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PREFACE.

THIS volume, both in respect to matter and arrangement, is

designed especially for the use of the cadets of the U. S. Military

Academy, as a supplement to the course in General Astronomy at

present taught them from the text-book of Professor 0. A. Young.

It is therefore limited to that branch of Practical Astronomy which

relates to Field Work, and more particularly to those subjects which

are not discussed at sufficient length for practical work in Professor

Young's volume. It is believed, however, that it will find a use-

ful application in the hands of officers of the Army, who may be

called upon to conduct such explorations and surveys for military

purposes as the War Department may from time to time direct.

The more usual methods of determining Time, Latitude, and

Longitude, on Land, are explained, and the requisite reduction

formulas are deduced and explained. In addition, there is given a

short explanation of the principles relating to the Construction of

Ephemerides, to the Figure of the Earth, the determination of

Azimuths, and the projection of Solar Eclipses.

The instruments described are those used by the cadets in the

Field and Permanent Observatories of the Military Academy dur-

ing the summer encampment.
The principal sources of information from which the matter in

this volume has been derived are the published Reports of the

United States Lake, Coast, and Northern Boundary Surveys; the

publications of the Hydrographic Office, U. S. Navy, and the

works of Brlinnow and Chauvenet.

U. S. MILITARY ACADEMY,
WEST POINT, N. Y., October, 1892.
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PRACTICAL ASTBONOMY.

EPHEMERIS.

Ephemeris. The numerical values of the coordinates of the

principal celestial bodies, together with the elements of position of

the circles of reference, are recorded for given equidistant instants

of time in an Astronomical Ephemeris.
The "American Ephemeris and Nautical Almanac" is pub-

lished by the United States Government, generally three years in

advance of the year of its title, and comprises three parts, viz. :

Part I. Ephemeris for the Meridian of Greenwich, which gives

the heliocentric and geocentric positions of the major planets, the

ephemeris of the sun, and other fundamental astronomical data for

equidistant intervals of mean Greenwich time.

Part II. Ephemeris for the Meridian of Washington, which

gives the ephemerides of certain fixed stars, sun, moon, and major

planets, for transit over the meridian of Washington, and also the

mean places of the fixed stars, with the data for their reduction.

Part III. Phenomena, which contains prediction of phenomena
to be observed, with data for their computation.

'EPHEMERIS OF THE SUN.

To construct the ephemeris of the sun it is necessary to com-

pute its tables: these are

1. The table of Epochs.
2. The table of Longitudes of Perigee.

3. The table of Equations of the Center, and its corrections.

4. The table of the Equations of the Equinoxes in Longitude.



2 PRACTICAL ASTRONOMY.

In Mechanics* it was shown that the Earth's undisturbed orbit

is an ellipse, having one of its foci at the sun's center, and that the

earth's angular velocity is

its radius vector,

+ e cos 6'

its constant double sectoral area,

li |V (1 #*)', (615)

and its periodic time,

//y"" 2 TT

r = 2 n\/-, = *-?
(616)

In these expressions 0' is the angle made by the earth's radius

vector with any assumed right line drawn through the sun's center,

6 that included between the radius vector and the line of apsides

estimated from perihelion, and n is the mean motion of the earth

in its orbit.

From (551), (615) and (616), we have

-f e cos

dt
~

dt
~

a* (1
- e

2

)

2

/

V
//? (1 + e cos BY _ (1 -f e cos By

(!-) (1
-

*')

and therefore

n d t = (1
- e

2

)* (1 + e cos 6y* d 0'. (2)

Since e varies but little from 0.01678 (see Art. 185, Young f), we

may omit all terms containing the third and higher powers of e in

the development of the second member of the preceding equation.

* Micliie's ^Mechanics, 4th Edition.

,f Young's General Astronomy.
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Then after substituting 2
for cos

2

9, we have

n dt = d d' - 2 e cos Bd 9 -f |e
a
cos 2 Bd (2 0) + etc. (3)

Integrating we have

n t + = d' - 2e sin 6 + f e
2
sin 2 8 + etc. (4)

The earth's orbit is, however, not entirely undisturbed. Due to

the perturbating action of other bodies of the solar system the earth

is never exactly in the place which it would occupy in an undis-

turbed orbit. Moreover the line of apsides has a direct motion, i.e.,

in the direction in which longitudes are measured, of about 11".7

per annum, and the vernal equinox an irregular retrograde motion

whose mean value is about 50".2 per annum.
Therefore (Fig. 1), let the line from which 0' is estimated be

that drawn through the sun and the position of the mean vernal

equinox V at some fixed instant, called the epoch. Then when
6 is zero, 0' will be the longitude of perihelion, estimated from this

point. Let this be denoted by lp ,
and the time of perihelion pas-

sage by tp \ then from (4) we have,

nt9 +C=lp .
(5)
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Subtracting from (4) we have

n (t
- g = d' - lp

- 2 e sin + f e
a
sin 2 0, (6)

which since

v-ip =e 17)

reduces to

n (*
- y = (0'

- lp)
- 2 esin (0'

- lp) + ie'sin2 (P - lp). (8)

Transposing lp , we have

71 (Z
- g +lp

= lm =e'-Ze*m (0'
- lp) + f e'sin 2 (0'

-
*,), (9)

in which /w is the longitude of the mea/n place of the earth at the

time I, referred to the same origin.

Let L be the longitude of the earth's mean place at the epoch,

also referred to the same origin, and T any interval of time before

or after this epoch. Then will

lm = L+nT, (10)
and we have

L + nT = &' -2esm (6'
- lp) + f e

2
sin 2 (0'

- lp). (11)

To find the values of the four unknown quantities, L, n, e, and

lp ,
take four observations of R. A. and declination at different times,

and having reduced the declination to its geocentric value by cor-

recting for refraction and parallax, find the corresponding longi-

tudes (Art. 180, Young).
Each longitude is necessarily referred to the true equinox of its

own date. Eeduce each to the mean equinox of the epoch by cor-

recting for aberration, nutation, precession, and perturbations, add

180, and the results will be the longitudes of the true place of the

earth referred to a common point the mean equinox of the epoch.

They will therefore be the values of 0' corresponding to the

values of T in the following equations, the solution of which will

give L, n, e, and lp .

L n 7 = #-2esin -
L + n T, = 6J

- 2 e sin (0/
- lp)

, . .

L + nT,= 0,'
- 2 esin (0/

- '
*
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The value of n derived from these equations is evidently the

earth's mean motion from a fixed point.

Its mean motion from the moving mean vernal equinox (or

mean motion in longitude) is evidently given by

360
"
360 - 50."2"

These observations repeated at different times will determine

the changes that take place in w, e, and lp \
from the last two the

variations in the eccentricity and the rate of motion of perihelion

can be found.

Having in this manner found the elements of the earth's place
and motion, the corresponding mean longitude of the sun at any
instant can be obtained by adding to that of the earth 180.

L + n' T-\- 180 will then give for any instant the mean longi-

tude of the sun's mean place. The difference between the longi-

tudes of the sun's true and mean places at any instant is the

Equation of the Center for that instant.

From the preceding elements let it be required to construct the

Tables of the Sun.

1. The Table of Epochs. Take mean midnight, December 31

January 1, 1890, as the epoch. To the mean longitude of the sun's

mean place at that epoch, add the product of the sun's mean motion

n', by the number of mean solar days after the epoch, subtracting
360 when this sum is greater than 360. These longitudes with

their corresponding times being tabulated, form the table of epochs,
from which the mean longitude of the mean place of the sun can

be found by inspection for any day, hour, minute or second.

2. The Table of Longitudes of Perigee. The longitude of peri-

helion increased by 180 is the corresponding longitude of perigee.

Hence the former being found, and its rate of change determined,
the addition of 180 to each longitude of perihelion will give the

longitude of perigee, and these values being tabulated form the

table of longitudes of perigee.

3. The Table of Equations of the Center. The difference be-

tween the true and mean anomalies at any instant, given by the

first of Eqs. (650), Mechanics,

8 n t 2 e sin n t -f f e* sin 2 n t -j- etc., (13)
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is called the Equation of the Center, and is known when n and

are known ;
t being the time since perihelion passage.

Assuming e to be constant and causing n t to vary from to

360, the resulting values of the second member of the equation

will form a table of the equations of the center. The errors in these

values arise from the small variations in the values of e ; these

errors can be found by substituting in the second member of the

above equation the actual values of e at the time, and the differences

being talulated will give a table by which the equations of the

center may be corrected from time to time.

4. Equation of the Equinoxes in Longitude. Due to physical

causes, the pole of the equator completes a revolution about the

pole of the ecliptic in about 26,000 years. The plane of the equator

conforming to this motion of the pole, its intersection with the

plane of the ecliptic, called the line of the equinoxes, turns with a

retrograde motion of about 50".2 per annum about the sun as a

fixed point.

This motion is not however, perfectly uniform. The true pole

describes once in- 19 years around the moving mean place above re-

ferred to, a small ellipse, whose transverse axis directed toward the

pole of the ecliptic is 18".5 in angular measure, and whose conju-

gate axis is 13".74. The 'corresponding irregularity in the motion

of the line of the equinoxes causes a slight oscillation of the true

on either side of the moving mean equinox. Both are on the eclip-

tic; and their distance apart at any time is called the Equation of
the Equinoxes in Longitude, its projection on the equator the

Equation of the Equinoxes in Right Ascension, and the intersection

of the declination circle which projects the mean equinox with the

equator, the Reduced Place of the Mean Equinox. The maximum
value of the Equation of the Equinoxes in Longitude is

i off 74.

^4^- + sin 23 28' = 17".25.

To illustrate, P, in Fig. 2, is the pole of the equator, VE the

ecliptic, VM the equator, F the true, V the mean, and V" the re-

duced place of the mean vernal equinox. VV is the equation of

the equinoxes in longitude, and VV" in Right Ascension.

The equation of the equinoxes in longitude is a function of the
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"

longitude of the moon's node, the longitude of the sun, and the

obliquity of the ecliptic. Separate tables are constructed for this

FIG. 2.

correction, in which the arguments for entering them are the

obliquity and longitude of the moon's node, and the obliquity and

the longitude of the sun; the sum of the two corrections is the value

of the equation of the equinoxes in longitude at the corresponding
times.

The Perturbations in Longitude of the earth arising from the

attractions of the planets (especially Venus and Jupiter), are the

same for the sun; these are computed by the methods indicated in

Physical Astronomy, (see Art. 174, Mechanics,) and then tabulated.

The Sun's Aberration is taken to be constant, amounting to

20".25 and is included in the table of epochs.

Ephemeris of the Sun. The above tables having been computed,
we proceed as follows :

1. From the table of epochs take out the mean longitude of the

sun's mean place corresponding to the exact instant considered.

2. From the table of longitudes of perigee take the mean longi-

tude of perigee; the difference between this and the mean longi-

tude of the sun's mean place is the mean anomaly.
3. With the mean anomaly as an argument find the correspond-

ing value of the equation of the center from its table, and add it
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with its proper sign to the mean longitude of the sun's mean place;
the result will be the mean longitude of the sun's true place; hence

the

Sun's true longitude = Mean longitude of sun's mean place

Equation of center Perturbations in longitude Corrections

to pass from the mean equinox o-f date to true equinox of date.

These latter corrections are due to Nutation and constitute the

Equation of the Equinoxes in Longitude.
4. Having the true longitude of the sun and the obliquity of the

ecliptic, the corresponding Right Ascension and Declination of the

sun can be computed for the same instant by the method explained
in Art. 180, Astronomy.

5. Earth's Radius Vector. Substituting the values of e and n t,

in the second of Eqs. (650), Mechanics, will give the values of the

distance of the sun from the earth in terms of the mean distance

a: thus

(g21 e cos n t + -
(1 cos 2 n t)

303
V

--
(cos 3 nt cos nt)-\- etc.]

. (14)
- ^

6. The Sun's Horizontal Parallax. From astronomical observa-

tions the value of a (and hence of r) is found in terms of the earth's

equatorial radius, pe . (Young, Chapters XIII and XVI.)
The sun's equatorial horizontal parallax, P, at any time is then

given by

GO being the number of seconds in a radian = 206264".8, and r being

expressed as just stated.

At any place where the earth's radius in terms of the equatorial

radius is p, we shall have for the horizontal parallax = p P.

7. The Sun's Apparent Semi-Diameter. Knowing P, measure-

ments of the sun's angular semi-diameter will give its linear semi-

diameter s' in terms of pe. Its angular semi-diameter s for any

day is then given by
s = Ps' (16)
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9. Equation of Time. If, at the instant when the true sun's

mean place coincides with the mean equinox, an imaginary point
should leave the reduced place of the mean equinox and travel with

uniform motion on the celestial equator, returning to its starting-

point at the instant the true sun's mean place next again coincides

with the mean equinox, such a point is called a Mean Sun. Time
measured by the hour angles of this point is called Mean Solar

Time. The angle included between the declination circles passing

through the centre of the true sun and this point at any instant is

called the Equation of Time for that instant; its value, at any in-

stant, added algebraically to mean or apparent solar time will give

the other. As the apparent time can be found by direct observa-

tion the equation of time is usually employed as a correction to pass

from apparent to mean solar time. Thus in Fig. 2, PM is the me-

ridian, 8 the true sun, S' its mean place, S" the mean sun, VS'"
the true K. A. of the true sun, V"S" the mean R. A. of the mean
sun VS' = sun's mean longitude, angle NFS'" or arc MS9"

apparent solar time, MS" mean solar time, and S"S
r"

the Equation
of Time = VS'"-(VS" + VV").

Hence we have for the Equation of Time,

e = True sun's true Right Ascension

(sun's mean longitude-)- equation of equinoxes in R. A.). (17)

The mean sun (S") moving in the equator and used in connec-

tion with time, must not be confused with the mean sun (S') before

referred to, moving in the ecliptic.

10. Referring to the American Ephemeris, we see that Page I

of each month contains the Sun's Apparent R. A., Declination,

Semi-diameter, Sidereal time of semi-diameter passing the me-

ridian, at Greenwich apparent noon, together with the values for

their respective hourly changes; the latter being computed from

the values of their differential co-efficients. From these we can

find the corresponding data for any other meridian. Page II con-

tains similar data for the epoch of Greenwich mean moon, and in

addition the sidereal time or R. A. of the mean sun. Page III con-

tains the sun's true longitude and latitude, the logarithm of the

earth's radius vector and the mean time of sidereal noon. The
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obliquity, precession, and sun's mean horizontal parallax for the

year, are found on page 278 of the Ephemeris. All these consti-

tute an Ephemeris of the Sun.

From the hourly changes the elements for any meridian can be

readily computed.

THE EPHEMERIS OP THE MOON.

The Ephemeris of the Moon consists of tables giving the Moon's

Right Ascension and Declination for every hour of Greenwich

mean time, witi the changes for each minute; the Apparent
Semi-diameter, Horizontal Parallax, Time of upper transit on the

Greenwich Meridian, and Moon's Age. In order to compute these,

it is first necessary to find the True Longitude of the Moon, its

True Latitude, the Longitude of the Moon's Node, the Inclination

of the Moon's Orbit to the Ecliptic, and the Longitude of Perigee.

1. The Elements of the Lunar Orbit. Let DC be the intersection

of the celestial sphere by the plane of the lunar orbit; VB the

FIG. 3.

ecliptic, and VA the . equinoctial ;
V the mean vernal equinox, N

the ascending node, P the Perigee, all relating to some assumed

epoch. Also let M
l , M2 , M3 , Mt , be the geocentric places of the

moon's center at the four times, t
l , 1

3 , 1
3 , t

t
. These places are
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obtained as in case of the sun by observed Right Ascensions and

Declinations, corrected for refraction, semi-diameter, parallax, and

perturbations, then converted into the corresponding latitudes and

longitudes, and finally referred to the mean equinox of the epoch,

by correcting for aberration, nutation, and precession.

Referring to the figure, assume the following notation:

v = VN, the longitude of the node;
t = CN By the inclination of the orbit;

li== V0 iy the longitude of J/,;

Z2
= F0

2 , the longitude of M^
Aj= Ml 1 , the latitude of M^\
A

2
= M^ 0, , the latitude of Jf

a ;

v,
= VEN+ NEMlf the orbit longitude of J/",;

p = VEN -\- NE P, the orbit longitude of perigee;
= PEM^ v

1 p, the true anomaly of Jf,;

e eccentricity of orbit;

m = mean motion of moon in its orbit;

t
l
= time since epoch for M

l ;

L = mean orbit longitude at epoch.
To find v and i, we have from the right-angled spherical tri-

angles Ml
N 0, and Jf, N 22 ,

sin (j v) cot i tan A
a

/

sin
( 2 v) = cot i tan A

2
f

' '

and by division,

sin (?,
-

v) tanl,

Adding unity to both members, reducing, then subtracting each

member from unity, again reducing, and finally dividing one result

by the other, we obtain

sin (Z,
-

r) + sin (7,
-

v) = tan A, + tan A,

sin (Z2 r) sin (/, v) tan A
a

tan A/
'

'

01 by reduction formulas, page 4 (Book of Formulas),
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from which v can be found; i is found from either of equations

(18), when v is known.

To find L, m, e, and p, we proceed as in the determination of

the table of epochs in the case of the sun, using a similar equation,

thus :

L -\- m T
{
== v

l
2e sin (v l p), }

+
*?; = *;

I^1$; (32)

m T
t
=

v^ 2 e sin (#4 p),

in which
.. tan (L v)

v = v + tan
' - i. t; (23)cos *

v f

and similar values for v
z , v

3 , and v
4

.

To find the ecliptic longitude ofperigee V 0, represented by p l ,

we have from the right-angled triangle NP 0,

tanN = tan
(p v) . cos t, (24)

from which

p l
= v

-j- tan'
1

(tan (p v) . cos i). (25)

Similarly the mean ecliptic longitude of the moon, L l , at the epoch is

L^ = v+ tan"
1

(tan (L v) . cos t). (26)

To find the sidereal period, s, we have

-
(27)v 7

in which s is the length of the sidereal period in mean solar days.

2. The Ephemeris of the Moon. The motion of the moon is much

more irregular and complicated than the apparent motion of the

sun, owing mainly to the disturbing action of this latter body. But

this and other perturbations have been computed and tabulated,

and from these tables, including those of the node and inclination,

the places of the moon in her orbit are found in the same way as

those of the sun in the ecliptic. The mean orbit longitude of the

moon and of her perigee are first found and corrected ; their dift'er

ence gives her mean anomaly, opposite to which in the appropriate

table is found the equation of the center, and this being applied
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with its proper sign to the mean orbit longitude gives the true orbit

longitude, after reduction to true equinox of date.

The Right Ascension and Declination of the Moon can now be

computed for any instant of time, thus : subtract the longitude of

the node from the orbit longitude of the moon, and we have the

moon's angular distance from her node, represented in the figure by
NM

l
. This, with the inclination i, will give us the moon's latitude

and the angular distance N
X ;

the latter added to the longitude

of the node will give the moon's longitude FO,. The latitude,

longitude, and obliquity of the ecliptic suffice to compute the right

ascension and declination. The radius vector, equatorial horizontal

parallax, apparent diameter, etc., are computed as in the case of

the sun.

THE EPHEMEBIS OF A PLACET.

From the tables of a planet its true orbit longitude as seen from

the sun is found, as in the case of the moon as seen from the earth.

The heliocentric longitude and latitude, and the radius vector are

found from the heliocentric orbit longitude, heliocentric longitude
of the node, and inclination, in the same way as the geocentric

elements of the moon are found from similar data in the lunar orbit.

To pass from heliocentric to geocentric coordinates, let P, Fig. 4,

be the planet's center, E that of the earth, S that of the sun, and

FIG. 4.

the projection of P on the plane of the ecliptic. SV and E V
are drawn to the vernal equinox; then let
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r = E S, be the earth's radius vector;

/' = S P, be the planet's radius vector;

X = V S 0, be the heliocentric longitude of planet;

A' = VE 0, be the geocentric longitude of planet;

Q P S 0, be the heliocentric latitude of planet;

8' = PE 0, be the geocentric latitude of planet;

S = S E, be the commutation ;

= S E, be the heliocentric parallax;

E = 8E 0, be the elongation;

L = VE S, be the longitude of the sun;

r"= E P, be the distance of planet from the earth.

To find the geocentric longitude,

S0 = r' cos 0, (28)

VST= FJ0tf = 360 - L, (29)

S - i8o _
(360

- L) - A = L - 180 -
A, (30)

from which S is known.

In the plane triangle E S, we have

0). (31)

^=180, (32)

)
=
90-f, (33)

hence

tani(^-0)^cot^
r

r
;

C

co

S

J-;, (34)

and placing

we have

tan } (E - 0) = cot \ 8^ = cot i -S tan (^
- 45) (36)
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therefore E and are known : and we have

A' = E - (360 -L)=E+L- 360. (37)

To find the geocentric latitude, we have

P = ^ tail 0' = S tan (38)

tanfl' _ ff _ jdnj?
tan

'~'

E0~~~ sin~#
;

whence

at n sin ^
tatr-itatff-jg-g. (40)

To find r", we have

E0 = r" cos 0',

S0 = r' cos 0.

In the triangle E S 0, we have

r" cos 0' : r' cos 6 :: sin $ : sin E,
whence

, cosfl sin/Sf~ r ~

With these data we can readily find the right ascension, decli-

nation, horizontal parallax, and apparent diameter as in the case of

the sun and moon.

INTERPOLATION.

Interpolation. Whenever the differences of the quantities re-

corded in the Ephemeris tables are directly proportional to the dif-

ferences of the corresponding times, simple interpolation will enable

us to find the numerical value of the quantity in question. When
this is not the case, the value is determined by the " method of in-

terpolation by differences." Bessel's form of this formula, usually

employed, is
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n n ~ n n ~

(n-\
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Whence, substituting in the formula, we have

^=29 57' 53" + 0.643 (1 28' 32") -}- 0.643 ( ^i 1
) (11".5)

+ (0.643) (
-

0.357) (0.143) (- 1").
= 29 57' 53" + 56' 55".616 - 1".32 + 0".01,

= 30 54' 47".31 the required distance.

Instruments. The principal instruments used in field astronom-

ical work are the Transit, Sextant, Zenith Telescope, and Altazi-

muth or Astronomical Theodolite. A short description of each

instrument will be given in connection with the first problem in-

volving its use. But since much relating to the transit is appli-

cable also to the zenith telescope and altazimuth, that instrument

will be explained first.

THE TKANSIT.

The Transit is an instrument usually mounted in the meridian,

and employed in connection with a chronometer for observing the

meridian passage of a celestial body. Since the E. A. of a body is

equal to the sidereal time at the instant of its meridian passage, or

is equal to the chronometer time plus its error (a = T -{- E), it is

seen that by noting T, E will be given when a is known, and con-

versely a will be given when E is known. The very accurate

determination of E is the chief use of the transit in field work.

The instrument consists essentially of a telescope mounted upon
and at right angles to an axis of such shape as to prevent easy
flexure. The ends of this axis called the pivots, are viisually of

hard bell metal or polished steel, and should be portions of the

same right cylinder with a circular base. They rest upon Y's,

which in turn are supported by the metal frame or stand. At one

end of the axis there is a screw by which its Y may be slightly

raised or lowered in order that the axis may be made horizontal.

At the other end of the axis is another screw by which its Y may
be moved backward or forward, in order that the telescope may be

placed in the meridian. The telescope is provided with an achro-

matic object glass, at the principal focus of which is a wire frame

carrying an odd number of parallel vertical wires as symmetrically

disposed as possible with reference to the middle; also two horizon-

tal wires near to each other, between which the image of the point
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FIG. 5. THE TRANSIT.
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observed should always be placed. This system of wires is viewed

by a positive or Ramsden's eye-piece, which can be moved bodily
in a horizontal direction to a position directly opposite any wire,

thus practically enlarging the field of direct view. The wires are

rendered visible in the daytime by the diffuse light of day, but at

night artificial illumination is required. This is effected by passing

light from a small lamp along the length of the perforated axis,

FIG. 6.

whence it is thrown toward the eye by a small reflector placed at

the junction of the axis and the telescope tube, thus producing the

effect of " a bright field and dark wires."

The right line passing through the optical center of the object

glass intersecting and at right angles to the axis of rotation of the

instrument, is called the "line of collimation."

The wire frame should be so placed that this line will pass mid-

way between the two horizontal wires, and intersect the middle

vertical wire; which latter should also be at right angles to the axis

of rotation of the instrument.

These conditions being fulfilled, it is manifest that if the axis

be placed in a true east and west line, and be made exactly level,

the line joining any point of the middle wire and the optical center

of the objective will, as the instrument is turned on its pivots,

trace on the celestial sphere the true meridian; and the sidereal

time when any body appears on the middle wire, will, if correctly

estimated, be the value of T required in the equation,

<x= T+ E.
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The improbability of estimating T with precision leads to the

use of more than one wire, although the advantage of increasing the

number beyond five is, according to Bessel, very slight. If th$

wires are grouped in perfect symmetry with reference to the mid-

dle, evidently the mean of the times when a star, as it passes across

the field of view, is bisected by each wire will give a more trust-

worthy time of meridian passage Mian if a single wire be used.

Even if they are not grouped in perfect symmetry, the same will be

true, after applying a correction deduced from the "
Equatorial

Intervals
"

to be explained hereafter. Every transit instrument is

provided with a level, a diagonal eye-piece, one or more setting

circles, and usually with a R. A. micrometer. In the case of field

transits a striding level is generally used. Its feet are provided
with Y's which are placed on the pivots of the instrument. Before

using, it should be put in adjustment according to the principles

explained in connection with surveying instruments.

The diagonal eye-piece facilitates the observation of stars near

the zenith by reflecting the rays at right angles after they pass the

wires.

The setting circles are firmly attached to the telescope tube and

are read by an index arm carrying a vernier, to which is also attached

a small level. They may be arranged to point out the position of

a star either by its declination or its meridian altitude. In the

latter case, the altitude is computed by the formula

Mer. Alt. = Dec. + Co-Latitude,

for stars south of the zenith, and by

Mer. Alt. = Latitude Polar Distance,

for stars north of the zenith, the upper sign being used for stars

above the pole. In any case having determined the "
setting," place

the index arm to mark it, and turn the instrument on its pivots

until the bubble plays. The star will appear to pass through the

field from west 'to east, except in case of sub-polars, which move

from east to west. An equatorial star passes through the field with

considerable velocity, only 40 to 60 seconds being required for its

passage, the apparent path being a right line. For other stars the
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time required is greater, and the path becomes more curved, until

as we approach the pole several minutes are required, and the cur-

vature becomes very apparent.

These facts are of importance in determining when and where

tf look for the star.

The curvature of path must be considered in determining the
r
Equatorial Intervals." The eye-piece should be moved horizon-

tally,; keeping pace with the star, presenting the latter always in

the middle of the field of view.

The uses of the R. A. micrometer will be explained hereafter.

ADJUSTMENTS OF THE TEAKSIT.

From the above it is manifest that, assuming the objective to

be properly adjusted, there are five adjustments to be made before

the instrument is ready for use.

1. To Place the Wires in the Principal Focus of the Objective.

Push in or draw out the eye-piece till the wires are seen with perfect

distinctness, using an eye-piece of high power. Direct the telescope

to a small well-defined terrestrial object, not nearer than two or

three miles. Now if the wires are not in the focus of the objective,

the object will appear to move with reference to the wire as the eye
is moved from side to side.

The wire frame must then be carried slightly toward or from

tne objective until this parallax is corrected.

After the instrument has been placed in the meridian, and the

horizontal wire made truly horizontal, as explained in the following

adjustments, let an equatorial star run along the wire, and if it does

not remain accurately bisected while the eye is moved up and down,
the wires are not exactly in the principal focus. Other stars must

then be used until the parallax is removed. The wires are then at

the common focus of the objective and eye-piece.

2. To Level the Axis. The striding level is usually graduated
from the center toward each end.

The pivots are assumed to be equal.

If when its Y's are applied to the transit pivots, the axis of the

tube is parallel to the axis of the pivots
*

(i.e., if the level be in

* The axis of the tube is of course a circular arc of long radius. Strictly

speaking, it is the chord ot this arc which, when the level is perfectly adjusted,

will be parallel to the axis of the pivots.
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perfect adjustment), and if w and e denote the readings of the west

and east ends of the bubble respectively, then

will denote the reading of the micelle of the bubble, and will there-

fore measure the inclination of the axis of the pivots in level divi-

sions. But the accurate adjustment of the level is never to be as-

sumed. If the axis of the level be inclined to the axis of the pivots

by such an amount as to increase the west reading and therefore

diminish the east reading by x divisions, then w and e still denoting
the actual readings, we shall have for the true inclination of the

axis of the pivots,

w e 2x
2 'IT

Upon reversing the level, the west and east readings will be as much
too small and too large respectively as they were too large and too

small before reversal; therefore w' and e' denoting the actual read-

ings, we shall have for the true inclination this second value,

w' e' 2x
~2~

'

2'

The mean of these two values,

(w-e) + (w
9 -

e')

2

is expressed only in actual level readings and is free from x, the un-

known effect of maladjustment of level.

Hence to level the axis Take direct and reverse readings with

the level, altering the inclination of the axis till the sum of the

west equals the sum of the east readings.
If the level be graduated from end to end, a similar discussion

will show the level error to be

(W + e)
-

(w' + e')
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3. To Place the Wires at Right Angles to the Rotation Axis.

Bisect a very distant small terrestrial object by the middle wire,

and the axis being level, note whether the bisection remains perfect
from end to end of the wire as the telescope is alternately elevated

and depressed. If not, rotate the box carrying the wire frame,
until the above condition is fulfilled.

The side wires are parallel and the horizontal wires perpendicu-

lar, to the middle wire.

After the instrument has been finally placed in the meridian,
this adjustment must be verified by noting whether an equatorial

star will remain accurately bisected by the horizontal wire during
its passage through the field.

4. To Place the Middle Wire in the Line of Collimation. Bisect

the same distant object as before. Lift the telescope carefully from

the Y's and replace it with the axis reversed. If the object is still

perfectly bisected the collimation adjustment is complete. If not,

move the wire frame laterally by the proper screws over an estimated

half of the distance required to reproduce bisection. If the half

distance has been correctly estimated, the middle wire is now in the

line of collimation. Repeat the operation from the beginning until

the condition is fulfilled.

If a proper terrestrial point can not be obtained, the cross-wires

in an ordinary surveyor's transit or theodolite adjusted to stellar

focus, will answer quite as well. If two theodolites are placed, one

north and the other south of our transit, pointing toward and

accurately adjusted on each other, the reversal of the axis above

referred to may be avoided.

In all these cases, the R. A. micrometer is of great convenience

for measuring the distance whose half is to be taken.

The parts of the instrument are now in adjustment among them-

selves. It remains to adjust the instrument as a whole with refer-

ence to the celestial sphere; i.e., to so place the instrument that

when turned on its pivots, the line of. collimation shall trace the

true meridian.

5. To Place the Line of Collimation in the Meridian. This is

most easily effected by the aid of a sidereal chronometer whose error

is known. The instrument is first placed as nearly in the proper

position as can be estimated, and its supporting frame turned in
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azimuth until the telescope can be pointed at a slow moving star at

about the time of its meridian passage.

Now level the axis carefully, set the telescope to the meridian

altitude of a circum-polar star whose place is given in the Ephem-
eris, and bring the middle vertical wire upon this star a short time

before its meridian passage, , Hold he wire upon the moving star

by turning the screw which moves one of the Y's in azimuth, until

the chronometer corrected for its error indicates a time equal to the

star's R. A. for the date. The transit is now very approximately in

the meridian, although the adjustment should be tested by other stars.

Since the observations to be made with the transit will be for

the purpose of an accurate determination of the chronometer error,

this latter will usually be known only approximately. It may how-

ever be found with sufficient accuracy for making the adjustment

by noting that since all vertical circles intersect at the zenith, the

time of a zenith star's passage over the middle wire will be its time

of passage over the meridian even though the transit be not in the

meridian. The difference between the chronometer time of this

event and the star's R. A. will therefore be the clock error.

In the absence of a zenith star, two circum-zenith stars, at op-

posite and nearly equal zenith distances, will give values of the clock

error differing about equally and in opposite directions from its true

value.

Alternating observations on circnm -polar and circum-zenith

stars will now give the required adjustment with two or three

trials.

As a final test, the values of the chronometer error determined

from stars which cross the meridian at widely separated points
should be practically identical.

INSTRUMENTAL CONSTANTS.

These must be determined before the instrument can be used,

and are five in number, the transit is supposed to be in good

adjustment.
1. The Value in Time of One Division of the R. A. Micrometer

Head. The micrometer head, which is usually divided into 100

equal parts, carries a movable wire which is always parallel to the

fixed vertical wires of the transit, and as nearly as possible in their
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plane. As it moves across the field of view it apparently coincides

with each of them in succession.

If s denote the angular distance, measured from the optical

center of the objective, between two positions of the micrometer

wire, one of which coincides with the middle wire or the meridian
a

of the instrument, then i will be the interval of time required
-Lo

for a star exactly on the celestial equator to pass from one position

to the other; since it is only such stars whose diurnal path is a

great circle, and since also intervals of time are measured by area

of a great circle the equator.

"With a star exactly on the equator, the process of finding the

value of one division of the R. A. micrometer head would therefore

consist in noting the time required for the star to pass from one

position of the wire to the other; the quotient of which by the

number of turns or divisions through which the head has been

moved would give the value of one turn or division.

In the absence of such a star we must select one whose declina-

tion, 6, is not zero. The interval of tkne required for such a star

to pass from one position to the other will be given by the equation

sin 7 = sin i sec d. (43)

To prove this, let A B in Figure 7, which represents the sphere

projected on the plane of the horizon, be the meridian, P the pole,

A

E Q R the equator, S the place of the star, MZ the first position
of the wire, and P F

t coinciding with the meridian, the second.
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Through 8 pass an arc of a great circle, K S, perpendicular to

A B. This arc will be equal to Q L, and will therefore, from what

precedes, be denoted by s.

Hence, in the right-angled triangle SP K, we have

But P is the hour angle of the star at 8, and s is the hour angle of

an equatorial star at an equal angular distance from the meridian,

i.e., at L.

Hence denoting the time equivalent of the former by /, and of

the latter by i as before, we have

sin /= sin i sec d,

and therefore

.sin i = sin /cos d. (#)

From this equation we inay compute i, 8 being taken from the

Ephemeris, and 1; which is directly observed, being the sidereal

time required for the star to pass from S to the meridian.

After which, if R denote the value of a revolution or division

of the micrometer head, and N the number of revolutions or divi-

sions corresponding to /, we have for the value in time

If the star be not within 10 of the pole we may write

i I cos #,

and

~,

thus avoiding the " Correction for Curvature "
involved in the

trigonometric functions.

By examining the equations

sin i sin 7 cos tf
, and i I cos 3, (45)
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it is seen that for the accurate determination of i, it is better to use

stars near the pole, since errors in the observed values of / will

then be multiplied by the cosine of an angle near 90.

Therefore, to determine this constant, proceed as follows:

Shortly before the time of culmination of some slow-moving

(circum-polar) star set the instrument so that the star will pass

through the field. Set the micrometer head at some exact division,

with the wire on the side of the field where the star is about to

enter. Note the reading of the micrometer head, and record the

time of passage of the star over the wire, using a sidereal chronom-

eter whose rate is well determined. Set the wire again a short

distance ahead of the star, note the reading, and record the time of

passage. In this manner "step" the screw throughout its entire

length. Then, remembering that / is the sidereal interval (cor-

rected for rate if appreciable) between any given passage and that

obtained when the wire was nearest to the meridian or the center

of the field of view, apply to each pair of observations equations

(a) and (b), or (c) and (d), according to the value of o\

Where d is considerably less than 90 and equations (c) and (d)

are used, the correction for curvature of path becomes very small,

and the same necessity does not exist for comparing each observa-

tion with the one made at the center of the field.

No correction for difference of refractions between any two

positions of the star is required, since at its meridian passage the

star is moving almost wholly in azimuth.

In any case the adopted value of the constant should rest on

many such determinations.

Very convenient stars 4o use are a, d, ft, Ursae Minoris. Their

decimations are accurately given in the Ephemeris, the first two

for every day, and the last one for every ten days.

The first two require equations (a) and (b).

The last one not necessarily so.

2. The Equatorial Intervals. By the "
Equatorial Interval

"
of

a given wire is meant the interval of sidereal time required for a

star on the celestial equator to pass from this wire to the middle

wire, or vict versa.

The method of determinating this constant for each wire is

manifestly identical in principle with the process just described,

omitting the application of equations (b) or (d), and remembering
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that / is the observed interval with a star whose declination is tf,

and i is the required Equatorial Interval.

Another method, which may either be used independently or as

a verification, is to measure the intervals between the wires (in

time) by the E. A. micrometer. The adopted constants should rest

upon many determinations.

3. The Reduction to the Middle Wire. The mean of the times

of transit of a celestial body over the several wires of a transit in-

strument is called the time of transit over the mean of the wires

or the mean wire. The mean does not usually coincide with the

middle wire, due to the improbability of grouping the wires in per-
fect symmetry with reference to the middle.

Since it is the middle wire which has been placed in the merid-

ian, it becomes necessary to determine the distance, in time, of the

mean from the middle wire. Then, the mean of the times of tran-

sit being corrected by this constant, we will have a very accurate

determination of the time of transit over the meridian. Suppose
the instrument to have seven wires, and to be in good adjustment.
A star at its upper culmination will apparently move over these

wires from west to east; therefore (with the instrument in a given

position, say with " illumination east ") let the wires be successive!}
7

numbered from the west towards the east.

Let a star whose declination is d pass through the field, and let

*i jti>t* > *4
#
6 > ^ .' t, > be tne accurate instants of passing the cor-

responding wires; let i, , ?\ , i
z , 0, ?'

fi , *
6 , i, , be the equatorial inter-

vals from the middle wire. Then the time of passing the mean
wire is

(46)

The time of passing the middle wire is either

t
l + i

l
sec d, t

z -f i
9
sec d, t

z -f i
3
sec d, t

t ,tf

- ^ sec tf, t
6

i
6 sec tf,

or t^ *
7
sec d

(note the minus sign in the last three). Hence the* most probable
time of passing the middle wire is

ft

2t
t

Si= -+secd. (47)
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The difference between this and the time of passing the mean

wire is evidently the second term, or

^ sec 6 = (*! + * + *)"(*+* + *''
sec tf. (48)

i

The equatorial value of this reduction (the desired constant)

will then be

and for any given star the actual reduction will be this value mul-

tiplied by sec d. The adopted value of A i should rest upon many
determinations. Its sign is evidently changed by reversing the axis

of the instrument.

Hence, to find the time of a star's passage over the middle wire,

we have the rule : To the mean of the times add A i sec d, noting

the signs of both factors.

The Equatorial Intervals are also used for finding the time

of passage over the middle wire when actual observation on some of

the wires has been prevented by clouds or other cause. Thus suppose
observations have-only been made on the second, third, and seventh

wires. The most probable time of passing the middle wire is

(*. + f. sec (?) + (*. + i* sec
<?) + (*T

- *
T
sec 6} _ 2 1 2i

~3~ T ~3~
' ' d >

t and i referring only to the wires used.

4. Value of One Division of the Level. In practical astronomy
the level is used not merely for testing and regulating the horizon-

tality of a given line, but also for measuring either in arc or time

those small residual inclinations to the horizontal which no process

of mechanical adjustment can either eliminate or maintain at a

constant value.

Hence we must determine the value of one division of the strid-

ing level of the transit; i.e., the increment or decrement of incli-

nation which will throw the bubble one division of the gradu nfcion.

The best method of determining this quantity in case of a de-

tached level is by use of tne "
Level-trier," which consists simply

of a metal bar resting at one end on two firm supports, and at the
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other on a vertical screw. Then if d be the distance from the screw

to the middle of the line joining the two fixed supports, and h the

distance between two threads of the screw (obtained by counting
the number of threads to the inch), the inclination of the bar to the

horizon would be changed by -T-v-^?ar/> due to one revolution of the
d sin J_

screw. The level is then placed on the bar and the number n of

divisions passed over by the bubble due to one turn (or division) of

the screw is noted. The value of one division of the level in angle

is then = : 777 . The mean of several observations, using both
ndsm 1"

ends of the bubble, should be adopted. The value in time is

-
j

-. r-. . If no level-trier is available, the level should be
15 n d sin I"

placed on the body of the telescope connected with a vertical circle

reading to seconds : as for example the meridian circle of a fixed

observatory. Move the instrument slowly by the tangent screw and

note the number of level divisions corresponding to a change of 1"

in the reading of the circle, taking the means as before. By either

method the level may be tested throughout its entire length.

We have seen that the inclination of a line in level
divisions^

is

(w -f- w') (e -f #') i -f r> j L - L f j
!-

;
hence if D denote the constant just found,

the inclination of the line in arc will be

p_ - g e _
-~~ "- ~~

the west end being higher if (w -f- w') > (e -j- e'), or when this ex-

pression is positive.

5. Inequality of the Pivots. The construction of the pivots

being one of the most delicate operations in the manufacture of the

whole instrument, their equality must never be assumed.

In transit observations it is manifestly the axis of rotation (the

Axis of the pivots) which should be made horizontal, or whose in-

clination should be measured. If the- pivots are unequal they may
be regarded as portions of the same right cone; in which case it is

evident that the striding level applied to the upper element might
indicate horizontality when the axis was really inclined, and vice
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versa. We must therefore correct our level indications by the effect

of this
"
Inequality of Pivots."

To determinate this, let w x y z in Figure 8 represent the cone of

FIG. 8.

the pivots, u v being the axis. Let the inclination of the upper
element iv z be measured with the level, giving

s= (w+ w')
-

(e + e')

4
D.

Lift the axis from the Yy
s and turn it end for end. In this position

w' x y z' will represent the cone of the pivots.

Measure as before the inclination of w' z', and denote it by B'

Then by inspection of the figure it is seen that B f B is the angle
Tlf T)

between the two positions of the upper element, - - is the
tit

angle between the upper and lower elements of the cone, and
T}/ 7?

p is consequently the angle between the upper element

and the axis u v*

* B and B are manifestly the inclinations, in the two positions, which the

upper element would have if the pivots were equal, minus twice the effect of

the inequality: this effect being the angle subtended by the difference of the

radii, r r '
. Of course if the pivots are unequal, the inclination obtained by

applying the level Y's to the pivots is not strictly that of

the upper element; but if the angles of the transit and

level Y's are equal (as is usually the case), it will evidently

be, as before, the inclination which the upper element would

have if the pivots were equal, minus twice the effect of

the inequality: the effect in this case being (Fig. Sa, which

represents a cross-section of the pivots and level T) the

angle subtended by -
. Hence the algebraic differ^

siii
"5"
a

ence, B' ~ B, will be four times the effect of the inequality, as before.

FIG. 8a.
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T)t T>

This quantity, p, is therefore the desired constant, and

as the figure indicates, it is a correction to be added algebraically

to the level determination of the unreversed instrument, or to be

subtracted from that of the reversed instrument.

Its value should rest upon many determinations.

The inclination of the axis of a transit will hereafter be denoted

by b, which is therefore either B -j- p, or B' p, according as the

instrument is direct or reversed.

| The cross-sections of the pivots should be perfect circles.

Any departure from this form may be discovered and corrected as

follows :

With instrument direct, determine the value of B with the

telescope placed successively at every 10 of altitude. Call the

mean B .

Then B B is the correction for irregularity of pivots for the

reading corresponding to B with instrument direct. Do the same

with instrument reversed. Then B ' B will be the correction
T) r n

for irregularity with instrument reversed. ?- - will be the cor-

rection for inequality. Both corrections must be applied to obtain

the true value of b.

EQUATION OF THE TRANSIT INSTRUMENT IN THE
MERIDIAN.

The transit, having been adjusted and the instrumental con-

stants determined, is ready for use. Hitherto it has been assumed

that an adjustment was perfect: that the middle wire had been

placed exactly in the line of collimation, that the axis of rota-

tion had been made exactly level, and that the line of collimation

would trace with mathematical accuracy the true meridian. Mani-

festly, however, this theoretical accuracy cannot be attained by
mechanical means. It will therefore be proper, having performed
each adjustment as accurately as possible, not to regard the out-

standing small errors as zero, but to introduce them into a given

problem as additional unknown quantities having an ascertainable

effect on the result, and then to make independent determinations
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of their value, or leave these values to be revealed by the observa-

tions themselves.

Any departure from perfect adjustment is positive when its

effect is to make stars south of the zenith cross the middle wire

earlier than they otherwise would.

1. To Ascertain the Effect of an Error in Azimuth on the Time
of Passage of the Middle Wire. Let a denote the horizontal angular
deviation of the axis of rotation from a true east and west line,

positive when the west pivot is south of the east pivot. (This should

never exceed 15", and will usually be even less.) The line of col-

limation will then, as the instrument is moved in altitude, describe

a great circle of the celestial sphere intersecting the meridian in

the zenith, and making with it the angle a (HZA in Figure 9).

H

FIG. 9.

Then from the ZP S triangle we have (S being the position of a

star when on the middle wire),

sin P : sin a : : sin z : cos S,

or

sin a sin z
sm P - =r- -

cos o

If the star were exactly on the meridian, z would be equal to

cf> d. Being less than 15" therefrom, the change required in z

to give d is entirely negligible. Again P and a are exceed-

ingly small angles. Hence we may write with great precision, ex-

pressing a and P in time,

cos o (50)
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That is, if the instrument have an azimuth error in time, of a

seconds, a star when passing the middle wire is distant from the

true meridian a 5
- seconds of time, and the recorded time

cos 6

of transit must be corrected accordingly.

2. To Ascertain the Effect of an Inclination of the Axis on the

Time of Passage of the Middle Wire. Let b denote the angular
deviation of the axis of rotation from the horizontal, positive when

the west pivot is higher than the east. The line of collimation

will then, as the instrument is moved in altitude, describe a great

circle of the celestial sphere intersecting the meridian at the north

and south points of the horizon, and making with it the angle b

(ZHS, in Figure 10).

FIG. 10.

Then from the triangle P IIS (8 being the position of a star

when on the middle wire)

sin P : sin b : : cos z : cos <5.

Or, as before, expressing b in time,

p=J CO^-^)_
cos d

This is interpreted as in the preceding case.

3. To Ascertain the Effect of an Error in Collimation on the Time

of Passage of the Middle Wire. Let c denote the angular distance

of the middle wire from the line of collimation, positive when the

wire is west of its proper position. The line of sight will then, as

the instrument is moved in altitude-, describe a small circle of the

celestial sphere, east of the meridian and parallel to it. Through
S, the place of the star, Fig. 11, pass the arc of a great circle, 8M3
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perpendicular to the meridian. This arc will be the measure of

c. Then in the right-angled triangle P SM we have

. D sin c
sin P =

cos

Or, as before, expressing c in time,

P = ~~^ = c sec 5. (52)^ }cos

Hence when all these errors, #, b, and c, exist together, called re-

spectively the azimuth, level, and collimation error, we have for the

Equation of the Transit Instrument in the Meridian,

(53)

In this equation a is the apparent R. A. of the star for the date,

T is the clock time of transit over the middle wire, obtained from
the time of transit over the mean wire by applying the " Reduction

FIG. 11.

to Middle Wire/' E is the chronometer error, positive when slow,

negative when fast, the latitude, d the star's apparent declination

for the date, and a, b, and c are expressed in time.

When great precision is desired, for example in longitude work,
the equation must be modified by the introduction of a small cor-

rection for Diurnal Aberration, additive to a. The value of the

correction is O s
.021 cos sec d.

Hence the complete form of the above equation is

a = T+JS+ a
S (</

'~ 6) *(0-* x
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Or, placing

c' = c 0.021 cos 0,

cos cos
'

' '

(54)

After an observation has been made we shall have in this equa-
tion four unknown quantities, E, a, b, c', since <p is supposed to be

known, and a and 6 are found in the Ephemeris. We may either

determine a, b, and c independently, as will next be explained (in

which case an observation on a single star will then give E), or

leave all four to be determined by observation on at least four stars.

The sign of c is changed by reversing the axis, since the middle

wire is thus placed on the other side of the line of collimation.

^ This value, O s.021 cos sec d, which we will denote by R,

may be deduced in an elementary manner as follows: Due to the

earth's rotation on its axis, all celestial bodies are apparently dis-

placed toward the east point of the horizon. If the body be on

the meridian, this displacement is wholly in R. A. Hence the

R. A. of the object as seen will not be a, but a -f R.

The direction of a ray of light received from a body on the

meridian is at right angles to the direction of the observer's diurnal

motion. Under this condition, the absolute amount of apparent

displacement in seconds of a great circle may be written (Young,

pa. 142),

R =
Ftanl"

where u is the observer's velocity, and V that of light. If the ob-

server be at the equator, we shall have

20926062 X 2 n
~-

"5280 x 24 X 60 >^0
mileS per SeC nd>

where 20926062 is the number of feet in the earth's equatorial
radius (Clarke).

According to Newcomb and Michelson,

V = 186330 miles per second.
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Hence

R =_20926062 x 2 n _
5280 X 24 X 3600 x. 186330 X tan 1"

"

This angular displacement in a great circle perpendicular to the

meridian corresponds to 9.021 if the star be on the equator, or to

0?021 sec d if the star's declination be #, since,, as we have seen

before, equal angular distances from the meridian correspond to

hour angles varying with sec ft.

If the observer be not on the equator, but at latitude <f), his

velocity will be diminished in the ratio of the radius of his circle of

latitude to that of the equator: or regarding the earth as a sphere,
in the ratio cos 4> : 1.

Hence, for an observer in any latitude, with a star at any dec-

lination,

R = O s.021 cos sec d.

DETERMINATION OF INSTRUMENTAL ERRORS.

1. To Determine the Level Error b. This is found from the

formula already deduced, viz. :

D +p (55)

or

:;.; .
V = B'-f = ^ + ^-^ + ^D- f , (56)

according as the instrument is direct or reversed. D and p must
be expressed in time, by dividing their values in arc by 15, thus

giving b in time.

2. To Determine the Collimation Error c. Turn the instrument
to the horizon, select some well-defined distant point whose image
is near the middle wire, measure the distance between them with

the micrometer, making the distance positive when the middle
wire is west of the image of the point. Reverse the axis, and meas-

ure the new distance, with same rule as to sign. Subtract the

second from the first, and one half the difference gives the colli-

mation error in micrometer divisions for instrument direct.
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This multiplied by the value of one division in time, gives c

in time.

The rule will be evident from an inspection of Fig. 12 (which
is a horizontal projection), where w is the west,

and e the east end of the axis, TE the hori-

zontal line of collimation, P the image of the

e point in the field of view, a the direct and b

the reversed position of the middle wire. E a

>_^_
is equal to E b, and c is positive.

b Instead of a terrestrial point we may use the

FIQ. 12. intersection of the cross hairs in the focus of

a surveyor's transit adjusted to stellar focus,

the two instruments facing each other. The intersection referred

to will then be optically at an infinite distance, and its image will

be found at the principal focus of our transit.

It is sometimes necessary to determine c by independent stellar

observations, in which case the following method is always employed :

Point the telescope to a circumpolar star and note the times of its

passage over as many wires as possible on one side of the middle

wire. Eeverse the axis. As the star moves out of the field of view,

it will cross the same wires in reverse order, the times of passage

being noted as before.

By means of the Equatorial Intervals reduce each time to the

middle wire, and let T and T' denote the mean of those before and

after reversal, respectively.

T and Tf
are therefore the times of passage of the same star

over two different positions of the middle wire one as much to

the east as the other was to the west of the true line of collimation.

From their difference therefore we have double the collimation error,

thus:

For instrument direct,

sin
T_I_ w _L

-
,

-
a 1 4- E 4- a--5

* 4- ^
--cos(0-tf) c O s.021 cos

5
- ^

-----
j
-- -T

cos o cos o cos o cos o

For instrument reversed,

, . v , >n(0-tf) , ,,,008(0-0) c 0".021*)
Ct ^^ -/ + Hi ~T~ u -

jc
-

~i
" ~~

?i _n "F~
COS O COS O COSO COk C
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allowance being made for a change in level error due to a possible

inequality of pivots, and c changing its sign by reversal of the in-

strument.

By subtraction and solution we have

c = i (r - T) cos tf + i (V - b) cos (0 - tf). (57)

If the pivots are equal and the instrument be undisturbed in

level, the last term disappears and we have

c = %(T' - T) cos d. (58)

A slow-moving star must be used in order to give time for care-

ful reversal.

There are various other methods of finding both b and c, based

principally upon observation of the wires and their images as seen

by reflection from mercury.
3. To Determine the Azimuth Error, a. Observe in the usual

manner the time of transit, T, of a star of known declination.

Then, b and c having been measured, let the corresponding correc-

tions, b - -r
- and c

f
sec d, be added to T, giving t. This is

cos o

called correcting the time for level and collimation. The equation
of the instrument as applied to this star will now read

sin (0 d}a=^t + E+ a - -~^ L
. (m)cos d

Similarly for another star,

a>=t> + E+a
S (<t>- S

'l
(n)cos 6' v '

From which

a (sin cos tan df sin 0.-f cos tan #) = (' a) (t
f

t).

(a
> -a)- (('

- t )
'

cos (tan $
- tan

<J')'
l '
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The value of the clock error does not enter. If however it be

not constant, its rate, r, must be known, positive when losing, nega-
tive when gaining. Then if E

Q
be the unknown error at some as-

sumed instant T
, the errors at the two instants of observation will

be J + (T-T,) r, and + (T'
- T

9 )
r. These should be substi-

tuted for^in equations (m) a-nd (n), and the known terms, (
T T

) r

and (T
f T

) r, be united to T and T' in forming t and t' as are the

corrections for level and collimation. The time is then said to be

corrected for rate. By subtraction to obtain (59), E will disappear.
Hence while the rate must be known, the error need not be.

Examining the value of a, we see that the following conditions

must be fulfilled in order to obtain an accurate determination.

First, a and a' must be known exactly; therefore only Ephem-
eris stars should be used.

Again, if the rate of the clock be not well determined, the

interval between the observations must be as small as possible in

order that the correction for rate may affect a but slightly. There-

fore if both stars are at upper culmination, they should be nearly

equal in R. A. Or, if one be above and the other below the pole,

they should differ in R. A. by as nearly 12 hours as possible.

Again the larger numerically the factor (tan d tan d'), the less

the effect of errors in t
f

t. Hence, if both stars are at upper
culmination, one should be as near and the other as far from the

pole as possible. Or, if one be at upper and one at lower culmina-

tion, they should both be as near the pole as possible; the declina-

tion of the lower star being then taken to be 90 -f- Polar Distance.

Erom the preceding description of the Transit Instrument it

be readily understood, that, if desired, the mean wire may be

used as a datum instead of the middle, and the Equatorial Intervals

be determined from it with the same facility as from the middle

wire. Also, if in Eq. (53) T be the time of a star's transit over

the mean wire, c will be the collimation error of this wire, and,

together with E, a, and Z>, may be determined by the use of four

stars as explained on page 36. It may also be determined by Eq.

(57) or (58), if T and T' be computed for the mean instead of the

middle wire. This use of the mean for the middle wire is frequent

in field work, and possesses the advantage that all consideration of

the "Reduction to. the Middle Wire" may be then avoided.
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REFRACTION TABLES.

A ray of light passing from a celestial body to a point on the

earth's surface, may be supposed to pass through successive spherical

strata of the atmosphere, the densities of which continually increase

toward the center. Under these circumstances, as has been previ-

Dusly shown, the ray will be bent toward the normal, resulting in

an apparent displacement of the body toward the zenith.

It has also been previously shown that the actual amount of such

displacement increases with the zenith distance, and with the

density of the air, which latter depends on its pressure and tempera-
ture. In order to facilitate the calculation of this displacement or

refraction in any particular case, tables have been constructed con-

containing certain functions of the zenith distance, temperature,

and pressure, from which, with observed data as arguments, the re-

fraction may be computed.
Such tables are called Refraction Tables. Those of Bessel are

the best and most usually employed. In these tables the adopted

value of the refraction function is given by

r = a j3 y
x tan z,

in which r is the refraction; A, A, and a are quantities varying

slowly with the zenith distance; /3 is a factor depending on the

pressure, and y upon the temperature of the air; z is the apparent
zenith distance

; ft therefore depends upon the reading of the ba-

rometer, and y upon the reading of the thermometer. But since

the actual height indicated by a barometer depends not only upon
the pressure of the air, but upon the temperature of the mercury,

/3 is really composed of two factors B and T, the first of which de-

pends upon the actual reading of the barometer, and T involves the

correction due to the temperature of the mercury.

Nearly all the collections of astronomical tables contain " Tables

of Refraction," from which may be found the various quantities in

the equation

The first portion of the table consists of three columns giving the

values of A, A, and log a, with the apparent zenith distance z as

the argument.
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The second part contains B, with the height of the barometer
as the argument. The third part gives the value of T with the

reading of the attached thermometer as the argument, and the
fourth part gives y with the reading of the external thermometer
as the argument; z is the observed zenith distance. A substitution

of these quantities gives the refraction, which must then be added
to z to give the true zenith distance.

The attached thermometer gives the temperature of the mercury
of the barometer. The external thermometer should be screened
from the direct and reflected heat of the sun, but be so fully ex-

posed as to give accurately the temperature of the external air.

A similar table is sometimes given for passing from true to ap-

parent zenith distances. The mode of using is exactly the same,

subtracting the resulting refraction from the true zenith distance

to obtain z. It is of use in "setting" instruments for observation.

A " Table of Mean Refractions
"

is also given in nearly every

collection, and contains the refractions for a temperature of 50 F.,

and 30 in. height of barometer, with apparent zenith distances or

altitudes, as the argument, which may be used when a very precise

result is not required.

The above relates only to refraction in altitude. But a change
in a star's place due to refraction will in the general case cause a

change in its observed R. A. and Dec. In order to ascertain these

two coordinates as affected by refraction at a given sidereal time T,

we first compute the body's hour angle from P = T R. A., and

then its true zenith distance (z) and parallactic angle (^) from the

astronomical triangle, knowing P, (p, and tf. Then if r denote the

refraction in altitude, found as just explained, the refraction in

declination will be

A $ r cos
if?,

and the refraction in R. A.,

r sin ib
A a = X.

cos #

TIME.

The perfect uniformity with which the earth rotates on its axis

makes its motion a standard regulator for all time-pieces. No clock

or chronometer can run with perfect uniformity, an^ therefore the

time indicated by them must ever be in error. To find these errors

at any instant is the object of the time problems in Practical As-

tronomy.
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Time is measured by the hour angle of some point or celestial

body. If the point be the true Vernal Equinox its hour angle is

true sidereal time.

If the point be the mean Equinox, it is mean sidereal time; but

since the greatest difference between true and mean sidereal time

can never exceed 1.15 seconds in 19 years, astronomical clocks are

run on true sidereal time. To pass from true to mean sidereal

time, apply the correction known as the Equation of Equinoxes in

Eight Ascension.

If the point be the Mean Sun its hour angle is mean solar time;

all solar time pieces are run on mean solar time.

If the point be the center of the True Sun, its hour angle is

true or apparent solar time; to pass from true to mean solar time

apply the correction known as the Equation of Time.

Before proceeding to the time problems, it is necessary to deter-

mine the relation existing between sidereal and mean solar intervals,

and especially the relation existing between the sidereal and mean
solar time at any instant.

Relation between Sidereal and Mean Solar Intervals. The in-

terval of time between two consecutive returns of the sun to the

mean vernal equinox, called the mean tropical year, is according to

Bessel 365.2422 mean solar days. Since, while the earth is rotating
on its axis from west to east, the mean sun is moving uniformly in

the same direction, the interval between two consecutive passages

of the meridian over the mean sun will be 1 + times the

interval between two passages . over the mean vernal equinox: for

in one mean solar day the mean sun must advance of the

whole circuit from equinox to equinox, and each mean solar, day

must correspond to 1 -}-.- .<oo passages of the mean vernal equi-

nox. Hence 365.2422 mean solar days correspond to 366.2422

sidereal days.

Hence we have the relations,

366 9422
One mean solar day = 365 ]2422

= 1-00273791 sidereal days,

= 24h
3
m 5 6 ".555 sidereal time.
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365 ^4^9
One sidereal day = '^ -^ = 0.99726957 metm so/ar days,

= 23 h 56m 4 S.091 mean solar time.

The same relation manifestly exists between the corresponding

hours, minutes, and seconds.. Now since the sidereal unit is shorter

than the mean solar in the ratio of 1 : 1.00273791, it follows that

the number of these units in a given interval of time is to the

number of mean solar units as 1.00273791 to 1.

HeiLce the relations,

Sidereal Interval Mean Solar Interval X 1.00273791.

Mean Solar Interval = Sidereal Interval X 0.99726957.

Or, denoting these intervals respectively by F and /,

F = /+ 0.00273791 /

/ = /' 0.00273043 F,

Tables II and III, Appendix to the Ephemeris, give the values of

the corrections O.Q0273791 /and 0.00273043 /', for each second in

the 24 hours.

Again, since 24 sidereal hours equals 23h 56 ta 4 S.091 mean solar

time, it follows that a mean solar clock loses 3m 55 S.909 on a side-

real clock in one sidereal day, or 9 8.8296 in one sidereal hour.

Also, since 24 mean solar hours equals 24h 3m 56 8.555 sidereal

time, it follows that a sidereal clock gains 3m 56 S.555 on a mean
solar clock in one mean solar day, or 9 8.8565 in one mean solar

hour.

These two facts may be thus expressed :

(1) The hourly rate of a mean solar clock on sidereal time is

+ 9 9.8296.

(2) The hourly rate of a sidereal clock on mean solar time is

- 9 S.8565.

From (2) it is seen that the E. A. of the mean sun increases

9 8.8565 per hour, or in other words, the sidereal time of mean noon

occurs 9 8.8565 later for each hour of west longitude.

These deductions are of importance in what follows.

Relation between Sidereal and Mean Solar Time. That is, haying

given either the sidereal or mean solar time at a certain instant, to

End the other.
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Suppose first the sidereal time to be given and let the circle in

Figure 13 represent the celestial

equator, M being the point where it

is intersected by the meridian, V the

vernal equinox and S the place of

the mean sun.

Then MV= the sidereal time at

the instant, supposed to be known,
MS = the mean solar time required,

and V8 = right ascension of mean

sun.

The mean solar time required is

therefore equal to the given sidereal FlG . ]3 .

time minus the R. A. of the mean sun at the instant. The calcu-

lation of the R. A. of the mean sun at a given instant may be

avoided by the use of Tables II and III, Appendix to the Ephem-
eris, as follows :

At the preceding mean noon the mean sun's R. A. was less than

at the moment considered by an amount which may be represented

ly ##'.

At that time, therefore, the mean sun was at M, and the Vernal

Equinox at a position V such that VM = VS'. Hence at the

instant considered, the sidereal time elapsed since the preceding
mean noon is MV MV. The time since mean noon having thus

been found in sidereal units, the mean solar equivalent of this inter-

val will necessarily be the mean solar time at the instant consid-

ered. Hence the rule :

From the given sidereal time subtract the R. A. of the mean sun
at the preceding mean noon. Convert the result into a mean solar

interval by theEphemeris Tables or theformulaI=F 0.002730437'.

The result is the required mean solar time.

To find the sidereal from the given mean time, this operation
must obviously be performed in the inverse order, viz. :

Convert the given mean solar time into a sidereal interval by
the Ephemeris Tables or by the formula I* = 1+ 0.00273791/.

To the result add the R. A. of the mean sun at the preceding mean

noon. The result is the required sidereal time.

On Page II, Monthly Calendar of the Ephemeris, will be found

the R. A. of the mean sun at the preceding Greemvich mean moon.

To find this element for the local mean noon, multiply the hourly
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change 9 8.8565 (heretofore deduced) by the longitude in hours, and

add the result to the Ephemeris value.

The above rules are not only of great use in astronomical calcu-

lations, but they enable us to determine the error of either a side-

real or mean time clock, knowing that of the other, by "the method

'of coincident beats." Suppose both clocks to beat seconds. Then
from the relative rate heretofore deduced it is seen that their beats

will be coincident once in about 6 minutes. Note the seconds given

by each clock when this occurs, and then supply the hours and

minutes. Apply the known error to the mean solar for example ;

and the result will be the correct m. s. time. Find the correspond-

ing sidereal time by the rule just given. The difference between

this and the time given by the sidereal clock will be its error.

EXAMPLE.

At West Point, N. Y., Nov. 27, 1891, Longitude 4h.93 west, the

mean solar and sidereal clocks were compared at the instant of

coincident beats, with the following result :

Mean Solar, Oh - 46m- 29 8
.00.

Sidereal, 17h - 15m- 55 s
.OO.

The error of the mean solar was OM7 slow on Standard Time,
which is itself 4m 9 8.45 slow on local time.

It is required to find the error of the sidereal clock.

Indicated m. s. time Oh 46m 29".00

Error on standard time 0.17

Reduction to local time 4 9.45

Corrected m. s. time 50 38.62

Reduction to sidereal interval 8.32

Sidereal interval since mean noon 50 46.94

R. A. of mean sun at Greenwich mean noon 16 24 27.25

Correction = 9 8.8565 X 4.93 48.59

True sidereal time 17 16 - 2.78

Clock indication 17 15 55.00

Error of sidereal clock -|- 7,78

Hence the sidereal clock was 7'.78 slow.
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TO FIND THE TIME BY ASTRONOMICAL OBSERVA-
TIONS.

This general problem usually presents itself as a question of de-

termining the error of a time-piece at a given instant. The different

methods of obtaining this error may, as far as considered here, be

grouped under three heads.

/. Time by Meridian Transits.

II. Time by Single Altitudes.

III. Time by Equal Altitudes.

The first is the method of precision when properly carried out

with the transit instrument. The second and third, being usually

carried out with the sextant, can only be relied upon as giving an

approximate result more or less exact.

I. TIME BY MERIDIAN TRANSITS.

1. To Find the Error of a Sidereal Time-piece by the Meridian

Transit of a Star. (See Form 1.) The general statement of the

problem is briefly this: since the time-piece, if correct, ought to in-

dicate the R. A. of the star at the instant of culmination, the dif-

ference in time is the error required. The transit instrument being

supposed to be approximately in the meridian, i.e., to have been

carefully adjusted, for the practical solution it is necessary to find

by observation and computation the quantities in the following

equation (heretofore deduced) and solve it.

a - T+ E + aA + bB + c'C, (60)

in which A, B, and C have for brevity been substituted for

sin (0 6} cos (0 tf) , ~ ,. , mi ,

i2- -
'-, 5 -, and sec tf, respectively. Then having

cos d cos d

measured a, b, and c; computed A, B, and C\ observed T
7

;
and

taken a from the Ephemeris (a = the star's apparent R. A. for the

date), the value of E follows from the solution of ths equation.

In finding T7

,
record to quarter seconds (or if possible to. tenths

of a second), the time of passage of each wire. Take the mean

and apply the "Reduction to middle wire." T, corrected by
aA -f- bB + c'C is evidently the chronometer time of the star's

transit over the meridian.
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Form 1 indicates the proper method of recording the observa-

tions, it being arranged for five stars. Under the head of "
Transit/

7

record its number and the maker. The" Illumination" should be

recorded as east or west, this showing whether the instrument is

direct or reversed.

The adopted value of 'E should &e the mean of the results from

several stars. Stars within the polar circle, or those whose declina-

tion exceeds about 67, are not used for time determinations, since

the exact instant when a slow moving star is bisected by a wire can-

not be judged with the greatest precision, and since also slight

errors in measuring a, b, and c will then be greatly magnified by A,

B, and C, all of which become oo for 6 90. But by including
in the observing list two circum-polar stars upon one of which the

instrument is reversed after half the wires are passed, both a and c

may be found by Equations (57) and (59). b is found from level

readings by Equation (55) or (56).

If only a single star is available, it should be one given in the

Ephemeris, and which passes near the zenith (d = 0), since at the

zenith Aa disappears, and this is the only one of the three correc-

tions which requires star observations for its determination.

For very accurate work, such as is required in connection with

the telegraphic determination of longitude, it is usual to employ at

least ten stars for each determination of time, half the stars being
observed with the instrument reversed; and of each half, two should

be circum-polar and three equatorial stars. In this case, b is ordi-

narily the only instrumental error actually measured (by level read-

ings) ;
each star then gives an equation of the form (60), and E to-

gether with a and c are found from a solution of the equations by
Least Squares.

These'matters will be explained more fully hereafter.

If the "Reduction to the Middle Wire" be not applied in com-

puting T, c will be the collimation error of the mean wire. This

fact is of general application whenever the Transit Instrument is

used for determining Time.

The clock rate is found from errors determined at different

times.

To find the error at a given instant, as for example at the middle

of the time consumed in a series of observations extending over

several hours, this rate should be applied as explained when treating
of the azimuth error.
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*J* It may sometimes be desirable to find the error of a sidereal

clock from a meridian transit of the sun, although in field work
this would be exceptional. In such a case it may be assumed, with

an error entirely negligible, that during the short time consumed in

the observation the sun's motion is uniform, that the time required
for the sun to pass from the mean to the middle wire, and from the

middle wire to the meridian is the same as that for a star of the

same declination.

For example, the reduction to middle wire not exceeding
8

.5,

the error committed by the second assumption could not exceed
AS 00974~ *

X sec (23 28') = O s.0015. Hence that reduction may be

computed as usual.

Therefore, note the time of transit of each limb of the sun over

each wire, and take the mean. Eeduce to the middle wire as usual,

and apply the correction aA -}- bB + c'C. The result is the clock

time of culmination of the sun's center. The true sidereal time of

this event, or the E. A. of the sun at apparent noon, is found on page

1, Monthly Calendar, by interpolation. The difference gives E.

2. To Find the Error of a Mean Solar Time-piece by a Meridian

Transit of the Sun. (See Form 2.) Apparent noon at any place is

the instant of culmination of the sun's center at that place. This

epoch may be expressed in three different times, viz. :

In apparent time, or 12 o'clock apparent time.

In mean time, or 12 o'clock plus the equation of time.

In clock time, or that indicated by a mean solar time-piece.
At apparent noon a mean solar time-piece should therefore indi-

cate 12 o'clock plus the equation of time at the instant.

Therefore the general equation of the Transit Instrument be-

comes for this case

12h + e = T+E+aA+bB + c'C, (61)

e denoting the equation of time.

Note the order and directions that follow :

1. The mean of all the observed times is the chronometer time of

transit of sun's center over the mean of the wires.

2. The reduction to middle wire, as well as the three 'corrections,
are found as in Form 1. By adding them to the above-men-
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tioned mean, we have the chronometer time of apparent noon.

The declination of the sun, used in computing these corrections,

is to be taken from the Ephemeris, allowance being made for

the observer's longitude. Use page 1, Monthly Calendar.

3. The mean time of apparent noon is 12 hours -f e. In comput-

ing e use page 1, Monthly Calendar, and make allowance for

observer's longitude. The Ephemeris gives the sign of e.

& Subtract the chronometer time of apparent noon from the mean
time of apparent noon, and the remainder is the error of the

chronometer: plus if slow, minus if fast.

5. Time-pieces at West Point are run on 75th Meridian mean time,

i.e. 4 I1X 9 S.45 slower than local mean time. Hence in finding

the error at West Point subtract 4m 9 S
.45 from 12h

e, before

proceeding with step No. 4.

%* Should the necessity arise for finding the error of a mean
solar time-piece by a meridian transit of

a^star,
it may b*e done by

the same methods, the reduction to the middle wire and corrections

for instrumental errors being computed as usual, since the equa-
torial value of the first, as before, being taken as not exceeding

8

.5,

AS 00273
the greatest error thus produced cannot exceed - - sec 67

Z
s

.0035. Stars within the polar circle, or whose declination ex-

ceeds about 67 are not used for time determinations.

Therefore having observed the clock time of transit (corrected by
aA + bB-\-cC), and having computed, as heretofore explained,

the correct mean solar time of transit from the star's E. A., the dif-

ference gives the clock error.

THE SEXTANT.

As problems under the second and third heads arising MI field

work, are usually solved by aid of the sextant, a short description of

that instrument and the manner of using it becomes necessary.

The sextant is a hand reflecting instrument designed for the

measurement of the angular distance between two objects. In its

construction it embodies the following principle of Optics, viz.s



TO FIND THE TIME BY ASTRONOMICAL OBSERVATIONS. 51

When a ray of light is reflected successively by two plane mirrors,

the angle between the first and last direction of the ray is twice the

angle between the mirrors, provided the ray and its two reflections

are all in the same plane perpendicular to both mirrors. For as-

tronomical work the sextant is mainly used for measuring vertical

angles, i.e., the altitude of some celestial body. In the measure-

ment of Lunar Distances, however, the angle will usually be in-

clined.

The instrument consists essentially of a graduated circular arc,

usually somewhat over 90 in extent, connected with its center by
several radii and braced by cross pieces, forming what is known as

the frame. Attached to the center of the arc is a movable index-

arm provided with clamp and tangent screw, carrying at its outer

end a vernier and microscope for reading the sextant arc. Attached

to the index-arm at its center of motion, and therefore rotating with

it, is a small mirror known as the index-glass, whose plane is per-

pendicular to that of the frame. Perpendicular to the frame, at-

tached thereto and therefore immovable, is a second small mirror,

known as the horizon-glass. These two mirrors are so placed with

reference to each other that when the index-arm vernier points to

the zero of the arc, they shall be exactly parallel and facing each

other. In this position a ray reflected by both mirrors will have its

original direction unchanged. The horizon-glass is divided into

two parts by a line parallel to the frame. The first part next the

frame is a mirror, and is the horizon-glass proper. The outer

part, consisting of unsilvered glass, is not a mirror. A small tele-

scope screwing into a fixed ring, is held by the latter with its axis

parallel to the frame and pointing to the horizon-glass. The dis-

tance to the axis from the frame is so regulated that the objective
will receive rays passing through the unsilvered, as well as rays
reflected from the silvered, part of the horizon-glass. Since each

portion of an objective forms as perfect an image as does the whole,

the difference being only in degree of brightness of the image, it is

manifest that by pointing the telescope at one object and placing
another so that its reflected rays will be received by the objective,

an image of each object may be seen in the field of view, each per-

fect in detail, but less bright than if formed with the whole aper-
ture of the objective. The relative brightness of the two images

may be varied at will by simply moving the telescope bodily to or
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from the frame, thus presenting more or less of the objective to the

silvered part of the horizon-glass. For observation, they should be

equally bright.

Excessive brightness, as in case of the sun, is reduced by two

sets of colored shades of different degrees of opacity, one set for the

reflected, and one for the direct rays. These are supposed to be

of plane glass, but to eliminate any errors due to a possible pris-

matic form, they admit of easy reversal. A disk containing a set

of colored glasses is arranged to screw over the eye end of the tele-

scope. This should be used when practicable, since any prismatic
form in these glasses will aifect both direct and reflected rays

equally.

Two parallel wires are placed in the focus of the objective, the

middle point between which marks the center of the field of view.

The line joining this point and the optical center of the objective
is the axis of the telescope. It is this line which should be parallel

with the frame of the instrument.

Suppose now with the index-arm set at zero (in which case the

mirrors are parallel), the telescope is accurately directed to some

very distant point. Rays will pass through the unsilvered part of

the horizon glass and form an image at the center of the field of

view. Eays sensibly parallel to these will fall upon the index-glass,

be reflected to the horizon-glass, and thence into parallelism with

the original direction, since the angle between the mirrors is zero.

These reflected rays being parallel to the direct rays, will be

brought to the same focus, and there will be presented at the mid-

dle of the field of view, apparently one, in reality two, images of the

point, accurately coinciding.

Eetaining the direct image at tho middle of the field, let the

index-arm be moved forward, say 25. According to the principle
of Optics cited, there will be superimposed on the first image that

of another point, separated from the first point by an angular dis-

tance of 50. Accordingly in order to give the real value of an

angle, the sextant graduations are marked double their true value.

Also according to the same principle of Optics, it fo/lows that if

the reading is 50 when the distance is 50, the ray from the second

point and all its reflections must determine a plane perpendicular
to both mirrors and hence parallel to the frame. If the instrument

and index-arm be so moved as to produce coincidence of images on
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either side of the field, evidently the last direction of the ray is not

parallel to the frame, the fundamental principle of the sextant is

violated, and the position assumed by the index-arm to give this

coincidence gives an incorrect value of the angle. The frame of

the instrument must therefore always be held in the plane of the

two points, which condition is fulfilled when coincidence of their

images can be produced at the centre of the field.

Hence, to measure an angle with a sextant: Direct the tele-

scope to the fainter of the two objects and bring its image to the

middle of the field. Retaining it in this position, rotate the instru-

ment about the line of sight and move the index-arm slowly back

and forth until accurate coincidence of the two images is produced
at the middle of the field. Perfection of coincidence is produced

by use of the tangent screw.

In measuring altitudes (e.g. of the sun) at sea, it is sufficient to

bring the reflected image tangent to the sea horizon, and correct

the resulting altitude for dip. On land the natural horizon cannot

be used for obvious reasons. Recourse is therefore had to an "
arti-

ficial horizon " consisting of a small vessel of mercury with its sur-

face protected against wind, etc., by a glass roof. An observer

placing himself in the plane of the "
object

" and the perpendicular
to the artificial horizon, will by placing the eye at the proper angle
see an image of the object reflected from the mercury. Since the

angles of incidence and reflection are equal, this image may be re-

garded as another body at the distance of the object and at the same

angular distance Mow the horizon as the real object is above it.

The measurement of the angle between the two will therefore give

the double altitude of the object. This measurement is accom-

plished by regarding the image seen in the mercury as the " fainter

of the two objects
" mentioned in the foregoing rule, and then pro-

ceeding as there indicated.

If the body have a sensible diameter, as the sun, the altitude of

the center is the quantity sought, since all data in the Ephemeris

relating to the sun is given for its center. Nevertheless since it is

easier to judge of the exact tangency of the two images than of

their exact coincidence, it is the altitude of a limb which is always
measured. This, corrected for refraction, semi-diameter, and par-

allax, will give the true geocentric altitude of the center.

The sextant being usually held in the hand and therefore
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somewhat unstable, being also of small dimensions and graduated
on the arc only to 10', a single measurement of an angle never

suffices for any astronomical purpose. Altitudes are therefore

always taken in "sets
" and the corresponding times noted. There

are two methods of taking these sets according as the body is mov-

ing rapidly or slowly in altitude. The first case evidently applies

to extra-meridian observations, and the second to circum-meridian

and circum-polar observations. %

To explain the first case, suppose it were required to take a set

of forenoon altitudes of the sun's upper limb. First it is to be

noted that the image in the horizon as viewed by the telescope, is

erect; it having been inverted once by the reflection and again by
the telescope. The image reflected from the mirrors is however

inverted, and its lowest point corresponds to the upper limb of the

sun. Now point the telescope to the mercury (having applied the

proper shades), and place the upper limb of this image at the center

of the field. By the rotation and movement of the index-arm be-

fore described bring the image from the mirrors into the field

above the other. Since the sun is rising, this image (inverted) will

appear to be slowly falling in the field of view toward the other.

Set the vernier at the nearest outward exact division of the limb,

and note the instant when the two images are just tangent. Set

the vernier at the next exact outward division of the limb (which

operation separates the images), and note again the time when they
come to tangency, which will be only a few seconds later. So pro-
ceed until the set is complete. The altitudes are thus equidistant,

involve no reading of the vernier, and while waiting for contact

the instrument can be held steady by both hands.

To take altitudes of the lower limb, allow the falling image to

pass over the other and note the instants of separation.

In the afternoon, the image here described as falling, is rising.

In the second case, when the body is about to pass the meridian

or is near the pole, it is moving so slowly in altitude that we can-

not set the index-arm ahead by successive equal steps and wait for

the body to reach that altitude. Moreover upon passing the

meridian the motion in altitude is reversed. In this case we must
therefore measure the altitudes of the selected limb in as quick
succession as possible according to the ordinary method.

The same principles apply in case of a star.
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The glass forming the roof of the horizon may be somewhat

prismatic. The effect of this may be eliminated by taking another

set with the roof reversed.

ADJUSTMENTS OF THE SEXTANT.

Hitherto it has been assumed that both mirrors were accurately

perpendicular to the frame, that when they were parallel to each

other the index-arm* vernier reads zero, that the center of motion

of the arm was the center of the graduated limb, and that the

telescope axis was parallel to the frame. The mirrors and telescope

are however not rigid in their connections, but each is susceptible

of a slight motion to perfect the adjustment. Well-known optical

principles together with the preceding remarks render any expla-

nation of these adjustments unnecessary.

1st. Adjustment: To make the index-glass perpendicular to the

frame.

Set the index near the middle of the arc
;
remove the telescope

and place the eye near the index-glass nearly in the plane of the

frame. Observe at the right-hand edge of the glass whether the

arc as seen directly and its reflected image form one continuous

arc, which can only be the case when the glass is perpendicular.

If not, tip the glass slightly by the proper screws until the above

test is fulfilled.

2d. Adjustment : To make the horizon-glass perpendicular to the

frame.

The first adjustment having been perfected, the second is tested

by noting whether the two mirrors are parallel for some one position

of the index-glass. If so, the horizon-glass must also be perpen-
dicular to the frame.

Point the telescope to a 3d or 4th magnitude star, or to a distant

terrestrial point, the plane of the frame being vertical. Move the

index-arm slowly back and forth over the zero. This will cause

the reflected image to pass through the field
;

if it passes exactly
over the direct image the two mirrors must be perpendicular to the

frame. If it passes to one side, tip the horizon-glass by the proper
screws until the test is fulfilled.

3d. Adjustment: To make the axis of the telescope parallel to

the frame.

Turn the telescope until the wires before referred to are parallel
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to the frame. (An adjusting telescope in which the wires are well

separated is to be preferred.) Select two objects which are at a

considerable distance apart, as the sun and moon when distant 100 or

more from each other. Point the telescope to the moon and bring

the image of the sun tangent to it on one of the wires. Move the

instrument till the images appear on the other wire. If the tangency
still exists, the telescope is adjusted. Otherwise tip the ring hold-

ing it, by means of the proper screws, till the test is fulfilled.

4th. Adjustment: To make the mirrors parallel when the read-

ing of the arc is zero.

Set the index exactly at zero and point to the distant object

described in the second adjustment. If the two images are exactly

coincident, the adjustment is perfect. Otherwise turn the horizon-

glass around an axis perpendicular to the frame, by the proper

screws, until coincidence is secured. The mirrors are now parallel.

ERRORS OF THE SEXTANT.

It should be remembered that to whatever division of the arc

the index may point ivlien the mirrors are parallel, this division is

the temporary zero, and from it all angle readings must be reckoned.

The fourth adjustment will not remain perfect; it is therefore

easier to determine the temporary zero from time to time, note its

distance and direction from the zero of the graduation, and apply
the correction to all readings. The distance in arc of the tempo-

rary from the fixed zero is called the " Index Error," positive if the

temporary zero lie beyond the graduated arc, negative if on. To
facilitate its measurement when positive, the graduations are car-

ried 4 to 5 degrees to the right "of the zero, constituting what is

called the " extra arc."

To measure the index-error, bring the mirrors to parallelism by

producing a perfect coincidence of the direct and reflected images
of a star or distant point; read the vernier, giving the result the

proper sign.

Another method specially applicable at sea is as follows :

Measure the horizontal diameter of the sun (so that the two

limbs may not be affected by unequal refraction), first on the arc

and then on the extra arc. Evidently one reading will exceed, and

the other be less than the diameter, by the index-error. One half



58 PRACTICAL ASTRONOMY.

the difference will then be the index error, positive if the larger

reading be on the extra arc.

As a verification, one fourth the sum should be the sun's semL

diameter as given for the date in the Epherneris.

Another error which must be attended to with equal care is the
"
Eccentricity." This arises when jjie center of motion of the in-

dex-arm is not coincident with the center of the graduated arc.

The effect of such maladjustment is seen from Figure 15, a being
the center of motion, and b that of

the arc. When the arm is in the posi-

tion ae in prolongation of the line

joining the two centers, there is mani-

festly no error in the reading. When
at ad perpendicular to that line, there

is an error cd. Between these two

FIG 15 positions the error will be intermedi-

ate in value.

To determine this error, measure with a theodolite the angular
distance between two distant points. Then take the mean of

several measurements of the same angle with the sextant. The
difference will be the effect of eccentricity for that reading of the

sextant. This operation should be repeated at short angular inter-

vals for the whole arc, and the results tabulated.

Other methods may be adopted when the appliances of a fixed

observatory are at hand.

Nomenclature of the Astronomical Triangle.

A = azimuth angle angle at the zenith.

P = hour angle = angle at the pole.

?/> parallactic angle = angle at the body.
90 = side from zenith to pole.

90 # = d = side from pole to body = polar distance.

90 a = z side from zenith to body zenith distance.

In which
= latitude of place.

d = declination of body.

a altitude of body.
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II. TIME BY SINGLE ALTITUDES.

1. To Find the Error of a Sidereal Time-piece by a Single Altitude

of a Star. (See Form 3.) The solution of this problem consists in

finding the value of the hour angle Z P S in the astronomical tri-

angle (see Fig. 10), having given the three sides of the triangle,

viz.: Z P, the complement of the latitude, P S the polar distance

of the star, and Z 8 its zenith distance. The latitude is sup-

posed to be known, the polar distance d is taken from the

Ephemeris for the date, and the altitude a, the complement of the

zenith distance, is measured by the sextant and artificial horizon.

The measured altitude having been corrected for errors of the sex-

tant and refraction, the above da.ta substituted in the formula

sin i P = cos m sin (m a]

cos sin d ' (62)

will give the value of P, the star's hour angle, which divided by 15

will give the hour angle in time. (The negative sign is to be used

if the star be east of the meridian.)

This plus the star's R. A. for the date will give the sidereal

time, which by comparison with the chronometer time noted at the

Instant of taking the altitude, will give the chronometer error.

As heretofore stated, reliance is not to be placed upon a single
measurement by so defective an instrument as the sextant. A set

of observations, from 5 to 10, is therefore made by recording the

times corresponding to successive changes of 10' in the star's

double altitude. These altitudes will thus be equidistant and in-

volve no measurement of seconds of arc.
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In the computations it is usual to assume that the mean of the

times corresponds to the mean of the altitudes, as shown on Form

3, which implies that the star's motion in altitude is uniform. This

in general is not true. We must therefore, to be as accurate as

possible, either apply a correction to the mean of the times to

obtain the time when the star was at the mean of the altitudes, or

a correction to the mean of the altitudes to give the altitude at the

mean of the times. Whether corrected or not, the means are used

as a single observation. Also, since the refraction raries ununi-

formly with the altitude, the refraction correspondii\g to the mean
of the altitudes requires, in strictness, a slight correction; although
of much less importance than the first. These corrections may as

a rule be omitted. Their deduction is given in the following para-

graph.

*% To determine the correction to be applied to the mean of the

altitudes or the mean of the times, the following deduction is ap-

pended essentially as given by Chauvenet.

To find the change in altitude of a star in a given interval of

time, having regard to second differences, let

Then a + A a =f(P + A P).

Expanding by Taylor's Theorem,

From the astronomical triangle,

sin a cos d sin -|- sin d cos cos P.

cos a d a = sin d cos sin P d P.

da sin d cos sin P ,

dP
= ---

55TF- =-cos0sm^
A being the azimuth.

-cos0cosJ-. (64)
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Also from the astronomical triangle in a similar manner,

d A cos ft sin A
dP sin P ' (65)

being the parallactic angle.

Whence

,

cos sin A cos ^4 cos ft (A P)
a

,A a = cos sin J[ AP -| : 73 ~ . (66)
sin _t /v

Expressing A a and A P in seconds of arc and time respec-

tively, we have, after reduction,

A a cos sin A (15 A P)
cos sin A cos ^ cos ft (15AP)

a
. ,

sinTP 2

which gives the variation in altitude due to a lapse of A P seconds

of time.

The last term may be written

2 sin 1

Values of m are given in tables under the head of Eeduction to the

Meridian.

Placing also, for brevity,

. 7 cos A cos
g = cos sm -4, * = ^-^ ,

we have,

A a =

a more convenient expression of the same relation.

Now_ let H, H', H", etc., denote the altitudes (corrected for

sextant errors), T, T', T", etc., the corresponding times, a
a
the

mean of the altitudes, t the mean of the times, and a
f
the altitude

corresponding to t
, since this cannot be a . It is now required to

determine the relation between a/ and a
Q
in order that the whole
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set of observations may be resolved into one a single altitude

taken at the mean of the times.

The change H a r

required the time T t .

The change H' a '

required the time T' t ,

etc.-

Therefore from the relation A a = 15 ^ A P -f g k m we

have, denoting the different m's by w, , w 2 , etc.,

0iy
H' -a=-l$T' -t

etc. etc.

If there were n observations, the mean gives.

, m, 4- m + m. 4- etc. ,__,

a. -a.
' = gk- l

-^~ -=gkm,. (69)

Or
' = ao~9k m . (70)

The last term is therefore the desired correction to the mean of

the altitudes in order that it may correspond to the mean of the

times.

It will however be more convenient to find such a correction as

applied to the mean of the times will cause it to correspond to the

mean of the altitudes.

Let t
Q

' denote the time corresponding to the mean of the alti-

tudes.

The change a a f

required the time t
'

t . Hence from

the preceding, we have, since t
'

t is very small,

7 cos A cos ^ . , ....

Expressing k = --: ^
L in known quantities,

sin

gin feog^Binrf ring _ ^ p
cos a v '
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t> = tt + TVrcot P -
**r*'*<V 3 ^A^). (T1 5

1_ cos cot J n sin 1"

The refraction, r, belonging to the mean of the altitudes is cor-

rected, if desired, by the quantity

sin r 1 2 sin
2

\ (a n H)
sin'

J a n sin 1"

77 denoting the different altitudes.

It is important to ascertain what stars are suited to the solution

of this problem.

Differentiating the equation derived from the astronomical tri-

angle (regarding a and P as variable),

sin a = sin <p sin d -f cos cos d cos P, (73 )

and reducing by

cos a _ sin P
cos 6

~
sin A 9

we have

dP = -----U - d a. (74)cos sin ^4

From this it is seen that any error (da) in the measured alti-

tude will have the least effect on the computed hour angle when
= 0, and A 90. That is, the method is less exposed to error

in low latitudes; but whatever the latitude, the star should be near

the prime vertical. The worst position of the star is when on the

meridian.

Differentiating the same equation regarding and P as variable,

reducing by

cos a cos A = sin d cos cos d sin cos P. (75)

and the same equation as before, we have

cos tan A
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From this it is seen that any uncertainty as to the exact latitude

will also have least effect when the star is near the prime vertical

and the observer near the equator.

Differentiating with reference to 6 and P, we have

dd, (77)cos 6 tan

and it thus appears that an erroneous value of d will also produce
the least effect when the star is on the prime vertical, since from

the equation

. COS . A
sin ib =-2: sm A

cos d

sin
if}
and therefore tan

if?
will be a maximum when sin A is also

a maximum.
From the three foregoing differential equations it is also seen

that the effect of constant errors either in the measured altitude,

the assumed latitude, or assumed declination, may be eliminated

by combining the results from two stars, one east and one west of

the meridian, and in as nearly corresponding positions as possible;

since then the corresponding values of sin A, tan A 9 and tan fy will

be numerically nearly equal and of opposite signs.

Hence the following general rule should be observed : In order

to reduce to a minimum the effect of errors either in the observations

or the assumed data, select a star which wilt cross the prime vertical

at some distance from the zenith (S < 0), and make the observations

near that circle. As the latitude increases, greater accuracy in the

observations and data is required in ordsr to give a constant degree*

ofprecision in the results. Stars very near the horizon should be

avoided on account of excessive and irregular refraction. TJie

adopted value of the clock error should be the mean of the results

from an east and a west star.

In the computation, if great accuracy be not essential, mean re-

fractions may be employed ;
their values are given in tables.

2. To Find the Error of a Mean Solar Time-piece by a Single Alti-

tude of the Sun's Limb. (See Form 4.) This problem does not

differ in principle from the preceding. The observations are made
on the sun's limb, and therefore in addition to refraction the cor-



TO FIND THE TIME BY ASTRONOMICAL OBSERVATIONS. 65

rection for semi-diameter at the time of observation must be ap-

plied. Also, since the sun has an appreciable parallax, and since

also the Ephemeris data supposes the observer to be at the earth's

center, the altitude must be further corrected for "
parallax in alti-

tude." Parallax in altitude = Equatorial Horizontal Parallax X p
X cos altitude, p being the ratio of the earth's radius at the equator
to that at the place of observation. At West Point log p = 9.999368

10. The Equatorial Parallax is given in the Ephemeris, page
278.

The sun's declination (or polar distance) which is given in the

Ephemeris for certain instants of Greenwich time, varies quite rap-

idly; and in order to determine this element at the instant of ob-

servation we must know our longitude and the error of the chro-

nometer, to obtain which is the object of the problem. In practice,

however, the error will usually be known with sufficient accuracy
to find approximately the time elapsed since Greenwich mean noon.

With this assumed difference we find by interpolation in page II,

Monthly Calendar, the declination for the instant. The same re-

marks apply to the determination of the semi-diameter referred to

above, and the Equation of Time below.

With the data thus found, compute P (in time) as in the pre-

ceding problem.
Then if it be a morning observation,

Apparent time 12h P.

If an afternoon observation,

Apparent time = P.

Apparent time Equation of Time = Mean Time. This com-

pared with the mean of the recorded times gives the chronometer

error, and if this is found to diifer very materially from the assumed

error, the declination and possibly also the Semi-diameter and

Equation of Time, must be redetermined, and the computation re-

peated. The sun should be observed as near the prime vertical as

is consistent with avoiding irregular refraction.

In all cases where time is to be determined by altitudes of the

sun, it is better to make a set of observations on each limb, and re-



66 PRACTICAL ASTRONOMY.

duce each set separately. If a difference of personal error in esti-

mating contact of images as compared with their separation exists,

it will thus be discovered and in a great measure eliminated.

III. TIME. BY EQUAL ALTITUDES.

1. To Find the Error of a Sidereal Time-piece by Equal Altitudes

of a Star. (See Form 5.) If the times when a star reaches equal

altitudes on opposite sides of the meridian be noted, the " middle

chronometer time" will be the time of transit, provided the chro-

nometer has run uniformly. Hence we would have

T -J- TE=a- ' T "
(78)

6

But if the refraction is different at the times of the two observa-

tions, the true altitudes will be unequal when the observed are

equal; which latter will consequently not correspond to equal hour

angles. Manifestly therefore one of the chronometer times (e.g.,

the last), requires a correction equal to the hour angle correspond-

ing to the change in true altitude, this change being the difference

between the E. and W. refractions, and the middle chronometer

time will require one half this correction.

Hence we have in full (see note at end of next problem),

f1 a _ e ' "
_]_ _ V'g ' Wl ^"" ">

/~g\
L 2

r 215 cos cos tf sin tj

E being the chronometer error at time of meridian passage, a the

star's apparent R. A., Te and Tw the chronometer times of observa-

tion, re and rw the east and west refractions, and t one half the

elapsed time between the observations. The above equation evi-

dently applies even when the times have been noted by a mean

solar chronometer, provided a be replaced by the computed mean

time of meridian passage.

Use an Ephemeris star and make the first set of observations as

prescribed under " Time by Single Altitudes." Then with the same

sextant use the same altitudes in the second set, of course in the

reverse order.
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From the preceding Equation it is seen that the actual altitudes

are not required. Therefore unless the correction for refraction

is to be applied, no record need be made of the sextant readings or

errors. Also, under the same condition, the method is independent
of errors in the assumed latitude or the star's declination.

As before, the observations should be made as near the prime
vertical as is consistent with avoiding irregular refraction. By
selecting a star whose declination is but a little less than 0, it will

be on the prime vertical near the zenith, and we can probably avoid

the correction for refraction since the elapsed time will be small.

The sextant and chronometer also will be but little liable to changes.

If the eastern observations have been prevented by clouds or

other cause, we may still take the .western observations, and the

eastern at the next prime vertical transit of the star; thus giving

the chronometer error at time of star's lower meridian passage.

2. To Find the Error of a Mean Solar Time-piece by Equal Alti-

tudes of the Sun's Limb. (See Form 6.) The general principles

involved and the methods of observation are the same as in the pre-

ceding problem. But since the sun changes in declination between

the times of the E. and ^V. observations, equal altitudes do not cor-

respond to equal hour angles. For example, when the sun is mov-

ing north, the morning will be less than the afternoon hour angle

at the same altitude. Manifestly therefore the afternoon hour angle

requires to be diminished by the change due to the change of decli-

nation, and the middle chronometer time by half this amount, which

is accomplished in practice by adding the correction with its sign

changed. This correction is called the "
Equation of Equal Alti-

tudes."

The middle chronometer time thus corrected gives the chro-

nometer time of apparent noon. 12 h the Equation of time at

Apparent Noon gives the mean time of apparent noon, and the dif-

ference is the chronometer error on mean time at apparent noon.

Hence in full

2 15 cos cos # sm t

(AK tan + BKtan tf) . (80)
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The last term in the bracket is the Equation of Equal Altitudes.

For its deduction, see note at end of problem.
. A and B are taken from tables. K is the sun's hourly increase,

in declination at apparent noon, taken from the Ephemeris by inter-

polation ;
d is the sun's declination at same time.

If a sidereal chronometer had been used, the above equation
would evidently still apply, substituting for 12'1 e the sun's R. A.

at apparent noon, and omitting 6'
1 in the parenthesis.

For the application of this method to midnight, and effect of

errors in data, see Note.

*J* Correction for Refraction. To deduce the correction for re-

fraction employed in the two preceding problems, resume the dif-

ferential equation of the last note,

.
- da (numerically),

cos cos tf smP J '

which gives the change in hour angle (in arc) for a change in alti-

tude of da.

If the west refraction be less than the east, the sun will, in fall-

ing, reach the altitude a too soon, and the west hour angle must be

increased. Hence in this case the correction must be positive and

additive, and in any case the correction with its proper sign in time

will be obtained from the expression

(re rM,)
cos a

15 cos cos d sin t
'

since re rw is the change in altitude da, and t, or one half the

elapsed time, is practically P.

For the middle chronometer time, we therefore have

Cor. for Ref. = 1
('
~ 'J *

*
15 cos cos 6 sm t

The equation reduced as in the preceding note, gives

d P = Te
~ TW

(82)
30 cos <p sin A
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Since re rw may denote an error in altitude from any cause what-

ever, it follows that the observations should be made near the prime
vertical.

Equation of Equal Altitudes. In order to deduce the Equation
of Equal Altitudes, resume the equation

sin a = sin sin # -f- cos cos 6 cos P.

Differentiate, regarding $ and P as variable, and solving, we have

, sin cos 8 cos cos P sin d _

a r = -
5T- . =7 a o,

cos cos o sin P

which gives the change in hour angle due to a change d d in decli-

nation.

Now if t denote half the elapsed time in hours, and A' the hourly
increase in the sun's declination at the middle instant (assumed to

be apparent noon), we will have

d d ^ 2 t K.

Again assuming P to be the mean hour angle =:
t, and d to be the

declination at the middle instant (assumed to be apparent noon), we
shall have for the change in hour angle in time due to the in-

crease in declination

7 ,-, , /tan tan
d P = TT

Since A" denotes an increase in declination, the afternoon hour angle
will be too large by the above quantity, and the middle chronometer
time too large by half the same quantity. Hence in any case, the

quantity to be added to the middle chronometer time to reduce it

to chronometer time of apparent noon is

K t tan K t tan d

15 sin t 15 tan t
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Making A = -
-, B = -

., we have
15 sin t 15 tan t

Eq. of Equal Altitudes = A A" tan -f B JTtan tf. (85)

As in the preceding case, observations may be made in the

afternoon and the following morning to obtain the chronometer

error at midnight. Such a set may be regarded as A. M. and P. M.

observations respectively made by a person at the other extremity
of the earth's diameter, and therefore in latitude <p.

Hence for midnight the Eq. would be

Kt tan Jftian 3

15 sin t 15 tan t
'

Since t is always less than 12 h
, its sine is always positive. Also

tan t will be positive when t is less than G h
, and negative when

more. From which it is seen that we may use a single equation for

both noon and midnight, viz. :

by noting the following rule as to signs.

For noon, A is always negative, for midnight positive. For

noon or midnight B is positive when the elapsed time is less than

12 h and negative when more.

The effect of errors in and d is readily seen by a differentia-

tion of the Equation.

Time of Sunrise or Sunset. This problem is precisely similar to

that of single altitudes, except that the altitude of the sun is known
and therefore no observation is required. The zenith distance of

the sun's center at the instant when its upper limb is on the hor-

izon is assumed to be 90 50', which is made up of 90, plus 16'

(the mean semi-diameter of the sun)', plus 34' (the mean refraction

at the horizon). The resulting hour angle replaces P in Form 4.

Duration of Twilight. The zenith distance in this case is 108,
as twilight is assumed to begin in the morning or end in the even-
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ing when the sun's center is 18 below the horizon. (See Art.

130, Young.)
From the solution of the ZP S triangle it can readily be shown

that the time required for the sun to pass from the horizon to a

zenith distance z is

.
15 2 cos

(87)

in which *p and ip' (called the sun's parallactic angles) are the an-

gles included between the decimation and vertical circles through
the sun's center for any zenith distance z, and for the horizon re-

spectively, and is the observer's latitude. Making z equal to 108

this becomes

from which the duration of twilight for any latitude and any sea-

son of the year can be found; the values of (p and ip' are given by

sin sin d cos z
cos ib = -

^r , (89)
cos o sin z

and

, ,
sin

COS 6 (90)^ '

When ip
is equal to ip' then Hs a minimum, and we have, after

replacing 1 - cos 18 by 2 sin
2
9

C.2 no
9

t = & sin-
1

(sin 9 sec 0), (91)

from which the duration of the shortest twilight is found. Under

the' same condition we have from Eqs. (89) and (90),

sin d tan 9 sin 0; (92)

from which the sun's declination at the time of shortest twilight at

any latitude can be found.
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LATITUDE.

Tho latitude of a place on the earth's surface is the declination

of its*zenith. The apparent zenith is the point in which the plumb-

line, if produced, at the point of observation would pierce the celes-

tial sphere. The central zenith is the point in which the radius of

the earth, if produced, would pierce the celestial sphere. The lati-

tude measured from the central zenith is called the geocentric lati-

tude, and that from the apparent zenith is called the astronomical

latitude or simply the latitude. The difference between the lati-

tude and the geocentric latitude is called the reduction of latitude.

The direction of the plumb-line is affected by the local attrac-

tion of mountain masses on the plumb-bob, or on account of the

unequal variations of density of the crust of the earth, at or near

the locality of the station. The Astronomical latitude is deter-

mined from the actual direction of the plumb-line, and therefore

includes all abnormal deviations. The Geographical or Geodetic

latitude is that which would result from considering the earth a

perfect spheroid of revolution, without the abnormal deviations

above referred to.

Form and Dimensions of the Earth. Before proceeding tc the

latitude problems it is important to derive some necessary formulas

from the form and dimensions of the earth. For this purpose, let

us assume iiiat the earth is an oblate spheroid about the polar axis.

FIG. 17.

Let E P' be a meridian section of the earth through the observ-

er's place 0\ C P' the earth's axis; EQ the earth's equator a,ad
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HH' the observer's horizon. Let P be the pole of the heavens; Z
the apparent and Z' the central zenith

;
the latitude and 0' the

geocentric latitude. The equation of the observer's meridian re-

ferred to its center and axes is

2 2 i 12^.2 27L2 11\\\
ay -\- o x = a o

, (9o)

in which a and b are the equatorial and polar radius of the earth.

Thejcoordinates of being x f and y', we have the following ana-

lytical conditions.

For the tangent at 0, coincident with the horizon, from

and the normal at 0, through the apparent zenith Z, from

ay (x
-

x')
- Vx' (y

-
y')
= 0. (95)

From Eq. (94), we have

tan A C = tan (90
-

0) =^; (8(6)

whence

Substituting in

and eliminating b by

we have

. a cos

Vl - e* sin' 0'

_ a (1 e
a

) sin"
V 1 e

a
sin

a

0*

(100)

Let 5 be the length of any portion of the meridian; then for the

elementary arc, its projection on the major axis x, is

ds cos OA C=ds$in </>== -dx'9 (101)
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since x f
is a decreasing function of the latitude. Differentiating

the first of Eqs. (100), we have

(1
- e

2
sin

2

0)
f

Equating (101) and (102), we have

(102)

(103)
(1
- e

a
sin

2

0)
1 '

and for any other latitude 0, ,

*,, = (I-'*)** '

(104)
(l-'sin

f

0,)
f

Let d = 1, then dividing (103) by (104), we have

ds = (l- g 8in'0,) = l-ja'Bin'0,d s
t (1

- e sin
2

0)1
1 - I m

which, after solving with reference to e
2

, reduces to

, _ 2_ds ds,_ nofi
.

~3 ^5sm2 0-f^/
sin

2

0/

from which the value of the eccentricity of the meridian can be

found when the measured lengths ds and ds, of any two portions

of the meridian line, eaqh 1 in latitude, and the latitudes and

y
of their middle points are known ;

for the earth, this has been

found to be about 0.0816967.

To find the equatorial and polar radii, we have from Eq. (103)

after making d<p = 1,

= -(l-y*in'>)l, (107)

and from the property of the ellipse,

5 = a VT^e*. (108)
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To find the radius of curvature R at any point of the meridian.

After substituting the values of dx
9 dy, and d'y, taken from Eqs.

(100), in the general formula for radius of curvature,

we have

R = a-i-ZL?!
,; (110)'

and hence the length of one degree of latitude at any latitude is,

2 TTR2 TT a 1 e*

360 "360 _
fi 1 1 \

To find the length of a degree on a section perpendicular to the

meridian at any latitude we proceed as follows: The radius p of

the earth at the observer's place, is the minor axis, and the equa-
torial radius a is the major axis of the elliptical section, cut out of

the earth by a plane perpendicular to the meridian plane, passed

through the center and the observer's place.

Squaring and adding Eqs. (100) and extracting the square root,

we have the radius of the earth at the observer's place; or

p = a - = a ,.

1 e sin 1 e sm"
*

The square of the eccentricity of the section is

fl _ p e* (1
- g )

sin
2

0,
aa

1 - e
2
sin

2

which being substituted for e
2
in Eq. (Ill) after making = 90,

gives

2 TT ./ 1 - e
2
sin

2

=
SCO

a V 1^7-2 -.'!
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To find the length of a degree of longitude at any latitude 0,

we know, Eqs. (100), that the radius of the parallel is x' \
therefore

we have

2 it
,

2 TT cos
a =^ x =m a vr^e^>'

The value of the radius of the earth, at any latitude 0, is de-

rived from Eq. (112) or,

_ 1 - 2 e
2
sin

2 + e
4
sin

2

P :

1 - e
2
sin

2

which, for logarithmic reduction, when a is made unity may be

placed under the form

log p = 9.9992747 -f 0.0007271 cos 2 - 0.0000018 cos 4 0. (115)

From the figure and Eqs. (100), we have

, , , a cos
x' = p cos 0' = a . -, (116)V 1 e

j
sin

2

0*
v y

. . ,, a (1 e
a

) sin= p sm 0' = -^==L==.y 1 e
2 sm'

Multiplying these equations by cos and sin respectively, adding
and reducing we have

cos (0 - 0') = - i/l - e
2
sin

8

0, (118)

and from (116),

a cos

Whence by combination we have

cos 0.' cos (0 0') = -
a
- cos 0; (120)
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and solving with reference to p we have

s?/ cos -0r :

which is capable of logarithmic computation.
To find the reduction of latitude 0'. Since is the angle

made by the normal with the axis of x we have

(Jy

tan0=-^, (122)

and irona the figure we have

tan 0' = (123)
iC

Differentiating the equation of the meridian section we have

Whence

tan 0' = -5 tan = (1
- e

a

) tan 0. (125)

Developing into a series, we have

- 0' = ^p sin 2 -
(^^^sin 40 + etc. (126)

But since e 0.0816967 this reduces to

0' = 690".65 sin 2 1".16 sin 4 very nearly. (127)

Latitude Problems. The general problem of latitude consists

in finding the side ZP in the ZP S triangle, any other three parts

being given.

Differentiating (73'), regarding first a and and next P and

as variable, and reducing by (75) we obtain

&; = sec A d a,

and

d = tan A cos d P,
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Whence observations for latitude should as a rule be made upon a

body at or near the time of its culmination.

The following are the methods usually employed.
1. By Circumpolars. This depends on the fact that the altitude

of the pole is equal to the astronomical latitude of the place. Let

a and a' be the altitudes of a circumpolar star at upper and lower

culmination respectively, corrected for refraction and instrumental

errors; d and d' the corresponding polar distances, and the lati-

tude; then we have

(j)
= a-d, <t>

= a'+d', <f>
= J (a + a') -f| (d

r-
d).

The change from d to d' is ordinarily so small in the interval

(12 hours) between the observations as to be negligible; it is due

solely to precession and nutation. This method is free from dec-

lination errors, but subject to changes and errors in the refraction.

It is therefore an independent method, and is the one used in fixed

observatories where the observations can be made with great accu-

racy even during daylight by the transit circle. With the sextant

the method is applicable only in high latitudes during the winter

so that both culminations occur during the night time. A star

with a small polar distance is to be preferred, to avoid irregular re-

fraction at the lower culmination.

The sextant, however, is not well adapted to this method, since

the least count of its vernier is usually 10", and at culmination

only a single altitude can be measured, even if the instant of cul-

mination be accurately noted by a chronometer. But if Polaris be

the star chosen, a series of observations may be made during the

five minutes immediately preceding and following culmination, and

at no time during these ten minutes will the star's altitude differ

from its meridian altitude by more than I'M. Errors within this

limit would not be detected by even the best sextant observations,

and the mean of the measured altitudes will therefore be the me-

ridian altitude with the usual precision.

Even if a be regarded as too small when found in this manner,
a' will be too large by practically the same amount, and (a -j- a')

will be correct.

2. By Meridian Altitudes or Zenith Distances. This method de-

pends on the fact that the astronomical latitude of a place is equal
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to the declination of its zenith. If the star culminate between the

pole and the zenith, then

0=0-3,,

where Z^ is the meridian zenith distance of the star. If between

the zenith and equator, then

We have therefore only to measure z
l , take d from the Ephemeris.,

and substitute in one of these equations.

This method is a very exact one when the observations are made

with an instrument, such as the transit circle, accurately adjusted

to the meridian, and whose least count is small. It is subject to

errors of both declination and refraction; although the latter as

well as any constant errors in the measured altitudes may be nearly

eliminated, as is seen from the preceding equations, by combining
the result with that from another star which culminates at about

the same time at a nearly equal altitude on the opposite side of the

zenith.

For reasons stated above, the sextant is not well adapted to thi8

method except at sea, where the highest accuracy is not requisite.

3. By Circum-meridian Altitudes. If the altitude of a celestial

body be measured within a few minutes of culmination, we may by

noting the corresponding time very readily compute the difference

between the measured altitude and the altitude which the body
will have when it reaches the meridian. This difference is called

the " Keduction to the Meridian," and by addition to the observed

will give the meridian altitude. If several altitudes be measured

and each be reduced to the meridian, we may evidently, by taking

the mean of the results, obviate the inaccuracies incident to the

use of the sextant in the last problem.
These are called " Circum-meridian Altitudes," and their reduc*

tion to the meridian is rendered very simple by the special formula

cos cos d 2 sin
2

^ P
cos a

t
sin 1"

P

'
~

/cos cos 6\\ 2 sin
4

1-
I tan a. : ^T.

--h
\ cos a

t )
' sm 1"

the deduction of which will be given hereafter.



SO PRACTICAL ASTRONOMY.

In this formula a is the true altitude, d the declination, and P
the hour angle, all relating to the instant of observation

;
a

/
is the

desired meridian altitude, and the second and third terms of the

second member constitute the first two terms of the Reduction to

77
__ .... --

, . 2 sin
2

-I-
P .2 sin* IP

the Meridian. Values of , :
-~ and : -= are given in

sin 1" sin 1"

tables with P as the argument. For small values of P the series

will converge rapidly, provided a
f

is not too large.

Having the meridian altitude, the latitude follows as in the last

method.

From (128) it is seen that for computing a
t
we require (neg-

lecting all consideration of P for the present) not only d, but both

a
t
and ; but as will appear later, approximate values will suffice.

If an approximate value of be known, that of a, follows from

a
t
= d + 90 -

0. (129)

If not, one may be found as follows : In this method, double altitudes

are taken in as quick succession as possible from a few minutes before

until a few minutes after meridian passage. The greatest altitude

measured will therefore,when corrected for refraction, semi-diameter,

and parallax, be very near the meridian altitude, and its substitution

in (129) will give a value of sufficiently accurate for the purpose.
In order to fix upon a proper' value of d to be used in (128) it

is to be noted that if a star be the body observed, its declination is

practically constant and may be taken at once from the Ephemeris
for the date. In case of the sun, however, whose declination is

constantly varying, d must represent the declination at the moment
of making the observation. But when several observations are

taken in succession, the labor of computing a value of d for each

may be avoided, as will be evident from an explanation of the

manner of making the observations and reductions.

The observations ar'e made as just explained on a limb of the

sun, viz. : Several double altitudes are taken as near together as

possible, as many before, as after meridian passage, and the corre-

sponding chronometer times noted. (Note the difference between

this, and sextant observations for time.)

Now if we suppose each observation to have been reduced to

ihe meridian, after correcting for refraction, parallax and semi-

diameter, we would have several equations of the form

a
t
= a -f- A m B n,
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2 sin
2 \P _ 2 sin

4 4 P
in which m and ^ are the tabular values of . 7,7, and r 77,sm 1" sin 1"

md ^4 and B the remaining factors of the corresponding terms in

Equation (128). Any one of the equations will give for the lati-

tude,

= 3 + 90 -
(a + A m -Bri). (130)

In this equation, & is the declination at the time of observation.

For, since the reduction to the meridian has been made with this

value of 6 in obtaining A and B, a ~f- A m B n is manifestly the

meridian altitude of a body whose declination is constantly d. In

fact, the reduction to the meridian by the formula given, can be

computed only on the hypothesis of a constant declination. We
are thus dealing with a fictitious sun, whose declination on the me-

ridian differs from that of the true sun. But since declination and

meridian altitude always preserve a constant difference (the colati-

tude), we see that Equation (130) will give the correct value of 0,

due to perfect balance in the errors of tf and (a -\- A m B n).

The mean of all the equations due to the several observations

will be

= <* + 90 - K + A m - S n
). (131)

In this equation 6\ is the mean of the sun's declinations at the

times of making the observations; and it is obvious that if this

mean be employed for the single computation of A and B , the

error committed will be entirely negligible. We thus avoid a

separate computation of these quantities for each observation.

The result will moreover be perfectly rigorous in practice if we

use for <5 the declination corresponding to the mean of the times;

since in the 30 minutes covered by the observations the departure
of the sun's declination from a uniform increase or decrease is

negligible. We thus avoid the labor of computing more than a

single value of tf.

We have still to determine the value of P from the chronometer

time of each observation, and in this determination it must be

borne in mind that P (in arc) is the angular distance of the true

sun from the meridian at the instant of observation.
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There are two reasons why this distance (in time) cannot be

given directly by a mean time chronometer. First, the chronom-

eter will usually be gaining or losing, i.e., it will have a " rate"

Secondly, a mean time chronometer, even when running without

rate, indicates the angular motion of the mean sun, which may be

quite different from that of .the true^siin, as shown by the continual

change in the Equation of Time.

We therefore proceed as follows: From Page I, Monthly Calen

dar of the Ephemeris (knowing the longitude), take out the Equa-
tion of Time. Add this algebraically to 12 hours, apply the error

of the chronometer, and the result will be the chronometer time

of apparent noon. The difference between this and the chro-

nometer time of each observation, gives the several values of P in

time, each subject to the two corrections mentioned. To find the

correction for rate, let r represent the number of seconds gained or

lost in 24 hours (a losing rate being positive for the same reason

that an error slow is positive). Then if P' be the corrected hour

angle, we will have

P' : P :: 86400 : 86400 - r. [86400 = 60 X 60 X 24].

Or

86400

86400 - r

Or

2j3in
9

J-P'_ 2 sin
2

j P / 86400 \* _ 2 sin
a

j P
sin 1" sin 1" \86400 r)

'~~ "

sin 1"~

/-

Hence we will also have

cos cos d 2 sin2 i PA i L j * , \ 7Am (corrected tor rate) = k

Hence if we compute A by the formula

__ -, cos cos
Ic

sin
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we may employ the actual chronometer intervals and pay no fur-

ther attention to the question of rate.

From k =
( ] , values of k are tabulated with the rate
\oo40U TI

as the argument.
The second correction depends, as just stated, on the difference

between the motions of the true and mean sun, while the former is

passing from the point of observation to the meridian. In other

words it depends on the change in the Equation of Timn in the

same interval, or, which is the same thing, upon the rate ff an ac-

curate mean solar chronometer on apparent time.

If therefore we let e represent the change in the Equ.ition of

Time for 24 hours (positive when the Equation of Timo ic increas-

ing algebraically), it is evident that r e will be the rat} of the

given chronometer on apparent time, and that the correction for

this total rate may be computed as just explained for r, or taken

from the same table, using r e as the argument instead of r alone.

The operation of reducing the observations is then, in )rief, as

follows.

By Circum-Meridian Altitudes of the Sun's Limb. Fo^m 7.

Correct the mean of the double altitudes for eccentricity and in-

dex error. Correct the resulting mean single altitude for refraction,

semi-diameter, and parallax in altitude. Denote the result by a .

From the Equation of Time (Page I, Monthly Calendar), longi-

tude and chronometer error, find the chronometer time of apparent
noon.

Take the difference between this and each chronometer time of

observation, denote the difference by P, and their mean by P n
.

With each value of P, take from tables the corresponding
values of m and n. Denote their respective means by m and' n .

From Page II, Monthly Calendar, take the sun's declination

corresponding to the local apparent time P , and denote it by tf
fl
.

If can be assumed with considerable accuracy, determine the

corresponding a
t by ,

= # + 90 0.

If not, take the greatest measured altitude, correct it for refrac-

tion, etc., call it a, , and deduce from the above equation.

From the rate of the chronometer and change in Equation o^

Time, (both for 24 hours,) take k from the table.
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With these values of Jc
9 </>, a t ,

and #
, compute

cos cos tf

^ = - -
Jc, and B = A* tan dL.

cos a
t

The latitude then follows from

= <J + 90 - K + A
u
m -

BjiJ. (132)

.## Circum-Meridian altitudes of a Star. Form 8.

With a star observed with a sidereal chronometer, the observa-

tions are the same, and the reduction is only modified by the fact

that parallax, semi-diameter, equation of time and longitude do not

enter, while the declination is constant.

If the star lie between the zenith and pole, the formula becomes

=
( + A m - B n

)
- 90 + <* . (133)

If below the pole,

= K - A m
Q
- n

) + 90 - * . (134)

1. An Ephemeris star is to be preferred to the sun, since the

reduction is more simple, its declination is better known and con-

stant, it presents itself as a point, which is of advantage in sextant

observations, and we have a greater choice both in time and the

place of the object to be observed.

2. By comparing Eqs. (132) and (133) we see that constant

errors in the measured altitudes, and in refraction, will be nearly

eliminated by combining the results of two stars, one as much
north as the other is south, of the zenith.

Also from the principal term of the Reduction to the Meridian,

cos (b cos 2 sin 2
4- P . /v ,1-

.

: j-. ,
it is seen that the effect of an imperfect

cos a
t

sin 1

knowledge of the chronometer error, giving an incorrect valuj of

P may be eliminated by taking another observation at about an

equal altitude on the other side of the meridian
; since, P being

very small, sin
2

\ P will be as much too large in one case as it will

be too small in the other.
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The double altitudes should therefore be taken at as nearly

equal intervals of time and be as symmetrically arranged with refer-

ence to the meridian, as practicable.

3. By rewriting the assumed formula for the reduction, ex

pressing the first term as a function of and 8 only, and including
the third term which has heretofore been omitted, we have (Form-
ula 2, P. 4, Book of Formulas),

______! _ tan a, | (1 -{- 3 tan 2 a
t )

' ~tan0-tanrf
'

(tan
- tan

tf)

2 * h
(tan0-tan^)

3 ^

and

_ 1 tan a, f (1 + 3 tan2

,)

^'
" ~

tane?-tan0
~

(tan d - tan 0)
2 n *"

(tan tf - tan 0)
A

for south and north stars respectively.

P _ 2 sin
2

j P _ 2 sin
4

-|
P _ 2 sin

8

j P"[
L^ sin 1" '

sin 1" '
sin 1" J"

From these equations it is seen that if a star be selected which

culminates at a considerable distance from the zenith, either north

or south, the first factor of each term of this development is much
smaller than in case of a star culminating near the zenith, either

north or south.

Since the third term has been entirely neglected in the previous

discussion, it becomes desirable to select our star in such a manner

that the omitted term (and hence all following it) shall be small;

and this, as just seen, will occur when there is considerable differ-

ence between the latitude and the star's declination in either direc-

tion. It is also seen that an unfavorable position of the star near

the zenith causing the first factor to be excessive may be counter-

balanced by diminishing the hour angle P.

From the above expression for the third term, knowing the ap-

proximate latitude, we may readily find the hour angle of any given

star, within which if the observation be confined, the value of the
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term will not exceed any desired limit say 0".01 or 1". Similarly

for the second term. We thus ascertain how long before culmina-

tion the observations may safely be begun when it is proposed to

omit one or both terms in the reduction.

For example in latitude 40 N., if we observe a star at declina-

tion 0. the observation may be made at 20m from meridian passage

and yet the third term amount only to .01", which would affect the

resulting latitude by one linear foot. Or it may be made at 27 in

from culmination, and the third term amount only to .1", affecting

the resulting latitude by ten feet.

A star at an equal altitude north of the zenith, declination 80

(for combination with the preceding as recommended), may be

observed at 48 and 62 minutes from culmination, with no larger

errors.

With other latitudes the figures will vary, but the principle re-

mains the same.

Hence the general rule : Select a star whose declination differs

considerably from the latitude. This will give ample time for tak-

ing a series of altitudes. As the declination of the selected star

approaches the latitude, restrict the observations to a shorter time,

greater care in this respect being necessary for south stars. Ar-

range the observations as symmetrically ivith reference to the me-

ridian as practicable, and use at least two stars on opposite sides

of the zenith.

4. Finally, if a mean solar chronometer be used with a star, the

corrected m. s. intervals defined by the equation P' = P ---
80400 -r

must evidently be reduced to sidereal intervals by multiplying by
1.00272791 heretofore deduced. That is

and the factor for rate will be k (1.00273791)
3
instead of k.

Similarly if a sidereal chronometer be used with the sun,

factor for rate will be k (0.99726957)
2
instead of k.
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5. To Determine the Reduction to the Meridian. The difference

between a circum-meridian and the meridian altitude of a body is

called the " Reduction to the Meridian."

Its nature will be understood from Figure 18. S is the place

of the star; S' the point where it

crosses the meridian, (P S = P S') ;

and SS" the arc of a small circle

of which Z, the zenith, is the pole,

(ZS" = ZS). Z S' will therefore

be the meridian zenith distance

= *,
= 90 - a

t \
ZS or Z S" will

be the circum-meridian zenith dis-
FlG* 18>

tance = z = 90 a\ and if x denote the Reduction to the Meri-

dian = S' 8", we shall have

The several terms of Equation (128) after a therefore represent

x; and it is required to deduce this value of x arranged, as is seen,

in a series according to the ascending powers of sin
2

| P,
The equation heretofore deduced, viz. :

'

cos z = sin sin # -\- cos cos d 2 cos cos $ sin
2

P,

gives by reduction (since sin sin 6 -f cos 0cos d = cos (0 tf)

= cos z
t ),

cos z
t

cos z 2 cos cos d sin
2

\ P = 0.
( )

Putting for convenience 2 cos cos # = m, and sin
2 P = y,

we have

cos z
t

cos z my = 0.

We also have

+ ^, (c)

cos 2 = cos x cos 3, sin x sin z,.

Hence from (b
f

)

cos 2, cos x cos 2, -j- sin # sin 2
/

m y 0. (d)

Now let
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be the undetermined development desired. From the relation ex-

pressed by (d), we are to determine such constant values of A, B,
and C, as will make the series, when convergent, true for all values

of y. Therefore let the values of cos x and sin x derived from (e)

be substituted in (d). The resulting equation will, from the con-

dition imposed on (e), be an identical-'equation.

To find cos x and sin x for this substitution, we have from cal-

culus,

x*
cos x = 1 + etc.,

4
- 1~

x 3

sin x = x -f- etc.,

and from (e),

cos x = 1 - i (AY + 2 A B if -f etc.),

sin x = A y -f B y* -f Cy* \ A
3

y
3

etc.

Substituting in (d), .

cos z
t

cos z
t -f \ A1

cos 2, ?/

2

-f ^4 5 cos 2, y
3

-f sin z,

-f- sin z
t
B y

1

-\- sin 2, (7?/
3

^-
sin z

t
A 3

y
3 m y 0.

Collecting the terms,
\

cos z .

sm z.A ) . ( A A 9
cos z.

) a . \ . . n ( * f\

! y + ! , T> - > v + K + sm 2. (7 hir.r* -

m \
y r

( + B sins,
^

/

'

.

'
. 3 \

^

(
~

|-
sin 2

/
^4 ;

From the principles of identical equations

sin z
t
A m = 0. A = -m

1 m cos z. . . 1m cot 2
/-

^-5
' + B sm 2; . 0. B -

^-5
'

sin
2
2 2 sm a

z

cot
2
z. .

1 m3
. 1.

sm^.C'^O. (7= - .
'

-
^-^ * .. .

2 sm2
z
t

6 sin
2

2,
'

6 sm
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Therefore

cos cos d n . 1 /cos cos # \
3

. 1
3 = - 2sma -P - - tan a, 2 sm 4 -P

cos a
/

2 V cos a I 2

cos

Reducing the terms of the series from radians to seconds of arc,

we have for the value of a
t ,

,

cos cos d 2 sin
2

4- P /cos cos tf\
2

^ 2 sin
4

4 P
a a -f

- _i--- - - tan a. . ,*,
cos a, sm 1" \ cos a

t ) sm 1"

,
2 /cos cos <y\"

x
_ sin

6 A P
+ TT

- -H1 + 3tan <O % \ ff etc.
1

3 \ cos a J
v sm 1"

THE ZENITH TELESCOPE.

This instrument, being employed in the next latitude problem,
will now be briefly described, and the manner of determining its

constants explained. Its use, as will be seen, is limited to field

work, and it therefore forms no essential part of the equipment of

a permanent observatory.

The instrument consists of a telescope like that of the transit,

mounted at one end of a horizontal axis, counterpoised by a weight
at the other. The telescope turns freely in altitude about this axis,

which is in turn supported by a conical vertical column rising from

the centre of a horizontal graduated circle, the circle resting on a

small frame consisting of three legs whose feet are levelling screws.

The horizontal axis with the telescope attached turns freely in

azimuth about the vertical column, the amount of such motion

being indicated by a vernier sweeping over the horizontal circle.

By this motion the instrument is placed in the meridian.

The setting circle is similar to the one described in connection

with the transit. It is rigidly attached to the body of the telescope,

and reads to single minutes of zenith distance. The attached level,

connected with the movable vernier arm of the setting circle, being
intended to measure as well as to indicate differences of mclina-
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FIG, 19. THE ZENITH TELESCOPE,
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tion, is of considerable delicacy. The instrument is provided with

cl-amp and tangent screws for both motions, also the usual adjusting

screws.

The field of view presents the appearance shown in Figure 20;

sometimes however the number of

vertical wires is increased so that

the instrument may if necessary be

used as a transit. The wires are

all fixed except i k, which can be

moved up or down parallel to it-

self, and is called the declination

micrometer wire. The comb-scale

f g is so cut that one turn of the

micrometer head carries the wire

i k exactly from one tooth to the

next, thus recording the number

of whole revolutions between two

positions of the wire. Hundredths of a revolution are shown on the

micrometer head by a fixed index. These are called divisions.

(Arrangements for illuminating the wires are the same as with the

transit.)

Therefore it is seen that if, when the instrument is adjusted to

the meridian, two stars cross the middle wire at different times and

in different places, but yet within the same field of view, we may
find the difference of their meridian zenith distances by bisecting

each in succession by the movable at the instant of its passing the

middle wire, noting the difference of micrometer readings, and

multiplying the result by the value in arc of one division of the

micrometer head : or if the attached level shows the telescope to

have altered its angle of elevation between the observations, thus

apparently displacing the second star in the field of view, we may
still correct the micrometer reading provided we know the value in

arc of one division of the level.

It is therefore necessary to determine for each instrument these

two constants.

The Attached Level and Declination Micrometer of the Zenith

Telescope. Since the level is neither detached, nor attached to a

circle reading to seconds, neither of the modes of finding the level

constant given in connection with the transit, is available. The
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same is true of the micrometer constant, since the micrometer wire

is now parallel, not perpendicular, to the apparent path of a star at

its meridian passage. With the zenith telescope the usual method

of finding these two constants is to find the value of a division of

the level in terms of a revolution of the micrometer head. Then
after finding the latter (which Wolves the former) we may find

the actual value of a division of the level in seconds of arc, as will

now be explained. The formulas come at once from the astronom-

ical triangle, remembering that ac the time of a star's elongation
the triangle is right-angled: (ip

= 90).
Direct the telescope to a small, well-defined, distant, terrestrial

object, and set the level so that the two ends of the bubble will give

different readings. Bisect the object with the micrometer wire,

note the reading, also that of each end of the bubble. Mo?e the

telescope and level together by the tangent screw until the bubble

plays near the other end of the tube. Again bisect the mark by the

micrometer wire and note all three readings as before. The mean
of the number of divisions passed over by the two ends of the bub-

ble is then the number of divisions passed over by the bubble. The
difference of the micrometer readings is the run of the micrometer.

Dividing the second by the first, we have the value of a division of

the level in terms of a revolution of the micrometer. Take a mean
of several determinations and denote it by d.

We can now find the value of one division of the micrometer.

For reasons stated when treating of the R. A. micrometer, we use a

circumpolar star, and at the instant that its path is perpendicular
to the wire in question. This requires us to take the star at its

elongation. Manifestly the same principles apply to the two cases,

since the principal difference is that the star and wire have each

been apparently shifted 90; the motion of the star with reference

to the wire not having changed. Some changes in detail are how-

ever necessary. In the first place, since the motion of the star is

almost wholly in altitude, we cannot as before neglect differences in

refraction between two transits. Again, since the pressure of the

hand in working the micrometer head is in a direction to cause a

possible disturbance of the instrument even though firmly clamped,
we must read the level at every transit, and if any change has oc-

curred, correct the micrometer readings accordingly.

As a preliminary, we must determine the time of elongation



THE ZENITH TELESCOPE. 93

(in order to know when to begin our observations), and the setting

of the instrument, i.e., the azimuth and zenith distance of the star

at the time of elongation. The hour angle is found from

cos P = cot 3 tan 0,

from which the sidereal time of elongation is given by

f~t~f ,, t T"> XT / "I O f \

./o
= a Jr A (135)

in which a is the star's apparent R. A. for the instant, and E is the

error of the chronometer. The plus sign is used for western and

the minus for eastern elongations.

The azimuth is given by

sin A = ^-7, (136)
COS0

and the zenith distance by

sin0 .

Ncos Z = . (lo7 )

Set the instrument in accordance with these coordinates 20 or

30 minutes before the time of elongation, and as soon as the star

enters the field, shift the telescope if necessary so that it will pass

nearly through the center.

The observations are now conducted in exactly the same man-

ner as for the R. A. micrometer, with the addition that each end of

the level bubble is read in connection with each transit.

Then, as before, each observation is compared with the one

made nearest the time of elongation, T , the interval of time

being computed from either

sin i = sin /cos d, (137J)

or

i = /cos #,
i

according to the declination of the star. After which we have in

arc (neglecting for the present differences of refraction and level),

15*
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M being the number of micrometer revolutions or divisions be-

tween the two positions of the star, and R' the value of one revolu-

tion or division.

But if the reading of the level is different at the two observa-

tions, manifestly Mmust be corrected accordingly.
For instance, if the level shows that between the two observa-

tions the telescope had moved with the strr in its diurnal path,
then evidently the micrometer will indicate only a part of the

angular distance between the two positions of the star, and the

level correction must be added to the micrometer interval. Con-

versely, if the telescope has moved against the motion of the star.

This level correction is found as follows : if d is the value of one

division of the level in terms of a revolution of the micrometer,
and L the number of divisions which the level has shifted, then

Ld will be the value (in micrometer revolutions) of the correction

to be applied to M. The method of finding d has already been

explained.
Hence the value of R' becomes,

ML#
Since, however, refraction affects the two positions of the star un-

equally, it is seen that M L d is only the difference of apparent
zenith distances (i.e., the instrumental difference), while 15 i being
derived directly from the time interval, is the difference of true

zenith distances. If therefore 15 i be corrected by the difference

of refraction, the numerator will denote the difference of apparent
zenith distance in arc, and the denominator this same difference in

micrometer revolutions.

Denote by A r the difference of refraction in seconds for 1' of

zenith distance at z
; then for 15 i" it may be taken as -^ 15 i A /*,

which is the desired correction. The above formula , therefore be-

comes, denoting the true value of a revolution by R,

R'Ar
.K S7T~> Vus )MLd 60

A r is taken from refraction tables.
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The adopted value of R should be a mean of the results from

all the observations.

Having now found R, the value in arc of one division of the

level is evidently

D = Rd, (139)

since d is the value in micrometer revolutions. Both constants are

therefore determined.

One of the most convenient and accurate modes of employing
formula (138) in practice, is as follows : Suppose the star to be

approaching eastern elongation, and the micrometer readings to

increase as the zenith distance decreases. Let Z , M , and L be

the zenith distance, micrometer, and level readings at elongation

(all unknown), and Z', M', and L' the corresponding quantities at

the time of any one of the recorded transits. Then remembering
that in (138), 15 i is the true difference of zenith distance

= Zf

Z^ , M M Mf

, L = L L', and reserving the correc-.

tion for refraction to be applied finally, we have

Z'-Z
Q
= (M -M') + (.- L')Rd.

Similarly for another transit,

Z" -Z
Q
= (M - M") R + (L - L") R d.

Subtracting and solving,

(M" - M') + (L" - L')d'

Then Z Z having been computed for each transit by
these differences may be taken by pairs for substitution in (140), in

any manner desired. For example, if forty transits have been re-

corded, it is usual to pair the first difference with the twenty-first,

the second with the twenty-second, etc., when if the successive

micrometer readings have been equidistant, the divisors will be

equal, save for the slight level correction. We thus obtain twenty
determinations of R, the mean of which should be corrected for

/? A T
refraction as shown in (138), viz. : by subtracting .

uO
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The preceding method of finding these two constants of the

zenith telescope is regarded as the best; but provision is made in

the construction of the instrument for turning the box containing
the wire frame thicugh an angle of 90. When this is done, the

declination micrometer becomes virtually a K. A. micrometer, and

the value of a revolution may be found as described for that mi-

crometer, and then the box revolved back to its proper place and

clamped. In this case however the result must be in arc. The
level constant must be found as just described.

4. Latitude by Opposite and nearly equal Meridian Zenith Dis-

tances. Talcott's Method. See Form 9.

This method depends upon the principle that the astronomical

latitude of a place is equal to the declination of the zenith.

Let zn and zg represent the observed meridian zenith distances

of two stars, the first north' and the second south of the zenith
;

rn and rs the corresponding refractions; and dn and ds their ap-

parent decimations. Then, denoting the latitude,

=*. + *. + r. , (141)

</>=dn -zn
- rn. (142)

* From which

Since refraction is a direct function of the zenith distance, this

equation shows that any constant error in the adopted refraction

will be nearly or wholly eliminated if we select two stars which

culminate at very nearly the same zenith distance, and provided
also that the time between their meridian transits is so short that

the refractive power of the atmosphere cannot be changed appre-

ciably in the mean time.

Again, since absolute zenith distances are not required, but only
their difference, if the stars are so nearly equal in altitude that a

telescope directed at one, will, upon being turned around a vertical

axis 180 in azimuth, present the other in its field of view, then

manifestly the difference of their zenith distances may be measured

directly by the declination micrometer, and the use of a graduated
circle (with its errors of graduation, eccentricity, etc.) be entirely
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dispensed with, except for the purpose of a rough finder. The in-

strument used in this connection is called a " Zenith Telescope"
Its construction, and application to the end in view, are best learned

from an examination of the instrument itself.

Again, since errors in the declinations will affect the resulting

latitude directly, we should be very careful to employ only the ap-

parent declinations for the date.

The following conditions should therefore be fulfilled in select-

ing the stars of a pair :

1st. They should culminate not more than 20, or at most 25,
from the zenith.

2d. They should not differ in zenith distance by more than

15', and for very accurate work, by not more than 10'. The field

of view of the telescope is about 30'. The limit assigned prevents
observations too near the edge of the field, and lessens the effect of

an error in the adopted value of a turn of the micrometer head.

This limit also requires a very approximate knowledge of the lati-

tude, which may be found with the sextant, or by measuring the

meridian zenith distance of a star by the zenith telescope itself.

3d. They should differ in R. A. by not less than one minute

of time, to allow for reading the level and micrometer, and by not

more than fifteen or twenty minutes, to avoid changes in either the

instrument or the atmosphere.
Since the Ephemeris stars, whose apparent declinations are

given with great accuracy for every ten days, are comparatively few

in number, it becomes necessary, in order to fulfil the above con-

ditions, to resort to the more extended star catalogues.
But since in these works only the stars' mean places are given,

and those for the epoch of the catalogue (which fact involves re-

duction to apparent places for the date), and moreover since these

mean places have often been inexactly determined, it becomes de-

sirable to rest our determination of latitude on the observation of

more than one pair. For example, on the " Wheeler Survey," west

of the 100th meridian, the latitude of a primary station was re-

quired to be determined by not less than 35 separate and distinct

pairs of stars, these observations being distributed over five nights.

Preliminary Computations. We should therefore form a list of

all stars not less than 7th magnitude which culminate not more

than 25 from the zenith and within the limits of time over which
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we propose to extend our observations, arrange them in the ordei

of their R. A., and from this list select our pairs in accordance

with the above conditions, taking care that the time between the

pairs is sufficient to permit the reading of the level and micrometer,

and setting the instrument for the next pair; say at least two

minutes.

A "Programme" must then be prepared for use at the instru-

ment, containing the stars arranged in pairs, with the designation

and magnitude of each for recognition when more than one star is

in the field; their R. A., to know when to make ready for the

observation; their declinations, from which are computed their

approximate zenith distances; a statement whether the star is to be

found north or south of the zenith, and finally the "
setting

"
of the

instrument for the pair, which is always the mean of the two

zenith distances.

The declinations here used, being simply for the purpose of so

pointing the instrument that the star shall appear in the field,

may be mean decimations for the beginning of the year, which are

found with facility as hereafter indicated. Similarly for the R. A.

For this Programme, see Form 9.

Adjustment of Instrument. The Instrument must next be pre-

pared for use. The column is made vertical by the levelling

screws, and the adjustment tested by noting whether the striding

level placed on the horizontal axis will preserve its reading during
a revolution of the instrument 3GO in azimuth. The horizontality

of the latter axis is secured by its own adjusting screws, and tested

by the level in the usual way. The focus and vertically 'of the

wires are adjusted as explained for the transit. The collimation

error should, as far as is mechanically possible, be reduced to zero.

This may be accomplished approximately by the ordinary reversals

upon a terrestrial point distant not less than 5 or 6 miles (to

reduce the parallax caused by the distance of the telescope from

the vertical column); or very perfectly by two collimating tele-

scopes, as explained for the transit. The instrument is adjusted to

the meridian as explained for the transit. When this is perfected,

one of the movable stops on the horizontal circle is moved up against

one side of the clamp which controls the motion in azimuth, and there

fixed by its own clamp-screw. The telescope is then turned 180

around the vertical column and again adjusted to the meridian by
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a circum-polar star; the other stop is then placed against the other

side of the clamp, and fixed. The instrument can now be turned

exactly 180 in azimuth, bringing up against the stops when in the

meridian.

Observations. The circle being set to the mean of the zenith

distances of the two stars of a pair, the bubble of the attached level

is brought as nearly as possible to the middle of its tube, and when

the first star of the pair arrives on the middle transit wire (the in-

strument being in the meridian) it is bisected by the declination mi-

crometer wire, the sidereal time noted, and the micrometer and level

read. The telescope is then turned 180 in azimuth, the clamp

bringing up against its stop. The same observations and records

are now made for the second star. The instrument is then reset for

the next pair, and so on. The time record is not necessary unless

it be found that the instrument has departed from the meridian, or

unless observation on the middle wire has been prevented by

clouds, and it becomes desirable to observe on a side wire rather

than lose the star. In these cases the hour angle is necessary to*

obtain the "reduction to the meridian."'

The observations are recorded on Form 9 a. In the column of

remarks should be noted any failure to observe on middle wire,

weather, and any circumstance which might affect the reliability of

the observations.

Reduction of Observations. By referring to Eq. (143) the gen-
eral nature of the reduction will be evident. The principal term

in the value of is dn -\-
ds , which, as before stated, must be found

for the date. Since zs zn has been measured entirely by the mi-

crometer and level, this term involves two corrections to 3n -f- $8 ;

rs f"n involves another, and the very exceptional case of observa-

tion on a side wire involves another.

1st. The reduction from mean declination of the epoch of the

catalogue to apparent declination of the date. Let us take the

case of the B. A. C. (British Association Catalogue).

The star's mean place is first brought up to the beginning of

the current year by the formula
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In which d" = mean north polar distance as given in catalogue,

p
r = annual precession in N. P. distance, s' = secular variation in

same, /*'
= annual proper motion in N. P. distance (all given in

catalogue for each star), y = number of years from epoch of cata-

logue to beginning of current year, and d"' = the mean N. P. dis-

tance at the latter instant.- To this,jkhe corrections for precession,

proper motion, nutation, and aberration, since the beginning of the

year, are applied by the formula

d = d'" + r^' + Ac' + Bd' + Ca' - LV,

in which t = fractional part of year already elapsed at date, given
on pp. 285-292, Ephemeris; A, B, C, D, are the Besselian Star

Numbers, given on pp. 281-284 Ephemeris for each day; ', V ,
c' ,

d', are star constants, whose logarithms are given in the catalogue;
and d = star's apparent N. P. distance at date. Then 6 = 90 d.

The quantities a', V, c', d', are not strictly constant; indeed

many of their values have changed perceptibly since 1850, the

epoch of B. A. C. If it be desired to obviate this slight error, it

may be done by recomputing them by formulas derived from

Physical Astronomy, or, in part, by using a later catalogue. In

this connection a work prepared under the " Wheeler Survey,"
entitled "

Catalogue of Mean Declinations of 2018 Stars, Jan. 1,

1875," will be found most convenient, embracing stars between 10

and 70 N. Dec., and therefore applicable to the whole area of the

IT. S. exclusive of Alaska.

With this catalogue, the reductions are made directly in decli-

nation, not N. P. distance, and by the formulas,

d=d' + Tn' + Aa' + BV + Cc' + Dd',

in which everything relates to declination.

Exactly analogous formulas hold for reduction in R. A.
J\ I Ok

2d. The micrometer and level corrections to - ?
, viz.
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Let us suppose that, with the telescope set at a given inclina-

tion, the micrometer readings are greater as the body viewed is

nearer the zenith; and in the first instance, that the inclination as

shown by the attached level is not changed when the instrument is

turned 180 in azimuth.

Then -? - will be given wholly by the micrometer, and be

. , m, m n mn ms neither
"
R, or - R, m which ms and mn are the mi-

* /i

crometer readings on the south and north stars respectively, and R
the value in arc of a division of the micrometer head. Since the

readings increase as the zenith distance decreases, it is manifest

that ~^~ s R is the one of the two expressions which will repre-

sent with its proper sign.

But as a rule the upright column will not be truly vertical, and.

therefore the inclination of the optical axis of the telescope will

change slightly due to the necessary revolution between the obser-

vations of the stars of a pair, the fact being indicated by a different

reading of the level. In this case, the difference of micrometer read-

ings will not be strictly the difference of zenith distance as before,

but will be that difference the amount the telescope has moved.

The micrometer readings therefore require correction before they

can give
-* Since it is immaterial which star of the pair is

observed first, let us suppose it to be the southern, and let ln and la

be the readings of the ends of the bubble. Then JL- ? will be the
6

reading of the level, it being graduated from the center toward

each end. Now if, on turning to the north, the level shows that

the angle of elevation of the telescope has increased, the microme-

ter reading on the northern star will be too small, by just the

amount corresponding to the motion of the telescope in altitude;

arid this whether the star be higher or lower than the southern

star. Consequently mn must be increased to compensate. If l'n

and 1'8 be the reading of the present north and south ends of the
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V V
bubble, then the bubble reading will be - -

8

j
the change of

level, in level divisions, will be

z + , and in arc
(l + PJ-ft + rj D

Since, upon turning to the north, the angle of elevation of the.tele-

scope was supposed to increase, this quantity is positive; and being
the angular change of elevation, it is the correction to be applied
to mn .

If the telescope diminished its elevation on being turned to the

north, it would be necessary to diminish mn by the same amount.

But in this case the above correction is obviously negative, and the

result will be obtained by still adding it algebraically.

The correction to--- will be half the above amount; hence in
ft

all cases we have the rule. Subtract the sum of the south readings
from the sum of the north. One-fourth the difference multiplied

by the value of one division of the level, will be the level correction.

The true difference of observed zenith distances of the two stars,

is therefore

a
,

T T
3d. The correction for refraction, or -?L

-. Since the stars
/o

are at so small and so nearly equal zenith distances, differences of

actual refractions will be practically equal to differences of mean
refractions (Bar. 30 in., F. 50), which latter may therefore be substi-

dr
tuted for r8 rn . If -r denote the change in mean refraction for a

difference of 1' in zenith distance, then for zs zn (expressed in

seconds) it will be
s n

-j
. Hence we may write

rs rn _ z8 zn dr

60 dz'
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To determine -,-, we have for the equation of mean refraction

Young, p. 64),

r = a tan z.

Differentiating,

dr .
,

a sin 1'
-T- (for 1')

= - ~r-,

a being taken from refraction tables, and z representing the mean
of the zenith distances of the pair. The following table of values

dr
:)f -y- is given, in which we may interpolate at pleasure.

z
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If a plane be passed through the middle horizontal wire and the

optical centre of the objective, it will cut from the celestial sphere

a great circle; and the zenith distance of a star anywhere on this

circle will, as measured by this fixed position of the instrument, be

the inclination of the plane to the vertical.

Therefore, if the zenith distance'of a star between the zenith

and equinoctial be measured by an instrument which moves only
in the meridian, it tvill have its greatest value when on the me-

ridian. For a star which crosses any other part of the meridian,

the ordinary rule as to relative magnitude applies.

But whatever the position of the star, the numerical value of

this
" reduction to the meridian," due to an observation on a side

wire, is different from that heretofore discussed, where the instru-

ment was in the vertical plane of the star; being in this case

(15 P)* sin 1" sin 2 tf; P being the hour angle. For the deduc-

tion of this expression, see J following. For a star below the equi-

noctial or below the pole sin 2 $ would be negative; hence from the

rule as to relative magnitudes above given, it is seen that if in using
the zenith telescope, a star south of the zenith be observed on a side

wire, the above correction must be added algebraically to the ob-

served to obtain the meridian zenith distance; and north of the

zenith it must be subtracted algebraically.

By inspecting the term ~^^
-

, we see that in any case one half

this reduction, or

i (15 P)* sin 1" sin 2 d = [6.1347] P
2
sin 2 #,

is to be added to the deduced latitude, or to the sum of the other

corrections in order to obtain the latitude. The hour angle P in

seconds of time is known from P = t -{- E oc, t being the chro-

nometer time of observation, E the error, and a the star's R. A.

We therefore have the following complete formula for the latitude

.-. ,
-

.

3- -J-
(144)~ m*R d

+ [6.1347] P' sin 2 tfs + [6.1347] P' 2
sin 2 #
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For the reduction see Form 9 b. The results of all the pairs may
be discussed by Least Squares.

This method, although extremely simple in theory, involves

considerable labor. It has however been employed almost exclus-

ively on the Coast and other important Government surveys, with

results which compare favorably with those obtained by the first-

class instruments of a fixed observatory.

J To Determine the Reduction to the Meridian for an Instru-

ment in the Meridian. Let S Fig. 21 be the place of the star when

on a side wire. Then CSS" will be

the projection of the great circle cut

from the celestial sphere by the plane
of the middle horizontal wire and the

optical center of the objective, Z S"
will be the recorded zenith distance

c
diurnal path, preserving always the FlG 21

same distance from the equator.

Then Z 8' will be the true meridian zenith distance = z
t , and

ES' = <?. Represent E 8" by d'.

The Reduction to the Meridian, /S" 8"9 being denoted by x9 we
have

z
t
= z' 4- x9 and d = #' x. (a)

Let it now be required to develop x into a series arranged according
to the ascending powers of sin

2

J P, as before.

The triangle P 88" 9 right angled at S"9 gives

tan 6 = cos P tan d' = tan <?' 2 tan d' sin
8

P. (5)

Replacing for brevity sin
2

1 P by y,

tan d = tan d' 2 ?/ tan d', (c)

1 + tan d' tan x

= tan d' 2 y tan d',

tan $' tan x = tan 6' 2 y tan d' -\- tan
2
d' tan x

- 2y tan
3
d' tana;. (d)
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Let

x = Ay -\- B y* -\- etc. (e)

be the undetermined development desired. If the value of tan x

derived from this equation be substituted in (d), the resulting

equation will be identical.
'

From Trigonometry,

tan x = x-\-- : + etc.,
o

and from this and (e),

tan x = A y + B y* + etc.

Substituting in (d), and transposing,

Ay+By*-2 y tan tf'-ftan
2
d' (J/+%a

)-2tan
a

S'(Ay+By*)y=Q.

From the principles of identical equations,

A 2 tan c5>' -}- A tan
2
d' = 0.

2 tan #' sin tf'
, .

-4 =
., r^r,

= 2 -^ cos
2
d' = sin 2 6^'.

1 -f- tan o cos o

B + B tan
2
d' - 2 ^ tan

2
tf' = 0. B = 2 sin

2
<S' sin 2 d'.

Therefore, expressing a; in seconds of arc, from (e),

n 2 d' 2 sin
4

i P sin 2 d' sin
2
6"'

sin 1" sin 1"

Omitting the last term as insensible, expressing P in seconds of

time, and remembering that since P is very small,

sin
3 = - sin2 1 "> we have a; = i (15 P)

2
sin 1" sin 2 d'.

/O \ 4 J

In computing this term, # may be substituted for 6^.

t%t To Determine the Probable Error of the Final Result.

From equation (143) it is seen that the probable error of a lati-

tude deduced from a single pair of stars will be composed of two
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parts: 1st, the probable error of the half sum of the declinations

derived from the catalogue used; 2d, the probable error of the half

difference of the measured zenith distances, which may be called

the error of observation.

Consider first a single pair of stars observed once. Let R^ de-

note the probable error of the deduced latitude, 11' that of the half

sum of the declinations, and R" that of observation, all unknown
as yet. Then, Johnson,* Art. 89,

-\-R"*, (a)

and for this pair observed n times, i.e.) on n nights,

n

If now we employ m different pairs,

7?" 2

(b)

+ ~HT' (c)

in which n' denotes, as before, the total number of observations.

It may be observed fit this point, that as shown by (c), if a skilled

observer be provided with a catalogue not of the first order of ex-

cellence, (R' large, R" small), it is better to employ many pairs,

rather than repeat observations on a few pairs; thus augmenting
both m and n, instead of n alone.

To determine R", form the differences between the mean of all

the latitudes resulting from the first pair and the separate latitudes

from that pair.

The residuals denoted by v'9 v", v"', etc., will manifestly be

free from any effect of error in the half sum of the declinations

employed. Do the same with the results from each of the other

pairs, giving v/, v/' v
a ',

v
3

"
etc.,

Then, Johnson, Art. 138,

= 0.6745 |--. (d)n m ^ '

* Johnson's "
Theory of Errors and Method of Least Squares," 1890.
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The value of R" should not exceed about 0".8, and cannot be

expected to fall below 0".3. On the Coast Survey, its value has

usually been slightly less than 0".5.

To determine R', we have from (b)

in which it must be remembered that R
4

is the probable error of

the latitude as deduced from a single pair of stars observed n times.

Select several (m
f

) pairs, which are observed on an equal number

of nights in order that the results from each pair may be of equal

weight. Then, as before, form the differences between the mean
of the n results for each pair and the mean of these m' means.

Then the mean value of R
t
will be, Johnson, Art. 72,

R
t
= 0.6745 1/ mf_fr (/)

Substituting this value of R
t together with that of n in (e), we

have R', and the probable error of the final result is given by (c),

as before seen.

If R' be determined from a great number of stars taken from a

single catalogue, it may be considered as constant for that cata-

logue. With the one employed on the Lake Survey, R' usually fell

between 0".53 and 0".60.

If it be desired to combine the mean results from each pair ac-

cording to their weights in order to obtain the weighted mean

latitude, we have from (6), (since the weight of an observation is

proportional to the reciprocal of the square of the probable error,)

n

p denoting the weight of the mean result from a pair observed n
times.

The weighted mean latitude will be, Johnson, Art. 66,

212T
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with a probable error, Johnson, Art. 72,

R = 0.6745

The errors which give rise to R' are those pertaining to the

catalogue or catalogues used.

Those giving rise to R" are due to various causes, viz. : imper-

fect bisection of one or both stars due to personal bias or unsteadi-

ness of the stars, anomalous refraction, errors in determining the

value of a division of the micrometer and level, changes in temper-
ature affecting the instrument between the two observations of a

pair, etc.

If any of the residuals (v) are unusually large, they should be

examined by Peirce's Criterion bofore rejection.

Finally it must be remembered that in this, as in all other

methods here given, the final result (supposed free from error) is

the astronomical latitude, and will differ from the geodetic or geo-

graphical latitude by any abnormal deflection of the plumb-line
which may exist at the station.

5. Latitude by Polaris off the Meridian. See Form 10. This

method depends upon the fact that the astronomical latitude of a

place is equal to the altitude of the elevated pole.

This latter is obtained by measuring the altitude of Polaris at a

given instant, and from the data thus obtained, together with the

star's polar distance, passing to the altitude of the pole.

To explain this transformation :

Let P = star's hour angle, measured from the upper meridian.

a = altitude of star at instant P, corrected for refraction.

d = polar distance of star at instant P.

= latitude of place.

Then from the ZP S triangle we have

sin a = sin cos d + cos sin d cos P. (145)

This equation which applies to any star may be solved directly;

but with a circum-polar star it is much simpler to take advantage

of its small polar distance, and obtain a development of in terms



110 PRACTICAL ASTRONOMY.

of the ascending powers of d, in which we may neglect those terms

which can be shown to be unimportant.
Now if we let x the difference in altitude between Polaris at

the time of observation and the pole, we shall have

= (a x), sin = sin (a x), cos = cos (a x),

and from (145),

1 = cos x (cos d + sin d cot a cos P) , ,

sin x (cos d cot a sin d cos P).

Moreover, it is evident that if we can obtain the development of

x in terms of the ascending powers of d, we will have the develop-

ment of in the same terms, from = a x.

This is the end to be attained. Therefore let

x = A d + B d* + Cd* + etc., (147)

be the undetermined development desired, in which A, B, C, etc.,

are to have such constant values, that the series, when it is con-

vergent, shall give the true value of x, whatever may be the value

of d.

It is manifest, then, that if this assumed value of x be substi-

tuted in (146), the resulting equation must be satisfied by every
value of d which renders (147) convergent; that is, the resulting

equation must be identical; otherwise (147) could not be true.

With a view, therefore, to this substitution, let it be noted that

by the Calculus we have

x1
x*= l--+ -

etc., (m)

- + -
etc., (n)

and hence from (147),

cos x = i - - -AB<F.+ etc., (us)a

-- d 3 + etc. (149)
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Also,

\

and

cos d = 1 - -

2
+

24
-

etc., (150)

(151)

Now d is a very small angle; at present about 1 16', or 0.0221

radians; x can never be greater than d, and in the general case

w ill be less. Under these circumstances the above series becomes

very convergent, and the sum of a few terms will represent with

great accuracy the sum of the series. It is -for this reason that the

problem under discussion is applicable only to close circum-polar

stars, and therefore we take advantage of the small polar-distance

of Polaris.

Substituting (148), (149), (150), and (151), in (146), we have,

rejecting terms involving the 4th and higher powers of d,

A cot a

+ cosP

cos P cot a

6

A1
cos P cot a

~1T~

-AB
_ (c-~\cota

AcosP
cot a

cos P cot a

A cot a

d=0.

This equation being identical, the algebraic sum of the coeffi-

cients of each power of d must be separately equal to zero.

Hence we have by solution,

A = cos P.

sin
2 P

,B ~ - tan 0.

C = cos P sin
2 P
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Therefore, from (147),

x = d cos P % d* sin* P tan a + J d 3
cos P sin

2 P.

From (m) and (w), (150) and (151), it is seen that x and d are

expressed in radians. Expressing them in seconds of arc,

x = d cosP-i d* sin
2 P tan a sin 1"+ J d

3
cos P sin'P sin

2

1", etc.,

which is the required development.

Therefore,

= a d cos P -j- J rf
3
sin 1" sin

2 P tan a

-
J.
d 3

sin
2 1" cos P sin' P |- etc. (152)

The last three terms are in seconds.

Hence we have the general rule:

Take a series of altitudes of Polaris at any convenient time.

Note the corresponding instants by a chronometer, preferably

sidereal, whose error is well determined. Correct each observed

altitude for instrumental errors and refraction. Determine each

hour angle by P = sidereal time R. A.

Take from the Ephemeris the star's polar distance at the time,

being careful to use pp. 302-313, where also the R. A. required

above will be found.

Substitute each set of values in Equation (152), and reduce each

set separately. The mean of the resulting values of is the one

adopted. See Form 10.

As before stated, the method is applicable only to close circum-

polar stars. Polaris is selected since it is the nearest bright star to

the pole, a fact which is of importance in sextant observations.

On the. last page of the Ephemeris are given tabular values of

the correction x. They are however only approximate; and the

complete solution, as given above, consumes but very little more

time.

This is a very convenient method of determining latitude; our

only restriction being that, with a sextant, the observations must

be made at night. With the " Altazimuth "
instrument, the ob-

servations may be made for some time before dark.
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The last term in (152) is very small. In order to ascertain

whether it is of any practical value, let us determine its maximum
numerical value. Denoting the term by z, and its constant factors

by c, we have

z = c cos P sin
2 P.

Replacing sin
2 P by 1 cos

2

P, and differentiating twice, we have,
after reduction,

(1 Z - 3 c sin
3
P.

z = 2 c cos P 9 c sin
2 P cos P.

To obtain the maximum,

2 c sin P - 3 c sin
3 P = 0.

From the roots of this we have

sin P = 0, sin P = + \T%, sin P = 4/~f,

the last two of which correspond to equal numerical maxima. *

Hence the maximum value of the term is given when sin
2 P = f,

or when z = $ d3
sin

2 I" f /|. For d = 1 16', this gives z = 0".29.

The maximum error committed by the omission of this term

will therefore be about 0".3. Evidently its retention when the

observations have been made with a sextant would be superfluous.

* With sin P = -j- |/ f \ve may have cos P = 4/ ,
and similarly for

siuP = |/f . By substituting in the second differential coefficient we see

that -f/f with -|- V % correspond to equal maxima, while |/~| with \/~%

correspond to equal minima. With sin P = 0, we may have cos P 1
, the

former of which corresponds to a minimum and the latter to an equal maxi-

mum; viz., zero. Hence zero is a lesser and not the greatest maximum value

of z
;
the latter, with which only we are concerned, being, from (15:2), i d3 sin2

Fig. 22 gives the curve of values of z with P as the abscissae, showing
the inferior maximum at P =180, and the greatest maxima (numerical) at

about 55, 125, 235, and 305.



114 PRACTICAL ASTRONOMY.

The value of log sin 1", not given in ordinary tables, is

4.6855575-10.

v
125 180 235

1 _ i.. 1

^f.

./^ ^v >1WO 305" 360"

FIG. 22.

Any mistake as to the value of P will manifestly produce ite

greatest effect when the star is moving wholly in altitude. Hence

if the chronometer error be not well determined, the times of

elongation are the least advantageous for observation.

Since cos (360 P) = cos P, we may measure P from the up-

per meridian to 180 in either direction.

6. Latitude by Equal Altitudes of Two Stars. See Form 11.

By this method the latitude is found from the declinations and hour

angles of two stars; the hour angles being subject to the condition

that they shall correspond to equal altitudes of the stars.

Let 6 and 6' = the correct sidereal times of the observations.

a and a' = the apparent right ascensions of the stars.

6 and d' = the apparent declinations of the stars.

P and P' = the apparent hour angles of the stars.

a = the common altitude.

= the required latitude.

P and P' are given from

P=0-a. P' = 6' -a'.

From the ZP S triangle we have

sin a = sin sin d -f cos cos tf cos P.

sin a = sin sin 6' -j- cos cos $' cos P'.

Subtracting the first from the second and dividing by cos 0,

tan (sin d' sin 6)
= cos d cos P cos 6' cos P'. (153)

The value of tan might be derived at once from this equa-

tion, since it is the only unknown quantity entering it. The form
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is, however, unsuited to logarithmic computation. In order to ob-

tain a more convenient form, observe that the second member may
be written

/ cos 6 cos P cos d' cos P'\ /cos d cos P cos d' cos P'
I o o I I V o f>

Adtiing to the first parenthesis

/ cos d cos P' cos
'
cos

V 2 2

and subtracting the same from the second, we have, after factoring,

tan (sin tf
'

sin 6)
= J (cos d cos 6') (cos P -f cos P')

+ | (cos d + cos
') (cos P cos P').

Solving with reference to tan 0, and reducing by Formulas 16, 17,

and 18, Page 4, Book of Formulas,

tan = tan \ (6' + 3) cos J (P' + P) cos J (P'
- P)

+ cot J (d'
-

d) sin i (P' + P) sin (P' - P).

The solution may be made even more simple by the use of two

auxiliary quantities, m and M, such that

m cos M= cos J (P' P) tan | (<?' -f 6). (155)

m sin ^f = sin
J- (P' P) cot J (<T d) (156)

Then

tan = m cos [| (P' + P) - J/]. (157)

Equations (155) and (156) give m and J/, and (157) gives 0, all

in the simplest manner.

For example, to find M, divide (156) by (155), and we obtain

tanM= tan \ (P' P) cot J (' d) cot
J- (' -J-

6).

This admits of easy logarithmic solution.

The value of m follows from either (155) or (156), and that of

from (157), both by logarithms.



116 PRACTICAL ASTRONOMY.

The value of a does not enter; hence the resulting latitude will

be entirely free from instrumental errors, those of graduation, ec-

centricity, and index error, and its accuracy will depend only upon
the skill of the observer, and the accuracy of our assumed chronom.

eter error and rate. Ephemeris stars should be chosen if possible, for

the sake of accuracy in declinatipnSj^and their E. A. should permit
the observations to be made with so 'short an interval that the re-

fractive power of the atmosphere can not have changed materially

in the mean time. The value of refraction is not required ;
it is

only necessary that it remain practically constant.

Differentiating (153) with reference to , P, and P'9 solving,

reducing by
cos 6' sin P f

cos a sin A',

and

sin 6' = sin sin a -f- cos cos a cos A 1

',

we have, since a is the same for both stars,

7 ^ sin A'
? r>/ sin ^4

d = cos -
-j

d P' cos d P9
cos^i cos^4 cos ^4 cos A

from which it is seen that any error in the time or in the assumed

chronometer correction will have least effect on the resulting latitude

when the two stars reach the common altitude at about equal dis-

tances north and south of the prime-vertical, the nearer to the

meridian the better.

When several observations with the sextant are taken in succes-

sion on each star, it is better to reduce separately the pair corre-

sponding to each altitude.

LONGITUDE.

The difference of Astronomical Longitude between two places is

the spherical angle at the celestial pole included between their re-

spective meridians. By the principles of Spherical Geometry, the

measure of this angle is the arc of the equinoctial intercepted by its

sides; or it is the same portion of 360 that this arc is of the whole

great circle.

But since the rotation of the earth upon its axis is perfectly

uniform, the time occupied by a star on the equinoctial in passing
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from one meridian to another, is the same portion of the time re-

quired for a complete circuit that the angle between the meridians

is of 360, or, that the intercepted arc is of the whole great circle.

Moreover, all stars whatever their position occupy equal times in

passing from one meridian to another due to the fact that all points

on a given meridian have a constant angular velocity.

The same facts apply also to the case of a body which, like the

mean sun, has a proper motion, provided that motion be uniform

and in the plane of, or parallel to, the equinoctial.

Hence it is that Longitude is usually expressed in time; and in

stating the difference of longitude between two places in time, it is

immaterial whether we employ sidereal or mean solar time : for the

number of mean solar time units required for the mean sun to pass

from one meridian to another, is exactly equal to the number of

sidereal time units required for a star to pass between the meridians.

The astronomical problem of longitude consists, therefore, in

determining the difference of local times, either sidereal or mean

solar, which exist on two meridians at the same absolute instant.

Since there is no natural origin of longitudes or circle of refer-

ence as there is in case of latitude, one may be chosen arbitrarily,

and which is then called the "
first

"
or "

prime meridian." Differ-

ent nations have made different selections: but the one most com-

monly used throughout the world is the upper meridian of Green-

wich, England, although in the United States frequent reference is

made to the meridian of Washington. ,

The astronomical may differ slightly from the geodetic or geo-

graphical longitude, for reasons given under the head of latitude.

In the following pages, only the former is referred to; it is

usually found from the difference of time existing on the two

meridians at the instant of occurrence of some event, either celes-

tial or terrestrial. Up to about the year 1500 A.D., the only method

available was the observation of Lunar Eclipses. But with the

publication of Ephemerides and the introduction of improved
astronomical instruments, other and better methods have superseded

this one, of which the two most accurate and most generally used

are the " Method by Portable Chronometers," and the " Method by
Electric Telegraph." Longitude may also be found from " Lunar

Culminations
" and " Lunar Distances," in cases when other modes

are not available.
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1. By Portable Chronometers. Let A and B denote the two sta-

tions the difference of whose longitude is required. Let the chron-

ometer error (E) be accurately determined for the chronometer time

T, at one of the stations, say A ;
also its daily rate (r).

Transport the chronometer to B, and let its error (E') on local

time be there accurately determined for the chronometer time T'.

Let i denote the interval in chronometer days between Tand T'.

Then, if r has remained constant during the journey, the true

local time at A corresponding to the chronometer time T' will be,

T' + E +ir.
The true time at B at the same instant is, T' 4- E'.

Their difference = difference of Longitude is

\=E+ir-E'. (158)

Thus the difference of Longitude is expressed as the difference

between the simultaneous errors of the same chronometer upon the

local times of the two meridians, and the absolute indications of

the chronometer do not enter except in so far as they may be re-

quired in determining i.

The rule as to signs of E and r, heretofore given, must be ob-

served. If the result be positive, the second station is west of the

first
;

if negative, east.

This method is used almost exclusively at sea, except in voyages
of several weeks, the chronometer error on Greenwich time, and its

rate, being well determined at a port whose longitude is known.

Time observations are then made with a sextant whenever desired

during the voyage, and the longitude found as above. The same

plan may evidently be followed in expeditions on land, although ex-

treme accuracy cannot be obtained since a chronometer's "
travel-

ing rate
"

is seldom exactly the same as when at rest.

In the above discussion, the rate was found only at the initial

station. If the rate be determined again upon reaching the final

station, and be found to have changed to r', then it will be better to

r -f r' .

employ in the above equation
- instead of r. To redetermine
^ :

the longitude of any intermediate station in accordance with this

r' r
additional data, we have x = -.

= daily change in rate; and
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the accumulated error at any station, reached n days after leaving A,

would be E -f fr -f x ~
J
w, the quantity in parenthesis being the

rate at the middle instant.

The above method is slightly inaccurate, since we have assumed

that the chronometer rate as determined at one of the extreme

stations (or both, if we apply the correction just explained), is its

rate while en route. This is not as a rule strictly correct.

Therefore, when the difference of longitude between two places

is required to be found with great precision,
" Chronometric Expe-

ditions
" between the points are organized and conducted in such a

manner as to determine this traveling rate.

As before,

let E = chron. error on local time at A at chron. time T.
(( fff __ t( a (( (t rpt

tf tr _ (( (( (( se t< (( '

ft TjiFH - (( (( ft A <(

That is, the error on local time is determined at the first station for

the time of departure, then at the second station for the time of ar-

rival; again at the second station for the time of departure, and

finally at the first station for the time of arrival.

Then the entire change of error is E'" E. But of this

E" E' accumulated while the chronometer was at rest at the

second station. The entire time consumed was T'"T. But of

this T" T' was not spent in traveling. Therefore, the traveling

rate, if it be assumed to be constant, will be
'

_- _ rp\ _ / m// _ rp
r/\-

This, then, is the rate to be employed in Eq. (158) instead of the

stationary rate there used.

If the rate has not been constant, but, as is often the case, uni-

formly increasing or decreasing, the above value of r is the average

rate for the whole traveling time of the two trips, whereas for use

in Eq. (158), we require the average rate during the trip from A to

B. This latter average will give a perfectly correct resiiifc provided

the rate change uniformly. If the rate has been increasing, then r
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in Eq. (159) will be too large numerically, by some quantity as x.

Hence Eq. (158) becomes

K = E+i(r-x)-E', (160)

in which r is found by (159). In order to eliminate x, let the

chronometer be transported from B to A, and return; i.e., take B
instead of A as the initial point of a second journey. This is best

accomplished by utilizing the return trip of the journey A B A, as

the first trip of the journey B A B.

Then the new average rate r' having been found as before, it

will, if the trips and the interval of rest have been practically equal

to those of the first journey, exceed the value required, by the same

quantity, x, due to the uniformity, in the rate's change. Hence for

this journey Eq. (158) becomes,

A = E'" - [i (r'
-

x) + J0"]- (161 )

In the mean of (160) and (161), x disappears, giving,

x=^+^ +i^l_^_^ (162)

Hence, if our time observations are accurate, and the traveling

rate constant, the difference of longitude between A and B may be

determined by transporting the chronometer from A to B, and re-

turn. Or, if the rate be uniformly increasing or decreasing, the

difference of longitude will be found by transporting the chro-

nometer from A to B, and return, then back tc B\ thus making
three trips for the complete determination.

In a complete
" Chronometric Expedition," however, many

chronometers, sometimes 60 or 70, are used, to guard against acci-

dental errors
;
and they are transported to and fro many times. As

an example, in one determination of the longitude of Cambridge,

Mass., with reference to Greenwich, 44 chronometers were employed
and during the progress of the whole expedition, more than 400

exchanges of chronometers were made.

They are rated by comparison with the standard observatory

clocks at each station, which are in turn regulated by very elabo-

rately reduced observations on, as near as possible, the same stars.
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Conducted as above described,
" Chronometric Expeditions'

5

give exceedingly accurate results, especially if corrections be made
for changes in temperature during the journeys.

2. Longitude by the Electric Telegraph. See Form 12. This

method consists, in. outline, in comparing the times which exist

simultaneously on two meridians, by means of telegraphic signals.

These signals are simply momentary
" breaks" 'in the electric cir-

cuit connecting the stations, the instants of sending and receiving
which are registered upon a chronograph at each station. Each

chronograph is in circuit with a chronometer which, by breaking
the circuit at regular intervals, gives a time scale upon the chrono-

graph sheet, from which the instants of sending and receiving are

read off with great precision.

Suppose a signal to be made at the eastern station (A) at the

time T by the clock at A, which signal is registered at the western

station (B) at the time T' by the clock at B.

Then if E and E '
are the respective clock errors, each on its

own local time; and if the signals were recorded instantly at B9

then the difference of longitude would be (T+ E) (T' -f E ').

But it has been found in practice that there is always a loss of time

in transmitting electric signals. Therefore in the above expression

(T
f

-\- E') does not correspond to the instant of sending the signal,

but to a somewhat later instant. It is therefore too large, the entire

expression is too small, and must be corrected by just the loss of

time referred to. This is usually termed the " Retardation of Sig-

nals;" and if it be denoted by x, the true difference of longitude
will be (T+E)-(T' + E f

) + x = X'+x = X. But x is un-

known, and must therefore be eliminated.

In order to do this, let a signal be sent from the western station

at the time T" which is recorded at the eastern at the time T'".

Then if E n and E'" are the new clock errors, the true difference

of longitude will be

(T
9" + E'") - (T" + E"} -x = X"-x = l.

By addition, x disappears, and if A denote the longitude, we will

have
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Or, in full, assuming that the errors do not change in the interval

between signals,

(E-
(163)

T9 T', T", and T" 9
are given by the chronograph sheets;

E and E f must be determined with extreme accuracy, since incor-

rect values will affect the resulting longitude directly.

Having established telegraphic communications between the

two observatories (field or permanent), usually by a simple loop in

an existing line, preliminaries as to number of signals, time of

sending them, intervals, calls, precedence in sending, etc., are

settled. At about nightfall messages are exchanged as to the suita-

bility of the night for observations at the two stations. If suitable

at both) each observer makes a series of star observations with the

transit to find his chronometer error. The electric apparatus for

this purpose, consisting of two or three galvanic cells, a break-cir-

cuit key, chronograph, and break-circuit chronometer, is arranged
as shown in Fig. 23, the chronometer being placed in a separate

FIG. 23.

circuit with a single cell, connected with the principal circuit by a

relay, to avoid the effects of too strong a current on its mechanism.

The chronometer breaks the circuit J, releasing the armature of the

chronometer relay, which therefore breaks circuit B at b. This re-

leases the armature of the chronograph magnet to which is attached

a pen, thus registering on the chronograph the beats of the chro-

nometer. Circuit B may also be broken with the observing key,

thus recording the transits of stars also on the chronograph. At

least ten well-determined Ephemeris stars should be used three

equatorial r.nd two circumpolar for each position of the transit.
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Then as the time agreed upon for the exchange of signals ap-

proaches, the local circuit should be connected as shown in Fig. 24,
K

(7, chronometer relay;

Jf, chronograph magnet;
K, observing key;

FIG. 24.

5, sounder;

L, L, main line;

K', break-circuit key;

D, relay;

G, galvanometer;
R, rheostat.

by a relay to the main line, which is worked by its own permanent
batteries,, and in which there is also a break-circuit key. The con-

nections are the same at both stations. By this arrangement it is

seen that each chronograph will receive the time-record of its own

chronometer; and also the record of any signals sent over the main
line in either direction.

Neither chronograph receives the record of the other's chro-

nometer. Then at the time agreed upon, warning is sent by the

station having precedence, and the signals follow according to any

prearranged system. Notice being given of their completion, the

second station signals in the same manner.

As an example of a system, let the break-circuit key in the main

line be pressed for 2 or 3 seconds once in about ten seconds, but

at irregular intervals : this being continued for five minutes will

give 31 arbitrary signals from each station.

Each chronometer sheet when marked with the date, one or

more references to actual chronometer time, and the error of

chronometer, as soon as found, will, in connection with the sheet

from the other station, afford the obvious means of finding all the

quantities in Eq. (163) from which the longitude is computed.
The sheets may be compared by telegraph, if desired.

The work of a single night is then completed by transit observa-

tions upon at least ten more stars under the same conditions as
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before, the entire series of twenty being so reduced as to give the

chronometer error at the middle of the interval occupied in ex-

changing signals. The mode of making this reduction will be

explained hereafter.

The preceding is called the method by
"
Arbitrary Signals/' and

is the one now usually employed. Sometimes however the method

by "Chronometer Signals" is used, which will be readily under-

stood by reference to Fig. 25, the connections being the same at

both stations.

FIG. 25.

In this case it is seen that each chronometer, although in local

circuit, graduates each chronograph, upon which we therefore have

a direct comparison of the two time-pieces.

This method is subject to the inconvenience and possible inac-

curacies in reading which may occur due to a close but not perfect
coincidence in beats, unless special precautions are taken.

The arrangement of the galvanometer and rheostat, as shown in

both figures (taken from the Coast Survey Keport for 1880), in-

sures the equality of the currents passing through the relays at the

two stations, which point should be ascertained by exchange of

telegraphic messages; therefore after the relays are properly ad-

justed they will be demagnetized by the signals with equal rapidity,

and constant errors in this respect be avoided.

The final adopted value of the longitude should depend upon
the results of at least five or six nights; outstanding errors in the

electrical apparatus being nearly eliminated by an exchange between

the two stations when the work is half completed.
"
Longitude by the Electric Telegraph

" had its origin in the
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IT. S. Coast Survey, and has since been employed considerably in

Europe. As at first employed it consisted virtually in telegraphing
to a western, the instant of a fixed star's culmination at an eastern

station ; and afterwards, telegraphing to the eastern, at the instant

of the same star's culmination at the western station.

In connection with Talcott's Method for Latitude, it has been

used extensively in important Government Surveys, taking prece-

dence, whenever available, over all other methods.

Reduction of the Time Observations. See Form 12a. These

observations, as just stated, are in two groups ;
one before, and one

after the exchange of signals or comparison of chronometers. From
them is is be obtained the chronometer error at the epoch of ex-

change or comparison, which is assumed to be the middle of the

interval consumed in the exchange; this latter being about 12

minutes.

Let us resume the equation of the Transit Instrument approxi-

mately in the meridian,

a= T+ E+aA + lB+ C (c
- .021 cos 0), (164)

and let T denote the epoch, or the known chronometer time to

which the observations are to be reduced. Let us suppose also,

that of the three instrumental errors, a, b, and c, only b has been

determined, this being found directly by reading the level for every

star. The rate of the chronometer, r, is supposed to be known

approximately, and it is to be borne in mind that E is the error at

the time T. Then in the above equation E, a, and c are un-

known.

Now if we denote the error at the epoch by EQ , we shall have

E = E -(TQ ~T)r. (165)

And if E' denote an assumed approximate value of E , and e be

the unknown error committed by this assumption, we shall have,

E = E\+e-(T -
T) r, (166)

From which, Eq. (164) becomes

e + Aa + Cc + T- .021 cos +E\- (
T - T) r + El - a = 0,
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in which everything is known save e (the correction to be applied
to the assumed chronometer error at the epoch), a, and c.

Aa is called the correction .for azimuth.

Cc " " " " collimation.

.021 cos 0(7
" "

"J
" diurnal aberration.

(T T)r
" " " "

rate.

Bl " " " "
level.

Collecting the known terms, transposing them to the 2d mem-

ber, and denoting the sum by n, we have

e + Aa -\- Cc = n. (167)

Each one of the twenty stars furnishes an Equation of Condition

of this form, from which, by the principles of Least Squares, we

form the three " Normal Equations/'

2 (C) e + 2 (A C) a + 2 (0*) c = 2 (On),

from a solution of which we find a, c, and the correction, e, to be

applied to the assumed chronometer error at the epoch.

If either c or a be known, say c, by methods given under " The
Transit Instrument," then the correction for collimation for each

star, C c, should be transferred to the 2d member and included in n.

We then have only the two " Normal Equations/'

2 (A) c + 2 (A*) a = 2 (A ri),

from which to find 6 and a.

It is to be remembered that the middle ten stars have been ob-

served with the instrument reversed, and that such reversal changes
the sign of c, and therefore of the term C c. Hence in forming the
t(

Equations of Condition" for those stars, care should be taken to

introduce this change by reversing the sign of C. The sign of c as
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found from the " Normal Equations
"

will then belong to the col-

limation error c of the unreversed instrument.

Also, since reversing the instrument almost invariably changes

0, it is better to write a' for a in the corresponding
"
Equations of

Condition/' and treat a' as another unknown quantity. We will

thus have four " Normal Equations
"

instead of three, and derive

from them two values of the azimuth error, one for each position

of the instrument.

Sometimes, and perhaps with even greater accuracy, the solution

is modified as follows:

Independent determination of a and c are made, as explained

heretofore, by the use of three stars.

Adopting these, each star gives a value of the chronometer error

as per Form 1. The mean result compared with the similar mean

of preceding and following nights, gives the rate. The principle of

Least Squares is then applied (correcting also for rate) in the man-

ner just detailed, to obtain the corrections to be applied to these

values of a, c, and the mean chronometer error. With these cor-

rected values of a and c, new values of the chronometer errors are

found by direct solution (Form 1), the mean of which is adopted.

! Personal Equation. From (163) it is seen that although
errors in E and E' affect the deduced longitude directly, the effect

will disappear if they are equally in error.

Practical observers acquire as a rule certain fixed habits of ob-

servation whereby the transits of stars are recorded habitually

slightly too early or too late, thus affecting the deduced clock error

correspondingly.
The difference between the result obtained by any observer and

the true value is called his Absolute Personal Equation, and that

between the results of two different observers their Relative Per-

sonal Equation. In Longitude work this latter should always be

determined and applied to one of the clock errors, thus giving
values of E and E '

as though determined by a single observer, and

causing them if in error at all, to be as nearly equally so as possible.

To determine this Relative Personal Equation, the two observers

should, both before and after the longitude work, meet arid compare
as follows : one notes the transits of a star over half the wires of

the instrument, and the other the transits over the remaining half.

Each time of transit is then reduced to the middle wire by the
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Equatorial Intervals, and the difference between their respective
means will be a value of their relative personal equation. The

adopted value should depend upon twenty or thirty stars, and the

work be distributed over three or four nights.

Personal equation is not a constant quantity, and should be re-

determined from time to time. On j;he Coast Survey it is largely

eliminated by causing the observers to change places upon comple-
tion of half the observations for difference of longitude between the

stations.

Application of Weights and Probable Error of Final Result.

The probable error of an observed star transit may be divided fdr

practical purposes into two parts: the first, due to errors (apart

from personal equation) in estimating the exact instants of the

star's passage over the wires, unsteadiness of star, etc., is called the

observational error; the second, called the culmination error, is due

to abnormal atmospheric displacement of star, in exact determina-

tion of instrumental errors, anomalies and irregularities in the clock

rate, etc. Evidently the first is the only part of the probable error

which may be diminished by increasing the number of wires. It

may be determined for each observer as follows :

Having made several (m) determinations of the Equatorial In-

tervals as before explained, let each be compared with its known

value, giving for the probable error of a single determination

(Johnson, Art. 72),

. /?< = 0.6745 .
. (a)

Since these intervals depend upon observed transits over two wires,

we have for the probable error of an observed transit of an equato-
rial star over a single wire (Johnson, Art. 87),

For any other star this will manifestly be

R" sec 8,
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and for N wires the probable error of the mean will be

nn

For the smaller instruments of the Coast Survey R" = 8.08 about.

To determine the culmination error, R', for an equatorial star,

let R denote the combined effect of both errors; then

R may be found by comparing several (m) determinations of a

star's R. A. (all reduced to the same equinox) with their mean,

using the same formula as before. Multiplying the value thus

found by cos tf, we have the probable error for an equatorial star.

The mean result from many stars should be the adopted value of R.

For the smaller instruments of the Coast Survey R = 8.06

about.

Substituting in (c), making N= 15,

R' = 5
.056o

For any other star this will evidently be R' sec 8. Hence for the

probable error of the transit of an equatorial star over N9 or the

full number of wires,

and for any less number of wires,

R , =
n
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Since the weights of observations are proportional to reciprocals of

squares of probable errors, we have for the weight of an observation

on n wires (that 011 the full number being taken as unity),

0.0032. +1

0.003 +n n

Again, from what precedes it is seen that the total probable error

(R) of the transit of an equatorial star will become R sec d for any
other. Hence different stars will have weights inversely as sec

a
d.

In practice, however, slightly diiferent relations have been found to

answer better. For the instruments above referred to, the formula

, _ JL.6_P "1.6 -|- tan
2 d

has been adopted.
The report of the Chief of Engineers for 1873 gives

-L.O /7 \

P =
1 + 0.3 see' f

Therefore if each Equation of Condition in the Reduction of the

Time Observations be multiplied by the corresponding value of Vp
(Johnson, Art. 126), it will be weighted for missel wires.

In the same way, if multiplied by Vp' it will be weighted for

declination. It is, however, unusual to weight for declination when

The normal equations having been formed from the weighted

equations of condition in the usual manner, their solution will give

the chronometer error and its weight, pe . (Johnson, Arts. 132,133.)

The probable error of a single observation is then found by the

formula, (Johnson Art. 138),

--, (i)m q*
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where the residuals, v, are formed from the m weighted equations
of condition, and q is the number of normal equations.

The probable error of the chronometer correction as determined

by a single night's work will then be

Similarly we obtain pe

'
for the weight of the chronometer correction

at the other station, and the weight to be assigned to the resulting

longitude, from the relation between weights and probable errors,

will be

The weighted mean longitude as the result of m' nights' work will

then be

with a probable error

Circumstances must, however, decide as to the relative weights to be

assigned to the results of different nights. If the observations have

been conducted on a uniform system, it will perhaps be better to

give them all equal weight.

3. Longitude by Lunar Culminations. The moon has a rapid
motion in Eight Ascension. If, therefore, we can find the local

times existing on two meridians, when the moon had a certain

R. A., their difference of longitude becomes known from this differ-

ence of times.

Determine the local sidereal time of transit or E. A. of the

moon's bright limb, and denote it by v
From pp. 385-392, Ephemeris, take out the E. A. of the center

at the nearest Washington culmination. This the Sidereal Time
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of semi-diameter crossing the meridian, according as the east or west

limb is bright, taken from same page, will give the R. A. of the

bright limb, at its culmination at Washington. Denote this by <*w .

Now if an approximate longitude be not known, which will

seldom be the case, one may be established as follows : Let v =
moon's change in R. A. for. one hour of longitude, taken from same

page of Ephemeris. Then upon the supposition that this is uni-

form, we will have

t; : 1 : : <r,
- w : ', or L' = l

~ "w
,

L 9

being the approximate longitude from "Washington, whose

longitude from Greenwich is accurately known. With this value

of L' take from the Ephemeris a new value of v corresponding to

the mid-longitude J L', and determine as before a closer approxi-

mate longitude, L". If we are within two hours 01 Washington
in longitude, L" will be sufficiently close for the purposes to which

we are to apply it. If farther away, make one or two more approx-

imations, and call the final result Lap.

Lap will be true within a very few seconds of time even if the

observing station be in Alaska, situated 6 hours from Washington,
and even if the observations be made when the moon's irregularities

in R. A. are most marked.

With the approximate longitude (and this is one of the uses to

be made of this quantity, before referred to), we may now find the

sidereal time required for moon's semi-diameter to cross the merid-

ian of the place of observation by simple interpolation to 2d or 3d

differences in the proper column of the same page of the Ephemeris.
Denote this by 7\.

The greatest change in the time required for semi-diameter to

cross the meridian, due to a change of one hour in longitude, is

about 0.13 sec
. Hence, even if we could possibly have made an error

of 10 minutes in our determination of L^p , the value of T
t
can only

involve an error of about .02
sec when at its maximum. This would

involve a maximum error of about 0.5sec in the resulting longitude.
a

t TI = ofc will then be the R. A. "of the moon's center at the

instant of transit of the center.

On Pages V to XII of the Monthly Calendar are found the
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B. A. of the moon's center for each hour of Greenwich mean time.

The problem now is to find at what instant
(
Tg )

of Greenwich time

the moon's center had the E. A. determined by our observation.

This may be solved by an inverse interpolation; i.e., instead of

interpolating a K. A. corresponding to a given time not in the

table, we are to interpolate a time to a given R. A. not in the table ;

and in this interpolation the use of second differences will be quite
sufficient.

Therefore let T and T + 1 he the two Greenwich hours be-

tween which a, occurs.

Let d a be the increase of moon's R. A. in one minute of mean

time, at T . This is given on the same page.

Let 6' a be the increase of S a in one hour. Found from same

column by subtracting adjacent values of d a.

Let a be the R. A. given in the Ephemeris at T .

Then using second differences, we have

In this equation Tg T is expressed in seconds
; everything is

known but it, and its value may be found by a solution of the

quadratic. The result added to T gives Tg , or the Greenwich mean
time at which the moon's center had otc for its R. A. Convert this

into Greenwich sidereal time, call the result a
g , and our longitude

is known from

\=a
g

are . (169)

The preceding is the method to be followed where there is but

a single station.

Imperfections in the Lunar Tables from which the Ephemeris
is computed, render the tabular R. A. liable to slight errors. There-

fore from Equation (168) our values of Tg and hence a
g may be

incorrect from this cause, giving from Equation (169) an incorrect

longitude.

Differences between two tabular values are, however, nearly cor-

rect.

Hence it is more accurate to have corresponding observations
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of the moon's transit on the same day taken at a station whose

longitude is known.

Its longitude, found as above, will be

and the difference of longitude between the two stations,

V - A = - a
g)
-

(aa

' -
<*>),

inaccuracies of the Ephemeris being nearly eliminated in the differ-

ence (<xg
' a

g).

No method of determining longitude by Lunar Culminations is

sufficiently accurate for a fixed observatory. It may however be

used in surveys and expeditions where telegraphic connection with

a known meridian can not be secured. Even with the appliances
of a fixed observatory, the mean of several determinations is some-

times subsequently found to be in error by from 4 to 6 seconds of

time (Madras Observatory). Dependence should not therefore be

placed upon a single observation, but the operation should be re-

peated upon each limb as many times as may seem desirable. The

longitude derived from any determination may be employed as the

approximate longitude required in any subsequent determination.

Before proceeding to any details as to the observations and re-

ductions, it is well to note the effect of errors in either, upon our

result. The main outline of the problem consists in determining
the moon's R. A. at a certain instant, and then ascertaining from

the Ephemeris the Greenwich time of the same instant. Both the

moon's R. A. and the instant are denoted, at the place of observa-

tion, by ofc
= a

i TI . tx
t depends very largely upon accuracy of

observation and reduction. T
l depends upon interpolation with an

approximate longitude. As shown before, no error of assumed longi-

tude that could ever occur in practice, would have any appreciable

effect on T
t
. If the interpolation be properly performed, T

l
can

involve only very slight errors. But "whatever they may be, they
enter with full effect in ote , and when the final operation is per-

formed to determine the corresponding Greenwich time, an inspec-

tion of the tables will show that any error in ac is increased from
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to 30 times in the resulting longitude. In this way, as before

shown, an error of .02 s in Tl
is amplified into .5

s in the result.

Errors in a
l
affect atc , and therefore the result, in the same

manner; hence we see that considerable care is necessary in both

observation and reduction. At the very best, the result is liable to

be in error from 1 to 3 seconds. In latitude of West Point, 1

second of time = 1142 feet in longitude.

Observations and Reductions. The transit instrument is sup-

posed to be pretty accurately adjusted to the meridian, and the

outstanding small errors a, b, and c, measured. The rate of the

sidereal chronometer is also supposed to be known.

Note the chronometer time of transit of the moon's bright limb

over each wire of the instrument. In this case, as witji a star, the

time of culmination is found by reducing the observations to the

middle wire and then correcting for the three instrumental errors.

See Form 1. But in case of the moon these reductions and correc-

tions take a somewhat modified form due to the two facts that the

moon has a proper motion in R. A., and also a very sensible parallax

in R. A. when on a side wire. Hence (see note following) we have

F instead of sec 6', for the reduction to the middle wire,n n

and
(
4 a + B b -f Cc') Fcos <?' instead of A a -f B b + Cc, for the

instrumental correction; and the Equation of the Transit Instru-

ment as applied to this case becomes,

a
l
= +^-lF+fi+ (Aa + Bb + Cc') Fcos 3'. (170)n n

In this equation 2 T is the sum of the observed times, n the num-
ber of wires used, 2 i the sum of their equatorial intervals, d' the

moon's declination as seen, i.e., as affected by parallax, and

F= [1
- p sin n cos (0'

-
*)] sec *

p being the earth's radius at place of observation in terms of the

equatorial radius, 7t the moon's equatorial horizontal parallax, 0'

the geocentric latitude, (da) as already stated, and 6 the moon's

geocentric declination. These quantities must be found before the
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reduction can be made. The mode of finding p and 0' has already
been explained. To find TT, d, and (d a), note in addition to the

transit of the moon's limb that of one or more stars at about the

same altitude, and which culminate within a few minutes of the

moon. The difference between the times of passing the middle

wire applied to the star's R. A. will give an approximate value of

al9 from which an approximate longitude is determined as before

explained. With this, it may be taken from page IV, and d and

(d a) from pp. V to XII, Monthly Calendar. F thus becomes

known. Evidently

d' 6 />7rsin(0' 6)

with sufficient accuracy, and the computation of a
l can now be

made.

One of the greatest inaccuracies to be apprehended is a failure

to determine a very exact value of E for the instant of transit.

This quantity may be eliminated, or very nearly so, as follows :

If two or more fundamental stars, those whose places have been

established with the highest degree of accuracy, be selected so that

the mean of the times of their transits shall be very closely the time

of transit of the moon's limb, then the mean of their equations will

be, corresponding to a mean star,

Cc'}a. (171)

Subtracting from Eq. (170), since E and Es denote errors at

almost the same instant, we have

(172)

in which E has disappeared.

If E and Es differ, their difference will be simply the change of

error in, for example, ten minutes, which can be accurately allowed

for by the chronometer's well-established rate. Moreover, if the

stars be selected so that their declinations differ but slightly from
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that of the moon, it is evident that the last terms of Eqs. (170) and

(171) will be nearly the same, and that their difference in Eq. (172)

will be a minimum. See expressions for A, B, and C, in connection

with Form 1.

By this method, therefore, the E. A. of the moon's limb, a
t , is,

from Eq. (172), made to depend very largely upon the R. A. of

fundamental stars; instrumental and clock errors being reduced to

a minimum of effect.

The stars should be selected from the Ephemeris in accordance

with the above conditions, and observed in connection with the

moon.

>J* To deduce Equation (170).

In the Equation of the Transit instrument, the quantities
^"w*

*

- sec 6 (embraced in T), and (Aa + Bb -j- Cc') denote respect-n

ively the times required for a star whose declination is d to pass

from the mean to the middle wire and from the middle wire to the

meridian. In the case of the moon these intervals (or hour-angles)

require modification, both on account of parallax and proper motion.

The Ephemeris values of R. A. and Declination are given for

an observer at the earth's center; but on account of our proximity
to the moon, an observer on the surface always sees that body dis-

placed in a vertical circle, which results in a displacement or paral-

lax both in declination and (unless the body be on the meridian)

R. A. Hence it is that when the moon's limb appears tangent to

a side wire as at M', Fig. 26, it is in reality at M. Therefore the

FIG. 26.

apparent hour-angle ZP M' requires a correction to reduce it to

the true hour-angle ZP M?
and the result is to be further modified
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due to the moon's own motion in R. A. The following is based on

the method given by Chauvenet.

To deduce the relation between the true and apparent hour-

angles, let them be represented respectively by P and P', the cor-

responding zenith distances by z and z', and the declinations by d

and 6', Z being the geocentric zenith.

Then

sin P : sin A : : sin z : cos #,

sin P' N

: sin A : : sin z
f

: cos 6'9

sin P sin z cos d

sin P'
' "

sin z'
'

cos 6"

. . sin 2 cos 6'
sin P = sin P > -nro

sm 2' cos d

Or, since P and P' are very small when the limb is on a side wire,

we have, expressing them both in seconds,

p =p,smz_ cos

sin z' cos

P is the time which the limb with an hour-angle P f would require

to reach the meridian if the moon had no proper motion. The

actual interval is greater than P on account of the moon's contin-

ual motion eastward or increase in R. A., resulting in a retardation

of its apparent diurnal motion.

To determine this, the Ephemeris gives at intervals of one hour

the moon's motion in seconds of R. A. in one mean solar minute

= da. One m. s. minute = GO X 1.002738 ^ 60.1643 sidereal

seconds. Hence in one sidereal second the moon moves
ou. -

seconds eastward, and therefore its apparent diurnal motion west-
Ok

ward .is only 1 -- in the same interval. In other words,
bO.

this is the apparent rate of the moon in diurnal motion at the in-
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stant considered. Denote it by R. Then the time required to

traverse the true hour angle P (or the apparent, P'), will be

p,
sin z cos &' 1

sin z' cos d R'

When the limb is on the mean of the wires, the apparent hour
%r

angle, P', from the middle wire becomes - - sec d f

(since d', not &, is
Ws

the declination of the point as observed), and when on the middle
wire P' becomes- [a sin (0 d') -f b cos (0 6') -f c'\ sec 6'.

Hence to pass from the mean of the wires to the meridian re-

quires
., 4

" '"

> -"'"'*

^ sec d' +
(a

sin (0 - tf') + cos (0 - <?') + (A sec d

x sin z cos d' 1 2 i sin 2 1
x 5

= ITS? S

cos

Placing
-

j sec d = F, the Equation of the Transit instru-
sin z &

ment as applied to the moon, becomes, designating the R. A. of the

limb by al9

a
t
= + E+

l F+ (Aa + 55 + Cc') Pcos d'. (170)

For purposes of computation the value of F may be simplified

by expressing . , in terms of quantities given in the Ephemeris.

Let n = moon's equatorial horizontal parallax, p the parallax in

altitude, and p as heretofore. .
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Then

sin z _ sin (z
f

p) _ sin z
f

cosp cos z' smp _
sin z'

~
sin z' sin z'

cosj? cos z' p sin TT
;

since sinp = p sin n sin 2'.

Expanding cos z' = cos (z -}-p), placing sin'jt?
= and cos z =

cos (0' tf), we have

sin z . ,
,

..

T = 1 ft Sin 7T COS (0 #)
sins'

and

.F= [1 p sin TT cos (0' <?)] sec tf
-^.

Evidently we may also write,

6' = 3 - pTtsin (0'
-

6).

4. Longitude by Lunar Distances. On pp. XIII to XVIII of the

Monthly Calendar in the Ephemeris are found the true or geocen-
tric distances of the moon's center from certain fixed stars, planets,

and the sun's center, at intervals of 3 hours Greenwich mean time.

If then an observer on any other meridian determine by observation

one of these distances, and note the local mean time at the instant,

he can by interpolation determine the Greenwich mean time when
the moon had this distance, and hence the longitude from the

difference of times.

The planets employed are Venus, Mars, Jupiter, and Saturn, and

the fixed stars, known as the 9 lunar-distance stars, are a Arietis

(Hamal), a Tauri (Aldebaran), ft Geminorum (Pollux), a Loonis

(Regulus), a Virginia (Spica), a Scorpii (Antares), a Aquilas

(Altair), a Piscis Australis (Fomalhaut), and a Pegasi (Markab).
From this list the object is so selected that the observed distance

shall not be much less than 45, although a less distance may be

used if necessary.

The distance observed is that of the moon's bright limb from a

star, from the estimated center of a planet, or from the nearest
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limb of the sun. If the sextant telescope be sufficiently powerful
to give a well-defined disc, we may measure to the nearest limb of

the planet, and treat the observation as in the case of the sun.

Thus in Fig. 27, letting Z represent the observer's zenith, and G'

FIG. 27.

and C" the observed places of the sun and moon respectively, the

distance measured is S' M', from limb to limb.

The effect of refraction is to make an object appear too high, and

that of parallax, too low. In the case of the sun the former out-

weighs the latter. In the case of the moon the reverse
.
is true.

Hence the tr-ue or geocentric places of the two bodies would be

represented relatively by 8 and M, and the distance 8 M, from

center to center, is the one desired.

The outline of the method is as follows :

Having measured the distance 8f

M', and corrected it for the

two semi-diameters; and having also measured the altitudes of the

two lower limbs and corrected them for the respective semi-diame-

ters, we have in the triangle Z
'

Cf C" the three sides given, from

which we find the angle at Z. Then having corrected the observed

altitudes for refraction, semi-diameter and parallax, we have in the

triangle Z S M, two sides and the included angle Z, to compute the

opposite side S M.

Before proceeding to the more definite solution, three points
should be noticed.

1st. The semi-diameter of the moon as seen from the surface of

the earth is greater than it would appear if measured from the

center of the earth, due to its less distance. Hence C" M' is an



142 PRACTICAL ASTRONOMY.

"
augmented semi-diameter" and must be treated accordingly. The

augmentation in case of the sun is insignificant.

2d. Since refraction increases with the zenith distance, the re-

fractioji for the center of the sun or moon will be greater than that

for the upper limb, and that of the lower limb will be greater than

that 'of the center. The apparent distance

of the limbs is therefore diminished, and the

whole disc, instead of being circular, presents
an oval figure, whose vertical diameter is the

least, and horizontal diameter the greatest,

as shown in Fig. 28. Therefore if c d denote

the direction of the measured distance, the

assumed semi-diameter, cf, will be in excess

by the amount e /, and must be corrected

accordingly. This correction becomes of

FlG - ^
importance if the altitude of either sun or

moon be less than 50 at the moment of observation.

3d. Since the vertical line at the station does not in general

pass through the earth's center, but intersects the axis at a point
R. (see Fig. 17), it is most convenient to reduce our observations at

first to the point R, regarding the earth as a sphere with R as a

radius, and then to apply the small correction due to the distance

CRf in order to pass to the true or geocentric quantities.

In the following explanation, the body whose distance from the

moon is measured is taken to be the sun. The result will then

apply equally to a planet if its lirnb be considered
;

if its center be

considered, the expression for its semi-diameter becomes zero. If

the body be a fixed star, the expressions for its semi-diameter and

parallax become zero.

Let h" = measured altitude of moon's lower limb, corrected for

sextant errors.

H" = measured altitude of sun's lower limb, also corrected.

d" = measured distance between moon's bright limb and

nearest limb of sun, also corrected.

T = local mean solar time at instant of measuring^".
L' = an assumed approximate longitude.

= latitude.

Note the readings of the barometer and of the attached and ex-

ternal thermometers.
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With T and L', take from the Ephemeris the following quan-

tities :

s = geocentric semi-diameter of moon.

n = equatorial horizontal parallax of moon.

$ = geocentric declination.

8 = semi-diameter of sun.

D = geocentric declination of sun.

P equatorial horizontal parallax of sun.

i The first two are obtained from page IV, monthly calendar, or

pages 385 to 393 Sphemeris.
The third from pages V to XII, monthly calendar, or pages 385

to 393 Ephemeris.
The fourth and fifth from page I, monthly calendar, or from

pages 377 to 385 Ephemeris.
The sixth from page 278 Ephemeris.
We must now correct d" for both semi-diameters, augmented in

case of the moon. Therefore with h" + s and s as arguments, enter

the proper table and take out the amount of augmentation. In the

absence of tables this may be computed by the formula,

Augmentation = Tc s' sin (h" + s) -f I k* s* + \ k* s
3
sin

2

(h" + s) ;

in which log k = 5.25020 10, and s is expressed in seconds. (For

deduction of this series see Note 1.)

Add this correction to s and we have s' = moon's semi-diameter

as seen from point of observation.

We now have (neglecting the distortion of discs), the following

values of the observed quantities reduced to the centers of the ob-

served bodies, viz. :

Using these quantities we may now find the correction due to

distortion of discs (or refractive distortion), as follows: From
tables of mean refraction take out the refractions corresponding to

the altitude (h' + s') of the upper limb, to that (h
r

s') of the

lower, and that (h') of the center. The difference between the

latter and each of the other two gives very nearly the contraction

of the upper and lower semi-diameters of the moon. This may be

repeated once if the refractions are very great due to a small alti~
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tude. The mean of the two is the contraction of the vertical

semi-diameter due to refraction. Denote it by AS, and the same

quantity in case of the sun by A S.

These quantities are represented by a b in Fig. 28, and from them

we are to find ef, or the distortion in the direction of d" . This is

found to vary very nearly as cos
2

q,\"q being the angle which d"

makes with the vertical. (See Note 2.)

The values of q, or Q in case of the sun, will be found from the

three sides of the triangle Z C' C'', Fig. 27. Their values, page 6,

Book of Formulas, will be, if m = % (d'+ h' + H').

cos m sin (m H') . ~ cos m sin (m h')sm3

\ q = -
. jf 77 '-, sm2

1 = r ,,.

v

^7 '-.

sin d' cos h' sm d' cos H'

And the refractive distortions will be, from the above,

A ,9 cos
2

g, and A 8 cos
2

Q.

Hence the fully corrected values of the measured quantities are

d' = d" + (*' -As cos
2

q) + (S - A cos
2

Q),

V = h" + s
r - AS, H 9 = H" + S - AS.

We now have the distance (d'), between the centers and the

altitudes of the centers (h
f and H'), as these quantities would have

been had we been able to measure them directly. We must now
ascertain what they would have been had we measured them at the

center of the earth; or, as a first step, had we measured them at the

point R.

This is necessary, because the earth not being a perfect sphere,

the transference of an observer to the center would not displace a

body (apparently) toward the astronomical, but toward the geocen-
tric zenith, and the angle at Z, Fig. 27, would no longer be com-

mon to the two triangles. But by regarding the earth as a sphere
with radius R, Fig. 17, the two zeniths will coincide, and the

reduction therefore be easily made. Afterward a correction is to be

applied due to a transference of the observer from R to C.

Therefore let H
t , h,, and d

t ,
be the values of H', h', and d',

when referred to R, and let r
t
and r be the actual refractions for
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H' and h'. It will be shown in Note 3 that n (the angle sub-

tended by the equatorial radius at the distance of the moon) is to

n
l9
the angle subtended by R, as a, the equatorial radius, is to .

Therefore it, the parallax at R, equals . On account of the greater

distance of the sun, P will be practically the same for R as for C.

Therefore, Art. 83, Young,

h
t
= li' r + K

4
cos (h' r)

#, = #'- r, + P cos (ff'-r,)

In order to find d
t,

let S and M (Pig. 29) represent 'the places

FIG. 29.

of the sun and moon as seen from the point R without refraction,

given by H,, h,, and d,\ and C' and C" the places as observed,

(given by H', V and d').

Then in triangle Z C' C",

cos d' sin h' sin //' _, .

cos ^ = -
r, rr/ Page 6, Book of Formulas.

COS iv COS .Li
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From triangle Z S M,

cos d. sin li . sin H.
cos Z= - -

7
--

-FJ
--

'. Page 6, Book of Formulas.
cos li

t
cos H

t

Equating these two values of cosffe', adding unity to both mem-
bers and reducing,

cos d' + cos (V -f H') = -cos ^ + cos
(ft, + #,)

cos li' cos 77' cos 7^ cos H
t

Make m = (7*'+77'-M')> whence cos (7*'-|- 77')
= cos (2 ra-d').

Substituting in the preceding equation, reducing the first member

by formulas 4, page 4, 11, page 2, and 13, page 1, and the second

member by formulas 9 and 10, page 2, we have

cos m cos (m d') __ cos
2

J (]it -\- H4 ] sin 2 d
t

cos A' cos Hf cos / cos

Whence,

1/7 , 7-7-x cos/i y cos Ff.
sin

2

1 ^y
= cos

2

i (7^ + ZT.)
---^--^ cos m cos (m ^').cos h cos ^T'

/

This 'may be placed in a more convenient form by assuming

cos Ji
t
cos H

t
cos m cos (m d') _ . 2

cos A' cos #' cos
2

Whence sin J ^y
= cos J (^y -J- Ht )

cos J^".

We now have the distance between the centers as it would have

been without refraction, if measured from the point 7. This is

represented by the line S M. (Fig. 29.)

The transference of the observer "to the center will, since this

motion lies wholly in the plane P MR, have the effect of appar-

ently diminishing the declination of the moon, causing it to appear
at M'',

while the position of S will not be sensibly changed.
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It will be shown in Note 4 that the correction to be added to

d, (S M) to give d (8Mr

)
is

7t 6* sin0 /sinD _ sin fl\ _ . /sinZ) _ sin #\

4/1 e* sin2^ \sind, tan^J \sm^, tandj*

e being the eccentricity of the meridian = 0.0816967.

Hence we have finally, denoting the geocentric distance between

centers by d,

. /sin D smd\
d. + n% I-T 7 rj' ' \sm d, tan d,/

This operation of finding d from the observed quantities is called
"
Clearing the Distance."

It is now necessary to find the Greenwich mean time when the

moon and sun were separated by the distance d. For this purpose
enter the Ephemeris at the pages before referred to, and find there-

in two distances between which d falls. Take out the nearer of

these and the Greenwich hours at the head of the same column.

Then if A denote the difference between the two distances, and A '

the difference between the nearer one and d, both in seconds, we
shall have, using only first differences, for the correction, t, to be

applied to the tabular time taken out,

A:3h
:: A':*h

.-.*
h = - A'.

3h

Or log t
h = log

--
h log A '.

Or in seconds, log t
s

log=--j- log A '.

The logarithms of- are given in the columns headed "
P.

L. of Diff." (Proportional Logarithm of Difference.) Hence we
have simply to add the common logarithm of A '

in seconds to the

proportional logarithm of the table to obtain the common logarithm
of the correction in seconds of time.
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To take account of second differences, take half the difference

between the preceding and following proportional logarithms.
With this and t as arguments enter table 1, Appendix to Ephem-
eris, and take out the corresponding seconds, which are to be added

to the time before found when the proportional logarithms are

decreasing, and subtracted when they are increasing.

Denote the final result by Tg , and the difference of longitude

by A. Then

\=Tg -T. (173)

The mode given above for clearing the distance is quite exact,

but somewhat laborious. There are, however, several approximative

solutions, readily understood from the foregoing, which may be

employed where an accurate result is not required, and which may
be found in any work on Navigation.

The method by
" Lunar Distances "

is of great use in long voy-

ages at sea or in expeditions by land, where no meridian instru-

ments are available, and when the rate of the chronometers can no

longer be relied upon.
It is important to note that if Tin Eq. (173), denote the chro-

nometer time of observation, instead of the true local time, T
g T

will be the error of the chronometer on Greenwich time. In this

way chronometers may be " checked." If, however, T denote the

true local time, obtained by applying the error on local time to the

chronometer time, then the same equation gives the longitude.

Observations. It is necessary that A", //", and d" should cor-

respond to the same instant T. Hence observe the following order

in making observations. Take an altitude of the sun's limb, then

an altitude of the moon's limb, then the distance, carefully noting
the time, then an altitude of the moon's limb, then an altitude of

the sun's limb. A mean of the respective altitudes of the two limbs

will give very nearly the altitudes at the instant of measuring the

distance.

For greater accuracy, several measurements of the distance may
be made, and the mean adopted. Also, when possible, at least two

stars should be used on opposite sides, of the moon, for the purpose
of eliminating instrumental errors.

The accuracy of the result will depend upon the observer's skill

with the sextant, and mode of reduction followed.
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f 1. To Find Augmentation of Moon's Semi-diameter. In de-

termining the augmentation of the moon's semi-diameter due to its

altitude, the ellipticity of the earth is practically insensible. There-

fore (Young, p. 62), denoting the altitude of the center (h" -\- s)

by h'9 the parallax in altitude byp, and the augmented semi-diameter

by s',

?' = *
COS ll'

cos

, . , / cos li' cos (li
r

Augmentation = G = s' s = s
\

-
/7 ,

v

\ cosh'

By page 4, Book of Formulas,

cos h' cos (h' + p) = 2 sin J (h' + h' +p) sin

2 s
G = --

Tyy r Sm (ll' + | ) SHI \ ffl.

cos
'

Expanding the sine and cosine of the sums, writing \ p for sin

9, and unity for cos J p, we have

cos 7^

cos 7^' sin li

p = TT cos^' (Young, p. 61).

According to the Tables of the Moon, the relation between n
and s is constant, such that

- 3.6697 s.

Hence^ = 3.6697 s cos //.

Designating this numeral by k'

_ k' s* (sin h' + \ V s cos
2

1 &'ssin h'

By division,

G = k's> sin A' + $ &" 5
s + J-

^'
2
s" sin* /*' + etc.
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Multiplying by sin 1" to reduce G to seconds,

G = Jc s
2
sin h' + k* s

s + \ k' s
3
sin

2
h' + etc., (174)

in which log k 5.2502 .10.

{ 2. To Deduce the Law of Refractive Distortion. In Fig. 28,

let A' denote the altitude of the center, and h" that of any point of

the limb, as /. Then the difference of mean refraction for c and /
will be (Young, p. 64),

coU"), (1)

in which a is the constant 60".6.

Denoting the angle acfloyq, and the semi-diameter by s,

h" = h' + s cos q. (2)

From Trigonometry,

,, _ 1 tan h' tan (s cos q)

tan h' -j- tan (s cos q)
*

Substituting in (1), and writing s cos q tan 1" for tan (s cos q),

we have,

& _ (
s cos # *an 1

\ tan
3
h'

tan
9

-f- ^ cos
<7
tan 1" tan A' /

The last term in the denominator is insignificant compared with

tan
8
h' ; hence

F = a cosec
2
h' s cos q tan 1", (3)

which by (1) and (2) will be the difference between that ordinate

of the ellipse and the circle which passes through/.
Hence the line e/will be,

Kefractive Distortion = a cosec 1 h' s tan 1" cos* q.
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If q 0, we have a b = contraction of vertical semi-diameter =
As = a cosec

2
Ji' s tan 1". Hence finally,

Refractive Distortion = A s cos
2

q. (175)

| 3. To Deduce the Parallax for the Point -R.

By making x = o in Equation (95), and reducing by (108), (99)
and (100), we have for the distance R C (Fig. 17 or 29),

a e* sin

Vl e* sin
2

0*

Denoting the distance R by y, the triangle ROC gives

ae2

sin0 .
,"^ =r

7~. ri-
: # :: sm (0

-
)

: cos
VI e sm'

a a1

sin cos 0'~
sin (0 - 0') yT- e'sin" 0*

Developing sin (0 0'), cancelling and applying (125),

Vl - e> sin
2

Comparing with second part of (112) it is seen that the denom-
inator is sensibly the value of p expressed in terms of a as unity.
Hence

The angles at the moon subtended bv the two lines a and

will be proportional to those lines. Therefore

n, = 5. (176)

^* 4. To Determine the Difference between dt
and d

y due to a

Transference of the Observer from R to C.
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By the previous note we have (Fig. 29),

Vl - e
2

sin
3

The perpendicular distance, C N^ from the center to the line

R M, is, with an error entirely negligible,

a e* sin cos d
'

Vl e
2 sin

3

0*

As before, the angle at the moon subtended by this line will be

a e* sin cos # n _ 7t e* sin cos d

Vl e* sin
y a V I e'

2

sin
2

which is therefore the angular apparent displacement of the moon,

represented by the arc M M' (Fig. 29).

Denote it by m. Then, in the triangles P M' 8 and MM' 8,

cos ,as
cos d, cos m cos d sin D ~ sin tf cos d--'--- --- - - -

sin m sin d cos 6 sin d

Eeducing, replacing cos m by unity,

cos d, cos d

= sin
/sin D sin tf cos d\

Vcostf cos d J

FIG. 30.

From Fig. 30, it is seen that when

d
t
and d are nearly equal, as in the

present case, we may replace cos d'

cos d by sin (d d
4 )

sin d
t

.

Therefore

Or

. . . / sin D sin 6 cos d\
sin (a a.)

= sin m --^. -j
----

> : ^ ).

\cos d sm d, cos tf sin ,/

= _^sm_^= /sin/) _ rin*
y

Vl e* sin2 xsin rf,
tan rf,/
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OTHER METHODS OF DETERMINING LONGITUDE.

1st. If two stations are so near each other that a signal made at

either, or at an intermediate point, can be observed at both, the

time may be noted simultaneously by the chronometers at the two

stations, and the difference of longitude thus deduced. An appli-

cation of the same system, by means of a connected chain of signal

stations, will give the difference of longitude between two remote

stations. The signals are usually flashes of light either reflected

sunlight or the electric light, passed through a suitable lens.

3d. By noting the time of beginning or ending of a lunar or

solar eclipse, or by occupations of stars by the moon. For these

methods, see various Treatises on Astronomy.
3d. By Jupiter's Satellites. a. Prom their eclipses. The

Washington mean-times of the disappearance of each 'satellite in

the shadow of the planet, and reappearance of the same, are accu-

rately given in the Ephemeris, pp.452-473, accompanied by diagrams
of configuration for convenience of reference. A full explanation
of the diagrams is given on p. 449. An observer who has noted one

of these events, has only to take the diiference between his own
local time of observation and that given in the Ephemeris, to obtain

his longitude. This method is defective, since a satellite has a sen-

sible diameter and does not disappear or reappear instantaneously.

The more powerful the telescope employed, the longer will it con-

tinue to show the satellite after the first perceptible loss of light.

These facts give rise to discrepancies between the results of differ-

ent observers, and even between those of the same observer with

different instruments. Both the disappearance and reappearance
should therefore be noted by the same person with the same instru-

ment, and a mean of the results adopted. The first satellite is to

be preferred, as its eclipses occur more frequently and more sud-

denly, although both disappearance and reappearance cannot be

observed.

b. From their occultations by the body of the planet. The times

of disappearance and reappearance to the nearest minute only, are

given on same pages of the Ephemeris. Since the times are only

approximate, they simply serve to enable two observers on different
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meridians to direct their attention to the phenomenon at the proper
moment. A comparison of their times will then give their relative

longitude.

c. From their transits over Jupiter's disc.

d. From the transits of their shadows over Jupiter's disc. The

approximate times of ingress and egress, to be used as in case &, are

given on same pages of the Ephemeris, for cases c and d.

Application to Explorations and Surveys. On explorations, and

reconnoissances for more exact surveys, the observer will usually be

provided only with a chronometer, sextant, and artificial horizon,

with probably the usual meteorological instruments.

The chronometer should be carefully rated and have its error on

the local time of some comparison meridian (e.g., that of Washing-

ton) accurately determined for some given instant, so that, by ap-

plying the rate, its error on the same local time may be found

whenever desired.

The sextant should have its eccentricity determined before

starting, since this error often exceeds any ordinary index error,

and cannot be eliminated by adjustment.
The observer should be able to recognize by name several of the

principal Ephemeris stars. To determine the coordinates of his

station when they are entirely unknown, he should first find the

chronometer error on his own local time, using preferably the

method by
"
equal altitudes of a star," since, as has been seen, he

will then be independent of any knowledge of the star's declination,

his own time, latitude, longitude, or instrumental errors.

Observations for latitude may be made at any convenient time

by
" circum-meridian altitudes

"
of a south and north star, or of a

south star only, combined with " Polaris off the meridian/' the

reductions being made by aid of the chronometer error just re-

ferred to.

The method by
"
circumpolars

"
may also be used as a verifi-

cation when applicable, the reduction being very simple.

The longitude is known as soon as the chronometer error on

local time is known, by comparing this with its known error on the

local time of the comparison meridian. - However large the rate of

a chronometer, it should be nearly constant; but after some time

spent in traveling, with possible exposure to extremes of tempera-

ture, its indications of the comparison meridian time are rendered
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somewhat uncertain by the accumulation of unknown errors, thus

introducing the same uncertainties into our longitudes. In such

cases the method by
" lunar distances

"
will afford an approximate

reestablishment of the chronometer error on the comparison merid-

ian time, or a correction to an assumed approximate longitude.

If it be impracticable to find the local time by equal altitudes as

recommended, on account of clouds or the length of time involved,

it may be found by
"
single altitudes

"
of an east and a west star

(or of a single star when necessary, either east or west), an approxi-

mate value of the latitude required in the computation being found

from the best obtainable value of the meridian altitude of the star

observed for latitude. With the error thus found the latitude is

found as before, which, if it differs materially from the assumed

approximate value, must be used in a recomputation of the time.

From this the longitude follows as before.

If the latitude be known or approximately so, as at a fixed sta-

tion or when tracing a parallel of latitude, time and longitude will

be most expeditiously determined by "single altitudes."

In certain classes of work it is necessary to obtain approximate
coordinates by day, in which case of course the sun must be used in

accordance with the same general principles as far as applicable.

In all sextant work, except in methods by equal altitudes, its

adjustments and errors must be carefully attended to.

In extensivejsurveys and geodetic work, where very precise results

are required, the methods employed are " Time by Meridian Tran-

sits
" with the reduction by Least Squares, Longitude by the Elec-

tric Telegraph, and Latitude by the Zenith Telescope. The ob-

serving-instruments should be mounted on small masonry piers or

wooden posts set about four feet in the earth and isolated from the

surrounding surface by a narrow circular trench one or two feet

deep.

The exact location of an astronomical station is preserved, if de-

sired (as when the station is one extremity of a base-line), by a

cross on a copper bolt set in a block of stone embedded two or three

feet below the surface, the exact location of which is recorded by
suitable references to surrounding permanent objects.

Often it is required to determine the coordinates of a point
where it is impracticable to locate an astronomical station, as for

example alight-house or a central and prominent building of a city.
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In such a case, having made the requisite observations at a suitable

station in the vicinity, and having computed by (111) and (114) the

length in feet of one second in latitude and longitude, measure the

true bearing and distance of the point from the station, from which

the coordinates of the former with respect to the latter are readily

computed.
In locating points at intervals on a line which coincides with a

parallel of latitude, sextant observations for latitude which can be

quickly reduced will give, as just explained, the approximate dis-

tance of the observer from the desired parallel, to the immediate

vicinity of which he is thus enabled to proceed. At this point a

complete series of observations for latitude is made with the zenith

telescope, and the resulting distance to the parallel carefully laid

off due north or south.

In this manner points about twenty miles apart were located on

the 49th parallel between the U. S. and the British Possessions.

TIME OF CONJUNCTION OR OPPOSITION.

Two celestial bodies are said to be in conjunction when either

their longitudes or their right ascensions are equal; and in opposition

when they differ by 180. In the Ephemeris the conjunctions and op-

positions of the moon or planets with respect to the sun refer to their

longitudes. Conjunctions of the moon and planets or of the planets

with each other refer to their right ascensions. In other cases, when
used without qualification, the terms usually refer to longitudes.

The longitudes of the principal bodies of the solar system (or

the data from which they may be computed) are given in the

Ephemeris for (usually) each Greenwich mean moon. To find the

time of conjunction, determine by inspection of the tables the two

dates between which the longitudes of the bodies become equal, and

denote the earlier date by T. Take from the tables four consecutive

longitudes for each body two next preceding and two next follow-

ing the time of conjunction. Form for each the first and second

differences, which give, from (42),
2

jjn j j- u,
j \

- _ u/
2 V^v

and
7i

a w ,
,
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in which Ln is the unknown common longitude at conjunction, and

n in the second member is the required fractional portion of the

interval between the consecutive epochs of the tables.

Subtracting and collecting the terms

(c)

from which n is found by solution; the corresponding portion of

the constant tabular interval is then added to T, thus giving the

Greenwich time of conjunction. The time on any meridian to the

west of Greenwich is found by subtracting the longitude. The

value of n should be carried to three places of decimals to obtain

the time to the nearest minute.

The method of finding the time of opposition is obvious from

the above, noting that (c) becomes

_ d; + t=4 n = 180 + L' - L. (d)

Except when the moon is involved, the use of first differences will

usually be found sufficient.

The times of conjunction and opposition in right ascension are

found iii accordance with the same principles.

TIME OF MERIDIAN PASSAGE.

To determine the local mean solar time of a given body coming
to the meridian, it is to be noted that this time (P) is simply the

hour angle of the mean sun at that instant, and that this hour

angle is, by the general formula, P = sidereal time K. A. of the

mean sun.

Now the sidereal time at the instant is equal to the R. A. of the

body on meridian, and this is equal to its R. A. at the preceding
Greenwich mean moon () plus its increase of R. A. since that

epoch, which is equal to m (P+ A), A being the longitude from

Greenwich, and m the body's hourly increase in R. A. Or, sidereal

time = a -f- m (P -f- A).

Similarly we have, denoting the hourly increase of mean sun's

R. A. by s, R. A. of mean sun = aa + s (P + ^)-
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Therefore by the preceding formula,

P = [> + m (P + A)]
- [a.+ s (P + A)].

Since m and s denote seconds of change per hour, A and P in

the second member are expressed in hours, and m (P -f A) and

s (P -f- A) as also a and. ixs in seconds; therefore P in the first

member is expressed in seconds. To express it in hours, we have

[a + m (P + A)]
-

[
a. -f 8 (P + A)]

3600

Solving, we have

3600 (m s)

In this equation a and as are given directly in the Ephemeris,
A is supposed to be known, and s is constant and equal to 9.8565

seconds; m is obtained from the column adjacent to the one giving

yalue of a, and should be taken so that its value will denote the

change at the middle instant between the Greenwich mean moon

and the instant under discussion, viz., % (P + A), as near as can be

determined.

For the moon, whose motion in R. A. is varied, and for an in-

ferior planet, a second approximation may be necessary. If the

planet have a retrograde motion, m becomes negative. If the body
be a star, m becomes zero.

If the sidereal time of culmination be required, the above

formula holds, substituting for the mean sun the vernal equinox,

whose R. A. and hourly motion in R. A. are zero.

Hence,
a + Xm
3600 m

For a star, P' = a.

AZIMUTHS.

Definitions. In surveys and geodetic operations it often becomes

necessary to determine the "azimuth" of lines of the survey; i.e.,

the angle between the vertical plane of the line and the plane of the

true meridian through one of its extremities; or, in other words,
the true bearing of the line.
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For reasons given under the head of Latitude, the geodetic may
differ slightly from the astronomical azimuth of a line. Only the

latter will be referred to here, and it is manifestly the angle at the

astronomical zenith included between two vertical circles, one coin-

ciding with the astronomical meridian, and the plane of the other

containing the line in question.

Outline. In outline, the method consists insmeasuring with the
" Altazimuth "

or " Astronomical Theodolite "
the horizontal angle

which is included between the line and some celestial body whose
R. A. and Declination are well known. Then having ascertained

by computation the true azimuth of the body at the instant of its

bisection by the vertical wire, the sum of the two will be the true

azimuth of the line. As will be shown later, the celestial bodies

best adapted for the determination of azimuths are circumpolar
stars. For this reason azimuths in surveys and geodetic work are

usually reckoned from the North Point through the East to 360.
Instruments. The " Astronomical Theodolite "

is provided with

both horizontal and vertical circles. In geodetic work the latter is

used largely as a mere finder,

but the former is often of

great size usually from one

to two feet in diameter, and

very accurately graduated

throughout. For reading
the circle, it is provided
with several reading-micro-

scopes fitted with microm-

eters, in lieu of verniers;

and in order that any angle

may be measured with dif-

ferent parts of the circle,

the latter is susceptible of

motion around the vertical

axis of the instrument.

Eccentricity and errors of

graduation are thus in a

measure eliminated. FIO. 31.

To mark the direction of the line at night a bull's-eye lantern

in a small box firmly mounted on a post is ordinarily used ; the
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light being thrown through an aperture of such size as to present
about the same appearance as the star observed. To avoid refocus-

ing for the star, the lantern should be distant not less than a mile.

If it is impracticable to place the lantern exactly on the line whose

azimuth is required it may be placed at any convenient point, its

azimuth determined at night, and the angle between it and the line

measured by day; the aperture being then covered symmetrically

by a target of any approved pattern. For convenience in the

following discussion the target will be supposed to be on the line.

Classification of Azimuths. Azimuths of the line with refer-

ence to the star are taken in "
sets," the number of measurements

of the angle in each set being dependent upon whether the final

result is to be a primary or secondary azimuth. Primary azimuths

are employed in determining the direction of certain lines con-

nected with the fundamental or primary triangulation of a survey,

and each set consists of from 4 to G measurements of the angle in

each position of the instrument. The final result is required to

depend upon several sets, with stars in different positions (generally

not less than five-, and often many more). The error of the chro-

nometer (required in the reductions), together with its rate, are de-

termined by very careful time observations with a transit.

Secondary azimuths are employed in determining the direction

of certain lines connected with the secondary or tertiary triangles

of a survey. The number of measurements in a set is about one

half or one third that in a set for a primary azimuth; the number

of sets is also reduced, and the time observations are usually made

with a sextant. The sun is used in connection with secondary

azimuths only.

Selection of Stars. The true azimuth of the star at the instant

of measuring the horizontal angle between it and the line is ob-

tained by a solution of the Astronomical Triangle. In order to

make such a selection of stars that errors in the assumed data shall

have a minimum effect on the star's computed azimuth, we have

(178). ^cos tan d sin cos P

Errors in the assumed values of P, 0, or d will produce errors in

the computed azimuth, those in 6 being for obvious reasons usually

insignificant and least likely to occur.
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Taking the reciprocal of (178), differentiating and reducing the

first term of the resulting second member by

cos a cos tp
= sin cos d cos sin d cos P9

the second by
/

sin a = sin sin d + cos cos # cos -P>

and the third by

sin J : sin P : : cos $ : cos ,

we have

cos d cos ib
7

. . . , , sin
*/>

, -
d A = -d P 4- tan a sm ^4 d r d d.

COS # COS #

From this equation it is seen that if we select a close circumpolar

star, any error (d P) in the clock correction or in the star's R. A.,

or any error (d 0) in the assumed latitude, will produce but slight

effect on the computed azimuth, since cos d and sin A will each be

very small. If in addition the star be at elongation (fi
= 90), the

first mentioned error will produce no effect, while sin A, although
at a maximum for the star, will still be very small. (In latitude of

West Point the azimuth of Polaris does not exceed 1 40'.) At

elongation the effect of errors (d d) in d will be a maximum,

although insignificant if d be taken from the Ephemeris.
But if the star be observed at both east and west elongations,

the effect of d d and d will disappear in the mean result, since

the computed azimuth (reckoned from the north through the east to

360), if erroneous, will be as much too large in one case as too

small in the other.

Circumpolar stars at their elongations (both) are most favorably

situated, therefore, for the determination of azimuths; and since

experience gives a decided preference to stars in these positions,

other cases will not be considered, except to remark that the As-

tronomical Triangle then ceases to be right angled.

The stars a (Polaris), d, and A, Ursae Minoris, and 51 Cephei,

are those almost exclusively used (although the latter two cannot

be used with small instruments). Their places are given in a
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special table of the Ephemeris, pp. 302-13, for every day in the

year, and they are so distributed around the pole that one or more

will usually be available for observation at some convenient hour.

Of these four, A Ursae Minoris is both the smallest and nearest to

the pole. For the large instruments it therefore presents a finer

and steadier object than any of the* others. For the small instru-

ments suitable stars may be selected from the Ephemeris.
Measurements of Angles with Altazimuth. In order to under-

stand the measurement of the difference of azimuth of two points

at unequal altitudes, let us suppose that the horizontal circle of the
" Altazimuth

" has its graduations increasing to the right (or like

those of a watch-face), and that absolute azimuths are reckoned

from the north point through the east to 360, the origin of the

graduation being at the point 0, Figure 32.

The angle NL will then be the absolute azimuth of the origin

FIG. 32.

of graduations = 0, and if the instrument be in adjustment and

As and AI denote the absolute azimuths of the star and line respec-

tively, we shall have

* in which R and R ' denote

angles L S and L L' respectively, and may be considered as the

readings of the instrument when pointed upon the star and over

the line. These equations will be somewhat modified if the instru-

ment be not in perfect adjustment. . This will usually be the case.

Let us suppose that the end of the telescope axis to the observer's

left is elevated so that the axis has an inclination of u seconds of arc.

Then if the telescope be horizontal and pointing ii? the direction
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L S, it will, when moved in altitude, sweep to the right of the star,

and the whole instrument must be moved to the left to bring the

line of collimation on the star. The reading of the instrument will

thus be diminished to r, and we shall have the proper reading,

R r -\- a correction. The amount of this correction is readily

seen, from the small right-angled spherical triangle involved (of

which the required distance is the base), to be I cot z. In the same

way it is seen from the principles explained under "
Equatorial

Intervals," etc., that if the middle wire be to the left of the line of

collimation by c seconds of arc, r must receive the correction

c cosec z. Hence when both these errors exist together, we shall

have, z' denoting the zenith distance of the target,

A 8
=

-f- r -f- 1 cot z + c cosec z,

A
l -f r' + V cot z

9

-f c cosec z', (180)

since c remains unchanged, while b is subject to changes.

Subtracting,

AI Aa
=

(r' + V cot z') (r -{- I cot z) 4- c (cosec z' cosec z).

Since by reversing the instrument the sign of c is changed, but

not altered numerically, we may, if an equal number of readings in

the two positions be taken, drop the last term as being eliminated

in the mean result. With this understanding, the equation will be

A
l
- A8

=
(r' + V cot z') -(r+b cot z). (181)

which gives the azimuth of the line with reference to the star,

free from all instrumental errors, b is positive when the left

end is higher, and its value, heretofore explained, is obtained by
direct and reversed readings of both ends of the bubble, and is

-
(w -f w') (e + e') \,d being the value of one division in

seconds of arc. For stars at, or very near, elongation, it is evident

that cot z may be replaced by tan 0, without material error; c is

positive when middle wire is to the left of its proper position.

For very precise work the above result requires a small correc-

tion for diurnal aberration, the effect of which is to displace (appar-
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ently) a star toward the east point. For stars at elongation, this

correction is 0".311 cos A e . (See Note 1.)

In using the reading-microscopes, care should be taken to correct

for " error of runs." When a microscope is in perfect adjustment,
a whole number of turns of the micrometer screw carries the wire

exactly over the space between two Consecutive graduations of the

circle. Due to changes of temperature, etc., the distance between

the micrometer and circle may change, thus altering the size of the

image of a "
space." The excess of a circle division over a whole

number of turns is called the " Error of Runs." This error is de-

termined by trial, and a proportional part applied to all readings of

minutes and seconds made with the microscope.
Observations and Preliminary Computations. The observations

and the preliminary computations are as follows: The error and

rate of the chronometer, error of runs of the micrometers, collima-

tion error and latitude are supposed to have been obtained with

considerable accuracy. The apparent R. A. and declination for the

time of elongation of the star to be used must be taken from the

Ephemeris, or, if "not given there, reduced from the mean places

given in the catalogue employed, as explained under Zenith

Telescope.

Then for the star's hour-angle at elongation, cos Pe
= - -~.

belli O
OL

azimuth " sin Ae
= -..

COS

" " " zenith distance at " cos ze = . -r.
sm d

" " sidereal time " " T = a Pe.

" chronometer " " " Tc
= T E,

a being the R. A., and E the chronometer error.

The instrument is then placed accurately over the station and

levelled, so that everything will be in readiness to begin observations

at about 20m before the time of elongation as above computed. In

the actual measurement of the angle several different methods have

been followed. First, five or six pointings are made on the target,

and for each pointing, the circle and all the microscopes are read;

also if the angle of elevation of the target differ sensibly from zero

(as would not usually be the case with the base-line of a survey)

readings of the level, both direct and reversed, are made. If the
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target be on the same level as the instrument, cot z' will be zero,

and the level correction will disappear. Then five or six pointings
are made on the star, and in addition to the above readings the

chronometer time of each bisection is noted. The instrument is

then reversed to eliminate error of collimation, and the above

operations repeated, beginning with the star. In the second method
alternate readings are made on the mark and star, star and mark,
until five or six measurements of the angle have been made, the

chronometer being read at each bisection of the star; the circle,

microscopes and level as before. The instrument is then reversed,

and the same operations repeated in the reverse order. The middle

of the time occupied by the whole set should correspond very nearly
to the time of elongation. Similar observations are then made, on

the same or following nights, on other stars, combining both eastern

and western elongations, and using different parts of the horizontal

circle for the measurement.

Reduction of Observations. Since the observations on the star

have been made at different times, and since these correspond to

different though nearly equal azimuths, the first step in the reduc-

tion is to ascertain what each reading on the star would have been

had the observation been made exactly at elongation. For this-

purpose find the difference between the chronometer time of each

observation and the chronometer time of elongation as computed,

applying the rate if perceptible. Let the sidereal interval between

these two epochs be denoted by r seconds. Then the elongation

reading of the star would have been

actual reading the expression 112.5 r2
sin 1" tan A e ,

which denote by C. (See Note 2.)

[The quantity 112.5 r2
sin 1" is almost exactly equal to the

tabulated values of " m "
in the " Reduction to the Meridian," and

may if desired be taken directly from those tables.] With a

circle graduated as assumed, this correction would manifestly be

negative for a western, and positive for an eastern, elongation.
Hence Eq. (181) becomes,

A
l

- Ae
= (r' + b' cot *')

-
(r + b cot z C). (182)

Each pair of observations (on the line and star) with the telescope
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"direct "
gives a value of A

l
A e . If nd be the number of such

pairs, the mean will be ~, to which if A e (positive for

eastern, negative for western, elongations) be added as heretofore

(cos
6 \

sin A e
--

37 I, we shall have the true bearing of the
cos 0;

line for instrument " direct"

Similarly, for instrument "
reversed," we shall have

^( A, - A e)

from which by adding ^4 e we obtain the true bearing of the line for

instrument reversed.

The mean of the two is the true hearing of the line as given by
the star employed.

[For the greatest precision, this must be corrected by adding
the diurnal aberration, 0".311 cos A e.]

The adopted value of the azimuth of the line should rest upon
<ai least five such determinations.

E

FIG. 33.

| 1. Diurnal Aberration in Azimuth.

It has already been shown when treating of the transit instru-

ment and in Art. 225 Young, that due to diurnal aberration all

stars are apparently displaced toward the east point of the horizon

by 0".319 cos 0sin Q of a great circle; where is the angle made by
the direction of a ray of light from the star with an east and west

line (measured by 8 E, Fig. 33).

To determine the effect of this small displacement on the
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azimuth of a star, the right-angled triangle Z 8 M gives, denoting

ZMby I,

cos 6
sin A =

sin 2

sin z cos ^4 = sin 6 sin 5.

Hence

cos cos J.
sin A

sin 6 sin b
'

. cote
tan A = 7 .

sin o

Differentiating

.

sin & sin o' sin sin z

Substituting 0".319 cos sin for d (since is a decreasing
function of ^4),

0".319 cos ^ cos
d A -

-.

sin z

For a close circumpolar star at elongation

cos = sin z, sensibly.

Hence,

d.4 = 0".319cos Ae . (183)

J* 2. To Reduce an Azimuth Observed Shortly Before or After

the Time of Elongation, to its Value at Elongation.
If we conceive the meridian to be revolved to the position of the

declination circle passing through the point of elongation, evidently
the arc of this circle intercepted between the vertical wire of the

instrument and the point of elongation will have the same numeri-

cal value as the " Eeduction to the Meridian" deduced in connec-

tion with the Zenith Telescope, viz. :

J (15r)
2
sin 1" sin 2 d = 112.5 r

z
sin 1" sin tf cos d.



168 PRACTICAL ASTRONOMY.

The angle at the zenith subtended by this arc, i.e., the correction

to azimuth, is seen from the small right-angled triangle to be

(184)smze

Substituting cos d and sin d for sin 6 and cos d (d = polar dis-

tance), making cos p 1, and sin p = tan^> (since the star is a close

circumpolar), the last factor becomes

*?JJ? = tan Ae. Hence O= 112.5 r* sin 1" tan A*

DECLINATION OF THE MAGNETIC NEEDLE.

The Declination of the Magnetic Needle may be found in ac-

cordance with the same principles, regarding the magnetic meridian

pointed out by the needle, as the line whose azimuth is to be found.

Or, note the reading of the needle when the instrument carrying it

is pointed accurately along a line whose true bearing or azimuth is

known. Or, take the magnetic bearing of some known celestial

body, and note the time T. Then P = T - a. This value of P
in Eq. (178) gives the true azimuth, and the difference between

this and the magnetic bearing gives the declination of the needle.

Or, if the time be not known, measure the altitude of the body and

solve the Z P S triangle for A, knowing 0, #, and a. Then having
noted the magnetic bearing of the body at the instant of measuring
the altitude, the difference is the decimation of the needle.

One of the most accurate methods of laying out the true merid-

ian is by means of a Transit Instrument adjusted to the meridian,

and whose instrumental errors a and c have been carefully deter-

mined by star observations.

SUN-DIALS.

A sun-dial is a contrivance for indicating apparent solar time

by means of the shadow of a wire or straight-edge cast on a properly

graduated surface. The wire or straight-edge, called the style or

gnomon, must be parallel to the earth's axis; i.e., it must be inclined

to the horizontal by an angle equal to the latitude, and be in the
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meridian. The graduated surface, called the dial-face, is usually

a plane, and made either of metal or smoothed stone. It may have

any position with reference to the style (consistent with receiving

its shadow throughout the day), although it is usually either hori-

zontal or placed in the prime vertical. The two varieties are shown

in Fig* a, the first being by far the more common.

FIG. a.

The principle of the horizontal dial will be readily understood

from an inspection of Fig. b.

Let PP 9 be the axis of the celestial sphere, ^the zenith, A Q B
the equinoctial, and A HB perpendicular to OZihe plane of the

dial face, the style extending from in the direction of P. Then
if a plane be passed through the style and the position of the sun,

S, at any instant, it will cut from the celestial sphere the sun's

hour-circle, and from the dial-face the line G IX, which is therefore

the shadow of the style on the dial-face. The direction of this line

is thus seen to be independent of the sun's declination (season of

the year), and dependent only on his hour angle. If
, therefore, we

mark on the dial-face the various positions of this line correspond-

ing to assumed hour angles which differ from each other by, for
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example, 3 45' or 15 minutes, instants of apparent solar time will

be indicated by the arrival of the style's shadow at the correspond-

ing line. This construction may be made as follows, noting that

FIG. 6.

the 12-o'clock line is the intersection of the dial-face with the

vertical plane through the style.

Suppose, for example, it were required to construct the 9-o'clock

line. In the spherical triangle P H' IX right-angled at H' we

have P H' = </>, and the angle at P = ZP S = 45, to determine

the side H' IX'= x, given by the formula

tan x = sin tan 45.

Then with O as a center lay off an angle from CH' equal to the

computed value of x, and draw the line O IX.

Generally,

tan x = sin tan P9

P denoting the hour angle assumed.

Values of x corresponding to intermediate values of P may be

laid off with a pair of dividers.

The dial-face may have any convenient form, circular, rectan-

gular, or elliptical. The last is the best form (shown in Fig. ),

since the axis can be so proportioned that the spaces along the edge
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will be nearly equal, thus greatly facilitating any subdivision. For

the latitude of West Point, C IF should be about 2 times C A
(Fig. a}. If the plate be 18 or 20 inches long the subdivisions can

be readily carried to minutes.

Usually the style is a triangular-shaped piece of metal of a suf-

ficient thickness to avoid deformation by accident say i or J inch.

In this case one edge will cast the shadow in the A.M., and the

other in the P.M. Hence the graduations on either side of the

12-o'clock line must be constructed using as a center the point
where the shadow-casting edge pierces the plane of the dial-face.

The plane of the style must be accurately perpendicular to the

dial-face.

Having been graduated, the sun-dial is mounted on a firm

pedestal, accurately levelled by a spirit-level, and turned till the

plane of the style is in the meridian. For an approximation we

may use a pocket compass, the declination of the needle being
known within moderate limits. By day the orientation may be

effected by means of a watch whose error is known. Compute the

watch time of apparent noon = 12-o'clock error -f equation of

time, and turn the dial slowly, keeping the shadow of style on the

12-o'clock mark until the time computed. The levelling must be

carefully attended to. If the watch error be not known, it may be

.found by means of a sextant.

If no means of determining time are at hand, the dial may still

be oriented by a determination of the meridian plane, either by
day or night. At night advantage may be taken of the fact that

Polaris and C Ursae Majoris (the middle star in the tail of the

Great Bear or handle of the Dipper) cross the meridian at almost

exactly the same instant. Therefore if two plumb-lines be sus-

pended from firm supports as nearly in the meridian as may be, one

touching the style and the other a few feet to the south arranged
for lateral shifting, we may by sliding the latter cover both stars by
both lines at the moment of meridian passage. These lines then

define the meridian plane, into which the style is easily turned.

The polar distance of C being between 34 and 35, it is evident

that for latitudes above about 40 the star must be observed at

lower culmination, and for lower latitudes at the upper.

By day the meridian plane may be determined as follows: Sus-

pend a plumb-line over the south end of a perfectly level table or
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other suitable surface. With the point A as a center describe an

arc, CD. The shadow of a knot or bead at B will describe during
the day a curve GEF G D. Mark the points C and D where it

crosses the arc before and after noon. A line from A bisecting the

chord GD will then be in the meridian,, and its extremities may be

projected to the earth by pluntfe-lines and the points marked.

Stretch a fine cord from_one point to the other, and note the instant

FIG. c.

when the shadow of the south plumb-line exactly coincides with

that of the cord. This is evidently apparent noon; and if the dial

be so turned that the shadow of the style falls on the 12 -o'clock

line at the same instant, it will be duly oriented.

Evidently this method supposes the sun's declination to be con-

stant; its change may, however, for this purpose be neglected,

except for a month at about the time of the equinoxes.
The meridian line may also be determined with a theodolite, as

described in works on Surveying.
The dial-face may if desired be graduated after orientation by

noting where the shadow of the style falls at 1 hour, 2 hours, etc.,

from the time of apparent noon.

The indications of all sun-dials must be corrected by the Equa-
tion of Time in order to give local mean time. This correction is

practically constant for the corresponding days of all years, and its

value at suitable intervals may either be engraved on the dial-plate,

or taken from the annexed table.

Refraction, varying witji the sun's altitude, is evidently a source.



SOLAR ECLIPSE. 173

of error, although too small to require consideration in the present
connection.

The indications of a sun-dial with the solid style (Fig. a) will

be one minute too great in the forenoon and one minute too small

in the afternoon, since the shadow line will in each case be formed

by the limb of the sun toward the meridian, and the sun requires
about one minute to advance through an arc equal to its semi-

diameter.

A dial constructed for a given latitude may be used without

appreciable error in any latitude not differing therefrom by more
than one third of a degree say 25 miles.

Vertical dials are usually placed on the south fronts of buildings.
Their construction is readily understood from what precedes, the

graduations being computed by the formula

tan x = cos tan P.

EQUATION OF TIME TO BE ADDED TO SUN-DIAL TIME.

Day.
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knowledge of the theory of eclipses as to enable him to project

a solar eclipse, with the aid of the eclipse data found in the

Ephemeris.
Solar Ecliptic Limits. Let N S Fig. 34 be the Ecliptic, NM

s s
1 P

FIG. 34.

the intersection of the plane of the moon's orbit with the celestial

sphere, JV^the moon's node, 8 and M the sun's and moon's center

at conjunction, and 8' and M' the same points at the instant of

nearest angular distance of the moon from the sun. Assume the

following notation, viz. :

/?
= 8M9 the moon's latitude at conjunction.

i = 8NM9 the inclination of the moon's orbit to the ecliptic.

,\ = the quotient of the moon's mean hourly motion in longitude at

conjunction, divided by that of the sun.

A = S' Mf

, the least true distance.

y =SMS'.
Considering JVMS as a plane triangle, and drawing the perpen-

dicular M' P from M' to 8 N, we have

$8' = /? tan ;/.
SP = hp tan y.

8' P = ft (A,
-

1) tan y. M' P = ft
- \ ft tan y tan i.

4* = P [ (1
-

l)
a
tan

8

y + (1
- A tan i tan ;/)

a

].

Differentiating the last equation and placing r = 0, we findA

will be a minimum for

A tan t

-
I)

8 + A8
tan

a

This value gives

-i)'
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or

J a = p cos
2

1'', (186)

when tan i
f
is placed equal to . _ tan i.

The least apparent distance of the sun's and moon's center as

viewed from the surface of the earth may be less than A by the

difference of the horizontal parallaxes of the two bodies. Call this

distance A'9 then

A' =A (n
-

P).

Now when A' is less than the sum of the apparent semi-diameters

of the sun and moon there will be an eclipse ;
hence the condition

is (denoting the semi-diameters of the moon and sun respectively

by s' and s),

or

/3 cos i' < TT - P + s + s'. (187)

To ascertain the probability of an eclipse, it is generally suffi-

cient to substitute the mean values of the quantities in the above

inequality. The extreme values, determined by observation are

. -( 5 20' 06"
*

| 4 57' 22"
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Substituting in this last form the greatest values of TT, $, and

s', and the least value of P; and then the least values of TT, st and

s'y and the greatest value of P, we have

ft < l
c
34' 27".3,

and

ft < 1 22' 50",

respectively.

If, therefore, the moon's latitude at conjunction be greater than

1 34' 27".3 a solar eclipse is impossible; if less than 1 22' 50" it

is certain; if between these values it is doubtful. To ascertain

whether there will be one or not in the latter case, substitute the

actual values of P, TT, s and s' for the date, and if the inequality

subsists there will be an eclipse, otherwise not. .

PROJECTION OF A SOLAR ECLIPSE.

1. To find the Radius of the Shadow, on any Plane perpendicular

to the Axis of the Shadow.

In Fig. 35 let S and M be the centers of the sun and moon; V
the vertex of the umbral or penumbral cone; FEt\ f̂undamental

plane through the earth's center perpendicular to the axis of the

shadow
;
and CD the parallel plane through the observer's position.

It is required to find the value of C D at the beginning or ending
of an eclipse.

Take the earth's mean distance from the sun to be unity, and

let ES = r, EM= r', MS = r- r'. Place H^L =
^, and let k

be the ratio of the earth's equatorial radius to the moon's radius

= 0.27227. Then P being the sun's mean horizontal parallax, we
have

Earth's radius = sin P .

Moon's radius = k sin P = 0.27227 sin P#

Sun's radius = sin s.
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5 being the apparent semi-diameter of the sun at mean distance

From the figure we have

sn
sin s k sin P.

E F

FIG. 35.

(190)

in which the upper sign corresponds to the penumbral and the

lower to the umbral cone. The numerator of the second member
is constant, and since s = 959".758, P Q

= 8".85, we have

log [sin s -j- k sin P ]
= 7.6688033 for exterior contact,

log [sin s ~k sin P
]
= 7.6666913 for interior contact.

If the equatorial radius of the earth be taken as unity, we have

k
'

sin/



178 PRACTICAL ASTRONOMY.

Whence the distance c of the vertex of the cone from the fun-

damental plane is

If I and L be radius of the shadow on the fundamental and on the

observer's plane respectively, andTc be their distance apart, we have

I = c tan/=2 tan/ k sec/. (192)

L = (c
-

C) tan/ = I - C tan/. (193)

2. To find the distance of the Observer at a given time from the

Axis of the Shadow in terms of his Co-ordinates and those of

the Moon's Center, referred to the Earth's Center as an Origin.

Let 0, Figure 36, be the earth's center, and X Y the funda-

mental plane. Take Z Y to be the plane of the declination circle

FIG. 36.

passing through the point Z in which the axis of the moon's shadow

pierces the celestial sphere ;
X Z being perpendicular to the other

two coordinate planes. Let M and-# be the centers of the moon

and sun, M' , S', their geocentric places on the celestial sphere, Mt

their projections on the fundamental plane, and (7,
the projection

of the observer's place on the same plane. Let P be the north
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pole. The axis Z, being always parallel to the axis of the shadow,
will pierce the celestial sphere in the same point, as 8 M. Assume
the following notation :

a, #, r = the R. A., Dec., and distance from the earth's center,

respectively, of the moon's center.

a', #', r' = the corresponding coordinates of the sun's center.

a, d, the R. A. and Dec. of the point Z.

x, y, z = the coordinates of the moon's center.

, 77, C = the coordinates of the observer's position.

0, 0' = the latitude and reduced latitude respectively.

A = the longitude of the observer's station west from

Greenwich.

p the earth's radius at the observer's station in terms of

the earth's equatorial radius taken as unity.

jjLt
= the Greenwich hour angle of the point Z.

IJL
= the sidereal time at which the point Z has the R. A. a.

A the required distance of the place of observation from

the axis of the shadow at the time yw.

From the conditions, we have

R. A. of Z = a,

R. A. of M'- a,

R. A. of X = 90 + a,

and therefore

ZP M ' = a - a, and P M' = 90 -
tf.

Through Mt
and G

t
draw M

t
N and C

4
N parallel to the axis of

Xand Irrespectively; then M
t C, N = P ZM' = P, the position

angle of the point of contact, and we have

(194)
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From the spherical triangles M' P X, Mf P Y, and Mf P Z, we
have

x r cos Mf X r cos d sin (a a) }

y r cos M' Y = r [sin d cos d cos d sin d cos (a #)] > (1 95)

z = r cos M' Z r [sin $ sin d -j- cos d cos 6? cos (a a)]. J

Similarly the coordinates of the place of observation are

g p cos 0' sin (// a) 1

TI p [sin 0' cos d cos <p' sin a? cos (^ )] > (LOG)

C = p [sin 0' sin d
-J--

cos 0' cos d cos (/* )]. )

The hour angle (/* ft)
of the point Z for the meridian of the

observer can be found from

in which ju, is the hour angle of the point Z for the Greenwich

meridian and A is the longitude of the observer's meridian.

The distance of the observer from the axis of the moon's shadow

A, C
t
M

t
can be found from the above formulas,

since, A* = (x
-

)' + (y
-

?/)\ (197)

3. To Find the Time of Beginning or Ending of the Eclipse at the

Place of Observation.

For the assumed Greenwich mean time of computation take

from the Besselian table of elements given in the Ephemeris for

each eclipse the values of sin d, cos d, and jar The values of p cos 0'

p sin 0' are found on page 505, computed from the formulas,

,
. Ct COS

pcos0 = == = Fcos
' 2J

(198)

, sin V\. e
2

sin
2

sin
- " ~~
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The variations of and // in one minute of mean time are ob-

tained by differentiating the first two of Eqs. (196), and give

' = [7.63992] p cos 0' cos (/i,
-

A)
]

rf [7.63992] p cos 0' sin d sin (^ A) \ (199)

= [7.63992] sin rf.

The variations of x and y for one minute of mean time are

represented by x', and y', and their logarithms are given in the

lower table of the Ephemeris elements for the eclipse. Now, if the

time chosen for computation be exactly the instant of beginning or

ending of the eclipse, then A = L\ but as this is scarcely possible

a correction r in minutes must be made to the assumed Ephemeris
time T.

We may then write,

L sin P = x - Z + (x'
-

') r, (200)

L cos P = #-//+ (/ -
?/') r. (201)

Assume the auxiliary quantities m, M, n, N, given by the equa-

tions,

m sin M = x &

(202)

n cos N y' ?f.

From these we have

L sin (P - N) = m sin (M- N),

(203)

L cos (P .N) = m cos (Jf JV) -f ^ r.

Hence putting ^ = P N, we have

sin ^ -
mSm(5~^ }

, (204)
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the lower sign of the second term in the second member of the last

equation corresponding to the time of beginning and the upper to

the time of ending of the eclipse.*

4. The Position Angle of the Point of Contact. The angle re-

quired is P N -f i/>
for the end and P N fi 180

for the beginning b'f .the eclipse.

5. We now have all the equations/ and the Ephemeris gives us the

Besselian table of elements from which the circumstances of

an eclipse can be computed at any place. These equations
are here arranged in the order in which they would be used,

and the student is referred to the type problem worked out

in the Ephemeris as a guide.

1. Constants for the given place,

p sin 0' ) Found from table page 505, Ephemeris, know-

p cos 0' f ing the observer's latitude.

2. Coordinates of observer, referred to center of earth.

= p cos 0' sin (/* a).

?/
= p sin 0' cos d p cos 0' sin d cos

(/<* #),

C = p sin 0' sin d -j- p cos 0' cos d cos (yu a).

3. Variations of observer's coordinates in one minute of mean time,

' = [7.63992] pcos 0' cos (//,
-

A).

7?'
= [7.63992] sin d.

4. The values of m^ M, n and N, given by

m sin M= x Z,

m cos M = y 77,

n cos N= y' ?/.

See page 506, Ephemeris.
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5. The radius L of the shadow or penumbra on a plane passing

through the observer, parallel to the fundamental plane, and

at a distance C from it.

6. The value of the angle ^,

m sin (M N)sm ( =

7. The value of the time r in minutes

m cos (Jf N) L
r =

8. The position angle P, from

or

P = N - ^ ISO ,
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FOKM No. 1.

205

ERROR OF SIDEREAL TIME-PIECE BY MERIDIAN TRANSIT
OF bTAR.

Station, WEST POINT, N. Y. Latitude, 41 23' 22". 11. Chronometer No , by

Date:
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FORM No. 2.

ERROR OF MEAN-SOLAR TIME-PIECE BY MERIDIAN TRANSIT
OF SUN.

Date.

Latitude 41 23' 82". 11.

Observer.

Transit No By

Station, WEST POINT, N. Y.

Longitude 4.93A.

Recorder.

Mean-Solar Chron. No By

Chronometer Time of Transit of West Limb. Wire I

44
II

44
III

" IV

44 V
44 VI

44 VII

Chronometer Time of Transit of East Limb. 4t
I

44
II

44
III

44 IV

44 V
44 VI

44 VII

SUM. _.

Chron. Time of Transit of Center over Mean of

Wires Mean.

Reduction to Middle Wire.

Level Error Level Correction.

Col.
44 Col.

44

Azimuth 4t Azimuth "
_.

Chronom. Time of App. Noon.

Apparent
' 4 44 44 "

12
h

0.0
m

0.0
s
...

Eq. of Time.

Mean Time of Apparent Noon.

Error of Chronometer on Mean Solar Time at

App. Noon.
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FOKM Nc. 3.

ERROR OP SIDEREAL TIME-PIECE BY SINGLE ALTITUDE OF
STAR. NAME.

Date. Station, WEST POINT, N. Y.

Observer. Recorder.

Sextant No By Sidereal Chronom. No Bv

' " T rjT~ a

Observed Double Altitude. Chronom. Time.

Mean Sum

IndexError. t Mean = 1

Eccentricity. Barometer

Corrected Double Altitude Att. Thermom
" Altitude=a8 . Ext. "

*Refraction = r. Refraction

True Altitude =a .,

Latitude =. ..41..23'..22".ll.. a. c. log cos <

N. Polar Dist. =cZ.
" "

sin d

cos m

sin (m - a)

" siniP

iP
P

P in Time

Apparent R. A. of Star

Sidereal Time = R. A. -j- P
Mean of Chron. Times =

Error of Chronometer

* The correction to be added to this value of r, if desired (see Note 3, Text), is

2
sin* a

2
S

"n sinl^~
' A denotin the different corrected altitudes, a their mean, and

n the number of observations. The values of .

n
f

~
- are taken from Tables (first

converting a A into its equivalent in time), as explained under " Latitude by Circura-
Meridian Altitudes."

t The correction to be added algebraically to this value of t if desired (see Note 3,

Text) is, after computing Pin arc, ^fcot P - gULJ! ;>os ^ sin rf

"| 2 ifinlj.(^- ^ ^being15L cos a cot a J n sin 1"

the different chronometer times. The last factor is taken from Tables as before.
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FORM No. 4.

ERROR OF MEAN-SOLAR TIME-PIECE BY SINGLE ALTITUDE
OF SUN'S.. ..LIMB.

Date.

Observer.

Sextant No . By.

Station, WEST POINT, N. Y,

Recorder.
sM. S. Chronorn. No By . .*.

Observed Double Altitude. Chronom. Time.

h m s

Mean
Index Error.

Sum
tMean = t n

Eccentricity. Barometer
Att. Thermom.

Corrected Double Altitude o........ Ext
" Altitude = Refraction

*Refraction = r.

Semi-diameter.

Apparent Altitude = a'.

Parallax in Altitude.

True Altitude = a.

Latitude = <.

N. Polar Dist. = d.

a 4- <t> + d

Longitude = 4.931 hours.

Assumed Error of Chronom. =
Resulting Greenwich Time of Obs.:

. Log. Eq. Hor. Parallax
1

P.
" cos a'.

..41..23'..22".ll.. Parallax in Altitude.

Dec. at Greenwich. Mean Moon.

Hourly Change X Greenwich Time
Sun's Declination.

a. c. log cos (/>

" "
sin d

log. cos m
"

sin (m a)
"

sin2 i P
P

Pin Time

Apparent Time

Equation of Time.

Mean Time.

Mean of Chron. Times = f

Error of Chronometer.

* See foot-note to Form 3.

t
" " " " " "

NOTE. For correction of Semi-diameter due to difference of refraction between limb

and center, see "
Longitude by Lunar Distances."
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FOEM No. 5.

209

ERROR OF SIDEREAL TIME-PIECE BY EQUAL ALTITUDES OF
A STAR.

Station, WEST POINT, N. Y.

Observer

Sextant No By

Name of Star. ,

Latitude, 41 23' 22".ll = <f>.

Recorder

Sid. Chronom. No By

App. Declination = 8

Observations East.

Observed Double Altitudes.

o I tff

Date

Chronometer Times.

h m s

I.

II.

III.

Barom.

Att. Thermom.

Ext.

1st Refraction

Mean = 2a. Sum

(Correct this for index error, if correction 1st Mean,
for refraction be taken into account.)

Observations West.

Observed Double Altitudes.

o I If

Date

Chronometer Times.

h m s

I.

H.

III.

Mean = 2a.

Barom.

Att. Thermom.

Ext.

2d Refraction

.1st

Difference

(Same as above).

Elapsed Time.

l& Elapsed Time in arc = t.

Middle Chronometer Time.

Correction for Refraction.

Chronom. Time of Transit.

App. R. A. of Star.

Error of Chronom. at Time of Transit.

Sum

2d Mean Log Difference

1st
" Log cos a

a. c. log 30

a. c. log cos <

...o a. c. log cosS

a. c. log sin t

Log Correction

Correction
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FORM No. 6.

ERROR OF MEAN-SOLAR TIME-PIECE BY EQUAL ALTITUDES
OF SUN'S LIMB.

Station, WEST POINT, N. Y. <f>
= Latitude, 41 23' 22" 11. Longitude 4.931

A
, west.

Observer y Recorder .

'

Sextant No By M.J& Chronom. No By
Sun's App. Dec. at local App. Noon (or midnight) = & =
Hourly change in & at same time, = k

Observations East. Date

Observed Double Altitudes. Chronometer Times.
" h m s

L Barom.

IL Att. Thermom
III. Ext. "

1st Refraction

Mean = 2u Sum .

(Correct this for index error, if correction 1st Mean ,

for refraction be taken into account).

Observations West. Date

Observed Double Altitudes. Chronometer Times.
' "

fi m s

I. Barom.

II. Att. Thermom
m. Ext. "

2d Refraction ....

1st
"

.

Mean = 2a Sum Difference

(Same as above). 2d Meai Log Difference

1st
"

Log cos a
a. c. lag 30

Elapsed Time a. c. log cos <

} Elapsed Time in arc = t. a. c. log cos 6

a. c. log sin t

Middle Chronometer Time. Log Correction

Correction for Refraction. Correction

Equation of Equal Altitudes. T" "7

Chronom. Time of App. Noon. u k

App. of Time at App. Noon. ....12^. ,.0
m

.. .0
s

. ..
" tan <J>

Eq. of Time at App. Noon. "
1st Part

Mean Time of App. Noon. .... 1st Part.

Error of Chronometer at App. Noon Log B.
"

k.

" tan 8.

" 2d Part.

2d Part.

1st Part -f- 2d Part = Eq. of Equal Altitudes.
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JFOBM No. 7.

211

LATITUDE BY CIRCUM-MERIDIAN ALTITUDES OF
SUN'S.. ..LIMB.

Date Station, WEST POINT, N. Y. Longitude 4.93
ft

. Assumed Lat. = <f>= .

Observer Recorder Barom Att. Th Ext. Th.

Sextant No By M. S. Chronometer, No By
Error of Chronometer = E = Rate of Chronometer = r = ,

Observed Double
Altitudes.

1 ft
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FORM No. 8.

LATITUDE BY CIRCUM-MERIDIAN ALTITUDES OF (NAME OF

STAR)

Date Station, WEST POINT, N. Y.
.

Assumed Lat. =0 =

Observer Recorder Barom. . ,
;
. Att. Ther Ext. Ther

Sextant No By Sidereal Chronom. No . . . By

Error of Chronometer = E Rate of Chronometer r =

Observed Double
Altitudes.

/ //
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FORM No. 9.

PROGRAMME FOR ZENITH TELESCOPE. (LATITUDE.)

213

Station, WEST POINT, N. Y. Approximate Latitude Observer.

No.
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216 FORMS.

FORM No. 11.

LATITUDE BY EQUAL ALTITUDES OF TWO STARS.

Station, Wi
Date

POINT, N. Y. Observer Recorder.

Sextant, No By
Sid. Chronom. No By Error. Rate

Name
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