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In this paper, the relaxation kinetics of the oxidation
process of the YBaCo4O7.s, Y095Tip05BaCo04O7;5 and
Yo5Dyo5BaCo0407, 5 oxygen carriers is studied with isothermal
reaction data. XRD analysis for fresh samples shows that all
the samples have YBaCo407,s structure. Scanning electron
microscopy images of samples show that the samples consist
of porous agglomerates of primary particles. Isothermal
TG experiments are conducted with temperatures of 290°C,
310°C, 330°C and 350°C, respectively. It is found that the
Avrami-Eroféev model describes solid-phase changes in the
oxygen absorption process adequately. The results show that
the distributed activation energies of the oxidation process
obtained by the Avrami-Eroféev model are 42.079 k]mol_l,
42,944k mol~! and 41.711kJmol~! for the YBaCosO7.s,
Y0.95Tig.05BaC0407. s and Y 5Dy 5BaCo407. 5 oxygen carriers,
respectively. The kinetic model was obtained to predict the
oxygen carrier conversion of oxygen absorption for different
time durations. The kinetic parameters obtained here are quite
vital when this material is used in reactors.

1. Introduction

It is generally accepted that carbon dioxide (CO,) emission
is the main contributor to global warming. Oxygen-enriched
combustion, one of the possible options to reduce CO, emission,
is not applied widely in industry due to the high cost of
oxygen production. The process of chemical looping air separation
(CLAS) was developed by Moghtaderi & Song in 2010 [1]. The
process saves 74% of the power of the cryogenic air separation
process [1]. The schematic of the CLAS process is described
elsewhere [2]. The oxygen carrier circulates between the oxidation
reactor and the reduction reactor. In the oxidation reactor, the
oxygen carrier is fully oxidized by oxygen. In the reduction
reactor, the oxygen carrier is fully reduced by steam or CO,.
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Oxygen carrier materials are mainly those of metal oxide, perovskite and sulfate. The metal oxide
oxygen carriers such as those that are Cu-based, Co-based and Mn-based have attracted the interest of
researchers [3-13]. Perovskite oxygen carriers such as Caj_yPryMnO3_s, StCoFe3_s and LaFe;_,Mn,O3
also have been investigated [14-16]. Zhao ef al. [15] found that Mn substitution in LaFeO3 not only was
conducive to the partial oxidation of CHy, but also enhanced the lattice oxygen mobility from the bulk
to the surface of the oxygen carrier. Because of a low melting point and serious agglomeration of metal
oxide, various support materials such as ZrO,, TiO; and SiO, have been explored [11,17,18]. Wang et al.
[19] reported that the reduction rate of the combined CuO/Mn;,O3 oxygen carrier with ZrO; as a binder
increased with increasing reduction temperature. Wang et al. [20] found that the Fe,O3 oxygen carrier
had an effective impact on the conversion of typical bituminous coal in a chemical looping combustion
system. Whitty & Clayton [21] reported that the activation energy of the oxidation of the CuO oxygen
carrier with ZrO, as a binder was 202 k] mol~1. Arjmand et al. [12] found that the activation energy
of reduction reaction of the CuO oxygen carrier was 313 kJ mol~!. Hossain found that the reduction
kinetics of the NiO/Ce-yAl,O3 oxygen carriers was favourably expressed by the nucleation and crystal
growth model. The estimated energy of activation for the reduction process was found to be in the range
of 52-55k] mol~! [22]. Zhu et al. found that the reduction characteristics of oxygen carriers of Fe;O3—
60wt%/Al,O3 had an impact on the efficiency of the chemical looping hydrogen generation process.
Fe304-FeO was determined as the rate-limiting step with a lower reaction rate constant and a higher
activation energy [23]. Hossain & de Lasa [24] found that the nucleation and nuclei growth model
provided a better description of the reduction process for CoO-NiO/aAl,O3 oxygen carriers. Li et al.
[25] found that a moving-bed reducer showed better performance than a fluidized-bed reducer for the
syngas chemical looping process.

There has been extensive reporting in the literature on metallic oxides; unfortunately, industrial
applications of metallic oxides consume a large amount of energy as their reaction temperatures are
high. Hence investigations with oxygen carriers, which can react at low temperatures and are extremely
time-efficient. It is excellent that the waste heat of low temperatures can be used as heat resources as the
waste heat resources have not been used effectively. YBaCo4O7. s (donated Y114 phase) was synthesized
originally by Valldor & Andersson in 2002 [26]. Karppinen et al. reported that YBaCo40O7, 5 experienced
two processes: oxygen intake and release (the first being around 200-400°C, the other around 600-
900°C) when heated to 1100°C in an oxygen-containing atmosphere. The first process was reversible
with no decomposition of the YBaCo4O7, s phase [27]. The maximum oxygen content was obtained at
temperatures lower than 500°C, achieving § ~ 1.0 and § ~ 1.2 in air and oxygen atmospheres, respectively
[27,28]. The unique ability of the YBaCo4O7,5 phase to reversibly absorb and release oxygen makes
it a possible candidate as an oxygen carrier that works at low temperatures in the CLAS system. The
crystal structure consists of the three-dimensional network of corner-sharing CoOj, tetrahedra. The
corner-sharing CoOy framework allows oxygen modification in an atomic arrangement. As YBaCo4O7. 5
decomposition takes place at a temperature above 600°C, improving that dynamical stability is a critical
issue [29]. Doping in the Y or Co site is one of the positive choices to improve the stability. Ca, Tb-Lu and
Zr can partially or completely substitute Y [28-35]. Fe, Al, Ga, Mn, Ni, Cu and Zn can partially substitute
Co [36-38]. Kadota et al. [29] identified that the phase-decomposition temperature of RBaCos4O7;s
increased with decrease in the radius of the R ion. The decomposition temperature increased with
increase in Sr doping concentration [35]. The phase-decomposition temperature of the 114 phase was
increased by Al, Ga and Zn substituting for Co [33,35-37]. The increase was prominent, especially for the
samples substituted by Al and Ga [35]. Résénen et al. [36] reported that Al and Ga co-substituting for Co
was more favourable than a single substitution of Al or Ga for improving thermal stability. However, Fe
and Al co-substitution weakened the effects of Al substitution [31].

Very few works in the current literature focus on the kinetics of YBaCo4O7,5 oxygen carriers for
CLAS applications. As is known, YBaCo407,s shows a slower oxygen absorption rate and a faster
oxygen desorption rate at lower temperatures [32,39]. For the application, the kinetics features are greatly
impacted by the reactor size and the solid inventory. The reaction rate of YBaCo4Oys varies with
different working parameters such as reaction temperature, conversion range, oxygen concentration and
particle size [40—42]. Generally, the kinetics of gas—solid reactions is complex. However, for YBaCo04O7. 5
oxygen carriers, the kinetic description of the process is relatively simple as there is no phase change.
Indeed, the product of the gas—solid reaction is of a different solid phase from that of the solid reactant,
the difference in density of the two solid phases imposing chemical constraints on the solid—solid
interface [43,44]. As this surface area is a kinetic parameter for the gas—solid reaction, a phenomenological
kinetic description of the process is often impossible. In the case of perovskite, the oxidation process
involves physical adsorption on the surface and the oxygen vacancies are filled by oxygen ions migrating
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from the bulk. The oxygen ions are involved in dissociative adsorption and chemical adsorption. The
diffusion of oxygen ions is one of the processes which might control the rate of the oxidation reaction.
The different adsorption steps and the possible surface migration of these adsorbed species to the
reaction sites might also be rate-controlling [43]. In the case of the chemical reaction-controlled process,
action there proceeds uniformly throughout the solid particles. In this case, different models need to be
employed. The mechanism and kinetic parameters obtained here are quite vital when this material is
used in the reactors.

2. Experimental section

2.1. Preparation of materials

Samples of YBaCo0407,s, Y0.95Tig.05BaCo407.s and Yo5Dyp5BaCosO7.5 were synthesized by a solid-
state reaction. Mixed appropriate stoichiometric amounts of the starting materials, Y,03, TiO», Dy,03,
BaCO3 and CozO4, were ground thoroughly and then calcined at 1000°C for 15h. The calcined samples
were reground and calcined at 1100°C for 30h. After calcination, all the samples were ground with
a mortar and sieved with a 400-mesh sieve (average particle size less than or equal to 37.5um) for
experiments and kinetic analysis.

2.2. Characterization of materials

Phase composition was studied by a powder X-ray diffraction technique (Panalytical, PW 3040/60;
X'Pert Pro system with Cu Ka radiation). X-ray data were recorded with a step scan of 0.02° for 26
between 10° and 70°, and the cell parameters were determined with JADE software. The microstructure
of the synthesized samples was observed with scanning electron microscopy (SEM) on an ultra plus field
emission scanning electron microscope. The oxygen absorption behaviour was observed with isothermal
TG experiments in a thermogravimetric analyzer-TGA (STA409PC). During the TG experiment, a
powder sample, with a mass of 10 mg, was heated to the target temperature (290, 310, 330 and 350°C) in
a N atmosphere to prevent the occurrence of oxygen absorption. Then the atmosphere was changed to
an air flow of 40 mlmin~!, keeping the target temperature for 2h to investigate the oxygen absorption
behaviour. Before the kinetic experiments, the internal and external diffusion were eliminated by the
experiments by varying the gas flow rate and the sample loading weight in the ranges of 20-40 ml min~?
and 10-20 mg, respectively.

3. Results and discussion

3.1. Characterization

The phase composition of the YBaC0407.5, Y0.95Tig 05BaC04074s and Yo 5Dyg5BaCo4O7,45 samples is
shown in figure 1. The cell parameters of the samples are refined from the data in space group Pé6smic,
and the refined cell parameters are presented in table 1. By combining with the XRD patterns and refined
cell parameters, the present samples are indexed to be of YBaCo4O7.; structure. Typical SEM images
of samples are shown in figure 2. It is seen that the samples consist of porous agglomerates of primary
particles. The differences in morphology with different substituting ions of the oxygen carriers are very
small.

The 114 phase oxygen carriers can absorb certain amounts of oxygen at different temperatures.
The percentage change in mass Am (%) and total stoichiometric change (5) obtained at different
oxidation temperatures are presented in table 2. The amount of oxygen absorption increases with
increase in the oxidation temperature lower than 330°C. The amount of oxygen absorption obtained
at 350°C is lower than that of the value obtained at 330 and 310°C. Furthermore, at a given oxidation
temperature, the amount of oxygen absorption of Ti and Dy substituting samples is larger than that of the
unsubstituted sample. Figure 3a—c shows the conversions of the YBaCo4O7.5, Y0.95Tig.05sBaCo040O75 and
Y0.5Dy05BaCo407.s oxygen carriers during oxidation reactions at different temperatures, respectively.
As can be seen, the oxygen absorption rate of oxygen carriers increases with increase in the oxidation
temperature. The oxygen carriers absorb oxygen completely within 70 min when the temperatures are
330 and 350°C. When the temperatures are 290 and 310°C, the saturation time of oxygen adsorption
is approximately 100 min. The reason behind this may be that increase in oxidation temperature is
conducive to the greater diffusion of oxygen ions.
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Figure 1. The XRD of the YBaC0407.1-s, Yo.95 Tio.05BaC0407.1-s and Yo 5Dyo5BaC040;., 5 samples.
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Figure 2. SEM images of the (a) YBaC0407,.s, (b) Yo.95 Tig.05BaC0407.1-s and (c) Yo sDyqsBaCo407, s samples.

Table 1. Refinement details for the samples.

sample a (k) b (R) c(R) v (R3)
YBaCo407. 5 6.2983 6.2983 10.1728 349.4661
Yo5Dyo5BaCo407.45 6.3076 6.3076 10.1953 351.2900
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Figure 3. The conversion of oxidation in air atmosphere for the (a) YBaC0407.1.5, (b) Yo.95Tig.0sBaC0407.5 and (c) Yo5Dyo5BaCo407. s
samples.

Table 2. The mass change of the samples under different temperatures.

YBaC040715 Yo.95Tig.05BaC0407.4-5 Yo5Dyo5BaC0407 5

290°C  310°C  330°C  350°C 290°C 310°C  330°C 290°C  310°C  330°C
Am/% 1982 221 2244 213 2.01 2341 2376 2209 1897 2289 2315 2.237
) 0.71 0793 0805 0762 0719 0837 0849 0790 0724 0874 0.884 0.854
3.2. Kinetic models
The reaction rate of the process [45] can be written as follows:

da
k= i K(T)f (ex), 3.1

where « is the extent of conversion, k(T) is the reaction rate content and f(c) is the kinetic model function.
Equation (3.1) can be modified as follows:

da
— =k(T)dt. 32
Ty =KD (32)
Equation (3.2) can be transformed into equations (3.3a,b):
(31 tl
J 42 )= J K(T)dt (3.30)
0 fle) 0

Gla) = k(D). (3.3b)

0510816 s uado 205y BioBuiysigndizaposieforsos:



Table 3. Kinetic mechanism functions used for describing oxidation kinetics of oxygen carriers.
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The plots of G(«) versus t should be straight lines whose slope can be used to determine the reaction
rate k(T). The model showing the best linear fitting is chosen as the favoured model. The reaction models
used for describing the oxidation process of oxygen carriers are presented in table 3 [41,42,45-49].

By linear fitting the mechanism functions against t (parameters were estimated in the 0.1-0.90
conversion range), the linear correlation coefficient R? and the residual sum of squares (RSS) of each
function can be obtained. Figure 4 shows the fitting linear curves G(«) versus t under different oxidation
temperatures.

Tables 4 and 5 list the R? and RSS values obtained by fitting functions, respectively. The discrimination
among the models was based on the higher R? and lower RSS. The functions with the bigger
R? and smaller RSS values are selected as the mechanism functions. For the YBaCo4Oy.s and
Yo0.5Dy05BaCo407.5 samples, given the R? and RSS values obtained, it was concluded that the A model
and R better fitting were achieved with n values of 4 and 1, respectively. For the Y0 95Tig 05BaCo4O7.5
sample, it was concluded that the A model and R better fitting were achieved with n values of 3 and
1, respectively. For the Avrami-Eroféev random nucleation and the nuclei growth model, the overall
conversion of the oxygen absorption reaction is determined by the relative rates of nucleation, nuclei
growth and nucleus formation [24,50-52]. Nucleation and crystal growth are a dynamic process which
practically initiates the oxygen absorption reaction. Generally, for the unreacted shrinking-core model,
the overall conversion of the oxygen absorption reaction is determined by the chemical process [24].
That is, the overall conversion of the reaction is dominated by the chemical reaction, not the diffusion
process for the A models and R models. The determined models can be used to evaluate the reaction
rate, apparent activation energy and pre-exponential factor of the oxygen absorption reaction. For the
YBaCo407.4s, Y0.95Tip05BaC0407,s and Yo5Dyo5BaCo407,s samples, the reaction rate constants are
evaluated and presented in table 6.

From table 6, for the different mechanism functions and oxygen carriers, the reaction rate constant
increases with increase in the reaction temperature, indicating that high temperature is propitious to the
rate of oxygen adsorption. Low temperature may be one of the reasons accounting for the slow reaction
rates shown in figure 3. Furthermore, the reaction rate (except for the reaction rate obtained at 290°C
for the Y 95Tip05BaCo407, s sample) obtained by the A model is lower than that of the R model. After
evaluating the reaction rate constant, the pre-exponential factor and apparent activation energy can be
evaluated.

Along with the Arrhenius expression, the following is obtained:

k(T)=Aexp (—%) , (3.4)
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Figure 4. Trends of G(cr) versus t under different temperatures with common mechanism functions for the YBaCo,0;.,_5 oxidation process
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Figure 4. (Continued.)

where A is the pre-exponential factor, E is the apparent activation energy, R is the gas constant and T is
the reaction temperature.
Along with the Arrhenius expression, the following form is obtained:

Ink(T)=InA — RT”

(3.5)
where the In k(T) has been evaluated above, the plots In k(T) versus 1/T are straight lines whose slope and
intercept can be used to evaluate the apparent activation energy and pre-exponential factor, respectively.

Figure 5 shows the plots Ink(T) versus 1/T as a function of different mechanism functions.

Table 7 lists the estimated apparent activation energy and pre-exponential factor as a function of
reaction temperatures. The apparent activation energies obtained by the different mechanism functions
remain close to constant levels for an oxygen carrier.

The activation energies for Yy5DygsBaCo4O7,5 oxidation are found to be lower than those for
YBaCo0407.45 and Yp.95Tip05BaCosO74s oxidation, thus confirming the favourable effect of Dy on the
oxidizability of the YBaCo04O7. 5 oxygen carrier. This may be accounted for by the cell volume. The larger
the cell volume, the easier is the absorption of oxygen. For an oxygen carrier, the pre-exponential factor
obtained by the R model is larger than that of the A model.

For the purpose of further model discrimination between the A and R models, the A model is more
favourable considering the higher unity of data values. In the case of the A model, the activation energies
and the frequency factor remain close to constant levels at the different temperatures. Moreover, the
activation energies with the R model vary in a much wider range. Thus, these results confirm the
adequacy of the A model over the R model [24]. Thus, the nucleation and nuclei growth model is chosen
as the most possible mechanism function.

The values of the established kinetic parameters, the apparent activation energies, the pre-exponential
factors and the mechanism function were introduced into equation (3.1) and the differential equation
was obtained to predict the oxygen carrier conversion of the oxidation process for different reaction time
durations. The kinetic models are listed in table 8.
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Figure 5. The plots of Ink(T) versus 1/T for different mechanism functions for the (a) YBaCo40;.s, (b) Yo.95Tig.05sBaCo407, s and
(c) Yo5Dyo5BaCos0; 5 samples.

Table7. The apparent activation energy and pre-exponential factor of the obtained function for the oxidation process of oxygen carriers.

intercept E(Jmol ™)
42078.5466

Table 8. The kinetic models of different oxygen carriers.

0Xygen carrier code kinetic model

d 42078.547
YBaCo,0; 5 A4 d—‘: — 256,671 exp (- > (1 — &)= In(l — )P
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o e
YossTioosBaCos0r-5 I d—ot‘ — 254477 exp <— = ) (1— &)= In(l — a3
__________________________________________________________________________________________________ S
YosDyosBaC0407.45 A4 d—"t‘ = 228.360 exp <— o ) (1 —a)[— (1 — )P/*
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4. Conclusion

In this work, kinetic behaviour of the oxidation process for the YBaCo4O7.5, Y0.95Tip.05BaCo04O7 5
and Yo 5Dyg5BaCo4O7,5 oxygen carriers for CLAS operations was investigated for the temperature
range of 290-350°C. The oxidation rate was found to increase gradually with increase in reaction
temperature. It has been found that the A model provides a better description of the oxidation,
indicating that the oxygen absorption process is rate-determined by nucleation and nuclei growth. The
activation energies of the oxidation process obtained by the A model were determined as 42.079 k] mol !,
42.944 kI mol~! and 41.711 kf mol~! for the YBaCo407.s, Yo.95Tig.05BaCo407.5 and Y 5Dy 5BaCo0407,5
oxygen carriers, respectively. The distributed activation energy of Yo 5Dy 5BaCo40O7. 5 is lower than that
of YBaCo407, 5, which corroborates the favourable effect of the substitution of Dy on the oxidizability of
the oxygen carrier. The pre-exponential factors of the oxidation process obtained by the A model were
determined as 64.168 min~?!, 84.826 min~! and 57.090 min—! for the YBaCo4O7.s, Y0.95Tip.05BaC0407.4s
and Y( 5Dy 5BaCo407,s oxygen carriers, respectively. The kinetic model was obtained to predict the
oxygen carrier conversion of oxygen absorption for different time durations.
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