\qquad

GUGGENHEIM AERONAUTICAL LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

AERODYNAMIC CHARACTERISTICS OF A WEDGE AND CONE
AT HYPERSONIC MACH NUMBERS

Thesis by
Lt. Lee R. Scherer, U.S.N.
1950

Library Postgraduate Schen
U. S. Naval Md

AERODTKAMC CHIFACTRISTICS OF A TBDGF ATD COME

Thes is by
Lt. Loo R. Soharor, Jr. . 0.5 . 11

In Partial pulfillnent of tho Reçuirenonte For the Dogree af Aoronautical Enginoet

```
Col1ímio Instituto of Tocmmology
    Resedona, Cal1fomia
        1 9 5 0
```


ACKMOTJHDGryEMLS

Tho curthor wishoe to oxpress lis simocro eprrocintion to D2. Hensy is. riognater for inse formulation of tho proislan and for his inter ont end culdnnoo the oughout the investigation.

Approctition is also expressed to Mrs. Kativerino uocalcan, feromantics latrorion, whose petianco and aid in ferreting ort
 literchuo for this wivestigation, and to liles Sharley normury for hor assiotance in propartion of the ranumarifto

The metwo is aloo indejed to his noscciate in the probler Li. Tichord D. Dinues, whir.

Up to tho present timo, the reliabilituy of tho doveratination of aorodynamic olaracteristics at hypersonic Mach numiers by thoarom tionl alculitions has beon unimown due to the lack of exposizontal data. This roport is the ccilculations of those ciarectoristion by four different theorien of a wedfe and a oone orer a range of weis numbers from 2 to 12.

Correlation of these results with wind tumel teate was noti possiblo due to schoduling dificultion of tho reporsozic rind timnol: therefore, tinso roport is dosigned to serve as tho besis for conguisison of future hypersonio experiments.

Fram correlation af the various theorices it is found that the closest agreenent to the exact thoory at hypersonic apeods is givor by the nepposonic similarity theory. Above ilach murbers of about 3 , the first and socond order theorios deviato considerably fras tho oract theory.

Purt IItie Pare
Acienorledunonts 1
Abstreact ii
Tejlo af Conterits iii
Litt af Picruex iv
List of Taislec vi
Symbols eis Iotation viii
I. Introductions 1
II. Calculations by tho Various Thooriec 3
 3
B. NJEnct Thoory for Cono 4
C. First Order Thoary - Hoico 5
D. Pirst Ordor Shoory - Cowo 8
F. Seound Os-der Theory - Wodee 10
P. Second Order Theory - Cons 10
G. Fupereonio stullerity 13
II. Comolusiome 16
Reforenoes 18
Tables 19
Figures 41

ITST OR FIGIRIS

$\begin{aligned} & \text { Figueo } \\ & \text { No. } \end{aligned}$	Tit20	Pace
1	Sleotch of Woige Model	41
2	Sluetch of Cono kodol	42
5	Protograph of Vodice Model	43
4	Photocraph of Cono Modol	43
5	Oblique Shook Theory - Wedce - 0° Ancle of	
	Attaok, C_{0} vil	44
6	Oblique Shoct Theary - Fiedge - $2^{\circ} \mathrm{Anclo} \mathrm{of}$	
	Attack, $C_{\text {P }}$ VS M	45
7	Obllque shook theary - Tiodge - 4° Angle of	
		46
8	Fronct Theory - Cone, C_{p} ve ${ }^{\text {u }}$	47
9	Firat Order Treory - Medge - 0° Angle of	
	Attack, C_{p} VE M	48
10	Firet Ordar Theory - Todce - \hat{c}^{0} Angle of	
	Attacis, C_{p} VE M	49
11	First Order Theory - Wodgo - c^{0} Ancio of	
	Attaok, C_{p} vo	50
12	First Order Mieory - Cono, C_{p} ve M	51
15	Second Order Thoory - Wedge - 0° Angilo of	
	Attack, $\mathrm{C}_{\mathrm{P}} \mathrm{VB} \mathrm{M}$	52

	v	
	LIST OE FICRIS (ocrtinued)	
${ }^{1} \mathrm{Cu}$	11ilo	Pece
14	Socond Order Thecry - Wedge - 2 Angle af	
	Atracis, C_{p} VE ${ }^{\text {a }}$	53
15	Sccond Order mincory - Viodge - 4° Anglo or	
	Atracii, C_{p} V8	54
16	Sceard Order theary - Come, $C_{\text {p }}$ vo M	55
17	Hyporsonio 3inilarity Parnsotors	56
18	fuporsanic Similarity - Tedge - $0^{\circ} \mathrm{Anclo} \mathrm{of}$	
	Attacit, C_{2} vs M	57
19	Eyporoomio stmilarity - Tiodge - $2^{\circ} \mathrm{smcle}$ of	
	Attraic, C_{p} VO ${ }^{\text {S }}$	58
20	䂸personic Similariny - Wedco - 4° Ancle of	
	Sttuck, C_{p} Vo is	59
21	Hpersonic Sinilarity - Cone, C_{p} VE 14	60
22	Verious Thoorioc- 20° Wodge and Cosse - 0°	
	Arglo of Attack, C_{p} ve	61
2	Verious Thoorion - 20° Trodge - 2° and 4°	
	Angrios ait Attacke C C TE M	62

LTET OP TABLE:

Table Ho.	Titlo	Pago
I	$C_{\text {p, }}$ Oblique Ehook Thoory - Fodge - 0° Avslo of	
	Attrois	19
II	Cp, Obliguo Shook Thoory - Vodsc - $\mathrm{n}^{\circ} \mathrm{An}$ ilo af	
	Attad	20
III	$C_{\text {po }}$ Oblique Shoci Thoory - Nodco - 4° Anclo of	
	Attack	21
IV	$C^{\text {P }}$. Erect Theary - Cose	22
V	$\mathrm{C}_{\text {p }}$. Flret Ordor Theory - \%odee - 0° Smele of	
	Attact	23
VI	$C_{\text {po }}$ First Order Theory - Modre - 2^{0} Arrile of	
	Attack	24
VII	$C_{p, ~ P 4 r s t ~ O r d e r ~ T h o n r y ~-~ K e d e ~-~}^{\text {a }}$, Arcle of	
	Attear	25
VII	Cp, Firsi Order Thoory - Cone	26
IX	$C_{\text {po }}$ Socond Order Theory - Modco - $0^{\circ} \mathrm{An}$ Io of	
	Attroir	27
X	Cp, Socond Ordor Ihoory - iodce - 2^{0} Anclo of	
	Attack	28
XI	Cpe Socond Orior Thoory - Vedco - $8^{\circ} \mathrm{Anc}$ Io of	
	Atteok	29

$$
\begin{gathered}
\text { Vis } \\
\text { unst op Mithis (continucd) }
\end{gathered}
$$

$\begin{aligned} & 10310 \\ & \mathrm{Ho} \\ & \hline \end{aligned}$		
	21410	Pero
$\pi \mathrm{I}$	$C_{\text {E }}$ Socond Orda moory - Cono	30
ㅍII.	Prporconio S1rillasity Purcmoterc	31
XI\%	Cporyperconic Sirilority - Tredeco 0° Argio of	
	Aticiok	32
x	Cp, Hpersonic Sinilarity - Hodro - 2° Anclo of	
	Attacte	33
XVI		
	Attack	36
XIII		39
T1II	C_{2}, Various Thoorioe - $20^{\circ} \mathrm{Fod} 50$	40

Symuen Avo Roantion

Tho followine oro the syabols and notetion with theis derinitions used in this irvestigations.
p_{1}
Btatio [ressure of the flaw. Tho subsoripts donoto flaw Piold

1- Hroe atream
2- ilow bohind shock or an body

- - stagnation conditions

B - Plan on surfrace of body
pressure 000 fificiont $=\Delta s / q$
Tree etroan dynanic pressuro $-\frac{1}{2} \rho U^{2}=\frac{\gamma p}{2} M^{2}$
freo strcoun velooity
apeod of soumd $a_{1}=\sqrt{\frac{\gamma p_{i}}{\rho_{i}}}$

- Suiscrigt indiacteo sanc oonditions as proseure p
fluld donsity. Subscripte cane as for p
Haoh number $=\frac{i_{1}}{e_{1}}$ Subecripts same as p
inolimation of ehock wave, or tho quantity $\sqrt{x_{1}^{2}-1}$
ratio of epooifio heats - 1.1 for air
oylindrical or aphorical coordinatea
Cartesian coordinatec. Subsor1pts denote arthoconal directions of aris
velocity corpuonents

```
Syabote AMM NOT TME (contimuad)
```

u, V_{2}	indiceto $\frac{\partial u}{\partial i}, \frac{\partial v}{\partial k}$ rincro i, \& cro coordinatics of
	sycter bolug usod
θ	semi-apex anclo of cone or wedge, and flow doflection in
	ono particular caso
\$	potential notation
c	anclo as attrate
ξ, η, t	non-dimensional coordinates, or variablos of intecration
δ	body thiolmose or total upes ancio
b	body lencti
L	tizolewse rc.tio permeter (δ / β)

1. IMTRODJCTION

The purpose of thic invosigation ras to caiculato tho aerodynomio oharacteristics of a wedge and a cone at hypersonic Mach numbers by utilizing the exieting theorios, and to correlate these rocults with aotual test data.

The possibility of extonding oxioting supersonic flow theorios to hypersonite apeeds has been investigeted only thooretically up to this time, due to the laok of oxperimental data at hyporsozio lach numbers. How the oxistence of a hapersonio wind tumel makeo ouol test dasa avallablo, and this imestigation is the first stop in the correlation of suoh data with the various theories. Sinco there are so many ranifications to the problan, boundary layer, tunnel boundary intorfere ence, deviations fram a parfoet gers, oto., this ls but one sall phase of the vast overall problan, and it is hoped tint it will servo as a besis for future oxperinental work.

The prinoipal ecrodynenio oheraoteristio outainod wis the ourface prossure on various angles for wodges and cones at Neoh numbere rancing fran 2 to 12. The four exioting thoories ucod in the detorninatian of the thoorotionl pressure dietribution wores

1. Oblique shool Thoory for Modgos Freot Theary for Cono
2. Piret Order Theory - Lireorizod
3. Sooond Ordor Theory
4. Ilyporsonic Sirilarity.

A briof disouscion of the above theories is given in Part II.
For the thoorotical calculations, the oonfigurations used woros

1. Nodge with apox angles of $5^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60° at ancico of attack of $0^{\circ}, 2^{\circ}$, and 4°.
2. Cone with apex anglou of $5^{\circ}, 10^{\circ}, 20^{\circ} 50^{\circ} 40^{\circ}, 50^{\circ}$ and 00° at angle of attack of 0°.

Due to lack of the, actual oorrolation with teat data not posesble in this roport. Models of a 20° wedge and ocno were oonstructod, and thoir dotolls are included her arith.

It is plamod that this roport should serve as the pirst phase, the bacio groundworic, for the future exporimental imvostigetions of hypersonio flow.
II. CALCULATIONS BY THE VARIOUS THEORIFS
A. Oblique Shook Wave Theory for Fodre

The pressure coefficient $\left(C_{p}\right)$ is defined as the ratio of the chance in pressure ($A P$) to the dynamic pressure (q).

$$
C_{p}=\left(p_{2}-p_{1}\right)
$$

but

$$
g=\frac{1}{2} \rho \sigma_{1}^{2}=\frac{\gamma_{p}}{2} M_{1}^{2}
$$

since

$$
M_{1}=\frac{U}{0_{1}} \text { and } 0_{1}=\sqrt{\frac{\delta_{0}}{b_{1}}}
$$

Therefore,

$$
C_{p}=\frac{\Delta p}{g}=\frac{2}{2 M_{1}^{2}} \frac{p_{2}-p_{c}}{p_{1}}
$$

Tho normal shook relation for $\left(n_{2}-p_{1}\right) / y_{1}$ is $\frac{2}{\gamma+1}\left(u_{2}^{2}-1\right)$. To obtain tho oarreot oblIque shock relation, it is only nocossary to replace M_{1} by H_{1} in $B,(R e r .1)$. Thus,

$$
\begin{aligned}
\frac{p_{2}-p_{1}}{p_{1}} & =\frac{2 \gamma}{\delta+1}\left(\operatorname{Ni}^{2} \sin ^{2} p-1\right) \\
G_{0} & =\frac{4}{N_{1}(\gamma+1)}\left(\operatorname{H}_{1}^{2} \sin ^{2} p-1\right)
\end{aligned}
$$

Where tho relation bowmen the wave anzio β and the flow dofeotion 10

$$
\frac{1}{M_{1}^{2}}=\sin ^{2} \beta-\frac{\gamma+1}{2} \frac{\sin \beta \sin \theta}{\cos (\sin \theta)}
$$

Utilising this formula Tasses I to III wore computed and plotted in Figs. 5 to 7.

日. Exact Theory for Cone
The problems of supersonic flow around cones at zero angle of attack is one of tho two types of high speed flaw in throe-dimenvions that on be discussed mathematically without objectionable implifioatron.

The fundemental equation of conical flow an derived by sobers in Raf. 2. and in a similar manner by opal. (Raf. S), is

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{a^{2}\left(u+v \cot ^{2} \theta\right)}{v^{2}-a^{2}}
$$

The solutions to this equation cannot be obtained analytically, so in order to determine then, recourse must be had to numerical intergrations. This has been oarried out by Ropal and put in tabular form. Re tabulates the ratio of the pressure on the cone to that frenediately behind tho shock ware P_{0} / P_{2}, and tho ratio of the pressure inmodiately behind the shock ware, to that of the undisturbed air in from of tho shock rave, P_{2} / P_{2}. The product of these two gives P_{3} / P_{2} so $\frac{A P}{Y_{1}}$ can bo calculated, by

$$
\frac{p_{s}}{p_{1}}-1=\frac{p_{s}-p_{1}}{p_{1}}
$$

and

$$
C_{p}=\frac{2}{\gamma M_{1}^{2}} \frac{\phi_{1}-\beta_{1}}{p_{1}}
$$

Following this procedure the data of Table IV were celoulatod and plotted in $\mathrm{Fig}_{\mathrm{g}} 8$.
C. Prat Order Theory - Wore

By assuming irrotational flow and lincarizing the equations af motion, a perturbation potential may be introduced. Considering a uniform roctilinoar velocity 8 at ∞. It is assured that tho deviations of the reloolty fra U are small, and squares and higher powers of these perturbation velocities are nogleotod. This assumption oorresponds to limiting the solid bomdarios to shapes whose inclination to U is always man.

Tho linearized equation of notion bocozoc, (Ref. 4)

$$
\left(\frac{1-U^{2}}{a_{0}^{2}}\right) \frac{\partial u_{1}^{\prime}}{\partial x_{1}}+\frac{\partial u_{2}^{\prime}}{\partial x_{2}}+\frac{\partial u_{0}^{\prime}}{\partial x_{3}}=0
$$

whore

$$
\begin{array}{ll}
\text { (awes fran body) } & \text { (noichborhood of body) } \\
u_{1}=0 \text { constant } & u_{2}=0=u_{1}^{\prime} \\
u_{2}=0 & u_{2}=u_{2}^{\prime} \\
u_{3}=0 & u_{3}=u_{8}^{\prime}
\end{array}
$$

In terms of the potential function

$$
\begin{aligned}
& \Phi=U x_{i}+D\left(x_{i}\right) \\
& u_{i}=\frac{\partial \theta}{\partial x_{i}} \ll \sigma
\end{aligned}
$$

where $D(x$,$) is tho perturbation potential. The linearized parture$ bation potential equation beoanes

$$
\left(1-\infty_{0}^{2}\right) \frac{\partial^{2} \phi}{\partial x_{1}^{2}}+\frac{\partial^{2} \phi}{\partial x_{2}^{2}}+\frac{\partial^{2} \phi}{\partial x_{3}^{2}}=0
$$

The same appraximetiane are used for dotoraining the presauro oofsiolont. The ex et relationship for p / p_{0} is

$$
\frac{p}{z_{0}}=\left[\frac{1-\frac{r-1}{2} A \infty^{2}}{1+\frac{\gamma-\gamma}{2} r^{3}}\right]^{\frac{\gamma}{\gamma-1}}
$$

Limoesieod, tho lo

$$
\frac{p_{2}}{p_{1}}=\frac{1}{1+\frac{\sigma-1}{2} M_{1}^{2} \frac{2 u^{\prime}}{\sigma}}
$$

Expanding, wo havo

$$
\frac{P_{2}}{P_{1}}=1-\frac{\gamma}{2} H_{1}^{2} 2 \frac{u^{\prime}}{U}+\cdots
$$

91:100

$$
\frac{\gamma}{2} M_{p=1}^{2}=\frac{1}{2} P_{1} U_{1}^{2}
$$

thion,

$$
C_{p}=-2 \frac{u^{\prime}}{\sigma}
$$

By solving tho parturbetion oguation tocether witiz tho boundery oanditions that tho normal derivatiro af ϕ vanishoo at c.11 solid Doundorien, the proselue coorcicient countion beemes

$$
C_{p}=\frac{2}{\sqrt{M_{1}^{2}-1}}\left[\frac{d x_{2}}{d x_{p}}\right]_{\text {oundory }}
$$

For the medce $\left[\frac{d \gamma_{2}}{d x_{1}}\right]$ boundary is ncroly tio benent of the conianpor. anclo θ.or

$$
c_{p}=\frac{2}{\sqrt{M_{1}^{2}-1}} \tan \theta
$$

For the wodge at angles of attack, this wame equation holds by merely subtracting or adding a to θ for the upper or lower surfaocs.

These calculations are given in tables V, VI, and VIII and are plotted in F1E0. 9, 10, and 11.
D. First Order Theory - Cone

Following ron ramming (Ref. 5), the inncarisod potential equation in cylindrical coordinates with axial symnotry is

$$
\frac{d^{2} \theta}{d r^{2}}+\frac{1}{r^{2}} \frac{d \theta}{d r}+\left(1-\frac{Q^{2}}{a}\right) \frac{d^{3} \theta}{d r^{2}}=0
$$

Assuming that the offoots of infinitecals can be superimposed, the potential of the additional velocities has the form

$$
D(x, v)=\int_{0}^{+-\sigma r} \frac{f(s) d s}{\sqrt{(x-5)^{2}-s^{2} n^{2}}}
$$

whore

$$
\beta=\sqrt{M^{2}-1}
$$

Placing the origin at the vertex of the body, this integral dan be transformed by letting

$$
\frac{r-\xi}{\beta r}=\cos \pi u
$$

The potential expression becomes

$$
\phi=\int_{\cos \frac{x}{\operatorname{sx}}}^{0} f(x-\beta r) \cos \phi u d u
$$

and the velocity components are

$$
\frac{\partial \phi}{d x} \text { and } \frac{d \theta}{d r}
$$

By solving the above equation ron Karman obtained for the over pressure doting on the cone

$$
\Delta p=\rho \Delta^{2} \theta^{2} \frac{\operatorname{cas}^{-1}\left(\frac{1}{\theta \beta}\right)}{\sqrt{1-\frac{\theta^{2}}{\beta^{2}}+\theta \operatorname{ard} \frac{1}{\sigma \beta}}}
$$

which is approximately

$$
\Delta p=\rho U^{2} \theta^{2} \ln \left(\frac{2}{\theta \beta}\right)
$$

Thus

$$
C_{p}=2 \theta^{2} \ln \frac{2}{\theta \sqrt{M^{2}-1}}
$$

The calculated results of this equation is given in anole VIII and plotted in Fig. 12.

E. Second Order Thoory - Wedre

The nost stop to the iinearisation procedure used in tho previous soction in an iteration prooodure corresponding to the general teohnique of solution by suocessive approsimations based on the theory of perturbetions, is the socond epproximation wilion may bo made by soveral difforent approsohes. By introducing a parameter t proportional to the thickness ratio of the body under consideration, the potential fumotion may bo expanded in a powrer serios in C. This has boen oartied out by Buscmana, (Ref. G), for a twodimensional supermonic slow.

Tho buecmarn socond approximation for the prossure cocefiolont is

$$
C_{p}=\frac{t+2 \theta}{\sqrt{M^{2}-1}}+\frac{\gamma M^{4}+\left(M^{2}-2\right)^{2} \theta}{2\left(M^{2}-1\right)^{2}}
$$

10 the angle of flow defection, the scmi-apex anglo at sero ancle of attaok. The compritations based on this equation are given in Tables IX, X, and XI and are plottod in P1EE. 13. 14, and 15.
F. Socond Order Thoory - Cono

For aziallymogmotrio flaw, tho disoovery of a partioular solution of the itecration equation ms roduoed the problem of determining a scoond-ardor approximation to one of first-order.

Following Tan Dyke: (Ref. 7), the iteration equation for a ono is

$$
\begin{aligned}
&\left(1-t^{2}\right) \bar{\Phi}_{t t}+\frac{\bar{\phi}_{t}}{t}=M^{2}\left[2(N-1) t^{2} \bar{\Phi}_{t t}\left(\bar{\Phi}-t \bar{\Phi}_{t}\right)\right. \\
&\left.-2 t \bar{\Phi}_{t t}+\bar{\Phi}_{t}+\beta^{2} \bar{\Phi}_{t t} \bar{\Phi}_{t}^{2}\right]
\end{aligned}
$$

where $(x, t$) are the conical non-orthogonal coordinates and

$$
\begin{aligned}
& t=\frac{f r}{x} \\
& \rho=\sqrt{M^{2}-1} \\
& N=\frac{(\gamma+1) A^{2}}{2 \beta^{3}} \\
& \Phi(x, t, \theta)=x \Phi(t, 0) \\
& \Phi_{\mu}=\rho \Phi_{t} \\
& \Phi_{x}=\Phi-t \Phi_{t} \\
& \Sigma_{\infty}=\frac{\sigma^{2} \Phi_{t C}}{x} \\
& \Phi_{\Delta x}=\frac{t^{2}}{x} \Phi_{t} \\
& \Phi_{r \infty}=-\frac{\beta t}{r} \Phi_{t C}
\end{aligned}
$$

Φ is first order portiabbition potential $\Phi^{(2)} \Phi+\infty$ is second order perturbation potential

The boundary conditions for the socond order solution are

$$
\begin{aligned}
\frac{\Phi_{r}}{1+\Phi_{r}} & =\text { lop } \\
\beta \bar{\Phi}_{t}(\beta \in) & =\epsilon\left[\phi(\beta \in)-\beta \in \bar{\Phi}_{t}(\beta \in)\right] \\
\bar{\rho}(\infty) & =\bar{\Phi}_{t}(\infty)=0
\end{aligned}
$$

The con hs a semi-nper angie $\operatorname{sen}^{-1} \in$. Using the integrating factor $\frac{t}{\sqrt{1-t^{2}}}$, tho equation can bo integrated to give the soult

$$
\overline{\delta^{\prime}}=-\Delta\left(\operatorname{sect}^{-1} t-\sqrt{1-t^{3}}\right)
$$

where

$$
A=\frac{\epsilon^{2}}{\sqrt{1-\beta^{2} E^{2}}+\epsilon^{2} \operatorname{secff}^{-1}(B E)}
$$

Substituting the first order solution into the iteration equation and using the same integrating scoter again, Van Dice obtains for the oamplote conical scoond-order perturbation potential

$$
\begin{aligned}
& \Phi^{(2)}(t)=-4\left(\operatorname{sect}^{-1} t-\sqrt{1-t^{2}}\right)+4 M^{2} B\left(\operatorname{sed}^{-1} t-\sqrt{1-t^{2}}\right) \\
&+\left(\operatorname{sed}^{-2} t\right)^{2}-(N+1) \sqrt{1-t^{2}} \sec ^{-1} t-\frac{\beta^{2} A}{4} \frac{\sqrt{1-t^{2}}}{t^{2}}
\end{aligned}
$$

The otreamrise and radicel velocity perturbations are

$$
\begin{aligned}
& \frac{u}{U}=-4 \operatorname{secs}^{-1} t+4^{2} M^{3} B \sec { }^{-1} t+\left(\operatorname{sech}^{2} t\right)^{3}-(N-1) \frac{\operatorname{sed} t^{-1} t}{\sqrt{1-t^{2}}} \\
& -(N+r)-\frac{3}{8} \rho^{2} 4 \frac{\sqrt{1-t^{2}}}{t^{2}} \\
& \frac{1}{\sigma} \frac{V}{\sigma}=\frac{A \sqrt{1-t^{2}}}{t}+A^{2} M^{2}-\frac{B \sqrt{1-t^{2}}}{t}-\frac{2 \sqrt{1-t^{2}} \sec t^{-} t}{t}+\sqrt[N+1]{t} \\
& +(x-1) t \frac{\sec -1}{\sqrt{1-t^{2}}}+\cos ^{2} \frac{\sqrt{1-t^{2}}}{t^{3}}
\end{aligned}
$$

B must bo adjusted to satisfy the tanconcy condition. It is easiest to do this numoricelly in actual cocapritation. From those results, the pressure coefficient an be calculated as

$$
\left.C_{\beta}=\frac{2}{\gamma M^{2}}\left\{1-\frac{\gamma-1}{2} M^{2} / 1-\frac{g^{2}}{\gamma \gamma^{2}}\right)^{\frac{\gamma}{\gamma-1}}-1\right)
$$

Those calculated value are given in Table XII and plotted in Fig. 16.

G. Sypersonio Similarity

Tsicn, (ReP. 8), has developed the similarity low for hypersonic flow. An affined transformation which expands the flow field laterally seduces the equations of the flow to a sing lo non-dinonsional equation. If a erie of bodies having the sane thioleness distribution but different thioloness ratio, $\delta / 0$, are put into flows of different zach numbers id such that the produate of M_{2} and $\delta / 0$ remains constant and equal to $K_{\text {g }}$, thea tho flow pattern are similar in that they are governed by tho same transf armed velocity potential.

For Plow ores cones, Hayes, (Ref. 9), interpretation is the propam gation of oylindrioni never from a uniformly expanding odroular oyinder. To solve the associated wave problem, it is observed that the radial volooity v, the prosaure p, and the density ρ are functions of $S=y / t$ only. That is,

$$
\left(\frac{\partial}{\partial t}+\frac{y}{t} \frac{\partial}{\partial y}\right)(v, p, p)=0
$$

Tho equations of equilibrium and continuity boone

$$
\begin{aligned}
& (v-s) \frac{d v}{d s}=-\frac{1}{p} \frac{d s}{d s} \\
& \frac{(v-s)}{p} \frac{d p}{d s}+\frac{d v}{d s}+\frac{r}{s}=0
\end{aligned}
$$

Introducing the following changes of variable

$$
\mu=\frac{v}{v} \quad \rho=\frac{g^{2}}{s^{2}} \quad \sigma=\operatorname{lo} v
$$

whore μ is tho new independent variable and " a " deaotea the local velocity of sound, the equations above are transformed into

$$
\begin{gathered}
d f=\frac{2 f}{\mu} f+\frac{\frac{1}{2}(r+1) \mu-1(1-\mu)}{2 b-(1-\mu)^{2}} \\
\frac{d \sigma}{d u}=-\frac{1}{\mu} \frac{5-(1-\mu)^{2}}{25-(1-\mu)^{2}}
\end{gathered}
$$

Sher. (Ref. 10), salvos those basic equations by expanding the solution into a series near tho initial point and using e standard nuserioal integration tharcaftor. Iron these robults, tho prosauro ratio at tho one surface p_{0} / p_{1} can bo obtained. Calling the cane halr-cngle O. Wo have

$$
K=M_{1} \theta
$$

N10

$$
\begin{aligned}
& G_{0}=\frac{2}{\gamma N^{2}}\left(\frac{B}{P_{1}}-1\right) \\
& \frac{C_{0}}{\theta^{2}}=\frac{2}{\gamma K^{2}}\left(\frac{B}{p_{1}}-1\right)
\end{aligned}
$$

Kooping the inilarity pasmoter I oomstant will give tho aame Plors pattecrn. Thue, a sinclo ourve of C / θ^{2} vo K ourfioes for verious vender conos in hypersonio flows.

Hoing Shon's rabulatod roouits an π NG C p θ^{2} it is a simplo mattor to eapand to valuos of M and C_{p} for various θs. Those resulte are givon in sable JTI and ero plottod in Fic. 22.

Por inpersonic Pl ar over wodrea Shen'e proceduro givou

$$
\frac{C_{p}}{\theta^{2}}=\frac{\gamma+1}{2}+2 \sqrt{\left(\frac{\gamma+1}{4}\right)^{2}+\frac{1}{R^{2}}}
$$

Weilising this equetion, Table XIII of various valucs of c / θ^{2} and I isobtained. These results aro expandod as bofaro for Foluos of if and C_{p} for vasioue Os. Those data aro fiven in Tableo XIV, XV, and XVI and are plotted in Pigs. 18, 19, and 20.

CORCLISIORS

The oonalusions of prinoical interest in the bacic problan will result iram the oorrelation of the experimestal data with that calowiated fran the varlous existing theorloe. Since in this report suoh correlation is not as yot possible reoourse mast bo had to a comparicon of the various thoorles thaselves.

For this purpose Pig. 22 has been plotted. This firuro is a orow-plot of Mach mober versus surfaoo proceuro ooefficient as celoulated by the various thoorien fes the model wodge and cone, i.0., for a 20° total apex angle. Fros a study of this curve, the following oonolusione may be dravas

1. The first order theory gives values ohich aro larer thas those of the expot or oblique ahook theory throughout the centire woh number range. The amount of doriation inercases with tine Mach rambor.
2. The second order theory Gives olose agrooment with the enot thoory at low Nach numbore (below $M=4$), and is muoh oloser than the Plrat order thoory throughout the antire rarge.
3. The range oror wilion firat and econd ordor theorios may bo used is limited by the form of the oquations. This range is determinod by the aper ancle. For the $20^{\circ} 00 n 0$, imarinary results are obtained above Nach number of 12.0 by the firat order theory and above Maoh mumer of 5.7 by the coond order theory.
4. At the higher Mach numbers (above 6) oxoellomi agroemont is obtainod betwoon the hpersonic eindlarity and coset solut1ons.

The lift coeffiolonte for the 20° wodse ct 20 and 4° anglos af attacir wer caloulatod and plottod in FiE. 25. The same pattern of doriations beiween the exnct and other thearios is found as with the pressuce cooffloionte.
 Locture Iotec, Califormia Inctitito of Mocimolocti, 1040-195\%.
 P9. 180-197, Tew Yoric, 1943.
3. Kopx1, \%. "Manzes an Supersonic Ilan Around Conos", Tocis Roport To. 1, Meosechusotts Institute of Toohnolayy, Moxortanezt of Flootrical meinooring, Conter of Amlysig, 1947.
4. Wopmann, IT. … and Puolectt, A. T., Merooivmaice of e carpeosislo Fluid", GAICIT Aeronautiosi Serios, john "iloy cmi ons, Inc., pp. 121-124, Hew Iork, 1947.
5. Von Tarmár, Th. "The Froblon of Rosiatance in Conososeiblo Iluid". Proc, of the 5th Volite Concrase, pp. 275-277, Rosso, 19:C.
6. Busennn, A. "The Acraensymotuscho Iocolco Thecroin 110tuornme". Luttahetrorsohimg, pp. 157-144, 1942.
7. Ven Dyize, w. D. MA Study of Sceand-Crdei Suractsonic FIar", Piz. D. Thosis, Call:omia Instisute of Tcolmology, 1913.
 and Phyo., 702. 25, P9. 50-65, 2020.
9. Dayes, W. D. "On Fyoersonio Similiturie", Gunct. of Aml. Viath., Vol. 5, p. 105, 194.
20. Shen, 8. P., "hpersonic Plar Over a Slender Cone", Jour. ai iath. and Plyy., Vol. 27, ppo 56-66, 1948.

TABLE I

Fodge

Obllque Shook Theory
00 Angie of Attack
C_{p}

	8						
	50	10°	20°	30°	40°	50°	60°
2.0	.0716	.110	.2565	.433	.665		
4.0	.0241	.0558	.2551	.2425	.373	.581	.758
6.0	.0177	.046	.106	.208	.529	.484	.666
8.0	.0148	.0525	.0959	.107	.5095	.405	.641
10.0	.0116	.0294	.0871	.1765	.502	.4515	.634
12.0		.026	.0835	.272	.295	.445	.625

TABLE II								
Oblique Shook Theory 2^{0} Angle of Attade								
\mathbf{M}		δ						
		5°	10°	20°	50°	40°	50°	60°
2.0	${ }^{\text {C }}$ p uppor	.013s		. 182	. 352	. 550	. 94	
		$.104$	$.168$. 520	. 51	. 800		
4.0	${ }^{\text {Co }}$ upper	$.0045$			$.198$	$.524$	$.476$	$.652$
		. 050	$.086$	$.170$	$.293$	$.454$	$.612$	$.826$
6.0	$c_{p} \text { upper }$. 0028	. 026	. 078	. 162	. 276	. 420	. 590
		. 040	. 068	. 142	. 250	. 884	- 552	-742
8.0	$C_{p} \begin{aligned} & \text { upper } \\ & \text { lavor } \end{aligned}$. 0022	. 018	. 066	. 140	. 260	-590	. 566
		. 050	. 052	. 128	. 256	. 368	. 530	. 720
10.0	${ }^{C}$ p upper	. 0015	. 012	. 030	. 140	. 253	. 590	. 560
		. 026	. 050	. 120	. 230	. 360	. 520	. 710
12.0	C_{p} upper laver	. 0011	. 012	. 060	.140	. 256	. 390	. 560
		. 026	. 050	. 116	. 250	. 560	. 520	. 710

21

MBIK III

Wedge
Oblique Shook Theory
4° Angle of Attack

4		δ						
		5°	10°	20°	30°	40°	50°	60°
2.0	$C^{\text {p upper }}$		$.025$	$.140$	$.290$.470	. 720	$\begin{array}{r} .578 \\ .924 \end{array}$
		.154	$.228$	$.590$	$.608$			
4.0	${ }^{\text {Cp }}$ upper	. 080	$\begin{aligned} & .0109 \\ & .116 \end{aligned}$	$\begin{aligned} & .072 \\ & .220 \end{aligned}$	$\begin{aligned} & .150 \\ & .354 \end{aligned}$	$\begin{aligned} & .270 \\ & .506 \end{aligned}$	$\begin{aligned} & .414 \\ & .692 \end{aligned}$	
6.0	upporlovrer	. 060	$\begin{aligned} & .0069 \\ & .092 \end{aligned}$	$\begin{aligned} & .052 \\ & .181 \end{aligned}$	$\begin{aligned} & .124 \\ & .504 \end{aligned}$	$\begin{array}{r} .226 \\ .450 \end{array}$	$\begin{aligned} & .580 \\ & .590 \end{aligned}$	$\begin{aligned} & .518 \\ & .850 \end{aligned}$
8.0	${ }^{\text {Con uppor }}$. 050	$\begin{aligned} & .0042 \\ & .000 \end{aligned}$	$\begin{aligned} & .044 \\ & .170 \end{aligned}$	$\begin{array}{r} .110 \\ .288 \end{array}$	$\begin{array}{r} .212 \\ .428 \end{array}$	$\begin{aligned} & .540 \\ & .566 \end{aligned}$	$.494$
10.0	uppor	. 044	.0040	$\begin{aligned} & .040 \\ & .160 \end{aligned}$	$\begin{aligned} & .104 \\ & .280 \end{aligned}$	$\begin{array}{r} .206 \\ .420 \end{array}$	$\begin{array}{r} .554 \\ .560 \end{array}$.486 . 790
12.0	${ }^{C}$ p uppor lower	. 044	$\begin{aligned} & .0087 \\ & .076 \end{aligned}$	$\begin{aligned} & .040 \\ & .160 \end{aligned}$	$\begin{aligned} & .100 \\ & .280 \end{aligned}$	$\begin{aligned} & .206 \\ & .480 \end{aligned}$	$\begin{aligned} & .530 \\ & .556 \end{aligned}$	$\begin{aligned} & .480 \\ & .786 \end{aligned}$

RATHES IV

Cone
Fra.ot Thoory (Ropal) 0° Angle af Attack c_{p}

\boldsymbol{x}	10°	20°	30°	40°	50°	60°
2.0	. 0548	. 2046	. 2028	. 5240	. 475	. 641
4.0	. 0250	. 0801	.1600	. 2670	. 382	. 551
6.0	. 0217	. 0720	.1500	. 2565	. 575	. 584
80	. 0188	. 0676	. 1405	. 25850	. 565	. 524
10.0	. 0186	. 0609	. 2440	. 2520	. 368	. 512
12.0	. 0178	. 0658	.2415	. 2520	. 365	. 510

29315. 5							
Terije							
First Order Thoxry 00 Anclo of Attrcts							
c_{p}							
δ							
4	5°	10°	20°	30°	40°	80°	60°
2.0	. 0505	. 1008	. 2025	. 5090	.4200	. 5280	. 6650
4.C	. 0225	.0240	. 0969	. 3530	. 1680	. 2420	. 2975
6.0	. 0153	. 0205	. 0506	. 090 C	.1252	. 1500	. 1355
6.0	. 2230	. 0222	- TAAE	. 007%	. 0914	.1172	. 1450
10.C	. 0000	. 0275	.0855	.0532	. 0752	. 0939	.1160
22.C	. 00%	. 028 Cl	. 0203	. 040	. 0608	. 0780	. 0965

TABLE VI

Todeco
P1rst Order Thoory
20 Anclo of Attade

4		δ						
		5°	10°	20°	30°	80°	50°	60°
2.0	${ }^{\text {c }}$ y upper	0	. 0604	. 1625	. 2665	. 3755	. 4900	. 6180
		. 0905	. 1420	. 2455	. 5550	. 4670	. 5380	. 7220
4.0	$C^{\text {c upper }}$	0	. 0269	. 0725	.1190	. 1678	. 2190	. 2740
		. 0404	. 0638	. 1096	. 2577	. 2085	. 2625	. 5220
6.0	${ }^{\text {Cp upper }}$	0	. 0177	. 0476	. 0781	. 1100	. 2485	. 2800
		. 0265	.0416	. 0718	. 1035	. 1858	. 1723	. 2115
8.0	${ }^{\text {c p upper }}$	0	. 0131	. 0354	. 0580	. 0876	. 1006	. 2385
		. 0197	. 0509	. 0535	. 0763	. 1015	.1280	. 2570
20.0	${ }^{\text {c }}$ p uppor		$.0105$	$.0285$	$.0464$	$.0654$	$.085 A$	
		. 0158	. 0247	. 0426	. 0615	. 0815	. 1025	$.1258$
12.0	$C^{\text {P upper }}$	0	. 0067	. 0235	. 0388	.0548	. 0709	. 0888
		. 0131	. 0205	. 0355	. 0511	. 0675	. 0852	. 1045

TABIE VII

Tiodee
F'L.at Order Thoory
$4{ }^{\circ}$ Anclo of Attacia

x		δ						
		5°	10°	20°	50°	10°	50°	60°
2.0	${ }^{\text {c a }}$ upper	-.0302	.0201	. 1214	. 2250	. 5515	. 4850	. 5630
		. 1312	. 1830	. 2880	. 5975	. 5140	. 6390	. 7780
4.0	C_{p} uppar	-. 0185	. 0090	.0542	. 1000	. 1800	. 1380	$.2510$
		. 0508	. 0816	. 2238	.1775	. 2295	. 2855	$.5475$
0.0	$C^{\text {p }}$ upper	-. 0009	. 0059	. 0356	. 0656	. 0970	. 1300	. 1650
		. 0885	. 0356	. 0804	. 1265	. 1508	. 1875	. 2230
3.0	${ }^{\text {C }}{ }_{\text {p uppor }}$	$. .0066$	$.0044$.0264	. 0488	.0720	. 0905	.1225
		. 0286	. 0398	. 0626	. 0855	.1118	. 1931	. 2685
10.0	$C^{\text {p }}$ uppor	-.005s	. 0085	. 0212	. 0581	. 0577	. 0772	. 0980
		. 0229	. 0318	.0502	. 0693	. 0395	. 1115	. 1358
22.0	C_{p} upper lower	-.0044	. 0029	. 0176	. 0524	. 0479	.084?	. 0815
		. 0190	. 0266	. 0417	. 0575	. 0745	. 0925	. 1127

> Cown

FMrst Ordor Thoory
0° surcle of átruct
c_{p}

MABLE IX

Nedgo
Scoond Order mroory 0° Anglo of Attacir ${ }^{c} p$

1	5°	δ					60°
		10°	20°	80°	40°	50°	
2.0	. 0531	. 2065	. 2460	. 4080	. 5810	. 7820	1.0000
4.0	.025s	. 0519	. 1276	. 2150	. 5500	. 4590	.6070
6.0	. 0270	. 0371	. 0960	. 1721	.2651	. $\$ 775$. 5087
8.0	. 0135	. 0500	. 0808	. 1481	. 2506	.3568	- 6625
10.0	. 0121	.0257	. 0720	. 1559	. 2168	- 52 C	- 4352
12.0	. 0096	. 0229	. 0650	. 1257	. 2045	. 5108	. 6165

TABIE x

M		Tiodso socond Order Theary 2° Arcie of Attade						
		δ						
		5°	10°	20°	50°	40°	50°	60°
2.0	C_{p} upper	$.0101$	$.0044$	$.1898$	$.5371$. 5070	. 6990	. 9160
	Plover	$.0996$	$.1627$	$.505 A$	$.4717$	$.0600$	$.0595$	1.1040
4.0	C, uppers	. 0045	. 0504	. 0360	. 1805	. 2832	. 4050	. 5460
	p lowor	. 0480	. 0811	. 1815	. 2614	. 8795	. 5161	. 6720
0.0	C_{p} uppers	$.0030$. 0285	$.0709$	$.1889$	$.2255$	$.5306$	$.4554$
	lawe	. 0540	. 0595	. 1236	$.2069$	$.8085$	$\text { . } 1202$	$.5655$
8.0	C_{p} upper	. 0022	. 0165	. 0586	.1189	. 1978	. 2954	. 4118
	larer	. 0271	. 0486	. 1058	.1809	.2744	. 3862	. 5162
10.0	C_{p} upper	. 0018	. 0253	. 0515	. 2075	. 1820	. 2745	. 3863
	- lawor	. 0232	. 0424	. 0946	.1657	.2547	. 3622	. 4375
12.0		. 0015	. 0121	$.0968$.090x	.1707	. 2605	.3693
	P larar	. 0204	$.03 C 3$	$.0874$. 2554	. 2411	. 3457	. 4675

2月BL XI

Wodso
Second Order Theory
G° Anelo of Attack

4		5°	10°	20°	50°	40°	50°	60°
2.0	C_{p} upper	-. 0298	. 0205	.1569	. 2752	. 4557	. 6220	. 8265
	laner	. 1497	. 2115	. 8685	. 5446	. 7400	. 9600	1.2010
4.0	C_{0} uppor	. .0127	. 0004	. 0874	. 1841	. 2596	. 3555	. 4875
	lowner	. 0742	. 1112	. 1990	. 8070	. 2316	. 5760	. 7388
6.0	C_{p} upper	. .0081	. 0065	. 0487	. 1096	. 1884	. 2872	. 4035
	lamer	. 0659	. 0850	. 1544	- 2455	. 3641	. 4815	. 6266
8.0	C upper	. .0058	. 0043	. 0395	. 0327	. 1680	. 2551	. 3652
	lower	. 0441	. 0692	. 1530	. 2168	. 5172	. 4567	. 5740
10.0	$C_{\text {p }}$ upper	-. 0045	. 0059	. 0582	. 0850	. 1499	. 2358	. 3595
	lawor	. 0585	.061s	. 1206	. 1995	. 2952	. 4093	. 5422
12.0	C. upper	-. 0050	. 0055	. 0307	. 0768	. 1401	. 2222	. 5257
	lawer	. 0544	. 0558	. 1121	. 1878	. 2305	. 3921	. 6217

$$
2
$$

COCO

$$
\text { Soconi Orema i } 22 \sin
$$

8 - 20°		$\delta=20^{\circ}$		$\delta=80^{\circ}$		$\delta=40^{\circ}$	
3	C_{p}	\%	C_{P}	3	c_{0}	${ }_{4}$	c_{p}
S. 23	. 0258	2.12	. 2020	2.50	. 2270	1.70	. 54.76
7.68	.0807	$\therefore .01$. $\cdot 382$	$\because .68$.2887	2.80	. 3155
11.28	. 0 ¢กก	8.92	.0898	8.83	. 1829		
		5.48	- 0 ล2\%				
		5.70	. 0880				

Wodge	
z	$c_{2} \theta^{2}$
. 1	15.200
. 9	12.000
.8	7.050
- 6	ᄂ. 560
. 5	4.530
. 6	4. ${ }^{1 / 40}$
. 8	3.980
1.0	3.550
1.5	2.992
2.0	2.762
5.0	2.762
4.0	2.500
5.0	2.461
0.0	2.446
7.0	2. 258

Coso (Rer. B)

K	c / θ^{2}
.60	2.95
2.02	2.05
1.53	2.35
2.10	2.20
2.75	2.25
4.00	2.10

Hodge
Iyperoonic Sinilasity
0° Ansla af Atracis

508		$10^{\circ} 8$		$20^{\circ 8}$		$50^{\circ} 8$		$40^{\circ} 8$		5008		6008	
1	C^{C}	边		18		浐		g		14	C_{8}	虽	C_{p}
2.80	.0283	2.29	.0369	1.70	－249	1.87	－ 588	2.20	． 454	2.16	.775	1．73	1.17
4.59	.0222	$5 \cdot 85$.0616	2.27	.198	2.22	－SA	2.75	－402	3.22	.655	2.62	1.00
6.83	.0152	4．57	.0230	2.35	． 168	2.95	.287	4.12	－81	4.29	． 605	B． 49	.316
9.16	.0121	5.71	．0415	3.80	－ 348	3.74	－23A	5.50	． 515	6．44	． 565	5.23	.857
11．45	.0108	6.80	.0565	4．54	－128	5.60	.215	8.25	．29\％	8.59	． 548	6.98	.830
		0.15	.0306	5.67	． 11.1	7.18	.159	11.00	.285	10.70	－ 520	8.72	． 819
		11．40	.0272	3.50	．0384	11.10	.286	，				10.45	.822
												12.20	.808

HABIE XIV

TABIE KV

Wedse

Hyperconio Strilarity
2° Angle of Attrak

$5^{\circ} \delta$				$10^{\circ} 8$			
$\boldsymbol{4}$	${ }^{C} \mathrm{~Pa}_{4}$	\%	${ }^{C} p_{L}$	M	$C_{p_{u}}$	4	${ }^{C} p_{L}$
11.50	.00115	2.50	.0710	2.92	. 041	1.65	.170
		3.80	. 0550	5.85	. 030	2.54	. 120
		5.06	. 0400	5.76	. 022	3.25	. 096
		6.32	. 0556	7.70	. 017	4.06	. 081
		7.60	. 0282	9.60	. 014	4.89	. 07
		10.20	. 0250	12.50	. 015	6.50	. 060
		12.60	. 0225			8.14	.058
						12.20	. 045

IABIE XV (contimued)

Tedec

Hyparsonio Sintilority
$2^{\circ} \operatorname{single}$ of Attracis

4	${ }^{C} \mathrm{Pu}$	4	${ }^{6} 0_{2}$	$30^{\circ} \delta$			
2.15	. 180	1.83	. 289	2.10	. 235	1.96	.445
2.84	.127	2.55	. 245	$\therefore .60$. 251	2.62	. 874
5.55	. 103	2.82	. 215	3.40	. 211	3.28	. 852
4.26	. 095	5.76	. 181	4.54	.187	4.90	. 291
5.78	. 080	1.70	. 161	0.50	. 269	6.54	. 259
7.10	. 091	7.08	. 186	3.65	. 240	9.80	. 2222
10.60	. 060	0.10	. 125	10.80	. 257	18.20	. 255
		14.00	. 117				

pabIr IV (comtinued)

Todre
Eypormonio Stmilarity
2° Arglo of Attrade

2.89	. 422	1.98	. 654	1.88	. 720	1.96	. 925
3.00	. 575	2.47	. 580	2.35	. 640	2.94	.780
4.58	. 317	5.72	. 490	5.53	. 580	3.92	. 721
5.96	. 295	4.05	. 4.55	4.70	. 500	5.89	. 694
3.95	. 274	7.42	.42a	7.06	. 466	7.85	. 654
12.00	. 265	9.90	. 810	9.60	. 455	9.80	. 646
		12.80	. 104	11.75	. 445	11.75	. 680

Y	$c_{R_{u}}$	4	${ }^{C}{ }_{2}$
1.88	1.010	2.40	1.170
2.82	. 850	5.20	1.080
8.75	. 786	4.80	1.010
5.78	.755	6.40	. 980
7.50	. 712	8.00	. 964
9.40	. 700	9.60	. 960
11.20	. 700	11.20	. 952

TABIS XVI

Fodge

Fypers onic Sinilarity
s° Anclo of Attacik

$5^{\circ} \delta$			$10^{\circ} \mathrm{\delta}$			
y	3	${ }^{C} p_{p_{s}}$	4	${ }^{c_{p_{u}}}$	4	${ }^{P_{2}}$
	2.64	. 207	5.70	. 0045	1.90	. 197
	8.55	.08*	12.40	. 0035	2.54	. 159
	4.40	. 070			5.16	. 254
	5.26	. 082			5.80	. 118
	7.08	. 05%			5.06	. 099
	8.80	. 010			6.34	. 089
	18.10	. 059			9.50	. 075
					12.60	. 069

TABIE: XVI (contimuod)

Wodce
Hypersonic Strilarity
4° Angle of Attack

$20^{\circ} \delta$				$30^{\circ} \delta$			
M	$\mathrm{C}_{\mathrm{P}_{4}}$	3	$\mathrm{C}_{\mathrm{P}_{2}}$	4	$\mathrm{C}_{\mathrm{p}_{\text {u }}}$	4	${ }^{c} \mathrm{P}_{1}$
1.90	. 125	2.01	. 354	2.06	. 243	2.82	.475
2.86	. 088	2.41	. 290	2.58	. 210	2.91	. 421
5.80	. 070	5.21	. 247	5.10	. 186	6.30	. 356
4.76	. 059	4.01	. 220	4.33	. 155	5.80	. 529
5.70	. 052	6.01	. 185	5.16	. 188	8.70	. 807
7.00	. 044	8.02	.171	7.71	. 110	11.00	. 298
9.50	. 089	12.00	. 160	10.60	. 108		
10.50	. 053						

IABIN IVI (continued)

Fedze

Ifypersonic Sinilarity
\& Angle of Attacir

8	${ }^{C} \mathrm{P}_{\mathbf{u}}$	山	${ }^{C} \bar{P}_{L}$	y	${ }^{\mathrm{P}_{\mathrm{u}}}$	4	${ }^{C} \mathrm{p}_{\mathrm{L}}$
2.09	. 594	2.25	. 705	2.08	. 590	2.70	. 925
2.79	. 330	3.57	. 595	2.60	. 524	5.61	. 854
3.49	. 294	4.50	. 550	5.90	. 448	5.42	. 796
5.21	. 248	6.74	.514	5.20	. 408	7.22	.775
6.96	. 222	9.00	. 498	7.80	. 532	9.01	. 760
20.50	. 214	11.20	. 490	10.50	.570	10.80	.753
				15.00	. S64		

\%	$60^{\circ} 8$		${ }^{C} \mathrm{P}_{L}$
	${ }^{C} \mathrm{P}_{\text {u }}$	ม	
2.05	. 345	2.22	1.57
5.07	. 715	2.96	1.26
4.10	. 600	4.45	1.18
6.15	. 616	5.92	1.14
8.20	. 598	7.40	1.12
10.20	. 589	8.90	2.21
12.20	. 580	10.70	1.11

PIBIE, SVIII

C_{χ} VB M
Toder $\delta=20^{\circ}$
$\alpha=2^{\circ}$

4	$\begin{aligned} & \text { Oivinque } \\ & \text { Shocle } \end{aligned}$	Pirst Order	Scocnd Order	Eyparc onic Similitude
2.0	. 12.29	.079:	. 2102	. 0907
4.0	.0675	.0555	. 0654	. 0730
0.0	. 0627	. 0226	. 0510	. 0653
8.0	. 05.59	. 0171	. 0048	. 0337
10.0	. 0580	.01414	. 0414	. 0558
12.0	. 0540	. 0116	. 0886	. 0576

$c=10$

M	Obliquo Shook	Plrst Order	Socond Order	Munssonio Similitudo
2.0	.2801	.1590	.2107	.2221
4.0	.2418	.0714	.1263	.1457
6.0	.1203	.0457	.1006	.1507
3.0	.1211	.0552	.0892	.1500
10.0	.1254	.0276	.0856	.1551
12.0	.1154	.0228	.0778	.1282

Fig. $3-20^{\circ}$ WEDGE

Fig. 4 - 20° CONE

Fig 16 Conk Co ur 7 Kecond oroce treonel

32768002003451 DUDLEY KNOX LIBRARY

