NPS ARCHIVE 1967
 EFFRON, H.

 MECHANISMS WTH EXPREMGUTAM DATA USINE A DIGTMA CORPUFF SIMUHATON TECHEQUE

!

か？ MECHANISMS WITH EXPERIMENTAL DATA USING A DIGITAL COMPUTER SIMULATION TECHNIQUE

by

Herbert M. Effron
Lieutenant, United States Navy B.A., San Jose State College, 1958

> Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS from the

NAVAL POSTGRADUATE SCHOOL JUNE 1967

The sputtering process has been investigated by simulating the sputtering of single-crystal copper with $1-7 \mathrm{keV}$ argon. A digital computer was used to build the crystal, bombard it, and move crystal atoms. Four mechanisms were observed which cause surface atoms to sputter. An atom is sputtered when (1) it is squeezed out of the surface, (2) it is scooped out when another atom strikes its inner hemisphere, (3) it is ejected When an atom passes behind it, and (4) it is knocked out by a second layer atom which is moving outward. Nearly all sputtered atoms were surface atoms. Second and third layer atoms were sputtered only for ion energies greater than 5 keV . They were sputtered by mechanisms similar to the surface atom mechanisms. "Silsbee chains" were observed to be directed into the crystal, and momentum focusing was observed to cause sputtering only when it occurred in close packed, surface rows. Outward directed chains were not observed. Sputtering deposit patterns, sputtering ratios, and sputtered atom energy distributions were obtained for $(100),(110)$, and (111) surfaces. All data

TABLE OF CONTENTS

PAGE

Title and Approval 1
Abstract 2
Table of Contents 3
List of Figures 5
Acknowledgements 11
Chapter 1 - Introduction 13
Chapter 2 - Purpose of the Investigation 19
Chapter 3 - Model 20
Chapter 4 - Dynamics 23
Chapter 5 - Results 31
Chapter 6 - Conclusions 59
Bibliography 64
Appendix A - The Beam Model 67
Appendix B - Positioning the Ion 72
Appendix C - Eroduction and Analysis of Sputtering 74 Deposit Fatterns
Appendix D - The sputtering program, ECCSPUT 77
Appendix E - Glossary for ECCSEUT 107
Appendix F - Pattern Production and Analysis Programs 115 (DATASORT, DATAPLOT, and DATA- GRID)
Initial Distribution List 136
Figures 137

LIST OF FIGURES

1. Force function error for atoms further apart than $2 r_{0}$.
2. (111) surface crystal.
3. (100) surface crystal.
4. (110) surface crystal.
5. Atoms involved in sputtering mechanisms.
6. Argon-copper Deposit Pattern, (111) surface, 1 keV Ion Energy, 3.00 ev Binding Energy.
7. Argon-copper Deposit Pattern, (111) surface, 2 keV Ion Energy, 3.00 ev Binding Energy.
8. Argon-copper Deposit Pattern, (111) surface, 3 keV Ion Energy, 1.50 ev Binding Energy.
9. Argon-copper Deposit Pattern, (111) surface, 3 keV Ion Energy, 2.00 ev Binding Energy.
10. Argon-copper Deposit Pattern, (111) surface, 3keV Ion Energy, 2.50 ev Binding Energy.
11. Argon-copper Deposit Pattern, (111) surface, 3 keV Ion Energy, 3.00 ev Binding Energy.
12. Argon-copper Deposit Pattern, (111) surface, 3 keV Ion Energy, 4.00 ev Binding Energy.
13. Argon-copper Deposit Pattern, (111) surface, 3 keV Ion Energy, 4.50 ev Binding Energy.
14. Argon-copper Deposit Pattern, (111) surface, 3 keV Ion Energy, 5.50 ev Binding Energy.
15. Argon-copper Deposit Pattern, (111) surface, 4 keV

Ion Energy, 3.00 ev Binding Energy.
16. Argon-copper Deposit Pattern, (111) surface, 5 keV Ion Energy, 3.00 ev Binding Energy.
17. Argon-copper Deposit Fattern, (111) surface, 5 keV Ion Energy, 3.50 ev Binding Energy.
18. Argon-copper Deposit Pattern, (111) surface, 7 keV Ion Energy, 3.00 ev Binding Energy.
19. Argon-copper Deposit Pattern, (111) surface, 10 keV Ion Energy, 3.50 ev Binding Energy.
20. Argon-copper Deposit Pattern, (111) surface, 20 keV Ion Energy, 3.50 ev Binding Energy.
21. Argon-copper Deposit Pattern, (111) surface, 40 keV Ion Energy, 3.50 ev Binding Energy.
22. Sputtering Frequency-Location, (111) surface, 1 keV Ion Energy.
23. Sputtering Frequency-Location, (111) surface, 2 keV Ion Energy.
24. Sputtering Frequency-Location, (111) surface, 3 keV Ion Energy.
25. Sputtering Frequency-Location, (111) surface, 4 keV Ion Energy.
26. Sputtering Frequency-Location, (111) surface, 5 keV Ion Energy.
27. Sputtering Frequency-Location, (111) surface, 7 keV Ion Energy.
28. Sputtering Frequency-Location, (111) surface, 10 keV Ion Energy.
29. Sputtering Frequency-Location, (111) surface, 20 keV Ion Energy.
30. Sputtering Frequency-Location, (111) surface, 40 keV Ion Energy.
31. Sputtering Profiles, Atoms Sputtered by Surface Mechanisms, (111) surface.
32. Sputtering Profiles, Atoms Sputtered by Deep Mechanism, (111) surface.

33a. Sputtering Ratio, (111) surface, Regular Surface Condition.

33b. Sputtering Ratio, (111) surface,:Vacancy Surface Condition.

33c. Sputtering Ratio, (111) surface, Stub Surface Condition.
34. Energy Distribution of Sputtered Atoms, (111) surface, $1-4 \mathrm{keV}$ Ion Energy.
35. Energy Distribution of Sputtered Atoms, (111) surface, 5 keV Ion Energy.
36. Energy Distribution of Sputtered Atoms, (111) surface, 7 keV Ion Energy.
37. Energy Distribution of Sputtered Atoms, (111) surface, 10 keV Ion Energy.
38. Energy Distribution of Sputtered Atoms, (111) surface, 20 keV Ion Energy.
39. Energy Distribution of Sputtered Atoms, (111) surface, 40 keV Ion Energy.
40. Argon-copper Deposit Pattern, (100) surface, 1 keV Ion Energy, 3.50 ev Binding Energy.
41. Argon-copper Deposit Pattern, (100) surface, 3 keV Ion Energy, 3.00 ev Binding Energy.
42. Argon-copper Deposit Pattern, (100) surface, 5 keV Ion Energy, 2.00 ev Binding Energy.
43. Argon-copper Deposit Pattern, (100) surface, 5 keV Ion Energy, 3.00 ev Binding Energy.
44. Argon-copper Deposit Pattern, (100) surface, 7 keV Ion Energy, 1.50 ev Binding Energy.
45. Argon-copper Deposit Pattern, (100) surface, 7 keV Ion Energy, 3.00 ev Binding Energy.
46. Sputtering Frequency-Location, (100) surface, 1 keV Ion Energy.
47. Sputtering Frequency-Location, (100) surface, 3 keV Ion Energy.
48. Sputtering Frequency-Location, (100) surface, 5 keV Ion Energy.
49. Sputtering Frequency-Location, (100) surface, 7 keV Ion Energy.
50. Sputtering Profiles, Atoms from (100) surface. 51a. Sputtering Ratios, (100) surface, Regular Surface Condition.

51b. Sputtering Ratios, (100) surface, Vacancy Surface Condition.

51c. Sputtering Ratios, (100) surface, Stub Surface Condition.
52. Energy Distribution of Sputtered Atoms, (100) surface, 1 keV Ion Energy.
53. Energy Distribution of Sputtered Atoms, (100) surface, 3 keV Ion Energy.
54. Energy Distribution of Sputtered Atoms, (100) surface, 5 keV Ion Energy.
55. Energy Distribution of Sputtered Atoms, (100) surface, 7 keV Ion Energy.
56. Sputtering Frequency-Location, (110) surface, 1 keV Ion Energy.
57. Sputtering Frequency-Location, (110) surface, 3 keV Ion Energy.
58. Sputtering Frequency-Location, (110) surface, 5 keV Ion Energy.
59. Sputtering Frequency-Location, (110) surface, 7 keV Ion Energy.
60. Sputtering Profiles, Atoms Sputtered from (110) surface.
61. Argon-copper Deposit Pattern, (110) surface, 1 keV Ion Energy, 3.50 ev Binding Energy.
62. Argon-copper Deposit Pattern, (110) surface, 3 keV Ion Energy, 3.50 ev Binding Energy.
63. Argon-copper Deposit Pattern, (110) surface, 5 keV

Ion Energy, 3.50 ev Binding Energy.
64. Argon-copper Deposit Pattern, (110) surface, 7 keV Ion energy, 3.50 ev Binding Energy.
65. Sputtering Ratio, (110) surface.
66. Energy Distribution of Sputtered Atoms, (110) surface, 1 keV Ion Energy.
67. Energy Distribution of Sputtered Atoms, (110) surface, 3 keV Ion Energy.
68. Energy Distribution of Sputtered Atoms, (110) surface, 5 keV Ion Energy.
69. Energy Distribution of Sputtered Atoms, (110) surface, 7 keV Ion Energy.
70. Sputtering Ratio; (110) surface, Channel Shots.
71. Sputtering Frequency-Location, (100) surface, 100 ev .
72. Crystal Instrinsic Volumes.
73. Impact Areas.
74. Sputtering Ratio Variation with Impact Point Sets.
75. Scattering from a fixed force center.
76. Ion deflection as a function of the product of energy and impact parameter.
77. Ion positioning process.

ACKNOWLEDGEMENTS

A digital computer simulation of the sputtering process requires the cooperation of many personnel not directly concerned with the project. I am indebted to Mr. Edward Ward and to Mr. Maxwell J. Eeuerman of the Computer Facility, Naval Postgraduate School (NPGS) for the nearly 1000 hours of computer time required to gather and analyze the data. The photography process for converting point plots to sputtering patterns was developed by Messrs. Richard A. DuBrau and Howard Bensch of the Photography Laboratory, NPGS. The reproduction of these patterns was made possible by the efforts of Mr. Wayne Shipton and Jackie A. Skinner, Specialist Fifth Class, U.S. Army of the Defense Language Institute, West Coast.

I am especially grateful to Dr. Don E. Harrison, Jr. of the Naval Postgraduate School for his supervision and assistance in this project. The many hours of stimulating discussion of the phenomenon of sputtering intensified the efforts directed towards this work. To my wife, Carolee, I express my sincere appreciation for her patience, understanding, and assistance in both the project and preparation of the manuscript.

1. INTRODUCTION.

Material is lost from a substance undergoing ionic bombardment. This is sputtering. Many authors have tried to define sputtering using terms such as "(atoms)...ejected or knocked out", "emission", "ionic erosion", "disintegration", and "breakdown." A reader who blithely accepts one of these definitions in the course of his reading may conclude: This definition describes the mechanism of sputtering. This is an illogical, if not erroneous, conclusion; the definition of sputtering must be derived from the mechanism, not the mechanism from the definition. The sputtering process has been investigated utilizing one of two general mechanisms, ejection or emission. Ejection implies an immediate or direct reaction release of an atom from a crystal; emission, a delayed or indirect reaction process which results in the release of an atom.

In 1923, Kingdon and Langmuir (1) bombarded thoriated tungsten with various ions in a glow discharge tube. This was a special case of sputtering since the thin surface film of thorium on a tungsten substrate was sputtered rather than the tungsten itself. The results of this experiment, that the sputtering ratio, atoms removed per incident ion, increased with increased ion mass and increased ion energy, qualitatively suggested an ejection mechanism. A few years later, Von Hippel and Blechschmidt (2) proposed a theory which described sputtering as an evaporation of surface atoms, an emission
mechanism. Earlier, Von Hippel (3) had found by spectroscopic means that at least some sputtered atoms were in an excited state. The sputtering theory showed that atoms in the region of impact could rapidly acquire thermal energy if the kinetic energy of incident ions was converted to thermal energy at the target surface. If an atom acquired a sufficient amount of thermal energy, it would then evaporate from the surface, some atoms evaporating while in an excited state. This theory was improved by Townes (4) in 1944, who calculated a sputtering flux and the number of atoms evaporated per incldent ion. Keywell (5) in 1954, used neutron diffusion theory to approximate atomic interactions within the crystal, a new approach to the theoretical investigation of sputtering. Direct application of statistical methods to sputtering was made by Harrison (6) who envisioned the interaction of two distribution functions (the crystal lattice and the ion beam). These models, based on statistical methods, implicitly accept ejection type mechanisms. One of the most important contributions to the study of sputtering was made by Wehner ${ }^{7}$ ($)$ in 1953 . In the first sentence of his paper, Wehner stated, "The most widely accepted sputtering theory is the evaporation theory...", but the deposit patterns of single crystal sputtering which he obtained showed pronounced, high density areas or "spots". There was now strong evidence for a momentum transfer process, and further development of the evaporation theory
ceased. Shortly after Wehner's findings were reported, Henschke (8) proposed a theory of sputtering based solely on classical collision theory, treating normal and oblique incidence sputtering separately. Oblique incidence sputtering could be explained by two body collision processes. The incident ion penetrated the surface layer with little or no interaction, was relected outward by second layer atoms, and ejected a surface atom by striking it on its inside hemisphere. His concept of normal incidence sputtering required many-body collisions in which the ion was eventually reflected outward to sputter surface atoms. This theory was plausible for oblique incidence sputtering, however, the case for normal incidence sputtering required that the ion be reflected inside the crystal. (Eor an ion more massive than the target this requirement cannot be met.)

Silsbee (9) noted that in any discussion of momentum transfer effects in sputtering, the geometry of the crystal should be considered; successive collisions in a crystalline structure might be influenced by the structure itself. His calculations showed: in a two-body collision, an atom has a departure angle β_{i} with respect to an axis specified by a close packed direction. In subsequent collisions, the departure angle β_{i+1} will decrease if the energy is low enough, and the collision sequence occurs along a close packed row of atoms. This concept of "momentum focusing", "Silsbee chains", or "focusons" was considered by
many investigators, excepting Wehner (10), to be a fully satisfactory explanation of the spots in deposit patterns. But the deposit pattern is only one of many observable features of single crystal sputtering.

The sputtering ratio is another important characteristic of the sputtering process. If a theory or model is to explain sputtering, both patterns and sputtering ratios must be explained qualitatively and quantitatively. Almén and Bruce (AB) (11) measured sputtering ratios of a variety of metals using $\mathrm{N}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$, and Ke ions over a $5-65 \mathrm{keV}$ range of bombardment energies. (Although polycrystalline specimens were sputtered, the qualitative results are the same as those obtained for single crystal sputtering.) They noted that the sputtering ratio was an increasing function of bombardment energy provided the ion mass was greater than the target mass. Sputtering ratios showing a maximum, or of a slowly varying nature, were observed in all cases in which the ion was lighter. Evidence such as this coincides with any gross conception of an ejection mechanism.

Single crystal copper was sputtered by argon at intermediate energies by Magnuson and Carlson (MC)(12) and Southern, Willis, and Robinson (SWR) (13). MC measured sputtering ratios (using 1-10 keV argon) for the (111), (100) and (110) surfaces and found that sputtering ratios decreased in this order of surfaces. SWR sputtered single crystal copper with
$1-5 \mathrm{keV}$ argon and measured sputtering ratios, but of greater significance was the quality of their deposit patterns which clearly showed the presence of only certain spots:
(111) surface $3-(110), 1-(111)$ but not seen due to
(110) surface 1-(110), 2-(100)
(100) surface 4-(110), 1-(100)

The work of $A B, M C$, and $S W R$ indicated that the sputtering ratio is at least a function of bombardment energy (or momentum) and of mass ratios. However, consideration of spot patterns indicates that the sputtering process itself is also highly dependent on the gross and/or surface geometry of the crystal and on ion penetration depth.

Ion penetration of solids has been investigated experimentally and by computer simulation. Piercy, McCargo, Brown, and Davies ${ }^{(14)}$ investigating channeling of various heavy ions in monocrystalline aluminum, found that the ion penetration distance increased in the order (111), (100), and (110) beam orientations. This is the same order as the sputtering ratio decrease found by MC. A number of studies of ion penetration have also been made using computer simulations (Oen, Holmes, and Robinson ${ }^{(15)}$, Robinson and Oen ${ }^{(16)}$, Harrison, Leeds, and Gzy(17)).

The most apparent correlation between the results of ion penetration and sputtering studies is the concept of transparency, defined by Fluit, Rok and Kistemaker(18). Both
experimental and simulation investigations of ion penetration indicate that channels exist in certain crystallographic directions of a crystal. Results of normal incidence sputtering experiments indicates that sputtering ratios are lower for surfaces in which these channels are parallel to the beam. One might initially suspect that sputtering ratios will be low if ions and target atoms are confined to these channels; momentum is directed into the crystal rather than laterally, reversal of momentum to produce sputtering not occuring. Accordingly, some incident ions should see a transparent surface rather than a wall of atoms.

The obvious complexities of the sputtering process may be investigated separately by digital computer simulation. This of course involves the selection of a gross mechanism (ejection or emission) and a model (hardsphere or otherwise). If factors such as the interatomic potential function and its parameters are known, then the use of the right model in the computer may be expected to simulate the actual sputtering process. Explanation of deposit pattern characteristics and sputtering ratios will necessarily follow from an exact simulation.

2. PURPOSE OF THE INVESTIGATION.

The belief that the formation of spots in sputtering deposit patterns is solely a consequence of momentum focusing was widely accepted for a number of years. The importance of momentum focusing, not only in spot formation, but in the entire sputtering process is now believed to be much less than originally thought (18-25). Tris investigation was undertaken to explore the single crystal sputtering process using a digital computer to simulate a copper crystal which is being bombarded with a beam of argon ions. Primary effort was directed towards:
a. Finding the mechanisms which result in atoms being deposited in the spots or high density regions of the deposit pattern.
b. Determining the correlation between crystal structure and sputtering ratios and patterns.
c. Investigating the surface binding energy and its effect on deposit patterns.

3. MODEL.

A. A space lattice is established whose sites represent the equilibrium positions of copper atoms in a face centered cubic crystal. Atomic spacing is that determined by x-ray crystallographic studies (for copper, $a=3.615 \AA$). The potential function, with parameters for copper-copper interaction, is the Born-Mayer type Gibson Number Two (26). The interaction between argon and copper is similarly described using a Born-Mayer potential, $V(r)=e^{A+B r}$, but the numerical values of the parameters A and B, for this function are those determined by Harrison, Carlston, and Magnuson (HCM) (2h) from a study of secondary electron emission. The range of both potential functions is eroded at r_{0}, one half the nearest neighbor distance such that the potential and force go to zero for atoms whose centers are farther apart than $2 r_{0}$. Use of this eroded form of the potential functions permits establishment of the crystal in a stable, static state without use of an attractive potential. This equilibrium state is destroyed only when an atom moves from its lattice site.

The lattice as a whole is restricted by the current computer program to perfect form. Defects such as interstitial atoms cannot be used, however, irregularities in the surface layer are introduced by using two types of variation from a perfect surface: vacancy and stub conditions. The perfect or regular surface is identical to a full lattice plane. In the vacancy
configuration the atom which would normally be hit first by the ion is removed from the perfect surface. The stub surface has an atom added on the perfect surface in a stable position and adjacent to the target atom. Additional atoms can also be added on the surface or removed from the perfect surface to provide a variety of random irregularities.
B. Each ion of the beam is approximated by a single, neutral argon atom whose velocity vector intersects the plane of surface atoms at an impact point. (The term ion is used throughout this thesis for the incident particle to avoid confusion with target atoms.)

Successive runs are made using different impact points to simulate use of the entire beam area. The use of this simple model for the ion beam is subject to four conditions:

1. The results obtained using one random set of impact points are essentially the same as those obtained using any other random set of impact points.
2. The majority of beam ions are neutralized before reaching some arbitrary boundary which defines the surface.
3. Prior to neutralization, the path of a beam ion is not appreciably affected by the surface potential.
4. A crystal region is in an equilibrium state each time a neutralized ion impacts in that region.

Ea ch of these conditions has been satisfied either in the model itself or by calculation. A full discussion is contained in Appendix A.

4. DYNAMICS.

The force functions for copper-copper and argon-copper interactions are derived from the respective potential functions. Atom position and velocity are then determined using Newton's Second Law of Motion. Normally, one would determine these values by numerical integration methods over small time intervals, however, this process uses too much computer time. Special methods approximating integration have been developed which are used to minimize computer run time yet maintain a good approximation to the integration.
A. Gay(28) developed an iterative method of solution which is similar to that used by Gibson, Goland, Milgram, and Vineyard (26). Both Gay's and Gibson's methods use the technique of replacing differential quantities with finite differences to approximate the equation of motion, $F / m=d v / d t$ v/t by $F / m=\Delta v / \Delta t$. Using this equation and the relationships $\Delta x=v \Delta t$ and $\bar{v}=\left(v+v_{0}\right) / 2$, equations. $(3-1)$ and $(3-2)$ are obtained.

$$
\begin{align*}
& \Delta v=v-v_{0}=\left[F\left(x_{0}\right) / m\right] \Delta t \tag{3-1}\\
& \Delta x=x-x_{0}=\left\{\left[F\left(x_{0}\right) / m\right] \Delta t / 2+v_{0}\right\} \Delta t \tag{3-2}
\end{align*}
$$

The known values $F\left(x_{0}\right), v_{0}, x_{0}$, and Δt in these equations are usually associated with a time $t=t_{0} ; \underline{x}$ and \underline{v}, the unknown values, are to be evaluated using these equations at time $t=T\left(t_{0}, \Delta t\right)$.

Gibson's technique associates the value of x_{0} with a time
$t_{o x}=t_{0}$, but v_{0} is associated with a time $t_{o v}=t_{0}-\Delta t / 2$.
Current values of \underline{x} and \underline{v} are alternately computed at intervals Δt using equations $(3-1)$ an $d(3-2)$.

$$
\begin{aligned}
& v\left(t_{0}+\Delta t / 2\right)=v_{0}\left(t_{0}-\Delta t / 2\right)+\left[F\left(x_{0}\right) / m\right] \Delta t \\
& x\left(t_{0}+\Delta t\right)=x\left(t_{0}\right)+\left\{\left[F\left(x_{0}\right) / m\right] \Delta t / 2+v\left(t_{0}+\Delta t / 2\right)\right\} \Delta t
\end{aligned}
$$

The advantage of this technique over that of evaluating both variables at time $t \approx t_{0}+\Delta t$ is that a continuous smoothing of the values of \underline{x} and \underline{v} occurs with each successive computation.

Gay recognized the need for some sort of smoothing procedure but considered that an averaging process for equation parameters rather than computed results would result in a better approximation. His method replaces the evaluated force function $F\left(x_{0}\right)$ in these two equations with an arbitrary force function $f^{f}(x)$ which is linear in some interval to be determined. Consider the following two step cycle:

Move an atom from x_{0} to x_{1} using computed values of $F\left(x_{0}\right)$ and v_{0} to solve equations $(3-1)$ an'd $(3-2)$. Compute $E\left(x_{1}\right)$ and average this value with $E\left(x_{0}\right)$. Now, move the atom from x_{1} to x_{2} using the averaged force, $\bar{F}\left(x_{Q}, x_{1}\right)$ and v_{o} to solve the equations using the same constant value of Δt. Let f now be defined in the interval $\left(x_{0}, x_{2}\right)$, such that $f^{\prime}\left(x_{0}\right)=\tilde{E}\left(x_{0}, x_{1}\right)$. Equations ${ }^{\prime}(3-1)$ and $(3-2)$ may now be written:

$$
v(t+\Delta t)=v(t)+\left[f\left(x_{0}\right) / m\right] \Delta t
$$

$$
x(t+\Delta t)=x(t)+\left\{\left[f\left(x_{0}\right) / m\right] \Delta t / 2+v(t)\right\} \Delta t
$$

The values of \underline{v} and \underline{x} are determinable in any interval in Which f approximates E to some arbitrary degree, therefore, in every complete cycle or timestep a new interval and new function \underline{f} are defined.

A determination of which of these two methods is better must be based on some standard or condition. In many cases the accuracy of numerical solutions such as these may be compared to the exact value one obtains by integration. But, there are no truly exact results in a simulation since a physical model is in the computer rather than the computer being used as a means of solving equations. However, if the model is physical, physical laws must be satisfied, and the energy gain or loss due to the mathematical approximations must be small. This condition of energy balance has been used by Harrison (31) Who found that, in simulations involving atomic interactions such as channeling or sputtering, use of Gay's method resulted in a better energy baiance.
B. The value of these approximation techniques may be substantially reduced by injudicious selection of a numerical value for Δt. Too large a value invalidates the approximation, but too small a value increases computer running time. The program used in this simulation of sputtering incorporates not only Gay's approximation method but also a procedure which he developed for automatic adjustment of Δt. Its value is
calculated using the relationship $\delta_{t}=\delta_{r} / v$ where Δt is replaced here by δt to indicate that its value varies with each timestep. The velocity, \underline{v} is the magnitude of the velocity of the most energetic atom in that timestep, and δr is used here as an input parameter, the timestep multiplier. This parameter is assigned the computer variable name DTI and is defined: the maximum displacement of any atom in any timestep shall be the numerical value of DTI in appropriate units of length. Gay considered the value of Δt, consequently that of DTI, to be a function of ion energy, impact point, and start point, but he was unable to find the relationship. Trial and error methods were used to find optimum values, and reasonably good results were obtained using these values. Johnson (29) reported that the energy balance was maintained to within 3% for all his runs.

The difficulties in choosing a value for DTI have been largely eliminated in this study. Some problem areas such as start point and impact point dependence were avoided by always positioning the ion tangent to the first atom it would hit. This, at worst, will result in a constant error for which adjustments may be made (this has not been necessary). 'The positioning procedure is described in Appendix E. The dependence on ion energy is inherent to the DTI computation process and is easily explained once the clutter of impact point: and start point dependence has been cleared away. Use of the

DTI process excludes all variable dependence except the inverse
proportionality to velocity, but the interval in which the force function is considered linear is exactly the same width as the numerical value of DTI. Accordingly, a straightforward analysis is made to show the interdependence.

The force function, $F(r)$, is expanded about an arbitrary point $r *$ using a Taylor's series for a function of one variable: $E(r)=F(r *)+\left.\frac{\partial F}{\partial r}\right|_{r *}(r-r *)+\left.\frac{1}{2}!\frac{\partial^{2} F}{\partial r^{2}}\right|_{r *}(r-r *)^{2}+\left.\ldots \frac{1}{k}!\frac{\partial^{k} F}{\partial r^{k}}\right|_{r *}(r-r *)^{k}$

Since $F(r)$ is derived from the potential function $V(r)=e^{A+B r}$, , $F(r)$ is necessarily of exponential form and $\frac{\partial^{k} F}{\partial r^{k}}=B^{k} F$? and the series is rewritten in the following form: $F(r)=\{F(r *)[1+B(r-r *)]\}+\left\{F(r *)\left[\sum_{n=2}^{\infty} \frac{B^{n}}{n!}\left(r-r^{*}\right)^{n}\right]\right\}(3-3)$ The quantity (r-r*) is now defined as a variable displacement δ_{r}, and equation $(3-3)$ may be written: $F(r)=f(\delta r)+g(\delta r)$ where $\underline{f(\delta r)}$ and $g(\delta r)$ are the terms in braces in the force function expansion. The function $f(\delta r)$ is assumed to be the linear function used in Gay's approximation method; the function $\underline{f}(\delta r)$ is to approximate $F(r)$. Thus, it is required that the rationg $(\delta r) / f(\delta r)$ be some fraction less than one.

Let an assumption be made that the ratio is much less than one, but that the actual value is the fractional deviation from linearity, a variable whose value is to be specified. Then, since B is a negative constant (from the potential function), the truncation error for the series is easily found, and the
quantity $B \delta_{r}$ is known for every specified value of fractional deviation. But B is constant, and once the fractional deviation is specified, δr is fixed. Consequently, specified to the fractional deviation from linearity, there is a function $f(r)$ which is a valid approximation to the function $F(r)$ in every interval ($r, r+\delta r$) where δ_{r} is fixed. The quantity δr is thus the value to be used for D'TI, and $\delta t=\delta_{r} / v=D T I / v$. It is now assurred that Δt will always be the maximum possible value which minimizes computer running time without introducing errors due to the non-linearity of the true force function. One would expect therefore, that the energy balance would be maintained to the same order as the linearity of the force function. Further consideration will show that the energy balance is maintained to a considerably better degree than that anticipated. First, since D'TI is the maximum displacement of the most energetic atom, essentially all other atoms will be displaced a distance less than DTI. Thus, the interval in which the force function $f(r)$ is used is smaller, and $£$ is an even better approximation to E. Second, for a given fractional deviation from linearity, the value of δ_{r} is total displacement, not $\underline{x}, \underline{y}$, or \underline{z} component displacement; and the velocity used in the determination $\Delta t=D T I / v$ for each timestep is the total velocity \underline{v}, not the component velocity v_{i}. The result of these considerations may be summarized by a calculation for the maximum displacement of
an atom along the i component of its displacement vector: $\Delta x_{i}=v_{i} \Delta t$, but $v_{i} \leqslant v \leqslant v_{\text {max }}$ and $\Delta t=D T I / v_{\max }$. It follows that $\Delta x_{i}=v_{i}\left(D T I_{i} / v_{\max }\right) \leq D T I$.

Tnese analyses appear to provide a tidy solution to the time optimization and energy balance problem. This would be true except for the complications introduced by the eroded form of the potential function. Consider a situation in which one atom is separated from another by a distance $\left(2 r_{o}+d\right)$ Where \underline{d} is some distance less than the total distance D that the atom will move in the next timestep. When the atom is moved the distance D, as shown in figure 1 , the force on the atom at its new position is the same force it would have if it had moved only (D-d) units. Since the force is zero for $r>2 r_{0}$, the model assumes that the atom had a velocity $v=$ $(D-d) / \Delta t$ (which is smaller than its actual velocity $v=D / \Delta t$, and a smaller kinetic energy is computed using this smaller velocity. This difficulty was originally foreseen by Gay who included corrections to the force calculations for such situations. Both Levy (30) and Johnson (29) improved the methods of corrections, and recent improvements in the force calculations have been made by Harrison (31).

The continuous improvement of the dynamics section of the program has resulted in a model in which not only has the computer running time been minimized, but of greatest significance, for nearly all of the 700-800 combinations of surfaces,
ion energies, and impact points used in this study, the energy balance was maintained to within 1%.

5. RESULTS.

Reports of sputtering studies of ten include ad hoc formulations of mechanisms which are used to explain deposit patterns, sputtering ratios, and sputtered atom energy distributions. The sputtering process is discussed in this thesis in terms of mechanisms which have been observed in the simulation to sputter atoms. The observance of these mechanisms is an advantage peculiar to a simulation. Each crystal aitom (and the ion) must be identified by number, at least for purposes of computer calculations. Since every atom is identified, its complete track can be plotted and labeled. The tracks of selected atoms can then be superimposed to show a complete set of interactions. The mechanisms which were observed to cause an atom to sputter are considered the prime observable quantity of the simulation.

The results of the simulation are discussed for each crystal surface. The determination that an atom having energy E is sputtered, was made using a probability-of-sputtering function, $P(E)=1-e^{-E / E} E_{b}$ where E_{b} is the assumed binding energy. The value of P is compared with a random number R having a value between 0 and 1 . If $P>R$, the atom is considered sputtered. (This method of selection has been compared with one using astep function in which all atoms with $E>E_{b}$ are assumed sputtered. A selection method using another probabil-ity-of-sputtering function, $P(E)=1-e^{-\left(E-E_{b}\right)}$ has also been
tested. No differencer were observed in the sputtering patterns based on the atom selection method.)

Mechanisms observed to cause sputtering are diseussed first for each surface. Deposit pateerna, sputtering patios, and sputtered atom energy distributions are then discussed. The deposit patterne shown are superpositlong of those obtained by sputtering the crystal separately with regutar, vacancy, and stub surface conditiong. This practee followa that used by Johnson (29) who found that pateen featurea Were difficult to recognta when viewing separate paternio from each surface condition. The energy diftributione are also superpositions of the three surface conditons. The une of superposition is considered to most realletcally fimulate the condition of the cryetal surface at vanoun time during sputternit. There are strong argumenta however, for usirg only the regular suriace condition. Sputeening patos ane not averaged (which would correspond to the superposition of other data) since a probabllity factor for the existence of each burface condition would need to be determined. In= stead, the simulation sputtering ratos for vacaney and stub surface conditions are included and discussed briefly anly for completeness. (The (110) Burface was sputtered any at tut and 3 keV using all thros surface conditions.)

Crystallographic nomenclature is used generically in the discussion of spots, Reforence to an (hki) spot does fot
imply $\langle h k l\rangle$ ejection. The〈hkl〉directions are with respect to a right handed coordinate system in which the crystal is described. The (hkl) surface is contained in the $\underline{x-z}$ plane; the y direction is into the drystal. The three crystals used in the simulation are shown in figures 2-4; all contain 150 atoms. This crystal size has been found sufficient to contain nearly all energetic collisions for ion energies up to 7 keV .
A. The (111) surface.

The (111) surface was sputtered normally with argon at $1-5,7,10,20$, and 40 keV . (Although the potential function is considered valid only for ion energies less than about 7 keV , the higher energy runs were used to search for additional mechanisms.) Four mechanisms were found. These were especially evident at the lower ($1-5 \mathrm{keV}$) ion energies. Three of these are classified surface mechanisms since only surface atoms were found to participate in the sputtering event. The fourth mechanisms is a deep mechanism in which an inward moving atom is reflected and then initiates a sputtering event. In all cases, the dominant mechanisms were found to be surface mechanisms.

Except for head-on collisions, the ion is scattered by the target (atom 2) with a component of momentum parallel to the surface as well as a much larger perpendicular component into the crystal. The effect of this combination of momenta is to drive a nearest neighbor (n . n.), for example atom 6 in
figure 5, into an apparent $\langle 112\rangle$ channel formed by atoms 7 , 8, and 9. The channel is apparent since it terminates abruptly thus causing atom 6 to drive atoms 7 and 8 into the crystal and atom 9 outward. Since atom 6 passes nearly directly behind atom 9, the impulse is more normal to the surface than parallel to it. This is termed a mole mechanism since one atom burrows between two layers parallel to the surface to sputter an atom in the outermost layer. Atoms sputtered by this mechanism are almost always a next nearest neighbor (n.n.n.) to the target and located in or near the sextant defined by the impact area. They usually sputter with greater than 10 ev . The target always receives the majority of energy transferred by the ion, but it is normally driven into the (111) trigonal array of atoms directly behind it. These three atoms act as buffers and dissipate the target's energy and momentum into the crystal. The target is reflected, but it does not retain sufficient energy to sputter a surface atom nor sputter itself.

The second and third surface mechanisms occur when the impact parameter is about one third of an atom radius or less. In both mechanisms a n.n., atom 6, is struck by the ion such that the parallel and perpendicular momentum component magnitudes which jt acquires are of the same order. If the perpendicular component is greater, atom 8 scoops a n.11.n., atom 9, relatively high up in the surface plane of atoms and
into their outer hemispheres. These atoms are densely packed in the surface and act as a rigid reflector for atom 9. It is found that atoms sputtered by the scoop mechanism have ejection angles nearer the normal than would be found in the absence of reflection in the surface. If the perpendicular momentum component of atom 6 is nearly the same or less than the parallel component, it squeezes atom 9 against its surface neighbors. The squeezing causes the surface plane to warp and atom 9, 10, or 11 is sputtered. Atoms sputtered by either the scoop or squeeze mechanism usually sputter with less than 10 ev . Atoms sputtered by combinations of the three surface mechanisms are found to sputter with higher energies than when sputtered by a single mechanism.

The fourth mechanism requires that an atom be reflected. The atom which is most of ten apt to be reflected is the target. If the impact parameter is greater than one half the atom radius, the target is driven towards an edge of the trigonal array behind it rather than into it. It will penetrate this edge if it has sufficient energy, but it will lose most of the energy during the penetration. The reflection occurs from third layer atoms and the target atom's reversed momentum is transferred to a second layer atom. The second layer atom will then sputter one or two surface atoms at energies upwards of 5 ev . At lower ion energies the target atom cannot penetrate the array edge and is reflected from the second
layer; it may or may not sputter a surface atom, but it rarely sputters itself.

When the crystal was sputtered at 7 keV , the ion was found to penetrate well into the second layer. This is a significant increase in ion penetration depth since 5 keV ions are found to penetrate only to the order of half an atom radius. The effect of deeper ion penetration is to cause a lateral compression of the second layer with accompanying warping. Second layer atoms which are squeezed outward will sputter a surface atom but are rarely found to sputter themselves. At the higher bombardment energies tested (10, 20, 40 keV), the number of second layer atoms which sputtered increased nearly proportionally to the increase in ion energy. The sputtering process at these higher energies appears to be predominantly by the three surface mechanisms described for lower energy sputtering. Mechanisms peculiar to high energy sputtering have not been observed although this may be due to the limited energy range for model validity.

All (111) simulation deposit patters showed the characteristic features of three (110) spots and a central (111) spot. The 2 keV pattern definitely showed the presence of three additional spots which were found in the regions in which streaking occurred at other energies. These patterns are shown in figures 6-21. The appearance of a hexagonal pattern at 2 keV was a surprising result, but it is not a unique
occurrence in sputtering studies. Anderson and Wehner (10) found a hexagonal pattern for (111) copper sputtered by mercury. The expected trigonal pattern was found for energies up to 400 ev , a hexagonal pattern appeared at 400 ev, and it disappeared as the ion energy increased. Very recently, Robinson and Southern (32) have found additional spots near $\langle 114\rangle$ positions for (111) gold sputtered with 4 keV argon.

The pattern features vary slowly with binding energy provided its value is restricted to the range $2.50-3.50 \mathrm{ev}$. The upper limit is the sublimation energy for copper (33); above it the patterns appear to deteriorate. This was most evident at a 3 keV bombardment energy. A set of patterns at this bombardment energy is shown in figures 8-14 for a binding energy range of $1.50-5.50 \mathrm{ev}$. The pattern deterioration is most evident in the region of the (111) central spot. Figures 11 and 12 show the transition from a well defined central spot at 3.00 ev to complete deterioration of the central spot at 4.00 ev .

The half-intensity width of the (110) spots is estimated from pattern data and from numerical data to be about 11 degrees. The width of the central spot is an unreliable datum and was not determined.

Sputtered atoms were always found to be surface layer atoms for sputtering at 5 keV or less. The atoms which
were sputtered most frequently appeared to naturally group by energies into two categories; atoms with perpendicular energy greater than 3 but less than 10 ev and atoms with perpendicular energy greater than 10 ev . The higher energy atoms were found to be equally distributed between the three (110) spots and the central spot. They were also found in the narrow sectors defining the streaks and at distances from pattern center corresponding to the distances of the (110) spots. This distance was found to be 0.7 units, the distance measured for the spots in the patterns of SWR. The lower energy atoms were usually found in the central spot which explained its sensitivity to binding energy.

The correlation of sputtering frequency and crystal location of sputtered atoms was found using frequency-location diagrams. These are shown in figures 22-29 for regular surface sputtering. Similar diagrams have been made for sputtering the vacancy and stub surfaces. It was found that a 1 keV ion does not cause frequent sputtering of $n . n . n$.'s or n.n.'s in the sextant defined by the impact area. However, at 2 and 3 keV , n.n.n.'s are found to be sputtered most frequently, and at higher energies, both n.n.n.'s and n.n.is are frequently sputtered. The three-fold relationship between the frequency of sputtering, location of the atom with respect to the target, and the ion energy may be clarified by considering the sputtering mechanisms.

At 1 keV and an impact parameter of about three fourths an atom radius, the ion is found to penetrate less than half an atom radius. At energies up to 5 keV the penetration is only slightly greater. It was found that, although the target is always driven into the crystal, the n.n. which initiates the majority of sputtering may not be driven far enough into the crystal to provide the scoop mechanism. If it is not driven inward a sufficient distance to scoop the n.n.n., its energy will be propagated in the surface along close packed rows which orlginate at the n.n.n. This is not a "focuson." At an early point in the propagation the surface will have warped sufficiently to cause an atom to sputter. The sputtering is a result of a squeeze mechanism but not one directly involving the n.n. As the ion energy is increased the scoop and mole mechanisms are more apt to occur although the squeeze mechanism is found to occur at all ion energies. The transitions from dominance of one mechanism to another with increasing ion energies may be inferred from the profiles shown in figure 31 for atoms which sputter most frequently.

A relatively constant sputtering frequency is observed for atoms 102 and 132, but the percentage of high and low energy sputs varies for atom 102 which is a n.n.n. The percentage does not vary for atom 132 which is neither a n.n.n. nor a n.n. Atom 102 sputters most frequently at low ion energies by the squeeze mechanisms, at higher ion energies by the scoop
and mole mechanisms. These relationships have been confirmed by the atom track displays. They also have shown that atom 132 is sputtered by atom 102 through a squeeze mechanism alone at low ion energies but in conjunction with the mole mechanism at higher ion energies. The profile shown for atom 86 is the result of simple reflection from second layer atoms. Atoms 87 and 101, which are not in the impact sextant but are sputtered frequently, are sputtered by the squeeze mechanism.

Figure 32 shows profiles of atoms sputtered by the deep mechanism. At low ion energies the target reflects at an oblique angle from second layer atoms rather than penetrating the layer, and it enters one of the apparent $\langle 112\rangle$ channels. Atoms 25 and/or 55 are then sputtered directly by the target. (Although this is similar to a mole mechanism it is a distinct mechanism since the target must be reflected in this case but not in the former case.) At higher ion energies the target will penetrate the second layer and is reflected from third layer atoms. It does not channel, but it causes a second layer atom to sputter surface atoms. Accordingly, atom 55 is sputtered by the deep mechanism more of ten than atom 25 is sputtered by a channeled target. Atom 40 or 70 is sputtered by a squeeze mechanism, usually in conjunction with the sputtering of atoms 25 and 55 .

These results for the sputtering of a regular surface
have been found to be generally applicable to sputtering vacancy and stub surfaces. Equal numbers of atoms from the three surfaces are found in the spots and in the streak regions. It is also found that these atoms are usually the same from all three surface conditions. They differ only in energy since it is the ion penetration distance which indirectly determines the magnitude and direction of momentum transferred to surface atoms. The vacancy surface sees an ion which penetrates deeper; this is analogous to an ion of greater energy. In the stub condition, the ion does not penetrate the surface; it transfers energy to the stub atom. The stub then assumes the role of the ion impinging on the surface, but the stub appears as an ion with less energy.

Figure 33 shows the sputtering ratios for each surface condition as a function of ion energy; assumed binding energy is a parameter. A statistical variation of $\pm 20 \%$ of the sputtering ratio has been assumed. This would normally be an unreasonably large deviation for laboratory results, but it is considered conservative for the numerical results from a simulation in which many parameters are unknown. The actual value of sputtering ratios obtained for the regular surface is generally low by $2-3$ atoms/ion for a binding energy of 3.5 ev . Further investigation showed that, in a few cases, surface atoms 3 planes below the impact point would be sputtered with about $4-5 \mathrm{ev}$. The average increase in the (111) sputtering
ratio over the $1-7 \mathrm{keV}$ range is estimated to be no greater than 2.0 atoms/ion for a binding energy range of 1.5 to 3.5 ev. This range is shown by the dotted lines in figure $32 a$. Vacancy and stub sputtering ratios show erratic behavior over the energy range studied.

Energy distributions of sputtered atoms are shown in figures 35-39. The preponderance of atoms with energies less than 5 ev is caused by the lack of an intrinsic surface binding energy. The sputtering selection process considers all atoms having E greater than 1 ev . Thus the $P(0.50)$ energy, using an assumed binding energy of 3.5 ev , is 2.42 ev . This is especially evident for the 1 and 5 keV distributions. If this region is disregarded, the peaks which occur at $5-8$ ev for all ion energies are assumed to be the maximum for each distribution. Secondary maxima appear at 16 ev for 1 keV sputtering, 16 ev for 2 keV , and at 14 ev for 3 keV sputtering. At higher ion energies, a secondary maximum may be present at 47 ev for 5 keV sputtering. The number of atoms sputtered in the simulation is too small to make a definite statement regarding maxima. Differences are usually measured by one, at most, two atoms.
B. The (100) Surface.

The (100) surface was sputtered normally with 1, 3, 5, and 7 keV argon. Mechanisms observed to cause sputtering were found to be nearly identical to the surface mechanisms
discussed for (111) sputtering. A mechanism directly comparable to the deep mechanism was not observed. Instead, it was found that the scoop and mole mechanisms are enhanced by the presence of the (110) channels parallel to the surface. Surface atoms which are driven into these channels do not have to burrow between the first and second layer in order to sputter nearby surface atoms. Additionally, it was found that these atoms will frequently sputter themselves by reflection from second layer atoms. The squeeze mechanism was observed to be the most effective sputtering mechanism at 3 and 5 keV . At 1 and 7 keV ion energies, variations of the scoop and mole mechanisms were dominant. The low-high and middle ion energy dependence observed for the dominant mechanism is directly related to the shape of the impulse by which the tion transfers energy to a n.n.

At low ion energies, the impulse is sufficiently broad that the n.n. is directed into the edge of the square of atoms behind it. The n.n. will enter the (110) channel without immediately sputtering a surface atom. When the impulse is narrow, the peak force is not necessarily greater. The target has received most of the energy given up by the ion, and the ion-n.n. impact parameter is larger. The n.n. will then scoop or squeeze a surface atom causing it to sputter. At high ion energies (7 keV) the ion was found to penetrate at least into the second layer where it was deflected towards but not into
a (110) channel. This was observed to cause second layer atoms to be scooped up and sputter surface atoms. Second layer atoms are also squeezed by their neighbors and may sputter through the vacancy left by a sputtered surface atom.

Sputtering at 3 and 5 keV was found to be caused by the scattering of surface atoms along the surface as the ion was being reflected from second layer atoms. The squeeze mechanism was observed to sequentially sputter atoms along a close packed surface row. The occurrence of a mole mechanism was conspicuously rare; even at 5 keV the energy propagation was clearly restricted to propagation parallel to the surface layer of atoms and to propagation into the crystal. The only definite momentum reversals observed were for the target atom and the ion.

The characteristic features of (100) sputtering deposit: patterns are four (110) spots and a central (100) spot. The patterns are usually outlined by a hypocycloid-shaped haze; the (110) spots form the cusps of the hypocycloid. Simulation patterns were found to show these characterlstic features quite well for 3 and 5 keV sputtering. The 3 keV pattern (figure 4.1) is a very good likeness to one at: 2.5 keV reported by SWR. The (110) spot distances from pattern center were found to be 1.0 TC unlt which corresponds to the distances in the 2.5 keV experimental pattern. It was further determined from numerical data that the (110) spota
were actually elliptical rather than circular. This latter characteristic is undoubtedly the result of distortion inherent in flat plate collection of sputtered atoms (13). The 3 keV pattern was found to remain essentially unchanged as the binding energy was varied from 2.50 to 3.50 ev . The 5 keV pattern (figure 42) was almost identical to the one at 3 keV only when a binding energy near 2.00 ev was used. As the binding energy was increased, the (110) spots became less well defined (figure 43) and spots corresponding to $\langle 210\rangle$ became the most prominent feature. The intensification of $\langle 210\rangle$ regions was accompanied by a loss in definition of the hypocycloid outline. Similar results were obtained when sputtering at 7 keV . The hypocycloid outline in the pattern could only be observed for a binding energy near 1.50 ev .

The deposit pattern for 1 keV sputtering (figure 40) showed very little similarity to those obtained from higher energy sputtering. Four spots corresponding to 〈211〉 were observed; four (110) spots may also be defined but they are extremely diffuse. (The (110) spots are best seen in the point plot in figure 40 a.$)$ The finding of (211) spots at 1 keV , and the appearance of (210) spots for 5 and 7 keV ion energies suggested that the pattern might be rotated 45 degrees for low ion energy sputtering. The possibility that a rotation occurs has been investigated (35), but one has never been experimentally observed.

The different (100) pattern features which appeared with varying ion energies and binding energies were a marked contrast to the relative constancy observed for (111) patterns. (The use of a binding energy of 3.00 ev resulted in comparable (111) patterns for all ion energies.) The lack of constancy for the pattern simulations may be explained as a result of the subtraction of a binding energy from the perpendicular component of a sputtered atom's energy. (This is done to simulate the energy lost in overcoming the surface potential.) An atom sputtered with small perpendicular energy, less than 15 ev for example, may suffer an apparently small change in its perpendicular velocity, but the direction of its velocity may be considerably altered. The average perpendicular energy of atoms found in spot regions is about $15-20 \mathrm{ev}$ from sputtering the (100) face. It is about $20-25 \mathrm{ev}$ for (111) sputtering for which variations of up to 1 ev binding energy have had little effect on pattern features. This explanation does not, however, explair Why the pattern at 3 keV is valid for a range of binding energies. A consideration of the atoms sputtered may clarify but not completely explain this situation. The dissimilarities seen in the (100) patterns may be directly inferred from the frequency-location diagrams for (100) sputtering '(figures 46-49).

When the energy propagation is restricted to the surface, as it is for 1 keV sputtering, the (111) surface can dissipate energy through four atoms in the momentum forward semi-
circle. The (100) has only three atoms comparably located to dissipate the energy. Track displays have shown that for 1 keV sputtering, atoms 26,116 , and 132 are sputtered by a combination of mole and squeeze mechanisms. The mole is predominant in sputtering the atoms nearest the target, the squeeze mechanism becoming predominant for surface atoms which are located further from the target. Atom 26 sputters less frequently than atom 116 since it is on the opposite side o? of the crystal with respect to the impact area. Both of these atoms are found in (211) spots, but atom 116 is also found in (110) regions of the pattern. Atom 132 is found in (211) spots and the (100) spot; it is sputtered only by the squeeze mechanisms. When the bombardment energy is 3 keV , the deposit pattern has its expected characteristics. Correlation of high atom density regions with frequency-location data showed that the (110) spots are the result of sputtering of n.n.n.'s. Concurrently, the hypocycloid outline was found to be formed by: (1) the sputtering of the same atoms which formed (211) spots at 1 keV , and (2) the sputtering of the n.n.n.'s in the surface. These atoms were not densely deposited in the (211) regions but formed diffuse ellipses whose semi-minor axes were along quadrant bisectors. The appearance of well defined (110) spots at 3 keV is strongly suggested by the 3 keV frequency-location diagram, figure 47. Atoms 70 and 72 were observed to be sputtered with about the same
frequency as atoms 55 ， 56 and 86 ．Since atoma 70 and 72 are along a（100）axls，one might expect that they would be found in（110）spota，ard this hat been observed．Atome 55 and 56 are in positions relative to the target duch that they would sputter within adjacent 45 degree nectorg in quadrants II and 1［1．These atoms are tound in the hypocydoid outline． The aboence of the hypocyclold at 1 keV and lta presence at 3.5 and 7 keV is reudly apparent when one conaldew the
 are never sputtered，however，they are gputtered with increasing frequency ws the lon energy increatera．Atom 86， the n．n．In the quadrant contalnifg the impat afea，exhbity this behavior of increasing sputcering ex watuenoy．Atom 7 ghowe a sputtering profile which indleste日 the（110）gpot formation at lor energien of 3 keV or greater．＇The ennatant nature of the profile for atom 102 atz 3 kev and higher on energies in indicative of the hypodyelold outhne mather than〈211〉 gpot foomation．Atom自能， 116 and 132 ghow a generally decreasing frequency of sputterng whith high lon energy．This is consigtent with the logs of（211）既pota at highat fon energita． ＇The track patterns observed tor 5 and 9 kev（100） sputcering showed that atomb ejected by a dquere mechantam are often ejectad in dregtong oppotte to those one would axpect golely of the basts of the loceton of the atom whth respect to the Impaet polnt．Theseroceumpences wefe eaused
by two factors: (1) the atom was squeezed against its neighbor and reflected outward and with its parallel component of momentum reversed rather than being strictly ejected outward. (2) Sputtering by near simultaneous squeeze and mole mechanisms results in ejection of an atom where the ejection direction is dependent only on the impulse delivered by the channeling atom in the mole mechanism.

Sputtering ratios for the (100) isurfacecare showninfigure 51. The correspondence between simulation values and experimental values is quite good for the regular surface for a binding energy of 3.50 ev . The ratios for vacancy and stub surfaces show a closer correlation to the regular surface for (100) sputtering then for (111) sputtering.

The energy distributions of sputtered atoms are shown in figures 52-55. No specific maxima other than that near $5-7$ ev appeared to be present.
C. The (110) Surface.

This was the last of the three face centered cubic orystal surfaces to be sputtered in this simulation. It is purposely the last to be discussed. First, experimental deposit patterns from (110) sputtering show only a large central oval area for bombardment energies greater than a few hundred ev (10). Second, a unique feature of this surface is the (110) channel; no other (hkl) surface in a face centered cubic crystal shows〈hkl〉 channels. The sputtering mechanisms occurring for 1, 3,

5 and 7 keV ion energies were most readily observed for sputtering of this surface, and they are interrelated with the presence of (110) channels. The mechanisms are, again, identical in concept to those previously discussed for (111) and (100) sputtering. Before discussing these mechanisms separately in terms of individual crystal atoms, the features of the frequency-location diagrams (figures 56-59) are summarized.

Sputtering of the (110) surface differs significantly from the sputtering of (100) and (111) surfaces: (1) the target atom was the atom sputtered most frequently at all ion energies. (This is in agreement with results obtained by Levy (30).) (2) the number of sputtered atoms with high energies were generally those in the close packed row containing the target atom, but with the target atom located at the center of the row rather than at the origin of the row. These findings are wholly consistent with expected results When one considers the sputtering mechanisms with respect to this particular surface.

The frequent sputtering of the target is made possible by the nature of the squeeze mechanism but the mechanism does not itself cause the sputtering. When the target is driven into the crystal it squeezes the n.n. (in its row) and ejects it. Once the n.n. position is vacant, the target will travel through a large, potential-free area betore striking is second
layer atom. The target strikes this second layer atom and is free to reflect outward without finding a surface atom directly in its path. The target then transfers most of its parallel momentum to a n.n.n. in the row. The parallel impulse is then propagated down the surface row. Warping of this one row causes additional atoms to sputter. This sputtering sequence is also observed as a result of the ion striking the n.n. which is in the quadrant defined by the impact area. A rather surprising continuation of this sputtering mechanism was observed to occur in atom rows located both above and below the horizontal row containing the target. Second layer atoms which receive energy from the target or ion are driven into (111) apparent channels. They pass behind another second layer atom causing it to be ejected outward and strike two adjacent surface atoms. Sputtering is, again, initiated in a surface row. Sputtering profiles for the target (atom 72) and atoms 42, 71, 73 and 102 are shown in figure 60. Atoms 42 and 102 are the n.n.'s to the target; atoms 71 and 73 are those which initiate sputtering in the horizontal rows containing them. Second layer atoms are sputtered more frequently as the ion energy is increased.

Simulation deposit patterns from (110) sputtering (figures 61-64) tend to show more of an oval outline than a uniformly dense central oval region. The central region can be made more dense by including atoms sputtered with less than 1 ev
perpendicular energy in the probability-of-sputtering selection process. This did not seem justifiable for (110) pattern production since these small energy atoms were excluded from (100) and (111) patterns. The 1 keV point plot (figure 61a) showed indications of (100) spots but these cannot be clearly seen in the deposit pattern (figure 61b). Their presence was substantiated by numerical data. The average energy deposit data showed that the average energy of atoms in $\langle 100\rangle$ regions was nearly double that of atoms found in the central oval. This is a constant characteristic of non-central spot regions. At higher ion energies there was no direct indication of the presence of these spots either by numerical data or energy deposit data. A few atoms having high energy were found in these regions but the area density was too small to form a spot in the pattern. The set of atoms found to form the central oval for sputtering at all ion energies was not a well defined group such as has been found for (100) and (111) sputtering. The atoms forming the (100) spots from 1 keV sputtering are those which are either n.n.is to the target or n.n.'s to the atom which initiates sputtering in each horizontal row.

The sputtering ratio for (110) sputtering is shown in figure 65. Agreement with experimental data from the numerical and curve shape aspect was poorer for this suriace than the other two surfaces. 'Ihis is apparently caused by
(110) sensitivity of the sputtering ratio to the A parameter in the argon-copper potential function. Levy (30) obtained better curve shapes using $A=11.435$ whereas $A=12.56$ has been used in this study. This sensitivity has not been observed for (100) and (111) sputtering.

Energy distributions are shown in figures 66-69. The notable feature of (110) sputtering is that the energy of sputtered atoms is generally higher for (110) sputtering than (100) or (111) sputtering.
D. Results of Ancillary Studies.

During the course of the simulation, it became apparent that certain extensions of this study should be made. It was particularly desirable to probe five areas:
(1) Sputtering mechanisms peculiar to high bombardment energies (up to 40 keV).
(2) Sputtering of the (110) surface by high energy ions which are directed towards (110) channels.
(3) Sputtering mechanisms for an ion heavier than the target.
(4) Sputtering of the (0001) basal surface of a hexagonal close packed crystal.
(5) Sputtering the (100) surface at ev ion energies. Investigation of the first two of these five areas were limited somewhat by the restrictions for the copper-copper and argon-copper potential function. They are usually assumed
valid up to about 10 keV , however, if small impact parameters are assumed to rarely occur, valid results may be expected. Areas (3) and (4) involve the use of unknown parameters. Accordingly, the validity of results from investigating these two areas cannot be assured.

The search for mechanisms peculiar to high energy sputtering was made using the (111) surface. This surface was considered the one most likely to show additional mechanisms since it is the most densely packed surface. The failure to find mecharisms (part A of this section) peculiar to high energy sputicering was not too surprising.

The sputtering of the (110) surface by ions directed irto (110) channels was investigated by determining the sputtering ratio for ions impacting at the two impact points located nearest the channels. The sputtering ratio curve for channel shots is shown in figure 70. The discontinuity between the low and high ion energy curves is assumed to be the result of breakdown of the potential functions. The important result is that sputtering always occurred for channel shots, even When 40 keV ions were used.

The third area was examined using xenon to sputter the (111) surface. Argon-copper potential parameters were used since those for xenon-copper were not available. Runs were made at 3 and 5 keV . At botin energies, the ion penetrated at least to the fourth layer of atoms; no indication of momentum
reversal of the ion was observed. The ion was found to be channeled, just before penetrating the third layer, into (110) channels. It initiated cascades which propagated into the crystal.

The fourth area was investigated to see if the effect of surface geometry on the sputtering deposit patterns could be determined by a comparison of (111) sputtering of a face centered cubic crystal with sputtering the (0001) surface of a hexagonal close-packed crystal. Hasiguti, Hanada, and Yamaguchi (36) have sputtered zinc with 8 keV argon; the deposit pattern showed an outlined, equilateral hexagon with a central haze. An attempt was made to reproduce this pattern with the simulation model modified for zine-zinc interactions. The potential parameter was adjusted for a Born-Mayer type potential $V(r)=A e^{-r / b}$ where $A=52$ $\left(z_{1} z_{2}\right)^{3 / 4} \mathrm{keV}$. This relationship was determined by Andersen and Sigmund (37). The argon-zinc potential parameters (assuming a Born-Mayer type potential) were approximated by using those for argon-copper interactions. Neither the sputtering ratio nor deposit pattern matched the reported results. This was not unexpected since the zinc atoms in the crystal must be represented as ellipsiods (with the minor axis in the basal plane) rather than represented as spheres. The (100) surface was sputtered at 100 ev to investigate the possibility of a 45 degree pattern rotation for low ion
energy sputtering. The number of atoms which were sputtered was extremely small. All sputtered atoms had energles less than 10 ev . It was found that the atoms sputtered most frequently from the regular surface were n.n.n.is (figure 71). Bombarding vacancy and stub surface conditions also resulted in a predominance of $n \cdot n \cdot n \cdot ' s$ being sputtered rather than sputtering of the atoms forming the square about the target atom.
E. Results Common to All Surfaces.

Momentum focusing was observed to occur only into the crystal for the three copper surfaces studied. This was particularly evident from atom track displays of (111) surface sputtering. If an atom underwent momentum reversal, it was always by reflection from atoms located no deeper in the crystal than the third layer. Even for 7 keV ion energies, crystal atoms located deep in the crystal were always driver inward. A surprisingly large number of atoms with large energies were found to move between second and third layeris with their motion nearly parallel to the surface and with a small, inward-directed momentum component. 'l'he energy Which appeared to be delivered in impulses to atoms still at lattice sites, dissipated through the crystal. 'I'hese atoms rarely acquired more than 20 ev through the energy impulse process. 'Iheir motion was restricted since they were surrounded by other atoms.

The target atom in the (100) and the (110) surfaces, when struck at near zero impact parameter by the ion, always transmitted the majority of its energy billiard-ball fashion in close packed rows perpendicular to the surface. (Atoms to which this energy was transferred escaped through the back face of the crystal.) There were a few cases in which one of these atoms would initiate another chain. The chain was never more than $2-3$ atoms in length before the energy was either wholly dissipated or the chain stopped by divergence of the momentum to form numerous small cascades directed into the crystal interior.

The unique arrangement of atoms in the first layer was observed to be a dominant factor in determining ejection directions for all surfaces. Atoms which were ejected other than nearly normal to the surface were always influenced by their neighbors. Atoms which were ejected at angles near 45 degrees to the normal would reflect from their neighbors, of ten ending up as normally ejected atoms. This effect was most pronounced for (111) sputtering since the six atoms acted as a lens, but it was also seen for (110) sputtering in which a lens is formed by second layer atoms. The (100) surface showed a strong lens effect although one would not necessarily assume that it occurs. Sputtered atoms, originally adjacent in the (100) surface, were often observed to be ejected almost simultaneously. In these situations they
were ejected nearly normal to the surface. This may be the genesis of dimers recently observed by Woodyard (35).

The spot regions of the deposit patterns from (100) and (111) sputtering always contained more high energy ($>10 \mathrm{ev}$) than low energy atoms. But the energy distribution was more uniform than increasing with the ion energy. It was not peaked at any one or group of energies. Atoms with low ion energies were predominantly found in the central region of the pattern.

6. Conclusions.

The observable quantities of sputtering appear to be interdependent on only the sputtering mechanisms. There is no evidence that these quantities are interrelated. The qualitative and quantitative data from the simulation indicate that the deposit pattern, sputtering ration and energy distribution of sputtered atoms cannot be correlated with each other; one cannot predict a sputtering ratio from an energy distribution. But, each of these quantities can be cross-correlated between surfaces.

The main features of deposit patterns appear to be determined only by the surface geometry of the crystal. The formation of (111) pattern spots is attributed primarily to assisted focusing by the hexagonal lens. The predominance of trigonal rather than hexagonal symmetry is considered a natural result of the brief (112) channeling observed in the mole mechanism. The appearance of streaks between the spot pairs and the appearance of a hexagonal spot pattern at 2 keV suggests that use of a hemispherical collector in the simulation will show the three (114) spots which were observed by Southern and Robinson ${ }^{(33)}$. However, no distinction can be made between the (110) and (114) spots on the basis of pattern location. If the mole mechanism is predominant at certain energies the (110) spots should be more intense than the (114) spots. If the squeeze mechanism is predominant,
the (110) and (114) spots should have more equal intensities. The nearly exact simulation of a (100) pattern at 3 keV is considered one of the best arguments that sputtering is mostly a surface phenomenon. Neither the potential form nor its parameters for copper-copper and argor-copper interactions are known with certainty. If sputtering was a deep phenomenon, one might accept an argument that spots in the pattern could be produced without exact knowledge of the potential. However, the hypocycloid outline, definitely present: in the simulation patterr, is considered the feature of the pattern which would be most sensitive to small variations in the potential if sputtering involved more than the first few layers. This conclusion is corsistent with the apparent rotation of the 1 keV pattern. Atoms found in 〈211〉 regions were sputtered when the energy transferred by the ion to the target was as small as 40 ev . This compares favorably with a calculated transfer value of 75 ev for a $0.5 \AA$ impact: parameter (21). A sputtering threshold energy of 50 ev has been reported (32).

The inability to produce consistent: (100) patterns at a given binding energy for 5 and 7 keV sputtering is undoubtediy due to the unknown condition of the surface. It would be unreasonable to assume that the binding energy is a decreasing function of ion energy only for the (100) surface. The disruption of the surface by the first group of incident ions
is a factor which cannot be ignored. The sputtering ratios determined for the (100) surface as well as for the (110) and (111) surfaces, were within reasonable limits when the assumed binding energy is in the range 1.50 to 3.50 ev . No definite value of binding energy can be determined from the patterns and sputtering ratios unless a weighting factor is used for the surface condition at the time of ion impact. The assignment of weighting factors would be, at best, a guess.

Three surprising features were observed in simulation deposit patterns. The first, the apparent rotation of the (100) pattern at 1 keV , will be further discussed. The rotation of the (100) pattern for low energy sputtering has not been observed. The results of the simulation indicate that such a rotation is possible. This conclusion is based on empirical rather than theoretical considerations. The hypocycloid outline found at 3 keV in the simulation appears to be formed by the same atoms which form (211) spots at 1 keV . Furthermore, no explanations have been previously proposed as to why the outline is a hypocycloid in experimental patterns. One would expect that a circular or perhaps a non-distinct outline would be observed when the (100) surface is sputtered. Accordingly, it is proposed that the hypocycloid outline is a result of the inability of the (100) surface to completely focus atoms sputtered by a squeeze mechanism for bombardment
energies at which the energy propagation is not confined in the surface.

The second feature was the unique form of the bonds which connected the spots in the simulation pattern for (111) copper sputtered at 5 keV . The appearance of the similar outline, a spherical triangle, was observed in a pattern of (111) copper sputtered with 1.5 keV krypton by Yurasova and Bukhanov(34). The third feature was the hexagon spot pattern at 2 keV , a pattern seen by Anderson and Wehner (10) for (111) copper sputtered with 400 ev mercury. The similarities observed in the simulation patterns with these anomalous features of the experimental patterns suggested that common factor other than the (111) copper surface might: be present: The momentum ratios of 400 ev mercury -2 keV argon and 1.5 keV krypton -5 keV argon are 1.0 and 0.8 respectively. This is not considered to definitely establish a sputtering correlation based only on ion momentum. 'I'he momentum ritiun for 1.5 keV krypton and 4 and 3 keV argon are 0.9 ard 1.0 respectively. Ideally, the spherical triargle would be observed in the 3 keV (111) simulation pattern. Additiorally, when (111) copper is sputtered at high temperatures, the troangulat outline has been observed to become more pronounced (34). The absence of such a momentum scaling effect cotida be easily shown by experimentally sputtering (111) copper with ion momentum comparable to that of 400 ev mercury.

The general consistency of the numerical values of sputtering ratios, and energy distributions of sputtered atoms and likeness of the patterns with experimental data is a strong argument for the validity of a computer simulation of sputtering. It is remarkable that the consistency is as good as it is. The model uses only a repulsive potential, the crystal size used in the simulation is an infinitesimal portion of the smallest laboratory specimens, and the potential form and parameters are comparatively crude. It is concluded that the results obtained substantiate the concept of transparency and the occurrence of momentum focusing only within the surface layer.

1. K.H. Kingdon and I. Langmuir, Physical Review 22, 148 (1923).
2. E. Blechschmidt and A. von Hippel, Annalen der Physik 86, 1006 (1928).
3. A. von Hippel, Annalen der Physik 80, 672 (1926).
4. C. H. Townes, Physical Review 65, 319 (1944).
5. F. Keywell, Physical Review 97, 1611 (1955).
6. D. E. Harrison Jr., Physical Review 102, 1473 (1956).
7. G. K. Wehner, Journal of Applied Physics 25, 270 (1953).
8. E. B. Henschke, Physical Review 106, 737 (1957).
9. R. H. Silsbee, Journal of Applied Physics 28, 1246 (1957).
10. G. S. Anderson and G. K. Wehner, Journal of Applied Physics 31, 2305 (1960).
11. O. Almén and G。Bruce, Nuclear Instrumentis and Methods 11, 257 (1961).
12. G. D. Magnuson and C. E. Carlston, Journal of Applied Physics 34, 3267 (1963).
13. A. L. Southern, W。 R. Willis, and M. 'I' Kobinson, Journal of Applied Physics 34, 153 (1963).
14. C. K. Piercy, M. McCargo, F. Brown, and J. A. Davies, Canadian Journal of Ehysics 42, 1116 (1904).
15. O. S. Oer, L. K. Holmus, and M. 'I'. Kobinson, Journal of Applied Fhysics 34, 302 (1963).
16. M. 'I' Robinson and O.S. Oen, Physical Review 132, 2385 (1363).
17. D. E. Harrison Jr., K. W. Leeds, and W. I . Gisy. Jourrial of Applied Physics 36, 3154 (1965).
18. J. Mo F'luit, P.K. Kzol and J. Kistemaker, Jurrial of Applied Physics 31t, 690 (1963).
19. J. M. Fluit and P.K. Rol, Physica 30, 857 (1964).
20. C. Lehman and P. Sigmund, Physica Status Solidi 16, 507 (1966).
21. D. Onderdelinden, F. W. Saris, and P. K. Rol, Proceedings of the Seventh Internation Conference on Phenomena in Ionized Gas I (Beograd 1966).
22. D. Onderdelinden, F. W. Saris, and P.K. Rol, Nuclear Instruments and Methods 38, 269 (1965)
23. J. B. Sanders and J. M. Fluit, Physica 30, 129 (1964)
24. J. B. Sanders and D. Onderdelinden, Proceedings of the Seventh International Conference on Phenomena in Ionized Gases I, (Beograd 1966).
25. J. B. Sanders, Physica 32, 2197 (1966).
26. J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, Physical Review 120, 1229 (1960)
27. D. E. Harrison Jr., C. E. Carlston, and G. D. Magnuson, Physical Review 139, A737 (1965).
28. W. L. Gay, Machine Calculation of Energy Transfer Phenomena in a Bombarded Lattice, Master of Science Thesis (Unpublished), Naval Postgraduate School.
29. J. P. Johnson III, Calculation of Surface Binding Energies by Computer Simulation of the Sputtering Process, Master of Science Thesis (Unpublished), Naval Postgraduate School.
30. N. S. Levy (Deceased), Computer Simulation of the Sputtering Process, Master of Science Thesis (Unpublished), Naval Postgraduate School.
31. D. E. Harrison Jr., private communication.
32. D. E. Harrison Jr., and G. D. Magnuson, Physical Review 122, 1421 (1961)
33. M. T. Robinson and A. I. Southern, Sputtering Experiments with 1- to $5-\mathrm{keV} \mathrm{Ar}^{+}$Ions II. Monocrystalline Targets of Al, Cu, and Au, (To be published).
34. V. E. Yurasova and V. M. Bukhanov, Soviet Enysics Crystallography 7, 199 (1962).
35. J. H. Woodyard, private communication.
36. R. R. Hasiguti, R. Hanada, and S. Yamaguchi, Journal of the Physical Society of Japan 18, Supplement III, 164 (1963).
37. H. H. Andersen and E. Sigmund, On the Determination of Interatomic Eotentials in Metals by Electronic Irradiation Experiments, Danish Atomic Energy Commission, Risö Report No. 103, May 1965.
38. H. D. Hagstrum, Physical Review 96, 336 (1954).

APPENDIX A
The Beam Model
A. Impact areas and Impact points.

Each crystal surface contains an intrinsic, plane geometric shape; hexagon for (111) surface, square for (100) surface, and rectangle for (110) surface. A volume element of the (hkl) surface is defined by the area of this intrinsic shape and a depth of some number of (hkl) planes. This volume is chosen so that by translation along axes of a Cartesian coordinate system the entire crystal may be generated. The smallest intrinsic area which can be chosen for each surface and still satisfy the translation requirement is shown in figure 72. A finite number of points is symmetrically distributed within each of these areas to represent the infinite set of possible points of impact for an incident ion. These smallest areas are further divided into representative impact areas which are seen from figure 73 to be degenerate under appropriate rotations and/or inversions of the coordinate axes. Since the sectors are degenerate, the set of impact points. in each sector is also degenerate; only the points contained in one impact area need be used to represent bombardment of the entire area. The coordinate axes rotation and inversion schemes are discussed in Appendix C (Deposit Pattern Production).

The independence of the impact point set used, with
respect to number and kinetic energy of atoms sputtered, was tested using two sets of points. No dependence was found. Results for the (111) surface using a 3 keV ion are shown in figure 74 as an example. Set 1 points are those shown in figure 73, set 2 (not shown) is a set of eleven points which are located between the points of set 1 .
B. Neutralization of Eeam ions.

The assumption that argon ions are neutralized prior to impact on copper may be inferred from results of a theoretical study of secondary electron emission by Harrison et. al. (R7). Consideration of atom-atom rather than ion-atom interactions gave results in reasonable agreement with experimental data.

A supporting argument for neutralization is based on Hagstrum's theory of Auger ejection of electrons (38). 'Ihe probability of an ion being neutralized in $d x$ at \underline{x} is:

$$
P_{t}(x, v)=a \exp \left\{-\exp \left[-a\left(x-x_{m}\right)\right]-a\left(x-x_{m}\right)\right\}
$$

where $x_{m}=(1 / a) \ell_{I L}(A / a v)$ is the value of x whene E_{1} is in maximum. 'I'he parameters A and a occur in the transition rate function, and \underline{v} is the velocity of an ion starting at $x \cdots \infty$. Hagstrum used tungeten as an example and obtained the vitho of A by empirical means, the value of a from published datá Rather than attempt an exact proof of neutralieation for arsun on copper, Hagetrump results for argon on tungsten have been used to give an order of magnitude, at: worst, approximation. Accordingly, $1.63<x_{m}<6.18$ A tor 1 to 10 keV argen tuns on
copper; this is a reasonable distance from the crystal surface and one may assume that neutralization occurs.
C. Ion Deflection by Surface Potential.

As a first approximation, it is assumed that a singly positive-charged argon ion sees the crystal as a single, fixed scattering center having $\mathbb{Z}-1$ positive charge. The well known equation for a central force-induced hyperbolic orbit is used in conjunction with figure 75 to determine the deflection.

$$
\begin{array}{rlrl}
r(\theta) & =\left(L^{2} / \mathrm{mk}\right) /\left[-1+\left(1+2 E L^{2} / \mathrm{mK}^{2}\right)^{1 / 2} \cos \left(\theta-\theta_{0}\right)\right] \\
L & =\text { ion angular momentum } \quad m=\text { ion mass } \\
E & =\text { ion energy } \quad K=Q_{1} Q_{2} / 4 \pi \epsilon_{0} \\
\theta_{0} & =\text { angle of closest approach } &
\end{array}
$$

The angular momentum I is determined at $r \rightarrow \infty, \theta \rightarrow \pi$ to be $L=m v b$ where $\mathrm{mv}^{2} / 2=E$ and \underline{b} is the impact parameter. The equation for $r(\theta)$ is put in a more convenient form by making the substitution $L^{2}=(m v b)^{2}=2 m E b^{2}$ to give

$$
r(\theta)=b(2 \mathrm{~Eb} / \mathrm{k}) /\left\{-1+\left[1+(2 \mathrm{~Eb} / \mathrm{k})^{2}\right]^{1 / 2} \cos \left(\theta-\theta_{0}\right)\right.
$$

The angle of closest approach \underline{Q}_{0}, is determined as a function of the product $E b$ by requiring the denominator to vanish for
$\theta=\pi$. Once θ_{0} (as a function of $E b$) is known, the deflection ratio $\underline{r} / \mathrm{b}$ is calculated at the crystal surface. The deflection calculated is for an unneutralized ion, thus greater than that for an ion which is neutralized at some distance in front of the surface. Plots of r / b at the surface and θ_{0} as functions of the ion kinetic energy-impact parameter
product are contained in tigure 76. The numerical values are for an $\mathrm{Ar}^{+}-\mathrm{Cu}^{+}$system.

A more sophisticated approximation, scattering from a fixed dipole of same charge sign, requires a messy integration. Rather than follow this line, one may expect from the nature of the problem that the path of the approaching ion will undergo some oscillatory motion or perhaps corkscrew motion as the ion is influenced by the surface potential. In either case one would expect that the net acceleration of the ion parallel to the crystal surface would be no greater than that due to a single fixed scattering center. With these considerations, figure 76 is used to determine the percentage of ions which will be appreciably deflected. As an example of an appreciable ion deflection, consider $\mathrm{r} / \mathrm{b}=2.0$; from figure 76 , Eb $\Rightarrow 3 . b x$ $10^{-2} \mathrm{keV}-\mathrm{A}$. An energy range of $1-10 \mathrm{keV}$ for argon ions, that used in this study, corresponds to a range of impact parameters of $0.035-0.0035$ A. The fraction of surface area, and therefore traction of ions which will be appsectably deflected is $(0.035)^{2} /(1.26)^{?}=7.7 \times 10^{-4}$ for 1 keV ions itha 7.7×10^{-6} for 10 keV ions (1.20 A is the copper atom effective radius irs the crystal). 'Ihis negligibly small frackion of ions cannot influence the macro aspecta of the sput terins model.
D. Equilibrium State During Impact.

The use of a single atom approximation to the bean with
the crystal model described in the main text requires that the crystal region be in an equilibrium state at the time of an ion impact. It is not necessary that this equilibrium state be identical to previous equilibrium states since the variety of surface configurations available in the model provides for random surface conditions. It is necessary that the time required for the crystal region to return to an equilibrium state be small with respect to the arriva!-time intervals of the ions. Satisfaction of this condition is determined by comparing an experimental beam flux over the area of the crystal face of the model used to the time required for completion of all energetic collisions in the model.

Beam intensities of the order of $100 \mu \mathrm{amps} / \mathrm{cm}^{2}$ were used by Magnuson and Carlston (12). If a beam of this intensity is incident on a crystal surface area of less than $10^{3} \stackrel{\circ}{A}^{2}$ such as in the model, the ion flux over this area is less than 100 ions/sec, an ion arrival-time interval of 10^{-2} seconds; all energetic collisions in the model are completed within about 10^{-12} seconds. The relaxation time of the region is thus much smaller than the ion arrival-time intervals and the condition, that the crystal region be in an equilibrium state at the time of impact, is satisfied.

APPENDIX B

Positioning the Ion
The ion is positioned tangent to the first target atom it will strike. Since this is a dynamic rather than static process it is not necessary that this be a stable position on the crystal surface. Figure 77 shows the ion at its arbitrary initial position and calculated final position, both with respect to the impact point and target atom. The initial position is a small distance in front of the surface, beyond the eroded potential range of the crystal atorns. This position is described by a vector r_{1} originating at the impact point and having direction parallel but opposite to the ion's velocity vector. The vector ra, from the impact point to the target atom, is known since the target atom's coordinates are known; the vector r_{1} is known, and it is desired that vector r_{12} have a magnitude equal to the distance between centers of two tangent atoms, $2 r_{0}$. The law of cosines is used to compute the magnitude of r_{3} which lies along r_{1}. Accordingly, the following calculations are made:

$$
\begin{aligned}
& \cos \alpha=\frac{\vec{r}_{1} \cdot \vec{r}_{2}}{\left|r_{1}\right|\left|r_{2}\right|} \\
& \left(r_{3}\right)^{2}-\left(2 r_{2} \cos \alpha\right)\left(r_{3}\right)+\left(r_{2}^{2}-\left(2 r_{0}\right)^{2}\right)=0 \\
& \left(r_{3}\right)=r_{2} \cos \alpha+\left[r_{2}^{2} \cos ^{2} \alpha-\left(r^{2}-\left(r_{0}^{2}\right)^{2}\right)\right] \% / r
\end{aligned}
$$

The positive square root solution is chosen to give thu ringent on the outside hemisphere of the target atom.

The ion positioning is accomplished automatically for each run by subroutine START, which is contained in the computer program for the sputtering simulation.

APPENDIX C

Production and Analysis of Sputtering Deposit Patterns A. Production.

A sputtering deposit pattern represents the intersection points of atoms velocity vectors with the surface of a collector plate. The sputtered atoms from the simulation are collected on a flat plate by determining these points of intersection. Each atom which exits through the crystal surface is initially assumed to have been sputtered and a data card has been prepared for each one. Data of particular interest are each velocity component magnitude and the kinetic energy perpendicular to the surface; data of secondary interest are atom number, impact point used and ion kinetic energy. (The use of these last data will be discussed shortly.)

It is recognized that each sputtered atom has lost some energy to overcome the surface binding energy. An assumed value of binding energy is subtracted from the perpendicular kinetic energy and a new perpendicular velocity component is calculated. Parallel velocity components are normalized to the new perpendicular component to give a two dimensional coordirate point. This point is the intersection of the atom's velocity vector with an imaginary collector plate placed at unit distance from the target surface. Each point is then rotated and/or mirrored about the coordinate axes to give the intersection of a velocity vector which would have resulted for ar
ion impacting at the corresponding impact point in each of the other impact areas. The impact areas are shown in figure 73 and the coordinate point rotation and mirroring values are listed in program DATASORT which is used to generate the points. Each point is plotted using program DATAPLOT with a CDC160A computer and a CalComp plotter to give a point plot. The dimensions of the plots are in target-tocollector or $T-C$ units since these points have been normalized to unit target-to-collector distance. The scale which has been used permits plotting deposit points of atoms which have been sputtered within an escape cone of about 63 degrees (57 degree cone shown in figures). This has been found satisfactory to contain all pattern features of interest.

The point plots show only point patterns and therefore do not accurately simulate experimental patterns which are area density patterns. The conversion of a point plot to a smooth area density pattern is made by photographing the point plot with the camera defocused such that no single point is distinguishable but high and low density areas are prominent. Developing and printing is controlled to bring out the high density areas while maintaining the haze background. Loss of intensity in some spot regions cannot be avoided such as seen in figures 6 b and 12 b . The process must be adjusted for each pattern; the sequence of photography, developing, and the printing of the positive image is highly dependent on the
ability of the photographer. Concurrently, the quality of reproduction of these patiterris in printed form depends on the plate preparation, the printing press, and the paper used. B. Analysis.

A 30×30 square grid is placed over the central 3.0×3.0 unit square of the raw pattern by program DATAGRID. The identification number of an atom and the impact point and impact area of the run in which that atom was sputtered äre recorded for each atom in the grid square. The total number of atoms, the total energy, and the average energy per atom for each grid square are printed in separate square arrays. The individual grid square data provides for correlation between an atom's crystal location and its deposit point in the pattern; the square arrays of the number of atoms and the total and average energy densities may be compared directly with the point plot or smooth pattern for analysis of pattern features.

$$
\begin{aligned}
& 63 \\
& Y S T
\end{aligned}
$$

$$
\begin{aligned}
& \text { OR F63 } \\
& \text { RUCRYSTALLITE AND INTEGRATES THE } \\
& \text { - DT IS RECALULATED EACH TIMESTEP, } \\
& \text { THE SURFACE IS INCLUDED }
\end{aligned}
$$

I NOI 1 つヨS

DIMENSION $V X(500), V Y(500), V Z(500)$

DIMENSION RXK（500），RYK（500），RZI（500）
DIMENSION DX（500），DY（500），DZ（500）
DIMENSION PKE（500），PTE（500），KCUT（500），PKEY（500）
LL

OMMON／COM2／ROE，ROE2，ROEM，AC，PAC，PPTC，PTC，PFPTC，FPTC，FM，PFIV，TPOT COMMON／COM3／EXA，EXB，FXA，PEXA，PEXB，PFXA

COMMON／COM4／IX，IY，IZ，IXP，IYP，IZP，SCX，SCY，SCZ COMMON／COM5／FX（500），FY（500），FZ（500），PPE（500） COMMON／COMG／COXI，COYI，COZI，RXS，RYS，RIS，FAC COMMON／COMT／R1，LSS，SPX，SPZ，COY QUIVALENCE $(R X K, D X),(R Y K, D Y),(R Z K, D Z)$ $F \operatorname{ORF}(X)=E X P F(F X A+E X B * X)$
$\operatorname{PFORF}(X)=E X P F(P F X A+P E X B * X)$
$\operatorname{FPTF}(X)=E X P F\left(A C+E X B^{*} X\right)$ $\operatorname{PFPTF}(X)=E X P F(P A C+P E X B * X)$
$\operatorname{POTF}(X)=E X P F(E X A+E X B * X)$
$\operatorname{PPOTF}(X)=E X P F(P E X A+P E X E * X)$ DO 2 I $=1,2000$
FX（I）$=0.0$
$\operatorname{PKE}(I)=0.0$
PKE $(I)=0.0$
$R X(I)=0.0$
DO $3 \quad I=1,4500$
(1)A8)
3 VX(I) $=0.0$
9010 FORMAT $(10 A 8)$
9020 FORMAT $(5 A 8,1 X, A 7,512,2 F 5,2,2 F 6,2)$
9030 FORMAT $(2 A 8,3 F 8,5,3 A B, F 6,2)$
9040 FORMAT $(2 A 2,1 X, A 4,1 X, F 6,2,4 F 8,5,1 X$,
9601 FORMAT $(1 H 1)$
9610 FORMAT $(40 X, 5 A 8,1,20 X, 10 A 8, /)$
9620 FORMAT $(3(I 5,3 F 8 \cdot 5,10 X))$
9630 FORMAT $(105 X, 4 H P A G E, I 3,1,1 H 1)$
$964 C$ FURMAT $(1 H(, A 4,8 H)$ PLANE $1 X, 1 X 7,8 H$
2 FG. 2, $21 H$ KEV, CRYSTAL SIZE $1, I 2,3 H X, I 2,3 H X, I 2,18 H 1$, IMPACT
$\forall \forall I H C) ~ I \forall W Z O\lrcorner$
$1+\forall I O d ~ \varepsilon$
FORMAT (9HTARGET - , 2 A8, 1OHPRIMARY $2,2 A 8,1 X, 14 H L A T T I C E U N I T=, F 7.4$
$2,9 H$ ANG, 18 ECUTOFF ENERGY $=, F 6.2,5 \mathrm{H}$ EV) 2, 9 H ANG,
FORMAT 4
FORMAT $(4 X, 6 H M A S S ~=, F 7.2,13 X, 6 H M A S S=, F 7: 2,9 X, 14 H L A T T I C E$ TEMP $=F 7.4$
$2,7 H$ DEG $K, 2 O H$ THERMAL CUTOFF $=, F 6.2,5 \mathrm{H}$ EV!) FORMAT (12 HPOTENTIAL , 3A8,3X,5HPEXA $=, F 9,5,2 \times, 5 H P$
9655 FORMAT (12HPOTENTIAL $3 A 8,3 X, 5 H P E X A=, F 9 \cdot 5,2 X, 5 H P E X B=, F 9 \cdot 5,2 X, 5 \mathrm{HFX}$ 9660 FORMAT $(12 X, 3 A 8,3 X, 5 H E X A=, F 9 \cdot 5,2 X, 5 H E X B=, F 9 \cdot 5,2 X, 5 H P F X A=, F 9 \cdot 5 /)$ 9665 FORMAT (3UHTARGET POINT ON CRYSTAL $X=, F 8.5,5 H, Z=, F 8 \bullet 5,4 H$, , $27 X, 12 H \quad \operatorname{COS} T O X=, F 7.4,12 H \quad \operatorname{COS}$ TO $Y=, F 7.4,12 H \quad \operatorname{COS}$ TO $Z=, F 7.4$
$\begin{aligned} & 967 \text { FORMAT (} 30 H P R I M A R Y ~ S T A R T ~ P O I N T ~(L U) ~\end{aligned} \quad X=, F 8.5,5 \mathrm{H}, \mathrm{Y}=, \mathrm{F8} .5,5 \mathrm{H}, \mathrm{Z}=$
9675 FORMAT
5 FORMAT (IUH TIMESTEP, I $4,4 U X, 22 H$ ELAPSED TIME (SEC) $=, E 10.4,21 \mathrm{H}, \mathrm{L}$
$2 A S T$ TIMESTEP WAS $=, ~ E 10.4 /$)
$D Z \quad V X \quad V Y$
$K E(Y) \quad / 1$

o FORMAT (107H
$3 d$
TE

SECTION 2

$R X S=B X * S C X$
$R Y S=0 \cdot 0$
$F A C=A B S F(0.05 * C O Y)$
$V O L=S Q R T F(E V / H G M A S)$
$V X(1)=V O L * C O X$

$C O Z=A B S F(C O Z)$
COZ $=$ SQRTF (COZ)
$V Z(1)=V O L * C O Z$
COXI $=-\operatorname{COX}$
COXI =-COX
$\operatorname{COY} I=-\operatorname{COY}$
$\operatorname{COZI}=-\operatorname{COZ}$
N
$X(I)=0.0$
$(I)=0.0$
$6(I)=0.0$
$60 I=1, L L$
$I(I)=R X(I)$
$I(I)=R Y(I)$
I $(I)=R Z(I)$
$M E T A * C V D / V$
TIME $=0.0$
NT $=$
NSHUT $=0$
WRITE $\quad(51.9695)$
DO $65 \quad I=1 . L L .3$ NSHUT $=0$
I SHUT $=0$
JSHUT $=0$
I NDEX=0
in
0
68 UTOD=DT/CVU HDTOD $=0.5 * D T O D$
DTOMB=DT/PGMAS
HDTOMB $=0.5 *$ DTOMB
DTOM=DT/PTMAS HDTOM $=0.5 *$ DTOM $E M A X=0.0$ EALL STEP
IF (INDEX) 9999,210,260 I NDEX=1
RXK(I) $=$ RX(I)
RZK (I) $=$ RZ(I)
RX(I) $=$ RX(I) +DTOD*(HDTOMB*FX(I) +VX(I)) RY(I) $=R Y(I)+D T O D *(H D T O M B * F Y(I)+V Y(I))$ RZ(I) $=$ RZ(I) +DTOD*(HDTOMH*FZ(I)+VZ(I)) DO 250 I = 2,LL
RYK(I) $=$ RY(I)
RZK (I) $=$ RZ(I)
KX(I) =RX(I) +DTOU*(HUTOM*FX(I) +VX(I)) ((I) $\lambda \wedge+($ I) $\lambda \pm * W 010 H$) * $0010+(1) \lambda y=(1) \lambda y$ ((I) $2 \Lambda+(I) Z . t * W O 1 \cap H) *(0010+(I) Z y=(I) Z y$ CONTINUE
GO TO 100

TIME = TIME +DT

$V \times(I)=V S S+$ HDTOMB*FX(I)
RX(I) $=$ RXK(I) $+(V \times(I)+V S S) * H D T O D$
$\begin{array}{lc}0 & 0 \\ 0 & -1 \\ \sim\end{array}$

250
260
262
$V S S=V Y(I)$

$620 \operatorname{PKEY}(I)=H T M A S *(V Y(I) * V Y$（I））
IF（NSHUT） $700,700,950$
10，708，708
708，708
$09,710,710$
（I）
メーーミーロ
 ，PPE（I），PTE（I），PKEY（I）
（51，9690）TPKE，TPOT，TE NPAGE
$\begin{array}{r}+ \\ + \\ u \\ \vdots \\ \vdots \\ \hline\end{array}$
IF（NT－NTT）754，950，950 ＝0．
80
CUT
KE
PE
MAX
＝PP
－ 40 品
F（RY（I）－RYBND） $770,769,769$
CUT（I）$=2$
O TO 780
F（RXI I） $771,771,772$
CUT（I）$=3$
O TO 780
（F（RX（I）－RXGNU）774，774，773
$\stackrel{\text { t }}{11}$
GO TO 780
F（RZ（I））775，775，776
CUUT（I）＝ 5
F（RZ（I）－RZBND）780，780，777 ㅇ
750．790．950
©CUT（1）
EONTINUE
IF（JSHUT）צb0，790．950
IF（EMAX－ECUT） $950,950,68$

766
767
768
770
771
772
774
775
ヘペ
$\stackrel{\circ}{\circ}$

$$
\begin{aligned}
& 950 \text { CONTINUE } \\
& \begin{array}{l}
1 \\
2 \\
2 \\
\vdots \\
2 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\end{aligned}
$$

$960 B=1 . U /$ SQRTF (PKE (I)/HTMAS)
961 DCOX $=V X(I) * B$
15) (I,RX(I),RY(I),RLII), DX(I), DY(I), DZ(I),
WRITE (52,9720) TAR,PRI,PLANE,EVI, PNLM, I,Vㅆ(I),VV!I),VL(i),KC(IT(I)
INUE
E (51,9630) NPAGE
SHUT) $9999,9999,9$
SENSE SWITCH 3) 99 I) *B
I) *B
1,97
Y(I)
2,97
$1, C O$ フ > N =
-×

$$
\begin{aligned}
& \begin{array}{l}
O \text { TO (} 70,80,30): L S G \\
1=P O E / A B S F(C O Y) \\
=2 \\
0 \text { TO } 1 U 0 \\
S P X=S P X \\
S P Z=S P Z \\
=71 \\
C U T(N)=1 \\
1=R O E / A D S F(C O Y)
\end{array} \\
& \begin{array}{ll}
0 & \infty \\
& \infty
\end{array} \\
& 90 \\
& \begin{array}{rr}
0 & 0 \\
0 & -1 \\
-1 & -1
\end{array}
\end{aligned}
$$

```
BROUTINE LIIO
COMMON/COM1/RX(500),RY(500),R7(500),LCUT(500),LL
COMMON/COM2/RUE,ROE2,RUEN,AC,PAC,PPTC,PTC,PFPTC,FPTC,FM,PFIV,TPOT
ZP,SCX,SCY,SCZ
-2
I IYP
~N~NNO
DO 58 K
SCZ
```

$M=1$
$I T=0$
$X=-S C X$
$D O 60 \quad I=1, I X$
$X=X S C X$
$J T=0$
$Y=-S C Y$
$D O 59 \quad J=1, I Y$
$Y=Y S C Y$
$K T=0$
$Z=-S C Z$
$D O 58 \quad K=1, I Z$ DO $58 \quad \mathrm{~K}=1, \mathrm{I} 2$
N
N
N
IFI立に出に $\begin{aligned}-1 \sim N \\ \sim\end{aligned}$

SUBROUTINE START

SUEROUTINE STEP
THIS SUOROUTINE DOES THE OYNAMICS FJR ONE TINESTEP
COMMON／EOMI／RX（500），RY（500），RZ（500），LCUT（500），LL
 COMION／EOBI／EXA，巨XU，FXA，PEXA，PEXB，PFXA

FORF（X）＝EXPF（FXA＋EX $*$＊$)$
FFURF $(X)=E X P F(P F X A+P E X E * X)$
$F P T F(X)=E X P F\left(A C+E X_{0}{ }^{*} X\right)$
PFPTF $(X)=E X P F(P A C+P E X B * X)$

sUBROUTINE ENERGY

 $\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

N

$$
\begin{array}{llll}
1- & 0 & 1 & 0 \\
-1 & -1 & N & N \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
$$

APPENDIX

2. Section 1: Memory block allocations and functions are established. All storage cells are zeroed. Input and output formats are specified. Constants are set, and the target material, ion species, and crystal face to be sputtered are read in.

Section 2: The ion energy, impact area, and impact point are read in. Constants peculiar to the run are established. The appropriate subroutine is called to build the crystal, and crystal boundaries are calculated. Subroutine START is called to position the ion. The initial value of Δt is calculated. Initial coordinates of all atoms are assigned, and their velocity components are zeroed (except for the ion). The initial coordinates of the crystal atoms are printed.

Section 3: Forces are calculated by calling subroutine STEP. Atoms are moved to their intermediate positions in the two step cycle. Subroutine STEP is called again, and atoms are moved to their final positions. Final velocities are then computed. Force components are zeroed in preparation for the next timestep.

The maximum kinetic energy is determined for the calculation of Δt.

Section 4: The time remaining until cutoff is determined. If there is insufficient time to complete another timestep, terminal data is printed. Potential energy is calculated and summed with kinetic energy to give the total energy for energy balance check (manual check). The data for atoms having potential energy greater than the thermal energy are printed.

Section 5: Atoms which have kinetic energy but not potential energy are assumed to be free of the crystal. They are assigned LCUT=1. The surface through which an atom exited is determined and a code assigned. A maximum potential energy is found (for Δt calculation) among atoms which do not have LCUT=1. If the maximum potential energy is less than a minimum value the terminating process begins. If this energy is greater than the minimum value, another timestep begins.

Section 6: Pertinent data for all atoms is printed. Atoms Which have exited through the front of the crystal or will exit through the front are assumed to be sputtered. Data for these
atoms areprinted and a data card punched for each atom. A new data card is then read into initiate another run.

Glossary for FCCSPUT

AC Parameter for target force function correction.
AIX
AIY Floating point form of IX, IY, IZ. AIZ

ALFA Cosine of the angle between vectors R1, R2.
ALFA2 ALFA squared.
B Reciprocal of magnitude of atom velocity.
BENGY Energy which an atom within the crystal at shutdown must have to be considered sputtered.

BULLET Variable representing primary material.
BX Unscaled x, z coordinates of the impact point
BZ
CELS Frictional force multiplier. (See CVS)
COX
COY
COZ

COXI
COYI
COZI

CVB A constant.
CVD
CVE CVM Converts atomic mass units to kilograms.

CVR Converts lattice units to angstrom units.
DCOX
DCOY DCOZ

DFF	Distance difference between nearest neighbor
DIST	distance and actual atom differences. Distance between any two atoms.

DRY x, y, z components of DIST.

DRZ

DT	Length of timestep in seconds.
DTI	Number of lattice units most energetic atom may move in one timestep.
DTOD	DT/CVD - a ratio used to avoid repeated division.
DTOM	DT/PTMAS - a ratio used to avoid repeated division.
DTOMB	DT/PGMAS - a ratio used to avoid repeated division.

DX	
DY	x, y, z distances atom has moved from initial
DZ	position.

ECUT A lower limit on an atom's potential energy. If energy is less than or equal to ECUT the program shuts down.

EI A cutoff energy.
EMAX The maximum energy encountered in any cycle.
EV Erimary energy in electron volts.
EVR Primary energy in kilo-electron volts.
EXA Potential function parameters.

EA The component force increment on an atom.
FAC The minimum distance the primary is positioned in front of the first $x z$ plane at start time.

FM A small number used in checking potential energy zero point.

FOD FORCE/DIST - a ratio used to avoid repeated division.

FORCE Numerical value of the force function with a variable parameter.

FORF	Target atom force function.
EPTC	The corrective force value at ROE.
FPTF	The corrective force function.
FRC	Numerical value of the target force function at ROE.
FX	
FY	x, y, z components of total force on an atom.
FZ,	
FXA.	Force function parameter.
GMAS	Target atom mass (in a.m.u.)
HDTOD	$1 / 2$ DTOD - a ratio used to avoid repeated division.
HDTOM	1/2 DTOM - a ratio used to avoid repeated division.
HDTOMB	$1 / 2$ DTOMB - a ratio used to avoid repeated division.
HGMAS	1/2 GMAS - a ratio used to avoid repeated division.
HTMAS	1/2 TMAS - a ratio used to avoid repeated division.
ICUT	Used to provide output prior to time limit shutdown.
IDUM	Dummy variable.
IHB	
IHS	Alpha-numeric arrays for titling.
IHT	
IH 1	
IN	Odd-even integer used to determine atom site establishment.
INDEX	Integer (0 or 1) used in determining dynamics cycle step.
INOW	Time program has been running in seconds.

IP	Subscript value of atom. Used in subroutine STEP.
ISHUT	Time left prior to time limit.
ISPX	Fixed point values of SPX, SPZ.
ISPZ	
ISS	Subscript value of most energetic atom.
IT	Unscaled fixed point x coordinate used in lattice generation. Also a dummy variable in function TIMEF.
ITT	Odd-even integer used to determine atom site establishment.
IX	
IY	Number of x, y, z planes of crystal.
IZ.	
IXP	
IYP	Crystal dimensions in $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
IZP	
JSHUT	Cutoff variable based on total potential energy of crystal.
JT	Unscaled y coordinate used in crystal generation.
JTS	Variables used to establish atom sites.
JTT	
KCUT	Identifies exit point of atom.
KT	Unscaled z coordinate used to establish atom site.
LCUT	Used to identify atoms which are not included in calculations.
L L	The highest numbered atom in the crystal.
LS	Sum of the Miller index integers.
LSS	Used to identify type of surface, i.e., regular, stub, vacancy.
M	An integer used to begin atom numbering.

N	Subscript of the atom to be removed for vacancy surface.
ND	Data output increment.
NPAGE	Page numbering variable.
NS	Initial print statement cycle.
NSHUT	Cutoff variable based on too long a timestep.
NT	Timestep.
NTT	Timestep limit before shutdown.
PAC	Same as AC except applicable to primary.
PEXA PEXB	Primary force function parameters.
PFIV	A constant $=0.5$.
PFORF	Primary force function.
PFPTC	PFPTF evaluated at ROE.
PFPTF	Primary corrective force function.
PFRC	PFORF evaluated at ROE.
PFXA	Primary force function parameter.
PGMAS	Primary mass in kilograms.
PKE	Kinetic energy of an atom.
PKEY	Y component of kinetic energy of an atom.
PLA	Crystal plane (alphanumeric variable).
PLANE	Same as PLA.
PNUM	Impact point (alphanumeric variable).
POT	Potential energy between two atoms.
POTF	Target potential function.
PPE	Potential energy of an atom.

R1X	
R1Y	x, y, z coordinates of initial primary position.
R12	
R1R2	Scalar product of vectors R1, R2.
R2	Magnitude of vector from impact point to first atom hit by primary.
R2SQ	R2 squared.
R3	Magnitude of vector from impact point of primary start position.
SAVE	1/2 POT.
SCX	
SCY	x, y, z coordinate scale factors.
SCZ	
SLOW	Cutoff variable checked against a long DT.
SPX	x, z distance from impact area reference point
SPZ	to impact point.
SSCZ	A z scale factor used for (111) plane lattice generation.
SUR	Plane (alphanumeric variable).
TAR	Chemical symbol for target material.
TARGET	Target material (alphanumeric variable).
TE	Total energy of crystal atoms (kinetic + potential).
TEMP	Temperature of lattice in degrees Kelvin.
THERM	Thermal energy of atom.
TI	Computer time program has been running.
TIME	Elapsed problem time.
TIMO	A function to convert seconds to minutes.
TMAS	Target atom mass in kilograms.

TPKE	Total kinetic energy of crystal atoms.
TPOT	Total potential energy of crystal atoms.
VOI	Magnitude of primary velocity vector.
VSS	Storage variable for velocity components.
VX	
VY	x, y, z components of atom velocity.
VZ,	
X	Unscaled x coordinate used in crystal generation.
XIT	Floating point form of IT used in function TIMO.
Y	Unscaled y coordinate used in crystal generation.
2	Unscaled z coordinate used in crystal generation.
2.E	A constant $:=0.0$
2 P	Floating point form of JTT.

SUBRCUTINE ROTIUO（KATUMS，KEYES，KENO，L，M）
DIMENSION KEYES（5UO），KENO（500：
，F8．2，3H

ENERGY

9NIONIG ヨכ甘コyกS
EV）
READ TAPE 2，PLANE，EVK，COY，EGYCUT
$A A=1.0 / E G Y C U T$
HTMAS $=3 \cdot 32 E-07$
RHTMAS $=1.0 /$ HTMAS
M＝
DO 300 $J=1,500$
KEYES（J）＝0
$3000 \operatorname{KENO}(J)=0$
DO $3900 \mathrm{I}=1$ ， KA TOMS
READ TAPE 2，PNUM，NR，VX，VY，VZ，PKEY
IF（PKEY）3004，3003，3004
PKEY＝VY＊VY＊HTMAS
FACTOR＝PKEY－EGYCUT
IF（FACTOR） $3005,3005,3010$
$V Y=$ VY＊PKEY＊AA
GO TO 3011
$\begin{array}{ll}n & f \\ 0 & 0 \\ 0 & 0 \\ m & m\end{array}$
coor
3010 VY $=$ SQRTF（FACTOR＊RHTMAS）
3011 CONTINUE
$A=V X / V Y$
ETEST $=1 \cdot 0-E X P F(-A A * P K E Y)$
$I I=P K E+0.49$
$P K E=(V X * V X+V Y * V Y+V Z * V Z) * H T M A S$
IF（II－500）3050，3050，3050
PRINT 1U，PNLM，NR，PKEY
n
300 U CONTINUE
$R=$ RANF (-1)
IOCT = 1
IF(R•LT•ETEST) 3125,3150
$X P=A$
$Z P=B$
$\operatorname{KEYES}(I I)=\operatorname{KEYES}(I I)+1$
WRITE TAPE $3, X P, \angle P, P N L M, I N R, I O C T, P K E$
$G O$ TU 3200
$N_{1}=M 1$
WRITE TAPE $3, X P, \angle P, P N L M, I N R, I O C T, P K E$
$G O$ TU 3200
$N_{1}=M 1$ $N_{1}=M_{1} 1$
KENOI
$\operatorname{KENO}(I I)=\operatorname{KENO}(I I)+1$
WRITE TAPE 4,PNUM,IOCT,NR
$R=R A N F(-1)$

$$
\text { IF (R.LT } \cdot E T E S T) 3225,3250
$$

$315 u$
3200
3225
3250
KENO(II) $=$ KENO(II)+1
WRITE TAPE 4 ,PNUM, IOCT,NR

$\operatorname{KEYES}(I I)=\operatorname{KEYES}(I I)+1$
 $L=L 1$

WRITE TAPE $3, X P, Z P, P N U M, N R, I O C T, P K E$
GO TO 3300
3125

$R=R A N F(-1)$
IOCT-3
IF(R•LT•ETEST)3325,3330
$X P=B$
$\operatorname{KEYES}(I I)=\operatorname{KEYES}(I I)+1$
WRITE TAPE 3, XP, ZP, PNUM,NR,IOCT,PKE GO TO 3400

WRITE TAPL 4 ，PINUM，IUCT，NR
$F(R \cdot L T \cdot E T E S T) 3425,3450$
$P=B$
A

KEYES（II）＝KEYES（II）＋1

WRITE TAPE 3，XP，ZP，PNUM，NR，IOCT，PKE GO TU 3SUU
KENU（II）$=\operatorname{KENU}(\mathrm{II})+1$
WRITE TAPE 4，PNUVA，IOCT，Niк
（ T－）$\exists \mathrm{N} \forall \mathrm{C}=\mathrm{C}$
OCT＝ 5
IF（R•LT•ETEST）3525，3550

0
n
\sim
in
3500
n
N
n

$\operatorname{EYES}(\mathrm{II})=\operatorname{KEYES}(\mathrm{II})+1$

WRITE TAPE 3，XP，ZP，PNUM，NR，IOCT，PKE O TO 3600
ヘロカを
3425
？
n
n
$\operatorname{KENC}(I I)=K E N O(I I)+1$
wRITE TAPE 4，PNUM，IOCT，NR
$R=\operatorname{RANF}(-1)$
1OCT＝6
＝A
$\operatorname{KEYES}(I I)=\operatorname{KEYES}(I I)+1$
$t=L$ I
WRITE TAPE 3，XP，ZP，PNUM，NR，IUCT，PAE 3

WRITE TAPE 4,PNUM, IOCT,NR
3700 R=RANF (-1)
N
IF (R•LT•ETEST) 3725,3750 0
11
$\frac{a}{x}$
4
11
0
2
WRITE TAPE 3,XP,ZP,PNUM,NR,IUCT,PKE

$\operatorname{KEYES}(I I)=\operatorname{KEYES}(I I)+1$
 $L=L \quad 1$

GO TO 3800 , XP, ZP,PNUM,NR,IUCT,PKE
$\begin{array}{lll}G O & \text { TO } & 3800 \\ M=M & 1\end{array}$
KENO(II)=KENO(II)+1
WRITE TAPE 4,PNUM,IOCT,NR
$R=R A N F(-1)$
3750
0
0
m
m
3825

KEYES(II) $=\operatorname{KEYES}(I I)+1$

TAPE 3,XP,ZP,PNUM,NR,IOCT,PKE
R.LT.ETESTI 3825,3850

M 1
$\operatorname{KENO}(I I)=\operatorname{KENO}(I I)+1$
WRITE TAFE 4,PNUM,IOCT,NR
3900 CONTINUE
SUBROUTINE ROTIIU(KATUMS, KEYÉS, KENO,L, IA)
CIMENSION KEYES(SUU), K.ENO (5UC)
, F8.2,3H
PKE $=(V X * V X+V Y * V Y+V Z * V Z) * H T M A S$
$I I=P K E+U .49$
II =PKE + U.49
IF (II I-500) $3060,3050,3050$
I I $=500$

3050

WRITE TAPE 3,XP,ZP,PNUM,NR,IQUAD,PKE
GO TO 3400 $\sum_{\sum_{2}^{11}}$

3150
32 uv
$\stackrel{i n}{\sim}$
3250
3 3しし
3325
3350
3400 WRITE TAPE 4 ，PINUM，IQUAD，PKEY R＝RANF
I QUAD $=4$
IF（R．I
IF（R•I．T．ETEST） 3425,3450
$Z P=B$

$$
\begin{aligned}
& I)=K E Y E S(I I)+1 \\
& \text { APE } 3, X P, Z P, P N L
\end{aligned}
$$

RITE TAPE $3, X P, Z P, P N U M, N R, I Q U A D, P K E$ L＝L 1

3425

3450

ENO（II）＝KENO（II）＋1

APE 4 ，PNUM，IQUAD，PKEY
山山世～のナ

3450
3900
SUBRUUTINE ROT111(KATUMS,KEYES,KENU,L,M)
DIMENSION KEYES(5UO), KENO(bUC)

PKEY ADJUSTED FOR ENERGY LOSS IN OVERCOMING SURFACE BINDING ENERGY $P K E=(V X * V X+V Y * V Y+V Z * V Z) * H T M A S$
$I I=P K E+0.49$
IF (II-500) $3060,3050,3050$
II $=500$
PRINT
CONTINUE
$R=\operatorname{RANF}(-1)$
$I S E X=1$
$I F(R \cdot L T \cdot E T E S T) 3125,3150$
$X P=A$
$Z P=B$
$\operatorname{KEYES}(I I)=\operatorname{KEYES}(I I)+1$
L=L 1
wRITE TAPE 3,XP,ZP,PNUM,NR,ISEX,PKE GO TO 3200
$M=M 1$
KENOMI =KENO, INUM, SEX,NR
IF (R.LT•ETEST) 3225,3250
$X P=A$
$\angle P=B$

$\operatorname{KEYES}(I I)=\operatorname{KEYES}(I I)+1$

L=L l
WRITE TAPE 3,XP,ZP,PNUM,NR, ISEX,PKE GO TO 3300

3020
3060
3100
3125
3150
O
N
n
3225
3250
$\cup \cup \cup \cup \cup$
WRITE TAPE 4 ,PNUM, ISEX,NR

IF (R.LT•ETEST) 3325,3330
$\times P=T E M P 1$
$\angle P=$ TEMP 2
KEYES(II)=KEYLS(II)+1
L=L 1
WRITE TAPE $3, X P, \angle P, P N U M, N F, I S E X, F K E$ GO TO 3400

$$
\begin{array}{rl}
335 C & M=M 1 \\
& K E N O(I I)=K E N O(I I)+1
\end{array}
$$

TRITE TAPE 4,PNUM, ISEX,NR
R=RANF (-1)
$R=R A N F(-1)$

IF(R.LT.ETEST) 3425,3450

$P=$ TEMP 1
3300

\section*{| 0 |
| :--- |
| 0 |
| |
| m |
| |}

3425

KEYES(II) =KEYES(II) +1

WRITE TAPE 3,XP,ZP,PNUM,NR,ISEX,PKE
3500

$\operatorname{KENO}(I I)=\operatorname{KENO}(I I)+1$

WRITE TAPE 4,PNUM,ISEX,NR
R = RANF
F(R.LT•ETEST) 3525,3550
= TEMP3
$P=$ TEMP 4
$\operatorname{KEYES}(I I)=K E Y E S(I I)+1$
WRITE TAPE 3,XP,ZP,PNUM,NR,ISFX,PKE GO TO 3600
KENO(II) $=$ KENO(II) +1
RITE TAPE 3,XP,ZP,PNUM,NR,ISEX,PKE
TO 3900
=6
LLT
EMP
ESI

$\begin{array}{llll}\circ & n & \text { n } & \text { n } \\ 0 & \circ \\ 0 & 0 & 0 & \text { n } \\ m & \text { n } & m\end{array}$
SUBROUTINE HISTl(KEYES,SHOTS)

응
No
PROGRAM DATAPLOT
DATA CARDS
TITLE FOR GRAPH OF SPUTTERING DEPOSIT/SYMBOL FOR MODE OF PLOT
DIMENSION XP $(4000), Z P(4000)$
TAPE NR. 234 FOR SELECTED ATOMS. PUT ON LOGICAL UNIT NR• 3
TAPE NR. 235 FOR REJECTED ATOMS. PUT ON LOGICAL UNIT NR. 4
CALL SPUTDRAW(NPTS,XP, ZP)
END
ưuu ưuu
SUBROUTINE SPUTDRAW(NPTS,XP,ZP) DIMENSION PXP(30), PZP(30)
DIMENSION XP(4000),2P(4000)
FORMAT (10AB/2AB, $14 \mathrm{X}, 11$) LABEL $=8 \mathrm{H}$
READ 15,((ITITLE(I), I=1,12), ITYPE)
IF (ITYPE) 199,198,199
ITYPE=3
CONTINUE
READ TAPE 3,PLANE,EVK,COY,EGYCUT
$002001 \mathrm{~J}=1,4000$

-1
0
0
0
\bumpeq
$\begin{gathered}\infty \\ \text { a } \\ \text { a } \\ -1\end{gathered}$
$\begin{aligned} & \circ-1 \\ & 0-8 \\ & \text { ○ }\end{aligned}$
AR
 • $0=$ JNIX
$X S T A R T=-2$.
XSTOP $=X S T A R T+X I N C$
$\angle S T A R T=2.5$
$\angle S T O P=2.5-Z I N C$
DO $2100 \mathrm{I}=$ ISTART,NPTS (FIN1I-XSTART) $2100,2020,2020$ IF (XP(I)-XSTOP) $2030,2030,2100$ IF(ZP(I)-ZSTART)2035,2035,2100 IF(ZP(I)-ZSTOP) $2100,2040,2040$ $J=J \quad 1$
ISTOP $=1$
$\operatorname{PXP}(J)=X P(I)$
$\operatorname{PZP}(J)=Z P(I)$
$\operatorname{IF}(J-30) 2100,2300,2300$
continue
XSTART = XSTOP
XSTOP = XSTART + XINC
IF (XSTART-2.5)2005,2005,2140
XSTART $=-2.5$
XSTOP = XSTART+XINC
ZSTART = ZSTOP

$M O D=2$

ISTART $=I S T O P+1$
IF (NPTS-ISTART
STOP = ZSTART-ZINC
IF (ZSTART+2.5) 2400,2005,2005
$\begin{array}{cc}\circ & 0 \\ 0 \\ \sim \\ \sim \\ \sim\end{array}$
2140
IF (J-2) 2410,2430,2430
no
O-
No
OOMO
Non mo
No No
No
2400
2410
RETURN

DRAW (J,PXP,PZP,MOD, ITYPE,LABEL, IT ITLE, 0.5,0.5,4,4,2,2,8,8,0,L

$$
\begin{aligned}
& \stackrel{n}{\sim} \\
& \stackrel{y}{*} \\
& \sim
\end{aligned}
$$

[^0]OIVg甘1甘O W甘yפOyd
CALL GRID（NPTS）

RINT 20, PNUM(J), ISEX(J), NUM(J), PKE (J) TKE = TKE + PKE (J)
CONTINUE
IF (ZP (J)-YSTART) 210,210,480
 $I F(Z P(J)-Y S T O P) 480,215,215$
$I F(X P(J)-X S T A R T) 480,220,220$
$I F(X P(J)-X S T O P) 230,230,480$
$N=N \quad 1$
490
VGKEY = TKE/EN
AVGKEY $=0 \cdot 0$ EGRID(M,I) =AVGKEY+0.4
IF (N) $498,499,498$
498
49 PRINT $30, M, I, N, T K E, A V G K E Y$
499
500
COTART $=$ CONTINUE
600 CONTINUE

PRINT 40

No. Copies

1. Defense Documentation Center

Cameron Station
Alexandria, Virginia 22314
2. Library

Naval Postgraduate School
Monterey, California 93940
3. Professor Don E. Harrison

Department of Physics
Naval Postgraduate School Monterey, California 93940
4. LT Herbert M. Effron, USN

USS WILLIAM H. STANDLEY (DLG-32) EFO New York 09501
5. CAPT John P. Johnson, III

United Staces Military Academy West Point, New York 10996
6. Commander, Ordnance Systems Command 1 Department of the Navy Washington, D.C. 20360

Erosion of the force function
at $r=2 r_{o}$ results in a loss
of energy in the model. This
is corrected in the STEP subroutine.
Figure 1

1.10.1. \therefore

The (100) suriace crystal
Figure 3

I'h. (1 (1) sultace crysta.

Prouse 4

$$
1
$$

Argon Copper Sputtering

(III) Surface

1.0 Kev Bombardment Energy 3.00 er Binding Energy

Argon Copper Sputtering

(III) Surface

1.0 Kev Bombardment Energy 3.00 ev Binding Energy
7 Pr

Argon Copper Sputtering

(111) Surface

2.0 K ev Bombardment Energy 3.00 ev Binding Energy

Argon Copper Sputtering
 (III) Surface

T-C units
2.0 K ev Bombardment Energy 3.00 ev Binding Energy

$$
\begin{aligned}
& \text { B" }
\end{aligned}
$$

.

$$
\frac{1}{1}-2=-\frac{1}{y}
$$

Argon Copper Sputtering

(111) Surface

3.0 Kev Bombardment Energy
 1.50 ev Binding Energy

Argon Copper Sputtering

(III) Surface

3.0 Kev Bombardment Energy 1.50 ev Binding Energy

$$
\begin{aligned}
& 1 \mathrm{y} \\
& 4
\end{aligned}
$$

$=$


```
    #Nownomelow
```


Argon Copper Sputtering

(III) Surface

3.0 Kev Bombardment Energy 2.00 ev Binding Energy

Argon Copper Sputtering (III) Surface

3.0 Kev Bombardment Energy 2.00 ev Binding Energy

Figure 9b
4)

we

$$
i=0, x-z=1
$$

Argon Copper Sputtering

(111) Surface

3.0 Kev Bombardment Energy 2.50 ev Binding Energy

Figure 10a

Argon Copper Sputtering
 (III) Surface

3.0 Kev Bombardment Energy 2.50 ev Binding Energy

$$
\begin{aligned}
& \text { L m. h - iff }
\end{aligned}
$$

 $=$

$\alpha=+2=$

$4-1+1$
$\sqrt{2}+1$?
$\sqrt{2085} 8$
$x+-2-x+2$20

$$
\operatorname{sen}
$$

$$
=
$$

$$
-x+2
$$

$$
15
$$

 2

\qquad
, 2 \geqslant a

Argon Copper Sputtering

(111) Surface

3.0 Kev Bombardment Energy 3.00 ev Binding Energy

Figure la

Argon Copper Sputtering

(III) Surface

3.0 Kev Bombardment Energy 3.00 ev Binding Energy

$$
\begin{aligned}
& \text { nce }
\end{aligned}
$$

Argon Copper Sputtering

(III) Surface

3.0 Kev Bombardment Energy 4.00 ev Binding Energy

Argon Copper Sputtering
 (III) Surface

3.0 Kev Bombardment Energy 4.00 ev Binding Energy

$$
\begin{aligned}
& 4
\end{aligned}
$$

$$
\begin{aligned}
& 4=x \\
& 11 \\
& 4 \\
& \because
\end{aligned}
$$

Argon Copper Sputtering

 (111) Surface
3.0 Kev Bombardment Energy 4.50 ev Binding Energy

Argon Copper Sputtering (III) Surface

3.0 Kev Bombardment Energy 4.50 ev Binding Energy

$$
1-17=-2
$$

$$
\begin{aligned}
& \text { is }
\end{aligned}
$$

Argon Copper Sputtering

(III) Surface

3.0 Kev Bombardment Energy 5.50 ev Binding Energy

Argon Copper Sputtering

 (III) Surface
3.0 Kev Bombardment Energy 5.50 ev Binding Energy

$11=-$
1
11
$=$

$$
\sqrt{2}+\sqrt{2}
$$

$$
\Delta=
$$

bationion fifin

$$
\begin{aligned}
& 4 \text { 7.ens } \\
& \text { II }
\end{aligned}
$$

Argon Copper Sputtering

(III) Surface

Figure 15a

Argon Copper Sputtering (III) Surface

4.0 Kev Bombardment Energy 3.00 ev Binding Energy
Min \qquad $+\frac{5}{9}=$
hicin II

Argon Copper Sputtering

(111) Surface

5.0 K ev Bombardment Energy 3.00 ev Binding Energy

Argon Copper Sputtering (III) Surface

5.0 Kev Bombardment Energy 3.00 ev Binding Energy

$$
\begin{aligned}
& \text { yil at } \\
& \text { 40 } 511 \text { - } 111
\end{aligned}
$$

-11

Argon Copper Sputtering

(111) Surface

5.0 K ev Bombardment Energy

 3.50 ev Binding EnergyArgon Copper Sputtering (III) Surface
5.0 Kev Bombardment Energy 3.50 ev Binding Energy

86

Argon Copper Sputtering

(III) Surface

Argon Copper Sputtering (III) Surface

7.0 Kev Bombardment Energy 3.00 ev Binding Energy

18

Argon Copper Sputtering

(III) Surface

Argon Copper Sputtering

(III) Surface

10 Kev Bombardment Energy 3.50 ev Binding Energy

 4) 3 ?

4

Argon Copper Sputtering

(III) Surface

]

$$
\begin{aligned}
& 3.50 \text { er Binding Energy }
\end{aligned}
$$

Argon Copper Sputtering (III) Surface

20 Kev Bombardment Energy 3.50 ev Binding Energy

Figure 20b
201

Argon Copper Sputtering
 （III）Surface

$$
\begin{aligned}
& \text { u u }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 品品吅 } \\
& \text { 田吅 }
\end{aligned}
$$

ㄷ品 F

40 Kev Bombardment Energy 3.50 ev Binding Energy

Argon Copper Sputtering (111) Surface

40 K ev Bombardment Energy
3.50 ev Binding Energy

Elisuave fant
 fopod

Sputtering frequency-location aiajram for (111) surface.
(1ii) Surioce

Suriceso Lajor

Layer

3rd Layer

3. tering irequency-location
\therefore. ،an for (1ll) surface.
(III) Surioce

Sputtering frequency-1 ocation diagram for (111) surtace.
(III) Supiace

Sputtering frequency-location
diagram for (111) surface.
(III) Suriuce

Surcea layor

2nd
Layer

Sp!
Layisp

Sputi fing frequency-location diag: if for (lll) surface.
(III) Suricee

Surioce Layer

2nd Layer
 3rd Layer

Sputtering frequency-location diagram for (111) surface.
(III) Suricee

Sputtering frequency-location diagram for (lll) surface.
(III) Surioce

Sputtering frequency-location
diagram for (111) surface.
20 keV
(III) Suríace

Sputtering frequency-location diagram for (lll) surface.

$$
\stackrel{\rightharpoonup}{\underset{y}{\mid}}
$$

Sputtering profiles of at oms sputtered
from (111) surface by Deep Mechanism.
Figure 32

Sputtering Ratio of (111) Surface
Regular Surface
Figure $33 a$

Sputtering Ratio of (111) Surface
Vacancy Surface

Sputtering Ratio ot (111) Surface
Stub Surface

Argon Copper Sputtering (IOO) Surface

I.O K av Bombardment Energy 3.50 ev Binding Energy

Argon Copper Sputtering (IOO) Surface

1.0 Kev Bombardment Energy 3.50 ev Binding Energy
H10
$=$

Argon Copper Sputtering (IOO) Surface

3.0 Kev Bombardment Energy 3.00 er Binding Energy

Argon Copper Sputtering (100) Surface

3.0 K ev Bombardment Energy 3.00 ev Binding Energy

Figure 41b

Bayनicy *otriet (000)

Argon Copper Sputtering (IOO) Surface

$$
\begin{aligned}
& \square \square
\end{aligned}
$$

5.0 K ev Bombardment Energy 2.00 ev Binding Energy

Argon Copper Sputtering (IOO) Surface

5.0 K ev Bombardment Energy
2.00 ev Binding Energy

$4-2$
 ```L-N```

Argon Copper Sputtering (100) Surface

 1
 , 吅 "

5.0 K ev Bombardment Energy
3.00 ev Binding Energy

Argon Copper Sputtering (100) Surface

5.0 Kev Bombardment Energy 3.00 ev Binding Energy

IATR NEI

-

Argon Copper Sputtering (IOO) Surface

7.0 K ev Bombardment Energy 1.50 ev Binding Energy

Argon Copper Sputtering (100) Surface

7.0 K ev Bombardment Energy 1.50 ev Binding Energy

$$
\begin{aligned}
& \text { kesarooh itnow theever } \\
& \text { trulk ingil ! }
\end{aligned}
$$

Argon Copper Sputtering (IOO) Surface

7. 0 K ev Bombardment Energy 3.00 ev Binding Energy

Argor Copper Sputtering (100) Surface

7.0 K ev Bombardiment Energy 3.00 ev Binding Energy
Emitiol ition ani

$$
\alpha \bar{\pi} .
$$

$1001: 1$
\qquad

$=$

Eation arayus
$E 3!1+2$
tor (1 wi, surtuc.
1 keV
Figure 46

Sputtering frequency-location diagram for (100) surface.
5 keV
Figure 48

ering frequency-location diagram
for (100) surface.
Figure 49

Sputtering profiles of atoms sputtered
Figure 50

Sputtering Ratio of (100) Surface
Regular Surface
Figure 5la

Sputtering Ratio of (100) Surface
Vacancy Surface
Figure 51 b

Sputtering Ratio of (100) Surface
Stub Surface

Figure 5lc
(

Energy Distribution of Sputtered Atoms
(100) Surface 7 keV
Figure 55

(IIO) Surface

Sputtering frequency-location diagram for (110) surface.

Sputtering frequency-location diagram for (110) surface. 3 keV

Figure 57
(110) Surface

Sputtering frequency-location diagram for (110) surface.

5 keV
Figure 58
(110) Surface

Sputtering frequency-location diagram for (110) surface.

Argon Copper Sputtering (IIO) Surface

1.O K eve Bombardment Energy
3.50 ev Binding Energy

Argon Copper Sputtering (IIO) Surface

1.O K ev Bombardment Energy 3.50 ev Binding Energy
aby

$$
\begin{aligned}
& 3 \\
& \text { c.n }{ }^{2} \\
& 3 \\
& \text {-a hoiva ibat }
\end{aligned}
$$

Argon Copper Sputtering

(IIO) Surface

保

3.0 Kev Bombardment Energy 3.50 ev Binding Energy

Argon Copper Sputtering (I|O) Surface

3.0 K ev Bombardment Energy 3.50 ev Binding Energy

$-$

18

0.

Argon Copper Sputtering (IIO) Surface

$$
\square \quad \square \quad \square
$$

5.0 K ev Bombardment Energy 3.50 ev Binding Energy

Argon Copper Sputtering (IIO) Surface

5.0 Kev Bombardment Energy 3.50 ev Binding Energy

드능

 $+2+2+2$

Fir
-
-

E1

1

Argon Copper Sputtering (IIO) Surface

四

7.0 K ev Bombardment Energy 3.50 ev Binding Energy

Argon Copper Sputtering (110) Surface

7.0 K ev Bombardment Eneray 3.50 ev Binding Energy

Sputtering Ratio of (110) Surface
Regular Surface
Figure 65

(100) Surfoce

Sputtering frequency-location diagram
Figure 71

Figure 72

Sputtering Ratio variation with Impact Point Set
Figure 74

Figure 75

| | |
| :---: | :---: | :---: | :---: |
| Ion defiection as a function of the product | |
| of ion energy and impact parameter. | |
| Figure 76 | |

peqimaies on

$\because 11 .-41$ $\frac{1}{1}$

1. ORIGINATING ACTIVITY (Cequento enthor)

Naval Postgraduate School
Monterey, California 93940

2a. neport security elageification
Unclassified
2b. EnOUP
3. REPORT TITLE

Correlation of Argon-Copper Sputtering Mechanisms with Experimental Data Using A Digital Computer Simulation Technique
4. DELSCNPTIVE MOTES (Type of neper and fncivel ve entee)

Thesis
8. AUTHOR(S) (Last neme, fret neme, twided)

EFFRON, Herbert M.

$\begin{aligned} & \text { C. EE PORT DATE } \\ & 1 \text { June } 1967 \end{aligned}$	$\begin{aligned} & \text { 70. ROTAL NO. OF PAOES } \\ & 245 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70. no. or neri } \\ & 38 \end{aligned}$
-0. contract or orant mo.	-0. Onionatore remort mumem(s)	
- Pnojectmo.	N.A.	
\%	N.A.	the mumber thet may be eethed

10. AVAILABILITY/LIMITATION NOTICES
11. SUPPLEMENTARY NOTES

None
Naval Postgraduate School
13. Aestragt

AfT sputtering of single-crystal copper with $1-7 \mathrm{keV}$ argon. A digital computer was used to build the crystal, bombard it, and move crystal atoms. Eour mechanisms were observed which cause surface atoms to sputter. An atom is sputtered when (1) it is squeezed out of the surface, (2) it is scooped out when another atom strikes its inner hemisphere, (3) it is ejected when an atom passes behind it, and (4) it is knocked out by a second layer atom which is movin outward. Nearly all sputtered atoms were surface atoms. Second and third layer atoms were sputtered only for ion energies greater than 5 keV. They were sputtered by mechanisms similar to the surface atom mechanisms. "Silsbee chains" were observed to be directed into the crystal, and momentum focusing was observed to cause sputtering only when it occurred in close packed, surface rows. Qutward directed chains were not observed. Sputtering deposit patterns, sputtering ratios, and sputtered atom energy distributions were obtained for (100), (110), and (111) surfaces. All data compared favorably with experimental data.

[^0]: 2430

