$. On the distribntion of the species may be consulted Collett, Lilljeborg, and Oceanic Ichthyology.

Flounders.

Drepanopsetta (Hippoglossoides) platessoides (Fiabr.)
Of this Plemronectoid the Ingolf expedition las returned some specinens from Stat. Lat. N. Long. IV.

Fathoms
26: $63^{\circ} 57^{\prime} 52^{\prime} \mathrm{I}^{\prime}$ Davis Strait. 34 Botton sand and sliells, temperature $0^{2} .6 \mathrm{C}$.
33: $67^{\circ} 57^{\prime} 55^{\circ} 30^{\prime}$ Likewise. 35 botton gray sand, its temperature $0^{3} .8 \mathrm{C}$.
35: $65^{\prime} 6^{\prime} 55^{\circ} 0^{\prime}$ Likewise. 362 Bottonn brownishnud with arenaceons foraniniferes, tp. 3.6 C . known with us as Haa-Isingen, identical with Pleuronectes limandoides, not only from Greenland, also from Iceland, Beeren-Island, Spitsbergen, the Faroe Islands and along the Scandinavian and the Northeuropean shores, from the Murmanian coasts and East-Finnark to the Sound, at Kiel and the sonthern Danish seas and also from the English-French channel: on the American side to Cape Cod.

The gentis Lycodes.

It will be well known to the ichthyologists, especially to those studying the arctic fanna, that to distinguish between the species of this genns is connected with special difficulties, because the colouring varies much in the same species, especially after the age, but also individually, likewise the extension of the squamation, and it is therefore extremely difficult to fix the limit between the species by means of characters that may be confided ons. As our musenn possesses now more or fewer specimens of 15 Lycodes-species from the Polar sea, the northern part of the Atlantic ${ }^{1}$ and the Californian part of the Pacific one should hope, that the difficulties might be overcome. But nevertheless my report specially for this department minst be given with a certain restraint. The scientific literature amply testifies, that it is a more easy matter to make mistakes in this department than to aroid then. A greater lucidity will not be obtained until the collected material has attained a como pleteness that at present is only obtained for a few species among the many:

[^1]
Lycodes muræna Coll.

A specinen $103 / 4$ inclies long (275^{mm}) was obtained in the Davis Strait between Godthaab and Sukkertoppen, at Station 27: $64^{\circ} 54^{\prime}$ Lat. N., $55^{\prime} 10^{\prime}$ Long. W., at a deptli of 393 fatlons (a temperature of 3.8 C. at the bottonn, whiclı consisted of a soft gray clay with numerous pebbles, mostly granite). It agrees substantially with the figure and description of Collett (Den norske Nordharsexpedition, Fiskene, p. 116, pl. IV, fig. 29 3I; compare also F. Shitt: Skandinaviens Fiskar p. 6ı8 and Gïnther's Deep-Sea Fishes: Challenger Expedition S. 79, tab. 12, fig. A). The species has been taken in several instances by the said Norwegian expedition at the banks off Helgeland, Beeren-Island and Spitsbergen (Norsk-(Oerne) on deptlis of $350-658$ fathons, the bottonn brown, green or bluish-gray clay, the botton temperature being $\div 0.9$ à $\div \mathrm{I} .2 \mathrm{C}$. L. murana is furtlier taken by an Engrlish expedition in the Faroc-cliannel: at $540-608$ fathoms. In 1896 Ingolf obtained further 12 younger specinens at the following stations:

Station 65:	$\begin{aligned} & \text { Lat. N. } \\ & 6133^{\prime} \end{aligned}$	Long. IV. 19	Soutl of Iceland.	Fathoms 1089	$\begin{gathered} \text { Bottom temp. } \\ 3 \mathrm{C} . \end{gathered}$
102:	6623^{\prime}	$10^{\prime \prime} 26^{\prime}$	East of Iceland.	750	$\div 0.9 \mathrm{C}$
104:	$66^{\circ} 23^{\prime}$	725^{\prime}	L, ikewise.	957	$\div 1.18$.
$105:$	6534^{\prime}	$73^{1 \prime}$	Likewise.	762	$\div \mathrm{o}^{\circ} \mathrm{S}$ C.
117:	$69^{\circ} 13^{\prime}$	$8^{\circ} 23^{\prime}$	South of Janl Mayen.	1003	$\div 1^{\circ} \mathrm{C}$.
125:	$68^{\circ}{ }^{\circ}{ }^{\prime}$	$16{ }^{\circ} 02^{\prime}$	Nortlı of Iceland.	729	$\div 0.8 \mathrm{C}$.
139:	633^{6}	730^{\prime}	North of Faroe Islands	. 702	$\div \mathrm{O}^{\circ} .6 \mathrm{C}$.

The larger specimen from Stat. 27 , the only squanate, has larger eyes than the smaller and yonnger ones, apparently also a less flattish head and a shorter snont. It is therefore not quite certain that it is identical as species with these. The size of the jounger specinens lies between $203^{\text {mm }}$ and rosmm. Of the scales nothing is seen in these smaller specinens. In the larger of then the length of the head is scarcely I / s of that of the whole body (trunk and tail), in the smaller ones it varies between $1 \div 6.5$ and $1 \div$ S. . With 2 exceptions (Stat. 27 and 65 , where the bottom temperature was $+3^{\circ} .8$ and $+3^{3}$) all these specinens were from stations with a botton temperature below zero.

Of allied species with a similar longish eel-like shape some other species are described i) L. l'crrillii C. \& B., 2) L. puxillus (i. \& B. (into which L. paxilloides is afterwards drawn as a synony11), for these species may be consulted the Oceanic Ichthyology" p. 309-II and 527, fig. 277, 279, 280 and 282. Further 3) L. (Lycodonus) mirabilis Goode $\&$ Bean (Günther: Deep-Sea Fishes, Challenger Report etc. j. 81); 4) L. (Lycodophis) albus Vaill. ("Expéditions scientifiques du Travailleur» p. 309, pl. 26, fig. 1), canght at a deptli of 3975 metres on the way between the Azores and France, and 5) L. (I.ysenchelys) porifor Gilb. (Proceed. U11. St. Nat. Mus. XIII (I8go), p. Iof), from Sonth California at a depth of 857 fathoms.

Lycodes frigidus Coll.

Den norske Nordlays Expedition», Fiskene, p. 96, pl. III, fig. 24; Oceanic Ichthyology» p. 335, fig. 274 .

As I have no doubt that the numerous specinens of a Lycodes, taken in larger or smaller
specimens in the eastern part of the North Sea, at the stations enmmerated below, belong to the said species, which is carefully described and excellently figured in the Norwegian work cited here, I slaall limit myself to a few remarks. As characteristic for L. frigidus may be mentioned the umform dark or brownish colour and the uniform delicate squamation on the entire body to the occiput and the branchial orifice and on the belly. Firther the lateral-ventral side-line, starting from the upper end of the branchial orifice, then arches downwards, ruming parallel with the lower margin of the tail in a great extent. Young specinens (until inomm length) are entirely naked, in the somewhat greater ones the scales cover a smaller or larger part of the tail, and in the more mature state of the fish they spread ofer the trunk and the belly:

The Ingolfian specimens are from the following stations.

The largest specimen of the North-Sea Expedition lias a length of little more than half a meter; a specinen of a little larger size in the Ingolf -collection reminds so much of the L. reticuLertus Gthr. (Challenger Expedition p. 7\%, pl. XIII), that I must regard them as absolutely identical. The specimens of the North-Sea Expedition were from the seas around Beeren Island and Spitsbergen. From the Anerican expeditions of the Albatross a series of localities is indicated (Oceanic Ichthyo$\log y$ 1. c.).

Lycodes Esmarkii (Coll., 1. c. p. S4, pl. II, fig. I9-21 and pl. III, fig. 22).
A specimen, 260^{mm} in length, from Station 138: North of the Faroe Islands (6326^{\prime} Lat. North, 756^{\prime} Long. West, depth 47 fathoms, temperature at the bottom $\div 0.6$ C.) having 5 light bands over the dorsal fin and the back and with both a medio-lateral and a ventro-lateral lateral line, agreeing well with Colletts fig. 21, represents this type in the collections of the Ingolf . Previonsly known from the banks off Lofoten and from the north-west coast of Spitsbergen and from several points of Finmarken (260-459 fathoms).

Lycodes Liitkenii Coll. (1. c. p. 103, pl. III, fig. 25).
Is likewise taken formerly west of North-Spitsbergen (459 fathons) and in the Kara sea. The Ingolf Expedition got 6 specimens from station n6: South of Jan Mayen (70° O5' Lat. North, \& 26^{\prime} Long. WV^{\prime}), deptly 371 fathoms, temperature at the bottom $\div 0^{\circ} .4 \mathrm{C}$. The coloration is essentially ats in the specinen figured by Collett: 6-8 light bands.

Lycodes perspicillum Kr. (L. rcticulatus Rhdt. juv.?). (Tab. IV, fig. 5.)
A young (42^{mm}) specimen of this species with the characteristic dress of many young Lycodidie a series of 10 darkly bordered saddle-spots across the back - - was fished on sandy bottom off Sukkertoppen, Davis Strait (Station 29), 6434^{\prime} Lat. N., $543 I^{\prime}$ Long. W., at a deptl of 68 fathoms.

L. gracilis Sars.

To this species, after liaving conferred with my colleague, Prof. Collett, I have referred two specinnens from station 3I: Davis Strait ($66^{\circ} 35^{\prime}$ Lat. North, $55^{\circ} 54^{\prime}$ Long. West, depth 88 fathoms, temperature at the bottom $\mathrm{I}^{1} .6 \mathrm{C}$.) They are $5^{1 / 2}$ and $9^{1 / 4}$ inches long, both covered with scales. The relation between the length of the head with the trunk and the entire length ($100 \mathrm{~mm}^{\mathrm{mm}} \div 244^{\mathrm{mm}}$ and $\left.55^{\mathrm{mm}} \div 143^{\mathrm{mm}}\right)$ is abont $\mathrm{I} \div 2^{1}, 3^{\text {a }} 2^{\mathrm{T}}{ }_{2}$. In colonr they are light with more or less distinct traces of the jurenile dress.
L. gracilis was known from a small specimen $\left(+3^{\mathrm{mm}}\right.$) from the Christiania Fjord (Nordhavs Expeditionen p. 106) and is later found again in Lreso Rende and in the Skager Rack in adult specinens. I suppose that Prof. Collett will give a full accomnt of the species in its more developed condition as it is now known.

L. pallidus Coll.

(Nordhars-Expeditionen p. Tto, pl. III, fig. 26, 27; Lütken: Kara Havets Fiske p. I 34, pl. 1\%, fig. $\mathrm{I}-3$.)

Of this species there are from the Ingolf -Expedition:

Hitlerto known from the northern coast of Spitsbergen, $260-458$ fathoms (Collett) and from the Kara sua (laitken). 'The specinens from the Ingolf expedition have a size reaching to $245^{\text {mm }}$. The larger
specimens are scaled on the belly and miformly light brown withont marks of transverse bands or design on the fins, the smaller have bands on the fins and partly on the body, but want the scales on the belly:

Note. It will perhaps be useful to resume how matters stand at present with the synonymy of the species of Lycodes named here. L. reticulatus is founded by the older Reinhardt (alorste Bidrag til Gronlands ichthyologiske Fauna" p. 67, t. Vl) on specimens from Greenland. Collett (l.c. p. 8_{4}) refers to the same species the following deseriptions: L. polaris Koss. ISpitsbergen), L. poluris Mllmgr. (Ofvers. Vet. Akad. Förh. i86t, p. 516 likewise from Spitsbergen, L. perspicillum Kr. (from Greenland) and L. gracilis Sars (from Christianiafjord). In his great work «Skandinaviens Fiskar" F. Smitt draws the limits of this species still wider, embracing under it not only the type: Reinhardt's L. reticulatus and Giinther's of the same name ("Challenger" 1. 77, pl. Xill; which after my opinion as stated above is a large L. frigitus Coll.!) and the type described by me under the same name from the Kara Sea ("Dijmphna" T. 17, fig. +-5) as also the L. perspicillum of Kroyer (regarded also by Collett and myself as a L. reticulutus), but also L. siminutus Reinhardt from (ireenland and Spitsbergen), by Collett 11.c. p. I13, t. IV, f. 28) upheld as a proper species and further L. Litthenii Coll. (1. c. p.103, t. 111, fig. 25) a name adopted by me for fishes from the Kara Sea («Dijmphna" p. I28, T. I6, fig. 1-6); and further Beans L. Turneri from Alaska (Proc. In. St. Mus. I, 463), and L. coccincus (l. c. IV, p. Itt) and my L. pallidus ("I)ijmphna" p. 134, t. 17. fig. i-3) and finally L. mutosus Rich. (Belcher p. $3^{62,}$ t. 26) the type of bleeker's genus Lycolutipis. Of these supposed synonyma the authors of "Oceanic Ichthyology" only cite the "L.perspicillum Kr.", "L. Rossii" Mlgr. and "L. gracilis Sars" to L. reticulatus, while they notwithstanding cite (p. 307) a "L. perspicilhem Kr." as a peculiar type found by the \ldots.llbatross" on depths of 59 and 86 fathoms ($4524^{\prime} 30^{\prime \prime}$ Lat. North, $5835^{\prime} 15^{\prime \prime}$ Long. West and on 4729^{\prime} Lat. North, $25^{\prime \prime} 18^{\prime}$ Long. West). It must also be noted that "L. mucosus", formerly only known from the description and picture by Belcher «Last of Aretic Voyages" (Northumberland Sound, afterwards found again in Cumberland Sound) is now described and figured in "Oceanic Iehthyology" (p. 306, t. 78 , fig. 273 and t. 81 , fig. 283, a, b) after a specimen ${ }_{17}$ inches long from Northumberland Sound. In the work cited are not mentioned the species of Bean, mentioned by Smitt (L. Turnori and L. coccincus; the one being from Alaska, the other from "Big Diomede Island"). I shall further add, that the later paper by H. Gilbert ("The ichthyological collections of the U.S.F. Comm. St. Albatross", 1896), containing "Report of the fishes collected in Bering Sea and the North f'aeific Ocean during the summer of 1800°, describes and figures several new genera and species of the Lrooles tribe, while some other species of Gilbert are named, whose original descriptions are not known to me at present. For me and my collaborator it has been a relief in our task, that the "Ingolfian" species were well known to us from Seandinavian ichthyolugical works.

The Macrurus group.

It is well known, that no other group of fishes has received such an accession throngh the deep-sea-investigations as the Macruride (Skolests or Berglax as they are termed in Scandinavia). They were known in 18,2 in ro-II species; in the report of the Challenger expedition their number is grown to 47 , inchding the species fished by the Northanerican expeditions and published at that period; the French expeditions have added 9 Io species, the Indian 12 . Comnting the species cited in the Oceanic Ichtlyology I arrive at the number So, by American and other ichthyologists it is later increased to of or more. 'Through the two Ingolf experlitions there are collected 6 species at least. The difficulty to distinguish species, which alter all are very nearly similar, is angmented by the alterations undergone with age by the individuals. My task has been relieved by the Smithsonian Institntion having in the most benevolent manner placed at my disposal 5 species of duplicates
from the Annerican fishings. But there is one difficulty, which is still hardly overcome, viz., to get the large material of c. 100 described species distributed in good genera and subgenera in a satisfying manner. Provisionally I may refer to the list of genera in Oceanic Ichthyology, where it genera (or sulgencra?) are recognised, to which may be added an is ${ }^{\text {th }}$, later proposed (Cocloccphalus Gilbert © Craner) Until further information I retain the name Jacrurus as a common name for all the aretic and subarctic species here mentioned.

Macrurus Fabricii Sundev. (rupestris Fabr. $110 n$ Gunn.).

The name M. berglax Lac. which has been substituted in later times for this species is less convenient for this form, so well known in Greenland, as one will more easily muderstand it as alluding to the . (Coryphanoides) Stromii, the Berglax of the Norwegians. The largest Ingolfian specinnen has a length of 2 I inches, it has therefore not the full size of the species; the smallest is only $4^{\mathrm{T}} / 2$ inclies. The stations and localities where they were taken, are

Station	Lat. N .	Long. W.	Fathoms	Temp, of the bottom	
27:	$64^{\circ} 54^{\prime}$	55 10'	393	3.8 C .	all from the Davis Strait.
32 :	$66^{\circ} 35^{\prime}$	$5^{6} 3^{\circ}$	318	$3^{\circ} \cdot 9 \mathrm{C}$	
35:	$65^{\circ}{ }^{\prime \prime}$	$55^{*} 0_{5}^{\prime}$	362	$3^{\circ} .6 \mathrm{C}$.	
38 :	$59^{\prime} 12^{\prime}$	$5{ }^{1} 05^{\prime}$	1870	1.3 C .	

These localities are partly from the Davis Strait, West of Holsteinsborg and Sukkertoppen, partly from the entrance to the Davis Strajt. What shortly can be said of the distribution of the species ontside this region is, that it is known more southward, from George's Bank, from the port of New lork, were it was found floating at the surface, and from $4 r^{\prime} 47^{\prime}$ Lat. North, $65^{\circ} 37^{\prime} 30^{\prime \prime}$ Long. West at a depth of 675 fathons, and further from the eastern part of the North Sea, the Finnish and Norwegrian coasts.

The characters which make this species recognisable are the obtuse shape of the head, the ronnded snout, the large eyes whose diameter is the donble or more of the breadth of the front between then and equal with or larger than the length of the snout from its points to the orbital margin, the numerous keels along the sides of the trunk and tail, the back and belly, produced by every seale laving a strong denticulate keel; on large specimens there is commonly only one such keel, but the greater scales of the head have commonly more (3,4 or 5) such keels, diverging from forwards backwardly: These larger scales forn partly more prominent groups on the opercles and preopercles, partly rows especially on the median line of the snont, round the orbits, along the lower lateral margin of the liead etc. A larger naked spot before the eyes gives room for the nostrils; before these there is in larger specinens a smaller naked spot on each side, elose to the point of the snont. Below the inferior lateral margin bespoken the skin is naked or only covered with smaller asperities, and the same is the case with the two branches of the lower jaw. In half-grown specimens: it is evident, that on the ordinary seales there are besides the chief keel several more or less distinctly scrated accessory keels, 1,3 or 401 each side of the chief keel; but the distinct and nunnerons larger longitudinal keels along the sides of the body are nevertheless equally characteristic
for yomger and for older specimens. In the very youngest specinens the extension of the scalecovering is more linited ... on the belly to the region before the ventrals, while the belly proper is entirely withont scales. The shape of the snont is here the sane as in other lfacori, not bowlike ronnded, but sharply triangular. The first dorsal fin begins innmediately over the insertion of the pectorals, which again is in the vertical fron the first point of the ventrals. The first longest rays of the ventrals are almost equal with those of the pectorals, but shorter than those of the first dorsal fin. The number of rays is $I+I$ in this fin, in in the pectorals, S in the ventrals. The teetli are minnte, almost hidden between the papillse of the mouth.

Of the other northern species

Macrurus (Coryphænoides) rupestris Gınn1. (M. Stromii Rlddt, norvegicus Nilsson1)

(figured in Vorage en Scandinavie, Poissons, pl. If, in Smitt's Scandinavian fishes, pl. XXVII, A, fig. 2, and in Collett's Poissons provenant des canpagnes du yacht 1Hirondelle (1885--88) isg6, pl. Io, fig. It there is also a large number of specinens partly from the same localities, where 31. Fabricii was canglit, f. inst.:

Stat. 27: 6454^{\prime} Lat. A'., 55^{+}ró Long. WV., 393 fath., botum temp. 3.8 C. $35: 6516^{\prime} \quad 555^{-1} \quad 362-3.6 \mathrm{C} .1$
partly from others, f. inst.
Stat. 25: 63 30' Lat. N., $5 t^{\prime} 25^{\prime}$ Long. W., 582 fath., bottom temp. $3 \cdot 3$ C., Davis Strait.
4I: 6I 39 $179^{\prime} 1245$ - 2.0. South of Tceland.
Also two larger specimens from
 97: $65^{\circ} 28^{\prime} \quad 27^{\prime} 39^{\prime} \quad 450 \quad 5.5 \mathrm{C}, \quad 730^{\text {man }}$ I Denmark Strait

Young specinens of M. mifestris are captured on the following localities:
Stat. 25: $63^{\prime} 30^{\prime}$ Lat.N., $54^{〔} 25^{\prime}$ Long. W., 582 fath., soft blue-clayish mud, bottom temp. $3 \cdot 3$ C. Davis Strait. 27: $64^{\circ} 54^{\prime} 355^{\circ} 393$ soft gray clay, bottom temp. 3.8 C. Davis Strait.

45: $61^{\prime} 32^{\prime} \quad 943^{\prime} \quad 643$ bottom temp. 4.17 C . West of Faroe Islands.
69: $622^{\circ} 20^{\prime} 17^{\prime} 589$ mud, bottonn temp. 3.9 C. Sonth of Iceland.
8r: $61^{\circ}+4^{\prime} \quad 27 \quad 485$ mud, bottom temp. 6.i. C.
$83: 6225^{\prime} 2830^{\prime} \quad 9 r^{\prime}$ mud, botton tenmp. 3.5 C . J Sonthwest of lceland.
The largest specinen has a length of 28 inches, the smallest of 2^{11}, 10 inches. As to the geon graphical distribution, for which the above cited work of Collett may be referred to, it may be remarked, that beyond the shores of West-Greenland and Nonway (from Helgeland to Christianiafjord and Bohnslän this Berglax is known from the sea between Shetland and the Faroe Islands and has several times fomd its way to the most northem shores of Demmark. In Wecanic Ielithyology p. 403
other stations arc noted fron the northwestern Atlantic (The specinens of l'Hirondelle were taken Suntle of Newfomdland).

The head, whose length is contained 5 or somewhat more than 6 times in the total length (in M. Fabricii a little n1more than 4 times) is obtnsely romnded, terminating in a small knob in the point of the snont, but withont prominent crests or keels with larger scales. In younger specinens the crests of the head may be as it were indicated and the obtusely rombed snout may assum1e a little $1110 r e$ angular figure. The oral orifice reaehes to the middle of the eyes or alnost to the vertical from their posterior margin in large specinens. The jawteeth are very delieate, placed in a single serics. 'The scales are delicately ciliated, relatively small, but mumerons, covering in a very regnlar manner the head, the body and the tail; the smallest are fomd on the snont and nearest to the eyes, and this covering reaches to the protrusile part of the jaw, there being no naked or half naked papillons surface at the lower part of the lead. Only the throat and the gill-membrane are naked. The naked spot where the nostrils are placed is not so great as in 1. Fabricii. Of the scales it may further be stated, that they are withont keels, but densely eovered with spinules withont any strong tendency to arrange themselves in transversal rows, but are best said to be arranged in no particular order; the tendency to a serial arrangement is perhaps more distinct in younger individuals. The second dorsal fin, whose anterior rays are very insignificant, begins only at a long distance from the first, about at a line with the points of the pectorals (in younger individuals partly somewhat nearer to the first dorsal), the anal however below or close behind the last rays of the first dorsal, the anns being placed so much forwardly, that there is at most the length of an eye-dianeter between the anus and the ventrals. The first ray of the ventrals is very long $f^{2} / 3$ or $3 / 4$ of or, in younger individuals, equal to the length of the head), therefore reaching far ont on the anal, whose rays are relatively strong and well deseloped. The eyes are great, their diameter is equal to or a little smaller than the distance between the orbita and the point of the snont, but commonly much lesser than - 2/3 of the frontal breadth. The number of rays is $D^{\prime} I+1 \mathrm{I}, \mathrm{P} .16, \mathrm{~V} .8$; the first dorsal ray is delicately serrated. The barbel is very sniall, the lateral line very distinct.

As I lave had the opportunity of comparing two half-grown specinens of Jacrurus Bairdii Goode \& Pean (Oceanic Ichthyology p. 393, fig. 335) with M. Stromií (rupestris), I shall - without entering upon a detailed description and perhaps superfluonsly - observe, that this Northatlantic type is 110 t specifically identical with IV. Stromii or founded on younger specinens of this - a suspicion that minght perlaps offer itself to an ichthyologist not having this opportunity to an immediate comparison.

Macrurus (Hymenocephalus) Goodei Gthr.

(. Oceanic Ichthyology p. 407, fig. 340.)

To this species I refer - after comparison with two specimens sent from the Musemu at Washington under the nannes of Ifacrurus aspor and Ifymenolaimus Goodei - the first nane being that, under which the species was first deseribed by Goode and Bean, which name however had to be withchawn, Günther having used it for a Japanese fish - some individuals from the following localities:

Station	I, at. N.	Long. W.		fathoms	temper. of botton
II:	64.34^{\prime}	$3112{ }^{\prime}$	(Denmark Strait)	1300	1.6
$36:$	6150^{\prime}	5621^{\prime}	(Davis Strait)	1435	I 5
37:	6017	545^{\prime}	(Davis Strait, at its month)	1715	I . $\%$

From the localities enumerated for 1%. Goodit by (ioode and liean it will be seen that the species is taken so far south as off Havanna, and that the depths noted are between ist and $143+$ fathoms.

The largest specimens have a length of 325^{mm} and $310{ }^{\mathrm{mm}}$. Their habitns reminds somewhat of that of the Malacocephali. The length of the head is contaned 5 tines or somewhat more in the total length. The dianeter of the eyes is somewhat smaller than the diameter of the front and much smaller than the length of the snout. The head is completely scaled with the exception of two parties back of the anterior margin of the snont and an adjoining part of the lower side of the snont. The branchial membrane and the throat are also naked, but the belly proper is scaled like the rest of the liead. The scales may be described as ciliate or lineate-ciliate, delicately ribbed with 6 - 9 scarcely. diverging or parallel, low, serrated thorny ribs; the squamification therefore nakes a striated inpression. The intemaxillary teeth are arranged in two rows, the greater ones in the external row; those of the lower jaw are placed in a single row. The foremost (secund) dorsal fin ray, whose point in its depressed condition does not reach to the first low ray of the second dorsal, is serrate anteriorly. The first dorsal has its ordinary place over the ventrals, a little belind the pectorals. The first elongate ray of the pectorals may reach to the anus; the pectorals are not relatively long. The number of the rays are counted thins: D^{\prime} in $+9 ;$ P. 19; V.9-10. The lateral line is distinet.

Macrurus ingolfi Ltk. sp. 11 .
Of this apparently litherto nndescribed species 2 specinens ($270^{\mathrm{mm}} \mathrm{long}$) are at liand from

| Station Lat. N. Lons. W. | fathoms | temp. at bottom | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $40: 6200^{\prime}$ | $21^{\circ} 36^{\prime}$ | (Soutll of Iceland) | 845 | 3.3 C. |

and one specinen (lengtli: $277-340^{\mathrm{mm}}$) from each of the following stations:

Station	Lat. N.	Long. W.		fatliomins	temp. at botton
II :	6434^{\prime}	$31^{\circ} 12^{\circ}$	(Denmark Strait)	${ }^{1} 300$	1. 6 C .
I 8 :	$61^{\circ}+4^{\prime}$	$30^{\circ} 29^{\prime}$	(Southwest of Iceland)	1135	3.0 C .
64 :	6206	$19.00{ }^{\circ}$	(Soutl of Iceland)	1041	3.1 C .
83 :	$62^{\circ} 25^{\prime}$	$28^{\prime} 30^{\prime}$	(Southwest of Iceland)) 912	3.5 C.

This species has a considerable likeness with the proceeding species, from which it may be easily distinguished anong other things throngh the larger eyes, the distinct knobs of the shont and a higher first dorsal.

The head is contaned about 5 tines in the total length. The superior or frontal surface of the snont is separated from the inferior or more forwardly directed part by a well developed crest or edge. terminating in 3 spinose osseons tubercles, one directly in the middle and one on each side, close before the naked spot, where the nostrils have their place, and continned both above and below the
orbita. The broadly triangular snout is prolonged fairly over and before the mouth, which is relatively little, the corners of the month falling in a line with the anterior margin or the middle of the orbits. The eyes are large, their dianeter surpassing the breadth of the front between the eyes. The teeth form a fine card in both jaws. The head is scaled with the exception of the gill membrane, the istlunus and its foremost superior margin, and almost the whole lower surface. The naked part of the shont is landsomely embroidered with rows of sline glands. The first dorsal cominting if - 9 ravs is singularly high and its longest (second) ray is serrate and as long as the head. The second dorsal begins much forward, its foremost rudinentary rass may be followed matil not far from the posterior margin of the first dorsal fin. The pectorals contain 20 rays, and the ventrals, whose external ray tapers to a fine thread and reaches a long stretch beyond the anns have 8 ravis. It may also be remarked, that the tail as in other Macrintians is really pointed belind, but in several specimens has lost a shorter or longer part; but the wound has healed, and on the thus truncated point of the tail is developed a distinct candal fin, a phenomenon which is also observed in some specimens of the proceeding species. The scales show distinct rows of thorns, not however so much projecting as in 1\%. Gondei.

Wucrurus ingolit 11. sp. differt a 1%. Goodei precipute oculis nuajoribus, tuberculis rostralibus magis distinctis et pinna dorsali altiore, longitudinem capitis requante, pinna dorsali secunda usque ad pinnann dorsalem fere continuata.

Macrurus (Chalinura) simulus Goode et Pean.

(Oceanic Ichthyology p. 4i2, fig. 3.45.)
Of this species the Ingolf expedition obtained 4 smaller specimens from
Stat. 18: $61^{\prime}+4^{\prime}$ Lat.N., $30^{\circ} 29^{\prime}$ Long. W. (Entrance of Demmark Strait), I I 35 fath., temp. at botton 3.0 C. Fiurther 2 specinens (280 og 160^{mm}) from

Stat. 83: 6225^{\prime} Lat. N., $28^{\circ} 30^{\prime}$ Long. IV. (Demmark Strait), $9{ }^{12}$ fathoms, temp. at bottom 3.5 C . and 2 specimens (280 and 330^{mm}) from

Stat. 91: 64 44'Lat. Ň., 31 I.ong. IV. (Demmark Strait, 1236 fathoms, temp. at bottom 3.1 C .
For the deternination of this species I have nade use of a specimen sent from the Musenn at Washington. The head, whose length to the branchial cleft is contaned almost 5 to fully 5 times in the total lengtln, is thick with a rather long and obtusely rounded snont. The eyes are small, their dianneter being only abont a half frontal diameter. The month is very large and almost terminal, the snont being alnost regularly trnncate and only little protruding; the upper jaw wearing a card of teeth whose external teeth are exceedingly the largest, the lower jaw wearing a single row. The first dorsal numbers 11 rays, of which the first is very short and the second long and serrate as in most other Macrurids; the second dorsal begins at some distance from the first, the point of the first dorsal in its depressed state reaching to or a little beyond the beginning of the second. The first ray of the ventrals is produced in filiform slape and reaches not a little beyond the anns. The seales are rather shnall, bit distinctly pluricarinate, specially in the head, which else shows some soft and
maked parts: the preopercle, the margin of the jaws, parts of the snont and the whole lower surface of the liead.

As to other localities the reader is refersed to Oceanic Ichthyology p. 412.

Trachyrhynchus Murrayi (ithr.

(Deep-Sea Fishes, Challenger Report 1. 153. [1. 41, fig. A.
Of this species a yonns one ($120^{\prime m m}$) was obtained at station $731625^{8^{\prime}}$ Lat. N., 2328^{\prime} Long. W... Sonthwest of Iceland at 486 fathoms, at a temperature at the botton of 5.5 C.). Previonsly it has been taken in the Faroe-Channel at a depth of 555 fathoms.

Gadoids and allied Fishes.

Motella (Onos) Reinhardti Kr. (Tab, IV, fig. 8).

Compare the description and fignre in den norske Nordlaves Expedition, Fiskene, S. 13 n , pl. TV, fig. 34 and the Challenger Report p.97, pl. NIX, fig. B.

After this Cadoid having been sent down from Greenland several times in earlier years, it was found again in the sea between Spitsbergen and Beeren-Island in the ice-cold water at a depth of 658 fathoms. Later it is found again in the Faroe-Chanmel at a depth of $540-640$ fathoms. Ingolf obtained it in a few specimens on Station n6 (70 05^{\prime} Lat. North, \& 26° Long. West, South of Jan Mayen, at 37 I fathons, brown Piloculina-mund, at a temperature at the botton of $\div 0 .+\mathrm{C} .1$ and at Station 140 16329 Lat. North, 657^{\prime} Longe West, North of the Faroe Islands, \quad So fathons, gray mud and a botton temperature of $\div \mathrm{O}^{\circ} .9 \mathrm{C}$.), also at Station 43 (West of the Faroe lslands, $6 \mathrm{I}^{*} 42^{\prime}$ Lat. North, 10 If Long. West, 645 fathoms, sandbottom (?), botton temperature 0.05 C .). Some young specimens were obtained at Station $2\left(63\right.$ of Lat. Nortls, 922^{\prime} Long. W., 262 fatlioms, Sontheast of Iceland, clay and gravel,
 1236 fathoms, Globigerina mud, botom temperature 3 .r C.). The new localities do not much extend the known geographical distribution, but seem to show, that it may occur at less considerable depths and minder a less cold temperature, but also at somewhat greater depths and minder low degrees of warmath, a little over or muder zero. A sketch exectuted on the Ingolf gives it a light testaceous colour.

Of larves (on the so termed Conchur-stage) several were fished by the Ingolf of this or wher arctic species, especially between the Faroe and the Shetland islands as well as cast and sonth east of these and south of Iceland, at the surface. Of the other arctic Ifotella-species, wo septentriomulis Coll. and . IV. chsis Rhdt. (compare Norske Nordhavs Expedition p. 138 , pl. 1V, fig. 35 - 36; ()ceanie Ichthyology p. 3 Sir, fig. 327) mothing new was ascertaned throngly the Ingolf. Expeditions.

Haloporphyrus eques Gthr. (Tab. IV, fig. 7).
Of this species, known from the Report of the Challenger expedition (p.91, pl. a B B) the Ingolf expedition obtained on Station 9 (ITest of Iceland, Denmark Strait at 64° i 8^{\prime} Lat. North $27^{\circ} 00^{\prime}$ Long. TV.. at a depth of 295 fathoms, bottonn clay, bottonn temperature $5^{\circ} .8$ C.) two specimens $7^{1} / 4$ incl. long (one of them defect). Several larger and smaller specinens were obtained from the stations 8I and 89, at 6144^{\prime} Lat. North, $27^{\circ} 00^{\prime}$ Long. West, 485 fathons, bottom temperature 6.1 C. and $64^{\circ} 45^{\prime}$ Lat. North, 2720 Long. West, 3 fo fathonins, botton temperature $8^{\circ} .+$ C., partly from Denmark Strait, West of Iceland, partly sonthwest of this island. Previously the species is taken (specimens 12-I3 inches long) in the Faroe-Chamel at a depth of 530 fathons and later in Gascony bay at depths of 1410 and Soo metres (K oelıler, Résultats scientifiques de la Campagne du Candan fasc. III, ISg6). Nearly related types are known from the Meditemanean: H. lepidion Risso (cfr. Vinciguerra: Anal. Mus. Civico ('enova vol. XVIII, p. 554, pl. III) and //. Gäntheri Gigl. (can obtain a length of 24 inches, Giunther, Report p. 9r, pl. is, fig. B; also off Portngal and at Madera). From more distant localities are known I/. enosima Gthr. (Ciunther, l. c. pl. X.Y, fig. B, I2 inclies, Inosima, 345 fathoms) and H. cusiferus Gthr. (1. c. pl. SIX, fig. A, month of Plata River, 600 fathoms).

Of one of the largest lngolfian specinen I shall insert some measures.
Total length 275^{mm}, head 63^{mm}, consequently not ${ }^{1 / 4}$ of the total length.
Dianeter of the eye $2 \mathrm{t}^{\mathrm{mm}}, \mathrm{I} / 3$ of the length of the head, a little more than the length of the

The upper jaw terminating below the anterior nargin of the lens; the filamentons ray of the ventrals c. 35^{mm}, the pectoral 44^{mm} (about equal to the length of the head without the snont); the length of the first dorsal ray equals the length of the head.

A sketch made on the expedition gives to the fish a chocolate-brown colour with a bluish tint especially on the fins.

Antimora viola Goode \mathbb{E} Beant

The genus Antimora numbers two species, a southern and a northern, if really different, a question, on which Dr. Günther apparently speaks with sonne diffidence. They really must be very nearly related, but I liave no doubt that the Ingolfian specimens are here correctly deternined. A. rostrater (iünther (Report on deep-sea fishes p. 93 , pl. XVI A) was fonnd off the mouth of the Plata River and off Montevideo, at a depth of 600 fathons, between Kerguelen and Cape, and in the neighbonrlood of Marion Island at 5375 fathons; the largest specinen was 24 Engl. inches. A. arola G. $\mathbb{\&}$ l3. (ibicl. p. 94, pl. 15) was first captured at a depth of $4-500$ fathoms on the edge of le Havre bank, later in 25 specinens in localities between $33^{\circ} 35^{\prime}$ Lat. North and $41^{\circ} 34^{\prime}$ Lat. North and between 7600^{\prime} Long. West and $65^{\circ} 54^{\prime}$ Long. W'est at depths between 306 and 1242 fathoms. The expedition of the prince of Monaco (Collett, Résultats des campagnes scientifiques etc. p. 59) obtained i2 specimens a little more to the north ($45^{\circ} 20^{\prime}$ Lat. North) on the Newfonndland bank at a depth of 1267 nneters; the largest specinen was $358^{\text {mm }}$.

The stations from which Ingolf has brought home Antimores, 6 specinnens in all, are

Station	Lat. N.	Long. W.		Fathoms					1. of botton
50:	$62+3{ }^{\prime}$	15 O\%	(Soutl of Iceland)	1020	Craty	mund	with basalt	grailis	3.13 C.
76:	600°	$26^{\circ} 50^{\prime}$	(Soutluwest of Iceland)) 806	Cilay	mud			4.1 C.
83:	$62-2{ }^{\prime}$	$28^{\circ} 30^{\prime}$	(Likewise)	912	Gray	11111×1			3.5 C.
93:	6424^{\prime}	$35^{\circ} 14^{\prime}$	(Denmark Strait)	767	Gray	$11111{ }^{1}$			I .46 C .

All these localities are, as it will be seen, sonth, sonthwest or west of Iceland thongh one of them rather near to the coast of East-Greenland. The largest specimen las a length of ${ }^{1} 5^{r}{ }_{2}$ inch. When the first dorsal ray is well preserved it proves to be considerably larger than it is figured in . Intimoru arolu (comp. the figure of Holoporfhyrus ziolu in Goodes The fisheries and fishery industries of the United States, Sect. I, pl. 64).

Rhodichthys regina Coll. (Tab. III, fig. 4).

Of this species, which is classed with the Brotulide, and which was discovered by the Norwegian North sea expedition in the sea between Peeren Island and Finmarken at a depth of 1280 fathoms (Biloculina-clay, bottom temperature $\div 1 .+$), only this single specimen (297^{mm}) was known which is described and figured by Prof. Collett (den norske Nordlazs Expedition, Fiskene, p. I54, pl. V, fig. $37-39$). The Ingolf expedition brought home several more or less well preserved specinens: the length of the largest does not exceed 122^{mm}. In one of then the left ventral is tripartite instead of bipartite, as usual. They are not uniformly red as the original type of the species, but spotted or figured, with small brownish spots, which interrupt the reddish bottom colonr of the skin. The number of vertebre of the body is between 9 and II, of the tail between 53 and 58 . The localities are the following:

Station	Lat. N. Long. W.		Fathoms	Conlition of the botto	Emp. of the bottom.
10	$66^{\circ} 23^{\prime}>25^{\prime}$	(East of Iceland)	957	Light gravish brown	d $\div 1.1 \mathrm{C}$.
105	6534^{\prime} - ${ }^{\prime} 31^{\prime}$	(Likewise)	762	Light brown mud	$\div 0.5 \mathrm{C}$.
III	$67^{\circ} 14^{\prime} 8^{\prime \prime} 48^{\prime}$	(Likewise)	860	Prown Piloculina-clay	$\div 0.9 \mathrm{C}$.
117	69° I $3^{\prime} 8^{\prime} 23^{\prime}$	(Sonth of Jan Mayen)	1003	Light Biloculina-clay	\div i. $\mathrm{O}^{\text {C. }}$
118	$6827^{\prime} 8^{\prime} 20^{\prime}$	(Between Iceland and Jan Mayen)) 1060	Light Biloculina-clay	$\div 1.0 \mathrm{C}$.
119	$67^{\prime} 53^{\prime} 10{ }^{\prime} 19$	(Likewise)	1010	Lighlat Piloculina-clay	$\div 1.0 \mathrm{C}$.
120	67 29' II 32^{\prime}	(Likewise)	885	Light Biloculina-clay	$\div 1.0 \mathrm{C}$.
140	$63.29^{\prime} 6.57^{\prime}$	(North of Faroe Island)	780	Gray mud	$\div 0.9 \mathrm{C}$.

Colloidei (s. l.).

Sebastes marinus l. (norvegicus Ascan.)
was fonnd at the following places, bavis Strait, off Holsteinsborg, by the Ingolf expedition :

The arctic-ichthyological literature often cited will illustrate sufficiently the geographical and bathynetric distribution of the redfish. It is known besides fronn Greenland, from Iceland, from Spitsbergen and Beeren Island, from the whole Norwegian coast, from the Danish shores (occasionally), from the Irish and North-british coasts and from the eastern coast of Nortli America to Cape Cod (cfr. the ennnneration of the stations in Oceanic Ichthyology p. 26I) in so far that it is not the S. $a^{\prime} \%$ zifarus, which here represents the type. I shall not here repeat what I have formerly said (Vidensk. Medd. Naturh. Foren. , 1876) of the difference between the true redfish and Lysongeren (S. aidifarus) may this be a distinct species or a fjord or shore variety of S. marimus - but only remark, that S. atiziparus is fomnd at the Faroe Islands, at the coast of Norway and Bolnnslän and at the coast of New England (specinens from Eastport and Gloncester sent me from the Smithsonian Institution), but so far known not at the coast of Finmarken or of Great Britain. Small ones of S: marimus were taken in the nets sonth and sonthwest of Iceland and in the open sea at Demmark Strait.

Phobetor ventralis C. V. (tricuspis Rhdt.).

This arctic sea-scorpion has not been bronght home with the Ingolf, but it nay nevertheless reasonably be mentioned leere. My remarks on its relation to Cottus pistilligor Pall. (Videnskab. Meddelelser 18-6) have occasioned that it is maned Grmmacanthus pistilliger (Collett: Norske Nord-havs-Expedition , Fiskene, p. 26, and elsewhere). Is I have said that there was no experience of its being fished at a greater depth than 20 fathonns, I will add that we have obtained yonng ones of this species in Iaffin Strait at 50 fathons, and that den norske Nordhavs-Expedition has obtained it at the same depth at Spitsbergen. On Ryder's expedition to East-Greenland a specinnen was taken at the shore of Hold with Hope on very low water. For its other known geographical distribution 111 Y remarks in Yidenskab. Meddel. Naturl. Foren. 1876, p. 365 may be consulted, also Collett l.c. p. 28. Also the works of Lilljeborg and Smitt may naturally be consulted for facts of this nature. It is thans known from different East- and West-Greenland-localities and from places in Arctic America, at Labrador and Nova Scotia, in the Fundy Bay, at Iceland, Finmarken, Novaja Semlia, in the Behring Sea, at Kanschatka and -- if no mistake - at Japan. In Gilbert's The ichthyological collections of the U. S. Fish. C. S. Albatross, Report of the U. S. Comnnission of fish and fisheries for 1893 an other species is mentioned from Unalaska, Gymmacanthus gollatus Bean, which is said to be nearer related to P. tricuspis than to P. pistilliger. It is stated, it m11st be observed, by this author in agreement with Dresel (Proceed. Un. St. Nat. Mnsewn ISSt, p. 250), that the North-atlantic
type (G. tricuspis) differs specifically from the Nortlipacific (G. pistilliger). I refer the reader to the notes of Cillbert (l. c. p. 424). As 1 have also previonsly bespoken the relation between Phobrtor (Gymuncunthus) and the species Cottus cluriger and C. dicorous, I shall further add, that these two species now (Gilbert l. c. p. 426) are cited as species of a genus Enophrys.

Cottunculus microps Coll.

Cottus or Cottunculus microps is first (1875) established (Collett: Norges Fiske, med Bemarkninger om deres Udbredelse, Tillxg til Videnskab. Selsk. Forhandl. 1874, p. 20, pl. I, fig. 3) on a very young sea-scorpion, fished by Mr. O. Sats at the depth of 200 fathoms in the vicinity of Hammersfest. Afterwards den norske Nordhavs-Expedition (1. c. p. IS-25, 1l. I, fig. 5-6) obtained it in 3 specimens, taken Northwest of Hammersfest and West of Norskoen (Spitsbergen) at deptlis from 191 to 459 fathoms (size $93-175^{\mathrm{mm}}$); the bottom sandy or grayish blue clay, the temperature at the bottom \div O.I à 3.5 C . Still later it was fomd in the Faroe-Clamel, so called, by an English expedition (Gïnther: Report, Challenger, 1p. 6o, t. IX, fig. A) and by an Anerican expedition still nearer to the American side, two small specimens from a depth of 260 fathoms, $39^{\prime} 59^{\prime} \mathrm{Lat}$. N. and 70° is' Long. W. (Tarleton Bean and Brown Goode: Report on the results of dredging, Bull. Mus. Compar. Zool. 1883, p. 212). From Greenland itself we lave obtained 3 specimens ($200-260^{m m}$) sent down by M. Müller, inspector of the colony Sukkertoppen, and Prof. F. Smitt states (Skandinaviens Fiskar I, p. I59), that a male of the length of $157^{\text {mon }}$ was taken on Nordenskiöld's expedition on the eastcoast of Greenland at 130 fathoms depth on clay bottom and at $65^{\circ} 30^{\prime}$ Long. North. The most northern point where this sea-scorpion of the cold and deep sea is known is So Lat. North (Spitsbergen), the most southern on the European side is the Trondhijemsfjord ($63^{\mathrm{x}} / 2^{\prime}$); according to the statement of F. Smitt it is there taken in rather numerous specimens at depths from $100-200$ fathoms. After a note by T. Bean (Notice of the remarkable marine fanna occupring the onter banks of the southern coast of New England, Nr. 2: American Jonrnal of Science, October 188r, p. 296) it is taken at 7 stations at the depth of $310-396$ fathoms on the banks off the sonthcoast of New England. Giinther (l. c.) also states, that several specimens are known from the sonthcoast of New England at depths from 238 to 372 fathoms. Compare also Oceanic Ichthyology p. 269 , fig. 257 and 26 a a, b.

This species is figured by Collett at the places cited in Norges Fiske and in den norske Nordhavs Expedition, by Giinther in the deep-sea fishes of the Challenger (l. c.), and by F. Snitt (Skandinaviens Fiskar , I, p. I5S, fig. 45), further in Oceanic Ichtlyology pl. 1. As it is also described by the said authors, by Lilljebory and by Jordan and Gilbert (Synopsis of the fishes of North America 1882, p. 688) I may limit myself to an enmmeration of the Ingolfian localities and to the addition of a few descriptive notes.

The skin is densely rongh everywhere on the head, body and tail, weakest on the belly, fronn small rom asperities; at some places they are gronped together in small heaps and may be continnect on the dorsal rays - more sparsely on the pectorals. The interorbital space is rather large. lowind the eves is fonnd an arc of + conifonn knobs; somewhat more behind, on the occiput, are two and at botlo sides in a line with the upper end of the branclial cleft one or two smaller knobe with somule more
farther down at the inferior part of the preopercle. In the young ones they are hardly to be distingnished with the exception of two tubercles behind the eyes. There are four dark-coloured bands, une over the base of the tail, one over the lind part of the dorsal fin and downwards to the anal fin, a third over the foremost part of the dorsal down towards the pectorals and a fourth - especially distinct in the yonnger - transversely over the front, the eyes and the cheeks.

The Stations of C. microps at the Ingolf royages were:
Slat. Lat. N. Long. W.
9: $64^{\prime} 18^{\prime} 27^{-00}$ (West of Iceland), 295 fathoms, clay, bottom temp. $5: 8 \mathrm{C}$. (size 45 and 30^{mm}).
28: $65^{\prime} 14^{\prime} 55^{\prime} 42^{\prime}$ (W'est of Sukkertoppen), 420 fathoms, soft brown gray mud with many Rhabdammina, botton temp. $3^{\circ} \cdot 5^{\text {C. }}\left(45^{\mathrm{mm}}\right)$.
32: $6635^{\prime} 56^{\prime} 38^{\prime}$ (Davis Strait, off Holsteinsborg), 318 fathoms, brown gray mud with many Rhabdammina, bottom temp. $3^{5.9}$ C., male and female (160 and So mnin $^{\text {m }}$).
35: $65^{\circ} 16^{\prime} 55^{\circ} 05^{\prime}$ (Southwest of Sukkertoppen), 362 fath., brownish und with arenaceous foraminifera, bottom temp. $3.6 \mathrm{C} .\left(52^{\mathrm{mm}}\right)$.
126: 67 I $9^{\prime}{ }^{1} 52^{\prime}$ (Nortl of Iceland), 293 fathoms, gray brown, blue claylike mud, bottom temperature

$$
\div 0.5 \mathrm{C} ., \text { female }\left(154^{\mathrm{mm}}\right)
$$

Cottunculus torvus Goode (Thompsoni Giinther)

was described almost contemporaneonsly under the name cited, by Brown Gqode and Tarleton IBean (Report on the results of dredging muder the supervision of Alex. Agassiz, Report on the fishes, Mulletin of the Mnsenm of Comparative Zoology, X, 5, 1883, p. 213) and by Alb. Güuther (Report on the deep-sea fishes, the voyage of H. M. S. Challenger, 1887, p.6r, pl. NI, fig. B). It is figured by Crïnther and by Léon Vaillant (Expéditions scientifiques du Travaillenr et du Talisman 1880-83, Poissons (i888), p. $36 \mathrm{r}, \mathrm{pl} .28$, fig. 3), whose figure however, as stated in the text, is defective, the artist having overlooked the first part of the dorsal. The localities, from which this species is known, are 1) The Faroe Channel at 535 fathonns depth (size $7^{1 / 4}$ inches). 2) The 5 specinens of the length of 62407^{mm}, fished by the American deep-sea expeditions at $464-723$ fathoms at 333^{\prime} Lat. North to 4132^{\prime} Lat. North and at $65^{\circ} 55^{\prime}$ Long. West to 76° Long. W. 3) The French expeditions obtained 9
 4) With the Fylla a specinen, ${ }^{1} 50^{m m}$ lang, was obtained in Davis Strait ($66^{\circ} 49^{\prime}$ Lat. North, $56^{\circ} 28^{\prime}$ Iong. West, at a depth of 235 fathoms, sand and ooze bottom, bottom temp. 4.4 C.) (Vidensk. Meddel. fra den maturln. Forening ISgI, p. 29). 5) With Ingolf finally a specinen was obtained, a female, IS $4^{\mathrm{mm} m}$, at station 83 (Denmark Strait, South west of Iceland), 622^{\prime} Lat. North, $28^{\circ} 30^{\prime}$ Long. West, depth 912 fathons, temperature at the botton 3.5 C .

This Cottunculus is smooth withont gramulions etc., light gray without designs; the head is strongly provided with coniform tubercles on front, top and sides of the head, opercles etc. A specimen fronn the Anlerican deep-sea expeditions las been before me for comparison; yonng specinens are not at hand.

Cottunculus inermis Vaill.

was hitherto only known fron1 the deseription and fignre of Vaillant (1.c. p. $365, \mathrm{pl} .28$, fig. 2) and was misjudged by the authors of Oceanic Ichtlyology (p. 525) who identified it with C. microfs. The Frencl expeditions obtained 3 specimens (86 mm in length) from the localities already cited (the coast of Sudan and Bane d'Arguin) at a depth of 930 and 1.495 111etres. Nore northerly it was hitherto maknown. Ingolf obtained 4 specinnens:

Stat. Lat. N. Lons. IV.
102: 6623^{\prime} io 26' (East of Cape 1, anganes), 750 fath., brown mut, bottom temp. $\div 0.9 \mathrm{C}$., size $5 \mathrm{~S}^{\mathrm{mm}}$.
104: $66^{\circ} 23^{\prime} \quad 7^{\prime} 25^{\prime}$ (East of the northeastpoint of Iceland), 957 fathon1s, light graybrown 111th, bottom temperature \div i. . C ., female, size 94^{mm}.
 and a yonnger specinene, $50^{m m}$.

Uniformly grayish withont any design, alnost quite naked and snootlı, only a very little rough to the sense of feeling. No tubercles either on the crown of the head, the occiput or opercles. The distance between the small eves is very large, more than thrice a diameter of the eye. Palatal teeth not observed. Conld therefore on so ternned technical reasons be cut off as a pecnliar generic type, but I prefer with Vaillant to keep it in the genus Cottunculus. It may still be added that in Younger specinens the grannlation is very distinct and dense, thonglnot so dense and connplete as in C. microps.

A note about the northein Colli.

Cotus scorpius L. That the Greenland sea-scorpion (C. gromlandius) is not specifically different from the common North-european species is well known now-a-days, though it may still happen that now and then a "Cottres gronlandicus" is mentioned from European (Norwegian, Scottish, English) localities, most likely in cases where uncommon large specimens of C : scorpius have occurred. The "Ingolf" expectition has brought home specimens of this specics from stat. 33 ($67 \quad 57^{\prime}$ Lat. North, 5530^{\prime} Long. West, S. W. of Egedesminde, depth 35 fathoms, gray sand bottom, bottom temperature 0.8 C.). From the east roast of Greenland (Jameson's Land, "Hekla's harbour" etc., from the shore to the depth of some [II] fathoms) the expedition of Ryler brought home some specimens, partly young ones, partly rather aduft individuals. It is added, that in "Hekla's harbour" it was found the whole year round. C. scortins is otherwise known from almost the whole west coast of Greenland to Umanak and Upernivik, it is noted from Boothia, Port Leopold, the Wellington chamel and the Northumberland sound, on the eastern side of America to Cape Hatteras, at Ieeland, Spitsbergen, the White Sea and Novaja-Semlia, at the Faroe-lslands and at the British coasts to the mouth of the "Chamel" and at the Scandinavian shores, in the Baltic to Uleaborg. If the "Jaok" of the Kamtsehadales (C. juoc) is correctly referred by Malmgrén to our common sea-scorpion, it meets in the northern part of the Pacific with several other species of Cottus, for which I must refer to the literature, as it would be too prolix to make a detailed account of it at this place.
C. seorpioides Fabr. (on which 1 must refer to my elucidations in "Vidensk. Meddel. Naturh. Forening" is761 was not found by the "Ingolf" expedition, nor are there from other sources turned up any new informations on it. That Dr. F. Smitt (1.c.) regards it as a variety of C. scorfizus does, after what 1 have set forth formerly, of course not agree with my conception.
C. Lilljeborgii has not been found on any of our aretic expeditions. On the other hand it is named (Proc. Royal Soc. Edinburgh, Vol. XV, 1. 207, tat. 1N, fig. B) between the deep-sea fishes obtained on the north coast of Seottiand by dlurray.

Cottus quadricornis L. has not been found neither by the "lagolf" expedition. On the other hand the expedition of Ryder to East-Greenland obtained a specimen at the depth of 3-6 fathoms at "llekla's harbour" |"Meddelelser om Gronland", XIX, Heirveldyr by E. Bay p. 52\%. Otherwise it is well known that it has been found at

Mellville island and near the "Copper mine ${ }^{n}$ (6712^{\prime} Lat. North) in the Gulf of Bothnia and in the adjoining part of the Baltic, in the Swedish and Russian lakes, in the White Sea and at Novaja-Semlia. Cfr. my former communication the on the northern Cottoids in "Vidensk. Meddel. Naturh. Forening" 1876 . Further information on its distribution at the cast coast of Greenland may probably be awaited through a future Eastgreenland expedition.

Icelus hamatus Kr.

The places where this little arctic Coltoid was obtained at the Ingolf expedition were:

Other informations on its distribution and occurrence will be fomnd in the report of the Dijnplna expedition and in the Norwegian Nortln-Sea expedition, in Oceanic Ichthyology" etc. In the last cited work and in Gilbert's report on the fish-collections made in the northern part of the Pacific (at Alaska, Cnalaska etc.) it is named Iechus bicormis (Reinliardt), the anthor probably: following the hypothetical suggestion by Collett, that an Icclus may have been the foundation of Reinhardt's Cottus bicornis, which can not be determined with certainty, the original specimen not existing. To change a denomination of scientific certitude with another of dubious applicability can only involve mucertainty and want of cleamess. Gilbert also infers the possibility that the Pacific type might differ specifically from the Atlantic North-Sea type. There are further maned by Northamerican ichthyologists quite a series of Northpacific species: Icclus spiniger, cumaliculatus, vicinalis, iurbops and scutiger. Icclimus borealis, tomuis, filamentosus, fimbriatus and oculatus, as well as some species of new genera mknown to me. The relation between those representative species from the same region of both oceans is, it is true, of great interest, but requires for its solution a relatively great material placed in one single hand.

Artediellus (Centridermichthys) uncinatus (Rlılt.). (Tab. IV, fig. 9.)

Ot this small Cottoid many specimens were captured at station $33\left(67^{\circ} 57^{\prime}\right.$ Lat. North, $55^{\circ} 30^{\prime}$ Long. West, at a deptly of 35 fathoms, on gray sand, at a temperature at the bottom of o.s C.), some at station $29\left(65^{\circ} 34^{\prime}\right.$ Lat. Norths, $54^{\prime} 3 I^{\prime}$ Long. West, depth 68 fathoms, on sandy bottom, temperature at the bottom o. C.) and a single specinen at station 3^{1} ($66^{\circ} 35^{\prime}$ Lat. North, 5554^{\prime} Long. West, at 88 fathonns, temperature of bottom 1.6 C.$)$, all on localities off the west coast of Greenland, not farther sontli ilana Sukkertoppen, not farther north than Egedesminde. On its occurrence elsewhere may be referred to my former MeddeleIser on mordiske Ulkefiske (Vidensk. Medd. Naturlı. Forening isf6, Novaja Semlia, coast of Norway down to 59) and to Bidrag til Kundskab on Kara Havets Fiske* (Dijniplina-Togtet i886, p. I24, west coast of Novaja Semilia); to Collett: (den norske NordlavsFxpedition, Fiskene, p. 29, between North Cape and Spitsbergent and his Neddelelser om Norges Fiske (Ny゙t Magasin for Naturvidensk.» Bd. 29, 1884); also Hubrecht (Niederl. Archiv f. Zoologie,
 ${ }^{1} 50^{\circ}$ Long. West). In Oceanic Ichthyology (p. 267) numerons localities from varions northatlantic places are cited. As a synonynn Cothes bicomis Rhdt. is also cited here; concerning this the reader is referred to what is remarked above on Icelus humotus.

Triglops Pingelii (Rlidt.).

was found by Ingolf at the following localities:

```
Stat. Lat, N. I.ong. WV.
    fathoms Botton bottom temp.
29:}653\mp@subsup{t}{}{\prime}5+3\mp@subsup{\}{}{\prime}\mathrm{ off Sukkertoppen 68 sand 0.2 C. I specimen1.
33: 67'57' 55 30' S.W. of E.gedesminde 35 gray sand o".S C. Nmmerons specimens of both sexes
                                    and younger stages.
```

34: $671 \gamma^{\prime} 5+17$ off Holstemsborg 55 sandy o.9 C. S specimens.

From the earlier literature it will be seen, that Trigtops Pingelii is found not only on the West coast of Greenland, but also fron Spitsbergen, from the Barents Sea (East and Sonth of Beeren Island), from the sea East and Sontl of Jan Mayen, at Iceland, northem Norway to Christianssund at Sonth, at the Faroe Islands, and at the Northamerican shores. A long list of Eastamerican localities are cited from the western Atlantic to the latitude of New England. A Tr. plemposticus Cope from Godhavil has been put on record (Proc. Acad. Philacl. 1865), but in Oceanic Ichthyology (p. 269) it is as by myself (Vidensk. Medd. Naturhist. Forening 18 - $6, ~ p .378$) withdrawn to Tr. Pingelii. A new species (Tr. Murray ((thr.) has meantrinle been established (Report of fishes obtained in deep water on the Northwest coast of Scotland, Proc. Roy. Soc. Edinburgh XV, p. 209, tab. IV, fig. A) on a form fonnd in Mull of Cantyre at $6+$ fathoms and Southeast of the island of Sonda, said to be distingrished by a lesser number of rays, the size of the eyes, another shape of the liead and a more compressed tail. From the northern part of the Pacific is cited Tr. Beani (Gilbert: Ichthyological collections p. 426, t. 28), Tr. scipticus (p.428, pl. 28) and Tr. xenostithes (p. 429, pl. 291; the 2 first named of these species at least are established on a greater n1mmber of specimens.

Agonus decagonus 13 .

is fished on the following places:

Station Iat. N. Long. W.
31: $66^{\prime} 35^{\prime} \quad 55 \quad 54^{\prime}$ Davis Strait
125: $66^{\circ} 08^{\prime} 16^{\circ} 02^{\prime}$ Nortly of Iceland
126: $677^{\prime} 19^{\prime}$ 15 52^{\prime} Likewise
143: $62 \quad 58^{\prime} \quad 7^{\prime} 09^{\prime}$ North of Faroe islands
fathoms SS
729 brown mud $\div 0.8 \mathrm{C}$.
293 graybrown und $\div 0.5 \mathrm{C}$.
388 sandy boton1 $\div 0 .+\mathrm{C}$. Two younger specintens.
In Oceanic lathyology placed in the genns. Podothecus. Ontside of (ireenland known fronn Spitsbergen, the Barents Sea, Iceland, Varangerfjord and West-Finmarken. . I. malarmoides Deshongelianps, probably the same species, is said to be from Newfonndand (cfr. Vidensk. Meddel. 18,6, p. 381). ()n other mailed Cottoids in the northern part of the Pacific the cited works of Gilbert, Jordan and Starks may be consulted.

Aspidophoroides monopterygius Lac.

Beyond the sea of the west coast of Greenland, where it is collected several times (. Vidensk. Neddel. 1. c. p. 3^{85}) and where the Ingolf expedition has obtained it at station 3r (Daris Strait, 6635^{\prime} Lat. North, $55^{\circ} 54^{\prime}$ Long. West, Sontlı of Egedesminde, at a depth of 88 fathons and a bottom temperature of 1.6 C. $)$ and at station $33\left(6757^{\prime}\right.$ Lat. Nortlı, 5530^{\prime} Long. West, on 35 fathoms, SoutliWest of Egedesminde, on gray sand, at a bottom temperature of 0.8 C ., it is fonnd repeatedly in the sea of the eastern coast of Nortlamerica, even Sonth of Cape Cod (Oceanic Ichthyology p. 284). From Vanconvers Island is known a A. (Angelogonus) incrmis and froni the west coast of America furtlier A. Güntheri Bean.

Aspidophoroides Olrikii L,tk.

known from the Greenland sea (Hellefiskebankeme, 32 fathonns depth) (Vidensk. Meddel. Natnrlist. Foren. IS76, p. 386), the Kara Sea (Dijmphna, Kara Harets Fiske p. I20, pl. XV, Fig. I-3) and the Barents Sea. Was captured plentifully at stat. 33 (cfr. above). A dubions» specimen is mentioned in Oceanic Ichthyolugy (p. 284) from a depth of $4 t$ fathoms at $46^{\circ} 45^{\prime}$ Lat. North and $50^{\circ} 02^{\prime} 30^{\prime \prime}$ Long. West. The prince of Monaco obtained 2 specimens on the banks of Newfomdland (Collett, Résultats (les Camp. scientif. p. 39). It is cited also from the White Sea and the eastern part of the Minmannian sea (Verzeichniss der Fische des weissen ind 1111rmanschen Meeres; l'Ann11aire dı Mnsée zoologique de St. Pétersbourg 1897).

Aspidophoroides Olrikii.

Contents.

The Ichthyological Results of the Expeditions of the "Ingolf".

Introtuctory Remarks ${ }^{\text {Page }}$	Lycotes perspicillun Kr. Plate IV, fig. 5. 22.
Skates (Rays): the seuus Raja 2.	Ifcorles gracilis Sars
Raja hyperborea Collett	Lycodes pallidus coll.
Raja ingolfiana Ltk. n. sp. Plate l, fig. 1. 3.	The Macrurus group
Kaja Fyllie Litk. (ormata Gamm. ?) Plate II, fig. 2. 4.	Macrurus Fabricii Sundev: (rupestris Falor, non Gunn.) , 24.
Deep-sea-Eels: Synaphobranchus and Nemichthys [Serrifonmer]	Macturus (Coryphachoides) rupestris Gumn. M. Stromii Rlidt., norregicus Nilsson).
Symaphobranchus infernalis Gill. 7.	Macrurus (Hymenocephalus) Goorlei Gthr. 26.
Nemichthys (Serrivonser) Beanii Gill \& Ryder 7	Nacrurus ingolfi Ltk.
Alepoceplialus Agassizii Goote et Pean S.	Nacrurus (Clualinura) simulus Goorle et Deau
Scopelini . 9.	Trachyrhyuchus Murrayi
Cyclothone (Gonostoma) microdon Sthr. 9.	Cratoids and allied lisho
Cyelothone (?) megalops n. sp. at int. . . Ilate IV, fig. 6. 10.	Motella (Onos) Reinharlti Kir. Ilate IV, fig. S.
The Notacantls	Haloporply rus eques Cithr. Plate IV, fig. 7. 30.
Polyacanthonotus (Mactonaldia) rostratus Coll. 12.	Antinora riola Grooke et Bean
Cyclopteridx and Liqurinitse It.	Rhorlichthys regina Coll.
Cyclopterus (Eumicrotremus) spinosus (Fabr.) it.	Cottonilei (s.
Liparis Reimhardti and L. micropus Gthr. Plate III, fig. 3. If.	Sebastes marinus L. (norregicus Ascan.)
(L. (Careproctus) gelatinosus Pall.) It.	Phobetor ventralis C. V*. (tricuspis Rlalt.)
Paraliparis bathyhii Coll. 77	Cottunculus microps Coll.
Blenniodei, Ophidini . 18.	Cottunculus torvus Goode
Gymmelis viritis İabr. 18.	Cottunculus inermis Vaill.
Lumpenus lampetreformis Walb. ig.	Icelus lramatus K゙r.
Flomuders . I9.	Artediellus (Centridermichthys) uncinatus (Rhult.)
Drepanopsetta (llippoglossoides) platessoides Fahr. . . . ig.	Plate IV, fig. 9. 36.
The genus lifcodes . 19.	Triglops Pingelii (Rlult.) 37.
Lycoles murema Coll.	Agonus decagonus 131.
Lycortes frigitius Coll. 20.	Aspidophoroides monoptergrius Lac
Leycorles Eismarkii Coll. 2 I.	Aspilophoroides Orikii Ltk. 3 S

liaja ingollialla lh "r s.

s

- megeroruse.

[^2]
THE INGOLF-EXPEDITION

1895-1896.

THE LOCALITIES, DEPTHS, AND BOTTOMTEMPERATURES OF THE STATIONS.

$\begin{gathered} \text { Station } \\ \text { Nr. } \end{gathered}$	Jat. N.	Iong. ll^{\prime}.	Depth in Danish fathoms	Botton11teninp.	$\begin{aligned} & \text { Station } \\ & \text { Nr. } \end{aligned}$	Lat. N.	I.ong. UV.	Depth in Danish fatlionis	Bottonltemp.	$\begin{gathered} \text { Station } \\ \text { Nr. } \end{gathered}$	Iat. N.	Longr W',	1) epth in I) anish fathoms	Bottonntemp.
I	$62^{\circ} 30^{\prime}$	$8^{\circ} 21^{\prime}$	132	$7{ }^{\circ}$	2.4	$63^{\circ} 06^{\prime}$	$56^{\circ} 00^{\prime}$	1199	204	45	$61^{\circ} 32^{\circ}$	$9^{\circ}+33^{\prime}$	6.43	$4^{\circ} 17$
2	$63^{\circ} 04^{\prime}$	$9^{\circ} 22^{\prime}$	262	$5^{\circ} 3$	25	$63^{\circ} 30^{\prime}$	$54^{\circ} 25^{\prime}$	582	$3^{\circ} 3$	46	$61^{\circ} 32^{\circ}$	$11^{\circ} 36^{\prime}$	720	$2^{2}+10$
3	$63^{\circ} 35^{\prime}$	$10^{\circ} 24^{\prime}$	272	$\mathrm{O}^{\circ} 5$		$63^{\circ} 51^{\prime}$	$53^{\circ} 03^{\prime}$	I 36		47	$61^{\circ} 32^{\prime}$	$13^{\circ} 40^{\prime}$	950	323
4	$64^{\circ} 07^{\prime}$	$11^{\circ} \mathrm{I} 2^{\prime}$	237	$2{ }^{\circ} 5$	26	$63^{\circ} 57^{\circ}$	$52^{\circ} 41^{\prime}$	34	$0^{\circ} 6$	48	$61^{\circ} 32^{\prime}$	$15^{\circ} 11^{\prime}$	1150	$3^{\circ} 17$
5	$64^{\circ}+0^{\circ}$	$12^{\circ} \mathrm{Og}$	155			$6.4^{\circ} 37^{\prime}$	$54^{\circ} 24^{\prime}$	109		19	$62^{\circ} 07^{\prime}$	$15^{\circ} 07^{\prime}$	1120	29^{3}
6	$63^{\circ}+3^{\prime}$	$14^{\circ} 34^{\prime}$	90	$7^{\circ} \mathrm{O}$	27	$64^{\circ} 54^{\circ}$	$55^{\circ} \mathrm{I} 0^{\prime}$	393	$3^{\circ} \mathrm{S}$	50	$62^{\circ}+3^{\prime}$	$15^{\circ} 07^{\prime}$	1020	$3^{0} 13$
7	$63^{\circ} 13^{\prime}$	$15^{\circ} 41^{\prime}$	600	$4{ }^{\circ} 5$	2 S	$65^{\circ} 14^{\prime}$	$55^{\circ} 42^{\prime}$	420	305	51	64° I 5^{\prime}	$14^{\circ} 22^{\prime}$	65	$7^{\circ} 32$
S	$63^{\circ} 56^{\prime}$	$24^{\circ} 40^{\prime}$	136	$6^{\circ} \mathrm{O}$	29	$65^{\circ} 34^{\prime}$	$54^{\circ} 31^{\prime}$	68	$\mathrm{O}^{\circ} 2$	52	$63^{\circ} 57^{\circ}$	$13^{\circ} 32^{\prime}$	420	$7{ }^{-3}$
9	$64^{\circ} 18^{\prime}$	$27^{\circ} \mathrm{Oo}$	295	$5^{\circ} \mathrm{S}$	30	$66^{\circ} 50^{\prime}$	$54^{\circ} 28^{\prime}$	22	${ }^{\circ} \mathrm{O} 5$	53	$63^{\circ} 15^{\prime}$	$15^{\circ} 07$	795	305
10	$64^{\circ} 24^{\prime}$	$25^{\circ} 50^{\prime}$	758	$3^{\circ} 5$	31	$66^{\circ} 35^{\prime}$	$55^{\circ} 54^{\prime}$	SS	$1{ }^{\circ} 6$	54	$63^{\circ} \mathrm{os}$	$15^{\circ} 40^{\prime}$	691	$3{ }^{\circ} 9$
I I	$64^{\circ} 34^{\prime \prime}$	$31^{\circ} 12^{\prime}$	1300	$L^{\circ} 6$	32	$66^{\circ} 35^{\prime}$	$56^{\circ} 3 S^{\prime}$	318	$3^{\circ} 9$	55	$63^{\circ} 33^{\prime}$	$15^{\circ} 02^{\prime}$	3.36	59
12	$64^{\circ} 3 S^{\prime}$	$32^{\circ} 37^{\prime}$	10.40	$\mathrm{O}^{\circ} 3$	33	$67^{\circ} 57^{\prime}$	$55^{\circ} 30^{\prime}$	35	$0^{\circ} \mathrm{S}$	56	$64^{\circ} \mathrm{xi}$	$15^{\circ} 0 y^{\prime}$	6.5	7×57
13	$64^{\circ} 47^{\prime}$	$34^{\circ} 33^{\prime}$	622	$3^{\circ} 0$	34	$65^{\circ} 17^{\prime}$	$54^{\circ} 17^{\prime}$	55		57	$63^{\circ} 37^{\circ}$	$13^{\circ} 02$	3.50	3.4
14	$64^{\circ}+5^{\prime}$	$35^{\circ} 05^{\prime}$	176	$4^{\circ} 4$	35	$65^{\circ} 16^{\prime}$	$55^{\circ} \mathrm{O} 5^{\prime}$	362	$3^{\circ} 6$	55	$64^{\circ} 25^{\prime}$	$12^{\circ} 09$	211	が
15	66° I 8^{\prime}	$25^{\circ} 59^{\prime \prime}$	330	$-0^{\circ} 75$	36	$61^{\circ} 50^{\prime}$	$56^{\circ} 21^{\prime}$	1435	${ }^{\circ} 5$	59	$65^{\circ} 00$	$11^{\circ} 16^{\circ}$	310	$v^{\circ} 1$
16	$65^{\circ} 43^{\prime}$	$26^{\circ} 58^{\prime}$	250	$6^{\circ} \mathrm{I}$	37	$60^{\circ} 17^{\prime}$	$54^{\circ} 05^{\circ}$	1715	$1{ }^{\circ} 4$	60	$65^{\circ} 09^{\prime}$	$12^{\circ} 27^{\circ}$	12.4	$0 \cdot 9$
17	$62^{\circ} 49^{\prime}$	$26^{\circ} 55^{\prime}$	7.45	$3^{\circ} 4$	$3{ }^{\circ}$	$59^{\circ} 12^{\prime}$	$51^{\circ} 05^{\prime}$	1870	${ }_{1} \circ_{3}$	61	$65^{\circ} 03^{\prime}$	$13^{\prime} 06$	55	0'9
18	$61^{\circ} 44^{\prime}$	$30^{\circ} 29^{\prime}$	1135	$3^{\circ} \mathrm{O}$	39	$62^{\circ} 00^{\prime}$	$22^{\circ} 3 S^{\prime}$	\$65	$2^{\circ} 9$	62	6318	$19^{\circ} 12^{\prime}$	72	782
19	$60^{\circ} 29^{\prime}$	$34^{\circ} 14^{\prime}$	1566	$2^{\circ} 4$	40	$62^{\circ} \mathrm{om}$	$21^{\circ} 36^{\prime}$	845	$3^{\circ} 3$	63	$62.40{ }^{\prime}$	$19^{\circ} 05^{\circ}$	Si(x)	+ ${ }^{\text {a }}$
20	$5^{8^{\circ} 20^{\prime}}$	$40^{\circ} 48^{\prime}$	1695	$1^{\circ} 5$	41	$61^{\circ} 39^{\prime}$	$17^{\circ} 10^{\prime \prime}$	12.45	$2{ }^{\circ} \mathrm{O}$	64	$62^{\circ} 06$	$19^{\circ} \mathrm{mi}$	10.11	31
2 I	$59^{\circ} \mathrm{OI}$	$44^{\circ} 45^{\circ}$	1330	$2^{\circ} 4$	42	$61^{\circ}+1^{\prime}$	$10^{\circ} 17^{\prime}$	625	$0^{\circ}+$	65	$61^{\circ} 33^{\prime}$	19 (x)	10.6)	$\therefore 17$
22	$59^{\circ} 10^{\prime}$	$48^{\circ} 25^{\prime}$	1845	$1{ }^{\circ} 4$	43	$61^{\circ} 42^{\prime}$	$10^{\circ} 11^{\prime}$	6.45	0005	66	$61^{\circ} 33^{\prime}$	24.33^{\prime}	112 S	3.3
23	$60^{\circ} 43^{\prime}$	$56^{\circ} \mathrm{cm}$	Onty the Plamkun ustot		4.4	$61^{\circ} 4^{\circ}$	$9^{\circ} 36^{\prime}$	5.45	$4^{\circ} \mathrm{S}$	67	$61^{\circ} 30^{\prime}$	2230	97.5	$\because \because$

$\begin{gathered} \text { Station } \\ \text { Nr. } \end{gathered}$	Long. W'.	Lat. N.	Depth in Danish fathon1s	Bottonltemp.	Station Nr.	Lat. N.	Long. W\%.	Depth in Danish fathoms	Bottomtemp.	Station Nr.	Lat. N.	Long. Wr.	Depth in Danish fathonis	Bottonntemp.
68	$62^{\circ} 06^{\prime}$	$22^{\circ} 30^{\circ}$	S. 43	$3^{\circ} 4$	92	$64^{\circ} 44^{\prime}$	$32^{\circ} 52^{\prime}$	976	$1^{\circ} 4$	118	$68^{\circ} 27^{\prime}$	$8^{\circ} 20^{\prime}$	1060	$-\mathrm{I}^{\circ} \mathrm{O}$
69	$62^{\circ} 40^{\prime}$	$22^{\circ} 17^{\prime}$	589	$3^{\circ} 9$	93	$64^{\circ} 2.4^{\prime}$	$35^{\circ} 14^{\prime}$	767	${ }_{1}{ }^{\circ} 46$	119	$67^{\circ} 53^{\prime}$	$10^{\circ} 19{ }^{\prime}$	1010	$-\mathrm{I}^{\circ} \mathrm{O}$
70	$63^{\circ} 09^{\prime}$	$22^{\circ} 05^{\prime}$	134	$7^{\circ} 0$	94	$64^{\circ} 56^{\prime}$	$36^{\circ} 19^{\prime}$	204	$4^{\circ}{ }^{1}$	120	$67^{\circ} 29^{\prime}$	$11^{\circ} 32^{\prime}$	885	$-1^{\circ} \mathrm{O}$
71	$63^{\circ} 46^{\prime}$	$22^{\circ} \mathrm{O} 3^{\prime}$	46			$65^{\circ} 3 \mathrm{I}^{\prime}$	$30^{\circ} 45^{\prime}$	213		121	$66^{\circ} 59^{\prime}$	$13^{\circ} \mathrm{II}$	529	$-0^{\circ} 7$
72	$63^{\circ} 12^{\prime}$	$23^{\circ} 04^{\circ}$	197	$6^{\circ} 7$	95	$65^{\circ} 14^{\prime}$	$30^{\circ} 39^{\prime}$	752	$2^{\circ} 1$	122	$66^{\circ} 42^{\prime}$	$14^{\circ} 44^{\prime}$	115	I 8
73	$62^{\circ} 55^{\prime}$	$23^{\circ} 2 S^{\prime}$	4^{86}	$5^{\circ} 5$	96	$65^{\circ} 24^{\prime}$	$29^{\circ} 00^{\prime}$	735	$\mathrm{I}^{\circ} 2$	123	$66^{\circ} 52^{\prime}$	$15^{\circ} 40^{\prime}$	145	$2{ }^{\circ} \mathrm{O}$
74	$62^{\circ} 17^{\prime}$	$24^{\circ} 36^{\prime}$	695	$4^{\circ} 2$	97	$65^{\circ} 2 S^{\prime}$	$27^{\circ} 39^{\prime}$	450	$5^{\circ} 5$	124	$67^{\circ} 40^{\prime}$	$15^{\circ} 40^{\prime}$	495	$-0^{\circ} 6$
	$61^{\circ} 57^{\prime}$	$25^{\circ} 35^{\prime}$	761		98	$65^{\circ} 3^{8^{\prime}}$	$26^{\circ} 27^{\prime}$	138	$5^{\circ} 9$	125	$65^{\circ} \mathrm{oS}{ }^{\prime}$	$16^{\circ} \mathrm{O} 2^{\prime}$	729	-0. ${ }^{\circ}$
	$61^{\circ}{ }^{2} 8^{\prime}$	25° o6 ${ }^{\prime}$	829		99	$66^{\circ} 13^{\prime}$	$25^{\circ} 53^{\prime}$	187	$6^{\circ} \mathrm{I}$	126	$67^{\circ} \mathrm{I} 9^{\prime}$	$15^{\circ} 52^{\prime}$	293	$-0^{\circ} 5$
75	$61^{\circ}{ }_{2} S^{\prime}$	$26^{\circ} 25^{\prime}$	780	$4^{\circ} 3$	100	$66^{\circ} 23^{\prime}$	$1.4{ }^{\circ} \mathrm{O} 2^{\prime}$	59	$0^{\circ} 4$	127	$66^{\circ} 33^{\prime}$	$20^{\circ} 05^{\prime}$	44	$5^{\circ} 6$
76	$60^{\circ} 50^{\prime}$	$26^{\circ} 50^{\prime}$	So6	$4^{\circ} 1$	101	$66^{\circ} 23^{\prime}$	$12^{\circ} 05^{\circ}$	537	$-0^{\circ} 7$	128	$66^{\circ} 50^{\prime}$	$20^{\circ} \mathrm{O} 2^{\prime}$	19.4	$0^{\circ} 6$
77	$60^{\circ} 10^{\prime}$	$26^{\circ} 59^{\prime}$	951	$3^{\circ} 6$	102	$66^{\circ} 23^{\prime}$	$10^{\circ}{ }^{2} 6^{\prime}$	750	$-0^{\circ} 9$	129	$66^{\circ} 35^{\prime}$	$23^{\circ} 47^{\prime}$	117	$6^{\circ} 5$
78	$60^{\circ} 37^{\prime}$	$27^{\circ} 52^{\prime}$	799	$4^{\circ} 5$	103	$66^{\circ}{ }_{23}$	$8^{\circ} 52^{\prime}$	579	$-0^{\circ} 6$	130	$63^{\circ} 00^{\prime}$	$20^{\circ} 40^{\prime}$	338	$6^{\circ} 55$
79	$60^{\circ} 52^{\circ}$	$2 S^{\circ} 55^{\prime}$	653	$4^{\circ} 4$	104	$66^{\circ}{ }_{23}{ }^{\circ}$	$7^{\circ} 25^{\circ}$	957	$-\mathrm{I}^{\circ} \mathrm{I}$	131	$63^{\circ} 00^{\prime}$	$19^{\circ} \mathrm{O} 9^{\prime}$	698	$4^{\circ} 7$
So	$61^{\circ} \mathrm{oz}{ }^{\prime}$	$29^{\circ} 32^{\prime}$	935	$4^{\circ} 0$	105	$65^{\circ} 34^{\prime}$	$7^{\circ} 31^{\circ}$	762	-0 ${ }^{\circ} 8$	132	$63^{\circ} 00^{\prime}$	$17^{\circ} \mathrm{O} 4^{\prime}$	747	$4^{\circ} 6$
81	$61^{\circ} 44^{\prime}$	$27^{\circ} 00^{\prime}$	485	$6^{\circ} 1$	106	$65^{\circ} 34^{\prime}$	$S^{\circ} 54^{\prime}$	447	$-0^{\circ} 6$	133	$63^{\circ} 14^{\prime}$	$\mathrm{II}^{\circ} 24^{\prime \prime}$	230	$2^{\circ} 2$
82	$61^{\circ} 55^{\prime}$	$27^{\circ} 28^{\prime}$	82.4	$4^{\circ}{ }^{1}$		$65^{\circ} 29^{\prime}$	$8^{\circ} 40^{\circ}$	466		${ }^{1} 34$	$62^{\circ} 34^{\prime}$	$10^{\circ} 26^{\prime}$	299	$4^{\circ}{ }^{1}$
S_{3}	$62^{\circ}{ }^{2}{ }^{\prime}$	$28^{\circ} 30^{\prime}$	912	$3^{\circ} 5$	107	$65^{\circ} 33^{\prime}$	$10^{\circ} 28^{\prime}$	49^{2}	$-\mathrm{o}^{\circ} 3$	${ }^{1} 35$	$62^{\circ} 48^{\prime}$	$9^{\circ} 45^{\prime}$	270	$0^{\circ} 4$
	$62^{\circ} 36^{\prime}$	26° o1 ${ }^{\prime}$	472		108	$65^{\circ} 30^{\prime}$	$12^{\circ} 0^{\prime}$	97	$\mathrm{I}^{0} 1$	136	63° o1 ${ }^{\prime}$	$9^{\circ} \mathrm{II} \mathrm{I}^{\prime}$	256	$4^{\circ} 8$
	$62^{\circ} 36^{\prime}$	$25^{\circ} 30^{\circ}$	401		109	$65^{\circ} 29^{\prime}$	$13^{\circ} 25^{\prime}$	38	$\mathrm{I}^{\circ} 5$	137	$63^{\circ} 14^{\prime}$	$8^{\circ} 31^{\prime}$	297	$-0^{\circ} 6$
St	$62^{\circ} 58^{\prime}$	$25^{\circ} 24^{\circ}$	633	$4^{\circ} \mathrm{S}$	110	$66^{\circ} 44^{\prime}$	$11^{\circ} 33^{\prime}$	7^{81}	-0 $0^{\circ} 8$	138	$63^{\circ} 26^{\prime}$	$7^{\circ} 56^{\prime}$	471	$-0^{\circ} 6$
S5	$63^{\circ} 2 I^{\prime}$	$25^{\circ} 21^{\prime}$	170		III	$67^{\circ} 14^{\prime}$	$8^{\circ} 48^{\prime}$	860	$-\mathrm{o}^{\circ} 9$	139	$63^{\circ} 36^{\prime}$	$7{ }^{\circ} 30^{\prime}$	702	$-0^{\circ} 6$
S6	$65^{\circ} \mathrm{O} 3^{\prime} 6$	$23^{\circ} 47^{\prime} 0$	76		112	$67^{\circ} 57^{\prime}$	$6^{\circ} 44^{\prime}$	1267	$-1^{\circ} \mathrm{I}$	140	$63^{\circ} 29^{\prime}$	$6^{\circ} 57^{\prime}$	780	$-0^{\circ} 9$
87	$65^{\circ} \mathrm{O} 2^{\prime}$	$23^{\circ} 56^{\prime}=$	110		113	$69^{\circ} 31^{\prime}$	$7^{\circ} 06^{\prime}$	1309	$-\mathrm{I}^{\circ} \mathrm{O}$	141	$63^{\circ} 22^{\prime}$	$6^{\circ} 58^{\prime}$	679	$-0^{\circ} 6$
88	$64^{\circ} 58^{\prime}$	$24^{\circ} 25^{\prime}$	76	$6^{\circ} 9$	114	$70^{\circ} 36^{\prime}$	$7^{\circ} 29^{\prime}$	773	-10	142	$63^{\circ} 07^{\prime}$	$7^{\circ} 05^{\prime}$	587	$-0^{\circ} 6$
S9	$64^{\circ} 45^{\prime}$	$27^{\circ} 20^{\prime}$	310	$8^{\circ} 4$	115	$70^{\circ} 50^{\prime}$	$8^{\circ} 29^{\prime}$	86	$0^{\circ} \mathrm{I}$	143	$62^{\circ} 58^{\prime}$	$7^{\circ} 09^{\prime}$	388	$-0^{\circ} 4$
$9{ }^{\circ}$	$64^{\circ} 45^{\prime}$	$29^{\circ} 06^{\circ}$	568	$4^{\circ} 4$	116	$70^{\circ} 05^{\prime}$	$8^{\circ} 26^{\prime}$	371	$-0^{\circ} 4$	14.4	$62^{\circ} 49^{\circ}$	$7^{\circ} 12^{\prime}$	${ }_{27} 6$	$1^{\circ} 6$
91	$64^{\circ} 44^{\circ}$	$31^{\circ} 00^{\prime}$	1236	$3^{\circ} 1$	117	$69^{\circ} 13^{\prime}$	$8^{\circ} 2_{3}{ }^{\prime}$	1003	-10°					

THE DANISH INGOLF-EXPEDITION.

VOLUME II.

2.

ON THE APPENDICES GENITALES IN THE GREENLAND SHARK, SOMNIOSUS MICROCEPHALLS (BL. SCHN.). AND OTHER SELACHIANS.

HECTOR F. E. JUNGERSEN.

WITH 6 PLATESANI) 2 S FIGURESIN TIIETENT

TRANSLATED BY゙ TORUEN LXVNIBECK

COPENHA, GEN.

CONTENTS.

On the Appendices Genitales in the Greenland Shark, Somniosus Microcephalus (BI. Schn.), and other Selachians.PageIntroductory remarksI. The appendages of the Ventrals in the GreenlaudsharkI.
II. The ventral appendages in other Selachians 171. A seneral view of the Copulatory appentages inthe Selachians . 172. Special part . 27.
Selachoidei 27.
Spinacilie: Acanthias vulgaris Risso 27.

- Spinax niger Bonap. 29.31.
Scyllidex: Scrllinn canicula (L.) 32.
- Scyllium stellare (I.) 34.
Pristiurus melanostomus (Bonap.) ... 36
Lamnidæ: Lamna cornubica (Gmelin) 37.
Selachus maximus (Gmmerns) 39.
Rlinide: Rhina squatina (L.) 41.
Cestraciontidæ: Heterodontus (Cestracion) Phillipi
(Cus.) 15
Pare
Carclarindie: Mnstelus antarcticus Gthr. 46.
Batoilei. 5
Torpertinidie: Torperto marmorata Risso 47
- Torpedo oculata Bélon. 50.
Narcine sp. 50.
Rhinobaticle: Rhinobatus colmmine Ionap. 52
Trygonide: Trygon violacea Bonap. 53.
Rajifliu 55.
- Kaja hatis I. 56.
- Raja nidarosiensis Collett 59.
- Kaja clasata L. 59.
- Raja radiata Donovan 63
- Raja fyllit Ltk. 66.
- Raja circularis Couch 67.
Holocephala 6.5
Chimzera monstrosa L 64.
Callorliynchus antarcticus (Lacép.). -4.

3. Which is the function of the appentices genitales? -
Addenda S2.
Explanation of the Plates $3+$

On the Appendices Gienitales (Claspers) in the Greenland Shark, Somniosus microcephalus (B1. Schn.), and other Selachians.

By
Hector F. E. Jungersen.

TThe following treatise has its origin from the circunnstance that during the stay at lceland of the cruiser Ingolf I endeavoured to gather informations as to severab facts concerning the breenland Shark, not yet elncidated. I succeeded only in throwing light npon a single one of these obscure facts by gathering a suitable material. It the subseguent examination of this material I soon perceived that the appendices genitales or claspers of the Selachians generally had hitherto been rery inperfectly exanined although these organs on acconnt of their conspicuons - sonnetimes almost colossa\} dimensions have from time immenorial been known as claracteristic for the males of cartilaginoth fishes. Of their functions only little is known with certainty, and on this point I ann non able to bring. new facts of any innportance; but thongh the function must be supposed to be the sane in all selachians, a rich variation is found in their structure, especially in the skeleton, the structure being different from genns to genns or even from species to species. That, however, throngli all this variation a common type may be shown to exist, also with respect to the skeleton and the musclen, has not hitlerto been seen, but will, I lope, with sufficient clearness be shown by the following treatise. As a consequence of the way, in which the work has come into existence, 1 hase divided it into two parts, of which one deals with the Greenland Slark only, while the other treato of other Plagiostomes and Holocephales.
1.

The Appendages of the Ventrals in the Greenland Shark.

 of the Haaekind deserves to be sonnewhat better known to the learned than hitherto it has hectl may be said to some extent to be in force to this day, onr knowterge of this species of shark heing still rather defective, although it is not only very freguently fonnol in the morthern seas. but in almo in several places the object of a large and regular fishery, as in our morthom dependencion, copecially off the coast of Iccland. It is so far less extmordinary, flat many thinge with regard to

The Ingolf-Expedition. It ze.
its biological conditions are manown, as the same thing may be said of many common species of fishes on onr own coasts; but it seems more remarkable that we do not even know for certain whether the Greenland Shark is Viviparons or ariparons, and that several features of the anatomical structure of the animal are nuknown or only deficiently known. Althongh this species of Sharks is rather frequently found on the more populated European coasts - also on ours - and more than once has come into the lands of naturalists, even anatomists, we are thus far from being perfectly acquainted with the structure of its mrinary and reprodnctive organs.

The facts which have in later years been brought fortli as to the latter - and upon the whole concerning the viscera of the Greenland Shark - are due to Sir Wrilliam Turner, who lias examined several specimens from British coasts and has given his results in The Journal of Anatomy and Physiology, ${ }^{1}$).

As to the female the first of these communications (i) showed the surprising result that oviducts were wanting. Consequently the Greenland Shark would necessarily be oviparous, and the ova, detached from the ovary, would presumably leave the abdominal cavity throngl the abdominal pores to be impregnated ontside the mother. That the ovaries were immature in both the examined animals of a respective length of in ft . S inches and $\mathrm{Sr}_{r_{2}} \mathrm{ft}$. is however evident from the description. Later (3) the first statement is corrected: oviducts ${ }^{2}$) are found, opening as usual in the Sharks with wide, funnelshaped, closely united months before the liver, and ruming along the lower side of the kidneys to the cloaca; in the examined specimen of 7 feet lengtl they were about as thick as a goosequill; the ovaries were quite inmature. Still later (4) these parts are described in a somewhat more developed state in a Greenland Shark in ft. 6 in . long; the diameter of the oviduct was only $3 / 8$ inch (about I ctm.); the ovaries were quite innnature. In none of these communications is shown, whether any shell gland, any indication of an uterns, indications of folds of the mons membrane or the like were fonnd. To judge from the fact of these structures not being mentioned, that nothing of the kind is fonnd, I do not think justifiable; a sliell-gland for inst. is generally always found in Sharks, whether they be oviparons or viviparous; more probably these strnctures on accomint of the immature state of the anmals have not been prominent, and therefore have not been noticed. For that all the females examined by Sir W. Turner lave been inmatnre and young animals admits, I think, of no doubt. The fact is that we know to a certainty that the mature ovarial eggs are about as large as goose-eggs, but the largest mentioned by Sir W. Turner were only of the size of shot or at most of small bullets, and we know that the Greenland Shark grows to a still more considerable size than II ft. S in.; therefore if the oviducts sliowed so small a size and besides (presmmably) so simple a shape, it is only, what might be expected in yonnger individuals 3), and I see 110 reason at all to
${ }^{1)}$ 1) A Contribution to the Visceral Anatony of the Greenland Shark (Lemargus borealis). L. c. 7 , 1873 , p. 233 . 2) Idditional observations on the Anatomy of the Greenl. Shark. L. c. S, 1874, p. 2S5. 3) Note on the Oviducts of the Greenl. Shark. L. c. 12, 1878, p. 6of. fo Adhitional Note on the Oviducts etc. L. c. 19, 1885, p. 221.
\Rightarrow The oviducts harl already been seen in 1847 by Kneeland Boston Journ. Naf. Hist. 5, p. 479, 485 in a specimen of the length of 7 ft 5 in : the ovaries were immature. The first statement by Sir W. Turner has been repeated by Fürbringer: Zur vergl. Anat. u. Entwickehngsgesch. der Excretionsorgane der Verteloraten (Morphol. Jahrb. \&, is 7 (8) p. 53, S_{3}; it is found as late as in Guicho Schneicler: Ueber die Entw. der Genitalcanäle bei Cobitis tania L. und Phoxinus Luzis dg. Mén. .ic. hup. 1. Sc. cle St. Pétershourg [\$] T. 2, 1S95) p. 9.
3) Comp. Joh. Müller: C'ntersuchungen über die Eingeweide der Fische, Schluss der vergleicheutle Anatomie der Myximoiden Abhal. K. Ac. Wiss. Berlin IS+3 [IS45]), p. 133, $13+$.
suppose, as Sir Wr. Thrner ${ }^{1}$) does, another mocle of bringing forth the (Ma inn this than wher rether Sharks; the ora certanly all get into the oriduct, and are impregnated there; whether ther later are laid or develop into embryos in the utems must for the present be left modecided al

On the internal reproductise organs of the male only one commmnication (2) has been siven, concerning a specimen of the length of 6 ft . I in. The testes were immature; meithor ho dine direct examination of them and their mesorchinm nor by injection from the renal duct was Sir W. Tr in 18 er able to detect any duct for the sperm, and from that he infers that dostinct sexual ducts are also wanting in the male, and that the sperm is evacnated into the abolominal cavity, thus fuite corresponding to the case of the females, as it the previous year had been understond with regard to thone: but while the statement has been corrected by T. himself with regard to the latter, mothing has as yet come to light conceming the male. I think, lowever, that the supposition is allowable, that T:'s inference is premature also with regard to the male; it is likely that vasa efferentia in this yonng, innmature specinen (which 'T'. himself declares to be of immature growth , were either not formed at all or at all events not in a directly visible way ${ }^{3}$. It must appear quite natural that alho the external male genitals were quite mandereloped in this specimen; the copulatory appendages were only of a length of $\mathrm{I}^{3 / 4}$ inch, and were far from reaching the end of the fin-membrane see the fig. 1. c.
p. 2s-). But these copulatory appendages seem always to have shown a quite similar mudever
${ }^{1)}$ Sir W. Turner evidently has not been able quite th dismiss his original concention of the wacuation of the ova through the abdominal pores to which for the rest every parallel wond be wantimg as the Cyclostomes have no abdominal pores): tren in his latest communication (4. IS85 p. 222 T . says: But, as it is fery doubtful if the entire surface of each ovary conld be embraced by the spathe-like canal (i.e. the mouth of the oviduct, a proportion of the ova would probaldy he shed into the peritoneal cavity, and lee evacuated through the abolominal pores
 Naturh. Foren. i Khhon. 1579-So; p. 56) has tricd to make it probable that the Gremband shark shonld be oniparons, and moreover have soft, shell-less cygs, which is known in no other phagostome: Among the reasons that might give sombe conntenance to this motion sir W. Turner's anatomical results are quoted. It is quite evilent that if T's first communication of the want of owiducts had bewn correct, a teposition of the esgss, and an impregnation of then ontside of the bods of the female wonld have been as georl as prosed; but the later informations from the same anthor are in my opinion of such of nature, that they can he used as proofs mether for nor against a deposition of the equs. but might comected with my demonstration in the following, that the male Greemband shark hats fully developed copulatory wrgans - be used as profs of the eggs, as generally in sharks, being impregnated in the widuct. The other reamons for a deponition of the caxes. quotent by Irofessor L., viz. the begative one that we have never hitherto got any foetus of the (irecmland shark, and the more punitive accounts from several laymen of mumerons larse eqgs, but alwass in the females, camme. I think, prove an thing wither in one or the other direction. Aganst the first of these reasons may he choted the equally negrative circumstance thost me
 evidently ovarial eggs still coherent by the thin, distembed warial stroma; for all informations also thone 1 hate ant

 Shark, the other Sommosus-sjecies, mast he viviparous.

 the Vorkeimfalte of semper, i. ce the prart where the now ampulle are momed.
loped condition in the other (and it turns out to be very few) male specimens, mentioned as examined by naturalists.

In this circumstance, in comnection with the interpretations by Sir W. Turner of the genital apparatus in both sexes, is most likely to be songht the reason of the idea that the Greenland Shark only should be possessed of rudimentary copulatory appendages. This supposition has been set forth by Professor Luitken in the communication on the propagation of the Greenland Shark, cited on p. 3 note 2. In this paper Sir W. Thrner's description of the reproductory organs both of the male and female is reported with the following remark: Of what use the copulatory members of the male were was not evident; but perlaps these organs are in this species of Sharks rudimentary structures without any importance? At all erents I know no descriptions giving them a size like that found in the Spiny Dog-fish or the Pasking Shark. I must confirm the latter sentence myself. It was to be expected beforehand that, if the male of this species had really copulatory appendages of proportions relatively as those of other species, so promment formations would scarcely have escaped the notice, but wonld probably have been mentioned by one or more of the many earlier anthors, who have written of the North and the Northern nature, in which writings the Greenland Shark and the catching of it bear a part, and of whom more, I suppose, have had the opportmity of knowing the animal by antopsy.

However, I have in vain sought in authors as: Egede, Cranz, O. Fabricius, Scoresby, Eggert Olafsen, Molir, Olans Olavins, Faber, Pontoppidan, Strom, Leen, Rosted, L, andt, and others; I find nothing concerning this point. Only Gunnerns ${ }^{1}$ mentions these organs, which we have reason to take to be the external characteristics of the male, but in madeveloped condition. Gunnerus had 3 male specinens, the largest not exceeding 5 ells (Danish) in length, and the smallest being $2^{\mathrm{T}} / 2 \mathrm{ell}$; the figure shows the appendages quite small, shorter than the finmembrane; besides it is evident from his description, that he himself justly thinks his specimens to be young animals.

I, ater anthors too do not mention appendages in more developed condition; they are on the whole (as far as I know) only mentioned by Yarrell and by Malm. Yarrell${ }^{2}$) says of a specimen described by Valenciennes3): The fish was a male; the rentral fins and sexnal appendages or claspers very small. Valenciennes hinself, however, says nothing of the sex, and does not at all mention the appendages; he only says that the ventrals are small, so that possibly the cited remark of larrell has it origin from a misreading. Nalm +) mentions two males, which he correctly declares to be young, respectively of a length of 1850^{mm} and $1880^{m i n}$; the length of the hijelpgenitalia was in both 25^{mm}; they did not reach the end of the rentral fin. Onky in one place I have fonnd a statement suggesting, that the authors in question have had the opportunity of seeing the appendages of the Greenland Shark in a more developed state, viz. in Miulfer and Henles). They divide the genns Scymmes in two subgenera: 1) Scymmus (to which Sc. lichim and S. brasilichsis), characterized among

[^3]other things bỵ: Die männlichen Anhänge olne Stachel, and 21 Lamurgus (to which $/$. burculhs |the Greenland Shark|, L. Labordii and L. rostratus) in which: die Männchen haben cincn Stachel ant den Anhängen. But whence have II. \& H. this latter information? The work itself tells mothingr about it, and in none of the works cited is fonnd anything abont a spine on the appendarse in S: bormlis (and no more in the other species).

After Professor Lïtken having given the cited commmication about the propagation of the
 whose ventrals are preserved in the collection; also in this specimen the copmlatory appendages are very small as hereafter mentioned, and so far they might serve as a corroboration of the adranced conjecture, that in this Shark these organs should be rudimentary and functionless.

As I, however, had some doubts of the correctness of this suppusition as also of the other that the Greenland Shark should be owiparous - I endeavoured during the last cruise of the lngoli to get fins of the Greenland Shark for examination, and as far as possible o procure reliable informations of this Shark in all respects. During a stay in the close of June isg6 in Dyrefjord, where a manufactory for train-oil of the Greenland Shark is fornd, I took the opportmity of communicating with a fisher of Greenland Sharks, whon I for some time questioned by means of an interpreter. The conversation was ratloer difficult, as the man was somewhat embarassed, only answered to my questions, and wonld not speak himself or sive his mwn opinion. However I arot the information that the fishermen know very well to distinguish between male and femate, that egres (i. e. the large ovarial eggs) are only found in large specimens, and that the males are smafler than the females; he had however never seen a (ireenland Shark smaller than abont 3 ells (Danishif). I drew a sketch of the ventrals for him, and asked, if he had seen the appendages on the ventrals, which he affimed: then I promised him a reward, if he would obtalin for me as many pairs of ventrals as possible, and with as large appendages as possible, which he might preserse in brine, as also a whole and somnl male, as I supposed that I should be back in Dyrefjord about at the time, when he shond return to deliver his next cargo of liver, this, as is well known, being the only part of the animal made use of. Circumstances however would that the Ingolf did not return on the Dyrefjord matil the begiming of August, and so I did not find the man again. But I found at the manufactory a great deal of pairs of ventrals in brine, all with the appendages and with these in different stages of development. together with a whole male, the last the fisherman had canght; he had during the whole time fers carefully kept the last canght male for preservation, and had come on the byrefiond with a quite somd specimen, which was also the very smallest he had got; but as 1 did not relurn in due time also this specimen was put into brine. Apparently everything had kept very well by this mode of preservation, the fins at all events excellently; but by the dissection of the whole Shark it soon became apparent that all the internal organs were sadly danaged: the kidneys and the intemal mponluctive organs were completely disorganized, so that nothing whatever was to be recognised; wot even the renal ducts that use to be rather resistant, were to be traced at all. I was thas disopponted in mas

1) Collett however states that specimens of a length of about 2 ft sombetimes have beron oblathed: probshly

hope of being able to give a good acconnt of the structure of these organs, and must be content to give informations of the external copulatory organs.

The whole Shark was about $\delta \mathrm{ft}\left(2^{\mathrm{m}} 50^{\mathrm{cm}}\right)$ in length, and its ventrals, as also their appendages, were smaller than any of the other cut off ventrals and their appendages, which latter were also much more developed; unfortmately no statement of the length of the respective animals was given. But if we start from the supposition, which I think most likely, that the rentral proper grows in proportion to the amimal itself, we can with some certainty calculate the size of the animals, to which the cut off fins have belonged; and judged by that they have all been large anmals between 3 and 5 metres, the largest at all events upwards of 6 ells (Danish).

I an not able to decide with perfect certainty, if any of the obtained ventrals have the appendage so large and developed, as it possibly can be; but at all events these organs are so far developed in the largest specimens that they will scarcely change their structure in any considerable degree, even if they become somewhat longer. In the largest fins the free end of the copulatory organ reaches about 5^{cm} farther back than the point of the fin-membrane itself; in the somewhat smaller ones $3-4^{\mathrm{cm}}$, and in two a little smaller still abont 1^{cm} behind the point of the fin. In the smallest specinen finally (the abore mentioned animal $2^{\mathrm{mm}} 50^{\mathrm{cm}}$ long) the point of the rentral on the contrary reaches $2-3^{\mathrm{cm}}$ farther back than the point of the appendage. Between this last specimen and the immediately preceding the above mentioned specinen of the musemm (which however is partly skeletonized) may be placed with regard to size and development. Here accordingly we have a series showing the stages in the growth of these organs, well known from the other Sharks, from small short rudiments, shorter than the ventral itself, to a more or less considerable length beyond the inner edge of the rentral. Thus every idea of the Greenland Shark differing from other Sharks in only possessing rudimentary ventral appendages must be dropped.

About the remaining extemal features of the organ I shall confine myself to state, that its whole dorsal surface (i. e. the surface which in the natural position is in contact with the ventral side of the body) as well as the adjoining part of the fin itself is quite naked and smooth withont dermal teeth, which is also the case with the medial surface, where those of the same pair are in contact, while the ventral surface (as in the remainder of the fin) is clothed with dermal teeth, however more sparsely and sparingly towards the point, the ontermost part of which is naked and quite soft. Otherwise these organs are in their developed state stiff and hard on accome of the strong internal skeleton. On the lateral side of the end is felt throngh the skin a particnlarly hard and movable part of the skeleton, and in most of the specimens this part is naked and appears as a pointed, polished thorn or spine. I can however assert with certainty that in all the specinens, I have bronght home, it has only been laid bare by the skin on the spot being torn; it is also seen quite covered in the right clasper of one of the largest specimens. I suppose, however, that before the member comes into fmotion, or at the function, this spine is movered; in fully developed appendages of Aconthias and Sfinax at all events both the corresponding part and one or two more parts of the skeleton protrnde naked, meovered by the integument; and in the circmmstance that in all these fins the spine surely only has been set free by danage or by bad preservation, I find a positive intination of their appendages not yet laving reached their greatest development. This
spine is still plainly felt in the somewhat smaller fins, excepting the two smallest; in these eviclently it has not get been calcified, no more than most of the other parts of the sheletom, characterizingr the end or terminal part of the developed organ; therefore these small appendages are upon the whole rather soft to the feeling and with flexible ends.

The form of the developed appendage is straight, somewhat dorso-ventrafly flattencel; a distinction may be made between the considerably longer proximal part, which might be called the shaft, and the short distal part, the terminal part, which is free of the fin, and, as will be more particularly bespoken hereafter, possesses a certain linited mobility; the largest breadth is found immediately before the terminal part; on the dorsal side, somewhat nearer to the latemal than to the medial edge, is seen the pectuliar cleft, the appendix-slit, which is fomnd in all Sclachians; it reaches to the posterior end of the member, and leads in the free part of this into a decp canal, more anteriorly into a glandular bag, which, like a deep pocket, at the base of the appendage goves romnd to the ventral side of the fin, and here under the skin reaches - according to age and development a longer or shorter distance towards the pelvis. The inner walls of this bag are smooth, partly pignnented, and from their epithelinm is secreted a peculiar fluid, which when coagnlated is tallowT, but whose function is not certannly known. This bag, as to its origin, is simply a folding in of the onter skin ${ }^{1}$); it is surromeded with muscles, able to press the secretion into the canal and through the slit to the exterior. The imer (medial) lip of the slit is immovable and cannot be displaced, while the onter (lateral) one till near the temmal part consists of soft tissne, and is therefore easily: opened, so that a finger may be introduced into the bag; but at the end of the shaft, immediately: before the temmal part, all dintension is prevented by the inner skeleton, which is fonnd here, and straightens the slit, so that it becomes very narrow; to the distal side of this straightening, in the terminal part ifself, the canal may again be opened, and it will open spontaneonsly, if the temmal part is bent a little in the ventromedial direction, in which case the spine will at once erect.

The following measures referming to the largest appendages, may be added:

The skeleton (pl. I, fig. I-9). The skeleton of the ventral fin in the mate comsists of i) the pelvis, 2) the axial part or the stem, which laterally wears 3) the risys, and ate a contimation +) the skeletun of the appendage.

The structure of the pelvis is as commonly in the Sharks, it eomsisting of an unpaired, someWhat arcuated eartilage, the surface of which is rather shightly calcified; it hata the greatert thickiness

[^4]in the middle, and here projects from the posterior edge a clumsily ronnded process. The stem of the ventral articulates by its principal piece, the basale, (pl. I, fig. I R), with the lateral end of the pelvis, as do also a pair of the foremost rays. The foremost ray (R) is always short and big, shaped like the blade of an axe, whose head articulates with the pelvis, the hindnost corner of the blade with two small terminal joints; it bears the second ray, which is accordingly ont of connection as well with the stem as with the pelvis; sometimes it is proxinally coalesced with R. The third ray has pressed so far forward, that it articnlates both with the sten and the pelvis. Most of the other rays are more or less straight, cylindric, distally a little flattened (especially in the foremost ones); the two (less frequently three) hindmost are always somewhat bent, so that the convexity turns dorsally, owing to the fact, that the glandular bag from the dorsal side passes under them to the ventral side of the fin. These two hindmost ravs are often more or less minted, sometimes almost quite coalesced. The foremost rays (more than half of them) have three joints, then follow some (3) with two joints, and the last (3) are never jointed. The number of rays varies from $12-16^{\text {r }}$); connmonly one fin of the sanie pair has a ray more than the other, and a rather considerable variation is fonnd in the more special relations of the rays, in their mutnal coalescing ${ }^{2}$), their articulation, and distal dichotomy: sometines an extra ray is inserted, not reaching the stenn; such extra rays have not been comnted in the numbers given, and they do not ocenr symmetrically in both fins. Sucln variations are also known in other Sharks3), and I shall not here enter into further details, as they are of no importance for the examination in question.

The stem consists of I) a large and big principal piece, Busale metapterygii (B), to which most of the rays are attached; its inner edge is alnost straight, only slightly concave, the onter edge is convex; 2) a short piece (b_{2}) directly continuing the foregoing; 3) generally is on the medial side inserted, as it were intercalated, a little cunciform piece (b_{1}). The piece b_{2} bears the two hindermost rays, so that the last but one is articulated at its proximal extrenity, and here also tonches the basale, the last at its distal extremity, where it has also a little articular surface with the proximal end of the stem of the appendage. Finally is found 4) a rather considerable piece (β) placed on the dorsal side of the stem in sucli a way, that it is proxinally comected with the latero-dorsal comer of the basale by a little articular surface, and distally by a longer, obliquely placed articular surface with the latero-dorsal edge of the anterior end of the appendix-sten (fig. 2 at x). This piece β is rather thick, dorso-ventrally somewhat flattened, has a convex medial edge, and a straight lateral edge; posteriorly it is somewliat more pointed than anteriorly; the foremost part of the convex edge is connected with the dorsal side of the piece b_{2}; it has no articulation at all with any of the rays 4). Between the lateral corner of b_{2}, β, and the appendixsten 5) a little piece b_{3} is sometimes intercalated.

Then follows 6y the appendixskeleton. Its chief piece (tab. I, fig. Ib, fig. 2, 3) evidently lelongs to the stem, and is placed in inmediate continnation of the foregoing pieces, witl

[^5]Which it forms an to he sure very obtuse angle. In a fully deroloperl skeleton the ehici plece is
 side it is rombled, in the foremost thind part somewhat dorso-ventrally flattenced; the faterat sumface (h) is more or less distinctly bomeded from the other surfaces; it is only in the fore part somewhat ronncled, posteriorly it is flattened, and the hindmost part is somewhat hollow; on the dorsal side this lateral surface is in the whole length of the piece sharply limited loy a thin, eterated, hard calcified ridge (fig. 2, 3, Rd), anterionly besiming as quite low, posteriorly becoming higher and higher, as well as thicker, and bearing in the posterior half an edge, folded th the domsal side, firtegndarly indented, and collarlike; on the rentral side (see fig. 3) the lateral surface is in the greater part of its extent much more indistinctly bounded by an evenly ronnded eminence, which is mot harder than the common surface; in the posterior part, howerer, rises rather suddenly a shont, calcifical, strong ridge or plate, which in the shape of a large foliaceons process folds user to the dornal side, whore it approaches rather near to the opposite edge (fig. 2, 3, Rat). The free edge of this folded process is thickened, and irregnlarly rugged. The described elebated ridges or plates in comection with the flatly hollowed hindmost part of the lateral surface forms the place of part of the appendix-slit of the excretory duct of the gland-bag; these hard parts of the skeleton it is, that, as mentioned on p. 万, prevent a distension of the appendix-slit.

Immediately behind the end of these calcified ridges the chief piece continnes as a thin, romnd, finger-shaped elongation, the end-style (fig. r, 2, 3, g) ; it is soft, or at all events at its base quite devoid of calcification, while farther ont a slight surface-calcification may be fomd. Else the chicf piece is everywhere calcified on the surface being anteriorly somermat rongh for the attachume of the musclesh, and more calcified than the basale and the rays, but the above mentioncel ridges (Rd, Ral are completely calcified and lard. When such a chief piece is dried, these ridges therefore will not shrink, but rise distinctly as independent parts. Jiy a close examination of an undried chief piece the boundary lines of these calcified site-parts may also be distinguished, and thus we shall arrive at the same result: the chief piece is composed of three parts, viz, the appendix-stem (b), posteriorly becoming lanceolate, mediolaterally compressed, and ending as a slender, thin, (at the base) malcafied end-style, and two calcified marginal cartilages, mue long, slender, dorsal, the other shorter, broader, ventral (Rd, R'r).

To this chief piece are attached a number of terminal pieces, more or less manaly fonincul to each other and to the chief piece. Of these pieces two join the posterior burders of the marsinal cartilages and the end-style of the stem, and form, as a kind of contimation of the marginal cantilages, the dorsal (dorso-medial), and bentral (ventro-lateral) borders of the hinder part of the apperndiv-slit; thesce two pieces are here called respectively the dorsal and the ventral tormimal piceco (To, Tivo

 towards the appendix-slit slighty hollow in the formost two thind parts; the thick medial cdge in by means of commective tissue closely connected with the end-strye, the anturime with whe domal marginal cartilage. It is completely calcified, and the surface, especially towards the temminal chrl, is rugged and rongh.

The ventral terminal piece (fig. i Tî, fig. 6,7) is considerably larger; the surface towards the appendix-slit is deeply hollow like a trongl, the external, ventral, surface is rounded, and has laterally a winglike, sharp process; it is also completely calcified, and a great part of the surface is irregularly furrowed and rugged. The one anterior edge of the trongli articulates with the ventral marginal cartilage, by the inner, ventral, edge it is connected with the style.

Between this piece and the oferlapping plate of the ventral marginal cartilage is seen a thind terminal piece (fig. I, T_{3}), the thorn or spine (fig. 8,9). It is, like the other pieces, quite hard, and the proximal end is somewhat head-shaped with a smooth surface, almost like an articular surface; else it is for a great part very irregnlarly rugged and furrowed, but the outermost point is glossy and smooth, dentine-like; the whole thorn is longitudinally somewhat twisted.

Besides these fully developed terminal pieces indications of two more are to be seen, viz. a thin, narrow lamella, only calcified in spots, joins the lateral edge of T, and supports the edge of the dorsal lip of the appendix-slit; anteriorly it reaches somewhat beyond $T d$; this indicated piece is here designated as $T d_{2}$ (comp. pl. V, fig. 61, 62); the second piece is a very firm and strong fibrous tissue, joined to the anterior dorsal edge of the piece $T_{\tilde{r}}$, and without distinct borders merging into the aponeurotic covering, connecting the thorn, the piece T_{i}, and the overlapping plate of the marginal cartilage, and serving for insertion of part of the muscles (see pl. V', fig. 61, 62, $T_{i_{2}^{\prime}}$); in this latter piece a calcification has commenced, indicating perhaps, that it might become a separate terminal piece, which I shall designate as Ti'z (comp. other Plagiostomes for inst. Spinax). As these two last mentioned pieces are, as it were, still developing, I suppose, that even the most developed of the appendices in hand cannot, in a stricter sense, be said to be fnll grown yet; but as the piece Tr'z also in sonne other Slarks (f. inst. Lcanthius) is fonnd only indicated and mealcified, even in quite developed appendices, my supposition is not quite reliable.

The whole of this terninal skeleton, composed of the terminal pieces and the end-style of the stem, is morable to a certain degree; as to further details on this point the reader is referred to p. 14 .

By examining the appendix-skeleton in the earliest stages of development we find that originally it is composed of only one single piece, being that, which abore is terned the appendixstem. This in the specimen froun Iceland, $2^{\mathrm{m}} 50^{\mathrm{cm}} \mathrm{long}$, and in the specimen from the Zoological Musenm, 9 ft. long) is still quite soft, shorter than the basale, anteriorly ronnded, posteriorly lanceolate, the edges of the lancet being placed almost dorsally and rentrally, and ends as a thin style (see fig. 2 in the text p. 19); thns mainly rendering the form of the chief piece minus the marginal cartilages. Of these latter as well as of the terminal pieces no trace is found. In somerliat more advanced stages, where the appendin-stem is as long as, or a little longer than the basale, the three terminal pieces and especially the thorn are very well to be distinguished, while the marginal cartilages still are absent, or, at all events, in the fibrons tissues, occupring their place, no calcification or distinct bordering of such cartilages is to be found (not even of the overlapping plate). In still a little more adyanced stages also the marginal cartilages are found in the sane shape and with the same bordering as in the most developed, but the boundary lines between them and the stem are much more distinctly marked; they are calcified, but are still soft enongh to permit of easy cutting;
to the naked eye the section shows a particular fibrons texture (as in sections of the temminal prieces) and a whitish colonr, distingushing it distinctly from a section of the appentix-stem or any other part of the skeleton proper, for inst, a ray or the basale, the surface of which will be hyaline. firm these developmental facts it will appear with all desirable distinctness, that the maryinal cartilages and the terminal pieces are secondary parts of the skeleton, developerl in the tissues surronnding the primary skeleton, properly so called. Thus of the appendix-skeleton omly the appendix-stem, the piece b, belongs to the primary skeleton.

To resume what is said abont the appendis-skeleton in the Greenland shark:
The appendix-skeleton consists of a chief piece and terminal pieces mosably commecter with it; the chief piece is fomed by the coalescing of the appendix-stem with two secondary calcified cartilages, the marginal cartilages; the appendix-stem belomgs to the primmodial axial skeleton of the ventral fin, being the terminal joint the extremity of which remains soft; the tetminal pieces are all secondary calcified cartilages.

The muscular system (pl. V, fig. 58 to 62) follows the type, which has been deseribed in Acanthias by $:$ Davidoffli this type, however, has been founded on the structure of the ventrals of the female; the rather considerable differences from it are due to the copnlatory appendares, for the special mse of which special muscles have to be developed. Distinction may be made betwern: I) The fin muscles proper, and 11) the muscles of the appendage; as, however, some of the former spread over part of the appendage, this distinction cannot be made quite distinct.

1. In the fin-muscles proper may be distinguished, as \therefore. I) avidoff and the eartier anthors do, between the muscles of the ventral and those of the dorsal side; they are antagonistic, the fomer adducting the fin, and removing it from the abdomen, the latter abolucting the fin, and pressing it agranst the abdomen.
I) The ventral muscles of the fin consist of a a medial muscular mass, chiefly reaching from the pelvis to the stem-skeleton of the ventral, with laterally and obliquely-posteriorly directed bundles of fibres, and b) a lateral mass, the muscles of the rays, issuing from the stem-skeleton, and following the rays to the fin-membrane.
a) This powerful group of muscles (pI. V, fig. $5^{5--6 T,}$, and E) in su far does not wholly helong to the ventral side, as, besides forming the medial edge of the fin, it is also seen om the domeal side. Looking first at its ventral side we find its migin covering almost the whole ventral surface of the pelvis: between the fin-muscles of the two sides only a triangular piece of the pelvis is to lee seen in the middle anteriorly, from the top of which a narrow macovered streak rmme hackwand to the end of the abose (1. S) described process; from this issues further loackward in the linea allat an aponeturotic streak (fig. 58, s), which continues the pelvis, and serves as attachmont for part of the same muscular mass. The superficial ventral part is for the ereater part compuned of dintinct bundles of muscles, enveloped in rather firm sheaths of connective tissme, and mostly comrspmothmin inmmber and direction with the museles of the rass; lont this composition of isolated bundles is cifaced anterintylaterally and posteriorly-medially:

Anteriorly the fibres rumming obliquely from the pelvis towards the onter mangin of the hat

[^6]form a rather solid mass spreading from the fore edge of the pelvis over the broad ray R. The foremust of the following distinct bundles of muscles cross the rentral surface of the basale reaching as far as to the horny filaments of the fin-membrane, ending liere in a tendinons mass; the following bundles only reach to the basale where they are inserted with tendinous ends, fron which tendinons part the ray1111scles originate as a prolongation - however, when we look fartlier backwards, with a distinct interposition of a narrow stripe of the basale. Between the said foremost bundles, continning immediately in the ray-muscles, and those attached to the basale, a gradual transition is fonnd, a tendinons part in the superficial layer of the bundles being inserted on the place of transition.

The hindmost and medial part of the muscle A is not composed of isolated bundles, but its fibres running rather straightly backwards forn a solid mass, inserted on the distal end of the basale, on the pieces b_{1}, and b_{2}, and on the proximal end of the clief piece of the appendage (b).

The whole mnscular mass, as mentioned, is of a considerable thickness; its deeper part which is also seen from the dorsal side, is not divided into separate bundles; this deeper, more dorsal, part originates from the ronnded posterior surface of the pelvis, and even reaclies to its dorsal surface; it is inserted along the medial side of the basale and the following joints inside the insertion of the described sinperficial ventral layer.

With this muscle A is closely connected another (pl. V, fig. 59 and $6 r$, E), chiefly seen from the dursal side. It originates on the medial side of the basale, a little before the middle, its fibres crossing those of the muscle A, and spreading over the appendage; as above the knee: of the latter the fibres run obliquely across the medial edge of the fin and on to the ventral side, part of the edge of this muscle will consequently be discernible on this side (pl. V, fig. 5^{8} and $60 E$). It is spread like a cloak over the chief nunscle (D) of the appendage forming a rather thin plate and growing thinner from the ventro-medial edge laterally (cp. fig. 1 in the text); its fibres are attached, partly along the narrow ridge, formed by the clorsal marginal cartilage along the appendix-slit (fig. 61 af) partly, distally, to a thin, firm aponenrosis (fig. GI a) covering the muscle D, and attached to the elevated distal part of the dorsal nuarginal cartilage (Kd). In somewhat older animals with well developed appendages this 1111scle E is as well proxinally as distally distinctly separate; in yonng animals, lowever, with only little developed appendices (fig. 59) the distal part is still very distinctly marked, but the proximal part is less sharply separated from the large muscular mass \mathcal{A}; numerous bundles coming from the pelvis and the aponemrotic streak s minite with those from the basale, and munerons bundles from the basale rnn over anong the former and reach to the proximal end of the appendix-sten.

The above described muscular group consisting of the minscles A and E, will, according to circumstances, be able to act in two different ways; these muscles will, when the antagonists of the dorsal side are not contracted, move the fin from the abdomen, and at the same time draw its inner edge torrards the nedian line, thas moving the two fins towards each other; and when the dorsal antagonists act on the fin, they will move the appendix only, towards the median line, thus acting as extensors for the appendix; the latter action will be facilitated by the muscle E acting rather clistally on the appendix (an effect as to the opening of the appendix-slit is of conrse ont of
 pimma (et "ppondicis), the muscle E as Alusco attonsor (afpomdicis)').
b. The ventral muscular system of the rays (fig. 58 , (x) , Rou) is componed of distinctly separated bundles of fibres, or independent muscles in mamber cortespondins with the rats they follow; only anteriorly the independence of the ray-muscles, as mentioned abowe, is concealed by araiencence with the lateral bundles of Ifuse udductor, coming from the pelvis. The raymuncles originate on the ventral surface of the basale and the piece b_{2}, and run1 laterally backwards in an whigut direction, each following its ray, but without reaching the end of it; they only reach the horny filaments othe two layers of which comprise a rather considerable part of the lateral embs of the rayy and hore pass into tendinons tissue. 'The hindmost ray-muscle is mannentary; it doce mot originate on the stenn-skeleton, but on the last ray but two, and passes to the last but once and on to the innmembrane.
2) The dorsal muscular system of the fin proper (pl. T, fig. 59) is connjosed of a) a superficial part originating fronn the lateral munscles of the body, and b) a deeper-lying part originating from the stem-skeleton.
a) On a part of the body, corresponding in lengtio to the comection between the borly and the fin, a system of distinct musenlar bundles (O) originate in the aponemosis covering the lateral muncles of the body, and run obliquely ontward and backward to the homy filanents, where they pass into tendinous tissue; thus their ontward border corresponds to that of the ray-muscles on the ventral side. being considerably distant from the ends of the rays. The linannost of these bundles are directerl straight backwards, corresponding to the direction of the last of the rays. finthermore from the maner side, the side towards the mascles of the body, of the said system some bundles of fibres (f), originate rumning obliquely backward and inward, and attached to the hindmost half of the basale and to the dorsal piece β; thus the whole system oriynating from the lateral muscles, is, as w the hinder half, arranged in a feather-like or fanshaped way.
b. Quite covered by the superficial layer just described the deeper layer of the dorsal raymanscles (fig. $59, R(a)$ is fonnci. These moscles originate from the dorso-lateral sifle of the basale and of the piece b_{3} as well as from , and are seen as distinct bundles corteponding in their mumber and direction to the rays; they pass into tendinons tissue inmediately before the lateral ends of the mundles of the superficial layer, so that the latter reach a little way farther on the rays Howtorm, theac two layers are not quite sharply separated, bundles of fibres fron the superficial layer rathing w the deeper, and comnecting with it; on the hindmost fin-rays the bundles of the deepre lay crons those of the superficial one, this latter spreading in a fanslaped way from the attachument the bonly.
11. Besides the described separate parts of the fin muscles comnected with the aprondis

 (1) the bexly itself fige 59 and 6 , O).
other muscles are found, more especially belonging to this organ, it being inside the skin quite surronnded by muscles except the teminal part. In this muscular system may naturally be distingnished between: 1) The muscles of the chief piece, and 2) those of the glandular bag.

1) The first part ($\mathrm{pl} . \mathrm{V}$, fig. $58-62, D$) is composed of one single muscle wrapping in a cloaklike manner the whole of the chief piece from the dorsal marginal cartilage to the ventral one, and to the romded edge formed by the appendix-stem itself along its lateral surface above this short marginal cartilage; the part of the chief piece sitnated between these bounds, the lateral surface is for the greater part covered by the muscles of the glandular bag (see fig. i). The large muscle D is thickest along the medial side of the

Fig. r.
Part of a transverse section through the appendage of the Greenland shark labout 26 mm behind the beginning of the appendix-slit). b the appen-dix-stenn; D.M. ditatator; E M. extensor; S M. compressor; of the appendix-slit; r a ray; h homy filaments. appendix, and is chiefly composed of longitudinal fibres arising from the whole length of the chief piece; from the foremost part of this, below the knee, arise some specially powerful bundles, and consequently this part of the surface of the skeleton is very rugged; also from the lateral edges arise mumerons fibres and bundles, and distally several bundles come from the covering aponenrosis a (see pl. V, fig. 6r). Corresponding to the form of the appendix-stem this muscle tapers distally, and its hindmost fibses reach to the base of the style. It is inserted in the firm aponeurosis covering the marginal cartilages and the whole teminal part, and thns it acts on the strle and the two terminal pieces $T d$ and Tí. In contracting it bends the style medially forward at an obtnse angle to the chief piece, whereby the two temmal pieces are also moved; at the same time the thorn is erected on account of its comnection with the other terminal pieces, especially T_{i}, and stands ont laterally; as a consequence the distal part of the appendix-slit sitnated between these movable pieces, is dilated to a rather considerable degree. I therefore (like Petri) design this muscle as J. dilatator.
2) Among the muscles of the glandular bag I do not only class a) the muscles immediately wrapping this organ, but alsu b) some portions (fig. $6 \mathrm{r}, 62, S$) arising from the hindmost rays, and forming, in my opinion, with the glandular bag an insolyable whole, only artificially to be detached from it. The glandular bag, as I muderstand it, has its origin from an invagination of the skin into a muscular mass laterally covering the stem-skeleton in the appendix; by the further growth of this invagination on to the ventral side of the fin part of the muscular mass was bronght along as a kind of wrapping of the bag and developing further together with it. Consequently this wrapping cannot be regarded as demmal muscles but belongs to the skeletal muscles; it is also composed of quite the same striated fibres as these; its original relation to the stem-skeleton may, in the fully developed organ, be seen in the still existing attachment along the lateral surface of the appendix-stem (see the transwerse section, fig. i in the text).
a. The glandular bag (pl. V', fig. $58,60.5$) is seen on the ventral side of the fin, where it reaches forward covering a smaller or larger part of the ray-muscles, according to the development of the whole appendage; while in the yonngest specinnens it only reaches very little beyond the
knee between the stem and the chief piece of the appendix (ci. fig. 58), in the most develoned it reaches almost half way towards the pelvis (cp). fig. Go). As the glandular bag in ment of the other Sharks, which I have examined, reaches still further, gencrally even far beyond the pelvis, there is reason to suppose that in none of the ventrals of the Greenland Shark in hand the whole copmlatory organ has reached the greatest development, which was ahrealy intinated by the description of the skeleton of the terminal part.

The connective tissue, investing the mascle-sheath of the glandular bay, in continncel an all the specimens as a very thin membrane between the skin and the ray-musclen almost the the pelvis: this membrane may easily be separated as well from the skin as from the nunscles, but in the specimens in hand it (perhaps as a consequence of the preservation in brine is very frasile; it contan, no striated muscular fibres.

While the dorsal muscular wall of the glandular bag has no intinate connection at all with the part of the fin before the knee - only a loose, suft connective tissue here joining the bas th the ray-mmseles - it is otherwise at the proximal end of the chief piece, part of the muscles of the bag being inserted on the lateral surface of this part of the skeleton, covering it wholly, and followings it quite down to the terminal part; other fibres attach to the last ray along its medial edge; ancl some fibres arising from this spot and from the ventral surface of the two last rays, pass into the dorsal muscular wall of the glandular bag and continne it to the ventral marginal cartilage, where they attach to the connectise tissue of its inner side.

The direction of the fibres of the dorsal muscular wall of the bace otherwise comperponds to that in the ventral wall; as shown in fig. 60 , the fibres radiate from the point, where the conncetinn with the skeleton anterionly ceases; along the medial side they run almost in a parallel drection with the axis of the bag and the appendage, but else on the broader part of the bag they spreat in it fanshaped manner to the hateral edge; on the hindmost narmow part they run entirely straight latkward, and lere a few bundles pass into I. dilutntor. This arrangennent agrees very well with that, which fibres originally directed from before backwards, might be supposed to get he being prensed out of their position by an invagination protruding from the region between $\times \times$ in fig. (oo. A selpatation of the mascular wall of the bag into two distinct layers is quite ont of the frestion. Writh requal th LConthims Petri (1.c. p. 3i6) has stated that the muscular wall of the bas consists of two layers, an onter one of circular muscles, and an inner one of longitudinal muscles; a sepmatinn and armaremont

 wird nicht mit eingestiilpt, sondern sie differenzint sich allmatich ans der bindege wehsochicht nath der Einstülpung. (Cp.also l.c. p. 328). In my opinion, as before las becth shown, it ahmits of mo doubt that the minseles of the bag are simply burrowed from the orisinal musculat whinn of the skeleton ${ }^{1}$; in the earliest stages of Acanthims - male embryos of a lengeth of 155^{m} which I hanc
 aheady as distinct as those smomoming the stem of the chici picce, and the mmonhar hay of

[^7]the bag has already been pressed towards the ventral side as well as the other surronnding layers of tissue.
b. Intinately connected with the other innscles of the glandular bag is fonnd a powerful muscle (pl. V, fig. 59, 61 and 62,5), seen on the dorsal side, where it forms the lateral lip of the long slit (af), which is the entrance to the bag. It takes its origin from the two hindmost rays (sometimes also having bundles from the last but two) as also from the lateral surface of the piece β, covered by the superficial layer (O) coming from the muscles of the body; it is inserted in the tendinous tissue passing over the head of the thorn $\left(T_{3}\right)$, and firmly connected with the proximal end of the terminal piece T_{i}, especially with its edge; in this tissue is fonnd imbedded several firm, fibrous portions, which partly calcify, and probably - in more developed stages - form a separate piece ($T_{T_{2}^{\prime}}$). In the hindmost part this muscle is completely fused with the distal part of the muscles of the glandular bag, and anteriorly it forms a whole with the above mentioned bundles of the dorsal wall of the bag, which arise from the rentral side of the two hindmost rays; in the interspace a kind of separation is effected by the attaching of the fin-111embrane, the connective tissue of which wedges in between the lip muscle and the wall of the bag itself. This muscle acts antagonistically to M. dilatator, which in a preparation is easily seen by pulling it: thus when II. dilatator by contracting has dilated the groove between the terminal pieces, as described above, and the thorn stands out, the contraction of this outer lip-1nuscle of the appendix-slit will again straighten the groove by especially acting on the piece $\Gamma_{\tilde{r}}$, and at the same tinne carry back the thorn , so that it will lie against the piece T.

I find the same innscle in all other Plagiostomes, but in very different stages of developinent (cp. the following). Petri has mentioned it in Acanthias, but as M. leatator of the thorn (l. c. fig. 5, $B, C, F, m l$; he says: Er inserirt sich hinten vernittels eines starken, selnigen Bandes ann vorderen Theil des Spornes (the thorn) nud hat allein die Anfgabe cliesen zu heben. This, however, is quite incorrect: it is not inserted on the thorn, even if its tendon of conse by looser tissue is connected with the proximal part of the latter, but on the piece $T_{\sigma^{\prime}}$ ($b^{\prime \prime \prime}$ in the figures of Petri), of which piece Petri's interpretation is quite wrong (cp. the following); and it does not assist the M. dilatator, nor raises the thorn, but it connteracts the M. dilatator, and thereby becomes a M. depressor of the thorn! The carrying back to the position of rest of the terminal pieces is in the Greenland Shark and Acanthias not exclusively brouglit about by an elastic reaction of the tissues between the firn parts of the skeleton, as asserted by Petri (1.c. p. 303), but this reaction, which certainly exists, is also supported by the action of muscles belonging to the glandular bag, or, at all events, forning part of its muscular systen. Taking it for granted that the appendix genitalis by the copulation is really introduced into the cloaca of the fenale, I innagine the following act to take place: the appendix is guided and bronght into the cloaca by means of the muscles belonging to and arising from the finmuscles proper; next the . I/. Filatator will come into function, and, by its dilating the terminal parts, fix the appendix in the cloaca, and then the muscles of the glandular bag will evacuate its contents into the furrowshaperl, in the appendix itself sitnated part, the walls of which at the same monent will contract, at the same tinne ejecting the secretion and letting go the firm hold of the apppendix. As I think the chief action of the muscular wall of the glandular bag to be the ejection of the
secretion, I design it - including the described onter lip-muscle of the appendix-slit as Jusculus compressor (sacci).
11.

The Ventral Appendages in other Selachians.

For comparison with the facts fonnd in the (ireenland Shark, I lave examined as many wher forms of Selachians, as I have been able to get the material for, being soon convinced that the representations, hitherto fonnd in the literature, gave only a rather incomplete insight into the structure of these organs, and only to a small degree were to be used comparatively

The greater part of my material has consisted of well preserved rentrals, a less part only of skeleton parts, dried or preserved in spirit, which the director of the cullection of Vertebrata of the Zoological Mnseum, Professor Liitken, has been kind enomgh to place at my disposal. The following description has been divided into three parts of very different extent, of which the first will give a short general accomt of the copulatory appendages in the Selachins in general, the second a more particular description of the forns, on which this general acconnt has been based, and the third will as a conchsion contain some short remarks as to what for the present may be regarded as tolerably certain concerning the function of these organs. That the particular description will treat more of the skeleton and less of the muscles is occasioned by the relatively small variation of the latter.

1. A General View of the Copulatory Appendages in the Selachians.

As to the outer form, the same ontline is fonnd in the copulatory appendages of all Selachians: it is always the inner part of the fin which is prolonged, and formed into an appendage, and this appendage may be more or less free of the finmembrane; it is most separated in the Holocephales, least so in some Sharks; it always consists of a, longer or shorter, proximal part, the shait, and a, generally shorter, distal part, the terminal part, this latter being abways free of the finmembrane, and (at all erents in the Plagiostones) possessed of a certain mohility.

On the dorsal side of the appendage, sometmes, however, puite laterally, a decp fnrom or slit, the appendix-slit runs. longitndinally, to the posterior cnd; the edges of lips of this shit can always be opened, at least in two places, viz. at the foremost beginning of the slit in the shaft, and behind in the terminal part; frequently the slit can be widened in a considerable part of the shat (Sommiosus, Acanfhiers. Spinux. a. o.); there is, however, always a part of the slit, in which widening. is prevented by the imer skeleton, or where the lips cannot at all be separated, or sonnetimes cren may be coalesced (the latter in shollimm and fristimoths) the part of the slit sitnated in the temminal part can (at all events in all I'lagiostones) be widened by muscular action, and agmin mamoncol by elastic reaction, sometimes assisted by muscular action. The appendix-slit is the duct of a glandular bag which is surrounded by moscles, and in all l'lagiostomes with ith greater part situated om
the ventral side of the fin, muder the skin, but in the Holoceplales, where it has only been little developed, linited to the appendix-shaft.

The skeleton of the appendage belongs always to the axial stem of the fin-skeleton ${ }^{1}$); annong the rays (in the Plagiostomes, not in the Holocepliales) only the lindmost, most frequently the two hindmost, are of importance as serving as attachment for part of the appendix-museles (those of the glandular bag); as a consequence these ravs liave been somewhat bent, with the convexity turned dorsally; the two linindinost are often partly; sometines quite coalesced.

Witli the primary skeletal parts, developed from the fin-stem, join, in the Plagiostomes, several very differently shaped, ealcified, seeondary skeletal pieces, developed in the connective tissue, surronnding the original, prinary skeleton. These secondary pieces slow, especially in the terminal part, a considerable variation, both as to form and number, and the different genera, or even species, may present rather important differences; but everywhere may be established the same fundannental type that lias been pointed ont in the Greenland Shark.

In the Plagiostomes the prinnary skeleton consists of: a large basale (B) , and in continuation of this one or more (mutil a number of fonr, Rhimobatus) slorter pieces (b_{1}, b_{2}, etc.), and finally a terminal joint, the appendix-stem (b); this latter is always long, often considerably longer than the other parts of the stem taken together. To these pieces must be reckoned one more, θ, placed dorsally, parallel to the short stem-pieces b_{1}, b_{2} etc.; most frequently it connects the basale witl the appendix-stem, but sometines it does not reach the basale anteriorly, and is then conmected with b_{1}; in Rhina it is rudinentary, and only connects the last joint with the appendix-stem; in Sarcine it seenis to be wanting.

In quite fonng males of Plagiostomes (cp. fig. 2 in the text), even in embryos, all these prinary skeletal parts are already fonnd; during the growth the terminal joint, the appendix-sten, is prolonged, growing much more than the other parts, and calcifying to some degree in the surface (often to a higher degree than any other part of the prinary skeleton of the fin) always, however, with the exception of the distal terminal part, this often wholly, and at all events at its base remaning soft, and consequently flexible; this part of the appendix-stenn I (after its forn in the Greenland Shark and many other Slarks) name the end-style (s).

Contemporary with the growth and the calcification the secondary skeletal parts develop around the appendix-stem, first as firm, fibrons parts, calcifying by degrees, and finally very hard; sonne of then belonging to the terminal part are even shining, polished, and dentine-like; they then rise, more or less naked, throngh the skin; this applies to one piece in Sommiosus, Lamma, Silachus, Khinobutus, Raja radiata; to two pieces in Acanthias, three (fonr) in Spinax etc.

Two of the secondary skeletal parts are always closely connected with the appendix-stenn, and may even quite coalesce with it; these two cartilages form shorter or longer ridges, and are situated, one dorsally, the other ventrally, comected with the appendix-stenn in such a way as to forn with it the part of the appendix-slit that cannot be widened; they are the two marginal cartilages, the
${ }^{1}$) When A. Fritscli (Zool. Anzeiger, vol. 13.1890, p. 3 IS, ant launa der Gaskohle etc. Böhmens, vol. 3. 1895) restores the ventral appendages of the fossil Xenacanths as lateral structures, developed from rays, I ant convinced that he is wrong, and has misinterpreted the fossils.
dorsal one (Rd), and the ventral one (K2) posteriorly they always reach to the end-style, anteriorly more or less forward, commonly not to the same length, and at most to the proximal ent of the appendix-sten. Together with this the form the chicf piece of the appendix-skeleton, a name used by several earlier authors, who most frequently have not secm that this piect consists of three parts.

The other secondary cartilages, the terminal pieces, wogether with the end-style form the skeleton of the temmal part, and are more or less moxably connceted mutnally, with the marymal cartilages, and with the end-style. The mumber of terminal pieces may be different, hut in all Plagiostomes two are fomm, one dorsal ($F d$), and one rentral (T) , placed as a kind of movable continnation of the two marginal cartilages, and with their inner edges joining the end-style of the axial piece, which by being bent (rentro-medially) is noved in connection with them; thercby they dorsally withdraw more from each other, and the slit between then is widened. Only in a few cases (Trysom aiolacca, Chlamydosclachus) these two pieces are fonnd alone; in most Sharks a piece Tid is joincel to the lateral margin of $T d$, and imbedded together with this in the dorsal lip of the appendix-slit; often a piece $T_{a_{2}}$ is in a like manner joined to $T_{i} ;$ further is generally found a piece T_{3}, placed ventrally and laterally, and often rising throngla the skin as a spint or thorn; still more pieces may be developed (especially in R(yk), but their homologies in the different forms are generally easily pointed ont, and are in the special part indicated by the letters used. Finally may to the terminal pieces proper be joined one or nore spurions pieces or covering pieces, enclosing like a slield the terminal pieces, properly so called, on the dorsal side (d) or the ventral side (a^{\prime}); they are developed in the aponemrosis of the M. dilotutor bespoken later ons, which otherwise wraps the terminal part, and serve as insertion for part of this muscle. Snch covering pieces are fonnd in all Kays and in some Sharks (for inst. Khimen). As to the abundantly varied structure of the terminal part the reader is referred to the special part; here I shiall only add that the simpler forms are generally found in the Sharks, to which may be joined among the Rays Torpedo, Narcine, Rhimobetus and Trygon, while the most complicated structures are found in the species

I'ig. 2.

Fig. 2. Sommioszes microcephalus, young - (2m 5ocm The kimbmost part of skeleton of left ventral considerably diminislsed. "The letters as beforc. \% an intercalated extra-ray.

Fig. 3. Somm. microcephalus, th 'lne contesponding part of skeleton of left ventral. $b_{1}+b$ the coalesced stem-joints; the stipplen line indicatos the distinction. fonnd letween these joints in the right ventral of the same specimen. b the terninal foint. Koduction as in fig. 2. of Raja.

Perhaps it may not be devoid of interest to compare the ventral skelcton of the male with that of the female. In this latter we find the stem composed of a large basale and a different number of shorter joints, among which the teminal one has no ray (typically), but often hooks like a ray
itself being more or less rodslaped. This latter joint, I suppose, is the one that in the male is prolonged and developed into the appendix-stenn, which never bears rays; otherwise, however, the nnmber of internediate joints between the basale and the terminal joint (the appendix-stenn in the male) does not always correspond in the two sexes of the sanne species, and the part of the stenn sitnated distally of the basale seems npon the whole to be rather varying in females of the same species ${ }^{1}$). In the female, as was to be expected, all the secondary skeletal pieces are wanting, but besides those also the piece β of the primary pieces. It is rather difficult to decide with any degree of certainty, how this piece is to be interpreted; perlaps it ninght be done by following its developnent. The smallest embryos (of Acanthias) that I have had occasion to examine, however, have had this piece quite independent, in the sanne position, and with the same relations as in the grown animal. This piece, however, has to be considered as belonging, either to the stenn, or to the rays, and in the latter case it is, I think, to be regarded as one ray, there never being any n11ark of a composition of more parts. In several species, as Trygon, Rhimobatus, it might, as to its form, remind of a ray, which then was to be considered as displaced to a higher level than the others, and turned parallel to the axial stem; in Trygon it must be the last, hindmost ray, while in Rhinobatus it conld not be the last ray; as n11ore real rays follow farther backward; and so on in the other species: if it was to be considered as a ray; it 1111st, in the different species, be a different ray, displaced and transformed. I think it more probable that the piece β belongs to the stenn, and has been separated fronn this by a longitndinal division, which ninght possibly be occasioned by the developnent of special muscles for the appendix.

In the Holocephales (seepl. I) all secondary cartilages are wanting in the fin-skeleton: it is only composed of a large basale bearing all the rays, of a short piece b_{1}, the appendix-stenn b, and the dorsal piece 3 . The walls of the appendix-slit are produced by a kind of rolling-1p of the stennportions $b_{\text {I }}$, and b, and thins the ternininal part is only formed of the hindinost part of the appendixstenn; this latter is rather differently formed in the two genera Chimara and Callorhynchus (see the special part).

The appendix-skeleton of the Holoceplates accordingly is of a less componnd construction than that of the Plagiostonnes, and that, as will be seen hereafter, is also the case with the muscular systenn. This simpler structure evidently in sone degree repeats prinitive features, but these, on the other hand, are connected with facts, that by no means are prinitive, as for inst. the strongly marked separation of the whole organ from the fin proper, the highly specialized fom of the primary skeletal parts - against the simpler form in the Plagiostones (as the simple, rod-like shape of the terminal joint b etc.) --, the connection with other, particular copnlatory organs, etc.; these thingers, as well as many other facts
${ }^{1}$ In two specimens of ventrals of female Greenland Sharks I find the structure different in the two sides of the same pair of fins. In the left ventral of one specinen the basale is followed by a long and powerful joint, ($b_{1}+b_{2}$, fig. 3) bearing two rays, and a ray-like little terminal joint b; in the right fin of the same specimen follow after the basale two short joints the distinction between those is indicated by stippling in fig. 3) b_{1}, b_{2}, each bearing one ray; and b_{2} also the little ray-dike terminal joint $b_{\text {; }}$ thus on the left side a coalescing of b_{x} and b_{2} seens to have taken place. On the left side of the other specimen follows after the basale only one sworl-like, compressed piece, taking the place as the terminal joint, and showing in its distal end, which is somewhat flattened, an indication of a longitudiual division; in the right side, on the contrary; the basale is followed by a short joint $\left(b_{1}\right)$ bearing a ray and a compressed terminal joint (b). Consequently, if we suppose a coalescing of b_{1} and b on the right side, together with the last ray, we shall arrive at the structure on the left side. As far as I have seen, the female fin-skeleton of Acanthias shows similar variations.
in the structure of these ammals indicate that the Holacephates by in pucans occupy a primitive position among the Selachians.

As to the skeleton of the ventral in the female, the basale (in Chimerre) has distally only one small, tap-like joint, standing both for the piece b_{1}, and the appendix-sten (b) in the male ${ }^{1}$)

What las been given in the earlier literatnre as to the skeleton of the ventral appendages in Selachians, is generally only isolated descriptions withont any real understanding; only (fegenbaurn and Petri have compared several forms, but neither of them has been able to recogrinise a common type. Gegenbanr (l.e. p. 452) has interpreted the terminal pieces as modified rays, but on account of the circumstances in the Chimara, he indicates (p. 450) the possibility that they maty be parts separated fron the stem-skeleton; he does not know the marginal cartilages, and he has considered several early stages of the skeleton as defmitive forms of it. Petri quite correctly has seen that the terminal pieces and marginal cartilages ... which latter, however, he has mot recognined in all the species he has examined - are secondary structures, and have nothing to do with the rays; the terminal stem-joint itself which I have called the appendix-stem (b), he has interpreted correctly in Raja, but wrongly in Leanthias and Sollinm ${ }^{3}$ - the only Sharks exanined by hinn - as well as in Torpedot) (he has not examined Chimarat. Some earlier authors have seen the piece is in some specimens, while it by others has been werlooked, or at all events has not been mentioned. ()nly Gegenbanr and Petri have sought its origin in a transformation of other skeletal parts of the fins). (iegenbaur does not mention it at all in Kugm, (archarins and Sollinm") but in Hetiroduntus and Acanthias (I.c. fig. 16 and fig. 19, b), and in (himer (fig. $23 r^{\prime}$); in the last named it is interpreted as a ray, but in the two forner as belonging to the stenn-skeleton ; accordingly (iegenbanr has not seen that in Chimara it is the same skeletal piece as in the Plagiostomes. petri thinks it to be a coalescence of basal parts of rays, being of opinion that it bears rays in Acrnthus and Torfedo; accordingly in his figures he marks it r. This supposition, however, is wrongs); I never fonnd fays
 had occasim to examine skeletonized ventrals of Chimara ${ }^{\circ}$, in whith this joint was wanting, so that the fin-stem consisterl ouly of the basale.
\Rightarrow Ceber die Mohfifationen des Skelets der Hintergliedmaassen bei den Mänchen der Selachier und Chimiten. Jon. Zeitschr. vol. 5, 1S7o, p. 452.
il In these Sharks l'etri suppuses the sten to end with a long and a short joint; in foanthins as the short termanal joint he has interpretel one of the terminal pieces (my piece T_{i}, in Soylizm the soft emd-stylc.
4) As to Torpedo see p. 49 .

 p. 249. I have not fomd it mentioned by other anthors.
us of these three forms G. has only hat guite young specimens, in whin the secomdary pieces hat mon wot developer. The fault made licre by G. viz. to consider this stage as the full-grown state, and acoordingly an apocially simple form in these Phogiostomes, has already been corrected by Ietri 1.c. p, 293. It is to be supposch, however, that the picec F had been developed in all three forms, as in embryos of foanthas of a lengetly of only 150 m it alrouly quite dintinct and relatively as large as in the full-grown animal.
 pancy between the letters in the text, and those in the figures, and also, I think, a chamge of pioces, which matke the whole confused; so monh, however, is certain that the picee which in the figures 16 and is is matked b any piece , floce mot in Acanthias bear any ray; it never bears rays at all.
${ }^{\text {a }}$ For futher details see under Acanthazs and Torpedo. When betri, (o) support his construction of thin picice as
attached to this piece, but always found it placed at another level than that of the nearest rays, and I take it to he a specially separated part of the stem-skeleton.

The muscular system (see pl. V and VI) does not show the rich variation fonnd in the skeleton, being mpon the whole rather miform, which is a natural consequence of the fact that the part of the skeleton, particularly multifarions both as to the number and form of the single pieces, viz. the terminal part, has no muscles of its own; the muscles (generally) only acting on the terminal part as a whole.

Only the medial side of the fin-muscles has been specially developed in the male; the muscles spreading over the lateral parts of the fin, i.e. the ray-muscles of the upper and lower side, and the dorsal layer originating from the lateral muscles of the body, are chiefly the same in both sexes, and slow in the different forms examined so very few differences that I, also in the special part, pass over them.

In the medial mmscular system may be distinguished between a more proximal and a distal part, not however strongly separated, especially not so in many Plagiostomes, while in the Holocephates the separation is more distinct, the appendage of the latter being more independent of the fin.

In the Plagiostones I generally find the same type, as has been described in the Greenland Shark. The proximal part consists of a Musc. adductor (et depressor) pinna (et appendicis) (-4), and a 11. cxtcnsor appendicis (E). Musc. adductor does not in any of the forms examined by me show any separation into an independent, superficial ventral layer, and a deeper, more dorsal one, but forms a whole ${ }^{1}$; the ventral side, however, appears to a great extent separated into single bundles corresponding to the ray-muscles, while the dorsal side shows nothing of the kind. The fibres arise from the pelvis, as well from the rentral, as, though often to a smaller extent, from the dorsal surface, as also from a tendinons stripe prolonging, as it were, the hindmost edge of the pelvis into the median line; they rmin obliquely-laterally, and are inserted on the basale, on the following joints (b_{1}, b_{2} etc.), and on the proximal end of the appendix-stem; often, however, the superficial medial fibres run on and mingle with the . W. dilatator. The fibres forming the nedial marginal part, run almost straight from before backward, and form always a solid mass not divided into separate bundles; the foremost, lateral parts (as in the Greenland Shark) are coalesced with the deeper-lying ray-muscles.
11. cxtensor (appendicis) (E) is mostly a rather flat muscle, situated on the dorsal side of the previons one; it originates on the medial side of the basale, often moreover on the pieces b_{1}, b_{2}, etc., and is inserted on the appendix-stem, nsnally at the proximal end, but sometimes farther backward, and the hindmost part of this muscle then spreads in a cloak-like mamer over part of M. dilatator (comp. the Greenland Shark). This muscle generally is very distinct, already in quite yoming anmals with undereloped appendages; but in Lamna I find its fibres woven into those of N. adductor to

[^8]such a degree that it does not appear as an independent manscle, and only artificially is to be separated from the former.

The distal part, the muscnlar systenn of the shaft, is typically compersed oif tun muscles: . $1 /$.

IT. dilatutor $(\mathscr{}$) is always very large and powerful; it wraps in a cloak-like manmet the appen-dix-stem 111 til the terminal part, learing only the lateral surface menvered, part of which is ocempiod by .1. compressor. .1. dilutator originates forward, cither from the appendix-stem mbly, or frequently also, above the knee of this latter, from the pieces b_{1}, etc., or from the basale; prosterionly it is attached to the aponemotic wrapping of the terninal part, or, when covering piecen have bech developed from the wrapping, partly to these. Besides fibres of it often go to the skin, and liere and there bundles pass into the IM. compressor. The chief action of this musele is to bend the terminal pieces together with the soft end-style (ventro-) medially, by which means the teminal part of the appendixslit is widened; at the same tinne some of the terminal pieces are often thrned from their position of rest in such a manner that they rise throngl the skin, or are erected so that they stand ont free (as the spur or thom in Sommiosus and Lamma, the claws in Spimax, the houk and the spur in - Acunthias; the large piece T_{3} in Kaju, etc.). When the eontraction ceases the appendin-slit will again be narrowed, and the erected skeletal pieces will asain be laid, partly mechanically by clastic reaction of the soft connective tissue, but partly also the 1% comfressor will be able to support this latter operation.

Musc. enmfressor slows in the Plagiostomes so particular a structure, that when it has been exannined at all, it has litherto been misapprehended, the greater part of it bemp minderstood as a bag composed of dermal munseles.

This nunscle, I suppose, originally occupies in the Plagiostomes a place, similar to that in the Holocephales (see later); i. e. it covers the lateral surface of the appendix-stem, or bery frequenty only its proximal part, and anteriorly it also reaclies on to the piece, β and the (two) lant rays. Into this muscle, a lungitudinal foldines of the onter skins penetrates from the dorsal side of the shaft, thin folding forms the appendix-slit and the slandular bag, the furmer leading into the latter: The foremost part of the folding growing on ventrally, carries with it the wapping innscle, and then both grow on together, and forn a singularly thickwalled bag which fron the slit-formed opening on the dorsal side grows on between the last ray and the sten skeleton to the ventral side of the fin, where it becones sitnated between the onter skin and the ventral ray-mniscles. In sharks fhe forcmont, blind part very often grows much farther forward, not only near to the pelvis, fifimux, Khim, Sommosus) but in many, I think in most Sharks it reaches forward of the pelvis (for inst. A Icunthies, Scyltum, Pristiurus, Lamme, Scluchus ${ }^{1}$, and then the bags of the two sives are in contact a long way in the median line (fige fo. In the Rays the bag is much smaller. (fll VI, fige bis), hat on the wher

[^9]hand its secreting part is especially developed, and its muscular wall somewhat more complicated. In the part of the M. compressor forming the 1nnscular wall of the bag, the direction of the fibres may be rather different, but they chiefly radiate in bent lines towards the periphery, or round this

Fig. 4.
Acanthias vulgaris σ^{7}. The ventrals seen from the lower surface. S . 1 . compressor, A M. adductor, D M. dilatator, R ray-muscles, T_{3} the spur' The stippled contour indicates the anterior extent in another specimen. to the dorsal surface; this latter is only by loose connective tissue connected with the ray-muscles. In the part in the slaft the direction is more straight, parallel to the axis; this is the case with the fibres covering the lateral surface of the appendix-sten (or a short proximal part of it), as also with those forming the onter, lateral border of the appendix-slit. This lateral part most frequently appears on the dorsal side as an independent 1111scle, and might be called the onter lip-1n11scle , being, as it were, separated from the other part of the wall of the bag by the attachnent of the fin-membrane. By a closer examination and by a transrerse section throngh this region (cp. fig. i and i4 in the text) I have been convinced of its forming a whole with the other parts of the muscular wall of the bag, with which also the corresponding part in the Holocepliales forms a complete minon (see later). A large part of this outer lip-muscle originates anteriorly from the piece β and the hindmost ray, or rays; posteriorly it is inserted partly on the inner investment of the ventral marginal cartilage, partly on the aponeurotic covering of the ventral terminal pieces, and acts through this especially on the piece Tr'. The mnscular coat formed by . M. compressor will by contracting expel the fluid secreted from the epithelinm of the bag; but besides its hindmost, lateral part, the outer lip-muscle, when it is long and powerfully developed (as in Sharks with a short ventral marginal cartilage, for inst. Sommiosus, Spinax, Acanthias, Rhina), will act antagonistically to N. dilatator, i.e. narrow the dilated terminal part, and lay the erected terminal pieces.

The muscular systen of the appendix which here las been briefly represented in its typical characteristics, shows in different Plagiostomes special modifications, as to which the reader is referred to the special part. I shall only here state that the part of M. compressor which appears as the onter lip-muscle\% of the appendix-slit, commonly, as to its size and development, is adjusted to the length of the rentral marginal cartilage; therefore it is very small in Scyllium (pl. VI, fig. 66, S), and in Pristinirus, rather small in Ruju (fig. $67, S$); longer and more powerfin in Torpcdo, but especially developed in Sharks as Sommiosus, Acanthius, Spinax, Rhina, a. o. From the part of M. compressor wapping the bag proper, is in the Rays developed a special muscular layer around the voluminous gland fonnd in these latter. In the Slarks (with the exception of Rhina) the inner epithelinn of the bag does not form real glands, but only contains secreting cells, and is accordincrly very sinple as secreting apparatus. In the Rays, lowever, has been developed a bulky gland protruding as a
thick, oval body from the dorsal wall of the has into its inner space, and ahmost filling it: when the sentral wall of the bate is opened, this body is immediately seen, and in sommit anmals it is sometimes seen rather distinctly throngh the skins. Down the middle of the ghand rans staraght or obliquely (Tryon) a longitulinal furrow, in which is seen a great number of rather large lobles with rainecl margins: they are the excretory openings of collectise ducts from a solicl masis of large: dichommonsly divided, tubular glands. This ghand is un all sides matil the fongitudinal furmow enclosed he a muscular layer, originating from the dorsal muscular wall of the bas. Fiy this special musentar laser the secretion may evilently be ejected into the inner space of the lagg, and thon by contracting of the muscular wall of the bag itself be driven on, partly throngh the large opering at the base of the shaft, partly posteriorly throngl the tube, formed by the marginal cartilages, and mon thongh the terminal part; in full-grown anmals these latter ducts are sencrally fonnd filled with the secretion. Among the Sharks I have only in Khinu found a similar bulky gland, but situated onds in the shaft (for further particulars see nuder R/hinur).

A sursey of the medial fin-muscles in the females of the plagiontomes will show that they are of a considerably simpler strmetnre than those of the male. In the female is fomel only one single muscle, a M. adductor finne (pl. V: fig. 63, 0 , , 1) originating in guite the same way as in the male from the pelvis and its aponemotic prolongation in the rentral median line and built in a sinilat manner as to the division of the ventral side in separate bnndles, the pasing of the foremont lateral part into the ray- muscles, a.s.o; here, wo, the medial marginal portion forms a solid mass, cominning as a posteriorly tapering bundle on to the terminal joint of flie fin-stem ${ }^{2}$.

It is then especially considering the intermingling of fibres that often takes place in the different muscles of the male - an obvions conclusion that an adductor of a similat simple construction as the one, now found in the female, has been the orisin of the I/. adductor, the . If. ixt, nst and the .IV dilutalor, pertaps also of the . $\%$ comprossor of the male. When the hindmost juint of the fin-stem developed into the appendix-stem, the distal part of the orginal, simple I/ uddutur might be thought to be bronght along at the same time, so that part of the deeper-lying fibre would miginate from the stem-skeleton, by which process the . T. dilututor wonld arise: while in the pmanal part too a gronp of fibres originating from the stem separated as the . Wh. Atrusore (inn Lammen this muscle is only part of the M. adductor). The . $1 /$. comfressor might have the same origin ath the . I/. dilatator, but more likely it represents the very hindmost ray-muscles.
 muscular gronp and a clistal one, placed on the appendix-shaft, is, as before mentimet, mone strongh
 to that of the latter, as to the detailed strncture of which I refer to the special pratt; at seprate . $1 /$.

 takes the same view of the glam? ats klein
 of the filmes: sn I have siven a new fisure.
the latter being of special interest with regard to a comparison with the Plagiostomes; it is much thicker than the . $1 /$. dilatator, and covers the lateral surface of the stem-piece b_{1}, and of the piece b to the terninal part. Into this muscle sinks throngh the dorsal appendix-slit a continnation of the onter skin as a glanclular-bay, which on acconnt of its simplicity might be called rudimentary, when compared to that of the Plagiostomes, as it has evidently remained in a similar stage of development as that, with which it begins in those; by a further develoment forward and ventrally a quite similar glandular bag wonld arise as the one described as characteristic in the Plagiostomes. The direction of the fibres of the 11. compressor is rather peculiar in the Holocephales (sce the special part); here I shall only mention that part of the fibres seen dorsally (fig. yo), runs along the lateral edge of the appendix-slit rather straight from the piece β backward in quite the same manner as in the corresponding part, the onter iip-muscle, of the $\mathrm{N} /$. compressor in the Plagiostomes. The whole structure of this minscle forms, as it seems to me, an incontestable proof as to the correctness of my interpreting the muscular coat of the glandular bag of the Plagiostomes as part of the skeletal muscles proper.

In the fenale the whole muscular systenn of the appendix is wanting; according to V : Davidoff the little terminal joint has an attachment for part of the dorsal muscies arising from the Wall of the body (i.c. p. 4TJ, pi. XXIX, fig. 18 , fs), corresponding to the attachment of the same muscle on the piece b_{I} in the male; j 11 st on acconnt of this $\mathrm{r} . \mathrm{D}$) aridoff explains the terminal joint to be homologons with this piece.

The fin-m11scles of the male have been rather slighty treated in the earlier literature; a conparison between several forms has been almost quite out of the question, only a few forms having been described. Thus annong the Sharks Acanthias has already been mentioned by Bioch, among the Rays some Raju-species by several authors (Raja madiatio very briefly and incompletely by Bloch, Rajo cimuluris for clazata| by D nvernoy, K. clazata by Vogt \& Pappenheim and later by Moreau), (himarn monstrosn by B : Daridoff. Petri alone has examined several different forms and tried to make a comparison, but he cannot be said always to have been successful or to hare fonnd the correct interpretation. While he mpon the whole pretty correctly has interpreted the muscle I have called M. adductor, - his . IN. Alixor finne, or pteryopodii, a name rejected by me as presunnably not suitable, - and M. dilatator, a nane introduced by hinn (at all events in Scyllium, Acanthias and Torprdoh, the other muscles have either been misapprehended or not at all mentioned. The M. cxtensor he has only scen in Scyllium and Kaju, where he calls it N1. Acxor fterygopodii interior, and of my I. comprossor lie has only mentioned the part, which I lave called the onter lip-muscle (of the appendix-slit), in . Lcanthius and Kajo, and with different appellations, respectively as II. learor (of the spur) and as 11. Alowor bicops (which latter name is also given to a quite different muscle in Scyllium), and lie•has assigned to it different, partly misapprehended, functions. It has already been observed that both Petri and all other anthors, who have mentioned the glandular bag, have muderstood the muscular wall to be a separately developed demmai muscular system, and consequently onit it by the mentioning of the fin-muscles proper. In the special part accomnt will be rendered of the earlier literature, and the particular works will be referred to.

2. Special Part.

Selerchoridei.

Spinacider.

Acanthias vulgaris Risso.

lla. I, fie. Io, Il.)
The common picked Dog-fish has been so often examined that I think a mone particnlar deseription of the external features of the copulatory appendages to be superflmons; I may refer to Petrir) (with regard to whose description, however, I must remark that the investment with demmak teetly at the places of transition to maked parts does not cease gradually, but is enite sharply bommeder ; the dorsal side is wholly naked, as is also on the ventral side the hindmost point of the temmal parth as also to the earlier description by Bloch ${ }^{2}$ and Home ${ }^{i}$. In a specinen of the length of $6 f^{m}$ the following measures were found:

> Length of the appendix (from the fore-edge of the cloacal. . 0,5
> - - - part free of the fin
> - terminal part ...
> - - appendix-slit
> 3.1 cman
> $2,2^{c: 31}$
> ${ }^{-}$
> Breadth of the appendix ab. I ${ }^{\text {cin }}$
> $4,2^{\mathrm{cm}}$

The skeleton has not been quite correctly described by any of the earlier anthorst).
between the basale and the appendix is fonnd only one short joint (b_{1}), and besides the dorsal piece β^{3}; this latter articulates anteriorly with the basale, posterionly with the appendix-stem b, and medially with b_{1}; its lateral edge is convex, projecting somehwat in the shape of a roof over the two hindmost rays; these rays are bone by the piece b_{1}, and are often coalesced; they are stronqer and longer than the last ray but two, which latter cones from the basale.

The stem of the chief piece of the appendix has a length like $f-h_{1}$, and provimally tomata its articnlation with b_{1} is found a ridge (at b in fig. of projecting in a somewhat kevelike manner: in the hindmost half it has laterally a little trongh-like hollow. The soft end-style is shorth, flatly rounded, and reaches not nearly to the end of the temminal part. The dorsal marginal cartilage', $(R d)$ can forward be indistinctly traced as a rounded ridge to about the letter 1 in fies 11 ift is more
${ }^{\text {1) }}$ 1. c. p. 30n, pl. KVII, fig. 5, A.
\Rightarrow 1.c. 1 -S8. p.9. pII. 2, fig. I.

 be able to hate.

\Rightarrow कegenhatur, fig. $16, b$; l'etri, fige. $5 I$, r.
of (iegenbaur, fig. 17 , i; it has been quite worlonked by liločh amd lecti.

distinct, when the piece is dried): posteriorly it is distinctly elevated as an edge of the appendix-slit. The ventral marginal cartilage ($R z^{\prime}$) is shorter, resembles the corresponding one in the Greenland Shark, and lias, as in the latter, a plate-like part ${ }^{1}$ folded to the dorsal side; on the concare inner side it has furthemore a strong, elevated process; in the furrow between this process and the folded part the proximal end of the thorn is placed.

There are fonr terminal pieces.
$T d^{2}$) is narrow, with the foremost part of its medial edge closely connected with the encl-strle, and belnind this with the edge of the ventral piece T_{i}; distally it takes the form of a flattened, slarpedged hook; this look-shaped part rises uncovered throngl the skin, is shooth, shining, and dentinelike. $T d$ is with part of its lateral edge comected with a quite thin, plate-formed piece ${ }^{3}$, $T d_{2}$, also anteriorly connected with the marginal cartilage $R d$; it is placed in the skin forming the dorsal lip of the appendix-slit of the terminal part, and corresponds to the piece $\overline{T d_{2}}$, indicated in the Greenland Sliark.

The ventral terminal piece, $T_{\pi^{\prime}} \boldsymbol{y}$, is considerably broader and longer than the dorsal one, rounded on the ventral (onter) surface, hollowed like a spoon towards the appendix-slit; except the hindmost part it is firmly calcified; the formost part of the medial edge is connected with the endstyle, and behind this with $T d$, the hook of the latter lying freely in the ontermost spoon-like end of the former piece; in the proximal end it has medially an articnlar process for articulation with the above mentioned process of the concave side of the marginal cartilage $R z^{\prime}$, and its lateral edge is firmly connected with a strong, thin membrane (fig. II, Ti'2), serving in the foremost part for attaching the onter lip-1nnscle of the glandnlar bag; this membrane then corresponds to the similar, but thicker one in the Greenland Shark, and to the piece $T_{i^{\prime}}$ in Sfinore

The fourtly terminal piece, T_{3}, is the one called the spur 5) by the different anthors; with the proximal, somewhat head-shaped end it is attached inside of the folded plate of the marginal cartilage Rzi to the above mentioned process, and to the proximal and lateral end of the piece $T_{\tau^{\prime}}$; it is formed as a triangular thorn or spine, longitndinally somewhat twisted, with two concave surfaces; it is firm, shining, dentine-like, and the greater part of it is uncovered by the skin. It can be moved quite in the same manner as the corresponding spine in the Creenland Shark.

The muscular system. The M. udductor slows the general typical relations. The M. extensor reminds very much of the same one in the Creenland Slark; as in the latter it has here its origin on the medial side of the basale and b_{1}, stretches over the knee of the appendix-stem as a thin, flat covering over the . T/ dilatator, and inserts itself along the boundary line of the dorsal marginal cartilage.

The M. dilututor originates proxinally with a dorsal portion at the same place as the M. extensor and quite covered by it, that is to say some way up on the basale; on the ventral side its proxi-

1) Bloch. Frocesulus d; Cexenbaur, fig. $15,16, a$; l'etri, fig. $5 . D, E, p r$; regarded by all only as a process on the chief piece.
${ }^{2}$ Plocli, der Haken, fig. 2, e^{\prime}, fig. 6; Gegenbaur fig. 16, 17, o; Petri, fig. 5. hk.
${ }^{3)}$ Petri, fig. 5, la; it is neither mentioned nor drawn by Bloch or Gegembaur.
2) Bloch: der breite Knochen, fig. 2, d^{\prime}, fig. 5; (;egenhaur, fig. 15-17, c; Petri, fig. 5, $b^{\prime \prime \prime}$, he interpreting it as the teminal joint of the stem.
\Rightarrow Bloch, der Sporn, fig. 2, c, fig. fi Gegenbaur, fig. 15, 16, a^{\prime}; Petri, fig. 5, sp and $c a$.
 nsual, its aponemrosis being especially attached to Tir and Tif; the latter piece, the look, is turned (romad its medial edge as the axis) ont of its position in the spoon-shaped end of the former, when the muscle is contracted during the dilation.

The part of the M. compressor wrapping the bag, is much distencled, and consequently rather thin, comesponding to the considerable extent of the bag anterionly (see fige 4 in the text). The part innerter] on the lateral surface of the appendix-stem, is very small, reduced to a few bundles of fibrer on the proxinal end of this part of the skeleton, which otherwise is almost fuite enclosed by the If. dilatutor: The part, which as outer lip-minscle forms the lateral linit of the appendix-slit, seems to mie to receive in its surface some fibres coming from the muscular layer originating from the lateral musclen of the body, but otherwise it originates as msnal on the hindnost rays and on $;$; it is inserted witl a kind of tendon in the above-mentioned membrane on Tri, and consequently it acts antagronisticully against the . M. dilatator, and at the sane time lays the spur $T_{3}{ }^{1}$).

Spinax niger IRonap.

IP1.1, fige 12, 13.)
The rery pecnliar-looking appendages in this common shark have singularly enomgh been very little mentioned by earlier anthors, and by many, also among the later, they are mot mentioned at all. Gunnmerns ${ }^{2}$), in his description of the Sort-Han, says: they (i. e the two Jhembre sonitulia) were supplied with sonne sharp bony spines, such as I have seen on the J/ombra of several Kays. when the ends have been turned inside ont. Kroyer ${ }^{3}$ says: At the end of the copplatory appendares of the males are fom three crooked thoms on homy claws, and a taperin!s demal flap, which behind projects a little over these claws. The claws are movable against each other, and form a kind of prehensile organ. In the position of rest they are hidden between a pair of small cartilaginons. plates, and the skin corering these plates. This is the most complete, annl also, I think, the most correct description I hase seent). I) numérily sives a drawing of the appendix, but with no (xplanation whatever (nor in the text neither); the drawing is rather difticult to maderstand, neithor is it correct; thus the dermal flap mentioned by Kruser appears in this fignre as a thom, althongh it is

[^10]quite soft. Lilljeborgr m only says: The copulatory organs of the male are small and pointed, and reach only. a little behind the ends of the ventrals; they are until towards the end coalesced with the ventrals. As no thorns are mentioned, L. nn1st have examined only undeveloped appendages.

The appendix, when fnlly developed, is

Eig. 5
Iig. 5. Spinax niger. The appendage of the right side with part of the fin-mbenbrante, seen from the dorsal side, somewhat enlarged. The terminal patt is dilated. f the folled, free end of the fin-membrane; at O the fin has been cut from the body: afy the dilated part of the appendix-slit.
Fig. 6. The dilaterl terninal part, seen from behind. a the soft terminal flap. af the spot where the appendixslit passes into the dilaterl, terminal part of the furrow. short, clunnsy; thick, and reaches only a very little farther backward than the end of the fin-membrane, the free part of which is also very short. Dermal teetli are not found, neither on the dorsal, on the medial, nor on the greater part of the ventral side, except on this latter laterally, near the fin-mennbrane. In the numerons, developed appendices, examined by me, the terminal part was always Very much dilated, and such was also the case in the specimens, I have canglit alive; in the dilated state the terminal part stands almost at a right angle to the stem, its hinder end with the soft dermal flap (a) pointing inward towards the minddle line; the dilated part of the furrow then looks like a concave sole of the foot, in whose heel is seen the opening, through which the secretion of the glandular bag is probably ejected. Three polished, hard points protrude like claws throngh the skin, one at the dorsal lip of the furrow, the second at the ventral lip, and the third, and longest, juts ont, ventrally and laterally, fron the spot, where the fin-membrane becomes free of the appendix.

In specimens of the lengtl of $35,5^{\mathrm{cm}}-38,5^{\mathrm{cn}}$ the following measures are found ${ }^{2}$).

$$
\begin{aligned}
& \text { Length of appendix (from the fore edge of the cloaca) . . abt. } 2,5^{\mathrm{cm}}-35^{\mathrm{cm}} \\
& \text { - the part, free of the fin1 - I, },^{\text {2in }} \\
& \text { - the terminal part - } I^{\mathrm{cm}} \\
& \text { - the appendix-slit - } \quad \text { I, Sem } \\
& \text { Breadth of the appendix . } 0,6 \mathrm{~cm}-0,9 \mathrm{~cm}
\end{aligned}
$$

The skeleton. Between the basale and the appendix are found two small pieces (b_{1} and b_{2}), each bearing one of the two hindmost rays (accordingly $b_{1}+b_{2}$ in Spinax $=b_{1}$ in . L canthias); nevertheless these rays may be found coalesced, and are, as usually, directed straight backward, parallel to the appendix. The piece \mathcal{F} is relatively somewhat longer than in Acanthias, but of a sinilar form.

The axial part of the chief piece of the appendix is somewhat more clumsy than in Acanthias, but otherwise of a similar form, and also supplied with a short, soft end-style; including this latter the stem is only a little longer than the basale. The marginal cartilages, too, show chiefly the same relations as in Acanthies.

[^11]The terminal pieces are 5 .
The dorsal one, $T d$, is somewhat s-shaped, romed, and articulates medially with the curf-rtyle while the hindmost part of it projects through the skin as a curved, polisherl chatis as in - lomothime it is muited with a thin lamellar piece, T_{2}, which piece, with the exception of the hindmont pumt, is quite covered by the skin forming the dorsal lip of the furrow:

The ventral piece Ter is also somewhat s-shaped, broader than the dormal one, thick at the base, becoming thimer distally and laterally; it is concave like a spom on the side tontarde the furrow, on the other side rounded. At the provimal part of the lateral edge it is firmly minted with a hard, dentine-like piece $T_{\tilde{z}_{2}}$, which in Aconthius is only represented by an macalcified mennbrane. 'This piece is before (proximally) prolonged to a long, flat end, behind (distally to a somter one, projecting throngh the skin as the before mentioned claw in the ventral lip of the fundo: the piece is rather narrow, rentrally concave, dorsally romided. In moning it follows the piece Tr.

The last piece T_{3} corresponds to the thorn in - Iconthios and sommioszs, and is alon here formed as an elegant, bent, ronnded and completely snooth thom with the proximal end heact-shaperl.

It is quite ont of the question that these claws, as surpooned by Kroyer, shonld be able to act as a prehensile ongan, as they canot properly be moved asainst cach other; but they will be very able to fis the appendix firmly in a hollow, as by the dilatation of the temmal part their point are ummed in three opposite directions, as may be seen from fig. 6 in the text.

The muscular system. From the IV adductor has been separated a long, flat bundle as a particular muscle originating before from the medial aponemotic stripe together with the other fibres of the 1% adductor, and then on the dorsal side passing oblignely ower the IT. atonsor and next over the M. dihatator: on the appendix it follows the appendix-slit, and forms torether with the 1/. dilatater the medial lip of this slit; partly it is attached in the skin of this lip, but chiefly on the proximal end of the piece $T d_{2}$. This mascle evidently is instrumental in increasing the dilation of the terminal part, which dilation, as has already been indicated, seems to be especially great in spimm
 of the M. dilatator.

This latter, on the contrary, is on the ventral side distinctly bounded from the Wh uduch by a line ruming abliquely from the lateral side down towards the medial side. lis aponemrosis, an in . Lcanthius, is especially attached to To and 7 ?

The slandular bag (the Ar.compressor) does not in any of my numerous specimems reach (quite to the pelvis, and accordingly it must be temed proportionally small. It onter lip-mmsele as manal originates trom the piece β and the hindmost rays, and is with ite principal purtion fory dintinctly inserted on the piece Tíz, with another portion on the folded part of the ventral marginal cartilage (not on the thom T_{3}).

Scymnus lichia Bunap

A skeleton in the Zonlogical Ninsemn (from V: Firir in I'raguc)
In this specimen the appendix only reaches a trifle farther backward than the fin-mombranc. and the condition of the terminal skeleton makes it probable that the organ is not full developed.

Between the basale and the appendix-sten is found one piece b_{I} bearing the two hindmost rays. The piece β is rather large, flattened, with an edge turned towards the dorsal side.

The appendix-stem is as long as $B+b_{I}$; its proximal part below the knee is somewhat bent, medially consex, otherwise of a similar form as in the Greenland Shark, i.e. distally lanceolate; the end-style is very short. The dorsal marginal cartilage is a very narrow ridge, reaching forward alnost to $\boldsymbol{\beta}_{\text {i }}$ the ventral one is much longer than in the Greenland Shark, occupsing almost the whole length of the appendix-sten as a rather high, firm, and hard lamella, the distal part of which forms a but small, very narrow, folded plate, properly speaking only an indication of such a one.

Among the terminal pieces the piece $T d$ is still quite soft, not separated from the other tissme; Ti, on the contrary is hatd, and reminds, as to its form, of the corresponding piece in the Greenland Slark. T_{3} is present, but small, and no doubt not yet quite formed; whether in the developed organ it is hidden by the soft tissne - so that the observation by Nuller \& Henle: Die mänlichen Anhänge olne Stachel (1.c. p. 91) so far may be justified - I must leave undecided; the observations of these anthors concerning the ventral appendages are however, as it turns ont, often quite unreliable.

Scylliider.

Scyllium canicula (L_{A}).

(fl. II, fig. 16, I7).
The copnlatory organs are mentioned by several anthors, generally, however, without any particular clescription, as these authors especially attach importance to one peculiarity in the ventrals of the male, which (in all stages) forms an easy distinctive mark between Scyllum canicula and Sc. stellure $\left(\begin{array}{c}\text { atulus }\end{array}\right)^{\mathrm{r}}$, viz. that the rentrals are completely coalesced dorsally of the appendages, and in the middle of the hindmost edge of this coalesced part only a small incision is found. By a fold of the fin-membrane, passing over the proximal part of the appendages, these are also partially covered on both sides ventrally; and thus they are placed as tongues in a bell, which is open on the lower side, their hindmost ends reaching to or even farther (abt. $5^{m m n}$) than the hindhost edge of the bell ${ }^{2}$). The whole dorsal side (i. e. the side towards the body) of the coalesced ventrals is covered with dermal teeth and pigmented (spotted like the skin of the anmal in other places), and this covering is continued round the edge to the ventral side, where it is quite sharply limited; the other ventral part of the coalesced fins (the part in contact with the dorsal side of the appendages) is naked, mupignented, and soft.

The appendix in two specinens, when measured from the cloaca, abt. $+3^{m m}$ long, abt. $6^{m m}$ broad at the base of the teminal part, which is of a length of abt. $24^{m m}$) is straight, posteriorly some-

[^12]what conically tapering, on the greater part of the surface covered with demal teeth; only immerliately at the cloaca the dorsal side is naked, as is also the ontermost point of the appendix, which is soft and papillons; from here a naked, depressed stripe reaches forwarl on the medial side of the terminal part ${ }^{1}$. On this part the dermal teeth have another slape than elsewhere on the anmal, being longer and more pointed, like small thoms with the points turned towards the base of the appemelix: accordingly the hinder part of this is rongls to the feeling when rubbed backward, contrary to what is the case elsewhere on the anmal. The appendix-slit is covered in the terminat part by a thin, soft membrane arising from the dorsal (inner) lip; when this membrane is thrown back, the furrow is found to be open as nsual; but above the terminal part it is only represented by a groose in the skin, not very deep; the slit, which in the Sharks, hitherto mentioned, is quite open, is in this animal under the demal furrow by coalescing formed into a tube reaching to the base of the organ near the cloaca, and first here an opening is again fomnd, an oval aperture throngh which a sunncl may be bronght into the grandular bag. This latter accordingly las two ontlets, one at the base of the appendix, the other between the movable parts of the terminal part ${ }^{2}$).

The skeleton. between the basale and the appendix is founcl one very small piece $\left(b_{\mathrm{t}}\right)$ bearing no rays; the piece β is also inconspicnons, somewhat triangular, with a broad articnlation before with the basale, a narrow one behind with the appendin-sten.

The appendix-stem is of about the same length as the basale; it is calcified to a rather considerable degree; the soft end-style reaches to somewhat more than half the length of the terminal part.

Both marginal cartilages are specially strongly and peculiarly developed, which will be seen from fig. i6 clearer than from a description. The dorsal one ($K d$) reaches (as is nsmal) somewhat furtlier forward than the ventral one, but in the dorsal middle line it joins with the latter for a long way by a firm suture, so that the two cartilages together with the stem form a complete, firm tube, open before where the glandular bag joins it, and behind at the terminal part. Thus the part of the ventral marginal cartilage assisting in the forming of this tube, corresponds to the folded plate of the ventral marginal cartilage in the before mentioned Sharks ${ }^{3}$)

The number of terminal pieces is four ${ }^{+}$), completely corresponding to those in . Icanthius. $T d$ is narrow, somewhat triangular; along the side towards the furrow it is connecterl with a thin, style-shaped piece, $T d_{2}$ which proximally becomes broader, and reaches a little muder the dorsal marginal cartilage. $T_{\bar{r}}$ is broader, lengthened-oval, roundel on the outer side, towards the furmw slightly hollow, thick, and solid. Between its proximal end and the ventral marginal cartilage is inserted a well developed piece, T_{3}, which is not formed as a thom, nor can it be erected to such a position, as

1) At x in the fig. 6 of Petri.
 this fact in Scyllium Edadrdsit; 1'etri reprenents it 1. c. 1. 304
2) As Petri has mon seen the marginal cartilages as such in Aranthias. hie has in Scrlimm muderntome the mato the something particular in this gennus.
 he las really overlooked one piece, vi\%. Tds.

The Ingolf-Expedition. II. 2.
the corresponding piece in the hitherto mentioned Sharks. All these terminal pieces are hard, white, china-like, but none of then protrudes with any part through the skin.

The muscular system is as in Sc. stcllare, where it will be more particularly mentioned.

Scyllium stellare (L.)

(P1.II, fig. IS-19; pl. Vi, fig. 65-66.)
As upon the whole the ventrals of the male as to conton and shape are different from those in the preceding species, so it is also the case with the appendices. The ventrals are also here coalesced ${ }^{1}$), but only for a sliort way (in one

Fig. 7.

Fig. S.

Fig. 7. Soyltium slellare. The appendage of the right side seen from the ventral side; about the natural size, ab abdominal pore. F fin-membrane, f winglike process.

Fig. 8. The same appendage seen from the dorsal side; the coalesced part of the membrane of the ventral is cut up, and thrown back. The arrow indicates the direction, in which a sound may be brought into the appendix-canal. specinen of the total length of $90^{\circ \mathrm{mm}}$ the coalesced part has a length of 16^{mm}) ; the small cut in the posterior edge in $S c$. canicula lias here becone a large slit (in the specimen mentioned above about 26^{mm}; the dermal teeth also spread to a greater extent on the ventral side of this part of the fin. As furthermore no lateral fold of the skin is found on the ventral side covering the base of the appendices, and corresponding to the one mentioned in Sc. canicula, no bell is formed here.

The appendix reaches just outside the posterior fin edge; it is far more big and clumsy than in Sic. canicula, but still the details remind of the latter, they are only coarser and more conspicuous.
In a specinen of a total length of 90^{cm} the following measures were found:
Length of the appendix from the fore-edge of the cloaca to the hindinost point . $6 r^{\text {mom }}$

- - - free part. $3^{6^{\mathrm{mm}}}$
- - terminal part. 34^{mmm}

Breadth of the appendix above the teminal part . It inm
across - - 16^{mm}
The terminal part is relatively larger than in the preceding species, and its peculiar appearance is especially cansed by the strongly developed process f, which is only indicated in the preceding species. This process is on the ventral side (fig. 万) hollow, and the bottom of this hollow is naked, which makedness continues on the soft, outermost point. The greater part of the appendix is also
${ }^{1}$) When Lilljeborg l.c. p. 655 tells that the ventrals in Sc. slellare are not coalesced, he is not quite right. Minller \& Ilenle 1.c. p. 10 state the fact correctly:
here covered with demmal teeth; besides the parts mentioned only the surmonndings of the anterion aperture of the glandular bag are naked. The points of the dermal tectly are aloo turned towards the base of the appendix; they are longest and most pointed on the dorsal sirle oi / and I. The appendixslit is closed (to an extent of abt. $15^{\text {mom }}$) in adrance of the terminal part, as may be sech by thowing back the dermal lip $x-x^{\prime}$ in fig. 8 ; accordingly we have as in Sic.comionter two ontleth fon the secretion of the glandular bag.

The skelelon in its main features is as in So comionlu, but the appendix-part of it is much more chnmsy and peculiarly twisted. One small b_{1} without rass, and a litule with romnded contour are found ${ }^{\mathrm{r}}$.

The appendix-sten, from the articulation with h_{1} to the end of the style, is of the same length as the basale; it is somewhat bent with medial concavity; the end-strle of about laalf the length of the calcified stempiece; at the distal end of the former the nedial edges of both the adjoining terninal pieces form a rather sharp knee.

The marginal cartilages are principally like those $i n$. Sc coniouln; Kd is posteriorly somewhat longer than Ko, and is distally and medially a little hollow.

The terminal pieces are four, threc of them white and hard. Td is formed somewhat like a roof and as broad medially as $T_{\bar{z}}$ is ventrally; $T_{d_{2}}$ is mainly as in comionter; T_{i} is rounded on the onter side, somewhat concare towards the slit, T_{3} in 111" specinen is not calcified; but a soft, fibrous cartilage, joining with Th and placed in the lip l, in my upinion represents this piece\%. As in S_{c}. canionla none of the terminal pieces are seen throngh the skin.

The muscular system. From the medial marginal part of the M\% adductor have been branched off two separate muscles: fig. 65 , fig. $66 a_{\mathrm{r}}$ and a_{2}.

If we look at the ventral side (fig. 65) the fibres of the marginal part are seen as a powerful muscle a_{I}, anteriorly originating from the medial aponeurotic stripe, and posteriorly inserted on the proximal part of the appendix-stem close to the ventro-lateral edge of the skeletal orifice for the glandular bag; but part of its fibres attaches to the basale, and another part runs into the . If. dilututor: Looking at the dorsal side (fig. 66) we find the edge formed by another muscle a anterionly only indistinctly separated from u_{I}, but posterionly distinctly enough, as here a foremost portion of the 1\%. dilatator originating from the medial side of the basale, wedges in between both. This muscle " $n_{\text {: }}$ distally joins with the I. extensor (E), and together with this is inserted by a tendon below the knee of the appendix-stem.

The M. ditutator is enomonsly thick, and originates with the grater part of its mase from the appendix-sten montil the bonndary of the marginal cartilages, but, as already montioncrl, a portion of it arises from the medial side of the basale; part of this muscle distally jomins in the compusition of the peculiar process f (it is the same in S_{i}. camionla, where this process is anticla less compricnous) which by no means, as Petri says, is composed exclusively of verfiztenn Rinderuwehe .

 calcified eminence on the stem.
\therefore I'ctri, fig. ©
M. comprcssor. The bag-formed part of this muscle is rather long, and reaches considerably forward of the pelvis. On the contrary, the part forming the onter lip-muscle» is rather snall (smaller than in my fignres); as nsual it originates from the stem-skeleton (, 3) and from the hindmost rays, and is inserted on the proximal edge of the ventral marginal cartilage; it will here scarcely be able directly to contract the dilated terminal part ${ }^{\text { }}$).

Pristiurus melanostomus (Bonap.).

(PI. II, fig. 20, 2 I.
The ventrals of the male of this species are also dorsally coalesced in a similar manner as in the preceding two Scyiliidse ${ }^{2}$, but to a still less extent than in Sc. stcllare, and a deep curve separates

IFig. 9.
Pristiurzus metanostomzs. The right appendage seen from the dorsal side; about the natural size. The finmembrane is cut through, and thrown back. o the larger basal opening of the appendix-slit; between the asterisks it is closed by coalescing. The other signs
as in fig. 8. the coalesced part into two fin-laps. The appendices reach far behind the finmembrane ${ }^{3}$), in a specinen of the length of 78^{cm} to 23^{mm} behind the point of the fin-membrane; the whole length, from the hindmost edge of the cloaca, is 50^{mm}; the part quite free of the fin is 35^{mm} long; the largest breadth of the organ is about $7^{\text {mun }}$; the terminal part has a length of abont 25^{mm}. The ventral side is covered with dermal teeth, except the lindmost, soft, as it were, conwolnted part (abt. $9^{\text {mm }}$ long), on which still scattered groups of teeth may be seen; the dorsal side is naked, as are also the adjoining parts of the medial side, where they are covered by the finmembrane; on the free edge of the $\operatorname{lip} l$ a few scattered rows of dermal teeth are seen. The dermal teeth are generally very fine; as in the foregoing species their points are on the terminal part tnrned towards the base of the appendix. The dentition on the coalesced fin-parts is as in Sc. stillare.

The peculiar appearance of the appendix will be seen witl sufficient distinctness from fig. 9. The furrow anteriorly is opened by a large, easily distended slit of a lengtl of S-romm belind this slit it is closed for an equal length, and again open in the terminal part. In spite of the great dissinilarity in general when compared with the appendix of the preceding Scyllider, a closer examination will show a rather considerable similarity with these, especially with S_{c}. stollure: corresponding to the pecnliar process f of the Scyllia is fonnd a thin, soft dermal process, which may be folded towards the furrow (as in fig. 9), or spread in a wing-like
! This part of the 11 . compressor has been quite orerlooked by Petri, who has seen and drawn the other muscles, and given them the following nanes (see l.c. pl. SVI, fig. T. A and B):

The muscle here marked A (the chief portion of the M adductor) $=f$ m. m. . . e. Acror major pinma.
$\begin{array}{llll}- & - & a_{1}=\text { f.p.b. . . e. fevor plerygopodii biceps. } \\ - & a_{2}=\text { A.p.ex. i. e. flevor plerygopodï extevior. }\end{array}$
The M. extensor here marked $\quad E=$ A.p.i. i. e. flexor plervepodii interior:
What Petri calls flexion must, I think, rather be regarded as an adduction conneeted with an extension of the appendix.
${ }^{2}$) The expression used by Lilljeborg l.c. p. 660 their inner edges are not coalesced is accordingly not quite
correct. The appendices are shortly described at p. 662.
3) Comp. Gunnerus: (Om IIaae-Galen, pl. I, f. (Trondhjemske Selsk. Skr., II.)
shape to the medial side; to the lip / which in the Scyllia is turned into the furrow, corresponds the part in Pristiums marked with the same letter, to the maked demal fold i in one corresponds the naked dermal fold i in the other, etc.

Also the skeleton shows the near relation to the other Scylidec. Between the basale and the appendix is found (rentrally) a very small, quite rudimentary piece b_{s} which of course lears no ray; dorsally is found an also very small piece, 3 .

The appendix-stem and the marginal cartilages are much like those in the Scyllia. The stem is twisted longitndinally in a similar mamer as in Sco. stellore, but is not bent medially. Tlue dorsal comection of the marginal cartilages, however, is not so close as in the Scyllia; the two pieces may here be forced a little from each other.

The number of terminal pieces is five, if to the terminal pieces we will comnt a piece, $\mathrm{K}_{2} \mathrm{a}_{\mathrm{a}}$ which has not been found in any of the Sharks, mentioned in the foregoing; it is joined movably to the lindmost edge of the dorsal marginal cartilage, and is situated in the dermal fold below the asterisk in fig. 9.

Td and Tire are long and narow, and form at the end of the style a similar kneeshaped curve as in Scyllum stellare (in . Sc. caniculn it is only indicated); a slightly calcified or almost quite soft piece T_{2} is found, projecting forward moder the edge of $K d ; T_{i}$ proximally forms a rather broad plate, to the dorsal edge of which is attached a leaf-shaped, somewhat bent piece T_{3}. All the pieces are completely hidden in the skin.

The muscnlar system is substantially quite the same as in the Scyllia, the only difference being that the onter lip-muscle seems to be still less developed in Pristiums.

Lammider.

Lamna cornubica ((imelin).

$$
\text { (Pl. 11, fig. 22, } 23 . \text {) }
$$

In a specimen of the length of $2^{m} 5^{\mathrm{cm}}$, which in the beginning of Nowember 1 sot, was driven on shore on the westem coast of Jutland, he appendix has a length of $2 \mathrm{I}^{\mathrm{cm}} \boldsymbol{\mathrm { l }}$) and a largest breadth of 4^{cm}; the terminal part is 7.5^{cm} long. The whole ventral surface is densely coverch with domal teeth quite to the end; this investment ceases with a strongly marked boundary line on the medial surface, which is quite maked to the terminal part; this latter leeng almost quite covered with tocth until the margins of the appendix-slit, also on the dorsal side; the other parts of the flat dorsal side of the shaft are maked, and these naked parts are laterally marked off from thone conercd with tectly by a rather deep longitudinal demal fold. Apparently the appendix-shit from lefore the terminal pant and to a larger foremost opening at the base of the appendix is closed as in the simplidu; hut in reality it is open, and for the whole way it is possible, thongly with difficulty, to press a sufficicutly thin somm in between the margins of the marginal cartilages. (n) the medial side, immediately be-

[^13] opening leads into a deep, pocketlike invagination of the skin, lined with a soft continnation of this. similar to a mucous membrane. On the dorsal side of the terminal part, at the lateral base, a polished skeletal piece projects uncovered by the skin and like a thorn $\left(T_{3}\right)$. The terminal part is easily bent ventrally: if bent in that way, the thorn, as in many other Sharks. will rise mechanically, and stand ont horizontally ; it will immediately lie down again, when the terminal part is let loose. A dermal fold supported by the skeletal piece $T d_{2}$ is prolonged forward into the tube formed by the marginal cartilages in such a mamer, that this tube gets two ontlets, one on each side of the lamella concerned; but the appendix-slit proper is situated laterally of this piece (af in fig. Jo).

The skeleton. Between the basale and the skeleton of the

Fig. 10.
Lamma cornubica. The himdmosi part of the right appendix seen irom the dorsal side: cousiderably reduced. I the opening of a pockerlike invagivation of the skin. Tr, a derual fold containing no skeletal piece. appendix is found almost as in the Scrliidæ) one rery small piece $b_{\text {r }}$. highest on the medial surface, and otherwise quite low, that is to say. wedge-shaped: in comnection with the distal end of the basale and the proximal end of the appendix-stem it bears the hindmost rari, which at the base is rather broad. The piece $\bar{\beta}$ is pretty well developed, and, as is msual in Sharks. counects the basale with the appendix-stem.

The appendix-stem is very long, twice as long as the basale - b_{I} : proximally it is only a little calcified (comp. Sclachus), but else it is firmly calcified in the surface until the terminal part, where it forms a very long style. reaching to the hindmost end of the terminal part: this style for the hindmost two third parts is calcified in the surface: its soft basal part is situated immediately under the above mentioned pocket : the distal end of the . Irusculus dilatator passes into the firm, fibrons ventral wall of this pocket, in such a manner that its aponeurosis is firmly inserted in the perichondrium above the caicified part of the strle, as well as in the corresponding places of the two adjoining calcified terminai pieces $T d$ and $T_{i^{\prime}}$; the soft part of the strle and the joints between the marginal cartilages and the two skeletal parts $T d$ and T_{i} will then act as a kind of articulation ${ }^{\mathrm{I}}$.
The marginal cartilages are very long, hard, and thick; forward they reach almost to the begiming of the appendix-stem; the dorsal one reaches somewhat longer forward and also somewhat further backward than the rentral one. In the greater part of their length the two cartilages are in contact with their margins: proximally the dorsal one is covered a little by the rentral one, the margin of the former being bent somewhat into the tube euclosed by both; behind, a little before the terminal part, they separate, and leave between them a slit broadening distally:

The number of terminal pieces is four.
$T d$ and $T_{\text {zi' }}$ are long, aimost equally dereloped; their distal ends are not calcified, and do not reach quite to the end of the styie. To the inner dorsal edge of $T d$ is attached a piece $T d_{2}$, which
: If we should suppose a skeletal part to be developed in the rentral wall of this pocket. it would in all respects le correspunding to the covering-piece zound in Rhina.
is a rather thick lamella only partly calcified. Also a piece Torz is indicated as a pretty long. thinn lamella, which does not calcify or only calcifies to a very small degree (see firs to in the text) it is comnected with the proximal end of Tir, stretches forward inside the thom, and is with the anterion end firmly mited with the aponemrosis, on which the outer lip-musele bespoken afterwards, acts: by the pulling of this musele at $T_{T_{2}}$ and $T_{\tau^{\prime}}$ the dilated terminal part is brought back, and the thorn T_{3} situated between the two said pieces is laid. T_{3} has more particularly the form of a claw, whose proximal part is head-shaped and rather soft, wrapped in the soft tissule connecting it with the adjoming pieces.

The muscular system. The $h_{\text {. adductor }}$ is distally mot sharply separated from the . W dilututur, as part of the fibres of the former passes into the superficial medial layet of the later. The former muscle is quite woren together with the M. extensor, so that it is only by preparing from the dorsal side far into the large, proximal muscular mass that a considerable portion of fibres is found, originating from the basale, and having a direction common in the M. ixtensor.

The bag-shaped part of the . 1/. compressor is very long and rather thick; in the specinen examined by me, it is about fom long, of which $23^{\text {com }}$ are situated moder the ventral skin before the pelvis ${ }^{1}$. The onter lip-muscle shows the peculiarity that in spite of the long fentral marginal cartilage it is prolonged covering the dorsal surface of the said cartilage until the teminal part, where it acts on T_{i} by means of the abore mentioned lamellar indication of a $T_{\tau^{\prime}}$ in a similar manner, an this muscle acts in Sharks with a short ventral marginal cartilage.

The N. dilatator only cosers a very small part of the dorsal side of the appendix-shaft, by far the greater part of the dorsal marerinal cartilage being covered only by the skin.

Selachus maximus (finmerns).
The appendix has been briefly mentioned by Sir Exerard Home2), somewhat mone detailed by Blainville引, but not originally by Paresit), whose specimen, howerer, was a male; mly in his second papery does Pavesi briefly describe and draw (p. 353) the (mondeveloped) appendix, and collects the whole literature treating of these organs, giving also in a table (1. c. p. fobl the dinnensions: that may be put together according to the obtained fact.s. The image of the appendix that is to be got from the literature, is upon the whole only imperfect. I have not found any particular mentioning.

[^14]of the skeleton, but the following will, nothwithstanding it defectiveness, sliow, that the structure of the skeleton is like that of Lamna.

In the musem of Copenhagen is fonnd a pair of dried skeletons of these organs that have been got from a stuffed specimen (from California) of the length of $9^{\mathrm{m}}{ }^{1} 5^{\mathrm{cm}}\left(27^{\mathrm{I}} / 2\right.$ Danish feet).

Fig. II. Selachus maximus. The skeleton of the right appendage seeu from the ventral side; much reduced.
Fig. 12. The same frou the dorsal side. f furrow in the dorsal terminal piece. Both figures have been drawn after a dried skeleton. The position of T_{3} is scarcely quite correct, and T_{z} is separated from its connection with the marginal cartilage $R z$. By long soaking the dried softer cartilaginons parts swelled so n11ucli that upon the whole they ninght be thought to approach to the shape of the fresh skeleton. Of the parts of the fin skeleton proper is only found a little, somewhat triangular piece, sitnated proximally at the dorsal end of the appendix-sten; it innst be the piece β, which is accordingly (as presumably also the piece b_{1}) quite small as in Lamna (and the Scylliidæ) ${ }^{\mathrm{r}}$).

The appendix-skeleton lias a length of about $I^{m 2}$); it 111ay be doubted if all the terminal pieces have been preserved, but the principal features may be seen distinctly enough. The appendix-stem is calcified (the proximal end, however, not very much); the soft style is very long and rather broad, and reaches to the outermost end of the terminal part (comp. Lamma). The marginal cartilages are developed almost as in Lamma, that is to say, they join dorsally without forming a firm suture, the edge of the ventral one overlapping that of the dorsal one ${ }^{3}$). The number of terminal pieces (in the specimen in liand) is 3 .

Td is short, not reaching to the end of the style; it is calcified for the greater part of its length, and las on the dorsal surface a furrow or groove f, wide before, where it passes into the large appendinslit, while belind it becones a narrow slit following the piece to the end +).
T_{z} is only calcified anteriorly, otherwise it is a soft cartilage following the style just to the end. T_{3}
${ }^{1}$) l'avesi ($\mathrm{IS}_{7} 8$, b. 378 , fig. 12) draws the ventral sketeton of a yonng male: here is only seen the basale, and a very little dereloped stem-part of the appendix. As, however, in other Sharks the pieces, which i have here called b_{1} etc. and \hat{F}, are distinctly present in young ones, even in embryos, it is to be supposed that they have been overlooked here; in Scyllizm and Lamma they are so small, that they are easily orerlooked, if the skeletal parts are not cleaned of the soft parts with especial care.
${ }^{2}$) In the specimen of Blainville it was 3 feet long (the free part); the length of the animal was 29 ft .4 inch.
3) The words of Blainville l. c. p. 125 are: ils offrosent en outre une fente ou sillon étendu dans toute lenr longueur, mais dont la moitié antérieure, d’à peu près if pouces, étoit étroitement fermé par le rehord de deux cartilages très-serrés et qu'on ne pouroit écarter qu'avec une très grande difficulté.
t) It may possibly he this (?) sit, which is mentioned by blainville 1. c. p. 126 as a sillon beaucoup plus petit et plus étroit etc.
is claw-shaped and of a considerable size (in the specimen before me 16 cm 1 mmg , and the broadest part $5,6 \mathrm{~cm}$ broad); with the exception of the proximal part it is completely calcified: according to the statement of several anthors ${ }^{1}$) the point of it (in the developed organ) projects throngh the skin.

Besides the three terminal pieces seen in my figures, I think it probable that ome more has been found, a $T d_{2}$ as in Lamma. I fonnd this opinion in the first place on the words of Blainville (1. c. p. 126) that besides the claw there is 111 antre cartilage, m pen aplati, occupant le 11 ilifien du tiers antérieur de cette gonttière (i. e. the furrow of the terminal part); celni-ci étoit mobile presqu'cur tons sens, mais entièrement renfermé dans un repli de la membrane interne qui se prolongevit, libre et flottante, jusqu'à l'extrémité posterieure din sillon. Next I fonnd the above stated opinion on the description (18 -S, p. 352) and drawing in woodent (fig. 3) of the (madevelopedy appendix given by Paresi: nella metà apicale offrono un pezzo mediano lanceolato, rialzato e piano, con fenditure laterali. Questo superficie non ha traccia di sperone corneo. I ater (p. 405) it is said of this piece that it is only a thickened dermal fold, not to be confonnded with the spur ${ }^{2}$). The dermai fold mentioned by these authors, no donbt corresponds with that one which in Lamma contains the piece Td. But what is the fenditure laterale of Paresi? According to the fighre it must be situated on the medial side of the organ, that is to say, it is presmmably the sillon.... beancoup plus petit et plus étroit of Blainville; and thus it must be smpposed to be the one seen in the skeleton, fig. I2 f, and not a pocket like the one described above in Lamma, becanse this latter is situated before the terminal part, and accordingly wonld be seen on the part called by Paresi la meta basale.

Rhinider

Rhina squatina ($\mathrm{I}_{\text {. }}$).

(I'l. II, fig. 24-27.)
In a specinen of the length of $I^{m 1}$ and a breadth across the pectorals of $0,59^{m}$, the part of the appendix free of the fin is $\delta^{r} 2^{\mathrm{cm}}$ in length; from the foremost beginning of the slit the lengeth is
${ }^{I}$ Shaw: General Zoology V. pt. II, I'isces, ISof, tab. It9 (in the text mothing is fonmabout it) the figure is certainly bad, and the appendices can scarcely ever hase that appearance, but are, to use the words of pavesi (1s-s, p), fof), tras. formate in sorta di gambe dallmaginoso disegnatore. Blainville gives it to be finches long, lut coverul by soft tinsues except ${ }^{t} z_{2}$ inch, which m’a paru comme cornée et libre au hori supérieur et extérieur de l'appentice. Ifome speakh of it as a strong, flat, sharp, hony process, five inches long, which moves on a joint, and the bone projects an inch and a half bevond the skin, like a spur (ISog, p. 20-7; in the later adrlition is onfy said: the spur bears a striking resemblance to that of the male ornithorychus paradoxus. I, esweur: Mescription of a sefualus ete.; Journ. Acoul. Nat. Ifist. I'hinit. Il, part II. 1822, p. 349; Mitchill in Inekay: Natural Ilistory of New York, Zoology, part IV, Iishes, 1sta, p. 35s: [rom ant between the anal Tins, two legs project five feet in length, and are torminated by a claw tipperl with horn . Van Ibencolen:
 sketch of the appendices with the spur from a stuffed specimen in Irsitish Museum, amel shows that these spurs ore de well as the gill-rakers) found as fossits in terthry strata. Before I knew this fact amd the palper by vain lbenedern, I hance
 hard, dentine-tike terminal pieces of the appendices of selachii might exist as fossils, ind indicated that perhaps some of the ichtyodornlites were not dermal teeth (spines) but such skeletal parts; h turning over tha work by Agassio wn fossil fishes I have, however, not been able to find any drawing, to which this conjecture might be appliond.
${ }^{2}$) Paresi himself thinks the presence or alssence of this latter to be alspentent on the age of the amimal, ame mot to indicate a difference of species, and it is now leyond all doubt that this opmion is quite contect. . till other spectes ont
 in the skin, and is not uncovered until it has reached a considerable degree of developmont, contemporary with the ornan as a whole having altered its shape and dimensions.

The Ingolf-Expredition, II. 2.
$11,5^{\mathrm{cm}}$ (from the foremost edge of the pelvis to the hindmost point of the appendix the length is $\left.24^{\text {cmi }}\right)^{1}$); the largest breadth is fonnd somewhat above the hindmost point of the fin-membrane, and is about $3,5^{\mathrm{cm}}$. The ventral side is flat,

Fig. I3.

Fig. 13. Khina squatina. The left appendage from the dorsal side, reduced. The part from a to b has been cut up in prolongation of the appendix-slit to open this latter so much as to get a view of the gland k. I' is part of the entrance to the pocket between $T v$ and a.

Fig. 14. A transverse section through the same appendage after the line, marked with * * in fig. I3. b the transyerse section of the appendix-stem. D Ahusculus dilatator. E Miuscuitus cxtensor. S Musculus compressor. i the gland. v hlood-vessels. $/ 2$ lomy filaments. r the end of the last ray. covered with dermal teeth till the naked terminal part ($4,3^{\mathrm{cm}}$ long, $2,{ }^{1 \mathrm{~cm}}$ at the broadest spot, at the base); these dermal teeth are flat, and form a complete mosaic, only a little rough to the feeling, when rubbed with the finger towards the base, and it is of quite the same nature as that covering the ventral side of the rest of the fin ${ }^{2}$); the whole surromnding of the cloaca as well as the space from there to the foremost lateral corner of the fin is naked (with a few scattered groups of teeth); furthermore a naked stripe stretches from the hindmost inner edge of the fin-membrane, where the fin is laid against the appendix, some way on the ventral side of the fin. Both edges as well as the whole dorsal side of the appendin are naked.

The somewhat triangularly pointed terminal part shows, when seen from the dorsal side, the appendix-slit (af) sitnated near the lateral edge; a rather large, foliaceons fold of the skin, which includes the skeletal piece $T d_{2}$, originates from the dorsal lip of the slit; the proximal end of this fold stretches into the (half-) tube formed by the distal ends of the marginal cartilages. Accordingly there will, on both sides of this plate, be an outlet from the canal of the glandular bag in the broad part of the appendix; the real continnation, however, of this canal is here, as everywhere, sitnated in the terminal part laterally of the said fold (at af). If the fold is throwin back, there will in the lateral margin of the appendix-slit proper be seen a rather large

[^15]aperture (at l^{\prime}) leading into a pocket between the rentral temminal piece (T (iv) and the ventral covering piece \because.

If the lateral lip of the appendix-sitit above the terminal part is lifterl, a thick glandinlay body is seen protruding from the medial side of the canal, in which feature this species differs from all other Sharks I have had the occasion to examine. This gland win he more particnlarly mentionced afterwards.

The skeleton. Between the basale and the appendix-stem three short pieces $\left(b_{3}, b_{2}\right.$, and $\left.b_{3}\right)$ are fomd, each bearing one of the three himhost rays (the two hindmost of thene rays are terminally quite coalesced for a long way. At a first glance the piece β seens to be wanting. but a closer examination shows it to be present, represented by a little cartilage, arising fronn the lateral hind corner of b_{3}, and joined $b y$ a particnlar articulation to the proxinal end of the appendix-stem b. Comtrary to what commonly is the case in the Sharks, the piece is does not here articulate proximalls with the basale.

The appendix-stem (o) is long, considerably longer than the basale (the ratio is a 2) romm (with the exception of the proximal part where it dorso-ventrally is somewhat flattened): the style is long, not, howerer, reaching to the hindmost point of the terminal part. The marginal cartilages are short, and are only fombl at the distal part of b; contrary to what commonly is the case in the Sharks, the ventral marginal cartilage is the one reaching most forward. The general shape of these cartilages, I think, may be seen with sufficient cleaness from the figures. The ventral marginal cartilage bends towards the dorsal one with a plate similar to that fomd in many other Sharks, hut does not quite reach it. But this plate is here in a peculiar way hollow, being behind split into two lamellae receiving between themselves the proximal end of the piece $T_{z^{\prime}}$; this piece, then, projects into the ventral cartilage, quite cosered, matil the point marked * in fig. 25%. The hindmost end of the immer one of these two lamellie protmding very much, the appendix-slit is by its transition to the terminal part straightened to an extraordinarily narrow passage.

The number of terminal pieces must in reality be taken to be fonr but to these fon is added a good-sized, rentrally situated piece, z^{\prime}, romnded in a sutiform manner, and partly covering the terminal part (see fig. 2.f) behind the rentral marginal cartilage. This piece has developed in the aponenrosis which, in the Sharks hitherto mentioned, encloses the terminal part, and it serves like this aponemrosis for inserting the large M/usc. dilatutor. If this piece or is removed, the ordinary ierminal pieces are easily recosnized: Th which is rather broad, flat, with a thickemed edpe medially (which edge follow's the style closely, but reaches a little further backward), and a sharp int thin edge laterally; $T d_{2}$ proximally joined to the foregoing piece, is a broad, hat thin, and but aishoty calcified lamella. T_{t}^{\prime} is of a very pecnliar shape, thick and solid, ventrally pombled, domatly, tumames the slit, deeply hollowed in a spoon-like shape; its proximal eme, as alrcady montioned, pases.s it. articulation with Ká, and enters between the two lanclle of the overlapping plate: with the prosimal end articulates, completely hidden, a little calcified piece representing the thom or apur , Tathis

 and proximally prolonged, a smilar state of matters might be the result.
projects, bent at its rise, but otherwise straight, cylindrical, and rounded posteriorly: It is necessary in order to get a view of this piece T_{3}, and to isolate it together with $T \boldsymbol{\pi}$, to cut away part of the outer lamella of the ventral marginal cartilage.

The muscular system. The I. adductor shows no deviations from the common type; the 1/. extcnsor, on the contrary, slows the peculiarity of being divided into two independent muscles (comp. Torpedo), an inner (medial) one, and an onter (lateral) one, bordering on each other, and both originating from the basale; the inner or formost one arises rather far forward on the basale alone, runs, like the 1/. cxtensor in the Greenland Shark, across the appendix-knee, covering as a thin plate part of the dorsal side of the II. dilatator, and ends quite posteriorly, at the terminal part. The outer or lindmost extensor arises behind the foregoing one, not from the basale only, but also from the pieces b_{1}, b_{2}, b_{3}, and it is attached to the appendix-stem immediately belimd the knee .

The 1/. dilatator, as is commonly the case, encompasses the appendix-stem from the dorsal marginal cartilage to the ventral one; the lateral part of it arises forward on the ventral side of the basale and the sloort pieces following this latter (comp. the Rays); behind its chief portion is attached to the ventral covering piece τ

Of the .IF. compressor the bagshaped part is rather short, and does not nearly reach to the pelvis, but otherwise it agrees with the one found in other Slarks. The outer lip-muscle is very powerful as in the other Sharks with a short R_{z}, and is attached posteriorly chiefly in the aponeurotic covering of the piece T_{i}.

The secreting part of the glandular bag shows in its foremost part the same relations as in the other Slaarks; but in the part which is situated in the shaft itself, a large glandular body (see fig. I3 and (4) has been developed on the ventral side. The presence of this gland may already be gnessed by the peculiar exterior of the appendix-shaft; its proximal part shows, when seen from the rentral side, a peculiar convexity, by which the organ gets a contour not mulike that of a human leg with a large calf. The glandular body reaches before quite to the begiming of the bagslaped part, that is to say, mucl farther than the appendix-slit itself, so that it is necessary to cut up some way (see fig. 13) in order to get a view of the foremost end; it is a little tapering behind, and reaches to the terminal part. A slight, longitudinal furrow is found on the free (dorsal) surface abont the middle, and on the edges of this furrow are situated two series of large glandular outlets; a great number of similar outlets are also found laterally of the furrow, in pretty irregular gronps; to the medial side of the furrow are also some such openings, but apparently in much smaller number. When the gland is pressed an abundance of mucus will appear as stoppers in the said ontlets. The glandular body is composed of dichotomonsly branched tubes, quite similar to those found in the Rays, and with quite similar large secreting cells; but they are here grouped in a somewhat different manner'as a consequence of the outlets of the gathering ducts being spread on a much greater space. The glandular body in Rhinu furthermore deviates from that of the Rays by its ventral position in the shaft ${ }^{1}$, and by not having the special muscular coat developed as in those; the part of the 1. compressor situated at the gland will very likely be able to act in a sinilar way, possibly only with less force, in Rhina.
${ }^{1}$ In Torpedo, Narcine, Rhinobatus and Toygon the dorsal glamlular body of the bag is continned throughout the shaft with the sane structure as in the bag, but reduced in bulk, and situated along the ventral marginal cartilage. If in one of those Ray-forms the part of the gland situated in the bag be supposed absent, and the part in the shaft displaced

The peculiar mixture of Shark-like and Ray-like characters that, as it is well known, is fonnd in Rhinu, is accordingly increased by several features in the appendages of the male, which features by the ventral covering piece and the pocket, sitnated below it, with entrance from a sicle-slit, and partly also by the glandular bag, recall those in the Rays (Torfedo, Tercint, Rhmobutus and Truson), while most of the other features are those common in other Sharks.

Cestruciontider.

Heterodontus (Cestracion) Phillipi (Culv.)

The skeleton has been described by Gegenbaur'). Between the basale and the appern-

Fig. 15. Hiterodontus Phillipi. The skeleton of the right appendage. After Gegenhaur (l.c. fig. 19), sonnewhat reduced. The letters placed in parentheses are those used by Cegenbaur. r the last ray: dix are found two pieces ($b_{1}, b_{2}=\beta, \beta, 1 . c$, fig. 18,19) that bear no rays; the piece β is well developed (1.c.b fig. Iq). The chief piece of the appendix is provided with two (rather long?) marginal cartilages the boundary lines of which cannot be seen in the figures of (iegenbaur, as he has not understood the marginal cartilages to be particular pieces), of which the ventral one has a dorsally bent plate (1. c. lig. 19, a); the stem is prolonged into a long style reathing almost to the end of the terminal part (1. c. fig. 10, 20, i). The number of terminal pieces is four: Td $(=1$. c. fig. $10,20,0), T l_{2}(=1 . c . w)$, which, as is orten the case, is proximally prolonged into the aprendix-slit; $T_{i}(=1 . c . c)$, as commonly, stronger and thicker than the others, and finally $T_{;}$forming a short thorn. (iegenhaur has correctly seen the homologies of these picces with those in Acanthias, where, however, he has not scen the piece $T d_{2}(-u$ in Hiterodentus). Of these terminal pieces the piece T; is said (1.c.S. 452) to be hard, while the others, though filly developed, are still cartilaginous.

Nolidanide (e. ${ }^{2)}$

Chlamydoselachus anguineus (iamman.

(ilinther³) has briefly described the appendages and their skeleton, and given figures of them. Only a third part of the length of the appendages is iree of the fin, "as is the case in the Notidonide generally", and there is no notch in the hindmost fin-edge, between the membrane and the appendage. Between the basale and the appendix-stem there are "three rullimentary and one larger intermediate cartilages" ($b_{1}, b_{2}, b_{3}, b_{4}$?), none of which bears any ray. To judge by the figure, there is no piece if;

Figg. 16. Chiamızio Selachus anguinters. The skeleten of the risht aprendage
After Ciliather
somewhat realueed. The letters in the paremelhenes are the original entess
alonge the ventral marginal cartilage to the lateral surface of the appendix-stem, we shomblhate almind state of mathers a in Khina. There can scarcely be ang doubt that the gland in this shark and in the Rays in spite of the differemer of poo sition - are in reality homologons. Furthemore the ghamblat hag in gatuger shages of the Rays socoms to phas throush it stage of development, in which there is, also as to the exterior, a comspicums similarity with that of the Rhing. without ant conspicuous longitudinal furrow etc. (see later under Rajar botis).

\Rightarrow I regret very much that my efforts to get ventral fint with theronpel appendiges of flexanchas or haphom hus

 are found; what fritsch calls the sporn is the last raty for rather the iwo latst, conkenced onest. The of the figure I
 appendages in the extinct Xenacanhida, siven by Fritsch as well in his fhef work as in several artioles in the hoole in
 structure camot be determined

as, however, no figure is given of the part in question, seen from other sides, I cannot regard this absence as quite certain. The long appendix-stem is prolonged to a style reaching to the end of the terminal part. The marginal cartilages (not understood by Günther to be particular pieces) appear to have mainly the same structure as in the Spinacidx: the ventral one has the usual overlapping plate (1.c. T. LXIV, fig. D, D^{\prime}, t). The number of the terminal pieces is only two (if not a piece T_{3} has been overlooked or removed by the preparation?) viz. Td and T_{z}, both hard and calcified, $T v$ being as usual largest and broadest.

Carchariide.

Mustelus antarcticus Citlir.

A pair of dried skeletons of ventral fins with appendages in the Zoological Musenm at Coper1liagen.

Between the basale and the appendix-stem one rather small piece b_{r} bearing the last ray, which is partly coalesced with the last but one; a distinct, well developed β that seems to have been

Fig. 17. Mustelus antarcticus. Skeleton of the right appendage, seen from the ventral side; about the natural size. v the ventral covering piece: * a spoon-like hollow in the ventral marginal cartilage.

Fig. IS. The same preparation from the dorsal side: * the bottom of the hollow in the ventral narginal carlilage, protruding into the appendixslit. Both figures have been drawn after the dried skeleton.
triangular. The appendix-stenn is prolonged to a long, soft style reaching almost to the hindmost end of the terminal part. The marginal cartilages stretch over the hindinost two third parts of the chief piece, the dorsal one reaching farther forward than the ventral one; the edges of their folded parts join dorsally, leaving between them only a narrow slit. To the distal end of the dorsal marginal cartilage is added a foliaceons, slightly calcified piece, homologons with the piece Rd, mentioned in Pristiurus.

The number of terminal pieces is $4(\uparrow 1)$.
The two of these pieces that as usnal follow the style, and together with it form the walls of the lindmost part of the appendix-slit, $T d$ and $T z^{\prime}$, are well calcified, lengthened, pointed, and $T d$ a little longer than $T \tau^{\prime}$. To the lateral edge of $T d$ is proximally added a foliaceous, slightly calcified piece $T d_{2}$, forward stretching under the piece $R d_{2}$ into the appendix-slit as in several other Sharks. Finally there is a rather large, flat, triangular, posteriorly taplike piece T_{3} that, however, does not not appear to have projected throngl the skin as a spur.

Besides these real, typical, terminal pieces still a special piece, τ, is found, which I take to be corresponding to the one marked with the same letter in Rhina, and accordingly to have arisen from the aponemrosis of the Hhusc. dilatator; here in Ihustches antarctions it covers a peculiar, rather deep, spoonlike hollow on
the rentral side of the end of the marginal cartilage Ror (on the dorsal side the corresponding epont is seen protruding into the appendix-slit, at :* in figr. 18).

The descriptions of different Sharks given in the preceding section will have shown that the common type in the skeleton is clearly conspicnons; the single secondary skeletal pieces may vary pretty much, as to their form, but their homologies are easily and surely demonstrated. Aithongh the mentioned species of Sharks cannot be said completely to represent the Sharks mpon the whole, yet they belong to so many different families that we may be justified in coming to the conchasion that the skeletal structure of the appendix is in the Sharks rather simple and casily explainect. 'Tllis, however, can in 110 way be said of the Rays in general; here, especially in the genns: Raju. may be found particularly complicated structures varring to a high degree even from species to species; and as the Kaju-species are those that hare been especially exammed by earlicr anthors. it will easily be muderstood that so few general results have hitherto been obtained. ff, however, by means of the Sharks we have got a clear molderstanding of the characteristic common features, it will not be so rery difficult to point ont these features also in the Raju. It is, however, an obvious supponsition that other forms of Rays than Rajer will approach more nearly to the Sharks, and such forms will most likely have to be songht anong the shark-like Rays, as Pristis, Rhinobuths, Torpedo, etc. Through the kindness of Professor Liitken I have from ont musemm obtained the material of the two last-named genera, and of Torpedo I have also got some pairs of ventrals from Napoli.

Batoidet.

Torpedinide'.

Torpedo marmorata Risso.

(PI. IIt, fig. $2 \mathrm{~S}-3 \mathrm{~F}$)
The appendix, like the whole fish, is naked, flattened, with tolerably parallel sides, the terninnal part oval, distinctly marked off from the shaft by a slight constriction. The appendix-sit mans: On the dorsal side quite straight, nearest to the lateral edge antil the hindmost hali of the terminal part where it suddenly bends to the medial side, and with a curve reaches to the end. (Wh either edge of the temminal part is seen a lengthened slit, posteriorly widening somewhat like a buttonhole: cither slit leads into a blind, pocket-like bag, inside the later mentioned covering piece arl. Nome of the enclosed skeletal pieces are naked.

In a specinen of the length of $29^{\text {cm }}$, a breadth of 17^{cm} the following meannes are fonnt for the appendix:

Length from the formost end of the slit to the extremity . . 40^{mm} - of the free part
 17^{mm}
 The greatest breadth ca. $\mathrm{Io}^{\mathrm{mm}}$
 The length of the terminal part $15{ }^{\mathrm{mm}}$

In another specimen of the sane length and a breadth of 19^{cm} the appendages were a little sliorter and broader, but otherwise as fully developed.

The skeleton. Between the basale and the appendix-

Fig. 19.

Fig. 20.

Fig. 19. Torpedo marmorata. Part of the skeleton of the right sentral, from the ventral side. r the hindmost rays partly cut off. Natural size.
Fig. 20. The same preparation from the dorsal side. stem are found two pieces b_{1}, b_{2}, of which the former is the shorter one (seen dorsally it is much shorter), and bears the two lindmost rays (the last but one is partly borne by the basale also). The piece β is long, longer than b_{2}, flat; proximally it articulates with b_{1}, runs along b_{2} withont tonching it, and articulates distally by an oblique articulation with the appendix-stem ${ }^{1}$.

The appendix-stem is rather straight, calcified in the surface until the terminal part, where the mosaic of the surface suddenly ceases, and the onternost part of the stem is soft, which soft part, chiefly of the same breadth as the harder one, thus corresponds to the style, and reaches to the end of the terminal part, ending with a broadly rounded, convex edge.

The marginal cartilages are both calcified, but very muequally developed, by which the whole appendix gets a peculiar asymmetric appearance; the ventral one ${ }^{2}$) reaches a trifle longer forward than the dorsal one, but backward it ceases far before this latter; the dorsal cartilage is by a longitudinal furrow apparently divided into two pieces of which the lateral one begins forward about the middle of the ventral cartilage, and stretches backward about as far past the hinder end of this latter (see fig. 30,31); this part of the dorsal marginal cartilage is on the ventral side hollowed in a trongh- or groove-like manner; the medial part of this cartilage, especially the foremost part of it, is slightly calcified, membranons, and is placed like a cover over the appen-dix-slit, so that a narrow slit is left between its onter edge and the ventral marginal cartilage.
${ }^{1 /}$ Petri has quite misunderstood the relations of these skeletal pieces, ant has upon the whole been very unlucky in his explanation of the skeletal pieces in Toppedo. Already his beginning: © Das Skelet von Torperto besitzt nur sehr geringe Änlichkeit mit den der vorher beschriebenen Arten , promises nothing good; and his description of the terminal parts shows that he has not understood them at all. He has correctly seen that between the basale and the appendix are situaterl two pieces: fig. $4 \mathrm{D}, b^{\prime}, b^{\prime \prime}$, but their length and position is given less correctly in the figure, which is, like all his figures, rather bad; but then he has completely overlooked the piece β as a separate skeletal part taking it to be a process on the appendix-stem: Nach vorne entsendet dasselbe (i.e. the appendix-stem) an der medialen (i. e. the dorsal) Seite neben dem zweiten und dritten Glied des Basale entlang einen Irocessus, welcher mit den ersten Basale ann hinteren Ende noch in Verbindung stelnt. As a homologon to the piece β in Acanthas (Petri's fig. $5 r^{\prime}$) lie takes a little piece (fig. + D, r^{\prime}), which is said to bear the two last rays and to have originated from a coalescing of the proximal joints of those: es ist dieselbe Concrescenz, wie ich sie bei Acanthias besclurieben habe. In Acanthias, however, the piece p ($r^{\prime \prime}$ in Petri) bears no rays, as, after all, it never does. The little piece which Petri has scen in Torpedo (and in the figure marked r^{\prime}), is only an macalcified corner of the basale itself, projecting over the two last rays, but it does not bear the rays.
${ }^{2}$) The marginal cartilages are partly correctly seen and determined by Ietri as Rimenknorpel : Fig. +D and E , c and ℓ; I^{*}, ℓ; and pl. XVII, fig. $4 \mathrm{~B}, \ell$: the skeletal piece, however, interpreted by letri as a dorsal marginal cartilage and matked l, is only the firm lateral part of the dorsal marginal cartilage; the thin, cover-shaped part seems to be removed, except on fig. \& B, representing the nuscles.

The mmber of the terminal pieces is three; but to be alble to sece these piecers, and correctly to understand their relations to the marginal cartilages, it is necessary to remose a large ventral covering piece, homologons with that mentioned in Khime and marked ar because the whoke ventral side of the terminal part is lidden as by the half of a thimble (the comtome of which may often be distinguished throngh the skin). The formost edge of this covering piece is incised in an irregularly heart-shaped manner, the one - lateral - corner being produced much farther than the other: it is strongly rounded from side to side, and the surface is dotted with small holes. The edgen of this piece have on each side a peculiar bend, and immediately behinct this the conering piece is firmly joined to the specially thickened hinder edges of the two teminal pieces Fid and Yar: by the said bends and the rentral concavities of the covered terminal pieces, the peculiar sideslits and the walls of the before mentioned pockets are formed. The . M. dilututor is attached to the fore edge of the covering piece, and by the firm comection between the covering piece and the outermost point of the terminal pieces the action of the muscle is transmitted to that point.

The dorsal terminal piece, $T d$, is quite short, somewhat convex towards the appendix-slit; the ventral side on the contrary is deeply concave; together with the corresponding marginal cartilage which, as we have seen, is also hollow, it forms a complete trongh, in which the medial pocket is situated. The rentral terminal piece, T_{i}, has the donble lensth, is likewise romded on the dorsal side, hollow on the ventral one, and forms with the covering piece the lateral pocket. Finally a piece T_{3} is added to the hindmost end of the ventral marginal cartilage, and to the proximal part of T_{2} : it is shaped as a slightly bent, round thorn, ahnost hidden inside of the lateral edge of the cowering piece ${ }^{1}$).

The muscular system. The . 31. Atcosor is divided into two parts reminding of the state in Rhinu. The foremost one originates from the foremost half of the basale, runs over the knee, and is attached immediately below this to the . $1 /$. dilatator, and partly to the distal end of fand of the appendix-sten; the hindmost one originates from the other, hindmost, half of the basale and from the following pieces (also from 3), passes with its distal part under (i. e. ventrally of the foregoing one, and is continned rather directly in the medial part of the $1 / \mathrm{F}$ ditututor.
11. compressor. The bag-shaped part of this muscle, situated on the ventral side, is very small; properly speaking it is confined to a ventrally romeled swelling between the two hindmost rays and the parts of the stem-skeleton, h_{1} and h_{2}; accordingly there is no part projecting across the ray muscles. the formost contour of the bay being borclered by the skeleton (the picces h_{1} and b_{2}) whe anternmat one by the hindmost ray muscles. The ventral fibres of this little bag run olfiquely backward towards:
 ing the onter lip-muscle, is rather powerful and long, originates forward from the picece of formost

[^16]The 1ngolf-Expedition. 11, 2 .
also from b_{1}), and the fibres pass obliquely backward towards the last ray and the rentral marginal cartilage. On the inside of this latter the muscle continues somewhat farther back, tapering, and with the fibres rmming straight backward. The whole muscular wall may pretty easily be separated from the two hindmost rays to which its fibres are not really attached; when thus separated from the rays the whole muscular bag shows a rather strong resemblance to M. compressor in Chimara.

The .1. dilatator is with the whole of its hindnost end attached to the covering piece z^{\prime}, and thms, by means of the firm comnections of this piece with the distal end of the terminal part, it acts on the movable portions of the terminal part ${ }^{1}$.

The glandular body is pignented, and its longitudinal furrow runs a little obliquely; it has before been briefly described by Leydigri) and by Petri (1.c. p. 22), but none of these authors mention the peculiar fact, in comparison with the Raju-species (and accordingly it is to be supposed that it has not before been seenl, that the glandular body, continually tapering posteriorly, stretches throughont the shaft quite down to the terminal part. ln the shaft it follows the ventral marginal cartilage, and is here for some way along this skeletal piece surrounded by the onter lipmuscle, the latter appearing as the continnation of the dorsal muscular wall of the bag . The longitudinal furrow, and the openings in it follow the glandular body quite to its hindmost end.

Torpedo oculata Bélon.

In this species the features are principally as in T. marmornta.
In a specimen of a length of 30^{cm}, a breadth of 19^{cm}, the following measures were fonnd:

$$
\begin{aligned}
& \text { Length of the appendix } 43^{\text {min }} \\
& \text { - - - slit } 3^{6 \mathrm{~mm}} \\
& \text { - - - part free of the fin } \quad 7^{\mathrm{mmm}} \\
& \text { - - - terminal part. abt. } 14^{\text {mm }} \\
& \text { Breadth of the appendix 7- } \delta^{m m}
\end{aligned}
$$

Narcine sp.
 (Pl. III, fig. 32, 34.)

A badly preserved specimen, the species of which is difficult to determine, measures in length 24.5^{cm}, in breadth 12^{cm} :

- The appendix from the beginning of the slit to the hindmost point is $2^{3 \mathrm{~mm}}$
free part. $14^{\text {mm }}$
length of the teminal part . romm
- breadth of the - - . $5^{m m}$
${ }^{1}$ Petri has given a very imperfect description of the muscles of which he only mentions N. dilatator. (Comp. l.c. fig. $4 B$ and C.)
${ }^{2}$) Beiträge zur mikroskopischen Anatonie und Entwickelungsgeschichte der Rochen und Haie, 1852 , p. S6.

The exterior of the appendix is chiefly as in Torpedo; we find here the sane marginal slith (and pockets), but the medial one is with the buntonhole shaped, distal part sitnated puite on the dorsal side, and the lateral one is tumed a little ventrally; next it in whe ber remarked that the appendix-slit in the whole of the free part of the orgath is lying quite laterally, the dorsal lip overlapping it quite to the onter edse like a cover, much broader than in Torfedo; corresponding to this the portion of the terminal part containing the piece $T d$ is folded quite orer the hindmost part of the appendix-slit. The glandular bag and its inner gland are relatively more strongly developed than in Torfido.

In the skeleton, wotwithstanding the principal conformity witlo Torf do, several pecnliar features are found. lictween the basale and the appendixstem also here two pieces, b_{1} and b_{2}, are fonnd, the former short, the latter longer; b_{I} bears the last ray at the comnection with the basale; the last ray but one seems to me only to articulate with the basale. The piece ; is totally wanting. The appendix-stem is long, considerably longer than the basale $+b_{1}$ and b_{2}; it is calcified in the surface excepting the short encl-style, which distally becomes broad, flat, with rounded hindmost contour. The marginal cartilages are thin, rather short, and occupy only the hindmost half of the stem; the rentral one shows the same features as in Torfedo; also here it reaches a little farther forward; the dorsal one, when seen from the dorsal side, forms a broad, ovate leaf tapering proximally, and continuing as an uncalcified bund (fuite to the articulation of the appendix-stem with b_{2}; its lateral edge reaches to the free edge of the ventral marginal cartilage; seen from the rentral side it is hollowed in a trongh-like mamer as in Torproln; but distally it does not nearly reach so far as in the latter, and consequently the two marginal cartilages do not end so obliquely of each other distally (this fact seems also to imply a greater mobility of the terminal part in Varcine than in Torfedol.

The number of terminal pieces is three, to which is to be counted a quite similar ventral covering piece i^{\prime} as that in Torpede. As already mentioned, Td is folded to the dorsal side, and hats apparently a shape deviating considerably from that found in Torfode; a closer exammation shows however that this deviation to some degree is due to the position; on the medial-dorsal side the piece is hollowed in a groove-like manner (for the medial marginal slit); otherwise it is flatly rommed on the onter surface, concave towards the appendix-slit, with a sharp lateral, convex edge.
T_{i} is short, oval, romded towards the appendix-slit las in Torfedol concave on its witer surface, by which, together with the covering piece i', it forms the hollow for the lateral pocket, I: is somewhat s-shaped, tapering to both ends, little and slender. The covering piece is chicfly an in Torpedo; also liere we find on both its margins curvatures destined (especially on the latural margin) to form the button-liole shaped opening of the pocket tugether with the tominal picest Tid and Fr: The foremost lateral corner appears independent as a very small a'.

The muscularsystem is as in Torpedo with the exception that the part of the wo come fressor that may be seen on the rentral side, is relatively larger, and laterally spreads smmenhat
more, and that the 1% cextensor is single. The glandular body is prolonged into the sliaft quite as in Torpedo.

Rhinobalide.

Rhinobatus columnæ Bonap.
(II. III, fig. 35-37.)

In a specinen of the total length of 85.5^{cm} and a breadth of 26^{cm} across the pectorals the appendix had a length of $1 \mathrm{I}, \mathrm{F}^{\mathrm{cm}}$.

The other measures were:

$$
\begin{aligned}
& \text { fronn the fore end of the slit to the lindmost point of the appendix } 7 . \mathrm{f}^{\mathrm{cm}} \\
& \text { the part free of the fin . 6,2 }{ }^{\mathrm{cm}} \\
& \text { Length of the terminial part . I, } 9^{\text {cin }} \\
& \text { Breadth - - - . o, } \mathrm{S}^{\mathrm{cm}}
\end{aligned}
$$

Fig. 22.
Rhinobatus columne.
The left appendage from the dorsaI side. Natural size. F the fin-membrane. l the opening of the lateral pocket,
l of the medial one.

The appendix reminds of that in Torpedo, being flat, and having (on the ventral side) the terminal part marked off by a slight constriction; but it is considerably longer, with a long free portion, and a relatively short terminal part, and so it has a rather slender, elegant appearance. The ventral side is all covered with the same dense mosaic of fine, flat derninal teeth as the otlier parts of the belly; only the very outmost point (I^{mm}) is naked and soft. On the dorsal side the region aronnd the foremost part of the appendix-slit is naked as well as the whole part before the slit, which is nornally in contact with the belly, this having also a corresponding naked spot; fintherniore the naked part stretches as a small stripe backward close to the medial edge mutil the teminal part, the dorsal side of which is quite naked; otherwise the dorsal side is covered with teeth, and has the darker colonr of the back of the animal. The appendix-slit is situated quite close to the lateral edge, only in the temininal part it bends towards the middle. On the dorsal side of the terminal part are seen two marginal-slits leading into pockets, quite corresponding to those in Torpedo and Varcinc; the medial one is the longer; in the lateral one the ontermost part of the piece T_{3} is seen freely protruding from the skin as a shining thorn.

The skeleton. Between the basale and the appendix-slit are fonnd fonr pieces: $b_{1}, b_{2}, b_{3}, b_{4}$; the last one being the longest, next to that follows b_{t} which is also the broadest, but they are all more long than broad; b_{3} and b_{+}bear no rays, b_{2} bears the last ray, b_{I} the last but one (and, in connection with the basale, also the last but two). The piece β is exceedingly long; anteriorly it articulates with the dorsal side of b_{I} close to the basale, then it stretches
along the other pieces, $b_{2} b_{3} b_{4}$, and next articulates with the appendix-sten b in a longr joint, reaching as far past the articulation of b_{4}, as the length of this piece b_{4} itself; it reaches quite to the dorsal marginal eartilage. It is narrow and flat, distally a little bent. The appendix-skeleton is of a lengtly abont equal to the basale $+b_{1} \ldots b_{4}$, the stem is rather slender, and ends in a style of a similar shape and nature as in Torfodo, only it is here relatively very short. The marginal cartilages are very long; both of them begin alnost at the same point forward, the ventral one, however, a little before the dorsal one, and they end at the style in an inverse ratio, that is to say, the dorsal one reaching a little farther backward. On the greater part of their external surface they are very elosely connected with the teeth-cosered skin, so that they only with difficulty can be separated from it. The distal part of the dorsal marginal cartilage is, quite as in Torpedo, ventrally hollowed in a tronghlike manner; this part is hard and firnn, shining, white the other part is 1110re soft, lanicllar, lying like a cover over the appendix-slit, and forward reaching to 及. The terminal part on the ventral side is cosered by a piece \because ', quite corresponding to that in Torpedo and Thrcint; the margins, however, are witliont folds.

The number of real terminal pieces is three.
$T d$ is very small, a little concave on its ventral side; T_{z} is larger, and bears on its lateral edge a process directed forward; it is externally flatly ronnded, internally towards the appendix-slit it has a trongh-like concarity. T_{3} articulates with the hindmost lateral edge of Ra', and with the fore end of $T_{\text {r }}$; proxinally it is broadly ovate, and distally it tapers to a shining conical point, which, as already mentioned, is uncovered by the skin.

The musemlar system is principally as in Torfodo; the Musc. Atonsor, however, is single, as in Netrint: The glandular bag ocenpies here, as in those two genera, the space between the distal end of the basale and the proximal end of the appendix-stem, but laterally it spreads over the hindmost rays in a similar manner as in Raju.

The glandular body is rery narrow, and does not anteriorly reach the end of the loag: accordingly it fills the inner space of the bag to a far less extent than in the other kays; it is prolonged as a thin, raised stripe, provided with a furrow and gland-pores as in Torfido and Vercime, throughout the length of the shaft till the terminal part.

Trygonider.

Trygon violacea Bonap.

$$
\text { (Pl. III, fig. } 38-40 . \text {) }
$$

A specinen of a length of 1^{m}, a breadth of $44^{\text {em }}$ shows the following measuren:
The lengtl of the whole appendix $y^{\text {tun }}$

- - - - free part . $0,5^{\mathrm{cm}}$
from the fore end of the slit to the hindmost point of the appendix sem
The lengetli of the terninal part . f ${ }^{\mathrm{cm}}$
The largest breadth at the base of the temminal part 1,5 5^{cm}

The whole appendis, as the rentral itself, is naked, somewhat latero-rentrally compressed, almost triangular, when cut throngln, but with rounded edges; the broadest surface looks inward, and is in contact with the base of the tail; the appendix-slit follows the more narrow dorsal side till the terninal part, where apparently it separates into two slits, surrounding a lengthened-oval, firm, and hard part, covered by the skin (T_{i}); in reality, however, only the inner one of these slits is a continuation of the appendix-slit ($O f$); the outer one (l^{\prime}) leads into a deep pocket ending far forward, and limited by the terminal skeleton proper and the covering pieces to be mentioned later. Immediately before the passing of the slit into the terminal part its inner (dorsal) lip forms a rather large, soft, pignented dernnal fold, which, howerer, is not seen externally, being placed under the overlapping firm edge of the outer lip, supported by the covering piece \approx

None of the skeletal parts protrude through the skin.

Fig. 23.
Trygon violacca.
The left appendage from the dorsal side; reduced. /t the opening of the lateral pocket. I, $T d$, Tv the parts of the skin, in which the skeletal parts, indicated with the corresponding letters, are inclosed.

The skefeton. Between the short basale and the appendixstem are found two pieces, b_{1} and b_{2}, of about equal length, but b_{1} is much the broader, especially proximally, where it is of the same breadth as the basale, and where on its dorsal edge it articulates with a very long piece β, which, without tonching b_{2}, reaches to the appendix-sten, and articulates witl the dorsal side of this almost quite to the fore end of the dorsal marginal cartilage. b_{I} bears the last ray, which proximally for a long way is coalesced with the last but one which articulates with the end of the basale; these two are by liganents firmly comected with the ventral marginal cartilage. The appendix-stenn is long and powerful, more than twice as long as the basale $+b_{I}+b_{2}$; its hindmost part (a little less than half the whole lengtli) is uncalcified as a strong, broad style reaching to or only a little past the end of the terminal pieces. The marginal cartilages are both calcified, the dorsal one most solidly; they reach about equally far forward, and occupy alnost the distal half of the stem above the style; behind the dorsal marginal cartilage reaches a little farther than the ventral one; the latter is concave on its outer surface, while the former is partly rounder.
The number of terminal pieces is two, only $T d$ and T_{π} being fonnd.
$T d$ is a large, extemally rominded plate of pointed-ovate contour, thickest at the medial edge along the style, and laterally quite thin; the lateral edge is finely indented. Tr likewise is large, but the inner surface, towards the appendix-slit, is ronnded, while the outer surface is deeply hollow as a trough, both edges of which are somewhat bent towards the concavity. The whole rentral side of the teminal skeleton, as well as great part of the ventral marginal cartilage, is covered by two hard, calcified, firmly connected covering pieces z^{\prime} and τ_{1}, to which the M. dilatator is attached, and which correspond to the single a^{\prime} in the preceding genera of Rays (in Narcine, as we have seen, the proxi-nal-lateral corner of ir had already been partly separated as an independent piece, to which in Trygon the larger piece z_{r}^{\prime} must be taken to correspond). The larger lateral piece z_{1} shows distally a rather
deep hollow on the outer, otherwise rombded surface, by which means a strmig ridqe is produced on the opposite, concare imer surface, and this ridge is firmly comnected with the raised mediall edge of the piece T_{i}^{\prime}; the above mentioned deep lateral pocket is then situated between the last-mentioned pieces.

The muscular system is pecnliar by the little marked bounding between the single groups of muscles. Thus on the ventral side the fibres of the .1f. adductor are seen behind and medially wh continue, withont any bounding whatever, directly into the 1f. dilutator, and laterally to patss over on the 1/. compressor in such a way, that the contour of the glandular bag before and medially in quite effaced; the fibres of the ventral wall of the glandular bag as in Tompredo - have the sane direction as those of the .1f. udductor, and they are here, until close to the lateral edge, guite woven together with the latter. On the dorsal side the marginal portion of the A\%. cudductor is secu an a powerful mass arising partly from the pelvis, partly from the aponemrotic covering of the museles of the abdominal wall, and laterally overlapping part of the M. extensor. This latter arises from the whole extent of the basale, as well as from the following pieces, and is distally, without any bounding, woven together with the .1F. adductor and the continuation of this, the .1\%. dilatator, which latter also with a considerable mass wraps the whole of the appendix-stenn and both the marginal cartilages quite to their margins at the appendix-slit. Behind it is attached to the proximal edge of the ventral covering pieces $\left\{z^{\prime}, z_{1}^{\prime}\right\}$. The part of the I/ compressor, appearing as the outer lip-minsele, is only sligthly developed; more developed is the part of the dorsal muscular wall of the glandular bag. ruming more transversely, and wrapping the glandular body, which it follows thronghont the shaft to its hindmost end at the terminal part.

The glandular body stretches here - as in the preceding genera of Rays - throngla the whole length of the shaft along the ventral marginal cartilage, constantly tapering backward, and the furrow which in the part of the body, situated in the bag, runs from before obliquely to the medial side (separating a pigmented and an umpignented surface), continues with its pores quite to the terminal part. The part of the appendix-slit situated in the terminal part, has quite smooth walls.

The above described features of the glandular body, and several other characteristics - as for inst. the presence of ventral covering pieces, enclosing a pocket with an opening througln an onter side-slit, and furthermore the bollowing of the ventral side of the piece Tri-very much recall thosic in Torpedo and Rhinobatus ${ }^{1}$, and it is evident that Trygon is more closely allied to those than w Kaja, at all events with regard to the structure of the appendices.

Rajider.

In this family the appendices reach to quite a considerable size, and consequently they, naturally enough, have attracted the attention, and have in sume species several times been the suthject of examination. As a rule, however, this examination has not been very thorongh, mor has it been ex-

[^17]tended to more species of the gemns, and therefore the result as to comparison has only been slight. The species show great differences that may easily be nised diagnostically. The corresponding structures in the different species are easily pointed ont; more difficult it is to work out the comparison with the other Plagiostomes in a sure way. 1 hope, however, to have succeeded in this in the following description of the species I have examined.

Raja batis L .

(Pl. IV. fig. 45-48.)
The appendices of the Skate are mentioned by several authors, who, however, have restricted themselves to brief remarks of the outer shape and the size. This latter may in old males be so considerable that the appendices may convey a notion of Skates with three tails, or Skate-Kings (Pontoppidan) ${ }^{1}$) Lilljeborg ${ }^{2}$) gives, in old males, the length to be between ${ }^{1 / 4}$ and ${ }^{5}$ s of the total length of the animal, and says that the appendages reach far behind the middle of the tail. I know, however, no thorough representation of these organs or their skeleton 3).

In a specimen of a length of $\mathrm{I}^{\mathrm{m}} 26^{\mathrm{cm}}$ (2 ell Danish) the appendix has a length of $27,5^{\mathrm{cm}} \mathrm{f}$). The other measures were:

> From the fore edge of the slit to the end of the appendix ${ }^{25-26 \mathrm{~cm}}$
> The part free of the ventral $8^{8 \mathrm{~cm}}$
> The terminal part ${ }^{\mathrm{I}} \mathrm{3}^{\mathrm{cm}}$
> The largest breadth (across the basis of the terminal part) 4^{cm}

The shape of the appendix is flattened, the contour clavate, the breadth increasing towards, and culminating in, the big, orate terminal part. The skin is naked in every place. The appendixslit in the free part of the organ is situated quite close to the lateral edge; in the part minted with the fin more towards the middle of the dorsal side; in front the slit is easily dilated, and a littlefinger may here be brought into the ventral glandular bag, the powerful gland of which may be partly discerned throngh the skin; the rest of the slit mintil the terminal part is certainly open, but on acconnt of the stiffness of the marginal cartilages it can only be very little dilated; in the terminal part, however, dilation may easily take place, especially if the end of the appendix is bent ventromedially: In the terminal part the skin forms on the ventral side a large, soft lip, closing together with the dorsal lip, which is sulpported by skeletal parts. If the soft lip is thrown back, its inner, bluish-red mucous membrane is seen, as also a large skeletal piece $\left(T_{3}\right)$ with sharp, indented outer edge; it is, however, quite covered by the mucons membrane, which on the dorsal side of the piece
${ }^{\text {1 }}$ See Kroyer, l. c. p. 99.3 .
${ }^{2}$) 1. c. P. 590 .
3) The Ray mentioned by Joannes lbattarra in Atti dell' Acc. delle scienze di Siena, Tono IV, m7x, p. 553, the appendix-skeleton of which he draws in fig. I, must be the Skate, or at all events a nearly allied species (according to Giglioli [teste Lilljeborg] the Skate is not found on the coasts of Italy (?)). Dary l.c. p. 145 mentions the glandular bag and its large glandular body; its secretion etc.

+ in two skeletons of rentrals belonging to the Zoological Musenm the appendices have a respective length of 41 cm and 38 cm .
forms a great many transverse, soft, vascular folds (see fig. 2t in the text, bl). If the terminal part is more opened, the walls of the appendix-slit are seen; they are very cmionsly formed, covered with at mucous membrane, and their folds and pockets supported by. different skeletal pieces. Besides what has been mentioned, we find on the ventral side a firm fold with a porons edge, du, reaching into the proximal part of the slit, and a process ($T_{i} 2$, with a loose, soft covering, and supported by skeleton; laterally of this process is found belind a deep recess or pocket, Lir. σ_{11} the dorsal side are seen two recesses, the formost one (Ld) sery deep, and separated from the appendix-slit by a lamella supported by skeleton; the hindnost one ($Z d^{\prime}$) is less deep; finally. is seen a process (T_{i}), enclosed in a soft membrane, which process is laid against the above mentioned one on the rentral side of the slit. The real continnation of the appendix-slit rmms between these two processes, as indicated by the sound in fig. 24^{1}).

The skeleton. Between the basale and the appendixstenn are found two pieces, b_{1}, b_{2}, the latter longer than the former ; b_{1} bears the six hindmost rays, b_{2}, as usual, none; with the dorsal and lateral edge of b_{r} is comected a long, plate-shaped β, distally articulating with the appendix-stem b almost beside the articulation between this latter and b_{2}.

The appendix-sten is long, about twice as long as the basale $+b_{1}+b_{2}$; behind it becomes by and by dorso-ventrally flattened, especially in the terminal part, where its outer end is quite flattened, thin, and rommed. As is usually the case, the calcification ceases in the terminal part; in the long part corresponding to the style is however fonnd on the medial edge a strongly calcified region projecting in a somewhat bump-like manner (x in fig. 45, 47). The marginal cartilages are long and hard, and are for a long way rather closely joined with their edges; distally they separate; the dorsal one begins before close by the articular surface between β and b, but distally it does

Firg. 24. Rajo batis. The terminal part of the right appombage, from the dorsal sitle, strongly dilated (much reduced). A sound goes throngh the bottom of the appendix-slit. El the soft, ventral dermat lip: T_{3} the ternanal piece $T_{\text {: }}$ covered by muenus membratue with the dermal leaves bl; dix a firm dermal folld, dotted with small holes on the edgre. la e the ventral pooket. $L d, L d^{\prime}$ the two dorsisl pockets; d, d/ the dorsal lip with the entosed skeletal parts d :and $T d_{2}$; $R d^{2}$ al dermal fomb, supported hy a plate-shaped prolongation of the dorsal marginal cartilage; Ť, Ť, dermal projections supporterl by the skoletal parts marked with the same letters. not reach as far ont on the stem as the ventral one, which in return dues not reach so far proxinally as the dorsal one; thms an open space is fonnd proximally, where the glandular hag joins in, and where its foremost, dilatable outlet is situated. The dorsal marginal cartilage acmals forth distally a
I) In specimens with quite short, undereloped appendices, shorter han, or of an equal length with, the fins ment brane (the free part from $2,5-3,5^{\mathrm{cm}}$ in lemgeth), we, ats might be expected, (lo mot finll much of thene whomate stracturas: in such young appendices with all parts still soft the apperndix-slit is casily operncol amd quite spreat, omb then the wolls of the slit are seen to be smooth and simple, upon the whole without recesses or folds, also in the lomanal fart; onk shongly
 the spongy-porous dermal fold (da) in the adult, and in the lateral part of it the lange skeletal part I will derelopl.
long, triangular, plate-shaped prolongation, Rd, fig. 45 , rumning into the terminal part, and supporting the above-mentioned dermal fold.

The number of terminal pieces is five, and to these is to be comnted a covering piece belonging to the aponenrosis of the Jhusc. dilatator. This covering piece ${ }^{\mathrm{I}}$) (fig. y^{8}) is chiefly situated on the dorsal side, lias a fairly triangular contour, flatly rounded, with part of the medial edge bent in such a manner that it catches romnd the medial edge of the end-style (fig. $46, d$). This piece quite evidently belongs to the same kind of structures as those, described as covering pieces in the before mentioned forms (Rhimu, Mrustclus antarctious, Torpedo, Narcine, Trygon), only the development having liere taken place in the dorsal side of the aponentosis; and so I here fand in other Rajaspecies) mark it with a d.

With the distal end of the dorsal marginal cartilage is only connected one piece, proxinally also tonching the style; I regard it to be corresponding to the $T d$ of the other Plagiostomes, as it is situated in the same manner as that in the clorsal lip of the appendix-slit, and shows the same relations to the marginal cartilage and the stem; it is rather thick, somewhat bent in a crescent-sliaped manner with the concarity towards the stem; distally it is firmly connected with the style of the stem by means of an mealcified (or slightly calcified) cartilaginous prolongation ${ }^{2}$). With the hinder half of the lateral edge of this piece $T d$ is connected a long, narrow piece, attached by a band to the terminal encl of the style; it is situated in the edge of the dorsal lip, and I think it to be corresponding to the piece, whicli in several other Plagiostomes I have called Tid. Witl the ventral marginal cartilage are terninally and laterally connected two pieces of a peculiar slape. Only the medial one of these is also connected with the style of the stem, passing closely along it mutil the above mentioned calcified bulb x; this piece then must be corresponding to T_{π}; it is rather thin, rounded on the outer side, and prolonged to a slender, bent, obliquely-posteriorly and laterally directed part, ending in a hook (it is this hook, which is seen covered by a loose, mucous nembrane in the fig. 24 of the text at Ti'l. The other piece consists of a crescent-slaped, large part, the concave side of which is for a long way connected with the terminal and lateral edge of the ventral marginal cartilage; most anteriorly the long horn of the crescent reaches into the appendix-slit; behind and laterally the piece is prolonged to a long, rather slender process, tapering to a somewhat bent, flat part with a sliglitly notched end (it is this process, which is seen covered by loose, soft membrane in the fig. 24 of the text at $T_{\tilde{z}_{2}}$). I take this piece to be homologous with the fully developed piece $T_{\tilde{i}_{2}}$ in Spinax (in Acanthias and Sommiosus it is only indicated), and its situation seens to me to settle this honology beyond doubt. Finally is found, belonging to the ventral structures, a very large piece, rather crescentshaped when viewed from the ventral side, which must be corresponding to the piece T_{3} (the thorn» or spur in different Slarks); proxinally it reaches far into the appendix-slit, is on its medial side broad, flatly rounded, and sends forth laterally a high, sharply winglike ridge with undulating, finely indented edge; somewlat above the middle it sends fortlo a tap-like process, ventrally overlapping $T_{e_{2}^{\prime}}$; distally it ends with a plate resembling the blade of an axe, and ventrally reaching over the

[^18] details of the processes).

The ghandmbar body, as in all Rumesperies, is limited to the domat side of the vembat bag proper, and accordingly does wot comthace into the shatit. for yong sfecimento of the skate with modereloped appendages mot yet rathing the end of the ventral, the appearance of the oland is

 the chatacteristic deep homgitulinal furme will arice:

Raja nidarosiensis Collfett.

 blance includes the common habit of the simgle skeletal pieces, bat a closer examination of thene will
 F_{3} is bent in a somewhat different way, and has a relatively larger laterat wing, a larger formand

 deviations of ath the picees from those in the Skate, and leave wothers, who maty have mone materiat
 specific characters. Aecording to the existing deseriptions of the beceics the apmemages are vers large, and are said to reach behind to the begiming of the first domat fin.

Raja clavata 1.

 1859.1.1:15-157, 113. 3 .
to the accompanying figures, and in these the total want of letters indicating the single parts; still later they hare been described by Petrir) and Moreau ${ }^{2}$). Besides short remarks on these organs are found in several writers of mostly systematic works. None of these descriptions seem to me to be quite serviceable.

In a specimen of the total length of 76^{cm} the whole lengtl of the appendix is 18 cm . The other measures arc:

$$
\begin{aligned}
& \text { Length of the free part . } \\
& { }^{1} 3^{\mathrm{cm}} \\
& \text { from the fore end of the slit to the extremity of the appendix } \\
& \text { I } 5^{\mathrm{cm}} \\
& \text { from the fore end of the terminal part } \\
& { }^{10} \mathrm{o}^{\mathrm{cm}} \\
& \text { Largest breadth (across the base of the terminal part) . . } 2,7 \mathrm{~cm}
\end{aligned}
$$

Fig. 25.
Raja clarata. The terminal part of the right ventral appendage, much dilated; reduced. The letters as in fig. 24.

The whole appendix is naked (but on the abdominal side of the glandular bag are found some scattered thorns); the shape is lengthened-clavate with a short shaft; the terminal part forms the club, and is relatively very long, broadest at the base, and tapering from thence towards the point. Only the foremost dilatable part of the appendix-slit, the part forming the formost ontlet from the glandular bag, is situated dorsally; from here the slit goes laterally, almost even passing to the rentral side; fronn this side it can be seen, but not at all fronn the dorsal side (contrary to the situation in the Skate). This is brought about by the fact that the dorsal lip, which only proximally is supported by skeletal parts, at the base of the terminal part overlaps the shit to such a high degree; the ventral soft lip is, when compared to that of the Skate, only very narrow. If the terminal part is opened so much, that the interior is seen ${ }^{3}$, this latter will present an appearance, apparently quite different from that in the Skate; it will, however, be possible to point out quite corresponding projections and hollows: on the ventral side of the slit is seen, relatively only little conspicuous, the membrane-covered terminal piece $T_{3}+$) which shows before a sharp, cutting edge, and on closer examination also is seen, as in Raja batis, to bear on its upper surface a row of transverse, soft, but less developed dermal leaves $b l$; a bayonetlike, hard, and sharp-edged blade ${ }^{5}$) (on which one may easily cut oneself, although it is covered by membrane) projects strongly; corresponding to $T_{\tilde{\tau}_{2}^{\prime}}$ in the Skate; to the piece $T_{\tilde{\tau}^{\prime}}$ in this latter corresponds a

[^19]long eylindrical process, reaching with the point into the ventral recess ${ }^{1}$, which is here situated far backward, almost teminally ($L_{i} \boldsymbol{i}^{\prime}$; on the dorsal side are seen the two sane recesses ${ }^{2}$) as in the Skate, but of different size and extent, as well as the projecting lanella Red'3) bornc by the skeleton; the only new thing that does not seem to be represented in the Skate, is a stronsly projecting part sup)ported by the skeleton, det ${ }^{t}$, which part belongs to the ventral side; it corresponds whe porons, spongy, firm dermal fold in the Skate, where, however, no skeleton is fonnd.

The Skeleton. Between the basale and the appendix-stem (Metatarsien Moreau |Ciux. Duvernoyl) there is a $b_{\text {r }}$ bearing the last six rays, a b_{2} withont rays, a flat is with s-shapecl colges. proxinally comected with b_{1}, and distally by means of a joint with the appendix-stem \% Trhis latter is about (scarcely) twice as long as $B-b_{\mathrm{I}}+b_{2}$, and closely belind the two proxinal articular sunfaces for b_{2} and β it becomes flattened, and ends with a quite flat, thin-edged, hindmost ronnded part; corresponding to the great lengtli of the teminal part, the mealcified style (mue sorte de phalange Noreau |ete.|) forms the greater part (about two thirds; in 111. fienure it is a little too short); also here is found, about at the middle of the medial edge, a thickened and somewhat calcified part. The marginal cartilages are large, plate-shaped; the dorsal one reaches farthest forward, but behind it ceases much before the rentral one; the dorsal cartilage sends forth into the interspace between the terminal pieces a long, firmly calcified, s-shaped and pointed, blade-like process, bent in an undulating way, and with sharp edges (Rd', fig. 50).

The terminal pieces are $5(6)$, to which is still to be counted a covering piece ${ }^{*}$. This (d) is situated dorsally, is flatly ronnded on the onter side, concave towards the terminal part, whose proximal portion it covers; anteriorly it is cursed in an oblique, half-moon-shaped manner, laving the lateral fore comer far drawn out; from this coner it shows an elevation ruming towards the medial edge, and indicating the place of attachnent of the . $1 /$. dilututor; consequently the whole part before this line is covered by the muscle. Tai) has a broad line of attachment with the distal edge of the dorsal marginal cartilage, but onjo tonches the appendix-stem; ontward it is somewhat flat, inward concave; its lateral edge is consex, and somewlat indented; its distal end is attached to the appendixstyle by soft tissue, representing the eartilaginous bridge in the Skate. The piece Toz found in R. batis is wanting here. Tï is a long, slightly bent piece ${ }^{x}$, provided with a short, hook-like point, and laving before a short articulation with the distal end of the ventral marginal cartilage, medially a long connection with the appendix-style, reaching mutil the thickened and calcified place in this latter: laterally it is for a rather long way connected with a bayonet-like $T_{2}{ }^{9}$); this latter is connected with the hindmost lateral edge of the ventral marginal cartilage by an oblique articulation, and distally it

```
    Metri ctc.
    Petri ala, alp.
    Petri pr.
    I'etri da.
    5) letri, fig.1 C, br, b2, 巵; Morean(= Cuvier-Duvermoy): Tibia, astragale, calcamcum; hasale == femur.
    o) petri: sch schuppenfömiger Knorpel, grössere Schuppenlamelle ; Moreau: Cartagk interme, wo. ., fig. 27,
1.c. p. 250.
```



```
    8) Jetri: st; Morean: Cartilage no.6 bis, cartilage cn cuilleron.
```



```
vernoy), mo.6.
```

runss ont in an elegantly shaped, longitndinally somewhat twisted blade with a pecnliar sharp lateral edge. Ventrally of this, and attached to the same edge of the ventral marginal cartilage, is fomnd a piece $d a^{1}$) which I do not find in the Skate, or in any of the other Plagiostomes I have examined, but, according to Petri and Morean, it evidently appears in several other Rajo-species; it has a thick, lateral edge, and a rominded contonr; it is movable and seems to be composed of two pieces, a little, proximal, lamellar de', and the larger distal de. Finally is fonnd the large piece $T_{3}{ }^{2}$). It consists of a more narrow foremost part, the proximal end of which is attached to the lateral edge of the ventral marginal cartilage, and which laterally sends forth a sharp, winglike ridge (corresponding to that in the Skate, but much lower), and next of a broader, hindmost part whose medial edge (corresponding to the axe-blade in the Skate) folds ronnd the appendix-style ${ }^{3}$).

The muscular system, with regard to the proximal part, shows the typical relations, as will be sufficiently clear from the figures 67 and 68 on pl. VI.

The .I. dilatutor is on the dorsal side behind split into two parts, but this cleaving has not been carried throngh to the proximal part of the masele, and so the M. dilatator seems to me to form one minscular mass here as well as in most of the other Plagiostomes I liave examined. The whole of the large dorsal part of this muscle is with its hinder end attached to the dorsal covering piece, i. e. not to the edge of this piece, but sonne way in on its surface till a plainly indicated line of insertion (see fig. 49 on pl. IV). In Raja batis the division of the II. dilatator indicated in R. clarata seens to be more strongly pronomnced, and in other Raja-species 4) it even seems to lead to a separation into two independent mnscles, one larger sitnated dorsally, and another smaller, ventral, which
${ }^{1}$) Petri: da ein spatelförmiger Knorpelstück. (p. 313); Moreau, who has correctly seen that it is composed of two pieces, calls the little proximal one: Cartilage intemédiaire, no. 4 , the larger one: Cart. accessoire, no. 3 .
${ }^{2}$) Petri: hk hakenförmiger Knorpel ; Moreau: (Dư゚ernoy) Cartilage en soc de charrue, no. 7 (in the principal figure, however, indicated by il.
3) Vogt \& Pappenheim's appellations have to be with difficulty foum ont from the description, this, as mentioned, having no references at all to the figures, and in these no letters are found. I give below the appellations of these authors corresponding to ury names. It seems that they have not clearly seen that the chief piece - la pièce principale is composed of three parts; they use the names la levre interne partly of the marginal cartilages, but without establishing the independence of these pieces; the prolongation of the dorsal marginal cartilage is described (p. inf) as me feuille mince en forme de spatule. The other names are:

The covering piece $d=$ pièce externe, la plus superficielle (p. in5).
$T d=$ pièce externe; seconde pièce.
$T d=$ pièe alongée, courbee en S; it is interpreted as coalesced of two pieces, the terminal part wrapping the appendixstem being called une petite pièce cartilagineuse formant une gonttière etc. (this part in foung animals is possibly soft).
$d a=$ petite pièce cartilagineuse presque carrée et converte par un coussin gélatineux.
$T v_{2}=$ pièce plus allongée, sa forme est semblable a celle l'une équerre très large.
$T v=$ une dernière pièce cylindrique etc. (p. I16).
4) For inst. in R. Schultaii, according to Petri (1.c. p. 31t; pl. XVII, fig. 2 B and C). Petri calls the greater, medio-dorsal part 1%. lezator, and thinks this part to be composed of two kinds of muscles, viz. the greater part of red fibres in which is found a wedge-shaped white part (fig. $2 B, a /$) the fibres of which, however, are said to run - only with altered colour - into the rel mass (a difference of this nature I never saw in any Plagiostome); the smaller, dorsal muscle is called M. rotator with regard to its action on the hakenformige Knorpel (my piece T_{3}). In Raja clavata Vogt \& I'appenheim (l.c. p. II6), as it would seem, (the description is not quite clear to me) have also found two muscles where I only find one; they speak of a Muscle écarteur dorsal, originating on the large dorsal covering piece (where the fibres of their. M. relereur are said to be attachert; according to their description this releveur for one thing is composed of the dorsal layer coming from the body (i.e. the tail), and is rather incomprehensible to me); and next of a muscle écarteur ventral which by means of rather long tendons is attached to the outer side of the s-shaped piece. (T_{3}). Durernoy also says (1. c. p. 308) that his Muscle grand abolucteur (.1/. dilatator) th la raie ronce is divided in a similar manner, and attachel in the same way.
latter during the dilation acts especially on the terminal picce T_{i}, be wheh mams this prece is thrned (revolving as the radins round the ulna in a limman fore arm).

The .1. compressor (s) fomms the bag situated on the ventral side; ble direction of ith filores, as far as seen on the rentral side, is exactly given on pl. VI, fig. 68; on the dorsal side (fige (6) the part forming the outer lip-muscle, which part is rather small, is secn anterionly arising from the piece 居 and posteriorly attaching itself in the inmer investment of the ventral marginal cartilage; when the commective tissure laterally miting it with the hindmost ray; is prepared away, it is here very distinctly seen to be continnously connected with the dorsal muscular wall of the bag ${ }^{2}$.

The glandular body has by earlier anthors been sufficiently deseribed as well in this species as in other Rerfo-species; when developed it secms in all species to show principally the sance appearance.

Raja radiata Donovan.

(Pl. IV. fic. $53-57$.)
Brief remarks on the appendices of this species are found in several anthors, as manally mostly concerning the size ${ }^{2}$) and the like facts. Lilljeborg ${ }^{3}$), however, not only says that they are fery large and in old individuals sometines reach past the middle of the tail (in a specimen of the length of 53^{cm} they were 14^{cm} long and $3,2^{\mathrm{cm}}$ broad on the middle), but he also gives a rather thorongly description of their onter contonr and whole shape; of the inner confiruration of the appendix-slit he only says that it is divided into parts or separate hollows. He does not enter npon an examination of the parts of the skeleton; he mentions only, that a piece in the dorsal lip has a free, backward directed point. We find, however, in the older literature a representation of the skeletal parts of these organs, as well as of their structure apon the whole, viz. by. M. E. Blocht). Ifs specimen had a length of 16 inch. (abont 42^{an}), and the appendices (from the pelvis) were $5^{1} 2$ inch. (abt 15^{cm}) long, I^{I} s inch. (abt 3.5^{cm}) broad across the temminal part.
 dicated that he thinks it to be correaponding to the muscle in Scyllimm markey with the same mame. which latter. howerer, shows quite other relations see my fig. 65 and 66 of Sc. shellorel; he describes it as inserting itsulf on the dorsal marginal cartilage instead of on the ventral one (this, perhaps, is only a miswriting). In the proxinnal part the Fhexor flerwopodit exterior of Petri corresponds to my W. addector (Ah, his Fexor pt. interior to my W. extensor (E). The mushes mem-
 teur de lappendice $=$ M. extensor; 5) Le grand abuctenr on extenscur des pieces mobiles et weminales $=$ W. dihmotor: his no. 2 le releveur de la mageoire is the muscular layer coming from the borly (pl. TI, fige o-) and his no. f atoreands contr
 extenseur $=M$. extensor, his M. flechisseur $=$ the part of M compressor forming the outer liphomsele. Aborath, int

 l'appareil copulateur, and as the antasonist of this a relevenr partly fommet by the dorsal muscular later coming from

2) Kroyer l. c. p. 943 gives the measures: a specimen 17^{1}. inch. lons with appondices of the length of ft inch. and thinks (p.95t) that the appendages are very strongly derelopet in the adult maks.
3) 1. c. p. 552 .

 Fchthyology. Petri has not perceived that in Bloch the question is not of the real R. Chacho.
'Two pairs of ventrals with fully developed appendices, now before me (unfortunately I cannot give the total length of the animals) show the following measures:

A dried specimen of a length of 39^{cm}, a breadth of 24^{cm} shows fully developed appendices, 8^{cm} long, and $2,2^{\mathrm{cm}}$ broad across the terminal parts; in another specimen (in spirit) 43^{cma} long, and 29^{cm} broad the appendices are only $6,5 \mathrm{~cm}$ long, the terminal part abt. $4^{\mathrm{cm}} \mathrm{long}, 2, \mathrm{r}^{\mathrm{cm}}$ broad; here they are not yet fully developed thongh it was to be expected judging from the size of the aninal. Facts as these, that rather grown individnals have rather undeveloped appendices, I have oftener seen, for inst. in - Acunthias.

Fig. 26.
Kaja radiata. The terminal part of the right ventral, much dilated; reduced. $T d_{2}$ the maked spine of this same skeletal piece. The letters as in fig. 24 and 25.

The appendix is naked, much more climsy than in the preceding species, flattened, somewliat ronnded on the dorsal side, the contour is clumsily clubshaped; the club is formed by the terninal part constitnting more than half the length of the part to be seen from the back. The appendix-slit runs fron the foremost dorsal opening laterally, so that it cannot be seen from the dorsal side except in the hindmost end of the terminal part, where the dorsal lip, as it were, retires; the dorsal lip, throughont the terninal part, is supported by inner skeletal parts reaching to its edge, while the soft membrane of the ventral lip as a broad wall stretches past its skeletal part $\left(T_{3}\right)$, and is laid -- in a sinilar manner as in the Skate - dorsally against the upper lip; from the hinder, lateral edge of this latter a naked spine projects. If the soft, ventral dermal lip it is thrown back, an elevated, long, bowshaped, cutting edge of the skeletal piece T_{3} is laid bare (fig. 26 in the text, to the right of $b /$). If the terminal parts are opened still more (which here is easily done), we shall, althongh with altered shapes and relations, see corresponding projections and hollows as those described in R. batis and clarata. The upper side of the piece T_{3} does not here show (or shows at most weak traces of the transverse folds $b l$, peculiar in those two species; a broadly tongueshaped, rather soft and novable lamella with porons edge and spongy lateral surface represents da in the Skate and the Thon-back; a large, ovate, hard swelling corresponds to the process $T_{2_{2}^{\prime}}^{\prime}$; belind and laterally of this the ventral recess L_{π} is found, large and deep; the foremost recess $L d$ is smaller and more lidden, sitnated before the ovate swelling, and also the lanella Rd' supporting its: lateral wall, is only little conspicnons.

The skefeton. Between the basale ${ }^{1}$ and the appendix-stenn, as in all Rumospecies, are fornmi
 as $B+b_{1}+b_{2}$, flattened especially distally; its teminal part, being as tusual mucalcified, here fomms. ans s-shaped, quite thin, flat style hroadening towards the end. As in the other Rujn-specien the dorsal marginal eartilage stretches forward almost to the beginining of the stem, but backward not on far as the ventral one; this latter, especially distally, is a good deal bonder. To the inner side of the dorsal marginal cartilage, at its distal edge, is articulated a triangular cartilacge Red (fige. j_{g}) it is quite corresponding to the one marked Rd' in the two other Raju-species, in which, however, it is only a direct prolongation, a process, from the marginal cartilage itself.

The number of terminal pieces is five, exclusive of the covering picces. Tluree covering piecu d_{1}, d_{2}, d_{3} are fomnd on the dorsal side. The lateral one, d_{1}, is a good-sized, externally ronnded plate, with a bow-shaped, convex lateral edge folding romed to the ventral side. Its medial edge is rather straight and firmly connected with d_{2}, whely latter as a narrow band runs oblipucly across the terminal part, and tapers towards the medial end that is bent ronnd to the rentral side, and by a ligament attached to the point of the piece $T_{3}(\sec$ fig. 55$)$. The third covering piece, d_{3}, in comnected? with the lateral end of the preceding one; it is of a triangular, extormally somewhat pounded shape, and by a ligament attached to the hindmost end of the appendix-otrle: with its inner surface is is connected with the dorsal side of the piece $T d_{2}$. The three mentioned covering pieces have all arisun from the same aponeurosis of the M. ditatutor, and accordingly they together represent the single covering piece d in the Skate and the Thonn-back.

Of real terminal pieces two are found in the dorsal 1 ij): $T d$ and $T d$, (see fig. 54,55). Td in short; it is with its whole fore edge attached to the dorsal marginal cartilage, with it, foremost medial comer also to the appendix-stem: from its medial-distal comet it sends forth a soft, cartilaginous part which farther backward is conlesced with the style (comp. the Skate); else its distal edgu is comected with $T d_{2}$, a proximally broad, distally namow and tapering, very hard, somewhat s-shapect cartilage; it is outwardly romnded, inwardly concave, and ends in the above mentioned thorn projecting naked fronn under the edge of the dorsal lip.

To the rentral side belong three temminal pieces: T_{i}, $T_{i=2}$, and T_{i}. The two first of these are very peculiar, and can only be rightly seen when the skeletal parts are disumited (sece fige. 57).

Ti' consists of two parts, a body and a long process; the body is prosimally attached w the edge of the ventral marginal cartilage, with one edge to the medial colge of the -tyle bee fire. Sh, and with the opposite one to the piece T_{2}^{\prime}; fron the ventral surface of the body the proces arinco. and forms together witl the body a kind of T; this process is bent in an imegularly s-ahajoci manmer, ends in a fine, hook-shaped thom, and is situated in the deep, spoonlike hollow formed he the pece To
 wardly very deeply hollowed, from the forenost part of which a large, half-moon-shapeal part arisco joining the inside of the rentral marginal cartilage of the appendin-stom; the latural culge of the -pont is prolonged into a not quite calcified, winglike process; butween thio paxcos, the balf-monom-a hapert

The Ingoli-Expedition. II, \because
part, ancl the firm body of the spoon part of the terminal piece T_{3} is intercalated as a kind of articular head (see fig. 55).

This latter, T_{3}, is large, forms a lalf-moon-shaped plate (fig. 55), the distal horn of Which is bent in a somewhat hook-shaped manner; the proximal horn stretches in between the marginal cartilages, far forward in the appendix-slit; on the concave edge of the lialf-moon the mentioned articular head ${ }^{1}$) projects bearing a large, transverse-oblong articular surface ; the upper or immer surface (the surface towards the appendix-slit) bears at the lateral, convex edge a thin, bent, slarp ridge which in some individuals is mudnlating or finely indented; it is the above mentioned edge seen on the undanaged organ²).

Still las to be mentioned a pecnliarly elevated, round, narrow cartilaginons ridge x, ruming across the dorsal surface of the appendix-style; this ridge seems to me only to be a special swelling of the strle, and to correspond to the calcified and thickened bump x in R. batis and clarata.

Raja fyllæ L ,tk.

In a specinnenis) of a total length of 55^{cm}, a breadth of 30.5 cm , the fully developed appendices are $1 \mathrm{I}^{\mathrm{cm}} \operatorname{long}$, i. e. exactly I / s of the total lengtl .

The other measures were:
Fron the beginning of the slit to the end of the appendix . . . $9^{\text {cm }}$
The part free of the fin . 7, 6^{cm}
The length of the teminal part . 5.5 ${ }^{\mathrm{cm}}$
The breadth across the shaft . I, 5^{cm}

- - - the terminal part r,75 ${ }^{\mathrm{cm}}$

As in the other Raje the appendix is naked. The outer form as well as the inmer configuration of the appendix-slit in the temmal part is very much like that of the Skate. The conton consequently is of a more slender club-shape than in R. clanata or radiata with a louger sliaft and a pointed-orate, somewhat broader club constituting the larger, hinder portion of the terminal part. As in the Skate the appendix-slit can be seen for its whole length from the dorsal side, but runs close
${ }^{\text {1) }}$ This evidently corresponts to the tap on the piece T_{3} in the Sk ate, which overlaps the piece $T v_{2}$.
${ }^{2}$) Bloch l.c. pl. IX has drawn most of these terminal pieces in a very recognizable manner, some of them even excellently (as fig. 4 and fig. 5). He distinguishes between an upper part (the chief piece of the appendix), and a nether part (the teminal part); the first he interprets as a tibia with its fibula (?) (Ein Röhrenknochen, und sitzet letzterer oberwärts, wie bey anderen Thieren, an dem schienbein fest); this latter is $=$ my dorsal marginal cartilage; l. c. fig. 1 and $3, q$; the tibia again consists of: a piece ($=$ my ventral marginal cartilage), $1 . \mathrm{C}$. fig. I and $3, r, r$ welcher minter gewissen Tmständen die Rinne verschliest, and of an unterer Knorpel. ($=$ my appendix-stenl), fig. 3 , s; it ends hooklike; this is brought about hy the fact that Bloch has not separated the covering piece d_{3} from its connection with the style. Bloch makes the nether part consist of five pieces, which number arises from the fact that twice he makes two pieces one. These five pieces have the following relations to my appellations:
$T_{3}=$ fig. 4. der Sichel
$T_{8^{\prime} 2}=-5$, ter Helin .
$T_{\text {' }}=-6$, ler wurmförmige Knochen.
$T d+T d_{2}=-7$, der Winkellaken.
$d_{1}+d_{2}=-S$, die Schaufel.
3) Station 25, at a lepth of $5{ }^{5} 2$ fathoms; the Davis Strait.
to the lateral edge; the dorsal lip of the terminal part, also like that of the skate, is atong the whole lateral edge supported by skeletal parts, while the rentral lip hats a broad, soft edge conering the skeletal parts $\left(T_{3}\right)$, and passing round to the dorsal side; if this dermal lip in thowsi back, we shall see, quite as in K. butis, a naked, cutting edge of a raised, winglike ridge on T_{3}, rumming abumst thronghout the temminal part. If this latter is opened still more, an almost complete confornity with the features in the Skate will be seen; and thas it will be sufficient to pront out the deviations. These deviations are confined to the ventral side, and are chiefly as follows: if the membrance covering the inner, dorsal surface of the piece T_{3} medially of the cutting edse, has bery few and long, obliquely situated, low dermal folds (that may easily be overlooked); 2) the fold de is shonter (shortened distally, softer, in the middle of its distal part it projects in a more tongue-shaped manner, mpon the whole most like that in K. radiuta; it is as in this and in butis withont any inner skeletal support; 3) the two projections corresponding to the skeletal parts T_{i} and $T_{i}{ }^{\prime}$, are somewhat longet, so that they stretch distally over the opening of the ventral recess which thereby gets a somewhat other appearance than in R. batis.

Raja circularis Conch.

(IPI. Iff, fig. 41 -4t.
In old males the appendices are said to be somewhat more than $1 / 5$ of the total length; in a mate of a lengtl of $79,2^{\mathrm{cm}}$, a breadtl of 48.5^{cm} they were $16,5^{\mathrm{cm}}$ long ${ }^{1}$).

I have only had the occasion to examine a dried skeleton in the Zoological Innscum; thin skeleton measures from the snont to the point of the tail form, acrosis the pectorals c. 20^{cm}; the appen-dix-stem has a length of $6,5^{\mathrm{cmm}}$, the terminal part of $3,7^{\mathrm{cm}}$, and a breadth of $1^{\circ \mathrm{m}}$ on the broadest poot. Between the basale and the appendix two pieces are fonnd: b_{1} bearing the $\delta(7)$ hindmost rays, and a longer b_{2}, withont rays, as well as a long, plate-shaped β, broadest in the fore part.

The ratio between the lengtl of the appendix-stem and $l_{3}+b_{1}+b_{2}$ in 3_{2}; the rather namonw. flat, soft temminal part is shorter than the calcified one. The dorsal marginal cartilage reaches formarcl almost to the beginning of the stem, and ceases behind with a concave, oblique edge, the latemal corner of which is sitnated much farther forward than the hinchmost end of the rentral marginal cartilage, which, as usnal, does not reach so far forward. As in Rembe butis ancl chanctu, the doral marginal cartilage sends forth a long, thin, pointed, lanellar (calcified) prolongation pasings in betwect the terminal pieces (it is not seen in any of my figures).

The number of terminal pieces is five, besides two dorsal cotering picces. (hne of thex latter, d_{2}, I suppose to be corresponding to the piece that in R. radinter has betil marked in the same wat: it is long and narrow, spreads distally in a spoonlike manner, and the merlial celye of the broater part folds round the appendix-style towards the sentral sicke, where it is attacherl to the distal chul of the piece T_{3} (see fig. 43). The other covering piece, d_{3}, is firmbly commeted with the domal sumfore of the terminal piece $T d_{2}$ (as is also the corresponding one in R. rudurte) and is (ats in this) distally closely connected with the end of the appendix-style; it is rather thin and flat.

[^20]On the dorsal side are found two real terminal pieces (see fig. $4^{1}, 42$), $T d$ and $T d_{2}$. The former is for a long way comected with the dorsal marginal cartilage and with the appendix-stem; from the hinder end it sends forth a long, ronnd, somewhat finger-shaped, bent process with romded end, and running obliquely towards the ventral side; on the dorsal side only a little of the basal part of this process is seen, while a larger part may be seen from the ventral side (comp. fig. 44 Td). With the outer hindmost corner of $T d$ a piece $T d_{2}$ articulates, dividing belind into two branches, an imner one, short and soft, attaching to the appendix-style, and an onter one, hard, compressed, produced to a fine point (corresponding to the free thorn on the corresponding piece in R. radiata); this latter branch is best seen from the ventral side (fig. 4t, $T d_{2}$), as it is dorsally hidden by the cocering piece d_{3}.

The ventral lip shows three pieces: $T_{T^{\prime}}, T_{\tau_{2}^{\prime}}$, and T_{3}.
$T_{\bar{r}}($ fig. 42) is slender, anteriorly comected with the terminal end of the ventral marginal cartilage, which is folded round to the dorsal side; next it follows for a long way the appendix-style, then folds ventrally round this as a rather thin prolongation (fig. 41), and ends finally with two small, diverging points at the opposite edge of the style (comp. R. batis). This piece $T_{\tau^{\prime}}$ is in its foremost part laterally connected with the very large $T_{i_{2}}$. This latter is somewhat half-moon-shaped, and is attached with its foremost concave edge to the ventral marginal cartilage; it sends forth two processes; a short, truncate one close to the medial edge, and laterally of this a long one, bent in the free end like a hook (comp. R. batis), the point of which is turned into the appendix-slit (dorsally); the piece $T \tilde{v}_{2}$, on its inner side, towards the slit, is of a flat, spoonlike shape.
T_{3} (fig. 43) is narrow, falcate, and its foremost end is situated minder the lateral edge of $T_{i_{2} i_{2}}$ in the appendix-slit, between $T_{i \prime 2}$ and $T d$; in its hindmost third part it bears on its medial, concave edge a process corresponding to the articular head on $T_{3} i_{i n} R$. radiuta, but in the present species it passes into a sharp, winglike edge stretcling to the distal end of the piece; the lateral, convex edge of T; is sharp and cutting.

Holocephalc.

In the nales of the Holocephales, as is well known, three particular organs are found that are supposed to subserve the copulation, viz: i) the peculiar cephalic organ ${ }^{1}$ provided with dermal teeth, 2) the pelvic appendages, i.e. the two organs placed in a ventrally open pouch on each side before the ventrals, and whose skeleton is comnected with the pelvis by an articnlation; and 3) the ventral appendages. Only the two last-mentioned sets of organs, and especially the ventral appendayes, which correspond to those of the Plagiostomes, will be mentioned more thoronghly.
${ }^{1)}$ This, however, is wanting in the genus Hamrotta Goode \& Bean, the appendices of which are also said to be shall and simple ; of its pulvic appendages nothing is said Oceanic Ichthyology : Mem. Aus. Comp. Zool. Harvard Coll. vol. NXII, ISg6, p. 32 .

Chimæra monstrosa 1 .

(Pl. I, fig. 14, 15; pl. VI, fig. 6971.
The larger part of the appencix ${ }^{1}$) is free of the fin, and the appearance consequently differs rather much from that of the other Plagiostomes; this free part is almost as long ats the ventral fin itself in its largest extent (from the point where the foremost part of the fin arises fronn the hoofs, th the end of the much produced lateral corner). The appendix may also here be divided in a shaft and a terminal part; the shaft is thick, short, only about half the lengtly of the terminal part: its innet contour is straight, the onter one very convex, whereby the appendix wets sume resemblance to the part of the hman les below the knee, with a very prominent calf. () n the dorsal side the appen-dix-slit runs thronghont the free part of the length of the shaft; anteriorly it begins already at the connection with the ventral side of the body as a little ronndish opening, the circminference of which is partly supported by the inner skeleton, and consequently it is only anteriorly a little dilatable; from this opening the slit, bent abont in the sane manner as the lateral contonr of the shaft, inns to the base of the terminal part, where it reaches close to the medial edoe, and from here it passes on into the terminal part along this edge. In front, behind the described hole, and posteriorly, where the slit passes into the terminal part, its lips can only with difficnlty, or not at all, be opened on acconnt of the stiff inner skeleton, lont in the rather long interspace it is easily opened, as the lips are combposed of soft parts (m11scles); in a specinen before me the two concerning, normally tight spots of the slit are closed by the coalescing of the skin; in another specinneln the case is the same, only wor whe a less extent, with the right appendix. The skin of the shaft is naked, smooth, thinn, and shightly pignented, so that the muscles and their arrangennent can be distinguished rather distinctly thromgh it.

The long terminal part is composed of three branches*) a medial one (b") in imntediate continuation of the straight medial edge of the stem; a domsal one (b) , lying quite close to the lateral edge of the foregoing, connmonly only separated from it by the very narrow continnation of the appen-dix-slit; in one single instance, however, I finct the skin coalesced for a comsiderable part of this slit, so that these two pieces only towards the point can be separated; finally a lateral branch (b) , father free of the other two. These three branches are generally of almost equal lengeth; mmetime the medial
 medial one is covered with a fine, but firm, thin skin, throngh which the skeleton in seche vert distinctly; it is rounded on its inner, medial shrlace, and ends in a little, swollen kinol); the lateral side is flat, and pressed into a furrow in the skin of the domsal branch. This latter hancli and the lateral one are more or less completely wrapped by a soft, loose, and torth-conerel skin, bo which the ate

 dental damage.
made thicker and, towards the end, enlarged in a clavate manner, when compared with the medial one; the lateral branch in particular is often distally nuch swollen. The dermal teeth are fine, a little bent thorins, all with the points forward, towards the base of the organ. The lateral branch does not contribute to the bordering of the appendix-slit of the terminal part, this slit ruming only between the medial and the dorsal branch ${ }^{\mathrm{r}}$).

In three specimens of the respectire lengtli of $78^{\mathrm{cm}}, 77^{\mathrm{cm}}$, and 70^{cm}, the measures were:
The length of the appendix from the fore edge of the cloaca $7,5^{\mathrm{cm}}, 10,5^{\mathrm{cm}}, 6,5^{\mathrm{cm}}$
The free part of the shaft $2,3^{\mathrm{cm}}, 2,6 \mathrm{~cm}, 2,3^{\mathrm{cm}}$
The terminal part. $4,5^{\mathrm{cm}}, 6{ }^{\mathrm{cmm}}, 4,1^{\mathrm{cm}}$
The breadth (on the broadest part of the shaft) $1, r^{\mathrm{cm}}, \quad \mathrm{I}, 6^{\mathrm{cm}}, \mathrm{I}, \mathrm{I}^{\mathrm{cm}}$
The breadtlı (out the middle) of the terminal part $0,7^{\mathrm{cm}}, \mathrm{I}, \mathrm{I}^{\mathrm{cm}}, 0,7^{-\mathrm{cm}}$
The pelvic copulatory appendage has in all three specinens a length of . $2,5 \mathrm{~cm}$

- a breadth of $0,6^{\mathrm{crn}}$.

In one pair of ventrals, kept in spirit, and skeletonized until the terminal part, belonging to a specimen the total length of which I am not able to give, the appendix has lad a length of more than 9^{cm}, the terminal part of almost 6^{cm} by a breadth on the middle of r^{cm}, at the end of $\mathrm{I}, 5^{\mathrm{cm}}$; the skeletonized pelvic appendage is 2^{cm} long, and $\mathrm{r}^{\mathrm{cur}}$ broad.

The skeleton. The pelvic arch is divided in the middle line, so that it is composed of a right and a left piece; belind, clorsally above the artict1ation with the ventral, each of these pieces is prolonged to a considerable process; on the foremost convex edge the pectuliar, nuovable, foremost copulatory appendage, the Sägeplatte (Gbr.), is articulated; the skeleton of this appendage is composed of one piece, the medial edge of which bears a row of (5-7) large, crooked, finely pointed dennal teetly; when in rest this piece is turned against the ventral surface of the pelvis which is hollowed like a spoon, and then only the toothless edge laterally of the row of teeth is seen in the opening of the poucli.

The fin-sten consists of a short, flat basale B bearing all the rays (the foremost broad marginal ray (R) is coalesced with it , a b_{1}, a good-sized β, and the appendix-stem b^{2}).
b_{1} is not much shorter than the basale, with which it is connected in a rather movable joint; 011 its medial side it is flat and broad, on the lateral side longitudinally concave; dorsally it forms a narrow edge, forward prodnced into a large process $x^{\text {. }}$, which by a lateral incision is made to form the inner bordering of the above nentioned opening, with which the appendix-slit begins; the other part of the dorsal edge of b_{1} is somewhat laterally bent, and bears a rather firm margin of connective tissule; the ventral edge is straight and rounded.

The piece β is tolerably triangular, but with curved sides; it is much curved, and situated in
${ }^{\text {I }}$) In Chimera affinis Cap. the appendices, acconling to Goode \& Bean (1.c. pl. X. fig. 34, 35), are three-branched as in Ch. monstrosa, but else they seem to difter rather much from those of this latter. The figures, however, are not distinct enough to get a clear notion of the facts.
${ }^{2}$) In the figures of Gegenloaur l. c. pl. XVI, fig. 22, 23, and of v. Davidoff, l.c. pl. XXIX, fig. ig, pl. XXVIII,

such a way, that its concave side like a roof covers the lateral edge of the phece b_{1}; with ins linntmost comer it is by means of tight comective tissule attachel to the lateral surface of thic piece; its medial edge is free, and forms the limit of the tight formost part of the armerndix-slit, an it alon, together with the process x of the piece b_{1}, contribntes to the borderings of the aperture, in which the slit opens anteriorly: We find thus between Chimerm and most likely all the I Inhocephates ofllon rhanchus shows the sane relations: on one side and the llaginstomes on the other the great difference that the appendix-slit anteriorly stretches over the piece β, and on the domal side separates thion piece from the other parts of the sten skeleton.

The appendix-stem b is joined to h_{1} by an only slightly movable articulation, and forms the whole teminal skeleton; no secondary cartilages are fonmd, and consecpuntly the termmal part canmot be directly homologized with that in the Plagiostomes. The part of the appendix-stem lying in the shaft, is short, medially flattened; its medial surface is continned directly in the prolongation forming. the medial branch of the terminal part; in the lateral surface is found a furrow-shaped hollow comtinning the fnrrow in b_{1}; both edges of this furrow are elevated and bent towards the concavity, what especially applies to the ventral edge, which rises very mach, bends quite orer on the dorsal side, folding over the cdge of this latter, and lying close to the medial continnation, following this batter quite to the end as the skeleton of the dorsal branch of the teminal part; laterally it forms the cartilaginons prolongation supporting the lateral branch of the terminal part.

That the cartilage of the medial branch of the terminal part is homologons with that part of the appendix-stem, which in the Plagiostonnes I have called the end-style, is an obvions conclnsion, and admits of no donbt. It a first glance it seems also obvions that the plate-shaped, folded ventral edge with the two other branches mast be corresponding to the ventrat marginal cartilage in the Plagiostomes, which latter frequently in Sharks recalls it by the plate that is bent in at similar manner; it might even be tempting to continne, and take the two branclies, the dorsal ome and the lateral one, to represent two terminal pieces (resp. T_{0} and T_{3}) conalesced with the watral marginal cartilage; or it might be supposed that this part of the skeleton in Chimere was representing a stage where the terminal pieces lad not yet been articulated off as independent parts'). but a choce examination shows that the idea of these homologies must be dismissed; the folded fentral edge with its two prolongations is in Chimara absolutely one with the other appendix-stem, consists likie this of the same kind of hyaline cartilage, which is corroborated by a transverse section; as a homologon of this structure in Chimara the question can only be of the more or less distinct ventral bamering ridge on the appendix-stem in the Plagiostomes, bearing and continning the ventral marginal cartilage ece for inst. the Greenland Shark). In the firm, liplike edge of comective tissur, which in (\%imum follows the dorsal cartilaginons edge of the appendix-slit, an indication is fomm that maty posibly be ecemeled as homologons with the dorsal maresinal cartilage in the llagiostomes.

The muscular system. I shan only here deacribe the muscles that are of importance with

 nous connection with part of the stem-skeleton.
regard to a comparison with those mentioned in the Plagiostomes as belonging to the appendix; as to the other nutuscles I may refer to the thorongh description by v. Davidoff (l.c. p. 473 seq.)

Between the two halves of the pelvis a broad band (fig. $69-7 \mathrm{I}, \mathrm{s}$) is stretched, which, as it were, smpplements the hinder surface of the pelvis; anteriorly this band is attached along the whole concave posterior edge of the pelvic arch, and laterally it reaches almost to the articulation between the pelvis and the basale; in the median line it is sonnewhat thickened as a firmer tendinons stripe. Firom the whole ventral surface of this band as well as from the ventral surface of the pelvis arises the rentral layer ${ }^{5}$) of the gromp of muscles representing the M. adductor (it depressor) pimma in the Plagiostones; in the minddle line a stripe broadening somewhat backward, is left uncovered (see fig. jo). This muscular layer is composed of bundles that are distinctly seen distally. Of the medial and hindmost fibres of this layer only the deepest-lying are attaclied to the ventral side of the basale, to the thickened medial edge of this piece, from which edge the ventrial ray-1111scles (Ret, fig. 7o) arise; otherwise the greater portion of the medial fibres of this muscular layer is attached to these ray-muscles until a line of insertion, distinctly seen in fig. $\frac{j}{} \mathrm{O}$. The foremost and lateral parts of this muscnlar layer pass, withont any bordering - neither in the depth - , into the ventral ray-nnuscles, as is also the case in the Plagiostomes ${ }^{2}$). The other muscnlar mass ${ }^{3}$) which together with the foregoing one forms the . 1\%. adductor in the Plagiostones (fig. $69,71, A$), arises from the dorsal side of the above mentioned tendinons band, as well as from part of the dorsal sniface of the pelvis (viz. nntil the slight erest that separates it from the muscle m of the pelvic appendage); this layer is thicker than the ventral one, and attaches to the thickened medial edge of the basale and to the piece b_{1}, especially with a powerfnl portion of fibres to the large process x of this latter piece; on the ventral side it reaches to the muscle U, which corresponds to the M. dilatator, and will be more particularly mentioned hereafter. A special 3. cxtrnsor has not been separated.

A far as I am able to see, only two ${ }^{4}$ m mascles are fonnd on the appendix-shaft, one corresponding to the I. dilatator (D) in the Plagiostomes, the other to the nunscular investment of the glandular bag (inclusive of the onter lip-minscle), N. compressor sacci (S)

Tlie II. dilatator arises anteriorly with its ventral portion from the hinder end of the basale, but with its other parts only from the piece b_{T}, at some distance from the articnlation between this piece and the basale. Almost all the fibres run straight from before backward; only on the ventral side some of them bend laterally; they are attached on b close to the base of the lateral and medial branches of the terminal part, and a few fibres go to the skin covering the skeleton; on the
2) Oberflächliche ventrale Schicht, 55%, fig. $16,17, \mathrm{pl}$. XXIX, v, Davidoff.
${ }^{2}$) 1 find upon the whole that the difference as to the arrangenent of the ventral part of the A. adductor in Chimora and in the Plagiostomes is only in degree; in many of these latter (Scylfium, Pristiurus, the Rays), the superficial part of the sentral layer of the M. adductor stretches quite over the ventral side of the basale and more or less ont on the raymuscles. a. In a vidoff describes this ventral muscular layer in Chimara as stretching considerably farther laterally on the fin than is really the case; and his words (1. c. p. 4741: Zunn Basale hat er gar keine Bezielning etc., are not correct.
i) The pelvico-lyasale Fasern of V . Inafidoff, fic. I5, $17, P b$; they do not, however, as he thinks, arise exclusively from the pelris.
4) 5 . Iavidoff, 1. c. p. 4So, counts three, which he moreover calls vollkommen gesondert, viz. a Flexor, an Adductor, ansl an Abductor ; in thrce specimens of Chimara that I have examined, I have not been able to find a real separation letween the two first-1amed; but even if such a separation might appear, it will be of only slight inportance with resard to a comparison with the Plagiostomes (as surely also with regard to its functions); at all events, Fle.ror + Adductor $\therefore 11$ is $=M$. ditatator; the Abructor of r . Il a vidoff is the muscle of the glamblar bag.
dorsal side (fig. 69) the mascle stretches considerably farther backwarl than on the ventral side, rat ching to the spot, where the appendix-slit passes to the medial side.

The muscle of the glandular bag, M. compressor, arises from the lateral edge of the piece β (see fig. 69), and is inserted on the lateral surface of the piece b_{1}, and on the appendix-stenn as also on the folded ventral edge of this latter. The fibres seen wh the ventral side (fig. Fif, pats from the edge of β round the calf, rmming obliquely or transversely, so that part of them is inserted perpendicnlarly on the appendix-stem; those seen from the dorsal side, on the contraty, mun straight from before backward, and they form the lateral linit of the appendix-slit, and are attachect where the edge folded from the rentral side, is prolonged as the dorsal terminal brancli (fige Gog). The opposite, medial, lip of the appendix-slit is formed by the .I. dilututor.

Into the described, very voluminons musele the dermal fold representing the slandular bag in the Plagiostomes, sinks from the dorsal side thromin the appendix-slit. This structure has here eridently remained in a state of development as that, with which it besins in the Plagiostomes; by a transperse section we see that the bag may in reality be called rudimentary, as it only fills very little in comparison with the powerful wrapping mnsenlar mass. If we inagine this invagination to grow very much forward and ventrally, we may get a structure resembling that in the llagiostomes; part of the bag will then be situated on the rentral surface of the fin itself, and the mascular coating will, as it were, be extended to a thinner wrapping layer, while the part keeping its position along the outer edge of the slit, will retain its original appearance and become the lip-mnscle . This demal bag, which in Chimarn is so small, and whose inner surface is quite smooth and shows no special gland, can nevertheless give plenty of secretion; this fact is proved by the abundance of fluid, partly filling the bag, partly adluering to the branches of the terminal part, and also filling the conners between the base of the fin and the body; on the last-mentioned place it may be supposed to have flown from the foremost, larger, romblish opening of the appendix-slit.

I have not a quite clear understanding of the influence of the muscles of the appendix-shaft on the terminal part; however, 1 think it likely that by a contemporaneons action of both the said musckes a probably rather slight distension of the three teminal branches may be bronght ahont, the . Wh dilatator acting on the medial branch, the IH. compressor on the two others; by this action the contimation of the appendix-slit between the medial and the dorsal branch would be opened. 'Tlat also here the $1 /$. compressor will serve for the pressing out of the secretion of the glandular bage secuns to me to admit of 110 doubt.

As to the pelvic appendage (fig. 70,71 , fo, to which mothing comerponding is fonnd in the Plagiostomes, it is in Chimorr rather simple; its contour is tolerably spon-shaperl, and it bears on the surface that in the position of rest is turned ventrally (But which will accordingly fo turned dorsally, when the organ is directed forward), a soft, loose, mpigmented or slightly pignented format cushion, while the membranous skin of the opposite surface fits tighty to the skcketon. For moving this organ has only one muscle (fig. 6 , m), by which it can be raved in such a way ats to conne ont of its ponch ${ }^{1}$, when it is able to take hold with the toothed edge. 'lhis muscle is very powerfinf:
 Vol. 19, 1876-78, 1.199.

The Ingolf-1 xpedition. II. 2.
as it las no antagonist, the resistance of the surrounding skin, and, I think, also the pressure of the abdominal muscles over the base of the ponclı, must be regarded as the canse why the organ folds back and is hidden in the pouth, when the muscle m is relaxed. The way in which this muscle is attached, has been described more in detail by v: Davidoff (1. c. p. 479).

Callorhynchus antarcticus Lacép.

The appendices have been briefly mentioned by Dinméril (l.c. p. 68i) as follows: Ceux des Callorlyunques consistent en des prolongenents cutanés, enronlés de manière à former une paire de cylindres crenx et irrégnliers que soutiennent des cartilages flexibles ; the foremost pair of organs, which are enclosed in the ponch, and have here a far more complicated structure than in Chimera, have been more particularly described. The sante organs have later been mentioned, thongly still rather briefly; by 'T. Jeffery Parker, in a kind of prelininary note ${ }^{1}$, in which is found the rather bold hypothesis, that these anterior appendages in Callorhynchus are representing a minddle pair of linuls, they being muderstood as serially homologons with the real appendices; thus Callorhynchus (and the Chimere in general) should (but to be sure only in the males!) show the remains of a hexapod stage. The real appendices (posterior claspers) are only mentioned with a few words to the effect that they correspond to those in the Plagiostomes, as they occur in the same position, have the form of a plate rolled longitudinally into a tube, and are supported by a prolongation of the basipterygiunı.

In a specimen (in the musenn in Copenhagen) of a length of abt fo cm I find the following measures:

> The length of the (real) appendix from the fore edge of the cloaca 8.5^{cm}
> The lengtlı of the terminal part . 5^{cm}
> The breadth across the base of the shaft 1, z^{cm}
> - - middlle of the terminal part $0,8-0,9{ }^{\mathrm{cm}}$.

As to the habitus the appendix at a first glance reminds more of that in the Sharks than of that in Chimcra; but a closer examination shows a very near relation to the latter; it is only the teminal part not being split into branches, that canses the apparent resemblance to the Sharks; the slaft corresponds in shape quite to that in Chimarn, and is, as in this latter, covered with a thin, naked skin, through which the extension and form of the muscles may be distinctly discerned; on the terninal part there are, as in Chimara, no muscles at all; but here the skin is everywhere thin, and is lying immediately orer the skeleton, so that a reliable view may be got of the structure of this skeleton - unfortunately I conld not skeletonize the only male specimen of the musenmı. The terminal part is somewhat dorso-ventrally flattened with rather parallel sides, only a little tapering towards the ronnded end.

On the dorsal side the appendix-slit runs as a narrow slit, beginning, as in Chimara, with a rather large opening at the base, close to the abdonnen; this hole is supported by skeleton to the same extent as in Chimora; from liere the slit runs in a curve tinough the shaft into the tenninal

[^21]part, where it passes over the medial edse on the ventral side, and here it ends in the shape of an S; thans the whole slit is formed like a cork-screw. Inmmediately behind the hole the edges can only with difficulty be separated on acconnt of the stiffness of the skeleton; but in the terminal part the slit is easily opened on account of the thimness of the skeleton, which is here like a thin, comboluted shaving, which may to a certain degree be murolled. The inner, tubular hollow of the terminal part, as well as its opening at the point is completely stuffed with secretion, which also fills the hole at the base as well as the nooks between the appenclix, the base of the fin, and the bodl:

As to the skeleton, I think it pretty sure that in the shaft it is as in Chimara; as we find a rather movabie joint before the loole, the surronndings of which seem to be quite an in Chimara, we may be jnstified in supposing the basale to end here; somewhat ont on the shaft we find another, little movable joint; accordingly

17ig. 27.

lig. 24.
[ivis. 27. Ciallorlaynchus antarctious. The right ventral afpendage fronn the ventral sisle; a little reduced. at atolominal pore
lig. 2S. The same from the dorsal wide. the piece b_{r} is fonnd between these two points; on the rentral side the distal border of this piece is distinctly marked by the cessation of the immost part of the muscular mass of the glandular bag (the calf fit the other part of the skeleton then must be the appendix-stem; this seems here to be fommert like a consolnted leaf, in which 110 separation into branches is fonnd; such branches, no donbt, would be discemible throngh the membranons skin, if lines of separation really existed the mply place where such a line of separation might perhaps be fonnd, is along the lateral edge of the rentral side, where a longitudinal furrow in the skin is fonnd in both appendices, but I can lind no mohitity along it, and take it therefore to be due only to the skin). If we imagine deep incisions in this cartilaginous leaf, the three-branched form in Chimotronight arise; on the other hand we mat from the three branches in Chimary (see pl. I, fig. It, 15) easily reach the structire in Callurhmehms by inat

The muscular system, with regard to the appendix-shaft, is evidently in in Chimurn: 11. dilututor (I) is easily recognised; its chief portion is situated dorsally (.1\%. uddutor v: I arid.), and
 on the basale, and does not reach so far backward; further the large nunscle os of the ghandutar bag, which in 110 respects shows other relations than in Chimure, with the only ceveption that is is a little shortened rentrally

The foremost copulatory organs, the pelvic appendages, ance very remarkably fommed, and
 the entrance of this ponch forns, when closed, a longitndimal slit (abt. $2,5^{\mathrm{man}}$ lomg , and is situatcol haterally, innmediately before the ventral fin. The chicf part of the organ emelosed in the punch, conre-
sponds to the Sägeplatte ${ }^{1}$) of the Chimara; it is here nore lengthened, with a longer shaft broadening in the free end to an obliquely cut off, rather thick plate; this plate is on its (when in the position of rest) ventral surface towards the edge invested with numerons, flat, sharp, comb-sliaped demal teeth, of which those nearest the edge are the largest. Each tooth is almost fan-shaped with the edge divided into $5-7$ pointed comb-teeth, of which the middle one is the largest (comp. Duméril 1.c. pl. it, fig. 2, 2 a). The teetli continne, somewhat smaller, along the whole (dorso-) medial edge of the Säreplatte ; they are placed on a dermal lip, which is unsupported by skeleton (and borders the afterwards mentioned canal, into which a sound can be introdnced). As far as I can see the teeth continue all the way to the attached base of the organ. The points of all these teeth are turned forward.

On the opposite surface (the dorsal one when in the position of rest) this Sägeplatte is provided with a rather curiously elaborate system of large demal folds partly supported by an inner cartilaginons skeleton ${ }^{2}$). From the dorsal edge of the organ a large, folded dermal plate projects on either side. 1) The lateral one of these plates somewhat recalls a luman ear, and is with its free edge folded towards the dorsal side of the serrated plate ; the proximal part of this membrane is supported by a particular cartilage, while the distal part which is very much folded, has no inner skeleton. 2) Next another dermal leaf arises from the dorsal and lateral surface of the serrated plate , opposite to the former; it is folded the other way, and situated between the serrated plate and the first leaf; it has $n o$ skeleton. 3) The second dermal leaf projecting from the serrated plate towards the medial side, is anteriorly grown fast to the imer wall of the ponch; its free edge is folded in such a manmer, that it forms a kind of bag; it contains no skeleton, but where it posteriorly is mited with the lateral leaf (I) at the dorsal edge of the serrated plate * these two leaves, by a rolling of their common hindmost part, forn a tube supported by a stiff cartilaginous skeleton; the free end of this skeleton projects some way past the end of the serrated plate" (cp. the figure of Duméril. A sound inserted into this tube, can be brought far into a deep, dorsally open canal along the dorsal edge of the serrated plate ; on the medial side the bordering of this canal is formed by the above mentioned teeth-covered dermal lip. 4) Finally a big, white, ovate body projecting from the medial wall of the ponch, is found outside the bag formed by the imer dernal leaf (3). This evidently is a glandular body3), the opening (or rather openings) of which seen to be inside the bay formed by the imner leaf (3), in the foremost, inner comer of this bag. From this gland proceeds the very abundant secretion filling the space between the serrated plate and the described elaborate dermal folds, as also the peculiar tube, evidently the excretory duct for this secretion. As

[^22]to the signification of this secretion as well as to the nse of the whole organ we can onty fom rather vague conjectures.

Of the mobility and muscular system of the pelvic appendage larker gives the follow ing information, showing that the same muscle is fonnd here as in Chimerm: The Clasper is exserterl by the action of a strong muscle arising from the inner face of the pubic cartilage and passing over its anterior border to be inserted into the principal cartilage (the serrated plate) of the clasper. The plane of movement of the organ is nearly horizontal.

3. Which is the Function of the Appendices Genitales?

'Ihat the ventral appendages are pecnliar to the males of the Chondropterygians is an old and widely known fact - they have already been mentioned loy Aristotley, and at the prescht day most fishemen distinguishes the male from the female by means of them ${ }^{2}$. Everybody then agrees that these organs in some way or other subserves the copplation; but till recently we have had no real observation of the copulation of Chondropterygians引, and we lave therefore been obliged to form our opinion of the use of these organs from their structure. Nany anthors - Rondelety, l think, as the first have thonght the appendices only to be organs for clasping the female during copulation, and therefore mames as Holders, Claspers, Haftorgane, Halteorgane, Klanmern, and the like have been generally used; as a consequence of this idea they have always, I think, been considered to act as a kind of prehensile organ, which might cling to some part of the body of the female ontside, and thins hold it fasts). Others, on the contrary, have supposed that these organs have to be introdnced into the sexual organs of the female; but their action there has been interpreted in several ways. Almost all the earlier anthors, as Linné, Artedi, Willusloby (Ray), Klein, Battarra, Cumnerus lave thought that they comvey the spern, and called then Pems, Mentula, or Mrmbre sinitulim, and with regard to their existing in pairs, some of those anthors refer to the Snakes, which analogon also seems to be rather obvions. After the appearance of the works by Bloch, the first-mentioned idea of the appendages as mere external clasping organs gamed many
however, camot take place, and su the whole supposition has to be dropped. Carman dous not mention the strmeture uf the appendix itself.

\Rightarrow Lorenzini (osservazione intomo alle Torpedine, 1675), who, it would sem, has only known the apmendapes in the Rays, declares that they may be fonm in both sexes. He says nothing of their function. This misconception that they are also to be fonnd in the females - recurs uftener. I think the assertion by. A. liritech, that in the denacanthe the

 provided with claspers !).

 p. 273) are basell on the escays of bloch.

 ad retmendas foeminas factas esse arbitror .

adherents, but the notion that they are real penes, i. e. organs conveying the semen, seems never to have been fully superseded by it; Blainville adrocates this opinion ${ }^{1}$), and later we find it in hayer ${ }^{2}$,
 opinion, after all. is perlaps to this day the most widely spread; it is also rather obvions, and analogies from other gronps of anmals present thenselves, as it were, spontanconslyo. This interpretation of the appendages as the direct conveyers of the semen, however, meets with difficulties, which partly have been correctly seen by several authors; some of those then have adhered to the opinon that they are introduced into the cloaca of the female, but only to be more indirectly subserving the copnlation. 'Thns (ieoffroy St. Hilaire ${ }^{\text {(0) }}$ characterizes them as clitores, and Petri ${ }^{15}$ thinks their chief

1) 2. ©. p. 126. Blainville promises a treatise on la structure et les usages de ces appendices dans les raies et les squales, itn which he even thinks to have fonnd a connection with the sexual organs proper, what he had not heen able to do in le squale pélérin
${ }^{2}$) C̈ber die Bedentung der fussfümigen Anhange bei Rochen und Hayen, und ihr Wiedervorkommen hei miederen Thieren. Frorieps Notizen ans dem (iels. der Natur- und Heilkunde, vol, 40, i834, p. 273. Mayer supposes that these limbs by the Musculi adductores are brought to the cloaca, receive the semen into the appendix-slit, and convey it on to the terminal part, the opened leaves of which wie ein Blumenkelch embrace the cloaca of the female; further he imagines that the copulating animals waliticheinlich won einander abgewendet sich befinden. (1'etri l. c. p. 291 renders the description by M. but in more respects incorrectly.
1) 2. c. p. S6. Die sogenamaten Haftorgane erimmern in ihrer gewnmlenen, rimmenfomigen Gestalt sehr an die änsseren Begattungsorgane mancher Krebse und ich glaube, dass sie ebenso we diese znm Überpflanzen des Samens mach den weiblichen Geschlechtstheilen dimen, wobei dann das Sekret der ohen heschriebenen Drüse eine vielleicht die samemasse einhüllende oder schützende Rolle spielt
\#) Hand1such der Anatomie der Wirhelthiere, 2 Aufl., 1854, , p. 27 s, mote 5.
1) Ifectocotylulamelsen hos Octopodslegteme Argonauta og Tremoctopus. Kgl. I). Vid. Selsk. Skrifter, iS56, p. 26. I think, however, ... the analogon to he as obvious, which is found in so many males anong the decapod Crustacea, in which a pair of the abolominal limbs are formed as more or less complete tubes, or the amalogon, seen in the mate Rays and Sharks, where the vemrals, that is to say, active organs of motion, have one side transformed into large ducts of the semen.
 the first-mentioned place is only fomnd a report of some observations by Agassiz occasioned by a lecture on the egy-development in Rays; he thinks the claspers of the Rays to be real copulatory organs, supposing them to be turned forward and upward, by which turning an opening in theni (the larger basal opening of the appendix-slit?) is brought up to the spernatic ducts; it is supposel that they may easily be introduced into the oviduct even to the shell-gland. In the later communication (2) this is more particularly worked ont: One ray of each posterior fin is capable of erection and rotation, and is covered with ercetile tissue, far ton delicate to allow it to lie used as a clasper aromul a body covered with sharp rougln spines. In the act these two organs are rotated inward and forward, bringing the furrows on their inner surface into parallel contact, and in apposition with the testes. Being then introduced into the borly of the fenmale, their extrenities diverge in the two oviducts, and the glans being uncovered exposes a sharp cutting instrmment, which would injure the organs of the female if she resisted; the male has her, therefore, in complete sulbjection, and has heen observed to strike and wound her with this spine. What was formerly supposed to be the penis is too small, and of insufficient length to accomplish fecundation (viz.. the urogenital papilla). The penis consists of the two long flexible finger-like fins, furnished with two projectile spinous appendages as in vipers. (In Chinara the sufaces of the organs are also spinons, as in snakes). The two spines fund in cartilaginous fishes are homologons with the os pons of mammals. In men this bony part has disappeared, ant we have only the soft spongy portions of the organ remaining; the quivering of the legs during connection seems the echo, as it were, of the sensitiveness of the flexible posterior limbs of the skates (!). As the thought of a comparisom with the Snakes cannot be said to have been exachly new at that time, so it is also the case with the homology with the os pinis ; it is alrady fomml in Ray (Willughby: De Hist. Pisc. etc. I686, p. 77). Garman, 1. c. p. 199 200, subscribes the opinion of it gassiz.
i) Already 1. c. 1839,1 , 149; more decidedly in: Fragmentary Notes on the Generative Organs of some Cartilaginons litisles (Trans. Kovi Soc. Edlinh). iS61; vol. 22, p. 500).
${ }^{2}$) Introduction etc. p, i67. Günther also supposes that the two appendices by being put together may form one canal; he thinks it to be possithle that the appendix-slit leads as well the scocetion of the glandular bag as the sperm.

万) Besides 10 the palps of the Araneina, the thought will easily be led to the limbs that in the Crustacea, especially the Decapoda, have been developed for serving the copulation; not only Leydig and Steenstrup, as has been shown by the abowe quotations, but also Nayer have thought of these; several other analogies indicated by Nayer are rather distant (ceren if they be not all so rlistant as those, attributer to M. by Petri: the thumb-swellings in the frogs, the spur of the Ormithorlyuchus - which analogies I have not at all been able to find mentioned in M. .
ii) Acoorling to I'etri; I have not been able to find the essay in question.
${ }^{\text {II }}$) 1. C. 1) 330 . The secondary function, which I'etri (in accordance with Bloch) ascribes to thent to serve as an organ of motion making the males more mobile thath the females especially in the Ray - may surely, to say the least of it, be elmacterizerl as problematic.
employment to be to act as a kind of dilators of the sexual organs of the female: he imagines thein to be introduced mutil the month of the oviduct, whereupon the .1/ dilututor dilates the terminal part, so that the bore oif the oviduct is enlarged, and the male also is cmablech th draw the female nearer to itself, in such a mamer that he can with his mrogenital papilla reach into the cloaca of the female, and there discharge the sperm, which from there more eanily may penetrate into the mouths of the oriducts that have been dilated by the appendices.

None of the mentioned anthors have been able to fond their opinions (mn any (h) eervation of the copulation' (Only , if late we have one, as it womd seem, reliable observation, communicated by bolan\% by which at all events it may he regarded as an established fact that the appendix is really introduced into the senitals of the female. This observation applies to Scyllum stollure /cututus) and is made in the aquarim of the zoological garden in Hamburgh. Before the copulation the male for about a day kept near the iemale, and pursued her, but it was not observed in what maner he seized her. I horing the copulation the female is encircled loy the male, the latter, as it were, twisting round ler cross-wise; only one appendix, it would seem, is introdnced at eacl copulation, and this appendix, judging by the very incomplete sketch given by lonlau, (1.c. p. 322, figs, 2) munt also aiter the act be somewhat dilater. The copulation itseli lasted in two observed cases 20 minutes. bolau follows Petri with regard to the interpretation of the part played by the appendis on this occasion; but ine adds that he is not able to decide, whether the appendix-sliti) plays a part by the convering of the semern.

This observation, as far as I know, stands hitherto quite alone; it seems to me to be of no small interest, althongh it decides nothing with regard to the most important question, whether the appendix really convess the semen or not. Is to this question we are still rednced to draw onr inferences from the strncture of the organ. This structure seems to me to show with complete certainty that at all events the appendix-slit cannot be the duct of the semen; it is situated in such a way, that it is impossible to moderstand how the sperm should get into it and follow it, an it, as we have seen, is situated dorsally and laterally, sometimes (for inst. in the Skate) quite laterally; the ventrals are not able to perform a movement of such a mature as to make the foremost opreming.
${ }^{1}$) 1) ary and Agassiz, however, - as aho several of the earlict anthors for inat Rondelet - have knman the following remark in Aristotle. Which might be indicatise of some ubservation really having been made in antignits:
 commmication (f SGr, p. 500 where In ary rather decidedly declares in favour of construing the appendix an a pems, he mentions some armmstances supporting the notion of an intronimsion, derived from Conminat, as for inst that the clowat of the female is barst emongh to receive the appendix, that it appeared shagtly laterated at its supheror comminare, and that the months of the uteri [rotroded, and were red and hood-filled. Garman wh the skates (Rafic) of the liantern Corast

 with a very small pore; this pore is romm in the species of which the malc has tapering elaspers . .mat fonms of short, horizontal slit in those where the claspers are flat with rombled ents; in the species where the appentio has sharp dedes dud hooks. the

 openings and the onter wne.

 nuknown to him.
of the slit approach the cloaca of the anmal itself (as supposed by Agassiz (and Garman |); neither can a turning round the longitudinal axis be effected (least of all a turning of 180°, as would be required in the Skate, and thus any thonght of a putting together of the slits of the two sides to form a tube (Agassiz, Giinther) has to be dismissed (quite apart from the fact that in some forms Scrllium, Pristiurus -- the appendix-slit is closed for a long way by coalescing). A putting together of the medial sides of the two appendages may however easily be effected by the Musc. adductores, but by this no convenient way for the sperm would be formed; and the observation of Bolan shows moreover that in Sollimm only one appendix is used at a time; for the present it may, however, be disputed, whether this is a miversal law in all cases and in all other Selachians. Thus it seems that the tubular, or rather semi-tubular form of the appendix cannot directly have anything to do with the transferring of the semen; the most immediate purpose of this form evidently is the transportation of the gland-secretion.

On the other hand the structure of the appendix shows with still greater certainty - quite apart from the observation by Bolau - that the appendix camot be used for externally clasping the female. For a great part, 1 think, it is the hooks, claws, or thoms, so often projecting through the skin of the terminal part that have cansed or supported this smpposition. But an attentive observation of the position and way of moving of these fimn parts, as also of the whole constitntion of the terminal part, might, as it seems to me, rather easily liare persuaded the many adherents of the theory of these organs as claspers, or Klammerorgane, that they are only ill adapted for such a purpose. The skin of the whole terminal part is, as we have seen, often quite naked and soft (the point itself is always so), and the appendix wonld therefore - as has been correctly pointed out by Agassiz - be badly off with regard to the rongl surfaces, with which in most cases it would have to do, and against which it would only be slightly protected by the secretion (Bloch; this secretion would rather be a hindrance for the clasping, as is also remarked by Davy\%. In the Rujo-species the hard skeletal parts whose business would be to hold fast the female, only appear within the dilated terminal part, and are wrapped by a specially vnlnerable skin, very much like a mucous membrane; consequently, if these parts were to hook on - for which their special shape is in no way adapted - for inst. to the thorny: tail of the female Ray (Cuyier \mathcal{E} Valenciennes, Duméril), their most immediate strromangs would he much exposed to injury; and if we choose to regard such appendages as those in Acanthias, Sommiosus, or above all spinax, which, by the hooks, thorns, or claws projecting freely throngh the onter skin, may for a superficial examination convey the impression of being plain prehensile organs (the dilated teminal part of Spinax reminds not a little of a bird's foot!), then any closer examining will show that they cannot be such: the position of these claws is always so, that they camot catch an object, or chutch it. Besides their movement inward, against each other, when the terminal part is closed, always takes place with small force, by elastic reaction of the connecting soft parts, only to a small degree (and not in all cases) somewhat assisted by muscular action. The erection of these parts on the contrary, when the terminal part is opened by means of the always powerful 1% dilatator, can take place with great force, and they may with force be kept spread out. I think therefore that there can be no doubt, but that Day has had an eye for the correct fact (althongh the Rays especially examined by him, do not present the fact so clearly by far, as do Acunthias
or Spinax), when he supposes the appendices to be organs fur intromission and retention like the Penis of the Dog ; only in a hollow these spurs, thorns etc., can be of inportance as retentive organs; it is quite evident that they are barbs that are kept stiff, as long as the dilation of the terminal part lasts. Siewed in this way the dermal tectlo on the terminal part in forlium. Pristums (and Chimera) will also get inportance, they being placed with their points towards the base of the fin and raised by the dilation; they will also - although to a less degree - act as barbs. When the dilation ceases, all these barbs - large and small are laid, and thus they present as small resistance as possible by the extraction from, as well as by the introduction into a hollow: That the object is that they may be introdnced and extracted withont resistance, is rery finely shown in some instances; this, above all, applices to the hook ($T d$) in Aconthims; in the position of rent it fits so elegantly into the spoonlike ventral temmal piece (T') as to remind of a surgical instrunent'). All the appendices are moreover adapted for being thickly smeared with the viscid secretion of the glandular bag, and accordingly being made smooth, by which an introduction into a relatively narrow hollow may be highly facilitated.

I think then that the structure of the appendis shows quite indisputably: f) that this organ is intended for being introduced into a hollow, and 2) that it is able to fix itself in this lmollow by the dilation of the teminal part. In this way - but only in this way the appendix becomes an organ of retention during copulation. It would a priori be the only reasonable supposition, that the hollow of which the question here can be, must be the genitals of the temale; by the observation of Polan this supposition lias been made a certainty, and this gives to his observation its special importance. My opinion then is, that at all erents it may be put down as certain that the rentral appendages during copulation serve as retentive organs in the genitals of the female ${ }^{2}$). But this can scarcely be their only function. My opinion is that they must have several functions, annong others to awaken the sensuality, and furthermore to open for at all exents to widen) the months of the oriducts in rirginal females, and thns secure impregnation and faciitate the parturition; and though I cannot imagine that the appendix-slit should form a duct for the sperm. I still think it probable that the appendages in sone way or other subserve the conrering of the semen, so that it is not conseyed by means of the uroyenital papilla of the male alone. And I also suppose that the secretion of the glandular bag strbserves this object. As we lave seen, the secretion is in all appendices not only evacuated throngh the hind cud of the organ, in the teminal part, but also in all instances through the opening at the base of the organ, and thus nut only the genitals of the female and the appendix itself, but most likely the whole inmediate sumponding of the chaca in both the copulating aninals will be habricated by the secretion. The consequence of this will be that the sperm will easily be mised with the secretion, and it may readily he supposed that this mixing may have a stimulating influence on the spermatozoids, or act as gathoring and convering

[^23]the semen, preventing it fronn flowing off in the water. Then the part played by the secretion, would not be restricted to facilitating the introduction of the appendix -- which part I regard as quite incontestable - , and to protect the different parts partaking in the copulation (eventually also the onter skin) against a severe friction; but the secretion wonld also be of direct inportance for the inpregnation by yielding a means, as it were, of keeping together the semen and leading it along the appendix into the oviduct.

It must be possible to some degree to test this supposition by exanining the way in which the spermatozoids act in relation to the fresh secretion; but unfortunately I have had no opportunity for that ${ }^{1}$). For the present 1 must leave the value of this and my other suppositions to the testing of others, and own that I have only been able to advance the understanding of the functions of the ventral appendages very little; most of the questions raised by the different, rather complicated structures, especially in the terminal part, must still be left quite unanswered, as also such facts as the large extent of the glandular bag in most Sharks must still appear mysterious ${ }^{2}$). With regard to some of these questions it may be dubious, whether they ever will be solved; but with regard to others, especially the question of the appendages as means of the conveying of the semen, it mould seen that they might be solved by observations. It is to be hoped that the future will bring sucli observations.

Addenda.

I lave been unwilling in this translation to make any essential alterations of the original Danish text. This latter was ready printed in August I8g8. I regret to say that shortly after I saw that I liad quite overlooked a short, but rather essential contribution by A. Sclueider to the question of the function of these organs; it is only little nore than half a page, and is printed in Zool. Beiträge vol. I, 1885 , p. 61^{3}). In this contribution he says of the glandular bag: Dieser Sack hat jedoch noch eine andere bisher ganz übersehene Function. Er ist ein Receptaculnun seminis, Ich labe bei Spinax Acanthias Sannen darin gefunden. Die Begattung dürfte deshalb bei den Plagiostomen in der Weise stattfinden, dass znerst das Receptaculun seminis mit Sanen gefüllt wird mud von da ans mit Hülfe des in den Uterns eingeführten Pterygopodinn die Immissio seminis stattfindet. Bei

[^24]den Holocithali, Callorhyohzs und Chimara besitżt das Männchen vor Jenn l’terygopodimn jederscits einen sehr verwiekelt gebauten Apparat. Derselbe besteht ans einer Taselne, in welcher melnere: Knorpel enthaltende, mit Widerlaken versehene Stïcke hervorgestreckt werden können. Ich fand diese Tasehe bei Callorhymhus mit Samen gefuill. Aneli bei dieser (irmppe der Fanmobranchier wird demmach der Samen vor der Begattning nach anssen gebracht. Wie freilich hier dic begrattumg stattfinden wird, lässt sich vorlänfig nielnt angelben. The essential thing is that Siclneider declares to lave found sperm in the bag in Acanthims and in the ponch of the pelvic appendages inn Cinllorhanchus; certanly $n o$ proof is given, but we shall have to suppose that Selneider has feally fonncl the spermatozoids. Whether these have been mumerons, that is to say; whether the bags in question really can be said to have been filled with the sennen, of this we know nothing with certanty, and we can - in my opinion - not yet in any way put it down as an indubitable fact that the glandular bag of the Plagiostomes is a reservoir that las to be filled with the semen and by the conrulation to eject it. Nothing is said of the way, in which the filling of the bags in question shonld take place.

I have ninfortmately not been able to get a paper by Haswell (Notes on the claspers of Heptanchus. Proc. Limm. Soc. N. South Wrales. vol. 9, P. 2, p. 381).

During the time between the appearing of the present essay in Danish and this translation I have received a paper by H. C. Redeke (Onderzockingen betreffende het Urogenitaalsysten der Selachiers en Holocephalen. Acad. Proefschrift ctc. Helder 189 S) in which (p. 7h) after a representation of what till then was known regarding the appendages and their function, the anthor declares that lie has himself fomd numerons spernatozo in the mixipterygoid bag ${ }^{\mathrm{r}}$) in one single specinen among many examined specimens of Mostelus andgaris. He calls, however, attention to the fact that the bag was not filled, which fact he explains by supposing, either that the anmal dnring its agony minght have emptied the bag, or rather that these animals will copplate, as soom as the bay is fillecl. An observation by another observer, respecting a male Regin clazata that liad ejected an abundance of semen through the dilated appendices, can seareely be regarded to be of any value, as there is no proof to the effect that the ejected fluid in reality was semen and not the sectetion from the gland. Finally is quoted an observation by Professor M. Weber, which observation the anthor thinks may be used to explain, in what manner the filling of the glandular bag might be bronght about. I sliall give the proper words of the anthor, and else abstain fronn advancing mave strong donbt of the fact: Deze (Prof. Weber) nan war, hoe een groote Rog (Kaja cluouta) rondzwemmende in cen der bassins, plotseling een groote wolk, vermoedelijk sperma, loosde en vervolgens, misschien reflectorisch, heftig met zijn mixipterygien begon te zwaien, die daarbij een pompende beweging selnenen nit te vocrent. Het is niet onmogelijk, dat ook in de natunr, al is de onneg een aller\%onderlingste, het spern1a cerst in een groote hoeveelheid geloosd en gelijktijdig door de mixipterygitn in den zak opgezagen wordt.
${ }^{1}$) The appellation of Mixipterygium, which has of late often been uset in stead of the objectionable l'hry.gopentimm

EXPLANATION OF THE FIGURES.

1: Musculus adductor.
af: The appendix-slit.
B : The basale metapterygii.
b : The appendix-stem.
$b_{1}, b_{2}, b_{3}, b_{4}$: The stem-joints between the appendix-stem and the basale.
β : The dorsal stem-piece.
D): Ihusculus dilutator.
$d_{1} d_{1}, d_{2}, d_{3}$: Dorsal covering pieces.
$d a_{1}, d a$: Terminal pieces belonging to the ventral side (in some Raja-species).
E: Ihusculus extensor.
$s:$ The end-style, the uncalcified end of the appendix-stem.
h : Horny filaments.
O, O^{\prime} : Fin-muscles arising from the body.
P : The pelvis.
R : Marginal ray.
r : Rays.
Ra: Ray-1111scles.
$R d$: The dorsal marginal cartilage.
$R d^{\prime}$: Process from the dorsal marginal cartilage (in Raja-species).
$R d_{2}:$ A special terminal piece, added to the dorsal marginal cartilage.
R z^{\prime} : The ventral marginal cartilage.
S: Mhesculus iompressor.
s : A ligamentous septum, serving for attaching part of the Muse. adductor.
$T d_{1} T d_{2}$: Dorsal terminal pieces.
$T_{i}, T_{i}^{\prime}, T_{3}$: Ventral terminal pieces.
z^{\prime}, z^{\prime} : Ventral covering pieces.

Plate 1.

Fig. 1-9. Sommiosus microcephalus.
Fig. I: The skeleton of the right ventral, viewed fron the dursal side; considerably reduced.

- 2: The chief piece of the right appendage, viewed from the dorsal side; reduced. l the lateral surface; x articular surface for attaching the piece β.
- 3: The same skeletal part, from the ventral side.
- 4: The dorsal terminal piece, Td, from the dorsal side.
- 5: The same piece, from the ventral side.
- 6: The ventral terminal piece, Ti, from the dorsal side.
- 7: The same piece from the ventral side.
- S: The thorn or spur , T_{3}, from the dorsal side.
-- 9: The same, from the ventral side.
Fig. IO-II. Actunthias unlgaris.
Fig. 10: The skeleton of the right appendage, from the doral side: natural size.
-- 1I: The same skeletal part, from the ventral side.
Fig. 12-13. Spinax niger.
Fig. 12: The skeleton of the right appendage, from the dorsal side; a little enlarged.
- 13: The same, from the ventral side.

Fig. If-15. Chimuera monstrose.

Fig. I4: The skeleton of the right ventral, from the dorsal side; natnral size. x process on the piece $b_{1} ; b^{*}, b^{* *}, b^{* * *}$ the medial, dorsal, and lateral branches af the appendix-stem.

- 15: The same skeletal parts, from the ventral side.

Plate II.

All the figures represent the skeleton of the appendage of the right ventral fin (or parts of it).

> Fig. 16-17. Scyllium canicula.

Fig. 16: The skeleton of the appendage, from the dorsal side; natural size.

- if: The same, from the ventral side.

Fig. 18-19. Scylliam stellare.
Fig. I8: The appendage, from the dorsal side; natnral size.

- 19: The same, from the ventral side.

Fig. 20-21. Pristiurus melanostoums.

Fig. 20: The appendage, from the dorsal side: natural size.

- 21: The same, from the rentral side.

Fig. 22-23. Lamna cormubica.
Fig. 22: The appendage, from the dorsal side: much reduced.
23: The same, from the ventral side.
Fig. 24-27. Rhina squatina.
Fig. 2.f: The appendage, from the rentral side: reduced.

- 25: The distal end of the same, from the dorsal side: * indicates the place where the terminal piece $T_{\hat{3}}$ ends, hidden in the ventral narginal cartilage R_{i}.
--- 26: The same part, from the ventral side; the covering piece removed.
- 27: The terminal pieces $T_{i^{\prime}}$ and T_{3} figured separately.

Plate III

All the figures represent the skeleton of the appendage of the right ventral fin (or parts of this skeleton).

Fig. 2S-31. Torpedo marmorata.

Fig. 28: The distal end of the appendix-skeleton, from the dorsal side; about natural size.

- 29: The same; the covering piece i' removed.
- 30: The same, from the rentral side.
- 31: The same, from the rentral side; the covering piece a'removed.

Fig. 32-34: Narcine sp.

Fig. 32: The appendage, from the dorsal side; somewhat enlarged; the covering piece ${ }^{\prime}$ removed.

- 33: The same, from the ventral side.
- 34: The covering pieces τ^{\prime} and π^{\prime}, from the dorsal side.

Fig. 35-37. Rhinobatus columner.

Fig. 35: The appendage etc., from the dorsal side; about natural size; the covering piece $\begin{gathered}\text { e removed. }\end{gathered}$

- 36: The same, from the ventral side.
- 37: The teminal point of the appendage, with the covering piece $\quad \therefore$, from the ventral side.

Fig. 3S-40. Trygon violacea.

Fig. 3S: The appendage etc., fron the dorsal side; about natural size; the covering pieces i^{\prime} and \imath^{\prime} remored.
39: The terminal part of the same, from the ventral side, with the covering pieces z^{\prime} and v^{\prime}.
40: The appendage from the ventral side; the covering pieces remored.

Fig. 41-4ł. Raja circularis.

Fig. fI: The terminal part of the appendix-skeleton, from the dorsal side; natural size.
42: The appendage from the dorsal side; the covering piece d_{3} and the terninal piece T_{3} removed.
43: The terminal part of the same, from the ventral side.
14: The appendage, from the rentral side: the covering piece and the terminal piece T_{3} removed.

Plate IV.

All the figures represent the skeleton of the appendage of the left ventral fin or parts of this skeleton).

Fig. 45-4s. Raja butis.

Fig. 45: The terminal part of the skeleton of the appendage, from the dorsal side; considerably reduced; the covering piece d and the teminal piece T_{3} removed; x a calcified part of the end-style g.

- 46: The same, from the ventral side; all the pieces present.
- 47: The same, from the rentral side; the covering piece and the terminal piece T_{3} removed.
- 4 : The dorsal covering piece, d, seen from the dorsal side.

Fig. 49-52. Raja clewate.

Fig. 49: The appendage with all its pieces, viewed from the dorsal side; considerably rednced.

- 50: The same, from the dorsal side; the covering piece d removed.
- 51: The same, from the ventral side, with all the pieces present.
- 52: The same, from the sentral side; the covering piece d and the teminal piece T_{3} remored.

Fig. 33-57. Reija rudiuta.

Fig. 53: The skeleton of the appendage with all its parts, from the dorsal side; reduced; x thickened and calcified part of the end-strle g.

- 54: The same, from the dorsal side; the covering pieces $d_{1}-d_{3}$ removed.
- 55: The same, from the ventral side: all parts present.
- 56: Part of the dorsal wall of the appendix-slit, viewed from the ventral side: the ventral marginal cartilage and all the terminal pieces of the ventral side, as well as the corering pieces removed. Kd' is here an independent piece.
- 57: The terminal part of the ventral marginal cartilage with the teminal piecen Tí and Tin, separated from the other skeletal parts, and viewed from the dorsal side (i.e. part of the internal side of the rentral wall of the appendix-slit).

Plate V.
All the figures represent the right ventral fin.

Fig. 5S-62. Sommiosus microcephulus.

Fig. 58: Ventral fin, viewed from the ventral side, of a young specimen, $2^{m} 50^{m}$ long: considerably reduced.

- 59: Part of the same ventral fin, viewed from the dorsal side and a little turned.
- 60: Part of the ventral of a large specimen, seen from the ventral side; consilerably reduced. The terminal parts, with the exception of part of the spur $T_{\text {, }}$, covered by aponemrosis.
- 6I: The same, from the dorsal side; part of the dorsal ray-muscles, Ru, removerd, as well as part of the muscular portion O arising from the body; a aponemosis of the I/uscodtensor for
- 62: Part of the same, slowing the muscles of the appendix, after removing the Jhaciextimsor far the muscular portions O and $O^{\prime}($ comp. fig. 59), as also part of the ghandular bag (comp, fige (h)

Fig. 63-64. Aconthias vulgaris ㅇ.
Fig. 63 : Ventral fin from the rentral side; natural size.
64: The same from the dorsal side; most of the muscles arising from the body removed.

Plate VI.

The figures, except fig. $67-68$, represent the right ventral fin.

Fig. 65-66. Scyllium stellare.

Fig. 65: The ventral fin fron the ventral side; somewhat reduced; the greater part of the glandular bag S removed; a_{1}, a_{2} special muscles of the appendix; f the winglike process.

- 66: The same, from the dorsal side; of the basal opening of the appendix-slit.

Fig. 67-68. Raja clavata.
Fig. 67 : The left ventral fin, from the dorsal side; considerably reduced; the terminal parts covered by the aponeurosis.

- 68: The same, from the ventral side.

Fig. 69-71. Chinueve monstrosa.
Fig. 69: The right rentral fin, from the rentral side; a little reduced; the skin on the branches of the terminal part not removed; b^{*} the medial terminal branch, $b^{* *}$ the dorsal one, $b^{* * *}$ the lateral one; p the serrated plate covered with its skin.
70: The sane, from the dorsal side; m the muscle of the serrated plate ; x process on the piece b_{1}.

- 7I: Part of the same, from the rentral side; the rentral portion of the Musc. adductor, A in fig. 7 o , removed.

Ingult hemoditamen II

$$
\therefore=
$$

Fig.58-62 Somniosus microcephalus; Fig.63.64 Acanthias vulgaris9.

Fig 65-66 Scyllium stellare. Fig 67-68 Raja clavata, Fig 69-71. Chimbera monstrosa

THE DANISH INGOLF-EXPEDITION.

SECOND VOLUME.

3.

NUDIBRANCHIATE GASTEROPODA.

BL
R. BERGH.

WITH 5 PLATES.

COPENHAGEN.

BIANCO LUNO (F. DREYER), PRINTER TO TIIE COURT
1900.

CONTENTS.

Nudibranchiate Gasteropoda.

Page		Page
Nındiloranchiata luolohepatica.......... $2-19$.	Dentronotus robustus	. 2630.
Dorididae phanerobranchiatae. $2-3$.	arborescens	- 30.
Lamellidoris muricata 2 - 3 .		- 30-43.
Doridilat cryptobranchiatae 3-19.	Coryphella sp. (anonyma)	$31-32$
Cadlina repanda + - 5	sp.	32.
Aldisa zetlandica. 5- 7.	salmonacea.	. 33-34.
	salmonacea, var.	. $3+-35$.
Doridosa Ingolfiana $16-18$.	Croniëolis typica.	36.
- Ingolfiana, var. is - 19.	- intermedia	- $36-37$
Nudibranchiata cladohepatica 19 -43.	- atypica	. $37 \cdots+10$
Tritouiatae . r9-22.	Amphorina Allserti	$4 \mathrm{I}-42$
Cantiella Ingolfiana 19-22.	Galvina sp. (anonyma).	. $42-43$.
Atthilidae . 22-26.		
Atthila Ingolfiana 23-26.	planation of the plates	- 44-49.
Dembronotidae. 26-30.		

Nudibranchiate Gasteropoda.

By
R. Bergh.

UTpon the whole and according to the experiences of deep-sea explorations, we can scarcely expect any considerable result as to mudibranchiate gasteropoda, nor has such a result been obtained by the Ingolf-Expedition, but it has as a compensation bronglit to light several very remarkable and partly quite new forms.

The complete result was the following forms:

Nudibranchiata holohepatica.

I. Lamellidoris muricata (O. F. Minller).
2. Cadlina repanda (A. et H.).
3. Aldisa zettandica (A. et H.).
4. Bathydoris Ingolfiana, Bgh. 11. sp.
5. Doridoxa Ingolfiana, Bgh. 11. sp.

Nudibranchiata cladohepatica.

6. Candiella Ingolfiana, Bgh. n. sp.
7. Atthila Ingolfiana, Bgh. 11. sp.
S. Dendronotus robustus, Verrill.
8. D. arborescens (O. F. Mïller).

1o. Coryphella sp.
1i. Cor. sp.
12. C. salmonacea (Conth.).
13. Goniëolis intermedia, Bgh. n. sp.

If. Gon. atypica, Pgh. n. sp.
15. Amphorina Alberti, Quatrefages.
16. Gabrina sp.

The nudibranchiate gasteropoda form two large gromps: the holohepatic and the cladohepratic nudibranchiata. They are chiefly and most generally distinguished by the structure of the liver, the blood-gland, and the senininal vesicle.

[^25]All the holohepatic forms have a liver without side-branches, but a gall-bladder; they have a special blood-gland and two seminal resicles (spermatheca and spemmatocyst). In the large cladohepatic group, which is very rich in forms, the liver is branched, no blood gland is fonnd, and only one seminal vesicle (spermatocyst).

Nudibranchiata holohepatica.

R. Bergh, Systen1 der nudibranchiaten Gasteropoden ${ }^{1}$).

This fanily comprises only the Dorididae together with the Doriopsidae and the Phyllidiadae as well as the dubions and somewhat deviating Corambidae. Common to all of them - with the single exception of the Phyllidiadae - is the gill which is formed of more or less, single or componnd, leaves or tufts, is retractile or not retractile, and is placed in the median line of the back, as well as the position of the anal apertinre, which, in consequence of the position of the gill, is found behind in the arch or ring formed by the gill-leaves.

The Dorididae have a strong bulbus plaryngens, often provided with labial plates, but almost always (witl the exception of the Batliydoridae) wanting real mandibles.

Dorididae phanerobranchịatae.
 Fam. Goniodorididae.

Lamellidoris, Ald. et Hanc.
R. Bergl1, System der mudibranch. Gasteropoden. l. c. i892. p. II52-II54.

This genus, which belongs to the sucking phanerobranchiate Dorididae (the Goniodorididae) is distinguished from the Adalariae, which it resembles very much in onter structure, by the presence of two prominent chitinons lists below in the inner month, and by the narrow radula that has only one outer plate.

The Lamellidoridae belong almost exclusively to the colder seas.
Lamellidoris muricata (O. F. Mïller).
R. Bergh, on the nudibr. gaster. 110ll. of the north pacific ocean (Scientific res. of the explor. of Alaska.

Vol. I. art. V^{\top} - ITI), second part. i8So. p. $22 \mathrm{I}-224$. Pl. IX, fig. I8; Pl. NI, fig. 10-12.
Pl. ${ }^{\top}$, fig. $3^{1-32 .}$
Of this species two specimens were taken on the Ioth of May 1895 at Trangisvaag between Laminarixe and red algre.

The snaller individnal was only $6.5^{\mathrm{mm}} \mathrm{long}$, the larger one, which was exannined more closely, measured 9^{mm}. The colour was whitish with a yellow tinge, the rhinophores were yellow.

The onter form was the common one; the tubercles on the back were powerful, most of them rather trmeate; the rhinophores and tentacles had the common form; the number of gill-leaves was ten, as far as they were to be discemed.
${ }^{1}$) Malacolog. Untersuchungen (Semper, Reisen im Archipel der Philippinen. II, if). XVIII Heft. iSg2. p. $1070-1160$.

Of the intestines only the bulbus pharyngens was exammed. It had a length of amm by a breadth of $\mathrm{I} 25^{\mathrm{mm}}$, and it measured in height with its beantiful large sucking crop that resembles a donble kettle-drmm (fig. 32), also $1.25^{m m}$; the sheath of the radula projected strongly from the posterior end. The tongue had thirleen rows of teeth, in the sheath oif the radula were 21 rows, of which the three limdmost ones had not yet been fully developed; thas the total mumber of fows of tectly was 34^{I}). The lateral teeth were slightly yellowish, the others colomicss; the leageth of the merlian false

 but not quite to the point, the number of the denticles appeared to be 15 20. The ontermost tecth were of the common form.

This species is, especially by the structure of its radula (by the denticulated lateral lecth), easily distinguished from the typical Lam. bilamellater (I.); on the other hand I think it questionable Whether Lam. Farians and histricinu which I have established (1. c.), are not nere varieties of Iam. murintu.

Dorididae cryptolranchiatae.

Fam. Cadlinidae.

R. Bergh, System d. mudibranchiaten Gasteropoden. 1. c. IS92. p. Ifoo.

Beside the Bathydoridae and a few Chromodoridae ${ }^{2}$) the Cadlinidae are the only cryptobranchiate Dorididae with rhachidian tooth plates. The family comprises the genera (adlina and Tyrinnob; the latter is distinguished from the former by a peculiar form of tentacles and by the penis having no thorny armature.

Cadlina, Bgh.

K. Bergh, Rep. on the Nudibranchiata (Explor, of Alaska) I. ISन9. P. If (Ifo) I25 (ISr))

- malakolog. Unters. Heft Ňilli. isg2. p. ifoo.
- die Opisthobranchier (Keport - Abbatross). IS94. 1. 168.

The Cadlinae are of an elongated-oval, somewhat depressed forn. The back is conered with fine, a little pointed papille, not very densely set; the gill is composed of a few hi- and tripmate leaver: the tentacles are short, lobelike; the foot is rather powerful, with a romnded fore end with marginal furrow.

[^26]The oral aperture bears a strong, almost ringshaped labial plate, composed of densely set, rather higl, a little hooked elements with cleft points. The radnla has small median tooth-plates and a row of erect lateral plates with denticnlated margins. - Glans penis is provided with rows of small thorns.

Of the genns only a few species are known, chiefly from the cold seas, and their specificness is not beyond all doubt, possibly these forms belong to one and the same species.
> 1. C. repanda (A. et H.).
> M. atlant. or. et occ.
> 2. C. glabra (Friele et Arm. Hansen).
> M. atl. or. septentr.
> 3. C. Clarae, Jher.
> M. mediterr.
> 4. C. pacifica, Bgh.
> M. pacific. septentr.

Cadlina repanda (Ald. et Hanc.).
R. Bergh, 1. c. 1879. p. 115 (171) - 120(176). Pl. V, fig. 15; Pl. VI, fig. 21-22; Pl. VII, fig.9-18; Pl. VIII, fig. 3-6.

- 1.c. 1894. p.169-i71. Taf. VII, fig. 4-í.

$$
\text { Pl. II, fig. } 16-19 .
$$

At station 27 i. e. on $64^{\circ} 54^{\prime}$ Lat. N. and $55^{\circ} 10^{\prime}$ Long. W. a single specimen of this species was taken at a depth of 393 faths (temp. $+3^{\circ} 8$).

The specimen that had been preserved in alcohol of 70% showed a chiefly whitish colour, and was of a somewhat stiff and frangible consistency. The length was 13^{mm} by a breadth of 7^{mm} and a height of 5^{mm}; the breadth of the foot was 3^{mm}, the length 10^{mm}; the breadth of the mantle-edge was $I^{\circ} 5^{\mathrm{mm}}$; the height of the almost ontstretched rinophoria 2^{mm}, and of the retracted gill likewise 2^{mm}.

The onter form was as nsual in this species. The club of the rhinophoria strongly perfoliate; there appeared only to be seven gill-leaves; the genital papilla as nsual.

The skin was densely stuffed with very long, slightly yellowish, cylindrical spicnles, sometimes slightly and sparsely ringged on the surface, strongly calcified, and measuring oo $5^{5 \mathrm{~mm}}$ in dianeter.

The bulbus pharyngens was strong, of a length of $2 \% 5^{\mathrm{mm}}$ with the radula-sheath strongly conspicnons on the minder part of the posterior end; the elenents of the broad, yellow, ringshaped labial plate reached a height of 0.075^{mm} (fig. 16). The tongue was broad and flat; the almost colonrless radnla contained 36 rows, and further backward appeared still 50 rows, the four hindmost of which were not yet quite consolidated; thms the total number of rows was 86 . The number of tooth-plates in each row was in the hindmost part of the tongne 44^{I}). The tooth-plates were almost quite colonrless; the length of the median teeth rose to 0.04^{mm}, and the height of the lateral teeth rose to

[^27]orrom. The median plates showed on the hooked part outward to eacln side 21-3) denticles (fig. I7a); the lateral plates (fig. 17, 18) were quite as before described.

Also the salivaty glands, the intestinai canal, and the yellow liver were as before described.
The anterior genital mass was large; the ampulla of the hermaphrodite duct, the seminal vesicles, the two parts of the seminal duct, and the penis-sac were as usual; the armature belonging to the glans penis and part of the seminal duct (fig. 19) showed the thoons in great mumbers and of a length of up to orozomm. The mucons gland was milk-white.

Fam. Diaululidae.

R. Bergh, Systen1 d. mudibranch. Gasteropoden. 1892. p. IO97-I 100.

This (provisional) fanily includes forms with a somewhat flattened body and most frequently with a finely villous back. The tentacles are of a tubercle- or finger-like shape; the branchial cleft is roundish and most frequently crenate, with tripinnate gill-leares. The labial disk is marmed. The narrow rhachis of the radula is makked; its plemrae bear many tooth-plates, and these, at least the greater part of them, are hook-shaped. The penis is mostly unarned.

The fanily contains several rather distinctly marked generic forms. (if the nearly related genera Dioululo and Gargamcllu the latter is distinguished by a strong armature of the penis of the same kind as in Platydoris and Hoplodoris). Thordisa and Aldisa have small tubercle-like tentacles: but in the former the onternost tooth-plates are comb-shaped, while the tooth-plates in . Illiser are erect, staff-shaped, and the penis armed with rows of thorns. The genus Tripto las the back covered with villous tubercles, and particular salivary glands of the oral tube (glumd.ptyulinuti). Ifulgerda has a smooth back, a narrower foot, and the ontermost tooth-plates are serrated. The teeth of the genus Baptodoris are somewhat like those of Halgorda, bitt the penis is here armed with series of thoms as in the Plyylidiadae and the Doriopsidae). The body of Piltodoris is more stiff, and the back finely. granulated. The genns Phimlodoris agrees as to the onter form with the last-mentioned gemns, but its penis is of a very deriating shape.

Aldisa, Bgh.
 R. Bergh, l. c. ISg2. p. IogS.

Aldisa zetlandica (Ald. et Hanc.).
Tab. V, fig. 17-23.
One specimen of this species was taken at station 27 i. e. $0 n 6633^{\prime}$ Lat. N. 2005^{\prime} Long. W\%., at a depth of 4 fathoms (temp. 56 .

Preserved in alcohol it measured in length 11^{mm} by a breadth of $\mathrm{g}^{\mathrm{mmm}}$ and a height of 4^{mmn}; the length of the foot was $93^{\text {mom }}$ by a breadth of $4^{\circ} 5^{\mathrm{mm}}$; the diameter of the branchial cleft was $2^{\text {mmm }}$, and the gill-leares reached to a lieight of rmm . The colour of the back was a light lemom-colomr, but the tubercles were whitish; the rhinophoria and the gill-leaves were yellow; the lower side of the whole body was yellowish white.

The form was oblong-oval, the lateral edges however rather parallel, the rounded anterior and posterior end of the same breadth. The back was everywhere covered with small; a lithe printed
tubercles showing monder the magnifying glass，as well as the whole back，fine spicules；the margin of the thmophore－openings is cosered with quite small tubercles，which is also the case with the margin of the ronnd branchial cleft．The strong club of the rhinophoria appeared to contain 15－20 pairs of leaves．There were 8 gill－leares，tripinnate；almost in the middle of the circle the but little conspicuons anal papilla was found．The lower side of the not very broad mantle－edge showed oblique bundles of spicules distinctly to be seen from withont．The genital papilla had two openings．The month was round，and on each side of it was found the short，trmeate tentacle．The foot was anteri－ orly romnded，with a marginal furrow，the foot－brim narrow；the tail rather short，romded at the end．

The central nervous system（fig．17）showed the cerebral and pleural ganglia to be distinctly discemed，almost of the same size，roundish；the plenral ones situated（fig．If bb）ontside the cerebral ones．The pedal ganglia（fig． 17 cc ）were lying behind the former pair，also of a romndish shape，about as large as the cerebral ones，and connected by a rather short commissure．The bulb－ shaped proximal olfactory ganglia were almost sessile（fig．ry）；the romdish buccal ganglia were comnected with each other by a not quite short commissure．

The black eyes（fig．I7）were quite short－stalked．The otocysts（fig．if，IS）were lying on the nppermost edge of the pedal ganglia，measured in diameter $010^{m m}$ ，and contained a rather great number of romnd and oval，firm otoconia of a diameter of 0.00 － 0.013^{mm}（ Fig ．I8）．The leaves of the club of the thinophore，as well as its axis and the stalk contaned mumerous spicnles exactly of the same kind as those fonnd everywhere in the skin，especially in large numbers in the back with its tubercles and in the lower side of the mantle－brim．These spictiles are long，staff－shaped，cylindrical， or here and there also a little rugged，straight or slightly bent，strongly calcified，clear as glass，and of a diameter of up to $0.03^{\text {mom }}$ ；they are，as is usual with this kind of spicules upon the whole，easily broken，and were often fonnd broken into many pieces．

The short and powerful bulbus pharyngeus together with the thick，strongly projecting radula－sheath measured in length $2^{m m}$ ；the labial disk was covered with a simple，colourless cuticle． The tongue was broad and flat，and appeared to contain 25 rows of teeth，of which the foremost were sery incomplete，and the tooth－plates to a great extent broken；farther back in the radula－sheath still 26 rows seemed to be fonnd，of which the hindmost were not yet completely developed；thus the total number of the rows seemed to be 51 ．The odontogenons cells of the radula－pulp were arranged in long colnmms forming the long tooth－plates．The number of tooth－plates in the series was con－ siderable，but conld not be made ont．The tooth－plates were completely colonrless；the ontermost were only oo S^{mm} long，while the largest were at least 0.35^{mm} ．The tooth－plates were of the peculiar，before described shape，very long，flattened，and thin，at the point a little broader（measuring oor $3^{\text {min }}$ ），formed like a spoon，in the point and in part of one edge provided with quite fine and pointed denticles （fig．19）：the ontemost tooth－plates were less long and denticulated for a longer way（fig．20）．

The whitisln salivary glands were seen as a small mass on each side of the fore end of the stomach．

The oesophagus was short：the stomach oblong，of abont the same lengtly as the bulbus pharyngens．

The anterior genital mass was a little oblong，rather large．The glans penis（fig．21）pro－
jected in a length of 0.6^{mm} and with a diameter of oosmm from the anterior genital aperture; it was on the foremost part of the ontside and inwardly covered with apparently irregularly arranged (fige 22) colonrless, straight, and a little bent thoms of a heiglit of ooog-0.0r6um, rising from a little flat base (fig. 23$)^{\mathrm{r}}$). The thomy armature is contimed for a (short) way into the seminal duct.

Fam. Bathydorididae.

R. Bergh, System 1. c. 1892. p. rogo.

Bathydoris, Bgh.
Report on the Ňudibranchiata. Challenger-Fixped. Zool. Vol. X. $188+\mathrm{p}$. roc).
Corpus fere semiglobosum, sat molle; dorsum papillis conicis parvis ubique sparsis pratitum, margine palliali vix ullo; thinoploria retractilia clavo perfoliato; tentacula sat magna, nomihil applanata, aemminata; branchia e fasciculis discretis compluribus ($6-\mathrm{r} 0$) frnticulosis non retractilibus formata; podarium sat latum.
bulbus pharyngens permagnus; armatura labialis nulla; mandibulae magnae, sat applanatae, margine mastieatorio laeri, processu masticatorio nullo; series radulae multidentatae, dente mediano et dentibus lateralibus hano forti obliquo instruetis praeditae.

Penis fortis, inernis, fissura laterali coeca, apertura apicali.
This genns was established on a specimen taken during the Challenger Expedition almost in the middle of the Pacific from a depth of 2.425 fathoms where the temperature was I C.

By the semiglobular form of the body, the separate branchial tufts, and the papillie spread over the back, the bathydoridae remind not a little of the, othorwise far different, genus Kalinga belonging to the Polyceradae, as also, by the position of its branchial tufts, of the Hexabranchidae ${ }^{2}$. The gigantie bulbus pharyngens differs essentially from that in all other Dorididae; it is provided with powerful lateral mandibles as those in Bornclle and. Sollncin, and as in these genera they are on the fore side covered by a thick muscular plate. The armature of the tongwe resembles that in the Tritoniadae. As in Bornelle and Sollura the hermaphrodite gland is quite separated fron the liver.

The bathydoridae appear to form a remarkable connecting link between the Dorididae and the Tritoniadae, showing also a certain resemblance to the bornellae and Scyllaeae; but they have also, at other Dorididae, a blood-gland close to the central nervons system.

The Ingolf-Expedition has from the sea-bothom in the Davis Strait bronght, as it wonld seem, a new form of this genus, which accordingly now comprises

1. B. ablyssamath, Isgls.
1.c. I884. p. IOg-1i6. Pl. NII, fig. 14-20; pl. XIII, fig. I-26; pl. NIV, fig. 15.
M. pacific.
2. B. Ingolfinna. Ibgh.
MI. atlant. aretic.
1) I have formerly overlooked this armature, which is only to be disonered with great disficulty
${ }_{2}$ The number of gills seems in the bathydoritice to be nuch varying; as the tufts, of whish the gills are compersel. may be more or less independent, as is also the case in the Hexabranchatac. Comp. mus matacologe (inters. Ileft. Nilf. 18-8. p. 56 I ; Heft. XVI. IS8g. 1. 929

Bathydoris Ingolfiana, Bgh. 11. sp.
Corpus quasi subgelatinosum, dorsun subpellucidun. Rhinophoria et tentacula brumea, branclia et genitalia externa aurantiaca, podarinm e nigro purpureun.

Hab. II. atlant. arctic.

$$
\text { Pl. I; Pl. II, fig. } \mathrm{I}-2 \text {. }
$$

The only specinen of this remarkable form was taken on 59 I2' Lat. N., $5^{1^{\circ}}$ oS' Long. IV. (the broad part of the Daris Strait, about West of Cape Farewell) from a depth of $18 \% 0$ fathoms, by a botton temperature of $\mathrm{I}_{3}{ }^{2} \mathrm{C}$. According to the kind commnnication by Prof. Jungersen, the trawl here bronght up a whole cart-load of large, firn blocks of clay: the substance of which reminded of potter's clay, and seemed to contain 110 organisms, and also a fluid, yellowish mud, in which were only found some Rhizopoda, sn1all Crustacea (Isopoda, Tanaidae, Amphipoda, Ostracoda), and a few dead shells of Yoldia-like small bivalres, of Dentalia, and of a form of Buccinida. The swabs were empty; and accordingly the bottom must certainly have been poor. Of larger animals the same trawling only brought the common little deep-sea fish Cyclothone microdon, a pair of curions Actinia, and a longstalked, cupshaped silicious sponge, as well as a characteristic red Planaria swimming edgewise, and furtlermore a Nemertine. Noreover was found in the meshes of the trawl an immense number of colourless lumps of jelly, warty on the surface, and about the size of a hazel-nnt.

The nature of the mentioned lumps of clay cansed this animal to cone up in a partly somewhat rubbed condition. It gave no sign of life at all, and did not contract when tonched. It was immediately put into 70° o alcohol, and is said to have neither contracted much therein, nor altered its form.

The animalin its fresh state is stated to have been of an, as it were, somewhat gelatinous consistency; and the somewhat scraped dorsal side quite transparent, so that the intestines might be seen through it. With the exception of the ahnost colonrless back the animal was of a dark-brownriolet colour, but much darker on the foot.

The animal, which is rather well preserved in the alcohol, showed on the back a light greenish white ground-colour, crossed through by a network with wide meshes of branched and anastomotic blackbrown stripes, in the crossings of which were often seen small black rings with whitish centra (partly from broken-off papille?), similar rery small and small rings were moreover found spread in the meshes. Towards the foot the colour became velvet-black, and of this colour was also the back of the neck and the upper side of the foot. The rhinophoria were yellowish, the fore part of the head black brown, the tentacles brownish yellow; the exterior genitalia were yellowish; the gills were dirty brown, as was also the sole of the foot. The leugth of the aninnal was 93^{cm} by a height of 6.5^{cm} and a breadth of 6 cm ; the foot was 6 cm long by a largest breadth of 5.5 mm ; the footbrinl was ${ }^{1} 3-15^{\mathrm{mm}}$ hroad, the tail 6^{mm} long; the fore end of the liead was about 2.6 cm broad, each tentacle besides projecting 25^{cm}, the club of the thinophore I^{cm} high; the diameter of the flat gills was $\mathrm{I}-\mathrm{r}^{\circ} \mathrm{J}^{\mathrm{cm}}$ the height of the anal papilla $\gamma^{-m m}$; the preputinn projected $6^{\text {mm }}$. The colossal folds of the vulva were $1 \cdot 5^{\mathrm{cm}}$ high, and when spread from each other they had a breadth of 3^{cm} by a length from above downwards of $2.5 \mathrm{~cm}^{\mathrm{cm}}$.

The form of the animal is almost splerical（firs．I，2），a little flattened on the lower side the foot），strongly reminding of a gigantic Ochidiopsis．Below the region of the rhinophoria a little for－ ward and a little behind is found a trace of a dorsal brim（fig．I），otherwise the back bends smoothly． and without any distinct margin downwards and inwards towards the foot，so that the body laas no sides properly speaking；anteriorly the body passes without any distinct brorder into the head（fig．If． To each side of the back of the neck the short－stalked club of the rhinophore（fige．If was seen projecting from its hole the edge of which was smooth；the club contained about So rather narron leaves．The fore－end of the head was large，ronndish，rather flat（fig．t）with vertical－oval aperture， in which the light bluish－white labial disk appeared：from the sides of the head the strong，some－ what compressed，tapering（fig．I）tentacle projected freely；the narrow chin below the head was smooth（fig．1）．－The evenly and strongly convex back（fig．r，2）was everywhere cuvered with small，disk－like depressed or slightly elevated figures of a diameter of $05-2^{\mathrm{mm}}$ ，the centra of which were either further depressed or rose to a cone of a height of at most r^{mm} ；the depression wonld seenn to have been cansed by a strong retraction or a rubbing off of the little cone．Towards the fore end of the back was seen on each side the projecting margin of the ronnd holes of the rhinophoria，and farther forward the but little conspicuous smooth dorsal edge behind the back of the neck（fig．2）． On the hinder part of the back are seen the rather large，flat branchial tufts（fig．1），placed in a large circle，which is completed in the median line behind by the short and powerful anal papilla． The number of the branchial tufts were 10 ；on the left side the three hindmost were drawn choser together，and above these was one more isolated；on the right side three and three were closer together．Each tuft showed a short，black－coloured stalk，from which $3-5$ tri－and quadripemate leares spread flatly：The anal papilla was a little depressed，truncate，with a slightly crenate aper－ ture directed backward and downward（fig．I）．The rather large space circumscribed by the branchial circle，showed a number of smaller and larger small diks like those on the other part of the back： forward and a little to the right，close to the hindmost branchial tuft of the foremost right group， was seen the renal pore（fig．i）a little projecting．－The sides of the body are quite low： Anteriorly，on the right side，behind the region of the rhinophore，the outer genitals were scen， foremost the opening of the preputinm with a little projecting fokl，and behind it the adjoining vulva with its two colossal，indented sidelobes（fig．2）．－The foot is powerful，broad；the fore margin with a deep transtersal furrow（fig．2），the side margins not very conspicnons，the tail rather short（fig．1）．

The intestines were nowhere to be seen from withont；the coverings of the back were thin， mostly only $03^{\text {mm }}$ thick；the thickness of the foot in the middle abont $3^{\text {mon．}}$ ．The intestines ware by short，cobweblike connective tissure attached to the foot and the siden of the back as well as to each other．

The broad and flat central nerrous system resting on the himker part of the bulbus pharygens，was of a slightly yellowish white colour：its breadth was itwa by a length of the cere－ bral ganglia of up to 55^{mm} and a thickness of up to $155^{\text {mun }}$ ．It was wrapped in a very thin，but ad－ hering capsule，which was prolonged out on the larger nerves．The cerchoral gatylia（pl．II． fig． 2 aa）are the largest，and anteriorly considerably broader ${ }^{1}$ ），the comminoure betreen them shont

[^28]and not broad; neither the npper nor the lower surface themselves seemed to send off nerves, but from the fore margin and the outer end, on the contrary, at least 7 nerves arose, from the indentation on the onter margin three, and fron the lindmost part of the lower side of the commissure arose a quite thin nerve running backward. Thc pleural ganglia were almost but half the size of the cerebral ones, of a sliortoval contour (fig. 2 bl); they sent off four thicker and a pair of quite thin nerves. The pyriform pedal ganglia (fig. 2cc) that were comnected, as it were, by a stalk with the cerebral ones, were larger than the plenral; they sent off fom strong nerves, one from the lower side. The large common commissure (ca. 25^{mm} long), as usual double (fig. 2 d). The cerebro-buccal connective is alnost as long as the large commissure; the bnccal ganglia (fig. 2 ee) were of an ovally ronndish shape with a dianeter of 2.5^{mm}, and sent off five nerves; the rather strong buecal comnissure (fig. 2 f) was 20^{mm} long. - The nerve cells (of the plenral ganglia) were of a diameter of at least 0.30^{mm}; the nerves were in their proximal part often a little reddish. In the skin was seen a rather rich network of nerves and small ganglia, sending off branclies to the small papille of the skin ${ }^{1}$).

In spite of a eareful examination I did no more in this individual than in the earlier examined one succeed in finding eyes and otocysts, which nevertheless surely are not wanting ${ }^{2}$). The strongly developed rlinophores showed along the fore and hinder surface a strong median (transtersely folded) rhachis, downwards broad and upwards tapering, from which arise lanellæ withont spicules; the point of the club is formed by a little final papilla. Through a special carity two strong nerves ascended, and besides strong and anastomosing musenlar strings stretched through these organs. The small, round disks of the skin were slightly depressed, with a projecting edge, and in the middle was often fonnd a more or less contracted papula (pl. I, fig. 3). No spienles or ealcified elements were found in the skin at all.

The month-tube of this individual was quite short, the bubbus pharygens being projected, so that the bluish labial disk was lying in the onter montly the labial disk was short-oval, longer in the direction from above downwards, its dianeter was 12 mm , in the middle was seen the narrow, perpendicular aperture of the inner mouth (pl. I, fig. 2). The exceedingly powerful bulbus pharyngens itself (pl. I, fig. 4; pl.II, fig. Ib) was of a whitish colour; only in the region of the pharynx the underlying colour shone throngh with a blnish tint; the bulb was 3.4^{cm} long by a breadth of 3.2^{cm} and a lieight of 3^{cm}; the radula sheath projecting in a semiglobular form posteriorly on the lower surface (fig. 4c) liad at its base a diameter of $13{ }^{\mathrm{mm}}$. The rather strong Mm. bulbo-tubales (Protrusores bulbi) were as has been shown before ${ }^{3}$). The bulbus plaryngens (fig. 4) is by a rather sharp crest (the margin of the mandibles), only interrupted on the lower surface, divided into a smaller and narrower former part, and a rather larger linder part; on the sides behind the mentioned crest the latter has an even hollow, posteriorly passing evenly into the connmon proninenees produced by the tonguemuseles to the sides of the plarynx. The upper side of the bulbus pharyngens (fig. I) is strongly
${ }^{1}$ Comp. 1. c. 1?. it2. pl. XiV, fig. 5.
${ }^{2}$) Eyes are found in a species of Plumotoma, obtained at a depth of 2090 faths, in a Fusus fronn a depth of 1207 faths (Wy: Thomson, the Depths of the sea. 1853. p. 465) and in other mollusks; the presence of eves in animals from these depths will, according to the abyssal theory of light, not be incomprehensible. On the other hand a rather large number of blind deep-sea fishes and a still greater number of abyssal Crustacea without eyes have been found. (Comp. Semper, Die nat. Existenzbed. d. Thiere, I. ISSo. pp. 103, 2621.
3) Comp. l. c. p. 113, pl. XIII, fig. 2.
convex：the anterior half between the projecting hinder edges of the mandibles is flattened and a little hollowed；the posterior half is evenly convex，and from its midrle arises the xesophagus，on either side of which is seen a shight hollow with the apertures of the ducts of the sativary ghands． The sides of the bulbus pharygens are evenly convex with a hollow behind the margins of the mandibles（fig．f）．The lower side is anterionly shightly convex with a hollow behind the mar－ gins of the mandibles，and behind this rises the strong radnla－sheath fig．f c）As in the Plenro－ phyllidiae and the Plenrolemridae，in／Iiro and Bornello，and even in Sollacon a thick muscular plate（fig． $4, \mathrm{~T}$ ）covering the greater part of the anterior surface of the mandibles，is fonm behind and aronnd the little labial disk；this phate showed a little below the midde of the fore side a transserse，rather broad furrow；the thickness of the plate was about the region of the upper end of the labial disk $u p$ to $9^{m m}$ ，decreasing upwards and downwards as well as towards the margins． From the immer margin of the labial disk its conting continues as a thick dark blue or almost black blne covering over the whole inside of（i．e．the opening of）the muscular plate，and attaches near the free margin of the mandible ${ }^{1}$ ，in the middle at a distance of 6 mm fronn it，but upwards and downwards approaching it，matil the attachment in the uppermost and ncthermost places almost reaches quite to the edge．Above and below the same coating continues throngh the mper and lower end of the slit between the margins of the mandibles to the backside of these，where it is attached in quite a similar manner as on the foreside，the naked margin of the mandibles being，how－ ever，here only $f^{\text {man }}$ broad in the middle．The coverings is continned into the coating of the buccal cavity．When this muscular plate is removed the mandibles are naked；the right one covered pl．I， fig．6）with its marginal portion the margin of the left one（in the same manner as in the hefore ex－ amined form1．The mandibles are strong and large， $29^{m m}$ long by a breadth of up to $i^{2 m m}$ ；resting On the onter margin the mandible rose to a height of ismo in the marginal part the thickness rose to almost 2^{mm} ．They were of a fine horn－yellow colour，almost the whole of the inmer half being brown yellow．Their form（fig．6）is oval，a little more rounded below than above（fig 6at；the inner edge is a little more projecting than the onter one，and tapers a little more towards the middle．The mandibles are evenly bent from above downard；they are thickest where the blne coating is attachocl， decreasing in thickness towards the edge，especially towards the onter one，which is still somewhat soft；they are quite smooth on the surfaces，very finely concentrically and radially striated；the masticatory edge was almost smooth．The mandibles join，and are immediately comecterl with each other at the upper end，below they are a little apart（fig．6）．－The mandibles being removed the anterior end of the muscular masses of the mandibles are uncovered，the colour of the inside of these muscles（the cheeks）is clark blue，as is also that of the other parts of the buccal cavity，as well as the tongue and the tectum radule，to which the brown radula foms a wather strons contract．－Glue tongue（pl．I，fig．5）is very powerfna，of the nsual form，with a cleep slit；in the buccal carity it projected $\gamma^{m m}$ ，and measured above from the base of the tectum radule is in in length；its haight （from above downward）was $19^{\text {mnn }}$ ，and its breadth also $10^{\text {mom }}$ ；the tectum radula had a lenseth of 7.5 ， anteriorly it reached to the middle of the height of the tongue－sitit．The radula itself wath reddish brown，somewhat glistening，its marginal part of a purple bown；its continmation into the sheath

[^29]was lighter, yellowislı. After being separated fron the tongue it measured with its continuation 28^{mm} in length, and when spread ont 32^{mm} in breadth. On the radula was fonnd 35 rows of teeth (measured along the onter margin), and farther back 24 rows, abont six of which were not yet fully developed; thus the total number was 59. About the twenty foremost rows were more or less incomplete, and the tootlipplates often injured. In the rows were found $u p$ to in tooth-plates on each side of the median tooth ${ }^{\mathrm{I}}$). The length of the median tooth was abont 0.5^{mm} by a breadth of 0.22^{mm}; the lateral teeth measured along the backside up to 0.95^{mm}; the lengths of the 6 ontermost teeth were: 0.40-0.43 $-0.45-0.48-0.5-0.6 \mathrm{~mm}$. The median tooth is flat, rather thin, somewhat lengthened (fig. 7 a , 8) with an excavated fore end, and a straight hinder margin over which projects a little truncate, median cone; the fore part rises obliquely in a short ronnded hook (and the hooks on all the nedian teeth were of the some form). The lateral teeth (fig. 9-I 3) are longer, and have a much more powerful base, from which the tapering hook rises obliquely and rather slantingly; the margins of the hook, especially the inner one, project freely anteriorly; otherwise the length and breadth of the hook is somewhat varying. Towards the margin of the rasp the lateral teeth decreased (fig. 12-14) considerably in strength and were narrower. In the $6-8$ outer ones, especially the very outermost, the hook was considerably reduced (fig. I2a). Donble teeth, so frequent in the nuclibranchiata, were not wanting (fig. I5).

The salivary glands are strongly developed, and cover (pl. II, fig. icc) the sides and partly the lower side of the stomach, where they join almost in the median line. They are somewhat flattened especially above, of a thickness of $1-9^{m m}$, yellowish white, somewhat lobed in the margin, especially the left one; this latter was larger than the right one, its length was 22^{mm} by a breadth of also 22^{mm}; the rigth one was 32^{mm} long and 14^{mm} broad. At the fore margin of the gland the salivary duct was seen widening at its fore end into a little ampulla (fig. i ; 4c); the length of the duct with the ampulla was alnost $10^{\text {nmm }}$.

The oesophagus (pl. II, fig. I) was of a dark bluish-gray, about ifm long with a diameter of $9^{\text {mon }}$; thie longitudinal folds shone throngh indistinctly. The oesophagns passes by degrees into a first stonnaclı, also dark blush-gray, bag-shaped, of a lengtl of 3.5^{cm} with a diameter of 1.7^{cm}. This stomach appears rather thickwalled on accotnt of the not rery numerous (ca. 12), but thick and projecting, wrinkled longitudinal folds, which were slightly to be seen from without, and which partly continue anteriorly into the folds of the asophagus, becone lower posteriorly, but for the greater part continne into the folds of the second stomacl. The inside of this first stomach is quite dark blue. Thronglı a slight constriction also indicated exteriorly (pl. II, fig. I) this stomach passes into the second stomach, situated to the left, $3 \cdot 6 \mathrm{~cm}$ long with a dianeter of r 4 cm , and exteriorly of a Yellowish white colour. It is also rather thickwalled, its yellowish inside that is finely dotted with red, beariing a small number (ca. 12) of highly undulated folds stopping short at the aperture of the biliary duct. Here the yellowish white intestine begins which all the way from the pyorns is rather thinwalled. It (pl. II, fig. 1 dddd) stretches backward along the left margin of the liver, bends behind the mindle of the length of the liver over the upper side of it, and runs to the right and forward
${ }^{1}$) In the before examined fom the number of rows on the tongue was 55 , and the total munber 75 ; the number of the lateral tecth was 130 on each side.
to the middle of the right margin of the first stomach, forms here a kince, and stretelies backward along the right margin of the liver continning over its linder end up) to the anal papilla (pl. I, fig. in The whole lengtlo of the intestine is 25^{cm} by a diancter varying between $10-15^{\mathrm{mmn}}$. The inside of the intestine shows on the middle of the under side particularly fine transverse folds while the rest of the wall chiefly has very fine netforming folds; through the middle of the above mentioned binely trans-versely-folded part a prominent longitndinal fold stretched for a great part of the hindmost part of the intestine. The wall of the hindmost part of the intestine was more smooth. The alinnentary canal showed throngh almost its whole length from the cardia to the rectnn abundant, as it were, clayey, dark yellowish gray contents, partly (puite lonse and incoherent, partly fomming suft hmps of a length of almost $11 p$ to 2^{cm} and a diameter of I^{cm}. These contents consisted of the above mentioned clayey mass with grains of sand, mingled with half disorganized anmal sulostance, with Polythalania, Diatoms, and pointed silicions spicules; also a piece of a womblike aninnal, full 2^{m} longe, and almost disorganized, was fonnd.

The very large, dirtily dark brownish gray liver was $\quad 72 \mathrm{~cm}$ long by a breadtly of up to $42{ }^{2}$ and a height (belind) of $3 \%^{\mathrm{cm}}$; its contonr was ronndish, the fore end a little more puinted than the ronnded hinder end (pl. II, fig. I). On the upper side of the fore end was fonnd an inpression of the first and especially of the second stomach, along the greater part of the left margin was secn a fimrow for the intestine, which at the beginning of the lindmost third part of the liver bent inward over its upper side, and on its way forward was situated in a broarl and deep furrow continning in a more superficial one along the right margin of the liver. The surface of the liver was smoutl, with only superficial furrows, partly from vessels. Below on the left margin was fonnd the short and thick biliary duct of a light dirty yellowish colour ($9^{m m}$ long by a dianeter of (mm ; it opened at the prolorus of the second stomach, and led into a not rery great cavity, on the walls of which $3-7$ large openings were seen. The biliary duct and the carity of the liver were filled with masses like those in the alimentary canal. No gall-bladder was found.

The large pericardinnn, $37^{-\mathrm{cm}}$ long, and 4^{cmn} broad, covered the middle of the liver; folds before on its minder side (the pericardialgill) were very distinct. The yellowish ventricle of the heart was 23^{mm} long by a hindmost breadth of 10^{mm}. - The large, whitish, flaceid bluod gland was resting on the plarynx, partly attached to the salivary glands, of a fongth of $2.3^{\text {m }}$ by a brealth of (before) I^{cm}, (behind) $\mathrm{I}^{\circ} 5^{\mathrm{cm}}$; before it was ronnded, behind straightly curtailed; its thickness was $5^{\text {mun }}$; it appeared to contain a cavity with folds on the thin walls, but was torn on the under situ by the preparing ont of the central nervous system; a strong artery san to the lower side of the weme

The fine, large, brown-yellow kidney (pl. II, fig. 1) covered the whole homaphrodite sland and large part of the upper right side of the liver: with its branches it stretched partly mader, partly here and there over the intestine; it was rather fimmly attached to its underlayet. It was composed of sery strongly branched principal stems, some foremost and more hindhost; the stems as well as their branches were in a most varying manner set with leaves, folds, and ampullix often forming, as it were, greater and smaller grapes. All these growthe on stans and branches wore as mand compromed of closely crowded small cells. Abont the middle of the kidney (fig. If the stems appeaterl to lead. into a mrinal chamber continning in an mreter rmming backward along the inmer margin of the
intestine, and ending in the renal porc inside the branchial circle to the right (pl. I, fig. I). The inside, at least of the last part of the ureter, is covered with strong, componnd, and foliaceous folds and papille. The pericardio-renal organ (the renal syrinx) was powerfnl, pyriform, almost icm long, with strong folds on the inside.

The hermaphrodite gland (Glandula hermaphrodisiaca) rested on the foremost right part of the upper side of the liver, its upper surface completely covered and hidden by the foremost part of the kidney. It was (fig. 16) meniscus-shaped, of roundish-oval contour, with a convex upper surface, and the under surface a little concave; its diameter was about $2 \cdot 6 \mathrm{~cm}$ by a thickness on the middle of I^{cm}; from this middle it sloped evenly towards the not very thick, romded, almost smooth margin; the surfaces were finely knotty, the colour was gray. The surface of this gland showed everywhere, especially distinct on its upper side (fig. 16), a mass of small clear, semiglobular, prominent papulæ, Which, when slightly magnified (fig. ${ }^{17}$) were seen to be composed of densely crowded balls of a diameter of $0.5--15^{\mathrm{mm}}$, and were attached to a central mass; between and below these balls stretched a system of highly ramifying and anastomotic tubes (fig. I\%), the efferent ducts. The deeper parts of the gland contained similar balls and tubes. The balls were ovarial follicles with eggs in different stages of development, attached to a central testicular mass containing bindles of zoosperms. About medianly from the foremost part of the under side of the gland the hermaphrodite duct arose stretching to the anterior genital mass.

This large anterior genital mass (fig. is) was sitnated on the right side of the bulbus pharyngens before the liver. Anteriorly and on the under side it was grayish, otherwise of a light yellowish white colonr; the length was 5^{cm} by a breadth of $4^{4} \mathrm{I}^{\mathrm{cm}}$ and a height of $3 \cdot 8^{\mathrm{cm}}$; its lower surface was slightly convex, the upper one strongly convex, posteriorly more abruptly shelving, anteriorly more gradually sloping; the fore end was a little pointed, the hinder end broader and rounded. Its chief part was formed by the large mucous gland (fig. isa); on the hinder end lay the spermatheca (fig. I8b) with its rather short duct; before and partly upon this (fig. i8) the large bag of the penis. The hemmaphrodite duct (fig. iga) stretches under the spermatheca and the bag of the penis and forms a flattened coil, quite covered by the latter; this coil is composed of rather thinwalled windings, which, when loosened from each other, had a length of abont 15^{cm} by a dianeter generally of $\mathrm{r}^{\circ} 5-2^{\mathrm{mmm}}$; foremost minder the neck of the bag the duct was somewhat thinner, and divided in the usual way (fig. igb) into the short oviduct and the spermatic dinct which is only thin near the beginning (fig. igc). The spermatic duct was powerful, thickwalled, and stretched in a curved way with a length of 3^{cm} and a diameter of $2^{m m}$ to the linder end of the bag of the penis (fig. igd) continuing into the penis. The bag of the penis (the proputium) (figs 18 , 19 dd) was large, 3^{cm} long by a breadth of $2 \cdot 1^{\mathrm{cm}}$ and a thickness of $\mathrm{I} 3^{\mathrm{cm}}$; it opened with a narrower neck foremost in the onter genital region (pl. I, fig. 2); its walls were not thick, but tough; its inside was smooth, only in the neck were seen longitudinal folds, of which a more strongly marked one was seen in the onter aperture (fig. 2). In the preputimu was the whitish penis, quite bent double (figs. 19, 20); when straightened it measured $4^{c \mathrm{~cm}}$ by a diameter varying between 9-I $4^{\text {min }}$; its contonr was romid or a little compressed, only the end of the organ was more flat; on one side was fonnd (quite as in the earlier examined Bathydoris) a rather narrow, not superficial, rather long furnow withont any discoverable aperture in the bottom; on the point was
seen a quite fine round pore (fig. 19 f). The spermatic dhet entering at the base of the (organ (fige. 20a), becane by and by a little thinner forward, and with its close windings it was to be traced thronghout to the pore on the point of the penis (figs 20, igf). The shom oviduct (fig. 19 h) openel intu the uppermost part of the duct of the mucons gland. The spermatheca (fig. 181) was formed like a short bag, of a length of 2^{cm}, it was partly covered by the preputinn; its vaginal duct was a little shorter than the seminal vesicle, by its short uterine duct hung by a short stalk the flat spermatncyst, corered by the spermatheca, empty like this, and abont half as large. - The mucous. y land formed the chief portion of the whole anterior genital mass; himdmost on its muder side was sech a more separated, roundish, more whitislh, flat part, of a dianeter of ca. 2^{cm}, the foremost part of which might without tearing be loosened from the rest of the 1mass. In the forenost and mudernost part of the mucons gland was fomed the long and high, compressed cavity of the organ, the foremost wall of which was only thin, while the himdmost one was formed by the chief mass of the mucons gland, the inside of which was vellowish, and showed several communicating cavities. The duct of the mucons gland was short, only $05^{\circ \mathrm{cm}}$ long, with strong folds on the inside; the cleftlike onter ajerture was bordered by the two above described genital folds, which below were only connected with each other by a narrow connismure, and above by a very bruad one (ph. i, fig. 2, i8c).

In itself is was scarcely probable that this deep-sea form from the Davis Strait conld be specifically identical with the earlier described form from the large deptlis in the middle of the Pacific. We have also, in spite of considerable correspondences between the two forms, fomed not a few and rather great differences. Among these differences were especially prominent the different colour of the cavity of the month, another form of the mandibles, and a great difference in the structure of the radula, the tootl-plates of which upon the whole were fecbler and longer in this species, and the median teetl especially had quite another form.

Fam. Doridoxidae. Nov. Cam.

Forna corporis ut in Doridibus; sed branchia (dorsalis) mullat, et anus lateralis (anon dorsatis). Rhinophoria ut in Doridibus.

Bulbus plarymgens fortis, mandibulis anticis fortissinis armatus. Kadula dente mecliano forti, plenris multidentatis.

We know cladohepatic nudibranchiata in which the whole branchial apparatus with
 And others are fonnd, the Tritoniadae, in which the branchial apparatus has remanecl withont the hepatic lobes. It was almost to be expected that also among tho holohepatic nudibranchiata forms without gills were to be found. And such a form we find in the below described new anintal, which is also distinguished from all other holohepatica by the anns not being sintated domsally, but
 NLV: IS95. p.I 12. Taf. I II.
having moved down on the (right) side. The Doridoxidae form a transition to the Tritoniadae, a comective link between the holohepatic and the cladohepatic nudibranchiata.

The habitus of these animals is from the dorsal side quite like that of the Dorididae, in which latter the branchial cleft was especially strongly contracted; but this cleft and the gill itself are completely wanting, and the anus has moved from the dorsal side down on (the right) side of the body: Already this characteristic gives them a resemblance to the Tritoniadae, which form the ontermost link of the Cladohepatica. And this resemblance is still greater by the fact that the strong bulbus pharyngeus is provided with powerful mandibles situated on its fore side as in the Tritoniadae. By the presence of these mandibles ${ }^{1}$) the Doridoxidae are otherwise nearly related to the Bathydoridae, with which they also correspond with regard to the structure of the radula, this also showing median tooth-plates, a feature otherwise rather rare in the Dorididae.

Hitherto the fanily contains only the genus

Doridoxa, Bgh. N. gen.

and this genns contains only the one species, described below.
Doridoxa Ingolfiana, Bgh. 11. sp.

$$
\text { Pl. II, figs. } 3-\mathrm{I} 5 \text {; Pl. IIi, figs. I-3. }
$$

One specimen of this species was taken in 1895 at a depth of 55 fathoms, at station 34, i. e. 01165° I 7^{\prime} Lat. N. $54^{1} 17^{\prime}$ Long. W.

It was generally of a yellowish white colonr, the back more whitish. The length was 12^{mm} by a breadtl of 7^{mm} and a height of 5^{mum}; the length of the foot was 105^{mm} by a breadth of 4^{mm}; the breadth of the head was 5^{mm}, of which breadth 1.5^{mm} belongs to each tentacle; the height of the rhinophores was $I^{m m}$, the breadth of the mantle-brim 0.75^{mm}. The consistency of the animai was rather soft.

The intestines were nowhere to be seen from withont.
The form was oval, the linder end a little more pointed (pl. II, fig. 3). The back was evenly convex, anteriorly between the thinophores it joined the somewhat projecting hinder margin of the head; it was everywhere rather densely covered with small and quite small, semiglobular, and more flattened papulæ. The ninargin of the hollows of the rhinophores was slightly projecting, everted and crenate; the (slightly projecting) club of the rhinophores was perfoliate; the dorsal brinn was only a little projecting, the margin rather sharp, the lower side smooth. The head was rather large, somewhat flattened, witl a rather projecting hinder edge, a little prodnced on either side; witli rather large, roundish-lobelike tentacles; the outer month was round (pl.II, fig. 3). The sides of the body are only Iow before and behind, otherwise rather ligh, quite snnooth; anteriorly to the right is seen the large genital papilla with the prominent little penis, and behind this the vulva (fig. 3); at the beginning of abont the last fourth part of the length of the body was the projecting anal papilla, and a little before this the smaller renal papilla (fig. 3). The foot was powerful, but narrower than
${ }^{1)}$ In several families of the cladohepatic group quite similar mandibles are seen, in Bornella, Scyllaea, Phylliroidae, Pleuroplyllidiadae and Pleuroleuridae.
the back, and projected only slightly from the hinder end of this; the rombled fore end was slighty broader than the other part, with a marginal furrow; the fontbrin was narrow; the hinder end onlv a little pointed (fig. 3).

The central nervous system (fig. 4) was rather flatented, white, chiffly as in the I)oridate The ronnd cerebro-plenral ganglia (fig. fa) were a little larger than the likewise ronnd perlal one (fig. \& b), the distinction between their two parts was not conspicnons; the chief commissures were rather short; the globular bnccal ganglia (fig. 4 c) joined each other innnediately.

The eyes at the base of the rhinophores had a diameter of ormom. The otocysts appearer to contain a not great mass of pale otoconia, no spicules at all were seen in the dorsal skin, on its papulie, nor in the leaves of the rhinophores.

The month-tube was short. The strong bulbus pharyngens (figs. 5,6 , reminded as to its form somewhat of that in the Pleurophyllidiae. It was $3.25^{m m}$ long by a breadth of $3^{\text {mm }}$ and a height of 2.75^{mm}. Its strongly convex fore side was covered by the large mandibles; from about the midathe of the somewhat convex hinder side the resopliagus originated; the radula-sheath did not project externally: The fore side of the large and strong mandibles were (as in the Plenropliyllidiae) for the greater part cosered by a muscular plate which was, however, rather thin. The mandibles (fig. i) were amber colonred, only the masticatory edge was black brown; they were $2 \cdot 5^{m m}$ long, and their breadth taken together was 3.5^{mm}; they were rather bent, so that their height reached alnost $1.5^{\text {mmm }}$ along the middle of their length they showed a smooth, not deep excasation. The hinge-part was rather short, as was also the masticatory process (fig ; a) ; the masticatory edge was not narrow; it showed throngli its whole extent just to the hinge-part small roundish or angular facets fig. Sf of a dianeter of $0.0055^{-0}-0 I^{\text {mm }}$. The tongue (figs. 9,10) was broad and flat, and projected only a little in the buccal casity; the little, forward and downwatd tapering radnla was strongly and shining yellow. The radula contaned is rows of tooth-plates; further back, in the somewhat bent radnla-sheath. which was not to be seen fronn withont, were 2t more rows, of which the three hindmost were not yet quite consolidated; the total number of the rows of teeth were thus 39. The eight foremost row: were very inconplete and the teetl worn; the foremost one contained only 6 and 7 toothplates ons each side of the median one. The middle of the radnla with the median tootlo and two side-tecth were sunk a little muder the level of the side parts. On eaclı side of the median one appeared 111 , th 36 lateral tooth-plates. With the exception of the two innermost oncs and the very ontermost ones they were of a strong yellow colour. The breadth of the chmosy median plates was noof mm by a height
 and continned thas towards the rlachis, the two innermost lateral teeth were much lower (p)]. Int, fing. 1). The median tooth plates (pl. II, fig. in a; pl. III, figs. i a, 2 a were short and chnnns, rather erect. with a strong, broad base, hollowed in the fore edge, and with a short, strong, a little pointed houked part. The two first (inmost) lateral plates (fig. II b; figs. I b, 2h) were of a deviating form with a (quite short and pointed hook. The otler fateral plates (figs. I2; $I, 2$) reminded as to their form nore of the median plate, but the base was much smaller and the look was fonger. The $2-3$ miternonst lateral plates (pl. III, fig. 3 a) were feebler, and the look more pointed.

[^30]The salivary glands were white, $3^{\text {mm }}$ long by a breadth of o.75 man reaching to the foremost part of the stomach; the excretory duct was more than a third of the length of the gland.

The resopliagus (fig 6 a, i3 a) was rather short. The stomach (fig. 13 b) formed a longish bag ($4^{\text {man }}$ long $)$, the munerons longitudinal folds of which were distinctly to be seen from withont. It contaned an abmonace of whitish food of indeterminable anmal nature with a few imbedded larger calcareous bodies resembling those in the Alcyonia. From the linder end of the stomach the intestine arose to the riglit, crossed the fore end of the liver, bent backwards, and ran a little simons to the anal papilla (fig. ricc). Its inner side slowed fine longitudinal folds, its carity was empty.

The liver, the outside and inside of which was yellow, was a little hollowed to the left of the hinder end of the stomach, its hinder end that was a little narrower, was rounded; it was $5^{\text {mm }}$ long by a breadth of 3^{mm}; it opened by a romd opening into the stomach. The yellowish biliary bladder (fig. 13 d), of a length of 2^{mm}, was on the left side of the stomach.

The heart was sitnated behind the basal part of the intestine. The blood gland was large, lying behind the central nerrons system, partly covering the stomach, yellowish, $3^{\text {mm }}$ long by a breadth of $4^{\text {min }}$ and a thickness of 0.5^{mm}.

The pericardio-renal organ (the renal syrinx) was sitnated muder the rectum, a little more inwardly than the renal papilla, was melon-shaped, and showed the usual groups of longitudinal folds.

The hermaphrodite gland was whitish, and covered with its rather large lobes the uppermost and right side of the liver, especially in front; its large follicles contained large egg-cells and bundles of zoosperms. The anterior genital mass was large, 45^{mm} long by a height of 35^{mm}, and a thickness of $2.5^{\text {amm }}$, it was sitnated muder and to the right of the intestine. The last part of the spernatic duct (fig. I4 b) was thick, and passed into the short, cylindrical (glans) penis (fig. I4 c); this latter, as well as the spermatic duct, was without armature. The spermatheca appeared to be globular, its relation to the spermatocyst (fig. 15), which was filled with sperm, somewhat bent together, and abont $\mathrm{r} \cdot 5^{\mathrm{mm}} \operatorname{long}$, was not to be determined. The mucons gland was lime-white, at the base of its duct was seen a larger, yellowhish gray part (the albmminons gland?).

D. Ingolfiana var.?
 Pl. V, figs. 29-30.

The bulbus pharyugens, of a length of 2.25^{mm}, was completely like that in the other specimen, only the end of the radula-sheath projected a little, and the moscnlar plate on the fore side of the mandibles was a little thicker. The mandibles were a little lighter, and the masticatory edge was only dark yellow; the secondary oral carities were not small, and their opening rather wide; the masticatory edge as abore. On the broad and flat tongue the sligthly yellowish radula was seen containing it rows of teeth, in the radnla-sheath 20 were fomnd, of which the three hindnost were not fully formed; thus the total mumber of tooth-plates was 3i. On each side of the median tooth up to is lateral tooth-plates were fomid. The median teetli were yellow, the lateral teeth almost colourless; the lieight of the median teeth rose to 0075^{mm}. The median teeth were essentially of the same
form as above described, but had at the base of the hook a sories of fine denticles (fige. 20). The lateral teeth were upon the whole somewhat more slender (fig. 3o).

Finture examinations must decide, whether we have here a new species, or only a variets.

Nudibranchiata cladohepatica.

R. Bergh, System der nudibranchiaten (iasteropoden. I892. p. 999-Injo.

Fan. Tritoniadae.

R. Bergh, System. ISg2. p. 1066 - 1070.

Among the cladolepatic nudibranchata this family appears to be the one most closely related to the holohepatic forms; the ramification of the liver otherwise peculiar to the cladohepatic forms, has disappeared, while the Tritoniadae in other respects have retained the essential exterior and interior claracters of this group.

The representatives of this fanily are already easily distinguished exteriorly by their large frontal veil provided with appendages, and the spoon-shaped tentacles attached to it, further by their pectuar rhinophoria, and the branchial tufts on the dotsal edge. In the interior structure the always colossal bulbus pharyngens especially shows peculiaritie; the strong mandibles on its fore end are closely resembling those in the Plemophyllidiae, and like those they are coated with a strong muscular plate on the fore side; the strong radula with many rows and many teeth in the rows has broad, somewhat depressed median teeth with a clumsy denticle on either side of the short and clunnsy hook, and the inmermost lateral tooth is essentially different from all the others.

Hitherto the Tritoniadae include only two chief types, the real Tritoniae withont, and the Marioniae with masticatory plates in the stomach.

A sulb-group under the Tritoniae is formed by

Candiella, Gray

R. Pergh, l. c. 1892. p. ro69.

In this form the frontal veil has on the margin rather long fingers (not short papilia)
The hitherto known forms of this gromp have been of smaller size than the typical Tritoniak; in this respect the form described below, differs from the others.

Candiella Ingolfiana, Bgh. 11. sp.
Pl. II, figs. 20--22; Pl. IlI, figs. 4-9.
On or Hf Lat. N., 27 oo Long. W. (station Sil one single specinen was taken at a depth of 485 faths. (bottonn tenitp. 6 I . It was rather well presersed, only somewhat contracted and liarderned, and behind on the left side was found a rupture with a prolapsus of the cutnails.

The colonr of the sole of the foot, the genital papilla, and the region of the montri was sumewhat yellowish; the other parts of the body were grayish hhe, but the rhmophoria fellow, 'rhe length was 5^{cm} by a leight of up to $\mathrm{I} f^{\mathrm{cm}}$, and a breadth of mp to 1 (fom; the breadth of the fronta]
reil was $8^{m m}$, its length 5^{mm}, half of which belonged to the fingers; the leight of the sheaths of the Thinophoria was $2^{\text {mm }}$, of the branchial tufts $u p$ to 3^{mm}; the breadth of the sole of the foot was up to 12^{mm}, of the foot-hrin up to 0.75^{mm}. - The animal seemed to have imparted a peenliar odonr to the alcohol in which it was kept.

The form was as in other Candiellae. The aninal was longish, highest in the middle, and sloping from there forward and especially backward where the back nltimately passed into the foot. The fore edge of the frontal veil was a little notehed in the middle, and lad on each side of the notch 6 fingers, and ontemost the only little conspicuous tentacle with its fnrrow. At the base of the veil were seen the somewhat projecting sheaths of the rhinophoria; the strongly retracted elub was $25^{\text {min }}$ high, and of the shape common in the Tritoniae, resembling a sword-knot, and the rhachis of the hindnost leaf was prolonged in the usual way. The back was smooth: the edge of the back that only projected a little, had on each side 12 -I4 small and short-branched branchial tufts, of which the foremost one projected outside the sheath of the rhinophore. The sides of the body were rather ligh, a little convex, and a little sloping inward towards the foot; the genital papilla was situated about muder the the fifth (right) branchial tuft, the anus under the eighth, and close above it the renal pore. Anteriorly the foot was rounded, with a strong marginal furrow: the foot-brinn was narrow.

The peritonen111 was blnislı black, and continnations of its connective tissue penetrated everywhere between and wrapped the entrails.

The vellowish white central nervous system showed a rather closely adherent, dense, and finely black punctuated wrapping; as in other Tritoniadae it was rather flat, $4^{m m}$ broad. The cerebroplenral ganglia were of oval shape, 2^{mm} long, a little broader anteriorly; the separation between their two parts was only little conspienons; the romndish pedal ganglia were almost as large as the cerebral ones; the large connnissures were lalf as long again as the breadth of the central nervons system. The buceal ganglia were oblong, o6mm long, connected by a short commissure; the long-stalked gastroresophagal ones quite small, roundish.

The otocyst is situated closely before the quite short cerebro-pedal connective, containing a not large number of otoconia.

The large bulbus pharyngens was ${ }^{1} 3^{m m}$ long by a breadth of $9^{\text {min }}$ and a height of $7^{m m}$, being thus one fifth of the whole length of the body; it was lying in a rather loosely attached veillike wrapping. Its form and strncture in all respects as in other Tritoniae. The mandibles covered with the common thick musenlar plate, were greenish yellow, only the hindmost part of the hinge, and the portion nearest to the masticatory edge were brownish; the length of the mandibles was $\mathrm{I}^{\operatorname{mnn}}$, by a breadth (behind) of $44^{\text {nm }}$, and a leight (of the convexity) of 3.5^{nm}, the length of the masticatory prolongation was 3^{mm}. The masticatory edge was slightly convex, even, of a breadth of up to $\mathrm{O}_{4} \mathrm{~mm}^{\mathrm{mm}}$, under the magnifying glass, as it were, finely transversely striated; it had S-II series of short, romnd-ish-edged columns, of a height of up to oro ${ }^{m n}$, and a dianeter of up to oos mm (fig. 4), the series being sonnewhat displaced among each other; in the outermost series many of the colnmms were torn ont, and many were worn away and mpset more inwardly: - The pharyns was black, the buccal cavity grayish white. - The strong and broad tongne had at the base the powerful tectun radule
measuring in length (from before backward) $2^{\text {mm }}$; behind this was seen the short radula-sheatly with its flat hinder end ${ }^{\mathrm{I}}$; it was 3.5^{mm} long, 3.25^{mm} broad, and was to be seen on the outside uf the bulbus pharyngens where it shone throngh with a reddish tint. The light yellow rathla contained 35 serics of tooth-plates, the radula-sheath 32 , of which the three hindmost were not yet dereloped, the whole nunnber of plates was thins 67 . The length of the radnla, when prepared off, was $9^{\text {min }}$, and the breadth ${ }^{11 p}$ to $7^{m m}$. The foremost in series on the tongne were more or less defect, and the tooth-plates more or less worn and broken; in the $6-\gamma$ formost series only the median tooth and a few lateral teeth were left. The number of tooth-plates in a series rose in the back part of the radulat to 85 . The tooth-plates were of a very light yellow. The breadth of the oldest median tooth was 1.28 m , that of the yonngest ones about the same. The height of the innemost lateral tooth was or $6^{\text {mon }}$, that of the next one $0.20^{m m}$, and of the third 024^{mm}; the height of the lateral teeth rose to o 30^{mm}, decreased towards the edge of the radnla, and of the three ontermost teeth it was $0.12-0.10-0.08^{\mathrm{nmm}}$. The median teeth (fig. 5 a) were of the broad and short form common in the Tritoniae, with a clinnsy median tooth, and a still more clumsy denticle on each side of this. The chmosy and rather low first lateral tooth (fig. 20; 5) was rery finely denticnlated along one edige of the hook; the hook of the second lateral tooth was a little longer (fig. 2I; 5), but, as all the others, withont any trace of lenticnlation; they had all (fig. 22; 6) the form connmon in the Tritoniae, the hook decreased in height throngh the onter teeth (fig. 7).

The whitish salivary glands, parallel to the resophagns, were longish ($7-S_{m m}$ long by a breadth of $2^{m m}$), flat, highly lobed; the left one was lying on the black peritonemm, the right one under and behind the bulbns pharyngens, between this and the anterior genital mass. The efferent dnet was almost as long as the gland itself.

The acsophag gis was externally and internally black, $17^{m n n}$ long, in its greatest length sackTike widened (to a diameter of 55^{mm}), with deep folds on the inside, empty; it opened into the hind part of the stomach, close to the short biliary duct. The stomach, likewise black on the ontside, but gray on the inside, was almost globnlar, of a dianeter of γ^{mm}, and for half its length sitnated in a hollow in the liser: in the hindmost part of the stomach before the opening of the bifiary dnct was seen a circle of strong, yellowish, longitudinal folds; the cavity of the stomach was empty. From the fore end of the stomach arose the intestine, extemally black, internally gray, of a whole length of $18^{\text {mm }}$ by a dianeter of $4^{-2^{n m}}$, stretched over the anterior genital mass where it formed its curve, and continned somewhat thinner to the anal papilla; thronghont almost the whole lengeth of the intestine was seen, besides the fine longitudinal folds, the strong fold, rising to a height of up, to $2^{m \cdots}$, that had already begnn in the hind part of the stomach; also the cavity of the intestine was cmpty.

The hindmost visceral mass (the liver) was short-conical, broader in the hollowed fore end, with ronnded hinder end, of a length of 15^{mm} by an anterior breadth of 12^{mmn}, yellowishl white, with a rugged surface, wrapped in a very abundant, black, loose, but rather adhesive commective tissuc: lionn the liver itself a longish lobe, 1 mm long, stretehed over the cardia between the esophagus and the stomach, with the beginning of the intestine ${ }^{2}$).

${ }^{2}$) In the black wrapping ronnd the hindmost visceral mass a comins-like wornn was fonme of a lengeth of fully nomm ly a diameter of 0.065^{mm}.

The hermaphrodite gland was only of a little lighter colonr than the liver，which latter it covered with a thin coating；in its lobes were found ripe oogene cells and spermatozoids．The duct of the hemaphrodite gland projected freely from under the stomach，and ran along the inside of the anterior genital mass．This latter is also provided with a strong，strongly adhesive，black wrap－ ping，penetrating deeply between its single parts；it is large，longish， 14^{mm} long by a breadth of 7.5^{mmn} ， and a height of 7^{mm} ．On the inside was seen farthest back the ampulla of the dnct of the herma－ phrodite gland which ampulla formed a comple of short windings；and before it was lying the black seminal vesicle with its long，big duct，and on its fore end the large bundle of the seminal duct．When stretched ont the ampnlla measured $S^{m m}$ by a diameter of 2^{mm} ．The windings of the seminal duct that were closely attached to each other by the black，cobweb－like comnective tissue，measured，when separated from each other and stretched ont， 6 mm in length by a dianeter ahmost everywhere of 0.6 mm ． The seminal duct（fig． 9 a）opened in the top of the black，sacklike penis（praeputimm）which was fully 6 mm long by a diameter of 2.5^{mm}（fig． 9 b. ）；the walls of the cavity were gray，and in the cavity was lying the white，tapering glans（fig．9），measuring，when stretched ont， 15^{mm} ，and to the very point pierced by the powerfnl seminal duct．The seminal vesicle（fig． Sa ）is，on account of its wrap－ ping，black，as is also its dnct；it is bag－slaped， 6 mm long by a dianeter of 2.3 mm ，completely filled with spern；the powerful efferent duct（fig． 8 b）is somewhat curved；when stretched ont it is 14^{mm} long by a diancter of $1-1.5^{\mathrm{mmm}}$ ．The albuminons－mucons gland formed far the greater part of the anterior genital mass；it was higher and thicker behind than before，showed chiefly longitudinal windings，and was，when free of its black veil，of a yellowish white colour．The vulva and the end of the penis－bag were especially strongly pigmented，and wrapped in black connective tissue．

This Candiella，the largest one hitherto known，mnst certainly be a new species，what is also indicated by details in the onter and inner structure．

Fam．Atthilidae，Bgh．N．fam．

Forma corporis fere ut in Tritoniadis，subelongata，subquadrilateralis．Velum orale non parvun， margine laevi，utrinque tentaculatim prominens；rhinophoria vagina margine bilobata retractilia，clavo simpliciter perfoliato．Dorsum appendicibus pancis simplicibus（？）triseriatis praeditum；margine promi－ mulo serie simplici branchiarun arbusculiformium（？）instructo．Antus et porns renalis laterales．Po－ darimm sat latum，antice rotundatum．

Bulbus pharyngeus magnus．Nandibulae facie anteriori bulbi impositae，massa musculari forti tectae，sat elongatae，processt masticatorio millo，margine masticatorio laevi．Lingva lata，radula multiseriata；rlachis dente angusto hamo elongato：plenrae multidentatae，dente intimo hano denti－ culato，reliquis hamiformibus edentulis．

Hepar non ramificatum．Penis inermis．
The Atthilidae ${ }^{1}$ ）resemble，as to their common structure，the Tritoniae，but are，however，already in the exterior sufficiently marked off from those．The frontalveil is quite different from that of

[^31]the Tritoniae, and does not show the tentacles, peculiar to those. The rhinophores are of a quite different strneture. The back is not, as in the Tritoniae, without appendages, but has neveral series of such; the somewhat projecting dorsal edge appears to have a serics of low banchial tufts, resembling those in the Tritoniae. The anns, the renal pore, and the foot are as in the 'lritoniane.

The bulbus pharyngens is very strong as in the Tritmiae, and as in those the mandibles are lying on the fore end of the bulbus, and are cosered by a thick muscular plate; but they have no nasticatory continnation, and the masticatory edge is smooth. The tongre is broad, and the radinla bears a rather large number of series of teeth, and these series contain many tomoth-plates. The median teeth are quite different from those in the 'Tritoniae, longish, with a protracted denticulated hook; also the lateral teeth are of a somewlat other shape, the immermost me with a denticnlated hook. - Mso with regard to the liver, and the relation between this and the hermaphrodite gland, there seems to be essential differences between the Atthilidae and the Tritoniadae, while buth families otherwise seem to agree with regard to the genitalia.

The Atthilidae seem (as the 'rritoniadae) to be rather voracions beasts of prey:
Hitherto the family comprises only the one gems

Atthila, Begh. N. gen.
with the one species

Atthila Ingolfiana, Iigh. 11. sp.
 P1. III, figs. ${ }^{\prime}$ Io- -26.

At station to i. e. on 62 on Lat. N., 21 36^{\prime} Long. WT. One single specinen was fished from a depth of S_{4} faths, where the temperature was 33 .

It is stated to have been, when living, pink or of a pale flesh-colonr. Preserved in fon ${ }^{n}$ alcohol it was upon the whole of a whitish or shightly yellowish white colom. Its Iength was $3 z^{2} \mathrm{~mm}$ by a breadth of up to $17^{\text {cm }}$; the breadth of the frontal veil was rom, the height of the sheaths of the rhinophores 3^{mmm}; the length of the foot was $27^{m m}$ by a breadth of 11 p to $10^{m \mathrm{~mm}}$, the hreadth of the fort-brim was 3^{mm}. -- The specimen was somewhat corved and contracted, the back with its edges somewhat rubbed.

The form was somewhat longish, broader before, evenly narrowing and shoping hackward, upon the whole rather like the form in the Tritoniae. The frontal veil (fige wot was broad with smooth edges, and its rounded, somewhat tentacle-like lateral ends projected $25^{\circ} 5^{m n}$, while its free upper margin was $3^{\text {maz }}$ broad. Behind the frontal veil, adjoining the fore end of the dorsal margin, the rhinophotes were seen; their sheath stood ont with a tro-lipped edge (fig. 11), the hinfer fip lont and convex, the former one seen as a sonnewhat tapering lube, $2 \cdot 5^{m m}$ long; in the depth betwecn both the point of the club was distingrished; this latter was reddish gray, (highly contracted) 2550 high, rather short-stalked, with abont 30 broad leaves (on cither side), containing a mumber of highly retractive bas-glands, of a length of up to oofm". The back evenly consex, coscred with small, whitish papille; as far as I was able to discern, 3 series of such papilla were fonnd, a merlian whe with 5 . and on either side a lateral one with t-5 papillax only a single one wats quite prenerved, ant wan
seen to be longish-conical (fig. 3 b) and of a leight of 3^{mm}. The dorsal margin projected, abont in the same way as in Tritonia, and appeared to have been covered with branclial tufts, resembling those seen in that family, only a few (-4^{mm} high1) remmants of these thfts were left. The sides of the body were as in Tritonia, rather high, and, on acconnt of the projecting dorsal margin, a little hollowed and sloping inward; in front the genital papilla was fonnd in the common place as in Tritonia, leere with the glans penis stretched forth; a little before the beginning of the last third of the length of the body, and somewlat npward the anal papilla was seen projecting 1.5^{mnn}; about midway between this and the genital papilla the minute renal aperture was seen. The foot is powerfnl; its fore end (fig. IO) rounded, with a slight marginal furrow; the foot-brim of a breadth of $u p$ to $3^{m m}$; the back and foot were coalesced quite to the point.

The risceral cavity reached to the beginning of the last fonrth of the length of the body:
The white ($4-5^{\mathrm{mm}}$ broad) central nervous system (fig. 12) showed the cerebro-pleural ganglia to be roundish, comnected with a quite short commissure, with no distinct bordering between the two parts; the pedal ganglia sarcely smaller than the former, of an oval contour; the lower commissures rather long (fig. 12 dl). The buccal ganglia were of an oval contour, comnected by a commissure, almost six times the length of the ganglion (fig. i2 e).

The otocysts were sitnated behind the plemro-pedal connective (figs. 12, I3) between the ganglia; they liad a dianeter of o. 14^{mm}, and contained a few (ca. Io) clear, ronnd, and oval otoconia of a diameter of $0.035-0.04 \mathrm{~m}^{\mathrm{mm}}$. The skin had no larger spicnles.

The bullus pharyngeus was large and powerful, somewhat resembling that in Tritonia, but shorter, 6 mm long by a height and breadth of 5^{mm}. In front it is (fig. 14) somewhat narrower, and foremost on the ruper side it is higher (on acconnt of the hinge-part of the mandibles); behind this projecting part the wide pliarynx is fonnd, and behind this the short and broad radula sheath (fig. 14); the nuargin of the upper side corresponds to the outer margin of the mandible, and below this (above on the side of the bulbus pharyngens) a hollowing was seen. The labial disk is narrow; behind and ontside of it is founcl, quite as in Tritonia, the powerful muscular plate resting on the fore side of the mandibies. These latter (figs. 14-17) are of a light amber-colour, 5.5 mm long by a breadth of 1.25^{mnr}, at the hinder end of $2.25^{\text {mmm }}$; the height of the convexity abont $2^{\text {mm }}$; they were rather thin, nor was the hinge-part thick, thinner as well as lighter in the outer hinder half (fig 17). The somewhat npwardly directed hinge-part is more narrow, the hinder end broader and emarginate in the middle (fig. 16); a masticatory continnation was completely wanting, and the masticatory edge was quite smooth throughont its whole length (fig. 5\%). The cheeks join the inside of the mandibles in their whole length; only foremost in the little month-cavity a short stretch (fig. i4) of the linge-part of the mandibles is merered. The month cavity is amost quite filled out by the (highly contracted) large, hight, and broad tong ne figs it, i8), the middle part of which is throngh its whole length (fig. IS) covered by the light yellowish, rather broad radula, which farthest back contintes in the short and broad radula-sheath ($2.5^{\mathrm{mm}} \mathrm{long}, 45^{\mathrm{mm}}$ broad) (fig. If). The tongue has 21 series of teeth, further back 12 series were seen, two of which were not yet fully developed. Thus the total nunber of series of teetli was 33 . The number of tooth-plates on either side of the median tooth rose to 120 . They were of a very light yellowish colonr. The length of the median tooth-plates (on the hind
part of the tongue was ahmost $0.12^{m m}$ by a breadth of o.065m and a height of oob ; the helghth of
 and the height rose to 0.22^{mm}, wherenpon it again deereased chtward, the height of the three ontermost being oos mm, $0.06^{m m}, 0.035-0.04^{\text {nmn }}$. The median tooth-plates (figs. 1 , 22 a) showed a base, narrow anteriorly, broader posteriorly, fron which rose a tapering liook, denticulated throngh the greater part of its length. The first lateral tooth (figs. 20, 2 I , 22 b) was denticnlated on the inside of the houk. All the other tooth-plates showed $n o$ denticnlation on the sonewhat bent ant tapering hook \{figs. 23. 24); the ontermost one was quite low (fig. 25 a).

The whole visceral mass, $23^{m m}$ long, up to $13^{m m}$ broad, was at the hinder end shont-conieal, and showed, when viewed from above, foremost the large, light grayish yellow liver, prolonged along the left side of the mass just to the hinder end; this prolongation has on the right side the hemaphrodite gland, and along part of the right edge the rectunn.

The salivary glands were seen as a large and flat, yellowish mass on either side of the hinder part of the bulbus pharyngeus.

The oesophagns was short, and opened into the stomach that was empletely conered by the liver. This stomach was $I 1^{\mathrm{mm}}$ long by a breadth of 6^{mm}, with rather thin walls; to the right it was attached to the anterior genital mass with the exception of the region of the eardia, otherwise it was everywhere enclosed by the fimmly adhering liver; its inside showed strong longitudinal folds; on the left side was seen a rather wide biliary opening, and on the right side more downayds a smaller one. To the right from the hinder end of the stomach rises the intestine, which is in its foremost, transserse course completely enclosed by the liver, then proceeds freely, and runs down towards the foot along the right side and the lower side of the hermaplirodite gland, rumning between this and the liver $11 p$ towards the anal papilla, closely attached to both of those; the length of the intestine was 22^{mm}, its diameter at the base $5^{\text {nmm }}$, else $4-3.5^{\mathrm{mm}}$; in the first part of it a long, beantifnl, feathershaped fold was seen. - The stomach and especially the intestine were distended by strongly hrown-red, animal contents, whose colonr was due to enommons masses of long finely-thony and -rngerd, reddish spicules, perthaps originating from a form of Aleyonidae; further was fonnd in the stonach a eanary-coloured, globular body, on one side a little hollowed in an monbilicate manner, of a dianeter of 4^{mm}, the nature of which conld not be made ont.

The large, light gravish yellow liver covered with a layer, before somewhat thicker, behind thimer, the oesophagrns, the stomach, the anterion genital n11ass, and part of the intestine; it, formmot part was on either side attached to the wall of the body. The liver contintues along the left side and the lower side of the hemaphrodite gland just to its point; in this part it rose to the largest thickness, up to 3.5^{mm}.

The pericardio-renal organ, of a length of $2^{\text {min }}$, was sitnated near the anns.
The yellowish white hernnaphrodite gland was large, $16^{\text {mom }}$ fong by a breadth of 6 a and a thickness of $5^{\text {mim }}$; before and behind a little narrower than in the middle; a little ennerl longitndinally: somewhat convex on the upper surface, concave on the lower one; with superficial funows: fincly gritty; of the common structure. In the endlobes were barge ongene cells ank zoosperms. -- 'llye anterior genital mass was from above hidden by the liver, situated betore the intestine, attacherl to
the riglit side of the stomaclı; it was of an oval ronndish sliape, 8^{mm} long by a breadth of 6 mm and a height of $550^{m \mathrm{~m}}$, whitish and yellowish white. In a hollow on the hinder end of the mucons gland the intertwined, opaquely yellowish gray anpulla of the duct of the hermaphrodite gland was lying, nleasuring, when stretched out, 12^{mm} in lengtl by a dianeter of up to 2^{mm}; on the fore end were seen the windings of the spermatic dnct forming a little coil; the glans that projected from the penis-bag, was alnnost cylindrical, $4^{\mathrm{mm}} \mathrm{long}$ by a dianeter of $\mathrm{I} 75^{\mathrm{mm}}$. Belind the spernatic duct and partly covered by it was the spermatocyst, bent donble in the middle, $4^{\text {mom }}$ long when stretched ont, its duct being of abont the same length. The mucons-albnminiparous gland was whitish and yellowish white.

Fail. Dendronotidae.

R. Betgh, System d. mudibrancliaten Gasteropoden. 1892. p. 104S-IO5I.

The Dendronotidae form a gronp, rather well marked off by its peculiar forms; in this respect, however, but still more by the imner structure, and especially by the structure of the pharyngeal bulb, it proves to be related to the Aeolidiadae.

The aninals belonging to this group, have hitherto only been fonnd in the northern temperate, and especially in the cold seas.

The rather strongly limited family includes only two genera, the real Dendronotus and Campaspe, which latter seemed to be distinguished from the former by a simpler strncture of the frontal appendages, of the rhinophoria, and of the dorsal papillæ. It is, however, still to be doubted, whether the two generic groups will not prove to be passing into each other, and the exanination of the following form seems already to inply such a result.

Dendronotus, Ald. et Hanc.

R. Bergh, die Nudibranchien gesammelt während der Fahrten des Willen Barents in das nördliche Eismeer. 1885. p. 19-33 (13ijdragen tot de Dierkminde. Aflevering NIII. Ansterdan. Onderzoekingstochten van de Willem Barents Expeditie. Gedeelte IV (ISS6) iS8S).
A little series of species has been referred to this genns, but they are likely to be, for the greater part, rednced to varieties of the typical species. The form examined below, seems, however, to be distinctly specifically different from the typical one.

I. D. robustus, Verrill.

D. robustus, Verrill. Aneric. Journ. I. i870. p. 405. Fig. i.
V. Catal. of marine moll. added to fanna of New Engl. Trans. Conn. Ac. V, 2. 1882. p. 550.
I. vilifer; G. O. Sars. Ridr. til Kundsk. onl Norges arktiske Fanna. I. Moll. reg. arct. Norv. isf8. p. 315-316. Tab. 28, Fig. 2; Tab. NV, Fig. I 5 .
D. robustus, V. R. Bergh, die Opisthobranchien. Rep. on the dredging oper. off the West Coast of Central-Aner. ... by ... Albatross . (Bull. of the Mus. of compar. zoöl. at Harvard college. XXV, 10). I894. p. Ifi-rit. Taf. II, Fig.6-9; Taf.III, Fig. i.

$$
\text { Pl. III, figs. } 27-29 \text {; Pl. IV, figs. I }-5
$$

This species, which, like the typical one, is distributed over the morthern parts of both the Atlantic and the Pacific ocean, is already sufficiently marked by its larye and broad frontal reil, and by its simply fingered sheaths of the rhinophores (and the want of appendages at the outside of these). Constant differences in the inner structure between this and the typical species have hardly been pointed ont.

On the $5^{\text {th }}$ of August 1895 a single specimen was fished on Dyrafiord (om the west coast of Iceland), which was killed by means of anhydrous acetic acid, and preserved in 70° o alcohol.

The well preserved specimen that was scarcely contracted to any appreciable decree, was 4^{m} long, by a height of the body of $\mathrm{I} \cdot 2^{\mathrm{mm}}$, and a breadth likewise of $\mathrm{I} \cdot 2^{\mathrm{cm}}$; the breadth of the frontal veil from one point to the other 2.5^{cm}, the breadth of the head proper munder the reil somm the heiglit of the sheath of the rhinophores with their snips 6 mm , the leight of the branchial tufts up to -mm ; the length of the foot almost $35^{\circ \mathrm{mm}}$ by a breadth of up to $1 \cdot I^{\circ \mathrm{mm}}$; the breadth of the foot-brinn 35^{mm}, the length of the tail 10^{mm}). -. The colonr was whitish; but a few of the fingers of the frontal seil, the chlb of the rhinoplores, the stem of some branchial tufts, and the genital papilla still showed remnants of an earlier red coloun ${ }^{2}$).

The form was as before described by me. The head proper, which was strongly convex, somewhat half-moonshaped, showed below the vertical month-slit, while the frontal margin liad a series of sessile or quite shortstalked papulae (fig. I). Behind the head the enormons (from before backwards almost 5^{mm} broad) frontal veil was seen projecting strongly on the sides with its cleft ends; it bears a series of tentacle-like, mequally large appendages of a length of up to $+-5^{\mathrm{mm}}$, and set with small knots or short branches (fig. I). Also between the frontal veil and the frontal margin of the head small papule are seen here and there. The sheath of the rhinophores as ustrally high (fig. 27), at the top rumning into 4-5 mequally large, fingershaped continuations; the club as usual: no appendage at the base of the sheath. On the right margin of the back were seen fonm branchial tufts, and on the left margin six more irregular ones; the foremost were bipartite, the stems at the base separated or nearly minted, and ontside of these still a satellite like a branchial tuft was seen, in a few instances coalesced with the branchial tuft proper; this satellite was wanting in the hindmost branchial tufts. On the tail were seen medianly three mpaired gill-like appendages, but only the foremost one showed any trace of leaves (fig. 2). Closely in front of the risht second branchial tuft the anal papilla ancl the renal pore were seen. The back was quite smooth, withont any papula or small appendages. The genital papilla as usual strong, with conically projecting praeputial papilia in fromt, and belinut this a bent, strong fold covering the vilva.

The intestines were nowhere distinctly seen from without, only on the sides they shome throngh with a grayish tint.

The visceral cavity reached to the base of the tail.
The central nerrous system was milk-white. In the cerebroplenral ganglia the two

 White dots.
divisions were strongly marked off from each other, almost globular; the cerebral ones were a little larger than the plenral ones. The pedal ganglia proceeding downward and inward from the mass of the cerebro-plenral ganglia, were of a short-ovate form, a little larger than the cerebral ones, connected by a double commissure, which was shorter than the dianeter of the ganglia. The bnccal and gastrooesophagal ganglia as in the typical species.

The eyes of a dianeter of orimm, with a black pignent, and dark yellow lens of a dianeter of 0.03^{mm}.

The bulbus pharyggeus was 6 mm long, by a breadth of 55^{mm}, and a height before of 4^{mm}, behind of $3^{m m}$; its form was as in the typical species. On each side of the romnd labial disk was seen inwardly a narrow, irregular, dirtily yellow stripe, which was formed of straight or irregnlarly bent, only little stiff, nuequally long, unequally thick, colourless or slightly dirtily yellowish staves (fig. 3) of a length of at least 0.6^{mm} by a breadth of 0.007^{mm}). The 11 andibles were about as long and high as the bulbus pharyngeus, lemon-coloured, only in the linge-part of a black-brown colour. The projecting portion in front and above together with its prolongation as in the typical species; the masticatory process short with a not large number (at most ca. 50) of denticles which only reached to a lheight of oofma, and were rather worn and blunt. The secondary (supplementary) oral cavities were rather large, and their opening not narrow. The tongue as usual short, powerful, and keelshaped, with a long foremost, and short upper edge (fig. 28). In the radula, which on acconnt of the median teeth is yellow, were counted on the fore edge of the tongne in series of tooth-plates, and marks after several that had fallen off, and on the short upper edge thrce series; the continnation of the radnla in its sheath in the greatest length light red, and containing i6 series of tooth-plates, of which the two hindinost ones were not yet developed; the total nunnber of series was thins 30 . The foremost series were very incomplete, and most of the teeth on the tongne were nuch worn. The breadth of the oldest median teeth was 0.18^{mm}, in the hinder part of the tongue it rose to 0.22^{mm}, and upon the whole it rose to $0.29^{m n n}$. The strongly coloured median tooth-plates liad a strongly projecting hook, on this and to both sides of it was found a not very large number (1nost frequently abont 25) of not very strong denticles (fig. 4). The number of the alnost colourless lateral tooth-plates varied from 13 to 15 ; the inmermost plate was a little smaller than the following one, they decreased in size ontward, and the two onternost ones, especially the very ontermost one, were small; none of them showed (throngh the whole length of the radula) any trace of denticulation (fig. 5) ${ }^{2}$).

The salivary glands were as in the typical species.
The oesoplaggus in the first (3 mm long) part is rather narrow, then widening and with numerons longitudinal folds that shine throngh on the exterior, rnnning on and between the two anterior livers, altogether abont $14^{m m}$ long. The thinwalled stonnach, which is also provided with nnnnerons longitndinal folds, is alnost globular, of a diameter of $5^{\text {mms }}$, and situated before the principal
${ }^{1}$ In the two specimens of D. robustus that I have examined earlier, no traces of such a preliensile ring were seen, and only in 4 out of 12 examined individuals of D. arborescens; in a specmen of Dendr. Dalli the prehensile ring was not wanting, nor in a single specimen of D. purpurezs.
${ }^{2}$ Verrill as well as G. O. Sars state the lateral teetli also to he quite or almost quite without denticulation; on the contrary the specimen earlier examined by me, showed a slight and irregular denticulation. The denticulation of the lateral tectli in the Inemdronotidae is upon the whole always much varyings.
liver, between and on the two anterior livers; near the pylorns it receives in front and below two short and wide biliary ducts from the anterior livers, and behind a similar duct from the principal liser. To the right and upward the stomach opens into the intestinc; this was in the first part munch distended (wider than the stomach), passes over the hindmost part of the right anterior liver, bends downward along, and is attached to, the anterior genital mass, forms a large curve on the right side of the principal liver, and then rises to the anal papilla; the whole length of the intestine was $2^{\circ} 75^{\circ \mathrm{nm}}$ by a diameter generally of $0.75-\mathrm{I}^{\circ} 5^{\mathrm{mm}}$; the inside of the intestine showed mmmerons longitudinal folds, of which one was higher than the other. The stomach and the formost (distendecl) portion of the intestine was filled with abundant, white and gray, black-dutted contents consisting of animal substance, the greater part of wich conld not be determined, mingled with pieces of Copeporla, bristles of Amelida, cnidre, and grains of sand.

Two anterior lisers and a principal liver were fonnd as nswal, but separated from each other to a smaller degree than is otherwise the case in the Dendronotidae. They were all of a dirty yellow colonr, very strongly lobed, and the lobes loosely connected; I did not succeed in substantiating the existence of liver-branches going into the interior of the branchial tufts. The two anterions livers were somewhat depressed, joining each other on the lower side of the stomach; from as well the right as the left one a conical continuation, $4-5^{m m}$ long, runs up towards the base of the first branchial tuft. The principal liver, together with the hemaphrodite gland which rested on and was loosely attached to it, formed a conical mass, ismm long, and, in front, 9^{mm}]road, the fore end of which showed deep impressions of the stomach and the anterior genital mass. It is possible that the fore end of the liver passed directly into the two anterior livers.

The large, flaceid ventricle of the heart was $+5^{m n n}$ long. The whitish pericardio-renal organ $2^{\text {man }}$ long, of the usnal structure ${ }^{1}$).

The large, yellowish white hermaphrodite gland rises with its fore encl a little orer the liver, along which it runs to its hinder end; it is composed of small, mostly rounclish finely gritty lobes, and in the lobnles (the grits) there are ripe oogene cells and spermatozoids. The anterior genital mass was large, a little compressed, $S^{m m}$ long, by a height of $S^{m m m}$, and a thickness of $f^{m n}$: on the upper edge was seen in front a bundle formed by the windings of the spernatic duct; party covered by this on the right side of the mass was the smaller bundle of the windings of the postate gland, and the spermatic vesicle; and behind those the closely set, corkscrew-like windings of the ampulla ${ }^{2}$) of the duct of the hermaphrodite gland. The male branch of this passes directly into the prostate gland formed by the numerons windings of the spermatic duct; it was a little emmpressedglobular, of a diameter of $2^{\text {mn }}$. The freely projecting spermatic duct forms a larger hmolle of loosely connected windings measuring, when stretehed ont, abont $\psi^{\text {ch. }}$. The retracted, thinwalled parpminum had a length of 6 mm ; the strongly contracted (glans) penis was $t^{n m}$ lung, comical (fig. 2g). "The pearshaped spermatotheca ($2^{m n n}$ long) and the long raginal luct as in the typical opecies. The greater part of the anterior genital mass is formed by the powerful, limewhite and white mmenns gland, onn its right side of a more gray portion (the albminons gland).

${ }^{2}$ Comp. 1. C. 1885 . Caf. II, IVig. 26.

In 1896 were further taken, on $66^{\circ} 35^{\prime}$ Lat. N., $23^{\circ} 47^{\prime}$ Long. IV. (station 129), from a depth of II/ faths (tenip. 6°) , 2 specinens, which were strongly distorted by being preserved in alcohol. They showed here and there strong traces of a purple colour, and had a respective length of 3.5^{cm} and 2.3 cm . The common appendages of the frontal veil were reduced to two not very distinctly separated rows of knots or low papillæ, and only the lateral ends of the reil projected strongly and in a cleft manner; there was no tuft at the base of the simply fingered sheaths of the rhinophores; the larger individual had 6 , the smaller one 3 pairs of branchial tufts.

2. Dendron. arborescens (O. Fr. Müller).

Sml. R. Bergh, die Nudibranchien des Willem Barents . 1. c. 1885. p. 25-33. Taf. II, Figs. 12-28.

As well in 1895 as in 1896 several specimens were fished of this species, that is distributed both in the eastern and western parts of the Atlantic, from the Polar sea to the bay of Biscay, and also is found in the Pacific.

On $66^{\circ} 35^{\prime}$ Lat. N., $55^{\circ} 54^{\prime}$ Long. W. (station 3 I) 2 specinnens were obtained fronn a depth of $S 8$ faths. (temp. I^{6}), one of wich had a length of 4^{cm}, by a lieight of $\mathrm{I} 3^{\mathrm{cm}}$, and a breadth of 0.7^{cm}; in the other specimen the corresponding measures were $2-\mathrm{C} 5-045^{\mathrm{cm}}$. The frontal veil had in the former specimen 12 appendages, in the latter 8 ; the former had δ, the latter 5 pairs of branchire.

On $65^{-\circ} I^{\prime \prime}$ Lat. N.. $54^{\circ} 1 \gamma^{\prime}$ Long. IV. (station 34) three individnals were taken from a depth of 55 faths. measuring in lengtli $2.4-2.2-1.3^{\mathrm{cm}}$; they had all six pairs of branchial tufts.

On $65^{\circ} 34^{\prime}$ Lat. N., $54^{\prime} 31^{\prime}$ Long. W. (station 34), on a depth of 68 fatlis. (temp. $\mathrm{O}^{2} 2$) was finally taken two specinnens. One of them was 2^{cm} long; the other the frontal veil of which was quite bitten away, and the bulbus plaryngens laid bare and projecting) measured only 14^{cm}; the former had 8 appendages on the frontal veil and 7 pairs of branchial tufts, the other only 6.

All these (7) individuals were of a yellowish white colour. By my earlier examinations I have found, in I3 out of 28 individuals, 8 appendages on the frontal veil, and I never fonnd more than io appendages; one of the 7 here examined had 12 snch. The number of branchial tufts in the earlier examined specinens. was generally 6 , and did not exceed $;$; in one of those here examined, 8 tufts were found on each side. The anal papilla was in these, as in the earlier examined specimens, always situated between the first and the second branchial tuft.

Fam. Aeolidiadae.

Subfam. Coryphellidae.

R. Bergh1, Systenn d. nudibranch. Gasteropoden. 1892. p. 1027-1029.

The Coryphellidae have long, simple (not perfoliated) thinophores (Himatclla only forming an exception in this respect). The radula has three series of tooth-plates, and the lateral teeth are denticulated. The penis is withont armature.

The fanily comprises the genera Corypholla with lengthened, slender body, and a masticatory edge of the mandibles bearing several rows of dentieles; Gomiofis, which is more chmsy with a hroad head with strong rhinophores; and the nearly related Chlomylla with its projecting dorsal brim, its scarcely denticulated masticatory edge, its scarcely denticulated lateral teeth, and a developed prostate gland; the genus Ifimatilla, finally is separated from the others by its perfoliated rhinophores.

Coryphella, Gray.

R. Berglh, l. c. 1892 . p. IO27-IO29.

A series of species of this genns have been describerl, but great part of these, surcly; will disappear as being synonymons.

They belong for the greater part to the more cold and temperate parts of the sea.

Coryphella sp. (anonyma).

11. V. figs. 14-I6.

In IS95 two specimens were taken on $66^{\circ} 35^{\prime}$ Lat. N., $555 t^{\prime}$ L.ong. W. (station 31) at a depth of

In the larger specimen the body was $4^{m m}$ high, $7^{m m}$ broad; the highly contracted tentacles and rhinophores had a length of only 35^{mm}, the papillae rose to a length of $+5^{\mathrm{mm}}$; the foot was 45^{mm} broad, of which $\mathrm{I}^{\mathrm{mmm}}$ belonged to the footbrim, moreover the comers of the foot projected $\mathrm{I} 5^{\mathrm{mm}}$; the length of the tail was also r 5 mm . - In the back of the neck the central mervons. systenn with the black eyes shone throngh, on the right side of the body the white anterior genital mass did so.

The form was as usnal. The papille closely set on the lateral parts of the back, were indistinctly arranged in transverse rows, and these rows, perhaps, were gathered into three clief groups, the rows containing searcely upwards of $4-6$ papillse; the papillae were firmly attached, lengethenedconical. The projecting anal papilla was situated muder the middde of the length of the dorsal edge, the fine renal pore midway between this and the genital papilla.

The cerebro-pleural ganglia were angular-oval, with a distinct transverse furrow; the romudish pedal ones were a little larger than the plemral ones, the commissures between then rather short. The nerve-cells, especially those of the plenral manglia, were very latge, and rose to a dianeter of 0.26^{mm}. - The almost sessile eyes had a diameter of o. 12^{mm} witl a large yellowish lens; the otocysts were only a little larger than the eyes, with many clear otnconia.

The bulbins pharyngens was $3^{\text {nn }}$ long, by a height of 175^{mmm}, and a breadth of 2^{m}; of the common form, the radula-sheath only slightly projecting. The light sellow mandintes were of the same length as the bulbus; the hinge-part was not strong; the masticatory process short; the masti-
 ary oral cavities were rather wide, hut their opening rather narrow. The tongue of the common form, the radula colourless. The median tooth-plates were yellowish in the basal part, otherwise the tooth-plates were alnost colourless. The height of the median weth on the hinder part of the tomgure
was 0.08^{nm}, the length 0.24^{mm}; the length of the lateral teeth 0.26^{mm} (the oldest only measured 0.20^{mm}), and their height 0.09^{mm}. On the tongut were seen 12 series of tooth-plates, and in the radula sheath II series, two of which were not fully developed; thins the whole number of series was 23. The median tooth-plates (fig. 15) had $6-7$ denticles on either side of the only slightly projecting point. The lateral plates had 9-12 denticles on one edge (fig. (6).

The oesophagus was of the same length as the bulbus pharyngens.

I ann not able to decide whether this form is new, or is to be referred to one of the species already described.

Coryphella sp.

l'l. IV, fig. 20; T , figs. II-13.

Of this form one specimen was taken on Isafjord on the $\gamma^{\text {th }}$ of June 1895 , and preserved in 70° 。alcohol.

This individual was 9^{mm} long, by a breadth of 2.5^{mm} and a height of 3^{mm}; the length of the rhinophores and the tentacles was 1.5^{mm}, of the dorsal papillæ 2.5^{mm}; the breadth of the fore end of the foot with its conners projecting in a fingerlike manner, was 2.25 mm . - The colonr was now only whitish with strong rennants of a dark brown pigment, especially on the back and sides.

The form was as in other Coryphellae. The head was large; the papille (which had for a great part fallen off) appeared to be gathered into four gromps that only seemed to contain few series, and few papille in eacli series. The anal opening was at the hind end of the second gronp of papillæ, in the dorsal edge.

The bulbus pharyngens was $2^{m m}$ long, of the common form; the secondary month cavities were rather large, their hind wall black-brown, their opening wide. The mandibles were yellowish, with a darker hinge-part, the masticatory edge had a series of (about 40) denticles mostly trmeate (fig. It), and inside of these several irregular series of low tubercles (fig. If). The tongue was of the common form, with 5 series of tooth-plates, fnrther back 9 series were found, two of which were not yet consolidated; thus the total number of series was iq. The median tooth-plates were yellow, the lateral ones almost colourless. The length of the median plates was 0.20^{mm}, by a breadth of 0.10^{mmm}, and a height of 0.08^{mm}; the length of the lateral ones was almost 0.14^{mm}. The median tooth-plates (figs. 12a, I3; 20a) were of the common form, with $5-6$ powerfnl denticles on each side of the slort, a little bent point. The lateral tooth-plates (figs. 12 b ; 20 b) had the common form, with a less deep notch in the fore end, and comnnonly with 12 - 13 denticles.

This Coryphella seems scarcely to be identical with the preceding one, the lateral teeth especially being too different for that.

Cor. salmonacea (Conth.).

Corphalle salmonacon (Couth.). K. Bergh, anatom. Bidr. til Kundsk. om Aeolidierne. Kagl. I). Vivlensk. Selsk. Skr. 5. R., naturr. og mathen. Afdel. V1l. 186ł. p. 227-237. Tab. IV.
IPl. IV, figs. I8-r9; Pl. V, figs. 2-8.

To this species may with rather great certanty be referred 3 specimens, taken on $65^{\prime \prime} 34^{\prime}$ Lat. N... $5+3 I^{\prime}$ Long. W. (station 29) at a depth of 68 faths (temp. o 2). (One large individnal was quite eviseurated, of the other the bulbus pharyngeus was taken.

According to an accompanying note the living animals were white with brown dorsal papille ${ }^{\mathrm{I}}$. The specincns that had been preserved in alcohol, were as a rule of a yellowish white colour.

The length of the two large individuals was now 2.5^{cm}, while the little one only measured ${ }^{\circ} 5^{\mathrm{cm}}$; the breadtly of the body was in the two former $8^{\text {nmm }}$, in the latter 3.5^{mm}, the height of the body respectively $7^{\text {nnn }}$ and $3^{\text {mnn }}$. In the large specimens the tentacles had a length of $5^{\text {man }}$, the rhinophores of 6^{mm}, and the dorsal papillae of $11 p$ to 35^{mm}; the foot rose to a length of 65^{mm} and a breadth of 55^{mm}, the conners of the fore edge were only little produced, the foot-brinn was narrow, the tail short.

The form was as nsual. The head was as before (1. e. pl. IV, figs. 3t, fo) described. The not broad, papillose lateral parts of the back showed close-set, indistinetly separated, and often displaced transverse and oblique series of papille, the series mostly containing 4-6 papille. The papille were lengthened-conical, and did not easily fall off. - From the region of the strong genital papilla the intestine was seen very distinctly shining throngh in its direct conrse to the anal papille, projecting at the dorsal edge a little behind the middle of the length of the body; the fine remal pore was seen (above the intestine) midway between the genital and the anal papilla. The foot was powerful, rather broad.

The white central nervons systen was as before (l.c. fig. fi) described by me; the right plenral ganglion sent forth a rather long N. genitalis forming a rather large gangtion of a diameter of 0.24^{mm}) with one large cell (diann. $0 \cdot 16^{\mathrm{mm}}$) and several smatler cells.

The almost sessile eye sitnated in front of the cerebro-pedal connective, is ginbular, of a diameter of 0.12^{mm}. Close behind the eye the otocyst is scen of a diancter of or mm with a mot grat number of clear otoconia.

The butbus plaryngens is large and powerful, in the two large individuals of a Jength of $55-6 \mathrm{~mm}$, by a breadth of $4-4.5^{\mathrm{mm}}$ and a height of 3.25^{mm}. Its form was as has carlier heen described (l. e. figs. 1-3); the labiat disk large, the radula sheath projecting in a knobtike manner; in sitn the mandibles were seen of a light grayish brown colom. They were of the earlier (1.c. ligs. f-6) deseribed form, greenish yellow with a not strong hinge-part, short and powerfn] masticatory proces; the masticatory edge rather broad with mostly $8-9$ series of obtuse or, on the edge itself, primted denticles (fig. 2). The secondary oral eavities were not small, but their opening narrow (comp. l. C . figs. f. IO); their hinder wall is, for the greater frat, covered with a strong, yellow enticle, crossed
 semitransparent, pink, with gray-brown or red papille with white point.

The Ingolf-Expedition. 11. 3.
by parallel, curved lines. The tongne is as earlier described (comp. l.c. figs. If-ry); the shining, greenish yellow radula contained in one specimen iz series of teeth, in the other 16 series; further back were seen in the radula sheath in one specinen 17 series, in the other 14 series, of which the two lindmost ones were not yet fully developed; thus the whole number of series was 30^{1}). Of the series on the tongue the $9-10$ formost ones showed more or less worn tooth-plates, especially the lateral plates were sometimes broken or torn ont. The median teeth were yellow, the thin lateral teeth colourless. The height of the median teeth behind the middle of the tongue was $0.28^{m m}$, hindmost in the radula-sheath it was 0.37^{mm}; the le1ggth of the lateral teetlı rose to 0.29^{mm} by a breadth of the base of O.I 2^{mm}. The median teeth (fig. 3 a) showed a short bifurcation of the side parts of the base; the hook lad connmonly down the sides 8-9 denticles, of which all the onter ones were snall. The lateral teetl were flat, thin, tapering, with a rather broad base, finely and closely denticulated along the greater part of their inner edge (fig. $3 \mathrm{~b}, 4$).

The salivary glands (Gland. salivales) were white, lengthened, attached to the stomach, composed of lengthened, ramifying lobes (fig. 5). Partly interwoven with this another gland (Gl. ptyalina?) seemed to be, the lobes of which were longer, thinner, and of a quite different appearance (fig. 6); its long excretory duct was rather abundantly set with small glandular lobes (fig. 6), and perlaps it opened into the moutl tube ${ }^{2}$).

The oesoplagus had a length of 1.5^{mm}; the inside showed strong longitudinal folds. The sto 11 ach was large, bagshaped, $9^{\mathrm{mm}} \mathrm{long}$ by a dianeter of $4^{\text {mm }}$; from its cardia fine folds radiated continning throngh the whole length of the stomach and farther down throngh the blind bag of the stomach, and out throngh the intestine. The intestine originating from the hinder end of the stomach, runs to the right a little forward, and then with a bend backward. - The stomach and the fore part of the intestine had ample whitish and gray contents, which were for the greater part of an indeterminable animal nature, but in which were fonnd portions of small crustacea and hydroidea, as well as diatoms, cnidæ, and grains of sand.

The large, light yellowish white hermaphrodite gland reached behind only to the last third of the length of the body; it rested on the blind bag of the stomach (the principal biliary duct), which continned backward to the beginuing of the tail; the length was 8^{mm} by a breadth (behind) of 11 p to 35^{mm} and a thickness of up to 2^{mm}; it was composed of 4 large lobes; in the sulnall endiobes were ripe oogene cells and spermatozoids. - The whitish anterior genital 11 ass was $5^{m i n}$ long and broad. In front was lying the large (fig. 7 b) 5^{mm} long bag of the penis, which was tather thick-walled; the white glans was only I^{mm} long, a little cuitailed, compressed-conical (fig. S). The seminal duct (figs. ja, S a) was very long, and forned a large bundle. I did not succeed in finding the senninal vesicle.

Coryph. salmonacea (C.), var.

Pl. V, figs. 9-10.
A specimen of this species that has come to hand after the finishing of the preceding examina-

[^32]The specimen, which had lost great part of its dorsal papillie they were lying loose in the glass), was of a whitish colonr, only the papille being slightly brownish. The length was isw by a height of the body of up to $4^{m m}$ and a breadth of 6^{mm}; the length of the rhinophores and the tentacles was 2.5^{mm}, of the papille - 35^{mm}; the breadth of the foot in front was 4^{mm}, the length of the tail only. 1^{mm}.

The form was as in the other specimens. The mumber of the papille in the series (mumbering perhaps 60) seemed to be 67 . Also in this specimen the rectunn shone whitish throngh in its course to the anal papilla.

The powerful bulbus pharyngens together with its conical radula sheath, was $5^{\text {man }}$ long by a breadth of $3 \cdot 6 \mathrm{~mm}$, and a height of $2 \cdot 4^{\mathrm{mm}}$. The mandibles were yellowish with black-brown hingepart; the masticatory edge as above described. The hinder wall of the secondary oral cavities was seen as black-brown towards the narrow entrance. The tongue had twelve series of teeth; farther back 16 series were seen, the two hindmost of which not yet consolidated; thins the total number of series was 28. The median teeth were yellow, the lateral ones almost colourless; the former rose to a height of 0.26^{mm}, the latter had a length of 025^{mm}. The median teeth as above, but the denticles (S-12) most frequently a little more nmmerous (fig. Iof as also the denticulation on the lateral teeth (fig. 9) oftenest a little more marked.

Goniëolis, M. Sars.

MI. Sars, Beretn. onn en i Sommeren IS59 foretagen zool. Reise ved Kysten af Romsdals Ant. 1860. p. 4. C. O. Sars, on some remarkable forms of anmal life fronn the great deeps of the Nurwegian coast. 1.
1872. p. 39-40.
R. Berglı, die Nudibranchien des Willem Barents. 1885. p. 13-1S (Bijdragen tot de I)ierkntnde.

Aflevering Xlll. Amsterdan. Onderzoekings-tochten van de Willem Barenti Expeditie. Gedeelte IV (IS86). 1888).
, l. c. IS92. p. 1029.
Corpus oblongunn, subdepressum, subpalliatum; caput sat latunn tentaculis fortibus productum: rhinophoria fortia, simplicia, elongata; podarinn dorso panllo latins, antice vix angulatnun.

Nargo masticatorins seriebus denticulornm minntissinnormun arnatus. Dentes laterales radulate fere ut in Coryphellis.

This genns, which belongs to the fanily of the Coryphellidae, has the claracters common in this fanily; the long, simple rhinophores and a lateral tooth on each side of the median tecth of the radula. It is most nearly related to the genus Chlomylhe, and it will perbaps, by further examinations, be innossible to maintain the generic separation of these two generic fornns.

Goniëolis las a somewhat peculiar and depressed clunsy fom with projecting dorsal colges, and colossal thinophores and tentacles; the masticatory edge of the mandibles has severat series of quite small irregular knobs.

Hitherto the genus only comprised the species found by Sars and examined by me. The Ingolf expedition has brought hone two specimens of Goniëolis, mutnally different, and one of them especially so deviating from the typical species, that I have thought it better, at least for the present, not to identify these new individuals with the typical species.

I. Gon. typica, M. Sars.

R. Bergh, 1. c. 1885. p. 14-i8. Taf. III, Fig. 1-26.

This species seems to be marked off from the two others by a different form of the mandibles, by a stronger denticulation of the lateral teeth (and perhaps by the want of a specially developed prostate gland).
2. Gon. intermedia, Bgh. 11. sp.

$$
\text { Pl. IV, figs. } 16-17
$$

Together with the following species one individual of the present species was taken on Jnne $\mathrm{It}^{\text {th }}$, at 9.30 a. 11 . on $66^{\circ} 43^{\prime}$ Lat. N., $55^{\circ} 57^{\prime}$ Long. W. with the trawl from a depth of 88 faths (temp. 2.6-2*).

The specimen that was rather well preserved in alcohol, was of whitish colour; its length was $2 . \gamma^{\mathrm{cm}}$, the other measures relatively as in the following species.

The form was as in the typical species, the dorsal lateral edges more projecting than in the following species; the corners and the fore edge of the foot distinctly projecting, more so than in both the other species; the flaccid, dorsal papillx, 111any of which had fallen off, rose to a length of 6 mm ; the genital openings were quite as in the typical species, and so was the anal papilla.

The central nervous system together with eyes and otocysts were as in the species described below.

The bulbus pharyngens was to a remarkable degree like that in (hlamplla borealis ${ }^{\mathrm{r}}$, and was likewise hollowed in the hinder part of the upper snfface; it was $4^{m m}$ broad by a length and height of $3^{\text {mnn }}$. The light yellow mandibles liad the same form as in the following species; only: the keel in front on the ontside was a little slighter; the masticatory process and the masticatory edge were quite as clescribed below. The tongue was quite as in the following species; in the colourless radula 8 series of teeth were seen, and as many in the short radula sheath, which was directed backward; thus the total number of series was 16 , of which the two hindmost ones were not yet quite developed. The tooth-plates were almost quite colomrless; the breadth of the median teeth rose to $0.20^{\mathrm{mm}} \cdot$ by a lieight of 0.10^{mm}, and a length of 0.35^{mm}; the lengtl of the lateral teeth rose to 0.20^{mm}. The form of the median tootli-plates (figs, $16 \mathrm{a}, \mathrm{I} 7 \mathrm{a}$) was between the form of those in the preceding species and those in the following one, though nearer to the latter; on each side of the rather short point 12-15 rather strong denticles were seen. The lateral tooth-plates (figs. I 5 b , ifb) were shorter and more elnmsy than in both the other species, and without denticulation.

[^33]The anterior genital mass was of about the same form as in the typical species, 6 m lomg by a breadth of $4^{m m}$ and a thickness of $5^{m m}$. The ampulta of the duct of the hermaphrodite gland was also as in the typical species, forming several windings. As in the following species ${ }^{1}$) a little whitish prostate gland of a dianeter of 2^{mm} was found, formed of finc interwoven windings; the muscular seminal duct arising from this gland, was loosely rolled to a little bundle, also as in the following species, its thimer fore end plunged into the top of the little preputial has. which projected externally with its foremost edge; from this bag the highly tapering glans penis projected $3^{\text {mman } 2}$). The seminal resicle as in the other species continuing in its powerfnl duct, the opening of which was seen in the depth of the vulva3) that projected externally. Tlue white and whitish albminons-mucons gland formed the greater part of the anterior genital mass.

By the examination and the specific determination of Nudibranchiata it is freguently an awward thing that this examination and detemmation has to be made by the means of only one inclividnal, especially when the forms of this individnal as far as possible lave to be spared. Nany of these anmals seem to be able to vary considerably as well with regard to the onter as to the immer structure. The individual here examined, agreed in the onter form more with the typical species, in the nature of the mandibles and the presence of a prostate gland with the following species, but differed from both by the structure of the radula.

3. Gon. atypica, Bgh. n. sp.

Pl. IV, figs. 6-15; Pl. V, fig. t.
Of this form one specinen was taken on July it th 93° a. m. on $66^{\circ} 43^{\prime}$ Lat. N., $55^{\prime} 57^{\prime}$ Long. WV: with the trawl from a depth of is faths (temp. $26 \quad 2^{\prime \prime}$).

The individnal, which was well preserved in alcohol, was generally of a whitish eolonith. It surpassed in size the hitherto fomd (soniëolides; its length ${ }^{5}$) was $55^{5 \mathrm{~cm}}$, by a breadth of the back of 1.6^{cn} and a height of $\mathrm{I} 3^{\mathrm{cm}}$. The length of the tentacles in this colossal individual rose to itmm, and that of the rhimophores to $5^{m m}$; the breadth of the lateral parts of the back, that were set with papillæ, appeared to rise to $4-5^{m n n}$ and the remaining papille rose only to a length of at mont $3^{m \cdots n}$. The length of the foot was almost $5^{\text {sin }}$ by a breadth of 11 p to 1.6^{em}; the breadth of the foot-brim was 3^{mm}, and the length of the tail 3^{mm}.

The form is somewhat flattened, and the height evenly decreasing baekward, wery shoph at the hinder end. The head (figs. 6 , 7), the resion between the rhmophores and the tentaclen, sloping.

\Rightarrow Comp. R. Bergh, die Nutibranchien ... les Willem Barents. I. ©. 1. is. Taf. 111, Fis. 25 ef, 2.
3) Comp. 1. c. 1. IS. Taf. 1II, Iig. 2 f.
4) According to sars the colour of the tepical species is commonly yedowish white, only the lateral parth of the back (on accome of the liver) being yellowish brown; in the median line of the bods, colectially on the sole of the font at minium-red stripe shonte through.
 measureil $2-2,3^{\mathrm{cm}}$ in length.
forward; in front the strong conical tentacle (fig. 6a) projects on either side; behind the rather close set, longer, and more powerful rhinophores, likewise conical (fig. 6b); in front the ronndish onter 110uth. The back is broad, its last fonth part highly decreasing in breadth, almost flat, smooth; its lateral parts rising only a littic over the sides of the body. The papilligerons lateral parts are rather narrow, in front alnost stretching to the base of the tentacles (fig. $6 \mathrm{c}-\mathrm{a}$), behind alnost meeting at the base of the tail. The papille were densely crowded without being distinctly placed in oblique series, those series perhaps containing 6-8 papillæ ${ }^{1}$). The size of the papillæ is upon the whole as in other Aeolidiadae, decreasing ontwardly; the remaining papillæ were meommonly small, conical, and did not fall off quite easily. The sides of the body were not quite low. In the region mader the right rhinophore a rather long and rather strongly projecting fold was seen rmining towards the anns; the fore end (praepntinm penis) of this fold projected $5^{m m}$ in a lobelike manner, and behind and partly covered by this fold the genital aperture was seen (fig. 6). Farther back, about at the middle of the side of the body the anal papilla was fonnd directed a little upward, and before it the little renal papilla (fig. 6 d). The foot is powerfnl, the romnded fore end with a deep marginal furrow (fig. 6), and medianly emarginate upper lip; the foot-brim not narrow; the tail flat, lanceolate, rather short.

At the uppermost part of the sides of the body towards the dorsal edge the liver shone throngh as quite small, slightly yellowish white grains; sinilar grains, but more powerful (for a great part with mark from fallen-off papille) were seen on the lateral parts of the back towards the papille.

The central nervons system showed almost the same structure as was seen by the preceding examination ${ }^{2}$) of the typical species; especially on accomnt of the contractility of the enclosing loose capsula, the absolute and relative form and size of the different ganglia vary not a little in the Nudibranchiata. The bonndary between the cerebral ganglia and the pleural ones (fig. 8 a) was rather distinctly marked, and the pedal ganglia (fig. S b) a little larger than the cerebro-plenral ones. The strong ganglia rhinophorialia (olfactoria) (fig. 8 c) were rather short-stalked; the buccal ganglia and the gastro-oesophagal ones (fig. 8d) were as before described. The pedal commissure was a donble one, before it the minch thinner plenral one was seen, and in front a snbcerebral commissure.

The otocysts as earlier described. I sncceeded also in this individnal in finding eyes (fig. S); they were almost sessile, of a diameter of abont $0 \cdot 16 \mathrm{~mm}$, with a black pigment and a yellowish lens.

The binccal tube is short. The bulbus pharyngens very strong, short ${ }^{3}$, 8^{mm} broad by a length of 6^{mm}, and a lieight of 6 mm , the radnla sheath not projecting or indicated on the hinder end. The mandibles were as long and high as the bulb, light amber colonred, only the crista connectiva and the masticatory edge yellowish brown (fig. 9); in front on the ontside was seen a short, strongly projecting, broad keel (fig. Io); the masticatory edge rather broad (—oolomm), the masticatory process rather short, straiglit; the masticatory edge somewhat won with many (np to abont 20) irregnlar rows of close set, little ($0^{\circ O 1} 3^{m m}$) projecting nodules, most frequently obtuse and cleft (fig. II). The secondary oral carities rather large with a rather wide opening; their hinder wall had a slightly yellowish
${ }^{5}$) In the (smaller) individuals of the typical species earlier examined by me, the series appeared to contain more (8 - IO papillu, and the innermost of these to rise to a greater length (5.5 mm).
${ }^{2}$) 1. c. fig. 5 .
3) Comp. 1. c. Taf. III, fig. 7.
cuticula, that was dark-coloured towards its inner edge. The tong ge was short and powerful, only 2.25^{nm} long, and of almost the same height and breadth, with an almost colourless radula. In this latter were counted 13 series of tooth-plates; fartlier back, in the short (2^{mm} long $)$ whitish radula sheath that was directed backward, i2 series were found, two of which were not yet quite developerd; thus. the total mmmber of series was 25 ; but on the lower edge of the tomgre marks were visible of 8 series that had fallen off. The tooth-plates were alnost colourless (very pale yellowish), higlily fragile, and all the plates on the tongue were worn or otherwise injured (fig. If). The breadth between the legs of the foremost tooth-plates was $0.20^{m m}$, but it rose to 0.35^{mm}. The median toothrplates (fig. I2) were of a slape somewhat different from that in the two other species; they were broader and their hook shorter. The lateral plates were likewise of a somewhat different slape (figs. I3-r 5) and the denticulation of the edge of the hook was far slighter than in the trpical species.

The whitish salixary glands were lengthened and stretched to the lower side of the stomach; their excretory duct was rather long.

The oesophagus short (4^{mm} long\%. The form of the stomach was oval, it load a length of I 3 mm by a dianeter of up to $7^{m m}$, and on the inside were strong longitudinal foids; it receives on either side a biliary duct, and from the lindmost part of its right side it sends forth the intestine, inside of which it, as it were, continues in the chief biliary duct (the blind bag of the stomach). The intestine runs along the upper edge of the anterior genital mass, forms a curve downward, and rises to the anal papilla; its whole lengtly was 18^{mm} by dianeter of $2.5-2^{\mathrm{mm}}$; its inside showed mumerous longitudinal folds. - The abundant white contents of the alinnentary canal were an indeterminable animal mass, in which were to be seen remains of Copepodi, bristles of Amelids, and a large quantity of cuidre.

The chief biliary duct runs somewhat cursed in a deep furrow on the lower side of the hermaphrodite gland, receives from either side several rather short, ramifying biliary ducts, and continues a little way behind the hermaphrodite gland. The branches of this duct, as well as of the other two biliary ducts are covered with liver-cells, and form thus the thick, and, as it were, somewhat spongy layer of slighty yellowish liver mass covering the sides of the body above and the lateral parts of the back, and shining throngh on the ontside (fig. 万); from this layer the liver lobes of the dorsal papille rise, almost filling out their cavity; they are almost cylindrical, only little rugged. At the points of the papilla the lengthened cnidocyst is seen, filled with mostly romnded cnide.

The ventricle of the heart had a length of 45^{mm}. The renal layer and the pericardio-renal organ as before described.

The hermaplirodite gland was powerful, yellowish, its whole length was $22^{\text {mo }}$ by a breadth in front of $9^{m m}$; in front it projects with a somewhat flattened lobe nuder the rectum and the stomach; it consists of a number of large lobes, made up of smaller ones; its curd-lobes comtaned large nogene cells and developed zoosperms. - The anterior genital mass was large, lengthemed, compressed, rmming along, and attached to, the right side of the stomach; it had a length of ifm hy a height of 9.5^{mm}, and a thickness of 5^{mmm}; the light rellowish gray ampullat of the duct of the herninaphrodite gland (fig. I b) ran for the erreater part of its length along its inside; at its fore cand the windings of
the seminal duct were seen, behind them on the inside the prostate gland, and muder that the seminal bag was fonncl. The anpulla was 19^{mm} long by a dianeter of 2^{mm}; anteriorly it sends forth a quite short oviduct and a seminal duct a little longer. The latter formed a large prostate mass (fig. i c), 7^{mm} long, 35^{mm} higln, and 3^{mm} thick, which mass was bent once or twice, and measured, when stretched out, $20^{m m}$ by a diameter of 2^{mm}; it consisted of close set, quite fine windings; anteriorly it tapered a little, and passed into the muscular continnation of the seninal duct (fig. id). The windings of this dnct measured, when stretched ont, 18 mm ; it tapered anteriorly, and ended in a hollow on the top of the 2.5^{mm} broad, thin-walled linder end of the penis bag (fig. I e), which bag continues in the onter, free part (fig. If) that inclosed 4^{mmm} of the glans (fig. 1), the whole lengtin of which was 6.5^{mm}, and which is covered by a strong ciliated epithelinm; the seminal duct that grew thinner in its conrse, continued in snake-like windings to the very point of the glans. The seminal bag (fig. Ig) the position of which is ratler hidden, is globular, of a diameter of 2.5 mm ; it passes by degrees into its only a little longer duct (fig. I h). The whitish and limewhite mucons-albuminiparous gland formed the greater part of the anterior genital mass.

This species is especially by the remarkable formation of a fold on the right side of the body marked off from both the other species, from which it further appears to deviate with regard to the nature of the lateral teeth of the radula.

Subfam. Tergipedinae.

R. Bergh, Sỵstem der n11dibranch. Gasteropoden. iS92. p. 1024-1027.

This group contains forms with a somewhat compressed body, simple rhinophores, and a laterodorsal position of the anal papilla; the dorsal papille are short and thick, clubshaped, and, as it were, arranged in one or a few longitudinal series; the foot is ronnded anteriorly. - The masticatory edge of the mandibles bears mostly a single series of denticles; the tongue has most frequently only a single series of tooth-plates. The otocyst contains only a single otolith.

The fanily comprises the genera: Tergipes (Cnv., Ald. et Hanc.) with a single series of papillæ and marned penis; Capellimia (Trinchese) also with only one series of papiliæ, but with three series of tooth-plates (like the Galvinae) and with armed penis; Embletonio (Ald. et Hanc.) has one or more series of papillæ, a smooth masticatory edge, and marmed penis; nearly related with this genns is Emnoia (Bgh1), which has, however, real tentacles (and not head-lobes). Amphorina (Quatrefages) has peculiar tooth-plates, large Cil. ptyalinae, and armed penis; Gulainu (Ald. et Hanc.) has three series of toothplates, also Gl. ptyalinae, but unarned penis; Myja (Bgh.) resembles somewhat Torgipes, but has a smooth masticatory edge; perhaps also the singular Forrstio ('Trinchese) in which the radula is transforned into a serrated band, must be referred to this fanily:

Amphorina, Quatrefages.
Amphorina. Q. Mém. sur les Gastérop. phlebenterés. Amu. des se. nat. 3 S. I. ISf.t. 1. 145-15ı.

- . Q. R. Bergh, Beitr. z. Kenntn. d. Aeolidiaden. VII. Verlı. d. k. k. zool. bot. (ies. in Vien. XXXII. 1882. p. 5t-61. - V1II. 1. c. NXXT. 1885. p. 37-39.
Q. Vayssière, rech. sur les 1moll. opistholor. II. Nindibranclies et Ascoglosses. 1888. p. 107-111.

Trinchesia. Iher. Zoolog. Anz. II. 1879. p. I37 Note.

Papillac subinflatae, fusiformes.
Margo masticatorins serie denticulormu minutormu praeditus. Dentes (mediani) apice quasi elevato. Glandulae ptyalinae. - Penis stylo recto vel currato armatus.

The genns comprises only a few species:

1. A. - 17berti, Quatref.
var. leopardiner. Vayss.
M. atlant., mediterr.
2. 3. coerulea (MItg.).

Eolidia Bassi. Ver.
II. atlant., mediterr.
3. A. molios. Herdnann.
MI. atlant.

Amphorina Alberti, Quatrefages?
R. Bergh, Beitr. zur Kemmtn. c. Aeolidiadens. VII. I. c. XXXII. I882. p. $55-57$. Taf. IV,

Fig. Io-2.f; Taf. VI, Fig. 19-21.

$$
\text { Pl. V. figs. } 2.4-28 .
$$

On the $10^{\text {th }}$ of May 1895 two specimens probably of this species were taken at Trangistatg.
One individual had a length of 4^{mm}, the other of 55^{mm}, by a height of abont I^{nm}, and a breadth of almost 0.75^{mmm}; the height of the papillæ rose to about 1.25^{mm}. The body had a yellowish white colour, the head was whitish, the dorsal papille were brownish gray with a whitish penint.

The form was the common one. The body was lengthened and narrow; the sinooth, a little truncate minophores and tentacles were not long. The papille were arranged in six groups with two, sometines three papille in each; in the gromps in front the papille were sumaller, and in the hindmost group they were quite small; the two immost papillie were of aloont cqual size, and in the three gromps very powerful, short-fusiform; if a third papilla was found it was alwass mueh smaller. The anal papilla was sitnated immediately at the onter edge of the fourth group of papill:e. The foot was narrow, anteriorly a little broader, with ronnded comers; the tail was short.

The Ingolf-Expedition. II. .3.

The bulbus plaryngens was of an oval form, o. 8^{mm} long. The hinge-part of the mandibles (fig. 24 a) was strongly yellowish, otherwise they were almost colourless; the not short masticatory edge had a single series of pointed denticles of a leight of ooo45 ${ }^{\mathrm{mm} \mathrm{\prime}}$ (fig. 24 b). The lengthened, narrow tong ine showed a very slightly yellowish radula containing 46 tootl-plates (34 on the lower side, 12 on the npper one), and two were further fonnd lying loose posteriorly at the base of the tongue; in the radula-sheath 20 tooth-plates were seen, of which the three hindmost ones were not yet fully developed; thins the total nun11ber of tooth-plates was 66^{T}). The tooth-plates were yellowish; they lad a breadth of oo6mm by height of 0.04^{mm}, and were of the earlier described form with 6 pointed denticles on each side of the but little strong hook (figs. 25-27).

The liver-lobes were as before mentioned. The pyrifom cnidocyst was in the largest papille or $3^{\text {mm }}$ long; the cnidæ were romdish, their largest dianeter ooon-ool 3^{mm}.

The penis was as described before; the colourless hook that was slightly curved, and at the end, as it were, obliquely cut off, (fig. 28 a) was about 0.07^{mm} long.

Galvina, Ald. et Hanc.

R. Bergh, Systen1 der nudibrancliaten Gasteropode11. 1892. p. 1026-1027.

The Galvinae form a rather well marked g oup. Even their exterior is remarkable by the dorsal papille being, as it were, somewhat inflated; they show, howerer, especially a quite peculiar structure of the radula, which las strong median teeth, the hooks of which are, as it were, bent down and sitnated below the level of these teeth; the lateral teeth are very broad, and their inner part projects backwards in a lanceolate hook.

The Galvinae seem chiefly to belong to the less warm tracts of the sea.

Galvina sp. (anonyma).
 Pl. IV, figs. 21-25.

Together with some specimens of Coryphella salmonacia (mentioned above) another little Aeolidia was taken, which, in a short notice, is said to have been whitish with red dorsal papille.

The individnal, which was only middlingly presersed in alcolol, was of a yellowish white colour. Its length was 10^{mm}, by a breadth of the body of up to 3^{mm}, and a height of up to $2 \cdot 5^{\mathrm{mm}}$. The rhinophores were 2^{mm} long, the tentacles I^{mm}, and the (remaining) dorsal papille likewise only r^{mm} long.

The form was the common one. The lateral parts of the back that were covered with papille, were more narrow than the naked middle part; the number of series of papillæ was not large, and the mumber of papille in a series exceeded scarcely 6 . The papillse were conical, partly somewhat inflated, a great deal had fallen off. The foot was anteriorly rather broad, ahnost withont projecting corners.

To spare the only known individual, only the bulbus pharyngens was examined. It showed the 11sual form, the radnla formed a cone on the hinder end; the length was $2 \cdot 3^{\mathrm{mm}}$, by a breadth
${ }^{1)}$ The number of tooth-plates in the (3) earlier exannined specimens was 67 , 6 T , 64 ; in A. coerulea it was 60,57 , 60 .
of 2^{mm}, and a height of $1 \cdot 3^{\mathrm{mmn}}$; the hinge-part was not strong; the mastieatory process was mather short and slightly bent; the masticatory edge had a few series of short teeth, displaced among cach other (fig. 21). The tongue was of the common form; the radula was almust eolonrless, and had on its long lower edge and short mpper one 35 series of teeth (and besides a loose lying median torth below); in the radnla sheath +1 series were seen, the four hindmost of which were not yet eompletely developed; thus the whole number of series was. 76 . The median teeth were slightly yellowish, the lateral teeth colourless. The height of the oldest (formost) median teeth was oosm, and the breadth likewise oos mm the hindmost ones seemed to have the same measnres, as also the lateral teeth, the breadth of which was 0.12 mm . The tooth-plates were of the form, which las been pointed ont in the other Galvinae; the strong median teeth (firgs. $22 \mathrm{a}, 23,24,25 \mathrm{a}$) liad the nsual bent down hook, and to each side of that four, more rarely three, denticles, of which the inner one was the more chnms: The weak, but broad lateral teeth (figs. $22 \mathrm{~b}, 25 \mathrm{~b}$) showed the usual lanceolate, short hook.

None of the hitherto known (northem) Galvinae lave shown the above mentioned colons, and thus the possibility is not exeluded that we have here a new form. It seems not to be possible to differentiate the Galvinae by means of the structure of the radnla.

EXPLANATION OF THE PLATES.

Most of the figures are drawn by means of the canera lucida.

Pl. I.

Bathydoris Ingolfiana, Bgh.
Fig. 1. The animal, from behind. Natural size.

- 2. The same, from before. Natural size.
- 3. One of the papulæe of the back.
- 4. The bulbus pharyngens, lateral view. Natural size. a the labial disk, b the region of the outer margin of the mandible, c the radula-sheath, d the oesophagns, ϵ the duct of the salivary gland with its ampulla.
- 5. The tongue with a the radula, behind this the tectun radulae, and hindmost b the end of the radula-sheath.
- 6. The mandibles, from before, a the upper end. Natural size.
- 7. A piece of the median part of the radnla, with a median tooth, and 66 innermost lateral tooth. $\times 100$ diam.
S. Merlian tooth. $\times 200$ diann.
- 9. First lateral tooth. $\times 100$ diam.
- 10. The same, lateral view. \times roo dian.
- 11. Two of the largest lateral teeth. $\times 100$ diam.
- i2. Ontermost part of a series of teeth with it tooth-plates, a the ontermost one. $\times 100$ diam.
- 13. One of the onter tooth-plates, lateral view. $\times 100$ dian.
- 14. A couple of the outermost tooth-plates, from above. $\times 100$ diam.
- 15. (abnormal) donble tooth-plate. \times roo diam.

16. The hermaphrodite gland, from its upper side.

I7. Follicles of the hermaphrodite gland.
18. The anterior genital mass; a the mucons gland, b the spermatheca, in front of and mpon it the penis bag, c the coalesced genital vnlvarian folds.

- 19. a the duct of the hermaphrodite gland, b oviduct, c seminal duct, d the base of the praeputirm, e glans penis, f the apertirre on its point.
- 20. a seminal duct, b glans penis, slit longitudinally, with the continnation of the seminal duct to the aperture c on its point.

Pl. II.

Bathydoris Ingolfiana, IBgh.
Fig. I. a labial disk, b bulbus plaryngens, ic the salivary glands on the sides of the first stomach, to the left of this the second stomach, dddd the intestine, circunnscribing the liver, and to the right the renal branches with the base of the urinal chamber.

- 2. The central nervons systen, mostly drawn with cam. luc. ad Canglia cerebralia, bb (i. plenralia, of G. pedalia, d Connnissura magna, of Cr. buccalia, f Commı. buccalis.

Doridoxa Ingolfiane, Bghls.

Fig. 3. The animal fron the rentral side. $4 / \mathrm{t}$.

- 4. The central nervous system, from above. $\times 55$ diam. ua cerebro-pleural ganglia, bb pedal ganglia, c buccal ganglia.
- 5. The bulbus pharyngens, from the lower side, a little obliquely:
-- 6. Tine same, lateral view. " oesophagus.
- 7. The mandibles, from before; a processus masticatorii. io/ 1 .
- 8. A piece of the inmermost part of the masticatory edge. $\times 350$ diann.
- 9. The tongue with the radula, from before.
- 10. The same, lateral view.
- ir. The middle part of the radula, from below. a median teeth, bb innermost lateral tootl.
- 12. A piece of the middle part of two series of teeth.

Figs. II- 12 drawn with cam. luc. $\times 350$ diann.

- 13. The alimentary canal. " oesophagus, b stomach, cc intestine, d biliary bladder.
- if. a the thimer, b the thicker part of the seminal duct, c penis. $\times 55$ diam.
- I5. Seminal vesicle, ${ }^{2}$ its duct. $\times 55$ diam.

Cadlina repanda (A. et H.).

Fig. 16. A piece of the labial plate.

- 17. Middle part of the radula, a median teeth.
- IS. The largest tooth-plates.

19. Piece of the armature of glans penis and seminal duct.

$$
\text { Figs. 16-19 drawn with cann. luc. } \times 350 \text { diann. }
$$

Candiella Ingolfianu, Bgh.

Fig. 20. The first lateral tooth.

- 21. Second and third lateral teeth.

22. One of the largest lateral teeth.

Figs. 20-22 drawn with cann. luc. $\times 350$ diann.

Pl. III.

Doridoxa Ingolfiana, Bgh.

Fig. i. The ninddle part of the radnla, from above. a median teeth, b inmernost lateral tooth.

- 2. Similar part, partly lateral view. a and b as in fig. r.
- 3. Ontermost part of two series of teeth. aa ontermost tooth-plate.

Figs. -3 drawn with cann. luc. $\times 350$ dian.

Candiella Ingolfiana, Bgh.

Fig. 4. A piece of the masticatory edge of the mandible, a the free edge. $\times 200$ diam

- 5. A piece of the middle part of the radula, a median tooth.
- 6. One of the largest lateral teeth.
- 7. The outer end of a series of teeth, a ontemmost tooth.

Figs. 5-7 drawn with Cann. Mnc. $\times 350$ diam.
S. a Seminal vesicle, b its duct.

- 9. a Senninal duct, b penis bag with the glans penis situated in its cavity.

Athila Ingolfiana, Bgh.

Fig. 10. The fore end of the body with the oral aperture, tentacles, and fore edge of the foot.

- ir. The two-lipped sheath of the rhinophore, between the two nnequally long lobes the point of the club of the rhinophore is seen.
- 12. The central nervons systenn, drawn with cann. luc. $\times 55$ diam. a cerebro-pleural ganglia, b pedal ganglia, c buccal ganglia, d the large common commissure, c the buccal commissure.
- 13. Otocyst. × 350 dian.
- 14. The bulbus pharyngeus from above, the pharynx removed, so that the tongue is laid bare, a the region of the fore end of the mandibles.
- ${ }^{15}$. The mandibles, from before, a the hinge-part. ${ }^{8 /} j_{1}$.
- 16. The hinder end of the mandible. x moo dian.
- 17 . The hindmost part of the masticatory edge of the same. \times roo dian.

I8. The tongue, from below, with radula.

- 19. Median tooth from three series of teeth.
- 20. The first lateral tooth.
- 21. A similar one in anotlier position.
- 22. a two median teeth, and b first lateral tootl, lateral view:
- 23. The minth and tenth lateral teeth (comnted from the median tooth) of two series.
- 24. One of the largest lateral teeth.
- 25. The onter end of a series of tooth-plates with 5 tooth-plates, a the outermost one.

Figs. 19-25 drawn with cann. luc. $\times 350$ diam.
-26. Dorsal papilla.

Dendronotus robustus, Verrill.

Fig. 27. The rhinophore with its sheatl and chib.

- 28. The tongue from above with the radnla-sheath shining througli and with the puper end of the radula.
- 29. a Seminal duct, b glans penis projecting from the botton of the praeputinn.

Pl. IV.

Dendronotus robustus, Verrill.
Fig. 1. The fore end of the amimal.

- 2. The tail of the animal.
- 3. Elements of the preliensile ring, $\times 350$ dian.
- 4. A median tooth, fron above. $\times 200$ diann.
- 5. The onter end of a series of teeth, a the ontermost tooth, b the edge of the radula. $\times 350$ dian.

Goniéolis alypica, Bgh.

Fig. 6. The fore end of the animal, from the riglit side, with a tentacles, b rhinophores, and c dorsal papille; with the genital aperture, the renal pore, d anal papilla, and c foot-brinn.

- 7. The fore end, from above; ac, c as in fig. 6 .
- S. The central nervous system, from above, drawn with cann. luc; a Ganglia cerebro-plenalia, bb Canglia pedalia, ci Ganglia olfactoria, dd (i. buccalia and gastro-oesophagalia, ec commissura subcerebralis, f comun. pleuralis, g comun. pediaea.
- 9. The mandibles from the fore side. 5'ro
- io. The hinge-part of the right mandible, from before.
- ir. A piece of the masticatory edge, a fore edge. $\times 350$ dian.
- I2. Median tooth-plates, fronn above.
- I3. Lateral tootli-plate, from the radula.
- I4. IVorn foremost (oldest) lateral tooth-plate.

Figs. 12-14 drawn with canl. luc. $\times 200$ dian1.

- 15. Lateral tootl1-plate. $\times 250$ diann.

Goniëolis intermedia, Bgh.

Fig. 16. From the middle part of the radnla, a median plate, b lateral plate.

- 17. A sinilar piece, lateral view. "a and b as in fig. i6.

Figs. 16 if drawn with cam. luc. $\times 350$ diann.

Coryphella sahmonacea (Conth.).

Fig. I8. Excretory duct of the Cland ptyatina? $\times 100$ dian.
19. Lateral teetlı. $\times 350$ diann.

Coryphella sp. (anonyma).
Fig. 20. A piece of the radula, lateral view, a median teeth, $b 6$ lateral teeth. $\times 350$ diam.

Gatvina sp. (anonyma).
Fig. 21. A piece of the masticatory edge of the mandible.

- 22. A piece of the radula, from above, a median teeth, b lateral teeth.
- 23. A median tooth, from above.
- 24. Two median teeth, from the muder side.
- 25. A piece of the radula, lateral view; a and b as in fig. 22.

Figs. $21-25$ drawn with cam. luc. $\times 350$ diam.

Pl. V.

Goniëolis atypica, Bgh.

Fig. I. The efferent ducts of the genital system, viewed from the inside of the anterior genital mass.
** the hinder edge of the anterior genital mass; a the duct of the hermaphrodite gland,
b ampulla of the same; c the prostatic part, and d the musculous part of the seminal duct;
c the inner part, and f the onter part of the penis (with glans); g the seminal resicie, and
h its duct.

Coryphella salmonacea (Conth.).

Fig. 2. A piece of the masticatory edge of the mandible, a the free edge. $\times 350$ diam.

- 3. A piece of the radula, lateral riew, aa median teeth, bb lateral teetlı. $\times 200$ dian.
- 4. A lateral tooth. $\times 350$ diam.
- 5. A piece of the salivary gland (Gl. saliv.).
- 6. A piece of the gland of the oral tube (Gl.ptyalina).

Figs. 5 and 6 drawn with cam. luc. \times moo diann.

- $7 . a$ seminal duct, b penis bag.
- S. a seminal duct, b glans penis.

Coryphella salmonacea (Couth.), var.

Fig. 9. Lateral tooth-plate, from abowe.

- 10. Median tooth-plate, lateral view:

Fig. 9-10 drawn with cam. luc. $\times 350$ diann.

Coryphella sp.

Fig. 11. A piece of the masticatory edge of the mandible, a the hinder end.

- 12. A piece of the radula, lateral view, aa median teeth, bb lateral teeth.
- I3. A median tooth, from the muder side.

Coryphellu sp). (anonyma).

Fig. I4. A piece of the edge of the masticatory process of the mandible, " the free edge.

- 15. A median tooth, from the muder side.
- 16. Two lateral teetl, from above.

Figs. 1 - 16 drawn with cam. luc. $\times 350$ dian.

Aldisa zetlandica (Ald. et Hanc.).
Fig. I7. The central nervous system, from above. $\times 55$ dian. ne cerebral ganglia, bb plemral ganglia, oc pedal ganglia.

- 18. Otocyst. $\times 350$ diam.
- 19. One of the largest tootli-plates.
- 20. One of the ontermost plates in the series of teeth.

Figs. 19-20 drawn with cann. luc. $\times 750$ diann.

- 21. Glans penis. $\times 350$ diam.
- 22. A piece of the latter part of the seminal dinct. $\times 350$ diam.
- 23. Elements of the armature of the same. $\times 750$ diam.

Amphorina Alberti, Quatref.
Fig. 24. The fore end of the mandible, with a the hinge-part, b the masticatory process.
25. A tootli-plate, from above.

- 26. A similar one, fron the muler side.
- 27. A similar one, lateral view.
-. 2S. Penis, with a its hook.
Figs. $24-28$ drawn with cann. luc. $\times 350$ diann.

Doridoxa Ingolfianu, Bgh., var.
Fig. 29. Median teetl, from above (the denticles drawn too strong)

- 3o. Lateral tooth-plates of the outer third part of a series.

Lamellidoris muricata (O. F. Mii11.).

Figr. 31. A piece of the radula; a false median tooth-plates, b lateral tooth-plates, outermost tooth-plates. Figs. 29-31 drawn with can. luc. $\times 350$ dian.

- 32. Crop of the bulbus pharyngens, the then of the same.

li liorooll lirleliretm.lior liol, /1

len

12

/1 1; rivir/fileillo .1/

THE DANISH INGOLF-EXPEDITION.

VOLUME II.

4.

THE NORTH-EUROPEAN AND (iREENLANI) LYCOIIINE.

ADOLF SEVERIN JENSEN.

COPENHAGEN.
PRINTED RE BLANCO LE゙NO.
IgO.

CONTENTS.

The North-European and Greenland Lycodinæ.

Pag. 1'ag.
Preface 1.
Introductory Remarks 2.
Srstematic 2.
Biology S.
bistributions of the species of Liycodinc in the North
Entopean and Greenland Waters 9.
Sistematic Part 10.
lycodine. [0 .
Key in the detemmation of the Finropean and creen- land genera of Lecodint 10.
Lycorles Reinh. 10.
Tontative key for the determination of the species (andvarieties) of I, rcoules of North-Europe and Creenland 11.
lycorles valulii Reinh. 13.
frigictus Coll. 22.

- dtlanticus Jensen 25.
- esmarkii Coll. 27.
- endiplenrostictus Jensen 3.3
- pallidus Coll. 38.
- - var. similis Jensen 39.
- -- var. n. squaniventer 39.
- platyrlinus Jensen 51 .

The Lycodinæ of North Europe and Greenland.

By
Adolf Severin Jensen.

IVhilst engaged in working at the section Pisces for the Conspectus Fanna liroentandice. the present anthor madertook a more extended research into the (ireenland species of latcodimu This led quite naturally to a revision of the remainins I focles-material in the Zoological Musemn, so that the work gradually deteloped into a systematic working out of all the species of Nonth Europe and Creenland. From lack of material I was mantmately obliged to omit the North American forms almost entirely.

It is right and fitting that the work in its entirety, as it now appears, should be published in the reports of The Danish Ingolf-1.spedition as a supplement to The lohthological Results. seeing that this Expedition has provided the greater proportion of the material for the research. It seems to me also that it would be an injustice to the bxpedition, if it.s rich and valnable collection of fishes were not intilised scientifically in a greater deyree than has hitherto been done, the late Prof. C. F. Lütken having been prevented by ill health fron going deeper into the work.

Several zoologists in foreign comntries have afforded very great assistance dming the comme of the work, by lending me specinens which it was of special interest to study anew; withont this assistance-varions important questions would have remained unsolved, and I take this opportunit! to express my warmest thanks to the following scientists: Conservator J. (irieg (hereren), Prof. A. Knipuwitsch (St. Petersburg), Dr. E. L, önnberg (Upsala), Gehn. Regicr.-Rat, Prof. K. Mähins flerlinı, Hofrat, Dr. F. Steindachuer (Vienna) and Prof. T. Tullberg (Upsala).

1 owe especial thanks to Prof. F. A. Smitt (Stocklolnin) and to Irof. K. Colleti (Cluristiania).
Prof. Smitt with the utmost willingness, gave me the greatest possible freedon wo sudy the rich collection of Lycodes in the Riks-Mnsemm. This collection was of great walne an it suppemented that of the Musenm liere in many ways.

Prof. Collett with rare generosity has sent me several of his typerpecimens for examination, so that my determinations have attained a surety which otherwise would mot have been reachect. I have been permitted also, to study a large portion of the valuable fecoles-material which has been received at the Christiania Musemm within recent years. To Frof. Collett, who hat habonred indefatigably thronglont a long period of years, to increase our knowledge of the focoles-gronp and han emriched the literature with a series of fundamental papers on the subject, 1 focl myself in addition in a debt of a more personal character for the interent with which he hat followed the monges of i11y work.

11y manuscript was completed in early summer 1902, but the printing was delayed as, during that summer throngh the kindness of Dr. Johan Hjort, I got the opportunity to take part in the investigations of the steamer Michael Sars". An important collection of Lycodes was made during the expedition and I was pernitted to include this material in my work. For this friendliness I would request Dr. Hjort to accept my best thanks.

Last bir not least, to Mr. Th. Bloch my thanks are also due for the care with which he has executed all the figures of the 10 plates as well as most of the drawings in the text. If one has not made oneself familiar with the Lycodes through several years study, an exact determination of the species is often of great difficulty (insurmountable in many cases for the young stages), and one is frequently at a loss if descriptions only are given. I consider the many figures in this treatise to be of great value therefore, especially the series which illnstrates the diverse appearances of certain species according to age, sex and individual variation.

Dr. H. Mr. Kyle has done me the favour of undertaking the translation into English.

Introductory Remarks.

Systematic.

The first certain knowledge concerning the gronp of fishes here dealt with, dates from 1831 when J. Reinlardt sen. formed the genus Lycodes. With regard to the systematic position of this new genus, the same author in 1838 expressed as his opinion that it was very closely allied to Zoarces on accomint of the slight developoment of the ventral fins, the lack of a swimbladder, the formation of the digestive organs, mode of fixation of the scales and the whole form of the bodyr). With regard to the structure of the skeleton also, the two genera agree as was shown much later by W. Lilljeborg${ }^{2}$).

It must be accepted therefore as perfectly correct when the Anerican ichthyologists D. S. Jordan \& B. W. Evermanns) make the Lycodince a subdivision of the family Zoarcide Swainson (1839), characterised (as opposed to Zoarcinct) by the mpaired fins being evenly developed all round, the dorsal fin laving no lower spinons portion, and (as opposed to Cymunelince) by ventral fins being present.

As time went on, a considerable number of species las been described from Greenland and North Europe, and their authors lave retained them within the original genus Lycodes Reinl. It seems to me more natural to subdivide the species of Nortlu Europe and Greenland into 3 genera: Lycodes. Lycenchelys and Lycodonus. Compared with some foreign (American) genera these have the following structural characters in common: teeth occur both on the intermaxillary and the mandible, and on the vomer and palatines; the mandible has no barbule. The relationships may be shortly displayed in the following manner 4):
${ }^{1}$) Kgl. I). Vidensk. Selsk. Skr. VII, 1 is3s, p. 15.5 -
2) Sveriges oclı Norges Fiskar, Il, figh, p. 4 \& 15 -IS.
3) Jordan \& E vermann: The Fishes of North and Mindle America, Part III, iSqS, p. 2456. (Washington).
4) A more detailed diagnosis of the genera will be given later.

Lycodes Reinhardt．
I．ycodes Remharlt，Overs．K．I）Vidensk．Selsk．Forhandl，1\＄3u．31，p．74 wathut．

Body moderately elongated（zoarciform，lieight orer the anns cal． 7 － $12^{1}{ }_{2}$ times in the tutal length．R．br． 6.

Lycenchedys Gill．

Lycenchelys Gill，Proc．Acad．Nat．Sci．Mhilad．，1SSit，p． 150 （mancriz）．
Body very elongated（anguilliform），leight over the anus ca．I6－24 times in the total length． R．br． 6.

Lycodonus Coode \＆Bean．
Lycodomus Goode \＆Bean，Bull．Mus．Comp．Zool．，X，No．5，18S3．13． 205 （mirabilis）．
Body very elongated（angullifornn），leight over the anns cat ir－ 30 times in the total length R．br． 5 ．

In addition to being natmal，snch a division of the old genns Lycodes Reinh．contribntes in an important mamer to simplify a review of the species．In the present treatise is species are described in letail．Of these 6 can now be ascribed to the genera Lycenchelys and Lycodonus，which are characterised by a very elongated，cel－shaped body．The gemms Ly＇codes thus limited contains the rof species with a less elongated，zoarcifom body．

We may now pass over in review the characters of importance for the distinction of the species，beginning with the genns Lycodes，which in spite of the rednction that has taken place contains a somewhat considerable number of very difficnit and monch disputed species．

Lycodes Reinliardt

（ct．the synoptic table p．11－12）．
In a treatise on Gronlands og Islands Lycoder，C．F．Liutken has given a review of some species known to him and divides them into three subdivisions according to the comse taken by the lateral line ${ }^{1}$ ）．A foundation is thas laid，in my opinion，for a natural grouping of the species of Lycodes，on which one must build further．

The species dealt with in the present work may also be gromped according to Liitken＇s system，in the following manner ${ }^{2}$ ）：
a）lateral line single，ventral：
L．arahlii Reinh．${ }^{3}$
L．frigidus Coll．
I．atlanticus Jensen．
1）Lütken：Forte Bidrage til nordisk Ichthyographi．III Vidensk．Merldel．Naturhist．Foren．Kbhvi．，is； 9 So pp 3^{29}
4）A single species，L．microciphahus Jensen，cannot for the present be bronght into any cortain group，as it is onls known from a quite small individual on which the course of the lateral line cannot be letemined with certainty．

3）Concerning the proper phace of this species Lütken has had some doubt，as he writes：I ine：medio－lateralis interdun vestigiun？but that has happened because he had assigned to h．zahliz a specimen of L．coriplearostictues minn which possesses a double tateral line．
b）lateral line double，ventral and mediolateral：
L．esmarkii Coll．
L．cudipleurostictus Jensen．
L．pallidus Coll．
L．platyrhinus Jensen．
c）lateralline single，mediolateral：
l．rossi Malmgr．
1．littkemii Coll．
L．veticulatus Reinh．
Z．．semimudus Reinh．
L．agnostus Jensen．

With regard to the second gromp，it must be mentioned that the mediolateral branch of the lateral line is frequently indistinct in two of the species，namely L．esmarkii and L ．pallidus，so that it is often only after a very carefnl study of a large number of specimens that one can rightly deter－ mine their position－this holds especially for L．palliduts，which stands as a sort of transition form between groups a and b ，so far as the lateral line is concerned ${ }^{1}$ ．

For the rest，the groups a and b seen in other respects also，to stand near to one another and to form together a separate subdivision contrasted with group c．Thus，in gromps a and b the tail is relatively long，whilst the head and trunk together（or the distance between the snout and the anns） most often amomit only to $36,5-45 \%$ of the total length（sometimes reaching 47% in males of L ．frigidus）； in gronp c on the other hand the tail is relatively short，whilst the head and trunk together amount to $43-52 \%$ of the total length．Groups a and b may therefore be described as long－ tailed，group cas short－tailed．

In close connection herewith is the number of rays in the mpaired fins．This is thronghout larger in the long－tailed species than in the short－tailed，and very naturally so，since the anal fin entirely and the dorsal fin for the most part，belong to the tail．In gronps a and b the number
 is $90-97$ for the dorsal fin， $70-78$ for the anali）．

It will appear from the foregoing that the groups of Liitken based on the lateral line only， are not of equal value，but that the groups having the ventral and ventral－mediolateral lines form together one smbdivision over against the gromp with the mediolateral lateral line．For practical

[^34]reasons however, it is convenient to again split up the first division acoording as the lateral line is ventral or rentral-mediolateral (cf the table of analysis p. II-I2).

We may now refer to some of the characters which lave special importance in distimguishing the species within the greater groups based on the course of the lateral line.

Scales. Of the present species two are perfectly devoicl of scales, manely lyodes agnostus Jensen (Tab. VI, fig. I) and L. platyrhinus. Jensen (Tab. V'1, fig. 2). The well-known ielithyologist 1? bleeker has laid such great weight on the absence of seales that he low fommed a special gemus L-ycodalepis ${ }^{1}$, which only differs from L frodes in this one character, and the later American maturalist. have followed him. It seems to me that lycodaleps is an manatural gemus. If the two sealeless species mentioned are removed finm the wenns/-ycodes, they are then separated from species to whieh in other respects they are closely allied. I. agnostus has its trme place amongst the species of lycodes with mediolateral lateral line, not only on acconnt of the situation of the lateral line, but also on accomit of the relatively short tail (the head and trmp together are $46-52 \%$ of the total length) and the number of rays in the mupaired fins (I). 90-93, A. $70-72$. I platyrimus on the other hand, belongs righty to the l-joules with donble lateral line, partly becanse of the ventral-mediolateral lateral lines, partly becanse of the long tail (head and trunk ingether are 37° of the total lengtly) and the mumber of rays in the mpaired fins (I). $99, \mathrm{~A} . \mathrm{S}_{2}$). () me must be content therefore, to regard the absence of scales as a good specific character and not ascribe to it any generic importance.

Of the remaining species of hycodes dealt with in this treatise, there is one which in its slight development of the sealy covering, is a transition fom to the maked species, namely l, seminudus Remin. As the mane denotes, it is only half covered with scales, on the tail manely, and moreoser the scaly area ends in front in the shape of a wedge leaving a naked part dorsally and ventrally ('Tab, IX \& Tab, X, fig. 1). Some variation appears in this species however, as the scaly wedge sometimes sends a portion forward on to the trunk; but as a rule the naked abdominal region is one of the characters which aids to a ready determination of $/$. semimudus.

The naked $/$. agnostus and the half naked $/$. seminutus belong, as mentioned, to the gronp with mediolateral lateral line. The remaining species of this group, L. mossi Malngr.,. L. lïtkeni Coll. and I. veticulatus Reinh, have the scaly conering developed alnost to the sanne extent, and it extends forwards on the sides of the trmak to a point which lies muder on a little in fromt of the beginning of the dorsal fin; but the front part of the back and the belly are always maked, and the fins are likewise devoid of scales.

Most of the species of the groups with ventral or ventralmediolateral lateral lines are remakable for the stronger development of the sealy covering. In ardult individnals the sates coner the whole of the body (head exclucled) and extend on to the mpared fins. Such is the catice in /... arahtiz Reinh., L. frigidus Coll., L. atlantions Jensen, J. esmarkiz Coll. and l. emdiplemostichus Junsen. Of these species fofrigidus is easily recosmisable by its extremely small scalco ('labl). V, fiss a a). /. pallifus

 rediscovererl (Fishes of North and Middle America, Ill, rigis, 1). 2.46.3).

Coll. as a rule has a less developed scaly covering, as the anterior portion of the back and a large part of the belly are naked, and the scales (in general) do not extend on to the mpaired fins (Tab. IV, fig. 1 \& Tab. V, fig. 2); in the variety squamizenter milni however, the scales reach to the neck and to the muderside of the belly, and appear as well on the unpaired fins (Tab. IV, fig. 2), but it is not exchuded that I have made an error in considering this form as a variety of L. pallidus; it must perhaps be raised to a separate species. Lastly L. platyrhimus, as stated above, is entirely naked.

All in all, the extent of the scaly covering furnishes often a good specific character when adult individuals can be examined.

Colonr. One species can be said with certainty to be minformly colonred at all ages, without spots or bands, and that is L. frigidus Coll. (Tab. V, fig. 1 a, b). The reason for this, I presume, is that this species is restricted to great depths ($450-1455$ fathonns). L. atlantious Jensen, L. pallidus Coll. var. (vel sp. 11.) squamiventer mihi (Tab. IV, fig. $2 \mathrm{a}, \mathrm{b}$), L. microcephalus Jensen (Tab. I, fig. I) and L. platyrhinus Jensen (Tab. VI, fig. 2) have likewise no markings so far as one can judge from the present scarce material, and they all live at great depths (respectively $516-1423 \mathrm{f} ., 537-957 \mathrm{f}$., 799 f . and io10 f.).

The remaining species which do not reach in general to so great depths, possess a more lively colouration as a rule, because dark and light alternate; dark and light cross-bands are the most frequent combination, but rings, network or festooned markings can also occur. Some examples may here be . mentioned where the colonr markings afford a method of determining certain species.
L. esmarkï Coll. is remarkable for a specially characteristic colouration. When quite young (Tab. III, fig. 2 a) it show's light, A-shaped cross-bands, which in medimm-sized individnals (Tab. III, fig. 2 b) enclose dark spots or stripes, and which finally in the adnlts (Tab. III, fig. 2 c) change to form festooned markings.

In all the remaining species, the body of the quite yonng is adorned with dark and light crossbands (sonnetimes the one, sometimes the other is the more prominent), and this colomration is still retained essentially in the older individuals of the following species: L. eudiplentrostictuts Jensen, L. rossi Malngr., L. liitkenii Coll. and L. agnostus Jensen, whereas L. pallidus Coll., L. zahlii Reinh., L. reticulatus Reinls., and L. seminudus Reinh. frequently assume another colouration with age. L. pallidus as a mule becomes minformly coloured with age, and the sante is often true of L. seminudus. In L. vahlii the bands disappear almost entirely in the adults or beconne resolved into ringshaped stripes and irregular spots; one, two or three black spots, the one behind the other, occur almost always on the anterior corner of the dorsal fin, so that the species can readily be recognised (Tab. I, fig. 2 \& Tab. II, fig. 1). In L. reticulatus the bands change in the older individuals to form a characteristic network, especially on the anterior portion of the body (Tab. II, fig. 2 \& Tab. VIII).

However variable the colour markings may on the whole seen to be, they frequently give good specific characters. On the other hand, it must not be forgotten that especially the young of varions species are so similar to one another in colouration, that confusion may very readily occur.

The pectoral fins often give good specific characters. The number of rays in the present species varies from 15 to 23 , but the variation within the individual species is sometimes very limited. The length of the pectoral fin also is sometimes a good detemining character between nearly allied species. The posterior margin of the pectoral fin is in general romuled, but the condition in $/$.. endiplenostictus ('Tab. III, fig. I) is characteristic in that the lower rays are somewhat longer than the middle unes, so that an indentation occurs (the same may also occur in individuals of $/$. /rigudus. see Tab. V, fig. r a).

Other characters which might be taken into consineration, thongly not to so great an extent, are the relative height of the body (the dimension chosen in this work for the greater or less elongation is always the height over the anns, which is to some extent independent of distension cansed by food or sexnal proclucts), the relative length of the head (which is nevertheless rather variable within the individual species, the males as a rule having longer heads than the fenales or youngr), size of the eyes, condition of the teeth etc.

A gap in the present work is the almost entire absence of the structural anatomy; I must leave this aspect of the diagnosis of the Lycodince to others who can afford the necessary time. I have only been able to examine the appendices phlorica, which in the present species of the genus Lycodes are always two and very small, with exception of L. csmarkii Coll, where they are wanting altogether.

Geographical Distribntion. A not mimportant factor to be taken into account in determining a specimen, is where it was found, each species hawing its characteristic, horizontal and vertical distribution, as will be mentioned in detail in the special part. A summary is given on p. 9 io for orientating the species which inhabit the varions seas within the entire area; bnt thongh this summary is based on a large amonnt of material, the possibility is of course not excluded that future investigations may still find new forms within these seas.

Lycenchelys Gill and Lycodonus (boode \& Bean.

To the genns L-fichochelys I have referred \& Enropean and Greenland species: I. murcha Coll., L. sarsii Coll., J. Rolthoffa Jensen and J. ingolfames Jensen, the determination of which does mot cause great difficulty. A good specific character is formed seenimgly by the large pits of the lateral line along the mpper jaw and under the eye. In L. ingolfonus their number is S, in the others nuly: 7. Other good characters are to be formd in the distance of the dorsal fin from the snout, the retative length of the head and the number of rass in the pectoral fins. The colouration in $/$. munarna is miform, and this species also is restricted to great depths (3 fo-620 f.) ; what the condition is in /.. ingolfianus is not known, as only one adult specimen (mifomuly coloured) has been fomud; I. Kolthof ha has a strongly spotted (marbled) colouration; L. sarsii has dark markings in whe young lecoming indistinct in the older stages. Each of these four species has its own scparate area of the sea, so that one can conclude from the region alone which species is to hand. - Cl for the rest, the srmoptical table which is given later.

Of the genns Lycodonns only two species are present from the region liere considered: L. flagellicanda Jensen which inlabits the polar depths from Spitsbergen down to Iceland and the Færoe Channel, and /. ophidium Jensen of which only a young specinen fronn the deptlis of the Atlantic Ocean (sonth from Iceland) has been found. Cf. for the rest, the synoptical table.

Biology.

The levodina are botton-fishes which swin by vigorons movenents of their strong tail. As the fishing apparatus often brings thens np alive to the surface, even from great depths, one can well believe that they are tenacions of life. Lycodes frigidus, for exanple, which is essentially a deep water fish, was kept alive during the Norwegian North-Atlantic Expedition by being placed in sone water in a tub; according to Collett, they generally remaned at rest in a half coiled-up condition, somewhat like Zoarces ziziparus. During the Michael Sars expedition of igoz I placed two Lycodes esmarkii, taken from 275 fathons depths, in a tub with water and they remained alive sereral hours; other individnals of the same species showed themselves extremely active on being preserved and remained living for a long time.

According to the observations of Collett, myself and others, the Lycodina live chiefly on crustacea: copepods (Calames), cumacea, isopods, anmphipods and decapods (Hippolyte, Hymenodora etc.). In the alimentary canal of the following species only the remains of crnstacea were fonnd: Lycodes rossi, L. reticulatus, L. semimudus, L. agnostus and Lycodonus flagellicanda. Lycodes vahlii and Lycenchely's sarsiz feed both on crustacea and small bivalues. Licodes frigidus according to Collett, lives chiefly on crustacea, but he las also fonnd in them the remains of a cephalopod; during the Ingolf Expedition a Gonatus was fonnd in one, and I have taken from their stomachs the beaks of ink-fish and remains of fishes. Collett found fish remains in Lycodes liutkeniz. Lycodes endipleurostictus feeds on crustacea, but one just as frequently finds in them the tubes of tubicolous worns, and once I have taken a Priapulus from its stomach. Lycodes esmarkii seens to feed exclusively on echinoderns, especially ophinroids, partly also on Antedon and Echints; both Collett and I myself have fonnd their stomachs and intestines crammed full of broken skeletons of these animals.

The Lycodina are not despised either by other fishes. At West Greenland they are fonnd not rarely in the stomachs of the Greenland shark (Somniosus microcephalus), and I have once taken a hycodes (indeterminable) fron the stomach of a cod.

Concerning the beginning of the spawning period but little is known. Collett says that Lycodes esmarkii spawns in the early winter months at Finmark, and that L. vahlï ($=$ L. gracilis) spawns during July- ()ctober in the Skagerak; I have found the last named species with ripe roe in the beginning of July (Iceland). In the cold area: (the Polar Depths) the breeding time may begin at the end of Angust, as I have observed the ripe roe at that time in Lycodes frigidus and 1. eudiplemostictus.

The Lycodince are oviparous. The eggs are of considerable size and consequently relatively few in number. Collett has found ovarian eggs in L.vcodes esmarkii which were 6 mm. in
diameter and he puts their number at abont $120 x$. In a specimen of beodes frigidus, $5(x)$ mm long, I have connted 500 eggs each ca. 7 mm, in diameter. The eggs are large aloo in the amalle
 stictus 5 mm. in dianneter (the number ca. 250) and in $/$. agnostas 4.5 mm. in dianeter.

The eggs are laid withont donbt on the bottom, as no pelagic egg is known which conld be ascribed to the fycodince. The brood also must apparently live on the bottom; tolerably smably yong. for example, have often been taken in the trawl which is dragoged on the bottom, never howerer in the pelagic net.

Distribution of the Species of Lycodinæ in the North European and Greenland Waters.

A. Species taken within the 300 fathom line.

r. Kattegat (as far as the deep clamel E. from Lasso):

Lycodes zahlii Reinh. (=f., gracilis M. Sars).
2. Skager Kak:
fycodes z'chlii Reinh. (= L. gracilis M. Sars). Lycenchelys sarsiz Coll.
3. Norway:

Lejcodes rahlii Reinh. (= L. gracilis M. Sars). esmarkï Coll. (Fimmark and towards Bear Island).

- rossi llalmgr. (Porsanger Fijord in East Fimmark).
Lycenchelys sarsii Coll.
+ Norway-Sluetland Slope(Eggen):
Lyeodes esmarkia Coll.

5. Firevoe Isles:

Lycodes esmarkii Coll.
6. Freroe-Iceland Ridge:

Ljcodes esmarkii Coll.
7. Iceland:

Lycodes vethlii Remh. ($=$ L. Iugubris Luitk.). esmarkii Coll. (Ex. from Iceland).
1 - pallidus Coll.|N. fromi Iceland, in the cold areal).
8. Kara Sea:
L.jcodes pallidus Coll. rossi Malnige. seminudus Remin. agnostus Jensen.
9. Spitzbergen:

Lycodes pallidus Coll.
eudiplenrostritus Jensen.

- rossi Malmgr.
- semimuths Reinl.

10. Jan Mayen:

L-yeodes reticulatus Reinh. van macrocephalus milui.

Ir Northerly East-Creenland:
bycodes pallidus Coll.
eudipleupostritus Jensen.

- reticulatus Reinh. var. macrocephalus milii.
seminutus Reinh.
logcenchelys kolthoffi Jensen.

12. West-liteenlallid?:

Lerodes rahtio Reinh. 心. W. (ireenkund).
cudipleumastictus Jensen.
reticulatas Reinh.
semimudus Reinla.

B．Species taken beyond the 300 fathom line．

1．Polar Depths or the cold area ${ }^{1}$ ：
Lycodes frigidus Coll．
1 －esmarkii Coll．（juv．；Fieroe－Channel））．
cudipleurostictus Jensen．
pallidus Coll．
platyrhinus Jensen（between Iceland and Jan Marenn．
lütkenii Coll．（IV．from Spitzbergen）．

Lycodes seminudus Reinl．
Lycenchelys murana Coll．
Lycodonus Alagellicauda Jensen．
2．Nortli Atlantic Ocean：
Lycodes microcephalus Jensen．（S．W．from I celand）．
Lycenchelys ingolfiamus Jensen．（Davis Straits）．
Lycodonus ophidium Jensen．（S．from Iceland）．

Systematic Part．

Fam．Zourcide Swainson（1839）．

Subfam．Lycodine Jordan \＆Evermann（1898）．

Body elongated，zoarciform or angulliform，covered to a more or less extent by small round，non－imbricate scales，which are sometimes wanting．Lateral line ventral，mediolateral or double，often less distinct．Fin－rays soft and jointed；the minpaired fins are continnous，and the dorsal fin has no depressed portion；pectoral fins well－dereloped；rentral fins present，with few short rays，jugular in position． Gill－membrane firmly minted below to the throat．Teeth on the mandible and inter－ maxillary，often also on the vomer and palatal bones．Psendobranchiz present；no swimbladder；pyloric appendages rudimentary（2）or absent．

Key to the determination of the European and Greenland genera of Lycodinæ．

I．Body zoarciform，heightorer the anus contained ca． $7-12^{1 / 2}$ times in the total length．

Lycodes Reinl．P． 10 ．
II．Body anguilliform，height over the anus contained ca．i6－30 times in the total length．

A．Branchiostegal rays 6.
Lycenchelys Gill．P．S2．
13．Branchiostegal rays 5 ．
Lycodonzs Goode \＆Bean．P． 93.

Lycodes Reinhardt．

Lycodes Reinliardt，Overs．K．D．Vidensk．Selsk．Forhandl．，i830－3I，p． 74 （vahlii）．
Lycodalepis Ißleeker，Versl．K．A．W．2e Rks．，VIII，1874，p． 369 （mucosus）．
Lycias Jordan © Exemmann，The Fishes of North and Middle America，Part II1，1898，p． 2463 （seminuzdus）．
${ }^{1}$ ）By Polar bepths I understand the deep waters which are bounded to the south，not by the polar circle，but by the submarine ridge between Greenland－Iceland－Færoc Isles－Shetland：becanse north of this ridge，polar water with a tempera－ ture nuder $0^{\circ} \mathrm{C}$ ．the cold area ${ }^{2}$ ）is constantly found at the bottom where this lies more than c ． 300 fathoms under the surface．
 in the total length. Teethon the intermaxillary and mandible, fomer and palatincs. Underjaw without barbiles. Scales small, corering a greater or less part of the trunk and tail, sometimes wanting. Lateral line ventral or mediolateral or bothmediolateral and ventral. Branchiostegal rays 6.

The characters which are of special inportance for distinguishing between the manerons species of this genns have been mentioned in detail in the introduction (p.3-ラ). A detailed diagnosis is given mader each species and I shall here endearour (p . II-12) to draw m a Key for the determination of the North Enropean and (ireenland species - the many difficulties in the way of separating such nearly allied species must be the excuse for the apparent shorteomings.

Tentative key for the determination of the European and Greenland species ${ }^{5}$ (and varieties) of Lyeodes.
I. Vahliz-esmarkii group: Iateral line ventral or both ventral and mediolateral. Distance between the snont and the anns $36,5+5(47) \%$ of the total length. D) 9f $118 ; 1.81 \quad 102$.
A. Lateral line single, ventral.
a. Rays in the pectoral finm 23. (East coast of North America; 516-1423 fathomm.
b. Rays in the pectoral fins $1 /-21$.
L. atlanticus Jensen; p. 25.
I. Colour (at all ages) minforn, withont spots or bands. (Polar 1)epths from Spitzhergen to Iceland and Færoe Isles: (260?) $450-\mathrm{I}+55$ fathoms). L. frigidus Coll.; p. 22.
2. Body with dark cross-bands, in adults ring-slaped markings or nore miform; in the anterior corner of the dorsal fin alnost always one or more dark spots. (Kattegat, Skager Rak, Norwas, Iceland, southerly West-Greenland; 30-300 fathonns).
L. vahlia Reinl.; 1. Is.
B. Lateral line double, ventral and mediolateral.
a. Body naked. (Polar Depths between Jan Mayen and Iceland; 1010 fathoms).
b. Body with scales.
a. Pyloric appendages absent. Rays in the pectoral fins $22-23$, in the dorsal $113-118$, in the anal 97-102. Hind-margin of pectoral not indented. (Fimmark and towards hear Ishand. Norway-Shetland Slope, Fieroe Chamel, east of the Faroes, Faroc-lceland Ridge, east of Iceland, Nova Scotia; r50-300 (620) fathoms). l. esmarkii Coll.: 1. 27.
3. Pyloric appendages present. Rays in the pectoral fins 20-22(23), ins the dorsal 100 - 203. in the anal 8S-92. Hind-margin of pectoral indented. (Folar Deptlis west from Norway, north from the Faeroe Isles and east from Iceland, Spitzbergen, northerty East-and WestGreenland; 150-470 fathoms).

1. eudiplentostictus Jensen: P. 3.3.
1) A North American species, L. athaticus Jensen, is included in the key becanse I know it at first hand. I.. miorocephalus Jensen (from the Athantic Ocean south from leeland, 799 fathoms; p, 53) is winterl, because the course of the lateral line in this species canmot be determined with certainty - only one small specimen being known; for the rest, it is easil distinguished from all the above species by reason of its small head, which is only 17.30 , of the totul length.
i. Pyloric appendages present. Rays in the pectoral fins $17-21$, in the dorsal $94-101$, in the anal $81-\$ 6$.

* Belly naked on the muderside.

1. Longitudinal diameter of the eve $4,5-3,1 \%$ of the total length. (Kara Sea, Polar Depths west from Norway, north from the Freroe Isles and north fron Iceland, Spitzbergen, northerly East-(ireenland; 18-495 fathoms).
l. pallidus Coll.; p. $3^{8 .}$
2. Longitudinal dianeter of the eye $5,6-4,7 \%$ of the total length. (Polar Depths south from Jan Mayen; 371 fathoms). L. pallidus Coll. var.
similis mihi; p. 39.

* Belly with scales also on the underside (either the whole or in all cases the greater portion). (Polar Depths west from Norway, north from the Freroe Isles and east from Iceland; 537-957 fathoms). LE. pallidus Coll. var. (vel sp. u.) squamiventer milii; p. 39.
II. Reticulatus oroup: Lateral line mediolateral. Distance between the snont and the anms 43-52. o of the total lengtli. D. 90-97; A. $70-7 \mathrm{~S}$.
a. Body naked. (Kara Sea, Ice Sea of Siberia; 15-100 fathoms). L. agnostus Jensen; p. 79.
b. Body more or less covered with scales.
\%. Lengrth of the pectoral fin $16,8 \%$ of the total length, number of rays 23 . (West from Spitzbergen; 459 fathoms). L. lïtkenii Coll.; p. 59.

3. Leengtl of the pectoral fin $14,4-13 \%$ of the total length, number of rays $17-21$.

* Colonr marked by dark cross-bands. Rays in the pectoral (17) 18-19 (20). (Kara Sea, Fast Finnark, Spitzbergen; 5 too fathoms). L. rossi Malmgr; p. 55 -
** The dark cross-bands (in older individnals) form network patterns. Rays in the pectorals 19-21.
r. Longitndinal dianeter of the eve $2,7-4^{\circ}$ 口 of the total length. (West Greenland; ioo fathoms).
L. reticulatus Reinli.; p. 6i.

2. Longitudinal diameter of the eye $4,3^{--4.8 \%}$ of the total length. (Northerly East (ireenland, Jan Mayen; 40-I50 fathoms).
L. reticulatus Reinh. var. macrocephalus milui; p. 66.
r. Lengtly of the pectoral fin 1 i, $8-9,6 \%$ of the total length, number of rays $19-22$. (Kara Sea, Polar Depths between Norway and Freroe Isles, east from Iceland and sonth from Jan Mayen, Spitzbergen, northerly East Greenland, West Greenland; roo-600 fathoms).
L. seminudus Reinh.; p. 71.

Lycodes vahlii Reinhardt．

lig． 1 发 2 in text．
Is 3 I．Lycodes Vahlii Remhardt，（Wers．Kıgl．D．Vidensk．Selsk．Forlı． 1830 3I，p． 74.

1838．L．Vahlii Kemhardt，Kgl．D．Vidensk．Selsk．Skr．VII，p． 153, Tab． 5.
i 866．L．gracilis M．Sars，Forlı．Vidensk．Selsk．Chria．iS66，p．yo，Pl．1，Fig．I－3．
1875．L．gracilis Collett，Norges Fiske：Tillægsh．til Forh．Vidensk．Selsk．Chria．18jヶ，p．roo．
r88o．L．Vahlii Luitken，Vidensk．Medd．Natnrh．Foren．Kbhvon．，p． 3 ri．
1880．L．Lugubris Laitken，ibid．p． 315 ．
isgr．L．rossï Lilljeborg（nee Malmgren），Sveriges och Norges Fiskar，HI，p． 285.
tS95．L．Vahliz Smitt，Skandinaviens Fiskar，II，p． 613 （partim）．
1898．L．gracilis Lütken，The I anish Ingoif Expedition，II，1，p． 22.
1899．L．gracilis Collett，Vidensk．Selsk．Skr．Chria．No．6，P1．I－III．
1gor．L．I＇ahiz forma gracilis Smitt，Bih．K．Sr．Vet．－Akad．Handl．Bd．27，Afd．IV，No．\＆p． 22.
190ı．L．z＇ahlii Jensen，Vidensk．Medd．Naturh．Foren．Kbluvn．p． 202 \＆p． 212.
The heiglit over the anns amonnts in general to S－in of of the total lengeth
 total length．The tail is considerably longer than the head and trunk together，the distance from the snout to the anns being in males $37,8-42,30$ ，in females $36,5 \cdots$
 body；these bands in the adnlts either disappear entirely or dissolve into ring－shaped stripes andirregular spots；on the anterior corner of the dorsal fin is almost alwaysa black－brown patch，behind which there often is one or two more dark spots．Scales begin to appear at a total length of ca． 60 mm 11 ；at a length of ca．ioomm．the tail and the trmuk are completely covered by scales，as also the base of the mpaired fins． Lateral line ventral．Pyloric appendages 2．The length reaches 52011 m ．

D． 95 －II7．A． 84 98．P． 17 －20．Vert．98－ing．
Distribution．Southerly West－Greenland，Iceland，Seandinatia；3o－3oo fathoms．

－lugubris：maximuni length 355 mm ．D．105－103；A．90；P．ig is \｛1\％V Vert．105．Iceland．
 Scandinavia．

Kemarks on the Synonymy：
 very young specimen，only 43 mum．long，characterised by so sadde slaperl coss－bands on a whitish hackeround．The species
 very small individual was taken in the same ford 6 years later．Lastly，during some of the practionl fislueries investigations

1）Cf．however Appendix，p． 21.
 in the Kattegat, Skager Rak and Clnistiania Fjord. Pased on this rich material, Prof. R. Collett published in iSg9 a detailed description with mumerous figures of the species and of its changing appearances from the young stages up to the reproductive periot, the latter stage being reached in these waters at a length of $125-150 \mathrm{~mm}$.: the largest specinen was InS mun. If I) uring the same period, the geographical distribution of this species became widened to embrace Iceland and West Greenland 2): Collett had obtained from Iceland in iSgr a young specimen from B. Grondal of Reykjavik, and the lugolf expedition took 2 specimens 143 and 244 mm, long in Davis Straits in the summer of 1 S95; the last specimens were determined by the present author as L. gracilis and were published umber this name in the report on the ichthrological results of the Ingolf experlition (Liitken l.c.).

Irof. Collett in the same treatise, exammed the relation of L. gracilis to allied speches. Lack of sufficient material obliged Collett to leave masettled whether or not L. gracilis is identical with L. rossi llahgr. and L. pallidus Coll., botls known from spitzbergen. Further it is possible, he states, that L. gracilis may be shown to grow elsewhere to a greater size and he identical with some earlier described form, whose youngr stages are as yet manown.

On the first possibility, I am mable to give Prof. Collett any support, as L. rossi is in all probability the young stage of another species ($=$ L. celatus mini)s) and L. pallidus is a good species as I shall show later.

On the otlier hand, L. gracilis is in my opinion identical with the species longknown from Greenland which Reinhardt (stm.) set up as the type of the genus, namely L. vahlät). Our Musenm possesses half a score of specimens of this Lycodes, and 7 of these were exammed by Reinhardt and Lütken whilst 3 are of more recent date (1885); the value of the material is diminished by the bat preservation of the specimens on the whole, but it is quite sufficient to sustan the certainty of the contention here set forth.

Further, I am in a position to furnish proof that the L. lugubris from Iceland (Ofjord), described by Litten in isso, must also be referred to L. vahlii.

We see therefore the peculiar phenomenon that one and the same fish las been ascribed to 3 different species, according as it lives in the waters of Scandinavia, Iceland or Greenland. The reasons for this are twofold: partly because the separate athors have had only a linited material to decide upon; partly because the specimens fall into three gronps, which severally present certain differences, and each of these groups possesses its own geographical and separate region.

As a contribution to the knowledge of the importance of geographical elements5) for the formation of separate races the present example is not without interest, and we shall therefore look into this point a little closer later (p. 19). I shall proceed now to treat of the separate forms, employing as titles the names they have hitherto borne.

Lycodes gracilis M. Sars.
The form from Scandinavia is so well known from Collett's latest researches (IS99) that I need not dwell upon it. Collett's treatise I shall suppose as known in the following pages.

Iycodes vahlii Reinlardt.

Tals. I, Fiig. 2 a, 1 .
At the time when I was assisting Prof. Lütken with the revision of the mannscript of The Ichthyological Results of the Ingolf Expedition, I saw that two small Leycodes, taken in Davis Straits ont from Sukkertoppen in 88 fathoms, must be ascribed io L. gracilis with which I was familiar throngh the mmerous specimens from the Skager Rak presented by Dr. C. G. Joh. Petersen to the Zoological Mnsemm. Prof. Ifitken sent these two specimens to Prof. Collett who was then busy with lis monograplı on L. gracilis; Prof. Collett acknowledged the correctness of the determination and has mentioned the discovery in his treatise.

At the same time, subjecting the other preserved material in the Musenm of Lacodes from Greenland to a hasty review, it struck me that the youngest of the specimens labelled under the
${ }^{1}$) A somewhat larger specimen, 196 mm . long, was taken later (1900) in the Gullmar Fjord (Bohuslän; it is preserved in the Riks-Musemm at Stockhohn, where l have had the opportunity of seeing it.
${ }^{2}$) By an error in writing Collett has East-Greenland (l.c.p.S).
j) Later: A rich material recently obtamed has made it clear to Prof. Collett also that L. rossi is an independent species.
4) It might appear as if Prof. Smitt had already published a similar opinion, but his cL. vahiii is not the same as I.. valhii Reinhardt. See further p. I5, note i.

द) By geographical elements I understand the sum of the natural conditions in the region.
name L. vahlii Reinh. were apparently not distinguishable from the Ingolf's iwo I. gracilis. At that time I had no opportunity of following up the matter; but now that I have examined it more thoronglly I find that my first impression was correct.

Proportions of the body. In order to display the proof of the correctuess of this position, I give here the measurements of a mumber of specimens, in part the two from the Ingolf, identified by me as L. gracilis, in part the earlier ones ascribed by Reinliardt and Ia ittents to l. rahliit.

Measurements of L. valhiii Reinlı. from West (ireenland:

Total length

ill 1 mm .	14.3	197	235	244	260	295	310	335	365	385	410	415
	2 S	37	45	49	52	5-5	65	66	87	90	90	So
	54	72	S8	95	99	118	127	128	152	157	160	170
	${ }^{1} 3.5$	19,5	?	23	22	2.5	32	31	35	3'	3.3	4

The length of the head is therefore in females $\mathrm{I} 8,8-2 \mathrm{I}^{\circ}$ o, in males $19,6-23,8{ }^{\circ}$ o of the total lengtl; in the specimens from Scandinavia the figures, expressed in ""from Collett's statement of measurenents, are $18,8-21,4 \%$ and $20,4-22,70^{\circ}$ o respectively. Finther, the head and the trunk together (i.e. distance from snont to anns) is in the (ireenland specinnens $36,4-+r, 6{ }^{\circ} \%$ in those from Scandinaicia $37,1-4,3^{\prime \prime}$ " of the total length. - ln other words, there is as close an agreement as is possible between the (ireenland L. rahlii and Scandinavian L. gracilis, with regard to the most important measurements of the body 1).

Colour-markings. The smallest, (rreenland specinen (one from the Ingolf Expedition) is a male ${ }^{2}+3$ m 1 nnn, figured in Tab. I, fig. 2 a. The body is adomed with broad, dark cross-bands, 2 on the trunk and 7 on the taif; on the tail posteriorly the bands extend right across and ont to the borders of the mpaired fins, further forward they reach below to only a little muder the median line; for the rest, each band has a light part in the centre which is not much darker than the grayisis yellow gromulcolour of the back and sides. In the anterior part of the dorsal fin are 3 very dark, elongated spots, the
${ }^{\text {I }}$) In his work Skandinaviens Ifiskar II, iS95, p. 6r5, Prof. F. A. Smitt has expresselt the conjecture that L.gracilis, which was only known at that time (in the literature) from the original specimen of Sars, is the young state of L o ahblia.

In a later note On the (emus Lxcodes (Amn. Mag. Nat. IIist. (7) V, 1900, p. 57), written after the appearance of Collett's treatise on L. gracilis, the same statement is repeated, but at the same thme, L. gracilis is given in his analytical table as a peculiar form (borealis) of L. zahlie, specially characterised by this that the length of the head is usually less than 22 "of of the total lengti, whilst in L. valtii typica (forma arctica) the length of the head exceeds 2200 of the total length: with regatel to the first form it is correct that the length of the head is usually less than 22 "o of the total length (see abovel; but it does not agree with the results of my measurements to say, that the length of the head in L. a dhliz exceeds more than $22 \times$ of
 shall soon see. - hastly, in has latest contrihution concerning the systematic relations of the genus, sun it speaks thus: Within the limits of the fomer species (i. e. L. wahioi) it is easy enongh to distinguish a hocal form, gracilis, hiving in the more sontherls localities on the Eutopean side of the Athantic and perhaps by this geographical selection from the true home of the

 a bocal form of L. zahlii (but as a dwarf fom indeed, not as a form which had preserved the characturs of the youstr of $/ . .2$ abliti:
 Smitt's opinion as agreeing essentially with my view; but since I have had the opportmity, thanks to frof. Smitt, of
 is not L. vahlii Reinhardt at all, but contans heterogeneons elements, rhiefly specinems of L. pollidus collett and L. endtplewostictus mihi two species which, in my opinion, show mo special relationshin, to h.. zuhtii Rcinhatelt.

2nd and 3 rd of which are in line each with its cross－band，whilst the ist，in the rery front conner of the fin，is in line with the posterior edge of the foremost cross－band．Specinens from the Skager Rak show the same colour－markings as the foregoing，but the comparison must be made with mneln smaller specimens，becanse the eross－bands in those from the Skager Rak liave already disappeared as a rule at the same size as the above．
＇The next larger specimen is a female of 19 Jmm ．long，determined as L，valuliz by L，ïtken． The colonr－markings are as in the foregoing；the dark cross－bands are lowever sonewhat fainter，but that may perlaps be due to their longer preservation in spirit．

Observation of the remaining specimens shows that the colour－markings of the yomg become more and more indistinct with age，especially in the males．Eren in the largest female， 415 mm ．long， there are still traces of the dark bands，althongh they are partly resolved into ring－shaped markings． The larger males，on the other hand，are darker than the females on the whole，so that the bands， partly in the form of rings，can scarcely be discemed or have entirely disappeared；at the same time， the belly is often of a sharply delimited，relatively light，sometimes even quite white colour（Tab．I， fig． 2 c ．The dark spot on the anterior comer of the dorsal fin is very conspicnous both in the male （Tab．1，fig．2c）and female（Tab．I，fig． 2 b），sometimes also the second and third spot．

The sealy covering has already attained essentially to its fullest extent in the 143 mm ．long specinen（＇Tab．I，fig． 2 a），as it extends forwards to the neck（on a line across the gill openings），to the bases of the pectoral fins and of the ventrals as well as ont on to the unpaired fins．

The lateral line is as in L．gracilis ：it conses along the ventral border of the tail and rises dorsally over the anus in order to reach the mper notel of the gill－opening 4 ．

The number of fin－rays differs somewhat from that in the Seandinavian specinens，which is probably in relation to the fact that the Greenland form，taken on the whole，is a stronger race； in this regard also，the Iceland specimens are transition－forms so that no specific distinctions can be grominded on these differences．This point will be further considered later（p．19）．

Since the general appearance of the body offers no mark of distinction either－that the species reaches a very much greater size at Greenland than at Iceland（ef．p．ig）denotes again only a racial difference－I look mpon it as certain，that the（ireenland／．．zahlii and the Scandinarian L．gracilis belong to the same species．

lycodes Lugubris Luitken．

Tab．H，Fig．i a，b．
Before treating of this fom I think it opportme to refer to some Lycodes which have recently been received at the Zoological Musenm from the east coast of Iceland．They were procured by

1）This seems to dispute Liitken＇s observation：As Hr．Collett has called to my attention，there is some reason for considering there is another lateral line，a mediolateral，in one of the present specinens（Nr．7）．．．．．．（Vidensk．Medd． Naturh．Foren $1880, p .3121$ and Collett＇s still more definite assertion：it must however be adnitted，that one of the typical specinens of L ．vahlii exhibits traces of a mediolateral line（The Norw．North－Atl．Fxpl．Fishes，p．S6）．From an exact examination of the specimen concerned，I have come to the result that Collett＇s observation was perfectly correct；but at the same time 1 am mevertheless of the opinion that this specinen is not $/$ ．\quad zohlif at all－in spite of the fact that it is one of Reinhardt＇s type－specimens－but on the contrary，is ichentical as species with the fishes brought house by the Norwegian North－Itlantic Axpedition from Spitzbergen，which Collett took for young specimens of L．ismarkit Coll．，but which I have becn obliget to distinguish as a special species（see further under L．ézdiplewostictus p． 36 ．
stud．mag．R．Horring during his crnise on the nary－schooner Diana．Their number is half a score， of varions sizes，and they are readily recognised as being of the sane species as $/ . g_{\text {gracilis．Neasure－}}$ ments of some of the specimens will shew the exact agreement with those from the Skager Rak．

Measurements of Lycodes from Iceland，identified as lo．gracilis M．Sars：

The length of the head therefore，amonnts to $19-20,5{ }^{\prime \prime} .1$ of the total length in the fenales． and to $20,8 \%$ in the males；in specimens from Scandinaria these proportions，rechoned in percentages from Collett＇s data，are $18,8-21,4^{\circ}$ and $20,4-22,7^{\circ} / 0$ respectively．Again，the head and the trunk together（i．e．the distance from the snont to the anns）amonnts to $3 \pi, 6-40,8 \%$ of the total length in the Iceland specimens，and to $3 \pi, \mathrm{I}-4 \mathrm{I}, 3 \%$ in the Scandinavian．The narrower linits to the percen－ tages in the Iceland specinens arise naturally from the fewer individnals on which the measmrements are based．In regard to the general form of the body；conrse of the lateral line etc．they agree exactly with the specinnens from the Skager Rak．

The colour－markings in the Iceland specimens do not differ from those of the Skager Rak specinens．The youngest individuals（ca． 90 mm ．long）are provided as a rule with 8 to 9 broad，dark cross－bands，but these are already not very conspicuons；in older individuals they can just be seen or have wholly disappeared．On the dorsal fin anteriorly there are 2 （sometimes 3 ，sometimes only i） black spots；this marking seenns tolerably constant，even when the others disappear（Tab．II，fig．I a，b）． The youngest individual farther，possesses a light stripe across the neck．The gronnd colonr is brownish above，gray－yellow below．

The scales appear at the same size as in the Scandinatian specinnens．A young specimen of 87mm．shows some portions here and there where the skin is still naked，but in a slightly older specimen of $95111 m$ ．the scales are complete．

From an examination of these specinens I lave arrived at the same conclnsion as Collelt from his investigation of his specimen from Iceland，viz．that a Lycodes identical as species with I ． gracilis occurs at this island．

Accepting this as a fact，we may now enquire nore closely into the single lycodes formurly known from the coast of Iceland，namely L．lugzbris Liitk．

Of the 5 specimens， 4 males and ifemale，which in 1880 formed the basis for the establislment of this species by Lutken，only three， 2 mates and I female now remain；a monnted skeleton in the Ansennu labelled L．luggbris is certanly identical with the fourth specimen but the fifth is 110 longer in the Musenin．

Lütken has remarked that his Iceland Ifycodes stood near to h．zahmiz in respect to body form，scale－covering and course of the lateral linc．

As a determining character，he first names the colour which，in the Iceland specinens is of a perfectly nniform grayish or gray－brownish，withont bands，network or the like，either on the back or fins；the only marking apparent to the eye is that the under part of the belly and head are somewhat lighter，thongh to a varying degree in the different individuals，and a whiter part especially is present at the corners of the mouth，embracing generally the limbs of the nuderjaw and the overlip and with a tolerably slarp bonndary where it meets the darker head above．It may be remarked meantine that L．vahliz－according to Lïtken＇s own perfectly correct statement－has only dark bands in the yonng，and that the bands in the old（at least in the males）seen to dissolve entirely into an nniform dark colour．Since he pointed ont the probable difference in the colonring， I，iitken las obvionsly compared the Iceland specinens with yonng L．vahliz；if the comparison however had been made with older L．vahlii－which wonld hare been better，since L．lugubvis Luitken consisted only of developed specimens－the result wonld have been quite different，namely that there was the most perfect agreement between them；even the white part along the limbs of the underjaw and the overlip are fonnd in individual larger males of L．vahliz．An inportant patch of colour， which Liitken either overlooked or attached no weight to，has also to be mentioned：in the anterior corner of the dorsal fin the characteristic dark spot of L．vahlii－gracilis，so often referred to above，is clearly seen in two specimens，less clearly in the third，of L．lugubvis．

Again，according to Liftken，the Iceland form differs from the Greenland in having fewer rays in the pectorals，mamely $17-18$ against $19-20 \mathrm{in}$ L．vahliz．The break is rather sninall by itself to make one think this a good specific claracter to distinguish it from L．valulii．It is due to chance also that all Lïtken＇s specimens slowed the low number．One specinen sent fron Arnarfjord in the North－West Land in 1894，and ascribed by Lïtkeu himself to L．Lugubris，possesses i9 rays in the pectorals；I find the same n11mber in a specimen which canne fron the same fjord as those of Litken， namely Ofjord，and would be ascribed to L．lugubris Liitk．－Since the numbers of the rays in the pectorals thus overlap in the two forms，this loses essential importance as a specific determining claracter．

A further specific character is found by Liftken in this，that whilst the row of palatal teeth is as a rule longer than that on the internaxillary in L．vahlii，very rarely if ever，shorter than on the latter，in L．lugubris it is always sonewhat shorter than that on the intermaxillary．To obtain this result Liitken must certainly have had before him male individuals of L．lugubris， and of L．arabliz females more particularly；becanse in the single of I．lugubris，in the collection of the Mnsenm，the row of teeth on the palatal is of the sane length（a little longer indeed on the one side）as that on the intermaxillary；and contrariwise，I find that the row on the palatals is distinctly shorter than that on the intermaxillary in all older males of L．vahliz．This，which Luithen had taken for a specific clistinction，is thus reduced to a sexnal character，which appears equally in the one form as in the other．

I think I have thus sufficicntly explained the untenableness of Lütken＇s expressed reasons for considering L．lugubris distinct from L．zahlii．There remains only to show from measurements of L．lugubris，that it and L．vahlii－gracilis are in perfect agreement．

Measurements of L．lugubris Lütk．：

		δ	9	δ	§	δ
Total length	．．in nnın．	300	312	320	330	35.5
Lengeth of the lieart	－	70	59	74	75	So
Inistance from shout to anus		127	1.31	12.5	1.35	117
Height over the athus	－	27	34	27	29.5	3.3

The length of the head is thus $18,9 \%$ in the females， $22,5-23,3 \%$ in the males，of the total length；the distance between the shout and the anns is $40-42,30 \%$ of the total length．These nunn－ bers thus agree very closely with those of adult $/$ ．vahlii．

Renarks on the variation of the species．

From the examination just completed it will be evident that L．vahoiz－lugubris－gracilis cannot be regarded as separate species．At the same time，it must be put forward that the members of this chain represent 3 races，each possessing its own geographical and separate region，namely Crreenland （L．zahlii typica），Iceland（L．wahlit lugubris），and Scandinavia（L．vahlii gracilis）．

First of all，there is a remarkable rariation in requrd to size．The species reaches its maximun size at Greenland to over $1 / 211$ ．（ca． $52 \mathrm{cm1}$ ．）long；at Iceland the maximmn is $35,5 \mathrm{cmn}$ ，and from Seandinavia $n 0$ greater specimen than $\mathrm{r}, 6 \mathrm{~cm} .^{1}$ ）is known．Since these measurements are based on a large number of specimens they can scarcely be regarded as resting on chance，but one may believe that the species decreases in size as it approaches the more easterly（and sontherly）regions．

Parallel with this decrease in size there is a diminntion in the number of fin－ rays and vertebre，as will be seen in the following tabular review．

Grectland	Iceland	Scantinavia
L．vathiii typica	L．vahlii lugubris	L．zahtii gracilis
520	355	196
20－19	$19-18(17)$	（19）18 1\％
117－113	105－103	97 95－1
$9^{\text {S }}$－ 90	90	$86-34$
116－112	105	Ion 98

It seems therefore as if the species taken as a whole，reaches its greatest develophent at Greenland；at Iceland there is already a recognisable decline，and at Seanclinaria we meet with the species in its most reduced condition 引）．

Differences between the sexes．
Prof．Collett has observed on specinnens from Scandinavia that it is easy as a mhe to disting－ uish males from females by their relatively longer head．The same is the case in（ireentand and
${ }^{2}$ ）Collett gives the wumber as cal． 120 ，hut this must be duce to an cror in combtime
3）Cf．Appentix however，p． 21.
lceland specimens, cf. p. I5 and p. 17 (see also Tab. I, fig. $2 \mathrm{~b}[\mathcal{f}]$ and fig. 2 c [$\hat{\imath} \mid$; Tab. II, fig. I a [ô] and fig. $1 \mathrm{~b}\left[\frac{\mathrm{f} \mid) \text {. On account of the greater lengtl of the head (which shows ahmost to an eqnal degree }}{}\right.$ on the pre- and post-orbital portion) the profile in the males varies also with age; the upper margin is straightened ont and forms from the eye forward a faint, sloping line (see Tab. I, fig. 2 c and Tab. II, fig. I a); it is characteristic of the females (and the young individuals) that the upper margin from the eye forward declines sonewliat sliarply towards the snout (see Tab. I, fig. 2 b and Tab. II, fig. I b, also fig. 2 a , Tab. I of a young individual). Farther, the head of the males is broader over the cheeks than that of the females (cf. text fig. $1, \hat{o}$ and fig. 2, f), which has already been remarked by Collett in L. gracilis». Here may be added also that in the older males, the row of teeth on the intermaxillary becomes

Fig. I. L. vahliit o.

Fig. 2. L. vahlii ${ }^{\text {of. }}$
longer than that on the palatals, whilst in the females the row on the intermaxillary is only of the same length or even shorter than that on the palatals.

Concerning the colonr, Collett states that old males seem as a rule to be more uniform than the females usnally are at the same stage. The same holds also, but in greater degree, for the specimens from Greenland.

Reprodnction.

According to Collett, L.vahlii (.L.gracilis.) spawns in the Skager Rak from July to October; the greatest number of eggs he found in a female was $30-48$ and their maximmu size was reckoned to 4 nmm. in diameter. In a female 2IO mm. long, taken on July Sth, IS99 at Seydisfjord on the east coast of Iceland, I find on the contrary not less than 93 eggs, whose size is $4,5 \mathrm{~mm}$. in diameter (in addition, this female contained some individual eggs, obvionsly late in development, and numerous small eggs reserved for the next spawning period). The Greenland specinens do not throw much light on the breeding conditions, partly on acconnt of the bad state of preservation, partly becanse data with regard to the catch are
wanting. In a 247 mmn long female, taken on July itth 1895 off Holstenshorg, the eggs ineasured scarcely I mm, in diameter, so that it was lardly ready for spawning in that year. A fenale 3 ro 111 m . long, taken at Sukkertoppen August 5th 1885 , seenns to have spawned as the ovaries are collapsed and contain very small eggs only.

In a male of I So mm., taken at Iceland on April 3oth, the testes are very small ($9,5 \mathrm{~mm}$.) and little developed. In a male $300 \mathrm{mm11}$. long, likewise from Iceland, the testes measured ca. 30 mm . (the free folds being ca. 7 mm .) and are much swollen. In larger males from Greenland the testes reach a length of ca. +5 mm . (folds ca. 20 mm .).

Distribution.

In Scandinavia the species has been taken in Trondhjem fordr), in the Christiania fjord, also in the Skager Rak and in the eastern Kattegat as far as the deep chamel F. from Lreso, at $30-300$ fathoms depth (cf. Collett l.c. 1899 and C. G. Joh. Petersen ${ }^{2}$)). At Iceland: on the east coast stud. mag. Horring has taken 7 specimens at Reydarfjord, H fathoms, one in outer Reydarfjord, 50 So fathoms, one in Nordfjord's Flóin, 35-55 fathoms and one in Seydisfjord, 3060 fathons; from the North Land the Museun has obtained 5 specimens during the seventies from Ufjord; I have also had a further specinen from the same fjord but of later origins); in the North-West Land, Capt. Bast obtained' a specimen in Amarfjord in 1894, and lastly a specimen³) has been taken at North-west Iceland, ca. So fathoms. At Greenland: the species has been taken at the following places all lying along the sonth-westerly stretch of coast: Nanortalik (ca. 60° N.L..), Fiskenres, Godthaab, Sukkertoppen and Ingolf's St. $3^{1} 166^{\circ} 35^{\prime}$ N.L. 1, SS fathoms; the distribution therefore extends over ca. 6^{1} a degrees of latitude.

Appendix.
During my participation in the crnise of the Norwegian fisheries steamer, Michael Sars in the summer of 1902, a specimen of Lycodes vakliz gracilis was taken in the English trawl at a depth of 190 fathoms; the place (St. 47) lay off the south-west of Norway ($60^{\circ} 57^{\prime}$ N.L. $3^{\prime \prime}$ 42' E.I..).

Lastly, through the kindness of Prof. Collett, I have had the opportmity to examme a specimen which was taken (by the Michael Sars, 14.501) much further to the north of Norway than the species was hitherto known, namely at Baadsford (East Finmark). This specimen is conspicuons by its considerable size, 268 mm . Amongst the hundreds of specimens which have previonsly been reported from Scandinavia, none - as already mentioned -- exceeded 196 11111. in length, but they cane from much more southerly regions (especially the Skager Rak). In the fjords of East Finniark, where the conditions are half arctic, the species can thus attain almost as great a size as at Iccland; in the number of fin-rays also this specimen approaches to the variety lugubris, as the pectoral fins have 19 rays, the dorsal fin ror, and the anal!Sg.
${ }^{1)}$ Cf. Appendix this page.

Sæmumlsson.

Lycodes frigidus Collett.

Tab. V, Fig. i a, 1,

IS-S. Lycodes vahlii Collett, Fiske indsanlede under den norske Nordhavs-Expeditions 2 forste Toster; Forh. Vidensk. Selsk. Chria. 18 - $8, ~ N o .4$, p. If (partim).
1878. L. frigidus Collett, Fiske fra Nordhavs-Expeditionens sidste Togt; Forlı. Vidensk. Selsk. Chria. 1878, No. 14, p. 45.
1880. L. frigidus Collett, Tlıe Norwegian North-Atlantic Expedition, Fishes, p. 96, Pl. III, Fig. 23-24.
1887. L. veticulatus Crïnther (nec Reinhardt), The Voyage of H. M. S. Challenger, XXII, Report on the Deep-Sea Fishes, p. 77, Pl. XIII.
1887. L. frigidus Grinther, ibid. p. 79.

1S91. L. frigidus Lilljeborg, Sveriges och Norges Fiskar, II, p. 19.
1895. L. frigidus Smitt, Skandinaviens Fiskar, II, p. 6ro, Fig. 146.

18gS. L. frigidus Lütken, The Danish Ingolf-Expedition, II, I, p. 20 (partim).
iS99. L. frigidus Lönnberg, Bihang K. Sv. Vetensk.-Akad. Handl. Bd. 24, Afd. IV, No. 9, p. 2. .
1901. L. reticulatus forma frigida Smitt, Bih. K. Sv. Vetensk.-Akad. Handl. Bd. 27, Afd. IV, No. 4, p. 29 (partilu), No. 10, it \& 12.
rgor. L. frigidus Jensen, Vidensk. Medd. Naturh. Forenı, Kbluvn., p. 213.
The height over the anus amounts to $9,5-14,2 \%$ of the total length (in the young, $8-9,6 \%$. The length of the head in the males is $23,6-27,6 \%$, in the females $22,4-25,2 \%$ of the total length. The tail is somewhat longer than the head and trunk together, as the distance between the snont and the anns is in the males $43,7-47 \%$, in the females $38,2-45,6 \%$ of the total length. Thecolonr is uniformly reddish gray or brown gray (in living specimens, yellow brown to chocolate colonr), without bands or spots; the gill-covers and fins are dark brown toward the margins. The scales are musually small, covering the whole of the body as far as the head, and the base of the fins also in the fully grown in the younger, the middle part of the belly, the fins and along their bases are most often naked. Lateral line ventralr). Pyloric appendages 2^{2}). The size reaches to ca. 56011 m .
D. 99-104. A. 85--90. P. 19-21. Vert. 103 - ro7 (21-22 + 81-85).

Distribition. Polar depths from Spitzbergen down to Iceland and the Froes, (260?) $+50-1455$ fathoms.

Prof. Collett has given detailed information with regard to the numerous specimens taken on the Norw. North-Atlantic Expedition, representing the species from the younger stages np to 510 mmn ; a new and searching description is therefore mmecessary. I shall simply content myself witl making some comments, in part supplementary; in part for correction.

I give below the measurements of 17 specimens from the Ingolf Expedition; the sex is stated where it conld be determined with certainty; which is already possible at a length of ca. 100 mm .

[^35]${ }^{2}$) I to 110 t agree here with Collett, who states that the pylorie appendages are wanting.

Total lensth
Length of the liead
Distance froms smortt to anns Height over the anns

The length of the lead therefore, anomuts to $23,6-27,60^{\circ}$ of the total length in the males, $22,4-25,2 "$ o in the females $1232.4,60,0$ in the fonner); the distance from the snunt to the amms is $43,7-47^{\circ}$, of the total lengtl in the males, $38,2-45,6 \%$ in the females 138,8 43, 10 , in the vounser); the height over the anns $9,5-14,2{ }^{\circ}$ " ($8-9,6 \%$ in the fonng) of the same dinension

Collett (Norw. North-itlantic Expedition, Fislies, p. IOO) states that the seales begin to develop in the yonng when they are about $5011 n 1$ long, as in one specimen (from St. I2.4) of 62 mm, total lenerth, the scales had begun to appear on the anterior part of the body. This statement does not agree with my experience. Thus to specinens (lngolf Expedition), whose lengtlis lay between 49,5 and ro5 $1 m n$. are quite deroid of scales. The smallest specinen on whin scales can be observed, is ror mm. long; in it scales appear abont the median line of the side, on the posterior half of the trunk, and on the anterior two-thirds of the tail. This seems therefore to point to the conclusion, that the scaly cuvering begins to form at the earliest at a total length of ca. Ioo mm., also that Collett's specimen, which was already furmished with seales at 62 mm . hardly belonged to the present species. For the rest, there is some variation in the place of appearance and distribution of the sealy covering. Fonr specimens, whose lengths are $108,5,118$, , 20 and $1381 m m$. have it relatively less developed than the one just mentioned of iol mnn., as only on a snall part over the anns, ronnd the median line, do the scales make their appearance. Five individnals of $120,125,137,148$ and i62 mm, are quite different from these, as no seales appear on the trink, but they are present on the other land on the midclle third of the tail. Consequently, the scales nnay first appear either on the middle of the body, or on the middle of the tail. It a total length of ca. 17o man, the scaly covering extends in general from a little behind the gill-covers to the neighbourhood of the end of the tail, also below on to the malerside of the belly, but the anterior part of the back (with a small strip under the front part of the dursal fins together with the fins are bare. At a total length of ca. iSo mm, the scales also appear on the part in front of the dorsal fin, and at ca. 200 mm . they show on the base of the dorsal fin. In the adnlts, the scales extend over the body right to the head as also ont on the mpaired fins, bint in two of the largest specimens I canmot detect scales on the front part of the back (in front of the dorsal fins, nor partly either on a strip under the front part of the dorsal fin.

Althongh L. frigidus is a well characterised species, and from its small scales and muiformly coloured body at all ages is the most readily recognised of all the Istorles here dealt with, yet a doubt has been expressed lately from two sides as to whethor it is a good species.
li. A. Smitt thus states in his great work on the fishes of Seandinaria, that the possibility is not excluded that muder Collett's L. firgidus is concealed a mumber of strile perlaps luphrid individuals ; the species, to which he refers, being L. zuhlii and L. reticulatus. And from a notei) which

[^36]has but recently appeared, it is erident that Prof. Smitt has not changed his standpoint in this regard.
If one but reflects that L. frigidus is exceedingly common in uature both the North-Atlantic and Ingolf Expedition have taken it more frequently and in mull greater numbers than any other Lycodes - and that it has quite a different area of distribution from L. wahliii or L. reticulatus, which are both (as shown in the present work) restricted to relatively snall depths, whilst L. frigidus is confined to the deeper and deepest part of the cold area, this supposition of Prof. Smitt that $/$. frigidus is a number of sterile and hybrid (?) individuals of the two named species, strikes one at once as umatural. I can also assert that the specimens in my hands give no indications whatsoever of being sterile; both the male and female sexual organs are weli-developed, thongl not fully ripe, since the specinens have obviously not been taken diring the spawning-period. In the largest mate from the Ingolf Expedition the testes are 65 mmn . long and to mm. broad, without free folds and of equal length (Collett mentions that in a 5 1o min. long male the left testis was rudimentary); the eggs in the largest female are $1,5 \mathrm{mmn}$, in diameter in the sack-sliaped, ca. 55 mm . long, ovary I . .

Again, Dr. E. Luönnberg (l. c.) is inclined to regard L. frigidus and L. pallidus as colourvarieties of one and the same species ${ }^{2}$). If this author had had specimens of L. pallidus for comparison, he would certainly not have adopted this view. L. frigidus is distinguished in a moment, so to speak, froms L. pallidus - and indeed from all other scaled (Enropean and Greenland) Lycodes species by its extremely small scales. So small are the scales in L. frigidus that there are ca. 48 scales in a vertical line from the anns to the base of the dorsal fin in a specin1en of 2261111 , whilst in a specine of L. pallidus (var. squamiventer), 230 mm. long, there are only 27 scales on the same line.

In his latest treatise on the gemus Lycodes, F. A. Smitt (1.c. 1goi) has so far changed his view that he now brings muder L. reticulatus a singular forma frigida; during my visit to the Stockhom Riks-MIusenn I discovered that minder this denomination were placed: i specimen of L. perspicillum Kroyer ($=$ L. .reticulatus Reinh. jux.?) (No. I), 8 specinsens of L. pallidus Coll. (No. 2-9) and 3 specinens of the veritable L. frigidus Coll. (No. 10-12).

Distribution.

The Ingolf Expedition has taken L. frigidus at the following stations which all lie north, nortl-east and east of Iceland and south of Jan Mayen3):

St. 12.4	495 fathoms		-0\% C.	5 specimens	
- 125	729	--	-0 0 -	1	-
120	S85	-	$-\mathrm{r}^{\circ} \mathrm{O}-$	6	-
- 110	781	-	- o's -	2	-
- 102	750	-	-09 -	6	-
- 104	957	-	- I r -	7	-

${ }^{1}$) After this was written, I have ohserved a female L. frigidzs with fully ripe eggs. The specimen was ca. 500 mm. long, with an cnormons osary, 84 mm . long, 47 mm . broad, which contained 500 eggs, almost ready to be spawned, of a diancter of 7 mmn . It was taken on the 29 th of August 1902, north from the Freroes $\left(63^{\circ} 13^{\prime \prime}\right.$ N.L.. $6^{\circ} 32^{\prime}$ W.L., depth 975 fathoms, temperature of the bottom $-0,51^{\circ}$ C.) by the fisheries steamer Michael Sars.
${ }^{2}$) Ifitken has also snggested that L. pallidus was a sulspecies or form of L. frigidus. Vidensk. Medd. Naturhist. Foren. Kbhun., 18So, p. 317.
i) 2 other specimens were brought home in addition to these 63 , but the mumber of the station was lost later.

St．III	860	fathoms	－09C．		cinlells：
－ 119	1010	－－	I＇O－	10	
－ 112	1265	－	－ 11	6	
－its	1060	－－	－10－	s	－
－ 115	1003		10 －	5	
－ 113	I 309	－	10 －	1	

The Englisll expeditions of the Kuight Lirrant and Triton（18so and 1882）canglit a large number of specinens in the cold portion of the Feroe Clanmel at $5+0$－－b fo fathoms，botom－tempera－
 ＇The Norw．Nortli－Atlantic Expedition took 15 specimens， 375101111 ．long，off the west of Norwas． west from Bear Island and west from Spitzbergen；the depths were（200）45\％－1333 fathoms，buttom－ temperature（ I I）-0_{7}^{6} to－ $16 \mathrm{C}^{2}$ ）Again，the Nathorst Experlition of 1 sgs took i specimen off West Spitzbergen where the depth was 2750 meters and the bottom－temperature $-I^{\circ}+C$ ．Further，the Kolthoff Expedition of 1900 canght 3 specinens between Jan Mayen and Greenland（h2 $42^{\prime} \mathrm{N} . \mathrm{L}_{\mathrm{L}}$ ．If 49^{\prime} IV． $\mathrm{I}_{1 .}$ ）at 2000 meters．Lastly，the Nichael Sars in 1902 caught 1% specinens（ $290-530$ minn．fong）

 650－720 fathoms．

L．frigidus is so generally distributed over the deeper and deepest parts of the Jolar Bepothos from Spitzbergen down to Iceland and the Faroes，that it may be reckoned amongst the most characteristic inhabitants of this deep－sea basin．

I feel sery dubious，therefore，on finding that the Anerican anthors lave identified a ifocoden occurring generally in the westenn part of the true Atlantic（）cean，with hofrigidus Coll．from the ice－cold Polar Depths．I believe，indeed，I an in a position to say there must be some error in this deternination．Athongh it is besond the soope of the present work to enter upon the Anerican forms，I shall yet make an exception in this case since it presents a very inportant question in biological regard，manely，whether a species of fish can be common to the wam gromed in the depths： of the Atlantic and to the ice－cold depthe of the Northern Ocean．

Lycodes atfanticus Jensen．

1895．Lycodes frigidus Goode \＆Bean（11ec Collett），Oceanic Ichthyology，p．305：Mem，of the Musemm of Comp．Zool，at Harvard College，vol．NXII．
1898．L．frigidus Jordan \＆Evermann（mec Collett），Fishes of Nonth America，III，I．2ftos．
1901．L．atlanticus Jensen，Vidensk．Medd．Naturh．Foren．Khhun．，p．2u－．

 as appears both from Cïnther＇s description and figure：only，Gïnther gives his specinm a mediolateral tatemal line．which must rest on some error．
${ }^{2}$ ）It is possible that the specimen from the relatively sman（ephth（260 fathonms）with high hombom－tomperature $\left(+I^{\circ}{ }^{\circ}\right.$ C． 1 arises from an error in determination：Prof．Colfott has kindly informal the that it was given anall to some
 Fxped．St．124）which Collett has mentioned，I have already remarkme that ble early alphemance of the seah oovering indicates that it is 110 L．frigidus（ef．p．2．3）．

The length of the head amonnts to $22,6 \%$ of the total length, the distance
 nuiformly brown, without bands or spots. The seales, which are of the usulatse, extend forward to the head as well as ont on to the unpaired fins and base of the pectorals. Lateral line ventral. I. 23 .

Distributinu: Jthatic Ocean off the east coast of North America, 5I6-1423 fathoms.

Kn the work mentioned ahove, coode \& Bean have identified a Jfoodes taken in large numbers in the waters of the Atlantic Ocean off the east coast of North America ($35^{\circ} 12^{\prime} 10^{\prime \prime}-41^{\circ}$ 53^{\prime} N.I. $65^{\circ} 35^{\prime}$ it $34^{\prime} 45^{\prime \prime}$ W.L. . , at $516-1423$ fathoms depth, with L. frigidus Collett from the ice-cold depths of the Northern ()eean.

C'nfortmately, the anthors have contented themselves with copying Collett's diagnosis, and impart 130 information whatsoever on their material apart from a recital of the separate localities. And if one consults the most recent and principal work on the Nortl American fishes by Jordan \mathbb{E} EVermann, one also finds nothing conceming the American form, as these anthors have contented themselves with studying a type-specimen from the Northem Ocean sent by Prof. Collett.

Thanks to the generosity of the Smithsonian Institution our Zoological Mnsenm has meantine come into the possession of a specmen of the American L. frigidus .

On comparing this individual with specimens from the Polar Depths I find that they belong to two distinct species. In the uniform brown colonration, the ventral lateral line and other, thongh more general, features the two forms present a certain resemblance to one another, but on closer examination they are seen to be quite different in inportant eharacters.

Neasurements of the Anerican specimen are as follows:

Total lengrth	338111111
Length of the head	76,5
Distance from snout to anns	127
Height over the anns	38,5

P11t into percentages, the length of the head is therefore $22,6 \%$, the distance between the shont and the anns $37,6 \%$ the lieight over the anns it 4% of the total length. The sex eannot be determined as the internal organs of the fish have been destroyed.

Comparing this individual now with specinens from the folar Depths, of the same length and of both sexes, we find a very distinct difference with regard to the most inportant measmrements.

The tail in the American form las therefore a much greater proportion of the length in relation to the rest of the borly; in agreement with this its head is relatively somewhat smaller.

Other differences are also present, which just as distinctl declare against the two forms being identical. The American specimen, for example, has moln larger scales so that the mumber in the vertical line from the anms to the base of the domal fin amonnts to $3+$: whereas, on the same line in a specimen of L. frigidus from the Polar Deptho there are ca. 5.5 sales, although its lotal length is the same. Latstly, the American form has 23 rays in the pectoral finn whilst the mumber in the species from the Polar Depths is at most 21

I can come to no other conclusion therefore, than that we hate to deal with two opecies well separated in important strmetmal featmes. The American form must consequently be remaned, and conveniently L.atlanticus ${ }^{1}$, which characterises it zon-geographically in comtrast the the frigidus of the ice-cold Polar Depths.

For the rest, it mast be left to the American ichathologists to give morther enlightemment upon this species since they have of it a large material at their disposal.

Lycodes esmarkii Collett.

$$
\text { Tab, 111, 17i, } 2 \text { :1, 1, c. }
$$

 Chria. 1868, p. 524.
1875. L.esmarkï Collett, Norges Fiske; Tillagsh. til Tidensk. Selsk. Forlandl. Chria. 18j4, p. 95.
1879. L. vahtiz Collett, Medtelelser om Norges Fiske i Aarent is $5.5-78$; Forhandl. Vidensk. Selsk. Chrian 1879, No. 1, p. 62 (partim).
I8So. /. esmarkii Collett, The Norw, North-Atlantic Expedition, Fishes, p, it (partiml, Fl. Hll, Fig. 22.

29 B., p. 73 (partim).
tSg1. L.esmarkii Lilljeborg, Sveriges och Norges Fiskar, II, p. 6 (partim).
s 895. L. I'ahlii Smitt, Skandinaviens Fiskar, II, p. 6 (z (partim), Fig. if4.
f8g9. L. vahlii Löuberg, Bihang K. Sv: Y'etensk.-Akad. Handl. Bd. 24, Afd. JV, No. 4. 12. 2,3.
1go1. L. esmarkii Jensen, Yidensk. Medd. Natırh. Foren. Kbhım, P. 213.
 the head in admlt males is 2 I -24° o, in adult females and young individuals 19,2 $2 \mathrm{I}, \mathrm{g} \%$ of the total length. 'The tail is distinctly longer than fle head and tranh
 of the total length. The posterior margin of the pectorals romuled withumt

 more than donble that on the intermaxillaries.
side of theneckl and 5^{-9} whitish yellow cross-lines on the body, which are \mathbb{A}-formed in the young, but in the medium-sized specimens enclose dark spots or stripes and finally form festoon-shaped markings. The scales cover the whole of the body as far as the neck and base of the ventral fins and extend far ont on to the unpared fins. The lateral line is double, mediolateral and ventral, but often indistinct, especially the mediolateral. Pyloric appendages are wanting. The length reaches to jo5 mm .

Distribution. Finmark, $150-200$ fathoms; between Norway and Bear Island, 200 fathoms; Norway-Shetland Slope, 275 fathoms; Freroe Clannel, 620 fathoms; east from the Færoes, 228 fathoms; between the Færoes and Iceland, 250 fathoms; east froml Iceland, ̧oo fathons: Nova Scotia.

Remarks on the Synonymy.

L. esmarkii was founded in isft by Collett for a Lycodes occurring in the fjords of Finmark, which was however already mentioned by Esmark in 1868° and referred by him to L. wahlii Reinh.; Collett also, at a certain period (rS78-79), was inclined to place these two species together, but funally raised L. esmarkii to an independent position. Through Collett's exertions a by mo means small material was gradnally acquired; in 1883 the mumber anomited to 22 . All these specimens were remarkable for their large size, lying between 575 and 705 mm . Prof. Collett kindly permitted me to examine the smallest specinen which up to the present has conne from Finnark; it measured about 443 m m . Further I have had 3 larger specinens unrler examination which our \%oological Museun owes to the generosity of Collett.

Meantine, the Norwegian North-Atlantic Expedition during is75-7S found + Lycodes, $81-295 \mathrm{~mm}$. long, on the banks wf the lofotens and on the north-west coast of Spitzbergen, concerning which Collett holls it for extremely probable that they are the hitherto wanting yonng stages of L.esmarkii; the three largest of these are figured in the work on the fishes of the expedition (P1. II, fig. I9, 20, 21) and for comparison an adult L. esmarkii from Finmark is also given (Ill. IIT, fig. 221. The differences which appear between them, especially in the colour-markings, could be ascribed according to Collett, to the great difference in age and size.
ln 1896 , the Ingolf Expertition obtained a 260 mm . long Lfcodes north-west from the Froroes which in colour-marking recalls greatly the largest from the Norwegian North-. Atlantic Expedition, and for other reasons also mmst be considered identical with the presmmed young stages of L. esmarkii Coll. On opening this specimen I fonnd the gut provided with two ploric appendages, small yet quite distinct, whilst L.esmarkï of Collett displays no trace of these ${ }^{2}$. An investigation, undertaken thereafter on a specinen from the Norwegian North-Atlantic Fxpedition, showed that this likewise possessed prloric appendages. It was therefore clear that the supposed young of L. csmarkii could not be stages in the development of this fisl, but must belong to a separate species. A detailed comparison further strengthened the independence of the two forms, so that I was obliged to set up a new species for the specimens oltained away from Finmark, which I have called L. cudiplentostichus; an explanation of this point will be given later (p. 34-37).

Whilst I bave been obliged to remove from L. esmarkii a form that had previously been considered its young stages, I have at the same time had the satisfaction of being able to show a true early stage of L. esmarkui. This I found in a small Ifycoles, which the Swedish N athorst Expelition of iSgS ubtaned between Norway and Bear Island, and which has already been described as to its most important claracters by Dr. E. Lönnberg (l. c). This author ascribed it to L. vahlii, as he like Prof. Snitt declares himself umable to distinguish between L. esmarkii and L. áahlii, a position 1 cannot agree with (cf. p. 3 I- 32).
O) 11 a yon 11 g specimen of Lycodes esmarkiz.

Tab. III, fig. 2 a.
I comparison between the specimen just referred to (from the sea between Norway and Bear Islancl and L, esmarkiz from Finmark will show how it may rightly be considered as a very young specimen of L.esmarkiz.
${ }^{1}$) Collett fomm Vert. $23-95$ in one specimen, in another I counted $23-92$, Liflijeborg (1. c. p. 16) also $23+92$ in athirat.
${ }^{2}$ After this was written, I have been able through Dr. E. Lönnberg's kindness, to examine a well-preservel specimen in the Musemm at Ipsala of the Finmark L. esmarkii and conld consince myself that the pric appendages were conipletely wanting.

Its dimensions are as follow:

Total length	
Length of the head.	39
Distance between snont and anns.	73
Height over the ann	\%

The length of the head is thas $20,3{ }^{\circ} \circ$ of the total length and falls therefore within the linits of variation occurring in the adult specimens from Finmark; thus, the measmrements given hy Prof. Collett, reckoned in percentages, show the length of the liead as $19,24^{\prime \prime}$ of the total length (in ro males 22,2-24"on in 12 females $19,2-21,9^{\prime \prime}$ n). Again, the head and trink together for distance between smont and anns) is 38° of of the total length, which figure is very close to that of the adnlt individuals, where (in + specimens) it is $38,3-+2,9 \% \%$

It is the colonration howerer which makes one think at once of l.esmarkii. The gronnclcolour is dusky brown abore, sellowish white below; the scales are whitish and show as light points against the dark backgromed. On the brown gromed-colour the body is marked by 7 whitish yellow bands which are distributed wide apart with exception of the last. The furemost of these bands extends from the gill-cover over the edge on to the middle line of the neck; the band on the one side does not reach so high11p and does mot therefore neet with that on the other side. The second band lies almost over the end of the pectorals; it begins at the upper margin of the dorsal fin and divides like a horse-shoe a little below the line of the back. The thind band, which lies sonewhat behind the anns, is similarly branched but nore angularly; the fontli and fifth bands hase also more or less the distinct form of a $尺$. The sixth band as also the seventh, which lies near to the sixth, just at the end of the tail, extends across the tail and ont to the borders of the finn in the form of forward projecting arches. - If one compares this with Collett's figure of an adnlt L.esmarkii (1. c. Pl. III, fig. 22) one sees that the colonration of the latter is mily a further development of that in the present yoming specimen, as the bands by mach branching lave assmmed the form of festoons.

The pectoral fins have 22 rays, which number agrees with that of the adnits from Finmark; in five of these I have connted $22--23$ rays, the above mentioned specimen of +431111 . has 23 ray: ${ }^{1}$. The lower rays are gradually shortened so that the posterior margin of the fin is evenly ronnded as in the adnlts. The dorsal fin has if rays, the anal 102 , which numbers allso fall within the variations fomm in the adult specimens from Fimmark, riz. 113 - 118 rays for the dorsal, or-toz for the anal, according to Collett.

The scaly covering extends forward to the light band on the neek, the base of the pectorals and rentrals, also sonle way on to the mpaired fins, especially the dorsal fin, but the foremost part of the anal fin on the other hand is naked. The scales have therefore ahmost reathed thein complete distribution.
${ }^{1}$) As it might he of interest to have the measurements of the specimen cat 413 mom mentimed above, the smallest

 hadly preserved and the colour has almost entirely disappeared, the internal organs have becn pemoved wo that the sex canmot he determined.
\Rightarrow When Collett gives $20-23$ rays, it must be remembered, that the fower mumber hat arion thongh inciading
 1expertition.

The lateral line begins above the mpper notel of the gill opening; its pores to the number of some twenty can be followed an far as the middle of the posterionly extended pectoral; from this point one can observe by good light a very weak light line bending down towards the anns and further along the lower border of the tail; this fine line represents the ventral lateral line, but pores can only be seen here and there singly and indistinct. I believe I have seen weak traces of a mediolateral lateral line in the form of a few widely separated pores. The lateral line in this young specimen is thas in the same stage of development as in the adnlt $/$. esmarkiz; in these the lower (ventral) branch can as a rule be followed; so far as concerns the upper (mediolateral) branch, Collett declares that it is always indistinct ${ }^{1}$, and this 1 can confirm as only in one of the three adult specimens at my disposal have l fomb it possible to trace some single oblong pores.

Lastly, it may be added that this yomme specimen shows not the slightest trace of pyoric appendages, which are also wanting in the adult L. esmarkiz, as already mentioned (p. 28).

All the characteristics displayed above lead to the conchnsion that this small specimen from the open sea off Finmark is a young stage of /.esmarkï from the coasts of Finmark.

Appendix.

After the foregoing had been written i have had the further opportunity of examining 6 specimens of L.esmarkii obtained during ny participation in the rgo2 summer-cruise of the Michati Sars to the seas of Shetland, the Fieroes and lceland. The distribution of this species - hitherto considered somewhat local has thus become considerably extended. Some remarks on these specimens may fittingly find a place leere.

The smallest of the specinens was taken in the Færoe Channel. 'The total length is is8 m1nn., + 11111 . smaller therefore than the one referred to (p. $28 \quad 30$ fronn the seas between Norway and Bear Island. For the rest, they agree very closely, chiefly in regard to the most inportant proportions, as will be seen:

	L. esmarkii jus. from	
	Mich. Sar 1902	Nathorst Fxped. 1898
Total length in mma.	1.88	192
Length of the hearl in $0_{\text {" of }}$ the total length	20.7	20.3
Histance between snout and anns	$3 \mathrm{H}, 3$	3 S
Ifeight over the amus	9,6	8.9

In the new specimen there are also 7 light hands. The formost of these (neck-band) is broken off at the middle of the back, so that it appears as a light spot on and over the edge of the gill-cover, romnd the origin of the lateral line. The remaining bands have quite the same situation as in the foregoing specimen; the second to the sixth have the distinct form of a only the seventh, at the end of the tail, is umbranched. 'The scaly covering and the mediolateral lateral line are in essential agreenent; the ventral line however is distinct, not only from the neek down to the anns,
${ }^{1}$) Nyt Magaz. f. Naturvidensk. 29 Bel., 1884, 1). 77. Nevertheless, the figure in the work on the fishes of the Norw. Vorth-Atlantic I\%xpedition (Il. III, fig. 221 shows a clearly marked meriolateral lateral line.
but also for a considerable distance along the monderside of the tail. 'The pectoral fin has 23 rays and is not indented at its posterion margin. Pyloric appendages are wanting.

The others are medimu-sized or larger specimens, the most important measurements of which are the following:

The length of the head is therefore $21-23.2^{\circ}$ of the distance from the suont to the anns $37.539,9^{\circ}$ o, the height over the anne io $13,5^{\circ}$ " of the total length.

The colomration of the three medimm-sized individnals (371 383 1mm.) can be derived from that of the yomng individnal refersed to above. In the light rertical bands, whose number is 6 9, spots or stripes of the dark gromod-colom hase appeared, both on the dorsal fins and lower down (Tab, III, fig. 2 b). The light neck-hand is fully dereloped in one of these specimens and extends from gill-cover to gill-cover, enclosing a dark stripe; in tlie second speciment the neck-band is restrictecl to one, yet of good size, light spot on each side of the neek, enclosing a dark spot; in the thited there is only an ill-defined lighter part on the mpper edge of the gill-cover. In the large specimens the light bands are still further resolved into festoon-shaped markings (Tab. IIf, fig. 2 c).

The pectoral fins have 23 ravs in four specimens, 22 in the fiftli; in wone of them is there any indentation of the posterion edge of the fin. la two of the specimens the dorsal fin has its rays, the anal 97 .

The sealy covering has attained its full distribution, forwards as far as the neck and base of the ventral fins, also on the mpaired fins to near their margin.

After what has been said above, the lateral line presents the somewhat musual, as it seems, pecnliarity that the mediolateral line is rather distinct in several of the specimens.

The gut is lacking in pyoric appendages; in several specimens it wan quite full of skeletal remains of echinoderms (ophinroids).
Relation of l.esmarkii to L. z'ahlii.

After Prof. Collett had in his later treatises withdrawn his carlier expessed opmion that / esmarkii was the same species as the (ireenland L. vohhiz Reinh., Prof. F. A. Smitt and In. Fillat Lönnbers again took np the matter and declared themselves mable to separate the two forms from one another. This is not remakable in itself, since neither of these anthors hase had specimens of L. vahlif at their disposal: their acquaintance with this fish wats restricted to what they emplel read of it in L , ïtken and Collett. And their donbts concerning the inclependence of the two forms, might be justified even more as some of the distinctions put fonward by Collett are not comstant.

There is not the difference with regard to the length of the head, which Collett has muntionter,

considers that his specimen (which I have examined in detail p. $28-30$) fills $u p$ the gap between the two forms in this regard. L, ön berg might even have concluded this from the large series of measurements of L.esmarkii, which Collett published in 1884. Putting these into percentages, they show that the length of the head in L. esmarkii varies from $19,2-24^{\circ}$ o of the total lengtly; as the relation in l. rahlii according to m11nerons measurements by myself, is $18,8-23,8^{\circ}$ or no specific difference consequently can be founded on this. Nor does the second inportant proportion give any basis for a distinction; the distance between the snout and the anns for example is in L.esmarkii $38-42,9^{\circ}$ o, in C. zrahlii $36,5-42,3^{\circ}{ }^{1}$).

When Collett further asserts that the shortness of the row of teeth on the palatal bones distinguishes /. esmarkii fronn L. zahliz, where this row is as a rule longer than that on the intermaxillary, seldom if ever sloorter, he has allowed himself to be misled by Laitken's erroneons observations; as we have seen (p. IS \& p. 20) the palatal row of teeth in the adult males of L. vahlii is ahways shorter than that on the intermaxillary. This character on whose mestainty Prof. Sinitt has already remarked, must therefore also fall to the gronnd.

Lastly, L, önnberg remarks that little reliance can be placed on the character, that L. vahbi has only one, L.esmarkii two lateral lines, since Cullett lias seen traces of a mediolateral lateral line in one of the type-specimens of L. wahlii, and conversely the mediolateral line in L. esmarkii is often defaced. This must however be corrected, as L. vahlii never occurs with a mediolateral lateral line; this specinen, on which Collett has based his statement and which is in reality one of Reinhardt's type-specimens, is in no way L. vahtio but belongs to the following species which is provided with two lateral lines (see more in detail p. 36).

If now, one wishes to settle the independence of L.esmarkii -. just as it has been done above, by consideration of the identical and exclusion of the unrelated elements - as against L. vahlii, one must first and foremost lay stress on the following characters: (1) want of pyoric appendages; (2) the larger number of rays in the pectorals; (3) the characteristic colonration; (4) the donble (ventral and mediolateral) lateral line.

They differ from one another also in biological relations; L. esmarkii lives on the whole at greater depths than L. vahhii, and feeds chiefly on echinodems whilst L. vahlii feeds on crustacea and Mollusca.

Distribution.
According to Collett, L. esmarkio mnst be considered a stationary and scarcely a rare fish on the coasts of Finmark; alnost all the specimens examined hitherto have been canght in the Varanger Fjord on lines, and at the depth of ryo-200 fathoms. Between Norway and Bear Island (733^{\prime} N.L. $18^{c} 30^{\prime}$ E.L.), where the deptl was 410 m . and botton-temperature +2 C. the Nathorst Expedition canght the yonng specimen (192 min.) referred to in detail above (p. 28) on the 4 th of September 1898 .

It was taken by the Norwegian Fisheries steamer Nichael Sars in the summer of rgo2 at the following places: Slope between Norway and Shetland ($62^{\circ} 30^{\prime}$ N.L. $1^{\circ} 56^{\prime}$ E.L. $)$, depth
${ }^{\text {1) }}$ The apparently smaller variation in L.esmarkii arises from the fact that the numbers are based on measurements of only 5 specimens and of these but one only was a young individual. (Appendix: in one of the specimens obtained later Nichael Sars. 1902J the distance between the snout and the anus amounts to only 37.5% of the total length).
 land and the Freroes (60° 19' N.L. $5^{\prime \prime} 39^{\prime}$ W.L.) depth 620 iathoms, bottom-temperature - 015 C .,

 fathoms, bottom-temperature - $3^{\circ} 2+$ C., I specimen (521 mmm) cast from I celand $16+58^{\prime}$ N.L. 11

Judging from these cajtures, /. esmarkio, which was hitherto considered as a species uecurring locally at Finmark, has probably a continuous distribution over the deeper parts of the coastal phateall of the Northern Ocean and its shelving sides (slopes , from lear Island and Finmark down to Stat, thence towards Shetland and the east bank of the Faroes, north of the Fieroes and along the broard ridge from the Freroe Isles to the Iceland platean. Exceptionally, it may renture over the sloping banks of the ocean down into the polar depths.

Again, it ocenrs on the east conast of North America, as Collett has identified $\&$ fully grown specimens from off the coast of Nova Scotiay.

Lycodes eudipleurostictus Jensen.

Tab. III, Fig. I a, b.

1878. L. vurhlii Collett, Fiske fra Nordhavs-Expeditionens sidste Togt, Sommeren t8j8; Forlı. Vidensk. Selsk. Chria. 1878, No. It, p. 5 t (partim).
1879. L. vahlii Collett, Meddelelser unn Norges Fiske i Aarene 1875--8; IForl. Tiden.sk. Selik. Chria. 1899. No. I, p. 62 (partim).
iSSo. I..esmarkï Collett, The Norw, Nortl-Atlantic Expedition, Fishes, p. St (partinl), Pl. II, Fig, I9- 21.
1891. L.esmarkiil Lilljeborg, Sveriges och Corges Fiskar, II, p. 6 (partim).
1895. L. zrahlii Smitt, Skandinaviens Fiskar, II, p. 6 z 3 (partinn).

18gS. L. Esmarkii L,iitken, The Danish1 Ingolf Expedition, Il, I, p. 2 I.
1gor. L.csmarki Knipowit.ch, Amn. Musée zool. M'Acad. Imp. St. Pétersbuurg, 'T. \I, p. 21.

rgor. L. I Chkií typica Smitt, ibid. p. 26 (partim), No. 40.41 \& 42.
rgor. L.e eudipleurostictus Jensen, Vidensk. Medd. Naturl. Foren. Kiblnvin. p. 206.
The heightover the anns amounts to $\mathrm{s}, \mathrm{t}-13,6^{\circ}$... the lengeth of the head to Iy, $8-24,3^{\circ}$ o of the total length. The tail is distinctly longer than the head and trunk together, as the distance letween the smont and the anns is $36,7-4^{1}, f^{\prime}$ o of the total length. The posterior margin of the pectural is indented. Colonration
 to this species, but they perhaps belong to l.e eudiplearostiches mini which has been confused with he esmarkiit
\therefore This specimen was taken on a line, the other specimens in the fonglish trawh.

[^37]brown with a light spot on each side of the neck (sometimes alight stripe across over the neck), and with 5-8 as armle narrow whitish yellow cross-bands over the trink and tail (sometimes partly assuming a ring-form). The scales cover the whole of the body to in front of the dorsal fin and to the ventrals, and extend ont on to the nupaired fins. The lateralline is chonble, dirided just behind the root of the pectoral into a mediolateral and a ventral branch, both distinct. Pyloric appendages 2. Size reaches to 325 mm .
D. $100-103$. A. S8-92. P. 20-22 (23). Vert. $106(20+86)$.
I) istribution. Northerly West- and East-Greenland, ca. r $50-400$ fathoms; Spitzbergen, $260-460$ fathoms; west from Lofotens in Norway, 350 fathoms; off NorwayShetland Slope, $360-420$ fathoms; north from the Færoes, 470 fathoms; east from Iceland, $300-340$ fathoms.

I have been obliged to fonnd this new species for the + specimens bronght home by the Norwegian North-Atlantic Expedition from Spitzbergen and from the seas off Lofoten, which Prof. Collett after some reflection, considered were yonng specinens of L. esmarkii of Finmark, also for a similar specinen (260 mm . long) taken by the Ingolf Expedition north-west from the Freroes (fignred in fig. I a of Tab. Itl). In addition, there is a further specimen from Umanak in West Greenland, referred formerly by Reinhardt sen. to the L. zahlii founded by hin. Lastly, I have been able to examine 4 specinens in the Stockhohn Riks-Mnsenn, taken in Franz Joseph's Fjord (northerly East Greenland) by the Nathorst and Kolthoff Expeditions, and considered by Prof. F. A. Smitt as forms of L. vahlio ${ }^{1}$.

As I shall now proceed to confirm the necessity of the resolved npon separation from L.esmarkii, I may first of all set down the proportions of the 9 specimens. ${ }^{2}$)

		Franz Josephs Fjord	Off Lofote1	Spitz- bergen	Franz Josephs Fjord 9	Franz: Josephs Fjord $\widehat{\$}$	N.W: f. Færoes	Spitz- bergen §	Spitz- bergen	Jiranz Josephs Fjord む
Total length	in mm .	68	St	114	165	227	260	265	295	320
Length of the head	-	16,5	18,5	25	39	54	57	60	65	75
Distance from snout to anns	-	27	31,5	45	66	94	102	105	$1163)$	126
Height over the anns. .	-	5.5	7	12	17	26	31,5	$3{ }^{2}$	40	35

The form of the body is on the whole not mnlike that of L. esmarkii, and the most important proportions are somewhat similar; thus, the length of the head anounts to $21,9-24,3 \%$, the distance between the snont and the anns to $38,9-4 \mathrm{t}, 4^{\circ} \%$ of the total length.

The fins on the other hand show in several wars, tolerably great differences from those of the foregoing species. Whilst the pectorals in L.esmarkii have $22-23$ rays, the number in the present species is mostly 21, more rarely 22, only in a single specimen and in one of its pectoral fins is the

[^38]number 23. Again, the pectoral fins in L. cudiplenostictus are remarkable in that the lower rays are somewhat prolonged and project distinctly forward beyond the middle rays; the posterior border of the fin thins displays a distinct indentation. Collett even has remarkerl upon this pecnliarity in his young specinens of L.csmarkii, but he inagines that the fin changes during deselopment a condition, Collett admits however, he has never seen, nor anything similar, in other species. We have just seen (p. 29 and p. 31) that the real young stage of L.esmarkif shows no such incision of the pectoral - so that this mat be considered as one of the characteristic features of I. endiplenrostictus ${ }^{1}$.

Again, the vertical fins have distinctly fewer fin-rays. In the l. esmarkii from Finmark, aceording to Collett, the dorsal fin has It3-1IS rays, the anal 97-roz: in the specimens from the Norw. North-Atlantic Expedition on the other liand, the dorsal fin has only $102-103$ rays (from the Ingolf Expedition, too), and anal fin S8-92 rass (from the Ingolf Expedition, (gu). Collett explans the larger number of fin-rays in the large specimens from Finmark by assuming that vertebre might continne to be laid down along with the rass belonging to them during the whole development, but I hardly think that Prof. Collett retains this opinion.

Scales. Concerning the two largest specinens (265 and 29511111 .) Fronn the Norw. North-Atlantic Expedition, Collett has declared that the scaly covering extends forward in front of the beginning of the dorsal fin, and on the belly to the ventrals; the dorsal and anal fins are likewise covered with scales nearly to their margins. The 260 mm . long specinen fron the Ingolf Expedition is quite similar. In the two somng specinens from the Norwegian North-Atlantic Expedition the scaled integument is for the most part finlly developed on the body; in the largest individual (iftmm, total length) both the fins and the skin along their base are still naked; in the smatlest (8t mm, total length) the scales on the tail are just beginning to develop. With regard to the three larger specinens (165320 11111) in the Stockholn1 Musenn1, I have noted that the scales reach forward to the head and ont on to the mpaired fins; the 68 m m l long individnal was still naked on the posterior lialf of the tail, whereas the remaining part of the tail as well as the trunk to a little belind the base of the pectoral shows indications of scales.

The lateral line in L. cudipleurostictus is very distinctly double (I lave founded the nane of the species on this characteristic). It arises singly at the upper end of the gill-openings, forms a slight arch over the free edge of the gill-cover, then divides a little posterior to this into two branelnes, the upper of which, the mediolateral, is the most distinct and courses along the middle line of the whole body right to the candal fin; the lower branch, the ventral, enurses slantwise downwards towards: the anal fin, then runs along the edge of this fin towards the candal fin. Such is the case in the medinm-sized and largest specimens. In the Si mm. long specimen botli lines are still indistinct, but they are already apparent in the one Ift minn. long. - In C. esmarkii the mediolateral line is often more or less indistinct.

The colouration of L.endiplomostictus is rather different from that of the foregomes secich and can lardly be thonglit to give rise to that in L. esmarkii, as Collett believed. 'lolue gromud-

1) Smitt (l. C. rgon) states that the pectoral is incised in more of the Nathorst Folthoff Fixpeolations fyemes than the four I have here referced to I. cudipleurostictars, but after a personal inspection of the specimens in gucation I have not been able to confirn this statemont. In L. frigidus on the other hand, the posterior margin of the pectoral is often weakly incised.
colour is brown, more or less dark, with narrow whitish yellow cross-l)ands whose number varies from 5-8. Further, as sigu of a neck-band, there is a more or less distinct whitish yellow spot immediately over the npper end of the gill-opening, sometimes lower down on the edge of the gill-cover; concerning one of the specimens from East Greenland I have indeed noted: the neck light across over. What especially distinguishes L. cutdipleurostictus from the foregoing species in the colouration, is that the vertical bands show no signs of resolving themselves into the characteristic festooned markings of the adult L. esmarkii.

When we add to this that the gut immediately behind the stomach is provided with 2 small appendages, whilst the L. esmarkii of Finmark is wanting in any trace of such, we have the most important differences between the present and foregoing species.

The Greenland specimen yet remains to be briefly mentioned. It was sent from Umanak in 1834 and mentioned by Reinhardt sen. amongst the 7 Lycodes which served for the preparation of his detailed treatise on $/$. vahlii 1 ; its preservation however was not good, and R. when preparing his description, seems to have made no further use of it, otherwise its distinctness from L. vahlii 111ight have been apparent to him. Nor did Lütken find anything remarkable in it. Prof. Collett however, on a visit to our Musemm, discovered that this specimen showed signs of a mediolateral in addition to the ventral lateral line usual to L. vahliiz). This fact was for me still more striking: the two lateral lines are especially distinct, just as distinct as in the other specimens of L. cudipleurostictus at my disposal. Further, the number of rays in the pectorals agrees with this species and amonnts to 21, a number that is never reached in L. vahlii. Where the colonr is preserved, it is in agreement with the present species. Its length is ca. 275 mm .

I do not hesitate therefore to separate this specimen from I. vahlii and place it with L. eudipleurostictus.

Appendix.

After completing my MSS. on L. endipleurostictus I have liad the opportunity of studying a series of specinens, causht during my participation in the 1902 sumn11er cruise of the Norwegian steamer Michael Sars. These specimens shonk be briefly described here as they lead to a few changes in the diagnosis.

The most important measurements of these 16 specimens, likewise of a 17 th taken during the r 900 cruise of the Nichael Sars, are as follows:

Total length

I'nt into percentages of the total length therefore, the length of the head in the males is $21,2-23,6^{\circ}$ o, in the fennales and young specimens $19,8-22,6^{\circ}{ }_{\circ}$; distance between the snont and the annss 36,7 - 0 , 7%; the height over the anns $8,9-13,3{ }^{\circ} \%$
(K. D. Vidensk. Sclsk. Skr. VII, is $S_{3} s$, p. 165.
${ }^{\text {2) }}$ The Norwegian North-Atlantic Fxperdition, Fishes, 1880, p. 86.

The number of rays in the pectoral fin varies from 20 22, there are 20 rat in 6 specimens, 2I in 8,22 in 2 ; in all, the posterior edge of the fin is distinctly indonted. In one of the largest specinens: I have cominted toz rays in the dorsal fin, sis rays in the amal and won wertubre in all (20 in the trank, 86 in the tail); the mumber of the vertebre is thin less than in /. esmmotio 123 $92-95$) and has to be reckoned amongst the distingrishing characters from that species.

In the smallest specimen (total length, 75 mm.$)$ figured in figs. i b on 'Tath. 11 II , the hindmost portion of the tail is naked, whereas scales have begun to appear on the anterior part of the tail as well as on the trink. In all the remaining specimens the scaly covering extends from the the of the tail to the head. The scales extend more or less ont on to the mpaired fins, least on the anterior part of the dorsal and anal.

The lateral line is distinct except in the young specimens, both the mediolateral and the rentral branch.

The colour is dark brown, with 5^{-7} whitish yellow, as a rule very narrow cruss-bands; sometimes indeed single light bands show transition stages to a ring-form, or conly in a single individual they may be relatively broad, and the dark gronnd-colom between them appears light in the middle, se that we obtain a colouration recalling somewhat that in L. rossi; there is one specimen also where one or other of the rertical stripes shows signs of bifurcation below. The upper part of gillcorers have a light border; sometimes the light colonr extends a little also on to the neck abore, orer the gill-openings.

All the specimens luave two small appendages behind the prlorns.
Two of the females have large exgs in the ovary. In the one, $3^{1} 5$ mm. Iong, cameryt on the Igth of Jul y, the diameter of the eggs is +4.5 mm ., and their mumber ca. 250 lapart from many very small eggs in the ovary; in the other, 302 mm . long, taken on the 25 th of August, the diameter of the eggrs is 5 man.

If we now, with this extended knowledge of L. codiplenoostictus, wish to smm up the characters in which this species differs from L. esmarkii, these would be chiefly:
(I) the indentation in the posterior margin of the pectoral fin,
(2) the smaller number of rays in the dorsal and anal fins,
(3) the smaller number of vertebra,
(t) presence of two small pyloric appendages,
and in the second place:
the always distinct, domble lateral line,
the (as a rule) simple banded markings.
In biological regards also the two forms are markedly different: /. codiplemostictus is preeminently a cold water, L. esmarkii on the other hand mainly a warn water form: /. csmomki lives almost exchsively on echinoderms (especially ophinroids), L. cudiplomostictus on worms and crnstacea. Nor does /. eudipletrostictus become nearly so large as I. ismakit

Distribution.

In Entope, L. eudipleurostictus has been canght at several places in the cold area», and extends from thence over to the east coast of Greenland and probably north of that land, as well as a stretch along the west coast, as a specimen las been taken there at Umanak (70° 4o' N.L.). At East Greenland it has been taken in Franz Josephs Fjord, e. g. 2 specimens at 760 meters by the Nathorst Expedition of 1899, and 2 specimens at 200 - 300 meters by the Kolthoff Expedition of 1900. At Spitzbergen, the Norwegian Nortin-Atlantic Expedition took 3 specimens at depths of 459 and 260 fathoms, bottom-temperature - $\mathrm{I}^{\circ} \mathrm{C}$. and $+\mathrm{I}^{\circ} \mathrm{I} \mathrm{C} \cdot \mathrm{I}^{1}$; a Russian Fxpedition in I 899 , one specimen, where the depth was 497 meters and bottons-temperature $-\mathrm{O}^{\circ}{ }_{9} \mathrm{C} .{ }^{2}$). The Norwegian North-Atlantic Expedition took one specimen off Helgeland in Norway where the depth was 350 fathoms, and bottom-temperature $-0^{\circ} 9 \mathrm{C}$. Again, the Ingolf Expedition canght a specimen N.IW. from the Freroes (St. 138) where the depth was 47I fathoms and bottom-temperature - $0^{\circ} 6 \mathrm{C}$. Lastly, the steamer Nichael Sars obtained it at the following places in 1902: off the Norway-Shetland Slope ($62^{\circ} 43^{\prime}$ N.L. $1^{\circ} 26^{\prime}$ E.L. $)$, depth 420 fathoms, bottom-temperature muder oo C. (2 specimens) and ($62^{\circ} 40^{\prime}$ N.L. I ${ }^{\circ} 56^{\prime}$ E.L.), depth 360 fathoms, bottom-temperature - $0^{\prime} 3$ C. 12 specimens); east from Iceland ($64^{\circ} 58^{\prime}$ N.L. $11^{\circ} 12^{\prime}$ W.L. $)$, depth 300 fathoms, bottom-temperature $-0^{\circ}{ }_{3} 8$ C. (12 specimens); and in 1900: east from Iceland, depth $3+0$ fathoms, bottom-temperature - o ${ }^{\circ} 69 \mathrm{C}$. (1 specimen).

Lycodes pallidus Collett.

Tab. IV, Fig. 1 a, b, c. d, e.
1878. Lycodes pallidus Collett. Fiske fra Nordhavs-Expeditionens sidste Togt, Sommeren 18;8; Forh. Vidensk. Selsk. Chria. I8/8, Nr. It, p. 70.
1880. L. pallidus Collett, The Norwegian North-Atlantic Expedition, Fishes, p. 110, Pl. III, Fig. 26-2\%. 1886. L. pallidus Lütken, Dijmphna-Togtets zoologisk-botaniske Udbytte, p. 134, Tab. XVII, Fig. 1-3. 1898. L. pallidus Lütken, The Danish Ingoif-Expedition, II, I, p. 22 (partim).
1901. L. pallidus Kuipowitsch, Zool. Ergebnı. d. Russ. Exped. nach Spitzbergen, Fische; Amn. Munsée Zool. de l'Acad. Imp. d. Sci., St. Pétersbourg, T. VI, 1go1, p. 23.
1901. L. vahhii forma pallida Smitt, Bihang. K. Sv: Vet.-Akad. Handl. Bd. 27, Afd. IV, No. 千, p. 24 (partim1, No. 12 \& 14-26.
1901. L. vahlii forma typica Smitt, ibid. p. 26 (partim), No. 30-39.
1901. L. reticulatus forma frigida Smitt, ibid. p. 29 (partim), No.2-9.

In proportions of the total length the lieight over the anus is $83 \boldsymbol{j}-10,6^{\circ}$ o the length of the head $20,7-25,3 \%$ (in females $20,9-23,8 \%$, in males $22-25,3 \%$, the distance between the snont and the anus $38-44,7 \%$, the longitudinal dianeter of the eye $3, \mathrm{I}-4,5 \%$. The young and smaller individuals are coloured on the back and
${ }^{1}$) The station lies however just on the boundaries of the cold area
${ }^{2}$) From the report. which Prof. N. Knipowitsch has giveu (1. c.) of this but $\$_{7,5}$ mum. long speciunen, it is clearly seen that it belongs to the same species as Collett's «L. csmarkii juv., or - iu other words - that it is a L. cudipleurostictus.
3) In weakly young specimens sometimes sinking to $7,3^{\circ} 0$.
sides with dark cross－bands which become indistinctin the older，they remain longest as dark patclues on the dorsal fin but may also disapmear from there so that the colour in the end becomes uniformly brownish，as a rule however，darkened on the belly and posterior border of the gill－covers；the anal fin dark posteriorly lor with several dark patches）；sometimes a light spot over the gill－cover or a light stripe across the neck．In older specimens the scales extend from the end of the tail almost to the root of the pectorals，but the anterior part of the hack and a large portion of the belly are naked；as a rule there are no scales on the mpairedfins．Thelateralline double，ventral and mediolateral，but in general only distinct in its course down towards the anns．Pyloric appendages 2．＇The size reaches 207 mm ．

D．97－10I．A． 8 t－86．P．（Iフ） 8 － 20 （21）．
Distribution．Kara Sea，f6－106 fathoms；Spitzbergen，Go－459 fathoms：north－ eastern Greenland，（ $\left.6^{1}\right)_{1}$ IS 400 fathoms；north from Iceland，293～495 fathoms： north from the Freroes， 47 fathoms；off the Shetiand－Norway Slope，f2ofathoms．

var．similis 111.

Tab，D，Fig．za，h，c，il \＆Tal，VI，Fig． 3 a，b，c，d．
ISg8．Lycodcs pallidus Laitken，The Danish Ingolf－Expedition，II，I，p． 22 （partim）．
1898．L．Lütkemï Lïtken，ibid．p．21（partim）．
ryon．L．similis Jensen，Vidensk．Medd．Naturlı．Foren．Kblıun．，p． 205.
In proportions of the total length the heightorer the anns is ro－r2，t° or the length of the head $23-25,9^{\circ}$ 。（in females $23-24^{\circ} \%$ in males $24,8-25,9^{\circ}$ ），distance between the shout and the anns 4 ， $4-44^{\circ}$ o，longitudinal diameter of the eye f．j－ $5,6 \%$ ．The colour is yellowish or brownish，in some individnals with indistinct dark cross－bands，in others distinct cross－bands，dark－brown with lighter colonr in the middle，and with alight stripe across the nech．In the adults the scales cuver the tail and the trunk as far as the neighbourhood of the base of the pectorals，but the anterior part of the back，a stripe under the foremost partof the dorsal fin and the greatest portion of the belly（infront of the anns）are naked；no sales on the unpaired fins．The lateral line is double，ventral and mediolateral，but usually only distinct in its conrse down towards the anns．Pyloric appendages 2．The size reaches to $1 / 5 \mathrm{~mm}$ ．

D．94－96．A． 8_{1}－82．P．19－20（21）．
Distribution．South from Jan Mayen，3才Ifathoms．

var．squamiventer m．
 Tab．IV，Fig． $2 \mathrm{a}, \mathrm{b}$ ．

ISgS．L．pallidus Lüthen，The I anish Ingolf－Fxpedition，II，I，p． 22 （partim）．
 length of the head $19,6-22,4^{\circ}$ o，the distance between the suout and the anus 37,9
H^{\prime}, t o, the longitudinal diameter of the efe $3-t, t^{\circ}$. The colont is inform, brown or grayish, without bands or spotsi); the belly and posterior border of the gill-cover darkish. 'Thescales ate small, relatively smaller than in the two ioregoing forms and have a somewhat wider distribution, as they extend from the end of the tail not only to near the base of the pectorals, bint also to the neck isometimeshowever, a barestrip ocenrs in the middle line of the backinfront of the dorsal finl, as well as on the nuderside of the belly, which is scaled a considerable portion infront of the antus, often just to the tip or eren to the root of the ventral fins; in medinm-sized and adult individnals the scales spread ont also on to the unpaired fins. The lateral line is donble, ventral and mediolateral, most distinct in its contse down towards the anns. Prloric appendages 2. The size reaches to 26011 m .
I). $96-97$ A. $8_{1}-82^{\circ}$ P. г $8-20$.

Distribntion. East from Iceland, 537-957 fathons; north fronn the Faroes, 679 fathoms: off the Shetland-Norway Slope, 650 fathoms.

Remarks on the Synonymy
L. pallidus was formed by R. Collett for two small Lycodes, taken by the Norwegian North-Atlantic Expedition in $1.5-8$, north-west from spitzbergen at $260-459$ fathoms depth. In iSSi- S_{2} the species was again laken in the kara Seat hy the Dijnphat Experlition, according to Litken, who described si specimens from there and figured some of them. later. the same anthor mentions a manber of specimens, taken by the Ingolf Expedition of isg6 at 8 stations in the cold water between the Fatoes, Iceland and Jan Mayen. Lastly, N. Kıipowitsch has recently described a specinen, taken by a Russian experlition to Spitzbergen.

The species seems thus to have grarluallv gained recognition. In his latent treatise (on L. gracilis) Prof. Collett has meanwhile cone to doubt how far L. palliders (and its probable young stage L. rossi) is a good species, or if it possibly is synonymoun with L. gracilis M. Sars.

The results my investigations have led to, are as Iollows: L. pallidus Collett is an independent species, which does not show any near relation to L. rossi or to L. gracilis $(=$ I.. vahiii). L. pallidus Lithen from the Kara Sea is identical with Collett's species, and the same holds Ior L. pallidus Finipowitsch. L. pallidus Litken from the Ingolf Expedition belongs likewise to the same species, but in certain regards displays a tolerably great amonnt of variation, and for some of the specinens I lave leen led to form two separate varieties: simitis (cf. p. 46) and squamiventer (p. 48).

After these preliminary remarks had been written down, I have liad the opportmity to examine an additional and consderable number of specinnens, especially [rom the Polar Deptlis and from the north-eastern Greenland; regard has also been taken for these in my diagnosis, and they are deserving of special mention.

Lycodes paltidus from the Ingolf Expedition.

Tab. IV, fig. I a, b, c, d, e.

There are in specimens in all from the seas north of the Freroes (St. I38) and Iceland (St. 12 \& 126); the depths varied from 293-495 fathoms.

I give below the most important measurements of these specinens:

Total length
Length of the hearl
Fistance from suout to anus
Height over the anus

	St. 126 St. 126 St. 126			St. 3^{3} S St. 124		$124,5 t .138$		t. 138	St. 124	$\text { St. } \mathrm{I}_{3}^{3}$	$\begin{gathered} \text { St. } 124 \\ i \end{gathered}$
in mm,	53	53,5	85	104	115	130	133	135	140	158	183
	12,5	13	19	23	26	29	32	30	32	40	41
	21,5	22	35	41	45	53	54	56	58	66	75
	4.5	4.5	8	9.5	10,5	13	I4	13	13	16	17.5

") Guite vonser inficiduals atre certamly not lanown, Wht sucls is the condition in all the specimens to hand whose total hongtlo is down to $187,511181$.

The body is thus moderately elongated (zoarciform), as the height orer the anns amonnts to $9,1-10,5 \%$ of the total length. From the neck to the anus it is ahnost of even lefight, thereafter the height gradually lessens towards the pointed end of the tail. The tail is compressed, likewise the trunk, as the thickness here is still somewhat less than the height; the greatest thickness lies forward on the cheeks and is somewhat greater than the height over the anns. The head and trunk tugether are a good deal slorter than the tail, as the distance between the snont and the anns amonnts to $39,1-41,2 \%$ of the total length

The length of the head is $22,1-25,3^{\circ}$ of the total length. It is tolerably elongated, as the heiglit orer the neck is contained twice or somewhat more in the length; it is also compressed downwards, flatly arched ahove, curved outwards at the sides and tolerably flat below. Seen from the side, the over margin forms a slight curse to the fore end of the snont, whose smooth point extends more or less forward in front of the intermaxillary; this again is in front of the mandible, so that the montly lies on the mader surface of the head. The eves are tolerably small, their longitudinal dianeter (in individuals over roo minn. length) amonnting to $千^{-4} 4^{\circ}$ o of the total length. Seen from the side, the npper border of the eve curses up over the margin of the brow; seen from above, there is a space between the two eyes which is almost equal to the vertical diameter of the eve; they are for the rest, oval, longer than high. On the craninm, the breadth of the forehead between the eves anomints to only ca. ${ }^{1 / 20}$ of the length of the head. The snont is tolerably long, its length reckoned to the anterion: border of the eye, being ca. $7-8,5 \%$ of the total length; the males seem to have the longest snont; in the 158 mmn . long male the length of the snont is 8.5° of the total length, in the is 3 min. long female only $6,8^{\circ}$. The shallow pits along the borders of the jaws are specially distinct in well-preserved specimens. The nostrils are in the form of tubes as nsual. The teeth are short, conical, truncated, but tolerably strong, inserted on the intemaxillary (dutble row in front, single belind), on the palatals, vomer and mandible (in several rows in front).

Tlue dorsal fin, whose distance from the snont is $29,5-3 I^{\circ}$. of the total length, contains ca. 97-100 rays ${ }^{1}$, the anal ca. $S_{4^{2}}$); in both cases half the candal fin is as unal included. The pectorals have (IS) 19-20 (21) rays\%. The ventral fins are relatively smaller than in other species.

The scales are laid down early. In the two smallest specinens (total length $53-53.5$ mm.) the scales are already in process of development on the formost part of the body (see Tab. IV, fige 1a) and in the $S_{5} 11111$. long specimen (Tab. IV, fig. I b) they cover the anterior part of the tail, also the trunk as far as the beginning of the dorsal fin, though the anterior portion of the back and the whole of the belly are naked. The tof mm. long specimen (Tab. IV ${ }^{\prime}$, fig. I c) is already almost entircly covered with scales, from near the tip of the tail forward as far as the dorsal fin extends; the anterior part of the back is howeser naked, as also a small portion under the base of the foremost part of the dorsal fin and the belly, or speaking more accurately, that part of the trunk which lies muder the branch of the lateral line descending towards the anns. In the 115 m 11 . hong specinen, there is a slightly larger naked part posteriorly on the tail, but the scaly covering lats the same distribution

[^39]in front, likewise in the 130 mm, long specimen, though here the end of the tail is scaled. In the 1.33 11111. long specimen, there are one to two rows of scales under the descending part of the lateral line, and the scales extend a little further forward towards the lead; the neck (in front of the dorsal (fin) is still however naked. The scales have a similar distribution in the specimens of ${ }^{135}$, 140 and 158 min. length, but there are respectively 3 to 4,2 to 3 , and 2 to 3 rows of scales minder the branch of the lateral line descending towards the anns; the largest of the specimens (Tab. IV, fig. I d) has still a maked strip under the foremost part of the root of the dorsal fin. Lastly, in the specimen of 183 min. (Tab. IT, fig. 1 e) the scaly covering extends from the tip of the tail to tolerably near the base of the pectorals, and there are ca. 6 rows of scales under the descending portion of the lateral line, but the belly itself is still maked, as also the back in front of the dorsal fin; in one respect this specinen differs from all the foregoing, namely, that the scales extend ont on to the base of the slorsal and anal fins.

The lateral line begins over the upper end of the gill-opening, forms a slight arch over the edge of the gili-cover and bends thereafter down towards the anns; from there it can be followed thongh often with difficulty and only under the lens - a shorter or longer distance along the tail, in the neighbourhood of the edge of the body. Most often there are also more or less distinct traces of a mediolateral lateral line, especially on the tail. The descending part of the lateral line is developed early and is seen already on the 53 mm . long young.

Colour. The two smallest ($53-53,5 \mathrm{~mm}$.) show 9 dark cross-bands, which are very sharply marked on the dorsal fin, bit lower down on the body become quite feeble; between these darker cross-bands the yellowish ground-colour of the body shows itself as light cross stripes; the anal fin is dark-coloured posteriorly, almost black (Tab. IV, fig. ra). During development the dark cross-bands become more and more indistinct: they persist longest on the dorsal fin as dark patches, especially on the hindmost part. There is also some individual variation. In one specimen of 85 mm . (Tab. IV, fig. 1 b) the bands are already tolerably faint on the dorsal fin and hardly to be distingnished on the body; in one $10+11111 . \operatorname{long}$ (Tab. IV, fig. I c) on the other hand, they are still rather distinct right across. The following renarks on the remaining specimens will be sufficient: total length 115 mm: 10 distinct dark markings on the dorsal fin, faint shadows on the body under them, anal fin dark posteriorly; total length 130 mm.: traces of dark markings on the dorsal fin posteriorly, anal fin dark posteriorly; total length 133 minn: 9 dark markings on the dorsal fin, two such on the posterior part of the anal fin; total length 135 mm1: faint traces of dark markings on the dorsal, mnder them indistinct shadows on the body, anal fin darkened posteriorly; total length fomm. two very faint slaadings posteriorly on the dorsal fin, anal a little darkened quite at the posterior end; total length 158 mm.: 12 indistinct dark markings on the dorsal fin, here and there traces also of faint shadows under them on the body (Tab.IV, fig. 1d). Finally, the 183 mm. specimen is miniformly colonred, brown, with the scales showing somewhat lighter than the gromd-colonr (Tab. IV, fig. 1 e). The belly in consequence of the dark peritonemm, has commonly a more or less darkened appearance; also, the posterior margin of the gill-covers and the skin over the branchiostegal rays, sometimes also the pectoral fins, are darkened.

Sexual organs. Only in one of the individnals to hand are the egos so large that they can be recognised with the naked eve, namely in the one of 1.83 mm ; the sack-formed orary is if 1 mm . long and contains a somewhat small number of eggs, whose diameter does mot exceed i.s mm.: the date of capture was the 2Sth of July:

Lycodes pallidus from the Kara Sea.

Fron the Kara Sea in specimens, $85-160 \mathrm{~mm}$. long, have been obtainerl and are mentioned by L, ittken (1.c.). Calculated from my measurements, the height over the anns in $\mathcal{S}_{1}+-\delta_{7} /{ }^{\prime \prime}$... the length of the head $22,6-24,60^{\circ} \ldots$ the distance between the snont and the anus $41,4-43,1$, in the longitudinal dianeter of the eve $3.3-4,1^{\prime \prime}$. of the total length. Compared with the specimens from the Ingolf Expedition, L. pallidus from the Kara Sea has therefore a somewlat more slender body and the tail is relatively a little shorter. The pectoral fins have thronghont fewer rays, their number heing is or 19, seldom 17. The head, anterior part of the back and the belly are always maked. The smaller specimens have distinct dark cross-bands on the body and umpaired fins, in the older these become less clear on the body, and the largest (160 mmn) is almost withont markings. Litken mentions only one lateral line, viz. the ventral, but faint traces of a mediolateral branch can be detected in several specimens.

Lycodes pallidus from S_{p} itzbergen.

The two type-specimens of the species, 93 and $16 \nmid$ mm. long, were taken at Spitzbergen at 260 and 459 fathons. In these, the length of the head is $22,6^{\prime \prime}$... the distance between the snont and the antis $39-39, S^{\circ}$ o, the height orer the anns $8,5-9,5^{\prime \prime}$, the longitudinal dianeter of the eve 4,3 of the total length. The pectorals contain is - 19 rays. Scales cover the body as far as the region of the pectoral fins, but the lread, neck, middle of the belly and the fins are maked; in the smallest specimen the scales extend farthest forward, mamely; immediately to the base of the pectorals, and only a small strip along the middle of the belly is maked; in the largest individual on the other hand, a larger part of the belly is naked (cf. Pl. III, fig. 26 and 27 in Collett, l. c. ISSo). The colour is gray brown, with $5-7$ dark markings on the dorsal fin and an almost indistinguishable shading on the body under each of then; a dark patch likewise on the anal fin towards the end. (of the lateral line Collett has only seen the rentral branch. - For the rest, see the detailed and careful description of Collett.

Again, N. Knipowitsch (l.c.) has clescribed a specimen, ISS. 5 mm. long, taken in Stor fijord at 60 fathoms depth. In it, the length of the head is $25.2^{\circ} \%$, the distance between the shont and the anms $42,4^{\circ}$ o, the height over the anns 9° o. the longitudinal diameter of the ere $3.5^{\prime \prime}$ of of the tal length. The pectorals contain is ravs. The scaly covering extends to a little in front of the commencement of the dorsal fin, the belly is naked. The colour is brown-gray, with indistinct traces of darker cross-bands. The rentral lateral line is distinct, traces of a mediolateral branch are also to be seen.

Of specimens from Spitzbergen I have myself made occasional notes concorning three: one (L. reticulatus forna frogida No. 7 apud Smitt l. c.) was taken by the kolthoff Expedition of

1000 in the month of the Ine Fjord at a depth of 350 meters, the other two by the Michael Sars in $1 g_{0}$ in the Ise Fjord at a depth of 260 meters. The most important measurements of these individuals are as follow:

The largest of the individnals is remarkable for its great breadth of head just behind the eyes: it is a male and the same claracteristic has already been noted for this sex in another species (V. zahlii. cf. p. 20 with fig. I \& 2); further, the snont in this individual extends unnsually far forward in front of the underjaw. The pectorals contain 18 , IS and ig rays. The distance of the dorsal fin from the snont is $28,2-3 T, 2^{\circ}$ of of the total length. On the side of the body the scales extend forward to a little behind the root of the pectorals, but both the anterior portion of the back and the belly on the other hand are free from scales, even in the largest of the specimens. The $2071 m m$. long specimen is wanting in cross-bands, mifomly grayish brown, lighter mnderneath especially on the muderside of the head forward; the anal fin darkish, the front part lighter and with a light border. The colour in the r_{4} 11mn. long specimen is very dark, rusty brown, with extremely faint indications of crossbands: the belly and fins are of a dark monse-gray, the anal darker posteriorly; the underside of the head lighter in parts. In the one ith man. long, the colonr is likewise very dark except on the foremost part of the minderside of the head, with very indistinct bands, which are however, very apparent on the dorsal fin, especially towards the margin, to the number of 7 with a dark spot on the point of the tail; the anal fin blackish, especially posteriorly, forward lighter on the lower margin. The ventral lateral line is distinct, also the mediolateral in parts, yet only in the smallest individual.

Lycodes pallidus from East-Greenland.
In the Stochholm's Riks-AInsenn1 I have seen not less than 53 specimens, taken at the northerly East-Greenland by the Nathorst-Kolthoff Expeditions of 1899 and igoo. A large number of these specimens have been described by F.A. Smitt (1.c.) under the names: L. zahlii forma pallida, I. z'ahlii f. typica and L. reticulatus f. frigida.

Most of the specimens are under roo mm, in length, only is are above that from $105-\mathrm{f}$ - mmm . In 33 of these ($55.5-1,-8 \mathrm{mmn}$.) the length of the head is $20.7-25.3 \%$, the distance between the snont and the anns $38-4,4 \circ$, the height over the anus $8-10,3 \%{ }^{\text {r }}$), the longitudinal diameter of the eye lin individuals of 125 mm . and over) $3.4-4,5 \%$ of the total length. The pectoral fins contain $18-19$, more rarely 20 rays. A young specimen of $55,5 \mathrm{~mm}$. is still naked, but scales have begun to appear in another of 65 mm . In specimens of total length $70-125$ min., the scaly covering extends forward

[^40]to near the root of the pectorals, but a portion of the end of the tail is still more or less free from scales; at a total length of 137 1mm. and over, the tail is completely cosered witl scales, so that these extend from the tip of the tail almost to the root of the pectorals, but the liead, belly and fins. continue to be naked even in the largest specimens. On the trmok and tail, there are f-in dark cross-bands (frequently also a dark spot at the end of the tail), which may become indistinct in the older (seldom in the relatively small individuals, especially on the foremost part of the bory; they remain as a rule, however, on the dorsal fin; the anal fin is usnally light in front, posteriorly on the other hand, it is more or less blackish, (from the fusing together, entirely or in part, of the most posterior cross-londs) not rarely with a narrow, light strip along the lower margin; nore rarely the anal fin is uniformly: dark the whole way. Sometimes a light spot is present over the edges of the gill-cover or a light stripe across the neck. The ventral lateral line is distinct, especially on the part descending towards the anus; a distinct mediolateral lateral line is seldom seen; sometimes there is a short series of pores forwards under the dorsal fin ${ }^{\mathrm{I}}$.

Lycodes pallidus from the cruise of the Hichael Sars igoz.
Six specimens of a Lycodes, which I think I. pallidus, were taken off the Shetland-Nomay Slope at ca. tzo fathoms depth.

The most important measurements are as follows:

						\%	§
Total length in inm.		98	I2I	122	142	ISt	186
Length of the head	in 0 .. of the total length	22.5	23.1	23	23.2	24	22,6
Ifstance between snout and amus	- -	40,5	10,9	39,8	42,3	12	41
Height over the anus	- -	8.9	10,2	9.4	10.6	9.1	8.2

In addition, the longitudinal diameter of the eye is $4,1-3,8^{\prime \prime} \ldots$ the length of the snont (to the eye) $7,6-8,5$ " o, the distance of the dorsal fin from the snont $28,7-30,4^{\circ}$ o of the total length. The pectoral fins contain 19-20 rays. The scaly covering is almost equally developed in all specimens and extends towards the root of the pectoral fins; the anterior part of the back and the fins are naked, likewise almost all that part of the belly which lies under the branch of the lateral line descending towards the anus. The ground-colonr is brownish, but darkened on the belly by the peritonemm shining through; on the body itself no cross-bands appear; in the three sumallest specinens: on the other hand, rather distinct black markings appear on the dorsal fin, especially on the most posterior part, and weak traces of these can be detected also in the three larger individuals: the anal fin is grayish in front, dark posteriorly: The ventral lateral line is distinct, frequently even a good bit beyond the anns; a mediolateral lateral line is rather apparent in a single individual (that of 1.42 mm .), in others only scattered elements of it are to be seen.

[^41]Lycodes paliidus from Jan Mayen.
(var. similis 111.).
Tab. V. fig. 2 a. b, c, d \& Tah. VI, fig. 3 a, b, c, d.
I consider as belonging to a distinct variety, I_{5} specimens which the Ingolf Expedition obtained in the neighbonthood of Jan Nayen (St. II6), at 371 fathoms depth. Lütken (l. c.) had referred Io of then to $/$. pallidus Coll., to whiclı they indeed are closely related, the remaining 5 to $~ L$. lietkcmii Coll. to which they have a certain resemblance in colour-marking but no close relation otherwise. In my prelminary report (1.c.) I have formed these Lycodes from Jan Mayen into a separate species (losimilis) pointing ont at the same time their near relationslip to L. pallidus; with my present increased knowledge of I. pallidus I consider it best to regard them as a local variety of this species.

The most important measurements of these specimens are as follors:

Total leugth
Length of the head
Distance between snont and anus
Height orer the anus

							$ઠ$	9	7		q	0	9	9	0
in mm.	49	73	74	106	109	IIS	125	125	130	132	I34	143	145	170	175
-	12	18,5	IS	25.5	26	28	31	30	30	31.5	31	37	3.5	40	44
	21	30,5	31	46	48	51	53	55	55	57	56	62	60	73	75
	5	7,5	7.5	11.5	II, 5	12,5	14	14	14	13	15,5	16	17	21	19

The body as to form has a great similarity to that in the typical L. pallidus, but it is throughout somewhat higher, and is thus less elongated; the height over the anns amonts to no$12,4^{\circ}$ of the total length. The tail again is thronghont somewhat shorter, the distance between the snont and the anns being $41,4-4^{\circ} \circ$ of the body's whole length.

The head is of similar length as in the typical L. pallidus and anomnts to 23-25,9\% of the total length. It appears howerer less lengthy, as the leight orer the neck is greater and as a rule is contained not quite twice in the length; it is consequently less depressed, and its lateral aspects approach more to the rertical. Seen from the side, its upper border from the neck to the posterior margin of the pupil is almost horizontal, and then inclines sharply almost in a straight line down to the snont. The eves are relatively a little larger than in the typical form, their longitudinal diameter (in specimens of IIS mm. and over) being $4,7-5,6{ }^{\prime \prime} \%$ of the total length; their mpper margin projects outwards orer the level of the forehead; seen from abore, there is a tolerably small space between the two eyes; on the craninm the breadth of the forehead is ${ }_{1 / 20}$ of the length of the head. The snont is not depressed, as in the true l. pallidus, but somewhat high; on the whole its head is higher than in the previons form whether the snont or the neck is considered. The length of the postorbital part of the head is somewhat the same in both forms; consequently, on acconnt of the greater dimensions of the eve, the snont is relatively a little shorter in the variety similis and amounts to only $6,2-7,5 \%$ of the total length against $6,8-8,5 \%$ (or more) in the typical L. pallidus. The cup-shaped depressions along the margins of the jaws, and the nostrils are as in the typical form, nor do the teeth show any differences.

The dorsal fin begins about the same place as in typical specincus, nanlely at a distance from the snont which is $29-32,2^{\prime \prime}$, of the total length; it has ca. $97-96$ rays, the anal fin ca. $\mathrm{S}_{\mathrm{I}} \mathrm{I}-\mathrm{s}_{2}$ rays; as nsual, half the tail fin is reckoned in both. The pectoral contains $19-20$, seldonn 21 rays. The ventral fins are just as small as in typical L. pallidus.

Scales. The smallest specimen (49 mm .) is naked (Tab. VI, fig. 3 a . In the 73 if mm, long specinens the scaly covering extends from the beginning of the clorsal fin some distance on to the tail, but the anterior part of the back and the belly are naked (Tab. V, fig. 2 a). In the 106 and ron 1 mm . long specinens the end of the tail is further maked (Tab. V, fig. 2 b). It is only late that this portion begins to be covered with scales, viz. at a total length of IIS-I 30 m1111. In the larger specinnens the scales extend from the tip of the tail forward to a line from the anterior end of the dorsal fin, yet the anterior part of the back and a strip just forward under the base of the dorsal fin as well as the greatest part of the trmink moder the branch of the lateral line descending towards the anns, are free from scales (some specimens may have $2-3$ rows of scales at the most, on the belly under the lateral linc: scales on the unpaired fins cannot be discovered. The scales are relatively large as in the trpical form and are fairly close together.

The lateral line is double. The ventral branch is distinct on the stretch from the edge of the gill-covers down to the anus, also for a shorter or longer distance along the underside of the tail; the mediolateral line is nore or less apparent, sometines specially distinct with a considerable number of pores and short lines. Some pores are sometimes seen forward minler the dorsal fin.

Colonr. The variety similis occurs in two different colour-forms, nanely in one with indistinct cross-bands (Tab. V, fig. $2 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$), another with these distinct (Tab. VT, fig. $3 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$). T'nder the first come to specimens. The two young specinens of $73-7+1111$. (Tab. V', fig. 2 at have + dark bands over the first two-thinds of the dorsal fins, almost black and most distinct towards the edge of the fin; muder each of these patches there is a more or less distinct, brownish cross-band on the body: The anal fin is black posteriorly, to a more or less extent, on the margin or exen to the base. The peritonemm shines throngly giving the belly a blue-black appearance, and the posterior margin of the gill-cover as well as the skin over the branchiostegal rass is clark. Otherwise the gromind-colonr is yellowish brown. Two specinens which follow these in size and neasure $106-109$ 11111., are sinuitarly colonred; the dark markings of the fins appear mainly, however, as stripes on the nargins, and the anal fin is not very dark posteriorly (Tab. V, fig. 2 b). Six other specimens at 125 ('Tab, V, fig. 2 c), 130, 132, 134, If3 and 575 mm . (Tab. V, fig. 2 d), display similar colouration or have the dark markings almost entirely obliterated, so that the body seems almost minformly brownish, with light scale-points and dark belly and gill-coser. The other colour variety is shown by 5 specinlens. The first is the fy 11111 . long young specimen (Tab. VI, fig. 3 a): it has a very broad cross-band on the trumk and fort the tail, decreasing in size posteriorly; the bands are brown, but there is a lighter patt in the centre of those in front; a light band extends actoss the neck from gill-cover to gill-corer: the anal fin is
 in the main (Tab. VI, fig. $3 \mathrm{~b}, \mathrm{c}, \mathrm{d}$): all show a light band across the neck as well ats the dark brown cross-bands on the trunk and tail, all, or in every case the nost anterior of them, with a light
centre ${ }^{1}$); on the anal fin the dark bands may be scattered or fused together to form a lengthy patch on the fin posteriorly. In this gronp of specimens also, the scales appear as lighter points, and the belly and gill-covers are dark. - This remarkable rariation in colour-marking is not a sex-difference as both males and females occur in both colonr-forms.

The sexual organs are little developed in the specimens to liand. In the largest male (175 mm .10 ng) the testes are 10 mm . long, 4.5 mm . broad, without developed free folds. In the largest female ($5,0 \mathrm{~mm}$.) taken on the 23 rd of July, the orary is ca. to mn. long, and contains a tolerably small mumber of eggs of $1,5 \mathrm{~mm}$. in diameter.

It is especially the iess elongated body-form, the somewhat shorter tail and the relatively large eves, which justifies the rariety similis.

Lycodes pallidus
var. squamiventer m.
Tab. IV', fig. 2 a , b.
The i2 specinens, now to be mentioned in more detail, were taken partly by the Ingolf Expedition of 1896 in the waters east from Iceland (St. 105, IOA, IOI) and north from the Freroe Isles (St. 141), partly by the Michael Sars Expedition of 1902 off the Shetland-Norway Slope ; the depth.s were $537-957$ fathoms.

The most inportant proportions of these 12 specinens are as follows:

											$\begin{aligned} & \infty \\ & \text { no } \\ & \text { so } \\ & \exists \dot{\Omega} \\ & \delta \end{aligned}$		
Total length	in min.	117.5	128	143	147	155	170	179	ISo	230	245	2.48	260
Length of the head	-	24,5	27	32	$3{ }^{1}$	34	36	37,75'	37	50	55	51	51,5
Distance between snout and anns	-	47	50,5	55	60	63.75	68	68	70	90	97	9.4	104,5
Height over the anus	-	I I	12,25	14	14	14,75	16	17.5	17	22	25	25	28

The form of the body is similar to that in the typical L. pallidus; the anus has almost the same position, namely in its distance from the snont which is here $37,9-4 \mathrm{I}, \mathrm{r} \%$ of the total length, and the height orer the anus is $9,4-10,8 \%$ of the same length.

The head is relatively shorter than in both preceding forms, as its length is only $19,6-22,4 \%$ of the total length, somewhat depressed, especially in adult specimens. The eyes have a similar length as in the typical L. pallidus, their longitndinal diameter being $3-4,4 \%$ of the total length. 'The snont, whose length is $7-S_{1} \boldsymbol{F}^{\circ}$, of the total length, is relatively somewhat higher in the young specimens than in the old, where it is depressed. The tube-shaped nostrils are well-developed; the teeth-characters as usual.
" The colonration of these specimens has a delusive resemblance to that in L. lätkenii, which must be the reason Why I, iftken in the carlicr report on the Fishes of the Ingolf Expedition referred them to that species.

The dorsal fin, whose clistance from the shn is $27-20$ of the total lengeti, contains 9697 rays, the anal fin $S_{1}-8_{2}$ (half the candal fin is reckoned with cacho. The pectorals have $18-20$ rays. The ventrals are on the whole, somewhat longer and mone developed than in the other forms of 1 . pallidus.

Scales. We do not know the fonngent stacges, but the smallest of the presemt opecimens is already remarkable for the strong development of scales, thongh it is only ifformm. lomis; the scaly covering extends forward to the neck and almost th the base of the pectorals, ats well as forward on the belly to a line drawn almost between the anterior third of the pectorals. 'rlae fas mmang lomg specimen has scales on the whole of the belly, to the base of the rentrals, and scales base begme to appear on the base of the mpaired fins; the scaly covering has thus almost reached its finllest development in this small specimen, as much as it does in the Lycodes genns, as it is essentially only. the head which remains naked. The three larosest specimens (245.24s and 260 mm.) have only adranced further in that the scales have spread out more on to the mpaired fins. The remaining specimens, whose lengths lie between 143 and 230 mm ., display a little variation, as the scaly conering in some of them has almost the same distribution as in the largest indinidnals, whereas in others the scales on the belly only reach forwarl to a line between the anterion thind of the pectorals or to the tip of the ventrals when stretched ont backwards, and there may also be a naked strip in the middle line of the back in front of the dorsal fin; in all, the scales extend ont more or less (1n the the mpared fins. - Whilst, in the two previons forms of L. pallidus, the sales did not extend below on w the belly itself, the underpart of the belly is always scaled in the present ionn, either to the base of the ventrals or at least to a short distance from it, and on the whole also, the scales extend further forward on the back as well as, except in the smallest specimens, ont on to the base of the nupaired fins. The scales themselses are small, on the whole less than in the other forms of L. pallidus; thes are sometimes so close together that they partly give one the inpression of being imbricate.

The lateral line has its origin over the mper edge of the gill-cover, bends down towards the anns and can be followed a shorter or longer distance along the lower edge of the tail, sometimes even to the tip of the tail. In addition to this ventral lateral line, more or less distinct traces of a mediolateral brand are to be seen, sometines as only single pores, sometimes more munerons pores. partly also as a thin line.

The colonr is mifonn, withont bands or spots, dark-brown or lighter, sellowish brown or gray-brown, in all the specimens at hand; the scales stand ont lighter than the ground-comon: the belly and posterior margin of the sill-cover are darker.

Sexual organs. The testes are very broad relative to the length and witla very smail frue folds; in one specimen 245 mm . long, the testis measures 16 mm . in lengtl loy 7 mm . in breath, the
 the ovary is 22 mm. in length and contains eggs with a dianeter of 3.5 mm. The nevt largent fumale is 147 mm . long; the ovary is only $S \mathrm{~mm}$. Iong and contans extrencly small cyg.

In certain respects therefore, the present form is somewhat distant from Lo pallidus: the licall is relatively a little shorter; the sales are less and hase a wider distrimution, both om the hells, lack
and mpaired fins; the colour is minform and shows no indication of bands or spots (though it must be remembered, however, that the young are unknown).

For the rest, it las a very great resemblance to L. pallidus, and I think it most prudent meantime to consider it a variety of this species. In time it may possibly be raised to a separate species, and its name squamizenter conld then be retained as the specific name.

As the facts are at present, I regard it as a deep water form of L. pallidus. It lives at depths of $537-957$ fathoms, whilst the tme L. pallidus in my opinion is not known to go to greater depths than 495 fathoms. It seems to me worthy of remark in this regard, that one of the specimens of I. pallidus from the deepest place (the 183 mm . long specimen described before and represented in fig. I e on 'Tab. 1V) forms in part a transition stage to the variety squamiventer, being scaled on the uppermost part of the belly (6 rows of scales beneath the descending branch of the lateral line) and contrary to the usual, has scales on the base of the unpaired fins.

Distribution.

The typical L, pallidus is found in the Kara Sea, at Spitzbergen, at north-eastern Greenland, and north from Iceland, north from the Færoes and N.N.E. from Shetland.

In the K ara Sea the Dijmphna Expedition took in specimens at a depth of $46-106$ fathoms.
At Spitzbergen the Norw: North-Atlantic Expedition took 2 specimens where the depths were 260-459 fathoms, and the bottom-temperature $+1^{\circ}$ I and \quad I C; a Russian Expedition i specimen in Stor Fijord at a depth of 60 fathoms, and bottom-temperature of - 2 C ; the Kolthoff Expedition of igoo 1 specimen at the month of lse Fjord, where the depth was is5 fathons, and the Michael Sars igor 2 specimens at Ise Fjord at a depth of ryo fathoms.

It north-eastern (ireenland no fewer than 53 specimens have been taken. The Nathorst Expedition of 1899 took it in Franz Josephs Fjord, at 400 fathoms (t specimens) and at $73^{\circ} 20^{\prime}$ N.L. $2120{ }^{\prime} \mathbf{W} .1$. Where the deptl was 37 fathoms (1 specimen). The Kolthoff Expedition of 1900 obtained it at the following places: Franz Josephs Fjord, head of Myskoxe Bay, 53 fathoms (2 specimens); Franz Josephs Fjord, onter part of Myskoxe Bay, 106 fathoms (I specimen); mouth of Franz Josephs Fjord, Io6-212 fathoms (4 specinens); off Franz Josephs Fjord, between Bontekoe Island and Mackenzie Bay, ${ }^{1} 32$ fathoms (2 specimens) ; Mackenzie Bay, $6^{1 / 2}-18$ fathoms (35 specimens, 1 of 178 mm ., 1 of 125 mm ., the rest between fo-iromm.); off Mackenzie Bay; 53 fathoms (3 specimens); S.E. from Walrus Island (7.4 30^{\prime} N.L. 18 to W.I.), 4^{2-53} fathoms (I specimen).

The Ingolf Expedition of 1896 took 7 specimens north of Iceland at St. in 24 and i26, where the depths were 293-495 fathoms, and bottom-temperature - $0^{\circ} 5$ and - $0^{\circ} 6 \mathrm{C}$.

The same Expedition of 1896 took 4 specimens north from the Fretoes at St. I38, at a deptli of 471 fathoms, and bottom-temperature 066 C .

Off the Shetland-Norway Slope (6243^{\prime} N.L.I 26^{\prime} E.L. $)$ the Michael Sars in igoz took 6 specimens. where the depth was ca. 420 fathoms and bottom-temperature under $o^{\circ} \mathrm{C}$.
'The variety similis was taken by the Ingolf Expedition of ISg6 (I5 specimens) south from Jan Ilayen (St. 1 ro) where the depth was 371 fathoms and bottom-temperature - $0^{\circ} 4 \mathrm{C}$.

The variet！squamiventer was taken by the lngolf Expedition of isqueast from Iceland

 －o6C．（I specimen）；and by the Michael Sars in tyon offthe Shetland－N゙orway Slope（63 7^{\prime} N．L． $1^{6} 3^{\prime}$ E．L．．Where the depth was 650 fathoms and bottom－temperature mader o C．（6speciments）．

L．pallidus lives in polar waters；in sonthern latitudes therefore，it is first met with at great depths（ 300 fathons and deeper）but in high arctic seas it comes up quite to the sublittoral \％one．

Lycodes platyrhinus Jensen

Tab．VI，fige 2．Figs． 3 ， 5 in text．
189\％．Lycodes frigidus Lïtken，The Danish Ingolf Expedition，II，1，p．26（p）artim）．
1gor．L．platyrhims Jensen，Vidensk．Meda．Naturlı．Foren．Kbhon．p．zos．
Bodyzoarciform，yet relatively more elongated than in must other species of
 the length of the head is $19,9^{\circ}$ of of the same length，the distance between the sumat and the anus 37° ．The colour is uniformly of a ruddy brown－gray Scales are wanting．Lateral line donble，fentral andmediolateral，nost distinctinits comrat towards the anins．The size（of thesinglespecinen） 148,511111 ．

D．99．A．82．P． 15.
Distribution．Between Jan Mayen and leeland，rofofathoms．
Only one specimen of this species，which was placed by L ，ütken with L．frigidus in at hand for investigation；it is a male．

The most important proportions are the following：

Total length	$1+8,5 \quad 11111$.
Lengtly of the head	29.5
Distance between smont and anms．	55
Height over the alnis．	12，25

The form of the body is more slender than in most other species of the genns lacodes the height over the anns being only $S_{, 2 "}{ }^{\prime \prime}$ of of the total lengtli．（On the trink the lieight is almost uniform and the tail tapers very gradually down to the tip．The trunk is somewhat compressed，its thickness being $I^{1 / 2}$ times in the leight，and the tail becones gradnally more and more compressed．＇Tlic anns lies a little behind the termination of the anterior third of the body，the distance between the shont and the anns being 37° of of the total length．

The head is broad，flat in front and tolerably short，its length being ig． 9 ＂o of the total length．The height over the crown is somewhat greater than the breadth at the sance place，but further forward the head becomes very low withont at the same time lusing in brealth；the ent of the shout is blunt，but low，seen from above it is broady rommed off．The cyce are sumall，so that their longitudinal dianeter is scarcely ${ }^{1}{ }_{g}$ th of the total longth of the head；they are placed hingle up）， on the very margin of the forehead，but at a fairly clear distance fom one anotler anmmange to quite onle
and a half times the diameter of the eve. The length of the snont to the eye, is not quite $3^{t_{2}}$ a times in the whole lengtly of the head. The lower jaw extends almost as far forward as the upper, whose posterior angle lies muder the anterior thind of the eye. The lips are tolerably fleshy. The teeth are sniall and pointed, placed as nsual on the intermaxillary, palatal, voner and mandible. The grooves for the pores of the lateral line are in parts considerable and very deep, surromaled by soft, projecting borlers; from the snont to under the ese there is a row of 7 distinct pits, and another row of pits, likewise $/$ in 11411 ber , from the tip of the mandible to the lower posterior corner of the

Fis. 3-5. llearl of Lycodes platirthinus, seen from above, the side and from underneath. $X 1$.
preoperculum. The tube-shaped mostrils are sitnated a little above the interspace between the two foremost grooves of the ripper jaw.

The dorsal fin begins almost over the posterior third of the pectoral when extended backwards, at a distance from the snont equal to $26,3 \%$ of the total length. Botli this fin and the anal fin are covered by a thick skin, so that it is difficult to count the rays; I lave reckoned the number to be 99 in the dorsal fin, 82 in the anal, half of the tail fin being as usnal reckoned in each. The pectoral, which contains 15 rays, is of an oblique quadrangular form; its length is $11,3 \%$ of the total length. The ventral fins are short (alnost of the same length as the space between the eyes) and placed rery close to one another.

Of scales no trace can be observed; whether this naked condition is a constant feature or only due to the sunall size of the specinen, can naturally not be decided with certainty, but the scaly covering is generally far advanced in developnent at a length of ca. 150 111m. in the Lecodes which are on the whole provided with scales, so that the first alternative is the most probable.

The ventral branch of the lateral line is only distinct in its comse down towards the anns. It begins on the neck, forms a small arcln over the free flap of the gill-cover and inchines thereafter down towards the anus, but becomes already indistinct over the anus. Along the median line of the side a tolerably distinct line with not a few pores is to be seen under the lens; the pores are someWhat far apart in front but closer together posterions:

The colont is minformly a ruddy brown-gray; the fins and maderside of the head lighter, dirty gray; the dark peritonenm shows thronglı tlie belly:

Distribution. A single specinen ($\begin{gathered} \\ \text {) was taken by the Ingolf Expedition in i } 896 \text { between }\end{gathered}$ Jan Mayen and Iceland (St. I19), where the depth was roro fathons and bottom-temperature - $\mathrm{I}^{\circ} \mathrm{O} \mathrm{C}$.

Relation of the species to L.ycodes frigidus Coll.

1. platyrhimus was placed with L. frigiaus Coll. by L. ittken, and it certalmp prescuts some resemblance with this species in appearance, namely, in its minform, ruddy brown-gray colonr; but a more thorongl comparison will at once show important differences of which the following may be emphasized.
L. frigidus has a less blongated body-form, the heisht over the anns, in a specimen of simitar length, being 10" or somewhat more of the total length; the tail especially is quite different in appearance when seen from the side, as it becomes pointed posterionly somewhat quickly in L. frigidus. Again, the head is larger in L. frigidus, its length being 22°.. or mome of the total lengeth. $/$. frigidus has more rays in the pectoral fins, namely $19-21$. Lastly, the scaly covering in L. frigidus is far adranced at the total length of the present species, and its lateral line is single (wentral).

Lycodes microcephalus Jensen.

Tab. I, fig. 1. Figs b S in text.
1gor. Ljeodes microceplalus Jensen, Vidensk. Medd. Naturh. Foren. Kbhvn., p. 206.
The height over the anhs is $S^{\prime \prime}$ "of the total length. The head is small, its
 and trunk together, the distancefom the suont to the anns being 3^{8}, 3° ofof the total length. The colonr is a uniform gellowish white, withont bandsor spots, blue-black on the belly: Lateral line mediolateral? o only apparentonthe trunk. Thescales extend to the point of the pectoral fin, but naked spots ocenr here and there, especially on the tail posteriorly incipicnt scale-formation on the mpairedfins. Size 8t m11.
1). 92. . . . 7 . P. I 5.

Distribution. Northern Atlantic Ocean S.W. from Tceland, T99 fathoms
Gnly one specimen is present for examination. Its most important proportions are the following:

The form of the body is somewhat elongated; the greatest height lies over the belly a lithe in front of the anns and goes so times in the length. The trmak itself is almont of wen height, but lessens at the anns, its height here going 12^{2} a times in the total length; the tail taper showly ant fairly evenly towards the point. The greatest thickness lies acrose the cheeks and is hut little lesis than the greatest height of the body; the trmak is a little smalter, and the tail becomen more and more compressed towards the tip. The anns lies a long distance in front of the middre of the lengeth of the body, its distance from the snont being $3 h_{n, 3 " \text {. }}$ of the total length.

The head is less than in some of the Lycodes species liere treated of, its length being only. $17,3^{\circ}$ of of the total length. For the rest it has a thick and plinnp appearance; seen from the side. the upper and lower edges converge slightly forwards, and the end is blunt; seen fron above it narrows a little towards the broad ronnded end of the suont. The eses are placed so high up that their upper margin projects a little in front of the forehead; their longitndinal diameter is $5^{1} z_{\text {2 }}$ times in the length of the head; seen from abore, the distance between the eyes is equal to the diameter of the eye. The length of the snont to the exe, is abont 3^{+}; times in the length of the head. The fower jaw extends amost as far forward as the upper, whose posterior angle lies under the anterior third of the eve. The lips are thick. The tubnlar nostrils are well-developed. Of large, cup-shaped pits there is a no small number: $:$ behind the exe, towards the upper side, 5 under and in front of the eye, 1 behind and 1 in front of the nostril, is on the preoperculnm and mandible, lastly in one neck

:

-

8

Fig. 6-8. Hearl of Lycodes microcephalus, seen from above, the side and from underneath. $\times 2$.
a little in front of the origin of the lateral line. Further, there is a number of fine lateral line pores on the top of the head, the operculnun and preoperculim.

The dorsal fin begins relatively far forward, nanely, at a distance from the snont which is equal to $21,6^{\circ}$ of of the total lengtli; it contains ca. 92 rays, the anal fin ca. 76 rays (half the tail fin being reckoned with each). The ventral fins are relatively long ($3,51111$. , but very thin. The pectorals are $S, 5 \mathrm{mmn}$. long and contain 15 rass, the lowermost of which extend at their points beyond the covering skin.

The scales already show a tolerably wide distribution, namely, forward to the tip of the pectoral fin when laid backwards. They are not yet very close together, here and there also are some naked spots, especially on the hindmost portion of the tail, and in front the scaly covering projects forwards in the shape of a wedge leaving the belly and back bare. Firther, the scales show signs of croing to spread ont on to the unpaired fins.

The lateral line seems to be mediolateral. It begins over the mpper notch of the gill-cover, forms a slight arch orer the flap of the latter, and can then be followed along the median line of the trink as far as the rertieal line through the anns; the pores are tolerably distant from one another and only number 21 on the whole distance mentioned. Possibly there is likewise a ventral branch, ans on the one side there seem to be $2--3$ pores on the belly in front of the anns.

The colonr is a miforn brownish yellow withont any signs of stripes. The belly shows bhe-black uwing to the peritonemn shining throngl. In the jomrnal of the Expedition it is written
concerning the fresh fish：almost withont colonr，a little bluish gray in tone；the top of the head slightiy reddish；the side of the trunk and belly（over the peritonemm）dark blue

An mpaired sexnal organ is present．No pyoric appendages to be secn．
Djstribution．The single specinen taken in isg6 by the Ingolf Fixperition＇l was obtamed S．IV．from Iceland，were the depth was 799 fathoms anci the bottom－temperature 45 C．．St．－s．

This new species does not seem to stand answay near any of the other Lycodes：l．atlanticus milhi，to which one might be inclined to relegate it as the young，has a relatively greater head and more numerons rays in the pectorals（23）．

Lycodes rossi Mahngren．

Tab, Vll, Fig. I a, b, c, l, e, f, w.
iS2S．（？）Blenmius polaris Ross（win Sabine）in Parry，Narrative of an attempt to reach the North Pole，p． 200. 1864．Lycodes rossi Malugren，（9m Spetsbergens Fiskfama；Öfvers．Kgl．Sv．Vet．Akad．Förlandi．，p． 5 I6． 18So．L．rossi Collett，The Norwegian North－Atlantic Jixpedition，Fishes，p．Io6．
r886．L．reticulatus Rhdt．（？）jun．，Laïtken，Kara－Havets Fiske：Dijmplna－Togtets zoologisk－botaniske Cdbytte，1）．I3G，Tab．XVII，Fig． $4^{-5} 5$.
1886．L．Lïtkenǐ Liitken，ibid．p．i2S（partim1，Tab．XVI，Fig．i（1uec Fig． 2 6）．
1895．L．reticulatus Suitt，Skandinaviens Fiskar，II，p． 612 （partinn），Fig．${ }^{2} 4$ S．
1899．L．rossi Collett，Vidensk．Selsk．Skr．Chria．，No．6，p． 8 （cum fig．）．
rgor．L．retriculatus Reinh．（？），Knipowitseh，Ann．Musée Zool．l＇Acad．In1p．St．Pétersbourg，T．VI，p． 25.
1gor．L．reticulatus forma reticulata Smitt，Bih．K．Ss：Vet．－Akad．Handl．Bd．27，Afd．IV．No．t．p． 33 （partim），No． 23 \＆ 27.
igor．L．reticulatus forma semimda Smitt，ibid．p． 32 （partim），No． 16.
1gor．L．celatus Jensen，Vidensk．Medd．Naturhist．Foren．Kbhrn．，p． 208.
1901．L．rossï Jensen，ibid．p． 213 （partim）．
 the head $22,4-25 \cdot 3^{\prime \prime}$ on the longitudinal diameter of the eye $3,6-4^{\prime \prime}$ on the distance
 The young have dark cross－bands on a light ground，the bands relatively lightin the centre，but with a very dark margin \｛on the dorsalfin，blackishof a light band across the neck．In larger individmals the dark（ $0-10$ ）crossobands on the side of the body are partly conflament below，so that the light interapacos partly show as saddle－shaped markings from the free edge of the dorsal fin down towards the lateral line；the light meck－band frequently divides un into serveral spots．The scaly cosering in the older individuals reaches forward ho point，which fies almost nuder the beginning of the dorsal fin，and is wedge－shapert infontit sothat the

[^42]anterior part of the back and belly arefree of scales, likewise the head and fins. The lateral line is mediolateral. Pyloric appendages 2. Size 223 mm .

Distribution. Spitzbergen, 5-75 fathoms; Kara Sea, 46-roofathoms; Porsauger Fjord (East Finmark) , 30-50 fathoms.

Remarks on the Synonymy:

 fathoms, to the Blemnius polaris lescribel by Sabine from arctic America, thongh Ross at the same time noted some differences between them. From the description, it is quite clear that Ross' specinnen was a species of the genus Lycodes.

In 1861, a Swedishl Expedition to Spitzbergen ohtainet two small Lacodes, which Malmgren took - and probably
rightly to be identical as species with Ross' specimen. But 11. rejected the reference of this Ligeodes to Sabine's Blemius polaris, and after likewise rejecting the possibility of its identity with either of the L. perspicillum and L. hebulosus from Crecmland established by Kroyer, gave it the name forsi, the diagnosis of which is based ma single 32 mm . long specimen the second specimen seems to have been lost).

The next reference to L. rossi is hy Collett in r\$So. After examining Malmgren's type-specimen Collett canise to the conclusion that L. rossi was really the same as I. perspicillum Kr., and again that L. gracilis M. Sars, which was only known fron a young specinen fron Christiania Fjord, was identical with L. rossi. Further, Collett explains: it is probable that all these are only young stages either of L. rcticulatus alone, or also of a second nearly related species, perhaps L. lütkenii (1. c. 1. 105).

In his great work on Scandinavian Fishes Prof. F. A. Smitt likewise expresses the opinion that L. rossi is the young of L. reticulatus Reinh,, but with this he nuites not only L. perspicillame Kr., but also L. seminutus Reinh. and L. hitkemit Coll. of the European-Cireentand forms.

In his monograph on L. gracilis (ISg9) Collett again takes up the question of the position of L. rossi. He declares that in certain features L. rossi differs from L.gracilis, but he is still inclined to consider them identical; on the other hand, he now considers the transference of L. perspicillun to this species as problematical, and there is no further talk of bringing L. gracilis-rossi under L. viticulatus.

In my preliminary report on the Lycoles of the Ingolt Expedtion 1 was of the opinion that I had again fonmd L. rossi in two small specimens from the seas sonth of Jan Mayen, and that these minted L. rossi with L. liithenit Coll. In this however, I made an error. Later, in the material of the Kolthoff Expedition, I have seen so many specimens identical with the form from Jan Mayen, that with this moreased knowledge, I must refer them to I.. Seminuddus (cf. this species). And after t had the opportmity, throngh the fayour of Irof. F. A. smitt, of examining Malmgren's type-specimen of L. rossi, I thimk it certain that this form is a very young stage of the species L. celatus mini.

This specific mane I hat employed for three small Lycoles from the Liara Sea; they were considered by Lutken, thongh with some donbt, as the young of L. reticulatus Reinh. I could not agree with this anther on this point and formed the species L. celatus. To this I further referred two small $\mathrm{I}_{\text {y }}$ cotes taken $\mathrm{l}_{\mathrm{y}} \mathrm{y}$ Russian Fxpeditions in the Stor Fijord at Spitzbergen. Prof. N. Knipowitsch lad identified these specimens as Liatken's /. reticulatze jun.? and with right, as I could julge from a direct comparison which Prof. K. kindly enabled me to make; througly some differences in the most important proportions however, I felt obliged to dintinguish it as a distinct variety: spitsburgiusis.

But, as said, after 1 had seen the type-speciunen of L. rossi Malmgr.. I came to the conclusion that my L. celatus must be somewhat larger specimens of the same species.

Later, I got to know L. rossi closer throngh a whole series of specimens, old and young, which Dr. Johan Hjort had taken in 1.901 m the lse Fjord at Spitzbergen. And for use in this treatise, Irof. R. Collett has lent me a series of specimens, which kindness I appreciate the more as Irof. Colleft had intended to work them out. With the help of this excellent material, I discovered that the largest of the specimens, which Liitken in his report on the fishes of the Kara Sea had referred to L. Lïthenio Coll., belonged to L. rossil). Lastly, I became convinced that two lycodes must also be referred to L. rossi, which were taken at Spitzbergen (Ise Fijorl am W. from Cape Mitra) by the Kolthoff Fxpedition of 1900 and ascribed to L. reticulatus lyy Prof. Simitt (1. c.).

Descriptiout.

Alogether I have had ig specimens for investigation; they are emmerated below with the most inportant proportions:
${ }^{1}$ The remanning 27) specinens, on the other hand, forn a new species befonging to the scaletes lyeodes, which I have mamed hycodes agnostus (cf. p. 79 Sol.

rotal length

Length of the head
Distance from snout to ：nnss
Height over the anlus

The form is moderately elongated，the height over the anm being or ：whe time fonng individuals sometimes almost 12）in the total length．Is in other lyendes spectes the head in some－ What depressed，whilst the somewhat compresised trank passes evenly into the strongily connpressed tail．The head is a little broader than the tronk；its greatest thicknes lies over the cheeks and is ca．I^{1} io I^{2} ，greater than the greatest height of the trmuk．ln adult specimens the ambe lien almont at the middle of the body，as its distance from the suont is tris fy．3＂．．of the total lengeth：younger specimens funder 120 m1m，have relatively longer tails，the distance of the anns from the shont in them being $43, \mathrm{r}-7^{\circ}$ of of the total length．

The head is relatively small，its length being only $22.425,3^{\prime \prime}$ ．，of the total length．The eyc． are situated high up，so that their mpper margins project forward over the forchead，and the suac between them is somewhat hollow；their longitudinal diameter sin specimens of 1 is 223 mm，is 6－6，9 times in the length of the head or $+3,6^{\circ}$ of of the total length：they are thun relatively smatl． The length of the snont，reckoned to the eye，is $2,9-3.7$ times in the length of the heal on 7,6 ， 8,6 of the total length．The upper－jaw extends to the vertical line through the middle of the ere；the end of the shout projects a certain distance in front of the muderjaw．The lips are thick：the under－ lip has a dependant fold on each side，and the fold of skin along the monderaw＇s lower edge is over－ lapping on the chin．The tube－shaped nostrils are well－developed．Along the apper and mater－jath are shallow pits for the lateral line．The strong teeth are placed in a single row on the inter－ maxillaries（ 10 15），on the palatals $(9-1 f$ ）and on the mandible（ $10-15$ ）；on the formost part of the jaws（especially on the mader－jaw）they form however al double row；further，there is a smatl group $(+-5)$ on the portion of the fomer lying between the anterion ends of the palatals．

The dorsal fin begins at a distance from the suont cenal to $30-31.7$ ．．of the total kright it contains $91-96$ rays，the anal $7 \mathrm{I}-7$ ．The vemtral fins are small of a length almost equal the the
 length，i．e．almost equal to the distance between the posterior margin ol the eye and the edge of
 project at their points beyond the cosering skin．
 the tail almost completely，but on its foremost part are already somewhat distant from the domat fin ant continue forward from thence on the side of the trunk as a broad wedge，cading a lithe behinkl，

[^43]or at a point opposite to, the beginning of the dorsal fin; the liead, anterior part of the back, the belly and fins are thus quite free of scales. The two snallest specimens (32 and $54,5 \mathrm{~mm}$., Tab. VII, fig. I a \mathbb{S} b) are naked, but scales liave already begnn to show on the $60,5 \mathrm{~mm}$. specimen, on the forenost part of the tail and on the trank to the point of the closed pectoral fin, mamly above the median line of the side. In the 65 11nn. long specinnen, only some few scales can be observed on the bondary between the trunk and the tail, np towards the back, but in three young specimens of $68,2,75$ and 75,8 mmn. (Tab. V11, fies. t c $\mathbb{\&} d$) distinct strip of seales is seen on the side of the body, in front to the midelle of the pectoral when laid backwards and posteriorly an ahnost equal distance behind the anns. In the 85 m11n. long specinnen, the saly covering is relatively very early developed, as it has here essentially the sane distribution as in the adults, only the end of the tail is naked (which may also occur in part in much larger specimens); the individuals of int and 118 mm . are in a similar condition, but one of 105 11nn1. is much less advanced: in this the scales are only on the foremost three fiftis of the tail and ons the trunk to a little distance behind the tip of the pectoral, and for the most part they only extend from the back more or less to near the middle line of the side; only on a small portion do they reach below this. These examples shonld sufficiently illustrate the variations in the distribution of the seales in young and medinm-sized specimens.

The lateral line is single, mediolateral, arises at the upper end of the gill-opening, forms a slight arch on the slonlder and conrses along the dorsal aspect of the trunk but more in the median line on the tail. Over the first obliquely descending part of this lateral line there is a horizontal row of 4 to 5 pores, placed somewhat remote from one another, and there is a similar row between the posterior part of the lead and the front end of the dorsal fin.

Colou1. I shall begin with a description of the smallest specimen but 32 11mn. long (typespecimen of L. rossi Malmgr.). As fig. I a of Tab. VIl in natural size shows, this has S broarl, dark bands on the body, and also a dark spot at the end of the candal fin. The first of these bands reaches from behind the head to the front end of the dorsal fin, the second band lies mader and a little beyond the posterior portion of the pectoral, the third has its anterior border lying over the anns, the most posterior (eiglithi) covers the end of the tail. All the bands reach down over the linear depression along the middle of the side of the body; the fiftll extends to near the anal fin, the sixth, seventh and eighth extend on to this fin. Above, they all extend on to the dorsal fin. The ground-colour is yellow white that is, on the specimen now much bleached; Malmgren wrote: dilnte fulvo flavis), and the bands which are saddle-shaped, have a small, dark margin with lighter centre. The first band is separated from the dark posterior margin of the head by a light stripe aeross the neck. There is a dark streak on eacli side of the head, fron the snont on to the gill cover ${ }^{1}$). - The next smallest specinnen $(5+5$ 1m1n.), represented in fig. I b of Tab. VII, is very similar to the foregoing in colourmarkings, but the bands are broader and their number is only 7 . Then comes the 60,5 mm. specimen whose colouration agrees completely with that of the type-specimen. The 65 mm . specimen from the Kara Sea displays a certain difference as a small, dark-brown spot appears in the lighter centre of the
${ }^{1)}$ The figure in F. A. smitt (l. c. iS95) show a light spot behind the eye, towards the upper side, but I think the artist has depicted the brain showing through the skull; Malmgren says expressly (concerning the specinuens at hand, two this timel: in the Spitzhergen specimens the light spots on the dark crown characteristic for the last-mamed (i. e. L. porspicillum Kr.l are moreover wanting».
 dark spot on the point of the tail），but it does not stand alone，as in my fig．I e，Tab，Vil a specimen with to cross－bands will be seen，whilst on the other hand，the mamber of hands in a specimen infmm． long is reduced to 6 ．－In specimens not quite yomg the sharp bomalary between the dark cross－ bands on the side of the body gradnally disappear，dark colour－material being here deposited；the light interspaces between the bands then assmme the form of saddle－shaped markings，which extend from the free edge of the dorsal fin down towards the lateral line，bint they may be tracerl especially on the posterior part of the tail right across the body（ cf ，the two largest fighres（m Tab．Vhl）．－The light dark－margined band，which extends across the neck and down on to the free fold of the sill－ cover，is frequently divided in part or entirely，into thee light spoti by a dark longitndinal streak on each side，sometimes even into fon spots by another dark streak on the middle line of the neck： rarely it is represented only by a light spot on and over the gill－cover．
ln all the 3 females the eygs are small，at the $1 m$ ost with a dianeter of $1,5 \mathrm{~mm}$ ．（in the 205 mm ． female，taken the 26th of Jnly roon．

Distribntion．L．Vossi is a high arctic fish，hitherto only fonm in the Kara Sea，in Por－ sanger Fjord and at Spitzbergen．

At Spitybergen，it has been taken at several places，first by a Swedish expedition of 186 s in Trenronberg Bas，at 5 fathoms depth，and at Fosters lslands in Hinlopen Strants，in each case a gnite small specimen；bext，by the Russian expeditions of isg9 and igoo in the Stor Fjord，where the depth was $39-75$ fathoms and bottom－temperature 0,7 to $-1,6 \mathrm{C}$ ．，a small specimen at each place．The Kolthoff Expedition of 1900 took one specimen 163 mm．long in lse Fjord（Coal bay）at iou meters depth，and another of SJ mim．，W．from C．Mitra（ $79^{\circ} 10^{\prime}$ N． 1 ．II E．L．I at ioo meters．Lastly，Dr．Johan Hjort in igor took a mmmber of specimens（ $5+5-205 \mathrm{~mm}$ ．long）in Green Harbour lan arm of late Fjord，where the depth was 75 fathom．

In the Kara Sea the Dijmplna Expedition of $1882-83$ obtained fonr specinens $165-22311111$ ． long）at $46-$ roo fathoms depth．

Finally，Dr．Hjort during the $1 g o 0$ crnise of the Michael sars，obtained it in one of the fjords of East Finmark，namely in the imemost part of the Porsanger Fjord the so－called（）atpol） where the depth was $30-50$ fathoms and the bottom－temperature－i， 2 C ．

Relation to allied Species．

L．rossi stands very close to the Greenland L ．Veticulatus keinln；it has howerer a more slender form，and on the whole fewer rays in the pectoral fin（｜17｜18－19｜20｜against \mid ig $20|21| 1$ ，and its colonration does not change ofer with age into the network－formation（reticnlate）．Conceminge its． relation to L．reticulatus var．macrocephalus see p． 70.

L．Litthemio Coll．is alno a closely allied form（cf．p．6i）．

Lycodes luitkenii Collett．

1878．Lyiodes reticulatus Collett（nec Remhardt），Fiske fra Nordhavis－mpeditionens．sidste Togrt：forh． Vidensk．Selsk．Chria．18－8，No．It，p． 50.

In relation to the totallength, the lengthof the head is $25,7^{\circ}$ o, the distance between the suont and the anus $+7,3^{\circ}$ o, the height over the anus in $2,7{ }^{\circ}$ o, the lonwitulinal diameter of the eye $3,3^{\circ}$ o, the lengthof the pectoral $16,8 \%^{\circ}$. The colour is gray-brown with f broad, dark cross-bands; a light band across the neck. The scales extend to a point under the anterior end of the dorsal fin. The lateralline is mediolateral. l'yloric appendages 2. The size (of the single specimen, a female), 37011111.
I). 94. A. 76. P. 23.

Distribution. W. from North Spitzbergen, 459 fathoms.

Remarks on the Synonỵy.

L. tüthemit was tstablished in ISSo by R. Collett for a species, a single specimen of which, 370 mm. long, was taken by the North-Atlantic Expedition W. from North Spitzhergen, where the Jepth was 459 fathoms and the botton-tenperature - $1^{\circ} \mathrm{C}$; it was previonsly described by the same anthor in 1878 under the name L. reticulatus Reinhardt, an error that Collett hinself corrected in the interval after he had examined the real L. reticulatus in the Zoological $11 u s e n m$ of Copenhagen

Later. L. Lütkenii was reported, on the authority of Liitken, to have been again fonnd in numbers both by the Dijmplna and Ingolf Expedıtions. In 1886 he referred no less than $2 S$ specimens from the Kara Sea to L. lïtheniz: I have come to the conclusion however, that the largest of these specimens must be referred to L. rossi Malmgr., and that the others constitute a new species, belonging to the scaleless Lycodes: lycodes agnostus (cf. p. 79). In iSgS further, Liitken mentioned quite briefly that the Ingolf had taken 6 L . lütkenii S . from Jan Mayen. Iive of these however, are a colourvariety of Lycode's pallidus Coll. var. similis milhi (cf. p. 46). The sixth specinsen was righty determined according to my earlier opinion, as expressed in my preliminary report on the lycodes of the Ingolf Expedition (1. c.), but after examining a whole series of similar specimens in the Stockholm Riks-NInseum, lrought from East Greenland by the Nathorst-Kolthoff Experlitions, I have cone to a different conchsion, nanely: that we have here a form which cannot be separated from L. seminudus Reinharit, and must be considered as a colour-variety of this species (see further p. 72).

On Lycodes lïtkenii Coll. (nec Liitken).

This form has been described in detail and well illustrated by Collett in his work on the fishes of the North-Atlantic Expedition. After I lad learnt, throngh the kinduess of Prof. Collett, to know it for myself, I became quite at one with hinn in believing it to be a distinct species from L. Veticulatus Reinlı, as C. has well shown (1. c. p. Iof). In certain respects, L. lïtkemii is nearly related to L. seminudus, as we now know it with the banded colour-markings, and I shall therefore briefly discuss the mutual relations of these forms.

If the single female specimen of L. Lïtkenii is compared with a specimen of I. semimudus of the same sex and similar size, they agree essentially in the most important proportions of the body: yet /. Iätkenii is a less slender form, as will be seen:

Potal length in mm.
Length of the hearl
Distance from snout to anus.
Ileight over the anus

L. seminudzes	1. lüthenii
¢	9
335	370
25. I	25,7
46,9	47.3
10,2	12,7

The head is of similar form as in $/$ ．semimudus，but seems to be jess broud－simented．The eves seem relatively a little smaller，their longitndinal diameter being 3.3 ＂o of the total length against $3,7^{\circ}$ 。in the above specimen of L ．seminudus），and the flap of the gill－cover is not bent upwards． The mumber of teeth is somewhat less than in L ．seminudus；on the internaxillary 1 have comnted 15 in series， 15 on the palatines， 5 on the vomer，and on the mandille 15 in series（cf．p． 78 ）．

The dorsal fin begins at a distance from the snout，which is eqnal to 30° ，of the total length．The mumber of rays in the mpaired fins falls within that in／．．seminudus．The pectorals， on the other hand，show a very important difference，being of a much greater size，their length being $16,8^{\prime \prime}$ ，of the totalength；in none of the is specimens of losminudus then the length of the pectorals exceed $11,8^{\prime \prime}$ ．of the total length．

The scales extend further forward than in the most scaled specimen of／．．seminudus，namels to a point muder the anterior end of the dorsal fin，but at the same time both the belly and anterion portion of the back are naked．

The colonration agrees on the whole with that in the banded forms of $/$ ．seminudus；that the dark bands are rather indistinct（except on the dorsal fin）comes probably from the adranced size of the specimen．

The differences mentioned，especially the less slender form of the body，and the large pectorat， seem to me so important，that L ．liitkenii Coll．onght to be held distinct from L．semimudus Reinh．
（Later．L．Littenii presents even greater resemblance to L．rossi Malnggr．，whose appearance in the adult condition is now known．Of important differences I can only nention，that in／．rossi the pectoral fins are shorter（their length being $13,1 \quad 13,6 \%$ of the total length）and contain fewer rays，namely 17－20．All the same，I think it hest to keep these forms reparate so long as transitional forms are not found）．

Lycodes reticulatus Reinhardt．

Tab．II，Fig．2．Fig． 9 Io in text．

1835．Lycodes reticulatus Remhardt，Overs．Kgl．I）．Viclensk．Selsk．Forlh．injit 35．p．it．
183S．／．reticulatus Reinluardt，Kgl．D．Vidensk．Selsk．Skr．VII，p．167，Tab． 6.
188o．L．reticulatus Lätken，Vidensk．Medd．Naturh．Foren．Kl）hrn．，p． 31 （partim）．
1S95．L．reticulatus Smitt，Skandinaviens Fiskar Il，p． 611 （partim）．
1897．L．reticulatus Vanhöffen，（irönland－Fxpedition der（＇esellschafi fïr Firdkunde zu1 lierlin1，11，1，1）． 101.

 － 9 dark cross－bands on the trank and tail，which（all orestentially only the foremost）form network markings in the obler；a light hand acroas over the neck
and dark lines of network on the sides of the head. The scaly corering reaches to a point under or a little in front of the anterior end of the dorsal fin, but the belly and the anterior part of the back as well as the fins are maked. The lateral lime is mediolateral. Pyloric appendages 2. Size upto 3 Somm.
1).92-93. A. 75 P. 19-21. Vert. 93 (21-22 - 72-51).
I) istribution. West Greendand, ca. roo fathoms.

Kemarks on the Synonymy.
()f the 10 specimens referred by Lutken (1.c.) to L. reficulatus Reinlı., I think we must reject the following: Ni. Is must be brought under L, seminndus Reinh.: Nr. 2f and Nr. 25 , now preparel skeletons, I am unable to determine with perfect certainty, hut in all probability the likewise belong to $/$. scminudus Reinh. F'urther reasons for this separation will be found under l. seminudus (cf. p. 71 and $p .75$).

Idastly, it camot be considered absolutely certain, that Nr. 23 , type-specimen to L. perspicillum Froyer, is the young form of the present species: it is better therefore, to discuss it separately with some young specimens of similar appearance which have appeared later (cf. p. 64-66).

Description.

After separating out the foreign elements as mentioned above, our knowledge of $/$. reticulatus rests upon 6 specimens preserved in the Ansenm here. Their proportions are given below along with those of a serenth (255 mm . long) which was taken later by. Dr. F. Vanhöffen and preserved in the Berlin Ansemm, from which I have had it for inspection.

The form is therefore somewhat elongated, the height over the anns going $7-8,8$ times in the total length. The greatest breadth lies as ussual forward on the cheeks. and is ca. $\mathrm{I}^{\mathrm{I}} \mathrm{z}_{3}$ times greater than the height at the same place: the trumk is somewhat compressed, the height half way along being $\mathrm{I}^{1}{ }_{2}$ times greater than its thickness, and the tail posteriorly becomes gradually more and more compressed. The tail has a slight adrantage in length over the rest of the body, the distance between the snont and anns being in males $46,7-49,7^{\circ}{ }^{\circ}$ of the total length, in females $46,2-47,4^{\circ}$ o.

The lengtlo of the head amonnts in the males to $25,1-26,5{ }^{\circ} \circ$, in the females to $22,4-24,4^{\circ}$ o of the total length. Seen from the side the mpper and lower margins each form a slightly bent line, seen from above (fig. 9 in text) the ontline approaches an oval form. The head above is somewhat arched, and ronnded towards the sides, which again are convex; the muder surface is also slightly arched. The eyes are rather small and as usual relatively the smallest in full-grown specimens, so that their longitndinal dianeter is 6 so times in the length of the head or $4-2,7^{\circ} 0$ of the total lengtli; the distance between the two exes is alnost equal to the longitndinal diameter of the exe. The length of the snont to the ere is $7,89^{\circ}$ o of the total length. The upper jaw reaches to the
perpendicular line through the centre or the posterior third of the eye, and extends anteriorly a little in front of the lower jaw. The lips are particnlarly fleshy; the muterlip has an oterhanging fold on each side, and the fold of skin along the moderjaw's lower margin droons like a flap en the chin (see figg so in text). The teeth are curved, conical or almost eylindrical; on the internaxillary in front there is a double row, and on the muderjaw 3 rows in front, but othorwino they are in a single

Fis. 9 Io. Head of Lycodes reticulatus, semen frosn above and helow. >

row; I have connted 9 If teeth in a row on the intermaxillary, on the palatines $9-13$, on the vomer $2-5$ and on the minderjaw $S-15$ in a row.

The dorsal fin begins at a distance from the snont which is equal to $3^{0}-3_{1,8 "}^{\circ}$ of of the total lengtly; it contains $92-93$ rays, the anal fin 75 rays. The ventral fins are small, almost of the same
 lengtli: they contain (19) 20 (2I) rays.

The scales in all the present specinens (225-380nm. long) reach to a point which lies monder or a little in front of the anterior end of the dorsal fin, yet a part under the dorsal fin anteriorly and the belly to the anus (likewise a little behind this) are maked. In the smallest specincm the sealy covering ceases at some distance (23 mm .) from the end of the tail, but in the others it extends very close or even to the root of the tail. The fins are free of scales.

The lateral line begins on the back of the head wer the gill-cover, curves down with a slight arch towards the median line, along which it then continnes to the pint of the tail. I few pores are to be seen forward on the trank above this mediolateral lateral line.

The eolonration is somewhat speckled ('Tab. 11 , fig. 2 and fig. 1) in text 1 camot give a better notion of it than by citing L, ïtken's dencription, whinh says comemmo the males: The colour-markings are as a rule in the form of a network wh the trunk and tail, i. e. composed of an
irregular network of brown bands and lines of varions breadth, which separate spots more or less large of a lighter gromnd-colour; but it is clear as a rule - and noticeable in all cases, if one seeks for it, in yonnger specimens - that the foundation for this network lies or has been in a system of 7-9 dark and especially dark-margined cross-bands, which extend from the trink and tail ont on to the dorsal fin where they are nsnally very distinct; between these bands, which extench down almost to the median line, are light parts or spots (often with a darker spot again in the light). Especially constant is such a dark margined light spot or cross-band across over the neck from the one gillopening to the other, and also some light dark-bordered spots or sinnons markings posterior to and over the eves, as well as on the sides of the head muder the eyes as far the nostrils. And of the females it is said at the same place: The two larger specinens lave plainly the reticulate markings claracteristic of the species in general; these extend ont on to the dorsal fin and the posterior part of the anal fin as more or less distinct bands, and on the head like the markings already described above for the males; the smallest has also these on the whole, specific and very characteristic markings on the liead, but on the trank and tail on the other hand there are only 8 dark-margined cross-bands on the back and clorsal fin.

Distribution.

L. reticulatus is distributed along the sonthern parts of West Greenland. During the last century 7 specimens are known to have been taken there, at Julianeliaab, Fiskentes, Godthaals and Unanak. Only of one of these specimens is there the further information (by Dr. Vanhöffen) that it was taken in the immermost parts of Umanak Fjorl (Karajak Fjord) in a trap at igo metres depth.

According to (o oode \mathbb{E} Bean ${ }^{1}$) the species has been taken at several places on the east coast of the United States at $17-1$ fo fathoms depth, but one cannot tell with certainty if these anthors lave had the true L. reticulatus before them; their figures (ll. -S, fig. 273 and Pl.Sr, fig. 28 a a b) indicate so howerer.

Relation to allied forms.

L. reticulatus stands very close to the form from East Greenland I have called I. reticulatus sar. macrocephatus; on p. 7o I give the reasons for holding then partly separate for the time.

Concerning the relation of this species to L. seminudus see p. 78 and to L. rossi p. 59 .

Young forms of L. reticulatus (L. perspicillum Kroyer, Tab. II, fig. 3).

The specimens certainly Lo reticulatus sent here from Greentand are medimn-sized to large $(225-380111 n 2)$. Conceming the appearance of the young we have only conjectnres, Prof. Collett in 1878 expressing the supposition that the small Lecodes described long ago by Kroyer mader the name L. perspicillum was the yomg of L. reticulatus ${ }^{2}$. With this view I , ütken agreed. In my prelininary report on the Emropean-Greenland Lycodes I differed from this opinion and made 1 . perspicillum a distinct species withont giving particular reasons for this step however; certan know-

[^44]ledge gained in the interval has brought me however to the position that Colle th was probabls right，and in that case the syonymy－list for L ．reticulatus nunst be angmented by the following mantes：

1st4．Lycodes perspicillum Krover，Overs．Kgl．I）．Vidensh．Selsk．Forlı p．1．po．
（18．45）．L．perspicillum Kroyer，in Cainard：Voyages en Scandinavie，en Iaponie etc．，Zoologite． Poissons，Pl． 7.
1862．L．perspicillum Kroyer，Naturhist．Tidsskr．3．K．，1．I．，p． 289.
iS8o．L．perspicilhum Liitken，Vidensk．Medd．Naturlı．Foren．Kblirn．p． 321.
1SgS．L．perspicillum Liitken，The Danish Ingolf Expedition，II，1，1．22，Tab．IV，Fig． 5.

1gor．L．reticulatus forma frigida smitt，Mih．K．Sv：Vet．－Akad．Handl．Bel．27，Afd．IV，No．4，p．24 （partimt，No．i．
rgot．L．perspicillun Jensen，Vidensk．Medd．Naturh．Foren．Kbluvn．，1． 213.
This form is known by 3 specinens from West Greenland．（one of these is the $651 m m$ ． long specimen ${ }^{1}$ ）described in detail by Kroyer and figured in（ramard＇s Voyages（Pl．7，fig．A ${ }^{2}$ A second specimen， 43 mm ．long，was taken by the Ingolf Expedition of is95 off Sukkertoppen 63 24^{\prime} N．I．$)$ at 68 fathons depth；the figure cited，painted from the living fish，gives an idea of its appearance．Lasty，Dr．A．Olılin who was with the Peary Anxiliary Expedition as Zoologist，also obtained a 43 mm ．long specimen in Murchison Sound（between $77-78$ N．J．）at 45 fathoms depth；it is the one of the two specimens which Holmquist（l．c．）has determined as L．lïtkenio Coll．；F．A． Smitt has later referred it to L．reticulatus forma frigida ；of the incorrectness of both determination．： I lave been able to convince myself by an examination of the specinen itself，which is preserved in the Riks－Museum at Stockholm．

The most important proportions of these 3 specimens ${ }^{3}$ ）are as follows：

Total length	in man．	4.3	4.3	6.5
Length of the head	10	10	1.5	
Distance from snont to anus．	18,75	18.75	28	
Height wer the anus	4.25	4.5	6.5	

The length of the head is therefore $23,5-23,3^{\circ} \%$ the distance between the shout and the anns $43-43,6 \%$ ，the height over the anns $10-10,5 \%$ of the total length．It is clear therefore，that these young forms are relatively long－tailed in comparison with the adult Lo reticulatus，but this is no absolute objection to their being referred to the named species，becanse in other Ifeorles I lave observed an approxinnately sinilar disagreenent between the young and ardult individnals foi．e．g．．／． rossi，p．57）．

1）Kroyer mentions and figures（Il．7，fig．B）still another specimen，cat fomm．loms，hat that hats hech disposed of long since．
${ }^{2}$ ）The figure is not entirely successful，showing amongst other things mot the shightost trace of scolles．
3）Lätken mentions and figures still a fourth L．porspicillum？60 mm．Bomg，in bijnphna－Togtets rookogisk
 as I cannot find it in onr collection．Conceming the other L．perspicillum？from Fiara sca mentioned at the sambe phace． see L．rossi Malngr．（p．56）．

The colonration (cf. Tab. 1I, fig. 3, representing Kroyer's type-specinen) consists of 9-I dark saddle-shaped cross-bands on the trink and tail, the most posterior on the ontermost point of the tail; each of these bands is bordered by a very dark, sharply ontlined margin; the most anterior band is separated from the dark upper surface of the head by a light cross-stripe (neck-band); the head is encircled by a dark-brown O-shaped stripe, extending from the snout to the front margin of the eye, fron the posterior margin of the exe to the gill-cover's edge and from there on to the neck in front of the light neck-band; further an oral spot, light-coloured but surromeded by a brown ring is observed behind the eve towards the mpper edge of the head. - This regular banded marking seemed to me previonsly to tell against these individuals being considered the young of the network-marked L. reticulatus: but after I had seen in a series of specimens of the nearly allied L. veticulatus var. macrocephalus, just such a similar change in colouration, occuring with age (cf. p. 68-69 and Tab. VIII), I think it very probable that L. perspicillum can change in a similar manner to L. reticulatus.

The scales in the largest specinen show on the middle thind of the body, namely on the portion from a point under the anterior end of the dorsal fin, to the middle of the tail; in the smallest specimen of L. veticulatus the scales also cease at some distance from the end of the tail.

Taking all in all, it seems to me extremely probable, that L. perspicillum Koyer is the yonng stage of l. reticulatus Reinliardt, as Collett was the first to remark. Complete certainty; of course, will not be arrived at nutil the transition stages are fonnd.

I may just add, that according to Goode \& Bean (Oceanic Ichthyology, i895, p. 307), the Albatross has taken specinens of L. perspicillum Kr. off the east coast of North America ($45 \quad 24^{1} / 2^{\prime}$ $-47^{\prime} 29^{\prime}$ N. I. .), at $59-86$ fathoms deptli; the figures given (Pl. So, fig. 2-8 $\mathbb{S} 278$ a) suggest that these anthor's L. perspicillum, which they consider a separate species, is identical with Kroyer's; it agrees well therefore, that there shonkl be a form on the east coast of North America which is probably the same as L. reticulatus Reinhardt (cf. p. 64).

var. macrocephalus m.

Tab. VIII, Fig. i a, b, c, d, e, f.
1886. Lycodes reticulatus Steindachner, Die Österr. Polarst. Jan Mayen (Internat. Polarforsch. I882-83), 3. Bd., p. 107.
1901. L. reticulatus forma reticulata Smitt, Bih. K. Sr. Vet.-Akad. Mandl. Bd. 27, Afd. IV. No. 4, p. 33 (partim), No. $26 \& 28-36$, Fig. 4-5.
1901. L. veticulatus forma seminuda Smitt, ibid. p. 31 (partim), No. I 3 .

In proportions of the total length, the height over the anns is $10-12,2 \%$, the length of the head in males $26,2-28,6 \%$, in females and yonng 25-26,6\%, the longitudinal dianeter of the eye $4,3-4,8 \%$, the distance between the snont and the anns $46,2-50,6 \%$, the lengthof the pectorals i $3-14,4 \%$. The youngluave 7 - 9 dark and dark-bordered cross-bands on a light ground, and in addition a dark spot on the end of the candal fin; a light band across over the neck, and often a dark longitudinal streak on the sides of the head. In older specimens a more or less distinct
metwork-marking is developed from the dark borders of the bands, expecially on the front portion of the body: The scaly covering in older individnals extends from a dittle behind the root of the pectorals to the énd of the tail or ceasces somewhat in frout of this, but the belly and the anterior part of the back arc maked; there art mo scales on the fins. The lateral line is mediolateral. Pyloric appendages 2. Si\%e 24511112
D. 91 96. A. 72 -7S. l'. (19)20-21.

Distribution. Northern East Greenland, ca. 50-150 fathoms; Jan Mayen, ca. fo-r 0 fathoms.

Of this form, which I have thought it best to consider as a variety of the foregoms specien. there is a number ($\mathrm{I} f$) of specinens, presenting a special interest as they show transition stages in markings from the young with slarply marked black cross-bands to a network formation in the adnlt. (cf. Tab. VIII), reminding one quite of that in L. retiomlatits. For this reason Prof. Smitt (l. c.) has referred (the most of) these specimens to the West-Creenland species; 1 cannot but think however that the differences are important, and I must for the time being hold them in part distinct. Eleven specimens were taken at northern East Greenland by Swedish expeditions; two were taken at Jan Mayen in foo, by the steamer Michael Sars and kindly handed over to me for examination by Prof. Collett; one was likewise taken at Jan dayen by Ir. Fischer and has been placed at my disposal by Prof. F. Steindachner.
Description.

The most important proportions of all if specimens are as follows:

Total length
Length of the hearl
Distance from snout to anus
Height over the anus

The form is moderately elongated, the height over the anns gomes s-io tinme in the total lengtl. The greatest thickness lies forward on the cheeks and is ca. I^{1}; times greater than the height at the same place; the trunk is already somewhat compressed, as its thickness a little in fromt of the end of the pectoral goes about m, t times in the height, and the tail becomes gradnally more and more compressed. The anns lies almost at the middle of the body, its distance from the sumt heing $46,2-50,6 \%$ of the total length.

The length of the head is $26,2 \cdots-28,6{ }^{\circ}$. of the total length in males, $25-26,2{ }^{\circ}$ in yom females and small specimens. Seen from the side, its upper and lower margins each form a shighty curved line, seen from above the outline is somewhat owal. 'The tom of the head is slighty arched. The eves are placed high up, so that their upper margins project forward owe the forehead; their
longitudinal dianeter is contained $5,4-6,7$ times in the length of the head, or is $4,3-4,8 \%$ of the total lengtly; the distance between the two eyes is a little smaller than the longitudinal diameter of the eve. The length of the snont, measnred to the eye, is contained $2,7-3,3$ times in the length of the head or is $S-9, S^{\circ}$ o of the total lengtli. The upper jaw reaches to the vertical line through the middle or anterior third of the exe, and anteriorly extends a little way in front of the nuder jaw. The lips are thick; the monderlip has a dependant fold on each side, and the fold of skin along the lower margin of the lower jaw is spread ont like a flap on the chin. The nasal tubes are welldeveloped. Along the 11 pper and lower jaws there are shallow pits for the lateral line. The teeth are short but strong; I have connted $S-I \operatorname{tecth}$ in a row on the intemaxillary, $S-10$ on the palatine, 1-5 on the vomer, 9-14 in a row on the mandible; forward on the intermaxillary and mandible there is further a posterior row of teeth.

The dorsal fin begins at a distance from the snout which is equal to $29,2-32,3 \%$ of the total lengtli; it contains $91-96$ rays, the anal fin $72-78$ rays. The ventral fins are short (almost of the sane length as the longitudinal dianeter of the eye). The length of the pectoral is almost equal to the distance from the snont to the posterior margin of the eye and amomnts to 3 - 14.4% of the total length; ther contain $20-21$ rays (only in one specimen - that of $113111 m$. have Ifond ig rays).

Scales. The smallest of the present specimens, which is 6r m m long, lacks any trace of scales. In the $S_{3} 11111$. specimen (Tab. VIll, fig. I c) scales have begrn to appear as a small strip romid the lateral line, forward to the middle of the posteriorly extended pectoral and posteriorly almost the same distance behind the anns. The further development of the scaly covering consists essentially in the appearance of scales on the posterior part of the tail also, and at the same time the rows are increased in a vertical direction. Some variation exists however. Thus, the scaly covering in a 133 minm. long specinen (Tab. Vill, fig. 1 d) does not have any greater extension relatively than in that of 83 minn., whilst in another only 116 mm . long, it approaches distinctly nearer to the root of the tail. In some of the largest specimens the scales extend from a little behind the base of the pectoral to, or nearly to, the beginning of the candal fin, bint they are less close together at the root of the tail fin, and the belly as also a stretch on the back anteriorly are naked; in other specinens just as large the end of the tail is however still naked, and that holds also for a narrow stretch along the base of the dorsal and anal fins (Tab. VIII, fig. 1 e \mathbb{E} f). No scales are to be seen on the mpaired fins.

The lateral line begins over the opercnlum, forms a slight arch on the shonlder and from there conrses along the median line of the body. A shorter or longer series of pores, with wide interspaces and withont the character of a true lateral line, is often to be seen on the anterior portion of the back above this mediolateral fateral line.

Colour. The young lave 7 - 9 dark cross-bands on a light ground, and in addition a dark spot on the end of the tail; the bands again are bordered by a more or less marked edge of darker, almost blackislı colour; the hindmost $2-5$ bands extend ont on to the anal fin as darkish streaks in line with those on the dorsal fin where the bands end; further forward the bands extend more or less down below the median line of the side. Across over the neck and on to the operculnm extends a light band which is most frequently divided in part or entirely into three light spots by a dark streak on each side, which crosses from the dark edge bordering the neck-band in front and behind.

On the side of the head, from the snomt to mater the efe and out on to the gill-cover, a dark streak often roms. The central part of the cross-bands becomes lighter and lighter with acre, or several light spots appear in each band, retaining the dark border, so that a reticulate marking is formed, as is seen in fig. 1 e, Tab. Vllf. The distinct network-marking does not occur equally early or strong in all specimens. The largest of those present (2451 mm . long) is essentially at the same stage as that of 195 mm. represented in fig. I f, whereas the specimen only i 56 mur. bong represented in fig. i e, 'Tal. Vill, presents a very distinct reticulate marking. Of the specimens from Jan Mayen a somewhat distinct reticulate marking is already seen in that of Irg mm. ('Tab. VIIf, fig. I bo, and even in the specimen 8 , mm. long such a marking has already begm to form in the foremost band; in the specinen 8_{3} mm. fong (Tab. VIII, fig. I c) an oval spot, light and surrounded by a dark ring, is present behind the eye towatds the upper side.

Concerming the reproduction, but little can be elneidated, as none of the females are more than 120 mun. long. In a temale of this size, taken on the 7 th of July 1900 at Fast Creenland $172^{\circ} 25^{\prime}$ N.L. $)$, the eggs measmre scarcety 0.5 mm. in diameter. In the largest of the males $2.4511 m$. long) the testes are well-developed, 16.5 mm . long.

Distribution. L. reticulatus var. macrocephatus is a higln-arctic fish, only known from northern East Greenland and Jan Masen.

At East Greenland in specimens, whose size lay between 6 and 245 mm., were taken between $725^{\prime} 25^{\prime}$ and 7435^{\prime} N.I. The several localities are distributed as follows:

720 25^{\prime} N.13. If $5^{6 \prime}$ IV.I.	300 metres		specimens		Kolthoff Expedition		,
$7332^{\prime}-24^{\circ} 3^{\prime \prime}$ -	100- 110	-	I		Nathorst	-	1899.
$5355^{\circ}-19^{\circ} 20^{\prime}$ -	150	-	3	-	Kolthoff	-	1900.
$74^{\circ} 35^{\prime}$ - I8 15^{\prime} -	150	-	1	-	-	-	-

At Jan IIayen the Anstrian Polar station in $1882-83$ took a small specimen (8 - m m 1 . at a depth of ioo fathoms, and the Nichael Sars 2 specinens. (83 - in minn.) at a depth of 60-75 mm . on the Sth of Angust igoo.

Appendix.
Two small lycodes, taken during the crnise of the Fylla in a 886 by the botanist 'Ih. Holm at northern West Creenland, mamely in Baffins Bay, at 92 fathoms, may perliaps be veferred to /. reticulatus Remh. var. macrocephalus. These specimens measure:

Totall length	in mum.	45.5	45.5
Length of the hearl	11.5	12	
Wistance from shont to anus.	21	22	
Height orer the anns.	5.25	5.5	

The height over the anns is therefore $11,3-11,60^{\circ} \ldots$, the length of the head 25,3 ... the distance between the snont and the anns $46,2-46,3^{\prime \prime}$ of of the total length. In respect to the most inmportant proportions they thus stand very close to the above-describel young l. veticulatus van: macrocephalus. but the tail is relatively a little longer and the height over the anns a little greater. The coloura-
tion is also very similar: / saddle-shaped bands, bordered by a dark margin, break the light groundcolonn; between the formnost band and the dark-coloured neck there is a liglit cross-stripe. In addition, a brown stripe is present on the head, extending from the snont under the eye on to the gill-covers; further, there is a light oral spot but surrounded by a dark margin, behind the eye towards the upper side. The pectorals count $20-21$ rays; in one specinen there are 92 rays in the dorsal fin, 73 rays in the anal.

One of these specinnens is represented in fig. a a on Tab. VIIl.

Couparison witl Lycodes reticulatus.

The present form displays no slight resemblance to L . reticulatus Reinlı. from West Greenland, manly in respect to colouration, as both in the older stages lave the dark cross-bands transformed to a more or less distinct network-formation; further, ther have a mediolateral lateral line; nor do the numbers of rays in the fins present any differentiating character. On the other hand, it seems as if the variety macrocephalus was a form with relatively large head and large eye, which will appear from the following comparison between two male specinens of almost equal size:

Furtlier comparison between almost equally large adult specimens is unfortunately not possible for the time being, as L. reticulatus is not present in smaller nor var. macrocephalus in larger male specimens than those given, and there is also a great gap in size between the females at hand. I must provisionally suggest that the differences noted camot be overlooked withont further investigation and that two varieties are to be reckoned with.

If we bring L. perspicillum Kr., the supposed young of L. reticulatus, into the comparison, we see that the foung of the latter have likewise a smaller head as well as a relatively longer tail:

		L. reticulatres juv.? (L. perspicillam Kr.)			L. reticulatus var. macrocephalus			
Total length	in 11111.	43	43	65	$61 \quad 83$		87	S8
Length of the hearl	in \% \% of total length	23,3	23,3	23, I	26,2, 25		26,1	
Distance from shout to anus	- -	43,6	43	+3. 1	$47,5 \quad 47.6$	48,3	47,4	47.7

/. rossi Malngr. (from Spitzbergen and the Kara Sea) is also near to the present form, but it has a smaller head (length, $22,4-25,3 \%$ of the total length) and relatively small eyes (longitudinal dianeter, $3,6-4^{\circ}$ " of the total length). In addition, L. rossi has on the average fewer rays in the pectorals, namely (5) 18-19(20), and the marking does not change over into the reticulate.

Lycodes seminudus Reinhardt.

IS 38. L_jcodes semimudus Reinhardt, Kgl. D. Vidensk. Selsk. Skr. VII, p. 223.
r8-s. L. seminudus Collett, Fiske fra Nordhavs-Expeditionens sidste Togt, Sommeren 1878; Forlı. Tidensk. Selsk. Clıria. 1878, No. I $4, ~ p . ~ 6 \%$.
1880. L. scminudus L, ittken, Vidensk. Medd. Naturh. Furen. Kbhum., p. 325.

ISSo. L. reticulatus Liitken, ibid. p. 3 IS (partim).
rS8o. L. seminudus Collett, The Norwegian Nortli-Atlantic Fxpedition, Fishes, p. 1t3, Pl. IV, Ifig. 28.
i895. L. reticnlatus Smitt, Skandinaviens Fiskar, II, p. 61 (pattim).
1897. L. scminudus Y'anhöffen, Grönland-Expedition der Gesellsclaft fïr Erdkunde zu Lertin, II, I, p. Ioo.

ISgS. L. Luitkeniz Lütken, The Danish Ingolf-Expedition, II, I, p. 22 (partim).
1901. L. reticulatus forma semimuda Smitt, Bilh. K. Sv. Vet.-Akad. Handl. Bd. 27, Afd. IV, No. 4. p. 31 (partim), No.14-15, 17-18 \& 20-22.

The height over the anus is $9-10,6^{\prime \prime}$ "of the totallength. The length of the
 nal dianeter of the eye is $5 \cdot 3-3^{\prime \prime}$ "of the total length. The distance between the snout and the anns is $4+6-50,6$ oof the total length. The length of the pectoral is 9,6 - 1 , 8 "\% of the total length. The colonr is a miform gray-brown, or there are indistinct dark crossbands on the trunk and tail, wr distinct dark cross-bands (7 - 9) and as a rule a light neck-band. The scales as a rule reach forwardouly to a point a little behind, over or a little infront of the anns (seldom to the tip of the flattenerlont pectoral). Lateral line mediolateral. Pyloric appendages 2. Thesizeca. 500 m 111 .
D. 91 - 97 A. 73 - -8.1 . (19)20-22.

Distribution. West Creenland, ca. Iou fathons; East-lireenland, ca. 100 foo fathons; Jan Mayen, 370 fathons; off the Norway-Shetland Slope, Goofathons; Spitzbergen, 260 fathoms; Kara Sea, 92 fathoms.

Remarks on the Synony y

The species L. seminudzs was formed in is 3 S by Prof. Reinharlt sen, for a Lycodes almost freet long, taken at Cumanak in West Greenland. From L. reticulatas Remh. to which it stond near in seseral ways, it was distinguished at the first glance in that the body was miformly coloured and naked from the suout to the vertical line through the anterior end of the anal fin; in his detaled description however, R. laid less weight on these characters, rightly paying attention especially to other more important structural features (mmber of the teeth, shortness of the pectorals etc.).

The same specinen was dealt with he L_{+}iitken in his treatise of iSSo. I. came to the conclusion, after some acquaintance with larger males of L. reticulatus hat betn gained in the interval, that there was mothing else on which a specific difference between L. reticulatus and L. Seminudus conkl be hased, than the distinctly less extension of the scaly covering in the latter. This impression in my opinion was due to an erroneons division of the material which 1 , it k cen hatl. So far as I can see, manely, Nr. IS (1. c. p. 332) of the specimens referred by fitt en to L. reficulatus ludonse to the pre sent species; this individual, whose length is 365 min. possesses certainly a weakly banderl marking amb a sombwhat witely distributed scaly covering, but in more important characters it secms to agree with $/$. seminudzes. lu all probability also.
 however, cannot be attained as they are now mofortunately prepared sketemns i).

1) Litken says of these specimens, that the colouration was not at all and the scaly covering only party ferngisable. The moderate condition of these individuats has naturally brought it abont that a falure m determination wombl more easily take place.

In later years 2 further specinths of L. seminadus lave been taken at West Greenland. One of these, a miformly coloured fenale of 335 1111., was taken IS93 by Dr. E. V'anhöffen in Cmanak Fjord; it was kindly handed over to me for investigation by the Berlin Muselun. The other was sent to our Zoologieal Musenn in rgor by P. Miller of Jakobsharn. governor of the colony; it is only iso mm. long and of special interest, as in agreement with the above mentioned specinen it shows a mot very distinct, yet clearly recognisable, banded marking.

Apart from West Crecnland Losemimudus was again found at Spitabergen by the Norwegian North-Atlantic Expedition, as at single, uniformly colomed specimen only 128 mnn. long; Prof. Collett has kindly landed it to me for study and I can confirn the correctness of his determination.

In addition to the umformly coloured or weakly banded form, ℓ. seminudus may however also appear with very distinct cross-banls aud with a light band across over the neck. In the Riks-Muselun of Stockhohn I have had the opportunity, through the kindness of I'rof. Snitt, to see no less than 7 specinens ($129-280$ mun. long) from Fast Greenland N athorst and Foolthofi Fxpeditions of 1899 and 1900) of a form, which only differs fron the typical L. seminudus by the pronounced, livelict marking. In his treatise of $1901 \mathrm{~F}^{\circ}$. A. Snitt had rightly referred these specimens to Reinhardt's J. seminudus, bit in this species lie sees only a forn of L. reticulatus, an opinion I cannot agree with.

A similar specimen (ISO $1 m m$. long) lad also been taken by the Ingolf Expedition south from Jan Mayen. In my prefininary notice on the Locodes of this expedition (1. c. p. 213), I lavereferred it to L. lüthenï Coll., which again I identified with L. rossi Aalmgr. fron Spitzbergen, as a small specimen $(67 \mathrm{~mm}$. long) from the Ingolf Expedition seemed to me a transition-form between L. rossi and the larger specimen from the same expedition referred to L. laitkenii. This position I have meanwhite been obliged to give up. L. oossi Mahnurg. is without doubt the yonng stage of L. celatus established by myself (ef. further p. 56). And since both the specinen of the Ingolf Expedition (that of iso mm.) and the above-mentioned 7 specimens of the Nathorst-Kolthoff Expeditions seem constantly to have very short pectorals, whereas L. läthenii Coll. is characterized specially by large pectoral fins, I consider it best to keep the last named separate from L. seminudus. And the small specincn referred to (from the Ingolf Expedition), which J had erroneonsly taken for a connecting-link with L. rossi, becomes the young form of L. seminudus (cf. further p. 76-77).

Description.

Proportions of the miformly colonred or indistinctly banded form:

		q^{1}	9	9	δ	δ
Total length	$\mathrm{i}_{11} 111 \mathrm{ml}$.	128	1 So	335	365	445
Length of the head	-	32	46	S4	100	127
Distance from smont to anus		57	82,5	157	$\mathrm{I}_{8}{ }_{4}$	225
Height over the anus		12,5	18,75	34	38.5	50

Proportions of the distinctly banded form:

		δ	δ	$\left.q^{2}\right)$	δ	9	9	0	δ
Total length	in 111 m .	129	161	180	I 80	197	218	250	2 O
Length of the head	-	36	43.5	48,5	49	52.5	61	67.5	77
Distance from shont to anus	-	6I,5	77	SS	S3	94	106	116	130
Height over the annrs	-	12	16	19	16	15	22	25.5	28

The form is elongated, the lieight over the anns going ca. $9^{\mathrm{T}} / 2-11$ times in the total length. The greatest thickness lies forward on the cheeks and is equal to or somewhat greater than the heiglit at the same place; the trma is tolerably compressed, its height midway being $I^{1} / 2$ greater than the thickness, and the tail becomes more and more slender posteriorly. The anns in the males lies at, or a little in front of, the middle of the body; its distance from the snont being $46,5-50,6 \%$ of the total length; in females its distance from the snont is $44,6-48,3 \%$ of the total length.
${ }^{\text { }}$) The specinen is from Spitzhergen (North-Atlantic Expedition), the others from West Greenland.
-) This specimen is from Jan Mayen (Ingolf Expedition), the others from East Greenland (Nathorst and Kolthoff Expeditions).

The length of the head in males is $25-28.5^{\prime \prime}$ ．．in females $25-28^{\prime \prime}$ ，of the total lemgth．Seen from the side，the upper margin is almost horizontal at the neck，and from there slopes gradnally： evenly and almost in a straight line down towards the smont，wheln is low；the mader margin rises up shighty only in front；seen from above，the head deereases but little in beadth towards the anterior end of the shout，which is broadly romded off su that the ontline of the head forms an elongated oval．The crown is flat，the cheeks alnost perpendienlar or only slightly eomex；taken with the depressed and broad，somewhat flat snont，this gives the hear a characheristic appearance，re－ minding one somewhat of a pike．The efes are situated high up，so that their mpuer border juts forwark over the forehead；the size decreases a grood deal relatively with age，their longitudinal dia－ meter going $4,8-9,4$ times in the length of the head，i．e． $5 \cdot 3-3 "$＂of the total lengeth；the distance

litg．If i2．The heat of Levodes stminadus，seen from alome amd materneath．X ，
 Experlition（I）r．Fi．Vamhöffenl，17．3．1493．
between the two eves is almost equal to $2 / \mathrm{s}$ ds of the longitudinal diameter of the eve fin ald speci－ mens quite equal to this）．The length of the snont to the ere，is $3.5-2,9$ times in the lengeth of the head or $7,5-10^{\circ}$ ，of the total length．The upper jaw reaches to a perpendicular line thromgh the centre or anterior third of the eye，and anteriorly it extends a little in front of the lower jans．The lips are rather fleshy along the upper faw and on the side of the lower，but sumewhat inin in front on the latter；the fold of skin along the under margin of the later is relatively fittle developed the whole way（see fig．i2 in text）．The free flap of the gill－cover is relatively long and bent mp at the corner．There is a mumber of shallow grooves for the lateral line ahomg the mper and mater faws The teeth are trmeate and conical or almost eylindrical，in a domble row on the fmemaxillary an－ terionly，in three rows（ 2 in yomg specimens）on the mandible anterionly，but otherwise form a single
 palatines， 3^{-6} on the vomer and $17-26$ in a row on the mandil）

The Ingolf－Expedition．II． 4 ．

The dorsal fin begins at a distance from the snout equal to $29,6-33,7 \%$ of the total length; it contains $91-97$ rays, the anal fin $73-75$ rays. The ventral fins are small almost of the sanne length as or even shorter than the longitudinal diameter of the pupil). The pectorals are relatively broad but short, their length being $9,6-10^{\circ}$ of of the total length or ahway less than the distance between the snont and the posterior margin of the eye; they contan (i9) 20-- 22 rays, of which the lower project at their points from the connecting skin.

The scales extend from the end of the tail more or less far forward on the sides of the body; the covering tends to a point in front like a wedge, leaving the side of the back and belly naked for sonse distance; there are n so sales on the fins, or in any case only on the posterior half of the dorsal fin, along the base. In the miformly coloured or weakly banded form, the scaly covering is subject to great variation in regard to distribution in part independently of the age of the individuals, it seenns. In the type-specimen, which is 445 minl long, the scaly covering extends forwatd scarcely to a point which lies directly over the origin of the anal fin. In the second largest ($36511 m$.) on the other hand, the scales reach to a point at the tip of the flattened pectoral and liave thus attained the greatest extension known as yet for the species. In the 335 mm . specimen (Tab. X , fig. i b) and that of $1801 m 1$. ('Tab. X, fig. I a) the scaly covering extends forward a little in front of the anns, in Collett's specimen from Spitzbergen (128 mmn . long) just a trifle in front of the anus. The specimens present of the distinctly banded variety have a much more regular distribution of the

Pig. 1.3. The head of Lycodes seminudus, of the variety with di-
stinct cross-bands. \times i ${ }_{\downarrow}$
lrom a 2 So mm. long specimen (C) from northern last irvenland (lranz Joseph's Fiond) 760 m . Nathorst Exped., I f.S.rigg. scales (Tab. IX, fig. i b, c, d, e). In 3 specinens of 280, 218 and i8o 11111 . the scaly covering extends forward like a wedge to a point, which lies directly over the anus, whilst in 5 specimens of 250, 197, 180,161 and 129 11111. it stops at a short distance behind the anns.

The lateral line begins over the gill-cover, forms an arch over the slomlder and courses from there along the middle of the body: On the foremost part of the trunk in well-preserved specimens, a shorter or longer series of pores is present above the lateral line, with wide interspaces and withont forming any true lateral line.

Colour. The present species occurs in tho colon-varieties, it seems, namely, one mniformly coloured or with slightly marked crossbands, the other with distinct cross-bands. - Those entirely uniform of a gray-brown are: Reinliardt's type-specimen ($4+5$ mun. 3) from L'manak;
 Collett's specimen (128 mm . \ddagger) fron1 Spitzbergen. A weak banded n1arking is seen in: the specimen (365 min. す) fron Godthaab, referred to I. reticulatus by Lütken, also the specimen (iSo mm. O) recently sent from Jakobshavin. In the first of these, there are above the median line $\bar{\gamma}$ dark bauds, 2 on the trunk and 5 on the tail, which again are sonewhat lighter in the centre; in the small specimen, a similar number of somewhat more apparent bands are seen (Tab. X, fig. I a). -

[^45] specimen

The specinens from East Creenland and Jan Nayen all show a livelier colonration, as is seen in Fig. i b, c, d, e of Tab, IX and Fig. 13 \& to in the text. 'They have distinctly 2 dark bands on the trunk and 5-7 on the tail; in addition, the enrl of the tail (fin) is dark-colonred; the dark bands are especially distinct on the dorsal fin and the mpper part of the body; lower down they may disappear in the general darkish ground-colour, but they are often also, especially on the tail posterionly, separaterl by light interspaces right across, the light may even separate the bands forward on the body and constitnte an important part of the colomation. That dark bands are light in the centre, often so light that the margins show as a distinct, dark-brown frame, or that an originally single band dissolsich into two; sometimes the light in the band is partly limited to a ronnded-nff spot (see Fig. ie of 'Tal). 1 N). Right across the neck, from gill-coser to gill-cover stretches a light, dark-bordered stripe, which sometimes however can be limited to a ronnded-off light spot on the centre of the neck or rery rarely may disappear almost entirely.

As already mentioned, I am minch inclined to refer Nr. 2t and Nr. 25 among I, ittken's/. reticulatus (l.c. p. 332) to L. seminudus. Full certainty camot be attained as the specimems are mow skeletons, but the considerable length of the head $\left(28,5-29,5^{\circ}\right.$, of the total length), the rich provision of teeth (on the intermaxillary is - 18 tecth in a row, $5-7$ on the vomer and 20 in a row on the mandible), as also the shortness of the pectorats (roo of the total length) seem to point certaninly in this direction. The number of the vertebrie is $95-96(23-24+72)$.
| Later addition. During my participation in the smmmer cruise of the Tichatl Sars in
 600 fathoms; the place lies in the cold area off western Norway.

It is a δ with all the known characters of the specien; its most important proportions are as follows:

Total length	268111111.
Length of the head	73
Distance from shont to anus	128
Height over the anus.	23

In proportions of the total length, the length of the head is therefore $27,2^{\prime \prime}$... the dintance between the smont and the ams $47,8^{\circ}$, o, the height over the anns $10,4^{\prime \prime}$, of of the same length the distance between the snont and the anterior end of the dorsal fin is $32.1^{\circ} \mathrm{H}$, the length of the pectoral $10,6^{\prime \prime}$ o; the latter fin contains 2 I 22 rays.

The scaly covering reaches from the end of the tail forward to a point, which lies an eyer length behind the point of the pectoral, being wedge-shaped in front: the scales externd ont on to the basis of the posterior part of the dorsal fin. The body is withon markings.

Further, onr Mhsemu has recently received through Mr. H. Kranl, director of the Upernivik colony in West (ireenland, f rery large $/$. seminndus ($f(x)$ - fog man. long), all males, which are remarkable for their relatively large head (its length being $27,6-30$ ", of the total length). 'The pectorals, which comnt (19) 20 rays, amomit in length to $11,1-11, S_{0}$, of the wal length. The sealy werge in one specimen extends forward shighty in front of the vertical tine throngh the anterion end of the
anal fin, in the three others it ceases a little behind this point. The colonration has almost vanished, yet traces of dark cross-bands and light interspaces may be detected, especially on the dorsal fin.
() 11 an early and a yonng stage of Lycodes seminudus.

Anongst the material bronght home by the Ingolf Expedition is a small, 67 mm. long Lycodes which I take to be an early stage of $/$..seminudus; it remained mudetermined and is not mentioned in the report on the ichthyological results of the expedition.

This specinen was taken at St. In6 (sonth from Jan Mayen, 37 fathoms), at the sane place therefore, where the iSo mm. long specinen of L. seminudus, mentioned previonsly, was taken -a circumstance that might at once make one think of the possible specific identity of these specimens.

The proportions of this little specinen are as follows:

Total length	6711111
Length of the head.	18
Distance from snout to anus	31
Height over the anns.	

Putting these figures into percentage, one finds that the length of the head is $26,9 \%$, the distance between the snont and the anus. $46,3 \%$, the height over the anns 9% of the total length.

As is shown in Fig. I a of Tab. IN, which represents this yonng specinen natural size, it has S broad, dark bands over the body: The first band extends from the back of the head to the beginning of the dorsal fin, the second lies over the tip of the pectoral, the anterior margin of the third lies over the anus, the eighth (last) band covers the end of the tail. All the bands reach from the outer border of the dorsal fin across the back and traverse the linear depression ruming along the middle of the body; the fifth reaches to near the anal fin, the sisth to the basis of this fin, the sevently and the eighth extend a little on to it. The gronnd-colour of the body is yellowish white, except on the belly, which is coloured blue-black on account of the peritonemm shining through; the cross-bands have chestnut-brown borders and a somewhat lighter centre. Lastly, one can discern an indication of a neck-band, namely a light spot in the centre line of the neck, berond the upper notch of the gillopenings. Scales are wanting and a lateral line is not yet apparent. The dorsal fin contains 95 rays, the anal \bar{i}, and the pectoral 22.

If we now compare this young individnal with the specimen of L. seminudus, ISO mun. long, from the same Ingolf station, we find such a great agreement between them that their specific identity camot be donbted. Figure if below shows this larger specimen, natural size.

The length of the head is 27%, the distance between the snont and the anns 49% of the total length ($\mathrm{I} \delta \mathrm{om}$ min.). The head has thus relatively the same length as in the younger specimen, whereas the tail has less preponderance in length over the rest of the body. It must be added that it is a female with very small eggs in the ovary:
() ${ }_{11}$ the trunk are again the two broad bands, althongh at the first glance they are not recognised as corresponding to the dark bands of the yomnger specimen; the central part namely has becone very light and takes up also such a large part of the band that only its borders stand ont
as dark cross－stripes．The tail has only 5 lark bands．None of the bands show，as in the younger stage，any sharp bommaries bebow，as the gronnd colonr has here become dark，but they stand ont clearly asamst the yellow－white colon of the hack and dorsal fin．The neck－lond is more strongly deve－ loped than in the fomger individual and extends from gill－cover to gill－cover as a marrow，light band．

The nmmer of rass in the fins is in tolerably close agreement with that in the yomger specimen，mamely of in the dorsal fin， 75 in the anal and 21 in the pectoral．

Lastly，amongst the specimens from the Kara Sea labelled by Lithen L．pallidus，I have found a yomer I，foodes which mondontly belongs to the species L ．seminudus：this specimen is not named with the other L．pallidus in I，it ken＇s report on the fishes of the Dijmplana Expedition，so that L_{1} ．has probably resurded the determination as less certain．

Its proportions are as follows：

Total lensth	87 \％ 1111.
Length of the head	22，5
Distance from snout to	＋0
Height over the anns	

The length of the head is thus $25,9^{\prime \prime}$＂，the distance between the shont and the anns $4^{\circ}{ }^{\circ}$ on the height ofer the anns $9,2^{\circ}$ of of the total length，which numbers fall within those found in L ．semi－ mudus．Just as certain a mark of recognition lies in the small pectorals whose length is omly $10,3^{\prime \prime}$＇o of the total length；they contain ig rays．

Although the specimen is somewhat bleached，one can readily see that the colomation in the main has been the same as in the smaller specinen just described，namely of broad，dark and dark－ bordered cross－bands， 2 on the body and 6 on the tail，in addition a dark spot at the end of the candal fin；on the neck one can detect signs of a light cross－band．Scales have begun to appear on the tail，at some distance behind the anns．

It was taken by the Dijmphana Expedition in the Kara Sea at 92 fathoms depth．
Distribution.

A specimen was taken at West（ireenland at each of the following loealities：（rodthaat， Jakobshavn，Karajak Fjord（in the imemost part of L＇manak Fjord，zoo melers depth）and［＇manak， also + specimens at Lpernivik．At East Creenland the Nathorst Foxpedition of ison wok a

Fran\% Joseph's IFjord, -60 meters, whist the Folthoff Expedition of 1900 took 4 specimens at varions places in Franz Joseplis Fjord, 200-300 meters. The specimen of the North-Atlantic Expedition was takent on the north coast of Spitzbergen, where the depth was 260 fathoms and bottom-temperature of $-1,1^{\circ}$ C. The Dijnphna Expedition took the above-mentioned, but 87 mnn. long, specinen in the Kara Sea at 92 fathoms depth. The 2 specinens of the lngolf Expedition were canght sonth fron Jiln Mayen, where the depth was 3 J I fathoms and the bottom-temperature $-0+\mathrm{C}$. Lastly, the Michacl Sars in tgoz took a specimen in the coldarea off the west coast of Norway,

Comparison between Lycodes scminudus and $/$. reticulatus.
As it luas often been donbted that these names represent two dilferent species, it may be of use to go over the most inportant differences between them, so far as they are limited in this treatise.

The form of the body is more slender in L. scminudus than in L. reticulatus, so that the leight over the anns. is $9-10,6^{\circ} \%$ of the total length in the former against $11,3-\mathbf{1 4 , 2} \%$ in the latter.

The head is relatively larger in L. seminudus than in L. veticulatus; in the first-named namely, the length in the males is $2 \overline{\%}-30^{\circ} \mathrm{m}$ in the fenales $25-28 \%$ of the total length, whereas in the latter the numbers are respectively $25,1-\cdots 26,5^{\circ \prime}$, and $22,4-24,4^{\circ} \%$. The form also is somewhat different: seen from the side, the head in L. semimudus is more pointed forward, which arises fron the snont being much compressed in this species by comparison with $/$. reticulatus; the flat crown and the ahnost vertical cheeks in L. semimudus are also in contrast to the convex cheeks and the somewhat arched crown of L. reticulatus. Next, L. semimudus has larger eyes, their longitudinal diameter being $5 \cdot 3-3^{\circ}$ of of the total length, whilst the same proportion sinks with age from $4-2,7^{\circ} \%$ of the total length in L. reticulatus. The lips in L.semimudus are less fleshy than in L. reticulatus. and the donble fold of skin hanging down from the chin in the latter (see fig. 10 in text) is very little developed in L. seminudus (see fig. 12 in text). Further, the bones of the month in L. semimudus have a greater equipment of teeth than those of L. reticulatios; thas in L. reticulatus, I have counted $9-14$ teeth in a row on the intermaxillary, $S-15$ in a row on the mandible, 9^{-13} on the palatine; in L. semimudus on the other hand, 17 2f teeth in a row on the internaxillary, $17-26$ on the mandible, $16-24$ on the palatine. I astly may be mentioned, that the free flap of the gill-cover is relatively long in L. semimadus, and that in this species the distance between the gill-openings across the belly is much less than in L. reticulatus (cf. fig. 12 with fig. Io in text).

A very evident difference is shown in the size of the pectorals, as their length in L. reticulatus is $13-14,2^{\circ}$. "of the total length, but only $9,6-11,8^{\circ}$ oin L. semimudus.

The scaly covering has on the whole a greater extension in L. reticulatus than in L. seminudus. so far as we yet know. In all the specimens of I. reticulatus to hand, whose lengths lie between 225-380 mun., not only the tail, but also most of the trink is covered with scales, as these reach forward to a point which lies muder, or indeed somewhat in front of, the anterior end of the dorsal fin. ln a single specimen of L. seminudus, that of 365 mnn, namely; the scaly covering extends forward to a point at the end of the flattened-ont pectoral fin, and in all the remaining (IF) specimens

Whose lengths are from 129 - 497 minn, it does not ance extend so far, bnt ceases a little in front of the ants, over the anns or a little behind this.

Lastly, as regards colon1ration, none of the present specinens of Lo semimudus, mot even the distinctly banded, show signs of assuming the network markings so characteristic of /. veticulatus.

Taking all together, the differentiating characters seem to me so important, that the reference of these two forms to one species wonld be quite umatural.

If we take L, reticulatus var. macrocephatus into the comparison, the bonndaries between the two species are certainly reduced, so far as the relative sizes of the head and eyes are concerned, but the other distinguishing claracters (lengtl of the pectorals, distribution of the scales etc.) still hokl goorl.

Lycodes agnostus Jensen.

Tab. Vi, Fig. a a, b.
rss6. LJcodes Lütkemii Luitken, Kara-Havets Fiske; Dijnuphna-Togtets zoologisk-botaniske U'dbytte, p. 128 (partim), Tab. AVI, Fig. $2-6$.
1895. L. reticulatus Smitt, Skandinaviens Fiskar, II, p. 611 (partim), Fig. I4f.
igor. I. reticulatus forma seminuda Smitt, Bih. K. Sv. Vet.-Akad. Handl. Bd. 27, Aft. IV, No. 4. p. 3^{2} (partim), No. Ig.
1gor. L. agnostus Jensen, Vidensk. Medd. Naturlı. Foren. Kblivin., p. 209.
In proportions of the total length, the heightorertheanusis 9, 3-120 of he
 longitudinal diameter of the eye in larger individuals 3.t 2.i o, the lengthof the pectorals io- 12,5 o. 9 I 2 cross-bands, datk with lighter central part; a light stripe across the neck above. Scales wanting. I, ateralline mediolateralr. Pyluric appendages 2. Size 23311 m .
Г) 90-93. A. $70-75 . \quad$ P. 16-17.

Distribution. Kara Sea, f 6 -Ioo fathoms; Arctic Sea of Siberia (Clyatanga Bayy, I 5 fathoms.

In the report on the fishes of the Kara Sea, I, it tken referred 28 specinens of a docorle to the I. lïtkemii described by Collett from the deep water at Spitzbergen. trom an examination of these specimens however, I discovered that L , it then had mined two species together mader his. L. lïtkenii as I shall now explain.

The largest specimen, which is 223 man. long 2), has scales on the tail and at orat part of the trunk, whereas the remaining 27 specinens are completely wanting in scales, althomgh amomgst them there are specimens up to $\$ 86$ 1m1n. in length. This atone at the beginning would connsel great caution in bringing these individuals together under one species; certanly one maty find in the present treatnece many examples to show that variation may ocent within one and the same species of the genns:

[^46]Lycodes with respect to the development of the scaly covering，but such a sudden junp as L，it hen here makes possible，would be quite singular．

Again，the 27 specimens in comparison with the 28 th belong to a relatively small－eyed form， the longitudinal diameter of the eye（in specimens of over too mm．＇s length）amonnting to only 3．4－ 2．，＂n of the total length；in the two largest specinens（ 185 －i 86 11m1．）the horizontal dianeter of the eve is thus $3 \quad 2.7^{\circ}$ o of the total length，but in the $2231 m m$ ．iong specinen $3,6^{\circ}$ o of the total length， althongh in consegnence of its greater size it should have had relatively still smaller eves than the two named，if we had to do with the same species．

Further，the number of rays in the pectorals shows a very considerable difference：the 27 specimens have only $16{ }^{-17}$ rays，whereas the 28 th lias 19 ．Liitken indeed，has remarked this difference，but he endearonred to explain it away by supposing that the number undergoes some increase with age．

Alhough the colonration may seem quite similar on a cursory view，when rightly seen there is the difference that the 27 specimens have more mumerons dark cross－bands，manely 9－12（cf． I，iitken l．c．Tab．NVI，fig．2－6），whilst the 28th has only．S（ibid．fig．f）．

Fronn all these inportant differences I drew the conclusion that the 223 1mm．long specimen must be specifically distinct from the others，and I was successful later in identifying it with L．rossi Malmgr．（cf．p． 5^{6} ）．

The remaining 27 specinens seemed to me to belong to a form which retained its naked condition througlout its whole life；in my prelininary report（l．c．）I gave it the name／jeodes agnostus．

Later I gained a welcome confirmation that I had judged rightly，as I found a specimen in the Stockholn Riks－Ansemm，which in all respects agreed with the form from the Kara Sea，also in that it was perfectly $11 a k e d$ even thongl its total lengtl was still greater than that of the specimens in my liands．F．A．Smitt in his great work on the Scandinavian Fishes gives a figure of it（fig． 14 ） ）under the name I．veticulatus，Tumorii ，and in lis later treatise On the genus Lycodes（l．c．igor）lie has mentioned it under the name L．retioulatus forma somimuda．Its most important proportions are as follows：

$$
\begin{aligned}
& \text { Total length } 233 \text {. } 11111 . \\
& \text { Lengtl }{ }_{1} \text { of the head . } 56,5 \\
& \text { Distance from snout to anlus........................... } \text { II }_{7} \text { - } \\
& \text { Height over thie anus. } 22.5 \text { - }
\end{aligned}
$$

In proportions of the total length，the length of the head is thins 24.33° ，the distance between the snont and the anns $50,2{ }^{\circ}$ o，and the height ovet the anns $9,7^{\circ} \%$ The eves are small，their longitudinal diameter being only 2.7° of of the total lengtlı．The body；as already mentioned，is quite free of scales．＇The lateral line is mediolateral．The colonration has now disappeared so that I cannot decide if the figure in Smitt has struck the riglit proportion between the liglit and dark bands． The pectorals contain 16 rays，the dorsal fin ca． 90 and the anal ca． 70 rays．

The specinen，which is a male with well－developed testes（ 33 mm ．long），was taken on the 2．fth of Angust is78 by the Vega Expedition on the east side of the Tainnur peninsula，namely in
the montl of Chatanga Bay（ 75 N．I． 113 30＇E．1．），where the depth wats 15 fathoms and the botumn temperature $0,8^{\circ} \mathrm{C}$ ．

The specimens of the Dijnplna Expeclition were taken in the Kara sea at a deptlo of $4(6)-10$ ） fathoms． 1 give below the proportions of in specimens chosen according to size：

							9			δ	9	¢
Total lensth	in 11112.	66	70	94	105	116	1.35	1.36	$1+7$	I55	185	186
lengrth of the hearl	－－	16	16.5	23	26	2 S	3.3	34	35	37	4.5	41
Distance from shont to anns		31	32	4	52	5 S	6.8	67	70	75	97	（9）
Height over the amun	－	6.5	6.5	9	10	11	1.3 .5	14	1.5	！．	22	16

In the 185 mm ．long female the eggs are of a considerable size，mamely 4.5 mm ．in dianteter the date of the catch is not fortheoming．

Comparison with allied forms．

A scaleless leycodes has not been known hitherto from the Emopean－Greenland coasts．Fironn Arctic North America howerer， 2 species were known，which are described as perfectly naked，and set up by Blecker therefore as a separate genns：Lycodalepis，namely L．tumerii Bean Alaska，Bering Straits）and Lo mucosus Richardson（Northmberland Somnd，Cmmberland Gulf）．The scaleless Lyerelen from the Kara sea presents great similarity to L．turncriz amongst these，the latter＇s proportions： according to Be an $\mathrm{I}_{\text {I }}$ being as follows：

But I．furneria has is rays in the pectorals， 85 in the dorsal fin，and 67 in the anal；and these data can sarcely be regarded as resting mong counting，since Scofieldel in a second specinen has fond：l＇．IS，1）． 86, A．67．Nom does the colonration agree，so far as I can discem from the figure which Jordan \＆Fuermann i）have given of lean＇s type－specmen．

Until further information is forthcoming，f must therefore consicler the scaleless Ifycoder from the Kara Sea and Chatanga bay a separate species．The Emropean loycodes－fana is thus enriched bo an interesting fom which has hitherto been mismolerstood．I canot find however，any sufficient gronncl for adopting the genns－nance Lfodalefis proposed by lileeker，since we know forms which，in their weak development of the scaly covering（e．g．L．semimudus），present transitions betwech entirely naked and perfectly scaled species；and other characters do not exist which mingh be the hasis for at generic separation of the maked species，so far as I can see（cf．for the rest p．5．with remarks on the likewise scaleless $/$ ．platyminus milhi）．

[^47]
Lycenchelys (iill.

L-jenchelys (iill, Proc. Acad. Nat. Sci. Pliilad., 1884, p. 1 So (murcena).
The body is very elongated (angilliform), the heightover the anns goingea. 16-2ftimesin the totallength. Teethontheintermaxillary andmandible, vomer and palatines. Lower jaw without barbules. Scales small. Lateral line ventral or mediolateral, or both ventral and mediofateral. Branchiostegal rays 6 .

Fronn the waters of North Anerica 3 species of this genns have been described, namely: L-ycenchelys zervillii coode \mathbb{E} Rean, off the east coast of the United States ($34^{\circ} 39^{\prime} 40^{\prime \prime}-42^{\circ} 33^{\prime}$ N.L. $68^{\circ} 22^{\prime}-75^{\circ} 14^{\prime} 40^{\prime \prime}$ W.L..), $75-603$ fathoms: Lycenchely's paxillus Goode $\mathbb{\&}$ Bean, off the east coast of the L'nited States ($35^{\circ}+55^{\prime} 30^{\prime \prime}-42^{\circ} 48^{\prime}$ N.L. 63° O-'-T4 48^{\prime} IV.L.), $263-904$ fathoms; Lycenchetys porifer Gilbert, of I Iower California, 8_{57} fathoms ${ }^{1}$).

From the Enropean and Creenland waters are at present known + species, distinguished from one another in the following manner:
I. T pits for the lateral line along the upper jaw and under the eye.
A. Distance of the dorsal fin from the snont is less than 20% of the total length.
a. Length of the head is less than 14% of the total length. Colonr miform. (The cold area off west Norway, east Iceland, and in the Freroe Chanmel; 340-620 fathoms).
L. murana Coll.; p. S2.
b. Length of the head is more than if \% of the total length. Dark spotted colonration. (Northern East Greenland; ca. : 60 fathoms).
L. kolthoffi Jensen; p. SS.
B. Distance of the dorsal fin fron the snont is 25% or more of the total lengtl. (Skager Rak, sontly and west Norway; ;o—300 fathoms). L. sarsii Coll.; p. 86.
II. S (larger) pit. for the lateral line along the upper jaw and under the eye. (Davis Straits; 393 fathoms).

$$
\text { L. ingolfiamus Jensen; p. } 90 .
$$

Lycenchelys muræna Collett.

Fig. 15-19 in text.
1878. Lycodes murana Collett, Fiske fra den Norske Nordlats-Exped, 1876-77; Forh. Vidensk. Selsk. Chria. 18-8, No. 4, p. 15.
18-8. L. murcua Collett, Fiske fra Nordhavs-Expeditionen is-8; Forh. Vidensk. Selsk. Chria. I8-8, No. I4, p. TH (partin1).
i880. L. marana Collett, The Norwegian North-Atlantic Expedition, Fishes, p. 116 (partin1), Pl. IV, Fig. 30 (11ec Fig. 29 \& 3).
1.igr. L. murana Lilljeborg, Sveriges och Norges Fiskar, II, p. 25 (partin).
1895. L. murcna Suitt, Skandinaviens Fiskar, II, p. 616 (partim) (no n Fig. 152).

1gor. Ljcenchelys murana Jensen, Vidensk. Medd. Naturl. Foren. Kbhvin, p. 21.4.
${ }^{1)}$ Concerning these species, see Goode \mathbb{S} Bean: Oceanic Ichihyology, 1S95, p. 309-312; also Jordan \& Evermann: The Fishes of North and Middle America, Part III, i8gS, p. 2470.

The heightover the anlus is tor 5°＂ol the total hength．＇The head，whose
 What compressed；the tail becomes mach compressed and loses wradually in beight towards the end．The lower jaw extends almost to the end of the upper f pitsfor the lateral line along the upper jaw and under the eye．The distance betwecti the suout and the anns is 27，6－30，＂．of the total length．The dintance of the dorsal finfrom the suont is $17,6-18,2$＂，of the tatal length．The colonr aniformy yollow－ brown．The scales are distributed over the tail and trunk，whilst the head and fins are maked．Lateral line double，divided into a ventral and mediolateral branch，the latter however frequently indistinct．Prloric appendages mot developed．Size i 8 I 11 ml ．

1）．118－I26．A． $100-104^{\%} \%$ l＇． $13-15$
Distribution．The coldarea off west Norwas，east from lectand，and inthe Furoe Channel；3fo－620 fathoms．

Remarks on the S！nonviny．

 Atlantic Expedition of 1575 took in the ite－cold waters off Helseland in Norway，at 350 fathons，depth．In is－s．off Bear Island and Spitzbergen in ice－end water and from depths of 4.59655 fathonns，the North－Atlantic Fxpedition ent 3 other
 certain differences as less essential and a sign of the variability of the species．lironn a study of the figures 29 ， 30 and 31 of the chief publication of the North－athantic faxpedition＇s Fishes I got however the impression that if the figuren were correct－they conld not belong to one and the same species：figs． 29 and 31 mant represent annother species than figs． 3 ． which fommed the type－specimen from the iS77 cruinc of the North－Atlantic Experlition．

After I had hat the opportunity，thromgh the kindness of I＇rof．Collett，to examine 2 of the specimeme of the
 supposition becante a certainty：the specinens from the is－s conise of the North－Athantic Fxpedition ought to form a specien
 To this form further are to be referren，the specimens obtained by the English expeditions of the linght Forant and Triton in the Faroe Channel，and which Ciunther referred to fycodes murana Coll．the fignres in Chall．Report leave no doubt abont the matter），and also the specimens from the Ingolf Fxperition referred to hommana Cobl，whith were taken
 Gill，only the type－specinen was known antil a short time ago，hat during the revision of my manaript 1 have furtlier been
 long＇in 1902 in the Freroe Channel．

A detailed comparison will vintieate the neeessity of the intented semaration

Comparison between Lyconchelys murana Coll．and Lycodonus flagellicauda m．
The form of the body is throughont more elongated in／．Alagelhicoula：in／．．mument namely，the height over the anus is $4,1-5{ }^{\prime \prime}$ o of the total length，in specinens of $/$ ．flagellicaudar of similar size $3,4-t^{\prime \prime}$ ．ln other regards also the form is essentially different．／．murona is a com－ pressed form：the trunk is already（if not distended by sexual products）somewhat thimmer than high，ant the tail quickiy becones strongly compressed；close behind the anns，the thickness is to the height

[^48]in the relation of abont $1: 2$ (sometimes $2: 3$), and thereafter the tail becomes narrower towards the root of the caudal fin. L. Alagellicauda on the other hand has a much broader body: the trunk is romnd; at the begiming of the anal fin the body is almost as thick as lighl, and the tait has almost the sane thickness relatively in the greatest part of its length, only near the end does it become compressed. Seen from above, L. murana (fig. 16) with its compressed tail looks therefore rather different by the side of the ronnd-tailed L. flagellicauda (fig. 30). The difference is most apparent indeed, if the anmals are viewed from the side: in L. murana (fig. ${ }^{15}$) the tail displays a gradnal decrease in height, whereas in L. Alagellicanda (fig. 29) the tail becomes directly remarkably low, as the lower edge immediately behind the ams rises upwards with a rapid slope; by its specially slender, whip-like tail, L.flagelficauda stands on the whole quite isolated anongst the

Fig. 15-16. Lycenchelys murana, seen from the side and from above. $>$ I.
The scales are onitted. The oval ring over the upper figure shows the form of a cross-section at the place indicated. - The figures are drawn from Collett's type-specimen of Lycodes murana from the Norwegian North-Atlantic Expedition af 1877.

Ifcodes known to me. - The distance between the snont and the anns in L. murana is 27,6-30,4\% of the total length, in specimens of L. flagellicauda (of similar size) $24,2-28 \%$, i. e. on the whole is sreater in L. murana.

Fig. 17-19. Head of Lycencholys murana, seen from above, the side and below. $\times{ }^{2}{ }_{1}$. Drawn from Collett's type-specinen from the Norwegian No-th-Atlantic Expedition of is\%.

The head has about the same relative length in the two species; in the specimens at hand of L. murona the length of the head namely is $12,9-13,3 \%$ of the total length, in adult specimens of
 L. flagellicauda (fig. 31) is much broader than in L. murova (tig. 17). In L. metrona the maderjaw, seen from below, forms a tolerably steep arch, and its encl reaches almost as far forwat as the upper jaw (fig. 19): in L. Flagellicatda on the other hand, the muder jaw forms a flat arclı, and its anterior end lies a good way behind the point of the upper jaw (fig. 33), so that the month always stands open . As a result of the breadth of the head, the eyes in L. flagellicauda are more uptnrned than in l. murena, in which they look more ont to the side. Teeth are fonnd in both species on the jaws, palatines and vomer, but they are relatively long in L, murcrac. The number of branchiostegal rays is 6 in L. mumena, only 5 in L. flagellicanda. 'The lateral line's deep, cnp-shaped growes along the npper and lower jaws, reminding one of the suckers of the octopus, adorn the head of haflagelliramda in a characteristic manmer; also, the nmmber in the row on the upper jaw is a little different, being is in L. flagellicauda against 7 in L. mumara (cf. fig. 32 and 18).

The dorsal fin begins, as Collett has also remarked, a little further forward relatively in I. murana. as its distance from the shont in this species is $17,6-18,2$ "; of the total lemgth, whilst ith distance in 12 specimens of L. flagellicanda annonnts to $18, S$ 20,6"o. As 1 could mot comnt the rays in the dotsal and anal fins of C. murena with certainty, I an mable to say if any distinguishing character can be obtanined therefrom; according to Collett the numbers (ℓ. mumena sens. strict.: 1). 118, A. ino 1 : L. flagellicauda: D. ror-mes, A. 97-IO3) would indicate not. On the other liand, L. murana las certainly a fewer number of rays thronghont in the pectorals, viz. 13-15; in i2 specinenn of l. flagellicauda I have comnted $15-17$ rays, and Collett gises for his two large specimens likewise $15-1 /$ rays, only a quite small specimen appears to have 13 -1. 4

The scales are esidently laid down earlier in L. mumana than in L. flagellicauda. The smallest specimen present, 1 fo mm. long, of L. murana s. str. is already covered with scales on the tail and the trunk, and the larger specinens (r 45 and 18 r 11111 . longs) are similarly covered; only the middle of the belly (in front of the anns) is naked. L. flagellicauda shows some irregularity with regard to the time of appearance of the scales. Of the specinens from the Ingolf lixpedition, the largest, whose total length is 204 m11n., shows but quite solitary scales on the posterior portion of the tail. The next largest, 200 mm . long, is much more richly provided with scales; it has the posterior portion of the tail densely covered, but furtlier forward on the tail the scales are more spread ont and none are to be seen om the trunk. In a 183 mm. long specimen, the scaly cosering has a sinilar distribution as in the foregoing, but the seales are on the whole less chase. Lastly, twon succinems of respectivel! rst and 170 1m11. are perfectly naked. These specimens all come from onc and the same
 only weak traces of sales. Of Collett's two large specimens, the one (2IF man lomg wats att the sante stage as the lngolf's 204 mum. specimen, whereas the seconch, igi mum. long, is much mome richly cosered with scales than any other specinen of this species as yet known, not only the tail bint also the trank itself being provided with scales². - Altugether, one may say, that the scales are laid donm carlier in

\Rightarrow In one of 3 specimens I have seen later (Michad sars tgoz, the somber also extemded relativel far formame
 specimen was 203 mm .

L．murena sens．str．，and have a greater distribntion in relation to the total length of the fish，than in L．flagellicauda．

The laterat line is donble in both species，mediolateral and rentral；the mediolateral braneh may sometimes be partienlarly distinct in L．murana（see fig．15），but in L．flagellicanda it is always very indistinct，as even in the most faronrable eases only single pores ean be seen ${ }^{\mathrm{r}}$ ）．For the rest，the ventral branch in both species may be rather diffienlt to follow，or not at all traced，bevond the anns．

The colonr in both species is minform，withont bands or spots．L．murena is brownish abore， below the median line yellowish；the anal fin and pectorals are grayish－white，the dorsal fin dark－ gray；on the belly，the black peritonemm shines throngh；the seales stand out lighter than the gromin－ colonr of the body：L．fagellicanda tends most often to be more gray－brown．

In conchion I may give the most inportant proportions of the three L ．murana present：

Distribntion．With the limitation here given to Ljcenchelys murana Coll．，the species is only known from 3 specimens．The first of these（ I ． mmm ．long）was taken br the Norwegian North－Atlantic Expedition in Jme 18 行 off Helgeland in Norway， 325 kilom．W＇S．W．from Bodo（ $66^{\circ} 41^{\prime}$ N．L． $6^{\circ} 59^{\prime}$ E．L． ）． where the depth was 350 fathoms and temperature of the botton－ $0^{\circ} 9 \mathrm{C}$ ．The second speeimen（I45 mm ． long）was eanght in July 1900 by the stemmer Mieliael Sars E．from Iceland（ $64^{\circ} 53^{\prime}$ N．L． 10° W．I． ） where the depth was 340 fathoms and bottom－temperature－ $0^{\circ} 69$ C．Lastly，the third speeimen（i8i 11111. long）was taken in 1902，likewise by the Michael Sars，in the Freroe Chanmel（ 60° I9＇N．L． $5^{\circ \prime} 39^{\prime}$ IV．L．$)$ ， where the depth was 620 fathoms and bottom－temperature under $0^{\circ} \mathrm{C}$ ．

Lycenchelys sarsii Collett．

$$
\text { Fig. } 20 \text { - } 22 \text { in text. }
$$

1871．Lycodes sarsii Collett，Forh．Vidensk．Selsk．Chria．，p．62，c．tab．
1874．L．sarsiz Collett，Norges Fiske；Tilleegsh．til Forh．Vidensk．Selsk．Chria．1874，p． 102.
r884．L．sarsii Collett，Meddelelser on Norges Fiske i Aarene i879－S3；Nyt Magaz．f．Naturvidensk． 29 Îd．．．p． 78, Pl．I，Fig． 3 t．
18gr．L．sarsii Lilljeborg，Sveriges och Norges Fiskar，II，p． 23.
1895．L．sarsii Smitt，Skandinaviens Fiskar，II，p．616，Fig．I51．
isgs．L．sarsiz Collett，Vidensk．Selsk．Skr．Chria．No．I，Pl．I－II．
igor．Ljecnchely＇s sarsii Jensen，Vidensk．Medd．Naturh．Foren．Kbhrin．，1． 2 I4．
${ }^{1}$ Such is the case at any rate in my present specimens．Fig． $3 I$ in the Fishes of the North－Atlantic Expedition shows however，a whole row of pores along the linear median furrow of the side；such a condition 1 have not seen．

The heightover the anns（in medimm－sized and adnlt individualsi is $5,2-5,9$ 。 of the totallength．The head is tolerably bootrl，the trank a little compressed，the tailgradnally becoming morestrongly compressed and losing slowly in lieight．The
 length．The lower jaw reaches almost to the end of the upper．F pits for the lateral line along the npper jaw and mader the eye．The distance between the sump and the anns is in males 27，2－28， 6° or in females $26,2-27,7^{\prime \prime}$＂of the total lengethor The distance of the dorsal fin from the smont is 2r－24，${ }^{\circ}$ of of the total length． Small specinens uniformlygray－brownalong the back，yellow－white on the under－ side，somewhat larger specinens similar but with irregular，brown to black cross－ markings and shades over the back and tail，and with a darkstripe between the eye and the snont；older individnals miformly yellowish brown with indistinct shadings down the sides．The scales in developed specimens reach to the head and partly ont on to the nupaired fins．Thelateral line rentral，indistinct．Pyloric appendages

D．ca． 123 ．A．ca． 1 I有．P． 15 I6．
Distribution．WVestern and southern Norway；Skager Rak；jo joo fathons3）．

Fig．20－22．ITead of lycenchelys sarsit，seen from above，the sirle and hetow

Prof．Collett has recently（isgS）given so detailed and carefnl information concerning this species，a relatively considerable number of specimens of which has been brought to light by the practical fisheries investigations of Dr．Petersen and Dr．Hjort，that there is no need to treat of it anew．As supplementary information I shall only state the proportions of the 8 specinens fron the Skager Rak at m！disposal，mentioning the sex；it with thins appear that the differences in propor－ tions are not great in adult individnals（cf．I）iagnosis）．
${ }^{1}$ In small specimens（4t－62 mm．long） $14,9-17.50$ according to Collett
${ }^{2)} 29,8-32,8_{0}^{\circ} 0$
i）Concerning the separate localities where the species was taken，cf．Collett l．C．ISol and ©．（i，Jols．Pettersern．

 is really a L ．sarsï，I shall leave manswered as I have not secn the specmen；if the accompanying figure in chall．Rep． （Fig．3）purports to be more than a sketcl，it wonld indicate inleed that the form was not identical with h ．sarsio．

Total length
I.ength of the heall

Distance from snout to anus
Height over the allus

L-fconchelys mumena Coll. is the Enropean Lecode with which the present species might most easily be confused. The following distinguishing characters however, are sufficient to separate them:

1. murana is a more elongated species than L. sarsiz, the height over the anns being only $4,1-5^{\circ}$ "of the total length.

In L. murena the dorsal fin begins further forward than in L. sarsii, its distance from the snout being only ${ }^{5}, 6-18,2^{\circ}$ o of the total length.
L. murcina las fewer rays in the pectorals, namely $13 \quad 15$.

L-fodomus flagellicanda Jensen is likewise a more elongated species, the height over the anns being only $3,4^{-} 44^{\circ}$ o of the total length, and is immediately distinguished from the present by its particularly slender, whip-like tail.

Lycenchelys kolthoffi 11. sp.

Tab. X, Irig. 2. Fig. 23-25 in text.
1gor. Lycodes lerwillii Smitt (nec Coode \mathbb{E} Beanh, Bih. K. Sv. Vet.-Akad. Handl. Bd. 22, Afd. IV, No. 4, p. 22, Fig 1-3.

The licight over the anns amounts to $4,9-5,2{ }^{\circ}$, of the totallengtly. Tlie head, Whose length is rata-r $4,8 \%$ of the total length, is tolerably broad and flat, the

trunk is apploximately cylindrical; the tail is of a low, very elongated form, not 111 ch conpressed, except near the end. The anterior point of the lower jaw lies a good hit belind the end of the upper jaw. \quad opits for the lateral line along the ${ }^{11} p$ per jaw and mader the eye. The distance between the suout and the anns is

27, 8 - 28,4 "of the total length. The dastance of the foral fin from the anout is 18,6-18,9" "of thetotal length. The colour yellow-white, with many brown spots, which on the tail posteriorly, adorn both the mupared fins and the body betweta them, but on the foremost part of the tail andonthe trank are mainly on the dorsal fin, the back and the upper part of the side; a dark-brown spot aboreat the shoulder, and a dark arched band across over the pectorab, on the skin between the rays; top of the head brown, the sides and under surface whitish; a dark band from the suont to the eye, a darkspot behind the eye and one on the gill-corer. Thescalesextend from the end of the tail to, or a little beyond, the anteriorend of the dorsal fin, but
 on the fins. The lateral line domble, rather distinct from the flap of the will-cover down towards the anis (the ventral brancli); in addition, isolated pores are present along the median line (the mediolateralbranchl. lyoric appendases not dereloperl. The size (of the two males to hand)ca. I 30 mm .
D. ca. !24. A. ca. 110 1'. 14 15.

Jistribution. Northern Fisat-(ireenland, ca. ibo fathoms.

Of this new species the Kolthoff Experlition took 2 specinens (ôす) uff the east coast of
 the bottonn stony and sandy.

The most important proportions of these specinens are as follows:

		δ	\ddagger
Total lensth	in min.	128,5	131,5
Length of the head		19	18.75 .5
Distance from snout to anus	--	36,5	36.5
Height over the anus		6.7.5	6.5
Sistance from shout to dorsal fin		24.25	21.5
Length of the prectoral	-	14.5	1.35
Lengeth of the snout	-	6,3	h, 4
Longitndinal diameter of the eye.		3,25	3.25

The North American Lyoodes Tervilliz (roode \& Thean (Oceanic lehthyologs, is g5. 1. 3(x), Fig. 27ク), with which F. A. Smitt (1. c.) had identified the present form, is quite a different : as will appear from the following measurements of 2 specinens, presented to the Copenlancen Zonlogical Ausemm from the Smithsonian Institution
L. vervillii (roode \mathbb{E} Bean:

Compared with L.vervillii Goode \& Bean, therefore, we have in L. kolthoff:
The body is more slender, the height over the anns being $4,9-5,2 \%$ of the total length (against $5,5-6,2 \%$ in L. vervillii).
The anns lies further forward, its distance from the snont being $27, \mathrm{~S}-28,4 \%$ of the total length (against $31,9-33,3 \%$ in L. verrillii).
The head is relatively shorter, its length being $14,3-14,8 \%$ of the total length (against $19,3 \mid$ in $\% 16 \mid \%$ in L. zevrillii).
The dorsal fin begins relatively further forward, its distance from the snout being $18,6-18,9 \%$ of the total length (against $23,2-25,9^{\circ}{ }^{\circ}$ in L. verviliii).
The pectorals are larger, their length being $10,3-11,3 \%$ of the total length (against $8,3-8,9 \%$ in
I. vervillii).

The eves are relatively smaller, their longitudinal diameter being $2,5 \%$ of the total length fagainst $3.7-4{ }_{0}^{\circ}$ in L. vervillii).
In addition, the dark colonration is marbled in I. kolthoffi, but in regular cross-bands in L.. vervillii.
L. kolthoffi stands much nearer to L. sarsiz Coll., from which however it can be easily distinguished in that the eyes are relatively a little smaller, that the pectorals are larger, and that the dorsal fin begins further forward; thus in a 140 inm. long L. sarsii δ, the longitndinal diameter of the eye is 2.9°, the length of the pectoral 7.9°, the distance of the dorsal fin from the snont $22,2^{\circ}$ of of the total length. In addition, the colonration is quite different; the present species is strongly spotted, whilst adult I. sarsiz are more uniform, with only indistinct sladings down on the sides.

Lycenchelys ingolfianus Jensen.
Tab. N. Fiy. 3. Fig. 26-2S in text.
isgS. Lycodes murana Liitken, The Danish Ingolf-Expedition, II, i, p. 20 (partim).
1go1. Lycenchelys ingolfiamus Jensen, Vidensk. Medd. Naturh. Foren., p. 210.
The lieight over the anns is 5, \%of the total length. The head tolerably broad, the body almost rommd, the tail gradually compressed and losing very slowly in height. The length of the head is $22,4 \%$ of the total length. The anterion end of
the lower jaw lies a good bit behind the point of the npper. \& farge pores for the lateral line along the npper jaw and muder the eye. The distance between the suont and the anns amonnts to 27,60 of the total length. The distance of the dorsal fin from the shont is 20° of of the total length. The colonr iniformly yellow-brown Seales cover the tail and the trunk as alsu the unpaired fins towards their margin. Lateral line donble, dirided into a rentral and a mediolateral brancli. pyloric appendages very small. The size (of the only knownspeeinen) $27511 m$.
D. i28. A. ir6. P. If.

Distribution. Davis Straits, 393 fathous.
The single specimen to hand of this new species, which laitken had referred to /. murana Coll., thongh with some hesitation, is a female with small eggs in the ovary; the most important proportions are as follows:

'Total leng	27511113
Length of the head	$3+$
Distance from shout to anlus	76
Height over the anus.	
Distance of dorsal fin from shont.	55

The form of the hody is more elongated than in most of the species of the gelnin, the height orer the anns being $5, \mathrm{I}^{\circ}$ o of the total length. The greatest height of the body lies over the anns; from this the height remains ahmost maltered towards the head, and posteriorly decreases very slowly and evenly towards the tail. The trmuk itself approximates to the eybindrical, its thickness being only $\mathrm{I}^{\mathrm{I}}{ }^{\prime}-\mathrm{I}^{\mathrm{I} / 4}$ tines in the height, bint the tail becomes gradually inore strongly compressed. The anns lies far forward, its distance from the snont being $27,6^{\circ}$, of the total length.

20

${ }^{27}$

ה

Fig. 26 2s. Ilean of Lycenchelys ingolfianus, seen from above, the sime and helow. "? 1.
The head is relatively short, its length being $12,4^{\circ}$ of of the total length. it is tolemably broad, especially on the cheeks, where the breadth indeed is a little greater than the height. Seen fron the side, the height renains the same from the neek to near the eye, where the orbit show: a little consexity; from the anterior margin of the efe the snont descends somewhat sharply, yet so that the slope forms a weak arel, and at the same time the lower surface risen be sern from abose it is a little bent ont over the cheeks, and the point of the snont is broadly rommed off. 'The numen
surface is flat on the crown, slighty arched on the shout but has a depression between the eyes. 'Tlue eyes are large, their longitndinal dianeter being ${ }^{1}$, of the length of the head; seen from the side, the upper margin projects forward over the foreliead; seen from above, there is an eye's diameter between the two eyes; they are almost circular. The length of the snont to the eye is ca. $3^{1 / 3}$ times in the whole head. The lower jaw is mach shorter than the upper and reaches only to the vertical line through the tube-shaped nostrils. The upper lip is swollen, the lower lip tolerably thin it the middle, but thick at the sides and provided as usnal with a dependant fold. The teeth are small, truncate ancl conical. On the internavillary there are two rows, the first of which is much the longest and consists of is teetl on each side, decreasing in size towards the angle of the montli; the second row las 5 teetli. On each palatal bone there is a tolerably short row of teeth; the voner is also sparingly provided with teeth. The lower jaw has several irregular rows of teeth in the centre, a single row towards the sides.

The dorsal fin begins almost over the point of the flattened-ont pectoral, at a distance from the snout equal to 20° of of the total length. It contains, so far as I have been able to count, i2S ravs, the anal 116 rays; in both numbers half the tail fin is as usual reckoned. The pectorals, which contain $I 7$ rays, are of a broad oval forns; their lengtl is $7, t \%$ of the total lengtly or equal to the distance from the end of the opercular flap to the middle of the lens of the eye. The ventral fins are small (abont ${ }_{3}$ rds the dianeter of the eve) and thin.

The head and the paired fins are naked; the rest of the body is covered with small scales Which on the mupaired fins reach to near the margins.

The lateral line is donble, divided into a mediolateral and a ventral branch, but for the greatest part of its conrse it is only discemible muder a lens. It begins on the neck, a little above and in front of the posterior corner of the gill-cover, and inclines obliquely therefron towards the belly, which it reaches at a distance of abont $1 / 3 \mathrm{rd}$ of the length of the trunk from the base of the pectoral; this descending portion of the lateral line is relatively distinct with pores close together. From there it continnes alnost on the bonndary between the side and the belly and can be followed a good distance on the tail as an extrenely fine light strip with very snall, but rather closely-placed pores. The nediolateral branch can be followed right ont to the base of the candal fin; its pores are less close to one another than in the ventral branch, so that there are $2-3$ scales between two stuceessive pores against i- 2 scales in the latter.

On the head, the lateral line opens into a number of distinct pores. Fronn the snont to uncler the eye there is a row of S large pores, from the tip of the lower jaw to the preoperculum's lower and posterior corner there is another row of 7 sinilar pores. Between the posterior margin of the eye and the neck is a row of S fine pores, whose 5 th pair is connected by a cross line of 2 pores. Between the eye and the upper posterior corner of the preoperculun there arc 3 pores and on the preoperculunu itself another 3 pores.

The colonr is a minfonn yellow-brown on the back, yellowish or grayish on the belly; of markings only a dark border is seen along the free edge of the gill-cover, and the tube-shaped nostrils are coloured black. The scales appear as light points.

Ifistribution. A single specimen (q) was taken by the fugolf lixpedition of isys (St. 27 in
 where the depth was 393 fathoms and botom-temperature 38 C .

Relation to allied species. Of these, l. mamom Coll. is the one which is most remote from the present species. L.mureno is namely a still more elongated form, the height ofer the anns being 4, $1-5^{\circ}$ \% of the total length, and it has a more compressed tail; further, its monderjaw reaches almost to the tip of the upper, its dorsal fin begins further forward (the distance from the suont is - $17,6 \quad$ is, 2 of the total length), and it has fewer rays in the pectorals, namely ${ }^{1} 3-15$.
L. sarsii Coll. is distinctly nearer to the present species, but its hearl is somewhat longer the length in the two females at my disposil being ${ }^{1} 3,7-14,2^{\prime \prime}$ of the total length, and flatter, and the lower jaw reaches amost as far forward as the upper (see Fig. 21 \& 22 in text). In addition, it las fewer rays in the pectorals, namely 1516.

Wh the other hand, there might be some dombt, whether the present species is not identical with the L. parillus (boode $\mathbb{\&}$ bean') taken on the east coast of North America in deep water 263 -got fathoms). Is I am mot myself acquainted with L. paxilhes, I shall only indicate that this species appears to be less elongated, the height going it times in the whal length (whereas in $/$. ingolfamms it is almost 20 times); further, L. paxillus seems to have only i6 rays in the pectorals, ifs in the dorsal and ino in the anal fin; lastly, the -ateral line is given as being single (mediolateral).

Lycodonus roorle \& Bean.

Lycodonus (boode む゙ Jean, IBull. Mns. Com1]. Zool., S, No. 5, 1883, p. 208 (mirabilis).
The body very elongated (anguilliform), the heightover the anus woing ea. $21-30$ times in the lengrth. Teeth on the intermaxillary, mandible, fomer and palatines. Jower jaw withont barbinles. Scales small. I ateral line mediolateral or both mediolateral and fentral. Along the bases of the dorsal and anal fins a row of small bong plates (lateralout-growths of the upper ends of the interspinons rayst, on which therays are superimposed. Hranchiostegal rays 5 .

This genus, which in relation to the other anguilliform L-ycodine is specially characterized by the structure of the interspinoms bones and by only having 5 branchostegal rays, comsists nom of 3 species from deep water: Lycodonus mirabilis Goode \mathcal{E} Bean, off the east coast of the Luited sitates $\left(35^{\circ}+5^{\prime} 23^{\prime \prime}-1^{\prime} 53^{\prime}\right.$ N.I. $65^{\circ} 21^{\prime} 50^{\prime \prime}-74^{\circ} 34^{\prime}+5^{\prime \prime}$ W.I. $)$, $721-1309$ fathoms: L. ophidinm Jensen, North Atlantic Ocean S. from Jceland, rofg fathoms; L. Alagcllicanda Jensen, the proar depthe from spitzbergen down towards Iceland and the Fieroes, 459 touz fathoms,

The Ameriean species lacks fin-rays on the anterior (0 - - 11) plates on the back, whereas all the plates bear fin-rays in the Emopean species. The two last species can the distinguisherl from one another by the following characters:

 mann, Jishes of North America, HI, ISgK, 1. 2.71.
a. The distance between the snont and the anns is $24, T-28 \%$ of the total length, the distance of the dorsal fin from the snont, $18,2-20,6^{\circ}$ o.
L. flagellicauda Jensen; p. 94.
b. The distance between the snont and the anus is $21,6^{\circ}$ of of the total length, the distance of the dorsal fin from the snout $15,3 \%$.
L. ophidinm Jensen; p. 97.

Lycodonus flagellicauda Jensen.

```
Fig. 29-33 in text
```

18-8. Ly'odes mumena Collett, Fiske fra Nordhavs-Expeditionen 1878; Forh. Vidensk. Selsk. Chria., 18-8, No. If, p. it (partim).
1880. L. murcma Collett, The Norwegian North-Atlantic Expedition, Fislies, p. ir6 (partin), Pl. IV, Fig. $29 \mathbb{\&} 31$.
1887. L. muma Cünther, The Voyage of H. M. S. Challenger, vol. XXII, Report on the Deep-Sea Fishes, p. 79, Pl. XII, Fig. A.
1891. L. murcua L, illjeborg, Sveriges och Norges Fiskar, II, p. 25 (partim).
rS95. L. mumena Smitt, Skandinaviens Fiskar, II, p. 616 (partim), Fig. 152.
1898. L. murana Luitken, The Danish Ingolf-Expedition, II, I, p. 20 (partim).
1901. Lycenchely's flagellicauda Jensen, Vidensk. Medd. Naturh. Foren. Kbhunn., p. 2 ro.

The height over the anins is $3,4-4,4 \%$ of the total length. The head, whose length is $12,7-14,5 \%$ of the total length, is broad and flat, the trank romud; the tail becomes very low immediately belind the anus and is of a round whip-shaped form, only beeoming compressed near the end. The front of the lower jaw lies a good bit behind the tip of the npper. S pits for the lateralline along the upper jaw
 totallength ${ }^{2}$) The distance betweenthe snont and the dorsal fin is $\quad \mathrm{S}, 2-20,6 \%$ of the total length. The colonr miformly graybrown. The scales may extend to the head, when the total length of the fish is ca. 200 mm ., but usually they are much less advanced at this (orastillgreater) total length. The lateralline double, dividedinto a ventral and a mediolateral branch, but of the latter only isolated pores are usually to be seen along the median line of the side ${ }^{3}$. Pyloric appendages not dereloped. The size 11 p to 2 I 7 mm .
D. $101-109+$ A. $97-103^{4}$). P. (I3-I4) ${ }^{15} 5-17$.

Distribution. The polar depths from Spitzbergen down towards Iceland and the Ficroes. 459-roo3 fathoms.

${ }^{4}$ In 4 males 2526,80 o, in S females $24,4-2 S^{\circ} 0$, in 2 yonng specimens $24,1-25,4 \%$.
31 ligure $3!$ in Collett (N. North-itlantic Expen., Fishes) shows a whole row of pores along the middle of the side, lout I have not seen anvthing similar.
4) Accordins to Collett: I). 10: - ros; A. 97-103. In two specinens I have fomm: 1). 10S-109; A. 9S—102.

Under Lycencholy's murona (p. $83-86$) I have described this form in detail and indicated its independence from L. murara.

In my preliminary notice on the Lycodince of the Ingolf Expedition (1. c.) the present form is given as a Lycenchelys, with the addition however that it would seem most natnral to remove it and

Fig. 29-30. Lycodonzs flagellicateda, seen from the side and above.
Scales are onntted, likewise the small bony plates along the bases of the unpaired fins. The two rings over the npper figure represent the form of a cross-section at the place indicated.

31

32

33

Iig. 3I-33. Ilead of Lycodonas fagellicaudd, seen fron above, the side and below. X^{-};
make it into a separate genns. On further research I find this supposition strengthened: Lyconchelys Alagellicauda (and the following species, L.ophidium) are of one genus witl hycodonus (roode \mathbb{E} Bean.

The genns Lycodomms was fomed in 1883 by the American ichthyologists Coode © Bean Bull. Mns. Comp. Zool. N, No. 5, p. 208) with a single species: L. mirabilis. In IS95, when this fish was again mentioned by the same authors in their work Oceanic Ichthyology (p. 312), a considerable number of specimens had been taken off the coast of New England, in deep water (721 I 3 ong fathoms). Onl Ausemn possesses two specinens presented by the Sminthsonian linstitutionn, so that 1 can judere of it from personal observation.

The two most important pecnliarities, which in my opinion, specially characterisce the genns Lycodomus, are shared in common by this species and /. Alegellicande and the moccerling L.ophidimm:

on the other hand, 6); and next, a peculiarity in the structure of the dorsal and anal fin: along the bases of these fins there is a row of small bony shields, on which the fin-rays are snperimposed, one on each plate; these bony plates are especially apparent in L. mirabitis, in lesser degree in /. flagellicanda, becanse it is quite a small fish, but one can observe then easily muder a lens, especially if the skin is allowed to dry a little; Goode \mathcal{E} Bean designate these plates as ectodermal sentes or plates, but on dissection they prove to be lateral ontgrowths of the onter ends of the interspinons rays (or perliaps more comectly of the small bones fused with the outer part of the interspinons rays).

For the rest, the genera Lyccuchely's and Lycodomus agree so far as I can see. Goode \mathbb{E} Bean certanly montioned another pecnliarity in the latter, nanely: candal distinct not fully connect with dorsal and anal, but in the two specimens of Lomivabilis at my disposal the mpaired fins join juto one, just as in /. flagellicauda.

Concerning L-jcodomus mirabilis, Goode \mathbb{E} Bean remark: The first 10 or il sentes do not support rays, but whether rays were originally present or not cannot be ascertained. In the two specinens at my disposal fin-rays are wanting on the first $9-11$ plates, and there is no sign that the rays have been tom off, so that it must be a normal condition. In L. flagellicauda (and L. oplidium) on the other hand, all the plates bear fin-rays. This difference seems to me indeed of subordinate importance, in any case not so important, that it shonld prevent the three species being placed within the same genus.

For the sake of completeness, I add here the most important proportions of 14 Lycodonus flagetlicauda which I have investigated (those of 185 , 197 and 203 m11n. are from the 1902 ermise of the Michael Sars, the others from the Ingolf Expedition of 1896$)$.

Total lengtls
l.ength of the head

Distance from snout to anus
Height over the anus
Distance of dorsal fin from the snout

D) istribution.

The Norwegian North-Atlantic Expedition took 2 specimens W. from Spitzbergen, where the depth was 459 fathoms and bottom-temperature $-I^{\circ} \mathrm{C}$., and a small individnal W. from Bear Island, where the depth was 658 fathoms and bottom-temperatnre - $\mathrm{I}^{\circ}{ }_{2} \mathrm{C}$. The English Expeditions of 1880 and 1882 with the Knight Errant and Triton obtained many specimens in the Freve Channcl, where the depths were 540 and 608 fathoms, bottom-temperature $29^{\circ} 2-30^{\circ} \mathrm{F}$; in the same chamel (at $60^{\circ} 19^{\prime}$ N.I. $5^{\prime} 39^{\prime}$ W.L.) the Nichael Sars in the summer of 1902 took 3 specimens where the depth was 620 fathoms and bottom-temp. muder of C. Further, the Ingolf Expedition took it in isg6 at the following places:

Lycodomes flagellicauda is thus widely distributed over the deeper parts of the cold area, from Spitzbergen down to Iceland and the Freroe Channel.

Lycodonus ophidium Jensen.

1898. Lycodes mutrona Luitken, The Danish Ingolf-Expedition, Il, 1, p. 20 (partim).

1gor. Lycenchelys ophidium Jensen, Vidensk. Medd Naturl. Foren. Kbhurn, p. 212.
The shagle specimen present, a youg individual of if $\begin{gathered}\text { minn, stands fery near }\end{gathered}$ to Lycodonus flagellicauda, but in proportion to the totallength, the length of the head is i2 ". 0 , the distance between the shont and the anns $21,6{ }^{\circ}$ o and the distance of the dorsal fin from the snont $15,3 \%$. P. 15

Distribution. North Atlantic Ocean S. from Iceland, Io89fathoms.
As there is but a single and young specimen to hand, only the above preliminary characterisation of the species can be given.

This specimen las in the main the same characteristic appearance as the yonng L. flagellicanda and is hardly to be distinguished from these on superficial observation. But the measurements show that the head is shorter, that the anns lies further forward and that the dorsal fin begins nearer the head. These features will appear on comparison with three l. flagellicauda of similar length:

The specimen was taken br the Ingolf Expedition of isg6 in the North Atlantic S. from Iceland (St. 65), where the depth was rusg fathons and botton-temperature $3^{\circ} \mathrm{C}$. In I ätkens report on the ichthyological results of the expedition it is referred to l. memena Coll.

1) Fron Colletts meannrements of a specimen from the North-ithantio Fopledition the two other specimens are from the Ingolf Fxpetition.

APPENDIX.

On some new discoveries of Lycodes.
Dr. phil. Joh. Schmidt, who condncted the zoological investigations of the Danish steamer Thor at Iceland during 1903, has had the goodness to show me the Lexcodes taken during this cruise. Of special interest were the following:
lycodes valuii Reinh. This species occurs, in addition to what has been stated previously (p. 21) at west, north and east Iceland, also at south Iceland, as the Thor took 3 young specimens at $63^{\prime} 15^{\prime}$ N.L. 20 ' f^{\prime} W.L..., at a depth of $326-216 \mathrm{~m}$.

Lycodes frigidus Coll. I specimen was taken in the polar depths off north-east Iceland $\left(66^{\circ}\right.$ I9' N.L. $10^{\circ} 45^{\prime}$ W.I.) where the depth was $1+40 \mathrm{~m}$., bottom-temp. - $\mathrm{O}_{92} \mathrm{C}$.

Lycodes pallidus Coll. I specimen was taken in the polar depths off north-east Iceland $166^{\circ} 2^{\prime}$ N.I.. 11 : $5^{\prime} \mathrm{W} . \mathrm{I}_{\text {f. }}$, where the depth was $1040-900$ m., bottom-temp. - $0^{\circ} 58 \mathrm{C}$.

Lycodes seminudus Reinlı. 3 specimens (2 ôô, $3 \mathrm{I}-3^{6} \mathrm{~cm}$. long, i $9,33 \mathrm{~cm}$. long, all uniformly coloured) were taken in the polar depths off 110 orth-east Iceiand ($66^{\circ} 2^{\prime}$ N.L. $1 I^{\circ} 5^{\prime}$ W.L.) where the depth was 1040-900 11., bottom-temp. - $0^{\circ} 58 \mathrm{C}$.

> Literature published (or coming into the hands of the anthor) after the end of the year igoz.

Röner und Schandinn: Fanna Arctica. II, I, igor. Die Fische von E. Ehrenbanm.
In this general treatise (p. 123) Prof. Ehrenbanmmentions that Röner and Schandinn in isgs took a small L.ecodes (67 mm . long) N.W. from Ross Island at a depth of 85 m ; this specimen E. refers to L. veticulatus Remhardt (in the symonymy-list including with others, L.rossi Malmgr.); further, that the Olga-Expedition took 2 specimens of Lycodes (iSo and 250 mm1. long) at the entrance to Green Harbour in 145 - iSo min. depth, both of which had to be referred to the reticulatus-group.

All these 3 specimens belong withont doubt to Lycodes rossi Malmgren.
R. Collett: On tre for Norges Fama nye Fiske. Arch. f. Math. og Naturvidensk. B. XXV. Nr.2. 1903.

On p. 14-26, Collett discusses the Lycodes rossi Malmgr. taken by the Michael Sars» in Porsanger Fjord and at Spitzbergen, and mentions also a specimen from the bank south from Bear Island, depth 130 m., bottom-temp. - 05 C.r). Concerning the delimiting of the species Prof. C. has a similar opinion to my own, being however inclined to consider L. littkenii Coll. as the fully grown stage of $/$. rossii ; I have set forth my own views, on this point on p. 6 r .
I) When Collett (p.26) also gives L. rossi as from East Greenland, that is incorrect, but the fault lies entirely with myself, as I at a certain time considered the East Greenland Lycode, which I have named L. reticulatus Reinh. var. macrocephalus in the present work, to be identical with L. rossi and had mformed lrof. C. of this.
N. Kıipowitseh: Zool. Ergebn. (1. Russ. Exped. nach Spitzbergen. Fische. Nachtrag. An11. Musée Zool. de l'icad. I111p. dl. Sici. St.-Pétersbourg, T. VIII, 1903.

In this treatise Prof. Kinipowitsch corrects the Lycodes esmarki Coll. and L. Veticulatus Keinh. (?) previonsly described by him from Spitabergen to: L. eudiplenrostictus Jensen and L. rossi Malmgr. A new discorery is further mentioned (rgor): Lycodes pallidus Coll, a 70,8 m m long speci-
 specinen taken in Stor Fjord, (ienevra Bay, deptly 42 ml , bottom-temperature $+2{ }^{\prime} 3 \mathrm{C}$.
K. Collett: Meddelelser on Norgen Fiske i Aarene is 8_{4}-1gor. 11. Chria. Vidensk.-Selsk. Forliandl. 1903, No. 9.

On p. 3-18, Prof. Collett discusses in detail the 4 Lxcodes occurring in Norway: Lycodes zahlii Reinlı., gracilis M. Sars, L. rossi Mahngr., L. esmarkii Coll. and Lycenchelys (L, icodes, sarsii Coll.

With regard to Lycodes zahliz Reinh., gracilis M. Sars, Prof. Collett agrees with the view set fortlı by me that l. gracilis 11. Sars is a form of $/$. . vahlii Reml. It is common at relatively shallow depths along the whole coast-line of the land, and penetrates far into the large fjords, such as Trondhjenn and Christiania Fjords . . . it is taken tolerably frequently by the fishemmen during. the fishing for the so called deep-water prawn (Pandalus borealis), which has been carried on within recent years in varions fjords and bays on the sonth coast. This fishing takes place in the months of the Christiania Fjord at about 30 to 60 fathoms as a rule. From Fimmark, in addition to the specimen from Baads Fjord mentioned in the present work (p. 21), C. mentions 3 others, $179-220$ 1n111. long, taken by the Michael Sars during rgor in Varanger Fjord at ca. roo fathoms depth.

L,ycodes esmarkii Coll. Since isist Prof. C. has again been able to examine a considerable number (almost 50) of adult individuals (the largest 745 mm . long), all taken on lines at the same localities in Fimmark as before: Ox Fjord, Vardo and Varanger Fjord.

Lycenchelys sarsii Coll. Since C.'s latest report on this species (1898) only two new specinens: have been fomnd, from Trondlijem Fjord, 150 fathons and from Nordfold in Salten, 280 fathonns. Tlle Ig certain specimens hitherto known were taken within the waters lying between the Skager Rak and the Polar Circle .

Ad. S. Jensen: The Fishes of East-Creenland. Meddelelser on Gronland, vol. XXIA, 1904.
Contains a report on the leycodes taken by Swedish expeditions at northern East-rireenland: Lycodes paltidus Coll. (p. 256), L. cudipleurostictus Jensen (p. 257, L. reticulatus Reinh. var in. macrocephalus (p. 258; Pl. Nill, fig. 2 a \& b), L. seminudus Reinh. (p. 260) and Levenchelys kolthofiti w. si). (1). 26 r ; Pl. XIII, fig. 1).

Tab. I.

Tab. I.

Fig. I. Lycodes microccphalus Jensen; p. 53.
The only specimen, SI min. long; nat. size.
S.IV. from Iceland, 799 fathoms. Ingolf Expedition, 1896.

Fig. 2. Lycodes vahlii Reinl., typica; p. I4.
2 a. A young specimen, 143 mm . long, with distinct banded markings, mentioned p. I5; nat. size. Sontherly West-Greenland, 88 fathoms. Ingolf Expedition, i895.
2 b. An adult female, 310 mm . long, still with traces of the dark bands; reduced to $3 / 4$ nat. size. Sontherly West-Greenland (Sukkertoppen). Copenhagen Mnsemm.

2 c. An adult male, 4 to mm. long, where the banded markings have almost disappeared; reduced to ca. 5/8 uat. size.

Sontherly West-Greenland (Sukkertoppen). Copenhagen Mnsenm.

Tab. II.

Tab. II.

Fig. I. Iycodes vahlii Reinh., lugubris Liitk.; p. 16.
1 a. An adult male specimen, 300 mm . long, where the dark bands have disappeared; with characteristic dark spot in the anterior corner of the dorsal fin; reduced to ${ }^{11} / 15$ nat. size. North-west Iceland (Arnar Fjord). Copenhagen Musewm.

1 b . An adult female, 210 mmn . long, similar to the foregoing specinen; nat. size. East Iceland (Seydis Fjord). Copenhagen Mnsennı.

Fig. 2. Lycodes reticulatus Reinh.; p.61.
An adult male, 255 mm. long; a little reduced.
West Greenland (Umanak Fjord). Drygalski Expedition, 1893.
Fig. 3. Lycodes reticulatus Reinh. (?), juv.; p. 64.
Type-specimen of Lycodes perspicillun Kroyer; nat. size.
West Greenland. Copenhagen Musenm.

Tab. III.

Tab. III.

Fig. I. Lycodes eudipleurostictus Jensen; p. 33.
I a. An adult female, 260 m m. long; a little reduced.
N.W. from the Færoes, 47 I fathonns. Ingolf Expedition, 1896.
ib. A young specimen, 75 mm. long; nat. size.
Off the Norway-Shetland «Slope, 360 fathoms. Nichael Sars», 1902.
Fig. 2. Lycodes esmarkii Coll.; p. 27.
2 a. A young specinen, 192 mm . long, with \AA-shaped, light bands (cf. p. 28) : almost nat. size. Between Norway and Bear Island, 4 ro metres. Nathorst Expedition, i8g8.
2 b . A somewhat larger specimen, 37 Im m. long, with dark stripes and spots in the light bands (cf. p. 31); reduced to $3 / 5$ nat. size.
Norway-Shetland Slope, 275 fathoms. Michael Sars, 1902.
2 c. An adult ($\delta)$ specimen, 552 mm . long, colouration in the final stage, the light bands being dissolved into festoon-shaped markings; reduced to $5_{/ i s}$ nat. size.
E. from the Færoes, 228 fathoms. "Michael Sars, 1902.

$$
\because b
$$

Tab. IV.

Tab. IV.

Fig. 1. Lycodes pallidus Coll., typica; p. 38 \& 40.
I a, b, c, d og e. A series of specinnens showing the varying colonration from the yonng's distinct banded markings to the adult's nniform colour: nat. size.
N. from the Færoes and N. from Iceland, 293-495 fathoms. Ingolf Expedition, iS96.

Fig. 2 a, b. Lycodes pallidus Coll., var. squamiventer m.; p. 39 \& 48.
The scales are seen to be more widely distributed, both on the belly and back, than in the typical form; nat. size.
E. from Iceland and N. from Færoes, 679-957 fathoms. Ingolf Expedition, 1896.
Ad. S. Jensen, Lyendince Tub. IV
11
$\rightarrow \infty$ W)

1

Tab. V.

Tab. V.

Fig. I. Lycodes frigidus Coll.; p. 22
I a. A medinm-sized specimen, 232 mm . long; nat. size.
S. from Jan Mayen, IOOZ fathoms. Ingolf Expedition, I896.

I b. A very young specimen, $50,5 \mathrm{~mm}$. long; nat. size.
N.E. from Iceland, 860 fathoms. Ingolf Expedition, 1896.

Fig. 2. Lycodes pallidus Coll., var. similis m.; p. $39 \mathbb{\&} 46$.
$2 \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d. A series of specimens in which the dark bands become indistinct with age; nat. size.
S. from Jan Mayen, 37 I fathoms. Ingolf Expedition, i896.

Ingolf Experlitiomen, II, 1.

Tab. VI.

Tab. VI.

Fig. 1. Lycodes agnostus Jensen; p. 79.
1 a. A medium-sized specimen, 147 mm. long; nat. size.
The Kara Sea, 46-100 fathoms. Dijmphna Expedition, I882-83.
1 b. A young specimen, 62 mm . long; nat. size.
The Kara Sea, 46-roo fathoms. Dijmphna Expedition, I882-83.
Fig. 2. Lycodes platyrhinus Jensen; p. 51.
The only specimen, $148,5 \mathrm{~mm}$. long; nat. size.
Between Jan Mayen and Iceland, IoIo fathoms. Ingolf Expedition, 1896.
Fig. 3. Lycodes pallidus Coll., var. similis m.; p. 39 \& 46.
$3 \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d. A series of specimens in which the dark bands remain distinct; nat. size.
S. from Jan Mayen, 371 fathons. Ingolf Expedition, 1896.
Ingolf Expeditionen, $I I$, I

Tab. VII.

Tab. VII.

Lycodes rossi Malmgr.; p. 55.
i a. Type-specinen of L. rossi Malngr.
Spitzbergen, Treurenberg Bay, 5 fathoms. Stockholn Musenn.
I b. Specimen, $54,5 \mathrm{~mm}$. long.
Spitzbergen, Green Harbour, 75 fathoms. Michael Sars ', 1901.
I c. Specimen, 68,2 mm, long.
Spitzbergen, Stor Fjord, 39 fathoms. St. Petersburg Museum.
I d. Specimen, 75,8 11111. loug.
Spitzbergen, Stor Fjord, 75 fathoms. St. Petersburg Museum.
r e. Specimen, in 8 mm . long.
Spitzbergen, Green Harbour, 75 fathoms. Michael Sars, 1901.
r f. Specimen, 163 min. long (f).
Spitzbergen, Ise Fjord, roo metres. Kolthoff Expedition, 1900.
Ig. Specimen, 205 min. long (q).
Spitzbergen, Green Harbour, 75 fathoms. "Michael Sars, 1901. All natural size.
Ingolf Erpedilionen, II. \ddagger.

$$
\begin{aligned}
& 11 \\
& I \\
& \text { - } 1
\end{aligned}
$$

Tab. VIII.

Tab. VIII.

Lycodes reticulatus Reinh. var. macrocephalus m.; p. 66.
I a. A specimen, $45,5 \mathrm{~mm}$ long, doubtfnlly of the present species (cf. p. 69). Baffins Bay, 92 fathoms. Copenhagen Museum.
i b \& c. Two specimens, 119 and 83 mm . long; in the largest the bands have already begun to assume the net-form.
Jan Mayen, 6o-75 metres. Michael Sars, igoo.
1 d, e and f. Three specimens, 133, I 56 and 195 mm . long; the intermediate shows very distinct reticulate markings, which is far from being the case in the larger last specimen. Northern East-Greenland (id from $74^{\circ} 35^{\prime}$ N.L. 18° I 5^{\prime} V.L. ., 150 metres; 1 e and from $72^{\circ} 25^{\prime}$ N.L. . r7 ${ }^{\circ} 5^{\prime}$ W.L., 300 metres). Kolthoff Expedition, 1900.

All natural size.

memerid
$+2$

N(1)
4ys

Tab. IX.

Tab．IX．

Lycodes semimudus Reinh．；p． 71.
I a．A very young specimen， 67 111m．long，still naked，with distinct dark bands；cf．p． 76.
S．from Jan Mayen， 37 I fathoms．Ingolf Expedition， 1896.
I b，c，d and e．Four specimens， 129 （す），16r（す）， 2 IS（ $¢$ ）and 280 （す） mm ．long，belonging to the variety with a distinct banded marking（cf．p．74－75）．
Northern East－Greenland（I b and d from the mouth of Firanz Joseph Fjord，200－300 metres；I c from outer part of Myskoxe Bay， 200 metres；i e from Franz Joseph Fjord， 760 metres）．Nathorst Expedition，IS99 and Kolthoff Expedition，Igoo．

All natural size，except 1 e which is slightly reduced．

Tab. X.

Tab. X.

Fig. i a. Lycodes semimudus Reinlı.; p. 7I.
Specimen, iso mm. long (f), with less distinct banded marking; cf. p. 74; nat. size.
West Greenland (Jakobshavn). Copenhagen Museum.
Fig. I b. Lycodes seminudus Reinls.; p. 71.

West Greenland (Umanak Fjord). Drygalski Expedition, 1893.
Fig. 2. Ljcenchelys kolthoffin Jensen; p. SS.
Specinen, i31,5 mmı. long (o); nat. size.
Northern East-Greenland ($72^{\circ} 25^{\prime}$ N.L. $17^{\circ} 56^{\prime}$ W.L.) 300 metres. Kolthoff Expedition, 1900.
Fig. 3. Licenchely's ingothanns Jensen; p. 9o.
The only specimen, 275 mm. long (f); slightly reduced.
Davis Straits $\left(64^{\circ} 54^{\prime}\right.$ N.L. 55° Io' W.L.), 393 fathoms. Ingolf Expedition, I895.

11

THE DANISH INGOLF-EXPEDITION.

VOLUME II.

5.
 LAMELLIBRANCHIATA.
 (PART I.)
 BY

AD. S. JENSEN.

WITH 4 PLATES AND 5 FIGURES IN THE TENT.

COPENHAGEN.
PRINTED BY BIANCO LUNO.
I912.

CONTENTS．

Lamellibranchiata，Part I．

Introduction

Anemin
－fatilliformis $\mathrm{I}_{\text {．}}$ ．
squamula I ．
［Ostrea cidules L．］
Pecten prusio I．
－opercularis I ．
islandicns M iull．
－aratus Gmel．
－septemeradiatues ． 11 i 11 ．
tigrinus M ïll．
striatus Müll．
imberifir 1.0 ．
－vitrens Chemn．
simitis Lask
－groenlandicus Sow．
friguidus J ensen
－zundatus Verr．\＆Smith
－maximus I_{4} ．
Amussum，hucidum Jeffr．
Lima loscombia Sow．
－excañata Fabr．
－gweyn Sykes．
－hyperborea J ensen
－subauriculata Mont
－semilis $\mathrm{n} . \mathrm{sp}$ ．
－subozrata Jeffr．
－ingolfiana 11．sp．
－jefficusz Fisch．
loge
1
Lima sarsiz Lov：if
Mytilus cathles L．．．．．
Modiole madiolmes I．．is
phaseothat P＇lil． 51
Dacrivdium ディtreum Moll．．5．）
Kas merontions Jeffr．． 56
Medtoluria ． 57
discors $I_{4} \quad . \quad 5$ ．
com ．．．．．．．．．．．．．．． 62
nigra fray ．．．．．．．．．．63，
foroz lialır． 66
Crinella diczessertiz Mont． 68
（iardaum eikinutum I_{1} ． 71
｜retult $\mathrm{I} . \mid \quad$－ 1.3

firsciatzom Mont．．． 75
［neatoswn Turt．］ 79
cliciatum Fiabr． 79
chyetntulume Moll．．St

sroentamticatm Clh．． S_{5}
［lsociardia cor L．］．．．．ig
Crprinu islumtica 1 ． 89
Astarte borcalル C゙1．．． 92
－Montasz Dillw．．． 97
－sulcater D．C．．．．． 105
－clleptica Brown Ios

Introduction.

The Danish Ingolf-Fspedition of 1805 - of bronght home a very considerable material of Mollnseat from the waters ronnd the Fieroes, Iceland and Sonth Grecnland. The Expedition was planned on the lines of a deep-sea investigation and the greater part of the material collecter eomes therefore from great depths; of the rff stations investigated no less than 125 have depths of over foo fathoms.

This material is maturally of great interest; the area investigated was but little known before and an extension of onr knowledge of the deep-sea fama must be elassed among the relatively rare oecurrences.

Whilst working n] this material I felt appreciably the lack of information regarding the distribntion of the Mollusca in the coastal regions ronnd a great part of the area. This does not apply however to Greenland; on the west coast of that eonntry collections have been made for mans years and the material has been worked up by H. J. l'osselt, and from the east coast the gatherings of the expeditions of reeent years have been worked 1 p by Posselt, R. Hägeg, Ad. S. Jensen and J. Grieg. From Iceland and the Faroes, on the other hand, we had, just as previonsly for Creenland, but incomplete and short lists of the species and, as these, manly drawn up by O. A. L. Mörela.

This deplorable absence of material from the eoastal region of Iceland and the Freroes has now been made good. In i8g2 and i893 already Mag. scient. Will. I, undbeek had collected a great number of Mollusea in the north-western fords of Iceland during his voyage with the fishing-cutter "Prinsesse Marie" and in recent years a nmmber of the yonnger natnralists, who liave visited the lateroes and Ieeland, have willingly met my wishes and malde a speeial effort to eollect the Mollusen of those regions.

I may thus mention in particnlar, that in the summers of 1898 , sigg antl mon Mas. se. R. Häring made considerable collections at the feroes and along the east and somth-west consts of Ieeland during his emises with the fisher-inspection ship the "lnana"; further, that l)s. I. C. Johansen in tgoo bonght home a large eollection from the east and sonth eoasts of loctand, also marle during a summer ernise with the erniser "Inana". lat goz Mag. scient. A. Ditlersen was sent ort with the "Diana", in 1903 Mag. scient. C. V. Otterstrïn with the new inspection-ship "lacskyteren",
 in mgo7 Cand. magist. O. Börnp ("Ineskytteren"); all of these hronght home collections, which helperl to throw light on the Molluscan fanmar of the Fiovenes and lectand.

Information with regard to the Molluscan fanna of our Nortlı Atlantic islands was also obtained from another side. The Icelandic botanist, Dr. Helgi Jonsson, who was dredging for algae at the Fiarocs and Iceland during the years 1897,1898 and igor, in response to my request, preserved the Mollnses collected at the same time and with great liberality presented them to the Zoological Musemn of Copenhagen University. His conntryman, the zoologist Bjarni Sæmundsson, has also assisted me, anong other ways, by lending material from the Natnral History Collection at Reykjavik.

A very considerable collection has been brought hone from the Fæeroes by Dr. Th. Mortensen, Who in isg9 carried ont a series of dredgings from the gumboat "Guldborgsund" partly in the fjords, partly on the banks down to a depth of ca. I50 fm.

Lastly, Dr. Johs. Schmidt, the leader of the cruises with the research-steamer "Thor", has during several years made collections at the Færoes and Iceland and bronglit home a considerable and very valuable material, from the littoral right down to the abyssal region, which he has preserved for science by presenting it to the Zoological Mnsennn of Copenlagen.

For the sake of completeness I may further mention, that during my participation in the igoz cruise of the research-steamer "Michael Sars" minder the direction of Dr. Johan Hjort, I was given the opportnnity of collecting a quantity of Mollusca on the banks round abont the Freroes, on the cast coast of Iceland as well as morth and south of the Wyville Thomson Ridge. During my voyages in West-Grecnland in igo6, igo8 and igog I also collected a great number of Molluses.

The present part of the work on the entire material will show, that my endeavours liave been directed first and foremost to the disentanglement of the species. The determinations lave been made as carefully as possible; that we can not be sufficiently critical regarding the determinations made by our predecessors, even of common and apparcntly well-known species, I have already shown in my small papers on Mlya and Tellina.

With respect to Grecnland, I lave restricted myself to give a brief review of the distribution, as the works of losselt and others have already discussed the details. For Iceland and the Freroes, on the other hand, each single place of occurrence has been mentioned, as there is a need here for all the information we can obtain - better to have too much detail than the reverse.

With regard to the synonymy lists I may renark here, that they have been intentionally divided into two sections, the first refering to the most necessary, systematic literature, whilst the second contains references to the principal, local fanma-lists.

The region dealt with here - the "bridge" between Emrope and America across the North Athantic Ocean and the slopes down to two deep-sea basins very different in hydrographical regards - offers more than ordinary interest, and many and varied problems lave presented themselves for discussion as the work advanced. But the treatment of these and other conditions I shall postpone meantime, until the systematic elaboration of the material is completed.

Copenhasen. Znological Musrum,
Ad. S. Jensen.

Lamellibranchiata.

Part 1.

Anomiidae.

Anomia.

The gentus Anomia is represented by a species at the I'eroes and Iceland: Amomia symumuth 1 . and Anomia fatclliformis L.

As regard the former, I am mable to agree with the prevaling riew that A. spmumum is at variety of A.cphiffium. The latter is considerably larger and easily distingmished from the fach, that the upper (free) valve of the shefl has 3 nunseular impressions fone of the adductor, two of the hasins musculature; comp. I'l. I, fig. 3), whilst the mpper valve in . . sommmula only shows two musenlar impressions (one of the adductor, one of the byssus muscle).

Anomiar aculata Miiller (Pl. I, fig. 2 d) I take to be a variety of A. simumme, as there are all transitions between smooth and spinous specimens and they agree exactly in other regards, e. g, in the byssus musculature. G. O. Sars has observed correctly in so far that he only found two muscular impressions in the upper valve of A. aculienta and was consequently disinclined to refer A. aculentu as a variety to 1 . chhippium, where there are three muscular imprints ${ }^{1}$) on the upper valve. But sars las not noticed at the same time, that I. sqummute also has only two muscmbar innmessions. (Ill. I, fig. 2c) and consequently cannot be a variety of A. cphippum cither.

I have songlit in vain for the true A. iphiptinm in my material from the Feroes and lechand. Nor have I found this species among the material which has been collected in the course of yars in the Danisll waters. It is perhaps even donbtful, if A. fhippium occurs at Norway; I do not think it altogether inconceivable that G . O. Sars, starting from the anticipated view that . I. spmommlu is a variety of A. ifhippium, las ascribed to A. cphiffium a distribution in Norway on this errontons basis').

Again, it is difficult enough to distinguislı Inomiz putclliformis from . I. sqummula - ant proh)ably not always witl certanty; the mpper valve shows only two masenlar impressions in both spectice (comp. Pl. I, fig. I c with fig. 2c). The best distinguishing marks are, that the notch in the fower value is large, alnost triangular in A. puthliformis (Pll I, fig. I D) ant the umbo a little way from the margin
 the unbo entirely or alnost on the margin (Pl. I, fig. 2 a).

 Mediterranean, whilst A. squamulu lives "in Oceano Sivector". Syst. Nith wl $12,1,2,1507,1$, 1150 and 1151

Anomia patelliformis Linné.

Pl. I, figs. I a-c.

- Inomier frtilliformis Linné, Syst. Nat. ed. 12, 1, 2, 1767, p. 1151; Jeffreys, Brit. Conch. IL, 1863, p. 34 , pl. 20, fig. 2; Sars, Moll. Reg. Arct. Norv., 18 - 7 , p. 15.
Amomiar fulilliformis Möreh, Vidensk. Medd. Naturhist. Foren. 1867, p. 99.

Iceland.

It this island, from which it las not been known earlier, the species has been taken in recent years nostly on the south coast, rarely on the southemmost part of the west coast, from the beach dow'n to a depth of ca. 7 fm .

West Iceland:

Sonth Iceland:

The Færoes.

When Mörcl published his list of the molluscan fann of the Faroes, only one specimen was known, locality not stated; during the latest years it has been taken at the following places:

The largest specincon measures 35^{mm}. Amonge a manber of specinmens collected at an carlice date, the locality not stated more precise than "the Farnes", the lagest meanures f" ". The greatest deptly at which ann adnlt specinen lias been taken is (60 fnn. ${ }^{1}$).

Distribution. Apart from South-West and South Iceland and the Iteroen, Incmin futh llitormon occurs along the Norwegian coast from Lofoten sonthwards (o-qu fins, and rately in the nombern
 coast of France, at Spain and Portngal, in the Meditermean and Adriatic.

Anomia squamula L_inné.

Pl. I, figs. 2a-d.
 Hanley, Brit. Moll. II, IS53, p. 325 (partinn); Jeffreys, Brit. Conch. II, fiknz, p. 3u (fartim);

Anomia squamula Mörclı, Vidensk. Medd. Naturhistorisk Foren. 1867, p. 9S; ibid. I8os, p. 22h.
Anomia iphiffium M̈̈rclı, ibid. 1867, p.99.
The Ingolf-Expedition has taken this species at:

- Bottom-temp.

The greatest depth at which any living specimen was taken was ens fon, hut they may hatco been attached to two large pieces of timber bronglit inp in the trawl; whemise the ercatcot depth was 69 f fins; the other deptlis lie between it and 316 fins.

The specimens from deep water are more or less thin-shelled and of small dimensions; of those from 170 fin. and more the largest specimen is 11.5^{mm} long. Some of the many shells from St. S6, 87 and gs belong to the variety aculcata.

Besides, the tendency of the species to vary is shown in a remarkable power of changing sculphure and form according to the substratum, possessed not only by the valve which is closely adherent to the substrathun but also by the free, upper valve. Thins a specimen on Retcpora has a pitted surface on the upper value, where the pits correspond to the openings in the network of the bryozoa; a second specincon shows spinons ribs corresponding to the costie of the Pecten septemredtatus to which it is attached; a third on a spine of a Cidaris shows folds or wrinkles corresponding to the longitudinal ribs of the spine; a fourth specinen attached crossways on a Serpula tube has slarp ridges opposite the rings of the tube, and so on. The contour of the shell is as a rule circular, but sometimes the length is considerably greater than the breadtlo or the reverse or the contour becones very integular according as the substratum restricts the growth in the one or other direction.

Iceland.

In addition to the speciments from the "Ingolf" stations, Inomin sytermula has been taken at Iccland in recent years at other places, east, north, west and sonth, as is shown by the following list.

East Iceland:

The largest specimen measures 20.5^{mm}. A few belong to the variety actloutu.

West Iceland:

Foxafjördr, ca. 3 miles N. 59 IV. from Girótta lighthonse . . 25 fm .

8 valves.

- , off Kollafjördr. . S-II ${ }^{J} / 2^{-}$, mnd and stones.

5 spec. and 2 valves.
montl of Kolla-
fjördr $9^{\text {I }} z^{-11}$ - , fine, black sand and mud. 12 valves.
, off Kollafjördr . . . Io - 17 -

- , Keflavik 15-16 - , fine, black sand. 8 -
- , ca. 2 miles N. E. of Kefla-
vik 19 $9^{\mathrm{I}} \mathrm{i}_{2}-20^{\mathrm{r}} \mathrm{i}_{2}$ - 10 -
- , I mile W. of Helgasker

Vager 13-16 - 4 -

- , I mile \mathbb{W}. of Helgasker

Vager.......I4 ${ }^{\mathrm{I} / 2}$ - I (on Pecten islandicus).

- , E. of Videy 9-10 - , fine sand and mud. 5 -
- , Tmiles N.N.E. of Ska-
gens light . . $17-20^{1} / 2$ - , sand and shells. 1 -
Reykjavik, on Laminario driven on land. ca. So spec.
- , at low-water mark

1 spec.

- $1^{\mathrm{t} / 2}$ fin., stowy bottom. 9 -
- $1^{1 / 2}$ - , gravel - 1 -
- 2-3 - , on Laminaria hyperborea. ${ }^{15}$ -
-S - 2 -
(Engey) 7-St ${ }_{2}$ - , mud. 1 spec. and 3 valyes.
Hafnarfjördr, on the beach.

10 -
1 valve.
4 fim., sand and mud.
10 -
$13-$

The largest specimen is 22 mm long. A mmber of specimens belong to the varicty actloata.

South leeland:

```
63 15'N. L_, 22`23'WV. It. . . . 170-114fiml.
    2 spec. and 20 valves.
6318' - , 21030' - ..... 94 -
6330' - , 20 I f' - ..... t2
6305' - , 20 7}\mp@subsup{7}{}{\prime}\cdots\cdots29
V'stmamatyjar, beach . . . . . . . . . 
    10 fl11.
    15-20 -
- ........ . 30 - , shell-gravel.
        Ifinmey, beach.
```


2 spec. and 20 valves.
5 valves.
I spec.
3 valves.
14 -
2 spec. and + valves.
8 --
2 valyes.
ca. 100 ralves.

49 - , clay witl a little mud.

500 f112.

70
2 -
 The largest specincu is 21 mm ; some are of the variety multuln.

The Færoes.

I momin squtumuth has been freptiently taken at the Fiernes during recent years, from the shone down to a deptli of 175 finl. The localities are the following:
Viderejde

S゙ィinö
Klaksvig. IO-í 5 f11.

- . if - , on Laninaria.
O-15 - , hard botton.
7-IN - , black sand, small stones,
Laminaria.
7-15 - , sand with Lanninaria.
10
Ejde. 5-6 - , coarse, black sand.
Findingrifjord. 12- ca. 20 - , coarse sand and clay:
Andefjord
$16-23$
Solmunde, on Sirpulu tubes.
Kongsliavin 12 - 16 fin.
Vestumanhavin $3^{1 / 2}$ - fine black sand.
- 4 - , sand.
- 4-5 -
- 5-6 - , fine, hack sand.
- $10-30-$

Vestmansumd ca. jo -
Sandevaay on Laminaria.

Midvaag 7-I I
Kalbakford
Thorslavin, onter harbour . . 12—I6 fm.
Cilivmrsuces at Thorshaver
Nolsö, beach

- deep liole at north encl, ca. 10 fins.

Sandsvaay The Ingolffer pedition. II. ;

1 ralve.
9) spec.

25 values.
32 spec.
12 -
ca. 100 values.
2 spec
9 values.
72
Some spec and many valves.
3 spec. (on Modiuler madiolus).
7 spec.
5 -
8 values.
1 spec.
2 -
io valves.
Some specimens and eal I(x) valluen
8 values.
10 spec.
6 vallues
3
3 spec.
3 - and 5 balces.
2
8 values.
Many spec. (onn Mhedicher modstres).
5 spec.

The largest specimen measures 23.5 mm . A number belong to the variety aculeata. The specimens from the deep localities (210--475 fm.) are thin-shelled and small (none over in m.). The shells may also be very thin however in the littoral belt.

Distribution. Anomia squamula with the variety aculeata has its northern boundary in the "warm area" of the White Sea (Knipowitsch) and Murman Coast (Herzenstein). It is distribnted along the whole of the Norwegian coast, from the shore down to 400 fin. (G. O. Sars), and goes throngh, the Kattegat down to the northem part of the Great Belt and the Sound (C. G. Joh. Petersen). Towards the west it is distributed, as shown above, as far as the Freroes and roumd the whole of Iceland." [n the Zoological Musemm of Copenlagen specimens oceur on Cidaris papillata spikes from the sea between Orkney and the Shetlands (35 fm .) and from $60^{\circ} 39^{\prime} \mathrm{N} . \mathrm{L} ., 3^{\circ} \mathrm{O} 9^{\prime} \mathrm{W}$. L. (203 fm .) as also from many localities in the North Sea, down to a depth of 65 fm . It oceurs on all the British coasts. Where the sonthern boundary of its distribution lies, I an mable to say, as the anthors have confused this species with the more southerly. Inomia (phifpium (comp. p. 3). but it goes at least to the Bay of liscay, where the Janish research-steamer "Thor" has taken some specimens at great depths
 to the southermmost part of Labrador ${ }^{1}$).

Ostreidæ.

Ostrea eclulis I, in111é.

LIceland.|

In "Brit. Conchol." vol. II, i 863 , p. fo Jeffetes gives Icetand as the morthern bomblary for the distribution of the oyster ${ }^{2}$) and Mohr as lis anthority. If we look mp the work of the latter: "Forsog til en Islandsk Naturhistorie", 1786, we find Dstron coduis mentioned (1). I 30), it is true, but with the addition, that it "is said to occur in Hvalfoorden" according to Fi, Olafsen. but in the work of Egerert Olafsen and Biarne Povelsen: "Reise igjenmen Island" (2nd part, 1/72, p. 1oro) the recond cited is followed by the remark "but we have not seen it." As no other matmalist has fommel the oyster at Iceland since that time, it may be deleted from the fanma.

[The Færoes.]

From bere the collection of the Zoological Musemm possesses quite a small oyster hemgth S "m. ., height 10 mm.) attached to a shell of Modiolu modiolus and still containing the dried-up soft parts; the specimen was sent in by Sysselmand Miiller in 1873.

So far as 1 know, this is the only evidence we have, that the oyster may occur at the Fiaroes. It is lardly credible, however, that udult oysters occur at the islands, as they would scarcely have escaped attention. Nor can the small specimen referred to be considered to have been transponted here as larva by oceanic currents, as no current runs from the English or uther European coasts to the leferves リ. But experintents have perliaps at some time been made to "introduce" oysters at the dierves.

Pectinidæ.

Pecten pusio Lilluć.

 1I, 1863, p. 5I, Pl. 22, fig. I.

Pectro (llinnites) distortus Mörch, Vidensk. Medd. naturhist. Porening 186-, 1, ys.

 on marine leposits (Postglaziale Kilimactånlerungen, Stockhohn 1910, p. 3eg).
\Rightarrow The same statment is repeated in Iroc. Zool. Socicty, $1.579,1$. 555.
3) In his "Faumula Moll. Insul. Ficroënsinn" (p, 49) Mörch cites the following pascage from I, andt: "it if. © . In om z

 meant al distorted siaxicazta".
t) The loxroes are washed by the (sulf stream, but it is impmobable that the pelagio life of the orster is of such

The "Ingolf" las taken this species at:
St. 87. West Iceland (Brede Bugt) ino fm.
1 valve (height $+{ }^{\mathrm{mm}}$.).
Fiurther, Pecten pusio has been taken during recent years at several phaces on South-West and South Iceland, namely:

South-West Iceland:

Brede Ibugt, off Hellissandur . . 20 fur. I valve (suall).
Faxafjördr...................... 17 - , coarse sleell-sand. 10 - -

- moutl of Kollafjördr $9^{1 / 2-11}$ - , fine black sand and mud. I fragment.

Hafnarfjördr, 1 mile $\mathbb{W},{ }^{3}{ }_{4} \mathrm{~N}$. of Hel-
gasker Vager........... $14^{1 / 2} \mathrm{fm1}$. I spec.
Skagi......................... 21 - 2 valves.
Soutli Iceland:

Grindavik

Vestmamacryar............. 10 - 20 fmı. $30-$, gravel with many shells. 49 - , clay.

- Heimaey shore.

1 valve.
I spec. and I valve.
4 valves.
Numerous valves.
17 valves.

The largest specimens are from the Vestmanaey jar and measure:

$$
\text { length. } 30^{\mathrm{mm} ., ~ h e i g h t ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~} 35^{\mathrm{mm} .}
$$

$$
\text { - } 33.5^{-\quad} \quad-\quad
$$

The largest specimen from the west coast (that from Hafnarfjordr, $\mathrm{I}^{\mathrm{T} / 2}$ fin.) measures:
lengtlı............... 15^{mm}., height................ . 18.5^{mmm}.
The fragment from Faxafjördr, $9^{1 / 2-11}$ fmi, however, has been of considerably larger dimensions.

The Færoes.

When Mörch wrote his "Fannla Mollnscornnn Insularmu Feröensinn" le knew a specimen and a valve from the Fieroes, but the locality is not stated; the specimen, which contains the remains of the soft parts, is 32 11111. lighly and 27 min. long; the valve is 38 mm. high. In recent years Picton pusio las been taken with the dredge at the following places:

The largest of these valves is 36 mm . high and 26 min. Iong.
Among the specimens from Iceland are some down to a size of scancely 2 . The prolinsoconch is smooth; immediately mater it are radiating ribs, which are more or lens spinoms and tuberculous. Small specimens are difficult to recognize as befonging to this specios, as diey are relatively elongated, with the two dimensions of the shell almost the sanne, and the ears extrenely welldeveloped; they might easily be confused, for example, with the sumb of focton antius. Mredinnsized specimens still free are higher than long and of regrular form. later, the erowth beconter irregular owing to the sedentary mode of life.

Distribution. In addition to South-TVest and Sontly Iceland and the liaerove, P. Fensen occurs at Sonthern Norway, but it hats not been fonmed living in the Danish waters inside the Skaw a few dead, probably fossil, valses have been taken in the Eastem Kattegat). It also ocenm at the British coasts ("on every rocky coast from Shetland to Cornwall"), along the coast of France and the Liberian Peninsula, through the whole of the Mediterranean right to Asia Ninor. It is further distributed as far as Madeira, Canary Isles, Azores and Ifiberia, according to I) nuker even to the Cape of (iond Hope.

The vertieal distribution extends at Norway from o to go fins, according to (i. (). Sars, ant at the British Isles from u to 85 fin., according to Jeffreys. Nepertheless, the latter anthor records the species as taken by the "fightuing" N. of the Hebrides in 530 fint. and by the "Porcuphe" off the west coast of Ireland in SoSfin. Other anthors also record it from great depths, thins Ifautzenlecreand
 of Biscay and north coast of Spanh, as also from 120011 . W. of the Sond:nn. Is it not possible that these recorls are based on mistakes? Or were they only dead shells which occurted at the great depth?

Remarks. P'ecten pusio is liere taken sinsu letione The French malacologist A. Locarel definitely maintains that the "P'. pusio" of the authors covers two distinct species, mamely: (i) a free-living species for the whole of its life, of regular form (Téten multistriatus Poli); (2) a species permanentiy attached in adnlt condition, always of irregular form (l ' distortus da Costa); the first species betongs to the Mediterranean, though exceptionally vecurring in the Atlantic as far as the loy of Ibiseay and coast of Liberia, whereas the latter species is exclusively an oceanic form, with a distribntion from the Azores to Norwaz ${ }^{3}$. It seems to me, howerer, that locard's mode of reasming is mot conclusive in the matter. Butiquoy, Dantzenberg and Joflfus seen likewise most inclinel to consider P. distortus and I '. multistriatus as one and the same species, inter athe, lreamse both forms. may be fonnd as members of the same "colony" and thus in all probability of the same migin."

Pecten opercularis I, illić

 Lerit. Conch. II, 1863,]. 59 , Il. 22 , fig. 3.

1) Mén. Soc: Zool. de France, 尺, 1897, p. 193.

 Travaifleur-Talisman, Moll. Test. JI, 18ys, P 377 -7y.
2) Mollnsques marins du Roussillon, II, 185% 9S, p. wot.

The Færoes:

ITörcli's list gives this species from Kollefjord (on Strömö) ') and from "Fiskebanken" W. of the Fiarnes. ln recent years l'ictin operouluris has been dredged at the following places:

It should be emphasized, that all the specimens taken in the fords and at the coast itself are small, at most 24.5 mm . In the open sea romnd about the Fraroes, on the contrary, many large individnals have been taken; the largest living specimen measures 65 mm , the largest of the empty shells $S_{9}{ }^{\mathrm{mm}}$.

The specimens vary somewhat in regard to colour and senlpture, just as at other places.
Distribution. P'cten operoularis oecurs at the Canary Isles, Madeira and the Azores. It is common in the Mediteranean (including the Aegean) and along the coasts of Europe to Southern
I) It is probably these specimens (collected by Iap. Steenstrup) to which Jeffreys refers, when he writes (1 c. p fon): "Stecustrup informs me that he has found it (P.opercharis) in Iceland", the Freroese locality being confused with Kollafjödr in Iceland. Recten operchlaris has never been found at Iceland.

Noway; its northern bomdary, according to Sparre Schncider, is reached in Norway at br N.I. It enters the Kattegat, in the sonthern part of which it is common, ans also into the Somm the the island Hreen. In the west, as shown above, it ranges to the lieroes.

Jefferes estimates the vertical distribution of the species at u-I isofme, and at Nomaty according to Sars, it only goes down to roofm. and at the Faroes to ron(150?) [m. Nevertheress, Jeffrexs states that the "hightning" and "Porcupine" Exped. have taken it N. of the Ifchrides at 5.30 Im., IV:
 not stated whether these were living specimens or empty shells; from the dyores also it is eriven by Fischer and Dautzenberg from a depth of 1360 m .

Pecten islandicus Müller.
P1. I, figs. 4a-b) and c-d (young).
Pecten iskudicus Mïller, Zool. Dan. Prodrom., 1776, p. 248 ; Sars, Moll. Reg. Arct. Norvo, 18-s, p. 16, Il.2, fig. 2; Verrill, Trans. Comn. Acad., X, 1Sg9, P. 72, Pl. XVI, figs. $2-5 .-$ Pictin Pizhicut Philippi, Abb. n. Reschreib. nener oder wenig gekannter Conclyyl, 1, 18, 5 , P. ror, l'ecten Tab. 1, fig. 5.
Pecten istandicus Fabricius, Fanna groenl., IfSo, p. fis; Moller, Thdex Moll. Groenl., 18q2, p. IG;

 p. 68 ; Posselt, Medd. onn Gronland, XXIII, IsgS, p. L4.

This species has been taken by the Ingolf-Expedition at the following places:

West Greenland.

Tery common from the southemmost parts and as far morth as zoological inventigations
 Egedesminde and measures $105{ }^{\mathrm{mm}}$. It occurs most frequently at depths of $15-50$ fme ami prefors hard bottom. At some of the colonies (Holstensborg, Egerkesmindet the Dathes frequently semd ont men to dredge for it on the "banks", where it flomishes in quantity, especially whent they hatre
 good taste and it eren seemed to the malacologist H. P. C. AI ofler whore tembermblines in the thesth
 by firm beats of the valves and can thans spming ahnost a font cach time; I hatwe never sern it use the foot".

East Greenland.

Whole valves, still less living specinens, have not been found; on the other hand, some fragnents lave been taken in the dredge off Angnagsalik in 140 fin. (a fragnent) and in Forsblads Ifjord in $50-90$ fin. (fragnents of a larger and a smaller valvel. Fiuther, a sliell fragment las been fonnd at Rolige Bre in the inner part of Scoresby Sound 1 .

Jan Mayen.

The Anstrian Expedition of $1882-83$ fonnd numerons specimens on the north side of the island, 75-95 fin. The Danish Expedition of 1900 obtained 9 living speeinens and varions valves on mutdy bottom at a deptli of 55 fm.; the largest was 86 mm in licight.

Iceland.

Pecten istandicus las not been fonnd at all on the sonth coast but it is common on the other coasts of the island. The specinens, which are preserved in the Zoological Mnsemm, come from the following localities:

Fast Iceland:

$64^{\circ} 27^{\prime}$ N. If., $13^{\circ} 27^{\prime}$ IV'. 1........... . 8_{4} f		I valve (fossil perliaps).
$64^{\circ} 5^{\prime}-, 13^{\circ} 25^{\prime}-\ldots40$	-	1 -
Faskrudsfjördr 50-20	-	3 spee. (small).
Onter Reỵdarfjördr 60-8o	-	2 -
Reydarfjördr. 86	-	1
Nordfjördrs Flóin 35-55	-	1 -
Mljófifjördr. 40-52	-	1
Seydisfjördr 10	-	1 -
- at Skularig........ 6	-	1 -
Bakkafjördr $20-28$	-	1 -
- $25-32$	1	$10-$
- 52-43	- I	11 - (small $)$
The	largest specimen is 78 mm ligigh.	

[^49]It is naturally due to chance that all the shells brought home are small in size, none over 60^{mm}; in reality very large specimens occur at Nortly Iceland and in extrencly large quantities at places.

W'est Iceland:

Even at the southern bonndary of its occurrence at Iceland the species attains a considerable size; the specimens from Hvalfjordr reach a size of 11 p to Somm, from Revkjavik ${ }^{11}$, to 95 and from Hafnarfjordr up to 78 mm . Outside the fords however, it has not been taken further somth than in Brede Bugt, and the living specimens from there are only $20-25 \mathrm{~mm}$.

[The Færoes.]

In recent years a number of shells of P. islandicus, all large ($7,--00$ omin and with a "fossilized" appeatrance, lave been taken with the dredge at varion places out tu seat romb ahont the intands, namely: S. of Myggences from the line-fishing $\quad 1$ valve Akralejte in N. 57 IV. i2 miles........ 150 fin. 3 , fracruments.

[^50]As 110 living specimens were forthcoming, it may probably be taken as fairly certain, that Pecten islandicus no longer lives at the islands.

Remarks. The radiating ribs of the shell begin to appear in the young immediately below the prodissoconcli. In the beginning the shell is provided with very dense, concentric lines (Pl. I, figs. $f \mathrm{c}$ and d), which in the spaces between the longitudinal ribs give way later to a very characteristic rasp-like structure (distinct under the lens) (Pl. I, fig. 4a). The longitudinal ribs themselves are often smooth, but not rarely rough from down-turned spines or scales. The rasp-like sculpture is almost always present, if the shell is not too much rubbed; it may be difficult to see or has disappeared only in the cases, when the radiating ribs lie very closely and are covered with scales, but even on such specinens it can as a rule be observed on the older parts of the shell (Pl. I, fig. 4 b). Curionsly enough anthors do not seem to have attached any weight to this good distinguishing character, and Verrill has even recently established a special variety insculpta (1. c., p. 73, fig. 5) for specimens with such structure; in my experience this is practically never wanting, when carefully sought for under a lens.

Some few of the Greenland and Iceland specimens belong to the variety, which Chemnitz has described and figured in Conclyy. Cabinet VII, ry ${ }^{8} 4$, p. 318 , Tab. 65 , fig. 616: the shell is thrown into mindulating, radial folds. I have also a similar variety from Jan Mayen.

Distribution. Pecton islandicus is an arctic species, but whether it is circumpolar, as is generally stated, seems to me more than doubtful. It has been taken, it is true, at Labrador, West Greenland, Iceland and Spitzbergen, in the Barents Sea and at the entrance to the Kara Sea, but it has not been found in the Kara Sea nor in the Polar Sea of Siberia ${ }^{\text {I }}$; then it appears again in the Bering Sea, but it has not been met with in the Polar Sea north of arctic America ${ }^{2}$, any more than at the high-arctic East Greenland. In the Atlantic to the south it reaches to Cape Cod and West Norway ${ }^{3}$), in the Pacific to Korea and North Japan 4). - Its vertical distribution extends in general from 5 to 50 fathoms, but sometines it goes deeper down.

Shells ancient in appearance have been taken at many places, where it is certain the species 110 longer lives, e. g. at Bohnslän (Malm), in the Kattegat (C. G. Joh. Petersen), in the North Sea Metzgerl, at the Pritish coasts (Forbes \mathbb{E} Hanley) and off the west coast of Ireland ("Porcupine").
${ }^{1}$) The Dijmphna-Exped., which made many dredgings in the Kara Sea, only got a single small specimen, and it was not taken in the Kara Sea itself, but in the entrance (Jugor Strait). Nor was it found by the Vega-Exped. in the Polar Sea of Siberia
2) C"nder the distribution of P. islandicus, Posselt (1. c., p. J5) notes "Wellington Channel" and Belcher as his anthority. But on looking up Belcher: "The last of the Arctic voyages" (1855), where P. istandicus is certainly noted anong the Molluscs collected by the Expedition and determined by Lovell Reeve (Vol. II, p. 396), we find the locality given as "Iievely, Greenland", i. e. Godhavn on Disko Isl. in W. Greenland, which was touched at by the Expedition both on the outward and homeward royage. "Lievely" is the name given by the English whalers to Godhavn.
3) The southern bomndary lies right down about $59^{\circ} \mathrm{N}$. It, where Dr. O. Nordgaard in 1902 took a specimen off the mouth of Lysefjord (Bergens Museums Aarlog 1903, No. 8, p. 36); Dr. Nordgaard kindly permitted me to see this specimen, which was 45 mm . high and taken at a depth of ca. 24 fm . At Bergen already, where M. Sars found it, though only as small, dwarf-like specimens 50 mm . high/, P. istandicus is rare, as it is mot mentioned in Friele's or Norman's lists of the Molluscan fanma of Bergen Fjord. I have had the opportunity of seeing two specimens from the immediate neiglrbourhood of [3ergen, taken by Dr. Nordgaard, the one in Radosund at a depth of ca. 50 fm. (height of specimen 29.5 min.), the other, of the same size, in Alvaerstrommen at a depth of 16 fm . along with Peeten operataris.
") From Ingneer schönau of the Great Northern Telegraph Co., our Musemn has received a specimen from the coast of Korea and one from the waters S. of Wladiwostock ($42^{\circ} 15^{\prime} \mathrm{N} . \mathrm{L} ., 130^{\circ} 43^{\prime} \mathrm{E}$. L. $)$.

Nor can I believe, that the shells of this species stated to lave been taken off the west coast of France, 748-1262 m. ("Princesse Alice") and in the Bay of Biscaly, foo m. "Candan") were "fresh" - unfortunately, the anthors say mothing as to the condition of the shells thomgh I ocatid make the following statement regarding P. islandicus: "C'est, comme on le sait, ume espece particuliorement septentrionale, qui ne vient jusque dans nos régions qu'á la condition de se propaqer en eaux profondes". ${ }^{\text {I }}$)

Pecten islandicus is not a particularly high-arctic species; it lives in greatest quantity, forming whole banks of shells, at Finmarken, North Iceland and South-West Greenland as well as on the fisling banks of Nova Scotia and Newfoundland, whereas it occurs much more sparsely at Spitzlergen* Mörch also remarks, that it does not grow so large in the high northi). As mentioned, it attans a considerable size even so far south as S. W. Iceland, where the bottom-temperature in Angust amounted to $9.3^{\circ} \mathrm{C}$.

Pecten aratus Gmelin.
Pl. I, figs. 5a-e.
Picten aratus Gmelin, Limm. Syst. Nat. ed. 13, 1788, p. 3327. - Pecten sulcutus Jeffers Brit. Conchol. II, 1863, p. 64; Proc. Zool. Soc., 1879, p. 557. - Pectin arutus Sars, Moll. Reg. Arct. Norv. 1878, p. 17 , Tab. 2, fig. 3.

The "Ingolf" Expedition has taken this species at:

At Iceland and the Færoes - where it has not been known hitherto - it has also been taken at the following places by Danish expeditions:

$61^{\circ} 15^{\prime}-9^{\circ} 35^{\prime}-\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. ca. 475 - 1 spece.
The specimens to hand are rather variable both in form and sculpture. As a rule the lieisht is somewhat greater than the length, but the two dimensions may be almost equal. In consequence of this the circumference is variable, the lower contour forming sometimes a part of an oblique oval, sometimes an almost perfect are of a circle. The momber of the primary, stronger yibs is extremely variable

[^51]e. g. 6, S (Pl. I, figs. $5 \mathrm{a} \mathbb{E}$ b), 10 and 12. Sometimes the intermediate ribs are almost as well developed as the primary, so that the difference is not appreciable, and the sculpture then assumes a certain resemblance to that in Pecten islandicus; it lacks however the characteristic intercostal, rasp-like structure of the latter (Pl. I, figs. $5 \mathrm{c} \mathcal{E}$ d). Each primary rib again is composed of a varying number of small ribs, which may be smootl but are usually rough (at least towards the periphery) from the presence of small, erect scales (Pl. r, fig. 5 e). All the specimens to hand are grayish-yellow to straw- or orangeyellow (elsewhere the colour is described as purple-red or rose-red). The largest specimens measured:

Length	Height	Breadth
29.5^{mm}	30^{mm}	7.5^{mm}
29.5^{-}	29.5^{-}	$8-$
$28.5-$	$29-$	$7-$
$2.5-$	$27-$	$7-$

Distribution. Pecton aratus ranges from Morea through the Mediterranean to the Atlantic off Soudan ("Talisnan"), Pyrencan Peninsula, France and Ireland, as also north of Sliethand I); further, it occurs from Bohuslän along the coast of Norway to Lofoten ${ }^{2}$). Lastly, the Danish investigations have shown that it goes sonth of the Færoes and south of Iceland and a good way up into the Dennnark Strait. Its vertical distribution is placed by Jeffreys at from 20 to 530 fm .; the "Ingolf" however has taken a living (though small) specimen at a depth of even 788 fm . (St. 10).

Annong the symonyms of this species Jeffreys gives Pecten bruci Payrandean, but French and Italian authors do not agree with him here. After examining a specimen of P. bruci (from Corsica) sent to our Zoological Museum by Marchese di Monterosato, I consider there is no doubt, that Jeffreys is right; this means at the same time that P aratus is distributed in the Mediterranean.

Pecten septemradiatus Müller.
Pl. I, figs. 6a-c (var. scaber).
Ostrea septcmeradiata Mïller, Zool. Dan. Prodr., 1776 , p. 248. - Pecten septemradiatus Jeffreys, Brit. Conchol. II, 1863, p. 62, Pl. 23, fig. 1.

This species has been taken by the "Ingolf" at the following stations:
St. 98, IV. of Iceland I3S fu1. $5.9^{\circ} \mathrm{C}$. Fragnents of numerous valves.

- 9. S.IV. - 295 - 5.8° - 1 spec. and 8 valves.
- 8. - - 136 - 6.0° - Fragments of 4 --
- 85. - - 170
- 55. S. E. - - 3^{16} -

6. - - 90 -
7. N. IV. of the Freroes 132 -
5.9° - I spec.
7.0° - $\quad 2$ valves.
7.2° - 7 spec.
${ }^{4}$) In uring my participation in the cruise of the "Nichael Sars" in Igoz, I obtained a specimen at $60^{\circ} 21.5^{\prime}$ N. I., 3° 55'W.L, $14 \mathbf{H}^{\circ} \mathrm{fm}$.
${ }^{2}$) N'onan's record of its occurrence right up at $7 \mathrm{I}^{\circ} 12^{\prime} 30^{\prime \prime} \mathrm{N} . \mathrm{L} ., 20^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{E} . \mathrm{L} ., 135 \mathrm{fm}$. seems hardly credible and is kased in all probability on an erroneous determination (Niederländ. Arch. f. Zoologie, Suppl. Bd. I, iS8i-S3, No. Io p. 3).

In recent years, further, it has been taken at other places at Iceland and the Fieroes, manely:

Iceland.

$63^{\circ} 15^{\prime}$ N. L. . $22^{\circ} 23^{\prime} \mathrm{WV} . \mathrm{I}_{1} . \ldots$. . 170-114 fin.
$63^{\prime} 18^{\prime}-21^{\prime} 30^{\prime}-\ldots . .$.
$63^{\circ} 05^{\prime}$ - $20^{\circ} 07^{\prime}-\ldots . . .$.
$63^{\circ} 12.5^{\prime}-20^{\circ} 06^{\prime}-\ldots268$ -

$61^{1} 40^{\prime}-7^{\circ} 40^{\prime}-\quad \ldots .$. . 135 -
$61^{\circ} 15^{\prime}-9^{\prime} 35^{\prime}-\ldots$. ca. 475
61 ${ }^{2} 09^{\prime}$ - 754^{\prime} - 180 -
$61^{\circ} 07^{\prime}-9^{\circ} 30^{\circ}-\ldots44^{\circ}$
$6 \mathrm{I}^{\circ} 06^{\prime}-9^{\circ} 2 \mathrm{I}^{\prime}-\ldots . .$. . 210 -
Akralejte in N. 57 W . 12 miles ca. 150 13 miles W. by S. of Munken - 150 -

2 spec. and 23 valves.
1 fragulerat.
i 1 valies.
I valuc.

Færoes.

```
2 valves.
ca. }25\mathrm{ valves.
3 valves.
2 spec. and 5 valves.
I valve.
I
9 spec. 心㇒ numerous valves.
I valve.
```

Pecten semptemradiatus is thus quite common round the Faroes and the sonth and sonth-west of Iceland, which has not been known hitherto. It does not enter the fjords, however, occurring only in the open sea. It has been taken at depths of $90-775$ finn. (living specinens lowever only from 132-316 fmin.).

The specimens to hand from Iceland and the Fretoes show no small variation with regard to the sculpture of the shells. Compared with trpical specimens (from the Kattegat) they have on the whole more numerous folds (8--I3) (ll. I, figs. $6 a-$ - b) and are very distinctly radially striated on the left shell. Some specimens are smooth, in others again the radiating stripes of the left shell are ronglt from the presence of small, down-tumed scales; lastly, the specimens from stations 9 and 89 of the "Ingolf" have not only the stripes on the left valve densely beset with such sliarp) scales (Pl. 1, fig. 6c), but likewise have the stripes which lie between the radiating folds of the right valve providerl with small spines. Had transitions not been present, one might have been tempted to consider the lantnamed specimens as belonging to an independent species; it will now be most correct to call this, the most strongly spined form, by the name of var. soaber.

At the Freroes and Iceland the species attains to a considerable size; the larsest specimens measure:

$$
\begin{array}{crr}
\text { Length } 55^{\mathrm{mm}} & \text { Heiglit } 52^{\mathrm{mm}} & \text { Breadth } 13 \\
-\quad 55^{\mathrm{m}} & 55^{-} & 13.5-
\end{array}
$$

Distribution. According to $\mathrm{I}_{\text {t }}$ ocardri) Pecten septommantus does not live in the Meditermane:an, but is an oceanic species ocenring off West Africa (Salara), at the Canaries, the Fronch Tilantic coast and int the Clammel. At the northern parts of the British Isles, as also in the sonthem Skager Rak

and in the eastern Kattegat (its sontlern boundary lies in the Sonnd at Heeen Island). Further it is very common along the Norwegian coast, right up to Varanger Fjord (70° N.L.) and, as shown above, onr knowledge of its distribution lias been extended to embrace also the Atlantic at the Færoes and at sontlı and sontli-west Iceland. - The bathymetric distribution extends from 15 to over 300 fm .

1I. Sars considered P. septemradiatus (P. danicus Chemn.) as an arctic species ${ }^{1}$), and G. O. Sars inclines to the same view, as his father has fonnd the same species very common in the fossil condition in the older glacial marl. As will have been seen from the above list, the "Ingolf" has only taken this bivalve at localities with fairly high temperature; nor has the species been fonnd elsewhere, where the conditions are "arctic" in the hydrographical sense of the word. As it is inconceivable, that the above anthors could have made an erroneons determination of this easily recognized species, I venture to conclude that P. septomradiatus belongs to a layer, which has been deposited under milder climatic conditions. I notice also, that W. C. Brogger has put forward quite the same view. He writes namely ${ }^{2}$): "When we see, what a considerable size this species attains to in the Isocardiaclay (41) to more than 62 mm), there is $n 0$ reason for believing it to be originally an arctic species, the less so, as it does not occur at all in the living or fossil, higli arctic fanna. It is therefore moudotedly a typically boreal species".

Pecten tigrinus Miiller.

Pectin tig(c)rimus II ïller, Zool. Dan. II, 1788, p.26, Tab.60, figs.6-8; Jeffreys, Brit. Conchol. II, 1863, p. 65 , Pl. 23 , fig. 2.

Pecton tigerinus Mörclı, Vidensk. Meddel. Naturlı. Foren. 186S, p. 226 and p. 229.
The "Ingolf" has taken this species at:
St. 86. W. of Iceland (Brede Bugt) 76 fm. 9 valves (fragments).

Iceland.

Jeffreys gives "Iceland" as the home of this pretty species, as also Mörch, who mentions Torell as his anthority: In addition to the above locality from the "Ingolf", P. tigrinus has been taken in recent years at the following places at South Iceland:
$63^{\circ} 15^{\prime}$ N.L., $22^{\prime} 23^{\prime}$ W.L....... $170-114 \mathrm{fmin} . \quad 1$ valve.
$63^{\circ} 30^{\prime}-, 2014^{\prime}-\ldots42$ -
Testmannaesjar.................... $30-$, gravel with shells.
-

- 49 - , claỵ witlı a little mud.

$63^{\circ} 21^{\prime}-$, $1 \boldsymbol{T}^{\prime} 15^{\prime}-\ldots5^{8}$ - , sand, stones, sliell-gravel. 15 -

The largest of these shells measures: length 21.5^{mm}, height 22 mm .
${ }^{1}$) M. Sars: Fossile Dyrelevninger fra Quartærperioden, IS65, p. 127. W. C. Brogger: Om de senglaciale og postglaciale nivåforandringer i Kristianiafeltet, Igoo-Igor, p. 46 g .

Færoes．

In an appendix to＂Fannula Moll．Insul．Freröensinm＂Mörcli（1．c．）has added I＇．figrmues to the fanna of the islands，withont however stating the locality．In recent vears it has been taken at many places ronnd the islands at depths of $20-150$ fm，as will appeat from the following list：

Vestmanhavi1 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $10-30$ fn1．
Nolso，deep hole at north end．．．．．．．．．ca． 100 －
$62^{\circ} 29^{\prime}$ N．L．．，7＂ 37^{\prime} IV．L．．．．．．．．．．．．．．．．．．．．．．．．． 60 －

5 miles N．E．of east point of Mrggenres．． 50 －
万－N．bゞ．－－－－ca． 57 ．
13－S．of Myggentesholin．．．．．．．．．．ca．до－
$61^{\circ} 40^{\prime}$ N．L．．， $7^{\prime}+0^{\prime}$ W．L．L．．．．．．．．．．．．．．．．．．．． 135

$60^{\circ} 55^{\prime}-, 8^{\circ} 5^{\prime \prime}-\ldots$.
5 miles S．S．E．of Bispen ．．．．．．．．．．．．．．．．．． 50 －
9 －E．S．E．－．．．．．．．．．．．．．．．．．．．．．．．．．
6 －N．bỵlV．Kalsö ．．．．．．．．．．．．．．．．．．．． 60 －
$I^{1 / 2}-2$ miles off mouth of Bordövig．．．20－30．
16 miles E．by̆S．of S．point of Nolsï ．．ca．So－
Akralejte in N． 57 IV．I2 miles．．．．．．．．．．．ca． 150 －
13 miles W．by S．of Munken ．．．．．．．．．．．ca． 150 －

```
I valve.
I spec. and I valve
2 ralres.
5 -
2 -
I -
28
6
-
-
I
2 2
2 --
spec.
+ valves.
spec, and io ralves.
- - 90 -
```

The largest of these shells measures：length 32 mm ．，height 31.5^{mm} ．
These sliells from Iceland and the Fæoes vary greatly in regard to form，sculpture and colont． Forbes and Hanley have given the following description which agrees well with our shells：＂Some－ times the surface is otherwise smootl，sometimes there is a marginal beit of marrow and very closely disposed depressed radiating costellce：occasionally these latter extend over the whole shell with or withont the presence of about five principal radiating ribs，which are romded，generally broad，and variable in amount of elevation（var．costuta Jeffreys）＂．${ }^{1}$ ）I_{11} the last variety the margin of the shell is sometimes inflexed．

Distribution．P．tigrimus is distributed along the west coast of Europe from the north of Spain to West Finmarken，also over the Faroes to Soutln and South－West Fceland；it groes furtlur into the Kattegat．The vertical distribution is given by Jeffreys as 5－18o fm．

Remarks on P．tigrimus and P．strintus．
Pecton tigrimus and P ．striatus are as a rule most readily disting gished from one another by the hindmost ears in the former being almost rudinentary，but well－developed in the latter；further， the radiating ribs in P ．striatus are beset with short vanlted spines or prickles，whereas these are lacking in P．figrinus．Sometimes，however，it is not at all casy to separate thenn，as the posterions

[^52]cars in P.figrinus may be fairly large, and the hindmost part of the shell may show a trace of being echinated; on the other hand, the number of the spined ribs in P.striatus may be limited to two, even to one along the anterior edge of the shell, whilst the whole of the remaining part of the shell in form and sculpture agrees with P. figrimus.

Pecten striatus Miuller.

Pecten striatus Mïller, Zool. Dan. II, 1788, p. 26, Tab. 60, figs. 3-5; Jeffreys Brit. Conchol. II, I863, p. 69, Pl. 23, fig. 4 .

Pecten striatus Mörch, Vidensk. Meddel. Naturh. Foren. IS67, p. 9S.
At Iceland the "Ingolf" Expedition took this fragile species at:

- 6. S.S.E. of - $90-\quad 7^{\circ} \mathrm{C}$. 3 spec. \mathbb{E} I valve.
- 51. - - 68-7.32- I - I -

It has later been taken at Iceland at the following places:

The largest of these shells is $20 \mathrm{~mm}^{\text {. high }}$.
At the Færoes, where it had already been noted by Mörch, P. striatus has been taken at the following places:
Thorshavn, outer roads 12-16 fm. I valve.
Nolso, deep hole at north end ca. 100 - I spec.
$61^{\circ} 40^{\prime}$ N. I., $\boldsymbol{7}^{\prime} 40^{\prime}$ TV. L........ I 35 - I valve.
i6 miles E. by S. of south point
of Nolso........... So - 7 spec. and I valve.
Akralejte in N. 57 W ., i2 miles - $\mathrm{I}_{5} 5$ - 5 valves.
I3 miles TV. by S. of Munken - I50 - 3 -
The largest of these shells is 22.5 mm . high.
Distribution. P. striutus occnrs in the Western Nediterranean (from Sicily) and ranges along the west of Europe to West Finmarken in Norway; it goes over the Færoes to Sonth and South$1{ }^{+}$est Iceland ${ }^{5}$. It enters the Kattegat as far as Hellebrek and Samso. The vertical distribution is given by Jeffreys to be from 5 to ISo finl.

Regarding its relation to P. figrimus, see notes under the latter.

[^53]
Pecten imbrifer Lovér.

IPl. II, fig. I (var. major) \& fig. 2 (war. minor).
 1886, p. 220, Pl. IV, fig. 4 ; Fricle \& (irieg, Norw. North-Atlantic Fexped., Mollusealll. Igon, 1. S.
 Moll. Reg. Aret. Norv, i8-8, p. 20, Pl. 2, fig. I; var. mmjor L, eche, K. Sw. Vetemsk. Akat. Mandl. If, No. 2, I8-8, p. 35; Collin, Dijuph11a-Togtets zool.-bot. Udbytte, I886, p. 453 : var. pushumsts Verrill, Trans. Conn. Acad. V, 1882, p. 581, Pl. 42 , fig. 22. - Crelopicten pustulusus Serrill,

 No. Io, p. 2, Pl. I, figs. 5, 6, 7, S.
Pectin Hoskrnsi Friele, Nyt Mag. f. Naturvidensk. 2.t 13d., 1879, 1. 222; Becher, Österr. Polarst. Jan Mayen, 1886, IIT, p. 68. - Pichen imbrifer Posselt, Medd. om (ironland, XIA, r895. p. G6; ibid.
 No. 2, p. 30; var. lemellose Posselt, Nedd. onl (ironland, NXIHI, isgé, p. I3, I'l. I, fig. I. Pecten imbrifer has been taken by the "Ingolf" at:

West Greenland.

During my cruise with the "Tjalfe" I tonk I '. imbrifir in Davis strait at:
$66^{\circ} 22^{\prime}$ N. I.., $57^{\circ} 16^{\prime}$ W. I............ 360 fmı. 6 spec.

East Greenland.

Danish Experitions lave taken P. imbrifer at he following pheses:
Off Scoresby Sound
$16-\mathrm{f} 111$.

$$
1 \text { valve. }
$$

Forsblads Fijort . 50 -
5ッ-90 ca. 125 sper

[^54]The Swedish Expedition of 1900 took P.imbrifor at: S. Fi. of P'endulum Island ($74^{2} 35^{\prime}$ N. L. $) \ldots$.... 79 fin. 1 spec.

Jan Mayen.

In addition to at the above stations of the "Ingolf", P. imbrifor has been taken by the Norwegian North-Atlantic Exped. at a depth of 263 fm . (botton-temp. - $0.3^{\circ} \mathrm{C}$.) and by the Austrian Exped. at a depth of $75-95 \mathrm{fm}$.

Iceland.

In addition to at the S "Ingolf" stations, P. imbrifer has been taken by the "Thor" at:
$63^{\circ} 05^{\prime}$ N. L., $20^{\circ} 7^{\prime}$ Wr. L. 293 fm
$62^{\circ} 57^{\prime}-19^{\prime} 5^{\prime}-\ldots$.
I spec. and 10 valyes.

The Færoes.

As well as N. of the Freroes, as noted above, P'. imbrifer has been taken (by the "Thon") S. W. of the Færoes, at:
$61^{\prime} 15^{\prime}$ N.L., $9^{\circ} 35^{\prime}$ W. L......... ca. 475 fm. 12 spec. and 25 valves.
Remarks. The specimens to hand of Pecten imbrifor from East Greenland and from Jan Nayen differ from the Atlantic specimens (W., S. W. and S. of Iceland, as well as S. W. of the Freroes) in attaining to a greater size, mamely $15-22 \mathrm{~mm}$. for full-grown specimens, against $10-12 \mathrm{~mm}$. in the Atlantic, as also in the fact, that the posterior ears of the shell are relatively large (cf. in Pl. Il figs. $1 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e and f with figs. 2 a and b).

On the whole the Polar Sea form probably reaches a greater size than the Atlantic. The specinens bronght home by the Dijmphna Iaped. from the Kara Sea measure up to 21 mm., and Leche records the maximmun size from the Kara Sea as $22{ }^{\mathrm{mm}}$. 1 ; Friele and Grieg give 20 mm . as being not m11comnon for high-arctic specimens, whereas the species does not become more than in mm. at the Norwegian coast. I eche for his specinens found it convenient to set up a var.major; I quite agree with this and propose therefore to call the southern, smaller form var. minor. So far as my experience goes, the varicty major also differs from the more sontherly form by having as a rule the posterior ears of the shell relatively large (comp. in Pl. II figs. 1a-f (var. major) with figs. $2 \mathrm{a}-\mathrm{b}$ (var. mimor)). I ann of opinion, therefore, that the forms major and minor represent geographical subspecies, connected respectively with the "cold" (or transitional belt to this) and the "warm" area in the deeper regions. ${ }^{2}$)

Within each of these subspecies there are numerous modifications in regard to the scnlpture of the left yalve. Posselt (l.c.) has some pertinent remarks on this point. Whilst Posselt received his innuressions. from "a consideration of the figures cited", I have been able to observe the transitions on the material before me and 1 may take the opportnnity of illustrating these not mininteresting conditions by some fignres.
${ }^{1)}$ Jn the Vega-Exped. Vetensk. Iaktagelser III. ISS3, p. 452 I, eelne records the species from the Bering Sea with an cyem greater size, bancly 30 man, but the specimens in question I have had the opportunity of seeing in the Riks-Museum at Stocklohn, do not belong to this species.

- The specimons from St. $5 y$ and St. If3 of the Ingolf, with negative temperatures, are small but seem, to judge fom the relatively lamge, posterior ears of the sliell, to be the young of var, major.

The lines of growth on the right valve appear as numerons, low and sharp) tolds, whilet the left val ee
 the number of which increases towards the periphery, new ones arising regularly in the intereprece

Closer comsideration shows, that the resicles have the lower edece free and that they are simply outgrowths of the concentric lamellic. Thus, we may find some specincme, in which the left valve in regard to scuppture only differs in the main from the right by some few, distant mat of fery
 lave larger and fewer, rather vanted ontgrowths (fig. IC). In whers agan the vesicles are so broad and flat, that they almost meet one another (fig. le). Ifistly, we find in the variety fomethon Pusselt (fig. If) a form where the vesicles are fnsed together to concentric, porous wrinkles, formorl of projecting, down-tumed lanelle, which at their lower free margin reach to and rest on the next wrinkle; the lamelke are in general intermpted and broken, so that only remmants of them rematn an sharp combs. The resicuiar ontgrowtls are also broken off more or less and their position is then shown as a concavity in the line of growtly; sometimes almost all the resicles are rubbed off, so that the lines of growth appear like the cogs on a cog-whecl (fig. Id \& i i). Among other variations it mat further be mentioned, that the uplee part of the shell may be ahmost completchy smootly and the vilgrowths appear only towards the margin, as shown in fig. a a; lastly, fig. ab represents at secinch in which the left valve is almost quite smooth.

I would not have entered so much into detail on these points had not Prof. A. Fi. Verrilf and Miss Katherine Bush raised these variations to the rank of spectes; their lecten pustulusus and I. subimbifir are in fact based on specimens such its are represented in my figures ic and od.

Distribution. The form major is an arctic, deep-water form (30-q00 fme, perhaps even decper, $650 \mathrm{fm} \mathrm{m}^{\mathrm{r}}$, occurring at Liast Greenland, Jan Mayen and Spitzbergen, in the lbarents Sea and the Kara Sea* The form mimor is an Athantic, deep-water form, which occurs in Davis Strait and off the cant coast of the United States of North America, down to ca. 40° N. Le, along West and South leclinud, s. of the Facroes and at the western and northern cuasts of Norway. The "Thor" has taken it S . İ. of

 said not to be ilentical - as assumed earlier - with the Meditermanean-Atlantic /'. /hustrmai forlh. サ.

Pecten vitreus Chemnit\%

 temp, of $-0.7^{\circ} \mathrm{C}$, but I have not seen specimens from hure.

l'rincesse Alice; Mém. Soc. Zool. France 1897, T. Io, 1. 192).

1) (f. Dall, Bull Mus. Comp. Zooloyy, NII, 1s86, pp, 214 and 220 .

1899, 1. 66, Pl. IS, figs. 6-13. - Pecten abussormm (Lovén M. S.) G. O. Sars, Moll. Reg. Arct. Nori., 18 78, 1.22, Pl. 2, fig. 6. - Chlamys Chaperi Dautzenberg \& Fischer, Mém.
Soc. Zool. France X, 1897, p. 190, Pl. 5, figs. 5-S.
Pecten aitraus Posselt, Medd. om Gromland, X̌XIII, 1898, p. In.
This species has been taken by the "Ingolf" Expedition at:

The largest of these specimens (from St. 25) measures: length $25^{\text {mim. }}$, height 25.5 mm., breadth 8 mm ; the second largest (from St. 40): length 19 mm., heiglit 19.5^{mmm}., breadth 7^{mmm}.

Finther, P. vitrens has been taken by the "Thor" at the following places:

Iceland.

$630{ }^{\prime}$ N.	$20^{\circ} 7^{\prime} \mathrm{W} . \mathrm{I}$	293	
$6312.5{ }^{\prime}$ -	$20^{\circ} 06^{\prime}$	268	
$62^{\prime} 5 z^{\prime}$	195^{8}	. 500	
$62^{\circ} 10.5^{\prime}-$	$19^{\circ} 36^{\prime}-$	ca. 1000	
63^{21}	$16^{\circ} 22^{\prime}$	263-295	

Færoes.

1 spec. and 5 valves.
7 - - I valve.
1 - - 40 valves.
3 -
3 -

Remarks. Examination of the mumerous specinens at lrand has led me to the same view as that held by Jeffreys, Norman, Verrill, Friele and Grieg, mamely that P.abyssomm (Lovén)
 sealed to the perfeetly smooth specimens; on the other, we find specimens which hate just as thin valles

Distribution. The investigations of the "Ingolf" show that /'rhtimetrous dues not canter intor the "cold" area, but keeps to places with positive bottom-ten1perature (2.4-6 () (.) in the sumthern part
 On the Ennopean side the species ranges from Lofoten along the Norwecrian const, $50-650$ finn. (saral, into the northern part of the North Sea, ca. 150 fins. "Thom") and down intw the Skaser Rak, cal 2.10350 finl. "Thor"). Finther, it oecurs between the Fieroes and Hebrides, 229650 fm. ("1,ightning" off the west coast of Ireland, France and the l'yrenean D'eninsula, go-yot fin. ("Porempine") in the bay of Biseay, ca. $340-895$ fin. ("Candan"!, N. of the Azores, 2240 fm. ("Travaillemr-Talisman"), at the Azores, ca. $4+5-8$ fo fin. ("Princesse Alice") ${ }^{3}$), at the Canaries and \mathbb{W}. of Moroceo and Sondan, cat. $8.5-$ 1 roo fm. ("Travailleur-'alisman"), Sargasso Sua, 1650 fm . (id.) as also in the Mediterranean (tu, Sicily)
 as far as Florida, going down to a depth of 1537 finn. off Chesapeake bay (Verrill). It has also leem taken off the west eoast of latagonia, ifo-foofin, at the Philippines, ioo-joo fin, and at the sonth of Japan, 345 fm . ("Challenger").

Pecten similis Laskey。

 p. 71, Pl. 23, fig. 5.

It Iceland the "Ingolf" has taken this species at:

St. 9s. IV. of Iceland. 133^{8} In1.
5.9^{\prime} C.

- S6. - - (13rede Bugt) 76 -
- 87. - - -- נio -
- 85.S.W. - i7o - 1 spec. and 15 valves.
- 6.S.E. - $-\ldots .0^{\circ} \mathrm{C}$. . 90 - 3

The largest of these specinens (St. ys) measure: length $7^{\text {man }}$, height $6.25^{\prime \prime \prime \prime}$.
Inarther, I. similis las been taken S. of Iceland at

Numberns: spec.
as well as at the following places at the Færoes:

10-15 f111.					亿alues
İundingsfjord 20		evarse sathel	23	
Vestmanhara	5-6		fine black sand	2	--
$6 \mathrm{I}^{-} 40^{\prime} \mathrm{N} . \mathrm{I}_{1}, 7^{\circ}$ fo' W. I_{1}.	135			5	

 A. 1 oceral maintains the opposite vicw.
 20 fm , but the specimen bats certainly mot becon living at this shallow dophth.
 present species.

This pretty little Pecten was not known earlier from Iceland or from the Freroes.

Distribution. Pectin similis ranges from the Gulf of Aegina throngh the Mediterranean. fronn Macleira along Enrope to West Fimmarken and into the eastern Kattegat; over the Freroes it reaches to Sontly and Sonth-TVest Icelanch. According to Jeffreys it is also said to ocenr at Jamaica and Korea. The sane anthor gives its vertical distribution at fronn 2 to 300 fin.

Pecten groenlandicus Sowerby.
Pectin zitreths (non Chennnitz) ('ray, Parry's first voyage, 1S20, Suppl. to App. p. 245. - Pecten grocktandicus Sowerby, Thes. Conch. II, 1842, p. 57, Pl. 13, fig. 40; Sars, Moll. Reg. Arct. Norv: 18-8, p. 23, Pl. 2, [ig. 4. - Camptonelcs groculandicu Verrill, Proc. Unit. Stat. Nat. Mu1s., X'X, 1898 , p. 837,11 . S5, fig. 7.
Pictōn grönlandicus Mörch, Rink's Gronland, 1857, p. 94; Medd. Naturlı. Foren. 1868, p. 226; Arctic Mannal, 1875, p. 133; Rink's Dan. Greenland, 1877, p. 442; Fifiele, Nyt Mag. f. Naturvidensk., 24 Lid., 1879, p. 222; Becher, Österr. Polarst. Jan Mayen, III, 1886, p. 69; Posselt, Medd. 011 Grönland, N1ベ, 1895, p. 65 ; ibicl. NXIII, 1898, p. 9; Hägg, Ark. f. Zoologi, 1904, Bd. 2, No. 2, 1. 28; Jensen, Medd. onn Cronland XXIX, 1905 (1909), p. 33 .
The "Ingolf" lias taken this species at:

West Greenland.

At the northern part Pectengromhndicus has heen taken by Swedish lixpedtions in Cmanak
 American side it is known right up to $S_{1}{ }^{\circ} \mathrm{fI}^{\prime} \mathrm{N}$. I_{4}. (Discovery Bay).

East Greenland.

Here I^{\prime}. sromentions has been taken both by Danish and by Swedish Expeelitions at the following places:

It has thus been found at many places wer the distance from $05^{\prime \prime} 35^{\prime} \mathrm{N} . \mathrm{I}_{4}$, to $7+35^{\circ} \mathrm{N} . \mathrm{l}_{4}$ and reaches the considerable size of 28.5^{mmm}. (Forsblads lijorl).

Jan Mayen.

 as mentioned, fomm mumerous specimens at a depth of 86 fim. on muddy bottom; the distrian Fixpert. also dredged mp momerous specimens. It reaches a kngth of 22 mm .

Iceland.

In addition to the "Ingolf" stations mentioned, I'grothlumhims has hecen taken at the fullowing places by Danish Experlitions:

5 miles I: of Seydisfjördr (east coast)..... 135 fin. spec.
6-7 miles N. of Borgarfjördr (N. Wr. coast) 85 -

Also on the S. coast of Iceland at:

```
03 O5' N. I&, 200%' IV. L.. . . . . . . . . . 293 fm.
62*57' - 19 5 58' . ......... 500 -
```


Numerous spec. 12 spec. \& 23 valves.

Færoes

P.sponmlandicus has been taken off the islands at:

Distribution. Pecten groenlandicus occurs further at Spitzbergen (30-260 fm1, Norweg. NorthAllantic Fixped. and others), Finmarken (30-r 50 finl., Sars), in the Barents Sea (7-250 f111., "Will. Barents") and the Kara Sea ($5-125 \mathrm{fm}$., "Dijniphna", Leche) as also in the Siberia Sea as far as to 116° F. L. ($15-36$ fin., "Vega"). It has not been met with in the Bering Sea, and it is therefore doubtfnlly circnmpolar. On the other hand, it occurs in the arctic seas N. of Anerica, in the western part of Davis Strait, as well as off Newfoundland ($30-224$ fme, Verrill). In high-11orthern seas it is one of the most frequent Mollinscs and occurs in such incredible munbers, that the trawl can take it sometimes by hundredweights (cf. Krause, Mollusken von Ostspitzbergen, Zool. Jahrl. Abth. f. Syst. 6. Bd., p 341).

Apart from its arctic distribution P^{\prime}.groculandicus lias also another, in the Atlantic. As shown above, it las been taken in the Atlantic S. of Iceland and S. of the Færoes; Jeffreys records it from the waters N . of the Hebrides (542 fm .) W. and S. of Ireland ($257-5 \mathrm{I} 7 \mathrm{fm}$., "Lightning" and "Porcupine"); the "Thor" has taken it off the Channel ($625-670 \mathrm{fm}$.), the "Candan" in the Bay of Biscay (500 and 7 fo fm.), the "Travaillenr" and "Talisman" also in the Bay of Biscay (365-6ro fm1.) and N. of Spain ($570-625 \mathrm{fnnr}$), the "Josephine" between the Azores and Gibraltar (550 fm .), the "Travaillenr" and "Talisman" W. of Morocco and W. of Soudan (410-05 fin.).

Remarks. In high-northern regions P. grocnlandicus reaches a considerable size; at E. Greenland, we have lieard, it beconnes up to 28.5 mm . long, at Jan Mayen 22 mm , in the Kara Sea 28 mm. ${ }^{\mathrm{m}}$, at Spitzbergen even $32.5^{\mathrm{mm} .{ }^{2}}$). In comparison with these sizes all my specimens from the true Atlantic are very small; the largest is only 10.75 mm . I believe therefore, that the P. grocnlandicus living in the Atlantic is a dwarf-form. With this agrees also Locard's remark regarding the specimens taken by the "Travailleur-Talisman", that they belong to a var. minor ${ }^{3}$) and Jeffreys' statement that the specimens taken by the "Porcupine" Exped. off the British Isles were "young only" ${ }^{\text {t }}$; I believe, that the species in the warm Atlantic is already full-grown at a size, which in the Polar Sea would still be considered young.
is it is still constantly stated, that the left value is considerably larger than the right, I may say J. Collin is perfectly right when he writes (l.c., p. 452): "in most the valves are of the same
${ }^{1}$) Collin has introluced the term var. major for specimens from the Kara Sea; Dijmplna-Togtets Zool.-bot. Udbytte, sisc, p. 152.
N. Knipowitscla: \%ool. Firgehn. (l. russ. Experk. nach spitzhergen. Moll. und Brachiop. I, p. 79: Ann. Mus. Zool St. Pretersbourg, T. VI, bgus
3) lixpeat scient. du Travailleur et du Talisnan; Moll. Test. II, 1SgS, p. 399.
4) Proc 7,ool. Soc., I 879 , p. 560 .
size, only in a few does the margin of the left valse extend a trife beyond that of the right, withont however bending over it" and p. 453 (mnder Pecten Hoskysi lionthes var. majur Lecelnet: "in all very thin-shelled Pecten-forms the weakest valve gives way at the edge, wheth the anmal retracts strongly on dying, thas producing the characteristic concavity, which rums concentrically with the margin of the slefl, the scmpture markings on the right valve giving this a greater firmmess".

In his diary written on the Danish East (rreenland Expedition of ben, the fonne zonhomist Soren Jensen, since dead, enterel the following observations regarding f'stombudizus: ". . . . this small bivalve is able to swin when fully-developed. It opens and shats the valves, beating the water out during the latter process with considerable force and thus moving backwards throngh the water. The specimens which lay on the bottom of alass with water, conld in this way "gape" their way riglit up to the surface".

Pecten frigidus Jensen.

Pl. I, figs. 7 a-f.

1876. Pecten frogilis Jeffers, Amm. Mag. Nat. Hist. (4) NVIII, p. $42+$ (partim).
1877. P.fragilis Friele, Nyt Mag. f. Naturvidensk., 23 IBd., ris7, II, p. 2.
1878. P.frugilis Jeffreys, Proc. Zool. Soc. Lond., p. 56 (partin1), Pl. 45, fig. i ad dextram. ${ }^{\text {r }}$
1879. P. fragilis Friele, Catal. d. anl d. norw. Nordmeerexped. Dei Spitzbergen gef. Mollusken; Jahrb. Deutsch. Mal. Ciesellsch. VI, p. 264.
rgor. P. fragilis Friele \& Crieg, The Norwegian North Atlantic Lapped., Zool., Mollusca 111 , 1901. p. 8.
1880. P. biscayensis Friele (110n Lacard), Moll. d. ersten Nordncerfalnt d. Fischereid. "Dichael Sars" 1goo; liergens Musemus Aarbog 1902, No. 3, pp. 3, 15 \& 17.

190.4. P.frugilis Hiag g, Arkiv för Zoologi, Bd. 2, I904, No. 2, p. 30.
1881. P. frigidus IBaray, Mén. de la Suc. Zool. de France, T. NVII, Igo5, p. ISo, Pl. If, fig. I.

The shell a little higher than long, irregularly suborbicular, with the anterior and lower margins forming together a semicircle and the posterior margin sligthly arched on almost straight, compressed, the right valve flatter than the left, translucent silvery white. The bolves very thin, fragile, with concentric folds, to the number of abont 12 in the athit, broad in the mindile of the shell, narrowing towards the lateral margins, with mumerons fine, elevated, radiating striat, Thac auricles small, mequal, the posterior the smallest, faintly marked off from the shell, the anterion distinctly marked off from the shell, the left triangular, the right with an acutely angulated anme for the byssus. Hinge-margin straight, pit for the cartilage very small, triangular; the internal sumfoce shining. Length $27^{\text {mmm }}$. height $29 \mathrm{~mm}^{\mathrm{mm}}$., breadth 6.5^{mmn}.

Distribution: The ice-cole depths of the Norwexian suat, fron Spitzhergent down tomath Iceland, the Freroes and Shetland, 579-15.39 fin.
 provided with a form and senpiture as if seen from the outrink

The Ingolf Expedition. It 5 .

This species has been taken by the "Ingolf" at:

These 1_{3} stations all lie between Jan Mayen, Iceland and the Freroes, with depths of 579 ${ }^{1} 309 \mathrm{fm}$. and bottom-temperature of -0.6 ${ }^{\circ}$ — $\mathrm{I} . \mathrm{I}^{\circ} \mathrm{C}$. According to Friele and Grieg (l.c.) it was taken at 12 of the stations of the Norweg. North-Atlantic Exped., from Spitzbergen down towards the Fieroes and Shetland; the depths varied from $658-1539$ fni., the bottom-temperature from $-1^{\circ}--1.6^{\circ} \mathrm{C}$. It was also fonnd again in 1900 by the "Michael Sars" N. of the Froroes, at a depth of ca. 1100 fm . and with a bottom-temperature of $-1.12^{\circ} \mathrm{C}$. (according to Friele, l.c. rgoz), likewise in rgoo by the Nathorst Exped. between (rreenland and Jan Mayen ($72^{\circ} 42^{\prime}$ N. I., $14^{\circ} 49^{\prime} \mathrm{W}$. L. .) and at depth of ca. 1050 fm. (19 spec.). Lastly; the "Thot" in 1903 took 3 shells off N.E. Iceland at 66° I9' N. L., $10^{\circ} 45^{\prime}$ W.I., 766 fin., bottom-temp. $-0.95^{\circ} \mathrm{C}$.

Pecten frigidus must be considered the most characteristic Bivalve of the ice-cold deptlis of the Norwegian Sea, both in regard to size of individuals and numbers.

The variation is fairly small, being confined to some clanges in the strength of the radiating strixe and contour of the shell. As a rule the shell is a little higher than long (Pl. I, figs. 7 a \& b), sometines the two dimensions are approximately equal (Pl. I, figs. $\overline{\mathrm{c}}$ c $\mathbb{S} \mathrm{d}$). The specimens figured measure:

Height	Length
28.5^{mmm}.	26.5^{mm}.
$27-$	$26.5-$

Quite small specimens loave the ears of the shell comparatively chormously large, as is shown in fig. 7 f, which represents a specimen 2 mm . long. Eren in the full-grown the ears of the shell may be of slightly: different size (cf. figs. ja \& b with figs. $7 \mathrm{c} \mathcal{E} \mathrm{d}$), but are yet on the whole comparatively very small, by which means the species is distinguished from the nearly related P.pudicus S minth and P.undutus Verrill and Smith (see p. 36).
P. frigidus, as indicated in the diagnosis, is not exactly symmetrical and it obviously rests on the flattest (right) valve, as this is always "clean", whereas the left valve is covered with Foraminifera, worm-tubes, Scalpellum etc.

Remarks on "Picton firsilis Jeffueys"

As I find myself able to clear up the obscurity which has hitherto rester over this species of Jeffreys, l take this opportunity of making a few remarks in this regard.
 species taken by the "Valorons" Expedition in the North Atkantic, between Ircland and Sonth Crrecmland, at depths of 1450,1750 and $1-855$ fins. At the same time Jeffreys feports, that the Norweg.
 latter information must have come throngh H. Friele of bergen), whom the working inp of the Molnsca of the Norwegian Lxpedition was entrnsted, sending Jeffers a specinen of this Pecten of the northern ocean, which the latter has identified as belonging to his North Atlantic species.

In 1879 Jeffreys again mentions Picten fragilis, in the report on the Aollnsea collected by the "Lightning" and "Porcupine" Experkions (Proc. Zool. Soc. I ond. 1879, p. 56u), a specimen having been taken by the "Porcupine" in I 869 off the west coast of Irefand in +20 finn. (On this uccasion two fignres of the shell are given (1.c. Pl. 45, fig. I).

In the same year Firiele stated, that l'fmgilis Jeffreys was connmon over the whole of the deep "cold arca" from the lieroe-Shetland Chamel to Spitzbergent.

On comparing the "fragike" lecten found by the "lngolf" FApedition in great depths in the "oold area" with the P.frosilis J effrr. figured in the Proc. Zoul. Soc. I879, Pl. 45, fig. I to the right, it was evident to me, that it must be the same species, and that fig. 1 to the lift on the same Plate must have arisen from the artist turning the right valve round and publishing it as left valve, as it has the anricular sinus (for the lessus) and is on the whole a copy of the right value.

I had some donbts, however, as to how far the figure to the right had really been dratw fronn one of the original specimens of the "Yaforons" Expedition, as it is stated regarding these in Jeffreys' paper of $18-6$: "Fragments only"; nor could 1 believe, that the specimen of the "Porchpinc" Expedition had served as basis for the figure, as it is designated "romms", whilst the figure in question represents a farly large specimen. To still further increase the confusion, it is stated in Jeffreys diagnosis of 1876: "the lower valve has a few slight concentric ribs, but no lompitudinal strixe", which does not agree with my specimens from the depths of the Norwegian Sea (nom with feffers figure) and "ears equal in size", which does not agree either.

I had my suspicions, therefore, that the figure in the Procertings of the Zool. Sore had docen drawn from a specimen from the deep arctic basin, sent to Jeifreys by fricte I therefore asked Dr. A. C. Johansen, who was at that time studying at the british Musemm in londom, (n) examine into this matter, and thromgh the friendly assistance of Mr. Li. A. Smith, the lircetor of the Malacological Department, Dr. Johansen was able to send me the following information.

From the "Valorons" Expedition there were only father poor frasments of olathetmailas

Jeffeys", of which a comple of very small pieces show similar characteristic, concentric folds which mark the Pecten of the Norwegian Sea, whilst others and larger pieces obvionsly belong to annther type. The specimen fronn the "Porcupine" Expedition is entire, but only ca, io mm. long. Under the wane of P.frugilis, further, there were found a right and a left valve from the waters of Spitzbergen, sent by. H. litiele, but the left valve was in pieces; these valves proved to be completely identical witly a specimen from the "Ingolf" Expedition, which I had sent Dr. J ohansen for comparison.

The explanation of the matter is now quite clear; Jeffreys has identified the fragments from the "Valorons" Expedition with the deep-water Pecten taken by the Norwegian North-Atlantic Expedition a year later; the diagnosis has been based on the specimen from the deep basin of the Norwegian Sea, bint as the left valve of this specimen was in pieces, Jeffreys las made use of the larger fragments from the "Valorons" Expedition; these belong, however, to quite a different type, obviously without striation, since they reminded Dr. Johansen of P.groculandicus - from this has come the passage, which has cansed so much tronble to authors: "the lower valve lias no longitudinal strise". Later, in the paper of 1879 , Jeffreys' artist has replaced the fragmentary left valve in another way, nannely, by placing the right valve on its convex side, taken its contour and furnishing it with a scupture, as if it was seen from the onter side. I need not refer to the manner in Which other anthors have songht to explain the difficulties cansed in this way.

It is not at all certain, therefore, that the fragile Pecten of the Norwegian Sea with concentric folds is identical with the North Atlantic P.fragilis Jeffreys from the "Yalorons" Expedition; on the contrary, I feel convinced, that there are two species, nearly related yet distinct, and for the following reasons.

From the Western Atlantic off the United States ($37^{\circ} 38^{\prime} 40^{\prime \prime \prime}$ N. L., $73^{\circ} 16^{\prime} 30^{\prime \prime \prime}$ W. Lr., $1_{42}{ }^{\prime}$ fin.) Verrill and Smith lave described a Pctorn undatus, which agrees in all regards with the Pecten of the Norwegian Sea except that the cars of the shell are considerably largor. for which reason it must be considered a different species from the arctic deep-water form. It is more reasonable to conclude, therefore, that the fragments of the Atlantic P. fragilis J effr. from the "Valorous" Expedition and the small specimen from the "Porcupine" belong to the same species as P.undatus Verrill \& Smith than to the species living in the deep water of the Norwegian Sea under quite different pliysical conditions. For this reason I have given the form from the Norwegian Nortli-Atlantic and "Ingolf" Expleditions a new nanle: frigidus, meaning, that it lives at temperatures which are constantly mander $0^{\circ} \mathrm{C}$.

In the same year (1885) in which P. undutus was founded, E. A. Smith described a Pecton fudicus fronn the Sonthern Ocean E., of Marion Island ($46^{\circ} 4^{\prime} 6^{\prime}$ S. L., $45^{\circ} 3$ r $^{\prime}$ E. I九., 1375 fin.), which likewise shows a sreat resemblance to 111 form from the northern cold area, but has in connmon with l. undutus the relatively large ears and will perlaps on direct comparison prove to be identical with the latter.

Pictell (Hyalopcoton) dilictus Verrill \& Bush from the east coast of North America, i8iz fun., will also probably prove to belong to P, undulus as its younger developmental stage.

If these suppositions prove to be well-founded, the syomymy of the dolantic form will then be as follows:

Pecten undatus lerrill \& smith'

 (between Ireland and Greenland), I450-r785 fin.
1879. P. fragilis J effreys, Iroc. Zool. Soc. L.ond. p. 561 (partin1) (nom I'l. 45, fig. 1). IV. of freland, qzofnn.
1885. P.undatus Verrill \& Smith, Trans. Comm. Acad. VI, 1. Htt, I'l. 4t, fig. 2r. ©ff Virginia, 1423 fill.
 Ocean F. of Marion Island, 375 fin.
1888. P. biscayrnsis Locard, Contrib. à la fanne malacologique française, XI Monogr. des exp. appr. an Genre Pecten, p. Ift. - Bay of Biscay, "zones profondes".
1597. Chlamys (Pscudamussimm) fudion Dantzenberg \& Fischer, Mén. Soc. Zool. de Mrance, m, p. igi. - Azores, is 86 fin.

ISqS. Pection Biscuyensis Locard, Exped. scient. du Trarailleur et du Talisman, Mholl. Trest. II, 1. foo. - N. of Spain, 1353 mı. off Santander, 1960 111.; W. of Sondan, 263511.
 Off Marthas Vineyard, I8ızfin.
1Sg9. IV.dilectus Verrill \& Mush, Trans. Comn. Acand., X, p.go.
1899. If.undatus Verrill \& Bush, ibid., Pl. IS, fig. 5.

To this species I refer a fragment of a left valve, taken by the "Ingolf" at
St. IS. Entrance to the Demmark Strait............ if 35 fm . $3 . \mathrm{on}^{\mathrm{C}} \mathrm{C}$

Pecten maximus Linné.

Ostrea maxima Linné, Syst. Nat. ed. 12, r, 2, 1767, 1. Ir4t. - Pécten maximus Jeffreys, Brit Conchon. 11 , 1863,1 P. $73, \mathrm{Pl} .24$.

A fragment, ancient in appearance, of a large valve (the ventricose right valve) was obtancol by: we in the dredge on Færoe Bank ($60^{\circ} 55^{\prime}$ N. L., $8^{\circ} 56^{\prime}$ W. I. $)$ at a depth of 69 frne.

Distribution. The Western Nediterranean ${ }^{2}$) and along Furope from the Comary Isles and Madeira to Scotland, Sonthern Norway, Skager Rak and Bolmslïn.

Amussium lucidum Jefrreys.

Pl. II, figs 3a---e. $^{\text {e. }}$

[^55]Zool. Soc. 1879, p. 562: Smith, Challenger Report XII, Lamellibranchiata, 1885, p. 317, Pl. 24, fig. 2; Fisclier \& Dantzenberg, Mén. Soc. Zool. de France, 10, 1897, P. 193; Locard, Expéd. scient. du 'Travailleur et du Talisman, Moll. Test. II, I8g8, p. 406.

The shell sliglitly oblong-orbicular, the anterior margin more strongly curved ontwards than thie posterior, which slopes fairly steeply down towards the ventral margin, compressed, the riglit valve flatter than the left, somewhat translucent, glistening. The valves thin, the left almost smooth or only with the margin provided with more distinct, concentric lines, the right valve on the other hand with strong, rather dense, slightly elevated, concentric strix. Beaks small, little prominent, least on the right valve. The ears well-developed, the posterior a little smaller than the anterior, with lamellie-like lines of growth; the anterior ear on the right valve with a small sinus at the base. The hinge-margin straight, cartilage-pit small, trinngnlar. The internal snrface shining, with mo-r5 elevated radiating ribs, translucent on the onter side as milk-white stripes. Height $8.5 \mathrm{~mm}^{\mathrm{mm}}$., length 9^{mm}., breadth 2.3 mm .

It las been taken by the "Ingolf" Expedition at
St. Io. Demmark Strait............ 7 SS fmı. $3 \cdot 5^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots$......... i spec. and ro valves.

Tlie above diagnosis, which is based on the specimens of the "Ingolf" Expedition, agrees on the whole with that given by Jeffreys in Ann. Mag. Nat. Hist. (1876). A couple of small differences, I believe, can be satisfactorily explained. For example, Jeffreys gives the number of radiating ribs as 9 , but the figure in Thomson's book shows io; further, Edg. Smith found in on two shells preserved in the British Musenn and if usnally on the "Challenger" specimens. Jeffreys says nothing as to a byssal sinns in the anterior ear of the right value, but that such is present can be seen in the figure given by Edg. Smith.

Distribution. Amussium lucidum has a wide distribntion within the northern and tropical Atlantic ${ }^{1}$: off the entrance to the Demmark Strait, I 450 fun. ("Valorous"); $49^{\circ} 27^{\prime}$ N. L.., I $3^{\circ} 33^{\prime}$ W. L., ca. iroo fin. ("Yhor"); N. and W. of Spain, $580-1$ roo fm. and N. of the Azores, 2240 fni. ("Travailleur", "Talisman"); the Azores 1000 fn1. and $725-1010$ fm. ("Cliallenger", "Princesse Aice"); W. of Morocco and W. of Soudan, 500 - 1385 fnn. ("Travailleur", "Talisman"); off Pernambuco in Brazil, 675 fmı. ("Clallenger").

Limidae.

Lima loscombii Sowerby.
Limn loscombii Sowerby, Cenera of shells, r820-24, Lima, fig. 4; Jeffreys, Brit. Conchol. II, 1863, p. 85, Pl. 25, fig. 4.

At the Færoes, where it has not been known earlier, the species has been taken in recent years at the following places:

$$
\begin{aligned}
& 16 \text { miles F. by S. of sonth point of Nolso....... ca. So fin1. I valye. }
\end{aligned}
$$

$$
\begin{aligned}
& 60^{\circ} 55^{\prime} \text { N. L. L., } 8^{\circ} 5^{\prime} \text { W. L. L. } \\
& 69 \text { - } \\
& 1 \text { - }
\end{aligned}
$$

${ }^{1}$) The form from the Southern Ocean referred by Jeffreys (1. c. IS79) to A. Iucidum as a variety (strinta) has been separated by E.dg. Smith (1.c., p. 316) as an independent species: A. mecridionalc.

The largest of these shells (from the last-mentioned bocality) measines 17 on
Its distribution extends from $L_{\text {ofoten }}$ along Finrope and Africa as far ats the west const of Sondan, also into the Mediterranean to the Aegean. From the Skager Rak it gone into the sontloeastern Kattegat.
G. O. Sars gives its vertical distribntion as from 5-monfm., Jeffreys from 5 2n5 finn. Vet it
 month-Gibraltar, in the Mediterranean even at 1456 fm.$)$.

Lima excavata Fabricius.

Ostran cxazata Fabricius, in Schröter's Naturgeschichte, II, iz80, p. Ir7. - Fixarata Foblicit C'hemnitz, Conch. Cab., VII, 1784, p. 355, Pl. 68, fig. 654. - Limu cuchenta Jeffreys, Proc. Zool.
 du Travaillenr et du Talisman, Moll. Test. 11, s8gS, 1. 4oy. - Rudule (Acosta) evaruter Dantzenberg \& Fiscluer, Mém. Suc. Zool. de France, X, 1897, 1. 186.

This beantifnl species has been taken by the "Thor" at 3 places S . of Iceland, nancly at:

Althongls these specimens attain to a vely considerable size ($87^{7 \mathrm{~mm}}$.) they are yet far from the maximum size of the species: Sars gives the size of Norwegian specinnens as "almost equal to at paln of the hand", and onr Zoological Mnsemm possesses specimens from the Trondhjems Fijord np to a size of 160 mm .

Distribution. Lima cocorata is best known from Norway, especially fron Hardanger Ifjord. G. O. Sars (l.c.) ascribes to it the following distribution: West Fimmarken, Jefoten and West Nomaly, I $50-400$ fin.; to this O. Nordgatard adds the following remark: "On onir coast the species is limitual
 $35^{\circ}(00)$. As the Vest fiord is the most northern of the principal fords where these plysical eonditions prevail, I an incline to think that the mention of this species from Irinnark must lo it mistake. The northern linit shonld be looked upon as Lofoten, muil there is definiti infomation that it is distribnted still lurther northwards." ${ }^{\text {I }}$)

Lovén ${ }^{2}$) records it from bohustian, withont stating howerer whether living specinachs wete obtained.

Fintlier information regarding this species is given ly Joffreys (l. c.); the "Lightning" umk it N. of the Ifebrides, 189 fm. "A hinge and a part of the valves, quite freshand mitul by the cartilage. Perhaps taken by a fish on the Norwegian const, and carricel ont to sea" (!), ant the "Porenpinc"


```
2) Ofvers. Kigl. Vetensk.-Akarl. lörh. 3, 18.86, p, 180.
```

obtained it at three stations off the S. IV. coast of Portugal, 292-7IS fm. ("Fragments of old and young specintens. Semifossil?").

Next, it is mentioned by Dantzenberg and Fischcr (l. c.) from the Azores, 595-900 fmin. and ly Locard (1.c.) W. of Sondanh, 335-1 380 fin1. ${ }^{\text {r }}$)

It is found as postglacial fossil in Norway, up to a size of $160{ }^{\mathrm{mm} .}{ }^{2}$)

Lima gwyni Sykes.

Pl. II, figs. $4 \mathrm{a}-\mathrm{c}$.
Lima cllipfica Jeffreys, Brit. Conch., II, 1863, p. SI; V, 1869, p. 169, Pl. 25, fig. 2; Proc. Zool. Soc. is/9, 1. 563 ; L,ocard, Expéd. scient. du Travailleur et du Talisman, Moll. Test. II, i8g8, p. 4 r . Limn sraymi Sykes, Journ. of Malacol., X, r903, p. ro4.

The "Ingolf" has taken this species at:
St. 6. S. of Iceland
90 fin.
I valve.

- 8i. S. WT. of Iceland
485 -
I -

Further, it has been taken at Iceland at the following places:
63° T 5^{\prime} N. L., $22^{\circ} 23^{\prime}$ W. L. II4-170 finl. II values.
$63^{\circ} 1 S^{\prime}-21^{\circ} 30^{\prime}-\ldots94$ - 94 valve.
Vestmannaevjar68-70 - 2 valves.
$63^{\circ} 17^{1}, 2^{\prime}$ N. If, $17^{\circ} 39^{\prime}$ WV. L.................... S_{7} - black sand with shells and stones. \quad valve.
These localities all lie off the south coast. The largest shell measures $13.5{ }^{\mathrm{mmm}}$. One of the shells from Vestmannaeyjar connes near to the variety lerizsculu, the ribs being almost lacking.

At the Færoes it has been taken at:
$61^{\circ} 9^{\prime}$ N. L.., $7^{\circ} 54^{\prime}$ WV. L. I8o finl. 2 valves.
The largest of these valves is II mm. high.
Distribution. This species reaches from Lofoten along the west coast of Europe into the Mediterranean to the Aegean; according to Jeffeys it is also said to lave been found at Newfoundland and the northern Japan; the same anthor gives its vertical distribution as from 6-400 fun.

Lima groyni has not earlier been recorded from Danish waters; in reality however it has been taken in the Kattegat, nanely, a specimen at Trindelen as also a specimen and a valve in the neighbourlood of Fladen, $13^{\mathrm{t}} / 2-29$ fin., but an erronons determination placed it under L. subanriculata MItg. 3)

Synonyny. Witl regard to the designation of the species the following information may be quoted from Sykest): "In 1863 Jeffreys described (Brit. Conch. vol. II, p. Si) a shell from the British

[^56]Seas muder this name [L. elliplicu]. Unfortunately the name had been wised in dugust risbs, by Whiteaves (Amm. Nat. Hist. ser. 3 , wol. VIt, p. if 6) for a fossit from the "Corallian (olithes of ()xforl". Under these circumstances, as I ann mable to trace any other name applicable to floe recent shell, I propose to name it Lima gajum, nom, nov."

Lima hyperborea Jensen.

Pl. Il, figs. 5 a - e.

Limutuler haperboren Jensen, Medd. on Gronland, XXIX, rgn9, p. 329, figs. ra-d.
The shell oral or elliptical, extremely thmid, white or yellowish white with a faint lustre. The value is thin, slightly oblique, with the anterior margin forning a shight, regular curve, the posterior margin somewhat more strongly curved ontwards above, with ca. 2.1-36 finc, but distinctls elevated, sharp radiating ribs, disappearing ontwards towards the sides, two of the central ones ats a rule stronger and with larger interspace than the others, thus producing a fairly well-marked furrow, lying almost medially or a little to the anterion side of a line throngh the middre of the valre (sometines however only one prominent median rib); the concentric striation extremely fine; the beaks prominent; the hinge-margin relatiyely long, almost straight, passing into the lateral mamins at an obtuse angle; the cartilage-pit triangular; the inner sile glistening silvery white or of a pearly lustre. Heiglat $\mathrm{r}^{\mathrm{mmm}}$., length 9.5^{mm}., breadth 9^{mm}.

The "Ingolf" has taken this species at:
St. 116 S. of Jan Mayen............... $37 \mathrm{Ifm} \quad-.0 .{ }^{\circ} \mathrm{C}$. I . pec. and fragments of 2 valres.

- 139. N. of the Freroes............... 702 - -0.6 - 2 spec.

Whilst the specimen from St. in 6 is 20 mm . high, the largest from St. 139 is only 4.5^{nmm}.
Lima hyperborea was originally described by me from East Greenland, where it was taken by the Danish Exped, of rgoo at the following places:

The largest of these specimens measures: height 16.5 mm ., length io mm .

Distribution. In addition to at E, (oreenland Limur hyperborea lives at Jan Mayen and in the "cold area" N. of the Freroes, at Spitzbergen and in the Kara Sea (10 gofne) fronn which I hate seen specimens preserved in the Stockholm State-Nmsemm. It alson lives premmably in the batints Sea and in the cold Norwegian Sua, where "Lo. subsemth J effr." is said to have heen tathen at surual
 The sane also holds good probably with regard to the "himet fliptich Jeffe". taken by the lhateh
 Akarmmiens Hamll. Bel. 16, No. 2, 1878, 1' 3.4.
\Rightarrow Norw. North-Atlantic Dixped. Zowl., Mollusea III, 1gof. p. \%-
The Ingolitixpedition. 11. s.
 gives the maxinnm size to be if mn. in the length and if mn. in lieight, a size never reached by L. clliptica so far as I know, but which might well agree with the present species.

Remarks. From Lima gainni Sykes (=L. clliptica Jeffr. (non Whiteavest), with which the present species has some resemblance, it is distinguislied by the following characters: the form of the shell is higher; the ventral margin forms a steeper curve with the lateral margins; the radiating ribs (fig. 5 e) are sliarp, not sermate. L. subovata Jeffr. is also a nearly related species, but it has more ntumerons $(50-60)$ radiating ribs and is even more tumid.

Lima subauriculata Montagu.

Pl. II, figs. 6a-c.
Pectin subauriculata Montagu, Test. Brit., Suppl., 1808, p. 63, Pl. 29, fig. 2. - Lima subauriculata Jeffreys, Brit. Conchol. II, I863, p. S2, Pl. 25, fig. 2.
Lima sulcata Möller, Index Moll. Groenl., 1842, p. 16. - Lima conclusa Beck, Amtl. Ber. 24 Vers. deutscher Naturf. und Aerzte in Kiel, IS.47, p. II4. - Limatule sulculus Mörchı, Rink's Gronland, 1857, p. 94. - Lima (Limatula) subauriculata Mörch, Vidensk. Medd. Naturh. Foren. IS67, p. 98; ibid. IS6S, p. 226. - Limatula sulculus Mürelı, Aretic Manıal, ıS75, p. ı33; Rink's Dan. Greenland, 1877, p. 442. - Limatula subatriculata Posselt, Medd. onn Gronland, XXIII, 1898 , p. $\begin{aligned} \\ 7\end{aligned}$.

This species las been taken by the "Ingolf" at:
St. 87. W. of Iceland (Brede Bugt) ino fin. 2 valves.

- 86. - - - \quad - 76 - ca. 20 valves.

The largest of these shells measure 5.5^{mm}.

West Greenland.

Here Lima subanviculata is common, on hard bottom and at depths of 15 - 100 fm ., from the sonthermmost part ${ }^{111}$) to Upernivik $\left(72^{\circ}+7^{\prime}\right.$ N. L. $)$. It reaches the considerable size of if ${ }^{\mathrm{mm}}$.

Iceland.

At East Iceland L. subumriculata has been taken at:

At West Iceland, at the two stations in Brede lingt (86 and 8 號 montioned above, and at South Iceland:

At East Iceland the species reaches the considerable size of rom ; of the shells from the rest of Iceland none are over 5.5^{mm}.

Færoes.

Here L. subuuriculata has been taken at the following places:

The maximmm size of the shells taken insthore is $5^{\text {mm }}$, of those taken further ont to sear $6 . .$.

Distribution. On the Enropean side L. subumiculata ranges from West Fimmarken ${ }^{1}$) to the Canary Isles, also in the Mediteranean to its eastern part; donbtfully living in the Kattegat at present. ${ }^{2}$) On the Anerican side it reaches from the Strait of Fhurida to Iabrador and the sonthern West Greenland; it is also said to occnr on the west coast of North America, according to Jeffreys.

At Norway, the Feroes, Iceland and Greenfand its vertical distribution is from $10-150$ fin. ()n the other land, Jeffreys gives its vertical distribntion to extend from $10-1785$ fin. ${ }^{3}$ and l.ncarld also records it from great depths, down to 2200 m .7) ; but as the species of the genus lime arre wry difficult to distinguish from one another, it is conceivable that emoneons determinations have given rise to the records of these enormons deptlis (cf. under I. similis n. sp.).
I) Accorting to G. O. Sars it has not been found at East linmarken, but it is recontal from the Inrman Cobst
 is stated by W. Leche to occur at Nova Zembla and in the Fara sea, but this comes from an cromeous Ieternimaton, the specimens in question belonging to Lima heperbora m. (cf the latter).
${ }^{2}$) Only a single shell namely has been fonnd at "Fladen" (loastern Rathegat; as the other specinens taken in the Kattegat (including one living), which were referred by C. G. Joh. Petersen to I. subumauhat (I)ct vidensk till), af "Ifanch"s

3) Proc. Zool. Soc. London, 1579, P. 563.
4) Expéd. scient. Travailleur-Talisman, Moll. Test., II, ISgN゙, 1P.47.

Lima similis n. sp.

Pl. II, figs. 弓a-c.
The sliell oblong, nearly equilateral, tumid, silvery white. The valves thin, with ca. $34-38$ radiating fibs, two of the mindle ones stronger than the others, with an interstitial furrow, or only one prominent median rib; the concentric lines conspicuous and close set. The beaks fairly prominent, the hinge-margin almost straight. forming with the lateral margins an obtuse angle. The inside glistening silvery white. Height 7^{mm}., length 3.75^{mmm}.

The "Ingolf" has not taken this species, but the "Thor" fonnd it S. of the Færoes, namely at

$$
\begin{aligned}
& 61^{\circ} 7^{\prime} \text { N. It., } 9^{\circ} 30^{\prime} \text { IV. I } \\
& 61^{\circ}{ }^{1} 5^{\prime}-9^{\circ} 35^{\prime}-\ldots . \ldots \ldots . . . \text { ca. } 475 \text { - } 10 \text { - }
\end{aligned}
$$

Fiurther, the "Thor" lias dredged the same species in the Bay of Biscay at

$$
43^{\circ} 37^{\prime} \text { N. L., } 2^{\circ} \text { O } 8^{\prime} \text { W. I. } \quad 250-790 \mathrm{fm} . \quad \text { spec. and } 15 \text { valves. }
$$

This species has a great resemblance to Lima subatriculata, but the umbones are less swollen, the radiating (fig. 7 c) ribs finer and more numerous and

İig. 1. Lima stmills. $\times 8$.

Fig. 2. Lima subauriculata. $\times s$. the dorsal margin forms more distinct angles with the lateral margins than in the latter (comp. figs. I and 2). I imagine, that the records given by authors of L. subauriculata from very great depths are due to mistakes in deternination, L. similis being concealed under the nane of L. subouriculata.

Lima subovata Jeffreys.

Pl.II, fig. Sa-c.
Lima subotata Jeffreys, Ann. Mag. Nat. Hist. (4) XVIII, 1S76, p.427; Proc. Zool. Soc., IS79, p. 563, Pl. 45, fig. 2; Smith, Clallenger Report XIII, 1885, p. 292.

This species has been taken by the "Ingolf" at:

Fiurther, the "Thor" has taken L. subovato to the south of Iceland at the following places:

The largest of these shells measures: height 10.5 ., length 9.5 , the second hargest is 8 mm . high.

Specially characteristic of this species seems to me the large number of ratiating ribo (fig. 8 chi mader the lens they are seen to extend right to the ears of the shell; Jeffreys has connter about 50 ribs, and on my specincens 1 have comnted $60-70$ ribs.

Accotding to Jeffreys L. suborater has been taken in the Northern . Itantic off the entrance to the Demmark Strait, 1450 fm ; between the Hebrides and Fieroes, 542 fin, fif the west comat of Ircland, $420-1443 \mathrm{fm1}$; off the Azores, 1000 fin. ; in the Western Meditenrancan, $4456 \mathrm{fm} \mathrm{fl}^{\prime}$

Lima ingolfiana n. sp.

Pl. Il, figs. ga- il.

The shell oval, somewhat oblicfue, moderately convex, silvery-white 'The valves thin, with ea. 30 - 40 radiating ribs, the ridges of whieh are as a mefe finely scaled or mined; the mindlemost ribs (or rib) are stronger than the others, thas giving rise to a median furrow (or two furrows); the beaks prominent; the hinge-margin fairly short, slighty sloping, forming obtuse angles with the lateral margins; cartilage-pit triangular; the internal surface glistening silvery-white. Height 5.25 ., length $3.5^{\mathrm{mm} .}$.

The "lngolf" has taken this small, elegant species at Iceland at:
St. 98. W. of Iceland..... 138 fin. $5.9^{\circ} \mathrm{C}$ I value.

- 90. - - 568 - 4.4 - 30 valves.
- 78. S. W. of -- 799 - 4.5° - I spec. and 20 valves.

This species is well characterized by its somewhat obligue, more or less broadly ural contom, the postero-dorsal margin forming a blunt angle not only with the hinge-margin but also with the postero-median margin; as also by the rather well-marked senlpture of its finely sealed or spinerl radiating ribs (fig. gd).

Lima jeffreysi Iiscler.
Pl. H, figs. roa-c.

 figs. 20-23.

The "Ingolf" has taken this species at:
St. IS. Off entrance to Demmark Strait. II 35 fnn. $3.0^{\circ} \mathrm{C}$. 1 value.

- 90. S. IV. of Iceland 568 - +.1 - 1 -
- by. S. - - 589 - $3 \cdot y^{-}$- I

The largest of these shells (from St. go) is 9.5 . high.
${ }^{1}$) On the other hamb, matike Jefreys, I an mable to refer to this species the sperimens of "/.. sath ation taken by the Norwegian and the Inteh Fxped. in the Norwegian and Barents seats, as I bedieve, that fhey hotong to my species Lema hyperbora (sec the latter).

In addition L.jeffriysi has been taken by the "Thor" at the following places south of Iceland:

$63^{\circ} \mathrm{O} 5^{\prime}$ N. L., $20^{\circ} \gamma^{\prime} \mathrm{IV} . \mathrm{L}_{4}$	293 fmı.	7 valves (mostly fragments).
$62^{\circ} 57^{\prime}-19^{\circ} 5^{\prime}-$	500 -	ca. 80 valves (many fragments).

The largest of these shells is $12 \mathrm{~mm}^{\mathrm{m}}$. hight.
This species is easily recognizable by its oblique slape, its squamular radiating ribs (fig. roc) and its lack of a central furrow. The number of ribs is $20-25$, and even in the middle of the shell their breadth is less than that of the intervening furrows.
L. Ioffrcysi was only known earlier from the Bay of Biscay; jSo fin. ("Travaillem").

This species is nearly related to L. confusa E. A. Smithr) from the Azores, Sombrero Island and Pemanbuco, 450-IOoofm.; this again is said to be identical with L. ozata Jeffreys (non Searles Wood ${ }^{2}$) from the North Atlantic, I 450 fin. L. setifera Dall3) from Havanna, Barbadoes and North Carolina, $52-450 \mathrm{fm}$., is also a nearly related species.

Lima sarsii Lovén.

Pl. II, figs. if a-d.
? Lima crassa Forbes, Rep. Brit. Assoc. Adv. Science, 1843, p. 193. - Limp cola Sarsï I,ovén, Index Moll. Scand., 1846, p. 32 ; Jeffreys, Brit. Conchol. II, 1863 , p. 78 , Pl. 25, fig. 1. - Limatula crassa Sars, Moll. Reg. Arct. Norv. 1878, p. 26.

It Iceland this species has been taken by the "Ingolf" at:

The largest of these shells (St. 98) is 4^{mm}.
Further, L. sarsii lias been taken at the Færoes at:

$61^{\circ}{ }^{1} 5^{\prime} \mathrm{N} . \mathrm{I}$., $9^{\circ} 35^{\prime} \mathrm{W} . \mathrm{L}$.	ca. 475 fı1.	I valve (height $f^{\text {mmin }}$.)
$61^{\circ} 35^{\prime}-4^{\circ} 39^{\prime}-$	210	2 valves (max. height $3^{\text {mm. }}$.

This species, which is readily recognizable from its solid, densely and coarsely scaled shell (fig. In d) and cremulated cardinal margin (fig. in c), was not known earlier from these regions of the Atlantic.

Its distribution extends from northermmost Norway (Varanger Fjord) along Europe and into the Mediterranean to the Aegean Sear). It is not known in the Skager Rak or the seas within this.
G. O. Sars estimates the vertical distribution to be from $50-300$ fm., Jeffreys from So- 300 fm. Nevertheless the latter records it from great deptlis foff Ireland and on the line from Falmouth(iibraltar, 400,500 and 600 fnn., in the Nediterranean even 1456 fm .), and L ocard records it from 2018 meters off Cape Finisterre.

[^57]
Mytilidae.

Mytilus edulis Li in 11 é.

Mytilus cdulis Limné, Syst. Nat. ed. 12, 1, 2, 1767, p. 1157 ; J effreys, Prit. Conclon. II, 1863, P. 104, Pl. 27, fig. 1; Gould \& Binney, Rep. Ins: Mass. 1870, p. 183, figs. 483-84.
 Mörch, Rink's Crönland, 1857, p.94; Vidensk. Medd. Naturl. Foren. 1867, p. 97; ibid. I8f8, p. 225; Arctic Manmal, 1875, p. 133 ; Rink's Dan. (ireenland, i877, P. 442 ; Posselt, Meld. onn Gröntand XIX, i895, p. 66; ibid. XXIIJ, 189S, p. 18; Jensen, ibid. XXIX, 1909, 1) 322.
At West Greeniand the edible mussel is common from the southermmost parts mp to at Ieast Umanak; further north it is said to have been taken by the "Fox" in Melville Bay. The largest specimen (from Disko Fjord) measures 110 mm ., and specimens of $80-90 \mathrm{~mm}$, are not rare.

Regarding the edible mussel at (ireenland H. P. C. Möller writes in a postlmmons mannscript: "The ordinary length is 64 - $77^{n m m}$., the largest specimen I possess is 105 nn". long and 50 "" broad; it was found at Jnlianchaab. It occurs everywhere on the west coast of Danish Cireenkand in great quantities, botli on the shores by the open sea and in the bays, anong the stones and in craks and crevices of the rocks. It always lives at a depth comesponding with lowest ebb-tide. (ionld (Rep). Inr: Mass.) states, that it keeps to places which are laid dry by the water during ebb, but in this conntry it keeps to the boundary of the lowest ebb, or a little below or ontside this; if it went higher ${ }^{n}$ p, it would be enclosed by the ice from November to May: It is eaten by the Greenlanders, boiled, raw or pickled in train-oil. It is an even more common source of monrishment for the ravens, foxes, dogs and all the anmals, which are forced to seek their food on the shore at ebb-tide". It may be remarked here, however, that I have often seen living mussels in Crreenland on seaweed laid dry during ebb-tide, and that Dr. V. Nordmann likewise fonnd living Dytilus in great munbers in Nordre Strönfjord, fised anong Fucus which was daily laid dry at low-water.

At East Greenland the edible mussel only lives on the sonthermmost parts; it is mot fare in the Angmagsalik district, but the limit for its distribution lies not far north of this place, nanmely at ca. $66^{\circ} 30^{\prime} \mathrm{N} . \mathrm{L}^{\mathrm{r}}$). It may reach a length of 84^{mm}. For the details of its occurrence I may refer to my paper: "On the Mollusca of East Greenland" (1. c.).

At Iceland it occurs in quantities round the whole island; the largest specinen I hare seen is 85 mm . long.

At the Færoes it is fonnd at many places and reaches a length of 93 mm .
The material at hand from Iceland and Greenland shows, that A/vitus colulis is just as variable in the nortl as in more southern regions; but withont an exact knowledge of the conditions at the different localities, it will hardly repay to discnss the variation.

 attached by the byssus to the sides of the ship, or algae growing there; by the rubhing of the ice aganst the ship, the

 1sy6, 1. 387 , notel.

Distribution. Mfyitus cdulis has a wide range within the temperate, in part also the arctic zone, both in the northern and southern hemispheres. In North America it occurs from North Carolina to Labrador; next, it occurs on the western and sonth-eastern coasts of Greenland, at Iceland and the I'aroes; from the west coast of Nova Zembla its distribution extends along the whole coast of Furope, and also into the Mediterranean (var. galloprovincialis Lam.) to its eastermmost end; through the Kattegat, decreasing in size, it reaches into the Baltic and up into the Gulf of Bothnia (to $62^{\circ} 6^{\prime}$ N. L.). In the Pacific it ranges from Bering Sea to the Sea of Okotsk, Japan and Mexico. In the sonthern lemisphere the "Clallenger" las taken it off Rio de la Plata, at the Falkland Islands, Kerguelen and New Zealand. - It belongs to the littoral belt; I have some young specimens, however, from greater depths, down to 50 fin. ${ }^{1}$)

In high-arctic regions the dead shells of Jytilus cdulis have been fonnd at many places, where in spite of the keenest search not a single living specinen could be taken. In Furope it does not live north of Nova Zembla, yet dead shells occur in large numbers on Spitzbergen (both on the shore, at the beach and in raised deposits), on King Clarles Land (Svenska Förlandet, 25 m. above the sea) and on Franz Joseplis Land ($3-6 \mathrm{~m}$. above the sea). At East Greenland, as mentioned, it does not live N. of $66^{\circ} 30^{\prime} \mathrm{N}$. I., bit it has been fonnd as fossil at ca. $73^{\circ} \mathrm{N}$. L., mamely at the mouth of Sophias Somnd (25 m . above the sea) and in the immermost parts of Firanz Josephs Fjord (10 m. above the sea) . These discoveries of fossil (postglacial) Mytilus colulis indicate, that the ligh-arctic regions mentioned must have had a somewhat warmer marine climate than now at a not very remote geological period ${ }^{2}$).

Modiola modiolus Linné.

Pl. III, figs. I a-b (young).
Hytilus modiolus Liinné, Syst. Nat. ed. 12, I, 2, 1767, p. 1158 ; Jeffreys, Brit. Conehol. II, i863, p. II, I'I. 27, fig. 2; (Modiole) Gonld \& Binney; Rep. Inv. Mass. 1870, p. I86, fig. 485. - Mytilus umbilicatus Pennant, Brit. Zool., IV, ェ767, p.is2.
Modiolu umbilicata Möreh, Vidensk. Medd. Natuh. Foren. I867, p.96; ibid. iS68, p. 22.4.
The "Ingolf" has taken this species at:
St. 87. Wr. of Iceland (Brede Bngt) ino fin. I spec. (empty).

[Greenland].

The species is recorded from here by G. O. Sars ${ }^{3}$) and by Dr. A. Krause 4). I have no hesitation in refusing to admit the correctuess of these records; a bivalve of such a size and so easy to get conld not have escaped the attention of those, whose collections are preserved in the Copen-
$\left.{ }^{1}\right)$. N. Kıipowitsch Verhandl. Kais. Russ. Nineral. Gesellsch. Bd, 43, 1906, p 271) mentions a few eases where he las fonud living, full-grown Joft whtis in great depths and at a constantly very low temperature but at the same time expresses agrement with a view 1 had put forward elsewhere (K. I). Vidensk. Selsk. Forhand. 1904, p. 394), namely, that such is not the nomal labitat of the species; the specimens in question must be considered to lave been carried ont into the decp, cold layers with seaweed, perhaps also with ice-floes (in the Kara Sea, for example, M. chulis has been found on driftice; cf. Jenscnl.c.).

For further details see Ad. S. Jensen and Poul II arder: Post-Glacial changes of climate in Aretie regions as revealed ly investigations on marine deposits (Postglaziale Klimaveränderungen. Stuckholm, 1910, p. 399).
3) Sars: Moll. Reg. Arct. Norv., 1578 , p. $3 S_{7}$.

Krausc, in Grönland-kixpedition der Gesellsch. F. Frdkunde zu Berlin, II, I, 1897, p. 185.
hagen Zoological Musemm; hare there is not and never las been any specimen of . It modiolus from Greenland ${ }^{1}$).

Iceland.

Dr. A.C. Jolnansen mentions M. Motiohs among the Molluscs which occurserf in the greatest abundance 2-3 meters below the high-water mark at the coasts of Iccland F Finther, fi Bardarson has made the following observation on the northern coast: "M. morlolus lives here at Ilimafloí at a depth of mo-I5 meters and is thrown up on the beach in a heary sea, but in small quantity", and regarding the conditions on the west coast he writes as follows: "At I safjördnr and mreidifjördnt.... it is found washed up at a few places in considerable quantity: At Fiaxaflói it is common still more frequent at Grindavik S. of Reykjanes, where thousands can be collected after a heary seat M. modiolus thus lives in shallower depths and is more frequently washed up, the further sonth we come along the west coast of Iceland". ${ }^{3}$ Lastly, the Icelandic naturalist IBj. Sienundsson writes to me, that M.modiolus is often thrown up on the beach in antum on the north coast.

I have made these preliminary remarks in order that the following lists may not give the impression, that $1 /$ modiolus is a rarity, for example, at East and North Iceland; its littoral occnrrence and its considerable size lave probably been the reasons why a comparatively small material of this species has been brought home.

East Iceland:

The shells last-mentioned reach a length of 105 mm .
North Iceland:
Husavik. washed itp with Laminaria rhizoids. 3 spec.
Skagastrand Bugt........................ 33 fm. I
The last specimen is small, the first up to 100 min.

It las thus been taken living even at a depth of 30 fin.; the specinen fronn the "Ingolf" St. 87, Which also lies on the west coast of Iceland at a depth of irofm., was on the other hand empty and may possibly have been carried ont with Laminaria, to the shizoids of which M. modiolus is accustomed to attach itself by means of its byssus. The largest specimen is 146 mm . long.

South Iceland:

$63^{\circ} 30^{\prime} \mathrm{N} . \mathrm{L} ., 20^{\circ} \mathrm{I} 4^{\prime} \mathrm{W} \mathrm{V}^{\text {L }}$.	42 fm .	3 valves.
Heymaey, Vestmannaeyjar	beaclı.	4 spec. \& many valves.
Vestmannaevjar	30 fml ., shell-gravel.	3 valves.
-	49 - , clay with a little mud.	Fragnents of 3 valves.

The specinens washed up on the beach at Heymaey are up to 95 mm . long.

The Færoes.

According to earlier anthors (Svabo, Landt) N. modiohes occurs at many places at the Frerocs; after a heary sea it is often found washed into the bays, not rarely hanging to large tufts of seaweed muder whose rhizoids it likes to live.

The largest specimens I have seen are 155^{mm}. long; large specinens are taken at a depth of crell ca. ioo fin.
ln recent years it has been taken at the following places at the Freroes:
Klaksvig............................. II fnn., on Laminaria rhizoids.
Finndings Fijord...................... 12-ca. 20 - , coarse sand and clay:
Andefjord............................. . . . 16 -23 -

5 spec.

12-16 -
$3^{\mathrm{I}} / 2-5$ - , fine black sand. I -
4 - , sand.
4-5
ca. 10 -
10-30 -

I - and 16 valyes.
I —
2 -

1 -
I -
2 -
10 -

Vestmansund.	70 fm .		6 spee.
Sörvaag beach.			2 and 3 valves
-	16%	- , ooze.	I
Thorshavn beach.			4
-	$3-4$	- 1	1 -
Nolso beach.			4 valves.
- deep hole at north end.....	ca. 100	- 30	30 spee.and many valves
'Trangisvaag Fjord, montlı........	$4-5$	- , anong rlizoids of Lathinaria. I	1 - and 3 valles.
$62^{\circ} 29^{\prime}$ N. L., ヶ 37^{\prime} W. L.	60	3	3 -
$62^{\circ} 16.5^{\prime}$ N. L., $6^{\circ} 6^{\prime}$ -	50-60	5	$5 \cdots$
5 miles N. by E. of east point of Myggentes	50	2	2
7 - N. by E. of Myggenzes Point	57	6	6
6 - N. by W. of Kalso	60	14	14
$\mathrm{I}^{1 / 2}-2$ miles off month of Borduvig	20-30	- I	1 -
Bordonxes in N. 57 W ., $1^{3 / 4}$ miniles..	30	15	15 \& mathy valves.
9 miles E. of Nolsu Light.	cal. 30	2	2 -
16 - E. by S. of sonth point of	So	-	I

Distribution. On the European side Modiold modiolus ranges from the "warm area" of the White Sear ${ }^{\text {I }}$) to the British Isles and west of France (Loire ${ }^{2}$) as also throngh the hattegat into the Somd and Belts; mext, over the Fxeroes to the coasts of leeland. (On the American side it is distributed from Labrador to North Carolina, and from Bering Sea to Japan and California. Jeffreys gives the vertical distribution to be from o-roofm., which agrees with the observations from the Faroes and Iceland (ci. abore); its true habitat is the Laminaria regrion.

Modiola phaseolina Plibippi.

11. III, figs. 2a-b).

Jeffreys, Irit. Conchol. II, iS63, p. 1iS, Pl. 27, fig. 5.
Modiola phastolima Mürch, Vidensk. Medd. Naturh. Foren., 1868, p. 224.
[^58]This species has been taken by the "Ingolf" at:

Irevionsly . Whascolina was only known in these regions from I'axafjördr in West Iceland, where Iap. Steenstrup had taken 2 specimens (recorded in Jeffreys l.c.).

In addition to at the above stations of the "Ingolf", M. phascolina has in recent years been taken at many other places on the west, south and south-east coast of Iceland as well as at the Fieroes, as will be seen from the following summary.

West Iceland:		
$66^{\circ} 8^{\prime}$ N. I., $2.4^{\circ} 21^{\prime}$ W. I.	47 fm .	1 spee.
Faxafjördr	13 -	1 -
-	I7 - , coarse shell-sand.	15 valves.
.	$17-20^{1 / 2}$ - , sand and shells.	$3-$
Skagi.	21 -	I valve.
South Iceland:		
$63^{\circ} 15^{\prime}$ N. L., $22^{\circ} 23^{\prime}$ W. L. L.	170-114 fm.	7 valves.
$63^{\prime} 18^{\prime}-21^{\circ} 30^{\prime}-$	94 -	I value.
Vestmamaeyjar .	49 - , clay with a little mud.	25 valves.
- Heymaey, on beach		18
	87 - , black sand witl sluells and stones.	I spee.
$63^{\circ} 2 \mathrm{I}^{\prime}-17^{\circ} 3 \mathrm{I}^{\prime}-\ldots \ldots .$.	$69-$	I valve.
$63^{\circ} 21^{\prime}-{ }^{\prime} 7^{\circ} 15^{\prime} \quad-\ldots \ldots .$.	5^{8} - , sand, stones, shell-gravel.	9 spec. and 12 valves.
Ingolfshöfdi in N. boy E. ${ }^{1 / 2}$ E. $0,91 / 2$ miles	53 -	
South-East I celand:		
$643^{\prime} \mathrm{N} . \mathrm{L} . .155^{\circ}+\mathrm{o}^{\prime} \mathrm{WV}$. L.	$35 \mathrm{mm}$.	5 spec.
Myre Bugt.	3^{6} -	I spec. and i valve.
$64^{\circ} 27^{\prime}$ N. L., $13^{\circ} 27^{\prime}$ W. L.	84 -	3 spec.
The Frxoes:		
Ejde	5-6 fim., coarse black sand.	6 valves.
${ }^{1} 3$ miles S. of Myggeneeshohm......	ca. 70 -	2 -
$61^{\circ} 56^{\prime}$ N. Le., $7^{\circ} \mathrm{O} 4^{\prime}$ W. L.	$30-$	I spee.

At Iceland it reaches a length of 19 mm . in the shallower waters, whilst the specimen from 691 fm. (St. 5t) is only 3.5^{mmn}. long and the largest specimen from 3 th fmo. (Sit. 55) 7.5 mm . The largest of the specimens at hand from the Freroes is 16 mm . long.

Remarks. The munerons specimens to hand confirm in every respect the variation remarked upon by other anthors; the form of the shell is sometimes elongated, sometimes very short, but with all transitions.

Modiola phascolina is often confnsed with the roung of $1 /$ modiohes. from which however it can be distinguished with certainty by means of the following combination of characteristics (cf. In. IIl, figs. $2 \mathrm{a}-\mathrm{b}$) (M. phasiolina) with figs. 1a-b (II. modiolus, young):

The slell is more ventricose.
The anterior end under the nubo is less prominent.
The inner edge of the antero-dorsal margin is finely crembated across, and the hinge-margin in from the beak is somewhat flattened and expanded and marked by minute transterse teeth.

The impression of the anterior closing muscle is bounded above by a ridge-like projection from the shell-margin.

The antero-dorsal margin rises more steeply and the dorsal margin is for some distance almost parallel with the ventral margin.

Distribution. Modiola phascolina is distribnted from northermmost Norway (Varanger Fijord) along Enrope and into the Mediterranean as far as the Aegean Sea; it goes down into the Kattegat. To the west it reaches over the Færoes to the sonth-eastern, southern and western coasts of Iceland. - Jeffreys gives the vertical distribution to be from o-300 fin, thongh it is not apparent where he has obtained the record of this enomons depth from; the greatest depth noted by himself lies in the Mediterranean at $141_{5} \mathrm{fm}^{1}$). At Norway, according to G. O. Sars, it reaches down to $3^{n o 0}$ fmi, at the Ficroes and lceland to 69 f fin., so that I am inclined to doubt the correctness of Jeffreys record. Nor is the purely littoral occurrence quite certain, as it has not been taken living at less depths than 13 fin. at Iceland, the Fxroes, Norway or Demmark. 'Tlat it may be washed mp on land is annther matter; I have before me a number of apparently fresh shells, which had been washed mp on the beach at Heymaey; Vestmannaeyjar on Sonth Iceland (collected by Dr. A. C. Jolmasen).

Dacrydium vitreum Möller.

 Pl. 3, fig. 2; Verrill, 'ransact. Connecticnt Acarl., V. 1882, p. 579, I'l. Hf. lig. s.
. Todiolaria zitrca Möreh, Tillaeg til Rink's Grönland, 1857, p. 94; Arctic Manual, 1875, p. 133; Rink's Dan. Greculand, 185-, P. 42. - Dacrydium aitreum Friele, Nyt. Mag. Naturvidensk., 1879 , p. 22; Possclt, Medd. om (irönland, XIA, 1895, p. 66; idem, ibid. XXIII, ı898, p. 21 ; Jensen, Medd. on Cirönland, XXIX, 1909, p. 325.

The "Ingolf" has taken this species at:

The largest shell, namely of 7^{mm}, is one from St. 58 , E. of Iceland; in the Davis Strait a size of 5 mm . is attained (St. 28) and S. of Jan Mayen a size of 5^{mm}. (St. 115 and 116). From the stations west and sontli-west of lceland the maximnm size is 4 mm . From the two very deep stations, 2.4 and 117, the size is respectively only 3^{mm}. and 2.5^{mm}.

There is considerable variation in regard to the form and thiekness of the shell ${ }^{\mathrm{r}}$). The specimens from west and south-west of Iceland (S t. $87,86,98,97,90, S_{5}, 80$ and 78) differ especially from the typical D. ritrenm in having a relatively elongated form and a less convex dorsal line; they greatly resemble the Dacrydium occidcutale of E. A. Sinith ${ }^{2}$) (West Indies, 390 fin.), but I liave not thonght it right to separate these specimens as an independent species.
${ }^{1}$) Cf. also A. I ocard, who distinguishes between the following varieties: minor, clongata, curta, incurzata, zentricosa and albidu; lixpéd, scient. Travaillemr-Talisman, Moll. Test., II, ISg\&, p. 364.
${ }^{2}$) Zool. Chall. Exp., Part SXXIV, $18 \mathrm{SS}_{5}$, p. 2S2, Pl. 17, fig. I.

Elsewhere the following information may be given regarding the distribution of the species.

West Greenland.

In addition to the "Ingolf" stations in the Davis Strotit, 3 IS-IIg9 fin., /J. ritroum has been taken at 7 localities from the sonthermmost (Julianehaab) to the northemmost part ($72 . \mathrm{f}^{\prime} \mathrm{N} . \mathrm{L} . \mathrm{I}$) of Danish West Greenland, on clay bottom and at depths of $48-250 \mathrm{im}$. The size is mp to $5 \cdots$.

East Greenland.

Here 1). aitreum has been taken by Danish Expeditions at a localities from Cape Dalton to Sabine Island, or from $69^{1 / 2}-74^{2} / 2^{\circ}$ N. L. and at depths of $10-127$ fin1. It reaches liere a size of $6 \cdots$.

Jan Mayen.

The Norweg. North-Atlantic Exped. took D. aitreum at 2 stations, with depths of $70-95$ fm.
 470 fin.; the Danislı Exped. of 1900 took 4 specimens and 2 valves at a depth of 55 fin., as also 3 specimens and i valve at a deptlo of $50-60$ fin. Lastly, as shown above, the "Ingolf" Exped. fonmd it at 2 stations at a depth of $S 6$ and 37 I fin., as also a specimen far to the south of the island (St. 117) at a depth of 1003 fm., but it is only $2.5 \mathrm{~mm}^{\mathrm{mm}}$. long.

Iceland.

Apart from the stations of the "Ingolf" north-east, north, west, south-west and east of the island, D. ittremm has also been taken at the following places:

The Færoes.

Besides at the "Ingolf" station N. of the Farocs (St. I3S, deptli 47 If fine; maximum size of the specimens $4{ }^{\mathrm{mm}}$.) In. atitreum has been taken at the following phaces:
63 14' N. L... $9^{\circ} 4^{\prime}$ W. L.................... 260 fim. 18 spec.
$63^{\circ} \mathrm{O}^{\prime}-9^{\circ} 28^{\prime}-\ldots$. 275-1 valve.
5 miles N.by E. of east point of Myggentes 50 - 2 values.
$61^{\circ} 40^{\prime}$ N. L., $7^{\circ} 40^{\circ}$ W. L. 135 - 1 valve.

$61^{\circ} 7^{\prime}-9^{\circ} 30^{\prime}-\ldots \ldots \ldots \ldots . .44^{\circ}-\ldots$ walue.
6 miles N. by W. of Kalso $60 \quad 2$ valves.
13 -- W. by S. of Munken - 155
From the deepest of these places (475 fini) the specimens have a size of 3.5 mm . from the other places still smaller ($1-3^{\text {nne. }}$).

Elsewhere D. vitrcum ranges from the Kara Sea and Spitzbergen to the Mediterranean and the Azores; on the American side from the Gulf of St. Lawrence to Campeche. It is said to occur down to a depth of 2750 fin., and in arctic regions it reaches as high 11 p as 10 fun. (cf. nuder Liast Greenland).

Idas argenteus Jeffreys.

Pl. III, figs. 3 a -e.
Idus argentous Jeffreys, A111. Mag. Nat. Hist. (IV), vol. XVIII, 1876, p. 428; Proc. Zool. Soc. 1879 , p. 57 , Pl. 45 , fig. 3; Proc. Zool. Soc., I882, p. 683.

Shell laving the sliape of an irregular parallelogram (varying from thomboidal to oblong), of a delicate textme, rather opaque, iridescent; it is covered with a pale brownish-yellow periostracnm, which rises into fibrons excrescences on the posterior side; mader the periostracum the shell is silvery white, except the beaks which are reddish brown; sculpture, very fine and close-set transverse striae and microscopic longitudinal strix, radiating from the beaks; margins straight at the back and in front, ronnded on the anterior and smaller side, and sloping from the back with a curved ontline on the posterior side; beaks circular and incurved, placed near the anterior side; an internal and long cartilage covers the hinge; linge-line nearly straight, but obtnse-angled at the hinge; hinge-plate narrow, minntely and closely denticulated on both sides of the hinge; inside polished and nacreons; edge plain; scars inconspicnous. Size of the largest specinens about 8 mm .

In 18,6 Jeffreys described the species almost as above, the additions and clanges made by lininself in 1882, however, being added.

This small Mytilid was taken by the "Ingolf" at:

$$
\text { St. 67. S. of Iceland } 975 \text { fin. } \quad 3^{\circ} \mathrm{C} . \quad \text { ca. } 260 \text { spec. }
$$

The specimens of the "Ingolf"-Expedition agrée extremely well with the descriptions of Jeffreys. A radiating striation however can hardly be seen and the hairy periostracum is often distributed over a greater part of the shell, mostly however on the posterior and dorsal surfaces.

Distribution. During the "Valorous" Cruise of 1875 one valve was taken in the Nortls Atlantic ($56^{\circ} \mathrm{I} 1^{\prime}$ N. It., $37^{\circ} 4^{\prime}$ ' W. Le.) at I 450 fnn. The "Porcupine" Expedition of 1869 also fonnd a shell in the Bay of Biscay at a deptly of 994 fm. Lastly, it was taken on the cruise of the "Triton" between the Hebrides and the Feroes at 516 fm., "inlabiting deserted tubes of Tercdo megotara in a large water-logged piece of pinc-wood, to which the Iddas lad fixed itself by a strong byssus". The specimens of the "Ingolf"-Exped. were taken south of Iceland $\left(61^{\circ} 30^{\prime}\right.$ N. L., $22^{\circ} 30^{\circ}$ W. L.) at 975 fni., muder sinilar conditions to the last; the trawl brought up two large pieces of pine-wood, which had been pierced through and through by Teredo; in some of the Teredo tunnels were in addition mud and wormtubes, further worms and small bivalves, namely Idas argentcus.

111882 Verrill mentions an "Idas argenteus Jeffreys var.? lamellosus Verrill (perliaps sp. 110v.)", taken by the "Fish Hawk" in 1881 at New England off Martha's Vineyard (S.S. W. I/4 W', $103^{1}, 2$ miles) at a depth of 335 fm. ${ }^{\mathrm{I}}$). On this Jeffreys (l.c. i882) makes the following comment:

[^59]"Ldas argentors is probably the species of that name noticed bey Verrill als var. Lumellosa". and the added knowledge of Idus argentons obtained in that year really dispused of the pecnliaritics of Verrill's Iders.

Modiolaria.

The 4 northern species of this genus may, accorling to my expericuce, most rearlity be dis. tinguished from one another in the following manner:

Modiolaria discors Lillıé.

The true Modiolaria discors Linné does not oceur at Greenland, Jan Mayen or Tceland. The species is represented here bỵ. "IFodiolaria harigata Gray" and "Modiolaria substrinta Gray", which 1 do not consider separate species, but varicties of a species which also embraces "dmdinlaria discors Linné". The last name has the prior right by age and must consequently have the advantage in the designation of the species.

> var. lorigata Gray.
> Pl. III, figs. qa-b.

Modiola leaiguta Gray, Parry's first voyage, Suppl. to App., 1824, p. 244. -- Cremella larkatu Torell, Spitsbergens Molluskfama, IS59, 1. 133. - Modiolerie discors (ionla Binney, Rep. Invert. Mass., IS70, 1. 192, fig. 4Sy. - Modthomin limigata Sars, Moll. Reg.
 figs. 27-28.
Mytilus discors Fabricins, Fanna groenl., 1780, p. 4 8. - Mytims discors, articus Fabricins (partinu),
K. D. Vidensk. Selsk. Skr. 1788 , p. 453, figs. I \& 4 - 6 - Modioln discors Maller, Index Moll. Groenl., 1842, p. 19. - . Modioturian diseors lieek, in Cramard, Toyage de la Rechevelne. Pl. 17, fig. 2a-h. - Modiolurien lazis Beck, ibid. Pl. I万, fig. 3 f. - Modiolu discors liock. Antl. Bericht 24. Versamml. dentsch. Naturf. in Kiel, 18.4., P. 115. - Modinheria huramatn
 Mannal, IS75, P. I33; Kink's Dan. (ireenland, 1877, P. H2; Dechor, Östert. Polarst. Jan

[^60]var. substriata Gray.
Pl. III, figs. 5a-b.
Alytilus discors, urcticus I'abricius, K. D. Vidensk. Selsk. Skr. 1788 , p. 453 (partinn), figs. 2 \& 3. Modiolaria laris Beek, in Gaimard, Voyage de la Recherche, Pl. I7, figs. 3 a-c. - Mfodiolaria discors 11 örch, Vidensk. Medd. Naturl. Foren. 1868, p. 224. - Modiolaria larlgata var. substriata Posselt, Medd. on Grönland, XIX, 1895, p. 67 ; ibid. XXIII, 1898, p. 26; Jensen, ibid. XXLX, Iga9, p. 326. - Modiolaria substriata Häg g, Arclı. för Zoologi, Bd. 2, No. 2, 1904, p. 25.

The "Ingolf" has taken this species at:

At West Greenland the species is very common from the sonthermmost part of the land as far northwards as the investigations extend, namely to N. W. of Cape York; on the Anerican side it is still met with in Franklin Pierce-Bay at $79^{\circ} 25^{\prime} \mathrm{N}$. L. It prefers shallow water, $0-30$ fnn., but it is said to live also in greater depths, down to 100 and 200 fm . The variety substriata is less common than larigutu. The largest specinens at my disposal of var. lazigata measure 46 mm ., of var. substriata $30{ }^{\mathrm{mm}}$; O. Fabricius mentions specimens of up to 50 mm .

At East Greenland the species has been taken at many places, sometimes in large numbers, from Angmagssalik as far north as collections lave been made (Sliannon Island at $75-75^{1} / 2^{\circ} \mathrm{N}$. L. . . . The depths noted are o-30 fin. The variety lavigata is also by far the most abundant here; the largest specimen of this variety measures 36.5 mm . of substriata 32 mm .

Jan Mayen. The Austrian Expedition took I3 specimens up to 28 mm . long on the north side of the island, at a depth of $8-13$ fin. The Danish Exped. of igoo took some smaller specimens at 15 and 50-60 fin.

At Iceland the species is probably common all ronnd the island, from lowest water ${ }^{1}$) and (in small specimens) out to $50-60$ fm.; the localities mentioned below hardly give a correct picture of its distribution, as only few dredgings were made in very sliallow water, where the species mainly lives. The variety lariguta, which is the most frequent, reaches a length of $4^{8 \mathrm{~mm} ., \text { and annong the var. }}$ substriata there is one of 52 mm .

East Iceland:

Loonsrik	S- io frn1., fine black sand.	I	spec.
Perufjörlr, Djupivogr	3^{-}, on Lanninaria rlizoids.	2	-
- ---	6 - , mud with black sand.	I	-
	S -	2	-
	$10-$	3	-
Treiddalsvik	14 -	1	-

${ }^{1}$) A. C. Johansen records Modioluria lanigrata annong the Molluses which occurred in the greatest abundance $2-3$ meters below the high water mark at the coasts of Iceland. Vidensk. Medd. Naturh. Foren. 1902, p. 387.

Fáskrudsfjördr, Hafuarnes.	50-Io fun.. bluce clat	2 spec.
Reydarfjördr.	60--80-	1
-	$70-$	T
Seydisfoordr at Skálanes	on Laminaria rhi\%oids.	7
- - -	6 - , on Laminaria leatres.	1
- - -	7-8	2
Brinlues	8-4	1
Bakkafjördr	12-15	7
-	52-20 -	${ }^{15}$
Finnafjördr, Gunolfsvik	12	1 --

All these are for the most part quite small specimens, whe to chance natmally; the largest specimen is only 25 mm . long, but in the Stockholm Nusemn I have seen a specimen from lietufjördr, Which was 48 mm . long. The variety sultrintu is rather frequent, comparatively speaking, in the material at hand.
North Iceland:

'Thistilfjördr	Io fm., sand, coral.	I spee.
Kollafjordr		7 -
. - . . .	10 -	1
Húnaflói	5 -	1
Skayastrand		4
Bugt.	$33-$	1
$66^{\circ} 36^{\prime}$ N. L. 2 2 $\mathrm{I}^{\circ} 57^{\prime} \mathrm{W} . \mathrm{I}$	37 -	1

Thongh there happens to be only such a small material from this part of the coast, it nevertheless contains large specimens, of the variety tragata 4 p to 48 mm , and of the variety substrinta of $52 \cdots$.

> West I celand:

Höfuxik.	10 fm .		1
Adalvik	6-9	-	3
Isafjördr			I
Önundarfjördr		-	1
Dyrafjördr			1
$65^{\circ} 52^{\prime}$ N. L. $2,23^{\circ} 58^{\prime \prime} \mathrm{W} . \mathrm{I}_{1}$	33	-	1
$65^{\circ} 17.5^{\prime}-23^{\circ} 32^{\prime}$ -	7--12	-	1
Hvalfjördr	24	-	3
Faxe-Bugt			1.5
Reykjavik			20

 the second-largest (from Reykjarik) is 4.5^{mm}. long.

South Iceland:

Vestmannaeyjar	beach	1 valve.
-	$10-1.5 \mathrm{fm1}$.	I spec.

These specinens belong to the variety substriate and reach a length of 18 mm .
|. It the Færoes the species has not been found].
Remarks. It Iceland and Greenland the species occurs, as mentioned above, nuder two main forms:
a. Modiolaria discors I_{4}. var. lerigata Gray (Pl. III, figs. 4 a-b): the shell somewhat compressed, posteriorly high, romuded-trnncate; the posterior area withont radiating striæ.
b. Modiolariu discors J. var. substriata Gray (Pl. III, figs. 5 a-b): the shell ventricose, posteriorly low, romncled-pointed; the posterior area with radiating stria.

But each of these forn11s again is subject to variation.
The typical larigata is a high form, but even among the full-grown we meet with specinens Which are moln more elongated than is msnally the case. The typical larigata does not have the radiating strixe on the posterior area, but sometines a faint striation may be seen here 1 .

In the typical substrinta the postero-dorsal margin slopes rapidly downwards, but we also find specinens in which the slope of the posterior margin is less abrupt. The typical substriata las the posterior area distinctly striated radially, but sometimes the striation is not to be seen, even under a lens ("Modiolaria laris" Beck 1.c.).

The two forms frequently occur together and one is often at a loss to determine to which of the forms a given specimen las to be referred; in the case of small specinens it is often quite inpossible.

Modioluriu lurigatu-substriatu are arctic and circumpolar forms, whose somthern bonndaries lie at Massachnsetts, Lofoten and northern Japan. Viewed in a wider sense, including also Modioluria discors, the species is distributed further along the rest of West Enrope to Nadeira, including the Kattegat-Saltic (to Kiel and Nenstadter Bugt) and the Mediterranean²).

In opposition to C . O. Sars I must maintain, that Modiolaria substriata and Mod. larigata are not distinct, but forms of one and the same species.

And I ann most inclined to believe with Jeffreys, that Modiolaria liarigata Gray and Modioluriu discors Linn é are specifically identical. Against this G. O. Sars has objected very definitely and I can in so far agree with this anthor, that there is not an excessively great resemblance between Hod. discors and an adnlt, typical Ahod. livelgata; on the other hand, I certainly consider it as mone than probable, that Mod. discors is nothing else bnt a southerns), pygnyt) and slightly altered form

1) I cxclude here the fact, that all lowgenta in the very young stages have the posterior area radially striated and in the alult condition retain this striation on the umbonal resion; the striation is obionsly a characteristic of the young stages.
\Rightarrow bucuuoy, Dautzenberg and Dollfus however write in their oft-cited work, on the marine Mollusca of Roussillon, that the occurrence of Mod. discors in the Mediterranean regnires to be confirmed; they mention rarious cases, in which Mod. marmoratu Forb. has been confused with . Wod. discors.

Ifode discors is certainly very comnonly regarded as an arctic form, but the basis for this is undonbtedly a confusion with the form substriata; annong many hundreds of specincms, which I have examinerl from arctic regions (Greenland, Iceland. Spitzborgcn, Kara Seal, I have not fonnd a single one of the true discors; this hardly goes further than northemmost Norway or Murman Coast, further east and north it is replaced by the sabstrata form. As mentioned by Sparre Schneider
 ocenr at Normay for the simple reason. in my opinion, that ahod. discors is its modification in boreal regions.
4) The maximum lensth of Mod discors (at Demmark and Norway is 20 mm ., whereas . Wod substriata beeomes over 5o mm . 10 ng .
 the whole a more oblong form; this is the essential difference. But whilst maintaining, that Ifod. Werisutu. Mod. substrieta and Mod. discors are identical specifically, I may yet emphasize that in their typical shape they are representatives for just as many special forms and must mot be summarily thown torether.

Furthemore, the form discors, as I know it from Danish waters, is also not a little varialle: freguently the posterior area is distinctly striated, but sometimes it appears almost smonth (ef. Van. semilavis Jeffress, Brit. Conchol. II, p. I27l; I have even before me at this moment a specimen fron the Great Belt (Svendborg), which combines a striation such as we find in sabstriatu with the form of a typical leagata, or on the whole shows a great resemblance to a very young Ifud. la a thatu.

In conchnsion I may quote some little known observations regarding the biology of this species.
In his paper "On1 Ueens-Muslingen" (i.e. M. discors var. luatisutu and substriuth) (O. l'abricitus" writes as follows: "This Bivalve I lave fonnd to be of common ocenrence in Greenfand, where it is called Bibibiursuli: I do not know the certain origin of this word.... one minght be inclined to think, that the Greenlanders have found this name suitable fur the whistling or hissing noise, this lisallu... produces when it has stood for a long tinle closed at ebb-tide for want of water and then with the coming of the flood begins to upen again. It is attached by its fine silk (byssus) to large stones or rocks in the sea, the largest end sticking mpwards, the open side thrned towards the stonne or foreign body, to which it is attached. It lises preferably so far from the land, that it does not beconme dry except at spring-tides when the greatest ebb occurs. On the blind rocks out to sea, therefore, it is most mumerons.... When its silky hairs have been broken by the waves or other ealuse, I have secu it stretch ont its foot, attaching it to the solid rock, elongating and contracting it, and thus push itself forwards.... the fattest and largest are fonnd on clay bottonn...."

In a mannscript left by H. P. C. Aoller we find: "It occurs everywhere jn quantities on the coast of Danish West Greenland and especially where there is shallow water, partly on danimaria, more rarely on Fucus, partly anong the string-like algal forms and anong stones, down to a depth of 20 fm . or still deeper, e.g. at Nemortalik, Godhavn; I have taken it in 30 fm , opposite Neplisenc at a distance of S Danish miles from the coast."

And in a notice: "Ueber Mytilus discors" Iap. Steenstrup makes the following remarks on Ahodiolariudiscors var. Lerigntu at Iceland: ". . . Noch mehr zeichnet sich diese Muschel durch ihnern sehr ansstreckbaren linss ans, welcher ihr erlanbt, die Byssnsfäden nicht nur un die Seiten der Schaten, sondern anch ïber den Räcken derselben hermmznfïhren; dadureh kann sic sich gatnz mit cinct
 susfäden werden auf kleinen Steinchen, Muschelschalentrïmmem mud derglejehen festgelneftet, su dass der liyssussack ganz einem Stemhänfohen gleicht; die innere Wiand der fissmshüble ist dageqem selm glatt, aus dichtliegenden, sich krenzenden Byssusfäden gebildet, mud schliesst sich den Muschelsohaten zemlich dicht an. Nur das hintere Ende der Hülle hat einc ()effunng, sonst ist sie ganz genchlossem. 11 seichten Meeresbusen, in welchen der Boden mit grobom Sande mind framde bedeckt war, hat s.

sehn oft bedentende IPächen von den oben erwälnhten Steinhäufchen eingenommen gesehen; in jedenn dersclben steckte eine lebende Mytilus discors-Mnschel, ganz wie eine Puppe in ihrer Puppenhiille" ${ }^{\text {r }}$).

Modiolaria corrugata Stimpson.

Pl. III, figs. 7 a-d.
 Stinpson, Shells of New England, 1851, p. 12. - Modiolaria corrugata Gonld and Bintey; Rep. Invert. Mass. 1870, p. 193, fig. 491; Sars, Moll. Reg. Arct. Norv. 1878, p. 30, Pl. 19, fig. 2.
Modioluria corrugata Mörch, Rink's Grönland, 1857, p. 94; Arctic Mannal, 1875, p. 133; Rink's Danish Greenland, 1877 , p. $4+2$; Posselt, Medd. om Grönland, XXIII, 189S, p. 23 (partint). - Modi. olaria nigra Walker (non Gray), Jonrn. Roy. Dublin Soc., vol. 3, i860, p. po.

At West Greenland this species is not common according to Posselt. In this I can confirm Posselt and I even believe, that it is more rare than he thonght, as he has in several cases confused Modiolaria migra with the present species. Specimens which are certainly M. corrugata I have seen in the Copenhagen and Stockholm Zoological Musemns from the following West Greenland localities: Fiskenæs, 70 fin., shell bottom; Godtliaab, $50-60 \mathrm{fm1}$; Disco, Harungen, 160 fmı, clay bottoni; Godlavin, 70 fins., clay bottom; Umanak, 12 fin. and $25-35$ fine, stony bottom; N. W. of Cape lork, 5-12 fin., sand mixed with clay. Firom each locality there is only one or a comple of specimens. According to Jeffrey s^{2}), the so-called "Modiolarin Migra" taken by the "Fox" at Cape York and Port Kemnedy belong to this species. - The largest Greenland specimen which I have seen is 15.75 mm . long.
[. It East Greenland M. cormgata is stated to have been taken by the Swedish Exped. of 1900, according to R. Hägg 3); I have had the opportmity of seeing the specimens in question and fommd. that they were in reality the two varieties larigata Gray and substrinta Gray of Modiolaria discors 1. A. corrugata has thus not yet been found on the east coast of Greenland].
|On the north side of Jan Mayen the Austrian Polar Station is said to liave taken 2 specinens, accorting to Becher 4), but we do not know, whether the detemination was correct.

I'That Mod.corrugatu occurs at Iceland, as stated by Verkriuzen 5), I consider as more than donbtful; the species is not represented in the systematic collections made from the Danish side. I imagine, that the specimens Verkrüzen obtained at Reykjavik by dredging in July i872, were M. discors var. substriata].

Distribution. In addition, we have more or less certain records that Moriolaria cormgata lives at Spitzbergen, ca. $3^{5 / 2}-63$ fin. (Torell, Knipowitsch) and at Finnarken, 20-50 f1n. (Sars), in the Kara Sea, 20-78fm. (Collin), in the Polar Sea of Siberia, 9-12 fin. (Leeche), in the Bering Sea, 15--20 fin. (Kranse) and on the north-east coast of America down to Cape Hatteras (Dall).

[^61]Remarks. Great uncertainty prevails among anthors regarding Modiolurin cormereta; often it is called a "transitional form" to other aretic species of Modotnvie, and especially to M. discors L. Var. substrintu Gray ("M. lazis lieek"). Fron a close investigation I Inave ennce to the result, that M. cormgata is an exceedingily well defined species. M. cormgotu certanly shows some resemblanee in labit to M. discors var. suhstriatu, but is readily distinguislued from this hy the middle area being mot smooth or simply striated (ef. Pl. III, fig. 5e) bit showing mater the lens a shagrecm-like wrinkling of the surface, as shown in fig. 7 d on Pl. IIt (ci. also Kiranse: Ein beitrag zur Kemntniss der MolhnkenFinna des Beringsneeres, p. 19) ${ }^{1}$). A simitar kind of surface is also fonnd, however, in , M. Mion; but in the latter the posterior, striated area grades evenly over into the middle area, whereas in AM. curmgato the middle area appears depressed along the bonndary line towards the posterior arca, as in J/. discors; further, in M. cormgata the radial striation is cuarser, the shell more ventricose icf. measurements of M.corrugata with those of M.nigra) and with more prominent momen. In regard to shape, moreover, Ah. corrusatu is rather variable, as will be seen from the following measurements of a mumber of specimens:

Locality	Lengeth of shell	Height of shell	1feight Length	Ireadth of shell	Breadth lengeth
Greenland	$55.75{ }^{\text {mm. }}$.	IO mmm.	63.5%	7.5 n"..	$47.6{ }^{\circ}$
-	14.5 -	9.5 -	65.5 -	7.5	51.7
-	14.25 -	9 -	13.2 -	7.5	52.6 -
-	12.3 -	7.75 -	63 -	7	56.9 -
-	8 -	5.75 -	75.9) -	4.75	50.1 -
Spitzbergen.	26.5 -	15 -	64.2 -	11	+1.5
-	2.1 -	15.75 -	65.6 -	10.25 -	42.7 -
-	22.5 -	1.7.75-	65.6 -	10	H.4 -
--	18.75 -	12 -	64 -	8	12.7-
-	13.75 -	S.75-	$63.6-$	$5.75-$	4. 8 -
-	13.25 -	8.8 -	66.4 -	5.75 -	43.4-
- .	${ }^{1} 3-$	8.75 -	67.3 -	5.5 -	42.3 -
--	S.5 -	6 -	70.6 -	+.75 -	55.9) -
-	S. 25 -	5.75 -	$69.7-$	4	1-5.5 -
Kara Sea	21.5 -	13 -	60.5 -)	(11.9) -

Modiolaria nigra (iray:

Alodiole nigra Gray, Parry's first voyage, Suppl. to App.., 182. prat. - Cronille man 'Torell. Spitsbergens Mollnskfauna, is59, p. 130 . Modichorin mish Jeffers, litit. Conchol. II,
 Modiota discrepuns Moller, Ind. Moll. Grocnlandix, 1812, 1. 14. Muthelaria strintule Ibeck, in (bati-

1) Archiv für Naturgeschichte, ISS5.
in Kicl, 1847, p. $115 .-$ Modiolaria migra Mörch, Rink's Grönland, 1857, p. 93; Vidensk. Medd. Naturh. Foren. 1867, p. 96; ibid. I868, p. 224; Aretic Manual, 1875, P. 132; Rink's Dan. Greenland, 1877. p. 412 : Posselt, Medd. onn Grönland, NXIII, 1SgS, p. 27; Häg g. Ark. för Zool., Bd. 2, No. 2, 1904, p. 26; Je11se11, Medd. onl Grönland, XXIX, 1909, p. 328.

West Greenland.

The species has been taken at many places from the sonthermmost part up to Proven 172° 23^{\prime} N. I. $)$, and it will certainy prove to occur even further north, as it las been taken on the American side right up to $78^{\circ} 45^{\prime}$ N. L. ${ }^{1}$). The depths recorded lie between $10-200$ finn. It attains to a very considerable size, 11 p to 62 mm .

Regarding this species H. P.C. Moller writes in a mannscript preserved in the Musemm lice: "This bivalve is living along the whole coast of Danish West Greenland, but only solitary and where the sea is deep ($30-60$ fur.) and the botton is clay. Young individuals are frequently to be met with; the adults on the other liand are rather seldom to be fonnd, becanse they conceal themselves digging down deep in the clay:"

East Greenland.

M. migra has been taken at 6 tocalities between Angnagssalik ($65^{\circ} 35^{\prime}$ N. L.) and Cape Porlase Warren1 ($74^{\circ} 20^{\prime}$ N. L. $)$, at depths of ca. 3-19 fin. The largest specinen is 45.5 mm . long.

Iceland.

M. migra has been taken all romd the island, at depths of ca. 6-50 fin. The largest specinen is not less than 67 mm . long, but as a general rule only small specinens are taken.

The various localities are shown in the following lists.

Fast Iceland:

The specinen from Reydarfördr is 67 mm . long, the specinnen from the greatest depth in lakkafjördr has also been of considerable size, but the others are quite small specimens.

Nortli Iceland:

Thórshöffu
6 fm. $\quad 1$ value.
Axafjördr
22 -
Öfjorl at Svalbardsevri
10 - 20 - 4 spec.

These are small specincus.
i) Crieg: Rep. Sce. Norw, Aretic Exped, in the "Fram", No. 20, Igo9, p. 9.

All these are quite small specimens; the largest (from the first locality) are only 12 . loner

Medalland Bugt.................. Sonth Iceland: | . $17-37 \mathrm{fm}$. $\quad 5$ spece. |
| :--- |

These specimens reach a lengtl of up to 33 mm .

The Færoes.

From carlier years we lave several specmens of 11 p to 53.5 mm , long, but the locality is merty given as "the I"aroes". In recent years M. Migrn has been taken at the following places:

Bordorvig	7-Io finl., black sand, small stones, La-

$$
\begin{aligned}
& 18 \text { spec. } \\
& 5 \\
& 9 \\
& 9 \\
& 1 \\
& 1 \text { I } \\
& \text { I fragucnt. } \\
& 4 \text { spec. }
\end{aligned}
$$

ro - , sand with Laminaria.
50 - 9
Vestmanhavu............................

-

Trangisvaagfjord, head of
$3^{1} 2^{-5}-$, fine black sand.
5-6 - fine black sand. 1 I

9 miles If. S. I*. of Ibispen
○-1 -
ca. 70 -
 mainder are only small specimens.

 land and Spitzbergen, in the Kara Sea, Polar Sea of Siberia and lering sea; towards the whth it reaches to Cape Hatteras; I ogger Bank and western part of the lablic, sean of ()kotsk ant Nobth- Hiont America. -- The vertical distribution extends from cal. 3200 fin.
 as will be seen from the measmements below, the height of the shell in these fy sperimems ahme varice
 Ithe Ingoli- Expertition. II ;

Modiolaria faba (Miiller) Fabricius).

Pl. III, figs. Sa-c.
. Mytilus faba Mïller, Prodr. Zool. Dan., 1776, p. 250; Fabricins, Fanna groenlandica, 1780, p. 419.-Modiola arctica Leacli, in Ross, A voyage of discovery, I8i9, App. II, p. 62. - Modiola faba Moller, Index Moll. Groculandixe, I842, p. I9. - Modiola fubus Beck, Antl. Ber. 24. Versanuml. deutsch. Naturf. u. Aerzte in Kiel, i847, p. 115 . - Cronella decussata W alker (non Montag 11), Journ. Roy. Dublin Soc. III, i860, p. 72. - Modiolaria faba Beck, in Gaimard, Voyage de la Recherche, Pl. I7, figs. \&a-i; Packard, Mem. Boston Soc. Nat. Hist. I, IS67, p. 280; Mörclı, in Kink, Dan. Greenland, 1877, p. 442^{2}); Dall, Bull. U. S. Nat. Mus., XV, 1879, p. Iq6. - Crenclla feba Jeffreys, Sc. Proc. Dublin Soc., N. S., II, I880, p. I28; Bnsh, Proc. UT. St. Nat. Mus. 1883, p. 24t, Pl. 9, fig. 3; Dall, ibid., i886, p. 207; Pfeffer, Jalırb. Hanb. wiss. Anst., 3. Jalırg., I886, p. 44. - Modiolaria faba Posselt, Medd. onn Gronland, XXIII, isg8, p. 22. - Cromeller fube Grieg, Rep. Sec. Norw. Arct. Exped. in the "Franl", No. 20, Igo9, p. 10, Pl. I, fig. i.

The shell more or less ventricose, somewhat trapezoidal with a faint tendency to be oval, truncate in front, anterior margin rather curved, obliquely ronnded postcriorly, ventral margin faintly
${ }^{1}$) Of this little known species I give here a synonyny-list, which is complete, so far as I know; by far the most of refercsees, however, are to moman mudu only. - I think it doubtful whether M. forba is a Modiolaria, but it seems to me to stand further from the genns cromelle, and I retain the species under Moliolario, therefore, to avoid fomnding a new genus on at single, northern species.
${ }^{\text {a }}$ Mörch has forgotten to include the species in his earlier lists on the Mollusca of Greentand.
curved, dorsal side rissen in the middle and compressed, with the rather thmind and prominent mabones hing at the front end. The valves fairly thin but strmg, with a bromish of yellowish, somewhat iridescent periostracmu and provided over the whole with distinct, flatly rombed ribs, which to a number of ea. 50 radiate out from the mbones towards the ciremfernce of the shefl and are of the same breadth as or little broader than the intercostal furmws, but broadest towards the anterior end: the circular lines of growth very fine. lnterior iridescent, msually pale-redelish on vindet, crenulated at the margin; a cremulation of ca. 7 small teeth on the hinge-plate under and in fromt of the beak. l, ength 1 pp to 17.5^{mm}.
 it first appears in quantity at Godthaab ($6 \mathrm{f}^{\prime \prime} 1 \mathrm{~m}^{\prime} \mathrm{N} . \mathrm{L}_{\mathrm{L}}$) and it is common further north, at lealst np to Melville Bay: It is met with most frequently in slallow water ($0-15$ fin., mare seldom $20-30$ fmol and chiefly on stony, algae-covered clay bottom...- In Umanak Fjord I have fomm it attached by it. byssus to sea-weed, which floated at the surface over very great depths.

Distribution. Elsewhere the species is only known on the Ammican sile, namely: Cape Subine

 Btashand Dall $)$.

Remarks. The numerons specimens at my disposal from (ireentand show, that the form is variable to some extent, sometimes swollen and low, sometimes comparatively flat and high; to make this evident I have taken the measurenents of the following specimens:

Length of shell	IIeight of shell	Height I, ength	Breadth of shell	Breadth Length
$10^{1 \mathrm{~mm}}$.	$7.5{ }^{\text {mmm }}$.	75%	$6.5{ }^{\text {men }}$.	65%
9 -	7 -	77.8 -	$5 \cdot 5$ -	61.1 -
$10-$	8 -	$80-$	5	$5{ }^{\circ}$
12 -	$10-$	66.7 -	5	41.7-

In a mannseript left by the anthor of the Index Moll. (inmenlandiac, H. L'. C. Nollor, the following information is siven regarding the anmal: "Ilse mantle is open in front for twothirds of its. extent; the posterior third is closed and forms a short conical tube, broad at the base. The hindmont part of the open mantle may extend a little ont wer the margin of the shell. The foot, when quite extended, is twice as long as the greatest length of the shell, otherwise quite similar in form the the foot in M. latigata; extended whitish, contracted hownish, in yomg apecmans yellowish."

Moller writes further on M. faba: "The colum of the shell is dark chestunt-buwn; the quite small specinens are clear lilac; those I have taken liere in deep water and in the open seat, wete greenish and rery light-colonred ... It ucenrs on Laminaria in great quantity at (ionthanb and further north along the coast; but I have also ohtancel it at a depth of winn., \& Danish mike from the coast."

Lastly, I may quote a remark by I ap. Steenstrup ${ }^{1}$) witl regard to Nodiolaria foba: "Eben dieselbe Lebensart (i. c. wie Mod. Leovgata, of. p. 61) muss anch cine andere Mnschel ans derselben Abtheilung der Gattung Modiolus, nännlich der Mytilus fobo Fabr. fn. grönl, führen, denn Prof. Stecnstrnp latte mehrere in Spiritns aufbewalnrte Exemplare aus Grönland in ähnlichen Byssushiullen gesehen; die Hîllen waren durelı änssere Fäden theils an Sertnlarien- nnd Corallinen-Zweige gelıeftet mad ganz mit denselben bedeckt, theils waren sie zwisehen verschiedenen Ascidien eingewebt, znun 'Theil selbst von den letzagenannten iiberwachsen".

Crenella decussata Montagu.

dytilus dicussatus Montagu, Test. Brit. Suppl., i8os, p. 69. - Crinelle dicussata Jeffreys, Brit. Conchol. Il, 1863, P. 133, Pl. 2S, fig. 6; Sars, Moll. Reg. Arct. Norv., 1878, p. 31, Pl. 3, fig. 4. Wodiola:' ciciruta Mobler, Ind. Moll. Groenlandire, 1842, p. 19. - Crencilla decussuta var. Möreh, Rink's Gronland, 1857, p.94; Aretic Mannal, 1875, p. 133; Rink's Dan. Greenland, 1877, p. 442. Cromellu decussuta Posselt, Medd. om Cironland, XXIII, 18g8, p. i9; Hägg, Ark. f. Zoologi, Bd. 2, Nr. 13, 1905, 1. II3; Jensen, Medd. om Gronland, XXIX, 1y09, p. 329.

The "Ingolf" has taken this species at:
St. 129. N. W. of Iceland............. 117 fini. $6.5^{\circ} \mathrm{C}$. I value.
86. W. of Iceland (Brede Bugt)... 76 - 4 spec. $\&$ numerous valves.
87. - - ... iro - 12 - \& numerous values.

The largest of these shells (St. 87) is 3.75 mm .

West Greenland.

Here C Cdronssutm is common from the sontliermmost parts up to a least Upernivik $\left(72^{\circ} 47^{\prime} \mathrm{N} .1\right.$. $)$. It ocenrs on elay and sand and anong fragnents of shells, most frequently at $20-50$ fin. but also goes higher up (Io fin.) as well as deeper down (200 f111.). The largest specinens measure 5.5 mm . - "It spins, but the threads are so fine, that they can scarcely be seen with the naked eye and even minder Une lens only in certain directions of the light" (H. P. C. Moller M. S.).

East Greenland.

A single specimen, 4.75^{mm}. higln, has been taken on the southem part of the coast at Tiningnekelak ($655^{6 \prime}$ N. L. $)$; according to Hägg (l.c.) a Swedish Expedition is said to have taken a very small specinen in Liranz Josephs Fjord, the onter part of Myskokse Fjord, at ir 6 ¹/2 fm .

Iceland.

When Mërelı wrote his review of the Mollnsea of Iceland he did not himself know Crenclla ducusatar from the island, but was only able to report, that Jeffreys had seen a single specinen

[^62] Iceland at depths of $6-50 \mathrm{fm}$. The following are the varions localitics where it has beem founcl.

The maximmm size is $4.75^{\mathrm{m}} \mathrm{mm}$.

	North lceland:	
Thórshöflı	6 f111., 114	1 valve.
Vidarvik	11 -	
-	131/2 - , hack samd.	I valve.
Axafjördr	$30-$, sand and stonces.	9 valves.
Siglufjürdr	15 -	3 spee \& 3 values.
Skagastrand		1 spee.

The largest of these specimens is $3.75^{\circ}{ }^{\circ}$.

TVhe maximm size of all these specimens is 4^{mm}.

Vestmanmatyan

Soutli Iceland:

49 Inn., clay with a little mud. 5 spec. \& 60 valves. The maximum size is 3^{mmm}.

The Froroes.

St the time when Mäteln prepared his lianmula Moll. lass Vieroënsinm, ('renella decussata was still maknown. During the investigations of recent ycats it has frequently bern fonnd at the liatoos, at a depth of cal. 5-50fin.; the following are the different localitics:

klaksvig.	11 fm .		2 spec. \& I valve.
	10-15	-	$10-\mathbb{S}$ r 60 valyes.
Bordavig	7-10	- black sand,small stones, Laminaria.	ca. 300 spec. $\mathbb{\&}$ numerous valves.
-	10	- , sand with Laminaria.	60 spec .
Fijuc	5-6	- , coarse, black samel.	35 - 心 ca. 100 valv.
Fitudingsford	12 - cai. 20	- coarse sand \& clay.	So - 心 - 200
Kongsharn	12-16	-	10- \& 60 valves.
-	$25 \quad 35$	-	1
	ca. 50	-	$9-\mathcal{E} 160$
V-sthamhava	$3^{\text {T }} 2--5$	- , fine black samd.	Orer iooo spec.
-	5-6	- , fine black sand.	ca. 200 spec. \& a num ber of ralves.
	$10-30$	-	1 spec.
Sorrang	$14-16^{1} \cdot$	- , ooze.	1 valve.
Kallakijoral	40-10	-	3 values.
Tramgisvadg			5 spee.
	135	-	I ralie.
() miles Li. S. H. of Rispen	ca. 70	-	1 -

I6 miles le. by S. of sontl peint of Nolse	So fill.	I spee. \& 2 valies.
I3 - W. by S. of Mlunken	ca. 5° -	12 valses.

The maximum size of all these shells inn only $3 \cdot 5$

Distribution. Cronclladecossuta is an arctic and boreal species, ranging in the nom th Melville Bay ("Fox"), West and East Greculand, Spitzbergen ('Torell and others), Nova Zembla (Leeche), Kara
 the British Isles ${ }^{1}$, Korea and Califormia. In Danish waters it reaches to the southern Kattegat. The vertical distribution extends from $2-300$ fm. $\mathrm{Jeffe} \boldsymbol{f} \mathrm{s}^{\prime}$ statement, that it goes down to ${ }^{1750}$ fm. probably rests on some mistake.

According to my measurements the species becomes 5.5 mm . at Creenland, 1.75 m . at East Iceland, $4^{\text {mnn }}$. at West Iceland and only $3.5{ }^{\text {minn }}$. at the Fieroes. The size thus decrease in the same proportion as the marine elimate becomes milder.

Cardiidæ.

Cardium echinatum Linné.

Pl. III, fig. II (yomng).
 p. 27o, Pí. 34, fig. 2.

Cardium (. Acunthocurdia) echinatum NÏ̈relı, Vidensk. Medd. Naturh. Foren. Kblıv1. 1867, 1’93.

[Greenland].

Fabricius mentions ${ }^{2}$, that he had seen a weathered valve washed up on the beach. Since then no one has fonnd the speeies at (rreenfand and there is in fact mot the least probability that it iives there. ${ }^{3}$)

Iceland.

The species, which was not known earlier from this island, has in recent sears hem fonnd at several places on the south-western, southern and solith-eastern consts.

Soutli-West Icelaud:

Finafjördr, off Kollafjördr.

- moutl of Kollafjördr
- Keflavik.

$$
\begin{aligned}
& \text { S-II }{ }^{\text {r }} \text {, fim, ooze and stmpes. I spece } \mathbb{S} \text { (o valves. } \\
& \text { IO - } \\
& 9^{1 / 2-\text {-I }} \text { - , fine black sand and ooze. } 3 \text { \& } 25 \\
& \text { 15-16 - , fine black sand. }
\end{aligned}
$$

 this statement seems all the more remarkable as the species is mot mentioned cithor boforbor fatian matacologists.
${ }^{2}$) Fanna groenlamlica, 1780,1). 409.
 Grecmand was donblecse derived from Iomopean ballast."

Faxafjördr, ca. 2 miles N. E. of Kef-
lavik.................... $19^{1}=20^{1}$, fim., ooze. 4 spec. $\& 24$ valves.

- , 4.3 miles $\mathbb{V}^{3}{ }^{3}$ S. of Hel-
gasker Vager............. 25 - I3 valves.
, I\% of Videy 9-10 - , fine sand and ooze. 4 -
- , 7 miles N. N. E. of Ska-
gens Liglit.................. 17-20 ${ }^{1 / 2}$ - , sand and sliells.
I valve.
ITafuarfjördr
25 - , fine black sand and ooze.
1 spec. $\mathbb{\&}$ io valves.
These are ont the whole small shells; the largest is only 40 mm . long, and of the specimens containing the suft parts the largest is only 22 mm . long.

Soutli Iceland:

Vestmannaeyjar		1 spec.
-	49 fini., clay with a little mud.	1 fragment \& 2 valves.
S. W. of Eyjafjällajokul.	17	2 spec.
- - -	23 -	15 - \& 4 valves.
	S7 - , sand mixed with ooze.	I valve.
Medalland Bingt	47-37-	6 valves.

The maximum length of these specimens is likewise small, mamely 38 mm .

The maximmun length of these is also only fo mm.

The Færoes.

Here the species is common, at depths from ca. 5 - 80 fin., and reaches a considerable length, namely 57 mm . The varions places where it has been fonnd are the following:

Yidercjde.
Klaksvig
Bordarig

Fijde
Fundingsford
Sk:alefjord
Kongslaavi
Vestmanhavo
ca. 25 f111.
6. 10 -
$7-10$ - , black sand and small stones. 2 spec. and 6 valves. 10 - sand.
5-6 - , coarse black sand.
12-ca. 20 - , coarse sant and clay.
4-10
ca. 50

- -1

3-1t - 4 -
5-6 - , black sand. 7 spec.

Off Sandevaag.		1 spec.
Sörraag, beach.		7 -
-	$14-160^{2}=1111 .$, 00\%c.	1
Kalbakfjord.	$10 \quad 10-$	12 vitlo゙s.
'Thorshavin.		2 spec.
Trangisvaag.		1 -
-	15 -	- valres
13 miles S. of Mresrenicshohm.	ca. $70-$	I valve.
$16-\frac{\text { Li. by S. of soutlı point of }}{\text { Nolsö }}$	- $80-$	2 spec.

Distribution. Curdium ichimutum is distributed along Emrone Irom IVest Finmarken tu Madeira and the Canary Isles, it reaches down to the south-western Kattegat and the Somnd (llyeen). Towards the west it extends orer the Feroes to the sontin-eastern, sonthern and sonth-western const. of Iceland. In the Mediterranean, incheling the Adriatic and Sea of Marmora, a varicts (var. mucronatu) occurs. Its vertical distribution is ca. 5 - 80 f111. ${ }^{\text {¹ }}$)

Remarks. The very small specimens of this species are not easy to recoynize at first glance; as fig. 3 show:, the antero-dorsal comer forms a slarp angle. During the growth of the shell, however, the distance

$+$

Figs. 3 5. ('ardium cithuthum, very young specimens. The appented cross indicates the matnral size. between the "angle" and the beak becomes reduced (see figs $4 \mathbb{\&} 5$, so that the earlier, prominent corner now only appars as a tuoth close in front of the numbo.

Cardium edule Lit111ć.

[Iceland.]

Dr. A. C. Johansen lias brought home a left valve of C.odule taken on the beach at Iftintacy, which is the largest of the Vestmana Islands at Sonth-lecland; the value is thick-shelled and 33.5 . long. As the species has not been found elsewhere at Jeelancl, we mast be carclul in draning comchasions fron this isolated find; this valse may have been bronght to the islands with batlast of in other ways. ${ }^{2}$)

[The Færoes.|

 the fremoes, but from an examination of the specimens from the liserose latelled "(ardium eduli"

[^63]by IIOrCh and preserved in the Mnsenn I have found, that this statement rests on a confusion with C.fusciatum MItg. ${ }^{1}$) (cf. p. Fy and figs. gf, g and 11 in Pl. III).

The species is thus not known from the Færoes and must be omitted from the fana list.

Cardium minimum Pliilippi.

Cardium minimum Plilippi, Enum. Moll. Sicil. I, 1836, p.51; II, 1844, p.38, Pl.14, fig. 18. - Cardium sucioum Itovén, Index Moll. Scand., IS.46, p. 36. - Cardumm mimimum Jeffreys, Brit. Conchol.II, 1863, p. 292, Pl. 35, fig. 6.

The "Ingolf" las taken this small species at the following places:

[West Greenland.]

According to Posselt²), there are 5 specimens of C.minimum in the Riksmusemun of Stocklolns, labelled as taken by the Swedish Expedition of 1871 at Kekertarsuak, which lies at Disko rijord at $69^{r}{ }_{2}$ N. I. I lave lad the opportnnity of seening one of these specimens and can confirnn the correctness of the determination; but on taking the general geograplical distribution of the species into acconnt, I feel conrinced that sone change in the label has taken place, and that the specimens in duestion do not come from Greenland.

Iceland.

The species was not known earlier from Iceland, but in recent years it has been taken (besides at the "Ingolf" stations noted above) at the following places:
6315^{\prime} N.. L... $22^{2} 23^{\prime}$ WV. 1九. $170-114$ f111.
$63^{\circ} 18^{\prime}-21^{\prime} 30^{\prime}-\ldots$.
${ }^{3} 3^{\circ} \mathrm{OF}^{\prime}-20^{\prime} 7^{\prime}$ - 293 -
Vestmanı1aevjar 68.
 and stones.
63 42' N. L., $17^{\prime} 34^{\prime}$ IV.L. $18-40$ -
ca. 1000 spec.
10 - \& 18 valves.
150 - $\&$ a number of valves.

5 -
1 spec. $\mathbb{\&} 4$ valves.

5 valves.
 13 lins summary at the ent of his paper, or lats he simply forgoten?
${ }^{2}$) Deakl. om Cironland, SXIII, 1Sgí, D. 60.

Myre Bugt..................... 58 fin., sand mixed with oore. I value
Lónsvik
to - , ooze and clay: + spece $\mathbb{E} 9$ valies.
C. minimum is thas fairly common and even oceurs in considerable mambers off the western and sonthern coasts of Iceland, at depths of fo-293(111. ${ }^{1}$. The naxinn1113 lengeth in in .

The Færoes.

Nor was the species known from here fonmerly, but in recent years it has been tatken at the following places:

Fundingsfjord	-ca. 20 finl, coarse sand and clay.	1 spee.
Vestmanhavn	5-6- , finc, black sand.	1
$61^{\circ}+0^{\prime}$ N. L., $77^{\circ} 40^{\prime} \mathrm{W} . \mathrm{L}$.	135 -	1 - 275 valver.
$61^{\circ} 15^{\prime}$-- $9^{\circ} 35^{\prime}$ -	ca. 775	ca. 600 spec.
$61^{\prime \prime} 7^{\prime}$ - $9^{\circ} 30^{\prime}$ -	$4{ }^{\circ}$	- -100
16 miles E. by S. of soutli point of Nolsö	So -	I spee.
Akralejte in N. $57 \mathrm{~W} ., 12$ miles	$150-$	to - \& a mmmber of values.

The specimen from shallow water (Vestmanhavis, $5-6 \mathrm{fm}$.) is very small (2m.) at the other localities the species reaches a length of $7-9$ "m. Large numbers still ocenr at a depth of $7 / 5$ finn.

Distribution. Cardium minmum is distributed along Iturope fron the North Cape to Cibraltar, also in the Mediterranean; throngli the Kattegat it reaches down to the morth coast of finmen amb the Somd; over the Feroes it extends to the sonth and west const of Iceland. It has been taken at depthis of ro-ca. Soofin.

Cardium fasciatum Moutagu.
 Pl. III, figs ga-k.

Cardium fasciutum Montig gh, Test. Brit. Suppl., ISos, p. 30, Pl. 2\%, fig. 6; Jeffreys, Brit. Conchol. Il, 1863, p. 2Si, Pl. 35, fig. 3.
 Cardün calule Mörclı (non Linné), ibid. 186\%, 1.93.

The "Ingolf" has taken this species at:

[West Greenland.|

 holm, which are staterl to have been taken at Julianeliat) in sonthem West (irecmand. I fuel cons.

[^64]
vinced, however, for the sane reason as that given muder the preceding species, that some mistake or other lias occurred, and that C.fuscietum does not live at all at Greenland.

Iceland.

From the west coast it is present from many localities, and in some cases in fairly large nmmbers, so that we may say that it is common there; it seems also to be fairly common on the sonth coast; it occurs in smaller numbers and at comparatively few localities on the nortly and east coasts, which is also quite natural, as these coasts have a relatively cold marine climate ${ }^{\mathrm{r}}$. The depths at which the species las been taken lie between ca. io- 120 fm. The maximmm length is $15{ }^{\mathrm{mm}}$.

The varions localities are as follows.

East Iceland:		
Myre Bugt.	26 fm .	2 valves.
Sevdisfjördr off Brimmes	40	I valve.
Bakkafjördr	32-25-	I spec.

The largest specimen is 9.5 mm . long.

The largest of these specimens is 12 mm . long.

[^65]west co.ist

Faxafjordt.
12 seec. \mathbb{E} 20 values
7 values.
2

One of these specimens is 15 mm . long, a second 14.5^{mmm}. and several are 10 l 1 m . Jong.

Heimaey, beach.		2 valves.
Vestmanmaeyju	30 fman , shell-gravel.	I spec. ${ }^{\text {d }}$ - valuce.
--	49 - clay with a little mud.	16 - ※ 100
S. W. of Eyjafjallajökul	15-18 -	I valve.
$63^{\circ} 17^{\frac{1}{1 / 2}}{ }^{\prime}$ N.L1., $17^{\prime} 39^{\prime} \mathrm{W} . \mathrm{L}$.	87 -	1 spec.
$63^{\circ} 24^{\prime}$ N.I.., $17^{\circ} 5^{\prime}$ IV.L.	$70-$	

The largest specimen is 11.5 mm .

Færoes.

Fron these islands we have mumerons specimens and valses from many localitios, en that it must be considered common both near the coast and ont to sea; living speciments hatse bech taken
 14- 16 mm ; in deep water, however, just as at Iceland, it seems to hase a smabler size.

The localities are as follows:

Skatefjord
Kongshaven

Vestmanharn

Sörvaag
Kollefjord.
Thorshavin.

> - , onter roads

Nolsö, deep holc at north end
Trangisraag.
5 miles N. by E. of Myggences east point
I3 - S. of Myggentesholm........ - 70 -

6 miles N. by IV. of Kalsö........... . . 60
$\mathrm{T}^{\mathrm{t}} \mathrm{z}^{2}-2$ miles off the month of Bordövig $20-30$ -
${ }_{1} 6$ miles S . of south point of Nolsö . ca. 80 -
16 - E. by S of soutl point of Nolsö - So -
Akralejte in N. 57 W., 12 miles...... - 150
I3 miles W. by S. of Nmmken........ - I50 -

2 valves.
14 spec. \& 17 valves.
I valve.
io spec. $\mathbb{\&} 45$ valves.
2 - \& 3 -
1 - $\mathbb{E}^{2}-$
$2-\mathbb{K} 9$
I -
2 -
2 valves.
2 spec. \& 8 valves.
Numerons spec. \mathbb{K}^{8}
I valve.
50 values.
2 spec. $\mathbb{\&}$ il valves.
i valve.
I spec.
5 -
I - \& 4 valves.
2 valves.
40

Distribution. C. fusciatum is distributed along the whole of EMrope, from the western part of the Murman Coast to the Canary Isles and the Eastern Mediterranean; throngh the Belts it reaches down into the Western Paltic. Towards the west it extends to the Freroes and Iceland. G. O. Sars estimates the sertical distribution to be from $10-180 \mathrm{fm} .{ }^{1}$), but at the Froroes it reaches $u p$ to 5 fm . (cf. above), according to Sparre Schneider it comes into 3 fm . (at Tromsö) and according to C. G. Joh. Yetersen into 2 fm . in the sonthern Kattegat.

Remarks. Cardium fascintum appears to be a very variable species at Iceland and the Herroes. It occurs in two forms:
a. The shell short, strongly ventricose, with the posterior area sloping quickly downwards and ats if abruptly separated from the middle area by a keel (Pl. IH), figs.9a-b).
b. The shell sonewhat elongated (especially posteriorly), not much tumid, with the middle area grading without sharp boundary into the posterior area (Pl. III, figs. gc—d).

Between these extreme forms, however, there are transitions. So far as my experience goes, the thmid variety is nsnally an oceanic form, whilst the elongated and flat variety is found in fjords; but both may be found together in the latter ${ }^{2}$).

[^66]The contonr changes from the obliquely cordiforn or quite triangulan (sece Il. Ill, fig. りi: just as in C.(xigzum) to become broadly oral or almost circular.

There is also great variation in regard to the senppure. Sometimes for example, the ribs maty be rough with scales and pointed tubercles not only on the anterion and posterion area, hut the middle area may also be partially or wholly beset with scales or tubercles; in this way we obtain a form such as that figured in Pl. III, fig.ge, the sculpture of which resembles that in ($:$. mednsum. hut transitions show, that it can be traced lack to the common form C.fosciutum with smonth, central ribs. In the yonng, with contour like that of C.exighmm, the posterior ribs are besct with very pointed and compatatively long spines.

The ribs are usually quite flat and only separated by fine line, but very often the interspace between them is somewhat broader, yet never so broad as the ribs themselves. Sometimes, however, the ribs are more or less convex, especially when they are separated by a distinct interppace. Not

 fused by Nörch with Cocdule; the resemblance is striking, indeed, but fac pointed tubercles om the posterior ribs (Pl. Ill, fig. $9^{\text {l }}$) reveal its trme mature - in C.cdut the rugosities are lamelliform liere

Cardium nodosum Tirton.

[Færoes].
To this species Mörch (Vidensk. Medd. Naturh. Foren. Kblari. ISfor, p. 9t) refurs 7 specimens from Thorshavin in the Fieroes. I have not been able th find these specimens hore the Dinsemm, and as the species is not present in the considerable collections, which have been made at the fremes in recent years, 1 think it very donbtful, if the species occurs there. Possibly, an munsuatly well sculptured form of ('. fosciutum (cf. above and Pl. III, fig. ge) has given rise the confusion.

Cardium ciliatum Fabricins.

Pl. III, fig. Io (foming).

 Sars, Moll. Reg. Arct. Norre, 18-8, p. 46, I'l. 5 , fis. + .

 the ventricose, kueded form from Iceland and the laeroes.

 "Tist. Mar. likur. (18SO).
(ironland, 1857, p. 92; Vidensk. Medd. Natnr1. Foren., 1868, p. 220; Arctic Mannal, 1875, p. 132; Kink's 1)an. (irecnland, 1877 , p. 441 ; Posselt, Medd. onn Gronland, XIX, i895, p. 70; ibid. X.X1l, ISgS, p. 57; Hägg, Ark. f. Zoologi, Bd. 2, Igot, No. 2, p. 5 ; Jensen, Medd. om Gronlancl, XXIS, rgog, p. 35^{2}.

Thee "Ingolf" has taken this species at:

West Greenland.

Here the species is very common from the sonthermmost part of the coast at least up to Upennivik; further north, it has been taken in Melville lay ("Fox"), and on the American side it las been found as far north as at Grinnell Land in Dobbin Bay ($79^{\circ} \mathrm{fo}^{\prime}$ N. L. . . It occurs most freguently on clay botton and in moderate depths ($10-$ So fnin.), but is also found botlo on hard and quite soft bottom, as also in greater depths ($100-280 \mathrm{fm1}$.). The largest specimen is 65 mm . long.

East Greenland.

It has been taken here at 5 localities, from Angmagssalik to Nackenzic Bay ($65^{\circ} 35^{\prime}-\mathrm{ca} .73^{1 / 2}{ }^{\circ} \mathrm{N} . \mathrm{L}$. $)$ and in deptlis of ca. io-4ofin. The largest specimen is 62 mm . long.

Iceland.

On the north coast Cardium ciliatum is very common, as also on the east coast (at least down to Bernfjürlr ${ }^{1}$) and on the north-west coast; on the sonth-west coast it lives in Hvalfjördran ; on the south coast it has not been found. It keeps especially to clay and sand mised with clay, but is also found where there is ooze. The depths vary from 6- 85 fin, but are most frequently $25-50$ fme, the yonng lowever being comparatively freqtent in more shallow water; on the other hand, the "Ingolf" took a very yonng specimen (living) at 138 fm. (cf. above). The maximnnn length is 74^{mm}.

The varions places where the species was fonnd are as follows.

Reydarfjördr	48 f111.		1	spec. \& I valve.
- .	50	-	5	-.
-	68	-	S	\& 12 valves
-	74	-	1	- \& 1
-	86	-	1	-
Outer Reydarfjördr	68--80	-	2	
Vidfjördr	${ }^{1} 5$	-	I	-
Nordijördr	40	-	3	valves.
Mjófifjördr, head of ijord.			I	spec.
Seydisfjördr	9-5	-	1	
--	26-50	-	1.4	
-	40	- , noze and clay.	3	
Mouth of Seydisfjordr	3^{8-14}	- , mud.	23	-
- - -	ca. yo $^{\text {a }}$	- , stomach of haddock.	9	
Seydisfiördr	60-30	-	I	
- Hánefsstadevras	10-2	-	I	
Lodmunndarijördr	$30-23$	- , onzc.	1	-
Bank off Lodnnı11darfjördr.	$38-17$	-	I	-
$65^{\circ}+2^{\prime}$ N. L., $13^{\circ} 57^{\prime}$ W.L.L.	60	-	I	-
Vopuafjördr.	6-12	-	2	-
Pakkafjördr.	7	-	I	
-	12--15	- , black sand.	12	--
-	20-28	- , clay mixed with sand.	4	--
-	$32-25$	- , -	7	
-	20-52	, - - -	30	-- \& 35 valves.
- .	52-43	- , - .	12	
Off Midfjördr	$35-50$	-	I	
Finnafjordr	IS	-		value.

As already mentioned, the specimens from the two southernniost localities are small; from Inyre Bugt there is only a very small specinen (1.5^{mm}), whieln besides was deat; and from I onssik the specimens are likewise dead, thongln of a fresh appearance and of at most 22.5^{nm}. in length. But
 The largest specimen taken on the cast coast is 73 mm .

Vidarvik	$13^{\mathrm{T}} / 2 \mathrm{fm}$., black saird.			spec. $\mathbb{\&} 3$ valves.
Axafjördr	22	- , stones and shells.	I	
-	22	- , mud.	II	-
-	25	- , ooze.	3	spec. \& 2 valves.
	30	- , sand and stones.		valves.
Skjálfandi Bugt	21	- , black sand.	4	-
-	31	- , very fine, black sand.	I	spec.
Husavik in E. 4 111ilcs.	42	-	2	-
- in E. by S.	$47-58$	-	3	-
Öfjord.			3	-
- , west side of Oddeyri	5-9	- From stomacli of llippoglos-	8	-
- Höfdi	6-12	- soides platessoides.	I	-
- , at Svalbardserri	10--20	-	1	-
- , Akureyri	17	-	I	-
- , just S. of Hrisey	18	- , clay.	2	-
-- , S. of Hrisey.	17 - 20	- , stones and mud.	1	valve.
Kollafjördr.	5	-	I	spec.
Skagastrand.			2	-

The largest specimen is 74 mm . long.

West Iceland:


```
-- , I mile F. N. F. of Ilelgasker
    V'ager............... \(1 I^{I}\) ュ - I speé.
- , 4.3 miles \(V^{\top} .{ }^{3}\) \&. of IIelga-
    sker Vager.......... 25 - 5 virlyer
```



```
- , ca. \(L^{1 / 2}\) miles N. V'. \(1 /\) N. of
    Iingey Inake......... Ig - shells antl stones. I
Reykjavik.
```



```
Hafnarfjördr ...................... 25 - finc black sand and oozt.
```

From the south-west coast (region of Faxafjördr) only sepurated values or dead (ennity specimens are represented, hlongls they often appear quite "fresh", witl well-preserved liganment and periostracnm; the maximum length is only 53 m. Hyalfoindy is lowever an exception from what lats just been said, as living specimens have been taken there, the largest of which is if long; a much larger, but dead specimen appears quite "fresh" and the largest of the separated values is or ${ }^{\text {on }}$. loner. On the north-west coast the species thrives well and reaches a length of 73 mm .
[Færoes.]
 it is quite small (3.75^{mm}.) and looks ancient (fossil). Tlie species does not live at the islands.

Distribution. Cardium cilietum is a high-arctic and circmmpolar species, ats it occurs, apart from West and East Greenland and northern Iceland, at Spitzbergen, in the Barents Sea, at Nusa Zembla and in the Kara Sea, in the Polar Sea of Siberia, Berings Sea, at Sitka and in the If cllington Chamel; the sonthen bonndary for its distribntion lies at Cape Cod (D)all), East Finmarken (Sins and Friele), northern Japan and Puget Sound (Dall).

Remarks. The shape of this species varies a good deal, ats will he seen from the atecompanying measurements of 4 specimens from Iceland:

Length	Height	Height Length	Brearth	Brealth I, engll
$73 \mathrm{mm}$.	67 mm .	91.5	fir	0.6 .4
72	71	98.6	4°	55.6
71	64	90.1	12.5-	54.9
65	58	89.2	33	50.8

The fery small specimens (see Pl. IIf, fig. Io ean maly be recognized as belomgins to this species on comparing them with somewhat larger specimens becanse the dorsal margin foms an angle with the anterior margin. The young thas obtain some rescmblance w those of (, echmotum (cl. I. IS and Pl. IlI, fig. It, but are easily distingnished by the fate, that the radiating ribs are mome numbuts,

Ca． 27 （against ca．I9 in C．echimatum）and have a much finer spination；further，the posterior margin rises almost vertically（in C．echinatum on the other hand the posterior margin bends forwards）．

Cardium elegantulum（Beck）Moller．

Cardum chagantulum（Beck）Moller，Index Moll．Groenl．，1842，p．20；Gould S Binney，Rep．Invert． Mass．，fS70，p．I41，fig．451；Sars，Moll．Reg．Arct．Norv．，1878，p．47，Pl．5，fig． 5.
Cardium cleğutulum Mörch，Rink＇s Gronland，1857，p．92；Vidensk．Medd．Naturh．Foren．1868， P．220；Arctic Manual，1875，p．I32；Rink＇s Dan．Greenland，i877，p．44I；Posselt，Medd．om Gronland，犬゙XIII，1898，p．56；Jensen，ibid．XXIX，1909，p．352；Odhner，Ark．f．Zoologi， 13d．7，No．4，1910，p． 19.

West Greenland．

The species has been taken here at several localities，from Julianehaab（ $60^{\circ} 43^{\prime} \mathrm{N} . \mathrm{I}_{\text {f }}$ ）to Upernivik $\left(72^{-} 4 \gamma^{\prime}\right.$ N．I 1 ）；it keeps mainly to clay buttom and depths of $20-100 \mathrm{fm1}$ ．It reaches a length of ${ }^{1} 5 \mathrm{~mm}^{\mathrm{mm}}$ ．

East GreenIand．

Thlie Danish Expedition of $1898-99$ took a specimen of 12 mm ．in length at $65^{\circ} 39^{\prime}$ N．L．，namely at T＇asiusak，20－30 fin．，stony ground with sparse algal vegetation．

Iceland．

It has only been taken here at some few places and only on the north－eastern part of the island between Bernfjörlr on the east coast and Thistil Fjördr on the nortly coast）．The varions places are as follows：

Moutlı of Berufjördr	54－41 fill．，ooze．	3 spec．\＆ 6 valves．
Borgarfjö	So	2 valves．

The largest specimen is 12 mm ．long．Odhner（l．c．）also records some few specimens from Berufjördr．

> North Iceland:

N．of Lánganes	$70 \mathrm{fm3}$ ．	I spec．
Thistil Fjördr	50	I valve．

The largest specimen is 9.5^{mmm} ．long．Odhner（l．c．）records further a young specimen from Thistil Fjördr， $10-16$ fin．

Distribution．C．clegruntulum is an arctic species，which is found，apart from West and East （rrecnland and North－East Iceland，only at north－western Norway（to Tromsö）at depths of（IO）I5 127 fin．（Sars，Sp－Schneider，Friele \mathbb{E} Grieg）r）．－It has been found as fossil by M．Sars at
${ }^{1}$ ）Both C．O．Sars and II．J．Posselt give the east coast of N．America as habitat for this species，but this is wn－ doubtedly a mistake；both of these authors have probably assumed that Cardium clegantulzm is Anerican，because it was in－ chuted by Could in his work on the Invertebrates of Massachnsetts（1．c．），but Gould does not give any American locality， only（irecmand．Nor have I been able to find the species as American in other lists of Packard，Dall，Bush，Whiteaves ete；thns，it is only mentioned as from Creenlaud by W．H．Dall in his＂Synopsis of the Fan．Cardiide and of the North American Species＂（l＇roc．U．St．Nat．Mus．X゙XIII，1900，p．386）．

Christiansund in western Norway, by W. C. Brogger at Chrintiania (in the "fonneme Atca-elay") and by Knipowitsclu at Dwina.

Remarks. Heasurements of some specimens show, that the shape is more or less variable:

Length of shell	Height of shell	Prealth of shell
12.5 mm.	11.25 mm.	8
$12.5-$	10	$8-$
$12-$	$11.5-$	$9.5-$
$12-$	$9.5-$	$7.5-$

|Cardium norvegicum Spengler.|

Mörch has shown already (Vidensk. Meddel. Naturlh. Foren. Khluwn. ISh7, 1) 9th, that Jeffieys reference to this species as Freroese (Brit. Conchol. H, 1863, 1r. 296) is due to a mismuderstanding.

Cardium (Serripes) groenlandicum Chempitz.

Pl. lli, figs. $12 \mathrm{a}-\mathrm{b}$ (young).
Cardurn groculandicum Chemuitz, Conch. Cab. VI, 1782, p. 202, M1. 19, fig. IgS. - Cordium horate Reeve, Conch. Icon. II, 184.-45, Sp. I3I, Pl. 22, fig. I3I. - Cerdium fabriaii Destiayes, Proc. Zool. Soc., IS54, p. 333. - Aphroditi grocmlandica Gould \& linnes, Rep. Invert. Mass., 1870, p. 14t, fig. 454 ; Sars, Moll. Reg. Arct. Norv., 1878, p. 49, Pl. 5, fig. 3.
Temus islundica Fabricins (non Linné), Fanna groenl., i780, p. fir. - Curdium srocnlundicum Noller, Index Moll. Groenl., ISt2, p. 20; Beck, in Gamard, Voyage de la Recherche, 111. 15, fig. I-15; Mörch, Rink's Gronland, IS57, p. 92; Vidensk. Medd. Naturh. Foren.. IS6S, p. 221 (var. solida): Arctic Mannal, 1875, p. I32; Rink's Dan. Greenland, is7\%, 1\%.4t; Friele, Nyt Mag. f. Naturvidensk., 24 Bd., 1879, p. 222; Recher, Österr. Połarst. Jan Mayen, 1886, 111, p. 7o; Posselt, Medd. om Gronland, XIX, i895, p. 7o; ibid. XXIII, iSgi, p. 55 ; Jennen, ibid. X゙NIX, 1909, p. 353; Hägg, Ark. f. Zool., Bd. 2, 190t, No. 2, p. 50.

The "Ingolf" has taken this species at:

```
St. II3. Norwegian Sea....................... I309fnn.
A fragment of a left valse.
- IIg. - ....................... ioio. A fragment of a right balve.
```


West Greenland.

The species is one of the commonest Molluses here, from the somthommost part of the conast at least up to Upernivik; further north it has been taken by the "Fox" in Melville Bat and by the "Fram" on the American side in Rice Stait ($78^{\circ}+5^{\prime}$ N. I_{1}). It keeps main?! to soft (chay) bottom and to deptlis of $10-50 \mathrm{fm}$. It may attain a length of 110 mm .

East Greenland.

It has been taken here at 9 loculities, distributed from Angmanswalik wo sabine lotand, with depths of ca. 7-25 (fo) fm. The largest specinen wats 7 (0mm. long.

Jan Mayen.

The Norwegian North-Atlantic Expedition of 1877 took mumerous, small specimens at $10-20 \mathrm{fm}$, the Austrian Polar lixped. of 1883 ir specimens mp to 62 mm . long at a depth of io fun. The Danish Ifxpectition of igoo also took sereral specimens $u p$ to 62 mm . long, but all empty, at depths of 55 and $50 \quad 60 \mathrm{~mm}$.

Iceland.

The species is very common on the north-west, north and east coasts (down to Berufjördr); on the somll-west coast it lives at any rate in Hvalfjördr; it has not been found on the sonth coast. It keeps to soft bottom and depths of ca. (4) 6-60 fm. The largest specimen is 92 nm . long.

The rarions localities are as follows.

East I celand:

The specimen from the sonthermmost locality, Hornafjordr, is empty and only 8.5 mm . long; but from Peruffördr northwards the species becomes common and reaches a considerable size (maximum lengtli 92%. The specinen from the shallowest depth, 4 fm . namely, is young (only i5.5 mm. long), but already at a depth of 6 fm . the species reaches a length of 89 mm .

It is due naturally to incomplete collections, that so little of this species is present from the
 deptll of 6 fmin . is 86.5 mm .

West Iceland:

Lemafjördr	$27^{1 / 2}$-30 f111.	1	spee.
Isafjardardjup	60-63-	1	--
Amarnes	5-7-	2	-
Onnudarfjördr.		2	-
-	ca. 9 -	1	
-	IO -	6	-
-	- $10-$	35	-
.	- 12	3	
-	12-14.	7	-
Dy̧afjördr.		1	
, inside Thingras	10-12\% ${ }^{1}$ - , mindand small stones.	33	values.
Fossfjördr.	H -	1	valse.
Talknafjiordr.		3	spec.
Patriksijordr.		1	
Crinndarfjödr.		8	values.
Olafsvik.		3	-
Hvalijörclr	10-12 -	1	nece \& 3 ¢alues.
-	2.4 -	10	-
- , Hvalmmsvik	10-12 - , black ooze.	2	
- -	111/2-12-	3	
Faxafjördr, Kollafjördr.	8 - , fine sand and mund.	1	
- , moutl of Kollafjördr.	$9^{1 / 2}$	7	- 心. fralves.
- , - - -	$9^{1 / 2}$ - II - finc hack sand and onなe.	1	\& 22
.. , off ǩollafjördr	S-1 $\mathrm{I}^{1 /}$ - , onte and stomes.	1	\& 30

On the northern part of the west coast C. groculandicum is common and reaches the considcrable length of 80 mm . As the above list slows, a considerable material has also been collected on the sonthern part of the west coast (region of Faxafjördr); we might think, therefore, that the species is also common on this part of the coast. It must be emphasized, however, that the living specimens hitherto taken from the bottom of the sea are usually small ($2-12 \mathrm{~mm}$. long $)$, and that the separated valves accompanying them most often lave an "ancient" appearance and do not reach any great length cither (at most $43{ }^{\mathrm{mm}}$. long). From this, however, Hvalfjördr, with the Hvanmsvik lying on its sonth side, again forms an exception, as very large specinnens have been taken here (up to 79 mm . in length) and containing the animals. The specinen from Keflarik is also of a fairly good size and, though emptr; appears rather "fresh".

Distribution. Cardinm grocnlandicum is a high-arctic and circumpolar species; its sonthern boundary lies in the Atlantic at Cape Cod (Dall) and Varanger Fjord (G. O.Sars) ${ }^{\text {I }}$) and Porsanger Fjord (Friele), in the Pacific at Hakodade and Puget Sonnd (Dall).

Remarks. However well-characterized this species may be against all the other northern Cardiada, it nevertheless slows a series of variations.

This is especially evident in quite young specimens. In regard to sculpture some are radially furowed only on the posterior area, the majority likewise on the anterior area, some even over the whole shell. Some are quite flat, others greatly ventricose and transitions occur. Some are minformly colonred, whitish, straw-yellow, gray or brownish, others again have dashes of yellowish-red.

Achlt specimens vary especially in regard to form. Some are high, short and greatly ventricose, others comparatively elongated and flat, as will appear from the accompanying measurements:

Locality	Irength	Height	Height	Breadth

[^67]Both Mörch and Posselt have noticed that the species is variable. The former remarks: "The lcelandic specimens are much more thick shefled and elongated than those from (ireenland". Posselt modifies the last part of the sentence in the following statement: "Plas variety nblonga. which is the commonest form at Iceland, is met with liere ancl there at Sonth (irectnland". So far as I can judge, there is $n 0$ such connection between the geographical distribution and the outer form of the anmal; the variation seems rather individual. In any case, M ïrch's statement is erroncons in fegard to the first point and greatly exaggerated as to the second.

In Pl. III, fig. i2a I have represented a small specimen of the strongly sonlpturer, yonthinf form, which might possibly give rise to difficulty in the determination, if it occurred isolated. Finther, for the sake of comparison I give a comparatively smooth specimen (Pl III, fig. 12 b), om which, however, as usual the prodissoconch is strongly sculptured.

Isocardiidæ.

[Isocardia cor Linné.]

Posselt has introduced this characteristic Bivalve into the fanna of (iretnland. Fn the Stochholm Musemm he fonnd, namely, a fragnentary valve, o^{mm}. long, taken according to the label by the Swedish Exped. of $18 / 1$ at $63^{\circ} 35^{\prime}$ N. Le., $52^{\circ} 57^{\prime}$ WV.L. and a depth of 43 fm. "To judge from the discovery of the dead valve, it may be taken as probable, that /socordion cor lives in the Davis Strait", writes Posselt ${ }^{1}$).
IV. C. Brogger²), on the other hand, has pointed ont, that /socordin cor, which is a southern (Lusitanian) form, at the present time to be considered a great rarity on the Norwegian coasts, is certainly extinct at Greenland, and that the fragment mentioned by Posselt must in all probability have belonged to a fossil specimen.

As l.cor does not occur at the Faroes, nor at Iceland, which have a much milder marine climate than West Greenland, and as it does not occur at North America either, I also think it quite improbable that it lives on the banks in the Davis Strait.

During a visit to the Stockhohn Musemm I cane to the conviction, that an exchange of label had probably taken place, and that the valve referred to had not been taken at (irmenland at all. In any case lsocardia cor should be struck ont of the Greenfand fanna.

Cyprinidæ.

Cyprina istandica Linné.

Pemus islandica Linné, Syst. Nat. ed. 12, 1, 2, 17万7, p. 1131. - Cyprima ishmdica Jeffreys Iirit.

 Medd. on Gronland, XXIII, 1898, p. 6I.

1) Medh. om Gronland, XX゙III, ISys, p. 54.

The Ingolfexpedition. 11. ς.
'The "Ingolf" has taken this species at:

St. 86. West Iceland (Brede Bugt) 76 fm .

- 6. S. E. of Iceland 90 -

A spec. $13{ }^{\mathrm{mm}}$. long and 3 valves of small specimens and fragments of a larger specimen.
A fragment (with sharp edges) of a large specimen.
|West Greenland].
The Copenlagen Zoological Museum contains:
a. 2 corresponding valves, 43 mm . in length, taken according to the label at Jakobsliavn by Dr. Rudolph; on this basis C. islandica was for the first time recorded as belonging to Greenland in NIOrch's list of 1857 . 'Tlie periostracmm is preserved; there is 110 trace of soft parts and the valves bear distinct marks of having lain in a mass of sand mixed witl clay.
b. I right valve ${ }^{\mathrm{I}}$, 37^{mm}. lon g^{2}), taken according to the label by the malacologist H. P. C. Moller (thnss about the middle of last century) in "Davis Strait, $7-8$ miles from land".

Thus, living specinens are not known from Greenland, and it seems to me inconceivable, that a Bivalve such as C. islundica conld possibly have escaped attention, if it now lives anywhere at Greenland In the first place, its size is considerable, so that it is not likely to have been overlooked, as the Danish part of the West Greenland may be said to lave been well-investigated, so far as the coastal belt is concerned. Further, we must remember, that C. islandica is frequently washed up on the beach, near which it lives; but C. islandica is not found either among the large number of washed-up shells, which have been brought home from Greenland.

These facts seem to me to indicate quite definitely, that C. islandica does not now live at Greenland; the "dead" shells mentioned above may be taken to lave been "sinbfossil", unless some change of label has taken place in the course of time.

In any case Cyprina islandicu should be omitted from the Greenland fanna.

Iceland.

The species is to hand in large numbers from the east, north, west and south coasts, so that it is probably common all round the island ${ }^{3}$). Adnlt specinens lave been taken at depths of 4-30 fin.4), the yonng down to 76 fin. It lives chiefly on sandy bottom or sand mixed with clay, but may also be met with on clay bottom. The maximum length is 105 mm .

Færoes.

Fere the species is quite common, on sandy botton or sand mixed with clay, and reaches a length of 110 mm . Adnlt specimens have been taken at depths of $5-50 \mathrm{fm}$, the young down to 70 fm.
${ }^{5}$) This single valve is erroneonsly given in Posselt as "2 spec.".
${ }^{2}$) It is consequently misleading, when the length is given as 120 mm . in Consp. Faunæ groenlandice.
3) I omit stating the varions places where it has been found, as the naterial at hand consists for the most part of young and small specinsens, whilst adults are rarely brought home, owing to the large space they take up.

4 (on the sonth and sonth-east coasts, however, large empty shells have been taken at several places at greater depths, down to 90 fm .

Distribution．On the North American side C Mprime estemtun occurs from Cape IIatteras wo the Newfonndland Bank and the southern part of the Gulf of St．Lawrence ${ }^{1}$ ．（on the Fintopean side it is distributed from the sonth－west of France（Arcachon）to the Nurman Corast and White Seaª towards the west it reaches over the Feroes to Iceland；from the Kattegat it reaches into the Somnd and through the Belts down into the sonth－westem Baltic ${ }^{3}$ ）．（yprimn istmalica is consequently，as．I have already more fully shown on an earlier occasiont），a distinctly boreal form，a result that Prof．Brögger las also come to from a consideration of its late immigration into southern Norways． The rertical distribution is ca 4－50fm．，but the foung may be met with in greater depths＂y．

In geologically very late（postglaciah deposits it las been found as far morth as at Spitzoergen， which indicates that the climate of that time was somewhat milder than it is now

Remarks．Gould \＆Binney write regarding（yprimm islandica（op）cit．p．131）：＂It is subjuct to very little variety＂．This does not agree with the experience I have gained on going throngh a number of specinens from Iceland and the Farocs．I find，that the three dimensions of the shell may vary considerably，as will be seen from the measnrements given below：

Locality	Lengrth	Height	1teight Length	Breadth	Brealth Length
Reykjavik．	105 m＂．	93 m＇m．	88.6%	61.5 mm ．	58.6
Vestmanliavis	104.5 －	S9	85.2 －	51	48.8
Keflavik	102.5 －	83.5 －	81.5	58	56.6
Seydisfjördr	102	78.	76.5	51	50
Reykjavik	99	S2	82.8	57	55.8
Onlundarfjördr	98．5－	82	$83.2-$	50	50.8
Vidarrik ．	93 －	88.	94．6－	52	55.9

5）Posselt（1．c．）gives it from Labrator and Packard as his authority，but it is not mentioned in the latter＇s ＂Yiew of the recent Invertebrate Fanna of Labrador＂（Mem．Boston Soc．Nat．Hist．vol．I，Iart 11，is6\％，p． 262 ，wor in the later lists of the Molluscan fauna of Labrator hy W．H．Dall and Katharine Bush．The northern bonntary for 1 ts occur－ rence at N ．America is fixed，I find by the following statement of Whiteaves：＂Nlthough recorded by fabricitus as a Greenland shell，this species has not yet been found in the Gulf of St．Lawrence，north of the baie des Chaleurs＂cital．＂f the Marine Invertebrata of Eastern Canada，p．130；Geol．Survey of Canada，1gon IV．is not right however in his refermee
 （Cyprina）islandica，but with（ardaum（Serripes）groenlandicam Che $1111 \mathrm{it} \%$
${ }^{2}$ ）Cattie states，that it has also been taken in the eastern the＂cold＂）part of the Muman sia（Le＇s Lamellibran－ ches ．．．．du＂W゙illen Barents＂．Bijdragen tot de Dierkunde，iSS6），but だnipowitscla has never foumel it there（\％ur kemut－ niss der geol．Gesch．der Fanna les Werssen und des Murman－Meeres，p．2\＆．Verliandl．Kiais．Russ．Mincral．（iuscllsch． St．Petershurg．2．Ser．，Bd．XXXVif，No．Il，so that it must be in any case extremely rare．

3）In his lists showing the distribution of the Mollusea taken by the Swedish lixperlitions of isf．and infor，Lecthe
 appears again in Posselt（．C．）；some mistake in writing or printing mast have crept in here，as the species is not montioncel in any of the lists published by Dall，Crosse，Fide．Smith or Krause on the Moflusea of tlre Beriug Beat
 1902，p．33．

6）A．C．Johansen lias shown，that small（yomg）specimens can be met with cwen in the abysall ragion，as Jefferest
 Naturh．Foren．Klohme，1gon，p．44）．
 igio，p． 400.

Astartidæ.

Astarte borealis Chemnitz.
 Pl. IV, figs. Ia-f.

l'onus borcalis Chemnitz (partim), Concli. Cab. VII, if84, p. 26, Pl. 39, fig. 412 (non figs.413-4I4 ${ }^{1}$. Tridontu borealis Sars, Moll. Reg. Arct. Norv., 1878, p. 50, Pl. 5, fig. 8^{2}).

Astarte arctica Moller, Index Mloll. Groenl., 1842, p. I9. - Astarte semisulcata Mörch, Rink's Gronland, 1857 , p. 92 ; Vidensk. Medd. Naturl. Foren., 1867 , p. 95 ; ibid. 1868 , p. 222; Arctic Manual, 1875, P. I32; Rink's Dan. Greenland, 1877, p. 44 I . - Astarte borcalis Posselt, Medd. om Gronland, X1N, 1895, p. 71, Pl. I, figs. S-12 (var. scricea Poss.); ibid. XXIII, 1898, p. 6ı; Jensen, ibid. X̌IIN, r909, p. 335.

The "Ingolf" has taken this species at:

St. 33.	Davis Strait.	35 fm .	I living, I dead spec. and I valve.
35.	- -	362 -	I valve of a young spec.
86.	W. of Iceland	76 -	S valves of young spec.
- 124.	N. - -	495 -	I valve.
- 125.	- - -	729	1
- 110.	N. E. of -	781.	4 valves (corresponding).
- I20.	- - -	885 -	4 -
- I 16.	S. of Jan Mayen	371	4 -
- 117.	- - -	1003 -	I valve.
-113.	- - - -	1309	I -

West Greenland.

I. boralis is common along the Danish part of the coast; further north, it is fonnd at Port Fonlke on Smith Somd (Hayes), on the American side even at Dumbbell Harbonr at $82^{\circ} 30^{\prime}$ N. L. . ("Alert \& Discovery"); the bottom-soil is mud, sand and clay. The depths recorded lie between 550 fm .3). The maximmun length is $44^{\text {num. }}$

East Greenland.

Here the species las been taken by Danish, Swedish and German Expeditions at quite a dozen places on the stretch from Angmagssalik to Shannon Island (ca. $65^{\circ} 30^{\circ}-75^{\circ} 30^{\circ}$ N. L.) in depths of 3-40 fin. The maximmm length is 44 mm .

[^68]
Jan Mayen.

A. borcalis has been taken here by the Norwegian North-Atlantic Iixpeditnon at in - ${ }^{1} 5 \mathrm{Fm}$. (Friele), the Austrian Expedition at 65-90 fin. (Becher, sub. nom. A. borentis Ch. and A. producta Sow.) and the Danish Expedition of Iquo at I_{5} and 50 fin.

Iceland.

On the west coast a large number of speemens lave been taken at many localitice, so that the species must be common here. From the north coast and especially from the east coast, on the other hand, we have A.boralis only from a few plaees and it wonld thins seem to be comparatively rare in these parts of Iceland. - It occurs on sand, clay and mixed botton-snil; the depths recorded for living specimens lie between 3 and 3 I fmi. The maximmm lengeth is $47 \mathrm{~mm}^{\mathrm{mm}} \mathrm{m}^{\mathrm{H}}$

The various localities are as follows.

Berufjördr, Djupivogr
Seydisfjördr, at Skulavig
Lodmundarfjördr \qquad . ca. 20 - , from stomach of haddock. Crmmólfsvik.

Io fm. 2 values.
6 - , black sand.

East Iceland:

I spec.
I -
7 values.
These few occurrences might indicate, as mentioned, that 1 . borealis is comparatively rare on the east coast; and we can hardy consider it due to chance, that this species especially has not been taken by the collectors, when a species of similar size and occurrence such as A. elliptica is to hand from the east coast in large numbers and from rather many localities (cf. p. IO9).

On referring to Dr. A. C. Johansen, who has explored the coasts of Iceland, this zoologist has kindly given me the following information, which agrees well with what has been said above: "In my notes from Iceland I find Astarte borcalis recorded from the beaeln at Sevdisfjördr, but not fron Bakkafjordr, Berufjordr or Hamarsfjördr. As I have noted it from the beach on the south-west and west coasts, from Vestmanmae!jar, Revkjavik, Stykkisholmr and Arnarfjördr, this wonld indicate, that it is commoner on the shores of the south-west and west coasts than those of the east coast".

It may however be added, at the same time, that Nils Odhner, who has only had a relatjely small material at his disposal for his paper: "Marme Mollusca of Iceland"a is able, nevertheless, to record A.borealis from a locality on the east coast, namely:
Berufjördr.............................-30 fın. Many spec.
The largest of our specimens is 4^{mm}. long, of Dr. () dhner's $\mathrm{f}^{6 \mathrm{~m}}$.

[^69]Raufarhöfn 30 fnn. Many spec.

Axafjördr
Skjálfandi llugt.
Husavik $\boldsymbol{j}_{2}^{1}-10$ -
()fjord

Skagastrand
Odnner l.c. records it as taken at:

30 finl., sand and stones.
31 - , fine black sand.

The largest of the specimens to hand is 40 mm . long.
Tlie same almost may be said regarding this part of the coast as abont East Iceland; we ninglit lave expected to find A. borentis very common on the north coast, and it is thins remarkable that there is so little material from there.

West Iceland:

The largest specimen is 47 mm . long.

South Iceland:

Vestmannaeyjar, beach.		5 spec.
- , harbonr...	$\mathrm{r}_{1 / 2}$-ofin.	7 -
-	$30-$, gravel.	$3-83$ valves.
-	49 - , clay witlı a little mud.	1 valve.
, Heimaer, beacls.		3 spec. \& 23
$63^{\circ} 2 \mathrm{I}^{\prime}$ N.L., ז7 $7^{\circ} 3 \mathrm{I}^{\prime} \mathrm{W}$ W. L.	69 - , black sand.	1 valve.
$63^{\circ} 21^{\prime}-17^{\circ} 15^{\prime}-$	58 - , sand, stones, shell-gravel.	I
$63^{\circ} 42^{\prime}-16^{\circ} 32^{\prime}-$	29	3 spec.

The largest specimen is 39 mm . long.
[The Færoes.]
Landt records "I emus borculis" as "taken at the bottom of Vestmanhavn Fjord" 1 , and Mörch states, that a very large specinen of Asturte semisultatu Leach was received from the pastor P. Holm, who had collected at the Frerves ${ }^{2}$). As - . borculis has not been fonnd lowever during the extensive investigations of recent years, these records probably are mistakes, and I believe myself cntitled to remove A. boralis from the fanna of the Faroes, unless certan records are forthcoming.

Remarks. At Iceland and Greenland Astarte borcolis is very variable, both in regard te form and scmpture of the shell and the structure of the periostracunn.

Periostracnm. On the Icelandic specimens the periostracum may form a thin layer, smonth or finely fibrons towards the margin, or it may be somewliat thicker and as if fraved; the sumonth periostracum is most ftequently fairly light-colonred, yellowish-brown and somewhat glistening, the fibrous kind is darker, brown or alnost quite black.

In the West Greenland specimens the periostrachun varies in the sanme way.
In all my specimens from East Greenland the periostracmu ishrown to swarthy, thick and hast-like
${ }^{1}$) Landt: Forsog til en Beskrivelse over Feröneme, 18on, p. 289
${ }^{2}$) Mürch l.c. IS68, p. 95.

It seems as if the periostracum were thickest and most frayed in aretic specimens, as this characteristic is seen not only in the specimens from East Greenland (and in part those from West (ireenland |and Iceland), but also in (my) specimens from Spitzbergen and the Kara Sea ${ }^{1}$).

Sculpture. The shell may be, apart from the fine lines of growth, quite smooth or more or less distinctly folded, at the mubones only or more or less far down on the shell. The folds sometimes appear as fine and dense, sometimes coarser ribs with wider intervals, and these ribs may sometines in the adnlt specimens reach at least halfway down on the shell.

Form. At lceland the form is relatively high and more or less convex, as will be seen from the following measurements:

Locality	Length	Height	Height Leugth	Breadth	$\frac{\text { Breadth }}{\text { Length }}$
Vestmannaeyjar	44 mm .	38 mm .	86.4 \%	17 mm .	38.6 \%
Reykjavik	43	36.2 -	84.2	17.75 -	41.3
-	42	34	8I	${ }^{1} 5.5$	36.9
- ...	38	33.5	88.2	17	44.7
Faxafjördr	37	32.25 -	87.2	14.25 -	38.5
-	36.5 -	32.5	89	16	43.8
-	34.75 -	29	83.5	16.5	47.6
Seydisfjördr	44.25 -	34.25-	77.4	20.25 -	45.8

At West Greenland similar forms occur, but here also - though apparently not very frequently along the more southern (Danish) part of the coast - we find a greatly compressed form (var. placenta Mörchas = 1starte Richardsoni Reeve ${ }^{3}$), of which I may give the following measurements as example:

Locality
West Greculand

Leugth

39 mm.

Height
$3 I^{\mathrm{mm}}$.
$\frac{\text { Height }}{\text { Lengtlı }} \quad$ Breadtı \quad Breadth
$79.5 \% \quad 12.25^{\mathrm{mm}}$.

At East Greenland we find more or less compressed, often strikingly elongated formst) as will be seen from the following measmrements:

Locality	Lengtlo		Height		Height Length		Preadth	$\frac{\text { Breadtli }}{\text { Lengtl }}$	
Turner Sound		${ }^{\mathrm{m} \times 1}$.		mm .	79.5		18 mm.	40.9	\%
- -	40	-	30	-	75	-	14.25 -	35.6	-
Tasiusak	32.5	-	27.2	-	83.7	-	13	40	-
	29	-	24.5	-	S4.5	-	10.5	36.2	-
Hekla Havir	29	-	21.5	-	74.1	-	9.5	. 32.8	-
Forsblads.Fjord	27	-	20	-	74.1		8.25 -	30.6	

1) C. G. Joh. Petersens statement regarding A. boralis in Danish waters seems to me of interest in this connection: "the epidermis is here (i.e. in specimens from the Belts and Baltic) much more frayed than in the Kattegat specimens' (Det vidcusk. (illytte af Kanonlbaden Hauch's Togter, $1893, \mathrm{p} .75$). Compare also in this connection A. Krogh: "The tension of carbonic acid affecting the structure and preservation of molluscan sleels": Medd. om Gronland, XXVI, 1904, p. 387.
${ }^{2}$ Mörch: Catal. des Moll. du Spitzberg. Mém. Soc. Malacol. Belgique, T. IV, rS69, p. 22.
2) Recuc in Beleher: The last of the Arctic Voyages, II, 1855, p. 397, Pl. 33, fig. 7.
i) For such specimens fosselt (1.c.) has set up a special variety; scricea, on account of the elongated form of the shell, the thick epidermis and its silk-like sheen; in my opinion it cannot be kept separate from the variety placenta 31 iorch.

The following figures on Pl. IV may serve as illustrations of the above-nnentioned, varying form and strncture in Astarte bormas:

Fig. 1a represents a specimen withont folds and with ann abmost smonth (iilonons only at the margin), fairly light-coloured periostracmo. The shell is rather convex, as is secell from fing. abs. Western Iceland.

Fig. Ic represents a sery high form, with quite narrow folds on the nppermonst part of the shell and with fairly thick, fibrous periostracum on the lowest part. Western lceland.

Figs. Id and ie represent a strongly compressed form (var. flucomte Nörch) with distinct folds on the uppermost part of the shell. Western Cireenland.

Fig. if represents a very elongated form (var. seriorn Posselt). East freemand.
Distribution. Astort, berolis is an arctic and circmupolar species. In Norway it is said mot to live south of Bergen ${ }^{1}$, nor has it been taken living in the Skager Kak or Northern Kattegat; but after this break in its distribution it appears again in the south-westem Kattegat and reaches through the Sound and Relts, increasing in numbers but decreasing in size, down into Kiel Diny and thence sonth of Lolland to a little east of Iornholn (C.(s. Joh. Petersen). It is said to occur in the midde of the North Sea ${ }^{2}$, but empty shells only have been found at scotband, the Hebrides and Shetland. On the American side the southern boundary lies at New England, in the Pacific at Dlaskat, the Alentians and Kamschatka. - Its bathymetric distribution is 3-260 fm. ${ }^{\circ}$).

Astarte Montagui Dillwy y.

Pl. IV: figs 2 a-c.
lems compressen (non Linné) Montagu, Test. Brit. Suppl, 18os, p. 43, P1. 26, fig. 1; (. Asturtit Forbes \& Hanley. Hist. Brit. Moll., I, 1853 , P. f^{64}, Pl. 30 , Tig. 1 ; Jeffreys, Brit. Conchoh., II, 1863, Pl. 37 , fig. 3. - Temus Honlagui Dillw yn, Descript. Čatal. Recent Shells, I, t8:5. p. 167. - Nicunit Banksii Leach, Ross' Voyage of Inscovery, 1819, Append. p. 62: Sars Moll. Reg. Arct. Norv., IS-8, p. 51. Pl. 6, fig. 1. - Vicamin strimh L, each, 1. c. p. 62. - - Isturti, slobosu Moller, Index Moll. Groenl., 1842, p. i9; Reeve. Lelcher's I ast of the Mrotic Vor-
 1846, p. 336, Pl. 5, fig. 15-16. - Istarte pulihelle Jonas, IMilippi, Ablild. W. Beachreib. nemer

 Medd. Naturh. Foren. 1868, p. 223; Arctic Alanual, is 75 , p. 132 ; Rink's I)an. (irecmiand, 18.7 .

 of A. clliptica.

 . Isturti Runksii Leatch.

The Ingolf Exprdition. It;

Jensen，ibid．，スヘII，r909，p．333．－．Istarte striata Moller l．c．，p．20；Mörclı l．c．1857，p．20； 1875，p．132；1877．p．441．－Asturtc putchella Mörch，1．c．1857，p．20；1875，p．132；1877，p． 44．－I Istartr Montasui Mörch，Vidensk．Medd．Naturh．Foren．1867，p．95；ibid．I868，p． 223.

The＂lngolf＂has taken ．1．Ifontasui at the following places：

St． 35.	Davis Strait	362 fm ．		valve．
－ 33.	－－	35	2	valves．
86.	VV．of Iceland（Brede Bugt）	76	30	－
－ 87.	－－－－	110	2	－
－ 104.	N．E．of Iceland	957	t	－
－ 113.	S．E．of Jan Mayen．	1309－	5	－

Remarks．In the figures 2a－c on Pl．IV I have compared 3 specinens，which seem to me to illustrate the main types of this very variable species within the fannistic region dealt with here．

Fig． 2 a represents A．Monlagni Dillw．typica，a short and high，somewliat triangular form； the anterior end is a little elongated－rombed，the posterior end shorter，strongly sloping downwards， trmante；the umbones lie a little behind the middle of the shell．

Fig．2b）represents 1．Moutagrui Dillw．var．striatu（Leach）Sars，a more elongated form， which stands midway between the foregoing and the following．

Fig．2c represents A．Montagrai Dillw．var．Harhami Hancock，the shell of which is elong－ ated，elliptical，in general rounded both in front and behind；the nmbones lie almost in the middle of the shell．

The measurements of the three specimens，which 1 have chosen as types，are as follows：

These three forms are not at all sharply separated，however；all transitions may occur．In discussing the separate geographical regions further opportnnity will be taken to mention the variab－ ility of this species．

West Greenland．

Here the species is common，from the sonthermmost parts up to Cape Sork；on the American side it has been taken as far north as $80^{\circ} \mathrm{N}$ ．L．It occurs most frequently at depthis of $5-50$ fm．，but is also met with at greater depths．

At West Greenland the variety striate is by far the most predominant，and along with it ocenrs rather frequently the variety globosa Moller，which is characterized by an extremely tumid form；the typical form and the variety Harhami are comparatively rare．At the same time it morst be remembered，however，that all possible transitional stages exist between the forms mentioned．

The maximum length is 23 mr .
The measmrements of some specimens will illustrate the fommelatnon among the varietice mentioned.

1. Montagui twice:

Length	Height		$\begin{aligned} & \text { Iteight } \\ & \text { Lengrth } \end{aligned}$		Preadth	Brearlth J.ength
20 mmm.	18.5		92.5		11.5 mm.	57.5
16	15	-	93.7	-	9.25 -	57.8
15	14	-	93.3	-	9	(6)
14	13	-	92.9	-	8.25-	58.15
12.8	12	-	93.8		7.25 -	55.6

1. Montugzi var. globoser:

17	-	${ }^{1} 5$	-	88.2	-	11	-	6.4 .7
1.4. 5	-	12.75	-	85.2	-	9.5	-	65.5
11.8	-	11.5	-	97.5	-	8.2	-	69.5
11.5	-	10.5	-	91.3	-	7.2	-	62.6
11.5	-	11.25	-	$97 . S$	-	8	-	by, 6
10.5	-	10.25	-	97.6	-	7.25		64

A. Montagni var. strueta:

A. Montugui var. I'arhumi:

19	15	-	-8.9		9.25	48.4
17.75 -	14	-	78.9		9	50.7
${ }^{1} 4.5$	11.25		77.6		¢	483
12.75-	9.75		76.5		6.5	51

East Greenland.

Here A. Jontugni has been taken at 15 localitien between Amgnagssatik amd sabine filand $\left(65^{\circ} 40^{\prime}-74^{\circ} 32^{\prime} \mathrm{N} . \mathrm{I}_{4}\right.$), at deptlis of $3-50$ fun. The largest specimen is $2.1 .2^{\mathrm{mm}}$. loms.

The majority of the specimens at hand helong to the variety If torkmi. in a form which is generally rather compressed but is sometimes rather tmmid: the variation in this regand will be seens from the accompanying measurements.
. I. . Montagull var. II arhami:

Length	Height	$\frac{\text { Height }}{\text { Length }}$	Breadth	Breadth length
2.4 .2 m" .	18.5 mm.	$76.4{ }^{\circ}$ 。	$8.25{ }^{\mathrm{mm}}$.	34.1 \%
23.5	16.5	70.4	8.5	36.2 -
23	18	77.8	9.75	42.2
22.5 -	18	So	12	$53 \cdot 3$
22	17.25	78.4	S. 75	39.8
22	16.75	76.1	$9 \cdot 5$	43.2
20.5	15.75	76.8	8.5	41.5
20.5	15.5	75.6	8	39
20.5	16.5	So. 5	9	43.9
20	I6	So	10	50

The concentric ribs frequently reach right down to the ventral margin, but other specimens are only ribbed on the umbonal region or to the nindlle of the shell, showing on the rest of the shell anly fine lines of growth $(=-$ - s starti fabula R eeve $)$.

Some few specimens belong to the variety strinta. which in my opinion - as already mentioned is only a shorter form than $/ I^{\prime}$ arhmmil $\left.^{1}\right)$; to try and keep them distinct owing to the different colonr of the periostracum is not correct, as the variety Wrarhami, for example, may begin as straw-yellow and end as dark-brown. - For the sake of comparison I may give here the measurements of the few specimens from East Greenland:
A. Montugui var. striata:

Length	Height	Height Length	Breadtlı	Breadth Length
$21.5{ }^{\text {num. }}$	17.5 mm.	82.6%	$9.75{ }^{\text {mm }}$.	45.3%
19	16	84.2	10.25	53.9
17.5	14.5	82.9	9	51.4

Only one specimen (from Hekla Havn) is so short in form, that it can be referred to the typical Asturts Montagui; it has the following measurements:

Length	Height	$\frac{\text { Height }}{\text { Length }}$	Breadth	Breadth
I4 mm.	12.75 mm.	91.1%	7.75 mm.	55.3%

This specimen also differs in its sculpture, the shell only showing fine lines of growth and not the nsual concentric ribs. ${ }^{2}$).

Jan Mayen.

None of the Danish Expeditions have found it here, but it is stated to have been taken by the Normegian North-Atlantic Expedition as the variety ylobesu at a deptly of 195 fnin. (Friele) as also by the Anstrian Expedition at a depth of 105 fm . (Becher).

[^70]
Iceland.

A. Montagmi has been taken in large quantity on the west coast, in part alsu on the east const; fronn the sonth coast there are but few specinens and from the nomth coast only one, but Whether this is due to imperfect collections or to the actual scarcity of the specien on the morth cuast. I ann mable to say ${ }^{1}$). The depths noted lie between ca. 8 - 50 fin. () nin the west coast it reaches to $19 \mathrm{~mm}^{\mathrm{mm}}$., and on the east coast to a very considerable size, namely 26.2 mm .

The various localities are as follows.

East Iceland:

The specinens from East Iceland belong in part to the variety striato, in part to the typical form or to transitional stages between the two, as will be seen from the following measurements:

	Locality	length		Height	IIeight Length		Breadth		Breaddla length	
Djupivogr		26.2		23 mm .	8.7 .9		i2.5		47.7	
---		24.7	-	22.25 -	90.1	-	I 1.2	-	+5.3	
-		22.5	-	18.75 -	83.3	-	12	-	$53 \cdot 3$	-
Berufjördr		16	-	${ }^{1}+5$	90.6		8		$5(1)$	
Vattarnes		17	-	14.5	85.3	-	9.2	-	. 5.11	-
Seydisfjördr		22	-	19.25 -	87.5	-	10	-	15	-
-		21.2	-	19	89.6	-	10.2	-	48.2	
-		20.5	-	18.5	90.2	-	10	-	48.8	
		20.2	-	17.9 -	SS. 1	-	10	-	49.5	-
--	\ldots	20	-	18	90	-	10	-	50	-
-		20	-	17.2	86	-	10	-	50	-
-		19.5	-	I_{7}	87.2		9.25	-	47.4	-
-		19	-	17 -	St). 5	-	9	-	$12+$	-
Nordfjördr	. . .	21.8	-	18.75-	86	-	10.8	-	40.5	
-		21.5	-	19 -	88.	-	11.75		54.7	-
-		20.2	-	18.25-	()0.3	-	1). 5	-	17	

[^71]
Nortli Iceland:

From liere we have only at small specimen (12.5 mm . long from
30 fm ., sand and stones.
I spec.
But, in addition, Odhner (1. c.) records it from the following localities on the north coast, up to 18 mim. in length:

Raufarhöfn	35 mm .	I3 spec.
Siglufjördr.		Many spec.

West Iceland:

By far the great majority of the West leelandic specimens belong to the typical A. Ifontasump. Thus, all the specimens from the southern part of the west coast belong to the thpical form, as will be seen from the following examples:

Incality	1.ength	Height	Height f,ength	lircalth	Breanlth 1.ength
Grundarfjördr	$18.3{ }^{1 \mathrm{~mm}}$.	17 mm.	92.9	10	5.8 .6
-	17	15.7	92.1	')	52.9
Engey	17.2	15.8	91.9	8	16.5
Hafnarfjördr.	17.2	16	93	10	58.1
- .	16.5 -	15.8	95.8	10	60.6
E. N. E. of Helgane	13.5	${ }^{1} 3$	96.3	7.5	5.56
Keflavik	14	13	92.9	$7 \cdot 5$	53.6

The typical A. Aontagni also oceurs on the northern part of the west coast, but by sirle of it we find moreover somewhat more elongated specimens, which approach to or may be entirely referred to the variety strinter: this is seen from the following measurements:

L.ocality	1.ength	Height	1Ieight Terngth	Breadth	liteadth lengeth
Talknafjördr	18.2 mm .	16 mm .	$87.9{ }^{\circ}$	9 "mı.	4).4
-	16.4	15.2	90.5	8.5	50.6
-	15	14	93.3	8	53.3
Patreksfjördr	19	16.5	86.8		
-	17	15.2	89.4	8.75 -	51.5
--	15.7	If	89.2	8	51
- .	14 -	${ }^{1} 3$	02.8	7.5	53.6

Vestmannaeyjar	30 fm. , gravel.	5 values.
-	49 - , clay witlı a little mud.	1 spee. \& fo ralves
$63^{\circ} 24^{\prime}$ N. L., $17^{\circ} 5^{\prime}$		2 valres.

The maximum length of these specimens, which belong to the typical I. A/untugh, is if

Færoes.

Here the species is common at depths of ca. $5-50$ fm. The maximmm length is wos.
The various localities are as follows:

 This characteristic form also necurs at the datoes.

The Færoese specimens belong to the typical A. Montagui, though sometimes with a tendency in the direction of var. striatu, as will be seen from the measurements below:

Locality	Length		Height		Height Length		Preadth		Breadth Length	
Klaksvig	20.6		19.5		94.7		9.8		49	\%
Andefjord	19.8	-	17.5	-	88.4	-	10	-	50.5	-
-	16.8	-	15.5	-	92.3	-	8.75		52.1	-
Nolsö	17.2	-	${ }^{1} 5.2$	-	88.4	-	7.8	-	$45 \cdot 3$	-
Kongsharn.	17	-	15.3	-	90	-	8.2	-	48.2	-
-	16	-	14.2	-	88.8	-	8.2	-	51.3	-
-	${ }_{1} 5.8$	-	15	-	94.9	-	8.5	-	53.8	-
-	${ }^{1} 5.5$	-	13.8	-	89	-	8	-	51.6	-
-	$1+7$	-	13	-	92.9	-	7.5	-	$5{ }^{1}$	-
-	If	-	13.5	-	96.4	-	8	-	57.1	-
-	14	-	13	-	92.2	-	$7 \cdot 5$	-	53.6	-
Vaagfjord	14	-	12.7	-	90.7	-	7	-	50	-
Fundingsfjord	12.8	-	11.8	-	92.2	-	7.2	-	56.3	-
Viderejde .	13	-	11.7	-	90	-	7	-	53.8	

Concluding remarks. It may be seen from the foregoing, that there is a certain regularity in the rariation of the species, since the fom becomes elongated on the whole in the same degree as the marine climate becones more severe. At the Fæeroes and the sonthern West Iceland we have only the slort A. Montagmi typica, thongh sometmes with a tendency in the direction of the slighty more elongated variety striatu; at northern West Iceland the variety striata begins to appear
and at East lceland it ocenrs commonly together with the typical I/ontersth It West (ircenland the varicty striata is by far the most predommant, and at the same time the still more elongrated varicty Warhami is appearing: lastly, at East Creenland the varicty If arkmmi is almost the only form Accompanying the elongation of the torm we also find an increase in the maximum length, nanels from ca. I9-20mm. at the Farnes and West Iceland to $23-26 \mathrm{~mm}$. at liast Iccland and (irecenland.

Distribution. Istarte lfontagen is circmmpolar in aretic seas. Towarels the south it reaches to the Aleutians and Tanconver Island in the Pacific, and in the Atlantic to Massachusetto and the Channel.

Astarte sulcata da Costil.

Pl. IT, figs. 3 a-c.

 Arct. Norv., $1878, \mathrm{p} .52$.

The "Ingolf" has taken this species at:

West Greenland.

Posselt records . I sulcutu from Igaliko Fjord, Sukkertoppen and the fiond off Commurik: of these I have seen one specimen labelled as coming from the funtmand locatity, but in appearaco

 type-error as A. trangularis.

The Ingolfilixpedition. II ,

East Greenland.

Here there occurs a comparatively closely ribbed form of A. sulcata, which las been taken off the sonth-eastern ("warm") part by Nordenskjöld's Expedition (3883) at 130 fun. depth and by the Ingolf-fxpedition at St. 94 in 204 fin, as also by the Andrup Expedition off Angmagssalik at a depth of 140 fnn. The maxinmm length is 23 1mm. - Further, Möbins ${ }^{1}$) records it from north-eastern Greenland, but I feel certain that this record is due to some mistake.

[Jan Mayen].

Becher records the species from here ${ }^{2}$, but I an convinced that his record refers to a form of 1. crematu (rray (cf. A. crenata var. infata, p. In7); A. sulcatu is perfectly clearly, from the results of the Ingolf-Expedition, a distinctly warm-water form.

Iceland.

In addition to the stations mentioned of the Ingolf-Expedition, A. sulcata has later been taken at the following places:

Thns, taken on the whole, A. sulcato nuay be said to be fairly common off western and sonthern lceland; living specinens luave been taken at depths of 58 - 3 of fur, but dead shells even at a depth of 633 fin. The maxinnm length is 26 mm .

The Færoes.

From the investigations of recent years the Zoological Musemm lias obtained A. sulcatu from the following places.

Fundingsfjord
Nolsö, deep lole at nortli end
62 29^{\prime} N. L., $5^{\circ} 17^{\prime}$ W. I I

$6217^{\mathrm{r}} 2^{\prime}$ - $+57^{\prime}$ - -
13 miles S. of Myggenreshohn
S. W. of Myggenzes

12-- 20 fin., coarse sand and clay. ca. 100 -

160 - , stones and sand.
112 - , sand.
144 - , clay and stones.
70 -
135

$$
\begin{array}{lllll}
9 & \text { spec. } & \mathbb{E} & 34 & \text { valves. } \\
4 & - & \mathbb{E} & 6 & - \\
1 & - & \mathbb{S} & 5 & - \\
2 & \text { spec. } & & \\
2 & - & & \\
1 & \text { spec. } & \& & 9 & \text { valves. } \\
18 & - & \& & 165 & -
\end{array}
$$

${ }^{\text {1) }}$ I) ${ }^{2}$ zweite Inentsche Nordpolarfahrt in d. Jahren 1869 u. 1870. Wiss. Fargebn., II, 1874, Zoologie, p. 251.
${ }^{2}$) Die Österr, Polarstation Jan Mayen, Beob.-Itrgebn., III, IS86, p. 71.

$61^{11} 5^{\prime}$ N．L．， 9 ＂35 W．I．	ca． 475						
$61^{\circ} 7^{\prime}-\quad 9^{\circ} 30^{\prime}-$	440	－		12	心	185	valves．
$6 \mathrm{I}^{\prime}=9^{\prime}-7^{\circ} 54^{\prime}$－－	181	－，sand and shells．		t	心	2	－
$61^{\circ} 10^{\prime}-5^{\circ}+6^{\prime}-$	160	－，sand wity stonles	and sheils．	2	心	I	－
5 milles S．S．E．of Bispen	50	－				1	
16 miles E．by̌ S．of soutlı point of Nolsö ca	ca．So	－		2	※	1）	
12 miles S．S．Er of Akralejte．	150	－		70	心	12	
13 miles W．by S．of Munken ．．．．．．ca	ca． 150	－				25	－

A．suleato las thus been taken at varions phaces ronnd abont and in part also at the louroes at depths of（12） $20-440 \mathrm{f}_{111}$ ．It reaclies a lengtli 11 p to 29 mm ．

Remarks．Compared with other Asterth species，A．sulkth is subject to comparatively little variation，so far as the present geographical region is concerned．The most important variation so far as I can see－consists in a tendency of the nnmber of ribs to increase somewhat in the western part of the seographical region of the species；in specinmens from off the sonth－eastern（ireme land the ribs are so dense，that their mumber－in specimens of 19 23m．in length－anmonnts to cal． 35－42，whilst the number in typical specinens， $2 t-23^{m}$ ，in length，from the Fiaroes is ca． $30-33$ ．

The form nay vary sonnewhat，as will be seen from the following measurcinents of sumbe sple－ cimens，most different from one another in reorad to the three dinnensions：

Locality	Length	Height	Height Leugth	Freadtle	Preand I，engeth
East Greenland	23 mm ．	18.25 mm ．	$79.3{ }^{\circ}$	11.2 mms ．	＋i．7
－－	20.25 －	15.5	76.5	9.5	4 （6．0）
－－	20.25 －	15.75	77.8	8.5 －	42
Iceland	2.4	19.75	82.3	$12.75-$	53.1
－	23.5	21	89.4	12	51.1
Færoes	26	21.5	82.7	${ }^{1} 3.5$	51.9
－	23.5 －	17.75	75.5	12.5	53.2
－．．．．．．．．．	22	18.2	82．7－	12	54.5 －

As a further illustration of the clange of form $i n 1$ this species ats a whole， 1 maly give here the measurements of 3 specimens，which I have dredeed along with many others N．His．of sheiland， at a depth of $150-220 \mathrm{f}_{111}$ ．

Length	Height	Height I，ength	Breadth	Brearlth I，\cdot lligth
$26^{\text {mim }}$	2 I .5 mm ．	S2．7＂0	12 ．	．16．2＂
25 －	19.5	78	11.75	47
25 －	21.75	87	13	52

In illustration of the variability with regard（o）the number of concentric ribo the fullowing examples are represented on Pl ．IV：

Fig． 3 a．A typical specimen from the Freroes，
Fig． 3 c．A specimen with comparatively closely－phaced ribs，from banst craconamb．

Distribution. ()n the European side Astarte sulcatu is distributed from the western part of the Murman Coast (Kıipowitsch) to the Mediterranean and west coast of North Africa; it goes down into the Kattegat. Over the Fieroes it reaches to the sonthern and western coasts of Iceland and to Dennark Strait off the south-eastern Greenland. The bathymetric distribution is $5-\mathrm{ca}$. 1000 fin.

Astarte elliptica Brow 11 .

Pl. IV, figs. 4 a-g.
? T Toms compressk Linné, Mantissa Plantarum Altera, 1771, Regni Animalis App., p. 546. - Crassina clliptica Brown, 111. Conchol. Great Britain and Ireland, 1827, Pl. 18, fig. 3; Ill. Rec. Conchol. (ireat Brit. and Ireland, 184t, p.96, Pl. 38, fig. 3. - Astarte compressa Sars, Moll. Reg. Arct. Norv., 1878, p. 53^{1}).
Asturte scmisulcatu Moller, Index Moll. Groenl., 1842, p. 19. - Asturte compressa Mörch, Rink's Gronland, 1857, p. 91; Vidensk. Medd. Naturh. L'oren. 1867, p. 95; ibid. 1868, p. 222; Arctic Mantal, $1875, ~ \mathrm{p} .{ }^{1} 31$; Rink's Dan. Greenland, 1877, p. 441; Posselt, Medd. om Gronland,
 ibid., SXIS, 1909, p. 339.

The "Ingolf" has taken this species at:

West Greenland.

Here the species occurs commonly from the southermmost parts up to Nelville Bay, on mud, clay, shell and stone ground. The depths noted for living specinens lie between so and 235 f f11. ${ }^{2}$). T'lie maximmm length amounts to $3^{6 \mathrm{~mm}}$.

East Greenland.

-1. rliftica has been taken by Danish Expeditions at Angmagssalik, Cape Dalton, in Scoresby Sonnd and Forsblads Fjord, (3) ro-30(50) finn, on mud, clay and stony ground, as also by the Germania Expedition at northern East Greenland (Möbins, as A. sul/otu). The maxinnm length amounts to 30^{mm}.

|Jan Mayen.]

Here, curionsly enough, the species has not been met with. Posseit (l. c. 1898, p. 67) records it from Jan Mayen and Copenhagen Musenm as the authority or sonrce, but this is due to some mistake, as onr Innemm possesses 110 specinen of A. fllipticy from this island.

[^72]
Iceland.

Here Astarte elliftion is common romnd the island; it oceurs both on sand, ooze, mund and mixed

The various localities are as follows:

The largest specinen is 38 mm . long.

Thistilfjördr

Axafjördr
Skjálfandi Bugt

4 miles E. of Brik Skrer
Husavik in E. 4 miles
$66^{\circ} 17^{\prime}$ N. L., $18^{\circ} 13^{\prime}$ W. I.
Ofjord
just S . of Hrisey
Veidileysa ..

North lceland:
ro- 24 fine, sand and "coral". 2 spec.
50 - , clay with many stones. 30 valses.
22 - , 11111d. If spec.
2 I - black s:und.
31 - fine situd.
I9)
$100-$
42 -
52 - i value.
to spec.
5
7

The largest of these specimens are 35° ". Wong.

West Iceland:

Hesteyrarfiordr, at the head	$15-17^{1 / 2}$			spec. $\mathbb{S} 30$ valves.
Onundarfjördr	9	-	21	-
Dy̧afjördr, inside Thingures	10-12 ${ }^{1 / 2}$	- mud and small stones.	2	- \& 40 valves.
-	13	-	2	-
Fossfjördr	4	-	1	-
Talknafjördr			42	-
N. W. of Talkni			2	- 22 valves.
Patreksfjördr	5	-	5	-
-	14	-	1	-
Criundarfjördr			1	-
Hvalfjördr	2.4	-	50	- $\mathrm{E}_{70} \mathrm{valves}$.
Faxafjörclr	15	-	5	-
--	25	-	I	valve.
- , month of Kollafjordr	$9^{1 / 2}$ - II	- , fine black sand and ooze.		spec. and 30 valves.
- , off Kollafjördr...	S-II $\mathrm{I}^{1 / 2}$	- , ooze and stones.		valves.
- -.. - ...	10	-	I	spec. \& io valves.
, Keflavik	$15-16$	- , fine black sand.	3	- and So valves.
- , ca. 2 miles N. E. of lavik	$1^{1} / 2-2 \mathrm{O}^{1}, 2$	- , ooze.		valves.
$\begin{gathered} \text {-- I mile E. N. E. of Helg } \\ \text { Vager } \end{gathered}$	$\text { I I }^{\mathrm{I}} / 2$	-		spec.
- $\quad 4.3$ miles $\mathrm{W} .3_{4}^{\prime}$ S. of gasker Vager	25	-		valves.
Reykjarik (Engey)	$7-S^{7 / 2}$	-	5	-
- , roads	S	-	1	spec.
Hafnarfjördr	25	- , fine black sand and ooze.	1	- and i4 valves.

	South Iceland:	
Vestmanmaeyjar	30 fm ., shell-gravel.	2 valves.
-	49 - , gray, fatty clay.	4 spec. \& 4 valves

The largest specimen is 27^{mmm}. long.

Færoes.

Here - 1. elliptica seems to be common at depths of $3-50 \mathrm{fm}$. The maximum length is 37 mm.
The separate localities at which the species lias been taken are as follows:

Viderejde
Kvanncsund, between Viderö and Bordö 4-6 -

4 valves.
I spec.

Remarks. The material to hand from the Fremoes, lceland and freenland shows, that both the form and senlpture vary to a great degree in 1 starti illiptice.

At the Faroes, however, the character is fairly miform, it secms. The species appears here with strongly marked folds right from the umbones down to the sentral margin and they only disappear at the very back. It is only in a single specimen that the folds become indistinct a little below the middle of the shell. The form is not specially variable, on the whole rather elongatert, more or less compressed, sometimes however somewhat vanlted. Neasurements of some of the specimens whichl differ in dimensions give the following result:

Length	Height	Height Length	Brealth	Breadth Iterght
$30 \quad \mathrm{~mm}$.	23 mm.	$76.9{ }^{\circ}$	11 m".	$36.7{ }^{10}$
31	23.5	75.8 -	12.5	+0.3-
31.25	22.5	72		4.8

At Iceland, on the other hand, we very freguently find fombs which lack the folds over a greater or smaller part of the shell; sometimes the folds disappear below the midde of the shell, in other specimens they only reach to the midalle of the shell, and some specimens eren lame folds only

[^73]on the mulomal area. Snch specimens may have great resemblance and are certainly often confused with the nore or less folded varieties of Astarte borealis Chemm . ("A. semisulato L , each" etc.) ${ }^{1}$; the large liganent projecting over the shell of the last-named as also the more or less fibrous or frayed strncture of the periostracnm makes the separation in general quite easy. - The form also appears to be vely sariable, both in relative height and breadth, as wibl be seen from the following measurements.

I,ocality	Length	Height	Height Lengtlı	Breadtlo	Breadth Lengtlı
Seydisfördr	$32.25{ }^{\text {mmm }}$.	$23.25{ }^{\text {mm. }}$.	72.1 \%	$9.5{ }^{\text {mmm}}$.	29.5%
-	31.25	21.75	69.6	12	38.3
Nordfjördr	32.5	23.25	71.5	11.75	36.2
I) ¢rafjörlt	31	23	74.2	14	45.2
Talknafjorrdr	32	25.5	79.7	14	43.8

At West Greenland A. clliptica is subject to similar variations as at Iceland. In regard to form there are specimens which are even higher and more vaulted than those which go to an extreme in this direction at Iceland, so that we find such dimensions as the following:

I_{4} engtlı	Height	$\frac{\text { Height }}{\text { Length }}$	Breadth	Breadth Length
31.25 mm .	$26.25{ }^{\text {mm }}$.	84%	15.2 mm .	48.6 \%
27.25	23.25	85	14.2	52.1

It has obviously been sncli specimens as these, which have led Leche to set up the variety crassa²).
At East Greenland A. clliptica usnally appears with folds right down to the ventral margin; not rarely, however, they cease abont the middle of the shell. - With regard to the form, this is remarkable on the whole for its elongation, as will be seen from the measurements below; Posselt for this reason set inp a special variety depressa (for specimens from Hekla Havin 3).

Locality	Length	Height	$\frac{\text { Height }}{\text { Length }}$	Breadtlı	Breadth Lengtlı
Cape Dalton.	29.5 mm.	$21.5{ }^{\text {mum. }}$	72.9 \%	$12.5{ }^{\text {mm}}$.	42.4 \%
-- -	29.5	21.5	72.9	11.5	39
Hurry Inlet	27	20	74.1	9.5	35^{2}
Hekla Havir	23.5	16	68.1	8	34
- -	22.5	16.5 -	$73 \cdot 3$	7.75	34.4 -

The following figures on Pl. IV may serve as illustration of the varying form and seulpture in . Asturti slliptura, mentioned in the foregoing:

Fig. 4 a and b represent a typical L. olliptica (from the Færoes), seen fron the side and from above.
${ }^{1}$) For example, both Mörch and Posselt have made mistakes in this direction.

। I, C. 1895, P. 72, IPI I, figs. 5-7.

Figs. f c and d represent a very elongated form (war. depresse Posselti, from bast (inecnland.
 fig. $4 g$ shows a specimen in which the folds disappear almost abont the middle of the shell. From West Cireenland.

Distribution. Astarte clliftica is an arctic-boreal species, known irom the cast conast of North America down to New England, from (ireenland, Iceland, the Fitmes, Mritish Isles, baninh waters down to Bornholm, Norway, north chast of Rnssia, Kara Sea and Spitzhergen. 'The bathymetric distribution is $3-235 \mathrm{fm}$.

Astarte crenata Gray:

ll. If, figs. 5 a 11.
Sicama cromata Gray, Parrys first voyage, Suppl. to Append., r8zt, p. 242.
Astarte crebricastuta M̈̈rch, Kink's Gromland, I857, p. 91; Vidensk. Medd. Natum. Foren. 1868. 1). 222:
Arctic Mannal, I875, P. I3ı; Rink's Dan. Greenland, 1877, p. 44 t . - Astartic iomuta D'osselt,

The "Ingolf" has taken this species at various stations and in three varieties, namely:
forma typica
St. 29. Davis Strait... $68 \mathrm{fm} . \quad 0.2^{\circ} \mathrm{C}$. spec°
var. subaquilatera Sowb.

var. acuticostata Jeffr.

and also at the following station, where the variety camot be determinted:

The ligalf. Expedition. 1I. ;

Astarte cromata is an extrencly variable species and has given rise to not a few "species"; these I can only recognize as nominal, as my material contains transitions between them. The specinens living in the waters of Iceland, Jan Mayen and Greenland must, therefore, in my opinion, be arranged muder the following varieties: forma typica, var. subcquilatera Sowb., var. crebricostatu Mc. Indr. \& Finrb, var. influtu Hägg and var. ucuticostato Jeffr.

Forma typica.

$$
\text { Pl. IV, figs. } 5 \mathrm{a}, \mathrm{~b} \text { and } \mathrm{c} \text {. }
$$

- Istarti cromata Reeve, Conchol. Icon. XIX, 1874, Astarte, sp. 9, Pl. 2, fig. 9. - Astarte oblonga Sowerby, Thes. Concliy1. Il, 1855, p. 7Sr, Pl. 167, fig. 19. - Astarte crenata Gray f. typica Jensen, Medd. onn Gronland, XXIX, Igog, p. 337.

The shell oval, more or less convex, with mumerons (ca. 50), relatively low, concentric ribs, Which disappear on the posterior part of the shell; periostracum light-coloured, yellowish.

In its typical shape (Pl. 1V, figs. 5 a and b) it is quite claracteristic, but this again is subject to great changes ${ }^{\mathrm{r}}$). The ribs may be fewer and more prominent (Pl . I T , fig. 5 c), so that the bonndary towards var. subcquilation vanishes. All three dimensions are subject to considerable variations, as will be seen from the accompanying measurements:

Locality	Length	Height	$\frac{\text { Height }}{\text { Length }}$	Breadth	$\begin{aligned} & \text { Breadth } \\ & \text { Length } \end{aligned}$
Hurry Inlet	23 mm .	$17.5{ }^{\mathrm{mmm}}$.	76.1 \%	$10.5{ }^{\text {mmm }}$.	45.7 \%
Cape Hope	23.5	${ }^{17} .5$	74.5	11.25 -	47.9
S. E. of Sabine Island	23.5	18.2	77.4	12.5	53.2
- -	26.5	21.5	SI.I	12	$45 \cdot 3$

This form occurs at East (ireenland, where the Danisln Expeditions ${ }^{2}$) have taken it at the following places:

Hurry Inlet	50 fm., clay with stones.		Nimerous spec. 3 spec.
Cape Hope	121	- -	
Cape 'Tobin	120	-	I spec.
$72^{\circ} 24^{\prime}$ N. I... $19^{\circ}+2^{\prime} \mathrm{TV} . \mathrm{I}$	130	-	I living $\mathbb{\&} 2$ empty spec.
$72^{c} 51^{\prime}-20^{\circ} 23^{1} 2^{\prime} \mathrm{IT}$. 1	12.4	- , clay.	I spec. (empty).
$72^{\circ} 53^{\prime}$ - $20^{\prime} 36^{\prime} \mathrm{W}$. I .	96	-	6 --
$73^{\circ} 24^{\prime}$ - 20° -	106	-	2 -
S. Ir. of Sabine Island............... 1 Io - fine clay with stones and			
		gravel.	ı spec. \& some valves.

and the Swerlislı Expedition of 1900 at the following places:
$72^{\wedge} 25^{\prime}$ N. I.., $1756^{\prime} \mathrm{IV} . \mathrm{I}$.
ca. 160 fm ., stones and sand.
5 spec.

[^74]

Thus, at East Greenland the typical A. cromutn has been taken at 53 localities from - 0 . $36^{\circ} \mathrm{N} . \mathrm{I}$. - $77^{\circ} 35^{\prime} .5$ N. I... and at depths of 50160 fm . The largest specimens are 2.8 m.

From West Greenland I have only seen it from the above-mentioned St. 24 of the "Ingolf" and from Umanak, 250 fm., but I imagine that quite a mumber of the specimens, which I'osselt records in Consp. Fann. Groenl. sinply as "I starte cromet", belong to the typical form. The specimens to hand from Umanak are remarkably short and on the whole mone convex, as will be secen from the measurements below:

Length	Height	Heirght Length	Brealth	isrealth length
$2 \mathrm{I} .5^{\text {man }}$	16.3 "m.	$75.8{ }^{\prime \prime}$	15.6 \% $1 \times \cdots$	$5+$
18.75 -	15.5 -	82.7	10.2	5+4
18	1.42	-8.9	10.2	59.9
17.5	14	So	9	51.7
I_{7}	1.	82.4	10.2	60

Var: subaquilatern sowerby.
Pl. IV , figs. 5 dl and e.
Asturte subaquilatera Sowerby, Thes. Conchyl. Il, i855, P. 7So, P1. 16\%, fig. i3; Reeve. Conchal. Lant. SIS, i87t, sp. 5, Pl. I, fig. 5.

This resembles the typical iromoto in the oval form of the shell, but the concentric ribs are fewer in number and coarser; the periostracum on the whole darker, yellowish-brown, whecolonred or brown.

The form is besides subject to great variation, as will appear cleary from the measmrements below; it varies from the elongated-oval or elliptical to the orbicular, somewhat triangular:

Locality	Length	Height	Height length	Breauth	$\begin{aligned} & \text { Brewth } \\ & \text { length } \end{aligned}$
lngolf St. 27	27 \%	$21.5{ }^{\text {m }} \mathrm{m}$.	89.6 ".	13.5	50
-- - -	26.5 -	19.5 -	73.6	11.5	43.4
- 32	2.55 -	18.25-	$7+5$	10.75-	13.9
Julianehaab	2.15	21.5	8.8 .8	1.15 .3	5r.t
Jan Mayen	$3{ }^{0}$		73.3	1.4	f6.\%
- - . .	27.75-	$21.75{ }^{\circ}$	78.4.	1.4.5	52.3

The ribbing may also be subject to some variation, in regard to denseness and strength.
This varicty is common at West Greenland; apart from the "Ingolf" stations mentioned before I have seen specimens from the following localities:

Julianeliaab.
Mouth of Ameralik Fijord (as a short, convex, rather densely ribbed form).

I)isko Bay................................... 65 -

Quite a number of the localities which Posselt notes from West Greenland nuder Astartc cromuta Gray (Medd. onn Gronland, XXIII, iSgS, p. 64), also refer probably to the variety subaquilatcra. - The largest specimens are 30 mm . long.

At Jan Mayen, in addition to at the "Ingolf" St. 115 , it has been taken by the Danish Fxpedition of 1900 at a depth of 55 fm ., on ooze mixed with coarser material. The Austrian Polar Station took it on the north side of the island, at a depth of $75-95 \mathrm{fm}$. (Becher 1.c. p. 70). The maximum length is 30 mm .

From Denmark Strait there is a single value from $64^{\circ} 42^{\prime} \mathrm{N} . \mathrm{L} ., 27^{\circ} 40^{\prime} \mathrm{W}$. L., 426 fm . (WV. of Iceland).

Var. crobricostata Mc. Andr. 心 Forbes.

Pl. IV, figs. 5 f and g .
Istarte crobricostutu Mc. Andr. \& Forbes, Ann. Mag. Nat. Hist. XIX, 1847, p.98, Pl.9, fig.4; Forbes \& Hanley, Brit. Moll. I, 1853, p. 456, Pl. 30, fig. 9; Sowerby, Thes. Conchyl. II, 1855, p. ;So, Pl. 167, fig. 10; Reeve, Conchol. Icon. N゙IX, is74, Astarte, sp. 1o, Pl. 2, fig. 1o; Sars, Noll. Reg. Arct. Norv., 18-8, p. 54, Pl. 5, fig. 7.

In this variety the ribbing is very like that in the foregoing, bnt the shell is in general more triangular or oval-cordiform and has the nmbones moved more in front. It is however very close to the var. suburquilatera and cannot always be kept separate from this.

It occurs at North and East Iceland, whence we have it front the following localities:

Skagestrands Ingt
$66^{\circ} 17^{\prime}$ N. I... $18^{\circ} 13^{\prime}$ W. I I
Husavik iut E. bỵ S.
Thistil Fjördr
$66^{\circ} 32^{\prime}$ N. L., $15^{\circ} 15$ II. L.
Bakkafjördr
Scydisfjördr

119 fln .	5 spec.
52 -	1 -
4--58 -	1 -
$50-$, clay with many stones.	$4-\mathbb{S} 5$ valves.
75 -	3 valves.
52-43 - , clay mixed with sand.	I spec.
50-20	1
38-14 - , muld.	

$$
3^{S-1} 4-, \text { mud. }
$$

'Tlie largest specinen is 33^{mm}. long.

Var. intleth Hitgo.
Pl. IV, figs. 5 h and i.
 Jensen, Medd. onn Cironland, XXIX, igog, 1. 33^{8}.

The shell is rentricose, approximating to the obliquely sipuate, with the upper and lower margins alnost parallel, the anterior end short, ronnded, the posterior end truncate; the concentric ribs in general rather numerous and strong, sometines however lesis prominent of even vanishing on at larger or smaller part of the shell (very ratrely even quite wating, so that the shell onfy shows a fine striation). Periostrachn yellow or brownish-yellow.

It is a small form; l have not seen any specinen larser than ig mm.
Sonne measurements will show its limits of variation, from the oblong-trapeziform to almost quadratic, as also the more or less ventricose.

Length	Iteight	Height I.engtll	Breadur	Brealt Lengtl
19 mm'.	14.5 mm .	76.3%	10 "mn.	$52.6{ }^{\circ}$
16.5	11.75	71.2	9.2	55.8 -
15.25 -	12	78.7 -	8.5 -	55.7
15 -	II	73.3 -	7.3-	48.7

The number of ribs may rise to ca. 40 and fall to ca. 24 or even fewer, as the mombl region is frequently withont folds; quite smooth specimens, as mentioned, may also occur. In small sprecimens the ribs are frequently sliarp, amost as in the following variety:

This variety has been taken at the following places at East Creenland by Danish Expeditions:
Forsblads Fjord....................ca. 50 frn., clay witlı stones. 5 spec.

- $-\ldots \ldots \ldots9 .90-50-$, clay with stones. Numerons spec.

and by the Swedisli Expedition of rgon at:

Mouth of Franz Josefs Fjord 106-- $55^{5_{2}}$ - , mud. I
and S. of Jan Mayen by the Danish Experlition of I89I at:
$70^{\prime 2} 21$ N. L., $8^{\circ} 25^{\prime}$ WV. I. I60 fm., day: 2 spec. (en11pty).
I presume that it was this variety of which the Sustrian Station took 3 specinens on the north side of Jan Masen, at a deptli of 75-95 fins; E. Becher determined then as . Asturte sulatur d. C. (Österr. Polarst. Jan Masen, III, I886, P. 7I), but the latter is a warm-water form and the present variety has some resemblance to it .

V ar. acuticostata Jeffreys.
Pl. IV, figs. $5 \mathrm{k}, 1$ and 111.

Jeffreys. lroc. Zool. Soc. 188ı, p. 711, Pl. 61, fig. 9; Posselt, Medd. om Gronland, XIX, 1895, p. ᄀ0; Friele \& Grieg, Norw. North-Atl. Exped., Zoology, Noll. III, 1901, p. 25; Firiele, Bergens Museums Aarbog, 1902, No. 3, p. 4. - Astarte crenota Gray var. acuticostata Jensen, Mtedd. om Crouland, XXIX, igog, p. 338; Grieg, in Duc d'Orléans, Croisière océanographique, 1909, p. 534.

The form ahmost as in the forgoing variety, forming a shorter or longer, oblique quadrangle (sometimes a rhomb), more or less convex; the concentric ribs mumerons (ca. 25-40), strong and more or less sharp, in part lamellar and imbricate. Periostracum yellow. Naximum length 13 mm .

In its typical development, with lamella-like, somewhat imbricate folds it is a very characteristic form, which might well be taken as a "good" species, but there are transitions, which with their more romnded ribs comect it with the preceding variety and throngh this with the more divergent forms of the species cremotu Gray. I can thns agree with the view put forward by Friele in the year 1879 (l.c.), that Astorte acuticostuta Jeffreys is only a pygmy form of A. cronata Gray ${ }^{1}$); it comes very near especially to the var. inflata and may be regarded as a form derived from this and connected with deeper water. I have therefore taken the advanced step of including the present form as a variety moder A. crenata, whereas Friele, the last tine he has mentioned it (l.c. 1902), still retains the distinct specific name A. acuticostata.

For the rest, it is also rather variable however in regard to form. The anterior end, for example, may sometimes be very short, sloping abruptly downwards, sometimes more projecting; the posterior end is frequently high as if slightly expanded, but at other times the greatest height lies further forward. Some measmements will illustrate the variation in the proportions:

	Length	Il eight	$\frac{\text { Height }}{\text { Length }}$	Brealth	${\underset{\text { Length }}{\text { Breadth }}}^{\text {Leng }}$
Ingolf St. is6	13 mm .	11 mm 。	84.6%	7.5^{mmm}.	57.7%
- --	12.3	10	81.3	7	56.9
106	12		83.3	6.3	52.5 -

In addition to from the "Ingolf" stations mentioned above, it is also present from East Greenland, from:
N. of Stewart Island................... i58 fin., clay with stones. 2 spec.

Fleming Inlet. 118 - , clay.
I -
At East Greenland it has also been taken by the "Belgica" at:

Further, we have it from:
$70^{\circ} 32^{\prime} \mathrm{N} . \mathrm{I}_{4}, 8^{\circ} 10^{\prime} \mathrm{W} . \mathrm{I}_{\text {. }}$ (S. of Jan Mayem) 470 fm . \quad i spee.
$63^{\circ} 03^{\prime}$ N. L.. $9^{\prime 2} 28^{\prime}$ IV. L. (N. IT. of Faroes). 275 - , botm.-temp. 0.97 C. i spec. \mathbb{E} i valve.

[^75]$62^{\circ} 35^{\prime}$ N. L., $+4^{\prime}$ W. I. (E) of the Fiorocs) 335 3t.5 fins, clay, botme-temp. 0.00 C .2 spec. \mathbb{N} I value
620^{\prime} - - I 56^{\prime} E. 1. (between the Faroes and Norway)....................... 360 - , butnı.-temp. - 0.3 C . 3 spec.

The Norwegian North Atlantic Expedition took it ofi Spitzbergen, Jan Naycu, IFast Iceland and morthem and western Norway, at depths of 223 fofy fin. and temperatures of an at melen $0^{\circ} \mathrm{C}$. (down to -1.3 C.), more rarely a little above o C. (to $1.5 \mathrm{~S}^{\mathrm{C}} .1$. The Fxpeditions "I inghtning" and "Porcupine" took it in the Jeroe Chanmel, at depths of $3.5-550$ finn and temperatures of can ol

We may say regarding the variety a motiostatu Jeffr, consequently, that it is mamly lommel to the "cold area", but that it may also occur on the boundary region to the cold arca ${ }^{1}$.

Distribution. Asturte cremetu ioray is an arctic species, which is known from the morth and east coast of America down to Mane, Creenland, Jan Maven, North and East Iceland, Norway down to the Lofotens, Mumman Sea, Barents Sea, Spitzbergen, Kara Sea and Polar Sea of Sibiria. The batliymetric distribution is $5-650 \mathrm{fm}$.
 friele and Grieg also say (l.c.), that they have not olsorved it there, althongh they have dredged a good deal at the place - Jeffreys gives Leche as his anthority for its coccurrence at Nowa Zambla, but I have not been able to find, where f.celie mentions it.

Corrigenda.

Plate I.

Plate I.

Fig. 1 . Inomm patclliformis $\mathrm{L}_{\text {. }}$.
a. The upper vallc. showing the position of umbo. $\times \mathrm{I}^{\mathrm{I}}, 2$. The Færoes.
b. The lower valre, showing the size and form of the notch. $\times 1$. South Iceland, ca. 20 fin.
c. The upper valve from the inside, showing the two muscular impressions (one of the adductor, one of the byssus muscle). $\times 1$. The Freroes.
2. Inomia squamula L .
a. The mpper valve, showing the position of the mbo. $\times \mathrm{I}^{\mathrm{I} / 2}$. West lceland (Dyrafjordr).
b. The lower value of the same specimen, showing the size and form of the notch. $\times \mathrm{I}^{\mathrm{I}} \mathbf{2}_{2}$.
c. The upper valve from the inside, showing the two muscular impressions (one of the adductor, one of the byssus minscle). $\times 1^{1{ }^{1}}{ }_{2}$. Sonth Iceland, 58 fm.
d. Var. aculiatu II üller. The upper valye showing the spinous surface. $\times \mathrm{I}^{\mathrm{I}}{ }_{2}$. West Iceland, $19^{1 / 2} \mathrm{fml}^{\mathrm{f}}$.

- 3. Anomia cphifpium L.

The upper valve from the inside, showing the three muscular impressions fone of the adductor, two of the byssus musculature). \times I. The Mediterranean.
Pecten ishudicus Müller.
a. A part of the shell. to show the rasp-like structure, characteristic of the species. $\times 7$. Of a specimen from East Iceland, $35-55$ fm.
b. The rasp-like structure disappears on the lower part of the shell, where the radiating ribs lie very close and are covered with scales. $\times 10$. Of a specimen from West Iceland, $4-7 \mathrm{fm}$.
$c \& d$. i rery small specimen to show that its sculpture is quite different from that of the older. \times if. East lceland, 52-43 fin.
5. Pcoton aratus Crmelin.
a \& b. A specinen with well marked, primary ribs. $\times 1$. S. W. of Iceland, 295 fnn. (lngolf St. 9).
c \mathbb{S} c. A specimen with the radiating ribs more equally developed. $\times 1$. S. of Iceland, 268 fm .
e. A part of the shell fignred in 5 d ; the radiating ribs are rongh from small, down-turned scales (almost as in P. islandicus, comp. fig. \& b, but it lacks the intercostal rasp-like structure of the latter). $\times 12$.

- 6. Pecten siftomradiatus Müller.
a \& b. I specinen with relatively many folds and provided with small spines, especially on the left valve (rar. n. soaber). \times 1. S. WV. of Iceland, 295 fin. (Ingolf St. 9).
c. A part of the left value to show that the radiating strixe are densely beset with sharp scales. $\times 9$.
- 7. Pectinn rigidus J ensen.
a, b \& e. A specimen from the Norwegian Sea, 1010 fm . (Ingolf St. in9). $\times{ }^{1}{ }^{1}, 2$.
© \& d. A specimen from the Norwegian Sea, 1060 fmi. (Ingolf St. in 8). $\times 1^{1{ }^{1} / 2}$.
f. A very young specimen from the Ingolf St.idg. $\times 7$.

Plate II.

Plate II.

Iiig. 1. P'ecten imbrifor L , ovén var. major Leche, the left value.
a. A specimen with few, distant rows of very small outgrowths. $\times \mathrm{I}^{\mathrm{I}}{ }_{2}$. East Greenland (Forsblads Fjord), 50-90 fm.
b. A specimen with many rows of outgrowths. $\times 1 \mathrm{t} / 2$. East Greenland (Forsblads Fjord), 50-90 f111.
c. A specimen with larger and fewer, rather vanited ontgrowths. $\times I^{1} /{ }_{2}$. East Greenland (Forsblads Fjord), 50-90 fin.
d. Almost all the resicnlar ontgrowths are broken off. $\times 1^{1 / 2}$. S. of Jan Mayen, 86 fnn.
e. The vesicles are so broad and flat, that they almost meet one another. $\times \mathrm{I}^{1} / 2$. East Greenland (Forsblads Fjord), 50-90 fm.
f. The resicles are fused together to concentric wrinkles, which are in general broken, so that only remnants of them remain as sharp combs (var. lamellosa Posselt). $\times 2$. West Greenland $\left(72^{\circ} t^{\prime}\right.$ N. I I. $59^{\circ} 50^{\prime}$ IV. L. $)$, 227 fm. After Posselt.
g. A part of the shell slowing the pored ontgrowths or vesicles. $\times 12$.
h. A single pored resicle, more magnified.
i. A part of a shell, near the umbo, where the vesicles are rubbed off, so that the lines of growth appear like cogs on a cog-wheel. $\times 5$.
2. Pecten imbrifer 1 , ovén var. n. minor, the left valve.
a. A shell in which the very small outgrowths mainly appear only towards the margin. $\times 2$. S. W. of Iceland, 485 fm . (Ingolf St. 8 I).
b. A specimen almost quite smooth. $\times 2^{1 / 2}$. S. of 1celand, 500 fm .
3. - Imussium lucidum Jeffreys.
a. A right valre from the onter side. $\times 2$. Denmark Strait, 788 fm. (Ingolf St. Io).
b. A left valye from the onter side. $\times 2$. The same locality:
c. The same valve as in fig. a, but seen from the inner side. $\times 2$.

- 4. Lima gzovni Sykes.
a \& b. A specimen from Norway (Bergen). $\times \mathrm{I}^{\mathrm{I}} / 2$.
c. A part of the shell showing the serrate radiating ribs. $\times 30$.

5. Lima hyperbora Jensen.
a \& b. A specimen from East Greenland (Forsblads Fjord), 90-50 fm. $\times \mathrm{I}^{1} / 2$.
c $\mathbb{\&} \mathrm{d}$. The same specimen seen from in front and from above. $\times \mathrm{I}^{1 / 2}$.
e. A part of the shell showing the sharp radiating ribs. $\times 18$.
6. Lima subauriculata Montagu.
a $\&$ b. A specimen fron1 West Greenland (Ritenbenk). $\times 3$.
c. A part of the shell showing the radiating ribs. $\times 20$.
7. Lima simitis n. sp.
a $\&$ b. A specimen from the Bay of Biscay, $250-790$ fnn. ("Tlıor", 1906), $\times 3$
c. A part of the shell showing the radiating ribs. $\times 20$.
8. Lima subouata Jeffreys.
a \& b. A specimen fronn Davis Strait, I435 fm. (Ingolf St. 36). $\times 4$.
c. A part of the shell showing the mmerous radiating ribs. $\times 20$.

- 9. Lima ingolfiana 11. sp.
a. A right valve from W . of Iceland, 568 fm . (Ingolf St. 90). $\times 4$.
b. A left valve from S. IV. of Iceland, 799 fin. (Tngolf St. 78). $\times 4$.
c. 'The dorsal margin of the shell seen from the inner side. \times ca. 18 .
(1. A part of the shell showing its finely scaled or spined radiating ribs. $\times 30$.
- ro. Lima jeffreysi Fisclier.
a. A left value from S. of Iceland, 500 fm. ("Thor", 1903). $\times 2$.
b. A right valve from S . of Iceland, 293 fm . ("Thor", 1903). $\times 2$.
c. A part of the shell showing its squamular, radiating ribs. $\times 12$.

11. Lima sarsii J o vén.
a \& b. A right and a left valve, from Norway (Bergen). $\times 5 \mathbb{\&} 4$.
c. The 11pper part of the shell seen from the inner side, to show the crenulated cardinal margin. $\times 30$
(1. A part of the shell showing its densely and coarsely scaled surface. $\times 30$.

ringrer
ningrir
ninn
$1 i$

$\because b$

if b

11 "

1012

(1)

111

Plate III.

Plate III.

「iing. r. Modiola modiolus If., young.
a. A left valve from the inner side \times 3, . Iceland.
b. The anterior end of the same valve. $\times 7$.

- 2. Nodiole phascoline Philippi.
a. A left valye from the inner side. \times I. Iceland.
b. The anterior end of the same valve. $\times S$.
- 3. Idas argontons Jeffreys.
a. A left valve from the outer side. $\times 6^{\mathrm{T}} / 2$. S. of Iceland, $975 \mathrm{fm11}$. (Ingolf St. 67).
b. A left valve from the outer side, without the liairy periostracunn. $\times 12$.
c. A specimen from the upper side. $\times 12$.
d. Hinge of riglit valve. $\times 10$.
e. Hinge of the same. $\times 20$.
- 4. Modiolerin discors L. var. larigate Gray:
a. A specimen from Spitzbergen. $× \mathrm{I}$.
b. Dorsal view of the same. $\times 1$.
- 5. Modiolaria discors L. var. substrinta Gray.
a. A specimen from West Greenland. \times I.
b. Dorsal view of the same. $\times 1$.
c. A part of the middle area to show its "smooth" (simply striated) surface. $\times 5$.
- 6. Modioleriat discors I.
a. A specimen from Denmark. $\times 2$.
b. Dorsal view of the same. $\times 2$.
- 7. Modiolaria corrugata Stimpson.
a. A specimen from Spitzbergen. $\times I^{\mathrm{I}_{2}}$:
1). A specimen from West Greenland (Fiskenasset). $\times 1^{1 / 2}$.
c. Dorsal view of the same. $\times \mathrm{I}^{1 / 2}$.
d. A part of the middle area to show its shagreen-like wrinkled surface. $\times 5$.
- S. Modiolurin faba (Müller) Fabricius.
a. A specimen from West Greenland (Ritenbenk). $\times 1$.
b. Dorsal view of the same. $\times 1$.
c. Interior of the right valve. $\times 1$.
- 9. Cordium fasciatum Mont a git.
a \& b. A specimen of the short, strongly ventricose form. $\times \mathrm{r}^{2} / \mathrm{s}$. Fieroes, $20-30 \mathrm{fm}$.
$c \& d$. A specimen of the somewhat elongated, not much tunit form1. $\times 3$. West I I celand (On111darfjördr), ca. 12 fin.
e. A specimen with tubercles not only on the anterior and posterior area, but also on the middle area. $\times 6$. West Iceland (Onundarfjordr), ca. 12 fm .
f. That form which was confused by Mörch with C. cdule L. $\times \mathrm{I}^{2} / 3$. I'æroes.
s. The same half from in front. $\times 3$.

1. The same half from behind. $\times 3$.
i. A specimen witl an obliquely cordiform contour. $\times 8^{1} / 2$. Feroes, 135 fnn.
k. A specinen lialf from behind showing an intercostal sculpture in the fornn of a fine pricking. $\times 5$. West Iceland (Onnndarfjördr), ca. 12 fm .

- 10. Cardium ciliatum Fabricius.

A very young specimen. $\times \mathrm{IO}^{1} / 2$. East Iceland (Bakkafjördr), $5^{2}-43 \mathrm{fm}$.

- II. Cardium cchinatume I_{1}.

A very young specimen. $\times 10^{\mathrm{I}} / 2$. Sonth Iceland, $17-23 \mathrm{fm}$.

- 12. (ardinm (Scrripes) srocnlundicum Clieminitz.
a. A very young, strongly sculptured specimen. $\times 6$. West Greenland (Godthaabs Fjord).
b. A very young, comparatively smooth specinen. $\times 5$. West Iceland (Onmdarfördr), io fin.

$\frac{-\pi=\frac{\pi}{31}}{31}$
$\rightarrow=\frac{1310}{3}$

! 1

(1)

11

Plate IV.

Plate IV.

Fig. 1. Astarte borcalis Cliemuitz.
a. A specimen without folds and with an almost smooth periostracum. \times I. West Iceland, 22 fin.
b. 'The sanle fronn above.
c. A very high form, with quite narrow folds on the uppermost part of the shell and with fairly thick, fibrous periostracum on the lowest part. \times i. West Iceland (Faxafjördr), 8 II I z fm.
d \& e. A strongly compressed form with distinct folds on the nppernost part of the shell. $\times 1$. West Greenland.
f. A very elongated form from East Greenland (Hekla Havn). $\times \mathrm{I}^{1} / 2$.

- 2. Astarte Montugui Dillwyu.
a. Forma typica, a short and high, somewhat triangular form. $\times 1^{1 / 2}$. West Iceland (Faxafjördr), $15-16$ f111.
1). Var. strinta (I , eacli) Sars, a more elongated form. $\times \mathrm{I}^{\mathrm{I}} \mathrm{I}_{2}$. West Greenland (Jakobslavin).
c. Var. Il arhami Hancock, an elongated, elliptical form. \times. East Greenland (Hurry Inlet), 10 fin.
- 3. Astarte sulcaler da Costa.
a \& b. A typical specinen from the Freroes, 150 f1n. $\times 1$.
c. A specinen with comparatively close-placed ribs, from Demmark Strait off sonth-eastern Greenland (Ingolf St. 94), 204 fin. \times I.
- 4. Astartc clliptica Brown.
a \& b. A typical specimen from the Faeroes (Klaksvig), 10-15 fin. $\times 1$.
$c \mathbb{\&}$ d. A very elongated form, from East Creenland (Hekla Havn). $\times 1$.
e \& f. A very ligh and convex form, from West Greenland. \times i.
g. A specimen in which the folds disappear almost abont the middle of the shell. \times I. West Greenland (Vaigat).
- 5. Astarte cronata Gray:
a \& b. A typical specinen from East Greenland (Hnrry Inlet), 50 fin. \times i.
c. A specinen witl fewer and more prominent ribs. \times. East Greenland (Cape Hope), 12 f fun. d \& e. A specinien of var. subcoquilatcra Sowerbj: \times 1, Davis Strait (Ingolf St. 32), 318 fm.
f \& g. A specimen of var. crebricostata Mc. Andr. \& Forbes. \times I. North Iceland (Skagestrands Bugt), irg fin.
11 \& i. A specimen of var. influta Hägg. $\times \mathrm{I}^{\mathrm{T}} / 2$. East Greenland (Forsblads Fjord), 90-50 fm.
$\mathrm{k} \& 1$. A specimen of var. araticostata Jeffreys. $\times \mathrm{I}^{\mathrm{F}} / 2$. S. of Jan Mayen (1ngolf St. irb), $37^{1} \mathrm{fm}$.

111. A part of the shell, more magnified.

$1 a$

16

11

;

THE ING（OLF－EXPEDITION
 $1895-1896$.

THE LOCALITIES，DEPTHS，AND BOTTOMTEMPERATURES OF THE STATIONS．

$\begin{aligned} & \text { Station } \\ & \text { Nr. } \end{aligned}$	Ialt，N．	Lomst ${ }^{\text {l }}$ ．	Depth inl I 1 duish fathoms	Bottoms－ tenip.	$\begin{aligned} & \text { Stations } \\ & \text { Nis. } \end{aligned}$	Jatt \times ．	Loms．IV．	［ epth inl I atrisish fitthouns	bottons－ telmp．	$\begin{gathered} \text { Station } \\ \text { Nr. } \end{gathered}$	I．at．N．	［，olig．IT：	Deptlı in Danish fathoms	130 tomirn t（＇111）．
1	$62^{\circ} 30{ }^{\prime}$	$8^{\circ} 2 \mathrm{I}^{\prime}$	132	$7^{\circ} 2$	24	$63^{6} 06^{\prime}$	56° on	1 19， 9	$2^{\circ} 4$	4.5	$61^{2}-32^{\prime}$	$9^{\circ}+3^{\prime}$	64.3	417
2	$63^{\circ} 11{ }^{\prime}$	$4^{\circ} 22^{\prime}$	$26=$	$5^{\circ} 3$	25	D3－3	$54^{\circ} 25^{\prime}$	$5 \% 2$	$3{ }^{\circ} 3$	16	$61^{\prime} 32^{\prime}$	$11^{\circ} 36^{\prime}$	720	21
3	$63^{\circ} 35^{\prime}$	$10^{\circ} 21^{\prime}$	$2-2$	0 0		$63^{\circ} 51$	$533^{3} 13^{\prime}$	136		47	$61+32$	130°	950	3－23
1	64°	$11^{\circ} 12$	237	$2^{0} 5$	26	$63^{\circ} 57^{\prime}$	$52^{2}+1{ }^{1}$	34	$0^{\circ} 6$	45	$61^{3} 32^{\prime}$	$15^{2} 11^{\prime}$	1150	3＂17
5	$61^{\circ} 40^{\circ}$	$12^{2} 00^{\prime \prime}$	155			$64^{\circ} 37^{\prime}$	$5 t^{\circ} 24^{\prime}$	109		49	$62^{\circ} \mathrm{O}$	1500	1120	2×91
6	$6.3{ }^{\circ}+3^{\prime}$	$14^{\circ} 34^{\prime}$	90	70	27	$64^{\circ} 54^{\prime}$	$55^{\circ} 10^{\circ}$	393	$3^{\sim 9}$	50	$62^{2} 13^{\prime}$	1，5－17\％	1020	313
7	$63^{6} 13$	$15^{\circ} 4^{\prime}$	6×0	$4^{13} 5$	2.3	$65^{-1} 1{ }^{\prime}$	$55^{\circ}+2^{\circ}$	420	$3^{\circ} 5$	5 I	$64^{\prime \prime} \times 5^{\prime}$	$14^{\circ} 22^{\prime}$	68	－${ }^{\text {F }}$
\＄	$63^{\circ} 55^{\prime \prime}$	$24^{\circ}+0^{\circ}$	136	6	29	$65^{\circ} 34^{\circ}$	$5 t^{2} 35^{\prime}$	6.	$0^{\circ} 2$	52	$6.3^{\circ} 57^{\prime}$	13.32	420	7 N
9	$6.1^{\circ} 1{ }^{\prime \prime}$	$27^{\circ} 00^{\circ}$	29.5	$5^{\circ} \%$	30	$66^{\circ} 50^{\prime}$	$54^{\prime \prime} 23^{\prime}$	22	$10^{0} 05$	53	6315	150	79.5	3 心
10	$64^{6} 24^{\prime}$	28.50	788	$33^{3} 5$	31	$65^{-3} 3$	$5.5{ }^{\circ} \mathrm{S} 4^{\prime}$	SS	$1{ }^{\circ} 6$	54	633°	$1.54{ }^{\circ}$	6y 1	39
II	$64^{\circ} 34^{\prime}$	$31^{\circ} 12^{\prime}$	1300	1－6	32	$66^{\circ} 3.5$	$56^{\circ} 3$	315	$3^{\circ} 9$	55	$633^{\prime} 3.3^{\prime}$	153	316	$5 \cdot 9$
12	6.403 .3	$32 \cdot 37$	1040	（1）3	33	$67^{\circ} 57^{\prime}$	$55^{\circ} 30^{\prime}$	35	$1 \%^{\circ} \mathrm{S}$	56	$6.40{ }^{\circ}$	1.5 ＇$x 9$＇	6.4	75
13	$6.4^{\circ} \%^{\prime}$	$34^{\circ} 33^{\prime}$	622	33^{0}	3.4	$65^{\circ} 17^{\prime}$	$54^{\circ} 17^{\prime}$	55		57	6.3 ぶ	1302	3，50	31
1.1	01.45^{\prime}	$35^{\circ} 19{ }^{\prime}$	176	$4^{\circ} 4$	35	$65^{\circ}{ }^{6}$	$55^{\circ} 05^{\prime}$	362	$3{ }^{6} 6$	54	ht 2.55°	$\left.12^{\prime} \cdot \mathrm{xy}\right)^{\prime}$	2 II	1＇
1.5	$66^{\circ} \mathrm{I} 5^{\prime}$	$25^{\circ} 59^{\prime \prime}$	33^{0}	$-1)^{\circ} 75$	$3{ }^{3}$	$61-50$	56 21．	113.5	1＂5	54	05 （n）	1116°	こ11	0 1
16	$65^{\circ} 13^{\prime}$	$26^{\circ} 55^{\prime \prime}$	250	$6^{\circ} \mathrm{I}$	37	60.17	$54^{\circ} 115^{\prime}$	1715	I^{-1}	60	$65^{2} \times 148$	1227	121	114
17	$62^{\prime \prime}+4{ }^{\prime}$	$26^{\circ} 55^{\prime}$	745	$3^{\circ} 4$	$3{ }^{3}$	$59^{\circ} 12^{\circ}$	$51^{\circ} 05^{\prime}$	ばい	1 ：	61	けいす。	1：（x）	55	111
18	$61^{\circ}+4$	$30^{\circ} 29^{\prime}$	1135	$3^{\circ} 11$	34	62.001	2230	Sis 5	29	62	13，13	14 ：${ }^{\prime}$	72	742
19	（6） $2 y^{\prime}$	$34^{\circ} 144^{\prime}$	1566	$2^{\circ} 4$	4 ${ }^{\prime \prime}$	$62^{\circ} 10{ }^{\circ}$	$21^{\sim} 36^{\prime}$	815	$3 ' 3$	63	6210	14） 41.5°	（ix）	1 11
20	$58^{\circ} 20^{\prime}$	$40^{\circ}+8^{\prime}$	1695	$1{ }^{\circ} 5$	11	$61^{\circ} 3.3{ }^{\prime}$	$17^{\circ} \mathrm{IO}$	121.5	20	6.1	$62^{\circ} 120^{\circ}$	$1)^{\circ}(x)$	1071	$3{ }^{21}$
2 I	$5^{80} 01^{\circ}$	$4.4^{\circ}+5^{\prime}$	1330	$2^{\circ}+$	12	$61^{\circ}{ }^{\circ} 1^{\prime}$	$10^{\circ} 17$	12，5	$0^{2}+$	6.5	63： 3.3^{\prime}	14． $1 \times)^{\prime}$	10．4．4	$3 \cdots$
22	$53^{\circ} 10^{\prime}$	$45^{\circ} 25^{\prime}$	IS45	1＇4	43	$61^{\circ} .12^{\prime}$	$10^{\circ} 11^{\prime \prime}$	64.5	$\left.{ }^{1}\right)^{\circ} 05$	66	$61^{\circ} \therefore 3^{\circ}$	21） 1.3^{\prime}	112゙	3 i
23	$60^{\circ} 43^{\prime}$	$56^{\circ} \mathrm{06}$	Onty the Platrion Not used		44	$61^{\circ}+2^{\circ}$	$4^{\circ} 36^{\prime}$	54.5	$4{ }^{\prime \prime}$	07	$61^{\circ} 33^{\prime}$	$22^{\circ} 31^{\prime}$	4\％5	$\therefore{ }^{\prime}$

$\begin{aligned} & \text { Station } \\ & \therefore r . \end{aligned}$	Lat. \times.	Loug. WV.	Depth in Uanish fathons	Bottomtemp.	Station Nr.	Lat. N.	Long. W .	Depth in Danish fathonis	Bottonl temp.	Station Nr .	I.at. N.	Long. W.	Depth in Danish fathoms	Botton1temp.
68	62°, 6	$22^{\circ} 30^{\prime}$	843	$3^{\circ}+$	92	$64^{\prime}+4^{\prime}$	$32^{\circ} 52^{\prime}$	976	$1^{\circ}+$	118	$68^{\circ} 27^{\prime}$	$S^{\circ} 20^{\prime}$	1060	$1^{\circ} \mathrm{O}$
69	6210°	$22^{\circ}{ }_{1}^{\prime \prime}$	589	$3^{\circ} 9$	93	$64^{\circ} 24^{\prime}$	$35^{\circ} 14^{\prime}$	767	$\mathrm{I}^{\circ}+6$	119	$67^{\circ} 53^{\prime}$	$10^{6} 19^{\prime}$	1010	$-1{ }^{\circ} \mathrm{O}$
70	$63^{\mathrm{L}} \mathrm{ug}$	22-05'	1.34	$7{ }^{\circ} \mathrm{O}$	94	$64^{\circ} 56^{\prime}$	$36^{\circ} 19^{\prime}$	204	$4^{\circ} 1$	120	$67^{\circ} 29^{\prime}$	$11^{\circ} 32^{\prime}$	SS5	$1^{\circ} \mathrm{O}$
71	$63^{\circ} 4^{\prime \prime}$	$22^{\circ} \mathrm{O} 3^{\prime}$	46			$65^{\circ} 3 \mathrm{I}^{\prime}$	$30^{\circ} 45^{\prime}$	213		121	$66^{\circ} 59^{\prime}$	$13^{\circ} 11^{\prime}$	529	$-0^{\circ} 7$
72	6312	$23^{\circ} 04^{\prime}$	197	67	95	$65^{\circ} 14^{\prime}$	$30^{\circ} 39^{\prime \prime}$	752	$2{ }^{\circ} 1$	122	$66^{\circ} 42^{\prime}$	$14^{\circ} 44^{\prime}$	115	$1{ }^{\circ} \mathrm{S}$
73	$625{ }^{\prime}$	$23^{\circ} 2 s^{\prime}$	186	$5^{\circ} 5$	96	$65^{\circ} 24^{\prime}$	$29^{\circ} 00^{\prime}$	735	$\mathrm{I}^{\circ} 2$	123	$66^{\circ} 52^{\prime}$	$15^{\circ} 40^{\prime}$	145	$2^{\circ} \mathrm{O}$
7.1	$62^{\circ} 17$	$24^{\circ} 36^{\prime}$	695	$4^{\circ} 2$	97	$65^{\circ} 28^{\prime}$	$27^{\circ} 39^{\prime}$	450	$5^{\circ} 5$	12.4	$67^{\circ} 40^{\prime}$	$15^{\circ} 40^{\circ}$	495	$-0^{\circ} 6$
	$61^{\circ} 5 \%^{\prime}$	$25^{\circ} 35^{\prime}$	761		98	$65^{\circ} 34^{\prime}$	$26^{\circ} 27^{\prime \prime}$	138	$5^{\circ} 9$	125	$68^{\circ} 08^{\prime}$	$16^{\circ} \mathrm{O} 2^{\prime}$	729	$-0^{\circ} \mathrm{S}$
	$61-28$	$25^{\circ} 06^{\prime}$	829		99	$66^{\circ} 13^{\prime}$	$25^{\circ} 53^{\prime \prime}$	157	$6^{\circ} \mathrm{I}$	126	$67^{\circ} 19^{\prime}$	$15^{\circ} 52^{\prime}$	293	$-0^{\circ} 5$
75	$61^{\circ} 28^{\prime}$	$26^{\circ} 25^{\prime}$	780	43	10	$66^{\circ} 23^{\prime}$	$14^{\circ} \mathrm{O} 2^{\prime}$	59	$0^{\circ} 4$	127	$66^{\circ} 33^{\prime}$	$20^{\circ} \mathrm{O} 5^{\prime}$	4	$5^{\circ} 6$
76	6050°	$26^{\circ} 50^{\circ}$	So6	$4^{\circ} \mathrm{I}$	101	$66^{\circ} 23^{\prime}$	12.05	537	087	128	$66^{\circ} 50^{\prime}$	$20^{\circ} \mathrm{O} 2^{\prime}$	194	$0^{\circ} 6$
7	60.10	$26^{\circ} 59^{\circ}$	951	$3^{\circ 6}$	102	$66^{\circ} 23^{\prime}$	$10^{\circ} 26^{\prime}$	750	$0^{\circ} 9$	129	$66^{\circ} 35^{\prime}$	$23^{\circ}+47^{\prime}$	117	$6^{\circ} 5$
78	$60^{\circ} 37^{\circ}$	$27^{-8} 52^{\prime}$	799	$4^{\circ} 5$	103	$66^{\circ}-23^{\prime}$	$8{ }^{\circ} 52^{\prime}$	579	$0^{\circ} 6$	130	$63^{\circ} \mathrm{oo}$	$20^{\circ}+10^{\prime}$	338	$6^{\circ} 55$
79	$60^{\circ} 52^{\prime}$	$2 S^{\circ} 58^{\prime}$	653	$4^{\circ}+$	104	$66^{\circ} 23^{\prime}$	$7^{\circ} 25^{\prime}$	957	$1^{\circ} I^{\prime}$	131	$63^{\circ} 00^{\prime}$	$19^{\circ} \mathrm{O} 9^{\prime}$	698	$4^{\circ} 7$
Su	$61^{\circ} \mathrm{OL}^{\prime}$	$29^{\circ} 32^{\prime}$	935	$4^{\circ} \mathrm{O}$	105	$65^{\circ} 34^{\prime}$	$7^{\circ} 31^{\prime}$	762	00°	132	$63^{\circ} 00^{\prime}$	$17^{\circ} 04^{\prime}$	747	$4^{\circ} 6$
st	$61^{\circ}+4^{\prime}$	$27^{\circ} \mathrm{O} 0^{\prime}$	485	$6^{\circ} \mathrm{I}$	106	$65^{\circ} 34^{\prime}$	$8^{\circ} 54^{\prime}$	447	$-0^{c} 6$	133	$63^{\circ} 14^{\prime}$	$11^{\circ} 24^{\prime}$	230	$2^{\circ} 2$
S2	का 55,	$27^{2} 28^{\prime}$	S2. 7	$4^{\circ} 1$		$65^{\circ} 29^{\prime}$	$8^{\circ} 40^{\prime}$	466		134	$62^{\circ} 34^{\prime}$	$10^{\circ} 26^{\prime}$	299	$4^{\circ} 1$
s_{3}	$62^{\circ} 25^{\prime}$	$28^{\circ} 30^{\prime}$	912	$3^{\circ} 5$	${ }^{107}$	$65^{\circ} 33^{\prime}$	$10^{\circ} 2 \mathrm{~S}^{\prime}$	492	$0^{\circ} 3$	135	$62^{\circ}+8^{\prime}$	$9^{\circ} 45^{\prime}$	270	$0^{\circ}+$
	$62^{\circ} 36^{\prime}$	$26^{\circ} \mathrm{O}{ }^{\prime}$	472		108	$65^{\circ} 30^{\circ}$	$12^{\circ} 00{ }^{\prime}$	97	$1{ }^{\circ} 1$	136	$63^{\circ} \mathrm{OI}$	$9^{\circ} 11^{\prime}$	256	$4^{\circ} 8$
	$62^{\circ} 36^{\prime}$	$25^{\circ} 30^{\prime}$	joi		109	$65^{\circ} 29^{\prime}$	$13^{\circ} 25^{\prime}$	38	185	137	$63^{\circ} 14^{\prime}$	$9^{\circ} 31^{\prime}$	297	$-0^{\circ} 6$
s_{4}	$62^{\circ} 5{ }^{\prime \prime}$	$25^{\circ} 24^{\prime}$	633	45	110	$66^{\circ}+4^{\prime}$	$11^{\circ} 33^{\prime}$	781	$0{ }^{\circ} \mathrm{S}$	138	$63^{\circ} 26^{\prime}$	$7^{\circ} 56^{\prime}$	471	06
85	$63^{\circ} 21^{\prime}$	$25^{\circ} 21^{\prime}$	170		11.	$67^{\circ} 14^{\prime}$	$5^{\circ}+5^{\prime}$	860	$0^{\circ} 9$	139	$63^{\prime} 36^{\prime}$	$7^{\circ} 30^{\circ}$	702	$-0^{\circ} 6$
S6	$65^{\circ} 03^{\circ}$	$23^{\circ}+7{ }^{\circ}$	76		112	$67^{\circ} 57^{\prime}$	$6^{\circ} 14^{\prime}$	1267	$-1^{\circ} \mathrm{I}$	140	$63^{\circ} 29^{\prime}$	$6^{\circ} 57^{\prime}$	7 So	$-0^{\circ} 9$
S_{7}	$65^{\circ}{ }^{\circ} 2^{\prime}$	$23^{\circ} 56^{\prime}{ }_{2}$	110		113	$69^{\circ} 31^{\prime}$	$7^{\circ} 06^{\prime}$	1309	$-1^{\circ} \mathrm{O}$	141	$63^{\circ} 22^{\prime}$	$6^{\circ} 58^{\prime}$	679	$-0^{\circ} 6$
ss	$64^{\prime} 58^{\prime}$	$24^{\circ} 25^{\prime}$	76	69	114	$70^{\circ} 36^{\prime}$	$7^{\circ} 2 y^{\prime}$	773	$1^{\circ} \mathrm{O}$	142	$63^{\circ} 07^{\prime}$	$7{ }^{\circ} 05^{\prime}$	$5{ }^{5} 7$	$-0^{\circ} 6$
S9	$64^{\circ}+5^{\prime}$	$27^{\circ} 20^{\prime}$	310	$8{ }^{\circ}+$	115	$70^{\circ} 50^{\prime}$	$S^{\circ} 29^{\prime}$	86	$0^{\circ} 1$	143	$62^{\circ} 55^{\prime}$	$7^{\circ} 09^{\prime}$	358	$-0^{\circ}+$
yo	$64^{\circ}+5^{\prime}$	$29^{\circ} 06^{\prime}$	568	$4^{\circ} 4$	116	$70^{\circ} 05^{\prime}$	$8^{\circ} 26^{\prime}$	371	$\cdots 0^{\circ}+$	14	$62^{\circ}+49^{\prime}$	$7^{\circ} 12^{\prime}$	276	$1{ }^{\circ} 6$
91	$64^{\circ}+4^{\prime}$	$31^{\circ} \mathrm{Ou}$	1236	3 1	117	$69^{\circ} 13^{\prime}$	$8^{\circ} 23^{\prime}$	1003	$1^{\circ} \mathrm{O}$					

QL	Danish Ingolf-Exped:
5	1895-1896
D3	The Danish Ingol
V.2A	expedition
pt.1-5	

BioMed

PLEASE DO NOT REMO CARDS OR SLIPS FROM THIS

UNIVERSITY OF TORONTO

[^0]: The Ingolf-Expedition. It 1.

[^1]: ${ }^{1}$) As this genus was not found formerly in any of the Danish seas, it should be romateod that a finh of this genus,

[^2]:

[^3]: ${ }^{\text {I }}$ l. c. p. $330 \mathrm{seq} .$, pl. X, fig. r, Lit. a. Pl. XI, fig. r, Litt. a, a.
 ${ }^{2}$ History of British Fishes, 3^{1} ed., 2, p. 527.
 3) Nouv. Ann. du Muséum. I, p. 455, pl. 20.
 4) Göteborgs och Bohusläns Fanna. IS77. p. 627, 629 .
 5) Systematische Beschreibung der Plagiostomen. I8f1. p. 91, 93.

[^4]: organe der Ilagistomen. Zeitschr. f. wiss. Zoologie, wol. 30 , whe

[^5]: ${ }^{1}$) In two females I have found the number respectively ${ }^{15}-17$ and $16-17$ on the two sides.
 ${ }^{2}$) In one specimens separate, independent pieces of cartilage have beens developerd; they are placed across, and near the outer end of the rays they connect two and two of these.
 ${ }^{3}$) Comp. Gegenbaur: C'eber das Skelet der Gliednaassen der Wirbelthiere inn Allgemeinen und der Hintergliedmaassen der Selachier insbesondere. Jen. Zeitschr. 5 Bd., i 870 , p. 435 seq .
 +) liy the choice of the letter-marks I have intended to point out, that all these parts belong to the stem-skeleton.

[^6]:

[^7]: 1. This is corrobraterl with particular phamess by the aramgement in the fobmophater
[^8]: a coalescing of basal parts of rays, refers to the fact that such a coalescing of rays is frequently seen in other parts of the fin, especially anteriorly, he does not see that the basal joints of the rays always are many times longer than the distal, and that this difference of size is also preserved by such concrescences.
 ${ }^{1}$ The type of the arrangentent of the ventral muscular system put down by v. Davidoff (1. c. p. 456) for Heptanchus Q, which reminds of the arrangement in Chimara, I have had no occasion to see in any Ilagiostome; r: D. asserts to have fonnd it very gencrally, and refers to Acanthias ahnost as an exception; however, I can with certainty see no other forms mentioned in his text than Carcharias as belonging to the same type as Heptanchus.

[^9]:
 but this statement I fonma on a drawing withont any text, left by S. Sohncider wheh, torather with whet dranimg, has

[^10]:

 three muscular portions, the first of which being the ventral ray-museles, the secomb. which he componco whe ondme:nt
 cular organ, to which he does mot ascribe any musentar walls, ath he supposen that the other pzombelen expel its kherizit

 proximally.
 ${ }^{2}$) Thromolhjemste selskals sikrifter 11, 1763, P. 31y.
 3) 1)ammarks fiske vol. 111, 1852-53. p. 90\%.

 founded, I snppose, on young specimens, in which only the onft demmal flap is secth.

[^11]: I) Sveriges weh Norges Fiskar, vol. 3. IM9, p. 67.
 \Rightarrow It is somewhat difficult to obtain exact measurings on account of the terminal part being bent.

[^12]: 1.c. p. 650 P'etri, 1.c. p. 303, and lis. 6.
 ${ }^{2}$) The worls of Lilljeborg l.c. p. 650 : The male has small copulatory organs, mot reaching to the hindmost points of the ventrals, and scarcely of half of the abose given lengeth of these fins do not apply to the teveloped state. Neither can the figure 6 of letri represent the developed appendages, and it is upon the whole had; the appendages are in this species never so clumsy; the description at p. 303 is only ill adapted to Sc. canicula, and not very well to Sc. catulus.

[^13]:

[^14]: 1) The glandular bag contained only a little mucus, while the tube of the aphendix, and the abome mentioned prote: as well as the inside of the terminal part were all filled with an extremely viscil, milk-white machs, which mo de the finger exceedingly slippery and was difficult to get washed off; it contained momerom cells of differche size amb shaper, with inal or round muclei staming very readily.

 of the abdomen, deven feet loner and two wide. The immer surface of this casity in sumoth, almost folishent, and of a beatiful white colour; it containct a white muchs, extremely viscid and temacinm.

[^15]: ${ }^{1}$) Müller $\mathbb{\&}$ Henle $1 . c$. p. 99 state in characterising the genus: Die Anhänge des Mänchen klein mat weich , which, as we have seen, does not apply to adult anmals, and consequently is of no value as a characteristic of the genus.
 ${ }^{2}$ This dental mosaic on the ventral side is quite different from that of the dorsal side, where the demal teeth project as small thorns from the thicker skin. The words of Muller \& Henle in characterising the genus: Schuppen konisch in eine Spitze endigend, zerstrent are then only to be applied to the dorsal side. I have not upon the whole found any mention made of the demal teeth of the ventral side, only expressions to the effect that the abdomen is more or less smooth.

[^16]: ${ }^{1)}$ Petri, as already mentioned, is quite womg as to the terminal part; he takes the dorat wrminal pheis Tif th
 zwei kleme verkalkte Spangen, borne by the hinthost part of the vertral marginal cartilate tu which they ate what

 thias and Scyllium, not to speak of Kaju.

[^17]: ${ }^{1}$ Partly even those in Khina.

[^18]: ${ }^{1}$) It is mentioned by the way by Moreau l.c. p. 25 I under Raja clavata by the mane of Cartilage interne ; the presence of $T d_{2}$ is also noted here, but this piece gets no special name, as it is not found in R. clavata.
 ${ }^{2}$) This comection-piece I take to be not independent.

[^19]: ${ }^{1}$) 1. c. p. 3 Io.
 ${ }^{2}$) Hist. nat. des Poissons de la France, vol. I, IS8I, P. 248-259.
 3) P'etri, l.c. pl. XVI, fig. i D, has given a drawing of the dilated terminal part, which is quite unsatisfactory, especially with regard to the ventral side.
 *) Petri, l.c. fig. I D, hk.
 5) Petri, bj.

[^20]:

[^21]: ${ }^{1}$) Notes from the Otago Ľniversity Museum, VHI On the Claspers of Callorhyochus. Nature, wl. 33, iSS6, p. 635.

[^22]: ${ }^{1}$) As far as 1 have been able to determine withont dissection, this part in the specinen in hand has a length of ca. 3.5^{cm}, a brealth of ca. 2^{cm} across the broad terminal part.
 ${ }^{2}$ Only the cartilaginons skeleton has been rendered and scarcely quite completely - in the mentioned figure by Dunéril, as also this skeleton only is mentioned in the text (1.c. p. 682); this work, therefore, gives only a very incomplete idea of the whole organ; the same may also be said of the short communication by Parker in Nature"; upon the whole it is very difficult, without drawings and dissection, to give a tolerably clear survey of these complicated structures.
 3) Parker evidently has also scen this glandular body: $1 n$ connection with the sac is a gland secreting a lubricating fluid, and closely resembling the well-known gland of the Elasnobranch claspers (which gland, however, is not found in all Elasmobranchii). To this is added the interesting observation: In the female, althongh the clasper itself is absent, a small glandular sac occurs in the corresponling position. (Garman (1.c. p. 200) has, earlier than Parker, seen the gland, and given a very short and incomplete description of the pelvic appendages. He thinks that the above described cartilaginous tube serves for conducting the secretion into the groove of the penis (i. e. the appendix-slit), when it is turned forwards, and throngl the latter the fluid is conveyell to the oriducts of the fenale. The supposed turning forward of the appendix,

[^23]:

 ${ }^{2}$) The old, before quoted observation in fristotle gams hy this vien very much in trustmonthines: There are those who assert that they have observed that some of the selachians hang together behind like the fose : and it ties arat

 frequently draw up both together, though only one has taken the bait

[^24]: ${ }^{1}$) Hitherto only very little is known of the chemical relations of this secretion. Davy (1. c. I839, p. 145) says it is neither acid nor alkahine, and that it has a very indistinctly acrid after taste. Moreau, on the contrary, declares it to be acid (1. c. p. 258); this, however, can scarcely be correct, as in this case it would have a bad influence on the spermatozoids with which it will scarcely avoid to come into contact.
 ${ }^{2}$) For those, who are of opinion that $\mathrm{A} g$ assiz has solved the question of the function of the appendages correctly, these bags, perlaps, will not appear quite so mysterious; Garman, for inst. says (l’roc. Bost. Soc. iS7, p. 173): «That the cavity upon the ventrals, containing the muscular gland, fills so reachly with the spern when the claspers are erected, and that its contents are expelled, upon contraction of the muscles around it, with such certainty to their ends, when restored to their nomal position, are evidences that it acts as a forcing or squirting apparatus". I must, however, object against this f) that I cannot see that the sperm upon the whole can lie filled into the bag, still less, that it can be done easily; and 2) that spermatozoids never have been found in the glandular bag, although its contents have several times been subjected to microscopical examination, also with the object of seeking spermatozoids in them.
 3) As it is reported in "Biol. Centralbl." vol. III, 1893 , no. 7, p. 224, this contribution to the Beiträge" unst have appeared two years before the completing of the said volume.

[^25]: The Ingolf-Expedition. 11. 3 .

[^26]: 1) The (2) specimens (from the beighbourhood of bergen which I have examincal before, showed 32 and th rows of teeth.

 tooth-plates.

[^27]: ${ }^{5}$) The number of the series of teeth in the (6) before examined individuals was $51-70$ and 96 ; the number of toothplates in each row was $22-29$ and 3 r. In Cadina pacifica the number of the series of teeth was $67-85$, and of the plates in the rows $27-33$.

[^28]: ganglion was thin，and was by me wrongly interpreted as belonging to the flumal ganglion

 The Ingolf Experition．II．3．

[^29]: （）Comp．1．c．1．if3．pl．Kilif，fig．\＆

[^30]: The Ingolf-Expedition. II. 3.

[^31]: ${ }^{1}$ ）I－⿰⿱⺈⿵⺆⿻二丨⿱刀⿰㇒⿻二丨冂刂灬，one of sappho＇s fenale friends．

[^32]: ${ }^{5}$ The number of series in 7 earlier (1.c.) examined specimens was $29-32$, in one it even rose to 36 .
 ${ }^{2}$) Comp. 1. c. p. 236 .

[^33]: ${ }^{\text {1) }}$ Comp. R. Bergh, die Nudibranchien ... des Willem Barents. I. c. p. II. Taf. I, Fig. in.

[^34]: ${ }^{1)}$ Whilst speaking of the lateral line，it should be mentioned that one finds in some of the species，and in all three （gronps，a shorter or longer series of pores placed relatively remote from one another on each side of the back an indication of a llorsal lateral line．

 2）Both here and in the special portion of the work，the upper rays of the tail fin are reckoned witl the dorsal fin， the lower rays with the anal fin．since the mpaired fins pass without break right rount the tip of the tail．－I think it not manecessary to remark that all my statements of the nmber of fin－rajs are baserl on my own observations，which do not always agree with those given on the literature．
 j）Probably the number of the verteme will also be greater in the long－tailed than in the short－tailed species，but the material in my hands is ton little to allow any certain conclusions to be drawn in this regard；in four species of gromps a amm b I have counted gs 115 vertebre il．vahtio 98－116，L．frigidus 103－107．L．cudipletrostictus 106 and L ．

[^35]: ${ }^{1}$ In well-preserved specinens a series of dorsal pores remote from one another, can also be seen.

[^36]: ${ }^{1}$ Suitt: On the (ienus Lycodes. Am, Mag. Nat. History (7), 5, 1gx, p, 56.

[^37]: The Ingolt-Expeedition. II 4 .

[^38]: ${ }^{1}$ My original diagnosis (I. c.) has been changed somewhat out of regard for these 4 specinens (likewise also for the still later obtained $1 /$ specimeus of the Michael Sars Expeditions of 1900 and 1902 [cf. p. 36]).
 ${ }^{2}$) The West Greenland specimen is in a tolerably bad condition and will therefore be described by itself (p. 36).
 3) Collett has 160 , which must be a misprint.

[^39]: 1) According to Collett gis tot
 $\left.{ }^{2}\right) \quad-\quad$ - $8_{4}-\$ 6$
 2) - - \quad IS 19 .
 the Ingol:-Expedtion. 1I. 4.
[^40]: In one case $11,1^{\circ} \mathrm{c}$, in young specimens sometimes as low as $7,3^{\circ} \mathrm{o}$.

[^41]: ${ }^{1}$ I have also observed such dorsal pores sometines, in I. falluazs from ather tevions.

[^42]: 1）The specimen was overlooked and not induder in The Ichthyokgical Rewnets

[^43]: The IngolfiExpedtion．if．\＆．

[^44]: Coode 心 Bean: Oceanic Ichthyology; p. 305; Mem. of the Museum af Comp. Zoology at Iarvarl College, vol. NXII, iSg6. Virknsk. Selsk. Forlı. Chria. i578. No. 4.4, p. 6 I.

[^45]: ${ }^{1}$) By very favourable light, exceetingly weak traces of a faded, banded marking may perhaps be detected in this

[^46]: 1) In well-preserved specinens further, a whole serice of dormal peres con be ween
) Lütken gives the lengtin to 225 mmn.
[^47]: 1）Proc．（＂．内．Nat．Mus．1878，p． 163.
 （）ceall，Part I11，figgy，1． 505.

 The Introlf－Expedtion．If．1．

[^48]:
 \Rightarrow But not the large specinten from bavis Straits，bexaluse it forms a distinct species both from $/$ ．mathathz and trom
 stands very chose to L．Aagellicauda，it represents in my opmion quite a separate specics：l．ycodonas ophidiun of f．G－I．

[^49]:

[^50]: The Incoll-Evpedition. II. s.

[^51]: ${ }^{1)}$ Campagne du "Caudan", par R. Koeliler, ISg6, p. 207.
 ${ }^{2}$) Torell: Spitsbergens Molluskfama, 1859, p. 124.
 3) Catal. des Moll. du Spitzberg, p. 27. Aun. Soc. Mal. de IBtlgiquue, IV, ISGg.

[^52]: 1）Forbes and Hanley：A history of Iritish Mollnsca，II，IS5．，P．zsh

[^53]: 1.40 1.80 1n. Österr Polarstat. Jan Mayen, 1886, III, p. 6S) is undoubtedly based on an erroneous determination.

[^54]: The lugolf. Expedition. II. 5 .

[^55]:

 3) Dall is of opiuion, that whly the figure to the left represents. If fuchem, whemeas the figure to the right of is

[^56]: ${ }^{1}$) It the place cited Jeffeys also ascribes it a distribution to Patagonia and Japan, but in Zool. Chall. Exp., Part $\mathscr{X C X O}$
 ${ }^{2}$) I'. A. Oyen, in Archiv f. Math. og Naturvidensk. Bd. XXXX, Nr. 3, 1909, pp. 33-37.
 ; C. (\quad Joh. Petersen: On de skalbærende Iolluskers Udbredningsforliold i de danske Have indenfor Skagen, 1SKS, 12. 122, ant]: Det vidensk, Uflbytte af Kanonbaaden "Hauch"s Togter, iS93, p. 66. - Only one of the shells mentioned, namely that from No 39, belongs to L. subumbieutata.
 4) I\%, R. Sykes: On the Name Lima clliptica. The Journ. of Malacology, vol. X, 1903, p. ro4.

[^57]: ${ }^{1}$) Challenger Report, vol. XIII, iSS5, Lamellibranchiata, p. 292, Pl. XXIV, fig. 6.
 ${ }^{2}$) Amin. Mag. Nat. IIist. (4) vol. XVIII. i876, p. 426.
 3) Bull. Mus. Comp. Zool., XII, 18S6, p. 225; Proc. U. S. Nat. Museum, XII, ISS9, p. 250, Pl. XIV, fig. 10.
 4) According to Locard it is said to lave been fouml at St. Helena.

[^58]: said to have been taken in the Kara Sea at 53 frn., but this case is isolated, and 1 doubt whether the species really belongs
 a very low temperature constantly prevails (the "cold area") hut he is of opmon, that it is not the normal homo of the species, but that the specimens have probably been carried ont there from the coastal region with seatwed or ice-flecs (Ver-

 Musée zool. de l'Acad. Imp, St.-Pétersbourg, VI, Igoz, P. IIg, note), nor on the morth coast of diat or ith the waters N. of aretic America.

[^59]: ${ }^{\text {1) }}$ Fi A. Verrill: Catal. of Marine Mollnsca added to the Fauna of New Fingland: Trans. Comn, Acad. vol. V, i882 (p. 579).

[^60]: The Ingrolf. Fixpalition. II. ;

[^61]: ${ }^{1}$) Antl. Bericht iiber die 24. Versamml. Deutscher Naturf. und Aerzte in Kiel, IS47, p. 222.
 ${ }^{2}$) Scicnt. Proceed. Roy. Dublin Soc., N. S., II, 1SSO, p. 12 S.
 3) R. II $̈$ g̈gg, Arkiv för Zoologi, Bd. 2, No. 2, 1904, p. 22.

 1) Becher, Österr. Iolarst. Jan Mayen, III, 1886, p. 69.

 IT. A. Verkrïzen: Dredging-Excursion to Iceland. Ann. Mag. Nat IIst. 4 ser. Vol. X, IS72, p. 372.

[^62]: ISxtract in: Amtl. Berichat über die 24. Versamml. Dentscher Naturf. u. Aerzte in Kiel, I847, p. 222.

[^63]: mot stated whether the specimens were living of mont.

 the Ingolf. Expedition, II. S.

[^64]:

[^65]: ${ }^{1}$ It lias to be renmembered, however, that not so many collections liave been made at the other coasts as on the

[^66]: 1) Jeffreys states, that the "Porcupine" has taken it W. of Ireland at a depth of Sof fme, but as usual without stating whether lising specinens or dead shells were found. But the statentent itself is perhaps erroneous.

 - Whilst the tumid form is predominant at Iceland and the Froroes, I find the flat form by far the commonest in

[^67]: 1) At this phace, however, only small specimens have heen taken, according to Sars i.c.
[^68]: Fig. 413 obviously represents Astarter crenata Gray, fig. 414 A. sulcata d. C.
 -) Aairly detailed synonymy-list for this species of many names is given by kobelt: Prodr. Moll. Test. Mar. 1:urop). 158s, 1). 394.

 1 As will be seen. the species is certainly taken in the Davis Strait at the considerable depth of 362 fm., but as the vell in question is of a young specimen, the occurrence cannot be considered as normal

[^69]: ${ }^{1}$) Some separate valves, which are only labelled "Iceland", reath however a much larger size, namely 52.50 ..
 ${ }^{2}$) Arkiv für Zoologi, Bel. 7. 1910, No. 4 .

[^70]: "The "Astarti Banksiz Leach var. Harham" of I'osselt in his East Greentand Molluses (1 c. is95; Pi. I, figs. 3 -4) has th be: referred in my opinion to the variety striata owing to the relative shortness of the shell.

 It is this specimen which is figured by Posselt, l. c., figs. I-2, under the mane of Astorte Banksin Leach.

[^71]:
 seems to be the most probable onc.

[^72]: for the remaining synonyms of. Kobelt: Prodr. Moll. Test. Mar. Europ. I88S, p. 392.
) A living, alult specinen from this considerable depth has been taken at $66^{\circ} 49^{\circ} \mathrm{N}$. L., $56^{\circ} 28^{\circ} \mathrm{W}$. I/

[^73]: ${ }^{1}$) The shell fron this considerable depth hats a very ancient ("fossil" .hpeamance

[^74]: I For some very short and convex specimens II ägg has set tul the variety incostata (Ark. f. Zoologi, Bd. 2, Nr. 2, Igo.1. P. 3ू, Pl. I, figs. 11 12); a similar form, likewise with weakly developed and very densely placed ribs, is in our Musenm from Thanak in West (irecmland cf. the following.
 () A. crnutu has for the rest been taken at Last Greenland (Shamon 1s1., 30 fme) already in 1869 fo by "Die zweite Dentache Nordpolarfalurt", uf. Wissenschaftl. Irgelmisse, II, 1874, 1. 252 umler the wame of Astarte crobricostata).

[^75]: ${ }^{1}$) Against this we have seemingly Friele and Jeffreys statement, that the inner margin in A. acnticostata is smoth, but in my material I have fouml specimens with crenulated margin.

