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Exactmathematical identities are presented between the relevant
parameters of droplets displaying circular contact boundary
based on flat tilted surfaces. Two of the identities are derived
from the force balance, and one from the torque balance.
The tilt surfaces cover the full range of inclinations for sessile
or pendant drops, including the intermediate case of droplets
on a wall (vertical surface). The identities are put under
test both by the available solutions of a linear response
approximation at small Bond numbers as well as the ones
obtained from numerical solutions, making use of the Surface
Evolver software. The subtleties to obtain certain angle-
averages appearing in identities by the numerical solutions are
discussed in detail. It is argued how the identities are useful in
two respects. First is to replace some unknown values in the
Young–Laplace equation by their expressions obtained from
the identities. Second is to use the identities to estimate
the error for approximate analytical or numerical solutions
without any reference to an exact solution.
1. Introduction
Understanding the skewed shape of a sessile drop pinned on a flat
incline has a long history in Physics, starting with [1,2]. It rises
new asymmetrical problems compared to more studied situations
where the substrate is horizontal. In principle, such problems can
be handled while making use of the Young–Laplace nonlinear
partial differential equation, translating a balance between surface
tension forces and gravity acting on the drop. See [3] and references
therein, where a perturbative approach to this problem at small
Bond number was addressed when the footprint of the droplet is
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held fixed and circular. More recently, the case of pendant drops has also attracted some interest, see [4–7] and

references therein. A perturbative approach to this problem at small Bond number has also been addressed in
[8], in a similar set-up.Anempirical relationbetween incline slope angle andcontact angles at the front andrear
of the droplet was given by [9], and further studied by many authors, see [3,10,11] and references therein. It
relies on an approximation of the balance of forces equation along the substrate, at small Bond number.
Balance of forces normal to the substrate also deserves interest, together with relations arising from the
torque balance. The three-phase contact angles (for the various azimuthal angles) of a liquid condensed on
a substrate are in direct relation with interfacial and body forces acting on sessile or pendant drops.

Despite the settled role of the droplets based on different surfaces, the cases for which there are exact
solutions are rare. During more than a century, different numerical and analytical methods have been
developed for more efficient and finer approach to drop’s profile for cases with no exact solution. To
evaluate or rate these numerical and analytical methods some criteria are needed, among which are
the exact mathematical relations between the relevant parameters of the problem. An early example of
these identities is the one by [12] between the volume, curvature at apex, height and contact radius of
axi-symmetric drops on a flat horizontal surface (see also [13,14]). For axi-symmetric drops on curved
surfaces the very same identities are derived in [15]. For droplets under the combined tangential and
normal body forces the dynamical relations between shape parameters have been presented in a linear
approximation recently [16].

This issue has also been studied semi-analytically in [17], where the problem of understanding the
contact line evolution of slender unpinned droplets under arbitrary scenarios of forces is addressed,
based on experimentally observed contact lines. Related to this point, in [18], sessile droplets at
different tilting angles are experimentally subject to varying centrifugal forces in order to explore their
spreading/sliding behaviour for different volumes and initial shapes (including non-axisymmetric). In
particular, a test of the applicability of the Furmidge equation for the retention force is discussed.

The mathematical identities are important in another respect, that is reducing the initial unknown
values of the problem. This in particular proves helpful because some of these unknown values
appear in the first place in the differential equation governing the profile of the drop. Whether one
tries a perturbative solution of the drop’s profile or a numerical one, reducing the initially unknown
values facilitates or boosts the procedure of reaching the final result. As an example, in [14] the
identity is used to replace a combination of the unknown apex curvature and height in the Young–
Laplace equation, in the procedure of developing a perturbative solution for lightweight drops. As
another example, in a numerical solution of axi-symmetric drops with fixed contact angle one may
use contact radius or apex height as a starting point and the other one as the final point. But the
trouble is that both values are unknown in the first place, and in principle one has to search time-
consumingly a two-dimensional parameter space to find both values that match the solution.
However, by the identity and thanks to the mentioned combination, one can replace the height by the
radius, reducing the procedure to a simple one-parameter shooting method [19].

The main purpose of the present work is to highlight examples of mathematical identities for droplets
with circular contact boundary based on flat tilted surfaces. The identities are derived based on the force
balance along parallel and normal directions of the tilted surface, as well as the torque balance of the
droplet. The force balance normal to the tilted surface generalizes that of [12–14] for a horizontal
substrate. The identity along the tilted surface is in fact an exact version of the approximate empirical
Furmidge relation [9]. The identity by the torque balance is apparently the one that is introduced here,
and remains to be verified numerically. All three identities are checked at the first-order approximation of
the Bond number, the so-called linear response ansatz [3]. For the identities by the force balance various
numerical tests are provided, generated by the Surface Evolver as a vertex-edge-facet element software [20].

The organization of the rest of the work is as follows. In §2 the two identities by the force balance
along and normal to the surface are derived. In §3 the identity by the torque-balance condition on the
droplet is derived. The check of all identities at linear response approximation is presented in §4.
Numerical checks of force-balance identities are presented in §5. This requires the contact angle as a
function of azimuth angle and certain averages over it, which is the subject of §6. In §7 the possible
use of identities is illustrated. Section 8 is devoted to concluding remarks.
2. Identities by force balance
The set-up for the pinned droplet on a tilted plane is as follows. The z-axis is perpendicular to the
substrate and inward to the liquid, with x-axis along the slope downward. For the droplet with
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Figure 1. Set-up of a droplet on a flat tilted surface.
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contact-circle of radius r0, the origin is set to be the centre of circle, c. The angle of the substrate with the
horizontal direction is α∈ [0, π], with α = π representing the case of a drop pendant from the ceiling.
The set-up is summarized in figure 1. We use the polar angle w on the substrate, with w = 0
representing the x-axis, as usual. The hydrostatic pressure inside the contact-circle depends only on x,
given by

p(x) ¼ pc þ rgx sina (2:1)

with ρ the density of the drop, and pc the pressure at the centre of the contact-circle.
34
2.1. Force balance along surface
First we consider the more familiar identity, stemming from force balance along the substrate. The
capillary force along the x direction reads

Fx ¼ g

ðp
�p

r0 dw cos ua(w) cosw (2:2)

with ua(w) the contact-angle of the liquid-substrate at polar angle w on a slope with angle α. By symmetry
ua(w) ¼ ua(� w), so we expect the following Fourier expansion:

cos ua(w) ¼ C0 þ
X1
n¼1

Cn cos (nw), (2:3)

where

C0¼ 1
2p

ðp
�p

dw cos ua(w) ¼ hcos ua(w)i (2:4)

and

Cn¼ 1
p

ðp
�p

dw cos ua(w) cos (nw), n � 1 (2:5)

leading to

Fx ¼ gpr0 C1: (2:6)

The force balance along the surface then gives:

mg sinaþ gpr0 C1 ¼ 0 (2:7)

with m = ρV as the mass of the droplet with volume V. The dimensionless form of (2.7) is

2 Bo sinaþ pC1 ¼ 0, (2:8)

where Bo is the modified Bond (or Eötvös) number taken as Bo =mg/(2r0γ). Consistently with [21], our
use of Bo contains only the input parameters of the drop-solid system, namely volume of the drop,
gravitational acceleration, fluid density, surface tension, and radius of the footprint and not data
involving the dimensions of the drop unknown prior to the experiment (such as the height of the
drop or radius of curvature at the drop apex).
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The coefficient C1, equal to twice the average over w of cos ua(w) cosw, is remarkably linear in Bo as

will be seen later.
In §5, in order to confront theoretical and simulation values, we will evaluate and compare to 1 the

ratio

ratiok ¼ �2 Bo sina=(pC1): (2:9)
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2.2. Force balance normal to surface
The capillary force normal to the surface (downward z direction) reads

Fz ¼ g

ðp
�p

r0 dw sin ua(w): (2:10)

Again by symmetry we expect ua(w) ¼ ua(� w), hence the Fourier expansion

sin ua(w) ¼ A0 þ
X1
n¼1

An cos (nw), (2:11)

A0 ¼ 1
2p

ðp
�p

dw sin ua(w) ¼ hsin ua(w)i (2:12)

and An ¼ 1
p

ðp
�p

dw sin ua(w) cos (nw), n � 1 (2:13)

leading to

Fz ¼ 2gpr0A0: (2:14)

The pressure force from the tilted surface is given by

N ¼
ðr0
�r0

p(x) dA, dA ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � x2

q
dx (2:15)

and

N ¼ ppcr20: (2:16)

The zero of pressure is chosen as the atmospheric pressure. Balance of forces in the normal direction leads
to

N ¼ Fz þmg cosa (2:17)

or

ppcr20 ¼ g 2pr0A0 þ rVg cosa: (2:18)

The pressure pc can be written in terms of the pressure at point o (intersection point of the z-axis and the
surface of the droplet), as follows:

pc ¼ po þ rgh cosa (2:19)

with h the oc height (figure 1). This pressure, with the use of the Young–Laplace equation, can also be
written in terms of the mean-curvature H0 at point o

po ¼ �2gH0 (2:20)

with γ as the surface tension of liquid. Altogether the force balance (2.18) reads

pr20(�2gH0 þ rgh cosa) ¼ 2gpr0A0 þ rVg cosa (2:21)

or, after dividing by 2pr20g,

�H0 þ rgh
2g

cosa ¼ A0

r0
þ rVg
2pr20g

cosa: (2:22)

The above is a direct generalization of eqn (12) of [14,15,19] for a horizontal substrate (α = 0).
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Figure 2. The geometry used for torque-balance identity.
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It is convenient to have, with the help of the zero-gravity copy (spherical cap) of the droplet, a
dimensionless form of the above identity. Using the spherical-cap radius R0 and contact-angle θ0 with

r0 ¼ R0 sin u0, V ¼ pR3
0

3
(1� cos u0)

2(2þ cos u0) (2:23)

one defines the dimensionless quantities [3]

~h ¼ h
R0

, ~H0 ¼ R0H0: (2:24)

The dimensionless version of (2.22) is

� ~H0 þ 3~h sin u0 Bo cosa
p(1� cos u0)

2(2þ cos u0)
¼ A0

sin u0
þ Bo cosa

p sin u0
: (2:25)

In §5, in order to confront theoretical and simulation values, wewill evaluate and compare to 1 the ratio

ratio? ¼
� ~H0 sin u0 þ 3~h sin2 u0

p(1� cos u0)
2(2þ cos u0)

Bo cosa

A0 þ 1
p
Bo cosa

: (2:26)

3. Identity by torque balance
The contribution of the weight to the torque in the y-direction (inward figure 2) is given by

twy ¼ mg‘ cosb ¼ rVg‘ cosb (3:1)

in which ℓ is the distance of the centre-of-mass (c.o.m.) of the droplet from the centre c, and β is the angle
between the c.o.m. position vector and the horizontal direction (figure 2). The torque applied by the
substrate upon the drop can be evaluated by integration over the element by the pressure

dt py ¼ �x p(x) dA, dA ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � x2

q
dx (3:2)

leading to

t py ¼ �2
ðr0
�r0

(pc þ rgx sina)x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � x2

q
dx (3:3)

and

t py ¼ �p

4
rgr40 sina: (3:4)

The infinitesimal capillary force at polar angle w with contact-angle ua(w) reads

dFg ¼ g r0 dw
�
cos ua(w) cosw iþ cos ua(w) sinw j� sin ua(w)k

�
(3:5)

with the position vector

r ¼ r0
�
cosw iþ sinw j

�
(3:6)
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leading to the torque element in y-direction

dtgy ¼ (r � dFg)y ¼ gr20 sin ua(w) coswdw: (3:7)

The integration over the above torque element gives

tgy ¼ gr20

ðp
�p

sin ua(w) coswdw: (3:8)

Again using Fourier expansion (2.11) for sin ua(w) one finds

tgy ¼ pgr20 A1: (3:9)

All together, the balance of torques along y-direction gives

rVg‘ cosbþ pgr20A1 ¼ p

4
rgr40 sina: (3:10)

Again it is convenient to have a dimensionless form of the identity. Defining

~‘ ¼ ‘

R0
(3:11)

and using (2.23) and the relation between two Bond numbers [8]

Bo ¼ pB
(1� cos u0)

2(2þ cos u0)
6 sin u0

(3:12)

the dimensionless form of identity (3.10) reads

2 Bo~‘ cosbþ p sin u0A1 ¼ p

4
B sin3 u0 sina: (3:13)

In §5, the following ratio is compared to 1 by the numerical simulations

ratio↺ ¼ 2 Bo~‘ cosbþ p sin u0A1
p

4
B sin3 u0 sina

: (3:14)
4. Linear response
4.1. Check at linear response, along surface
The linear response ansatz [3] is in terms of the Bond number

B ¼ rgR2
0

g
, (4:1)

where R0 is the radius of the spherical cap at zero gravity, see (2.23). In the linear response approximation
we have [3,8]

C1 ¼ � 1
2

�
cos umin

a � cos umax
a

�
þO(B2) (4:2)

in which umax
a ¼ ua(0) and umin

a ¼ ua(p). We see that the expression (2.7) in linear approximation is the
famous Furmidge relation (eqn 1 of [9]), with the constant K = π/4.

The check of (2.8) by explicit expressions for cos umin
a and cos umax

a at the linear approximation [8] is
straightforward, once the relation between two Bond numbers (3.12) being used.
4.2. Check at linear response, normal to surface
The linear response ansatz [3,8] implies

cos ua(w) ¼ cos u0 þ lBþ mB coswþO(B2), (4:3)

where θ0 is the uniform contact angle at B = 0, λ and μ are some constants whose values do not
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matter here. Then

sin ua(w) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 ua(w)

p
¼ sin u0 � lB cos u0= sin u0 � mB cosw cos u0= sin u0 þO(B2)

(4:4)

which implies both the average over w

A0 ¼ hsin ua(w)i ¼ sin u0 � lB cot u0 þO(B2) (4:5)

and the arithmetic mean between maximum and minimum

1
2
( sin umax

a þ sin umin
a ) ¼ sin u0 � lB cot u0 þO(B2): (4:6)

Hence

A0 ¼ 1
2

�
sin umin

a þ sin umax
a

�
þO(B2): (4:7)

We have ~h ¼ 1� cos u0 þO(B) [3]. By the above, identity (2.25) comes to the form

� ~H0 ¼ sin umin
a þ sin umax

a

2 sin u0
� B

6
(1� cos u0)(1þ 2 cos u0)

1þ cos u0
cosaþO(B2): (4:8)

The ~H0, sin umin
a and sin umax

a are read from [3,8], by which we have

� ~H0 ¼ 1� B
6
(1� cos u0) cosaþO(B2) (4:9)

and

1
2
( sin umin

a þ sin umax
a ) ¼ sin u0 � B cos u0r001(u0) cosaþO(B2) (4:10)

with [3]

r001(u0) ¼ � sin u0
6

þ sin u0 cos u0
3(1þ cos u0)

: (4:11)

It is a simple matter to check that the quantities (4.7)–(4.10) inserted into (2.25) satisfy (2.25) up to O(B2).

4.3. Check at linear response: torque
Proceeding as in §4.2, the linear approximation yields

A1 ¼ � 1
2

�
sin umin

a � sin umax
a

�
þO(B2) (4:12)

¼ 1
3
B
(1� cos u0)(2þ cos u0)

1þ cos u0
cos u0 sinaþO(B2): (4:13)

For a check at linear order, it is enough to insert the spherical cap droplet values in the terms having B or
Bo, namely the first and last terms in (3.13). The c.o.m. of a spherical cap is known. Subtracting R0cosθ0
leads to

~‘ ¼ 3(1þ cos u0)
2

4(2þ cos u0)
� cos u0 þO(B): (4:14)

Also for the spherical cap the c.o.m. lays on the z-axis, for which we have β = π/2− α. By the relation
between the two Bond numbers (3.12), it is easy to see that identity (3.13) is satisfied up to O(B2).
5. Numerical check of identities
To test the identities (2.8) and (2.25), the solutions of the Young–Laplace equation are developed by the
Surface Evolver software, at different slope angles αs, spherical cap contact angles θ0s and modified Bond
numbers Bo =mg/(2r0γ). The identities take the form

ratiok ¼ 1, ratio? ¼ 1, ratio↺ ¼ 1
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with the ratios defined in (2.9), (2.26) and (3.14). In order to measure the mean curvature ~H0 and height ~h
above the origin, we export from Surface Evolver the list of vertices such that in cylindrical coordinates
~r , 0:06~r0, that is 6 per cent of the contact radius. This yields between 80 and 110 vertices. We then fit
a quadratic surface

~z ¼ a~x2 þ b~y2 þ c~xþ ~h (5:1)

to obtain ~h and

� ~H0 ¼ (aþ b(1þ c2))(1þ c2)�3=2 þO(B2): (5:2)

The measurement of A0 and C1 implies more work, described in §6.
In figures 3–5 we display A0, ~H0, ~h, ratio⊥, −C1 and ratiok as functions of Bo for α = 90° and θ0 = 60°,

90°, 120°. Tests were made with the following values:

a ¼ 45�, 90�, 135�

u0 ¼ 60�, 90�, 120�

)
(5:3)

and many different values of the Bo number, away from the singularity, giving consistent values in all
cases. As a sample of the numerical values, the data for the case with α = 90° and θ0 = 90° are given in
table 1.



Table 1. Testing the identities for α = 90° and θ0 = 90°.
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0.63971 1.0000 1.0006

0.95957 1.0010 1.0001

1.2794 1.0008 0.99987
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royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:201534
9

In order to check the torque-balance identity numerically it is needed to find the c.o.m. of the droplet,
for which out of the irregular distribution of vertices one has to extract regular dx × dy-mesh and dy × dz-
mesh, for calculating ~zcm and ~xcm, respectively. The result of making meshes for one of the samples is
given in figures 6 and 7. The values of ~l and angle β are then obtained by

b ¼ tan�1 zcm
xcm

� a (5:4)

and

~‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2cm þ ~z2cm

q
: (5:5)

To obtain the average-value A1 the azimuth-angle is needed; the computation is postponed to §6. The
results of torque identity checks are summarized in table 2.
6. Contact angle as function of azimuth
In order to check the Surface Evolver simulations against the exact identities, we have to compute C0 and
C1, or the average over w∈ (0, 2π) of sinθ(w) and the average over w∈ (0, 2π) of coswcosθ(w), where θ(w) is
the contact angle at azimuth w. A fluid interface in contact with a solid surface has a contact angle θ∈ (0,
π) which may vary along the contact line. The solid surface must be smooth at the macroscopic scale, so
that a unique normal vector is defined at every point.

We have performed the Surface Evolver simulations with Dirichlet boundary conditions: the
displacement is zero on the contact line, a fixed circle of radius r0. Physically, other than a droplet on or
below an incline, it may represent a pocket of liquid made with an elastic membrane fixed onto a circular
metallic wire, opening to a reservoir of liquid. Initially, at zero gravity, the pocket has the shape of a
spherical cap of contact angle θ0, giving the desired volume. The pocket lies entirely on one side, say
{z≥ 0}, of the plane containing the contact line circle. Upon switching on the gravity, the pocket deforms
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Table 2. Testing the torque-balance identity.

α θ0 Bo ratio

30° 45° 1.02 0.999

30° 90° 0.512 1.01

45° 30° 0.453 0.999

60° 60° 0.401 1.00
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as a solution of the Young–Laplace equation under constant volume constraint and the given Dirichlet
boundary conditions. Eventually the interface or membrane may go partly into {z < 0} region.

Of course, so far as the interface remains in {z≥ 0}, it represents as well a liquid drop on or below a
solid plane substrate, with contact line pinned on the circle and contact angle θ∈ (0, π) varying along the
circle. However, where the interface goes into {z < 0}, representing a pocket, a contact angle θ > π or θ < 0
will be found. This occurs e.g. for α = π/2, θ0 = π/3, Bo = 1.46 around w = π (figure 8) and for α = π/2, θ0 =
2π/3, Bo = 1.32 around w = 0 (figure 9). At such parameters, a droplet on the incline would have
unpinned, dewetting from the top around w = π or overflowing at the bottom around w = 0. The
Young–Laplace equation then has to be solved with moving boundary, which we have not done.

The figures also show the linear response approximation, namely cosθ as a linear function of cosw, at
the smallest Bond number for which data are displayed.

As another noticeable feature, it is observed that to some approximation, for each choice of α and θ0,
there is an azimuth w at which u ≃ u0 8Bo.

The number of mesh vertices in the Surface Evolver simulation is up to 700 000, with finer mesh near
the contact line and finer mesh also in the more delicate cases where the Bond number Bo approaches the
instability threshold. In order to measure the contact angle θ as function of the azimuth w, we export from
Surface Evolver the list of vertices such that j~zj , 0:03 (1� cos u0), that is 3 per cent of the height of the
drop at zero Bond number. This yields between 1300 and 20 000 vertices. We divide the range of
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azimuth into a hundred equal sectors. Each sector contains between four and six hundred vertices. In
each sector we fit with gnuplot a surface containing the contact line in the form, in cylindrical coordinates,

r(z) ¼ r0 � z cot uþ az2 or z(r) ¼ �(r� r0) tan uþ b(r� r0)
2:

The fit is performed, independently in each sector, in terms of cot u and a or tanθ and b.
7. Uses of identities
7.1. In first place: an illustrative example
The identity by force balance in normal direction can be used in the first place in the Young–Laplace
equation. It helps to replace some unknown values in the equation from the beginning. This has been
used in [14] to develop a perturbation solution and in [19] to reduce the numerical procedure to a
simple shooting method, for sessile drops on horizontal surface with fixed contact-angle. Here we
show that the identity can be used to replace the unknown quantities in the Young–Laplace equation
for drops with fixed contact radius (pinned drops) on tilted surfaces as well.

First one recognizes that the Young–Laplace equation can be written in the form

�2gH0 þ rg(h� z) cosa ¼ �2gH (7:1)
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in which H0 and h are unknown in the first place. Now by the identity (2.22) one has for the combination
as follows:

�2gH0 þ rgh cosa ¼ 2g
A0

r0
þ rVg

pr20
cosa (7:2)

bringing the Young–Laplace to the form

2g
A0

r0
þ rVg

pr20
cosa� rgz cosa ¼ �2gH: (7:3)

Now in the r.h.s. only A0 is unknown. To develop a perturbative analytical solution, such as in [3], the
above form has the advantage that it is involved by less to be calculated values. At linear order of B
number, the above form finds its full advantage, because at the beginning even A0 is known by the
linear ansatz (4.7). As mentioned earlier, the numerical solution in reduced form helps lowering the
parameters space dimension [19].
7.2. Estimation of error by identities
As mentioned earlier, the exact mathematical relation may be used to make an estimation error for an
analytical or numerical approach. As an example, we use identity (2.25) by force balance normal to
the substrate to estimate the error of � ~H0 by the linear approximation of [8], that is expected to be of
second order in B. First let us rearrange the identity in the form that the apex curvature would be
calculated by other values, namely

[� ~H0]Identity ¼ � 3~h sin u0 Bo cosa
p(1� cos u0)

2(2þ cos u0)
þ A0

sin u0
þ Bo cosa

p sin u0
: (7:4)

The above gives the value of � ~H0 required to hold the force-balance condition. It was seen earlier in §4.2
that, when only the first order is kept the above equality holds. Now

~h ¼ 1� cos u0 þ B
6

1� cos u0 þ 2 ln
1þ cos u0

2

� �
cosaþO(B2): (7:5)

When expressed based on the number Bo via relation (3.12) (also (8) of [8]), the estimation of error is
given by:

[� ~H0]identity � [� ~H0]linear sol
~R
�1
0

¼ �Bo2

3p2

sin2 u0

(1� cos u0)
4(2þ cos u0)

2

� 1� cos u0 þ 2 ln
1þ cos u0

2

� �
cos2 a

(7:6)

in which we have used ~R0 ¼ 1. The remarkable observation by [8] is that, for relatively large values of the
Bond number Bo the linear approximation solution is quite close to the numerical solution. In figure 10,
we see that for Bond numbers up to Bo = 2.0 the error is less than 5%.
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8. Conclusion

The main concern of the present work is to highlight exact mathematical identities for droplets, even in
cases where an exact Young–Laplace profile solution is not available. As a special case, droplets with
circular contact boundary based on flat tilted surfaces are considered. Two of the identities are
derived as the requirements of the force balance, and one of the torque balance. The identities involve
some relevant values of droplets. On the side of output values, some are available once an analytical
or numerical solution would be given, for instance the curvature at apex or the vertical height. Some
of these output values appearing in the identities are somehow indirectly available, such as certain
azimuthal-angle averages, or the location of the centre-of-mass of the droplet. The identities are put
under test both by the available solutions of a linear response approximation as well as the ones
obtained from exact numerical solutions. We stress that the problem analysed here should not only be
seen as an abstract theoretical construction. It is a real problem having an experimental counterpart,
e.g. putting the droplet on a disc-shaped asperity on the substrate.
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