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130 PROF. H. F. BAKER ON CERTAIN LINEAR

P r e f a c e .

P a rt  II. of the present paper was written, very much in the form in which it is 
now presented, in the summer of 1913, and began with the remark in §11, which 
appears to disprove a statement made by P o in c a r e  in regard to the convergence of 
an astronomical series. It was laid aside partly because a good deal of the work is 
only of the nature of elementary algebra, partly because the matrix notation 
employed does not seem to find favour in its application to differential equations. 
Various circumstances have, however, led me to take up the matter again, and my 
original conviction that the method of Part II. is of importance has been strengthened 
by comparing it with the less formal methods which, for the sake of introducing the 
subject, I have followed in Part I. I hope, therefore, that the following exposition 
may be thought worth while. Part III. has only the value of a concluding remark.

The table of contents above may serve to give an idea of the scope and arrangement 
of the paper.

PART I.

§ 1. Consider a linear differential equation

u ^ | + y  V + w x  = o,dr2 dr

where U, V, W are power series in a small quantity, A, of the forms

U = u + + •..,
V  =  v + \V i  + \ 2v2 +  . . . ,

W = \w 1+\ ...,

in which each of ur, vri wr is a linear function of

r ,  £r-2, c - r, r - r, r r,

£ denoting eT. Thus each of u2n, v2n,w2n will contain a term independent of £; we 
speak of these as the absolute terms. It is important that W contains no term 
in X°; and it is assumed that the quantity v/u, which is independent of £, is not a 
positive or negative integer, and that u, v are not both zero.

We prove that if the absolute terms in W, that is the absolute terms in

w2, w6, ...,

be suitably determined, the differential equation possesses a solution of the form

X = 1 + ■+■ A“<̂>2 ~t . • • ,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 131

wherein <pr is a linear function of £r, £r~2, £r“4, ..., £4_r, £2~r, £~r, and this is a periodic 
solution. Its period is 2 7 ri; we can, however, if we wish, express the same result 
with a period 27r by writing r  = it.

For the substitution of the assumed form for X requires the identity

(?t -f- 2X”ttn) 2 Ab0 ,,b +  (v +  2An/y„) SW //,, +  ̂ \ nwn(1 +  =  0,

which, equating the coefficient of \ n to zero, will be true if

U(p"„ +  U}(f>”n_y +  • • • +

+  V(p'n + Vx<j> n_x +  . . .  +  Vn_i(p\

+ wx(pn_x + w2(pn_2 + ... + + wn = 0.
In particular for n — 1

u<f>''x+v<p'x + wx =  0.
If herein we suppose

<t>i = AA+ A_X l> wx = cx£, + c_xt, 

u, v, cx, c_x being given constants, we obtain

'w(A1c, + A_X A_t  ̂ 1) +c1£+c_1£ 1

which is satisfied by

0,

A1 =  - u + v' A_! = u —v

For n = 2 the condition is

U(p"2 + V(p,2-\-Ux(p"1 + Vx(p'x-{-Wx(J)1 + W2 = 0.
W ritirig

+ j vx = bx£+b_x£ x, wx = c1() + c_1̂ _1, w2 = 2£ + C2,

and assuming a form
<p2 — A2£2 + A_2£-2,

the condition becomes

4u (A 2r  +  A _ X " 2) +  2v (A X 2-  A _ X ~ 2)

+ (a J + a .J -1)(Ax{+ A .A -1) + { b ^ + b ^ - 1) ( A ^ - A .^ - 1)
+ (cX+c-i£ (AX+A_1̂ -1) + c2̂ 2 + c_2̂ -2+C2 = 0;

equating the coefficients of £2, f -2, £° to zero, we obtain

(4 2v) A2 = — axKx — bxA x — — c2,

(4u—2v) A _2 = —a_xA_x + b_xA_x—c_xA_x—c_2,

C2 = — ̂ A . i—a_1A1+ bxA_x—b
T 2
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132 PROF. H. F. BAKER ON CERTAIN LINEAR

which, as v/u is not 2 or —2, determine A2, A_2, and C2, the last being expressible by 
means of the given coefficients of u, v, uu vu

Proceeding similarly with the general value of , we at once reach the conclusion 
stated, the absolute term in wn being determined in terms of the coefficients in

u, Ui, •••, uH_lt v, vlt vH_u w2, ..., wn_i.

§ 2. Now consider an equation

A ^ 2 + 2 B ^ + C *  = 0,
Cut Cut

where, with £ = eT, A, B, C have the forms

A = a0 + X + \2 (a2̂ 2 + 0’_2̂ _2 4- <̂20) + ...,

B = 60+ A (^+ 6 _ ir i)+A2(62f+ 6 _ 2̂ -2+620) + ...,

C = c0 + X ( c ^ + c ^ -1) + X2(c2̂ 2+ c_2̂ _" + c20) + ...,

which are periodic functions of r,with period 2 capable of being arranged as 
power series in a parameter X, the coefficient of Xr being a linear function of
r ,  r - 2, ^ 2"r,

In accordance with the well-known theory of linear differential equations with 
periodic coefficients, we substitute

x = eKTX,

where k is a constant, and so obtain a differential equation

AX" + 2 (kA  + B) X' + (A/c2+ 2B/c+ C) X = 0,

which, when k is properly chosen, is to be satisfied by a periodic function X. That 
this is possible follows at once from § 1, as we now explain.

First we can draw some inference as to the form of k . For compare the original 
differential equation in x with the equation obtained from it by changing the sign of 
X in each of the series A, B, C. It is clear that the new differential equation may 
equally be obtained from the original equation by change of r  into which
changes £ into — £; this latter change, however, only multiplies the factor eKT by the 
constant einK; the factors eKT appropriate to the two independent solutions of the new 
differential equation are thus the same, in their aggregate, as the factors for the 
original equation. Thus the change of the sign of X changes the two factors eKT 
appropriate to the two independent solutions of the original differential equation 
among themselves, either by leaving both unaltered or by interchanging them. 
Assuming that k is capable of expression as a power series in X,

K = K0 + KjX + /c2X2 + ...,
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 133

the case in which each k is unaltered by change of the sign of A is the case in which 
only even powers enter in this series. The case in which the two values of k are 
interchanged by change of the sign of A may arise when the differential equation is 
such that for A =  0 the two values of k are equal or differ by an integer; in this case 
eKTjeKT is a periodic function for A =  0, and the factors eKT, eKT do not individualise the 
functions with which they are associated.

In the present case, the equation reduces when A = 0, to

tfx„b d x ,  0
cLt  d r

which, if a0 is not zero, has the two solutions e0-7, ea'T, where </ have the values

[ - b 0± ( b / - a 0c0y

Thus if we suppose not only that a0 is other than zero, but also that

2 (b^-a  0 

is not zero or a positive or negative integer, we can assume

Then putting
K — (T4" /C2A2 "T /C4A 4 4" • • •. 

X = 1 + \<Pi + Aŵ>2 T • • • ,

where <pr is a linear function of £r, £r_2, .... £2-r, £_r, the differential equation for X 
can be compared with that of § 1. In the present case there is an unknown 
quantity k entering into the coefficient Ak + B of but it will be seen that in
the equations obtained by taking the successive powers of A, each unknown coefficient 
in k in this Ak+B  is determined at an earlier stage as entering in the coefficient 
A/c3 + 2B/c+C, and so enters as a known coefficient. We have

A/c+B = [c£0 + A (cfcX+GUjt, 1) + A" (cfc2£2 + ct_2£~2 + <x20) + •••] [<t+*c2A“+ •••] 
+ h  + \  (£>1 -1) + A2 {b2(, 2 + b_2£~2+ b20) + .. .

== +  b0 + \[cr (&i£+ -1) +

+ A" [or (ci2̂  ci_2£~~ a20) -\-<x0K2 + b2(>'' + b_2£ 0]
+ . . . ,

and similarly, •

A/c2 + 2B/C + C — CCq(t2 + 2 b0cr + Co

+X [V (a1f+ a _ ir>) + 2«r (6,f+ 6 . , f - 1)+ c lf + c - i f - 1]
+ A2 [<r2 (ct2£2 + <x_2£~- + &20) + 2 (6X“+ &20) + 2 (cvt + b0)

+ c2£2+ c_2£ 2+ c20J
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134 PROF. H. F. BAKER ON CERTAIN LINEAR

the absolute term in the coefficient of X4 in this being

2 Ki( Ct0cr + b{)) -f- CC0k</ +  2ct20K2<T + Ĉ40cr'' +  2b2QK2 +  +  c4(J.

Thus, as in § 1, w e first p u t
(*0<t2 +  2 60<r +  — 0,

assum ing, as in § 1 i t  w as assum ed th a t  v/u  is n ot an in teg er , th a t

2 (a0<r+&„)/.a 0, or 2 (« 0c0 -  60a)V<

is not zero or in te g r a l; th en  th e  abso lu te  term  in  th e  coefficient o f  X2 determ in es  
K2(a0<r + b0), and hence k2, and th e  ab so lu te  term  in th e  coefficient o f  X4 sim ilarly  

determ ines k4.
T he ex cep ted  case in  w h ich  k con ta ins odd as w ell as even  pow ers o f  X w e m ay  

leave aside a t present.
§3. W e  m ay app ly  th e  p reced ing  to  th e  m uch d iscu ssed* eq u ation

rl2T
—— + (a-2 +  2\Jc1 cos 6 + 2X cos +  . . . )  x =  0.aOw

W h en  X =  0 w e  h ave th e  tw o  factors eicrt, and th e  gen era l case is th a t in
w hich  e2i(rt has n ot th e  period, 2tt, o f  th e  coefficients in  th e  d ifferen tia l equation , 
th a t  is, w h en  2«r is n ot an in teger . F ir st  assum e th is  to  be so. T hen  w r itin g

x =  eiKeX
w e obtain

X" +  2uX' +  (o-2 — k2 +  2\Jc1 cos 0+ 2 \2k2 cos 2 + . . . )  X  =  0.

H erein  assum e
k — ar -\r k̂ K2 +  /c4X4 +  . . . ,  X  =  1 +  \<pi +  X2̂ >2 +  . . . ,

* For this differential equation the following list of references may be useful, though it is probably far 
from complete:—Mathieu, ‘ Louville’s J.,’ XIII. (1868), p. 137; Hill, ‘ Coll. Math. Works/ I., p. 255 
(‘ Acta Math./ VIII. (1886)); Adams, ‘ Coll. Scientific Papers/ I., p. 186, II., pp. 65, 86; Tisserand,
‘ M4c. Cel./ t. III., Ch. I . ; Poincare, ‘ M4th. Nouv./ t. II., Ch. X V II.; Forsyth, ‘ Linear Differential 
Equations’ (1902), p. 431; Rayleigh, ‘Scientific Papers/ vol. III. (1902), p. 1; Lindemann, ‘Math. 
Annal./ Bd. XXII. (1883), p. 117; Lindstedt, ‘ Astr. Nadir./ 2503 (1883); Lindstedt, ‘Mdnoires 
de l’Acad. do St. Petersbourg/ t. XXI., No. 4; Bruns, ‘ Astr. Nachr./ 2533, 2553 (1883); 
Callandreau, ‘ Astr. Nachr./ 2547 (1883); Callandreau, ‘Ann. Observ./ Paris, XXII. (1896); 
Tisserand, ‘ Bull. Astr./ t. IX. (1892); Stieltjes, ‘ Astr. Nachr./ 2602, 2609 (1884); IIarzer, 
‘ Astr. Nachr./ 2850, 2851 (1888); Moulton and Macmillan, ‘Amer. J ./ XXXIII. (1911); 
Moulton, ‘Rendic. Palermo/ XXXII. (1911); Moulton, ‘ Math. Ann./LXXIII. (1913); Whittaker, 
‘Cambridge Congress’ (1912), I., p. 366 ; Whittaker, Young and Milne, ‘Edinburgh Math. Soc./ 
XXXII., 1913-14; Ince, ‘ Monthly Not./ Roy. Astr. Soc., LXXV. (1915); Poincare, ‘Bull. Astr./ 
XVII. (1900).

 D
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 135

where <f>r is an integral polynomial of order r  in f and the quantity being 
denoted by £ Then we have

s x y ',  + 2i(<r + k2\ 2 + ...) z \ y  n
+ [ — 2ck2A2—(2c/c4+ k./)A1 + ... + 2A&4 cos + ...] [ l  + 2A”̂ >„] =  0.

The terms in A give
+ 2 i<T(j)'l + k1(£+£~1) =  0 ,

which, if we denote (c+ r )2—c2 or r (2 c -fr) by ur, so that the result of substituting 
£r for (j) in <J>"+2iar<f>is —ur£r, leads to

0i

The terms in A2 give
\Ul

<pf'2+2l(T(p'2 + k1 (£+£ ') 01 + ̂ 2 (£" + £ 2) — 2<TK2 — 0,

which, if we write 

leads to

and

02 — A2£2+A._2£ 2,

H h + kA ,u2\ u j A_2 — —  (&2 + u_2\

, = A 7 L  + J A
2c yiq u_J

k 2
c  (4c2— 1 )

A!
U_A

By the terms in A3, A4, we similarly find the coefficients in

03 — A3£3+A_3£~3 + B1£ + B_1£~1,

04 = A4r+ A _ 4r 4+B2r+ B _ 2r 2,
and also

60c4- 3 5 c 2 +  2
k k 2Tc2—

4c3(c2—l)  (4<r2—l ) 3 1 2c (c2- 1) (4c2- 1) 1 2 4 c (c 2- l )
k 2

If we change the notation, writing 0 = 22c = n, so that the differential equation 
becomes

and

we have

* = i n ---- I ^ U + x N - 2

-jjj + \n2 + 8A&4 cos 2 t + 8A c o s  + ...]  = 0

f = e2it, x = 

15n4 — 35n2+ 8 7. 4 . 2 k 2 .1
n(n2—l) ' v 1 ~ n3(n2— 4) {n2— l) 3 ^  n(n2— 4) I) n 4)j

It is clear that k is essentially real so long as this series converges.
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136 PROF. H. F. BAKER ON CERTAIN LINEAR

As an immediate application take the equation in B r o w n ’s ‘ Lunar Theory,’ p. 107,

+n2x {1 + fm2—-3%m4 + (3m2 + ̂ -nv' + -$—nii) cos 2£+-%-mi cos 4£} = 0, 
at

where
£ =  (n— n') t + e—e,m =

Put
m n' m, ,, /.  ̂ 7,m, =  -------= -------T, m = -— k—, nat  =  (1 + m,) ;1 —m n —n 1 +m1

then the equation becomes

%/y*
-j-  ̂+ cc{l + 2m1+ |m 12—g%Wi4+w12(3 + -VhRi+i:3ftwi12) cos 2£+%3-mx4 cos 4£} = 0 , 

which is of the form above, £ replacing t. We may then take

X = n2 = l + 2m1+fm 12—-3W ,  ^  = 3 + &2 = 33.
O

H ere  w x is a sm all q u a n tity  and

X2 = 3 /x
n2— 1 6 4 (2 7 7 1 !+ ...)  128'

is of the order n7/ , while similarly X4 l)3 is of the order 777/. Also

Thus

77 =  ( l + 7 7 7 i )  { l + f 7 7 7 /(1  — 2777i + 3777 /)  

=  (1  +  777,) ( 1  +  f 777/ — 1 777/ +  J/ 4 7-777i4).

i n l lT
4 k 2\ 2

n2 (t72- 1)
1 (1 +777,) (1 + j777i2-||777i3 + Hf777!4),

which is easily  seen to agree with the result given by B r o w n , or by A d a m s , ‘ Coll. 
Works,’ I., p. 187, when we take account of the fact that

2ug = 2 ik(n —n') t

so that, in terms of the quantity denoted by g,

k = K l + 777/g .

This example is chiefly useful here as calling attention to the fact that 772, while 
not exactly equal to 1, is near to it, and consequently the factor l) is only
small of the first order in mx. The same weakness occurs in the terms in £-1, ..., in 
the solution.
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 137

§4. In the equation considered by H ill (‘ Coll. Works/ I., p. 268) the ratio 
ik x\l(n2— 1) is about (2785)-1, and there is a term slightly greater than 4&xX (2'785)~r 

arising in the terms in Xr+1 in the series for k, in which 4&A is about 0’5704; and 
the series fails absolutely in cases in which n is an integer. Then the assumption 
that k is a power series in X2, and the terms in X which are independent of X, must 
be modified, for reasons above given. The series when n is an integer has been 
considered by Tisserand, ‘ Bull. Astr./ IX., 1892; modifying his procedure, so as to 

' include the case when n  is near to 1 as well as that in which 1, we may write, in 
accordance with the suggestion of such examples as that above quoted,

hi? =  1 4* 4 \ h x 4- 4X2/?2 -F .. . ,

and then, denoting e2xrt + e~2xrt by wr, consider the equation 

d?x
dt3 4- [ l  4- 4X ( hi4" kxwx)4" 4X2 (A34 - 4~ •.. J — 0.

By the changes
t = 2 £ = eT,

- i x  = ^  = c - i( l t , ' " [ u  + vndt

the differential equation may be replaced by the pair

where
= —* (U —m  g - « V = - * ( U

Assuming here

w r = r
(j) = X (hx4- kxw x) 4- X2 4- 4- —

q = \q x + \ 2q2+

II =  1 4* XWj 4" \ 2u 24" • • • > X" =  B  (1 4~ 4" 4* • • •),

in which B is a constant, and ur, vt are polynomials in £ an d  £_1, we find, e q u a tin g  
coefficients of like powers of X,

dur
4- qxur_x 4- q 2̂ 4- • • • 4 — H r,U/T

dv.TT
— -j— 4- q\Vr_x 4- q2vr-2 4 - ... 4- =  K r,

in which

Hr {hx "F kxwx){ur_x (,Bvr_j) 4- (h2 + k2w2 (ur_2 fBt’r._3) 4-... 4- 4- (1 — <>B),

Kr = Z-'B-'Ur
VOL. CCXVI.---- A . u
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138 PROF. H. F. BAKER ON CERTAIN LINEAR

In these equations, as ur, vs are to be polynomials in £, f 1, the absolute terms, 
those involving £°, must vanish. For r = 1 this gives

hx — qx =  ^iB, \  + qi =

We thus write, using hyperbolic functions,

hx = kxcha, qx = B =  e~a.

With these we find at once by integration the values of uu vu save for the absolute 
terms in these, which we denote by P1} Q: respectively. The conditions for these are 
to be found by considering the absolute terms in the equations for 2 ; and so on 
continually. In general, when we have found

U1, Vl,U2, V2y . . . ,  Ur_ly Vr_l,

and have found ur, vr, save for their absolute terms, Pr, Qr, we find, on taking the 
absolute terms in the equations which involve dur+i/dr and and adding and
subtracting these terms, that the two quantities

ksha (Pr Qr) (1 r Qr)

are thereby expressed in terms of known quantities. It is at once seen that there 
would be no loss of generality in putting P1} P2, P3, ... all zero. Carrying out the 
work, and writing Mr for Pr—Qr, we obtain

q = k1sha\ + (M1k1cha. — k12sh2a)\2
+ {-̂ M.12k1ea—2,M.1k12c h 2 a k xssha (6ch2a.—̂  (M3—M^Pj)} X3 + ...,

where
hx —  kxchot,

h2 1\I -JcishcL2 kx ch2a,

h3 = sh2 a + kxchoL (2sh2— (M3—M/Pj).
Also

= 1—e_â +xW1 + X2W2+ ...
in which

Wx = i ^ _1 + P i— k1shct + ( — Pi + Mj— kjsha) e~a£—\k xe~al

W2 = e£~2 (̂ 2 + iMa2) + £-1 l^P1k1—̂ k2e(\e~a—sha)\
+ P2 — P ^s/ia  — M^cAa + kiSha ( + ea)

— fe~a [P2—Ma + P^s/nx + M ^e-0— k 2(cha + e~a)\

+  £ V ° [ —^-P1&1 +  -g-M iki-\--^k2e<L—k{ (sha. +  ̂ ca)]

- U 3e-*(k2 + W \
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 139

If from these formulae we determine Mx and M2 — in terms of h2 and h3 we
find for q,

q =  kxshaA + H2cthot . X2

+  A3

where

_ H 22 _  2£1H2c/z2a A3cAa — &] —j ^ 3 ( — 1)'
2kxshsot sha shot,

H 2 =  h2—%kx (2sh2a —\).

+ ...,

This formulae is apparently unsatisfactory when shot, is small, or l nearly equal 
to 4A&j. In fact, the series is of the form

b . , 4 ca2—b2. 2l8a4d —
“ + 2 p  +  8 a 3

■X'+ 16a5 A3+ . . . ,

whose square has a form in which we can put a = 0. On squaring, we have

q2 = (h 2-  k 2) X2 + 2/qH2A3 + X4 (H22-  4V H , + 2 -  2 - +  W )  + ...,

wherein
H2 = h2- h 2 + i k 2,

and this form is appropriate when a = 0 or = In particular, when
h2 = h3 = ... = 0, but hx is not zero, this gives

q2 = ( h 2- k 2) \ 2+hx (Skx2-2:V) X3+[5 A4+ ...,

a formula reproducing the former if hx + h2\  + hbe put for I t  will be seen in 
Part II. of this paper why the form of q2 is comparatively so simple.

Brief reference may be made to another way in which we may use the foregoing 
equations, regarding huh2, h3, ... not as given constants but as quantities to be 
determined to simplify the result; this has been adopted by Prof. W hittaker 
(‘ Proc. Math. Soc.,’ Edinburgh, XXXII., 1913—14) who chooses as his condition that 
no terms in £°, £* shall occur in W 1} W2, ..., in the expression for x. This can be 
secured by taking

Px = kxsha, Mj = 2kxsha, P2 = 0, Q2 = 0, —

From our present point of view a more natural procedure is to take 
Pi = 0 = Qi = P2 = Q2 = —  Then we obtain

n2 = 1 + \k xch(3—7f\2kxch2l3+ X3 [kxchfi (2 + kxk2ch/3] + ...,

where we have written j8 in place of a, as this argument is now supposed to be 
determined, from this equation, corresponding to a given value of n2. When (3 is so 
determined, q is given by

q = kx\sh/3—kx\ 2sh2(3 + X3 \_kx3shfi+ kxk2shfi\ + ...,
u 2
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140 PROF. H. F. BAKER ON CERTAIN LINEAR

an equation which does not contain shfi in its denominator. With a view to the 
comparison of this method with the two others given in the present paper we 
consider two examples. First, for the equation

+ [l + 4 \k xwx + 4 .] = 0,

for which w2 is actually unity, we should determine fi so that

0 =  %kfch2ft+ k*clifi(2 -1- + ...,

where we have replaced A by 1. This gives approximately

chfi = — \k x( l  +  4^x2— k2),slifi t ( l —
and hence

q — ik i(\ ~&lki •••)»

while the value for /3, substituted for a, gives the series for We may remark that 
for the equation

+ (l + 8&! cos 2 0,

Tisserand (‘ Bull. Astr.,’ IX., 1892, p. 102) finds

<? = « , ( i - W + ! r f !V + - ) .

As a further example take

+ x{_l + Ikx (l + wx) +4 F w2+ ...] = 0,

which, as will appear, is an interesting equation. Then /3 is to be found from 

kx =  kichfi—̂ kichzfi + kichfi (2 ...,
so that .

chfi =  1 -\--̂ kx + ̂ kx—^2 + ^ / —

shft =  (ki)*11 +  ”* +  * * •)»

and hence
q = (k1)t(k1- i k 12- k 2+...).

In both these examples the value found for q follows at once from the general 
formula above given for g2, of which a further deduction is found below in Part II. 
In the last example the value found for gives a solution for a? in a series involving 
(k^K It will be seen in Part II. that when x involves (&x)% it is in a very simple 
way, and the case seems better treated as there explained. The occurrence of (k ^  in
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 141

the value of q, in certain cases, is a particular case of P o in c a r e ’s theorem, ‘ M^th. 
Nouv.,’ I., §79, p. 219. The phenomenon presents itself, however, as a consequence 
of the use of elliptic functions in T is s e r a n d ’s theory of the small planets; see 
T is s e r a n d , * Mec. Cel.,’ IV., p. 426 (or * Bull. Astr.,’ IV.).

§ 5. A very important question in regard to the differential equation under 
discussion is whether q is real or not, since upon this depends the conventional 
stability of the secondary oscillation determined by the differential equation. We 
have remarked above (§ 3) that when n is not an integer, and &2A2, ... are small 
enough to render the series there obtained convergent, the value of q is necessarily 
real. The cases in which n is an integer and = 0 = ... have been discussed
by T is s e r a n d , ‘ Bull. Astr.,’ IX., 1892, who obtains the result that the motion is 
unstable for n = 1 or n = 2, that is for the equations

+ [1 + 4A kxw-[\ x = 0, + [4 + 4A&1w1] = 0,

when A is small enough, but stable for greater integer values of n. The formula for 
q2, given in the earlier part of § 4 preceding, shows that for cases in which

the motion is stable provided
n2 = 1 + 4

Vh/k1y >  i ,

the values of cha and shot, being then both real. I t shows further that it is stable for

hx — ±kx = positive 

provided A be small enough. The critical equation is thus

^ 2" [ l  +  4^! ( l  +t#x) &h2w2-\- ...J  =  0,

the other sign of Jcxbeing obtainable by changing t into t+ .A
§ 6. We proceed now to the case when n — 2. 
If in the equation

cL2r
+  x  [m 2 +  4A (hx +  kxwx) +  4A2 (h2 +  k2w2) +  . . . ]  =  0,

in which m is an integer, we put
r  =  2 it,£ =

\

U = Je*mT+«T —im xj, V = ^ imr+gT + im xj,
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142 PROF. H. F. BAKER ON CERTAIN LINEAR

we obtain
dU q V  = -  i(T J -Y f-) , —  i ( U r - - V ) ,^  a T ^

where
m dr m

(p — \  {h\ T- (^2 ^2̂ 2) -H • • • *

= r+rr.
We may then further substitute

W = U r TO-V , U, = roU,
leading to

= - t f - W ,

<2W

where
g w  =  - f - u a

_ ±_ ehmT' 9TW
m

These equations can be solved by writing

q — Xgx + X2g2 + ,

Ux — 1 4" Xtq ■+■..., Ŵ A + r
m T" Xwx -+■ \ 2w +  . . . ,

where A is a constant, and tq, w2, wu w2 ... are polynomials in £, £_1.
For m = 2, in particular, we find that if hx = 0, the quantity A is required, and 

determined in the course of the work, and 0. But if is not zero, we must 
take A = 0, and obtain qx = jrhXy the succeeding g2, g3, ... being real. In fact, as far 
as X3,

q = f a x - ( J V + t t M * ,) \2+ {M + M i + | - & ^ ) . j  XJ+ ...,

which gives

q‘ =  \ h X - K  ( i K + W - i h a)xs
+ i ^ h x U W W - ^ h ' + i J c X - W - h A W + W )  + i

We know, as is shown in Part II. of this paper, that the form of is valid even 
when hx = 0. Then we have

q2 = iX4 (h2 + k2-W)Vh-k,+W) + »., 

which, when h2 — 0, is only positive, provided

5 k x >  3&2 >  h x .
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The case discussed b y  T is s e r a n d  is that in which = ... = 0. Then

,  =  ^ - V ( - 5 ) .

and the quantity A in the formula for W, or x, is found to be 2 ± \ / — 5). 
When m = 3, for the equation

d2x + (9 + 8A& cos 0,

we find A = 0, and
k2\ 2 269

6 4 .2 7 .5 £4A4+ . . . ,

u ,  -  w  =  b s - * + b \ H i r 4- K - 2+ i ) + . . . .

The question of the reality of g, in cases where = 0 = = ..., is discussed by
P o in c a r e , ‘ Meth. Nouv.,’ II. (1893), p. 243, and by C a l l a n d r e a u , ‘ Ann. Observ.,’ 
Paris, XXII. (1896), p. 23. So far the results a re :—

(1) For the equation at the bottom of p. 135 (§3) q is real when is not an 
integer, provided the series obtained converges.

(2) This condition does not however include, for instance, the case when n2 is near 
to unity. For q is imaginary, for the equation

+ [ n2 + 8 kxcos ..] 0,

if (n2— l)2 <  (4&i)2. I t  is real if (n2— l)2 >  (4^)2, and real if 1 is positive and
equal to ±4^. This has been proved here.

(3) q may be real when n is just greater than 2, when ku , ... are small enough. 
This has been proved here.

(4) q is real when n is any integer greater than 2, if = ... = 0, but
imaginary when n = 1 or n — 2. This result is given by T is s e r a n d  and  
C a l l a n d r e a u , as above.*

[ October30, 1015.—It may be worth adding, in connexion with the numerical
results given in § 6, that the equation

d2x
~d?

+ c sin t . x 0,

in which c is small, is solved by
x = emXJ,

* See the note at the conclusion of § 21 (p. 184).
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144 PROF. H. F. BAKER ON CERTAIN LINEAR

in which, as far as c3,

and, as far as c*,
v7 2= (i + M c3)>

U = 1 + csin t + c2 (i \/2 cos t — ̂  cos 2 + c3 ( sin t + S*nsin 31 
144

+  c*
8 \ /2

i cos t — fVV cos 2£- 11 • 0, , cos 4A------ t= i cos 3£ 4-------- .
432\/2 4608/

§ 7. We pass now to the consideration of a pair of simultaneous differential 
equations arising in the consideration of the stability of the motion of three particles 
occupying the angular points of an equilateral triangle moving under their mutual 
gravitation.

The stability of this motion has been discussed by R o u th  (‘ Proc. Lond. Math. 
Soc.,’ VI., 1875; ‘ Rigid Dynamics,’ II., p. 61) in the case when the relative paths 
of the particles are circles.* In what follows we do not assume this.

I

The three particles being S, E, M, take an axis through S, say SX, rotating with 
angular velocity 0, the line SE being supposed to coincide very nearly with SX. 
Draw a perpendicular EH from E to SX, denote EH by , and S li by A + x, where 
x, y will be considered small, their squares being neglected, but A is a variable finite

quantity. Draw a second axes SY through S at a constant angle -  with SX, and
O

* The following references may be of use:—Charlier, ‘Die Mechanik dea Himmels/ .and ‘Astr. 
Nachr.,’ 193, 15; Stockwell, ‘ Astron. Journ.,’ 557 (1904); Linders, ‘ Arkiv for Mat.’ (Stockholm), 
IV., No. 20; Brown, ‘ Monthly Notices, R.A.S.,’ LXXI. (1911), pp. 439, 492; Heinrich, ‘Astr. 
Nachr.,’ 194, 12 (December, 1912); Block, ‘ Arkiv for Mat.,’ X., 4 (1914).
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 145

similarly, draw a perpendicular MK from M to SY ; denote SK, KM by A + £ and t1. 
If R = SE, r  — EM. p = MS, we have, with proper conventions of sign,

IV = (A +&•)“ + //, pJ = (A + gY + t]2,

r2 = [J(A  + ̂ )— r̂j \ / S — A —x\“+ [J(A +£) 3 + J j?—

The accelerations of E, relatively to S, parallel to SX and parallel to HE, are, 
respectively,

—(E+s) A + £+ M i(A + ii- k C M A +^) _ M 4 ± i_) - W 3 ,V / J>3 r3

—(E+S) |r , + M i|A t h - y  -M  h +M A p W l ;
x R3 r3

the accelerations of M, relatively to S, parallel to SY and parallel to KM, are, 
respectively,

(M ! S)^ 1-̂  E / i  > i (&■ + £)— hn/ĵz(A + a?) | y/3 j-(A + £) y/3 + |->;—

j-(A + x)4-fe/v/3 
h R3

—(M+S) — — E ( f  ilAAllAi!Lzy_ \ /3  j ( A + f ) —j->?\/3—A —x \
v p3 \ 2 * r3 2r3

_Tr ^ (A + x) y /3
E • R3

If, then, in the equations of motion relatively to S, after expanding in powers of 
x, y, £, y, we equate the finite and the small parts, the squares of £, being 
neglected, we obtain

A -A O 2 = -  £
A

and
A20 = constant, = say,

where
m = S + E + M, 0 = ~ ,  (9 = ^ ,  &c.,

together with

X - 2 0 Y - 0 Y -  02- - f A ) XA3

y + 2  ex+ex- A3

3y/3
4 A3

4S + E + M 
. v/3

X + (E —M) Y

Y = § ^ |[ ( E - M ) X  + v /3 (E + M) Y],

VOL. CCXVI.----A . X
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146 PEOF. H. F. BAKEE ON CEETAIN LINEAE

in which X, Y respectively denote and rj—y,  and also

i - 2  e y - e y - ( t f - f )  X =

y + 2 0 x + e x - l ^ - f 3)y  = i ^ . [ X - Y v / 3 ]3y/3M

The first equations have integrals expressible by

l
A

1 + 2A cos 0, M,

the point (A, 0) moving in an ellipse of eccentricity 2A and semilatusrectum l. With 
these values the other equations are much simplified if we take 0, instead of the 
time t, as independent variable, as was pointed out to me by Mr. H. M. G a r n e r , of 
St. John’s College, Cambridge. With this change they become

where

and

(1 + 2 A cos 0) (X "-2Y '-X )-4A  sin (X'—Y) =

(1 + 2A cos0) (Y"+*2X'-Y)-4A sin (Y'+X) = hX+bY ,

_ 8 S -E -M  , _  3 (E—M) </3 , _  -4 S  +5(E  + M)
4/4 ’ 1 4/4 ’ J 4/4

together with

X' dX. vw d2X  o
do* 2 ’ 3

(l + 2A cos 0) (x"—2y'—x) —4A sin 0 (x' — y) — (X^/ 3 + Y),
4/4

(1 + 2X cos 6)(y" + 2x’- y ) - 4 \  sin S(y’+x) +y = (X-Y^/3).4/x

( i.)

( i i . )

The first thing then is to solve the equations (I.), after which the right side in (II.)
will be known. Considerable simplification can be introduced by change of notation;

/2'iri\ 2 f 4r.7ri\-----I w =  exr> I------Iw exp
3

exp
3

A — ^2) —II = i ( a —b + 2ih), K —- \  (a—b — 2ih),
so that

TT 3 S + wE + w2M y -  3 S + w2E+wM HK ='  3 S+E + M ’ 3 S+E+M  ’ 4 \ 9/*
where

2 „„ SE + SM+EMm ” (S+E+M )3 ’
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 147

further

P
so that

A+(HK)* A -(H K )» = t [ l - ( l - 2 0 ‘] ,

Also
p  + q = 3, pq = Jm2.

u — (l + 2A cos 0).(X+iY), = (l + 2A cos 0)(X—

whereby the equations (I.) become

(l + 2A cos 0) (u" + 2iu') = A^ + Hv,

(l + 2X cos 0) (v" —2 = Kw-f

m which u' = du/dO, &c., and then

( iy

= K*w + H*v, Hr = Kbi—Hh;,

i so that 4>, Tr are both real, and

<£4-^ = 2K“ ( l+  2A cos 0) (X + ̂ Y), <I>— = 2TI» (l + 2A cos 0) (X—

and the equations (I.) become

(1 + 2X cos 0) (<!>" — 2d'/) =

(1 + 2X cos 0) (*" + 24>') =  g * ,
( i .)"

in which, beside the eccentricity 2X, there are the two constants q, which are 
dependent upon the single number m.

The equations (II.), by means of the changes

U = ( l  + 2A cos 0) (x + iy),V = ( l  + 2A cos 0)
become

(1 + 2X cos 0) (U "+ 2tU') -  f  (U + V) =  ~  (1 -  w>) v,
2m

(l + 2Xcose)(V"-2»'V,) - f ( U  + Y) = 2 ^ (1  -w )u .
(II.)'

Consider now the equations (I.)". We know that the solutions are of the form

<t> = Ce^F + Cje^Fi + C a e ^ + C  3e ^ F 3,

*  = C e ^ G + C je ^  + C ^ G .  + C ^ G a ,

where C, C1} C2, C3 are arbitrary constants, F, Fj, ..., Ga, G3 are definite functions of 
period 2x, and k, kx, k2, k3 are definite constants. When X = 0, substituting in the 
equations

=  ei<r\Sk =  Peia\  
x 2
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148 PROF. H. F. BAKER ON CERTAIN LINEAR

we obtain
o-2+g> + 2firP = 0 , (<r2 + q)F-2io- = 0 ,

so that the values assumed by ic, kuk2, k3, when X = 0, are the roots of the equation

or

Thus

{o-2+p)(cr2+ q ) —4:<T2 =  0,

(T4 — cr2 + \m 2 — 0.

<t — ± {k(l + m )}j± (l — m)*},

and the four values are all imaginary when >  1, and all real when <  1. 
Supposing S >  E >  M, we find at once, from the formula for that the least 
possible value of S/(S + E + M) in order that <  1 is 0'9G147..., but this requires M 
to be very small; but if S/(S + E + M) be greater than 0*9618..:, then m is certainly 
<  1 even if E — M. In our solar system the sun’s mass is more than 99*8 per cent, 
of the mass of the whole system; thus if S in our problem were the sun, and E, M 
were any two planets of the system, the condition for <  1 would be easily satisfied. 
We shall then suppose m< 1.

Now compare with the equations (I.)" the equations

(l —2X cos 0) (<!>" — 2^') = pd>, 

(1-2X  cos 0) (>F'/ + 2d>/) =  gd+
(in.)

obtained from (I.)" by change of the sign of X. They can also be obtained from (I.)" 
by changing 0 into 9 + 7r. This last change shows that the characteristic constants * 
belonging to the equations (III.) are the same as for (I.)", while the former change 
shows that the values of k proper to (III.) are obtained by changing the sign of X in 
the constants k appropriate for (I.)". When m is such that the values of k for X = 0, 
namely, the four values of <r above, are all different, a change in the sign of X cannot 
interchange the values of k among themselves. Thus we infer that each k is unaltered 
by changing the sign of X ; for two of the values of a can only be equal when 1.
In the applications in view of which the question was first considered, S denotes the 
sun, E denotes either Jupiter, or another planet such as Mercury, while M is of 
negligible mass. When E is Jupiter we have

mr — 27xo35o/(I + to15o)2 = 0*0257, X = |-(0*05) =  0*025,

and m 2/x is nearly unity. When E is mercury

m 2 = 27/5*106 =  0*00 0 0 0 5 4, X =  i(0*2) =  0*1,

and ?n2 = 5*4X6, m = (2*3) X:!, nearly. In either case we may regard m as small, and 
the four possible values of <r are approximately

± ( 1—  km2) , ± & n ,
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 149

of* which the first two correspond to a period nearly the same but slightly greater

than that of E, and the last two correspond to a period — times that of E. When

E is Jupiter, this last is times the period of Jupiter, or nearly 150 years; when E 
is Mercury, this period is approximately 200 years. As is small we have approxi
mately

p  = 3 - iV n 2, q = ,Vn2.

To neglect m2 would be to neglect the ratio 27E/S; but we may remark in passing 
that if we put q = 0, p  = 3, the equations give

together with
\j/_l_2<l> = C, a constant,

$ „ + l +  8X cos«$  
1 + 2A cos 0 2C,

of which the integration can be completed in finite terms. For it may be verified 
that the equation

(1 + 2A cos 0)$>"+ ( l  + 8A cos 0)d> =  0

possesses the two integrals

where

sin 0(l  + 2A cos 6), 

cos 0— 2A (l + sin2 0) — 4A2 cos # + 8A3 cos 20+ 12A2 sin ( l  + 2A cos 0)

dO
*  = J 1 + 2A cos 0

§ 8. We consider briefly, first of all, what would be the application of the method 
of infinite determinants to the equations (I.)", which we may now write, with x, for 
<4>, F, in the forms

( l  + 2A cos 0) (x"=  , 

(1 + 2A cos 6) (y" + = qy.
We should substitute

x  = X A neUK+n)\y = ^ B nei(K+n)e,

and equate to zero the coefficients of the various powers of eld. The substitution 
gives, if £ = eid,

[l + A (f+ f -1)] A [An (/c + n)2+ (k + 7i )Bn] fw+jp2A?J ” = 0,
[1 + x a + f - 1)] Z [B n(K+ ny-2i(K + n )AJ £-+g2B„f" = 0,

and, denoting K +  n by we obtain for the unknown coefficients An, Bn the eq u ation s

X (ĵ n-i^3n-i + 2iBw_1/fn_1) + An (*:n2+£>) + 2fB„/cn + A (An+1/c‘'n+1 +2?B„+1a-„+1) =  0,
A ( — 2iAn_1Kn_l +  B n_1/c2„_1) —2iAnKn +  Bn (/cn2+ ^ ) + A  ( —2«A n+1/cH+1 +  B „+1K:3n+i) =  0
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150 PROF. H. F. BAKER ON CERTAIN LINEAR

If we now write
P n =  A-nKn + Qn = — 2lAnKn +

which are equivalent with
A _  KnP ,-2 iQ n - o  2iPn+KnQn

n Kn(Kn *nta2- 4 ) ’

the equations may be replaced by

^Pn-l +^n!>n+̂ 7iQn + XPn + 1 = 0,
^Qn-l + C»Pn + e£rtQn+ ^Qn + 1 = d,

(A)

wherein

a n ~ l  + J -  4 ’ 6" “ * ( J - 4 ) ’

22 iq 
i^n— 4)

cn ~  7 7T--— dn — 1 + „2—4
so that

’a (i c _  Kn —Kn2+ im2
^  n n ~Kn2(Kn2-± )

it being remembered that p  + q = 3, pq = ^m2.
When we eliminate Pn_x, ..., Qn+1 from th.e equations (A), we obtain an infinite 

determinant, which, leaving aside questions of convergence, we may denote by

X • a_x X • • ■

• X d_l • X • •

• • X • a b X •

• • • X c d • X

• • • • X • ax A

. X Ci dx

The product of the diagonal determinants andn—bncn is here

sin x (/c—<7j) . sin ir ( —<x2) . sin (k—<r3) . sin 7r ( —(r4)
sin4 7tk

where <r,, <r2, cr:], cri are the four roots of ex4—<r2 + =  0, previously considered. In
using this determinant to obtain a further approximation to a: it would seem
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 151

appropriate to use a theorem* for the expression of a determinant of rows and 
columns as a Pfaffian, a sum 1 .3 .5 . . .  (2n— l) terms, of which each term is a product 
of n factors, each factor being of the form

(12) = alb'l- a \b l + a2b,2- a '2b2+ ... +anb'n—a'nbn,

where the elements
CCi&i, Ct2b2) •••>

a\b \, a'2b'2> ... a'nb'n,

are the constituents of two rows of the determinant. For in this case the factors (12) 
are easily calculated. But we do not pursue this method.

§ 9. Instead we proceed as follows. In the equations

[ l + A ^ + r 1)] = px,

[1+X (^+^-1)] [y" + 2xf] =  qy,
where f = write

x = eiKeX, y = e^Y , = <7+/c2X2 + /c4A4 + ...,

in which *r2, k4, ... are certain functions of p, to be determined. Then the equations 
become

[ l + X ^ + r 1)] [X"—2Y' + 2*/c(X'—Y)—/c*X] =

[ l + X ^ + r 1)] [Y"—2X'+ 2*k(Y '+X )—/c2Y] = qY, J

which by the general theory are capable of periodic solution when k is properly 
chosen. Put then

X = 1 + X(f>l + H- • •• > - Y = P ( l+  X\fsi + X2̂ 2 + ...),

where P is a constant; the differential equations then take the forms

(1 + Xw) (Ho + xH] + X“H2 + ...) =

(1 + Xw') (K0 + xK4 + X2K2 + ...) = qY, 

w denoting Comparing the coefficients of like powers of X,

H0 = p, K0 = Pff, H ^w H o = pfo, Kx + w;Ko = gP^x,

and, in general,
Hb + wH n-l -p<t>n,K„ + wK„_1 =

so that
H, == p  {<p\ w), Kj = Pq^yjs! w \

* Proved in Scott-Mathews’ ‘ Determ inants’ (1904), Chap. VIII, p. 99, § 19. Also in Baker,
‘ Multiply-periodic Functions,’ p. 314.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



152 PROF. H. F. BAKER ON CERTAIN LINEAR

and, in general,
H„ = p[<Pn~W<Pn-l ••• + ( - w ) n],

Kn = Pq [fan- wfan_x + w2fan_2-  + (-w )n],

w here Hn, K„ are th e  coefficients o f  Are resp ectiv e ly  in

In particular 

so that

and, as previously, 

while, if we write

X" -  2 Y' + 2 A (X' -  Y) -  *3X,

Y" + 2X' + 2ic (Y' + X) -* 2Y.

H0 = —2*VP—o-2, K0 = ,

<t2 -\-p + 2iar¥ — 0, 2 = (cr3 + g)P ,

a-4 —o-2 +  i w a =  0,

p  _  +.P o  _  v2 + q
— 2icr ’̂  ’

which are both pure imaginaries, we have PQ = 1.
Next

H i =  (j)f 1— 2 j t>f a \  +  2l(T— P \^ i)  — <X20 i,

Kj = P [fa'\ + 2Q fa x + 2 + Q^) J  ;

putting these respectively equal to p ( fa —w), P we obtain two differential 
equations for fa and fax. If we assume

fa — AA+A_A b fax = B A +B _^-b
and notice that

(fa)' = Ĉo II 1

we find, writing crn for

Aj (<r2+p) +2P*V1B1 =  p, A_x (<r_?+p) + 2PiV_1B_1 =  p,

— A x . 2Q?.eri+ (<r2 + q) Bx =  q, 
If

—A_12Qfo-_1+ (<r_!2+g) = q.

A x = <j x --  t,2 + -\m2,
these give

A jA i — (o-j — l (cr2+ p )  q,
or

A A  =  {<Ti2+ p )  q + - ( c r 2+ q ) p ,cr
with similar equations for A_x, B_j.

Proceeding similarly to equate terms in A2, we find

fa'2 + 2 icr(j> 2 — ^ fa  — 2P (fa'2 + io-fa.,) — 2 k ., (iP + CT-) = p

fa"2 +  2iryfa' 2 — <r2fa2 +  2 Q (fa2 +  i(rfa2) — 2/ca ( — +  =  q (fa2~ wfa\ +  W2).
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 153

If herein we assume

<p2 — A2̂ 2+A_2(, ”' + H, \]s2 = B2r+ B _ 2r 2+K,

and equate terms in £2, g~2, f°, we obtain

A2 (<T22+ P )  +2P?'(T2B2 = j p ( A ! - 1 ) ,  A_2 +  2Pfc<T_2B_2 =p(A _! — l),

— A2. 2Qio-2+ (or22 + g) B2 =  g(B1- l ) ,  — A_2.2Q*V_2 +  (<r2_2 +  g) B_2 = g(B_1- l ) ,

and
( o-2+p) (H -K ) +2k2(£P+or) (A1+A_1—2),

— (ct2+ q') (H -K ) +2 k2( —?Q + cr) = (B1 + B_1 — 2),

wherein the coefficients of H — K and k2 have for determinant

((T2+p) ( —«'Q + cr) + ( ) (^P + <x),
which is

a (l — m 2)*

and is not zero. That H, K should not be determinable separately is obvious 
d priori; to regard H as zero would be equivalent to dividing X, Y by a power 
series in X2 with constant coefficients. We notice that the successive coefficients 
Aj, A_1} ..., B2, B_2 are all real. The value found for k2 is

7 - G c r 2
*2 “ P ^ 0.( l_ 2 0-2)(1_4  a

A similar procedure can be continued. The differential equations for <p3, can be 
solved by forms

<*>3 = A3<r+A_3r 3+ H x + H _ 1r \  =  B3r+ B _ 3r 3+ K 1£+K_1r \

the differential equations for 04, by forms

04 = A4r+ A _ 4r 4 + MX2+M_2r 2+M,

^4 = BX4 + B_4r 4 + N2r+ N _ 2r 2+N, 

and then the terms in £° will involve the unknown quantities

(<r*Hqp) (M -N )+2*4(tP + <r),

- ( <T2 + g)(M -N )+2/c4(-zQ  + <r),

from which /c4 is found. And it serves as verification of the computation to see that a-, 
involves H, K only in the combination H —K, as it must in order to be determined 
without ambiguity.

VOL. CCXVI.---- A. Y
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154 PROF. II. F. BAKER ON CERTAIN LINEAR

The value found for x is of the form

X = e*’[i + (Xfc x T )  + (XT, X T 2, X 2)  + (XT, X T 3, x %  \ T l)
x T \  XT, X T 2, x4) + ...],

or, say,
x = 'etK0 (]'w0 + X̂'w1 + X̂ -1w_1+ X2£2u2tXŵ-“'W_2+ ..

where every one of u0, ulyu_u u2, u _ 2, ... is a power series in X2 with real coefficients, 
not generally vanishing with X2. And similarly for y.

§ 10. The interesting case of the preceding solution is that corresponding to the 
value of cr given by

<r = i[(l+ra)* —(1-m)*], = J m ( l  + y + ...) .

The quantity
7 — 6<r2

M <t ( l-2o-2) ( l - 4 ^ )
is then equal to

-|-m (7 + %-m2)

approximately, and «-2X2 is of the order mX2. XVhen x, this is of the order m5 or 
X5/2; when m cc x3, it is of the order m5/3 or X5. Thus a very few terms of the preceding 
solutions would seem to be sufficient for practical cases.

PART II.

§11. A large part of the interest of P o in c a r e ’s ‘ Methodes Nouvelles de la 
Mecanique Celeste ’ depends on his criticism of the convergence of the series used 
by astronomers, particularly those series in which the time enters only under 
trigonometrical signs. In t. II., p. 277, he refers to a linear differential equation

g + * ( i + *) = 0,

in which \Js, for our purposes, may be supposed to have a form

— 4a cos ht + Ab cos

in which a, b are small. When h,Jc are commensurable the equation has periodic
coefficients, and P o incare  makes the convergence of the series expressing the solution 
depend on this circumstance (£ Meth. Nouv.,’ t. I., p. 66). Considering the case in 
which li and k are incommensurable, and so \]s not periodic, and supposing a, b to 
have common a small factor /u, he obtains formal solutions of the differential equation 
in sines and cosines, and says “ les series . . ., qu’on peut ordonner suivant les 
puissances de /x, ne sont plus convergentes ” (‘Meth Nouv.,’ t. II., pp. 277, 278). On
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 155

the contrary, I believe that the solution of the differential equation above, arranged 
as a power series in a and b, converges for all finite values of these parameters, 
and that this is a consequence of a general theory of linear differential equations 
considered in papers* published by me in 1902. As this theory is capable of 
application to many other differential equations, as will be illustrated below by 
application to the equation considered by G. W. H ill for the motion of the moon’s 
perigee, I wish to deal with it here, repeating the argument in part.

§ 12. Consider any system of linear differential equations, the 2 coefficients

doCj
d t

uilx1 + ... 4- uinxn, (i = 1, 2, ...,

u{j being functions of t. If these are considered only for real values of t, the 
properties which we require to assume are that, along a certain range which we 
shall suppose to include t = 0, these functions are single-valued, limited, and 
capable of integration, the same being true of certain other functions derived from 
these by multiplications, and further, that certaiif infinite series, which we shall 
prove to be absolutely and uniformly convergent, are capable of differentiation, term 
by term. But in the majority of practical cases the coefficients utj may be looked 
upon as the values, when t is real, of functions of a complex variable t. In this case 
we suppose a star region to be defined by lines passing to infinity from certain points 
in the finite part of the plane, wffiich we call the singular points ; we suppose 0 
not to be a singular point, and the lines may be straight continuations of the radii 
joining the origin to these singular points. Within this star region, bounded by the 
lines in question, the functions utj are supposed to be single-valued and capable of 
development by power series about every point, forming monogenic analytic functions 
in the usual sense. Taking then any region within this star region, we obtain 
solutions of the differential equations, with arbitrary values for 0, in the form of 
infinite series of functions, obtained by quadratures, which are proved to converge 
absolutely and uniformly within the region taken.

The method of forming these solutions is extremely simple, involving only 
integrations and multiplications, but the way in which the work is arranged, though 
often of great utility, does not seem yet to find common acceptance, and some words 
must be given to it.

* ‘Proc. Lond. Math. Soc.,’ XXXIV., 1902, p. 355; XXXV., 1902, p. 339. See also the same ‘ Proc.,’ 
2nd Series, II., p. 293, where it is explained that the same idea had already been used by P eano 
and others. To me the method was independently suggested by the theory of continuous groups, 
‘ Proc. Lond. Math. Soc.,’ XXXIV., 1902, p. 91. P oincare’s conclusions as to the convergence of 
astronomical series have been criticised by G. W. H ill, ‘ Coll. Works,’ IV., p. 94; but the point there at 
issue is different from that considered here. In connexion with an example considered by PoiNCARk 
loc. cit., p. 279, see Bruns, * Astr. Nachr.,’ No. 2606 (CIX., 1884), pp. 217, 218. Also Borel, ‘ Theorie 
des Fonctions ’ (1898), p. 27 ; Hardy, ‘ Quart. Journ.,’ XXXVI., p. 93: ‘ Proc. Lond. Math. Soc.,' III., 
p. 441, and the references there given.

Y 2
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156 PEOF. H. F. BAKEE ON CEETAIN LINEAE

The n2 quantities u{j can be arranged to form a square of n rows and n columns, 
the first suffix i denoting the row, and the second suffix j  denoting the column in 
which a particular element ui}is placed. This square is denoted by a single symbol, 
say u, and called a matrix. The symbol formed from the two symbols 
written in a definite order, denotes then another matrix whose ( , j ) th element has 
the value

U i l V lj  +  U i 2 V 2j  +  • • • +

which is formed from the elements of the row of the matrix u and those of the 
j th column of the matrix v. This new matrix is called the product of and , 
taken in this order ; it is generally different from vu. The symbol 1, when used for 
a matrix of an assigned number of rows and columns, denotes the matrix of which 
every element is zero except those in the diagonal, all of which have the same value, 
unity; it is easy to see that any matrix is unaltered by multiplication with the 
matrix unity of the same number of rows and columns. The symbol u~l denotes 
the matrix such that the product? u~luis the matrix unity ; in that case uu~l is equal 
to u~lu ; the symbol u~x is nugatory when the determinant formed with the elements 
of u is zero, and only then. In general, the determinant formed with the elements 
of u will be denoted by \u \.By the sum, u + v, of two matrices u, v, of the same 
nurriber of rows and columns, is meant the matrix whose (i, j ) th element is 
and, similarly, for the difference. Frequently we denote the aggregate of a row of 
n quantities, x}, x2, ..., xnby the single letter x then if be a matrix of n rows and 
columns, the symbol ux denotes a set of n quantities of which the is

W/fiXi +  V/̂ 2 ^ 2  H- • • • “4“ 'U'irft'n'

By the differential coefficient of a matrix we mean the single matrix whose elements 
are the differential coefficients of the given one. In what follows, if the 
element of a matrix ube a function of t, we denote by Qw the matrix of which the
(i,j ) th element is the integral of u ytaken in regard to t from =  0 to =  If, for 

an instant this matrix Qw be denoted by v, the product matrix uv will be denoted 
by uQu, and the matrix Q (uv), or Q (uQu), will be denoted by QuQu. Similarly, 
Q (u . QuQu) will be denoted by QuQuQu, and so on.

Now consider a matrix of which the (i,j) th element is the infinite series formed by 
the sum of the (i, j )thelements taken from the matrix unity (of the same number of 
rows and columns as u), the matrix Qw, the matrix QuQu, the matrix QuQuQu, and 
so on. This will be denoted by

0 (u) = 1 + Q u + QuQu + QwQwQ'w + ...,

and the series on the right will be said to be uniformly and absolutely convergent 
when this property is proved to hold for each of the n2 infinite series which constitute 
its elements.
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 157

Repeating now the demonstration given, ‘ Proc. Lond. Math. Soc.,’ April 10, 1902, 
p. 354, let denote the (i, j ) th element of the matrix Q that is,

% (1)
r*

u{ a t ; 
Jo

similarly, let u{ji2) denote the element of the matrix QuQvi, namely,

Utj{2) = f k < 1} + + ... + u inunj(l)] ,
Jo

and so on. For the region chosen within the star region above explained, when the 
functions uare functions of a complex variable, or for the range of values of t 
adopted when the elements u{j are functions of a real variable, there will exist a real 
positive quantity M<;- not exceeded by the absolute value of u{j for the values of t 
involved. Taking a path of integration limited to such values, from the origin = 0 
to t = t ,this being a rectifiable curve of length s, let be an intermediate point of 
this path, the length of the path from the origin to being Then we have, 
considering absolute values,

and in particular 

Similarly,

K (1)(0 l<M ij IJo

| Ui/ l} (h) I <  SjMy.

uxj2̂ (f)i <  I + ... + M,-ns1Mnj) dsx
Jo

now if M denote the matrix whose (i, j ) thelement is M ,̂ the element of the
matrix M2, formed by the product of M with itself, will be

M^My + Mi2M2j + ... + MinM

ftp

which we may denote by (M2)y ; thence

| tt,/2> (t) I =  (M% f  s, ds, S  (M2).-
J 0

and in particular

We can continue this process. The next step will be

i « j 3) (<) i= r ^  <*»■ (m% +• • •+ m.» (M% i >Jo
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158 PROF. H. F. BAKER ON CERTAIN LINEAR

Thus we see that each of the n2 infinite series constituting the elements of the 
matrix

12 (m) — 1 “h Qw -H + ...

has terms whose moduli are respectively equal to, or less than, the real positive terms 
of the corresponding infinite series constituting the elements of the matrix

i + sm + ^ m 2+ ^  m 3+ ....

This last is, however, certainly convergent for all finite values of whatever be 
the (finite) values of the elements of the matrix M. For the case when the algebraic 
equation satisfied by M has unequal roots, its sum is given by the formula of ‘ Proc. 
Lond. Math. Soc.,’ XXXIV., February 14, 1901, p. 114, which can be easily modified 
to meet the case of unequal roots.

Thus each of the elements of the matrix 12 is an absolutely and uniformly 
convergent series; in the case when the elements u{j are functions of the complex 
variable, as explained above, it follows that every element of the matrix 1} is a 
function of the complex variable, and differentiation (and integration) of the series 
representing this element is permissible, term by term. For the case of real functions 
we introduce this as a condition.

Hence, if x° denote a row of n arbitrary values x®, x.f, xn°, the row of n 
quantities denoted by

x = 12 (u) x°

is at once seen to form a set of n integrals of the differential equations, reducing for 
t = 0 to the arbitrary values x°, that is, x{ reducing to x®. For if v denote any 
matrix, of nrows and columns, whose elements are differentiable functions of if x° 
denote a row of n constants, and y the set of n functions given by

that is, 

we have

vx\

V^x" + vl2x j  + ... + vinxn°,

dyt _  dva o . dvtn 0 
dt ~ dt ' + - + dt ”

which, if — denote the matrix whose elements are the differential coefficients of the dt
elements of v, we can denote by

dy = r o
dt dt ' '

Hence the equation
x = 12 (u) x°,
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 159

gives

or

(1 + Qw + QwQ u + ...) a?0,

d= -j-[1 + Q u + Q (uQu) + Q (uQuQu) + ...]at
= [u + uQu + uQuQu + ... ]
= u[l +Qw+QwQw+...] cc°,
= uQ ( u ) x ° ,

dxjdt =  ux,

so that the functions x = Q (u) x° satisfy the differential equations. By the definition, 
Qiiij reduces to zero for t = 0 ; hence 12 (u) reduces to its first term, the matrix unity, 
when t = 0 ; that is, x = 12(u) x° reduces to x = when = 0.

In what follows we shall require a particular property of the matrix 12 (u), given in 
‘ Proc. Lond. Math. Soc.,’ XXXY., December 11, 1902, p. 339. If u, v be any two 
matrices of nrows and columns, of similar character to the considered above, the 
property is expressed by

12 (u+v) = 12 (u) 12 {[12 (?t)]-1 (w)},

where [12 (w)]-1 is the matrix inverse to 12 (a),defined above, such that [12 (rt)]"112 = 1. 
The theorem is nugatory when the determinant of 12 is zero. I t is only equivalent 
to saying that if in the system of linear differential equations

that is,

dx
dt = (u-\-v)

dx{
dt (ua + vix) xx + ...+  (uin + vin) xH,

we introduce a set of n new 
equations

then
x =

dependent variables, denoted by 2, by means of the 

12 ( u)2, or 2 = [12 (w)]-1 x,

This follows at once from
dz/dt = [12 (it)]-1 vQ, (u) 2.

(«+«)* = g  = |  [O («)»] = [A  O ( « ) ] ,+ Q

= [wQ (u)\ 2 + 12 (u) ^  = uil (u) 2 + 12 ^

= ux +12 (u) ^  >dt
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ICO PROF. H. F. BAKER ON CERTAIN LINEAR

which gives
vx vQ ( uz.

In what follows we shall generally write Q-1 in place of [Q (w)]"1.
Another property to be noticed* is that the determinant of the matrix Q (u) is 

equal to the exponential of the sum of the integrals from 0 to £ of the diagonal 
elements of the matrix u.For, if i2{jdenote the general element of Q ( ), the
equation

Q(u) = uQ
CLL

already remarked, is the aggregate of the equations

=  u A 1+ ...

Further, the differential coefficient of a determinant of rows and columns can be 
written as a sum of n determinants, each of which is obtained from the original 
determinant by replacing the elements of one row respectively by their differential 
coefficients. Hence we at once see that, if A denote the determinant of 0  (u),

dA/dt — (^11 4" U‘22•••

which establishes the result in question.
In particular, if the sum of the diagonal elements of u,

un + u22 + ... + unn,

be zero, the determinant of (u) is independent of t, and is thus equal to unity. 
This result is of frequent application.

§ 13. After these introductory remarks we may at once show that the equation

(J
+ as (1 + 4 a cos ht + 4 cos ht) = 0,

to which reference has been made, is capable of solution as an absolutely and 
uniformly converging series in a, b, whatever h and k may be. It will be as simple, 
and of utility for other applications we wish to make, to take the equation

° ~  + x ( n 2-\-is) =  0,

in which w e may suppose n to be an integer.

* Cf. Darboux, ‘ Compt. Rend.,’ XC. (1880), p. 526.
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. I d

In th is  la st  equation , p u t

lead in g  to  

then  w e h ave

W r it in g  

th ese  are

or, say ,

X = i eM ( - i n x ) , Y = \e~“ ( g  + to*)

—inx  = Xe~int— Yelnt, = ;

- i ± e<nt/Xe-int-dt 2n x 1

dY -  ̂  e~int (Xe~
2n v 7

dX
dr

2 it =  t, £ =  eT,

i ( x - w i ,  £ - - £ « ~ - n

* <  x ' y )
" I /

where, as is usual, the single quantity — written before the matrix, is to be

multiplied into every element of the matrix.
In particular, when n = 1, \js = 4a cos ht + cos

J r  (X, Y) = (ap + bq) (X, Y),

where g), g denote the matrices

*> = ! (? “ +£-**)/ - i .  S \ ,  ? = !(£**+£■**)/-1, f y

w -1, i/ w - \  i/
Thus the solution is expressed by

(X, Y ) = Q(ap + bq)(X\

where Q ( ap + bq) is of the form

1 + ciQp + bQq + a2Q pQ p  + ab (QpQq + QqQp) + &2QgQg + ...,

and w e have proved th a t  th is  series is u n iform ly  and a b so lu te ly  con vergen t.
If* w e assum e such a form  o f  so lu tion  it  is e a sy  b y  su ccessive  s te p s  to  ob ta in  th e  

values o f  th e  co€;fficients in d ep en d en tly  o f  th e  m eth od  w e h ave ad op ted . W h a t is o f  
present im portance is th a t  w e h ave  sh ow n  th e  series to  be con v erg en t, a fa c t w h ich  
appears to  be den ied  by  P o in c a r e .

VOL. C C X V I.---- A. z
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162 PROF. IT. F. BAKER ON CERTAIN LINEAR

§ 14. L eav in g  aside th is  point, w e pass on now  to  th e  app lication  o f  th e  general 
m ethod  here exp la ined  to  th e  com p utation  o f  th e  in teg ra ls  o f  particu lar differential 
equations w ith  periodic coefficients, as, for in stan ce, th e  eq u ation  for th e  m otion o f  
th e  lunar perigee, considered b y  G. W . H il l .

It is known from the general theory that the solutions of the n equations

dxjdt = ,iq1£C1 + ... + ^]na?n, 1, 2, ..., ),

in which uiu ..., uin are single-valued functions with a common period, say w> can be 
written, in the most general case, in the forms

Xi = + ... + A ne

wherein Al5 ..., An are arbitrary constants, Xx, ..., are n definite constants, and the 
functions <p{j are n2 definite functions all with the period In many applications it 
is the constants X1} ..., \ nwhich it is of most importance to find; when these are all 
pure imaginaries, the motion* represented by the differential equations presents, 
beyond the fundamental period w, secondary oscillations of periods 2tt and the 
motion is conventionally said to be stable.

We show first how this form of solution naturally arises from the point of view we 
have adopted.

Write Q0* (u)in place of Q(u), and for simplicity write only two rows and columns 
of the matrix, though the argument is quite general. Make the limitation, which, 
as is well known, does not cover all cases, that there exists a matrix of constants, h, 
of n rows and columns, whose inverse is denoted by A-1, such that the complete 
matrix Q0W ( u) can be written in the form

Q0W (u) = h /e ic'w, 0 \  hr1 

\  0, e**0/

with only diagonal elements, here denoted by , eiC2W, in the reduced matrix. This 
will be so, in the technical phraseology, if the matrix Q0W has linear invariant 
factors.! Then, from the definition of 12 (u)}

V +t(u) = Qw~+i (u ). Qov (u), 
while, as u has period w,

Qww+t ( u) = Q0‘ (u).

* Interesting physical examples are given by Lord Rayleigh, ‘ Collected Works/ III., p. 1.
f A proof of the general theorem for the reduction of a matrix, valid when this is of vanishing 

determinant, is given, ‘ Proc. Camb. Phil. Soc.,’ XII. (1903), p. 65. The literature of this matter, which 
begins with Sylvester, ‘Coll. Papers/ I., pp. 119, 139, 219, and Weierstrass, ‘Ges. Werke/ I., p. 233, 
is very wide. The reader may consult Muth, ‘ Elementartheiler/ Leipzig, 1899.
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. IG3

Hence

and so

Q f +t (u). h =  Q0* (. /  0

\  0, eiCiW/

Q0w+t (u). h /e ~icAw+t\0 \  = Q0* . 0

0, e—icniw+t) 0, e— ic*t

This shows that the matrix on the right has period w. Put then

Q0* 0 \ ^ -1,

0, e~iCat

P 1 x 0

which has period w, and is such that P ^  = P0° = 1 . The matrix can therefore
be written in the form

Q0* (u) — P</ • h /e iClt, 0 \

\  0, e**/

which is the theorem in question.
We now compare this with the form of solution of the original differential 

equations by the method of successive approximation followed by L a g r a n g e , 

L a p l a c e , and others. We have

Vc,t, 0 \ =  l+ i t / c u0 \  + ^ / c i *  0 \  + . . . ;
2 !

0,
thus

V d, 0 ,

iV  (u) = P0‘ + tP {hyh-1) P

where P is written for P0*, and y  is written for

T‘ca, 0 \ .

0, ic2/

If then, as in L a p l a c e , ‘ Mec. Cel.,’ Liv. II., Ch. Y., t. I., of the edition of 1878. 
p. 266, we obtain the solutions of the differential equations in the form

(Po* + £ A + £2B + ...)

where A, B are certain periodic matrices, and is a row of arbitrary constants, 
we can obtain the constants icu ic2,which are the most important quantities many
applications, by taking the matrix A, which arises as the coefficient and equal
in our notation to

fV ( ¥ - ' ) ,
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PROF. H. F. BAKER OK CERTAIN LINEAR1 64

putting therein t — 0, so obtaining, say A0, equal in our notation to hyh \  and then 
solving the determinantal equation

! A0—x| = o,

whose roots are icxand ic2.This process will be found to be equivalent to the 
general procedure explained by L a p l a c e , in the passage above referred to, for 
bringing the time under trigonometrical signs. We have considered only the case 
of linear differential equations with periodic coefficients, and have supposed Q0W ( ) to 
have linear invariant factors; L a p l a c e ’s method, if less definite, is of much wider 
application. An interesting exposition of the method in general is given by 
M. O. C a l l a n d r e a u , ‘Ann. de l’Observ. de Paris,’ XXIL, 1896, pp. 16, 20.

We may notice that
A0 '= h /ic u 0 \h ~ x

\  0, 1C2/
gives

so that we also have

0 (A0) = h /eiC]t, 0 \

\  0,

Q{u) = P0M2(A 0)

— Po* (l + ̂ A0+ ^ 2A02+ ...),

and the quantities elClW,eXClW are the roots of the equation

I V ( u ) ~ p \  =  0.

§ 15. When the sum of the diagonal elements of the matrix u is zero, the 
determinant of (u)is unity, as above remarked. In this case, when 2, the two 
quantities erc'w, elCiW are inverses and c2 = —cx.In this case the equation

| Q0w(u ) -P\ = 0

gives at once the value of cos cw. This appears, however, a less advantageous way 
of determining cl5 c2 than that explained above, as requiring greater approximation 
in the calculation of ( u), as will be seen in examples.

The fact that cu c2 are equal and of opposite signs is a particular case of a 
well-known theorem for the variational equations arising in the general dynamical 
case, which is proved by P o incare  (‘ Meth. Nouv.,’ I., 193). The following proof, 
though longer, appears more fundamental in character. The general dynamical 
equations being

dxr _  _8F dtp _  _  _3F
dtdyr dt dxr
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 105

where it will be sufficient to suppose rto have the values 1,2;  let

Xr <pr (t'),

be a solution of these equations. Substitute in the differential equations

d r (pr (t) ~f" 'lfr ( 0  "t *7r> *

and retain only first powers of the quantities £. and which are supposed to be 
small. We thence obtain a system of linear differential equations of the form

where ft is the skew-symmetrical matrix of constants given by

ft = /0 - 1  0 0

1 1 0  0 0

l 0 0 0 -1

\  0 0 1 0

(so that ft~l = —ft), and A is a symmetrical matrix whose elements are functions of t. 
We then have the theorems following :—

(a) The roots of the determinantal equation for X, ,

\ft~1A - \ \ =  0,

fall into pairs of equal roots of opposite sign ;
(b) The determinantal equation for p,

|Q(/3~1A )- />| = 0,

is a reciprocal equation, unaltered by changing p into p~l.
To express the proof we require a -notation for the matrix obtained from a given 

matrix u by interchanging its rows with its columns, thus placing the element in 
the (j, i)th instead of the (i, j ) th place. This transposed matrix may be denoted by 
trs (u) or by u .It is easy also to show that

[12 (w)]-1 = trs [12 (—u)J.

fhen (a) is immediate from the obvious relations among determinants expressed by

| A—#\| = | A— ft\\ = | A + /3\j, 
since A = A, ft = —ft.

fd i, 
\  dt
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166 PROF. H. F. BAKER ON CERTAIN* LINEAR

For (b), since
ftQ (u) ft-1 = Q (ftuft-1), trs = — A ft~ \

we have the following transformations of matrices

[Q (ft-1 A)]-1 = trs [Q (A/3-1)] = trs \J$Q = ft-1 [trs Q (/3_1A)] ft,

and hence, writing Q-1 (u) for [Q (w)]-1, the following equations among determinants

\Q-J (ft-1 A ) —p\ = |trs Q (/3_1A)—p| = | | ,

which establishes the result in question.
§ 16. In many dynamical applications the matrix A is a sum of two matrices

A = a + S',

where a is a symmetrical matrix of real constants, and ^ a symmetrical matrix whose 
elements are small. Suppose, further, that denoting a row of 2n real variables 
p x, p2, ..., the matrix a is such that the quadratic form

^AoLjjPiPj

does not vanish unless every one of the 2 nelements of p  is zero, which requires that 
the determinant j a \ is not zero. Then, if this quadratic form be denoted by ap2, 
and if each of £ and rjbe a row of 2n real quantities, the form

v-d+il) (£—in)> = ag2 + ia(t]g—gr]) + = a(£2 + >/),

has the same property.
When this is so, it can be shown that the roots of the determinantal equation in

= 0,

are pure imaginaries, and that the invariant factors of the matrix are linear.
As the proof is not long it may be given here (cf. ‘ Proc. Lond. Math. Soc./ XXXV., 
December 11, 1902, p. 380).

Let yjs satisfy the determinantal equation

I oL—ftp  | = 0 ;

as the determinant |a | is not zero, \[s cannot be zero. Then 2 quantities x2, ..., 
whose aggregate is denoted by x ,can be taken to satisfy the 2n linear equations

(a—ft̂ Js) = 0.

If x0 denote the row formed by the 2n quantities which are the conjugate complexes 
of those of x, we have in turn

aX0X = \Jsftx0X,<XXX0 = \fsftxx0, ax0x = — \fsftx0x,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



.DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 1 07

and, therefore, \Jsn being th e  con jugate  com plex o f \fs

Hence
axx0 =  —

(-7 + 7 -) OLXX0 = 0 ,\ y  yjrj

showing that = 0, which proves that \Js is a pure imaginary.
Writing A for the equations above are the same as

( a -1/?—A) x  0 ;

we prove that the invariant factors are linear by showing* that it is not possible 
to find a row of 2 nquantities y1 } y2, ..., such that

( a -1/3—A)
For this woidd involve

(fi—cc\)yx0 = axx0,

of w hich th e  r ig h t side is real, so th a t ,  A being a pu re  im ag inary , e ith e r of these  
would be equal to

(/ 3+ a\)y0x ; = (i3+K\)xy0 = (-(3 + a \)x y 0, 

of which the last is zero in virtue of

(a-1/3—A) as = 0.

As axx0 is not zero, the assumed equation for y is impossible, and the invariant 
factors are linear.

From this fact it follows that it is possible to find a matrix such that

h - 'p - 'a h  = j  %<rx 0 0 0

I 0 — %<t1 0 0

l o o  i<r2 0

y 0 0 0 — icr2

where o-j, a2 are real. Then the given differential equations, which are of the form

if transformed by the linear substitution

{£i> *7i> V2) — h (Xj, Y1} X2, Yf)

* See, for example, ‘ Proc. Camb. Phil. Soc.,’ XII. (1903), p. 65.
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168 PROF. H. F. BAKER ON CERTAIN LINEAR

take the forms
cZX, dY, dX2 A
dt dt ’ dt )(<T+e) (x„ Yj, x2, x2),

where <r denotes the matrix above written, with only diagonal elements ia-u &c., 
and 0 is the matrix

0 = A,-1/?-1̂ .

The solutions of these equations are then expressed by

(X„ y„ x2, y2) = a(<r+e) (Xj°, y,», x2», y/),
where Xj0, Y^, are the initial values. Now, by a previously given formula,

Q (<7 + e)  =  Q ( a )  Q  [Q-1 (<r) e Q  (<r)],

where Q (a-) has the simple form

the solution is thereby expressed in powers of the small quantities occurring in 3-.
The preceding work has wide applications; a particular case is that of the 

oscillations of a dynamical system about a state of steady motion, for which S-, and 
0, is zero.

[ < October30, 1915.—To prevent misunderstanding, two remarks may be added to 
§16. The condition that the quadratic form should be positive, though sufficient, 
is not necessary in order that the roots of the determinantal equation (/3~'a—\fs) = 0 
should be pure imaginaries. For instance, if a, b, u, v be real positive constants, and 
H be a quadratic form

H = (y i-n x2)2 +ib (y^-m x^2 -  ^  x 2-

the motion about xx = 0, x2 = 0, y1 = 0, y2 = 0 expressed by the equations 

xx — 0H/02/j, yx — — 0H/0#!, x2 = 0H/0?/2, =

is instantaneously stable if ah (m—n)2>  (it + v)2, the corresponding quartic equation 
having all its roots purely imaginary. This essentially is the case noticed by 
T h o m s o n  and T a i t , ‘ Natural Philosophy/ I., pp. 395, 398, where the illustration is 
that of a gyrostat balanced on gimbals. A simple illustration is also that of the
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 169

oscillations about steady motion of a weight suspended by a string of which the 
other end is made to describe uniformly a horizontal circle, in the case in which the 
string intersects the vertical drawn downwards from the centre of the circle described 
by its upper end. This ^notion is not, however, secularly stable when there is 
Dissipativity (T homson and T a it , as above, p. 388); and, of course, not instantaneously 
stable, the roots of the corresponding quartic equation having real parts of which some 
are positive.

A second remark relates to the generality of the form of the differential equations 
used in the text. Equations such as

^ /3 T \
dt \dx

3T, .  . , * • , SF , 0Y
“  8r" +@rlXl + " ‘ + + A?" + Q,,

where /3rs is a function of x l}..., xn capable of expression in terms of n functions 
..., /3nin the form

O = S/8,
Prs Zxs Zxr

are included in this form, with a slight modification due to the presence of the 
Dissipativity F, and the supposed non-conservative forces Q,.. For this it is only 
necessary to take

L

H . OL , , • 0±J
X x -r-rr +  . . .  +  r r "  ' 

CXn

and to eliminate xu..., xn, in the familiar way, from the equations

Then the final equations are

xr 8H
ay ,’ Vr

0H
dxr

Particular illustrations are: ( l )  the equations of T homson and T a it  (as above), p. 392, 
for which the coefficients f3rs are constants. Then we may take /3r = ...
where the constant coefficients crs are in part arbitrary; (2) the equations of Lord 
K elv in  for liquid motions of ring-shaped solids, ‘ Collected Papers,’ IV. (1910), p. 106 ; 
(3) the equations of motion of a system relatively to a rotating frame (L amb, ‘ Hydro
dynamics,’ third edition (1906), p. 294. Cf.Thomson and T a it , as above, § 319, p. 307, 
and p. 319), for which we may take, if (£, £) be the co-ordinates of a point of the
system relatively to the rotating frame,

/L

2 AVOL. CCXVI.—  A.
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170 PROF. H. F. BAKER ON CERTAIN LINEAR

The equation of energy in general is at once seen to be

—  = — 1 VQ £7 /-\, Zjd r _ .at

so that if H be explicitly independent of the time, the forces Qr be absent, and F be 
a homogeneous quadratic function of xlt ..., xnf

—  = -2F.1 dt J

§ 17. The simplicity of the formulation depends on the fact that the invariant 
factors of /3-1a — \J/- are linear. We have obtained this by assuming that the form 
only vanishes when every element of p  is zero. But the invariant factors may be 
linear when this is not so, and the roots of the determinantal equation are not pure 
imaginaries. For instance, take H il l ’s equations for the motion of the moon, under 
certain limitations,

d2x
dt — 2n - -  + ( ~ — 3 o d2y 9 dx

°’ d F + Z nd i + ^ 0.

Writing
F = — — — %n2 + J(Y — r

these are the same as

dx = ZF dX = _ a F  dy = ZF = 0F
dt ax’ dt dx ’ dt 9Y’ dt dy

The so-called moon of no quadratures is obtained by variation from the solution 
expressed by

X — cr, X = 0, 0, Y = Tkr,

where a- is given by yu = 3?iV3; this is a position of relative equilibrium. The  ̂
matrix S of the notation used above is zero; the matrix a is

/  — 8 n20  0  —

/ 0 1 n 0

\ 0 n4 0

\  — n0 0 1

In this case the quadratic form ap2 is

— M p 2 + (p2 + Znpz)2 + —Pi)2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 171

and vanishes when p x — = 0, p 2 = — 2 nBut the roots of the determinantal
equation

—  =  0

are all different, and therefore the invariant factors are linear.
The roots are

V' =  ±  ft{(28)*+ l}* , ±  m {(28)*— 1 }*,

of which only two are pure imaginaries; thus not every disturbed orbit is periodic.
§ 18. We pass on now to give the details of the application of the general method 

above explained to the computation of some particular cases.
A very simple case may be first given, merely as an example of the notation and 

method, since the results, once obtained, are easily verified.
Take the equations

2 ~  = —x  cos (l + sin t),

These may be written

_
c

2 = —x(l — sin cos

£  /  0, l \ + i /  — cos t, sin t

- 1, 0 sin t, cos t,

(«, v \

or, say, 

where

We have at once

and therefore

~ ^ t — = ( u ( x ,

u = i  /  0, l \ , v = J  /  — cos , sin i 

\ — 1, 0 / \  sin cos^

{ 2 u f= ^ 0 ,  1 ^ 0 ,  1^ = -1 ,

Q(u) = 1 + ut + ~^ t2 + — £3+ ...,

= 1— + jq  (¥ Y ~  ••• + 2w ( i ^ +  •••}>

=  COS ^ t + /  O', 1 \  S i l l  l|r ,

-1 ,  0,
cos sin ht\ .

— sin \t, cos
2 A 2
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This gives 

Wherefore

1 7 2 TROF. H. F. BAKER OK CERTAIN LINEAR

12- 1 (u) — / COS f — sill f t \ .

,sin ft, cos -J-i2U /

12-1 (u). v .12 (u) = i  / cos |  -t, — sin \  /  — cos t, sin 12 ( )

vsin ft, cos sin cos t/

\  / — cos 7ft, sin 12 (^)

sin \t, cos 2 ,

“ (V  O'
Denoting this by \<r, we find a-2 = 1, and hence

12 [12_1 (u) vQ (w)] = 1 + + ^  ( i  + ...

= ch jft + crsh 7ft,

'e~u, 0 \ .

x 0,
Thus the solution is

(x, y) = 12 (u+v) (x\ y°) = / cos sin JA  /  0 \  (as0,

\  — sin cos jft/ \  0, e?1

x — x()e~it cos f t  + sin ft,

y = —as°e-4< sin f t  + y{)e  ̂cos ft.

7}t

namely,

The period of the coefficients in the original equation is 2x. The functions cos \t, 
sin^-t have only the period 4tt. T o bring the result into the form given by the 
general theory we may write

a; = x°e~Hl+i)t. i(eu+l)+y°ei(l+i)t2 %

y = — x°e~iil+i)t. —.(eit— l) + y ° f i l + e ^ * ) ,

the so-called characteristic exponents being

± i ( l + 0 -
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 173

§19. We now consider cases of the equations

£ ( X , Y ) = - ± / l ,  - F \ ( X ,Y ) ;

- 9
these are derivable from the equation

d2x
dt2+ (n2+\Js) 0

by taking 

leading to

X = ^eint  ̂ — in x ), Y = int + i n x ), t = £

x  = — (Xe_l?lt—Yem<).n

= eT,

As we wish particularly to illustrate the method of obtaining the characteristic 
exponents from the present point of view, we take first a case in which explicit terms 
in t arise early in the method of successive approximation. We take namely = 1, 
and suppose

^  = Xh + 2,\Jcx cos 2 t + 2 cos + ...,4
=  \h +  \kxwx4" \2Jc2iV2 - t . . . ,

where X is small, and wr is used to denote £r + £-r.
Denoting \\fr by (p, our differential equations are

< M L J) = u ( x > n

where
u — /  —(f),

w r 1, * /
The coefficients in these equations have period 2 ; by what we have previously 

shown (§§ 14, 15), the solution is of the form

(X, Y) = P 0 (X°, Y°),

V 0, e V

where P is a matrix whose elements have the period 2xf, h is a matrix of constants, 
and q is the constant which we particularly desire to find. As

a,* = i(Xe~u-Ye"),

this corresponds to characteristic factors eTt(1+2'?)< for the original equation in t, whose 
coefficients have period x. The quantity q is to be found by determining the terms in

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



174 PROF. H. F BAKER ON CERTAIN LINEAR

t in the solution of the (X, Y) equations, and forming from this, after putting t = 0, 
a determinantal equation (§ 14).

We are to calculate in turn Qn, Q uîu,&c., and arrange the result according to 
powers of A. First we have

Qi/, — I cq, \  j

where
V i, ,

a1 = — | «/> dr, — (p£ dr,
'Jo Jo.

cx = — ( dr,= 1 </> ;Jo Jo

thus, as (p is unaltered by changing the sign of t ,  x can be obtained from cx by 
changing the sign of r, and similarly dx from ax. This we denote by writing

Then

and hence

where

6 X =  c\, dJX =  a '

wQw =  /  -</>, <# \ / a x, c V \,

0 /  \Ci, a'l,

- ^ a j  + ̂ Cx, + \ ,

<̂2> C 2 \ >

,c25 (X 2/

I <P ( +  C 2 — I <p ( ^ l" i" ^  l)
Jo Jo

rr r*T
c2 =  ̂ - ^ ( - a i  + ̂ d r ,

Jo Jo

so that a!2 is obtained from a2 by changing the sign of r  throughout, and similarly cr2 
from c2. In general, in passing from a term of 13 (u) involving r integrations to one 
involving ( r+ l)  integrations, we shall have a law expressible by

Ar*+1 = [ <p{—Ar+£Cr) dr, Cr+1 = f ( — Ar + £Or)
Jo Jo

and the new term, like that from which it is derived, will be of the form

/^ O' Y-^r + l> ^  r + l \  5

! A'V + l> ^  r+\/
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 175

where A'r+1 is derived from Ar+1 by change of the sign of r, and similarly C'r+1 from
Cr+!•

Thus, when in Q(u) we pick out the coefficient of t ,  as it occurs explicitly, 
independently of its occurrence in £ and in this coefficient put t — 0, we shall obtain 
a series of the form

/ an - y A  + / a2> — ya\ + *"»

— a. vy2, — a2/

where the first of these comes from Q uand involves terms in X and higher powers, 
the second comes from QuQu and involves terms in X2 and higher powers, and so on. 
And the equation for q will be of the form

namely,

a1 + a2+ ... — q, — yx — y2 — ... = 0,

yi + y2+ ..., - a 1- a 2- . . . - g

q2 — (ai + a2+ ...)2 — (yi + y3+ ...)2.

Further, if the part of Q uwhich is independent of explicit powers of r, consisting 
of elements which are polynomials in f, £-1 and periodic with period 2iri, be denoted 
by P1? and similarly the periodic part of QuQa be denoted by P2, &c., then the 
periodic matrix P above spoken of will be

P = 1 + Pi + P2+ ....

Proceeding to the computation, retain first only to terms in X. Then 

Cti = — j* cp dr = —XllT — X&x(£—A 1)?

. cj = -  f r v dr = -  f r 1 [ \h + \k  ( ^ r 1)]
Jo Jo

Hence

and q is given by

X h tf-1- l) +X^ ( - --- - Ti.

Oil — —Xh, yj =  —Xk, 

q2 = X2 (h2—

In the case when the differential equation is that considered by H il l , this gives at  
once a very near approximation, as he remarks, being equivalent to his formula

C2= 1 + { (V -1 )2- V P

(H il l ’s ‘ Collect. XVorks,’ I., p. 260).
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176 PROF. H. F. BAKER ON CERTAIN LINEAR

If next we retain as far as X3, we have from

(ft = A/h -A&i (£-1 + £) + A2&2 (£~2 + £2) + A3&3 (£-3 + £3),

= \hr + \k 1(— £ 1 + t) + |-A2&2 (•” £ 2 + £2) + ( ~  i 2 + £2)>

cx = — J £“Vcfcr
= x A (r‘- i ) + x i , ( t . 2- i - T ) + x ^ ( ^ + t - f ) + ^ 3( t - 4+ i - | )

Hence

= Xh ( r + l - O + X i ,  ( -  £  + K - r f )  +X*fc(- £  + K -  f )  + ̂ ( -  g  + | - f )  •

Thus
^ ( -« l + fo)

= x2{^(T+i-f)+MiW-1+K-1-i+ ff-r)+ V (-K -2--r-Tf+K2)}
+ Xs {m 2 u -2 + M -2-  r 1 + K +  r f  + K 2- f )

+ u 2( - t r 3- T r i+ K - i+ f - f + S f - n 3)}.
This gives

«2 = J ^ ( —ĉ  + fc jd r

=  ^ { t fa S  + T+l-O + h h i-T t- '- i t '-T  + i  + M -tt2)
+ ^ 2(K - 2- i r 2- i - K 2+ M 2)}

+x8{»2( -K -2-tf-2+ r ,-l+ K + K 2-if )
+^A(K-3+Tri+ t r ,+ iv - i- f+ ir-M 3+K3)}.

Similarly,

c2 =  f £~V ( - a ,  + fc,) dr Jo
=  x2{A.2( - T r i - 2 r > - T + 2 ) + w I( - j r r 2- K - 2+ r i + f v + j - ? )

+v(K-3+rf-,+ r i-f+M-TO}
+x3{M2(-K -8- A r 3+K-s+fT+4+Tf-K-K2)

+ hh('U ~>+ i^ ~ 2+ ^ ~ 2—K '1—v—J + K —i T̂ + i£ 2)}-
Forming now — a2+fc2we obtain

X2{/I,2( - 1 t2- 2 t- 3 —rf+3 Z) + hk, { b - t '  + t '
+ ^ 2( - * r 2+jTa+ T + i - i f + r - H 2)}

+x3 { ^ ( K - s+i'W-’- K - ,+ t+ K + M + K ,- R ,-*?s)
+ i A  ( -  M - ' - b - i - T Z + t f + W - W 8+ A f 3)}.
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 177

To find
«3 =  <f>(— a 2 + f c 2) dr,cs =

Jo Jo

up to A3 it is sufficient to take </> = A [h + kx (£-1 + £)] 1 so we obtain

 ̂( -«2+fe)
=  X3 ( - J r 3- 2 r - 3 - T f + 3 f )

r sf - i- M - ‘- 2 i - , + ^ -4 T ,? - w - 4 f - T r + - o n  

+ A £,2 ( ir f  " 2+ "2 + r f '_1 + Jf'_1 + J r2 + 3r + i  + xf — + r f2— 3)

+ ^ 3( - * r 3+ i r af - ‘+ T r i + 4 f - , - i + i T 2f + j T f + v f - f r - H 3+ i 3)}.
and hence

a3 = I (~«2 + fe) cZt
Jo

= A3/i3 ( — -fiT3 — T2 — 3t — 4 — T^+ 4 )̂

+ A3A2̂ ! [(|-T2 + -2T + -|) f - '  +  f r  f  + ( — +  I) ^ + (—2T + f )  £“]

+  A W (-ir-A ) r 2 + (-r -f)  r i + Ar3 + fT2 + ir  + ̂ - + (r-V-)^
+ ( y - i ) r - K 3

+ X3̂ 3[ * r 3 + ( - i r 2- 2 T - ^ )  r i- |T  + i+ ( iT 2- J r  + -V3) ^ - K 2+ ( - iT + A ) f ] .

Similarly,

c3 = [ £~V (—aa+£ca)d r
Jo

=  A3/i3 [ ( J t2+ 3 t + 6 )  ^ - 1 +  ( - A 2 +  3 t - 6 ) ]

+  \ * h 2k 1 [(i"T* + T + -§) £~“ — ̂ _1 + ( — 6T" — |-T2 — d'l f) + ( —T + -|) £]

+ A3M 12[ ( -1 T-M ) t*-i(r+1) r 2 + ( - J r 2- 4 r - \ 3-) r 1
+ iT 2- f r  +  W - +  A - ^ - K 2]

+ A3̂ d [ A ^ 4 + ( - i r 2—J r - H )  ^_2 +  f^ _1+ 6 t3 +  ¥t3 + J¥It + A - K + (  —4T + f )  £"]■

Picking out now the terms in r, putting therein £ = 1, and using the notation 
previously explained, we have, up to A3,

«i = —A h, y l = —A hlt

a2 = \ 2(hs—2 hJc{—̂ ki)  + A3 ya = A3(—

a3 =  A3 ( — ih3 + 6h2k1 + 2hkl2—̂ J c 3),y3 =  A3 (6/ 3̂—4/^^ —J39-M/ +lA,3).
VOL. CCXVI.---- A. * 2 b

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



178 PROF. H. F. BAKER ON CERTAIN LINEAR

Hence

— (ai + a-j + ag + yi + ya + ys)
=  X (h + ) + A3 (h2+ hkx4- %k2) + A2 ( — — 2/i2&i + ̂ h k 2 + — f

and

— («i + a2 + a3) +71 + 72 + 73
= X (H— kyj + \ 2( -3 h 2 + 3hk1+ i k 2) +X3 (l f f ^ 3—

The product of these gives the value of q \ namely,

q2 = x2 ( h2- k 2)-\3h (2h2- 3 k 2) -f A4 [5

This agrees with the value found above by a quite different method (§ 4).
The matrix of coefficients of t, after £ has been replaced by 1, is of the form

A0 = /a , — yN

\7» ~ a /

and its square is (a2—y2) times the matrix unity. The matrix Q0W of § 14 is thus

V  M  = 1 + A 0w  + \  q2w2 + q2A0w3 + ^  g V  + ...
or

/C  + aS, — yS \ ,

\  yS, C -aS ,

where C = ch(qw), S = -  sh ( qw). From this it is easily seen that for the calculation of 

q the method we have followed is less laborious than to use the equation

W ( u ) - P\ = 0.

The differential equation from which we have started is, to terms in if we 
suppose X = 1,

+ (l + 4^ + 8&x cos 2 cos = 0.

If we compare this with the form considered by H ill  (‘ Coll. Works,’ I., pp. 246, 
268), we have, with his numerical values,

0*03971 09848 99146,

h  = -0*01426 10046 86726,

k2 = 0*00009 58094 99389.
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 179

§ 20. Consider now briefly the case of the equations

A (x>y) = ^ - i. r\<x,Y),
■n, 1 /

in which n = 2.W e suppose

As in the case of n — 1

where

and, for 2,

a, =  —

— x/i -f-\1c±Wi -F T" •. •, — say,4?i

«V = f “r + f r,

u = / — £"<A •

\ - r v ,   ̂ /

Qw =  /« ! ,  c 'A ,  

V V  « ' i  /
*

c, = -  r f - V * -  =  ^ ( * f - , - i ) + ^ i ( R - * + r i- * ) + ^ ( K - 4- i - AJo

These give

0 ( + fcO

= XW(r + *-KS) + ̂ i  [(r-i) (r + 2) '
+ x v ( - s r 2+ t - K + 2 r - K 3)«

QuQw = / a2, A ,

,c2,

As before

where

I <l>(—<*! + £%) dr 
Jo

= X W ^ + i r - K ’+ i J + X ^ ^ - T f - ’- J ^  + l + T f + f - ^ - K * )
+ x v ( K - 2+ i T + i - « + r - « 3)

2 B 2
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180 PROF. H. F. BAKER ON CERTAIN LINEAR

and

C2 =  [ dr .
Jo

= x% » ( - K - 3- R - 2+ J -  l )  * -> -8 * -* + v - * r - i f )

+ (jj£ 4 — §£ _" + f 1 + 2r + -g- — f £ ).

Picking out the coefficients of t in these, and putting therein £ = 1, we have 

cL\ — X /i, "yi — X /t'̂ j

a 2 =  i \ 2h 2+ i \ % 2, y 2 =

and hence, to X3,

T  — (ai + a2)‘J — (71 + 72)" x A - f O s+ P i!) J

X%2-X % (^ + P , 2)-

- [x 2( )?,

. This agrees with a result previously found (§ 6), but fails to give the first term in 
g2 if h = 0. When this is so it is necessary to take account of the terms in X3. By 
taking terms in X3 in au cu we only obtain terms in (— which involve X4.
But the terms in X2 in au cx which are written down give terms in X3 in ^ ( —»i + £2Ci), 
which are

x%ia( i r 3+Tf-s- i + f f >- K ‘)+A»*1i , ( - « r * + K - ,- i - M - r  i + U 3- T ? - U %

and hence the additional terms in a2

x°hk2( -& £ -° -M -‘- b - H + M 2- i n
r + | ) ,

and the additional terms in c2

X'W2^—ir f " 4—K -‘+ i f - 2+ J r  + i -  ^  j

+ x % A t t i r 5- * r 3+K-.2+ « r i+Tf-i+ ^ - r f - i r - f i ) .

In finding the terms in X3 in a3> c3, it is sufficient to retain the terms X2 in a2 and c2. 
'I’his gives for </> (—a2+£2c2),

X W f - J ^ - r - f  + f ^ - M 2}
+ X'V^1{ r 4( - i T2- l T + TrV ) - t + f ( - i r 2- iT - 4 )  + f2( - lT  + ¥ )  + f8( - i r+ A )}
> x W  {f-»(Sr+ ( - w + ^ *  ( - J t+
+x3v { - K - 3- r i ( i T + H ) + i+ f ( |T - H ) + ¥ f + f ( 2 r - j ) - « r } .
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For a3 = I <f>(— a2+£2c2) d r ,  this leads to
Jo

\ sh*  {  —  f  T *-  —  f T — J  +  V( — J r  +  i )  }

+ « ,  { r ‘ ( i ^  + iT + t t ) - | T - ^ + f ( - | T 8- f T - f )

+r (-*■+¥)+**(--£+*)}
+ x w { - r 2( i r + M ) + f r ' - ^ - j # T - B i + f ( - S T + ¥ )

- t t f + F  ( -* ■ + « ) -* { * }

+ A3X’i3 {iVf"'3 + ̂ _1 (jT + t t )  + f T f  + ? ( f r - t t )  + #fa + f8 (§t—Ts)— f£4}.

The terms in c3 = | £~2<p(— ̂ 2-(-̂ 2c2) d r are similarly 
Jo

X W { r 2( ir 2 + ir ) + j T - iT 2}

+ X%>*11?-» ( V  + ^  + TS?) + i^ -2+ f - ‘ ( ir 2 + | r  + ¥ )

- W - f r 2 + ¥ r + f ( - i r + « ) }

+ ® ’jr*  - * )  + K-*+f-* (jr+VH?-1 ( i r - ^ )

- M - ¥ T + f ( - f r + - ^ ) - K 2}

+xv { * r 6+ r 3(^+ tt)-K -’+f-M-|T+tt)
+ « t + ¥ T + f ( 2 T - f ) - * r } .

I t is easy to see that the terms in A3 in aucx are respectively

and

neither of which contains t . Thus up to A3 we have, in the preceding notation 

o il =  —A h, y! =  —A

ot2 = i \ 2 (h?+%k2)-\3(hk.+ lk A ) ,  y2 = -A 2 (h2+ % hh-2ki2) + & % k2,

a3 =  - X W - f X ^ - f A ^  + W ,  y3 =  A % * + +

Thus

DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 181

a, + a2+ a3 =  — A/?/ + Â" (A2 + ^ j 2) + A" ( — 7̂ ’ — — /? + 1^^3 hk2 3 kjc ĵ,

yi + y2+ y 3 =  A2 ( —7i2—f  7i 7̂! + 2 k 2—k2)4- A3
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182 PROF. H. F. BAKER ON CERTAIN LINEAR

This gives
g2 = (ai + as + ag)2—(y! + y2 + y3)2

=  \ 2h2-\*h(h2 + %k2) + ̂  ( w  +  i w - w - ^ 2+ 4 i:12y

as far as term s in  X4. This result is for the equation

d2x

w h erein  n — 2 and
dt2 + (n2 + \fs) 0,

| = \h + \k  ( t- i+ s)+ \% (!-‘+ n + -

and agrees with the result previously found (§ 6) when in this last we replace 
h, k1 } k2 respectively by 2 h , 2k}, 2 k2,as is necessary, taking account of the difference

of notation for in the two cases. By an independent investigation for the case
when

£  = xAx+ x M ^ + ?)+ V A a+ \s*a( r , + f ,)+VA»+x,M ? - , +?’)+..-
o

we have found (above, p. 142),

q2 =  h 2\ 2—hx (h 2+%k2- 2  h2)X3

+  X4 { ( i h 2+ i k 2- h 2)2+ h1* + ̂ h 1% *-2hiaha + 2h1hi- ( k a--2kl*Y} + ...,

which, replacing hby Ĵ  + h ^  + ĥ X2, arises from the preceding result.
§ 21. Now consider the equations

where
J -  (X, Y (X, Y),

-<t>,

<P

and n is not 1 or 2, but is an integer if is a periodic matrix.
With

<p = Xh + X kx ( £ -1 + £) + X"&2 (£_2"t +  . . .  

we have, retaining only to X2,

<%! = — j^fidr = —Xhr + Xki (^~1 — ̂ ) + iX2k2(^~2—^2),

c1 = - \ T£-n<pdr=-  r[x ^ -» + x ^ 1( r w- i+ r >*+i)+ x^2(r'*-3+ r w+s)j d
J 0 Jo

= -X A (£ -- l)+ X * ,( t^n \w + l
(Z-n'\  tU ll _

n — 1 1 + X2
— ti — 2 n +  2i

n+ 2 ' n — 2 n2—4/’
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 183

which lead to 

</>( — »i + £nCi) = X2̂ '3(t 4----~~

^ 27 / j *_i I n2—n — 1\ l \  £n~1
+ x * M f l T- ^ U T T ) )  + d T + U ^ I )  ‘ n n2— 1

2* c „ _

n c . _ » . 2 n .  n 6» c„_i 2ti+ x v  - - ^ - r 2+ 2 , .
71+ 1  7 7 — 1 71— 1 7T— 1

+ f2-  + +  ?’

so that

“ 2 =  | +  ~  « i  +  f “c i) d r

=  ^ h ? U r ‘‘ + 1 - i- = ^\ n

+ \ 2hk11 — £-1 (t H 7~TT\
l \  7 l ( 7 7 + l )

+ ? T +
2n-~ 1 

77 (7 7 —l)
. 4 f - 1 2 », ^  1
re3— 1 re(re— 1) re2—1 ' re(re+l)J

[ 2 ( 7 1 + 1 )  772— 1 (7l2 — 1 )“

n i0 2t7+ £n~1- Pn+l1

Similarly,
2 (n—l) (7 7 — l) (n2— l ) " (72, + 1) l) J

C2 = f  i-'<p{-ai + i ncl)d-,
Jo

\ 2/i2
T ^-n  2 ^ -«  g T

+
n n2 n2 n

+ » ,  j - ( T_  ”2- 2w- 1) _  ”2+ 2” ~ 1
l 71 +  1 \  77(77+ 1 ) /  77 — 1 \  77 ( 77— 1)

, £ ~ x 2 n T 8 t72
+   - - - - - - - - - - - o— r -  -  +77 772— 1 77 (7I2 —1):

+ \ 2£12
(7 7 + 1 )  (71 +  2) n r - r f -7i2—1 (7 7—l)(77 —2) £— 71 + 2

277 c_ 1 277 c 8
H--- o— r  s -------o— r i  +772— 1 772— 1 772 —4

Thus we have, so far as terms in X2, 

a ! =  — 7i — 0,

\ 2h2 , ^27 2 2n
a 2 =  -------- +  — ------ --77 77 — 1

2X2/i2 _  4X2/^)77
77 772—1
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184 PROF. H. F. BAKER ON CERTAIN LINEAR

and so, to this approximation,

oq + a2 - \ h + — + \% 2n
2 n

n 2— 1

The characteristic factor is then et(n+2?)i, the differential equation being

d2x + ( n2 + 4 n\h + 8 n\kxcos 2 + 8 cos 40.

Thus q is always real, when X is small enough, provided is not zero, even if be 
zero. The result agrees with that found in § 6 for 3, if allowance be made for 
the change of notation.

[ December 1, 1915.— 'Consider the differential equation differing from that just 
preceding only by the substitution of H for \h  in the term of the coefficient of'
x, where H is supposed to be of the form A/q + X2h2 + X3/q + —  The computation of
proceeds then exactly as before. The formulae for oq + a2-|- a3, yi + y2 + y3, given above, 
p. 178, substituting H for A/q show that, for = 1, q2 is then of the form
(H — cq)(H— a2)Q, wherein Q is a power series in H, \ 2k2, ..., reducing to 1 when 
H = 0, A = 0, and

a.x — — kiX—i k 2X2+ k̂)A3+ ...,

a2 = kxA—l-^^A2 — An +  

The value of q2 is positive, and the motion represented by the differential equation 
is stable, so long as H does not lie between these values. Similarly for = 2, from 
the formulae at the bottom of p. 181, the range in which q2 is negative is when H lies 
between

- ( f  k 2- k 2) \ 2and

these being accurate as far as Xs. Unless f  <  <  yi lk 2, these limits are of
opposite sign, and include H = 0. This is the result given on p. 142 (save for a slight 
difference of notation). For n = 3, an analogous computation shows that q2 is positive 
except when H is between

f^i2A2—PA3 and f&x2A2+PA3,
where

P = f&d—3 kxk2

and this range does not include H = 0 unless kx = 0. It would appear, from the 
formula above (p. 184), that the corresponding interval for greater integer values of 
is between two quantities of the forms

iivv+ pa3, * A 2+ Qx:!-n —1 n —1
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DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 1 8 5

Mr. E. L in d s a y  I n c e , of Trinity College, Cambridge, following up the method of 
his paper referred to above (footnote, p. 134), has calculated numerical results for the 
case when ku k2, ... have the values considered by G. W. H il l .]

PART III.

§ 22. I desire to add to the foregoing some very incomplete remarks in regard to a 
generalisation of which the work appears to be capable. The most important general 
result obtained is that when uis a periodic matrix, the matrix 12 can be expressed 
as a periodic matrix P multiplied into a matrix involving quantities of the form eK\  
One direction in which this result can be amplified is by extending the assumption 
we have made that the matrix Q0W (u) has linear invariant factors. I t is well enough 
understood what is the character of the modifications thereby introduced. A more 
important generalisation appears to be that the factorisation of the matrix 12 
does not in fact require that ube a periodic matrix. As an indication of the theorem 
consider an equation

+ <r2x  = x (aeiKt + + cei,xt),

in which the constants k, A, /tx are such that K + \+m  = 0, but the ratio of two of them 
at least is irrational. For example, we might have 2 + 1, u = —^ 2  + 1,
fx = — 2. Then, assuming that there exists no identity of the form

a/c + /?A + 7mL 2cr = 0,

in which a, 3, y are positive integers, the equation would seem to have a solution of 
the form

x  = e

where X is a series of positive and negative integral powers of eiK\  , el<rt, which 
may be arranged as a power series in a, b,c, and is a series of the form

q = <r+ A^abc + A 2a2b2c2+ ...,

in which A1} A2, ... are constants. The differential equation has nob periodic 
coefficients.

In a paper already far too often referred to, ‘ Proc. Lond. Math. Soc./ XXXV., 
1902, p. 353 et seq., replacing the variable there called t by eT or £, it is shown 
(p. 365) for the equation system

^  = (A + £V)#, say,

in which A is a matrix of constants, and V a series of positive integral powers of £ 
that there is a factorisation of the matrix 12(a), in the form P12 (^>)y, where P is a 

VOL. c c x v i .— a . 2 o
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186 PROF. H. F. BAKER ON CERTAIN LINEAR DIFFERENTIAL EQUATIONS, ETC.

matrix whose elements are power series in f, and Q(<p) is calculated in regard to r  
from a matrix

4>=/ e„ eI3(£/&)"'-"% c,

while y is a matrix of constants. Here 0l5 02t ..., c12, c13, ... depend solely on the 
invariant factors of the matrix A.

This result is obtained from the form of the matrix u as expressible by powers of £ 
without reference to the question of periodicity. It would seem that the argument 
there employed is capable of modification, the integrations being performed in regard 
to r  (which is log t of the paper referred to), so as to lead to the general theorem 
here contemplated.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 


