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B4C ceramics with different contents of graphene platelets
(GPL) were synthesized by a pressureless process in Ar
atmosphere. The influences of GPL on mechanical properties,
thermal conductivity and electrical resistivity of the B4C
ceramics were investigated. Mechanical properties ran up
to optimal condition with hardness of 29.1 GPa, bending
strength of 383.9 GPa and fracture toughness of 5.72 MPa m1/2

with 0.8 wt% GPL separately. Thermal conductivity and
electrical resistivity reached extreme values of 26.35 W m−1 k−1

and 0.1 Ω cm−1. Performances of the ceramics were mainly
affected by the generation of non-functional-GPL and the
result indicated that a large amount of non-functional-GPL
could contribute to poorer overall performance. Meanwhile,
two particular pullout mechanisms concerning toughness
enhancing was discussed in detail.

1. Introduction
B4C ceramics are widely used as nozzles, sharpeners and armours
owing to their low density, high hardness, corrosion resistance
and abrasion resistance. However, the relatively low fracture
toughness and bending strength caused by the intrinsic brittleness
of covalent bonding ceramics significantly reduce the service
life of B4C ceramics [1–2]. Nowadays, B4C ceramics are mainly
fabricated by hot pressing and spark plasma sintering (SPS)
methods [3–7].

Graphene has extensive potential applications owing to
its excellent properties in many aspects, such as outstanding
mechanical properties (Young’s modulus of 1100 GPa, bending
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Table 1. Ingredients and density of different samples.

composition (wt%)

sample B4C GPL Al2O3 + Dy2O3 PF
theoretical density
(g cm–3)

apparent density
(g cm–3) relative density (%)

1 100 0 4.00 15 2.56 2.47 96.48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 100 0.4 4.00 15 2.56 2.46 96.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 100 0.8 4.00 15 2.56 2.46 96.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 100 1.0 4.00 15 2.55 2.45 96.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 100 1.2 4.00 15 2.55 2.43 95.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

strength of 125 GPa), thermal performance (super-high thermal conductivity of 5 × 103 W m−1 K−1)
and electrical properties (charge carrier mobility of 1.5 × 104 cm2 V−1 s−1) [8–9]. However, it has been
difficult to pursue the industrial-scale production of pure single-layered graphene up to now, taking
its nature of agglomeration and cost-effect into consideration [10–12]. Fortunately, with the progress
made in preparation technologies [13–15], graphene platelets (GPL) now can be used as reinforcement
fillers in various bulk materials to improve their comprehensive properties, especially in ceramics
[15–21]. Considerable research has been devoted to this filed. Earlier research carried out by Walker &
Marotoo [16] found that fracture toughness of silicon nitride ceramics with the addition of 1.5 vol% GPL
increased to 235% compared with the blank sample. Meanwhile, it was also observed that a new crack
propagation path grew in the three-dimensional direction in the composites, which provided referencing
basis for later research. Recently, Kovalčíková et al. [22] investigated the effects of GPL on the mechanical
properties of B4C, where enhanced mechanical capability was achieved when 4.5 wt% GPL was added
after hot pressing sintering. Yongqiang Tan et al. [23] prepared dense B4C/GPL composites heated in a
vacuum using Ti3AlC2 as the additive and increased electrical conductivity of 250 S m−1 revealed with
addition of 1 vol% GPL. In addition, the anisotropy of thermal conductivity of hot-pressed B4C/GPL
composites was characterized by Pawel Rutkowski [24]. Crack deflection and pullout are the most typical
toughening mechanisms in the last research, but B4C/GPL composites with excellent properties are
laboratory-only at this stage. For pressureless sintered B4C ceramics, effects of GPL on the integrated
performance of B4C, including mechanical properties, thermal properties and electrical behaviour are
seldom studied.

In our work, B4C ceramics with different contents of GPL were synthesized by a liquid-state
pressureless sintering method. The mixture powders of Al2O3/Dy2O3 and phenolic resin (PF) were
used as sintering additives. Based on analysis of the mechanical, thermal and electrical tests, the most
appropriate GPL content which contributes to dense B4C/GPL ceramics with superior properties has
been determined.

2. Material and methods
Commercial pure powders of B4C (Mudanjiang Jingangzuan Boron Carbide Co. Ltd., D50 approx.
1.5 µm, purity greater than 97.0%) and GPL (Haifeng Vigon Materials Technology Co. Ltd., average
layer thickness less than 3.0 nm, special surface area approx. 150 m2 g−1) were employed. PF (Laiwu
Runda New Materials Co. Ltd.) was used as an organic adhesive. The Al2O3/Dy2O3 system, a maturing
system that can increase the relative density of B4C ceramics [25], was used as the liquid-phase sintering
aids. The composition of each sample is shown in table 1. Raw materials with a proper mass scale were
homogenized in a ball-mill using Al2O3 as grind bodies in the anhydrous ethanol container for 24 h. After
ball-milling, the well mixed and dried mixtures were ground, sieved and then shaped by die pressing
process in a cylinder mould with a diameter of 65 mm and a height of 6 mm under 30 MPa. Next, the
green bodies were pressed by an isostatic pressing machine under 200 MPa. The samples were heated at
2050°C for 1 h via pressureless sintering in Ar atmosphere with a heating rate of 10°C min−1.

Apparent density of the compact samples was measured based on the Archimedes principle. The
electromechanical universal testing machine (CTN 5150, Shenzhen Suns Technology Co., Ltd.) was
employed to calculate the mechanical properties of samples incised by inside diameter slicer at a loading
speed of 0.5 mm min−1. The sizes of strip-sample used to obtain the fracture toughness and bending
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strength were 2 × 4 × 40 mm with an incision of 2 mm depth and 3 × 4 × 40 mm, respectively. Four items
of each sample were measured to get a relativity precise value. Hardness was measured by a Vickers
hardness instrument (DUV-1000, Shanghai Caikon Optical Instrument Co., Ltd) with a load of 4.90 N
and loading time of 15 s. Four samples of the same composition were also tested. The feature of fracture
micromorphology was characterized by a field emission high-resolution scanning electron microscope
(SU-70, Hitachi). The thermal conductivity and electrical resistivity of polished samples were measured
by hot-wire method through coefficient of thermal conductivity detector (TC–3000) and four-point probe
resistance tester (KDY-1).

3. Results and discussion
3.1. The microstructure
The apparent density and relative density of samples studied in this paper are listed in table 1, no
obvious change can be observed. The microscopic images of the samples with different amounts of
GPL from 0.4 wt% to 1.2 wt% are shown in figure 1. GPL are clearly marked in figure 1. Fractured
surfaces of all samples with different GPL contents exhibit transgranular fracture, especially for the
sample with 0.8 wt% GPL. With the content of GPL increasing, the porosity decreased first and then
increased. Furthermore, it could be inferred that the B4C matrix and GPL are most closely linked at the
level of 0.8 wt%. Some isolated GPL existing in the interstice of interstitial grain site begin to appear
when 1.0 wt% GPL was added and this phenomenon gets worse when 1.2 wt% GPL was added. Closer
combination between the B4C matrix and GPL could result in superior properties of composite ceramics,
which means boost in performance could not be revealed obviously even if huge amounts of isolated GPL
were added. In general, the isolated GPL could be regarded as the non-functional-GPL, the generation of
which mainly results from the process of liquid-phase transfer. B4C ceramics usually could not be fully
compacted after pressureless-sintering and pores would be left. During the process of liquid-phase mass
transfer, GPL is always presented in the form of a lamellar solid as it is difficult for GPL to rearrange
followed the liquid phase, leaving small amounts of tiny pores behind after liquid promoter additions
cooled down (figure 2a). Therefore, the non-functional-GPL tends to appear along with pores (figure 1d).
Few non-functional-GPL formed when its dosage increases from 0.4 wt% to 0.8 wt%, for this level of
GPL can be evenly distributed in the B4C matrix. When the content rises to 1.0 wt%, it is harder for
excessive GPL to be dispersed uniformly, so the GPL has a higher chance to combine with pores and
thus non-functional-GPL is formed. In conclusion, the mass percentage of 0.8% is enough for GPL to be
evenly distributed in the B4C ceramic basement and can be regarded as the optimal addition to promote
densification of samples.

3.2. The mechanical properties of samples
The relationship between different GPL contents and the hardness of samples are demonstrated in
figure 3. The sample without GPL addition reached the hardness of 26.5 GPa. Moreover, the hardness
increased immediately as the content of GPL rose to 0.8 wt%, peaking at the highest hardness of 29.1 GPa,
and then showed a downward trend to its bottom at 19.6 GPa when the content of GPL is 1.2 wt%. The
microstructural refinement shown in figure 1 may explain the microhardness variation. It can be assumed
that aggregation of non-functional-GPL caused the final decline of hardness and appropriate GPL could
integrate into the B4C matrix with few non-functional-GPL generated, which led to the increase in
hardness.

Variation trend of bending strength is actually the same as that of fracture toughness, displayed in
figure 4. They all show an upward trend between 0 wt% and 0.8 wt%, during which time the value both
peaked at 0.8 wt%, reaching 383.9 GPa and 5.72 MPa m1/2, respectively. After that, there was an obvious
decline in both values from 0.8 wt% to 1.2 wt%, ending at 324.52 GPa and 5.09 MPa m1/2, respectively.

Analogous tendency of the apparent mechanical properties above has been reported in other
investigations [21,22]. The enhanced toughness mainly results from the pullout of GPL shown in figure 2.
As shown in electric mirror photos, the toughening mechanism of GPL is not completely equivalent to
that of the pure single graphene or other fibres. There are two mechanisms when the pullout happens.
Specifically, the whole GPL is pulled out when the fracture happens in one mechanism (figure 2b),
showing a similar pullout mechanism of the carbon fibre [26]. In the other mechanism, the fracture
process can be divided into two steps. Firstly, fracture occurs at the outermost graphene layers and then
the pullout of GPL takes place between intimal slices of GPL (figure 2c,d), leaving a hole in the matrix.
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GPL

GPL

GPL

GPL

4 mm

4 mm 4 mm

4 mm

(a)

(c) (d )

(b)

Figure 1. Microstructure of B4C samples with different amounts of GPL: (a) 0.4 wt%, (b) 0.8 wt%, (c) 1.0 wt%, (d) 1.2 wt%. The
magnification of (a,c) and (b,d) is 4000, 3000, respectively.

1 mm 1 mm

1 mm1 mm

(a)

(c) (d)

(b)

Figure 2. Detailed views of the B4C samples with different amounts of GPL: (a) 0.4 wt%, (b) 0.4 wt%, (c) 0.8 wt%, (d) 0.8 wt%. The
magnification of (a,c) and (b,d) is 10 000, 20 000, respectively.
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Figure 4. Influence of the GPL addition on fracture toughness and bending strength.

The latter mechanism should overcome the resistance from graphene layers and bonding force between
graphene and the B4C substrate, which can absorb more rupture energy to prevent the continuing
expanding of cracks.

3.3. The thermal and electrical properties of samples
The effect of GPL addition on the room-temperature thermal conductivity and electrical resistivity
is presented in figure 5. Composites with lower GPLs up to 0.8 wt% have the thermal conductivity
in the range from 24.3 to 26.35 W m−1 k−1 and the even-distributed doped GPL should account for
enhancement of the conductivity. For the specimen with 1.2 wt% GPL addition, the value of thermal
conductivity decreased to 20.16 W m−1 k−1, which should be attributed to the increase of non-functional-
GPL.

Minimum value of electrical resistivity was also obtained for a composite with 0.8 wt% of GPL,
reaching 0.1 Ω cm−1. It was also verified that the value always showed a downtrend when the GPL
content varied. This is because GPL is conducive to enhancing thermal conductivity and weakening the
electrical resistivity, but the existence of the non-functional-GPL structure and increased pores have the
opposite effect, when GPL larger than 0.8 wt%, increased non-functional-GPL structure and pores play
a more important role. Furthermore, delivery of electron and vibrations in the lattice are constrained by
these defects.
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Figure 5. Influence of the GPL addition on thermal conductivity and electrical resistivity.

In general, for pressureless-sintered B4C/GPL ceramics, the density and mechanical capacity can
catch up with the highest value of samples sintered by hot-pressing sintering or SPS; thermal
conductivity and electrical resistivity also can be improved. Existence of non-functional-GPL is not
conducive to taking advantage of the superb properties of GPL.

4. Conclusion
Compact B4C ceramics were obtained by a liquid-phase pressureless sintering method with different
amounts of GPL. Effects of GPL on all-round properties including hardness, bending strength, fracture
toughness, thermal conductivity and electrical resistivity were investigated. All properties studied have
an improvement with addition of 0.8 wt% GPL with hardness of 26.5 GPa, bending strength of 383.9 GPa,
fracture toughness of 5.72 MPa m1/2 and thermal conductivity of 26.35 W m−1 k−1. Lowest electrical
resistivity of 0.1 Ω cm−1 is also achieved at this dosage of GPL. Further increase of these properties is
hindered by the increasing non-functional-GPL. Two kinds of pullout mechanisms were discussed in
detail.
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