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Preface.

Part Il. Of the present paper was written, very much in the form in which it is
now presented, in the summer of 1913, and began with the remark in 811, which
appears to disprove a statement made by Poincare in regard to the convergence of
an astronomical series. It was laid aside partly because a good deal of the work is
only of the nature of elementary algebra, partly because the matrix notation
employed does not seem to find favour in its application to differential equations.
Various circumstances have, however, led me to take up the matter again, and my
original conviction that the method of Part Il. is of importance has been strengthened
by comparing it with the less formal methods which, for the sake of introducing the
subject, I have followed in Part I. | hope, therefore, that the following exposition
may be thought worth while. Part I1l. has only the value of a concluding remark.

The table of contents above may serve to give an idea of the scope and arrangement
of the paper.

PART I

81 Consider a linear differential equation

U Y Yt wx =o
where U, V, W are power series in a small quantity, A of the forms

U= u+ +o..
V = v+\Vi +\32+ ...
W = \Wi1H\...,

in which each of urvn wris a linear function of

r, £r-2 c-r,r-rrr,

£ denoting €T Thus each of u v will contain
speak of these as the absolute terms. It is important that W contains no term
in X% and it is assumed that the quantity v/u, which is independent of £ is not a
positive or negative integer, and that u, v are not both zero.

We prove that if the absolute terms in W, that is the absolute terms in

w2 wg ...,
be suitably determined, the differential equation possesses a solution of the form

X =1+ mXLRA o
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wherein ¥ is a linear function of £r, £r~2 £r4 ..., £4 r, £2, £~r1, and this is a periodic

solution.

Its period is 2
with a period 27r by writing r =

7
It.

For the substitution of the assumed form for X requires the identity

(%t £2X7ttn) 2 A, b+

(v+ 2AnY,) SW//,, + M\t +

which, equating the coefficient of \nto zero, will be true if

Up™, + Uy + e+

In particular for

i

Vv

T
o
=

Writirig

+
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4u (A2r + A_X

+

W(AL+A X

+ V(p'n+ Vgen x+ ...+ Vni(p\
+ W x+wqdm 2+... + +wn= 0.
n—1
UB"X+v<p'x+

If herein we suppose

= AA+A X I> wx= c+c X,

cxc_xbeing given constants, we obtain

At D+cE+c E 1 O

which is satisfied by

n =2 the condition is

W2+ Mp 2-\- UKD 1+ ' X{- WL+ W2 = 0.

J (D=

and assuming a form

@—AX+A_ X2,

the condition becomes

") + 2V(AX2- A_X~2
(aJ+a.J-DA{+A.A-D+ {bA+bA-D(AN-A A

+ (cX+c-Iif

equating the coefficients of £2 -2, £° to zero, we obtain

(4

2V) A2= — XK x—h¥A x—
(Au—2v) A_2= —a YA x+b XA x—C XA x—C 2

C2= A .i—a JAl+
T 2

—C2

I, we can, however, if we wish, express the s:

WX 0.

bE+b ¥ wx= cl

(AX+A_P-1)+ 22+ c 2-2+C2= 0;

A x—b
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which, as v/u is not 2 or —2, determine A2 A 2 and C2 the last being expressible by

means of the given coefficients of uy, uu vu
Proceeding similarly with the general value of , we at once reach the conclusion

stated, the absolute term in wnbeing determined in terms of the coefficients in

u, Ui, ese, uHIt v, vit vHu w2 ..., Wn .

82 Now consider an equation

AN2+2B M+ C* = (,
CGut

Qt
where, with £= €T A, B, C have the forms
A =al0+X +\2(a2'2+ 0’ 20 24-<D) +...,
B=60+A("N+6_ir i)+tA2(6X+6_2*-2+62) + ...,
C=cHX(cr+cr-D)+XR(22+c 2 "+ + ...,

which are periodic functions of mith period 2  capable

power series in a parameter X the coefficient of X being a linear function of
r,r-2 ~ 2,
In accordance with the well-known theory of linear differential equations with

periodic coefficients, we substitute
x = eKX,

where kis a constant, and so obtain a differential equation
AX"+2 (kKA+B) X'+ (Alc2+ 2B/c+ C) X = 0,

which, when kis properly chosen, is to be satisfied by a periodic function X. That
this is possible follows at once from 81, as we now explain.

First we can draw some inference as to the form of «. For compare the original
differential equation in x with the equation obtained from it by changing the sign of
Xin each of the series A, B, C. It is clear that the new differential equation may
equally be obtained from the original equation by change of r into which
changes £into —£; this latter change, however, only multiplies the factor eKby the
constant eink; the factors eklappropriate to the two independent solutions of the new
differential equation are thus the same, in their aggregate, as the factors for the
original equation. Thus the change of the sign of X changes the two factors ekl
appropriate to the two independent solutions of the original differential equation
among themselves, either by leaving both unaltered or by interchanging them.
Assuming that kis capable of expression as a power series in X

K= KO- KX+ 20+ ...,
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the case in which each kis unaltered by change of the sign of Ais the case in which
only even powers enter in this series. The case in which the two values of k are
interchanged by change of the sign of Amay arise when the differential equation is
such that for A= 0 the two values of kare equal or differ by an integer; in this case
eKjjeKis a periodic function for A= 0, and the factors eKl eKl do not individualise the
functions with which they are associated.

In the present case, the equation reduces when A= 0, to

b dx, 0
dt dr

which, if a0is not zero, has the two solutions e37 ed] where </ have the values
[-bOx (b/-a @l
Thus if we suppose not only that aOis other than zero, but also that
2 (b™-a0
IS not zero or a positive or negative integer, we can assume
K — THQA2 T [CAAAL" ooe,
Then putting
X = 1+ \<F+ ARDT eee,

where qr is a linear function of £r, £r 2, .... £2-r, £ 1, the differential equation for X
can be compared with that of 8 1L In the present case there is an unknown
quantity kentering into the coefficient Ak+B of but it will be seen that in
the equations obtained by taking the successive powers of A each unknown coefficient
in k in this Ak+B is determined at an earlier stage as entering in the coefficient
AlC3+ 2B/c+C, and so enters as a known coefficient. We have

Alc+B = [dD+ A(cfeX+GUt, D)+ A'(dcE2+ ct E~2+ SA) + ooe] [+ QK+ ooe]

+h +\ & -1)+ A{bZ2+b E~2+bD)+ ...
= + b0+ \Jor (&i£+ -1)+
+A o2 d X~ ad)A<sR+bE+b X d
+ ..
and similarly, .
Alc2+ 2BC+ C — G2 2 b+ @
+X [V (af+a_ir>)+ 2 (6,f+6.,f-D+clf+c-if-J
+ A [Q2(ctE2+ X E~-+ &) + 2 (6X“+ &)+2 (cve+ 0

+cX2+c X 2+ cA
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the absolute term in the coefficient of X4 in this being

2K QO+ bY) £ @ed+ 2070F+ CAr'+ 202p

Thus, as in 81, we first put
(*0€2+ 260+ — O,

assuming, as in §1 it was assumed that V/u is not an integer, that
2 (a0+&,,).a0, or 2 («@0- 608\

is not zero or integral; then the absolute term in the coefficient of X2 determines
KR(aGr+ b0, and hence K2 and the absolute term in the coefficient of X4 similarly
determines k4

The excepted case in which k contains odd as well as even powers of Xwe may
leave aside at present.

83. We may apply the preceding to the much discussed* equation

rizr
—_— + (@ 2Jckos 6+ 2Xos + ...)X = 0.
ew
When X= 0 we have the two factors eiat and the general case is that in
which e4(t has not the period, 2t,of the coefficients in t

that is, when 2¢ is not an integer. First assume this to be so. Then writing

X =eikX
we obtain
X"+ 2uX'+ (02— k2

Herein assume
k —a\rkKY2+ D4+ ..., X = 1+ \<pi+ X2+ ...,
* For this differential equation the following list of references may be useful, though it is probably far
from complete:—Mathieu, ‘Louville’s J.,” XI1I. (1868), p. 137; Hinl, ‘Coll. Math. Works/ 1., p. 255
(*Acta Math./ VIII. (1886)); Adams, ‘Coll. Scientific Papers/ I., p. 186, Il., pp. 65, 86; Tisserand,
‘Mdc. Cel./ t. IIl., Ch. I.; Poincare, * M4th. Nouv./ t. Il., Ch. XVII.; Forsyth, ‘Linear Differential
Equations’ (1902), p. 431; Rayleigh, ‘Scientific Papers/ vol. I1l. (1902), p. 1; Lindemann, ‘Math.
Annal/ Bd. XXII. (1883), p. 117; Lindstedt, ‘Astr. Nadir./ 2503 (1883); Lindstedt, ‘Mdnoires
de IPAcad. do St. Petersbourg/ t. XXI.,, No. 4; Bruns, ‘“Astr. Nachr./ 2533, 2553 (1883);
Callandreau, ‘Astr. Nachr./ 2547 (1883); Callandreau, ‘Ann. Observ./ Paris, XXII. (1896);
Tisserand, ‘Bull. Astr./ t. IX. (1892); Stieltjes, ‘Astr. Nachr./ 2602, 2609 (1884); Illarzer,
“Astr. Nachr./ 2850, 2851 (1888); Moulton and Macmillan, ‘Amer. J./ XXXIII. (1911);
Moulton, ‘Rendic. Palermo/ XXXII. (1911); Moulton, ‘Math. Ann./LXXII1I. (1913); Whittaker,
‘Cambridge Congress’ (1912), 1., p. 366 ; Whittaker, Young and Milne, ‘Edinburgh Math. Soc./
XXXII., 1913-14; Ince, ‘Monthly Not./ Roy. Astr. Soc., LXXV. (1915); Poincare, ‘Bull. Astr./
XVII. (1900).
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where 4¥ is an integral polynomial of order r in f and the quantity  being
denoted by £ Then we have

SXy', + i + KR2+..)z\yn
+ [—2a2m—(2c/ca+ KA+ ... + 2A84cos + ...] |

The terms in Agive
+ 21+ KL(E+£~D= O,

which, if we denote (c+r)2—2 or r(2c-fr) by ur, so that the result of substituting
£r for () in <B4 Hda<ts —urfr, leads to

Oi \ul
The terms in A2give
PF22H2ATP2+KUE+E ) 0L+ 2(E"+£ —JKR —O0,

which, if we write
02 —AZX2+A. X 2
leads to

- Al
b+ ALAZ A

= ATL +JA k2
2cylg u_J c (4c2—1)

and

By the terms in A3 A4, we similarly find the coefficients in
03 —AEH+A_FE-H+BE+B_¥~]

04= A4+A & H4BX+B_2 2
and also
60c4-35¢c2+ 2
ac3(c2—l) (@<r—1)3K1  2¢ (c2- 1) (4c2- 1) k1252_4c(c2-|)

Downloaded from https://royal societypublishing.org/ on 19 March 2024

If we change the notation, writing 0 = 22 = n, so tf
becomes
-jj) + \n2+ 8AR4cos 2 t+8Acos +...] =0
and
f=edt x=
we have

15n4—-35n2+8 74. 2k2 4

Fein ey a2 n3(n2—y fn2—p3"  n(h2— 1 n

n

It is clear that kis essentially real so long as this series converges.
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As an immediate application take the equation in Brown’s ‘Lunar Theory,’p. 107,

+nX {1 +fm2—3omd+ (3m2+~-nv' +-$—nii) cos 2£+-%-mi cos 4E} = 0,

where
£= (n— nt+e—m =
Put
m ' ) o N,

m, = ---m=== —mmmmm- T m=—k—, nat
1—m

then the equation becomes

e .
-j:" +cc{l + 2m1+|m 2—gNi4+w 2(3 + -VhRi+iFwiD) cos 2£+%3mx cos 4£} = 0,

which is of the form above, £replacing t. We may then take

X= o n2=1+2mi+fme—wW , ~ = 3+ & = 33.
Here wxis a small quantity and
X = 3/x
n2—lL 64(27711+...) 128’
is of the order n7 while similarly X&) 3is of

7= (1+7770) {1+ £777/(1 —2777i + 3777))
= (1 + 777) (L + £ 777/—1777/+ 114 2777i4).
. k22
S P
L (14777) (1 + 7772|7773+ HETTT4,

Thus

which is easily seen to agree with the result given by Brown, or by Adams, “ Coll.
Works,” I., p. 187, when we take account of the fact that

2ug =2 K(—") t
so that, in terms of the quantity denoted by g,

k=K |+ 7g.

This example is chiefly useful here as calling attention to the fact that 772 while
not exactly equal to 1,is near to it, and consequently the factor ) is only

small of the first order in mx The same weakness occurs in the

the solution.
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84. In the equation considered by Hirr (“Coll. Works/ 1., p. 268) the ratio
IkxI(n2—-1) is about (2785)-1, and there is a term slightly greater than 48xXX(2'785)~r
arising in the terms in X+l in the series for k, in which 4&A is about 0°5704; and
the series fails absolutely in cases in which n is an integer. Then the assumption
that Isla power series in X2 and the terms in X which are independent of X must
be modified, for reasons above given. The series when n is an integer has been
considered by Tisserand, ‘Bull. Astr./ IX., 1892; modifying his procedure, so as to

" include the case when n is near to 1 as well as that in which 1, we may write, in

accordance with the suggestion of such examples as that above quoted,
h?>= 144 \h ¥4 4X2A2-F ...,
and then, denoting ext+e~2tt by wr, consider the equation

d?x

dt34’[|4’4x( i KWXF'4X2(A34 - 4-e..] —0.
By the changes
t=2 £=¢eTl
. N _
-I1X = dt c-i(lt,'" [u +VN

the differential equation may be replaced by the pair

= —=*(U—m g-«V =-*(U

where
wr = r
0 =X (% kw X¥UX 4 4 —
Assuming here
q= \q x+\ 292+
1= 14XW4" \ud'ees> X'= B (14 4 4x ose),

in which B is a constant, and ur, vt are polynomials in £ and £ 1, we find, equating
coefficients of like powers of X

dur

UT4Fq>ur_x4f Qe4-see4  —Hr,
—-]—4q\Vr_x4-q&ir-24-... 4 9 VKTI;,
in which
Hr {hxF kKwxXfur X (,Bvr_]j) 4-(h2+ kavZu

Kr= 2Z-'B-'Ur

VOL. CCXVI.—A. u
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In these equations, as ur, vare to be polynomials in £ f 1
those involving £, must vanish. For r =1 this gives

hx—qx ~iB, \ +qi =
We thus write, using hyperbolic functions,
hx = kxcha, gx= B=ea

With these we find at once by integration the values of uu vu save for the absolute
terms in these, which we denote by P13 Q: respectively. The conditions for these are
to be found by considering the absolute terms in the equations for 2 ; and so on
continually.  In general, when we have found

Ul 2, V2y ..., Urly vrd,

and have found ur, vr, save for their absolute terms, Pr, Qr, we find, on taking the
absolute terms in the equations which involve dur+/dr and and adding and
subtracting these terms, that the two quantities

ksha (Pr Qr) (1r Q)

are thereby expressed in terms of known quantities. It is at once seen that there
would be no loss of generality in putting PG P2 P3 ... all zero. Carrying out the
work, and writing Mr for Pr—Qr, we obtain

q = kha\+(MXtha.—k&h2a)\2

Downloaded from http%/royal societypublishing.org/ on 19 March 2024

KEa—2MKIt h2 akxsha (6cha—(M3—MP))} X6+ ...,
where
hx_ kX
h2 1 i kx  ch2a,
h3= sh2a + kxdoL  (2shz-
Also
= 1—e M XW I+ XAW2+ ...
in which
Wx=i" 1+Pi—kkhct+(—Pi+Mj— kjsha) e~eE\ke~d
W2= ef~2("2+iMB) + £-1 I"P k1—k2(\e~a—sha)\
+P2—P"s/lia—M~cAa+kiSha( +ed
—fe~a[P2—Ma+ P"s/nx + M *e-0— k &cha +e~a)\
+ £V ° [ —-P1&1+ gM iki-\--"k2k&-k{ (sha. + ~ca)]

U 2H(K+W
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If from these formulae we determine Mand M2—

find for q,
q= kda+ HZthot X2
. A3 H2 _2£H2Z2Iza AzAa—& —™ ( —1)' N
2kxshsd sha dn,
where
H2= h2—9%4kx (2sha—\).
This formulae is apparently unsatisfactory when dat, is small, or | nearly equal

to 4A8. In fact, the series is of the form

b. , 4 g%—bz. Badd —

A3+ ...
“+2p + 8a3 16a5 ’

whose square has a form in which we can put a = 0. On squaring, we have

g2 (h 2 K X0+ 2/qH28+ X4(H2- 4VH,+2 -2 -

=
=y
@D
—
@D
>

H2= h2-h 2+ik 2

b}

nd this form is appropriate when a = 0 or = In particular, when
2=h3= ... =0, but hxs not zero, this gives

=p

2= ( h2k2 \  2+hx (Sk2V) X3+[5

+

W) +

formula reproducing the former if hx+h2 +he put for

a
Part Il. of this paper why the form of gq2is comparatively so simple.
Brief reference may be made to another way in which we may use the foregoing

equations, regarding hb2 h3... not as give

determined to simplify the result; this has been adopted by Prof. Whittaker
(‘ Proc. Math. Soc.,” Edinburgh, XXXII., 1913—24) who chooses as his condition that
no terms in £°, £ shall occur in W3 W2 ..., in the expression for x. This can be
secured by taking

Px= b Mj =

From our present point of view a more natural procedure is to take
Pi=0=Qi=P2= Q2= — Then we obtain

n2 =1+ \kxch(3—7AXxch213+ X3[kxchfi (2 +kkZN3]+...,

where we have written j8 in place of a, as this argument is now supposed to be
determined, from this equation, corresponding to a given value of n2 When 3is so
determined, g is given by

kxsh/3—kx\ zh2(3+>3 \ k@ kkhfi\ +...,
u 2

2k
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an equation which does not contain shfi in its denominator. With a view to the
comparison of this method with the two others given in the present paper we
consider two examples.  First, for the equation

+[1+4 \kowx- 4

for which w2is actually unity, we should determine fi so that
0= Yokfch2ft+ [/
where we have replaced Aby 1 This gives approximately

chfi = — \kil + 22— KBlifi  t(1—
and hence
g—iki(\ ~&ki ooe)>

while the value for /3, substituted for a, gives the series for We may remark that
for the equation

+ (I + 8% cos 2 0,
Tisserand (‘Bull. Astr.,” IX., 1892, p. 102) finds
L=« ,(1-W +1rflV +-).
As a further example take

+x{_| +1kx(I +wx¥+4Fw2+...] = 0,

which, as will appear, is an interesting equation. Then /3is to be found from

kx=kichfi—~kichzfi + kichfi (2
so that
chfi = 1 Aok Mk + A [ —

shft = L+ BECEE i) P

and hence
q= (KDt(k:ik -k 2+...).

In both these examples the value found for q follows at once from the general
formula above given for g2 of which a further deduction is found below in Part II.
In the last example the value found for gives a solution for & in a series involving
(k*K 1t will be seen in Part Il. that when x involves (&%it is in a very simple
way, and the case seems better treated as there explained. The occurrence of (k” in
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the value of g, in certain cases, is a particular case of Poincare’s theorem, * M/th.
Nouv.,” I., 879, p. 219. The phenomenon presents itself, however, as a consequence
of the use of elliptic functions in Tisserand’s theory of the small planets; see
Tisserand, *Mec. Cel.,” IV., p. 426 (or *Bull. Astr.,” IV.).

85 A very important question in regard to the differential equation under
discussion is whether g is real or not, since upon this depends the conventional
stability of the secondary oscillation determined by the differential equation. We

have remarked above (83) that when n is not an integer, and & ... are small
enough to render the series there obtained convergent, the value of q is necessarily
real. The cases in which n is an integer and = 0= ... have been discussed

by Tisserand, ‘Bull. Astr.,” IX., 1892, who obtains the result that the motion is
unstable for n= 1or n= 2, that is for the equations

+ [1+4A kvl x =0, + [4+4A&WwW] =

when Ais small enough, but stable for greater integer values of n. The formula for
@ given in the earlier part of 84 preceding, shows that for cases in which

n2= 1+4
the motion is stable provided
VhiKly > i,
the values of chaand shat, being then both real. It shows further that it is stable fo
hx — xkx= positive
provided Abe small enough. The critical equation is thus
A [+ 4N (] +tx) &2 = 0,
the other sign of Jieing obtainable by ch&nging t into t+
§6. We proceed now to the case when n 2-
If in the equation
a2
+ X [m2+ 4A (hx kwx + aa2(h2+ k2v2) + ...] =
in which m is an integer, we put
r=2 E=

U=J*nM+« —mxj, V=" inHgl  +imx]j,
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we obtain
du . )
qVv = - MTJ-Yf-), dF — h](Ur--V),
where
(p_\ {h\T‘ (A2 /\Z\Z) -Heee*
=Ir+rr.

We may then further substitute

W=Uronv, U, =roU,

leading to
= -tf-W,
W
gw = -f-u a
where
- emT 9w
m
These equations can be solved by writing
g — Xgx+ X2+
Ux—14'Xq ., W Aﬁ; TrXwx-m \w ...,
where A is a constant, and tg, W2, wu W2.. are |
For m = 2, in particular, we find that if hx= 0, the quantity A is required, and
determined in the course of the work, and 0. Butif s not zero, we must
take A = 0, and obtain gx= jrhyy the succeeding g2 g3 ... being real.
as X3
g=fax-(JV +ttM * )\2+ {M + Mi+]| - & *).] X+,
which gives
q = \h X -K (iK+ W -ih as
+ i"hxUWW -"h'+iJcX-W-hAW + W )+i

We know, as is shown in Part Il. of this paper, that the form of s valid even
when hx= 0. Then we have

g2=iX4 (h2+k2-W)Vh-k,+W) + » .,
which, when h2 —0, is only positive, provided

5kx > 3&2> hx.
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The case discussed by Tisserand IS that in which = ..=0 Then
, ="M=V (-5).

and the quantity A in the formula for W, or x, is found to be 2 +\/—b).

When m= 3, for the equation
d + (9 + 8A&cos 0,
we find A = 0, and ,
i 64.297.5 AR
u, - W = bs-*+b\Hir 4K -2+i)+....
The question of the reality of g, in cases where = 0= = ..., is discussed by

Poincare, “Meth. Nouv.,’ 1. (1893), p. 243, and by Callandreau, -ANN. Observ.,’
Paris, XXII. (1896), p. 23. So far the results are —

(1) For the equation at the bottom of p. 135 (83) q is real when IS not an
integer, provided the series obtained converges.

(2) This condition does not however include, for instance, the case when n2is near
to unity. For q is imaginary, for the equation

+[ n2+8  kgos .] 0
if  (n24)2< (4&)2 It is real if (n2)2> (47)2 and real
equal to £4”. This has been proved here.
(3) g may be real when n is just greater than 2, when ku , ... are small enough.
This has been proved here.
(4) q is real when n is any integer greater than 2, if = .. =0, but
imaginary when n=1 or n —=2. This re

Callandreau, as above.*

[ Octoer30, 1015.—It may be worth adding, in connexion with the numerical
results given in 86, that the equation

dX

~d?+csmt.x 0,

in which c is small, is solved by
X = emX],

* See the note at the conclusion of §21 (p. 184).
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in which, as far as c3

V73 (i+Mc3p
and, as far as ¢
U = 1+ csin t+c2(i R cos > n4—illcos 2 +c3(
. 11 cos 4A
* I cost—AAN/cos & === "cos 34.S05. % .
ERAIV?: 130\ 4608/

87. We pass now to the consideration of a pair of simultaneous differential
equations arising in the consideration of the stability of the motion of three particles
occupying the angular points of an equilateral triangle moving under their mutual
gravitation.

The stability of this motion has been discussed by Routh (‘Proc. Lond. Math.
Soc.,” VI., 1875; ‘Rigid Dynamics,” Il., p. 61) in the case when the relative paths
of the particles are circles.* In what follows we do not assume this.

The three particles being S, E, M, take an axis through S, say SX, rotating with
angular velocity 0, the line SE being supposed to coincide very nearly with SX.
Draw a perpendicular EH from E to SX, denote EH by , and Sli by A+Xx, where
X, ¥ will be considered small, their squares being neglected, but A is a variable finite

quantity. Draw a second axes SY through S at a constant angle 5 with SX, and

* The following references may be of use:—Charltier, ‘Die Mechanik dea Himmels/ .and “Astr.
Nachr.,” 193, 15; Stockwell, “Astron. Journ.,” 557 (1904); Linders, ‘Arkiv for Mat.” (Stockholm),
IV., No. 20; Brown, ‘Monthly Notices, R.A.S.,” LXXI. (1911), pp. 439, 492; Heinrich, “Astr.
Nachr.,” 194, 12 (December, 1912); Block, ‘Arkiv for Mat.,” X., 4 (1914).

sin
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similarly, draw a perpendicular MK from M to SY; denote SK, KM by A+£and t
IfR = SE, r —EM. p =MS, we have, with proper conventions of sign,

IV = (A+&)+/l,  pl= (A+gY+
r2=[J(A +")— N\IS —A—x\"+ [J(A+E) 3+Ij—

The accelerations of E, relatively to S, parallel to SX and parallel to HE, are,
respectively,

—E+S) AgE+M IA+ii-kCM A +%) oM 4%i)-V
—§(E+S)L\r)3+M IAth-y -Mh +HV APSW l;

the accelerations of M, relatively to S, parallel to SY and parallel to KM, are,
respectively,

N W Efi Si (Qmt+E)— PA+D) | Y3 J-(A+E) YB3 +|>—
J-(A+x)4-felv/3
R3
M+S) —E (f R\/3 j(A+f)—§->N3—A—x\
v p3 \2* r3 B3

_Tr A %A3+x) y/3

If, then, in the equations of motion relatively to S, after expanding in powers of
X, y £ vy, we equate the finite and the small parts, the squares of £, being
neglected, we obtain

A A-AOZ - £

and
A= constant, =  say,
where
m=S+E+M, 0=~, (0O=", &,
together with

_ _ _ - 3y/3 4S+E+MX+ E—M)Y
X-20Y-0Y- G-iHX o T o ( )

y +2 €X+exX- Y = §7M[(E-M )X +V/3(E+M)Y],

A3

VOL. CCXVI.—A. X
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in which X, Y respectively denote and rj—y, and also
-2 ey-ey-(tf-f) X=
y+20x+ex-1"-f3y = ?’N’W -Y v/3]

The first equations have integrals expressible by

| 1+ 2Acos 0, M

the point (A, 0) moving in an ellipse of eccentricity 2A and semilatusrectum I.  With
these values the other equations are much simplified if we take 0, instead of the
time t, as independent variable, as was pointed out to me by Mr. H. M. Garner, Of
St. John’s College, Cambridge. With this change they become

(L+2Acos 0) (X"-2Y'-X)-4A sin  (X'—=Y) =

(1+2Acos0) (Y"+*2X'-Y)-4A sin (Y'+X) = hX+bY, )

where
_8S-E-M , _ 3(E—M)</3 , _ -4S +5(E+M)
414 1 414 SN 414
and
X' dXw dX o
do* 2 3
together with
(1 + 2Acos 0 (x"—)—x) —4Asin O(x'—;&— (XM3+Y),

(ii.)

(1+2Xcos 6)(y" +2x’-y ) -4\ sin S(y’+x) +y = (X-Y"/3).

4x

The first thing then is to solve the equations (l.), after which the right side in (11.)
will be known. Considerable simplification can be introduced by change of notation;

W exp /-Z-éj-[il\ w &= eev(:plt%zrl\

A — A2 —Il = i(a—b+2ih), K —\ (a—b-2ih),
so that
T 3S+wE+wM - 3S+wE+wM HK =
'3 S+E+M ° 3 S+E+M ° 4\ 9/*
where

2 ... SE+SM+EM

M (S+tE+M)3
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further
p A+(HK)* A-(HK)» =t[I-(1-20 1,
so that
Al p+g=3 pg=Jm2
SO

u — (I +2Acos 0).(X+iY), = (I +2Acos 0)(X—
whereby the equations (l.) become

(I +2Acos 0) (u" +2iu') = AM+ Hy,

(1 + 2Xcos 0) (v* —2 Kw-f Iy

m which u' = du/dO, &c., and then
= K*w+H*v, Hr = Kbi—Hh;,
iso that 4> Tr are both real, and
<f£4-N = 2K*(1+ 2Acos 0) (X +7Y), <>— = ZTI» (I + 2Acos 0) (X—

and the equations (l.) become
1+ 2Xcos 0) (@>'—2d") =

()"
(L1+2Xcos 0) (**" +24>") = g*,

in which, beside the eccentricity 2X, there are the two constants g, which are
dependent upon the single number m.
The equations (I1.), by means of the changes

U = (I +2Acos 0) (x +i1y)V= (I +2A cos 0)
become

(1+2Xcos0) (U"+2tU") - f (U+V) = o (1- w)v,
(1)
(I +2Xcose)(V"-2»'V,)-f(U +Y) = 2~(1 -w)u.

Consider now the equations (I.)". We know that the solutions are of the form
= Ce"F+CjeFi+Cae+C 2"F3
*=Ce"G+Cjer+C G .+C"Ga,

where C, CI} C2 C3 are arbitrary constants, F, Fj, ..., Ga G3are definite functions of

period 2x, and k kX2, K3 are definite constants. When X= 0, substituting

equations
= ek = Peid
X 2
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we obtain _ _
o2+g>+ 2firP = o, (2+q)F-2i0- =0,

so that the values assumed by ic ki 13 when X = 0, are the

{o2+p)(cr2+ q)—4RL = 0,
or

(B—or2+\m 2—0.
Thus
£—% K +m)E (1 —m)*],

and the four values are all imaginary when > 1, and all real when < 1
Supposing S> E > M, we find at once, from the formula for that the least
possible value of S/(S+E + M) in order that < 11is 0'9G147..., but this requires M
to be very small; but if S/(S+E+ M) be greater than 0*9618..:;, then m is certainly
< levenif E—M. In our solar system the sun’s mass is more than 99*8 per cent,
of the mass of the whole system; thus if S in our problem were the sun, and E, M
were any two planets of the system, the condition for < 1 would be easily satisfied.
We shall then suppose m<L
Now compare with the equations (1.)" the equations

(I —2X cos Q) (='—=21") = po>,

(in.)

obtained from (1.)" by change of the sign of X They can also be obtained from (I.)"
by changing O into 9+#. This last change shows that the characteristic constants *
belonging to the equations (I11.) are the same as for (I.)", while the former change
shows that the values of kproper to (I11.) are obtained by changing the sign of Xin
the constants kappropriate for (1.)". When m is such that the values of k for X = 0,
namely, the four values of «above, are all different, a change in the sign of X cannot
interchange the values of kamong themselves. Thus we infer that each kis unaltered
by changing the sign of X; for two of the values of a can only be equal when 1.
In the applications in view of which the question was first considered, S denotes the
sun, E denotes either Jupiter, or another planet such as Mercury, while M is of
negligible mass. When E is Jupiter we have

(1-2X cos 0) (F/+ 2d) = gd+

mr —27x05d (1 + tokbo)2= 0*0257, X = |-(0*05) = 0*025,
and m2x is nearly unity. When E is mercury
m2= 27/5*106 = 0*0000054, X= i(0*2) = 0*1,

and 2= 54x6 m = (2*3) X!, nearly. In either case we may regard m as small, and
the four possible values of <are approximately

+(1- kmd |, +

&
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o* which the first two correspond to a period nearly the same but slightly greater

than that of E, and the last two correspond to a period — times that of E.  When

E is Jupiter, this last is  times the period of Jupiter, or nearly 150 years; when E
is Mercury, this period is approximately 200 years. As is small we have approxi-

mately
p=3-iVn2 q= ,Vn2

To neglect m2would be to neglect the ratio 27E/S; but we may remark in passing
that if we put g= 0, p =3, the equations give

\/ 1 24> = C, a constant,
together with
$,+ 1+8Xcos«$

1+ 2Acos 0 2C,

of which the integration can be completed in finite terms. For it may be verified

that the equation
(1 + 2Acos 0)$>"+ (I + BAcos 0)d> = 0

possesses the two integrals
sin 0l + 2A cos 6),

cos O0—&A(l + sin2 0)>—4A2cos #+ 8A3cos 20+ 12A2sin (I + 2A cos 0)

where

do
* =J1+2Acos 0

88, We consider briefly, first of all, what would be the application of the method
of infinite determinants to the equations (I.)", which we may now write, with x, for
< F, in the forms

(I + 2A cos 0) (xz
(1+ 2Acos 6) '+

We should substitute

= ay.

X= XA relkt)y =

and equate to zero the coefficients of the various powers of eld The substitution
gives, if £= efl

[I + A(f+ f-1)] A[An(c+n)2+ (k+7)Bl fwjp2A2 7 = 0,
[1+xa+Tf-D)] Z[Bn(K+ny-2i(K+n)AJ £-+g2B,f" = 0,

and, denoting k+ Nby  we obtain for the unknown coefficients An Bnthe equation

X(Pn-ind-i + 2iBw Win D) + An(ir2+£>) + 2fB, Jen+ A(AnHCn1+27B,,4a,;+1) = 0,
A(—2iAn X I+ Bn 12, )—2iArh+ Bn(eci2+ )+ A (—2«AntltHl+ B, +1Kh+i) = 0
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If we now write
Pn= Ankh + Qn= 2I1Ark+

which are equivalent with
A KP,-2iQn -0 2iPn+KmQn

n Kk *ntaz-4)’
the equations may be replaced by
~Pn-I +AnA7ION + XPntl =0 )
Qn-l + GPn+ etQn+ Qn+l= d,
wherein
an~ 1+J-4" 6'"“ *(J-4)’
' 2
~ —— — 1+
cn 72?1“_4) dn—1 24
so that
a (i c_ K—K2+im2
A nnHRK2+)
it being remembered that p+0= 3 pg ="m2
When we eliminate Pn x ..., Qm1 from th.e equations (A), we obtain an infinite
determinant, which, leaving aside questions of convergence, we may denote by
X o a_X X ° [ [ |
e X dl « X .
° ° X ° a b X o
[ [ ] [ ] X C d ° X
. . . e X o ax A
X d dx
The product of the diagonal determinants ardn—brenis here
sin X (lc—=) .sinir( —B .sin  (k—3 .sin 7( —4)
sin4 ik
where <, 2 alai are the four roots of ed—2+ = 0, previously considered

using this determinant to obtain a further approximation to = it would seem
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appropriate to use a theorem* for the expression of a determinant of rows and
columns as a Pfaffian, a sum 1.3.5... (2n—) terms, of wr
of n factors, each factor being of the form

(12) = alb'l-a\b l+ad,2-a'22+... +arb'n—a'rbn
where the elements
ai&, Qh2pee>
a\bla'd'2... a''n,
are the constituents of two rows of the determinant. For in this case the factors (12)

& are easily calculated. But we do not pursue this method.
89. Instead we proceed as follows. In the equations

[1+A~+1]] =px,

_ [1+X (" +1-1)] [y"+2xfl=  ay,
where f = write

X = eikX,y = ery,=

in which 2 4 ... are certain functions of p, to be determined. Then the equations
ecome

o

[1+ X A+ r D] [X"—2Y' + 2%/c(X'—Y )—c*X] =
[1+ X A+ D] [Y"—2X'+ 2%(Y '+ X)—&] = qY,

/lroyal societypublishing.org/ on 19 March 20

which by the general theory are capable of periodic solution when k is properly

Schosen.  Put then

<

§ X=1+ XEH  Hew> - Y = P(1+ Xfsi+ X2 2+ ..),

%Where P is a constant; the differential equations then take the forms

§ (1+ XgHO + XH] + XH2+ ..) =

o

a 1+ W)(KO+ xK4+ XK2+ ...) = qY,
w denoting Comparing the coefficients of like powers of X

HO=p, KO= Pff HAwHo = pfo, Kx+ wKo = gP”x,

and, in general,
Hb+ wH n-l ¥, +wK,, 1=

H =p & w), Kj = Pqyjs! w\

so that

* Proved in Scott-Mathews’ ‘ Determinants’ (1904), Chap. VIII, p. 99, § 19. Also in Baker,
* Multiply-periodic Functions,” p. 314.



Downloaded from https://royal societypublishing.org/ on 19 March 2024

152 PROF. H. F. BAKER ON CERTAIN LINEAR

and, in general,
H., = p[<Pr-W<Prileee + (-w )1,

Kn= Pq [fan wfan x+ wZan 2-
where Hn K, are the coefficients of Aerespectively in
X"- 2Y'+2A(X'- Y) - %,

Y"+2X'+2ic (Y'+ X) -* 2.
In particular

HO= —2*VP—82 KO= ,
so that

«-\-p+2ar¥—0, 2 = (a3+qg)P,
and, as previously,

ad—o2+iw a= 0,
while, if we write
p _ +.P 0 _ V2+(Q
— Zdier ™ ’

which are both pure imaginaries, we have PQ = 1

Next
Hi= ()fl— 2jtfa\ + P\ i) —<R0i,
Kj="P [fa'\+2Q fax 2 +Q"N)
putting these respectively equal to p (fa—w),P
equations for faand faxI f we assume

fa —AA+A_A b  fax= BA+B_"-b
and notice that

(fa) = g =
we find, writing anbr
Aj (2+p) +2P*VB1= p, A X(<r_?+p) +2PiV_1B_1=p,

it —AX. 2Q%eri+ (<2+q) Bx= q, —A_12Qfo- 1+ (< 12+g) = q.

_ AX= - t,2+-\m2
these give

AJAT — (0] —c|r(Cf2+p) a,

AA = {Ki2+p) q+-0(cr2+q)p,

with similar equations for A_x B j.
Proceeding similarly to equate terms in A2 we find

fa'2r 2ia>2— Ma—2P (fa'2riofa,) —2«, (IP+ @) =p

fa'. + 2iryfa’2—aZa2+ 2Q (fa +i(fad =2lca(— + = q (fa2~ wf
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If herein we assume
R—A22+A_7"+H, \R=B2+B_2 2+K,

and equate terms in £2 g~2 f°, we obtain

A2 «2+pP) RP?(TB2= jp(A!-1), A 2 + PR<T B 2=p(A_!—I),
—A2. 2Qi0-2+ ¢r2+g) B2= g(B1-1), —A_2.20*V_2+ («2.2+Qg)B 2= g(B_1I1-1),
and
( o2 H -K) +2K(£P+or) (Al+A_1—2),
—(d2+d) (H-K) +2 KK—Q+a) = (Bl1+B_1-2),

wherein the coefficients of H —K and KZhave for determinant

(@2+p) (<Q+a)+( )("P+<y,
a (l —m2*

which is

and is not zero. That H, K should not be determinable separately is obvious
d priori; to regard H as zero would be equivalent to dividing X, Y by a power
series in X2 with constant coefficients. We notice that the successive coefficients
Aj, AT ..., B2 B_2are all real. The value found for Kis

7-Gcer2
0« pAQ(l_202(1 4 a

A similar procedure can be continued. The differential equations for §8  can be
solved by forms

28= AXr+A 3 3+Hx+H I\ = B3+B_3 3H+KE+K I\
the differential equations for 04 by forms
04= Ad+A 4 4+ MX2+M 2 2+M,
N = BX4+B & 4+NZ+N_Z 2+N,
and then the terms in £ will involve the unknown quantities
(<*HpP) (M -N)+2*4(tP + <),
-(R2+g)(M-N)+2/c4(-zQ + <),

from which ftis found. And it serves as verification of the computation to see that a,

involves H, K only in the combination H—K, as it must in order to be determined
without ambiguity.
VOL. CCXVI.-—A. Y
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The value found for x is of the form

X=e*[i+ (K XT)+ (XT, XT2x2)+(XT, XT3x% \T I
XT\ XT, XT2x4+..],
or, say,
X = "efO(vi+ X+ XA-1w 1+ XoE2 2K “W2+ ..
where every one of ug ubu uz

not generally vanishing with X2 And similarly for y.
810. The interesting case of the preceding solution is that corresponding to the
value of a given by

s=i[(I+ra)* —1-m)*], =Im(l+y +...).
The quantity
7—612
M €(1-20-2(1-4")
is then equal to
|-m(7 + %-m2

approximately, and «x2 is of the order mX2 XVhen X, this is of the order m5or
x5/2; when mcc X3 it is of the order m33or xs.  Thus a very few terms of the preceding
solutions would seem to be sufficient for practical cases.

PART II.

811. A large part of the interest of Poincare’s ‘Methodes Nouvelles de la
Mecanique Celeste ’ depends on his criticism of the convergence of the series used
by astronomers, particularly those series in which the time enters only under
trigonometrical signs. In t. Il., p. 277, he refers to a linear differential equation

g +*(i+%) =0

in which \E for our purposes, may be supposed to have a form
—4a cos ht+Ab cos

in which ap are small. When it are commen
coefficients, and Poincare makes the convergence of the series expressing the solution
depend on this circumstance (EMeth. Nouv.,” t. I., p. 66). Considering the case in
which li and k are incommensurable, and so \ls not periodic, and supposing a, b to
have common a small factor iy he obtains formal solutions of the differential equation
in sines and cosines, and says “les series . . ., quon peut ordonner suivant les
puissances de /x ne sont plus convergentes ” (*Meth Nouv.,”t. Il., pp. 277, 278). On
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the contrary, | believe that the solution of the differential equation above, arranged
as a power series in a and b, converges for all finite values of these parameters,
and that this is a consequence of a general theory of linear differential equations
considered in papers* published by me in 1902. As this theory is capable of
application to many other differential equations, as will be illustrated below by
application to the equation considered by G. W. Hinr for the motion of the moon’s
perigee, | wish to deal with it here, repeating the argument in part.
812. Consider any system of linear differential equations, the 2coefficients

Cg? uilx 1+ ... 4-uirxn i=12 ..

ufj being functions of t. If these are considered only for real values of t, the
properties which we require to assume are that, along a certain range which we

shall suppose to include t =0, these functions are single-valued,

capable of integration, the same being true of certain other functions derived from
these by multiplications, and further, that certaiif infinite series, which we shall
prove to be absolutely and uniformly convergent, are capable of differentiation, term
by term. But in the majority of practical cases the coefficients utf may be looked
upon as the values, when t is real, of functions of a complex variable t. In this case
we suppose a star region to be defined by lines passing to infinity from certain points
in the finite part of the plane, wffiich we call the singular points ; we suppose 0
not to be a singular point, and the lines may be straight continuations of the radii
joining the origin to these singular points. Within this star region, bounded by the
lines in question, the functions utj are supposed to be single-valued and capable of
development by power series about every point, forming monogenic analytic functions
in the usual sense. Taking then any region within this star region, we obtain
solutions of the differential equations, with arbitrary values for 0, in the form of
infinite series of functions, obtained by quadratures, which are proved to converge
absolutely and uniformly within the region taken.

The method of forming these solutions is extremely simple, involving only
integrations and multiplications, but the way in which the work is arranged, though
often of great utility, does not seem yet to find common acceptance, and some words
must be given to it.

* “Proc. Lond. Math. Soc.,” XXXIV., 1902, p. 355; XXXV., 1902, p. 339. See also the same ‘Proc.,’
2nd Series, Il., p. 293, where it is explained that the same idea had already been used by Peano
and others. To me the method was independently suggested by the theory of continuous groups,
‘Proc. Lond. Math. Soc.,” XXXIV., 1902, p. 91. Poincare’s conclusions as to the convergence of
astronomical series have been criticised by G. W. Hirn, ‘Coll. Works,” IV., p. 94; but the point there at
issue is different from that considered here. In connexion with an example considered by PoiNCARKk
loc. cit,, p. 279, see Bruns, *Astr. Nachr.,” No. 2606 (CIX., 1884), pp. 217, 218. Also Borel, ‘Theorie
des Fonctions ’ (1898), p. 27 ; Hardy, ‘Quart. Journ.,” XXXVI., p. 93: ‘Proc. Lond. Math. Soc.,' 1.,
p. 441, and the references there given.

Y 2
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The nZjuantities uf can be arranged to form a square of n rows and n columns,
the first suffix i denoting the row, and the second suffix j denoting the column in
which a particular element ul placed. This square is denoted
say u,and called a matrix. The symbol formed from the two symbols
written in a definite order, denotes then another matrix whose ( ,j)th element has

the value
UilVIj+ Ui 2 V2j+ eee+

which is formed from the elements of the  row of the matrix u and those of the

jth column of the matrix v. This new matrix is called the product of and ,
taken in this order ; it is generally different from vu. The symbol 1, when used for

a matrix of an assigned number of rows and columns, denotes the matrix of which

every element is zero except those in the diagonal, all of which have the same value,
unity; it is easy to see that any matrix is unaltered by multiplication with the
matrix unity of the same number of rows and columns. The symbol u~I denotes

the matrix such that the product? u~lis the matrix unity;
to u~lu ; the symbol u~xis nugatory when the determinant formed with the elements

of u is zero, and only then. In general, the determinant formed with the elements

of u will be denoted by \u\By the sum, u+v, of two matrices
nurriber of rows and columns, is meant the matrix whose (i, j)th element is

and, similarly, for the difference. Frequently we denote the aggregate of a row of

n quantities, x}, x2 ..., xhy the single letter x then if be a matrix of
columns, the symbol ux denotes a set of n quantities of which the is

WHiXi + e~z H eee ‘4 Uirftn’

By the differential coefficient of a matrix we mean the single matrix whose elements
are the differential coefficients of the given one. In what follows, if the
element of a matrix ub a function of t,we denote
(ij) th element is the integral of u yaken inregard tot f
an instant this matrix Qw be denoted by v, the product matrix uv will be denoted
by uQu, and the matrix Q (uv), or Q (UQu), will be denoted by QuQu. Similarly,
Q (u.QuQu) will be denoted by QuQuQu, and so on.

Now consider a matrix of which the (i,j)th element is the infinite series formed by
the sum of the (i, j yalements taken from the matrix unity (of the same nu
rows and columns as u), the matrix Qw, the matrix QuQu, the matrix QuQuQu, and
soon. This will be denoted by

0 (u) =1+ Qu+QuQu + QuWQw+ ...,

and the series on the right will be said to be uniformly and absolutely convergent
when this property is proved to hold for each of the n2infinite series which constitute
its elements.
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Repeating now the demonstration given, ‘Proc. Lond. Math. Soc.,” April 10, 1902,

p. 354, let denote the (i, ])th element of the matrix Q that is,
Iﬁcu{at'
0,
@O ;
similarly, let u{jd denote the element of the matrix QuQvi, namely,

Wo=rfk < I+ +.o+uiun@]

and so on. For the region chosen within the star region above explained, when the
functions uee functions of a complex variable, or for the range of values of t
adopted when the elements u{ are functions of a real variable, there will exist a real
positive quantity Ms< not exceeded by the absolute value of u{ for the values of t

involved. Taking a path of integration limited to such values, from the origin

=0

to t= t,this being a rectifiable curve of length s, let be an intermediate point of
this path, the length of the path from the origin to  being Then we have,

considering absolute values,

K @0I<Mij |
and in particular

I U B (h) I< Sjivy.

Similarly,
ux2: (f}o< I + ... + M15IM1j) dsx

now if M denote the matrix whose (
matrix M2 formed by the product of M with itself, will be

M My + Mi2M3 +... + MinM

which we may denote by (M32y ; thence

|tt,/2(t) 1= (M%Jf0 s,ds, S (M3
and in particular

We can continue this process. The next step will be

i«jIEQi= g <M (M%W+eeetm»(M%i>

j)blement is M,
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Thus we see that each of the n2infinite series constituting the elements of the

matrix
»r (m) —AhQwH +...

has terms whose moduli are respectively equal to, or less than, the real positive terms
of the corresponding infinite series constituting the elements of the matrix

i+tsm+ " m2+ " m3+....

This last is, however, certainly convergent for all finite values of whatever be
the (finite) values of the elements of the matrix M.  For the case when the algebraic
equation satisfied by M has unequal roots, its sum is given by the formula of *Proc.
Lond. Math. Soc.,” XXXIV., February 14, 1901, p. 114, which can be easily modified
to meet the case of unequal roots.

Thus each of the elements of the matrix 2  is an absolutely and uniformly
convergent series; in the case when the elements u{ are functions of the complex
variable, as explained above, it follows that every element of the matrix §  is a
function of the complex variable, and differentiation (and integration) of the series
representing this element is permissible, term by term. For the case of real functions
we introduce this as a condition.

Hence, if x°denote a row of n arbitrary values x®, x.f, xrf, the row

quantities denoted by
X =2(u) x°

Is at once seen to form a set of n integrals of the differential equations, reducing for

t = 0 to the arbitrary values x°, that is, x{reducing to x® For if v denote any
matrix, of rows and columns, whose elements are differentiable functions of
denote a row of n constants, and y the set of n functions given by

vx\

that is,
VA" +VIXj +... +virxif,
we have

dyt dva o .dvin O
dt ~ dt '"+- + dt ”

which, if 0 denote the matrix whose elements are the differential coefficients of the

elements of vive can denote by
dy = ro
it dtt

X = 2(u) X,

Hence the equation
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gives
(L +Qw+ QuQ U+ ..) @
= :t -jf1 + Qu+ Q (UQu) + Q (UQuUQU) + ...]
= [u+ uQu+uQuQu+ ...]
= bl +Qw+QwQw+...] o,
= uQ (u)xe,
or
dxjdt = ux,

so that the functions x = Q (u) x° satisfy the differential equations. By the definition,
Qiiij reduces to zero for t =0; hence 12(u) reduces to its first term, the m
when t =0; that is, X =12(u) x° reduces to x = when = 0.
In what follows we shall require a particular property of the matrix 12(u), given in
‘Proc. Lond. Math. Soc.,” XXXY., December 11, 1902, p. 339. If u, v be any two

matrices of nws and columns, of similar character to the considered above, the
property is expressed by

2(u+v) =) 221 W)}
where [12(w)]-1 is the matrix inverse to 12 (a),defined above, sucl

The theorem is nugatory when the determinant of 2 is zero. It is only equivalent
to saying that if in the system of linear differential equations

dx _ L
dat = (u-\-v)
that is,
c(l;;{ (ua+viy) X¥ ...+ (uintvin) xH

we introduce a set of n new dependent variables, denoted by 2, by means of the
equations
X=2( B, or 2=[12W)]1x,
then
dz/dt= [12(it)]-1\Q (u) 2.
This follows at once from

(«t«)* =g =] [O(«)»] =[A O(«)],+Q
= WQ N\ 2+ R2(u) A = uil (uy2+2 ~

=  Ux+12 (u)d{‘ >
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which gives
vx vQ( w

In what follows we shall generally write Q-1  in place of [Q (w)]"1
Another property to be noticed* is that the determinant of the matrix Q (u) is
equal to the exponential of the sum of the integrals from 0 to £ of the diagonal

elements of the matrix tor, if
equation

a @ = uQ
already remarked, is the aggregate of the equations

= uA 1+..

Further, the differential coefficient of a determinant of rows and columns can be
written as a sum of n determinants, each of which is obtained from the original
determinant by replacing the elements of one row respectively by their differential
coefficients. Hence we at once see that, if A denote the determinant of 0 (u),

dA/dt—m11 4"

which establishes the result in question.
In particular, if the sum of the diagonal elements of u,

un+u2+ ... +um

be zero, the determinant of (u) is independent of t, and is thus equal to unity.
This result is of frequent application.
813. After these introductory remarks we may at once show that the equation

+a(l+4 a os ht+4 cos ht) =0,

to which reference has been made, is capable of solution as an absolutely and
uniformly converging series in a, b, whatever h and k may be. It will be as simple,
and of utility for other applications we wish to make, to take the equation

°~ +x(n2-\-is) =0,

in which we may suppose n to be an integer.

“ Cf. Darboux, ‘Compt. Rend.,” XC. (1880), p. 526.



Downloaded from https://royal seeietypublishing.org/ on 19 March 2024

DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. Id
In this last equation, put

X=ieM( -inx), Y =\e~* (g +to*)

leading to
—inx = Xe~int— Yeln= ;
then we have
- 1 £ e<nt/Xe-int-
dt 2n X ?
dy .
- A e~int Xe~
2n v ( 7
W riting
2 it=t, £=¢eT
these are
o i(x-wi, £--£«~-n
or, say,
*<Xx'y)
n I/
where, as is usual, the single quantity — written before the matrix, is to be

multiplied into every element of the matrix.
\js= 4a cos ht +cos

Jr (X, Y) = (ap +bq) (X, Y),

where g), g denote the matrices

Sz (24 +E-**F)) -0, S\, ? = I(EX*+£m**)/-1 fy
w-11/ w -\ 1/
Thus the solution is expressed by

(XY ) = Q(ap +bg)(X\
where Q ( ap+hbaq) is of the form

ciQp+bQq + aXpQp+ab (QpQq+QqQp) +&gQg +...,

and we have proved that this series is uniformly and absolutely convergent.
If* we assume such a form of solution it is easy by successive steps to obtain the
values of the co€;fficients independently of the method we have adopted. W hat is of

present importance is that we have shown the series to be convergent, a fact which
appears to be denied by Poincare.
VOL. CCXVI.—-A, z
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8§ 14. Leaving aside this point, we pass on now to the application of the general
method here explained to the computation of the integrals of particular differential
equations with periodic coefficients, as, for instance, the equation for the motion of
the lunar perigee, considered by G. W. Hill.

It is known from the general theory that the solutions of the n equations

dxjdt = jqi+ ... +~Jreth 12 ..., )

in which uiu ..., uinare single-valued functions with a common period, say w>can be
written, in the most general case, in the forms

X = +...+ Are
wherein Ab ..., Anare arbitrary constants, X ...,  are n definite constants, and the
functions are nBefinite functions all with the period In me
is the constants X% ..., \which it is of most importance to find; when t

pure imaginaries, the motion* represented by the differential equations presents,
beyond the fundamental period w, secondary oscillations of periods 2«  and the
motion is conventionally said to be stable.

We show first how this form of solution naturally arises from the point of view we
have adopted.

Write QO* (w)in place of Q(u), and for simplicity write only two rows and column:
of the matrix, though the argument is quite general. Make the limitation, which,
as is well known, does not cover all cases, that there exists a matrix of constants, h,
of n rows and columns, whose inverse is denoted by Al, such that the complete

matrix QOM uxan be written in the form
QW (u) =h/eicw 0\ hrl
\ 0, e*0
with only diagonal elements, here denoted by . ei@dVin the reduced matrix. This

will be so, in the technical phraseology, if the matrix QOV  has linear invariant
factors.! Then, from the definition of 22(u)}

V- H(u)= Qw-i(u). Qv (u),
while, as u has period W,
Quvtt ( uF Q0 (u).

* Interesting physical examples are given by Lord Rayleigh, ‘ Collected Works/ I11., p. 1

f A proof of the general theorem for the reduction of a matrix, valid when this is of vanishing
determinant, is given, ‘Proc. Camb. Phil. Soc.,” XIl. (1903), p. 65. The literature of this matter, which
begins with Sylvester, ‘Coll. Papers/ I., pp. 119, 139, 219, and Weierstrass, ‘Ges. Werke/ I., p. 233,
is very wide. The reader may consult Muth, ‘Elementartheiler/ Leipzig, 1899.



Downloaded from https://royal societypublishing.org/ on 19 March 2024

DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 1G3

Hence
Qf+# fh = QO*
\ 0, eiQW
and so
QO fi h/e~icAwtD \ = QO* . 0
0, e—icniw+t) 0, e—ic*t

This shows that the matrix on the right has period w. Put then

Ra Qo 0\~ -1,
0, e~i&
which has period w,and is such that P = PG =1.
be written in the form
Qor (u)
\ 0, e**/

which is the theorem in question.

(1 0

The matrix can therefore

—P</eh/eid, 0\

We now compare this with the form of solution of the original differential

equations by the method of successive approximation followed
Laptace, and others. We have

by Lagrange,

Vet 0\= [+it/cQ\ +~/ci* O\ +..;

0, W, 0,
thus

iV (u) = PO+tP {hyh-1) P
where P is written for POt and y is written for

Tca 0\.
0, ic2

If then, as in Laprace, “Mec. Cel.,” Liv. Il., Ch. Y., t. I., of the edition of 1878.
p. 266, we obtain the solutions of the differential equations in the form

(Po*+ A+ £B + ..)

where A, B are certain periodic matrices, and is a row of arbitrary constants,

we can obtainthe constants icu

ic2which are the most impor

applications, by taking thematrix A, which arises as the coefficient and ¢

in our notation to
fV (¥-'),
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putting therein t —O0, so obtaining, say AQ equal in our notation to hyh \ and then
solving the determinantal equation

IAO—x| = o,

whose rootsare icand ic2This process W

general procedure explained by Laprace, in the passage above referred to, for
bringing the time under trigonometrical signs. We have considered only the case
of linear differential equations with periodic coefficients, and have supposed QOM ) to
have linear invariant factors; Lapiace’s method, if less definite, is of much wider
application. An interesting exposition of the method in general is given by
M. O. Cattandreau, “Ann. de I’Observ. de Paris,” XXIL, 1896, pp. 16, 20.

We may notice that
AO0'=h/icu 0\h~x

\ 0, 1&J
gives

0 (AQ = hlg 0\

\ 0,

so that we also have
Q{u) = PM2(A0

—PRo* (1 + "A0+ N 20+ L),
and the quantities eld&@Nare the roots of the equation
| vV (u)~-p\rv= 0.

815. When the sum of the diagonal elements of the matrix u is zero, the

determinant of {8 unity, as above remarked. In this case, when
guantities ercyel@Nare inverses and c2=
| Qwv(u)-P\=10

gives at once the value of coscw. This appears, however, a less advantageous way
of determining cbc2than that explained above, as requiring greater approximation
in the calculation of  ( y)as will be seen in examples.

The fact that cu c2 are equal and of opposite signs is a particular case of a
well-known theorem for the variational equations arising in the general dynamical
case, which is proved by Poincare (‘Meth. Nouv.,” I., 193). The following proof,
though longer, appears more fundamental in character. The general dynamical

equations being
dxr _ 8 dtp I

dr dt dxr
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nt to suppose ro have the values 1,2; let
Xr o),
be a solution of these equations. Substitute in the differential equations
@ (@) 't (0 "t *1> *

and retain only first powers of the quantities £ and which are supposed to be
small. We thence obtain a system of linear differential equations of the form

fdi,
N \ dt
N
@e ftis the skew-symmetrical matrix of constants given by
ft = 0 -1 0 0
1 10 0 0
I 0 O 0 -1
\'0 O 10
(so that ft~l= —t), and A is a symmetrical matrix whose elements are functions of t.

We then have the theorems following —
(&) The roots of the determinantal equation for x,

\ft~1A -\\= 0,

fall into pairs of equal roots of opposite sign ;
(b) The determinantal equation for p,

QU3~1A)-A= 0,

Downloaded from https://royal societypublishing.org/ on 19 M

Is a reciprocal equation, unaltered by changing p into p-~I.

To express the proof we require a -notation for the matrix obtained from a given
matrix u by interchanging its rows with its columns, thus placing the element in
the (j, 1)th instead of the (i,j)th place. This transposed matrix may be denoted by
trs (u) or by u.lt is easy also to show that

[12(W)]-1 = trs [12(—u)J.
fhen (@) is immediate from the obvious relations among determinants expressed by

|A—#\| = |[A— ft\\= |A+/3)j,
since A = A ft = ft
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For (b),since
ftQ (u  ft-E Q

we have the following transformations of matrices

[Q (ft-1A)]-F trs [Q (A/3-1)] = trs\I$Q = ft-1[trs Q (/3 1A)] ft,
and hence, writing Q-1 (u)for [Q (W)]-1, the following equations amor
\Q-J (ft-1]A)—p\= [trs Q(BIA)—p| = ||,

which establishes the result in question.
§16. In many dynamical applications the matrix A is a sum of two matrices

A=a+S§5

where a is a symmetrical matrix of real constants, and * a symmetrical matrix whose
elements are small. Suppose, further, that denoting a row of 2n real variables
pX  pP2.., the matrix a is such that the quadratic form

NAOLjjPIPj
does not vanish unless every one of the 2 nkements

the determinant ja\ is not zero. Then, if this quadratic form be denoted by ap2
and if each of £ and jie a row of 2n real quantities, the form

v-d+il) (E—in)> = ag2+ia(tlg—g]) = a(£2+>),

has the same property.
When this is so, it can be shown that the roots of the determinantal equation in

:O’

are pure imaginaries, and that the invariant factors of the matrix are linear.
As the proof is not long it may be given here (cf. “Proc. Lond. Math. Soc./ XXXV.,
December 11, 1902, p. 380).

Let s satisfy the determinantal equation

ld—ftp |=0;
as the determinant |a| is not zero, \[s cannot be zero. Then 2 quantities  x2 ...,
whose aggregate is denoted by X,can be taken to satisfy the
(a—ft\k) = 0.

If xOdenote the row formed by the 2n quantities which are the conjugate complexes
of those of x, we have in turn

<ARRO= \fsftxxQ aXOX = \JsftxX, axk = Afsftx(,
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and, therefore, \lNbeing the conjugate complex of \fs

axx0= —
Hence
(-7 + 7.-% ax0= o,
y Vi
showing that = 0, which proves that \kis a pure imaginary.
Writing A for the equations above are the same as

(a-1/7—A)X 0;

§We prove that the invariant factors are linear by showing* that it is not possible

%to find a row of 2 ngantities yl } y2
§ (a-1/3—A)

oFor this woidd involve

= (fi—cc\)yx0= axx0

gof which the right side is real, so that, A being a pure imaginary, either of these
Svould be equal to

(/ 3+a\)yx = (i3+K\)xy0= (-(3+a\)xyQ
f which the last is zero in virtue of

(a-/3-Aaxs= 0.

2As axx0is not zero, the assumed equation for y is impossible, and the invariant
Sfactors are linear.

yal soci eté;publ ishi

E From this fact it follows that it is possible to find a matrix such that
o

= h-'p-'‘ah = j %x 0 0 0

3

g | 0 —9%1 0 0

=

3 l o o <2 0

a)

y 0 0 0 —icr2

where o, a2are real. Then the given differential equations, which are of the form

if transformed by the linear substitution
Ei> %>  w) —h (X, Y3 X2 YY)

* See, for example, ‘Proc. Camb. Phil. Soc.,” XI1I. (1903), p. 65.

...,such tha
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take the forms

X dY, dX2 A
dt dt’ dt )(<T+6) (%, Yj, X2 %3,

where < denotes the matrix above written, with only diagonal elements iau &c.,
and 0 is the matrix

0 = A1?-1 .
The solutions of these equations are then expressed by
(X Vi X2y9 = atr+e) 4 v,
where XjQ Y#, are the initial values. Now, by a previously given formula,

QE+e) = Qe o [Q-1(F) 0 ()],

where Q (a) has the simple form

the solution is thereby expressed in powers of the small quantities occurring in 3.

The preceding work has wide applications; a particular case is that of the
oscillations of a dynamical system about a state of steady motion, for which S, and
0, is zero.

[ < Coter30, 1915.—To prevent misunderstanding, two remarks may be added to
816. The condition that the quadratic form should be positive, though sufficient,
IS not necessary in order that the roots of the determinantal equation (/3~'a—\fs) = 0
should be pure imaginaries. For instance, if a, b, u, v be real positive constants, and
H be a quadratic form

H = (yi-nx22+ib (y*-mx"2- N x 2-

the motion about xx= 0, X2 =0, yE O
xX—O0H/02/j, yx— —OH/0#!, x2= 0H/0?/2 =

is instantaneously stable if ah  (m-—)2 (it+v)2 the correspo
having all its roots purely imaginary. This essentially is the case noticed by
Thomson and Tait, “*Natural Philosophy/ 1., pp. 395, 398, where the illustration is
that of a gyrostat balanced on gimbals. A simple illustration is also that of the
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oscillations about steady motion of a weight suspended by a string of which the
other end is made to describe uniformly a horizontal circle, in the case in which the
string intersects the vertical drawn downwards from the centre of the circle described
by its upper end. This “notion is not, however, secularly stable when there is
Dissipativity (Thomson and Tait, as above, p. 388); and, of course, not instantaneously
stable, the roots of the corresponding quartic equation having real parts of which some
are positive.

A second remark relates to the generality of the form of the differential equations
used in the text. Equations such as

ATN 3T, . . * o SF ,0Y

dt \ax“ 8r" +@ix+" ‘t + A + Q,
of xk., xn capable of expression in terms of n functions
/3n the form
O = S8
Ps Zxs Zxr

are included in this form, with a slight modification due to the presence of the
Dissipativity F, and the supposed non-conservative forces Q.. For this it is only
necessary to take

L
H )ix-;-.lr_r+’...+’.(r)%1’]"
CXn
and to eliminate XU., xn in the familiar way, from the equations
Then the final equations are
Xr 8H . OH
ay” dxr

Particular illustrations are: (1) the equations of Thomson and Tait (as above), p. 392,
for which the coefficients f3s are constants. Then we may take /3 =
where the constant coefficients crs are in part arbitrary; (2) the equations of Lord
Ketvin for liquid motions of ring-shaped solids, ‘Collected Papers,” V. (1910), p. 106 ;
(3) the equations of motion of a system relatively to a rotating frame (Lamb, ‘Hydro-

dynamics,’ third edition (1906), p. 294. Bhomson and Ta

and p. 319), for which we may take, if (E, £) be the co-ordinates of a point of the
system relatively to the rotating frame,

/L

VOL. CCXVI.— A. 2 A
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The equation of energy in general is at once seen to be
— T zjar_ . 1VQ:
at

so that if H be explicitly independent of the time, the forces Qr be absent, and F be
a homogeneous quadratic function of xlt ..., xrf

@ - Fg

817. The simplicity of the formulation depends on the fact that the invariant
factors of /3-1a—\JF-are linear. We have obtained this by assuming that the form
only vanishes when every element of p is zero. But the invariant factors may be
linear when this is not so, and the roots of the determinantal equation are not pure
imaginaries. For instance, take Hiri’s equations for the motion of the moon, under
certain limitations,

ax . ., . 0 dy 9 dx
g 2N (=3 o dF+zndi+r O
Writing
F= o J(Y —

these are the same as

dx =& dX = _aF dy=2F = OF
dt ax’ dt dx’ dt  9Y dt dy

The so-called moon of no quadratures is obtained by variation from the solution
expressed by
X—a, X=0, 0, Y=Tk

where & is given by yi= 3?V3; this is a position of relative equilibrium. The #
matrix S of the notation used above is zero; the matrix a is

In this case the quadratic form ap2is

—M p 2+(p2+Znpy2+  —Pi)2
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and vanishes when px —=0,p2= 2

equation
- =0

are all different, and therefore the invariant factors are linear.

The roots are
V' = o+ ft{(28)*+I}*, + m{(28)*—1}*

of which only two are pure imaginaries; thus not every disturbed orbit is periodic.

8 18. We pass on now to give the details of the application of the general method
above explained to the computation of some particular cases.

A very simple case may be first given, merely as an example of the notation and
method, since the results, once obtained, are easily verified.

Take the equations

2 ~ =—X CO0S (I + sint),
2 = —&l —sincos
These may be written
) - £/ 0, I\+ i/ —cost sint («, v\
-1 0 sin t, Cos t,
or, say,
~ /\t —_ ( u ( X 3
where
u=i/l 0 I\, v=J [/ —cos , sini
\ 4, 0/ \ sin cos”
We have at once
{2uf=720,1"0, N = -1,
and therefore
Qu) =1 +ut +~"M2+— £3+ ..,
= 1— +Hq (¥Y ~oe + 2w
= COos A t+ 1 G, 1\ Sill I,
-1, 0
COS sin ht\ .
—sin\t, cos

2 A2

(in+ -
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This gives ]
21 (u—/ GC» fsill ft\.
,Sin ft,cos B/
Wherefore
21 (u).v.2(u) =1 / cos| t—sin \ /—cost,
8in ft, Ccos sin cos t/

\ / —e0s At, sin 2"

sin\t, cos K,

HVOI

Denoting this by \<, we find a2= 1, and hence

22iuvQW] =1+ +7 (i +
= chjft+ crsh 7,
'e~u, O\,
X 0,
Thus the solution is
(x, y)= 2(u+v) (x\ y°)= | cos sin J

I \ —sin cosjft/ \ 0, €A
namely,
X —X(p~it cos ft + sin ft,

y= —as’eksin ft +y{e" cos ft.
The period of the coefficients in the original equation is 2x. The functions cos \t,

sin™-t have only the period 4t To bring the result into the form given by the
general theory we may write

8 = x°e~H£wg/igt. 1(eu+D+y et
y=— xee~iil+it. —@=D+y ° fil+
the so-called characteristic exponents being

+i(1+0-
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819. We now consider cases of the equations

E(X,Y)=-x/1, -F\(X,Y);
-9
these are derivable from the equation
dX
dt2+(n2+\‘]8) 0
by taking
X = "eit A —inx),Y = it +inx), t=£& gT
leading to

X= n—(Xe_I?lt—Yem;.

As we wish particularly to illustrate the method of obtaining the characteristic
exponents from the present point of view, we take first a case in which explicit terms
in t arise early in the method of successive approximation. We take namely = 1,
and suppose

’Z = Xh+ 2\Jocos 2
- \h:
where Xis small, and wris used to denote £r+ £-r.
Denoting \\frby (pour differential equations are
<MLJ) =u(x>n

where

u—/~ —@,
w rl=*/

The coefficients in these equations have period 2 ; by what we have previously
shown (8 14, 15), the solution is of the form

X, Y)=P 0 (X°, Y°),
V0O eV
where P is a matrix whose elements have the period 2xf, h is a matrix of constants,
and gis the constant which we particularly desire to find. As
g = I(Xe~u¥e"),

this corresponds to characteristic factors eTi(1+2%< for the original equation in t, whose
coefficients have period x. The quantity q is to be found by determining the terms in

\low x



Downloaded from https://royal societypublishing.org/ on 19 March 2024

174 PROF. H. F BAKER ON CERTAIN LINEAR

t in the solution of the (X, Y) equations, and forming from this, after putting t = 0,
a determinantal equation (8§ 14).

We are to calculate in turn Qn, Q 8., and arrange
powers of A First we have

Qf, —leg,  \]j
Vi,
where
al= —J &dr, —  (Edr,
‘Jo Jo.

CX= —v{) o drs 1€
thus, as (o is unaltered by changing the sign of «, xcan be obtained from cx by
changing the sign of r, and similarly dxrom ax This

6X= g dX= a
Then
wQw =/ <> <#\ [ax cV\,
0/ \Ci, al,
-Naj +"Cx, + \,
and hence
<2 C2\ >
cD (X2
where
I <P + C2— 1 p( ~I"imA)
Jo Jo
m rT

2=N-N(-ai+2dr,
Jo Jo

so that al2is obtained from a2by changing the sign of r throughout, and similarly cr2
from c2 In general, in passing from a term of 13(u) involving r integrations to one
involving (r+1) integrations, we shall have a law expressible by

Arkl = J <PEAr+£CrHdr, Cril :Jf (—Ar+£0r)
0 0

and the new term, like that from which it is derived, will be of the form

/-/’\\r+l> OIr+IY5

‘!/+I> ’Ar+\/



Downloaded from https://royal societypublishing.org/ on 19 March 2024

DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 175

where A'r+l is derived from Ar+l by change of the sign of r, and similarly C'r+l from
CrHe

Thus, when in Q(u) we pick out the coefficient of « as it occurs explicitly,
independently of its occurrence in £ and in this coefficient put t —O0, we shall obtain

a series of the form
/an -y A +/ a2 —ya\+*%

—a. w2 —a?2

where the first of these comes from Q uad involves terms i
the second comes from QuQu and involves terms in X2and higher powers, and so on.
And the equation for q will be of the form

al+az2+... — 0,—yxX—y2—.. = 0,
yi+ty2+..., -alaz...-g
namely,
g2—(ai+a2+...)2—yi+y3+...)2

Further, if the part of Q uwich is independent of explicit powers of r
of elements which are polynomials in f, £1 and periodic with period 2iri, be denoted
by PP and similarly the periodic part of QuQa be denoted by P2 &c., then the
periodic matrix P above spoken of will be

P=1+Pi+P2+ ...

Proceeding to the computation, retain first only to terms in X Then
G = —j*@pdr = —XIT—X&X(E—A 1?

cj:-Jigrv dr:-JIZrl[\h+\k("r])]

Xhtf-1-1) +X~( ---- - Ti.
Hence
o a — —xh, yj = —Xk,
and g is given by
g&= X (h2—

In the case when the differential equation is that considered by H i, this gives at
once a very near approximation, as he remarks, being equivalent to his formula

Q= 1+{(V-1)2-V P
(Hinr’s “ Collect. XVorks,” 1., p. 260).
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If next we retain as far as X3 we have from
@t = Ah-A&i (E-1+ £) + AR (E~2+ £2) + AB(£-3+ £3,

= \hr +\k1(—£ 1+ D)+ [-A0R2(7E 2+ £)+ (=i 2+£D
ox= —J £°\efor

= XA(F i)+ Xi,(6.2-1-T )+ XA (A + t-F)+ A 3(t-4+ i-])

Hence

= Xh(r+1-0+Xi, (- £ +K-rf) +X*fc(-£ +K-f)+~ (- g +|-f)

Thus
N (-« +fo)
= X{NT+i-f)+MiW-HK-Li+Ff-r)+V (-K -2-r-Tf+K 2}
+X%{m2u -2+M-2-r L+ K+rf+K2- f)
+Uu2(-tr3Tri+K-i+f-f+Sf-n3}
This gives

«2=J "N (—eM+fejdr
- ANtfaS +T+I-O+hhi-Tt-"-it"-T H +M -tt9
+M2(K-2-ir2-i1- K 2¢+M2}
X8{»A-K -2tf-2+r -1+ K+ K 2if)
+AA(K-3+Tri+tr,+iv-i-f+ir-M 3+K3k

Similarly,
c2= L£~V (-a, +fc,) dr
= xX2{A2(-Tri-2r>-T+2)+wl(-jrr2-K -2+ ri+fv+j-?)
+v(K-3trf-,+ ri-f+M-TO}
+X3{M( -K -8 A r 3K-s+fT+4+TF-K-K2
+hh('U~>+i"~2+ "~ 2K 'IvIJ+ K4 T+ £}
Forming now — a2+fcfve obtain
X{R(-1t2-2 t- 3—rf+32+hk, {b-t"+t'
+A2(-*r2+jTat T +i-if+r-H 2}
+X3{ N (K -s+i'W-"-K -, +t+ K+ M + K ,-R ,-*?)

FiA ( i M-'-b-i-T
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To find
@= a2+ for) ds =
up to ABit is sufficient to take = A [h+ kx(E-1+ £)] 1s0 we 0
N(-«2+fe)

=X (-Jr32r-3-Tf+3f)
rsf-i-M -*-2i-,+"-4T,?2-w -4f-Tr+-on
+AE2(irf" "2+ "2+ rf 1+ If 1+ Jr2+ 3r+i +xf— +rf2— 3

+A3(-* r3+iraf-+Tri+df--i+iTX+jTF+vFi-fr-H 3+i3}

and hence
a3=1 (~«2+fe)
Jo
= A3i3(— AR—T23t—4—T+ 4N
+ AR [(-T2+ 2T+ -|) -0+ ¢r T+ (— ) M (—=2T+ 1) £9
+aW  (=1r-A) r+(-r-f) r itArR+HTL+Ir +8+(r-V-)N

+(y-1)r-K;
X[ *Fr3H(-ir222T-A)r i-|T +i+(IT2Jr +\B8)N-K 2+ (-iT+A)f].

Similarly,

c3= J;)£~V (—aatfcadr

= AYi3[(Jt2+3t+6) ~-1+ (- A 2+ 3t-6)]
cvenan [("TF+ T+ § £~ 1+ (—6T'—-T2—dl  f) + (—T+-|) £]
+AMP[(-1T-M) +1)r 2+(-Jr224r-\3)r 1
+iT2-fr+W-+A -~"-K ]
+ANA[A N4+ (-ir2=Jr-H) A2+~ 1+63+¥t3+ Mt+ A - K+ (—4T+f) £m

Picking out now the terms in r, putting therein £= 1, and using the notation
previously explained, we have, up to A3

« = —A h, yl = —Alt
az2= \ 2(hs—2hic{—ki)+ ABya= A3(—
a3= MA3(— 1h3+6hX1+2hkl2—Jc 3 3= A(6/"3—4/M—-TBM/ +1A,J.

VOL. CCXVI.—A. * 2 b
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Hence

—fai+ajtagtyit+yatys)
= X (h+ Y+ (hz hk# %k2+ R(— —
and

—(«i+a&2+a3 +71+ 72+ 73
= X H— kyi +\2(-3h2+3hkl+ ik 2+X3

The product of these gives the value of g\ namely,
q2= x2( h22 k 2-\3

This agrees with the value found above by a quite different method (§ 4).
The matrix of coefficients of t, after £has been replaced by 1, is of the form

AO0=/a, —yN

\7» ~al
and its square is (a2—y2 times the matrix unity. The matrix Q0N  of §14 is thus

V M = 1+A w+ \gv gAW3+ A"

or
IC +aS, —yS\,

\ yS, C-as,

where C = ch(qw), S = - sh( w) From this it is easily seen that ft

g the method we have followed is less laborious than to use the equation

W (u)-P\=0.
The differential equation from which we have started is, to terms in if we
suppose X = 1,
+ (I + 4™+ 88xcos 20s =0

If we compare this with the form considered by Hinr (“Coll. Works,” I., pp. 246,
268), we have, with his numerical values,

0%03971 09848 99146,
h =-0*01426 10046 86726,
k= 0*00009 58094 99389.
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820. Consider now briefly the case of the equations

A(x>y)=" - i. r<x,Y),

m 1/
in which n = We suppose
pi —Xx/1 -1\ T'e.e, — say,
/= fr+fr,
u=/ — £'<Ae
\-rv, 7~/

As in the case of n — 1
Qw = /«!I, c'A,

VV «'il

where

and, for 2,

6= - gf-VFo= A(KF ) NT(R-F %)+ A (K -4 0-A

Downloaded from https://royal societypublishing.org/ on 19 March 2024

These give
0( +fcO
= XWr+*-K3+7 i [(r-i)  (r+2 !
+ XV (-sr2z+t-K+2r-K
As before
QuQw =/a2 A,
,C2,
where
JO<I>(—<!+£%)dr

=XW A+ir-K +iJ+XAN-TE A +1+ TF+f-A-K*)

+XV(K-24iT+i-«+r-«3
2B 2
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c2 = L dr .
= x% »(-K-3R -2+J- 1) *o>_8F *py -k r-if)
+ (JE 4—8E_"+f 1+2r+gIf£).
Picking out the coefficients of t in these, and putting therein £= 1, we have
A\ — X, Ni— X R
ax i\ h2+i\ %2 y
and hence, to X3
T —@i+add—m1+72)" xA-fOs+PinI-[X2 )2,
XUR-X % (N +P , 2

This agrees with a result previously found (8 6), but fails to give the first term in
g2if h = 0. When this is so it is necessary to take account of the terms in X3 By
taking terms in X3in au cu we only obtain terms in (— which involve X4
But the terms in X2in au cxwhich are written down give terms in X3in N (—»i + £20),
which are

x%ia(ir3+Tf-s-i+ ff>K )+A»*0,(-«r*+ K -,-i-M -ri+U3T?-U%
and hence the additional terms in a2
X°hk2(-& £-°-M -*-b-H+ M 2 in
r+1),

and the additional terms in c2
XW2A—rf" 4K -+ if-2+Jr+i-
+X% Attir5 * r 3+K-2¢ « ri+Tf-i+ A -rf-ir-fi).

In finding the terms in X3in a3>c3 it is sufficient to retain the terms X2in a2and c2
'I’his gives for $(—a2+£22),

XW f-JrA-r-f+f~-M 2}
+XVALLr4(-iT2 I T+ W )-t+f(-ir2iT-4) +f2(-1T +¥) +f8(-ir+A)}
>XW {f-»(Sr+ ( - WHA* (-Jt+
X {-K-Fri(iT+H)+i+f(|T-H)+¥f+f(2r-j)-«r}.
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For an:I £&— a2+£x?2 d r , this leads to
\ sh* (—f T*. —fr—5+ VEIr+ i)}

v, LI HFITHEE) - |T -2+ F(-|T &FT -f)

181

(MY E-ER)

+XW {-r2(ir+M)+fr'-A-j#T-Bi+f(-ST+¥)

-ttf+ F (-*m+«)-*{*}
+ AN3{iVI3+ N 1 (JT+tt) +fT f+2(fr-tt) +#fat+ f8(8t—Is)—FE£4}.

The terms in c3= jo E~F—22-("22 dr are similarly
XW {r2(ir2+ir)+jT-iT 2%

+ XU*11?2-» (V + N + TS?) +iN-2+f-“(ir2+|r +¥)

-W -fr2+¥r+f(-ir+«)}

F®TjrF *) KA (reVH?-1ir- )
‘M -¥T +f(-fr+-~)-K 23
+Xv {*r6t r3(*+tt)-K-"+f-M-|T+tt)
+t+¥T+F(2T-f)-*r}.
It is easy to see that the terms in A3in
and

neither of which contains «. Thus up to A3we have, in the preceding notation

aaxare respectivel

0l = —A h, yl = —A
®R=i\2 (h?+%kB(hk.+ IkA), y2= -A2(h2+%hh-2ki2d+&%k2
a3= - X W -fX "-fA A~ +W |, y3= A % * + +
Thus
a, +a2+a3= AT+ W A2+ Nj)+ A(—— — P +1~™M3 hk2 3kjc,

yi+y2+y3= R(——7im + 2k 2—k2% A3
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This gives
g2= (ai+as+ag)2—y! +y2+y32
= \h2\*h(h2+%k)+" (w +iw - w -~ 2+4i:Ly

as far as terms in x4 This result is for the equation

d?" C+m2ry 0

wherein N —2 and

| =\h+\k (t-i+s)+\% (!-‘+ n + -
and agrees with the result previously found (§86) when in this last we replace
h, k1 } k2espectively by 2 h , 2k}2

of notation for  in the two cases. By an independent investigation for the case
when

£ = XAt XM +?2)+V Aat\sfa(r,+f,)+VA»+X,M ?- +77)+..-

we have found (above, p. 142),
qz h 2 2—hx (h2+%k2- 2 h2a
+ X4 {(ih2+ ik 2 h 22+h¥+" h 2o *-2hidat+2hhi- (k a-2|
which, replacing hip P +h” +Xarises from the pre
821. Now consider the equations

J- (XY XY),

where
<>

P

and nis not 1or 2 but is an integer if is a periodic matrix.
With
P= XN+Xk(E-1+ £)+ X& (£ 2"t + ...

we have, retaining only to x2
= —j Midr = —Xhr +Xki ("~1) +iXX2("~2—"2),

c1= - \ TE-n<pdr=- I[x"-»+X"1(r wi+ r 3H)+x"2(r*-3+ r wsj d

- \ tUII i~ "
_'XA(£"I)+X*(@ 1t Xpeoe n—2 n2—4/
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which lead to
H—»i+ £Q) = X'3(t4---~~
v/ el I n2——21 2%\, £n-1
+x*Mf IT-AUTT))+d T+U ~ 1) ‘N n2—1
) n Coo2-4MN. N 0 2
XV 1+1 +77— " 71—1 1@2 1 %
so that
“2= | + ~«i+ fci)dr
= ~h2Urt+ 1 - b= n
2n-~1
+\2hk1]|.—£-1(tH7|7( +)\ +?7 T+ -
4 -1 2 » A 1
re(re—]) 21" re(reH)J
[2(71+1) m—1 (712—1)*
N n i0 VA T - ) P 1
2(n—) a7 —1) (n2—) (+ 1D 1)
Similarly,
Q= Jf i-'<p{-ai+ircl)d-,
[0]
\ 2i2 T~-n 27N -« g T
+
I n nZ n2 n
+»,j - ( T_"22w-1) _ T2~ 1
I 7L+ 1\ 77(77+ 1)/ T mm—1\ 77 (77—1)
Ex 2nT 8472
TR T (L)
+\EDP —A+2
(77+1) (71+ 2) Rt~ () 77—2) 2
277 ¢ 1 217 ¢ 8
s 7= *
Thus we have, so far as terms in X2
al= — 71 —0,
\h2 ,7"Z72 2n 2X2i2_ 4X2AN77
R =1 1 m—
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and so, to this approximation,

2n
- J— 0,
og+a2 -\h+ - +\% 2 i

The characteristic factor is then et(2?)i, the differential equation being

dX 4 ( n24 n\h+8 Ros2 +8 0 cos 4

Thus q is always real, when Xis small enough, provided is not zero, even if be
zero. The result agrees with that found in 86 for 3, if allowance be made for
the change of notation.

[ December 11915.—'Consider the differential equation differing from th
preceding only by the substitution of H for \h in the term of the coefficient of
X, where H is supposed to be of the form Alq+ Xh2+>X3q+ — The computation of
proceeds then exactly as before. The formulae for oq+a2}-a3 yi +y2+y3 given above,
p. 178, substituting H for AlQ show that, for =1, @2 is then of the form
(H—q)(H—a2Q, wherein Q is a power series in H, \X2 ..., reducing to 1 when

H=0 A= 0, and
ax —

az B

The value of g2is positive, and the motion represented by the differential equation
is stable, so long as H does not lie between these values. Similarly for = 2, from
the formulae at the bottom of p. 181, the range in which g2is negative is when H lies

between
-(f k2-k2\and

these being accurate as far as X% Unless f < < \yilk2 these limits are of
opposite sign, and include H = 0. This is the result given on p. 142 (save for a slight
difference of notation). For n =3, an analogous computation sh
except when H is between

AM22—PA3 and  f&2+PA3

where
P = f&d—3 kxk2

and this range does not include H = 0 unless kx= 0. It would appear, from the
formula above (p. 184), that the corresponding interval for greater integer values of
is between two quantities of the forms

q —glivww+pad o *A2+Qxk
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Mr. E. Lindsay Ince, Of Trinity College, Cambridge, following up the method of
his paper referred to above (footnote, p. 134), has calculated numerical results for the
case when ku  k2... have the values considered by G. W. Hirn]

PART III.

822. | desire to add to the foregoing some very incomplete remarks in regard to a
generalisation of which the work appears to be capable. The most important general
result obtained is that when \§ a periodic matrix, the matrix 2 can
as a periodic matrix P multiplied into a matrix involving quantities of the form eK
§One direction in which this result can be amplified is by extending the assumption
Swe have made that the matrix QONu) has linear invariant factors.
gunderstood what is the character of the modifications thereby introduced. A more
?Dimportant generalisation appears to be that the factorisation of the matrix 12
Tdoes not in fact require that ub a periodic matrix. As an indication o
Sconsider an equation

(@]

% + X = X (aeik+ + ceix),

[

B, _ :
=in which the constants k, A bare such that K+\+m = 0, but the ratio o
>

Sat least is irrational. For example, we might have 2+1 u= —"2 +1

-gfx: —2.  Then, assuming that there exists no identity of the form

%

g alc+ PA+ TmL 2or = 0,

?u:sLin which a, 3,y are positive integers, the equation would seem to have a solution of
Ethe form

£ X= e

o

%\Nhere X is a series of positive and negative integral powers of el | ekt which

@may be arranged as a power series in a, cand is a series
<

3 q= <+ Arabc +A 2DZ2+. .,

a)

in which A% A2 ... are constants. The differential equation has nob periodic
coefficients.

In a paper already far too often referred to, ‘Proc. Lond. Math. Soc./ XXXV.,
1902, p. 353 et seq., replacing the variable there called t by eTor £ it is shown
(p. 365) for the equation system

No= (A+HEV)HE, say,
in which A is a matrix of constants, and V a series of positive integral powers of £

that there is a factorisation of the matrix 12(a), in the form P12 (*>)y, where P is a
VOL. ccxvi.— a. 2 0
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matrix whose elements are power series in f, and Q<) is calculated in regard tor
from a matrix

4>= e, el3E&"% c

while y is a matrix of constants. Here 0602 ..., cB cB ... depend solely on the
invariant factors of the matrix A

This result is obtained from the form of the matrix u as expressible by powers of £
without reference to the question of periodicity. It would seem that the argument
there employed is capable of modification, the integrations being performed in regard
to r (which is log t of the paper referred to), so as to lead to the general theorem
here contemplated.



