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Phosphorene is a new two-dimensional material that has recently
attracted much attention owing to its fascinating electrical,
optical, thermal and chemical properties. Here, we report on
high-quality exfoliation of black phosphorus nanosheets, with
controllable size produced in large quantities by liquid-phase
exfoliation using N-methyl-2-pyrrolidone (NMP) as a solvent
under ambient conditions. The as-synthesized few layers show
a great potential for solar energy conversion based on the
optical results shown in this work.
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1. Introduction

In recent years, the study and investigation of two-dimensional (2D) materials became among the most
attractive and exciting aspects of nanoscience. Phosphorene is a 2D allotrope of phosphorus. Similar to
graphene layers that stack together to form graphite, phosphorene monolayers can be stacked via van der
Waals interactions to build crystal layers of black phosphorus. However, black phosphorus is a
semiconductor with a direct band gap in single, few-layer and bulk forms. The direct band gap
depends on the nanosheet thickness; its value goes from approximately 1.5 eV for a monolayer
phosphorene, reaching approximately 0.3 eV for bulk black phosphorus [1,2], unlike graphene that has
no band gap [3] and MoS2 that displays direct band gaps only in the monolayer forms [4]. Thanks to
its intrinsic band gap, black phosphorus is considered a suitable semiconductor for use in gas sensors
[5,6], photovoltaic applications [7], solar cells, energy storage [8], and electronic [9–11] and optical
devices [12–16]. The exfoliation energy of black phosphorus is −151 meV per atom, calculated by
multi-level quantum chemical calculations [17], which is greater than that of graphite. This presents a
relatively major difficulty in exfoliating black phosphorus. The scotch-tape method or mechanical
exfoliation, which is also known for being used in the case of graphene and transition metal
dichalcogenides (TMDCs), produces high-quality single and multi-layer phosphorene sheets. However,
only small-sized crystals are obtained using this process that is still limited to laboratory scale. On the
other hand, liquid-phase exfoliation (LPE) [18], based on the ultrasonic exfoliation of black
phosphorus, produces colloidal dispersions of nanosheets in a solution, and can be considered as a
better process for mass production. The centrifugation with different speeds can separate particles
with different sizes in the phosphorene from LPE. Through this method, black phosphorus is
exfoliated using numerous solvents: aprotic solvents, anhydrous and polar solvents, e.g. dimethyl
sulfoxide (DMSO) [18], dimethylformamide (DMF) [18], N-methyl-2-pyrrolidone (NMP) [19,20] and N-
cyclohexyl-2-pyrrolidone (CHP) [16], have produced the most stable and uniform dispersions. Overall,
LPE yields phosphorene with small thicknesses reaching the monolayer limit.
2. Experimental procedures
2.1. Preparation of black phosphorus
Black phosphorus (BP) was prepared according to our previous work from red phosphorus by a
transport reaction [21]. The chemical vapour transport (CVT) was improved to obtain BP crystals with
high purity and crystallinity. A mixture of copper powder from Aldrich (22.75 mg, 99.5%), tin powder
from Aldrich (42.5 mg, 99%), red phosphorus lump from Acros Organics (155 mg, 99.99%) and SnI4
from Aldrich (10.0 mg) was placed and sealed under vacuum inside a 10 cm long silica glass
ampoule, with a 0.2 cm thick wall and a 1.0 cm inner diameter. The ampoule was positioned inside
an oven in a horizontal direction, and the temperature was kept at 923 K for a duration of 4 h. The
starting materials were positioned in the high-temperature part of the oven, and the temperature
dropped down to ambient temperature for a 3 day period at the rate of 0.2°C min−1. The slow-rate
cooling provides a better-quality growth. The BP product is synthetized in the cold part of the silica
glass ampoule. Minor parts of SnI4 that might remain in the BP crystals are suppressed by putting the
product in boiling toluene (ultrasonic bath for 20–45 min) until the toluene remains clear. Figure 1a
shows a photograph of synthesized black phosphorus. In order to illustrate the morphological
properties of the synthesized black phosphorus, an SEM analysis (figure 1b) allows to observe that the
as-grown black phosphorus has a stacked-layer structure thanks to the van der Waals forces, and,
therefore, it will be easy to peel each layer off.

2.2. Exfoliation
LPE method [19,22–24] has been used to obtain few layers (phosphorene). This technique includes the
sonication or shearing [25,26] of stacked-layer crystals in solvents, and it has successfully been applied
to graphene materials, transition metal oxide (TMOs) and TMDCs [27–29]. Several solvents were
proven to be useful for exfoliation, like amide solvents; for instance: NMP, CHP [30] and isopropanol
(IPA). In this work, NMP is used. Figure 2a shows the exfoliation protocol of bulk BP in NMP with a
5 mg ml−1 concentration using an ultrasonic bath for 12 h. The temperature is kept at 303.15 K. We
explored a serial centrifugation speed to obtain few layers with uniform size and thickness. Figure 2b
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Figure 1. (a) Photographs of black phosphorus obtained using the chemical vapour transport growth method. (b) SEM images of
synthesized black phosphorus.
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Figure 2. (a) An illustration showing the exfoliation process. (b) Dispersions BP and exfoliated BP in NMP centrifuged at different
speeds.
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shows the dispersions of BP after centrifugation from 1000 to 13 000 r.p.m. range. Some studies of
environmental stability of the fabricated nanosheets found that air moisture is absorbed on their
surface due to a high hydrophilic character of the few-layer BP, and it has been reported that long-
term exposure to ambient conditions degrades the BP, but the few-layer nanosheets remain stable for



Figure 3. TEM images of BP sheets. Inset: lateral size of exfoliated black phosphorus.
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Figure 4. TEM images of non-exfoliated BP sheets (a), and exfoliated BP sheets after 1 h sonication and 8000 r.p.m. centrifugation (b,c).
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several days [31]. In our exfoliation process, anhydrous solvents were only opened in an Ar glove box to
minimize O2 and H2O contamination.
3. Results and discussion
3.1. Characterization of few layers phosphorene exfoliated from as-synthesized black

phosphorus

3.1.1. Scanning transmission electron microscopy

To confirm the successful exfoliation of synthesized BP in NMP, scanning transmission electron
microscopy (STEM) was conducted. The suspended few layers BP were dropped on a copper TEM
grid covered with lacey carbon from Ted Pella. The samples were dried at ambient temperature for
48 h under vacuum due to complications in completely eliminating the NMP. The STEM images
presented in figure 3 show the morphology and distribution of nanosheets in a dispersion centrifuged
at 13 000 r.p.m. Figure 4 shows TEM images of non-exfoliated BP sheets, and exfoliated BP sheets after
1 h sonication and 8000 r.p.m. centrifugation. The size and the morphology of the shown flakes are
typical. The lateral size of fabricated phosphorene was approximately 200.8 nm, as shown in the inset
of figure 3. It is also important to highlight that the obtained sheets are significantly larger than what
is usually detected for other 2D materials [27,30,32,33].
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Figure 6. Raman spectra of bulk phosphorus and the nanosheets dispersions also measured and plotted for comparison after the
subtraction of the N-methylpyrolidone signal.
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Figure 5. Size distribution of centrifuged suspension of black phosphorus at 1000 and 13 000 r.p.m. determined by dynamic light
scattering.
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3.1.2. Dynamic light scattering characterization and Raman spectroscopy

The light scattering shows that 98% of the dispersion obtained after centrifugation at 1000 r.p.m. is
composed of few layers of phosphorene with a lateral size of approximately 800 nm. The
supernatants were further centrifuged at 13 000 r.p.m. to obtain 96% of atomically thin BP
nanosheets with a lateral size of approximately 253 nm. The lateral dimensions of the
phosphorene sheets agree well with the STEM images (figure 5), and are carefully collected and
retained for use. This representative dispersion was explored to demonstrate the possibility of
exfoliating bulk BP into atomically thin dispersions in NMP. The solvent was later evaporated
under vacuum at ambient temperature.

Raman spectroscopy was used to characterize the dispersion of black phosphorus centrifuged
at different speeds. The Raman spectrum of the NMP was then subtracted from the spectra
recorded for the various analysed solutions and the resulting spectra are shown in figure 6. Three
prominent peaks can be ascribed to the phonon modes A1g at 358 cm−1, B2g and A2g, at 436.7
and 463.1 cm−1, respectively. The three Raman bands of the black phosphorus decrease in
intensity as the ‘r.p.m.’ value increases. The signal is almost undetected for the ‘10 000 r.p.m.’
sample and is not detected for the ‘13 000 r.p.m.’ sample. This decline is owing to the thin
thickness and small lateral dimensions.
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Figure 7. AFM image of exfoliated BP layers deposited on SiO2/Si by spin coating process.
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3.1.3. Atomic force microscopy

In order to investigate the morphology of the surface and the thickness of layers, we have analysed the
exfoliated black phosphorus using atomic force microscopy (AFM). A size distribution is obtained after
sonication and centrifugation at different speeds. For this work, the supernatant of the dispersion
centrifuged at 15 000 r.p.m. is deposited on an Si/SiO2 (001) substrate and spin-coated at 6000 r.p.m.
for 1 min. The NMP is evaporated from the substrate under vacuum in ambient temperature at least
for 48 h. A typical AFM image of thin-film BP showed the existence of several shapes and sizes of
phosphorene with a surface area of approximately 1.6 µm2 (figure 7). The as-synthesized BP sheets
had an average thickness of 1.3–2.9 ± 0.9 nm, as shown in figure 7. Previous AFM measurements in
the literature [16,34–38] have found that the single-layer phosphorene is 0.9 nm thick. The AFM
results indicate that the larger nanosheets consist mostly of two to three phosphorene layers.
However, the single or bilayer phosphorene with a thickness from 0.9 to 1.6 nm can be obtained by
improving the process conditions. AFM results suggest that increasing both the exfoliation duration
beyond 12 h and the speed of centrifugation breaks down the bigger sheets to smaller ones with
mainly monolayer phosphorene. Still, we have shown by liquid exfoliation that our synthetic product
is easily exfoliable leading to a high quality of layers.
3.2. Optical absorption: measurement and Tauc analysis
We have also analysed the ultraviolet (UV)–visible absorption of bulk and dispersions of nanosheets
centrifuged at 13 000 and 15 000 r.p.m. to investigate the optical properties of the produced nanosheets,
as seen in figure 8a. The obtained suspensions of black phosphorus were also considerably different in
their appearances: in transmitted light, a brown colour was detected in diluted suspensions of thick
pieces, while those containing nanosheets appeared as yellow transparent liquid in quartz cuvettes.

For the bulk and the suspension centrifuged at 13 000 and 15 000 r.p.m., the optical absorbance
spectra were used to draw the Tauc plot as shown in figure 8b. (αhν)n and the photon energy (hν)
were linearly dependent, where α stands for the coefficient of absorption, n describes the nature of
transition and hν stands for the photon energy. Such linear relationship confirms a direct band gap
that is typical of black phosphorus. The Tauc investigation of the transition at high energy shows that
the bulk material yields a 1.95 eV transition energy, which increases to 3.2 eV in the bilayer material
[12]. These variations obey a power-law curve, and seem to be determined by the quantum
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Figure 8. (a) UV/visible absorption spectrum of dispersions of BP in NMP. (b) Representative direct Tauc plots of bulk and
centrifuged black phosphorus at 13 000 and 15 000 r.p.m.

Table 1. Band-to-band transitions in BP. Adapted from [12].

layer numbers band gap energy (eV) transition at high energy (eV)

2 1.88 ± 0.24 3.23 ± 0.39

3 1.43 ± 0.28 2.68 ± 0.32

4 1.19 ± 0.28 2.44 ± 0.27

10 0.73 ± 0.23 2.09 ± 0.13

15 0.62 ± 0.20 2.03 ± 0.09

20 0.56 ± 0.18 2.01 ± 0.07

bulk 0.33 ± 0.02 1.95 ± 0.06
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confinement [39]. The transition at high energy happens at the Z-point or somewhere near it in the
Brillouin zone, and corresponds to a change between either the next highest occupied band (VB− 1)
and the conduction band (CB), or the valence band (VB) and the next lowest empty band (CB + 1)
[12]. The transition energy in the bulk material is related to earlier band structure measurements of
bulk BP [40,41]. In earlier studies, the calculations have shown a relationship between this high
energy and the corresponding band gap according to the number of layers, as summarized in table 1
[12]. These data show that the band gap is tuned from 0.33 eV in bulk to 1.88 eV in bilayer material,
giving evidence that the band gap and the high-energy transitions are subjected to extreme changes
as nanosheets approach the monolayer thickness.
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From these results, BP has the potential to offer a new alternative for the design of photocatalysts,

solar cells, photodetectors, batteries, transistors as well as the development of novel applications in
new fields such the terahertz technology [42–50].
 lsocietypublishing.org/journal/rsos
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4. Conclusion and outlooks
In this work, the LPE was used to produce two to three layers phosphorene from as-synthesized BP.
Besides our previous work, this work provides a complete process that starts with the synthesis of BP
from red phosphorus, and produces exfoliated few layers of phosphorene. LPE overlays a promising
way to mass-produce phosphorene. Many recent reports highlight the use of several solvents and
other organic reagents. Based on this work’s method, the availability of many organic reagents such
as NMP or DMF, combined with the tuning of process conditions such as the centrifugation speed,
will provide highly crystalline BP from mono- to multi-layers. Another merit of the liquid exfoliation
is the possibility of further isolating the as-dispersed nanosheets from air using the exfoliation
solvents, thus slowing down the degradation process significantly. Besides, the ultrafast nonlinear and
linear optical properties confirmed by UV–vis–NIR and the Tauc plot analysis showed that BP can
cover the band-gap range from 0.33 eV (bulk) to 1.88 eV (bilayer) and the spectrum span between
visible and infrared radiation. From these results, there is a great potential for BP as a good
alternative nanomaterial for the design of photocatalysts, solar cells, photodetectors, batteries,
transistors as well as the development of novel applications in new fields such as the terahertz
technology.
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