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ABSTRACT

This thesis is aimed at determining the worst case

asymptotical time complexity behaviour of algorithms for

relational operations that work on extensionally or

intensionally represented binary relations. Those relational

operations come from a relational language being designed at

Naval Postgraduate School. One particular extensional

representation technique and two intensional representation

techniques are proposed. The above analysis in turn

determines the feasibility of implementing a subset of the

relational language on conventional architectures.
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I. INTRODUCTION

This thesis is aimed at analyzing the worst case

asymptotical time complexity behaviour of the algorithms

associated with the relational operations that work on the

extensionally or intensionally represented binary relations.

The most obvious representation of a relation is the

extensional representation, in which all the elements of a

relation are explicitly represented in memory. There are

various kinds of extensional representation techniques that

will be explained in detail later.

When the use of memory is critical so that it is

uneconomical to represent relation explicitly in the memory,

intensional representation techniques should be used. Here a

relation or set is represented by a formula or expression for

computing that relation or set. Operations on the set or

relation are implemented as formal operations on the

expression. Because the relations have well defined algebric

properties, this seems feasible. As we can see, an

intensional representation is really just a variant of a lazy

evaluation mechanism. [Ref. 1] We will try to decide on the

feasibility of this kind of mechanism in Section III.

The relational operations we mentioned above belong to a

relational language being designed at Naval Postgraduate

School. [Ref. 2] In relational programming entire relations





are manipulated rather than individual data. This is

analogous to functional programming [Ref. 3], in which entire

functions are the values manipulated by the operators.

Because the set of all functions is the subset of the set of

all relations, relational programming subsumes functional

programming. Hence anything that can be done with functional

programming can be done with relational programming. Thus

relational programming has many of the advantages of

functional programming. Although relations are more general

than functions, their laws are often simpler. In addition,

relational programming more directly supports non-linear data

structures such as graphs and digraphs, than does functional

programming. In relational programming the basic data values

are themselves relations; on the other hand in functional

programming there is a separate class of objects used for

data structures.

The objective of this research is to determine the

feasibility of implementing the relational language on

conventional architectures by doing the worst case

asymptotical time complexity analysis of the algorithms

associated with the relational operations. In Section II we

will focus on the algorithms that work on the extensionally

represented relations and sets. In Chapter III we will

inspect the intensional algorithms and define a mechanism to

do the relational operations intensionally. In Chapter IV we
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will focus on the issue of defining pure intensional system

to see if we can do the relational operations without

representing any relation or set extensionally.

A. BACKGROUND INFORMATION

1. Theorems and Definitions

In this section we will provide information on

relations, and the extensional representation techniques for

the relations and sets. We will state some important

theorems that will be helpful in our analysis and prove them.

Because our relational operations work on binary relations we

will be focusing on the properties of binary relations. We

will assume that the reader already has some background on

relations.

We often want to treat collections of two-ary tuples

where the components of each tuple are the elements of some

sets. The set of all such two-ary tuples is defined as

follows

:

Definition 1: Let A and 3 be sets. The cartesian

product of the sets A and B denoted by AXB f is the set of all

two-ary tuples such that:

{ <al,a2>
|

(al e A) A (a2 e B)

}

The following definition provides some additional

terminology.





Definition 2: Let R be a binary relation over AXB.

The set A is the domain or the "Right Members Set" (RIM set)

of R; B is the codomain or the "Left Members Set" (LEM set)

of R.

Binary relations are just another representation of

graphs so the following definitions and theorems will be

useful in our study.

Definition 3: A digraph is an ordered pair F=<C,R>

where R is a binary relation on the set C. The set C is said

to be the set of vertices of digraph F and the tuples of R

corresponds to arcs (edges) of F.

Definition 4: Let F=s<C r R> be a digraph with nodes d

and e. An undirected path G from d to e is a finite sequence

of nodes G =<bg, b\, b2,....*bn > such that:

1. b = d

2. bn = e

3. For all b
i such that n >= i >= 0, either b^Rbi + i

or bi+iRb^.

If b^Rb^+i for all b^, n > i > 0, then G is a directed path

from d to e. The node d is the initial node of G and e is

the terminal node of G. The length of the path G is n. If

all the nodes of G are distinct except the first and last

then G is a simple path. If b is the same as b n , then G is

a cycle. If G is both simple path and a cycle, then G is a

simple cycle.

10





Definition 5: Let S be a binary relation on B. Then

S is reflexive if xSx for every x in B. S is irreflexive if

{not(xSx)} is true for every x in B. S is symmetric if xSy

implies ySx for every x fy z a. S is antisymmetric if xSy and

ySx together imply x=y for every x,y e B. S is transitive if

xSy and ySz together imply xSz for every x,y,z e B.

Definition 6: Let R be a binary relation on a set B.

The transitive (reflexive, symmetric) closure of R is the

relation S such that:

1. S is the super set of R.

2. S is transitive (reflexive, symmetric)

.

3. For any transitive (reflexive, symmetric)

relation T, if T is the super set of the R then T

is the super set of the relation S.

We can denote the transitive closure of R by

trans(R), the reflexive closure of R by refl(R), the

symmetric closure by symm(R), and the transitive, reflexive

closure by trans-ref 1 (R) . Obtaining the closure of a binary

relation can be easily understood in terms of digraphs. For

example, a digraph represents a reflexive binary relation if

it has loops on every node. So given a binary relation

represented by a digraph we can obtain the reflexive closure

of this relation by adding a loop to every node of the

digraph which does not already have one. Let E be the

equality relation on an arbitrary set X? that is,

11





E = {<a,a,>| a e x)

then by using this relation we can state a theorem as

follows

:

Theorem 1: Let R be a binary relation on a set B.

Then refl(R)=R E, where E is the equality relation on the

set B.

Proof: Let S r(Je. We show that S satisfies

Definition 6. By construction S is reflexive and S is the

super set of R. Assume T is a reflexive relation on B and T

is the super set of R. We have to show T is the super set of

S. Let's take an arbitrary tuple, say <s,t>, which is the

member of R. If s=t, then <s,t>eT because the T is

reflexive. If <s,t>eR, then <s,t>eT because the T is the

super set of R by assumption. So if <s,t>eS, then <s,t,>eT.

So as a result, the definition 6 is satisfied and S=refl(R).

Definition 7: Let R be a binary relation on a set A

and let n be a natural number. Then, the nth power of R,

denoted Rn , is defined as follows:

1. rO is the relation of equality on the set A:

R° = {<x,x>|xSA}

2. Rn+1 = RnR

Theorem 2: Let R be a binary relation on the set B.

Then
00

trans (R) = [J Ri = R M R2 I) R3 I
J

R4

i=l ^
Proof: The proof can be done in two parts.
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1. \J R* is a subset of trans(R). We will first
i=l

show by induction that Rn is a subset of trans (R)

for every "n" greater than zero.

a. (Basis) From definition 6, part 2, it is

immediately apparent that R is a subset of

the trans (R)

.

b. (Induction) Assume Rn is a subset of

trans (R), and n is greater than or equal to

1. Let <s,t> be the member of Rn+i . Since

Rn+l=Rn R, there exists some u such that u is the

member of set B, <s,u> £ R and <u,t> is the

member of Rn . By the induction hypothesis and

the basis step, <s,u> is the member of trans(R)

and <u,t> is the member of trans(R). Since

trans(R) is guaranteed to be transitive it

follows that <s r t> is the member of trans(R),

thus establishing that Rn+ ^ is a subset of

trans (R). Since R is a subset of trans (R) for

all n>=l, we conclude that:

(J
Ri O trans (R)

i = l

2. trans(R) is a subset of the l) R*. We will first
i=l

show that:

i=l

13





is transitive. Let <s,t> and <t,u> be arbitrary

members of II R*, then for some integers W>=1
i=l

and Y>=1, <s,t> is the member of Rw and <t,u> is

the member of RY . Then <s,u> is the member of

RWRY , and because we know that RW RY =RW+Y , <s,u>

is the member of |J Ri and therefore 1 ] R1

i=l i=l

is transitive. Because trans (R) is contained in

every transitive relation which contains R, it

follows that trans (R) is a subset of I) R^

.

i=l

From part 1 and 2 we can write:

trans (R) = R
|J

R2
|J

R3 (J r4

by using the basic set properties.

Theorem 3: Let R be a binary relation on a set B

which is of cardinality n. Then

n
trans (R) u*

n
Proof: We will show that RJ is a subset of 1 R1

i=l

for all j>0. Assume <s,t> is the member of RJ, then there is

a directed path of length j from s to t in the digraph <B,R>,

and by deleting cycles from this path we can obtain a simple

directed path going from s to t. Because, in a graph with n

nodes, the longest simple path is limited to length n, it

14





follows that <s,t,> is the member of R 1 for some n>=i>0.

n
Thus RJ is the subset of ] Ri for j>0

Definition 8: If R is a binary relation on a set B,

then san:R denotes trans (R), the transitive closure of R, and

fan:R denotes transitive reflexive closure of R (trans-

refl(R))

.

Now we will go into the theorems that will be helpful

in finding the asymptotical time complexity behaviour of the

algorithms.

Definition 9: Let f and g be functions and let their

domains be the set of natural numbers and the codomains be

the set of real numbers, then g asymptotically dominates f

,

or f is asymptotically dominated by g, if there exists s> =

and t>=*0 such that
| f (n)

| =<t |g (n)
|
for all n>=s.

Example: Let f(n)-n/2 and g(n)=n 3 for all natural

numbers V, the above definition is satisfied by setting the

s^O and t=l, hence g asymptotically dominates f.

Definition 10: The set of all functions which are

asymptotically dominated by a given function h is denoted by

0(h), and is read as "big-oh of h", or "order h". If a given

function say j is the element of 0(h), then j is said to be

0(h).

15





Theorem 4: Let the functions f, g, r be the kind of

functions which map the natural numbers to the real numbers.

Then:

1. f is 0(f) .

2. If f is 0(g) then c*f is 0(g) for any real number

c.

3. If f and h are both 0(g), then their sum (f+h),

(where (f +h) (n) =f (n) +h (n) .) is 0(g).

Proof:

1. To show f asmptotically dominates f, we choose

s = and t = l and apply definition 9. Thus by

definition 9 f dominates f.

2. If f is asymptotically dominated by g, then for

some natural number m, k and for n greater than

or equal to k, absolute value of f (n) will be

less than or equal to the product of the m and

g(n), i.e.:

m*|g(n)
|

>= |f (n)
|

If we multiply both sides of this inequality by

an arbitrary real number c the inequality remains

the same. Now let m*c be equal to real number z

then we rewrite the inequality as below:

z*|g(n) |
>- c*|f (n)

|

where z >=c. So by definition 9, c*f (n) is 0(g).

16





3. Suppose f and r are both 0(g), then there exists

natural numbers, q, a, z, x such that

q* |g (n)
|
>=| f (n)

|
in the case n is greater than or

equal to a, z*
| g (n)

|

>=
|
r (n)

|
in the case n is

greater than or equal to x. Now assume Q=q+z and

G^a (where a>x) . Then we write:

q*|g(n) |+z*|g(n)
| >-|r (n) |+|f (n) |-|f (n)+r(n)

|

or

Q*|g(n)
|

>= (r+f) (n)

So r+f is 0(g) .

We usually represent the time consumed by an

algorithm by a complexity function, say g, then 0(g) is

called the asymptotical time complexity behaviour of the

algorithm. Note that the functions that have the same

asymptotical time complexity behaviour may not cost us the

same. Suppose the complexity function of an algorithm is the

integer multiple of the time complexity function of another

algorithm and suppose both algorithms have the same

asymptotical time complexity behaviour. Clearly the first

algorithm is more expensive than the other but they have the

same asymptotical time complexity behaviour. So while using

the asymptotical time complexity behaviour as the measure we

have to be careful. In order to make this fact clear we will

give an example.

17





Example:

Suppose two algorithms D and E have the complexity

functions g and h respectively and let these complexity

functions be,

g = K*m + Cl

h = L*(m 2
) + C2

where K 40*L (constants)

Cl = C2 (constants)

Then for ra =< 40 the algorithm E is less costly than the

algorithm D and for m>40 the algorithm D is less costly than

the algorithm E but the complexity function of algorithm D

asymptotically dominates the complexity function of the

algorithm E. So if we choose the algorithm D by only looking

at its asymptotical time complexity behaviour and if the "m"

does not take on values greater than 40, we would lose time

instead of saving time.

From this point on we will use the order notation in

which the explicity specification of the function is written

in the parenthesis rather than the name of the function, so

that 0(n 2
) denotes the set of functions that are

asymptotically dominated by f (n) = (n 2 ).

We can write the classes of different complexity in

order of increasing complexity as follows:

O(c)<pdo9 n)<J>(n)<§(n(log n) )^6(n 2
) <?(cn ) <£ (nl

)

18





Definition 11: If poly(m) is a polynomial of degree

s, then poly(m) is 0(ms ).

2. The Extensional Representations of Relations

There are several representation techniques for

representing relations. Among them, incidence matrix (or

adjacency matrix), adjacency list [Ref. 5] and table

representations [Ref. 2] are the most common ones. There

exists other representation techniques which are inherently

the same as the techniques given above.

We can define the incidence matrix of a relation as

follows: Let R be a relation with m tuples where m>=l. The

incidence matrix of relation R is a 2-dimensional mXm array,

say M, with the property that M[j,k]=l if and only if the

tuple <Aj,Ak> is in relation R, where the individual Ai

belongs to the codomain and the individual Aj belongs to the

domain of the relation R.

From an incidence matrix one can readily determine if

a tuple is in the relation in question. In general the

algorithms that work on the incidence matrix representation

of relations have O(n^) time complexity behaviour, and if the

incidence matrix of a relation is sparse the space

utilization is not efficient. We will discuss this issue in

detail later in the storage complexity analysis of the

extensional representation techniques. A sample incidence

matrix is shown in Figure 1.
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In our system we will use a representation technique

which is very similar to the incidence matrix representation,

namely Hash-Incidence-Vector representation. We can define

the incidence vector as follows: Let R be a relation with p

tuples where p> = l, the incidence vector of relation R is a

bit vector, say B, with the property that, if there are n

distinct individuals in the domain of relation R and if the

i'th individual of the domain and the k'th individual of the

codomain are in relation with each other under the relation

R, the (k-1) *n+i=J'th bit of B is 1 otherwise it is 0. Let

the cardinality of the domain be n and the cardinality of the

codomain be s, then the length of B is equal to (n*s) or in

terms of number of memory locations it is equal to

(ceiling ((n*s)/C)) where C is the memory word length. In the

hash incidence vector representation the domain (RIM set) and

codomain (LEM set) individuals are represented by records in

the separate hash tables, i.e., the LEM set individuals are

represented by the records in a hash table called Left Hash

Table and the RIM set individuals are represented in a hash

table so called Right Hash Table (RHT). The records of the

LEM set individuals are further linked to each other

establishing a linked list structure in the LHT and similarly

for the RIM set individuals. Each record mentioned above has

21





a field in which an integer to be used in index computation

is stored. The Hash-Incidence-Vector for the relation W is

shown in Figure 2.

In the adjacency list representation the m rows of

the incidence matrix are represented as m linked lists.

There is one list for each domain individual. The nodes in

list i represent the individuals that are in relation with

the individual i of the domain set. Each node has at least

two fields, one of these fields represents the individual

that is in relation with the i'th individual of domain and

second field being a link field is used to construct the

linked list structure. A sample configuration of an

adjacency list is shown in Figure 3.

The table representation of a relation is the

simplest representation technique with respect to others. We

can define this representation technique as follows: Let R

be a relation with m tuples, the table representation of R is

a 2Xm array, say M, with the property that M[k,l]=Ai and

M[k,2]=Aj where Ai and Aj are the individuals of the k'th

tuple (<Ai,Aj>) of the relation R and Ai belongs to the

codomain and Aj belongs to the domain of the relation R.

*
Because our relational operations are defined by using

the notations used by Russel and Whitehead in Pr incipia
Mathematica to <56 , the order of domain and codomain will
(unussually) be reversed.
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Sometimes it is beneficial to represent the table of

a relation as a linked list of records rather than an array.

Each record of the linked list represents a tuple of the

relation in question. A relation represented in this kind of

representation is shown in Figure 4.

3. The Extensional Representations of Sets

One representation of sets is to represent the

members of a set in a binary tree structure in which the

members are represented as nodes. An alternative to the tree

representation is based on the hash coding, in which the

members of a set are stored in a hash table. In this

representation the storage usage is poor because in some

instances we may have a lot of unused hash table entries. In

addition we need additional links that thread the records

and/or hash table entires corresponding to set members, in

order to do set operations. On the other hand in this

representation the membership test operation becomes constant

time.

Another representation technique is a bit vector

representation of sets. In this representation technique a

linearly ordered set, the so called Universal set (from which

all sets are created) is represented in an array or linked
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list structure and all the other sets that are subsets of

this set are represented by bit vectors. So a subset C of

the universal set UNIV is represented as a bit vector of m

list where m is the cardinality of the universal set. Let's

say the bit vector representing the set C is A; the K'th bit

of the A is 1 if and only if the K'th individual of UNIV is

the member of the set C. This representation has many

advantages. First of all, the membership test becomes very

easy. Secondly, the set operations can be done by using fast

logical operations (and, or, union, not) on bit vectors.

Further in the case the bit vectors are not largely sparse,

the space utilization is efficient with respect to the other

representation techniques.

The last representation technique, and the most

common one, is the list representation. In this

representation the amount of memory needed is proportional to

the cardinality of the set being represented, and there

exists linear time algorithms for doing set operations. In a

practical sense some algorithms are slightly expensive even

though their time complexity behaviour is linear. For

example, the union and intersection operations require time

proportional to the sum of the cardinalities of the operand

sets.
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Most of the time, it is beneficial to use a dynamic data

structure rather than a static one in this representation

technique. The linked list representation of a set is shown

in Figure 5.

B. THE STRUCTURE OF THE SYSTEM

In this chapter we will describe the extensional

representation system that we propose and will discuss the

various properties of the system.

1. Consideration in Selecting a Set Representation

We have described the representation techniques for

sets before; we will use the features of the list

representation and the hash representation rather than one of

the other representations. The prime reason for doing this

is, our relational operations produce a significant number of

intermediate sets and we have to represent the sets so that

we use as large portion of the memory as needed. So we can

not use the hash representation by associating a hash table

with each set created. But also we would not want to lose

the constant time membership test opportunity, so we will use

a system wide hash table in which each individual of a set is

represented as a record which is connected to the hash table

entry which this individual hashes into. Furthermore, the
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Figure 5. The Linked List Representation of a Set
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individuals that belong to the same set are linked to each-

other in a linked list structure. This hash table will be

explained further, later in this section. So the resulting

representation technique has features from both the hash

representation and the list representation.

We need to maintain the sets as linked lists in this

hash table in order to be able to keep track of the

individuals in a set and many relational operations are

required to examine all the members of a set. Why don't we

select the tree representation? Because the membership test

and insertion is more costly than the hash representation.

In addition, since the relational operations will produce a

lot of sets, it would be costly to execute an O(log(n)) time

algorithm to insert in the right place in the tree

constructed so far the record for each individual of a set

being produced by a relational operation.

2. Space Considerations for Selecting Relation Repre-

sentation

In this section we intend to discuss the space

requirements of various relation representation techniques.

We will mainly focus on three representation techniques:
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a. Hash-Incidence-Vector representation.

b. Table representation.

c. Adjacency List representation.

These representation techniques have been explained in the

previous section.

According to the current definition of the operations

in our relational language there will be many references to

the various relations perhaps even in a one line of the

program, so if we consider the density of these references we

would not want the underlying memory management system to

access to the disk most of the time. This implies that the

storage requirements of a particular representation technique

become very critical. So even though our main intent is to

analyze the time requirements implied by the representation

techniques on the algorithms of the relational operations, we

do not want to select those representation techniques that

are in the first place infeasible in the space

considerations

.

a. Storage Requirements of the Incidence Vector

Representation:

As we explained before, there exist (m*n) entries

of the incidence vector for representing a relation which has
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a LEM set with the cardinality "m", and a RIM set with the

cardinality "n". However, we packed this incidence vector

into (m*n)/C memory locations where "C" is the memory word

length. The conditions under which maximum storage wasting

occurs is the first question we should ask ourselves. In the

worst case the cardinality of the LEM set and the cardinality

of the RIM set become equal, let's say "n". In this case

there should be at least "n" l's in the incidence vector and

(n 2 )-n O's, so the overhead is:

(n 2 ) - n bits.

We said there should be at least "n" l's in the incidence

vector, because every LEM set individual is in relation with

at least one RIM set individual and analogously every RIM set

individual is in relation with at least one LEM set

individual. If this weren't the case, we would ask the

question, How did that individual come to be inserted into

the RIM (or LEM) set of the relation if it is not in relation

with any individual in the LEM (or RIM) set. This can not

occur, since, in the creation of the relation we put those

individuals in the LEM set of the relation which are in

relation with at least one RIM set individual, and in the

same manner we put those individuals in the RIM set of the
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relation that are in relation with at least one LEM set

individual and we create the incidence vector according to

the cardinalities of the LEM set and the RIM set of the

relation. So in general the incidence vector of a relation

can not contain less than "k" l's where:

k = max (m,n)

ra - The cardinality of the LEM set of the

relation.

n * The cardinality of the RIM set of the

relation.

So in general we compute the overhead in the worst case by

using the formula below:

number of unused bits = m*n - max(m,n)

In fact we can not consider the relation represented by the

incidence vector alone, since we are actually representing

the LEM and the RIM set of the relation along with the

incidence vector in our Hash-Incidence-Vector representation.

Hence the number of fields of each record representing a LEM

set or a RIM set individual should be taken into account. In

addition, the relation has a record in a hash table, which we

will call the relation table , and we have to add the space

occupied by that record to our cumulative formula. We write

*
We will explain the structure of this table in

subsection 3.
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the space complexity formula for the Hash-Incidence-Vector

representation in terms of number of bits required, as

follows:

fl = ceiling ((m*n)/C) + K*(m + n) + D

where:

m = The cardinality of the LEM set of the

relation.

n * The cardinality of the RIM set of the

relation.

K = The number of bits required by each RIM/LEM

set record in the RHT/LHT.

D The number of bits required by the record of

the relation in the relation table.

b. The Storage Requirements for the Adjacency List

Representation

This representation technique is very dynamic and

uses a large portion of the memory as needed. We will

investigate what would happen in the worst case. In the worst

case the relation may be a universal relation on its LEM and

RIM set, which means that each RIM set individual is in

relation with all the LEM set individuals of the relation.

Therefore, we need (m*n) records to represent this kind of
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relation. As we stated in the Hash-Incidence-Vector

representation case, we can not assume that the relation is

represented by the Adjacency List alone, so in order to make

a fair comparison between the Hash-Incidence-Vector

representation and Adjacency List representation we will

assume that the RIM set records of the relation are

represented in the RHT as it was in the Hash-Incidence-Vector

representation case and that the records of the left

individuals that are in relation with one or more right

individuals are connected to the RHT records of these right

individuals in the linked list structures. In fact, in this

representation some relational operations are very costly;

for example in order to obtain the LEM set of the relation

being represented in this manner we must trace through all

the linked lists of the kind explained above. So under the

time considerations we would want to represent the converse

of that structure in the LHT also, which makes some of the

algorithms simpler than they otherwise would be. But let's

assume we only assume the space requirements and we did not

do that. In the worst case of the Adjacency List

representation the cumulative storage requirement for

representing a relation is given in terms of the number of

bits below:

f2 = K*n + L*(m*n) + D
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where:

m * The cardinality of the LEM set of the

relation,

n = The cardinality of the RIM set of the

relation.

K - The number of bits required by each RIM

record.

L The number of bits required by each linked

list record (Our general set structure

record)

.

D = The number of bits required by the record of

the relation in the relation table.

c. Storage Requirements for the Table Representation

The Table Representation requires more storage

than the Adjacency List representation most of the time,

including the worst case when the relation is a universal

relation on its LEM set and the RIM set. This is because the

adjacency list representation removes the duplicates of the

individuals in the right column of the table. In the table

representation each tuple of the relation is represented as

it is, and that causes the duplication of the right

individuals and the left individuals in the columns of the

table (if we look at the linked list structure of the table

as conventional table). The Adjacency list representation

does not represent a right individual in more than one place.
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We write the cumulative storage requirements of the Table

Representation in the worst case and in terms of number of

bits as follows:

f3 = T*n*m + D

where:

n * The cardinality of the RIM set of the

relation.

m - The cardinality of the LEM set of the

relation.

T The number of bits required for each table

record.

D = The number of bits required for the record of

the relation in the relation table,

d. Comparison of Storage Requirements

Now we have to compare the formulas we found for

the various representation techniques. In fact the Hash-

Incidence-Vector representation always requires the same

amount of storage for a given "n" and "m", so actually we are

comparing the worst case requirements of the other

representation techniques with the fixed requirement of the

Hash-Incidence-Vector representation. Let's subtract "fl"

from "f2 M
, we find:

f2-fl = L*m*n - K*m - (m*n)/C

If we factor out the "m"

:

f2-fl = m*(L*n - K*m - n/C)
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and equate the left side to 0, we obtain:

L*n - K - n/C

and we find:

n - K/(L - (I/O)

This means that:

n > ceiling (K/(L- (I/O))

and in the worst case of the Adjacency List representation,

Hash-Incidence-Vector representation is always better than

the Adjacency List representation. If we assume that the

memory word length and the pointers are 16 bits then

according to our definition of the fields of the records,

K = 80

D - 32

C = 16

T = 48

then n should be greater than 3. Because we have indicated

that the Table Representation requires more storage than the

Adjacency List representation, there is no need to do the

comparison for the table representation. So we conclude that

in the worst case the Table representation and the Adjacency

List representation dominate the Hash-Incidence-Vector

representation in storage consideration. In addition to

that, as one of the "m" or "n" becomes smaller than the other

the number of redundant bits in the incidence vector

decreases. Suppose n<m so there are m l's in the incidence
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vector but there are (m*n) entries and (m*n)<(m*m). On the

other hand we can not expect the worst case to occur every

time under the practical considerations, so, if the relation

being represented is a bijective function (one to one, and

onto), clearly the redundancy in the incidence vector becomes

maximum. This is the best case for the Table Representation

and the Adjacency list representation. Let's rewrite the

functions fl, f2 and f3 under this case:

(note that in this case n=m)

fl » 2*K*n + (n*n)/C + D

f2 = (K + L) *n + D

f3 = T*n + D

if we subtract fl from f2 and equate the result to ~, and if

we solve "n" in the resulting equation, we find that:

n = C * (L - K)

Hence as long as L<K the result is negative that shows us in

that case the Adjacency List representation is better than

the Hash-Incidence-Vector representation. If we subtract fl

from f3 and do the same steps we find:

n = C * (T - 2*K)

This means the table representation is much better than the

Hash-Incidence-Vector representation in this case. Lastly,

if we do this for f2 and f3, we can not find n. In that case
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we apply the numerical values (in our case) to the constants

for comparison; if we substitute the values given for L, K

and T and compare fl and f2 as lines having different slopes

we see that:

fl = 112*n + D

f2 * 48*n + D

Therefore, in this case the Table representation is better in

storage than both the Hash-Incidence-Vector representation

and the Adjacency List representation.

Selection of one of these representation

techniques under these space considerations depends greatly

on our expectations on the kind of relations that we will be

working on. For example if we are working on bijective

functions the most appropriate representation technique is

the table representation. If we are representing trees by

using binary relations, the most appropriate technique is the

Adjacency List representation. However, because of the

nature of our system the Hash-Incidence-Vector representation

becomes attractive. We will explain this by giving an

example.

Example

:

Suppose we have a relation which has the LEM set

cardinality 100 and the RIM set cardinality 200. By

substituting these values for the constants in the formulas
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for fl and f2,. we find the storage requirements for the

Adjacency List representation (in the worst case of Adjacency

List representation) to be 82 Kbyte and the storage

requirements for the Hash-Incidence-Vector representation to

be q .5 Kbyte. In the best case of Adjacency List

representation (a bijective function), the storage

requirements for the Hash-Incidence-Vector representation

remains the same, but the storage requirements for the

Adjacency List representation drops to 2.4 Kbyte.

If we think about the above example, in the best

case of the Adjacency List representation we do not gain

much, but in the worst case we lose a lot.

In the analysis of the algorithms we will mainly

focus on the Hash-Incidence-Vector representation, and the

Table representation. We will inspect the relative

efficiency of using Hash-Incidence-Vector representation

instead of using Table representation in terms of time. We

will not look into the Adjacency list representation, because

the Hash Incidence Vector representation is essentially the

same as the Adjacency List representation in which the linked

lists are represented as bit strings. This analogy is

demonstrated in Figure 6.
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3. System Hash Tables and Their Structure

The system consists of six hash tables which are:

a. Relation Table (RT)

.

b. Left Hash Table (LHT)

.

c. Right Hash Table (RHT)

.

d. Set Table (ST)

.

e. Set Hash Table (SHT)

.

f

.

Scratch Hash Table (SCHT)

.

The system handles the collisions by using the

bucketing technique. In this technique the records of the

individuals that hash into the same hash table entry are

linked to each other in a linked list structure and this

linked list is connected to the hash table entry in question.

a. Relation Table

In this table each relation known by the system

is represented by a record which is connected to the hash

table entry into which the identifier of the relation hashes.

The structure of the record is shown in Figure 7.

Rid PFLM PFRM PCOLS 3ASE RIxM LEM COLLINK

Figure 7. The Relation Table Record Structure

The Rid field of the record contains the character string

representing the relation's identifier. The PFLM field
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contains a pointer which points at the first record of the

Left Members set (LEM) of the relation, which resides in the

Left Hash Table. The PFRM field contains a pointer to the

first record of the Right Members Set (RIM) of the relation,

which is in the Right Hash Table (RHT). PCOLS is also a

pointer field, which contains a pointer to the code

(function) representing the relation; its use will be

explained later in Section III. The BASE field contains the

beginning address of the buffer allocated for the incidence

vector of this relation. The | RIM | field of the record

contains an integer which is the cardinality of the Right

Members Set (RIM) of the relation. The | LEM | field contains

an integer which is the cardinality of the Left Members Set

(LEM) of the relation being represented. The COLLINK field

contains a pointer to the record of the relation which has

been hashed into the same hash table entry as a result of

collision. The structure of the Relation Table (at one point

in execution) is shown in Figure 8.

b. Left Hash Table

This hash table contains the records of the LEM

set individuals of the relations. The LEM set records of a

relation are linked to each other in a linked list structure.

The structure of a LHT record is shown in Figure 9.
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Rid TASE PML INDEX COLLINK PRRM

Figure 9. The LHT Record Structure

The Rid field of the record contains a pointer to the

character string representing the relation's identifier. The

inclusion of this field is necessary in order to distinguish

the same individuals of the LEM sets of different relations.

The TASE field contains a pointer to the next LEM set

individual's record. The PML field contains a pointer to the

memory location where the individual being represented by

this record is stored. The INDEX field contains an integer

which will be used in computing the indices of the Incidence

Vector corresponding to the individual being represented by

this record. The COLLINK field contains a pointer to the

individual's record which has been hashed into the same hash

table entry as a result of collision. The PRRM field

contains a pointer which points at the related right member's

record in the RHT.

The LHT has an associated hash function that we

will call "Left Hash Function".
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c. Right Hash Table

The "Right Hash Table" has exactly the same

structure as the LHT. The only difference is, it contains

the records of the Right Members Set individuals of the

relations. It has an associated hash function that we will

call "Right Hash Function". Figure 10 shows the arrangement

of the LHT, RHT in combination with RT at one point in

execution.

d. Set Table

This hash table contains the records of the set

which are known by the system. The record structure of this

table is shown in Figure 11.

The Sid field of this record structure contains

the character string representing the set identifier. The

CARD field contains an integer which is the cardinality of

the set being represented. If this field contains -1, then

the cardinality of the set has not been computed. The

COLLINK filed contains a pointer to the record of another set

(if any) which has been hashed into the same hash table entry

as a result of collision. The PSS field contains a pointer

which points at the first individual's record of the set in

question. This record is the beginning record of the linked

list structure that represents the set. As we mentioned

earlier the records of the individuals are also connected to

the entries of the Set Hash Table which will be explained
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next. The Set Table has an associated hash function, which

we will call "Set Hash Function". Figure 12 shows the

arrangement of the Set Table at one point in execution.

Sid CARD PSS COLLINK

Figure 11. Set Table Record Structure

e. Set Hash Table

This hash table contains the individuals' records

of the sets. As explained before the records of the

individuals that are the member of the same set are linked to

each other in a linked list structure. The record structure

is as shown in Figure 13.

The Sid field of this record structure contains a

pointer to the character string which represents the set to

which the individual being represented by this record

belongs. Inclusion of this field is necessary in order to

distinguish the same individuals of different sets. The PML

field contains a pointer to the memory location where the

individual being represented by this record is stored. The

TASE field is another link field which contains a pointer to

the next record of the linked list structure of the set. The

COLLINK filed, as it was before, contains a pointer which
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goes into the collision chain. Figure 14 shows the

arrangement of the Set Hash Table at one point in execution.

Sid PML TASE COLLINK

Figure 13. The SHT Record Structure

f. Scratch Hash Table

The Scratch Hash Table is exactly the same as the

Set Hash Table and is used to store temporary sets during

relational operations. After the operation terminates, the

records of this table are disposed. We could use the Set

Hash Table for this purpose, but doing pointer updates in

such a crowded table becomes very complex. In addition the

SCHT need not be as large as the other hash tables since it

is used for only one operation and is cleaned up for a

subsequent operation. So the record density in this table

will be very low and the possibility of collisions decreases.

It is the implementer 's decision to continue to use the Set

Hash Table for this purpose or not. Note that if the SHT is

used for this purpose, the creation of temporary set

identifiers (for the temporary sets) becomes necessary.

4. Hash Functions

As we mentioned before, each system hash table has an

associated hash function. We will assume that the reader is

already familiar with Hash Coding and collision handling
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techniques. In addition, we will not go into the detail of

the hash functions; i.e., we will not consider how the index

of a hash table entry is computed corresponding to an

identifier since this is an implementation issue.

The hash function associated with the Relation Table

(RT) takes a relation identifier and maps it into the index

of a Relation Table entry. The hash function associated with

the Set Table (ST) takes a set identifier and maps it into a

Set Table entry. The hash function associated with the SCHT

takes an individual and maps it into a SCHT entry and so on.

The hash functions associated with the LHT, RHT, and

SHT have slightly different properties. The hash function

associated with the LHT takes the individual and the relation

identifier (which identifies the relation that the individual

in question belongs to) and concatenates them; then it maps

the resulting identifier to a LHT entry. This is done in

order to have a better distribution in the LHT. The hash

function associated with the RHT has the same properties as

the hash function associated with RHT, only the table we are

hashing is the RHT instead of LHT. The hash function

associated with the SHT takes the individual and the

identifier of the set which this individual belongs to and

concatenates them; then it maps the resulting identifier to

an SHT entry.
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Each hash function mentioned above tries to find the

record of the individual in the collision bucket. (If any

collision occurred before, there will be a collision bucket

connected to the hash table entry to which the hash function

mapped us.) If it finds the record of the individual, it

returns the pointer to the record of this individual;

otherwise, it returns the pointer to the last record of the

collision bucket or the hash table entry found (if there is

no individual connected to this hash table entry). Of

course, it will inform the caller about the kind of pointer

returned.

In our system the identifier of the individual is the

individual itself; hashing functions view the individuals as

bit strings and compute the indices of the hash table entries

by using these bit strings. Another important property of

our system is the individuals of a relation or a set may be

of different types. For example a set may contain a relation

or another set as a member. So in our system the relations,

sets, integers, characters, character strings, bit strings,

reals, etc. are all individuals. This type independency is

achieved by maintaining the pointers to the memory locations

where the individuals are actually stored, in the data fields

of the hash tables' records, rather than the individuals

themselves.
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5. Referencing the Incidence Vector

Before we explain the way we reference the incidence

vector of a relation, we will explain how we arrange the

integers stored in the index fields of the LEM set and RIM

set records of a given relation. Given a relation, the

integers associated with the LEM set individuals begin with 1

and increase by K where K is the cardinality of the RIM set

of the relation; i.e., if the cardinality of the RIM set of

the relation is 3 and the cardinality of the LEM set of the

relation is 2, the integer stored in the index field of the

first LEM set individual's record will be 1, and the integer

stored in the index field of the second LEM set individual's

record will be 4, and so on. The integers stored in the

index fields of the RIM set records begin with 1 and increase

by 1; i.e., in the above example the integer stored in the

index field of the first RIM set individual's record will be

1, the integer stored in the index field of the second RIM

set individual's record will be 2, and so on. The beginning

address of the incidence vector of the relation is stored in

the BASE field of this relation's record in the Relation

Table (RT).

Now we have to explain how we reference the incidence

vector of a relation. Suppose we are given a tuple and a

relation The question is whether this tuple is in the given

relation or not. We first hash with the right component
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individual to the RHT and find its record, then we hash with

the left component individual of the tuple to the LHT and

find its record. We extract the integers stored in the INDEX

fields of these records and add them up; then we subtract 1

from the result and obtain the INDEX of the incidence vector

entry corresponding to this tuple. Let's call the resulting

INDEX, "K". (Of course, if we can not find records for the

individuals above, the question can be answered immediately.)

In the next step we extract the beginning address of the

incidence vector from the record of the relation. Let's call

this address BASE. Then we call the algorithm below with the

BASE and K being the arguments. Algorithm reference (K,

BASE)

:

1. Offset = ceiling (K/C)

.

2. Location = offset + BASE - 1.

3. Fetch the contents of the memory location by

using the address computed in step 2.

4. h = K - (offset*C) + 1.

5. Extract the h'th bit from right and test it. If

it is 1 return true, else return false.

In the above algorithm C is the memory word length, "offset"

is a variable of type integer, "location" is a pointer

variable, "h" is a variable of type integer. We needed to do

the above computations because we pack the n bits of the
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incidence vector into ceiling (n/C) memory locations, where C

is the memory word length.

6. Table Representation

Another representation technique that we will be

focusing on is the table representation. We will represent

the table of a relation as a linked list of records in which

each record represents a tuple of the relation. The record

structure is as shown in Figure 15.

Figure 15. The Structure of the Table Records

The LEFT field contains a pointer to the memory location

where the left component of the tuple (which is an

individual) is stored. The RIGHT field contains a pointer to

the memory location where the right component of the tuple is

stored. The left component of the tuple belongs to the Left

Members Set of the relation (or in other words Codomain of

the relation) and the right component of the tuple belongs to

the Right Members Set of the relation (or in other words the

Domain of the relation). The LINK field contains a pointer

to the record which represents the next tuple of the

relation.
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We will not define a complete environment for the

table representation. Of course the environment defined for

the Hash-Incidence-Vector representation (i.e., The RT, ST,

SHT) could be used in this case too.

7. About the Algorithms

We will write our algorithms in English step by step.

In the time complexity analysis we will refer to the steps of

the algorithms and associate the terms of the complexity

functions with the steps. The comments will be written in

parenthesis between the steps of the algorithms. Sometimes

we will insert loops as steps into the algorithms, which are

written in a PASCAL-like algorithmic language. This is done

to make the algorithm clear to the reader.

In the time complexity functions we will use the

capital letters to represent the constants and the small

letters to represent the variables. Even though we will be

inspecting the worst case asymptotical time complexity

behaviour of the algorithms, and constants do not affect the

asymptotical time complexity behaviour of the algorithms, we

will provide the complexity functions of the extensional

algorithms with the predicted explicit constants in Appendix

B. In predicting these constants we will make some

assumptions. For example hashing to a hash table requires 10

memory references to be made. Even though we will not define

an explicit environment for the Table representation we will
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assume we use the same environment that we will use for the

Hash-Incidence-Vector representation in predicting those

constants. This is necessary in order to do a fair

comparison between the Table representation and Hash-

Incidence-Vector representation.
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II. ANALYSIS OF EXTENSIONAL ALGORITHMS

In this section we will define some of the relational

operations' algorithms that work on the extensional

representation structures and we will determine the worst

case asymptotical time complexity behaviour of these

algorithms.

The reader can find the analysis of the remaining

relational operations' algorithms in Appendix A.

A. FUNCTION APPLICATION (F:x)

Given an individual we want to apply a function to that

individual in order to find the corresponding individual in

the codoraain of the function. We know that functions are in

fact left univalant relations. This means given an

individual in the domain there exists a unique individual

corresponding to that individual in the codomain or that no

individual exists in the codomain corresponding to the

individual in the domain. Now we have to state that fact

more carefully.

Definition: Let A and B be sets. A function f from A to

B, denoted:

f :A->B

is a relation from A to B such that for every aea, there

exists at most one be- such that <a,b>ef. In this case we

write:
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f :a = b

On the other hand in the relations case, given an individual

in the domain of the relation we may find more than one

individual that is in relation with that individual in the

codomain of the given relation.

In our case the domain is the RIM set of the

relation/function and the codomain is the LEM set of the

relation/function. In our system function application

operation is also defined for relations. This may seem

dangerous to the reader, but we have other operations such as

"Unit image" that returns the set of individuals in the

codomain which are in relation with the given individual in

the domain so it is the user's responsibility to use the

apropriate operation when he/she is programming. The reason

for doing this is we will treat function application in a

special manner to make this operation faster (constant time)

because the "Function Application" operation is a very

frequently used primitive function of the system. If we

check to detect if more than one individual exists in the

codomain for the given individual in the domain, this

operation becomes an order "n" operation in the hash

incidence vector representation. So there is no need to

accept an 0(n) algorithm for this operation when there are

other operations that serve the user in the relations case.

For example if the user wants to learn the salary of an
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employee by applying a relation (that relates the salaries to

the employees) to the given employee name, it is obvious that

the relation is a left univalant relation and he can do that

without fear. In fact there exists many relations that are

obviously left univalant and the user should be able to

perform this fast operation on those relations. In addition

to that, the user may want to use this operation instead of

"Unit Image" operation even though it is known that the

relation to be applied is not left univalant. If the user is

not sure that the relation in question is left univalant or

not, he should use the "Unit Image" operation to obtain the

set of individuals that are in relation with the given

individual, then he/she should apply the "Unit Class

Selector" operation to the resulting set. This operation

calls the "Error Handler" if the argument set is not a

singleton set.

As we mentioned earlier, because we use this operation

very frequently we have to reduce the time complexity of its

algorithm to constant time. We do this by adding a pointer

field to the RHT record structure, namely PRLM (Pointer to

the related left member). The pointer in that field is set

to the LHT record of the individual which is in relation with

the individual being represented by the RHT record in

question. In the same manner we allocate a pointer field in

the RHT structure which we will call PRRM, that serves the
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same purpose. Note that we still have to construct the

incidence vector of a left univalant relation even though it

may seem unnecessary at first glance; the reason is the

converse of a left univalent relation is not necessarily a

left univalent relation (except in the case of bijection) and

in this case we have to treat this condition in the converse

operation as a special case. In fact this is not the only

reason; many operations that we will define algorithms for

such as the "Relative Product" and "First Ancestral"

operations, expect the argument relations to have incidence

vectors. So rather than adding this case as a special case

to each algorithm and constructing the incidence vector of a

left univalent relation when it becomes necessary, we had

better construct it the first time the relation is created.

In fact both solutions have tradeoffs. If we construct the

incidence vector of a left univalent relation the first time

the relation is created and if we do not need that incidence

vector in any operation in the program, we waste space. On

the other hand if we maintain the code to construct the

incidence vector of a relation in each operation's program

which requires that the operand relations have their

incidence vectors together with them, we waste space again.

Which of the solutions is advantageous is an implementation

decision.
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The algorithm for the Hash- Inc idence-Vec tor

representation is as follows:

1. Get the argument individual.

2. Hash with that individual into the RHT under the

given relation identifier (for the relation being applied to

the given individual).

3. Find the RIM record of that individual in the RIM set

of the relation in question.

4. Follow the pointer found in the PRLM field of that

record and reach the record of the left individual in

relation with the right individual in question.

5. Follow the PML field of the record found and extract

the individual from the memory location where it is saved and

return it.

The worst case (also the average case) asymptotical time

complexity behaviour of this algorithm is obviously constant

time (0(c)). Because no matter how large the relation is, we

always make the same number of memory references.

Now we have to define the algorithm for the table

representation. The algorithm is as follows:

1. Get the individual.

2. Start from the beginning of the relation's table;

proceed down in the table record by record by following the

links between the records.
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3. For each record found, compare the argument

individual with the individual represented by the "right"

field of that record.

4. The first time a match is found, return the

individual represented by the "left" field of the current

table record.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The worst case complexity function of this algorithm can

be written as:

f = K*p + C

where:

p = Table size/Relation size.

K = The constant number of memory references made for

each table record found.

C = The constant number of memory references made by the

housekeeping operations. (In this case C is very

small because there is no need to update any global

table.)

In the worst case the relation may be a universal relation on

its LEM and RIM sets, or in other words the relation may be

equal to the cartesian product of its LEM and RIM set. By
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assuming the LEM and the RIM sets have the common cardinality

"n", we can substitute:

n*n

in place of "p" in the above function. So the complexity

function becomes:

f = K*(n2) + c

So by looking at the exponent of the term with the larger

exponent, we conclude that the above polynomial has the

asymptotical behaviour of order 2, and in turn we conclude

that the algorithm has the worst case asymptotical time

complexity behaviour of 0(n 2 ).

B. UNIT IMAGE ( (unimg :R) :x)

This operation, given an individual in the domain (RIM

set) of the relation, returns the set of individuals that are

in relation with the given individual in the codomain (LEM

set) of the relation.

The algorithm for the Hash- Inc idence-Vec tor

representation is as follows:

1. Get the argument individual.

2. Get the relation identifier, hash with that relation

identifier into the relation table and find the record of the

relation in the relation table. Follow the pointer found in

the PFLM field of that record, and find the first left

member's record in the LEM set of the relation.
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3. Hash with the argument individual into the RHT under

the given relation identifier, find the RHT record of the

argument individual and extract the contents of the "index"

field of that record. Record the resulting integer in the

temporary variable "tempi".

4. Start from the beginning of the LEM set of the

relation (the first record is found in step 2), and proceed

down in the LEM set record by record by following the TASE

links between the records. For each record found in this

manner extract the contents of the index field, reference the

incidence vector of the relation with this index and the

index stored in the variable "tempi" by using the "reference

algorithm". If a 1 is found in the corresponding incidence

vector location then, hash into the SHT with the current left

individual under the set identifier which will be described

in step 5, and establish a set record. Copy the PML field of

the current LEM set record into the PML field of that record.

If this is the first set record created, mark it with pointer

"P". Link the set records created in this manner to each

other by their TASE links. Keep a count beginning with and

increment it for each set record created, with 0.

5. Hash to the set table (ST) with the identifier of the

resulting set, which is:

"u$img$" (relation's identifier) (individual's identifier)
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Establish the record of this set, put the pointer "P" into

the "PSS" field and put the last value of the count into the

"CARD" field of that record.

We write the worst case complexity function of that

algorithm as follows:

f = K*n + C

where:

n = The cardinality of the LEM set of the given relation.

K = Constant number of memory references made for each

LHT record found while proceeding in the LEM set of

the relation in Step 4.

C = Constant number of memory references made in steps 1,

2, 3 and 5.

By looking at the exponent of the term with the larger

exponent we conclude that the worst case asymptotical time

complexity behaviour of this algorithm is 0(n), where n is

the cardinality of the LEM set of the relation.

Now we have to define the algorithm for table

representation. The algorithm is as follows:

1. Get the argument individual.

2. Start from the beginning of the relation's table,

proceed down in the table record by record, by following the

links between the records. For each record found in this

manner, compare the argument individual with the individual

represented by the "right" field of that record. If a match
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is found, hash into the SHT with the current left individual

under the set identifier described in step 5 of the previous

algorithm, establish a new set record and copy the "left"

field of the current table record to the PML field of this

set record. If this is the first set record created in this

manner, mark it with a pointer and link the set records

created in this manner to each other by their TASE links.

Keep a count beginning with and increment it for each set

record created.

3. Continue to do step 2 until the end of the table of

the relation.

4. Update the set table as it was done in step 5 of the

previous algorithm.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We write the worst case asymptotical time complexity of

that algorithm as:

f =K*p + C

where:

P = Relation size.

K = Constant number of memory references made for each

table record found in step 2 of the algorithm.

C = Constant number of memory references made by the

housekeeping operations (such as the number of memory

references made in step 4)

.
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We know that in the worst case:

p = n*n

where:

n The common cardinality of the LEM set and the RIM set

of the relation in question (Assumption)

.

So we rewrite the complexity function as:

f = K*(n 2
) + C

So by looking at the exponent of the term with the larger

exponent we conclude that the worst case asymptotical time

complexity behaviour of this algorithm is 0(n 2
)

.

C. CONVERSE OF A RELATION (Re)

We formally express the converse of a relation as:

Re = {<x,y>| <y,x> e r}

So if D is the digraph of R, the digraph of Re can be

constructed from D by reversing the direction of all arcs of

D. This can be done in the table representation of a

relation by simply interchanging the columns of the table.

Since the converse of a relation is another relation it

participates in the relational operations as the original

relation does, so in the Hash-Incidence-Vector representation

case we necessarily have to construct the incidence vector,

the LEM set, and the RIM set of that resulting relation. The

algorithm for the Hash-Incidence-Vector representation is as

follows

:
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1. Get the identifier of the original relation.

2. Hash to the relation table f find the record of the

relation/ follow the pointers in the PPLM and in the PFRM

fields of that record and find the records of the first left

member and the first right member of the relation

respectively.

3. Extract the contents of the | LEM | and the | RIM | field

of the relations record, allocate a memory block as large as:

( | LEM
|

*
|
RIM

| ) /C

(Where
|
LEM

|
is the cardinality of the LEM set of the

original relation and | RIM | is the cardinality of the RIM set

of the original relation and C is the memory word length.)

4. Make a separate copy of the LEM set of the original

relation in the RHT under the relation identifier, "Re"

(i.e., the records will contain identifier "Re" in their

"Rid" fields, where R is the identifier of the relation in

question). Keep a RIM set index count and increment it for

each record copied; put the updated value of that count into

the index field of the record created each time a record is

created.

5. Make a separate copy of the RIM set of the original

relation in the LHT under the relation identifier "Re". Keep

a LEM set index count and increment it by the cardinality of

the RIM set of the original relation. For each record
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copied, put the updated value of the LEM set index count into

the index field of each new record created.

6. Extract the integer found in the |RIM| field of the

original relation's record in the relation table and call it

K. Start from the beginning of the original relation's LEM

set and proceed down in this set record by record. For each

record found extract the integer stored in the INDEX field of

this record and call it L. Call the original relation's

incidence vector A and the new relation's incidence vector B

and execute the loop below.

For j L to L+K by 1 do:

B[j+|RIM|] = A[j]

end-do

7. Hash to the relation table with the new relation

identifier "Re", and establish the record for the new

relation. Copy the | LEM | field of the original relation's

record into the | RIM | field of that record; in the same

manner copy the | RIM | field of the original relation's record

into the | LEM | field of that record. Put the beginning

address of the new incidence vector into the BASE field of

that record, put the pointers to the records of the first

left member and first right member of the resulting relation

into the PFLM and the PFRM fields of that record

respectively.
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Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We write the worst case asymptotical time complexity

function as:

f = P*(m*n) + L*n + M*m + C

where:

m = The cardinality of the LEM set of the original

relation,

n The cardinality of the RIM set of the original

relation.

L = The constant number of memory references made while

copying each record of the RIM set.

M The constant number of memory references made while

copying each record of the LEM set.

P * The constant number of memory references made while

copying the entries of the original incidence vector

to the corresponding entries of the new incidence

vector.

In the above function the first term corresponds to step 5,

the second term corresponds to step 4, the third term

corresponds to step 6, and the last term (the constant C)

corresponds to the other steps of the algorithm.

Let:

m = n

S = L + M
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then the complexity function becomes:

f = P*(n 2
) + S*n + C

In step 6 of the algorithm we had to make a number of

memory references proportional to the square of n, where n is

assumed to be the common cardinality of the LEM and the RIM

sets of the original relation, as a result of copying the

(n 2 ) bits of the original incidence vector to the (n 2
) bits

of the new incidence vector. So, by looking at the degree of

the term with the largest exponent we conclude that the worst

case asymptotical time complexity behaviour of this algorithm

is 0(n 2 ).

Now we have to consider how this operation could be

performed on the table representation. Obviously the

algorithm is simpler in this case. The algorithm is as

follows:

1. Start from the beginning of the table of the

relation, and proceed down in the table. For each table

record found create a new table record. Copy the "left"

field of the original record into the "right" field of the

new table record. In the same manner, copy the "right" field

of the original record into the "left" field of the new

record. Link the new table records created in this manner to

each other by their "link" fields.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.
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In the worst case the original relation may be a

universal relation on its LEM and RIM sets. Assuming the LEM

set and the RIM set cardinalities are equal to "n" the

relation size becomes equal to the square of "n", so we write

the worst case complexity function as:

f - K*(n 2
) + C

where:

n The common cardinality of the LEM and the RIM set of

the original relation.

K - The constant number of memory references made for

each table record of the original relation in step 1.

C = The number of memory references made by the

housekeeping operations such as updating the relation

table, etc.

So we conclude that the worst case asymptotical time

complexity behaviour of that algorithm is 0(n 2 ).

D. SET OPERATIONS

1. Set Union (RUS)

The union of two sets contains those members which

are in either one of the two operand sets or both. We can

formally express that as:

R U S = ( X
|
XeR OR XeS 1

Takinq the union of two sets may involve a lot of

comparisons and exhaustive searches in the inorderly

structured linked lists of the operand sets. Concatenating
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the linked lists of the two sets and then removing the

duplicates may be one solution but removing duplicates is a

very expensive operation. In addition we have to preserve

the original sets while we are obtaining the union of them,

so we have to make separate copies of the operand set

structures and perform the operations on those copies.

Our solution for this problem is to use the

properties of the SHT. By establishing the resulting set in

the SHT the duplicates are automatically removed.

The algorithm is as follows:

1. Hash with the first and second operand set

identifiers to the set table, find their records, follow the

PSS fields of those records, and find the beginning records

^f the two operand sets.

2. Start from the beginning of the first set's

linked list and proceed down in the linked list record by

record. For each record found, hash into the SHT with the

individual represented by that record under the new set

identifier "RVS". Establish the record of that individual in

the SHT only if there is no record for that individual in the

SHT already. Link the records of the individuals in the SHT

by their TASE links as they are created.

3. Start from the beginning of the other set's

linked list and proceed down in the linked list record by

record. For each record, hash with the individual
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represented by that record into the SHT under the new set

identifier. Establish its record in the SHT if there is no

record for that individual in the SHT already.

4. Hash to the set table with the set identifier

"RVS" where R is the identifier of the first operand set and

S is the identifier of the second operand set. Establish the

record of that set in the set table and put the pointer to

the linked list structure established in the SHT into the PSS

field of this record.

Note that the order of the operand sets is arbitrary

so if we establish the record of the set under the identifier

"RVS", a subsequent reference to the set "SVRn may cause the

same set to be reconstructed again. Of course we do not want

that, so we have to accept a convention and let the system

realize that convention. We assume that when a reference to

the union of two sets is made, the system first looks up the

set table for the record of this set, if it is not already

present there, it takes the identifier of the referenced set

apart, with the character "V" being the pivot character, and

interchanges the operand set identifiers with the character

"V" being in the center. Then the system hashes with the

resulting identifier to the set table and looks for the

record of that set. If there is no record for that set in

the set table, it executes the algorithm given above.
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Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Clearly the algorithm goes through both operand sets

once. Assuming the cardinalities of the operand sets are

equal, the worst case time complexity function of that

algorithm can be written as:

f * 2*Kl*n + K2*m + C

where:

n = The common cardinality of the operand sets.

m = The cardinality of the second argument set = n.

Kl* The number of memory references made for each

record found in the set while proceeding in the

set in step 2.

K2= The number of memory references made for each

record found in the set while proceeding in the

set in step 3.

C = The number of memory references made in steps 1

and 4.

Let:

K = K2 + Kl

then the worst case complexity function becomes:

f = K*n + C

So clearly, the worst case asymptotical time complexity

behaviour of this algorithm is 0(n) .
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2. Set Intersection (R/\S)

The intersection of two sets contains those members

which occur in both operand sets. That can be formally

written as:

R/\S = {x|xeR A xeS }

We will use the SHT mechanism for this operation, like we did

in the "set union" operation. The algorithm is as follows:

1. Hash with the identifiers of the operand sets to

the set table, find their records, follow the pointers in the

PSS fields of those records and find the first records of the

linked list structures of those sets.

2. Start from the beginning of the first operand set

(order is not important) and proceed down in the linked list

of the set record by record. For each record found hash into

the SHT with the individual being represented by that record

under the second operand set's identifier. If this

individual also has a record in that set structure, hash to

the SHT with this individual again, but this time under the

new set's identifier nR/\S B and establish the record for that

individual in the SHT, if there is no record for that

individual in the SHT already. Link the records of the

individuals created in the SHT to each other by their TASE

links as they are created. Keep a cardinality count

beginning with and for each record created increment this
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count. Mark the first record of the resulting set structure

with the pointer P.

3. Hash to the set table with the identifier of the

resulting set, which is "R/XS", establish the record of that

set in the set table, put pointer P into the PSS field of

that record, and put the last value of the cardinality count

into the "CARD" field of that record.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We write the worst case complexity function of that

algorithm as:

f = Kl*n + C

where Kl, C, n and m mean the same as the corresponding

parameters defined in the set union operation.

Let the cardinality of the operand sets be equal,

then the complexity function becomes:

f = Kl*n + C

So we conclude that the algorithm has the worst case

asymptotical time complexity behaviour of 0(n).

3. Set Difference (R-S)

The difference of two sets, R and S contains those

members which are in R but not in S. This can be written

formally as:

R - S = {x|xeR and not(xeS) }
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We will use SHT for this operation too. The algorithm is as

follows:

1. Hash with the identifiers of the sets to the set

table, find their records/ follow the pointers found in the

PSS fields of those records and find the first record of each

set.

2. Start from the beginning of the first operand

set's linked list (call it R). (* The first operand set will

be accepted and called the reference set because the set

difference operation is not commutative. *) Proceed down in

the linked list record by record. For each record found,

hash with the individual represented by that record into the

SHT under the second operand set's identifier and check if a

record of this individual exists in that set structure. If

so do nothing, else hash with this individual to the SHT

under the new set identifier. Create a record for this

individual in the SHT. Link the records created in this

manner to each other by their TASE links as they are created.

3. Hash to the set table with the new set identifier

"R-S" and establish its record and put the pointer to the

beginning of new linked list structure into the PSS field of

that record. Put the last value of the cardinality-count

into the "size" field of that record.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.
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We write the complexity function as follows:

f = Kl*n + C

where Kl and C are as defined in the union operation case.

In this case n represents the cardinality of the first

operand set; the cardinality of the second operand set does

not have any affect on the complexity function because we

make K memory references for each record of the first

argument set in step 2. Of course this is true in the case

the second operand set is already in the SHT. Since this

operation takes only those sets that are known by the system

as operands and we represent the sets that are known by the

system in the SHT, the mechanism is well defined. Thus we

conclude that the worst case asymptotical time complexity

behaviour of that algorithm is 0(n)

.

E. INITIAL MEMBERS (init:R)

The initial members of a relation are the left members

that are not right members. This can be stated formally as:

init:R = { x
|
for some y, xRy and not yRx }

Our "init" operation is supposed to take a relation

identifier as argument and return a set of individuals that

are the initial members of the given relation.

The algorithm for "Hash-Incidence-Vector" representation

is given below:

1. Get the relation identifier.
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2. Hash with that relation identifier into the relation

table; find the record of that relation.

3. Follow the pointer found in the PFLM field of that

record and find the LHT record of the first left member of

that relation.

4. Find the individual's identifier by following the

pointer found in the PML field of that record.

5. Hash into the RHT with the individual's identifier

found in step 4 under the relation identifier in question.

If there is no RHT record for that individual in the RHT,

then hash with that individual into the SHT under the new set

identifier ("init:" (relation identifier)), and establish its

record. If it is the first record established in this manner

then mark it with a pointer.

6. Find the next individual's record by following the

pointer found in th TASE link field of the current record in

the LHT; repeat steps 4 and 5 for that individual.

7. Repeat steps 4, 5 and 6 until the LEM set of the

relation is exhausted. As the records are created in the SHT

link them to each other.

8. Establish the record of the set created above in the

Set Table under the identifier "init:R", where "R" is the

identifier of the relation in question. Put the pointer P

(that was set in step 5) into the PSS field of that record.
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Once we establish the record of this set in the set table

any subsequent references made to this operation take

constant time. Because we are trying to find the worst case

behaviour we had to write the costly part of the algorithm.

As we can see, step 7 of the algorithm causes the worst

case asymptotical time complexity behaviour of the algorithm

to the 0(n), where "n" is the cardinality of the LEM of the

relation.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We define the worst case time complexity function of that

algorithm as:

f =* K*n + C

where:

n The cardinality of the LEM set of the relation.

K The number of memory references made for each record

of the LEM set of the argument relation in step 5.

C - The number of memory references made in steps 1, 2,

3, 4 and 8.

By looking at the worst case time complexity function we

conclude that the worst case asymptotical time complexity

behaviour of this algorithm is 0(n).

Now we have to define the algorithm that works on the

table representation. Suppose our algorithm begins to

examine the individuals on the left column one by one and for
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each one performs an exhaustive linear search in the right

column to decide if the individual in question is also

present in the right column. This would obviously be an

order two, 0(p2) algorithm, where p is the relation size.

But we may use the SHT mechanism again to reduce the time

complexity of the algorithm.

The steps of the algorithm are given below:

1. Start from the beginning of the left column. Proceed

down in the left column of the table by following the link

fields of the table records and by looking up the individual

from the "left" field of each table record. In fact the

individual is not directly obtainable from the "left" field

because one level of indirection is involved. That means it

has to follow the pointer found in the "left" field of that

record in order to find the individual. For each individual

hash into the SHT under the new set identifier described in

step 5 of the previous algorithm, establish its record and

link the records as they are created in SHT. If the record

is the first record created in this manner mark that record

with the pointer P.

2. After the left column is exhausted start from the

beginning of the right column and proceed down in the right

column. For each individual found in the right column, hash

into the SHT with that individual under the new set's

identifier. If the record of that individual is already
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present in the SHT, delete it. After deletion update the

links between the records created in the SHT appropriately.

3. Establish the resulting set's record in the set table

(as is done in the set operations' algorithms). (* We did

not explain the steps of that algorithm in detail, because

the steps are similar to the steps of the algorithm defined

for the set operations. *)

This algorithm requires one exhaustive linear search of

the left column and one exhaustive search of the right

column.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The worst case complexity function of that algorithm can

be written as:

f K*p + M*p + C

let N = K + M, then the function becomes:

f = N*p + C

where:

p * Relation size (table size or equivalently the number

of tuples in the relation)

.

n = The cardinality of the LEM set of the relation.

N = The number of memory references made (averaged) in

each iteration of step 1 and 2.

C = The number of memory references made by the

housekeeping operations.
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We know that in the worst case the relation may be equal to

the cartesian product of its LEM set and the RIM set/ which

means the relation size is equal to the product of the

cardinalities of the LEM set and the RIM set of the relation.

So in the worst case we see that:

p = n*m

where:

n = The cardinality of LEM set.

m The cardinality of RIM set.

let n = m, then:

p = n*n

If we apply this result to the above complexity function, it

is obvious that the algorithm has the worst case asymptotical

time complexity behaviour of 0(n2).

F. RIGHT RESTRICTION (R\C)

It is often useful to limit the domain of a relation.

This operation, given a set and a relation, restricts the RIM

set of the given relation to the given set. We can express

the effect of this operation as follows:

R\S = { <X,y>| <X,y>eR /\ yeS }

So we bind the domain of the relation R to the intersection

of the domain and the set S. It is clear that the operation

should extract those individuals which are not in the given

set from the RIM set of the relation.
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We will first define the algorithm for the Hash-

Incidence-Vector representation. The algorithm is as

follows

:

1. Get the relation identifier and the set identifier.

Find their records in the relation table and in the set table

respectively by hashing to those tables with these

identifiers.

2. Follow the pointer found in the PFLM field of the

relation's record and find the record of the first left

member in the LHT. Begin from the beginning of the linked

list structure of the LEM set of the relation, and proceed

down in that linked list record by record. For each record

found, hash to the LHT with the individual represented by

that record, under the relation identifier:

(Relation identifier) 'V (set identifier)

and establish its LHT record. Link the records created in

this manner to each other as they are created in the LHT.

(* This step effectively makes a separate copy of the LEM set

of the original relation, which becomes the LEM set of the

new relation. *)

3. Test if the given set is represented extensionally or

intensionally by following the pointer in the PSS field of

the set record. If it is detected to be extensionally

represented do the steps below:
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a. Follow the pointer found in the PFRM field of the

relation's record. Start from the beginning of the

relation's RIM set; proceed in this set record by record; for

each record found, hash into the SHT with the individual

being represented by this record under the argument set

identifier. If a record for this individual is present in

this set structure, make a separate copy of the RIM set

record of that individual in the RHT (like was done for the

left individuals' records in step 2) under the new relation's

identifier. Link the records created in this manner in the

RHT by their TASE links. (* This step effectively copies

those RIM set records of the original relation which

represent some individual in the argument set, into the new

RIM set of the new relation. *)

b. Hash to the relation table under the new

relation's identifier. Establish the record of this relation

in the relation table with the new relation identifier being

in the "Rid" field. Copy the | LEM
|
and the BASE fields of

the original relation's record into the | LEM
|
and the BASE

fields of the new relation's record respectively. (* So the

new relation makes use of the original relation's incidence

vector. *)

4. if the argument set is detected to be intensionally

represented do the steps below:
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a. Start from the beginning of the linked list

structure of the original relation's RIM set, proceed down in

the RIM set record by record. For each record found in this

manner test if the individual being represented by that

record is a member of the argument set. (* This membership

test will be explained further in the explanation of the

intensional representation structures. *) If this individual

is in the argument set then hash with that individual into

the RHT under the new relation identifier and copy all the

fields (except the TASE and Rid fields) of the RIM set record

(which belongs to the original relation) into the new

record's corresponding fields. Put the new relation's

identifier into the Rid field of that record. Link the

records created in this manner to each other by their TASE

links as they are created.

b. Do step 3-b.

Now we will do the worst case asympto t icaly time

complexity analysis of this algorithm.

The right restricted relation makes use of the original

relation's incidence vector, which significantly reduces the

time complexity of the resulting algorithm. We expect that

most of the time the cardinality of the argument set will be

smaller than the cardinality of the RIM set of the relation,

but of course that may not be true all the time, i.e., we do

not have a restriction on the cardinality of the argument
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set. In the worst case the argument set may be a super set

of the RIM set of the original relation, in that case we have

to copy all of the RIM set of the original relation in order

to obtain the resulting relation's RIM set. (So the

resulting relation becomes exactly equal to the original

relation.) Under these considerations we write the worst

case time complexity function of that algorithm as:

f = K*ra + L*n + C

where:

m s The cardinality of the LEM set of the original

relation,

n = The cardinality of the RIM set of the original

relation.

K = The constant number of memory references made while

copying each LEM set record.

L = The constant number of memory references made while

copying each RIM set record.

C = The constant number of memory references made by the

housekeeping operations.

In the above function the first term corresponds to step 2,

the second term corresponds to step 3, and the last term

corresponds to the other steps of the algorithm.
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Let m=n and Z=K+L then the complexity function becomes:

f • Z*n + C

Thus it is clear that the algorithm has the worst case

asymptotical time complexity behaviour of 0(n) .

Now we have to define the algorithm for the table

representation. The algorithm is as follows:

1. Start from the beginning of the linked list structure

of the relation's table and proceed down in the table record

by record by following the links beteen the records. For

each record found in this manner hash with the individual

represented by the "right" field of that table record into

the SHT under the argument set identifier. If a record of

that individual is already present in the SHT then create a

new table record (that will belong to the restricted

relation). Copy the "right" and "left" fields of the

original relation's record to the corresponding fields of the

new record. Link the new table's records created in the

above manner to each other as they are created.

The algorithm seems simpler than the previous one, but in

the worst case we can not say it is less costly.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case the relation may tbe a universal

relation on its LEM set and RIM set (note that this is

different from saying "the relation is the universal relation
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on its MEM set"). This means it contains all of the tuples

that can be constructed from the LEM and RIM sets, and each

tuple of that relation will have its left component from the

LEM set and it will get its right component from the RIM set.

This relation is in fact the cartesian product of the LEM set

and the RIM set. In this case the number of tuples in the

resulting relation will be equal to the product of the

cardinalities of the LEM and the RIM set. By assuming that

the LEM set and the RIM set of the original relation have the

common cardinality "n" we write:

p = n*n

where "p" is the size of the relation. Note that in step 1

we get through the whole structure of the argument set and in

step 2 we get through the linked list structure of the

relation's table. In addition in the worst case the argument

set may be a super set of the RIM set of the original

relation; in that case we necessarily copy the whole table of

the relation/ which means the restricted relation and the

original relation become exactly equal to each other. So we

write the worst case time complexity function of that

algorithm as:

f = T*p + C

where:
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p = Relation size.

T = The constant number of memory references made for

each record of the relation in step 1.

C = The constant number of memory references made by the

housekeeping operations.

In the above function the first term corresponds to step 1 of

the algorithm. If we substitute (n 2
) for "p" in the above

function we get:

f = T*(n 2
) + C

So the algorithm has the worst case asymptotical time

complexity behaviour of 0(n 2
), where "n" is the common

cardinality of the LEM set and the RIM set of the original

relation.

G. LEFT RESTRICTION (C/R)

It is often useful to limit the codomain of a relation,

so this operation takes a set identifier and a relation

identifier and restricts the LEM set of that relation to the

given set. This means that after this operation is performed

there remains only those individuals in the LEM set of the

resulting relation which are in the argument set. We can

state this as follows:

S/R = { <y,X>| <y,X>eR /\ yeS }

The algorithms for "Left Restriction" operation are

essentially the same as the algorithms for the "Right

Restriction" operation for both representation techniques.
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The only difference is we bind the LEM set in the Hash-

Incidence-Vector representation or left column in the table

representation instead of the RIM set in the Hash-Incidence-

Vector representation or the right column in the table

representation. So there is no need to rewrite the

algorithms and repeat the complexity analysis.

H. RELATIVE PRODUCT (RS)

This operation takes two relation identifiers and

produces another relation which is the relative product of

the given relations in the order they have been given.

This operation has an expensive algorithm because each

tuple of the resulting relation may originate from the

presence of many different tuples in the argument relations.

The algorithm for Hash-Incidence-Vector representation is

as follows:

Let the first argument relation be R and the second

argument relation be S:

1. Find the records of the argument relations in the

relation table by hashing with their identifiers to the

Relation table (RT)

.

2. Make separate copies of the LEM set of the relation

R and the RIM set of the relation S in the LHT and in the RHT

respectively under the relation identifier "RS". While doing

that keep a LEM set index count and for each LEM set record

created, increment this count by the cardinality of the RIM
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set of relation S. Each time a LEM set record is created,

put the updated value of this count into the index field of

this LEM set record. Establish the record of the new

relation in the relation table under the relation identifier

"RS". Establish the pointers to the LEM set and the RIM set

of that relation into the PFLM and PFRM fields of the record

respectively. Copy the | LEM | field of the relation R's

record into the
|
LEM

|
field of the new record; in the same

manner, copy the
|
RIM

|
field of the relation S's record into

the
|

RIM
|
field of the new record. Allocate a block of

memory as large as:

( | LEM |
*

|
RIM

| ) /C

where C is the memory word length. Put the beginning address

of this block into the "BASE" field of the new relation's

record i RT. Initialize the new incidence vector. Establish

the contents of
|
RIM

|
field of the new relation's record in

the variable "CARD".

3. Start from the beginning of the LEM set of the

relation RS, proceed down in the LEM set record by record by

following the TASE links between the records. For each

record found in that manner, extract the contents of the

index field, put it in variable "beginl" and perform these

steps

:
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a. Find the RIM set record of the first right member

of relation R and proceed down in the RIM set of the relation

R, by following the TASE links between the records.

b. For each tuple found which is being represented

by the record pair found in steps 3 and 3-a, check if the

relation R has this tuple by hashing with the components

(individuals) of the tuple to the LHT and RHT and by using

the reference algorithm. If the relation R does not have

this tuple then do nothing. Else, hash to the LHT with the

individual found in step 3-a under the relation S. If there

is no LEM set record present for that individual in the LEM

set of relation S then again, do nothing. Otherwise, take

the index stored in the index field of the LEM set record of

relation S and put it in variable "begin2 w
.

c. Take the:

begin2 to begin2 + CARD

bits of the incidence vector of relation S and OR them with

the:

beginl to beginl + CARD

bits of the new incidence vector.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The worst case time complexity function of this algorithm

can be written as:

f = K*n + L*m + S*n*q*(m/D) + R*(n*ra)/D + C
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The first term of this function corresponds to copying the

LEM set of the relation R in the LHT, where "n" is the

cardinality of the LEM set. The second term corresponds to

copying the RIM set of the relation S in the RHT, where "m"

is the cardinality of the RIM set. The third term

corresponds to step 3, where "q" is the cardinality of the

RIM set of relation R, and constant D is the memory word

length. The term:

m/D

stands for the number of memory references made for each OR

operation. The fourth term corresponds to the initialization

of the new incidence vector and the last term (constant C) is

the number of memory references made by the remaining steps

of the algorithm, such as establishing the new relation's

record in the relation table.

The cost of fourth term may be reduced by pipelining, and

the cost of the third term can be reduced by putting a large

portion of the incidence vector of relation S into the cache

memory.

Let n=m=q, W=(S/D), Y=(R/D) and T=K+L, then the

complexity function becomes:

f = W*(n 3
) + Y*(n 2

) + T*n + C

Obviously the algorithm has the worst case asymptotical

complexity behaviour of 0(n 3 ).
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Now we have to write the algorithm that works on the

table representation. It is natural to expect a more

expensive algorithm by the experience we have had until now,

but our task is to find out how expensive it is relative to

the above algorithm. The algorithm is as follows:

Let the first argument relation be R, and the other be S.

1. Start from the beginning of the table of relation R;

for each tuple of relation R:

a. Look up the right individual.

b. Search the left column of the relation S for that

individual.

c. If a tuple of relation S is found to have that

individual as the left individual, hash into the SCHT with

the left individual of the current tuple of relation R (i.e.,

the left individual of the tuple from which we get its right

individual in step 1-a). Establish its record in the SCHT;

if there is already a record of some left individual con-

nected to this hash table entry, look up the individual being

represented by that record. If it is the same individual do

step 1-d, else search all the following neighbouring occupied

hash table entries for the record of that individual. If it

can not be found, establish the record of that left indivi-

dual and connect it directly to the first neighbouring unoc-

cupied hash table entry, which follows the hash table entry

that the hashing function first found. If the record of that
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individual is found to be connected to one of the

neighbouring occupied hash table entries, again do step 1-d.

d. In any of the above cases, either the record of

the left individual was found to be already present or was

established in step 1-c; establish the record of the right

individual of the current tuple found in S. Connect it

either to the left individual's record or to the end of the

bucket (if a bucket is already connected to the left

individual's record). Continue to search for the tuples in S

which have the right individual mentioned in step lb as their

left individual, and repeat the steps 1c and Id for these

tuples.

2. Repeat step 1 until the relation R is exhausted. Set

a pointer to each hash table entry occupied and put that

pointer into a temporary array of type pointer. (* The

result of the steps 1 and 2 is the "adjacency list"

representation of the resulting relation in the SCHT, now the

remaining steps are to convert that representation to our

table representation. *)

3. Do step 3 of the algorithm given for the table

representation in the "union 1
* operation for relations.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The worst case complexity function of that algorithm is

as follows:
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f = K*(p*p) + L*(n*m) + C

The first term of this function corresponds to steps 1 and 2

of the algorithm, where "p" is assumed to be the size of both

argument relations. The second term corresponds to the step

3 of the algorithm where "id" is the cardinality of the RIM

set of the relation S and "n" is the relation R's

cardinality. We know that in the worst case:

p = n*n

where "n" is the cardinality of both the LEM set and the RIM

set of the relation in question. Let m^n, then the

complexity function becomes:

f = K*(n4) + L*(n2) + C

So we conclude that the algorithm has the worst case

asymptotical complexity behaviour of 0(n 4 ). This is a very

expensive algorithm. The reason is, we have exhaustively

searched the second relation's table for each tuple of the

first argument relation.

I. SECOND ANCESTRAL (san:R)

This operation takes a relation identifier and produces

another relation which is the second ancestral (transitive

closure) of the given relation.

The algorithm for the Hash- I nc ide nee -Vec tor

representation makes use of WARSHALL'S algorithm for bit

matrices. [Ref. 4] Marshall's algorithm for incidence

matrices can be defined as follows:
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Input: A is the nXn incidence matrix of the given

relation, where "n" is the cardinality of the MEM set of

the given relation. (* This means the "row set" and the

"column set" of the incidence matrix are the same and are

the MEM set of the relation. *)

Output: R, the transitive closure of A, also as an

incidence matrix on the MEM set of the given relation.

Let k represent the column number and i represent the row

number. Let Rik denote the entry of the incidence matrix at

row i and column k. Let Ri be the i'th row of R for 0<i<n+l

and let V denote the OR operation on the rows of incidence

matrix.

Algorithm Transitive (input, output)

R - A

for k - 1 to n do

for i - 1 to n do

if Rik * 1 then Ri - Ri V Rk

end do

end do

Note that Warshall's algorithm is defined for square matrixes

but that this is not the case for our incidence vector. Our

incidence vector originates from a different representation

of the incidence matrix which is not necessarily a square

matrix. According to our definition of the incidence vector,

given an incidence matrix, if we convert it to the incidence
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vector representation, the row set of the incidence matrix

corresponds to the LEM set of the incidence vector and the

column set of the incidence matrix corresponds to the RIM set

of the incidence vector. Note that the LEM set and the RIM

set of a relation are not necessarily the same.

In order that the incidence vector of the transitive

closure of a relation be different from the incidence vector

of that relation, the LEM set and the RIM set of that

relation must not be disjoint, otherwise the transitive

closure of that relation has the same incidence vector as the

original relation's incidence vector.

Now we have to modify Warshall's algorithm for our case.

Note that our incidence vectors are more efficient in storage

usage than the bit matrices used by the Warshall's algorithm,

and still Warshall's algorithm works without an overhead in

time.

The algorithm for Hash-Incidence-Vector representation is

as follows:

1. Find the relation's record in the relation table by

hashing with the given relation identifier to the relation

table.

2. Follow the PFLM field of that record and find the

first left member's record in the LHT.

3. Allocate a block of memory as large as:

( |
LEM

|

*
|
RIM

| ) /C
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where "C is the memory word length, "
| LEM

|
is the

cardinality of the LEM set of the given relation and "
|
RIM |

"

is the cardinality of the RIM set of the given relation.

Record the beginning address of that memory block.

4. Start from the beginning of the LEM set of the given

relation. For each LEM set record found by following the

TASE links between the records, hash with the individual

represented by that record into the RHT under the given

relation's identifier.

a. If the RIM set of that relation also contains

that individual, get the index of the LEM set record which

represents the individual in question, and call it "INDEX".

Copy INDEX to INDEX+I RIM | -1 bits of the incidence vector of

the relation to the corresponding bits of new incidence

vector.

b. Otherwise set a pointer to the LEM record of that

individual and put it into a temporary array of type pointer,

get the index of that record and call it "INDEX" and put

zeros into the INDEX to INDEX+ 1 RIM
|

-1 bits of the new

incidence vector.

5. Repeat step 4 until the LEM set of the relation is

exhausted.

6. Start from the beginning of new incidence vector and

execute the loop below on the new incidence vector.

(* NOTATION: In the algorithm segment below, "VECTOR [ i ,j ]
"
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means the incidence vector location corresponding to the LEM

set individual which is associated with the index i and the

RIM set individual which is associated with index j, the

"VECTOR [ i , j ] to VECTOR [ i , k
]
" means the cluster of incidence

vector entries (bits) beginning with the entry VECTOR[i,j]

and ending with the entry VECTOR[i,k]. *)

for countl = 1 to |LEM|*|RIM| by |RIM| do

for count 2 1 to |RIM| do

if VECTOR [countl, count2] = 1 then

VECTOR [countl, 1] to VECTOR [countl, |RIM|] =

VECTOR [count 2, 1] to VECTOR [count 2, | RIM
|

] V

VECTOR [countl, 1] to VECTOR [countl, |RIM|]

end if

end do

end do

7. Start from the beginning of the temporary pointer

array and find the record of each left member that is not

present in the RIM set of the relation by following the

pointers in turn. For each record found in this manner

extract the index of that record, call it INDEX and OR the

INDEX to INDEX+I RIM |-1 bits of the original incidence vector

with the corresponding bits of the new incidence vector.
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8. Make separate copies of the LEM set and the RIM set

of original relation in the LHT and in the RHT respectively

under the new relation identifier "san:R" as was done in the

previous algorithms.

9. Hash to the relation table with the new relation's

identifier and establish its record. Put the pointers to the

new LEM set and new RIM set into the PFLM and the PFRM fields

of that record respectively. Copy the | LEM | and | RIM | fields

of the original relation's record into the corresponding

fields of the new relation's record. Put the beginning

address of the new incidence vector into the "base" field of

that record.

Now we will do the worst case asymptotical complexity

analysis of this algorithm.

We see that the algorithm is not as costly as it is

expected to be. The worst case complexity function of this

algorithm can be written as:

f = L*n*(n/C) + M*m*n*(n/C) + N*n + T*M + D

where:

m - The cardinality of the LEM set of the given relation.

n = The cardinality of the RIM set of the given relation.

C = Memory word length.

L = The constant number of memory references made while

copying or OR'ing the clusters of incidence vector

bits for each LEM set individual in steps 4, 5 and 7.
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M = The constant number of memory references made for

each iteration of outermost "for" loop in step 6.

N The constant number of memory references made while

copying each RIM set individual in step 8.

T The constant number of memory references made while

copying each LEM set record in step 8.

D The constant number of memory references made by the

remaining steps.

In the above function the first term corresponds to steps 4,

5 and 7, the second term corresponds to step 6, the third and

fourth terms corresponds to step 8, and the last term

corresponds to the remaining steps of the algorithm.

In writing the above complexity function we assumed that

in the worst case the temporary pointer array will be empty

because in the worst case the OR operations done in step 6

should be maximum. That means when we first make the

separate copy of the original relation's incidence vector

(which is the primitive form of the new relation's incidence

vector); in the worst case it should consist of all one's.

Let m=n, L/C = H, N+T = S and M/C = I, then the above

function becomes:

f = I*(n3) + H*(n 2
) + S*n + D

We conclude that the worst case asymptotical time complexity

behaviour of this algorithm is 0(n 3 ). In fact the algorithm

becomes an order three algorithm if n > C, otherwise it can
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be viewed as an order two algorithm, since when n > C we have

to make (n/C) memory references for each OR operation. Again

making use of pipelining and cache memory is advantageous in

this case.

Now we will define the algorithm for the table

representation. We will again use SCHT mechanism for this

algorithm. The algorithm is as follows:

1. Call the algorithm "mem 1'/ compute the cardinality of

the resulting MEM set of the relation and record it.

2. Start from the beginning of the given relation's

table. For each right individual found by following the

links between the records and by extracting the right indivi-

dual represented by the "right" field of each record, hash

into the SCHT with that individual, create an SCHT record for

that individual and connect it directly to the SCHT entry

found. In the case of a collision, use the rehashing

technique. Create a SCHT record for the left individual of

the current tuple and link the record of the right individual

to that record by its collision link. (* Note that the SCHT

records corresponding to the left individuals are not

connected to the SCHT entries. *) If after hashing with the

right individual it is found out that a record of that right

individual is already present, then add the record of the

current left individual to the end of the bucket connected to

this right individual's record. Link the right individuals'
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records to each other by their TASE links. Mark the

beginning of the resulting linked list with the pointer P.

(* As a result of step 2, the relation is represented in the

SCHT without repetitions of the right individuals. All the

SCHT records of the left individuals that are related with a

right individual have been established in a bucket connected

to the record of this right individual. *)

3. For I 1 to | MEM | by 1 do

a. Start from the beginning of the linked list

structure which connects the right individuals' records in

the SCHT. By following the pointer P proceed in this linked

list structure record by record. For each record found in

this manner do step 3b.

b. Follow the pointer found in the collision link of

the current right individual's record and find the left

individual's record (which is in relation with the current

right individual)

.

c. Extract the individual represented by the record

found in step 3b; hash with this individual to the SCHT. If

this individual is represented by an SCHT record which is

directly connected to the SCHT entry found, follow the

collision link of the record found and find the SCHT record

connected to this record.

d. Extract the individual represented by the record

found in step 3c. Search for this record in the bucket
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connected to the right individual's SCHT record found in step

3a. If this individual is not represented by a record in

this bucket; create a SCHT record for this individual and add

it to the end of the bucket.

e. Proceed in the bucket connected to the record

found in step 3c and for each record found do step 3c.

f. After the bucket is exhausted do steps 3c through

3e for the next record of the bucket connected to the SCHT

record found in step 3b. (* After the execution of the above

steps, the transitive closure of the given relation appears

in the SCHT in the adjacency list representation. Next it

has to be converted to the table representation. *)

4. Construct the table representation of the transitive

closure of the relation by looking at the arrangement of the

records of the individuals in SCHT (as was done in the step 5

of the algorithm given for the complement operation on

relations) .

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Before going into the detail of the complexity function,

we have to define what would be the worst case. In the worst

case the relation is a universal relation on its MEM set. In

that case the buckets constructed in SCHT have a common

length, which is equal to the cardinality of the members set

(MEM) of the relation. Let this length be "n", which means
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the cardinalities of the MEM, RIM and LEM sets of the

relation are all equal to n. So in step 3 we make a number

of memory references proportional to n for each record found

in step 3e and we make a number of memory references

proportional to the square of n in step 3f by repeating step

3e n times. In the same way we make a number of memory

references proportional to the cube of n in step 3a by

repeating step 3f n times for each right member of the

relation. Since the step 3 also iterates n times; in step 3

we make a number of memory references proportional to (n 4 ).

So we write the worst case complexity function of this

algorithm as follows:

f = K*(n4) + L*(n2) + D

where the first term corresponds to step 3, the second term

corresponds to step 1, 2 and 4, and the last term corresponds

to the number of memory references made by the housekeeping

operations. The constant K represents the constant number of

memory references made for each iteration of step 3. The

constant L represents the averaged number of memory

references made for each tuple of the original and/or the

resulting relation (whichever is larger) in step 1, 2 and 4.

As can be seen the algorithm is a very costly algorithm.

The high cost of this algorithm is caused by:

1. Repeated execution of relative product operation on

the relation itself and on each intermediate relation found.
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2. Removing duplicate tuples from the intermediate

relations.

This algorithm utilizes the SCHT mechanism for removing the

duplicate tuples from the intermediate relations.

Suppose we defined the algorithm in a straight forward

manner; i.e., the algorithm obtains the transitive closure by

first getting the relative product of the relation with

itself (R^) and taking the union of the resulting relation

and the original relation to obtain the next intermediate

relation, and so on. If we do not remove duplicate tuples

from the intermediate relations, in the worst case defined

above each intermediate relation's size becomes two times

greater than the previous intermediate relation's size, and

the algorithm becomes an 0(2n) algorithm automatically. On

the other hand if we remove duplicate tuples from each inter-

mediate relation without using SCHT mechanism, in the worst

case defined above an operation of this kind has an 0(p2)

algorithm (where "p" is the relation size). If we accept the

cardinality of the MEM set of the relation as a measure, the

algorithm may be viewed as 0(n 4
) algorithm. We can define an

o(n 5
) algorithm for the second technique described above.

Because for each step of that algorithm we will have to

execute the algorithm that removes duplicate tuples, the

resulting algorithm becomes an O(n^) algorithm, so our

previous algorithm can be viewed as a relatively efficient
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algorithm for obtaining the transitive closure on the table

representation, but it is so expensive that it is not

feasible to implement it at all.
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III. ANALYSIS OF INTENSIONAL ALGORITHMS

In this study we will try to find out efficient ways to

represent intermediate relations and sets that result from

relational operations and set operations. Earlier when we

focused on the extensional representation techniques, we

explicitly constructed the representation structures for the

intermediate relations and sets in the memory. What we will

try to do now is, not to represent intermediate relations and

sets in the memory explicitly and still be able to execute

the relational expressions.

In order to do the relational operations and set

operations without explicitly representing the relations or

sets resulting from those operations, it requires the

complete establishment of the relational language's syntax.

After the syntax is established we can decide on the suitable

compiler or interpreter design and we can compile or

interpret the source expression so that the code which does

the relational operations and set operations without

constructing the extensional representation structure of the

resulting relation or set can be produced and/or executed.

Because the syntax of the language is subject to changes, we

will not go into the compiling or interpreting issues in
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detail; instead we will define the algorithms for the code

that does the relational operations and set operations

intensionally

.

Now we have to define what is the basic schema we have in

mind. We assume that the relational language expression is

fully parenthesized or there exists a default convention

(left to right/right to left) which causes the expression to

be parsed as if it is parenthesized by using this convention.

The recursive descent parser parses the expression and for

each pair of operators found in this manner calls the

appropriate code that we will give the algorithm for. So we

directly execute the source expression while parsing.

Example

:

Suppose the parser is to parse the expression below,

((R-S)
|

(TSU)):x

The scanner finds the "I" and ":" operators first, and passes

the tokens to the parser. The parser then calls the routine

defined for the "I" and ":" operator pair. This routine

directs the scanner for finding the operands and the

argument, then the scanner returns the token for the operator

detected in the first operand relation (R-S) which is the

token for "-". The routine attaches the appropriate tokens

and argument to this token using the argument given to it and

calls the routine defined for the resulting operator pair (In

this case the routine associated with the - and :
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operator pair is invoked with the argument being "x" and the

operand relations being the R and S) . If this routine does

not return a valid individual, the same thing is done for the

second operand (composite) relation. If an individual is

obtained by calling any of those routines, this individual is

either returned to the caller or sent to the output.

Now we have to explain this mechanism in general. We can

view the parser as the collection of routines. After the

first operator pair is found the related routine is called,

and this routine gets the tokens it needs by directing the

scanner; it attaches the appropriate tokens to those tokens

and calls the routines related to the resulting operator

pairs with the appropriate arguments possibly obtained from

its own argument. Each routine called may do the same thing

by directing the scanner to get additional tokens and

relation identifiers from the source code. This process

continues until the primitive operations can be done on the

extensionally or intensionally represented relations and

sets, then each routine returns the result to its caller, the

caller performs the necessary evaluations on the results that

are obtained by calling other routines, and returns the

result obtained to its caller. This process continues until

the final result is sent to the output.
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As can be seen in the above example, each routine knows

what it is doing and mechanically does its job by calling

other routines defined for other operator pairs. Note that a

routine may call itself again in some depth of calling chain.

This process stops when the primitive operations can be

executed on the extensionally represented relations and sets.

In fact, some primitive operations can also be executed on

the intensionally represented relations, which will be

discussed later.

So in summary, the process defined in the above example

is aimed at reducing the initial compound relational

expression into easily manageable primitive relational

operations and the membership tests on the extensionally or

intensionally represented relations and sets. Note that the

above process is just a particular case of the use of the

algorithms that we will define; these algorithms can be

adapted to the other implementation schemas. So in defining

our algorithms we will not go into the detail of the

implementation technique we proposed.

Because there are no less than 136 possible permutation

of operator pairs, if we create a tiny routine for each case,

we may cause trashing. In fact we do not have to introduce

that many routines into the system; first of all most of the

136 routines do very simple, well defined reductions. In

addition the interpreter we have in mind directly executes
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the source code. Under those considerations we may

preprocess the source code by directly making simple

reductions on the source code. This mechanism simply takes a

part of the source code and replaces this part with a reduced

expression whenever it finds a part of the source code which

is reducable with the rules in hand. So executing this text

substitution mechanism separately, leaves us less work in

interpreting the source code. But this is not enough to make

the system simple and compact. So we take advantage of the

regularities in the operations and generalize some operations

so that we do not have to define all possible operator pairs

involving that operation. That leaves us a total 62 special

cases or in other words operator pairs to be specially

treated or requiring an algorithm.

The second issue in that kind of mechanism is, to

generate the individuals of an intensionally represented set

one at a time as they are requested. This becomes necessary

in some relational operations that require the individuals of

the argument set in order to accomplish their job. In some

cases we want to learn only, if a given individual is in an

intensionally represented set or not. In this case we can do

membership test with less cost, although some configurations

of composite, intensionally represented sets still forces us

to produce the individuals of that intensionally represented

sets explicitly in order to do the membership test. Thus in
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some operations, (like the "Image" operation) we will have to

define algorithm for both the membership test and the

production of the individuals of the sets produced.

In defining that mechanism, first we wrote down all the

possible operator pairs, we separated out the ones that can

be handled in the preprocessing phase, then we generalized

some of the operations and treated the remaining operator

pairs as special cases.

In the following sections we will explain some concepts,

such as generalization of operations and the structure of the

system, further.

A. PREPROCESSING

The complete listing of preprocessing rules is given in

Appendix C. In this section we will explain how the

mechanism works by giving examples.

The preprocessing mechanism scans the source code and,

whenever it finds a pattern matching one of the rules that it

knows about, makes the necessary modifications to the source

code. To make this clear we will give an example. Example:

Suppose our source code contains the segment of code

below:

((RS) - (final:T))c

The preprocessing mechanism finds the operators (by counting

the parenthesis) "c" (converse) and "-", and the rule defined
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for this case is applied. In this case the applicable rule

is:

(R-S)c - Re - Sc

So the preprocessing mechanism makes a seperate copy of the

character string, "(RS)", concatanates the character "c" to

it/ takes the character string identifying the second operand

relation which is (f inal:T)", and concatanates it with the

character n c". The preprocessor inserts the character -"

between the two character strings obtained and attaches the

parenthesis to both ends of the resulting character string.

Hence the resulting character string replacing the original

segment of source code becomes:

((RS)c - (final:T)c)

So, as can be seen the mechanism is fairly mechanized and

simple. All the preprocessing mechanism has to do is to

count the number of paranthesis and find the operator pairs

for which the preprocessing rules are defined. Then it makes

the necessary modifications in the source code. Note that

the preprocessing program has almost no intelligence; on the

contrary, it does the reduction mechanically.

We want to emphasize that the preprocessing program does

not work only once and can be implemented so that it makes

more than one pass on the source code in order to apply

preprocessing rules further if the first pass yields a source

code that can be further preprocessed, or it may be executed
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on a segment of source code upon request of any routine of

the interpreter.

B. GENERALIZATION OF OPERATORS

We can divide the relational operators into two groups:

1. The operators that construct the new relations from

the operand relations.

2. The operators that construct sets.

We list the operators of the first kind as follows:

a. R&S (Relation intersection)

.

b. R|S (Relation union).

c. R-S (Relation difference)

.

d. Re (Converse of a relation)

.

e. non:R (Complement of a relation)

.

f. R
|

| S (Parallel application).

g. R#S (Dual application)

.

h. fan:R (First ancestral of a relation)

.

i. san:R (Second ancestral of a relation),

j. R: :G (Meta application),

k. R:x (Function application)

.

1. R\C (Relation right restricted to the set C)

.

m. C/R (Relation left restricted to the set C.)

n. C/R\C (Relation restricted to the set C)

.

o. final:R (Final members of relation R) .

In the above listing we can select any of the composite

relations and substitute another composite relation into any
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operand and/or argument of it. In this manner we can combine

any number of relations. As an example we will make a few

substitutions in order to obtain a new composite relation out

of the other composite relations. Suppose we selected item

(i) which is "sanrR" and substituted the relation "R&S" into

the argument R, we obtain:

san: (R&S)

and suppose we further substituted "C/R" into the R and

"R||S n into the S in the above composite relation. We

obtain:

san:

(

(C/R)&(R| | S)

)

Now we have to list down the relational operations that

construct s~ts. These operations are given below:

a. R:x (Function application)

.

b. lem:R (Left members set of a relation)

.

c. rim:R (Right members set of relation R)

.

d. R! :x (Image) .

e. unimg:R (Unit image).

f. unimg':R (Unit coimage) .

g. init:R (Initial members of relation R) .

Definition: A composite set is a kind of set which is

expressed in terms of composite relations and relational

operations.

We can substitute any composite relation into the R in

the above cases. (Arguments shown as "x" means that the
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argument is individual). Note that the "Function

Application" operation is included in both cases, because it

may produce an individual which can be a set, a relation, an

integer, a real, a character string or a bit string. We can

combine the above composite sets by using the set operations

"Union", "intersection" and "difference". By attaching the

negation sign in front of each of the above composite sets we

get the complements of those sets which are again viewed as

composite sets. The user-defined (primitive) extensionally

or intensionally represented sets can participate in the set

operations with the composite sets. So we can define an

infinite number of composite sets.

As we mentioned earlier, considering each of the possible

pair of operators causes the system to be very complex, so we

generalize the operations of the first kind in order to

recover from doing that. In order to make this concept clear

we will take a specific case and explain what we mean by

generalization.

As a specific composite relation let's take the relation

"fan:R". We can substitute 14 other relational operations

(except meta application) into the R including "fan:R"

itself. Because each of the composite relations constructed

in this manner can participate in the operations of the

second kind or the first kind, we would be unable to cover

all the cases that may be defined by the programmer. So in
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the generalization of "faniR" we will define an algorithm for

"fan:R" for each of the operations of the second kind. For

example we will define an algorithm for the operation,

(fan:R)!: which is constructed by using ! and fan operations.

The I operation is the kind of operation that constructs a

composite set and the fan operation is the kind of operation

which constructs the composite relation. That means the 1

operation is of the second kind and fan operation is of the

first kind. These algorithms will be defined in terms of the

operations of the second kind working on the operand relation

R. So an algorithm defined for the operator pair <fan,!> or

in other words for the operation (fan:R)I: applies the

operations of the second kind to the relation substituted for

"R n
. Because the algorithms of these operations are also

defined for this relation, the 1 (image) operation on "fan:R"

can be done with no confusion. Note that the relation

substituted for "R" may be another composite relation

constructed from the operations of the first kind and the

same rule applies to this relation as it was in the relation

"fan:R B case. This rule is applied until the operations of

the second kind can be done on the ex tens ionally or

intensionally represented user defined relation. Example:

Suppose we have the relational expression:

(fan: (san:R) ) ! :x
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The prime operators in this expression are the left-most fan

operator and the I operator. In this case the algorithm

defined for (fan:R)!: operation is invoked. Suppose further,

this algorithm uses unirag operation (which is of the second

kind) on the operand relation (which is the san:R) so the

operation to be performed is unimg: (san:R) and the system has

an algorithm defined for the <unimg,san> operator pair. Note

that the algorithm defined for the <fan,!> operator pair does

not care about the kind of composite operand relation and no

matter how complex this operand relation is, it simply

applies the operations of the second kind to the operand

relation (in this case san:R) in order to do its job. That

is what we mean by generalization.

C. THE ALGORITHMS FOR GENERATING THE INDIVIDUALS OF

COMPOSITE SETS

In this chapter we will explain in detail how we produce

the individuals of the intensionally represented intermediate

sets. In addition to that we may want to test if a given

individual is in an intensionally represented set. As long

as we are able to produce all the individuals in intensional

sets, checking for membership is trivial. But producing all

the individuals in these kinds of sets is a costly operation

and in some cases we can do the membership test with less

cost. On the other hand, we can not restrict ourselves to

only membership tests in order to work around the costly
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production mechanism because some of the relational

operations expect each individual of a given argument set in

order to accomplish its job. We will need to produce the

individuals of intensionally represented intermediate sets

especially in the "!" operation and in the operations on the

complement of a relation.

In the production of the individuals of an intensionally

represented set/ defining one primitive function is very

useful. We will call this primitive function, "Force 11
. When

we apply this function to an intensionally represented set

for the first time, it returns the first individual of this

set. Repeated applications of this function to this set will

return the second, the third individuals in turn, and so on.

Thus the function must set up break points between the

production of the individuals of the intensionally

represented sets. At those break points we examine and

evaluate the individual returned or check if it satisfies

some condition. Another objective of the "Force" primitive

is that, if we are doing the membership test by producing the

individuals of an intensionally represented set by comparing

the given individual with each individual produced, as soon

as we find a match, we can quit producing the individuals,

thus saving ourselves from producing all the individuals of

the intensionally represented set in question.
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Implementation of the "Force" primitive is fairly

complex. We will show that there exists at least one way to

implement the "Force" primitive. Our force primitive, in

fact does everything in the production of the individuals of

an intensionally represented intermediate set.

In the discussion of the types of the relational

operations, we defined two types of relational operations and

we stated that, we can combine the two kinds of relational

operations to obtain composite sets. In addition we can use

the set operations as the resulting composite sets being the

operand sets in order to obtain other composite sets. We can

easily define the role of the set operations in the

production of the individuals in general (i.e., we can

generalize the set operations). That leaves us all the

distinct configurations of composite sets that can be created

from the operations of the first kind and the operations of

the second kind by substituting the operations of the first

kind in the argument and/or operand relation (R) of the

operations of the second kind. Because "init:R" is defined

in terms of "lem:R" and "rim:R", and we will define the

algorithms involving the function application operation in

Chapter E, in this chapter we will only focus on the

operations below:

lem:R

rim:R
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R! :C

un img :

R

unimg' :R

which are of the second kind. In the same manner, we will

generalize the operations "Right restriction", "Left

restriction" and "Restriction" which are of the first kind.

As before, the "Function application" operation returns a

composite relation of the first kind so there is also no need

to treat this operation as a special case. Those reductions

leave us the remaining operations of the first kind which are

to be combined with the operations of the second kind.

We will define the "Force" primitive as a recursive

function which includes less than 30 cases defined for the

distinct permutations of the first and second kind of

operations. Because we preprocess the source code many of

the permutations are reduced to the other permutations that

we will be defining the algorithms for. The "Force" function

includes a big case statement in which each case refers to a

particular permutation (operator pair) that will be treated

specifically. It takes the character string that identifies

the composite set, and extracts the operator pair of this

composite set. It identifies the argument (if there is any)

and invokes its appropriate case in the case statement. This

segment of case statement calls the function "Force"

recursively by subdividing the original composite set and
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expressing it in terms of operations of the second kind on

the operand relations/relation. That means the particular

case of the case statement mechanically finds the operand

relations in the composite set expression, creates other

composite sets by using those relations and the argument (if

there is any) and forces the composite sets by calling the

function "Force" recursively with those composite sets as the

arguments. This recursion continues until an operation of

the second kind can be performed on an extensionally

represented relation or set. Note that "Force" has to

recognize when it finds a primitive extensionally represented

relation or set. That can be done by hashing into the

relation table or the set table and by checking if a record

of the relation/set exists in the relation-table/set-table.

We stated that the "Force" function returns one

individual at a time. This feature makes the program

extremely complex. Now we will explain how that mechanism

works. We know that we get the individual to be returned

from an extensionally represented relation or set and this is

the stopping condition for our recursion. Further, after

returning an individual, we have to remember where we left in

order to respond to a subsequent reference to the function

"Force" related to the same argument composite set in the

same context. In fact memorizing where we left off is
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necessary at a very low level/ i.e., in the operations on the

extensionally represented relations and sets. Example:

Suppose we are forcing the composite set, rim:(R-S) where

R and S are assumed to be primitive, extensionally

represented relations. According to the algorithm defined

for the operator pair, <rim,-> (which will be given later) we

first force lem:R-lem:S and get the first individual of

lem:R-lem:S say "y". We force the composite set unimg':R:y

next, so we get the first individual and return it. Suppose

now the composite set rim:(R-S) is forced again. The

individual to be returned is the next individual of the

composite set unimg':R:y. So we have to remember where we

left off in the unimg'rR operation.

In this example, we can solve this recognition problem by

setting a global pointer to the record of the next individual

to be returned in the RIM set of R. Obviously this does not

solve all the problems, but we have to observe one fact here:

Suppose our original composite set has been a part of another

composite set and the first individual we produced had to be

tested against the unimg*:R:y (composite set) in another

context. That means we are in the situation that we have two

same operations (unimg':R:y) being used for different

purposes in the same expression. An example for this case is

given below:

(unimg ' :R:y) /G! : (unimg

'

:R:y)
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In execution of this expression the individual obtained by

forcing the composite set:

G! : (unimg ' :R:y)

is tested if it is in the composite set (which is on the left

of G) unimg':R:y or not (as a result of restriction

operation). So the unimg' :R:y operation is performed for two

different purposes and we perform each operation while we

still save the state of the other. The second reference is

faced with the strange fact that/ even though it is unrelated

with forcing the (unimg':R:) operation for obtaining the

second element of the composite set unimg' :R:y it obtains the

second individual of the right-most composite set unimg* :R:y,

instead of the first individual of the left-most composite

set unimg' :R:y.

Based on the above facts we have defined the mechanism

below in order to make this work.

Definition: A "high level composite set" is a composite

set which is either defined in the source code or created by

an internal mechanism other than the function "Force". The

mechanism has the below structure:

1. Memorizing the state is done in these operations

when they work on the extensionally represented relations:

a. Image operation.

b. unimg operation.

c. unimg' operation.
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d. left members operation.

e. right members operation.

2. Each high level composite set is associated with a

global count, when it is forced for the first time, and a

system-wide association table is maintained which relates the

high level composite sets with their global variables. Each

global count associated with a high level composite set

begins from a biased value so that the values of the global

counts associated with various high level composite sets are

restricted to the particular intervals.*

3. The system has a global hash table, namely MHASH

table (Memory Hash Table) which is used to save various

pointers.

4. In each level, when a composite set is created, an

integer taken from the global count associated with the high

level composite set (from which this sub-composite set is

originated) is saved. When a pointer is set to a record at

the lowest level, this pointer is saved in the MHASH table

with the current integer being the identifier with which we

hash into the MHASH table. (This allows us to save different

pointers for the same operation and the same extensional

relation or set. Hence we properly distinguish between the

Because the system will have a limit on the number of
high level composite sets this interval can be defined in the
implementation phase.
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same operations that request the same things from the same

extensional relations but have different originations).

5. When a new composite set is created, the pointer to

the character string representing this composite set is saved

in the MHASH table with the current integer being the

identifier. (This allows us to avoid creating the same sub-

composite sets redundantly in the subsequent execution of the

"Force 1
' function related to the same high level composite set

and originated from the same context).

6. If there is no individual remaining to be' returned in

a primitive relation or a set, we associate with the

current integer in the MHASH table, instead of a pointer, and

we return "nil" to the caller (which is the function "Force"

in itself)

.

7. After each force operation on a high level composite

set, the global count associated with this high level

composite set is reset to 0.

So, suppose we forced a composite set, and we got the

first individual of this composite set; if we force this set

again, the function goes and makes the same calls and goes

through the same kind of counting mechanism. When it hits a

primitive relation, it hashes with the current integer into

the hash table and looks up the pointer. If it is not zero,

it returns the next individual obtained from the LEM set or

the RIM set of the primitive relation or the extensionally
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represented primitive set/ by advancing the pointer

identified by this integer, and re-establishes this pointer

in the hash table with the same integer being the identifier.

If there is no pointer but 0, it returns "nil" to the caller,

in which case the caller (the function "Force" itself)

proceeds to find the next primitive composite set to continue

to produce its individuals, if any remain. (Note that we are

always mentioning the function "Force" because it calls

itself recursively with different arguments).

So when we force a composite set repeatedly the function

"Force" remembers its last state and returns the next

individual of the composite set without any confusion.

Because the calling chain has to reoccur and the counting

mechanism always follows the same procedure, we do not get

integers different from the ones established in the first

pass.

So this mechanism uses random coding principles, and the

hashing is done through a counting process.

Now we will define the algorithms for all possible cases

that should be included in the big case statement of the

function "Force". As we explained before, many kinds of

composite sets can be reduced to the other types of composite

sets or primitive ones in the preprocessing phase. By

primitive we mean that the relations and sets from which the

composite set is constructed are represented extensionally.
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So our algorithms will refer to the kind of composite sets

that should be treated specifically.

In these algorithms we will try to emphasize the fact

that the individuals are returned one at a time, but in some

cases it is more descriptive, if we explain an algorithm as

if it is being forced repeatedly. In addition we will not

repeatedly mention the state saving mechanism which saves the

pointers in the MHASH table, with the identifiers being the

integers taken from the global count. So the reader should

always think that .pa the individuals are returned one at a

time and the state saving mechanism works as it is supposed

to do.

In these algorithms we will use the LHT as the SCHT

whenever it is possible to produce the same individuals

repeatedly as a result of forcing a composite set repeatedly.

Hence at any point in execution we remember which of the

individuals of the composite set being forced have been

produced as a result of previous force operations, and we do

not produce them again. This mechanism is also useful in the

intermediate operations done in some algorithms and reduces

the time complexity of some algorithms in some cases.

In this mechanism we construct a set in the LHT which

contains the LHT records of the individuals that we want to

save temporarily. After no forcing operation can be made to

a composite set we may return the linked list structures of

135





all sets constructed in the LHT for this composite set to a

storage pool (which may be implemented as a stack) , so that

the subsequent record allocations can be made from the

storage pool; if the storage pool is empty then the records

are allocated from the heap. If the storage pool size

exceeds some previously defined limit, we dispose some number

of records from the storage pool. As a consequence/ this

kind of mechanism does not use up a lot of memory resources

and we recover from doing our operations redundantly.

In this mechanism we will again use the integers taken

from the global count as identifiers; because we are

distinguishing the sets constructed in the LHT with the

relation identifiers, these integers will be treated as if

they are relation identifiers. In order to return the linked

list structures of these sets to the storage pool, a separate

table should be maintained that includes the identifier of

the set (integer) and its origination (i.e., which composite

set being forced caused that set to be created).*

Suppose we did not define this mechanism, and for each

individual produced by forcing a composite set we did some

complex operation. Then if the same individual is produced

The reader should not confuse these two usages of the
integers as identifiers. In summary, we use the integers
taken from the global count for saving the state of the
"Force" function and for designating the intermediate,
temporary sets in the LHT. As long as we allocate the same
integers at the same points each time a high level composite
set is forced, no problem arises.
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two times, we will do this complex operation redundantly when

the individual is produced for the second time.

Image operation on the extensionally represented relation :

We will need to modify the algorithm for image operation

that we defined previously because in this case it has to

produce the individuals of the resulting set one at a time.

The new algorithm for "Image" operation makes use of the

"Unit image" operation for which we will be defining the

algorithm for later. The algorithm is as follows:

1. Force the argument set C.

2. Get the individual returned say "x".

3. Force the primitive composite set unimg:R:x; take the

individual returned, say "y".

4. Take the next integer from the global count; hash

with this individual into the LHT with the integer obtained

above being the relation identifier. If this individual has

a record in the LHT under this relation identifier go to step

3 in order to continue with the next individual of the

composite set unimg:R:x, otherwise do step 5.

5. Establish the record of this individual in the LHT

under the relation identifier (integer) obtained in step 4;

return this individual as the result.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.
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As can be seen we executed the "Unit image" algorithm for

each individual of the set C. So we made a number of memory

references proportional to "n" for each individual of the set

C, where "n" is the cardinality of the LEM set of the

extensionally represented relation. Suppose the cardinality

of the set C is equal to "n", then the time complexity

behaviour of the algorithm is 0(n2). But suppose the

cardinality of the set C is equal to the square of "n". This

time the time complexity behaviour of this algorithm becomes

0(n3). On the other hand the cardinality of the set C may

even be 1 (singlteon set); in that case the time complexity

behaviour of the algorithm becomes 0(n), which is the same as

the asymptotical time complexity of the "unimg" algorithm

that will be given later. So we conclude that the time

complexity behaviour of the algorithm is strongly dependent

on the cardinality of the argument set.

(R - S) !:C

The algorithm for this case is as follows:

1. Force the set C.

2. Get the individual returned. Call this individual

"x".

3. Force unimg:R:x; get the individual returned. Call

this individual "y". Get the next integer from the global

count/ hash into the LHT with this integer being the relation

identifier, check if there is a record for "y" in the LHT
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under this relation identifier, and if so do step 3-a, else

do step 3-b.

a. Repeat step 3 in order to continue with the next

individual of the unirag:R:x.

b. Force the unimg':S:y repeatedly and get the

individuals one at a time. If any of those individuals is

the same as "x", or if "y" is not in the lem:S (i.e., the

(unimg'rS:) operation is not applicable) quit forcing the

unimg':S:y and go to step 3 in order to continue with the

next individual of the composite set unimg:R:x. Else do step

3-c.

c. Establish the record of "y" in the LHT with the

integer obtained in step 3 being the relation identifier and

return "y".

4. If as a result of the subsequent force operations no

individuals of the unimg:R:x remains to be returned, force

the set C in order to get the next element of it and continue

from step 2 as the algorithm is forced further.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Assuming we will force the above algorithm until no

individual of the set (R-S)!:C remains to be produced, and

assuming in the worst case the relations R and S are

disjoint, we make the number of memory references

proportional to "n" for each individual of the set C, and for
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each "y" obtained in this manner, because of the relations

are disjoint/ we make the number of memory references

proportional to "n" where "n" is assumed to be the

cardinality of the both lem:R and rim:S. Let's assume the

cardinality of the argument set is also n n n
, so it is clear

that we are making a number of memory references proportional

to the cube of "n". This leads us to the fact that, if the

operand relations are represented extensionally the algorithm

behaves as an 0(n3) algorithm; if the operand relations are

composite relations the cost of this algorithm increases

significantly depending on the cost of the "unimg" and

"unimg'" operations on those composite relations.

(R#S) !:C

The algorithm for this case is as follows:

1. Force the set C.

2. Get the individuals of the set C one at a time.

3. For each individual found in the above manner (which

is necessarily a pair, otherwise the operation is

undefined), extract the left individual of this pair, apply

the relation R to this individual, and in the same manner

apply the relation S to the right individual of the pair. If

both application operations return individuals, construct a

pair relation with these individuals and return the pointer

to the record of this pair.
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Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The algorithm has the same worst case asmptotical

complexity behaviour as the algorithm defined for the

composite set (R#S)!:C and the same argument applies.

(RS) !:C

The algorithm for this case can be defined as follows:

1. Force the set C.

2. Get the individual returned and call it "x".

3. Force unimg:S:x] Get the individual returned and call

it "y".

4. Take the next integer from the global count and hash

into the LHT with this integer being the relation identifier

and check if "y" has a record in the LHT under this relation

identifier, if so go to step 3 in order to continue with the

next individual of the unimg:S:x or if no individual of the

unimg:S:x remains to be produced go to step 1 in order to

continue with the next individual of the argument set C.

Otherwise do step 5.

5. Establish the record of "y" in the LHT with the

relation identifier being the integer taken from the global

count in step 4, and force unimg:R:y. Take the individual

returned and do step 6.

6. Take the next integer from the global count, hash into

the LHT with this integer being the relation identifier,
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check if there exists a record for this individual in the LHT

with this integer being the relation identifier. If so go to

step 5 in order to continue with the next individual of the

unimg:R:y, and if no individual remains to be returned from

unimg:R:y, go to step 4 in order to continue with the next

individual of the unimg:S:x or the argument set C. Otherwise

establish the record of the individual obtained from

unirag:R:y in the LHT with the relation identifier being the

integer taken from the global count in step 6 and return this

individual.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Suppose the relations R and S are extens ionally

represented relations. If we force the above algorithm

repeatedly until no individual remains to be produced by

forcing unimg:S:x for each individual "x" of the set C, we

make a number of memory references proportional to the square

of "n", where "n" is assumed to be the cardinality of both

the argument set C and the lem:S. In the worst case we

produce the complete LEM set of the relation S without any

repetition of the individuals, because we save the

individuals that have been produced until now by establishing

each individual's record in the LHT. So in the second part

(step 5) of the algorithm we force the unimg:R:y, at most "n"

times, for each of the "n" y's, where "n" is the cardinality
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of the lem:S. So in that part of the algorithm we make a

number of memory references proportional to the square of

"n", where the cardinality of the lem:R is also assumed to be

"n". Under those conditions the execution of the above

algorithm is effectively the same as the execution of two

0(n 2
) algorithms sequentially. That means our algorithm has

the worst case asymptotical time complexity behavior of

0(n2) .

unimg:R:x (Where R is Represented Extensionally)

This can refer to the "unimg" operation on an

extensionally represented relation. Note that in this case R

should not be considered as a composite relation. The

algorithm for this operation is essentially the same as the

algorithm that we defined in the extensional representation

analysis, but in this case we are not producing all the

individuals of the resulting set at once. Instead, the first

time this operation is forced we find the first individual

that belongs to the resulting set and we advance the pointer

to the next individual's record in the LEM set of the

relation (if there is one). Then we take the next integer

from the global count, and we establish the pointer in the

hash table with this integer being the identifier. We then

return the individual we found to the caller. If we

exhausted the LEM set of the relation after repeated force

operations, we save in the MHASH table using the same
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integer as the identifier. So the main difference is we

return the individuals of the resulting set one at a time as

this composite set is being forced.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The algorithm has the same asymptotical time

complexity behaviour as the algorithm that we defined in the

extensional representation analysis for this operation, but

in that case it is forced repeatedly until no individual

remains to be produced,

unimg: (RS) :x

The algorithm for this case can be defined as follows:

1. Force the unimg :S:x.

2. Get the individual returned and call this individual

"y".

3. Force the unimg:R:y; get the individual returned;

take the next integer from the global count and hash into the

LHT with the individual in question under the relation

identifier (Integer) obtained above. If this individual does

not have a record in this set/ or if this set does not exist,

establish the record of this individual in the LHT with the

relation identifier being the integer obtained above and

return this individual as the result. Else, if this set

already exists (resulting from previous executions of this

algorithm) and if this individual is represented by a record
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in this set, quit with this individual and continue with the

next individual of the composite set unimg:R:y. In the case

no individual of this composite set remains to be produced go

to step 1 in order to continue with the next individual of

the composite set unimg:R:x. (*This step prevents us from

producing the same individuals repeatedly*). Note that when

we force this composite set a second time we get the next

individual to be returned by the force operation on unimg:R:y

if there remains an individual to be returned. Suppose there

is no individual that remains to be returned. The algorithm

continues with the next individual to be returned by the

force operation on the composite set unimg:S:x and repeats

steps 2, 3 and 4.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As can be seen, for each individual obtained by forcing

the unimg:S:x we force the unimg:R:y, where "y" is the

individual obtained by forcing the unirag:S:x. Assuming the

relations R and 3 are extensionally represented relations and

assuming we force the composite set, unimg:(RS):x until no

individuals remain to be produced, we make a number of memory

references proportional to the square of "n", where "n" is

assumed to be the common cardinality of the LEM set of R and

the LEM set of S. So the algorithm has the worst case

asymptotical time complexity behaviour of O(n^).
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lem:R (Where R is Represented Extensionally)

This case refers to the "lei:" operation on an

extensionally represented relation. The algorithm for this

case is as follows:

1. Hash to the relation table with the relation

identifier; find the record of the relation.

2. Follow the PFIM field of this record and find the

record of the first LEM set individual.

3. Advance the pointer to the next record; take the

next integer from the global count and save this pointer in

the MHASH table with this integer as the identifier.

4. If you are forced again, take the next integer from

the global count, hash with this integer into the MHASH

table, take the pointer stored with this integer as the

identifier, decrement the global count, and repeat step 3.

As can be seen the algorithm returns one individual at a

time as it is forced.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case the algorithm is forced until no

individual remains to be returned from the LEM set of the

relation. This effectively corresponds to tracing through

the LEM set of the relation. That means we make a number of

memory references proportional to "n", where "n" is the

cardinality of the LEM set of the relation. So we conclude
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that the algorithm has the worst case asymptotical time

complexity behaviour of 0(n).

lem: (R-S)

The algorithm for this case is as follows:

1. Force the rim:R.

2. Get the individual returned and call this individual

"y".

3. Force the unimg:R:y.

4. Get the individual returned and call it "z".

5. Force the unimg':S:z

6. Get the individual returned, if this individual is

the same as "y", go to step 3 in order to continue with the

next "z". If no individual remains to be produced from the

set unimg:R:y then go to step 1 in order to continue with the

next "y" (i.e., get prepared for continuing with the next

individual of the rim:R in the case the algorithm is forced

subsequently). Otherwise do step 7.

7. Take the next integer from the global count; hash

into the LHT with this integer being the relation identifier.

Check if the individual to be returned (current "y") has a

record in the LHT under this identifier. If so go to step 3

or if no individual of the composite set unimg:R:y remains to

be produced in step 3, go to step 5 and execute step 5 for

the current z. Else establish the record of this individual
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with the integer taken from the global count being the

relation identifier and return this individual.

In the above algorithm getting prepared for producing the

next individual of the set rim:R is no more than erasing the

pointers saved for the unimg:R:y and the unimg':S:z

operations in the MHASH table. So a subsequent forcing

operation will find that there does not exist any pointer

saved for the unimg:R:y operation and will automatically

force the set rim:R in order to get the next individual

following the "y". Note that if a subsequent force occurs,

and if there remains individuals in the set unimg':S:z, the

algorithm begins from step 4, and produces the next

individual of the unimg':S:z which is to be tested against

the particular "y" in question. If no individual remains to

be returned from the set unimg':S:z, then the algorithm

begins from step 3, and produces the next "y" and so on.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case the relations R and S may be disjoint

and in this case, assuming we force the composite set lem:(R-

S) until no individual remains to be returned, the structure

of the algorithm effectively becomes similar to the three

nested "for" loops. Assuming the cardinalities of the rim:R,

lem:R and the rim:S are all equal to n, the operation makes a

number of memory references proportional to the cube of n,
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because we are making a number of memory references

proportional to "n" for each individual of the composite set

rim:R. By forcing the unimg:R:y for each individual obtained

from this composite set we are making a number of memory

references proportional to "n" by forcing the composite set

unimg':S:z. So we conclude that the worst case asymptotical

time complexity behaviour of this algorithm is 0(n3).

lera(R#S)

The algorithm for this operation can be defined as

follows:

1. Force the rim:R; get the individual returned.

2. Apply R and 3 to this individual. If both

applications return individuals construct a pair relation out

of the individuals returned. Else go to step 1.

3. Return the pointer to the record of that pair

relation which is established in the relation table.

4. Do the same as above in the subsequent force

operations on this algorithm by producing the individuals of

the rim:R one at a time.

In the above algorithm the application operation on S may

not always return an individual, because not all individuals

of the rim:R are necessarily in the rim:S. In fact we should

have produced the individuals of the intersection of the

operand relations' RIM sets in step 1, but this would be a

very costly operation by requiring the individuals of the RIM
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set of either or both of the relation R and relation S to be

saved temporarily. So we used the application operation's

filtering property and we only produced the RIM set of

relation R. Given an individual in the rim:R if this

individual is not in the rim:S, application operation on S

fails to produce an individual as a result, because, we need

two individuals in order to construct a pair relation. In

this case our algorithm continues with the next individual of

the composite set rim:R.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In this algorithm, assuming R and S are extensionally

represented relations, we make a constant number of memory

references for each individual of the rim:R. Because we have

to produce each individual of the rim:R in order to produce

all the LEM set individuals of the relation (R#S) , we make a

number of memory references proportional with V, where "n"

is the cardinality of the RIM set of R. So we conclude that

the worst case asymptotical time complexity behaviour of this

algorithm is 0(n).

lem: (R| | S)

When we constructed the extensional representation

structure of the relation "R||S" earlier, we created all the

possible ordered pairs that can be created from the LEM set

individuals of the operand relations in order to construct
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the LEM set of this relation. So our algorithm does the same

thing by constructing those pairs one at a time. The

algorithm is as follows:

1. Force the lem:R; get the individual returned and call

it "x".

2. Force the lem:S; get the individual returned and call

it "y".

3. Construct a pair relation with "x" being the left

member and "y n being the right member.

4. Return the pointer to the record of that pair which

is established in the relation table.

5. In the subsequent force operations, continue to

produce the individuals of the lem:S and pair each individual

returned with "x". Return the pointers to the pairs one at a

time.

6. When the lem:S is exhausted, produce the next

individual of the lem:R and repeat the above steps for this

individual as you are forced.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Assuming the relations R and S are ex tens ionally

represented relations, and the algorithm is forced

exhaustively, we produce all the individuals of the lem:S for

each individual of the lem:R, so if the cardinalities of the

lem:R and the lem:S are both equal to V, we make the number
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of memory references proportional to the square of "n n
. That

means the algorithm has the worst case time complexity

behaviour of 0(n2).

lem: (RS)

The algorithm for this case can be defined as follows:

1. Force the lem:S; get the individual returned. Call

this individual "x".

2. Force the unimg:R:x; get the individual returned;

hash into the LHT with the current integer (taken from the

global count) being the relation identifier; check if there

is a record for this individual under this relation

identifier; if so do step 2-a, else do step 2b.

a. Repeat step 2 by forcing the unimg:R:x again and

taking the next individual.

b. Establish the record of this individual in the

LHT with the relation identifier being the current integer

taken from the global count (i.e., the integer taken from the

global count in step 2). Return this individual as a result.

3. Repeat step 2 as the lem:(RS) is forced and as long

as there remain individuals in the unimg:R:x.

4. If there does not remain any individual in the

unimg:R:x, repeat steps 1 and 2 as the lem:(RS) is forced, by

forcing the lem:S and obtaining the next individual from the

lem:S.
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In this algorithm we used the LHT as the SCHT for

remembering the individuals produced until now and for not

producing the same individuals repeatedly, because the sets

produced by "Unit image" operations may not always be

disjoint or they may be the same. If we did not do that we

might produce the same individuals repeatedly and if a

complex operation were being performed on each individual

produced we might execute that complex operation redundantly.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

If we execute the above algorithm until no more

individuals of the lem:(RS) remain to be produced, we produce

the whole LEM set of the relation S and for each individual

of that set we perform the "unit image" operation. Assuming

R and S are extensionally represented relations, and lem:S

and lem:R have the same cardinality "n", we make a number of

memory references proportional to the square of "n". So the

worst case asymptotical time complexity behaviour of this

algorithm is 0(n 2 ). Note that this is true if and only if

the relations R and S are extensionally represented

relations. In the case they are composite relations the time

complexity behaviour of the algorithm may change depending on

the time complexity behaviour of the operations, "unimg:" and

"lera:" on those composite relations.

153





rim:R

The algorithm for this operation is the same as the

algorithm for the operation n lem:R", but in step 2 of this

algorithm we have to follow the pointer found in the PFRM

field of the relation's record instead of the PFLM field.

Hence the asymptotical time complexity behaviour of this

algorithm is the same as the asymptotical time complexity

behaviour of the algorithm for the "lem:R".

rim: (R-S)

This algorithm does the reverse operation that we defined

in the algorithm for lem:(R-S). The reader should make the

substitutions below in the algorithm for the n lem:(R-S)" in

order to define the algorithm for the "rim: (R-S) ":

lem:R > rim:R

unimg:R:y > unimg':R:y

unimg':S:z > unimg:S:z

So the asymptotical time complexity behaviour of this

algorithm is the same as the asymptotical time complexity

behaviour of the algorithm for "lem: (R-S)".

rim: (R| | S)

This algorithm is similar to the algorithm of the

"lem:(R|
|
S)". We have to make the substitutions below in the

steps of the algorithm defined for "lem: (R|
|
S) " in order to

define the algorithm for "rim: (Rl I S) ":
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lem:R > rim:R

lem:S > rim:S

So, obviously, the asymptotical time complexity behaviour of

this algorithm is the same as the asymptotical time

complexity behaviour of the algorithm for "lem : (R| |
S) ",

because the algorithms for the "lem:X" and "rim:X" have the

same asymptotical time complexity behaviour when "X" is an

extensionally represented relation,

rim: (RS)

This algorithm is similar to the algorithm defined for

"lem: (RS) ". We have to make the substitutions below in the

steps of the algorithm defined for the "lem:(RS)" in order to

define the algorithm for "rim: (RS)":

lem:S > rim:R

unimg:R:x > unimg':S:x

So the asymptotical time complexity behaviour of this

algorithm is the same as the asymptotical time complexity

behaviour of the algorithm defined for "lem : (RS) ", because

the algorithms defined for the unimg:W:x and unimg':W:x have

the same asymptotical time complexity behaviour if the

relation W is an extensionally represented relation; in the

same way, the algorithms defined for the lem:W and rim:W have

the same asymptotical time complexity behaviour when the

relation "W" is an extensionally represented relation.
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Re! :C

This algorithm is similar to the algorithm defined for

the (primitive) "Image" operation. We have to make the

substitution below in the algorithm for the "Image" operation

in order to define the algorithm for this operation,

unimg > unimg'

So the asymptotical time complexity behaviour of this

algorithm is the same as the asymptotical time complexity

behaviour of the algorithm defined for the (primitive)

"Image" operation,

unimg' :R:x (Where R is an Extensionally Represented Relation)

This operation, given an individual in the codomain of a

relation, finds the set of individuals that are in relation

with this individual in the domain of the relation in

question. Of course in our case the individuals of the

resulting set will be returned to the caller (function

"Force" itself) one at a time. We did not define the

algorithm for this operation in the extensional

representations analysis, so we will define this algorithm

here. The algorithm is as follows:

1. Find the relation's record in the relation table,

follow the pointer found in the PFRM field of this record,

and find the record of the first right member of this

relation in the RHT.
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2. Hash into the LHT with the argument individual under

the relation identifier; find the record of this individual.

3. Reference the incidence vector of the relation with

the indices of the records found; if a 1 is found in the

corresponding location do step 3-a else to step 3-b.

a. Take the next integer from the global count, set

a pointer to the next record in the RIM set of the relation,

hash into the MHASH table with this integer as the identifier

and save this pointer in the MHASH table by establishing a

record.

b. Proceed in the RIM set by following the pointer

found in the TASE link field of the current RHT record and

repeat steps 2 and 3 for the next individual in the RIM set

of the relation R.

4. As the unimg':R:x is forced, get the same integer

obtained in step 2, by going through the same counting

mechanism; hash into the MHASH table and find the pointer

save; follow this pointer and find the individuals record in

the RHT, then repeat steps 2 and 3.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

If we force the above algorithm repeatedly until no more

individuals remain to be returned, we trace through the

entire RIM set of the relation R, so we make a number of

memory references proportional to "n", where "n" is the
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cardinality of the RIM set of the relation in question. So

the algorithm has the worst case asymptotical time complexity

behaviour of 0(n).,

(R#S)c! :C

We know that the converse of relation (R#S) is not

necessarily an injective function, even though the relation

(R#S) is by definition an injective function. So the

algorithm is more costly then the algorithm defined for

(R#S)!:C. The algorithm is as follows:

1. Force the argument set C, repeatedly.

2. For each individual (which is necessarily a pair)

obtained in this manner, take the left individual of this

pair, and call it "x". Force unimg':R:x repeatedly,

establishing the record of each individual returned, in the

LHT with the integer taken from the global count as the

identifier. In the same manner take the right individual of

the pair and call it "y". Force unimg';S;y repeatedly,

establishing the records of the individuals returned in the

LHT with the next integer taken from the global count being

the relation identifier. In the same manner take the right

individual of the pair and call it "y". Force unimg':S:y

repeatedly, establishing the records of the individuals

returned in the LHT with the next integer taken from the

global count being the relation identifier.
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3. After the set C is exhausted, take the intersection of

the two sets created in the LHT by using the algorithm

defined for the "Set intersection 1* in the extensional

representations analysis, and establish the resulting set in

the LHT with the next integer taken from the global count as

the identifier. Return the first individual of this set,

take the next integer from the global count and save the

pointer to the next individual's record in the MHASH table

with this integer as the identifier.

4. In the subsequent force operations do not perform

steps 1 through 3, but perform the counting operation done in

each step; i.e., take the integers from the global count and

hash with the last integer found in step 3 into the MHASH

table. If a pointer is found to be in the MHASH table with

this integer as the identifier, return the individual whose

record is pointed by this pointer, advance the pointer to the

next record of the set obtained in step 3, and save the new

pointer in the MHASH table with the same integer being the

identifier

.

So if we force the above algorithm for the first time, it

constructs the set of all individuals to be returned in the

subsequent force operations also, and returns the first

individual. In the subsequent force operations, steps 1

through 3 are not executed except in order to find the same

integer found in step 3. We have to go through the same
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counting process on the global count each time the algorithm

is forced.

Now we will do the worst case asymptotically time

complexity analysis of this algorithm.

For each individual of the set C we force the unimg':R

and unimg':S. Assuming R, S and C are ex tens ionally

represented, we make the number of memory references

proportional to the "n" for each individual of the set C. If

we assume that the sets C, rim:R and rim:S all have the same

cardinality "n", we make a number of memory references

proportional to the square of "n". Taking the intersection

of two sets (in step 3) costs us a number of memory

references proportional to the "n" (in the worst cast when

the cardinality of those sets are exactly equal to "n").

Because this factor is added to the previous term of the

complexity function, it does not affect the asymptotical time

complexity behaviour of the algorithm. So we conclude that

the algorithm has the worst case asymptotical time complexity

behaviour of 0(n2).

unimg:(R#S)c = unimg':(R#S)

This algorithm does the same things as the algorithm for

(R#S)!:C does except in this case the argument is not a set

(C) ; instead it is an individual. So if the algorithm for

160





(R#S)!:C executes on a singleton set, it does the job of this

algorithm, so there is no need to rewrite this algorithm

here.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Because the algorithm is the special case of the

algorithm for (R#S)!:C, it makes the number of memory

references proportional to the "n" for the given argument

individual, and it performs the set intersection operation in

0(n) time. So with the same assumptions we had in the time

complexity analysis of the algorithm for (R#S)i:C, we

conclude that the worst case asymptotical time complexity

behaviour of this algorithm is 0(n).

(R| |S)c!:C

This algorithm is similar to the algorithm for (R#S)ci:C

except the third step is more costly than the third step of

the algorithm of the (R#S)c!:C. The algorithm is as follows:

1. Do steps 1 and 2 of the algorithm defined for the

(R#S)c! :C.

2. Start from the beginning of the set obtained from

repeated application of unirag':R operation. For each

individual found by proceeding in that set, start from the

beginning of the set obtained from the repeated application

of unimg'rS operation and proceed in that set record by
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record, by looking up the individual being represented by

each record encountered.

3. For each individual pair obtained in step 2,

construct a pair relation (as it was done in the algorithm

for "Parallel application" in the extensional representations

analysis). Take the next integer from the global count,

establish the record of the individual (pair) in the LHT with

the relation identifier being this integer, and link the

records of that kind by their TASE links as they are created.

4. Repeat step 4 of the algorithm defined for the

(R#S) !:C.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As we can see the algorithm differs from the algorithm

for (R#S)!:C in the third step only. So instead of

intersecting the sets, we construct a set which has pairs

resulted from pairing up the individuals of those sets. In

constructing pairs out of the individuals of the sets

obtained in step 1 of this algorithm, we make a number of

memory references proportional to the square of "n" where "n"

is assumed to be the common cardinality of those sets and the

cardinality of the rim:R and rim:S. Because this term will

replace the linear term corresponding to the set intersection

in the time complexity function of the algorithm of the

(R#S)c!:C, and because we already have an order two term in
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that complexity function, this additional second degree term

will not change the asymptotical time complexity behaviour of

the previous complexity function. So we conclude that the

algorithm has the worst case asymptotical time complexity

behaviour of O(n^). In practical sense it is more expensive

than the algorithm for the (R#S)ci:C.

unimg: (R| | S)c:x = unimg ' : (R| | S) :x

This algorithm is similar to the algorithm defined for

the (R||S)c!:C except the argument is an individual rather

than a set. Hence, if we force the (R| |S)ci:C only once,

this would be equivalent to forcing the unimg' : (R|
|
S) c:x,

where "x" is the first individual of the set "C". Because of

this, we do not need to rewrite this algorithm again.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Even though we can find the intermediate sets in step 1

of the algorithm referenced above by making a number of

memory references proportional to "n" (where "n" is the same

as the "n" defined in the time complexity analysis of the

algorithm for the (R||S)!:C), we have to pair up the

individuals of those sets, which requires a number of memory

references proportional to the square of "n". So the worst

case asymptotical time complexity behaviour of this algorithm

becomes 0(n 2
).
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(non:R)!:C, unimg: (non:R) :x (Where R is Represented Exten-

sionally)

When the relation R is represented extensionally we can

do these operations (production of individuals) in a less

complex manner than the algorithms that we will define for

general case.

The algorithms for these operations are exactly the same

as the algorithms defined for RI:C and unimg :R:x that work on

the extensionally represented R, except we will design these

algorithms so that it will accept every found in the hash

incidence vector as 1 and every 1 as 0, by complementing

every entry of the incidence vector tested without changing

the original entry during the operations. By doing that we

do not have to complement all the entries of the incidence

vector by executing the "Complement" algorithm defined in the

extensional representations analysis; instead, our algorithms

that work on the complement of the relation in question,

assume every as 1 and every 1 as 0. Because we are using

essentially the same algorithms defined for R!:C and

unimg:R:x, it is obvious that these algorithms will also have

the same asymptotical time complexity behaviours.

(non:R)l:C (General Case)

This composite set presents some difficulties in defining

the algorithm for it because the resulting set strictly

depends on the tuples of the composite relation R which are
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not being represented explicitly. The algorithm is as

follows

:

1. Force the lem:R repeatedly; take the next integer

from the global count; establish the record of each

individual obtained in the LHT with this integer as the

identifier.

2. Force the set C repeatedly; for each individual "x n

obtained in this manner do step 3.

3. Force unimg:R:x repeatedly, if it returns at least

one individual increment, the count called "CARD"; for each

individual obtained by repeatedly forcing the unimg:R:x, hash

into the LHT with the integer taken from the global count (in

step 1) as the identifier. Find the record of this

individual and increment the integer in the index field of

this record (which is not being used in this case).

4. After no more individuals of C remain to be produced,

begin from the beginning of the set constructed in the LHT

and proceed in that set record by record. For each record

found look up the index field; if the integer in the index

field is equal to the last integer saved in the counter CARD,

delete this record of the individual from the set.

5. Start from the beginning of the set resulting from

the execution of step 4, and return the first individual to

the caller.
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6. If the algorithm is forced subsequently, skip steps 1

through 4, but allocate the integer taken from the global

count in step 1, and return the next individual that remains

to be returned in the set resulting from the execution of

step 4 during the first forcing operation.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Suppose the argument C is an extensionally represented

set/ and the unimg operation on the composite relation R has

an 0(n) time algorithm, where "n H is the cardinality of LEM

set of the composite relation R. Because we are forcing the

unimgrR operation repeatedly with the arguments being each

individual of the set C, assuming the set C has the

cardinality "n", we make the number of memory references

proportional to the square of "n". So under these

assumptions, the algorithm has the asymptotical time

complexity behaviour of 0(m 2 ). in finding the asymptotical

time complexity behaviour of this algorithm, we did not take

into account the establishment of the lem:R in the LHT,

because the term corresponding to this operation is added to

the term which we found above, and in most of the cases this

term is a linear term, so it does not affect the asymptotical

time complexity behaviour of the algorithm. Note that this

cost should be attributed to the first forcing operation done

on this composite set; the subsequent force operations cost

166





us constant time, because we established the set of

individuals to be returned when this composite set was forced

the first time. That means the subsequent force operations

effectively force an extensionally represented set and each

force operation becomes a constant time operation.

fan:R! :C

Producing the individuals of this set is a costly

operation which requires repeated execution of the expensive

"Image" operation. The algorithm is as follows:

1. Take the first integer from the global count; force

the lem:R repeatedly and increment COUNT 1 for each

individual produced; establish each individual produced in

the LHT, with this integer as the identifier. In the same

manner, force the rim:R repeatedly, hash into the LHT with

each individual under the above relation identifier. If this

individual does not have any record in this set, increment

COUNT 2, else do nothing.

2. Take the next integer from the global count; force

the composite set R!:C repeatedly; for each individual of the

set C obtained during that operation, hash into the LHT with

the next integer taken from the global count as the

identifier and establish the record of this individual. Call

the set resulting from this operation C In the same manner

take the next integer from the global count and establish the

record of each individual of the set resulting from
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repeatedly forcing the R!:C with this integer as the relation

identifier

.

3. Force the Image operation with the set (other than

the C) resulting from the execution of step 2, being the

argument; establish the records of the resulting set's

individuals in the LHT under the same relation identifier

obtained in step 2, and in the same manner as explained in

step 2.

4. Proceed in the same manner by every time taking the

set resulting from the previous step and forcing the "Image"

operation repeatedly on this set in order to obtain the next

set and each time increment a counter, namely "M". Increment

the counter COUNT 3 for each record of the resulting set

created.

5. Do step 4 until M = COUNT 1 + COUNT 2 or COUNT 3 =

COUNT 1.

6. Start from the beginning of the set C, for each

individual found by proceeding in this record by record, hash

into the LHT with the resulting set's identifier, (i.e.,

integer obtained in step 2) and if this individual does not

have a record in this set, establish the record of this

individual in that set.

7. Return the set C to the storage pool.

8. Return the set constructed in step 1 to the storage

pool.
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9. Return the first individual of the resulting set.

Delete the record of this individual from that set.

10. If the algorithm is forced subsequently, skip step 1

through 8 and execute step 9, but under any condition take

the integers from the global count which are obtained in step

2.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We defined the above algorithm for general case, in which

the relation R is a composite relation. But because it is

not possible to list down an infinite number of composite

relations, we will analyze the case in which the relation R

is an extensionally represented relation.

In the worst case each of the intermediate sets obtained

in step 4 has the cardinality "n-1", where "n" is the

cardinality of the LEM set of the relation R. It is not

equal to "n" because this is the stopping condition of the

algorithm. This does not make any difference in the

asymptotical time complexity behaviour of the "Image"

algorithm, so we make a number of memory references

proportional to the square of "n" for each repetition of step

4. We know that in the worst case step 4 executes M-2 times

where M is the cardinality of the MEM set of the relation.

Let's assume the LEM and the RIM set of the relation are

disjoint and M=2*n, where "n" is again assumed to be the
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common cardinality of the LEM set and the RIM set of the

relation. So it is clear that we are making a number of

memory references proportional to the square of "n", 2*n

times. As a result we can write the leading term of the

complexity function as follows:

K*(n3)

where K >= 2

So we conclude that under these conditions the algorithm has

the worst case asymptotical time complexity behaviour of

0(n3). Note that we did not take into account the cost of

execution of steps 1, 6, 7 and 8 because the terms of the

complexity function associated with those steps would be

linear terms and would not affect the asymptotical time

complexity behaviour of the algorithm.

(san:R) ! :C

This algorithm is similar to the algorithm defined for

the (fan:R)!:C, except we do not create the set C, and we

have to omit steps 6, 7 and 8. So the asymptotical time

complexity behaviour of this algorithm is the same as the

asymptotical time complexity behaviour of the algorithm

defined for (fan:R)!:C, because the asymptotical time

complexity behaviour of steps 6, 7 and 8 did not have any

affect on the asymptotical time complexity behaviour of the

algorithm defined for the (fan:R)J:C.
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As we mentioned earlier, we will generalize the set

operations: Intersection, Union, and Difference in the

context of producing the individuals of the composite sets.

That means these operations will have special meaning in our

function "Force". Each of those set operations, being binary

operators, may take on any kind of composite sets as

operands, and produce the individuals of the resulting

composite set. The algorithms that we will define will

establish temporary sets in the LHT in order to produce the

individuals of the resulting sets efficiently, like was done

in some of the algorithms above. There exists another

technique which prevents us from constructing these temporary

sets, and requires doing membership tests for each individual

to be produced. We will give an example of this technique in

defining the algorithm for the "Intersection" operation, and

explain the reasons why this kind of algorithms is costly.

On the other hand, our technique uses more storage, but we

reuse that storage many times by maintaining a storage pool

as explained before. Our technique is aimed at splitting the

terms of the time complexity function rather than nesting the

terms in each other by increasing the exponent of the terms.

This can be done simply by producing and saving some sets,

temporarily in advance, then testing the individuals to be

produced against those sets, rather than every time producing

the sets which the individual being produced is to be tested
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against. Because those temporary sets will be established in

the LHT, the membership test operations will be constant time

operations.

Set Intersection in Producing the Composite Set Individuals

(and) :

In this algorithm we will first construct one of the

composite operand sets explicitly in the LHT, then we will

force the other operand set as the composite set constructed

with "and" operation, is forced. Each time this set is

forced we test the individual to be produced against the set

constructed in the LHT; if the same individual also exists in

that set, the individual in question is produced, otherwise

we continue to force the other operand composite set until we

find an eligible individual to produce. The algorithm is as

follows:

1. Take the next integer from the global count and force

the right operand set repeatedly. For each individual found

in this manner, hash into the LHT with the integer taken from

the global count above as the relation identifier. Establish

the record of this individual in the LHT if it does not have

any record under this identifier already.

2. Force the left operand set, get the individual

returned, and hash with that individual into the LHT with the

integer obtained in step 1 as the relation identifier. If

there exists a record for this individual in that set, return
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this individual as the result, otherwise force the left

operand set again in order to continue with the next

individual of that set.

3. If none of the individuals of the left operand set is

found to be in the set (which is established in the LHT)

return "nil".

4. If the main composite set is forced subsequently skip

step 1, but under any condition take the integer obtained in

step 1 from the global count.

As can be seen the above algorithm does not care about

the kind of composite operand sets because the "Force"

operation being performed on the composite operand sets is

defined for all kinds of composite sets and that is what we

mean by generaliztion.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As we have seen in the previous algorithms, most of the

operations eventually result in the execution of the "Unit

image" operation on the extensionally represented relations,

and we know that the "Unit image" (algorithm, when it works

on the extensional relations, has the worst case asymptotical

time complexity behaviour of 0(n). Except some special cases

for which we defined the algorithms in this section, we

expect most of the exhaustive production operations to be

linear time operations, because step 1 and step 2 of this
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algorithm are independent steps. If the execution of step 1

and the execution of step 2 have linear time complexity

behaviour. clearly the algorithm will have the linear time

complexity behaviour. On the other hand, if any one of the

steps 1 or 2 or both have the order two time complexity

behaviour, clearly the algorithm will have the order two time

complexity behaviour, and so on. Hence we conclude that the

worst case asymptotical time complexity behaviour of the

exhaustive execution of the "Force" operation on the

composite operand sets, and most of the time we expect the

worst case asymptotical time complexity behaviour of this

algorithm to be either 0(n) or 0(n2).

Now suppose we defined the above algorithm by using the

other technique we mentioned above, in which case we would

force the left operand set and obtain the individual, then we

would force the right operand set repeatedly and compare the

individual in question with each individual produced. By

doing that we would recover from the explicit construction of

the right operand set, but each time we force the main

composite set we would produce all the individuals of the

right operand set which is very inefficient in time. So our

algorithm saves the individuals of the left operand set

temporarily and subsequent "Force" operations become

effectively the same as forcing the right operand set.
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Difference Operation (-)

This algorithm is almost the same as the algorithm

defined for the intersection operation. In order to make the

distinction clear, we will rewrite step 2 of the algorithm

defined for the intersection operation:

2. Force the left operand set, get the individual

returned, and hash with this individual into the LHT with the

integer obtained in step 1 being the identifier. If there

exists a record of this individual in that set, force the

left operand set again in order to continue with the next

individual of the left operand set, otherwise return this

individual.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We can use the same argument as we have used in the time

complexity analysis of the algorithm for the "Intersection"

operation, and we can say the same things about the worst

case asymptotical time complexity behaviour of this

algorithm.

Union Operation (or)

We could define this algorithm simply as follows:

1. Force the left operand set, get the individual and

return it, if there remains any individual to be returned in

the left operand set.

2. If no individuals of the left operand set remain to
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be returned, force the right operand set, get the individual

and return it, if there remains any individual to be returned

in the right operand set.

3. Do the above steps as the main composite set is

forced.

The above algorithm may produce the same individuals

repeatedly if the operand sets are not disjoint. So we will

again save the individuals of the left operand set while we

are producing these individuals in order to remember which

individuals were produced before and not produce them again.

The algorithm is as follows:

1. Take the next integer from the global count, call

this integer "I". Force the left operand set, get the

individual returned, hash into the LHT with this individual

and, with the integer "I" as the relation identifier,

establish the record of this individual in the LHT under the

relation identifier "I". Return the individual in question.

2. Repeat step 1 as the main composite set is forced.

Construct a set structure in the LHT out of the records of

the individuals produced, while these individuals are being

produced.

3. Do step 2 until no more individuals of the left

operand set remain to be produced , as the main composite set

is forced.

176





4. If no individual of the left operand set remains to

be produced and if the main composite set is forced

subsequently, begin producing the individuals of the right

operand set one at a time as the main composite set is

forced.

5. For each individual produced in the manner explained

in step 4, hash into the LHT with this individual and with

the integer I as the relation identifier. Check if this

individual has a record in that set; if so do step 5-a else

do step 5-b.

a. Force the right operand set in order to continue

with the next individual of the right operand set, and go to

step 5.

b. Return the individual in question.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As can be seen the algorithm has essentially the same

structure as the algorithms defined for the "Intersection"

and "Difference" operations and we can use the same kind of

argument in this case also; i.e., the asymptotical time

complexity behaviour of this algorithm depends on the

asymptotical time complexity behaviour of the execution of

the "Force" operation on the operand (composite) relations.
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D. MEMBERSHIP TEST ALGORITHMS

As we mentioned earlier, in some operations we want to

test the membership of an individual in a given set. We may

do this in two ways:

1. We produce the individuals of the composite set one

at a time and compare each individual produced with the

individual in question.

2. We may define a less costly algorithm for each kind

of composite set which focuses on the individual and does

less work in testing the membership of this individual in the

given composite set.

The first method is a costly sequential method since, in

some cases, we may produce all the individuals of the

composite set. The second method defines algorithms for

membership tests on each kind of composite set that we have

given the algorithm for in chapter C, whenever the cost is

less than the cost of using the method 1. On the other hand

Method 2 uses up some memory which can be reused by

maintaining a storage pool.

In defining the algorithms for the membership test on the

different kinds of composite sets we will use a new notation

which short cuts a lot of detailed description that the

reader got used to while reading the previous sections. New

notation:
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Fr (composite set) = Force the composite set repeatedly.

set > = Create a set out of the individuals

produced by the operation on the left

of the arrow, in the RHT by

attributing a unique identifier to

this set, which is represented as a

capital letter on the right of the

arrow.

tx > = Transmit the resulting set/individual

to the next operation as the argument

of that operation.

—test-each-in— > = Do the membership test for each

individual produced by forcing the

composite set shown on the left of

the arrow, to see if it is in the set

which is shown on the right of the

arrow.

any > = If any individual is found to be a

member of the set indicated on the

left of the arrow, output "true".

while C2; = While producing the individuals of

the set C2, do the step indicated on

the right of the ";" also.
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tx >varA = Assign the logical value (true/false)

indicated on the left of the arrow,

to the boolean variable "A".

is-in—

>

= If the individual indicated on the

left of the arrow is in the set

indicated on the right of the arrow,

output "true",

true: {statement} = If the input condition was "true"

then the statement indicated in the

braces is true,

false :{ statement} = If the input condition was "false"

then the statement indicated in the

braces is true.

isempty:C = If the given set C was the empty set,

output "true" otherwise output

"false".

* Set difference operation,

and = Set intersection operation/logical

"and" operation.

or Set union operation/logical "or"

operation,

z = The individual to be tested for

membership.

x Argument individual.

C = Argument set.
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left(x) = Left individual of the pair "x".

right (x) = Right individual of the pair "x".

In these algorithms extensionally represented temporary

sets will be given unique identifiers from a global count

which is different than the global counts associated with the

high level composite sets in the function "Force" case.

These temporary sets will be established in the RHT instead

of LHT in order to prevent the possible collisions that may

occur because of the sets created by the function "Force"

since they both use integers as identifiers.

In order to make the notation clear, we will define two

algorithms in a way as we have done before, and we will

explain the correspondence between the notation and the steps

of those algorithms. The algorithms referring to the

remaining operations can be found in Appendix D, which are

expressed by using the notation given above.

(R-S) ! :C

Given an individual to be tested for membership in the

composite set (R-S)i:C, we have to find out if a tuple of R

exists which has this individual as the left individual. The

second condition is the right individual of this tuple must

be in the argument set C and the last condition is this

tuple must not exist in the relation S. The algorithm which

checks those conditions is given below:
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1. Take the next integer from the global count. (Note

that this global count is not the same as the global count

used in the function "Force"). Force the unimg':R:z

repeatedly and for each individual obtained do step 2. (* In

our notation this step can be expressed as: Fr (unimg' :R:z) *)

2. Hash to the RHT with the individual obtained and with

the integer taken from the global count as the identifier,

establish the record of this individual in the RHT.

3. Link the records of the individuals to each other by

their TASE links as they are created. (* Assuming the

integer identifying the set produced in the RHT represented

as Cl/ in our notation, all of the above steps can be

expressed as follows:

Fr (unimg* :R:z) set > Cl *)

4. Force repeatedly unimg':S:z; for each individual

obtained in this manner, hash into the RHT with this

individual, with the integer taken from the global count in

step 1 being the relation identifier. (In this case the

relation identifier is used to identify the set established

in the RHT). Check if this individual has a record in that

set; if so delete this record else do nothing and continue

with the next individual of the unimg':S:z. (* In our

notation this step can be expressed as follows:

Fr (unimg' :S:z) set > C2

'

while Cl'; Cl - C2 set > D'
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where C2* is a place holder, because we are not constructing

that set explicitly. The second statement expresses that,

while producing the individuals of the set C2', get the set

difference (C1-C2') also and call the resulting set D*. Note

that the identifier of the resulting set (D 1

) is actually the

integer that we took from the global count in step 1 which is

represented as Cl, but we used D' as identifier in order to

emphasize the fact that the set Cl may change after that

operation. *)

5. Force the argument set C repeatedly. Take each

individual returned and check if this individual is in the

set resulting from the execution of step 3 by hashing into

the RHT with this individual under the relation identifier

(integer) obtained in step 1. If so, conclude that the

individual "z" is in the set (R-S)!:C and quit forcing the

argument set C. Otherwise continue to force the set C in

order to test the remaining individuals of the set C in the

manner explained above. (* In our notation, this step can be

expressed as :

Pr (C)— test-each-in— > D'— any

—

>true{z is in the set}

So, in our notation, the complete algorithm can be written as

follows

:

Fr (unimg* :R:z) set > Cl

Fr (unimg' :S:z) set > C2'
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while C2'; Cl - C2' set > D*

Fr (C) — test-each-in— > D'—any—>true{z is in the set} *)

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We can write the time complexity function of this

algorithm as follows:

f = K + L + M

where:

K corresponds to the steps 1, 2 and 3.

L corresponds to step 4.

M corresponds to step 5 of the algorithm,

and K, L and M are not constants as oppossed to our

convention. Instead each of the K,L and M represents a term

of the complexity function. The worst case asymptotical time

complexity behaviour of the algorithm is exactly the same as

the cost of the one of the terms K, L or M indicated above;

i.e., if the most of exhaustively forcing the set C, (in step

5) has the worst case asymptotical time complexity behaviour

of 0(n2) and the other terms have linear behavior, the worst

case asymptotical time complexity behaviour of this algorithm

becomes 0(n2), etc.

As we can see, the cost of the algorithm strictly depends

on the type of composite sets we are forcing in the various

steps of the algorithm. In general we can say that the

composite sets that are made up of the "unimg" operation have
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linear algorithms in the production of the individuals.

Assuming the relations R, S and the set C are extensionally

represented we conclude that the worst case asymptotical time

complexity of this algorithm is 0(n), because we know that

the algorithms for the production of the individuals of the

composite sets, unimg':R:z, unimg*:S:z and the extensionally

represented set C, have linear behaviour and an algorithm

which embeds the sequential execution of those algorithms

will also have linear behaviour,

unimg: (RS) :x :

The algorithm can be defined as follows:

1. Take the next integer from the global count. Force

the composite set, unimg:S:x repeatedly; for each individual

obtained in this manner hash into the RHT with this

individual and with the integer taken from the global count

as the relation identifier (call this identifier Cl).

Establish the record of this individual in the RHT. Link the

records of the individuals created in the RHT by their TASE

links as they are created. (* In our notation, this step can

be expressed as follows:

Pr (unimg :S:x) set > Cl *)

2. Force the composite set, unimg':R:z repeatedly; for

each individual obtained in this manner hash into the RHT

with this individual and with the relation identifier Cl. If

this individual has a record in the set constructed in step
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l f conclude that the individual being tested for membership

is in the set, otherwise continue with the next individual of

composite set unimg':R:z by forcing it again. (* In our

notation, this step can be expressed as follows:

Fr (unimg' :R:z) set > C2'

while C2 1
: Cl and C2 set > D'

while D 1

; isempty(D') tx > false{z is in the set}

where C2' is again a place holder set identifier, because we

are not constructing the extensional representation structure

for this set; instead we are producing its individuals. The

second statement means: "while producing the individuals of

the set C2', try to get the intersection of the sets Cl and

C2', and call the resulting set D'", which we will not

construct the extensional representation for. The last

statement means as soon as an individual of the non-existing

set D* is found, conclude that the individual being tested

for membership is in the set. As can be seen, we are using

the identifiers of some intermediate sets even though we are

not representing them extensionally in order to make the

algorithms as understandable as possible. *)

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We can repeat the same argument as we have done above, as

follows: It is clear that the algorithm has the worst case

asymptotical time complexity behaviour of 0(n) if the
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algorithms for exhaustively forcing unimg:S:x and unimg' :R:z

have linear time complexity behaviour. So if we assume that

the relation R and relation S are extensionally represented

relations we conclude that the algorithm has the worst case

asymptotical time complexity behaviour of 0(n), because we

know that the algorithms for forcing the unimg:S: and the

unimg':R: have the linear time complexity behaviour in the

case the R and S are extensionally represented relations.

We will not do the complexity analysis for the remaining

algorithms, because they are all similar to each other and

present the same time complexity characteristics as the above

examples by having disjoint steps and using the (unimg:)

and/or (unimg':) operations.

E. FUNCTION APPLICATION ALGORITHMS

As we have done in the other operations before, we will

define an algorithm for each kind of composite relation which

can be applied to an individual. In chapter 3 we listed down

the kinds of composite relations and mentioned that, we could

define an arbitrary number of different composite relations

by substituting the composite relations in each other as the

operand relations. Because the function application

operation will be defined for each kind of composite

relations in terms of the unimg, unimg' and function

application operations on the operand relations, and because

the unimg, unimg', and function application operations are
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defined for each kind of composite relation, no confusion

arises. The reader should think of the operand relations R

and/or S in each kind of composite relation as another

composite relation or an extensionally represented relation.

In the time complexity analysis we will assume the operand

relation/relations, R and/or S as extensionally represented

relation/relations, because we are unable to do a complexity

analysis on the infinite number of composite relations that

may be obtained by substituting the other composite relations

in the operand relations/relation. In these algorithms the

temporary sets are given integer identifiers from the same

global count we used in the membership algorithms, because

both kinds of algorithms are in the main body of the

interpreter and these sets are established again in the RHT.

The algorithms are given below:

(R&S) :x

The a-lgorithra for this composite relation can be defined

as follows:

1. Take the next integer from the global count and force

the composite set unimg:R:x; take each individual returned

and hash into the RHT with this individual, and with the

relation identifier being the integer taken from the global

count. Establish the record of this individual in the RHT.

Link the records of the individuals to each other by their

TASE links as they are created.
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2. Force the set unimg:S:x repeatedly; take each

individual returned and hash into the RHT with this

individual and with the integer obtained in step 1 as the

relation identifier. If this individual has a record in that

set, return this individual/ quit forcing unirag:S:x and

return the set constructed in the RHT to the storage pool.

Otherwise continue with the next individual of the unimg:S:x.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case the sets unimg:R:x and unimg:S:x may be

disjoint. In that case we force the composite set unimg:S:x

exhaustively. By assuming the relations R and S are

extensionally represented relations, in which case the

exhaustive force operations on the composite sets unimg:F:x

and unimg:S:x have linear behaviour, we conclude that the

worst case asymptotical time complexity behaviour of the

algorithm is 0(n) where "n" is assumed to be the common

cardinality of the sets lem:R and lem:S. The algorithm has a

linear asymptotical time complexity behaviour because it

incorporates the sequential execution of two linear

algorithms. Note that we have another linear term which

corresponds to disconnecting of the set created in step 1

from the RHT and returning it to the storage pool. This

operation is explained many times in the algorithms for the

extensional representation techniques and is shown to have
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linear behaviour, so adding this term to the complexity

function of the above algorithm would not change the

asymptotical time complexity behaviour of the algorithm.

(R|S) :x

Among all the algorithms that we will define, the

simplest one is the algorithm for the union operation. The

algorithm is as follows:

1. Apply relation n R" to the argument individual "x"; if

the individual is found, return that individual otherwise do

step 2.

2. Apply relation "S" to the argument individual "x"; if

an individual is returned, return this individual otherwise

call error routine.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We know that the algorithm for the function application

operation on the extensionally represented relations has a

constant time, time complexity behaviour, because step 1 and

step 2 are disjoint steps. By considering the worst case, in

which we can not obtain an individual by executing step 1, we

would write the time complexity function of this algorithm as

follows

:

f = K+K = 2*K

where K is the constant number of memory references made by

the function application algorithm defined in the extensional
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representation analysis. So we conclude that the algorithm

has the worst case asymptotical time complexity behaviour of

0(c) .

(R-S) :x

This algorithm is very similar to the algorithm that we

defined for the composite relation (R&S) , but we have to

modify step 2 of that algorithm slightly. So we rewrite step

2 as below:

2. Force the set unimg:S:x repeatedly; take each

individual returned, hash into the RHT with this individual

and with the integer obtained in step 1 as the relation

identifier. If this individual has a record in that set,

delete this record. If after the set unimg:S:x is exhausted,

the set in the RHT still has the records of some individuals,

return the individual represented by the first record of that

set. Return the resulting set to the storage pool.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The asymptotical time complexity behaviour of the

algorithm is essentially the same as the asymptotical time

complexity behaviour of the algorithm defined for the

composite relation (R&S), but the difference is: in step 2,

we force the composite set unimg:s:x exhaustively under any

conditions. So the average case time complexity behaviours
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of these algorithms differs but they have the same worst case

asymptotical time complexity behaviour.

(non:R) :x

We can define this algorithm in terms of the previous

algorithms we defined. The algorithm is as follows:

1. Force the composite set:

(lem:R - (unimg:R:x))

once, take the resulting individual and return it.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We intend to do this analysis so that we can also show

the reader how to find the time complexity behaviour of a

segment of a relational program.

Assume that the relation R is represented extensionally.

According to the definition of "-" (difference) operation in

the function "Force", we force the composite set unimg:R:x

repeatedly, and construct a set in the LHT out of the

individuals returned, because we assumed that the relation R

is represented extensionally. In order to construct this

set, we make a number of memory references proportional to

"n", where "n" is the cardinality of the LEM set of the

relation. Then we force the composite set lem-R, and we test

if the individual returned is in that set; if so we return

this individual; otherwise we continue to do the same thing
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for the next individual of the lem:R by forcing the lem:R

again. Because in the worst case:

lem:R - unimg:R:x

We force the leraiR until no more individuals remain to be

produced, and we make a number of memory references

proportional to "n", where "n" is again the cardinality of

the LEM set of the relation R. Because those two exhaustive

sequences of "Force" operations are made one after

another (i.e., the steps are disjoint), the terras of the

complexity function associated with those steps should be

added rather than multiplied, so the resulting complexity

function will have linear behaviour. Under those

considerations, we conclude that the worst case asymptotical

time complexity behaviour of the algorithm is 0(n).

Note that we do not need this complex algorithm if the

relation R is extensionally represented because, like we have

done in the unimg and image operations on the complement of a

relation, we can define an algorithm which assumes the l's of

the incidence vector as O's and vice versa. We will define

that algorithm next, but we want to emphasize again that the

above algorithm refers to the general case where R can be any

composite relation, but we have to assume R as an

extensionally represented relation in order to be able to do

the time complexity analysis.
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(non:R) :x (Where R is Represented Extensionally)

This algorithm is different from the algorithm defined

for R:x in the extensional representations analysis. It can

be defined as follows:

1. Hash to the RHT with the argument individual under

the given relation identifier; find the record of this

individual.

2. Start from the beginning of the RIM set of this

relation and proceed in this set record by record by

following the TASE links between the records.

3. For each pair of individuals (tuple) found in steps 1

and 2, reference the incidence vector and return the left

individual of the first tuple for which a is found in the

corresponding incidence vector location.

Now we do the worst case asymptotical time complexity

analysis of this algorithm.

In the worst case all the left members of the relation

may be in relation with the argument individual which is in

the RIM set of the relation. In that case we trace

exhaustively the LEM set of the relation and make a number of

memory references proportional to "n", where "n" is the

cardinality of the LEM set of the relation. So the algorithm

has the worst case asymptotical time complexity behaviour of

0(n).
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(R| |S) :x

The algorithm for this composite relation can be defined

as follows:

1. Extract the left individual of the argument

individual "x" (which is necessarily a pair), apply relation

R to this individual, and save the individual returned.

2. Extract the right individual of the argument

individual "x", apply relation S to this individual, and save

the individual returned.

3. Construct a pair relation out of the individuals

saved in step 1 and step 2, and return the pointer to the

record of this pair ( which is established in the relation

table) to the caller.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We know that the algorithm for the function application

on an extensionally represented relation has the asymptotical

time complexity behaviour of 0(c), and we invoke this

algorithm two times in steps 1 and 2. In addition we

construct the pair relation out of the individuals resulting

from those function applications in constant time. Because

the steps 1, 2 and 3 are disjoint steps, the terms of the

complexity function associated with those steps are added,

and the worst case asymptotical time complexity behaviour of

this algorithm automatically becomes 0(c).
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(R#S) :x

The algorithm for this composite relation is similar to

the algorithm for the composite relation (R|
|
S) , except, we

apply relations R and S directly to the argument individual

"x" in steps 1 and 2; obviously, it has the same asymptotical

time complexity behaviour as the algorithm for comnposite

relation (R| | S).

(RS) :x

The algorithm for this composite relation can be defined

as follows:

1. Apply the relation S to the argument individual n x";

take the individual returned and call it "y".

2. Apply the relation R to the individual "y"; take the

individual returned and return it.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We know that the function application costs us constant

time if the relation in question is represented

extensionally, so the steps 1 and 2 of the above algorithm

cost us constant time each. Because the steps are disjoint,

we conclude that the worst case asymptotical time complexity

behaviour of this algorithm is also constant time.

Meta Application ((R::S):x)

We did not define an algorithm for this operation in the

extensional representations analysis because it was hard and
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infeasible to construct the extensional representation

structure for this case. Before we go into the reasons for

doing that, we will summarize what the operation does.

This operation applies the right operand relation to the

argument individual and records the individual obtained, then

it applies the left operand relation to the argument

individual. If the individual obtained is a relation, it

applies this relation to the individual recorded above and

returns the resulting individual.

Now suppose we tried to construct the extensional

representation structure for this operation. We would need

to apply each of the relations known by the system so far to

all individuals known by the system, and we would construct

the RIM set of this relation out of the individuals resulting

from those application operations. Then we would need to

apply each of the relations known by the system to all of the

individuals of the RIM set of the relation and construct the

LEM set of this relation out of the individuals resulting

from those application operations. As can be easily seen,

the process is very costly and the resulting relation should

be updated as soon as a new relation and/or a new individual

is introduced to the system. On the other hand, if we do

this operation intensionally , no problem arises. The

algorithm for this operation is given below:
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1. Apply the right operand relation to the argument

individual; record the individual returned.

2. Apply the left operand relation to the argument

individual and take the individual returned, hash into the

relation table with this individual and check if it is a

relation. In the case this relation is not in the relation

table but represented intens ionally (i.e., if it is a

composite relation), hash into the relation table with each

relation identifier out of which this composite relation is

constructed. In any case, if this relation is found to be

applicable to the argument individual in question, apply this

relation to the individual recorded in step 1 and return the

resulting individual. Otherwise, call the error routine.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Let the left operand relation (R) and right operand

relation (S) be extensionally represented relations. We know

that the function application operation on extensionally

represented relations has the constant time asymptotical

time complexity behaviour. As a result, step 1 and step 2

make a constant number of memory references so we conclude

that the worst case asymptotical time complexity behaviour of

this algorithm is 0(c) in the case the operand relations are

extensionally represented relations.
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(fan:R) :x

This operation is an expensive operation relative to the

other function application operations on the various

composite relations. The algorithm is as follows:

1. Force the composite set:

lem : R
|
r im : R

repeatedly, count the number of individuals produced, i.e.,

obtain the cardinality of the MEM set of the relation, and

call this "M".

2. Apply relation R to the argument individual and take

the individual obtained, apply the relation R to this

individual again and take the individual obtained. Repeat

the application operation in the same manner by each time

applying the relation R to the individual obtained from the

previous application operation M times or until an

application operation returns "nil".

3. In the first case when the application operation is

repeated M times, return the last individual obtained. In

the second case when an application operation returns "nil",

return the individual obtained from the previous application

operation which has not returned "nil".

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We know that the term of the time complexity function

corresponding to step 1 of the algorithm has the linear time
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complexity behaviour because in that step we make a number of

memory references proportional to M (where M is the

cardinality of the MEM set of the relation in question), in

the case the relation R is an extensionally represented

relation. The term of the complexity function corresponding

to step 2 also has linear time complexity behaviour, because

each function application operation makes a constant number

of memory references and we repeat the function application

operation M times in the worst case. So in step 2 we make a

number of memory references proportional to. M, where M is the

cardinality of the MEM set of the relation in question.

Because steps 1 and 2 are disjoint steps we add the terms of

the complexity function corresponding to step 1 and step 2

together and obtain a linear time complexity function. So we

conclude that the worst case asymptotical time complexity

behaviour of this algorithm is 0(n) where "n" is the

cardinality of the MEM set of the relation in question.

(san:R) :x

This operation is not a well defined operation because,

given the argument individual, we can check if it is a member

of the MEM set of the relation in question and if it is, we

return the argument individual itself as the resulting

individual. This property of the operation originates from

the fact that the second ancestral of a relation is the

reflexive transitive closure of the relation. Because the
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second ancestral of a relation has to be a reflexive

relation, if the given (argument) individual is in the RIM

set of the relation, it has to be in the LEM set also. So

after doing the above membership test, we can immediately

return the argument individual itself as the resulting

individual. Thus this operation does not have any meaning

from the user's point of view.

Even though it does not have meaning, we will use this

operation as a part of another operation, which is equivalent

to "while" loop in conventional languages. This operation is

explained below.

C/( (san:R) :x)

This operation can be viewed as a while loop, in which

the left restriction operation imposes the condition of the

loop and "san:" operation forces the loop to iterate. Since

we did not define the "san: n operation we will accept this

operation like a completely new operation and we will define

an algorithm for it. The algorithm is as follows:

1. Test if the argument individual x is in the MEM set of

the relation R.

2. If it is in the MEM set of the relation R, test if it

is in the set C; return this individual as the result;

otherwise, do step 4.

3. If it is not in the MEM set of the relation then call

the error routine.
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4. Apply relation R to the individual x; take the

individual returned and test if it is in the set C. If so

return this individual else do step 5 for this individual.

5. Apply relation R to the individual; take the

individual returned and test if it is in the set C. If so

return this individual else repeat the step for this

individual.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As it is in the "while" loop of conventional languages,

if the condition is never met the algorithm goes into an

infinite loop. As can be seen we perform one function

application operation and one membership test operation in

each iteration of the loop. So the worst case asymptotical

time complexity behaviour of the algorithm is the same as the

worst case asymptotical time complexity behaviour of either

the membership test operation or the function application

operation (depending on which operation is more expensive),

times the number of iterations.

If we assume that the set C and the argument relation R

are represented extensionally, it is obvious that each

iteration costs us constant time because the membership test

operation is a constant time operation when the set in

question is represented extensionally. In the same way, when

the relation is represented extensionally, the function
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application operation becomes a constant time operation. So

the only variable remaining to be taken into account is the

number of iterations. We conclude that the algorithm has the

worst case asymptotical time complexity behaviour (in the

case of the set C and the relation R represented

extensionally) of 0(n), where n is the number of iterations.

In the same manner we can define an operation which is

equivalent to the "repeat" loop in the conventional

languages. This operation is explained below.

C/((fan:R) :x)

Even though we defined an algorithm for the operation

(f an:R) :x", we can not make use of it in this case. We have

to accept this operation as a stand alone operation. Because

the operation "(fan:R):x" finds an individual to be returned

as a result and quits at that point; on the other hand in

this operation we want the loop to continue if the resulting

individual is not an element of the set C. The algorithm for

this operation is the same as the algorithm of the operation

"C/( (fan:R) :x) " except, we do not include the step 1, 2 and 3

of that algorithm. So the same worst case asymptotical time

complexity analysis can be done in this case too.

Reduction Operation (@: (R,f ) ) : (i , x)

This operation is aimed at reducing sequences. The

operation takes a sequence R, a function f (which takes a

pair and returns an individual), an initial value i, and the
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first individual of the sequence x. It applies the function

f to the argument pair, takes the resulting individual, and

constructs a new pair in which the left component is the

individual obtained above and the right component is the next

individual of the sequence R. This new pair goes under the

same process as the argument pair did and this process

continues until the end of the sequence is encountered. We

will give an example to make the operation clear to the

reader. Example:

Suppose the sequence R (a relation) is defined as the

integers from 1 to 9 (which has the tuples like: <1,2>,

<2,3>, <3,4>, .. and so on) and the function f is defined as

the addition (+) ; i.e., it takes a pair, adds up the left and

right components and returns the result. Suppose the initial

value is given as and the first individual of the sequence

is given as 1. (In some cases we may want to begin with

another individual of the sequence depending on the

application). So the operation to be performed is:

(!§:(R,+)):(0,1)

The operation first adds 1 to and looks up the next

individual of the sequence which is 2. It constructs the

pair (1,2) and applies function f to this pair again. It

takes the result (3) , looks up the next individual of the

sequence which is 3 and constructs the new pair (3,3). It

continues in the same manner until it creates the pair
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(45 reos), where "eos" represents the end of the sequence. At

this point it returns the result (45) .

We define the algorithm of this operation as follows:

1. Get the identifiers of the sequence R (a relation)

and the function f (a relation).

2. Get the argument pair.

3. Apply the function f to the argument pair; take the

individual returned and call it W.

4. Apply the sequence R to the right component of the

pair; take the individual returned and call it Z.

5. If the individual obtained in step 4 is the end-of-

sequence mark, then do step 7. Else construct a pair in

which the right component individual is Z and the left

component individual is W.

6. Go to step 3 with the pair constructed in step 5

being the argument pair.

7. Take the left component of the pair and return it.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As can be sen we perform two function appliction

operations for each individual of the sequence. If the

sequence R and the function f are extensionally represented

relations, then the function application operations on those

relations become constant time operation. So we make a

constant number of memory references for each individual of

205





the sequence. Under this consideration we conclude that the

worst case asymptotical time complexity behaviour of this

algorithm is 0(n), where n is the number of individuals in

the sequence.

Rc:x

In the preprocessing phase many of the converse composite

relations such as (R|c)c, (R&S)c, etc. reduce down to the

primitive converse relations such as Re, Sc, where R and S

are represented extensionally. Hence we have to define the

algorithm for the function application operation which works

on the converse of an extensionally represented relation.

The algorithm is as follows:

1. Hash to the LHT with the argument individual under

the relation identifier in question. Find the record of this

individual and follow the pointer found in the PRRM field of

this record. Find the RHT record of the individual which is

in relation with the argument individual under the relation

in question.

2. Return the individual which is represented by the RHT

record found in step 1.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

It is obvious from the algorithm that we make a constant

number of memory references for doing this operation. So the
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algorithm has the worst case asymptotical time complexity

behaviour of 0(c), as it was in the (R:x) case.

Some converse composite operations can not be reduced to

the primitive operation given above, and should have

specially defined algorithms; those algorithms are given

below:

(R| |S)c:x

The algorithm for this composite relation is as follows:

1. Apply the relation "Re" to the left individual of the

argument individual "x" (which is necessarily a pair), get

the individual returned and save it.

2. Apply the relation "Sc" to the right individual of

"x", get the individual returned and save it.

3. Construct a pair relation out of the individuals

saved in steps 1 and 2; return the pointer to the record of

this pair relation which has been established in the relation

table.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

If the relations R and S are extensionally represented

relations, we make a constant number of memory references in

steps 1 and 2. In addition we know that we construct a pair

relation by making the constant number of memory references.

So in the above algorithm we make a constant number of memory

references in order to obtain an individual as a result.

207





Under the above consideration we conclude that the algorithm

has the worst case asymptotical time complexity behaviour of

0(c) .

(R#S)c:x

This algorithm is more expensive than the algorithm for

the (R| |S)c:x, because the intersection of the set of

individuals that are in relation with the left individual of

the argument "x" (which is necessarily a pair) under the

relation R, and the set of individuals in relation with the

right individual of the argument "x" under the relation S

should contain at least one individual which is to be

returned as a result. So in this case we have to execute the

"Unit image" operation on the left individual and on the

right individual of the argument individual (pair) "x". The

algorithm is as follows:

1. Force the composite set:

(unimg' :R: (lef t (x) ) ) and (unimg ' :S: (right (x) ) )

once and return the resulting individual.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Assume the relation R and the relation S are

extensionally represented relations. Because in the worst

case (when the unimg' :R:lef t (x) and the unimg' :S:right(x) are

disjoint) we produce all the individuals of the composite

sets, each unimg' operation being exhaustively forced makes a
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number of memory references proportional to the cardinality

of the RIM set of the relation in question (i.e., R or S)

.

In defining the algorithms related with each case of function

"Force " we have shown that the above expression (composite

set) could be executed in linear time, because of the way we

define the algorithm for the "Set intersection" operation.

So the above algorithm also has the worst case asymptotical

time complexity behaviour of 0(n) where "n" is the maximum of

the RIM set cardinalities of the relations R and S.

(non:R)c:x

The algorithm for this case is as follows:

1. Force the composite set:

((rim:R) - (unimg

'

:R:x) )

once; get the individual returned and return it.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case the set (rim:R) becomes exactly equal

to the set (unimg' :R:x) , in this case we have to produce all

the individuals of the set (rim:R) in addition to the

individuals of the set (unimg* :R:x) . So we can write the

complexity function of this algorithm as follows:

f = K*n + L*n + C

where:

K The constant number of memory references made for

obtaining each individual of the set (rim:R)

.

209





L = The constant number of memory references made for

obtaining each individual of the set, (unirag ' :R:x)

.

C = The constant number of overhead memory references.

n The cardinality of the RIM set of the relation R.

By looking at the above function we conclude that the worst

case asymptotical time complexity behaviour of this algorithm

is 0(n), where "n" is the cardinality of the RIM set of the

relation.

The change in the time complexity behaviour of some

algorithms in the case the relations are restricted to be

injective will be inspected next.

If we restrict the operand relations of some composite

relations to be the injective relations, the function

application operation makes a constant number of memory

references while working on those composite relations.

Function application algorithms on those composite

relations are as follows:

(R&S) :x

1. Apply R to the "x", save the individual returned.

2. Apply S to the "x", save the individual returned.

3. Compare the individuals saved in steps 1 and 2; if

they are the same, return this individual; otherwise call the

error routine.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.
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As we know the function application operation on the

extensionally represented relations has a constant time

behaviour so in steps 1 and 2 we make a constant number of

memory references. Because step 3 does only one comparison we

conclude that the worst case asymptotical time complexity

behaviour of this algorithm is 0(c). Note that this is true

in the case the relations R and S are extensionally

represented relations.

(R-S) :x

1. Do steps 1 and 2 of the algorithm defined for the

composite relation (R&S) above.

2. Compare the individuals saved; if they are not the

same, return the individual obtained by applying the relation

R to the argument individual "x"; otherwise call the error

routine.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The algorithm has the same asymptotical time complexity

behaviour as the algorithm defined for the composite relation

(R&S), because the same argument applies.

P. ALTERNATIVE METHOD FOR GENERATING INDIVIDUALS OF

COMPOSITE SETS

In defining the algorithms for the cases of the force

primitive we used the unimg: operation as a primitive

operation. When the unimg: operation works on an
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extensionally represented relation, we know that the

algorithm for the unimg: operation has linear time complexity

behaviour. On the other hand, if the relation is a complex

compound relation, this primitive operation may cost us more.

For example, the unimg: operation on the compound relation RS

(where R and S are extensionally represented relations) has a

worst case asymptotical time complexity behaviour of 0(n 2
).

We defined the algorithms of the cases of the force primitive

for the operator pairs that must be specially treated and we

had a total of 27 algorithms.

In defining the alternative algorithms for the cases of

the force primitive we will define an algorithm for each

operator rather than each operator pair. This may seem to

the reader more efficient than our previous method and the

reader may naturally think that by using this method we will

reduce the number of cases that we have to define algorithms

for, but this is not true in our case. In defining the

algorithms for our interpreter, we mentioned the concept of

generalization, and we defined our algorithms in terms of

five primitive operations. It turned out that we could

reduce some compound sets to the other kinds of compound sets

in the preprocessing phase. Hence we could express some

composite sets which are constructed by using a relational

operation in terms of the other composite sets that are

constructed by using one or more of the five primitive
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relational operations. So we did not have to include the

algorithms for the operator pairs involving that kind of

relational operators that is reducible in the preprocessing

phase. This allowed us to reduce the number of cases of the

"Force" primitive to 27.

In the second method we produce the tuples of the

compound relations and do the primitive operations on these

tuples by defining an algorithm for each operator that

constructs a compound relation and by defining an algorithm

for each primitive operator (i.e./ !:, unimg:, lem:, rim:)

which yields a compound set when combined with a compound

relation. Because any operand relation in a compound

relation may be another compound relation, we have to define

an algorithm for each of the operators which constructs a

compound relation and which was reducible in the

preprocessing phase (in the case of the previous method

used). In addition some of the cases of the "Force"

primitive has to be included in the cases defined for the new

method, so we will have totally 36 algorithms for the 36

cases defined for the new method instead of 27 cases defined

for the previous method. The first question we have to ask

ourselves is: What are the efficiencies associated with the

new method that motivate us to investigate it? The important

efficiency of the new method is no matter how complex a

composite set is, the operation producing the individuals of
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this set has the worst case asymptotical time complexity

behaviour of 0(n 2 ). We will make this fact clear in defining

the algorithms for the operators. In our previous method,

depending on the cost of unimg: operation on the compound

relation in question, the cost of an algorithm defined for a

case of the "Force" primitive can increase arbitrarily, but

in this case the asymptotical time complexity behaviour of an

algorithm is fixed. On the other hand all of the algorithms

defined for the new method have the worst case asymptotical

time complexity behaviour of 0(n 2
), while we had some 0(n)

algorithms with previous methods, note that these algorithms

have a linear time complexity behaviour in the case the

operand relations of the compound sets are represented

extensionally. Again the cost of these algorithms may

increase arbitrarily depending on the kind of compound

relations and the cost of the unimg: operation on those

compound relations.

In our new method we will define a new primitive

function, namely "Force 2", which works exactly the same as

the "Force" primitive. The distinction is, it produces the

tuples of the compound relations instead of the individuals

of compound sets. The state saving mechanism works almost in

the same way as we defined for the "Force" primitive, but in

this case we have two pointers to be saved instead of one.

Each case of this primitive corresponds to a relational
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operation that constructs a compound relation out of the

operand relations. The "Force 2" primitive is forced with a

compound relation being the argument. Then the appropriate

case of the "Force 2" primitive is invoked and the algorithm

defined for this case divides this compound relation into

simpler compound relations and calls the "Force 2" primitive

recursively with each of the compound relations created being

the argument (i.e., it calls the "Force 2" primitive with

only one compound relation at a time). This process

continues until an extensionally represented relation is

forced, in which case the algorithm below applies:

1. Hash into the relation table with the relation

identifier; find the record of the relation.

2. Follow the pointers found in the PFLM and PFRM fields

of this record and find the records of the first left member

and the first right member.

3. Put the pointer to the first left member's record

into the left field of the record structure to be returned

and put the pointer to the first right member's record into

the right field of the record structure to be returned.

(* The tuples are returned to the higher levels by using the

record structure shown in Figure 16. *)
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Figure 16. The conveying record structure.

4. Take the next integer from the global count

associated with the high level compound relation, advance the

pointer which is currently pointing at the first right

member's record to the next record of the RIM set/ and put

this pointer into the right field of the record {which has

the above structure) which will be saved in the hash table

associated with the "Force 2" primitive. Put the pointer

pointing at the current LEM set record into the left field of

this record. Hash to the hash table which we will call MHASH

2, with the integer obtained above being the identifier, and

save the above record in this hash table under this

identifier. (* The high level compound relation mentioned

above is analogous to the high level compound set that we

defined in the "Force" primitive case. *)

5. If a subsequent force is addressed to this relation

associated with the same high level compound relation, take

the next integer from the global count associated with this

high level compound relation (which should be the same as the

integer found in step 4), hash to the MHASH 2 table with this
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integer as the identifier and return the record found under

this identifier. Decrement the global count and repeat step

4.

6. If in any force operation the pointer proceeding in

the RIM set of the relation reaches the end of the RIM set

and can not proceed further, reset this pointer to the

beginning of the RIM set and advance the pointer pointing at

the current record in the LEM set to the next record of the

LEM set. If the LEM set is also exhausted, return "nil" to

the caller (which is the function Force 2 itself) and save

O's in the left and right fields of the record associated

with this level instead of pointers.

Hence the case associated with the extensionally

represented relations returns the tuples of the relation in

question, one at a time as "Force 2" is forced repeatedly

with the same relation identifier as the argument. If a

tuple does meet the conditions imposed by the cases that are

involved in the path of recursion, it is returned by the

"Force 2" primitive as a tuple of the high level compound

relation.

Now we will define the algorithms for the cases of the

"Force 2" primitive. In these algorithms we will refer to

the membership test algorithms that have not been defined

yet. We will define those algorithms later. Those

algorithms will be associated with the operators that
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construct compound relations. The membership test operations

on relations are done in exactly the same way that we

explained in the compound sets case; i.e./ given a relation

and a tuple to be tested, the algorithms defined for the

operators divide the membership test task into simpler

membership test tasks by calling each other until the

membership test/tests can be done on an extensionally

represented relation, as we described in chapter 1. The

membership test can be done in constant time on an

extensionally represented relation. Because many of the

membership test algorithms divide the membership test task

into simpler membership test tasks in constant time, no

matter how complex the initial compound relation is, the

membership test operation can be done in constant time on

most of the compound relations. We will explain some

algorithms as if "Force 2" is being forced repeatedly but for

others we will specify the action for only one force

operation, in order to make the algorithms clear to the

reader

.

R&S:

The algorithm for this case can be defined as follows:

1. Force the relation R, get the tuple returned.

2. Test if this tuple in relation S; if so return this

tuple, else go to step 1.
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Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We know that in the worst case a relation may have at

most (n 2 ) tuples when "n n is the common cardinality of the

domain and codoraain of the relation. So producing all the

tuples of a relation requires at least a number of memory

references proportional to the square of n, independent of

the underlying representation technique. So, because the

above algorithm produces all the tuples of one of the operand

relations (possibly a compound relation) it requires (at

least) a number of memory references proportional to the

square of "n".

Now suppose R is a compound relation. If we can produce

the tuples of this compound relation in 0(n 2
) time, we would

not care about whether R is a compound relation or an

extensionally represented primitive relation in deciding the

asymptotical time complexity of R&S, because in either case

we are producing the tuples in 0(n 2
) time. Let's suppose

that R is defined as T&D, where T and D are compound

relations. If we can produce the tuples of T in 0(n 2
) time,

we would not care about whether T is an extensionally

represented relation or a compound relation. So if we can

produce the tuples of each kind of compound relations (i.e.,

R-S, R&S, R#S, and so on) in 0(n 2
) time, no matter how

complex the initial compound relation is, we can produce its

219





tuples by making a number of memory references proportional

to the square of "n". Of course after a certain number of

nesting levels and in some instances, the value corresponding

to the constant multiple of the square of "n" may be much

larger than the value of the cube of "n", but the

asymptotical time complexity behaviour of the operation on

the initial compound set, is still 0(n 2
).

In deciding about the asymptotical time complexity of the

above algorithm we assumed that the membership test operation

(in step 2) can be done in constant time, but this is not

always true. In these algorithms we will continue to assume

the membership test operation as a constant time operation.

There are some compound relations for which we can not define

0(n 2
) algorithms for producing their individuals, such as

fan:R and san:R. We will discuss the effects of these

drawbacks later.

r|s

The algorithm for this case can be defined as follows:

1. Force the relation R, get the tuple returned.

2. Test if this tuple is in relation S. If so go to

step 1 else return this tuple.

3. After no more tuple remains to be returned from the

relation R as a result of the repeated force operations,

force the relation S, and return the tuples of S one at a

time as the compound relation RJS is forced.
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Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The same time complexity analysis that we have done in

the compound relation R&S case applies to this compound

relation also.

R-S

The algorithm for this case can be defined as follows:

1. Force the relation R, get the tuple returned.

2. Test if this tuple in relation S; if so go to step 1

else return this tuple.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The same time complexity analysis that we have done in

the compound relation R&S case applies to this compound

relation also.

R||S

The algorithm for this case is a very expensive

algorithm. We will only explain how expensive it is and why

it is expensive.

Producing all tuples of this compound relation implies

producing all individuals of the Right Members set. As we

know, the Right Members Set of the compound relation R||S is

equal to the cartesian product of the RIM set of R and The

RIM set of S. As we explained before, obtaining the

individuals of a composite set (in the new system) requires a
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number of memory references proportional to the square of n,

where n is assumed to be the common cardinality of the domain

and codoraain of the relation in question. So we obtain the

individuals of rim:R in O(n^) time and for each individual

obtained we produce all the individuals of rim:S in 0(n 2
)

time. So assuming the cardinalities of the RIM sets and LEM

sets of the relations R and S are equal to n we conclude that

we produce the individuals of rim:(R||S) by making the number

of memory references proportional to (n*). in this algorithm

we create a pair relation out of each pair of individuals

obtained in the manner explained above (by producing the

individuals of rim:R and rim:S). We apply the relation R to

the right component of this individual (which is a pair) and

we apply relation S to the right component of this

individual, then we pair the resulting individuals up. Note

that this function application operation may cost us 0(n)

time which may make the algorithm's time complexity behaviour

0(n 5 ).

(R#S)

The algorithm for this case can be defined as follows:

1. Force the rim:R, get the individual returned.

2. Apply the relation R and relation S to this

individual, pair the resulting individuals up (i.e.,

establish a record for pairs in the relation table) , and put

the pointer to the record of this pair in the left field of
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the record to be returned. In the same manner, establish the

pointer (in the right field of the record to be returned) to

the memory location where the individual obtained in step 1

is saved.

3. Return the record (tuple) obtained in step 2 to the

caller

.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As we stated before, in most of the cases, we can obtain

the individuals of the RIM set of a relation in 0(n 2
) time.

In the above algorithm, for each individual we obtained, we

call the function application algorithm two times. As we

know, most of the function application algorithms have linear

time complexity behaviour. Assuming the function application

algorithms (in this case) have a linear time complexity

behaviour and the cardinality of the rim:R, iem:R and lem:S

are each equal to n, we conclude that the algorithm has the

asymptotical time complexity behaviour of 0(n 3
). Note that

some of our function application algorithms have used the

unimg: operation on compound relations. That means this

algorithm will have quadratic behaviour in the new system, so

in the worst case we call a quadratic algorithm for each

individual of the rim:R obtained. So the worst case

asymptotical time complexity behaviour of the algorithm is

in fact O(n^), which is again an expensive algorithm.
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Re

The algorithm for this case can be defined as follows:

1. Force the relation R, get the tuple returned.

2. Switch the components of this tuple and return the

resulting tuple. (* That means put the pointer to the right

component of the tuple (which belongs to R) into the left

field and left component of the tuple into the right field of

the record to be returned. *)

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As we can see, the algorithm does not do more than two

assignments, so it has the worst case asymptotical time

complexity behaviour of 0(c).

RS

The algorithm for this case can be defined as follows:

1. Force the relation S, get the tuple returned.

2. Apply the relation R to the left component of this

tuple, take the resulting individual.

3. Put the pointer to this individual (actually the

memory location where this individual is saved) in the left

field and the pointer to the right component (individual) of

the tuple obtained in step 1 into the right field of the

record to be returned.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.
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As we know, if the above algorithm is forced repeatedly,

step 1 costs us a number of memory references proportional to

the square of n, where n is assumed to be the common

cardinality of the rim:S and lem:S. For each tuple obtained

in step 1, we call the functional application algorithm.

Assuming the function application algorithm has the linear

time complexity behaviour and the lem:R has the cardinality

n, we conclude that the algorithm has the time complexity

behaviour of 0(n 3 ). If the function application algorithm in

question has the constant time complexity behaviour, the

algorithm would have the time complexity behaviour of 0(n 2
).

Note that in our new system, the function application

algorithms using the unimg: operation on compound relations,

will automatically have quadratic behaviour. This in fact

causes the worst case asymptotical time complexity behaviour

of this algorithm to be 0(n 4 ).

Now we will define the algorithms that will continue

to be maintained in our Force primitive and are associated

with our five basic operations,

unimg :R:x

The algorithm for this case can be defined as follows:

1. Force the Force 2 primitive with relation R being the

argument; get the tuple returned.
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2. If the right component of this tuple is equal to the

individual x, take the left component of this tuple and

return it.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As can be seen the algorithm makes a comparison (taking a

constant number of memory references) for each tuple obtained

and we know that the tuples of a relation are produced by

making a number of memory references proportional to at least

the square of n, where n is assumed to be the common

cardinality of the rim:R and lem:R. So the time complexity

behaviour of the algorithm is at least 0(n 2
).

R! :C

The algorithm for this case can be defined as follows:

1. Take the next integer from the global count.

2. Force the set C repeatedly. For each individual

obtained in this manner, hash to the LHT using this

individual with the integer obtained in step 1 as the

relation identifier. Establish the record of this individual

in the LHT. Link the records created in this manner to each

other as they are created.

3. Force the relation R repeatedly. For each tuple

obtained, extract the right component individual and hash

with this individual into the LHT using the integer obtained

in step 1 as the relation identifier. If there exists a
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record for this individual in the LHT, do step 4; else force

the relation R in order to obtain the next tuple.

4. Extract the left component individual of the current

tuple, hash with this individual into the RHT with the

integer obtained in step 1 as the relation identifier, and

establish the record of this individual in the RHT under this

relation identifier if there is no record for this individual

in the RHT. Link the records created in this manner to each

other as they are created.

5. After no more tuples remain to be produced in the

relation R, return the first individual of the set

constructed in the RHT (in step 4). In the repeated force

operations, return the individuals of this set one at a time.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We can write the time complexity function of this

algorithm as follows:

f = K*(n 2
) + L*(n 2

) + M*n + C

where:

K - The constant number of memory references made in each

iteration of step 2.

L - The constant number of memory references made in

order to obtain each tuple of the relation R in step

3.
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M The constant number of memory references made in step

5 in order to return each individual of the set

obtained (in step 4)

.

C The constant number of memory references made by the

remaining steps.

n The common cardinality (assumed) of the LEM and RIM

sets of all relations involved. (If the compound set

C is defined in terms of relations and relational

operations, the LEM and RIM set cardinalities of

these relations are also equal to n)

.

In the above algorithm we assumed that the individuals of the

argument set C are producible by making a number of memory

references proportional to the square of n. Because the

argument set C may be a compound set, we choose the typical

complexity behaviour of the operation producing the

individuals of C as 0(n 2
). In the above complexity function,

the first term corresponds to step 2, the second term

corresponds to step 3, the third term corresponds to step 5

and the last term corresponds to the remaining steps. As we

can see, the algorithm produces the resulting set in the RHT

when it is forced for the first time, and in step 5 we are

returning the individuals of an extensionally represented set

one at a time, so the term corresponding to step 5 has linear

behaviour. We determine the asymptotical time complexity

behaviour of this algorithm by looking at the term of the
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complexity function which has the highest exponent; hence we

get 0(n 2 ). If it turned out that we produce the individuals

of the set C or the tuples of the relation R in time

proportional to (n-*) , the algorithm automatically becomes an

O(n^) algorithm.

lem:R

The algorithm for this case can be defined as follows:

1. Force the relation R, get the tuple returned.

2. Take the left component individual of the tuple and

return it.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The asymptotical time complexity behaviour of this

algorithm is the same as the asymptotical time complexity

behaviour of the operation which produces the tuples of the

relation R; i.e., if we are producing the tuples of the

compound relation R in time proportional to the square of n,

the time complexity behaviour of this algorithm becomes

0(n 2
) .

rim:R

The algorithm for this case is very similar to the

algorithm for the lem:R; the only difference is we take the

right component individual instead of the left component

individual in step 2.
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G. ADDITIONAL MEMBERSHIP TEST ALGORITHMS FOR THE ALTERNATIVE

METHOD

In this section we will define the algorithms for the

membership test corresponding to the relational operators

that construct compound relations. Because a relation can be

viewed as a set of tuples and the tuples can be viewed as the

members of this set, we will continue to use the term

"membership test".

R&S

The algorithm for this case can be defined as follows:

1. Test if the given tuple is in relation R; if so do

step 2 else return false.

2. Test if the given tuple is in relation S; if so

return true else return false.

Now we will do the worst case asymptotical time

complexity analysis of this alogrithm.

If we assume the relations R and S are extensionally

represented relations, then step 1 costs us a constant number

of memory references, and similarly for the second step. So

in this case the algorithm has the worst case asymptotical

time complexity behaviour of 0(c). Now suppose the relation

R is a compound relation defined as T&H, where T and H are

extensionally represented relations. Since the membership

test operation on this compound set also requires the

constant number of memory references to be made, we can view
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T&H as an extensionally represented relation for just this

purpose. So if we can define a constant time algorithm for

each kind of compound relation (i.e., R&S, R-S, Re, R|S,

etc.) no matter how complex the initial compound relation is

we can do the membership test in constant time. But not all

kinds of compound relations can be associated with constant

time membership test algorithms; we will discuss the effects

of this inefficiency later.

r|s

The algorithm for this case can be defined as follows:

1. Test if the given tuple is in relation R; if so

return true, else do step 2.

2. Test if the given tuple is in relation S; if so

return true.

Now we will do the worst case asymptotical time

complexity analysis of this alogrithm.

The argument that we have done in the compound relation

R&S case applies to this compound relation also; i.e., the

algorithm has the asymptotical time complexity behaviour of

0(c) .

R-S

The algorithm for this case can be defined as follows:

1. Test if the given tuple is in relation R; if so do

step 2, else return false.
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2. Test if the given tuple is in relation S; if so

return false, else return true.

Now we will do the worst case asymptotical time

complexity analysis of this alogrithm.

The argument that we have done in the compound relation

R&S case applies to this compound relation also; i.e., the

algorithm has the asymptotical time complexity behaviour of

0(c).

Re

We can define this algorithm as follows:

1. Switch the component individuals of the given tuple,

test if the resulting tuple is in relation R; if so return

true else return false.

Now we will do the worst case asymptotical time

complexity analysis of this alogrithm.

The argument that we have done in the compound relation

R&S case applies to this compound relation also; i.e., the

algorithm has the asymptotical time complexity behaviour of

0(c).

non:R

We can define this algorithm as follows:

1. Test if the given tuple is in relation R; if so

return false else return true.

Now we will do the worst case asymptotical time

complexity analysis of this alogrithm.
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The time complexity behaviour of the algorithm is the

same as the time complexity behaviour of the algorithms given

above and the same argument applies.

r| |s

The algorithm for this case can be defined as follows:

Let the given tuple be <(a,c), (b,g)> where (a,c) and

(b,g) are pairs (individuals).

1. Test if the tuple <a,b> is in relation R? if so do

step 2 else return false.

2. Test if the tuple <c,g> is in relation S; if so

return true else return false.

Now we will do the worst case asymptotical time

complexity analysis of this alogrithm.

As can be seen the algorithm makes two membership tests.

If both membership test operations have the constant time

asymptotical time complexity behaviour then the algorithm has

the asymptotical time complexity behavior of 0(c). If any

one of the membership test operations has a time complexity

function which dominates the constant function, then the

algorithm has the same asymptotical time complexity behaviour

as the time complexity behaviour of this operation.

R#S

We can define this algorithm as follows:

Let the given tuple be <(a,c),b> where (a,c) is a pair

(individual)

.
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1. Test if the tuple <a,b> is in the relation R? if so

do step 2 else return false.

2. Test if the tuple <c,b> is in the relation S; if so

return true.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The algorithm has the same asymptotical time complexity

behaviour as the asymptotical time complexity behaviour of

the algorithm defined for R
|

] S.

RS

In this algorithm we have to use the unimg 1

: operation in

order to determine if the given tuple is in the relation RS,

because the left component of the given tuple should be a

member of the LEM set of the relation R and the right

component of the tuple should be the member of the RIM set of

the relation S. Hence we can not easily determine if the

given tuple is in the relation RS, especially in case the

relation R and S are themselves compound relations. The

algorithm is as follows:

1. Test if the right component individual of the given

tuple is in the rim:S; if so do step 2 else return false.

2. Force the composite set unimg:R:x repeatedly, store

the individuals of this set in the RHT as it has been done

before in previous algorithms.
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3. Force the unimg':R:y repeatedly where y is the left

component individual of the given tuple. For each individual

produced, test if this individual in the set established in

the RHT above; if so return true, else continue testing the

next individual of the unimg*:R:y.

4. If neither of the individuals of the unimg':R:y is in

the set established in the RHT, return false.

Now we will do the worst case asymptotical time

complexity analysis of this alogrithm.

As can be seen the algorithm is an expensive algorithm

relative to the other membership test algorithms. We know

that producing the individuals of the unimg:R:x and the

unimg':R:y both requires a number of memory references

proportional to the square of n, where n is assumed to be the

common cardinality of the LEM and the RIM sets of the

relation R. So the algorithm has to make at least (n 2
)

memory references. We conclude that the algorithm has the

asymptotical time complexity behaviour of 0(n 2
). Of course,

if the complexity of the operations unimg:R:x and unimg':R:y

were higher, the complexity of this algorithm would increase.

The membership test algorithms on the compound relations

fan:R and san:R are much more costly than the above

algorithm; hence we will construct the extensional

representation structure (in less time) for these compound

relations in order to be able to do the membership test. If
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we also construct the extensional representation structure

for the compound relation RS whenever a reference to this

compound relation occurs for the first time, we can assert

that: Given that the compound relations fan:R, san:R and RS

are represented extensionally, no matter how complex the high

level compound relation is, the membership test on this

compound relation can be done in constant time.

H. COMPARISON OF THE TWO METHODS

We stated that, in the first method, the algorithms may

get arbitrarily expensive depending on the complexity of the

compound relation or set in question. On the other hand, in

the second method, if we construct the extensional

representation for the kind of compound relations which are

associated with the expensive production (Force 2 cases) or

membership algorithms, we can do the operations in O(n^) time

independent of the complexity of the compound relation or

compound set in question. Let's now assume that we did not

construct the extensional representations for compound

relations, R#S, R||S, fan:R and san:R, and let's assume the

relations R and S are represented extensionally. In this

case the operation (R#S)!:C has the asymptotical time

complexity behaviour of 0(n) by using the first method and if

we use the second method it has the asymptotical time

complexity behaviour of 0(n 4 ). The Table 1 shows the

differences in asymptotical time complexity between the two
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Table 1. The asymptotical time complexity behaviour of
various algorithms under method 1 and method 2.

METHOD 1 METHOD 2

R! :C | 0(n 2
) 0(n 2

)

(R-S) ! :C | 0(n3) 0(n 2
)

(R#S)!:C
|

0(n) 0(n 4
)

(R||S)!:C
1

0(n) 0(n 4
)

(RS) I :C | 0(n 2
) 0(n 4

)

unimg:R:x 0(n) 0(n 2
)

unirag:RS:x 0(n) 0(n 4
)

lem:R 0(n) 0(n 2
)

lem: (R-S) 0(n 3
) 0(n 2

)

lem: (R#S) 0(n) 0(n 4
)

lem: (R| | S) 0(n 2
) 0(n 4

)

lem : RS 0(n 2
) 0(n 4

)

Rcl :C 0(n 2
) 0(n 2

)

(R#S)c! :C
!

0(n 2
) 0(n 2

)

unimg: (R#S)c
1

0(n 2
) 0(n 4

)

unimg: (r|
|

S)c
I

0(n 2
) 0(n 4

)
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methods. In this table we also show the differences in

asymptotical time complexity in the case when we represent

some of the compound relations extensionally (in the second

method)

.

We should not consider the second method more efficient

than the first method because when we produce the individuals

of a compound set by making no less than (n 2
) memory

references, our function application algorithms and set

membership test algorithms become automatically 0(n 2
)

algorithms, while they were 0(n) algorithms in the case

method 1 was used. Again we can not forget that those linear

function application and set membership test algorithms exist

in the case the operand relations of the compound relations

are represented extensionally. The cost of those algorithms

may go up depending on the complexity of compound relation or

set in question. Note that we can reduce the overall

complexity of the operations in the first method by

representing some kind of compound relations, like R-S, RS,

fan:R, etc. extensionally like we have done in the second

method. As a criterion we can say that, if the nesting

levels in our compound relations do not exceed 1 or 2, the

first method should be used; otherwise the second method is

more appropriate.
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I. THE WAY THE SYSTEM HANDLES THE RESTRICTION OPERATIONS

The restriction operations, "Right restriction", "Left

restriction", and the "Restriction", are handled by the

system in a special manner. The operations that we defined

before are done in exactly the same manner as defined on the

restricted relations also, but any individual obtained from

the LEM set of a left restricted or restricted relation is

tested for membership in the set to which the LEM set of the

relation is restricted. In the same manner any individual

obtained from the RIM set of a right restricted or restricted

relation is tested for membership in the set to which the RIM

set of this relation is restricted. Hence the system treats

the restriction operations as general operations.

This feature of the system can be implemented by defining

a seperate routine which is given a set (possibly a composite

set represented in character string form) and an individual

drives the appropriate routines defined for the membership

test in order to test the membership of this individual in

the given set. This routine can be called by any operation

that has just obtained an individual from the LEM or RIM set

of a left restricted and/or right restricted relation, so

this operation waits for positive response from this routine

and upon getting the positive response (true), the operation

may do whatever it intended to do with the individual in

question.
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So as a result, if the system is implemented, this

feature should be integrated with each algorithm which we

defined earlier, whenever it is applicable.
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IV. THE PURE INTENSIONAL REPRESENTATION SYSTEM

We defined the primitive relations as the relations

defined by the user, which may be represented either

extensionally or intensionally. In the same manner we

defined the primitive sets as the sets defined by the user,

which may be represented either extensionally or

intensionally. The system we defined assumed that the

primitive relations and sets are represented extensionally.

Now we will think about how the system can be adapted to the

case in which the primitive relations and sets are

represented intensionally; in other words when we have an

expression representing a primitive relation or a set rather

than a data structure.

In defining the algorithms for our system, we focused on

three main groups of algorithms, namely:

1. The algorithms for the production of the individuals

of the intensionally represented composite sets.

2. The algorithms that do the membership test on the

intensionally represented composite sets.

3. The algorithms for the function application operation

on each kind of intensionally represented composite relation.
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We will focus on these three groups of algorithms in the case

the primitive relations and sets are represented

intensionally.

In defining the mechanism for the production of the

individuals of the intensionally represented composite sets,

we designate five basic operations and we reduce the

operations on those composite sets to these five basic

operations on the extensionally represented relations. So

if we can define these operations on the intensionally

represented primitive relations we can adapt our individual

production mechanism to the case in which the primitive

relations are represented intensionally. Because the system

does not pay attention to the way the primitive relations are

represented until one of the five basic operations is done on

the primitive relation, we can adapt the system to this case

by only defining the algorithms for the five basic operations

on the intensionally represented primitive relations. But

this is not as easy as it seems at first glance; first of all

if a relation is not a function, we can not easily define the

code which represents this relation. On the other hand if we

restrict our relations to the functions, three of the five

basic operations, Unit image, Unit coimage, Image, become

undefined and the remaining operations, Left members and

Right members, are hard to define on the intensionally

represented relation because in some cases the domain of a
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relation may be an infinite set. Producing the individuals

of this set brings the question, "How many of the individuals

will be produced?" and having the user declare the interval

of input values (domain individuals) for his function is not

logical and has not been done in any language. So the

mechanism for the production of the individuals of the

composite sets when the primitive relations are represented

intensionally, is hard to define and even if it is defined it

brings many undesirable restrictions to the user.

In defining the above system we could be able to define

less costly algorithms for membership tests on some kind of

composite sets, but for some of them we had to do the

membership test in a produce and test fashion. Hence there

is no point in defining the whole mechanism for our new case

by knowing the fact that we will not be able to define

algorithms for some composite sets. So the mechanism for

membership test is not a well defined mechanism when the

primitive relations are intensionally represented. The prime

reason which causes that is the "Image" operation which

requires the argument set individuals explicitly in order to

accomplish its job. We know that the mechanism for the

production of the individuals of the intensionally

represented composite sets is not a well defined mechanism in

the case the primitive relations and sets are represented

intensionally.
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The algorithms that fall into the last category are well

defined in the case the primitive relations are represented

intensionally, but these relations should be restricted to be

the functions. So in that mechanism, the user can define his

functions in advance by using a high level language and by

compiling them, then he may introduce those routines into our

system by linking them to the system. During this linking

operation, the records of those relations (functions) are

established in the relation table with the user defined

identifiers being the relation identifiers and pointers to

the related codes are established in the PCOLS fields of

those records. So whenever the function application

operation is to be performed on an intensionally represented

primitive relation (user defined function), the system finds

the record of this relation; extracts the pointer to the code

from the PCOLS field of this relation's record and calls the

function with the argument individual.

So we have seen that the structure of the system allows

the user to define functions and embed them in the system,

but it does not allow the user to use his/her functions in

defining the composite sets. As an example, suppose the user

defined a function called, "+", which is given an integer

returns the successor of this integer. He may use this

function in any expression as long as the operation to be

done on this relation is function application.
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V. CONCLUSIONS

In this thesis we tried to find out efficient ways to

represent binary relations that make the algorithms of the

relational operations efficient in time. We did this by

inspecting the worst case asymptotical time complexity

behaviour of the algorithms.

The first representation techniques that we inspected

were the extensional representation techniques. Among them

we selected the Incidence Matrix representation and used it

in combination with hash tables; we called the resulting

representation technique the Hash-Incidence-Vector

representation. This representation technique enabled us to

create efficient algorithms relative to the algorithms

defined for the Table representation. We have observed that

among the 25 relational operation algorithms defined for the

Hash-Incidence-Vector representation, two are constant time

algorithms, twelve are 0(n) time algorithms, seven are 0(n 2
)

time algorithms, three are 0(n 3
) algorithms and one is 0(n 4

)

algorithm. Among the 0(n 2
) time algorithms, only three have

been observed to be very expensive because their time

complexity functions had large constants in front of the

second degree terms. The other 0(n 2
) time algorithms have
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been observed to be cheaper, because the constants in front

of the second degree terms of their complexity functions are

less than 1.

As a result, the operations, Relation Intersection,

Relation Difference, Relation Union, Relation Composition

(Relative Product), Parallel Application, First Ancestral and

Second Ancestral, have been found to be expensive operations.

Among them, Relation Intersection, Relation Difference,

Relation Union and Parallel application operations can be

associated with constant time and 0(n) time algorithms in the

case the intensional representation techniques used. The

algorithms for the Relative Product, First Ancestral, and

Second Ancestral operations, have O(n^) worst case

asymptotical time complexity behaviour. However, in their

time complexity functions the constants in front of the third

degree terms are less than 1, which makes these algorithms

executable for small n's (100-200).

As can be seen, most of the algorithms have a worst case

asymptotical time complexity behaviour of 0(n). Why couldn't

we define more efficient algorithms? The first reason is

most of the operations must examine all of the individuals of

the sets involved. The second reason is we want to save the

original relations and sets while constructing new relations

and sets out of the original relations and sets. This

requires extensive copying operations and causes most of the
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algorithms to have a worst case asymptotical time complexity

behaviour of 0(n).

In the intensional representations case, we observed that

the algorithms become expensive in time but that we save a

lot of space by not constructing the extensional

representation structures for the intermediate sets and

relations in the memory. On the other hand, we have been

able to define cheaper intensional algorithms for some of the

operations that are associated with expensive extensional

algorithms (such as parallel application).

In Chapter IV we have seen that the pure intensional

representation mechanism is not a well defined mechanism but

we are able to include user defined functions if we restrict

the use of those functions to the function application

operation.

So, the extensional representation techniques enable us

to define time efficient algorithms and the intensional

representation techniques enable us to define space efficient

algorithms. For us, using both representation techniques in

combination with each other (rather than firmly selecting one

of them) is necessary. If we are to define a criterion for

establishing this combination, we would use intensional

representation techniques for Relation Intersection, Relation

Union, Relation Difference and Parallel Application

operations. We would use extensional representation
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techniques for Relative Product, First Ancestral and Second

Ancestral operations when they are involved in a composite

set construct; otherwise, we would use intensional

representation techniques for these operations. The above

criterion can be refined by taking into account the available

hardware features. For example, if we have a limited memory

we would use the intensional representation techniques for

most of the operations.

As can be easily seen, it is feasible to implement the

language on conventional architectures. But it would be nice

to have an architecture which supports this language. This

architecture has to have at least these properties:

1. It has to support hash coding.

2. It has to have pipelining, or an equivalent mecha-

nism, which has at least an ORing stage.

3. It has to have a mechanism to speed up copying opera-

tions.

4. It has to support bit string and character string

data types.

As we indicated before, the efficiency of most of our

algorithms increases as the memory word length increases. So

as long as we can fetch more bits for each memory cycle, the

speed of our algorithms increases proportionally. Thus we

must be careful about the word length if we use the Hash-

Incidence-Vector representation.
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We conclude that it is feasible to implement this

language on conventional architectures and that we can make

full use of this powerful language by having more suitable

architectures.
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APPENDIX A

THE EXTENSIONAL ALGORITHMS CONTINUED

Image Operation (R!:x) :

This operation, given a set C, produces the set of

individuals in which each individual is in relation with at

least one individual in the given set C under the relation

that is being applied to the set C. This means the operation

is effectively performing the "Unit Image" operation on each

individual of the given set C, then performing the set union

operation on the resulting sets to obtain the set in which

each individual is in relation with at least one individual

of the set C. We can state this more carefully: Let R be a

relation and C be a set/ then R!:C is the set of all y such

that yRx for some x in C.

The algorithm for Hash-Incidence-Vector representation is

as follows:

1. Get the relation identifier and the set identifier.

2. Hash with the relation identifier to the relation

table and find the record of the relation, follow the

pointers found in the PFLM and in the PFRM fields of that

record and find the records of the first left member and the

first right member respectively.

3. Hash with the set identifier to the set table, find

the record of the set, follow the pointer found in the PSS

field of that record and find the first record of the set
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structure. Start from the beginning of the linked list

structure of the set and proceed down in that structure

record by record. For each record found in this manner hash

with the individual being represented by that record to the

RHT under the given relation identifier. If the RHT record

of that individual is present in the RIM set of the relation,

extract the index of the RHT record that represents that

integer and hash into the RHT with that individual under the

relation identifier:

and establish the RHT record of that integer. Link the

records created in this manner in the RHT by their TASE links

as they are created.

4. Start from the beginning of the LEM set of the

relation, proceed down in the LEM set record by record. For

each record found, extract the index of the record. Put it

in an index register and increment it up to the number:

INDEX + cardinality of the RIM set of the relation

by beginning with 1. For each increment hash into the RHT

with the integer:

CURRENT VALUE - INDEX

under the relation identifier "$$$". If a record for the

resulting integer is found to be in the RHT, call this
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integer J, reference the incidence vector of the relation

with the index

K = J-l

by calling the "Reference" algorithm. If there is a 1 in the

corresponding incidence vector location, hash into the SHT

with the left individual' being represented by the current LEM

set record and establish the record of that individual. Link

the SHT records created in this manner to each other as they

are created. Keep a count and increment that count for each

record created in the SHT by beginning with 0. As soon as a

1 is found for a left individual in the above manner, quit

with that left individual and continue to perform the above

process for the next individual of the LEM set, by following

the TASE link of the current left individual's record and

finding the next individual's LHT record in the linked list

structure of the LEM set of the relation.

5. Start from the beginning of the linked list of

temporary records created in the step 3, (in the RHT)

.

Proceed down in that linked list structure and for each

record found, hash to the RHT with the integer (index) being

represented by that record under the relation identifier

"$$$", and disconnect it from the RHT entry if it is directly

connected to that RHT entry.
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6, Hash to the set table with the set identifier:

(relation identifier) '!:' (argument set identifier)

This means, if the relation being applied has the identifier

R and the argument set identifier is C, hash into the set

table under the set identifier:

R! :C

Establish the record of that set, put the pointer to the

linked list structure established in SHT into the PSS field

of that record. Put the last value of the count into the

CARD field of that record.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case every left individual may be in

relation with only one right individual and the record of

that right individual may be the last record of the

relation's RIM set. In that case, in step 4 we make:

ceiling (n/C)

memory references, where:

C = memory word length.

n The cardinality of the RIM set of the relation.

In addition to that, even though it is unlikely, the argument

set C may be a super set of the RIM set of the relation, so

in step 3 we effectively make a separate copy of the RIM set

of the relation.

253





So under these considerations and by assuming the

cardinalities of the RIM set and the LEM set of the relation

are the same ("n"), we write the worst case time complexity

function of that algorithm as:

f = K*n*ceiling(n/C) + L*n + P*n + D

where:

n - The cardinality of the RIM/LEM set of the relation.

K = The number of memory references made for each left

individual's record found in the step 4.

m = The cardinality of the argument set.

L = The number of memory references made for each set

record found in step 3.

P The number of memory references made for each set

record found in step 5.

and:

First term corresponds to the step 4, second term corresponds

to the step 3, third term corresponds to the step 5, fourth

term corresponds to the other steps of the algorithm. Let

n/C be an integer and K/C V, then the complexity function

becomes

:

f V*(n 2
) + P*n + L*m + D

In this algorithm we significantly reduce the average

case complexity in step 4. That is, as soon as a 1 for a

left individual is found that corresponds to a tuple which

has the right individual from the given set C, we quit with
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that left individual and continue with the next one in the

LEM set. Especially in large relations this may decrease the

complexity of the term:

ceiling (n/C)

by some constant. But in order to do that we had to stand

for some linear terms in the complexity function, and in some

particular cases the strength of one of those linear terms

may dominate the complexity of the first term.

But we are concerned with the worst case asymptotical

time complexity behaviour of that algorithm. By looking at

the exponent of the term with the larger exponent and by

assuming:

L*m < V*(n 2
)

we conclude that the worst case asymptotical time complexity

behaviour of that algorithm is 0(n 2
) .

Now we have to define the algorithm for the table

representation. The algorithm is as follows:

1. Start from the beginning of the linked list structure

of the argument set and proceed down in that linked list

record by record. For each record found in this manner,

search the individual being represented by that record in the

right column of the relation's table by starting from the

beginning of the table and by looking up the right individual

of each record found while proceeding in the table record by

record. Because there is a possibility of a duplication of
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the individuals in the right column, do it exhaustively. For

each record found to have the individual in question as right

individual, hash into the SHT with the left individual of

that record under the new set identifier (described in step 6

of the previous algorithm), and establish the record of that

individual in the SHT if the record of that individual has

not been established in the SHT previously. Link the records

created in this manner to each other by their TASE links as

they are created. Keep a count beginning with and

increment it for each record created in the above manner.

(* Step 2 is called the disconnection operation. *)

2. Do step 6 of the previous algorithm.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As can be seen the algorithm is a costly algorithm; in

fact there are some other ways to do it more efficiently.

One way is to convert the table representation into an

adjacency-list-like representation and establish the table in

the SCHT. As we mentioned in the storage requirements

analysis for large relations, we may use up a large part of

our memory source and, even though it is done temporarily,

that may cause the heap to get too large, etc. In fact the

resulting analysis would be attributed to the adjacency list

representation rather than the table representation if we

would have done that.
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We write the worst case time complexity function of that

algorithm as follows:

f = K*m*p + C

where:

p Relation size/Table size.

In the worst case the relation may be the universal relation,

so by assuming the cardinalities of the LEM set and the RIM

set of the relation are equal to, say, "n", we may replace

the variable "p" with:

n*n

So we rewrite the complexity function as:

F = K*m*(n 2
) + D

where:

m = The cardinality of the argument set (C) .

n The cardinality of the LEM/RIM set of the relation.

K = The constant number of memory references made for

each argument set record found in step 1.

D - The constant number of memory references made by the

housekeeping operations.

Clearly, the first term corresponds to step 1 and the second

term corresponds to the constant number of memory references

made by the housekeeping operations and the number of memory

references made in the step 2. Note that in the worst case

"m" may be greater than or equal to "n". Let's assume the

"i" is a constant multiple of "n" and multiply that constant
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with the constant K for making the behaviour of the algorithm

clear, then the complexity function becomes:

f = K*(n 3
) + C

So we conclude that the worst case asymptotical time

complexity behaviour of that algorithm is 0(n 3
) or worse.

For example if m is equal to the square of n in some

instance, the algorithm behaves like an 0(n 4
) algorithm.

Complement of a relation (non:R)

:

The complement of a relation can be defined as the set of

tuples that belong to the universal relation on the MEM set

of the original relation other than the tuples that are in

the original relation. So the incidence vector of the

complement of a relation is the incidence vector of the

original relation in which all the entries are complemented.

In the hash incidence vector representation case, all we have

to do is complement the incidence vector as a whole to obtain

the complement of the relation in question. But we must not

forget that we want to preserve the original relation for

possible subsequent references, so we need to make a separate

copy of the original relation. The algorithm for Hash-

Incidence-Vector representation is as follows:

1. Make separate copies of the LEM set and the RIM set

of the original relation under the new relation identifier

"non:R"

.
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2. Allocate a block of memory as large as the original

incidence vector.

3. Establish the record of the new relation in the

relation table, furnish its fields as was done in the

previous algorithms.

4. Pipeline the original incidence vector, obtain the

complements of the sequence of bits as they fit into the

accumulator and copy them to the corresponding location in

the new incidence vector.

In this algorithm we assumed the existence of some hardware

help (pipelining) but that does not change the asymptotical

complexity behaviour of that algorithm. Since it only speeds

up the execution by some constant factor, in the absence of

pipelining the resulting asymptotical time complexity would

be the same. The worst case time complexity function of that

algorithm can be written as:

f =*K*n + L*m + T* ( (n*m) /Cl*C2) ) + C

where:

m The cardinality of the LEM set of the original

relation.

n = The cardinality of the RIM set of the original

relation.

The constant K is the number of memory references made while

copying each RIM set record; the constant L is the number of

memory references made while copying each LEM set record; the
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constant T is the number of memory references made while

complementing and copying each bit sequence of the original

incidence vector; the constant Cl is the memory word length;

the constant C2 is the pipelining factor; and the constant C

is the number of memory references made by the housekeeping

operations such as updating the relation table. Let m=n,

Z=K+L and U=T/(Cl*C2); we can rewrite the function as:

f = U*n*n + Z*n + C

Clearly the algorithm has the worst case asymptotical time

complexity behaviour of 0(n 2 ). We can expect some

contribution from pipelining and the speed of the complement

operation. Of course we are not copying n*m memory location

but,

(m*n)/Cl

memory locations.

Now we have to define the algorithm for the table

representation. The complexity and the high cost of that

algorithm should be apparent to the reader at this point.

One relatively efficient way is to use the SCHT mechanism.

The algorithm is as follows:

1. Start from the beginning of the relation's table and

proceed down the table. For each table record found, extract

the right individual, hash to the SCHT with that individual,

and establish its record. Link the right individuals'

records in the SCHT by their TASE links as they are created.
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(* Step 1 effectively creates the RIM set of the relation in

the SCHT *)

2. Perform the disconnection operation on the SCHT.

Mark the beginning of the RIM set of the relation.

3. Start from the beginning of the relation's table and

proceed down in the table, record by record. For each record

found extract the left individual, hash into the SCHT with

that individual, and create a record of that individual (if

there is no record for that individual in the SCHT). Make a

separate copy of the RIM set, and set the TASE link of the

left individual's record created to the copy of the RIM set.

(* In step 3 we have established the universal relation of

the given relation in SCHT, in an adjacency-list-like

representation. *)

4. Start from the beginning of the relation's table and

proceed down in the table record by record. For each record

found extract the left individual and extract the right

individual, hash into the SCHT with the left individual, find

the SCHT record of that individual, search the right

individual's record in the bucket (copy of the RIM set) by

following the TASE links between the records in the bucket,

and delete it from the bucket. (* In step 4 we have

established the complement of the given relation in SCHT, in

an adjacency-list-like representation. *)
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5. Start from the beginning of the relation's table and

proceed down in the table record by record. For each record

found extract the left individual and hash with that

individual into the SCHT. If a record of that individual is

found and the TASE link field of that record does not contain

the value "nil", create a new table record of the new

relation, and copy the PML field of the left individuals

record into the "left" field of the table record created.

Follow the pointer found in the TASE link of the left

individual's SCHT record and find the right individual's

record (the record of the right individual that is in

relation with the left individual in question under the new

relation). Copy the PML field of that record into the

"right" field of the table record created. If there remains

other right individuals' records in the bucket, create a new

table record for each of them and copy the PML field of the

left individual's record into the "left" field and the PML

field of the right individual's record (in turn) into the

"right" field of that record. Link the table records created

in this manner to each other by their "link" fields. Delete

a left individual's record and the bucket of records

connected to it when all the table records that can be

created from them are created. (* Step 5 establishes the

table of the complement of the given relation *)
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Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We have to define what would be the worst case for this

algorithm. In the worst case, the relation may be a

universal relation on its LEM set and RIM set. In that case

the resulting relation is the empty relation. In that case

step 4 of the algorithm becomes very costly. The worst case

time complexity function is given below:

f - K*p + L*n + M* ( (p-m) +m*n) + N*m*n*(n+1) + Q*p + C
2

where:

p - n*m * relation size.

n the cardinality of the RIM set of relation.

m the cardinality of the LEM set of relation.

The first term corresponds to step 1, the second term

corresponds to step 2, the third term corresponds to step 3,

the fourth term corresponds to step 4, and the fifth term

corresponds to step 5 of the algorithm. Constants K, L f M, N

and Q represent the number of memory references made in each

iteration of the corresponding steps. Constant C represents

the number of memory references made by the housekeeping

operations.

The third and fourth terms of the complexity function may

not be clear to the reader, so we will explain how we found

those terras. In step 3 we got through the entire table of

the relation, but we made m separate copies of the RIM set of
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the relation, where m is the number of distinct left

individuals in the left column of the table. Hence we make

(p-m) memory references without making the separate copy of

the RIM set in the SCHT, for continuing to proceed down in

the table. In addition to that we make m memory references

and as a result of each of them we make a separate copy of

the RIM set of the relation which requires n memory

references. Note that even though we say that we make (p-m)

memory references or m memory references, these are not the

actual memory references we make. In fact these are the

iteration factors to be multiplied by the constant number of

memory references made in each iteration, which is

represented as the averaged constant K. In the fourth step

again we get through the table of the relation. Because in

the worst case the size of the table is equal to:

n*m

we make n memory references for each of the distinct m left

individuals. For each of those n memory references we have

to search in the bucket one of the n right individuals, but

after searching and finding one of the right individuals we

delete the record of that individual from the particular

bucket (that belongs to the one of the m left individuals) in

question so the bucket size decreases by 1. A subsequent

search for one of the remaining right individuals has to be

done in a bucket smaller than the first bucket. By assuming
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that in the worst case the bucket is searched to the end and

the record of the right individual in question is always

found as the last record of the bucket, we make:

n, (n-1) , (n-2) , (n-3) , , (n-n+1)

memory references for each distinct left individual (that has

a bucket in SCHT) . We can write the above sequence in a

compact form as:

n

i = n(n+l)

>
i=l

We multiply the iteration factors with the constant number of

memory references made in each interation (which is in this

case "N") to obtain the fourth term.

We accepted the relation size as the product of the

cardinalities of the RIM and the LEM sets. In addition to

that:

Let,

U = N/2

Z=K + Q+M + U

S = L - M

and of course p = n*n; then the complexity function becomes:

f =* U*(n 3
) + Z*(n 2

) + S*n + C

a polynomial of degree 3.
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So we conclude that the worst case asymptotical time

complexity behaviour of this algorithm is 0(n 3 ). So the

complexity function of this algorithm asymptotically

dominates the one we defined for the previous algorithm.

Size Operation (#:C) :

This operation is defined only for sets. We often need

the size or in other words, the cardinality of a set. This

operation provides us with the cardinality of a given set

The algorithm is as follows:

1. Get the identifier of the set.

2. Hash with this identifier to the set table: find the

record of the set.

3. Look up the "size" field of that record. If it is

not negative then return the contents of that field, else do

step 4.

4. Follow the PSS field of the record found in step 2:

find the first set record. Proceed in the set structure by

following the TASE link fields of the set records. Keep a

count which is initialized to and increment it for each

record found above

.

5. After the linked list structure of the set is

exhausted, return the value of the count and also establish

it in the "size" field of the set's record in the set table.

Clearly the algorithm goes through the set structure once

and has the complexity function:
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f = K*n + C

where constant K is the number of memory references made for

each record of the set found, constant C is the number of

memory references made in steps 1, 2, 3 and 5, and variable

"n" is the cardinality of the given set.

So the algorithm has the worst case time complexity

behaviour of 0(n)

.

Pair Operation (, ) x,y (x,y) :

That operation takes two individuals and constructs a

relation that has only one tuple in it. The first argument

individual becomes the left member and the second argument

individual becomes the right member of the unique tuple of

the resulting relation. The algorithms for Hash-Incidence-

Vector representation and table representation are equally

simple.

The algorithm for Hash-Incidence-Vector representation is

given below:

1. Get the argument individuals.

2. Hash to the relation table under the relation

identifier

,

"(first argument individual) '

,

" (second argument individual)"

establish its record in the relation table.

3. Hash to the LHT with the first argument individual

(of course after concatenating it with the above relation

identifier). Establish its LHT record, put 1 into the index
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field of that record, put nil into the TASE field, and put

the pointer to the memory location where the individual is

actually stored into the PML field of that record. Establish

the above relation identifier in the "Rid" field of that

record. Put the pointer to that record into the PFLM field

of the relation's record established in step 2.

4. Repeat step 3 for the second argument on the RHT

(i.e., hash into the RHT instead of LHT)

.

5. Allocate a memory location for the incidence vector;

set first bit from the left to 1 and the others to 0.

6. Put the address of that memory location into the base

field of the relation's record in the relation table.

7. Put 1 into both the "
| RIM |

" and " | LEM |

" fields of the

relation's record.

The complexity function of the algorithm is:

f = Cl

where:

constant "Cl" is the number of memory references made in the

algorithm. The algorithm, under every condition makes Cl

memory references. So the algorithm has the worst (also the

average) case time complexity behaviour of 0(c) .

The algorithm for table representation seems less costly

than this algorithm, but we have to remember that we did not

define the environment in which the table representation is

defined. That algorithm may also be as costly as the
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previous algorithm depending on the environmental

requirements.

The algorithm for table representation is given below:

1. Get the argument individuals.

2. Allocate a table record.

3. Put all into the "link" field of that record.

4. Put the pointer to the memory location where the

first argument individual is saved into the "left" field, and

pointer to the memory location where the second argument

individual is saved into the "right" field of that table

record.

This algorithm, like the previous algorithm, has a

constant complexity function. But the constants are

different. We conclude that both algorithms are cheap

constant time algorithms.

Left Members (lem:R) :

This operation takes a relation identifier and returns

the set of left members of that relation. A left member of a

relation can be defined as the member which occurs on the

left side of at least one tuple of the relation.

In our hash-incidence-vector representation this set is

already available in the LHT as a collection of LHT records

linked to each other by their TASE links. The header of that

structure is the record of the relation in the relation

table. The PFLM field of that record points at the first
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left member of the relation which is the beginning record of

the LEM set structure that we look for.

Even though we have this set readily available we have to

carry it into the SHT in order to make the resulting set

known by the system. We write the algorithm for this

operation as follows:

1. Hash into the relation table with the identifier of

the relation in question and find the record of the relation.

2. Follow the pointer found in the PFLM field of this

record and the first record of the argument relation's LEM

set.

3. Proceed in the LEM set record by record. For each

record found, hash into the SHT with the individual being

represented by this record and establish its SHT record in

the SHT under the set identifier "lem:RB
. Link the SHT

records created in this manner to each other as they are

created. Keep a count beginning with and increment it for

each SHT record created.

4. Hash to the set table with the set identifier

"lem:R"; establish the record of this set in the set table.

Put the pointer to the first record of the resulting set

structure (which is established in SHT) into the PSS field

and the last value of the count into the CARD field of this

record.
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Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

We can write the time complexity function of this

algorithm as follows:

f = K*n + C

where the constant K represents the constant number of memory

references made for each record of the argument relation's

LEM set in step 3. The constant C represents the constant

number of memory references made in steps 1, 2 and 4. The

variable n is the cardinality of the argument relation's LEM

set.

So as can be seen, the algorithm has the worst case

asymptotical time complexity behaviour of 0(n).

The algorithm that works on the table representation

makes use of the SCHT mechanism for recognizing and removing

duplicates of the individuals from the left column of the

table. In fact if there was not the possibility of the

duplicates in the left column, we could strip off the left

column of the table without using the SCHT mechanism in order

to obtain the LEM set of the relation. But even in this case

the algorithm is costly and has the same asymptotical

complexity behaviour as the algorithm that we will now

define. The algorithm is as follows:

1. Start from the beginning of the relation's table;

proceed down in the table record by record, by following the
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links between the records. For each record found in this

manner, extract the left individual, hash with that

individual into the SCHT and if there is no record present

for that individual in the SCHT, establish the record of that

individual in the SCHT. If this record was the first record

created mark it with pointer "P". Link the records created

in the SCHT, in the above manner, to each other as they are

created. Keep a count by beginning with and increment it

for each record created in the SCHT. Continue to examine the

table records of the relation until the end of the relation

is encountered.

2. Start from the beginning of the set created in the

SCHT by following the pointer "P" which is set in step 1.

For each set record found by proceeding in the set record by

record, hash into the SCHT with the individual being

represented by that record and find the SCHT entry to which

the record in question is connected directly or indirectly

(i.e., by being in a bucket which is connected to that hash

table entry). Put nil into the hash table entry found, and

put nil into the collision link fields of the records of the

bucket if there exists a bucket which was connected to this

hash table entry.

3. Establish a record of the resulting set in the set

table under the set identifier:

"lent: " (relation's identifier).
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Put the pointer "P" into the PSS field of that record, and

put the last value of the count into the CARD field of that

record.

We write the worst case time complexity function of that

algorithm as follows:

f = K*p + L*n + C

where:

P The size of the relation.

n = The cardinality of the LEM set of the relation.

K = Constant number of memory references made for each

table record found in step 1.

L Constant number of memory references made for each

set record found in step 2.

C = Constant number of memory references made in step 3

of the algorithm.

By assuming that the LEM set and the RIM set of the relation

have the common cardinality "n", in the worst case (i.e.,

when p n*n) we can rewrite the worst case time complexity

function as:

f = K*(n 2
) + L*n + C

By looking at the exponent of the term with the larger

exponent in the above function, we conclude that the worst

case asymptotical time complexity behaviour of that algorithm

is 0(n 2 ).
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Members (mem:R) :

Members of a relation are the individuals which are

either in the LEM set or in the RIM set of the relation or

both. So this operation takes the LEM set and the RIM set of

the relation and obtains the union of these sets. So the

algorithm for hash-incidence-vector representation can be

written as:

1. Call the operation "Lera" with the relation being the

argument.

2. Call the operation "Rim" with the relation being the

argument.

3. Call the operation "Set Union" with the arguments

being the identifiers of the LEM set and the RIM set of the

relation which are:

"lem:" (relation' s identifier).

"rim: 11 (relation's identifier).

4. Establish the record of the new set in the set table

under the set identifier:

"mem:" (relation identifier)

instead of the identifier created by the "Set Union"

operation automatically. So if we say the complexity

function of the "Set Union" operation is "F", the complexity

function of the Members algorithm can be written as:
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f - P + fl + f

2

where:

fl = The complexity function of the "Lent" operation.

f2 The complexity function of the "Rim" operation.

Since the complexity functions, F, fl/ and f2 are all linear

functions the sum of those functions will also be a linear

function. Thus we conclude that the worst case asymptotical

time complexity behaviour of this algorithm is 0{n), where

"n" is assumed to be the common cardinality of the LEM set

and the RIM set of the relation. We do the same in the table

representation case, but let's define the algorithm for the

table representation because the situation slightly differs

from the previous case. The algorithm for the table

representation is as follows:

1. Start from the beginning of the relation's table.

Proceed down in the table record by record, by following the

links between the table records. For each record found in

this manner do the steps below:

a. Extract the "right" individual, hash into the SHT

with that individual under the new set identifier "mem:R" and

create its record in the case there is no record for that

individual in the SHT already.

b. Extract the "left" individual of that record, hash

into the SHT with that individual under the new relation's

identifier and create a record of that individual in the SHT
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in the case that individual is not being represented by a

record in the SHT already. Link the records created in this

manner to each other by their TASE links as they are created.

Keep a count beginning with and increment it for each SHT

(set) record created. Mark the first SHT record created in

the above manner with pointer "P".

2. Do step 2 until the end of the relation's table is

encountered.

3. Establish the record of the resulting set in the set

table under the identifier:

"mem:" (relation's identifier).

Put pointer "P" into the PSS field of that record and put the

last value of the count into the CARD field of that record.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The worst case time complexity function of that algorithm

can be written as:

f = K*p + C

where:

p Relation size/Table size.

K = Constant number of memory references made for each

table record found in the steps 2 and 3 r which is

guaranteed to be greater than or equal to 4.

C Constant number of memory references made by the

housekeeping operations.
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in the incidence vectors. In addition to that, in our system

the union, intersection and difference operations on

relations are defined even though the argument relations do

not have the same LEM sets and the same RIM sets. This again

does not let us use the union, intersection and difference of

the incidence vectors of the operand relations to obtain the

incidence vector of the resulting relation. One way to make

use of the incidence vectors as intended originally is to

enforce these restrictions in the definition of the language:

Let R and S be the operand relations:

1. R and S must have exactly the same LEM sets and the

same RIM sets.

2. The set elements must be in order and should always

be maintained in that order.

If we impose those restrictions on operand relations, it is

guaranteed that the l's in the corresponding positions of the

incidence vectors mean the same thing, and then it becomes

possible to utilize fast logical operations and pipelining on

the incidence vectors. But the asymptotical behaviour of the

algorithms remains the same, because the size of the

incidence vector is:

(n2)/cl

where "n" is defined to be the cardinality of both LEM and

the RIM set of the relation and "Cl" is the memory word

length. We can decrease the cost by another constant factor
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which comes from pipelining. So the complexity function of

the algorithm becomes roughly:

f = (n*n)/(Cl*C2) + C

where C2 is the pipelining factor.

In the present case, the language does not have the

restrictions explained above and our algorithms will be

defined according to the present definition of the language.

We will see that worst case asymptotical time complexity

behaviour of the algorithms will not change but the

algorithms will be slightly inefficient.

We can express the intersection of two relations as given

below:

R&S P = {<x,y> | <x,y> e R and <x,y> e S }

Thus our algorithms are supposed to produce the relation P

that satisfies the above condition, given the relations R and

S as arguments.

The algorithm for Hash-Incidence-Vector representation is

given below:

Let R be the first operand relation and S be the second

operand relation.

1. Get the operand relations' identifiers.

2. Hash with the first and the second argument

relations' identifiers to the relation table (RT) , follow the

pointers found in the PFLM and PFRM fields of the relation
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R's record, and find the records of the first left member and

the first right member of the relation R.

a. Start from the beginning of the LEM set of the

relation R. For each record found by following the TASE

links of the LEM records, until the LEM set is exhausted,

hash into the LHT with the individual in question under the

relation S. Check if a record of that individual is present

in the LEM set of relation S, if so hash into the LHT under

the new relation's identifier (which is: "R&S"). Establish

a copy of that individual's record. Link the records copied

in this manner to each other as they are created by their

TASE links.

b. Repeat step 2-a for the RIM set of the relation R

on the RHT, by also looking up the RIM set of the relation S.

Keep a count for the new RIM set being created and increment

it for each individual detected to be in the set. Put the

updated value of that count into the index field of the

record that represents the individual which has been detected

to be in the set.

c. Start from the beginning of the new LEM set and

establish the records' index fields which are connected to

each other by their TASE link fields by beginning from 1 and

incrementing the index by the last value of the count

maintained in step 2-b. Furnish the index fields of these

records.
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d. Establish the record of the new relation in the

relation table under the new relation identifier. Establish

the cardinalities obtained by keeping count during the

creation of new LEM set and new RIM set into the n
|
LEM | " and

"|RIM|" fields of that relation record respectively.

Establish the pointers to the first records of the new LEM

and RIM sets into the PFLM and PFRM fields of that record.

Allocate a block of memory of size ( | LEM
|

*
|
RIM

|
)/C, where C

is the memory word length. Put the beginning address of that

block into the base field of the relation's record.

3. Proceed in the LEM set of relation R, record by

record by following the TASE link fields of records. For

each record found, extract the individual being represented

by that record and do the steps below.

a. By starting from the beginning of the RIM set of

the relation R, proceed down in the RIM set record by record,

by following the TASE links between the records. For each

record found in this manner extract the individual being

represented by that record. Check the incidence vector

location corresponding to the tuple found in step 3 and step

3-b to see if it contains 1. If not, do nothing, else

continue with the steps below.

b. For each pair of individuals found in step 3 and

step 3-a, hash into the LHT with the individual found in step

3 and hash into the RHT with the individual found in step 3-b
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under the relation S and check if this tuple is also present

in the relation S (by using the reference algorithm).

c. If so hash into the LHT and RHT with those

individuals but this time under the new relation identifier.

Using the reference algorithm, find the new incidence vector

location that corresponds to this tuple and set that bit to

1.

d. Else do nothing.

Note that the R&S and S&R refers to the same relation and

when we create a relation with identifier "R&S" and establish

relation's record in the relation table with that identifier

a subsequent reference to the S&R may cause the same relation

to be reconstructed redundantly. In order to eliminate this

possibility we will accept a convention and design the system

so that whenever R&S or S&R is referenced, we first look in

the RT by hashing with the identifier "R&S". If no record is

present, then we hash with identifier "S&R". If a record is

present, we assume the original reference is S&R instead of

R&S. From that point on the relation S&R participates in

operations instead of R&S vice versa.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Note that the given algorithm reflects the worst case,

which means neither R&S nor S&R has been constructed
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previously. The worst case complexity function of this

costly algorithm can be written as:

f = K*m + L*n + Y*t + T*m*n + C

where first term corresponds to step 2-a, second term

corresponds to step 2-b, third term corresponds to step 2-c,

fourth term corresponds to step 3, "m" is the cardinality of

the LEM set of the relation R, "n" is the cardinality of the

RIM set of the relation R, "t" is the cardinality of the LEM

set of the resulting relation. Constant C represents the

number of memory references made in the steps other than the

steps indicated above. Constant K represents the number of

memory references made for each LEM set record in step 2-a.

Constant L represents the number of memory references made

for each RIM set record in step 2-b. Constant Y represents

the number of memory references made for each LEM set record

of the resulting relation in step 2-c. Constant T represents

the number of memory references made for each pair of

individuals found in step 3. Now let m=n-t and Z=(K+L+Y),

the complexity function becomes:

f = T*n*n + Z*n + C

So the complexity function can be viewed as a second degree

polynomial. We conclude that the algorithm has the worst

case asymptotical time complexity behaviour of O(n^)

.
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Now we have to consider how we could perform this

operation in the case of the table representation. The

algorithm is given below:

1. Take the relation with smaller size and make a

separate copy of it.

2. Start from the beginning of the second relation's

table and proceed down in the table. For each record found,

extract the left individual and search for that individual in

the left column of the new table. If it is found compare the

right individuals of the current record of the new table and

the record of the second relation above. If a common tuple

is found in this manner, extract the new table's record

representing that individual from its place and carry it to

the top of the table. If it is the first record carried to

the top, mark it with pointer Z.

3. Repeat step 2 until the table of the second relation

is exhausted or until the pointer Z points at the bottom of

the new table.

4. Delete the records below the Z (if there are any)

.

In the best case two operand relations may almost be the

same. By factoring out the constants, the complexity

function can be written as:

f = p + (p-1) + (p-2) + + (p - p + 1)

where "p" refers to the size of both the operand relations.

This can be rewritten as:
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p p

f =y (p-p+k) =2* = p*(p+d/2

k=l k=l

So we know that we can not do better than that. Now we have

to decide about the worst case. In the worst case the operand

relations may be disjoint, in which case for each tuple of

the first relation we go through exhaustively the whole

copied relation and we delete the copied relation as a whole

at the end. So the worst case complexity function becomes:

f = K*p*r + L*r + M*r + C

where Constant K is the number of memory references made in

each iteration of step 2, constant L is the number of memory

references made while copying each record of the second

relation in step 1/ constant M is the number of memory

references made while deleting each record of the copied

relation in step 4, constant C is the number of memory

references made by the housekeeping operations, variables p

and r are the sizes of the operand relations.

We know that in the worst case both operand relations may

be universal relations on their LEM and RIM sets. In that

case, as explained before, the sizes of the relations are the

product of the cardinalities of their LEM and RIM sets re-

spectively. Let n be the common size of the LEM and RIM sets

of both relations and let the operand relations be the uni-

versal relations on their LEM and RIM sets or in other words,
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let the operand relations' sizes be equal to the cartesian

product of their LEM and RIM sets, which in turn means:

p = q

The complexity function becomes:

f * K*(n 4
) + F*(n 2

) + C

where F = L + M

We conclude that the algorithm has the worst case

asymptotical time complexity behaviour of 0(n 4
), which is a

very costly algorithm. Again there exists many efficient

algorithms to do this operation but they are not compatible

with the dynamics of our system, and they have other

redundancies when they are combined with the whole system.

For example, if we maintain our tables representing relations

in sorted order this algorithm may be made simpler and

cheaper by using one of the fast searching algorithms, but

maintaining the tables in sorted order is a significant

burden in such a dynamic system, because we may recompute the

individuals in the relation and we may add new tuples as a

result of the relational operations, and so on. These

operations are so frequent that every time sorting the tables

is a significant burden.

Relation Union (R|S) :

This operation takes two relations and produces a

relation in which each tuple is either present in one operand

relation or in the other. That can be stated formally as:
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R|S = { <x,y>
|
<x,y> 6 R OR <x,y> e S }

The set of tuples such that each tuple is either in R or in

S.

The algorithm for Hash-Incidence-Vector representation is

as given below:

Let the first operand relation be R and the second

operand relation be S.

1. Find the records of the relations R and S in the

relation table.

2. Follow the PFLM and PFRM fields of the relation R's

record, find the first left member's record and the first

right member's record in the LHT and in the RHT respectively.

3. Repeat step 2 for relation S.

4. Copy the RIM set of relation R in the RHT under the

relation identifier "R|S" (as it was done in many previous

algorithms). Copy the RIM set of relation S under the

relation identifier "RlS". As the records are created during

the copying operation, establish the new indices in the index

fields of the records by keeping an index count and

incrementing it for each record created, then by putting the

current value of it into the index field of the record

created recently. Link the records created in the above

manner to each other by their TASE link fields.

5. Repeat step 4 for the LEM sets of relations R and S,

on the LHT. But this time, keep one count for establishing
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indices and another count for finding out the cardinality of

the new LEM set. While establishing the indices of the

records, begin with 1 and increment the index count by the

cardinality of RIM set for each record created, and put the

updated value of the index count into the index field of the

record recently created. For each record created increment

the cardinality count.

6. Establish the new relation's record in the relation

table under the identifier "R|S". Establish the LEM set

cardinality count in the | LEM
|
field and the RIM set index

count in the |RIM| field of that record. Put the pointers to

the records of the first left member and the first right

member into the PFLM and PFRM fields of that record

respectively. Allocate a memory block as large as:

( | LEM
|

*
|
RIM

| ) /C

where C is the memory word length. Put the beginning address

of that block into the base field of the above record.

7. Start from the beginning of the LEM set of relation

R. For each record found by following the TASE links between

the records until the LEM set is exhausted; do the steps

below.

a. Start from the beginning of RIM set of relation R,

follow the TASE links between the records, and proceed down

in the RIM set, record by record.
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b. For each tuple found which is being represented by

the record pair found in step 7 and in step 7-a, reference the

incidence vector of relation R (by using the reference

algorithm). If the corresponding incidence vector entry is

1, hash with the left individual of the tuple into the LHT

and with the right individual of the tuple to the RHT.

Extract the indices of the corresponding records, then

reference the incidence vector of the new relation by using

the reference algorithm and put 1 into the incidence vector

entry found.

8. Repeat step 7 for the relation S.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The algorithm seems to be expensive, especially steps 7

and 8 are the costly steps of this algorithm. We write the

worst case complexity function of this algorithm as follows:

f = K*(m+p) + L*(n+q) + T*(m*n) + P* (p*q) + C

where:

m cardinality of the LEM set of R.

n = cardinality of the RIM set of R.

p = cardinality of the LEM set of S.

and q = cardinality of the RIM set of S.

Constants in front of each term indicate the number of memory

references made for each iteration of the corresponding step.

The correspondence between the steps of the algorithm and the
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terms of the function as follows: the first term corre-

sponds to step 4, the second term corresponds to step 5, the

third term corresponds to step 7, and the fourth term corre-

sponds to step 3 of the algorithm. Constant C is the number

of memory references made by the other steps of the algo-

rithm.

Let:

n m = p = q and

R = 2*K + 2*L and

U = T + P.

Then the complexity function becomes:

f = U*(n 2
) + R*n + C

So we conclude that the worst case asymptotical complexity

behaviour of the algorithm is 0(n 2 ).

How could we perform the same operation on the table

representation? Again we have to get help from SCHT

mechanism in order to make the algorithm as efficient as we

can. The algorithm is as follows:

Let R be the one operand relation and S be the other.

1. Start from the beginning of the table of relation R,

proceed down in the left column of the table, record by

record, for each left individual found in that way, hash with

that individual into the SCHT, create a record of that

individual in SCHT and connect it directly to the hash table

entry found. If it is found out that a record of a left
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individual is already connected directly to this hash table

entry (i.e., if the collision occurs), search for the next

empty hash table entry in the hash table, and connect the

record of the individual in question to that hash table entry

directly. If a record of that individual is already

established in the SCHT previously, do nothing. Create an

SCHT record of the right individual of the current tuple,

connect it to the record of the left individual created

above. If there is a bucket of records connected to the left

individual's record (as a result of establishment of previous

tuples), add the record of right individual in question to

the end of that bucket. For each hash table entry found and

used up in this manner, set a pointer to that hash table

entry and put that pointer into the temporary array of type

pointer.

2. Repeat step 1 for relation S; establish the records

of the right individuals in the buckets connected to the

records of the left individuals if they are not already

present in the buckets (i.e., do not allow repetition of same

right individual's record in the same bucket). (* In the

above steps, we handled the collisions by rehashing and we

use bucketing to relate the right individuals with the left

individuals. In fact we created another representation of

the resulting relation in SCHT. As we know this

representation technique is called an "Adjacency list". Now
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the remaining steps of the algorithm are to convert that

representation into our "table" representation. *)

3. Start from the beginning of the temporary pointer

array and find each occupied hash table entry in turn. For

each bucket found connected to this hash table entry, do

these steps:

a. Extract the first record from the bucket, create a

table record and put the PML field of the record extracted

from the bucket into the "left" field of that table record.

b. Extract the next record from the bucket, and copy

the PML field of that record into the "right" field of the

table record.

c. While there remains a record in the bucket, create

a new table record, copy the PML field of the record found in

step 3-a into the "left" field, and the PML field of the

remaining record into the "right" field of the table record

created.

4. Link the table records created in step 3 to each

other by their TASE link fields as they are created.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case each relation may be universal

relations on their LEM and RIM sets. In addition to that,

the LEM sets of the argument relations may be the same, but

the RIM sets may be disjoint. This also implies that the
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relations are disjoint. Under these considerations/ in step

2 the algorithm searches the entire bucket and can not find

the record of the right individual in question. It then adds

the record of that individual to the end of the bucket. We

have to note that in the worst case indicated above each

bucket has as many records as the cardinality of the RIM set

of the relation R. Because the LEM sets of the relations are

the same, each bucket constructed in SCHT is searched in the

manner explained above. In addition to that, after

termination of steps 1 and 2 the resulting bucket sizes are

the total of the cardinalities of the RIM sets that belong to

the relations R and S.

The worst case complexity function of this algorithm can

be written as:

f = K*m*n + L*(p*q*n) + T*m* (n+q) + C

where:

m = cardinality of the LEM set of relation R.

n = cardinality of the RIM set of relation R.

p = cardinality of the LEM set of relation S m

q cardinality of the RIM set of relation S

In the above function:

first terra corresponds to step 1.

second terra corresponds to step 2.

third terra corresponds to step 3 of the algorithm.
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m = n = p = q and Z = 2*T + K, the complexity function

becomes:

f = L*(n 3
) + Z*(n 2

) + C

So we conclude that the worst case asymptotical time

complexity of that algorithm is 0(n 3
) .

Relation Difference (R - S) :

This operation takes two relation identifiers as argument

and produces another relation which has only those tuples

that are in the first operand relation and not in the second

operand relation. This can be formally stated as:

R - S {<x,y> <x,y> e R and not<x,y>e S }

Algorithm for Hash-Incidence-Vector representation is given

below:

1. Get the relations' identifiers and record the

identifier of the first argument relation as reference.

2. Find the records of the relations by hashing with

their identifiers to the Relation Table.

3. Follow the pointers in the PFLM and PFRM fields of

the reference relation's record; find the first LEM and first

RIM records of that relation.

4. Proceed in the LEM set of the relation; for each

record found, do the steps below:

a. By starting from the first record in the RIM set

of the reference relation, proceed down in the RIM set.
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b. For each tuple found being represented by the

records found in steps 4 and 4-a, hash with the left

individual of the tuple into the LHT and with the right

individual to the RHT under the second relation's identifier.

Test if that tuple is already present in the second relation

or not (by using the reference algorithm).

c. If so do nothing.

d. Else hash with the left individual in question

into the LHT and with the right individual in question to the

RHT, under the new relation's identifier, which is "R-S",

where R is the identifier of the reference relation and S is

the identifier of the other operand relation. Establish the

LHT and RHT records of that individual in the LHT and in the

RHT respectively. If they are the first records established

in this manner set pointer P to the left individual's record

(in the LHT) and set pointer to the right individual's

record (in the RHT). Link the records created in this manner

to each other as they are created.

e. Keep a RIM set index count to furnish the index

fields of the RIM records and update it as the records are

created. Keep LEM set cardinality count for finding out the

cardinality of the resulting LEM set; increment it when each

LEM record is created.

5. Repeat step 4 until the LEM set of reference relation

is exhausted.
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6. Hash to the relation table with the new relation's

identifier ("R-S") , establish its record, put pointer P into

the PFLM field, pointer Q into PFRM field, the last value of

the LEM set cardinality count into the "
| LEM |

" field, and the

last value of the RIM set index count into the " | RIM |

" field

of this record. Allocate a block of memory as large as:

( | LEM
|

*
|
RIM

| ) /C

Where C is the memory word length. Put the beginning address

of that block into the base field of the relation's record.

7. Start from the beginning of the LEM set of the new

relation, proceed down in the LEM set of new relation record

by record. By beginning with 1 and incrementing the index

every time by the last value of the RIM index count, furnish

the index fields of the LEM records. In addition, for each

record found do the steps below:

a. By starting from the first record of the RIM set

of the new relation proceed down in the RIM set record by

record.

b. For each tuple found (being represented by the

record pair found in steps 7 and 7-a) hash with the left

individual into the LHT and with the right individual to the

RHT under the reference relation and reference the incidence

vector location corresponding to that tuple by using the

"reference" algorithm. If a 1 is found in the corresponding

entry, reference the second relation in the same manner to
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check if this tuple is also present in the second relation.

If so do nothing; else put 1 into the corresponding incidence

vector entry of the new relation.

We could write an algorithm which is less costly as

follows: It makes a separate copy of the incidence vector

and the LEM and RIM sets of the reference relation, then it

goes through the second relation and deletes the entries from

the copied incidence vector that corresponds to the tuples

found in the second relation. But suppose that the reference

relation is a very large relation and the intersection of two

operand relations is also very large so that the result of

the operation is a relation that has only a few tuples. As

can be seen, we are allocating an incidence vector as large

as the reference relation's incidence vector for a few

tuples; we are wasting a lot of storage. On the other hand

our previous algorithm uses an amount of memory as large as

needed.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

Clearly the algorithm is an expensive algorithm, the

worst case complexity function can be written as:

f = K*(m * n) + L*(p * q) + C

Where the first term corresponds to step 4, and the second

term corresponds to step 7 of the algorithm. Constant C is

the number of memory references made by the other steps of
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the algorithm. Variable m is the cardinality of the LEM set

of relation R f variable n is the cardinality of RIM set of

relation R, variable p is the cardinality of the LEM set of

the resulting relation, variable q is the cardinality of RIM

set of resulting relation. Let m=n=p=q and T = K+L, then the

complexity function becomes:

f = T*n*n + C

So we conclude that the algorithm has the worst case

asymptotical time complexity behaviour of 0(n 2 ).

The algorithm for table representation is a costly

algorithm, as it was before in the other operations. The

dynamics of the system causes the individuals to be out of

order in the left and the right column of the table. This,

in turn, causes exhaustive searches in the columns of the

table. Even though the deficiency is obvious, we might

wonder how inefficient the algorithm is relative to the

previous algorithm. The algorithm is given below:

1. Start from the beginning of the table of the

reference relation. Make a separate copy of that table.

2. Start from the beginning of the other operand

relation's table. For each tuple found by proceeding through

the table, record by record, search in the copy of the

reference relation for that tuple; if it is present then

delete it from the copy of the reference relation's table.
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3. Repeat step 2 until the relation (other than the

reference relation) is exhausted.

In the worst case the relation R and the relation S may

be disjoint (i.e., R-S = null relation). That means for

every tuple found in step 2 we go through the copy of the

reference relation exhaustively (because there is no tuple in

common the search is unsuccessful each time). Under this

circumstance the worst case complexity function can be

written as:

f = K*p + L*r*p + C

The first term corresponds to step 1, and the second term

corresponds to steps 2 and 3, of the algorithm.

In the above function, "p" is the size of the reference

relation, "r" is the size of the other operand relation and

constant C is the number of memory references made by the

housekeeping operations (such as updating relation table,

etc.). Constants K and L represents the constant number of

memory references made at each iteration of step 1 and step

2, which are expected to be small.

Let the cardinality of the LEM sets and the RIM sets of

the relations be the same and equal to "n". Let the

relations be the universal relations on their "MEM" set (MEM

= LEM RIM). That means the size of the relations are the

same under these assumptions. The worst case complexity

function becomes:

299





f = K*(n 2
) + L*(n 4

) + C

So the algorithm has the worst case asymptotical time

complexity behaviour of 0(n 4
). Assuming the absence of the

constant factors, 160,000 memory references are necessary

when n=20. On this basis we may say that the algorithm is

practically inexecutable. We have to remember from previous

discussions that keeping the tables in sorted order is not a

solution in the present definition of the system.

Restriction Operation (S/R\S) :

i

It is sometimes useful to restrict both the domain and

the codomain of a relation. The restriction operation, given

an argument set and the relation identifier, restricts the

RIM set and the LEM set of that relation to the given set.

That means the RIM set and the LEM set of the relation can

contain only those individuals that are in the argument set.

We can state it more carefully as follows:

S/R\S = {<y,X>| yRx A yeS A xeS }

The algorithm for Hash-Incidence-Vector representation is as

follows

:

1. Get the relation identifier and the argument set

identifier and hash with those identifiers to the relation

table and the set table respectively. Find the records of

the first right member and the first left member of the

relation by following the pointers found in the PFRM and the

PPLM fields of the relation's record respectively.
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2. If the argument set is extensionally represented

(i.e., the PSS field is not nil), start from the beginning of

the linked list structure of the RIM set, proceed down in

that linked list. For each RIM set record found by following

the TASE links between the records, hash with the individual

being represented by that record into the SHT, under the

argument set's identifier, to test if there exists an SHT

record for that individual in the SHT. If there exists a

record for that individual in the (SHT) argument set, copy

that record in the RHT under the new relation identifier:

(set identifier) '/' (relation identifier) '\* (set identifier)

Link the RHT records to each other as they are created. Keep

a RIM set cardinality count and increment it each time a RIM

record is created by beginning with 0.

3. After the RIM set is exhausted do step 2 for the LEM

set of the relation in the LHT.

4. If the argument set is being intens ionally

represented, begin from the beginning of linked structure of

the LEM set in the LHT. Proceed down in the LEM set record

by record by following the TASE links between the records and

for each RIM set record found in this manner, test if the

individual being represented by that record is a member of

the argument set. (This membership test will be explained

later in the discussion of the intensional representation

techniques). If it is a member, copy that RHT record in the
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RHT under the new relation identifier indicated above. Link

the RHT records created in the RHT in the above manner to

each other as they are created. After finishing with the LEM

set of the relation, begin from the beginning of the RIM set

of the relation and do the same as it was done for the LEM

set, but this time for the RIM set of the relation in the

RHT. Keep a LEM cardinality count and increment it for each

LHT record created by beginning with 0; in the same manner

keep a RIM cardinality count beginning with and increment

it for each RHT record created while performing the above

functions.

5. Hash to the relation table under the new relation

identifier indicated above and establish the record of the

new relation in the relation table. Copy the BASE field of

the original relation's record into the BASE filed of the new

relation's record. Put the last value of the RIM cardinality

count into the |RIM| field, and put the last value of the LEM

cardinality count into the | LEM | field of the new relation's

record. Put the pointers to the first records of the LEM and

the RIM set of the original relation into the PFLM and PFRM

fields of that record.

Now we will do the worst case asymptotical time

complexity analysis for this algorithm.

We will assume that in the worst case the argument set is

a super set of both the RIM set and the LEM set of the
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original relation; in that case we necessarily copy the

whole RIM set and the LEM set of the original relation in

order to obtain the LEM set and the RIM set of the new

relation. We write the worst case time complexity function

of that algorithm as follows:

f - L*m + S*n + C

where:

n - The cardinality of the RIM set of the original

relation,

m The cardinality of the LEM set of the original

relation.

L = The constant number of memory references made while

copying each LEM set record.

S = The constant number of memory references made while

copying each RIM set record.

In the above function the second term corresponds to step 2,

the first term corresponds to step 3, and the last term

corresponds to steps 1 and 5 of the algorithm.

Let the cardinalities of the LEM and RIM sets of the

relation be equal and T - L+S; then the complexity function

becomes;

f = T*n + C

So we conclude that the worst case asymptotical time

complexity behaviour of this algorithm is 0(n) where "n" is
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the common cardinality of the LEM and RIM sets of the

relation.

Now we have to ask how could we do this operation on the

table representation. The algorithm is as follows:

1. Start from the beginning of the linked list structure

of the relation's table, and proceed down in that linked list

record by record. For each record found in this manner, hash

into the SHT with the individual being represented by the

"right" field of that table record under the argument set's

identifier. If there exists an SHT record for that

individual, hash into the SHT with the individual being

represented by the "left" field of that table record under

the argument set's identifier. If there exists an SHT record

for that individual also create a new table record, copy the

"left" and the "right" fields of the original table record

into the corresponding fields of the new table record. Link

the new table records created in this manner to each other by

their "link" fields as they are created.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case the argument set may be a super set of

the LEM set and the RIM set of the original relation. In

that case we necessarily make a separate copy of the whole

table of the original relation in order to obtain the table

of the new relation. From that point on the worst case time
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complexity analysis of the above algorithm is exactly the

same as the worst case time complexity analysis of the

algorithm for the "Right Restriction" operation that works on

the table representation. So the reader should refer to the

analysis done in the "Right Restriction" operation case.

Dual Application (R # S) :

This operation takes two relation identifiers and

constructs a new relation which relates the individuals with

the pairs. Given a pair in relation with an individual under

the resulting relation, the left individual of this pair is

the result of application of the first argument relation (R)

to this individual and the right individual of this pair is

the result of application of the second argument relation (S)

to this individual. So the resulting relation's right

members set consists of individuals and the left members set

consists of pairs.

The algorithm for Hash-Incidence-Vector representation is

as follows:

Let R be the first argument relation and S be the second

argument relation.

1. Find the records of the relations in the relation

table by hashing with the relation identifiers to the

relation table.

2. Follow the pointer in the PFRM field of the relation

R's record; find the first right member's record in the RHT.
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3. Proceed in the RIM set of the relation R by following

the TASE links between the records; for each RIM set record

found in this manner do the steps below:

a. Hash with the individual being represented by the

current RIM set record to the RHT under the relation S. If a

record for that individual is also present in the RIM set of

relation S. Hash into the RHT with the individual in

question under the new relation identifier, "RiS". Establish

a record for that individual; if this is the first record

established in RHT for the new relation, mark it with pointer

P.

b. Apply relation R to the individual in question by

calling the "apply" algorithm; record the pointer returned in

variable "tempi".

c. Apply relation S to the individual in question by

calling the "apply" algorithm; record the pointer returned in

pointer variable "temp2".

d. Follow the pointer recorded in variable "tempi"

and find the individual resulting from the application of R

to the current right individual. In the same manner, follow

the pointer recorded in variable "temp2" and find the second

individual resulting from the application of the relation S

to the right individual in question.
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e. Call algorithm "pair" with those individuals and

record the pointer to the record of the "pair** relation

resulting, in the variable "temp3 M
.

f. Hash to the LHT under the new relation identifier

"RlS", establish a LEM record of that relation in LHT, put

the pointer recorded in pointer variable "temp3" into the PML

field of that record- If it is the first LEM record created

in this manner, mark it with pointer Q. Set the PRLM link of

the current RIM set record to the current LEM set record

created above. Link the records created in the LHT and RHT

for the new relation to each other by their TASE links as

they are created (except the "dummy'' records). Keep a RIM

index count and LEM cardinality count for each RIM set record

created, increment the RIM index count and put the updated

value of the RIM index count into the index field of the RIM

set record created. For each LEM record created increment

the LEM cardinality count. (* According to our convention of

establishing indices in the LEM records we can not establish

the indices in the LEM records until after the cardinality of

the RIM set of the relation becomes evident. *)

4. Start from the beginning of LEM set of the relation

by following the pointer Q, for each record found by

following the TASE links between the records, increment the

LEM index count by the last value of the RIM index count (by
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beginning from 1) and put the updated value of the LEM index

count into the index field of the record in question.

5. Allocate a block of memory as large as:

{LEM-cardinality-count*RIM-index-count)/C

where C is the memory word length.

Initialize that vector to all zeros (* This may turn out to

be the costly part of the algorithm if we are not using

pipelining. *)

6. Hash to the relation table with the new relation's

identifier "R#S", establish its record and put the pointers P

and Q into the PFRM and PFLM fields of that record

respectively. Put the beginning address of the incidence

vector allocated in step 5 into the BASE field, put the LEM

cardinality count into the
|
LEM

|
field, and put the RIM index

count into the |RIM| field of that record respectively.

7. Start from the beginning of the RIM set of new

relation. For each RIM set record found by following the

TASE links between the records get the index of that record.

Follow the pointer found in the PRLM field of this record and

find the record of the left individual that is in relation

with the current right individual in LHT. Get the index of

that record, reference the incidence vector with those

indices by calling the algorithm "reference"; and put 1 into

the corresponding incidence vector entry.
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Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The RIM set of the resulting relation is in fact the

intersection of the RIM sets of the argument relations. So

in the worst case the cardinality of the RIM set of the

resulting relation may be as large as the cardinality of the

RIM set of the relation R. In addition to that, in the worst

case each right individual of the resulting relation may

correspond to a unique left individual. That means we create

a pair relation for each right individual found to be in the

RIM set of the resulting relation. That also means that the

cardinality of the RIM set of the resulting relation is equal

to the cardinality of the LEM set. Under these

considerations, we write the worst case time complexity

function as:

f = S*n + T*n + U*(n*n)/D + V*n + C

where n is the cardinality of the RIM set of relation R,

constant D is the memory word length, constant C is the

number of memory references made in steps 1, 2 and 6. In the

above function: First term corresponds to step 3, second

term corresponds to step 4, third term corresponds to step 5,

fourth term corresponds to step 7 of the algorithm. In the

third term the expression:

(n x n)/D
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stands for the size of the incidence vector in terms of the

number of memory locations occupied. As we mentioned above,

in the worst case the cardinality of the RIM set and the

cardinality of the LEM set of the resulting relation are

equal to the cardinality of the RIM set of elation R (which

is V).

Let:

Z » S + T + V,

and W = U/D

then the complexity function becomes:

f = W*(n 2
) + Z*n + C

So we conclude that the worst case asymptotical time

complexity behaviour of this algorithm is 0(n 2 ).

Now we have to think about how the operation could be

performed on the table representation. The algorithm for the

table representation is simpler than the previous algorithm.

The algorithm is as follows:

Let R be the first argument relation and S be the second.

1. Start from the beginning of the relation S's table

and proceed down in the table record by record by following

the links between the table records. For each record found,

extract the right individual and hash with that individual

into the SCHT, establish a SCHT record for that individual in

SCHT, extract the left individual and create another SCHT

record for that individual, and link the record of the right
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individual to that record by its TASE link. If after hashing

with that right individual/ a SCHT record of that individual

is found to be present in SCHT, do nothing. Link the records

created in the SCHT to each other by their TASE links.

(* I.e.* establish the SCHT record of a right individual and

the record of the corresponding left individual in SCHT only

once. *) (* As the result of the execution of step 1, each

right individual has a record in SCHT and is followed by the

record of the left individual which would have resulted from

application of relation S to that right individual. Note

that the SCHT record created for the left individual is not

connected to any SCHT entry. *)

2. Start from the beginning of relation R's record.

Proceed in the table of the relation R. For each table

record of R found in this manner, extract the right

individual, hash with that right individual into the SCHT.

If a record of that individual is not already present in SCHT

then do nothing, and continue with the next table record in

R. Otherwise create a new table record, put the pointer to

the right individual in question into the "right" field of

that record, and create another relation with only one table

record. Extract the pointer to the left individual from the

"left" field of the current table record in R, put that

pointer into the "left" field of the new relation's (pair)

record, follow the TASE link of the SCHT record of the right
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individual in question and find the next SCHT record in the

SCHT. Extract the pointer to the left individual (that was in

the "left" field of the relation S's table record before)

from that record and in the same manner put that pointer into

the "right" field of the pair relation's record. Establish

the record of the pair (a singleton relation) in the relation

table. Put the pointer to this record into the "left" field

of the new table record created for the resulting relation

above. Delete the SCHT record for the right individual in

question, and the following SCHT record (which belongs to the

left individual that is in relation with the right individual

in question under the relation S) from the SCHT. Update the

TASE links between the SCHT records appropriately.

(* Because there is no need to create a table record of the

resulting relation again for that right individual. *) Link

the resulting relation's records to each other as they are

created by their link fields.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As we see the algorithm is simpler than the previous

algorithm. The complexity function of that algorithm is as

follows:

f * K*pl + L*p2 + C

We know that in the worst case the sizes of the relations are

equal to the product of the cardinalities of their LEM and

312





RIM sets. Since we have accepted the LEM set and/or the RIM

set cardinality as a measure, we have to write the function

in terms of these cardinalities. Before doing that we have

to explain the meanings of the constants and variables in the

above function. The variable "pi" is the size of the

relation S, variable "p2" is the size of the relation R, the

constant K is the number of memory references made for each

iteration in step 1, and in the same sense, the constant L is

the number of memory references made for each iteration in

step 2. In the above function, the first term represents the

step 1, and the second term represents the step 2 of the

algorithm. The constant C is the number of memory references

made by the housekeeping operations such as updating the

relation table.

Let:

pi = p2 = n*n

where "n" is the common cardinality of the LEM and RIM sets

of the argument relations, and let:

Z = K+L

Then the complexity function becomes:

f = Z*n*n + C

So we conclude that the worst case asymptotical time

complexity behaviour of that algorithm is 0(n 2
)

.
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Parallel Application (R||S) :

This operation takes two relation identifiers and

constructs a new relation/ in which each left member and each

right member is a pair. Given a tuple of this relation, the

left component is a pair, in which the left individual of the

pair is the result of application of the first argument

relation to the left individual of the right component (which

is also a pair) of the tuple. Analogously, the right

individual of the left member (which is a pair) is the result

of application of the second argument relation to the right

individual of the right component.

This algorithm is naturally more complex than the

previous algorithms. The algorithm for Hash-Incidence-Vector

representation is as follows:

Let the first argument relation be R, and the second

argument relation be S.

1. Start from the beginning of RIM set of relation R and

proceed down in the RIM set record by record. For each RIM

set member found in this manner do the steps below:

a. Start from the beginning of RIM set of the

relation S and find each record representing a RIM set

individual in turn by following the TASE links between the

records of the RIM set.

b. For each pair of individuals found in step 1 and

step 1-a (i.e., we find the records that represent the
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individuals then we extract the individuals by following the

pointers in their PML fields), call the algorithm "pair" with

the individual obtained in step 1 as the first argument

individual and the individual obtained in step 1-a as the

second argument individual. (* Note that the algorithm

"pair" first looks in the relation table for that "pair"

relation and executes this operation only, if this relation

has not been created before. *)

c. Hash to the RHT with the identifier of the pair

constructed by "pair" operation (say "(x,y)" under the

relation identifier nR||S". Create a RHT record and put the

pointer to the record of the pair relation established in

relation table into the PML field of that record. Every time

a RIM set record is created, put the updated value of the RIM

set index count into the index field of that record. If the

record is the first RIM record created in this manner mark it

with pointer "Z".

d. Apply the relation R to the individual obtained

in step 1 by calling the "Function application" algorithm.

Call the individual returned by this algorithm W.

e. Apply the relation S to the individual obtained in

step 1-a by calling the "Function application" algorithm.

Call the individual returned Y.

f. Repeat step 1-b for the individuals "W" and "Y".
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g. Repeat step 1-c for the pair "(W,Y)" on the LHT,

but this time do not furnish the index fields of the records.

Keep a LEM set cardinality count and increment it for each

record created. Mark the beginning record of the LEM set

with the pointer U. (* In this case duplications of the LEM

records may occur. To prevent this, our algorithm does not

create the LEM record of a pair if there is already a LEM

record for that pair in the LEM set of the new relation.

This is a property of the hashing mechanism. *) Set the PRLM

link of the current RIM record of the new relation to the LEM

record of the left individual constructed in steps 1-d

through 1-g. (* The result of one iteration of step 1 yields

the establishment of one right member and one left member of

the new relation "R||s n that are in relation with each other

under this relation. The result of exhaustive execution of

step 1 is the creation of complete LEM and RIM sets of new

relation. *)

2. Start from the beginning of the LEM set of new

relation, and proceed down in the LEM set record by record by

keeping an index count and incrementing it by the last value

of the RIM set index count for each record passed. Put the

updated count into the index field of each record passed.

3. Allocate a block of memory as large as:

(LEM-cardinality-count*RIM-index-count)/C
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where C is the memory word length. Initialize that memory

block to all zeros.

4. Hash to the relation table under the relation

identifier R| | S, create a new RT record, put pointers Z and U

into the PFRM and PFLM fields of that record respectively,

put the beginning address of the memory block allocated in

step 3 into the BASE field, and put the LEM cardinality count

and RIM index count into the
|
LEM

|
and

|
RIM

|
fields of that

record respectively.

5. Start from the beginning of the RIM set of new

relation and proceed down in the RIM set record by record.

For each record found:

a. Extract the index field of the record.

b. Follow the pointer in the PRLM link field of that

record and find the record of the left individual (pair) in

relation with the current right individual. Extract the

index field of that record.

c. Reference the new relation's incidence vector with

those indices obtained in steps 5-a and 5-b and put 1 into

the corresponding incidence vector entry.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

The complexity function of this algorithm can be written

as follows:

f = N*nl*n2 + T*ml*m2 + (R*nl*n2*ml*m2) /D + U*nl*n2 + C
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in which the first term corresponds to step 1, second term

corresponds to step 2, third term corresponds to step 3,

fourth term corresponds to step 5 of the algorithm. Constant

C refers to the constant number of memory references made by

the other steps of the algorithm. In the above function:

ml = the cardinality of the LEM set of relation R,

nl = the cardinality of the RIM set of relation R,

M2 the cardinality of the LEM set of relation S,

n2 the cardinality of the RIM set of relation S.

In the above function the second, third and fourth terms may

not be clear to the reader. First of all we are creating

records for all possible pairs that can be constructed from

the RIM set individuals of the argument relations and each

one of those pairs becomes a right individual of the new

relation. Hence the cardinality of the RIM set of new

relation is:

JRIM| = nl*n2 (nl and n2 are as defined above)

This may not be true for the cardinality of LEM set of the

new relation since two or more RIM set individuals of the new

relation may be in relation with one LEM set individual. But

in the worst case the cardinality of the LEM set becomes the

product of the cardinalities of the LEM sets that belong to

argument relations. That means:

| LEM |
= ml*ra2 (ml and m2 are as defined above.)
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We know that the size of the incidence vector is computed by

the formula:

SIZE = (|LEM| *
I
RIM

I

)/D

where:

D = Memory word length

So the size of the incidence vector can be written in terms

of the cardinalities of the LEM sets and the RIM sets of the

argument relations as:

SIZE * (nl*n2*ml*m2)/D

So while we are establishing the indices of the new

relation's LEM records in step 2, we make a number of memory

references proportional to:

ml*m2

and while we are initializing the incidence vector we make a

number of memory references proportional to:

(nl*n2*ml*m2)/D

In the same sense, while we are establishing the l's in the

new incidence vector we are making a number of memory

references proportional to:

(nl*n2)

Now let nl=n2=ml=m2 = n, Z = (N+T+U) and H=R/D, then the

complexity function of the algorithm can be written as:

f =* H*(n 4
) + Z*(n 2

) + C

The algorithm is terribly expensive. The reason is we had to

initialize the incidence vector of the resulting relation
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which made the algorithm an order four algorithm. But even

in the absence of this term (initialization), the algorithm

is terribly expensive because the constant Z is expected to

be so large. In addition to that time deficiency, the

algorithm is storage inefficient. We have to construct the

huge incidence vector of the resulting relation, because the

relation may participate in subsequent operations. So the

algorithm is practically infeasible. Fortunately the

intensional algorithms for this operation are cheap so we can

do this operation intensionally.

Now we have to define the algorithm for the table

representation. In this algorithm we will use two scratch

hash tables, SCHTl and SCHT2, to make the algorithm easier to

understand. Of course the algorithm can be defined by using

only one scratch hash table and by using a good collision

handling policy, but that makes the algorithm very complex to

understand. The steps of the algorithm are as follows:

Let R be the first argument relation and S be the other.

1. Do step 1 of the algorithm given for the table

representation in the dual application operation, on relation

S on the SCHTl.

2. Do step 1 of the algorithm given for the table

representation in the dual application operation, on relation

R on the SCHT2.
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3. Start from the beginning of the linked list

constructed in SCHT2 and proceed down in that linked list by

skipping the records between the right individuals' records.

For each right individual record found in this manner begin

from the beginning of the linked list constructed in SCHTl

and proceed down in that linked list by skipping the left

individuals' records between the right individuals' records.

a. For each pair of right individuals found above

(one of the right individuals belongs to R and the other

right individual belongs to S) call algorithm "pair" with

those individuals as arguments. Create a new table record of

the resulting relation, and put the pointer to the table of

the relation (pair) constructed by algorithm "pair" into the

"right" field of that record.

b. Find the SCHT record immediately following the

right individual's record in SCHT2 (which belongs to the left

individual that is in relation with that right individual

under the relation R) . Extract the individual being

represented by that record, find the SCHT record immediately

following the right individual's record in SCHTl (which

belongs to the left individual that is in relation with that

right individual under the relation S) , and extract the

individual being represented by that record.

c. Call algorithm "pair" with the individuals found

in step 3-b as arguments and establish the pointer to the
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resulting relation constructed by algorithm "pair" in the

"left" field of the new relation's record created in step 3-a.

4. Link the records of the new relation created above to

each other, by their link fields as they are created.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As can be seen the algorithm is surprisingly simple and

efficient relative to our previous algorithm. In fact the

cost of that algorithm is much less than the cost of the

previous algorithm. The worst case time complexity function

of that algorithm can be written as:

f = K*pl + L*p2 + M*nl*n2 + C

where:

pi * The size of the relation S,

p2 = The size of the relation R, •

nl = The cardinality of the RIM set of relation S,

n2 * The cardinality of the RIM set of relation R f

and, the first term corresponds to step 1, the second term

corresponds to step 2, the third term corresponds to steps 3

and 4 of the algorithm. The constant C represents the number

of memory references made by the housekeeping operations.

Let the cardinalities of all the LEM and RIM sets of the

argument relations be the same and equal to "n". We know

that in the worst case:

pi = p2 = n*n
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Under these considerations, the above complexity function

becomes

:

f = Z*n*n + C

where:

Z = K + L + M

So we conclude that the cost of that algorithm is much less

than the cost of our previous algorithm, and the algorithm

has the worst case asymptotical time complexity behaviour of

0(n2). Our previous algorithm is expensive because of the

initialization of the incidence vector. Suppose the

initialized memory block for the incidence vector is always

available, and we do not have to initialize the incidence

vector. Even under this condition our previous algorithm, by

having a huge constant in front of the second degree term, is

more expensive than this algorithm. We want to point out

that this is the first operation for which the table

representation allowed us to define a more efficient

algorithm than the Hash-Incidence-Vector representation

allowed. The weakness of the Hash- Inc idence-Vec tor

representation is that it requires the incidence vector to be

initialized; on the other hand the incidence vector is

structured enough to be pipelined especially for

initialization. So for small relations with small incidence

vectors, this deficiency is omi table.
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First Ancestral (fan:R) :

This operation takes a relation identifier and produces

the reflexive, transitive closure of that relation; the

resulting relation is also called the first ancestral of the

given relation.

Because the resulting relation will be reflexive, it will

contain those tuples in which the left individual and the

right individual are the same in addition to the tuples

obtained by performing second ancestral operations on the

original relation. This also implies that the LEM set and

the RIM set of the resulting relation will be equal to the

MEM set of the original relation. Note that in this case

Warshall's algorithm can be applied without modification.

The algorithm for Hash-Incidence-Vector representation is

as follows:

1. Find the record of the relation in the relation table

by hashing with the relation identifier to the relation

table.

2. Follow the PFLM field of that record and find the

first left member's record.

3. By following the TASE links between the records,

proceed down in the LEM set. For each record found in this

manner, do the steps below:

a. Extract the individual represented by that

record.

324





b. Hash to the LHT and the RHT with that individual

under the new relation's identifier, "fan:R"; establish both

the LEM record and the RIM record for that individual in the

LHT and in the RHT respectively. If these are the first

records created in this manner, mark them with pointer P and

Q respectively. If after hashing to the LHT/RHT, a record of

that individual is found to be present in the LHT/RHT, do not

create LHT/RHT records for that individual. Link the records

created in this manner by their TASE links in the LHT and in

the RHT.

4. Continue with the RIM set of the original relation by

beginning from the beginning of the RIM set (i.e., go to step

3).

5. In steps 3 and 4, keep a right members index count

for the RIM set being constructed and increment it for each

record created. Put the updated value of that count into the

index field of the record created most recently. After the

execution of steps 3 and 4, start from the beginning of the

LEM set of the resulting relation and keep a LEM set index

count. Beginning from 1, increment it by the last value of

the RIM set index count for each record of the LEM set passed

and put the updated value of this count into the "index"

field of the current record.
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6. Allocate a block of memory for the new incidence

vector as large as:

(RIM-set-index-count) 2

C

where C is the memory word length. Save the beginning

address of this block.

7. Hash to the relation table under the new relation's

identifier, "fan:R", where R is the identifier of the

original relation. Establish the record of that relation in

the relation table and put pointer P and Q into the PFLM and

the PFRM fields of that record respectively. Put the last

value of the RIM set index count into the !LEM| and the
|
RIM

|

fields and put the beginning address of 'the incidence vector

into the BASE field of that record.

8. Start from the beginning of the LEM set of the

original relation and proceed down in the LEM set record by

record. For each record found do these steps:

a. Call the left individual being represented by the

current LEM set record (found above) X. Reference the new

relation with the tuple <X,X> and put 1 into the incidence

vector entry found.

b. Start from the beginning of the RIM set of the

original relation and find the records of the RIM set in turn

by following the TASE links between the records.

c. For each tuple represented by the pair of records

found in steps 8 and 8-b, reference the original relation's
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incidence vector and reference the new relation. Find the

corresponding incidence vector entry and copy the entry of

the original incidence vector to the new incidence vector's

corresponding entry.

9. Execute step 6 of the second ancestral operation's

algorithm on the new incidence vector. But in this case let

the
|
RIM

|
represent the cardinality of the RIM set of the new

relation instead of the cardinality of the RIM set of the

original relation (and similarly for the |LEM|).

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

In the worst case the relation may be a universal

relation on its MEM set; that means the LEM and RIM sets of

the relation are exactly the same as the MEM set of the

relation. So the LEM, RIM and MEM sets of the relation have

the common cardinality n. Under this consideration we write

the worst case time complexity function of the algorithm as

follows:

f = 2*K*n + M*(n 2
) + N*(n 2 )*(n/C) + D

where:

n The common cardinality of the RIM and LEM sets of the

original relation.

C = The memory word length.

K - The constant number of memory references made in step

3 (or 4) for each record copied.
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M = The constant number of memory references made while

copying each bit of the incidence vector.

N = The constant number of memory references made in each

iteration of the outer-most "for" loop in step 6 of

the second ancestral algorithm.

D * The constant number of memory references made by the

housekeeping operations.

In the above function the first term corresponds to steps 3,

4 and 5, the second term corresponds to step 8, the third

term corresponds to step 9, and the fifth term corresponds to

the remaining steps of the algorithm.

The term which constitutes the asymptotical time

complexity behaviour of the algorithm is the third term,

which is the same as the term given in the complexity

function of the second ancestral algorithm for the

corresponding step (step 6)

.

Now, let U = 2*K and T = N/C; then the complexity

function becomes:

f = T*(n 3
) + M*(n 2

) + U*n + D

So by looking at the term with the largest exponent we

conclude that the algorithm has the worst case asymptotical

time complexity behaviour of 0(n 3 ). This algorithm is

slightly more expensive than the algorithm for second

ancestral operation, as it is expected, but both algorithms

have the same asymptotical time complexity behaviour. We
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want to point out that the constant of the second term is

larger than the constant of the second term of the second

ancestral operation's complexity function. The reason is, in

this case we are also obtaining the reflexive closure of the

relation. The same holds for the third terms.

As we know, while we are taking the reflexive closure of

a relation, we have to add those tuples to the relation which

have the property that the left component and right component

are the same individuals. Because some tuples of this kind

may already be present in the original relation, we have to

prevent ourselves from duplication of tuples while taking the

reflexive closure. As a result of this we can not copy the

original incidence vector to the new incidence vector

blindly, as was done in the second ancestral operation. So we

had to define the algorithm in a different manner and this

increased the constants in front of the second and third

terms of the above complexity function.

The algorithm for the table representation is similar to

the algorithm for the second ancestral operation, except we

have to add those tuples in which the left component and the

right component are the same, if those tuples are not already

present in the relation resulting from the second ancestral

operation. So the algorithm should detect if tuples of this

kind are present in the transitive closure of the original

relation. If they are not it should add those tuples to the
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resulting relation. Thus the algorithm becomes more

expensive than the algorithm for the second ancestral

operation/ so there is no need to define that extremely

expensive algorithm here.

Final Members (final :R) :

This operation, given a relation, restricts the LEM set

of the relation to the set:

{x| not (x,E (init:R))} where R is the identifier of the

given relation. So in the relational language we can write

the equivalent expression as:

(-init:R)/R

So the result of this operation is a relation which has those

left individuals that are not the initial members of the

given relation as its LEM set members.

The algorithm for the Hash- Inc ide nee- Vec tor

representation is given below:

1. Get the relation's identifier.

2. Hash with that relation identifier to the relation

table and find the record of the relation.

3. Follow the pointer found in the PFLM field of the

relation's record and find the record of the first left

member of the relation.

4. Hash to the RHT with that individual under the

relation's identifier. If there exists a record for that

individual in the RIM set, make a separate copy of the LEM
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record (which is found in step 3) of that individual in the

LHT, under the relation identifier "finalrR", where R is the

identifier of the original relation.

5. If there is no record present for that individual in

the RIM set, do nothing.

6. Proceed in the LEM set of the relation by following

the TASE links between the LEM (LHT) records. For each

record found, repeat step 4 for the individual represented by

that record until the LEM set of the relation is exhausted.

While creating the new relation's records in the LHT link

them to each other as they are created (i.e., construct LEM

set of the new relation in the LHT). While the above steps

are being performed keep a count, and increment it for each

new LEM record created.

7. Make separate copies of the RIM set records of the

original relation in the RHT under the new relation

identifier by first following the PFRM pointer from the

original relation's record in the relation table and then

following the TASE links between the records. For each RHT

record found hash into the RHT with the individual

represented by this record under the new relation's

identifier and establish a record in the RHT. Copy all the

fields (except the TASE field) of the original RIM record to

the new record's corresponding fields, and link the records

created in the manner explained above, to each other as they
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are created (i.e., reconstruct the RIM set of the original

relation as the RIM set of the new relation)

.

8. Establish the new relation's record in the relation

table under the new relation's identifier. Establish the

pointers to the new LEM set and the new RIM set into the PFLM

and PFRM fields of that record respectively. Copy the "base"

field of the original relation's record into that record's

"base" field. (Both relations share the same incidence

vector). Copy the | RIM
|

field of the original relation's

record into the "|RIM|" field of the new relation's record.

Put the final value of the "count" into the "
|
LEM | " field of

that record.

Note that, as we have done in the restriction operations,

we make the new relation share the incidence vector of the

original relation. Also, because we copied the records as

they were (except the TASE fields), the contents of the index

fields did not change, so the new relation can share the

incidence vector with the original relation. The costly

steps of that algorithm are steps 6 and 7. In step 6 we went

through the LEM set of the original relation exhaustively and

in step 7 we copied the RIM set of the original relation

The worst case complexity function of that algorithm is given

below:

f = K*m + L*n + C
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where:

K = Constant number of memory references made for each

LEM element found in step 6.

L = Constant number of memory references made for each

RIM set element in step 7.

C = Constant number of memory references made in steps 1/

2, 3 and 8.

m = Cardinality of the LEM set (original relation)

.

n = Cardinality of the RIM set (original relation)

.

Let m n and T * K + L, then the function becomes:

f = T*n + C

So we conclude that the algorithm has the worst case

asymptotical time complexity behaviour of 0(n).

Now we have to think how the same operation can be

performed on the table representation. Because there exists

the possibility of the repetition of the individuals in the

left and right columns, it is obvious that the resulting

algorithm will be more costly than our previous algorithm.

We can reduce the cost of the algorithm by making use of the

SCHT mechanism. The algorithm is given below:

1. Perform steps 1 and 2 of the algorithm given for the

table representation in the "Initial members" operation. This

time use SCHT instead of SHT.

2. Start from the beginning of the left column and for

each individual found by following the link fields of the
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records (and finding the left individual of each record

pointed by the pointer in the "left" field of that record)

hash into the SCHT. If no record is present in the SCHT for

that individual, make a separate copy of the table record in

which we found the individual in question. If it is the

first table record created, mark it with a pointer.

3. Perform the disconnection operation in the SCHT as it

was done in "initial members" operation to clean up the SCHT

for the subsequent operations.

As we can see we go through the original relation three

times exhaustively in steps 1 and 2. in the worst case the

cardinality of the initial members set constructed in the

SCHT may be equal to the cardinality of the LEM set, under

this consideration the worst case time complexity function of

this algorithm can be written as:

f * K*p + M*p + N*p + L*n + C

let (K + M + N) Z; the function becomes:

f = Z*p + L*n + C

where Z >= 3. Now we have to explain the meanings of the

constants and the variables shown in the first function in

order to make the function clear.

The constants K and M are the same constants we defined

in the "Initial members" operation case. The constant L

represents the constant number of memory references for

disconnecting each record from the SCHT. The constant N
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represents the constant number of memory references made for

each left individual found in step 2 of the algorithm. The

constant C represents the constant number of memory

references made by the housekeeping operations. The

variables are defined as follows:

p The relation size.

n = Cardinality of the LEM set.

As can be seen the constants tend to be large and we know

that in the worst case (when the relation is equal to the

cartesian product of its LEM and RIM set) p is equal to the

product of the cardinalities of the LEM and RIM sets, so

let's rewrite the complexity function under this

consideration. Let n = m (where ra is the cardinality of the

RIM set). The function becomes:

f = 2 * n*n + L*n + C

So we conclude that the algorithm has the worst case

asymptotical time complexity behaviour of O(n^).

First Member (first:R) :

This operation, given a relation, finds the unique

initial member of that relation, if there exists one and only

one initial member of that relation. Otherwise the operation

is undefined. The algorithm for the Hash-Incidence-Vector

representation is given below:

335





1. Do steps 1 through 4 of the "initial members"

operation's algorithm (for the Hash-Incidence-Vector

representation)

.

2. Proceed down in the LEM set of the relation. For

each individual of the LEM set hash to the RHT with the

individual found. If there is no record for that individual

in the RIM set of the relation then, record that individual

and set a flag to true. Find the next individual's record in

the LEM set of the relation, by following the TASE link field

of the current record of LEM set. Continue to perform the

same operation on the individual being represented by that

record. If any subsequent operation results with another

initial member (which can be detected by checking the flag)

call the error routine, else continue to check until the LEM

set of the relation is exhausted.

3. Return the individual recorded in step 2 if no error

occurs.

In fact the above algorithm is the worst case algorithm

that must be executed in the absence of the initial members

set of the relation. So the first steps of the above

algorithm should be:

1. Concatenate character string "init:" with the

relation identifier.

2. Hash with the resulting identifier to the set table.

If a record is present under that identifier, follow the PSS
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field of that record, and find the first record of the set

structure.

3. Test if there exists any other record in this set; if

so call the error routine, else follow the PML field of the

set's record, find the individual and return that individual

as the result of the operation.

4. If no record is found in step 2 (in the set table)

continue with the previous algorithm.

Since we are concerned with only the parts of the

algorithms that cause the worst case behaviour, we can focus

on the previous algorithm for the time complexity analysis.

Now we will do the worst case asymptotical time

complexity analysis of this algorithm.

As can be seen, step 2 of the previous algorithm

constitutes the asymptotical behaviour of that algorithm.

The complexity function can be written as:

f = K*n + C

where constant K is the number of memory references made for

each LEM set record found and constant C is the number of

memory references made in step 1.

So we conclude that the worst case asymptotical time

complexity behaviour of that algorithm is 0(n)

.

Now we have to define the algorithm for the table

representation. We will again use the SCHT mechanism in

order to make the algorithm efficient. (We can use the same
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argument we have used in the "initial members" operation

about how inefficient the algorithm would be otherwise). The

steps of the algorithm are given below:

1. Find the first record of the table.

2. Proceed in the table by following the link fields

between the records. Extract the right individuals

represented by the "right" field of each record, hash with

each right individual into the SCHT, and establish its SCHT

record in the SCHT. Link the SCHT records to each other by

their TASE link fields as they are created.

3. After the right column is exhausted begin from the

beginning of the relation again. Proceed down in the left

column. For each left individual found in the same manner as

it was done for the right individuals, hash into the SCHT to

check if a record is already present for that individual in

the SCHT (i.e., that is effectively looking up the right

column in an efficient way because we established the

individuals of the right column in the SCHT in step 2). The

first time a record is found in the SCHT for a left

individual record that individual and set a flag to true.

4. If in any of the subsequent repetitions of step 3, a

record is found in the SCHT corresponding to a left indivi-

dual (i.e., while flag is true) call the error routine. If

the above situation does not occur until after the relation

is exhausted (i.e., effectively until after the left column
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is exhausted) return the recorded individual. If there does

not exist any initial members call the error routine.

5. Disconnect all the records from the SCHT (dispose

them) .

Clearly steps 2 and 3 of this algorithm require one to go

through the relation once so the complexity function becomes:

f =* 2*K*p + L*n + C

where Constant K is the number of memory references made for

each element of the right column and left column of the table

in step 2 and 3, Constant L is the number of memory

references made for each element of the RIM set, and constant

C is the number of memory references made by the housekeeping

operations. Variable "p" is the size of the relation, in

other words the number of tuples in the relation. Variable

"n" is the cardinality of the RIM set of the relation.

We know that in the worst case the relation may be equal

to the cartesian product of its LEM set and RIM set and,

p = n * n

where n is assumed to be the cardinality of both the LEM and

the RIM set of the relation. Let T = (2K + L) , so under the

above consideration the worst case complexity function

becomes:

f = T*n*n + C

So we conclude that the algorithm has the worst case

asymptotical time complexity behaviour of 0(n 2
)

.
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APPENDIX B

THE COMPLEXITY FUNCTIONS WITH THE PREDICTED CONSTANTS

HASH INCIDENCE VECTOR TABLE

Function
Application 15 5n2

R! :x 1.4r|2 + 36n h 28 12n3 + 15

RC 3n2 + 36n + :35 4n2 + ;32

unimg:R:x 19n + 37 16n2 + 14

non:R 0.02ln2 + 64n + 8 6n3 + 50n 2 + 3n + 16

R&S 41n< + 51n + 42 7n4 + <in2 + 1

R-S 87n' ! + 42 3n4 + >ln2 + 18

r|s 42n^ + 20n + 52 14n3 + 30n2 + 18

RVS (set) 28n + 36

R/\S (set) 28n + 36

R-S (set) 28n + 36

init:R 23n + 27 36n2 + 16

f inal:R 46n + 30 50n 2 + 12n + 18

f irst:R 12n + 13 28n 2 + 12n + 11

lem:R 18n + 25 17n 2 + 12n + 14

mera:R 64n + 86 33n2 + 15

R\S 64n + 43 36n2 + 18

C/R\C 48n + 24 20n2 + 18

#:C 2n + 14

RS 0.9n3 + 0.153n2 + 38 14n4 + 8n2 + 18
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APPENDIX B
(Continued)

HASH INCIDENCE VECTOR TABLE

r| |s 152n4 + 0.15n2 + 18 98n2 + 18

R#S 0.15n2 + 134n + 39 64n2 + 18

f an:R 0.15n3 + 42n2 + 66n + 30

san:R 0.15n3 + 0.8n2 + 34n + 30 30n4 + 61n2 + 18
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(R & S)c

(R
I

S)C

(R - S)c

(san:R)c

(fan:R)c

(RS)c

lem: (Re)

rim: (Re)

mem: (Re)

unimg: (Re)

Rc\C

C/Rc

init: (Re)

init : (R)

final: (Re)

f inal:R

(R & S) i :C

(R
|

S) ! :C

(non:R) ! :C

lem: (R&S)

lem: (R|S)

APPENDIX C

PREPROCESSING RULES

=====> Re & Sc

=====> Re Sc

=====> Re - Sc

=====> san: (Re)

=====> fan: (Re)

=====> (sc) (Re)

=====> rim: Re

=====> lem: R

=====> mem: R

===-=s > unimg' :R

=====> C/R

=====> R\C

=====> rim:R and not (lem:R)

=====> lem:R and not (rim:R)

=====> R\ (not(lem:R))

=====> (lem:r and not (rim:R)

=====> R! :C & Si :C

»««> Ri:C
|
S!:C

-====> lem:R and not (R! :C)

=====> lem:R and lem:S

=====> lem:R or lem:S

/ R
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(22)

:

rim: (R&S) =====>

(23): unimg(RSS) =====>

(24): unirag(R|S) =====>

(25) unimg(R-S) =====>

(26): lera:(fan:R) =====>

(27): lem:(san:R) =====>

(28): rim: (f an:R) =====>

(29): rim:(san:R) =====>

(30): unimg(R||S) =====>

(31): unimg(R#S) =====>

(32): unimg'(R||S) =====>

(33): unirag'(R#S) =====>

(34)

:

rim: (R\C) =====>

(35)

:

rim: (C/R) =====>

(36): lem:(R\C) =====>

(37)

:

lem: (C/R) =====>

(38)

:

mem:R =====>

(39): lem: (final:R) =====>

(40): (non:R)c =====>

(41): rim: (f inal:R) =====>

(42): mem: (f inal:R) =====>

(43) : init: (f inal:R) =====>

(44)

:

R! : (rim:R) =====>

(45)

:

lem: (non:R) =====>

rim:R and rim:S

unimg:R and unimg:S

unimg:R or unimg:S

unimg:R - unimg:S

mem:R

lem:R

raem:R

rim:R

(R| |S)

:

(R#S) :

(R| |S)c:

(R#S)c :

rim:R and C

rim:R

lem:R

lem:R and C

lem:R or rim:R

init :R

non: (Re)

rim:R

rim:R or (lem:R and not

(rim:R) )

init:R

lem :R

(non:R) !

:

(rim:R)
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(46): rim:(non:R) =====> (non :Rc) ! : (lem:R)

(47): (unimg : (non:R) ) :x ==> (lem:R - (unimg :R:x)

)

(48): (unimg ': (non :R) ) :x => (rim:R - (unimg ' :R:x)

)
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APPENDIX D

MEMBERSHIP TEST ALGORITHMS CONTINUED

R! :C (R is extensionally represented relation) :

Fr (unimg' :R:z) set > Cl

Fr (C) Test-each-in > Cl any—>true{z is in the set.}

(non:R) ! :C :

Fr(rim:R) set > Cl

Fr (unimg* :R:z) set > C2'

while C2'; C1-C2' —set > D

Fr (C) test-each-in > D any— > true{z is in the set}

(non:R) c! :C :

Fr(lem:R) set > Cl

Fr (unimg :R:z) set > C2*

while C2'; C1-C2' set > D

Fr (C) test-each-in > D any— > true{z is in the set}
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unimg 1

: (R| | S) :x :

Fr (unimg:R:lef t (z) ) set > Cl

Fr (unimg :S: right (z) ) —set > C2

left(x) — is— in— > Cl — tx > true— tx— >varA

right (x) — is— in— > C2 — tx > true— tx—>VarB

varA and varB tx >true(z is in the set}

unimg* : (R#S) :x :

Fr (unimg' :R:left(x) ) set > Cl

Fr (unimg' :S:right(x) ) set > C2

Cl and C2 set > D

z is— in— >D tx > true{z is in the set}

unimg ' : (RS) :x :

Fr (unimg ' :R:x) set > Cl

Fr (unimg :S:z) set > C2'

while C2'; Cl and C2 ' tx > D'

while D'; isempty(D') tx > false{z is in the set}
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lera: (R-S) :

Fr (unimg ' :R:z) set > Cl

Fr (unimg * :S:z) set > C2'

while C2' ; Cl - C2« tx > D'

while D'; isempty (D 1

) -tx > false{z is in the set}

lem: (non:R) :

Fr(rim:R) set > Cl

Fr (unimg' :R:z) set > C2'

while C2»; Cl - C2'-set > D 1

while D'; isempty (D' ) tx > false{z is in the set}

lem: (R| | S) :

left(z) is— in > lem:R — tx > true — tx >varA

right (z) is— in > lera:S — tx > true — tx >varB

varA and varB tx > true{z is in the set}

lem:(R#S) :

Fr (unimg ' :R:z) set > Cl

Fr (unimg ' :S:z) set > C2'

while C2' ; Cl and C2' tx > D'

while D' : isempty (D 1

) tx > false{z is in the set}
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lem:(RS) :

Fr(lem:S) set > Cl

Pr (unimg':S:z)-test-each-in—>C1—any—>true{z is in the set}

rim: (R-S) :

Fr (unirag:R:z) set > Cl

Fr (unimg:S:z) set > C2 1

while C2'; Cl - C2' set > D'

while D'; isempty(D') tx > false} z is in the set}

rim: (non:R) :

Fr(lera:R) set > Cl

Fr (unimg:R:z) set > C2'

while C2'; Cl - C2 ' set > D 1

while D'; isempty(D') tx > false{z is in the set}

rim: (R| | S) :

left(z) is-in > rim:R tx— > true tx— > varA

right (z) — is-in > rim:S tx— > true tx— > varB

varA and varB tx > true{z is in the set}
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rim: (R#S) :

z is-in > rim:R tx— > true tx— > varA

z is-in > rim:S tx— > true tx— > varB

varA and varB tx > true{z is in the set}

rim: (RS) :

Fr(rira:R) set > Cl

Fr (unirag:S:z) — test-each-in— > Cl — any— > true{z is in the

set}
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