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GiZ'iS

ABSTRACT

The interaction of the northward component of planetary" rotation and the east-

west Reynolds stress affects the isotropy of the integral scale turbulence in the upper

ocean by redistributing turbulent kinetic energy (TKE) among the components. This

"rotation stress" mechanism is incorporated into a vertically integrated model of the

ocean mixed layer. Simulations of Ocean Weather Stations P (50°N, 145"'W) and N

{30''X. MO^W) are used to compare this model with the Garwood (1977) model and

with observations. The significant effect is the augmentation (,for easterly winds) or

reduction (for westerly winds) of the ratio of vertical to horizontal TKE. The rate of

entrainment is affected by the change in the vertical convergence of TKE at the

interface between the mixed layer and the pycnocline. Rotation stress significantly

alters the mixing on diurnal to synoptic time scales during late winter and early spring.

With rotation stress, retreat events occur more frequently, and the mixed layer depth

change during retreat is 10-30°o greater than without rotation stress. Typically, the

ratio of vertical to total TKE is three times larger when rotation stress is included and

the dissipation enhancement of Garwood (1977) is neglected. The resulting TKE

distribution is more isotropic and in better agreement with laboratory results for

neutrally stratified shear flows. This study demonstrates the need for measurements of

the TKE budget in the upper ocean to confirm these findings and to further test the

hypotheses of TKE models in oceanic applications.
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I. INTRODUCTION

This dissertation is a study of one process by which planetary- rotation affects the

turbulent kinetic energy (TKE) budget in the weil-mdxed layer of the upper ocean. The

process is the coupling of the east-west and vertical TKE components by the

interaction of the northward component of planetan,' rotation and the east-west

Reynolds stress. This results in a redistribution of TKE between the horizontal and the

venicai TKE components.

Turbulent kinetic energy is primarily generated near the sea surface by the

turbulent fluxes of momentum and buoyancy. The entrainment of nonturbulent fluid

into the mixed layer occurs at the base of the mixed layer. Thus, the rate of mixed

layer deepening depends on the vertical convergence of TKE at the interface between

the fuily turbulent ocean planetary boundary layer (OPBL) and the underlying

pycnociine (Garwood. 1977). The average rate of vertical turbulent transport through

the OPBL to the interface (entrainment zone) is proportional to the root mean square

vertical turbulent velocity averaged over the mixed layer. Both the magnitude of the

vertical TKE averaged over the mixed layer and the magnitude of the total TKE are

important to the dynamics of the upper ocean mixed layer.

Through the rotation stress, that is the interaction of the northward component

of planetary rotation and the east-west Reynolds stress, the mixed layer dynamics is

predicted to depend on latitude and wind direction. The transfer of energy increases

the east-west component of TKE and decreases the venical TKE for westerly winds

(eastward suriace Reynolds stress). The decrease in the vertical TKE reduces the

convergence of TKE to the entrainment zone and reduces the rate of mixed layer

deepening. Conversely, the rate of deepening is augmented for easterly winds

(westward surface Reynolds stress).

A. STATEMENT OF THE PROBLEM AND PLAN OF ATTACK

This study will explore the diurnal, synoptic and annual variations in mixed layer

dynamics which result from rotation stress for mid latitude mixed layers in both

easterly and westerly wind regimes. A vertically integrated, second-order closure model

of the OPBL will be used to calculate the time-dependent mixed layer depth and

temperature and the distribution of energy between the horizontal and vertical TKE

components.
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The time scales for rotation stress are the earth's rotation time scale and the time

scale for variations in the wind direction. The diurnal to synoptic time frame

encompasses these time scales. On diurnal time scales, the mixed layer frequently

retreats in response to the solar insolation then deepens at night. On synoptic time

scales, mcreases or decreases in surface wind stress and solar insolation caused by the

passage of atmospheric low pressure systems can cause the mixed layer to deepen or

retreat. Following the passage of the disturbance, the mixed layer will readjust to the

local atmospheric conditions and may return to approximately the same depth which

existed prior to the event. For these time scales, the rotation stress may significantly

alter the frequency and vertical scale of these shallowing and deepening events

depending on the variations in wind direction throughout the event. This is particularly

likely for cases when the wind shear production and the surface buoyant damping of

TKE are nearly equal and the mixed layer is deep O(lOOm).

Previous studies of the mid latitude OPBL have demonstrated that the annual

cycle of mixed layer shallowing and deepening is poorly simulated unless the

dissipation is increased during times of increased buoyant production of TKE (see

Zilitinkevich, 1979 and Garwood, 1979 for reviews). Consequently, the dissipation in

mixed layer models has been augmented in various ways to prevent excessive

v/intertime mixed layer deepening. The need for this enhancement of the dissipation

indicates that physical processes that are important for mixed layer dynamics are not

being included in the models or that the processes are being modeled incompletely.

Although rotation stress has been shown to be important for the equilibrium mixed

layer depth in the tropics (Garwood et al., 1985b), it has not previously been included

in a m.odel of the time-dependent mixed layer. For westerly wind regimes, it is possible

that the reduction in the entrainment rate due to rotation stress may reduce or

eliminate the need for enhanced dissipation. Conversely, it may not be possible to

achieve a neutral equilibrium depth for the OPBL based on local surface forcing for

regions of predominately easterly winds. In the latter case, a net downward heat flux

or a three-dimensional circulation may be required to achieve a closed annual cycle for

the mixed layer depth in easterly wind regimes.

The next section of this dissertation gives the background necessary for this

study. The governing equations are given, and the terms are defined and discussed.

Then a physical mechanism is proposed to explain the rotation stress. The turbulence

closure problem and the resulting need for parameterizations are addressed. The

12



parameterizations for rotation stress and dissipation are discussed briefly. The

parameterization of the pressure-rate of strain term is discussed in some detail because

it contains terms which, in theor\', could counter the effects of the rotation stress

terms. In the fmal section, the hypotheses and tests of these hypotheses are put

forward.

Chapter II contains the literature review in three sections. The first section deals

with the development of vertically integrated (bulk) mixed layer models. The second

section reviews previous work concerning the effects of rotation on turbulent boundaiy

layers. The efTects of streamline curvature are also reviewed since ihey are

mathematically identical to those for rotation. Finally, the problems involved in

parameterizing the pressure-rate of strain terms are reviewed since this

parameterization affects the results of this work.

In Chapter III. the vertically-integrated equations for the TKE components are

developed and discussed. The nondimensionai equations are derived for the models

that will be used in this study. The TKE budget is examined to highlight che

differences between the processes that are explored in this dissertation. The models are

compared using the nondimensionai framework introduced by Garwood (1977) and

used for model intercomparison in Garwood (1979).

Chapter IV contains a description of the data sets extracted from Ocean Weather

Station (OWS) data archives, which will be used for the simulations in this study. The

results of the annual simulations are discussed for synoptic, seasonal and annual time

scales. The efTects of adjusting the tuning constants are also explored. Chapter V

contains a summary' of the conclusions and recommendations resulting from this study.

B. BACKGROUND
1. Governing equations and definitions of terms

The upper ocean mixed layer is approximately horizontally homogeneous if

the smallest term involving vertical derivatives is sufficiently larger than the largest

term involving horizontal derivatives. To formally determine if this criterion is met. all

the terms in the TKE budget must be approximated systematically and the order of

approximation at which different terms are eliminated must be analyzed. Pedlosky

(1979) applies this technique in detail to derive the shallow water equations. However,

Businger (1982) points out that the assumption of horizontal homogeneity is usually

valid if h/L< < 1, where h is a length scale for the vertical and L is a horizontal length

scale. Since the TKE in the upper ocean responds to the local atmospheric forcing,

13



one relevant horizontal length scale in the niid latitudes would be that of extratropical

cyclones. This length scale is 1^ = Vs'^-i"^ 1000 km, where g' =
g(Po-p),pQ is the

reduced gravity. This length scale is the barociinic Rossby radius for the atmospheric

synoptic scale with a vertical scale height Z'^lOkm (Pedlosky, 1979). The mean

dynairical variables in the ocean have a synoptic spatial scale of L^ = Vg'Z^'f^ 30km

where Z is the depth scale of the permanent pycnocline O{500m). For L equal to L^

or L, h.'L< <1 and horizontal homogeneity is a valid assumption. Since L,>L,

horizontal homogeneity is probably a better assumption for the TKE budget than for

the mean flow.

A set of three equations describes the TKE budget in the OPBL. The

equations are derived using Reynolds decomposition {Tennekes and Lumley, 1972).

The origin of the coordinate system is at the sea surface, x is eastward, y is northward

and z is upward. For the components of TKE, which are the normal Reynolds

stresses, the equations are:

d u" 5U wu" p^u c

^t 2 ^z ^z 2 p^x " >'

3 '

T. 1 G. 1 P. 1 n. 1 R. 3 R. 1 D. 1

ed v^ ^V d wv^ p5v

<3t 2 dz dz 2 pdy 3

T. 2 G. 2 P. 2 n.2 R. 4 D. 2

5 vr — d WW" p^w 5wp £
= -wb ' ^ + 2n uw - — . (1.3)

. 5t 2 ^z 2 p^z pdz y 3

T. 3 H P. 3 n. 3 P. 4 R. 2 D. 3

Here, the lower case letters represent fluctuations of the variables about the means,

which are shown as upper case letters. The overbars represent ensemble averages.

Turbulence is isotropic if the statistically averaged properties of the flow are

invariant under arbitrary rotation and reflection of the coordinate system (Hinze.

1975). A consequence of isotropy is that the TKE would be distributed equally among

the components (u", V^ and w-) in (1.1), (1.2) and (1.3). The OPBL is inherently

anisotropic, as are ail turbulent shear flows, since the mean shear imposes a preferred

direction. The generation, transport and redistribution of turbulence in such mixing

layers is a direct consequence of this anisotropy. The TKE distribution among ir, v
and w^ is anisotropic since the the shear production (G.l and G.2) generates TKE only

14



in the u- and v- components (l.l and 1.2), and the buoyancy production and damping

(K) generates and damps TKE only in the vertical w^ component (1.3). At the scales

of the production terms, the TKE components associated with the shear production

can be a factor of two larger than the other components (Townsend, 1976). The

processes represented by the terms in (1.1 - 1.3) can be categorized with respect to the

anisotropy of the TKE distribution. A source of TKE for the OPBL is the shear

production due to the shear of the mean current and the surface wind stress, terms G.l

- G.l. Also included in these terms is a sink of TKE, the entramment stress which is

due to the entrainment of nonturbulent fluid at the base of the mixed layer. The

damping due to the entrainment shear reduces only the horizontal TKE. The

buoyancy tlux, H. represents both the surface buoyancy flux, which can be a source or

sink of vertical TKE and the entrainment buoyancy flux, which is a sink of vertical

TKE. This production and damping by buoyancy flux increases the anisotropy

because it alters only the vertical component of TKE (1.3).

The convergence of TKE (P.l - P. 3) at the interface between the turbulent

OPBL and the dynamically stable pycnocline is a major determinant of the entrainment

rate (Garwood. 1977). The entrainment rate is the rate at which nonturbulent water is

entrained into the OPBL, and hence the rate at which the mixed layer deepens. The

convergence of TKE depends on the vertical turbulent velocity, which scales with the

square root of the vertical TKE. Thus, the anisotropy of the TKE distribution and the

magnitude of the TKE are both important to mixed layer dynamics. Processes that

affect the isotropy of the TKE distribution by transferring TKE between the horizontal

and vertical components can significantly impact mixed layer dynamics even though

they do not directly alter the total TKE. The terms that represent such processes are

n.l - n.3, and R.l and R.2.

The interaction of planetary rotation and the Reynolds stresses is represented

by (R.l - R.4). These rotation stresses depend on latitude and wind direction. The

northward {Q. ) and vertical (f'2) components of planetary rotation are:

a^ = ncose,

f = 2nsine,

where 9 is the latitude. The surface Reynolds stresses (uw(0) and \w(0)) are the

vertical Qux of momentum due to the wind stress,

f = - p(TIwrO) ^^ + w'(O) ^ ) . (1.4)
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The rotation stress is the work done on the turbulent uow by the planetary' rotation.

For westerly surface winds (eastward or positive t^). the rotation stress transfers TKE

from the vertical to the horizontal components. This reduces the vertical TKE and

reduces the vertical transport of TKE which decreases the rate at which the mixed layer

deepens. If the primary turbulence generation mechanism is wind shear production

(forced convection), the anisotropy of the turbulence would be increased, since both

the primary' production (G.l and G.2) and the rotation stress (R. 1 and R.2) would be

increasing the energy in the horizontal component. For forced convection regimes with

easterly winds, the entrainment rate is enhanced and the turbulence becomes more

isotropic through the rotation stress interaction.

The pressure-rate of strain (FI.l - n.3) is the cross-correlation of the dynamic

pressure fluctuations and the turbulent velocities. The dynamic pressure fluctuations

result from local and remote variations in the mean or turbulent velocity field. .Any

convergence or divergence of velocity can set up an adverse gradient of fluctuating

pressure. The pressure-rate of strain is a reaction of the turbulent flow to variations in

the turbulence and to variations in the mean flow. The pressure-rate of strain due to

the turbulence-turbulence interaction is comprised of the turbulent velocity gradient

and the dynamic pressure fluctuations that result from variations in the turbulent

velocity. The primary effect of this pressure-rate of strain interaction is to reduce the

anisotropy of the turbulence by causing a transfer of TKE from the component in

which most of the production is taking place to the other TKE components

(Townsend. 1976). For forced convection regimes in which shear production (G.l and

G.2) is the primary production mechanism for the OPBL, this implies that the effect of

the turbulence-turbulence pressure-rate of strain is to reduce the energy in the

horizontal components and increase the energy in the vertical component. The other

part of the pressure-rate of strain is the turbulence-mean flow interaction, which is

comprised of the turbulent velocity gradient and the dynamic pressure fluctuations that

result from variations in the mean velocity. The nature and effects of the turbulence-

mean flow part of the pressure-rate of strain are dependent on the nature of the

particular flow regime. However, there is evidence that it may be negligible for

geophysical turbulent boundary layers (see Section 3).

The rotation stress (R.I - R.4) and the pressure-rate of strain (IT. I - n.3) act

to redistribute TKE among the components without directly influencing the total TKE.

This can be seen by summing (l.l), (1.2) and (1.3) to obtain an equation for twice the

16



total TKE. e"=u'^^v-^u-^. In the resulting equation, the terms R.I - R.4 and n.l -

n.3 sum to zero so the total TKE is not affecied directly. Because many ocean mixed

layer models use only the total TKE equation (see Zilitinkevich ei ai, 1979 and

Garwood, 1979 for reviews), the rotation stress and pressure-rate of strain terms are

not included in those models. In other cases (e.g. Wyngaard. 19SI). 212 uw is

neglected based on scaling the Reynolds equations rather than the TKE equations. In

the Reynolds equations, the equivalent term is 2fi. .w. This scales as

2n,.w - 1-
,

where the ratio oi" w to u* is derived from the continuity equation and u.-:< is a

characteristic horizontal turbulent velocity scale based on the surface Reynolds stress

(1.4) ^
u*- = T(0)/p^ C. 01 m s"-^.

With the boundary- layer approximation, h/L^< < 1, this term is much smaller than the

other Coriolis term fu, since w< < u>:. from the continuity equation. Therefore it is

negligible in the turbulent momentum equation. However, uw and vw are normally

larger than uv since they are the Reynolds stresses associated with the surface wind

stress (1.4). Thus. R.l and R.2 are at least as large as R.3 and R.4 and these terms

should be retained during the Reynolds averaging process. The importance of the

rotation stress terms for the TKE budget can be determined by comparing the rotation

stress to the pressure-rate of strain since these are the terms that causes a transfer

energy among the TKE components (1.1-1.3). The ratio of the pressure-rate of strain

to the rotation stress is

wop

——=. ^ -> = Ro.. (1.5)
2Q uw fu*- ^

>

So the rotation stress scales with a boundary layer Rossby number (Ro^^) in the TKE

equations. For u* = 0.01 m s"^ which corresponds to a surface stress of 0.1 N m (or

wind speed of 8 m s'^ at 10 m), and h= 100 m. R0}^= 1- Thus, the redistribution of

TKE by rotation stress can not be neglected based on scaling arguments. The relative

magnitude of the rotation stress increases with decreasing Rossby number. Therefore,

rotation stress becomes relatively more important for mixed layer dynamics for deep

mixed layers and low uind speeds.

The viscous dissipation (£ = D. 1 + D.2 + D.3) is
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where i= 1,2,3 and j= 1,2,3, corresponding to the x, y, z axis respectively. The

dissipation is assumed to be isotropic, so that energy is removed equally from all three

TKE components. Approximately 80 to 90% or more of the TKE produced by G.l,

G.2 and H is dissipated locally by D.l - D.3 (Tennekes and Lumley, 1972). The

unsteady terms, T.l - T.3, may augment or reduce the isotropy depending on the initial

state of the turbulence and on the signs of the terms. However, these terms are usually

negligible in geophysical planetarv' boundary' layers except for time scales shorter than

100 seconds {deSzoeke and Rhines, 1976 and Garwood and Yun, 1979 ).

2. A Physical Mechanism

Turbulence seems to exist as a collection of interspersed and interlinked

vortices (eddies) of various sizes and shapes. Here, the term eddy means a spatially

limited distribution of vorticity in a fairly simple pattern, such as a cylinder or roll ceil,

or a sphere (Townsend, 1976). The sizes range from the integral scale, which is the

largest scale of the flow, to the Kolmogorov scale, which is the scale of the dissipation

of TKE by molecular viscosity. The rotation stress will be most effective at the largest

scales of the turbulent flow since the ratio of the pressure-rate of strain to the rotation

stress is proportional to 1/h (1.5). Thus the effect of rotation stress will be examined

for a roll vortex with the rotation axis oriented north-south (along the y axis of-the

reference frame) and with a scale normal to the rotation axis that is comparable to the

mixed layer depth, which is the integral scale for the OPBL (Figure 1.1).

Rotation stress is the work done on these eddies by the Coriolis forces. In the

Reynolds stress equations, the terms which represent the northward component of the

Coriolis force are:

dw
T-- = -2n u + . . . .

These terms represent inertial motion in the x-z plane that is completely analogous to

the more familiar inertial motion in the x-y plane. For westerly winds {duidz>0), this

inertial motion induces a positive, or clockwise (looking in the positive y direction or

north), circulation or vorticity. Changes in vorticity are accompanied by changes in
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size of the vorlex (Tennekes and Lumiey. 1972). The vertical scale of the roll vortex is

reduced for westerly winds as the vorticity is increased. This reduces the vertical scale

of mixing (Figure 1.1). For easterly winds (5u/5z<0), the inertial motion induces a

negative circulation or vorticity. Thus, the vorticity is reduced and the vertical scale of

the roll vortex, and hence the mixed layer depth, is increased. The vorticity, the

distribution of TKE. the rate of mixed layer deepening and the equilibrium depth of the

mixed layer may all be altered by rotation stress.

Do eddies, roll vortices or other coherent structures actually exist in the

OPBL? There is evidence that regular, large-scale, coherent structures exist for many

turbulent 'lows. Intermittent turbulent activity observed in the atmospheric boundary-

layer is suggestive of large-scale, vertically-coherent structures (Shaw and Businger,

1985). Various large-scale structures have been observed in laboratory flows {Cantwell,

19S1). These include the Taylcr-Goertler vortex which is a well-documented secondary'

circulation that is found in rotating laminar and turbulent flows (Johnston. 1972; Hunt

and Joubert. 19''9). Taylor-Goertler vortices are cross-stream roll vortices that result

from the destabilizing effects of rotation on the mean flow. Langmuir circulations have

been obser\'ed in the upper ocean (see review by Leibovich, 1983) and longitudinal roll

vortices have been observed in the atmosphere (LeMone, 1973). It is possible that

both types oi Langmuir circulations are planetary' boundary layer scale Taylor-Goertler

vortices.

Although the existence of these large-scale, evanescent structures is becoming

undeniable, it has not been demonstrated that explicitly simulating these structures

improves model performance (Saffman, 1980). The models developed and used in this

research belong to a class known as bulk or vertically-integrated models. Thus, the

stmcture cf the turbulence is not explicitly accounted for in these models. Models of

this type take advantage of the geometric similarity oi' the upper ocean structure to

simplify the mean momentum and the TKE equations. The similarity solution used in

this study defines the upper ocean as a fully turbulent, and therefore well-mixed, layer

of depth h. Thus the OPBL is homogeneous in mean velocity and density. This implies

that tlie Reynolds stresses are constant or linear in z (see Chapter III). The layer is

bounded above by a wind-wave zone o^ depth 6^ < < h and at the bottom by a ver;

sharp density gradient (the entrainment zone) of depth 6 < < h, (Figure 1.2). The

similarity structure is essentially that of Niiler (1975) and Garwood (1977).
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3. The Closure Problem and Parameterizations

The equations, (1.1) - (1.3), for the TKE components in the OPBL are the

equations for the second-order autocorrelations of the turbulent velocity components.

These three equations contain 14 second- and third-order correlations that are

unknown. These include the shearing Reynolds stresses (iTu.), the pressure-velocity

correlations ("piT), the vertical transports (\vu.- and wp), the buoyancy flux (bvv) and

the viscous dissipation terms (1.6). The inclusion of equations for these unknown

correlations incorporates more unknown correlations of equal and higher order. This

problem is inherent in the process of Reynolds decomposition and constitutes the

turbulence closure problem (Tennekes and Lumley. 1972). The solution to this

problem is to choose a particular set of equations and "parameterize" the unknown

correlations in terms of known correlations of the same or lower order, mean variables

and boundary conditions. These parameterizations are based on laboratory and field

observations, dimensional analysis and physical intuition. The order of the correlations

that are calculated explicitly, the number of equations that are solved and the

parameterizations of the terms involving unknown correlations varies among models of

planetary boundary- layers (Wyngaard, 1982).

Some of the models for the OPBL will be reviewed in Chapter II. The models

used in this research are bulk (vertically-integrated), second-order closure models as in

Garwood (1977). The details of the panicular closure method and parameterization

schemes used in this dissertation will be discussed in Chapter III. However, three

processes and their parameterizations that will be particularly significant for this

research need to be introduced before the working hypotheses and tests of the

hypotheses are discussed. These are the dissipation, pressure-rate of strain and

rotation stress.

This research is concerned with the rotation stress terms-(R.l and R.2) that

alter the ratio of vertical to horizontal TKE in (1.1) and (1.3). These terms alTect the

distribution of TKE between the east-west and vertical TKE components. The average

vertical turbulent velocity is changed which affects the rate of mixed layer deepening by

altering the convergence of TKE at the entrainment zone. The parameterization of

these terms requires no assumptions beyond those of the similarity solution. Garwood

er at. (19S5a) derived a bulk model that included rotation stress for a non-entraining

mixed layer. They showed that the equilibrium depth that is achieved for a surface

wind stress, t (1.4), and a positive downward surface buoyancy flux is
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where the Obukhov length scale,

is the equilibrium depth for a balance between the surface stress and surface buoyancy

Cux. The ratio (O) of the rotation stress to the surface buoyancy flux is

a T

^ = — 1 . (1. 9)
pbw(

)

The equilibrium depth, Lo, reflects the vertical elongation or contraction of mixed

layer vortices in the x-z plane by planetary rotation shown in Figure 1.1. Rotation

stress effectively m^odulates the damping due to the surface buoyancy flux such that the

equilibrium depth, Lq, will be greater for easterly ^^-inds (westward surface stress) or

less for -vesterly winds (eastward surface stress) than L , the Obukhov depth (Figure

1.3). We have found no physical solution for L^ is possible for <I> <-l/2 because total

buoyant damping can not exceed dissipation. As the minimum value of <I> = -l/2 is

approached, more of the TKE is damped by surface buoyancy flux, and the equilibrium

depth approaches the limit L^ = 7L^. For positive <I>, westerly winds, L^ < L^ due to

the increased transfer of vertical to horizontal TKE by rotation stress. The increased

horizontal TKE is dissipated, and the mixing is reduced. Figure 1.3 shows that

Lq(O = 0.58) is half the value of Lq^{^ = 0). Thus, for westerly winds rotation stress

causes an enhanced dissipation of TKE and results in a reduced equilibrium depth.

Planetary rotation has previously been incorporated into a bulk model of

turbulence in the OPBL through the dissipation time scale (Garwood, 1977). If the

dissipation rate is governed by the rate at which energy is supplied by the large scale

turbulence, then dimensional arguments yield £~e'^''/h (Tennekes and Lumley, 1972).

This assumes that the time scale for the energy transfer is the "eddy turnover scale"

(h;v'e), where the mixed layer depth is an appropriate length scale for the large-scale

How. This parameterization has been shown to be inadequate for slab models of the

OPBL, since it allows a too deep winter mixed layer in annual simulations (see reviews

by Garwood, 1979, and Zilitinkevich er ai, 1979). Garwood (1977) argued that

planetar}' rotation provides an additional time scale (1/f) for dissipation. This becomes

important for deep mixed layers for which l;f<h/VT The dissipation

parameterization becomes ^^^(Vi/'h-r I). This enhancement to the dissipation
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parameterization is a rather ad hoc method of incorporating planetar\' rotation into a

mixed layer model. It is not clear what physical processes are responsible for the

additional dissipation. For westerly winds, rotation stress reduces the vertical

convergence of TKE into the entrainment zone. This reduces the rate of mixed layer

deepening. Thus, rotation stress may reduce or eliminate the need for the planetary

rotation "enhancement" to the dissipation for westerly wmd regimes. Furthermore,

rotation stress represents a specific physical mechanism rather than a time scale based

on dimensional arguments. One aspect of this research \v\\\ be to compare the effects

of rotation stress in westerly \^ind regimes to the rotational dissipation enhancement of

Garwood (1977).

The pressure-rate of strain (11. 1 - n.3) is the only process other than rotation

stress that redistributes energy among the TKE components. These are the only terms

that may directly counter or reduce the effects of rotation stress. The expression for

the tluctuatmg pressure, which is the basis for parameterizations of the pressure-rate of

stram. contains terms that are similar to the rotation stress terms (R. 1 - R.4) in (1.1 -

1.3), but viith opposite sign. These terms in the pressure-rate of strain

parameterization may reduce the effects of the explicit rotation stress terms.

The parameterization of the pressure-rate of strain requires an understanding

of both the fluctuating pressure and the gradient of the fiuctuatmg velocity. As

mentioned above, the fluctuating pressure can react to local and remote variations of

the turbulent and mean flows. However, the exact effects of the various processes that

contribute to the pressure fluctuations are not well documented by experiment nor are

they well understood theoretically. Thus, parameterizing the pressure-rate of strain

remains an active research area, although this problem has been apparent for more

than 40 years. It is beyond the scope of this dissertation to address the problem o'C

parameterizmg the pressure-rate of strain in general. However, a realistic

parameterization of the term is needed to complete the model. The specific

parameterization of the pressure-rate of strain that is used for this research will be

discussed in Chapter III.

The possibility that the pressure-rate of strain may tend to cancel the rotation

stress will be addressed here. An expression for the fluctuating pressure can be

obtained by taking the divergence of the fluctuating velocity equations and making use

of the incompressibility assumption. This yields a Poisson equation for the pressure

fluctuations (Chou, 1945):
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The solution, given by Green's theorem, is the integral of the right hand side over the

entire volume occupied by the flow and all surfaces surrounding the volume (Morse

and Feshbach, 1953). Thus, the local pressure fluctuations are determined by events

taking place throughout the entire flow and by distant boundar>' conditions. WithT*^

as the current location and integrating over all?*-,, the pressure fluctuations at1\ are

o(r,) = ^"^ (—i—

J

\—i) J 2J
4rtJ X^x.^Xj dx.dxj \r^-r^\

) _5u,. \ dV( r-^

)

(1.10)
.3

'- 'OX. / ir^-r^l

+ surface integrals .

Since the integrations in (l.IO) are with respect to r-,, the pressure-rate of

strain terms can be formed by multiplying (1.10) by ou(r^)/^x., which is brought into

the integrals, and then ensemble-averaging the resulting terms. The surface integrals

are usually neglected. The argument is that the influence of the boundaries is

negligible because the distance to the boundaries is large compared to the correlation

length scale for the pressure-rate of strain terms. This may be an inaccurate

assumption for boundan.' layer flows since the correlation length for the large-scale

eddies is always the same order of magnitude as their distance from the boundary. The

problem can also be recast using the method of images to avoid the inclusion of the

surface integrals (Launder et ai, 1975). However, it has not been clearly demonstrated

that the contribution from the surface integrals would be significant. In this study the

surface integrals will be neglected, the resulting expression is

pc^u. ^ 1 Uh^dxiX au'iV dV(r^ )

p^x, 4;tJ Xlax.axj/ ex. f\r\-?^

jciu. _ 1 iJjdu.du.^ \ du' .\ dV( r

i^x. 4;tJ M^x.^Xj/ dx. j IrJ-r".

47rJ(^ dx.dx.^jdx. [<^^sJox.
"'^

> \ dx.Jdx.^ jl r^-^.

(1 11)

where the primes represent the expressions evaluated at r^ and the unprimed variables

are evaluated at 7^. The first integral on the right hand side (tt") represents the

nonlinear turbulence-turbulence interactions. The remaining volume integral (tt^)

represents turbulence-mean flow interactions. Unfortunately, the integrals can not be

solved in general. However, there exists a first-order approximation that is universally
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accepted for the first integral. This nonlinear part of the pressure-rate of strain tends

to reduce the anisotropy of the turbulence (Lumley, 1978). It is usually parameterized

with some form of the retum-to-isotropy model of Rotta (1951),

7t" cc (e - w^)/T ,

where T is a characteristic time scale. Thus, the nonlinear portion of the pressure-rate

of strain term is assumed to be proportional to the degree of anisotropy o'i the

turbulence.

The K^ term represents pressure fluctuations due to buoyancy, mean shear and

rotation, respectively. This "rapid" part is so named because these pressure

fluctuations can respond on time scales that are independent of, and m principle much

faster than, the time scales of the turbulent velocity. For example, consider an initially

isotropic turbulent flow that is subjected to an intense distortion by the mean flow.

One possibility is an intense velocity shear (Lumley, 1972). For some time alter the

distortion, the turbulence is nearly isotropic so 7t" is small and the turbulence responds

to only the mean flow for some short time. The duration of this period is determined

by the intensity of the distortion, so it depends only on the mean flow. Hence, the

turbulence-mean flow terms are known as the "rapid" part of the pressure-rate q'[

strain. These terms have been neglected in most parameterizations of the pressure-rate

of strain (Chapter II).

The rotation terms in K^ may tend to cancel the effects of the explicit rotation

stress terms. For two-dimensional turbulence with the assumptions that the pressure-

rate of strain correlation length scale is small compared to variations in the Coriolis

force and compared to the length scale of the mean shear, it appears that these terms

do cancel the rotation stress terms (Gutteling, 1981). However, for three-dimensional

Hows this does not appear to be the case (3. Gallagher and E. Gutteling, University of

Hawaii, personal communication).

More compelling evidence comes from studies of the atmospheric planetary

boundary layer. Zeman and Tennekes (1975) included a parameterization of the terms

in if that involved the mean shear and the Conolis forces in a model of the

atmospheric surface (constant stress) layer. If the turbulence is only weakly

inhomogeneous on scales comparable to the integral scale, the mean tlow variables in

Ti'' can be taken outside the integral. The resulting integral of the divergence of the

two-point velocity correlations is a fourth rank tensor. However, it is commonly

assumed to be proportional to the single point velocity correlations (Launder ei ai,
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1975), which arc the Reynolds stresses. The rotation terms in the resulting pressure-

rate of strain parameterization ofZeman and Tennekes (1975) are proportional to the

explicit rotation stress terms. That is

u '1 ijk
J

1 k

Based on the results of seven different shear flow experiments (Table 1), Zeman and

Tennekes (1975) concluded that y^ was 0.26 ±0.04. Results calculated from the

atmospheric boundary' layer experiments were the two lowest values. However, this

may be the result of the difficulties in measuring an environmental flow versus a

laborator-' ^ow. rather than a systematic difference between the atmospheric boundarv'

layer and other shear flows. These results indicate that the pressure-rate of strain

rotation terms are smaller than the similar rotation stress terms that appear explicitly

in (1.1 - 1.3). For the well-mixed layer, the terms are likely to be even smaller than

they are in the surface layer where the fluctuating pressure is large due to the presence

of the boundan.'. In this research, Tt'" is parameterized with terms expressed as small

perturbations of the explicit terms (see Chapter III and GapA'ood et ai, 1985a and b).

TABLE 1

NUMERICAL VALUES OF 7^ FROM ZEMAN AND TENNEKES (1975)

where y, is the coefficient of the rotation term

in the rapid part of their pressure-rate of strain parameterization

Source y^

Champagne et al. (1970); homogeneous shear flow in a wind tunnel. 0.3057

KlebanofT(1955); wind-tunnel boundary layer on a smooth surface. 0.2928

So and Mellor (1972); surface layer in wind tunnel, smooth wall. 0.2792

Hinze (1975); turbulent pipe How. 0.2726

Comte-Beilot ( 1965): turbulent flow between parallel plates. 0.2644

Cramer il967); atmospheric surface layer. 0.2235

Wyngaard er al. (1974); atmospheric surface layer, modified data. 0.2227

Moeng and Wyngaard (1986) used a large-eddy simulation model to simulate

the pressure covariahce that results from the integrals in (l.ll) for a convective

atmospheric surface layer. They showed that the pressure covariances due to rotation

were significantly smaller than the 7t" terms and the pressure covariances due to the

buoyancy fluxes. Thus, pressure covariances induced by rotation in Tt'' are probably
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small compared to the rotation stress terms and the other pressure covariances for the

well-mixed layer.

As indicated above, there are several unresolved issues and active areas of

research involving the pressure-rate of strain parameterization. However, it is beyond

the scope of this research to advance the parameterization of the pressure-rate of

strain. Therefore, a working hypothesis will be that the rotation terms in the pressure-

rate of strain parameterization are not as significant as the explicit rotation stress

terms. Thus, the pressure-rate of strain parameterization used for this research will

depend only weakly on fluctuations due to mean quantities. There does exist the

possibility that any effects of the rotation stress terms that occur in the numerical

results in this research may be negated by competing terms in the pressure-rate of

strain. On the other hand, if this research discovers no significant rotation effects, then

pursuing the more complex problem of rotation effects in the pressure-rate of strain

parameterization is pointless.

C. HYPOTHESES

Several working hypotheses will be tested in this dissertation to establish the

effects and the significance of rotation stress for mixed layer dynamics. Comparisons

of the effects of rotation stress and the roiationally enhanced dissipation

parameterization of Garwood (1977) on mixed layer dynamics are of interest since both

terms represent the effects of rotation on the TKE budget. However, the two terms

represent different physics and affect the TKE budget quite differently. Both terms

alter the rate of mixed layer deepening and the equilibrium mixed layer depth. The

rotation stress does so by altering the distribution of TKE between the horizontal and

vertical components, and hence altering the vertical convergence of TKE to the

antrainment zone. The dissipation enhancement reduces the total TKE available for

mixing.

The first hypothesis is that the functional form of the entrainment rate will be

significantly different for rotation stress than for rotationally enhanced dissipation.

The dependence of isotropy of the TKE budget on rotation stress should also be

diiTerent than it is for roationally enhanced dissipation. Both of these effects result

from the fact that rotation stress distributes TKE among the TKE components,

whereas dissipation reduces the TKE isotropically. These hypotheses are tested using

the nondimensional framework that was developed in Gan^'ood (1977) and used to

intercompare mixed layer models in Garv,-ood (1979). Unlike simulations.
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nondimensional comparisons are independent of any tuning of parameterization

constants. They demonstrate the functional form of the models, rather than the ability

to fit the models to a particular data set. However, while nondimensional

representations clearly reveal the functional form of models, they do not indicate

whether that functional form depicts the actual behavior of the processes being

modeled or the interactions among the processes. To accomplish the latter,

comparisons of model simulations and data sets are required. Therefore, the isotropy

of the TKE budget and the deepening rate will also be examined using model

simulations.

A second working hypothesis for this dissertation is that diurnal to synoptic scale

shallowing and deepening events are altered subtantially by rotation stress. Variations

in vvind direction may substantially change the equilibrium depth of the mixed layer,

particularly in late winter and early spring when the mixed layer is deep and the surface

wind stress and surface buoyant damping nearly balance. Both the frequency of

occurrence and the vertical scale of these mixing events are affected by rotation stress.

In Ganvood er al. {19S5a), we have shown that the equilibrium depth predicted by a

model that includes rotation stress is given by (1.7). This equilibrium depth can vary

substantially from the Obukhov depth for east-west surface wind stress (Figure 1.3).

This should be most apparent at diurnal to synoptic time scales, which are comparable

to ^^'^- Furthermore, it is argued here that the entrainment rate is altered by the

rotation stress, which affects deepening events as well as shallowing events. While the

greatest depth which could be attained during a deepening event is limited by the

equilibrium depth, the actual depth that is achieved on diurnal to synoptic scales is

frequently determined by the time scale of the atmospheric forcing. In those cases, the

rate of deepening and the initial conditions, rather than the equilibrium depth, control

the venical scale of the mi.xing event.

A last hypothesis is that the change in the vertical convergence of TKE caused

by rotation stress may reduce or eliminate the need for the ad hoc rotational

enhancement to the dissipation of Garwood (1977) which is needed to prevent

excessive mixed layer deepening for westerly wind regimes. If rotation stress can

eliminate or significantly reduce the need for rotationally enhanced dissipation, regions

of predominately easterly winds would not have a one-dimensional cyclical steady-state

for mixed layer depth without a net downward heat fiux, since rotation stress enhances

mixing for easterly winds. However, a cyclical steady-state could also be achieved with
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a three-dimensional balance of forces such as a mean horizontal advection or

divergence.

The hypotheses will be tested by means of three different models of mixed layer

dynamics. The purpose of this approach is to distinguish the effects of various

processes rather than to obtain the best comparison with the data by the simulations.

The latter would probably be better accomplished with a combined model that

incorporated all the processes. However, because the interactions between the

processes are nonlinear, separating the effects of various process in a combined model

would be difficult at best.

The details of the three models (ZSTAR, HSTAR and RSTAR) are developed in

Chapter III. The ZSTAR model is the Garwood (1977) model, which contains the

rotational dissipation enhancement that enters the equations through the

nondimensional variable Z«. The HSTAR model is the model of Garwood (1977)

excluding dissipation enhancement (Z* = 0). Thus, HSTAR contains neither the

rotational enhancement to dissipation or the rotation stress. The RSTAR model is the

HSTAR model with the addition of rotation stress, which will be represented in the

nondimensional form bv R«.
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II. LITERATURE REVIEW

A. BULK OCEAN MIXED LAYER MODELS
This brief review of mixed layer models will focus primarily on vertically-

integrated or bulk models. The purposes are to place the ZSTAR and RSTAR models

in historical perspective with respect to models of the same type and to reviev.- the

development of dissipation parameterizations. Other types of models and closure

schemes, as applied to the OPBL, will be mentioned only briefly, and models o[ the

atmospheric boundary layer will not be reviewed at all. All the models being reviewed

use the TKE equation or the component TKE equations and close the Reynolds

equations at second order or lower. Equations for the shearing stresses are not used in

these models. Although models such as the Level 3 and 4 models discussed in Mellor

and Yamada (1974) do include equations for the shearing stresses, this has not

iir.proved model performance in general (Martin, 1985).

Kraus and Rooth (1961) showed that an equilibrium could be established by a

balance of surface cooling (due to longwave, sensible and latent heat fluxes) and

warming at depth due to the absorption of solar radiation. The equilibrium depth for

this balance is the solar radiation compensation depth. Kraus and Turner (1967)

incorporated the mechanical mixing due to wind stress and the damping due to a

negative surface buoyancy flux (warming) and included a heat equation. The

equilibrium depth for this model is the Obukhov length scale (L^), which is the ratio of

the surface shear production of TKE to surface buoyancy flux (1.8). This scale depth

was first introduced into ocean modeling by Kitaigordsky (1960) using the atmospheric

surface layer as an analogue. Geisler and Kraus (1969) included an equation for the

mean momentum, in addition to the TKE and mean temperature equations, and solved

the three equation model for a slab or well-mixed layer in which the mean properties

were constant (Figure 1.2).

Miropolsky (1970) and Denman (1973) were the first to incorporate dissipation

due to molecular viscosity as a significant part of the TKE budget. The rate of

dissipation (£) is assumed to depend on the total TKE (e^ which is twice the total TKE)

at the integral scale (Lj) such that

£ - eV2 ^
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as discussed in the introduction. Niiler (1975) added the loss of TKE from the mixed

layer due to the downward radiation of internal waves. He also resolved a perceived

conflict between turbulence models and the model of Pollard et al. (1973). The later

considered entrainment due to dynamic instabilities of the mean current and used the

mean kinetic energy rather than the TKE to model the energy balance and resulting

mi.King.

Alexander and Kim (1976) and Kim (1976) showed that an enhancement to the

dissipation was required to correctly model shallow summertime mixed layers. They

hypothesized a constant background dissipation, so their dissipation parameterization

had the form

£ - e^/- + Cq ,

where Cq is a constant. Gill and Turner (1976) showed that previous mixed layer

models could not close the annual cycle of mixed layer depth due to excessive

wintertime deepening. Elsberry- ei al. (1976) used a dissipation enhancement that

increased exponentially with depth to improve simulations of the ocean's response to

hurricanes.

As discussed in the introduction, Garwood (1977) included a Rossby number

dependent enhancement term in the dissipation parameterization. He also

demonstrated the importance of explicitly modeling the convergence of TKE into the

entrainment zone. This required the calculation of w =^w. Thus, separate TKE

budgets must be calculated for the horizontal and vertical components, whereas

previous bulk mixed layer models used only the total TKE budget. Processes that

transfer energy among the TKE components become important in any model that

includes a separation of the TKE components, as does Garwood (1977). In the

introduction, the pressure-rate of strain and the rotation stress were shov^Ti to be such

processes.

Garwood et al. (1985a) derived a bulk model that included rotation stress for a

non-entraining mixed layer. We showed that the equilibrium mixed layer depth for

that model is L^ (1.7).' In Garwood et al. (1985b), we computed the longitudinal

variation of L^ and L^^ along the equator in the Pacific. The longitudinal dependence

of L^ computed using climatological values for the surface heat fluxes and for the east-

west surface stress is shown in Figure 2.1. The vertical bars represent the variation in

L^ caused by varying the surface heat flux by ± 3W m"^. The open circles are

estimates of the mixed layer depth from Lemasson and Piton (1968). The longitudinal

30



variation of L^ (Figure 2.2) agrees with the estimates of mixed layer depth

significantly better than does L^. The increased depth in the western part of the basin

is the result of the stronger easterly winds relative to those on the east side of the

basin.

The current research extends the non-entraining, equatorial study of the

climatological. equilibrium mixed layer by Garwood ei al. (1985a, b) to the case of the

time-dependent, mid latitude mixed layer. Deepening and shallowing of the mixed

layer will be studied for diurnal to seasonal time scales in contrast to the previous

Climatological studies.

Vertically-integrated or bulk models are not the only type models used to

simulate the mixed layer. A variety of models exist that use eddy viscosity techniques

to close the turbulence equations using only properties of the mean field. Since these

will not be reviewed here, the interested reader is referred to Businger (1982) for a

general review of the equations and concepts of turbulence modeling in the

atmospheric boundary layer and a discussion of eddy viscosity model theor\'. Another

set of models do not use a similarity solution to assist in closing the equations. Rather,

a set of turbulence equations is solved as functions of z using standard finite difference

or finite element numerical techniques. Whereas the vertically-integrated models

require values only at the surface and bottom of the mixed layer, these models require

a set- of depth-dependent parameterizations for the higher order moments. A set of

models of this type has been developed from the work of Mellor and Yamada (1974).

This model was first applied to the OPBL by Mellor and Durbin (1975). Other models

in this class include Wam-Varnas and Piacsek (1979), Kundu (1980) and Klein and

Coantic (1981). A general review of boundary layer modeling using eddy diffusivity

closure, second-order closure and eddy resolving models is given by Wyngaard (1982).

In the next section, studies that deal with rotating turbulent flows will be

reviewed. Some background on pressure-rate of strain parameterizations will be given

in the last section.

B. STUDIES OF THE EFFECTS OF ROTATION ON TURBULENT FLOWS

The effects of rotation have been largely neglected in geophysical boundary layer

modeling. However, the study of rotation and of streamline curvature, which produces

similar effects, has received considerable attention in the engineering literature. In this

section, the pertinent experimental and theoretical work is reviewed. This review will

show experimental evidence for the existence and influence of rotation processes.
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particularly rotation stress. The streamline curvature effects in turbulent boundarv-

layers that are equivalent to rotation will also be discussed. Finally, the similarity of

engineering models to the model proposed in this dissertation will be discussed.

Two early works modified the Richardson number and mixing length to include

the effects of rotation. Rotta (1967) derived a modified mixing length to account Cor

the effects of centrifugal and Coriolis forces on TKE production. His modification was

based on an analysis of the component TKE equations. He calculated the velocity

distributions for a turbulent flow between a fixed cylinder and an inner concentric

rotating cylinder. The calculated velocity distributions were similar to, but consistently

less than, the experimental values of Taylor (1935) and Wallendorf (1935). Bradshaw

(1969) extended an analogy, first proposed by Prantl (1930), between the effects of

gravity and the effects of centripetal or Coriolis acceleration. Using Prantl's analogy,

Bradshaw constructed Richardson numbers for rotation and curvature that are

analogous to the flux and gradient Richardson numbers for buoyancy. Values for the

wall shear stress and the displacement thickness and momentum thickness of the

boundary layer calculated from the curvature Richardson number (centripetal

acceleration) compared favorably with the results of Schubauer and Klebanoff (1951).

However, the wall shear stress, the displacement thickness and momentum thickness of

the boundar}' layer calculated with the rotation Richardson number (Coriolis

acceleration) were consistently less than the. experimental values of Halleen and

Johnston (1967). Although these results show that a simple Richardson number model

is not completely adequate, such a model does yield results for steady state cases that

are consistent with observations. Garwood et al. (1985b) demonstrated that a length

scale based on a Richardson number, which included the effects of rotation, appears to

correctly predict the longitudinal variation of the climatological mixed layer depth in

the equatorial Pacific (Figure 2.2). This augmented Richardson number is

h bw + 2n.uw
Ri, = V

L^ uw5U/5z

where L^ is the rotation length scale defined in (1.7). This Richardson number

reduces to the buoyancy Richardson number for 2n^uw->0 and to the rotation

Richardson number for bw->0. This Richardson number criterion is derived directly

from the steady-state, second-order closure model of this dissertation for the case of

zero entrainment. The rotation processes that transfers energy among the TXE

components were explicit terms in the Garwood et al. (19S5a) model. In Rotta (1967)
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and Bracshaw (1969). the rotation processes were incorporated in the parameterization

of shear production.

Johnston ei al. (1972) reported the results of a series of experiments performed

in a channel rotating about an axis perpendicular to the mean flow and parallel to the

side walls (Figure 2.3). This configuration will produce rotation stress terms analogous

to those generated in the OPBL. In the OPBL, east-west winds generate an east-west

Reynolds stress in the presence of a northward rotation vector and a vertical shear in

the east-west mean current {d\J,:dz). In the experiments of Halleen and Johnston

(1967) and Johnston ei al. (1972), the side walls generate a cross-stream 'Reynolds

stress and mean shear in the presence of a vertical rotation vector. A schematic of the

flow (Figure 2.3) shows that there will be a stable and an unstable side to the channel,

as determined by the direction of the vorticity generated by the wall shear relative to

the rotational vorticity. When the vonicities are additive, the flow is stabilized by the

rotation, and the wall stress is reduced. When the vorticities subtract, the flow is

destabilized by the rotation, which increases the wall stress. The results of these

experiments showed qualitatively three rotation-related phenomena. The first was a

change in the wall-layer streak, bursting rate. The wall-layer streak bursting is due to

the production of turbulence at the wall by dynamic pressure fluctuations in the inner,

or constant stress, layer. It is directly related to the intensity of the turbulence in the

outer, or well-mixed layer. The streak bursting rate is increased on the destabilized side

of the channel and decreased on the stabilized side. The second effect was the

suppression of the transition to turbulence on the stabilized side of the channel. The

third effect v/as the formation and growth of longitudinal roll cells (Taylor-Goertler

vortices) on the unstable side. The results quantitatively showed that the mixing length

proposed by Bradshaw (1969) provided a good fit to the data for 0:^Ri:^0.25. Miles

(1961) showed that laminar flows were dynamically stable for Ri>0.25. Qualitative

results from another set of experiments conducted with the same apparatus (Johnston,

1973) indicated that for small Rossby numbers (rotation-dominated flows) the

transition to turbulence occurred at Reynolds numbers an order of magnitude larger

than those for no rotation. Thus, a stabilizing rotation stress has been shown to

significantly suppress the transition to turbulence. However, Johnston (1973) also

found that the criterion for transition to turbulence given by Bradshaw (1969) was

inadequate. Thus, the Richardson number model of Bradshaw does not account for all

rotation-related turbulence phenomena.

33



The literature on streamline curvature is somewhat more extensive than for

rotation, probably due to the relative ease of experimental design. Because the elTects

of streamline curvature and rotation are analogous mathematically (Rotta, 1967, and

Bradshaw, 1969), some experimental and theoretical w^ork on streamline curvature will

be included in this review. For streamline curvature, centripetal acceleration replaces

the Ccriolis acceleration of the rotation case. The interaction term becomes the

centripetal acceleration m.ultiplied by the Reynolds stress.

downstream :

l^u- U
= +2uw

—

2^t R
+

ld\f' U
= -2uw

—

2dt R
+normal to wall:

(see, Rotta, 1967). The sign of the radius of curvature (R) determines the direction of

transfer of TKE. For convex curvature (R>0), the transfer is from the component

normal to the wall to the downstream component, which stabilizes the flow.

Conversely, concave curvature (R<0) destabilizes the flow by transferring TKE to the

component normal to the wall (Figure 2.4).

So and Mellor (1973) showed that values for the critical curvature Richardson

number for a curved two-dimensional boundary' layer ranged from 0.30 near the start

of the curved test section to 0.23 well inside the test section. These values are similar

to the critical buoyancy Richardson number of 0.2 measured by Businger et al. (1971)

in the aimosphere and to the theoretical value of 0.25 (Miles, 1961). Mellor (1975),

using the Mellor and Yamada (1974) level 2 model, calculated a critical flux

Richardson number of 0.21 and critical gradient Richardson number o^ 0.22 for

buoyancy stabilized flows and a critical flux Richardson number of 0.19 for the

curvature case. This is in good agreement with experimental results for the density

stratified case, but underestimates the importance of the curvature. Mellor (1975)

hypothesizes that the lack of turbulent diffusion (transport) in the level 2 model may

account for the. discrepancy. The Garwood (1977) model explicitly includes turbulent

transport through the vertical convergence of TKE in the entrainment zone.

Irwin and Smith (1975) used a modification of the second-order closure model of

Launder et al. (1975) to simulate the curvature stress effects found in the experiments

of Gillis et al. (1965), Schubauer (1951) and Meroney and Bradshaw (1975). In that

model, the curvature stress was parameterized as an extra production term (the "extra
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rate of strain" concept of Bradshaw. 1973). Hunt and Joubert (1979) used a second-

order closure model that explicitly accounted for the 'conservative reorientation" of or

the transfer of TKE between, the TKE components by the curvature stress to explain

the results of their experiments with "small" streamline curvature (large R). Here,

small streamline curvature implies that the curvature does not significantly affect the

mean flow. Gibson et al. (1981) simulated the response of a flow to large curvature.

They used a second-order closure model with the unsteady terms parameterized in

terms of transport by the mean flow, and the pressure-rate of strain parameterization

included approximations for "rapid" distortion effects (rapid distortion will be discussed

in the next section). The model was able to simulate the results of Gillis and Johnston

(19*^9) for the curved region, but not for the region of recovery to a flat boundary-

layer.

Muck er al. (1985) studied the response of a fully developed turbulent flow to a

sudden convex curvature. In a companion paper, Hoffman er al. (1985) studied the

response of a fully developed turbulent flow to a sudden concave curvature. They

concluded that the turbulent responses to convex and concave curvature were

fundamentally different despite the similarity of the dimensional analysis for the two

cases. Their argument is based on the difference in the structure of the turbulence.

For concave curvature, the centripetal acceleration destabilizes the flow and Taylor-

Goertler vortices are formed, as in the rotation experiments of Johnston et al. (1972).

For convex curvature, the centripetal acceleration stabilizes the flow and the turbulence

is damped, but its structure is virtually unaffected. This is analogous to the problem of

stable versus unstable buoyancy regimes. Businger er al. (1971) empirically determined

a stability correction to the mixing length in the atmospheric surface layer. They found

that the form of the stability correction as a function of nondimensional height was

different for stable versus unstable surface boundary layers. The significant variations

in the structure of the turbulence between stable and unstable regimes and the effects

of these structural changes deserves future study. For this research, the flow structure

v'viil be assumed to be similar in both the unstable and stable regimes, whether due to

rotation or buoyancy. This assumes that the flow is dominated by the shear, so that

the structural differences in the turbulence associated with the unstable and stable

regimes are not significant.

The rotation stress, or the equivalent streamline curvature effect, does not affect

every rotating, or cur/ed, turbulent flow. The rotation stress can be written in a

generalized form as
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£... 2n.u.u,. ,

where
Ci-i^

= if any two indices are repeated (Garwood et al.. 1987). Fernando (1987)

mentioned several experiments for which the rotation stress is zero because the rotation

axis is not orthogonal to the Reynolds stress (i.e., two indices repeated in the above

expression). There must be a component of the Reynolds stress in the plane

perpendicular to the axis of rotation for a nonzero rotation stress. Conversely, rotation

stress is not the only mechanism by which rotation affects turbulent Hows. Other

mechanisms such as inertial waves and centripetal acceleration can also play significant

roles.

Ibbetson and Tritton (1975) found that the decay rate of grid-stirred turbulence

in a rotating tank increased with increasing rotation rate. Also, the ratio of the parallel

to the perpendicular turbulence length scales relative to the rotation axis increased with

increasing rotation rate. However, the ratio of turbulent intensities in the two'

directions remained essentially constant. In this experiment, the turbulence was

generated by oscillating a grid parallel to the rotation axis. No rotation stress was

produced since there was no stress perpendicular to the rotation axis. In this case, the

increased decay rate is probably due to the generation of inertial waves and the change

in length scales is probably the result of centripetal accelerations.

Hopfinger er al. (1982) used a grid oscillating parallel to the axis of rotation in a

rotating tank to study the transition from three-dimensional turbulence near the grid to

two-dimensional turbulence away from the grid. Again, the rotation stress is zero.

Away from the grid, the scale of the turbulence increases and the turbulent intensity

decreases, so that the rotation effect becomes increasingly important. For the Rossby

number •^0.2, the flow breaks down into a two-dimensional field of vortices aligned

with the rotation axis and remains in this configuration with increasing distance from,

the grid. This pattern is consistent with the results of Ibbetson and Tntton (1975)

regarding the change in length scale with time. A similar set of experiments by

Dickinson and Long (1983) gave similar results. Maxworthy (1986) used the apparatus

of Hopfinger et al. (1982) to show that the entrainment rate across a density interface

decreases with decreasing Rossby number (increasing rotation rate). Based on the

entrainment model of Linden (1973), which did not consider the effects of rotation,

Maxworthy tentatively concluded that the change in entrainment rate with rotation

was due to the loss of TKE to inertial oscillations induced in the mixed layer. Again,

no rotation stress was generated with the configuration used in this apparatus.
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In summar}', the experimental evidence shows significant effects due to rotation

stress and to curvature stress. The attempts to simulate these processes numerically

indicate that a second-order closure model that explicitly accounts for the conversion

of TKE among components is necessar\' to model the phenomenon of rotation stress.

However, the appropriate augmented Richardson number can give approximate results

for the steady-state case.

C. PRESSURE-RATE OF STRAIN PARAMETERIZATIONS

As discussed in the introduction, it is possible that rotation effects in the

pressure-rate of strain parameterization may counteract the explicit rotation stress.

However, the exact effects of the various processes that contribute to the pressure

fluctuations are not well documented by experiment nor are they well understood

theoretically. Thus, parameterizing the pressure-rate of strain is difficult and

controversial. This review will focus on some aspects of the parameterization of the

the rapid part of the pressure-rate of strain (tz^).

Parameterizations for n'' can largely be divided into two categories: the first

assumes a specific structure for the turbulence; the second assumes that the integral

can be expressed as a series expansion about an isotropic TKE distribution (Wyngaard,

1982). The difficulty with the former is that the parameterization can only be valid for

geometrically similar flows, and the geometries chosen must be fairly simple or the

integral is still not solvable. The difficulty with the second is that important processes

that these terms are supposed to represent (e.g., rapid distortions) are not a

perturbation on an isotropic state. Both methods neglect the surface integrals in the

general expression for p. Thus, they ignore wall effects that are fundamental to

boundary layer flows. Some investigators (Gibson and Launder, 1978) have included

boundar/ effects in a parameterization of the pressure-rate of strain, but the results do

not seem to constitute a measurable improvement (Wyngaard, 1980).

Donaldson (1972) discussed a set of theoretical criteria for the parameterization

of second and higher order terms in the Reynolds averaged equations. To satisfy these

constraints, the parameterization must preserve the tensor character and symmetry

properties of the original tenns, be dimensionally correct, be invariant under Galilean

transformations and must satisfy the conservation laws that were satisfied by the

original terms. The fact that no parameterization of the pressure-rate of strain has yet

been proposed that can meet all the theoretical constraints, and not be so cumbersome

as to be unusable, points out the difficulties of parameterizing the pressure-rate of
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strain. Schumann (1977) further noted the importance of realizability for turbulence

parameterizations. Realizability requires that the parameterization to produce only

values that can be realized in actual flows. That is, the model should not be able to

generate negative TKE, negative TKE components, negative dissipation or covariances

greater than one (Lumley, 1978). Lumley (1979) attempted to construct a model that

met these requirements, but the resulting expressions were too cumbersome to be of

practical use (Wyngaard, 1982).

The parameterization of the pressure-rate of strain, particularly the rapid part of

the term, has remained a major problem in turbulence closure (see reviews by

Reynolds, 1976, Lumley, 1979 and Zeman, 1981). Recent work has attem.pted to

obtain more universal and fundamental expressions for the pressure-rate of stram by

limiting the number and type of assumptions used in the parameterization. As

discussed in Chapter I, the integral of the two-point correlations of the velocity

derivatives that results from the expression for the rapid part of pressure-rate of strain

(1.11) is a fourth rank tensor. Gallagher et al. (1981) started with a general expression

for this fourth rank tensor, which is the sum^ of 81 terms each with a scalar coefficient,

and by rigorous arguments reduced the number of unknown coefficients from 81 to 6.

The six remaining coefficients required assumptions regarding the nature of the

particular flow. Morris (1984) obtained a general form for the pressure-rate of strain

parameterization that was similar to that of Launders et al- (1975) without requiring

that the turbulence be homogeneous. This research is not intended to obtain a general

solution to the pressure-rate of strain closure problem. However, the possible effects

of the pressure-rate of strain on the TKE budget and on the rotation stress terms must

be recognized.

In summary, this review has shown that most models of geophysical mixed layers

have been constructed in such a way that rotation processes are neglected. Models

that do allow for rotation effects have been developed for other flow applications and

have im.proved predictive capability for rotating boundary' layers with respect to models

that neglect rotation. Also, there is a substantial body of evidence from the

engineering literature that rotation plays an important role in turbulent boundary'

layers that are dynamically similar to the OPBL. Thus, there is reason to expect that

including rotation stress in a model of the OPBL should improve the predictive

capability of the model. Furthermore, the investigation of a more complete and

sophisticated picture of the OPBL is worthwhile on its own merits.
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III. THEORY

A. MODEL DEVELOPMENT
The model developed in this research assumes vertical homogeneity for the mean,

dynamical variables for -h<z<-5^.. The well-rmxed profile, discussed in Chapter I

(Figure 1.2), is consistent with the average state of the upper ocean. The value of h is

assum.ed to correspond closely to the mixed layer depth, and "mixed layer" here is

synonymous with turbulent boundary layer. However, h is formally :he depth of the

maximum vertical penetration of TKE and turbulent fluxes generated in response to

the wind stress,

"^=
"^x^x * SA- = - P^(0)^x - P^(0)% '

(3-1)

and the surface buoyancy flux, bw(0).

The model described in this chapter is for a time-dependent mixed layer that may

deepen or retreat in response to the surface fluxes. The mixed layer deepens in

response to increased TKE production by wind stress or surface cooling (positive

surface buoyancy flux) when water is entrained into the fully turbulent OPBL from the

pycnocline beiow. When the mixed layer retreats, a new shallower mixed layer form.s.

The portion of the water column that had been part of the mixed layer now contains

water of almost homogeneous properties, but the flow is no longer actively turbulent.

The following discussion parallels section 2 of Garwood et al. (1985a), who discussed

the equilibrium or time-independent simplification of the more general theor>'

developed in this research.

Integrating (1.1), (1.2) and (1.3) through the mixed layer yields:

c <u-> . ,«_
dz = = G + n_ + nh<uv> + nh<uw> - D/3, (3.2)

Ct 2 X XX z y

dz = = G + n„„ - ah<uv> - D/3, (3.3)
^t 2 y yy ^

dz = = <bw> + n„ - nh<uw> - D/3, (3.4)

where
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< > = I dz .

These equations are derived assuming local isotropy at the Kolmogorov length scale.

linear flux profiles, and one dimensionality for the TKE budget (a good approximiation

even if the density and momentum fields are not horizontally homogeneous, see

Chapter I). We assume a steady-state TKE budget and set the left hand side of

(3.2)-(3.4) to zero since, as discussed previously, the unsteady terms are important only

on ver>' short time scales (less than 100 seconds). The integral through the OPBL of

the shear production plus the production due to breaking surface waves minus the loss

due to the downward radiation of internal waves (terms G.l - G.3 and P. 4 m I.i - 1.3)

is G. The vertically-integrated pressure-rate of strain is H, {11.1 - 0.3 in 1.1 - 1.3). The

viscous dissipation rate (e) in {1.1 - 1.3) integrated through the mixed layer is D. The

terms {R.l - R.4 in 1.1 - 1.3), namely

- £.., n.<'ilur'>h ,
ijk

J
1 k '

are the rotation stresses (the interaction of rotation of the earth with the Reynolds

shear stresses). The sign of < uw > is such that rotation stress increases u" in (3.2) if

< iiw> is positive. The planetary rotation vector is

n = n-e^ + n-^
y y z z

where \^\ - 1.29 x lO'^sec"^ For the mean horizontal momentum to be independent

of depth, the vertical turbulent momentum fluxes (uw and vw) in the mixed layer must

be linearly dependent on z or constant. If the depth dependence is assumed to be

linear, the vertically integrated momentum fluxes (the Reynolds shear stresses) are

<uw> = -(uw(-h) - uw(0)) ,

h
<v^^> = -(vw(-h) - vw(0)) ,

2

where uw(0) and vw{0) are defined in (3.1). The fluxes at the base of the mixed layer

are given by the "jump conditions"

AUdh
uw( -h) = - -^— , and

dt

AVdh
vwi[ -h) = -

dt

where
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AU = <U> - U(-h-5)

and

AV = <V> - V(-h-6)

are the mean velocity change through the entrainment zone {see Niiler, 1975).

The focus of this study is on the exchange of energy between u" and w^ by the

action of the east-west wind stress {T^ = -uw(0)) in the presence of the northward

component of planetary- rotation (H^.). This term will reduce vertical mixing if the

winds are westerly (t^>0), and it will increase vertical mixing if the winds are easterly

(t,<0).

The total shear production plus the production of TKE by breaking surface

waves minus the loss at 2 = -h due to the downward radiation o[ internal waves

integrated over the mixed layer is

d\J __dV d pp we]
UW-— + vw— + —4— + ——

I

dz cz oz \ p 2
j

dz = G„ + G. = G

The parameterization for G is

TlV2 [(AU)2+(AV)-]ah
G = m,'

- p 2 ^t

where m^ and the subsequent m^ m,, m^ and m^ are dimensionless tuning coefficients.

These coefTicients are assumed to be reasonably constant for the upper-ocean

boundary' layer under a wide variety of atmospheric forcing conditions. The

production of TKE by the shear of the mean current will be neglected in this study.

This may not be a good assumption when h is small or in regions of strong surface

currents. Martin (1985) speculates that mixed layer simulations of the shallow

summertime mixed layer might be improved by the inclusion of TKE production by the

mean shear in the entrainment zone. However, deSzoeke and Rhines (1975) and

Garwood and Yun (1979) demonstrate that wind shear production of TKE is the more

important source of energy for deepening the mixed layer in general. Therefore. TKE

production by the shear of the mean current will be neglected for this study, which is

primarily concerned with late winter and early spring cases for which the mixed layer is

deep. The ratio of the integral of the rotation stress associated with the miean shear

through the mixed layer to that of the production of TKE by the mean shear,
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dh

y dt 2n..h

[(AU)- + (AV)^]dh AU

2 dt

is only 0(10"') even for a 1 m s shear in the mean current and a 100 m deep mixed

layer. Therefore, the rotation stress associated with the mean shear will also be

neglected.

For the mean buoyancy to be independent of depth, the buoyancy Qux in the

mixed layer must be linearly dependent on z or constant. The vertically integrated

buoyancy flux is

<bw> = -(bw(-h) - u^b^) .

2

The efTective buoyancy flux through the surface (u«b*) is the net downward surface

buoyancy flux due to the sensible and latent heat fluxes and longwave radiation plus

the buoyancy flux due to the absorption of solar radiation (Q^) as a function of z:

u^b* = -bw(0) JlQ^ - —- jQ3d^ldz
pcp \.i h-fS \ '

The absorption of solar radiation with depth significantly affects mixed layer dynamics,

particularly for shallow summertime mixed layers (Martin, 1985; Simpson and Dickey,

19S1). The flux of buoyancy through the base of the mixed layer is due to the

entrainment of the more dense, underlying water. This entrainment buoyancy flux is

ABdh
bw(-h) = .

dt

where A3 = <B> - B(-h-6) is the mean buoyancy change through the entrainment

zone.

The total dissipation,

f sdz = D ,

IS a function of the vertical average of the turbulent kinetic energy,

D = m, <irir>^/^
1 1 1

where "ou. = u^ + v* + w^ {i.e., the normal summation convention on repeated indices

is implied). Although the large-scale turbulence is anisotropic, the production and

dissipation scales are assumed to be sufficiently well separated (i.e., large Reynolds

number) so that the turbulence is isotropic at the dissipation (or Kolmogorov) scale.
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This implies that txhe dissipation should be partitioned equally among the normal

Reynolds stress components. For the ZSTAR model, the dissipation parameterization

is

D^ = m.( <u.u.>^/'- +-^fh)<u.u,> . (3.5)

where the additional term is the rotational dissipation enhancement. By definition, the

rotation stress is neglected in the ZSTAR model.

The extent of vertical mixing depends upon the rate of conversion of horizontal

turbulent kinetic energy ( < u' -^ v- > ) to vertical turbulent kmetic 'energy ( < w- > ). As

discussed m Chapter I. there are two processes that may accomplish this. The first

process is the pressure-rate of strain given by

"aa
Uqgp

P ^^a
with :\Q summation implied on repeated indices. The second process is the rotation

stress.

-e... n.T, h/p .

ijk
J

k. ' f^

The pressure-strain rate correlation (Hoj^) can generally be divided into two

parts: the nonlinear self-interaction of the turbulent field (JI'^^q) and the "rapid" terms

resulting from the interaction of the turbulence and the mean field (H^^^), as

discussed in Chapter II. The H^^^ terms cause a reduction in the anisotropy of the

integral scale turbulence and are conventionally parameterized using the return-to-

isotropy model of R.otta (1951). A version of this parameterization, which is consistent

with our assumptions, is

^nn - mT<"irU.>^/^( <llu"> - 3<U-^^>).
CtCi 2 1 1 ^11 0. '

The "rapid" terms were discussed at length in Chapters I and II. .A.s discussed in

Chapter II, this research is not intended to obtain a general solution to the pressure-

rate of strain closure problem. Rather, a simple approximation for H^^qj will be used

and this study will focus on the impact of the explicit rotation stress term. The

approximation that will be used for H^^ has been used effectively to model a variety

of turbulent flows that do not depend strongly on "rapid" distortion elTects.

Expressions for H^^jj^ can be defined in terms of the vertically integrated

variables discussed above. A set of such parameterizations is:

n^. = - a,G^ - a,i^h<uv> + a,n^<uw> ,
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and

n^^^ = - a3<bw> - HjH <uw>

These are consistent with the work of Zeman and Tennekes (1975), which was

discussed in Chapter I. Thus, the rapid part of the pressure terms can be incorporated

into the other turbulence-mean How terms. The literature review in Chapter II

indicated the uncertain state oi" knowledge of the magnitude and effects of these terms

m general. In particular, there is a lack of experimental evidence concerning the

magnitudes and efTects of the H^^ on geophysical turbulent boundar\' layers. In

view of this situation, we will assume that the a-< < 1 for all i. This is consistent with

Zeman and Tennekes (1975), who estimated that these rotation terms were small

(a-, = 0.26 ±0.04) for the atmospheric surface layer (See Chapter I). This is also

consistent with the results of Zeman and Lumley (1976) and Moeng and Wyngaard

(1986). Also, Wyngaard er al. (1974) evaluated the effect of the explicit Coriolis terms

on the structure of the Reynolds stress profiles for a buoyancy driven atmospheric

planetary boundary layer and concluded that there was no significant change in the

structure of the profiles. The present study concerns the stress-driven ocean planetary

boundar-' layer. However, the assumption that the Reynolds stress profiles are linear

in z is consistent with these results of Wyngaard et al. (1974).

B. NONDIMENSIONAL EQUATIONS

The TKE equations can be written in ncndimensional form to intercompare

various models and model terms. Normalizing the terms in (3.2 - 3.4) with the surface

shear production yields the nondimensional variables given in Table 2. The RSTAR

model developed in this research includes rotation stress and neglects dissipation

enhancement. The nondimensional equations are shown in Table 3. The dependent

variables are: P.:,, the nondimensional entrainment rate; E.-ic, the nondimensional total

TKE; and W*^, the vertical component of the TKE. The independent variables are the

nondimensional mixed layer stability (H*) and the nondimensional surface rotation

stress (R*). Equations (3.7a) - (3.7c) form a nonlinear, coupled set of equations lOr

E.!-., P:-. and W** as functions of H* and R*.

Two other models will be used for comparison. They are the ZSTAR model

(Table 4) from Garwood (1977) and the HSTAR model (Table 5). The ZSTAR model

contains a dissipation enhancement term (Z*), which depends on rotation but does not

contain rotation stress (R«). Ganvood (1977) demonstrated that the dependence of P*
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TABLE 2

THE NONDIMENSIONAL VARIABLES

hA3 dh entrainment buoyancy flux
P^ = ^ ^—- , ; (3.5a)

^m-jU^-Qt wind shear production

i^/^<e> total TKE
-* - --I r '

surface momentum flux

-bw(0)h surface buoyancy flux

2mjU*^ ' wind shear production

n,hT^/p surface rotation stress

2m3U-t^
'

wind shear production

where p^ = m^/m^ , p^ = mj/r^^, P3 = m^/mj
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( 3. 6b)

/m,\-/-<w-> vertical TKE
W*- = P '.

, ; (3.6c)
\m,J u^" surface momentum flux

p,fh mixed layer depth
Z* = -^ .

:

^ : —
; (3.6d)

u* rotation lengtn scale

H^ = z 3— /
——.—:

:
—— ; (3.6e)



TABLE 3

THE RSTAR MODEL: P« = P,:=(R*. H*)

= 1 p^E^-CE* - 3W^^) + R* , (3.7a)

= -H* - P^ - —i + P2E*^(E* - 3W.^-) - R^ , (3.7b)

p,W^E*
= -Pa + —^-

. (3. 7c)
4U

TABLE 4

THE ZSTAR MODEL: P* = P*(Z«, H.,)

2E-^/2
= 1 - —^ (E* + Z^) - p.Evt^^g^ -3W*2)^ (3.8a)

= -H* - P* - — (E* + Z*) + P2E*-(E* - 3W*2j^ (3.8b)

= -P* + ^1 *
. (3.8c)

TABLE 5

THE HSTAR MODEL: P* = P*(H«)

2E 3/2
2= 1 - P2E*-(E* -3W*^), (3.9a)

E 3/^
= -H* - P* - -i-+ P2E*2(E* - 3W*2), (3.9b)

= -P* + ^1 * ^ . (3.9c)

on Z* prevented excessive mixed layer deepening at the end of the winter cooling

season. This allowed a cyclical steady-state solution to the model without requiring
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either a negative net buoyancy flux or advection. However, the physical basis for this

enhanced dissipation is unclear, and Z* may represent physical processes that are act

actually due to the dissipation. These effects may include upwelling due to large-scale

horizontal divergence, loss of TKE in the mixed layer due to internal waves (MuUer et

ai. 19S4), inertial oscillations and rotation stress.

The variables in (3.8a) - (3.8c) from Table 4 are the same as in (3.7a) - (3.7c),

except with the addition of rotationally enhanced dissipation Z*, defined by (3.6d).

which is the inverse of a boundary' layer Rossby number and the elimination of the

rotation stress R«. The dissipation in the ZSTAR model is

D = E^(E*^/- + Z*) ,

which is the nondimensional equivalent of the enhanced dissipation (3.5). In both the

ZST.AR model and the RSTAR model, the dissipation is distributed equally among the

three TKE components. The term E*Z<, imposes an additional length scale (f'u=;,) that

affects h. The equilibrium mixed layer depth is now a function of a boundan.- layer

Riciiardson number and a boundary layer Rossby number. Expressed in terms of

length scales, this yields h = G(Lq,Vu*/0- This is similar to the equilibrium depth

scale for rotation stress (1.7) that was introduced in Chapter I.

For Z* = R* = 0, the two models RSTAR and ZSTAR are identical. The

resulting model (HSTAR) depends on H* (i.e. surface buoyancy flux) exactly as the

RSTAR and ZSTAR models do (3.9b from Table 5). However, the HSTAR model

does not include rotation stress or a dissipation enhancement. Thus, comparisons of

the RSTAR and ZSTAR models with the HSTAR model allow the effects of the

rotation stress and the dissipation enhancement respectively to be isolated.

The terms R« and Z« are the inverses of two boundary layer Rossby numbers.

which represent the ratio of the shear production of TKE to the vertical and horizontal

rotation stresses respectively. Although the mathematical forms of R.-;< and Z.-.^ are

similar, the processes impact the TKE budget in fundamentally different ways. The

energA' redistribution (R«) represents a k.nown physical process that results from vortex

stretching by the interaction of the Reynolds stresses and planetary rotation. It is a

direct integration of the original terms that involves no higher order moments and

requires no parameterization. Conversely, Z« is part of a parameterization of the

dissipation of turbulence by molecular viscosity. As discussed in Chapter II, the

parameterization of dissipation in mixed layer models has become increasingly

sophisticated. However, it has usually been assumed that TKE is dissipated
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isotropically. As will be shown in the following sections, this assumption may be

incorrect for dissipation in geophysical planetary/ boundary layers.

Since the independent variables R« and Z=:-. enter the equations with different

powers of E*, the effects on the mixed layer ought to be dissimilar. In RSTAR

compared to ZSTAR, the equations have been simplified by eliminating one of the

highest order terms in E«, namely E* "Z«. The number of constants also is reduced

by one, since P3 in the defmition of Z« is eliminated. At the same time, the number of

physical degrees of freedom is increased since wind direction now affects the turbulent

boundary layer dynamics. Mathematically, this means that R.-;, less than zero is

allowed whereas Z« less than zero is not. This will be discussed in more detail in the

next section.

C. IMPLICATIONS FOR THE ENERGY BUDGET

Most integral models of the OPBL are based on the total TKE equation. The

models of Kraus and Turner (1967), Niiler (1975), Elsbern-- and Camp (197S) and Kim

(1976) are examples. For these models, the rate of mixed layer deepening is determined

completely by the boundary' conditions on the mixed layer. However, Garwood (1977)

demonstrated the importance of the convergence of TKE at z=-h for mixed layer

deepening. Thus, both the horizontal (u" + v^) and the vertical (w-) TKE components

must be known. As a result, the transfer of TKE between the horizontal and vertical

components becomes important, and the sources and sinks of TKE must be considered

in relation to the TKE component(s) they directly affect.

The block diagram of the TKE budget (Figure 3.1) is presented in terms of

depth-averaged, dimensional variables that are defined in terms of their nondimensional

counterparts in Table 6. The depth-averaged variables are independent of mixed layer

depth, unlike the nondimensional variables. Thus, they are better suited for comparing

models when the predicted mixed layer depths do not coincide. The wind stress

production also becomes an explicit term. These characteristics will be particularly

useful in Chaper IV where the block diagram will be used to discuss model simulations

at OWS P and OWS N.

The TKE budget for the OPBL is shown in Figure 3.1. The terms in the first two

equations in Table 3, 4 or 5 are represented by the arrows in the figure. The third

equation in all three tables defines P*. Therefore, no new processes are introduced into

the TKE budget by the third equation. Wind mixing (G) is a source of horizontal

TKE. Surface cooling (H = u«b«<0) is the only source of vertical TKE. The sinks of
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TABLE 6

DIMENSIONAL, DEPTH-AVER.-^GED VARIABLES

Total TKE: E = eJ^^^ (3.10a)
h

Vemcal TKE: W^ = W^-—^

—

(3.10b)
h

Surface Buoyancy Flux: H = H*—^ (3.10c)
h

in,u^-^
cntrainment Rate: P = p^-i— (3.10d)

h

m,u*-'
Rotation Stress: R = R^-^ (3.10e)

h

Pressure Redistribution: n = p,( E - 3W-) (3.10f)

m,u^^
Wind Stress Production: G = ^

, (3.10g)
h

Dissipation: D = E^/^( E + Z) (3.10h)

with Z ?i only for the ZSTAR model.

TKE are dissipation, surface heating and entrainment cooling. The last two convert

the TKE into potential energy, while dissipation converts the energy into heat. The

TKE that is dissipated is effectively lost from the dynamical system of the ocean.

However, the TKE used for entrainment continues to be available to the large-scale

dynamics, because it mfluences the potential energy of the system.

For wind-driven regimes, the major TKE source generates horizontal TKE. Since

dissipation is isotropic, the horizontal TKE is dissipated at twice the rate of the vertical

TKE. Entrainment cooling and surface heating are sinks of vertical TKE only. Also

entrainment occurs only to the extent that there is vertical TKE to transport TKE to

the entrainment zone. Since the major sources and sinks occur in different TKE

components, the transfer of energy between the horizontal and vertical components is

ven' imoortant to the energetics of the OPBL. The mixed laver dvnamics are

significantly affected since entrainment is controlled by the vertical TKE. The

pressure-rate of strain terms provide a mechanism for this transfer that depends, to first
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order, on the anisotropy of the turbulence. An additional mechanism is provided by

the rotation stress interaction, which depends on the orientation of the planetan.'

vorticity in relation to the relative vorticity of the large-scale turbulent fluctuations.

The pressure-rate of strain terms (FI) will transfer energy from the horizontal to

the vertical component for wind-dominated regimes and from vertical to horizontal for

buoyancy driven cases (surface cooling). The direction of transfer for the rotation

stress terms (R) depends on the wind direction and not on the anisotropy of the

turbulence. As shown in Figure 3.1, the rotation stress transfers energy from the

horizontal to the vertical TKE for easterly winds and from the vertical to the

horizontal for westerlies. On diurnal to synoptic time scales, either wind direction is

possible. However, on seasonal to annual time scales the wind direction will be more

persistent. Thus, the possibility exists for variations in the ocean mixed layer response

to atmospheric cyclones and anticyclones depending on location relative to the

direction and position of each storm.

In the ZSTAR model, the dissipation (D) is increased by the addition of Z (see

3.10h), w^hich is the dimensional counterpart to Z«. Thus, Z aflects the TKE budget

isotropically and is always a sink of TKE. It reduces the entrainment rate by reducing

the magnitude of which is the total TKE. The pressure-rate of strain (11) is the only

TKE conversion mechanism in the ZSTAR model and it always reduces the anisotropy

of the turbulence. In the RSTAR model, D is smaller since Z = 0. Therefore, the

TKE is dissipated more slowly, which implies that more TKE is available for

entrainment than in the ZSTAR model. The rotation stress (R) is a TKE conversion

mechanism similar to 11, but it is independent of the TKE distribution. If the winds

are easterlies (westward surface stress), R converts horizontal TKE to vertical TKE,

which further increases the entrainment rate. For westerlies, eastward surface stress, R

converts vertical TKE to horizontal TKE, which reduces the entrainment rate. For

regions with westerly winds, the hypothesis is that R may reduce or eliminate the need

for Z in the dissipation parameterization to prevent excessive mixed layer deepening.

As is clearly demonstrated in Figure 3.1, the means of reducing the entrainment rate is

ver}'' different.

D. COMPARISON OF RSTAR AND ZSTAR MODELS
The nondimensional entrainment rate is a function of the nondimensional surface

buoyancy flux (H*) and the nondimensional depth (R* in the RSTAR model or Z* in

the ZSTAR model). For H,;t>0 (net surface heating), the buoyancy flux is a sink of
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TKE (Figure 3.1 and, for example, equation 3.Sc) and the mixed layer is in a forced

convection or stable regime. In this regime, an equilibrium depth is possible for which

the surface buoyancy damping of TKE balances the surface wind stress production.

For H«<0 (the free convection or unstable regime), the surface buoyancy flux is a

source of TKE. Therefore, an equilibrium depth is not possible without some sink of

TKE, such as dissipation or rotation stress for westerly wind regimes. The lack of such

a steady-state solution was problematic with previous mixed layer models (Chapter II).

The ocean mixed layer depth has a cyclical steady-state on an annual time scale.

Unless an equilibrium depth is possible for H«<0, this cyclical steady-state solution

requires an annual net surface heating or a horizontal divergence in the upper ocean to

generate upwelling at the base of the mixed layer.

The P* = curve is the solution for mixed layer retreat. Therefore, it gives the

equilibrium depth as a function of the surface fluxes. For the RSTAR or the ZSTAR
models, the P* = curve crosses the R,!= or Z.+. axis. Therefore, a cyclical steady-state is

possible in both models without a net surface heat flux or upwelling. For the ZST.AR

model, no equilibrium depth is possible for H«<O(-0.3). For RSTAR, an equihbrium

depth is theoretically possible for all H.:,. Thus, the RSTAR model has the potential to

maintain a cyclical steady-state for greater wintertime surface cooling rates than does

the ZSTAR model.

The entrainment rate decreases with increasing depth for both models (i.e.

^P*;^Z*<0 and ^P«/^R*<0). For the same surface fluxes, deep mixed layers will

deepen less rapidly than will shallow mixed layers. However, the decreasing curvature

of the P.* solution (Figure 3.2a) for increasing Z« (i.e. 5^P«/5Z*^<0) implies that the

asymptotic value P::c(Z«->co) is greater than zero. Thus, mixing is still theoretically

possible for very deep mixed layers. Changes in Z« also are more effective for shallow

mixed layers than for deep mixed layers since the curvature is greater for shallow mixed

layers. Conversely, the entrainment rate is reduced more rapidly with increasing depth

by R* (Figure 3.2b) since the cur\'ature of the P« solution increases with increasing R-

(i.e. o^P*/^R«^>0). This implies that changes in R* are more effective for deep

mixed layers than for shallow mixed layers. Also, as discussed previously, P* must be

zero for some value of R*>0 for all H*. Thus, the RSTAR model can not deepen

indefinitely.

The positive curvature of the P« solution with respect to R* also means that P*

approaches an asymptotic value as R«-*-^. This means that the entrainment rate is
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bounded for easterly winds, for the RSTAR model. For easterly winds and zero or

positive surface buoyancy flux, the RSTAR model predicts that the equilibrium mixed

layer depth given by L^^ in (1.7) is negative. Thus in the RSTAR model, an

equilibrium mixed layer depth can not be achieved in regions of easterly wind without a

positive surface heat flux or a three-dimensional balance of fluxes. For the ZST.-XR

model, only the condition Z*2:0 prevents P«-*30 for negative Z*.

The ratio W«^/E« is a measure of the anisotropy of the integral scale TKE. As

discussed previously, the large-scale turbulence can not be isotropic since all the

production and loss processes are not isotropic (see Figure 3.1). Only the dissipation

affects the TKE budget isotropically. If the large-scale turbulence were isotropic,

W^'-'E* would be 1/3. For wind-driven regimes, the source of TKE is the shearing in

the mean flow generated by the surface wind stress. In this case, TKE is produced

only in the horizontal components and W*^/E« should be less than 1,'3. For

buoyancy-driven regimes, the TKE production is also anisotropic since the source of

TKE is limited to the vertical TKE component. Also the entrainment buoyancy flux is

a sink of vertical TKE. In this case, W^'/E* should be greater than 1/3.

The ratio \V«^/E* is greater for the ZSTAR model (Figure 3.3a) than for the

RSTAR model (Figure 3.3b) for all Z* and for R« greater than zero. This is consistent

with the larger values of P« in the ZSTAR model. For both models, W,!,^/E* increases

with decreasing H« as the production of TKE by surface buoyancy fluxes becomes the

primary source of TKE in the mixed layer. The decrease of W«^;E* with increasing Z>:-.

(Figure 3.3a) is much slower than with increasing R« (Figure 3.3b) and for H*~-0.8

W*-;E* is virtually independent of Z«. The greater variation of W,:,^/E* with R* is

because R* directly alters the isotropy of the TKE distribution (see Table 3 or Figure

3.1) by transferring TKE between the eastward and vertical components. On the other

hand, Z.--: reduces the TKE by enhancing the dissipation, which is assumed to be

isotropic. Thus, the effect of Z« on P« is more apparent than its effects on W*-/E.i-.

since reducing E« directly reduces P* (3.8c). However, if the distribution of TKE is not

initially isotropic, the isotropic dissipation will make the distribution more anisotropic

with time. Thus, for W*^/E*< 1/3 (H«>-0.8) Z«>0 tends to further reduce W,,- E*.

The trend increases with increasing Z«. Thus rate of decrease of W^^'E* increases

with increasing Z* and the rate of decrease of W*^/E* increases as W*^/E<. approaches

zero.
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These analyses of the nondimensional equations for the TKE models show that

the functional form of the entrainment rate (P*) as a function of the rotational

dissipation enhancement (Z*) is very different than as a function of rotation stress

(R«). The entrainment rate decreases to zero with increasing rotation stress in the

RSTAR model. Rotation stress is most effective in altering the entrainment rate for

deep mixed layers having large rotation stress since 5-P,:,,^R,;-.-> 0. Conversely, the

entrainment rate in the ZSTAR model approaches a constant v/ith increasmg

rotational dissipation enhancement. Also, the dissipation enhancement more

eifectively alters P« for shallow mixed layers with small rotational dissipation

enhancement since ^'P*, (;Z«" < 0.

The ratio of the vertical to the total TKE (W,i,"/E) is a measure of the isotropy of

the TKE distribution among the components. The isotropy of the TKE is affected

directly by rotation stress through the transfer of TKE between the east-west and

vertical TKE components. However, the dissipation alters the TKE distribution only

to the extent that the degree of isotropy of the dissipation rate and the TKE

distribution do not match. If the dissipation removes TKE isotropically from the

components and if the TKE is not isotropically distributed, the TKE distribution will

become more anisotropic with time. Thus, the ratio W*^/E was found to var>' more as

a function of rotation stress than as a function of rotational dissipation enhancement.
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IV. SIMULATIONS

The models developed in Chapter III are solved numerically for E.-c, W*- and Pv,

given the surface Huxes of momentum and buoyancy, and for the RSTAR model the

wind direction at hourly time intervals. During entrainment, the model density profile

is mixed to a depth h at which the potential energy gained by entraining denser,

nonturbulent water from below the OPBL equals the vertical convergence of TKE from

the OPBL to the entrainment zone. This depth need not correspond to a level aAz of

the model, where n is an integer. Thus, these are layer rather than level models. For

retreat, the mixed layer depth is set to an equilibrium depth based on the surface

fiuxes. Then the profile between that depth and the previous depth is adjusted at each

intervening level to conserve heat, buoyancy and potential energy. Thus, the density

profile in the model consists of a well-mixed layer of depth h below which the density

can vary as a function of z at intervals of Az= 1 m. The maximum depth for the

profile is 200 m.

The long time series of OWS observations, up to thirty years at some locations,

allow multiple annual simulations. Shorter case studies also can be repeated in various

seasons and years for intercomparison. The disadvantage is that the data are relatively

coarsely sampled and crudely measured when compared with the best measurements

that can be taken today. Because these higher quality data sets result from intense

field experiments that last only weeks to mionths, important events can be missed and

there is no information on seasonal variability. For these reasons and due to its

accessibility, the OWS data were chosen for this research because it provides the

greatest number and largest variety of events for study.

Both the weather stations used for these studies are at midlatitudes, although

equatorial locations would have been preferable. The only time series at an equatorial

location that was available for this study is from Gan Island (1 "S, 73 "E) in the Indian

ocean. The data set is only 29 months long and contains several data gaps. The island

is located in the climatological path of the westward flowing North Equatorial Current

in the winter and the eastward flowing Summer iMonsoon Current in the summer

(Tchernia, 1980). There may be significant three-dimensional effects with large

seasonal variability in the data. In fact, in the Gan Island time series there is a strong
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2 cycle per year variation in the zonal wind field which drives a zonal jet in the upper

ocean as indicated by the 2 cycle per year variation in the upper ocean currents which

is in phase with the wind variations {McPhadden, 1982).

Bulk formulas are used to calculate the surface fluxes from the meteorological

observations. The values of the coefficients in these formulas are known to var/ with

latitude and the variations are not as well documented at low latitudes as at

midlatitudes (Reed, 19S5). The meteorological observations were taken from a weather

station on the island and the BT casts were taken several miles alternately north or

south of the island at weekly or less frequent intervals (McPhadden, 1982). Thus, the

meteorology may suffer from topographical effects due to the island and the BT casts

were not collocated with the meteorological observations. For these reasons, the Can

Island data set was rejected for this study.

OWS P (50^N. 145°W) and OWS N (BO^N, 140^W) provide time series of data

needed for mi.xed layer simulations on annual time scales. The time series selected for

OWS P is fifteen years long and for OWS N eighteen months. For the simulations in

this study, the surface fluxes of heat and momentum are calculated from three hourly

OWS obser\'ations and interpolated to hourly intervals. Since evaporation and

precipitation are not measured at ocean weather stations, the surface salinity flux will

be neglected. Thus, the surface buoyancy flux is calculated from, the net surface heat

flux. The density as a function of depth for the upper 200 m of the ocean is needed to

initialize and verify the simulations. The OWS observations include BT casts, which

provide ocean thermal structure at 5 m intervals throughout the upper ocean at twice

daily, or more frequent, intervals. These can be used to calculate density profiles for

model initialization and verification if the salinity is known. The initial profiles for the

annual simulations are composed of a temperature profile representative of the average

thermal conditions for early January for each year and a climatological salinity profile.

For OWS P, the salinity profile contains a halocline between the mixed layer and

150 m. The profile above the mixed layer depth (based on the temperature profle) has

a constant salinity of 34°/g g, and the salinity below 150 m is constant at 35°,,, o-
^^"^

OWS N, the entire profile is isohaline with a salinity of 35°! q^. Because verification

profiles are calculated from BT casts only the temperature portion of the density profile

is verified.

Recall that ZSTAR is the Gar\^'ood (1977) model, which includes the rotational

dissipation enhancement (Z«). RSTAR is the rotation stress (R«) model v/ith no
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dissiparion enhancement, i.e. Z« = 0. HSTAR is the model with no planetar/ rotation

processes, that is R-. = Z* = 0. A set of annual simulations will be made using the same

empirical tuning constants in all three models (RSTAR, ZSTAR AND HSTAR). In

this way, the relative responses of the models to realistic combinations of surface

forcing and ocean thermal structure can be compared. Differences in the responses of

the models can be atiributed directly to the differences in the modeled physics.

Several periods of approximately seven days in duration are selected for further

study from these annual simulations. The hypothesis that R,;t can cause significant

variations in diurnal to synoptic scale shallowing and deepening events will be tested by

comparing the mixed layer depths predicted by the RSTAR, ZSTAR and HSTAR
models for these periods. The hypothesis that the isotropy of the TKE distribution for

the RSTAR model is different from that of the ZSTAR model will also be tested using

these synoptic periods. For this test, the terms in the TKE budget, as detailed in

Figure 3.1, will be computed. Another working hypothesis is that the rotation stress,

R.-;., in the RSTAR model may reduce or eliminate the need for Zx-.. the rotational

dissipation in the ZSTAR model. This hypothesis will be tested by tuning seperately

the model constants to optimize simulations of the annual cycle of mixed layer depth

and temperature for the RSTAR model and the ZSTAR model. Finally, monthly

statistics and annual plots of mixed layer depth and temperature will be used to

compare the seasonal to annual time scale differences between the RSTAR and

ZSTAR models.

A. SURFACE FLUX CALCULATIONS

The surface forcing for these studies was calculated using the formulas and

constants discussed in Martin (1985). Some of the surface forcing was obtained in flux

form from Mr. Paul Martin. The use of the same bulk formulas for the rest of the

forcing provided a consistent data set for the simulations. This will also allow further

comparison with Martin's results in the future.

The wind stress was calculated using the drag coefficient of Garratt (1977) with

the wind speed corrected to a 10-m height using a logarithmic profile of turbulent

fluxes in the atmospheric surface layer after the method of Large and Pond (1981).

The clear sky insolation was calculated using the Milankovitch formula (List. 1984)

with the Reed (1977) cloud cover correction for OWS N and the Tabata (196^)

correction for OWS P. The use of two different cloud cover formulas accounted for the

variation in the average cloud type and height between OWS P and OWS N (Paul
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Martin, personal communication). Net longwave radiation was calculated using the

Beriiand formula (Wyrtki, 1965). Latent and sensible heat fluxes were calculated with

bulk formulas using the exchange coelTicients of 0.00122 at OWS N and 0.00149 at

OWS P as was done by Martin (1985). Solar radiation absorption was calculated using

the parameterization of Garwood (1976) in which 50% of the irradiance is absorbed in

the first meter, and the remainder is absorbed exponentially with depth. The extmction

depth was 22 m for OWS N (corresponding to type I water, Jerlov, 1976), and 12.5 m
for OWS P (Jerlov's type II water).

The bulk formulas and the values of the exchange coefficients chosen for the

surface heat and momentum flux calculations affect the performance of the mixed layer

models. The choice of particular formulas and coefficients for computing the boundan.'

conditions is, in essence, part of the tuning process for the models. In this study, the

tuning involved constants that are associated with the parameterizations in the ocean

models, rather than by adjusting the atmospheric forcing formulas. This allows the

tuning to be done with respect to the physical processes that are parametenzed in the

models. The models can then be compared using the same surface fluxes and the

differences in model simulations can be ascribed to differences in model physics.

Martin (1985) performed sensitivity studies of the bulk formulas and exchange

coefficients for OWS P and OWS N. Gallacher et al. (1983) performed sensitivity

studies for the solar radiation absorption formulation. Gallacher et al. (1983) also

compared this parameterization ^^•ith several others, including the arctangent model of

Zaneveld and Spinrad (1980) and the multiple wavelength model of Kondo (1979). and

concluded that these more involved parameterizations did not significantly alter the

depth-dependent ocean heating due to shortwave radiation. The choices of formulas

and coefficients for this study were based on those results. The choices provide a

model-independent set of surface fiuxes with the minimum annual bias in net surface

heating that is consistent with direct observations of surface fiuxes.

B. DESCRIPTION OF OCEAN WEATHER STATION DATA

Annual simulations were conducted for OWS P (50°N, 145 °W) and OWS N

(30°N, 140''W). At OWS P, the years 1961, 1965, 1966 and 1967 were chosen because
i

these years each had more than 2000 BT casts that could be used for model

verification. In 1965, 1966 and 1967, the observations were distributed rather

uniformly throughout the year (Figures 4.1b-4.1d). In 1961 (Figure 4.1a). the BT

observations were clustered around several intensive observation periods for the

57



Internal Wave Experiment (IWEX). Furthermore, 1961 was the year used by Martin

(1985) for an intercomparison of the ZSTAR model, the Niiler (1975) model and the

Mellor and Yamada (1974) level 2 and 2 1/2 models, at OWS P and OWS N. The

ZSTAR model predicted the seasonal cycle better than did the Mellor models or the

Niiler model. The ZSTAR model provided a good simulation at OWS N but tended to

shallow too much in late summer and/ or deepen too rapidly in the fall at OWS P.

depending on the model constants. Thus, the ZSTAR model provides a good

comparison model since it is as good or better than other state of the art vertically-

integrated models. The observations for 1961 at OWS N are distributed uniformly

throughout the year (Figure 4.1e). However, there are only 1650 observations

compared to an average of 2350 for the years at OWS P.

OWS P is in a region of predominately westerly winds. OWS N is in a region of

predominately easterly \^*inds during the spring, summer and fall. The wind direction at

OWS N is more variable during the winter when the subtropical high pressure center

moves south to approximately BO^^N, 140°W from its summertime postion q[

approximately 40 °N, 150°W (Tchernia, 1980). For 1961, the ^^ind direction at OWS
N is southerly to southwesterly in January and early February then predominately

easterly for the rest of the year. These stations are separated by 20** latitude. Thus, it

might seem they provide an appropriate test for the wind direction and latitude

dependence of rotation stress. However, the conditions at OWS P and OWS N differ

in more than these aspects (Elsberry and Camp, 1978). The magnitude of the wind

forcing and surface heating varies considerably from OWS P to OWS X as shown in

Table 7. The values in Table 7 suggest that the heat budget for 1961 at OWS N may

be more one-dimensional than at OWS P, since the magnitude of the annual net

surface heating (17 W m'^) at OWS N is less than the magnitude o^ the annual net

surface cooling (25 W m'^) at OWS P for the same year. There is no evidence at either

location of a climatological heating or cooling trend. Therefore, any net heating or

cooling from the atmosphere must be balanced by a horizontal or vertical heat flux in

the ocean.

The chmatological oceanographic conditions indicate that OWS P is located in a

region more likely to be dominated by the local atmospheric forcing than is OWS N.

Because OWS N is located within the region of influence of the subtropical front,

horizontal advection, convergence and divergence are expected to be more significant

(Tchernia, 1980). Indeed, there are indications in the temperature time series at OWS
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N that the subtropical front oscillates across the station. Climatologically, the ocean

surface currents at OWS N are from the north and northeast. This current, which is

part of the California Current system, transports colder water into the region of OWS

N. Thus, a net cooling due to horizontal transport is possible. At OWS P, the

climatological currents, which form the northern edge of the subtropical gyre, are from

the west. The currents are weaker on average than at OWS N and the transport is

along the isotherms rather than nearly normal to the isotherms as at OWS N.

Therefore, the net heat transport is expected to be smaller at OWS P than at OWS N
on average. Thus, the wind direction and latitude are only two of many differences

between these ocean weather stations. Differences between the simulations and

observations will reflect all the variations in atmospheric forcing and oceanic

conditions. However, by choosing periods of diurnal to synoptic time scales, during late

winter to early spring the effects of planetarv' rotation are likely to be most apparent.

Martin (1985) observed that the ZSTAR model predicted a mixed layer depth at

OWS P that was slightly deeper than observed during the summer and early fall.

whereas the mi.xed layer depth was well predicted at OWS N. The equilibrium mixed

layer depth for the RSTAR model is given by

C,L
Lo = ^-^ , (1.7)" (1 + C2<I>)

and for the ZSTAR model bv

t V2
L^ = . (1-8)

"" bw( )

The ratio of rotation stress to surface buoyancy flux is given by (1.9)

(p = =ir^ = -^ . (1.9)
pbw(O) H*

In Garwood et al. (1985a), we showed that typical summertime values are = 0.19 at

OWS P and = 0.08 at OWS N. These values have the correct magnitude and sign to

improve the mixed layer depth prediction at both OWS P and OWS N because the

resulting equilibrium depth for the RSTAR model relative to that for the ZST.AR

model is smaller at OWS P than at OWS N. The value of R* (3.60 relative to the

surface buoyancy flux H« (3.6e), rather than the absolute magnitude of R*. determines

the efficacy of R« for altering the equilibrium depth.
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TABLE 7

ANN'UAL AVEILAGE SURFACE FLUXES AT OWS P AND N

^x ^' Qs Qb Qe Qh Qn

OWS P
1961

(N

0.102 0.013 216.

(Wm
94. 86. 11. -25.

1965 0.099 0.013 221. 98. 103. 19. -I.

1966 O.OSO -0.005 216. 95. 99. 19. -3.

1967 0.100 0.012 223. 99. 108. 17. 1.

OSN
1961 -0.030 -0.006 349. HI. 227. 28. 17.

t,^ is the east-west component of surface wind stress

z^ is the north-south component of surface wind stress

Qj is the solar radiation (positive downward)

Q^ is the longwave radiation (positive upward)

Qg is the evaporative heat flux (positive upward)

Q^ is the sensible heat flux (positive upward)

Q^ is the net heat flux {Q^ + Q^ + Q^-Q^)

C. SYNOPTIC-SCALE INTERCOMPARISONS OF MODELS
Several synoptic-scale periods are chosen from annual simulations of 1965 and

1967 at OWS P and from the annual simulations of 1961 at OWS N to demonstrate

the latitudinal and seasonal variations among the RSTAR, ZSTAR and HSTAR

models and the time scales of these variations. As discussed in the introduction, R,;.

decreases 'with increasing latitude. Conversely, Z« increases with increasing latitude.

The time scale of variations in the rotation stress ranges from the inertial scale of the

planetary rotation to synoptic scale of the variations in wind direction.

Both Z* and R« are proportional to h. Because the mixed layer is at or near a

deep equilibrium state during late winter, diurnal to synoptic scale events that occur

during late winter or during the spring transition are most likely to be affected by R«

and Z«. The spring transition is that period when the mixed layer changes from the

deep equilibrium state to the shallow summertime regime. This change can occur quite

abruptly due to the modulation of the mixed layer depth by the diurnal cycle of surface

heating. The transition occurs on a day when the wind stress production of TKE is

not sufficient to return the mixed layer to the deep equilibrium depth from which the

diurnal retreat began. The date of this transition is significantly correlated at OWS P

with the accumulation of heat above the seasonal thermocline (Elsberr}' and Garwood.
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197S). Rotation stress may afTect this transition by augmenting (easterly wind regimes)

or reducing (westerly wind regimes) the entrainment rate. The frequency of diurnal and

synoptic-scale cycles of shallowing and deepening in the RSTAR simulations are quite

diiTerent from those for the ZSTAR model during the late winter to early spring for all

five years of this study (Figures 4.10a through 4.14a).

In the summer, the winds are light, the surface heating is large and the insolation

is near the annual ma.ximum. Consequently, the layer is probably too shallow for R-

or Z:;. to significantly affect the TKE budget. Dunng the fall deepening period, wind

mixing and surface cooling dominate the TKE budget and the entrainment rate is

primarily determined by the net TKE production and the density gradient below the

mi.xed layer. The direct effects of R* are expected to be dominated by the TKE

production due to wind stress and surface cooling, and the TKE loss due to

entrainment cooling and dissipation. Although variations in the density profJe of the

seasonal pycnocline caused by rotation stress during the spring transition could later

aflect the fall deepening, demonstrating such seasonal teleconnections would be very

difficult. For these reasons, the winter-spring period was examined for examples of the

influences of rotation stress. Synoptic periods characteristic of the summer and fall

conditions, as discussed above, were also chosen to demonstrate the seasonal

variability.

For these simulations, the values of the tuning constants are a compromise

among the values that were determined for the RSTAR and ZSTAR models by

optimizing the simulations of the annual cycle at OWS P for 1965, and the values

determined from theoretical estimates and from independent experimental results (see

the next section for details concerning the tuning and the optimal values for each

model). The value for Pp which is a measure of entrainment efficiency, is 0.3. It

controls the size of the entrainment cooling relative to the dissipation (Figure 3.1).

The strength of the pressure redistribution term relative to the dissipation is p2, which

is equal to 0.5 for these simulations. The relative efficiency of TKE production due to

wind and breaking surface waves is m^ (m3 = 7.5). The rotation stress term does not

contain a tuning constant, as can be seen in Table 2. The coefficient for Z* is P3. It is

m.easure of the dissipation enhancement due to rotation (Table 2). For these

simulations, p^ is set equal to I.O. The depth-averaged, dimensional variables defined

in equations (3.10a)-(3.100 of Table 2 will be used for the comparisons in this section.

These variables differ from the nondimensional variables in that they are independent
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of mixed layer depth and the wind stress production becomes an explicit term,

An example of the winter through spring transition period is the seven days taken

from the annual simulations of 1967 at OWS P (Figure 4.2). A most striking feature of

this period is that the RSTAR and HSTAR models deepen much more rapidly than the

ZSTAR model (Figure 4.2a). After 100 days of simulations, all three models predict

similar mixed layer depths. Then the ZSTAR model deepens to 90 m on day 103.5

while the HSTAR and RSTAR models deepen through the permanent pycnocline, to a

depth of 175 m in the same time span. This divergence of the entrainment rates (P) is

not due to variations in the simulated density profiles below the mixed layer, as will be

demonstrated below. It results from the reduced dissipation (D) in the HSTAR and

RSTAR models relative to that in the ZSTAR model (Figure 4.2b). The TKE that is

made available by this reduction in D is used to increase P (Figure 4.2c). The result is

that the mixed layer in the ZSTAR model deepens more rapidly, while the TKE

remains approximately the same for all three models (Figure 4.2g).

An alternative hypothesis is that the structure of the seasonal pycnocline

inunediately below the mixed layer in the HSTAR and RSTAR simulations is different

from that of the ZSTAR simulation due to variations in mixed layer depth and density

during the preceding 100 days of the simulations. If that is the case, the rates of mixed

layer deepening and the ultimate equilibrium depths are diflerent due to the differences

in the pycnocline structure into which the mixed layer is entraining rather than to

variations in the mixed layer TKE budget. To test this hypothesis, the RSTAR and

HSTAR sim.ulations were recalculated starting on day 101 with the profile for that day

and time generated by the ZSTAR model. The results (not shown) are similar to

Figure 4.2. The HSTAR and RSTAR models deepened more than the ZSTAR model

and achieved a final equilibrium depth of approximately 150 m. This is shallower than

the 175 m equilibrium depth in Figure 4.2a. However, the variations in deepening rate,

dissipation rate, vertical and total TKE are sufficiently similar to those in Figure 4.2 to

conclude that they are primarily the result of the variations in the TKE budget, rather

than variations in the underlying thermocline.

The crosses in Figure 4.2a (and in the subsequent mixed layer depth plots) are

the mixed layer depths calculated from the OWS data. For the data, the mixed layer

depth is defined as the greatest depth with a temperature less than 0.1 C colder than

the sea-surface temperature. The trend of the mixed layer depth predicted by the
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ZSTAR model agrees with the data better than does that predicted by the HSTAR. and

RSTAR models (Figure 4.2a). However, the most interesting times for comparisons

among the RSTAR, ZSTAR and HSTAR models are the diurnal retreat-deepening

events (Figure 4.2a) around days 104, 105, 106 and 107. During these events, the

mixed layer is quite deep compared to typical values for the sumjiier or fall (Figures 4.5

and 4.6) even at the shallowest point of these retreat events (approximately 100 m for

the RSTAR and HSTAR models). Thus, the rotation stress and the rotationally

enhanced dissipation will have maximum effect on the dynamics of the mixed layer.

The diurnal events predicted by all three models are not clearly represented in the data.

There does appear to be some diurnal period variations in the data, particularly around

days 105 and 106. which have a larger amplitude than that predicted by the ZSTAR

model. The amplitude of the variations, roughly 50 to 100m, appears to agree better

with the amplitude of the events predicted by the HSTAR and RSTAR models than

\^ith that predicted by the ZSTAR model. The ZSTAR model appears to fit the long-

term trend in the data. However, the RSTAR model may better predict the diurnal

events that appear in the data, although the average mixed layer depth in the RSTAR

model is clearly too deep.

There is a large diurnal to synoptic time scale signal in \V~/E (Figure 4.2h) since

W- = whenever the mixed layer retreats. In the RSTAR and HSTAR models, this

ratio is two to six larger than in the ZSTAR model. However, this increase is not

accompanied by an increase in the total transfer rate, FI-R, (Figure 4.2i) as might be

expected from Figure 3.1. In fact, the total transfer rate for the RSTAR and HSTAR

models is less than for the ZSTAR model. Thus, the increase in W^/E is not the result

of increased transfer of TKE from the horizontal to the vertical component. It is a

direct result of the decreased dissipation (see below).

Since the dissipation is specified to be isotropic, dissipation of the vertical TKE

accounts for 1'3 of the total TKE dissipated (Figure 3.1). The vertical TKE is

approximately 5% of the total TKE in the HSTAR and RSTAR models and only 1%

in the ZSTAR model (Figure 4.2h). Therefore, removing a third of the total dissipated

TKE from the vertical component may account for the difference between the

estimates from the experimental results and the model results. If this is the case, the

TKE distribution may be less isotropic in the simulations, particularly in the ZSTAR

simulation, than it is in nature. This tentative conclusion can not be verified with the

data being used in this study. Thus it must be left as a hypothesis to be tested m

future work.



The diurnal mixing events can be explained in terms of the TKE budget shown in

Figure 3.1. The mixed layer depth is well correlated with H, the dimensional, depth-

averaged surface buo}'ancy flux (3.10c). The shallowing corresponds to the increasingly

positive H that results from the diurnal increase in insolation. The maximum H occurs

at the minimum depth of the cycle, which corresponds to W-/E = 0, and H acts as a

sink of vertical TKE. Although the existence and vertical range of the events do

depend on G (3.10g), the depth of the mixed layer is poorly correlated with G and D

throughout the events. The average value of G is approximately 2.0xlO*^cm^s"^. This

is the major source of TKE during most of the events. With the primary source of

TKE in the horizontal component and the major sink in the vertical, the total TKE

transfer (Yl - R) achieves a local maximum value of 1.0-2.0xl0'^cm"s"^ during each

event. In all cases, P = until the minimum depth is acliieved and then P increases to

a maximum value of approximately 1.5xlO"*cm^s"^ at the point of maximum depth.

The behavior of P mimics that of W^/E, as expected. The maximum value of W-^E is

about 0.1 to 0.2. For the ratio of rotation stress to surface buoyancy flux {<I>>0) the

RSTAR model should retreat to a shallower depth than the HSTAR model, for which

R = 0. This is confirmed in Figure 4.2a, since the mixed layer depth for the RSTAR

model is always shallower than for HSTAR.

When variations in G and R are in phase, the wind direction must be easterly.

This is generally the case in the events discussed here. At the start of the event on day

104, R (Figure 4.2e) and G (Figure 4. 2d) are no larger than in other events. However,

the event corresponds to a local maximum for R and local minimum for G. This

implies that the wind speed is reduced and the direction shifted such that the winds

were blowing from the east. All the other events are local minimums for both R and

G. This extra conversion of vertical to horizontal TKE due to the increasing R during

day 104 is coupled with a reduction of TKE due to decreased G throughout the period.

Consequently, the RSTAR model retreats 30 m whereas the mixed layer depth in the

HSTAR model does not change. Conversely, both models retreat equally for the event

of day 107 because R is approximately zero throughout the period (Figure 4.2e). The

smaller rate of deepening of the RSTAR model compared to the HSTAR model for

days 101 through 103 is a direct result of the reduced total transfer, IT - R, (Figure

4.2i) due to the positive R (Figure 4.2e). This difference in the rate of deepening also

appeared in the test for which the RSTAR and HSTAR models were restarted at day

101. Therefore, it is not a consequence of any differences in the pycnocline structure

below the mixed layer.
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Another case during the winter through spring transition is from OWS P during

days 72-SO of 1965 (Figure 4.3). The most significant difference between this case and

the previous one (Figure 4.2) is that R is negative throughout most of the period

because the winds are easterly. As a result, the mixed layer depth (Figure 4.3a) from

the RSTAR simulation is deeper than that from HSTAR by approximately lO'^/o. The

ZSTAR model is shallower than either the HSTAR or RSTAR model and the mixed

layer depths calculated from the BT casts are generally closer to the ZSTAR solution.

However, there still appears to be more diurnal to synoptic scale variability in the data

than in the ZSTAR model predicted depths. For ZSTAR, the average W-^ E (Figure

4.3h) is small, about O.Ol, as in the previous case. For HSTAR. W'/E is about twice

the previous value. For the RSTAR model, W^/E is 20% larger than for the HSTAR
model. This results from the enhanced transfer of TKE from the horizontal to the

vertical component. In this case, R* acts to increase the isotropy of the TKE budget.

During the synoptic period from day 74 through day 77, the mixed layer from the

RSTAR simulation becomes increasingly deeper than the mixed layer depth from

HSTAR (Figure 4.3a) since the winds are easterly throughout the period. As the

mixed layer deepens and the entrainment rate shows the average W^/E (Figure 4.3h) is

decreases.

A fmal example during the winter-spring transition is from OWS N during days

77-84 of 1961 (Figure 4.4). For this case, R oscillates between positive and negative

values with a two to three day period (Figure 4.4e). The positive peaks in R

correspond to peaks in G (Figure 4.4d); whereas R<0 events corresponds to low wind

speeds. For this case, the mixed layer depths (Figure 4.4a) predicted by all three

models are similar, due to the relatively large production of TKE by the surface

buoyancy flux. In this example, H (Figure 4.4f) is more negative by approximately a

factor of two than for the 1967 OWS P case (Figure 4.2f)- The mixed layer depths

calculated from the BT casts do not show the diurnal cycles predicted by all three

models. No model fits the data appreciably better than the other two. The mixed

layer from the RSTAR simulation is shallower than from the HSTAR simulation when

R is positive on day 78 and deeper on day 79 when R is negative. The ratio W-/E

(Figure 4.4h) is greater than 0.33 for all the deepening events which indicates that the

events are buoyancy-driven. For the deepening event on day 79, W ,'E from the

RSTAR model is larger than for the HSTAR or ZSTAR model. This is a direct result

of the enhanced transfer of TKE from the horizontal to the vertical component due to
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the negative R. The isctropy of both the RSTAR and HSTAR models arc greater than

for the ZSTAR model due to the reduced dissipation in those models. At the start of

day 79, the dissipation (Figure 4.4b) in the ZSTAR model is roughly 50% larger than

in the RSTAR and HSTAR models.

It was hypothesized that the effects of R and Z would be the greatest during the

winter through the spring transition period discussed aboved. The effects of planetary-

rotation should be smaller during summer since the mixed layer is relatively shallow

and the winds are light. A synoptic period from days 210 to 217 at OWS P during

1967 will be used to verify this hypothesis. For this period (Figure A. 5). the three

models give virtually identical results. The average for R during this period is almost

zero and the maximum value of S-OxlO'^cm^s"-^ (Figure 4.5e) is more than an factor of

10 smaller than the maximum value for the winter case (Figure 4.2e). The mixed layer

depth, 0(3 m) (Figure 4.5a). and the average ratio of vertical to total TKE of 0.07

(Figure 4.5h) are virtually identical for all three models.

In the fall (Figure 4.6), R and Z are more effective than in the summer.

However, the mixed layer deepening is accelerating mainly in response to increasingly

large wind stress and positive surface buoyancy flux. For the period in Figure 4.6, days

250 to 257 from OWS P for 1967, the average wind stress production is

G = 1.0xI0"~cm^s"-^ (Figure 4.6g) and the surface buoyancy flux (Figure 4.60 is

-6.0xl0"^cm^s''^ < H ^ 4.0xl0"'*cm~s"^, with negative values indicating production of

TKE. By contrast, the average R is only 5.0xl0"^cm^s'^ During this period, all three

models are deepening at similar rates. The rate of mixed layer deepening is limited not

only by the rate of production of TKE by the surface fluxes but also by the strength of

the pycnocline. For example, the fairly substantial storm on day 255 (maximum

G= S.OxlO'^cm^s*-' and a maximum H = -4.5xl0"^cm's"-) only deepened the mixed

layer 5m. The mixed layer depth from the ZSTAR model is appro.ximately 25%

shallower than that of the HSTAR or RSTAR models throughout the period and

W^/E is smaller because of the enhanced dissipation in the ZSTAR model. However,

the rate of deepening 0(1 m/day) is approximately the same for all three models and

the difference between the RSTAR and HSTAR models is negligible even for the large

negative R (-4.0xl0"'^cm^s"-^) on day 254.5. This indicates that the rate of transfer of

TKE between the horizontal and vertical components is not a signiflcant part of the

TKE budget during this period. These synoptic periods are typical of the seasons

represented.
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To summarize the results of the cases discussed above, both R>;. and Zt. were

shown to be relatively ineffectual during the summer and fall. During the winter

through the spring transition, R* and Z« substantially alter the diurnal to synoptic

scale mixing events and the long term trend in mixed layer depth. Variations in the

dynamics of the upper ocean can be described in terms of the TKE budget of the

OPBL (Figure 3.1). The isotropy of the TKE distribution for the OPBL changes

substantially on diurnal to synoptic time scales. The turbulence is likely to be most

anisotropic for retreat events {W<,*^->0). The isotropy of the TKE budget predicted by

the RSTAR model is considerably different than that predicted by the ZSTAR model.

as is the entrainment rate. For the RSTAR model, the isotropy (e.g., Figure 4.2h) is

larger than for the ZSTAR model by as much as a factor of 10 and the entramment

rate (e.g.. Figure 4.2c) is 2 to 2.5 times greater than for the ZSTAR model. These

results from the synoptic scale studies appear to contradict the nondimensional results.

The latter predicted greater variation in the isotropy (Figure 3.3b) and reduced

entrainment rate (Figure 3.2b) as a function of R«, particularly for deep mixed layers.

This apparent contradiction is due to the smallness of Z.-:, and, particularly, R.-!-. in the

syTioptic studies. For the winter-spring transition cases most values were in the range

0^Z.-:^0.5 and 0^R«:^0.1. In the nondimensional plots the values are

0<Z=;.,R.-.:<2.0 for P* and 0<Z«<1.0, -0.5 < R* <0.5 for \V,,-/E. The maximum

values used in the nondimensional plots are well within the range of reasonable values

at OWS P and OWS N but these larger values do not occur for the near equilibrium

situations shown in the synoptic scale figures.

At least for the parameter values used in the synoptic studies, R« did not provide

sufficient damping of P« to prevent excessive mixed layer deepening for the winter

cases. However, the ZSTAR model predicts a significantly less isotropic TKE balance

in the OPBL. The isotropy of shear-forced mixing layers can be estimated from

various laboratory studies that have been reported in the literature (Table 8). There

are no field measurements in the upper ocean, from which estimates of the isotropy of

the integral scale turbulence can be made. Based on the estimates in Table S. the

average value of W*^/E--0.05 for the RSTAR and HSTAR models probably is an

underestimate and the value of W«^/E~0.01 for the ZSTAR model very likely is an

underestimate (Figure 4.2h). However, the laboratory measurements are for wall-

bounded, pure shear flows. The OPBL is bounded by a free surface and there can be

significant production and damping of the TKE by buoyancy fluxes. For the case of
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buoyant damping, the isotropy of the OPBL should be less than the estimates from the

laboratory- measurements, which are for neutrally buoyant flows.

TABLE 8

ESTIMATES OF THE ISOTROPY OF WALL-BOUNDED SHEAR LAYERS

Source Type of Flow W,:-/E«

Smits et al. (1979) Convex curvature 0.16

Muck et al. (1985) Convex curvature 0,22

Townsend (1976) Flat plate 0.25

Hunt and Joubert (1979) Convex curvature 0,25

So and Mellor (1973) Convex curvature 0.29

The temporal and spatial resolution and the precision of the OWS data sets used

in this study was not sufficient to verify the increased frequency and magnitude of

diurnal to synoptic scale shallowing-deepening events predicted by the RSTAR model.

Further simulations are recommended using data from experiments such as the Storm

Transfer and Response Experiment (STREX) and the Mixed Layer Dynamics

Experiment (MILDEX) to verify the effects of rotation stress. These experiments were

intense synoptic period observations of the upper ocean and the surface fluxes at

higher temporal resolution and with greater accuracy and precision than the OWS
data. However, these data sets may not contain events with the east-west wind stress,

which is needed to test the variations among the models. A set of experiments aimed

specifically at verifying the rotation stress effects may be required. Measurements of

surface stress to ± 1.0x10°^ N m'^ and surface heat fluxes to ± 10 W m"' are now

possible (Large ei al., 1986). These should produce sufficiently accurate surface Uuxes

to test the models introduced in this research. The capability now exists to measure

temperature profiles to millidegree precision. This would allow the differences in

sim.ulated mixed layer temperature and depth among the models to be tested along

with the assumption of a "well-mixed" similarity profile.

The magnitude of the processes that affect the TKE budget (e.g. R, D, and O)

calculated for the synoptic scale studies vary from lO'^cm^s'^ to lO'^cm^s'-^, and the

magnitude of the TKE is O(10°~cm^s ). The difference between the values of W.-:-.-,'E*

predicted by the RSTAR and ZSTAR models implies a difference in vertical TKE

averaged over the mixed layer of 2xl0'-'cm^s'^. Differences in the magnitudes of R, D,
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n and the other processes shown in Figure 3.1 range from 10"^cm-s'^ to lO'^cnrs"-^

between the RSTAR and ZSTAR models. The lower limit for measurements of the

rate of dissipation of TKE in the ocean is 2.0xlO"^cm^s'^ (Osborn and Lueck, 1984)

due to instrument noise. Thus, the differences in the TKE budgets calculated in this

work, may be measureable with current technology. These dissipation measurements

resulted from microstructure measurements of turbulent velocity shear, absolute values

of turbulent velocity may not be measurable to the same precision. Also horizontal

transects through the mixed layer would be required to collect time series of sufTicient

duration to obtain stable correlations of the turbulent velocity components. Such

transects are difficult even using a relatively stable underw^ater platform such as a

submarine (PvOlf Lueck, personal communication).

These studies of synoptic periods selected from annual simulations with the

RSTAR, ZSTAR and HSTAR models demonstrated that for the same values of the

tuning constants the models predicted quite different responses to the same forcmg.

Rotation stress changes the frequency and magnitude of diurnal to synoptic scale

shallowhig and deepening events predicted for deep mixed layers. During these events,

the depth changes calculated by the RSTAR model were 10% to 30°/o greater than

those calculated by the HSTAR model. Simulations from both these models were

substantially different from simulations with the ZSTAR model during the winter,

during spring transition and during the fall deepening. All three model calculated

similar summertime mixed layers. The TKE distributions predicted by the RSTAR and

HSTAR models were 10% to 40% larger and more isotropic than that predicted by the

ZSTAR model. This was the result of the larger dissipation associated with the

inclusion of the rotational dissipation enhancement in the ZSTAR model. The

dissipation is assumed to be isotropic in all three models, whereas W,;<^ E* was usually

less than O.l in the simulations. Laboratory measurement indicate that the values for

W«'.'E* are probably too small.

D. TUNING USING ANNUAL SIMULATIONS

For the simulations discussed in the previous section, the values of the tuning

constants were based primarily on theoretical estimates and experimental results. As

discussed, the ZSTAR model simulations best fit the trends in the data. In general,

any of the models could be tuned to estimate the trend in the data for synoptic-scale

periods. This is due partly to the relatively narrow range of surface fluxes and mixed

layer variations that occur over such short periods. However, annual periods include a

69



suiTiciently broad range of physical processes that tuning alone is not sufTicient if the

model physics is inadequate or incomplete. ,As discussed in Chapter II, the need for a

mechanism to prevent excessive wintertime mixing in bulk models is well known. The

purpose of this and the following section is to demonstrate the requirement for such a

mechanism and to determine the extent to which rotation stress may provide this

mechanism for regions of westerly wind. The results of Garwood ei al. (1985b) suggest

the possibility that rotation stress may eliminate the need for rotationally enhanced

dissipation on seasonal to annual time scales. The hypothesis for this section is that,

for the proper values of the tuning parameters, the RSTAR model can simulate the

annual cycle of the OPBL for westerly wind regimes without excessive winter deepening

or a generally poor fit to the annual cycle.

The RSTAR and ZSTAR mixed layer models are optimally tuned for this part of

the study. That is, the model constants are adjusted in an attempt to obtain a best fit

to the observed mixed layer depth and temperature. A more complete discussion of the

defmition of best fit between the models and observations is given below. The rotation

stress term does not contain a tuning constant. However, altering the constants in the

other terms implicitly alters the effects of R*. Because the models are nonlinear the

eftects of the physical processes are not independent and all the constants must be

adjusted if the models are to be optimally tuned for a given set of physical processes.

The parameters that will be tuned and the processes they alTect are shown in

Figure 3.1. For the models discussed in this work, the efficiency of TKE production

due to wind and breaking surface waves and the convergence of TKE within the mixed

layer is m^. The entrainment efficiency is pj. The strength of the pressure

redistribution term is determined by p,. In the ZSTAR model, the p^ coefficient for Z^-.

is a measure of the strength of the dissipation enhancement. The coefficients p^ p,

and p^ are all defined relative to the lowest order parameterization of dissipation,

E*-''^. The RSTAR model contains three tuning parameters whereas the ZSTAR

model contains four.

The 1965 data at OWS P were chosen for these tuning experiments because of

the large number of evenly distributed obsers-ations (Figure 4.1c). Furthermore, the

one-dimensional mixed layer model assumptions are met since the net annual heating

was relatively small during that year (Table 7). The models were tuned by choosing a

set of statistical measures to be minimized on an annual time scale. The statistical

parameters chosen were the bias,
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= (->'., - -^h)/Noias * m d

and the root mean square error (RMSE),

of the mixed layer temperature (T) and depth (h). In the above definitions, the x^'s

are the simulated values and the x^'s are the observations. The summations are over

ail BT casts for the year and the concurrent model value is specified at the hour nearest

the time of the BT cast. The bias measures the fit of the phase and amplitude of the

low frequency (seasonal to annual time scale) variability between the obser^'ations and

the simulations. Matching the timing and peak values of the summertime maximum

temperature and minimum depth and the wintertime minimum temperature and

maximum depth between the observations and the simulations will minimize the bias.

The RMSE is minimized by matching the phase and amplitude of the high frequency

(synoptic to diurnal period) variability in the model and the observations.

For a specified value of p,, the bias in the RSTAR model can be minimized for

the locus of (m^, p^) points defining the zero contour lines on Figures 4.7a and 4.Sa for

the depth and temperature, respectively. If p2 is increased, the zero contour is shifted

toward smaller (m^, p^), but the curvature remains roughly the same. Thus, the zero

bias for temperature or depth forms a surface in (m^, p^, P2) space that decreases with

increasing p, and has concave curvature in the (m^, p^) plane. If pj is increased, the

transfer of TKE from the horizontal to the vertical increases. Thus, the same mixed

layer depth and temperature could be achieved with less TKE production (m^) and less

elTective mixing (p^). For fixed p2, increasing the TKE production (m3) implies that

less efficient mixing (reduced p,) is needed to achieve the same mixed layer depth

(MLD) and mixed layer temperature (MLT).

Although the temperature (Figure 4.8b) and depth (Figure 4.7b) RMSE's have a

pattern similar to that of the biases, they do not overlay the zero bias contours.

Rather the RMSE minima correspond to biases for which the model is warmer (Figure

4.Sa) and shallower (Figure 4.7a) than indicated by the observations. A shallower

OPBL will tend to have more high frequency variability due to the reduced thermal

inertia. The rather large RMSE's indicate that the model variations lack, some of the

high frequency variability that exists in the BT data. The high frequency variations in

the BT data may be due to such factors as noise, motion of the ship on station,

horizontal advection of the temperature patchiness that has been obser\'ed in the upper

ocean (R. W. Garwood, personal communication), or it may be due to the differences
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in definiuon of MLD and MLT for the model and the data. Some bias in model versus

data comparisons can be expected from the difference between the observational

defmition of MLD and MLT given above and the model MLD and MLT. In

particular, the large minimum RMSE and the displacement of the RMSE minimum

relative to the zero bias is consistent with this dilTerence in defmition. This study is

concerned more with comparing the physical processes parameterized in the RSTAR

and ZSTAR models than with achieving the optimal model versus data comparison.

Therefore, no attempt will be made to correct for any possible biases that may be

associated with the different definitions of MLD and MLT.

As discussed above, the minima of the temperature and depth biases and

RMSE's for the RSTAR model form surfaces in (m^ Pp P2) space. There is no

indication that the minimum values become smaller an^'u^here in parameter space or

that the surfaces converge. Thus, the fit between the RSTAR model and the data, at

least based on these statistics, will not improve significantly for some set of param.eter

values different from the values of the tuning constants used in the previous section.

The conclusion is either that R* can not eliminate Z« at midlatitudes on annual time

scales or that these annual statistics are insufficient to allow quantitative tuning of the

model.

The statistical estimates that were chosen are not perfect since the values can be

minimized for the wrong reasons. For example, the values of the biases can be

minimized by a model annual cycle that is too warm in the summer and too cold in the

winter such that the average of the biases is small. The RMSE can be minimized if the

dominant time scale of the model is the same as the dominant time scale of the data

and they are in phase even if the amplitudes are significantly different. Thus, ic is

possible to achieve a "good" fit with respect to these statistics for a model that is

significantly different from the data. These statistics do not appear sufficient to form

an explicit, quantitative method of model tuning. Since it is apparent that R* is not

sufficient to eliminate Z*, no attempt will be made to determine an improved set of

model tuning statistics for this study. However, such a study will be necessary for

future work involving real time upper ocean predictability.

Estimates for some parameters can be made from independent experiments and

from theor>'. The dimensional equilibrium, or retreat, depth can be computed for the

RSTAR model by setting P* = W*^ = in Table 3 and substituting for the

nondimensional variables from Table 2 to obtain a dimensional retreat depth. The

resulting retreat depth is
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h = "^?(P2 - V^)^o
'

(P2 + 2/3 + 20))
'

which is the same as (2.8) in Gan^'ood et al. (1985a). This indicates that ^2- ^- ^^

required for hj.^0. This establishes a lower bound on p^, at least for the RSTAR

model. Zeman and Tennek.es (1975) summarized laboraton.' and atmospheric

obser^'ations that indicate that p, should be approximately 1;2. Garwood ei al.

(1985a) estimated m^ to be approximately seven based on measurements by Oakey and

Elliott (1982). Values for p, and p, are less quantifiable. However, p^ must be less

than one and p^ should be of order one. If p, is significantly diiTerent from one. it

most likely represents the efiects of physical processes other than dissipation, and these

processes should be modeled explicitly. The model does not seem to be ver>- sensitive

to variations of p^. Preliminar}' tuning simulations indicated that varying p^ by ±0.1

altered the annual average depth bias approximately ±2.5 m about an annual average

bias q[ approximately m and varied the annual average temperature bias roughly

= O.OS''C about an annual average average bias of 1.3° C. A more complete study o(

the sensitivity of the ZSTAR model to variations of p-, might indicate what physical

processes are being parameterized with Z.-:-. and how the parameterization could be

improved.

The m.odels were tuned by changing m-j in the neighborhood of seven and

allowing p, to range between 0.1 and 0.5 until no extreme values of the monthly depth

biases and RMSE's were obtained for any months of 1965 at OWS P. The resulting

values for the model constants are summarized in Table 9.

TABLE 9

MODEL CONSTANTS FOR OWS SIMULATIONS

ZSTAR RSTAR

^3 10.0 5.0

Pi 0.3 0.3

P2 0.5 0.5

P3 1.0

73



E. SEASONAL AJND A!NP<JUAL SLALL ilN 1 LKCUIVlt'AKlSUINS Ut MUULLS

The problem of excessive \vintertime deepening in early bulk models of ihe OPBL

was discussed in Chapter II. Several solutions to this problem were reviewed. In

particular, the rotationally enhanced dissipation parameterization of Gan^'ood (1977)

has been discussed in some detail and is a major component of the ZSTAR model

being used in this study. To demonstrate the effectiveness of this dissipation

parameterization, simulations of 1965 at OWS P with the HSTAR and ZSTAR models

are compared using the fmal tuning constant values chosen for the ZSTAR model

(Table 9). The ZST.AR and HSTAR simulations are similar m the summer (Figure

4.9). However, the H'STAR simulation is significantly deeper than the ZSTAR

simulation or the observed mixed layer for days 0-130. .Also the fall (days 275 to 325)

deepening rate in the HSTAR simulation is too large. This results in a wintertime

mixed layer depth that is approximately 75 m deeper than the observations after day

325. Only the existence of the halocline between the initial mixed layer depth and

150 m prevents the mixed layer from being even deeper (Figure 4.9). These simulations

clearly demionstrate the need for some additional process or processes to reduce the

efiiciency of mixed layer deepening in the HSTAR model and allow a cyclic steady

state for the OPBL depth.

The seasonal to annual time-scales effects of rotation stress and rotationally

enhanced dissipation are investigated using annual simulations for 1961. 1965. 1966

and 1967 at OWS P and 1961 at OWS N. The RSTAR and ZST.-VR models use the

values of the tuning constants given in Table 9. The biases and RMSE s are calculated

even.' 30 days and annually for all the simulations. The annual cycles of predicted

3-hourly MLD (Figures 4.10a - 4.14a) and MLT (Figures 4.10b - 4.14b) for each model

are similar m gross features and comparable to the observed values. The monthly

biases and RMSE's for the MLD and MLT (Table 10 - 14) also have some common

characteristics on annual time scales. Both models tend to be too warm and shallow in

the summer compared to the observations.

Spring transition, which is the usually abrupt transition from a deep wintertime

regime to a shallow summertime regime, occurred around day 90 for OWS P, 1961.

1966 and 1967. about day 70 for OWS P. 1965 and OWS N. 1961. and near day 60 for

OWS P, 1966. The models tend to be deeper and colder than the observations prior to

the start of the spring transition. This may be due in part to the lack of surface

salinity flux in the boundar}' conditions. The annual evaporation and precipitation

may play a significant role in limiting the wintertime deepening at OWS P both late in
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the >-ear and prior to spring transition (Garzon, 1987), Also, the lack, of accurate

temperature and salinity profiles for initialization is important to model performance

prior to spring transition. Before the construction of this seasonal thermociine, the

model MLD is extremely sensitive to the strength of the pycnocline immediately below

the mixed layer. Thus, the initial pycnocline is critical to the model performance

during this period. After the spring transition, the model begins to build a seasonal

thermociine.

Tables 10 through 14 give the monthly and the annually averaged temperature

and depth biases for the ZSTAR and RSTAR models. For OWS P during 1967, the

annual average surface heat ilux of +0.8 W m"'^ (cooling) is the smallest of the five

years. For both models (Table 10), the annual temperature biases and RMSE's are

smaller than for any other year at OWS P. Both models have annual average

temperature biases of less than 1.0°C. The ZSTAR bias was 0.4° C (positive bias

means the model was warmer than the observations), and the RMSE was 0.6 "C. For

RSTAR, the bias was 0.9°C and the RMSE was l.O'C. The values for RSTAR are

about twice the ZSTAR values. However, the annual-average depth bias is

significantly sm.aller for RSTAR and the annual-average depth RMSE's are

comparable. The depth bias was -2.3 m and the RMSE was 33 m for RSTAR; for

ZSTAR. the bias was -15 m, the RMSE was 40 m. A negative bias means the model

was shallower than the observations. The ZSTAR model is warmer and shallower than

the observations ever>' month except October and November, which accounts for the

larger depth bias. The RSTAR model achieves a better annual average bias by having

a monthly average temperature that is too cold in the winter and fall and too warm in

the summer. The maximum monthly temperature bias in the RSTAR model of 3.0 "C

in August is three times that of the ZSTAR model. Similarly, the RSTAR model

mixed layer is too deep in the winter (maximum bias =32 m) and too shallow in the

summer (maximum bias = -6 m).

The RMSE's for the RSTAR and ZSTAR models are comparable for all months

except January, February and December 1967 (Table 10). In those three months, the

ZSTAR model has significantly more diurnal and synoptic scale variability than either

the data or the RSTAR model (Figure 4.13a). The diurnal to synoptic variability is

similar for both models for days 120 to 240. For days 60 to 120 and 240 to 330, the

RSTAR model has less diurnal to synoptic variability than the observations, whereas

the ZSTAR model has more. Thus, the "comparable" RMSE values for the two
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models are achieved quite difTerently. For RSTAR, tiie variability is less and for

ZSTAR it is greater than in the observations.

The net annual surface heat flux is approximately zero in all three years,

1965-1967 at OWS P. The annual temperature bias and RMSE for the RSTAR model

are similar for all three years. For the ZSTAR model, the annual temperature bias and

RMSE is larger for 1965 and 1966 than for 1967. In 1965, the mcrease is due mainly

to larger values early in the year, whereas in 1966 the increase is the result of larger

differences between the model and the observations late in the year. Thus, it is

possible to obtain similar values for the annual biases and RMSE's with quite different

m^onthly results.

For 1961 at both ocean weather stations, the annual average surface heat flux is

larger, by an order of magnitude, than in the other three years. At OWS P. there was

an annual average surface warming of 25 W m'^. At OWS N, there is an annual

average surface cooling of 17 W m"~. The annual average temperature and depth

biases for both the RSTAR and ZSTAR simulations are two to three times larger at

OWS P for 1961 than they were for the other three years. Both models are- shallower

and warmer than the observations. For ZSTAR, the annual average temperature bias

is l.S°C, which is three times the values for 1965 through 1967. The depth bias is

-9.4 m, vv'hich is similar to the other years. Both the annual average temperature bias

for RSTAR of 3.2 °C and the depth bias of -7.5 m are larger than the values from

other years. These results are consistent with the large annual average surface

warming for 1961 at OWS P.

The biases and RMSE's for OWS N are almost identical for both models and are

smaller than at OWS P for 1961 and comparable to OWS P for 1965-1967. The annual

average temperature bias is -0.5 "C for both models and the model depth is 5 .m

shallov/er than the observations for ZSTAR and 4.3 m shallower for RSTAR. The

annual average surface stress at OWS N was approximately 0.03 N m'-, compared with

an average of about 0.1 N m"^ for the four years at OWS P (Table 7). At OWS N, the

annual average north-south stress is a factor of five smaller than the east-west stress.

Thus, there is a relatively large annual average surface cooling with light easterly winds

at OWS N compared to an approximately zero net surface heating and moderate to

strong westerlies at OWS P. This implies that R.-:. and Z« will be smaller at OWS N due

to the small surface stress and due to the relatively shallow mixed layer. The winter

maximum mixed layer is 0(120 m) at OWS N compared to (150 m) at OWS P. Also
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K* will be relatively large and negative at OWS N. Thus, the relative efTects ofZ.-:, anU

R* at OWS N will be small and mixed layer deepening will mainly be driven by the

surface buoyancy flux. The similar results for the two models indicates that the annual

simulations are not ver>' sensitive to Z* and R^h at OWS N for 1961.

The result that the simulated depths are too shallow on average may indicate

that mixing due to surface buoyancy flux is underestimated in the models. The same

result could be due to tuning the dissipation to be too large to compensate for too

m.uch mixing by the surface stress. The simulations are colder than the data due to the

large surface cooling being distributed over a too shallow layer. The effects due to

latitudinal variations in R* are obscurred by the variations caused by the significantly

different surface buoyancy and momentum fluxes at the two ocean weather stations.

The RSTAR model is generally warmer and shallower in the summer and colder

and deeper in the winter compared to the ZSTAR model and the observations at OWS
P. This is characteristic of an incomplete parameterization of dissipation (Caspar.

1986). At the same time, the ZSTAR model has more diurnal to synoptic scale

variability than the RSTAR model or the observations (for these values of the tuning

constants. Table 9). This can be the result of too much dissipation such that the mixed

layer retreats too much for slight variations in wind speed. In general, the ZSTAR

model simulated the data better than the RSTAR model. However, the ZSTAR model

rarely achieved a good fit to the data for all seasons of the year. Thus, a better annual

fit had to be achieved at the expense of one or more seasonal periods.

Based on the results of the synoptic studies, the results from tuning the

param.eters, and the results discussed above, the conclusion is that a reduction of

mixing efficiency is needed, at least for midlatitude mixed layers. The rotation stress is

not sufficient to prevent excessive mixed layer deepening in regions of westerly uind at

midlatitudes. However, the results of Garwood et al. (1985b) indicate that R.-;: may be

sufficient to prevent excessive deepening in equatorial regions where R.;< approaches a

maximum and Z* approaches zero. However, over much of the tropics the winds are

easterly and R* would enhance mixing. The synoptic studies discussed above indicate

that for westerly wind regions R* can reduce the wintertime mixed layer depth 10°o to

15%. Thus, a smaller value of Z* may be required in a model which includes both the

rotation stress and the rotationally enhanced dissipation. A smaller value of Z,;, may

reduce some of the problems in the ZSTAR simulations that were discussed above. An

alternative solution is find a process that prevents excessive mixing without increasing

the anisotropy of the TKE budget.
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TABLE 10

COMPARISON OF MODELS AT OWS P, 1967

ZSTAR RSTAR
T-. T hu- h To- T hu- h

bias rmse bias rmse bias rmse bias rmse

Jan 0.1 0.2 -24.4 47.8 0.0 0.2 31.6 38.4
Feb 0,1 0.2 -61.8 70.1 0.0 0.2 7.6 34.7
Mar -0.1 0.3 -43.6 74.0 -0.1 0.3 -4.3 74.5
Apr
May

-0.0 0.3 -40.2 61.3 -0.1 0.3 -31.8 60.5
0.1 0.3 -3.1 11.9 0.1 0.2 -4.6 12.4

Jun 0.3 0.5 -2.3 6.0 0.9 1.0 -4.6 7,0

Jul 0.2 0.5 -1.9 7.0 1.4 1.5 -5.0 8.2
Aug 1.0 1.2 -0.7 5.7 2.9 3.0 -2.7 5.9

Sep^ 0.5 0.7 =3.3 13.9 1.8 1.9 -6.4 13.8
Oct 0.4 0.6 4.4 15.9 1.2 1.3 1.2 13.6
Nov 0.8 1.0 9.9 27.3 1.0 1.2 13.0 26.7
Dec 1.1 1.2 -41.9 53.6 1.0 1.0 -7.3 22.9

AV2 0.4 0.6 -15.2 39.6 0.9 1.3 -2.3 33.2
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TABLE 11

COMPARISON OF MODELS AT OWS P. 1965

ZSTAR RSTAR
T,

.

T K- h Tk- T h,

.

h
Dias rmse bias rmse bias rmse bias rmse

Jan 1.3 1.3 -29.3 56.3 1.1 1.1 32.9 65.2
Feb 1.3 1.3 -17.2 57.3 1.1 1.2 42.7 76.3
Mar 0.6 O.S -8.5 27.3 0.4 0.6 7.9 37.8
Apr
May

0.5 0.6 -14.0 32.0 0.2 0.4 -3.7 38.9
0.6 0.6 -7.2 20.4 0.3 0.4 -6.1 21.3

Jun 0.9 0.9 -4.3 10.4 1.0 1.1 -6.5 11.3
Jul 1.2 1.3 -1.8 7.8 1.9 2.0 -4.7 8.5
AU2 1.1 1.2 -4.3 9.9 2.0 2.0 -6.6 10.8
Sep" 0.8 0.9 -1.2 7.8 1.9 1.9 -3.6 S.O
Oct 0.3 0.5 -0.9 14.9 1.0 1.1 -5.5 12.2
Nov -0.2 0.4 -1.2 23.1 -0.3 0.5 4.9 17.3
Dec 0.2 0.4 -7.6 25.4 -0.2 0.4 25.2 30.9

Avg 0.7 0.9 -7.2 27.4 0.9 1.3 4.6 33.6

TABLE 12

COMPARISON OF MODELS AT OWS P, 1966

ZSTAR RSTAR
T X Vi 'h

bias rmse bias rmse

Jan 0.2 0.2 -43.9 59.8
Feb 0.2 0.2 -0.9 53.9
Mar 0.2 0.2 -35.3 67.1
Apr -0.2 0.3 -19.7 33.8
May -0.2 0.3 -13.5 21.8
Jun 0.6 0.8 -3.9 8.5
Jul 1.3 1.4 -4.0 6.9
Aug 1.7 1.8 -4.0 9.5
'Sep 1.6 1.6 -2.3 10.8
Oct 1.2 1.2 0.6 19.4
Nov 1.1 1.2 -22.1 27.1
Dec 0.4 0.5 -22.5 37.0

Avg 0.7 1.0 -14.4 35.9 1.1 1.8 -1.4 34.7

T.. T hu- h
bias rmse bias rmse

0.1 0.1 10.3 33.7
0. 0.2 45.7 75.7
0. 0.2 2.7 64.7
-0.3 0.3 -10.0 33.6
-0.2 0.4 -13.7 21.6
1.0 1.2 -6.6 10.1

2.7 2.9 -5.7 8.2
3.4 3.4 -7.8 ll.U
3.0 3.0 -6.3 11.7
2.1 2.1 -1.7 17.1

1.4 1.4 -20.4 23.3
0.2 0.4 2.0 23.8
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TABLE 13

COMPARISON MODELS AT OWS P, 1961

ZSTAR RSTAR
T.. T hu- h Tu- T h^,- h

Dias rmse bias rmse bias rmse bias rmse

Jan 0.7 0.8 6.5 56.1 0.6 0.7 46.6 82.4
Feb 1.0 1.0 -20.9 58.0 0.9 0.9 30.9 65.7
Mar 0.8 0.9 -88.4 107.9 0.8 0.8 -51.6 91.9
Apr
Mav

0.6 0.7 -14.9 35.0 0.5 0.6 -8.3 32.7
0.8 0.8 -17.7 29.8 0.7 0.7 -17.4 28.9

Jun 1.1 1.2 -9.6 17.6 1.5 1,6 -11.8 18.2
Jul 2.0 2.0 -4.1 7.8 3.5 3.5 -5.3 8.4
Aug 2.4 2.4 -5.3 9.2 4.8 4.8 -8.4 11.2
Sep 2.4 2.4 -7.2 14.0 4.7 4.7 -11.9 16,0
Oct l.l 1.2 -2.3 21.2 2.5 2.6 -9.3 20.3
Nov 0.8 1.0 -0.7 22.9 1.3 1.4 -5.0 18.4
Dec 1.5 1.5 -4.9 32.4 1.4 1.5 14.1 30.7

Avg 1.8 1.9 -9.4 28.6 3.2 3.7 -7.5 29.0

TABLE 14

COMPARISON OF MODELS AT OWS N, 1961

T,
bias

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Avg -0.5

ZSTAR
T ]

rmse

RSTAR
bias

0.8

rmse

-0.0 0.6 -0.7 59.7
=0.2 0.4 -3.9 45.2
-0.3 0.5 -4.3 42.1
-0.6 0.8 -29.3 53.2
-0.7 0.9 -19.4 33.2
-0.4 0.8 1.7 9.8
-0.8 0.9 -2.3 12.8
-0.1 0.5 -5.3 13.4
-1.2 1.4 4.4 21.5
-0.2 0.8 -14.2 29.0
-0.8 0.9 -11.0 35.6
-0.6 0.6 24.1 56.7

•5.0 36.1

Tu- T Hu- h
bias rmse bias rmse

-0.0 0.6 3.9 62.0
-0.2 0.4 -0.7 46.4
-0.3 0.5 -2.8 47.5
-0.6 0.8 -30.2 53.4
-0.7 0.8 -20.3 33.7
-0.3 0.9 -O.l 9.7
-0.7 0.9 -4.1 13.6
-0.0 0.5 -6.5 14.0
-1.2 1.4 3.1 21.4
-0.2 0.7 -13.6 29.3
-0.8 0.9 -9.7 35.2
-0.7 0.7 32.5 60.3

-0.5 0.8 -4.3 37.5
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V. SUMMARY AND RECOMMENDATIOiNS

This work introduced rotation stress, a mechanism by which planetary rotation

and wind direction afTect geophysical turbulent boundary layers. Rotation stress is the

interaction of the northward component of planetary rotation and the east-west

Reynolds stress. This interaction causes a redistribution of turbulent kinetic energy

(TKE) from the east-west to the venical component for easterly winds, or from the

vertical to the east-west component for westerly winds. This exchange of TKE

between the components results from inertial motions of the turbulence in the x-z

plane.

The effects of rotation stress were compared with those that result from the

rotational enhancement to the TKE dissipation that was proposed by Garwood (1977).

There are two major results. First, the TKE distribution is more isotropic and in better

agreement with laboratory results when rotation stress is included in a TKE model

than for the model that includes rotationally enhanced dissipation or for the model

with no planetan.' rotation effects. Secondly, rotation stress alters the frequency and

magnitude of diurnal to synoptic scale mixing events during late winter through early

spring at mid latitudes.

The ratio of the vertical to the total TKE is a measure of the isotropy of the

TKE distribution between the vertical and the horizontal components. The ratio

would be 0.33 if the TKE distribution was isotropic. Laboratory measurements of

wall-bounded, neutrally stratified shear flows indicate that the ratio is 0.16 to 0.3. For

stably stratified shear flows such as the upper ocean mixed layer, the ratio would be

smaller. For late winter to early spring at OWS P, which is predominately forced by

surface shear stress, typical values of the ratio of vertical to total TKE are less than

0.03 for the rotationally enhanced dissipation model compared to an average of 0.1 for

the rotation stress model. The nondimensional studies show that this ratio can be

more variable as a function of rotation stress than as a function of rotationally

enhanced dissipation since rotation stress can cause a transfer of energy between the

horizontal and vertical TKE components.

Both the equilibrium depth and the entrainment rate are functions of rotation

stress. With rotation stress, diurnal shallowing events occur more frequently for
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westerly wind regimes and the equilibrium depth is 10 to 40% shallower than for the

model which neglects planetar}' rotation. On synoptic time scales, the mixed layer

simulated with the rotation stress model typically deepens 10% more for easterly winds

or about 10% to 15% less for westerly winds than it is for the model that neglects

planetar>' rotation.

For late winter to early spring, typical values of the entrainment rate from the

simulations with rotation stress were twice as large at OWS N and four times as large

at OWS P as for the simulations with the rotationally enhanced dissipation. As a

result, annual simulations using the rotationally enhanced dissipation had shallower

average winter mixed layer depths than those for rotation stress. These shallower

winter mixed layer depths better fit the seasonal trend of the OWS observations.

However, the functional form of the entrainment rate as a function of rotation stress is

consistent with the need for decreased mixing efficiency for deep mixed layers and large

values of the surface stress. This is not the case for the rotational enhanced dissipation

rate. The entrainment rate decreases to zero with increasing rotation stress, whereas it

approaches an asymptotic value greater than zero as the rotationally enhancement to

the dissipation increases. Therefore, the rotation stress could prevent mixed layer

deepening for sulTiciently large values of westerly wind or deep mixed layers.

Conversely, the entrainment rate never goes to zero for the rotationally enhanced

dissipation case.

At midlatitudes, the rotation stress does not consistently prevent excessively deep

wintertime mixed layers. Some additional mechanism is needed to reduce mixing

efficiency for deep mixed layers and/or large surface stresses at mid latitudes.

Enhanced dissipation does prevent excessively deep •\^'intertime mixed layer depths;

however, the TKE distribution then becomes very anisotropic. The degree of

anisotropy appears to be excessive based on laboratory measurements, but there are no

oceanic measurements to confirm this.

The temporal and spatial resolution and the precision of the OWS data sets used

in this study were not sufficient to confirm the increased frequency and magnitude of

diurnal to synoptic scale shallowing and deepening events predicted by the rotation

stress model. Data from experiments such as the Storm Transfer and Response

Experiment (STREX) and the Mixed Layer Dynamics Experiment (MILDEX) may

be sufficiently accurate with enough temporal resolution to test the effects of rotation

stress. However, these data sets may not contain the contrasting east-west wind stress
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events, which is a requirement to test the rotation stress efTects. It was hoped that the

OWS station data sets would contain sufilcient events to confirm the effects of rotation

stress. Also the OWS data provided the opportunity to study the seasonal variability

of the effects of planetary- rotation on the upper ocean. The study does indicate that

the planetary' rotation has the greatest efTects for winter and early spring mixed layers.

The impact of planetar}' rotation is the smallest for summer mixed layers.

The greatest differences among the simulations in this study appear in the TKE

budgets calculated by the models. The variations in the mixed layer temperature are

relatively small due to the large heat capacity of water. Hence, the differences am.ong

the predicted and observed temperatures are small. The differences in the mixed layer

depths predicted by the models are more obvious. However, the models can be tuned

to predict similar mi.xed layer depths even though the TKE budgets of the models are

quite different. Also the differences between the turbulent boundary layer depth

predicted by the models and the depth of the "well-mixed" layer defined by the

temperature observations obscure the comparison between the simulations and the

observations. The turbulent boundary layer depth and the depth of the isothermal

layer in the upper ocean do not always coincide, and the OWS data are not always

sufficient to define the isothermal layer accurately or consistently.

This study has sho\^'n that substantial variations exist in the isotropy of the TKE

distribution predicted by different TKE models of the upper ocean. The results o[ this

study suggest that parameterizations of various processes are not complete. In

particular, the parameterizations for dissipation, shear stress and the pressure-rate of

strain require further theoretical and observational work. The importance of rotation

stress has been indicated by this study, but the data were insufficient to verify

completely the effects of rotation stress.

The results of this research focus attention on specific observational requirements

that need to be met in order to properly evaluate and improve turbulence models for

applications to the oceanic environment. Direct measurements of TKE budget in the

upper ocean are required to test the current hypotheses of ocean planetary boundary-'

layer dynamics. .A field experiment that focuses on the upper ocean turbulence from

the sea surface to the transient thermocline is necessary' to provide this data. The first

phase of such an idealized program should concentrate on vertical exchanges and

budgets in an open ocean area with relatively small but well-observed horizontal

variability. Measurements must include the surface heat, salt and vector momentum
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fiuxes. Estimates from bulk formulas would probably not be sufficiently accurate. The

mean temperature, salinity and velocity profiles from the surface through the transient

thermocline must also be measured simultaneously. The vertical and temporal

variations and the vertical shear of the normal Reynolds stresses (TKE components)

are the turbulence quantities to be measured in the first phase. The vertical shear of

the horizontal and vertical turbulent velocities have previously been measured to

estimate dissipation. The second phase would extend the first phase measurements to

include the vertical and temporal vaiations of the shearing Reynolds stresses and the

vertical buoyancy fiux through the mixed layer and the entrainment zone. The third

phases would begin to incorporate three-dimensional efTects and the interactions

between the turbulence and aspects of the mean flow such as upwelling and internal

waves.

Practical forecasts of mixed layer temperature and depth can not be improved

until the turbulence in the OPBL is better understood and better parameterized m the

models of the OPBL. This impacts both short-term forecasts of the upper ocean that

are important for improved acoustical forecasts and weather forecasts required for

naval operations and climate forecasts of the ocean-atmosphere system.
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APPENDIX
FIGURES

<^

Easterlies Westerlies

2n uw<0

Contraction

2n uw>0

Elongation

East

Figure 1.1. The vertical elongation or contraction of turbulent eddies in the
eastward-vertical plane by the northward component ofplanetan.' vorticity.
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Figure 1.2. Schematic of mean density and velocity profiles in the upper ocean, 6 is

the thickness of the entrammcnt zone, 8^ is the depth of the wmd-wave zone, and 5^ is

the solar radiation compensation depth.
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Normal to wall
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V
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Figure 2.4. Rotation stress reduces the vertical TKE for -uw>0 (westerlies). Similarly

curvature stress reduces the TKE normal to the wail for convex curvature (R> U. as

shown).
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Figure 3.2a. P.-i.fM.-.. Z*), nondimensional entrainment rate for the ZSTAR model.
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Figure 3.2b. P*(H<-., R*). nondimensional entrainmcnt rate for the RSTAR model.
Positive K^, is for westerly winds.
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Figure 4.7b. Annual depth RMSE values during the tuning of the RSTAR model with
p^ = 0.5 for the entire year of 1965 at OWS P.
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Figure 4.7a. Annual depth bias values during the tuning of the RSTAR model with

p2 = 0.5 for the entire year of 1965 at OWS P.
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Figure 4.Sa. Annua! temperature bias values during the tuning of the RSTAR model
with p, = 0.5 for the entire year of 1965 at OWS P.
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Fi.gure 4.Sb. Annual temperature RMSE values during the tuning of the RSTAR
model with p., = 0.5 for the entire year of 1965 at OWS P.
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