DEPARTMENT OF COMMERCE BUREAU OF FISHERIES

REPORT

OF THE

UNITED STATES
 COMMISSIONER OF FISHERIES

FOR THE FISCAL YEAR 1925

WITH

APPENDIXES

HENRY O'MALLEY

Commissioner

\square

CONTENTS

Page
Report of the Commissioner of Fisheries for the fiscal year endedJune 30, 1925. By Henry O'Malley. (Document No. 982. IssuedNovember 25, 1925)$\mathrm{I}-\mathrm{XL}$
Mild curing of salmon in California. By W. L. Scofield. AppendixF. Taylor. Appendix II, 1 fig. (Document No. 989. Issued October24, 1925)15-36
Progress in biological inquiries, July 1 to December 31, 1924. ByWillis H. Rich. Appendix III. (Document No. 990. Issued October24. 1925)37-6Alaska fishery and fur-seal industries in 1924. By Ward T. Bower.Appendix IV, 12 figs. (Document No. 992. Issued December 12,1925)65-169
Effect of oil pollution on marine and wild life. By F. W. Lane, A. D. Bauer, H. F. Fisher, and P. N. Harding. Appendix V. (Document No. 995. Issued January 4, 1926)171-181
Wholesale trade in fresh and frozen fishery products and relatedmarieting considerations in New York City. By R. H. Fiedlerand J. H. Matthews. Appendix VI, 13 figs. (Document No. 996.Issued March 12, 1926)183-217
Fishery industries of the United States, 1924. By Oscar E. Sette.Appendix VII. (Document No. 997. Issued April 17, 1926)219-408
Further experiments on the preservation of fish nets. By HardenF. Taylor and Arthur W. Wells. Appendix VIII, 19 figs. (Docu-ment No. 998. Issued April 9, 1926)409-437
Propagation and distribution of food fishes, fiscal tear 1925. ByGlen C. Leach. Appendix IX, 8 figs. (Document No. 999. IssuedMay 29, 1926)439-500
Nutritive value of fish and shellfish. Compiled by Harry R. Beard. Appendix X. (Document No. 1000. Issued June 11, 1926)1-14
Pearl essence: Its history, chemistry, and technology. By Harden1

DEPARTMENT OF COMMERCE

BUREAU OF FISHERIES

HEADQUARTERS STAFF, 1924-25

```
Commissioner
Henry O’Malley
Deputy Commissioner.-Lewis Radcliffe. Assistants in Charge of Divisions:
Office.-Trving H. Dunlap.
Fish Culture.-Glen C. Leach.
Inquiry Respecting Food Fishes.-Willis H. Rich.
Fishery Industries.—Oscar E. SETTE.
Alaska Scrvice.-Ward T. Bower.
Architect and Engineer.-George A. Schneider.
Accountant.-Charles W. Scudder.
Superintendent Central Station and Aquavia.-L. G. Harron. Editor.-Anna B. Brown.

\section*{REPORT OF THE COMMISSIONER OF FISHERIES \({ }^{1}\)}
CONTENTS
Page
Commercial fisheries and fishery industries ..... III
Review ..... III
Technological investigations ..... v
Canning sardines ..... V
Utilization of by-products ..... VI
Preservation of nets ..... VI
Iodine content of preserved sea foods ..... VII
Preparation of sturgeon caviar ..... VII
Crab fishery of the Chesapeake Bay ..... VII
Cooperation with the States ..... VIII
Information service ..... VIII
Mackerel statistics ..... VIII
Market survey of New York City ..... IX
Canned fishery products and by-products ..... IX
Frozen-fish trade ..... X
New England vessel fisheries ..... XI
Fisheries at Seattle, Wash ..... XI
Shad and alewife fisheries of the Potomac River ..... XII
Florida sponge fishery ..... XII
Fisheries of the South Atlantic States ..... XII
Fisheries of the Pacific Coast States in 1922 ..... XIII
Inquiry respecting food fishes ..... xIV
Introduction ..... XIV
Atlantic coast fisheries ..... XY
Pacific coast fisheries ..... xVIII
Fisheries of inland waters ..... XIX
Oysters ..... XX
Fresh-water mussels ..... XXI
Alaska clams ..... XXII
Investigations relating to fish culture ..... XXII
Mosquito control by means of fish ..... XXIII
Oceanographic and limnological investigations ..... xxiv
Fouling of ships' bottoms ..... XxIV
Activities of the bureau's investigators ..... XXV
North American Committee on Fishery Investigation ..... XXVI
Propagation and distribution of food fishes ..... XXVI
Fish-cultural operations ..... XXVI
Relations with States and foreign governments ..... XXIX
Propagation of Pacific salmons ..... XXXI
Commercial fishes of the Great Lakes ..... XXXII
Marine species of the North Atlantic ..... XXXII
Migratory fishes of Atlantic rivers ..... XXXII
Salvage of food fishes from overflowed lands ..... xXXIII
Propagation of fishes of interior waters ..... XxxiII
Alaska fisheries service ..... XXXIII
Effect of the new fishery law and regulations ..... xxxilf
Alaska salmon hatcheries ..... xxxy
Special studies and inrestigations ..... xxyy
Extent of the Alaska fisheries ..... xxxy
Alaska fur-seal service ..... xxxyif
General actirities on the Pribilof Islands ..... xxxviI
Seal herd ..... xxxyif
Alaska fur-seal service-Continued. Page
Tuke of sealskins ..... Xxxyif
Marking of reserved seals ..... xxxvil
sales of sealskins ..... xגxviII
Foxes ..... xxxviII
Fur-seal skins taken by natives ..... xxxyim
Fur-seal patrol ..... xxxyifi
Protection of walruses and sea lions. ..... xxxix
Vessel service notes ..... XXXIX
Reclassification ..... XL
Appropriations. ..... XL
Department of Commerce, Bureau of Fisheries, Washington, July 1, 1925.

Sir: I have the honor to submit the following summary of the major operations of the Bureau of Fisheries during the fiscal year ended June 30, 1925.
The chief functions of the bureau are to aid in conserving our fish supply and to increase its usefulness. Conservation has been defined to mean "wise use," but to make no use whatever of a resource is not conservation. Neither do depletion or total destruction through selfish disregard of the necessity for maintaining such a resource or the wasteful handling of its products constitute wise use. Any resource may be drawn upon freely so long as we do not endanger the future supply.

In order to make use of our fisheries and yet achieve their conservation the angler should refrain from taking more fish than he can use merely for the purpose of displaying his prowess, the commercial fisherman should minimize the destruction of immature, undersized, or unsalable fish, and the manufacturer and distributor should guard against losses through careless or wasteful practices. All should aid in the protection of a sufficient number of spawning fish to insure a continuing supply, and should do everything possible to prevent the pollution with noxious materials of the waters which sustain our fisheries. The bottom lands, bayous, and swamps, which constitute the nurseries for the young fish and provide their food supply, should not be reclaimed unless it is assured that they will be more productive when put to other uses. When dams or other obstructions are erected in streams supporting important runs of anadromous fishes, fishways should be provided to enable the fish to reach the spawning beds. Screening irrigation ditches is also essential in order that the young fish may not be destroyed or lost.

In the days of the first settlements the fisheries were invaluable, and without them some of the settlements would have been wiped out. Our forefathers found on this continent an abundance of wild grame and, to them, unlimited forests and tillable lands, but the inroads made upon these natural resources since then by a rapidly growing population have furnished food for thought as to how we may maintain our food supply. With the situation as it is to-day there has come a growing appreciation of the importance of our fisheries and of the need for assisting nature to increase the supply of fish. To accomplish this task the science of aquiculture-water farming-has been developed, and it devolves upon us to ascertain
with greater definiteness its possibilities and its limitations. Some progress has been made in a few fields, such as oyster farming, terrapin culture, fresh-water mussel culture, and the propagation of game fishes, but as a Nation we have advanced less than some European countries, largely because when the natural supply was abun-dant the impulse to increase it was lacking. The time has come, however, when the development of aquiculture must receive greater attention.

This science differs materially from agriculture and is much more complex. It can not be applied to all fisheries or all waters, especially not to the offshore fisheries, and it is therefore of prime importance that these be so administered as not to endanger their existence. For this reason, also, biological and statistical investigations are necessary, and with the realization of the importance of solving these problems fisheries research has been revolutionized and great advances made in developing methods of evaluating the abundance of commercial species and the drain made upon them by commercial operations. The enlargement of the scope of the bureau's activities in this field has enabled it to make gratifying progress toward a solution of such matters.

The activities of the bureau in relation to the fisheries are widespread, including fisheries biology, technology, statistics, aquiculture (including fish culture), oceanography, marketing and trade practices, and methods of the fisheries. As the administration of the fisheries of Alaska is vested in the Secretary of Commerce, the bureau is afforded the opportunity of directly applying the fruits of its scientific investigations in formulating regulatory measures necessary for their conservation and perpetuation. In the States the bureau acts only in an advisory capacity.

\section*{COMMERCIAL FISHERIES AND FISHERY INDUSTRIES}

\section*{REVIEW}

The number of persons engaged in the fisheries and fishery industries of the United States and Alaska exceeds 190,000; the investment amounts to about \(\$ 200,000,000\); the annual production of fishery products by fishermen is about \(2,600,000,000\) pounds, valued at about \(\$ 90,000,000\); the output of canned fishery products has an annual value of about \(\$ 72,000,000\); and the production of by-products is valued at about \(\$ 10,000,000\). In 1924 the ports of Boston and Gloucester, Mass., and Portland, Me., received from fishing vessels about \(183,000,000\) pounds of fish, valued at about \(\$ 7,000,000\), and at the port of Seattle, Wash., about \(28,000,000\) pounds, valued at \(\$ 2,700,000\), were landed.

Comparing the figures on production and value in 1924 with those of 1923 we find that the landings of fish in Boston and Gloucester, Mass., and Portland, Me., increased 4.6 per cent in quantity and decreased 0.8 per cent in value, while the landings at Seattle, Wash., increased 10.2 per cent in quantity but only 3.4 per cent in value. The production of canned salmon in the United States and Alaska decreased 2.3 per cent in quantity and 6.9 per cent in value; canned sardines in Maine and Massachusetts increased 49.3 per cent in quantity and 36 per cent in value; in California canned sardines increased 24.3 per cent in quantity and 18.2 per cent in value: canned tuna
and tunalike fishes and oysters decreased in quantity but increased in value; and canned shrimp alone increased in quantity and also commanded a higher price.
The production of menhaden fish meal and oil suffered a decrease of about 50 per cent and a similar decrease in value, but other fishmeal production increased 36 per cent, due largely to increased activity in the sardine industry of California. The value of the latter increased only 9 per cent. The production of fish oils other than menhaden increased 35 per cent in quantity, and the prices were slightly better in general than those of 1923. The total production of canned products decreased 0.4 per cent in value and the total production of by-products decreased 18.4 per cent in value. In general, the production of fishery products in 1924 increased in quantity but commanded lower prices than in 1923, so much lower in some instances that the value was less even though the total volume was greater. This would seem to indicate that the present need of the fisheries is to develop a greater market to absorb the product.

It is gratifying to note that the industry is giving greater attention to the production of better quality fresh fish, and that a definite effort is being made by the fish trades, through fisheries associations, to raise the standards of quality and apprise the public of the value of fish as a regular source of protein in the diet.

The bureau's most direct contact with the fisheries and fishery industries is through its division of fishery industries, which during the fiscal year 1925 has continued to aid the industries by collecting, compiling, and publishing statistics of the fisheries, technical research, and the dissemination of practical information.

Statistics of the landings of fish at the ports of Boston and Gloucester, Mass., Portland, Me., and Seattle, Wash., were collected and published monthly. Data on the cold-storage holdings of fish, which are collected by the Bureau of Agricultural Economics in the Department of Agriculture, were published monthly by the Bureau of Fisheries, as in previous years. Statistics on the canned fishery products and by-products for the calendar year 1924 were collected and published in 1925, and the production, holdings, and consumption of animal and regetable oils in the fishery industries were tabulated quarterly and furnished to the Bureau of the Census for publication as in previous years. The shad fishery of the Potomac River was canrassed for the 1925 season, and general fishery canvasses were made of the South Atlantic and Gulf States for the calendar year 1923. Statistics of the former have been compiled and published, and those of the latter are now in course of preparation for publication. Statistics of the fisheries of the Pacific coast for 1922, collected during 1924, were published, and another less detailed canvass was made for the calendar year 1923. A statistical bulletin summarizing the most recent statistics on all of the geographical sections also was published. Although the data on many of the sections apply to different years, the summary is useful in establishing approximate totals of the annual fishery production in the United States and Alaska.

As the fisheries of the United States are, for the most part, approaching the limits of exploitation, and as many of our more important littoral fisheries are actually seriously depleted, it is becoming very important that we have more complete information
as to what is actually taking place each year. In other words, we need complete annual statistics. The most recent statistics now available on the personnel, investment, and yield of our fisheries are as follows: New England States, 1919; New York, New Jersey, and Delaware, 1921; Maryland and Virginia, 1920; South Atlantic States, 1923; Gulf States, 1923; Pacific Coast States, 1923; Mississippi River and tributaries, 1922; and the Great Lakes, 1922.

With its present funds and personnel it is impossible for this division to cover each of the geographical sections more often than once in five years. Experience in dealing with the fishery problems leads to the belief that such a program is inadequate for present needs, and a serious effort is being made to interest the States in this most important feature of fishery administration. Having well established organizations provided with funds derived directly from the fisheries, it should be possible for the States to undertake this work with a minimum of expense and a maximum of efficiency, leaving the bureau to correlate their activities and advise them in the conduct of their statistical programs.

\section*{TECHNOLOGICAL INVESTIGATIONS}

The bureau is giving attention to such technological research as limited funds and personnel will permit. The policy is to select broad fundamental studies which are urgently needed, promise to be of greatest value to the largest number, and which the fisheries industries are least capable of undertaking. These industries are in great need of the application of science, and a great deal of research in this field must be conducted before they can be placed on the same plane of efficiency with similar industries in other fields. Few realize, especially in the fisheries industries, the advancement that can be brought about by means of well-directed, adequately supported, technological investigations, and it is important that the bureau demonstrate the possibilities of such research since continued progress in the fisheries industries largely depends upon it and upon the application of sound business principles.

\section*{CANNING SARDINES}

Sardine canning is an important part of the fisheries industries. In 1924 over \(3,250,000\) cases were packed, having a value in excess of \(\$ 12,500,000\). These figures indicate that this industry is next to salmon canning in importance and, excluding Alaska salmon, place sardines first among our canned fishery products. This industry, too, could be expanded greatly, there being large supplies of herring, pilchards, and similar fishes that could be drawn on. In time, undoubtedly, this will take place to help meet the increasing world demand for cheap food of high protein content. However, our canned sardines meet very keen competition at home and abroad, and if we are to capture and hold our share of the world markets our products must be high in quality as well as low in price. Since 1920 the bureau has been conducting research upon the preparation of fish for canning as sardines, making available fundamental scientific information upon this important subject and working toward the development of a better and cheaper method of preparing the fish. Considerable success is being achieved along these lines.

In the report for 1924 mention was made of the development and successful operation on small and semicommercial scale of a new process of preparing fish for canning as sardines, originated in the burean's experimental laboratory at San Pedro, Calif. Since then experiments have been carried out in Maine. The same process was successfully applied to the preparation of Maine sardines.

\section*{UTILIZATION OF BY-PRODUCTS}

Considerable progress has been made in the last few years in the utilization of the large quantities of waste fish and offal from fish markets and concerns manufacturing preserved products. Oil can be extracted from most fish waste and the residue made into fish meal. These products are very valuable; the oil is used for making soaps and paints, in tanning leather, and for many other purposes, and the meal serves as a stock and poultry food and as a fertilizer. Although a great deal has been accomplished in the matter of eliminating waste, much yet remains to be done. Less than half of the supply of waste products of the fisheries is now being utilized, and present practices of manufacturing fish meal and oil, both from offal and from nonedible fish, are in general quite inefficient. There are also possibilities for producing better and more valuable products. The bureau is especially interested in these problems, since any improvement which may be brought about, either through education or by research, will increase the prosperity of the fisheries industries and contribute to national economy.

Some phases of this problem are of particular importance at this time. Methods should be developed to either eliminate the press liquors or economically recover and utilize the protein matter that is present in them and now discarded. This material not only constitutes a great waste, but it seriously pollutes our coastal waters in some localities. Small inexpensive plants are needed to handle small quantities of offal, such as collect at many places, as well as equipment capable of handling profitably large quantities of material for a period of four to six weeks in each year. At present operations are profitable only when large amounts of fish or offal are utilized and operations are continued over a good part of the year. Research is now being conducted along these lines.

\section*{PRESERVATION OF NETS}

Very good reports are being received concerning the use of copper oleate as a net preservative. It is proving particularly effective on pound nets, especially in combination with copper paint. On the coasts of Long Island and New Jersey tarred netting ordinarily lasts but two seasons and has to be taken from the water about twice a month during part of the season in order to remove hydroids, barnacles, and other marine growths. With the antifouling copper oleate-copper paint mixture it is only necessary to remove the netting for treatment about every two months. Under such conditions it is proving profitable to use this mixture on pound nets, the twine of which costs about \(\$ 4,000\) per net.

The full valuc of copper oleate as a net preservative can not be demonstrated accurately until data are available upon the comparative costs of treating netting with various preservatives and the
varying length of life of twine so treated. Practical tests of this nature, cooperated in by the fishermen, are now in progress at several points on the Atlantic seaboard and on the Great Lakes. These tests are expected to show the advantages and disadvantages of using copper oleate under practical conditions and to indicate what modifications in its use are necessary for different kinds of gear under the widely varying conditions to which they are subjected.

Cordage manufacturers are finding copper oleate to be a good preservative and anti-fouling agent for rope. At least one company now sells, for marine use, rope treated with this material.

\section*{IODINE CONTENT OF PRESERVED SEA FOODS}

In a paper published during the last fiscal year (Bureau of Fisheries Document No. 967) it was shown that fresh sea foods contain a higher percentage of iodine than do other common foods. The suggestion was made that since goiter and other thyroid disorders are caused by a lack of ingestion of iodine, the liberal use of sea foods in the diet should be an effective preventive of these disorders, especially in so-called goiterous belts where the iodine content of the water and foods is below normal. The amount of iodine necessary to prevent goiter is very small-only about one part in \(3,000,000\) parts of the body weight-but it is important that this balance be maintained.

Many of the goiterous belts are so located, however, that it is rather difficult for the inhabitants to obtain marine fish in the fresh condition. Much of the marine fish which they consume has been preserved in some manner, such as canning, salting, or smoking. The question naturally arose as to whether these preserved products contain iodine in quantities comparable to that in fresh fish, and analyses were then made which indicate that they do. The results of these analyses were published in Bureau of Fisheries Document No. 979.

\section*{PREPARATION OF STURGEON CAVIAR}

During the sturgeon season on the Delaware River the bureau took advantage of an opportunity to give demonstrations, for the benefit of fishermen and others, of the Russian methods of preparing caviar. These were conducted at a number of places by a Russian expert skilled in foreign methods.

Russian caviar is of the highest quality, and a knowledge on the part of our fishermen of the methods used in its preparation should assist them in putting up a first-class product.

\section*{CRAB FISHERY OF THE CILESAPEAKE BAY}

At the urgent solicitation of men in the crab industry of Chesapeake Bay, who were becoming alarmed by the marked decrease in the stock of crabs, the bureau undertook to investigate their problems. A preliminary survey was made, from which it was found that there is a loss of over 50 per cent in converting the so-called "peeler crab" into the "soft crab," due to careless buying methods. A comparison of the fragmentary information available also indicated a distinct relationship between the catches of crabs in the States of Vir-
\[
59260-25-2
\]
ginia and Maryland, leading one to believe that the fishery of one State is affected by what occurs in the fishery of the other. The two States involved have accorded the bureau their hearty cooperation, and the investigation is being continued in the hope that a solution of the problem will ultimately be reached.

\section*{COOPERATION WITH THE STATES}

The various States having the responsibility of protecting their respective fisheries are faced by many problems, one of the most difficult of which is the evaluation of the destructiveness of various types of fishing gear, upon which rests the decision as to which class merits tolerance and which restriction or prohibition.
During the past year the State of Maryland applied to the bureau to determine whether the trawl net used in the Chesapeake Bay and its tributaries is unnecessarily destructive of young and unsalable fish. An investigation, in which the State of Maryland and the bureau cooperated, showed decisively that this gear is destructive of large quantities of young perch and striped bass. As a result, the practice of fishing with this gear has been stopped.

An investigation of the destructiveness of various types of gear is also under way in North Carolina in cooperation with that State.

\section*{INFORMATION SERVICE}

The fishery industries utilize a great variety of fish, many of them requiring different methods of handling, different processes of smoking, salting, canning, or other mode of preservation. The abundance of fish fluctuates greatly, causing corresponding changes in production and markets. This complexity of methods and change in yield have created an unusual demand for authoritative information on a wide range of fishery subjects, which the bureau is called upon to supply. During the year 16,000 copies of statistical bulletins covering 42 subjects were distributed to interested persons, 1,600 letters were written in reply to specific requests for statistical, technological, or trade information, and foreign trade information on 50 subjects was disseminated in 3,800 letters. That this service is useful to many of those who have received the information is shown by the numerous letters of appreciation received. The service undoubtedly contributes to the stabilizing of production, placing goods in the most favorable markets, and avoiding industrial mistakes that so often result from the trial method in technological processes.

\section*{MACKEREL STATISTICS}

Upon recommendation of the North American Committee on Fishery Investigation, representing the Governments of Canada, Newfoundland, France, and the United States, the burean will collect additional statistics on the important mackerel fisheries of the western North Atlantic. The data required are in the nature of continuous statistical records of the sizes of mackerel. It is hoped that such data, collected over a period of years, will explain the severe fluctuations in abundance to which this species is subject, and possibly provide a basis for predicting the character and size of the
catch in advance of the fishing season. A preliminary survey of the means and methods to be used in carrying out this program is now being made.

\section*{MARKET SURVEY OF NEW YORK CITY}

As a continuation of the program of surveying the fish business: of various important cities in the United States, a survey of New York City was made during 1925. Cities already surveyed are Seattle, Minneapolis, St. Paul, Chicago, Louisville, Pittsburgh, and Boston. New York City presents the most complex conditions in its fish markets and at the same time it is the greatest of our fish markets. The report on the survey will be an interesting and valuable addition to the series.

\section*{CANNED FISHERY PRODUCTS AND BY-PRODUCTS}

In 1924 the fish-canning and by-products industries of the United States and Alaska attained a production valued in excess of \$82,000,000 , of which canned goods amounted to about \(\$ 72,000,000\) and by-products to about \(\$ 10,000,000\). Canned salmon ranked by far the highest, with a value of \(\$ 42,401,602\), constituting over half of the entire production of canned fish. Other canned fishery products were valued as follows: Sardines, \(\$ 12,636,599\); tuna and tunalike fishes, \(\$ 5,756,586\); shrimp, \(\$ 4,608,950\); oysters, \(\$ 2,478,044\); clams, \(\$ 2,161,389\), and miscellaneous fish and shellfish, \(\$ 2,121,419\). Of the by-products, fish oils ranked the most important, with a value of \(\$ 4,311,733\), followed by fish scrap and meal, \(\$ 2,912,698\), crushed oyster shells, \(\$ 2,019,254\), and other by-products, \(\$ 1,065,305\).

The salmon pack, on the basis of 48 one-pound cans to the case, amounted to \(6,253,577\) cases, valued at \(\$ 42,401,602\). Of this total, \(5,294,915\) cases, valued at \(\$ 33,007,135\), were packed in Alaska, and 958,662 cases, valued at \(\$ 9,394,467\), were packed in the Pacific Coast States. This is a slight increase over the previous year in the case of the Alaska pack, but a distinct decrease in the Pacific Coast States as compared with 1923. The average price per case has declined in Alaska and increased in the Pacific Coast States.

The pack of sardines in Maine (including one plant in Massachusetts), on the basis of 100 quarter-pound cans to the case, amounted to \(1,899,925\) cases, valued at \(\$ 7,191,026\), an increase of 49 per cent in quantity and 36 per cent in value over the production in 1923. The average price per case was somewhat lower than in 1923, but higher than the average in 1921 and 1922. The California sardine pack, on the basis of 48 one-pound cans to the case, amounted to \(1,367,139\) cases, valued at \(\$ 5,445,573\). This is a substantial increase over the production in 1923, and is more than three times as large as the production of 1921 . Coincident with the increase in amount, there has been a constant decline in the average price per case during the last four years, the figures for 1921, 1922, 1923, and 1924 being \(\$ 5.89, \$ 4.70, \$ 4.19\), and \(\$ 3.98\), respectively.

The production of canned tuna and tunalike fishes in California, on the basis of 48 half-pound cans to the case, amounted to 652,416 cases, valued at \(\$ \check{5}, 756,586\). This is a decrease of 20 per cent in amount and 17 per cent in value, and is due, in part at least, to the occurrence of a fishermen's strike at the height of the albacore r'un, which was
unusually large in this year. The average price per case of the tunas has been increasing since 1922 , being as follows: 1922, \(\$ 4.79 ; 1923\), \(\$ 8.45 ; 1924, \$ 8.80\).

The production of canned shrimp, on the basis of 48 No. 1 cans to the case, amounted to 718,517 cases, valued at \(\$ 4,608,950\), which marks a continuous increase in both amount and value since 1922. The average price per case has constantly increased since 1922, being \(\$ 5.28, \$ 6.26\), and \(\$ 6.41\) in 1922,1923 , and 1924 , respectively.

The production of canned oysters, on the basis of 48 five-ounce cans to the case, amounted to 447,481 cases, valued at \(\$ 2,478,044\). This is a decrease of 15 per cent in quantity and 9 per cent in value as compared with 1923. The average price per case in the last three years has increased from \(\$ 4.79\) to \(\$ 5.54\).

The production of canned clams amounted to 389,435 cases of various sizes valued at \(\$ 2,161,389\), made up of 113,717 cases of razor clams, ralued at \(\$ 863,684 ; 38,544\) cases of hard clams, valued at \(\$ 271,911 ; 80,561\) cases of soft clams, valued at \(\$ 459,882\); and \(1.56,613\) cases of chowders, broths, bouillon, and juices of soft and hard clams, valued at \(\$ 565,912\).

Other canned fish, shellfish; fish roe, caviar, etc., were valued at \$2,121,419.

The menhaden industry suffered a serious shortage of raw material during 1924, which resulted in a 50 per cent reduction in the volume of the products as compared with the previous year. The output of this industry was ralued at \(\$ 3,310,176\), and comprised 21,008 tons of dried scrap and meal, valued at \(\$ 996,866 ; 24,409\) tons of acidulated scrap, valued at \(\$ 495,684\); and \(3,923,904\) gallons of oil, valued at \(\$ 1,817,626\).

The production of dried scrap and meal from other fishes and fish offal amounted to 30,847 tons, valued at \(\$ 1,373,351\), which is an increase of 36 per cent in quantity and 9 per cent in value as compared with 1923. Fish and whale oils, exclusive of menhaden oil, totaled \(5,287,391\) gallons, valued at \(\$ 2,494,107\), which is an increase of 35 per cent in quantity and 40 per cent in value as compared with 1923. There was a decrease in quantity of crushed oyster shells produced, as well as in value, the 1924 figures showing 219,211 tons, valued at \$2,019,254.

Other by-products were valued at \(\$ 1,065,305\), which is somewhat below the value of the output in 1923.

\section*{FROZEN-FISH TRADE}

As in previous years statistics of the cold-storage holdings of frozen fish and the quantities frozen in the United States and Alaska were collected by the Burcau of Agricultural Economics, Department of Agriculture, and published by the Bureau of Fisheries in the form of a monthly statistical bulletin. The reports for 1925 show that the holdings were smallest in April, with 21,488,525 pounds, and largest in November, with \(70,405,786\) pounds. The average monthly holdings amounted to \(45,041,000\) pounds, as compared with 36 ,202,000 pounds in 1923 , an increase of 24.41 per cent. The increase in any single month, as compared with the corresponding month in the previous year, varied from 6 to 103 per cent. Compared with the \(\check{\check{0}}\)-year average, the increase in 1924 holdings was comparatively insignificant, running slightly below that average from January to

July and above it from August to December. The average monthly holdings were one-half of 1 per cent greater than shown in the 5 -year average.

The quantity of fish frozen during 1924 was \(97,324,144\) pounds, as compared with \(91,548,643\) pounds in 1923 , an increase of 6.3 per cent. The principal species frozen were halibut, 14,650,787 pounds; salmon, 14,309,666 pounds; ciscoes, 13,195,023 pounds; herring, 8,695,698 pounds; whiting, \(7,528,339\) pounds; and mackerel, \(5,457,696\) pounds.

Statistics of the vessel fisheries at Boston and Gloncester, Mass., and Portland, Me., collected by the bureau's local agents, have been published monthly. Two annual bulletins were issued-one showing. the catch by fishing grounds and the other by months.

The total landings by vessels at these ports in 1924 amounted to 7,475 trips, aggregating \(182,948,194\) pounds of fresh and salted fish, having a value to the fishermen of \(\$ 6,992,952\). There was an increase over 1923 of 4.6 per cent in quantity and a decrease of 0.8 per cent in the value of the products landed. The product was caught by 12.1 per cent more vessels and 14.4 per cent more trips than in 1923. Of the total quantity, 71.6 per cent was landed at Boston, 19.6 per cent at Gloucester, and 8.8 per cent at Portland. These fish were taken chiefly from fishing grounds off the coast of the United States, about 81 per cent coming from these waters and 3 per cent and 16 per cent, respectively, from fishing banks off the coasts of Newfoundland and Canadian Provinces.

The catch of cod and related species amounted to \(157,126,008\) pounds, valued at \(\$ 4,860,564\). Of these, the haddock ranked first in both quantity and value, with cod next. The combined catch of these two species comprises about 90 per cent of this category of fish. The catch of halibut, amounting to \(4,422,146\) pounds, valued at \(\$ 789,609\), registers a decline in both quantity and value as compared with the previous year.

The total catch of fresh mackerel taken by the American fishing fleet in 1924 was 102,067 barrels, or \(15,310,050\) pounds, compared with 121,982 barrels, or \(18,297,300\) pounds, in 1923; the salted mackerel landed amounted to 10,841 barrels, or \(2,168,200\) pounds, compared with 3,564 barrels, or 772,500 pounds, in 1923. Of the total quantity in 1924 there were landed by fishing vessels at Boston and Gloucester, Mass., and Portland, Me., 9,757,509 pounds, valued at \(\$ 541,784\).

\section*{FISHERIES AT SEATTLE, WASH.}

Statistics of the fish landed at Seattle, Wash., which were collected by the local agent, were published as monthly and annual statistical bulletins giving the quantity and value of fishery products landed at that port by fishing and collecting vessels during the year. In 1924 this fleet landed 28,232,720 pounds, valued at \(\$ 2,719,222\).

The catch by fishing vessels, which consisted largely of halibut, amounted to \(10,066,010\) pounds, valued at \(\$ 1,329,957\). This registers a decrease in the catch at Seattle, which has been continuous since 1920 and is due largely to the failing supply of halibut. The quantity of this fish landed in 1924 was \(7,362,960\) pounds, as compared with the average of \(11,566,262\) pounds for the previous eight years.

The fish landed by collecting vessels amounted to \(18,166,710\) pounds, valued at \(\$ 1,389,265\), showing an increase of 779,232 pounds over last year.

\section*{SHAD AND ALEWIFE FISHERIES OF THE POTOMAC RIVER}

The regular annual statistics of the shad and alewife fisheries of the Potomac River were taken for the season of 1924. They show that the shad fishery yielded 172,310 fish, weighing 578,210 pounds and valued at \(\$ 88,450\) to the fishermen. This marks an unprecedentedly small catch, amounting to only 49 per cent by number and 45 per cent by value of the 1923 catch, which itself was less than half as large as the preceding year's catch.

The catch of alewives, amounting to \(15,133,388\) fish, weighing \(6,052,756\) pounds and valued at \(\$ 56,552\) to the fishermen, was greater than the 1923 catch by 32 per cent in number and 14 per cent in value and was the largest catch in recent years.

\section*{FLORIDA SPONGE FISHERY}

In 1924 the quantity of sponges sold at the Sponge Exchange, Tarpon Springs, Fla., was 425,305 pounds, valued at \(\$ 714,760\), of which 265,392 pounds, valued at \(\$ 599,221\), were large wool ; 58,021 pounds, valued at \(\$ 72,652\), small wool; 81,420 pounds, valued at \(\$ 37,996\), yellow; 14,898 pounds, valued at \(\$ 2,661\), grass; and 5,574 pounds, valued at \(\$ 2,230\), wire. It is estimated that sponges to the value of \(\$ 50,000\) were sold outside of the Exchange at Tarpon Springs.

Compared with the production in 1923 this indicates a decrease of 13 per cent in total quantity and 3 per cent in total value. When compared with the annual production from 1919 to 1923, however, it is apparent that the 1924 output was only slightly below normal in quantity and above normal in value.

\section*{FISHERIES OF THE SOUTII ATLANTIC STATES}

A canvass of the fisheries of the South Atlantic States was made for the calendar year 1923, and the statistics were published in condensed form as Statistical Bulletin No. 652. The results of this canvass show that there were 16,298 persons engaged in the fisheries and fishery inclustries, the investment was \(\$ 8,505,223\), and 228,747 ,930 pounds of fishery products, having a value to the fishermen of \(\$ 5,087,340\), were produced.

Some of the more important species taken, arranged in the order of their value, were shrimp, 23,705,901 pounds, valued at \(\$ 821,561\); menhaden, \(148,180,970\) pounds, valued at \(\$ 752,026\); shad, \(3,190,666\) pounds, valued at \(\$ 716,649\); oysters, from public and private beds, \(11,172,336\) pounds or \(1,596,048\) bushels, valued at \(\$ 448,137\); squeteagues, or "sea trout," \(5,258,047\) pounds, valued at \(\$ 381,155\); mullet, \(7,734,412\) pounds fresh and 622,000 pounds salted, valued together at \(\$ 378,301\); bluefish, 2,004,244 pounds, valued at \(\$ 214,826\); Spanish mackerel, \(2,652,341\) pounds, valued at \(\$ 205,987\); cero and kingfish, \(1,966,596\) pounds, valued at \(\$ 161,201\); and alewives or river herring, \(2,609,347\) pounds fresh and \(4,961,050\) pounds salted, valued together at \(\$ 146,104\).

Compared with 1918, the next previous canvass, there was an increase in the number of persons employed of 1,252 , or 8.32 per cent, and an increase in the investment of \(\$ 1,081,252\), or 14.56 per cent. There was a decrease in the products of \(103,866,193\) pounds, or 31.23 per cent, in quantity and \(\$ 261,276\), or 4.88 per cent, in value. Practically all of the decrease may be attributed to a smaller catch of menhaden, which amounted to only 148,180,970 pounds in 1923 as compared with \(257,757,799\) pounds in 1918. There was also a large decrease in the catch of alewives, cero and kingfish, red and black drum, mullet, and Spanish mackerel, but an increase in the yield of shad, squeteagues or "sea trout," shrimp, and oysters.

\section*{FISHERIES OF THE PACLFIC COAST STATES IN 1922}

The statistics of the fisheries of the Pacific Coast States for the calendar year 1922 were obtained from a canvass made during the year 1923, but due to the limited clerical force tabulations were not completed until the latter part of the fiscal year 1925. A summary statement has been published as Statistical Bulletin No. 647.

The statistics show that the Pacific Coast States, with their valuable salmon, halibut, tuna, and sardine fisheries, constitute one of our most important fishery sections. In 1922 there were 22,270 persons engaged in fishing and fishery industries; 698 vessels fishing and transporting fish; 4,173 power boats and 1,041 sail and row boats fishing; \(\$ 28,651,490\) investment in vessels, boats, gear, and shore property connected with the fisheries; and a production of 282,968,421 pounds of fish, shellfish, and whale products, valued at \(\$ 12,983,583\) to the fishermen. Judging from the value of the products to the fishermen, the salmon fishery, which is prosecuted on the coast and rivers from Monterey, Calif., to Seattle, Wash., was the most important of the Pacific coast fisheries, producing 62,685,475 pounds, valued at \(\$ 3,768,988\). Next in importance was the halibut fishery, prosecuted principally from the port of Seattle, which in 1922 produced \(18,706,517\) pounds, valued at \(\$ 1,925,482\). Third in importance was the tuna fishery of California, which produced 36,900 ,805 pounds of albacore, tuna, bonito, and skipjack, valued at \(\$ 1,847,567\).

The statistics for 1922, compared with those available for former years, strikingly reveal the changes taking place in the Pacific coast fisheries. With the development during the last decade of the tuna and sardine fisheries, California has forged ahead to the leading place among the Pacific Coast States. The number of persons engaged in her fisheries increased from 4,129 in 1908 to 8,452 in 1915 and 9,173 in 1922. The investment increased from \(\$ 1,659,000\) in 1908 to \(\$ 5,824,263\) in 1915 and to \(\$ 13,047,414\) in 1922. The value of her products increased from \(\$ 1,970,000\) in 1908 to \(\$ 2,506,702\) in 1915 and to \(\$ 6,773,981\) in 1922.

Washington, having passed the peak of her development in the salmon and halibut fisheries, took second place on the Pacific coast in 1922. The number of persons engaged in the fisheries dropped from 14,645 in 1915 to 7,600 in 1922; the investment in fisheries and fishery industries dropped from \(\$ 14,129,553\) to \(\$ 10,711,500\); and her production from \(\$ 5,320,725\) to \(\$ 4,9 \check{3} 3,913\).

The fisheries of Oregon in 1922 employed 5,497 persons; the investment amounted to \(\$ 4,892,576\) and the product totaled \(22,371,764\)
pounds, valued at \(\$ 1,255,689\). The decline in the Oregon fisheries is less severe than that in the Washington fisheries. The number of persons engaged therein was somewhat lower in 1922 than in 1915, the investment was slightly higher, and the value of products was lower.

\section*{INQUIRY RESPECTING FOOD FISHES}

\section*{INTRODUCTION}

The investigations conducted by the division of scientific inquiry are designed to produce information that may be made use of in the conservation and development of our various fishery resources. For several years past a definite effort has been made to develop these investigations along the lines of greatest practical value, and it is felt that increased progress has been shown during the past year. Coincident therewith has been an awakening of the public to the necessity for adequate care of our fishery resources and to the importance of properly planned and executed biological investigations on which to base measures of conservation.
This greater appreciation of the necessity for conserving our fisheries has undoubtedly been brought about by the serious depletion of some of the most important of them. The sturgeon have all but disappeared from both coastal and inland waters; the salmon of the Atlantic coast have been entirely exterminated in many streams, and in others only a small remnant of the former runs remains; in certain streams on the Pacific coast the salmon are much reduced; the halibut on both coasts have been distinctly reduced in numbers, unquestionably as a result of overfishing; the shad and mullet of the east coast and the whitefishes and related forms of the Great Lakes have been affected; and the production of oysters is much reduced. Many other examples of depletion might be cited, but these will suffice to show the seriousness of the situation.

The reasons for the depletion are different in each of these cases. In some the condition may be ascribed definitely to overfishing, but in others the increasing pollution of coastal and inland waters is equally if not more to blame. Dams and other obstructions erected in the rivers reduce the areas available for spawning, and thousands of young fish are lost annually through unscreened irrigation ditches. Pollution, dams, and irrigation ditches are the results of the increased industrialization of the country, a process which is still far from having reached its height, and unless adequate remedies are provided in the very near future many of our fisheries will go to their commercial destruction. In addition to these factors there must be considered the constantly increasing demand of a growing population for the products of the commercial fisheries and for a greater supply of game fish.

The result of all these forces has been to put a strain upon our fishery resources which will require the best efforts of all concerned to overcome. Aquatic resources such as these may, if properly used, be made perpetual, but measures for their care must be based upon a broad knowledge of the many factors that tend to cut down or increase the abundance of the various species of fish involved. The object to be sought for is the utilization of the fisheries to the fullest extent compatible with their maintenance. Just what the
limit may be and the means for preventing excessive exploitation or for further development of resoures not now fully utilized are mainly problems for the biologist. The general nature of the fisherv investications conducted by the division of scientific inquiry and their bearing upon the problems of conservation have been adequately outlined in the report for the fiscal year \(192 \pm\) and need not be repeated here.

Within the past few years there has been a most remarkable increase in the recognition of the importance of biological investigation in fishery conservation, and, as a result, there have been numerous requests from States, cities, and private organizations for inrestigation of their fishery problems. These have been met so far as the limited funds and personnel of the burean would permit, but it has not been possible to undertake all of the investigations asked for. In certain instances cooperative arrangements were entered into which have proved most satisfactory. It is believed that such arrangements as these offer an arenue for the expansion of the scientific activities of the burean without materially increasing present expenditures.

An outstanding feature of the year's activities was the Fisheries Conservation Conference called 'by the Secretary of Commerce and attended by representatives of the fish commissions of the Atlantic and Gulf States. This conference was held on May 22 and had for its object the consideration of procedures for saving certain of ourAtlantic coast fisheries from further depletion. Among the important matters discussed were the destruction of small, immature fish, the control of fisheries in boundary waters, and the rehabilitation of the shad, sturgeon, and lobster fisheries. The following resolution was adopted:

Whereas the necessity for concerted action by the coast States to protect national fisheries has been forcefully called to our attention hy Secretary Hoover ; and

Whereas the Secretary has seen fit to call this conference for the purpose of devising ways and means for rehabilitating these fisheries: Be it

Resolved, That the representatives here assembled go on record as indorsing the purpose of the conference and expressing on behalf of our various states our gratitude for Mr. Hoover's intelligent and patriotic interest in calling the conference; be it further

Resolved, That it is the desire of the representatives here assembled that the Secretary shall, with the approval of the governors, appoint a commission composed of representatives from each of the fish commissions of the Atlantic States to work out various problems relating to the lobster, shad, and other anadromous fishes of our coastal waters; be it further
Resolver, That in considering means of improving fishing conditions we particularly indorse and recommend any and every action that may be taken to subserve the welfare, comfort, and material success of the commercial fishermen.

There follows a brief résumé of the more important activities of the division of scientific inquiry during the past year.

\section*{ATLANTIC COAST FISHERIES}

The cod, pollock, and haddock fisheries of the western north Atlantic are of prime importance. There are landed anmually, at American ports alone, about \(140,000,000\) pounds of these fish, with a value to the fishermen approximating \(\$ 4,500,000\). One of the
\[
59260-25-3
\]
\(\underline{~ y r e a t e s t ~ o f ~ a l l ~ o u r ~ f i s h e r y ~ r e s o u r c e s, ~ i t ~ h a s ~ b e e n ~ e x p l o i t e d ~ s i n c e ~ t h e ~}\) time of the first settlements in New England, when it proved to be an important factor in the success of the newly established colonies. In spite of an extensive fishery, which has been maintained for many years, this resource has shown no definite signs of depletion, hut the intensity of the fishing is being constantly increased by the addition of fleets from the European side of the Atlantic. At the present time the banks are being fished by ships from the United States, Canada, Newfoundland, Spain, Portugal, France, and probably other nations. Adequate statistics of the total catch are not available, since we have no data for several of the countries engaged.

The results of this increase in the intensity of fishing can not be foretold. but the importance of the industry to the American people and the desirability of maintaining the resource unimpaired are such that an investigation of the biology of the cod, pollock, and haddock has been undertaken with the idea of determining the factors responsible for any fluctuations in abundance which may become apparent. It is important for an understanding of the general principles of fishery conservation to know how such a great fishery can withstand intensive exploitation over a long period of time without depletion. Such knowledge should throw much light on the problem of maintaining other fisheries which do show signs of depletion due to overfishing. and the data would be invaluable if the bank fisheries themselves should become reduced.

The program includes extensive tagging experiments for the purpose of discovering the extent and nature of the migrations of the adult fish. Over 10,000 fish, principally cod, were tagged during the season of 1924 . and nearly 5,000 during the first part of the season of 192.\%. Approximately 800 tars have been recovered since the beginning of the operations in 1923, and many important data have been secured on the migrations and rate of growth. Evidence of a winter migration sonthward along the coast, which was given by l,gging done during 1923, was confirmed in 1924, and additional lata were secured which make it appear certain that there is very little interchance between the populations of the various banks. In connection with the tagging operations. scales have been secured From nearly every fish tagged and from several handred others. These are being studied to determine age, rate of growth, and any feculiarities that may be found between the fish on the varions banks.

An investigation of the early history of the cod, designed to :upplement and complete the studies of the adults, has been underway during the past year. The work was done in Massachusetts and Ipswich Bays and along the coast of Maine. The main problem involves a study of the spawning of the cod, the conditions existing during the period of incubation of the eqres, the early larval history, food habits of the larve and young fish, their enemies, and the uradual changes in the feeding habits and migrations during the first year. It has been found that after completing their larval development the young cod and pollock seek shallow water and in April and May are to be taken along the shores. As the temperature rises in June they leave the shallow water and seek deeper areas. fust where they go at this time has not yet been discovered.

The mullet fisheries of the South Atlantic and Gulf States are to these waters what the cod fisheries are to the North Atlantic. The annual catch in 1923 approximated \(40,000,000\) pounds and was valued at over \(\$ 1.500,000\). In certain districts, notably in North Carolina, there has been an alarming decrease in productivity of the mullet, and an investigation has been started to determine the causes for this apparent depletion and if possible to devise means for remedying the situation. The sizes of the fish taken in the region about Beaufort. N. C.. were studied during the fall in order to determine the relative abundance of the rarious size groups. Scales were also taken as an aid in the analysis, and a study of the catch for age composition has been undertaken. The question of the interdependence of different fishing areas is an important one, since, if the areas are independent, measures applied in one locality wouk have no effect upon another. Considerable attention has been devoted to this question and several thousand measurements of the physical proportions of mullet from different localities have been made. Although the study has not yet been completed it has become quite apparent that there are differences in certain localitiess which can be explained only by assuming that the races have not mixed. The data indicate the existence of at least two races entering into the fishery in North Carolina and several along the coast of Florida.

As a result of these investigations definite proof of depletion in certain localities has been obtained. This has been presented to the State fishery officials, together with specific recommendations which it is hoped will prove the means for rehabilitating the fishery. The State officials concerned have cooperated with the burean in every way, and it is expected that the recommendations will be acted upon and that important results will follow.

An inrestigation of the salmon and smelt fisheries of the New England States has been continued, and a report thereon has been completed. More detailed studies of the smelt are underway, and many data bearing on the salmon and trout of New England have been secured and are being compiled for analysis.

Near the close of the fiscal year an investigation of the mackerel fisheries of the north Atlantic was begun. While the mackerel fishery does not approach that of the cod in total value, it is important because of the high esteeni in which the product is held. During 1923 the total landings in New England exceeded \(10,000,000\) pounds, valued at nearly \(\$ 500,000\). This fishery is noted for the great fluctuation in the abundance which occurs from year to year, and it is important to know what is responsible for this fluctuation, whether it can be controlled. and whether the abundance can be predicted. As an initial step in this study tagging operations have been undertaken in Massachusetts Bay, Cape Cod Bay, and near Woods Hole, and about 1,000 fish had been tagged by the close of the fiscal year. A few recaptures had been reported, but these showed no definite indication of a directed migration. The division of fishery industries is cooperating in this work and steps have been taken to gather vital statistics of the mackerel catch in varions localities.

A large part of the scientific work of the bureau on the west coast has been deroted to the salmon fisheries of the coastal States and Alaska. These are among the most valuable fisheries of the world, producing annually from five to seven million cases of the canned product, valued at from forty to fifty million dollars. They have been prosecuted with growing intensity for many clecades, and the serious results of overfishing are all too apparent in many places. In certain streams the runs have been practically wiped out, and in others they have become so reduced that it has seemed desirable to entirely close certain areas to fishing for a length of time sufficient to permit the building up of the runs. If these fisheries are to be properly conserved for future generations prompt action is necessary, and such action must be based on reliable biological information. In the case of the salmon fisheries of Alaska the entire care of these resources is vested in the Department of Commerce, acting through the Burean of Fisheries, and it is especially incumbent upon us to provide protection that will be ample and yet interfere as little as possible with the industry. The regulations that have been imposed were based on the best biological information available, and at the same time an effort has been made to increase this knowledge to the end that the regulations may better fit the needs. It is especially necessary to determine which streams contain the more important spawning areas and to establish the relation of these to the productive fishing centers.

In order to ascertain these facts extensive tagging experiments have been conducted since 1922. During that year and the following one such experiments were carried on in the Ikatan-Shumagin Island district, with the result that the runs of red salmon in this region were found to originate in Bristol Bay, where a very intensive fishery is conducted. This fact was given consideration in the regulations.

During 1924 tagging operations were conducted in southeastern Alaska, where the relationship between the various runs is extremely complicated. The results were not entirely satisfactory, due in part to the relatively small number of fish tagged. These experiments are being repeated during the season of 1925 , when it is planned to attach 20,000 tags.

For a number of years weirs have been maintained in several important salmon streams for the purpose of determining the escapement to the spawning grounds. During 1924 such weirs were maintained in Karluk, Letnik (Afognak), and Chignik Rivers, and in streams tributary to Alitak and Yes Bays. Distinct fisheries are maintained near the mouths of the rivers named, and accurate data are available as to the catch. Thes data, together with the escapement counts, \({ }^{\text {give }}\) a reliable measure of the total rum, and from such experiments as these we may expect ultimately to learn the percentage of escapement necessary to maintain the stock.

In several of the more important streams extensive scale samples were taken, and a study of these should provide important information as to the relative success of the various spawning seasons. An especially intensive study has been undertaken of the Karluk River, one of the more important of the salmon streams of Alaska. Con-
ditions here are in many respects exceptionally favorable for study, and it is planned to continue the work for a number of years. Special attention is being given to the efficiency of natural propagation and to what constitutes a reasonable expectation for future runs based on a known volume of spawning fish. The size of the runs has fluctuated from year to year in the past, and the escapement has varied proportionately from 1,330,000 spawners in 1921 to only about 330,000 in 1922. Such widely differing brood years should produce equally differing results when their progeny reach maturity, unless other factors interfere. This is a problem that has never been inrestigated, and it is expected that the results of the Karluk experiment will throw much light upon it.

On the Columbia River the marking experiments conducted since 1916 were continued and interesting results were secured. A report presenting the data secured up to 1924 is now in course of preparation. These relate to the relative efficiency of various hatchery methods and will doubtless prove to be of great practical value in developing such methods. An investigation of the spawning grounds of the blueback salmon resulted in the discovery of a spawning bed in the Okanogan River, which is of considerable interest because little is known of the present spawning areas of these fish and, lacking such information, it has been impossible either to give them adequate protection or to secure their eggs for artificial propagation.

On March 16 and 17, 1925, a meeting of the fisheries executives of the Pacific coast was held in Seattle and was attended by representatives of the Burear of Fisheries, the Departments of Fisheries for Canada and for British Columbia, the State fish commissions of Washington, Oregon, and California, and the Territorial Fish Commission of Alaska. As a result of this meeting there mas formed the International Pacific Salmon Investigation Federation, the object of which is to foster and coordinate researches bearing on the salmon resources. Recommendations were made looking toward the negotiation of a treaty between the United States and Canada which would provide for the investigation of the salmon fisheries.

The halibut fisheries of the north Pacific have shown marked signs of depletion, which has occasioned much concern. The annual yield of this fishery is over \(50,000,000\) pounds, valued at over \(\$ 5,000,000\), and approximately 80 per cent of this catch has been taken by American vessels. Under the terms of the north Pacific halibut treaty between the United States and Canada, consummated during the preceding fiscal year, the International Fisheries Commission was established and has begun an intensive investigation of the halibut resources. This work has been placed in charge of W. F. Thompson, a capable and experienced investigator of fishéry problems, and rapid progress is anticipated. Plans and organization were perfected during the winter, and active work has already begun.

FISHERIES OF INLAND WATERS
A statistical canvass of the fisheries of the Great Lakes conducted luring 1922 disclosed the fact that the total production of fish in these raters exceeded \(110,000,000\) pounds, ralued at \(\$ 6,799,633\). Whitefish and cisco were the most important items, over \(40,000,000\) pounds, valued at over \(\$ 2,000,000\), having been taken. While the
intal yield of the Great Lakes fisheries has not declined appreciably, there has been a noticeable reduction in the take of whitefishes and ciscoes, their place having been taken by other less desirable species. An investigation of the more valuable species was undertaken several years ago and was continued during the past year.

Two lines of investigation have been followed-one dealing with the systematic relationships of the various coregonine fishes : (the whitefishes, ciscoes, and related forms), and the other with the life histories and ecology of some of the more important species. The study has been brought to an advanced stage and much of the material is already in manuscript form. The life-history studies are also well advanced, and much information has been obtained from an analysis of the scales, including rates of growth in different localities, age composition of the commercial catches, age at sexual maturity, and other related matters. It was found that in the region of Alpena 70 per cent of the commercial take during the summer consisted of fish in their fifth year. It has further been shown that the whitefish in Lake Huron do not ordinarily reach the spawning stage before their fifth year, while the majority do not spawn before the sixth year. At Alpena only \(4 \dot{5}\) per cent of the females taken dluring the summer were sexually mature, in spite of the fact that none of the fish were below the legal size limit. It is apparent from these facts that the commercial catch draws to an alarming extent upon the immature fish, which are thus prevented from participating in the maintenance of the species. Some additional regulation of this fishery obviously is necessary if it is to be maintained.

\section*{OYSTERS}

For many years the oyster resources of the Atlantic coast constituted our most valuable fishery, but recently the supply in certain important localities has declined to an alarming extent. In spite of this, however, the annual yield approximates \(20,000,000\) bushels, valued at \(\$ 14,000,000\). The serious depletion of such an important resource as this naturally occasions general concern, and for a number of years investigations have been conducted for the purpose of discovering the cause for it and, if possible, means whereby the situation might be remedied.

During the past year the organization of this work has been entirely revised, and it is believed that more rapid progress will be achiered than ever before. Particular attention has been given to conditions in Long Island Sound, where the greatest mortality has occurred, due to excessive pollution and the serious overfishing of certain of the inshore areas that were of special importance in the production of spawn. The effect of various pollutants on the fertilization and development of the eggs was studied and extensive experiments in the artificial propagation and culture of oysters carried on. A small hatchery was built at Milford, Conn., and rarious types of apparatus for rearing the larval oysters were tested out. A new method was perfected, by means of which oyster larve were reared from the egg until they attached to the collectors. The oysters artificially propagated by the bureau during the summer of 1923 were placed on suitable inshore beds, and by August, 1924, had attained an average size of two and one-half inches. It is
expected that by the fall of 1925 they will make an excellent halfshell stock.

In cooperation with the State fisheries authorities the bureau has made a careful preliminary survey of the oyster resources of Georgia. Although there is a heavy production of oysters on the natural beds, these are of inferior quality and have relatively little commercial value. There appears to be no reason, however, why the best type of oysters can not be produced in Georgia waters, and a number of specific recommendations were made, which, if followed, will aid materially in the development of this industry.

An important event during the year was the conference of oyster producers and distributors and State shellfish commissioners, which was called by the commissioner and held in Washington on January 9, 1925. Representatives of the Public Health Service and the Bureau of Chemistry were present and discussed the work of their respective organizations in relation to the oyster industry. The conference was called to discuss the set-back received by the industry because it was alleged that typhoid was being spread by oysters. Resolutions were passed urging closer cooperation between producers and the State authorities to insure the taking of oysters from sanitary beds only, the development of uniform sanitary standards, and the issuance of certificates of approval similar to those used in the handling of milk, canned foods, etc.

\section*{FRESH-WATER MUSSELS}

One of our largest fresh-water fisheries is that for mussels in the Mississippi drainage. The shells are used in the manufacture of pearl buttons and novelties. During 1922 the yield was approximately \(52,000,000\) pounds, with a value of over \(\$ 1,000,000\). The manufactured products were valued at nearly \(\$ 8,000,000\).

Investigations pertaining to fresh-water mussels have been carried on for a number of years by the staff of the Fairport (Iowa) biological station, numerous surveys having been made and experiments in artificial propagation conducted. In this work the bureau has been closely associated with the various States, and has been instrumental in developing needed protective legislation. As a result of the work of the bureau, Lake Pepin, a widened portion of the Mississippi River lying between Minnesota and Wisconsin, was divided into four approximately equal sections in 1920, two of which were closed to shelling for a period of four years. These two divisions of the lake were reopened in 1924, when the remaining two divisions were closed for a like period.

It has been a matter of more than usual interest to trace the results of this action. A survey conducted in 1924 showed that the two divisions which had just been opened produced \(4,000,000\) pounds of shells-more than twice the production of the entire lake for any one of the 10 preceding years. Information obtained inclicated that when the shellers started working the newly opened beds they found the mussels apparently as plentiful as when the lake was first fished. It is realized that the heavy shelling now carried on will again greatly deplete the beds, but in the meantime the remainder of the lake, now closed, is recovering its mussel population and will be ready, when opened in 1929 , to relieve the strain on the beds now open.

Experiments in the artificial propagation of mussels were continued, and progress was made in perfecting the use of hatchery troughs for this purpose. An investigation bearing on the relationship between fish slime and the attachment of the larval mussels to the fish on which they are parasitic during the early stages of their development was undertaken by Dr. M. M. Ellis, of the Unirersity of Missouri, and promises to yield results of the greatest importance to the success of the experiments in artificial propagation.

\section*{ALASKA CLAMS}

The utilization of the clam resources of Alaska has been of recent development but already there is ample evidence of the serious depletion of some of the most productive beds. An investigation of these resources and of the biology of the clams was begun during 1923 and continued during the past year. Surveys were made of the beds in the region around Cordova and at Kukak in Shelikof Straits. Observations were also made on other mollusks in Alaska and on certain of the beaches in the State of Washington. Age determinations were made and the rate of growth determined for several localities, and data were secured on the time of spawning and its relation to water temperature. Many data showing the relation of size and age to sexual maturity have been worked out, making possible the determination of proper size limits.

These investigations have shown that Alaska clams grow much more slowly than do the clams on the coast of Washington, requiring about twice as much time to reach a marketable size. At Cordova, Alaska, a length of \(41 / 2\) inches is attained in about 6 years, while at Copalis, Wash., only 3 years are required.

The Washington clam beds were found to be much more heavily seeded than those of Alaska. In 1923 the set of small clams at Copalis averaged over 1,400 per square foot, but in Alaska the average number of small clams in 1923 and \(192 \pm\) was less than one per square foot.

Clam canning was begun in the Cordova district in 1916. An analysis of about 150 clams taken showed that orer 100 of them were young when canning began eight years before. Under such conditions it is patent that the fishermen are drawing heavily on their capital stock, and the need for regulation is evident. A size limit of \(41 / 2\) inches has been placed on all the Alaska beds to reduce the intensity of digging and thus prevent depletion. A report has been published giving the results of the investigations made during 1923 and 1924.

\section*{INVESTIGATIONS RELATING TO FISII CULTURE}

The importance of artificial propagation as an aid in the conservation of our fishery resources is generally recognized. In addition to the extensive fish-cultural operations conducted by the burean, nearly all of the States and many private agencies maintain hatcheries for the purpose of stocking their waters with food and game fishes. The biological principles involved in artificial propagation are not yet thoroughly understood, and difficulties frequently arise which demand study that can be given only by a competent biologist. In pond culture a knowledge of pond ecology is essential if the work
is to be efficiently done, and in nearly every case a knowledge of the life histories of the fishes involved is important. In hatchery operations also it is necessary to know the proper treatment for the various diseases that frequently cause great mortality and what constitutes the best composition for the artificial foods that must be used. Such investigations are carried on by the staff of the division of scientific inquiry.

During the past year several fish parasites that have caused serious losses in many of the hatcheries were investigated. A study of Octomitus salmonis, a microscopic organism infesting trout, has been completed and a report thereon has been published. This parasite is so common that in some hatcheries it is hard to find trout less than 1 year old that do not contain considerable numbers in their intestines. The manner in which the disease is transmitted has been worked ont, and methods that will doubtless do much to reduce the mortality caused by it have been prescribed.

A study of the importance of vitamines in the dietary of artificially reared fishes was continued, and the results were in complete accord with those obtained during 1923. It was found that the addition of cod-liver oil and yeast to beef heart noticeably increased growth and decreased mortality. Beneficial results could be obtained as readily with small amounts of the dietary accessories as with larger amounts. In many instances the mortality of fish fed a ration of heart to which a small amount of oil and yeast had been added was less than half as great as among those reared under identical conditions but without the addition of these items to the diet. Results were not so apparent in the case of fish fed liver, presumably becaus? liver is much richer in vitamines than was formerly thought to be the case.

At the Fairport biological laboratory experiments were continued in the artificial propagation of the sturgeon, sheepshead, silver carp, and paddlefish. Many data have been obtained but progress has necessarily been slow, due to the lack of adequate information on the life histories of these species. The "farm pond" was continued as in previous years and a comprehensive study of pond ecology has been planned, which it is hoped will provide information of value in the development of methods whereby small ponds may be made productive of fish for food.

During the past year arrangements were made for the utilization of the Holden (Vt.) fish-cultural station for investigations and experiments dealing with hatchery problems. The need for such an experimental station has long been felt, as there are many important problems to solve in connection with artificial propagation. In connection with the experimental work at Holden it is planned to conduct field investigations, for which the numerous trout streams in the vicinity afford an excellent opportunity. This work will be undertaken with the cooperation of the State department of fish and game, the officers of which liave offered to assist the burean in erery possible way.

\section*{MOSQUITO CONTROL BY MEANS OF FISH}

The prevalence of malaria in the Southern States annually causes, directly and indirectly, many deaths and much suffering. It is also responsible for a marked degree of inefficiency among those affected.

The total cconomic loss due to this factor is incalculable, and much effort has been expended in an attempt to control the mosquitoes. which are responsible for the spread of the disease.

For a number of years the burean has been conducting experiments in the use of certain smiall fishes (Gambusia affinis) in the control of mosquito production with marked success. At the present time this method is used extensively and is considered to be the best under a variety of circumstances. During the past year special attention was given to the propagation of these fishes on large tracts of land that were to be flooded. By properly stocking the small. natural bodies of water found in the areas to be flooded it is expected that efficient control may be secured from the very first in the artificially formed lakes. A paper giving the results of this work has been prepared.

Experiments on the effects of rariations in temperature and rainfall on the efficiency of Gambusia in controlling mosquito production were continned at Augusta, Ga. The season was unfavorable on account of periods of heary rainfall, which caused flood conditions to prevail. Some valuable information was secured. however. and a comprehensive report has been prepared for publication. Arrangements have been made to conduct similar experiments in the region about Greenwood, Miss., and a field laboratory has been established at that place.

This work has been carried on in cooperation with the United States Public Health Service and the Board of Health of Angusta. Ga.

\section*{OCEANOGRAPHIC AND LIMNOLOGICAL INVESTIGATIONS}

In connection with the investigations into the canse of the marked depletion of the oyster resources in Long Island Sound studies have been made of certain conditions to be found there which are inimical to the growth and survival of the larval oysters. A considerable increase in the acidity of the water was observed in the Honsatonic River and in Bridgeport and New Haven Harbors. Other oceanographic observations were made in connection with the survey of the oyster resources of Georgia and the study of the spawning and early history of the cod. Serial temperatures were taken and horizontal and vertical tows made along the coast of Maine, in Massachusetts and Cape Cod Bays, and on Nantucket Shoals. Arrangements for taking an extensive series of temperatures at a number of selected lightships and lighthouses along the Atlantic coast have been completed. Work on the preparation of the report on the oceanography of Chesapeake Bay was continued, and it is expected that this will be completed in the near future.

Various studies pertaining to the physical and biological conditions existing in certain fresh-water lakes in Wisconsin have been continued.

FOULING OF SHIPS' BOTTOAS
An investigation of the nature and extent of the fouling of ships bottoms was begun in 1922 in cooperation with the Bureau of Construction and Repair of the Navy Department. It was continued during the past year at New York, Norfolk, Va., and Bean-
fort, N. C. During the course of the investigation 225 ships were examined and data on the length of voyage, routes covered, and ports visited were secured for each ship. These are now being stadied and a report on the work is nearly completed.

It has been found that the fouling organisms are almost exrlusively those found on rocks and other submerged structures near shore, which bears out the earlier conclusion that fouling occurs mainly when ships are in harbor. The seasonal periodicity for the attachment of many of the organisms has been studied in different !arbors in order to correlate the fouling that occurs with the place of attachment. It is believed that the results of this study will make it possible to determine, from a knowledge of the cruising done by the ship and the time spent in various ports, when she hould be sent to the dry dock for cleaning. If this can be done it will mean a distinct saving in expense for the maintenance of both Nary and commercial ressels.

\section*{ACTIVITIES OF THE BUREAU'S INVESTIGATORS}

During the past year the bureau has been requested to assign trained scientists to several important investigations of great general interest. Dr. C. J. Fish, general assistant, and Marie D. P. Fish, junior aquatic biologist, accompanied the oceanographic expedition of the New York Zoological Society under the direction of William Beebe. The steamship Arcturus was fitted out for oceanographic work and made extensive observations in the region of the Sargasso Sea and in the Pacific Ocean between Central America and the Galapagos Islands. The two representatives of the bureau had entire charge of the work in physical and chemical oceanography and of the plankton, including the eggs and larve of fishes. At the close of the fiscal year the expedition was still in the field, but preliminary reports submitted indicate that the results will be of more than usual interest and importance. The larval histories of a number of fishes have been worked out, and valuable observations were made on the tuna of the Pacific.

Dr. Wralter Koelz, associate aquatic biologist, left in June with the MacMillan Arctic Experdition, which will explore the region to the north of Greenland. Doctor Koelz will make collections and observations on the fishes of that region and will also secure oceanographic data and collections of the plankton. This is the first time that a trained ichthyologist has accompanied such an expedition, ated interesting results are anticipated.

It the request of Dr. E. L. Mark, of the biological station at Bermuda, Dr. P. S. Galtsoff, naturalist, made a short visit to Bermuda in June for the purpose of securing oceanographic data across the Gulf Stream in a line from New York to Bermuda. The Gulf Stream has great influence on the distribution and life of all the organisms of the north Atlantic, but our knowledge of this most important factor of the ocean, especially as it affects the life of our food fishes, is very inadequate. Observations were made on temperature, salinity, and color of the sea water. It is expected that similar observations will be conducted under the direction of Doctor Mark.

\section*{N゙ORTII AMERICAN COMMITEE ON FLSHERY INVESTIG.ITION}

The committee held two meetings during the year-one at Montreal, Canada, on November 7, 1924, and the other in New York City, on May 8, 1925. These were attended by Henry O'Maller. Dr. H. B. Bigelow, and Dr. W. H. Rich, representing the United States.

At both meetings consideration was given to coordinating the statistical work of the rarious Governments represented, especially in so far as the bank fisheries are concerned. Arrangements were made for the exchange of statistical data between the United States and Canada, and it is expected that the committec will be able to prevail upon other Governments to supply similar data. Only in this way will it be possible to obtain complete information regarding the productivity of these fisheries. In this connection steps were taken to inaugurate a system of fish measuring, which will provide vital statistics for some of the more important species. It was decided that the initial efforts shonld be directed toward the mackerel, and the bureau has begun to gather these data for the American fishery. The collection of temperature data along the Atlantic coast, mentioned above, was begun at the suggestion of the committee. Further cooperation between the United States and Canada in oceanographic studies and cod-tagging operations was arranged, and plans were made for the extension of both these lines of investigation.

\section*{PROPAGATION AND DISTRIBUTION OF FOOD FISHES}

\section*{FISH-CULTURAL OPERATIONNS}

The increasing interest on the part of the general public in the stocking of interior waters with suitable species of fish is clearly shown by the numerous letters that are being received from ail parts of the country expressing appreciation of the results attained with fish distributed by the bureau's hatcheries. These letters indicate that the people are becoming more appreciative of the importance of stopping the destruction of fish caused by their indiscriminate introduction into waters to which they are not adapted and by planting harmful, nonindigenous species. The heavy demands made upon the burcau by schools throughout the country for information on fish life and fish-cultural methods is another indication of this interest. Civic organizations all over the country are also asking for advice along this line.

Inadequate protection or a total lack of protection menace the future fish supply. Probably the most destructive factor encomntered in connection with the maintenance of the fresh-water fisheries is the widespread practice of dumping trade wastes and sewage into public waters. Much of this material is harmful to adult fish, and very often it destroys the minute organisms upon which the young fish subsist. Nature supplies a very complete series of fish foods, ranging from the lowest and most microscopic forms of vegetable and animal life to the higher organisms, and in order to attain success in fish culture serious study of these organisms and their interrelations is essential.

It is quite obvious that the general trend of public sentiment is toward greater conservation of all natural resources, and a realization of the importance of fish culture is one of the most interesting phases of this. An organization of national renown has adopted for its slogan "Plant the bass" and has built up a membership of approximately half a million persons. Numerous other organizations are making a close study of fisheries problems and are extending all possible aid to the bureau in an effort to secure better results in the stocking of public waters. It is believed that these organized bodies of men and women will be able to accomplish a great deal more in this direction than can be expected from individual effort, as the interest of the individual is more apt to be confined to securing fish merely for personal use, while that of the organization is for the general good.

In the course of the past year the bureau has received several hundred letters from clubs and associations requesting information as to how existing facilities might be utilized in the production of fish on a cooperative basis. The bureau has given material assistance in the establishment of as many projects of this kind as it could, and in practically every instance the association aided is now producing fish under Government supervision with the purpose of distributing the output as large fingerling fish during the fall months. This cooperative work will be extended as rapidly as the bureau's facilities will permit.

The future welfare of the commercial fisheries has not been of as much concern as the stocking of interior waters with game fishes. This is undoubtedly due to the manner in which this industry is conducted. Making as large a catch as possible for the market is the primary object of the commercial fishermen, and such matters as the conservation of eggs and immature fish for the purpose of maintaining the supply are commonly regarded as of minor importance. For this reason it is highly important that the Federal Government extend its fish-cultural activities to include the commercial species.

With that object in view spawn takers have been sent to the various fields where the commercially important fishes are captured to take the ripe spawn of the market fish and transfer it to the hatcheries for incubation. In this way immense numbers of valuable eggs have been saved which would otherwise have been lost in dressing the fish for the market.

The work of planting on the spawning grounds on Georges Bank, off the New England coast, the fertilized eggs of cod and haddock taken in that field by the fishing fleet from Gloucester, Mass., which was instituted a few years ago, has been extended so far as facilities permit. Operations of the same character hare been successfully undertaken in connection with the propagation of buffalofish in Louisiana and at certain points along the upper Mississippi River, also, where ripe fish are taken for the markets at points too remote from a hatchery to permit of the successful transportation of the eggs.

The fish-cultural methods employed by the bureau during the fiscal year 1925 were in the main along previously established lines. Appropriations have not been adequate for making needed improvements at some stations and have lowered the efficiency of other sta-
tions at which funds had to be used for improvements, with a corresponding reduction in the stations' activities. The output of eggs, fry, and fingerling fish totaled in excess of \(5,300,000,000\), as compared with about \(5,360,000,000\) during the preceding year. Winter flounder ranked first in numbers, exceeding \(2,640,000,000\); cod were second, with more than \(1,000,000,000\); and pike perches were third, with \(238,000,000\). The output of salmons exceeded 133,000,000 ; trouts amounted to \(92,000,000\), and basses and sunfishes approximated \(34,000,000\).

Summary, by species, of the output of fish and fish eggs during the fiscal year ended June 30, 1925
\begin{tabular}{|c|c|c|c|c|}
\hline Species & Eggs & Fry & Fingerlings & Total \\
\hline Catfish & & & 14,310, 290 & 14, 310, 290 \\
\hline Buffalofish & 127, 400, 000 & 12, 562, 500 & 4, 261, 430 & 144, 223, 930 \\
\hline Carp. & & 31,500, 000 & 10, 959, 465 & 42, 459, 465 \\
\hline Shad & & 17, 158, 671 & & 17, 158, 671 \\
\hline Whitefish... & 340, 010 & 172, 630, 000 & & 172, 970, 000 \\
\hline Cisco. & 8,000, 000 & 118, 900,000 & & 126, 900, 000 \\
\hline Chinook salmo & 7, 504, 880 & 2, 528, 800 & 42, 684, 200 & 52, 717, 880 \\
\hline Chum salmon & & 16, 051,650 & & 16,051,650 \\
\hline Silver salmon. & 862, 000 & 10, 177, 650 & 3,797, 639 & 14, 837, 289 \\
\hline Sockeye salmon. & 3,150, 000 & 28, 070,000 & 3,891, 700 & 35, 111, 7C0 \\
\hline Humpback salmon & & 10, 892, 500 & & 10, 892, 500 \\
\hline Steelhead salmon & 604, 000 & 124,580 & 1,327, 184 & 2, 055, 764 \\
\hline Atlantic salmon. & & 1,410,000 & 12, 500 & 1,422,500 \\
\hline Landlocked salmon & 81, 000 & 816, 621 & 219, 825 & 1,117,446 \\
\hline Rainbow trout. & 3, 008,754 & 1,989, 500 & 2, 326,485 & 7,324, 739 \\
\hline Black-spotted trout & 16, 802, 060 & 4, 776, 100 & 1, 584, 817 & 23, 162,977 \\
\hline Loch Leven trout & 8, 803, 000 & & 784, 341 & 9, 587, 341 \\
\hline Lake trout. & 2, 940, 000 & 32, 822, 613 & 309, 815 & 36, 072,428 \\
\hline Brook trout & 500, 000 & 2, 776, 469 & 12, 755, 628 & 16,032,097 \\
\hline Silver trout & & & 100, 000 & 100,000 \\
\hline Grayling. & & 4,877, 000 & & 4, 877, 029 \\
\hline Pike and pickerel & & & 709, 077 & 709, 077 \\
\hline Mackerel & & 3, 517,000 & & 3, 517, 0 C0 \\
\hline Crappie --. & & & 16, 884, 251 & 16,884, 251 \\
\hline Largemouth black bass & & 1, 135, 100 & 1, 615, 021 & 2, 750, 121 \\
\hline Smallmouth black bass. & & 545, 400 & 41, 927 & 587, 327 \\
\hline Rock bass. & & & 60, 560 & 60, 560 \\
\hline Warmouth bass & & & 5,370 & 5,370 \\
\hline Sunfish. & & & 13, 894, 947 & 13, 894, 947 \\
\hline Pike perch & 122,450, 000 & 116, 100,000 & 141, 584 & 238, 691, 584 \\
\hline Yellow perch & 5,850, 000 & 83, 988, 800 & 555, 340 & 90, 394, 140 \\
\hline White bass. & & & 4,425 & 4, 425 \\
\hline Fresh-water drum & & & 19,590 & 19,590 \\
\hline Cod & 598, 065, 000 & 462, 712, 000 & & 1,060, 777, 010 \\
\hline Haddock. & 139, 366, 000 & 24, 511, 000 & & 163, 877, OL0 \\
\hline Pollock & & 222, 890, 000 & & 222,890, 010 \\
\hline Winter flounder & 4, 667, 000 & 2, 637, 051,000 & & 2, 641, 718,000 \\
\hline Miscellaneous fishes & & & 3, 696, 495 & 3, 696, 495 \\
\hline Total..........- & 1, 050, 393, 694 & 4, 114, 514, 954 & 136, 953, 935 & 5,301, 862, 583 \\
\hline
\end{tabular}

It became evident shortly after the close of the World War that the salmon fisheries of the three West Coast States and Alaska were being so heavily drawn upon that their early depletion was threatened, and prompt action for their preservation became imperative, especially in Alaska, where stringent regulations have been required to prevent the extinction of the parent stock. Such measures have consisted in the establishment and enforcement of regulations which permit the escape of the fish to the streams for the purpose of spawning. Actual counts of salmon in various streams have been made, with the view of securing definite information as to the numbers required to properly seed the beds.

The prevalence of adverse weather in some of the principal fields in the Great Lakes region made it impossible for the fishermen to attend their nets regularly during the spawning season, and as the hatcheries engaged in the propagation of the commercial fishes of these waters are wholly dependent for their egg supplies upon the fishermen's catch, the output of these stations was materially reduced.

The propagation of the marine species of the New England coast was prosecuted under varying natural conditions. The principal difficulty encountered was the partial or entire failure of the run of cod in some of the fields ordinarily frequented. Taken as a whole, the results in this branch of the work may be considered gratifying, both the egg collections and the output exceeding in the aggregate those of the preceding year by a substantial margin.

A very successful season was experienced in the collection of eggs of the black-spotted trout in the Yellowstone Park. Weather and water conditions were generally favorable and the fish appeared to be plentiful in all the streams entering Yellowstone Lake. A large collection of Loch Leven trout eggs was secured at the bureau's field station in the Madison Valley, Mont.

As the Mississippi River failed to attain its usual high stages the spawning grounds of the river fishes were greatly restricted and they were found in comparatively few pools. Rescue operations were conducted from early July to the latter part of November, and more than \(62,000,000\) fish were collected and returned to the open waters of the river, as compared with \(150,000,000\) fish rescued in the preceding year. In connection with this work the rescue crews inoculated the salvaged fishes with the glochidia of the fresh-water mussels. Judging from the reports received from the pearl-button manufacturing industry and the local fishermen, this work is considered a very important factor in the maintenance of the fresh-water mussels.

\section*{RELATIONS WITH STATES AND FOREIGN GOVERNMENTS}

There is a well-developed and growing movement in many States toward the improvement of the interior fisheries through the extension of fish propagation and distribution and by the establishment of more effective measures for the protection and development of fish life. The increased interest shown by the States in developing their resources is prompting them to seek closer cooperation with the Bureau of Fisheries, and is having a most wholesome effect in increasing the bureau's fish-cultural activities. One of the most beneficial results of this harmonious relation has been the elimination, to a large extent, of heretofore wasteful duplication of effort on the part of the States and Federal Government in the distribution of fish, but the most valuable outgrowth of this cooperation has been a more effective stocking of waters with fish adapted to them and the discontinuance of the introduction of nonindigenous or harmful species. The results of stream investigations made by many of the States have been placed at the bureau's disposal, which has made possible a more intelligent stocking of waters.

The interchange of ideas between the States and the bureau has developed higher efficiency throughout the service by the adoption of more improved methods. In many instances the burean has lent the services of its employees to the States to investigate fish-cultural sites and aid them in the establishment of hatcheries. The States have borne the entire expense of the work, so that this service has been performed without cost to the Government. It is felt that by helping the States in this way and by assisting them in initiating a fish-cultural and propagation program the present drain upon the bureau's resources, which are now overtaxed to meet the public demand for fish, will be relieved. Aid was given to the States of West Virginia, North Carolina, and Georgia by detailing experienced men to assist them in locating hatcheries.

During the fall of 1924 the State of Michigan enacted legislation requiring that fishermen engaged in the capture of fish of the important commercial species in the Great Lakes region turn over to the bureau's agents, without cost, all the ripe spawn obtained. If this law can be enforced it will, in effect, secure the cooperation of all commercial fishermen in the maintenance of the fish supply in the waters of Michigan. In this respect the State of Michigan has taken the lead by establishing a policy which should be followed by all States having commercial fishing, especially where the eggs of the commercial species are taken. The State and Federal Governments should not be required to pay for ripe spawn obtained from the commercial species, since they are endeavoring to maintain the supply of these fishes for the benefit of the fishermen. Information received from other States indicates that they are beginning to realize that the commercial waters along their boundaries are the property of the general public, and that those who derive benefit from the fisheries should be required to assist in their maintenance.

During the fiscal year 1925 the bureau effected a very advantageous exchange of eggs with the Canadian fisheries authorities, receiving eggs of the Atlantic salmon in return for an equal number of trout eggos.

A very favorable report has been received from Chile as to the success attained with chinook-salmon eggs forwarded to that country from one of the bureau's Washington hatcheries during the fiscal year 1924.

By means of several shipments of eggs furnished in recent years to the Hawaiian Government from the bureau's stations in the Rocky Mountain region, the rainbow trout has become successfully established in that country, and reports indicate that the fish hare made a remarkable growth in a number of the mountain streams.
In the course of the past year the fisheries authorities of State and foreign governments and the Canal Zone were supplied with fish and fish eggs in the following numbers:

\section*{Allotments of fish eggs to State and Territorial fish commissions, fiscal ycar 1925}


Shipments of fish and fish eggs to foreign countries and the Canal Zone, fiscal year 1925
\begin{tabular}{|c|c|c|}
\hline Country and species & \[
\begin{gathered}
\text { Eggs } \\
\text { shipped }
\end{gathered}
\] & Fish shipped \\
\hline Canada: & \multirow{6}{*}{\[
\begin{aligned}
& 500,000 \\
& 500,000
\end{aligned}
\]} & \\
\hline Lake trout....-..-- & & \\
\hline Canal Zone: & & \\
\hline Largemouth black bass. & & \multirow[t]{3}{*}{2,250
500
500} \\
\hline Bream.-. & & \\
\hline Crappie & & \\
\hline Colombia: Loch Leven trout & \multirow[t]{3}{*}{\[
\begin{aligned}
& 50,00 \\
& 50,000 \\
& 25,00
\end{aligned}
\]} & \\
\hline Netherlands: Rainbow trout. & & \\
\hline Panama: Rainbow trout.-.- & & \\
\hline Total & 1,125, 000 & 3, 250 \\
\hline
\end{tabular}

\section*{PROPAGATION OF PACIFIC SALMONS}

As the number of sockeye salmon ascending to spawning grounds in the vicinity of the Afognak (Alaska) station was comparatively small, it was deemed advisable to defer active salmon propagation during the year and devote all available funds to repairs, of which the station was in need. The station's work was therefore limited to the making of these repairs and to the care and supervision of the weir in Letnik River. At the Yes Bay (Alaska) station, where fish-cultural work was confined to the sockeye salmon, \(30,000,000\) eggs of that species were collected and incubated.

\section*{COMAERCIAL FISHES OF THE GREAT LAKES}

In securing eggs for stocking its Great Lakes hatcherics the burean is confined to collections made from ripe fish obtained in the nets of the commercial fishermen, the spawn being taken by experienced men sent out in the fishing boats. The degree of success attained in this work is in the main d pendent upon the size of the fishermen's catch, which is governed largely by prevailing weather conditions. The species handled at these hatcheries are the lake trout, whitefish, pike perch, cisco, and carp. A fairly successful season was experienced in the work with the pike pirch, but with this exception the egg collections of all species were smaller than in the preceding year. Adverse weather was encountered in practically all the fields covered, especially in Lake Michigan during the lake trout spawning s ason and in Lake Ontario while eggs of the whitefish and cisco were being collected.

\section*{Marine species of the north atlantic}

The more important commercial species propagated at the coastal hatcheries in New England are the cod, haddock, pollock, and winter flounder. In the cod work at the Woods Hole (Mass.) station the brood fish are purchased from fishermen in the fall months and held in a specially prepared tank in the basement of the hatchery until they have spawned. The eggs float with the current and are gathered up in specially constructed boxes and installed in the hatchery for incubation. During the fall and winter of 1924 the run of cod at all points along the southern coast of Massachusetts was so light that no brood fish were obtainable for the work at that station. Cod were very plentiful in the vicinity of Gloucester, Mass., however, and the eggs collected at the Gloucester hatchery were considerably in excess of \(1,000,000,000\), being the greatest number it has ever taken. The propagation of winter flounder was notably successful. The southwestern coast of Maine was visited by a very heavy run of that species, enabling the Boothbay Harbor station to secure a record collection of eggs, the total for the season aggregating 2,027,901,000. Very satisfactory results attended the efforts to salvage eggs of the cod and haddock in the distant offshore fisheries. This work extended from the middle of February to early April, during which period \(137,355,000\) eggs of the cod and \(42,222,000\) haddock eggs were fertilized and planted on the spawning grounds from which the fish were taken.

\section*{MIGRATORY FISIES OF ATLANTIC RIVERS}

The principal species in this group-the shad-is holding its own in the Potomac River with difficulty, and the protection it receives during its short spawning season is inadequate. The state of the weather has considerable influence on the run of shad. The most suitable combination for enabling a large body of fish to reach the spawning grounds appears to be a cold, backward spring, with floods of cold water flowing from the principal rivers into the sea. Under such conditions the fish apparently keep to the main channel or bed, thus escaping many of the nets set on the shoals in the lower bays, and large numbers ascend well above brackish water to their natural spawning grounds in the streams.

\section*{SALVAGE OF FOOD FISHES FROM OVERFLOWED LANDS}

High-water conditions during the spawning season in the Mississippi River rescue territory limited the possible amount of salvage work, and while the operations were prosecuted for the usual length of time-from the beginning of July to the end of November-the results were greatly curtailed as compared with those of an average season. Rains and abnormally cool weather prevailed throughout most of the summer and fall, providing extensive feeding grounds, and in many instances the rise and fall of the river afforded avenues for the ready access of the fish to the river channels. Over an area extending from Prescott, Wis., on the north, to Andalusia, Ill., on the south, \(62,220,565\) fish were salvaged, of which 911,416 were shipped to applicants. All of the remainder were released in the Mississippi River and its adjacent tributaries.

The customary mussel-infection work was conducted in connection with the rescue operations. The unusual weather and water conditions existing had the effect of producing stronger and better fish to serve as hosts for the larval mussels, and a total of \(1,783,-\) 561,850 of the latter were used in the inoculations, this number exceeding the total of the preceding season by more than 33 per cent.

\section*{PROPAGATION OF FISHES OF INTERIOR WATERS}

The results of the year's work with the brook, rainbow, and blackspotted trouts were fairly satisfactory. Eggs from wild fish of one or more of these species were taken in considerable numbers in fields adjacent to the stations located at Leadville, Colo., Springville, Utah, Saratoga, Wyo., and Bozeman, Mont., as well as in the Yellowstone Park. A record collection of rainbow-trout eggs from domesticated stock was made at the Manchester (Iowa) station. A second successful season's work was accomplished in the propagation of Loch Leven trout in the Meadow Creek (Mont.) field during the fall of 1924, and the collection of rainbow-trout eggs there during the spring of 1925 exceeded that of any year since this substation was established. In making field collections in Utah the employees of the Springville station worked in conjunction with and under the immediate supervision of the Utah State officials, and the station received as its share of the output approximately \(1,341,000\) brook-trout eggs, 700,000 rainbow-trout eggs, and 300,000 eggs of the black-spotted trout.

Fish-cultural operations in the Yellowstone Park field were conducted under the direction of the district supervisor of the Mississippi River rescue station, and \(25,950,500\) black-spotted trout eggs were secured in the course of the fiscal year.

Approximately \(140,000,000\) buffalofish eggs were collected on the Atchafalaya River in Louisiana between March 7 and April 4, 1925.

\section*{ALASKA FISHERIES SERVICE}

\section*{EFFECT OF THE NEW FISHERY LAW AND REGULATIONS}

Alaska fishery operations in 1924 were conducted in accordance with the terms of the several acts applicable thereto, including the new law approved June 6, 1924. It became necessary to revise ex-
isting regulations because of the new act, and this was accordingly done on June 21. In certain specified localities commercial fishing for salmon was entirely prohibited, and in other waters where the runs were badly depleted drastic limitations were put into effect. Restrictions were also imposed upon herring fishing in certain localities. The commissioner was on the ground most of the season to personally observe the working of the new law and regulations, and pursuant to his recommendations some changes were made in them while fishing operations were in progress. Beneficial effects in the way of larger escapements of salmon to the spawning grounds resulted in various places, and it is expected not only that depletion will cease but that eventually the runs in most waters will be restored to their former proportions.

As a result of observations and experience during the season of 1924 general regulations, effective in 1925, were issued by the Secretary of Commerce on December 2, 1924. In the 12 fishing areas provided by these regulations commercial fishing is limited or prohibited as the circumstances necessitate, while in 76 specific localities included within these areas 10 commercial salmon fishing whatever is permitted. The limitations upon fishing are chiefly in the form of closed seasons and restrictions as to the kind and amount of fishing gear to be used. Regulations with respect to the herring, clam, crab, and shrimp fisheries also were promulgated. Supplemental orders making slight modifications of these regulations have been issued from time to time as appeared desirable. The Alaska Fisheries Advisory Committee, appointed in the summer of 1924 by the Secretary of Commerce, cooperated by making recommendations in regard to the regulations.

A greatly expanded patrol was maintained in 1924 for the protection of the fisheries of Alaska and the enforcement of the law and regulations. In addition to the 16 statutory employees 103 temporary employees were engaged in stream guard work, of whom 79 were stationed in southeastern Alaska, 13 in central, and 11 in western. Ten yessels of the burean, with a combined crew of 27 men, were engaged in patrol operations, and in addition nine vessels were chartered for varying periods and a number of small launches were likewise used.

An innovation in connection with prosecutions for fishery violations was the authority given by the act of June 6,1924 , for the seizure and confiscation of vessels, fishing apparatus, and all appliances used in violation of the law or regulations. Under this authority a number of salmon traps in southeastern Alaska were seized and sold after appropriate judicial proceedings. Small quantities of gear were seized in both the central and western districts. Four vessels seized in southeastern Alaska were released by the court, as the evidence was insufficient to prove illegal fishing. Cases in connection with the seizure of five vessels in Cook Inlet have not been decided.

Operators expressed considerable dissatisfaction over the requirement of the burcau for closer compliance with the terms of the law in regard to adjustment of salmon traps during the weekly closed period, and several traps were seized for noncompliance with
the law. A number of operators joined in an application for an injunction against the Commissioner of Fisheries, the United States attorney, the United States marshal, and certain employees of the Bureau of Fisheries to enjoin them from enforcing the law in regard to opening the heart walls of traps in the manner described in instructions issued by the bureau to its employees. The judge of the district court denied a temporary restraining order and on appeal his decision was confirmed by the Circuit Court of Appeals for the Ninth Circuit. As the season progressed it became apparent that with slight alterations traps already constructed could be operated lawfully.

\section*{ALASKA SALMON HATCHERIES}

At the Government hatchery on McDonald Lake \(30,080,000\) redsalmon eggs were collected in 1924. The Afognak hatchery was closed for repairs. At two private salmon hatcheries operated under the provisions of the act of June 26, 1906, there were collected 31,690,000 red-salmon. eggs.

The Alaska Territorial Fish Commission carried on hatchery operations in 1924 at its stations at Ketchikan, Cordova, and Seward, handling a total of \(16,352,000\) humpback, chum, red, and chinook salmon eggs. All of the chinook eggs were received from the State of Washington.

\section*{SPECIAL STUDIES AND INVESTIGATIONS}

In 1924 counts of red salmon ascending to spawning grounds were made in two small streams entering Olga Bay, Kodiak Island, and in the Chignik and Karluk Rivers. These weirs are being maintained again in 1925, and in addition weir operations are being undertaken for the first time at Anan Creek in the southeastern district.

The tagging of salmon to determine their migration routes in the waters of southeastern Alaska was undertaken for the first time in 1924. Five localities were selected and 2,716 salmon were tagged, of which 662 were later recaptured. Studies of the data are being made and a special report on the results will be published.

\section*{EXTENT OF THE ALASKA FISHERIES}

In 1924 the Alaska salmon industry as a whole showed a slight increase in number of persons employed, investment, production, and value. A notable feature was the greatly increased catch of salmon in the central district, amounting to 161 per cent, which more than offset the losses in the southeastern and western districts, where the catches declined 18 and 32 per cent, respectively, from the figures for 1923. The net increase in the catch of salmon for Alaska as a whole in 1924 was about 3 per cent.

A comparison of Alaska salmon-canning operations in 1923 and 1924 is as follows:
\begin{tabular}{|c|c|c|c|}
\hline Item & 1923 & 1924 & Percentage of increase \((+)\) or decrease (-) \\
\hline Canneries operated & 130 & 130 & \\
\hline Cases of salmon packed & 5, 035, 697 & 5, 294, 915 & +5.15 \\
\hline Value.-...---------- & \$32, 873, 007 & \$33, 007, 135 & +. 41 \\
\hline Persons employcd. & 19,439 & 20, 107 & +3. 44 \\
\hline Cases of salmon packed, by species: & 164, 107 & 183, 601 & +11.88 \\
\hline Chum & 525, 622 & 1, 028,488 & +95.67 \\
\hline Humpback & 2, 448, 129 & 2, 601, 283 & +6. 26 \\
\hline King & 38,343 & 33, 648 & -12. 24 \\
\hline  & 1,859, 496 & 1,447,895 & -22.14 \\
\hline Number of salmon caught & 77, 422, 311 & 79, 477, 600 & +2. 65 \\
\hline
\end{tabular}

Other salmon products were : Mild cured, 5,187,200 pounds, valued at \(\$ 1,137,301\); pickled, \(1,362,952\) pounds, valued at \(\$ 132,223\); frozen, \(2,287,666\) pounds, valued at \(\$ 165,809\); fresh, \(2,206,944\) pounds, valued at \(\$ 203,624\); dry salted, dried, and smoked, \(1,633,968\) pounds, valued at \(\$ 82,209\); fertilizer, \(1,759,300\) pounds, valued at \(\$ 43,370\); and oil, 49,033 gallons, valued at \(\$ 21,833\). The total value of these minor salmon products in 1924 was \(\$ 1,786,369\). The value of similar products in 1923 was \(\$ 1,365,756\).

The products of the herring fishery were as follows: Bait, \(3,599,350\) pounds, valued at \(\$ 35,033\); Scotch cured, \(19,020,650\) pounds, valued at \(\$ 1,660,991\); Norwegian cured, 18,600 pounds, valued at \(\$ 1,826\); spiced, for food, 9,600 pounds, valued at \(\$ 1,000\); dry salted, 92,450 pounds, valued at \(\$ 6,901\); bloaters, 770,500 pounds, valued at \(\$ 25,790\); fertilizer, \(9,359,625\) pounds, valued at \(\$ 222,720\); and oil, 1,144,672 gallons, valued at \(\$ 504,109\). The total value of herring-fishery products in 1924 was \(\$ 2,458,370\), as compared with \(\$ 1,602,571\) in 1923.

The halibut industry procluced \(4,398,528\) pounds of fresh fish, valued at \(\$ 528,023\), and \(10,639,088\) pounds of frozen fish, valued at \(\$ 1,091,420\), a total of \(15,037,616\) pounds, valued at \(\$ 1,619,443\).

The shore-station cod fishery yielded \(1,580,026\) pounds of products, valued at \(\$ 100,777\). The whaling industry produced oil, fertilizer, whalebone, and pickled meat, valued at \(\$ 391,781\).

The pack of clams amounted to 83,161 cases, valued at \(\$ 629,412\). The output of shrimps was 528,432 pounds, valued at \(\$ 227,979\). Crab products were valued at \(\$ 48,727\). The output of trout was 61,262 pounds fresh and frozen, valued at \(\$ 6,741\). There were also produced 227,350 pounds of sablefish, chiefly frozen, valued at \(\$ 9,808\); 24.484 pounds of smelts, valued at \(\$ 2,348 ; 6,993\) pounds of flounders, valued at \(\$ 349\); and 1,175 pounds of red cod, valued at \(\$ 34\).

The total value of the manufactured fishery products of Alaska in 1924 was \(\$ 40,289,273\). The value of the catch to the fishermen was approximately \(\$ 10.400,000\).

The entire Alaska fishery industry gave employment to 25,194 persons and represented an investment of \(\$ 62,660,637\).

The extent and condition of the Alaska fisheries in 1924 and of the activities of the bureau under the laws and regulations for the protection of the fisheries are covered in detail in the annual report of the Alaska service for that year. \({ }^{2}\)

\footnotetext{
\({ }^{2}\) Alaska Fishery and Fur-seal Industries in 1924. By Ward T. Bower. Bureau of Fisheries Document No. 992.
}

\section*{ALASKA FUR-SEAL SERVICE}

\section*{GENERAL ACTIVITIES ON THE PRIBILOF ISLANDS}

The North American fur-seal herd, which resorts to the Pribilof Islands in Bering Sea, Alaska, now numbers well over 700,000 animals, comprising probably 90 per cent of the fur seals of the world. It produces by far the greater part of the fur-seal skins that enter the fur markets.

The chief activities in connection with the fur-seal herd center at the Pribilof Islands. Here all sealskins taken by the Government are secured, the work of taking and curing the skins being performed largely by the resident natives under the direct supervision of employees of the bureau. The resident natives number in all about 300 , and in return for services rendered to the Government they are provided with houses, food, clothing, schools, and medical attention. In addition, they receive 75 cents in cash for each sealskin taken.

Transportation for the regular annual shipment of supplies for the islands was provided through cooperation of the Navy Department on the U. S. S. Gold Star, but small quantities of freight were carried at times on other vessels. Employees were also transported by the Gold Star and vessels of the United States Coast Guard.

Sealing operations were carried on in the same manner as in the previous season, practically all of the skins procured on St. Paul Island being taken by the stripping method and then blubbered before salting, while on St. George Island the skins were taken as usual by skinning with knives.

Progress was made on both islands in the installation of improved water-supply systems, that on St. George Island being nearly completed. A warehouse was completed on St. Paul Island, and considerable work was done on other buildings.

\section*{SEAL HERD}

Computations showed a total of 697,158 fur seals in the herd on August 10, 1924. This was an increase of 44,150 over the figures for the corresponding date in 1923 and is regarded as showing a satisfactory increase in numbers.

\section*{TAKE OF SEALSKINS}

In the calendar year 1924 there were secured on the Pribilof Islands 17,219 sealskins, of which 13,453 were taken on St. Paul Island and 3,766 on St. George Island.

\section*{MARKING OF RESERVED SEALS}

In 1924 a breeding reserve of 8,5723 -year-old male seals was marked by shearing a patch of fur from the top of the head. While marking the reserve of 3 -year-old seals it was noted that 3,718 4 -year-old males appeared. These were given a distinguishing mark to enable recognition during the season.

\section*{SALES OF SEALSKINS}

In the fiscal year 1925 two public auction sales of fur-seal skins taken at the Pribilof Islands were held at St. Louis, Mo. The first was on October 15, 1924, when 14,136 black-dyed, 1,845 brown-dyed, 1,010 raw-salted, and 17 miscellaneous skins were sold at a gross price of \(\$ 470,447.15\). In addition, four confiscated sealskins were sold for \(\$ 16.50\), and four confiscated sea-otter skins brought \(\$ 1,020\). At the second sale, on May 25, 1925, 5,839 black-dyed and 2,186 brown-dyed skins were sold for \(\$ 225,994\). At this time there were also sold 4 skins from seals that died at the Steinhart aquarium, 1 confiscated sealskin, and 2 confiscated sea-otter skins. The five sealskins brought a total of \(\$ 49.50\), and the sea-otter șkins brought \(\$ 395\). During the fiscal year the Secretary of Commerce authorized the further sale of 362 sealskins, the sum realized being \(\$ 16,835.13\).

The United States Government's share of fur-seal skins taken by the Japanese Government on Robben Island in 1923 was 82 skins, and 94 skins in 1924. The skins taken in 1923 were in process of being dressed and dyed for market at the end of the year, but those taken in 1924 had not been received.

\section*{FOXES}

A special study of the fox herds of the Pribilof Islands was made in the seasons of 1923-24 and 1924-25 to develop better methods of feeding and handling the animals. More satisfactory food supplies have been developed, and a regular system of feeding has been inaugurated on St. Paul Island.

The 787 blue and 15 white foxes taken on the Pribilof Islands in the season of 1923-24 were sold at public auction at St. Louis on October 15, 1924. The blue pelts brought \(\$ 49,755.50\) and the whites \(\$ 630\), a total of \(\$ 50,385.50\). In the season of \(1924-25,709\) foxskins were secured, of which 81 blue and 26 white pelts came from St. Paul Island and 600 blue and 2 white pelts were taken on St. George Island. On St. Paul Island 167 animals were marked and released for breeding purposes, and on St. George Island 541 were marked. On each island there are animals that are not handled during the foxing operations, which, when added to the known reserve, considerably increase the available breeding stock.

\section*{FUR-SEAL SKINS TAKEN BY NATIVES}

It is reported that in the spring of 1925 Indians secured 1,751 fur-seal skins in the waters off the coast of Washington. These were authenticated for the bureau by the superintendent of the Neah Bay Indian agency, of the Department of the Interior. In southeastern Alaska Indians took 279 fur-seal skins, including 40 from unborn pups, which were duly authenticated by an employee of the burean. A number of fur-seal skins were taken also by natives of British Columbia.

FUR-SEAL PATROL
The usual patrol of waters off the Pacific Coast States, British Columbia, and Alaska during the annual migration of the Ameri-
can fur-seal herd was maintained by Coast Guard vessels, which also patrolled in Bering Sea and along the Aleutian Islands during the season. Patrol vessels of the bureau stationed in southeastern Alaska were assigned to the same duty in that district during the migration, giving particular attention to sealing operations by the Indians.

\section*{PROTECTION OF WALRTSES AND SEA LIONS}

No change was made in the regulations for the protection of walruses and sea lions in Alaska during the fiscal year.

\section*{VESSEL SERVICE NOTES}

During the first three months of the fiscal year the steamer Fish Hawk was undergoing repairs at Brooklyn. In October she completed the biological survey of Long Island Sound, and in November was sent to New England waters, where, basing at the Boston Navy Yard, she has been continuously engaged in the fishery investigations of the Gulf of Maine. During the year the Fish Hawk steamed 2,395 miles and covered 202 stations.

The fishery investigations of the Gulf of Maine were continued by the steamer Halcyon, excepting during the winter months, when this vessel was utilized for fish-cultural work in connection with the Gloucester (Mass.) hatchery. The Halcyon's operations extended from Nantucket Shoals to Mount Desert, Me., and consisted chiefly in tagging cod, haddock, and pollock in order to determine their migrations. Some temperature stations were made and shore fishes were collected. Over 16,000 fish were taken, tagged, and returned to the ocean. The steamer cruised 5,143 miles.

The steamers Gannet, Shearuater, and Phalarope and several motor vesels have been used for fish-cultural work on the New England coast, in the Great Lakes, on the Potomac River, and in connection with the biological laboratory at Woods Hole, Mass.

The Eider was used chiefly as a local tender for the Pribilof Islands, although some incidental service was rendered the salmon fishery investigations for a few weeks during the summer, and in the late fall and winter she was at Seattle for the annual overhauling. Since the installation of a Diesel engine, this vessel has rendered particularly excellent and economical service.

Four vessels-the Widgeon, Murre, Auklet, and Petrel-were assigned to patrol work in southeast Alaska, remaining in commission practically throughout the fiscal year. The Kittiwake was on duty in Cook Inlet and to some extent in Prince William Sound waters. The Ibis was at Chignik, the Merganser at Ikatan and vicinity, the Scoter was in Bristol Bay waters, and the Tern on the Yukon River. The last four vessels were used for a few months only during the active salmon-fishing season and were hauled out of the water for the balance of the year.

An addition to the Alaska fisheries patrol fleet was the Blue Wing, which was acquired early in the fiscal year, and after a brief period in southeastern Alaska was assigned to the Kodiak district with headquarters at the Afognak hatchery. This vessel is 55 feet in length and is of the sturdy and seaworthy purse-seine boat type.

The 11 vessels together cruised approximately 68,000 miles during the fiscal year 1925 .

\section*{RECLASSIFICATION}

The reclassification of employees in the District of Columbia, with consequent readjustment of salaries, has now been in operation for a year with results which on the whole are satisfactory. The effects on the scientific personnel have been especially beneficial, reducing the turnover and enabling the bureau to fill vacancies with properly qualified persons and to build up a more efficient and contented organization. The clerical force has benefited less. While inequalities still exist and some allocations of positions need revision, in most cases employees receive salaries more nearly commensurate with the duties and responsibilities of their positions and the morale of the service in general is improved. However, the present force is wholly inadequate to carry on the work, and a larger appropriation for salaries with which to provide for promotions and for the employment of additional clerks is urgently needed.

\section*{APPROPRIATIONS}

The regular appropriations for the support of the bureau for the fiscal year 1925 aggregated \(\$ 1,508,645\), as follows:


Total
Respectfully submitted.

\author{
Henry O'Malley, Commissioner of Fisheries.
}

\author{
To Hon. Herbert Hoover, Secretary of Commerce.
}

\title{
MILD CURING OF SALMON IN CALIFORNIA \({ }^{1}\)
}

\author{
By W. L. Scofield \\ Assistant, Department of Commercial Fisheries, Fish and Game Commission of California
}

CONTENTS
Process in bries Other methods
History of mild enre
Cleaning loss
Heading and cleaning
Scoring
Splitting
\[
8 \text { - }
\]
Sliming
Chilling tank
Draining
Salting
crew
Tierces

\(\qquad\)

Variation in curing method

Page

Trmperature for curing-_---------8 8
\(\begin{array}{ll}\text { Weight changes while curing------ } & 8 \\ \text { Sunburn } & 9\end{array}\)
9
Belly burn 9

Removal of fins------------------10 10
Grading on the Columbia-------------11
Grading in California_-_----------- 11
Sale of cured fish_------------------ 12
Smoking_-..---..--------------------12
Sale after smoking \(\quad 13\)
Ocean and river fish_-------------13
Color and fat variation_-----------------13

\section*{PROCESS IN BRIEF \({ }^{2}\)}

Only one species of salmon, variously known as king, chinook, quinnat, Sacramento, and spring (Oncorhynchus tschawytscha), is mild cured. This type of curing is distinctly a west-coast process, being practiced from Monterey to Alaska.

The salmon are gutted, headed, and the sides split from the backbone. The "sides" are then scraped or "slimed" and placed in a chilling bath of salted and iced water. They are then drained, given a coating of dry salt, packed in barrels or "tierces," mild brine is added, and the tierce is kept in cold storage for a few weeks. The sides are then taken out, graded, and "repacked" in tierces, brine added, and the tierces shipped in refrigerator cars. They may then be removid, washed, given a light smoking, and sold to the retail trade. The "curing" is accomplished in the first brine (before the repack), the mild cure in brine giving the name to the process in distinction to "hard" or "dry" salting, smoking, or kippering.

\section*{OTHER METHODS}

A variety of curing methods have been used, smoking and sundrying having been practiced by the Indians before white men came to California. Small quantities of salmon are salted down in barrels,

\footnotetext{
\({ }^{1}\) Appendix I to the Report of the U. S. Commissioner of Fisheries for 1925. B. F. Doc. 983.
\({ }_{2}\) Unless otherwise stated, all descriptions of methods refer to mild cure practice in 1920.
}
dry or hard salt being used in such quantities that much free, undissolved salt surrounds the flesh in the brine that is formed by the moisture in the fish. The products of various combinations of drying, salting, and smoking are often confused with mild-cured salmon when sold in local markets.

Kippered salmon is the chief rival of the mild-cured product as a delicacy. In kippering, the meat is cooked rather than cured, and is more appropriately called "barbecued" salmon. In this process the fish is cut into 1 -pound chunks and cured for only about three hours in an 80 per cent brine. It is then washed and dried, either by air blast or over a small fire, after being strung on wires or placed, skin down, on wire netting of about one-half-inch mesh. It is then ready for the principal step in its preparation-the broiling or barbecuing over a hot fire or bed of coals until thoroughly cooked. It is best when served warm from the barbecue, but is good the next day. Thre days after the cooking it is not usable. Salmon prepared in this way is sometimes served in local restaurants after reheating in the oven.

\section*{HISTORY OF MILD CURE}

The process of mild curing salmon is of comparatively recent origin. A number of years ago, particularly at Halifax, the Atlantic salmon, which is a small fish usually not over 12 or 15 pounds in weight, was given a brine cure preparatory to smoking, but the process was crude and far inferior to the present method. The fine quality curing was developed on the Pacific coast.

The first mild cure of king salmon was tried on the Columbia River about 1889, the curing being done in whisky casks. The product was shipped to Germany, but as there were no cold-storage facilities about half the fish soured during the voyage. About five years later another attempt was more successful, but extensive curing on the Columbia River was not practiced until 1896. Salmon were cured in 400 -pound barrels, but this method was not satisfactory, as large fish often were broken by being crowded into the barrels. Finke Bros., a cooperage firm in Portland, Oreg., is credited with making the first salmon tierces, or large-diameter, 800pound barrels, that have become the standard container. About 1897 or 1898 mild curing started on Puget Sound, but it was not well established until 1901. The abundance of salmon in Alaska attracted packers, and in 1902 the curing began, starting at Taku Inlet. By 1904 several stations in Alaska were mild curing, the price to fishermen that year being \(\$ 1\) for three large fish. Salmon under 22 pounds in weight were counted two for one, but the fish are said to have averaged 30 to 35 pounds, with very few small fish. The cured fish sold at \(71 / 2\) cents per pound.
In California mild curing was developed later than in the north, the start being made in about 1900 on the Sacramento River, which is also accredited with the first salmon cannery in the United States. About 1901 mild curing started at Monterey and became the chief fishery industry of that bay, but recently the sardine-canning business has left it far behind. For several years Monterey was the only place in California where ocean-caught salmon were cured, the fish being taken by trolling.

\section*{CLEANING LOSS}

The loss in weight in preparing the round fish for curing is from 30 to 35 per cent. Roughly, 1,130 pounds of round salmon will make an 800 -pound tierce of sides, a loss of 330 pounds.

There are three steps in the preparation of the fish: (1) Heading (removing head and gills), (2) cleaning or gutting (removing entrails), and (3) splitting (removing backbone). For a given size of fish the loss from heading and splitting is fairly constant, but in cleaning (removing entrails) the loss varies in different localities and at different times of the year because of variation in size of the eggs or milt and in stomach contents. There is also variation in the percentage of loss due to size of fish, large fish suffering relatively smaller loss than small fish.

Fish under 16 pounds in the round, or about 32 inches in length, seldom are split, as that size is necessary to make the smallest side accepted-6 pounds. Fish under 16 pounds are either sold to fresh markets or canned.

\section*{HEADING AND CLEANING}

The fish in the round are thrown onto the long table (serving for heading, cleaning, splitting, and sliming) and are headed before cleaning, the gills being removed with the head. A diagonal cut is made through the head, beginning at a point on the top of the head 1 or 2 inches from the back and slanting backward through the cartilage of the head but only partially through the "cheek plates" (opercle). Two flips of the knife cut the cheek plates free from the head, and a semicircular stroke of the knife frees the gills and the tip of flesh on the lower side. Part of the cartilage of the back of the head thus remains on the fish for the purpose of holding the flesh of the "side " together more firmly.

The headed fish is opened with one knife stroke, beginning at the anal opening. Entrails are then removed and two cuts made in the kidney, which lies at the top of the body cavity next to the backbone. The knife point is then used to scrape out the kidney.

\section*{SCORING}

When the round fish go onto the cleaning table, either just before or just after being headed, the sides are "scored;" that is, gashes are cut in the skin to allow a more ready penetration of the salt. The fat or oil of the fish tends to exclude the brine, and it is therefore more difficult to cure the fat oily regions of the side. The base of the dorsal fin and just back of the "collar" are particularly oily spots, and are frequently the first to show taint in curing. Down the top of the back is another oily region, but splitting exposes this so that it cures readily. There is a fat layer under the skin, especially along the lateral line. Under this line there is a triangular strip of dark meat that is apt to sour in curing, and for this reason the scoring should be along the lateral line. If done with an ordinary knife, the gashes are apt to be too deep and may cut through the fat into the red meat. A notch is usually filed in the
knife or, better still, a sharpened point of steel is used with a gauge to prevent the point entering more than a quarter of an inch. The universal practice in California is to cut four or five gashes along the lateral line and two or three above the line in the thick portion of the side. It is questionable whether or not this gives the best results, as shorter and more numerous gashes along the lateral line would probably serve better, and in most cases the gashes above the line disfigure the fish rather than improve the curing. Large sides may require scoring above the line, but small sides do not. In Alaska and on the Columbia River a scoring wheel with sharpened points that cut regular and numerous slits about three-quarters of an inch long is used. The wheel is usually run once along the lateral line, seldom above it.

\section*{SPLITTING}

To prevent slipping, the fish is first hooked by the "collar " over a sharpened nail in the table, the belly toward the splitter and head to the right for a right-handed man. Four knife strokes split the fish into two "sides" removing the backbone with the tail fin attached. Two preliminary cuts are made posterior of the body cavity to free the flesh there from the backbone; then one stroke of the knife removes the right "side," leaving the dorsal fin attached to the left "side," while the next stroke frees the backbone and tail. Splitters are well-paid, skilled workmen and take pride in speed and cutting "clean," that is, leaving very little meat attached to the backbone.

\section*{SLIMING}

After splitting, the sides are slid onto the sliming table, which is provided with overhead water pipes and short sections of rubber hose dropping to within a foot or so of the table to provide a stream of water at each slimer's place around the edge of the table. In Alaska a tank is used instead of the table, the fish being slimed on board shelves at the tank's edge, and usually a knife only is used in the process.
Loose ends of membrane are trimmed from the side and the body cavity portion thoroughly scraped (skin side down) to remove the blood from the veins. The chilling tank should then prevent the surface veins from refilling with blood while curing. After scraping, the sides are turned skin up and washed off with a brush to remove any slime that may remain.

\section*{CHILLING TANK}

The chilling tank contains iced brine and receives the sides from the scraping or sliming table. It is gencrally miscalled "sliming tank," the name probably coming from Alaska, where a tank is used instead of the scraping table. All slime should be removed in the scraping and washing before the sides enter the chilling tank.

The chilling tank is an important step in the curing and is the one most frequently slighted. The chief object of chilling is to prepare the sides for curing, the cold brine serving to partially impregnate the outer layers of flesh-what might be called "case-
hardening." Unchilled sides absorb too much of the curing brine and the salt penetrates too deeply at first, so that the flesh is oversalty and improperly cured.

By chilling or casehardening, the inner flesh is cured more slowly and remains more moist. Another object in chilling is to hold the fish oil in the sides. Fish a day out of water or exposed to warm air start to ooze oil, but proper chilling will stop this. If not properly chilled the oil continues to exude from the fish in the curing process, so that when the tierce is opened for repacking an eighth of an inch of oil floats on the brine. Naturally the buyer wants this oil in the fish, not in the brine. The chilling tank also serves to "draw the blood" from the reins of the sides, so that they do not show as dark markings. When insufficiently chilled, the blood refills the surface reins while the sides are curing in the barrel.

For proper chilling the sides should remain in the tank from 2 to 4 hours, but frequently they are not given over a half hour, which is not long enough for the best results. The brine of the tank should be iced to 30 or \(40^{\circ} \mathrm{F}\). The iced brine should have a salinity of 60 to 70 per cent (tested with a salinometer) in order to caseharden the sides, but the percentage is often far below 60,40 per cent frequently being used, and much of the benefit of the process is thereby lost. A mistaken standard for judging the salinity is to dissolve enough salt so that the sides will float well, but 40 per cent is sufficient for good floating. The brine in the tank is chanced every day or two (or every 10 to 15 tierces) as it becomes fouled with oil. If fresh fish is used and properly chilled, the amount of oil lost in the tank is greatly reduced. Ocean water is often used in making up the tank lbrine when clean salt water can be had, but fresh water is used in the curing brine or "pickle."

\section*{DRAINING}

As the sides are taken from the chilling tank they are temporarily stacked, skin down, on a long two-wheeled cart or portable table that serves the double purpose of easily transporting the fish to any desired place in the room and draining off the excess water, as the boards are spaced to leave large cracks. No extra time is required for draining, the few minutes while loading, moving, and unloading being sufficient.

Columbia River packers use a smaller cart holding just a tierce of sides piled 7 along the cart and 3 across one end, so that there are 10 sides to a layer. This is a great convenience in keeping the count straight either at salting or repacking time, for counting the sides singly as they go into the barrel leads to many mistakes, with extra work and confusion. In California the count of sides is nearly always made only at the repack.

\section*{SALTING}

In the customary California method sides are taken, one at a time, from the long drain cart and dropped, skin down, in a large portable box full of dry salt. Handfuls of salt are then thrown over the exposed flesh and the side removed for packing in the tierce.

Thus, only the thin coating of salt adhering to the moist surface goes into the barrel, with the exception of an occasional light sprinkling of salt thrown in on the layer of sides in the tierce. The sides are closely packed, without counting, in the barrel with the skin side down, except the top layer, which is flesh down. Sides are salted and packed as they come, with mixed sizes and grades. Usually three men work together; the first lifts the sides from the cart and drops them into the salt box, the second covers the flesh with salt, and the third packs the sides in the barrel.

Good judgment should be used in packing mixed sides in the barrel, as they cure unevenly. The packer may improve the curing, however, by the proper addition of loose salt where needed. For instance, when two thick sides fall together there should be an extra amount of salt, as each side requires more than the normal amount. Small and thin sides take the salt more quickly and are apt to become too hard, so they should have less free salt, the brine being almost sufficient. For these reasons a preliminary grading at the chilling tank would insure more uniform curing with less difficulty and labor in grading the repack, and therefore better grading. If sides have been on the drain cart more than a few minutes they become dry on the surface, less free salt adheres, and extra salt should be sprinkled over the layers in the barrel.

Some California packers require the sides to be dropped, flesh side down (instead of skin down), in the salt box, and free salt is then rubbed over the skin and into the scored gashes, as it would otherwise fail to enter the cuts in the skin in salting. This is generally considered a slightly better method, as the brine alone entering the scorings is scarcely sufficient for thick sides. This method is not in general use, although the extra time required is negligible.

The dry salt used is usually a mixture of two parts of Packers' Fine to one part of Threequarters Ground. For the chilling tank brine half ground salt is used, which is coarser in grain and dirty looking, being less refined. English salt was used almost exclusively in the past, but is little used now.

\section*{SIZE OF CREW}

There is little uniformity in the size of mild-cure crews, from 4 to 20 men being employed, depending on the quantity of fish ordinarily received. One splitter will keep from 6 to 12 men busy sliming. When rushed, 3 men are used in preparing the fish for the splitter. One fills the cleaning table with fish and assists in scoring or heading, a second heads and scores, while the third cleans (removes entrails). In slack times 2 or even 1 man performs the 3 operations of heading, scoring, and cleaning. It is claimed that 1 experienced man, who can split, ought to put up three tierces of mild cure alone in one day, performing all the steps from heading the fish to coopering the barrels after packing. A proper labor charge is variously estimated at from \(\$ 7\) to \(\$ 12\) per tierce, but this charge necessarily varies greatly, because a full crew is often held idle on the prospect of a heavy run of fish being received at any time.

\section*{TIERCES}

The barrels or tierces used in curing, storage, and shipment are a standard size, holding from 775 to 850 pounds of sides, the normal amount being 800 pounds. The barrel has 6 hoops, 28 to 30 staves \(11 / 4\) inches thick and 34 inches long, and \(11 / 2\)-inch heads 32 inches in diameter. In Alaska the barrels are made from spruce, but this is not as good as Douglas fir, which is the wood used in about 95 per cent of the Califormia tierces. The barrels usually are shipped knocked down to the curing shed, where they are set.up as needed.

\section*{CURING}

After the tierce has been filled with the salted sides it is in most cases headed up at once, brine is run in at a small bung until full, and a wooden stopper ("cork") is driven home. This is not always the procedure, as there are other methods explained elsewhere. The tierce is then ready for curing in cold storage.

The brine, or "pickle," for curing is made by mixing salt of the Packers' Fine grade with fresh water. The solution varies in salinity from 90 to 95 per cent. In the past when the pack was put up for shipment to Germany the solution was usually 85 per cent. This is too weak for the best curing, as the flesh sours somewhat just under the skin, enough to smell a little; but this odor can be removed in the smoking. The German buyers prefer this slight souring to having the fish too salty. At present brine under 90 per cent is seldom if ever used, 92 to 94 per cent is often used, but 90 per cent is most frequently used. When fish are allowed to make their own brine, a 92 per cent solution usually results. When the sides are cured (after repacking) a 90 per cent brine is the standard solution used for storage and shipment.

The time required for curing varies, the size of the fish being the chief factor. Twelve days are often sufficient, but 18 days usually are considered the safe period, and the time may be extended indefinitely. The curing should not extend over four or five months, however, because the brine is weakened by the curing process, the salt settles to the bottom of the barrel, and the "sides" begin to get soft. Because of storage expense and a desire to realize on the fish, it is seldom cured more than one month before repacking. In extreme cases of rush orders the time for curing is sometimes reduced to six or eight days by using stronger brine and curing at a higher temperature. In such cases a little salt is often sprinkled on the sides when repacking, as the cure is not completed and will continue in transit.

Curing may be done without a regular cold-storage plant by icing alone. The temperature of a closed room may be reduced to 42 or \(44^{\circ}\) by ice, sufficient to cure the sides. This method is even desirable when the cured fish have to be shipped without cold storage, in which case the tierces may be three or four days in transit if kept cool (as on a boat trip) and immediately placed in cold storage at destination. A train trip of three days through the hot interior valleys without refrigeration would sour the fish.

There are several variations in the method of curing. One, the so-called Scotch method, is sometimes followed in California. The sides are pressed into the barrel and never repacked. About 850 pounds of sides per tierce result. The appearance of this fish is not so good and there is less moisture in the flesh.

Another variation is to fill the barrel and let it stand a day. By this time the sides have settled and a few more may be added and the head pressed down without adding any brine. The water from the fish forms sufficient brine, and when the proper amount of dry salt is used the brine will have a salinity of about 92 per cent and is sufficiently abundant. More fish per barrel may be packed in this way, usually 825 to 850 pounds per tierce.

After curing, when the sides have gained in weight, the barrels hold from 850 to 875 pounds. This method allows the fat sides to gain weight until the cured sides weigh more than when fresh.

\section*{TEMPERATURE FOR CURING}

The barrels are kept in cold storage while the fish are being cured, \(39^{\circ}\) being the best temperature. Lower temperatures are often used, however, but with 32 to \(35^{\circ}\) the sides do not take the salt so well and the fish is likely to be softer than it should be. If low temperature is to be used, it is better to let the barrels stand in a cool place 24 to 48 hours before entering cold storage to allow the cure to get a good start. After the sides have been cured \(32^{\circ}\) is a good temperature for keeping the fish.

While curing, it is important that an even temperature be maintained. If the temperature of the cold-storage room is allowed to creep up and is then suddenly forced down again, and this process repeated, a poor product will result. After the fish is cured it is not so important to keep an even temperature; in fact, there is usually considerable variation in the refrigerator car as the ice melts out and the car is reiced.

The temperature to be used. in curing depends somewhat on how much time is available. Although 38 to \(40^{\circ}\) give the best cure, it is sometimes desirable to hasten the process for quick delivery. As the salt penetrates more rapidly at a high temperature, 40 to \(44^{\circ}\) are used, but a temperature above \(44^{\circ}\) is not safe for curing. In rush orders the cure can be speeded by using more dry salt, stronger brine, keeping the barrel in a higher temperature, and even by adding a little salt in the repack so that curing may be completed in transit.

\section*{WEIGHT CHANGES WHILE CURING}

During the first two weeks of the curing process there is usually a decided shrinkage in the weight of the sides, the amount depending more on the fatness of the fish than on the method of curing. Lean fish will shrink mueh more (even 50 per cent more) than fat fish. The shrinkage in fat fish is from 8 to 20 per cent of the fresh weight of the sides. After two or three weeks there is a slow gain in weight, so that most cured fish weighed three or four months after repacking will be found to equal or exceed the fresh weight.

Fat sides gain to exceed the fresh weight, but lean sides gain little. This gain is from 15 to 50 pounds per tierce over the weight at repacking time if the fish have been thoroughly cured. Hard-salted salmon is so thoroughly salted that there is not this gain in weight.

\section*{SUNBURN}

Fish caught by the trollers are too often left on deck or in a box exposed to the sun. The salmon should be covered at once with something to shade them, wet salt sacking being the most convenient thing to use. The sacking should be kept wet to prevent the skin from drying and burning. Cooling from evaporation also retards belly burning. After the skin dries it begins to wrinkle, and if exposure is continued the flesh will break away from the skin. Even before the wrinkling of the skin is very noticeable the flesh underneath "cooks," becomes soft, tainted, and may drop from the skin when smoked. It is claimed that a fat salmon exposed to the sun for 10 minutes on a hot day will become sufficiently tainted so that the sour smell will be evident in the flesh of the cured side.

Sunburning is often called "shoulder burning" because it is first evident on the "shoulders," the thickest part a few inches back of the head just above the lateral line. The shoulder burn may be the size of a man's hand or cover half the side. Often the fish is burned over the whole side.

Sunburning so injures the flesh that it smells under the skin even after curing, and buyers test suspicions-looking sides by inserting a knife or sacking needle under the skin. The oder is distinct on the knife if the side has been burned, and such fish are graded out from the prime sides. Such sides are called "stinkers" at smoking, as the odor is pronounced in the smokehouse.

\section*{BELLY BURN}

Deterioration of the fish, due to visceral decay after death, is called "belly burn," because the flesh next the body cavity is darkened and made soft and evil smelling. In more adranced stages the fish becomes so soft that the ribs break through the flesh. The tissue between the flesh flakes breaks down and the fish is unfit for mild curing. The softening of the whole fish, when held for a day or so without cleaning, is only indirectly due to belly burning, but it goes under that name or is called " mush fish."

Ocean fish having food in their stomachs will begin to taint in a very short time if not kept cool and moist. An hour is often sufficient to give the flesh an odor. Ocean fish held 30 hours before cleaning are sometimes so soft that the flesh about the body cavity falls to pieces in cleaning. Fish held too long before cleaning may not be unfit for mild curing and may show only slightly the breaking apart of the flesh flakes, but such fish will not caseharden in the chilling tank, continue to exude oil, cure badly, and are inferior when smoked. All ocean fish are best when split as soon after catching as possible. A much-needed improvement in caring for fish is the cleaning of all ocean salmon by the fisherman on his boat as soon as caught, merely opening and removing the entrails. River fish, whose stomachs are empty, are much less apt to belly burn and may be kept longer without the flesh "mushing."

\section*{BROKEN FISH}

Fish may be "broken" from rough handling at any stage from the time they are caught until the cured sides are shipped. Fish in the round are not so easily broken as after being split, yet many of the injuries are received while still in the round. Bruising, bending, dropping, and piling too deep in the boats are the causes of injury in the round. A fish dropped tail first will in most eases be so broken that the cured side will have to go as a " \(B\) " or cull when graded. Bending when clumping in a pile often makes a " B " grade, especially when there is the weight of other fish above.

The breaking is due to the tearing apart of the flakes of the flesh. This injury becomes more noticeable during smoking, and when ready for the retail trade the fish is difficult or impossible to slice and has to be sold as inferior fish at a reduced price. The loss to the packer is considerable, as the "B" grade sells at 5 cents less per pound. Most of the breakage is due to rough or unskilled handling after splitting. Often the splitter, when he is ahead of the slimers in his work, will pile the sides up on the table, newly split sides being slid or thrown onto the pile. When the side bends over a pile more or less breakage is sure to occur, and for this reason sides should be only one deep on the table. Picking up the side requires care. When picked up by the "collar" and bent over the hand the flakes are broken apart. Rough handling on the sliming table and throwing into the chilling tank causes a portion of the "B" grades. Bending in the salt box and while packing in the tierce is responsible for some of the breaking.

Gaffed fish are far too frequently found in the catch. If deeply gaffed, the fish is not mild cured. If the hole is shallow and small the fish is split in order to secure the one good side, the gaffed side going as a " B " or cull. It is significant that the gaff has been practically disearded in the north and a landing net used instead.

\section*{REMOVAL OF FINS}

As usually practiced in California, no fins are removed except the tail fin (caudal), which comes out with the backbone in splitting. With a right-handed splitter the dorsal and adipose fins remain on the left "side." Removing the fins takes extra time, but the appearance of the cured side is improved. The dorsal fin becomes a leathery sharp projection in smoking, and is a disadvantage in packing the smoked side, as it cuts through the waxed paper when wrapped for shipping. Removing the dorsal fin would also expose the oily region at its base to more ready curing. The pectoral fins fold tightly against the body, fitting into depressions in the flesh. When the cured side is washed and hung for drying and smoking, moisture is apt to hold under the pectoral fins and prevent proper treating, with the result that the spots under these fins are apt to spoil and mold. The removal of other than the dorsal and pectoral fins is not so important except to improve the appearance, thereby aiding the sale when the demand is not strong. A few California packers remove the fins, and the practice is general on the Columbia River.

\section*{GRADING ON THE COLUMBIA}

Columbia River mild-cured salmon is most highly regarded by the trade and sells for more than the Puget Sound and most California cured salmon. This difference is not in the quality of the fresh salmon so much as in the curing methods and careful grading. Discovering that a tierce of salmon sold for a price determined by its poorest "sides," on the principle of a chain being as strong as its weakest link, the Columbia River packers have found that carefully grading out the best sides brings an added fancy price, and a poor side slipped into a grade above its proper place works injury to their trade.

Unlike the California method, the Columbia River packers grade twice. Usually three chilling tanks are used, being placed end on to the sliming tank (or table) for economy in space. The sides are thus given their first rough grading into large, medium, and small in the three chilling tanks, which is an advantage in salting and curing (since different sizes cure unequally) and also saves much labor in repacking. At the repack there is a careful second grading into from 6 to 10 grades, the chief grades being determined by the number of sides necessary to fill the standard 800 -pound tierce, and are expressed as grades \(50,60,70,30\), or 90 (sides per tierce). As most of the fish are large (seldom less than 10 pounds to a side) there are few medium or small sides, but mostly large and extra large. Slightly broken sides are graded as "B" of that size and are not thrown into one grade or included with the culls. The resulting pack is uniform, the sides of one grade varying in weight but little, and no prime fish are pulled down by being classed with inferior sides.

\section*{GRADING IN CALIFORNIA}

California packers usually recognize but three or four grades, with a catchall grade of "B" and culls. The "B" grades of each size class are frequently thrown together and separated from the culls or worst sides. The cull grade is loosely defined and may include pale, gaffed, burned, broken, small, thin, and poor quality. More frequently the slightly injured sides are called "B" grade or No. 2 and are distinguished from the badly injured sides or culls. The result of lumping the "B's" or No. 2's together is that some good sides go for a poorer "price than they deserve and many sides that should be graded "B" go as "A" and thus lower the standard of the prime sides. For instance, a collar-broken large side may be only slightly injured. If called " B " it goes in with a barrel of small, thin-bellied, gaffed, and inferior fish. It is therefore often squeezed in with the prime grade. It would improve the pack to grade more closely and with more primary grades and an "A" and "B" grade of each size class where the pack is large enough to have a tierce of "B's" of each size. However, improvements in the pack are not likely to be developed while the demand for mild cure is as strong as at present.
In California there is seldom a preliminary grading, the sides being cured as they come without regard to size, so that a tierce may contain all grades and culls mixed together. The grading and count-
ing are done at repacking time. Smaller sides are now accepted than in the past, as the European shipments could not include sides under 8 pounds but now the New York market takes 6 -pound sides.

The customary four grades, expressed in weight of a single side, are 6 to 7,7 to 8,8 to 11 , and 11 pounds and up. Many sales are made throwing the last two large sizes together, thus making three grades-small ( 6 to 7 ), medium ( 7 to 8 ), and large ( 8 pounds and over). Two separate grades may be made for "B" and cull, or they may be thrown together as one. "B" or No. 2 usually sell at 5 cents less per pound. In spite of the loose grading of the "A" or prime sides. California has the reputation of a large percentage of "B" and cull in the pack. This is said to be due not so much to pale fish in the catch as to sunburn, breaking, and poor curing by inexperienced or careless crews. Frequently a pack is from 15 to 25 per cent "B" and cull instead of the 8 to 10 per cent "B" with practically no culls, as it should be.

\section*{SALE OF CURED FISH}

Most of the California pack is sold and paid for in the State, and usually is inspected at the repack by a broker or representative of an eastern buyer. In most cases the packer contracts for his season's pack before the season opens. In fixing the price paid the packer it is customary to recognize three chief grades (exclusive of culls), with a different price for each. For example, a fair price for 1920 was 25 cents per pound for large ( 8 -pound sides and over), 23 cents for medium ( 7 to 8 pound sides) and 20 cents for small ( 6 to 7 pounds). "B's" or No. 2's go at a reduced price, usually 5 cents less per pound. Culls are either classed with the "B" grades, taken at a further reduced price, or not accepted at all. The 1920 prices were an advance of 2 cents per pound, on the average, over 1919. In the past it was customary to contract the pack at a flat rate. For example, a large Monterey pack was sold in 1919 at 20 cents. Shipment east, after the repack, is in refrigerator cars, 32 tierces to the standard-sized car and reiced in transit.

The cured fish are ready for smoking any time after the repack but may be held indefinitely in cold storage. Fish held three years before smoking have met with ready sale.

\section*{SMOKING}

Practically all smoking is done in the large eastern cities. The cured sides are taken from the barrel in the morning and washed in a tank of fresh running water all day, in addition to being washed off with a soft brush. They are then hung in a drying room, provided with a hot-air blast, for an hour or so until the surface and excess moisture is dried off. Sides are then smoked all night and are ready for early morning delivery the next day. Washing and smoking, therefore, occupy about 24 hours. Olive oil is rubbed on the smoked fish, especially on the lean sides. In the usual method of smoking the fire is furnished by gas pipes in the floor perforated for small flame jets on each side of the pipe. Mahogany sawdust is placed in small piles along the pipe so that the gas flame slowly eats into the piles.

\section*{SALE AFTER SMOKING}

In the cities the smoked sides are delivered in the morning by peddlers to shops retailing the product. The amount smoked is just enough for the day's trade, so the smoke is repeated each day. The smoked sides lose color rapidly and therefore they are better used as fiesh as possible, but they can be kept over two weeks if heid in cold storage after smoking. In the stores the sides are sliced on the bias, diagonally through the flakes or grain, in very thin slices. When the flakes are not solid, as in broken fish, the slicing is difficult and thin slicing impossible. Broken, thin, "B's" or No. 2's, and culls are sliced thick and put up in olive oil in 1-gallon sealed tins. Slightly broken fish is sometimes sliced as thin as possible and put up with oil in flat or half-pound cans. In shipping the smoked sides to out-of-town trade they are packed in a shallow box, two sides to the box, or four if the sides are small, the smoked fish being: first wrapped in waxed paper. The smoked mild cure is sold readily in German communities of the eastern United States, but more is sold to the Jewish trade, especially in New York. It is used instead of meat, taking the place of bacon, as the thin slices are delicious heated in a pan and served with eggs. The slices are largely used as meat in sandwiches. Although a high-class trade takes the better grades, great quantities are used in the sweatshops in lunches for the laborers. Before the war more mild cure went to Germany than was used in the United States. Now practicaily all of the California pack is consumed in the eastern cities of this country and very little is sold locally on the Pacific coast.

\section*{OCEAN AND RIVER FISH}

Open-sea salmon caught by trolling are tender fleshed and fat, and as they are feeding they soon taint from belly burn and have to be handled more carefilly and packed as soon as possible the same day as canght. If held over until the next day they are almost sure to be soft. Salmon on the journey up river to spawn are harder fleshed. with empty stomachs, and will keep longer. On the Sacramento River a common practice is to clean the fish and ice them down on the floor overnight to draw out the "muddy" or "tule" taste, and it is also clamed that they will split more easily if so held until the following day. The fall-run Sacramento fish from warm and muddy water have a more decided "river" taste and "muddy smell" than the spring run.

\section*{COLOR AND FAT VARIATION}

There is much variation in the salmon caught at various localities along the Pacific coast. Broadly speaking, the southern catch (Monterey, especially) has a high percentage of pale, but few, if any, white fish. In northern California and Oregon nearly all of the salmon are red, and further north they are red but with a higher percentage of white salmon. Puget Sound chinooks are said to be 15 to 20 per cent white, and in Alaska about 20 per cent white.

The oil content seems to be more variable than color, and also less consistent as to locality. The fall runs in both the Columbia and

Sacramento Rivers are too thin for good mild curing, few being packed on the Columbia in the fall for fear of injuring the high standard set by the spring-run product. The Yukon River fish are credited with being the fattest of all the king salmon. The spring runs of the Columbia and Sacramento are the choice fish for mild cure in both color and fat, being second only to the Yukon in fat. The Oregon coast streams are said to have long-shaped fish with not much fat. Cook Inlet fish are of low fat content, and Grays Harbor fish, though large, have so little oil that they are no longer mild cured but are sent to the fresh markets. Copper River fish have more oil, and farther north there is plenty of oil in the fish.

A high oil content is desirable for richness, a thick large fish is preferred, and the redder the flesh the better the sale. Pale-colored salmon are salable as mild cure, but the "white" salmon are of little value when cured, not because of inferior quality but on account of their appearance.

Although of good color, the lack of oil in the fall run of the Sacramento fish prevents a fine quality mild cure, but they have one peculiar advantage. The cured sides are hard and leathery from lack of oil, but they will smo'ze better than the fat sides in extremely hot weather. Ocean fish and oily, spring-run, river fish can not be smoked during the eastern midsummer heat because the sides begin to spoil and taint in the drying house and smokehouse.

\section*{PEARL ESSENCE: ITS HISTORY, CHEMISTRY, AND TECHNOLOGY \({ }^{1}\)}

\author{
By Harden F. Taylor \\ Formerly Chief Technologist, U. S. Bureau of Fisheries
}

\section*{CONTENTS}


\section*{INTRODUCTION}

The value of a pearl resides not in the material of which it is composed but in the manner in which nature arranges this material. Except in shape, the genuine pearl is identical with the shell or mother-of-pearl of the mollusk that produces it. Both consist of layers of crystalline calcium carbonate alternating with layers of conchiolin, a horny, organic substance that binds together the layers of calcium carbonate. These otherwise worthless materials are so disposed in a pearl as to give an optical effect that makes it one of the most valuable of all articles of commerce.

To imitate pearls man must make use of some substance that, when put into the shape of a pearl, exhibits a pearly luster. \({ }^{2}\) The only substance that has ever answered this requirement satisfactorily is the silvery substance deposited in the skin of many species of fish. This substance, when rubbed off the scales, freed from foreign matter, and suspended in water or other suitable liquid, is pearl essence. When applied on the inside of hollow beads or on the outside of solid ones it imitates the genuine pearl quite satisfactorily and makes the ordinary imitation pearl of commerce. When incorporated properly in celluloid plastics, it makes the imitation mother-of-pearl now

\footnotetext{
\({ }^{1}\) Appendix II to the Report of the U. S. Commissioner of Fisheries for 1925. B. F. Doc. 989. Technological contribution No. 22.
\({ }_{2}\) For data on and discussion of the nature of pearly luster, see Liesegang (1915), Pfund (1917), and Bancroft (1919).
}
rapidly coming into use for the manufacture of backs for hand mirrors, manicure and toilet sets, and for other purposes.

It is the purpose of this paper to give an account of the history, chemistry, and preparation of this beautiful pearly liquid. There will also be included some, though not exhaustive, information regarding the manufacture of imitation pearls and pearly articles.

\section*{TERMS USED}

In this paper, the term "imitation" pearls will be used to denote those products made of glass, wax, lacquers, pearl essence, etc., which resemble pearls more or less closely but have nothing in common with them in composition or structure. The term "artificial" pearls, often used for such products, should be reserved for "culture" pearls-that is, those produced by mollusks as a result of artificial stimulation by man, such as inserting foreign objects into the mantle of the mollusk. The genuine pearl is, of course, produced spontaneously by the mollusk.

\section*{HISTORICAL}

\section*{EARLY HISTORY}

It is not surprising that efforts were made early in the history of mankind to imitate such valuable gems as pearls, \({ }^{3}\) and history contains many references to this subject. It appears that the discovery that first led to real success was made by Jaquin, a French rosary maker, who, on the banks of a stream near his home at Passy, noticed that the water in which a small fish (the able or ablette, Alburnus lucidus) had been washed contained a highly lustrous substance, which, when concentrated by sedimentation, suggested in a remarkable degree pearl, and application of it to small globes of alabaster, wax, etc., produced for the first time remarkably good imitations of pearls.

Some references credit the Chinese with this discovery. Close scrutiny appears to indicate, however, that they arise from a confusion of the Chinese art of inserting small carved images and other objects into the mussel, to be coated with the secretions, with the manufacture of imitation pearls undoubtedly first invented by Jaquin.

Jaquin's discovery was made in about 1656. Réaumur (1716) refers to it as having been "sixty years ago," though it may have been in 1680 , since the references are in disagreement. Jaquin experimented with various materials to be treated with his pearly coating, and the application of the luster in various ways, but meanwhile his pearls gained a reputation and apparently extensive distribution. Beckmann (1786) relates a story, quoted from the Mercure Galant of 1686, of a penniless marquis who, at the suggestion of a servant, fooled his fiancée with a string of Jaquin's imitation pearls which cost him 3 louis, the price for which if they had been genuine would have been about 2,000 francs.

Following Jaquin's time the industry remained for many years entirely Parisian, though in time pearls were made in Holland, Germany, Bohemia, and Japan. In 1806 a plant was established by one

\footnotetext{
\({ }^{3}\) See Beckmann (1786) for the early history of the subject.
}

Bourguignon in France, and the term bourguignon came to be used to denote imitation pearls. By the time of the American Revolution a factory at St. Jean de Maizel was producing 10,000 pearls a day.

The first extensive account of the use of essence d'Orient (the French term for pearl essence) was that of Réaumur (1716), already referred to. This writer seems to have been the first to discover, or at least to record, that the essence is not a homogeneous liquid but a suspension of a rast number of minute particles shaped like blades. Réaumur evidently did much work on the subject. He describes at length the distribution of the lustrous substance among the tissues of fishes-peritoneum, stomach, scales, iris, etc.-and constructs an elaborate though wholly erroneous theory to explain how it may be produced in the stomach and intestines and transported through minute canals to the surface, where it is distributed and deposited in the scales. He also describes the process of making the essence and applying it to beads. The scales of the ablette were agitated with water in a bowl, the water being poured off and renewed, again agitated, and so on until the scales were clean. The wash waters were mixed, the suspended particles allowed to settle for 10 to 12 hours, and the clear excess of water was decanted. The concentrated suspension left was essence d'Orient. No mention is made of the use of ammonia. The essence was quite unstable, especially in warm weather, when it decomposed and lost its luster. He says that during a storm it will decompose from one hour to the next.

The essence was applied by means of fish glue to beads of wax, alabaster, or glass. Since these were sensitive to moisture, the next improvement was to blow hollow spheres of glass-blue, greenish, or "gyrasole" (opal)-and coat them inside with the fish glue and pearl essence mixture.
Referring to the beautiful but indescribable whirling effects seen in the liquid pearl essence, Réaumur says of the tiny blades:

They yield so easily to such slight movements that I do not doubt that they have been taken for insects by those who are disposed to give that name to everything which moves continually in liquids.

If we judge from the numerous references in the literature about Réaumur's time we will readily conclude that pearls were very much in fashion, and that there was a lively interest in the nature of pearls and the possibility of producing them artificially. It was only a few years later that the great Swedish botanist, Linnæus, announced the discovery of an artificial method of inducing pearl formation in mollusks. The method remained a secret and was lost.

Beckmann (1786) described the process of making the essence very much as Réaumur did, only by this time it had been discovered that "volatile alcali" (ammonia) helps to dissolve the epidermal tissue and also preserves the essence. He described also the introduction of the mixture into the beads with a fine pipette, and how the beads were kept in motion on a swinging cradle to obtain uniform distribution of the coating. After the coating was dry, the bulb was filled with wax and strung. Colors were used. Small paper tubes were inserted through the better grades to prevent the thread from becoming waxed.

HISTORY OF CHEMICAL RESEARCH ON PEARL ESSENCE
The next paper of importance was by Ehrenberg (1833), on the formation of crystals in the tissues of living animals. In this paper

Heinrich Rose, who worked at the instance of Ehrenberg, reports his findings, the conclusion from which is that the lustrous crystals consist of a volatile organic substance.

Goebel (1836) introduced a short paper with a reference to news items published in European newspapers (Froriep's Notizen, December, 183.5, and Hanovrische Zeitung and Berliner Staatszeitung of about the same time) reporting the sensational discovery by "the well-known chemist, Doctor Du Mesnil, of Wunstorf," that the metallic luster found on the scales of ecrtain fishes-for example, the carp-is silver. This remarkable conclusion is supported by what purports to be chemical proof (precipitation with ammonium sulphide). He went so far as to calculate that an ordinary carp will yield about 0.12 gram of silver. Coebel. who reports this interesting but mistaken finding, himself tested Du Mcsnil's conclusion and found no trace of silver, and pointed out that a mere precipitate with ammonium sulphide is not necessarily silver.

In 1836 appeared a paper by Schnitzlein, who also refers to the work of Du Mesnil and undertakes to test his conclusion. He found, like Goebel, that no silver or other metal was present. He found the crystals to be soluble in dilute acids and alkalies, they burned with a smell of burning horn, were not precipitated with hydrogen or ammonium sulphide, and before the blowpipe yielded no metal. He concluded that the source of the luster was an organic compound of albumen with phosphate of lime. Mathias (1843) \({ }^{4}\) concluded that the sparkling particles were phosphate of magnesia.

Von Wittich (1854) was first to prepare the substance in large quantity for chemical examination. He scrubbed the scales in alcohol and separated the sparkling particles, which were disengaged from the membranes and passed into the alcohol. He observed that on igniting the substance a smell of burning horn was given off, and in the ash were found calcium phosphate, ordinary salt, and small quantities of other mineral matters. He concluded that he was dealing with a nitrogenous compound of the inorganic salts that remain on ignition.

Up to this time it will be seen that even though numerous investigators had attacked the problem, no substantial progress had been made in identifying the substance in hand. This does not sprak so badly for the chemistry of the time as might at first appear. The real difficulty then, as later, was in getting the substance in pure form for analysis. While the particles make a great showing by virtue of their great luster, they are really so thin as to amount to exceedingly little substance. In proportion to volume, they are possessed of great surface on which impurities can accumulate, and it has always been difficult to free them from the large quantities of slime, blood, etc., with which they are from the first associated. The mineral matters of various composition reported remain from the burnt slime, blood, ete.

Barreswil (1861) was first to arrive at the correct identification of the lustrous substance as guanin. This compound had been discovered in bird guano by Unger in 1845. Barreswil enumerated the properties which led him to that conclusion-its insolubility in water, ammonia, and acetic acid, its belavior on ignition, its solu-

\footnotetext{
\({ }^{4}\) Tromsdorf's Journal, Band X, Stück 2, 1843, p. 3. Paper not seen by the writer and therefore not included in the bibliography.
}
bility in mineral acids, and its characteristic crystallization. These and its other properties led him to refer it to the guanin of Unger.

Voit (1863 and 1865), at the instance of Professor Siebold, investigated this substance and agreed with Barreswil as to its identity, though his conclusion was reached independently, and he gives numerous other propertics and reactions to support that conclusion. Referring also to the production of a compound of barium and guanin by Strecker (Annalen der Chemic und Phamacie, Band CVIII, 1861: p. 154), Voit cites properties that led him to believe the lustrous particles are a compound of guanin and lime. This idea persists in the reference books to-day in spite of Bethe's (1895) definite finding that it is pure guanin., Voit's experience with the synthetic production of "guanin-lime" led him to speculate that some day the artificial preparation of pearl essence might be realized.

It will be noticed that up to this time the analytical procedure consisted of trying various reactions for guanin and in making various qualitative tests for calcium and other mineral substances. Bethe (1895) was first to undertake the solution of the problem quantitatively. He carefully prepared and purified the crystals, dissolved them in hydrochloric acid, filtered the solution, and precipitated a highly purified guanin with ammonia that had a percentage composition agreeing very closely with the theoretical. The amount of calcium and other mineral impurities was found to vary with the method of preparation, a fact that led him to conclude that they were not an essential part of the compound. His work bears all the marks of accuracy and finality, and the lustrous particles must now be regarded as pure crystalline guanin.

\section*{RECENT HISTORY}

With the outbreak of the World War in 1914, the European supply of pearl essence was cut off, and attention was directed from all sides to the possibility of obtaining a supply of it in the United States. While the ablette or bleak does not occur in this country, other fishes were found that yielded a satisfactory product, and an industry grew rapidly and has now reached large proportions. Improved methods, aided by machinery, are followed, and the recent application of pearl essence in the manufacture of imitation mother-of-pearl celluloid products has greatly increased the demand and consequent supply.

\section*{SOURCES AND DISTRIBUTICN OF GUANIN AMONG ANIMALS}

\section*{PRODUCTION OF GUANIN BY ANIMALS}

Mention has already been made of the work of Bethe in demonstrating that pearl essence is pure crystalline guanin. Guanin is one of the end products of protein metaholism in the animal body. It is a derivative of nucleic acid and occurs in all nucleated cell tissues. The biological significance of its occurrence in the form of deposits in animals is interesting and important. Occurrences in the higher animals of more than very small amounts of such end products of metabolism as urea, uric acid, creatin, xanthin, taurin, and guanin are unusual and these substances are indicative of pathological conditions when present in any considerable quantity; but, perhaps because of less efficient organs of elimination, these and similar chemical
substances are often found in surprisingly large quantities under normal conditions in many of the lower orders of animals. Not being eliminated, they are disposed of as deposits in out-of-the-way places among the tissues. Urea accumulates in sharks and rays, uric acid and urates are in certain snakes and butterflies, and among invertebrates generally extensive accumulations of this kind are of frequent or regular occurrence.

Ewald and Krukenberg (1882 and 1883) found guanin in the skin of chameleons and lizards, in alligators, snakes, frogs, snails, fishes, and many other animals. The tissues containing it are the skin, connective tissue, retina, iris, peritoneum, air bladder, liver, pancreas, etc. It is found in the excrement of spiders and certain snakes, and is abundant in the bird guano deposits of Peru and elsewhere. With the possible exception of those in the iris of frogs' eyes, these deposits are all amorphous, and it is only in the fishes that crystalline deposits are found to any considerable extent. Of course, the crystalline state is absolutely essential for purposes of making pearl essence.

\section*{gUANIN IN FISHES}

In the fishes guanin is put to the useful purpose of camouflage. Most of it is deposited on the belly side of the fish and makes a bright silvery appearance to blend with the bright sky as seen from below by enemies of the fish. Similarly, when seen from above the fish is a greenish gray to blend with the color of the water.
This guanin deposit is present in abundance in a vast number of species of fish; in fact, the exceptions are those without visible deposits of guanin. Our familiar herrings, sardines, whitefishes, menhaden, mackerel, salmons, butterfish, carp, sunfishes, tarpon, scup, squeteague, ladyfishes, spot, croakers, hogfish, barracuda, bonito, shad, gizzard shad, mullet, and many others exhibit the silvery luster. It is even doubtful that any fish exist which are free from guanin deposits. Such fishes as haddock, cod, and flounders have subdermal connective tissues heavily charged with amorphous guanin, which is chalky white. It is of zoological interest to note that these species that live on the bottom and have amorphous guanin do not need the lustrous camouflage that would be provided by the crystal variety. It is not sufficient to say that pearl essence is a suspension of guanin-it must be in a definite crystalline form.

\section*{EUROPEAN SOURCES OF PEARL ESSENCE}

The European fish from which pearl essence has been made from the seventeenth century is the bleak (German, Ukelei, Laube; French, ablette), Alburnus lucidus, a small fish of the carp or minnow family (Cyprinidre), widely distributed in the fresh-water streams of Europe. The fish is of no value as food and serves only the one purpose of producing pearl essence. This fish serves particularly well as a source of pearl essence because it is small and comparatively poor in dark skin pigments that would discolor the essence. In England essence is made from the herring (Clupea harengus). It is understood that there is a plant manufacturing it at Peterborough.

In Europe there is a commerce of some importance in the scales of the ablette, carried on by producers who sell the mildly preserved
scales to the manufacturers. The ablette are scaled by hand by lowpriced labor. The scales are then put in a large container of salt brine of about 10 to 15 per cent concentration and moved about in such a way as to wet all the scales. The brine is then drained off and the scales are put into muslin bags and squeezed to free them as. far as possible of the brine. They are then compressed tightly in barrels, kegs, or metal cans. In this condition they will keep for some time, or for several weeks in storage at about \(32^{\circ} \mathrm{F}\). Several shipments of Eastport herring scales have gone to Europe in cool storage. The scales are not allowed to dry but are kept moist with the brine in the sealed containers.

\section*{AMERICAN SOURCES OF PEARL ESSENCE}

The principal sources of American pearl essence at present are the sardine herring (Clupea harengus) at Eastport, Me., where there are two factories operating on herring scales obtained from the sardine canneries and boats. Scales accumulate in the bottom of the boats and are collected and sent to the factories; also, the water used to flume the fish into the canneries, containing much of the lustrous guanin, is caused to run into settling tanks. The sediment is collected and transported to the essence factory, where it is manufactured into finished essence. The price has ranged from 4 to 14 cents per pound for the scales. A considerable quantity is manufactured at Hyannis, Mass., from the scales of the glut herring or alewife (Pomolobus pseudoharengus), and there is some manufacture in New York from materials shipped in from various points.

At Reedville, Va., there is a manufacture in the short spring season from the scales of the glut herring (Pomolobus æstivalis), and also the branch herring ( \(P\). pseudoharengus), as well as from the shad (Alosa sapidissima) and hickory shad ( \(P\). mediocris). The scales are understood to bring 10 cents per pound, 20 pounds of scales being produced by 1,000 alewives. As 1,000 alewives average 633 pounds in weight, about 3 per cent of the weight of the fish is in available scales.

The California sardine or pilchard (Sardina cærulea) is a potential source of supply, though it is impracticable to collect the scales under the present methods of handling the fish there. The silver carp (Carpiodes velifer) of the Mississippi Valley has been found by the writer to produce a large quantity of lustrous substance, but it is not a very abundant species. The gizzard shad (Dorosoma cepedianum), of fresh-water streams of Florida and elsewhere, is a moderately abundant fish and produces the essence. Among the other American species that might be considered potential sources of the essence are the ladyfish (Albula vulpes), whitefish and cisco (Coregonus) of the Great Lakes, the Pacific coast salmons, Alaska herring, southern mullet (Mugil cephalus), and perhaps also the shiner (Abramis crysoleucas). The writer has made pearl essence of good quality from the menhaden (Brevoortia tyrannus), the fish caught in great quantities off the Atlantic coast and used for the manufacture of fish meal, fertilizer, and oil.

\section*{PROPERTIES OF PEARL ESSENCE}

Pearl essence is a suspension of the natural crystals of guanin in a liquid, ammoniated water, amyl acetate, acetone, or other liquid. One commercial form of it is a highly concentrated suspension of the crystals or particles in a thick lacquer of celluloid in amyl acetate. The properties given are chiefly those of the crystalline guanin.

\section*{PHYSICAL PROPERTIES}

The natural crystals of guanin obtained from fish scales are usually much broken up in the process of manufacture. While the size of crystals varies somewhat on a single fish, it is in some measure proportional to the size of the fish from which the crystals come, those from the shad and whitefish, for example, being much larger than those from the alewife or sardine herring. While the crystalline form appears to be similar in different American species of fish, one


Fig. 1.-Crystals and fragments of guanin from pearl essence derived from shad. Magnification approximately 100 diameters
specimen of pearl essence of Japanese origin has come to the writer's notice in which the crystals appear to be very thin needles rather than blades. Those from the shad have dimensions of about 0.1 by 0.02 by 0.001 millimeters. Such a crystal would have a volume of 0.000000002 cubic centimeter, a surface of 0.0000424 square centimeter, and a weight of 0.000000032 gram. The specific gravity of the crystals is somewhat in excess of 1.6 , since they sink slowly in carbon tetrachloride. One gram of the crystals has an aggregate surface of about 12,575 square centimeters-somewhat more than a square yard-and contains about \(312,500,000\) individual crystals. The large amount of surface accounts for some of the properties of the essence, for the crystals adsorb substances from solution and hold them on their surfaces. They appear to hold albumen, which fact would account for the difficulty in transferring them from water to nonaqueous liquids that precipitate albumen. Likewise,
they adsorb coloring matters from solution and thus become "off color." Suspended in ether or amyl acetate, they adsorb and hold tenaciously to any fat present. When cleaned, they can be suspended in any liquid that does not dissolve them.

The guanin particles, when reduced to a dry powder, have a smooth, soapy feel between the fingers, like that of talcum powder. When properly cleaned they are presumably colorless and transparent, but when viewed by transmitted light under the microscope they are often slightly yellowish, probably because of adsorbed impurities on their surfaces. A drop of the essence dried on white paper is usually brownish yellow.

To understand the beautiful and peculiar appearance of pearl essence, one may visualize very thin light blades, floating in a liquid and turning over and over like narrow strips of paper falling in air, their narrow surfaces throwing brilliant flashes of light in all directions and at the same time giving a play of colors like soap bubbles do. The light coming from them is doubly refracted and polarized, and when it passes successively through two of these crystals it is broken into colors by a twisting of the polarized beam.

The crystals show their maximum luster when they are oriented parallel to each other. This condition occurs when a current is set up in the liquid containing them. If the crystal happens to lie across stream, the velocity gradient perpendicular to the direction of flow causes one end of it to move faster than the other, and it is therefore steered around until its long axis is parallel to the direction of flow of the stream or current. This accounts for the whirly effect in the liquid essence. It also indicates that in applying lacquers the maximum effect will be obtained if the fluid is caused to flow. In imitation pearl, advantage is taken of these facts to brush patterns of various kinds into the film. If the coat is applied as a uniform film with the crystals pointing promiscuously in all directions, the effect will be a metallic or dull pearly luster.

\section*{OPTICAL AND CRYSTALLOGRAPHIC PROPERTIES}

The writer submitted specimens of pearl essence from shad, suspended in ether and monobromonaphthalene, to Dr. H. E. Merwin of the Geophysical Laboratory of the Carnegie Institution of Washington, to whom he is indebted for the following statement of the optical and crystallographic properties of the guanin crystals:

The materials most studied had been kept in turpentine and in methylene iodide, but they were found to be closely similar to or identical with samples from ether or bromonaphthalene.

The preparations consisted of minute crystalline blades of rather uniform size of about 0.10 by 0.02 by 0.001 millimeters. Flatwise the blades showed no appreciable double refraction, but when tilted the double refraction was evidently strong; and on blades tilted sufficiently to show definite extinction, angles of extinction were as high as \(30^{\circ}\), but practically parallel extinction was observed also. Edgewise, extinction was parallel. Thus the possibility that two substances were present-one orthorhombic and the other monoclinic-had to be considered. No definite interference figures were observable. The indices of refraction were observed by the immersion method, but the blades were so thin that the index \(\beta\), which had to be measured on flatwise blades, could be found only roughly; \(\gamma\), vibrating lengthwise, was so high that no known immersion liquid could be found which may not have slightly attacked the crystal; \({ }^{5} \alpha\),

\footnotetext{
\({ }^{5}\) The liquid finally used was arsenic sulphide, dissolved by heating in methylene iodide. In a liquid of the same index, containing methylene iodide, sulphur, and the iodides of tin, arsenic, and antimony, the crystals appeared decidedly higher.
}
vibrating normal to the blades, was probably accurately measured. These measurements gave no evidence of the presence of more than one substance; \(\alpha=1.456, \beta=1.8, \gamma=1.85\).

The relation of crystal shape to the principal indices of refraction accounts for pearly luster in low refracting media in which the crystals may be suspended. No pearly luster could be seen in a liquid of index 1.85 . To give the maximum effect, the blades would be nearly parallel to the surface illuminated. The light entering the surface encounters blades, which, on account of decidedly higher refraction and flatness, reflect more strongly in some directions than in others.

\section*{CHEMICAL PROPERTIES}

Guanin, 2-amino, 6-oxypurin, has the composition \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}\), or

a derivative of purin, and belongs to the group known as the purin bases. In the living animal it occurs combined with other groups in nucleic acids, which in turn are combined in the complex nucleoproteins found in cell nuclei. Guanin is insoluble in water, alcohol, ether, chloroform, ethyl or amyl acetate, acetaldehyde, or any neutral solvent, acetic acid, dilute or glacial, acetic anhydride, formic, lactic, or solutions of salicylic or citric acid. Ammonium hydroxide solutions containing 1, 3, or 5 per cent \(\mathrm{NH}_{3}\) dissolve 9,15 , and 19 milligrams of guanin, respectively. Hot ammonia solutions dissolved relatively more (Wulff, 1893). In supersaturated ammonia, especially if hot, it is still more soluble, and from this solution, on spontaneous evaporation, crystallizes out in needles or plates (Drechsel, 1881). It is soluble in dilute mineral acids and in solutions of sodium or potassium hydroxide. On neutralization of the acid solutions with ammonia, amorphous guanin is precipitated. It is decomposed by strong oxidizing agents, potassium permanganate or chlorate, or chlorine, and is converted into xanthine by nitrous acid. It forms compounds with many acids, acid radicals, organic groups, and inorganic salts (see Wulff, 1893). When pure, guanin or pearl essence should leave no residue if ignited on platinum foil. It is not changed by heating in water to \(250^{\circ} \mathrm{C}\).

Guanin was synthesized by Emil Fischer (1897) from trichloropurin. The purin was prepared from ammonium urate. It has been suggested that pearl essence may be made synthetically. Perhaps it may be, but preparation of guanin of the delicate crystalline form necessary for pearl essence appears to present such difficulties as to indicate continued dependence on the natural supply from fish scales, especially since there appears to be no real scarcity of the latter, once the collection of it is organized.

When guanin crystals are suspended in a nonaqueous liquid like ether, that itself is not miscible in all proportions with water, the liquid must be strictly anhydrous. If a trace of water is dissolved in the ether, the crystals refuse to subside into a compact silvery mass, but hold apart from each other in a feathery aggregation. If more water is present they will flocculate in large masses which become impossible again to break up. Perhaps under these conditions they acquire an electrical charge, but this has not been investi-
gated. In any event, the ether or amyl acetate must be kept strictly anhydrous.

If the crystals of guanin are boiled in amyl acetate they lose their crystalline form and become amorphous. This may be caused by loss of water of crystallization, though no mention is made in the literature of combined water and the writer has not gone into this subject.

Certain other chemical properties of guanin will be referred to in connection with methods of assaying and analysis of pearl essence.

\section*{PROCESSES OF MAKING PEARL ESSENCE}

In the literature many vague references are made to the origin of pearl essence. Many books on pearls, in sections on imitations, mention the use of "ground-up fish scales." As a matter of fact, fish scales themselves do not enter directly in any way into the manufacture of pearl essence. The luster is guanin crystals, which are not found in the scales but are deposited in the epidermis of the fish, parts of which adhere to the scales when they are removed from the fish. It is this epidermis that is the source of the shiny crystals, removal of which from the scales is the first operation in the manufacture of the essence. By far the greater amount of the lustrous substance remains on the fish and is never recovered. The scales are usually collected from the fisheries and washed while still fresh. The first step is to scrub off the lustrous material from the scales. This is done in a large agitator made with a revolving member, like the old-fashioned ice cream freezer. Domestic washing machines may be used for smaller scale operations. As little water as possible is used.

The next step is to separate the lustrous sediment from the wash water. For this purpose large revolving drum centrifugals are used, in which the sediment is thrown against the inside surface of the drum. This sediment is scraped out and is ready for the manufacturing process. Here procedures begin to differ among themselves. Generally they are directed to making (a) aqueous or (b) nonaqueous pearl essence.

\section*{AQUEOUS SUSPENSIONS}

The process of making pearl essence of the aqueous kind that has been in use for many years is not very complicated. The scales are obtained in as clean condition as possible and preferably from the belly side of the fish. They are then agitated or scrubbed with water, with or without ammonia, and the epidermis (a very thin membrane) is washed off and becomes suspended in the water. The ammoniated suspension is put through a strainer (not copper or brass) to remove scales and trash. The pearly and proteinaceous matter subsides when the liquid is allowed to stand in a cool place, and the supernatant water is then decanted and replaced with fresh ammoniated water. This process is repeated several times, the ammonia gradually dissolving the epidermis and leaving the crystals sufficiently clean for use. Long standing with fairly strong ammonia has a decided purifying effect.

Pearl essence prepared in this way will keep indefinitely if sufficient ammonia is present. It should be kept in bottles having
glass or rubber stoppers. It contains some colloidal matter, presumably protern, and is therefore incompatible with protein coagulants, alcohol, heat, etc. Gelatin, fish glue, isinglass, etc., may be dissolved in it directly. Another preservative for the aqueous suspension is 0.3 per cent salicylic acid dissolved in the water. If traces of iron are present (as they often are) the suspension will be pinkish.

\section*{NONAQUEOUS SUSPENSIONS AND LACQUERS}

Pearl essence may be found on the market in the form of suspensions in acetone and amyl acetate. It is also sold in the form of a thick paste as crystals suspended in a viscous lacquer of celluloid in amyl acetate. Other liquid vehicles may be used. The writer has made suspensions in ethyl acetate (which evaporates more rapidly than amyl acetate), acetic aldehyde, glacial acetic acid, acetic anhydride, chloroform, carbon tetrachlorides, etc.

Methods of manufacture of these preparations are mostly trade secrets, and some steps in them are covered by patents. \({ }^{6}\) One such patent (Paisseau, No. 978394) covers the progressive dehydration of the aqueous suspension by replacement with a nonaqueous liquid that is miscible in all proportions with water, such as alcohol or acetone, or in limited proportions, such as ether. The same patent also claims the transfer of the particles to amyl acetate by addition of the latter liquid to the aqueous suspension and boiling off the water, which has a lower boiling point than that of amyl acetate. Once the particles are in amyl acetate, they may be concentrated by sedimentation or centrifugation and celluloid added to produce the viscous paste preparation. One such preparation examined by the writer contained about 13.5 per cent each, by weight, of celluloid and guanin particles, and 73 per cent amyl acetate. Pearl essence suspensions intended to be used for celluloid lacquers or celluloid plastics should be free from all traces of ammonia, which, if present, will cause the celluloid to turn yellow.

A method of preparing pearl essence in nonaqueous suspension, devised by the author of this paper, depends on the property of guanin particles of being wetted by certain liquids, like ether, more readily than by water. If ether is emulsified with a suspension of pure guanin particles in water, and the two liquids are allowed to separate, the guanin particles will be found in the ether layer above the water. Other matter present will remain in the water layer. Not only ether, but other liquids of the fat-solvent class, such as chloroform, benzol, carbon tetrachloride, toluene, etc., have this same property of driving water from the surfaces of the crystals, thus separating them by a kind of flotation from the impurities with which they are associated in the crude washings from the scales.

The principle involved in this flotation is an interesting and important one in both physical and industrial chemistry. Metallic

\footnotetext{
6 J. Paisseau. Composition for use in the manufacture of artificial pearls. United States patent No. 978394, Dec. \(13,1910\).
J. Paisseau. Manufacturing of artificial pearls and other nacreous objects. United States patent No. 1438395.
G. Keil and K. Plischke. Verfahren zur Herstellung von Silbertinktur. German patent No. 215672, Oct. 30, 1909.
G. Leroy and Cie. Perfectionnement à la fabrication des perles fausses. French patentiNo. \(\$ 473662\),\(\} Oct.\) 8, 1914; also additions Nos. 19477, 19522, and 20258.
For a list of German patents see Von Unruh, 1918.
}
compounds are now separated with great efficiency from low-grade ores by flotation with oil. Examples of this selective wetting are given by Bancroft (1921), who discusses this subject briefly as a case of selective adsorption of liquids by solids, citing several references. For example, kerosene will displace water in contact with metals, but water will displace kerosene from quartz. Alcohol will displace oil in contact with metal, but linseed oil will displace water from white lead. Chloroform appears to be more efficient than ether in removing the crystals, but it and carbon tetrachloride are of such high density that the later separation of the crystals by sedimentation or centrifugation is slow.

Before this flotation will take place, however, all the protein must be removed from the surfaces of the crystals. This is accomplished as follows: The crude sediment from the scales is washed thoroughly with several changes of fresh water, which is decanted off after sedimentation each time, to remove blood and other matter. To each liter of the concentrated sediment from the scale washings are added 30 cubic centimeters glacial acetic acid, or its equivalent, and 2.5 grams scale pepsin dissolved in water. The mixture is allowed to stand 48 hours or more at room temperature, or a shorter time at a higher temperature, not exceeding \(40^{\circ} \mathrm{C}\). When digestion is complete, ether is added to the digestion mixture, emulsified, and then caused to separate by a gentle rocking of the container. The crystals of guanin pass into the ether, leaving foreign matter in the water. As much water as possible is removed by sedimentation in the different steps of the process. The ether causes all the undissolved organic matter to rise in the water and collect immediately under the ether layer. The water should be drawn off from below-in fact, it is important to eliminate as much water as possible at every stage.

The ether also dissolves a considerable quantity of fat from the mass. The supernatant ether layer, containing the guanin particles, is decanted. It is allowed to stand until the particles settle out, is poured off and replaced by fresh, fat-free, anhydrous ether, again allowed to settle, and the process repeated until the particles are free from fat and water. They are now bright and lustrous and may be transferred by sedimentation or centrifugation to acetone or amyl acetate, concentrated, and the celluloid added to produce the viscous paste. Some dark-colored matter usually floats out with the guanin particles. If suspended in acetone, after complete dehydration with ether, the essence may be freed of this impurity by a brief sedimentation in which the dark substance settles first. The supernatant acetone, containing the clean particles, is decanted off. The ether is recovered as far as possible. Used ether, containing water and fat, is dehydrated by lumps of calcium carbide, on which the ether stands for a few hours and from which it is distilled. The thick residue remaining from the crude essence liquor also contains a considerable quantity of emulsified or dissolved ether which should be distilled and dehydrated. \({ }^{7}\)

The particles of guanin should be neither too coarse nor too fine. The finest particles, consisting of minute fragments of crystals, appear, when separated from the coarser ones, chalky white or yellowish, while the larger crystals, such as those from the larger species of fish,

\footnotetext{
\({ }^{7}\) For data on the solubility of water in ether, and ether in water, see A. E. Hill, Journaf of the American Chemical Society, Vol. XLV (1923), pp. 1143-1155.
}
give a grainy coating. For bead pearls the larger particles give too great a brilliancy, approaching metallic luster, while those too small make dull pearls. Intermediate sizes produce the more desirable soft pearly luster. Large crystals can be broken iu a pebble mill with 5 -millimeter glass beads. The grinding is best done in very concentrated suspension in amyl acetate, and its progress should be closely watched so as not to grind the particles too fine.

\section*{CHEMICAL EXAMINATION AND ASSAYING OF PEARL ESSENCE}

There is no standardized procedure for the examination of pearl essence, nor is there any standard of concentration, covering power, or value. An experienced eye is now indispensible in judging this product. Fineness of grain, tint, luster, concentration, and, in the lacquers, viscosity must be taken into consideration. The writer has consulted the literature touching on the estimation of guanin and further, as a result of laboratory examination of numerous specimens, has arrived at certain tentative methods that are proposed for evaluating pearl essence.

\section*{QUANTITATIVE ESTIMATION OF GUANIN}

Balke (1893) devised a volumetric method of estimating guanin by titrating with Fehling's solution in the presence of hydroxylamine hydrochloride. The copper compound \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{OCu}_{2} \mathrm{O}\) is formed and the end-point is the yellow-red precipitate of hydrated copper oxide. The guanin is dissolved in alkali solution, and 1 cubic centimeter of medium concentration of hydroxylamine hydrochloride is added. The Fehling's solution is admitted slowly from a burette. The quantities found by this method were in every case too low. In a series of five determinations the average deficiency was 9.14 per cent. In 1 per cent solutions of guanin the results were only 1 per cent too low, but in more dilute solutions the results were as much as 14 per cent too low. In the case of concentrated solutions he found that the addition of sodium acetate reduces the error.

Wulff (1893) describes a method of determining guanin as a picrate. He reported that cold saturated picric-acid solution will precipitate guanin from acid or alkaline solutions as dilute as \(1: 30,000\). To the neutral or alkaline solution in which the guanin is to be determined is added a cold saturated solution of picric acid. An excess of picric acid is not objectionable, provided the guanin solution does not contain too much acid, in which case some picric acid might be precipitated. The precipitation is best carried out warm, and the reaction mixture should stand 24 hours, since the precipitation proceeds slowly. The precipitate is collected on a hard, dense filter paper, thoroughly washed with a 1 per cent picric-acid solution, and drained thoroughly. The felty picrate is placed between watch glasses and dried out gradually with increasing temperature. Finally the one molecule of water of crystallization is expelled by one and one-half hours exposure in the oven at a temperature of \(110^{\circ} \mathrm{C}\). It now has the formula \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O} . \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{OH}\), and is weighed and calculated as guanin.

Even though a small amount of picric acid adheres to the crystals the results are still slightly too low, perhaps because of the incom-
plete precipitation that Wulfi ascribes to the tendency of the picrate to dissociate.

The writer tried solutions of the guanin from parl essence in hydrochloric acid, followed by precipitation with an excess of ammonia, but the results were far too low. It may be significant that all these methods give too low results. It has already been mentioned that guanin particles adsorb foreign substances strongly. Perhaps the specimens assumed to be pure contained more impurity than was supposed, and that the real quantities of guanin were approached by the analytical methods used.

Bethe (1895) dried a drop of pearl essence on a microscope slide and stained it with a warm solution of methylene blue. The membranous and other organic tissue impurities are stained, while the crystals are not. Upon microscopic examination an estimate can be made of the degree of freedom from this class of impurity.

For practical examination of pearl essence the writer has been using the following methods:

\section*{MICROSCOPIC EXAMINATION}

The information to be gained by microscopic examination of pearl essence relates to (a) shape and size of particles, (b) color of crystals, and (c) presence or absence of foreign matter.

If the essence is an aqueous suspension, put a small dot of it on a microscope slide with a glass rod, mix thoroughly with a drop of glycerin, and cover. If it is in an acetone or amyl acetate suspension, use tricresyl phosphate or other nonvolatile, transparent liquid of low index of refraction, miscible with the suspension liquid. Cover with cover glass.

Examine first by transmitted light with 16 and 4 millimeter objectives, with the diaphragm almost closed. Note color, if any, of the particles. Then examine by reflected light or dark field illumination. For this purpose artificial light is better than diffused daylight. Tilt the stage and arrange a desk light to illuminate the slide obliquely. Note (a) shape and size of crystals, (b) whether they are entire or fragments, and (c) uniformity of size of particles. A rough estimate may be made of the concentration of the essence by preparing a definite dilution ( \(1: 100\) or \(1: 1,000\) ) and counting the particles in the Fuchs-Rosenthal counting chamber, though the writer has found it difficult to get consistent results by this method.

Make a thin smear of the specimen on a slide and dry. Stain five minutes with an aqueous solution of methylene blue, rinse, dry, and examine. Note any stained particles of epidermis or other foreign matter, being careful to distinguish between these and spots of dye that may be occluded between the crystals. Make another stain with Sudan III, which stains fat a reddish-yellow.

\section*{PHYSICAL ANALYSIS OF THE SPECLMEN}

Weigh out about 10 grams of the sample (acetone, amyl acetate, or lacquer vehicle) in a tared weighing bottle. Dry to constant weight at moderate temperature ( \(50^{\circ}\) for acetone, \(70^{\circ} \mathrm{C}\). for amyl acetate). Weigh again and record the loss of weight as volatile solvent. Dissolve in about 100 cubic centimeters of acetone and filter by suction
through a tared Gooch crucible densely packed with fine asbestos (or other suction filter), repeating the filtration until the filtrate is as clear as possible. Wash the filter with more acetone. Transfer the acetone filtrate to a tared evaporating dish and evaporate at moderate temperature to constant weight. Excessive temperature must be avoided to prevent loss of any camphor from the celluloid. Weigh the celluloid and record. Ignite the crucible and weigh the ash. A further separation of the constituents of the ash may be made, if necessary, by the usual methods.

\section*{COVERING POWEI}

A practical test used by manufacturers is to mix the specimen under consideration with the lacquer or plastic and apply in the customary way in making pearls or nacreous celluloid sheets, and compare the results with their own standards. Since practices differ so widely, it is impossible to give any details of the methods used for these tests.

\section*{MANUFACTURE OF IMITATION PEARLS}

From the historical account it was seen that the beginning of imitation pearl manufacture was made by Jaquin with solid beads coated on the exterior with pearl essence and glue (the bead itself was wax, alabaster, or glass), but because of the lack of resistance of the gluey coat of pearl essence the beads were not satisfactory. To overcome this difficulty, the early bead makers (Jaquin or his immediate successors) had recourse to hollow glass bulbs coated on the inside, as described by Beckmann. It was something like 250 years later that, on the invention of waterproof lacquers, the art returned to Jaquin's original idea of coating a solid bead on the outside in the manufacture of so-called "indestructible pearls" of the present day. However, both the hollow and solid pearls are now on the market.

HOLLOW GLASS IMITATION PEARLS

THE GLASS BULBS
The hollow glass beads for this type of pearl are of two general classes. The very cheap imitation pearls, such as those used for necklaces, usually sold in 5 and 10 cent stores, are made of molded beads. A glass tube is blown in a mold making a number of connected bulbs, which are cut apart after the glass cools. These beads on examination show mold marks and ridges on opposite sides of the bead, extending from one hole to the other. They also have extensions around the holes where they have been cut apart from their neighbors on the original molded piece. The cut edges are sharp, and the spherical parts of the beads are not close together as they are in the case of beads of better quality.

These beads are coated inside first with pearl essence and gelatin. When this coat is dry, the bead is filled with paraffin or other suitable wax. Such beads are very light and will usually float on water. They are of good but artificial-looking luster. Other ornamental
objects such as pear-shaped beads for stickpins, lion's heads, and the like, blown in glass, are made by the same general method.

The better grade of hollow necklace beads are made of a specially selected soft but colorless glass tubing. The ordinary laboratory glass tubing is not satisfactory. One method of making these bulbs is to flame-seal the tube at one end and blow a bulb of the desired size and shape. A sheet metal mask is made with a hole somewhat larger than the hole desired to be made in the bead. The bead is pressed against this mask and a small pointed blast flame is directed against this hole. This will soften the glass at a very small point. A hole is blown through, and an instant in the flame is allowed for the edges of the hole to retract and become smooth. The bead is then cut away from the glass tube. The hole at the cut end may also be smoothed in the flame with the aid of the mask. Usually in beads of this class the two holes are unlike, the wall being thinner around the hole that was blown than around the other. Such beads, when strung into necklaces, come close together and have a good appearance.

These beads, after having been coated inside with the pearl essence mixture, are filled with wax, equal parts of paraffin and Japanese white wax being suitable. Sometimes barium sulphate is added to the wax to give more weight and whiteness, but this can be overdone.

PRODUCTION OF IRIDESCENT EFFECT
Iridescence is usually absent from imitation pearls. Howerer, in the case of the hollow-bulb type an iridescence is sometimes imparted by a judicious treatment of the bead with hydrofluoric acid or by coating the bulb with a solution of titanium chloride and heating in the Bunsen flame. These effects are such an exaggerated and shiny iridescence that they rather impair than improve their resemblance to genuine pearls.

\section*{COATING THE HOLLOW BEADS INSIDE}

The method of coating these hollow beads inside varies greatly. The classic method is to revolve the bead on a toothpick, either by hand or machine while the essence mixture is introduced through the open hole by means of a fine pipette. The bulb is revolved until the coating is uniform. The writer has made this inside coating with a gelatin solution so concentrated that it readily sets on cooling. It may be preserved with 0.3 per cent salicylic acid to prevent decomposition during the slow drying that follows. When the hot liquid is introduced into the bead the latter is revolved until a uniform coat is obtained. A small camel's-hair brush, wet with ether, is touched to the outside while the bead is still revolving. Rapid evaporation of the ether cools the bead until the gelatin sets.

Parkert (1919) describes a method of coating these beads in large quantities. He makes a quick-drying lacquer of copal lac, mastic, and acetone, into which the dried lustrous material is incorporated. The lacquer is put in a bowl that can be heated and revolved at the same time. The bulbs are placed in the ressel with the lacquer and the ressel is sealed and revolved until the lacquer has found its way into all the bulbs and little is left outside. The vessel is then opened,
the speed of revolution doubled, and a small gas flame placed under it until the solvent is evaporated. The coating that adheres to the outside also is removed by working the beads around in a leather bag until they are clean.

These hollow beads have certain advantages over the "indestructible" solid ones. The outer surface is of glass and is not subject to the effects of moisture and discoloration. On the other hand, they are usually light in weight and are more readily broken then the solid ones.

> SOLID OR "INDESTRUCTIBLE" IMITATION PEARLS

These beads are solid glass with the necessary holes through them and coated on the outside with a waterproof lacquer containing the lustrous material.

GLASS BEADS
The glass beads from which solid imitation pearls are made are opal-neither milk-white nor clear. The exact degree of opalescence has much to do with the appearance of the finished bead, and is varied in practice to give the desired tint, some being almost white, others being almost transparent. The matcrial is usually glass tubing of the required degree of opalescence and of capillary bore, the size necessary for stringing.

The beads may be made in several ways. The tube is cut into lengths to give pearls the desired shape when finished. These pieces of tube are strung on small iron or copper wire (the writer has used strands of asbestos thread), and they are then held in a gas flame and rotated as they soften, until they assume the desired globular shape. They are removed from the flame and rotated until cool. If wire was used as a support, the beads are put in a bath of dilute nitric aeid to dissolve out the wire. If asbestos was used, it may be punched out with a bodkin. Bonnet \({ }^{8}\) coats a revolving metallic shaft with a refractory kaolin mixture, which is pulverulent when dry. The molten glass is applied to the revolving shaft in drops and the shaft revolved until the beads are shaped. When they are cool, the shaft is pulled out of the beads.

A more rapid method of making the beads is as follows: The glass tube of chosen caliber is cut into suitable lengths to make the beads. These pieces are tumbled in a mixture of fire clay and graphite until the holes are plugged with the mixture. They are then introduced into an iron drum containing powdered tale. This drum is slowly revolved while it is heated until the glass is soft. The pieces assume the desired globular shape during the revolving and the talc prevents them from sticking together. They are cooled while still being revolved. They are then taken out and are ready for the coating, when the refractory material is removed from the holes.

PEARL COATING
There are many variations in the coating process which this paper will not attempt to deseribe exhaustively. Most of them are trade secrets, and some are covered by patents.

\footnotetext{
\({ }^{8}\) L. Bonnet, United States patent 1466575, Aug. 28, 1923.
}

The coating lacquers may be either aqueous or nonaqueous. The ordinary water suspension preserved with ammonia or salicylic acid and thickened with gelatin or glue may be applied to the bead, and when this coat is dry a waterproof coat of collodion or other lacquer is applied to protect it from moisture. Another aqueous lacquer consists of a cupra-ammonium solution of cellulose (cotton), into which the lustrous essence is mixed. This is applied to the bead and the ammonia removed by eraporation and the copper by dilute hydrochloric acid, whereupon the coat is dried to finish the pearl. \({ }^{9}\)

The process now in general use employs a direct incorporation of the lustrous guanin particles in collodion or cellulose nitrate or celluloid solution in amyl acetate. This is applied to the bead in from one to six or more coats, each of which is dried before the application of the next. The preparation of the amyl acetate suspension of the guanin particles was treated in the section of this paper dealing with processes of manufacture of the essence. It is necessary only to dissolve celluloid in such a suspension to make the lacquer. Where the concentrated pasty lacquer is employed, 1 pound is mixed with from 4 to \(41 / 2\) gallons of a clear celluloid lacquer containing about 20 per cent celluloid. The beads receive from four to six coats of this: Cellulose acetate may have possibilities as a lacquer. It is not affected by a strong light, which.turns celluloid yellowish, it is not inflammable, and is generally quite resistent to external influences. Glacial acetic acid is a good solvent for it, but this solvent is too irritating to the operator and evaporates too slowly for convenient use.

The selection of the right size grain of guanin particles is a choice of much nicety. Too coarse particles are grainy; slightly finer particles produce too much brilliancy, approaching metallic luster; too fine particles are dull or chalky. The finest orient is given by a moderately fine grain, but since the purchasers' choice raries, all degrees of brilliancy are to be found on the market.

Various dyes are also used to tint the lacquers. Safranin or cosin produce a pink, Sudan III in very great dilution gives a cream or oriental hue, while Victoria blue will neutralize any yellow present or give a blue tint.

The simplest dipping process is to put the bead on a toothpick and dip, revolving until the coat fails to run, and then dry. This method is expedited by fixing many toothpicks in a block with fine holes to receive them, and dipping many at a time. Mechanical devices are also in use for dipping automatically. The room in which the dipping is done should be free from dust, and in the larger factories air conditions are controlled to reduce humidity and remove dust.

\section*{ROMAN PEARLS}

Another class of" imitation pearl is made by covering the glass bead with the air-bladder membrane from certain fishes. This membrane or bladder is a colorless tissue composed of a gelatinlike substance, and in many species of fish contains a brilliant natural deposit of the guanin crystals. The air bladder of Argentina sphyræna is used in the manufacture of "Roman" pearls.

\footnotetext{
G. Leroy et Cie. French patent 473662, Oct. 8, 1914, additions 19477, 19522, and 20258; also Paisseau,
rench patent 420885 , Dec. 6,1909 French patent 420885, Dec. \(6,1909\).
}

Pearls are made in a similar manner by the Chinese, who use a wax bead instead of a glass bead.

A story is related of a Roman lady who felt highly complimented when an Italian nobleman referred to her as a Roman pearl. Her appreciation of this term gave way to indignation when she learned that the Roman pearl was an out-and-out imitation.

\section*{IMITATION MOTHER-OF PEARL CELLULOID PLASTICS}

Sheet celluloid containing guanin particles to imitate mother-ofpearl for the manufacture of mirror backs, manicupe and toilet sets, ladies' fancy canes, opera-glass handles, ete., is now coming into prominence.

The amyl acetate-celluloid lacquer is brushed or sprayed on glass or polished metallic surface and a grain is worked into it by means of a straightedge, painter's graining tool, or other instrument. Thick sheets so made are split with cutting machines. Thin sheets are made directly on the glass without splitting. The finished sheets are polished under pressure against polished nickel sheets. The pearly celluloid sheets are cemented to a white backing sheet, and this in turn to amber, or not, as desired. \({ }^{10}\)

\section*{DETECTION OF IMITATION PEARLS}

Recognition of a genuine or imitation pearl is somewhat like recognition of a person-a matter of familiarity. Those who are at all familiar with pearls can detect imitations at a glance. Yet there are definable differences. The genuine pearl has a specific gravity of about 2.6 ; its surface is usually somewhat iridescent, giving a faint play of colors; its surface does not give a sharp and well-defined reflection of such things as window hars; the hole is obviously drilled; the genuine pearl can be scratched by a sharp knife; it is opaque. It is not affected by acetone or amyl acetate but is readily attacked by acids.

The hollow glass bulb imitations are glass outside; they give a sharp reflected image of window bars; they can not be seratched except with things that will cut glass; the holes are plainly holes in glass with smooth edges, and usually one is larger than the other. They are usually light and often float on water; they have no iridescence, or else have too much; and the surface is not attacked by any acid but hydrofluoric.

The solid or "indestructible" pearl is made of opalesecnt glass; it is usually translucent and looks yellowish when held up to the light; it may even give an image of objects like a lens. The coating is outside and does not extend smoothly up to the very edge of the hole. Air bubbles may often be detected in the glass. The coating is celluloid and can be cut or peeled off, and is inflammable; it can be dissolved off with amyl acetate or acetone. If a pearl suspected to be this type of imitation, but claimed to be genuine, is immersed for a minute or two in acetone, the genuine will not be damaged but the coating will dissolve off from the imitation.

\footnotetext{
\({ }^{10}\) For review of literature and bibliography of imitation mother-of-pearl, see Von Unruh, 1918a.
}

\section*{BIBLIOGRAPHY}

The following is intended to be a complete list of references on the history and chemistry of pearl essence. No pretense is made to completeness with respect to the technology of imitation pearl and mother-of-pearl manufacture, nor to the chemistry of guanin, though a few references selected from the large literature of both subjects are included.
Balke, Paul.
1893. Zur Kienntniss der Xanthinkörper. Journal für Praktische Chemie, Neue Folge, Band 47, Nr. 12, 1893, pp. 537-567. II. Titration der Xanthinkörper. Pp. 549-552. Leipzig.
Bancroft, Wilder D.
1919. The colors of colloids. V. Metallic and vitreous luster. The Journal of Physical Chemistry, Vol. XXIII, No. 5, May, 1919, pp. 289-347. Ithaca.
1921. Research problems in colloid chemistry. Journal of Industrial and Engineering Chemistry, Vol. XIII; No. 1, January, 1921, pp. 83-89. Adsorption of liquid by solid, p. 88. Easton, Pa.
Barreswil, -
1861. Sur le blanc d'ablette qui sert à la fabrication des perles fausses. Comptes rendus hebdomadaires des séances de l'Académie des Sciences, Tome 53, July-December, 186!, p. 246. Paris.
Beckmann, Johann.
1786. Beyträge zur Geschichte der Erfindungen. 5 Vols. Vol. II, Part III, 1786. I. Uncchte Perlen, pp. 311-334. Leipzig.
Beckmann, John.
1817. A history of inventions and discoveries. Translated from the German by William Johnston. 4 vols. Artificial pearls. Vol. II, 1817, pp. 1-19. London.
Bethe, Albrecht.
1895. Ueber die Silbersubstanz in der Haut von silburnus lucidus. Zeitschrift für physiologische Chemic, Band XX, Heft V, 1895, pp. 472-477. Strassburg.
Drechsel, E.
1881. Ueber krystallisirtes Guanin. Journal für praktische Chemie, Neue Folge, Band 24, Heft 1, 1881, pp. 44-45. Leipzig.
Ehrenberg, C. G.
1833. Ueber normale Kirystallbildung im lebenden Thierkörper. Annalen der Physik und Chemie, Band XXVIII, Stuick 7, pp. 465-471. Leipzig.
Ewald, A., and C. Fr. W. Thuukenberg.
1882. Ueber die Verbreitung des Guanin, besonders über sein Vorkommen in der Haut von Amphibien, Reptilien, und von Petromyzon fluviatilis. Untersuchungen aus dem Physiologischen Institut der Universität Heidelberg, Band IV, Heft 3, pp. 253-265. Heidelberg.
1883. Ueber Besonderheiten der Guaninablagerung bei Fischen. Zeitschrift für Biologie, neue Folge, Band I, 1883, pp. 154-158. München und Leipzig.
Fischer, Emil.
1897. Synthese des Hypoxanthins, Xanthins, Adenins und Guanins. Berichte der deutsehen chemischen Gesellschaft, Jahrgang XXX, No. 15, October, 1897, pp. 2226-2254. Synthese des Guanins, pp. 2251-2254. Berlin.
Goebel, Fr.
1836. Ueber den Silbergehalt der Fischschuppen. Bulletin de la Société Impériale des Naturalistes de Moscoun, Tome IX, 1836, pp. 326328. Moscou.

Horbaczewski, j.
1897. Ueber krystallisirtes Xanthin und Guanin. Zeitschrift für plysiologische Chemie, Band XXIII, Heft III, 1897, pp. 226-230. Strassburg.
Kunst- und Gewerbe-blatt.
1861. Die Fabrikation künstlicher Perlen. Kunst- und Gewerbe-Blatt, Band 39. Heft IV, pp. 225-235. München.

Kunz, George Frederick, and Charles Hugir Strienson.
1908. The book of the pearl. The history; art, science, and industry of the queen of gems. xix, 548 pp., illus. New York.
Liesegang, Rapiafl Ed.
1915. Dekoration des Glases mit irisierenden Schichten. Sprechsaal: Zeitschrift für die keramischen Glass- und verwandten Industrie, Vol. XLVIII, pp. 2-3. Coburg.
Parkert, Otto.
1919. Fischperlüberzüge auf Glasperlen nach neuer Methode. Sprechsaal: Zeitschrift für die keramischen Glas- und verwandten Industrie, Vol. LII, pp. 191-192. Coburg.
Pfund, A. H.
1917. The colors of mother-of-pearl. Journal of the Frankin Institute, vol. 183, No. 4, 1917, pp. 453-464. Philadelphia.
Réaumur, M. de.
1718. Observations sur la Matière qui colore les Perles fausses, et sur quelques autros Matières animales d'une somblable couleur; a l'occasion de quoi on essaye d'expliquer la formation des Ecailles des Poissons. Histoire de l'Académie Royale des Sciences, 1716 (1718), pp. 229-244. Paris.

Schnizlein, A.
1836. Silberhaut der Fischschuppen rücksichtlich des Metallgehalte und der Ursache des Glanzes. Repertorium für die Pharmacie, Series 2, Band VIII, Heft 3, Nr. 24, pp. 302-305. Nürnburg.
Volt, Carl.
1865. Ueber die in den Schuppen und der Schwimmblase von Fischen vorkommenden irisirenden Krystalle. Zeitschrift für wissenschaftliche Zoologie, Band 15, Heft 3, 1865, pp. 515-521. Leipzig. [The substance of this paper appeared in "Die Süsswasserfische von Mitteleuropa," by C. Th. E. v. Siebold, referred to above, on pages 154-160.]
von Siebold, C. Th. E.
1863. Die Süsswasserfische von Mitteleuropa. 431 pp., 1863 [pp. 154-160]. Leipzig.
von Unruh, A.
1918. Perlen-Ersatz. Kunststoffe, Jahrgang 8, pp. 49-53, 65-67, 74-76 (bibliography and list of German patents). München.
1918a. Perlmutter-Ersatzstoffe und Nachahmungen. Ibid, pp. 186-188, 198-200, 210-212, 222-225, 302-305 (bibliography and list of German patents). München.
von Wittich, Dr.
1854. Ueber der Metallglanz der Fische. Archiv für Anatomic, Physiologie, und wissenschaftliche Medicin, Jahrgang, 1854, pp. 265-269. Berlin.
Wulff, Carl.
1893. Beiträge zur Kenntniss der Nucleinbasen. Zeitschrift für physiologische Chemie, Band XVII, Heft V, 1893, pp. 468-510, 4 figs. Strassburg.

\title{
PROGRESS IN BIOLOGICAL INQUIRIES, JULY 1 TO DECEMBER 31, \(1924{ }^{1}\)
}

\author{
By Willas H. Ricm, Assistant in. Charge of Scientific Inquiry
}

\section*{CONTENTS}
I'age
:3
Introduction
Investigations of fish and fisheries ..... 41
Atlantic coast ..... 40
Life histories and migrations of cod, pollock, and haddock ..... 40
Fishes of the South Atlantic coast ..... \(4: 3\)
Salmonidse and smelts ..... 415
Larval fishes ..... 16
Tropical fishes of the Woods Hole region ..... 47
Chesapeake Bay ..... 48
North American Committee on Fishery Investigations ..... 48
Interior waters ..... 49
Coregoninæ of the Great Lakes ..... 49
Pacific coast and Alaska ..... 50
Alaska salmon ..... 50
Salmon of the Pacific Coast States ..... 51
Fisheries of California ..... 52
Fishes of El Salvador ..... 52
Investigations of shellfish and terrapin ..... 52
Oyster: ..... 52
Alaska clams ..... 54
Fresh-water mussels ..... 5)
Terrapin ..... 5
Erological and oceanographic studies ..... 56
Control of mosquitoes by means of fish ..... 56
Oceanography ..... 56
Ecology of fresh-water lakes ..... 57
Fouling of ships' bottoms ..... 58
Investigations pertaining to fish-cultural operations ..... 59
Pathology of fishes ..... 5!)
l'hysiology and nutrition of fishes ..... 61
Biological laboratories ..... (i3)

\section*{INTRODUCTION}

Because of the fact that almost all of the scientific investigations undertaken by the Bureau of Fisheries are conducted during the summer months, so that th \(y\) are begun before the end of one fiscal year and are concluded some time during the next succeeding fiscal year, it has been decided to change the plan of issuing ammal reports on such investigations so that an entire season's work may be

\footnotetext{
\({ }^{1}\) Appendix III to the Report of the U. S. Commissionel of Fisheries for 1025 . B. F. עoc. No. 990.
}
covered in a single report. This new plan has been followed in the present document, which covers investigational work in progress from July 1 to Dec:mber 31, 1924.

Organization of the division's work along the lines suggested in the report for the fiscal year 1924 has been continued and may now be considered as fairly complete. Emphasis has been placed upon the development of a system of what may be termed major researches, with a thoroughly competent investigator in direct charge of each investigation and assisted by one or more of the younger and less experienced men on the staff. The men in charge of these units are practically independent of any immediate direction by the administrative head of the division and are held directly responsible for the success of the work with which they are concerned. The results obtained since the establishment of this system have been most encouraging.

In the following report the predominating part taken by studies of the life histories of our important food fishes is apparent. These life-history studies provide such fundamental data as the rate of growth, age at maturity, time and manner of spawning, habits of the young, feeding habits of both young and old, extent and direction of migrations, extent to which various groups of fish mingle particularly with respect to their interbreeding, and the enemies or other elements in their environm nt which tend to reduce the abundance of those fish and other forms from which we obtain our fishery products.

One of the most important aims of the student of life histories is to determine the relative success of each breeding season and the factors that determine success or failure. In order to achieve this it is important to mak age determinations for a sufficient number of individuals each year so that reliable figures may be obtained. In forms for which age determinations can not be made the methods used to determine the degree of success in breeding in different years are more difficult and frequently involve extremely complicated procedures. Such researches as these must be conducted over a long series of yars if reliable results are to be obtained. In fact, in many cases it may be necessary to continue indefinitely such a yearly census of the age groups represented in a given population.

These life-history studies are not only of prime importance in the conservation of biological resources but also have a real though perhaps not generally recognized place in the biological sciences. We are studying species as a unit, with the idea always in mind of determining the factors that adapt the species to its environment and which make for its continued existence. None of the other biological sciences is primarily concerned with this particular problem. Most of them consider the individual as the unit and discuss its structure, physiology, development, classification, etc. The geneticist is concerned in part with a consideration of species as a unit, but from the standpoint of its origin rather than of its maintenance. The rery broad science of ecology may possibly be considered to treat of species as units, but as at present developed ecology is so loosely organized and so broadly inclusive a branch of biology that it is difficult to set its boundaries. Perhaps these lifehistorv studies may properly be considered as a specialized and
fairly closely eircumscribed part of ecology which deals primarily with the factors, both inherent and environmental, affecting the abundance of individuals of a given species.

Properly considered, these studies are as purely scientific and bear as directly upon the larger problems of biology as do other biological sciences, even including genetics. Is it not as important to know how a species is maintained as to know how it arises? Is it not as important to know how a species is adjusted to its enrironment and how it responds and adapts itself to ehanges in its environment as to know these same things for the individual? The adaptive processes in the individual are, of course, bound up with the adaptation of the species and the survival of the individual with the survival of the species. The two are inevitably closely associated, but there is something more involved in the survival of a species than in the survival of an individual. This may seem paradoxical but it is obviously true, since species are maintained over long periods of time, whereas the individuals composing the species are continually changing-new individuals coming in, existing for a relatively short period of time, and then dying. In a sense, the species is an individual and has an existence of its own, a growth and survival of its own quite apart from the existence, growth, and survival of the individuals which at any time may compose it. It has periods of stress when its survival is precarious and which may end in its extermination. Naturally the same factors which result in the extermination of a species result in the death of the individuals composing the species, but it is with the larger aspects of the problems of adaptation and survival, those dealing with the species as a unit, that life-history studies are concerned.

The condition of a species, whether young and growing healthily, old and characterized by senility, well or poorly arlapted to its environment, may be measured by the abundance of individuals; and in any given form the fluctuations in abundance are indicative of the success or failure of the species as a whole to adapt itself to the various changes in its environment. From this point of riew lifehistory studies, which in the end are primarily concerned with discovering the causes of fluctuations in abundance, can be fully justified as essays in pure science and have a distinct place in the biological sciences quite apart from any economic use to which the resultant information may be put. It happens, however, that it is exactly this sort of information that is essential to the scientific conservation and development of biological resources-in this instance our aquatic resources.

The foregoing is not to be interpreted as in any sense an apology for the prominent place taken by life-history studies in the work of the division. It is, rather, an explanation of the nature of the investigations and of the attitude of those directly concerned-an explanation for the benefit of those scientists who ineline to the view that no investigation undertaken primarily for economic reasons can possibly be of scientific value.

The following pages contain brief aceounts of the accomplishments in the various researches during the half year July 1 to December 31, 1924. In general, the accounts as given were prepared by the investigators in direct charge.

\section*{INVESTIGATIONS OF FISH AND EISHERIES}

\section*{ATLANTIC COAST}

\section*{LIFE HISTORIES AND MIGRATIONS OF COD, POLLOCK, ANV HADDOCK}

An investigation of the early development of cod, pollock, and haddock off the New England coast, begun on May 1, 1924, by Dr. Charles J. Fish, was continued throughout the past year. The problem-an exhaustive study of conditions existing during the period of incubation of the eggs, the early larval history, the food during this period, the enemies. and the gradual changes in the feeding habits and migrations during the first year of existencehas been divided into two parts. The first part covers the period of the pelagic existence of the young, and consists of hydrographic and plankton surveys of the breeding grounds. The determination of the exact location of the spawning centers, the period of spawning, and the relative production and distribution of eggs form an essential part of this work. An investigation of the migrations, feeding habits, and enemies of the young fish after they leave the surface waters and enter the shallow shore zone forms the second part and necessitates seining and trawling over extensive areas along the shore.

In order not to delay the work, the second part of the problem was begun first, and thronghout the summer of 1924 the steamers Gannet. and Phatarope were utilized in a survey of the coast from Mount Desert, Me., to Woods Hole, Mass. During August and September the Gannet covered 1,545 miles and towed the Petersen young-fish trawl over 1,100 miles.

As the lack of an adequate ship prevented a survey of the outer banks, Massachusetts Bay was selected as the most suitable area in which to begin observations on the early life history of the cod. The Fish Hawlo was assigned to this work in November, when the fall spawing season began. Cruises were made covering the inshore breeding grounds of the bay south of Cape Ann. The Plymouth grounds were found to be by far the most important codspawning area in the bay, while pollock eggs were found in the greatest numbers in the region of Stellwagen Bank.

The steamer Gunnet was occupied in similar observations in the Gulf of Maine, concentrating particularly on the region aboat Sheepscot Bay, where each year at the height of the spawning season great quantities of fresh water pour out from the rivers over one of the most important spawning areas of the coast. What effect this, influx of low-density water has upon the eggs is as yet unknown.

As the work has just begun any conclusions made at this time must necessarily be of a very general nature. However, some very significant and interesting results have been obtained. Upon reaching the post-larval stage the cod and pollock seek shallow water, and in April and May are taken, often in large numbers, along the shores. The smallest specimens of both species taken with the seine were found to be feeding almost entirely on Harpactid copepods, probably most nearly like the free-swimming copepods of the surface waters. Later they were taken filled with mysids, amphipods, and in fact
almost all of the small crustaceans living in the littoral zone. As the temperature rises in June they leave the shallow water and seek deeper levels. By August 1 of the past year this zone was entirely vacated as far north as Boothbay, Me. During that month and September more than 50 seine hauls, extending from Mount Desert to Provincetown, yielded but three cod, although scattering pollock were often taken. Just where the young cod go after entering the deep waters has not yet been determined. Hauls made over the whole area with the Petersen trawl at all levels did not yield a single cod, although three small haddock were taken at 30 meters. Haddock apparently never enter the shore zone, remaining always in the deeper waters.

Doctor Fish is being assisted in Massachusetts Bay by Robert A. Goffin and Richard Parmenter, and in the Gulf of Maine by Capt George Greenleaf, master of the Gannet. Marie D. P. Fish also is aiding in the identification of the larval fish.

A report on the plankton taken on a three weeks' cruise off Newfoundland in June, 1924, and a report on a hydrographical and plankton section extending from Gay Head to the Gulf Stream, made on the Halcyon in August, 1924, will be completed during the summer of 1925.

This investigation of the early history of the cod is designed to supplement and complete the study of the adults, which has been under way for the past two years. The study of the adults includes extensive tagging experiments testing the migrations and growth and scale examinations. The work has been conducted by William C. Schroeder, with the advice and aid of Dr. Henry B. Bigelow of Harvard University. Doctor Bigelow's interest has done much to make the investigations a success.

The tagging operations connected with this investigation were brought to a close for the calendar year when the Halcyon completed her final cruise on October 28. During 1923 operations extended from April 17 to October 17, and during 1924 from July 12 to October 28. The progress of the investigation from its beginning in April, 1923, until November 24, 1923, may be summarized as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1923 & 1924 & & 1923 & 1924 \\
\hline Number of cruises & 7 & 9 & Total number of fish tagged & 10,244 & 10,348 \\
\hline Days of actual fishing & 43 & 51 & A verage number of fish tagged per & & \\
\hline Hours of actual fishing & 333 & 318.5 & day. & 238 & 203 \\
\hline Number of cod tagged. & 7,618 & 6,209 & Average number of fish tagged per & & \\
\hline Number of pollock tagged & 2,215 & 916 & hour. & 30.76 & 32.5 \\
\hline Number of haddock tagged & 411 & 3,223 & & & \\
\hline
\end{tabular}

During 1923 about 98 per cent of the fish were tagged on Nantucket Shoals in the general region of Great Round Shoal whistling buoy. The remaining 2 per cent were tagged off No Man’s Land, Pollock Rip, Chatham, and on Stellwagen Bank.

Operations during 1924 were more extended, and a large part of .he fish was tagged off the coast of Maine. The catch was divided as follows: Nantucket Shoals, 4,384 fish; Massachusetts, north of Cape Cod, 163: New Hampshire, 8; Maine, 5,793.

The number of recaptured tagged fish recorded up to November 24,1924 , is 457, segregated as follows:
Tagged in 1923, recaptured in 1923 by fishermen_--............... 128

Tagged in 1923, recaptured in 1924 by fishermen_.................. 86
Tagred in 1923, recaptured in 1924 by the Halcyon_-............... 39
Tagged in 1924, recaptured in 1924 by fishermen_..................... 119
Tagged in 1924, recaptured in 1924 by the Halcyon_-............... 102

517
There are now eight instances of tagged fish being recaptured twice, all of them codfish. In each case the Halcyon made the first recapture, liberating the fish after obtaining the record. Three of the second recaptures were made by the Halcyon and five by fishermen. Six of these fish were taken each time in the locality where tagged, while two had migrated from Nantucket Shoals to Rockaway, N. Y.

Although no pollock are included in the preceding lot, pollock No. 16418 holds the unique record of having been recaptured three times, each time by the Hulcyon at Great Round Shoal whistling buoy, Nantucket Shoals, Mass. The record of this fish follows: Tagged October 15, 1923, length \(221 / 2\) inches; recaptured July 16, 1924 , length 23 inches; recaptured September 11, 1924 , length \(231 / 2\) inches; recaptured October 26, 1924, length \(231 / 2\) inches.

Platts Bank, also called New Ledge, lies more than 30 miles from the nearest land, off Portland, Me., has a depth of 29 to about 50 fathoms and an area of about 35 square miles. Of 174 cod tagged in this locality the latter part of July, 1924, the Halcyon recaptured 3 on August 15, although only 48 cod were caught on that date. This instance was considered remarkable, but subsequent records have proved even more so. A total of 218 cod was tagged on Platts Bank last summer, and 22 have been recaptured by Portland fishermen. Of these 22 fish, 2 were included in the 3 fish recaptured by the Halcyon on August 15, being, therefore. second recaptures.

The scales of more than 10,000 cod, pollock, and haddock were taken during this period for use in a study of age. It has been determined that one of the most important parts of the cod scale is that which registers the first year's growth, for from this it may be possible to tell whether a fish was hatched in the fiall, midwinter, or spring. A careful study of this kind might reveal whether schools of cod remain together during a large part of their lives, whether a fishing ground is populated with cod hatched during various seasons (and therefore probably originating from various localities), or whether the opposite might prevail. A careful study of the cod scale indicates that a large amount of important data might be obtained from this source. The possibilities here are very promising indeed. The pollock scale and the haddock scale, too, are very satisfactory as a means for age determination. During 1924 an excellent series of scales was obtained from each of these species.

The results of the North Atlantic fish-tagging operations during the past two years have been so satisfactory that tagging will be resumed in 1925. Considerable information already has been obtained on age, rate of growth, and migration of these important food fishes.

The outstanding results of the fish tagging to December, 1924, are as follows:
1. A definite and apparently extensive migration of cod from the. region of Nantucket Shoals, Mass., to the shores of Rhode Island, Long Island, New Jersey, and possibly farther south, occurring late in the fall.
2. Many of the cod migrating to the south and west return to Nantucket Shoals the following spring.
3. The cod on Nantucket Shoals do not scatter to various feeding grounds during the summer, but appear to remain together from spring to fall; they were found to be very much localized, not only here but in various localities along the Maine coast. Not only do cod remain together in a general way, but small shoals of fish have been found to remain close together for months at a time (June to October) and to have moved not more than one-quarter mile from where they were tagged. There are numerous records to prove this.
4. Not many cod migrate from Nantucket Shoals to South Channel and very few go to Georges Bank from the Shoals. This result was entirely unexpected, but upon a close examination of the facts it was found that the plain, sandy bottom of South Channel is not sufficiently attractive to the cod to lure them from Nantucket Shoals, where conditions in many respects are ideal. South Channel is principally a haddock ground, although many cod are taken there.
5. The relation of water temperature to the movements of the cod is not so well understood. At the present time it is thought that the effects of temperature are not nearly as great as was supposed. Whatever the influence, it appears to be indirect. It has been fairly well determined that the water temperature (bottom) on the Cholera Bank, N. Y., is as low as or perhaps lower than that of Nantucket Shoals month for month throughout the year. Cod may be found on the Cholera Bank from November to May, with none at all during the summer, but they are found the year around on Nantucket Shoals and are particularly abundant in the summer. There is, of course, some reason why cod do not remain on the Cholera Bank throughout the year, but this reason apparently is not the temperature. Many temperature records are lacking from these two localities, but an effort will be made to obtain this information.

\section*{FISHES OF THE SOUTH ATLANTIC COAST}

The investigation of the fisheries of the South Atlantic coast, which was begun late in the fiscal year 1924, has been continued by Elmer Higgins, director of the Key West (Fla.) biological station.

The shark investigations were continued at Big Pine, Fla. The object of the investigation was to study the destructiveness of sharks to commercial fisheries and to discover something concerning their biology which might have bearing upon their control should that prove desirable. A month was spent in field observations at the shark fishery of the Ocean Leather Co., and through their courtesy many data were collected bearing upon the natural history of the sharls common to that locality. Detailed descriptions of the seven species occurring in the fishery at Big Pine in summer were obtained, including many measurements of body proportions which will correct er-
\[
56650-25-2
\]
rors and omissions in current published accounts. Size variations, food habits, and breeding also were studied. Sharks are not abundant in that locality in sunmer, however, so the investigation was discontinued until opportunity was afforded to make observations during a winter season.

Of the seven species occurring in the summer fishery, the nurse (Ginglymostoma cirratum), leopard (Galeocerdo arcticus), and dusky sharks (Carcharhinus commersonii) are the most abundant. Of these the leopard is the largest and most valuable commercially, because of the size and quality of the skin when tanned, the large amount of oil produced, and the quality and whiteness of the flesh, which is dried for food. More than two-thirds of the sharks taken had empty stomachs. In the rest, sharks, turtles, and crustaceans formed the chief articles of diet. No conclusions as to the real destructiveness of sharks could be drawn, therefore, without further investigation in the winter season, when food fish are more abundant in that locality.

Upon completion of the field work at Big Pine the investigator returned to the fisheries station at Beaufort, N. C., where the data were analyzed and a preliminary report was drawn up and submitted.

Attention was then directed to the fisheries of North Carolina. A general survey of the history of the fisheries was undertaken, and a trip of inspection was made over the more important fishing grounds of the State. There are abundant indications that the more important fisheries of the State are undergoing depletion, that of the mullet (Mugil cephalus) being perhaps the most serions. The total catch of mullet in North Carolina, according to the bureau's figures, fell from \(6,750,000\) pounds in 1902 to a little more than \(1,000,000\) pounds in 1918, a decrease of 84 per cent in 16 years, and subsequent years have shown no tendency toward recovery. Therefore it was decided to conduct an investigation of the mullet fishery to discover if the decline in total yield is due to natural or artificial causes (such as orerfishing), if the whole stock is endangered, and what measures of protection can be applied to increase the fish stock and rehabilitate the fishery. The investigation was begun early in September, 1924 , and the autumn season was spent in preliminary work in making a survey of the fishery, discovering its peculiar needs, and laying a foundation for more intensive work during the following year. John C. Pearson was assigned to the investigation as assistant on November 15 and stationed at Beaufort.

The course of the fishery at Beaufort during the fall was studied by taking frequent samples of the commercial catch landed at the markets. From September 9 to November 8, the period covered by the greater part of the commercial rum, 11 samples were taken, comprising about 400 specimens. These specimens were carefully measured and otherwise observed, and records and hiological material thus collected were preserved for later analysis. The size composition of the catch was studied by tabulating the length measurements and constructing frequency curves. It appears that the range in size of the mullet landed in Beanfort is from 159 to 509 millimeters body length ( 7.7 to 24.3 inches total length). The minimum legal limit is 8 inches total length. There are two distinct groups within this range-small fish from 15 to 23 centimeters ( 6 to 9 inches)
body length and medium and large from 25 to 44 centimeters ( 9.8 to 13 inches) body length. By far the greater number of fish range around 28 centimeters ( 11 inches) body length ( 11.7 inches total length). The sampling of the catch of the past season is inadequate to give the relative abundance of each size class in the fish stock, and therefore more complete sampling must be made next year.

The analysis of the season's run for age composition has been undertaken. Scales from each fish collected have been preserved and many have already been prepared and mounted for microscopic examination, by which the age of each individual is determined.

The question of the interdependence of different fishing areas, and hence the chance of success of measures of conservation applied in one State or another, has been attacked by studying the racial composition of the fish stock of North Carolina and Florida. About , ,, 000 measurements of the physical proportions of the mullet from the former locality and about 5,500 measurements from the latter have been made and the results partly analyzed. It is commonly believed by both naturalists and fishermen that the mullet migrate annually from the sounds of North Carolina southward along the coast into Florida waters and, some say, into the Gulf of Mexico, but a preliminary analysis of the data on racial composition indicates that the stock of mullet supplying the commercial fishery in North Carolina is entirely distinct from that of Florida, hence these theories of intermigration between the tro localities are false. The data further indicate the possible existence of two distinct races entering the fishery in North Carolina, and several along the Florida coast.

Other data have been collected from the season's observations and await analysis. The advance of sexual maturity has been recorded and materials for the study of spawning and egrg production have been collected. Samples of the roe were taken at frequent intervals throughout the fall and were preserved for microscopic study. Records of the localities of the catches were kept for a study of the distribution and movement of schools. Records of the daily receipts of mullet by all the dealers in Carteret County also were collected as a basis for the study of the movements of the fish and factors influencing migration.

No survey covering the fishing season for mullet was undertaken in Florida, but a brief inquiry was made on the occurrence of spawning on the east and west coasts and the question of local races also was considered. Nine samples of the commercial catch ( 607 specimens) were taken. The data are unavoidably inadequate to settle the questions, but in some cases are sufficient to warrant tentative conclusions until verified or corrected by next season's observations. They may be summarized as follows:
rizes.-On the east coast (Jacksonville, Fort Pierce, and Miami) samples were taken having a typical size of 15.5 inches total length. On the west coast (Pensacola and Apalachicola) the typical length was 12.3 inches, while on the southwest coast (Pruita Gorda) a single sample had the typical length of 19.7 inches.
Size at maturity.-On the west coast all fish under about 9 inches total length are immature as late as December 2, and probably do not spawn until the following year. Practically all other fish observed had spawned or were in spawning condition.

Spawning period.-Neither the exact beginning nor, of course, the end of the spawning season was observed, but all the data indicated that spawning on both coasts is well under way by the middle of November.

Racial localization.-While such evidence as differences in size and apparent rates of growth, apparent sizes at first maturity, etc., indicate, from a preliminary examination, race differences in different localities; the evidence from differences in physical proportion is not as clear as in the case of the North Carolina fish. It is hoped that future observations will make possible the final solution of this important problem.

During 1925 it is hoped, on the basis of the experience of the present year's studies, to continue and extend the investigation of the mullet fishery along the coasts of all the South Atlantic States. A vigorous continuance of the studies already begun should yield results of the utmost practical value in the conservation of this important fishery.

\section*{SALMONIDEE AND SMELTS}

The investigation of the salmon and smelt was continued by Dr. W. C. Kendall. During the period covered by this report the investigator was occupied principally with a continuation of his observation upon the Salmonidæ and the preparation of a manuscript concerning the Atlantic smelt and smelt fisheries. In addition to his regular work he was called upon to decide questions as to the identification of salmonids and other problems pertaining to those fishes submitted by persons in various parts of the United States as well as from foreign countries, notably New Zealand, Greenland, and Canada.

A specimen of Atlantic salmon was received from Dr. Morton P. Porsild, director of the Danish biological station at Disko Island, Greenland, an account of which was published in the Fisheries Service Bulletin for October 1, 1924.

A small collection of fishes, principally chars, and some invertebrates were brought back from Greenland by Donald B. MacMillan on his last expedition. The chars were retained by Doctor Kendall for study and the balance of the material was transmitted to the United States National Museum.

Considerable progress was made in the determination of the ages of brook trout by a study of the scales. It was found that a large trout is not necessarily an old one nor a small trout necessarily young. It is believed that the results of this study, which has not previously been undertaken, will prove of value in trout culture.

In the late fall about a week was spent in studying the spawning habits of trout in tributaries of Cranberry Lake, N. Y., in cooperation with the Roosevelt Wild Life Forest Experiment Station and the State Conservation Commission.

> LARVAL FISHES

This work has been continued by Marie D. P. Fish, and has been extended to include the study of larval fishes taken in other regions than Woods Hole. Previous investigations along this line have been
practically confined to the Woods Hole region. Valuable material and data have been received in connection with the study of the early history of the cod, pollock, and haddock, mentioned above. Other data have been secured in the region about Woods Hole as a result of the collections made during the past summer with seines and young-fish trawls. The general nature of this work was outlined in the report of the division for the fiscal year 1924.

TROPICAL FISHES OF THE WOODS HOLE IEEGION
In June, 1924, a study of the tropical and subtropical fishes that visit the shores of New England in summer, often in considerable numbers, was begun by Marie D. P. Fish. 'The materials were obtained from the following sources:
1. A series of collections made at Katama Bay on the seaward side of Marthas Vineyard in 1924. The collecting was done by means of a 150 -foot shore seine and a Petersen young-fish trawl towed through the Zostera zone lining the shore.
2. All previous collections and records from the Woods Hole region, including those at the station and those in the National Museum.
3. All tropical fishes taken in the surface collections along the Atlantic coast by the Albatross, Grampus, Fish Haur, and Fache.

The influence of temperature and winds upon the local appearance of southern forms has been most strikingly demonstrated during the past three years. In the summer and fall of 1922 , when the temperature ranged below normal and southerly winds did not prevail, seinings in Katama Bay and elsewhere about Woods Hole yielded no small tropical or subtropical fishes. A few large specimens, however, were caught in the fish traps in the vicinity-wanderers hardy enough to have withstood the drop in temperature as they made their way into the colder waters. In 1923 conditions were similar. With the exception of a few large sharks and rays and a number of ladyfish (Albula vulpes) on October 22, no southern ranging fishes were found. No Sargassum weed was to be seen anywhere about. During the past summer, however, the search for these stragglers from the Gulf Stream was well rewarded. Between the middle of July and the end of October,' 13 species of fishes having a distinctly southern range were seined in Katama Bay, 4 of them in abundance. For the first time in the history of local fisheries the yellow crevalle (Carangus crysos) was so abundant in the traps of Buzzards Bay and Vineyard Sound that several barrels of them were shipped to the Boston market. Two specimens of Carangus Tatus, a crevalle never before recorded north of Virginia and which is most common about the West Indies, were seined in Katama Bay on September 9 and 12 . The absence of young southern fishes at Woods Hole in 1922 and 1923 and their abundance in 1924 apparently were due to the much higher temperature existing during the past year as well as to the great predominance of southwest winds. Mnemiopsis leidyi, reliable indicator of a drift from the south, was every where: abundant in local waters throughout August and September. 1924, but did not appear during the two previous years.

All records seem to show that the date of appearance of the tropical and subtropical fish is dependent upon the temperature
of the coastal waters. They must await a rise in temperature in the surface waters over the continental shelf in order that they may lose the boundaries of the Gulf Stream and follow the Sargassum as it is blown into the area outside. No doubt the immediate waters about Woords Hole are prepared to receive the visitors long before the outer waters permit their passage through. For that reason, althongh approximately \(12.5^{\circ}\) C. may be taken as their minimum temperature for existence in local waters, the date when the inshore waters rise to \(12.5^{\circ} \mathrm{C}\). far precedes the same rise in surface water ofl the coast and also the actual arival of the first smmer forms. In the fall, however, reverse conditions exist. The date when the surface water locally reaches the minimum temperature for these forms is then of great importance, because this drop directly affects those which are abready here and they disappear at once. During 1924 the first summer visitors appeared on July 12 and the last on October 22. 'The complete absence of sonthern fish after that date would seem to be a result of a sudden drop in temperature that ocemred on October 20, when the temperature of the air fell 16 degrees oremight and a really cold spell set in. A trip was made. to Katama Bay on Normber 7 , when the surface temperature was \(12.5^{\circ}\) C., but diligent seining brought in nothing except young cunners, tautog, seutpins, winter flomeders, and other typically resident famal.

To date \(9 \geq\) truly tropical species, which are undoubtedly mere "accidents" of the Gulf Stream, and to species with a predominantly sonthern range, whose nothern limit of migration is Woods Hole, have been taken in local waters. A general account of their appearance, distribution, and disappearance in this region, together with descriptions and illustrations of the various tropical species. is nearly complete.

The work of preparing for publication the data bearing on the fish and tisheries of Chesapeake Bay, which were secured in connection with the hydrographic and biological survey of this region modertaken sereal years ago, has gone forward. The work has been delayed frequently, owing to the more pressing need of other investigations, but satisfactory progress can be reported. This work has been carried out under the direction of Samuel F. Hildehrand aided by William (. Schroeder and Isaae Ginsburg.

NOHTH AMEHIC,IN (OMAIMIER ON HASHERI INVESTLGATIONE
Only one meeting of the committee was held during the period covered by this report. This oceured at Montreal, Canada, on November \(\bar{z}\) and was attended by W. A. Found and Dr. A. (i. Huntsman, representatives for Canada, and Hemy O'Malley, Dr. IT. 13. Bigelow; and 1)r. W. H. Rich, representatives for the Tnited States. No change in the personnel of the committee has taken place since the last report.

Oceanorraphic work and cod-tagging operations received particular attention, and plans were made for an extension of both of these lines of investigation. Further steps were taken to coordinate more
closely the collection and publication of fishery statistics for the various countries interested in the great bank fisheries of the western North Atlantic, and as a part of this program it was suggested and agreed upon by both the Canadian and the United States representatives that definite plans be laid for systematic fish measuring, such as has been conducted by varions European countries for a number of years. This systematic sampling of the commercial catch has proved to be of great value in the investigations of the fisheries of the eastern North Atlantic and North Sea, and it is believed that similar work on the American side of the Atlantic would prove equally valuable.

Other matters discussed were the need for investigation of the mackerel and halibut fisheries and the collection of water temperatures at various points along the entire Atlantic coast.

\section*{INTERIOR W'ATERS}

\section*{COREGONLNAE OF THE GREAT I.AKKES}

With regard to the investigation of the systematic relations and ecology of the whitelishes and related species of the Great Lakes Basin that is being made by Dr. Walter Koelz and John Van Oosten, the first draft of the account of all the species of Lencichthys and the one species of Prosopium in that region was finished during the latter half of 1924 . There remain the consideration of coregonus and the mifying of the various accoments before the manuscript will be ready for publication. Valuable observations on the Coregonine fishes were made also in several inland lakes of Marquette County, Mich.

Studies were made of the life history of the Lake Huron whitefish (C'oregonus clupeaformis), as found at Alpena, Mich. Many data were obtained from the analysis of the seales, including rates of growth, age composition of commercial catches, year of sexual maturity, etc.

The analyzed data of whitefish captured in July, 1923, revealed some interesting facts hitherto unknown. The samples indicate that in summer 70 per cent of the commercial catches of whitefish at Alpena consist principally of fish in their fifth year. The youngest fish taken were in their fourth year, the oldest in their eighth. Those in their fourth year averaged 401 millimeters ( 15.8 inches) in length and those in their eighth year 517 millimeters ( 20.4 inches), the increase during each of the intervening years being about 1 inch in the lengrth of each fish. The data also definitely indicate that the opinion generally held by the hatchery employees and others relative to the age at which whitefish first become sexually mature is erroneous. Whitefish reared under artificial conditions may become sexually mature in 3 years but those grown in Lake Huron certainly do not. No sexually mature fish under five years of age has been taken by the investigators. Of the female whitefish in their fifth year taken in 1923, 33 per cent were mature while 67 per cent were still sexually immature. It is not until the sixth year that the majority (it per cent) become mature.

Another result having important bearing on the problem of conservation is that 5.5 per cent of the females of these summer samples
were sexually immature while only 45 per cent were mature. This was the case in spite of the fact that none of the fish were below the legal weight limit ( \(11 / 2\) pounds in the round).

There is some evidence, however, that the commercial catches of the fall are differently constituted, being composed almost entirely of breeding fish and presumably, therefore, of larger and older individuals. To obtain additional material from these spawning schools some time was spent in the field at Alpena. These data are now being studied.

In addition to the whitefish study the herring run in the fall of 1924 in Saginaw Bay was investigated. Abundant scale material and other data were collected each day during the entire herring run until ice conditions made fishing impossible, but they have not yet been carefully analyzed.

\section*{PACIFIC COAST AND ALASKA}

As before, these investigations have been conducted under the direction of Dr. C. H. Gilbert, of Stanford University. The summer of 1924 was spent principally in investigating the run of red salmon to the Karluk River on Kodiak Island. Enough specimens were taken at random from the daily catch to afford a fair sample, and by means of their scale structure these were classified with respect to their total age and as to the length of their early sojourn as fingerlings in fresh water.

The Karluk has been selected as a farorable stream in which to investigate the efficiency of natural propagation and in particular what constitutes a reasonable expectation for future runs based on a known volume of sparning fish. In order to ascertain the number of spawners the burean has each year since 1921 maintained a weir or rack constructed entirely across the Karluk River, near its'mouth, and provided with a number of narrow openings through which the ascending fish must pass and where they can be enumerated.

The size of the runs in successive years has varied widely and the escapement tallied through the weir has varied proportionately from about \(1,330,000\) spawners in 1921 to approximately 300,000 in 1922. Such widely differing brood years should produce equally differing results when their progeny reach maturity, unless other factors interfere. This is a matter that has never been investigated, and it is hoped to secure results of scientific and practical value from the Karluk experiment.

It is the burcau's plan to ascertain the total returns from the various spawnings by enumerating the progeny of each year when they return as mature fish. This could be easily accomplished if all individuals matured at the same age, but this is far from the case. In the Karluk race, as we ascertained during the scason of 1924 , some individuals mature in their third year while others mature in the fourth, fifth, sixth, or seventh year. The progeny of the 1921 spawning are therefore to be looked for in the runs of a number of successive years. Th." 3 -year-olds would make their appearance in 1924, the 4 -year fish in 1925, and so on until 1928, when the last of
the brood would mature at the age of 7 years. To ascertain the total retur from the \(1,330,000\) spawners in 1921 it is obvious, therefore, that the runs of each of the years from 1924 to 1928 must be analyzed and the numbers of fish of each age determined. Our analysis of the run of 1924 during the past season represents the first of this series. To trace the complete history and fate of the Karluk broods already tallied at the weir will require an analysis of the runs from 1924 to 1932.

\section*{SALMON OF THE PACIFIC COAST STATES}

During the fishing season on the Columbia River attention was given mainly to the collection of data regarding returns from salmon-marking experiments. Records of the capture of fourteen 5 -year-old fish that had been marked at the Little White Salmon River station of the Burean of Fisheries were reported from the commercial fishery, and eight were taken during the egg-taking operations of the hatchery from which the fingerlings were liberated. Twenty fish from this marking were taken during the 1923 season when they were in their fourth year, and a few more may be expected to return during the 1925 season. These records, though few in number, are of considerable interest from the standpoint of scale study, as they supply evidence which corroborates that from other sources in assigning the proper significance to certain troublesome types of scale nuclei.
-Sockeye salmon from the brood of 1920, which were introduced from Alaska and marked and liberated at the Herman Creek station of the Oregon Fish Commission during the fall of 1921, were expected to return during the 1924 season in their fourth year, but none were reported from the commercial fishery and none entered Herman Creek. These fish may mature as 5 -year-olds and return to spawn during the 1925 season, but judging from the returns from former marking experiments and our general knowledge of sockeye salmon, few if any returns are now expected. The apparent failure of the fish from this experiment to survive to maturity and the quite satisfactory returns from two experiments in which the young fish were liberated during the spring of their second year seem to indicate that success in the artificial propagation of sockeyes is achiered only when the fish are held until the spring of their second year or are provided with conditions favorable to their residence in fresh water until that time.
A report on the Columbia River marking experiments to date, which is being prepared for publication, will be completed in the very near future.

Probably the most important phase of the past season's work was an investigation of the spawning grounds of blueback salmon in the Okanogan River. The knowledge that this spawning district exists is of considerable interest, since until it was discovered nothing was known of the present spawning grounds of the Columbia River bluebacks, and in the absence of that knowledge it has been impossible to give the fish adequate protection or to secure their eggs for artificial propagation. Interest in this spawning district is
greatly increased by the fact that it appears to be the most important blueback spawning district now remaining in the Columbia Basin; that is, that part of the run which spawns in the Okanogan contributes the largest part of the commercial catch of this species in the Cohmbia. Plans are being made to further investigate this district during the coming season.

The cooperation with the California Fish and Game Commission in the study of the tuna and sardines has been continued. This work is being done under the eflicient direction of William F. Thompson, of the California commission. Mr. Thompson ranks as one of the leading scientists engaged in fishery researeh, and one of the primary objects in entering into the present cooperative arrangement was to make possible the training of additional investigators. It is expected that one of the men thas trained will be taken over by the burean in the near future and assigned to an independent investigation. The arrangement has proved very successful and will doubtless be continned.

\section*{}

Reports on the investigations in El Salvador conducted by Sammel F. Hildebrand and Fred J. Foster during Jamary and February, 192t, have been completed. I joint and final report by these investigators, dealing with the status of the fisheries and embodying recommendations for the rehabilitation of the sadly depleted waters. was prepared and forwarded to the Government of El Salvador. Mr. Hildebrand also completed and submitted for publication a deseriptive catalogue of the fresh-water fishes of EL Salvador, which embodies the descriptions of several new species, together with a list of marine fishes taken at two of the ports of El Salvador.

\section*{INVESTIGATIONS OF SHELLFISH AND TERRAPIN}

\section*{OY゙STERS}

Investigations relating to oyster culture were conducted during the period July 1 to December 31, 1924, by Dr. P. S. Galtsoff at Woods Hole, Mass., Herbert F. Prytherch at Milford, Comn., and by J. S. Gutsell in Great South Bay, Long Island, N. Y. All of these investigations have now been placed under the direction of Doctor Galtsoff, whose wide experience with oceanographic research particularly fits him for this difficult task.

Previous observations in Long Island Sound have shown that the pollation of inshore waters by trade wastes is one of the factors aflecting the setting of the oyster larva in the Sound. Since the trade wastes discharged into Bridgeport Marbor, the Housatonic River, and New Haven Harbor contain considerable amounts of inorganic acids and consequently increase the hydrogen-ion concentration of the water, it was of interest to determine the effect of the increase of hydrogen-ion concentration upon the fertilization of oyster eggs and the vitality of oyster larvie. The experiments were carried ont at the Woods Hole laboratory by Dr. P'. S. Galtsoff. The larve
were raised in the laboratory tanks from artificially fertilized egros, only 3 or 4 day old larva being used for the experiments. The results show that the increase of hydrogen-ion concentration has a marked effect on the vitality of the larve. At a pH of 5.8 , 64 per cent die within 11 hours; at a pH of \(5.4,100\) per cent die in 7 hours: while water having a pH of 5.2 kills them almost instantly.

It is a matter of common knowledge that the union of sperm and egg of many marine organisms is greatly affected by the environment, but information relative to the fertilization of oyster eggs is lacking. First a series of tests was made to determine the necessary dilution of sperm in artificial fertilization. The best results were obtaned when the dilution of \(1: 40,000\) was used; in a denser suspension polyspermy takes place and the development of the egg is hampered.

The viability of sperm and eggs in sea water was also studied. It was found that 12 hours after spawning the sperm becomes inactive and does not penctrate the egg. The viability of the eggs is longer, but eggs fertilized after being left for six hours in sea water give a great percentage of irregular development. Both sperm and egrs are very susceptible to changes in the reaction of water. The increase of hydrogen-ion concentration affects them, and when the pH value is lowered from 8.1, which is normal for Woods Hole water, to 7.0 only a small percentage of the egrgs is fertilized and develops, white in the control 99 per cent develop into larve.

In the summer of 1923 experiments were undertaken by Herbert Fr. Prytherch to determine a method whereby oysters might be artificially propagated and, if possible, to develop the method to such an extent as to make it of practical commercial value. A small hatchery was built at the plant of the Connecticut Oyster Farms Co., at Milford, Conn., and rarions types of apparatus were tested ont for rearing the larval orsters. By carefully imitating matural conditions a new method was perfected by which over 1,000 oyster larve were reared from the egg until they attached to the collectors. These experiments were continued during the summer of 1924 , the chief object being to improve the method to such an extent that sufficiently large numbers of oysters might be produced to make the process of practical value to the oyster industry.

The equipment, which was successfully used the previous summer, was again put in operation after making a few minor changes in the arrangement of the filters. During the latter part of July, in a battery of small wooden tanks, several lots of oyster larvae were reared. and from these over 5,000 spat were collected. The output of such a small hatchery could hardly be sufficient to demonstrate the value of the method for commercial purposes, so in order to get as great a production of oysters as possible additional equipment was installed. This consisted of a tile hatchery trough 100 feet long and having a capacity of 300 gallons, in which the water was contintally replenished and circulated by means of electrical devices. Several million oyster larve and a few thousand hard-clam larve were reared successfully in the large trough for a period of 10 days, when an unforseen accident, following a violent wind and rainstorm, suddenly terminated the experiment.

The oysters artificially propagated by the bureau during the summer of 1923 were placed on suitable inshore beds at Milford, and up to August 1, 1924, they had attained an average growth of \(21 / 2\) inches. It is expected that by the fall of 1925 they will make excellent half-shell stock.

Experiments were also conducted with the soft clam, Mya arenaria, and over 8,000 were artificially propagated and grown in one of the hatchery troughs until sufficiently large to be placed in the harbor. The larre of the soft clam are much larger than those of the oyster, and during the short free-swimming period and subsequent "setting" stage are more vigorous and better able to take care of themselves.

The relationship between water temperature and occurrence and distribution of oyster larræ in Great South Bay was studied by J. S. Gutsell. Evidence was obtained that the small larve appear in the water quickly following a rise in temperature. Later in the summer, however, the larvæ disappeared abruptly and almost completely from the bay without forming a set. Their disappearance coincided with the appearance of a great number of ctenophores, which are known to feed on the larre of bivalve mollusks.

\section*{ALASKA CLAMS}

During the summer of 1924 Dr. F. W. Weymouth, of Stanford University, and H. C. McMillin, scientific assistant, spent nme weeks in the field, from July 1 to September 3. The razor-clam beds in the ricinity of Cordora were twice risited (once early and again later in the season), and some time was spent on the beds near Kukak in Shelikof Straits. Incidental observations trere made on other mollusks, chiefly "butter clams" (Saxidomus), and on the crab and shrimp forming the basis of the fisheries of Petersburg and Wrangell. Mr. McMillin later visited the razor-clam beds on the Washington coast and the "butter clam" beds on some parts of Puget Sound.

These observations and a review of the data for this and the previous season have shown the annual ring method of age determination to be reliable, and have given a mass of age and size records from which satisfactory norms for growth in the commercially important districts (Washington, Cordova, and Shelikof Straite) have been determined.

Further observations made by McMillin on the Washington coast have given interesting data on the time of spawning and its relation to water temperature. Material obtained through the cooperation of Alaskan canners has permitted the approximate determination of the spawning season here, which is less sharply marked and occurs later than on the Washington coast. Extensive data showing the relation of length and age to sexual maturity have been worked out, making it possible to determine the effect of the size limit upon the breeding reserve.

On the basis of these findings a size limit of \(41 / 2\) inches has been placed on all Alaskan beds. Those in the vicinity of Cordova are now greatly overfished and it is hoped that this regulation will limit the pack to an amome which the beds can sustain; if not, more stringent size limits will be proposed.

During the year the State of Washington published the results of Mr. McMillin's investigations on the Washington coast. A report covering the points discussed above is now nearing completion.

\section*{FRESH-WATER MUSSELS}

Of immediate public interest probably the most outstanding investigation pertaining to fresh-water missels made during the last half of 1924 was the survey of Lake Pepin, a widened portion of the Mississippi River located between Wisconsin and Minnesota. This survey indicated definitely the great value of giving four and five vear periods of rest from shelling operations to fresh-water mussel beds, the population of which has become materially depleted. The sections of Lake Pepin opened to shelling in 1924 after havingr been closed four years seemed to have regained almost their full original mussel population, although they were greatly depleted at the start. Dr. R. E. Coker while connected with the bureau was largely instrumental in promoting concurrent action by the two bordering States that effected the closure of alternate sections of Lake Pepin. The survey mentioned shows the wisdom of this measure.

After the system of closing alternate sections in Lake Pepin became effective similar action was taken by several other States with regard to their mussel areas. There are a number of States, homever, that might also enact similar conservation measures to the benefit of their mussel resources.

Mussel surveys were also made of various other portions of the Mississippi River.

The culture of mussels in hatchery troughs was continued. Several thousand young mussels were produced but no striking advance in mussel-cultural methods was made, although some negative information was gained. Research work with regard to the food of voung mussels was continued during the summer of 1924 by Dr. E. P. Churchill, of the University of South Dakota, who was emploved as special investigator. An important line of investigation with regard to the relation of fish slime to glochidial action was begun during this summer by an independent investigator, Dr. M. M. Ellis, of the University of Missouri.

\section*{TERRAPIN}

The experiments in the culture and breeding of diamond-back terrapin, which have been conducted at Beaufort, N. C., for a number of years, have been continued with marked success. The work is under the general supervision of Samuel F. Hildebrand and in immediate charge of Charles Hatsel. No changes in the 30 lots of terrapins used in the various experiments have been made since the last report was published.

The total number of young terrapins removed from the eqg beds during the fall of 1924 was 3,458 . Of this number 2,406 were placed in a hothouse, where they are kept warm and will be fed throughout the winter. Considerable progress has been made in the methods of handling the terrapins in the hothonse. Growth has continued and the death rate has decreased.

\section*{ECOLOGICAL AND OCEANOGRAPHIC STUDIES}

\section*{(ONTROL OF MOSQUITOES BY MEANS OF FLSM}

Investigations relative to the use of fish for mosquito control were continued at Augusta. Ga.. by Samuel F. Hildebrand, assisted by Irving L. Towers, until October 5. The season was unfavorable because of periods of heary rainfall, cansing flood conditions to prevail. Some interesting data, nevertheless, were obtained. The results of these and similar investigations of three previous summers have been studied and a rather comprehensive report is being prepared for publication.

Mr. Hildebrand also prepared and read before the anmal conference of field workers in malaria, held in New Orleans from November 23 to 25 , a paper dealing with the propagation of the top minnow, Gambusia, for mosquito control on large tracts of land which are to be flooded as in damming rivers for hydroelectric purposes. This paper will be published by the United States Public Health Service.

\section*{OCEANOGRAPIIX}

A study of the hydrogen-ion concentration of sea water in Long Island Sound was made by Dr. P. S. Galtsoff. It is known that the colorimetric determination of the pH value in sea water can not be accurate because of the so-called salt error. The latter varies with the concentration of salts and with the indicator used. So far the salt error has been determined for phenolphtalein and alpha-naphtolphtalein. It has been noticed that previous colorimetric determinations made in Long Island Sound give too high values. In order to check up these observations a series of experiments was made at the Woods Hole laboratory to determine the salt error of aresol red. A set of phosphate mixtures with cresol red was made up, poured into non sol glass tubes, and sealed. The pH values of the buffer mixtures were checked up by the electric method. The determination of the salt error was made in a buffered artificial sea water at pH ralues ranging from 6.9 to 8.6 and at the concentrations of salts from 10 to 32 per thousand.

In October a special cruise was made on the Fish Hawk in Long Island Sound. The hydrogen-ion concentration was determined by comparison with buffer solutions with cresol red as indicator and by using the Palitsch borax-boric acid mixtures with alpha-naphtolphtalein. The latter were checked up by the electric method before and after the cruise. Both methods gave identical results, indicating a considerable increase in hydrogen-ion concentration in the Housatonic River and in Bridgeport and New Haven Harbors.

The report on the plankton of the Gulf of Maine, a part of a comprehensive study of this body of water which is being conducted by Dr. II. B. Bigelow, of Harvard University, has been completed and is in press. The report on the fishes of the Gulf of Maine.was completed some time ago and the report on the physical oceanography is nearly finished.

During the latter part of the summer a series of drift bottles was set out on three lines across the Vineyard Sound-Nantucket Sound
region. Thirty-nine recoveries were reported, showing a movement of water eastward out of the sound and then south and west around Nantucket.

Other oceanographic observations in the way of serial temperatures and horizontal and vertical tows were made from the Halcyon and the Fish Hawk along the coast of Maine, in Massachusetts and Cape Cod Bays, and on Nantucket Shoals. These were primarily a part of the program of study of the spawning of cod and the subsequent fate of the eggs and larval fishes.

Arrangements have been completed to have extensive series of temperatures taken at a number of carefully selected lightships and lighthouses along the Atlantic coast.
The work on the oceanographic survey of Chesapeake Bay has gone forward and the data are gradually being put into shape for publication.

\section*{ECOLOGY OF FRESH-WATER LAKES}

The quantitative studies of the flora and fauna of Green Lake, Wis.. were completed in 1924 , and a report based upon the data obtained in this investigation is now being prepared. Observations on the plankton of Green Lake were begun on February 28, 1924, and were continued until November 8 . The organic matter in the centrifuge plankton reached a maximum of 1,370 milligrams per cubic meter of water on April 30, and then declined to a minimum of 542 milligrams per cubic meter on July \%. The quantity rose to 660 milligrams on July 30 and to 1.179 milligrams on September 3, then fell to 912 milligrams on October 11 and rose to 1.131 milligrams per cubic meter on November 8.

During the month of July a special study of the number and distribution of the shrimplike crustacean, Mysis relicta, was made. In summer this animal is very generally distributed over the bottom of Green Lake, where the water reaches a depth of 12 meters or more. It is most abundant, however, over certain types of bottom, such as sand, gravel, or marl that is kept free of mud by the action of currents. As many as 1,105 individuals were obtained in one haul of the dredge off Sandstone Bluff, for example, while hauls over mud bottom yielded relatively small numbers. This animal forms an important item in the food of the ciscoes, and enongh material was obtained for a food analysis.

During the month of August 50 lakes in northern Wisconsin were risited for the purpose of making temperature, hydrogen-ion, and plankton observations. These northern lakes have a somewhat lower temperature and less calcium and magnesium in solution; some of them, in fact, have very soft water, containing only 1 to 2 cubic centimeters of fixed carbon dioxide per liter of water. The chief purpose of the investigation was to determine whether these northern lakes support as large a growth of plankton in summer as do the lakes of southeastern Wisconsin, where the water is somewhat warmer and has a distinctly larger amount of calcium and magnesium in solution.

The hydrogen-ion concentration varied from pH 8.9 to 5.2 in the northern lakes. In those having very soft water the surface was
about neutral or slightly acid ( pH 7.1 to 6.5), while the lower water was distinctly acid ( pH 5.4 to 5.2). In those lakes containing largeramounts of calcium and magnesium in solution the surface water was alkaline ( pH 8 to 8.9), but the lower water was usually on the acid side ( pH 6.8 to 6.5 ). In the hard-water lakes of southeastern Wisconsin the upper stratum in summer ranges from pH 8.5 to 9.0 . while the lower water ranges from pH 7.6 to 7.2 even when it contains considerable free carbon dioxide.

In the soft-water lakes the centrifuge plankton yielded fiom 750 to 1,280 milligrams of dry organic matter per cubic meter of water. In the lakes having somewhat harder water the range was from 970 to 3,850 milligrams of organic matter per cubic meter. Three lakes having depths of 4 to 9 meters yielded more than 3,000 milligrams per cubic meter, while two others with depths of 8 and 12 meters yielded more than 2,000 milligrams. The yield of lakes more than 12 meters deep varied from about 1,000 to 1,800 milligrams.

Computations per unit area on the basis of maximum depth give very different results. The highest yield, namely, 3,850 milligrams per cubic meter, was obtained in a lake with a maximum depth of 4.5 meters, which represents 17.3 grams per square meter of surface. A yield of 3,238 milligrams per cubic meter was obtained in a lake having a maximum depth of 9 meters, and this represents a yield of 29.1 grams per square meter of surface. On the other hand, the deepest lake yielded only 1,080 milligrams of dry organic matter per cubic meter, which represents 37.8 grams per square meter of surface for a maximum depth of 35 meters.

The centrifuge plankton of six hard-water lakes of southeastern Wisconsin, obtained in September and October, yielded from 876 to 1,875 milligrams of dry organic matter per cubic meter of water. These results are of the same general order of magnitude as those of the northern lakes having a medium amount of fixed carbon dioxide in solution, with the exception of the shallower northern lakes. No observations were made on southern lakes having a maximum depth of 4 to 8 meters.

These investigations have been carried on by Dr. Chancey Juday, of the Department of Zoology, University of Wisconsin.

\section*{FOULING OF SHIPS' BOTTOMS}

The investigation on the fouling of ships' bottoms was continued during the past year by Dr. J. P. Visscher at New York City, Norfolk, Va., and Beaufort, N. C. About 10 ships per month were examined, giving an approximate total of 225 ships examined during the course of the investigation. Data concerning the length of voyage, route, ports visited, etc., were obtained in addition to the collection of the fouling material on the hulls. These data, gathered from more than 200 ships, have been tabulated and show that the organisms occuring most frequently on the bottom of marine vessels are algæ, hydroids, and barnacles. The following table gives the results of the examinations of the first 157 ships, 141 of which, or 89 per cent, were foul:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Character of fouling & Number of ships fouled & \begin{tabular}{l}
Percent- \\
age (of \\
141 ships)
\end{tabular} & Character of fouling & Number of ships fouled & Percentage (of 141 ships) \\
\hline Barnacles & 98 & 70 & Protozoa & 11 & 8 \\
\hline Hydroids. & 58 & 42 & Tunicates & 15 & 10 \\
\hline Polyzoa. & 54 & 40 & Algæ. & 67 & 48 \\
\hline Mollusca. & 24 & 17 & - & & \\
\hline
\end{tabular}

Almost all of the organisms belong to groups typically found on rocks or other submerged structures near shore, which substantiates a previous conclusion that fouling occurs when ships are in harbor. Light also has been found to be a very important factor in the attachment of the larve of the various forms that have been found on the bottoms of ships. A study of the reactions of the cyprid larvæ of Balanus eburneus and B. amphitrite has been completed, which shows that spectral colors of equal values have different stimulating efficiencies. Light in the field of green and blue-green was found to have the maximum stimulating effect. For both of the barnacles studied the relative values were approximately equal.

Seasonal periodicity for attaching stages of many of the organisms causing fouling has been studied. In this connection 10 sets of panels have been issued to 10 naval vessels, the panels to be submerged in each port of call and then carefully preserved in order to correlate the fouling on the ship's bottom with the place of attachment as determined by the ship's log.

The life histories of the several barnacles found at Beaufort. N. C., are being studied in the hope of throwing light (1) on the problem of selective attachment; (2) on the formation of a workable key for recognition of various species of barnacles in their larval stages; and (3) to provide data for a critical analysis of some of the divergent results obtained during the extensive series of investigations by the paint division of the Navy Department.

Considerable time has thus far been spent in tabulating the results of the investigation and in its organization into the form of a report.

\section*{INVESTIGATIONS PERTAINING TO FISH-CULTURAL OPERATIONS}

\section*{PATHOLOGY OF FISHES}

The investigations on Octomitus salmonis, a parasitic flagellate of trout, were continued during the summer and fall by Dr. H. S. Davis, and the results are now being prepared for publication. This parasite, which lives in the intestine of the host, has a very interesting life history which shows that there are two distinct cycles in its development. During one stage of its existence the parasite lives within the cells lining the anterior end of the intestine and the pyloric cæca, while during the second or flagellated stage it is found swimming actively about in the fluid contents of the intestine.

The intracellular stage first appears as an inconspicuous rounded organism much smaller than the epithelial cell in which it occurs. The parasite quickly grows to many times its original size and then divides into a number of small cells similar to the original, which
in their turn invade uninfected cells and repeat the cycle. Einder certain conditions the intracellular parasites may multiply very rapidly, so that a large percentage of the cells become infected. Since the infected cells are destroyed eventually, this can not fail to result in serions injury to the host. On the other hand. some of the intracellular forms undergo a quite different course of development and eventually make their way into the lumen of the intestine as typical flagellates. The flagellates multiply by binary fission and often become enormonsly abundant. especially in young fish. In fact, in some hatcheries it is the exception to find trout less than one year old which do not harbor considerable numbers of the flagellates in their intestines.

The spread of the parasite from fish to fish probably is accomplished by means of cysts, which can ordinarily be found in small numbers in the intestines of infected fish. These cysts usually are ovoidal in form and at first contain a single flagellate surrounded by a thin, transparent membrane. Soon after encystment the inclosed organism divides into two, and in this condition the cysts pass from the body with the excrement. They no doubt remain alive for some time in the water, and when accidentally ingested by another fish presumably pass to the intestine, where they set up a new infection.

The injurions effects of the parasite on the host may take two quite different forms, which, it is believed, are correlated with the two cycles of development previously referred to. The most common result of infection by Octomitus is the production of thin, emaciated fish known to fish culturists as "pinheads." Such fish usually are found to be infected with large numbers of flagellates. which evidently seriously interfere with nutrition. This form of octomitiasis is common in many hatcheries, and while not necessarily accompanied by serious mortality, does much harm by interfering with the normal growth of the fingerlings. On the other hand, there is reason to believe that serious epidemics accompanied by heavy mortality may be traced to Octomitus. In such cases there is a very rapid increase in the intracellular stages, which ordinarily are not abundant, and this results in extensive destruction of the epithelium and more or less congestion of the intestinal wall.

Since the parasite is widely distributed and occurs in adults as well as in the young fish, it is believed that it will be impracticable to eradicate it from the hatcheries. However, there is every reason to believe that much can be done by improving the general conditions under which fish are held so as to increase their hardiness and vigor. The evidence at hand indicates that octomitiasis is likely to occur whenever trout fingerlings are subjected to unfavorable conditions which tend to lower their vitality, but if the fish are kept healthy and vigorous there is usually little trouble from the disease.

In addition to Octomitus. a species of ameba is very common in trout, although in spite of its abundance it apparently doe:s little harm. Unlike Octomitus, the vegetative stages of the ameba occur only in the stomach, where they can be found crawling slowly about over the epithelial lining. This species is of considerable interest from a scientific standpoint, since it differs radically in many re-
spects from the intestinal amebr found in other animals. One of its most striking characteristics is the formation of multinucleate cysts, which may grow and divide while in the lumen of the stomach and intestine. The extraordinary life history of this species in the trout has been worked out and the results are now ready for publication.

An interesting trout parasite and one that may be of considerable economic importance was found in a specimen of golden trout trom the Mount Shasta region in California. This fish was one of a number that died at the Steinhart Aquarium, San Francisco, and was infected with a myxosporidian belonging to the genus Myxidium. This genus is common in the gall bladder of fishes, but usually is not injurious. The parasite was very abundant in the bile ducts of the liver, causing a severe hypertrophy of the ducts, which evidently resulted in the death of the host. It is obvious that every precaution should be taken to prevent the introduction of this parasite into our hatcheries, where it might cause very scrious injury.

An investigation of the so-called soft-egg disease was undertaken at the request of the Eastern Trout Growers' Association. During the last few years this disease has caused serious losses at a number of commercial trout hatcheries in New England. The trouble does not appear until some time after the eggs are laid. when they become soft and flaccid and a portion of the yolk may be extruded. During November M. C. James risited several of the hatcheries where the disease was most serious and brought back a quantity of infected eqges for further study. It was determined that the tronble is due to small openings which are formed in the egg membrane by some organism. These openings allow the water to pass freely in and out of the egr, thus destroying the turgidity characteristic of normal eggs. It is evident that the holes in the membrane are formed from the exterior, but it has not yet been possible to determine definitely what organism is the primary cause of the trouble, since several species of bacteria and a species of ameba are almost invariably present. It is planned to continue the investigation of this disease during the next spawning season.

\section*{PIIYSIOLOGY AND NUTRIJION OF FISIIEN}

Feeding experiments on the addition of vitamins to trout foods were continued during the past summer. The principal experiments were conducted by M. C. James, under the direction of Dr. H. S. Davis, at the White Sulphur Springs (W. Va.) station, and in general the results were in complete accord with those obtained at the Manchester (Iowa) station during the summer of 1923. It was found that the addition of cod-liver oil and yeast to beef heart noticeably increased the growth, but an eren more important result was the marked decrease in the mortality. In most instances the mortality among fish fed heart to which a small quantity of yeast and oil had been added was less than one-half that among the fish fed a straight heart diet. One of the most important results of the season's work was the discovery that only very small amounts of oil and yeast are required and that the addition of 1.5 per cent of oil
and 2 per cent of dried yeast will produce fully as good results as do larger amounts.

The beneficial results from the addition of oil and yeast to sheep liver are not as evident as in the cast of heart, although a decreased mortality and slightly increased growth were noted in some cases. This was probably due to the fact that liver is much richer in vitamins than was formerly thought to be the case, and there are apparently sufficient quantities of these substances present to promote normal growth.

In comparing the efficiency of heart and liver as a diet for young trout it should be noted that at both Manchester and White Sulphur Springs the best results were obtained with fish fed beef heart containing small quantities of oil and yeast. Fish fed such a diet were noticeably more active and vigorous than any of the other experimental lots. Howerer, the sup riority of the heart, oil, and yeast diet was more noticeable early in the season than later, and there is some evidence that in practice it may be advantageous to change to a liver diet after the tish are 3 to 4 months old. It is planned to conduct further experiments along this line during the coming summer.

In conn ction with the work at White Sulphur Springs, feeding experiments were carried on at the Wytheville (Va.) and Erwin (Temn.) stations. In each case rainbow-trout fingerlings were dirided into two lots of 2,000 fish each, which were kept under as nearly identical conditions as possible. The only difference was in the food, one lot (the controls) being fed a straight heart diet while small quantities of oil and yeast were add d to the diet of the other lot. Owing, no doubt, to the fact that both lots of fish were fed the same amounts of food the difference in growth was not important, but a striking difference was noted in the mortality of the two lots.

At the Erwin station the experiment was complicated by the fact that there was a very heavy mortality from pop ye among all the fingerlings, but even in this ease the vitamin lot showed a distinct superiority, the mortality being approximately 30 per cent less than among the controls. It is also significant that in his report th: superintendent stated that the fish fed yeast and oil had a better appearance and color than those given beef heart only.

The experiment at the Wytheville station was more successful and is still being continued. The total mortality between May 23 and Decemb r 23 was approximately 32 per cent in case of the vitamin lot, while among the controls the mortality during the same period was approximately 60 per cent.

Experiments on the addition of cod-liver oil and yeast to the food of brood trout to determine the effect on the quality of the egrs are being carried on at the White Sulphur Springs, Wytherille, and Erwin stations, but the results of thes experiments are not yet a vailable.

At Madison, Wis., Dr. A. S. Pearse and three graduate students have carried on investigations on the consumption and assimilation of foods by fishes. For certain experiments painted turtles, terrapins, and gopher turtles were used because they are hardier than fishes. The rat of growth of cold-blooded animals fed on mixtures
of pure foods with varying vitamin constituents has been determined and chemical analyses have been made on such animals after they had been fed for a year.

Studies have also been made on the amount of food consumed by fishes of various ages at different temperatures. In this connection the metabolic rat, as indicated by oxygen consumption, has been determined. It has been found that fishes soon become acclimatized when they are placed in water of a different temperature from that in which they were previously kept and there are characteristic differences in their metabolic processes. The chemical changes in the blood of fishes that are starred, fed, or subjected to other conditions are being investigated.

\section*{BIOLOGICAL LABORATORIES}

The Woods Hole (Mass.) biological laboratory was open as usua? during the summer of 1924 , with Dr. W. H. Rich acting as director. Twenty-two independent investigators availed themselves of the facilities afforded and conducted several valuable researches.

Dr. Edwin Linton and Dr. G. A. MacCallum continued their investigations on the parasites of fishes. Dr. F. G. Hall, of Milton College, and Dr. S. Lepkowsky undertook a study of the blood of fishes, which promises important results. It was found that the oxygen-carrying capacity of the blood in different fishes is correlated in general with the activity of that particular species. Thera is also a correlation with the rate of metabolism of the fish when at rest. Perhaps the most significant results were in respect to changes that take place in the blood volume. A study was made of the external conditions that have an influence on the blood volume, and it was found that changes in salinity and oxygen tensions apparently were the most important of these.

Dr. N. A. Cobb, of the Department of Agriculture, continued an important investigation on the marine nematode fauna of the Woods Hole region. Many additional species were discovered, most of which are new to science. Attention is being given to the ecological relations which may exist between nematodes and fishes.

Paul S. Conger, of the Carnegie Institution of Washington, continued his research on diatoms, which has been carried on for a number of years under the direction of Dr. Albert Mann, also of the Carnegie Institution. Approximately 100 samples were taken, about 80 of which were dredged and the rest secured by means of tow nets. This work is intended to provide material and data for a study of the seasonal distribution of the diatoms and to serve as a basis for a manual of the diatom flora of the Woods Hole region. Attention is also being given to a study of the stomach contents of bottomdwelling animals in order to get more definite ideas of the importance of diatoms in the food cycle of the sea.
Mary. G. Springer conducted an investigation on the nervous mechanism of respiration in the dogfish, and some significant and important conclusions were reached.

In addition to the activities of the independent investigators, the laboratory was used by Dr. P. S. Galtsoff, Dr. C. J. Fish, and Marie D. P. Fish, regular employees of the bureau. The results of the
work of these investigators has been mentioned dewhere in this report.

The activities at the Beaufort (N. (.) biological laboratory have remained about the same. Arrangements have been made, however, for the appointment of Samuel F. Hildebrand, ichthyologist, to the position of director of this laboratory, and it is expected that this appointment will result in increased activity and accomplishment at that place.

During the summer of 1924 investigations on the nature and extent of the fouling of ships' bottoms were continued at Beaufort by Dr. J. P. Visscher. The Navy Deparment arailed itself of the facilities of the laboratory in its investigation of the prevention of the fouling of ships and sent several of its investigators there for that purpose. Several independent investigators also were there during the summer. Elmer Higgins, director of the Key West biological station, also was present at Beaufort conducting his investigations on the life history of the mullet and other important food fishes of the South Atlantic and Gulf coasts.

The situation at the Key West biological station was unchanged. Althongh a competent director has been found in Elmer Higgins. the lack of adequate laboratory facilities has made it impossible to center any extensive investigations at this point. The grounds and buildings are being maintained in excellent condition and it is still hoped that adequate laboratory facilities will be provided ultimately.

At the Fairport (Iowa) biological laboratory have been conducted investigations on fresh-water mussels and on the propagation of some of the more important food fishes of the Mississippi region. These have been mentioned above. Since the last report was published T. K. Chamberlain, then acting director, was appointed director. Several independent investigators were at the laboratory during the summer of 1924. Dr. M. M. Ellis, of the Lniversity of Missouri, conducted a study of gland activity in fishes, and through this was led to a study of the glochiclia of the fresh-water mussels during their parasitic stage. This study gives promise of most interesting and valuable results which may be of great importance in the development of methods for the artificial propagation of mussels. The staff of the laboratory has also maintanefl close relations with various State and private organizations concerned with the conservation of the aquatic resources of the Mississippi Basin.



\section*{ALASKA FISHERY AND FUR-SEAL INDUSTRIES IN 1924}

\author{
By Ward T. Bower, Administrative Officer
}

\section*{CONTENTS}


\section*{INTRODUCTION}

The bureau's work in Alaska in the calendar year 1924 was conducted along much the usual lines, the matter of greatest importance to the fisheries being the approval on June 6 of a new fisheries act, which gare the Department of Commerce increased authority over the fisheries of Alaska and made possible the promulgation of regulations for stricter control of fishery operations. A greatly expanded patrol was maintained for the enforcement of the new law and the regulations issued thereunder, particularly for the protection and conservation of the salmon fishery. The Commissioner of Fisheries spent a considerable portion of the fishing season in Alaska observing conditions and the working of the new law and regulations.

Salmon-tagging operations were carried on at a number of localities in southeastern Alaska to secure data on the migration routes and runs of salmon in that district. Weirs used to facilitate the counting of salmon ascending to the spawning grounds were again maintained in Karluk and Chignik Rivers and in certain streams tributary to Alitak Bay waters. In central Alaska a special investigation in respect to clams was made in an efiort to determine the best method of conserving this fishery. The annual closed season on halibut, provided for in the North Pacific halibut treaty, became effective for the first time in 1924.

On the Pribilof Islands fur-sealing operations were carried on as usual, the chief features being the marking and reserving, for breeding purposes, of a larger number of 3 -year-old male seals than heretofore and the blubbering, at St. Paul İsland, of practically the whole of the 1924 take. The total take of sealskins on St. Paul Island was 13,453 , and on St. George Island 3,766, a grand total of 17,219 skins.

A special study was made of the fox herds, and methods were developed for the systematic feeding of the herd on St. Paul Island. Experiments in feeding various kinds of food were also conducted, and equipment was installed for the preparation of more satisfactory food to take the place of the preserved seal carcasses heretofore fed on St. George Island. In the winter of 1924-25, 81 blue and 26 white fox skins were taken on St. Paul Island and 600 blue and 2 white on St. George Island.

Two sales of fur-seal skins and one of fox skins were held during the year by the department's selling agents.

Acknowledgment is made of the invaluable assistance rendered by the office staff in the compilation and preparation of this report.

\section*{TRIP OF THE COMMISSIONER OF FISHERIES TO ALASKA}

On June 28, 1924, soon after the promulgation of the Alaska fisheries regulations (June 21), which was made possible by virtue of the increased authority conferred by the act of June 6, 1924, Commissioner O'Malley left Washington for an extended trip to Alaska
to observe the effect of the new regulations and to consider the necessity for any modifications or additions. He arrived at Juneau on July 13, and from that time until his departure on September 8 he was constantly engaged in inspections of fishery grounds and in consultation with officials and others concerned with the fisheries of the Territory.

Four cruises were made to rarious places in southeastern Alaska on the bureau's patrol ressel Widgeon. These included visits to Iey Strait, Cross Sound, Port Althorp, Port Frederick, Chatham Strait, Funter Bay, Tenakee Inlet, Sitkoh Bay, Eva Lake, Red Blufi Bay, Big Port Walter, Port Armstrong, Port Alexander, Tebenkof Bay, Bay of Pillars, Frederick Sound, Gambier Bay, Saginaw Bay, Seymour Canal, Lake Bay, Anan Creek, Quadra, Petersburg, Wrangell, and Ketchikan. Other less important places were risited also. On these cruises the commissioner was accompanied by Assistant Agent E. M. Ball.

On August 13 the commissioner left Juneau for Cordova, returning to Ketchikan on August 27. During this time an inspection of Prince William Sound waters was made.

On September 8 the commissioner participated in a meeting at Juneau of the Alaska fisheries advisory committee appointed by the Secretary of Commerce to make recommendations in regard to necessary measures for the protection and conservation of the fisheries of Alaska.

Following his departure from Alaska, the commissioner devoted some time to an investigation of fishery matters in the Pacific Coast States and arrived in Washington on October 8.

\section*{FISHERIES ADVISORY COMMITTEE}

To assist in developing the best methods of controlling and conserving the fisheries of Alaska under the broad authority conferred by the act of June 6, 1924, the Secretary of Commerce appointed an Alaska fisheries advisory committee, as follows: Gov. Scott C. Bone, chairman, Juneau; Anthony J. Dimond, Valdez; Carl 'A. Sutter, Ketchikan; Samuel Butts, Sitka; J. R. Heckman, Ketchikan; Calvin C. Hazelet, Cordova; and Harry E. Ellsworth, Seward. Both the Alaska Territorial Fish Commission and commercial interests were represented on this committee.

1 meeting of the committee was held at Juneau on September 8, at which the Commissioner of Fisheries was present. As a result, the committee submitted recommendations that were helpful to the department in formulating the revised fishery regulations appearing under date of December 2, 1924. As indicated by its name, the functions of the committee are advisory in character.

\section*{FISHERY INDUSTRIES}

As in corresponding reports for previous years, the Territory of Alaska is here considered in the three coastal geographic sections generally recognized, as follows: Southeast Alaska, embracing all that narrow strip of mainland and the numerous adjacent islands from Portland Canal northwestward to and including Yakutat Bay; central Alaska, the region on the Pacific from Yakutat Bay westward, including Prince William Sound, Cook Inlet and the southern coast of Alaska Peninsula, to Unimak Pass; and western Alaska, the north shore of the Alaska Peninsula, including the Aleutian Islands westward from Unimak Pass, Bristol Bay, and the Kuskokwim and Yukon Rivers. These divisions are solely for statistical purposes and do not coincide with areas established in departmental regulations.

Detailed reports and statistical tables dealing with the various fishery industries are presented herewith, and there are also given the important features of certain subjects that were the objects of special investigation or inquiry.

\section*{ALASKA FISHERIES LEGISLATION}

After many years of unsuccessful effort, a much-needed act for the protection and conservation of the fisheries of Alaska was passed by Congress and approved by the President under date of June 6, 1924, amending the act of June 26, 1906. The text of the new act is as follows:

\section*{An Act for the Protection of the Fisheries of Alaska, and for Other Purposes}

Be it enacted by the Senate and House of Representatives of the United States of America in Cingress assembled, That for the purpose of protecting and conserving the fisheries of the United States in all waters of Alaska, the Secretary of Commerce from time to time may set apart and reserve fishing areas in any of the waters of Alaska over which the United States has jurisdietion, and within such areas may establish closed seasons during which fishing may be limited or prohibited as he may preseribe. Under this authority to limit fishing in any area so set apart and reserved, the Secretary may (a) fix the size and character of nets, boats, traps, or other gear and appliances to be used therein; (b) limit the catch of fish to be taken from any area; (c) make such regulations as to time, means, metlods, and extent of fishing as he may deem advisable. From and after the creation of any such fishing area and during the time fishing is prohibited therein, it shall be unlawful to fish therein or to operate therein any boat, seine, trap, or other gear or apparatus for the purpose of taking fish; and from and after the creation of any such fishing area in which limited fishing is permitted, such fishing shall be earried on only during the time, in the manner, to the extent, and in conformity with such rules and regulations as the Secretary prescribes under the authority herein given: Provided, That every such regulation made by the Secretary of Commerce shall be of general application within the particular area to which it applies, and that no exclusive or several right of fishery shall be granted therein, nor shall any citizen of the United States be denied the right to take, prepare, cure, or preserve fish or shellfish in any area of the waters of Alaska where fishing is perinitted by the Secretary of Commerce. The right herein given to establish fishing areas and to permit limited fishing therein shall not apply to any creek, stream, river, or other bodies of water in
which fishing is prohibited by specific provisions of this Act, but the Secretary of Commerce through the creation of such areas and the establishment of closed seasons may further extend the restrictions and limitations imposed upon fishing by specific provisions of this or any other Act of Congress.

It shall be unlawful to import or bring into the Territory of Alaska, for purposes other than personal use and not for sale or barter, salmon from waters outside the jurisdiction of the United States taken during any closed period provided for by this Act or regulations made thereunder.

Sec. 2. In all creeks, streams, or rivers, or in any other bodies of water in Alaska, over which the United States has jurisdiction, in which salmon run, and in which now or hereafter there exist racks, gateways, or other means by which the number in a run may be counted or estimated with substantial accuracy, there shall be allowed an escapement of not less than 50 per centum of the total number thereof. In such waters the taking of more than 50 per centum of the run of such fish is hereby prohibited. It is hereby declared to be the intent and policy of Congress that in all waters of Alaska in which salmon run there shall be an escapement of not less than 50 per centum thereof, and if in any year it shall appear to the Secretary of Commerce that the run of fish in any waters has diminished, or is diminishing, there shall be required a correspondingly increased escapement of fish therefrom.

Sec. 3. Section 3 of the Act of Congress entitled "An Act for the protection and regulation of the fisheries of Alaska," approved June 26, 1906, is amended to read as follows:
"Sec. 3. That it shall be unlawful to erect or maintain any dam, barricade, fence, trap, fish wheel, or other fixed or stationary obstruction, except for purposes of fish culture, in any of the waters of Alaska at any point where the distance from shore to shore is less than one thousand feet, or within five hundred yards of the mouth of any creek, stream, or river into which salmon run, excepting the Karluk and Ugashik Rivers, with the purpose or result of capturing salmon or preventing or impeding their ascent to the sparwning grounds, and the Secretary of Commerce is hereby authorized and directed to have any and all such unlawful obstructions removed or destroyed. For the purposes of this section, the mouth of such creek, stream, or river shall be taken to be the point determined as such mouth by the Secretary of Commerce and marked in accordance with this determination. It shall be unlawful to lay or set any seine or net of any kind within one hundred yards of any other seine, net, or other fishing appliance which is being or which has been laid or set in any of the waters of Alaska, or to drive or to construct any trap or any other fixed fishing appliance within six hundred yards laterally, or within one hundred yards endwise of any other trap or fixed fishing appliance."

Sec. 4. Section 4 of said Act of Congress approved June 26, 1906, is amended to read as follows:
"Sec. 4. That is shall be unlawful to fish for, take, or kill any salmon of any species or by any means except by hand rod, spear, or gaff in any of the creeks, streams, or rivers of Alaska; or within five hundred yards of the mouth of any such creek, stream, or river over which the United States has jurisdiction, excepting the Karluk and Ugashik Rivers: Provided, That nothing contained herein shall prevent the taking of fish for local food requirements or for use as dog feed."

Sec. 5. Section 5 of said Act of Congress approved June 26, 1906, is amended to read as follows:
"Sec. 5. That it shall be unlawful to fish for, take, or kill any salmon of any species in any manner or by any means except by hand rod, spear, or gaff for personal use and not for sale or barter in any of the waters of Alaska over which the United States has jurisdiction from six o'clock postmeridian of Saturday of each week until six o'clock antemeridian of the Monday following, or during such further closed time as may be declared by authority now or hereafter conferred, but such authority shall not be exercised to prohibit the taking of fish for local food requirements or for use as dog feed. Whenever the Secretary of Commerce shall find that conditions in any fishing area make such action advisable, he may advance twelve hours both the opening and ending time of the minimum thirty-six-hour closed period herein stipulated. Throughout the weekly closed season herein prescribed the gate, mouth, or tunnel of all stationary and floating traps shall be closed, and twenty-five feet of the webbing or net of the 'heart' of such traps on each side next to the 'pot' shall be lifted or lowered in such manner as to permit the free passage of salmon and other fishes."

Sec. 6. Any person, company, corporation, or association violating any provision of this Act or of said Act of Congress approved June 26, 1906, or of any regulation made under the authority of either, shall, upon conviction thereof,
be punished by a fine not exceeding \(\$ 5,000\) or imprisonment for a term of not more than ninety days in the county jail, or by both such fine and imprisonment; and in ease of the violation of section 3 of said Act approved June 26, 1906, as amended, there may be imposed a further fine not exceeding \(\$ 250\) for each day the obstruction therein declared unlawful is maintained. Every boat, seine, net, trap, and every other gear and appliance used or employed in violation of this Act or in violation of said Act approved June 26, 1906, and all fish taken therein or therewith, shall be forfeited to the United States, and shall be seized and sold under the direction of the court in which the forfeiture is declared, at public auction, and the proceeds thereof, after deducting the expenses of sale, shall be disposed of as other fines and forfeitures under the laws relating to Alaska. Proceedings for such forfeiture shall be in rem under the rules of admiralty.

That for the purposes of this Act all employees of the Bureau of Fisheries, designated by the Commissioner of Fisheries, shall be considered as peace officers and shall have the same powers of arrest of persons and seizure of property for any violation of this Act as have United States marshals or their deputies.

Sec. 7. Sections 6 and 13 of said Aet of Congress approved June 26, 1906, are hereby repealed. Such repeal, however, shall not affect any act done or any right accrued or any suit or procueding had or commenced in any civil cause prior to said repeal, but all liabilities under said laws shall continue and may be enforced in the same manner as if committed, and all penalties, forfeitures, or liabilities incurred prior to taking effect hereof, under any law embraced in, changed, modified, or repealed by this Act, may be prosecuted and punished in the same manner and with the same effect as if this Act had not been passed.

Sec. 8. Nothing in this Act contained, nor any powers herein conferred upon the Secretary of Commerce, shall abrogate or curtail the powers granted the Territorial Legislature of Alaska to impose taxes or licenses, nor limit or curtail any powers granted the Territorial Legislature of Alaska by the Act of Congress approved August 24, 1912, "To create a legislative assembly in the Territory of Alaska, to confer legislative power thereon, and for other purposes."

Approved, June 6, 1924.
Following the passage of the above act, the need for the two fishery reservations created in 1922 ceased to exist. The Executive orders of February 17 and November 3, 1922, which created the Alaska Peninsula Fisheries Reservation and the Southwestern Alaska Fisheries Reservation, respectively, were therefore revoked by Executive orders dated June 7, 1924.

These orders are as follows:

\section*{EXECUTIVE ORDER}

Whereas on the 17 th day of February, 1922, an Executive order was promulgated creating the Alaska Peninsula Fisheries Reservation to insure the protection of the fisheries in the waters therefore; and

Whereas the act of Congress of June 6, 1924, entitled "An Act for the Protection of the Fisheries of Alaska and for other Purposes," provides for the protection and administration of the fisheries in all Alaskan waters, and the Executive reservation aforesaid has therefore become unnecessary;

Therefore the said Executive order of February 17, 1922, creating the Alaska Peninsula Fisheries Reservation is hereby revoked.

This revocation shall not affect the Executive order of March 3, 1913, creating the Aleutian Islands Reservation, which shall remain in full force and effect.

Calvin Coolidge.
The White House,
June 7, 1924.

\section*{EXECUTIVE ORDER}

Whereas on the 3d day of November, 1922, an Executive order was promulgated creating the Southwestern Alaska Fisheries Reservation to insure the protection of the fisheries in the waters therefore; and

Whereas the act of Congress of June 6, 1924, entitled "An Act for the Protection of the Fisheries of Alaska and for other Purposes," provides for the protection and administration of the fisheries in all Alaskan waters, and the Executive reservation aforesaid has therefore become unnecessary;

Therefore the said Executive order of November 3, 1922, ereating the Southwestern Alaska Fisheries Reservation is hereby revoked.

This revocation shall not affeet the Executive order of March 3, 1913, ereating the Aleutian Jslands Reservation, which shall remain in full foree and effect.

Calvin Coolidge.
The White House,
June 7, 1924.
Under date of June 7, 1924, an act for the protection of the North Pacific halibut fishery was approved, the text of which is as follows:

\section*{An Act for the Protection of the Northern Pacific Halibut Fishery}

Be it cnacted by the Senate and House of Representatives of the United States of America in Congress assembled.

Section 1. Short title.-This Aet may be eited as the Northern Pacific Halibut Act.

Sec. 2. Definition of terms.-For the purposes of this Act "elose season" shall mean the period from the 16 th day of November in any year to the 15 th day of Febriuary in the next following year, both days inclusive, or any other close season hereafter fixed by agreement between the United States and Canada; "territorial waters of the United States" shall mean the waters contiguous to the western coast of the United States and the waters contiguous to the coast of Alaska; "territorial waters of Canada" shall mean the waters contiguous to the western coast of Canada, and "prohibited waters" shall mean the territorial waters of the United States, the territorial waters of Canada, and the high seas, including Bering Sea, extending westerly from the limits of the territorial waters of the United States and of Canada.

Sec. 3. Fishing unlaifful, wien.- It shall be unlawful for any person to fish for, or eateh, or attempt to cateh, any halibut (Hippoglossus) at any time during the close season in the territorial waters of the United States, or for any national or inhabitant of the United States to fish for, or cateh, or attempt to eateh, any halibut at any time during the elose season in prohibited waters. The unintentional eatehing of halibut, when legally fishing for other speeies of fish, shall not constitute a violation of this Act if such halibut shall be used for food by the crew of the vessel catching the same, or be landed and immediately delivered to any authorized official of the Bureau of Fisheries of the Department of Commeree of the United States or the fishing authorities of the Dominion of Canada. The halibut delivered to any offieial of the United States pursuant to the provisions of this section shall be sold by the Department of Commerce to the highest bidder for cash and the proceeds therefrom, exclusive of necessary expenses in connection therewith, shall be eovered into the Treasury of the United States.

Sec. 4. Unlawful port use; departures.-No person, firm, or eorporation shall use any port of or place in the United States to furnish, prepare, or outfit any vessel, boat, or other craft intended to be used in violation of this Act, nor shall any person permit, or cause to be permitted, any vessel, boat, or other eraft intended to be used in violation of this Aet to depart from any port of or place in the United States.

Sec. 5. Unlawful port entry; possession.-It shall be unlawful for any vessel, boat, or other craft having on board any halibut eaught eontrary to the provisions of this Act to enter any port or place in the United States, or for any vessel, boat, or other eraft to enter any such port or place while upon or in the proseeution of any voyage during which the vessel, boat, or other eraft fished or was used in fishing for halibut in prohibited waters in the elose season. It shall be unlawful for any person knowingly to have in his possession any halibut unlawfully caught under the provisions of this Act.

Sec. 6. Penalty.-Any person violating any of the provisions of this Aet shall be fined not less than \(\$ 100\) nor more than \(\$ 1,000\) or imprisoned not more than one year, or both.
Sec. 7. Patrols; searches.-The President shall cause a patrol of naval or other public vessels designated by him to be maintained in such places and waters as to him shall seem expedient for enforeing this Act, and any officer of any vessel engaged in such service, and any other officers designated by the President, may search any vessel, boat, or other craft in the teriitorial waters of the United States and any vessel, boat, or other craft of the United States on

53896-25٪-2
the high seas when suspected of having violated or being about to violate the provisions of this Act.

Sec. 8. Canadian vessels and nationals.-Every national or inhabitant and every vessel of Canada found violating this Act shall be delivered as soon as practicable to an authorized official of Canada at the nearest point to the place of seizure or elsewhere as the officials of the United States seizing the same and the authorized officials of Canada may agree upon, and the witnesses and proof necessary to the prosecution of said persons and vessels of Canada shall be furnished with reasonable promptitude to the authorities of Canada having jurisdiction thereof.

Sec. 9. Seizure and forfeiture.-Every vessel, boat, or craft employed in any manner in violating this Act shall be seized by any collector, surveyor, inspector, officer of a revenue cutter, or person specified in section 7 hereof, and except as provided in section 8 hereof, every such vessel, boat, or craft, inctuding its tackle, apparel, furniture, cargo, and stores, shall be forfeited to the United States by proper proceedings in any court of the United States in Alaska, California, Oregon, or Washington.

Sec. 10. Fisheries commission exemption.-None of the inhibitions contained in this Act shall apply to the International Fisheries Commission when engaged in any scientific investigation.

Sec. 11. Appropriation.-There is hereby authorized to be appropriated, out of any money in the Treasury not otherwise appropriated, the sum of \(\$ 15,000\) for the fiscal year 1925 for the salaries and expenses of the International Fisheries Commission.

Sec. 12. Duration of Act.-This Act shall take effect immediately and continue in force until the termination of the convention concluded by the United States and Great Britain on March 2, 1924, for the protection of the halibut fishery of the northern Pacific Ocean.

Approved, June 7, 1924.
The convention of March 2, 1923, between the United States and Great Britain, for the preservation of the halibut of the northern Pacific Ocean was duly ratified by both Governments, ratifications being exchanged on October 21, 1924, and on October 22 a proclamation was issued by the President as follows:

Presidential Proclamation Regarding the Convention Between the United States and Great Britain for the Preservation of the Halibut Fishery of the Northern Pacific Ocean, Including Bering Sea

Whereas a convention between the United States of America and Great Britain for the preservation of the halibut fishery of the northern Pacific Ocean, including Bering Sea, was concluded and signed by their respective plenipotentiaries at Washington on the second day of March, one thousand nine hundred and twentythree, the original of which is word for word as follows:

The United States of America and His Majesty the King of the United Kingdom of Great Britain and Ireland, and of the British Dominions beyond the Seas, Emperor of India, being equally desirous of securing the preservation of the halibut fishery of the northern Pacific Ocean, have resolved to conclude a convention for this purpose, and have named as their plenipotentiaries:

The President of the United States of America: Charles Evans Hughes, Sceretary of State of the United States; and

His Britannic Majesty: The Honorable Ernest Lapointe, K. C., B. A., LL. B., Minister of Marine and Fisheries of Canada;

Who, after having communicated to each other their respective full powers, found in good and due form, have agreed upon the following articles:

\section*{ARTICLE I}

The nationals and inhabitants and the fishing vessels and boats of the United States and of the Dominion of Canada, respectively, are hereby prohibited from fishing for halibut (Hippoglossus) both in the territorial waters and in the high seas off the western coasts of the United States, including Bering Sea, and of the Dominion of Canada, from the 16 th day of November next after the date of the exchange of ratifications of this convention, to the 15th day of the following February, both days inclusive, and within the same period yearly thereafter,
provided that upon the recommendation of the International Fisheries Commission hereinafter described, this close season may be modified or suspended at any time after the expiration of three such seasons, by a special agreement concluded and duly ratified by the high contracting parties.

It is understood that nothing contained in this article shall prohibit the nationals or inhabitants and the fishing vessels or boats of the United States and of the Dominion of Canada from fishing in the waters hereinbefore specified for other species of fish during the season when fishing for halibut in such waters is prohibited by this article. Any halibut that may be taken incidentally when fishing for other fish during the season when fishing for halibut is prohibited under the provisions of this article may be retained and used for food for the crew of the vessel by which they are taken. Any portion thereof not so used shall be landed and immediately turned over to the duly authorized officers of the Department of Commerce of the United States or of the Department of Marine and Fisheries of the Dominion of Canada. Any fish turned over to such officers in pursuance of the provisions of this article shall be sold by them to the highest bidder and the proceeds of such sale, exclusive of the necessary expenses in connection therewith, shall be paid by them into the Treasuries of their respective countries.

ARTICLE II
Every national or inhabitant, vessel or boat of the United States or of the Dominion of Canada engaged in halibut fishing in violation of the preceding article may be seized except within the jurisdiction of the other party by the duly authorized officers of either high contracting party and detained by the officers making such seizure and delivered as soon as practicable to an authorized official of the country to which such person, vessel, or boat belongs, at the nearest point to the place of seizure, or elsewhere, as may be mutually agreed upon. The authorities of the nation to which such person, vessel, or boat belongs alone shall have jurisdiction to conduct prosecutions for the violation of the provisions of the preceding article or of the laws or regulations which either high contracting party may make to carry those provisions into effect, and to impose penalties for such violations; and the witnesses and proofs necessary for such prosecutions, so far as such witnesses or proofs are under the control of the other high contracting party, shall be furnished with all reasonable promptitude to the authorities having jurisdiction to conduct the prosecutions.

\section*{ARTICLE III}

The high contracting parties agree to appoint within two months after the exchange of ratifications of this convention, a commission to be known as the International Fisheries Commission, consisting of four members, two to be appointed by each party. This commission shall continue to exist so long as this convention shall remain in force. Each party shall pay the salaries and expenses of its own members, and joint expenses incurred by the commission shall be paid by the two high contracting parties in equal moieties.

The commission shall make a thorough investigation into the life history of the Pacific halibut, and such investigation shall be undertaken as soon as practicable. The commission shall report the results of its investigation to the two Governments and shall make recommendations as to the regulation of the halibut fishery of the north Pacific Ocean, including the Bering Sea, which may seem to be desirable for its preservation and development.

ARTICLE IV
The high contracting parties agree to enact and enforce such legislation as may be necessary to make effective the provisions of this convention, with appropriate penalties for violations thereof.

\section*{ARTICLE V}

This convention shall remain in force for a period of five years and thereafter until two years from the date when either of the high contracting parties shall give notice to the other of its desire to terminate it. It shall be ratified in accordance with the constitutional methods of the high contracting parties. The ratifications shall be exchanged in Washington as soon as practicable, and the convention shall come into force on the day of the exchange of ratifications.

In faith whereof the respective plenipotentiaries have signed the present convention in duplicate, and have theremnto affixed their seals.

Done at the city of Washington, the second day of March, in the year of our Lord one thousand nine hundred and twenty-three.

> Charles Evans Hughes. [seal.]
> Ernest Lapointe.

And whereas the said convention has been duly ratified on both parts, and the ratifications of the two Govermments were exchanged in the city of Washington on the twenty-first day of October, one thousand nine hundred and twenty-four;

Now, therefore, be it known that I, Calvin Coolidge, President of the United States of America, have caused the said convention to be made public, to the end that the same and every article and elause thereof may be observed and fulfilled with good faith by the United States and the citizens thereof.

In testimony whereof I have hereunto set my hand and caused the seal of the United States to be affixed.

Done at the city of Washington, this twenty-second day of October, in the year of our Lord one thousand nine hundred and twenty-four, and of the Independence of the United States of America the one hundred and forty-ninth.
[seal] Calvin Coolidge.
By the President:
Charles E. Hughes, Secretary of State.
Under date of November 3, 1924, an Executive order was issued in regard to the maintenance of a patrol for the enforcement of the provisions of the northern Pacific halibut act, as follows:

Executive Order Regarding the Enforcement of the Act for the Protection of the Northern Pacific Halibut Fishery, Approved June 7, 1924

It being expedient for the enforcement of the act for the protection of the northern Pacific halibut fishery, approved June 7, 1924, that a patrol be maintained in certain waters, and that public vessels be designated for that purpose and officers be designated to enforce said act:

Therefore it is hereby ordered:
1. That a patrol be maintained in the territorial waters of the United States and the high seas, including Bering Sea, extending westerly from the territorial waters of the United States and Canada, to be conducted by any naval or other public vessels on service in such waters and including specifically the following named vessels of the Bureau of Fisheries: Widgeon, Murre, Auklet, Petrel, Eider, Kittiwake, Blue Wing, Merganser, and Scoter.
2. That the masters of such vessels, and the agents, assistant agents, inspectors, and wardens of the Bureau of Fisheries are hereby designated as officials to exercise all powers of search and seizure conferred by said act upon persons so designated by the President.

Calvin Coolidge.
The White House,
November 3, 1924.

\section*{NEW FISHERY REGULATIONS}

Under the authority conferred by the act of June 6, 1924, regulations covering the fisheries of Alaska were issued by the Secretary of Commerce June 21, 1924, as follows:

By virtue of the authority vested in the Seeretary of Commerce, fishing areas are hereby set apart and regulations governing fishing therein are made immediately effective, as follows:

\section*{1. BRISTOL BAY AREA}

The Bristol Bay area is hereby defined to include all territorial coastal and tributary waters of Alaska extending from Cape Menshikof to Cape Newenham.
1. Commereial fishing for salmon shall be conducted solely by drift gill nets. The use of salmon traps, beach seines, and purse seines is prohibited.
2. The total length of gill nets on any salmon fishing boat shall not exceed two hundred (200) fathoms, hung measure.
3. King-salmon nets shall have a mesh at least \(81 / 2\) inches, stretched measure, and red-salmon nets a mesh at least \(53 / 4\) inches, stretched mcasure, between knots.
4. Commercial fishing for king salmon may begin at any time after the appearance of the run, but must close by midnight of July 25 of each year.
5. Commercial fishing for red salmon shall not begin prior to midnight of June 25, and must close by midnight of July 25 of each year, when all commercial fishing for salmon shall cease in this area.
6. The trailing of web behind any fishing boat is prohibited above the markers fixing closed waters.
7. The use of motor-propelled fishing boats in catching salmon is prohibited.
8. Fishing for smelts in localities where red salmon are migrating is prohibited.
9. Commercial fishing for salmon is prohibited in the Lgashik River above a line extending at right angles across said river 500 yards below the mouth of King Salmon River.
10. Commercial fishing for salmon is prohibited above a line extending at right angles across Kichak Bay from the marker on a high point on the east bank of Prosper Creek, about 700 yards above the Koggiung cannery of the Alaska Packers Association, to the marker on the opposite side, the course being about north, 44 degrees west, magnetic.

\section*{II. ALASKA PENINSULA AREA}

The Alaska Peninsula area is hereby defined to include all territorial coastal and tributary waters of the Alaska Peninsula from Cape Menshikof on the Bering Sea shore and extending in a southwesterly direction to Unimak Pass, thence in a nortlieasterly direction along the Pacific side of the Alaska Peninsula to Castle Cape (Tuliumnit Point). The waters of Unimak, the Sannak, the Shumagin, and other adjacent islands are included.
1. In the waters of Nelson Lagoon, Herendeen Bay, and Port Moller the 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6,1924 , is hereby extended to include the period from 6 o'clock postmeridian of Friday of each week until 6 o'clock antemeridian of the Monday following, and from 12 o'elock midnight of each Tuesday until midnight of the following Wednesday, making a total weekly closed period in these waters of 84 hours, which shall be effective throughout the entire salmon-fishing season of each year.
2. In all other waters of this area the 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include the period from 6 o'clock postmeridian of Friday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 60 hours: Provided, That this extension of 24 hours closed period each week shall not be effective after midnight of July 20 each year.
3. Commercial fishing for salmon is prohibited in Thin Point Lagoon and stream and within a distance of 500 yards outside the entrance to said lagoon.
III. CHIGNIK AREA

The Chignik area is hereby defined to include the territorial coastal and tributary waters of Alaska along the mainland shore from Castle Cape (Tuliumnit Point) to Cape Kumnik.
1. The take of salmon within a line from Castle Cape to Cape Kumliun shall not exceed fifty (50) per cent of the total run as determined at the weir in Chignik River operated by the Bureau of Fisheries.

\section*{IV. KODIAK AREA}

The Kodiak area is hereby defined to include the waters of the mainland shore extending from Cape Douglas southwestward to Cape Kumnik and the territorial coastal and tributary waters of Alaska surrounding Kodiak and adjacent islands, but excluding the waters embraced within the Afognak Forest and Fish Culture Reserve established by presidential proclamation of December 24, 1892.

Salmon fishery.-1. The use of purse seines and floating traps for the capture of salmon is prohibited.
2. Commercial fishing for salmon is prohibited along the western shore of Kodiak Island between Cape Alitak and Cape Karluk.
3. Commercial fishing for salmon is prohibited in the Karluk River and within one hundred (100) yards of its mouth where it breaks through Karluk Spit into Shelikof Strait. The take of salmon in Karluk waters shall not exceed fifty (50) per cent of the total run as determined at the weir in Karluk River operated by the Bureau of Fisheries.
4. Commercial fishing for salmon is prohibited from the village of Uyak in a general westerly direction to Cape Uyak.
5. In all waters inside of a line from Outlet Cape to Cape Uganik and to Miners Point, iucluding Uganik Bay, Viekoda Bay, Terror Bay, and connecting and tributary waters, the \(36-\mathrm{hour}\) elosed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include the period from 6 o'clock postmeridian of Friday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 60 hours.
6. The taking of salmon within a line from Alitak Cape to Trinity Cape shall not exceed fifty (50) per cent of the total run as determined at the weirs on tributary waters of Alitak Bay operated by the Bureau of Fisheries.
7. Commercial fishing for salmon inside of a line from Cape Alitak to Trinity Cape shall be conducted solely by beach seines and traps.

Herring fishery.-1. Gill nets used in catching herring shall not be of smaller mesh than three (3) inches, stretched measure.
2. No one shall place, or cause to be placed, across the entrance of any lagoon or bay any net or other device which will prevent the free passage at all times of herring in and out of said lagoon or bay.

\section*{V. COOK INLET AREA}

The Cook Inlet area is hereby defined to include Cook Inlet, its tributary waters, and all adjoining waters north of Cape Douglas and west of Point Gore. The Barren Islands are included within this area.

Salmon fishery.-1. The 36 -hour closed period for salmon fishing prescribed by section 5 of the act approved June 6, 1924, is hereby extended to inelude the period from 6 o'elock antemeridian of Saturday of each week to 6 o'elock antemeridian of the Monday following, making a weekly closed period of 48 hours.
2. Commercial fishing for salmon is prohibited above a line from Point Possession to the western limit of the closed area around the mouth of the Susitna River.
3. Commercial fishing for salmon is prohibited in Chinik Inlet, Kamishak Bay, within a line which joins the outer headlands of the inlet and passes outside the two small islands which lie near its entrance.
4. The use of purse seines and floating traps for the eapture of salmon is prohibited.

Herring fishery.-1. Fishing for herring is prohibited during the period from January 1 to May 31 of each calendar year, except for bait or for local food purposes.
2. The use of purse seines in the capture of herring is prohibited at all times in Halibut Cove and Lagoon, including the waters within a line drawn from the light on Ismailof Island to the outermost point on Glacier Spit.
3. The maintaining of a herring pound or the dumping of offal and dead herring in the waters of Halibut Cove and Lagoon is prohibited.
4. Gill nets used in catching herring shall not be of smaller mesh than three (3) inches, stretched measure.
5. No one shall place, or cause to be placed, across the entrance of any lagoon or bay any net or other device which will prevent the free passage at all times of herring in and out of said lagoon or bay.

\section*{VI. PRINCE WILLIAM SOUND AREA}

The Prince William Sound area is hereby defined to include all territorial coastal and tributary waters of Alaska extending from Point Whitshed on the east to and including Resurrection Bay on the west.

Salmon fishery.-1. The 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to inelude the period from 6 o'clock antemeridian of Saturday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 48 hours.
2. Commercial fishing for salmon is prohibited at all times within one thousand \((1,000)\) yards of the mouth of Coghill River, the mouth of Eshamy (Chenaga) River, and the mouths of Robe River, Lowe River, and other unnamed streams flowing into Port Valdez in the immediate vicinity of Valdez.
3. In Eshamy Bay, Eshamy Lagoon, and tributary waters, outside the closed area around the mouth of Coghill River, and outside the closed area around the mouths of Robe River, Lowe River, and other unnamed streams flowing into Port Valdez in the immediate vicinity of Valdez there shall be a distance interval of at least two hundred (200) yards both endwise and laterally at all times between all nets operated. Nets operated in these waters shall not exceed one hundred (100) yards each in length, and shall be set in substantially a straight line.

Herring fishery.-1. Fishing for herring is prohibited during the period from January 1 to June 24, both dates inclusive, and from November 1 to December 31, both dates inclusive, of each calendar year, except for bait or for local food purposes.
2. Gill nets used in catching herring shall not be of smaller mesh than three (3) inches, stretched measure.
3. No one shall place, or cause to be placed, across the entrance of any lagoon or bay any net or other device which will prevent the free passage at all times of herring in and out of said lagoon or bay.

\section*{VII. COPPER RIVER AREA}

The Copper River area is hereby defined to include all territorial coastal and tributary waters of Alaska extending from Point Whitshed on the west to and including Bering River on the east.
1. Commercial fishing for salmon shall not begin prior to midnight of May 25 of each year.
2. The 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6,1924 , is hereby extended to include the period from 6 o'clock postmeridian of Friday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 60 hours.
3. Stake nets for the capture of salmon shall not exceed 600 feet in length, and shall be set in substantially a straight line.
4. The use of traps for the capture of salmon is prohibited.

\section*{VIII. SOUTHEASTERN ALASKA AREA}

The southeastern Alaska area is hereby defined to include all territorial coastal and tributary waters of Alaska extending from Dixon Entrance on the south to and including Yakutat Bay on the north.
1. In the waters of this area west of the 139th meridian of west longitude the 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include the period from 6 o'clock antemeridian of Saturday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 48 hours.
2. Commercial fishing for salmon within the waters between the 57 th and 60 th parallels of north latitude and east of the 139th meridian of west longitude is prohibited for 20 days from midnight of August 11 to midnight of August 31 of each year.
3. Commercial fishing for salmon within the waters south of the 57 th parallel of north latitude, except the west coast of Prince of Wales Island and adjacent islands, is prohibited for 20 days from midnight of August 20 to midnight of September 9 of each year.
4. Commercial fishing for salmon within the waters of the west coast of Prince of Wales Island from Point Baker to Cape Chacon, including the waters of adjacent islands, is prohibited for 20 days from midnight of August 25 to midnight of September 14 of each year.
5. Commercial fishing for salmon is prohibited at all times in Yes Bay and within one thousand \((1,000)\) yards outside of a line from Bluff Point to Syble Point.
6. Commercial fishing for salmon is hereby prohibited inside of markers which shall be established therefor in the following-described waters within this area:
(a) Thorne and Tolstoi Bays, indenting the eastern shore of Prince of Wales Island.
(b) Walker Cove, on the mainland tributary to Behm Canal.
(c) Naha Bay, indenting the western shore of Revillagigedo Island.
(d) Thoms Place, indenting the southwestern shore of Wrangell Island on

Zimovia Strait.
(e) Olive Cove, indenting the northeastern shore of Etolin Island.
(f) Anita Bay, on Etolin Island, opening into Zimovia Strait.
(g) Tenakee Inlet and Freshwater Bay, indenting the eastern shore of Chichagof Island.
(h) Wilson Cove, indenting the western shore of Admiralty Island.
(i) Whitewater Bay, indenting the western shore of Admiralty Island.
(j) Saginaw Bay, indenting the northwestern shore of Kuiu Island.
(k) Ankau Creek and Inlet, in the Yakutat Bay region.
( \(l\) ) Akwe or Ahquay River, in the Yakutat Bay region.

\section*{GENERAL REGULATIONS}

By virtue of the authority conferred by the acts approved June 6, 1924, and June 26, 1906, the following regulations shall be immediately effective in all waters of Alaska, including the special areas already described above:
1. During closed periods all salmon traps within the areas affected shall be closed in accordance with the method prescribed by section 5 of the act of June 6, 1924.
2. All persons engaged in fishery operations are warned to give due regard to all markers erected by the Department of Commerce to indicate waters closed to fishery operations by the provisions of the act of June 6, 1924, and of regulations promulgated thereunder. Section 3 of that act specifically states that the mouths of creeks, streams, or rivers shall be taken to be as determined by the Secretary of Commerce and marked in accordance therewith.
3. In waters where a rack or weir is maintained by the Bureau of Fisheries for the purpose of counting salmon ascending to the spawning grounds records of the catch of salmon shall be furnished daily by all operators to the local representative of the Bureau of Fisheries in charge, and upon notification by the Commissioner of Fisheries or his authorized representative that an excessive proportion of the run is being taken, so that the escapement of any species is less than the 50 per cent specified by section 2 of the act of June 6, 1924, all commercial fishing operations shall at once be discontinued and shall not be resumed until permission therefor is granted by the Commissioner of Fisheries or his duly authorized representative.
4. The driving of salmon downstream and the causing of salmon to go outside the protected area at the mouth of any salmon stream are expressly prohibited.
5. During the inspection of the salmon fisheries by the agents and representatives of this department they shall have at all times free and unobstructed access to all canneries, salteries, and other fishing establishments, and to all hatcheries.
6. All persons, companies, or corporations owning, operating, or using any stake net, set net, trap net, pound net, or fish wheel for taking salmon or other fishes shall cause to be placed in a conspicuous place on said trap net, pound net, stake net, set net, or fish wheel the name of the person, company, or corporation owning, operating, or using same, together with a distinctive number, letter, or name which shall identify each particular stake net, set net, trap net, pound net, or fish wheel, said lettering and numbering to consist of black figures and letters, not less than 6 inches in length, painted on white ground.
7. If in the process of curing salmon bellies the remaining edible portion of the fish is not used such action will be regarded as wanton waste within the meaning of section 8 of the act of June 26, 1906, and those who engage in this practice will be reported for prosecution as provided for in the act.
8. These regulations do not apply to the Afognak Reservation, fishing within which is prohibited, except by resident natives, by the terms of the law and Executive order creating it.
9. The minimum size of razor clams taken for commercial purposes is fixed at four and one-half ( \(41 / 2\) ) inches in total length of shell. Not more than five (5) per cent of the clams taken may measure less than this minimum.
10. These regulations shall be subject to such change or revision by the Secretary of Commerce as may appear advisable from time to time. They shall be in full force and effect immediately from and after date of issue.

Under date of August 20, 1924, the following supplementary regulations were issued:

The regulations for the protection of the fisheries of Alaska published in Department of Commerce Circular No. 251, tenth edition, under date of June 21, 1924, all of which remain in full force and effect, are hereby supplemented by the following regulations:

\section*{ALASKA PENINSULA AREA}

In all waters of the Alaska Peninsula area all commercial fishing for salmon shall cease at midnight August 23, 1924. This includes all territorial coastal and tributary waters of the Alaska Peninsula from Cape Menshikof on the Bering Sea shore and extending in a southwesterly direction to Unimak Pass, thence in a northeasterly direction along the Pacific side of the Alaska Peninsula to Castle Cape (Tuliumnit Point). The waters of Unimak, the Sannak, the Shumagin, and other adjacent islands are included.

\section*{SOUTHEASTERN ALASKA AREA}

All commercial fishing for salmon is prohibited in the waters of Portage Bay, indenting the northern end of Kupreanof Island, sontheastern Alaska, within a line drawn from West Point to Boulder Point. This prohibition shall become effective immediately.

Under date of August 26, 1924, the following supplementary regulation was issued:

The regulations for the protection of the fisheries of Alaska published in Department of Commerce Circular No. 251, tenth edition, under date of June 21, 1924, together with additional regulations promulgated August 20, 1924, all of which remain in full force and effect, are hereby supplemented by the following regulation:

> ALEUTIAN ISLANDS AREA

By virtue of the authority vested in the Secretary of Commerce there is hereby set apart the Aleutian Islands area, which is defined to include all territorial coastal and tributary waters of the Aleutian Islands westward of and including Unimak Pass. In this area all commercial fishing for salmon during the remainder of the year is prohibited after August 26, 1924.

Under date of August 29, 1924, the following supplementary regulation was issued:

\section*{COPPER RIVER AREA}

Paragraph No. 2 of the fishery regulations for the Copper River area, Department of Commerce Circular No. 251, tenth edition, issued June 21, 1924, is hereby amended to read as follows:
2. The 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include the period from 6 o'clock postmeridian of Friday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 60 hours: Provided, That this extension of 24 hours from 6 o'clock postmeridian of Friday of each week until 6 o'clock post meridian of the Saturday following shall not apply to the taking of coho salmon in 1924 after August 29.

Under date of August 30, 1924, the following supplementary regulation was issued:

The regulations for the protection of the fisheries of Alaska published in Department of Commerce Circular No. 251, tenth edition, under date of June 21, 1924, together with subsequent regulations, are hereby supplemented by the following regulation:

\section*{SOUTHEASTERN ALASKA AREA}

Commercial fishing for salmon, except by trolling, within the waters of the west coast of Prince of Wales Island from Point Baker to Cape Chacon, including the waters of adjacent islands, is prohibited from midnight of September 14 to midnight of October 31, 1924.

Under date of September 4, 1924, the following supplementary regulation was issued:

The regulations for the protection of the fisheries of Alaska published in Department of Commerce Circular No. 251, tenth edition, under date of June 21, 1924, together with subsequent regulations, are hereby supplemented by the following regulation:

\section*{SOUTHEASTERN ALASKA AREA}

Commercial fishing for herring in the waters of Kootznahoo Inlet, including Mitchell, Favorite, and Kanalku Bays, and connecting waters, within a line from Turn Point to Angoon village, is prohibited during the remainder of the year after September 4, 1924.

Under date of September 9, 1924, the following supplementary regulation was issued:

The regulations for the protection of the fisheries of Alaska published in Department of Commerce Circular No. 251, tenth edition, under date of June 21, 1924, together with subsequent regulations, are hereby supplemented by the following regulation:
```

SOUTHEASTERN ALASKA AREA

```

Commercial fishing for salmon in Lynn Canal and all tributary waters north of the 59th parallel of north latitude is prohibited during the remainder of the year after September 9, 1924.

Under date of October 13, 1924, the following supplementary regulations were issued:

The regulations for the protection of the fisheries of Alaska published in Department of Commerce Circular No. 251, under date of June 21, 1924, together with subsequent regulations, are hereby supplemented by the following regulations:

ALEUTIAN ISLANDS AREA
The order issued by the Acting Secretary of Commerce under date of August 26, 1924, creating the Aleutian Islands area and prohibiting all commercial fishing for salmon therein during the remainder of the year after August 26, 1924, is hereby modified so as to permit the taking of coho salmon in 1924 after October 13.

PRINCE WILLIAM SOUND AREA
Commercial fishing for herring in the waters of the Prince William Sound area will be permitted with gill nets of mesh not smaller than 3 inches, stretched measure, from November 1 to November 30, 1924, inclusive.

Under date of October 25, 1924, the following supplementary regulation was issued:

\section*{PRINCE WILLIAM SOUND AREA}

The regulation of October 13, 1924, permitting commercial fishing for herring in the waters of the Prince William Sound area with gill nets of mesh not smaller than 3 inches, stretched measure, from November 1 to November 30, 1924, inclusive, is hereby modified to permit the use of gill nets of mesh not smaller than \(21 / 4\) inches, stretched measure, in the Prince Willian Sound area from November 1 to November 30, 1924.

Under date of November 24, 1924, the following supplementary regulations were issued:

The regulations for the protection of the fisheries of Alaska published in Department of Commerce Circular No. 251, under date of June 21, 1924, are hereby supplemented by the following regulations:

> PRINCE WILLIAM SOUND AREA

Commercial fishing for herring with purse seines in the waters of the Prince Williain Sound area will be permitted through December 15, 1924.

\section*{COOK INLET AREA}

Commercial fishing for herring with gill nets only in the waters of Halibut Cove and Lagoon, including the waters within a line drawn from the light on Ismailof Island to the outermost point on Glacier Spit, will be permitted through January 31, 1925.

Revised regulations covering the fisheries of Alaska were issued by the Secretary of Commerce under date of December 2, 1924, as follows:

By virtue of the authority vested in the Secretary of Commerce, fishing areas are hereby set apart and regulations governing fishing therein are made effective as follows:

\section*{I. YUKON AREA}

The Yukon area is hereby defined to include all territorial coastal and tributary waters of Alaska between the parallels of 61 degrees north latitude and 64 degrees north latitude.
1. In the Yukon area all commercial fishing for salmon is prohibited at all times: Provided, That this prohibition shall not prevent the taking of fish for local food requirements or for use as dog feed.
2. After October 1, 1925, the Yukon area will be extended to include Kuskok wim waters, in which no commercial fishing will be permitted.

\section*{II. BRISTOL BAY AREA}

The Bristol Bay area is hereby defined to include all territorial coastal and tributary waters of Alaska extending from Cape Menshikof to Cape Newenham.
1. Commercial fishing for salmon shall be conducted solely by drift gill nets. The use of salmon traps, beach seines, and purse seines is prohibited.
2. The total length of gill nets on any salmon-fishing boat shall not exceed 200 fathoms, hung measure.
3. King-salmon nets shall have a mesh at least \(81 / 2\) inches, stretched measure, and red-salmon nets a mesh at least \(53 / 4\) inches, stretched measure, between knots. After 1925 red-salmon nets shall have a minimum mesh of \(51 / 2\) inches, stretched measure, between knots. No red-salmon nets shall be over 28 meshes deep.
4. Prior to 6 o'clock antemeridian June 22 in each year commercial fishing with nets of mesh less than \(81 / 2\) inches, stretched measure, between knots is prohibited.
5. Commercial fishing for salmon is prohibited during the remainder of each calendar year after July 25.
6. The trailing of web behind any fishing boat is prohibited above the markers fixing closed waters.
7. The use of motor-propelled fishing boats in catching salmon is prohibited.
8. Fishing for smelts in localities where red salmon are migrating is prohibited.
9. Commercial fishing for salmon is prohibited in the Ugashik River above a line extending at right angles across said river 500 yards below the mouth of Dog Salmon Creek.
10. Commercial fishing for salmon is prohibited above a line extending at right angles across Kvichak Bay from the marker on a high point on the east bank of Prosper Creek, about 700 yards above the Koggiung cannery of the Alaska Packers Association, to the marker on the opposite side, the course being about north, 44 degrees west, magnetic.

\section*{III. ALASKA PENINSULA AREA}

The Alaska Peninsula area is hereby defined to include all territorial coastal and tributary waters of the Alaska Peninsula from Cape Menshikof on the Bering Sea shore and extending in a southwesterly direction to Unimak Pass, thence in a northeasterly direction along the Pacific side of the Alaska Peninsula to Castle Cape (Tuliumnit Point). The waters of Unimak, the Sannak, the Shumagin, and other adjacent islands are included.
1. In the waters of Nelson Lagoon, Herendeen Bay, Port Moller, and along the coast from Port Moller to Seal Island, including the mouths of Bear and Sandy Rivers, the 36 -hour weekly closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include the periods from 6 o'clock postmeridian of Tuesday of each week to 6 o'clock antemeridian of Thursday of each week and from 6 o'clock postmeridian of Friday of each week to 6 o'clock antemeridian of Saturday of each week, making a total weekly closed period in these waters of 84 hours, which shall be effective throughout the entire salmon-fishing season of each year.
2. In all other waters of this area the 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include
the period from 6 o'elock postmericlian of Friday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 60 hours: Provided, That this extension of 24 hours closed period each week shall not be effective after midnight of July 25 each year.
3. The use of floating traps for the capture of salmon is prohibited.
4. The use of purse seines for the capture of salmon is prohibited, except that in the territorial coastal and tributary waters on the southern side of the Alaska Peninsula between the meridians of 159 degrees west longitude and 161 degrees 30 minutes west longitude seines not to exceed 100 fathoms in length and 150 meshes in depth may be used. Purse seines are permitted in waters between Lagoon Point and the southwest end of Seal Island.
5. In Port Heiden waters the catch of red salmon shall not exceed 35,000 in any calendar year.
6. All commercial fishing for salmon is prohibited as follows:
(a) Morzhovoi Bay: All waters within the bay east of 163 degrees 5 minutes west longitude.
(b) Thin Point Lagoon: All waters within the lagoon and its stream and within a distance of 500 yards outside the entrance to the lagoon.
(c) Cold Bay: All waters of the bay within a line extending from the eastern extremity of Thin Point to a point at 55 degrees 2 minutes north latitude and 162 degrees 25 minutes west longitude.
(d) Stepovak Bay and Balboa Bay: All waters of these bays and of their branches and arms, excepting Orzinski (Orzenoi) Bay, within a line drawnfrom the outer extremity of Kupreanof Point to the outer extremity of Cape Aliaksin. In Orzinski (Orzenoi) Bay beach seines only may be used and the catch of red salmon shall not exceed 25,000 in any calendar year.
(e) All waters between Kupreanof Point and Cape Ikti.

\section*{IV. ALEUTIAN ISLANDS AREA}

The Aleutian Islands area is hereby defined to include all territorial coastal and tributary waters of the Aleutian İslands westward of and including Unimak Pass.
1. Commercial fishing for salmon is prohibited in the period from August 11 to October 1, both dates inclusive.

\section*{v. CHIGNIK AREA}

The Chignik area is hereby defined to include the territorial coastal and tributary waters of Alaska along the mainland shore from Castle Cape (Tuliumnit Point) to Cape Kumnik.
1. The take of salmon within Chignik waters shall not exceed 50 per cent of the total run as determined at the weir in Chignik River operated by the Bureau of Fisheries.
2. The use of purse seines for the capture of salmon is prohibited.
3. Commercial fishing for salmon is prohibited prior to June 15 and after September 10 of each year.
4. Commercial fishing for salmon is prohibited in the waters surrounding Nakchamik and Chankliut Islands.

\section*{VI. KODIAK AREA}

The Fodiak area is hereby defined to include the waters of the mainland shore extending from Cape Douglas southwestward to Cape Kumnik, and the territorial coastal and tributary waters of Alaska surrounding Kodiak and adjacent islands, but excluding the waters embraced within the Afognak Forest and Fish Culture Reserve established by presidential proclamation of December 24, 1892.

Salmon fishery.-1. The use of purse seines and floating traps for the capture of salmon is prohibited.
2. Commercial fishing for salmon in Alitak Bay and all its branches within a line from Cape Trinity to Cape Alitak prior to June 15 in each year is prohibited.
3. Commercial fishing for salmon in Karluk waters, extending from Cape Karluk to Cape Kuliuk, prior to June 15 and after September 10 in each year is prohibited. The take of salmon in these waters shall not exceed 50 per cent of the total run as determined at the weir in Karluk River operated by the Bureau of Fisheries.
4. In all waters inside of a line from Outlet Cape to Cape Uganik and to Miners Point, including Uganik Bay, Viekoda Bay, Terror Bay, and connecting and
tributary waters, the 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include the period from 6 o'clock postmeridian of Friday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 60 hours.
5. Commercial fishing for salmon in East Arm, Uganik Bay, within a line drawn from Mink Point to Rock Point, prior to July 21 in each calendar year is prohibited.
6. All conmercial fishing for salmon between Cape Uyak and Cape Karluk except by beach seines is prohibited.
7. Commercial fishing for salmon within a line from Cape Trinity to Cape Alitak shall be conducted solely by beach seines and traps, but no traps whatever shall be used in fishing for salmon inside a line drawn from Bun Point through Turn Island at the entrance of Moser Bay.
8. The take of salmon within waters in which the runs are tributary to Olga Bay shall not exceed 50 per cent of the total run as cletermined at the weirs on tributary waters of Olga Bay operated by the Bureau of Fisheries.
9. All commercial fishing for salmon is prohibited as follows:
(a) Western shore of Kodiak Island: All waters along the western shore of Kodiak Island between Cape Alitak and Cape Karluk.
(b) Karluk River: All waters within Karluk River and within 100 yards of its mouth where it breaks through Karluk Spit into Shelikof Strait.
(c) Kizhuyak Bay, indenting the northeast shore of Kodiak Island: All waters within a line from Kekur Point to Inner Point.
(d) Kaflia Bay, on north shore of Shelikof Strait: All waters within a line drawn from Cape Ugyak to Cape Gull.
(e) Kiliuda Bay, southeastern shore of Kodiak Island: All waters within a line drawn from Right Cape to Left Cape.
( \(f\) ) Eagle Harbor, in Ugak Bay, southeastern shore of Kodiak Island: All waters within the harbor.

Herring fishery.-1. Commercial fishing for herring is prohibited in all waters closed throughout the year to salmon fishing.
2. Gill nets used in catching herring shall not be of smaller mesh than 3 inches, stretched measure.
3. No one shall place, or cause to be placed, across the entrance of any lagoon or bay any net or other device which will prevent the free passage at all times of herring in and out of said lagoon or bay.

Clam fishery. - The minimum size of razor clams taken for commercial purposes is fixed at \(41 / 2\) inches in total length of shell. Not more than 3 per cent by number of the clams taken may measure less than this minimum.

\section*{VII. COOK INLET AREA}

The Cook Inlet area is hereby defined to include Cook Inlet, its tributary waters, and all adjoining waters north of Cape Douglas and west of Point Gore. The Barren Islands are included within this area.

Salmon fishery.-1. All commercial fishing for salmon is prohibited during the remainder of each calendar year after August 10.
2. The use of purse seines and floating traps for the capture of salmon is prohibited.
3. Commercial fishing for samon is prohibited within 1 statute mile of all salmon streams, except in respect to the Kasilof and Kenai Rivers, where commercial fishing for salmon is prohibited within 2 statute miles of their mouths.
4. Commercial fishing for salmon is prohibited above a line from Point Possession to the western limit of the closed area around the mouth of the Susitna River.
5. Commercial fishing for salmon is prohibited in Chinik Inlet, Kamishak Bay.

Herring fishery.-1. Commercial fishing for herring is prohibited during the period from January 1 to May 31, both dates inclusive, of each calendar year: Provided, That herring fishing will be permitted in Halibut Cove and Lagoon, including the waters within a line drawn from the light on Ismailof Island to the outermost point on Glacier Spit, through January 31, 1925.
2. Comnercial fishing for herring in Halibut Cove and Lagoon, including the waters within a line drawn from the light on Ismailof Island to the outermost point on Glacier Spit, is limited to gill nets.
3. The closed season herein specified for herring fishing shall not apply to any boat taking not to exceed 60 barrels of herring in any calendar week in waters open to fishing.
4. Commercial fishing for herring is prohibited in all waters closed throughout the year to salmon fishing.
5. The maintaining of a herring pound or the dumping of offal and clead herring in the waters of Halibut Cove and Lagoon is prohibited.
6. Gill nets used in eatching herring shall not be of smaller mesh than 3 inches, stretched measure.
7. No one shall place, or cause to be placed, across the entrance of any lagoon or bay any net or other device which will prevent the free passage at all times of herring in and out of said lagoon or bay.

Clam fishery.-The minumum size of razor clams taken for commercial purposes is fixed at \(41 / 2\) inches in total length of shell. Not more than 3 per cent by number of the clams taken may measure less than this minimum.

\section*{VIII. RESURRECTION BAY AREA}

The Resurrection Bay area is hereby defined to include all territorial coastal and tributary waters of the Gulf of Alaska between Point Gore on the west and Cape Fairfield on the east.
1. In the waters of Resurrection Bay within a line from Cape Resurrection to the western side of Bear Glacier at its mouth, the 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include the period from 6 o'clock postmeridian of Friday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 60 hours.
2. Commercial fishing for salmon within 1,500 yards of the mouths of Bear Creek and Resurrection River is prohibited.

\section*{IX. PRINCE WILLIAM SOUND AREA}

The Prince William Sound area is hereby defined to include all territorial coastal and tributary waters of the Gulf of Alaska between Cape Fairfield on the west and Point Whitshed on the east.

Salmon fishery.-1. The 36-hour closed period for salmon fishing prescribed by section 5 of the act of June 6,1924 , is hereby extended to include the period from 6 o'clock antemeridian of Saturday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 48 hours.
2. Cominercial fishing for salmon is prohibited from August 10 to August 25, both dates inclusive, in each year.
3. All set or anchored gill nets shall not exceed 100 vards each in length and shall be placed in substantiably a straight line: Provided, That not to exceed 20 yards of each net may be used as a hook. Only one such hook is permitted on a net. There shall be a distance interval of at least 200 yards both endwise and laterally at all times between all set or anchored gill nets operated.
4. All traps operated in the Prince William Sound area shall be at least \(11 / 2\) statute miles apart laterally, except traps operating at Montague Island.
5. All commercial fishing for salmon is prohibited as follows:
(a) Boswell Bay, indenting Hinchinbrook Island: All waters in the bay west of 146 degrees 8 minutes west longitude.
(b) Robe River, Lowe River, and other unnamed streams flowing into Port Valdez in the immediate vieinity of Valdez: All waters within 1,000 yards of the mouths.
(c) Billy's Hole, tributary to Long Bay, between Valdez Arm and Unakwik Inlet: All waters within a line drawn from Point Scott to Point Hook and passing just westward of Observation Island.
(d) Unakwik Inlet, indenting mainland on north shore of Prince William Sound: All waters north of an east and west line passing through the northern side of the entrance to Jonah Bay.
(e) Coghill River, tribitary to College Fiord: All waters within 2,000 yards outside of the mouth of the river.
(f) Long Bay, tributary to Culross Passage: All waters within the bay.
(g) Gumboot Creek, on northwest shore of Eshamy Bay: All waters within 1,000 yards of the mouth of the creek.
(h) Eshamy Lagoon and its tributary waters: All waters within the lagoon and its tributaries and within 50 yards outside the narrows at the entrance to the lagoon.
(i) Jackpot Bay: All waters within a line extending at right angles across its mouth 2,000 yards below the month of the rel-salmon stream emptying into the bay.
(j) Port Bainbridge: All waters in the middle north arm of Port Bainbridge.
(k) Bay of Isles, indenting east shore of Kinight Island: All waters within a line running northwest from the extremity of the point of land at the eastern side of the entrance to the middle south arm. This line extends across the Bay of Isles about 2 statute miles below the mouth of the red-salmon stream emptying into the bay.

Herring fishery.-1. Commercial fishing for herring is prohibited during the period from January 1 to June 24, both dates inclusive, and from November 1 to December 31, both dates inclusive, of each calendar year.
2. The closed seasons herein specified for herring fishing shall not apply to any boat taking not to exceed 60 barrels of herring in any calendar week in waters open to fishing.
3. Commercial fishing for herring is prohibited in all waters closed throughout the year to salmon fishing.
4. Gill nets used in catching herring shall not be of smaller mesh than \(21 / 4\) inches, stretched measure.
5. No one shall place, or cause to be placed, across the entrance of any lagoon or bay any net or other device which will prevent the free passage at all times of herring in and out of said lagoon or bay.

Clain fishery.-The minimum size of razor clams taken for commercial purposes is fixed at \(41 / 2\) inches in total length of shell. Not more than 3 per cent by number of the clams taken may measure less than this minimum.

\section*{X. Copper river area}

The Copper River area is hereby defined to include all territorial coastal and tributary waters of Alaska between Point Whitshed on the west and Point Martin on the east.
1. Commercial fishing for salmon is prohibited in the period from July 11 to August 19, both dates inclusive.
2. From May 20 to July 10, both dates inclusive, the 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extende 1 to include the period from 6 o'clock antemeridian of Saturday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 48 hours.
3. Prior to May 20 in each year commercial fishing with nets of mesh less than \(81 / 2\) inches, stretched measure, between knots is prohibited.
4. The use of stake nets, set or anchored gill nets, and traps for the capture of salmon is prohibited.
5. Commercial fishing for salmon shall be conducted solely by drift gill nets not exceeding 200 fathoms in length each.
6. Commercial fishing for salmon is prohibited within 500 yards of the grass banks.

\section*{xi. bering river area}

The Bering River area is hereby defined to include all territorial coastal and tributary waters of Alaska between Point Martin on the west and Cape Suckling on the east.
1. Commercial fishing for salmon is prohibited in the period from July 11 to August 19, both dates inclusive.
2. From June 1 to July 10, both dates inclusive, the 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to include the period from 6 o'clock antemeridian of Saturday of each week until 6 o'clock antemeridian of the Monday following, making a weeklv closed period of 48 hours.
3. Prior to June 1 in each year commercial fishing with nets of mesh less than \(81 / 2\) inches, stretched measure, between knots is prohibited.
4. Commercial fishing for salmon shall be conducted solely by drift gill nets not exceeding 200 fathoms in length.

\section*{XII. SOUTHEASTERN ALASKA AREA}

The southeastern Alaska area is hereby defined to include all territorial coastal and tributary waters of Alaska extending from Dixon Entrance on the south to and including Yakutat Bay on the north.

Salmon fishery.-This area is subdivided into the following districts, wherein regulations shall be effective as follows:

Yalutat district.-All waters of this area west of the one hundred and thirtyeighth meridian of west longitude.
1. The 36 -hour closed period for salmon fishing prescribed by section 5 of the act of June 6, 1924, is hereby extended to inelude the period from 6 o'elock antemeridian of Saturday of each week until 6 o'clock antemeridian of the Monday following, making a weekly closed period of 48 hours.
2. Commercial fishing for salmon is prohibited during the period from 12 o'clock midnight of July 20 until 12 o'clock midnight of Augnst 5 in each year.
3. North of the parallel of 58 degrees north latitude all traps shall be at least \(11 / 2\) statute miles apart laterally.
4. No salmon-fishing boat shall carry or operate more than one seine of any description. No purse seine shall be less than 200 meshes nor more than 300 meshes in depth, nor less than 150 fathoms nor more than 250 fathoms in length measured on the cork line. For the purpose of determining depths of seines measurements will be upon the basis of \(31 / 2\) inches, stretehed measure, between knots. No extension to any seine in the way of leads will be permitted.
5. All commercial fishing for salmon is prohibited as follows:
(a) Ankan Creek and Inlet.
(b) Akwe or Ahquay River.
(c) The "Basin" above Dry Bay.

Icy Strait-Cross S'ound district.- All waters of this area north of the fifty-eighth parallel of north latitude and east of the one hundred and thirty-eighth meridian of west longitude.
1. Commercial fishing for salmon, except by trolling, is prohibited for the remainder of each year after 12 o'clock midnight of Angust, 6 . Fishing with gill nets only will be permitted from September 5 to October 15, both dates inclusive, in areas open to fishing.
2. North of the parallel of 58 degrees north latitude all traps shall be at least \(11 / 2\) statute miles apart laterally.
3. No salmon-fishing boat shall carry or operate more than one seine of any description. No purse seine shall be less than 200 meshes nor more than 300 meshes in depth, nor less than 150 fathoms nor more than 250 fathoms in length measured on the cork line. For the purpose of determining depths of seines measurements will be upon the basis of \(31 / 2\) inches, stretched measure, between knots. No extension to any sene in the way of leads will be permitted.
4. Gill nets used in that portion of Lynn Canal that is open to commercial fishing for salmon shall not exced 200 fathoms in length each.
5. All commercial fishing for satmon is prohibited as follows:
(a) Port Frederick, northern shore of Chichagof Island: All waters east of a line drawn from Inner Point sophia to Game Point, and all waters south of 58 degrees 4 minutes north latitude. A portion of the waters closed is in the central district.
(b) Glacier Bay: All waters within a line drawn from Point Carolus to Point Gustavus.
(c) Lynn Canal: All waters north of the sonth end of the first island south of Seduction P'oint.
(d) Taku Lnlet: All waters within 1 statute mile of the mouth of Taku River.

Central district.-All waters of this area between the fifty-seventh and fiftyeighth parallels of north latitude.
1. Commercial fishing for samon, except by trolling, is prohibited for the remainder of each year after 12 o'clock midnight of August 11.
2. No salmon-fishing boat shall carry or operate more than one seime of any description. No purse seine shall be less than 200 meshes nor more than 300 meshes in depth, nor less than 150 fathoms nor more than 250 fathoms in length measured on the cork line. For the purpose of determining depths of seines measurements will be upon the basis of \(31 / 2\) inches, stretehed measure, between knots. No extension to any seine in the way of leads will be permitted.
3. All commercial fishing for salmon is prohibited as follows:
(a) Portage Bay, north end of Kupreanof Island: All waters within the bay and all waters within 1 statute mile outside the entrance to the bay. A portion of the waters closed is in the southern district.
(b) Gambier Bay, east coast of Admiralty Island: All waters west of 134 degrees west longitude.
(c) Wilson Cove, southwestern shore of Admiralty Island: All waters within the cove.
(d) Whitewater Bay, southwestern shore of Admiralty Island: All waters within a line drawn from Point Cation to Woody Point.
(e) Chaik Bay, southwestern sloore of Admiralty Island: All waters east of 134 degrees 29 minutes west tongitude.
(f) Warm Spring Bay, eastern shore of Baranof Island: All waters within the bay.
(g) Hanns Bay, northeast shore of Baranof Island: Alt waters in the bay south of a line drawn from Point Hanus to Point Moses.
(h) Basket Bay, east coast of Chichagof Island: All waters within the bay.
(i) Tenakee Inlet and Freshwater Bay: All waters within a line drawn from North Passage Point to South Passage Point.

Stikine River district.-All waters within a line from Babller Point on the mainland to Woronkofski Point on Woronkofski Island, thence to Middle Craig Point on Zarembo Island, thence to Point Howe on Mitkof Island, thence to Frederick Point on Mitk of Island, thence across Frederick Sonnd to Horn Cliffs on the nainland, thence along the mainland to Babbler Point.
1. The 36 -hour closed period for salmon fishing prescribed by section 5 of the act approved June 6, 1924, is hereby extended to include the period from 6 o'clock antemeridian of Saturday of each week to 6 o'clock antemeridian of the Monday following, making a weekly elosed period of 48 hours.
2. Gommercial fishing for salmon is prohibited in the period from June 21 to July 5, both dates inclusive.
3. Commercial fishing for salmon shall be conducted solely by drift gill nets which shall not exced 200 fathoms in length each.

Prince of Wales Island district.-All waters of the west coast of Prince of Wales Island and adjacent islands from Cape Chacon northward to Point Baker, and within a line from Point Baker to Pine Point, thence along the shore line to Point Colpoys, thence to Middle Craig Point on Zarembo Island, thence to Woronkofski Point on Woronkofski Island, thence to Babbler Point on the mainland, thence to Watkins Point on Cleveland Peninsula, thence following the watershed between Ernest Sound and Behm Canal to and including Lemesurier Point, thence t) Tolstoi Point on Prince of Wales Island, thence following the watershed on Prince of Wales Island to Cape Chacon.
1. Commercial fishing for salmon, except by trolling, is prohibited from 12 o'clock midnight of August 22 to 12 o'clock midnight of September 14 in each year, and for the remainder of each year from 12 o'elock midnight of October 15; and in addition commercial fishing for salmon, except by trolling, is prohibited in all waters of the west coast of Prince of Wales Island and adjacent islands from Cape Chacon northward to Point Baker from January 1 to 12 o'clock midnight of July 14 in each year.
2. No salmon-fishing boat shall carry or operate more than one seine of any description. No purse seine shall be less than 200 meshes nor more than 300 meshes in depth, nor less than 150 fathoms nor more than 250 fathoms in length measured on the cork line. For the purpose of determining depths of seines measurements will be upon the basis of \(31 / 2\) inches, stretched measure, between knots. No extension to any seine in the way of leads will be permitted.
3. All commercial fishing for salmon is prohibited as follows:
(a) Thorne and Tolstoi Bays, indenting the eastern shore of Prince of Wales Island: All waters within a line from Tolstoi Point to Thorne Head.
(b) Barnes Lake, at head of Lake Bay, northeast coast of Prince of Wales Island: All waters in Barnes Lake and within 50 yards outside its entrance.
(c) Whale Passage, northeast coast of Prince of Wales Island: All waters within 1,000 yards from mouths of all salmon streams.
(d) Shipley Bay, west coast of Koseiusko Island: All waters east of 133 degrees 32 minutes 30 seconds west longitude.
(e) Sarkar Cove, west coast of Prince of Wales Island, tributary to El Capitan Passage: All waters inside of a line across the entrance.
(f) Hetta Inlet, west coast of Prince of Wales Island: All waters north of a line rumning east from Lek Point to the opposite shore.
(g) Kasook Inlet, southern eoast of Sukkwan Island: All waters within 1 statute mile of head of inlet.
(h) North Bay, northeast coast of Dall Island: All waters within 1,000 yards of the mouths of all salmon streams.
(i) Olive Cove, indenting the northeastern shore of Etolin Island.
(j) Anita Bay, opening into Zimovia Strait, Etolin Island.
(k) Thoms Place, indenting the southwestern shore of Wrangell Island, Zimovia Strait.
( \(l\) ) McHenry Inlet, southwest coast of Etolin Island: All waters within 1,000 yards of the salmon streams emptying into the head of McHenry Inlet.

Southern district.-All waters south of the fifty-seventh parallel of north latitude, exclusive of the Stikine River and Prince of Wales Island districts herein described.
1. Commercial fishing for salmon, except by trolling, is prohibited from 12 o'clock midnight of August 18 to 12 o'clock midnight of September 14 in each year, and for the remainder of each calendar year after 12 o'clock midnight of October 15.
2. No salmon-fishing boat shall carry or operate more than one seine of any description. No purse seine shall be less than 200 meshes nor more than 300 meshes in depth, nor less than 150 fathoms nor more than 250 fathoms in length measured on the cork line. For the purpose of determining depths of seines measurements will be upon the basis of \(31 / 2\) inches, stretched measure, between knots. No extension to any seine in the way of leads will be permitted.
3. All commercial fishing for salmon is prohibited as follows:
(a) Hidden Inlet, indenting mainland: All waters in the inlet north of 55 degrees north latitude.
(b) Very Inlet, indenting mainland: All waters within the inlet.
(c) Boca de Quadra, indenting mainland: All waters within 1 statute mile of the mouth of Sockeye Creek.
(d) Sineaton Bay, indenting mainland: All waters in Wilson and Bakewell Arms east of 130 degrees 40 minutes west longitude.
(e) Rudyerd Bay, indenting mainland: All waters in the north arm within 2 statute miles of the mouths of all salmon streams.
(f) Walker Cove, indenting mainland, tributary to Behm Canal: All waters within a line from Ledge Point to Hut Point.
(g) Chickamin River: All waters within a line from Fish Point to Trap Point.
(h) Yes Bay, Cleveland Peninsula: All waters within the bay and all waters outside the entrance within 1,000 yards of a line from Bluff Point to Syble Point.
(i) Anan Creek: All waters within 1 statute mile from the mouth of creek.
(j) Shrimp Bay, west coast of Revillagigedo Island: All waters east of a line running south from Dress Point to the opposite shore.
(k) Traitors Cove, west coast of Revillagigedo Island: All waters of the cove within a line 50 yards outside the neck of the salt-water lagoon.
(l) Naha Bay, indenting the western shore of Revillagigedo Island: All waters within a line from Grant Island to Indian Point.
(m) George Inlet, southern coast of Revillagigedo Island: All waters north of a line drawn from Bat Point to Tsa Cove.
(n) Moira Sound, east coast of Prince of Wales Island: All waters in south arm of sound and in Frederick Cove.
(o) Dora Bay, arm of Cholmondeley Sound, east coast of Prince of Wales Island: All waters in the bay.
( \(p\) ) Skowl Arm, Prince of Wales Island: All waters within a line drawn from Old Kasaan village to Khayyam Point.
(q) Kasaan Bay, east coast of Prince of Wales Island: All waters north of a line drawn from Sandy Point to the east shore of the bay.
(r) Wrangell Narrows: All waters between Point Alexander and Prolewy Point.
(s) Affleck Canal, southeastern coast Kuiu Island: All waters within 1,000 yards of the mouths of all salmon streams tributary to Affleck Canal.
( \(t\) ) Port Beauclerc, southeastern coast Kuiu Island: All waters within 1,000 yards of the mouths of all salmon streains tributary to Port Beauclerc.
(u) Saginaw Bay, indenting the northwestern shore of Kuiu Island: All waters in the bay.
(v) Bay of Pillars, west coast of Kuiu Island: All waters in south arm of bay.
(w) Tebenkof Bay, west coast of Kuiu Island: All waters in north arm of bay.
(x) Gut Bay, cast coast of Baranof Island: All waters of the bay.
(y) Red Bluff Bay, east coast of Baranof Island: All waters in the bay; the waters of Falls Creek Bay are included.

Herring fishery.-1. Unless otherwise specified, commercial fishing for herring is prohibited in all waters closed throughout the entire year to salmon fishing.
2. Commercial fishing for herring is prohibited during the period from January 1 to May 31, both dates inclusive, and from September 16 to December 31, both dates inclusive, of each calendar year, with the following exceptions:
(a) Commercial fishing for herring may be conducted from March 15 to April 15, both dates inclusive, in waters in the vicinity of Sitka within a line from Halibut Point to Cape Burunof.
(b) Commercial fishing for herring may be conducted from December 15 to January 15, both dates inclusive, in the waters of Seward Passage and Ernest Sound.
(c) Commercial fishing for herring may be conducted from January 1 to February 15 , both dates inclusive, in the waters of Clarence Strait within a radius of 3 statute miles of the town of Hadley, Tongass Narrows, Cholmondeley Sound, and Behm Canal and its tributary waters west of Bell Island to a line from Caamano Point to Point Higgins.
3. The closed seasons herein specified for herring fishing shall not apply to any boat taking not to exceed 60 barrels of herring in any calendar week in waters open to fishing.
4. No one shall place, or cause to be placed, across the entrance to any lagoon or bay any net or other device which will prevent the free passage at all times of herring in and out of said lagoon or bay.

Shrimp fishery.-Commercial fishing for shrimps is prohibited in the period from March 15 to April 30, both dates inclusive, in each year.

Crab fishery.-Dungeness craḅ (Cancer magister). No female of this species shall be taken at any time, and no male of this species measuring less than \(61 / 2\) inches in greatest width shall be taken for commercial purposes.

\section*{GENERAL REGULATIONS}

By virtue of the authority conferred by the acts approved June 6, 1924, and June 26, 1906, the following regulations shall be effective in all waters of Alaska, including the special areas already described above:
1. During closed periods all salmon traps within the areas affected shall be closed in accordance with the method prescribed by section 5 of the act of June 6, 1924.
2. All persons engaged in fishery operations are warned to give due regard to all markers erected by the Departinent of Commerce.
3. In waters where a rack or weir is maintained by the Bureau of Fisheries for the purpose of counting salmon ascending to the spawning grounds, records of the catch of salmon shall be furnished daily by all operators to the local representative of the Bureau of Fisheries in charge, and upon notification by the Commissioner of Fisheries or his authorized representative that an excessive proportion of the run is being taken, so that the escapement of any species is less than the 50 per cent specified by section 2 of the act of June 6,1924 , all commercial fishing operations shall at once be discontinued and shall not be resumed until permission therefor is granted by the Commissioner of Fisheries or his duly authorized representative.
4. The driving of salmon downstream and the causing of salmon to go outside the protected area at the mouth of any salmon stream are expressly prohibited.
5. During the inspection of the salmon fisheries by the agents and representatives of this department they shall have at all times free and unobstructed access to all canneries, salteries, and other fishing establishments, and to all hatcheries.
6. All persons, companies, or corporations owning, operating, or using any stake net, set net, trap net, pound net, or fish wheel for taking salmon or other fishes shall cause to be placed in a conspicuous place on said trap net, pound net, stake net, set net, or fish wheel the name of the person, company, or corporation owning, operating, or using same, together with a distinctive number, letter, or name which shall identify each particular stake net, set net, trap net, pound net, or fish wheel, said lettering and numbering to consist of black figures and letters, not less than 6 inches in length, painted on white ground.
7. If in the process of curing salmon bellies the remaining edible portion of the fish is not used, such action will be regarded as wanton waste within the meaning of section 8 of the act of June 26,1906 , and those who engage in this practice will be reported for prosecution as provided for in the act.
8. These regulations do not apply to the Afognak Reservation, fishing within which is prohibited, except by resident natives, by the terms of the law and Executive order creating it.
9. The taking of salmon for for feed shall be considered as commercial fishing and subject to all of the limitations in respect thereto.
10. Any increase in the amount of fishing gear employed or any expansion of fishery operations in any district in any season shall in the discretion of the Secretary of Commerce result in the immediate imposition of such additional restrictions as may appear necessary.
11. These regulations shall be subject to such change or revision by the Secretary of Commerce as may appear advisable from time to time. They shall be in full force and effect immediately from and after January 1, 1925.

\section*{WATERS CLOSED TO COMMERCIAL FISHING}

With the cancellation, by Executive orders, of the Alaska Peninsula Fisheries Reservation and the Southwestern Alaska Fisheries Reservation, the previous orders remained in effect in regard to the following waters: Afognak Reserve, Yes Bay and stream, Annette Island Fishery Reserve, and Aleutian Islands Reservation. The limitations on commercial fishing previously imposed under the order regarding the Aleutian Islands Reservation were removed.

In the regulations issued by the Secretary of Commerce during the calendar year, commercial fishing was prohibited in 76 restricted areas in various parts of Alaska. These localities are named in the regulations printed in this document.

\section*{AFOGNAK RESERVE}

Permission to fish within Afognak waters for varying periods during the season of 1924 was granted to 86 natives living on Afognak and adjacent islands. Operations were carried on at eight different localities, and beach seines only were used. The total eatch was 181,429 salmon, a decrease of \(\$ 6,749\) from the catch of 1923 . The eatch of cohos increased 12,380, chums 201, and kings 429 , while humpbacks decreased 55,054 , and red salmon 44,705 . The natives sold the catch to the canneries of the Kadiak Fisheries Co. and Katmai Packing Co. Some additional salmon were taken by natives for food.

Fishing operations in the reserve were under the supervision of Fred R. Lueas, superintendent of the fisheries station at Lfognak, to whom authority was delegated to issue orders governing fishing operations. No fishing for red salmon was permitted in Litnik (Afognak) Bay, but fishing for silver salmon was open from August 20 to September 4. The waters of Duck Bay, from Kostromitinof Cape to Izhut Cape, also were eloserl by an order issued July 3, and reopened for silver-salmon fishing on August 20, all red salmon having passed upstream by that time.
A weir was maintained for fish-cultural purposes in Litnik River below the Afognak hatchery. The total number of red salmon counted through the rack in the period from May 30 to September 20, when that species ceased to run, was 10,317 .

Commercial catch of salmon, Afognak Island, season of 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Locality & Cohos & Chums & IIumpbacks & Kings & Reds & Total \\
\hline Little A fognak & 20, 922 & & 5,237 & 148 & 12,689 & 38, 996 \\
\hline Danger Bay & 4,950 & & & & & 4,950 \\
\hline Litnik Bay & 7, \({ }^{4} 16\) & & & & & 7,816 \\
\hline Paramanof Bay & 4 & 3 & 10,325 & 3 & 20,919 & 31, 254 \\
\hline Matina & 34 & 376 & 18,269 & 316 & 3:, 203 & 51, 198 \\
\hline Seal Bay-..... & 13 & & 3,348 & 5 & 28, 071 & 31, 777 \\
\hline Izhut (Elia) Bay & 25 & 6 & 4, 580 & 3 & 8,174 & 12,788 \\
\hline Katine (Marqua) & 2,950 & & & & & 2,950 \\
\hline Total & 36,714 & 385 & 41, 799 & 475 & 102, 056 & 181,429 \\
\hline
\end{tabular}

\section*{ANNETTE ISLAND FISHERY RESERVE}

Fishing operations within the Annette Island Fishery Reserve were again conducted by the Annette Island Packing Co. under its lease from the Department of the Interior. Data regarding operations have been furnished by the Bureau of Education of that department, which administers the affairs of the reserve for the benefit of the Metlakatla Indians residing there.

In 1924 the total number of fish taken by traps within the reserve was 827,949 of all species, on which royalties amounting to \(\$ 9,086.12\) were paid. The per case tax on canned salmon under the Territorial law, which has been held payable to the Metlakatla Indians, amounted to \(\$ 2,415.49\); trap fees on six traps, at \(\$ 200\) each, amounted to \(\$ 1,200\); and rental of cannery building was \(\$ 3,000\). In addition, \(\$ 36,910.09\) was paid to 169 natives for labor, \(\$ 4,124.95\) for piling, \(\$ 14,305.27\) for fish, and \(\$ 719.65\) for merchandise and lumber, making a grand total amount dishursed by the Annette Island Packing Co. to the natives of \(\$ 71,761.57\).

\section*{FISHERY INTELIIGENCE SERVICE}

As has been the practice for several years, the bureau continued to report by telegraph to the important points in southeastern and central Alaska the prices of fresh fish (chiefly halibut) at Juneau, Ketchikan, and Seattle. After the halibut close season began this service was discontinued.

\section*{STREAM MARKING}

In general, stream marking consisted in replacing missing markers indicating the protected zone off the mouths of salmon streams. In southeastern Alaska several additional streams were marked and special notices were posted at the entrances of Freshwater Bay, Tenakee Inlet, Whitewater Bay, Wilson Cove, Saginaw Bay, Thoms Place, Anita Bay, and Olive Cove, all of which were closed under order of June 21, 1924.

\section*{STREAM GUARDS}

The bureau employed 103 men as stream guards in 1924. Of these 79 were stationed in southeast Alaska, 13 in central, and 11 in western Alaska.

In southeast Alaska 75 localities were protected by 73 guards. Some of the men employed furnished their own power boats and were thus able to cover a district in which there were several streams. The period of employment averaged about \(21 / 2\) months. In addition to these guards 1 special warden and 5 operators of chartered boats were employed.

In central Alaska 8 guards were located in the Copper River and Prince William Sound districts, 3 in Cook Inlet, and 2 in the KodiakAfognak district.

In western Alaska 1 guard was stationed at Port Moller, 9 in Bristol Bay, and 1 on the Yukon River Delta.

In addition there were 5 statutory employees of the bureau in southeast Alaska, 7 in central and 4 in western. There were also 27 persons on the bureau's vessels.

The foregoing makes a total of 16 statutory employees and 130 others, or a grand total of 146 persons identified with fishery protective work in Alaska in 1924.

\section*{VESSEL PATROL}

Ten vessels owned by the bureau were operated in fishery patrol work in Alaska in 1924. The Auklet, Murre, Petrel, and Widgeon were used throughout the season in southeastern Alaska, the Kittiwake in Cook Inlet, the Ibis at Chignik, the Merganser at Ikatan and vicinity, the Scoter in Bristol Bay, and the Tern on the Yukon. The Blue Wing was in southeastern Alaska during August and part of September, and was used in Cook Inlet during the remainder of the scason. This vessel was purchased in July, and is 55 feet in length, 12 feet 6 inches beam, and is equipped with a 50 -horsepower Union distillate-burning engine. Launch No. 43, assigned to the Afognak hatchery, was used during part of the year for patrol work in the Kodiak-Afognak region.

The Pribilof Islands tender Eider was assigned to salmon work from July 17 to August 11. Dr. C. H. Gilbert went aboard the Eider at İkatan on July 20 and visited canneries and salmon streams along the Alaska Peninsula, on Kodiak Island, and in Cook Inlet until August 11.

The Swan, formerly used on the Yukon River, was condemned and sold.

The following chartered vessels were used in fisheries patrol: Igloo, Jazz, Murrelet, and Rainbow in southeastern Alaska; Prospector and Emma in Prince William Sound; Fog Auger and Blue Ointment in Cook Inlet; and Robin on the lower Yukon. Patrol launches were used by a warden in the Shumagin Islands and the stream guard at Port Moller, and three small launches were hired for brief periods in the Bristol Bay district. Five launches owned by the trade were manned and operated by the bureau for patrol work in Bristol Bay.

\section*{COMPLAINTS AND PROSECUTIONS}

The passage of the act of June 6, 1924, opened a new field of activities for those of the bureau's employees in Alaska who were designated peace officers with powers to arrest persons and seize property for violations of the act. In a number of instances both fish and fishing gear, consisting of boats, fixed and floating salmon traps, and nets, were seized and condemnation proceedings instituted.

The seizure of salmon traps caused considerable difficulty for court officials who were the custodians of the property during the resulting long legal proceedings. In some cases watchmen were employed for months to maintain lights and keep the traps free from drift. In the case of floating traps it was necessary to have the owners remove them. When condemnation proceedings were finally completed, and after considerable expense had been incurred for watching traps, their sale brought only small amounts-in one case only \(\$ 10\).

In the southeastern district six salmon traps were seized during the season for not having the heart walls open 25 feet on each side of
U. S. B. F. Doc. 992


Fig. 2.-Blue Wing


Fig.3.-Scoter. Bristol Bay

the pot during the weekly closed period, as required by law. In five cases (two against the Petersburg Packing Co. and one each against the Sumrise Packing Co., Alaska Pacific Fisheries, and the Beegle Packing Co.) the traps were condemned and sold at auction. The other case (against the Alaska Pacific Fisheries) was continued until the following spring term of court because of the absence of counsel for the company.

Four purse-seine boats-the Hemmie, Andrew N., Alice, and Pacitc--were seized for illegal fishing in the protected zones off the mouths of salmon streams. In each case the defense claimed that the boat had drifted over the line after the seine was pursed. The court held that the evidence of unlawful fishing was not conclusive and all four boats were ordered released.

A case of considerable importance was that brought in the district court at Juneau in December, 1924, against the Booth Fisheries Co. for (1) erecting and maintaining a floating fish trap near Lucky Cove within 500 yards of the mouth of a stream, thus impeding or preventing the ascent of salmon to their spawning grounds, and (2) fishing for and taking salmon by means of a floating trap within 500 yards of the mouth of a stream. The case resulted in a conviction on both counts and the court imposed a fine of \(\$ 1,900\). Motion for a new trial was overruled. The case was appealed.

Two fishermen were arrested for trolling on Sunday in Frederick Sound. Each pleaded guilty and was fined \(\$ 50\). Their boats were returned.

Three fishermen were arrested at Salmon Bay for laying a purse seine within the prohibited distance of another piece of fishing gear already set, and also for fishing without a license in violation of a Territorial law. They pleaded guilty and fines totaling \(\$ 145\) were imposed, with costs of \(\$ 8.40\).

Nine fishermen were arrested at Roosevelt Harbor for setting gill nets within the prohibited distance of gear already set. All pleaded guilty and paid fines totaling \(\$ 450\), and \(\$ 63\) costs.

A case brought in 1923 against the Alaska Pacific Fisheries for illegal fishing of a salmon trap on Sunday was tried at the May term of court and a fine of \(\$ 50\) was imposed, with costs of \(\$ 3.05\).

The test case against the Auk Bay Salmon Canning Co., under one of the 55 indictments returned against packing companies and individuals for fishing during a closed season provided by Territorial law, and which was decided in favor of the Territory in the district court at Juneau, was reversed by the circuit court of appeals at San Francisco on August 4, 1924, and remanded with instructions to quash the indictment. The question at issue was the right of the Legislature of Alaska to pass laws affecting the fisheries.

Another case of interest, brought under Territorial law, was that against the Pacific American Fisheries to test the constitutionality of the law passed by the Legislature of Alaska imposing a graduated tax on the pack of salmon after May 5, 1923. Judge Reed, of the district court at Juneau, held that the law was valid, and his decision was affirmed by the Circuit Court of Appeals for the Ninth Circuit, but in handing down its decision that court said:

\footnotetext{
Unlimited power to tax an industry in one sovereignty seems rather inconsistent with the reservation of a power to regulate that industry by another sovereignty, as the power to tax involves the power to destroy, and may be so exercised as to
}
render any attempt at regulation useless and abortive. The question presented by the record in this case is, in our opinion, close to the border line, but we are not prepared to say that the Territory has exceeded the limits of its taxing power as heretofore defined by the courts.

Because of this question the case will, no doubt, be carried to the United States Supreme Court for final decision.

In the Seward-Katalla district of central Alaska prosecutions were instituted against two fishermen for fishing within the protected area on the Copper River Flats. When the case was brought before the United States commissioner both defendants pleaded guilty and paid fines of \(\$ 75\) each. In a case ag uinst two natives, who pleaded guilty to fishing on Copper River Flats during the weekly closed period, suspended sentences were imposed and a 200 -fathom gill net was seized. This net, together with approximately 175 fathoms of unclaimed net and some miscellancous salmon seized on the Copper River Flats, will be disposed of as directed by the Department of Justice.

In the Cook Inlet district of central Alaska two salmon traps owned by Libby, McNeill \& Libby, one by the Northwestern Fisheries Co., and three by H. J. Emard were seized and indictments returned by the grand jury for illegal fishing during the weekly closed period. In addition, the vessel North Cape and certain equipment and a quantity of canned and dried salmon were seized from H. J. Emard. Two herring purse-seine boats, the Altana and Pennsylvania, owned by the San Juan Fishing \& Packing Co., were also seized and the company indicted for wanton waste of herring. W. J. Imlach was indicted for wanton waste of herring, and two vessels, the Waterland and the Commander, owned by W. J. Imlach \& Co., were seized. A number of trap watchmen were arrested in connection with the fishing of traps during the weekly closed period and, following hearings before the United States commissioner at Seldovia, were bound over along with the companies for action by the grand jury. In the case of these individuals, however, true bills were not returned. Information was filed against a number of other persons for alleged violations of the fishery laws and regulations, but the grand jury failed to return true bills. None of the cases originating in the Cook Inlet district had come to trial by the end of the year.

In the Bristol Bay district there were 14 cases, with two defendants each, for violation of the regulation prohibiting the use of gill nets of less than \(5 \frac{3}{4}\) inches, stretched measure. Nets totaling 840 fathoms were seized. Pleas of guilty were entered by all defendants and fines of \(\$ 40\) each, totaling \(\$ 1,120\), were imposed.

Complaint was lo dged against Louis Knaflich for fishing inside the mouth of the Kuskokwim River. On hearing before the United States commissioner he was bound orer to the grand jury under \(\$ 2,500\) bond. An indictment was returned later by the grand jury at Fairbanks, and on request of counsel change of venue was granted to Seattle.

\section*{METHOD OF ADJUSTING SALMON TRAPS DURING CLOSED PERIOD}

In a decision rendered in 1923, and following a number of prosecutions for failure to observe the weekly closed period in southeastern Alaska, Judge Reed, of the district court, announced that substantial punishment would thereafter be imposed upon all who might be con-
victed of violation of that provision of the statute regarding the method of adjusting traps during the closed period, which in his judgment clearly meant that the heart walls on each side next to the pot must be raised or lowered for the full width of 25 feet specified in the law, and that a V -shaped opening that lessened this width at all stages of the tide was unlawful. For a number of years the bureau had felt that the law was complied with in spirit by the common practice of using "shove-downs" in the heart walls during the weekly closed period, thus making a V-shaped opening which, while not the full width of 25 feet at lower stages of the tide, nevertheless afforded an opening for the escape or free passage of all fish.

The act of June 6, 1924, reenacted the provision in regard to adjustment of salmon traps during the weekly closed period, using the exact language of the previous act of June 26, 1906. Following the passage of the new act, and in view of the court's interpretation, the bureau, under date of June 9, 1924, issued instructions to emplovees concerned, which, after referring to the provisions of law and the ruling of the court, contained in part the following:

In view of the foregoing decision, based upon a provision of law identical in language with that of the present law of June 6, 1924, and the announcement in October, 1923, by the judge of the District Court for the First Judicial Division of Alaska that the law would be enforced as construed by the courts and not as construed by any other agency, and that thereafter all persons convicted of violating the fisheries laws would be given substantial fines and possibly jail sentences, you are instructed to take proper legal action in all cases where the heart walls of traps are not opened in accordance with the law as above cited.

You are instructed that if after the beginning of the fishing season any trap visited and inspected by you during any closed period is equipped with ineffective tunnel-closing or heart-wall-opening appliances, thus preventing the adjustment of the trap as required by law, you will forthwith give notice of your findings, in writing, to the owner or operator and trap watchman. If the findings of your examination are such as to satisfy you that the faulty adjustment of the trap is due to the neglect, carelessness, or indifference of the watchman, you will institute a prosecution at the earliest opportunity, or as the United States attorney may direct. Palpable, deliberate, and inexcusable violations of the law and regulations are to be vigorously prosecuted.

You are hereby directed to expedite the prosecution of all actions brought before the courts of Alaska for infractions of the fishery laws and regulations by trap owners, operators, or fishermen.

Trap owners and operators should be given to understand that the bureau, through its representatives in Alaska, will insist on strict compliance with the laws and regulations, and that it expects their hearty cooperation in such matters.

The bureau at once gave wide publicity to this announcement, and vigorous protests were received from a number of operators, some of whom already had traps set and fishing. The complaint was chiefly that it was impossible to comply with the law as thus construed and that the only way they could escape being prosecuted for violation of law would be to discontinue operations altogether. Others felt that it would be impossible to make the necessary changes in traps already constructed in time to operate them profitably during the fishing season. A general feeling of dissatisfaction pervaded the district and was manifested in a suit, to which some 30 operators of traps were party, to restrain the officers of the Government directly concerned in the enforcement of the act of June 6, 1924.

This case, entitled "P. E. Harris \& Co., a corporation, suing on its own behalf and on behalf of others similarly situated, \(v\). Henry O'Malley, individually and as Commissioner of Fisheries; E. M.

Ball, individually and as Assistant Commissioner of Fisheries; George D. Beaumont, individually and as United States marshal, first division; Arthur G. Shoup, individually and as United States attorney; and all and singular the deputies, assistants, and agents of each and all of the parties above named," asked that the defendants and each of them be permanently enjoined from enforcing the provision of law in regard to opening of heart walls of traps in the manner described in the bureau's instructions to its employees, and from instituting prosecutions for failure to open heart walls of traps in such manner if they were opened in the manner previously employed.

The case was heard July 10 in the district court at Juneau, and on July 11 Judge Reed denied a temporary restraining order. A memorandum opinion in the matter was rendered on July 31, 1924, by Judge Reed, in which he summarized the case as follows:

The proposition simply amounts to this: The complainants claim that the methods heretofore used by them in opening the heart walls of traps comply with the terms of the statute. The contention is made in the face of an adjudication interpreting the statute otherwise by the circuit court of appeals; that the interpretation of the statute and of the adjudication thereof by the circuit court of appeals and by the prosecuting officers is erroneous, and that by not complying therewith they are not committing a crime; and that therefore a court of equity has jurisdiction to restrain the prosecuting officers from enforcing the statute as interpreted by the circuit court of appeals and by the prosecuting officers.

The court held that:
The authorities seem to be that no injunction will lie against prosecuting officers of the Govermment to restrain them from enforcing a constitutional criminal statute, even though, in attempting to enforce it, such prosecuting officers have misconstrued its effect.
* * * I am of the opinion that the motion for the temporary injunction should be denied, especially as to the United States attorney and his assistants, and as to E. M. Ball, of the Bureau of Fisheries, and his assistants, for the reason that I am not convinced that the construction placed upon the statute by the Bureau of Fisheries and the United States attorney is not correct.

I have carefully examined the records in the Thlinket case and an of the opinion that the question whether the method of opening the heart walls, as claimed by complainant to be sufficient, was directly before this court and the court of appeals. I am confident that the circuit court of appeals and this court had the manner of opening the heart walls, as contended for by the complainant, directly before it; and I am convinced that the V -shaped opening was decided by the circuit court of appeals not to be sufficient opening.

That it is impossible to construct traps so that the opening of 25 feet in the heart walls shall extend to the bottom is also a questionable statement. The assistant commissioner of the Bureau of Fisheries, Mr. Ball, testified that in the year 1919 he visited traps so constructed. The present traps of complainant may not have been constructed so that it was possible to make an opening 25 feet in width from the top to the bottom of the heart walls, and this construction may have been acquiesced in by the Bureau of Fisheries; but that does not afford any reason for construing the law so as to fit such cases: I am confident, however, that traps can be constructed so as to make the opening in the heart walls required by the statute; that it is neither impossible nor extremely difficult, though it may be less convenient than the method contended for by the complainant.

While at the present time I am not prepared to say that in all cases in order to comply with the statute that a section of the body of the webbing or net 25 feet in length of the heart walls next to the pot on either side shall be lifted or lowered and that the opening thereby made shall extend to the bottom of the trap at the same width, I do believe that that is, and should be, the proper construction of the statute. I base my belief on the declared purpose of the statute-the conservation of the fisheries of Alaska-that such construction of the statute would not only better accomplish that object but that it is a reasonable construction of the statute, and the only reasonable construction. Moreover, it will give a standard to which trap fishermen must adhere.

The case was heard on appeal by the Circuit Court of Appeals for the Ninth Circuit and decision confirmed by an opinion rendered December 15, 1924, in which it was said:

Appellant does not contend that the statute of 1924 , under which it is alleged the officials of the United States threaten to proceed by criminal prosecution and by proceedings for forfeiture, is unconstitutional or invalid, but takes the position that equity will enjoin the bringing of a criminal prosecution when it is necessary to prevent irreparable injury to property or a multiplicity of suits. The case of appellant can only stand by looking upon the question of a violation of the statute as a civil rather than a criminal proceeding. But it can not be so viewed.

As the season progressed, it became apparent that with slight alteration traps could be operated lawfully. The alterations made to the pile traps consisted, in most cases, of loosening the heart walls along the capping about 60 feet back from the pot, so that a wider section of the wall could be lowered and thus insure a full 25 -foot opening next to the pot at all stages of the tide. In other cases a section of the heart wall was removed and an apron substituted. These alterations were made quickly and with comparatively little cost. The manner of opening heart walls of floating traps was unchanged.

\section*{ROBBERY OF FISH TRAPS}

In its enforcement of the Alaska fishery laws and regulations, it is not a function of the bureau to engage directly in work having to do with the so-called fish piracy or robbing of fish traps. Sympathetic interest and cooperation, however, have been manifested at all times by the bureau and its employees in the activities of the Department of Justice and the United States Coast Guard to abate this unlawful and unwholesome practice, which in the season of 1924 assumed unusual proportions in southeastern Alaska.

The chief places of operation by these marauders were the Icy Strait region, the west coast of Prince of Wales Island, and the Ketchikan district. Packers in the Icy Strait region organized a private patrol, which was rery efficient, under the direction of the United States deputy marshal at Hoonah, and practically eliminated piracy in that region. In the Ketchikan district 36 boats suspected of engaging in piracy were blacklisted for a time, and complaints were filed by a trap owner against two ressels but could not be substantiated. As some of the packers bought fish indiscriminately from any boat offering them for sale, it was exceedingly difficult to cope with the situation. On the west coast of Prince of Wales Island a trap watchman was fired on and wounded. As a result, four men, comprising the crew of the boat Dolphin, were arrested, and one was convicted of assault and sentenced to six months in jail.

\section*{TERRITORIAL LICENSE TAX}

Fisheries license taxes were collected by the Territory under the revenue laws of Alaska as amended in 1921 and 1923. A statement from the treasurer, under date of March 25, 1925, gives the collections made to that date for the fiscal year 1924. It is stated that collections of salmon-pack taxes were complete, with the exception of approximately \(\$ 15,000\) still outstanding for the year 1924 , so far as the basic per case rates were concerned, and approximately \(\$ 10,000\) was outstanding under the several smaller fisheries tax schedules. The
total collected for the calendar year was about \(\$ 37,000\) less than in the preceding year. Many companies have withheld payment of the graduated pack tax pending the outcome of the test cases now in court, as referred to elsewhere in this document. The amounts withheld are approximately \(\$ 140,000\) for 1923 and \(\$ 75,000\) for 1924.

Fishery license taxes collected by Territory for fiscal year ended December 31, 1924
\begin{tabular}{|c|c|c|c|c|}
\hline Schedule & \[
\begin{aligned}
& \text { Division } \\
& \text { No. } 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Division } \\
& \text { No. } 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { Division } \\
& \text { No. } 3
\end{aligned}
\] & Total \\
\hline Salmon canneries (pack) & \$113, 109.48 & & \$173, 944.98 & \$287, 054.46 \\
\hline Salmon canneries (net income) & 4,900. 55 & & 13, 172.39 & 18, 072.94 \\
\hline Clam canneries.. & & & 289. 58 & 289. 58 \\
\hline Salteries & 4, 452.88 & \$568. 40 & 3, 688. 02 & 8,709. 30 \\
\hline Cold-storage plants & 1,525. 00 & & 500.00 & 2,025.00 \\
\hline Fresh-fish dealers & 2, 800. 59 & & 1,564. 77 & 4,365. 36 \\
\hline Fish-oil works and fertilizer and & 6, 082. 40 & & 964. 00 & 7,046. 40 \\
\hline Fish traps. & 80, 873. 78 & & 40, 712. 50 & 121, 586. 28 \\
\hline Gill nets.- & -770.20 & 41. 00 & 4, 874.40 & 5, 685. 60 \\
\hline Seines & 5, 445. 00 & & 1,785.00 & 7, 230.00 \\
\hline Total. & 219, 959. 88 & 609.40 & 241, 495. 64 & 462, 064.92 \\
\hline
\end{tabular}

\section*{BRISTOL BAY DISTRICT}

In 1924 a special force, consisting of two regular wardens and a number of other employees under the direction of Agent Dennis Winn, again operated in the Bristol Bay district. As in preceding seasons, attention was devoted during the spring to the destruction of predatory fishes, and after the beginning of active salmon-fishing operations a patrol was maintained on Bristol Bay and in tributary waters. Warden F. G. Morton was detailed to remain in the district over the winter for the purpose of making observations on the spawning grounds at the head of Iliamna Lake. Mr. Winn's report is as follows:

\section*{GENERAL REPORT OF SEASON'S OPERATIONS}

Operations in 1924 were conducted and transportation for men and supplies was secured along the lines of former years. The ships for Bristol Bay were again delayed, owing to trouble with the fishermen, which shortened the season very materially at Ugashik, and the late seasonal break-up at Nushagak also delayed operations there. The crew for Wood River was in the bay before the ice broke in the river. At Ugashik the men arrived so late and were as a result so severely handicapped as to impair seriously their operations.

At Iliamna and Becharof Lakes operations were far in advance of previous years, due to having the men proceed by the regular transportation routes, thus arriving at the headwaters of the respective lakes early in the spring and being prepared for operations as soon as the ice broke sufficiently to permit fishing. The low water at that time also afforded better opportunity for the work.

In reviewing work covering the different districts in this field it is felt that operations are producing most encouraging results. The scarcity of trout in the different localities is becoming more noticeable each year. The large catches made at Iliamna and Becharof Lakes were due to the longer and more favorable periods of fishing and greater familiarity of the operators with the habits of the trout. The men in charge of the various Bristol Bay districts have been in the same locality through several seasons.

After the departure of the cannery ships from Bristol Bay in the fall of 1923, operations on predatory fish were continued as late as possible at Aleknagik Lake and tributaries, and a survey of the spawning grounds in the same district was made under the direction of Warden A. T. Looff. In connection with this work Mr. Looff also made a survey of the Nushagak River watershed, embracing the Tikehik Lake system.

Wood River Lakes.-The Nushagak erew arrived at Nushagak Bay on May 16. Both Nushagak and Wood Rivers were as yet solid with ice, but the ice in the river broke on May 22. Travel was blocked for a few days by ice floating back and forth on the tides, but the ship transferred the crew to Snag Point on May 25. Supplies and equipment were in readiness, and the following day the men proceeded upriver to the lake. Ice still covered the lake, but by following a narrow channel along the shore we were able to reach the tally soow anchored near the lake outlet. Here camp was established and fishing begun with set nets and hand lines. Poor success was had until the ice left the lake June 8, after which operations were extended and catches improved. Another camp was established at a former location on the stream between Aleknagik and Nerka Lakes, where fishing was most successful. Trout were searce at all points and noticeably fewer than in former years. All the trout areas were visited, and fishing progressed continuously and aggressively at various points with set nets, which were the most effective method of capture until July 2, when the salmon made their appearance, after which the nets were removed. Hand lines and beach seines were then the only effective gear.

Camp was established and fishing begun at Nerka Lake, but very little success resulted from our efforts. Few tront were noticed in our investigation of that lake, while high winds, which continued from the middle to the 24th of July, handicapped operations.

The outward migration of young salmon, representing the return from the escapement of 1922, was small. Schools were noticed descending intermittently from the beginning of our operations to the end of July, but no large schools were encountered during the season.

Trout were extremely scarce and at no time were good schools seen, although the operators covered the field fully several times. It is felt that the absence of migrating young salmon was partly responsible for this condition, as there was little schooling, but it is also believed that the intensity of operations in this section in previous seasons is mainly respousible for the satisfactory condition. The men on patrol assisted in the trout fishing before and after the commercial operations in the bay.

The season's operations on the Wood River Lakes resulted in the taking of 3,162 predatory fish, and in the work in the fall of the previous year (not included in the 1922 report) 2,389 fish were captured, making a total of 5,551 fish destroyed. About 95 per cent of these were Dolly Varden trout and the remaining 5 per cent were mainly pike. The average weight was \(21 / 2\) pounds, or 13,877 pounds total. In addition, 1,300 Dolly Vardens were taken by two nets lent to a local fisherman during the late fall months but are not included in the above total.

Iliamna Lake.-Warden F. G. Morton, who supervised the work in the Iliamna district, left Seattle on a commercial steamer April 5 for Seldovia, where a boat was chartered for the trip to Iliamna Bay. He traveled thence via dog tean to Iliamna village, which was reached on May 2. As the Iliamna River was partly free of ice early in April, work had been begun in a small way by local people with whom arrangements had been made the previous fall to begin operations as soon as conditions permitted in the early spring. Upon the arrival of Mr. Morton operations were undertaken on a much larger scale with the most satisfactory results yet accomplished in this section.

Water conditions were ideal for seining, the river being low and without much current, so that beach seining was conducted intensively wherever possible in the river and vicinity. Good results were obtained for several miles up the Iliamna River. All the trout captured were large Dolly Vardens, several specimens weighing 13 to 14 pounds. The larger number of trout in this vicinity during the last two years was probably due to the great number of salmon that spawned in the river, the resulting young from which constituted the attraction for the trout. Trips were made to Pile Bay and vicinity, but trout were not found in numbers in that locality, nor for several miles up the river. Very little salmon spawning was ever noticed in Pile River.

On May 15 enormous schools of salmon fry were noticed emerging from the gravel, and the trout then scattered and became more difficult to secure in satisfactory numbers. A few days later the snow began melting in the hills, and streams rose rapidly to such an extent that seine fishing became impossible. Other modes of fishing were tried, but with discouraging results.

It was felt that best results could be secured by operating in the lake during the very early spring and late fall. Mr. Morton was therefore transferred to

Bristol Bay to supervise the Kvichak patrol, and later returned with an assistant to an advantageous point near the head of the lake on Youngs Creek. From winter quarters at this place they will conduct operations as late in the fall as weather conditions permit, and will also make a survey of spawning areas, improve spawning grounds, and gather data relative to the streams and lakes in that vicinity and their connection with spawning salmon and trout. They will also be on the ground for the earliest possible operations during the coming spring.

The season's work at Iliamna Lake resulted in the taking of 20,591 Dolly Varden trout averaging \(21 / 2\) pounds each, or 51,477 pounds. During the early part of the fishing the natives at the village utilized nearly all the trout taken, but their anxiety to secure the fish gradually lessened as their appetites became satisfied, and toward the end of our fishing they were so well fed as to refuse trout.

Naknek.-The Naknek party started upriver on May 25. Some floating ice was encountered and the banks on both sides of the rapids, for several feet out in the stream, were covered with ice, making the ascent very difficult. Camp was established at the outhet of the lake and fishing began May 27. A severe southerly storm with high wind and drifting ice forced the removal of the nets for a time. The hills and mountains were covered with snow and the weather continued cold and very disagreeable. The storm abated somewhat on the 30th and nets were reset. 'The first of the outgoing young salmon were noticed on this date. Trout appeared very scarce, and the stomachs of all those taken contained young migrating salmon.

On June 3 camp was moved to Kidawik Creek and work continued in the creek mouth. Here considerable floating ice was encountered but did not prevent operations. On the 8th large schools of migrating young salmon were noticed passing from Lake Brooks down Kidawik Creek to the main lake, and the catch of trout increased perceptibly at this point. On the following day severe storms set in and the water rose rapidly, bringing down quantities of drift and débris, which necessitated the removal of our nets for safety. Great schools of young salmon just out of the gravel completely lined both banks of the creek and were gradually working their way down into the lake. Trout appeared very scarce at every point in comparison with previous years, and natives reported extremely poor catches last winter and early spring in their traps around the lake.

On June 10 camp was moved to Grosvenor and Coville Lakes. "Supplies were portaged across, and the following day fishing was begun in the narrows between the two lakes. The greater portion of the catch was taken here, and consisted mainly of lake trout, with about 10 per cent pike. Tront were extremely large during the early operations, Dolly Vardens measuring 29 inches in length being not uncommon. Lake tront measuring 39 inches in length and 20 inches in girth also were taken, as were pike 43 inches long. As the season advanced pike became more numerous, until at times they nearly equalled the take of trout, although in the total they averaged about 10 per cent. Few Dolly Vardens were caught, but all taken were very large.

The first salmon of the season reached Grosvenor Lake June 19. The trout and pike taken at this time were feeding on young whitefish and salmon fry, the migrating salmon apparently having passed out. On June 23 salmon began increasing in numbers and were noticed jumping in various places around the lake. The number increased so rapidly that the operators were compelled to remove the set nets.

As the interference from salmon was so great, camp was moved back to Kidawik Creek. A heavy storm prevented setting out the nets here for two days. No salmon were noticed in the creek or near its month, although some may have passed up while the operators were at Grosvenor Lake. The storm caused the streams to rise rapidly, which brought in the run of salmon with a rush, and great numbers ascended and passed over the falls to Lake Brooks. Nets could not again be used. Baited set lines were then resorted to, but results were meager, partly due to the extremely rough, dark weather. On bright, quiet days fair catches were made, but during the greater portion of the time the weather was bad.

The results of work in this locality show the trout are decreasing rapidly. Another year attention may be centered wholly on Grosvenor and Coville Lakes.

The total eatch for the season was 2,192 fish, of which 85 per cent were lake trout, 10 per cent pike, and 5 per cent miscellaneous species. The average weight was 10 pounds, or a total of 21,920 pounds. The average weight of the pike was 14 pounds, but the trout ran much smaller than in previous years, bringing the total average to 10 pounds.

Becharof Lake.-The past season at Becharof Lake was the most successful yet conducted in the Bristol Bay district, which was primarily due to the longer period of operations and greater familiarity with equipment and the habits of the fish.

Henry Looff and an assistant, with necessary equipment and supplies, proceeded on a commercial steamer from Seattle April 5 and arrived at Kanatak April 17. Freight was transferred to the lake on pack horses, and work began immediately on arrival at Crooked Creek, this being the only place where fishing was possible at the time because of severe weather conditions and ice. Hand lines were used with but fair results pending the arrival of a creek seine from Kanatak. Seine fishing was conducted the entire length of the creek and very good catches made. Gill nets were also effective during this period in a small open stretch of water at the mouth of the creek. Other creeks in the vicinity that were open were prospected for trout before the ice left the lake, but almost no trout were seen except in Point Creek, where several fair catches were made.

The ice began to break up in the lake May 14, and warm weather, assisted by heavy rains, brought all of the creeks to flood stage, making fishing extremely difficult owing to the débris. As soon as weather conditions permitted traps were installed in the streams and produced fair results for a short period. All catches, however, fell off rapidly when the ice left the lake, the schools of trout breaking up and scattering.

Camp was then moved to various locations that had produced good catches in former seasons. No trout were in evidence at any of these points, and the operators returned to the base camp at Fish Village on June 4. The results here also were meager. On June 11 camp was established on Camp Creek. While the returns were small there, some large specimens were captured in 4 -inch mesh gill nets. Dolly Varden trout 30 inches in length and weighing 15 pounds were taken, and none weighed less than 5 pounds.

After visiting all the important locations of former years, the operators returned to Crooked Creek on June 15. The water was yet too high for seining, but trout were noted schooling in considerable numbers. Gill nets produced fair results until salmon made their appearance on June 26. As salmon eggs were then available for bait, hand lines were operated thereafter with excellent results. After this date, also, record catches were made with beach seines along the lake shore, using salmon eggs as lure. The eggs were obtained from the natives at the village, and the trout canght were given in exchange.

No accurate check was possible on the outgoing migration of young salmon, as fishing activities were conducted near the head of the lake. However, through the latter part of May and early June enormous schools of fingerling salmon were noticed along the lake shore having every appearance of being prepared to pass out to the ocean.

Various trips were made during the season to prospect the different streams for trout, but the scarcity noted at each point visited compelled the centering of attention on Crooked Creek and vicinity. The season's catch was 40,307 Dolly Varden trout averaging \(11 / 2\) pounds in weight, or a total of 60,460 pounds.

Ugashik.-As soon as weather permitted the Ugashik crew proceeded up the lake to the rapids between the two lakes, where camp was established June 22. It was too late to establish a trap in the stream, as the salmon were nearly due, so set nets were placed to block the passage and beach seines were used below the nets. Fair results were obtained. Drifting after dark also produced good results. Visits were made to the different creeks tributary to both lakes and trout fishing was conducted well up each stream with fair results. It was necessary for the crew to discontinue operations and proceed to the Red Salmon cannery July 28, where equipment was overhauled and stored for the winter.

The trout in general were in poor condition and all averaged much smaller than formerly. Some of them resembled an eel in shape. Specimens were taken measuring 15 inches in length and less than three-fourths of an inch through the thickest part of the body, and weighing less than three-fourths of a pound. Other specimens 22 inches long and 1 inch through the body weighed \(11 / 4\) pounds. Drift nets, set and fyke nets were the most effective gear until the salmon arrived in numbers, after which seines and hand lines produced the best results. The seastn's catch was 5,569 Dolly Varden trout averaging about \(11 / 2\) pounds, or a total of 8,354 pounds.

Very few migrating salmon were noticed, but they may have passed out earlier. Small schools were seen passing out intermittently for a few days after the arrival of the party. Fewer salmon fry were noted coming out of the gravel than in previous years, due to the small escapement of last fall.

The short season here seriously handicapped operations. It is planned another year to have two operators for this district proceed on a commercial steamer from Seattle via Kanatak with the Becharof Lake crew, thence proceeding to the tributarics at the head of the second Ugashik so as to be prepared for intensive work as soon as weather and ice conditions permit.

\section*{NEW FISHERY REGULATIONS}

The new law effective June 6 , imposing a 36 -hour weekly closed period, was at first resented by the fishermen, but as the season advanced many of them expressed themselves as wholly in favor of this restriction. Throughout the district every effort was made by most of the canneries and fishermen to conform fully with the regulations. No violations of the closed period were reported, with the exception of two fishermen, but there was insufficient evidence in their cases to warrant arrest. Several boats of different companies were found using illegal gear. The fishermen pleaded guilty on trial before the United States commissioner and were fined.

In the Nushagak section each cannery assigned a tug to tow all their fishing boats home on Saturday night and return them to the fishing grounds Monday morning. No attempt at illegal fishing was made in this section.

All the canneries cooperated by raising flags on their ships for two hours beginning at \(6 \mathrm{p} . \mathrm{m}\). Saturday night, and again for one hour beginning at 6 a. m. the Monday following, as notice to the fishermen of the beginning and ending of the closed period. A flag was displayed also from the wireless tower of Libby, McNeill \& Libby's Koggiung cannery, which could easily be seen from every point in the Kvichak district. Many canneries displayed flags on their tally scows through the closed periods. All of this was of great assistance in the patrol.

The canneries were established and machinery assembled for operations in accordance with reservation regulations, which had called for a 50 per cent reduction in gear at Nushagak and 29 per cent reduction on the Kivichak side, and their cannery crews were reduced accordingly. In consequence packs in these districts were lessened and the escapement of spawning salmon facilitated.

\section*{RUN OF SALMON}

The total pack of salmon in Bristol Bay for the season 1924 was about 818,000 full cases, of which \(931 / 2\) per cent were red salmon.

In the Nushagak section the run of red salmon was the heaviest since 1918, and resulted in the most satisfactory escapement that has occurred for a number of years. The salmon struck in June 29 and held strong and steady until July 14. The run appeared to be especially heavy during the closed periods, July 6 and 13. Fair numbers were in the bay until the heavy storms that occurred during the closed period of July 20, after which the red salmon almost entirely disappeared and some cohos and pinks made their appearance. Some salmon were transferred to Naknek and Ugashik. As a result of the closed periods, together with the transfer of salmon, it was not necessary for some of the companies to place the fishermen on limit.

At Igushik there was a small number of salmon in the stream when the season opened and a fair number on the 29th, which increased satisfactorily the following day. The run held steady until July 9 , when a perceptible falling off was noticeable. A fair number entered up to the 14th, after which the run continued small to the end of the season.

The natives who live near the lakes at the head of the Igushik and Snake Rivers reported that lasi fall the best salmon run for many years had entered those waters. A trip was made to the Snake River by one of the hureau's employees during the carly winter, but nothing could be learned other than to verify the report by the natives. This, in view of the fact that a very meager escapement entered the Nushagak and Woorl Rivers in the same period, would indicate that each stream supports an independent run.

At Kvichak-Naknek operations began with only a small run of salmon in evidence, and fishermen made deliveries of from 300 to 600 fish per boat during the first few days. On Junc 28 a fair run was reported near Egegik, but weather conditions were severe and very few fishermen endeavored to take advantage of it. The Scoter continued to cruisc outside during the succeeding closed period. The run held small but steady to July 7 , when the number increased perceptibly, and on the evening tide boats began to arrive at the tally scows with good catches.

The following day the run was again light. There was a fair run of red salmon at Egegik on July 26.

On July 11, during a strong southeast blow, fair numbers of salmon were noticed passing up the Naknek River, although the fishermen outside were not making encouraging eatches. The fishermen well out beyond the ships, however, returned with fair numbers the following morning. The catches continued small from the 16 th to the end of the season, and very few fishermen were out after July 21.

The number of salmon entering the Egegik River, while coordinated as to dates with the Kviehak-Naknek run, was proportionately much greater. The packs here were also affected by the reduction in gear and cannery personnel before referred to.

At Ugashik the closed periods, together with continuous stormy weather and reduction of gear, favored an escapement of spawning salmon that was much greater in relation to the pack than has occurred in previous years. No heavy run oecurred, but greater numbers appeared to be ascending toward the end of the season than at any other time.

\section*{ESCAPEMENT}

In the Wood River distriet a few salmon made their appearance at the lower lake on June 29, and small numbers entered daily until July 2, when great sehools appeared and kept inereasing. A trip down Aleknagik Lake and Wood River was made on July 10, when the lake and river seemed alive with salmon. On July 11 a prospeetor from Nerka Lake reported that large schools of red salmon were passing up that body of water. The run into the lake held strong until July 12, when a perceptible slackening was noted. During the height of the run an effort was made to estimate the numbers passing up, but the rush was so great that it was impossible to make an intelligent estimate. This escapement was the most satisfactory for the last several years, and it is felt that a suffieient number of salmon passed -up to their spawning grounds to seed adequately all available territory. On July 15 the number of incoming salmon was small and no heavy rush was experienced throughout the remainder of the season. A few silver salmon made their appearanee at the outlet of Aleknagik Lake on July 29.

At Ugashik the salmon were late in arriving at the lake, the first appearing on July 2. The main run reached the lower lake July 13 and on the following day arrived at the rapids between the two lakes. This passage rapidly filled with salmon ascending from the lower to the upper lake. Estimates of the fish passing up were made at several 20 -minute intervals, and it was reported that about 250,000 salmon entered the upper lake. A survey of the lower lake was made also, and it was estimated that there were 100,000 salmon in that body of water. In addition, considerable numbers of salmon were noted on July 27 in the first rapids ready to enter the lake, but owing to weather conditions it was impossible to estimate the number.

At Egegik the ascending red salmon reached the spawning grounds at the head of Lake Becharof on June 28, and the run was of fair proportions until August 3, when it slackened. On August 14 a heavy rush occurred, continuing strong throughout August. Warden A. T. Looff visited the streams and spawning area along the lake shore and reported that all available spawning area was amply seeded.

The first red salmon seen at Naknek were at Coville Lake on June 19, where they appeared before entering Kidawik Creek, although the fish first pass the mouth of the creek. Numbers increased gradually, until large schools were passing between Grosvenor and Coville Lakes. Considerable sehools were noted at various points in each lake, also, and on the return trip good-sized schools were noted at the falls of Kidawik Creek. While the weather was severe and preeluded any possibility of estimating the number at each loeality, the observer, who has worked in this distriet for four years, stated that in his judgment the escapement was possibly 40 per cent of that of 1923 . The spawning grounds were not visited after spawning began.

Spawning areas on Iliamna Lake and tributaries were viewed several times throughout the season, but only in certain areas were salmon observed in any numbers. Kokhonak Creek and Copper River contained eneouraging numbers early in the season, and later the red salmon were plentiful on the spawning beds also. These were the only places that received anywhere near an adequate number of spawners. On July 8 several thousand red salmon were noted schooling at the mouth of Copper River, and salmon were jumping in all direetions, seemingly
working toward this stream. On July 18 another visit was made to Copper River and conditions appeared most encouraging. Large schools of salmon were in the deep holes near the river mouth and numbers were observed jumping outside. Kokhonak Creek was visited at the same time and eneouraging numbers were schooling at the mouth, but no estimate could be made as very few had as yet entered the stream. Fish were red and apparently close to spawning period. Other advantageous points were visited but no salmon were seen.

A final inspection of the spawning grounds was made, beginning August 9 at Belinda Creek. As in previous years, most of the spawning was in the lower mile of the creek and almost none above 3 miles. Two families of native reindeer herders were camped at Belinda Creek drying fish for home use and dog feed. They had already cured about 3,500 salmon, the usual number being from 4,000 to 5,000 fish. About 2,000 red salmon were spawning in the ereek, but none were seen outside the mouth. This was about one-tenth the number that spawned in the previous two years. From Belinda Creek the lake line was followed for several miles in each direction, and salmon were seen spawning at several points along the beach. A storm was beating on-shore, and the salmon could be seen lifted on the waves and in some cases almost thrown on the shore. When the waves subsided they were noticed working at the same points in the gravel.

Kokhonak River and falls were next visited and 500 red salmon estimated below the falls, or about one-third the number observed last year. Some fish were working at the falls, but none as yet were spawning. The fishway blasted along the side of the falls in 1921 was washed away, as was a large portion of the rock wall forming the south shore. A trip was made up Kokhonak Creek for several miles and numbers of salmon were found in the stream. Fair numbers were schooling in the deep holes in the lower reaches and near the mouth of the river, and the spawning grounds were fairly well eovered, but not in numbers comparable with last year. The greater portion of the river was examined and it was estimated that there were about 175,000 red salmon in the stream, or 13 per cent less than in 1923.

The flood in the fall of 1923, which washed out the fishway at the falls, also made many ehanges in the stream and its by-passes. The main channel of the river was changed for a distance of about 1 mile at a point near the outlet, and nearly all the sloughs, which had carried water from the main river and reentered it farther down, were completely filled with gravel. As these sections were well seeded last fall it is felt that severe losses of eggs resulted from the filling in of these ehannels. This flood is said to have been the highest water reported in the lake in the memory of the oldest resident, and all the lowlands bordering on the river appeared to have been under water.

At Copper River no salmon were noticed schooling outside the river, but numbers were seen along the banks as we proceeded upstream. Spawners in the lower reaches equaled or exceeded the number in previous good years, but above 4 miles they were not so numerous. An estimate of 150,000 red salmon was made, or equal to the number in 1923. There were signs of serious storms everywhere, but no damage to spawning areas was noticed along this stream. While indications show that the high water overflowed the banks on each side of the stream, the river and tributary sloughs remained with their original banks when the flood subsided. Bear trails and signs of their fishing were noticed along the entire river. Some spawning was in progress around certain of the islands in Intricate Bay, but it was not extensive.

All of the spawning localities on the north shore of Iliamna Lake were visited, but there were practically no fish anywhere except in the Newhalen River. Chekok Creek, always a good producer, was eompletely barren of salmon, as were all the streams along that shore, ineluding the small creeks in the vicinity of Roadhouse portage, the Woody Island lakes, and outside shores. All the natives and locals were securing their winter's supply of fish for home use and dog feed from the Newhalen River, with the exception of a few taken at Iliamna. The number of salmon spawning in the Newhalen River could not be estimated owing to the discoloration of the water, which was high and of glacial origin. Some salmon were passing through the rapids on August 14.

Iliamma River was examined for about 10 miles from its mouth, including both its forks, and about 300 salmon were seen. The natives had utilized about 3,000 salmon-practically all that entered. All of the streams tributary to Iliamna Lake showed considerable damage from floods. New ehannels were made and old ones filled in in many places, which will have some bearing on the production of fry from eggs deposited last fall in these waters.

On the trip to Lake Clark salmon were spawning along the entire river and the lake. The number could not be estimated owing to water conditions, but they were not as numerous as in previous years.

The natives secured a sufficient number of fish for home use, their catch amounting to about 50,000 red salmon. They all agree, however, that the run this year was far smaller than those of the last two years. Some of the white men in the vicinity estimated the run as only 5 to 15 per cent as large as in 1922 or 1923. It is probable it was not over this latter figure, but might have been about 10 per cent of last year and a much smaller percentage of 1922.

The fish village near the outlet of the lake was visited on August 17, and it was noticed that some fresh salmon were still being taken, but the natives had nearly all the fish they needed and only a few very small pieces of web were in the water.

Taziminia River was visited, and 5 of its 6 miles of spawning area were examined. It was estimated that 40,000 red salmon had entered this stream, which was fewer than in any of the previous five years with the exception of 1920.

The escapement to this section was not wholly satisfactory, although in excess of expectations based on observations in passing up and down the Kvichak River, where few salmon were noticed ascending; the same report was made by others who had occasion to travel in this locality, though early in the conmercial season parties traveling downstream from the lake had noticed salmon ascending.

The number entering the lake was greatly increased by the weekly closed period and by moving the markers downstream about \(21 / 2\) miles to a point just above the Alaska Packers Association's Koggiung cannery.

\section*{PATROL}

The patrol was effective at all points except Ugashik, where it is felt certain an organized effort by fishermen to evade the law was aided and abetted by certain cannery officials. The boats detailed for this work during the past season were not suitable or sufficiently speedy to cope with the situation. The matter has been laid before the Commissioner of Fisheries with the recommendation that the Ugashik section be entirely closed if this situation arises again.

A launch, with two men, was stationed at each of the following points: Kvichak, Naknek, Nushagak, and Igushik. One man with a small boat was detailed to Egegik for patrol through the open season, and with an assistant on a hired launch or sailboat the district was covered during the closed period. Another launch, with a warden and an assistant aboard, patrolled lower Nushagak Bay through each closed period, while a local launch, engaged to eover the territory between Kvichak and Naknek during the weekly closed period, patrolled the upper Kvichak and transported the writer to the lakes at various times through the cominercial season. The bureau's boat Scoter covered the entire district, keeping in touch with the different localities. As the result of an accident launch No. 4 was totally destroyed by fire in the Ugashik River after the commercial season was over.

Predatory fish taken in 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Location operated & Fish taken & Average weight & Total weight & Dolly Vardens & Lake trout & All others \\
\hline Naknek & Number
2, 192 & Pounds
10 & \[
\begin{array}{r}
\text { Pounds } \\
21,920
\end{array}
\] & Per cent & Per cent & Per cent 15 \\
\hline Becharof & 40, 307 & 3 & 60, 460 & 100 & & \\
\hline Ugashik. & 5, 569 & 11/2 & 8, 354 & 100 & & \\
\hline N゙ushagak & 5,551 & \(21 / 2\) & 13, 877 & 95 & & 5 \\
\hline Iliamna. & 20,477 & \(21 / 2\) & 51, 477 & 100 & & \\
\hline Total & 74, 096 & & 156, 088 & & & - \\
\hline
\end{tabular}

WINTER INSPECTION OF SALMON SPAWNING GROUNDS OF WOOD RIVER LAKE SYSTEM, 1922-23

A survey of the spawning grounds of the Wood River lake system was made during the winter of 1922-23 by Warden A. T. Looff. A report of his observations before the freeze-up in the fall was pub-
lished in the document "Alaska Fishery and Fur-Seal Industries in 1922." The report on his inspection trip in January and February, 1923, apparently became lost in the mail and was not arailable for inclusion in the corresponding publication for 1923. The report by Mr. Looff on that trip is as follows:

During the months of January and February, 1923, a trip was made with dog teams to the lower Wood River lakes-Aleknagik and Nerka. It was the intention to go from Nerka Lake to the upper Wood River lakes, and from there across country to the Tikchik lakes for a preliminary survey of that district, but on account of deep snow this part of the plan could not be carried ont. Streams tributary to Aleknagik and Nerka Lakes were examined to determine the effect of the winter cold on their flow. Air and water temperatures were taken and the gauges placed last fall prior to the freeze-up were visited to determine the change in the lake level. Spawning areas marked last fall during the spawning period were examined. Work on predatory fish, chiefly Dolly Varden trout, was carried on, but with poor results. Heavy snowfalls that covered the ice of lakes and streams with many feet of snow made the work difficult, and moving from place to place was almost impossible.

\section*{ITINERARY}

Supplies and equipment were assembled at Snag Point and dog teams were engaged. Leaving Snag Point on January 2, at \(7 \mathrm{a} . \mathrm{m}\). , the party, consisting of the writer, J. Paulsean, apprentice fish-culturist, and H. Henriksen and C. Neilsen, drivers, with two dog teams, proceeded across country to the outlet of Aleknagik Lake, thence over the ice of the lake to its head, and thence over the portage to Nerka Lake, where on January 6 one load was eached and C. Neilsen sent back to Snag Point with one of the teams. The party then proceeded with one team and a light load along the west shore of Nerka Lake to the outlet of Little Togiak River, reaching there January 6 at 4 p. m. At Little Togiak River a permanent camp was established, from which trips were made to the tributary streams in that vicinity and work on Dolly Varden trout was carried on. The dog team was sent back to the portage between Nerka and Aleknagik Lakes for supplies cached there.

On January 18 camp was moved 5 miles farther up Nerka Lake and established on the north shore, the team having carried one load forward on January 16. Fishing for Dolly Vardens was carried on, but with poor results.

On January 20 camp was moved to the south shore of Nerka Lake about 10 miles below its upper end. At this stage travel became very slow on account of deep snow, it being necessary for two men to snowshoe their way ahead of the dogs. From this camp trips were made to investigate spawning areas along the south shore of the upper end of Nerka Lake and tributary streams that enter along that shore.

On February 7 rain followed by a quick frost formed a crust on the deep snow that covered the ice of the lake and travel again became good, but the supply of dog feed was now so low that the plan to continue the trip on to the upper lakes was abandoned. On February 8 camp was moved 20 miles down Nerka Lake and established near the mouth of Lynx Creek. From this camp trips were made to the varions tributaries in that vicinity, marked spawning areas were examined, and work on predatory fish was carried on.

On February 19 camp was moved over the portage to Aleknagik Lake and established at the mouth of the river that enters that lake from Nerka Lake. From this camp the river connecting the two lakes was examined, and fishing for Dolly Varden trout was carried on at the mouth of the stream. On February 25 the supply of dog feed was exhausted and the party started for Snag Point, reaching there the same day at \(6 \mathrm{p} . \mathrm{m}\).

\section*{EFFECT OF ICE ON SALMON SPAWN}

To determine possible destruction of salmon spawn in lake-shore spawning areas by the winter ice, the level of the lake water was recorded at different times during the salmon spawning period last fall and until the freeze-up on stakes driven near the shore in both Aleknagik and Nerka Lakes. Several nests in shallow water were marked with poles, and such places were examined on this trip.

Last fall the water of the lakes reached its lowest level on September 5, which was during the height of the salmon spawning period, after which it rose steadily until on October 21 it was 18 inches higher. As the height of the spawning period was during the lowest stages of the lakes, and as the shallowest nest located during that time was covered with 12 inches of water, few spawning areas were covered with less than 30 inches of water at the time of the freeze-up.

On January 3 the level of the lakes had fallen 26 inches below the level of October 21 and 8 inches below the level of September 5. The position of the ice along the shore did not indicate that the level of the lakes fell after the freezeup, but this is believed to be the case. During the months of January and February there was no change in the level of the lakes but a great increase in the thickness of the ice that covered the lakes, especially during January.

On January 3 the average thickness of the lake ice was 12 inches, and it increased rapidly to 30 inches during the cold weather of that month. During February the increase was slow, and on February 24 the average thickness was 36 inches. There was no difference in the ice on Aleknagik and Nerka Lakes.

Upon first reaching Aleknagik Lake and finding the low level of the lake and the thickness of the ice it was believed that spawning nests in shallow lake-shore areas would be frozen, but this was found not to be the case. All of the nests marked last fall were relocated and found to be centered in what are known in this district as "hot holes." Many of these "hot holes," most of which are located along the shores of the lakes, remained open during the coldest periods. Others formed a thin sheet of ice that increased in thickness as the water became deeper away from shore. All "hot holes" observed opened up promptly during periods of moderate weather. In traveling along the shores of the lakes it was noticed that important spawning areas observed last fall during the salmon spawning period were centered in "hot boles."

Tributaries of Aleknagik and Nerka Lakes that could be reached were examined to determine the effect of the winter cold on their flow, to ascertain their temperature, and to locate Dolly Vardens. With the exception of Little Togiak River, Creeks Nos. 11 and 27, and Lynx Creek, conditions in all tributaries examined were identical. All were laid over with from 6 to 12 inches of ice, which in turn was covered with many feet of snow. They were discharging approximately onehalf the amount of water that they did last fall, and their temperature was \(32^{\circ} \mathrm{F}\). Little Togiak River was open in mid-channel and discharging only slightly less water than last fall. Its temperature was \(32^{\circ} \mathrm{F}\). Creeks Nos. 11 and 27 were dry or entirely frozen up. Lynx Creek was open throughout most of its length, being covered with ice only in reaches where the current is slow. Lynx Creek was discharging about two-thirds the amount of water that it did last fall, and its temperature was \(32.5^{\circ} \mathrm{F}\).

\section*{WATER TEMPERATURES}

The temperature of the lake water was taken in many places, at various depths, and at different times when the temperature of the air ranged from 38 to \(42^{\circ}\) below zero. Immediately under the ice the temperature of the water was at all times \(32^{\circ} \mathrm{F}\). When the glass was lowered to a depth of 25 feet or more a slight rise in temperature was noticed. The highest water temperature found was in a group of "hot holes" on the east shore of lower Nerka Lake, which maintained a constant temperature of \(35^{\circ}\) on the bottom, the water at the surface being colder in proportion to the depth of the "hot hole" and the air temperature.

\section*{WORK ON PREDATORY FISH}

Work on Dolly Varden trout was made difficult by the depth of ice and snow that covered the lakes and streams. This condition prevented the intelligent use of nets, as the fish could not be located. Camps were chosen with reference to favorable locations for trout, and many holes were cut through the ice but no concentration of trout was found. Fishing was carried on through these holes with hand lines at all available times, but with meager results. Only 56 trout were taken.

We feel that the failure in this part of the work was due largely to lack of experience with winter conditions. Last October at the close of the fall work P. Knutsen, who spent the winter trapping at the head of Aleknagik Lake, was furnished two trout gill nets to be used for Dolly Vardens. With these two nets and one of his own Mr. Knutsen took 1,300 Dolly Vardens at the hea :of Aleknagik Lake after our departure. They were taken just before and after the freeze-up,
operations being stopped when the ice exceeded several inches in thickness. Part of the catch was frozen, several hundred of the fish having been seen by the writer during this trip.

INVESTIGATIONS IN NUSHAGAK REGION, FALL OF 1923. EXAMINATION OF TIKCHIK LAKE SYSTEM

At the end of the commercial fishing season of 1923 in Bristol Bay, a number of the bureau's employees, under the direction of Warden A. T. Looff, were assigned to the work of destroying predatory fish in Aleknagik Lake. J. Paulsean, master of the bureau's patrol vessel Scoter, was actively in charge of this work, which continued from August 3 to October 1. Operations centered in the vicinity of the main inlet of the river entering from Nerka Lake until August 16, and from that date until August 26 at the outlet of Aleknagik Lake; again at the inlet from August 27 to September 17, and thereafter at the outlet until the departure of the crew on October 1.

The total number of predatory fish destroyed during this period was 2,389 , approximately 95 per cent of which were Dolly Varden trout, the remainder being pike and rainbow trout. Fair results were obtained during most of the time with gill nets, seines, and hand lines, but very poor catches were made with baited traps and their use was soon discontinued. On September 10 a period of heavy rainfall began, which raised the level of the lake 74 inches from noon on September 11 to noon on the 14th. Very few trout were caught thereafter on account of the high water.

A careful examination of all spawning areas in Aleknagik was also made during this period, and trips were taken to all tributary streams. It was estimated that 7,500 red salmon spawned in five of the nine main tributaries, but they did not enter the others. It was also estimated that 9,000 red salmon spawned along the lake shores, making a total of 16,500 in Aleknagik Lake and its tributaries, or approximately half the number estimated to have spawned there in the season of 1922.

While operations were being carried on at Aleknagik Lake Warden A. T. Looff made a trip to the Tikehik lakes. Spawning grounds were inspected and a map made of the region, showing the lakes and their tributaries and connecting rivers and the drainage system into Bristol Bay. Mr. Looff's report on this trip is as follows:

Before beginning the examination of the Tikehik lake system inquiries were made of prospectors and natives residing in Bristol Bay regarding the district to be visited, and it was found that practically nothing was known of the Tikchik district except that it is a region of numerous large lakes. Most maps of this section of Alaska show one or more lakes, known as the Tikehik lakes, Iving to the north of the Wood River lake system and flowing through the Tikchik River into the Nushagak River. In the preparation of this report and the accompanying map the nomenclature of the natives of the Tikchik region is used with respect to the main features. F. A. Waskey, who was prospecting in the district and is very familiar with the Innuit language, was authority for the proper spelling of names and for information regarding some of the upper features of the district.

The Tikchik lake system lies directly to the north of the Wood River lake system and constitutes the main lake source of the Nushagak River. It comprises six lakes-First Nuyakuk, Second Nuyakuk, Chauiskuktuli, Chikoominuk, Nishlik, and Uppnuk-and derives its name from the Tikehik River, a small stream flowing from the two last-named lakes into First Nuyakuk Lake. The district is drained to the southeast by the Nuyakuk River, which flows into the Nushagak River, and the latter then empties into Nushagak and Bristol Bays.


The Nuyakuk River enters the Nushagak River about 148 miles above the village of Snag Point, where the Nushagak widens into Nushagak Bay.

Leaving Snag Point August 25, 1923, the party proceeded up the Nushagak River to the mouth of the Nuyakuk River, thence up that river to First Nuyakuk, Second Nuyakuk, and Chauiskuktuli Lakes. Patrol boat No. 4 was used as far as the first rapid on Nuyakuk River, 198 miles above Snag Point, and an 18 -font codfish dory equipped with an Evinrude engine was used above that point and for the work on the lakes. The entire shore line of these three main lakes was examined, and trips were made to ascertain the relative position of and secure information about the other three lakes. As salmon do not enter the stream connecting Chikoominuk Lake with Chauiskuktuli Lake, and as reliable information regarding Nishlik and Uppnuk was secured from another source, little was to be gained by a visit to them and it was decided to spend all available time on the examination of the main lakes. Work was completed and Snag Point reached September 17.

\section*{NUSHAGAK RIVER}

In traveling to and from the Tikchik district that portion of the Nushagak River from its mouth at Snag Point to the mouth of the Nuyakuk River came under observation. Sketches were made and its main channel is included in Figure 4. From the mouth of the Nuyakuk River the general trend of the Nushagak River is southeast for a distance of 45 miles, then south for 68 miles, and then west to its mouth at Snag Point. This lower portion of the river flows between low, rolling hills well timbered with spruce, birch, and cottonwood. In places it breaks up into many channels. The effect of the tides from Bristol Bay are perceptible for a distance of 35 miles above Snag Point. The current is fairly swift and it takes a good launch to make headway upstream. Actual running time from Snag Point to the mouth of the Nuyakuk River with patrol boat No. 4 was 49 hours.

Two large tributaries enter the Nushagak below the Nuyakuk River-the Kokwok River from the west, 80 miles above Snag Point, and the Mulchatna River from the east, 115 miles above Snag Point. There are six native villages on the Nushagak River, all of which were visited and inquiry made of the natives regarding the run of salmon and the extent of their catch. These villages evidently had a considerable population at one time, but they are nearly deserted now.

Kokwok village is located on the west bank of the Nushagak near the mouth of the Kokwok River. It was at one time large, but at the time of our visit only two families of natives lived there. They were reindeer herders and did no fishing, but reported having seen several hundred red salmon ascending the Kokwok River during the last days of July.

Ekwok village, which is the largest native village on the river, is on the west bank of the Nushagak, 5 miles above Kokwok village. Seven families lived there, all of whom were fishing. About 7,000 salmon, a little over 1,000 of which were red, the remainder being chum, king, and silver, had been caught during the summer, most of which were dried for winter use. The natives reported that the red-salmon run was extremely light this season and that most of the fish passed Ekwok during the last days of July.

Unnukbak village, containing one native family, is on the west bank of the Nushagak, 15 miles above Ekwok village and 100 miles above Snag Point. The natives were fishing with two traps constructed of split spruce strips and shaped much like a fyke net. With these traps they had taken about 800 salmon, of which about 150 were reds. A red salmon bearing tag No. 6743 was taken on the last day of July.

Elilakok village, on the east bank of the Nushagak 103 miles above Snag Point, was deserted.

Agokpak village, on the west bank of the Nushagak 113 miles above Snag Point, contained three native families. They had taken approximately 2,000 salmon, about 400 of which were reds.

Koliganek village is on the west bank of the Nushagak River near the mouth of the Nuyakuk, 148 miles above Snag Point. It is the farthest upriver of any native village, and evidently at one time had a considerable population, but there were now only two native families. They had been fishing during the summer and caught about 300 salmon, approximately half of which were reds.

\section*{NUYAKUK RIVER}

The Nuyakuk is the largest tributary of the Nushagak River, on the basis of the volume of water discharged. It carries the waters of the Tikchik lake system over a distance of 60 miles in a southeasterly direction to the Nushagak River. For the first 10 miles it flows through a mountainous country, which breaks abruptly into low, rolling hills well timbered with spruce and birch. There are three rapids in the upper reaches.

The first rapid, one-third of a mile long, is 10 miles below the outlet of First Nuyakuk Lake. The river there breaks into three channels. Salmon ascend easily and small boats can be lined up the right channel.

The second rapid is 5 miles above the first rapid. Here the river falls fully 75 feet in a distance of one-eighth of a mile. Boats must be portaged when traveling either up or down the river. The portage is on the west bank and is 300 yards long, with a rise of 100 feet going up river and 25 feet going down. A windlass was used to portage the dory. Salmon ascend through a series of eddies.

The third rapid, half a mile in length, is at the outlet of First Nuyakuk Lake. Salmon ascend easily and small boats can be lined up along the south bank.

There are no native villages on the Nuyakuk River, and it has only one important tributary. Two native families camping at the mouth of this tributary during the fishing season had caught about 1,000 salmon, a large proportion of which were reds. These natives had no name for the stream, so it was called Camp Creek.

Camp Creek enters the left limit of the Nuyakuk River at the foot of the third rapid. It is about 10 miles long and averages about 10 feet wide and 2 feet deep. Its source is a series of small ponds to the north. Red, king, and silver salmon ascend the stream to spawn. It was estimated that 1,000 red salmon had spawned in the stream and ponds.

\section*{TIKCHIK LAKES}

The Tikchik lakes consist of a chain of three main lakes and three less important ones. The main lakes-First Nuyakuk, Second Nuyakuk, and Chauiskuktuliare closely united. Of the others, Nishlik and Uppnuk are tributary to First Nuyakuk and Chikoominuk is tributary to Chauiskuktuli. The country surrounding the lakes is extremely mountainous. Most of the streams flowing into the lakes are small, short, and too swift for salmon to ascend, and consequently are of little interest from a fishery standpoint.

\section*{FIRST NUYAKUK LAKE}

First Nuyakuk is the smallest of the three main lakes. It is triangular in shape, 9 miles in length, with a maximum width of 7 miles. The direction from the outlet to the inlet is southwest. Except at the upper end the lake is shallow and the bottom is strewn with large bowlders. The entire shore line was examined and the greater part found to be rocky and unsuitable for sparning. A few red salmon were seen-about 25 in all-but none was found spawning. The lake has two tributary streams.

Creek No. 1 enters on the south shore near the inlet from Second Nuyakuk Lake. It has an average width of 20 feet and depth of 2 feet for the first 2 miles. The current is fairly swift and the bottom gravelly. No traces of salmon were found. The source is apparently mountainous.

Tikchik River is about 100 feet wide and 2 feet deep where it enters First Nuyakuk Lake on the north shore about 6 miles above the outlet. No salmon were seen in the mouth of the river or in its vicinity on September 6. Natives reported that in former years immense runs of red salmon passed up this stream to the two lakes above. F. A. Waskey, who descended the river during the time of our examination, furnished a sketch of the river and its lake source-Nishlik and Uppnuk Lakes. Lack of time prevented a trip to those lakes, but Mr. Waskey reported having seen about 75 salmon during his trip down the river.

\section*{SECOND NUYAKUK LAKE}

Second Nuyakuk Lake is next above First Nuyakuk Lake, to which it is joined by what might best be termed a strait about 2 miles in length and one-fourth of a mile in width. The water of the strait is very deep, with barely perceptible current.

Second Nuyakuk Lake is 19 miles in length and has an average width of 4 miles. The distance from the outlet to the inlet is \(41 / 2\) miles and the direction is west-northwest, the main porion of the lake lying southwest of the inlet and outlet. The country around the lake is mountainous and, except at the northern end, high mountains rise abruptly from the water's edge. Most of the shore line is rough and strewn with large bowlders, but there is good gravel bottom well suited for spawning for about 10 miles along the north shore from the inlet to the outlet. About 100 red salmon, all highly colored, were seen in this section of the lake but none were found working at nests. No salmon were found in other parts of the lake. The southern portion, particularly, receives many small tributary streams, which descend the mountain sides in cataracts that in many cases can be seen for their entire length from the lake. They are of no interest from a fishery standpoint, as fish can not ascend them.

Creek No. 2 enters the lake about a mile north of the point where the river connecting Lake Chauiskuktuli with Second Nuyakuk Lake enters the latter. It was examined for a mile above its mouth, in which distance it averaged 10 feet in width and 1 foot in depth. It has a good gravel bottom and the current is slow-about 3 miles an hour. No salmon were found in it.

\section*{CHAUISKUKTULI LAKE}

Chauiskuktuli Lake is the third of the three main Tikchik lakes and the largest of the group. It is 21 miles in length, with an average width of 4 miles, and from outlet to the head the direction is southwest. It lies north and a little to the west of Second Nuyakuk Lake, with which it is connected by a river 1 mile in length and averaging 150 feet in width and 2 feet in depth. Upon leaving Chauiskuktuli Lake the river flows due east and is fairly swift. In ascending boats must be lined from the banks. Thirty-five red salmon were noted going up the river on September 8, but none were seen on the return trip on September 11 .

Chauiskuktuli Lake also lies among lofty mountains. About 13 miles of its shore line, from a point directly opposite the outlet of the lake southwest to the mouth of Creek No. 5, is an almost continuous gravel beach. Practically all of the red salmon found upon an examination of the Tikchik lakes were along the beach. They were seen at intervals all along this shore, and several groups of 50 or more were noted. In some places work on nests was in progress from September 7 to 11. Along the northeast shore the lake has a mud bottom, and no salmon were found there. Only about 50 salmon were seen along the south shore. Chauiskuktuli Lake has three tributaries, in none of which were salmon found.

Creek No. 3 enters the northeastern end of the lake. For the first mile the stream averages 15 feet in width and 3 feet in depth. Its current is hardly perceptible and the bottom is mud-covered. The stream rises in the marshy land to the northeast, which is practically the only lowland bordering the lake.

Creek No. 4 is a swift mountain stream that enters the lake on its north shore 5 miles west of the outlet. It is 25 feet wide and 2 feet deep at its mouth, and was examined by land for a distance of about 2 miles above its mouth. It can not be ascended by a boat, nor can salmon ascend. F. A. Waskey, who had made the trip overland during the summer, furnished a sketch of the stream and its ssurce-Chikoominuk Lake.

Creek No. 5 enters on the north shore 13 miles southwest of the outlet of the lake. In its lower reaches this stream averages 10 feet in width and 2 feet in depth. It has good gravel bottom apparently well suited for spawning purposes. It was examined for a distance of about 2 miles above its mouth, but no salmon were foind.

EXtent of Red-salmon RUN to tikchik lakes
The Tikchik lakes, as the main lake source of the Nushagak River, are the Iogical destination of the greater part of the red salmon that pass up the Nushagak River to spawn. Natives residing on the upper Nushagak River report that red salmon pass up the Kokwok River, which drains a series of small lakes, and also un the Nuvakuk River to the Tikchik lakes, but that the run of red salmon up Nuyakuk River is much larger than the run up the Kokwok. They state also that red salmon are, never found in any other tributaries of the Nushagak.

After leaving salt water in Bristol Bay, in order to reach the first of the Tikchik lakes salmon must ascend approximately 210 miles of river and negotiate three rapids, none of which is difficult. Of the run of red salmon that passed up the

Nushagak River in 1923 , about 2,000 were caught by 13 native families that live along the river. All of these were caught above the mouth of the Kokwok River, and it is considered fairly certain that they were bound for the Tikchik lakes. The gear operated by these natives, consisting of gill nets and traps, most of which was inspected by the writer, was not capable of catching a large proportion of the salmon passing up the river. In examining the spawning grounds of the Tikchik lakes it was estimated that 4,000 red salmon were found, probably 3,000 of which were spawning along the north shore of Chauiskuktuli Lake and the remainder in Camp Creek, which enters the Nuyakuk River near the outlet of First Nuyakuk Lake. There was evidence that some red salmon pass up the Tikehik River to Nishlik and Uppnuk Lakes, but they do not ascend other tributaries.

\section*{OTHER FISH IN THE TIKCHIK DISTRICT}

The natives living in the Tikchik district, consisting of three families, none of whom has ever been to Bristol Bay, reported that all five species of salmon now enter the lakes, but that humpback salmon never ascended above the second rapid previous to the season of 1920 , when extensive changes occurred in the rapids during the spring break-up. During the examination of the district a few king salmon were noticed in the upper reaches of the Nuyakuk, but none were found in the lakes. Several hundred silver salmon and a few humpbacks were seen in the lower part of First Nuyakuk Lake, but none in the upper lakes. No chum salmon were seen during the examination of the lakes.

According to a story common among the natives of Bristol Bay, the Tikchik is the home of a great fish known as the "chieginuk," which is said to become so large and vicious as to attack and destroy caribou and other animals that attempt to cross the river and lakes, and the natives in the Tikchik never use brightly painted kayaks for fear they will attract these fish. Upon reaching the Tikchik district it was found that the story was true with respect to the painting of the kayaks and also that the natives are afraid of the fish. Excitement became keen when one of the natives volunteered to catch a sinall chieginuk, large ones never having been seen by them, but our disappointment was keen next morning when the native paddled up to camp, and with the word "chieginuk" tossed a fine specimen of lake trout (Cristivomer namaycush) on the beach. Great numbers of lake trout were found in all parts of the lakes. The natives reported that each fall, shortly before the freeze-up, a great run of these fish occurs from First Nuyakuk Lake up the Tikchik River, and it is from this run that they take most of their winter's supply of fish.

\section*{KUSKOKWIM RIVER}

In July and August Stream Guard Charles McGonagall made a special trip from the Yukon to the Kuskokwim River, particularly to investigate allegations that commercial fishing operations were being carried on above the mouth of that river as established by the Bureau of Fisheries, but fishing operations had ceased by the time of his visit. Commercial products were as follows: Kings, 32 tierces mild cured and 329 tierces and 37 barrels pickled; chums and silvers, 430 barrels pickled; reds, 20 barrels pickled. Local residents also prepared 14,700 king salmon and \(1323 / 4\) tons of dried dog salmon.

\section*{YUKON RIVER}

Commercial fishing for salmon off the mouth of the Yukon River was carried on by three mild-cure and salting plants-Waechter Bros., Frank Kern, and O'Connor \& Sheppard-all located on Leslie Island. The run of king and chum salmon was reported to be the largest since 1912. The run of kings began at the mouth of the river on June 9, and by July 3 all available containers had been filled and fishing ceased. During this period weather and fishing conditions were ideal and very little gear was lost. The total pack was as follows: Kings, 565 tierces mild cured and 10 tierces and 125 barrels pickled;
chums, 71 barrels and 1 tierce pickled. Practically all of this pack was shipped to the States. In addition 55 cases of smoked kings were canned for sale in the local market.

Fishing by natives along the Yukon and Tanana Rivers also was successful, although there was a heavy loss of spoiled fish as a result of continual rains from July 3 to August 10. It was estimated that there were 258 wheels and 600 fathoms of nets operated from Kwiguk to Rampart Rapids, and that about 685 tons of dried dog salmon were prepared. The catch on the Tanana River was approximately 50 tons of dried dog salmon. Contrary to custom, the natives were still fishing when the bureau's patrol passed up the river the latter part of August and early in September.

Inspector C. F. Townsend, with headquarters at Fairbanks, looked after the bureau's interests on the Yukon and tributaries and also supervised the Kuskokwim River investigation.

\section*{ALITAK SALMON COUNT}

Red salmon ascending to spawn in two small streams in Olga Bay were counted, as in the previous season. Work of constructing the rack in the stream at the upper station was begun on May 12 and completed May 21. The rack in the stream at the home station was completed by May 27. Counting began at the upper station on May 24 and at the home station on May 29, and continued until October 8. The total number of red salmon that passed through at the upper station was 302,008, and at the home station 19,867 , a grand total of 321,875 .

A run of red salmon in Olga Bay was reported to have entered Horse Marine Lagoon. This stream was not racked, but it was estimated that about 30,000 red salmon were in the lake at the head of the stream.

The companies fishing in Alitak Bay and tributary waters reported the capture of 238,759 red salmon, or approximately 40 per cent of the total run. Once during the season the commercial catch of red salmon exceeded the escapement, as counted at the two weirs, and fishing was ordered discontinued from July 29 to August 11. During the latter part of the season the escapement exceeded the catch.

A small run of coho salmon through the racks lasted from July 31 until counting was discontinued on October \(S\), and a run of humpbacks lasted from July 30 to September 12, but these counts can not be regarded as a basis for computing the run, as both of these species spawned chiefly in other streams. It was estimated that there was an escapement of more than \(2,000,000\) humpbacks, and that the chum and coho escapement far exceeded the catch in the district.

Operations at Alitak were under the general supervision of Fred R. Lucas, superintendent of the Afognak hatchery.

\section*{CHIGNIK SALMON COUNT}

Considerable difficulty was again experienced in putting in the rack for counting salmon ascending Chignik River in 1924. On May 11 work was begun on the construction of the rack about 1.50 feet below its location in the previous season. The river there is 460 feet wide and from 2 to \(51 / 2\) feet in depth. Some delay was experienced in getting the lumber delivered at the rack from the North-
western Fisheries Co.'s ship St. Paul, which had transported it from Seattle to Chignik. On May 21 work was resumed at the rack. High water made the work very slow and difficult, and on June 8 a part of the rack was washed out. The section was reconstructed and work finally completed on July 5.

The first salmon was noted passing up the river on June 4. Counting began July 6, and it was therefore necessary to estimate the number that had passed up before the completion of the rack. Red salmon ceased running on October 10, and the weir was dismantled and all material stored for use another season. Including an estimate of 115,000 red salmon believed to have ascended between June 4 and July 5, the total escapement for the season was computed at \(1,010,436\). Under the provisions of the act of June 6, 1924, commercial fishing operations were stopped three times during the season, from July 14 to 21, August 7 to 11, and August 21 to 25, in order to permit the spawning escapement to equal the commercial catch. During the latter part of the season the traps of the salmon canneries took a smaller percentage of the run, and the total reported catch by the three companies operating traps in Chignik waters was 867,544 red salmon, or approximately 46 per cent of the total run. In the season of 1923 the companies took a total of 677,602 red salmon, which was over three-fourths of the total run.

It was also reported that there was a very heavy run of humpbacks, but as they spawn chiefly in the creeks emptying into the lagoon and bay, no count was made of the number of this species passing through the rack. King salmon passing through the rack numbered 424, and 109,303 coho or silver salmon were counted also. Large schools of migrating young salmon were passing down the river from May 15 to July 25, and small schools were seen until the last of September.

Operations at Chignik were under the general supervision of Warden Charles Petry.

\section*{KARLUK SALMON COUNT}

Plans were made for counting the escapement of red salmon to the spawning grounds of Karluk River, as in the two previous seasons. Work was begun on the rack in Karluk River on May 4 and it was completed on May 14. The first red salmon passed through on May 16 and counting continued until August 21. The very large number of spawned-out humpback salmon floating down the river then necessitated opening the weir, and as the heary run of humpbacks continued it was impossible to close the opening again.

The total count of red salmon passing through the weir from May 16 to August 21 was 775,705 . The commercial catch of reds in the Karluk district totaled 890,752. While the escapement up to August 21 was less than this number, more than enough salmon ascended later to exceed the commercial catch and thus easily meet the requirement of law as to an escapement of 50 per cent of spawning salmon where racks are maintained.

Operations at Karluk were under the general supervision of Fred R. Lucas, superintendent of the Afognak hatchery.

\section*{SALMON TAGGING IN SOUTHEASTERN ALASKA}

The tagging of salmon in the waters of southeastern Alaska to determine their migration routes was undertaken for the first time in 1924. As salmon come from the ocean to the streams through sereral entrances, it seemed advisable to carry on the experiment at five places in order to get in one season a general knowledge of the movement of salmon after entering the district. Accordingly the following points were selected: Inian Islands in Cross Sound, Kingsmill Point in Chatham Strait, Ruins Point in Sumner Strait, Cape Chacon at the southern entrance of Clarence Strait, and Tree Point at the southern end of Revillagigedo Channel. It was intended that 1.000 salmon be tagged at each place, and all species except king salmon be tagged in approximately equal numbers. So far as possible tagging was to be done weekly through the period of the run. However, bad weather and other pressing duties interrupted and prevented the perfect execution of this program. Ruins Point was the only place where it was possible to follow closely the prearranged schedule.

The total number of sahmon tagged at Inian Islands was 214; Kingsmill Point, 400; at or near Cape Bendel, 597; Kanagunut Island, 24; Tree Point, 275; Duke Point. on the east coast of Duke Island, 295; at or near Point White on the west shore of Duke Island, 199; and at Ruins Point. 987. making a total of 2,716. Of this number, 662 tags. or a little more than 24 per cent, have been reported as recovered. Analyses of the data will be covered in another report.

The work was under the general direction of Assistant Agent Edward M. Ball. The salmon tagged were purchased from or donated by the eight concerns in whose traps they were originally caught. A reward of 50 cents was paid for each tag returned with data regarding time and place of recapture.

\section*{hatcheries}

\section*{EATENT OF OPERATIONS}

Salmon propagation in Alaska. exclusive of Territorial activities, was carried on by the Government at McDonald Lake in southeastern Alaska. by the Alaska Packers Association at Heckman Lake, and by the Northwestern Fisheries Co. at Hugh Smith Lake. Collections of red-salmon eggs at these stations in 1924 amounted to 61.770 .000 . or 2855000 more than in 1923. No eggs were taken at the Government's hatchery on Afognak Lake in 1924, as the hatchery was being rebuilt.

Operations of Federal and private hatcheries in Alaska in 1924
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Location of hatchery} & \multicolumn{3}{|c|}{Red or sockeye salmon} \\
\hline & \[
\begin{aligned}
& \text { Eggs taken } \\
& \text { in } 1923
\end{aligned}
\] & Salmon lib-1923-24 & \[
\begin{aligned}
& \text { Eggs taken } \\
& \text { in } 1924
\end{aligned}
\] \\
\hline McDonald Lake- & 25, 550, 000 & 21, 817, 800 & 30, 080, 000 \\
\hline Hugh smith Lake (Quadra) & \(15,480,000\)
\(17,885,000\) & \(13,875,000\)
\(17,234,000\) & \(11,640,000\)
20,050 \\
\hline Total.- & 58, 915, 000 & 52, 926, 800 & 61, 770, 000 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) At the Fortmann hatchery \(1,150,600\) humpback-salmon fry were released in 1923-24, and 900,000 eggs of this specirs were taken in 1924
}

\section*{hatchery rebates}

The owners of private salmon hatcheries in Alaska, who are also packers of canned salmon, receive a rebate on license fees and taxes of every nature on their catch and pack of salmon at the rate of 40 cents per 1,000 ling or red salmon fry liberated by them in Alaskan waters.

Rebates credited to private salmon hatcheries, fiscal year ended June 30, 1924
\begin{tabular}{|c|c|c|c|}
\hline Owner & Location & Red-salmon fry liberated & Rebate due \\
\hline Alaska Packers Association Northwestern Fisheries Co & \multirow[t]{2}{*}{Heckman Lake Hugh Smith Lake} & \[
\begin{aligned}
& 13,875,000 \\
& 17,234,000
\end{aligned}
\] & \[
\begin{array}{r}
\$ 5,550.00 \\
6,893.60
\end{array}
\] \\
\hline Total & & 31, 109, 000 & 12,443. 60 \\
\hline
\end{tabular}

\section*{HATCHERY OPERATIONS}

M'DONALD LAKE
The Federal salmon hatchery at McDonald Lake produced and liberated \(21,817,800\) young red salmon from the \(25,550,000\) eggs taken in 1923, a loss of 14.6 per cent. There was a heavy loss of eggs attributed to the water being supercharged with air, causing bubbles to form on the eggs and float them to the lower end of the baskets, where congestion resulted.

In the period from September 8 to 25, 1924, 30,050,000 red-salmon eggs were collected at this station. In addition, from \(15,000,000\) to \(20,000,000\) red-salmon eggs were spawned naturally in waters adjacent to the station.
```

HECKMAN LAKE (FORTMANN)

```

The Alaska Packers Association liberated 13,875,000 red-salmon fry from its Fortmann hatchery on Heckman Lake in 1924, hatched from the 1923 take of \(15,480,000\) eggs, a loss of eggs of 10.4 per cent. In addition, \(1,150,000\) humpback-salmon fry, hatched from eggs collected in 1923, were released. Egg taking in 1924 began August 22 and ended November 18, during which time \(11,640,000\) red-salmon eggs and 900,000 humpback-salmon eggs were taken.

\section*{HUGH SMITH LAKE (CUUADRA)}

The Northwestern Fisheries Co. operated its salmon hatchery as usual on this lake on the mainland near Boca de Quadra. Egg collecting began August 7 and ended October 7, the total take being \(20,050,000\) red-salmon eggs, which was the full capacity of the hatchery. The take in 192.3 was \(17,88.5,000\) red-salmon eggs, from which 17,234,000 fry were hatched and liberated in the headwaters of Sockeye Creek, a loss of 651,000 , or 3.6 per cent.

\section*{TERRITORIAL HATCHERIES}

Information received from the Governor of Alaska in regard to the three salmon hatcheries operated by the Territory is as follows:
At the Ketchikan hatchery 3,447,000 humpback-salmon eggs, \(2,640,000\) chum-salmon eggs, and \(2,000,000\) chinook-salmon eggs were


Fig. 5.-Government salmon hatchery at McDonald Lake, Alaska. Capacity, \(72,000,000\) red-salmon eggs


Fig. 6.-Whaling vessel with whales alongside, starting for shore station, western Alaska
handled, from which \(2,952,000\) humpback-salmon fry, 2,571,000 chum-salmon fry, and \(1,949,000\) chinook-salmon fry were hatched. An experiment in feeding 100,000 humpback-salmon fry in a saltwater pond at the Ketchikan hatchery early in 1924 was very satisfactory, and arrangements are being made to conduct salt-water feeding on a larger scale in 1925.

At the Cordova hatchery \(5,250,000\) red-salmon eggs and 571,000 chinook-salmon eggs were handled, and at the Seward hatchery \(1,015,000\) red-salmon eggs and \(1,429,000\) chinook-salmon eggs were taken care of. At the time of the report, on March 1, 1925, egg hatching had not been completed at these two hatcheries. The bureau cooperated with the Territorial Fish Commission by furnishing transportation from Cordova to Latouche for \(1,700,000\) red-salmon eggs, which were planted at Eshamy.

The chinook-salmon eggs handled at all three hatcheries were received from the State of Washington.

In connection with the operation of the Territorial hatchery near Cordova, a weir was maintained at the outlet of Eyak Lake for the counting of red salmon ascending to the spawning beds. Counting began on June 6 and continued until September 21, the weir being dismantled on September 30. Reports received indicate that during this period 44,245 red salmon passed through the weir.

\section*{OTHER HATCHERY OPERATIONS}

Representatives of the Washington State Fish Commission collected humphack-salmon eggs and maintained an eying station at the head of Fidalgo Bay, on Prince William Sound, in the season of 1924. Egg taking began on August 8 and ended August 28, during which period 21,320 female humpback salmon were taken. Of the \(42,217,100\) eggs secured from these fish, \(3,097,100\) were lost and the remaining \(39,120,000\) eyed eggs were forwarded to Seattle in four shipments late in September and early in October.

TROUT OPERATIONS
The department of fisheries and game and the game commission for King County, both of the State of Washington, engaged in collecting trout eggs in southeastern Alaska early in the season before the run of salmon began. The department of fisheries and game operated at Eva Lake, tributary to Peril Strait, and secured about 200,000 cutthroat-trout eggs, of which 50,000 were hatched and planted in Eva Lake and the remainder delivered to the Forest Service. The game commission for King County operated at a stream tributary to Thorne Arm, indenting the southern shore of Revillagigedo Island, and took 568,000 steelhead-trout eggs, which were shipped to the State of Washington.

\section*{general statistics of the fisheries}

The total number of persons engaged in the fisheries of Alaska in 1924 was 25,194 , or 52 less than in 1923. The total investment in the fisheries was \(\$ 62,660,637\), an increase of \(\$ 2,620,960\), or 4.4 per cent. The investment in the salmon industry was \(\$ 54,633,179\), an
increase of \(\$ 1,494,267\) over 1923. The products of the fisheries were valued at \(\$ 40,289,273\), an increase of \(\$ 1,610,448\), or 4.2 per cent.

Summary of persons engaged, investment, and products of the Alaska fisheries in 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Southeast Alaska} & \multicolumn{2}{|l|}{Central Alaska} & \multicolumn{2}{|l|}{Western Alaska} & \multicolumn{2}{|r|}{Total} \\
\hline persons engaged & Number & Value & Number & Value & Number & Value & Number & Value \\
\hline Whites. & 6, 642 & & 3, 549 & & 4,280 & & 14, 471 & \\
\hline Natives. & 2, 845 & & 1,230 & & 474 & & 4. 549 & \\
\hline Chinese & 557. & & 335 & & 461 & & 1,353 & \\
\hline Japanese & 796 & & 431 & & 207 & & 1,434 & \\
\hline Filipinos & 1,060 & & 317 & & 322 & & 1,699 & \\
\hline Mexicans & & & 98 & & 1,184 & & 1,329 & \\
\hline Negroes & 13 & & 33 & & 131 & & 177 & \\
\hline Porto Ricans & & & 3 & & 126 & & 129 & \\
\hline Miscellaneous & 3 & & 16 & & 34 & & 53 & \\
\hline Total & 11,963 & & 6, 012 & & 7, 219 & & 25, 194 & \\
\hline \multicolumn{9}{|l|}{investment} \\
\hline Salmon canning. & & \$24, 830, 943 & & 12, 400, 644 & & 15, 146, 083 & & 852, 677, 670 \\
\hline Salmon mild-curing & & 1, 319, 340 & & 24, 186 & & 235, 709 & & 1,579, 235 \\
\hline Salmon pickling- & & & & 6, 125 & & 156, 114 & & 162.239 \\
\hline Salmon, fresh-......- & & 3, 104 & & & & & & 3. 104 \\
\hline Salmon drying, smoks ing, and dry-salting & & & & & & 30, 260 & & 30. 260 \\
\hline Salmon by-products. & & 180, 671 & & & & & & 180, 671 \\
\hline Halibut fishery & & 2, 246, 292 & & 69, 792 & & & & 2, 316, 084 \\
\hline Herring fishery & & 1, 499, 018 & & 2, 342, 730 & & 7,674 & & 3,849,422 \\
\hline Cod fishery- & & & & 282, 739 & & 28, 053 & & 310.792 \\
\hline Shrimp fishery & & 326, 683 & & & & & & 326, 683 \\
\hline \begin{tabular}{l}
Whale fishery \\
Clam fishery
\end{tabular} & & & & 707, 970 & & 460, 311 & & 460,311
707,970 \\
\hline Crab fishery & & 56, 196 & & - & & & & 56, 196 \\
\hline Tota & & 30, 462, 247 & & 15, 834, 186 & & 16.364, 204 & & 62, 660, 637 \\
\hline \multicolumn{9}{|l|}{products} \\
\hline Salmon: & & & & & & & & \\
\hline \begin{tabular}{l}
Canned..... cases \\
Mild-cured
\end{tabular} & 2, 787, 789 & 14, 711, 842 & 1, 605, 107 & 10, 067, 602 & 902, 019 & 8,227, 691 & 5, 294, 915 & 33,007, 135 \\
\hline - .-..-- pounds.- & 4, 410, 400 & 992, 916 & 97,600 & 20, 655 & 679, 200 & 123, 700 & 5, 187, 200 & 1, 137, 301 \\
\hline Piekled.-.-.- do & 40,700 & 3, 187 & 296, 953 & 21, 092 & 1, 025,300 & 107, 944 & 1,362, 952 & 132, 223 \\
\hline Fresh..-......do. & 2, 201, 653 & 202, 528 & 5,291 & 1,096 & & & 2, 206, 914 & 203, 624 \\
\hline Frozen......do & 2, 244, 666 & 164, 519 & 43, 000 & 1,290 & & & 2, 287, 666 & 165, 809 \\
\hline Dried, smoked, and dry-s alted & & & & & & & & \\
\hline -----.-pounds.- & 6, 400 & 206 & 36,028 & 2,426 & 1,591, 510 & 79,577 & 1, 633, 968 & 82, 209 \\
\hline Fertilizer...-do... & 1, 397, 300 & 34, 320 & 362,000 & 9, 050 & & & 1,759,300 & 43, 370 \\
\hline YOil....-.-.gallons.- & 38, 803 & 16, 207 & 10,230 & 5,626 & & & 49,033 & 21, 833 \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Herring: \\
Fresh for bait
\end{tabular}} \\
\hline -..-.-.-...pounds & 150, 000 & 3,040 & 1,387, 750 & 13,877 & & & 1, 537, 750 & 16917 \\
\hline Frozen for bait pounds & & & & & & & & \\
\hline Piekled, Scoteh eure & 2,061,600 & 18, 116 & & & & & 2,001, 000 & 18,116 \\
\hline --pounds.-- & 3, 518, 512 & 304, 594 & 15,353,538 & 1,342,517 & 148, 600 & 13,880 & 19,020,650 & 1,660,991 \\
\hline Piekled, Norwegian cure...... pounds & 7, 200 & & & & 11,400 & 1,250 & 18, 600 & 1,826 \\
\hline Spiced & 9,600 & 1,000 & & & & & 9, \(6: 00\) & 1,000 \\
\hline Dry-salted...do. & 17, 200 & 4,075 & 75, 250 & 2,826 & & & 92, 450 & 6. 901 \\
\hline 13loaters ..--- do. & & & 770,500 & 25,790 & & & 770, 500 & 25, 790 \\
\hline Fertilizer .-. do. & 8,079,625 & 187, 379 & 1,280, 000 & 35, 341 & & & 9, 359, 625 & 222, 720 \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline Fresh..... pounds. & 4,398, 528 & 528, 023 & & & & & 4,398,528 & 528, 023 \\
\hline Frozen--....do & 8, 334, 088 & 837, 870 & 2, 305, 000 & 253, 550 & & & 10,639,088 & 1,091,420 \\
\hline \multicolumn{9}{|l|}{Cod:} \\
\hline Stockfish .....do & & & 2, 000 & 300 & & & 2,000 & 300 \\
\hline Tongues....-do & & & 1,325 & 66 & & & 1,325 & 66 \\
\hline \multicolumn{9}{|l|}{\multirow[b]{2}{*}{Whale:}} \\
\hline & & & & & & & & \\
\hline Sperm oil --do & & & & & 78,700 & 31, 480 & 78, 700 & 31, 480 \\
\hline Fertilizer - pounds & & & & & 2, 189, 120 & 47, 551 & 2, 189, 120 & 47, 551 \\
\hline Whalebone.-do.. & & & & & 1,500 & 1,500 & 1,500 & 1,500 \\
\hline Pickled meat_do. & & & & & 200, 000 & 6, 250 & 200, 000 & 6, 250 \\
\hline Clams .-----...eases.- & 4,848 & 33, 186 & 78,313 & 596, 226 & & & 83, 161 & 629,412 \\
\hline Shrimp....-.pounds.- & - 528,432 & 227, 979 & & & & & 528, 432 & 227, 979 \\
\hline
\end{tabular}

Summary of persons engaged, investment, and products of the Alaska fisheries in 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Iteris & \multicolumn{2}{|l|}{Southeast A laska} & \multicolumn{2}{|l|}{Central Alaska} & \multicolumn{2}{|l|}{Western Alaska} & \multicolumn{2}{|c|}{Total} \\
\hline Products-contd. & & & & & & & & \\
\hline Crabs: & Number & Value & Number & Value & Number & Value & Number & Value \\
\hline Canned -----cases.- & 2, 241 & \$22, 110 & & & & & 2, 241 & \\
\hline Meat pounds & 66, 630 & 25, 981 & & & & & 66,630 & 25, 981 \\
\hline -...----dozens - & 160 & 336 & & & & & 160 & 336 \\
\hline Trout: & & & & & & & & \\
\hline Frozen-.---- - do. & 46,345
4,617 & 5,702 & 10,300 & \$018 & & & 56,645
4,617 & 6,320
421 \\
\hline Sablefish: & & & & & & & & \\
\hline Fresh..-..... do & 23, 006 & 831 & & & & & 23,006 & 831 \\
\hline Frozen.-.-. - do.. & 204, 344 & 8.977 & & & & & 204, 344 & 8,977 \\
\hline Smelts .-.--.-. do.- & 24, 484 & 2,348 & & & & & 24, 484 & 2, 348 \\
\hline Flounders...-.do. & 6,993 & 349 & & & & & 6, 993 & 349 \\
\hline Red cod...---- do...- & 1,175 & 34 & & & & & 1,175 & 34 \\
\hline Total & & 18, 768, 786 & & 12, 560, 864 & & \$8, 959, 623 & & 40, 289, 273 \\
\hline
\end{tabular}

1 These figures represent the value of the manufactured product. It is estimated that the value of the catch to the fisherinen was approximately \(\$ 10,400,000\). The round weight of the salmon catch landed by the fishermen was approximately \(438,516,157\) pounds, and the corresponding figures for herring were approximately \(100,000,000\) pounds. The cod figures given above do not include the offshore catch from waters adjacent to Alaska, which amounted to \(6,584,819\) pounds dry-salted and 94,000 pounds of tongues, having a total value of \(\$ 367,513\), landed at ports of the Pacific Coast States. It is estimated that approximately 240 persons were engaged in the offishore cod fishery, with an investment of about \(\$ 200,000\) : these figures are not included in the tabulations.

\section*{SALMON}

The production of salmon in Alaska in 1924 as a whole showed an increase of approximately \(21 / 2\) per cent over 1923, due primarily to a very heavy run of humphack salmon in the central district, where the total eatch increased 161 per cent. This enornous increase, which occurred chiefly in the Prince William Sound region, may be regarded as the outstanding feature of the Alaska salmon production during the year. In western Alaska, where red salmon constitute the greater part of the eatch, there was a decline of 32 per cent, while in southeastern Alaska the decline was 18 per cent below the figures for 1923.

An important factor in this reduced catch was the putting into efiect of regulations by the Secretary of Commerce under authority of the act of June 6, 1924, prohibiting or sharply curtailing fishing in certain specific areas, and imposing restrictions in regard to seasons and character and quantity of apparatus employed. It is yet too early to see the final cfiect of the regulations, but undoubtedly the situation is well in hand and the future of the industry assured.

\section*{CATCH AND APPARATUS}

The total number of seines used in the salmon industry of Alaska in 1924 was 437 , of which 105 were beach seines and 332 were purse seines. The beach seines aggregated 14,305 fathoms of webbing and the purse seines 57,104 fathoms. The number of gill nets used was 2,916 , having a total length of 319,285 fathoms. There were 278 driven traps and 180 floating traps, or a total of 458.

Southeast \(\Lambda\) laska is credited with 308 seines, or a total of 51,699 fathoms of webbing, a reduction of 57 scines, or 718 fathoms, from the number used in 1923; also with 201 gill nets, aggregating 17,395 fathoms, a reduction of 31 nets, or 1,771 fathoms less than the
quantity used in the previous season; and with 176 driven and 175 floating traps, an increase of 5 and 20, respectively, over the number operated in 1923.

Corresponding figures for central Alaska show 115 seines, or 16,835 fathoms, as compared with 130 seines, or 25,841 fathoms, in 1923; 799 gill nets, or 58,290 fathoms, as against 1,085 gill nets of 63,237 fathoms in 1923, showing a reduction of 288 nets and 4,947 fathoms. The number of traps operated was 97 driven and 5 floating, as compared with 106 and 7, respectively, in 1923.

Western Alaska used 4 seines, or 500 fathoms of webbing, a reduction from the number shown in 1923 of 11 seines, or 375 fathoms of webbing. A total of 1,916 gill nets was used, having an aggregate length of 243,600 fathoms, a reduction of 240 nets or 27,460 fathoms in the quantity of webbing used. Five driven traps were operated, the same number as in 1923.

Seines caught approximately 32 per cent of the salmon taken in 1924, gill nets 17 per cent, and traps 49 per cent, while lines and wheels took the remaining 2 per cent.

Percentage of salmon caught in each Alaska district, by principal forms of apparatus


The total catch of salmon in 1924 was \(79,477,600\), an increase of \(2,055,289\), or \(21 / 2\) per cent, over the number taken in 1923 . Central Alaska gained 16,977,707, while southeastern and western Alaska fell off" \(8,549,621\) and \(6,372,797\), respectively. The catch by species shows that cohos increased 120,066 , chums \(2,976,153\), humpbacks \(6,822,304\), and kings 112,880 . Reds decreased 7,976,114.

Salmon taken in 1924, by apparatus and species, for each geographic section of Alaska
\begin{tabular}{|c|c|c|c|c|}
\hline Apparatus and species & Southeast Alaska & \begin{tabular}{l}
Central \\
Alaska
\end{tabular} & \begin{tabular}{l}
Western \\
Alaska
\end{tabular} & Total \\
\hline Seines: & & & & \\
\hline Coho, or silver & 178, 667 & 104,754 & & 283,421 \\
\hline Chum, or keta & 4, 375, 396 & 467,780 & 17, 739 & 4,860,915 \\
\hline IIumpbaek, or pink & 9, 562, 136 & 7,676,977 & 673,846 & 17,912,959 \\
\hline King, or spring & 9,5,568 & 1,470 & 4,989
463,672 & 16,027
2.3950 \\
\hline Red, or sockeye & 563,005 & 1,322, 973 & 463, 672 & \(2,349,650\) \\
\hline Total & 14, 688, 772 & \(9,573,954\) & 1,160, 246 & 25, 422,972 \\
\hline Gill nets: & & & & \\
\hline Coho, or silver & 139, 340 & 132,974 & 40,376 & 312,690 \\
\hline Chuni, or keta & 28, 273 & 148, 232 & 447,970 & 621.475 \\
\hline Iumphack, or pink & 332, 794 & 174,875 & 102,978 & 610,647 \\
\hline King, or spring & 79, 538 & 30, 892 & 119,590 & 230,020 \\
\hline Red, or sockeye & 472,798 & 990,454 & 10,284, 281 & 11, 747, 533 \\
\hline Total & 1,052, 743 & 1,477,427 & 10,995, 195 & 13,525, 365 \\
\hline
\end{tabular}
U. S. B. F. Doc. 992


Fig. 7.-Native fish wheel on Copper River, Alaska


Fig. S.-Drying salmon at native village, western Alaska


Salmon taken in 1924, by apparatus and species, for each geographic section of Alaska-Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Apparatus and species & Southeast Alaska & Central Alaska & Western Alaska & Total \\
\hline Traps: & & & & \\
\hline Coho, or silver & 716,403 & 474, 811 & & 1, 191, 214 \\
\hline Chum, or keta- & 19, 6981,783 & 11, 36386,923 & 30,770 & 2,
\(30,617,776\) \\
\hline King, or spring.-. - & 19, 24,058 & 1, 20,812 & 5,431 & 50, 501 \\
\hline Red, or sockeye & 1, 414,959 & 3,211, 586 & 238, 806 & 4, 865, 351 \\
\hline Total. & 22, 085, 831 & 16, 457, 236 & 275.007 & 38, 818, 074 \\
\hline Lines: & & & & \\
\hline Coho, or silver-.-.- & 100, 429 & & & 100, 429 \\
\hline Humpback, or pink King, or spring & 483, 819 & & 1,500 & 485, 319 \\
\hline Red, or sockeye & 3 & & 1, & 3 \\
\hline Total & 584, 256 & & 1,500 & 585, 756 \\
\hline Wheels: & & & & \\
\hline Chum, or keta & & & 1,112, 800 & 1,112, 800 \\
\hline King, or spring & & & 12, 633 & 12,633 \\
\hline Total & & & 1,125,433 & 1,125,433 \\
\hline Total: & & & & \\
\hline Coho, or silver & 1,134, 839 & 712, 539 & 40,376 & 1,887, 754 \\
\hline Chum, or keta & 5, 102, 452 & 1,979, 935 & 1,609,279 & 8, 691, 666 \\
\hline Humpback, or pink & 29, 126, 563 & 19, 237, 956 & 1776, 824 & 49, 141, 343 \\
\hline King, or spring- & 596, 983 & 53, 174 & 144, \(1+3\) & 794,300 \\
\hline Red, or sockeye & 2,450, 765 & 5, 525, 013 & 10, 986, 759 & 18, 962, 537 \\
\hline Grand total & 38, 411, 602 & 27, 508, 617 & 13, 557, 381 & 79,477, 600 \\
\hline
\end{tabular}

\section*{CANNING}

CHANGES IN CANNERIES
The A. \& P. Products Corporation again operated the plant at Heceta Island, which it leased from the Swift-Arthur-Crosby Co., but did not operate the Ford Arm plant, which was leased the previous year from the Deep Sea Salmon Co. The Alaska Salmon \& Herring Packers' plant at Tyee was sold to the Sebastian Stuart Fish Co. Carlson Bros. (Inc.), who leased the plant of the Pavlof Harbor Packing Co. in 1923, did not operate in 1924. The Charles W. Demmert Packing Co. discontinued operation of a floating cannery and built a shore plant at Bayview. P. E. Harris \& Co. leased and operated the cannery of the G. W. Hume Co. at Scow Bay. The Northwestern Fisheries Co. opened its Hunter Bay cannery after several years of idleness. The cannery operated by R. J. Peratovich at Bayview is now listed in the name of the Bayview Packing Co. The Point Warde Packing Co. sold its cannery at Point Warde to the Point Warde Fisheries Co., which, after making necessary repairs, operated it during the season. The Pure Food Fish Co. moved to a new location at Ketchikan. The Pyramid Packing Co. took over the Sitka Packing Co. at Sitka and operated the plant as a one-line cannery. It is reported, however, that the Sitka Packing Co. plant is to be dismantled and the machinery installed in the original Pyramid Packing Co. plant at Sitka. The Steamboat Bay Packing Co.'s plant on Noyes Island was purchased by the New England Fish Co. The Stuart Packing Corporation, which operates a salmon cannery at Ketchikan, has changed its name to The Stuart Corporation.

In central Alaska the Alaska Sea Food Co. and the Canoe Pass Packing Co., both owning canneries near Cordova, consolidated and operated the plant of the latter company under the name of the Shepard Point Packing Co. The Alaska Packers Association reopened its plant at Olga Bay, which was not operated in 1923. The Alaska Year-Round Canneries (Inc.) is listed under the name of Alaska Year-Round \& Cook Inlet Packing Co., to cover joint operations of the Alaska Year-Round Canneries (Inc.) and a new company, the Cook Inlet Packing Co., at the plant of the former. The Eyak River Packing Co. sold its cannery on Eyak River to the Pioneer Sea Foods Co. Gorman \& Co. leased the plant of the Prince Packing Co. at Drier Bay, which was last operated as a salmon cannery in 1920 under the name of the Kenai Packing Co. The King Salmon Fisheries Co. sold its cannery at Unakwik Inlet to the Unakwik Packing Co., which in turn leased it to the Pacific American Fisheries. The Seward cannery of the San Juan Fishing \& Packing Co. was moved to Evans Bay, near Latouche.

In western Alaska the Carlisle Packing Co. built a shore plant on the Kvichak River, after having operated a floating cannery on the river near Lockanok. Libby, McNeill \& Libby reopened its Egegik River and Lockanok canneries. After making a pack of red salmon on the Ugashik River, the International Packing Co. moved its floating cannery, Santa Flavia, to Makushin Bay on Unalaska Island.

\section*{NEW CANNERIES}

Libby, McNeill \& Libby opened a floating cannery at Ketchikan, using the scow operated a few years ago as a salmon cannery by the Mount Baker Packing Co. In central Alaska the Hemrich Packing Co. packed salmon at its clam cannery on Kukak Bay, and Henry J. Emard canned salmon at his plant at Moose Point.

\section*{CANNERIES NOT OPERATED}

A number of canneries were not operated in 1924, some of them being converted to other uses, while a few were dismantled and abandoned. The cannery of the Marathon Fishing \& Packing Co., at Cape Fanshaw, was sold at auction to the Alaska Consolidated Canneries. Several of the smaller buildings were moved to Pybus Bay and the machinery was removed for installation elsewhere. The Baranof Packing Co., at Red Bluff Bay, discontinued salmon canning a fow years ago and is now operating its plant as a herring saltery and by-products plant for the production of fish oil and meal. The Dobbins Packing Co., heretofore operating a floating plant at Petersburg as a salmon and crab cannery, moved to Hoonah and engaged in packing crabs exclusively. The plant of the Pioneer Canneries (Inc.), at Snug Harbor, was taken over by the Chisik Island Corporation and packed clams exclusively. The plant of the Southern Alaska Canning Co., at Big Port Walter, was operated in 1924 by Arentsen \& Co., who were engaged exclusively in packing Scotch cure herring and manufacturing oil and meal. The small plant of The Trading Union (Inc.), at Petersburg, was used as a crab cannery by Ludeman \& Isom Bros. The International Packing Co., which operated the Santa Flavia at Waterfall in southeastern Alaska, and at Bering River in central Mlaska, in 1923, did not return to either locality in 1924. The floating cannery of
the Star Canning Co., which was operated on the Copper River delta by the Copper River Canning Co. in 1923, was not operated in 1924. Gorman \& Co. purchased the plant of the Anchorage Packing Co. at Anchorage, but it remained closed during the season. Other idle canneries are as follows:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Southeastern Alaska:} \\
\hline Alaska Salmon and Herring & Tyee. \\
\hline Alaska Sanitary Packing Co & Cape Fanshaw. \\
\hline American Packing Co & Juneau. \\
\hline Auk Bay Salmon Canning & Auk Bay. \\
\hline John L. Carlson \& Co & Do. \\
\hline Deep Sea Salmon Co & Ford Arm. \\
\hline Hoonah Packing Co & \begin{tabular}{l}
Hoonah. \\
Gambier Bay.
\end{tabular} \\
\hline Northwestern Fisheries C & Roe Point. \\
\hline Pavlof Harbor Packing C & Pavlof Harbor. \\
\hline \multicolumn{2}{|l|}{Central Alaska:} \\
\hline Alaska Packers Associati & Kasilof. \\
\hline Alaska Sea Food Co & Point Whitshed. \\
\hline Bainbridge Fisheries & Flemming Island. \\
\hline Kamishak Canning & Kamishak Bay. \\
\hline Northwestern Fisheries C & Seldovia. \\
\hline Gorman \& Co & Anchorage. \\
\hline \multicolumn{2}{|l|}{Western Alaska:} \\
\hline Alaska Packers Association & Nushagak (PHJ). \\
\hline Alaska Salmon Co_ & Kvichak Bay. \\
\hline Fidalgo Island Packing Co & Herendeen Bay. \\
\hline Nelson Lagoon Packing Co & Nelson Lagoon. \\
\hline Phoenix Packing Co & Herendeen Bay. \\
\hline
\end{tabular}

\section*{TOTAL CANNERIES OPERATED}

There were 130 canneries operated in Alaska in 1924, the number in all districts being the same as in the previous year, namely, southeastern 65, central 37 , and western 28.
Companies canning salmon in Alaska, number and location of canneries operated, and number of pound nets owned by each, 1924
[New canneries indicated by (*)]


Companies canning salmon in Alaska, number and location of canneries operated, and number of pound nets owned by each, 1924-Continued
[New canneries indicated by (*)]


Companies canning salmon in Alaska, number and location of canneries operated, and number of pound nets owned by each, 1924-Continued
[New canneries indicated by (*)]


\section*{LOESES AND DISASTERS}

Two canneries were burned in southeastern Alaska in 1924. The first fire occurred at Wrangell on July 25, and resulted in the partial destruction of the cannery of the Alaska Sanitary Packing Co. Buildings and equipment valued at approximately \(\$ 31,000\) were lost, and business was discontinued for the remainder of the season. On October 1 the Tee Harbor plant of the Alaska Consolidated Canneries, including more than 30,000 cases of salmon, was totally destroyed with a loss of \(\$ 301,838\). The Alaska Herring \& Sardine Co., at Port Walter, lost by fire buildings valued at \(\$ 12,528\). The F. C. Barnes Co. also lost by fire its superintendent's residence, valued at \(\$ 5,000\). Other losses of property in this district, chiefly fishing gear and small boats, aggregated \(\$ 28,218\). One transporter and one shoresman were killed accidentally in southeastern Alaska.

In central Alaska small boats, fishing gear, and products valued at \(\$ 29,837\) were lost.

Similar losses in western Alaska totaled \(\$ 19,346\). One fisherman and one shoresman met accidental death in this district.

\section*{STATISTICS}

As in 1923, 130 canneries were operated in Alaska in 1924. The active investment in the canning industry was \(\$ 52,677,670\), a gain of \(\$ 2,041,784\) over 1923. The increase in southeastern Alaska was \(\$ 1,658,683\), or 7 per cent; in central Alaska the increase was \(\$ 2,135,965\), or approximately 20 per cent, accounted for chiefly by the larger investments in operating capital and wages paid; in western Alaska investments decreased \(\$ 1,752,864\), or slightly more than 10 per cent, there being material reductions in operating capital, wages paid, vessels engaged, and fishing apparatus used.

Employment was given to 20,107 persons, as compared with 19,439 in 1923, an increase of 668 , or about 3.4 per cent. White employees increased by 382, natives 15, Chinese 24, Japanese 330, Filipinos 249, Negroes 15, and miscellaneous, including Porto Ricans, 81. Mexicans decreased 428.

The total pack of canned salmon was \(5,294,915\) cases, valued at \(\$ 33,007,135\). This is an increase in pack over 1923 of 259,218 cases, or approximately 5 per cent, and an advance in value of \(\$ 134,128\), or less than one-half of 1 per cent. The output in southeastern Alaska fell off from 3,007,119 cases to \(2,787,789\) cases, or a little more than 7 per cent; in western Alaska the decline was from \(1,284,938\) to 902,019 cases, or approximately 29.9 per cent. In central Alaska the pack increased from 743,640 . cases to \(1,605,107\), or 115.8 per cent, due to the extraordinary run of humpback salmon in some parts of the district. In Alaska as a whole cohos increased from 164,107 cases to 183,601, or about 11.7 per cent; chums from 525,622 cases to \(1,028,488\), or 95.7 per cent; humpbacks from \(2,448,129\) cases to \(2,601,283\), or approximately 6 per cent. Kings decreased from 38,343 cases to 33,648 , or about 12 per cent; and reds from \(1,859,496\) cases to \(1,447,895\), or 22 per cent.

Persons engaged in the Alaska salmon-canning industry in 1924
\begin{tabular}{ll|r|r|r|r}
\hline \hline Occupation and race & \\
\hline
\end{tabular}

\footnotetext{
1 Kanakas, Koreans, etc.
}

Investment in the Alaska salmon-canning industry in 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Southeast Alaska} & \multicolumn{2}{|l|}{Central Alaska} & \multicolumn{2}{|l|}{Western Alaska} & \multicolumn{2}{|r|}{Total} \\
\hline Plants operated & \[
\begin{gathered}
\text { Number } \\
65
\end{gathered}
\] & Value
\[
\$ 6,531,762
\] & Number 37 & Value \(\$ 3,154,126\) & \[
\begin{gathered}
\text { Number } \\
28
\end{gathered}
\] & Value
\[
\$ 5,614,695
\] & \[
\begin{gathered}
\text { Number } \\
130
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 15,300,583
\end{gathered}
\] \\
\hline Operating capital & & 8, 629, 991 & & 4, 519, 591 & & 3, 446, 843 & & 16, 596,425 \\
\hline Wages paid. & & 3, 917, 159 & & 2, 294, 550 & & 2, 986, 009 & & 9, 197, 718 \\
\hline Vessels: & & & & & & & & \\
\hline Power, over 5 tons Net tonnage. & \[
\begin{aligned}
& 294 \\
& 894
\end{aligned}
\] & 1,993, 418 & 96 & 883, 893 & \[
78
\] & 1,296, 164 & & 4, 173, 475 \\
\hline Sailing-.......-- & & 90, 000 & \[
48
\] & 230, 000 & , 18 & 830, 000 & & 1,150,000 \\
\hline Net tonnage--- & 3, 819 & & 7. 980 & & 32, 340 & & 44, 139 & \\
\hline Barges -.........--- & & 20, 000 & & & & & & 20,000 \\
\hline Net tonnage...- & \[
\begin{array}{r}
2,386 \\
94
\end{array}
\] & 130, 525 & 157 & 154,442 & 36 & 81, 704 & 2, 388 & 366, 671 \\
\hline Boats, sail and row. & 1,040 & 136, 189 & 693 & 67,568 & 1,187 & 411, 001 & 2,920 & 614, 758 \\
\hline Lighters, scows, and houseboats.- & 389 & 403, 783 & 182 & 155, 313 & 180 & 380, 478 & 751 & 939, 574 \\
\hline Pile drivers.------ & 63 & 447, 029 & 32 & 180, 435 & 23 & 71,965 & 118 & 699, 429 \\
\hline Pile pullers & 4 & 20, 600 & & & & & 4 & 20,600 \\
\hline \begin{tabular}{l}
Apparatus: \\
Beach seines
\end{tabular} & & 6,605 & & & & & & \\
\hline Fen Fathoms & 1,320 & 6,005 & 12,210 & 44, 5 & 500 & 2, & 102 & 53, 167 \\
\hline Purse seines. & 293 & 219, 570 & -29 & 27, 750 & 10 & 11,500 & - 332 & 258, 820 \\
\hline Fathoms & 50, 329 & & 4, 400 & & 2, 375 & & 57, 104 & \\
\hline Gill nets.- & 193 & 17, 369 & 763 & 89,021 & 1,674 & 288, 724 & 2, 630 & 395, 114 \\
\hline Fathoms.-...-- & \[
\begin{array}{r}
16.170 \\
176
\end{array}
\] & 1, 559, 895 & \[
\begin{array}{r}
57,390 \\
96
\end{array}
\] & 577, 341 & 231,240
5 & 25, 000 & 304,800
277 & 2, 162, 236 \\
\hline Pound nets, floating & 175 & 707, 048 & 5 & 22, 052 & & & 180 & 729, 100 \\
\hline Total. & & 24, 830, 943 & & 12, 400, 644 & & 15, 446, 083 & & 52,677, 670 \\
\hline
\end{tabular}

Output and value of canned salmon in Alaska in \(1924^{1}\)

\({ }^{1}\) Cases containing \(1 / 2\)-pound cans have been reduced one-half in number, and thus, for the purpose of affording fair comparison, all are put upon the basis of forty-eight 1 -pound cans per case.
\[
53896-25 \dagger-5
\]

Output of canned salmon in Alaska, in cases, 1919 to 1924 \({ }^{1}\)
\begin{tabular}{c|r|r|r|r|r|r|r|r}
\hline \hline
\end{tabular}

1 The number of cases shown has been put upon the common basis of forty-eight 1-pound cans per case.
Relative importance of each species of canned salmon within each district in 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline District & Coho & Chum & \[
\underset{\text { back }}{\text { Ilump- }}
\] & King & Red & Total, all species \\
\hline & Per cent & Por cent & Per cent & Per cent & Per cent & Per cent \\
\hline Southeast Alaska_
Central Alaska & & 28.7
12.0 & 60.2
55.6 & 0.3
.7 & 6.9
27.4 & 100
100 \\
\hline Western Alaska & \(\begin{array}{r}\text { 4. } \\ \hline\end{array}\) & 4.0 & +3.5 & 1.6 & 90.4 & 100 \\
\hline All Alaska - & 3.5 & 19.4 & 49.1 & . 6 & 27.4 & 100 \\
\hline
\end{tabular}

Relative importance of each district in the production of each species of canned salmon in 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline District & Coho & Chum & \#umpback & King & Red & Total, all species \\
\hline Southeast Alaska. & \[
\begin{array}{r}
\text { Per cent } \\
59.9
\end{array}
\] & \[
\begin{array}{r}
\text { Pcr cent } \\
77.7
\end{array}
\] & Per cent 64.5 & \[
\begin{array}{r}
\text { Per cent } \\
24.6
\end{array}
\] & \[
\begin{array}{r}
\text { Per cent } \\
13.3
\end{array}
\] & Pcr cent 52.7 \\
\hline Central Alaska & 37.7 & 18.8 & 34.3 & 31.3 & 30.4 & 30.3 \\
\hline Western Alaska. & 2.4 & 3.5 & 1.2 & 44.1 & 56.3 & 17.0 \\
\hline Total & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline
\end{tabular}


Fig. 9.-Cutting machine in salmon cannery, Alaska


Fig. 10.-Putting tops on cans filled with Salmon, Alaska

Average annual price per case of forty-eight 1-pound cans of salmon, 1914 to 1924
\begin{tabular}{l|r|r|r|r|r|r|r|r|r|r|r}
\hline \hline \multicolumn{1}{c}{ Product } & \multicolumn{1}{c}{1914} & 1915 & 1916 & 1917 & 1918 & 1919 & 1920 & 1921 & 1922 & 1923 & 1924 \\
\hline & & & & & & & \\
\hline
\end{tabular}

PACK IN CERTAIN DISTRICTS
Statistics of the salmon pack are again presented for a number of subdivisions of the three main districts of Alaska, and a comparison is made with similar statistics in 1923, the first year in which this was done. These districts are described as follows:

Bristol Bay.-The Bering Sea shore east and north of the Ugashik River.

Port. Moller and Herendeen Bay.-Port Moller, Herendeen Bay, and Nelson Lagoon.

Ikatan-shumagin Islands.-False Pass, Ikatan Bay, King Cove, and the Shumagin Islands.

Chignik.-Three canneries located at Chignik.
Kodiak-Afognak Islands.-Kodiak, Spruce, and Raspberry Islands.
Cook Inlet.- The shores of Cook Inlet.
Prince William Sound.-Extends from Resurrection Bay to Point Whitshed, except that the packs of king and red salmon at canneries eastward from Shepard Point to the end of the district are omitted.

Copper and Bering Rivers.-Extends from Point Whitshed to Bering River and includes the red and king salmon pack at Cordova canneries not credited to Prince William Sound.

Yakutat and Dry Bay.-Extends from Yakutat Bay to and including Dry Bay.

Icy Strait-Lynn Canal.-West coast of Baranof and Chichagof Islands, the shores of Cross Sound, Icy Strait, Lynn Canal, and Stephens Passage south to Taku Harbor. Only part of the pack at Taku Harbor is credited to this district, as some of it originated elsewhere.

Chatham Strait-Frederick Sound.--Includes part of the Taku cannery pack and the Petersburg Packing Co.'s pack, in addition to that of all canneries on both shores of Chatham Strait and its bays from Point Augusta to Cape Ommaney, and through Frederick Sound and its bays northward to Taku Harbor, including Kake.

Sumner Strait-Dixon Entrance.-Extends southward from Petersburg and eastward from Port Beauclerc to Cape Chacon and Dixon Entrance, and includes all canncries on the mainland and intervening islands from the Stikine River to Portland Canal.

West coast, Prince of Wales Island.-Territory west and south of a line from Cape Chacon to Point Baker and Cape Ommaney.

Pack of canned salmon in Alaska in 1924, by districts \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline District & Coho & Chum & IIumpback & King & Red & Total & Percentage of increase or decrease \({ }_{1923}\) 1923 \\
\hline & \begin{tabular}{l}
Cases \\
4, 432
\end{tabular} & \begin{tabular}{l}
Cases \\
31, 168
\end{tabular} & \begin{tabular}{l}
Cases \\
4, 669
\end{tabular} & Cases & Cases 764, 663 & Cases 817,860 & -33.21 \\
\hline Port Moller and Herendeen Bay & & -4, 403 & & 1,907 & 50,286 & 81, 5696 & -53. 56 \\
\hline Ikatan-Shumagin Islands.- & 11,012 & 127, 818 & 173,964 & 792 & 112, 154 & 425, 740 & +111.38 \\
\hline Chignik & 9, 405 & 9, 895 & 51,837 & 55 & 81,089 & 152, 281 & +117.90 \\
\hline Kodiak-Afognak Island & 12,356 & 12, 721 & 251, 424 & 84 & 94, 960 & 371, 545 & +153.12 \\
\hline Cook Inlet & 12, 812 & 2, 875 & 34, 183 & 5,681 & 68, 550 & 124, 101 & +37.16 \\
\hline Prince William Sound & 12,922 & 39, 121 & 381, 506 & 51 & 8,814 & 442, 414 & +172.97 \\
\hline Copper and Bering Rivers & 10, 673 & 530 & 26, 246 & 3, 868 & 74, 872 & 116, 189 & +59.16 \\
\hline Yakutat and Dry Bay & 15, 522 & & 14,913 & 3, 549 & 29, 127 & 63,111 & -5. 73 \\
\hline Icy Strait-Lynn Canal & 30,598 & 126, 382 & 216, 899 & 2, 4.58 & 67, 755 & 444, 092 & -3.82 \\
\hline Chatham Strait-Frederick Sound.- & 19,374 & 157, 352 & 370, 658 & 1,103 & 16, 042 & 564, 529 & +12. 17 \\
\hline Sumner Strait-Dixon Entrance-- & 34, 241 & 446, 174 & 831, 554 & 1,149 & 66, 814 & 1,379,932 & -14.70 \\
\hline West coast, Prince of Wales Island. & 10, 254 & 69,649 & 243, 430 & 23 & 12, 769 & 336, 125 & -5. 94 \\
\hline Total & 183, 601 & 1,028,488 & 2, 601, 283 & 33, 648 & 1,447,895 & 5, 294, 915 & \(+5.15\) \\
\hline
\end{tabular}
\({ }^{1}\) Pack reduced to the basis of forty-eight 1-pound cans per case.

\section*{MILD CURING}

The salmon mild-cure industry showed a material gain over the production of 1923. During most of the year the market was brisk and fishermen obtained good prices for their catches. As is well known, this industry has reached its greatest development in southeastern Alaska, where the feeding grounds of the salmon are more accessible to the fishermen at all times of the year and improved facilities for marketing their catches are available.

This industry gave employment to 1,766 persons, as compared with 1,831 in 1923, a decrease of 3.5 per cent. Of these, whites numbered 1,648 , natives 116, and Filipinos 2.

The total output of mild-cured salmon was \(5,187,200\) pounds, valued at \(\$ 1,137,301\), as against \(3,372,250\) pounds, valued at \(\$ 726,622\), produced in 1923, or an increase of 51 per cent in products and 56.5 per cent in value. The pack consisted of \(5,115,200\) pounds of kings and 72,000 pounds of cohos. This production was divided between the three districts as follows: Southeastern Alaska produced 4,338,400 pounds of kings and 72,000 pounds of cohos, or a total of \(4,410,400\) pounds; central Alaska produced 97,600 pounds of kings and western Alaska 679,200 pounds of kings. Reduced to tierces of 800 pounds each, the pack was 6,394 tierces of kings and 90 of cohos.

Persons engaged, investment, and products of Alaska salmon mild-curing industry in 1924

\({ }_{2}^{1}\) Includes 800 trolling launches, valued at \(\$ 800,000\).
\({ }^{2} 90\) tierces.
\({ }^{3} 5,423\) tierces.

\footnotetext{
4 122 tierces.
5849 tierces.
- 6,394 tierces.
}

\section*{PICKLING}

The salmon-pickling industry of Alaska is practically without separate identity except in the western district, as out of a total investment of \(\$ 162,239\) western Alaska is credited with \(\$ 156,114\) and central Alaska with the remainder of \(\$ 6,125\), while southeastern Alaska has no investment in the business. There was a marked shrinkage in investments, western Alaska declining 79 per cent and central Alaska 91 per cent, and a material decrease in output. In southeastern Alaska production fell off from 42,500 pounds in 1923 to 40,700 pounds in 1924; in central Alaska it increased from 114,744 pounds to 296,952 ; while in western Alaska there was a decline from \(2,175,600\) to \(1,025,300\) pounds. The total production was \(1,362,952\)
pounds, valued at \(\$ 132,223\), as compared with \(2,332,844\) pounds in 1923, valued at \(\$ 186,790\), a shrinkage of 41 per cent in output and 29 per cent in value of products. The total number of persons employed was 102, or 163 less than in 1923.

Persons engaged, investment, and products of Alaska salmon-pickling industry in 1924


\section*{FRESH SALMON}

The fresh-salmon business of Alaska represents no appreciable independent investment, as it is largely incidental to the mild curing of salmon and freezing of halibut. The bulk of the sahmon marketed fresh comes from the trollers of southeastern Alaska, and consists of kings and cohos too small for mild curing. In 1924 there were produced \(2,206,944\) pounds, valued at \(\$ 203,624\), as compared with \(2,926,257\) pounds, valued at \(\$ 244,838\), in 1923, or a decline of 24 per cent in quantity and 16 per cent in value. This decline may be accounted for by the fact that most of the fresh fish were used by the canning and mild-curing industries.

Products of the Alaska fresh-salmon industry in 1924


\section*{FREEZING}

The freezing of salmon in Alaska is regarded as wholly incidental to other fishery activities, as no investment is credited exclusively to this line of business. In 1924 there was an increase in production of 522,377 pounds over that of 1923, the total output being 2,287,666 pounds, valued at \(\$ 165,809\), as compared with \(1,765,289\) pounds, valued at \(\$ 132,522\), in 1923 , or an increase of approximately 29 per cent in products and 25 per cent in value.

Products of the Alaska frozen-salmon industry in 1924
\begin{tabular}{|c|c|c|}
\hline Species & Pounds & Value \\
\hline Coho, or silver & 529, 188 & \$26,932 \\
\hline Chum, or keta-...- & 434, 307 & 20,564 \\
\hline Humpback, or pink & 12200 & \\
\hline King, or spring.- & 1,320, 825 & 118, 146 \\
\hline Red, or sockeye. & 3, 096 & 164 \\
\hline Total & 2, 287, 666 & 165,809 \\
\hline
\end{tabular}

\section*{DRY-SALTING, DRYING, AND SMOKING}

One operator in southeastern Alaska reported the dry-salting of 6,400 pounds of chum salmon valued at \(\$ 206\). Two operators in central Alaska prepared 4,800 pounds of beleke, valued at \(\$ 400\); 27,228 pounds of dried salmon, valued at \(\$ 1,426\); and 4,000 pounds of kippered salmon, valued at \(\$ 600\). These operations were incidental to other lines of business. The Indians of the Yukon and Tanana Valleys prepared a total of \(1,591,540\) pounds of dried salmon, valued at \(\$ 79,577\). They employed 294 wheels, valued at \(\$ 29,400\), and 860 fathoms of nets, valued at \(\$ 860\), a total investment of \(\$ 30,260\).

Production of dry-salted, dried, and smoked salmon in Alaska in 1924
\begin{tabular}{|c|c|c|}
\hline Product & Pounds & Value \\
\hline Dry-salted. & 6, 400 & \$206 \\
\hline Beleke.-Kippered & 4,800 & 400 \\
\hline Dried.-.- & 1, 618,768 & 600
81,003 \\
\hline Total & 1,633, 968 & 82, 209 \\
\hline
\end{tabular}

\section*{BY-PRODUCTS}

Three companies engaged primarily in the salmon by-products business reported an investment of \(\$ 147,250\) and operating capital of \(\$ 33,421\), with 46 persons engaged. In addition three plants in southeast Alaska and two in central Alaska manufactured fertilizer and oil in connection with salmon-canning operations. The total production was \(1,759,300\) pounds of fertilizer, valued at \(\$ 43,370\), and 49,033 gallons of oil, valued at \(\$ 21,833\). This is an increase of 98 per cent in production of fertilizer and 68 per cent in production of oil over 1923, and is accounted for primarily by the installation of by-products machinery in two canneries in southeast Alaska and one in central Alaska. Also, one new plant located at Ketchikan was devoted solely to this business.

Production of salmon oil and fertilizer in Alaska in 1924
\begin{tabular}{|c|c|c|c|c|}
\hline Districts & \multicolumn{2}{|c|}{Oil} & \multicolumn{2}{|c|}{Fertilizer} \\
\hline Southeast Alaska Central Alaska.. & \[
\begin{array}{r}
\text { Gallons } \\
38,803 \\
10,230
\end{array}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 16,207 \\
5,626
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pounds } \\
& 1,397,300 \\
& 362,000
\end{aligned}
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 34,320 \\
& 9,050
\end{aligned}
\] \\
\hline Total & 49,033 & 21,833 & 1,759,300 & 43,370 \\
\hline
\end{tabular}

\section*{HERRING}

Notwithstanding the very general opinion that the herring is the most abundant food fish in Alaskan waters, and that diminution of the supply by the most intensive fishing is only a remote possibility, there was a marked scarcity of these fish in certain localities, especially in the Prince William Sound region, during 1924. This condition had occurred to some extent in past seasons, and it seemed clear that regulatory measures were necessary to conserve the fisheries and to prevent waste.

In 1924 protection of the herring fisheries by specific regulation of fishing was undertaken for the first time, although in 1923 operations in the Cook Inlet and Afognak-Kodiak districts were carried on under permits issued by the Secretary of Commerce. By virtue of authority conferred in the Alaska fisheries act of June 6, 1924, the Secretary of Commerce issued regulations establishing closed seasons and limitations upon size of mesh, and imposing other restrictions upon herring fishing in various waters of Alaska. These regulations affected operations in the southeastern, Prince William Sound, Cook Inlet, and Afognak-Kodiak sections.

Sixtcen companics were interested in herring fishing in southeastern Alaska. Of these the New England Fish Co., at Ketchikan, the Booth Fisheries Co., at Sitka, and the Juneau Cold Storage Co., at Juneau, took herring only for freczing halibut bait. The Puget Sound Reduction Co., using the Fort Union, a 4,000-ton converted steamer, as a floating reduction plant, confined its activities solely to the production of oil and fertilizer, locating first at Port Armstrong and later at Klawak. The Douglas Fish Co., at Douglas and Todd, the Alaska Shellfish Co., operating a floating plant near Killisnoo, and.A. H. Sonsthagan, at Chatham, packed small quantities of herring for food. The larger producers of herring in this district operated combined salteries and reduction plants owned and
located as follows, which, with the exception of the last two, devoted their efforts solely to herring:


In central Alaska operations were centered in three localitiesPrince William Sound, Lower Cook Inlet, and Afognak-Kodiak waters. In the Prince William Sound district nine companies operated, all except the last named being engaged exclusively in herring operations, as follows:
\begin{tabular}{|c|c|}
\hline e-Salater Co & Latouche. \\
\hline Franklin Packing & Evans Bay. \\
\hline W. J. Imlach Packing Co & \\
\hline Utopian Fisheries & Horseshoe Bay. \\
\hline Johnson Packing Co & Latouche. \\
\hline Nildenrich Packing Co & Crab Bay. \\
\hline Knight Island Packing Co & Drier Bay. \\
\hline Everett-Pacific Fisheries & Thumb Bay. \\
\hline San Juan Fishing \& Packin & Evans Bay. \\
\hline
\end{tabular}

The bulk of the output of these plants was Scotch-cure herring, but five also produced a considerable quantity of oil, fish meal, and fertilizer.

In the Cook Inlet district 15 producers of herring food products were reported, as follows:
\begin{tabular}{|c|c|}
\hline Axel Norst & Halibut Cove. \\
\hline H. Sunsby & Do. \\
\hline Ottar Hofstad & Do. \\
\hline William J. Babis & Do. \\
\hline G. E. Meredith & Do. \\
\hline Sivertsen \& Iversen & Do. \\
\hline Arntsen \& Buvick & Do. \\
\hline Knight Island Packing & Do. \\
\hline Ed Jacobson \& Co & Do. \\
\hline Libby, McNeill \& Libby & Do. \\
\hline Fidalgo Island Packing Co & Port Graham. \\
\hline Utopian Fisheries - & Seldovia. \\
\hline Herring Bay Packing & Do. \\
\hline McIver \& McNab Packing & Do. \\
\hline San Juan Fishing \& Packing & Tutka Bay. \\
\hline
\end{tabular}

In the Afognak-Kodiak region five operators were likewise engaged and located as follows:

Kodiak Island Fishing \& Packing Co
Uganik Bay.
W. J. Erskine Co

Kodiak.
Karl Armstrong
W. J. Imlach Packing Co

Three Saints Bay.
Granheim Fishing \& Packing Co
Uzinki.
In western Alaska two operators packed a small quantity of herring at Golovin Bay.

STATISTICAL SUMMARY
The herring industry of Alaska employed 1,407 persons in 1924, as compared with 881 in 1923. The number of plants increased from 19 in 1923 to 32 in 1924, and the investment from \(\$ 2,375,798\)

53896-25†-6
to \(\$ 3,849,422\), or 62 per cent. The products were valued at \(\$ 2,458,370\) as compared with \(\$ 1,602,571\) in 1923, an increase of \(\$ 855,799\), or 53 per cent. Scotch-cure herring increased from 13,047,433 pounds in 1923 to \(19,020,650\) pounds, or approximately 46 per cent. Herring for bait decreased from \(5,234,525\) pounds to \(3,599,350\) pounds. Fertilizer increased 46.6 per cent in quantity and 14.7 per cent in value, and oil 29 per cent in quantity and 38 per cent in value over the production in 1923.

Persons engaged, investment, and products of Alaska herring industry in 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Southeast Alaska} & \multicolumn{2}{|l|}{Central Alaska} & \multicolumn{2}{|l|}{Western Alaska} & \multicolumn{2}{|r|}{Total} \\
\hline \begin{tabular}{l}
PERSONS ENGAGED \\
Fishermen:
\(\qquad\) \\
Natives
\end{tabular} & \[
\begin{array}{r}
\text { Number } \\
103 \\
22
\end{array}
\] & Value & \[
\begin{array}{r}
\text { Number } \\
295 \\
14
\end{array}
\] & Value & \[
\begin{array}{|c}
\text { Number } \\
6 \\
6
\end{array}
\] & Value & \[
\begin{array}{r}
\text { Number } \\
404 \\
42
\end{array}
\] & Vulue \\
\hline Total. & 125 & & 309 & & 12 & & 446 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Shoresmen: \\
Whites \\
Natives \\
Miscellaneous \\
Total \(\qquad\)
\end{tabular}} & \[
\begin{array}{r}
249 \\
22 \\
23
\end{array}
\] & & 592
32 & & 3 & & \[
\begin{array}{r}
844 \\
54 \\
23
\end{array}
\] & \\
\hline & 294 & & 624 & & 3 & & 921 & \\
\hline Transporters: Whites Natives \(\qquad\) Miscellaneous. & \[
\begin{array}{r}
11 \\
5 \\
1 \\
\hline
\end{array}
\] & & 18
5 & & & & 29
10
1 & -------.-.-. \\
\hline Total & 17 & & 23 & & & & 40 & \\
\hline Grand total & 436 & & 956 & & 15 & -..---- & 1,407 & \\
\hline Plants operated & 9 & \$513, 656 & 22 & \$500, 672 & 1 & \$150 & 32 & \$1, 014,478 \\
\hline \multicolumn{9}{|l|}{} \\
\hline Power, over 5 tons.Net tonnage & 27
825 & 224, 300 & \[
\begin{array}{r}
55 \\
1,319
\end{array}
\] & 281, 190 & & & 82
2,144 & 505, 490 \\
\hline Launches, under 5 & 1 & 2,000 & 12 & 22, 350 & 2 & 1. 072 & 15 & 25,422 \\
\hline Boats, row and seine. & 24 & 3,000 & 73 & 13, 655 & 11 & 1,025 & 108 & 17, 680 \\
\hline Scows-.. & 7 & 8,000 & 13 & 10,920 & 1 & 500 & 21 & 19,420 \\
\hline Barges & 1 & 1,000 & & & & & 1 & 1, 000 \\
\hline Pile drivers. & 1 & 800 & 2 & 7, 500 & & & 3 & 8,300 \\
\hline Beach seines Fathoms & 3 & 7,000 & 1 & 1,500 & 2 & 500 & 5 & 9,000 \\
\hline \multirow[t]{2}{*}{Purse scines} & & 43, 010 & 150
34 & 62, 938 & 250
2 & 321 & 935
53 & 106, 269 \\
\hline & 2,750 & & 5,385 & & 300 & & 8,435 & \\
\hline Gill nets. & & & 102 & 17,784 & 72 & 650 & 174 & 18,434 \\
\hline Fathoms. & & & 5,130 & & 1,200 & & 6,330 & \\
\hline \multirow[t]{2}{*}{Impounding nets.
Fathoms.-.} & & & 9 & 7,100 & & & 9 & 7,100 \\
\hline & & & 520 & & & & 520 & \\
\hline Total & & 1,499, 018 & & 2, 342, 730 & & 7,674 & & 3,849,422 \\
\hline Fresh, for bait & 150, 000 & 3,040 & 1,387, 750 & 13, 877 & & & 1,537, 750 & 16,917 \\
\hline Frozen, for bait.-.--------- & 2, 061, 600 & 18,116 & & & & & 2, 061, 600 & 18,116 \\
\hline Pickled, for food, Scotch cure. & 3, 518,512 & 304, 594 & 15,353,538 & 1,342,517 & 148, 600 & 13,880 & 19,020,650 & 1,660, 991 \\
\hline \multirow[t]{2}{*}{Pickled, for food, Norwegian cure. Spiced, for food} & 7, 200 & 576 & & & 11, 400 & 1,250 & 18, 600 & 1,826 \\
\hline & 9,600 & 1,000 & & & & & 9,600 & 1,000 \\
\hline & 17, 200 & 4, 075 & 75, 250 & 2, 826 & & & 92, 450 & 6,901 \\
\hline Dry-salte & & & 770, 500 & 25, 790 & & & 770, 500 & 25, 790 \\
\hline \multirow[t]{2}{*}{} & 8, 079,625 & 187, 379 & 1,230, 000 & 35, 341 & & & 9,359, 625 & 222, 720 \\
\hline & 974,918 & 428, 426 & 169, 754 & 75,683 & & & 1, 144, 672 & 504, 109 \\
\hline Total & & 947, 206 & & 1, 496, 034 & & 15, 130 & & 2, 458, 370 \\
\hline
\end{tabular}

\section*{HALIBUT}

Halibut fishing was entirely suspended late in 1924 in the North Pacific Ocean by vessels of the United States and Canada, in accordance with legislation enacted by both countries giving effect to the convention of March 2, 1923, between the United States and Great Britain for the protection of the halibut fishery of the North Pacific. This legislation imposed a closed season of three months, beginning November 16, 1924, in which the intentional catching of halibut by American and Canadian vessels is .prohibited. Accordingly the halibut fleet discontinued operations on November 15, and for the first time in the history of Alaska this important branch of its fisheries industry was at a standstill. The closed season thus provided is considered necessary for the preservation of this fishery. It has been accepted generally without protest or opposition by the fishermen, practically all of whom seem glad to forego the uncertain profits and hazards of fishing during three months in the winter.

In addition to the closed season imposed by law, practically the entire halibut fleet was idle for three weeks in September on account of the scarcity of bait. This materially reduced the catch, as all vessels lost at least one trip to the fishing grounds. Notwithstanding this suspension of fishing, the total catch landed in Alaska was \(15,037,616\) pounds, valued at \(\$ 1,619,443\), an increase over 1923 of \(2,864,342\) pounds, or 23.5 per cent, and in value of \(\$ 365,492\), or 29 per cent. The total investment in the halibut industry in 1924 was \(\$ 2,316,084\), as compared with \(\$ 2,336,350\) in 1923.

Persons engaged, investment, and products of the Alaska halibut fishery in 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Southeast Alaska} & \multicolumn{2}{|l|}{Central Alaska} & \multicolumn{2}{|c|}{Total} \\
\hline \begin{tabular}{l}
Whites. \(\qquad\) \\
Natives \(\qquad\)
\end{tabular} & \[
\begin{array}{r}
\text { Number } \\
584 \\
29
\end{array}
\] & Value & Number 20 & Value & Number 604 & Value \\
\hline Total & 613 & & 20 & & 633 & \\
\hline \begin{tabular}{l}
Vessels: \\
Steam and gas
\end{tabular} & 122 & \$1,062,000 & & & 122 & 62, 000 \\
\hline Naunches & 2,281 & & & & 2, 281 & \\
\hline Apparatus.-- & 56 & 94,400 & & & 56 & 94,400 \\
\hline Shore property & & 343, 625 & & \$2S, 000 & & 29, 590 \\
\hline Operating capital & & 716,677 & & 41, 792 & & 371,625
758,469 \\
\hline Total & & 2, 246, 292 & & 69,792 & & 2,316,084 \\
\hline Fresh (including local) & 4. 398,528 & 528, 023 & & & 4,398, 528 & 528, 023 \\
\hline Frozen.- & 8,334, 088 & 837, 870 & 2,305,000 & 253, 550 & 10,639, 088 & 1,091, 420 \\
\hline Total & 12, 732, 616 & 1, 365, 893 & 2,305, 000 & 253, 550 & 15, 037, 616 & 1,619,443 \\
\hline
\end{tabular}

COD
In this statistical review of the cod fishery of Alaska only those vessels landing their catches in the Territory are considered as forming the strictly Alaska cod fleet and included in the investments in this industry. Vessels engaged in cod fishing in Bering Sea and the North Pacific Ocean are shown as the offshore cod fleet.

The Alaska Codfish Co. reduced its fleet of fishing vessels by withdrawing the schooners Bangor and S. N. Castle, while the Robinson Fisheries Co. sent the schooner Alice ( 220 tons), in addition to the Wawont, on a fishing voyage into Alaskan waters. In all, 12 schooners comprised the offshore fleet. The fares of these vessels, consisting of \(6,584.819\) pounds of dry-salted cod, valued at \(\$ 366,856\), and 94,000 pounds of tongues, ralued at \(\$ 6.57\), were landed at ports in the United States and are not credited to Alaska.

The shore-station fleet consisted of five vessels belonging to the Union Fish Co. and one each to the San Juan Fishing \& Packing Co. and the Aleutian Livestock Co. The Martha, a sloop of 14 tons owned by the Union Fish Co., was wrecked at the Shumagin Islands during the season and became a total loss.

\section*{STATISTICAL SUMMARY}

The cod industry of Alaska gave employment to 102 persons in 1924, or 355 less than in 1923. This reduction is accounted for by the exclusion of the fishermen employed with the offshore fleet, who heretofore were included in these statistics. The investment amounted to \(\$ 310,792\), as compared with \(\$ 967,216\) in 1923 . This decrease is also explained by the exclusion of all items credited to the offshore fleet operations. Dry-salted cod, stockfish, tongues, and frozen cod aggregating \(1,580,026\) pounds, valued at \(\$ 100,777\), comprised the products of this fishery. On the basis of previous reports production would have been \(8,25 \$, 845\) pounds, valued at \(\$ 468,300\).

Alaska shore-station cod fleet in 1924
\begin{tabular}{|c|c|c|c|}
\hline Name & Rig & Net tonnage & Operators \\
\hline Golden State & Power sehooner..- & 223 & Union Fish Co., San Francisco, Calif. \\
\hline Mary G & Power sloop.------ & 21 & Do. \\
\hline Pirate & do & 30 & Do. \\
\hline Union Flag. & do & 7 & Do. \\
\hline Martha -- & Sloop - .-.-. & 14 & Do. \({ }_{\text {Diosel }}\) \\
\hline Daisy -- & Power vessel.----- & 30 & Aleutian Lirestock Co., Chernofsky, Alaska. \\
\hline San Jose_ & .do. & 14 & San Juan Fishing \& Packing Co., Seattle, Wash. \\
\hline
\end{tabular}

Offshore cod fleet in 1924
\begin{tabular}{|c|c|c|c|}
\hline Name & Rig & Net tonnage & Operators \\
\hline Glendale & Schooner & 281 & Alaska Codfish Co., San Francisco, Calif. \\
\hline Maweema & ----- do & 392 & Do. \\
\hline City of Papeete & --.--do.. & 370 & Do. \\
\hline Louise- & & \({ }_{328}^{223}\) & Union Fish Co., San Francisco, Calif. \\
\hline Galilee. & do & 338 & Do. \\
\hline Progress & do & 115 & Do. \\
\hline Alice.- & .-do & 220 & Robinson Fisheries Co., Anacortes, Wash. \\
\hline Wawona & do. & 413 & Do. \\
\hline John A - & do & 235 & Pacific Coast Codfish Co., Seattle, Wash. - \\
\hline Charles R. Wils & & 328
252 & \begin{tabular}{l}
Do. \\
J. A. Matheson, Anacortes, Wash.
\end{tabular} \\
\hline
\end{tabular}

Persons engaged, investment, and products of Alaska cod industry in 1924


\section*{WHALES}

In the whaling industry of Alaska in 1924, employment was given to 117 whites and 17 natives. The investment, covering value of plant, vessels, wages, and other operating charges, was \(\$ 460,311\). Operations, which began somewhat later than in the previous year, were carried on in the North Pacific Ocean and Bering Sea upon approximately the same scale as heretofore. The total catch amounted to 148 finbacks, 71 humpbacks, 46 sulphur bottoms, 17 sperm, and 1 right whale. The total catch in the previous season was 355. Products were 554,500 gallons of body oil, valued at \(\$ 305,000\); 78,700 gallons of sperm oil, valued at \(\$ 31,480 ; 2,189,120\) pounds of fertilizer, valued at \(\$ 47,551 ; 1,500\) pounds of whalebone, valued at \(\$ 1,500\); and 200,000 pounds of pickled whale tails, valued at \(\$ 6,250\). The latter product is understood to have been prepared particularly for the oriental trade. The total value of products in 1924 was \(\$ 391,781\), as compared with \(\$ 388,681\) in 1923 , an increase of \(\$ 3,100\). The North Pacific Sea Products Co. operated throughout the season at Akutan in western Alaska.

\section*{CLAMS}

Dr. F. W. Weymouth, of Stanford University, assisted by H. C. McMillin, continued his investigation of the clam beds of Alaska, which was undertaken in 1923, and a special report on the work has been published (Bureau of Fisheries Doc. No. 984). Careful study was made of the beds in the vicinty of Cordova and at Snug Harbor, Cook Inlet, and Kukak Bay on the Alaska Peninsula.

The beds at Cordova show the effects of the intensive digging carried on since 1916 in the small average size of the clams taken and
the large proportion of undersized clams. It was shown that in the cold waters of central Alaska the production of clams is much smaller than on the Washington beds, and also that the rate of growth is slower. By taking undersized and immature clams the industry has to a dangerous degree been reducing its capital.

The age of a clam is determined from markings on the shell, like rings of a tree, and comparative studies revealed that on the Copalis (Wash.) beds clams reached a length of \(41 / 2\) inches in three years, while at Cordova the period required is six years. The restoration of the depleted Alaska clam beds will therefore require many years. The imposition of a minimum size limit will, it is hoped, be helpful in this restoration, as it will make operations unprofitable and cause their cessation on beds where a large percentage of undersized clams is taken.

During the season of 1924 the regulations established a minimum size of \(41 / 2\) inches in total length of shell, and permitted not more than 5 per cent of the clams taken to be under that size. The new regulations issued December 2, 1924, reduced this percentage to not more than 3 per cent in number of the clams taken.

\section*{STATISTICAL SUMMARY}

Eleven firms packed clams in central Alaska and two in southeastern. Investment in the industry was \(\$ 707,970\), all of which was in the central district. Operations centered at Cordova. The number of persons engaged was 729, of which 557 were whites, 153 natives, 14 Chinese, 3 Mexicans, and 1 each Filipino and Negro. The investment in 1923 was \(\$ 476,747\), and 338 persons were employed. The output in 1924 was 83,161 cases, containing \(2,340,644\) pounds, valued at \(\$ 629,412\), an increase of 6 per cent in quantity and 16 per cent in value over the previous year, when 77,283 cases, valued at \(\$ 541,139\), were packed.

Products of the Alaska clam industry in 1924
\begin{tabular}{|c|c|c|c|}
\hline Items & Cases & Pounds & Value \\
\hline Minced: & & & \\
\hline \(1 / 2\)-pound cans (48 to casc) & 52, 131 & 1, 251, 114 & \$354, 961 \\
\hline 10 -ounce cans (48 to case) & 21,074 & 632, 220 & 185, 456 \\
\hline 1 -pound cans (48 to case) & 645 & 30,960 & 5,172 \\
\hline 10 -pound cans ( 5 to case) & 26 & 1,560 & 273 \\
\hline Whole: & & & \\
\hline 1-pound cans (48 to case) & 8,020 & 384, 900 & 75, 315 \\
\hline 5 -pound cans (6 to case) & 1,200 & 36,000 & 7,650 \\
\hline 10-pound cans (6 to case) & 65 & 3,800 & 585 \\
\hline Total & 83, 161 & 2,340,644 & 629,412 \\
\hline
\end{tabular}

\section*{SHRIMP}

Preliminary investigations concerning the condition and needs of the shrimp fishery in southeastern Alaska were made under the direction of Assistant Agent E. M. Ball in 1924. Reports and comments in regard to the Wrangell and Petersburg districts were secured from the masters of the bureau's patrol boats Murre and Auklet and from the chief packers of shrimp in these districts. A considerable diversity of opinion was apparent as to the time of the spawning period
and the general movements and location of the schools of shrimp. On account of the diminution of the supply in some localities it has been generally conceded that a closed season is desirable to afford protection during the spawning period. The present regulations prohibit commercial fishing for shrimp between March 15 and April 30 of each year throughout southeastern Alaska.

The great need of the industry appears to be the development of more efficient apparatus for catching shrimp on the known grounds, and especially the invention of gear which can be used on the rough and rocky bottoms where beam and otter trawls can not operate successfully.

The investment in the shrimp industry in 1924 was \(\$ 326,683\), as compared with \(\$ 268,656\) in 1923 . Of this total \(\$ 25,500\) represents the value of the two plants, \(\$ 128,259\) the cost of operations exclusive of labor, \(\$ 113,739\) wages paid, and \(\$ 59,185\) the value of boats and apparatus. Employment was given to 173 persons, of whom 45 were whites, 75 natives, 2 Chinese, 27 Japanese, 16 Filipinos, 3 Koreans, and 5 Mexicans. Products consisted of 528,432 pounds of shrimp meat, valued at \(\$ 227,979\), as compared with 460,560 pounds, valued at \(\$ 178,474\), produced in 1923 , or an increase of approximately 15 per cent in quantity and 28 per cent in value.

\section*{CRABS}

Five concerns in southeastern Alaska packed crabs in 1924. The Dobbins Packing Co., at Hoonah, and Ludeman \& Isom Bros., at Petersburg, were the chief operators. The total investment was \(\$ 56,196\), and 22 persons were engaged. The output consisted of 2,241 cases of \(1 / 2\)-pound cans, valued at \(\$ 22,410 ; 66,630\) pounds of cold-packed crab meat, valued at \(\$ 25,981\); and 160 dozen whole crabs, valued at \(\$ 336\). The total value of crab products in 1924 was \(\$ 48,727\), as compared with \(\$ 14,590\) in 1923 , a gain of 233 per cent.

TROUT
The production of trout in Alaska in 1924 was wholly incidental to other fishery business. The products were Dolly Vardens, 45,428 pounds fresh, valued at \(\$ 5,627\), and 1,222 pounds frozen, valued at \(\$ 122\); and steelheads, 11,217 pounds fresh, valued at \(\$ 693\), and 3,395 pounds frozen, valued at \(\$ 299\), a total production of 61,262 pounds, valued at \(\$ 6,741\). No trout were canned. The total production of trout in 1923 was 44,024 pounds, valued at \(\$ 4,122\).

\section*{MISCELLANEOUS FISHERY PRODUCTS}

Minor species of fish are taken in small quantities, chiefly in connection with the halibut fishery. In 1924 such products were as follows: Sablefish, 23,006 pounds fresh, valued at \(\$ 831\), and 204,344 pounds frozen, valued at \(\$ 8,977\); smelt, 1,233 pounds fresh, valued at \(\$ 113\), and 23,251 pounds frozen, valued at \(\$ 2,235\); flounders, 6,993 pounds frozen, valued at \(\$ 349\); red cod, 115 pounds fresh, valued at \(\$ 3\), and 1,060 pounds frozen, valued at \(\$ 31\).

\section*{FUR-SEAL INDUSTRY}

\section*{PRIBILOF ISLANDS}

\section*{GENERAL ADMINISTRATIVE WORK}

In the calendar year 1924, 17,219 fur-seal skins were taken on the Pribilof Islands, of which 13,453 were taken on St. Paul Island and 3,766 on St. George Island. The blubbering of sealskins taken on St. Paul Island was continued. The development of more improved methods of handling and feeding the blue foxes of the Pribilofs, begun in 1923, was continued throughout 1924. The by-products plant on St. Paul Island was operated for about one month, seal oil and meal being manufactured for use as fox food or for sale.

Progress was made on both islands in the installation of improved water-supply systems, that on St. George being nearly completed. In addition to work on other buildings, a new warehouse was constructed on St. Paul Island.

Practically all of the general supplies were transported from Seattle to the Pribilofs by the U. S. S. Gold Star, although small quantities were transported by other vessels. The bureau's power vessel Eider rendered valuable assistance in transporting passengers, mail, and freight between the islands and Unalaska.

Vessels of the United States Coast Guard maintained an efficient patrol of Bering Sea and the North Pacific Ocean for the protection of the Pribilof Islands fur-seal herd. The bureau is under obligation to that service for its cooperation and assistance in connection with the Pribilof Islands work.

\section*{PURCHASE AND TRANSPORTATION OF SUPPLIES}

In accordance with the custom adopted in 1923, competitive bids were secured by the issuance of separate schedules of various commodities required. Through the courtesy of the Navy Department shipment of the supplies was made from Seattle, Wash., on the U. S. S. Gold Star on May 20, 1924. The vessel arrived at St. Paul Island May 29, and the work of discharging cargo there was completed June 5. On June 6 the Gold Star left for St. George Island, where the discharge of cargo was completed on June 11.

On October 17 approximately 83 tons of foodstuffs and emergency supplies were shipped from Seattle on the steamship Cordova to Unalaska. Transportation to the Pribilofs was subsequently effected by the Eider.
POWER SCHOONER "EIDER"

The Eider played an important part in connection with the round-the-world flight of Army airplanes in May, 1924. Under the command of J. A. Beck, the Eider afforded transportation for advance officers and supplies from Unalaska to Attu, Alaska, and to Nikolski, on the Commander Islands off the Siberian coast. The vessel


received the airplanes successively at Nazar Bay, on Atka Island; Chichagof, on Attı Island, Alaska; and at Nikolski, on Bering Island, Siberia. Quarters and subsistence on board were furnished to the aviators at each of these places. Important meteorological data also were furnished and other valuable assistance rendered.

The Eider rendered valuable service in the fur-seal work in 1924, making nine round trips between Unalaska and the Pribilof Islands. During the summer transportation was provided for employees on fishery inspection work along the Alaska Peninsula and as far east as Seward. A trip was made to Seattle in November for the installation of radio telephone equipment and the making of certain repairs. The vessel was still at Seattle at the end of the calendar year.

\section*{ELECTRIC LIGHTING PLANT}

St. Paul Island.-A motor formerly used at the bureau's central station at Washington was rewound as a generator and shipped to St. Paul Island, where it was connected with the 20 -horsepower semiDiesel engine used for pumping water for washing sealskins. A set of Edison storage batteries was also supplied. The entire village was wired, and the new plant was put in operation in September.

\section*{CONSTRUCTION WORK}

St. Paul Island.-Two of the houses for the use of white employees, begun in 1923, were completed and it was expected that the third would be finished in the winter of 1924-25. A building 28 by 48 feet, to be used as a dwelling and dispensary by the resident physician, was begun.

A two-story warehouse, 48 by 100 feet, was built at West Landing at the village on St. Paul Island. The building replaced an old and smaller warehouse built many years before on the same site. The old wharf leading up to the warehouse was enlarged to provide more space for handling cargo.

St. George Island.-Concrete walls were poured for an additional house for white employees, and plans were made for completing the building in the winter of 1924-25.

\section*{WATERWORKS}

St. Paul Island.-The work of making available the water of Ice House Lake as the village water supply was continued in 1924. As soon as the sealing season was over, the digging of ditches and the laying of the 4 -inch wood pipe line was resumed and continued until September 27. In this period 4,427 feet of pipe were laid and one valve with indicator post was installed. Approximately 1,150 feet remain to be laid.

St. George Island.-The installation of the water system connecting Upper Lake with the village was carried well along toward completion. A filter and tank house have been built at the lake and wood pipe laid to the village. The laying of pipe for distributing the watcr through the village and the installation of nonfreezable hydrants remain to be done.

\section*{BY-PRODUCTS PLANT}

The by-products plant on St. Paul Island was operated from July 8 to August 10, during which time there were manufactured 5,340 gallons of No. 1 oil, 1,430 gallons of No. 2 oil, and 100 gallons of foots, a total of 6,870 gallons. There were also prepared 13,360 pounds of meal from seal carcasses and 5,654 pounds of meal from seal blubber, a total of 19,014 pounds.

With the exception of 50 gallons of No. 1 oil shipped to Seattle, the season's product was stored at the island, to be used as fox feed or for future shipment.

During the year 493 gallons of oil prepared at the plant in previous years were sold at 50 cents per gallon. From the proceeds, \(\$ 246.50\), expenses in connection with the sale, amounting to \(\$ 36.14\), were deducted, and the balance, \(\$ 210.36\), was transferred to the general fund of the Treasury.

\section*{NATIVES}

CENSUS
The annual census, taken as of December 31, 1924, showed that there were 179 natives residing on St. Paul Island and 144 on St. George Island, a total of 323 . Three of those on St. George Island were temporary visitors from St. Paul Island. During the year there were 7 births and 5 deaths on St. Paul Island, 12 arrivals, and 16 departures.

On St. George Island there were 6 births, 3 deaths, 5 arrivals, and 1 departure.

In addition to the foregoing, 11 natives who should be accredited to St. Paul Island were in attendance at the Salem Indian Training School at Chemawa, Oreg., at the end of the year.

\section*{HEALTH CONDITIONS}

Improvements in medical facilities and equipment are being made gradually on the Pribilof Islands. A physician was on duty on each island throughout the year, and training in nursing and care of the sick was given to some of the more intelligent of the younger natives. Special attention was given to improving sanitary conditions in the villages and raising the standard of living among the natives by means of better housing facilities. When the new combined dispensary and physician's residence is completed in 1925 it will be much easier to accomplish this.

\section*{SCHOOLS}

St. Paul Island.-The school year began on September 19, 1923, and closed May 16, 1924, both junior and senior schools being maintained as heretofore. The term consisted of \(1541 / 2\) school days. The enrollment in the junior school was 37 and in the senior school 27, a total of 64.

St. George Island.-The school year opened on September 10, 1923, and closed May 16, 1924, school being in session \(1481 / 2\) days. Thirtyeight pupils were enrolled at the beginning of the term.

ATTENDANCE AT SALEM INDIAN TRAINING SCHOOL, CHEMAWA, OREG.
On January 1, 1924, 9 natives from St. Paul Island were in attendance at the Salem Indian Training School, Chemawa, Oreg. One of these died in the latter part of the year, and 3 additional natives from St. Paul Island entered the school in the year, making 11 in attendance on December 31, 1924. No children from St. George Island attended during the year.

\section*{SAVINGS ACCOUNTS}

Certain of the Pribilof Islands natives have personal funds in the custody of the United States Commissioner of Fisheries. Through the year 1924 these funds were kept on deposit with the Washington Loan \& Trust Co., Washington, D. C., and interest was paid at the rate of 3 per cent per annum, calculated on monthly balances. Two accounts were opened during the year. A summary of the accounts as a whole for the year 1924 is shown in the statement that follows:
\[
\begin{aligned}
& \text { Balance on hand, Jan. 1, 1924_--L.-.-.------------ \$11, 788. } 51 \\
& \text { Interest earned from Jan. 1, to Dec. 31, 1924---------- } 348.15 \\
& \text { Deposited by natives in 1924-------------------------1. } 28 \\
& \text { 12, 197. } 94 \\
& \text { Withdrawn by natives in 1924-----------------------11 } 678.48 \\
& \text { Balance on hand, Dec. 31, 1924-------------------- 11, 519. } 46
\end{aligned}
\]

An itemized statement of the account, showing the individual balances of the natives, follows:

Pribilof Islands natives' savings accounts in custody of United States Commissioner of Fisheries, as trustee, December 31, 1924
\begin{tabular}{|c|c|c|c|}
\hline n, Zoya \({ }^{1}\) & \$265. 71 & Melovidov, Iosef -- & \$48. 49 \\
\hline Bourdukofsky, Martha \({ }^{2}\) & 101. 74 & Merculieff, Dosofey \({ }^{3}\) & 43. 45 \\
\hline Bourdukofsky, Peter & 90 & Merculieff, Makary & 43. 45 \\
\hline Fratis, Agrippina \({ }^{3}\) & 104. 54 & Merculieff, Mariamna & 72. 45 \\
\hline Fratis, Akalina \({ }^{3}\) & 506. 65 & Merculief, Agrippin & 20. 57 \\
\hline Fratis, Martha \({ }^{3}\) & 104. 52 & Merculief, Joseph & 37. 91 \\
\hline Fratis, Iuliania \({ }^{3}\) & 104. 52 & Merculief, Polyxenia & 20.87 \\
\hline Galanin, Mary & 37. 69 & -Merculief, Stefanida & 4, 334. 05 \\
\hline Gromoff, Iuliania & 286. 65 & Pankoff, Agrippina & 265. 34 \\
\hline Kochutin, Alexa & 4, 489. 56 & Pankoff, Maria M (elovidov) & 48. 50 \\
\hline Krukoff, Ekate & 134.25 & Sedick, Lavrenty & 53. 92 \\
\hline Krukoff, John \({ }^{2}\) & 35. 40 & Sedick, Leonty & 53.92 \\
\hline Lestenkof, Micha & 147. 10 & Sedick, Marina & 38 \\
\hline Mandregan, Alexandr & 11. 46 & Shane, Michael & 43. 94 \\
\hline Melovidov, Alfey & 48. 49 & Tetoff, Vikenty M (elovidov) & 48. 49 \\
\hline Melovidov, Anto & 4. 10 & Zacharof, Emanuel & . 45 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Deceased.
\({ }^{2}\) New account.
- Not living on islands in 1924.
}

\section*{PAYMENTS FOR TAKING SEALSKINS}

A small force of temporary assistants was employed to aid in sealing operations at the Pribilofs. A number of Aleutian workmen from Unalaska and vicinity also were employed for a brief period.

The natives of the Pribilof Islands received 75 cents for each sealskin taken in 1924. The take of skins was 17,219 and payments amounted to \(\$ 13,114.25\), including \(\$ 200\) paid as additional compensation to 4 native foremen. Ten St. George Island natives, employed
at St. Paul during the active sealing season, received \(\$ 50\) each, and \(\$ 105.99\) was paid to St. Paul Island natives for special services. The earnings in 1924 were as follows:
\begin{tabular}{|c|c|}
\hline Salaries of seali & \$12, 862. 66 \\
\hline Wages of temporary Aleutian & 7, 467. 50 \\
\hline Native workmen of St. Paul Island_ & 10, 295. 74 \\
\hline Native workmen of St. George Islan & 3, 424.50 \\
\hline Total & 34, 050. 40 \\
\hline
\end{tabular}

St. Paul Island.-For the 13,453 sealskins taken on St. Paul Island in the calendar year 1924 the resident natives received 75 cents per skin, and in addition two native foremen received \(\$ 50\) each for special services. The natives were divided into classes according to their ability and work, and payments were made as follows:

Payments to St. Paul Island natives for taking sealskins, calendar year 1924
\begin{tabular}{|c|c|c|c|}
\hline Classification & Number of men & Share of each & Total \\
\hline First class & 29 & \$254. 25 & \$7,373. 25 \\
\hline Second class & 5 & 204. 00 & 1,020.00 \\
\hline Third class . & 3 & 165. 00 & 495. 00 \\
\hline Fourth class & 5 & 127. 50 & 637.50 \\
\hline Fifth class. & 4 & 103.50 & 414.00 \\
\hline Boys' class & 2 & 75.00 & 150.00
100 \\
\hline Foremen (additional compensation to 2). & & & 100.00 \\
\hline Total & 48 & ------- & 10, 189.75 \\
\hline
\end{tabular}

St. George Island.-For the 3,766 sealskins taken on St. George Island in the calendar year 1924 the resident natives received 75 cents per skin, and in addition one native foreman received \(\$ 55\) and one \(\$ 45\) for special services. Payments for taking these skins were made as follows:

Payments to St. George Island natives for taking sealskins, calendar year 1924
\begin{tabular}{|c|c|c|c|}
\hline Classification & Number of men & Share of each & Total \\
\hline First class & 9 & \$96. 00 & \$864. 00 \\
\hline Do-- & 8 & 95. 25 & 762.00 \\
\hline Sccond class & 4 & 76.50
75.75 & 459.00
303.00 \\
\hline Third class. & 6 & 63. 00 & 378.00 \\
\hline Fourth class (boys) & 6 & 9.75 & 58.50 \\
\hline Foreman (additional compensation) & & & \[
\begin{aligned}
& 55.00 \\
& 45.00
\end{aligned}
\] \\
\hline Total & 39 & & 2,924. 50 \\
\hline
\end{tabular}

\section*{PAYMENTS FOR TAKING FOX SKINS}

A payment of \(\$ 5\) is made by the Government for each fox skin taken and prepared for shipment by the native residents on the Pribilof Islands. In the season of 1923-24 the natives on St. Paul Island received \(\$ 300\) for the 60 pelts taken, and for the 742 taken on St.

\begin{tabular}{lllll}
\hline
\end{tabular}

George Island in that season \(\$ 3,710\) were paid. On St. Paul Island payments were made to individuals on the basis of number of skins taken by each, whereas on St. George Island the work was collective in character and distribution of the total amount due was in accordance with what was considered an equitable apportionment.

\section*{FUR-SEAL HERD}

QUOTA FOR KILLING
On May 1, 1924, the Acting Secretary of Commerce approved the bureau's recommendation in regard to the killing of seals in 1924.

It was provided that killings should be limited to 3 -year-old males, except for the comparatively few seals of other age classes that might incidentally and unavoidably be killed during the course of sealing operations. A reserve of 7,0003 -year-old males was to be created, and, as far as practicable, this number was to be marked and released before regular operations began. With the exception of the reserved animals, as many of the 3 -year-old males as could be found were to be killed. Later instructions authorized increasing the reserve to 10,000 if it appeared advisable to do so in order to maintain the herd in a healthy condition.

KILLINGS OF SEALS
The total number of seals killed on both islands in 1924 (including a few seals found dead, from which the skins were preserved for commercial purposes) was 17,219 , of which 16,411 were 3 -year-old males. A detailed classification of these seals is given on page 149.

Seal killings on Pribilof Islands in 1924
ST. PAUL ISLAND
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date & Serial No. of drive & Hauling ground & Skins secured & Date & Serial No. of drive & Hauling ground & \[
\begin{gathered}
\text { Skins } \\
\text { se- } \\
\text { cured }
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{May 22
June
June
Juno
Do...-
Do...} & & \multirow[t]{8}{*}{\begin{tabular}{l}
Sea Lion Rock \\
Seal killed for food Seal found deadFrom seal dying as a result of shearing operations. Seals killed for food From seal dying as result of shearing operations. do.
\end{tabular}} & \multirow[t]{4}{*}{63
1
1
1
61} & \multirow[t]{3}{*}{\[
\begin{array}{ll}
\text { July } & 7 \\
\text { July } & 8 \\
\text { July } & 9 \\
\text { Do.... }
\end{array}
\]} & \multirow[t]{2}{*}{11
12} & \multirow[t]{2}{*}{Gorbatch_................} & \multirow[t]{2}{*}{671
140} \\
\hline & & & & & & & \\
\hline & 2 & & & & 13 & Polovi & \\
\hline & & & & & 14 & Tolstoi & 117 \\
\hline & & & & July 10 & 15 & Reef and & \\
\hline \multirow[t]{2}{*}{June \({ }^{\text {D }}\) - \({ }^{\text {a }}\)} & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{1} & July & 117 & Zapadn & \\
\hline & & & & \multirow[t]{2}{*}{Do-14} & & Lukanin & \\
\hline June 25 & & & & & 18
19
20 & \multirow[t]{2}{*}{Poeovina- \({ }^{\text {Ref }}\) Gorbatch} & \multirow[t]{2}{*}{-183} \\
\hline \multirow[t]{2}{*}{June 27
June 30} & & & \multirow[t]{4}{*}{\[
\begin{array}{r}
2 \\
1 \\
74 \\
80 \\
104
\end{array}
\]} & \multirow[t]{2}{*}{July 15
Do.---} & \multirow[t]{2}{*}{} & & \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Seal killed for food \\
Zapadni \\
Tolstoi
\end{tabular}} & & & & Seals & 1,405 \\
\hline July \({ }^{\text {a }}\) & \multirow[t]{2}{*}{4} & & & & \multirow[t]{4}{*}{21
22
23} & \multirow[t]{2}{*}{Zapadn} & \multirow[t]{4}{*}{159
184
370} \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
Tolstoi \\
Polovina and Little Polovina. \\
From seai dying as result \\
of shearing operations.
\end{tabular}} & & \multirow[t]{3}{*}{July 17} & & & \\
\hline & & & \multirow{2}{*}{104} & & & Vostochni (vicinities of & \\
\hline & & & & & & rocks 41, 47, and 53 ) and
Morjovi (vicinity rock & \\
\hline \multirow[t]{2}{*}{\[
\underset{\text { Do_... }}{\substack{\text { July }}}
\]} & \multirow[t]{2}{*}{- 6} & \multirow[t]{3}{*}{\begin{tabular}{l}
Reef and Gorbatch \\
From seal dying after shearing operations.
\end{tabular}} & \multirow[t]{2}{*}{1,042
1} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Do- }-1 \\
\text { July } 18 \\
\text { Do }
\end{gathered}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& 24 \\
& 25 \\
& 26
\end{aligned}
\]} & \multirow[t]{2}{*}{Lukanin and Kitovi......} & \multirow[b]{3}{*}{156
85
180} \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{ll} 
July & 4 \\
July & 5 \\
D.... \\
Do... \\
July- \\
Do...-
\end{tabular}} & \multirow[t]{2}{*}{7
-8} & & \multirow[b]{3}{*}{83} & & & Polovina--1- (vicinities of & \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Zapadni \\
Seal killed for food \\
Tolstoi
\end{tabular}} & & \multirow[t]{2}{*}{July 19} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
rocks 64 and 70 ). \\
Reef and Gorbatch
\end{tabular}} & \multirow[t]{5}{*}{1,224
260
176} \\
\hline & \multirow[b]{3}{*}{- 9} & & & & & & \\
\hline & & \multirow[t]{3}{*}{Seals kiiled for food From seal dying as result of shearing operations. Polovina-} & \multirow[t]{3}{*}{\[
\begin{array}{r}
37 \\
2 \\
1 \\
162
\end{array}
\]} & \multirow[t]{3}{*}{July \({ }^{\text {Do... }}\)} & \multirow[t]{3}{*}{29} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Zapaan- } \\
& \text { Vostochi (vicinities of } \\
& \text { rocks } 47 \text { and } 53) \text { and } \\
& \text { Moriovi avis (vicinity of } \\
& \text { rock 37). }
\end{aligned}
\]} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Seal killings on Pribilof Islands in 1924 -Continued
ST. PAUL ISLAND—Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date & Scrial No. of drive & Hauling ground &  & Date & \begin{tabular}{l}
Serial \\
No. of \\
drive
\end{tabular} & Hauling ground & Skins secured \\
\hline July 21 & 30 & Lukanin and Kitovi. & 53 & July 27 & & From seals dying after & 5 \\
\hline & 31 & Vostochni (vicinities of rocks 64 and 70) & 179 & & & rejection from ReefGorbatch killing, July & \\
\hline July 22 & 32 & Polovina and Little Polo- & 133 & & & & \\
\hline & & vina. & & July 28 & 43 & Zapadni & 150 \\
\hline \multirow[t]{4}{*}{July \({ }_{\text {Do.--- }}\)} & 33 & Reef and Gorbatch & 557 & July 29 & 44 & Tolstoi & 107 \\
\hline & \multirow[t]{3}{*}{34} & & \multirow[t]{3}{*}{183} & Do...- & \multirow[t]{2}{*}{45
46} & Vostochni (ricinities of rocks 41 and 47). & \multirow[t]{2}{*}{68} \\
\hline & & rocks 41,47 , and
Morjovi
(vicinity & & & & & \\
\hline & & rock 37). & & July 30 & 47 & Polovina and Little Polo- & 124 \\
\hline \multirow[t]{2}{*}{July 24} & 35 & Zapadni & \multirow[t]{2}{*}{250
271} & & & vina. & \\
\hline & 36 & Vostochni (vicinities of rocks 64 and 70 ). & & Do. & 48 & Vostochni (vicinities of rocks 64 and 70). & 224 \\
\hline July 25 & 37 & Tolstoi & 243 & July 31 & 49 & Reef and Gorbatch........ & 368. \\
\hline Do--.- & 38 & Lukanin and Kitovi & 148 & Aug. 1 & \multirow[b]{2}{*}{50} & \multirow[b]{3}{*}{\begin{tabular}{l}
Lukanin and Kitovi \\
Tolstoi and Lukanin.
\end{tabular}} & 1 \\
\hline \multirow[t]{2}{*}{July 26} & \multirow[t]{2}{*}{39} & Polovina and Polovina & \multirow[t]{2}{*}{134} & \multirow[t]{2}{*}{Oct.
Oct. 28
O} & & & 76. \\
\hline & & Clififs. & & & & & 70 \\
\hline \multirow[t]{4}{*}{Do.---} & \multirow[t]{4}{*}{40} & Vostochni (vicinities of & \multirow[t]{4}{*}{37} & Nov. 8 & \multirow[t]{3}{*}{52} & \multirow[t]{4}{*}{\begin{tabular}{l}
Reef and Gorbatch Gorbatch \\
Seals killed for food \\
Vostochni
\end{tabular}} & \multirow[t]{4}{*}{32
26.
2
45
45} \\
\hline & & rocks 47 and 53) and & & Nov. 13 & & & \\
\hline & & Morjovi (vicinity of & & Nov. 18 & & & \\
\hline & & rock 37). & & Nov. 26 & \multirow[t]{3}{*}{54} & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { July } 27 \\
\text { Do.... }
\end{gathered}
\]} & \multirow[t]{2}{*}{41} & Reef and Gorbatch-...-.--- & \multirow[t]{2}{*}{\[
\begin{aligned}
& 743 \\
& 291
\end{aligned}
\]} & & & \multirow[t]{2}{*}{Total.-.-.-.-.-.----} & \multirow[t]{2}{*}{13,453.} \\
\hline & & Vostochni (vicinities of rocks 64 and 70 ). & & & & & \\
\hline
\end{tabular}

\section*{ST. GEORGE ISLAND}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline June 12 & 1 & North & 21 & July 28 & & Seal found dead. & 1 \\
\hline June 14 & 2 & East Cliff & 29 & July 29 & 13 & Zapadni. & 61 \\
\hline June 25 & 3 & North. & 38 & July 30 & 14 & East Cliffs & 322 \\
\hline June 30 & & Wounded s & 1 & July 31 & 15 & North and Staraya Artil.- & 317 \\
\hline July 7 & 4 & East Clifis & 110 & Oct. 20 & 16 & North_--.-.-............. & 18 \\
\hline July 10 & 5 & North & 301 & Oct. 25 & 17 & North, East Reef, and & 33 \\
\hline July 14 & 6 & North and Staraya Artil & 407 & Nov. 3 & 18 & \begin{tabular}{l}
East Cli \\
Zapadni
\end{tabular} & 7 \\
\hline July 15 & 7 & East Cliffs and East Reef. & 104 & Nov. 4 & 19 & North... & 5 \\
\hline July 18 & 8 & North and Staraya Artil.- & 645 & Nov. 20 & 20 & Staraya Artil & 25 \\
\hline July 21 & 9 & East Cliffs and East Reef. & 201 & Nov. 28 & 21 & North & 21 \\
\hline July 22 & 10 & North and Staraya Artil.- & 484 & Do... & 22 & Staraya Art & 27 \\
\hline July 25 & 11 & East Cliffs .-. & 284 & & & & \\
\hline July 26 & 12 & North and Staraya Artil..- & 302 & & & Total & 3,766 \\
\hline
\end{tabular}

\section*{AGE CLASSES OF SEALS}

The method by which the sizes of male seals of the various age classes have been determined has been described in previous reports. For convenience of reference the limits of these age classes are shown in the following table:

Age standards of body lengths of male seals, Pribilof Islands
\begin{tabular}{|c|c|c|c|c|c|}
\hline Age & Length of summer seals & Length of fall seals & Age & Length of summer seals & Length of fall seals \\
\hline Yearlings. & \begin{tabular}{l}
Inches \\
Up to 36.75
\end{tabular} & Inches Up to 38.75 & 4-year-olds & Inches 46 to 51.75 & Inches 48 to 53.75 \\
\hline 2-year-olds & 37 to 40. 75 & 39 to 42.75 & 5-year-olds & 52 to 57.75 & 54 to 59.75 \\
\hline 3-year-olds. & 41 to 45.75 & 43 to 47.75 & 6-year-olds & 58 to 63. 75 & 60 to 65.75 \\
\hline
\end{tabular}

Ages of seals killed on Pribilof Islands, calendar year 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Age} & \multicolumn{3}{|l|}{Summer (Jan. 1 to Aug. 5)} & \multicolumn{3}{|l|}{Fall (Aug. 6 to Dec. 31)} & \multicolumn{3}{|c|}{Total for year} \\
\hline & St. Paul & \[
\begin{gathered}
\text { St. } \\
\text { George }
\end{gathered}
\] & Total & \[
\begin{gathered}
\text { St. } \\
\text { Paul }
\end{gathered}
\] & \begin{tabular}{l}
St. \\
George
\end{tabular} & Total & \[
\begin{gathered}
\text { St. } \\
\text { Paul }
\end{gathered}
\] & \[
\begin{gathered}
\text { St. } \\
\text { George }
\end{gathered}
\] & Total \\
\hline Yearlings. & \multirow[t]{6}{*}{\[
\begin{array}{r}
7 \\
309 \\
12,525 \\
222 \\
\hline
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{array}{r}
15 \\
3,558 \\
30
\end{array}
\]} & \multirow[t]{6}{*}{\[
\begin{array}{r}
7 \\
324 \\
16,083 \\
252 \\
1 \\
1 \\
1 \\
163
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
1 \\
37 \\
201 \\
10
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{array}{r}
8 \\
127
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1 \\
45 \\
328 \\
10
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
8 \\
346 \\
12,726 \\
232 \\
1
\end{array}
\]} & \multirow[b]{4}{*}{\[
\begin{array}{r}
23 \\
3,685 \\
\vdots \quad 30
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
8 \\
369 \\
16,4112
\end{array}
\]} \\
\hline 2 -year-olds & & & & & & & & & \\
\hline 3 -year-olds & & & & & & & & & \\
\hline 5 -year-olds & & & & & & & & & 1 \\
\hline 6-year-olds \({ }^{\text {7-year }}\) - & & 1 & & & & & & 1 & 1 \\
\hline Cows \({ }^{\text {- }}\)-...-. & & 1 & & & & & & 1 & 1
166 \\
\hline Total.. & \multirow[t]{2}{*}{13, 202} & \multirow[t]{2}{*}{3, 630} & \multirow[t]{2}{*}{16,832} & \multirow[t]{2}{*}{251} & \multirow[t]{2}{*}{136} & \multirow[t]{2}{*}{387} & \multirow[t]{2}{*}{13, 453} & \multirow[t]{2}{*}{3,766} & \multirow[t]{2}{*}{17,219} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
\({ }^{1}\) Cows unavoidably and accidentally killed and found dead.

\section*{RESERVING OPERATIONS}

During the season 6,826 3 -year-old male seals were reserved for breeding purposes on St. Paul Island and 1,746 on St. George Island, a total of 8,572 . The reserved seals were marked by shearing a patch of fur from the top of the head, thereby establishing their identity as reserved animals.

On St. Paul Island reserving operations began June 16 and were concluded August 2, when 6,826 animals had been marked. Of the animals marked by shearing, 1,000 were further marked by clipping off the tips of both ears.

On St. George Island operations began on June 12 and were concluded on August 5, with 1,746 animals marked.

Simultaneously with the marking of 3 -year-old males, 3,718 4-yearold males present in the drives also were marked by shearing-2,891 on St. Paul Island and 827 on St. George. Separate record was kept of the 4 -year-olds that bore the iron brand used for marking a portion of the 3-year-olds reserved in 1923.

The season's reserving operations are shown in the following tabulation:

Branded 3-year-old and 4-year-old male seals forming part of breeding reserve, 1924


\section*{WASHING AND BLUBBERING SEALSKINS}

Almost all the sealskins taken on St. Paul Island in 1924 were washed and blubbered before being cured in salt. Through the active sealing period 11 employees of the Fouke Fur Co. were present for carrying on the work, and a number of Pribilof Islands natives were instructed in the actual work of blubbering.

In 1924 the census of the Pribilof Islands fur-seal herd was taken by Edward C. Johnston, who has done this work for a number of years. His report is printed on pages 164 to 169 . The following is a comparative statement of the numerical strength of the various elements of the herd in the years 1913 to 1924, inclusive.

General comparison of recent censuses of the seal herd on the Pribilof Islands
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Classes & 1913 & 1914 & 1915 & 1916 & 1917 & 1918 \\
\hline Harem bulls. & 1,403 & 1,559 & 2,151 & 3,500 & 4, 850 & 5,344 \\
\hline Breeding cows & 92, 269 & 93, 250 & 103, 527 & 116, 977 & 128, 024 & 142,915 \\
\hline Surplus bulls. & 105 & & 673 & & 8,977 & 17,110 \\
\hline Young bulls (chiefy 5-yea & 105 & 1,658 & 67 & 2,632 & 2,706 & 2,444 \\
\hline 6 -year-old males. & & & & 11, 167 & 15,397 & 13,755 \\
\hline 5 -year-old males & & & 11, 271 & 15, 494 & 14, 813 & 11,941 \\
\hline 4 -year-old males. & 2,000 & 9,939 & 15, 848 & 15,427 & 16,631 & 7,114 \\
\hline 3 -year-old males & 10,000 & 13,880 & 18, 282 & 19,402 & 19,507 & 9, 117 \\
\hline 2-year-old males & 15, 000 & 17,422 & 23, 990 & 24, 169 & 26,815 & 30,159 \\
\hline Yearling males. & 20, 000 & 23, 068 & 30, 307 & 33,645 & 38,013 & 41,595 \\
\hline 2-year-old cows & 15,000 & 17,422 & 23,990 & 24, 245 & 26,917 & 30, 415 \\
\hline Yearling cows. & 20,000 & 23,067 & 30,306 & 33,646 & 38, 018 & 41, 608 \\
\hline Pups. & 92, 269 & 93, 250 & 103, 527 & 116, 977 & 128, 024 & 142,915 \\
\hline Total. & 268, 305 & 294, 687 & 363, 872 & 417, 281 & 468, 692 & 496, 432 \\
\hline Classes & 1919 & 1920 & 1921 & 1922 & 1923 & 1924 \\
\hline Harem bulls. & 5,158 & 4, 066 & 3,909 & 3, 562 & 3,412 & 3,516 \\
\hline Breeding cows & 157, 172 & 167, 527 & 176, 655 & 185, 914 & 197, 659 & 208, 396 \\
\hline Surplus bulls & 9, 619 & 6,115 & 3, 301 & 2, 346 & 1,891 & 2,043 \\
\hline Idle bulls. & 2, 239 & 1,161 & 747 & 508 & 312 & 390 \\
\hline 6 -year-old males & 8,991 & 4,153 & 3,991 & 3,771 & 4,863 & 8,489 \\
\hline 5 -year-old males & 5,282 & 5,007 & 4,729 & 6,080 & 10,612 & 5,132 \\
\hline 4-year-old males. & 5,747 & 5,667 & 6,780 & 11, 807 & 5,710 & 18,670 \\
\hline 3 -year-old males. & 13, 596 & 10,749 & 14, 668 & 7,459 & 22, 786 & 21, 551 \\
\hline 2-year-old males. & 33, 081 & 39,111 & 41, 893 & 40,920 & 43, 112 & 45, 685 \\
\hline Yearling males & 46, 444 & 51,074 & 50, 249 & 52,988 & 55, 769 & 59, 291 \\
\hline 2-year-old cows & 33, 287 & 39,480 & 43, 419 & 46, 280 & 48, 801 & 51,359 \\
\hline Yearling cows & 46,447 & 51,081 & 54, 447 & 57,413 & 60,422 & 64, 240 \\
\hline Pups.. & 157, 172 & 167, 527 & 176, 655 & 185, 914 & 197, 659 & 208, 396 \\
\hline Total & 524, 235 & 552, 718 & 581, 443 & 604,962 & 653,008 & 697, 158 \\
\hline
\end{tabular}

\section*{DEVELOPMENT OF FOX HERDS ON PRIBILOF ISLANDS}

The work of developing the fox herds of the Pribilof Islands, inaugurated in 1923, was continued in 1924 under the immediate supervision of Dr. H. L. Van Volkenberg, an expert specially secured for that duty.

ST. PAUL ISLAND
As it appeared that a scarcity of food during certain seasons of the year was the probable reason why St. Paul Island had not produced larger numbers of foxes, attention was devoted primarily to providing an adequate food supply for them. Accordingly cookers and ovens were purchased for baking biscuits and preparing cooked foods to be put out at intervals in places where foxes might congregate. These ovens were very satisfactory. The biscuits contained oat groats, corn meal, rice, calf meal, seal meal, and seal oil or lard.

The calf meal (a mixture of several grains) consisted of cracked wheat or groats and rice mixed with seal oil.

Fox feeding was begun on October 25. A wire cage trap, similar to that used on St. George Island, was constructed adjacent to the village near the by-products plant, but the foxes could not be induced to enter it and feeding was successful only on the seal-killing fields.

Thirteen small box traps for feeding and trapping were con-structed-3 at Tolstoi, 2 at Lukanin, 1 near East Landing, 2 on Village Reef, 2 at Zapadni, 2 at Halfway Point, and 1 at Northeast Point. They were about 4 feet long, \(21 / 2\) feet wide, and \(21 / 2\) feet high, provided with a detachable cover and having at one end a small door for the fox to enter. The food was placed in a removable trough. For trapping purposes a catch on the drop door was released by a string running from the catch to a loose board which the fox stepped on while eating the food. The foxes entered these very slowly at first, but in a short time all the food fed was placed in them. The advantage of these traps is that sea gulls do not consume any of the food, as they will not enter the boxes.

During the fall two new fox houses were constructed-one at Zapadni and one at Halfway Point. They were one-story structures, the main part being 12 by 14 feet, with living quarters for men engaged in winter fox feeding and trapping.

Fox trapping for the breeding reserve was begun at the village on December 13, and the animals caught were marked by clipping the hair at the base of the tail. Blue foxes were released, but all white foxes caught were killed, as an effort is being made to eliminate the white strain. The usual trapping with steel traps began on December 17 and continued to December 24 . The places covered were Northeast Point, Marunich. Tsammana, and Southwest Point, 29 trappers being engaged.

The winter was quite mild, and the natural food washed up on the beaches was so much preferred by the animals that the food in the traps and at the feeding places did not tempt them, in consequence of which fewer were caught. It was noted that the foxes traveled widely over the island during the mild weather. At each of the three reserving stations marking was done in a characteristic manner, and quite frequently a fox that had been marked at one place was recaught in one of the other districts.

ST. GEORGE ISLAND
On St. George Island both seal carcasses and baked biscuits were used as fox food, the foxes showing a decided preference for the latter.

On December 29 a 50 -foot whale was found 20 feet above the water line, half buried in the sand at Garden Cove. Tracks showed that a large number of foxes were resorting there for food. A trap 10 by 12 feet was at once built near by and baited with whale meat, and 21 blue skins were secured.

Weather conditions were not favorable for fox trapping on St. George Island. It was exceptionally mild and at the same time stormy. From December 12 through the end of the month the temperature was not below \(38^{\circ} \mathrm{F}\)., and it rained practically every day. All snow disappeared.

The season's take of fox pelts on St. Paul and St. George Islands consisted of 681 blue and 28 white pelts, a total of 709 .

On St. Paul Island the regular trapping season began December 17 and ended December 24, 1924. In this period 81 blue and 10 white pelts were secured. In an effort to eliminate the strain of white foxes from the St. Paul Island herd 16 white foxes were killed during January, February, and March, 1925, thereby bringing the take on this island in the season to 81 blue and 26 white pelts, a total of 107. There were marked and released on this island for breeding purposes 167 blue foxes, 103 males and 64 females.

On St. George Island the killing of foxes began on December 5, 1924, and was continued until February 27, 1925. Six hundred blue and two white pelts were taken, a total of 602 . During the season 541 blue foxes ( 272 males and 269 females) were marked and released for breeding purposes.

\section*{REINDEER}

The reindeer herds on the Pribilof Islands provide a valuable source of fresh meat for both white and native residents. Consideration is being given to the feasibility of introducing new blood into the herds for the reason that, due to inbreeding, they have not done as well as anticipated since their introduction in 1911.

By the end of 1924 the St. Paul Island herd numbered approximately 200 animals and that of St. George Island approximately 150 animals. During the year 13 reindeer were killed for food on St. Paul Island and 18 on St. George Island.

\section*{FUR-SEAL SKINS}

\section*{SHIPMENTS}

In the calendar year 1924 two shipments of fur-seal skins, aggregating 18,713 commercial skins, were made from the Pribilof Islands. On June 5 there were placed aboard the U. S. S. Gold Star at St. Paul Island 28 barrels containing 1,121 sealskins, representing the balance left on that island from the take of the calendar year 1923. On June 11 there were shipped from St. George Island on the same vessel 18 barrels containing 760 sealskins, the balance left on that island from the take of the calendar year 1923. These 1,881 sealskins were delivered at Bremerton, Wash., on July 2S, and were shipped from there by freight on August 2, consigned to the Fouke Fur Co., St. Louis, Mo., arriving there on August 12. Shipment was made via the Puget Sound Navigation Co., Great Northern, and Chicago, Burlington \& Quincy.

Seventy-eight barrels of sealskins were shipped from St. Paul Island on September 19 and 75 barrels on September 30, the two lots containing a total of 13,202 skins, and on the 15 th of September 69 barrels containing 3,630 sealskins were shipped from St. George Island, all taken in the calendar year 1924. The skins were transported on the Eider and the Coast Guard cutter Haida to Unalaska,
and were delivered by the Boxer at Seattle on November 20, from whence they were shipped by freight on the same date via OregonWashington Railroad \& Navigation Co., Union Pacific, and Wabash to the Fouke Fur Co. at St. Louis, delivery being made on December 1.

\section*{SALES}

In 1924 two public auction sales of Pribilof Islands fur-seal skins were held, and in addition 287 skins were disposed of at private sales. The first public auction sale was held at New York City on March 24 and the second at St. Louis, Mo., on October 15. The tables below show details of these sales.

March 24, 1924.-At this sale 19,804 dressed, dyed, and machined Pribilof skins sold for \(\$ 514,512.50 ; 11\) miscellaneous skins from the Pribilof Islands sold for \(\$ 5.50 ; 3\) skins from seals shipped to the Steinhart Aquarium at San Francisco sold for \(\$ 1.50 ; 33\) skins received from the Japanese Government under treaty provisions sold for \(\$ 561\); and 35 confiscated skins sold for \(\$ 45.50\); a grand total of \(\$ 515,126\). All of the dressed, dyed, and machined skins were prepared with the standard black dye.

October 15, 1924.-On this date there were sold 14,136 standard black-dyed sealskins for \(\$ 367,016,1,845\) brown-dyed (Chataigne d'Or) for \(\$ 95,430.50,1,010\) raw salted for \(\$ 7,983\), and 17 miscellaneous for \(\$ 17.65\), all taken at the Pribilof Islands, and 4 confiscated skins for \(\$ 16.50-\) a grand total of \(\$ 470,463.65\).

The brown-dyed skins were an innovation to the trade, and keen competition for them was shown. A comparative study of the prices received for the three kinds is of interest. The 1,010 raw salted skins brought an average price of \(\$ 7.90\) each, the 14,136 black-dyed skins an average of \(\$ 25.96\), and the 1,845 brown-dyed (Chataigne d'Or) skins an average of \(\$ 51.72\) per skin. The cost of dressing, dyeing, and machining the black-dyed and the brown-dyed skins ranged from \(\$ 14.50\) to \(\$ 15.50\) per skin. It will be noted that the black-dyed skins commanded a good margin in price over the raw salted skins, after making allowance for the cost of dressing, dyeing, and machining, and that the average price for brown-dyed skins was within a few cents of double that obtained for the black-dyed skins.

Private sales.-In the interim between the sale of October 15 and the end of the year 287 Pribilof fur-seal skins were disposed of at private sales, all of which were authorized by the Secretary of Commerce.

On November 1, 1924, 195 Chataigne d'Or skins were sold to various dealers for the purpose of inereasing the interest of the trade in the new brown-dyed skins. The price received was the average bid for similarly dyed skins, grade for grade, at the sale on October 15.

On December 24, 1924, 75 Chataigne d'Or seal skins were disposed of at private sale by the Fouke Fur Co. to purchasers of similarly dyed skins at the October 15 sale, at the price paid by them at that sale for lots of the same grade of skins. Also, on December 24, 17 black-dyed skins were sold for exhibition purposes. These were of the 1921 and 1922 takes, and the price was determined by the average which skins of those years brought at previous auction sales.

Sale of fur-seal skins at New York City, March 24, 1924

\section*{SALE OF 19,804 DRESSED, DYED, AND MACHINED SKINS TAKEN ON PRIBILOF ISLANDS, DYED BLACK}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & Price per skin & Total for lot & Lot No. & Number of skins & Trade classification & Price per skin & Total for lot \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 1 \\
& 2 \\
& 4 \\
& 6
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& 60 \\
& 60 \\
& 60 \\
& 38
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
Extra extra large \\
-....do. \\
....-do.
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \$ 58.00 \\
& 53.00 \\
& 54.00
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
\$ 3,480.00 \\
3,180.00 \\
3,240.00
\end{array}
\]} & \multirow[t]{2}{*}{84} & \multirow[t]{2}{*}{80} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\$19.00} & \multirow[b]{2}{*}{\$1, 520.00} \\
\hline & & & & & & & & & \\
\hline & & & & & 85 & 80 & blemished, etc... & 19.00 & 1, 520.00 \\
\hline & & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{47.00} & \multirow[b]{2}{*}{1,786. 00} & 86 & \multirow[t]{2}{*}{80
90} & \multirow[t]{2}{*}{Medium--.-------} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 19.50 \\
& 24.00
\end{aligned}
\]} & \multirow[t]{2}{*}{1,560.00} \\
\hline & & & & & & & & & \\
\hline 8 & 70 & extra large Extra large & \multirow[b]{2}{*}{45. 00} & 3, 080.00 & 91 & 90 & Medium.. & 25. 00 & 2, 250.00 \\
\hline 9 & 70 & \multirow[t]{2}{*}{} & & 3,150.00 & 94 & \multirow[t]{2}{*}{90
90} &  & 26.50 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2,385.00 \\
& 2,250.00
\end{aligned}
\]} \\
\hline 10 & 70 & & \multirow[t]{2}{*}{44.00} & 3,080.00 & & & -----do-.-.-.-.-.--- & 25. 00 & \\
\hline 11 & 70 &  & & 3,080. 00 & 97 & 90 & \multirow[t]{2}{*}{--.-.-do.-.-...........-} & 25.00 & \[
\begin{aligned}
& 2,250.00 \\
& 2,250.00
\end{aligned}
\] \\
\hline 12 & \multirow[t]{2}{*}{70
70} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{43.00
43.00} & \(3,010.00\) & 99 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 90 \\
& 90
\end{aligned}
\]} & & 25.00 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2,250.00 \\
& 2,250 \\
& 2 \\
& 285
\end{aligned}
\]} \\
\hline 13 & & & & 3,010.00 & 101 & &  & 26. 50 & \\
\hline 14 & 70 & \multirow[t]{2}{*}{0} & 43.00 & 3, 010.00 & 102 & 90 & d & 25.00 & 2, 385.00 \\
\hline 15 & \multirow[t]{2}{*}{70} & & & 2,940. 00 & 103 & 90 & do & 26. 00 & 2, 340.00 \\
\hline 16 & & do & 40.00 & 2, 800.00 & 104 & 90 & do & 26. 00 & 2, 340.00 \\
\hline 17 & 70 & do & 41.00 & 2,870. 00 & 105 & 90 & d & 26. 00 & 2, 340.00 \\
\hline 18 & 70 & do & 41.00 & 2, 870. 00 & 106 & 90 & do & 26. 00 & 2, 340.00 \\
\hline 19 & 70 & do & 42.00 & 2,940. 00 & 107 & 90 & d & 26. 50 & 2, 385. 00 \\
\hline 20 & 70 & do & 40.50 & 2, 835. 00 & 108 & 77 & ....do & 26.00 & 2, 002.00 \\
\hline 21 & 70 & do & 41.00 & 2, 870.00 & 115 & 65 & Small medium & 23. 50 & 1,527. 50 \\
\hline 22 & \multirow[t]{2}{*}{70} & do & 40.00 & 2, 800. 00 & 120 & 60 & 2 wigs, 58 extra & & \\
\hline 23 & & do & 40.00 & 2, 800.00 & & & extra large-.....- & 39. 50 & 2,370.00 \\
\hline 24 & 70 & do & 39. 50 & 2, 765. 00 & 122 & 40 & 1 wig, 39 extra & & \\
\hline 25
26 & 70 & do & 39.00 & 2, 730. 00 & & & extralarge; & & \\
\hline 27 & 70 & do & 40. 00 & 2, 800. 00 & & & scarred, blem- & & \\
\hline 27
28 & 70 & do & 39.00 & 2, 730.00 & \multirow[t]{2}{*}{123} & & ished, etc & \multirow[t]{2}{*}{33.00} & \multirow[t]{2}{*}{2, 310.00} \\
\hline 28
29 & & Extralar & 40.00 & 2, 360.00 & & 70 & Extra large....--- & & \\
\hline 29 & 70 & Extra large; scarred, & 26.50 & 1,855.00 & \[
\begin{aligned}
& 124 \\
& 125
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 70
\end{aligned}
\] & -do & \[
\begin{aligned}
& 31.50 \\
& 31.50
\end{aligned}
\] & \[
\begin{aligned}
& 2,205.00 \\
& 2,205.00
\end{aligned}
\] \\
\hline 30 & 70 & \multirow[t]{2}{*}{-...-.do} & \multirow[t]{2}{*}{26.50
26.00} & \multirow[t]{2}{*}{\(1,820.00\)} & 126 & 70 &  & 31.50 & 2, 205.00 \\
\hline 31 & 70 & & & & 127 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 70 \\
& 70
\end{aligned}
\]} & \multirow[t]{2}{*}{-----do......-.-.....--} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 31.00 \\
& 30.50 \\
& \hline
\end{aligned}
\]} & 2, 170.00 \\
\hline 32 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 66 \\
& 80
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 26.50 \\
& 29.00
\end{aligned}
\]} & 1,749.00 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 128 \\
& 129
\end{aligned}
\]} & & & & \multirow[t]{2}{*}{2, 135.00
\(2,100.00\)} \\
\hline 33 & & & & 2, 320.00 & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 70 \\
& 26
\end{aligned}
\]} & do & \multirow[t]{2}{*}{30.00
34.50} & \\
\hline 34 & 80 & Large & 30.00 & \multirow[t]{2}{*}{\(2,400.00\)
\(2,520.00\)} & \[
\begin{aligned}
& 129 \\
& 130
\end{aligned}
\] & & do & & \multirow[t]{2}{*}{\[
\begin{array}{r}
2,100.00 \\
897.00
\end{array}
\]} \\
\hline 35 & 80 & 0 & 31.50 & & \multirow[t]{3}{*}{131} & \multirow[t]{2}{*}{70} & \multirow[t]{3}{*}{Extralarge; scarred, blemished, etc. \(\qquad\)} & & \\
\hline 36 & \multirow[t]{2}{*}{80
80} & do & 30.50 & \(2,520.00\)
\(2,440.00\) & & & & \multirow[t]{2}{*}{20.50} & \\
\hline 38 & & \multirow[t]{2}{*}{----.-do} & \multirow[t]{2}{*}{32.00
31.50} & & & & & & 1, 435. 00 \\
\hline 39
40 & 80 & & & 2, 560000 & 132 & 70 & do & 17. 50 & 1,225.00 \\
\hline 40 & 80 & do & 30.00 & 2, 400.00 & 133 & 70 & do & 17. 50 & 1,225.00 \\
\hline 41 & 80 & do & 31.00 & 2, 480. 00 & 134 & 70 & do & 18. 00 & 1, 260.00 \\
\hline 42 & 80 & do & 32. 00 & 2, 560. 00 & 135 & 70 & do & 19. 50 & 1,365. (0) \\
\hline 43 & 80 & do & 30.50 & 2, 440.00 & 136 & 55 & do & 19. 00 & 1,045. 00 \\
\hline 46 & 80 & do & 30.50 & 2, 440. 00 & 137 & 80 & Large & 24. 00 & 1,920.00 \\
\hline 47 & 80 & do & 29. 00 & 2, 320. 00 & 138 & 80 & do & 23. 00 & 1, 840.00 \\
\hline 48 & 80 & do & 30.50 & 2, 440.00 & 139 & 80 & -do & 23. 00 & 1,840. 00 \\
\hline 49 & 80 & -do & 28. 50 & 2, 280.00 & 140 & 80 & do & 22.50 & 1,800.00 \\
\hline 50 & 80 & do & 30.50 & 2, 440.00 & 141 & 80 & do & 22. 50 & 1,800.00 \\
\hline 51 & 80 & do & 31. 00 & 2, 480. 00 & 142 & 80 & do & 24. 00 & 1,920.00 \\
\hline 52 & 80 & do & 30.50 & 2, 440. 00 & 143 & 80 & do & 22.50 & 1,800.00 \\
\hline 53 & 80 & do & 30.50 & 2, 440.00 & 144 & 80 & .do & 23. 00 & 1,840.00 \\
\hline 54 & 80 & do & 30.00 & 2, 400.00 & 145 & 80 & -do & 23. 50 & 1,880.00 \\
\hline 55 & 80 & do & 31.00 & 2,480. 00 & 146 & 80 & do & 23. 25 & 1,860.00 \\
\hline 56 & 80 & do & 29.50 & 2,360. 00 & 147 & 80 & do & 22.50 & 1,800. 00 \\
\hline 57 & 80 & do & 29.00 & 2, 320. 00 & 148 & 80 & do & 22.50 & 1,800.00 \\
\hline 58 & 80 & do & 28. 00 & 2, 240. 00 & 149 & 80 & .do & 23. 00 & 1,840.00 \\
\hline 59 & 80 & do & 29.00 & 2, 320.00 & 150 & 45 & do & 23. 50 & 1,057. 50 \\
\hline 60 & 80 & do & 30.00 & 2, 400.00 & 151 & 44 & do & 23.50 & 1,034. 00 \\
\hline 61 & 80 & do & 29.00 & 2, 320.00 & 152 & 80 & & & \\
\hline 62 & 80 & do & 27.50 & 2, 200.00 & & & blemished, etc.- & 16. 50 & \[
1,320.00
\] \\
\hline 63 & 80 & do & 27. 00 & 2, 160. 00 & 153 & 80 & --do & 16. 50 & 1,320.00 \\
\hline 64 & 80 & & 26. 00 & 2, 080.00 & 154 & 80
80 & do & 17.00 & \(1,360.00\)
\(1,360.00\) \\
\hline 65 & 80 & do & 26. 50 & 2, 120.00 & 155 & 80 & & 17.00 & 1,360.00
\(1,440.00\) \\
\hline 66
67 & 80
80 & do & 25. 00
26.00 & \(2,000.00\)
\(2,080.00\) & 156
157 & 80 & do & 18.00
17.00 & 1, 440.00
\(1,360.00\) \\
\hline 68 & 80 & do & 27. 50 & 2, 200.00 & 158 & 80 & do. & 17. 50 & 1,400.00 \\
\hline 69 & 80 & do & 26.00 & 2,080. 00 & 159 & 80 & do & 17. 50 & 1,400.00 \\
\hline 70 & 80 & do & 26.00 & 2,080.00 & 160 & 80 & do & 17. 50 & 1,400.00 \\
\hline 71 & 80 & do & 25.50 & 2,040. 00 & 161 & 37 & do & 18. 50 & 684.50 \\
\hline 72 & 80 & do & 26. 00 & 2,080. 00 & 162 & 90 & Medium & 20.50 & 1,845. 00 \\
\hline 73 & 80 & do & 25. 50 & 2,040. 00 & 163 & 90 & do. & 20. 00 & 1,800. 00 \\
\hline 74 & 80 & do. & 26.00 & 2,080.00 & 164 & 90 & do & 20.50 & 1,845. 00 \\
\hline 75 & 80 & do & 26. 50 & 2, 120.00 & 165 & 90 & do & 20. 50 & 1,845. 00 \\
\hline 76 & 68 & & 25. 50 & 1,734.00 & 166 & 90 & do & 20. 50 & 1, 845. 00 \\
\hline 78 & 80 & Large; scarred, & & & 167 & 90 & do & 20. 50 & 1,845. 00 \\
\hline & & blemished, etc... & 19.00 & 1,520. 00 & 168 & 90 & do & 20. 00 & 1,800.00 \\
\hline , & 80 & & 22. 50 & 1, 800. 00 & 169 & 90 & do & 20. 50 & 1,845. 00 \\
\hline 1 & 80 & do & 17. 50 & 1,400. 00 & 170 & 90 & do & 21. 50 & 1,935.00 \\
\hline 82 & 80 & do & 18. 50 & 1, 480.00 & 171 & 90 & do & 20.50 & 1,845.00 \\
\hline 83 & 80 & & 18. 50 & 1,480. 00 & 172 & 90 & & 21. 00 & 1,890.00 \\
\hline
\end{tabular}

\section*{Sale of fur-seal skins at New York City, March 24, 1924-Continued}

SALE OF 19,804 DRESSED, DYED, AND MACHINED SKINS TAKEN ON PRIBILOF ISLANDS, DYED BLACK—Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & \[
\begin{aligned}
& \text { Price } \\
& \text { per } \\
& \text { skin }
\end{aligned}
\] & Total for lot & \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & \begin{tabular}{l}
Price \\
per \\
skin
\end{tabular} & Total for lot \\
\hline 173 & 90 & Medium & \multirow[t]{2}{*}{\[
\begin{array}{r}
\$ 21.50 \\
21.00
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\$ 1,935.00 \\
1,890.00
\end{array}
\]} & 249 & \multirow[t]{2}{*}{90} & Medium & \$24.00 & \$2, 160.00 \\
\hline 174
176 & \multirow[t]{2}{*}{90} & do. & & & 250 & & do & 24.00 & \multirow[b]{2}{*}{\(2,160.00\)
\(2,160.00\)} \\
\hline & & \multirow[t]{2}{*}{Medium; scarred, blemished, etc.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
1,350,00
\]} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 90 \\
& 90
\end{aligned}
\]} & & 24. 00 & \\
\hline 177 & \multirow[t]{2}{*}{90} & & & & \[
252
\] & & -.-.-do..................- & 23. 50 & 2, 115.00 \\
\hline 179 & & do- & 16. 00 & 1,395.00 & 254 & 90 & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 23.50 \\
& 23.50
\end{aligned}
\]} & \multirow[t]{2}{*}{2, 115.00
\(2,115.00\)} \\
\hline 184 & 90 & do & 16. 50 & I, 485. 00 & \multirow[b]{2}{*}{256} & \multirow[t]{2}{*}{90} & & & \\
\hline 187 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 90 \\
& 78
\end{aligned}
\]} & Small medi & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & &  & \[
\begin{aligned}
& 23.50 \\
& 24.00
\end{aligned}
\] & 2, 115.00 \\
\hline 188 & & ..do- & & & 257 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 90 \\
& 90 \\
& 90
\end{aligned}
\]} & \multirow[t]{2}{*}{} & 24. 00 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2,160.00 \\
& 2,115.00
\end{aligned}
\]} \\
\hline 189 & \multirow[t]{3}{*}{90} & Small medium; & \multirow[t]{2}{*}{\[
21.50
\]} & \multirow[t]{2}{*}{\[
1,677.00
\]} & 258 & & & 24. 00 & \\
\hline & & scarred, blem- & & & 259 & 90 & do & 23. 00 & 2, 160.00
\(2,070.00\) \\
\hline & & ished, etc & 13. 50 & 1,215.00 & 260 & 90 & do & 23. 50 & 2, 2,1150000 \\
\hline 191 & \multirow[t]{2}{*}{52} & & \multirow[t]{2}{*}{14.50} & \multirow[t]{2}{*}{667.00
546.00} & 261 & 90 & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{23. 200} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 2,115.00 \\
& 2,070.00
\end{aligned}
\]} \\
\hline 193 & & III, large. & & & 262 & 90 & & & \\
\hline 194 & 54 & III, 37 medium, 17 & \multirow[t]{2}{*}{9. 00} & \multirow[t]{2}{*}{\[
486.00
\]} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 90 \\
& 90
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\mid
\]} & \multirow[t]{2}{*}{23. 50} & 2,115.00 \\
\hline 200 & \multirow[t]{2}{*}{27} & Small medium..-- & & & \multirow[t]{2}{*}{265} & & & & \multirow[t]{2}{*}{2, \(2,070.00\)
2, 025.00} \\
\hline 201 & & Extra large. & 52. 00 & 1, 404.00
\(3,185.00\) & & 90
90 & do & \[
\begin{aligned}
& 23.00 \\
& 22.50
\end{aligned}
\] & \\
\hline 202 & 70 & ---do. & 42.50 & 2, 975.00 & 267 & 90 & do & 22. 50 & 2, 070.00
\(2,025.00\) \\
\hline 203 & 70 & do & 43. 00 & 3, 010.00 & 268 & 90 & do & 22.50 & \(\stackrel{2,025.00}{2,025.00}\) \\
\hline 204 & & do & \multirow[t]{4}{*}{43.50} & 3, 045. 00 & 269 & 45 & \multirow[t]{2}{*}{do} & 22. 00 & 2,025.00 \\
\hline 205 & 29
38 & ----do-.--.-.....-- & & \multirow[t]{4}{*}{1,247. 00} & 270 & 45 & & 23. 00 & 1,035.00 \\
\hline 206 & & & & & 271 & 45 & -----10.......----- & 23. 00 & 1,035.00 \\
\hline & & 35 extra large; & & & \multirow[t]{2}{*}{273
274} & \multirow[t]{2}{*}{45} & do & 23.00 & 1,035.00 \\
\hline & & ished, ctc & \multirow[t]{4}{*}{34. 50} & & & & & 22. 50 & \multirow[t]{2}{*}{\(1,012.50\)
\(1,035.00\)} \\
\hline 207 & \multirow[t]{3}{*}{38} & 2 extra extra large, & & \multirow[t]{3}{*}{1,311.00} & 274
275 & \[
\begin{aligned}
& 45 \\
& 45
\end{aligned}
\] & & 23.00 & \\
\hline & & 36 extra large; & & & 276 & 45 & -do & \({ }_{22 .}^{22.75}\) & 1,023.75 \\
\hline & & scarred, blem- & & & 277 & & & & 1,035.00 \\
\hline & 80 & ished, & \multirow[t]{2}{*}{31.00
30.50} & 1, 178.00 & 278 & 45 & do & \[
\begin{aligned}
& 23.00 \\
& 22.50
\end{aligned}
\] & 1,012. 50 \\
\hline 209 & 80 & Large. & & 2, 140.00 & 279 & 45 & do & 24. 00 & 1,080.00 \\
\hline 210 & 80 & do & 31.00 & 2, 4880.00 & 281 & 45 & do & \({ }^{23.00}\) & 1,035.00 \\
\hline 211 & 80 & do & 32. 50 & 2, 600.00 & 282 & 45 & do & 23. 200 & 1,035.00 \\
\hline 212 & 80 & do & 31.00 & 2, 480.00 & 283 & 45 & do & 23. 50 & \(1,012.50\)
\(1,057.50\) \\
\hline 214 & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & do & 30.00
31.50 & \(\stackrel{2}{2}, 400.00\) & 284 & 45 & do & 23. 00 & 1, 035.00 \\
\hline 215 & 80 & -----do & \({ }_{31.50}^{31.50}\) & 2, 520.00 & 285 & 48 & do & 22. 50 & 1,080. 00 \\
\hline 216 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 80 \\
& 80 \\
& 80
\end{aligned}
\]} & do & 30.50 & 2, 440.00 & 287 & 90 & Medium; sca & 22. 50 & 1,080. 00 \\
\hline 217 & & do & 30.00 & 2, 400.00 & & & blemished, et & & \\
\hline 219 & 80
80 & do & 30.00 & \({ }_{2}^{2,400.00}\) & 288 & 90 & -...do........----- & 18.00 & 1,620.00 \\
\hline 220 & 80 & do & 30.50
30.00 & \(\stackrel{2}{2,440.00}\) & 289 & 90 & - do & 18.00 & 1,620.00 \\
\hline 221 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\]} & do & 31.00 & 2, 480.00 & 291 & 90 & & 18. 50 & 1,665.00 \\
\hline 222 & & do & 30.50 & 2, 440.00 & 292 & 90 & & 19. 00 & 1,710.00 \\
\hline 224 & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & do & 30.00 & 2, 400.00 & 293 & 90 & do & 19.50 & \(1,755.00\)
\(1,800.00\) \\
\hline 225 & \[
\begin{array}{l|l}
80 & - \\
80 &
\end{array}
\] & do & 31.00
30.00 & 2, 480.00
\(1,200.00\) & \({ }_{295}^{294}\) & 90 & do & 19. 00 & 1,710.00 \\
\hline 226 & \[
\begin{array}{l|l}
40 \\
40
\end{array}
\] & do & 31.00 & 1,240.00 & 295
296 & 48 & do & 20. 00 & 960.00 \\
\hline 227 & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & do & 32.00 & \(1,280.00\) & 297 & 48 & d & 20.50 & 984.00 \\
\hline 228 & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & do & 30. 50 & 1,220.00 & 298 & 90 & Small m & 21.00 & 940.00
\(1,890.00\) \\
\hline & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & --.-.do & 29. 00 & 1,160.00 & 299 & 90 & do & 20. 50 & \(1,890.00\)
\(1,845.00\) \\
\hline 231 & 40 & do & \({ }^{31} 000\) & 1,200.00 & 300 & 90 & do & 21.50 & 1,935. 00 \\
\hline 232 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 40 \\
& 40 \\
& \hline
\end{aligned}
\]} & do & 31.00 & 1,240.00 & 302 & 90 & & 20.50 & 1, 845.00 \\
\hline 233 & & do & 30.50 & 1,220.00 & 303 & 90 & & 21.00
20.50 & \(1,890.00\)
1, 845.00 \\
\hline 235 & \[
\begin{aligned}
& 40 \\
& 40 \\
& 50
\end{aligned}
\] & do & \multirow[t]{2}{*}{30.00} & 1,240.00 & 304 & 90 & do & 21.00 & 1,895.00 \\
\hline 236 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 50 \\
& 80
\end{aligned}
\]} & \multirow[t]{2}{*}{Large; scarred, blemished, etc.} & & \multirow[t]{2}{*}{1,500.00} & 305 & 45 & do & 22. 50 & 1,012.50 \\
\hline & & & \multirow[t]{2}{*}{} & & \begin{tabular}{l}
306 \\
307 \\
\hline
\end{tabular} & 45 & do & 22. 50 & \multirow[t]{3}{*}{- 782.00} \\
\hline 238 & \multirow[t]{2}{*}{\begin{tabular}{l}
80 \\
80 \\
\hline
\end{tabular}} & |--.. do----........... & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1,580.00 \\
& 1,560.00
\end{aligned}
\]} & \multirow[t]{2}{*}{308} & \multirow[t]{3}{*}{90} & \multirow[t]{3}{*}{Small medium; scarred, blemished, etc.} & 23.00 & \\
\hline 239 & & do & \[
\begin{aligned}
& 19.75 \\
& 19.50
\end{aligned}
\] & & & & & & \\
\hline 40 & 40 & do & 20.00
20.50 & \(1,600.00\)
820.00 & & & & 15. 50 & 1, 395.00 \\
\hline 241 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 40 \\
& 47
\end{aligned}
\]} & do & 21. 00 & 840.00 & & 90 & .-.do--------1.--- & 15. 50 & 1,395.00 \\
\hline 242 & & & \multirow[t]{2}{*}{23.00
23.00} & \multirow[t]{2}{*}{1,010.50
\(2,070.00\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 311 \\
& 312
\end{aligned}
\]} & 34 & & 16. 50 & 561.00 \\
\hline 243 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 90 \\
& 90
\end{aligned}
\]} & \multirow[t]{2}{*}{Medium.....................} & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 34 \\
& 20
\end{aligned}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
II, 1 wig, 4 extra \\
large, 15 large \\
II, medium. \\
II, small medium
\end{tabular}} & 17.00 & 578.00 \\
\hline 244 & & & 23. 50 & 2, 115.00 & & & & \multirow[t]{4}{*}{\[
\begin{aligned}
& 17.25 \\
& 13.25 \\
& 11.50
\end{aligned}
\]} & \\
\hline 245 & 90 & do & 24. 50 & 2, 205. 00 & 313 & 52 & & & 689.00 \\
\hline 247 & 90 & \multirow[t]{2}{*}{} & 23. 50 & 2, 115.00 & 314 & 22 & & & 253.00 \\
\hline 2 & 90 & & \[
\begin{aligned}
& 23.50 \\
& 23.50
\end{aligned}
\] & 2,115.00 & & , 804 & & & , 512.50 \\
\hline
\end{tabular}

Sale of fur-seal skins at New York City, March 24, 1924-Continued SALE OF 11 MISCELLANEOUS SKins TAKEN ON PRIbILOF ISLANDS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Lot \\
No.
\end{tabular} & Number of skins & Trade classification & Price
per skin & Total for lot \\
\hline 320 & 11 & Washed and dried. & \$0. 50 & \$5. 50 \\
\hline
\end{tabular}

SALE OF 3 SKINS TAKEN FROM PRIBILOF ISLANDS SEALS SHIPPED TO STEINHART AQUARIUM
\begin{tabular}{|c|c|c|c|c|}
\hline 321 & 3 & Raw salted.- & \$0. 50 & \$1.50 \\
\hline
\end{tabular}

SALE OF 33 SKINS RECEIVED FROM JAPANESE GOVERNMENT UNDER TREATY PROVISIONS
\begin{tabular}{|c|c|c|c|c|}
\hline 328 & 33 &  & \$17.00 & \$561.00 \\
\hline
\end{tabular}

SALE OF 35 CONFISCATED SKINS
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 32 \dot{*} \\
& 323 \\
& 324
\end{aligned}
\]} & 3 & \multirow[t]{4}{*}{\begin{tabular}{l}
Dressed, dyed, and machined \(\qquad\) \\
Unhaired and dressed \\
--.-.do \(\qquad\)
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{array}{r}
\$ 8.00 \\
.50 \\
1.00
\end{array}
\]} & \$24.00 \\
\hline & 21 & & & 10.50 \\
\hline & 11 & & & 11. 00 \\
\hline & 35 & & & 45.50 \\
\hline
\end{tabular}

Sale of fur-scal skins at St. Louis, Mo., October 15, 1924
SALE OF 14,136 DRESSED, DYED, AND MACHINED SKINS TAKEN ON PRIBILOF ISLANDS, DYED BLACK
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & \[
\begin{aligned}
& \text { Price } \\
& \text { per } \\
& \text { skin }
\end{aligned}
\] & Total for lot & \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & Price per skin & Total for lot \\
\hline 1 & 70 & 12 extra extra large, 58 extra large.... & \$56. 00 & \$3, 920. 00 & 33 & 90
90 & Medium_ & \(\$ 25.00\)
26.50 & \[
\begin{array}{r}
\$ 2,250.00 \\
2,385.00
\end{array}
\] \\
\hline 2 & 70 & Extra large.---.--- & 50.50 & 3, 535. 00 & 35 & 90 & do & 26. 50 & 2, 385. 00 \\
\hline , & 71 & ---do.- & 53.00 & 3,763.00 & 36 & 90 & do & 26. 50 & 2, 385.00 \\
\hline 4 & 27 & Extralarg; & & & 37 & 90 & do & 27. 50 & 2, 275.00 \\
\hline & & scarred, blem- & & & 38 & 90 & do & 25. 50 & 2, 295.00 \\
\hline & & ished, etc-..---- & 32. 00 & 864. 00 & 39 & 90 & do & 28.00 & 2, 520.00 \\
\hline 5 & 80 & Large. & 35. 50 & 2, 840.00 & 40 & 90 & do & 28. 00 & 2, 520.00 \\
\hline 6 & 80 & .-do & 34. 50 & 2, 760.00 & 41 & 90 & do & 26. 00 & 2, 340.00 \\
\hline 7 & 80 & do & 36. 00 & 2, 880. 00 & 42 & 90 & do & 27. 50 & 2, 475.00 \\
\hline 8 & 80 & do & 37. 00 & 2,960. 00 & 43 & 90 & do. & 26. 50 & 2, 385. 00 \\
\hline 9 & 80 & -do. & 37.50 & 3, 000. 00 & 44 & 90 & do & 28. 50 & 2, 565.00 \\
\hline 10 & 80 & do & 37. 00 & 2,960. 00 & 45 & 90 & do & 27.00 & 2,430.00 \\
\hline 11 & 80 & do. & 37.00 & 2,960. 00 & 46 & 90 & ..-do & 27. 00 & 2, 430.00 \\
\hline 12 & 80 & do & 39.00 & 3, 120. 00 & 47 & 90 & do & 26. 50 & 2, 385. 00 \\
\hline 13 & 80 & do & 37. 50 & 3, 000.00 & 48 & 90 & do & 20. 75 & 2, 407. 50 \\
\hline 14 & 80 & do & 37. 75 & 3, 020.00 & 49 & 90 & do & 26. 50 & 2, 385.00 \\
\hline 15 & 80 & 1 & 36. 00 & 2,880. 00 & 50 & 90 & do & 27.50 & 2, 475.00 \\
\hline 16 & 80 & do. & 38.00 & 3, 040.00 & 51 & 90 & do & 27.25 & 2,452. 50 \\
\hline 17 & 80 & do & 37.00 & 2,960. 00 & 52 & 90 & do & 27.00 & 2, 430.00 \\
\hline 18 & 80 & do & 37.50 & 3, 000.00 & 53 & 90 & do & 27. 50 & 2, 475. 00 \\
\hline 19 & 80 & do & 38. 00 & 3, 040.00 & 54 & 90 & do & 27. 50 & 2, 475.00 \\
\hline 20 & 80 & do. & 38. 00 & 3, 040.00 & 55 & 90 & --do. & 26. 50 & 2, 385.00 \\
\hline 21 & 80 & do. & 39.00 & 3,120.00 & 56 & 90 & do & 26. 00 & 2, 340.00 \\
\hline 22 & 80 & do & 38.50 & 3,080.00 & 57 & 90 & do & 27.00 & 2, 430.00 \\
\hline 23 & 80 & do & 38.00 & 3, 040. 00 & 58 & 90 & do & 27.00 & 2, 430.00 \\
\hline 24 & 80 & do. & 38. 50 & 3,080. 00 & 59 & 90 & do & 27.25 & 2,452. 50 \\
\hline 25 & 80 & do. & 38.00 & 3, 040.00 & 60 & 90 & do & 27.00 & 2,430.00 \\
\hline 26 & 43 & do. & 40.00 & 1,720.00 & 61 & 90 & d & 27.00 & \\
\hline 27 & 80 & Large; scarred & & & 62 & 90 & do & 26.50 & \[
\begin{aligned}
& 2,385.00 \\
& 2
\end{aligned}
\] \\
\hline & & blemished, etc... & 25. 50 & 2,040.00 & 63 & 90 & do & \({ }_{27}^{27.00}\) & 2, 430.00
2,475.00 \\
\hline 28 & 80 & . do. & 25. 50 & 2,040.00 & 64 & 90 & & & \\
\hline 29 & 80 & do & 26. 00 & 2, 080.00 & 65 & 90 & & 28.50
27.00 & \(2,565.00\)
\(2,430.00\) \\
\hline 30 & 84 & Mediu & 27.00
26.50 & 2, 268.00
\(2,385.00\) & 66
67 & 90 & d & 27.00
28.00 & \begin{tabular}{l} 
2, \(2,520.00\) \\
\hline
\end{tabular} \\
\hline 32 & 90 & do. & 26.00 & 2, 340.00 & 68 & 90 & do. & 27.75 & 2, 487.50 \\
\hline
\end{tabular}

Sale of fur-seal skins at St. Louis, Mo., October 15, 1924—Continued
SALE OF 14,136 DRESSED, DYED, AND MACHINED SKINS TAKEN ON PRIBILOF ISLANDS, DYED BLACK-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & \[
\begin{gathered}
\text { Priee } \\
\text { per } \\
\text { skin }
\end{gathered}
\] & Total for lot & \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & Price per skin & Total for lot \\
\hline 69 & 90 & Medium & \$27. 75 & \$2, 497. 50 & 119 & 90 & Small medium. & \$24. 50 & \$2, 205. 00 \\
\hline 70 & 90 & .-do. & 26.50 & 2,385. 00 & 120 & 90 & -.do & 23. 50 & 2, 115.00 \\
\hline 71 & 90 & do & 27.00 & 2, 430. 00 & 121 & 90 & d & 24. 50 & 2, 205.00 \\
\hline 72 & 90 & do & 27.00 & 2, 430.00 & 122 & 90 & d & 23. 00 & \(2,070.00\) \\
\hline 73 & 90 & do & 28. 00 & 2,520.00 & 123 & 90 & - do & 24.25 & 2, 182. 50 \\
\hline 74 & 90 & do & 28. 75 & 2,587. 50 & 124 & 90 & do & 24. 50 & 2, 205.00 \\
\hline 75 & 90 & do & 27. 50 & 2, 475. 00 & 125 & 90 & do & 24. 00 & 2,160.00 \\
\hline 76 & 90 & do & 28. 00 & 2, 520.00 & 126 & 90 & do & 24.50 & 2, 205.00 \\
\hline 77 & 90 & do & 27.50 & 2, 475.00 & 127 & 90 & - do & 25. 00 & 2, 250.00 \\
\hline 78 & 90 & do & 27.00 & 2, 430. 00 & 128 & 90 & do & 23. 75 & 2, 137.50 \\
\hline 79 & 90 & do & 27.50 & 2, 475.00 & 129 & 90 & do & 24. 50 & 2, 205. 00 \\
\hline 80 & 90 & do & 27. 50 & 2, 475. 00 & 130 & 90 & do & 24.00 & 2, 160.00 \\
\hline 81 & 90 & do & 27.75 & 2, 497.50 & 131 & 90 & do & 24.25 & 2, 182. 50 \\
\hline 82 & 90 & do & 27. 00 & 2, 430.00 & 132 & 90 & do & 24. 00 & 2, 160.00 \\
\hline 83 & 90 & do & 27. 75 & 2, 497. 50 & 133 & 90 & do & 24. 00 & 2, 160.00 \\
\hline 84 & 90 & do & 27. 75 & 2, 497.50 & 134 & 90 & do & 24. 50 & 2, 205. 00 \\
\hline 85 & 90 & do & 27. 00 & 2, 430. 00 & 135 & 90 & -d & 24.00 & 2,160.00 \\
\hline 86 & 90 & do & 27.75 & 2, 497. 50 & 136 & 90 & .do & 24. 25 & 2, 182. 50 \\
\hline 87 & 90 & do & 27.50 & 2, 475. 00 & 137 & 90 & --do.-.-......... & 23. 75 & 2, 137. 50 \\
\hline 88 & 90 & do & 28. 25 & 2, 542.50 & 138 & 90 & do & 23. 75 & 2, 137. 50 \\
\hline 89 & 90 & do & 27.50 & 2, 475. 00 & 139 & 90 & d & 23. 75 & 2,137. 50 \\
\hline 90 & 90 & do & 28.25 & 2, 542. 50 & 140 & 90 & do & 23. 50 & 2, 115.00 \\
\hline 91 & 90 & do & 28.25 & 2, 542. 50 & 141 & 90 & - do & 23.75 & 2,137. 50 \\
\hline 92 & 90 & do & 27. 50 & 2, 475.00 & 142 & 90 & - do & 23. 75 & 2, 137. 50 \\
\hline 93 & 82 & do & 28.50 & 2,337.00 & 143 & 90 & do & 24. 75 & 2, 227. 50 \\
\hline 94 & 90 & Medium; searred, & & & 144 & 90 & do & 24. 50 & 2, 205. 00 \\
\hline & & blemished, etc & 18. 50
16.75 & \(1,665.00\)
\(1,507.50\) & 145 & 81
90 & Small medium; & 24.25 & 1,964. 25 \\
\hline 96 & 90 & --do & 17.75 & 1, 597. 50 & 146 & & searred, blemish- & & \\
\hline 97 & 90 & ----do & 18. 25 & 1, 642.50 & & & ed, etc. & 15. 50 & 1,395.00 \\
\hline 98 & 90 & ----do & 18.00 & 1,620. 00 & 147 & 90 & - do..- & 16. 00 & 1, 440.00 \\
\hline 99 & 90 & do & 18. 25 & 1,642. 50 & 148 & 90 & do & 16. 25 & 1,462.50 \\
\hline 100 & 90 & d & 18. 00 & 1,620.00 & 149 & 90 & do & 16. 25 & 1,462. 50 \\
\hline 101 & 90 & do & 18.50 & 1, 665.00 & 150 & 90 & do & 16. 50 & \(1,485.00\) \\
\hline 102 & 90 & do & 19.00 & 1,710.00 & 151 & 90 & d & 16. 50 & 1,485. 00 \\
\hline 103 & 90 & & 19.00 & 1,710.00 & 152 & 90 & do & 15. 75 & 1,417. 50 \\
\hline 104 & 90 & -----do & 19.00 & 1, 710.00 & 153 & 90 & do & 16. 50 & 1,485.00 \\
\hline 105 & 90 & - do & 18.25 & 1,642. 50 & 154 & 90 & d & 16. 50 & 1, 485. 00 \\
\hline 107 & 90 & do & 20. 25 & 1, 822. 50 & 156 & 90 & & 16. 25 & 1,485.00 \\
\hline 108 & 90 & d & 21. 00 & 1, 890. 00 & 157 & 90 & do & 16. 50 & 1, 485.00 \\
\hline 109 & 90 & do & 19.75 & 1,777. 50 & 158 & 90 & do & 16. 50 & 1,485. 00 \\
\hline 110 & 55 & -do & 20.25 & 1,113.75 & 159 & 90 & do & 16. 50 & 1,485. 00 \\
\hline 111 & 90 & Small m & 24.75 & 2, 227. 50 & 160 & 70 & do. & 17.50 & 1, 225.00 \\
\hline 112 & 90 & -do & 23. 50 & 2,115.00 & 161 & 50 & III, 2 extra large, 9 & & \\
\hline 113 & 90 & do. & 24.00 & 2, 160.00 & & & large, 39 medium. & 12. 00 & 600.00 \\
\hline 114 & 90 & do. & 24. 00 & 2, 160.00 & 162 & 49 & III, medium ---.-- & 13.00 & 637.00 \\
\hline 115 & 90 & do & 24. 00 & 2, 160.00 & 163 & 62 & III, small medium. & 9.50 & 589.00 \\
\hline 116 & 90
90 & do & 23. 50 & 2, 115.00 & 164 & 62 & do & 10.00 & 620.00 \\
\hline 118 & 90
90 & -.-do. & 24.00 & \[
\begin{aligned}
& 2,160.00 \\
& 2,070.00
\end{aligned}
\] & & 14, 136 & & & 367, 016. 10 \\
\hline
\end{tabular}

SALE OF 1,845 DRESSED, DYED, AND MACHINED SKINS TAKEN ON PRIBILOF ISLANDS, DYED BROWN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 170 & 25 & 18 extra large, 7 & \$56. 00 & \$1, 400.00 & 187
188 & 45
29 & Medium & \(\$ 54.50\)
59.00 & \(\$ 2,452.50\)
1.711 .00 \\
\hline 171 & 40 & Large & 64.00 & 2,560.00 & 189 & 45 & do & 58. 00 & 2, 610.00 \\
\hline 172 & 40 & do & 63.00 & 2, 520.00 & 190 & 45 & do & 58. 50 & 2, 632.50 \\
\hline 173 & 40 & do & 65.00 & 2. 600.00 & 191 & 45 & do & 58.50 & 2,632. 50 \\
\hline 174 & 40 & do & 66.00 & 2, 640.00 & 192 & 16 & --do & 61.00 & 976. 00 \\
\hline 175 & 25 & do & 68. 00 & 1,700. 00 & 193 & 48 & do & 67. 00 & 3,216.00 \\
\hline 176 & 14 & Large; scarred, & & & 194 & 30 & 9 large, 21 medium & 60.00 & 1,800.00 \\
\hline 177 & 45 & \begin{tabular}{l}
blemished, etc \\
Medium
\end{tabular} & 47. 50
57.00 & \[
\begin{array}{r}
665.00 \\
2,565.00
\end{array}
\] & 195 & 29 & 18 medium, 11 small medium & 53.00 & 00 \\
\hline 178 & 45 & do & 54.00 & 2, 430.00 & 196 & 24 & 10 large, 8 medium, & 53.00 & \\
\hline 179 & 45 & do & 55. 00 & 2, 475. 00 & & & 6 small medium.. & 55.00 & 1,320.00 \\
\hline 180 & 45 & do & 56. 00 & 2, 520. 00 & 197 & 50 & 5 large, 35 medium, & & \\
\hline 182 & 45 & do & 55. 00
53.50 & 2, 475.00
\(2,407.50\) & 198 & & 10 small medium. & 55. 00 & 2, 750. 00 \\
\hline 183 & 45 & do & 56. 00 & 2,520.00 & & 50 & Medium: scarred, blemished, etc_ & 46.00 & 2,300. 00 \\
\hline 184 & 45 & do & 54. 00 & 2, 430.00 & 199 & 49 & . do........-. - & 47. 00 & 2, 303.00 \\
\hline 185 & 45 & do & 56. 00 & 2, 520. 00 & 200 & 26 & do & 48.50 & 1, 261:00 \\
\hline 188 & 45 & & 56. 50 & 2, 542. 50 & 201 & 25 & & 51.50 & 1,287. 50 \\
\hline
\end{tabular}

Sale of fur-seal skins at St. Louis, Mo., October 15, 1924-Continued
SALE OF 1,845 DRESSED, DYED, AND MACHINED SKINS TAKEN ON PRIBILOF ISLANDS, DYED BROWN-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & Price per
skin & Total for lot & \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & Price per
skin & Total for lot \\
\hline 202 & 19 & 11 large, 8 medium; scarred, blemished, etc..-.-...- & \$53. 00 & \$1,007.00 & 212
213
214
214 & \[
\begin{aligned}
& 34 \\
& 39 \\
& 29
\end{aligned}
\] &  & \[
\begin{array}{r}
\$ 40.00 \\
45.50 \\
44.50
\end{array}
\] & \[
\begin{array}{r}
\$ 1,360.00 \\
1,774.50 \\
1,290.50
\end{array}
\] \\
\hline 203 & 15 & 3 large, 10 medium, 2 small medium; scarred, blemished, etc. \(\qquad\) & 40.00 & 600.00 & 215
216 & 45
30 & Small medium; scarred, blemished, etc --.-.do & 34.00
36.00 & 1, 530.00 \\
\hline 204 & 45 & Small medium.-.-- & 41.00 & 1,845.00 & 217 & 36 & do & 38.00 & 1,368.00 \\
\hline 205 & 45 & -....do- & 44.50 & 2, 002.50 & 218 & 15 & do & 42. 50 & 1,637.50 \\
\hline 206 & 45 & . -do. & 42. 00 & 1,890.00 & 219 & 12 & do & 42.00 & 504.00 \\
\hline 207 & 45 & do & 43. 00 & 1, 935.00 & 220 & 10 & III, 4 medium, 6 & & \\
\hline 208 & 45 & do & 43. 00 & 1,935. 00 & & & small medium. & 30. 00 & 300.00 \\
\hline 210 & 45 & do. & 44.00 & 1,980.00 & & 1,845 & & & \(95,430.50\) \\
\hline 211 & 45 & do & 42. 50 & 1,912. 50 & & & & & \\
\hline
\end{tabular}

SALE OF 1,010 RAW SALTED SKINS TAKEN ON PRIBILOF ISLANDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 270 & 64 & 5 extra extra large, & & & 281 & 33 & Medium & \$9.50 & \$313. 50 \\
\hline & & 59 extra large.-. & \$9.00 & \$576.00 & 282 & 54 & Small. & 7. 50 & 405.00 \\
\hline 271 & 70 & Extra large. & 10.00 & 700.00 & 233 & 11 & Extra large; low & & \\
\hline 272 & 80 & Large-...-- & 6.25 & 500.00 & & & and faulty & 1.75 & 19. 25 \\
\hline 273 & 80 & -do & 6. 50 & 520.00 & 284 & 31 & Large; low and & & \\
\hline 274 & S0 & -do & 6.75 & 510.00 & & & faulty ------- & 3.00 & 93.00 \\
\hline 275 & 80 & do & 7. 75 & 620.00 & 285 & 20 & Medium; low and & & \\
\hline 276 & 80
49 & do & 8.75 & 700.00 & & & faulty--.........- & 3.00 & 60.00 \\
\hline 277
278 & 49
90 & Medium & 8.75
8.75 & 428.75
780 & 286 & 8 & Smallity low and & 1.25 & 10.00 \\
\hline 279
280 & 90
90 & --do. & 9.25
9.75 & 832.50
877.50 & & 1,010 & & & 7,983.00 \\
\hline
\end{tabular}

SALE OF 17 MISCELLANEOUS SKINS TAKEN ON PRIBILOF ISLANDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 165 & \multirow[t]{2}{*}{2
7
7} & Raw salted & \multirow[t]{2}{*}{\[
\begin{array}{r}
\$ 0.50 \\
.60 \\
1.60
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\$ 1.00 \\
4.20 \\
11.20
\end{array}
\]} & \multirow[t]{2}{*}{168} & 1 & \multirow[t]{2}{*}{Dyed} & \multirow[t]{2}{*}{\$1. 25} & \$1. 25 \\
\hline 167 & & Washed and dried -
Dressed ---------- & & & & 17 & & & 17.65 \\
\hline
\end{tabular}

\section*{SALE OF 4 CONFISCATED SKINS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 169 & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{Large; dressed, dyed, machined, and finished} & \multirow[b]{2}{*}{\$11.00} & \multirow[b]{2}{*}{\$11.00} & \multirow[t]{2}{*}{169B} & 1 & \multirow[t]{2}{*}{Raw salted.} & \$0. 50 & \$0. 50 \\
\hline & & & & & & 4 & & & 16.50 \\
\hline 169. & 2 & Black pups; dressed only.-... & & \[
5.00
\] & & & & & \\
\hline
\end{tabular}

Private sales of Pribilof sealskins at St. Louis, Mo., in 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date & Number of skins & Description & \[
\begin{aligned}
& \text { Price } \\
& \text { per } \\
& \text { skin }
\end{aligned}
\] & Total & Date & Number of skins & Description & \[
\begin{aligned}
& \text { Price } \\
& \text { per } \\
& \text { skin }
\end{aligned}
\] & Total \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Nov. 1 \\
Do... \\
Do.-- \\
Dec. 24
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{array}{r}
24 \\
133 \\
38 \\
30
\end{array}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Chataigne d'Or, large. \\
Chataigne d'Or, medium \\
Chataigne d'Or, small medium Chataigne d'Or, small medium; sarred, blemished, etc
\end{tabular}} & \multirow[b]{3}{*}{\begin{tabular}{l}
\(\$ 63.78\) \\
56.76 \\
43.71
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{array}{r}
\$ 1,530.72 \\
7,549.08 \\
1,660.98
\end{array}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Dec. 24 \\
Do \(\qquad\) Do \(\qquad\)
\end{tabular}} & 45 & Chataigne d'Or small medium & \$44.00 & \$1,980.00 \\
\hline & & & & & & 13 & Black dyed, 1922 take.. & 25.93 & 337.09 \\
\hline & & & & & & 4 & Black d yed,
192I take.... & 21.13 & 84. 52 \\
\hline & & & 36.00 & 1,080.00 & & 287 & & & 14, 222.39 \\
\hline
\end{tabular}

Comparative values, by sizes and grades, with percentages cach size, of Pribilof sealskins sold at public auction in 1924


Comparative values, by sizes and grades, with percentages each size, of Pribilof sealshins sold at public auction in 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Classes and sales & Grade & Num-
ber & High & Low & \[
\begin{array}{|c|}
\hline \text { A ver- } \\
\text { age }
\end{array}
\] & Total & Total
num-
ber & A verage price & Total price & Per-centage \\
\hline \multicolumn{11}{|l|}{RAW SAlted} \\
\hline \begin{tabular}{l}
Extra extra large: \\
Oct. 15 \(\qquad\)
\end{tabular} & I and II. & 5 & \$9.00 & \$9.00 & \$9. 00 & \$45. 00 & 5 & \$9.00 & \$45.00 & . 50 \\
\hline \multirow[t]{2}{*}{Extra large: Oct. 15.} & \{ 1 and II & 129 & 10.00 & 9. 00 & 9. 54 & 1,231.00 & ) 140 & 8.93 & & \\
\hline & LLow and faulty-- & 11 & 1.75 & 1.75 & 1. 75 & 19.25 & & 8.93 & 1,250. 25 & 13.86 \\
\hline \multirow[t]{2}{*}{Large:} & \{ 1 and \(\mathrm{II}_{\text {-.....-. }}\) & 449 & 8. 75 & 6.25 & 7.37 & 3,308. 75 & & & & \\
\hline & \{Low and faulty-- & 31 & 3. 00 & 3.00 & 3.00 & 93.00 & - 480 & 7.09 & 3,401. 75 & 47.52 \\
\hline \multirow[t]{2}{*}{Medium: Oct. 15} & \{ I and II & 303 & 9.75 & 8. 75 & 9. 28 & 2,811.00 & & 8. 89 & & \\
\hline & SLow and faulty-- & 20 & 3.00 & 3. 00 & 3. 00 & 60.00 \(\}\) & & 8.89 & 2,871.00 & 31.98 \\
\hline \multirow[t]{2}{*}{Small: Oct} & \{ 1 and II & 54 & 7.50 & 7.50 & 7.50 & 405.00 \(\}\) & & 6. 69 & 415.00 & 6. 14 \\
\hline & Low and faulty.- & 8 & 1. 25 & 1. 25 & 1.25 & 10.00 & & 6.69 & 415.00 & 6. 14 \\
\hline All classes.-- & & & & &  & & 1, 010 & 7.90 & 7,983. 00 & 100.00 \\
\hline MISCELIAANEOUS & Description & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Mar. 24...-.-.----} & W ashed and dried. & 11 & 50 & . 50 & . 50 & 5. 50 & 11 & . 50 & 5. 50 & 100.00 \\
\hline & faw salted.....- & 2 & . 50 & . 50 & . 50 & 1.00 & & & & \\
\hline \multirow[t]{3}{*}{Oct. 15} & W ashed and dried. & 7 & . 60 & . 60 & . 60 & 4. 20 & 17 & 1.04 & 17.65 & 100.00 \\
\hline & Dressed & 7 & 1. 60 & 1.60 & 1. 60 & 11.20 & & & & \\
\hline & Dyed .---------- & 1 & 1. 25 & 1. 25 & 1. 25 & 1. 25 ) & & & & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{Total miscellaneous:}} \\
\hline & & & & & & & & & & \\
\hline Oct. 15 & & & & & & & 17 & 1.04 & 17.65 & 100.00 \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

\section*{DISPOSITION OF FUR-SEAL SKINS TAKEN AT PRIBLLOF ISLANDS}

The grand total of all fur-seal skins taken at the Pribilof Islands on hand on January 1, 1924, was 49,912 . Of these 1,881 were at the Pribilof Islands, 48,024 were at St. Louis, and 7 at Washington. In 1924 a total of 17,219 was secured at the islands and 37,110 were sold, leaving a balance on hand on December 31, 1924, of 30,021 . The 30,021 sealskins taken on the Pribilof Islands on hand on December 31, 1924, comprised 387 at the islands, 29,625 at St. Louis, and 9 at Washington. The following two tables show further details in regard to Pribilof Islands sealskins at those islands and at St. Louis as well as details in regard to other Government-owned sealskins at St. Louis.

Summary of all fur-seal skins handled on Pribilof Islands, calendar year 1924
\begin{tabular}{|c|c|c|c|c|c|}
\hline Island & Balance on hand Jan. 1 & Number taken & Total handled & Number shipped & Balance on hand Dec. 31 \\
\hline St. Paul & 1,121 & 13,453
3,766 & \[
\begin{array}{r}
14,574 \\
4,526
\end{array}
\] & \[
\begin{array}{r}
14,323 \\
4,390
\end{array}
\] & 251
136 \\
\hline Total. & 1,881 & 17, 219 & 19, 100 & 18,713 & \({ }^{1} 387\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) All taken in calendar year 1924.
}

Summary of United States Government-owned fur-seal skins in custody of Fouke Fur Co., St. Louis, Mo., calendar year 1924
\begin{tabular}{|c|c|c|c|c|}
\hline Description & On hand Jan. 1 & Receipts in 1924 & Disposed of in 1924 & On hand
\[
\text { Dec. } 31
\] \\
\hline Taken on Pribilof Islands: & & & & \\
\hline Calendar year 1920 & 1 & & 11 & \\
\hline Calendar year 1921 & 4,861 & & 14,861 & \\
\hline Calendar year 1922 & 29, 123 & & \({ }^{1} 29,123\) & \\
\hline Calendar year 1923 & 14,039 & 1,881 & \({ }^{2} 3\), 127 & 12,793 \\
\hline Calendar year 1924 & & 16, 832 & & 16,832 \\
\hline Skins from Pribilof seals shipped Stein & 3 & 4 & 13 & 4 \\
\hline United States share of Japanese Sealski & & & & \\
\hline Season of 1922 & 33 & & 133 & 82 \\
\hline Confiscated skins. & 37 & 10 & 347 & \\
\hline Total & 48,097 & 18,809 & 37, 195 & 29, 711 \\
\hline
\end{tabular}

1 Sold.
\({ }^{2} 3,125\) sold, 2 delivered to Bureau of Fisheries.
\({ }^{3} 39\) sold, 8 destroyed as worthless.

\section*{FOX SKINS}

\section*{SHIPMENT AND SALE}

The 46 blue and 14 white fox skins taken on St. Paul Island in the season of 1923-24 were placed aboard the U. S. S. Gold Star for shipment on June 5, and 741 blue and 1 white fox skins from St. George Island, taken in the same season, were shipped on the same vessel on June 11. These 802 skins were delivered at Bremerton, Wash., on July 28, 1924, and were forwarded from that place by American Railway Express to St. Louis, Mo., where they were received August 2.

The skins were sold by the Fouke Fur Co. at public auction at St. Louis on October 15, 1924. The 787 blue skins sold for \(\$ 49,755.50\), an average of \(\$ 63.22\) per skin, the maximum price obtained for a single skin being \(\$ 130\). The 15 white skins sold for \(\$ 630\), an average of \(\$ 42\) per skin. The average prices received at the last preceding sale (October 8, 1923) for similar skins were \(\$ 102.91\) for the blue and \(\$ 46\) for the white.

Sale of 787 blue and 15 white fox skins at St. Louis, Mo., October 15, 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & \begin{tabular}{l}
Price \\
per \\
skin
\end{tabular} & Total for lot & \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & \begin{tabular}{l}
Price \\
per \\
skin
\end{tabular} & Total for lot \\
\hline & & blue fox skins & & & & & blue fox skinsContinued & & \\
\hline \[
\begin{aligned}
& 305 \\
& 306
\end{aligned}
\] & 1 & Extra extra fine..-- & \[
\begin{aligned}
& \$ 130.00 \\
& 120.00
\end{aligned}
\] & \[
\$ 130.00
\] & & & & & \\
\hline 307 & 6 & --.do & 92.00 & 552.00 & 324 & 10 & I blue & 75.00 & \(\$ 784.00\)
750.00 \\
\hline 308 & 8 & I and II blue & 81.00 & 648.00 & 325 & 16 & II blue & 45.00 & 720.00 \\
\hline 309 & 6 & II. & 60.00 & 360.00 & 326 & 16 & II low & 36.00 & 576.00 \\
\hline 310 & 8 & Fine & 119.00 & 952.00 & 327 & 12 & I and II & 50.00 & 600.00 \\
\hline 311 & 7 & I and II dark & 76. 50 & 535.50 & 328 & & Extra extra fine. & 112. 00 & 448.00 \\
\hline 312 & 6 & I and II.-.-...- & 76.00 & 456. 00 & 329 & 4 & Extra fine, extra & & \\
\hline \begin{tabular}{l}
313 \\
314 \\
\hline
\end{tabular} & & Extra extra fine. & 101.00 & 404.00 & & & large & 83.00 & 332.00 \\
\hline 314 & 4 & Extra fine, extra large & & & \[
330
\] & 4 & Extra fine. & 81.00
78.00 & 324.00
468. 00 \\
\hline 315 & 4 & Extra fine & 95. 00 & 380.00 & 332 & 6 & Fine silvery & 121. 00 & 726.00 \\
\hline 316 & 6 & Fine dark & 75. 00 & 450.00 & 333 & 8 & I dark, extra large- & 74.00 & 592.00 \\
\hline 317 & 6 & Extra dark & 83.00 & 498.00 & 334 & 10 & I dark & 91. 00 & 910.00 \\
\hline 318 & 8 & I dark, extra large. & 65.00 & 520.00 & 335 & 12 & - \({ }^{\text {r }}\) do & 71. 00 & 852.00 \\
\hline 319 & 10 & I dark & 96. 00 & 960.00 & 336 & 12 & II dark, extra large. & 51.00 & 612.00 \\
\hline 320
321 & 10 & -ir do & 73.00 & 730.00 & 337 & 14 & II dark & 58.00 & 812.00 \\
\hline 322 & 12 & II dark -..........- & 63.00
52.00 & 634.00 & 338
339 & 12 & I blue & 68.00 & 868.00
816.00 \\
\hline
\end{tabular}

Sale of 787 blue and 15 white fox skins at St. Louis, Mo., October 15, 1924-Con.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & \[
\begin{aligned}
& \text { Price } \\
& \text { per } \\
& \text { skin }
\end{aligned}
\] & Total for lot & \[
\begin{aligned}
& \text { Lot } \\
& \text { No. }
\end{aligned}
\] & Number of skins & Trade classification & \[
\begin{gathered}
\text { Price } \\
\text { per } \\
\text { skin }
\end{gathered}
\] & Total for lot \\
\hline & & blue fox sinins Continued & & & & & blue fox skins-
Continued & & \\
\hline 340 & 16 & II blue. & \$46. 00 & \$736. 00 & 367 & 10 & I dark & \$53.00 & \$530.00 \\
\hline 341 & 18 & II low & 29.00 & 522.00 & 368 & 12 & --do & 72.00 & 864.00 \\
\hline 342 & 18 & III. & 19.00 & 342.00 & 369 & 14 & II dark & 64. 00 & 856.00 \\
\hline 343 & 12 & I & 53.00 & 636.00 & 370 & 16 & -do & 46.00 & 736.00 \\
\hline 344 & 14 & II. & 30.00 & 420.00 & 371 & 10 & I blue & 62.00 & 620.00 \\
\hline 345 & 4 & Extra extra fine. & 115.00 & 460.00 & 372 & 18 & II blue. & 42.00 & 756.00 \\
\hline 346 & 4 & Extra fine, extra & & & 373 & 8 & II low. & 30. 00 & 240.00 \\
\hline & & large & 92.00 & 368.00 & 374 & 4 & Extra extra fine & 121.00 & 484.00 \\
\hline 347 & 6 & Extra fine. & 114.00 & 684.00 & 375 & 4 & Extra fine. & 115.00 & 460.00 \\
\hline 348 & 6 & Fine dark. & 91.00 & 546. 00 & 376 & 10 & I dark & 86.00 & 860.00 \\
\hline 349 & 7 & I dark silvery & 106. 00 & 742.00 & 377 & 12 & ---do. & 67.00 & 804.00 \\
\hline 350 & 8 & I dark, extra large. & 83.00 & 664.00 & 378 & 16 & II dark & 45.00 & 720.00 \\
\hline 351 & 12 & I dark & 71.00 & 852.00 & 379 & 10 & I blue. & 79. 00 & 790.00 \\
\hline 352 & 12 & --.do & 70.00 & 840.00 & 380 & 4 & Extra extra fine. & 125.00 & 500.00 \\
\hline 353 & 14 & ----do & 78.00 & 1, 092.00 & 381 & 4 & Extra fine & 98. 00 & 392.00 \\
\hline 354 & 14 & II dark & 56.00 & 784.00 & 382 & 10 & I dark & 72.00 & 720.00 \\
\hline 355 & 16 & & 50.00 & 800.00 & 383 & 10 & -do & 88. 00 & 880.00 \\
\hline 356 & 8 & I blue & 71. 00 & 568.00 & 384 & 14 & II dark & 66.00 & 924.00 \\
\hline 357 & 16 & II blue & 45. 00 & 720.00 & 385 & 4 & I and II & 36. 00 & 144.00 \\
\hline 358 & 18 & II low & 23. 00 & 414.00 & 386 & 6 & & 49.00 & 294.00 \\
\hline 359 & 20 & III and IV & 6.00 & 120.00 & 387 & 8 & Skin & 33.00 & 264.00 \\
\hline 360
361 & 4 & Extra extra fine.... & 110.00
87.00 & 440.00
522.00 & & 787 & & & ,755. 50 \\
\hline 362 & 4 & Fine & 110.00 & 440.00 & & & WHITE FOX SKINS & & \\
\hline 363 & 6 & Fine dark & 87.00 & 522.00 & & & & & \\
\hline \begin{tabular}{l}
364 \\
365 \\
\hline
\end{tabular} & 10 & Silvery & 77. 00 & 770. 00 & 388 & 15 & I and II, white fox- & 42.00 & 630.00 \\
\hline 366 & 10 & I dark--------..--- & 55. 00 & 550.00 & & 802 & & & 50, 385. 50 \\
\hline
\end{tabular}

\section*{FUR-SEAL PATROL}

A patrol for the protection of the American fur-seal herd on its annual migration to the Pribilof Islands was carried on by seven vessels of the United States Coast Guard in the spring of 1924. The waters covered extended from California along the coasts of Oregon, Washington. British Columbia, southeastern Alaska, and across the Gulf of Alaska. Particular attention was given to the region of the Aleutian Islands and Bering Sea, threc of the cutters remaining in those waters until the close of the sealing season.

An Executive order of April 11, 1924, directed a special patrol by vessels of the Bureau of Fisheries in Alaskan waters for the protection of the American fur-seal herd, and authorized the search and seizure of any vessels of the United States suspected of engaging in illegal sealing. Under the general direction of Warden M. J. O' Connor the Murre and Peirel maintained a patrol during April and May in the vicinity of Sitka, where the Indians usually carry on pelagic sealing. On account of the stormy weather that prevailed during the migration, and also the low price offered for sealskins, practically no sealing was done, only eight skins being secured.

One fur-seal skin taken on halibut gear was turned over to a representative of the bureau at Sitka by the master of the halibut schooner Brothers. The commander of the Coast Guard patrol force reported the seizure at Unalaska on May 14 of the gas boat Halleys with four sealskins and one sea-otter skin on board.

Canadian authorities have advised that 34 fur-seal skins were confiscated at Prince Rupert for which satisfactory evidence was not produced as to their having been lawfully taken. These were considered as of the 1924 take.

\section*{SEALING PRIVILEGES ACCORDED ABORIGINES}

A total of 1.037 fur-seal skins were authenticated as having been lawfully taken in 1924 by Indians in the waters off the coasts of Washington and southeast Alaska. The details are as follows:

Hashington.--One thousand and twenty-nine skins were authenticated, of which 600 were from male seals and 423 from females. - part of the skine were taken from unborn pups. The skins were athenticated hy Dr. Carl B. Boyd, superintendent Neah Bay Indian Agency, Neah Bay, Wash.
Southeast Alaska.-Eight skins were authenticated, all of which were from male seals. This small take, in comparison with takes of previons years, was attributed in part to weather conditions unfavorable to sealing operations.

An official report received by the bureau stated that 2,248 sealskins were taken by the natives of British Columbia in 1924.

\section*{JAPANESE SEALSKINS DELIVERED TO THE UNITED STATES}

The North Pacific Sealing Convention of July 7, 1911, provides that 10 per cent of the sealskins taken by the Japanese Government within the areas defined by the convention shall be turned over to the United States Goverument, unless the number of seals frequenting the Japanese islands falls below 6,500, enumerated by official count.

The first Japanese skins to be allotted to the United States were taken in 1918, and additional skins have aecrued to the United States from the take of each year since. These skins are sold at public anction for the account of the United States, and details in regard to them have been published in the corresponding reports for previous years.

At the beginning of the year 1924 there remained on hand 33 skins taken in 1922. These were sold at public auction in New York City on March 24, 1924.

The United States Government's share of Japanese sealskins taken in 1923 was 82 skins, which reached St. Louis, Mo., on September 15, 1924, and remained unsold at the end of the year. The share of those taken in 1924 was 94 skins, but these had not been reecived in the United States at the end of the year.

\section*{SALE OF CONFISCATED SEA-OTTER SKINS}

There were sold at public auction at St. Louis, Mo., on Oetober 15, 1924, four sea-otter skins seized from J. W. MeCord. The skins brought \(\$ 1,020\), or an average of \(\$ 255\) per skin. Details are shown in the following tabulation:

Sale of four sea-otter slins at St. Louis, Mo., October 15, 1924
\begin{tabular}{|c|c|c|c|c|c|}
\hline Lot No. & Number of skins & Sale price & Lot No. & Number of skins & Sale price \\
\hline 389. & 1 & \$295 & 392 & 1 & \$155 \\
\hline 391. & 1 & 300 & & 4 & 1,020 \\
\hline
\end{tabular}

\title{
FUR-SEAL CENSUS, PRIBILOF ISLANDS, 1924
}

\author{
By Edward C. Johnston
}

In 1924 the annual count of fur-seal harems was made from July 15 to 17 on St. Paul Island and on July 22 and 23 on St. George Island, weather conditions preventing an earlier count. On St. George Island pups were actually counted on East Reef on July 28 and on Zapadni and South rookeries on July 29, and estimates were made of the pups present on all other rookeries. On St. Paul Island actual counts of pups were made as follows: Lagoon and Zapadni Reef rookeries on July 31, Polovina and Polorina Cliffs rookeries on August 1, and Morjovi rookery on August 2, while the pups on the remaining rookeries were estimated.

Superintendent Christoffers and Dr. H. L. Van Volkenberg aided in the pup count on St. Paul Island, and all possible assistance was given by Agent and Caretaker Hungerford. Storekeeper Culbertson participated in the count on St. George Island.

The taking of the seal census was made possible by the cooperation of the Coast Guard Service in transporting the enumerator from one island to the other. Three trips were made on the Coast Guard cutter Mojave and one on the cutter Algonquin.

\section*{PUPS}

The pup count was made on the rookeries that were counted in the years 1917 to 1921, inclusive. These rookeries can be counted with greater accuracy than the others and are fairly representative of all the rookeries. The method for estimating the total number of pups has been to determine the average harem in which the pups have been counted and apply the figure obtained to the other rookeries, making allowance for considerable variation due to the character of the harem areas. The complete pup count of 1922 showed that the estimates based upon the above method were conservative.

The outstanding fact brought to light by the count was that pups had greatly increased on St. George Island and the rookeries on the southwest side of St. Paul Island, while on the north and east sides of St. Paul Island they had decreased. This may have been caused by the drift ice, which remained around St. Paul Island very late in the spring and compelled many scals to haul out as far south as possible on account of the low temperature of the water.

Distribution of pups on the Pribilof Islands, August 10, 1924, and comparison with distribution in 1923
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Rookery} & \multicolumn{4}{|c|}{1924} & 1923 & \multicolumn{2}{|c|}{1924} \\
\hline & Living & Dead & Total & Per cent dead pups & Total pups & Increase (+) or decrease (-) & Per cent increase \((+)\) or decrease (-) \\
\hline \multicolumn{8}{|l|}{St. Panl Island:} \\
\hline Kitovi... & 6,011
3,386 & 74
94 & 6,085
3,480 & 1.22
2.69 & 5,248
3,458 & +837
+22 & +15.95
+.64 \\
\hline Gorbatch & 16,186 & 456 & 16, 642 & 2.74 & 14,597 & +2,045 & +14.01 \\
\hline Ardiguen. & 1,344 & 20 & 1,364 & 1. 44 & 1,049 & +315 & \(+30.03\) \\
\hline Reef & 29,601 & 759 & 30, 360 & 2.50 & 26,508 & -3, 852 & +14.53 \\
\hline Sivutch. & 9,910 & 112 & 10,022 & 1. 12 & 8, 603 & +1,419 & +16. 49 \\
\hline Lagoon & 175 & 3 & 1178 & 1. 69 & 203 & -85 & \(-32.32\) \\
\hline Tolstoi & 19, 661 & 451 & 20, 112 & 2. 24 & 18,060 & +2. 052 & +11. 36 \\
\hline Zapadni & 18, 724 & 429 & 19, 153 & 2. 21 & 17,049 & +2. 104 & +12.34 \\
\hline Little Zapadni & 9,854 & 226 & 10.080 & 2. 24 & 8,947 & +1,133 & \(+12.66\) \\
\hline Zapadni Reef & +12 & 13 & \({ }^{1} 425\) & 3.06 & 316 & +109
-257 & +34.49
-25.48 \\
\hline Polovina--.- & 7,319 & 205
94 & 17,524
14,205 & 2. 2.24 & 10,096
4,731 & \(-2,572\)
-526
-508 & -25.48
-11.12 \\
\hline Polovina Clifis & 1,739 & 22 & 1,761 & 1. 23 & 2,029 & -268 & -13.21 \\
\hline Morjovi - & 3,156 & 69 & \({ }^{1} 3,225\) & 2. 14 & 3,971 & - -746 & \(-18.79\) \\
\hline Vostochni & 36. 585 & 1.327 & 37. 912 & 3. 50 & 44, 438 & -6,526 & -14.69 \\
\hline Total & 168, 174 & 4, 354 & 172, 528 & 2. 52 & 169, 363 & +3, 165 & +1.90 \\
\hline \multicolumn{8}{|l|}{St. George Island:} \\
\hline Staraya Artil & 10, 180 & 297 & 10,467 & 2.74 & 8, 191 & +2,276 & +27.79 \\
\hline Zapadni & 1,528 & 16 & \({ }^{1} 1,544\) & 1.04 & 1,312 & +232 & +17.68 \\
\hline South & 297 & & \({ }^{1} 297\) & & 320 & -23 & -7.19 \\
\hline East Reef & 2, 493 & 32 & \({ }^{1} 2,525\) & 1.27 & 1,938 & +587 & +30.29 \\
\hline East Cliffs. & 8, 128 & 166 & 8,294 & 2. 00 & 5,801 & +2, 493 & +42.98 \\
\hline Total & 35, 113 & 755 & 35, 868 & 2. 10 & 28, 296 & +7,572 & +26.76 \\
\hline Total (both islands) & 203, 287 & 5, 109 & 208, 396 & 2. 45 & 197, 659 & +10,737 & +5.43 \\
\hline
\end{tabular}

1 Actual count.
As shown in the above table, the pups on St. George Island increased 26.76 per cent while the number on St. Paul Island increased only 1.9 per cent. The rookeries on the north and east sides of St. Paul Island actually showed a decrease. The only rookery on St. George Island to show a decrease was South rookery, which had 23 pups less than was estimated for it in 1923. As the number of dead pups found during the count was approximately the same as in 1921, the same percentage was assigned to the other rookeries.

\section*{cows}

Since the number of cows, for census purposes, is the same as the total number of pups, the figures above will apply to the adult females. On St. George Island there were 35,868 cows and on St. Paul Island 172,528 , a total of 208,396 .

No cows bearing the single bar or brand across the back were seen in 1924. If any are alive the number is probably small. They were branded in 1902 and 1903.

Twelve dead cows were found on the rookeries where pups were counted. This is 0.06 per cent dead, and, applied to the whole herd, the number would be 125 , or about the number normally found.

\section*{BULLS}

The harem and idle bulls were counted on all rookeries except Sirutch, weather conditions preventing a count there. Sivutch rookery is situated on Sea Lion Rock, a short distance from St. Paul Island, and on a clear day the general condition of the rookery can be seen. There is no doubt but that it is increasing in the same proportion as the other rookeries.

As the bull count was made on the rarious rookeries shortly aiter killing drives had been made from the hauling grounds, the surplus bulls were not counted. In most cases they were driven in with the bachelors or driven into the water as a result of the drive. The idle bulls counted were those around the margin of the harem area actively watching for an opportunity to secure cows.

Harem and idle bulls and percentage of idle bulls to havem bulls compared to average harem, 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Rookery & Date & Harem bulls & \[
\begin{aligned}
& \text { Idle } \\
& \text { bulls }
\end{aligned}
\] & Total & Per cent idle to harem bulls & A verage harem \\
\hline St. Paul Island: & & & & & & \\
\hline Kitovi... & July 15 & 135 & 27 & 162 & 20. 00 & 45. 08 \\
\hline Lukanin. & ---do-.--- & 82 & 3 & 85 & 3. 66 & 42. 44 \\
\hline Gorbatch & ---do.-..- & 218 & 13 & 231 & 5. 96 & 76. 34 \\
\hline Ardiguen. & -- do. & 32 & 2 & 34 & 6. 24 & 42. 62 \\
\hline Ree[- & do. & 429 & 59 & 488 & 13.75 & 70.77 \\
\hline Sivutch \({ }^{1}\) & & 171 & 23 & 194 & 13.45 & 58. 61 \\
\hline Lagoon... & July 15 & 6 & & 6 & & 29. 67 \\
\hline Tolstoi- & -do.... & 308 & 30 & 338 & 9. 74 & 65. 30 \\
\hline Zapadni. & July 16 & 297 & 33 & 330 & 11. 11 & 64.49 \\
\hline Little Zapadni & ---do... & 162 & 12 & 174 & 7.41 & 62.22 \\
\hline Zapadni Reef & do.. & 12 & 1 & 13 & 8. 33 & 35. 42 \\
\hline Polovina & do. & 172 & 63 & 235 & 36. 63 & 43. 74 \\
\hline Polovina Cliffs & do. & 102 & 9 & 111 & 8.82 & 41. 23 \\
\hline Little Polovina & do. & 48 & 10 & 58 & 20.83 & 36. 70 \\
\hline Morjovi & July 17 & 97 & 13 & 110 & 13.40 & 33.25 \\
\hline Vostochni & ---do-..-- & 856 & 77 & 933 & 9.00 & 44. 29 \\
\hline Total & & 3,127 & 375 & 3, 502 & 11.99 & 55.17 \\
\hline St. George Island: & & & & & & \\
\hline North.---.- & July 22 & 127 & 2 & 129 & 1. 57 & 100. 32 \\
\hline Staraya Artil & -do..... & 98 & 5 & 103 & 5. 10 & 106. 81 \\
\hline Zapadni.---- & July 23 & 29 & 1 & 30 & 3.45 & 53. 24 \\
\hline South East--- & July 22 & 9
35 & & 9
39 & 11.43 & 33.00
72.14 \\
\hline East Cliffs. & -.-do.... & 91 & 3 & 94 & 11.30 & 91. 14 \\
\hline Total & & 389 & 15 & 404 & 3.86 & 92.21 \\
\hline Total (both islauds). & & 3,516 & 390 & 3,906 & 11.09 & 59.27 \\
\hline
\end{tabular}

1 Estimated.

\section*{AVERAGE HAREM}

The number of harems on St. Paul Island increased from 3,051 in 1923 to 3,127 in 1924, and on St. George Island from 361 in 1923 to 389 in 1924. On Ardiguen rookery, St. Paul Island, there was an increase in harem bulls amounting to nearly 30 per cent. The idle bulls showed a corresponding increase. The total harems on the two islands was 3,516 .

The percentage of idle to harem bulls on St. Paul Island was 9.93 in 1923 and 11.99 in 1924; on St. George Island it was 2.50 in 1923 and 3.86 in 1924. For both islands the percentage increased from
9.14 to 11.09 . About 20 per cent idle to harem bulls would be the ratio to produce the best results.

Four dead bulls were seen during the harem count.
Average harems in 1923 and 1924 for all fur-seal rookeries on the Pribilof Islands
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Rookery} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Breeding } \\
& \text { cows } \\
& \text { in } 1924
\end{aligned}
\]} & \multirow[t]{2}{*}{Harem bulls in 1924} & \multicolumn{2}{|l|}{A verage harem} \\
\hline & & & 1924 & 1923 \\
\hline St. Paul Island: & & & & \\
\hline Kitovi-- & 6, 085 & 135 & 45. 08 & 41. 32 \\
\hline Lukanin & 3,480
16,642 & 82
218 & 42. 44 & 40. 68 \\
\hline Ardiguen- & 1,364 & 32 & 42. 62 & 45. 59 \\
\hline Reef & 30, 360 & 429 & 70.77 & 66.27 \\
\hline Sivutch & 10,022 & 171 & 58. 61 & 54.11 \\
\hline Lagoon- & 178 & \({ }^{6}\) & 29. 67 & 37.54 \\
\hline Tolstoi- & 20, 112 & 308 & 65. 30 & 59.80 \\
\hline Zapadni----- & 19, 153 & 297 & 64. 49 & 57.99 \\
\hline Little Zapadni & 10, 080 & 162 & 62.22 & \(\begin{array}{r}57.72 \\ 31 \\ \hline\end{array}\) \\
\hline Zapadni Reef & 425 & 12 & 35. 42 & 31. 59 \\
\hline Polovina Cliffs- & 7, 4205 & 102 & 41. 23 & 55. 78 \\
\hline Little Polovina & 1,761 & 48 & 36. 70 & 39.02 \\
\hline Morjovi-.- & 3, 225 & 97 & 33. 25 & 41.80 \\
\hline Vostochni & 37, 912 & 856 & 44.29 & 52. 84 \\
\hline Total & 172, 528 & 3,127 & 55.17 & 55.51 \\
\hline St. George Island: & & & & \\
\hline Staraya Artil & 10,467 & 98 & 106.81 & 91. 01 \\
\hline Zapadni-.. & 1,544 & 29 & 53.24 & 48. 59 \\
\hline South & 297 & 9 & 33.00 & 64.00 \\
\hline East Reeí & 2,525 & 35 & 72. 14 & 55. 36 \\
\hline East Cliffs. & 8,294 & 91 & 91.14 & 75. 34 \\
\hline Total. & 35, 868 & 389 & 92.21 & 78.38 \\
\hline Total (both islands). & 208, 396 & 3, 516 & 59.27 & 57.93 \\
\hline
\end{tabular}

The average harem on various rookeries shows a great variation in size. It ranges from 29.67 on Lagoon rookery to 106.81 on Staraya Artil. The largest average harem on rookeries where pups were counted was 72.14 on East Reef. On this rookery the average harem increased from 55.36 in 1923 to 72.14 in 1924, while Polovina rookery decreased from 55.78 in 1923 to 43.74 in 1924. The average harem on St. Paul Island dropped from 55.51 in 1923 to 55.17 in 1924, but that on St. George Island increased from 78.38 in 1923 to 92.21 in 1924. For the whole herd the average harem increased from 57.93 in 1923 to 59.27 in 1924.

\section*{COMPLETE CENSUS}

The following shows in summarized form the method of arriving at the complete census for 1924 and gives a recapitulation of the herd. It will be noted that the increase in the total number of seals in 1924 over 1923 was 44,150 , or 6.76 per cent. The increase in 1923 over 1922 was 48,046 , or 7.94 per cent.
\[
53896-25 \dagger-8
\]

Complete census of fur seals, Pribilof Islands, as of August 10, 1924
\begin{tabular}{|c|c|c|c|}
\hline Class & St. Paul & St. George & Total \\
\hline Pups, estimated.. & 172, 528 & 35, 868 & 208, 396 \\
\hline Breeding cows, 3 years old and over, by & 172, 528 & 35, 868 & 208, 396 \\
\hline Harem bulls, counted........ & 3,127 & 389 & 3,516 \\
\hline Idle bulls, counted & 375 & 15 & 390 \\
\hline Yearlings, male and female, estimated: & & & \\
\hline Females born in 1923. & 84, 682 & 14, 148 & 98,830 \\
\hline Natural mortality, 35 per cent & 29,639 & 4, 951 & 34, 590 \\
\hline Yearling females, Aug. 10, 1924 & 55, 043 & 9, 197 & 64, 240 \\
\hline Males born in 1923 & 84, 681 & 14, 148 & 98, 829 \\
\hline Natural mortality, 40 per cent & 33,872 & 5,659 & 39,531 \\
\hline Yearling males begínning 1924 Yearling males killed 1924 & 50,809 & 8. 489 & 59, 298 \\
\hline Yearling males, Aug. 10, 1924 & 50, 802 & 8,489 & 59, 291 \\
\hline 2-year-olds, male and female, estimated: & & & \\
\hline Yearling females, Aug. 10, 1923 & 51, 638 & 8,784 & 60, 422 \\
\hline Natural mortality, 15 per cent & 7,746 & 1,317 & 9,063 \\
\hline 2 -year-old females, Aug. 10, 1924. & 43,892 & 7,467 & 51, 359 \\
\hline Yearling males, Aug. 10, 1923. & 47,661 & 8, 108 & 55, 769 \\
\hline Natural mortality, \(171 / 2\) per cent & 8,341 & 1,419 & 9,760 \\
\hline 2 -year-old males beginning 1924 & 39, 320 & 6. 689 & 46, 009 \\
\hline 2-year-old males killed 1924 & 309 & 15 & 324 \\
\hline 2-year-old males, Aug. 10, 1924 & 39, 011 & 6, 674 & 45,685 \\
\hline 3 -year-old males, estimated: & & & \\
\hline 2-year-old males, Aug. \(10,1923\). & 36,484
97 & 6,628
5 & 43, 112 \\
\hline 2 -year-old males end of 1923 & 36, 387 & 6, 623 & \\
\hline Natural mortality, \(121 / 2\) per cent & 4, 548 & 828 & 5,376 \\
\hline 3 -y.ear-old males beginning 1924 & 31, 839 & 5,795 & 37,634 \\
\hline 3 -year-old males killed 1924 & 12,525 & 3, 558 & 16,083 \\
\hline 3 -year-old males, Aug. 10, 1924 & 19, 314 & 2, 237 & 21, 551 \\
\hline 4-year-old males, estimated: & & & \\
\hline 3 -year-old males, Aug. 10, 1923 & 19,845 & 2,941 & 22,786 \\
\hline 3 -year-old males killed fall 1923 & 1,009 & 752 & 1,761 \\
\hline 3 -year-old males end of 1923 & 18, 836 & 2, 189 & 21, 025 \\
\hline Natural mortality, 10 per cent & 1,884 & 219 & 2, 103 \\
\hline 4 -year-old males beginning 1924 & 16,952 & 1,970 & 18,922 \\
\hline 4 -year-old males killed 1924 & 222 & 30 & 252 \\
\hline 4 -year-old males, Aug. 10, 1924 & 16, 730 & 1,940 & 18,670 \\
\hline 5 -year-old males, estimated: & & & \\
\hline 4-year-old males, Aug, 10, 1923
4 -year-old males killed fall 1923 & 5,342 & 368
0 & 5,710 \\
\hline & & & \\
\hline 4 -year-old males end of 1923... & 5,335 & & 5, 703 \\
\hline Natural mortality, 10 per cent & - 533 & 37 & \({ }^{570}\) \\
\hline 5 -year-olds beginning 1924 & 4, 802 & 331 & 5,133 \\
\hline 5 -year-olds killed 1924... & & 0 & \\
\hline 5-year-old males, Aug. 10, 1924 & 4,801 & 331 & 5,132 \\
\hline 6 -year-old males, estimated: & & & \\
\hline 5-year-old males, Allg. \(10,1923\). & 9,850 & 762
0 & 10,612 \\
\hline 5 -year-old males killed fall 1923. & & 0 & \\
\hline 5 -year-old males end of 1923... & 9,850 & 762 & 10,612 \\
\hline Natural mortality, 20 per cent & 1,970 & 152 & 2, 122 \\
\hline 6 -year-old males beginning 1924 6 -year-old males killed 1924...... & 7,880
0 & 610
1 & 8,490
1 \\
\hline 6 -year-old males, Aug. 10, 1924. & 7,880 & 609 & 8,489 \\
\hline
\end{tabular}

Complete census of fur seals, Pribilof Islands, as of August 10, 1924-Continued
\begin{tabular}{|c|c|c|c|}
\hline Class & St. Paul & St. George & Total \\
\hline \multicolumn{4}{|l|}{Surplus bulls, 7 years old and over, estimated:} \\
\hline 6-year-old males, Aug. 10, 1923..........-. - & 4,603 & 260 & 4,863 \\
\hline 6-year-old males killed fall 1923. & 0 & 0 & 0 \\
\hline 6-year-old males end of 1923 & 4, 603 & 260 & 4,863 \\
\hline Natural mortality, 20 per cent & 921 & 52 & , 973 \\
\hline 7 -year-old males beginning 1924 & 3,682 & 208 & 3,890 \\
\hline 7 -year-old males killed 1924. & 0 & 1 & 1 \\
\hline 7-year-old males, Aug. 10, 1924 & 3, 682 & 207 & 3,889 \\
\hline Surplus bulls, Aug. 10, 1923. & \[
1,606
\] & 285 & 1,891 \\
\hline Natural mortality, 30 per cent & 482 & 85 & 567 \\
\hline Remaining surplus for 1924 & 1,124 & 200 & 1,324 \\
\hline Breeding bulls of 1923. & 3, 051 & 361 & 3, 412 \\
\hline Natural mortality, 30 per cent & 915 & 108 & 1,023 \\
\hline 1923 bulls remaining 1924 & 2, 136 & 253 & 2, 389 \\
\hline Breeding bulls, 1924---.-.------------------- & 3,127 & 389 & 3, 516 \\
\hline  & 2, 136 & 253 & 2,389 \\
\hline  & 991 & 136 & 1,127 \\
\hline \multirow[t]{2}{*}{} & 3, 682 & 207 & 3,889 \\
\hline & 1, 124 & 200 & 1,324 \\
\hline \multirow[t]{2}{*}{} & 4,806 & 407 & 5, 213 \\
\hline & 991 & 136 & 1,127 \\
\hline Surplus bulls in 1924.- & 3,815 & 271 & 4,086 \\
\hline 50 per cent deducted for losses due to fighting, natural causes, and errors in loss percentage in previous years & 1,907 & 136 & 2,043 \\
\hline Surplus bulls, Aug. 10, 1924 & 1,908 & 135 & 2,043 \\
\hline Pups & 172. 528 & 35,868 & 208, 396 \\
\hline Cows. & 172, 528 & 35, 868 & 208, 396 \\
\hline Harem bulls & 3,127 & 389 & 3,516 \\
\hline Idle bulls.-. & 375 & 15 & 390 \\
\hline Yearling females. & 55,043 & 9, 197 & 64,240 \\
\hline \multirow[t]{2}{*}{Yearling males} & 50, 802 & 8,489 & 59, 291 \\
\hline & 43, 892 & 7,467 & 51, 359 \\
\hline 2-year-old males.. & 39, 011 & 6, 674 & 45,685 \\
\hline 3 -year-old males & 19,314 & 2,237 & 21, 551 \\
\hline 4 -year-old males & 16,730 & 1,940 & 18, 670 \\
\hline \multirow[t]{2}{*}{5-year-old males} & 4,801 & 331 & 5, 132 \\
\hline & 7,880 & 609 & 8,489 \\
\hline Surplus bulls & 1,908 & 135 & 2, 043 \\
\hline Total, 1924 & 587, 939 & 109, 219 & 697, 158 \\
\hline Total, 1923 & & & 653,008 \\
\hline \begin{tabular}{l}
Numerical increase, 192 \\
Per cent increase, 1924
\end{tabular} & & & 44, 150 \\
\hline Per cent increase, 1924. & & & 6.76 \\
\hline
\end{tabular}

\title{
EFFECT OF OIL POLLUTION ON MARINE AND WILD LIFE \({ }^{1}\)
}

\author{
By \\ F. W. Lane, U. S. Bureau of Mines \\ A. D. Baver, U. S. Bureau of Mines \\ H F. Fisher, formerly with the American Petroleum Institute and \\ I'. N. Harding, formerly with the American Stcamship Owners Association
}

CONTENTS



Effect of oil pollution in driving fish from domestic waters_-_----- 172
Toxic properties of oily discharges

Present status of oil pollution




\section*{INTRODUCTION}

During the latter part of 1922 and the early part of 1923 the Bureau of Mines, then in the Department of the Interior, in cooperation with the American Petroleum Institute and the American Steamship Owners Association, conducted an investigation of the pollution by oil of the coastal waters of the United States. Although the investigation was essentially of a technical character, so many complaints and reports were received relative to the deleterious effect of oil pollution on marine and wild life that it became necessary to devote particular attention to this phase of the subject. With the aid of specialists in that line of endeavor the authors have attempted to summarize the situation with respect to the effect of oil pollution on marine and wild life.

The authors wish to acknowledge their indebtedness to the officials of the organizations that cooperated in the investigation as a whole, to the Bureau of Fisheries, and in particular to Dr. H. F. Moore, formerly Deputy Commissioner of Fisheries. They are also indebted to Dr. Thurlow C. Nelson, of Rutgers College, New Brunswick, N. J., and to Dr. David L. Belding, biologist in the department of conservation of the State of Massachusetts. Appreciation is also expressed to other Government departments that aided in the preparation of this phase of the subject.

\footnotetext{
\({ }^{1}\) Appendix V to the Report of the U. S. Commissioner of Fisheries for 1925. B. F. Doc. No. 995. Published by permission of the Director of the Bureau of Mines, Department of Commerce.
}

Attention is called to the fact that this paper deals only with oil pollution as it occurs on the Atlantic and Gulf coasts. No attempt has been made to deal with other forms of pollution or to investigate effects of oil contamination in inland waters.

\section*{GENERAL DISCUSSION}

The effect of oil pollution on marine and wild life has received much attention, due to numerous and widespread reports that the fishing industry, particularly the oyster industry, has been adversely affected, and that large numbers of wild fowl have been killed as a result of oil pollution. In the course of the present investigation the authors endeavored to secure additional information on the subject by means of interviews, inspections, and correspondence.

\section*{ECONOMIC IMPORTANCE OF COASTAL AQUATIC LIFE}

The total value to the fishermen of the fishery products of the United States approximates \(\$ 90,000,000\) annually. The oyster industry alone produces over \(\$ 14,000,000\) worth of food every year, estimated to be the equivalent in food value of 254,000 dressed steers. The most important aspect of the situation, however, lies in the vital importance of aquatic life as a source of food and the possible effect which oil pollution may have upon this source. It is stated that the nitrates and other salts essential for plant growth, which are produced in the decomposition of sewage, and those which are brought to the streams by the leaching action of ground water ultimately pass out to sea and are lost unless utilized in coastal waters as a factor in the growth of marine plants and animals.

\section*{EFFECT OF OIL POLLUTION IN DRIYING FISH FROM DOMESTIC WATERS}

It has been asserted that practically all of our badly polluted waters, where no signs of fish are now to be found, were grood fishing waters before the development of present-day congested manufacturing and shipping conditions. The increasing use of oil fuel is said to be largely responsible for the marked decline of the fisheries in many localities. As indicating that the reduction and control of pollution will be followed by a return of former fishing activities, it has been stated that during the great depression in industrial activities some two or three years ago the closing of entire industrial communities was accompanied by a reduction in pollution of the streams, and consequently fish were again found in quantity in many of their former habitats.

\section*{TOXIC PROPERTIES OF OILY DISCHARGES}

Experiments made by the Massachusetts department of conservation on the effect of industrial wastes on fish life indicated that a mixture of 1 part crude petroleum to 1,000 parts of water did not immediately affect brook trout. \({ }^{2}\) On the other hand, tarry matter

\footnotetext{
\({ }^{2}\) I'ub. Doc. No. 25, Commonwealth of Massachusetts, Annual Report of the Dlvision of Fisheries and Game for the Year Ended Nov. 30, 1922.
}
from gas wastes with a concentration of 1 part in 400,000 killed yellow perch in 12 days. \({ }^{3}\) It may be pointed out that the chemical nature of this tarry matter probably differs from the waste oil from oil-burning steamers.
There is considerable difference of opinion among investigators regarding the toxic effect of oily discharges. One states \({ }^{4}\) that the amounts of petroleum and certain other oils that are sufficient to cause any deleterious effects upon oysters, other than oyster larvae, are surprisingly large. On the other hand, Dr. Thurlow C. Nelson, an authority on the culture of oysters, maintains that oil, gallon for mallon as thrown out, is the most destructive to aquatic life of all foreign substances now entering our coastal waters. \({ }^{5}\)

\section*{EFFECTS OF OIL ON FISH, SHELLFISH, AND FOWL}

Fish, shellfish, and fowl are affected quite differently by oil. So far as the fish are concerned, pollution by oil not only imparts an obnoxious taste, unfitting them for the market, but the gear used in the fishing industry is befouled and injured. One investigator doubts that there is any real proof that oil directly destroys adult fish. He states that the effect of oil on fish may be twofold \({ }^{4}\)-(1) the direct effect on the fish themselves and (2) the indirect effect as shown by changes in environment, food, and migratory habits. He suggests that with regard to migratory fish the presence of oil may deflect them from the coastal waters, and thus affect both the spawning and the fishing industry. As just pointed out, the indirect effect is believed to be brought about largely through the changes that take place in their environment affecting spawning grounds, food, and migratory habits. Unsuitable environment. such as would result from oil waste, may be the direct cause of driving these fish to other waters; or the same effect may be produced indirectly because the smaller fish and the aquatic organisms that serve as their food supply have either been destroyed or driven away.

In connection with the direct effect on fish, the authors desire to state that at least in one instance fish were found struggling in an inclosed body of water badly polluted with oil, apparently suffocating and unable to right themselves and swim away. The harbor master at Bridgeport, Conn., has seen bluefish and mackerel dead in large numbers on the inner side of the inner breakwater, and he can account for this only by the fish coming in contact with the polluted river waters. He stated that boats coming into Bridgeport with large numbers of live cod on board now close the tank holes before entering the harbor. Ordinarily the holes would be left open to insure a free circulation of water for the fish. It was found, however, that when Bridgeport harbor was entered with these holes open over two-thirds of the cod died. It is probable, however, that other industrial wastes besides oil are responsible for much of the damage done.

\footnotetext{
\({ }^{8}\) Marsh, United States Geological Survey, Water Supply Papers 186-192, 1907, p. 337.
4 Personal communication to the authors.
\({ }^{5}\) Personal communication to the authors.
Doctor Nelson's more complete statemrent is given later in thls paper.
}

The effect of oil wastes on shellfish can be more accurately described. \({ }^{4}\) During the first part of its existence, before it sets, the young mollusk is a free-swimming larva in the water. During this stage it is especially susceptible to the slightest change in environment. The presence of oil waste would cause the destruction of these larval forms, which swim immediately beneath the water surface. He believes that oil would kill adult shellfish only when present in considerable amounts. He explained that the process of setting of oysters may be prevented by any slimy material, and the presence of oil would undoubtedly have a deleterious effect in this respect.

Tests have shown that adult oysters can be placed in an appreciable amount of water-gas tar without immediately perishing. Apparently no actual deaths of mollusks from oil wastes have been noted by the Massachusetts division of fish and game, but clams have been rendered mpalatable and unfit for food where oil has contaminated the flats.

The destructive action of oil pollution on fowl was officially report d in California in 1917 and along the eastern coast in 1920 and 1921. It is stated that the birds, either in walking on the flats or resting on the oil-covered water of tide pools, come in direct contact with the material, which tenaciously sticks to their legs, wings, and on the sides of their bodies. As the bird endeavors to remove this material, its neck, head, and beak become more or less contaminated with it. The fathers are matted together, and it is stated that when this occurs with the wings the birds become helpless. Apparently they find it impossible to fly, or at least to fly in the normal manner, and they can only walk or roll over the flats. The oil not only causes matting of the feathers, but is reported to penetrate to the skin, causing irritation. It is said that a bird thus disabled will inevitably perish. Death is stated to be due to the inability to (1) navigate normally, (2) obtain food, and (3) maintain th ir normal body temperature.

The vice president of the American Game Protective and Propagation Association of New York stated that if birds get only a small spot of oil on them death seems to be just as certain though it comes slowly. He has seen many ducks dead with only a small spot of oil on them, and other birds that had only a small patch of feathers matted with oil.

\section*{PRESENT STATUS OF OIL POLLUTION}

It would appear, therefore, that oil pollution has considerable effect upon the edible qualities of aquatic animals and may affect the migratory habits of fish; it is detrimental to shellfish by reason of destroying the larval forms and rendering the adult mollusks unfit for food. With regard to water fowl, it appears to be a canse of considerable destruction, rendering the birds helpless through its mechanical action on the feathers. It has been stated that when birds; are not actually killed as a result of contact with the oil they are rendered unfit for food due to the oil taint.

A survey of the situation along the Atlantic and Gulf coasts indicates that adverse conditions due to oil pollution, as affecting marine and wild life, were widespread, practically every important
coastal water being affected to some extent. Conditions, in general, were at their worst during and immediately following the war, when pollution was undoubtedly at its height. The authors are lea to nelieve that, on the whole, conditions during 1922 were somewnat better than in the preceding year.

While it is possible that considerable destruction of wild bird life may be chargeable to pollution of waters by heavy oil and tarlike deposits, the authors are of the belief that oil pollution is only partly responsible for the losses in the fish and shellfish industries. In the waters adjacent to the important industrial centers it is believed that these losses will be found to be due as much to other industrial wastes as to oil.

OIL POLLUTION AND CONSERVATION OF FOOD RESOURCES
An excellent picture of the effect of pollution on all forms of aquatic life in coastal waters is contained in a paper \({ }^{6}\) by Dr. Thurlow C. Nelson, of Rutgers College, New Brunswick, N. J., read before the laboratory section of the American Public Health Association at San Franscisco, Calif., on September 13, 1920.

Doctor Nelson states that the effects of human wastes and of trade eflluents upon a body of water are entirely different. Domestic sewage usually contains little or nothing that is toxic to aquatic organisms. Putrefactive and other bacteria, aided by a host of animal forms, decompose the sewage and render it available as plant food. The resulting stimulation of plant growth is followed by an increase in numbers and often in size of the animals that feed upon them. Shellfish growing in waters contaminated with human wastes are therefore usually very fat, owing to the presence of great numbers of food organisms which in turn are deriving their nutriment from the products of decomposition of the sewage.

The wastes from factories and manufacturing plants of all kinds present an entirely different problem. Here we are dealing with eftluents which, in general, are highly toxic to aquatic organisms. For convenience these wastes may be divided into four classes: (1) Acid or alkaline, (2) oil and oil waste, (3) various chemical substances in solution, and (4) precipitates held in suspension. Doctor Nelson goes on to point out that oil, by spreading a film over the surface of the water or by coating animals and plants with an impenetrable layer, ultimately kills them, either by direct contact or by preventing free interchange of oxygen and carbon dioxide. It is stated that a film of oil on the surface of the water will kill molluscan larvæ within a few hours, owing largely to the habit of these organisms of swimming close to the surface. In the opinion of this writer the disposal of industrial wastes in such a way as to render the effluents harmless when emptied into a stream and still not impose an undue tax upon the industries concerned is a problem that will require the best efforts of chemists and engineers for years to come.

\section*{REPORTS ON OIL POLLUTION FROM VARIOUS SOURCES}

During the course of this investigation, which was conducted along the coast from Boston, Mass., to Galveston, Tex., the authors held a large number of interviews and received many communications.

\footnotetext{
" "Some aspects of pollution as affecting oyster propagation."
}

Only a very brief account of the more important of these is given herein.
The Bureau of Fisheries wrote to the Director of the Bureau of Mines as follows:
* * *. It is the opinion of the bureau that oil pollutions are detrimental to the coastal fisheries, not only from their destructive and repellant effects on fishes and economic invertebrates but in affecting the products of the fisheries with obnoxious tastes, unfitting them for the market, and in fouling and injuring the gear used in the fishing industry.

A biologist of the division of fish and game, Massachusetts State department of conservation, expressed the opinion that oil will kill adult shellish only when it is present in considerable amounts. On the other hand, the young larvæ would probably be killed by any appreciable quantities of oil. He explained that the process of setting of oysters may be prevented by any slimy material, and oil would undoubtedly have a deleterious effect in this respect. This authority referred to some experimental work on the discharge of wastes from certain gas works into waters at Providence, R. I. The results of this work seem to indicate that under certain conditions shellfish stand a surprising amount of this type of pollution without injury to themselves.

At Providence, R. I., the investigators were told by oystermen that the effect of oil pollution on oysters in that locality is very pronounced. It is questionable just how far the oysters, growing at a considerable distance below the surface of the water, are affected by oil on the surface. In this connection the authors' attention was called to the case against a local petroleum company about three years ago. At the trial a well-known authority presented evidence to show the deleterious effect of oil on oysters, but the defendant had one of the piles pulled up in one of the badly polluted locations and oysters were found growing on the lower portion of it.

At Bridgeport, Conn., officials of an oyster company informed the authors that the last general oyster set in Long Island Sound was in 1914, so that there may be some connection between the disappearance of the oysters in this locality and the introduction of oil as fuel. One of these officials was of the opinion that just as much damage is done by wastes from chemical and other industrial plants as by oil.

A former Connecticut State inspector of oyster beds pointed out that conditions in the waters in the neighborhood of Bridgeport, Conn., are very bad. He believes, however, that these conditions are due as much to sewage and other industrial wastes as to oil. He pointed out that oysters can not be matured in the neighborhood of Bridgeport and therefore the locality is now used merely as a planting ground or seeding area, and when the oysters are partially grown they are transplanted to other localities.

The harbor master at Bridgeport has seen bluefish and mackerel dead in large numbers on the inner side of the inner breakwater, and he can account for this only by the fish coming in contact with the polluted river water.

The manager of an oyster-farm company in Milford, Conn., wrote the authors as follows:

\footnotetext{
We are not affected as much by oil pollution as we are by the combined wastes from factories, municipalities, and oils.
}

He goes on to state that his immediate vicinity has the average number of wild fowl found in emaciated condition and sometimes dead with their feathers saturated with heavy oils. His observations regarding the effects of oil on fish and shellfish coincide closely with the views already given on this subject.

The supervisor of New York Harbor, who has direct administration of the laws relative to the throwing of waste material into the harbor, informed the authors that he had reports that certain fish were now callght in the harbor for the first time in four years.

One investigator writes as follows: \({ }^{4}\)

\begin{abstract}
* * *. I made some rather extended investigations relative to this matter, but my work was all directed to the study of the effect of certain oils upon shellfish, chiefly oysters.

My results can be summarized briefly by saying that the amounts of petroleum and certain other oils that are sufficient to cause any deleterious effects upon oysters, other than oyster lareæ, are suprisingly large. These amounts are far in excess of any quantities that could possibly be held in sand or mud on the bottoms of rivers or bays.
\end{abstract}

According to a report prepared for the authors by E. F. Moran, of New York, fishing in the harbor and adjacent waters had become insignificant by 1921; while an officer of Coast Guard station No. 92 (Rockaway Beach, Long Island), reported that ducks and birds are made helpless when in oil. He had had personal experience with wild fowl unable to fly on account of oil-covered feathers. The vice president of the American Game Protective and Propagation Association, New York, has seen many wild ducks that have come in contact iwith floating oil, both along the seaboard and in the interior. In his opinion this menace to wild water fowl kills thousands of ducks every year. Once the feathers of the bird become coated with oil he is doomed, due to loss of the power of flight and consequent inability to obtain food.

The commissioner of fisheries of the Commonwealth of Pennsylvania wrote as follows:
* * *. This department is very much interested in the subject of oil pollution, not only of navigable waters but of inland waters as well, and our surveys show that in the oil-producing regions very much harm has been done by the wastes from the wells and refineries. This waste not only causes a thin film of oil to float on the surface of the streams, which, of course, is death to the tiny fishes, but it also creates a condition on the bottom of the stream that is detrimental and destructive so far as the natural pronagation of the fish is concerned.

The surveys made by this department along the Delaware River in the tidal section lead us to believe that the oil and sludge from refineries and oilcarrying ressels has done more to destroy fishing in that portion of the river than has any other single cause. It has become so serious during the last few years that this department has been unable to collect any of the spawn of the shad, whereas in former years, before we had this to contend with, we were able to collect anywhere from \(25,000,000\) to \(75,000,000\) eggs during a season, and shad fishing was worth while.

The president of the New Jersey State fish and game commission stated that he was not in a position to furnish authentic data regarding the condition that existed on the New Jersey coast. He has been more concerned with the pollution of inland streams, which affects the planting of fish by his department. He did state, however, that due to industrial and oil pollution from ships the Hacken-

\footnotetext{
- Personal communication to the authors.
}
sack and Passaic Rivers and Newark Bay are in such condition that absolutely no fish life of any kind is in them at the present time, whereas 20 years ago these waters were the habitat of all species of edible fish that were native to this coast.

The director of the department of conservation and development of New Jersey stated that while his department has a general knowledge of existing oil pollution in some of the waters bordering the State it has no specific information that would be of value to the present investigation.

Dr. Thurlow C. Nelson, an authority on the culture of oysters, has submitted to the authors a very complete statement. The following is taken from Doctor Nelson's letter:
* * *. The following observations include only tlose in which it is definitely known that no foreign substances other than oil were present:
1. Oil is, gallon for gallon as thrown out, the most destructive to aquatic life of all the foreign substances now entering our coastal waters. By reason of its physical nature the factor of dilution, which is so important in reducing the harmful effects of other foreign substances, is largely eliminated. Whereas most wastes other than oil arequite uniformly distributed throughout the water, oil is concentrated at two points-on the surface film and at the bottom. Its passage from the surface to the bottom, difficult of comprehension by the layman, is relatively rapid and is accomplished by absorntion on the surface of the particles of dirt, sand, and detritus present in the water. Large amounts of suspended matter are stirred up by winds and currents, and these sink during periods of calm and slack tidal water, carrying down to the bottom a load of oil.

Biologically, the surface and the bottom of our coastal waters are the regions of greatest activity. At the surface free interchange of oxygen and of other gases occurs, and here, at some time in their development are found the eggs or larval stages, or both, of many of the common fish, shellfish, and the plant and animal organisms upon which the young and adults feed. Oil, though it be present in only the thimnest film, is thus brought into contact with the living organisms and kills them either through direct contact or through reducing free oxidation, or through being taken in with the food. Such larve of shellfish as escape the oil at the surface will, when the time comes to attach to the bottom, find this unsuitable on account of the oil which is accumulated there, and will therefore perish.
2. Laboratory experiments have shown that a film of crude oil just sufficient to cover the surface will within an hour cause the death of clam and oyster larve at a temperature of \(75^{\circ} \mathrm{F}\). This apparently is due to the habit of these organisms of feeding for short periods at a time with the cilia of the velum lashing through the surface film. Feeding experiments show that oyster larve will take into the gullet any particles of sufficient fineness, regardless of their nature.

To check these experiments we have the following field observations: Great Bay, N. J., just below the town of Tuckerton, receives the waters of the Mullica River, the largest stream within the State. Situated as they are in the cedar swamps and barren regions of southern New Jersey, neither the Mullica River nor Great Lay receives any sewage or industrial wastes. Aside from an occasional oysterman's shack, there are no settlements on the banks of either, save only a few small settlements near the headwaters of the river many miles above the oyster beds. A large menhaden-oil plant is located on Seven Islands in the eastern part of Great Bay about 2 miles west of New Inlet (Little Egg Harbor Inlet). Until the war this plant was operated in such a manner as to cause no effect on the surrounding waters. From time to time excellent sets of oysters occurred within a short distance of the factory, and sets in the channel below Seven Islands were frequent.

Following the outbreak of the war, late in 1917, this plant began to receive garbage from Atlantic City, which was towed there on great scows. These were anchored alongside the factory sometimes for days, during which, in warm weather especially, large quantities of oil and grease flowed overboard. At times the surface of Great Bay was covered by so heavy a film of oil that oystermen and clammers had difficulty in holding the stales of their tongs, they
were so slippery. Since this plant has been rendering garbage, the only sets of oysters have been in the upper Mullica River some 10 miles from the plant. The former great natural oyster bed at the Gravelling, at the mouth of the river, has not received any set of consequence during this same period, though formerly it was one of the most productive in the State.

We have been studying the Great Bay region since 1900, and during this time there has beeu no apparent change in conditions there other than the change from fish rendering to garbage salvage, as indicated. It is perhaps significant that great numbers of mussel larvæ are found in late April or early May, when the weather is as yet not warm enough to cause much loss of grease from the garbage scows.
3. Regarding the effects of oil upon adult oysters let me cite experiments which I performed in 1920 in preparation for testimony in the case against an oil company at Providence, R. I., in May, 1921. The oysters were kept in two tanks of bay water of known purity ; one tank served as control, the other was kept corered by a film of oil. The water in both tanks was frequently agitated to simulate wave action, and at no time did the oxygen saturation fall below 80 per cent. (It has been shown that oysters do not suffer until the saturation falls below about 30 per cent.) After 15 days the oysters from the two tanks were opened and compared. Those from the oil-covered tank showed marked contraction of the mantle, the blood vessels revealed many bluish nodules characteristic of oysters living under unfavorable conditions, and the bodies of the oysters were distinctly thinner and poorer than those of the controls. Preserved samples of each lot show the difference clearly even now.

Mitchell \({ }^{7}\) failed to find effect of water-gas tar upon oysters. These experiments are opeu to the objection that clear rumning water was used and that practically all of the tar was soon deposited on the sides of the aquarium. If turbid water such as that found on most oyster beds had been used, and if this had been kept in agitation as is the case in wave action, then he would, I am sure, have obtained a different result.
4. Damage to adult oysters from oil is of two kinds-( \(a\) ) a direct result of ingestion of oil along with the minute particles of detritus which form so large a part of the oyster's food, and ( \(b\) ) an indirect result of oil upon the plant and animal organisms that live upon the oyster's shell and which are most important sources of mutriment. Eventually, as more and more oil is carried down to the bottom, the shells of the oysters and the surrounding bottom become so thoroughly impregnated with the oil that the organisms used as food by the oyster can not live and multiply.
5. The rast oyster industry of Maurice River Cove, Delaware Bay, which did a \(\$ 7.000,000\) business last year, is threatened by oil and by oil alone. This region is so far removed from industrial centers as to be practically free from trade wastes, but oil pumped overboard by tankers unloading water ballast and from oil-burning steamships floats in large fields across these valuable beds, and its presence is already demonstrable on the bottom. If the condition continues, the industry in Delaware Bay is bound to follow that in New England and elsewhere.
6. A most striking example of the effects of oil may be seen at low tide on the shores of Staten Island. On a warm day, with consequent increased oxidation, soft clams (Mya) may be seen coming up to the surface of the flats by the thousands, dying soon after reaching the ton. The surface of the flats is covered by a heary film of oil, while the bodies of the animals reek with it. This region, however, receives industrial wastes, and hence is open to more than one interpretation, althongh there is no doubt in my own mind that oil is the chief cause of the destruction evident.

At Baltimore the writers were given the impression that harbor conditions were formerly so bad that the fishing industry was very badly handicapped. Now, however, the trouble is not so serious. Even at the present time it is necessary to go a considerable distance down the bay before it is possible to catch fish and other sea food in large quantities.

\footnotetext{
\({ }^{7}\) Mitchell, P. II.: The Effect of Water-Gas Tar on Oysters. Vol. XXXII, 1912 (1914), pp. 199-206. B. F. Doc. No. 786.

Bull., U. S. Bur. of Fish., Washington.
}

The conservation commission of Maryland, in reporting upon the pollution of navigable waters and the effect on fishes of Chesapeake Bay, states in part:

The effect of oil pollution in Chesapeake Bay, if allowed to continue as it has in some of the northern waters, would destroy our valuable fishery industries entirely as well as kill and drive away the wild fowl.

A most interesting condition was found at Brunswick, Ga., where a terrapin farm is located on a small creek not far distant from the plant of a large oil refining company. The situation of the terrapin farm is such that if any oil is spilled at the dock of the refinery it is very likely to be washed up into the terrapin farm at high tide through one or more of the small creeks emptying into Turtle River. On the day of the writers's visit a hardly perceptible trace of oil was visible in the water of the terrapin farm, but no indications of oil whatever were noticed on any of the wooden structures or on the turtles themselves. The investigators were informed that no fault could be found with present conditions in this location so far as the breeding of turtles is concerned. There appeared to have been no recent complaints from oystermen, and oysters grow freely in all the waters near Brunswick.
At Pensacola it was reported that the fishing industry and oyster beds have been harmed by oil pollution, and at Mobile complaints have been received from duck hunters. These complaints from wild game associations were to the effect that the fowl were covered with oil and unable to fly and at times many of the birds were found dead. The fishing industry of New Orleans has complained to the municipal authorities regarding oil pollution. In the Houston ship channel the absence of marine life is undoubtedly due not merely to the presence of large quantities of oil but also to the fact that the water in this stream is unusually warm. This results from the conditions prevailing in the industrial plants of this locality.

A carefully prepared report was submitted to the authors by Dr. David L. Belding, biologist of the division of fisheries and game, Massachusetts State department of conservation. Certain parts of the report have been used in the preceding pages of this paper Other portions are given here:

During the past two years numerous complaints of oil-waste pollution along our shores, particularly as to its damaging effect upon wild fowl, have been received. Observations by this department have disclosed not only a marked increase in this type of pollution but also a widespread destruction of water fowl, especially during the cold weather. * * *.

Our attention was first called to the destructive action of this material on birds by the distressing plight of the swans on the Charles River in the winter of \(1920-21\), which was mentioned in last year's ammal report. The metropolitan park commission requested the privelege of killing these swans, which had become so covered with black tarry oil that they had become helpleas and starving in the cold weather. A post-mortem examinat on was made on two of these birds in an effort to determine the effect of the oil

In response to a request of this division that all birds found dead under these circumstances be forwarded to the laboratory, pathological examinations were made on murres, auklets, grebes, and ducks during the winter. In spite of the fact that certain specimens were so completely covered with \(o l\) as to make examination impossible, and in others post-mortem changes rendered examination difficult, enough information was obtained to warrant certain conclusions as to the action of the oil wastes.

The birds, either in walking on the flats or resting on the oil-covered waters or tide pools, come into direct contact with the material, which tenaciously
sticks to their legs, wings, and the undersides of the body. As the bird endeavors to remove the clinging material its neck, head, and beak become more or less contaminated with the tarry material. The feathers are matted together, and when th s occurs with the wings the bird becomes helpless. Even by the time the material has to any extent covered the feathers of the birds they have more or less reached this state. They find it impossible to fly, or at least fly in a normal manner, and can only walk or roll over the flats.

At the autopsy practically all the birds showed a similar condition, and a composite description of the findings may suffice for all.

Exterually the birds are covered to a greater or less extent with a black, sticky, tarry oil, apparently a closely related product to crude petroleum. The material is incrusted upon legs, feet, and wings, and the feathers on the undersurface of the body are usually completely covered and matted together with the oil, while patches of the same material are present on the neck and back; as a rule the head and beak are also covered through the attempts of the bird to preen itself. The oil not only causes an adhesion of the feathers but penetrates to the skin at times, evidently causing a slight irritation.

The matting of the wing feathers gives an effect similar to slipping, thus preventing normal flight dependent upon the extent of the involvement. With a tumbling, irregular flight the bird is more likely to become more extensively contaminated with the oil.

Associated with the question of flight and movement is that of obtaining food. In most of the birds examined the stomachs were empty, and in a few instances there was evidence of starvation, indicating that the birds were unable to obtain the food necessary for existence. However, it would seem that death occurred before or during the early stages of starvation, and that lack of food was probably only a contributing factor.

The internal organs were unaffected by disease and showed post-mortem cnanges. No evidence of pneunionia was found in any specimen.

The temperature of birds is slightly higher than that of man and is main. tained through the air sacs and feathers. The latter are especially valuable in conserving body heat, and birds, if deprived of this covering, would be unable to maintain a normal body temperature in cold weather. The matting together of the feathers deprives them to some extent of their heat-protecting function and makes the birds more readily susceptible to severe weather.

No distinction was noted between the species of water fowl which frequent the oil-covered flats and shores. All seemed to be equally incapacitated. Small birds, however, are more likely to receive a relatively greater covering of oil and therefore may perish sooner than the larger ones.

\section*{CONCLUSION}

Marine life and aquatic birds along the Atlantic and Gulf coasts have suffered seriously from pollution of waters by petroleum oil, but other industrial wastes are undoubtedly responsible for much of the damage done. This is a serious problem, primarily because of the vital importance of aquatic life as a source of food. Oil pollution is detrimental to shellfish by destroying the larval forms and rendering the adult mollusks and finny fish unfit for food. It causes considerable destruction of fowl, rendering the birds helpless through its mechanical action on the feathers.

Fig. 1.-Fulton Fish Market, looking north on South Street

\section*{WHOLESALE TRADE IN FRESH AND FROZEN FISHERY PRODUCTS AND RELATED MARKETING CONSIDERATIONS IN NEW YORK CITY.'}

\author{
By R. H. Fiedler, Agent, U. S. Burcau of Fisheries, and J. H. Matthews, Production Manager, Atlantic Coast Fisheries Co.
}

\section*{CONTENTS}
\begin{tabular}{|c|c|}
\hline & Page \\
\hline Introduction. & 183 \\
\hline Fulton Market & 184 \\
\hline Sources of supply of fishery products. & 185 \\
\hline Metropolitan recei ving points & 186 \\
\hline Freight and express shipments & 186 \\
\hline Live fish & 191 \\
\hline Shipments by vessel & 191 \\
\hline Production & 191 \\
\hline Shipments by motor truck & 192 \\
\hline Reshipment of fishery products & 192 \\
\hline Future development of the wholesale fish & \\
\hline trade ----------1. & 193 \\
\hline Congestion & 193 \\
\hline Vehicular tunnel under constr & 194 \\
\hline Inland freight terminals & 194 \\
\hline Building replacement & 194 \\
\hline Summary & 195 \\
\hline Local marketing. & 195 \\
\hline Sales methods & 195 \\
\hline Common and scientific names of fishery products & 196 \\
\hline Salt-water fish market. & 198 \\
\hline Products handled. & 198 \\
\hline lmportant commercial species.. & 198 \\
\hline
\end{tabular}

\section*{INTRODUCTION}

The present survey is the seventh of a series of trade investigations made by the Bureau of Fisheries, the cities previously canvassed being Louisville, Ky., Pittsburgh, Pa., Chicago, Ill., Minneapolis and St. Paul, Minn., Seattle, Wash., and Boston, Mass. The following report is based on conditions existing during the calendar year 1924.

The authors wish to express their appreciation to the wholesale fish trade, the American Railway Express Co., and officials of various railway companies, all of New York City, for their interest, enthusiastic cooperation, and the many courtesies extended while the information for this survey was being collected. Thanks are especially due to Capt. Frederick William Wallace, editor of the Fishing Gazette; Joseph Weber, traffic manager of the Chesebro Bros. \& Robbins Co.; and Sol Broome, manager of the Lakeside Fish Co., all of New York City, for supplying valuable data which have contributed largely to the success of this undertaking.

\footnotetext{
\({ }^{1}\) Appendix VI to the Report of the U. S. Commissioner of Fisheries for 1925. B. F. Doc. 996.
}

\section*{FULTON MARKET}

The wholesale fresh and frozen fishery trade in New York City is conducted almost exclusively in the several blocks adjacent to the foot of Fulton Street in the area known as the Fulton Fish Market. This market occupies the foremost position among the wholesale


F'IG. 2.-Wholesale fish-market area in New York City, showing Fulton and Peck Slip markets
fresh-fish markets of the United States, and whatever may be done to better conditions there and to handle the trade more efficiently will be reflected over the entire country. Nearly every shipper of fish has at one time or another sent his product to this market, which serves approximately one-fifth the population of the United States.

Fulton Market was established at its present location a little over 100 years ago, at a time when the population of New York City centered at the lower end of Manhattan Island, when there were no railroads, and when fishery products arrived entirely by boat. It catered to both the retail and the wholesale trade and was strategically located at the foot of Fulton Street, which at that time was the main artery through New York City to Fulton Ferry, the important means of travel to Brooklyn.

Since the building of Brooklyn Bridge traffic has been diverted to it and to other bridges built subsequently. The withdrawal of the transient trade and the vast growth of the city's population caused the retailers to follow the trade and to seek more advantageous sections, leaving the wholesale trade concentrated in its present location.

As New York City increased in size new firms engaged in the fish business, new buildings were erected, old buildings were remodeled to suit the needs of a fishery business, and Fulton Fish Market developed into the greatest fish-distributing center in the United States, constituting one of the largest industries in the metropolitan district.

In 1924 there were 87 wholesale establishments engaged in handling \(394,000,000\) pounds, or more than 19,000 carloads, of fresh and frozen fishery products of 106 varieties, with a wholesale value of approximately \(\$ 30,000,000\). The total investment amounted to \(\$ 2,577,484\), and the cash or working capital to \(\$ 592,900\). There were 1,163 persons engaged in this trade, receiving \(\$ 2,250,705\) in wages.

The present greatly enlarged wholesale-market area is still located in its original position on the East River water front at the foot of Fulton Street, Beekman Street, and Peck Slip. It has no direct rail communication with any freight or express terminals, but for the accommodation of fishing smacks and steam trawlers there are two piers extending into the East River from the rear of the market.

\section*{SOURCES OF SUPPLY OF FISHERY PRODUCTS}

The bulk of the fresh and frozen salt-water fish received at the market is taken on the offshore banks and in the shore fisheries of the Atlantic seaboard from Newfoundland to Key West. Large quantities are also received from the waters of the North Pacific, being reshipped through the ports of Seattle, Wash., and Prince Rupert, B. C. Smaller quantities are received from the waters of the Gulf of Mexico and California.

Most of the oysters are received from Long Island points; the bulk of the clams come from points along the Atlantic seaboard; shrimp are sent from the South Atlantic coast and the Gulf of Mexico; and scallops are shipped in from waters adjacent to Massachusetts, Long Island, and North Carolina.

The bulk of the fresh and frozen fresh-water fishery products received in the market is taken from the Great Lakes and Canadian lakes territory, though large quantities are also received from the Mississippi River and its tributaries. Lesser quantities originate in nearly every producing area for fresh-water fish in the United States.

\section*{METROPOLITAN RECEIVING POINTS}

\section*{FREIGHT AND EXPRESS SHIPMENTS}

Although most of the fresh and frozen fishery products for delivery in New York City are received at various freight, express, and steamship terminals in the metropolitan district, Fulton Fish Market has no direct rail communication with any of these terminals.

Table 1.-Fishery products received at Fulton Fish Market, New York City
\begin{tabular}{c|r|r|r}
\hline \hline Terminals & & \\
\hline
\end{tabular}
\({ }^{1}\) Includes weight of oysters and clams in the shell.
\({ }^{2}\) The net weight of these fishery products, exclusive of oyster and elam shells, is about \(346,000,000\) pounds, consisting of \(280,000,000\) pounds of salt-water fish, \(60,000,000\) pounds of fresh-water fish, and \(6,000,000\) pounds of shellfish.

Except for 2 express and 1 freight terminal on Manhattan Island, the majority of the railroads terminate at Jersey City, Hoboken, or Weehawken. During 1924 approximately \(322,000,000\) pounds or 82 per cent of the total tonnage of fresh and frozen fishery products received in New York City arrived by freight and express in 16 terminals of 7 districts. Of the total receipts in New York City, 31 per cent arrived at express terminals on the lower center of Manhattan Island, 23 per cent at freight terminals along the North River on the southwestern portion of Manhattan Island, 17 per cent at freight and express terminals of Jersey City and Hoboken along the North River, 8 per cent at freight terminals in the Bronx, 2 per cont at express terminals in Long Island City, two-tenths of 1 per cent at express terminals in Weehawken, and eight-tenths of 1 per cent at a pier about one block from Fulton Market.

The transportation charge for shipments arriving by express in less-than-carload lots includes delivery by the express company from the terminal to the consignees' door. When shipments are received in express carload lots and nondelivery from terminals to consignees' door is specified, a charge is made by the express company for such delivery. All freight carload and less-than-carload shipments are


Fig.3.-Relation of fish-receiving terminals in the metropolitan area to Fulton Fish Market. (See table, p. 186, for amount of fish received at each terminal.)
privately trucked from the various freight terminals to Fulton Fish Market. In this latter case the extra transportation charge is about 20 cents per 100 pounds.

Based on this transportation charge of 20 cents per 100 pounds, about \(\$ 644,000\), or about 2 per cent of the wholesale value of the fishery products sold in 1924, was expended in haulage charges for transfer of freight and express goods from the various terminals
to Fulton Fish Market. Of this amount the wholesalers paid \(\$ 296,800\) on freight shipments, while the cost to the express company was \(\$ 347,200\).

The final burden of this intracity transportation cost is placed upon the fisherman shipping his products on consignment, as all charges incidental to getting his product to the market are deducted


Fig. 4.-Percentage of arrivals of fishery products at each fish-receiving district of the metropolitan area
from the selling price. This expense contributes to making it unprofitable, as a rule, for fishermen to ship certain inexpensive and plentiful varieties of fishery products to Fulton Market. A notable instance is the whiting, which usually sells for a low price, the profit on a barrel oftentimes being not more than sufficient to pay the intracity transportation charges.


Fig. 5.-Mode of transporting fishery products to the metropolitan area, by percentages


Fig. 6.-Distance volume movement of fishery products from the various receiving terminals in the metropolitan arca to Fulton Fish Market, by percentages

Fishery products arriving at terminals in New York City during the hours of the day-from 9 a. m. to 5 p. m.-are subject to delay, due to congestion at the railroad terminals. Fish shipments are given preference by the transportation companies, however, and cars containing such consignments are so placed in the terminal yards that immediate delivery to waiting motor trucks may be effected. The progress of motor trucks through the congested streets of lower Manhattan en route to Fulton Market is necessarily slow during the busy hours of the day, and such delays have proved costly to both dealers and shippers. Dealers invariably advise the producers to ship their fish so that they will arrive in New York during the hours of the night, thus avoiding all intracity congestion and receiving the additional advantage of early morning sale. At present about 70 per cent of the rail shipments are delivered before \(7 \mathrm{a} . \mathrm{m}\).

The selling price of fishery products at Fulton Market is governed by the quality, size, and volume on hand, as well as by the time of arrival at the market. A delay of an hour may bring a lower price and therefore a smaller return to the producer. Occasionally a higher price is obtained because a shipment of a desired variety has been temporarily delayed in transit and arrives on a scarce market, but usually delayed arrivals suffer.

Two shipments of fish similar in character, size, and quality from the same point of origin, shipped to the same firm on the same day, may reach the market at different hours of the day, and as a result the returns to the two shippers may be quite different. This is especially true of fresh-water fish sold at auction in Peck Slip. About \(7 \mathrm{a} . \mathrm{m}\). the buyers assemble in the street in front of the establishments and await the trucks of fish. Upon the arrival of the first truck each individual shipment is auctioned directly from the truck to the buyers gathered round. By \(10 \mathrm{a} . \mathrm{m}\). the buyers have usually secured their stocks. In such cases a shipment arriving at the market at 11 a. m. would be held over for sale on the next day, undergoing some deterioration. This shipment in all likelihood, unless properly refrigerated, would sell for a few cents less per pound than if it had been offered for sale on the previous day.

It is believed that delays such as those which now occur in Peck Slip could be materially reduced should the express trucks unload upon arrival at the consignees' door, instead of waiting until each individual shipment is sold. If this were done more trips per day could be made by these trucks, and consequently more shipments could be delivered.

In any fish market, in order to attract business, it is to the interest of the wholesale fish trade to provide efficient marketing conditions. The producer is entitled to speedy and careful handling of his products to insure maximum returns. The producer should not be expected to take every precaution to assure his product arriving at the terminal in the best condition and then have his products suffer at the market from inefficient and slow handling. A market well located and mechanically equipped to give the best service will attract business. It is to the interest of the producer to ship his product to the market rendering him the most efficient and satisfactory service. Furthermore, his satisfaction will induce his neighbors to follow his example.

\section*{LIVE FISH}

During 1924, 244 carloads of live fish, totaling 5,549,779 pounds, were received in New York City, consisting almost entirely of carp and buffalofish. They originated as follows: Eighty-four carloads from Ohio, 55 from Minnesota, 41 from Wisconsin, 33 from Michigan, 16 from Illinois, and 15 from Iowa. Such fish are shipped in specially constructed aerated tank cars, and upon arrival at the terminals in New York City are transferted to tanks of cold water aboard motor trucks and carried to the local retailer or wholesaler, where they are stored in live tanks and held pending sale. During the holiday season live eels are shipped down the Hudson River from the north on barges, and are unloaded at the market pier into live tanks.

\section*{SHIPMENTS BY VESSEL}

Direct shipments by fishing vesesls and boats are unloaded at the piers of Fulton Market. These piers, although small for the amount of business transacted, can accomodate 50 to 75 boats and vessels. As each vessel is unloaded the fare is weighed and immediately iced and packed in containers, and then loaded on waiting trucks for distribution to firms in Fulton Market, at shipping terminals, or to retailers in the metropolitan area.

\section*{PRODUCTION}

New York City is one of the most important fishing ports in the United States. The direct landings of fresh fish by fishing vessels of over 5 tons net during 1924 amounted to \(35,020,585\) pounds, as compared with \(130,631,036\) pounds at Boston and \(29,263,323\) pounds at Gloucester, Mass., and \(15,927,190\) pounds at Portland, Me. There was an increase of 719,985 pounds over 1923 and 14,331,235 pounds over 1922. The total direct landings for 1924, including vessels and boats of all sizes, is estimated at over \(50,000,000\) pounds, or about 13 per cent of the total fresh and frozen fishery products received in New York City. The large increase during the past few years has been due mainly to the additon of several steam trawlers having New York City for their home port, and to the fleets of other ports that bring their catches to this market.

The following table shows, by months and species, the quantity of fresh fish landed at Fulton Market by fishing vessels during the year ended December 31, 1924 :

Table 2.-Statement, by months, of fishery products landed at Fulton Market by fishing vessels during the calendar year 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & \multicolumn{2}{|r|}{Bluefish} & \multicolumn{2}{|r|}{Cod} & \multicolumn{2}{|r|}{Flounders} & \multicolumn{2}{|l|}{Haddock and mixed fish} & \multicolumn{2}{|r|}{Mackerel} \\
\hline & Trips & Pounds & Trips & Pounds & Trips & Pounds & Trips & Pounds & Trips & Pounds \\
\hline January & & & 18 & 72, 100 & & 160, 000 & 15 & 1,123, 000 & & \\
\hline March & & & 8 & 136, 800 & 32 & 754, 000 & 14 & 1, 119, 000 & & \\
\hline March & & & 8 & 53, 000 & 48 & 940, 000 & 18 & 1, 696, 000 & & \\
\hline April & & & 2 & 14, 000 & 79 & 1,374, 000 & 17 & 1,684,000 & 28 & 931, 000 \\
\hline May & & & 3 & 33, 000 & 74 & 1,438, 200 & 8 & 882, 000 & 256 & 1,691,385 \\
\hline June & & & 15 & 226, 500 & 59 & 1,174, 000 & 8 & 820,000 & 45 & 392, 800 \\
\hline July & 5 & 11,300 & 18 & 293, 000 & 73 & 1, 452,500 & 9 & 896, 000 & & \\
\hline August & 35 & 96, 500 & 17 & 289, 000 & 83 & 1,521, 000 & 8 & 610,000 & & \\
\hline Septermber & 5 & 2,800 & 15 & 271,000 & 90 & 1,988,000 & 9 & 796, 000 & & \\
\hline October. & & & 13 & 22s, 000 & 83 & 1, 671, 500 & 17 & 1,481, 000 & 2 & 31, 400 \\
\hline November & & & 2 & 20, 000 & 38 & 581, 000 & 17 & 1, 517, 000 & & \\
\hline Decemb & & & 11 & 49, 500 & 13 & 227, 000 & 22 & 1, 825, 000 & & \\
\hline Tot & 43 & 110,600 & 130 & 1,685, 900 & 680 & 13, 281, 200 & 162 & 14, 449, 000 & 331 & 3,046, 585 \\
\hline
\end{tabular}

Table 2.-Statement, by months, of fishery products landed at Fulton market by fishing vessels during the calendar year 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & \multicolumn{2}{|l|}{Sea bass and porgies} & \multicolumn{2}{|r|}{Tilefish} & \multicolumn{2}{|r|}{Weakfish} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Miscellane- } \\
& \text { ous } 1
\end{aligned}
\]} & \multicolumn{2}{|r|}{Total} \\
\hline & Trips & Pounds & Trips & Pounds & Trips & Pounds & Trips & Pounds & Trips & Pounds \\
\hline January - & & & & 136, 000 & & & & & 47 & 1, 491, 100 \\
\hline February & & & 10 & 215, 000 & & & 1 & 25, 000 & 65 & 2,249, 800 \\
\hline March & & & 11 & 266, 000 & & & & & 85 & 2, 955, 000 \\
\hline April & & & 14 & 327, 000 & & & 1 & 15,000 & 141 & 4, 345, 000 \\
\hline May & & & 5 & 118, 000 & & & & & 346 & 4,162,585 \\
\hline June & 11 & 377, 000 & & & & & 1 & 5,000 & 139 & 2,995, 300 \\
\hline July & 16 & 325, 300 & & & & & & & 121 & 2,978, 100 \\
\hline August & 6 & 64, 000 & & & 1 & 24,000 & & & 150 & 2,604,500 \\
\hline September & 7 & 41, 500 & & & 2 & 12,000 & & & 126 & 3, 111, 300 \\
\hline October & & & & 50, 000 & 10 & 143, 000 & & & 127 & 3, 604, 900 \\
\hline November & & & 4 & 68,000 & 10 & 141, 500 & & & 71 & 2, 327, 500 \\
\hline December & & & 4 & 82, 000 & 1 & 12,000 & & & 51 & 2, 195, 500 \\
\hline Total & 40 & 807, 800 & 56 & 1,262, 000 & 24 & 332, 500 & 3 & 45, 000 & 1,469 & 35, 020,585 \\
\hline
\end{tabular}
\({ }^{1}\) Miscellaneous fish are butterfish, croakers, and pollock.
Unregistered vessels of less than 5 tons landed probably in excess of \(15,000,000\) pounds of fish and lobsters during the year, but no record was kept of the landings of these boats. It is estimated that more than \(50,000,000\) pounds of fish were landed by vessels and boats during 1924.

\section*{SHIlMENTS BY MOTOR TRUCK}

About \(22,000,000\) pounds of fishery products caught in the waters of Connecticut, Long Island, and New Jersey are delivered to Fulton Market by motor trucks unloading their goods directly at the wholesale establishment. This mode of transporting fishery products, especially from near-by points, is rapidly increasing. The service is efficient in that it does away with rehandling at the local terminals, and it is quick because the motor trucks travel mainly at night. Fishery products caught in the afternoon are delivered at the market early the following morning. For short hauls there is every reason to believe that this method of transportation will become more and more popular with the fish wholesalers. Arrivals by motor truck constitute about 5 per cent of the total tonnage of fresh and frozen fishery products received in New York City.

\section*{RESHIPMENT OF FISHERY PRODUCTS}

Although New York City is centrally located on the Atlantic seaboard and has direct rail communication with most of the important inland centers, only about 19 per cent, or \(67,000,000\) pounds, of the edible fresh and frozen fishery products received are reshipped to these centers. The States of New York, Pennsylvania, Connecticut, Rhode Island, and New Jersey receive most of these shipments, the vast majority being sent by less-than-carload express and auto express. Very little is sent farther than 200 miles, although a few carloads were reshipped during 1924 to points as far west as Chicago and St. Louis.

Cod, haddock, flounder, and mackerel predominate among the varieties reshipped. It will be noted that these varieties constitute a large majority of the first landings at the Fulton Market pier.

Steamships and railroad dining cars departing from New York carry large quantities aboard for the use of the passengers and crews, totaling about \(4,000,000\) pounds, or 1 per cent of the amount received in New York City during 1924.


Flis. 7.-Pier in rear of Fulton Fish Market. Steam trawler (in foreground) unloading fare


Fis, s.--Packing fish in barrels after being unloaded from a steam trawler


Quantities of fresh fish and shellfish, consisting largely of salmon and oysters, were exported to such European countries as England and France. This trade is gradually increasing, the exports for 1924 being about \(4,000,000\) pounds, or 1 per cent of the amount received in New York City during 1924, valued at \(\$ 508,390\), as compared with about 2,000,000 pounds, valued at \(\$ 257,647\), for 1923 . With market conditions in foreign countries assuming a more stable form, it is expected that the fishery export trade will become an important factor with New York City whosesalers.

Approximately 75,000,000 pounds, or 21 per cent of the edible fishery products received in New York City, are reshipped to points outside the metropolitan area. Most of the domestic shipments are carried by the express com-


Fig. 9.-Disposition of fresh and frozen fishery products received at Fulton Fish Market, by percentages pany. It is estimated that it costs that company about \(\$ 150,000\) to transfer these goods from Fulton. Market to the terminals from whence they are shipped.

\section*{FUTURE DEVELOPMENT OF THE WHOLESALE FISH TRADE}

\section*{INCREASING VESSEL LANDINGS}

Taking into consideration the steady increase in vessel landings during the past few years and the continued growing demand for ground fish for filleting purposes, it appears that direct vessel landings will become larger. The two piers at Fulton Market are already overburdened, and it is questionable whether they can accommodate more business. However, some property has been acquired adjacent to Fulton Market along the water front, and facilities for handling consignments by water and rail are being extended.

\section*{CONGESTION}

With the increasing transient office population on lower Manhattan Island in the vicinity of Fulton Market, due to the construction of larger and higher office buildings, vehicular traffic will necessarily become more and more congested. As it is essential for vehicles bearing fishery products to pass through this district en route from the receiving terminals to Fulton Market, it is probable that the time consumed in intracity transportation will be increased, making for possible further delays and opportunity for spoilage.

\section*{VEHICULAR TUNNEL UNDER CONSTRUCTION}

This tunnel, to be completed in the fall of 1926, is being constructed under the Hudson River and connects the Jersey City and lower southwest Manhattan fish-receiving districts. There will be two 20 -foot roadways, one for each direction of traffic. The entrance plaza on Manhattan Island is at Broome Street, midway between Varick and Hudson Streets, while the exit is at Vestry and Canal Streets. The entrance plaza at the New Jersey end is at Provost and Twelfth Streets, while the exit is at Provost and Fourteenth Streets. The tunnel will be 9,250 feet long and will have a capacity estimated at 3,800 vehicles hourly, or 46,000 daily. Upon completion of the tunnel, traffic between Manhattan Island and New Jersey will be expedited and congestion minimized.

\section*{INLAND FREIGHT TERMINALS}

A system of inland freight terminals has been proposed by the Port of New York Authorities to relieve congestion on Manhattan Island. Their plan involves the stopping of freight at the railheads west of the Hudson River, and provides that this freight be moved by rail-road-operated street trucks via underground tunnel or ferry to freight terminals located in various districts on Manhattan Island or brought direct to the consignees' door. The tunnel that is being constructed under the Hudson River will greatly aid such a plan.

According to this plan a freight terminal probably will be erected in the vicinity of Pearl and Fulton Streets, which is about three blocks from Fulton Market. Incoming fishery shipments will be delivered at this terminal by railroad-operated motor trucks, to be picked up later by the wholesalers' trucks for delivery to their own establishments. Outgoing shipments for any railroad will also be carried to these terminals. Under this system long hauls would be eliminated.

The charges for delivery from the railheads to the inland terminals will be included in the railroad tariff, and the rate will be figured from the point of origin to the terminal on Manhattan Island.

A similar plan has already been inaugurated by several railroads, the New York, New Haven \& Hartford being a notable example. Carload shipments of fish shipped on this railroad from Boston enjoy a through rate from Boston to Fulton Fish Market. Such shipments are carried by rail from Boston to the Bronx and by motor truck from the Bronx to Fulton Fish Market. Service by this method is efficient and quick.

An objectionable feature of the plan is that it necessitates the extra handling of shipments at the inland terminal. Various wholesalers are of the opinion that the intracity congestion could be lessened materially by having freight fishery shipments originating on all railroads switched to a common classification yard west of the Hudson River, and moved thence by truck directly to Fulton Fish Market.

\section*{BUILDING REPLACEMENT}

Many of the wholesale fish firms are conducting business on the ground floor of old brick buildings. If the wholesale fish business in New York City is to keep pace with existing sanitary regulations,

Fig. 10.-Loading and unloading space in front of Fulton Fish Market
U. S. B. F. Doc. 996


Fig. 11.-Loading and nnloading space in front of Peck Slip Fish Market, To the left are several groups of buyers bidding on fish still on the waiting motor trucks


Fig. 12,- Iuctioning fish at Peck Slip Fish Market
and is to follow the trend of the fish business, which calls for improved methods of handling fish in the wholesale fish markets, new buildings will be necessary in the near future.

\section*{SUMMARY}

The prime requisites for an up-to-date wholesale fish market that is both a receiving and distributing center may be summed up as follows:
1. It should have direct rail communication with the important railroads carrying fishery products.
2. If it receives fish from fishing vessels and boats it should have suitable docking facilities.
3. There should be ample room for adequately handling the volume of present business and provision for future expansion.
4. The market should be located within easy reach of retail markets, hotels, restaurants, and population centers.
5. It should be centrally located with respect to foreign import and export facilities.
6. Business should be conducted under the most sanitary conditions possible, and devices for speedy and efficient handling of the products should be provided.

Fulton Fish Market already enjoys several of the prime requisites noted above. It will be near the proposed inland freight terminal and it is located on the water front, comparatively near the population centers, and near import and export facilities.

\section*{LOCAL MARKETING}

The wholesale fresh and frozen fisheries trade in New York City is conducted in two separate markets. One, the Fulton Fish Market, handles salt-water fishery products, while the other, known as Peck Slip, handles fresh-water fishery products. Incoming fishery shipments arriving at the various freight or express terminals are delivered by motor trucks or drays to these markets during the entire 24 hours of the day, including Sunday. The greater portion arrives during the early morning hours.

\section*{SALES METHODS}

Most of these shipments are sold on commission, the salt-water varieties of fish being sold in the open market in competition, while the fresh-water varieties are sold largely by auction to the highest bidder. Quantities are sometimes bought outright from the producers by the wholesalers, and the latter in turn sell on their own account.

With consignment goods, each container is labeled with a mark or number before being placed in the section of the stand or department handling that particular variety of goods. The retailer or jobber visits the stalls of the various firms and selects the products he wishes to purchase. When a sale is made the salesman calls to the clerk stationed in the sales office the mark or number of the consignment, the weight, price, and name of the purchaser. If the goods are sold to a dealer doing business in the metropolitan area delivery is made by the wholesaler to the customer's truck, or if sold to an out-of-town customer the package is prepared for shipment by express or freight, as the case may be.

Of the fishery products received at the various terminals, very little is for shipment direct to stores, retailers, restaurants, or individuals. Any fish so received is of the year-round variety, such as cod, halibut, and haddock. The principal buyers of such products are large department stores, chain grocery stores, and a few of the larger hotels.

The quantity of fish handled in the market is very much greater early in the week, business being practically over by Thursday night. The reverse is true of the retailer, who spends the early days of the week at the wholesale market buying fish to sell in his retail establishment on Thursday and Friday.

On a busy day the market presents a picture of congestion. Early in the morning several hundred buyers may be seen making purchases. The sidewalk and street in front of each place of business are piled high with boxes and barrels of fishery products, and the centers of the streets are congested with traffic, which retards the progress of incoming and outgoing shipments. By 10 o'clock the local business is practically over for the day, after which out-of-town orders are filled and shipped.

Considering the large volume of fish handled in the wholesale market, the amount of floor space utilized is comparatively small. This is due to the rapid turnover, the fish in many instances being sold immediately after it is unloaded from the express company's trucks or from the vessels.

\section*{COMMON AND SCIENTIFIC NAMES OF FISHERY PRODUCTS}

Following is a list of common and scientific names of the fishery products handled in the wholesale fish markets of New York City to which reference is made in this report:

SALT-WATER FISHERY PRODUCTS
\begin{tabular}{|c|c|c|}
\hline Common name & Other common names & Scientific name \\
\hline Albacore & & \{Germo alalunga. \\
\hline Bluefish & & Gymmosarda all \\
\hline Blue runner & Hardtail & Caranx chrysos. \\
\hline Bonito & Bonito mackerel & Sarda sarda. \\
\hline Butterfish & & Poronotus triacanthus. \\
\hline Cod. & & Gadus callarias. \\
\hline Croaker & Hardhead & Micropogon undulatus. \\
\hline Dab & & Hyppoglossoides platessoides. \\
\hline Drum, black & Drum & Pogonias cromis. \\
\hline Drum, red & Spot bass--.-------- & Scixnops ocellatus. \\
\hline Eel & Common eel, silver eel. & Anguilla rostrata. \\
\hline Flounder & Winter flounder, roughback. & Pseudopleuronectes americanus. \\
\hline Fluke & Summer flounder,
turbot. & Paralichthys dentatus. \\
\hline Grouper & & Epinephelus mycteroperca. \\
\hline Haddock & & Melanogrammus æglifinus. \\
\hline Hake, red & \begin{tabular}{l}
Squirrel hake \\
Ling
\end{tabular} & \begin{tabular}{l}
Urophycis chuss. \\
Urophycis tenuis.
\end{tabular} \\
\hline Hake, whit & Ling. & \begin{tabular}{l}
Urophycis tenuis. \\
Hippoglossus hippoglossus
\end{tabular} \\
\hline Herring, large & \(\left\{\begin{array}{c}\text { Sea herring, river } \\ \text { herring, alewife. }\end{array}\right.\) & \begin{tabular}{l}
Pomolobus sp. \\
Clupea harengus.
\end{tabular} \\
\hline
\end{tabular}

SALT-WATER FISHERY PRODUCTS--Continued
\begin{tabular}{|c|c|c|}
\hline Common name & Other common names & Scientific names \\
\hline Herring, small & Sardine & Clupea harengus (young). \\
\hline Jewfish_.. & & Promicrops guttatus. \\
\hline Kingfish & King mackerel, cero- & Scomberomorus regalis. \\
\hline King whiting & Kingfish -------- & Menticirrhus sp. \\
\hline Mackerel Mullet & Jumping mullet & Scomber scombrus. \\
\hline Permit & Great pompano. & Trachinotus goodei. \\
\hline Pilotfish & & Naucrates ductor. \\
\hline Pollock & & Pollachius virens. \\
\hline Pompano & & Trachinotus carolinus. \\
\hline Red snapper & & Lutianus blackfordi. \\
\hline Rosefish. & Bream, red bream. & Sebastes marinus. \\
\hline Salmon, Atlanti & & Salmo salar. \\
\hline Salmon, Pacific & & Oncorhynchus sp. \\
\hline Scup- & Porgie & Stenotomus chrysops. \\
\hline Sea bass & Blackfish & Centropristes striatus. \\
\hline Sea gar & Billfish & Tylosurus marinus. \\
\hline Sea robins & & Prionotus sp. \\
\hline Sea trout, spotted & Spotted squeteague.- & Cynoscion nebulosus. \\
\hline Shad--- & & Alosa sapidissima. \\
\hline Skate.- & & \begin{tabular}{l}
Archosargus probatocephalus. \\
Raja sp.
\end{tabular} \\
\hline Smelt & & Osmerus mordax. \\
\hline Sergeantfish & Snook & Centropomus sp. \\
\hline Sole. & Fluke, lemon sole, gray sole. & Glyptocephalus cynoglossus. \\
\hline Spanish mackerel & & Scomberomorus maculatus. \\
\hline Spot_ & Lafayette & Leiostomus xanthurus. \\
\hline Striped bass & & Roccus lineatus. \\
\hline Sturgeon- & & Acipenser sturio. \\
\hline Swordfish & & Xiphias gladius. \\
\hline Tautog & Blackfish & Tautoga onitis. \\
\hline Tilefish & & Lopholatilus chamaeleonticeps. \\
\hline Tomcod & & Microgadus tomcod. \\
\hline Weakfish- & Sea trout, squeteague & Cynoscion regalis. \\
\hline Whitebait & Spearing & Menidia sp. \\
\hline White per & & Morone americana. \\
\hline Whiting & Silver hake & Merluccius bilinearis. \\
\hline Clam, hard & Quahaug & Venus mercenaria. \\
\hline Clam, soft Conch & & Mya arenaria. \\
\hline Crab. & Blue crab, hard crab, soft crab. & Callinectes sapidus. \\
\hline Crab, rock & & Cancer sp. \\
\hline Lobster & & Homarus americanus. \\
\hline Mussel & & Mytilus edulis. \\
\hline Octopus & Devilfish & Octopus vulgaris. \\
\hline Oyster & & Ostrea elongata. \\
\hline Scallop, bay & & Pecten irridians. \\
\hline Scallop, sea & Giant scallop & Pecten majellanicus. \\
\hline Sea urchin & & Echinodea sp. \\
\hline Shrimp & & Peneus setiferus. \\
\hline Squid & Boned squid & Loligo sp. \\
\hline Terrapin & & Melaclemmys. \\
\hline Turtle, green & & Chelonia mydas. \\
\hline Turtle, sea & Loggerhead & Thalassochelys caretta. \\
\hline Winkle.- & Periwinkle & Littorina littorea. \\
\hline
\end{tabular}

FRESH-WATER FISHERY PRODUCTS
\begin{tabular}{|c|c|c|}
\hline Common name & Other common names & Scientific name \\
\hline Bass, calico & Strawberry bass & Pomoxis sparoides. \\
\hline Bass, rock & & A mbloplites rupestris. \\
\hline Bowfin_ & Dogfish & Amiatus calvus. \\
\hline Buffalofish & & Ictiobus cyprinella. \\
\hline Bullhead & Catfish. & Ameiurus sp. and Ictalurus sp. \\
\hline Carp_ & German carp. & Cyprinus carpio. \\
\hline Cisco & & Leucichthys sp . \\
\hline Lake herring & & Leucichthys sp. \\
\hline Muskellunge & & Esox masquinongy. \\
\hline Perch, yellow & & Perca flavescens. \\
\hline Pickerel & Jack, grass pike, pik & Esox sp. \\
\hline Pike, blue & & Stizostedion vitreum. \\
\hline Pike, yellow & Yellow- & Stizostedion vitreum. \\
\hline Red horse & Redfin, sucker & Moxostoma sp. \\
\hline Sauger- & & Stizostedion canadense. \\
\hline Sheepshead & Fresh-water drum. & Aplodinotus grunniens. \\
\hline Smelt & & Osmerus sp. \\
\hline Spoonbill cat & Paddlefish & Polyodon spathula. \\
\hline Sturgeon. & & Acipenser rubicundus. \\
\hline Sucker & Mullet & Catostomidæ sp. \\
\hline Sunfish & & Centrarchidæ sp. \\
\hline Tullibee & & Leucichthys tullibee. \\
\hline Trout, lake & & Cristivomer namaycush. \\
\hline Whitefish & & Coregonus albus. \\
\hline Frog- & & Rana sp. \\
\hline
\end{tabular}

SALT-WATER FISH MARKET


Fig. 13.-Percentage of each class of fishery products received at Fulton Fish Market

Fresh and frozen saltwater fishery products, of which there are 79 varieties, approximating 280,000,000 pounds of fish and \(54,000,000\) pounds of bulk shellfish per annum, are shipped to the New York salt-water fish markets.

There are 63 wholesale dealers who make a specialty of handling fresh and frozen salt-water fishery products. Thesefirms cater to all nationalities, selling their products at a quoted market price. A majority of the firms sell only fish, others fish and shellfish, and still others only shellfish.

\section*{PRODUCTS HANDLED}

Important commercial species.-Twenty-four species of fresh and frozen salt-water fish and shellfish constitute about 70 per cent of the total volume of sales. The following table shows the form in which the important commercial salt-water species are mainly received:

Table 3.-Salt-water fish and shellfish upon which the bulk of the trade is based


Species of moderate importance.-In this class are salt-water fishery products, of which there is a limited supply. Most of these would rank among the important commercial species if more could be produced. The 15 species of this group constitute approximately 20 per cent of the trade.

Table 4.-Salt-water species of moderate importance
\begin{tabular}{|c|c|c|c|}
\hline Species & Form in which received & Species & Form in which received \\
\hline Albacore and tuna (horse mackerel) & Round. & Red snapper Sole, gray and lemon & Dressed. Round. \\
\hline Bluefish.------ & Round, dressed. & Spot or Lafayette. & Do. \\
\hline Bonito & Round. & Striped bass & Do. \\
\hline Mullet & Do. & Tilefish ---- & Dressed. \\
\hline Perch, white & Dressed. & Crabs (soft-shell) & Live. \\
\hline Pollock & Dressed. & Crab meat
Scallops..- & Cold pack. Shelled. \\
\hline
\end{tabular}

Species for which there is small demand.-Limited quantities of 39 salt-water fishery products, approximating 10 per cent of the total amount sold, are marketed in Fulton Fish Market. Large amounts of these products are used by the foreign-born population, and include varieties that are common to their native country.

Table 5.-Salt-water species for which there is small demand
\begin{tabular}{|c|c|c|}
\hline Products & Reasons for limited sale & Principal form in which received \\
\hline Black drum. & Unpopular. & Dressed. \\
\hline Blue runners-- & Not well known.. & Do. \\
\hline Grouper --.---- &  & Do. \\
\hline Hake.- & ---do---- & Do. \\
\hline Jacks (skip, amber) & Not well known. & Round. \\
\hline Jewfish & Unpopular & Dressed. \\
\hline King whiting.- & Supply limited---1--.-.-- & Round. \\
\hline Permits----.....- & Not well known-............ & Do. \\
\hline Pigfish & - --do. & Dressed. \\
\hline Pilotfish & Unpopular & Round. \\
\hline Red drum (spot bass) & --..do. & Dound, dressed. \\
\hline
\end{tabular}

Table 5.-Salt-water species for which there is small demand-Continued
\begin{tabular}{|c|c|c|}
\hline Products & Reasons for limited sale & Principal form in which received \\
\hline Sea gar- & Supply limited; unpopular. & Round. \\
\hline Sea robins. & Unpopular. & Do. \\
\hline Sergeantfish or snook. & --do.. & Dressed. \\
\hline \begin{tabular}{l}
Shark \(\qquad\) \\
Sheepshead
\end{tabular} & Supply limited & Round, dressed. \\
\hline Skate....-- & Used chiefly by Italians and French & Dressed wings. \\
\hline Sturgeon & Very limited supply; popular. & Dressed. \\
\hline Swordfish & Supply limited; popular & Do. \\
\hline Tautog. & Supply limited; unpopular & Round. \\
\hline Tomeod & Unpopular; plentiful supply & Do. \\
\hline Whitebait. & Supply limited and small demand. & Do. \\
\hline Whiting--.-...- & Not generally popular; large supply & Do. \\
\hline Caviar (sturgeon) & Supply and demand limited. & Salt and fresh. \\
\hline Cod and haddock roe & Unpopular --.-.-.-....-.-. & Fresh. \\
\hline Crabs, hard- & Supply limited; popular .-.....-... & Live. \\
\hline Crabs, rock & Unpopular ----.-.-...-- & Frozen. \\
\hline Crawfish (spiney lobster) & Supply limited; popular & Lire. \\
\hline Devilish or octopus & Supply limited; used by Italians & Dressed. \\
\hline Frog legs (fresh-water) & Popular during season among French trade & Skinned. \\
\hline Lobsters. & Supply limited; popular & Live, cooked. \\
\hline Mussels & Unpopular-...-- & Shell. \\
\hline Terrapin & Sold mostly to hotels and restaurants & Live. \\
\hline Winkles & Not generally popular; used by English and Irish.-- & Shell. \\
\hline
\end{tabular}

\section*{FRESH-WATER FISH MARKET}

Approximately \(60,000,000\) pounds per annum of fresh and frozen fresh-water fishery products, representing 28 varieties, are handled by the 24 wholesale dealers of the fresh-water fish market. The majority of the fresh-water fishery products are sold to the Jewish trade.

\section*{PRODUCTS HANDLED}

Important commercial species.-Seven species of fish constitute approximately 70 per cent of the volume of trade in fresh and frozen fresh-water fishery products.

Table 6.-Fresh-water species upon which the bulk of the trade is based
\begin{tabular}{|c|c|c|}
\hline Species & Form in which received & Type of containers \\
\hline Blue pike (pike perch) & Round. & 100-pound boxes. \\
\hline Buffalofish.-....-...-. & Round and dressed & 100,150 , and 175 pound boxes; also live. \\
\hline Carp, German & Round. & 100 and 150 pound boxes; also live. \\
\hline Cisco .......- & Round and dressed & 100-pound boxes. \\
\hline Sucker (mullet) & Round. & 50 and 100 pound boxes. \\
\hline Whitefish. & Round and dressed & 100-pound boxes. \\
\hline Yellow pike & Round. & Do. \\
\hline
\end{tabular}

Species of moderate importance.-The five species represent about 20 per cent of the total amount of fish handled in the freshwater fish market. In some instances certain species in this group would rank among the important commercial species if more could be produced.

Table 7.-Fresh-water species of moderate importance
\begin{tabular}{|c|c|c|c|}
\hline Species & Reasons for moderate sale & Form in which received & Type of container \\
\hline Lake herring. & Substitute for cisco & Round & 50 and 100 pound boxes. \\
\hline Pickerel (grass pike, jacks) & Limited supply. & d & 100 pound boxes. \\
\hline Red horse (sucker)---.-. & Limited supply; good demand.- & -do & Do. \\
\hline Sheepshead & Unpopular, though inexpensive- & do & Do. \\
\hline Yellow perch & Interchangeable with white perch. & -do. & Do. \\
\hline
\end{tabular}

Species for which there is small demand.-Limited quantities of 16 fresh-water fishery products are marketed at the fresh-water fish market. The products of this group represent about 10 per cent of the total amount handled.

Table S.-Fresh-water species for which there is small demand
\begin{tabular}{|c|c|c|c|}
\hline Products & Reasons for limited sale & Principal form in which received & Usual containers \\
\hline Bowfin. & Limited trade; not well known.- & Round. & 100 and 150 pound boxes. \\
\hline Bullheads & do & Skinned & All-sized boxes. \\
\hline Calico bass & Scarce; little demand; not well & Round & 50 and 100 pound boxes. \\
\hline Eels. & Good trade; increasing; foreignets. & Round and skinned; live at & All-sized boxes and barrels; live in barges. \\
\hline Lake trout. & Limited demand; increasing; supply can be increased; not well known. & Dressed and round & 100 -pound boxes. \\
\hline Muskellunge and pike. & Very limited supply------------ & Round. & Mixed with pickerel in 100 pound boxes. \\
\hline Sauger (pike perch) - & Seasonable variety; limited sup- & do & \begin{tabular}{l}
100 -pound boxes. \\
Do.
\end{tabular} \\
\hline Smelts---.- & ply Supply limited; good sale & & 10, 20, and 100 pound box \\
\hline Spoonbill cat & One-class trade; supply limited.- & Smoked and & Barrels of all sizes. \\
\hline Sturgeon & ---do---1.-.-.---.- & ---do & Boxes and barrels. \\
\hline Sunfish & Limited supply; good demand-- & Round & 50 to 100 pound boxes. \\
\hline T & Seasonable variety; supply lim- & Round and dressed & 100 -pound boxes. \\
\hline Caviar (spoonbill).- & Supply limited..---.------------- & Prepared. & Cans, pails, and kegs of \\
\hline Caviar (sturgeo & & & Do. \({ }^{\text {d }}\) \\
\hline Frog legs. & Limited trade; hotels and restaurants. & Skinned. & Boxes and kegs. \\
\hline
\end{tabular}

\section*{REGULATIONS GOVERNING FISH STORES}

Fish stores located in New York City are subject to the following regulations, as stated in the Sanitary Code of the Board of Health, City of New York, for 1922:

\section*{Article No. 9}

\section*{SEC. 150. REGULATIONS GOVERNING THE CONDUCT OF FISH STORES}

Regulation 35. Construction of counters, workbenches, display cases, etc.: All counters, workbenches, refrigerated display cases, stationary trays, and appurtenances thereof used in the handling, displaying, and storing of fish and shellfish shall be of a smooth, hard material, and constructed and arranged so as to permit of thorough cleansing and ready access, and shall be water-tight and properly drained.

Regulation 36. Maintenance of counters, workbenches, display cases, etc.: All counters, workbenches, refrigerated display cases, stationary trays, and appurtenances thereof used in the handling, displaying, and storing of fish and shellfish shall be kept clean and sanitary and in good repair, and must be scrubbed in hot water and sal soda, or other suitable cleansing agent, at the close of each day's use.

Regulation 37. Iced fish and shellfish to be stored so as not to cause a nuisance: All iced fish and shellfish stored in wooden boxes or barrels shall be kept or stored in such a manner as not to cause a nuisance.

Regulation 38. Refrigeration: All fish shall be kept properly chilled or refrigerated at all times.

Regulation 39. Protection of fish when displayed for sale: All fish and shellfish displayed for sale shall be kept within closed refrigerator display cases or properly covered by close-mesh wire screening, so as to prevent unwarranted human handling and contamination by dust, dirt, and flies.

SEC. 171. SHELLFISH, SALE OF ADULTERATED OR MISBRANDED PROHIBITED
No person shall bring into the city of New York, or have, sell, or offer for sale, shellfish which are adulterated or misbranded. Shellfish shall be deemed adul-terated-
1. If after removal from the shell they have been subjected to a process whereby their solid content is decreased or their volume increased.
2. If grown, floated, or cleansed in contaminated water, so as to render them unfit for food.
3. If they consist, wholly or in part, of diseased, decomposed, putrid, or rotten animal or vegetable substance.
4. If they contain any antiseptic or preservative injurious to health.
5. If they are floated in water of lower salinity than the water in which they were grown.
6. If any substance or substances has or have been mixed and packed with them so as to reduce or lower or injuriously affect their quality or strength.
7. If after removal from the shell they are cleansed in fresh water or water of a lower salinity than the water in which they were grown.

Shellfish shall be deemed misbranded-
1. If they are labeled or branded so as to decaive or mislead the purchaser.
2. If the container or its label shall bear any statement, design, or device regarding the shellfish or the other ingredients contained therein which statement, design, or device shall be false or misleading in any particular. (As amended by the board of health April 29, 1920.)

\section*{COLD STORAGE}

Frozen fishery products received in New York City are usually transported to the wholesale fish markets for immediate sale. However, considerable quantities are held in cold-storage warehouses for future sale. Large quantities of fish caught in near-by waters are shipped fresh to New York City and Jersey City, and are frozen in freezing plants at those places for later consumption.

During the year ended December 15, 1924, 8,038,668 pounds of fishery products were frozen in New York City and Jersey City, and \(15,922,258\) pounds were received frozen, making a total of \(23,960,926\) pounds of frozen fishery products handled in these two cities of the metropolitan area. During the same period \(24,691,820\) pounds were withdrawn, while the quantity held over from the previous year amounted to \(10,418,335\) pounds. The reduction of the holdings for the year ended December 15, 1925, was 730,894 , as compared with the holdings at the beginning of the year. The average number of firms engaged in the freezing of fishery products in 1924 was three, the average number of firms carrying cured fish was nine, and the average number engaged in the storing of fish was six.

Table 9.-Quantities of frozen fish handled in cold storage in Greater New York City and Jersey City, N. J., monthly, for the year ended December 15, \(1924^{1}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Month ended- & On hand at beginning of month & Frozen during month & Received frozen during month & Withdrawn during month & On hand at end of month \\
\hline & Pounds & Pounds & Pounds & Pounds & Pounds \\
\hline January 15 & 10,418,335 & 196, 359 & 2,390,063 & 3, 297, 497 & 9, 707, 260 \\
\hline February 15 & 9, 707, 260 & 754 & 2, 296, 022 & 3, 6f0, 152 & 8,343, 884 \\
\hline March 15 & 8,343,884 & 6,901 & 2, 140, 750 & 3, 940, 034 & 6,551,501 \\
\hline April 15 & 6, 551, 501 & 78,003 & 1,059, 064 & 3, 161,907 & 4, 526, 661 \\
\hline May 15 & 4, 526, 661 & 839, 247 & 239, 954 & 1,646, 970 & 3, 958, 892 \\
\hline June 15. & 3, 958, 892 & 1, 207, 855 & 165, 961 & 1,023,836 & 4,308, 872 \\
\hline July 15 & 4, 308, 872 & 1,055,672 & 270, 425 & 644, 484 & 4,990,485 \\
\hline August 15 & 4,990, 485 & 1, 059, 480 & 478, 514 & 835, 425 & 5,693, 054 \\
\hline September 15 & 5,693, 054 & 1, 014, 152 & 564,333 & 1,150,146 & 6,121, 393 \\
\hline October 15 & 6, 121, 393 & 1, 137, 854 & 1,331, 318 & 1,185, 176 & 7, 404, 399 \\
\hline November 15 & 7, 404,399 & 918, 022 & 2, 195, 625 & 1,776, 661 & 8,742, 285 \\
\hline December 15 & 8, 742, 285 & 524, 459 & 2, 790, 229 & 2, 369, 532 & 9,687,441 \\
\hline
\end{tabular}
\({ }^{1}\) Prepared by the United States Department of Agriculture, Bureau of Agricultural Economics.

\section*{REGULATIONS GOVERNING COLD STORAGE}

Certain regulations govern the conduct of cold-storage warehouses and food kept in cold storage in New York City. The following excerpts are taken from the Sanitary Code of the Board of Health, city of New York, for 1922:

\section*{Article 5}

\section*{SEC. 72. COLD-STORAGE FOOD TO BE MARKED}

It shall hereafter be unlawful for any person or persons, corporation or corporations, engaged in the business of cold-storage warehousemen or in the business of refrigerating, to receive any kind of food unless the said food is in an apparently pure and wholesome condition, and the food or the package containing the same is branded, stamped, or marked in some conspicuous place with the day, month, and year when the same is received in storage or refrigeration.

It shall be unlawful for any person or persons, corporation or corporations, engaged in the business of cold-storage warehousemen or in the business of refrigerating, to permit any article of any kind whatsoever used for food in the possession of any person or persons, corporation or corporations, engaged in the business of cold-storage warehousemen or refrigerating, to be taken from their possession without first having branded, stamped, or marked on said foodstuffs or the package containing same in a conspicuous place the day, month, and year when said foodstuffs or package was removed from cold-storage refrigeration.

It shall also be unlawful for any person or persons, corporation or corporations, to offer for storage in a cold-storage warehouse any article of food unless the same is in an apparently pure and wholesome condition.

SEC. 73. TIME THAT COLD-STORAGE FOOD MAY BE KEPT
It shall hereafter be unlawful for any person or persons, corporation or corporations, engaged in the business of cold-storage warehousemen or refrigerating, or for any person or corporation placing food in a cold-storage warehouse, to keep in storage for preservation or otherwise any kind of food or any article used for food a longer period than 12 calendar months. (As amended by the board of health December 31, 1918.)

SEC. 74. FOOD WHEN RELEASED FOR THE PURPOSE OF PLACING SAME ON MARKET
FOR SALE NOT TO BE RETURNED TO COLD STORAGE
When food has been in cold storage or refrigeration and is released therefrom for the purpose of placing the same on the market for sale, it shall be a violation of the provisions of this article to again place such food in cold storage or refrigeration.

SEC. 75. FOOD KEPT.IN COLD STORAGE NOT TO BE SOLD WITHOUT REPRESENTING THE FACT OF SUCH STORAGE

It shall be a violation of the provisions of this article to sell any article or articles of food that have been kept in cold storage or refrigeration without representing the same to have been so kept.

\section*{CONTAINERS}

There are no standard containers for fish transported to and from the salt-water fish market of New York City, although boxes predominate for shipments received from the more remote sections, ranging from the 10,15 , and 25 pound North American smelt box to the large 200 and 300 pound North Pacific halibut box and the \(500-\) pound Boston codfish box.

With the exception of the large outsize shrimp barrel, having a capacity of only about 150 pounds of shrimp, due to the large amount of ice required to keep the products fresh in transit from the South, consignments from the Middle Atlantic and South Atlantic usually arrive in standard-size sugar and flour barrels having an approximate capacity of 200 pounds. There are numbers of freezing plants along the New Jersey coast that ship their frozen fish in more or less stand-ard-size boxes. Live crabs and lobsters are received in ordinary slat barrels with a net weight of about 100 to 125 pounds. Scallops are reccived in tubs weighing about 45 to 60 pounds. Soft crabs are received in the Chesapeake crab box, which is known to the trade as a "crab trunk," so called because of its several layers of trays. Shell clams and oysters are received in sacks with a capacity of about 90 pounds and barrels with a capacity of 270 to 300 pounds. Live fish are received in carload lots in specially constructed aerated tank cars. Live eels are brought in barges down the Erie Canal and Hudson River in the month of December for the holiday trade.

The lake fish usually are received by the fresh-water market in boxes such as the common 100 -pound size, known as the "Lake Erie box," the 150 -pound size, and also the especially constructed 140 and 175 pound sizes with handles.

The local wholesalers, especially those in the salt-water fish trade, express their desire for the adoption of standard boxes for the shipment of products received in their market. At present, with the products arriving in containers of all sizes and descriptions, the handling of the fish is difficult and necessitates delays.

For shipment of the smaller varieties of fish, such as pike, cisco, flounder, and similar varieties, the 100 -pound box is suggested; the 140 -pound box for varieties of medium size, such as the salmon and shad; and the 200 to 300 pound boxes for halibut. A box of larger size is cumbersome to handle. The smaller and medium sizes should be equipped with handles extending not more than 4 inches over each end. Each container should provide for the proper amount of fish, with sufficient space remaining for snow or ice to insure preservation en route.

From a selling standpoint the contents of such containers will represent a standard net weight for each class of fishery product. The contents could then be sold by the container (as is done now to a large extent in the fresh-water market), eliminating weighing and rehandling at the market. From the standpoint of transportation
an express or freight car could be more completely filled. The extension handles make it easy to pick up and set down the container, and eliminate the possibility of upending the boxes while in transit. The 100 and 140 pound boxes, being of medium size, can easily be handled by two men.

Shipments made in containers of this style present a better appearance upon arrival at their destination. The fish lie flat in the boxes, and loss due to spoilage, caused by the breaking of the body wall of fish packed in containers not conforming to their size, will be eliminated. Also, the lower layers will not present that "squashed" appearance which is frequently the case with fish packed in boxes or barrels of larger dimensions and holding a greater quantity of fish.

Shrinkage of shipments made in boxes is about 1 per cent less than when made in barrels. While this amount is of no great significance in the case of a single package, the aggregate will amount to several hundred pounds where a carload shipment is involved.

The use of stencils is suggested where possible for marking the name and address of the consignee on the container, instead of using shipping tags for this purpose. Such stenciling should always be done on both ends of the boxes.

\section*{POPULATION OF THE METROPOLITAN AREA, 1920}

The population of the metropolitan area of New York City within a radius of 19 miles of Fulton Fish Market, according to the 1920 census, was as follows:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{New Jersey:} \\
\hline Bergen County & 194, 982 \\
\hline Passaic County & 249, 742 \\
\hline Hudson County & 629, 154 \\
\hline Union County & 167, 233 \\
\hline Middlesex County & 66, 177 \\
\hline Essex County & 625, 089 \\
\hline Total & 1,959, 377 \\
\hline \multicolumn{2}{|l|}{New York State:} \\
\hline Westchester County & 193, 342 \\
\hline Nassau County & 47, 909 \\
\hline Total & 241, 251 \\
\hline \multicolumn{2}{|l|}{Greater New York: \({ }^{1}\)} \\
\hline Roman Catholic & 1, 943, 370 \\
\hline Protestant. & 1,941, 847 \\
\hline Jewish. & 1, 643, 012 \\
\hline Greek Catholic & 91, 847 \\
\hline Total & 5, 620, 048 \\
\hline Grand total & 7, 820,676 \\
\hline
\end{tabular}

\footnotetext{
1 Calculated on the basis of tabulations of a house-to-house religious canvass in all the boroughs for over 20 years, conducted by the New York Federation of Churches.
}

\section*{ESTIMATED POPULATION, 1924}

The estimated population of the metropolitan area, computed by the arithmetical method, is as follows:
\begin{tabular}{|c|c|c|}
\hline Grand total in 1920 & 7, 820, 676 & 7, 820,676 \\
\hline Population in 1915 & 6, 984, 772 & \\
\hline Increase in 5 years & 835, 904 & \\
\hline Increase in 1 year & 167, 180. 8 & \\
\hline Increase in 4 years & 668, 723. 2 & 668, 723 \\
\hline Total estimat & & 8, 489, 499 \\
\hline
\end{tabular}

\section*{PER CAPITA CONSUMPTION OF FISHERY PRODUCTS DURING 1924}

The per capita consumption of fresh and frozen fishery products in the metropolitan district is influenced to no little extent by the comparatively large Jewish and Catholic populations, the foreign born, and also the daily transient population of perhaps 100,000 individuals.

Of the fresh and frozen fishery products received in New York City approximately \(271,000,000\) pounds, or 79 per cent, of the edible portion is consumed in the metropolitan area within a radius of 19 miles from Fulton Fish Market. The population of this area is about \(8,500,000\), giving a per-capita consumption for these products of 31.8 pounds.

On this basis the per-capita consumption of fresh and frozen fishery products per week is about six-tenths of a pound, or sufficient for about one meal. In other words, the people of the metropolitan area are eating fish on the average of once a week, probably on Tuesday or Friday.

Many of the wholesalers have asked whether local consumption can be increased. Fish is a tasty food, both clean and wholesome, and ranks high in dietary value. It is believed that by advertising these facts consumption can be materially stimulated.

Table 10.-Directory of wholesale dealers in fresh and frozen fishery products in New York City
\begin{tabular}{ll|c|c|c|c|c}
\hline \hline Dealers & \begin{tabular}{c} 
Salt- \\
water \\
fish
\end{tabular} & \begin{tabular}{c} 
Fresh- \\
water \\
fish
\end{tabular} & Oysters & Clams & \\
\hline
\end{tabular}

Table 10.-Directory of wholesale dealers in fresh and frozen fishery products in New York City-Continued


Note.-Eels are handled by a majority of the firms selling fresh and salt water fish.
\({ }^{1}\) Live fish, carp, etc., only.
\({ }^{2}\) Live terrapin and turtles only.
\({ }^{3}\) Shrimp only.

Table 11.-Summary of New York City market survey
\begin{tabular}{|c|c|c|c|}
\hline Item & Salt-water fish market & Fresh-water fish market & Total \\
\hline Number of wholesale fish dealcrs & 63 & 24 & 87 \\
\hline Number of species of fish handled. & 78 & 28 & 106 \\
\hline Species on which bulk of trade is based (70 per cent). & 24 & 7 & 31 \\
\hline Species of moderate importance (20 per cent) -------- & 15 & & 20 \\
\hline Speecies for which demand is slight (10 per cent) & 39 & 16 & 55 \\
\hline Because supply is limited.. & 14 & 10 & 24 \\
\hline Because species is unpopula & 17 & & 17 \\
\hline Sold chiefly to foreigners & 2 & 1 & 3 \\
\hline Sold chiefly to hotels and resta & 2 & 1 & 3 \\
\hline Because not well known. & 4 & 4 & 8 \\
\hline Principal containers: & & & \\
\hline  & All kinds & \[
100-140
\] & \\
\hline  & & & \\
\hline Quantity of products handled in 1924: & & & \\
\hline  & \[
280,000,000
\] & 60,000,000 & \[
340,000,000
\] \\
\hline Bulk shellifish, including oysters, clams, crabs, etc-...-. do & & & \\
\hline Total & 334, 000,000 & \(60,000,000\) & 394, 000, 000 \\
\hline Edible fresh and frozen fishery products utilized in 1924 (exclus & sive of oyst & \(r\) and clam & \\
\hline shells) & & -- pounds.- & 346, 000, 000 \\
\hline Quantity consumed in metropolitan area (79 per cent) & & do. & 271, 000, 000 \\
\hline Quantity shipped to other States (19 per cent) & & do & 67, 000, 000 \\
\hline Quantity used on railroad diners and steamships (1 per cent) & & do. & 4,000,000 \\
\hline Quantity exported (1 per cent)
stimated population of metropolitan area in 1924, within a rad & & \(m\) Fulton & 4, 000, 000 \\
\hline  & & -.-number-- & 8, 489,499 \\
\hline Per capita consumption of fresh and frozen fishery products, 1924 & & --pounds.- & 31.8 \\
\hline
\end{tabular}

Table 12.-Short-line travel distance and freight and express rates on fresh and frozen fish and oysters from principal sources of supply to New York City
[Distances shown were taken from War Department mileages or War Department mileages in connection with Official Railway Guide. Notes to reference symbols are groupcd at end of table]


Table 12.-Short-line travel distance and freight and express rates on fresh and frozen fish and oysters from principal sources of supply to New York CityContinued
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Points of origin} & \multirow{3}{*}{Short-line travel ristance, in miles} & \multicolumn{4}{|c|}{Rate in cents per 100 pounds} \\
\hline & & \multicolumn{2}{|l|}{Fresh or frozen fish} & \multicolumn{2}{|l|}{Fresh or frozen fisin and oysters} \\
\hline & & Carload, freight & Less-thancarload, freight & Carload, express & Less-thancarload, express \\
\hline \multicolumn{6}{|l|}{dominion of canada-continued} \\
\hline Nova Scotia: & & & & & \\
\hline Halifax.- & \({ }^{967}\) & \(851 / 2\) & 154 & AC325 & A350 \\
\hline Liverpool & 1,039 & 102 & 1881/2 & & X A395 \\
\hline Lockeport & 1,116 & 102 & 195 & AC350 & - A 375 \\
\hline Yarmouth & 1,217 & 102 & 1921/2 & & XA355 \\
\hline \multicolumn{6}{|l|}{Ontario:} \\
\hline Port Burwell & 570 & \(731 / 2\) & 111 & & \#A195 \\
\hline Port Dover- & 467 & 73112 & 111 & & \#A210 \\
\hline Port Maitland & 514 & \(731 / 2\) & M & & \#A195 \\
\hline St. Thomas & 514 & \(731 / 2\) & 111 & & XA245 \\
\hline Sault Ste. Marie & 953 & 1131/2 & 170 & & XA355 \\
\hline Sudbury & 774 & 104 & 156 & A C290 & A320 \\
\hline Quebec: La Reine & 549 & \(731 / 2\) & 111 & & XA260 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline Moose Jaw & 2,035 & 251 & 437 & & XA750 \\
\hline UNTTED states & & & & & \\
\hline Alabama: Mobile. & 1,230 & 94 & 2181/2 & & XA379 \\
\hline \multicolumn{6}{|l|}{Arkansas:} \\
\hline Helena. & 1,220 & 132 & 2751/2 & & X A379 \\
\hline Little Rock & 1,291 & 1461/2 & 300 & & XA409 \\
\hline Pine Bluff & 1,313 & 148 & 303 & & XA409 \\
\hline \multicolumn{6}{|l|}{California:} \\
\hline Monterey & 3,249 & D225 & 555 & E428 & A788 \\
\hline Pittsburg--.- & 3,165 & D225 & 555 & E428 & A788 \\
\hline San Francisco & 3, 180 & D225 & 555 & E428 & A788 \\
\hline \multicolumn{5}{|l|}{Connecticut:} & XAH94 \\
\hline New London & 127 & 421/2 & \(631 / 2\) & & XAH109 \\
\hline Noank. & 135 & 44 & \(651 / 2\) & & XAH124 \\
\hline \multicolumn{6}{|l|}{Delaware:} \\
\hline Rehobeth & 226 & 50 & 70 & & X AH139 \\
\hline District of Columbia: Washin & 227 & 50 & 70 & & X A139 \\
\hline \multicolumn{6}{|l|}{Florida: . We...-...} \\
\hline A palachicola & 1,115 & \[
\left.\begin{array}{l}
\text { B981/2- } \\
\text { A117 }
\end{array}\right\}
\] & \} 272 & & XA352 \\
\hline Bradentown & 1,232 & 134 & 2471/2 & & XA367 \\
\hline Fernandina. & 1,019 & \[
\left.\begin{array}{c}
\mathrm{B} 821 / 2 \\
\mathrm{~A} 751 / 2
\end{array}\right\}
\] & \} \(1761 / 2\) & & XA319 \\
\hline Fort Pierce. & 1,225 & B1141/22 & \} \(2661 / 2\) & & XA379 \\
\hline Gulfport & 1,170 & 1151/2 & 2341/2 & & \\
\hline Jacksonville. & 983 &  & \} \(1761 / 2\) & & XA329 \\
\hline Key West & 1,805 & \[
\left.\begin{array}{c}
\mathrm{B} 126- \\
\mathrm{A} 1171
\end{array}\right\}
\] & \} 2391/2 & & XA450 \\
\hline Miami & 1,649 & B126- \({ }_{\text {A1491/2 }}\) & \} 284 & & X A409 \\
\hline Pensacola & 1,214 &  & \} 232 & & X A379 \\
\hline St. Augustine. & 1,020 & 971/2 & 198 & & XA326 \\
\hline Palatka.- & 1,047 & U82 & U169 & & XA326 \\
\hline Tampa & 1,195 & \[
\begin{aligned}
& \mathrm{B} 9812^{-} \\
& \mathrm{A} 109^{-}
\end{aligned}
\] & \} 217 & & XA367 \\
\hline West Palm Beach & 1,283 & \[
\left\{\begin{array}{c}
\mathrm{B} 1221 / 2 \\
\mathrm{~A} 144
\end{array}\right.
\] & \} \(2731 / 2\) & & XA394 \\
\hline \multicolumn{6}{|l|}{Georgia:} \\
\hline Brunswick & 923 & B821/2-7 & \} 1761/2 & & X 4304 \\
\hline Savannah. & 845 & B79-A \(751 / 2{ }^{\text {a }}\) & 1761/2 & & X A 296 \\
\hline
\end{tabular}

Table 12.-Short-line travel distance and freight and express rates on fresh and frozen fish and oysters from principal sourees of supply to New York CityContinued
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Points of origiu} & \multirow{3}{*}{Short-line travel distance, in miles} & \multicolumn{4}{|c|}{Rate in cents per 100 pounds} \\
\hline & & \multicolumn{2}{|l|}{Fresh or frozen fish} & \multicolumn{2}{|l|}{Fresh or frozen fish and oysters} \\
\hline & & Carload, freight & Less-thancarload, freight & Carload, express & Less-thancarload, express \\
\hline \multicolumn{6}{|l|}{UnITED States-continued} \\
\hline \multicolumn{6}{|l|}{Illinois:} \\
\hline Depue-... & 1,040
1,006 & I104 & \({ }_{\text {I1 }} \mathrm{I} 166\) & & X X A 2906 \\
\hline Henry & 1,040 & 1104 & I156 & & X A 296 \\
\hline Kankakee & 951 & 1941/2 & 1142 & & XA285 \\
\hline Mcredosia & 1,048 & I1101/2 & 1166 & & X A311 \\
\hline Peoria & 1,006 & 1104 & 1156 & & X A300 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & X A311 \\
\hline Burlington & 1,118 & I1101/2 & 1166 & & XA311 \\
\hline Davenport & 1,095 & 11101/2 & 1166 & & XA300 \\
\hline Dubuque. & 1,079 & I11012 & 1166 & & X A311 \\
\hline Harpers Ferry & 1,229 & I1291/2 & I218 & E320 & A326 \\
\hline Keokuk. & 1,119 & I1101/2 & 1166 & & X A311 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline Atchafalaya....-- & & & & E359 & A 435 \\
\hline Houma.- & 1, 435 & 1381/2 & 2921/2 & E359 & A405 \\
\hline Monroe & 1,359 & 1391/2 & 29412 & & XA439 \\
\hline Morgan City & 1,445 & 1411/2 & \(2971 / 2\) & E359 & A465 \\
\hline \multicolumn{6}{|l|}{Maine:} \\
\hline Augusta & 413 & 591/2 & 90 & & XA199 \\
\hline Bowdoinham & 385 & \(591 / 2\) & 90 & & X A199 \\
\hline Eastport. & 586 & \(831 / 2\) & 1241/2 & & XA232 \\
\hline Portland. & 350 & \(581 / 2\) & \(851 / 2\) & & XA154 \\
\hline Richmond & 393 & \(591 / 2\) & 90 & & XA199 \\
\hline Rockland & 407 & \(591 / 2\) & 90 & & \#F139 \\
\hline Thomaston. & 403 & \(591 / 2\) & 90 & & XA199 \\
\hline \multicolumn{6}{|l|}{Maryland:} \\
\hline Annapolis & 212 & 61
44 & 90 & & XAH139 \\
\hline Cambridge & 235 & 50 & 70 & & X A H139 \\
\hline Crisfield & 253 & 50 & 70 & & XAH139 \\
\hline Ocean City & 241 & BJ191- & A70 & & XAH139 \\
\hline Oxford. & 209 & BK95 & 70 & & XAH139 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline Boston.- & 21.4 & 50 & \(661 / 2\) & & XA139 \\
\hline Chatham. & 305 & 50 & 661/2 & & XA154 \\
\hline Fall River. & 183 & 50 & \(661 / 2\) & & XA124 \\
\hline Gloucester- & 266 & \(551 / 2\) & 79 & & XA154 \\
\hline Nantucket. & & L551/2 & L66 & & XA165 \\
\hline New Bedrord & 219 & 50 & 661/2 & & X A139 \\
\hline Newburyport & 275 & 551/2 & 79 & & XA154 \\
\hline Provincetown.-- & 288 & 50 & \(661 / 2\) & & XA154 \\
\hline Vineyard Haven. & & L49 & L63 & & XA165 \\
\hline \multicolumn{6}{|l|}{Michigan:} \\
\hline Chatham. & 875
870 & 11511/2 & \[
\begin{aligned}
& 12561212 \\
& \mathrm{I} 2566^{2}
\end{aligned}
\] & & \[
\begin{aligned}
& \text { XA416 } \\
& \text { XA397 }
\end{aligned}
\] \\
\hline Monroe.- & 729 & 1731/2 & I111 & E229 & - 425 \\
\hline Mount Clemens. & 715 & 1731/2 & 1111 & & XA270 \\
\hline Port Huron. & 648 & 1731/2 & 1111 & & XA270 \\
\hline Trenton. & 708 & 1731/2 & I111 & & XA262 \\
\hline \multicolumn{6}{|l|}{Minnesota:} \\
\hline Clinton-. & 1,447 & 1641/2 & 294 & - & X A 450 \\
\hline Duluth & 1,277 & 1371/2 & 241 & & X \({ }^{\mathbf{X}} \mathbf{4} 412\) \\
\hline Fairmont & 1,397
1,406 & 142 & \(2851 / 2\) & & XA386 \\
\hline Madison Lake & 1,368 & 135122 & 238 & & X A394 \\
\hline Milan.- & 1,437 & 160 & \(2771 / 2\) & & X A442 \\
\hline Minneapolis & 1,317 & 1351/2 & \(2331 / 2\) & E320 & A394 \\
\hline Ortonville & 1,447 & 160. & 282 & & X \(\times 1450\) \\
\hline Rainer.-- & 1,386 & 1941/2 & 3991/2 & & XA491 \\
\hline
\end{tabular}

Table 12.-Short-line travel distance and freight and express rates on fresh and frozen fish and oysters from principal sources of supply to New York CityContinued
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Points of origin} & \multirow{3}{*}{Short-line travel distance, in miles} & \multicolumn{4}{|c|}{Rate in cents per 100 pounds} \\
\hline & & \multicolumn{2}{|l|}{Fresh or frozen fish} & \multicolumn{2}{|l|}{Fresh or frozen fish and oysters} \\
\hline & & Carload, freight & Less-thancarload, freight & Carload, express & Less-thancarload, express \\
\hline \multicolumn{6}{|l|}{UNITED STATES-continued} \\
\hline Minnesota-Continued. & & & & & \\
\hline Redby & 1,416 & \(2031 / 2\) & 355 & & \\
\hline Rt. Paund Lake & 1,438 & 143 & \(2631 / 2\) & & X 4305 \\
\hline Warroad. & 1,453 & 191 & \(344{ }^{1 / 2}\) & E428 & A506 \\
\hline Wayzata. & I, 329 & 1461/2 & \(2541 / 2\) & & XA394 \\
\hline \multicolumn{6}{|l|}{Mississippi: ------} \\
\hline Biloxi... & 1,290
1,299 & 94
94 & \(2181 / 2\) & & X X A379 \\
\hline Natchez & 1,337 & 94 & \(2181 / 2\) & & X 4405 \\
\hline Vicksburg & 1,283 & 94 & 2181/2 & & X A394 \\
\hline Missouri: St. Louis & 1,065 & 11101/2 & I166 & & XA300 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Montana: Bowdoin .-.....................-.
New Jersey:}} \\
\hline & & & & & \\
\hline Atlantic City & 158 & \(411 / 2\) & \(591 / 2\) & & XA109 \\
\hline Barnegat City & 190 & 46 & 561/2 & & \\
\hline Barnegat.- & 181 & 44 & 69 & & XA109
\(\mathbf{X A 1 3 9}\) \\
\hline Manasquan & 83 & \(281 / 2\) & 411/2 & & XA86 \\
\hline Port Monmouth & 36 & 25 & 34 & & XA86 \\
\hline Port Morris. & 47 & \(281 / 2\) & \(401 / 2\) & & \\
\hline Seabright & 46 & 25 & 34 & & X A86 \\
\hline Seaside Park & 96 & \(311 / 2\) & 471/2 & & XA94 \\
\hline Wildwood. & 179 & 44 & 69 & & XA109 \\
\hline \multicolumn{5}{|l|}{New York:} & XAH86 \\
\hline Black Rock & 400 & \(541 / 2\) & 79 & & XA184 \\
\hline Brewerton. & 307 & \(471 / 2\) & \(661 / 2\) & & XA154 \\
\hline Buffalo.... & 396 & 541/2 & 79 & & \#A123 \\
\hline Cape Vincent & 357 & \(561 / 2\) & \(831 / 2\) & & \#A151 \\
\hline Dunkirk. & 460 & \(561 / 2\) & 85 & & \#A151 \\
\hline Glen Head & 28 & 28 & \(361 / 2\) & & XA75 \\
\hline Greenport & 97 & 411/2 & 54 & & X AH 94 \\
\hline Irving.-.- & 425 & \(561 / 2\) & 85 & & \#A151 \\
\hline Matteawan & 62 & 4012 & \(561 / 2\) & & XA79 \\
\hline Montauk. & 120 & \(411 / 2\) & 54 & A CG70 & AHX109 \\
\hline Pulaski & 300 & \(5.51 / 2\) & 79 & & XA154 \\
\hline Sayville- & 54 & 28 & 38 & & ХАН86 \\
\hline Sodus Point & 369 & 46 & 69 & & XA169 \\
\hline Westfield. & 454 & \(561 / 2\) & 85 & & \#A151 \\
\hline \multicolumn{6}{|l|}{North Carolina:} \\
\hline Beaufort. & 555 & \[
\begin{gathered}
\mathrm{B} 871 / 2 \\
\mathrm{~A} 54
\end{gathered}
\] & 133 & & XA229 \\
\hline Columbia & 461 & \({ }_{72}\) & 1661/2 & & XA229 \\
\hline Elizabeth City & 402 & 481/2 & \(1211 / 2\) & & X A202 \\
\hline Hertford. & 418 & 52 & 1291/2 & & X A202 \\
\hline Mackeys. & 439 & 54 & 133 & & XA229 \\
\hline Manteo & 520 & 581/2 & 144 & & \\
\hline Morehead City. & 552 & \[
\left.\begin{array}{r}
\mathrm{B} 80 \frac{1}{2} \\
\mathrm{~A} 54
\end{array}\right\}
\] & 133 & & XA229 \\
\hline New Bern. & 517 & 51 & \[
\left\{\begin{array}{r}
\mathrm{R} 306- \\
\mathrm{T} 196
\end{array}\right.
\] & -...--...-.- & XA214 \\
\hline Southport & 618 & & (S340-1551/2 & & \\
\hline \multicolumn{6}{|l|}{\multirow[b]{2}{*}{}} \\
\hline & & & & & \\
\hline \begin{tabular}{l}
Cleveland \\
Lorain
\end{tabular} & 579
605 & \({ }_{1}^{167}\) & 1101 & E229 & \({ }^{\text {A } 232}\) \\
\hline Port Cininton & 652 & \(1731 / 2\) & I111 & E229 & - A 244 \\
\hline Sandusky. & 639 & 1731/2 & \([111\) & E229 & A214 \\
\hline Toledo - & 701 & 17312 & 1111 & E229 & A255 \\
\hline Venice & 644 & 1731/2 & I111 & & XA244 \\
\hline Vermilion. & 623 & 1731/2 & 1111 & ---.-.....- & XA244 \\
\hline
\end{tabular}

Table 12.-Short-line travel distance and freight and express rates on fresh and frozen fish and oysters from principal sources of supply to New York CityContinued


\section*{EXPLANATION OF REFERENCE MARKS GOVERNING THE FREIGHT RATES}

Unless otherwise shown, the following will govern all the freight rates:
Less-than-carload shipments must be in barrels or boxes, or barrels with cloth tops.
No less-than-carload shipment handled for less than 50 cents, and no carload for less than \(\$ 15\).
Less-than-carload and "any quantity" rates do not obligate the carrier to provide protection against heat, etc.

Carload rates are subject to a minimum weight of 24,000 pounds.
Carload rates do not include the expense of refrigeration.
When ice or other preservative is in the bunker of the car no charge will be made for its transportation; but if ice is taken by consignee charges shall be made on actual weight of the ice in bunkers at destination and at the carload rate applicable on the freight which it accompanies; if not taken it becomes the property of the carrier.

Ice or other preservative placed in the body of the car for protection of the freight, when permitted, is subject to the same provisions as govern ice in the bunkers.

No allowance in weight will be made for ice or other preservative placed in the same package with the freight.
A.-A pplies on "frozen fish" only.
B.-A pplies on "fresh fish" only.
C.-Carload minimum weight 20,000 pounds.
D.-Carload minimum weight 30,000 pounds.
E.-Carload minimum weight 30,000 pounds for \(\$ 1.85\) and 24,000 pounds for the balance of the rate.
F.-Rates not on file with Interstate Commerce Commission.
G.-Fresh fish packed in ice will be billed and charges collected thereon at the gross weight of the fish including the packages (less 6,000 pounds for ice), subject to minimum carload weight as provided above.

Frozen fish will be billed and charges collected thereon at gross weight of the fish including package; no deductions will be made for preservatives loaded in the body of the car, unless sawdust is used, when actual weight of sawdust will be deducted, with a maximum allowance of 3,000 pounds, subject to minimum carload weight as provided above.

The allowances as above are for preservatives in the packages or the body of the car and do not include ice in the tanks or bunkers.
H.-6,000 pounds will be the allowance (without charge) of preservative (ice) on shipments of fresh fish up to East St. Louis, Ill.
I.-Fresh fish in packages, iced, may be billed from April 1 to November 30, inclusive, at actual gross weight, less 20 per cent for weight of ice used. From December 1 to March 31, inclusive, full gross weight, including weight of ice, shall be charged. (Applies from points on and east of the Mississippi River, north of the Ohio River, and to the eastern portion of the rates from points west thereof when so referenced.)
J.- Per standard barrel or standard barrel box, any quantity.
K.-Per standard half barrel or standard half-barrel box, any quantity.
L.-A pplies via all-water route.
M. - No less-than-carload freight handled.
R.-Fresh fish in flour barrels (estimated weight 275 pounds per barrel), rates per barrel.
S.- Fresh fish in sugar barrels or standard boxes (estimated weight 250 pounds per barrel or box), rates per barrel or box.
T.-Fresh fish in half boxes (estimated weight 200 pounds per half box), rates per half box.
U.-Rates apply via "rail and water" routes.
V.-Also additional rates per package, as follows: Fresh fish, \(17 \%\) cents per flour barrel, 195 cents per sugar barrel, 195 cents per standard box, 128 cents per half box.

EXPLANATION OF REFERENCE MARKS GOVERNING THE EXPRESS RATES
\#.-Any quantity, commodity rate.
X.-Any quantity, second-class rate.
A.-Must be charged for on basis of gross weight, except that fresh or frozen fish shipped with ice, which is necessary for its preservation, must be charged for on the basis of 25 per cent added to the net weight of the fish, unless actual gross weight is less at time of shipment.
The minimum billing weight of any iced shipment of fish under this rule is 40 pounds, unless the gross weight is less.

On shipments of fresh salmon, packed with ice or snow, from points in Canada the minimum billing weight will be 75 pounds per box unless the gross weight is less. (Effective May 10, 1925.)
B.-Fresh fish will be charged for on basis of net weight of the fish. Frozen fish will be charged for on gross weight. Minimum weight 20,000 pounds per car.
C.-Minimum weight 20,000 pounds per car.
D.-Applies only on shipments routed Dominion Express Co., via Hamilton, Ontario, or Montreal, Quebec.
E.-Minimum weight 20,000 pounds on basis of net weight.
F.-A pplies only on fresh fish in barrels containing water and ice. Charges must be assessed on the following basis: Barrels of 2 bushels capacity, 225 pounds; barrels of more than 2 bushels capacity to be charged on the basis of gross weight less 25 per cent.
G.-Delivery to be taken at Long Island City, N. Y., by consignee.
H.-Oysters in shell, glass jars, canned, or in bulk. When shipped in bulk, estimated at 12 pounds per gallon, shippers must mark upon each package the number of gallons contained therein. In glass jars, estimate 24 pints at 45 pounds, 36 pints at 65 pounds, 48 pints at 90 pounds; 48 half-pints at 50 pounds.

The following estimated weights will apply to oysters in metal cans with or without ice, when packed in boxes: One-tenth gallon cans, \(11 / 4\) pounds each; pint cans, \(11 / 2\) pounds each; standard or three-fourth cans, 2 pounds each; one-fifth gallon cans, \(2 \frac{1}{2}\) pounds each; full quart cans, 3 pounds each; half-gallon cans, 6 pounds each; gallon cans, 12 pounds each.

Shippers must mark the exact number and the kind of cans on the case.
Gross weight at time of shipment will apply when less than estimated weight shown.
On mixed shipments of fish and oysters shipped with ice necessary for preservation, charge on the basis of 25 per cent added to the net weight of the fish, plus the weight of the oysters, as specified above.

The minimum billing weight of such a mixed shipment is 40 pounds, unless the gross weight is less, in which event the gross weight will apply.
K.-Minimum billing weight, 12,000 pounds on the following basis: When in shell, actual weight; shucked oysters in carriers, estimate at 12 pounds per gallon; shucked oysters in naked cans without other packing, charge on the basis of actual weight of the oysters and containers.

No charge will be made for transportation of necessary chopped ice, packed on top or around the cans; nor, when refrigerator cars are used, will any charge be made for transportation of ice in the bunkers.

The cost of all ice furnished by the express company must be paid by shipper or consignee.

Table 13．－Salt－water fishery products obtainable
［The months of the year are represented by the figures 1 to 12 and
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Product} & \multicolumn{12}{|c|}{Sources of supply and when in season} \\
\hline & \[
\begin{aligned}
& 0.0 \\
& 0.0 \\
& 0 \\
& 0
\end{aligned}
\] &  &  &  &  & 寻 &  &  & \％ & 产 & 告 &  \\
\hline Albacore & & & & & & & & 9－12 & 7－11 & & 9－12 & 6－11 \\
\hline Bluefish． & & & & & & & & 9－10 & 9－11 & & 8－12 & 5－11 \\
\hline Blue runner Bonito & & & & & & & & 9－12 & 7－11 & & 9－11 & 7－11 \\
\hline Butterfish & & & & & & & & 6－12 & 5－10 & & 5－11 & 5－11 \\
\hline Cod & 12－3 & & 12－3 & 12－3 & & 2－5 & 2－5 & 1－12 & 3－11 & 12－6 & 11－6 & 10－3 \\
\hline Croakers & & & & & & & & 12－5 & －12－5 & 12－5 & & 5－11 \\
\hline Drum，black & & & & & & & & & & & & 7－10 \\
\hline Drum，red． & & & & & & & & & & & & \\
\hline \begin{tabular}{l}
Eels \\
Flounders
\end{tabular} & \[
\begin{array}{r}
10-1 \\
9-3
\end{array}
\] & 10－1 & 10－1 & 10－1 & \[
\begin{array}{r}
10-1 \\
9-3
\end{array}
\] & \[
\begin{aligned}
& 6-12 \\
& 1-4
\end{aligned}
\] & & 1－12 & 15－10 & 1 \({ }^{1} 510\) & 5－11 & 14－12
\(12-6\) \\
\hline Fluke．．． & & & & & & & & 6－10 & 5－11 & 1－12 & 5－12 & 5－11 \\
\hline Grouper－ & & & & & & & & & & & & \\
\hline Haddock & 12－3 & & 12－2 & 12－2 & 12－2 & 2－5 & & 1－12 & 5－7 & 6－12 & & \\
\hline llake，red Hake，white & \[
\begin{aligned}
& 12-3 \\
& 12-3
\end{aligned}
\] & & & & & 2－5 & 2－5 & 1－12 & 5－9 & & & 5－12 \\
\hline Halibut & \[
\left\{\begin{array}{l}
3-6 \\
9-12
\end{array}\right.
\] & & & 3－9 & & 4－10 & & 1－12 & & & & \\
\hline Herring，large & & 1－12 & & 1－12 & & 2－11 & & 2－11 & 3－11 & 3－12 & 3－12 & 4－11 \\
\hline Hewring，small & & & & & & 4－11 & & 4－12 & 7－9 & & 4－7 & \\
\hline Kingfish & & & & & & & & & & & & \\
\hline King whiting & 5－10 & & 6 －8 & 6－11 & 6－8 & & 6－11 & 6－11 & 5－11 & 6－11 & \(6-11\)
\(4-7\) & \({ }_{4-6}^{5-11}\) \\
\hline Mullet－ & & & & & & 2－7 & & & & 6－11 & & \\
\hline Permits & & & & & & & & & & & & \\
\hline Pilotfish． & & & & & & & & & & & & \\
\hline Pollock． & 12－3 & & & 12－2 & & 11－2 & 11－2 & 1－12 & 5－7 & & & \\
\hline Pompano & & & & & & & & & & & & \\
\hline Red snapper & & & & & & & & & & & & \\
\hline Salmon，Atlantic． & 5－8 & 6－7 & & 6－9 & 6－9 & 12－3 & & & & & & \\
\hline Salmon，Pacific． & & & & & & & & & & & & \\
\hline Scup－．． & & & & & & & & & & & 5－10． & 5－10 \\
\hline Sea bass & & & & & & & & 5－8 & \[
\begin{aligned}
& 5-7 \\
& 9-12
\end{aligned}
\] & & & 5－11 \\
\hline Sea robins & & & & & & & & 5－9 & 5－9 & & 5－9 & \\
\hline Sea trout，spotted & & & & & & & & & & & & \\
\hline Shad． & & & & 6－8 & 5－6 & & & 5－7 & 5－7 & 5－6 & 5－6 & 4－6 \\
\hline Sheepshead & & & & & & & & & & & & \\
\hline Skate－－－．．． Smelts & & & 11－3 & 11－3 & 11－2 & 5－2 & & 7－2 & \[
\begin{aligned}
& 6-12 \\
& 3-4
\end{aligned}
\] & & \[
\begin{array}{r}
12-6 \\
2-5
\end{array}
\] & 4－10 \\
\hline Sergeant fish & 9－11 & 10－2 & 11－3 & 11－3 & 11－2 & & & & & & & \\
\hline Sole ．－．．．．．．． & & & & & & & & 1－12 & 1－12 & & & \\
\hline Spanish mackerel & & & & & & & & & & & & \\
\hline Spot－－．．．．．．．．．．．．－ & & & & & & & & & & & （ \(6-9\) & 6－11 \\
\hline Striped bass． & 10－12 & & & 9－3 & 5－8 & & & 5－10 & 5－11 & & \(\left\{\begin{array}{l}\text { 11－1 }\end{array}\right.\) & \({ }^{11-1}\) \\
\hline Sturgeon & 5－12 & & & 5－10 & 4－12 & 6－11 & & 6－11 & 5－10 & & 5－7 & 5－11 \\
\hline Swordfish Tautog & & & & & & & & 8－10 & 7－9 & 12－2－ & 7－9 & 5－11 \\
\hline Tilefish & & & & & & & & & & & 10－5 & \\
\hline Tomeod． & & & & & 12－3 & 12－4 & & 11－4 & & & 10－5 & \\
\hline Weak fish & & & & & & & & 8－11 & 5－10 & & 5－6 & 5－12 \\
\hline Whitcbait & & & & & & & & 1－6 & & & 8－6 & \\
\hline White perch & 3－9 & & & & 3－8 & 2－12 & & 11－4 & 5－10 & & 9－6 & 5－6 \\
\hline Whiting－－－ & & & & & & & & 6－12 & 5－12 & & 6－12 & \({ }_{1-12}^{5-12}\) \\
\hline Clams，hard & & & 3－9 & 3－9 & 5－8 & 1－12 & & 1－12 & 1－12 & & & \({ }_{1-12}^{1-12}\) \\
\hline Clams，soft & & & & & 5－8 & 4－12 & & 4－12 & 1－12 & & 4－11 & 1－12 \\
\hline Crabs & 3－9 & & & & & & & & & & 8－10 & 8－10 \\
\hline Crabs，rock & & & & & & & & & & & & \\
\hline \begin{tabular}{l}
Lobsters． \\
Mussels．
\end{tabular} & 5－7 & 5－7 & 6－9 & 5－7 & \[
\begin{aligned}
& 4-10 \\
& 1-12
\end{aligned}
\] & \[
\begin{aligned}
& 1-12 \\
& 1-12
\end{aligned}
\] & & \[
\begin{aligned}
& 2-12 \\
& 1-12
\end{aligned}
\] & \[
\begin{aligned}
& 4-11 \\
& 1-12
\end{aligned}
\] & 5－12 & 4－11 & 5－11 \\
\hline Octopus． & & & & & & & & & & & & \\
\hline Oysters． & & & & & & & & \(9-5\) & 9－5 & 9－5 & 9－5 & \(9-5\) \\
\hline Scallops，bay & & & & & & & & 10－4 & 10－1 & & 9－4 & \\
\hline Scallops，sea． & 9－11 & & & 10－5 & 12－4 & 11－4 & & 1－12 & 1－12 & & 1－12 & \\
\hline Sea urchins． & & & & & 3－9 & & & & & & & \\
\hline Squid \({ }_{\text {Stim }}\) & & & & & & 5－11 & & 5－11 & 5－11 & & 5－8－8 & －－11 \\
\hline Terrapin． & & & & & & & & 11－4 & 11－4 & 11－4 & 11－4 & 11－4 \\
\hline Turtle，green & & & & & & & & & & & 5－11 & 5－11 \\
\hline Winkles．－ & & & 5－9 & 3－12 & 5－9 & \(4-11\) & & 4－11 & & & 1－12 & \\
\hline
\end{tabular}
in the wholesale fish markets of New York City
are inclusive．Example： \(5-11\) means May to November，inclusive］
Sources of supply and when in season
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  & \[
\begin{aligned}
& \text { 采 } \\
& \frac{0}{5}
\end{aligned}
\] & －9， &  & \[
\begin{aligned}
& \text { W } \\
& \text { B0 } \\
& 0.0 \\
& 0
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { आ } \\
& \text { \# } \\
& \text { 感 }
\end{aligned}
\] &  &  & 皆 & \[
\begin{aligned}
& \text { 荈 } \\
& \text { 坒 }
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { g } \\
& \text { 品 } \\
& \text { 品 } \\
& \text { g } \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { g } \\
& \text { E.0 } \\
& \text { © }
\end{aligned}
\] & 比品 \\
\hline 5－11 & 5－11 & 4－11 & 4－12 & 4－12 & 4－9 & 10－5 & 10－5 & & & & & & & & \\
\hline & \(7-11\) & 6－11 & 4－6 & & & 11－5 & & & & & & & & & \\
\hline 5－11 & 4－12 & 4－12 & 4－11 & & & & & & & & & & & & \\
\hline & & 1－3 & 3－5 & & & & & & & & & & & & \\
\hline 4－7 & 4－11 & 3－11． & 2－11 & & & & & & & & & & & & \\
\hline & \(1-10\) & 1－10 & & & & 12－5 & & & & & & & & & \\
\hline 3－1 & 3－11 & 1－12 & 1－12 & 1－12 & 1－12 & 11－4 & & & & & & & & & \\
\hline 1－12 & 1－12 & 1－12 & & & & & & & & & & & & & \\
\hline 5－12 & 4－12 & 5－12 & & 12－4 & 12－4 & 11－4 & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & 2－11 & 2－11 & 2－11 & & \\
\hline 3－6 & 3－5 & 3－5 & 2－5 & & & & & & & & & & & & \\
\hline & & & & & & 12－4 & & & & & & & & & \\
\hline & 5－8 & 4－8 & 10－5 & － \(\begin{array}{r}5-6 \\ 10-5\end{array}\) & 3－6 & 1－4 & & & & & & & & & \\
\hline 10－6 & 4－10 & 4－5 & 2－4 & & & 11－4 & & & & & & & & & \\
\hline & & & 8－10 & 4－10 & 1－12 & 12－4 & 12－4 & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & \(7-10\) & 8－10 & \[
\begin{gathered}
-7-10 \\
4-6
\end{gathered}
\] & \[
\begin{gathered}
1-12 \\
11-5
\end{gathered}
\] & \[
\begin{array}{r}
12-4 \\
1-12
\end{array}
\] & 12－4 & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline 5－11 & 4－9 & 4－9 & & 1－5 & & & & & & & 1－12 & 1－12 & 1－12 & 1－12 & 7－11 \\
\hline & 5－11 & 5－11 & & 12－5 & 11－5 & 12－5 & －－－－ & & & & & & & & \\
\hline & & & 11－5 & 11－5 & 11－5 & 11－4 & & & & & & & & & \\
\hline 4－6 & 3－5 & 3－5 & 2－5 & 2－4 & 2－4 & 12－3 & & & & & & & & \[
\left\{\left.\begin{array}{r}
11-6 \\
8-9
\end{array} \right\rvert\,\right.
\] & \(11-6\)
\(8-9\) \\
\hline & & & & & 10－2 & 11－5 & 12－3 & 12－3 & & & & & & & \\
\hline & & & & & & 11－4 & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & \[
\begin{gathered}
-9-9 \\
7-10
\end{gathered}
\] & 4－7 & & 11－4 & 10－5 & 12－4 & & & & & & & & \\
\hline \[
12-7
\] & \(\left\{\begin{array}{r}6-9 \\ 3-6 \\ 10-12\end{array}\right\}\) & 12－6 & 11－5 & & & & & & & & & & & & \\
\hline 4－6 & 3－10 & 4－11 & 5－6 & 4－9 & 4－6 & 5－7 & & 11－1 & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline 5－10 & 4－11 & \(4-11\) & & & & & & & & & & & & & \\
\hline 2－5 & 6－5 & 12－5 & & & & 11－5 & & & & & & & & & \\
\hline & 1－12 & 1－12 & 1－12 & & & & & & & & & & & & \\
\hline & 12－4 & 12－4 & & & & & & & & & & & & & \\
\hline 5－10 & 1－12 & 1－12 & 3－5 & & & & & & & & & & & & \\
\hline 5－10 & & & & & & \[
\begin{aligned}
& 12-5 \\
& 21-3
\end{aligned}
\] & & & & & & & & & \\
\hline & & & & 10－5 & & & & & & & & & & & 1－12 \\
\hline 9－5 & \[
\begin{array}{r}
9-5 \\
12-4
\end{array}
\] & \[
\begin{array}{r}
9-5 \\
12-6
\end{array}
\] & 12－4 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & 5－12 & 4－12 & 3－12 & 1－12 & 12－4 & 12－4 & & 10－5 & & & & & \\
\hline \({ }_{11-4}^{5-11}\) & － \(\begin{array}{r}4-6 \\ 11-4\end{array}\) & \(4-6\)
\(10-5\) & & & & & & & & & & & & & 1－12 \\
\hline 11－4 & 11－4 & 10－5 & 11－4 & \[
\begin{array}{r}
11-5 \\
9-6
\end{array}
\] & 11－5 & \[
\begin{gathered}
11-5 \\
1-12
\end{gathered}
\] & 11－5 & 11－5 & 11－5 & 11－5 & & & & & \\
\hline & 5－9 & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 14.-Fresh-water fishery products obtainable in the wholesale fish markets of New York City
[The months of the year are represented by the figures 1 to 12 and are inclusive. Example: 5-11 means May to November, inclusive]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{9}{|c|}{Sources of supply and when in season} \\
\hline & Quebec & Maine & Vermont & New York & Pennsyl. vania & Virginia & Kentucky & Tennessee & Alabama \\
\hline Bass, ealico. & & & & 5-6 & & & & & \\
\hline Bass, rock & & & & 5-6 & & & & & \\
\hline Bowfin.-.. & & & & 4-5 & & 3-5 & & & \\
\hline \begin{tabular}{l}
Buffalofish. \\
Bullhead.
\end{tabular} & & & & 5 & & & & 1-4 & 1-4 \\
\hline Carp.- & & & & \({ }_{9}^{5-7}\) & & 3-5 & & 1-4 & \\
\hline Cisco... & & & & 3-12 & 3-12 & & & & \\
\hline Perch, yellow & 5-6 & & 11-4 & \(\left\{\begin{array}{l}5-6 \\ 5-6\end{array}\right.\) & 3-5 & 3 & & & \\
\hline Pickerel. & 1-12 & & 11-4 & \(\left\{\begin{array}{c}5-6 \\ 10-11\end{array}\right.\) & ------- & & & & \\
\hline Pike, blue-. & 1-12 & & 11-4 & \({ }^{12-3}\) & 3-5 & & & & \\
\hline Red horse. & & & & 4-6 & & & & & \\
\hline Smelts & 12-3 & 12-4 & & 1-2 & & & & & \\
\hline Spoonbill eat & & & & & & & 12-3 & 12-3 & 12-3 \\
\hline \begin{tabular}{l}
Sturgeon. \\
Suckers
\end{tabular} & 5-12 & 12-4 & & \({ }_{4}^{5-7}\) & 3-6 & & & & \\
\hline Sunfish & & & & 4-10 & & & & & \\
\hline Trout, lake & & & & & & & & & \\
\hline Whitefishi. & 9-12 & & & \(\left\{\begin{array}{c}4-5 \\ 11\end{array}\right.\) & \} 4-5 & & & & \\
\hline Frogs.- & 6-10 & & & 6-10 & -------- & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{9}{|c|}{Sources of supply and when in season} \\
\hline & Mississippi & \[
\begin{aligned}
& \text { Louisi- } \\
& \text { ana }
\end{aligned}
\] & Ohio & Illinois & Miehigan & Wisconsin & Minnesota & Iowa & Missouri \\
\hline Bowfin. & & & & 3-5 & & 3-5 & & & \\
\hline Buffalofish & 11-5 & 11-3 & & 9-5 & & 9-5 & 11-4 & 9-5 & 1-4 \\
\hline Bulbead. & & & 3-11 & 9-5 & 4-10 & 1-12 & -11-4 & 9-5 & 1-4 \\
\hline Ciseo ....-... & & & 3-12 & & & & & & \\
\hline Lake herring. & & & 3-5 & & 1-12 & 1-3 & & & \\
\hline Pike, blue...- & & & 3-5 & & & & & & \\
\hline Pike, yellow & & & 3-5 & & 1-12 & 1-3 & & & \\
\hline Red horse. & & & & & & 4-5 & & & \\
\hline Saugar---- & & & \[
\begin{array}{r}
11-5 \\
3-6
\end{array}
\] & & 4-5 & 2-3 & & & \\
\hline Spoonbill cat. & 12-3 & 12-3 & & & & & & & \(12-3\) \\
\hline Sturgeon-.-- & & & 4-12 & & 1-12 & & 6-10 & & \\
\hline Suckers.-. & & & 4-5 & & & 11-4 & & & \\
\hline Whitefish. & & & ( \(\begin{gathered}4-5 \\ 11-12\end{gathered}\) & & & 9-12 & 9-10 & & \\
\hline Frogs.-- & & 6-10 & & & & & & & \\
\hline
\end{tabular}

Table 14.-Fresh-water fishery products obtainable in the wholesale fish markets of New York City-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{9}{|c|}{Sources of supply and when in season} \\
\hline & \[
\underset{\text { Arkan- }}{\substack{\text { sas }}}
\] & Oklaboma & Texas & South Dakota & Montana & Washington & Ontario & Manitoba & Alberta \\
\hline Bass, rock & & & & & & & 4-5 & & \\
\hline Bowfin... & 11-5 & & 11-4 & 12-2 & & & & & \\
\hline Bullhead. & & & & 4-5 & & & 4-6 & & \\
\hline Carp.-. & & & & 12-2 & \(12-4\) & 4-9 & 3-10 & & \\
\hline Cisco.- & & & & & & & 3-12 & & \\
\hline Lake herring. & & & & ------- & & & 10-12 & & \\
\hline Muskellunge. & & & & & & & \({ }_{3-12}^{12-2}\) & & \\
\hline Perch, yellow Pickerel & & & & & & & 3-12
\(1-12\) & 12-3 & 1-3 \\
\hline Pike, blue.- & & & & & & & 3-12 & & \\
\hline Pike, yellow. & & & & & & & 1-12 & 12-3 & 1-3 \\
\hline Red horse... & & & & & & & 3-12 & & \\
\hline Sauger-...- & & & & & & & \({ }_{5-7}^{3-12}\) & 12-3 & \\
\hline Spoonbill cat. & 12-3 & 12-3-1 & 12-3 & & & & & & \\
\hline Sturgeon-- & & & & & & & 5-12 & \(11-2\) & \\
\hline Suckers-- & & & & & & & 1-12 & 12-3 & \\
\hline Sunfish.. & & & & & & & 3-12 & 12-3 & \\
\hline Trout, lake & & & & & & & 4-11- & & \\
\hline Whitefish. & & & & & & & 3-12 & 12-3 & \\
\hline Frogs... & & & 6-10 & & & & & & \\
\hline
\end{tabular}

\title{
FISHERY INDUSTRIES OF THE UNITED STATES, 1924
}

\author{
By Oscar E. Sette \\ Assistant in Charge, Division of Fishery Industries
}

\section*{CONTENTS}
Page
220
Introduction
220
220
summary of operations
summary of operations
221
221
Documents ..... 221
Statistical bulletins. ..... 221
Technological investigations ..... 221
Canning sardines ..... 222
Utilization of by-products ..... 223
Preservation of nets ..... 223
Iodine content of preserved sea foods ..... 224
Crab fishery of Chesapeake Bay ..... 
Trawl-net fishery of Chesapeake Bay and tribu- taries ..... 225
Canned fishery products and by-products ofthe United States and Alaska, 1924226
Canned fishery products ..... 226
Salmon. ..... 226
Sardines ..... 228
Shad and alewives ..... 229
Tuna and tunalike fishes. ..... 229
Shrimp and crabs ..... 230
Clams. ..... 231
Oysters ..... 233
Miscellaneous canned products ..... 233
Exports of canned fishery products in 1924 ..... 234fish235
By-products of the fisheries ..... 236
Fish scrap and meal ..... 237
Fish oils ..... 237
Liquid fish glue ..... 237
Shell by-products ..... 238
Menhaden industry ..... 238
Cold-storage holdings of frozen fish ..... 239
Quantities of fish frozen ..... 242
New England vessel fisheries ..... 244
General statisties ..... 244
Species ..... 261
Cod ..... 261
Haddock ..... 262
Hake. ..... 262
Pollock ..... 262
Cusk ..... 262
Halibut ..... 262
Mackerel ..... 262
Swordfish ..... 264
Flounders ..... 264
Herring ..... 264
Otter-trawl fishery ..... 264
Days absence ..... 266
Vessel fisheries at Seattle, Wash ..... 268

\section*{Page}

Fishery products received at municipal fish wharf and market, Washington, D. C...... 270
Shad and alewife fishery of the Potomac River. 273
Florida sponge fishery
Fisheries of the Pacific Coast States in 1922---- 274
Common and scientific names of fishes....-. 275

Comparison with previous statistics .....-.--- 279


Fishery products exclusive of fresh, frozen, and canned fish281
Fisheries of Washington ..... 283
Vessel fisheries ..... 291
Shore and boat fisheries ..... 295
Canning industry ..... 301
Wholesale fish trade. ..... 303
Fisheries of Oregon ..... 303
Vessel fisheries ..... 308
Shore and boat fisheries ..... 308
Canning industry ..... 311
Wholesale fish trade ..... 312
Fisheries of California ..... 313
Vessel fisheries ..... 322
Shore and boat fisheries ..... 325
Canning industry ..... 333
Wholesale fish trade ..... 334
Fisheries of the Pacific Coast States in 1923 ..... 335
Washington ..... 337
Oregon ..... 345
California ..... 347
Fisheries of the South Atlantic States, 1923 ..... 353
Earlier publications ..... 353
Common and scientific names of fishes ..... 353
General statistics ..... 355
Comparison of yield of certain species in
Comparison of yield of certain species in various years ..... 360
Menhaden industry ..... 363
Fisheries of North Carolina ..... 364
By apparatus ..... 373
Industries ..... 384
Fisheries of South Carolina ..... 385
By apparatus ..... 387
Industries ..... 390
Fisheries of Georgia ..... 391
By apparatus ..... 393
Industries ..... 395
Fisheries of east coast of Florida ..... 396
By apparatus ..... 401
Industries ..... 407

\section*{INTRODUCTION}

During 1924 the fishery industries appear to have reached the end of their period of recovery from the postwar depression, which was so severely felt during 1919 and to a lesser extent in subsequent years. In general, the production of fish and fishery products was greater in volume than during the previous year, but the prices which they commanded were somewhat lower.

According to statistics collected on various geographical sections during the past five years over 190,000 persons are engaged in the fisheries and related industries, about \(\$ 200,000,000\) is invested, and the annual yield by fishermen is about \(2,600,000,000\) pounds of fish, shellfish, and other aquatic products, for which the fishermen receive about \(\$ 90,000,000\). The output of canned fishery products in 1924 was valued at \(\$ 72,000,000\), and the yield of by-products exceeded \(\$ 10,000,000\) in value.

\section*{SUMMARY OF OPERATIONS}

The technological work of the division during 1924 included a continuation of experiments in the canning of sardines in California and Maine; continuation of investigations relative to the use of copper oleate as a net preservative, with particular reference to preservative action and comparative costs in actual commercial operation; investigation of the utilization of wastes in the fishery industries; and analyses of canned, salted, and smoked fish and shellfish to determine their iodine content. These investigations are fully discussed in following pages.

The statistical work included the collection and monthly publication of statistics of the landings of fish by vessels at the ports of Boston and Gloucester, Mass.; Portland, Me.; and Seattle, Wash., with publication of annual bulletins summarizing these landings for the year; monthly publication of statistics on the cold-storage holdings of fish, which are collected by the Bureau of Agricultural Economics, Department of Agriculture; collection of the statistics on quarterly production, consumption, and holdings of oils in the fishery industries for use of the Bureau of the Census; collection of the statistics on the production of canned fishery products and byproducts of the United States and Alaska for the year 1924; compilation and publication of the statistics of the fisheries of the Mississippi River and tributaries and the Great Lakes; compilation of statistics of the fisheries of the Pacific coast in 1922 ; and collection of statistics on the fisheries of the South Atlantic and Gulf States for 1923.

Including those published in this report, the most recent detailed statistics available for each of the various geographical sectious are as follows: New England States, 1919; New York, New Jersey, and Delaware, 1921; Maryland and Virginia, 1920; South Atlantic States, 1923; Gulf States, 1918; Pacific Coast States, 1922 and 1923; Mississippi River and tributarics, 1922; and Great Lakes, 1922.

In order to make results of statistical canvasses and technological research available to those interested, 16,000 copies of statistical bulletins on 42 subjects were distributed to interested persons, and over 1,600 letters were written in reply to specific requests for statistical, technological, and trade information.

In response to urgent requests from men in the crab industry, a special investigation to determine the cause for the present serious condition of this industry was begun during the latter part of 1924 and is being continued.

\section*{PUBLICATIONS OF THE DIVISION}

During the calendar year 1923 the following publications, prepared in this division, were issued. This list does not include the monthly statistical bulletins for Boston and Gloucester, Mass.: Portland, Me.; and Seattle, Wash., nor the monthly publication of the cold-storage holdings of frozen fish.

\section*{DOCUMENTS}

Iodine content of sea foods; by Donald K. Tressler and Arthur W. Wells, \(8^{\circ}\), 12 pp . Document No. 967.

Fishery industries of the United States, 1923; by Oscar E. Sette, 8, 219 pp. Document No. 976.

\section*{STATISTICAL BULLETINS}

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Seattle, Wash., by American fishing vessels during the calendar year 1923. Statistical Bulletin No. 598.

Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1923. Statistical Bulletin No. 599.

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1923. Statistical Bulletin No. 600.

Fisheries of the Mississippi River and tributaries, 1922. Statistical Bulletin No. 607.

Canned fishery products and by-products of the United States and Alaska, 1923. Statistical Bulletin No. 608.

Fisheries of the Great Lakes, Lake of the Woods, and Rainey Lake, 1922. Statistical Bulletin No. 618.

Fisheries of Alaska, 1923. Statistical Bulletin No. 625.

\section*{TECHNOLOGICAL INVESTIGATIONS}

The bureau is giving attention to such technological research as limited funds and personnel permit. Its policy is to select broad, fundamental studies which are urgent, which promise to be of greatest value to the largest number, and which the fisheries industries themselves are least capable of undertaking. Thesc industries offer excellent opportunities for the application of science, and a large amount of research in this field must be conducted before they can be placed on the same plane of efficiency as similar industries in other fields. Few realize, especially in the fisheries industries, the advancements which can be brought about by means of well-directed, adequately supported, technological investigations, and it is important that the bureau demonstrate the possibilities of such research. Rapid progress of the fisheries industries depends largely upon work of this nature combined with the application of sound business principles.

\section*{CANNING SARDINES}

Sardine canning is an important part of the fishery industries. In 1924 over \(3,250,000\) cases were packed, having a value in excess of \(\$ 12,500,000\). These figures place this industry next to that of salmon canning in importance and, excluding Alaska salmon, first among our canned fishery products. This industry, too, can be greatly expanded, there being large supplies of herring, pilchards, and like fishes which can be utilized. In time, undoubtedly, this expansion will take place, due to the increasing world demand for cheap food of high protein content.

Our canned sardines, meet very keen competition at home and abroad, however, and if we are to capture and hold our share of the world markets our products must be high in quality as well as low in price. Since 1920 the bureau has been conducting research upon the preparation of fish for canning as sardines, making available lacking fundamental scientific information upon this important subject and working toward the development of a better and cheaper method of preparing the fish. Considerable success is being attained along these lines.

In the last report mention was made of the development and successful operation on small and semicommercial scales of a new process of preparing fish for canning as sardines. This method was dereloped in the bureau's experimental laboratory at San Pedro, Calif. Since then experiments have been carried out in Maine, ending in the successful application of the same process to the preparation of Maine sardines.

The new process depends on rapidly moving hot air to cook and dry the fish at the same time, followed, if desired, by a period of cooling in a blast of cold air so that they may be packed immediately. An additional development was brought forward by the Maine experi-ments-while simultaneously drying and cooking small fish they can also be given a light smoking by the simple and inexpensive procedure of adding smoke to the drying air.

It is firmly believed that no other method of preparing fish for canning as sardines offers equal possibilities for lowering the production costs and improving the products made from both small and large fish in California and Maine. The packs put up by the new process from California fish are, in the long run, better than similar products which have been fried in oil. The same is true with regard to packs produced by the new method as compared with goods prepared from steamed and fried fish in Maine.

Tests extensive enough to prove the above claims have been carried out. It remains to be shown, however, how well the process will work out on a commercial scale. For this purpose a commercialsized installation of relatively expensive equipment, different from any now being used, is required. Engineering companies will design and construct equipment and make guaranties both upon the equipment itself and the cost of operation. These guaranties in effect assure successful operation, but even with these assurances there is reluctance upon the part of the canners to scrap old equipment and purchase new until there is positive proof that the venture will be successful both from the technical and business standpoints. It is becoming evident that some plan for bringing about development
of the process on a large scale must be formulated which will eliminate most of the risk to the canners. This phase of the problem is now receiving consideration.

\section*{UTILIZATION OF BY-PRODUCTS}

Considerable progress has been made in the last few years in the utilization of the large quantities of waste fish and offal from fish markets and concerns manufacturing preserved products. Oil can be extracted from most fish waste and the residue made into fish meal. These products are very valuable. The oil is used in making soaps, paints, in tanning leather, and for many other purposes, and the meal serves as a stock and poultry food and as a fertilizer. Although considerable has been accomplished in eliminating waste, much yet remains to be done. Less than half the supply of waste products of the fisheries is now being utilized, and present practices of manufacturing fish meal and oil, both from offal and from nonedible fish, are in general quite inefficient. There are also possibilities for producing better and more valuable products. The bureau is especially interested in these problems, as any improvement which can be brought, either through education or by research, increases the prosperity of the fisheries industries and contributes to national economy.

Some phases of this problem are of particular importance at this time. Ways should be developed of either eliminating the press liquors or of economically recovering and utilizing the protein matter which is present in these liquors and now discarded. This material is not only a large waste but it seriously pollutes our coastal waters in some places. There is need for small, inexpensive plants to handle small quantities of offal, such as collect in many places, and for equipment to handle profitably large quantities of material for a period of 4 to 6 weeks of each year. At present it only pays to handle relatively large amounts of fish or offal where operation can be continuous over a good part of the year. Research is now being conducted along these lines.

\section*{PRESERVATION OF NETS}

Many very good reports are being received concerning the use of copper oleate as a net preservative. It is proving particularly effectire on pound nets, especially in combination with copper paint. On the coasts of Long Island and New Jersey tarred netting ordinarily lasts but two season and has to be taken from the water about twice a month during part of the season in order that hydroids, barnacles, and other growths may be removed. Where the copper oleatecopper paint mixture is used it is only necessary to remove the netting for treatment about every two months, there being no growth. Under such conditions with the twine in a pound net costing around \(\$ 4,000\) for each net it is proving very profitable to use this misture.

Unfavorable reports also are received, and in many cases fishermen who started to use copper oleate have gone back to old methods of preserving their twine. Copper oleate may be applied improperly or used for a purpose for which it was not intended, and cases of dis-
satisfaction are frequently traced to these causes. Copper oleate, however, has proved to be an excellent preservative and antifouling agent for fish nets wherever used properly. Usually a fisherman considers only the first cost and does not consider whether it might not be much cheaper in the long run to frequently treat his nets with copper oleate rather than to buy new netting.

The full value of cooper oleate as a net preservative can not be determined until accurate data are available upon the costs of treating netting with different preservatives, including copper oleate, and the length of life of the twine so treated. Practical tests of this nature have been arranged in cooperation with fishermen at several points on the Atlantic seaboard and on the Great Lakes. These tests will also show the advantages and disadvantages of using copper oleate under practical conditions and indicate what modifications in its use are necessary for different kinds of gear under the widely varying conditions to which they are subjected.

Cordage manufacturers are finding copper oleate to be a good preservative and antifouling agent for manila rope. At least one company now sells for marine use a line of rope treated with this material.

\section*{IODINE CONTENT OF PRESERVED SEA FOODS}

In a paper published during 1924 (Bureau of Fisheries Document No. 967 ) it was shown that fresh sea foods contain a higher percentage of iodine than other common foods. It was pointed out that since goiter and other thyroid disorders are caused by a lack of iodine being ingested, the liberal use of sea foods in the diet should be an effective preventive of these disorders, especially in so-called goiterous belts where the iodine content of the water and foods is below normal. The amount of iodine necessary to prevent goiter is very small-only about one part in \(3,000,000\) parts of the body weight-but it is important that this balance be maintained.

Many of these goiterous belts are so located that it is rather difficult for the inhabitants to obtain marine fish in the fresh condition. Much of the marine fish which they consume has been preserved in some manner, such as canning, salting, and smoking. The question naturally arises as to whether these preserved products contain iodine in quantities comparable to that in fresh fish. A series of analyses was made which indicates that such products do contain comparable quantities of iodine. The results of these analyses were published in Bureau of Fisheries Document No. 979.

\section*{CRAB FISHERY OF CHESAPEAKE BAY}

Due to the alarming decline in the crab production of Chesapeake Bay, particularly along the eastcrn shore, the bureau was strongly urged to investigate this industry. Very little information was available upon which to base a determination of the character or reasons for the decline, and it was therefore first necessary to make a statistical survey in which particular attention was directed to the discovery of such statistics on catches during previous years as could be found in the records of crab houses. An analysis of such statistics as were found indicated that the decline in abundance of crabs took place well in adrance of a decline in total catch. The total catch did not decline seriously until sometime between 1915 and 1920,
whereas the catch per boat began its most serious decline in 1909, and the total catch has since been maintained by vastly greater fishing effort. Apparently in recent years the scarcity of crabs has been so pronounced that high prices and greater fishing effort have not been productive of a yield sufficient to meet present demands. All available data point to the fact that the depletion is due to overfishing and not to natural causes.

A feature of the soft-crab industry which came to light upon examining the records of crab houses was the excessive losses in converting peeler crabs into soft crabs. Among 10 firms whose records were made available there was a loss of 30 to 70 per cent in the shedder floats during the year. The average loss was over 50 per cent. This was due almost exclusively to the practice of taking crabs long before they were in the true peeler stage and attempting to hold them for extended periods of time in the hope that they would shed and become soft crabs.

There are well-defined differences which take place in the external appearance of the crab as it approaches shedding time and these are well known to fishermen. Two firms which accepted only crabs in the advances peeler stage sustained shedding losses averaging only 15 per cent. It was recommended that steps be taken to avoid these losses, and, with active interest of administrating officials of both States in this matter, it is believed that the evil will be rectified.

Although this may bring about an improvement of conditions in the crab industry, it will be necessary to employ more drastic measures to bring about a satisfactory recovery of the fishery. Surveys are now under way to determine the relationship of the Virginia and Maryland fisheries to the depletion of the general stock of crabs and the probable effect of restrictive measures.

\section*{TRAWL-NET FISHERY OF CHESAPEAKE BAY AND TRIBUTARIES}

During the winter of 1924-25 trawl-net fishermen were reported to be operating in the Patuxent River and Chesapeake Bay with a new and destructive type of gear. At the urgent invitation of the Conservation Department of Maryland the writer was detailed to cooperate in observing this fishery and investigating its destructiveness.

It was found that the net operated was essentially a small otter trawl, fished in the deeper waters of this region in the wintertime when the white perch (Morone americana) and striped bass (Roccus lineatus) were concentrated in the deeper "holes" and could be caught by this gear in unusually large quantities.

Actual counts of fish taken by this gear showed that 20 to 55 per cent of white perch and 25 to 50 per cent of the striped bass were under the size which was legal in the State of Maryland, and observations indicated that these undersized fish when returned to the water did not survive.

The conclusions drawn from the investigation were:
1. This fishery catches from 20 to 55 per cent of small, unmarketable fish, few of which can survive.
2. This fishery can destroy large quantities of brood stock necessary to perpetuate the species.
\[
69239-26 \dagger-2
\]
3. A continuation of the fishery might seriously deplete the white perch and striped bass of the Patuxent River and Chesapeake Bay or of any waters where similar conditions obtain.

It was therefore recommended that the Conservation Department of Maryland prohibit this fishery, and subsequent advices received from the department indicate that it has been entirely stopped.

\section*{CANNED FISHERY PRODUCTS AND BY-PRODUCTS OF THE UNITED STATES AND ALASKA, 1924}

The fish-canning and by-products industries of the United States and Alaska attained a production in 1924 valued at \(\$ 82,473,579\), of which canned goods amounted to \(\$ 72,164,589\) and by-products to \(\$ 10,308,990\). This is a decrease of 0.4 per cent in the value of canned products and of 18.4 per cent in the value of by-products as compared with 1923. Named in order of value, the most important canned products in 1924 were salmon, sardines, tuna, shrimp, and oysters. Of the by-products, fish oils, fish scrap and meal, and crushed oyster shells were most important.

\section*{CANNED FISHERY PRODUCTS}

\section*{SALMON}

In 1924 there were 186 plants engaged in canning salmon in the Pacific Coast States and Alaska as compared with 188 in the previous year. Of the total in 1924, 130 were operated in Alaska, 32 in Washington, 22 in Oregon, and 2 in California. The pack of canned salmon, on the basis of forty-eight 1-pound cans to the case, amounted to \(6,253,577\) cases, valued at \(\$ 42,401,602\), as compared with \(6,402,906\) cases, valued at \(\$ 45,533,573\), in 1923, a decrease of 2.3 per cent in quantity and 6.9 per cent in value.
In the Pacific Coast States the pack amounted to 958,662 cases, valued at \(\$ 9,394,467\), as follows: Chinook, 349,014 cases, valued at \(\$ 4,599,759\); sockeye, 85,800 cases, valued at \(\$ 1,478,698\); coho or silver, 231,139 cases, valued at \(\$ 1,774,078\); humpback or pink, 12,778 cases, valued at \(\$ 79,436\); chum, 247,858 cases, valued at \(\$ 1,192,156\); steelhead, 32,073 cases, valued at \(\$ 270,340\); and other salmon products valued at \(\$ 122,228\). Of the total canned salmon in the Pacific Coast States Washington produced 541,962 cases, valued at \(\$ 5,062,082\), and Oregon and California together 416,700 cases, valued at \(\$ 4,332,385\).

In Alaska the pack amounted to \(5,294,915\) cases, valued at \(\$ 33,-\) 007,135 , divided as follows: Chinook, 33,648 cases, valued at \(\$ 299,009\); red or sockeye, \(1,447,895\) cases, valued at \(\$ 13,803,932\); coho or silver, 183,601 cases, ralued at \(\$ 1,254,551\); humpback or pink, \(2,601,283\) cases, valued at \(\$ 12,837,346\); and chum or keta, \(1,028,488\) cases, valued at \(\$ 4,812,297\). Of the total \(2,787,789\) cases, valued at \(\$ 14,-\) 711,842 , were packed in the southeastern district; \(1,605,107\) cases, valued at \(\$ 10,067,602\), in the central district; and 902,019 cases, valued at \(\$ 8,227,691\), in the western district.

Compared with 1923, there was a decrease of three plants in Washington and an increase of one each in Oregon, Alaska, and California. The pack in the Pacific Coast States decreased 29.9 per cent in quantity and 25.8 per cent in value. Most of the decrease was due to the very small pack of humpbacks, although the packs of chinooks,
sockeyes, and silvers also decreased. The pack of chums was larger than in 1923 and the pack of steelheads about the same. In Alaska the pack increased 5.2 per cent in quantity and 0.4 per cent in value. The increase of the Alaska pack was due almost entirely to the unusually large pack of humpbacks in the central district, although the pack of cohos was also larger than in 1923. A distinct decrease of nearly 50 per cent occurred in the pack of chums. The packs of kings or chinooks and reds or sockeyes also decreased.

Pack of canned salmon, 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Products} & \multicolumn{6}{|c|}{Pacific Coast States} & \multicolumn{2}{|r|}{Alaska} \\
\hline & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|l|}{Oregon and California} & \multicolumn{2}{|r|}{Total} & \multicolumn{2}{|r|}{Southeast} \\
\hline King, chinook, or spring: 1-pound tall & \[
\begin{aligned}
& \text { Cases } \\
& 17,613
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 102,160
\end{gathered}
\] & \[
\begin{aligned}
& \text { Cases } \\
& 11,173
\end{aligned}
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 89,374
\end{aligned}
\] & \[
\begin{aligned}
& \text { Cases } \\
& 28,786
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 191,534
\end{gathered}
\] & \[
\begin{gathered}
\text { Cases } \\
2,566
\end{gathered}
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 18,555
\end{aligned}
\] \\
\hline 1 -pound flat & 36, 161 & 477, 056 & 95, 865 & 1, 184, 459 & 132, 026 & 1, 661, 515 & 4, 721 & 44,622 \\
\hline 1 -pound oval & 2, 355 & 47, 100 & 4, 554 & 89, 140 & 6,909 & 136, 240 & & \\
\hline \(1 / 2\)-pound flat & 78, 111 & 1,089, 469 & 102, 578 & 1,508, 921 & 180, 689 & 2, 598, 390 & 995 & 11, 516 \\
\hline 1/2-pound oval & 360 & 7, 200 & 244 & 4,880 & 604 & 12,080 & & \\
\hline Total & 134, 600 & 1,722, 985 & 214,414 & 2, 876, 774 & 349, 014 & 4, 599, 759 & 8,282 & 74, 693 \\
\hline \multicolumn{9}{|l|}{Red or sockeye:} \\
\hline & 211 & 2,954 & & & 211 & 5 & 140, 989 & \\
\hline 1-pound flat & 16, 215 & 227,012 & & & 16, 215 & 227,012 & 39, 717 & 415, 789 \\
\hline 1/2-pound flat & 64, 160 & 1,154, 880 & 5,214 & 93, 852 & 69, 374 & 1, 248, 732 & 11,801 & 156, 738 \\
\hline Total & 80, 586 & 1,384, 846 & 5,214 & 93, 852 & 85, 800 & 1, 478, 698 & 192, 507 & 1, 863, 675 \\
\hline \multicolumn{9}{|l|}{Coho or silver:} \\
\hline 1 -pound fat & 38, 221 & 290, 481 & 40, 546 & 305, 841 & 105,101
78,767 & \begin{tabular}{l}
737,863 \\
596 \\
\hline
\end{tabular} & 100,016
5,034 & 667,530 \\
\hline \(1 / 2\)-pound flat & 23, 734 & 223, 354 & 23, 537 & 216, 539 & 47, 271 & 439, 893 & 4,939 & 50,649 \\
\hline Total & 117, 724 & 906, 374 & 113, 415 & 867, 704 & 231, 139 & 1,754,078 & 109, 989 & 763,546 \\
\hline Humpback or pink 1 -pound tall. & 2, 841 & 14, 205 & 2, 438 & 12,190 & 5, 279 & 26, 395 & 1,647, 157 & 8,079, 281 \\
\hline 1-pound flat & & & 776 & 4,190 & 776 & 4, 190 & 8,932 & 51,796 \\
\hline \(1 / 2\)-pound flat & 5,964 & 43,386 & 759 & 5,465 & 6,723 & 48, 851 & 21, 365 & 151,507 \\
\hline Total & 8,805 & 57, 591 & 3,973 & 21, 845 & 12, 778 & 79,436 & 1,677,454 & 8, 282, 584 \\
\hline \multicolumn{9}{|l|}{Chum or keta:} \\
\hline \begin{tabular}{l}
1 -pound tall. \\
1-pound flat
\end{tabular} & 173, 812 & 794, 534 & 42,478 & 195, 399 & 216, 290 & 989, 933 & 798, 581 & 3, 722, 311 \\
\hline 1/2-pound flat & 15, 184 & 103, 492 & 15, 031 & 92, 237 & 30, 215 & 195, 729 & 346 & 2, 214 \\
\hline Total & 188, 996 & 898, 026 & 58, 862 & 294, 130 & 247, 858 & 1,192, 156 & 799, 557 & 3.727, 344 \\
\hline \multicolumn{9}{|l|}{Steelhead:} \\
\hline 1 -pound tall & 3, 262 & 20, 878 & 196 & 1,254 & 3, 458 & 22, 132 & & \\
\hline 1-pound tlat & 2,961 & 20,727 & 8,926 & 61, 880 & 11, 887 & 82, 607 & & \\
\hline 1/2-pound flat and o & 5,028 & 50, 655 & 11, 700 & 114, 946 & 16, 728 & 165, 601 & & \\
\hline Total & 11, 251 & 92, 260 & 20,822 & 178, 080 & 32,073 & 270, 340 & & \\
\hline Grand total & \multicolumn{2}{|l|}{541, 962, 5, 062, 082} & \multicolumn{2}{|l|}{\[
416,700,4,332,385
\]} & 958, 662 & \[
9,394,467
\] & 2, 787, 789 & 14, 711, 842 \\
\hline
\end{tabular}

Pack of canned salmon, 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Products} & \multicolumn{6}{|c|}{Alaska-Continued} & \multicolumn{2}{|l|}{\multirow{2}{*}{Grand total}} \\
\hline & \multicolumn{2}{|l|}{Central} & \multicolumn{2}{|r|}{Western} & \multicolumn{2}{|r|}{Total} & & \\
\hline King, chinook, or spring: & Cases & Value & Cases & Value & Cases & Value & Cases & Value \\
\hline 1 -pound tall & 5, 246 & \$44, 871 & & & 22, 64 & \$182, 224 & 51, 433 & 8374, 258 \\
\hline 1 -pound oval. & 9 & & & & 0 & 97 & 41,526
6,909 & 760,612
136,240 \\
\hline \(1 / 2\)-pound flat & 506 & 5,672 & & & 1,501 & 17,188 & 182, 190 & 2, 615, 578 \\
\hline \(1 / 2\)-pound oval & & & & & & & 604 & 12,080 \\
\hline Total & 10, 531 & 105, 018 & 14, 835 & 119, 298 & 33, 648 & 299, 009 & 382, 662 & 4, 898, 768 \\
\hline \multicolumn{9}{|l|}{Red or sockeye:} \\
\hline 1 -pound flat- & 63, 201 & 633, 365 & 7, 434 & 70, 794 & 110, 352 & 1, 119, 948 & 126, 567 & 1,346,960 \\
\hline \(1 / 2\)-pound flat & 15, 827 & 200, 801 & 4,319 & 57, 736 & 31,947 & 415, 275 & 101, 321 & 1, 664,007 \\
\hline Total & 440, 049 & 4,173, 676 & 815,339 & 7, 766, 581 & 1,447, 895 & 13, 803, 932 & 1,533,695 & 15,282, 630 \\
\hline \multicolumn{9}{|l|}{Coho or silver:} \\
\hline 1 -pound flat. & 369 & 2,462 & & & 5,403 & 1, 47, 829 & 84, 170 & -644, 151 \\
\hline 1/2-pound flat & 3,120 & 28, 564 & & & 8, 059 & 79, 213 & 55, 330 & 519, 106 \\
\hline Total & 69, 180 & 464, 096 & 4,432 & 26, 909 & 183, 601 & 1, 254, 551 & 414, 740 & 3, 028, 629 \\
\hline Humpback or pink: 1-pound tall & 888, 250 & 4, 390, 431 & 31, 416 & 142, 205 & 2, 566, 823 & 12, 611, 917 & 2, 572, 102 & 12, 638, 312 \\
\hline 1 -pound flat. & 4,163 & 22, 126 & & & 13, 095 & - 73, 922 & 13, 871 & 78, 112 \\
\hline \(1 / 2\)-pound flat & & & & & 21, 365 & 151,507 & 28, 088 & 200, 358 \\
\hline Total & 892, 413 & 4, 412, 557 & 31, 416 & 142, 205 & 2, 601, 283 & 12, 837, 346 & 2, 614, 061 & 12, 916, 782 \\
\hline \multicolumn{9}{|l|}{Chum or keta:} \\
\hline 1-pound tall 1-pound flat & 192, 934 & 912, 255 & 35, 997 & 172, 698 & 1, 027, 512 & \[
\begin{array}{r}
4,807,264 \\
2,819
\end{array}
\] & \[
\begin{array}{r}
1,243,802 \\
1,983
\end{array}
\] & \(5,797,197\)
9,313 \\
\hline \(1 / 2\)-pound flat & & & & & 346 & 2, 214 & 30, 561 & 197, 943 \\
\hline Total & 192, 934 & 912, 255 & 35,997 & 172,698 & 1,028, 488 & 4, 812, 297 & 1,276, 346 & 6, 004, 453 \\
\hline \multicolumn{9}{|l|}{Steelhead:} \\
\hline 1 1-pound flat & & & & & & & 11,887 & 82, 607 \\
\hline 1/2-pound flat and oval & & & & & & & 16, 728 & 165, 601 \\
\hline Total & & & & & & & 32,073 & 270, 310 \\
\hline Grand total & 1,605, 107 & 0,067, 602 & 902, 019 & 8, 227, 691 & 5, 294, 915 & 33, 007, 135 & 6, 253, 577 & 42, 401, 602 \\
\hline
\end{tabular}

Note.-The pack of salmon has been reduced to the equivalent of forty-eight 1 -pound cans to the case. There were other salmon products, valued at \(\$ 125,174\), not shown in the above table.

\section*{SARDINES}

In 1924 there were 28 plants canning sardines in Maine, 1 in Massachusetts, and 24 in California. This is a decrease of one plant in Maine and an increase of two plants in California, as compared with 1923. The total pack in Maine, Massachusetts, and California was valued at \(\$ 12,636,599\), as compared to \(\$ 9,896,796\) in 1923, an increase of 28 per cent.

In Maine and Massachusetts there were produced \(1,819,868\) cases of various sizes, which are equivalent to \(1,899,925\) standard cases of 100 quarter-pound tins, valued at \(\$ 7,191,026\), as compared with \(1,272,277\) standard cases, valued at \(\$ 5,288,865\), in the previous year, an increase of 49.3 per cent in quantity and 36.0 per cent in value. The average price per standard case was \(\$ 3.78\) in 1924 , as compared to \(\$ 4.16\) in 1923.

In California there were produced \(1,407,731\) cases of various sizes, which are equivalent to \(1,367,139\) standard cases of forty-eight 1 -pound tins, valued at \(\$ 5,445,573\), as compared with \(1,100,162\)
standard cases, valued at \(\$ 4,607,931\) in 1923, an increase of 24.3 per cent in quantity and 18.2 per cent in value. The average price per standard case has declined continuously since 1921, the averages being as follows: \(\$ 5.89\) in 1921, \(\$ 4.70\) in 1922, \(\$ 4.19\) in 1923, and \(\$ 3.98\) in 1924.

Pack of canned sardines, 1924
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sardines (herring) & \multicolumn{2}{|l|}{Maine and Massachusetts} & Sardines (pilchard) & \multicolumn{2}{|c|}{California} \\
\hline In olive oil: Quarters ( 100 cans) & \[
\begin{aligned}
& \text { Cases } \\
& 39,012
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 247,025
\end{gathered}
\] & 1/2-pound oval (48 cans) \({ }^{1}\) - & \[
\begin{aligned}
& \text { Cases } \\
& 16,934
\end{aligned}
\] & Value \(\$ 49,349\) \\
\hline In cottonseed oil: Quarters (100 cans) & \({ }^{2} 1,464,830\) & 5,664, 578 & 1-pound oval (48 cans): & 1, 240,905 & 4, 494, 233 \\
\hline In mustard: & 1,161,830 & & In mustard. & 46, 675 & 173, 719 \\
\hline Quarters (100 cans). & 114,296 & 483, 867 & Soused & 4,098 & 15, 266 \\
\hline Three-quarters (48 cans).- & \({ }^{3} 181,948\) & 707,366 & Spiced. & 5,217 & 18, 623 \\
\hline In tomato sauce: Quarters (100 cans) & 19,782 & 88, 1 & In other sauces
1/- - pound square (100 cans & 22,
5 67,
887 & 89,113
552,536 \\
\hline Total & & & \(1 / 2\)-pound square (100 cans) \({ }^{4}\) & \({ }^{6} 3,929\) & 52, 704 \\
\hline & & & Total & 1,407, 731 & 5,445, 573 \\
\hline
\end{tabular}
\({ }_{2}^{1}\) Largely in tomato sauce.
\({ }_{2}\) Includes a few cases of \(3 / 4\)-pound cans, 50 to the case, which have been converted to the basis of \(1 / 4\)-pound cans, 100 to the case.
\({ }^{3}\) Includes a few cases of 50 cans each which have been converted to a basis of 48 cans to the case.
4 Largely in oil.
\({ }^{8}\) Includes a few cases packed round, 24 cans each, which have been converted to a basis of 100 cans to the case.
\({ }^{6}\) Includes a few cases of 48 cans each, which have been converted to a basis of 100 cans to the case.

\section*{SHAD AND ALEWIVES}

Shad and shad roe were canned at 7 plants in Washington, 11 in Oregon, and 1 in California. The total pack amounted to 9,686 cases of various sizes, valued at \(\$ 93,393\), as compared to 3,409 cases, valued at \(\$ 52,483\), in 1923. Alewives and alewife roe were packed at 8 plants in Maryland, 22 in Virginia, and 3 in North Carolina. The total pack amounted to 92,142 cases, valued at \(\$ 337,363\), as compared with 43,920 cases, valued at \(\$ 171,350\), in 1923.

Pack of shad and alewives, 1924
\begin{tabular}{|c|c|c|c|c|c|}
\hline Shad & \multicolumn{2}{|l|}{Washington, Oregon, and California} & Alewives & \multicolumn{2}{|l|}{Maryland, Virginia, and North Carolina} \\
\hline & Cases & Value & \multirow{3}{*}{\begin{tabular}{l}
No. 1 and No. 2 (24 cans) \\
Roe: No. \(1 / 2\), No. 1, and No. 2 (24 cans)
\end{tabular}} & \begin{tabular}{l}
Cases \\
13,306
\end{tabular} & Value \\
\hline 1-pound tall (48 cans) ---.-.--- & 5,583 & 16,749 & & & \\
\hline \begin{tabular}{l}
Roe: \\
1/2-pound flat (48 cans)-- \\
1/2-pound oval (48 cans).
\end{tabular} & \[
\begin{array}{r}
228 \\
2,101
\end{array}
\] & \[
\begin{array}{r}
4,104 \\
68,828
\end{array}
\] & & 188,836 & 332, 245 \\
\hline Total & 9,686 & 93, 393 & Total & 92, 142 & 337, 363 \\
\hline
\end{tabular}
\({ }^{1}\) The pack of alewives and alewife roe has been reduced to the equivalent of No. 2,15 -ounce cans, 24 to the case.

\section*{TUNA AND TUNALIKE FISHES}

In 1924, 19 plants were canning tuna and tunalike fishes. All of them were in California, just as in 1923. The total production amounted to 708,752 cases of various sizes, which were equivalent to 652,416 standard cases of 48 half-pound tins, valued at \(\$ 5,756,586\). This is a decrease of 20.2 per cent in quantity and 16.8 per cent in value, as compared to the pack of the previous year.

The pack of tuna and tunalike fishes includes albacore (put up under the name of "white-meated tuna"), yellowfin and bluefin tuna, striped tuna or skipjack, "tonno," bonito, and skipjack. "Tonno" is prepared from striped tuna and the blue and yellowfin tunas, but mostly from the first named. It consists of a highly seasoned and spiced pack put up in oil after the Italian method. The 1924 pack shows a decided increase of the albacore, of which there was an unusually large run in the southern waters. The pack might have been larger but for a fishermen's strike occurring at the height of the season. The packs of the other tunas were considerably smaller than in 1923, especially that of the yellowfin tuna, which is caught largely in waters off the coast of Mexico. The average price received for all kinds of tuna was \(\$ 8.80\) per standard case, as compared with \(\$ 8.45\) in 1923.

Pack of tuna and tunalike fishes, 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Sizes} & \multicolumn{4}{|c|}{Albacore} & \multicolumn{4}{|c|}{Yellowfin} & \multicolumn{2}{|l|}{Bluefin} & \multicolumn{3}{|l|}{Tuna, bluefin, and yellowfin} \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Cases } \\
45,773 \\
292,268 \\
50,833
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Value } \\
\$ 274,924 \\
2,804,603 \\
944,982
\end{gathered}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cases \\
5,234
26,307 \\
2,405
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Value \\
\(\$ 21,979\)
172,448 \\
27, 846
\end{tabular}} & \[
\begin{aligned}
& \text { Cases } \\
& 15,373 \\
& 13,922 \\
& 2,370
\end{aligned}
\] & \begin{tabular}{l}
Value \\
\$24, 683 \\
103,442
29,359
\end{tabular} & \[
\begin{gathered}
\text { Cases } \\
6,61 \\
8,44 \\
1,043 \\
\hline
\end{gathered}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Value } \\
& \$ 2,484 \\
& 59,248 \\
& 13,559
\end{aligned}
\]} \\
\hline \multicolumn{2}{|l|}{Total.} & \multicolumn{2}{|l|}{358, 874} & \multicolumn{2}{|l|}{4, 024, 509} & \multicolumn{2}{|l|}{33, 944} & \multicolumn{2}{|l|}{222, 273} & 21,665 & 157, 484 & \multicolumn{2}{|l|}{10, 128} & 75,291 \\
\hline Sizes & \multicolumn{2}{|l|}{Tuna, striped} & \multicolumn{4}{|c|}{"Tonno"} & \multicolumn{3}{|r|}{Bonito} & \multicolumn{2}{|l|}{Yellowtail} & \multicolumn{3}{|c|}{Total} \\
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& 1 / 4-\text { pound round (48 cans-- } \\
& \text { 1/2-pound round ( } 48 \text { cans). } \\
& \text { 1-pound round ( } 48 \text { cans)... }
\end{aligned}
\]} & \({ }_{1}^{\text {Cases }}\) & Value & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{gathered}
\text { Cases } \\
160,819 \\
215,566 \\
215,564
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{array}{r}
\text { Value } \\
\$ 728,016 \\
120,240 \\
13,605
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Value } \\
& \$ 64,72 \\
& 30,034
\end{aligned}
\]} & Cases & Value & \[
\begin{gathered}
\text { Cases } \\
239,356
\end{gathered}
\] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Value \\
1, 140, 052
\end{tabular}}} \\
\hline & 33,923 & & & & & & & & & \({ }^{3} 10,365\) & \$52,965 & & & \\
\hline & 3,063 & 27,558 & & & & & & & & 2,964 & & 63,342 & & \\
\hline Total & 43, 205 & 239, 198 & & 7,049 & 861, & & 20,558 & & 94, 006 & 13,329 & 81, 164 & 708, 752 & & 56, 586 \\
\hline
\end{tabular}
\({ }^{1}\) Includes the pack of 100 cans to the case, which has been converted to the equivalent of 48 cans to the case.
\({ }_{2}^{2}\) Includes the pack of 50 cans to the case, which has been converted to the equivalent of 48 cans to the case.
\({ }^{3}\) Includes a few cases of \(1 / 4\)-pound round, which have been converted to a basis of \(1 / 2\)-pound round.

\section*{SHRIMP AND CRABS}

In 1924, 94 canneries were engaged in canning shrimp, 30 of these being in Louisiana, 26 in Mississippi, 12 in Georgia, 9 in Florida, 7 in Alabama, 5 in Texas, 3 in North Carolina, 1 in South Carolina, and 1 in New York. The total pack of shrimp amounted to 752,471 cases of various sizes, which were equivalent to 718,517 standard cases of 48 No. 1 cans, valued at \(\$ 4,608,950\). This is an increase of 2.6 per cent in quantity and 5.2 per cent in value, as compared with the production in 1923.

Crabs were canned at 1 plant in Alaska, 1 in Maine, 1 in Maryland, 2 in Virginia, and 1 in Mississippi, making a total of 6 plants, as compared with 9 in 1923. The total pack amounted to 3,563 cases of various sizes, valued at \(\$ 35,944\). Compared with 1923 , when the pack amounted to 4,138 cases of various sizes, valued at \(\$ 47,023\), this is a distinct decrease.

Pack of shrimp and crabs, 1924


\footnotetext{
\({ }^{1}\) Includes a few cases packed 4 ounces to the can, which have been converted to the equivalent of No. 1 5 -ounce cans.
\({ }^{2}\) In addition to the above there were packed in 51/4, 53/4, 63 4,14 , and 18 ounce glass jars in Florida, Alabama, Mississippi, New York, and Texas, 63,936 cases of shrimp, valued at \(\$ 336,996\), making a total of 752,471 cases, valued at \(\$ 4,608,950\).
\({ }^{3}\) The 8,9 , and 12 ounce cans have been converted to the equivalent of \(71 / 4\)-ounce cans, 4 dozen to the case.
\({ }^{1}\) The 16 and 17 ounce cans have been converted to the equivalent of 15 -ounce cans, 2 dozen to the case.
}

\section*{CLAMS}

The pack of clams of all kinds in 1924 amounted to 389,435 cases of various sizes, valued at \(\$ 2,161,389\). Razor clams were canned at 19 plants in Washington, 4 in Oregon, and 13 in Alaska, the total pack amounting to 113,717 cases of various sizes, valued at \(\$ 863,684\). This is a decrease as compared with the previous year, when 130,389 cases, valued at \(\$ 883,844\), were packed. The decrease occurred entirely in the Pacific Coast States, Alaska's pack being larger than in 1923.

Hard clams were packed at 2 plants in Florida, 1 in Georgia, 1 in Rhode Island, and 4 in Washington. The pack, exclusive of chowders, bouillon, and juices, amounted to 38,544 cases, valued at \(\$ 271,911\). Soft clams were packed in 19 plants in Maine and 2 in Massachusetts, the pack, exclusive of chowders, etc., amounting to 80,561 cases of various sizes, valued at \(\$ 459,882\). The chowders, soups, bouillon, and juices of both hard and soft clams totaled 156,613 cases of various sizes, valued at \(\$ 565,912\).

Pack of clams, 1924
RAZOR CLAMS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sizes & \multicolumn{2}{|l|}{Washington and Oregon} & \multicolumn{2}{|c|}{Alaska} & \multicolumn{2}{|c|}{Total} \\
\hline Whole: & Cases & Value & Cases & Value & Cases & Value \\
\hline No. 1 (4 dozen) and No. 2 (2 dozen) & 1,490 & \$11,333 & & & 1,490 & \$11, 333 \\
\hline 1-pound (4 dozen) & 1,628 & 19,686 & 8, 020 & \$75, 315 & 9,648 & 95, 001 \\
\hline 5-pound (1/2 dozen) & & & 1,200 & 7,650 & 1,200 & 7,650 \\
\hline 10-pound (1/2 dozen) & & & 65 & 585 & 65 & 585 \\
\hline \begin{tabular}{l}
Minced: \\
\(1 / 2\)-pound flat ( 4 dozen)
\end{tabular} & 12, 132 & 87, 064 & 52, 131 & 354,961 & 64, 263 & 442, 025 \\
\hline No. 1 (4 dozen) & 14, 210 & 110, 131 & 21, 074 & 185, 456 & 35, 284 & 295, 587 \\
\hline No. 2 (2 dozen). & 677 & 4, 231 & & & 677 & 4, 231 \\
\hline 1-pound (4 dozen) & 140 & 1,269 & 645 & 5,172 & 785 & 6, 441 \\
\hline 10-pound (1/2 dozen) & & & 26 & 273 & 26 & 273 \\
\hline Juice: No. 2 (2 dozen). & 279 & 558 & & & 279 & 558 \\
\hline Total & 30,556 & 234, 272 & 83, 161 & 629, 412 & 113, 717 & 863,684 \\
\hline
\end{tabular}

HARD CLAMS
\begin{tabular}{|c|c|c|}
\hline Sizes & \multicolumn{2}{|l|}{Florida and Washington} \\
\hline Whole: & Cases & Value \\
\hline 1-pound (4 dozen). & 2, 074 & \$18,043 \\
\hline No. 1 (4 dozen) --- & 11, 010 & 82,458 \\
\hline No. 2 (2 dozen) & 14, 179 & 81, 267 \\
\hline Minced: & 2,800 & 38, 01 \\
\hline No. 1 (4 dozen). & 15,402
2
2 & 34, 943 \\
\hline No. 2 (2 dozen & \({ }^{2} 3,079\) & 17,129 \\
\hline Total & 38,544 & 271,911 \\
\hline
\end{tabular}

\section*{SOFT CLAMS}
\begin{tabular}{|c|c|c|}
\hline Sizes & \multicolumn{2}{|l|}{Rhode Island, Maine, and Massachusetts} \\
\hline Whole: & Cases & Value \\
\hline 5 -ounce (4 dozen). & \({ }^{3} 57,991\) & \$294, 639 \\
\hline 8-ounce (4 dozen) & 177,477
5,093 & 140,804
24,439 \\
\hline Total & 80, 561 & 459, 882 \\
\hline
\end{tabular}

\section*{OTHER HARD AND SOFT CLAM PRODUCTS}
\begin{tabular}{ll|l|l|l}
\hline \hline Sizes & & \begin{tabular}{r} 
Maine, Florida, Mas- \\
Gachusetts, \\
Georgia,
\end{tabular} \\
Rhode Island, and \\
Washington
\end{tabular}

\footnotetext{
\({ }^{1}\) Includes the pack of \(1 / 2\)-pound flat cans which has been converted to a basis of No. 1 cans, 4 dozen to the case.
\({ }_{2}\) Includes a few cases of No. 10 eans, \(1 / 2\) dozen to the case, which have been converted to a basis of No. 2 cans, 2 dozen to the case.
\({ }^{3}\) Includes a few eases of 4 -ounce cans converted to a basis of 5 -ounce cans.
\({ }^{4}\) Includes the pack of 6,8 , and \(81 / 2\) ounce cans, 2 dozen to the case, which has been converted to a basis of 8 -ounce cans, 4 dozen to the case.

5 Includes a few cases of No. \(1 / 2\) cans, 2 dozen to the case, which have been converted to a basis of No. 1 cans, 2 dozen to the case.
\({ }_{6}\) The pack of No. 2 cans, 2 dozen to the case, has been reduced to the equivalent of No. \(11 / 2\) cans, 2 dozen to the case.
: The pack of clam bouilion aud juice has been converted to the equivalent of 10 -ounce cans, 4 dozen to the case.
}

\section*{oysters}

Oysters were canned at 9 plants in Maryland, 6 in North Carolina, 13 in South Carolina, 6 in Georgia, 6 in Florida, 5 in Alabama, 21 in Mississippi, 6 in Louisiana, and 1 in Texas. The total pack amounted to 460,427 cases of various sizes, which were equivalent in quantity to 447,481 standard cases of forty-eight 5 -ounce tins, valued at \(\$ 2,478,044\). This is a decrease of 14.7 per cent in quantity and 8.9 per cent in value, as compared with the previous year. The average price per standard case of oysters has increased constantly since 1922, the figures being \(\$ 4.79, \$ 5.19\), and \(\$ 5.54\) in 1922,1923 , and 1924 , respectively.

Pack of oysters, 1924

\({ }^{1}\) Includes pack of 3 -ounce cans converted to the equivalent of 4 -ounce cans, 4 dozen to the case.

\section*{MISCELLANEOUS CANNED PRODUCTS}

During 1924 there were produced miscellaneous canned fishery products, not mentioned above, as follows: In Maine, Massachusetts, New York, New Jersey, Maryland, Virginia, North Carolina, Georgia, Florida, and Oregon, \(5,836,164\) pounds of canned fish, turtles, and terrapin, valued at \(\$ 1,083,941\), and 956,428 pounds of fish roe, valued at \(\$ 251,695\); and in California 33,294 cases of tuna flakes, abalone, barracuda, mackerel, squid, and "tuniento," valued at \(\$ 193,909\).

Comparative statistics of canned fishery products from 1921 to 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{6}{|c|}{Salmon -} \\
\hline & \multicolumn{2}{|l|}{Pacific Coast States} & \multicolumn{2}{|c|}{Alaska} & \multicolumn{2}{|c|}{Total} \\
\hline \multirow[t]{5}{*}{} & Cases & Value & Cases & Value & Cases & Value \\
\hline & 1, 002, 948 & \$9, 234, 425 & 2, 596, 826 & \$19, 632, 744 & 3, 599, 774 & \$28, 867, 169 \\
\hline & 733, 2.46 & 8, 633, 524 & 4, 501, 652 & 29, 787, 193 & 5, 234, 898 & 38, 420, 717 \\
\hline & 1,367, 263 & 12, 660, 566 & 5, 035,697 & 32, 873,007 & 6, 402, 960 & 45, 533, 573 \\
\hline & 958, 662 & 9,394,467 & 5, 294, 915 & 33, 007, 135 & 6,253, 577 & 42, 401, 602 \\
\hline
\end{tabular}

Comparative statistics of canned fishery products from 1921 to 1924-Continued


Note.-Cases have been converted to a standard basis, as follows: Salmon, forty-eight 1-pound cans; Maine sardines, one hundred \(1 / 4\)-pound cans; California sardines, forty-eight 1 -pound cans; tuna and tunalike fishes, forty-eight \(1 / 2\)-pound cans; oysters, forty-eight 5 -ounce cans; and shrimp, forty-eight No. 1 cans.

\section*{Exports of canned fishery products in 1924}

Statistics of the quantity of canned fish exported from the United States during the calendar year, collected and compiled by the Bureau of Foreign and Domestic Commerce, are given in the following table:

Domestic exports of canned fish from the United States, by countries, 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Countries & \multicolumn{2}{|c|}{Salmon} & \multicolumn{2}{|c|}{Sardines} & \multicolumn{2}{|c|}{Tuna} & \multicolumn{2}{|l|}{Other canned fish} \\
\hline Austria. & Pounds & Value & Pounds 192 & Value & Pounds & Value & Pounds & Value \\
\hline Azores and Madeira Islands & 332 & \$55 & & & & & & \\
\hline Belgium & 1,337,489 & 138, 779 & 997, 820 & 85, 530 & & & 203, 375 & \$17, 467 \\
\hline Denmark. & 9,600 & 1,488 & -- & & & & & \\
\hline France. & 42,659 & 7,855 & 15,930 & 1,432 & 48 & \$10 & 160 & 74 \\
\hline Germany & 150, 167 & 20, 820 & 7,525 & 714 & & & 14, 878 & 2,091 \\
\hline Gibraltar & 1,536
494,062 & 57, 988 & 19,370 & 2, 079 & 250 & 80 & 32, 656 & 5,920 \\
\hline 1taly... & 107, 880 & 10, 591 & 4, 636 & 400 & & & 1,200 & 133 \\
\hline Malta, Gozo, and Cyprus 1slands. & & 253 & & & & & & \\
\hline Netherlands & 622, 223 & 89,085 & 71, 605 & 6,019 & 48 & 26 & & \\
\hline Norway.-- & 21, 120 & 2,628 & & & 130 & 35 & 390 & 78 \\
\hline Rumania & 3, 720 & 639 & 48 & & 41 & 16 & & \\
\hline Spain.-.......- & & & & & & & 3,800 & 1,001 \\
\hline Sweden. & 14, 160 & 2, 223 & & & & & & \\
\hline Switzerland & 4, 800 & 520 & & & & & & \\
\hline Turkey in Europe & 38, 400 & 1,280 & & & & & & \\
\hline England. & 36, 485, 985 & 5, 865, 023 & 639, 897 & 59, 261 & 830 & 229 & 46, 122 & 13,677 \\
\hline Scotland & 391, 100 & 60, 689 & 6,900 & 602 & 72 & 39 & & \\
\hline Ireland. & 2, 305,120 & 36,621 & 3,047, 793 & 291, 790 & 95, 593 & 28,129 & 596,077 & 63, 966 \\
\hline British Ifonduras & 24, 910 & 2, 763 & 39, 325 & 4,501 & & & 130 & 13 \\
\hline Costa Rica & 139, 776 & 13,793 & 231, 564 & 20, 156 & 96 & 31 & 12, 743 & 819 \\
\hline Guatemala & 71.388 & 8,043 & 258, 516 & 24, 589 & 95 & 26 & 9,512 & 669 \\
\hline Honduras. & 52,478 & 6,715 & 112, 614 & 16,950 & 644 & 217 & 1,598 & 423 \\
\hline Nicaragua & 109, 730 & 13, 208 & 163,590 & 18,337 & 1,266 & 319 & 9,123 & 571 \\
\hline Panama. & 277, 357 & 36,579 & 200, 661 & 21, 823 & 5,669 & 2,010 & 4,259 & 1,051 \\
\hline Salvador & 5, 814 & 729 & 127, 077 & 10,464 & 25 & 10 & 933 & 185 \\
\hline Mexico-. & 2, 452, 065 & 227, 473 & 2,721, 796 & 262, 791 & 2,612 & 964 & 109, 817 & 13,004 \\
\hline Newfoundland and Lab-
rador--..........------- & & & & & 50 & 24 & 110 & 41 \\
\hline Bermuda & 46, 485 & 8,943 & 23, 461 & 3, 684 & 1,038 & 397 & 1,052 & 381 \\
\hline Barbados & 43, 024 & 7,222 & & & & & & \\
\hline Jamaica & 52, 956 & 10,951 & 24,948 & 2,207 & 11] & 37 & 497 & 137 \\
\hline
\end{tabular}

Domestic exports of canned fish from the United States, by countries, 1924-Contd.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Countries & \multicolumn{2}{|l|}{Salmon} & \multicolumn{2}{|c|}{Sardines} & \multicolumn{2}{|l|}{Tuna} & \multicolumn{2}{|l|}{Other canned fish} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Trinidad and Tobago .... & 37, 910 & \$7, 082 & \[
4,393
\] & & & & & \$31 \\
\hline Other British West lndies-- & 45, 744 & 7,771 & 17, 593 & 2,849 & 36 & \$26 & 1,882 & 526 \\
\hline Dutch West Indies.. & 37, 026 & 6,901 & 3, 229 & 367 & 349 & 118 & 798 & 132 \\
\hline Cuba- & 647, 574 & 66, 161 & 2, 327,454 & 181,880 & 2, 240 & 713 & 88,406 & 8,338 \\
\hline Dominican Republic & 230, 416 & 23, 643 & 116, 428 & 18,450 & 481 & 182 & 3,038 & 1,030 \\
\hline French West Indies & 2,068 & & & & & & & \\
\hline Haiti.-.---------- & 5,365 & 897 & 1,582 & 290 & 157 & 53 & 117 & 65 \\
\hline Virgin Islands of the United States & 37, 989 & 4,496 & 18,685 & 2, 538 & 146 & 26 & 1,816 & 243 \\
\hline Argentina & 218, 068 & 24, 048 & 4, 133, 186 & 351, 699 & & & 175, 865 & 9,820 \\
\hline Bolivia & 25, 918 & 2, 896 & 387, 830 & 34, 348 & & & 180 & 86 \\
\hline Brazil & 13, 033 & 2,442 & 1,550 & 160 & & & & \\
\hline Chile & 154,006 & 23, 192 & 699, 582 & 58, 473 & 27 & 12 & 6,730 & 457 \\
\hline Colombia & 558, 147 & 64, 456 & 129, 894 & 13, 415 & 7, 523 & 2,941 & 3, 608 & 747 \\
\hline Ecuador & 112, 538 & 12,611 & 556, 354 & 46, 734 & 124 & 60 & 8,614 & 2,555 \\
\hline Falkland Island & & & & & & & & \\
\hline British Guiana & 58, 742 & 11,819 & 66, 779 & 7,382 & & & 12, 632 & 1,405 \\
\hline Dutch Guiana & 42, 346 & 4,957 & 16, 063 & 1,923 & 26 & 12 & & \\
\hline French Guian & 12,586 & 1,470 & & & & & & \\
\hline Paraguay & 720 & 109 & & & & & & \\
\hline Peru... & 226, 972 & 23, 285 & 568, 692 & 48, 061 & 1,134 & 467 & 6,899 & 1,689 \\
\hline Vruguay & 18, 130 & 2, 424 & 13, 340 & 1,108 & & & & \\
\hline Aden.- & 951, 340 & 103, 188 & 474,970 & 36, 853 & 2, 384 & 793 & 1, 786 & 56 \\
\hline Armenia and Kurdistan. & & & 4,500 & 400 & & & & \\
\hline British India & 439, 559 & 74, 608 & 1, 200, 939 & 125, 723 & 1,300 & 446 & 849 & 240 \\
\hline Ceylon & 134, 750 & 19,412 & 26, 853 & 3, 755 & 786 & 317 & 490 & 98 \\
\hline Straits Settlements--.-.-.-- & 175, 130 & 18,210 & 10,595, 759 & 805, 326 & 48 & 24 & 214, 524 & 13, 614 \\
\hline Other British East Indies.- & & & 2, 880 & & & & & \\
\hline China. & 100, 425 & 17,828 & 572, 114 & 53, 497 & 4, 576 & 1,677 & 55, 814 & 4,057 \\
\hline Chosen & 768 & 112 & 5,326 & 572 & 300 & 105 & & 11 \\
\hline Java and Madura & 260, 822 & 32,483 & 3, 113, 243 & 254, 080 & 97 & 43 & 11,050 & 4,589 \\
\hline Other Dutch East Indies & 79, 128 & 10, 400 & 644, 556 & 55, 888 & & & & \\
\hline French Indo-China & & & 182, 788 & 17,031 & & & 2, 231 & 584 \\
\hline Hejaz, Arabia & 1,680 & 144 & & & & & 550 & 180 \\
\hline Hongkong & 59, 852 & 9,327 & 772,880 & 66, 051 & 230 & 114 & 17,398 & 1,222 \\
\hline Japan_ & 249, 350 & 27, 847 & 87, 697 & 8, 278 & 620 & 275 & 36, 488 & 5,225 \\
\hline Kwangtung--- & [144. & & 131, 715 & 10,750 & & & & \\
\hline Palestine and Syr Persia & 14,269 & 1,601 & & & 234 & 81 & & \\
\hline Philippine Islands & 7, 884,986 & 793, 939 & 15, 417,030 & 1,210,034 & 2, 794 & 813 & 432, 768 & 33, 136 \\
\hline Siam... & 3, 469 & 1,386 & 111, 344 & 8,073 & & & & \\
\hline Turkey in Asia & 9,600 & 1,280 & & & & & & \\
\hline Australia.... & 7, 167, 084 & 1, 186, 765 & 8,615 & 875 & 4,240 & 905 & 2,055 & 791 \\
\hline British Oceani & 23,464 & 3, 016 & 11,361 & 1,000 & & & 1,191 & 143 \\
\hline French Oceani & 246,556 & 27, 170 & 92,950 & 12, 670 & & & 919 & 198 \\
\hline New Zealand & 102, 078 & 17, 239 & 3, 300 & 192 & & & 3,438 & 212 \\
\hline Other Oceania & 59, 381 & 7, 218 & 5,507 & 678 & & & 758 & 117 \\
\hline Belgian Kongo . & 1,587 & & & & 28 & 11 & & \\
\hline British West Africa & 75, 162 & 6, 820 & 150 & 37 & & & 149 & 37 \\
\hline British South Africa. & 980, 445 & 105, 558 & 7,045 & 1,407 & 191 & 47 & 6, 220 & 931 \\
\hline British East Africa. & 15, 816 & 2,120 & & & 27 & 13 & & \\
\hline Canary Islands & 8,388 & 695 & & & & & & \\
\hline Egypt & 27, 376 & 4,499 & 7, 529 & 1,297 & 36 & 12 & 96 & 10 \\
\hline Other French Africa & \({ }^{636}\) & 92 & 384 & 35 & & & & \\
\hline Liberia_ & 3,164 & 323 & 450 & 65 & & & 65 & 13 \\
\hline Portuguese East Africa - & 45, 648 & 4, 505 & & & & & 341 & 147 \\
\hline Other Portuguese Africa & 444 & 75 & 120 & 35 & & & & \\
\hline Spanish Africa & 6,120 & 639 & & & & & & \\
\hline Total & 67, 013, 369 & 9,667,126 & 51, 260, 836 & 4, 278, 547 & 138, 787 & 42,927 & 2,148, 323 & 214, 977 \\
\hline
\end{tabular}

\section*{COMPARATIVE STATISTICS OF EXPORTS OF CANNED FISH}

The exports of canned fish from the United States have been growing steadily for the last three years, as may be seen in the following table. Exports of canned sardines are particularly conspicuous in this respect, those in 1924 having increased over 150 per cent as compared with those of 1922 and over 50 per cent as compared with 1923 . The tuna exports also are on the increase, those in 1924 being in excess of the 1923 exports by 80 per cent.

Domestic cxports of canned fish, 1922 to 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & \multicolumn{2}{|c|}{Salmon} & \multicolumn{2}{|r|}{Sardines} & \multicolumn{2}{|c|}{Tuna} \\
\hline \[
\begin{aligned}
& 1922 \ldots \\
& 1923 \\
& 1924
\end{aligned}
\] & \begin{tabular}{l}
Pounds \\
63,797, 279 \\
59, 594, 422 \\
\(67,013,369\)
\end{tabular} & Value
\(\$ 7,962,375\)
\(9,154,711\)
\(9,667,126\) & Pounds 20, 059, 33,660,
51,260, & \[
\begin{array}{r}
\text { Value } \\
\$ 1,780, \\
2,919, \\
4,278,
\end{array}
\] & \begin{tabular}{|c|c|}
\hline 6 & Pounds \\
(1) & (1) \\
7 & 16,342 \\
7 & 138,787 \\
\hline
\end{tabular} & Value (1) \(\$ 23,992\)
42,927 \\
\hline \multicolumn{3}{|c|}{Year} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline \[
\begin{aligned}
& 1922 \\
& 1923 \\
& 1924 .
\end{aligned}
\] & & & \begin{tabular}{l}
Pounds \\
4, 559, 142 \\
2, 033, 468 \\
2, 148, 323
\end{tabular} & Value \$528, 409 228,971
214,977 & \[
\begin{gathered}
\text { Pounds } \\
88,416,266 \\
95,365,169 \\
120,561,315
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 10,271,740 \\
12,327,441 \\
14,203,57
\end{gathered}
\] \\
\hline
\end{tabular}

1 Not shown separately in 1922.

\section*{BY-PRODUCTS OF THE FISHERIES}

The by-products of the fisheries include a variety of materials, such as fish oils, fish scrap and meal, shrimp bran, crushed oyster shells for poultry grit, lime from oyster shells, liquid glue, scales from which pearl essence is extracted, and others. Their production is important in providing a more complete utilization of marine products, or, stated differently, the production of a greater number and volume of products without taking more fish or shellfish from the sea.

If we include the production of materials in the menhaden and whale industries, the total value of by-products in 1924 amounted to \(\$ 10,308,990\), as compared to \(\$ 12,634,590\) in 1923 . The decrease is due to a failure of the menhaden industry. Other by-products* have increased, compared with former years, as may be seen in the following table, which summarizes the statistics on by-products for the years 1921 to 1924 .

Comparative statistics of fishery by-products from 1921 to 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{6}{|c|}{Menhaden industry} \\
\hline & \multicolumn{2}{|l|}{Dried scrap and meal} & \multicolumn{2}{|l|}{Acidulated scrap} & \multicolumn{2}{|c|}{Oil} \\
\hline & Tons & Value & Tons & Value & Gallons & Value \\
\hline 1921. & 37, 858 & \$1,380, 455 & 44, 804 & \$905, 640 & 6, 260, 478 & \$1, 719, 892 \\
\hline 1923 & 43,452 & 2,029,406 & 44,935 & 1,064,870 & 7,461,365 & 2, 904,833 \\
\hline 1924 & 21, 008 & 996, 866 & 24,409 & 495, 684 & 3, 923,904 & 3,
\(1,817,626\) \\
\hline \multirow{3}{*}{Year} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{Miscellaneous by-products}} \\
\hline & & & & & & \\
\hline & \multicolumn{2}{|l|}{Dried scrap and meal} & \multicolumn{2}{|l|}{Crude or green scrap} & \multicolumn{2}{|r|}{Shrimp bran} \\
\hline \multirow[b]{5}{*}{\[
\begin{aligned}
& 1921 \\
& 1922 \\
& 1923 \\
& 1924
\end{aligned}
\]} & Tons & Value & Tons & Value & Tons & Value \\
\hline & 22, 173 & \$1, 232, 906 & 1,810 & \$21, 327 & & \$16, 814 \\
\hline & 21, 638 & 1,090, 346 & 390 & 9, 175 & 562 & 15, 398 \\
\hline & 22, 636 & 1,257,098 & 1,593 & 13, 721 & 1,269 & 48, 290 \\
\hline & 30,847 & 1,373, 351 & 4,097 & 15, 217 & 936 & 31, 580 \\
\hline Year & \multicolumn{2}{|l|}{Fish and whale oils} & \multicolumn{2}{|l|}{Crushed oyster shell} & Other byproducts & Total \\
\hline 1921 & \begin{tabular}{l}
Gallons \\
1, 185, 803
\end{tabular} & \begin{tabular}{l}
Value \\
\$358, 778
\end{tabular} & Tons
185,474 & \begin{tabular}{l}
Value \\
\(\$ 1,759,120\)
\end{tabular} & Value \$956, 895 & Value \$8,351, 827 \\
\hline 1922 & 3, 432, 796 & 1,325,927 & 236, 021 & 2, 005,838 & 817, 418 & 11, 390, 693 \\
\hline 1923 & 3, 912, 436 & 1,787, 917 & 224, 983 & 1,986, 249 & 1,130, 762 & 12, 634,590 \\
\hline 1924 & 5, 287, 391 & 2, 494, 107 & 219,211 & 2, 019, 254 & 1, 0665,305 & 10, 308, 990 \\
\hline
\end{tabular}

\section*{FISH SCRAP AND MEAL}

In 1924 the production of fish scrap and meal of all kinds amounted to 81,297 tons, valued at \(\$ 2,912,898\). The total value in 1923 was \(\$ 4,413,385\). The decrease was due almost entirely to the small production of menhaden scrap and meal. Noteworthy increases occurred in the production of all other fish scrap and meal excepting shrimp bran, which was produced in lesser amounts than in 1923.

\section*{FISH OILS}

In 1924 there were produced \(3,923,904\) gallons of menhaden oil, valued at \(\$ 1,817,626 ; 4,044,555\) gallons of other fish oils, valued at \(\$ 1,832,836 ; 1,141,695\) gallons of whale oil, valued at \(\$ 619,475\); and 101,141 gallons of sperm oil, valued at \(\$ 41,796\), making a total of \(9,211,295\) gallons, valued at \(\$ 4,311,733\). The production of sardine and herring oils was greatly increased as compared with 1923 , while a considerable decrease took place in the production of menhaden oils.

\section*{LIQUID FISH GLUE}

In 1924 the production of liquid fish glue was 502,940 gallons, valued at \(\$ 550,391\), an increase of 8 per cent in quantity and a decrease of 19 per cent in value, as compared with the production in 1923, which was 465,814 gallons, valued at \(\$ 680,504\).

Production of various by-products of the fisheries, 1924


\footnotetext{
\({ }^{1}\) Includes sbark hides and fins, herring skins and scales, isinglass, and whale tails.
}

\section*{SHELL BY-PRODUCTS}

In 1924 the by-products of the oyster industry, consisting of crushed oyster shells for poultry grit, lime dust, and lime, amounted to 289,480 tons, valued at \(\$ 2,355,638\), as compared with 308,791 tons, valued at \(\$ 2,358,535\), in 1923 . In addition to the oyster-shell products there were 234 tons of crushed marine clam shells, valued at \(\$ 2,808\).

Production of oyster-shell by-products, 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline States & \multicolumn{2}{|l|}{Poultry grit} & \multicolumn{2}{|c|}{Lime} & \multicolumn{2}{|c|}{Total} \\
\hline Rhode Island, New York, New Jersey, and & Tons & Value & Tons & Value & Tons & Value \\
\hline Pennsylvania. & 12,634 & \$158, 044 & 3,695 & \$14,438 & 16,329 & \$172,482 \\
\hline Maryland. & 70,961 & 708, 042 & 28,309 & 88, 516 & 99, 270 & 796, 558 \\
\hline Virginia & 22, 019 & 226, 126 & 28, 968 & 205, 663 & 50, 987 & 431, 789 \\
\hline North Carolina, South Carolina, and
Georgia & 6,472 & 72,098 & 3,131 & 17,625 & 9,603 & 89, 723 \\
\hline Florida and Alabama & 16,565 & 141, 185 & 693. & 1,408 & 17,258 & 142,593 \\
\hline Mississippi & 30, 266 & 257, 920 & 1,400 & 750 & 31, 666 & 258,670 \\
\hline Louisiana. & 56, 288 & 419, 785 & 3,478 & 6,251 & 59,766 & 426, 036 \\
\hline Texas & 4,006 & 36, 054 & 595 & 1,733 & 4,601 & 37, 787 \\
\hline Total & 219, 211 & 2, 019, 254 & 70,269 & 336, 384 & 289, 480 & 2,355, 638 \\
\hline
\end{tabular}

\section*{MENHADEN INDUSTRY}

In 1924 there were in operation 16 menhaden factories in Virginia, 14 in North Carolina, 3 in New Jersey, 3 in Delaware, 3 in Florida, 2 in Texas, 2 in New York, 1 in Connecticut, and 1 in Georgia, making a total of 45 plants, as compared to 52 in 1923.

There were produced 21,008 tons of dry scrap and meal, valued at \(\$ 996,866,24,409\) tons of acidulated scrap. valued at \(\$ 495,684\), and \(3,923.904\) gallons of oil, valued at \(\$ 1,817,626\), making a total production ralued at \(\$ 3,310,176\), as compared to \(\$ 6,410,553\) in 1923 . The decrease, amounting to 48 per cent, is due largely to a shortage of fish and has placed the menhaden industry in a precarious position economically.

Products of the menhaden industry, 1924
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Products & \multicolumn{2}{|l|}{Connecticut and New York} & \multicolumn{2}{|l|}{New Jersey and Delaware} & \multicolumn{2}{|l|}{Virginia} \\
\hline Fish utilized: Menhaden.number- & \[
\begin{gathered}
\text { Quantity } \\
78,797,100
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 475,814
\end{gathered}
\] & \[
\begin{gathered}
\text { Quantity } \\
86,478,000
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 513,141
\end{gathered}
\] & \[
\begin{aligned}
& \text { Quantity } \\
& 137,175,493
\end{aligned}
\] & Value \$630, 320 \\
\hline \begin{tabular}{l}
Manufactured products: \\
Dry scrap and fish meal _tons. \\
Acidulated scrap.........do....
\end{tabular} & \[
\begin{array}{r}
976 \\
5,423
\end{array}
\] & \[
\begin{array}{r}
50,800 \\
117,037
\end{array}
\] & \[
\begin{array}{r}
376 \\
7,960
\end{array}
\] & \[
\begin{array}{r}
17,331 \\
185,852
\end{array}
\] & 10,100 & 521,351 \\
\hline Total & 6,399 & 167, 837 & 8, 336 & 203, 183 & 10, 100 & 521, 351 \\
\hline Oil..........................gallons.. & 676, 143 & 272, 607 & 623, 247 & 282, 448 & 1,408, 312 & 686, 581 \\
\hline Grand total & & 440,444 & & 485, 631 & & 1, 207, 932 \\
\hline
\end{tabular}

Products of the menhaden industry, 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Products & \multicolumn{2}{|l|}{North Carolina} & \multicolumn{2}{|l|}{Georgia, Florida, and Texas} & \multicolumn{2}{|l|}{Total} \\
\hline Fish utilized: Menhaden
\(\qquad\) & \[
\begin{gathered}
\text { Quantity } \\
115,876,333 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 452,643 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Quantity } \\
95,530,380 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 314,219 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Quantity } \\
1513,857,306 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 2,386,137 \\
\hline
\end{gathered}
\] \\
\hline Manufactured products: Dry scrap and fish meal & & & & & & \\
\hline Acidulated scrap-...-. - dons & \[
\begin{aligned}
& 5,858 \\
& 3,875
\end{aligned}
\] & \[
\begin{array}{r}
252,350 \\
99,613
\end{array}
\] & \[
\begin{aligned}
& 3,698 \\
& 7,151 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
155,034 \\
93,182
\end{array}
\] & \[
\begin{array}{r}
2 \\
21,008 \\
24,409
\end{array}
\] & \[
\begin{aligned}
& 996,866 \\
& 495,684
\end{aligned}
\] \\
\hline Total & 9,733 & 351, 963 & 10,849 & 248,216 & 45,417 & 1,492, 550 \\
\hline  & 783,379 & 332, 787 & 432, 823 & 193,203 & 3, 933, 904 & 1,817,626 \\
\hline Grand to & & 734, 750 & --- & 441, 419 & & 3,310, 176 \\
\hline
\end{tabular}
\({ }^{1} 308,314,384\) founds. \(\quad 2\) Of this quantity 1,750 tons, valued at \(\$ 101,067\), were reported as fish mea!.

\section*{COLD-STORAGE HOLDINGS OF FROZEN FISH}

The statistics of the cold-storage holdings of frozen fish and the quantities of fish frozen are collected by the Bureau of Agricultural Economics, Department of Agriculture, and in 1924, as in previous years, were published monthly and disseminated to the frozen-fish trade by the Bureau of Fisheries. A summary of the statistics for the year is herewith presented. Statistics for previous years are also given for comparison. It will be found that in some cases they do not correspond to totals previously published, for in the past there has been some variation with respect to dividing the year at January 15 or December 15 . The statistics here given have been put upon a uniform basis by dividing each year, so as to begin with the report for the month ending January 15 and end with that for the month ending on December 15 of each year.

During 1924 cold-storage holdings were rather larger than during the previous year. They varied between \(21,488,525\) and \(70,405,786\) pounds, the smallest holdings being recorded in April and the largest in November. The average monthly holdings during the year were \(45,040,533\) pounds, as compared with the average in 1923 of \(36,-\) 202,434 pounds, an increase of 24.4 per cent. Compared with the five-year average, the monthly holdings in 1924 were only slightly high, being 0.5 per cent above the five-year average. The following tables give the summaries of the statistics of the cold-storage holdings of the United States in 1924 and previous years.
Comparative statement of monthly cold-storage holdings of frozen fish in 1924 and 1923, and the five-year average
\begin{tabular}{l|l|l|l|l|l|l}
\hline \hline \multirow{3}{*}{ Month } & & & \\
\hline
\end{tabular}

Monthly holdings of frozen fish in the United States in 1924, by species, and in 1917 to 1923, by totals
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Species} & \multicolumn{6}{|c|}{Month ended-} \\
\hline & Jan. 15 & Feb. 15 & Mar. 15 & Apr. 15 & May 15 & June 15 \\
\hline & Pounds & Pounds & Pounds & Pounds & Pounds & Pounds \\
\hline Bluefish (all trade sizes). & 422, 210 & 252, 617 & 177, 324 & 149, 774 & 107, 891 & 115, 388 \\
\hline Butterfish (all trade sizes)...... & 409, 825 & 221, 176 & 130, 889 & 55, 812 & 42, 778 & 170, 802 \\
\hline Catfish-1-..-...--.-.----- & 236, 109 & 170, 876 & 111, 494 & 86,557 & 162, 519 & 162, 614 \\
\hline Ciscoes (including bluefin, blackfin, chub, lake herring, ctc.) \(\qquad\) & 10, 323, 849 & 8,117,715 & 5, 353, 289 & 3, 963, 579 & 3, 118, 078 & 2, 702, 213 \\
\hline  & 648,304 & 8, 778, 131 & 5, 714,642 & -726, 296 & -770, 802 & -751, 270 \\
\hline Cod, haddock, hake, pollock & 1, 104, 551 & 881,921 & 686, 803 & 387, 404 & 464, 035 & 476, 257 \\
\hline Croaker & 249, 115 & 103, 637 & 52, 387 & 84, 540 & 296, 056 & 303, 755 \\
\hline Flounders & 517, 028 & 396, 187 & 325, 867 & 226, 210 & 214, 545 & 384, 092 \\
\hline Halibut (all trade sizes). & 5, 533, 267 & 3, 753, 674 & 2, 309, 934 & 3,341, 501 & 4, 074, 417 & 5,647,312 \\
\hline Herring, sea (including alewives and bluebacks) & 2, 309, 165 & 1, 742,173 & 1,744, 364 & 708, 029 & 1,927, 109 & 2, 710, 163 \\
\hline Lake trout. & 1,232, 855 & 897, 434 & 745, 146 & 282, 200 & 269, 522 & 405, 652 \\
\hline Mackerel (except Spanish) ----- & 4, 355, 166 & 3, 266, 074 & 2, 063, 094 & 1,225,933 & 917,815 & 1, 013, 864 \\
\hline Pike perches and pike or pickerel & 2,461, 107 & 2, 320, 771 & 1,332, 453 & 543,328 & 888, 041 & 892, 128 \\
\hline Sablefish (black cod)----------- & 1,915, 018 & 1,522, 302 & 1, 322, 127 & 964, 102 & 466, 759 & 378, 366 \\
\hline Salmon: & & & & & & \\
\hline Silver and fall. & 2, 598, 415 & 1,834,964 & 1, 414, 845 & 921, 449 & 726, 383 & 725, 201 \\
\hline Steelhead trout & 697, 411 & 181, 446 & 105, 674 & 63, 757 & 46, 785 & 61,918 \\
\hline All other & 2,985, 058 & 2, 355, 794 & 1,662,583. & 1, 189, 857 & 864, 086 & 1,179, 168 \\
\hline Scup (porgies) & 679, 400 & 468, 128 & 174, 787 & 87, 036 & 32, 414 & 76, 481 \\
\hline Shad and shad & 461, 483 & 580, 256 & 144, 189 & 107, 366 & 215, 599 & 409, 092 \\
\hline Shellish. & 781, 215 & 714, 943 & 450, 213 & 243, 944 & 323, 213 & 400, 554 \\
\hline Smelts, eulachon, etc & 442, 654 & 789, 531 & 1, 266, 708 & 537, 035 & 273, 161 & 225, 779 \\
\hline Squeteagues or "sea trout" & 769, 540 & 375, 837 & 132, 256 & 39,042 & 166, 433 & 213, 049 \\
\hline Squid. & 580, 280 & 326,997 & 180, 008 & 37,905 & 166, 656 & 1,660, 087 \\
\hline Sturgeon and spoon & 299, 144 & 188, 510 & 133, 217 & 54, 404 & 153, 400 & 272, 877 \\
\hline Suckers & 32,173 & 32, 271 & 21, 600 & 16, 092 & 35,434 & 49,153 \\
\hline Whitefish & 1,381, 207 & 1,463, 003 & 1,981, 538 & 1,440,949 & 1, 073,506 & 1,025,573 \\
\hline Whiting & 3, 792, 699 & 2, 244, 524 & 1, 446, 557 & 1,150,959 & 932, 085 & 1, 007,427 \\
\hline Miscellaneous froze & 5, 409, 042 & 4, 439, 722 & 3,386, 640 & 2, 853,465 & 3,110, 192 & 3,695, 124 \\
\hline Total, 1924 & 52, 627, 290 & 40, 420, 614 & 29, 570, 628 & 21, 488, 525 & 21, 839, 714 & 27, 115, 359 \\
\hline Total, 1923 & 40, 032, 255 & 27, 069, 882 & 16, 723, 513 & 10, 589, 532 & 12, 312, 003 & 17, 779,934 \\
\hline Total, 1922 & 48, 320, 212 & 37, 742, 262 & 25, 474, 714 & 17, 484, 975 & 17, 075, 917 & 20, 821, 345 \\
\hline Total, 1921 & 53, 851, 000 & 42, 116, 000 & 33, 404, 000 & 28, 440, 000 & 26, 346, 000 & 32,311, 000 \\
\hline Total, 1920 & 61, 510, 357 & 47, 904, 057 & 29, 958, 132 & 20, 632, 834 & 19, 803, 817 & 27, 779, 230 \\
\hline Total, 1919 & 80, 683, 761 & 67, 617, 473 & 50, 036, 475 & 37, 110, 856 & 37, 174, 104 & 48, 840, 359 \\
\hline Total, 1918 & 51, 116, 37 & 35, 907, 071 & 28, 457, 301 & 26, 548, 272 & 31, 403, 425 & 50, 298, 027 \\
\hline Total, 1917 & 32, 234, 530 & 14, 727, 099 & 13, 374,429 & 9,516, 217 & 14, 040, 024 & 27, 791, 047 \\
\hline
\end{tabular}

Monthly holdings of frozen fish in the United States in 1924, by species, and in 191\% to 1923, by totals-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Species} & \multicolumn{6}{|c|}{Month ended-} \\
\hline & July 15 & Aug. 15 & Sept. 15 & Oct. 15 & Nov. 15 & Dec. 15 \\
\hline & Pounds & Pounds & Pounds & Pounds & Pounds & Pounds \\
\hline Bluefish (all trade sizes) -- & 101, 248 & 93,478 & 88, 863 & 106, 662 & 124, 308 & 319,914 \\
\hline Butterfish (all trade sizes) & 322, 373 & 437, 948 & 805, 413 & 849,543 & 886,686 & 735, 619 \\
\hline Catifish. & 227, 198 & 219,699 & 185, 944 & 167, 556 & 305,900 & 244,358 \\
\hline blackfin, chub, lake herring, etc.) & 2, 530, 838 & 3, 213, 024 & 5, 044, 751 & 7, 856, 427 & 8,090,621 & 9, 608, 580 \\
\hline Ciscoes (tullibets) & 810, 073 & 959, 611 & 732, 078 & 785, 414 & 859,784 & 712,911 \\
\hline Cod, haddock, hake, pollock & 622, 138 & 694, 717 & 709, 667 & 731, 717 & 887, 680 & 1, 041,335 \\
\hline Croaker & 378,961 & 757, 897 & 616, 724 & 402,952 & 278, 322 & 222,972 \\
\hline Flounders & 437, 565 & 395, 901 & 383,913 & 345, 937 & 395, 178 & 474,082 \\
\hline Halibut (all trade sizes) & 8,376, 481 & 11, 735, 918 & 14, 107, 183 & 14, 609, 027 & 13, 663, 426 & 11, 458, 888 \\
\hline Herring, sea (including alewives and bluebacks) & 2, 781, 164 & 3, 661, 482 & 3,317, 720 & 3,653, 279 & 4, 453, 975 & 4, 632, 857 \\
\hline Lake trout & 629, 748 & 653, 072 & 686,986 & 928, 113 & 1, 816, 384 & 1,952,914 \\
\hline Mackerel (except Spanish) & 2, 525,839 & 3, 893, 770 & 4,922, 247 & 4,894, 724 & 4,614,956 & 4, 050, 396 \\
\hline Pike perches and pike or pickerel & 992, 344 & 790, 854 & 854, 279 & 906,679 & 1,254, 421 & 1,892,949 \\
\hline Sablefish (black cod)----------- & 442, 789 & 911, 705 & 1,159,867 & 1,529, 649 & 1, 700, 014 & 1,359, 316 \\
\hline \begin{tabular}{l}
Salmon: \\
Silver and fall
\end{tabular} & & & & & & \\
\hline Silver and fall Steelhead trou & 1, 259, 815 & 1,923, 464 & 2, 508,903 & 5, 782, 171 & 6, 219, 428 & 5, 155, 350 \\
\hline Steelhead tro All other & 260,840
\(2,109,858\) & 892,099
\(3,506,271\) & 903,278
\(4,620,121\) & 940,952
\(6,119,933\) & 700,420
\(6,281,463\) & 644,716 \\
\hline Scup (porgies) & 218,693 & 290,971 & -254, 732 & 226, 179 & 191,924 & 132,473 \\
\hline Shad and shad & 876, 921 & 796, 599 & 683, 414 & 717, 441 & 801, 357 & 879,488 \\
\hline Shellifish. & 457, 114 & 489, 748 & 542, 485 & 766, 722 & 1, 108, 148 & 1,310, 634 \\
\hline Smelts, eulachon, etc & 208, 077 & 211, 776 & 271, 425 & 329, 550 & 318,494 & 288, 818 \\
\hline Squeteagues or "sea trout" & 259,604 & 279,359 & 256, 209 & 295, 721 & 498, 316 & 446, 157 \\
\hline Squid. & 2, 117, 062 & 2,291,461 & 2, 230, 726 & 2, 558, 046 & 2, 429, 721 & 1,850, 358 \\
\hline Sturgeon and spoon & 369, 353 & 508, 152 & 548,563 & 543, 181 & 530,900 & 554, 786 \\
\hline Suckers & 49, 491 & 43, 784 & 38, 028 & 38, 435 & 37, 582 & 39, 024 \\
\hline Whitefish & 1,149, 463 & 1,306, 126 & 1,351, 440 & 1,410, 453 & 1, 821, 871 & 2, 134, 465 \\
\hline Whiting- & 1, 527, 493 & 3, 008, 257 & 3, 368, 558 & 3,218, 372 & 3, 466, 747 & 3, 500, 248 \\
\hline Miscellanequs frozen fish & 3, 993, 467 & 5, 063, 997 & 5, 413, 242 & 6, 310, 161 & 6, 667, 760 & 6,962,840 \\
\hline Total, 192 & 36, 036, 010 & 49, 026, 140 & 56, 606, 759 & 67,024,996 & 70, 405, 786 & 68, 324, 572 \\
\hline Total, 1923 & 27, 237, 105 & 39, 100, 868 & 53, 220, 398 & 62, 616, 212 & \(63,457,565\) & 64, 289, 945 \\
\hline Total, 1922 & 25, 620, 042 & 32, 226, 170 & 41, 141, 144 & 54, 756, 783 & 54, 502, 283 & 48, 689, 830 \\
\hline Total, 1921 & 40, 160, 000 & 47, 431, 000 & 54, 469, 000 & 58, 899, 000 & 61, 228, 000 & 59, 125, 646 \\
\hline Total, 1920 & 36, 617, 706 & 47, 140, 132 & 56, 295, 975 & 64, 730, 531 & 67, 549, 377 & 65, 841, 000 \\
\hline Total, 1919 & 59, 674,301 & \(65,145,234\) & 69,580, 555 & 76, 763, 253 & 78, 769, 101 & 74, 202, 339 \\
\hline Total, 1918 & 64, 864, 532 & 82, 554, 798 & 89, 203, 946 & 93, 811, 909 & 99, 631, 789 & 96, 600, 247 \\
\hline Total, 1917 & 38, 431, 221 & \(44,024,666\) & 47, 197, 660 & \(60,676,722\) & 70,938, 957 & 69, 986, 671 \\
\hline
\end{tabular}

\section*{QUANTITIES OF FISH FROZEN}

The total quantity of fish frozen during the year ended December 15,1924 , was \(97,324,144\) pounds, as compared with \(91,548,643\) pounds in 1923, an increase of 6 per cent. The principal species frozen during the year were halibut, \(14,650,787\) pounds; salmon, including steelhead trout, \(14,309,666\) pounds; ciscoes, \(13,195,023\) pounds; herring, \(8,695,698\) pounds; whiting, \(7,528,339\) pounds; mackerel, \(5,457,676\) pounds; and pike perch, pike, or pickerel, \(3,200,624\) pounds. The following tables give the statistics of the quantities of fish frozen during 1924.

Fish frozen monthly in 1924, by species, and in 1920 to 1923, by totals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Species} & \multicolumn{7}{|c|}{Month ended-} \\
\hline & Jan. 15 & Feb. 15 & Mar. 15 & Apr. 15 & May 15 & June 15 & July 15 \\
\hline Bluefish (all trade sizes) - & Pounds
57,022 & \[
\begin{gathered}
\text { Pounds } \\
1,068
\end{gathered}
\] & \[
\begin{gathered}
\text { Pounds } \\
1,729
\end{gathered}
\] & \[
\begin{gathered}
\text { Pounds } \\
28,795
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pounds } \\
& 8,593
\end{aligned}
\] & \[
\begin{array}{r}
\text { Pounds } \\
33,210
\end{array}
\] & Pounds 20, 486 \\
\hline Butterfish (all trade
sizes) & 5,160 & 6, 129 & & , 781 & 23,833 & 149, 087 & 172,998 \\
\hline Catfish-.......-...---...- & 9,514 & 14, 533 & 3,769 & 5,197 & 90, 641 & 26, 599 & 81, 646 \\
\hline Ciscoes (including bluefin, black fin chub, lake herring, etc.) & 717,719 & 2,621 & 34,938 & & & 149,447 & \\
\hline Ciscoes (tullibces).- & & 52,976 & 55, 652 & 32,996 & , & 149 , & 329, 288 \\
\hline Cod, haddock, hake. pollock. & 54, 840 & 61,987 & 62, 937 & 22,674 & 203, 089 & 91, 966 & 254, 479 \\
\hline Croaker------------------- & 925 & & & 60, 000 & 229, 833 & 8, 887 & 77, 457 \\
\hline Flounders & 24,719 & 21, 177 & 12, 417 & 5, 920 & 61, 803 & 224,727 & 116,404 \\
\hline Halibut (all trade sizes). & 621, 709 & 283, 522 & 158,687 & 1,146, 596 & 1,164, 138 & 1,736,650 & 3, 092,267 \\
\hline Herring, sea (including alewives and bluebacks) \(\qquad\) & 122,947 & 384, 078 & 264, 944 & 101, 374 & 1,561,301 & 1,329, 671 & 595, 183 \\
\hline Lake trout...... & 73, 082 & 64, 400 & 38, 786 & 4,341 & 1, 70, 663 & 154, 875 & 258, 541 \\
\hline Mackerel (except Spanish) \(\qquad\) & 122, 131 & 91,945 & 59, 321 & 30, 144 & 58, 436 & 269, 531 & 1, 422, 598 \\
\hline Pike perches and pike or pickerel. & 118, 903 & 232, 495 & 149, 241 & 69,915 & 412, 167 & 209, 408 & 251, 928 \\
\hline Sablefish (black cod).-.- & 96, 523 & 37, 364 & 108, 252 & 38,889 & 22,977 & 63,353 & 163, 458 \\
\hline Salmon:
Silver and fall & 102,862 & 68, 096 & 19,617 & 18, 168 & 37, 273 & 89, 613 & 598, 366 \\
\hline Steelhead trou & & 1, 775 & & & 1,310 & 26, 241 & 292, 611 \\
\hline All other. & 32, 535 & 43,328 & 98, 809 & 77, 699 & 77, 382 & 545, 276 & 1, 452, 120 \\
\hline Scup (porgies) & & & & & 7,408 & 64, 775 & 149, 413 \\
\hline Shad and shad ro & 5,855 & 1,518 & 50 & 18,034 & 155, 673 & 171, 197 & 287, 100 \\
\hline Shellifish. & 118, 307 & 51, 305 & 33, 224 & 36, 150 & 160, 014 & 147, 096 & 146, 875 \\
\hline Smelts, eulachon, etc & 8,740 & 100,381 & 102, 827 & 11, 853 & 5,748 & 1,542 & 45 \\
\hline Squeteagues or "sea
trout".-.------- & 35 & & & & 146,390 & 53, 793 & 63, 640 \\
\hline Squid.-.-. & 32, 104 & 4, 353 & 1,426 & 7,803 & 149,548 & 1, 527, 715 & 510, 464 \\
\hline Sturgeon and spoonbill cat. & 5,000 & 1,621 & 7,320 & 8,151 & 132, 809 & 143, 408 & 125,387 \\
\hline Suckers. & 21,495 & 12, 103 & 3,496 & & 20,465 & 8,515 & 1,509 \\
\hline Whitefish & 41,006 & 292, 884 & 246, 950 & 96, 201 & 49,352 & 7, 140 & 111, 062 \\
\hline Whiting & 217.385 & 278, 410 & 604, 673 & 602, 928 & 89, 506 & 210,994 & 741, 106 \\
\hline Miscellaneous frozen fish & 529, 894 & 330, 094 & 348,408 & 284, 725 & 922, 105 & 820, 543 & 604, 003 \\
\hline Total, 1924 & 3,179, 098 & 2,440, 163 & 2,417. 473 & 2, 729, 366 & 6,040, 261 & 8,281, 516 & 11,996, 011 \\
\hline Total, 1923 & 2, 741, 538 & 1, 662, 135 & 1,412,490 & 1, 400, 078 & 5, 026, 888 & 7, 671, 127 & 11, 871, 645 \\
\hline Total, 1922 & 2, 441, 892 & 1, 452, 801 & 1, 363, 942 & 1, 496, 538 & \[
1,980,435
\] & 5, 849, 537 & 7,376, 237 \\
\hline Total, 1921 & \(4,005,000\)
\(2,291,052\) & \(2,843,000\)
\(2,273,744\) & \(1,770,000\)
\(2,630,482\) & \(2,413,000\)
\(2,465,375\) & \(2,698,000\)
\(3,687,538\) & \(9,624,0 c 0\)
\(10,094,367\) & \(10,151,000\)
\(12,761,791\) \\
\hline
\end{tabular}

Fish frozen monthly in 1924, by species, and in 1920 to 1923, by totais-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Species} & \multicolumn{5}{|c|}{Month ended-} & \multirow{2}{*}{Total} \\
\hline & Aug. 15 & Sept. 15 & Oct. 15 & Nov. 15 & Dec. 15 & \\
\hline B] & Pounds & Pounds & Pounds & Pounds 29,993 & Pounds & Pounds \\
\hline Butterfish (all trade sizes) & 139, 244 & 393, 083 & 100,090 & 97, 484 & 14, 3 , 733 & , 131, 622 \\
\hline Catfish... & 29,366 & 8,988 & 17,573 & 90, 083 & 37, 116 & 415, 025 \\
\hline Ciscoes (including bluefin, blackfin, chub, lake herring, etc.) & 1,214,225 & 2, 562, 454 & 4, 195, 606 & 1,293,120 & 2, 608,061 & 13, 195, 023 \\
\hline Ciscoes (tullibees) & 169,928 & 40, 195 & 64,755 & 102, 914 & 99,557 & 850, 785 \\
\hline Cod, haddock, hake, pollock.. & 206,956 & 114, 139 & 200,005 & 305, 415 & 283, 676 & 1, 862, 163 \\
\hline Croaker & 377, 321 & 44, 913 & 3, 663 & 1,167 & 404 & 804, 570 \\
\hline Flounders & 65, 704 & 54, 768 & 102,043 & 76,276 & 42,798 & 808,756 \\
\hline Halibut (all trade sizes) & 3, 056, 370 & 1,492,447 & 677, 516 & 745, 835 & 475, 050 & 14,650, 787 \\
\hline Herring, sea (including alewives and bluebacks) & 1, 282, 551 & 195, 236 & 869,084 & 1, 142, 898 & 846, 431 & 8, 695, 698 \\
\hline Lake trout & 68,097 & 159, 301 & 304, 111 & 873, 307 & 244, 280 & 2, 313, 784 \\
\hline Mackerel (except Spanish). & 1,431,237 & 1, 234, 266 & 161, 003 & 334, 840 & 242, 244 & 5, 457, 696 \\
\hline Pike perches and pike or pickerel & 65, 507 & 154,563 & 168, 433 & 459, 492 & 908, 572 & 3, 200, 624 \\
\hline Sablefish (black cod).-----....- & 459, 074 & 382, 366 & 525, 326 & 303, 094 & 90,630 & 2, 291, 306 \\
\hline Salmon:
Silver and fall & 753,695 & 446, 725 & 3, 261, 539 & 989, 760 & & 6, 536, 688 \\
\hline Steelhead trout & 675, 386 & 172,096 & -124,157 & 14,330 & 14,015 & 1,311, 921 \\
\hline All other & 1,597, 773 & 457, 703 & 1,362, 144 & 614, 036 & 102, 252 & 6,461, 057 \\
\hline Scup (porgies) & 95,926 & 590 & 4,231 & 5, 557 & 4,203 & 332, 103 \\
\hline Shad and shad roe & 44,317 & 2, 796 & 8,657 & 107,489 & 37,288 & 839, 974 \\
\hline Shellish. & 158, 032 & 217, 118 & 347, 886 & 503, 263 & 349,775 & 2, 269, 045 \\
\hline Smelts, eulachon, etc & 13, 008 & 67, 828 & 79, 903 & 40, 020 & 52, 065 & 483, 960 \\
\hline Squeteagues or "sea t & 63, 762 & 25, 020 & 51, 552 & 219, 023 & 24,854 & 648, 069 \\
\hline Squid.- & 274, 917 & 161, 163 & 516, 404 & 140, 054 & 26,601 & 3, 352, 552 \\
\hline Sturgeon and spoonbill cat & 169, 064 & 109, 404 & 44, 246 & 21, 756 & 19,556 & 787, 722 \\
\hline Suckers & 483 & 662 & 1,798 & 2,763 & 5,879 & 79, 168 \\
\hline Whitefish & 141,691 & 114, 176 & 84, 010 & 328, 092 & 263, 481 & 1,776, 045 \\
\hline Whiting & 1,996, 887 & 783, 336 & 486, 952 & 1,147, 826 & 368, 336 & 7, 528, 339 \\
\hline Miscellaneous froze & 982, 525 & 1,177, 685 & 1,080,836 & 864,986 & 881,521 & 8. 827,325 \\
\hline Total, & 15, 541, 641 & 10, 585, 272 & 14, 877,934 & 10, 854, 873 & 8, 380, 536 & 97, 324, 144 \\
\hline Total, 1923 & 13, 943, 978 & 16, 417, 132 & 12, 511, 606 & 6, 951, 639 & 9,938,387 & 91, 548, 643 \\
\hline Total, 1922 & 9, 121, 160 & 10, 826,942 & 16, 830, 080 & 9,344, 469 & 7,069,995 & 75, 154, 028 \\
\hline Total, 1921 & 9, 845, 000 & 9,356, 000 & 9,990,000 & 9, 869, 000 & 8,173,000 & 80, 737, 000 \\
\hline Total, 1920 & 13, 620, 232 & 11,803, 606 & 11, 168, 810 & 9, 711, 800 & 9, 750, 844 & 92, 259, 671 \\
\hline
\end{tabular}

Quantities of fish frozen during 1924, by geographical sections and by species
\begin{tabular}{|c|c|c|c|c|}
\hline Species & New England & \begin{tabular}{l}
Middle \\
Atlantic
\end{tabular} & \begin{tabular}{l}
South \\
Atlantic
\end{tabular} & North Central, East \\
\hline Bluefish (all trade sizes) & Pounds 522 & Pounds 124, 921 & Pounds & Pounds 285, 811 \\
\hline Butterfish (all trade sizes) & 111, 620 & 978, 732 & 36,110 & \\
\hline Catfish & & 5,417 & & 78,946 \\
\hline Ciscoes (including bluefin, black ete.) & & 9, 600, 868 & & 2, 825, 105 \\
\hline Ciscoes (tullibees) & 4,844 & 499, 001 & 3, 850 & 146, 332 \\
\hline Cod, haddock, hake, pollock & 788, 105 & 614, 211 & 1,500 & 31, 073 \\
\hline Croakers. & & 643, 571 & 142, 600 & 13, 999 \\
\hline Flounders...-........--- & 264, 291 & 455, 082 & 12, & 7,845 \\
\hline Halibut (all trade sizes) & \(\begin{array}{r}568,521 \\ 7 \\ 420 \\ \hline 148\end{array}\) & 356, 571 & & 1, 404, 270 \\
\hline Herring, sea (including alewi & \(7,420,148\)
\(6 ?\) & 651,534
587,841 & 13, 200 & 1, 2185,493 \\
\hline Mackerel (except Spanish) & 3,876, 176 & 969, 560 & 15, 725 & 96, 941 \\
\hline Pike perches and pike or pickere & 955 & 1, 410, 869 & & 1, 564, 171 \\
\hline Sablefish (black cod) & & 1,270 & & 125, 037 \\
\hline Salmon: & & & & \\
\hline Silver and fall. & 259, 561 & 111,456 & 250 & 298, 155 \\
\hline Steelhead trout & 5, 840 & 59, 935 & & \\
\hline Scup (porgies) & 482, 827 & 114,682 & & 378,874 \\
\hline Scup (porgies) & 231, 351 & 99, 108 & & \\
\hline Shad and shad roe & 431,541 & 108, 830 & 4,720 & 43, 923 \\
\hline Smelts, eulachon, & 299,405
53,227 & 717,949
4,573 & 221, 344 & 464,121
140,625 \\
\hline Squeteagues or "sea trout" & 1,986 & 594, 883 & 51, 200 & \\
\hline Squid. & 2, 352, 507 & 950, 280 & & 34,908 \\
\hline Sturgeon, and spoonbill c & & 583, 166 & 4,300 & 15,996 \\
\hline Whitefish & & 7,574 & & 71,594 \\
\hline Whiting.. & - \(\begin{array}{r}4,418 \\ 3,362,737\end{array}\) & 492, 636 & & 1, 190, 272 \\
\hline Miscellaneous frozen fish & 1,101, 890 & 2, 567,295 & 335, 878 & 1,543, 475 \\
\hline Total & 21, 686, 370 & 24, 260, 757 & 832, 856 & 12, 379, 729 \\
\hline
\end{tabular}

Quantities of fish frozen during 1924, by geographical sections and by speciesContinued
\begin{tabular}{|c|c|c|c|c|}
\hline Species & North Central, West & South Central & Pacific & Total \\
\hline Bluefish (all trade sizes) & \[
\begin{gathered}
\text { Pounds } \\
683
\end{gathered}
\] & Pounds 400 & Pounds & Pounds 412, 337 \\
\hline Butterfish (all trade sizes) & & & 5,160 & 1,131, 622 \\
\hline Catfish-- & 291,579 & 38, 997 & & 415, 025 \\
\hline Ciscoes (including bluefin, blackf etc.) & 749, 050 & & 20, 000 & 13, 195, 023 \\
\hline Ciscoes (tullibees) & 142, 386 & 700 & 53, 672 & 850, 785 \\
\hline Cod, haddock, hake, pollock & 40, 195 & 930 & 386, 149 & 1, 862, 163 \\
\hline Croakers. & & 4, 400 & & 804, 570 \\
\hline Flounders & 69 & & 81, 469 & 808, 756 \\
\hline Halibut (all trade sizes) & 444, 528 & 3, 830 & 11, 873, 067 & 14, 650, 787 \\
\hline Herring, sea (including alewives & 266, 770 & 7. 500 & 118, 053 & 8, 695, 698 \\
\hline Lake trout & 275, 180 & 1, 000 & & 2, 313, 784 \\
\hline Mackerel (except Spanish) & 23, 267 & 540 & 475, 487 & 5, 457, 696 \\
\hline Pike perches and pike or pickerel & 220, 309 & 1,250 & 3,070 & 3, 200, 624 \\
\hline Sablefish (black cod) & 62,931 & & 2, 102, 068 & 2, 291, 306 \\
\hline Salmon: & & & & \\
\hline Silver and fall & 167, 849 & 100 & 5, 699, 317 & 6, 536, 688 \\
\hline Steelhead trout & & & 1, 245, 246 & 1, 311, 921 \\
\hline All other- & 79, 612 & 18,063 & 5, 386, 999 & 6, 461, 057 \\
\hline Scup (porgies) & 1,644 & & & 332, 103 \\
\hline Shad and shad roe & 9, 494 & & 241, 451 & 839, 974 \\
\hline Shellfish. & 152,437 & 4, 031 & 409, 758 & 2, 269, 045 \\
\hline Smelts, eulachon, etc & 40,388 & & 245, 147 & 483, 960 \\
\hline Squeteagues or "sea trout" & & & & 648, 069 \\
\hline Squid. & 9, 608 & & 5,249 & 3, 352, 552 \\
\hline Sturgeon, and spoonbill cat & 941 & 53, 877 & 130, 442 & 787, 722 \\
\hline Suckers & & & & 79, 168 \\
\hline Whitefish_ & 81, 693 & 1, 991 & 5, 035 & 1,776,045 \\
\hline Whiting & 3, 201, 569 & & & 7,528, 339 \\
\hline M iscellaneous frozen fish & 904, 527 & 1, 127, 470 & 1, 246, 790 & 8, 827, 325 \\
\hline Tota & 7, 166, 709 & 1,264, 095 & 29, 733, 629 & 97, 324, 144 \\
\hline
\end{tabular}

Fish frozen in 1924, by geographical sections and by months
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month ending the 15th of - & \begin{tabular}{l}
New \\
England
\end{tabular} & Middle Atlantic & South Atlantic & North Central, East & North Central, West & South Central & Pacific & Total \\
\hline & Pounds & Pounds & Pounds & Pounds & Pounds & Pounds & Pounds & Poun \\
\hline January & 110, 065 & 582, 997 & 10, 025 & 1, 227, 714 & 517.798 & 87,029 & 643,470 & 3, 179, 098 \\
\hline February & 144, 971 & 283, 039 & 17, 295 & 1, 090.300 & 624.607 & 50, 493 & 229, 458 & 2, 440, 163 \\
\hline March. & 170,876 & 148, 291 & 10, 900 & 867, 218 & 786, 670 & 96, 729 & 336, 789 & 2, 417, 473 \\
\hline April. & 29.294 & 168,930 & 82, 715 & 282, 333 & 824, 026 & 63, 652 & 1.278, 416 & 2, 729.366 \\
\hline May & 1,886, 814 & 1,317.007 & 107, 840 & 702, 187 & 461.240 & 169,582 & 1, 395, 591 & 6, 040, 261 \\
\hline June & 2, 893, 482 & 1, 636, 262 & 58, 475 & 700, 573 & 205. 148 & 62, 814 & 2, 724, 762 & 8, 281,516 \\
\hline July & 3,613, 056 & 2, 126, 272 & 28, 108 & 616, 924 & 250. 409 & 65. 109 & 5, 296, 133 & 11, 996, 011 \\
\hline August & 5, 421, 320 & 2, 939, 285 & 103, 308 & 304, 840 & 254, 989 & 160. 287 & 6,357, 612 & 15, 541, 641 \\
\hline September & 2, 279, 202 & 3, 993, 360 & 99, 729 & 664. 210 & 370. 349 & 181, 486 & 2,096, 936 & 10,585. 272 \\
\hline October & 2, 069, 698 & 5, 230, 149 & 210, 457 & 819, 246 & 760,660 & 121, 983 & 5, 665, 741 & 14, 877, 934 \\
\hline Novemb & 2, 025,623 & 3, 158. 908 & 84,769 & 2, 330, 291 & 1, 048.406 & 98, 061 & 2, 108,815 & 10, 854, 873 \\
\hline Decembe & 1,041, 969 & 2, 676,257 & 19, 235 & 2, 773, 893 & 1, 062, 407 & 106, 869 & 699,906 & 8, 350, 536 \\
\hline 'Total & 21, 686, 370 & 24, 260, 757 & 832, 856 & 12, 379, 729 & 7, 166, 709 & 1, 264, 094 & 29, 733, 629 & 97, 324, 144 \\
\hline
\end{tabular}

\section*{NEW ENGLAND VESSEL FISHERIES}

\section*{GENERAL STATISTICS}

The vessel fisheries centering at Boston and Gloucester, Mass., and Portland, Mc., were more productive in 1924 than in the previous year, but there was a slight decrease in the value of the products. There was an increase of 14.38 per cent in the number of trips and of 4.58 per cent in the quantity of products, with a decrease of 0.83 per cent in their value, as compared with 1923. The increase in the number of trips was all at Boston and Gloucester. There was an
increase in products at each of the three ports and in the value at Gloucester but a decrease in value at Boston and Portland. The increase in the number of trips at Boston was 10.90 per cent and at Gloucester 36.61 per cent, with a decrease of 0.31 per cent at Portland. At Boston the increase in the products landed amounted to 5.44 per cent, with a decrease of 0.59 per cent in the value; at Gloucester there was an increase of 2.33 per cent in quantity and of 14.36 per cent in value, and at Portland an increase of 2.80 per cent in quantity with a decrease of 22.19 per cent in value. Statistics of the fisheries have been collected by the local agents and published in monthly bulletins, showing by species and fishing grounds the quantities and values of fishery products landed by American fishing vessels during the year at these ports. Two annual bulletins have been issued, one showing the catch by months and the other by fishing grounds.

The fishing fleet at these ports during the calendar year 1924 numbered 343 sail, steam, and gasoline vessels, including 32 steam trawlers. These vessels landed at Boston 3,735 trips, aggregating \(130,966,256\) pounds of fish, valued at \(\$ 5,401,590\); at Gloucester, 2,157 trips, aggregating \(35,845,920\) pounds, valued at \(\$ 1,041,476\); and at Portland, 1,583 trips, aggregating 16,136,018 pounds, valued at \(\$ 549,886\). The total for the three ports amounted to 7,475 trips, aggregating 182,948,194 pounds of fresh and salted fish having a value to the fishermen of \(\$ 6,992,952\).

Compared with the previous year there was an increase of 940 trips, or 14.38 per cent, in the total number landed at Boston, Gloucester, and Portland, and an increase of \(8,006,725\) pounds, or 4.58 per cent, in quantity, and a decrease of \(\$ 58,202\), or 0.83 per cent, in the value of the products landed. There was a small decrease in both the quantity and value of cod and an increase in the quantity with a decrease in the value of haddock. Hake, pollock, cusk, and herring increased in both quantity and value. Halibut decreased in both quantity and value, while mackerel and swordfish decreased in quantity but increased in value. The catch of cod declined \(1,206,521\) pounds, or 1.92 per cent, in quantity and \(\$ 45,835\), or 2.10 per cent, in value, and haddock increased \(6,140,252\) pounds, or 8.32 per cent, in quantity but decreased \(\$ 114,572\), or 4.73 per cent, in value. Hake increased 946,834 pounds, or 14.94 per cent, in quantity and \(\$ 43,734\), or 30.72 per cent, in value; pollock increased 280,952 pounds, or 5.85 per cent, in quantity and \(\$ 7,249\), or 4.76 per cent, in value; and cusk increased 407,385 pounds, or 13.59 per cent, in quantity and \(\$ 6,386\), or 10.34 per cent, in value. The catch of halibut decreased 452,358 pounds, or 9.28 per cent, in quantity and \(\$ 133,045\), or 14.44 per cent, in value. The mackerel catch decreased \(1,807,719\) pounds, or 15.63 per cent, in quantity and increased \(\$ 54,147\), or 11.10 per cent in value; and swordfish decreased 432,003 pounds, or 17.59 per cent, in quantity and inereased \(\$ 1,718\), or 0.38 per cent, in value. The herring catch increased 2,927 , S96 pounds, or 197.45 per cent, in quantity and \(\$ 83,349\), or 187.22 per cent, in value. The Newfoundland herring catch increased from \(1,219,200\) pounds, valued at \(\$ 40,861\), in 1923, to \(2,943,480\) pounds, valued at \(\$ 108,371\), in 1924. In the various other species combined there was an increase of \(1,202,007\) pounds, or 30 per cent, in quantity and \(\$ 38,667\), or 20.94 per cent, in value.

The catch of scrod cod landed at these ports decreased from 414,659 pounds, valued at \(\$ 6,447\), in 1923 , to 318,440 pounds, valued at \(\$ 5,371\), in 1924 , and the catch of scrod haddock increased from \(4,845,695\) pounds, valued at \(\$ 94,481\), in 1923 , to \(11,927,105\) pounds, valued at \(\$ 199,386\), in 1924 . The small quantity of these grades landed, as compared with other grades of these species, is said to be due to the fact that the price is so low that the fishermen do not save all that are caught.

The following tables present in detail, by fishing grounds and also by months, the fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels for the calendar year 1924. The weights of fresh and salted fish given in these statistics represent the fish as landed from the vessels, and the values are those received by the fishermen. The grade, or sizes, given for certain species are those recognized in the trade.

\section*{Statement, by fishing grounds, of quantities and value of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1924}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Fishing grounds} & \multirow{3}{*}{Number of trips} & \multicolumn{8}{|c|}{Cod} \\
\hline & & \multicolumn{4}{|l|}{Large (10 pounds and over)} & \multicolumn{4}{|l|}{Market (under 10 and over \(21 / 2\) pounds)} \\
\hline & & \multicolumn{2}{|l|}{Fresh} & \multicolumn{2}{|l|}{Salted} & \multicolumn{2}{|l|}{Fresh} & \multicolumn{2}{|l|}{Salted} \\
\hline \multicolumn{10}{|l|}{} \\
\hline & \multirow[b]{3}{*}{32
109} & \multirow[b]{2}{*}{Pounds
\[
-320,552
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Value } \\
& \$ 17,905
\end{aligned}
\]} & \multirow[t]{2}{*}{Pounds} & \multirow[t]{2}{*}{Value} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Pounds } \\
173,085
\end{gathered}
\]} & \multirow[t]{2}{*}{Value \$6, 072} & \multirow[t]{2}{*}{Pounds} & \multirow[t]{2}{*}{Value} \\
\hline La Have Bank & & & & & & & & & \\
\hline Western Bank & & 1,980, 007 & & 11,000 & \$358 & 739, 690 & \multicolumn{3}{|l|}{21,353} \\
\hline Quereau Bank & 35
4 & 30,760 & 1,129 & & & 1,490 & & & \\
\hline Grand Bank & \multirow[t]{2}{*}{25
13} & \multirow[t]{2}{*}{16,130
4,700} & 778 & & & 2,800 & 112 & & \\
\hline St. Peters Bank & & & 165 & & & 500 & 10 & & \\
\hline Burgeo Bank & \multicolumn{9}{|c|}{} \\
\hline Off Newfoundland. & \multirow[t]{2}{*}{52} & & & & & & & & \\
\hline Cape Shore... & & 231, 385 & 11,912 & & & 113, 840 & 4,164 & & \\
\hline The Gully & \multirow[t]{2}{*}{1} & & & & & & & & \\
\hline Labrador Coast. & & & & & & & & & \\
\hline West of \(66^{\circ} \mathrm{W}\). longitude & & & & & & & & & \\
\hline Browns Bank & 184 & 2,530,858 & \[
109,895
\] & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{1, 76884,242}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{48, 876
105,209}} \\
\hline Georges Bank & \multirow[t]{2}{*}{13} & 11, 864, 940 & \[
428,888
\] & & & & & & \\
\hline Cashes Bank. & & 98,960 & 5, 176 & & & 35,950 & 1,224 & & \\
\hline Clark Bank & 1 & 3,750 & 375 & & & 3,050 & 153 & & \\
\hline Fippenies Bank & , & 37,300 & 2,003 & & & 4,230 & 104 & & \\
\hline Tillies Bank.-. & \multirow[t]{2}{*}{4
269} & & & & & & & & \\
\hline Middle Bank. & & 177,988 & 12,021 & & & 95,455 & 4, 093 & & \\
\hline Jeffreys Ledge & 414 & 427, 313 & 32, 852 & & & 201,230 & 9,388 & & \\
\hline South Channel & 886 & 5, 669, 936 & 283, 103 & & & 2, 730, 261 & 86,015 & & \\
\hline Nantucket Shoals & 148 & 615,429 & 37, 455 & & & 636, 685 & 21, 487 & & \\
\hline Off Chatham & 86 & 107, 691 & 5,835 & & & 103,315 & 3,771 & & \\
\hline Seal Island. & & 16, 100 & 752 & & & 21, 000 & 493 & & \\
\hline Shore, general. & 730 & 759, 493 & 36,045 & & & 363, 730 & 11,910 & & \\
\hline Total. & 3, 735 & 24, 893, 292 & ,070,442 & 17,000 & 613 & 10, 959, 426 & 324, 467 & & \\
\hline
\end{tabular}

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1924-Continued


Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1924-Continued


Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1924-Continued


Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1924-Continued


Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1924-Continued


Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston und Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1924-Continued


Note.-The items under "Miseellaneous" include bluebaeks, 106,000 pounds, value \(\$ 823\); butterfish, 29,741 pounds, value \(\$ 5,134\); flounders, \(4,335,227\) pounds, value \(\$ 191,515\); herring, fresh, \(1,467,256\) pounds, value \(\$ 19,496\); herring, salted, \(2,943,480\) pounds, value \(\$ 108,371\); rosefish, 76.695 pounds, value \(\$ 1,630\); salmon, 23 pounds, value \(\$ 5\); shad, 178,659 pounds, value \(\$ 3,802\); sharks, 7,507 pounds, value \(\$ 223\); skates, 21,210 pounds; value \(\$ 356\); smelt, 3,554 pounds, value \(\$ 475\); sturgeon, 1,369 pounds, value \(\$ 302\); swordfish, \(2,023,416\) pounds, value \(\$ 449,837\); tnna, 2,088 pounds, value \(\$ 103\); wolf fish, 223,037 pounds, value \(\$ 5,743\); lobster, 30 pounds, value \(\$ 8\); scallops, 308 pounds, value \(\$ 129\); livers, 6,049 pounds, value \(\$ 139\); spawn, 216,792 pounds, value \(\$ 12,900\); and tongues, 90 pounds, value \(\$ 4\). In this report vessels include only eraft of 5 net tons and upward.

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1924-Continued


Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the year 1924


Statement, by months, of quantities and values of certain fishery products landed at
Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels
during the year 1924-Continued


Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the year 1924-Continued


Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the year 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Months} & \multicolumn{4}{|c|}{Hake-Continued} & \multicolumn{4}{|c|}{\multirow{2}{*}{Pollock}} \\
\hline & \multicolumn{4}{|l|}{Small (under 6 pounds)} & & & & \\
\hline & \multicolumn{2}{|l|}{Fresh} & \multicolumn{2}{|l|}{Salted} & \multicolumn{2}{|l|}{Fresh} & \multicolumn{2}{|l|}{Salted} \\
\hline NDED AT boston & \multirow[t]{2}{*}{Pounds} & Value & \multirow[t]{2}{*}{Pounds} & \multirow[t]{2}{*}{Value} & Pounds & Value & \multirow[t]{2}{*}{Pounds} & \multirow[t]{2}{*}{Value} \\
\hline uary & & \$17, 229 & & & 198, 052 & & & \\
\hline February & 324, 305 & 13,500 & & & 117, 916 & 6, 203 & & \\
\hline April. & 190, 625 & 8, 539 & & & 95, \({ }^{275}\) & 4, 70 & & \\
\hline May. & 74,435 & 2, 741 & & & 105, 580 & 4, 351 & & \\
\hline June. & 182, 060 & 4,735 & 150 & \$7 & 129, 752 & 5, 420 & & \\
\hline July & 33, 200 & 850 & & & 109, 499 & 4, 888 & & \\
\hline August & 159,650 & 3, 557 & & & 158, 008 & 6, 685 & & \\
\hline September & 712,586 & 14, 080 & & & 256, 483 & 7,776 & & \\
\hline October- & 1,221, 540 & 19,564 & 1,000 & 25 & 241, 428 & 6, 207 & & \\
\hline November. & 1, 000,805 & 17, 638 & & & 251, 075 & 6,815 & & \\
\hline December & 441, 470 & 14, 042 & & & 403, 764 & 16,648 & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline January & & & & & 67, 230 & 4, 035 & & \\
\hline February & & & & & 21,752 & 879 & & \\
\hline March & & & & & 9,080 & 424 & 600 & \$9 \\
\hline April & & & & & 35, 355 & 1,572 & 980 & 15 \\
\hline May & & & & & 10, 923 & 110 & 920 & 16 \\
\hline June & & & & & 21,965 & 237 & 50 & 1 \\
\hline July & & & & & 42, 023 & 585 & 3,355 & 65 \\
\hline August.-. & & & & & 22, 810 & 450 & 1, 010 & 20 \\
\hline September & & & & & 154, 890 & 3,507 & 2,615 & 43 \\
\hline October-... & & & & & 879,840 & 18, 260 & 1, 860 & 45 \\
\hline December. & & & & & 170,315 & 20,658
9,933 & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline January & 177, 509 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{6,135}} & & \multirow[t]{3}{*}{63,018
45,973
70} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1, 649}} & \\
\hline February & 87, 323 & & & & & & & \\
\hline March & 37, 458 & \multicolumn{2}{|l|}{1,460} & & & \multirow[t]{2}{*}{1, 1,008} & \multirow[t]{2}{*}{6,000} & 98 \\
\hline April & \multirow[t]{2}{*}{\[
\begin{aligned}
& 70,178 \\
& 54,559
\end{aligned}
\]} & \multirow[b]{2}{*}{1,358} & & & 100, 164 & & & \\
\hline May & & & & & 25, 872 & \multirow[b]{2}{*}{1,445} & 60 & 1 \\
\hline & 35, 874 & \({ }_{994}^{621}\) & 590 & 12 & 52, 638 & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{2} \\
\hline August & \multirow[t]{2}{*}{24, 830} & 338 & & & 46, 699 & 1,256 & & \\
\hline September & & 628 & & & 54, 406 & 1,194 & & \\
\hline October- & 319, 490 & \multirow[t]{2}{*}{5,370
4,494} & & & \multirow[b]{2}{*}{40, 202} & 921 & 695 & 15 \\
\hline November & 260, 935. & & & & & 704 & \multirow[t]{2}{*}{110} & \multirow[t]{2}{*}{2} \\
\hline December & 126, 165 & 4, 123 & & & 18,026 & 561 & & \\
\hline T & 1, 293, 169 & 31, 677 & 590 & 12 & 632, 826 & 14, 179 & 6,950 & 118 \\
\hline Grand total & 6, 403, 196 & 161,033 & 1,740 & 44 & 5, 066, 938 & 159, 106 & 18,340 & 332 \\
\hline Grounds east of \(66^{\circ} \mathrm{W}\). long- & \multirow[t]{4}{*}{\[
\begin{array}{r}
72,735 \\
6,330,461 \\
4,377,145
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1,757 \\
159,276 \\
92,001
\end{array}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 1,740 \\
& 1,500
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 44 \\
& 24
\end{aligned}
\]} & 448, 525 & 10,528 & \multirow[t]{2}{*}{\[
\begin{array}{r}
12,295 \\
6,045
\end{array}
\]} & \multirow[t]{3}{*}{\(\stackrel{219}{113}\)} \\
\hline Grounds west of \(66^{\circ} \mathrm{W}\). long & & & & & 4, 618, 413 & \[
148,578
\] & & \\
\hline Landed at Boston in 1923 & & & & & \[
\begin{aligned}
& 3,076,671 \\
& 1122362
\end{aligned}
\] & 104, 125 & & \\
\hline Landed at Gloucester in 1923 & & & & & 1, 122, 362 & 35, 392 & 36, 345 & \multirow[t]{2}{*}{48} \\
\hline Landed at Portland in 1923 & 1, 204, 841 & 34, 350 & 3,428 & 68 & 566, 608 & 11,860 & 2,340 & \\
\hline
\end{tabular}

Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the year 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Months} & \multicolumn{4}{|c|}{Cusk} & \multicolumn{4}{|c|}{Halibut} \\
\hline & \multicolumn{2}{|l|}{Fresh} & \multicolumn{2}{|l|}{Salted} & \multicolumn{2}{|l|}{Fresh} & \multicolumn{2}{|l|}{Salted} \\
\hline Landed in boston & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline January & 122, 565 & \$3, 503 & & & 30, 214 & \$10, 267 & & \\
\hline February & 100, 215 & 3,429 & & & 60, 073 & 16, 087 & & \\
\hline March. & 215, 085 & 5,450 & & & 234, 752 & 44, 325 & & \\
\hline April. & 237, 615 & 4, 127 & & & 487,000 & 89,916 & & \\
\hline May.. & 128, 153 & 1,991 & & & 681, 147 & 127, 155 & & \\
\hline June. & 64, 335 & 967 & & & 495, 963 & 86, 250 & & \\
\hline July & 38,545 & 815 & & & 489. 390 & 81.450 & & \\
\hline August & 31,370 & 590 & & & 723, 911 & 97,498 & & \\
\hline September & 98, 330 & 1,776 & & & 503, 564 & 104, 080 & & \\
\hline October- & 222, 640 & 4, 030 & & & 165, 972 & 35, 787 & & \\
\hline November & 279, 515 & 4,602 & & & 43, 438 & 11,379 & & \\
\hline December & 322, 208 & 7,163 & & & 19, 203 & 7,752 & & \\
\hline Total & 1,860,576 & 38, 443 & & & 3, 934, 627 & 711,946 & & \\
\hline Landed at gloucester & & & & & & & & \\
\hline January & 1,200 & 15 & & & & & & \\
\hline February & 450 & 14 & 55 & \$1 & & & & \\
\hline March. & 1,920 & 48 & & & & & & \\
\hline April & 38, 230 & 500 & 1,430 & 23 & & & & \\
\hline Maye. & 118, 620 & 1,729 & 3,730 & 84 & & & 105 & \\
\hline July & -26, 110 & \({ }^{1}, 960\) & 8, 8895 & 166 & & & 85 & 11 \\
\hline August. & 160, 580 & 2,367 & 22,315 & 535 & 10,605 & 954 & & \\
\hline September & 93, 195 & 1,499 & 9, 685 & 230 & & & & \\
\hline October-. & 115, 300 & 2, 027 & 6, 380 & 185 & & & & \\
\hline November & 24, 735 & 437 & 45 & 1 & & & & \\
\hline December. & 480 & 7 & & & & & & \\
\hline Total & 691, 395 & 11, 009 & 55, 515 & 1,309 & 10,605 & 954 & 530 & 58 \\
\hline & & & & & & & & \\
\hline January.. & 83,665 & 2,429 & & & 1,850 & 353 & & \\
\hline February & 99,197 & 2,882 & & & 1,087 & 210 & & \\
\hline March. & 69,660 & 1,873 & 125 & 1 & 3,999 & 660 & & \\
\hline April & 134, 560 & 2, 176 & & & 86, 091 & 12, 154 & & \\
\hline May & 44, 490 & 805 & 600 & 12 & 60, 377 & 10, 099 & & \\
\hline June. & 8, 521 & 201 & 300 & 6 & 128, 166 & 19, 099 & & \\
\hline Juy Aust- & 26, 13,213 & 454 & & & \({ }_{21} 90,235\) & 12, 312 & & \\
\hline September & 23, 056 & 512 & 3,630 & 100 & 25,541 & 6,298 & & \\
\hline October. & 139, 065 & 2,210 & 1,415 & 35 & 54, 567 & 11, 140 & & \\
\hline November & 85, 796. & 1,658 & & & 1,687 & 266 & & \\
\hline December & 63, 993 & 1,729 & & & 1, 262 & 167 & & \\
\hline Total & 792, 035 & 17, 199 & 6, 070 & 154 & 476, 384 & 76,651 & & \\
\hline Grand total & 3, 344, 006 & 66, 651 & 61, 585 & 1,463 & 4. 421,616 & 789, 551 & 530 & 58 \\
\hline Grounds east of \(66^{\circ} \mathrm{W}\). long & 433, 945 & 7. 039 & 36, 085 & 792 & 3, 097, 703 & 505, 432 & 530 & 58 \\
\hline Grounds west of \(66^{\circ} \mathrm{W}\) long. & 2,910,061 & 59, 612 & 25, 500 & 671 & 1, 323, 913 & 284, 119 & & \\
\hline Landed at Boston in 1923. & 1,516,969 & 31, 408 & 23, 000 & 690 & 3, 560, 375 & 679, 259 & & \\
\hline Landed at Gloucester in 1923 & 290, 110 & 3,545 & 37, 570 & 743 & 106, 884 & 22, 113 & 1.510 & 108 \\
\hline Landed at Portland in 1923 & 1, 103, 817 & 24,667 & 726, 740 & 675 & 1, 205, 735 & 221, 174 & & \\
\hline
\end{tabular}

Statement, by months, of quantities and values of certain fishery products landed at
Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels
during the year 1924-Continued


\footnotetext{
\({ }^{1}\) Includes herring from Newfoundland, 2,943,480 pounds salted, value \(\$ 108,371\).
}

Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the year 1924-Continued


The fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by fishing vessels each year are taken chiefly from fishing grounds off the coast of the United States. In the calendar year \(1924,81.53\) per cent of the quantity and 79.75 per cent of the value landed by fishing vessels were from these grounds; 2.75 per cent of the quantity and 5.22 per cent of the value, consisting principally of cod, halibut, and herring, were from fishing banks off the coast of Newfoundland; and 15.72 per cent of the quantity and 15.03 per cent of the value were from fishing grounds off the Canadian Provinces. There was some increase, compared with the previous year, in the percentage of products from grounds off the coast of the United States and a decrease in the percentage from grounds off the Canadian Provinces. There was very little change in the percentage from off the coast of Newfoundland. Newfoundland herring constituted 1.61 per cent of the quantity and 1.55 per cent of the value of the fishery products landed at these ports during the year. The herring were taken from the treaty coast of Newfoundland, and the cod, haddock, hake, halibut, and other species from that region were obtained from fishing banks on the high seas. All fish caught by American fishing vessels off the coast of the Canadian Provinces were from offshore fishing grounds. The catch from each of these regions is given in the following table:

Quantity and value of fish landed by American fishing vessels at Boston and Gloucester,
Mass., and Portland, Me., in 1924, from fishing grounds off the coasts of the
United States, Newfoundland, and Canadian Provinces
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{United States} & \multicolumn{2}{|l|}{Newfoundland} & Canadian & Provinces & \multicolumn{2}{|l|}{Total} \\
\hline Cod: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Fresh & 43, 699,307 & \$1,613, 828 & 89, 930 & \$2, 653 & 14, 866,650 & \$392, 364 & 58, 655, 887 & \$2, 008, 845 \\
\hline Salted & 591,295 & 28, 210 & 494, 109 & 23, 332 & 1, 707, 462 & 77,919 & 2, 792, 866 & 129,461 \\
\hline Haddock: & & & & & & & & \\
\hline Fresh & 71,611, 799 & 2, 132, 762 & 425 & 5 & 8, 284, 768 & 175, 741 & 79, 896, 992 & 2, 308, 508 \\
\hline Salted & 55 & 1 & 40 & 1 & 4,688 & 95 & 4,783 & \[
97
\] \\
\hline Hake: & & & & & & 1,605 & 7, 262, 737 & \\
\hline \begin{tabular}{l}
Fresh \\
Salted
\end{tabular} & \(7,129,132\)
6,144 & \[
\begin{array}{r}
183,050 \\
115
\end{array}
\] & 43,650
7,690 & 1,052
133 & 89,955
8,040 & 1,605
146 & 7, 21,874 & \[
\begin{array}{r}
185,707 \\
394
\end{array}
\] \\
\hline Pollock: & & & & & & & & \\
\hline Fresh & 4,618, 413 & 148,578 & & & 448,525 & 10,528 & 5, 066, 938 & 159, 106 \\
\hline Salted & 6,045 & 113 & 1,205 & 26 & 11, 090 & 193 & 18,340 & 332 \\
\hline Cusk: & & & & & & & & \\
\hline Fresh & 2,905,946 & 59,555 & 40,515 & 501 & 397, 545 & 6, 595 & 3, 344, 006 & 66,651 \\
\hline Salted & 25,500 & 671 & 10,295 & 205 & 25, 790 & 587 & 61, 585 & 1,463 \\
\hline Halibut: & & & & & & & & \\
\hline \begin{tabular}{l}
Fresh \\
Salted
\end{tabular} & 1,323, 793 & 284, 083 & \(1,387,091\)
190 & 227, 254 & 1, 710,732 & 278, 214 & 4, 421, 616 & \[
\begin{array}{r}
789,551 \\
58
\end{array}
\] \\
\hline Mackerel: & & & & & & & & \\
\hline Fresh & 7,571, 279 & 397, 372 & & & 903, 043 & 52,951 & 8,474, 322 & 450, 323 \\
\hline Salted & 1, 208, 487 & 85, 952 & & & 74, 700 & 5,509 & 1, 283, 187 & 91, 461 \\
\hline Herring: & & & & & & & & \\
\hline Fresh. & 1,467,256 & 19,496 & & & & & 1,467, 256 & \[
19,496
\] \\
\hline Salted & & & 2, 943,480 & 108,371 & & & 2, 943,480 & \[
108,371
\] \\
\hline Swordfish: Fresh & I, 825, 742 & 400, 636 & 9, 029 & 1,860 & 188,645 & 47,341 & 2, 023, 416 & 449, 837 \\
\hline Miscellaneous: Fresh & 5, 166, 224 & 222, 207 & 170 & 10 & 41,985 & 1,074 & 5, 208, 379 & 223, 291 \\
\hline Total & 149, 156, 417 & 5, 576, 629 & 5,027, 819 & 365,427 & \(28,763,958\) & 1, 050, 896 & 182, 948, 194 & 6, ¢92,952 \\
\hline
\end{tabular}

\section*{SPECIES}

COD
In 1924 there was an increase of 37 vessels, or 12.09 per cent, in the fishing fleet landing fish at Boston, Gloucester, and Portland, as compared with 1923 . There were 5 vessels in the salt-bank fishery and 102 in the market fishery. These vessels landed their fares of
cod and other ground fish at the above-named ports during the year, and large quantities were also landed by vessels fishing on the shore grounds. The catch of cod landed at these ports during the year was \(61,448,753\) pounds, valued at \(\$ 2,138,306\), of which \(58,655,887\) pounds, valued at \(\$ 2,008,845\), were landed fresh and \(2,792,866\) pounds, valued at \(\$ 129,461\), were landed salted. Cod ranked second in both quantity and value among the various species landed.

\section*{HADDOCK}

Haddock ranked first in both quantity and value, the catch exceeding that of cod by \(18,453,022\) pounds in quantity and \(\$ 170,299\) in value. The quantity of haddock landed at these ports by fishing vessels during the year was \(79,901,775\) pounds, valued at \(\$ 2,308,605\), all landed fresh except 4,783 pounds, valued at \(\$ 97\), landed salted. These fish were taken chiefly from Western Bank, Browns Bank, Georges Bank, South Channel, and Nantucket Shoals, and about 44 per cent of the quantity and 38 per cent of the value were taken in the otter-trawl fishery. The greater part of the catch \((68,142,309\) pounds, valued at \(\$ 2,037,661\) ) was landed at Boston.

HAKE
The catch of hake amounted to \(7,284,611\) pounds, valued at \(\$ 186,101\), all landed fresh except 21,874 pounds, valued at \(\$ 394\), landed salted. Of this catch \(5,699,844\) pounds, valued at \(\$ 148,491\), were landed at Boston; 271,233 pounds, valued at \(\$ 5,144\), at Gloucester; and \(1,313,534\) pounds, valued at \(\$ 32,466\), at Portland. About half of the catch was taken in South Channel, and about 78 per cent was landed at Boston.

\section*{POLLOCK}

The catch of pollock amounted to \(5,085,278\) pounds, valued at \(\$ 159,438\), all landed fresh except 18,340 pounds salted, valued at \(\$ 332\). The catch was obtained largely from Georges Bank, South Channel, and the shore grounds, and most of it was landed at Boston and Gloucester.

> CUSK

The catch of cusk amounted to \(3,405,591\) pounds, valued at \(\$ 68,114\), all landed fresh except 61,585 pounds salted, valued at \(\$ 1,463\). More than half of the catch was landed at Boston. There was an increase in the catch, as compared with the previous year, of 407,385 pounds, valued at \(\$ 6,386\).

\section*{HALIBUT}

The catch of halibut amounted to \(4,422,146\) pounds, valued at \(\$ 789,609\), all landed fresh except 530 pounds salted, valued at \(\$ 58\). There was a decrease of 9.28 per cent in the quantity and 14.44 per cent in the value of the halibut landed in 1924, as compared with the previous year. The quantity landed at Boston was \(3,934,627\) pounds, valued at \(\$ 711,946\); at Gloucester, 11,135 pounds, valued at \(\$ 1,012\); and at Portland, 476,384 pounds, valued at \(\$ 76,651\).

\section*{MACKEREL}

The total catch of fresh mackerel taken by the American fishing fleet in 1924 was 102,067 barrels, or \(15,310,050\) pounds, compared with 121,982 barrels, or \(18,297,300\) pounds, in 1923, a decrease of

19,915 barrels, or \(2,987,250\) pounds. The total catch of salted mackerel landed by the fishing fleet was 10,841 barrels, or \(2,168,200\) pounds, compared with 3,864 barrels, or 772,800 pounds, in 1923, an increase of 6,977 barrels, or \(1,395,400\) pounds. In 1924 about 8,000 barrels of salted mackerel were prepared from mackerel landed fresh, as compared with about 15,000 barrels in 1923. The quantity of mackerel landed at Boston, Gloucester, and Portland by fishing vessels during the year was \(9,757,509\) pounds, valued at \(\$ 541,784\), of which \(8,474,322\) pounds, valued at \(\$ 450,323\), were fresh and \(1,283,187\) pounds, valued at \(\$ 91,461\), were salted. There was a decrease of 1,807,719 pounds in the total catch of mackerel landed by fishing vessels at these ports and an increase of \(\$ 54,147\) in value as compared with 1923.

In 1924 the catch of mackerel up to July 3 was 38,916 barrels fresh and 860 barrels salted, compared with 25,879 barrels fresh and 346 barrels salted for the same period in 1923. The southern mackerel seiners had the best season for many years, but the gill-netters had a comparatively poor season. The mackerel taken by the seiners weighed about 1 pound each. The fleet was about the same size as last year. The first catch was landed at Cape May on April 8 and consisted of one barrel of blink mackerel, weighing three fish to the pound. These fish were landed one day earlier than the first mackerel were landed the previous season.

A large body of small mackerel was reported in the south. Large schools of large mackerel were also seen off Block Island late in the spring, but they were "wild", and it was impossible to seine them. The small mackerel landed by the southern fleet sold at from 7 to 15 cents per pound and the large ones at 9 to 25 cents per pound, according to market conditions. The first arrival of mackerel at Boston direct from the fleet was on May 16 and consisted of 5,000 pounds of large fresh fish, which were sold at 22 cents per pound. The Cape Shore mackerel fleet was about the same size as in 1923, but there was a decline in the catch. A considerable quantity of small mackerel was landed from the Cape Shore, which was unusual. The first arrivals of mackerel at Boston from the Cape Shore were two fares on July 9 , consisting of 56,000 pounds of fish weighing \(11 / 4\) pounds each and 30,000 pounds of large mackerel. The mackerel sold at from 8 to \(8 \frac{1}{2}\) cents per pound.

The quantity of mackerel salted by the Cape fleet was small but larger than last year. They were about half mediums, and counted from 260 to 300 fish to a barrel. They sold from the vessel at \(\$ 14\) per barrel, as compared with \(\$ 11\) per barrel the previous year.

The Cape Shore catch of mackerel for the past five years, shown in pounds, was as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline & Year & Trips & Fresh & Salted \\
\hline 1924 & & 24 & 996, 000 & 170,800 \\
\hline 1923 & & 31 & 1,240,680 & 42, 200 \\
\hline 1922 & & 38 & 1,353,900 & 468, 800 \\
\hline 1921. & & 29 & 2, 160, 100 & 628, 400 \\
\hline 1920. & & 30 & 1,290,000 & 443, 400 \\
\hline
\end{tabular}

\section*{SWORDFISH}

The catch of swordfish amounted to \(2,023,416\) pounds, valued at \(\$ 449,837\). There were 45 vessels engaged in this fishery, or 7 less than in the previous year. There was a decrease in the catch of 17.59 per cent in quantity but an increase of 0.38 per cent in value.

\section*{FLOUNDERS}

The catch of flounders in the vessel fisheries amounted to \(4,335,227\) pounds, valued at \(\$ 191,515\), an increase of 898,407 pounds, or 26.14 per cent, in quantity and of \(\$ 27,832\), or 17 per cent, in value. The catch taken by boats under 5 tons net tonnage is not included in these statistics.

\section*{HERRING}

The catch of herring amounted to \(4,410,736\) pounds, valued at \(\$ 127,867\). Of this quantity \(1,467,256\) pounds, valued at \(\$ 19,496\), were taken off the coast of the United States and landed fresh, and the remainder, consisting of \(2,943,480\) pounds salted, valued at \(\$ 108,371\), were Newfoundland herring.

\section*{OTTER-TRAWL FISHERY}

In 1924 there were 543 trips landed at Boston, Gloucester, and Portland by 32 otter-trawl vessels, amounting to \(46,703,035\) pounds of fish, valued at \(\$ 1,327,731\), or 25.53 per cent of the quantity and 19.99 per cent of the value of the total catch landed by fishing vessels at these ports during the year. The catch included cod, \(8,231,430\) pounds, valued at \(\$ 286,562\); haddock, \(35,197,940\) pounds, valued at \$867,756; hake, 616,853 pounds, valued at \$18,210; pollock, 1,028,032 pounds, valued at \(\$ 39,467\); cusk, 10,720 pounds, valued at \(\$ 460\); halibut, 94,221 pounds, valued at \(\$ 22,069\); and other species, \(1,523,839\) pounds, valued at \(\$ 93,207\). The catch by otter trawls consists principally of haddock, which in 1924 amounted to 44.05 per cent of the quantity and 37.59 per cent of the value of the entire catch of this species landed by fishing vessels at these ports. The otter-trawl catch was taken chiefly from Western Bank, Georges Bank, South Channel, and Nantucket Shoals.

Compared with the previous year, there was one vessel less engaged in this fishery and a decrease of 122 trips, or 18.35 per cent, and of \(7,595,254\) pounds, or 13.99 per cent, in the quantity, and of \(\$ 368,590\), or 21.73 per cent, in the value of the products landed.

The following tables give, by fishing grounds and months, the catch landed by otter trawlers at these ports in 1924 and also the catch of cod, haddock, and hake landed by them in various years.

Fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by otter trawlers in 1924


Cod, haddock, and hake landed at Boston and Gloucester, Mass., and Portland, Me., by otter trawlers in various years, 1908 to 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Trips & Cod & Haddock & Hake & Year & Trips & Cod & Haddock & Hake \\
\hline 1908 & No. & Pounds & Pounds & Pounds & & No. & Pounds & Pounds & Pounds \\
\hline 1909 & 47 & 209, 800 & 1, 442,000 & 46,600 & 1920 & 387 & 1,149, & 15,383, 550 & 259,913 \\
\hline 1910 & 59 & 125, 850 & 1, 775,000 & 46,600 & 1921 & \({ }^{346}\) & 6, \(2,482,833\) & 51, 734,893 & 241650 \\
\hline 1911 & 178 & 564, 500 & 7, 367, 100 & 151,700 & 1922 & 578 & 11,161,947 & 35, 878, 524 & 576, 370 \\
\hline 1912 & 295 & 1,952, 950 & 12, 966,700 & 105, 500 & 1923 & 665 & 14,961, 590 & 35, 527, 297 & 471,660 \\
\hline 1913 & 326 & 1,667,806 & 12, 488, 992 & 209,485 & 1924 & 543 & 8,231,430 & 35, 197, 940 & 616, 853 \\
\hline
\end{tabular}

\section*{DAYS' ABSENCE}

In order to provide more accurate information on the fishing effort, statistics on the number of days' absence from ports of vessels on fishing trips were taken during 1924. The days' absence on each trip was reckoned as including the date of departure and date of arrival. Unfortunately, these data were not collected at Boston during the entire month of January, 1924, and it was therefore impossible to incorporate them in the general tables on New England vessel fisheries. They are presented by months, grounds, and ports for all vessels, including otter trawlers, and for otter trawlers separately, in the following tables:

Days' absence from port of fishing vessels landing fish at Boston and Gloucester, Mass., and Portland, Me., 1324
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fishing grounds & Jan. & Feb. & Mar. & Apr. & May & June & July & Aug. & Sept. & Oct. & Nov. & Dee. & Total \\
\hline boston & & & & & & & & & & & & & \\
\hline East of \(66^{\circ} \mathrm{W}\). longitude & & & & & & & & & & & & & \\
\hline La Have Bank & & & 21 & 89 & 28 & 36 & 22 & 101 & 48 & 22 & 22 & 128 & \\
\hline Western Bank & & 44 & 40 & 96 & 144 & 263 & 436
17 & 192 & & 80 & 60 & 308 & \\
\hline Querean Bank. & & 60 & 53 & 91 & 38 & 91 & 17 & 139 & 218 & 52 & , & & \\
\hline Green Bank. & & 30 & & & & & & & & & & & \\
\hline Grand Bank & & & 19 & 51 & 78 & 172 & 156 & 60 & 40 & 32 & & & \\
\hline St. Peters Bank & & & & & 60 & 91 & 92 & 22 & & & 64 & & \\
\hline Burgeo Bank & & & & & & & & & 22 & & & & \\
\hline Off Newfoundland & & & & & 46 & & & & & & & & \\
\hline Cape Shore. & & & & & 20 & 378 & & & 422 & 17 & 53 & 7 & \\
\hline The Gully & & & 30 & 25 & & & & & & & & & \\
\hline Labrador Coast. & & & & & & & & 32 & & & & & \\
\hline West of \(66^{\circ} \mathrm{W}\). longitude & & & & & & & & & & & & & \\
\hline Browns Bank & & 37 & 74 & 387 & 405 & 67 & 141 & 112 & 115 & 119 & 33 & 236 & \\
\hline Georges Bank & & 1,183 & 907 & 403 & 390 & & 1,636 & 1,324 & 723 & 195 & 69 & 29 & \\
\hline Cashes Bank. & & & & & & 4 & & & 25 & 37 & & & \\
\hline Clark Bank. & & & & & & & & & & & & & \\
\hline Fippenies Bank & & & & & & & & & 4 & 4 & 4 & & \\
\hline Tillies Bank.... & & & & & & & & & 8 & & & & \\
\hline Middle Bank & & 37 & 86 & 41 & 21 & & 23 & 241 & 29 & 80 & 134 & 106 & \\
\hline Jeffreys Ledge & & 122 & 131 & & & & & & 26 & 114 & 380 & 369 & \\
\hline South Channel & & 341 & 354 & 272 & 201 & 524 & 541 & 329 & 735 & 885 & 540 & 405 & \\
\hline Nantucket Shoal & & & & & 133 & 162 & 185 & 92 & 19 & 124 & 185 & 224 & \\
\hline Off Chatham. & & 32 & 32 & 21 & 22 & 8 & 98 & 67 & 19 & 12 & & 49 & \\
\hline Seal Island... & & & & & & & & & & & & & \\
\hline Shore, general & & 148 & 130 & 269 & 283 & 385 & 201 & 221. & 262 & 263 & 156 & 174 & \\
\hline Total. & & 2,039 & 1,888 & 1,839 & 1,869 & 2,621 & 3,548 & 2,932 & 2,715 & 2, 064 & 1,713 & 2, 044 & \\
\hline gloucester & & & & & & & & & & & & & \\
\hline East of \(66^{\circ} \mathrm{W}\). longitude & & & & & & & & & & & & & \\
\hline La llave Bank & & & 31 & 87 & & 14: & & 70 & 105 & 23 & 11 & & 341 \\
\hline Western Bank & 13 & 32 & 34 & 52 & 208 & 432 & 578 & 494 & 96 & & 65 & .-... & 2,004 \\
\hline Quereau Bank & & & 27 & 76 & 92 & 57 & 83 & 152 & 92 & 60 & 40 & & 679 \\
\hline Green Bank- & & & & & & & & & & 51 & & & 73 \\
\hline Grand Bank. & & & & 183 & 96 & 306 & 186 & 101 & & 13 & & & 885 \\
\hline St. Peters Bank. & & & & & 59 & 94 & 172 & 20 & & & 30 & & 375 \\
\hline Off Newfoundland. & 82 & 174 & & & & & & & & & & 267 & 523 \\
\hline Cape Shore.--- & & & & & 10 & 238 & & & & & 9 & & 257 \\
\hline Wrest of \(66^{\circ} \mathrm{W}\). longitude & & & & & & & & & & & & ' & \\
\hline Browns Bauk & & & & 201 & 190 & 20 & & & 55 & 61 & 9 & & 536 \\
\hline Georges Bank & 16 & 285 & 334 & 297 & 244 & 27 & 166 & 233 & 358 & 182 & 9 & & 2,151 \\
\hline Cashes Bank- & & & & & & & & & & & & & \\
\hline Middle Bank. & & & & & & & 45 & 132 & 26 & & & & 203 \\
\hline South Channel & & & & & 19 & 61 & 151 & 18 & 20 & 81 & 25 & & 375 \\
\hline Nantucket shoals & & & & & & 13 & & & & & & & \\
\hline Shore, general. & 41 & 82 & 172 & 211 & 230 & 181 & 156 & 177 & 696 & 301 & 538 & 286 & 3,071 \\
\hline Total. & 152 & 573 & 598 & 1,129 & 1, 1481 & 1,443 & 1,554 & 1,397 & 1,448 & 772 & 750 & 553 & 11,517 \\
\hline
\end{tabular}

Days' absence from port of fishing vessels landing fish at Boston and Gloucester, Mass., and Portland, Me., 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fishing grounds & Jan. & Feb. & Mar. & Apr. & May & June & July & Aug. & Sept. & Oct. & Nor. & Dec. & Total \\
\hline portland & & & & & & & & & & & & & \\
\hline East of \(66^{\circ} \mathrm{W}\). longitude & & & & & & & & & & & & & \\
\hline La Have Bank Western Bank & & & & 17
99 & & & & 30
24 & & 44 & & 18 & 52
460 \\
\hline Quereau Bank & & & & & 13 & & 43 & & & 22 & & & 85 \\
\hline Green Bank. & & & & & & & & & & & & & 9 \\
\hline Grand Bank. & & & & & & 33 & 38 & & & & & & 71 \\
\hline St. Peters Bank & & & & & & 24 & 56 & & & & & & 80 \\
\hline Burgeo Bank & & & & 20 & & & & & & & & & 20 \\
\hline Cape Shore & & & & & & 67 & - & 16 & 213 & & & & 296 \\
\hline Gulf of St. Lawrence & & & & & 10 & & & & & & & & 10 \\
\hline St. Anns Bank The Gulley & & & & 26 & & 28 & & & & & & & \(\stackrel{28}{26}\) \\
\hline West of \(66^{\circ} \mathrm{W}\). longitude & & & & & & & & & & & & & \\
\hline Browns Bank. & & & & & 45 & 19 & & 18 & & & & & 82 \\
\hline Georges Bank & & & & & & & 81 & 52 & & & & & 133 \\
\hline Cashes Bank & & & & & 5 & 15 & & & & 31 & & & 70 \\
\hline Fippenies.. & & & & & & & & & & & & & \\
\hline Middle Bank & & & 3 & & & & & & & 4 & & & \\
\hline Platts Bank & 31 & 5 & & 28 & 16 & & & 3 & & 91 & 56 & 21 & 267 \\
\hline Jeffreys Ledge & 92 & 53 & 36 & & & & & 39 & 45 & 33 & 58 & 42 & 415 \\
\hline Shore, general & 67 & 81 & 106 & 122 & 112 & 220 & 249 & 194 & 89 & 113 & 78 & & 1,477 \\
\hline Total & 214 & 166 & 290 & 336 & 230 & 422 & 467 & 376 & 413 & 343 & 204 & 129 & 3,590 \\
\hline Grand total & & 2,778 & 2,776 & 3, 304 & 3,247 & 4, 486 & 5,569 & 4, 705 & 4,576 & 3, 179 & 2, 667 & 2, 726 & ----- \\
\hline
\end{tabular}

Note.-Data for Boston for January are not available.
Days' absence from port of otter trawlers landing fish at Boston and Gloucester, Mass., and Portland, Me., 1924


Note.-Data for Boston for January are not available.

\section*{VESSEL FISHERIES AT SEATTLE, WASH.}

In 1924 there was a decrease in quantity in the vessol fisheries at Seattle, Wash., as compared with 1923, but an increase in the value of the products landed by the fishing fleet, and there was an increase in both the quantity and value of products landed by collecting vessels, which was due chiefly to an increase in the landings of salmon. Statistics of the ressel fisheries at Seattle have been collected by the local agent and published as monthly and annual statistical bulletins giving the quantity and value of fishery products landed by American fishing and collecting vessels at that port.

In 1924 the fishing fleet at Seattle landed 854 trips, amounting to \(10,066,010\) pounds of fish, having a value to the fisherman of \(\$ 1,329,957\). The catch was taken chiefly from fishing grounds along the coast from Oregon to Portlock Bank, Alaska. The fishing areas from which the largest quantities were taken were Flattery Banks and Hecate Strait. The products included halibut, \(7,362,960\) pounds, valued at \(\$ 1,197,229\); sablefish, \(2,030,300\) pounds, valued at \(\$ 110,971\); "lingcod," 465,975 pounds, valued at \(\$ 14,403\) : and rockfishes, 206,775 pounds, valued at \(\$ 7,354\). Compared with 1923 there was a decrease of 65 trips by fishing vessels and of 171,580 pounds, or 1.68 per cent, in the quantity, and an increase of \(\$ 8,370\), or 0.63 per cent, in the ralue of the products landed. There was a decrease in the catch of halibut of 442,030 pounds, or 5.66 per cent, but an increase in value of \(\$ 8,351\), or 0.70 per cent. The catch of sablefish also decreased 78,300 pounds, or 3.71 per cent, and \(\$ 12,543\), or 10.16 per cent in value. There was an increase in the catch of "lingcod" of 271,875 pounds, or 140.07 per cent and of \(\$ 10,048\), or 230.72 per cent in value, and the catch of rockfishes also increased 76,875 pounds, or 59.18 per cent, and \(\$ 2,514\), or 51.94 per cent in value.

The fishery products taken in Puget Sound and landed at Seattle by collecting vessels during the year amounted to \(18,166,710\) pounds, valued at \(\$ 1,389,265\). The products included salmon, \(16,313,010\) pounds, valued at \(\$ 1,290,093\); herring, 316,600 pounds, valued at \(\$ 2,871\); sturgeon, 23,800 pounds, valued at \(\$ 2,198\); steelhead trout, 88,860 pounds, valued at \(\$ 8,886\); smelt, 318,600 pounds, valued at \(\$ 24,622\); perch, 69,900 pounds, ralued at \(\$ 4,902\); rockfishes, 128,600 pounds, valued at \(\$ 8,044\); "lingcod," 51,110 pounds, valued at \(\$ 1,678\); flounders, 96,300 pounds, valued at \(\$ 1,921\); sole, 254,750 pounds, valued at \(\$ 9,560\) : and crabs, 505,600 pounds, valued at \(\$ 34,490\). Compared with 1923 there was an increase of 779,232 pounds, or 4.48 per cent, in the products landed by collecting vessels with an increase in value of \(\$ 80,534\), or 6.15 per cent. The quantity and value of fishery products landed at Seattle by fishing and collecting vessels in 1924 are given in detail in the following tables:

\section*{Statement, by fishing grounds and months, of quantities and values of certain fishery products landed at Seattle, Wash., by American fishing vessels, 1924}


Fishery products, by months, taken in Puget Sound and landed at Seattle, Wash., by collecting vessels, 1924

\({ }^{1} 49,119\) dozen.
FISHERY PRODUCTS RECEIVED AT MUNICIPAL FISH WHARF AND MARKET, WASHINGTON, D. C. \({ }^{2}\)

The receipts of fishery products at the municipal fish wharf and market, Washington, D. C., in 1924, amounted to \(8,007,704\) pounds, an increase of \(2,329,547\) pounds, or 42.79 per cent, as compared with 1923. The most important products in quantity were river herring, including roe, \(1,327,020\) pounds; squeteagues or "sea trout," 1,240,450 pounds; croaker, 999,000 pounds; oysters, 710,916 pounds; shad, including roe, 555,154 pounds; and haddock, 469,280 pounds. The species ranking next in importance include butterfish, catfish, flounders, halibut, mackerel, perch, striped bass, and crabs.

\footnotetext{
\({ }^{2}\) Daily reports of the quantity of fishery products received at this market are received by the bureau for tabulation through the courtesy of the health department of the District of Columbia.
}

Fishery products, in pounds, received at Municipal Fish Wharf and Market, Washington, D. C., 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Species & January & February & March & April & May & June & July \\
\hline Bass, black or sea & 18, 800 & 20, 500 & 9,600 & 600 & 3,500 & 9, 527 & 5, 700 \\
\hline & & 700 & 4,900 & 5,300 & 1,800 & 2, 300 & 1,400 \\
\hline Bowfin & & & 100 & & & & \\
\hline Butterfish & 2, 100 & 600
8,975 & 10,350 & 4,000
7,265 & 21,400
20
2000 & 49, 800
11,353 & 54,100
6,525 \\
\hline Catfis & 12,875 & 6,950 & 28, 000 & 40, 200 & 22, 200 & 23, 851 & 10, 100 \\
\hline Cod: Fresh & 2, 400 & 5,900 & 7,725 & 3,550 & 4,900 & 6,475 & 3,500 \\
\hline Salted & 1,000 & & & & & & \\
\hline Croaker & 21, 000 & 2,900 & 2, 400 & 230, 400 & 164, 000 & 152,300 & 210,600 \\
\hline Eels. & 400 & & 230 & 2, 050 & 600 & 1,191 & 300 \\
\hline Flounders & 10, 800 & 29, 200 & 34, 100 & 13,900 & 11,800 & 9,600 & 5,400 \\
\hline Gizzard shad & 2, 025 & & & & & & \\
\hline Haddock:
Fresh. & 41,450 & 82, 800 & 76,930 & 43, 750 & 18, 170 & 15,350 & 10,950 \\
\hline Smoked & , 90 & 860 & 280 & & & & \\
\hline Hake.- & 4,400 & & & & & & \\
\hline Halibut. & 34, 950 & 6,250 & 10, 150 & 10,375 & 8,250 & 11, 725 & 12, 375 \\
\hline Herring, river:
Fresh & 38,600 & 25,650 & 90, 500 & 580, 000 & 151,800 & & \\
\hline Salted & & & & 22, 000 & 279, 250 & 52, 500 & \\
\hline Roe. & & & & & 11, 820 & & \\
\hline Hickory shad or "ja & 4,475 & 3, 725 & 5,400 & 4,400 & 1,400 & & \\
\hline Kingfish & 3,200 & 400 & & 1,300 & 2,000 & 300 & 600 \\
\hline Mackerel: & 24, 800 & 23, 200 & 4,950 & 11,600 & 10,500 & 30,150 & 19,500 \\
\hline Salted & 300 & 420 & 60 & 300 & & 600 & \\
\hline Mullet & 30 & 800 & 500 & & 200 & & \\
\hline Perch & 14, 825 & 15,525 & 88, 300 & 44, 400 & 10,500 & 7,475 & 3, 300 \\
\hline Pike or pickerel & 2,360 & 3,350 & 3,175 & 200 & 200 & 550 & 50 \\
\hline Pollock.. & 1,000 & & & & & 250 & >50 \\
\hline Pompano & & 100 & & & 200 & & \\
\hline Redfish or red drum & & & & 625 & & 200 & \\
\hline Red snapper & 1,000 & 200 & 200 & & 200 & & \\
\hline Salmon: & & & & & & & \\
\hline Sergeant fish & 50 & & & & & & \\
\hline Scup or porgy & & & & & 300 & 1,300 & 2,500 \\
\hline Shad. & 23, 904 & 29, 000 & 89, 250 & 275,000 & 126,700 & 6,000 & \\
\hline Shad roe. & 225 & 350 & 225 & & & & \\
\hline Sheepshead & & & & & & 100 & \\
\hline Smelt. & 6,940 & 2, 970 & 1,080 & & & & \\
\hline Spot_---.------.-- & 1,600 & & & & 1,300 & 4, 000 & 6, 400 \\
\hline Squeteagues or "sea & 35, 400 & 20, 800 & 25,100 & 31, 100 & 271,800 & 122, 400 & 129, 400 \\
\hline Squid --..- & 875 & 4,950 & 22,300 & 66,600 & 17,000 & 11,050 & 9,400 \\
\hline Sturgeon & & & & 175 & 1,174 & & \\
\hline Swordfish & & & & & & & 600 \\
\hline Tilefish & 800 & 800 & & 850 & 300 & & \\
\hline Whiting & & & 500 & & 600 & & \\
\hline Clams, hard & 2,240 & 3, 068 & 4,360 & 3,936 & 7,072 & 7,328 & 6, 176 \\
\hline Oysters: & & & & & & & \\
\hline In the shell & 62,734 & 38,451 & 53, 900 & 8,911 & 1,225 & 224 & \\
\hline Opened & 58,773 & 39, 237 & 39,658 & 14,710 & 99 & & \\
\hline Scallops, & 1,048 & 1,120 & 880 & 2, 488 & 1,440 & 1,280 & 640 \\
\hline Crabs, hard & & & & 225 & 11,010 & 40,950 & 107,835 \\
\hline Crab meat & & 75 & 400 & 925 & 6, 110 & 12,600 & 12,920 \\
\hline Frogs.- & & & & 15 & 55 & 121 & \\
\hline Lobsters & & & 50 & 274 & 550 & 300 & 200 \\
\hline Shrimp. & 730 & 1,150 & 1,800 & 1,500 & 750 & 3,450 & 3,600 \\
\hline Turtles & 1,280. & 648 & 286 & 290 & 349 & 1,116 & \\
\hline Total & 451,584 & 388, 274 & 618,039 & 1,433, 214 & 1,196, 424 & 601, 816 & 629, 799 \\
\hline
\end{tabular}

Fishery products, in pounds, received at Municipal Fish Wharf and Market, Washington, D. C., 1924-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & August & September & October & November & \[
\begin{gathered}
\text { Decem- } \\
\text { ber }
\end{gathered}
\] & Total \\
\hline Bass, black or sea & 1,800 & 600 & 3,800 & 14, 100 & 29,156 & 117,683 \\
\hline Bluefish. & 3,800 & 6,600 & 8, 800 & 200 & & 35, 800 \\
\hline Bowfin-- & 70,500 & 52, 250 & 26,400 & 10,300 & 200
1,150 & 300
292,600 \\
\hline Carp. & 2, 300 & 5,850 & 7, 450 & 6,600 & 9,380 & 103, 623 \\
\hline Catfish & 7,900 & 19,940 & 42, 250 & 21, 700 & 9,435 & 245, 401 \\
\hline Ciscoes. & & 100 & 600 & 600 & 200 & 1,500 \\
\hline Cod: Fresh & 6,500 & 4,550 & 3,300 & 3,200 & 3,550 & 55,550 \\
\hline Salted & & & & & & 1,000 \\
\hline Crappie. & & & & 400 & & 400 \\
\hline Croaker & 144, 300 & 24, 000 & 8, 300 & 10, 500 & 28, 300 & 999,000 \\
\hline Eels.- & 300 & 550 & 2,500 & 1,200 & 1,300 & 10,621 \\
\hline Flounders & 4, 200 & 10,075 & 23,100 & 20, 100 & 7,200 & 179, 475 \\
\hline Gars. & & & 200 & & & 200 \\
\hline Gizzard shad & & 275 & 5,700 & 5,550 & 8,600 & 22,150 \\
\hline Haddock: & & & & & & \\
\hline Fresh. & 17,000 & 31,250 & 44, 800 & 49,900 & 35,700 & 468,050 \\
\hline Hake.... & & & 7,800 & 70,000 & 6, 600 & 1,230
88,800 \\
\hline Halibut & 10,650 & 10,650 & 11, 560 & 14,400 & 33, 100 & 174,435 \\
\hline Herring, river: & & & & & 22,000 & \\
\hline Salted & & & & & & 353,750 \\
\hline Roe. & & & & & & 11, 820 \\
\hline Hickory shad or "jacks" & & & & & & 19,400 \\
\hline Kingfish. & & & 200 & 4, 700 & 25,400 & 38, 100 \\
\hline Mackerel: & & & & & & \\
\hline Fresh & 15,700 & 12, 200 & 7,800 & 9,300 & 26,600 & 196, 300 \\
\hline Salted & & & & & & 1,680 \\
\hline Menhaden & & & 200 & & & 200 \\
\hline Mullet. & & & & 100 & 150 & 1,780 \\
\hline Perch & 5,300 & 7,400 & 9,400 & 12,600 & 20,775 & 239, 800 \\
\hline Pigfish & 200 & & 400 & & & 600 \\
\hline Pike or pickerel & 200 & 300 & 1,300 & 1,500 & 3,070 & 16, 255 \\
\hline Pollock. & & 800 & 1,900 & 3,900 & 21, 200 & 29,900 \\
\hline Pompano--.-.....-. & & & & 200 & & 500 \\
\hline Redfish or red drum & & & 200 & 200 & & 1,225 \\
\hline Red snapper & & & & & 1,200 & 2, 800 \\
\hline Salmon: Fresh & 1,700 & 6,400 & 10,200 & 2,500 & & 37, 100 \\
\hline Smoked. & & & & & & 980 \\
\hline Sergeant fish & & & & & & 50 \\
\hline Scup or porgy & 600 & 500 & 200 & & & 5,400 \\
\hline Shad.-.- & & & & 2, 500 & 2,000 & 554, 354 \\
\hline Shad roe- & & & & & & 800 \\
\hline Sheepshead & & & & & 150 & 250 \\
\hline Skates & & & & 200 & & 200 \\
\hline & & & & & & 10,900 \\
\hline  & 139, 000 & 150, 200 & 177,400 & 5,500
78,000 & 59,850 & 1, 240,0000 \\
\hline  & 100 & & 200 & 100 & & 1, 3,600 \\
\hline Striped bass. & 13,600 & 22,855 & 58,300 & 20,700 & 9,595 & 257, 225 \\
\hline Sturgeon & 95 & & 260 & 125 & & 1,829 \\
\hline Sunfish & & & & 200 & & 200 \\
\hline Swordfish & 115 & 200 & & & & 915 \\
\hline Tarpon & & 70 & & & & 70 \\
\hline Tilefish & & & 400 & 300 & 200 & 3,650 \\
\hline Whitefish & & & 1,400 & 100 & & 1,500 \\
\hline Whiting & & & 5,600 & 9, 600 & 4,800 & 23, 100 \\
\hline Clams, hard & 7,360 & 5,440 & 4,672 & 2,688 & 3,776 & \({ }^{1} 58,116\) \\
\hline Oysters: & & & & & & \\
\hline In the shell & & 13,349 & 52,661 & 87, 605 & 71,771 & 2 390, 831 \\
\hline Opened & & 12, 821 & 51,307 & 51, 802 & 51, 678 & \({ }^{3} 320,085\) \\
\hline Scallops.-. & 480 & , 320 & 1,280 & 800 & 960 & 12,736 \\
\hline Crabs, hard & 43, 650 & 10,770 & 750 & & & 215, 190 \\
\hline Crab meat & 12,025 & 5,545 & 2,325 & 755 & 265 & 53, 945 \\
\hline Frogs .-. & & & & & & 191 \\
\hline Lobsters & & 200 & 200 & 50 & 100 & 1,974 \\
\hline Shrimp & 7, 200 & 2, 400 & 1,500 & 3,450 & 1,200 & 28,730 \\
\hline Turtles & 56 & 142 & 96 & 222 & 302 & 4,865 \\
\hline Total & 521,881 & 452,602 & 633,711 & 579,447 & 500, 913 & 8, 007, 704 \\
\hline
\end{tabular}

12,265 bushels.
\({ }^{2} 55,833\) bushels.
\({ }^{3} 35,798\) gallons.
Note.-The clams have been reduced to pounds on the basis of 8 pounds of meat to a bushel, the oysters on the basis of 7 pounds of meat to a bushel aud \(81 / 4\) pounds to a gallon.

\section*{SHAD AND ALEWIFE FISHERY OF THE POTOMAC RIVER}

The regular annual statistics of the shad and alewife fisheries of the Potomac River were taken for the season of 1924. They show that in 1924 the shad fishery yielded 172,310 shad, weighing 578,210 pounds and valued at \(\$ \$ 8,450\) to the fishermen. This marks an unprecedentedly small catch, amounting to only 49 per cent in number and 45 per cent in value of the 1923 catch, which itself was less than half as large as the previous year's catch.

The catch of alewives, amounting to \(15,133,388\) fish weighing \(6,052,756\) pounds and valued at \(\$ 56,552\) to the fishermen, was greater than the 1923 catch by 32 per cent in number and 14 per cent in value and was the largest catch in recent years.

The following tables give the detailed statistics for 1924 and comparative statistics on the shad and alewife catch of the Potomac River for the years on which statistics are available.

Shad and alewife fisheries of the Potomac River, 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Item & \multicolumn{3}{|c|}{Maryland} & \multicolumn{3}{|c|}{Virginia} & \multicolumn{3}{|c|}{Total} \\
\hline & Number & Pounds & Value & Number & Pounds & Value & Number & Pounds & Value \\
\hline Rowboats and scows. & 117 & & \$4, 320 & 194 & & \$6, 680 & 311 & & \$11,000 \\
\hline Gasoline boats.-.- & 52 & & 14,575 & 221 & & 71, 960 & 273 & & 86,535 \\
\hline Pound nets. & 83 & & 9, 150 & 308 & & 97, 325 & 391 & & 106, 475 \\
\hline Gill nets. & 107 & & 10, 225 & 290 & & 12, 239 & 397 & & 22, 464 \\
\hline Haul seines & 2 & & 1,100 & & & & 2 & & 1,100 \\
\hline Shore and accessory property & & & 2,775 & & & 7,050 & & & 9,825 \\
\hline Total & & & 42, 145 & & & 195, 254 & & & 237, 399 \\
\hline Shad caught: & & & & & & & & & \\
\hline With pound nets.- & 4,570 & 15, 406 & 2,326 & 105, 103 & 348, 031 & 51, 570 & 109,673 & 363, 437 & 53, 896 \\
\hline With gill nets.... & 30, 185 & 104, 082 & 16,895 & 29, 702 & 102,894 & 16, 411 & 59, 887 & 206, 976 & 33, 306 \\
\hline With haul seines.- & 2,750 & 7,797 & 1,248 & & & & 2,750 & 7, 797 & 1,248 \\
\hline Tota & 37,505 & 127, 285 & 20,469 & 134, 805 & 450, 925 & 67, 981 & 172,310 & 578,210 & 88, 450 \\
\hline Alewives caught: & & & & & & & & & \\
\hline With pound nets.- & 1,634,000 & 653, 600 & 6, 085 & 12, 978, 388 & \[
5,190,956
\] & 46, 972 & 14, 612, 388 & 5, 844, 556 & 53, 057 \\
\hline With gill nets. & & & & 321, 000 & \[
128,200
\] & 2, 695 & \[
321,000
\] & 128, 200 & 2,695 \\
\hline With haul seines & 200, 000 & 80,000 & 800 & & & & 200, 000 & 80,000 & 800 \\
\hline Total & 1,834, 000 & 733, 600 & 6,885 & 13,299, 388 & 5, 319, 156 & 49, 667 & 15, 133, 388 & 6, 052, 756 & 56,552 \\
\hline
\end{tabular}

Production of shad in the Potomac River in various years, 1896 to 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \multicolumn{3}{|c|}{Maryland} & \multicolumn{3}{|c|}{Virginia} & \multicolumn{3}{|c|}{Total} \\
\hline & Number & Pounds & Value & Number & Pounds & Value & Number & Pounds & Value \\
\hline 1924 & 37,505 & 127, 285 & \$20,469 & 134,805 & 450, 925 & \$67, 981 & 172, 310 & 578,210 & \$88,450 \\
\hline 1923 & 93, 619 & 308, 729 & 52,917 & 257, 927 & 878,653 & 145, 702 & 351,546 & 1,187,382 & 198, 619 \\
\hline 1922 & 203, 682 & 706, 501 & 95, 140 & 680, 494 & 2, 409, 070 & 324, 882 & 884, 176 & 3,115,571 & 420, 022 \\
\hline 1921 & 49,681 & 138, 207 & 25, 191 & 356, 191 & 1, 022, 231 & 182, 179 & 405, 872 & 1,160,438 & 207, 370 \\
\hline 1920 & 80, 944 & 302, 237 & 55, 963 & 448, 414 & 1,677,543 & 278, 501 & 529, 358 & 1, 979, 780 & 334, 464 \\
\hline 1919 & 94, 512 & 354, 420 & 56, 833 & 449, 957 & 1, 687,339 & 275, 564 & 544, 469 & 2, 041,759 & 332,397 \\
\hline 1915 & 17, 196 & 64, 485 & 6,827 & 165, 206 & 619,523 & 65, 300 & 182, 402 & 684, 008 & 72, 127 \\
\hline 1909 & 31, 158 & 116,843 & 9, 232 & 172, 813 & 648, 049 & 44,500 & 203, 971 & 764,892 & 53,732 \\
\hline 1904 & 83, 147 & 311,801 & 16,343 & 289, 500 & 1,085, 625 & 51,709 & 372, 647 & 1, 397, 426 & 68, 052 \\
\hline 1901 & 146, 000 & 547, 500 & 14, 800 & 648, 462 & 2, 431, 733 & 104,566 & 794, 462 & 2, 979, 233 & 119,366 \\
\hline 1896 & 233, 238 & 874, 643 & 20, 524 & 450,825 & 1,690,594 & 43, 084 & 684, 063 & 2, 565, 237 & 63,608 \\
\hline
\end{tabular}

Production of alewives in the Potomac River in various years, 1909 to 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \multicolumn{3}{|c|}{Maryland} & \multicolumn{3}{|c|}{Virginia} & \multicolumn{3}{|c|}{Total} \\
\hline & Number & Pounds & Value & Number & Pounds & Value & Number & Pounds & Value \\
\hline 1924 & 1, 834, 000 & 733, 600 & \$6,885 & 13,299, 388 & 5,319,156 & \$49,667 & 15,133, 388 & 6,052,756 & \$56,552 \\
\hline 1923 & 2,119, 787 & 847, 916 & 8,764 & 9, 308, 782 & 3,722,912 & 40,657 & 11, 428, 569 & 4,570, 828 & 49,421 \\
\hline 1922 & 1, 292, 500 & 517,000 & 3,700 & 10, 074, 500 & 4, 029, 800 & 34,642 & 11, 367, 000 & 4, 546, 800 & 38, 342 \\
\hline 1921 & 1, 395, 000 & 558, 000 & 9,010 & 8, 908, 510 & 3, 563, 404 & 35, 031 & 10, 303, 510 & 4, 121, 404 & 44, 041 \\
\hline 1920 & 1, 077, 775 & 538,838 & 13, 940 & 7,681, 561 & 3, 813,780 & 41, 197 & 8, 759,336 & 4,352, 668 & 55, 137 \\
\hline 1919 & 1, 488, 583 & 772,867 & 15,508 & 7, 379, 319 & 2, 904, 054 & 45, 508 & 8,867, 902 & 3,676, 921 & 61, 016 \\
\hline 1915 & 335, 000 & & 1,420 & 7,276,425 & & 30, 741 & 7,611,428 & & 32, 161 \\
\hline 1909 & 4, 883, 000 & & 10, 369 & 24, 601, 040 & & 42, 854 & 29, 484, 040 & & 53, 223 \\
\hline
\end{tabular}

\section*{FLORIDA SPONGE FISHERY}

In 1924 the quantity of sponges sold at the sponge exchange, Tarpon Springs, Fla., was 425,305 pounds, valued at \(\$ 714,760\), of which 265,392 pounds, valued at \(\$ 599,221\), were large wool; 58,021 pounds, valued at \(\$ 72,652\), small wool; 81,420 pounds, valued at \(\$ 37,996\), yellow; 14,898 pounds, valued at \(\$ 2,661\), grass, and 5,574 pounds, valued at \(\$ 2,230\), wire. It is estimated that sponges to the value of \(\$ 50,000\) were sold outside of the exchange at Tarpon Springs.

Compared with the production in 1923, this indicates a deerease of 13 per cent in total quantity and 3 per cent in total value. When compared with the annual production in the years 1919 to 1923, however, it is apparent that the 1924 production is only slightly below normal in quantity and above normal in value. The production of large wool sponges shows a gratifying increase and that of small wool and yellow sponges is being well maintained, but the production of grass and wire sponges has deereased considerably as compared with previous years. The unusually small yield of grass sponges in 1924 is attributed to the continued high winds, which caused unusual turbidity of inshore waters where these are fished and to some extent to the low prices that prevailed during the season.

The following table gives comparative statistics on the sponges sold at the Tarpon Springs Sponge Exchange from 1919 to 1924:

Sponges sold at the exchange, Tarpon Springs, Fla., 1919 to 1924
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & \multicolumn{2}{|c|}{Total} & Large wool & Small & Yellow & Grass & Wire \\
\hline & Pounds & Value & Pounds & Pounds & Pounds & Pounds & Pounds \\
\hline 1924 & 425, 305 & \$714, 760 & 265, 392 & 58,021 & 81, 420 & 14, 898 & 5,574 \\
\hline 1923 & 490,200 & 734, 391 & 243, 230 & 54,292 & 87,878 & 88,772 & 16,028 \\
\hline 1922 & 526, 885 & 699, 089 & 248, 475 & 70,478 & 115,455 & 84, 892 & 7,585 \\
\hline 1921 & 386, 390 & 540, 093 & 173, 723 & 63, 786 & 70,218 & 65,745 & 12,918 \\
\hline 1920 & 109, 746 & 678, 209 & 176, 722 & 60,902 & 72645 & 92, 880 & 6,594 \\
\hline 1919. & 424, 075 & 707,964 & 205, 462 & 76,309 & 73, 051 & 62, 547 & 6,706 \\
\hline
\end{tabular}

FISHERIES OF THE PACIFIC COAST STATES IN 1922
The statisties of the fisheries of the Pacific Coast States for the ealendar year 1922 were obtained from a eanvass made during 1923. The canvass was conducted in a manner similar to that for the year 1915 in order that the statisties collected might be comparable to those of 1915 and previous canvasses. A summary has been published as Statistical Bulletin No. 647, but the detailed statisties are published herein for the first time.

\section*{COMMON AND SCLENTLFIC NAMES OF FISHES}

Due to the confusion existing among the common names of fishes in the Pacific Coast States, it is difficult to secure a good separation of species in the statistics. The following list indicates the groupings which were necessary and the common names that have been used in the statistical tables to designate the various species of fish and shellfish:



\section*{GENERAL STATISTICS}

The Pacific Coast States, with their valuable salmon, halibut, tuna, and sardine fisheries, constitute one of our most important fishery sections. In 1922 there were 22,270 persons engaged in fishing and fishery industries, 698 vessels fishing and transporting fish, 4,173 power boats, and 1,041 sail and row boats fishing; \(\$ 28,651,490\) invested in vessels, boats, gear, and shore property connected with the fisheries, and a production of \(282,968,421\) pounds of fish, shellfish, and whale products valued at \(\$ 12,983,583\) to the fishermen.

According to the value of products, the salmon fishery, which is prosecuted all the way from Monterey, Calif., to Seattle, Wash., was the most important of the Pacific coast fisheries, producing \(62,685,475\) pounds, valued at \(\$ 3,795,988\) to the fishermen. Chinook salmon was the most important species, yielding \(30,704,884\) pounds, valued at \(\$ 2,283,179\). Next in importance was the halibut fishery, centering at Scattle. The flects sailing out of ports in Washington and Oregon in 1922 landed \(18,706,517\) pounds, valued at \(\$ 1,925,482\). A portion of this catch was landed in British Columbia and Alaskan ports, as is explained in greater detail in the discussion of the fisheries of the State of Washington. Third in importance was the tuna fishery of California, which produced \(36,900,505\) pounds of albacore, tuna, bonito, and skipjack, valued at \(\$ 1,847,567\). The sardine fishery of southern California in 1922 landed \(92,114,542\) pounds, valued at \(\$ 1,381,008\).

The following table gives the statistics, by States, of the persons engaged, vessels, boats, gear, investment, and products of the fisheries of the Pacific Coast States in 1922:

Persons engaged, investment, and products of the fisheries of the Pacific Coast States in 1922


Persons engaged, investment, and products of the fisheries of the Pacific Coast States in 1922-Continued


Note.-In this report all craft of 5 net tons and upward are classed as vessels and all under 5 net tons are classed as boats.

\section*{COMPARISON WITH PREVIOUS STATISTICS}

An examination of statistics available for former years strikingly reveals the changes taking place in the Pacific coast fisheries. With the development during the last decade of her tuna and sardine fisheries, California has forged ahead to leading place among the Pacific Coast States. Between 1908 and 1915 the number of persons engaged increased from 4,129 to 8,452 , with a further increase to 9,173 in 1922. The investment increased successively from \(\$ 1,659,-\) 000 in 1908 to \(\$ 5,824,263\) in 1915 and to \(\$ 13,047,414\) in 1922 . The value of her products increased from \(\$ 1,970,000\) in 1908 to \(\$ 2,506,702\) in 1915 and to \(\$ 6,773,981\) in 1922.

Washington, having passed the peak of development in her salmon and halibut fisheries, took second place in 1922. The number of persons engaged dropped from 14,645 in 1915 to 7,600 in 1922, her investment from \(\$ 14,129,553\) to \(\$ 10,711,500\), and her production from \(\$ 5,320,725\) to \(\$ 4,953,913\).

The decline in Oregon fisheries was less severe. The number of persons engaged was somewhat lower in 1922 than in 1915, the investment slightly higher and the value of products was lower.

The following table gives a summary of the comparative statistics on these States for various years from 1888 to 1922.

Summary of persons engaged, capital invested, and value of products in the fisheries of the Pacific Coast States in certain years from 1888 to 1922
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items and States & 1888 & 1892 & 1895 & 1899 & 1904 & 1908 & 1915 & 1922 \\
\hline \multicolumn{9}{|l|}{PERSONS ENGAGED} \\
\hline Washington. & 3,363 & 4,310, & 6,212 & 9, 911 & 8,829 & 4,954 & 14,645 & 7,600 \\
\hline Oregon & 3, 619 & 4, 332 & 6, 323 & 5,643 & 5,299 & 4,772 & 5, 900 & 5,497 \\
\hline California & 4,684 & 5, 403 & 4,770 & 3, 974 & 5,530 & 4,129 & 8,452 & 9,173 \\
\hline Total & 11,666 & 14,045 & 17,305 & 19,528 & 19,658 & 13,855 & 28,997 & 22, 270 \\
\hline \multicolumn{9}{|l|}{CAPITAL INVESTED} \\
\hline Washington & \$1, 261,078 & \$1, 593, 567 & \$2, 024, 469 & \$6, 601, 243 & \$5, 319, 201 & \$3, 442, 000 & \$14, 129, 553 & \$10,711, 500 \\
\hline Oregon-.-. & 1, 859, 299 & 2, 272,351 & 2, 637, 412 & 3, 497, 643 & .3, 756, 692 & 1,367, 000 & 4, 064, 151 & 4,892, 576 \\
\hline California & 2,081,950 & 2, 526, 746 & 2, 612, 298 & 2, 774, 493 & 3, 764, 056 & 1,659,000 & 5, 824, 263 & 13, 047, 414 \\
\hline Tota & 5,202, 327 & 6,392, 664 & 7,274, 179 & 12, 873, 379 & 12,839,949 & 6, 468,000 & 24, 017, 967 & 28, 651, 490 \\
\hline Washington & 810, 326 & 931, 568 & 1,402,433 & 2, 871,438 & 2,972,633 & 3,513, 000 & 5, 320, 725 & 4,953,913 \\
\hline Oregon & 733, 367 & 872, 405 & 1,284, 136 & 855, 750 & 1, 185, 092 & 1,356, 000 & \(1,479,021\) & 1,255, 689 \\
\hline California & \(2,465,317\) & 3, 022, 991 & 1,786, 479 & 2, 551, 451 & 2, 523,141 & 1,970,000 & 2, 506, 702 & 6, 773, 981 \\
\hline Total & 4,009, 510 & 4,826, 964 & 4,473, 048 & 6, 278, 639 & 6,680, 866 & 6, 839, 000 & 9,306, 448 & 12,983, 583 \\
\hline
\end{tabular}

\section*{CATCH OF INTRODUCED SPECIES}

Several species of fish that have been introduced into waters of the Pacific Coast States from eastern sections of the United States have become well-established and yield an appreciable portion of the commercial catch. In order that the size of this catch may be readily followed through the years, the available statistics are presented in the table following.

Comparative statement of the catch of introduced species in the Pacific Coast States in 1899, 1904, 1908, \({ }^{1} 1915\), and 1922

\({ }^{1}\) The statisties for 1908 in this table are from data published by the Bureau of the Census.

\section*{SALMON CANNING}

In 1922 the salmon-canning industry was the most important of the fish-canning industries of the Pacific Coast States, producing 745,751 cases of salmon, valued at \(\$ 8,716,164\). The chinook was the most important species, representing uearly 53 per cent in value of the entire salmon pack. Following the chinook, in order of importance, were blueback or sockeye, silver or coho, chum or keta, steelhead, and humpback or pink.

The following table gives the statisties for 1922 on this industry. Of the 58 canneries listed 16 were engaged in other branches of the canning or packing trade also. In two of them salmon canning was merely incidental. All of the products in the table were reduced to the basis of forty-cight 1-pound cans to the case.

Salmon-canning industry of the Pacific Coast States in 1922


Comparative statistics, by States, of the number of cases of salmon canned in the Pacific Coast States in certain years, from 1892 to 1922
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline States & Blueback & Chinook & Chum & Humpback & Silver & Steelhead trout & Total \\
\hline 1892-W ashington Oregon. California & \[
\begin{aligned}
& 19,441 \\
& 51,106
\end{aligned}
\] & \[
\begin{array}{r}
134,253 \\
237,684 \\
14,334 \\
\hline
\end{array}
\] & 29,411 & & \[
\begin{array}{r}
28,708 \\
60,293 \\
1,550 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 26,95 \\
& 45,403
\end{aligned}
\] & \[
\begin{array}{r}
238,758 \\
394,486 \\
15,884 \\
\hline
\end{array}
\] \\
\hline Total & 70,547 & 386, 271 & 29,411 & & 90,551 & 72,348 & 649,128 \\
\hline 1893-Washington Oregon California & \[
\begin{aligned}
& \hline 55,237 \\
& 23,074
\end{aligned}
\] & \[
\begin{aligned}
& 129,078 \\
& 176,024 \\
& 26,436
\end{aligned}
\] & \[
\begin{array}{r}
\hline 23,480 \\
9,230
\end{array}
\] & 17,530 & \[
\begin{aligned}
& 31,707 \\
& 62,9913 \\
& 500
\end{aligned}
\] & \[
\begin{aligned}
& \hline 25,663 \\
& 39,563
\end{aligned}
\] & \[
\begin{array}{r}
282,695 \\
310,804 \\
26,936
\end{array}
\] \\
\hline Total & 78,311 & 331, 538 & 32, 710 & 17,530 & 95, 120 & 65, 226 & 620,435 \\
\hline 1894-Washington Oregon. California & \[
\begin{aligned}
& 53,717 \\
& 25,523
\end{aligned}
\] & \[
\begin{array}{r}
156,549 \\
216,507 \\
31,663
\end{array}
\] & \[
\begin{array}{r}
33,952 \\
3,162
\end{array}
\] & 9, 049 & \[
\begin{array}{r}
32,118 \\
100,087 \\
500
\end{array}
\] & \[
\begin{aligned}
& \hline 23,209 \\
& 38,829
\end{aligned}
\] & \[
\begin{array}{r}
308,594 \\
384,108 \\
32,163
\end{array}
\] \\
\hline Total. & 79,240 & 404, 719 & 37, 114 & 9, 049 & 132, 705 & 62, 038 & 724, 865 \\
\hline \[
\begin{aligned}
& \text { 1895- Washington } \\
& \text { Oregon } \\
& \text { California.-. }
\end{aligned}
\] & \[
\begin{aligned}
& 70,304 \\
& 12,854
\end{aligned}
\] & \[
\begin{array}{r}
157,187 \\
316,284 \\
28,635
\end{array}
\] & \[
\begin{aligned}
& 48,686 \\
& 27,027
\end{aligned}
\] & 23, 633 & \[
\begin{array}{r}
81,957 \\
138,981 \\
400 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 18,985 \\
& 30,693
\end{aligned}
\] & \[
\begin{array}{r}
\hline 400,752 \\
525,839 \\
29,035
\end{array}
\] \\
\hline Total. & 83,158 & 502, 106 & 75, 713 & 23,633 & 221, 338 & 49,678 & 955, 626 \\
\hline 1899- Washington
Oregon
California-. & \[
\begin{array}{r}
\hline 503,950 \\
19,665
\end{array}
\] & \[
\begin{array}{r}
\hline 95,147 \\
214,821 \\
31,180
\end{array}
\] & \[
\begin{aligned}
& \hline 42,656 \\
& 18,345
\end{aligned}
\] & 252, 733 & \[
\begin{array}{r}
145,139 \\
78,730
\end{array}
\] & \[
\begin{aligned}
& \hline 2,258 \\
& 9,736
\end{aligned}
\] & \[
\begin{array}{r}
\hline 1,041,883 \\
341,297 \\
31,180
\end{array}
\] \\
\hline Total & 523, 615 & 344, 148 & 61,001 & 252, 733 & 223, 869 & 11,994 & 1, 417, 360 \\
\hline \[
\begin{aligned}
& \text { 1904- Washington } \\
& \text { Oregon } \\
& \text { California- }
\end{aligned}
\] & \[
\begin{array}{|}
\overline{112,911} \\
9,264
\end{array}
\] & \[
\begin{array}{r}
140,695 \\
223,646 \\
17,807
\end{array}
\] & \[
\begin{aligned}
& 94,265 \\
& 15,150
\end{aligned}
\] & & \[
\begin{array}{r}
168,069 \\
65,557
\end{array}
\] & \[
\begin{aligned}
& \hline 3,050 \\
& 6,818
\end{aligned}
\] & \[
\begin{array}{r}
518,990 \\
320,435 \\
17,807
\end{array}
\] \\
\hline Total & 122, 175 & 382.148 & 109,415 & & 233, 626 & 9,868 & 857,232 \\
\hline 1908-Washingt & & & & & & & \\
\hline Oregon. California & & & & & & & \[
\begin{array}{r}
340,396 \\
3,938 \\
\hline
\end{array}
\] \\
\hline Total. & & & ----- & ----- & & & 804,563 \\
\hline \[
\begin{aligned}
& \text { 1915- Washington } \\
& \text { Oregon } \\
& \text { California }
\end{aligned}
\] & \[
\begin{array}{r}
91,720 \\
4,510
\end{array}
\] & \[
\begin{gathered}
178,464 \\
29,765 \\
19,508
\end{gathered}
\] & \[
\begin{gathered}
450,409 \\
40,728
\end{gathered}
\] & 590,378 & \[
\begin{array}{r}
206,508 \\
53,405 \\
3,578
\end{array}
\] & \[
\begin{aligned}
& 10,270 \\
& 18,783
\end{aligned}
\] & \[
\begin{array}{r}
\hline 1,527,749 \\
410,191 \\
23,086
\end{array}
\] \\
\hline Total. & 96, 230 & 490, 737 & 491, 137 & 590,378 & 263,491 & 29,053 & 1,961,026 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 1922- Washingt } \\
\text { Oregon ar } \\
\text { Total }
\end{gathered}
\]} & \(8,2,640\)
13,287 & 119,724
198,013 & 83, 090 & 3,551 & \[
\begin{array}{r}
143,499 \\
69,135
\end{array}
\] & \[
\begin{array}{r}
7,163 \\
18,634
\end{array}
\] & \[
\overline{441,667}
\]
\[
304.084
\] \\
\hline & 97, 927 & 317, 737 & 88,105 & 3, 551 & 212, 634 & 25, 797 & 745, 751 \\
\hline
\end{tabular}

FJSHERY PRODUCTS EXCLUSIVE OF FRESH, FROZEN, AND CANNED FISH
The production of dried, salted, smoked, and miscellaneous products, other than fresh, frozen, and canned fish, in the Pacific Coast States in 1922 amounted to \(63,716,144\) pounds, valued at \(\$ 3,979,043\). Most important of these products was the mild-cured fish, of which \(6,798,470\) pounds, valued at \(\$ 1,515,266\), were produced. This is a small increase in quantity and a large increase in value as compared with 1915 , when \(6,032,727\) pounds, valued at \(\$ 713,527\), were produced. The various species of salmon constituted 97 per cent of the fish cured in this manner, the remainder being shad.

The production of smoked fish, of which kippered salmon was by far the most, important item, amounted to \(2,730,858\) pounds, valued at \(\$ 422,073\). The dried and salted fish products were of minor importance.

Fish scrap and meal, including that from whales, totaled \(37,550,000\) pounds, valued at \(\$ 1,109, \$ 12\), making it the most important byproduct of the fisheries. The production of fish oil amounted to \(1,925,085\) gallons, valued at \(\$ 712,837\). The pronounced growth of

69239-26†-5
the by-products industry may be realized when the production of 1922 is compared with that of 1915 , when only \(6,668,000\) pounds of fish scrap and meal, valued at \(\$ 139,035\), and 266,812 gallons of fish oil, valued at \(\$ 79,103\), were produced.

The following table gives the detailed statistics of the above-mentioned products:

Quantity and value of various fishery products prepared, exclusive of canning, in the Pacific Coast States in 1922
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Metbods and produets & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|l|}{Oregon} & \multicolumn{2}{|l|}{California} & \multicolumn{2}{|l|}{Total} \\
\hline DRIED & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Barracuda & & & & & 65, 000 & \$4, 650 & 65, 000 & \$4, 650 \\
\hline Roekfishes and Spanish mackerel & & & & & 12,000 & & 12,000. & \\
\hline Sardines.- & & & & & 600 & 120 & 600 & 120 \\
\hline Sea bass & & & & & 61,000 & 4, 435 & 61,000 & 4,435 \\
\hline Yellowtail & & & & & 105, 000 & 8, 450 & 105, 000 & 8,450 \\
\hline Total & & & ------- & & 243, 600 & 18,495 & 243, 600 & 18,495 \\
\hline \multicolumn{9}{|l|}{mild-cured} \\
\hline \begin{tabular}{l}
Salmon: \\
Chinook
\end{tabular} & & & 686, 620 & \$223, 327 & & & 686, 620 & 223, 327 \\
\hline Miscellaneous & 4, 059, 750 & \$956, 930 & 250, 000 & 40, 000 & 1,602, 200 & 275, 390 & 5, 911,950 & 1,272, 320 \\
\hline Sbad & & & 72,000 & 6, 300 & 127,900 & 13, 319 & 199,900 & 19,619 \\
\hline Total & 4, 059,750 & 956,930 & 1,008,620 & 269,627 & 1,730,100 & 288, 709 & 6,798, 470 & 1,515,266 \\
\hline \multicolumn{9}{|l|}{salted} \\
\hline Anchovies & & & & & 6,400 & 256 & 6, 400 & 256 \\
\hline Mackerel & & & & & 20, 000 & 1,300 & 20, 000 & 1,300 \\
\hline Sablefish. & 50,000 & 5,000 & & & & & 50, 000 & 5,000 \\
\hline \begin{tabular}{l}
Salmon: \\
Chinook
\end{tabular} & & & 28,850 & 5,710 & & & 28, 850 & \\
\hline Silver & & & 26,500 & 2,730 & & & 26,500 & 2,730 \\
\hline Mixed. & & & 31, 000 & 2, 325 & 32, 600 & 3, 260 & 63, 600 & 5,585 \\
\hline Salmon eggs & & & 300 & & & & 300 & 60 \\
\hline Sardines. & & & & & 381, 700 & 31, 370 & 381, 700 & 31, 370 \\
\hline Sardines (Salacchini) & & & & & 80, 000 & 32, 000 & 80, 000 & 32, 000 \\
\hline Yellowtail......- & & & & & 52, 730 & 5, 873 & 52, 730 & 5,873 \\
\hline Miscellaneous species & & & & & 3,000 & 60 & 3,000 & 60 \\
\hline Total & 50,000 & 5, 000 & 86, 650 & 10,825 & 576, 430 & 74,119 & 713,080 & 89,944 \\
\hline \multicolumn{9}{|l|}{Smored} \\
\hline Bonito & & & & & 24, 000 & 1,200 & 24, 000 & 1,200 \\
\hline Cod (kippered) & 176, 457 & 28, 562 & & & & & 176,457 & 28,562 \\
\hline Merring & 89, 009 & 7,431 & & & & & 89, 009 & 7,431 \\
\hline Sablefish & & & & & 98, 760 & 7, 550 & 98,760 & 7,550 \\
\hline Salmon: & & & & & & & 60, 868 & 1, 690 \\
\hline Mixed & 145, 746 & 21,804 & 7,154 & 2,146 & 1,086 & 184 & 153,986 & 24, 134 \\
\hline Mixed (kippered) & 2, 114, 978 & 328, 946 & & & & & 2, 114,978 & 328, 946 \\
\hline Sardincs & & & & & 12, 800 & 2, 560 & 12, 800 & 2,560 \\
\hline Total & 2, 526,190 & 386, 743 & 68,022 & 23, 836 & 136, 646 & 11,494 & 2, 730, 858 & 422,073 \\
\hline MISCELLANEOUS & & & & & & & & \\
\hline Fish scrap and meal dried. & 17,382, 000 & 551,770 & 200, 000 & 5,000 & 19, 968, 000 & 553, 042 & 37, 550,000 & 1,109,812 \\
\hline & & & & & & & & \\
\hline Sardine & & & 97,500 & 4,420 & 3, 216,442 & 145, 868 & 23, 216, 442 & 145, 868 \\
\hline Tuna. & & & & & 645, 742 & 23, 617 & \({ }^{3} 645,742\) & 23, 617 \\
\hline Sperm & 260, 625 & 12, 163 & & & 37,875 & 2, 525 & \({ }^{1} 298,500\) & 14,688 \\
\hline Whale & 1,762, 500 & 94, 000 & & & 6,862, 500 & 366, 000 & 5 8,625, 000 & 460,000 \\
\hline Miseellaneous & 1,306, 762 & 53, 736 & & & 248, 190 & 10, 508 & \({ }^{1} 1,554,952\) & 64, 244 \\
\hline Total & 3, 329, 887 & 159, 899 & 97, 500 & 4, 420 & 11, 010, 749 & 548, 518 & 14, 438, 136 & 712, 837 \\
\hline Other products \({ }^{8}\) & & -------- & ------- & ----- & 1.242,000 & 110,616 & 1,242,000 & 110,616 \\
\hline Grand total & 27, 347, 827 & 2,060,342 & 1,460, 792 & 313, 708 & 3.1, 907, 525 & , 504,993 & \(63,716,144\) & \(\overline{3,979,043}\) \\
\hline
\end{tabular}

\section*{113,000 gallons. \\ \({ }^{2} 428,859\) gallons. \\ 3 86,099 gallons.}

\section*{439,800 gallons. \\ \({ }^{5} 1,150,000\) gallons.}

6 207,327 gallons.
\(71,925,085\) gallons.
\({ }^{8}\) Includes agar-agar, whalebones (skeletons), whale tails, and abalone jewelry.

Note.-The statistics of by-products for Washington in the above table have been revised in accordance with reports received since the publication of Statistical Bulletin No. 570, entitled "Canned Fishery Products and By-products of the United States and Alaska, 1922," resulting in a considerable increase in the quantity and value of fish serap and meal, dried, and miscellaneous oil.

\section*{FISHERIES OF WASHINGTON}

The fisheries of Washington in 1922 employed 7,600 persons, 404 vessels, 1,158 power boats, and 248 sail and row boats. The investment in vessels, boats, gear, and shore property amounted to \(\$ 10,711,500\), and the products of the fisheries amounted to \(69,469,805\) pounds, valued at \(\$ 4,953,913\) to the fishermen.

The various species of salmon were the most important of Washington's fishes, yielding \(37,355,667\) pounds, valued at \(\$ 2,179,112\). Chinook salmon ranked highest in value, yielding \(10,969,802\) pounds, valued at \(\$ 946,422\), and silver salmon ranked highest in quantity, yielding \(14,816,994\) pounds, valued at \(\$ 546,495\). It is estimated that about 83 per cent of the salmon catch was canned, 10 per cent mild cured, salted, and smoked, and the remainder sold fresh or frozen.

Next to salmon in importance is the halibut. The fleet of halibut vessels registered and sailing from ports in Washington caught 18,467,422 pounds, valued at \(\$ 1,904,915\). Of this catch \(9,011,333\) pounds, valued at \(\$ 993,622\), were landed in the State of Washington, \(1,348,-\) 213 pounds, valued at \(\$ 108,054\), in Alaska, and \(7,936,700\) pounds. valued at \(\$ 786,528\), in British Columbia. Practically all of the halibut is sold fresh or frozen and is shipped to many distant points in the United States. The following table gives statistics showing the landings of halibut in Washington, Alaska, and British Columbia by vessels registered in the State of Washington:

Landings of halibut, by counties, by vessels registered in the State of Washington
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Counties & \multicolumn{2}{|l|}{Alaska} & \multicolumn{2}{|l|}{British Columbia} & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|c|}{Total} \\
\hline Clallam & Pounds & Value & Pounds & Value & Pounds 27,500 & \begin{tabular}{l}
Value \\
\(\$ 2,704\)
\end{tabular} & Pounds
\[
27,500
\] & \begin{tabular}{l}
Tralue \\
\$2, 704
\end{tabular} \\
\hline Island & & & & & 2,600 & 22, 256 & 27,500 & \$2, 256 \\
\hline King & 1, 210, 366 & \$95, 182 & 6, 194, 900 & \$610,508 & 7,811,306 & 870,788 & 15, 216, 572 & 1, 576,478 \\
\hline Kitsap & 9,747 & 576 & 233, 500 & 22,952 & 440,800 & 47, 150 & 684, 047 & -70,678 \\
\hline Pacific & & & & & 3, 000 & 308 & 3, 000 & 308 \\
\hline Pierce. & 123, 100 & 12, 296 & 1,508, 300 & 153, 068 & 720,450 & 71,962 & 2,356, 850 & 237, 326 \\
\hline Skagit & & & & & 5,677 & 454 & 5,677 & 454 \\
\hline Total. & 1,348, 213 & 108, 054 & 7,936,700 & 786,528 & 9,011,333 & 993,622 & 18,296, 246 & 1,888, 204 \\
\hline
\end{tabular}

The cod fishery, next in importance to the halibut fishery, was for the most part carried on by a few large vessels sailing from ports in the State of Washington to the cod banks in Alaskan waters, where they fished during the summer months, bringing back their cargoes of salted cod at the end of the season. In this year \(1,175,875\) pounds of salted cod, valued at \(\$ 86,395\), were reported, which is estimated to be the equivalent of about \(2,940,000\) pounds of fresh cod. In addition to the salted cod there were 72,741 pounds of fresh cod, valued at \(\$ 2,182\). This makes a total of about \(3,000,000\) pounds on the fresh basis, as compared with \(13,745,710\) pounds on the fresh basis reported for 1915.

The production of other fish in 1922 was 4,408,733 pounds, valued at \(\$ 158,772\), of which sablefish, steelhead trout, smelts, and carp were most important.

The production of shellfish amounted to \(4,836,242\) pounds, valued at \(\$ 486,194\). The item contributing most to the value of the shellfish was the oyster, of which 442,981 pounds, valued at \(\$ 310,053\), were produced. The razor clam, largely used in canning, amounted to \(2,636,351\) pounds, valued at \(\$ 106,905\) to the fishermen. The catch of other shellfish, including hard clams, crabs, shrimp, and octopus, amounted to \(1,756,910\) pounds, valued at \(\$ 69,236\).

The products of the whale fishery, which is prosecuted by vessels operating from shore stations, amounted to \(3,153,125\) pounds, valued at \(\$ 136,343\), and consisted largely of oil, scrap, and meal. In 1915 whale products amounting to \(3,933,125\) pounds, valued at \(\$ 141,441\), were reported.

The counties bordering on Puget Sound support the most important fisheries, producing 49,755,483 pounds, in 1922, valued at \(\$ 3,810,646\). Practically all of the halibut, cod, sablefish, and other marine fishes caught by fishermen of these counties are taken on the banks of the North Pacific Ocean, from the State of Washington north to Alaska. The salmon is fished to a great extent in Puget Sound.

King County, with the important port of Seattle, is by far the most important in the Puget Sound district as well as in the State. In 1922 there were 1,733 persons engaged, an investment of \(\$ 3,346,812\), and a production of \(24,825,865\) pounds of fishery products, valued at \(\$ 2,066,694\). Based on the value of products, this amounts to over two-fifths of the State's total production and is six times as great as the production of any other county. Halibut was the most important fishery resource, yielding \(15,216,793\) pounds, valued at \(\$ 1,576,499\); the various species of salmon were next in importance, yielding \(7,676,472\) pounds, valued at \(\$ 376,502\); while cod, sablefish, and other less important marine products made up the balance of fishery production in this county.

Whatcom was second to King County in the value of fishery products, yielding \(7,228,672\) pounds, valued at \(\$ 486,871\), practically all of which consisted of salmon, although quantities of herring, smelts, steelhead trout, and crabs were caught also. Pierce County, with its important port of Tacoma, produced \(7,629,580\) pounds of fishery products, valued at \(\$ 479,882\). Salmon and halibut were the most valuable of her fishes, though other marine fish, smelts, hard clams, and shrimps were caught in limited quantities also. Thurston County's production of \(33 \pm, 953\) pounds, valued at \(\$ 210,288\), consisted alnost exclusively of orsters, with a few fish, shrimp, and hard clams making up the remainder of the catch.

Kitsap County produced \(3,077,109\) pounds of products, valued at \(\$ 168,795\), the major portion of which consisted of salmon and halibut. A few marine fish, smelts, and crabs made up the remainder. Skagit County produced \(2,943,424\) pounds, valued at \(\$ 144,452\). Salmon was the most important product, although there was a considerable quantity of cod, other fish, and crabs. Island County produced principally salmon, its entire production amounting to \(1,835,836\) pounds, valued at \(\$ 113,146\). Each of the remaining counties bordering Puget Sound produced less than \(\$ 100,000\) worth of fishery products. San Juan and Snohomish Counties produced chiefly salmon, although the latter included in its production a goodly quantity of crabs, while Mason County's production consisted almost exclusively of oysters.

Clallam County, with its seaboard on Puget Sound and the Pacific Ocean, produced \(2,910,070\) pounds of fishery products, valued at \(\$ 172,276\). Most of the catch consisted of salmon, with a limited quantity of halibut, crabs, and hard clams.

The seacoast counties of Washington produced \(12,936,092\) pounds of fishery products, valued at \(\$ 732,098\), which constitute about onesixth of the production of the State. Grays Harbor County was most important, producing \(8,782,595\) pounds, valued at \(\$ 405,170\). About half of this catch was salmon, one-third was whale products, and one-sixth razor clams, with a limited amount of other fish and crabs. Pacific County was accredited with the production of \(3,772,374\) pounds, valued at \(\$ 316,951\), about two-thirds of which was salmon, one-sixth oysters, one-tenth razor clams, and the remainder steelhead trout, sturgeon, and crabs. Jefferson County produced 381,123 pounds, valued at \(\$ 9,977\), consisting chiefly of salmon, hard clams, and razor clams.

The counties bordering on the Columbia River produced \(3,652,926\) pounds, valued at \(\$ 228,726\), which was approximately 4 per cent of the State's production. Salmon, steelhead trout, a few sturgeon, and smelts constituted the bulk of this production. Wahkiakun County was the leading Columbia River county, with a production of \(1,072,131\) pounds, valued at \(\$ 101,749\).

Other counties in the interior of Washington produced approximately \(\$ 10,000\) worth of fishery products, consisting mostly of carp and salmon.

The following tables give in detail the statistics of the fisheries of Washington in 1922.

Persons engaged, investment, and products of the fisheries of Washington in 1922, by counties


Persons engaged, investment, and products of the fisheries of Washington in 1922, by counties-Continued


Persons engaged, investment, and products of the fisheries of Washington in 1922, by counties-Continued


Persons engaged, investment, and products of the fisheries of Washington in 1922, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{San Juan} & \multicolumn{2}{|l|}{Skagit} & \multicolumn{2}{|l|}{Skamania} & \multicolumn{2}{|l|}{Snohomish} & \multicolumn{2}{|l|}{Thurston} \\
\hline PERSONS ENGAGED & \multirow[t]{5}{*}{\[
\begin{array}{r}
\text { Number } \\
4 \\
6 \\
40 \\
60
\end{array}
\]} & \multirow[t]{5}{*}{Value} & Number & \multirow[t]{2}{*}{Value} & \multirow[t]{2}{*}{Number} & Value & Number & Value & Number & Value \\
\hline \multicolumn{7}{|l|}{} & & & & \\
\hline On vessels transport-ing- & & &  & & & & 14 & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
In shore or boat fisheries. \\
Shoresmen
\end{tabular}} & & & 177 & & 18 & & 41 & & 53 & \\
\hline & & & 145 & & & & 306 & & 51 & \\
\hline Tot & 110 & & 426 & & 20 & & 431 & & 109 & \\
\hline \multicolumn{11}{|l|}{investment} \\
\hline \multicolumn{11}{|l|}{} \\
\hline Tonnage & 14 & & 121 & & & & 198 & 5, \(50-1\) & 11 & ------75 \\
\hline Vessels fishing, sail & & & 1 & 16, \({ }^{2,900}\) & & & & 5,500 & & 250 \\
\hline Tonnage -.-- & & & 413 & & & & & & & \\
\hline Outfit-- & & & & 12, 500 & & & & & & \\
\hline Vessels transporting, gasoline & & 12,600 & 14 & 40,500 & & \$1, 500 & & 16,800 & & 2,800 \\
\hline Tonnage. & 54 & & 168 & & & & 58 & , & 17 & 650 \\
\hline \multicolumn{11}{|l|}{Vessels transporting,} \\
\hline \multicolumn{11}{|l|}{} \\
\hline Outfit.-.-------------
Power boats & & & & & & & & & & \\
\hline  & 2 & & 16 & 655 & 11 & \({ }_{5} 5\) & & 150 & 5 & 250 \\
\hline \multicolumn{11}{|l|}{A pparatus, vessel fisheries:} \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multicolumn{11}{|l|}{} \\
\hline Length, in yards & & & & & & & 250 & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline Beam trawls. & & & 1 & 500 & & & & & & 50 \\
\hline \multicolumn{11}{|l|}{} \\
\hline & & 45 & 8 & 190 & & & 200 & 600 & & \\
\hline \multicolumn{11}{|l|}{Apparatus, shore fish--------------
eries:} \\
\hline \multicolumn{11}{|l|}{Length, in yards -- 255} \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & \\
\hline Drag bag nets & & & & 900 & & & & 100 & & 1,000 \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll|l}
\begin{tabular}{l} 
Reef nets-1----.----- \\
Tongs, forks, hocs,
\end{tabular} & 3 & 1,400
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multicolumn{11}{|l|}{} \\
\hline Total.--- & & 146, 783 & & 499, 795 & & 9,140 & & 432, 984 & & 95, 211 \\
\hline Cod: \({ }^{\text {PRODUCTS }}\) & Pounds & Value & Pounds & & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Fresh. Salted & 5,844 & \$205 & \[
\begin{array}{r}
1,369 \\
76,000
\end{array}
\] & \[
\begin{gathered}
\$ 42 \\
30,000
\end{gathered}
\] & & & 3, 935 & \$138 & & \\
\hline Dolly Varden trout & & & & & & & & 48 & & \\
\hline Flounders. & & & 135 & 3 & & & 66, 095 & 1,977 & & \\
\hline Grayfish & & & 250 & & & & & & & \\
\hline Halibut. & 3,409 & 273 & 6, 047 & 484 & & & & & & \\
\hline Herring & 1,075 & 11 & 4,000 & 40 & & & 5,980 & 60 & & \\
\hline "Lingcod & 773 & 15 & 2,609
1,100 & 52
138 & & & & 261 & 320 & \$16 \\
\hline Rockfishes & 8,496 & 408 & & & & & & 28 & 320 & 16 \\
\hline Salmon: & & & & & & & & & & \\
\hline Blueback or sockeye & 81, 109 & 8,759 & 112,420 & 12, 319 & & \$1, 252 & 15,729 & 1,738 & & \\
\hline Chinook & 262, 740 & 21, 019 & 607, 660 & 48, 612 & 17,480 & - 2, 086 & 58, 340 & 4,667 & & \\
\hline Humpback & 22, 697 & & - 41,848 & & & 4 & \({ }^{3} 186\) & & & \\
\hline Silver. & 246, 329 & 9,416 & 827, 140 & 31,098 & 1,428 & 8 & 344, 441 & 13, 012 & & \\
\hline Sea bass, white, or squeteague & 100 & & & & & & 415 & & & \\
\hline
\end{tabular}

Persons engaged, investment, and products of the fisheries of Washington in 1922, by counties-Continued


\footnotetext{
: Includes Asotin, Garfield, Grant, Okanogan, Walla Walla, and Whitman Counties.
}

Persons engaged, investment, and products of the fisheries of Washington in 1922, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Wahkiakum} & \multicolumn{2}{|l|}{Whatcom} & \multicolumn{2}{|l|}{Other counties \({ }^{1}\)} & \multicolumn{2}{|l|}{Total} \\
\hline INVESTMENT-continued & & & & & & & & \\
\hline A pparatus, shore fisheries-Con. & Number & Value & Number & Value & Number & Value & Number & Volue \\
\hline Drag bag nets. & & & 2 & 400 & & & 62 & 6,810 \\
\hline Wheels...- & & & & & & & 2 & 5,000 \\
\hline Beam trawls & & & & & & & & 2,200 \\
\hline Reef nets. & & & & & & & & 1,400 \\
\hline Wiers & & & & 800 & & & & 800 \\
\hline Tongs, forks, hoes, ete & & & & & & & & 2, 238 \\
\hline Shore and accessory property & & 341, 154 & & 1,895,349 & & & & 5, 388, 633 \\
\hline Cash capital-....----------- & & 51, 000 & & 125,000 & & & & 422, 775 \\
\hline Total & & 590, 027 & & 2,556,873 & & 6,615 & & 10,711,500 \\
\hline PRODUCTS & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Carp & & & & & 160, 020 & \$5,600 & 375, 160 & \$12, 054 \\
\hline Cod: & & & & & & & & \\
\hline \begin{tabular}{l}
Fresh \\
Salted
\end{tabular} & & & & & & & \[
\begin{array}{r}
72,741 \\
1,175,875
\end{array}
\] & \[
\begin{array}{r}
2,182 \\
86.395
\end{array}
\] \\
\hline Dolly Varden trout & & & & & & & 300 & 48 \\
\hline Flounders. & & & & & & & 85, 211 & 2, 454 \\
\hline Grayfish & 4.366 & \$15 & & & & & 6,359 & \\
\hline Halibut & & & & & & & 18, 467,422 & 1, 904, 915 \\
\hline Herring & & & 101, 897 & \$1, 019 & & & 260.338 & 2,605 \\
\hline "Lingcod & & & & & & & 236, 019 & 4,654 \\
\hline Mackerel & & & & & & & 1,360 & \\
\hline Perch. & & & & & & & 50,927 & 2,616 \\
\hline Rockfishes & & & & & & & 51,726 & 2,351 \\
\hline Sablefish. & & & & & & & 1, 021, 700 & 42, 866 \\
\hline Salmon: & & & & & & & & \\
\hline Blueback or sockeye & 55, 976 & 7.416 & \(2,100,073\) & 230, 449 & 19, 103 & 2,477 & 5, 104, 380 & 543, 743 \\
\hline Chinook & 633,638
\(35,68 i\) & 76.046 & 1, 836, 897 & 146, 94.215 & 2,040 & & \(10,969,802\)
\(6,319,808\) & 946,422 \\
\hline Humpback & & & 1, 76, 175 & 2, 239 & & & 144, 883 & 5,262 \\
\hline Silver-.--- & 163, 470 & 5,724 & 1,853, 515 & 70,609 & 15, 077 & 528 & 14, 816,994 & 546, 495 \\
\hline Sea bass, white, or squet & & & & & & & 596 & \\
\hline Shad. & 4,927 & 50 & & & & & 48, 039 & 769 \\
\hline Smelt & 1,100 & 13 & 5,332 & 618 & & & 1,392,416 & 31,488 \\
\hline Sole & & & & & & & 130, 886 & 3,931 \\
\hline Steclhead trout & 92,633 & 6,481 & 12, 708 & 1,017 & 11, 464 & 802 & 475, 687 & 34, 075 \\
\hline Sturgeon & 79, 170 & 5, 642 & 150, 200 & 8, 259 & 7,345 & 514 & 267,782
981,440 & 18,670
50,309 \\
\hline Shrimp & & & & & & & 62, 000 & -7,439 \\
\hline Clams: & & & & & & & & \\
\hline & & & & & & & 693,245 & 11,424 \\
\hline Razor. & & & & & & & 2, 636, 351 & 106,905 \\
\hline Oysters: & & & & & & & & \\
\hline Eastern, market & & & & & & & 45, 710 & 24,416 \\
\hline Native, market & & & & & & & 377,678 & 284, 047 \\
\hline Native, seed & & & & & & & 19,593 & 1,590 \\
\hline Sperm oil & & & & & & & 10.225
260,625 & 12.163 \\
\hline Whale oil & & & & & & & 1, 760,500 & 12.163 \\
\hline Other whale products & & & & & & & 1, 130, 000 & 30, 180 \\
\hline Total & 1,072, 131 & 101, 749 & 7, 228, 672 & 486, 871 & 215, 234 & 10, 167 & 69, 469, 805 & \[
4,953,913
\] \\
\hline
\end{tabular}

\section*{VESSEL FISHERIES}

In 1922 Washington's fisheries employed 313 fishing craft of 5 tons net and over, as measured by the United States Customs Service. This included 3 steamers, totaling 195 net tons, 307 gasoline vessels, totaling 5,159 net tons, and 3 sailing vessels, totaling 976 net tons, engaged in the fisheries of Washington, but does not include transporting vessels engaged principally in the carrying of fish. The total yield of fishing vessels was \(36,013,631\) pounds, valued at \(\$ 2,657,390\).

Lines, catching practically all of the halibut and cod and a considerable quantity of salmon, were the most important apparatus employed by fishing vessels, catching altogether \(23,625,811\) pounds
of fish, valued at \(\$ 2,190,465\). Purse seines follow lines in importance, yielding \(8,905,735\) pounds of fish, valued at \(\$ 315,108\), practically all of which were salmon. The whale fishery, located in Grays Harbor County, yielded \(3,153,125\) pounds of whale products, valued at \(\$ 136,343\). Haul seines, gill nets, otter trawls, drag bag nets, beam trawls, hoop nets, and pots, which constitute the remainder of apparatus employed ou vessels, yielded 283,960 pounds, valued at \(\$ 15,474\).

The following table shows, by counties, species, and apparatus, the yield of the vessel fisheries of Washington in 1922:

Yield of the vessel fisheries of Washington in 1922, by counties, species, and apparatus
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Clallam} & \multicolumn{2}{|l|}{Grays Harbor} & \multicolumn{2}{|l|}{Island} & \multicolumn{2}{|l|}{King} \\
\hline Purse seines: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Cod. & & & & & & & 224 & \$7 \\
\hline Flounders & & & & & & & 706 & 14 \\
\hline Perch. & & & & & & & 2, 858 & 143 \\
\hline \begin{tabular}{l}
Salmon- \\
Blueback or sockeye
\end{tabular} & & & & & & & & \\
\hline Blueback or sockeye. Chinook & & & & & & & 108,628
10,560 & 11,903 \\
\hline Chum & & & & & 15,576 & \$1,246 & 1, 225, 846 & 29,374 \\
\hline Humpback & & & & & & & 2,571 & 94 \\
\hline Silver...-- & & & & & 33,013 & 1,221 & 759, 004 & 29, 110 \\
\hline Sole & & & & & & & 681 & 20 \\
\hline Steelhead trout & & & & & & & 84 & 6 \\
\hline Total. & & & & & 48, 589 & 2, 467 & 2, 111, 162 & 71,517 \\
\hline \multicolumn{9}{|l|}{Haul seines:} \\
\hline Herring & & & & & & & 12,745 & 128 \\
\hline Perch. & & & & & & & 530 & 27 \\
\hline Smelt & & & & & & & 812 & 65 \\
\hline Total. & & & & & & & 14, 127 & 221 \\
\hline \multicolumn{9}{|l|}{Lines:} \\
\hline \begin{tabular}{l}
Cod- \\
Fresh
\end{tabular} & & & & & & & 5,300 & 59 \\
\hline Salted. & & & & & & & 409, 875 & 56,395 \\
\hline Halibut & 27,500 & \$2,704 & & & 2,600 & 256 & 15, 216, 572 & 1,576, 478 \\
\hline "Lingeod" Rockfishes & & & & & & & 211,650
39,600 & 4,243
1,785 \\
\hline fishes & & & & & & & 1,002, 100 & 42,184 \\
\hline Salmon- & & & & & & & & \\
\hline Chinook Silver ... & \[
\begin{aligned}
& 311,320 \\
& 372,750
\end{aligned}
\] & 24, 906 & 18,140
21,582 & \[
\begin{array}{r}
\$ 907 \\
719
\end{array}
\] & 146,600
85,260 & 11,728
3,185 & 164,025
192,155 & 13,115
7,295 \\
\hline Sturgeon. & & & & & & & 2,750 & 330 \\
\hline Total & 711, 570 & 41, 400 & 39, 722 & 1,626 & 234, 460 & 15, 169 & 17, 244,027 & 1,701,884 \\
\hline \multicolumn{9}{|l|}{Drag bag nets:} \\
\hline Flounders. & & & & & & & [147 & \\
\hline Herring- & & & & & & & 58,927
1,360 & 589
95 \\
\hline Perch & & & & & & & 1,465 & 23 \\
\hline Smelt. & & & & & 247 & 20 & 746 & 60 \\
\hline Total. & & & & & 247 & 20 & 61, 645 & 770 \\
\hline Hoop nets and pots: Crabs & & & 20,430 & 1,124 & & & ---7--7-1 & \\
\hline \multicolumn{9}{|l|}{Harpoons:} \\
\hline Sperm oil & & & & & & & & \\
\hline Other whale products & & & \[
\begin{aligned}
& 1,762,500 \\
& 1,130,000
\end{aligned}
\] & \[
\begin{aligned}
& 94,000 \\
& 30,180
\end{aligned}
\] & & & & \\
\hline Total & & & 3, 153, 125 & 136, 343 & & & & \\
\hline Grand total & 711, 570 & 41,400 & 3, 213, 277 & 139, 093 & 283, 296 & 17,656 & 19, 430, 961 & 1, 774, 392 \\
\hline
\end{tabular}

Yield of the vessel fisheries of Washington in 1922, by counties, species, and appa-ratus-Continued


Yield of the vessel fisheries of Washington in 1922, by counties, species, and ap-paratus-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Skagit} & \multicolumn{2}{|l|}{Snohomish} & \multicolumn{2}{|l|}{Thurston} & \multicolumn{2}{|l|}{Whatcom} & \multicolumn{2}{|l|}{Total} \\
\hline Purse seines: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Cod. & & & & & & & & & 224 & \$7 \\
\hline Flounders & & & 1,656 & \$50 & & & & & 2,362 & 64 \\
\hline Perch & & & & 17 & & & & & 3,193 & 160 \\
\hline Salmon- & & & & & & & & & & \\
\hline Blueback or sockeye. & 31, 101 & \$3,435 & & & & & 34, 429 & \$3, 801 & 443, 252 & 48,756 \\
\hline Chinook & 4,040 & 323 & 37, 400 & 2, 992 & & & 5,720 & 452 & 107, 660 & 8, 867 \\
\hline Chum & 211, 066 & 4,996 & 360, 540 & 8, 534 & & & 618, 779 & 14, 626 & 4, 250, 218 & 102, 250 \\
\hline Sumpback & -676 & 27 & & & & & 744 & , 25 & 23,550 & , 863 \\
\hline Silver- & 108, 079 & 4,113 & 310, 571 & 11, 723 & & & 495, 185 & 17, 772 & 4, 074, 361 & 154, 104 \\
\hline Sole Steclhead trout & & & & & & & 24 & 2 & 681
234 & 20
17 \\
\hline Total & 354, 962 & 12, 894 & 710, 502 & 23,316 & & & 1,154,881 & 36, 678 & 8,905,735 & 315, 108 \\
\hline \multicolumn{11}{|l|}{Haul seines:} \\
\hline Cod..... & & & & & & & & & 524 & 18 \\
\hline Grayfish & & & & & & & & & 34 & 1 \\
\hline Herring & 4,000 & 40 & & & & & & & 16, 745 & 168 \\
\hline Perch & & & & & & & & & 1,619 & 81 \\
\hline Smelt & & & & & & & & & \({ }_{153} 12\) & 65 \\
\hline Sole.. & & & & & & & & & 153 & \\
\hline Total & 4,000 & 40 & --- & --- & & ...-- & & & 19, 960 & 340 \\
\hline \multicolumn{11}{|l|}{Gill mets:} \\
\hline Salmon-
Chinook & & & 260 & 21 & & & & & & \\
\hline Chum. & & & 8, 131 & 184 & & & & & 8,131 & 184 \\
\hline Silver & & & 348 & 13 & & & & & 348 & 13 \\
\hline Total & & & 8,739 & 218 & & & & & 8,739 & 218 \\
\hline \multicolumn{11}{|l|}{Lines:} \\
\hline Cod- & & & & & & & & & & \\
\hline \(\stackrel{F}{\text { Fresh }}\) Salted & 766, \({ }^{519} 0\) & \[
30,000
\] & & & & & & & \[
\begin{array}{r}
20,500 \\
1,175,875
\end{array}
\] & \[
\begin{array}{r}
368 \\
86,395
\end{array}
\] \\
\hline Flounders & 135 & 3 & & & & & & & 1,995 & \\
\hline Grayfish & 250 & 1 & & & & & & & \(18,296,246\) & \\
\hline "Lingut & 5, 677 & 454 & & & & & & & \[
\begin{array}{r}
18,296,246 \\
233,211
\end{array}
\] & \(1,888,204\)
4,598 \\
\hline Rock fishes & & & & & & & & & 40,600 & 1, 805 \\
\hline Sablefish & & & & & & & & & 1,021, 700 & 42, 866 \\
\hline Salmon- & & & & & & & & & 1,418, 145 & 112, 939 \\
\hline Silver & & & & & & & & & 1, 413, 805 & 52, 894 \\
\hline Skates... & & & & & & & & & 734 & 3 \\
\hline Sturgeon & & & & & & & & & 2,750 & 330 \\
\hline Total. & 773, 342 & 30,485 & & & & & & & 23, 625,811 & 2, 190, 465 \\
\hline \multicolumn{11}{|l|}{Otter trawls: \(=\sim=\sim=\sim=\sim=\sim=0\)} \\
\hline \begin{tabular}{l}
Cod \\
Flounders
\end{tabular} & & & 3,800
59,398 & 133
1,782 & & & & & 3,800
59,398 & 133
1,782 \\
\hline Rock fishes. & & & 400 & - 28 & & & & & , 400 & 28 \\
\hline Skates.- & & & 500 & 10 & & & & & 500 & 10 \\
\hline Total & & & 64, 098 & 1,953 & & & ----- & & 64, 098 & 1,953 \\
\hline \multicolumn{11}{|l|}{Drag-bag nets: \(=\sim=\sim=\)} \\
\hline \begin{tabular}{l}
Flounders \\
Herring
\end{tabular} & & & & & & & & & \[
\begin{array}{r}
147 \\
60,043
\end{array}
\] & 3
600 \\
\hline Mackerel & & & & & & & & & 1,360 & 95 \\
\hline Perch & & & & & & & & & 465 & 23 \\
\hline Smelt & & & & & 4,615 & \$369 & & & 5, 704 & 457 \\
\hline Total & & & & & 4,615 & 369 & & & 67, 719 & 1,178 \\
\hline Beam trawls: Shrimp_ & 10, 811 & 1,297 & & & 6,822 & 819 & & & 38, 774 & 4,652 \\
\hline Hoop nets and pots: Crabs. & 18,620 & 1,024 & 33, 900 & 1,865 & & & 29, 740 & 1,636 & 129, 670 & 7,133 \\
\hline \multicolumn{11}{|l|}{Harpoons:} \\
\hline \multicolumn{11}{|l|}{} \\
\hline Other whale prod-
ucts & & & & & & & & & 1,130,000 & 30,180 \\
\hline Total & & & & & & & & & 3, 153, 125 & 136, 343 \\
\hline Grand total. & 1,161,735 & 45, 740 & 817, 239 & , 27, 352 & 11, 437 & 1,188 & 1,184, 621 & 38, 314 & 36, 013, 631 & 2, 657, 390 \\
\hline
\end{tabular}

\section*{SHORE AND BOAT FISHERIES}

Included in the statistics on shore and boat fisheries is the catch by all fishing craft of less than 5 tons net, as measured by the United States Customs Service, as well as all fish caught without the use of boats. In 1922 there were 1,158 power boats and 248 rowboats employed in the fisheries of Washington. The yield of boat and shore fisheries amounted to \(33,456,174\) pounds, valued at \(\$ 2,296,523\), which is slightly less than the yield of the vessel fisheries.

The largest catch, \(14,340,781\) pounds, valued at \(\$ 957,450\), was made by pound nets. The various species of salmon and steelhead trout constituted by far the greater portion of this catch, although cod, flounders, halibut, lingcod, sea bass, shad, skates, sturgeon, and octopus were also taken in small quantities.

Next to the pound nets, in value of yield, were the forks, tongs, etc., used in the clam and oyster fishery. The yield of these implements totaled \(3,772,577\) pounds, valued at \(\$ 428,382\), of which \(3,329,596\) pounds, valued at \(\$ 118,329\), were clams and 442,981 pounds, valued at \(\$ 310,053\), were oysters, both native and eastern.

Exceeding the yield of forks, tongs, etc., in amount but not value, was the yield of the gill nets, amounting to \(5,312,069\) pounds, valued at \(\$ 403,334\), of which the salmons and steelhead trout were the greater part. Of the other fish caught by gill nets, sturgeon, shad, and smelts were most important.

The catch by lines exceeded that by gill nets in amount but not in value, totaling \(6,724,127\) pounds, valued at \(\$ 382,632\), most of which was salmon. Among the other fish caught by lines halibut was most important, yielding 170,985 pounds, valued at \(\$ 16,694\).

The catch by haul seines amounted to 922,954 pounds, valued at \(\$ 48,997\). Of this amount 208,864 pounds, valued at \(\$ 19,023\), consisted of salmon and steelhead trout; 159,419 pounds, valued at \(\$ 13,574\), were smelts; and 375,160 pounds, valued at \(\$ 12,054\), were carp. Other species of lesser importance were also caught by haul seines.

Drag bag nets appeared in the statistics for the first time in 1922. This net may be described as a haul seine with a bag in the center, the bag being usually 40 feet long and the wings or leads from 120 to 900 feet long. One end is usually staked down, while the other is fastened to the boat, which makes a circle around and then hauls in. Sometimes each end of the net is fastened to a boat to make a haul. When used in this manner, this net greatly resembles a long-haul seine or sweep net recently developed in the North Carolina fisheries. The catch by drag bag nets in the shore and boat fisheries in 1922 amounted to \(1,303,788\) pounds, valued at \(\$ 19,735\), most of which was smelts. The drag bag net was used in the ressel fishery also, where its products consisted largely of herring, as shown in the previous section.

Hoop nets and pots yielded 851,770 pounds of crabs, valued at \(\$ 43,176\). The yield by fish wheels, reef nets, beam trawls, and wiers, none of which contributed products valued in excess of \(\$ 7,000\), makes up the remainder of the catch in the shore fisheries.

The following tables show, by counties and species, the catch of each kind of apparatus used in the shore and boat fisheries.

Yield of the shore fisheries of Washington in 1922, by counties, species, and apparalus
BY HAUL SEINES

\({ }^{1}\) Includes Garfield, Grant, Whitman, and Asotin Counties.

Yield of the shore fisheries of Washington in 1922, by counties, species, and apparatusContinued

BY GILL NETS


Yield of the shore fisheries of Washington in 1922, by counties, species, and apparatusContinued
BY POUND NETS


BY HOOP NETS AND POTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Spccies} & \multicolumn{2}{|r|}{Clallam} & \multicolumn{2}{|l|}{Grays Harbor} & \multicolumn{2}{|r|}{Island} & \multicolumn{2}{|r|}{King} & \multicolumn{2}{|l|}{Kitsap} \\
\hline & Pour 39, 2 & \[
\begin{array}{l|l}
\text { nds } & \text { Value } \\
217 & \$ 2,192
\end{array}
\] & \[
\begin{array}{c|c}
\text { ce } & \text { Pounds } \\
2 & 91,043
\end{array}
\] & \[
\begin{array}{c|c}
d s & \text { Value } \\
13 & \$ 5,008
\end{array}
\] & Pouna
\[
18,23
\] & \[
\begin{array}{c|c}
d_{s} & \text { Valu } \\
30 & \$ 997
\end{array}
\] & \[
\begin{gathered}
\text { Pounds } \\
40,150
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 2,208
\end{gathered}
\] & \[
\begin{gathered}
\text { Pounds } \\
80
\end{gathered}
\] & \[
\begin{array}{r}
\text { Value } \\
\$ 5
\end{array}
\] \\
\hline Specics & \multicolumn{2}{|r|}{Pacific} & \multicolumn{2}{|l|}{Skagit} & \multicolumn{2}{|l|}{Snohomish} & \multicolumn{2}{|l|}{Whatcom} & \multicolumn{2}{|l|}{Total} \\
\hline Crabs & \[
\left\lvert\, \begin{gathered}
P o u n d . s \\
226,500
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { Value } \\
\$ 12,459
\end{gathered}
\] & \begin{tabular}{l}
Pounds \\
230, 460
\end{tabular} & \[
\begin{gathered}
\text { Value } \\
\$ 8,975
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pounds } \\
& 85,600
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 4,709
\end{gathered}
\] & \begin{tabular}{l}
Pounds \\
120, 460
\end{tabular} & \[
\begin{array}{|}
\text { Value } \\
\$ 6,623
\end{array}
\] & Pounds
851,770 & \[
\begin{gathered}
\text { Value } \\
\$ 43,176
\end{gathered}
\] \\
\hline
\end{tabular}

Yieid of the shore fisheries of Washington in 1922, by counties, species, and apparatusContinued

BY LINES


\footnotetext{
\({ }^{1}\) Includes Okanogan, Walla Walla, and Asotin Counties.
}

Yield of the shore fisheries of Washington in 1922, by counties, species, and apparatusContinued

BY DRAG BAG NETS


BY FISH WHEELS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|c|}{Pacific} & \multicolumn{2}{|l|}{Klickitat} & \multicolumn{2}{|l|}{Total} \\
\hline Salmon: & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Blueback or sockeye & 40, 334 & \$5, 243 & & & 40,334 & \$5, 243 \\
\hline Chinook & 6,020 & 822 & & & 6,020 & 822 \\
\hline Shad & & & 6,090 & \$213 & 6, 090 & 213 \\
\hline Steelhead trout. & 1, 491 & 104 & 4,000 & 280 & 5, 491 & 384 \\
\hline Sturgeon. & 840 & 59 & & & 840 & 59 \\
\hline Total & 52,878 & 6, 270 & 10,090 & 493 & 62, 968 & 6, 763 \\
\hline
\end{tabular}

BY BEAM TRAWLS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Jefferson} & \multicolumn{2}{|l|}{King} & \multicolumn{2}{|l|}{Kitsap} & \multicolumn{2}{|l|}{Pierce} & \multicolumn{2}{|l|}{Total} \\
\hline \multirow[b]{3}{*}{Sole.. Shrimp} & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline & 460 & \$14 & 26, 500 & \$795 & & & 9,350 & \$281 & 36, 310 & \$1,090 \\
\hline & & & & & 18,484 & \$2, 218 & 3,712 & 445 & 22, 196 & 2, 663 \\
\hline Total & 460 & 14 & 26, 500 & 795 & 18,484 & 2,218 & 13, 062 & 726 & 58,506 & 3,753 \\
\hline
\end{tabular}

Yield of the shore fisheries of Washington in 1922, by counties, species, and apparatusContinued

BY REEF NETS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{San Juan} & Species & \multicolumn{2}{|l|}{San Juan} \\
\hline \multirow[t]{2}{*}{Salmon: \({ }_{\text {Blueback }}\) or sockeye} & \multirow[t]{4}{*}{\begin{tabular}{l}
Pounds 4, 767 \\
2, 300
\end{tabular}} & \multirow[t]{4}{*}{Value \(\$ 527\)
13 54} & \multirow[t]{3}{*}{Salmon-Continued. Humpback Silver} & \multirow[t]{3}{*}{Pounds
\[
\begin{array}{r}
47 \\
25,360
\end{array}
\]} & \multirow[t]{3}{*}{Value
\[
\begin{array}{r}
\$ 2 \\
965
\end{array}
\]} \\
\hline & & & & & \\
\hline Chinook-.. & & & & & \\
\hline Chum. & & & Total & 32, 634 & 1,561 \\
\hline
\end{tabular}

BY WEIRS
\begin{tabular}{|c|c|c|c|}
\hline & Species & \multicolumn{2}{|l|}{Whatcom} \\
\hline Herring & & \[
\begin{gathered}
\text { Pounds } \\
74,000
\end{gathered}
\] & Value \(\$ 740\) \\
\hline
\end{tabular}

BY FORKS, TONGS, ETC.


\section*{CANNING INDUSTRY}

In 1920 there were 55 canneries in Washington, valued at \$3,378,579, carrying cash capital of \(\$ 354,600\), employing 2,000 persons, and paying \(\$ 809,997\) in wages. Their total products were valued at \(\$ 5,524,433\). Salmon was by far the most important fish canned, the total production being 441,667 cases, valued at \(\$ 4,823,174\). Puget Sound was the most important district, producing \(\$ 2,306,447\) worth of products. The Columbia River was a close second, with a production amounting to \(\$ 2,035,335\), and the value of canned salmon on the Washington coast amounted to only \(\$ 481,392\). Next in importance to salmon was the production of canned razor clams, totaling
\(\$ 640,875\) in value. Following razor clams were hard clams, whole, minced, and juice, with a production valued at \(\$ 55,447\). Small amounts of shad, shad roe, sturgeon, and crabs were canned in Washington also.

The following table gives in detail the statistics concerning the canning industries in Washington in 1923, by districts:

Canning industry of Washington in 1922, by districts


The most important wholesale fish dealers of the State are located at Seattle, where a large business is done in the shipping of fresh and frozen halibut, salmon, and a few other kinds of fish to eastern points in the United States. In a recent market survey it was shown that 63 per cent of the quantity of fish received at Seattle was reshipped by rail, largely to points east of the Rocky Mountains.

In 1922 there were 22 establishments, employing 248 persons, with an investment of \(\$ 573,295\) and paying wages amounting to \(\$ 332,961\), engaged in the wholesale fresh and frozen fish trade in the State of Washington. In addition to these there were 12 establishments primarily engaged in the fish canning or curing business, which also handled fresh fish.

Wholesale fish trade of Washington in 1922
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Locality & County & Estab-lishments & Persons engaged & Buildings & \[
\begin{aligned}
& \text { Acces- } \\
& \text { sory } \\
& \text { property }
\end{aligned}
\] & Cash capital & Wages \\
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Seattle \\
Olympia \\
Other localities
\end{tabular}} & \multirow{3}{*}{King Thurston} & \multirow[t]{3}{*}{Number
\[
\begin{array}{r}
14 \\
3 \\
5
\end{array}
\]} & \multirow[t]{3}{*}{Number 161 51
36} & \multirow[t]{3}{*}{Value
\(\$ 351,524\)
31,411
63,000} & Value
\(\$ 48,355\) & \$30, 500 & \\
\hline & & & & & 17, 606 & 11, 000 & \(\$ 246,551\)
55,494 \\
\hline & & & & & 12, 999 & 6, 300 & 30,916 \\
\hline Total & & 22 & 248 & 445, 935 & 78, 960 & 48,400 & 332, 961 \\
\hline
\end{tabular}

NoTe. - In addition to the above, 12 firms, shown elsewhere as preparing various fishery products, also handled fresh fish.

\section*{FISlIERIES OF OREGON}

The fisheries of Oregon in 1922 employed 5,497 persons, 32 vessels, 1,718 power boats, and 501 rowboats and scows. The investment in vessels, boats, gear, and shore property amounted to \(\$ 4,892,576\), and the products of the fisheries amounted to \(22,371,764\) pounds, valued at \(\$ 1,255,689\).

The various species of salmon were by far the most important of Oregon's commercial fishes, yielding \(18,093,228\) pounds, valued at \(\$ 999,367\). Steelhead trout contributed \(1,820,734\) pounds, valued at \(\$ 136,802\); halibut, 239,095 pounds, valued at \(\$ 20,567\); sturgeon, 216,765 pounds, valued at \(\$ 13,257\); shad, 578,003 pounds, valued at \(\$ 11,332\); sablefish, smelts, "lingcod," rockfishes, sole, and other fishes, 303,294 pounds, valued at \(\$ 5,571\). The various kinds of shellfish yielded \(1,120,645\) pounds, valued at \(\$ 68,793\).

Clatsop County, situated at the mouth of the Columbia River, by reason of her important salmon fisheries, took first place among the counties of Oregon in the value of her fishery products, yielding \(9,510,246\) pounds, valued at \(\$ 506,429\). Salmon and steelhead trout constituted over 85 per cent of the catch. In the production of sturgeon Clatsop County was also foremost, her catch being 97,860 pounds, valued at \(\$ 5,878\). Shad yielded 284,894 pounds, valued at \(\$ 2,910\), and smelts 2,350 pounds, valued at \(\$ 24\). The shellfish yield in the county was 242,276 pounds, valued at \(\$ 15,495\). Clatsop County was the sole producer of razor clams in Oregon, the catch amounting to 163,110 pounds, valued at \(\$ 7,290\). This county ranks third in production of crabs, with a yield of 70,496 pounds, valued at \(\$ 7,049\). Crawfish made up the remainder of the shellfish catch.

Other counties along the Columbia River produced 5,070,410 pounds of fishery products, valued at \(\$ 384,130\). Practically all of this production consisted of salmon and steelhead trout, with a small quantity of sturgeon. Multnomah County, in which the city of Portland is located, was foremost in production. In addition to the salmons, steelhead trout, and sturgeon, which constituted the bulk of her fishery production, her fishermen caught halibut, " lingcod," rockfishes, sablefish, other fish, and shellfish.

The coastal counties, exclusive of Clatsop County, produced \(7,558,783\) pounds, valued at \(\$ 348,356\). As in the other sections of Oregon, the salmon and steelhead trout yielded the bulk of fishery products. Tillamook County showed the greatest production, followed in order by Lincoln, Douglas, Coos, Curry, and Lane Counties. Lincoln County produced the greatest variety of fishes, included in her catch being halibut, "lingcod," rockfishes, sablefish, smelt, and sole, as well as the predominant salmons. Her shell fisheries were also of some importance, yielding 241,942 pounds, valued at \(\$ 19,298\), and consisted of soft clams, oysters, crawfish, and crabs. In the production of the last named, Lincoln County was first in the State. The interior counties of Oregon produced 232,325 pounds, valued at \(\$ 16,774\), consisting largely of salmon and fresh-water crawfish.

The following table gives in detail the statistics of the fisheries of Oregon in 1922:

Persons engaged, investment, and products of the fisheries of Oregon in 1922, by counties


Persons engaged, investment, and products of the fisheries of Oregon in 1922, by counties-Continued


Persons engaged, investment, and products of the fisheries of Oregon in 1922, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|c|}{Lane} & \multicolumn{2}{|l|}{Lincoln} & \multicolumn{2}{|l|}{Multnomah} & \multicolumn{2}{|l|}{Tillamook} \\
\hline PERSONS ENGAGED & Number & Value & Number & Value & Number & Value & Number & Value \\
\hline On vessels transporting & & & & & 16 & & & \\
\hline In shore fisheries... & 78 & & 166 & & 252 & & 275 & \\
\hline Shoresmen.- & & & 41 & & 165 & & 41 & \\
\hline Total & 87 & & 211 & & 435 & & 316 & \\
\hline Vessels, fishing, gasoline.-.- & & & & \$8,000 & 3 & \$10,000 & & \\
\hline Tonnage. & & & & & 38 & & & \\
\hline Outfit.- & & & & 3,000 & & 7, 500 & & \\
\hline \begin{tabular}{l}
Vessels, transporting, gaso- \\
line \(\qquad\)
\end{tabular} & & & & & 1 & 2,000 & & \\
\hline Tonnage & & & & & 10 & & & \\
\hline Outfit.----
Power boats & 47 & \$7,050 & 39 & 7, 200 & 121 & 975
40,550 & 99 & \$28, 300 \\
\hline Rowboats and seows & 3 & & 115 & 3, 515 & 47 & 2, 350 & 103 & 2,415 \\
\hline \begin{tabular}{l}
Apparatus, vessel fisheries: \\
Lines.
\end{tabular} & & & & 450 & & 900 & & \\
\hline Apparatus, shore fisheries:
Haul seines.....---- & & & & & & & & \\
\hline Haul seines. Length in yards & 300 & 500 & 150 & 250 & 4,500 & 7,600 & & \\
\hline Gill nets.-.-......- & 109 & 15, 060 & 213 & 15,054 & 133 & 29, 667 & 474 & 40,900 \\
\hline Length in yards & 10,390 & & 20,545 & & 14, 355 & & 56, 160 & \\
\hline Pound nets. & & & & & 14 & 47,600 & & \\
\hline Wheop nets & 30 & 90 & 575 & 858 & 15 & & 280 & 1,120 \\
\hline Dip nets. & & & & & 12 & 40, 49 & & \\
\hline Pots and traps & 30 & 180 & 40 & 40 & 305 & 458 & 48 & 192 \\
\hline Lines.-- & & 100 & & 70 & & 760 & & 80 \\
\hline Tongs, hoes, etc- & 1 & 2 & 25 & 241 & & & 8 & 14 \\
\hline shore and accessory property & & 10, 500 & & 41,441 & & 366, 700 & & 100,456 \\
\hline Cash eapital & & 800 & & 7, 500 & & 21,700 & & 15, 400 \\
\hline Total & & 34,412 & & 87,619 & & 585, 554 & ---------- & 188,877 \\
\hline PRODUCIS & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Halibut & & & 164,433 & \$13, 155 & 74, 662 & \$7, 412 & & \\
\hline "Lingcod" & & & 17, 536 & 351 & 3, 662 & 162 & & \\
\hline Rockfishes & & & 146 & & 2,124 & 85 & & \\
\hline Sablefish & & & 30,687 & 1,227 & 26,421 & 1,301 & & \\
\hline Salmon: & & & & & & & & \\
\hline Blueback or sockeye Chinook & & \$3, 299 & 499, 292 & 21,442 & \[
\begin{array}{r}
336,251 \\
1,049,642
\end{array}
\] & 41,279
83,753 & 1,035, 005 & \$54, 390 \\
\hline Chum & 5,890 & 117 & 15, 725 & 158 & 19,103 & -91 & 21, 178 & \({ }^{1} 212\) \\
\hline Silver & 299, 733 & 5,894 & 784, 818 & 18, 195 & 104, 125 & 3,098 & 551, 166 & 15, 272 \\
\hline Shad & 3,218 & 121 & 10 & 1 & 38,753 & 770 & 1,000 & 40 \\
\hline Smelt. & & & & & 215, 000 & 2,150 & & \\
\hline Sole & & & 25 & & & & & \\
\hline Steelhead trout & 35, 721 & 4,280 & 97,722 & 7,607 & 240, 658 & & \(\begin{array}{r}155,071 \\ 3, \\ \hline 39\end{array}\) & \[
\begin{array}{r}
15,50 \\
150
\end{array}
\] \\
\hline Sturgeon- & 936 & 18 & 304 & 12 & 62,423
5,343 & 3,991 \({ }_{267}\) & 3, 739 & \[
150
\] \\
\hline Clams: & & & & & & & & \\
\hline Soft-- & 1,000 & 100 & 13,734 & 1,371 & & & 39, 100 & 3,910 \\
\hline Oysters: Native, market-
Private.-. & & & & & & & & \\
\hline Private-.--- & & & 50,001 & 5,000 & & & & \\
\hline Crabs & & 432 & 24,997 & 10,327 & 3, 806 & 200 & 145, 780 & 7,023 \\
\hline Crawfish & 12, & & 152, 750 & 100 & 24,857 & 3, 314 & & \\
\hline Total & 424,975 & 14, 261 & 1,852,665 & 81,452 & 2, 196, 830 & 161, 922 & 1,952,039 & 96, 500 \\
\hline
\end{tabular}

Persons engaged, investment, and products of the fisheries of Oregon in 1922, by counties-Continued


In the vessel fishery of Oregon in 1922 only four vessels were actually engaged in fishing. Their catch, made up entirely of ocean fish caught by lines, amounted to 325,039 pounds, valued at \(\$ 23,964\), of which 239,095 pounds, valued at \(\$ 20,567\), were halibut, The remainder of the catch was made up of sablefish, "lingcod," and other fishes incidentally caught in the halibut fishery.

The following table gives the detailed statistics of the vessel fishery of Oregon in 1922.

Yield of the vessel fisheries of Oregon in 1922, by counties, species, and apparatus
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|c|}{Lincoln} & \multicolumn{2}{|l|}{Multnomah} & \multicolumn{2}{|c|}{Total} \\
\hline Lines: & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Halibut. & 164,433 & \$13, 155 & 74,662 & \$7,412 & 239,095 & \$20, 567 \\
\hline "Lingcod" & 17,536 & - 351 & 3,662 & 162 & 21,198 & 513 \\
\hline Rockfishes & 146 & 3 & 2,124 & 85 & 2,270 & 88 \\
\hline Sablefish. & 30,687 & 1,227 & 26, 421 & 1,301 & 57, 108 & 2,528 \\
\hline Soles .-... & 25 & 1 & & & & 1 \\
\hline Other fish & & & 5,343 & 267 & 5,343 & 267 \\
\hline Total & 212, 827 & 14,737 & 112, 212 & 9, 227 & 325, 039 & 23,964 \\
\hline
\end{tabular}

SHORE AND BOAT FISHERIES
The shore and boat fisheries of Oregon in 1922 greatly exceeded the vessel fishery in importance, employing 1,718 power boats under five tons net and 501 rowboats and sailboats, manned by 3,999 fishermen and yielding \(22,046,725\) pounds, valued at \(\$ 1,231,725\).

Gill nets yielded \(14,437,131\) pounds, valued at \(\$ 612,561\), which was over half of the State's entire production. Haul seines produced \(3,912,443\) pounds, valued at \(\$ 360,673\); fish wheels, \(1,242,303\) pounds, valued at \(\$ 125,592\); pound nets, 471,335 pounds, valued at \(\$ 31,416\); and lines, 529,514 pounds, valued at \(\$ 24,426\). All of this gear was used principally in the salmon fisheries, and although a limited amount of sturgeon and shad also were caught the great bulk of the catch was in all cases salmon and steelhead trout. A small catch of silver salmon, stcelhead trout, and smelts was made by dip nets, the entire amount being 333,354 pounds, valued at \(\$ 8,264\).

Crabs and crawfish were taken by hoop nets, traps, and pots, the entire catcl amounting to 799,737 pounds, valued at \(\$ 45,725\); clams and oysters were taken by means of tongs, forks, etc., the entire catch amounting to 320,908 pounds, valued at \(\$ 23,068\).

The following tables show, by gear, the yield of the shore and boat fisheries of Oregon in 1922.

Yield in the shore fisheries of Oregon in 1922, by counties, species, and apparatus
BY HAUL SEINES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{3}{|c|}{Clatsop} & \multicolumn{3}{|c|}{Columbia} & \multicolumn{4}{|c|}{Coos} & \multicolumn{2}{|l|}{Lane} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Salmon: \\
Blueback or sockeye Chinook \\
Silver
\end{tabular}} & \multirow[t]{6}{*}{\[
\begin{array}{r}
\text { Pounds } \\
145,708 \\
1,890,832 \\
16,891 \\
254,378 \\
500,351 \\
4,784
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{\[
\begin{array}{r}
\text { Volue } \\
\$ 17,538 \\
226,900 \\
6,636 \\
2,544 \\
35,023 \\
287
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{\[
\begin{array}{r}
\text { Pounds } \\
26,105 \\
109,007 \\
57,202 \\
54,149 \\
3,267
\end{array}
\]}} & \multirow[t]{6}{*}{\[
\begin{array}{r}
\text { Value } \\
\$ 3,132 \\
12,126 \\
3 \\
372 \\
3,778 \\
227
\end{array}
\]} & \multicolumn{2}{|l|}{Pounds} & \multicolumn{2}{|l|}{} & Pounds & \multirow[t]{2}{*}{Value} \\
\hline & & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
212,470 \\
51,180
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
\$ 16997 \\
1,023
\end{array}
\]}} & \multirow[t]{2}{*}{\[
\begin{array}{r}
1,523 \\
5,947
\end{array}
\]} & \\
\hline & & & & & & & & & & & & \(\$ 76\)
119 \\
\hline Shad.. & & & & & & & & & & & & \\
\hline Steelhead trout & & & & & & & & & & & & \\
\hline Sturgeon. & & & & & & & & & & & 936 & 18 \\
\hline Total & 2, 961, 944 & \multicolumn{2}{|l|}{288, 928} & \multicolumn{2}{|l|}{249, 812} & 19,838 & \multicolumn{2}{|l|}{263, 650} & \multicolumn{2}{|l|}{18,020} & 8,406 & 213 \\
\hline Species & \multicolumn{2}{|l|}{Lincoln} & \multicolumn{3}{|l|}{Multnomah} & \multicolumn{4}{|c|}{Wasco} & \multicolumn{3}{|c|}{Total} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Salmon: \\
Blueback or sockeye Chinook Silver
\end{tabular}} & \multirow[t]{3}{*}{Pounds} & \multirow[t]{3}{*}{Value} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{array}{r}
\text { Pounds } \\
149 \\
105,735 \\
22,490
\end{array}
\]}} & \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { Value } \\
\$ 19 \\
8.540
\end{array}
\]} & \multicolumn{2}{|l|}{Pounds} & \multicolumn{2}{|l|}{Value} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Pounds \\
184, 482
\end{tabular}}} & Value \\
\hline & & & & & & \multicolumn{2}{|l|}{12, 520} & \multicolumn{2}{|l|}{\$1,628} & & & \multirow[t]{2}{*}{\$277, 181} \\
\hline & & & & & & & & 12,54 & & \multicolumn{2}{|l|}{\[
2,424,087
\]} & \\
\hline & \multirow[t]{2}{*}{2,000} & \$60 & & & \multirow[t]{2}{*}{718} & \multicolumn{2}{|l|}{57, 560} & \multicolumn{2}{|l|}{2, 014} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{305,150
311,580}} & \multirow[t]{2}{*}{10,573
3,116} \\
\hline \multirow[t]{2}{*}{Steelhead trout} & & & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\[
\begin{array}{r}
55,964 \\
301
\end{array}
\]}} & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{66,892}} & \multicolumn{2}{|l|}{\multirow{3}{*}{4,682}} & & & \\
\hline & 500 & 25 & & & \multirow[t]{2}{*}{\[
\begin{array}{r}
3,425 \\
21
\end{array}
\]} & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
r 11, \\
677,856 \\
9,288
\end{array}
\]}} & \multirow[t]{2}{*}{\[
46, \frac{933}{553}
\]} \\
\hline Sturgeon & & & & & & & & & & & & \\
\hline Total & 2,500 & 85 & \multicolumn{2}{|l|}{184, 639} & 12, 723 & \multicolumn{2}{|l|}{241, 492} & \multicolumn{2}{|l|}{20,866} & \multicolumn{2}{|l|}{3, 912, 443} & 360,673 \\
\hline
\end{tabular}

\section*{BY GILL NETS}


Yield in the shore fisheries of Oregon in 1922, by counties, species, and appa-ratus-Continued

BY POUND. NETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|c|}{Clatsop} & \multicolumn{2}{|l|}{Columbia} & \multicolumn{2}{|l|}{Hood River} & \multicolumn{2}{|l|}{Multnomah} & \multicolumn{2}{|l|}{Total} \\
\hline Salmon: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Blueback or sockeye.- & 1,608 & & & \$321 & 1,580 & \$179 & 12, 624 & \$1,515 & 18,482 & \$2, 208 \\
\hline Chinook & 93, 929 & 11, 272 & 10,199 & 865 & 7,982 & 758 & 61, 943 & 3,717 & 174, 053 & 16,612 \\
\hline Chum & 4,728 & & 2,705 & 27 & & & 4,088 & 40 & 11,521 & 114 \\
\hline Silver & 99,728 & 3,982 & 5,728 & 215 & & & 37,938 & 1,138 & 143, 394 & 5,335 \\
\hline Shad.. & 8,487 & & & & & & 3,303 & 83 & 11,790 & 169 \\
\hline Steelhead trout & 61,953 & 4,336 & 8,642 & 516 & 884 & 62 & 37, 422 & 1,871 & 108, 901 & 6,785 \\
\hline Sturgeon. & 1,508 & 90 & 189 & 11 & 290 & 20 & 1,207 & 72 & 3, 194 & 193 \\
\hline Total & 271,941 & 20,006 & 30,133 & 1,955 & 10,736 & 1,019 & 158,525 & 8,436 & 471,335 & 31,416 \\
\hline
\end{tabular}

BY WHEELS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|r|}{Clatsop} & \multicolumn{2}{|l|}{Multnomah} & \multicolumn{2}{|c|}{Wasco} & \multicolumn{2}{|l|}{Total} \\
\hline Salmon: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Blucback or sockeye. & 12,309 & \$1,477 & 211,306 & \$25, 880 & 154, 421 & \$20, 075 & 378, 036 & \$47, 432 \\
\hline Chinook & 9,426 & 1,131 & 247, 396 & 20,641 & 346, 688 & 41,603 & 603, 510 & 63,375 \\
\hline Chum & & & 3,287 & & & & 3,287 & 33 \\
\hline Silver & & & 3, 112 & 93 & 30,880 & 1,081 & 33,992 & 1,174 \\
\hline Shad. & 2,377 & 24 & 15, 940 & 209 & & & 18,317 & 233 \\
\hline Steelhead trout & 3,271 & 229 & 82,358 & 4,774 & 105, 889 & 7,412 & 191, 518 & 12,415 \\
\hline Sturgeon & 1,242 & 75 & 8,009 & 548 & 4,392 & 307 & 13,643 & 930 \\
\hline Total. & 28,625 & 2,936 & 571, 408 & 52,178 & 642, 270 & 70,478 & 1,242,303 & 125, 592 \\
\hline
\end{tabular}

BY DIP NETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|c|}{Clatsop} & \multicolumn{2}{|l|}{Multnomah} & \multicolumn{2}{|l|}{Wasco} & \multicolumn{2}{|c|}{Total} \\
\hline Salmon: Silver & Pounds & Value & Pounds & Value & Pounds
58,004 & \[
\begin{gathered}
\text { Value } \\
\$ 2,030
\end{gathered}
\] & \[
\begin{gathered}
\text { Pounds } \\
58,004
\end{gathered}
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 2,030
\end{aligned}
\] \\
\hline Smelt------- & 2,350 & \$24 & 215,000 & \$2,150 & & & 217,350 & 2,174 \\
\hline Steelhead trout. & & & & & 58,000 & 4, 060 & 58, 000 & 4,060 \\
\hline Total & 2,350 & 24 & 215,000 & 2,150 & 116,004 & 6,090 & 333,354 & 8,264 \\
\hline
\end{tabular}

BY LINES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Clackamas} & \multicolumn{2}{|r|}{Clatsop} & \multicolumn{2}{|r|}{Coos} & \multicolumn{2}{|r|}{Douglas} & \multicolumn{2}{|l|}{Lane} \\
\hline \begin{tabular}{l}
Salmon: \\
Chinook
\end{tabular} & Pounds & Value & Pounds
\[
52,992
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 6,359
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pound } \\
& 1,926
\end{aligned}
\] & \[
\begin{array}{l|l}
\text { ts } & \text { Valu } \\
6 & \$ 154
\end{array}
\] & \[
\begin{array}{c|c}
\text { ce } & \text { Pound } \\
4 & 2,750
\end{array}
\] &  & Pounds & Value \\
\hline Silver Steelhead trout & 4, 653 & \$140 & 357, 647
119 & 14, 1704 & 11, 88 & \(5^{-138}\) & 11, 36 & 1--5 & 36,027- & \$720 \\
\hline Sturgeon. & & & & & & & & 0 & & \\
\hline Total. & 4,653 & 140 & 410,758 & 20,671 & 13, 81 & 1392 & 14, 18 & 1 277 & 36, 027 & 720 \\
\hline Species & \multicolumn{2}{|l|}{Liucoln} & \multicolumn{2}{|l|}{Multnomah} & \multicolumn{2}{|l|}{Tillamook} & \multicolumn{2}{|l|}{Wasco} & \multicolumn{2}{|l|}{Total} \\
\hline \begin{tabular}{l}
Salmon: \\
Chinook
\end{tabular} & Pounds & Value & \[
\begin{gathered}
\text { Pounds } \\
2,601
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 159
\end{gathered}
\] & Pounds 84 & \[
\left|\begin{array}{c}
\text { Value } \\
\$ 5
\end{array}\right|
\] & Pounds & & \[
\begin{gathered}
\text { Pounds } \\
60,353
\end{gathered}
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 6,597
\end{aligned}
\] \\
\hline Chum. Silver. & & \$30 & 28, 824 & 865 & & & \(\begin{array}{r}83 \\ 578 \\ \hline\end{array}\) & \$1 & 452, 679 & \\
\hline Steelhead trou & 1,01 & & & & 1, 357 & 136 & 128 & 9 & 1,604 & -153 \\
\hline Sturgeon.- & & & 7, 191 & 457 & & & 7,534 & 527 & 14, 795 & 986 \\
\hline Total & 1,014 & 30 & 38,616 & 1,481 & 2, 131 & 158 & 8,323 & 557 & 529, 514 & 24, 426 \\
\hline
\end{tabular}

Yield in the shore fisheries of Oregon in 1922, by counties, species, and appa-ratus-Continued

BY HOOP NETS, TRAPS, AND POTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Clackamas} & \multicolumn{2}{|l|}{Clatsop} & \multicolumn{2}{|l|}{Columbia} & \multicolumn{2}{|l|}{Coos} \\
\hline \multirow[b]{2}{*}{Crabs.... Crawfish} & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline & 1,500 & \$200 & 70,496
8,670 & \$1,156 & 11, 100 & \$1,480 & & +1, 50 \\
\hline Total. & 1,500 & 200 & 79, 166 & 8, 205 & 11, 100 & 1,480 & 49,460 & 1,682 \\
\hline Species & \multicolumn{2}{|l|}{Douglas} & \multicolumn{2}{|l|}{Lane} & \multicolumn{2}{|l|}{Lincoln} & \multicolumn{2}{|l|}{Multnomah} \\
\hline \multirow[t]{2}{*}{Crabs Crawfish Total} & \[
\begin{aligned}
& \text { Pounds } \\
& 296,340
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 9,836
\end{gathered}
\] & Pounds
12,960 & \[
\begin{array}{r}
\text { Value } \\
\$ 432
\end{array}
\] & \[
\begin{gathered}
\text { Pounds } \\
152,460 \\
750
\end{gathered}
\] & \[
\begin{array}{r}
\text { Value } \\
\$ 10,327 \\
100
\end{array}
\] & Pounds
\[
\begin{array}{r}
3,806 \\
24,857
\end{array}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 200 \\
3,314
\end{gathered}
\] \\
\hline & 296, 340 & 9, 836 & 12, 960 & 432 & 153,210 & 10,427 & 28,663 & 3,514 \\
\hline Species & \multicolumn{2}{|l|}{Tillamook} & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|l|}{Yamhill} & \multicolumn{2}{|l|}{Total} \\
\hline \multirow[b]{2}{*}{Crabs Crawfish} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pounds \\
145, 780
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Value } \\
\$ 7,023
\end{gathered}
\]} & Pounds & Value & Pounds & Value & \begin{tabular}{l}
Pounds \\
730, 802
\end{tabular} & Value \$36, 499 \\
\hline & & & 20,808 & \$2,776 & 750 & \$150 & 68, 935 & 9, 226 \\
\hline Total & 145, 780 & 7,023 & 20, 808 & 2,776 & 750 & 150 & 799, 737 & 45, 725 \\
\hline
\end{tabular}

BY TONGS, FORKS, ETC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Clatsop} & \multicolumn{2}{|l|}{Coos} & \multicolumn{2}{|l|}{Lane} & \multicolumn{2}{|l|}{Lincoln} & \multicolumn{2}{|l|}{Tillamook} & \multicolumn{2}{|l|}{Total} \\
\hline Clams: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Razor. & 163, 110 & \$7, 290 & & & & & & & & & 163, 110 & \$7, 290 \\
\hline Soft. & & & 28,966 & \$2, 897 & 1,000 & \$100 & 13,734 & \$1,371 & 39, 100 & \$3, 910 & 82, 800 & 8,278 \\
\hline Oysters, native, & & & & & & & & & & & & \\
\hline Private & & & & & & & 50,001 & 5,000 & & & 50, 001 & 5,000 \\
\hline Public. & & & & & & & 24, 997 & 2,500 & & & 24, 997 & 2,500 \\
\hline Total. & 163, 110 & 7,290 & 28, 966 & 2,897 & 1,000 & 100 & 88, 732 & 8,871 & 39, 100 & 3,910 & 320, 908 & 23,068 \\
\hline
\end{tabular}

\section*{CANNING INDUSTRY}

In 1922 there were 29 canneries in Oregon valued at \(\$ 1,563,337\), with cash capital of \(\$ 109,900\), employing 897 persons and paying \(\$ 569,994\) in wages. Canned products produced were valued at \(\$ 3,761,015\), consisting largely of salmon, amounting to \(\$ 3,696,680\) in value, most of which was produced in the Columbia River district. A limited amount of canned shad and shad roe was also produced in the Columbia River district, while the pack of razor clams, valued at \(\$ 54,074\), was produced on the coast.

The following table gives in detail the statistics of the canning industry in Oregon in 1922, by districts:

Canning industry of Oregon in 1922, by districts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Columbia River} & \multicolumn{2}{|l|}{Oregon coast} & \multicolumn{2}{|r|}{Total} \\
\hline Establishments & \[
\begin{array}{r}
\text { Number } \\
16
\end{array}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 1,100,396
\end{gathered}
\] & \[
\begin{array}{r}
\text { Number } \\
13
\end{array}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 462,941
\end{gathered}
\] & Number 29 & Value
\[
\$ 1,563,337
\] \\
\hline Cash capital & & 70,400 & & & & \\
\hline Persons engaged & 674 & & 223 & & 897 & \\
\hline Wages paid...-. & & 432, 229 & & 137, 765 & & 569,994 \\
\hline PRODUCTS & & & & & & \\
\hline Salmon: & & & & & & \\
\hline Blueback or sockeye- & Cases & Value & Cases & Value & Cases & Value \\
\hline 1-pound tall.......... & & \(\$ 4,473\)
231,755 & & & 315
12,972 & \(\$ 4,473\)
231,755 \\
\hline Chinook-- & & & & & & 231,755 \\
\hline 2 -pound tall & 74 & 740 & & & 74 & 740 \\
\hline 1 -pound tall & 5, 987 & 43, 895 & 51 & \$413 & 6,038 & 44,308 \\
\hline 1 -pound flat & 46, 256 & 581, 709 & 8, 693 & 91, 826 & 54, 949 & 673, 535 \\
\hline 1 -pound oval & 3, 138 & 59, 953 & 16,414 & 147, 726 & 19,552 & 207, 679 \\
\hline \(1 / 2\)-pound flat & 91,794 & 1,538, 872 & 13,699 & 234, 180 & 105, 493 & 1,773, 052 \\
\hline Chum- & 76 & 1,885 & & & 76 & 1,885 \\
\hline 1-pound tall & 1,609 & 6,475 & 2, 248 & 9,442 & 3,857 & 15, 917 \\
\hline 1 -pound flat- & & & 243 & 850 & 243 & 850 \\
\hline 1/2-pound flat & 636 & 3,816 & 279 & 1,339 & 915 & 5,155 \\
\hline Silver or coho- & 8, 103 & 46,806 & 2, 608 & & & \\
\hline 1 -pound flat- & 22, 263 & 160, 347 & 8,199 & 45, 906 & 30,462 & 206, 253 \\
\hline \(1 / 2\)-pound flat & 18, 956 & 161, 045 & 9,006 & 84, 166 & 27, 962 & 245, 211 \\
\hline Steelhead- & & & & & & \\
\hline 1-pound tall. & 15 & \({ }^{156}\) & & & 15 & 4156 \\
\hline 1 -pound flat & 6,675 & 61,783
162,457 & & & 6,675 & 61,783 \\
\hline \(1 / 2\)-pound flat & 11,944 & 162, 457 & & & 11,944 & 162,457 \\
\hline Total & 230, 813 & 3, 066, 167 & 61,440 & 630, 513 & 292, 253 & 3,696, 680 \\
\hline Shad: & & & & & & \\
\hline 1-pound tall & 1,064 & & & & 1,064 & 3, 661 \\
\hline 1/2-pound oval & & 3, 480 & & & 87 & 3,480 \\
\hline Total & 1. 269 & 7,615 & & & 1,269 & 7,615 \\
\hline Shad roe: & & & & & & \\
\hline 1-pound oval \(1 / 2\)-pound flat & \[
\begin{array}{r}
150 \\
6
\end{array}
\] & 2,472
174 & & & 150
6 & 2,472
174 \\
\hline Total & 156 & 2, 646 & & & 156 & 2,646 \\
\hline Razor clams, whole: & & & & & & \\
\hline \begin{tabular}{l}
No. 1 (4 dozen). \\
No. 2 ( 2 dozen).
\end{tabular} & & & 500
300 & 5,, 500
1,950 & 500
300 & 5, 500
1,950 \\
\hline 1/2-pound flat (4 dozer) & & & 1,907 & 11, 349 & 1,907 & 11,349 \\
\hline Razor clams, minced: & & & & & & \\
\hline \begin{tabular}{l}
No. 1 ( 4 dozen). \\
No. 2 (2 dozen)
\end{tabular} & & & \[
\begin{array}{r}
3,971 \\
\quad 909
\end{array}
\] & 29,576
5,699 & \[
\begin{array}{r}
3,971 \\
909
\end{array}
\] & \[
\begin{array}{r}
29,576 \\
5,699
\end{array}
\] \\
\hline Total & & & & & & \\
\hline Total & & & & 5, 0 & & 54,074 \\
\hline Grand total & 232, 238 & 3, 076,428 & 69, 027 & 684, 587 & 301, 265 & 3,761,015 \\
\hline
\end{tabular}

Note.- All prolucts except clams have been converted to the equivalent of forty-eight l-pound cans to the case.

\section*{WHOLESALE FISH TRADE}

The wholesale fish trade of Oregon was conducted by 28 firms, 7 of them located in Portland and the remainder in the various smaller towns of the State. These firms had a total investment amounting to \(\$ 267,685\), in addition to \(\$ 37,300\) cash capital; they employed 127 persons and paid \(\$ 82,393\) in wages.

The following table gives the statistics of the wholesale trade of Oregon in 1922:

Investment, persons engaged, and wages paid in the wholesale fish trade of Oregon in 1922
\begin{tabular}{l|r|r|r|r|r}
\hline \hline Localities & Establishments & \begin{tabular}{c} 
Cash \\
capital
\end{tabular} & \begin{tabular}{c} 
Persons \\
engaged
\end{tabular} & \begin{tabular}{c} 
Wages \\
paid
\end{tabular} \\
\hline
\end{tabular}

\section*{FISHERIES OF CALIFORNIA}

In 1922, California was the leading fish-producing State on the Pacific coast. There were 9,173 persons engaged in fishing and related industries; 209 vessels engaged in fishing; 53 vessels engaged in transporting fish; 1,297 power boats and 292 rowboats and sailboats engaged in fishing; an investment of \$13,047,414 in vessels, boats, fishing apparatus, shore property, and canneries; and a production of \(191,126,852\) pounds of fishery products, with a value to the fisherman of \(\$ 6,773,981\). Of this production \(175,779,868\) pounds, valued at \(\$ 5,884,156\), were fish; \(5,310,609\) pounds, valued at \(\$ 456,970\), were shellfish; and the remaining \(10,036,375\) pounds were whale products, valued at \(\$ 432,855\).

Of the fishes pilchards or sardines, furnishing the raw material for a valuable canning industry, were most important, producing \(92,114,542\) pounds, valued at \(\$ 1,381,008\). Albacore and tuna, equally important as raw material for canning, produced \(25,252,392\) pounds, valued at \(\$ 1,269,417\). The production of salmon amounted to \(7,236,580\) pounds, valued at \(\$ 590,509\), consisting mostly of chinooks but including a few silver salmon. A portion of the salmon was canned, though considerable quantities entered the fresh-fish trade. Bonito and skipjack yielded \(11,648,413\) pounds, valued at \(\$ 578,150\), most of which was also canned. Flounders followed in importance, the production being \(4,742,819\) pounds, valued at \(\$ 470,813\). Included in this item is the flounder known to trade as "California halibut," of which there were reported \(3,068,913\) pounds, valued at \(\$ 419,867\). Barracuda yielded \(6,284,065\) pounds, valued at \(\$ 439,817\); sole, \(6,949,557\) pounds, valued at \(\$ 211,800\); rockfishes, \(4,219,650\) pounds, valued at \(\$ 205,239\); and white sea bass, or squeteague, \(2,904,054\) pounds, valued at \(\$ 176,993\). The yield of cod, caught by California vessels fishing in Alaska waters and landing their salted product in San Francisco, amounted to 1,680,000 pounds, valued at \(\$ 84,000\).

Mackerel, yellowtail, striped bass, shad, smelts, "lingcod," rock bass, mullet, anchovies, and kingfish, named in order of the value of their yield, each produced less than \(\$ 76,000\) and over \(\$ 10,000\) worth of products. Some 20 other kinds of fish, each having a yield
\[
69239-26 \dagger-7
\]
valued at less than \(\$ 10,000\) and aggregating \(2,056,318\) pounds, valued at \(\$ 70,746\), made up the remainder of the fish production.

The production of shellfish amounted altogether to \(5,310,609\) pounds, valued at \(\$ 456,970\), most important of which, from the standpoint of value, were oysters, which yielded 94,598 pounds, valued at \(\$ 101,351\). Shrimps, spiny lobsters, crabs, abalones, clams, squid, octopus, mussels, and turtles, named in order of their value, made up the remainder of the yield of shellfish.

In addition to fish and shellfish, there were whale products to the value of \(\$ 432,855\), consisting of whale oil, 915,000 gallons, valued at \(\$ 366,000\); sperm oil, 5,050 gallons, valued at \(\$ 2,525\); and other products, \(3,136,000\) pounds, valued at \(\$ 64,330\).

Los Angeles, San Francisco, Monterey, and San Diego were the important centers of fishing. Los Angeles County, with its tuna and sardine fisheries, produced \(86,803,137\) pounds, valued at \(\$ 2,771,177\). San Francisco County, with an important market fishery, followed Los Angeles with a production of \(24,939,899\) pounds, valued at \(\$ 1,101,288\). Next in importance was Monterey County, with her large sardine fisheries, producing 49,351,971 pounds, valued at \(\$ 1,087,858\). San Diego County, with tuna and sardinc fisheries similar to those of Los Angeles but of lesser magnitude, produced \(18,241,117\) pounds, valued at \(\$ 852,620\). The remaining counties, none of them with remarkably large catches, yielded \(11,800,728\) pounds, valued at \(\$ 961,038\).

The following table shows in detail the statistics of the fisheries of California in 1922:

Persons engaged, investment, and products of the fisheries of California in 1922, by counties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Alameda} & \multicolumn{2}{|l|}{Colusa} & \multicolumn{2}{|l|}{Contra Costa} & \multicolumn{2}{|l|}{Del Norte} \\
\hline PERSONS ENGAGED & Number & Value & Number & Value & Number & Value & Number & Value \\
\hline ln shore fisheries. & 26 & & 9 & & 187 & & 143 & \\
\hline Shoresmen. & 31 & & 14 & & 63 & & 119 & \\
\hline & & & & & & & & \\
\hline Total & 57 & & 23 & & 253 & ------- & 262 & ------ \\
\hline INVESTMENT & & & & & & & & \\
\hline Vessels, transporting & & & & & 1 & \$5, 050 & & \\
\hline Tonnage & & & & & 15 & 500 & & \\
\hline Power boats. & 10 & \$15,000 & 1 & \$100 & 81 & 70,275 & & \$550 \\
\hline Rowboats, scows, ete & 2 & 80 & 10 & 796 & 15 & 1,400 & 90 & 2,060 \\
\hline \begin{tabular}{l}
Apparatus, shoro fisheries: \\
fill nets
\end{tabular} & 21 & 1,400 & 2 & 40 & 155 & 45,570 & & 10,135 \\
\hline Length, in yar & 2,800 & & 170 & ---- & 81,690 & & 19, 090 & ----- \\
\hline Lines .-.-.---- & & 210 & & & & 300 & & 75 \\
\hline llaul seines & 1 & 30 & 8 & 1,000 & & & 2 & 350 \\
\hline Length, in yards & 80 & & 895 & & & & 660 & \\
\hline Tongs, forks, rakes, and h & 27 & 52 & & & 19 & 38 & & \\
\hline Fyke nets & & & 15 & 90 & & & & \\
\hline Miscellaneous apparatus & & & & & & & 43 & 430 \\
\hline Shore and accessory property. & & 45, 950 & & 200 & & 246, 829 & & 35,500 \\
\hline Cash capital.-----.-.- & & 30,700 & & & & 42,000 & & 10,000 \\
\hline Total & & 93, 422 & & 2, 226 & & 411,962 & & 59,100 \\
\hline
\end{tabular}

Persons engaged, investment, and products of the fisheries of California in 1922, by counties-Continued


Persons engaged, investment, and products of the fisheries of California in 1922, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Glenn} & \multicolumn{2}{|l|}{Humboldt} & \multicolumn{2}{|l|}{Imperial} & \multicolumn{2}{|l|}{Los Angeles} \\
\hline PRODUCTS & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Albacore and tuna & & & & & & & 20, 359, 472 & \$1, 029, 573 \\
\hline Anchovies & & & & & & & 364, 797 & 7, 295 \\
\hline Barracuda & & & & & & & 4, 951, 931 & 345, 001 \\
\hline Bonito and skipjack & & & & & & & 7, 203, 308 & 360, 022 \\
\hline Flounders. & & & 63, 652 & \$5, 075 & & & 1, 677, 898 & 233, 021 \\
\hline Flying fish & & & & & & & 8, 495 & 174 \\
\hline Gray fish.- & & & & & & & 4,475 & 90 \\
\hline Halímoon. & & & & & & & 27, 791 & 832 \\
\hline Herring & & & 6,222 & 124 & & & & \\
\hline Kingfish & & & & & & & 252, 659 & 5, 053 \\
\hline "Lingcod" & & & 12,060 & 603 & & & 172 & \\
\hline Mackerel & & & & & & & 1,708,881 & 51, 259 \\
\hline Merch & & & 67, 077 & 2, 683 & 106, 500 & \$11, 715 & 13,328
59,962 & 1,458
3,006 \\
\hline Pike, Sacramento & 153 & \$8 & & & & & & \\
\hline Pilchard, or sardines & & & & & & & 44, 558, 068 & 456, 951 \\
\hline Pompano.- & & & & & & & 14, 108 & 4,315 \\
\hline Rock bass & & & & & & & 146, 673 & 8,758 \\
\hline Rockfishes. & & & 10,010 & 500 & & & 1,004,589 & 60,245 \\
\hline Salmon: & & & & & & & & \\
\hline Chinook & 52, 129 & 8,340 & 875,246
36,468 & \[
\begin{array}{r}
70,020 \\
2,917
\end{array}
\] & & & & \\
\hline Sculpin.- & & & & & & & 38,156 & 766 \\
\hline Sea bass, black, or jew & & & & & & & 73, 375 & 3,948 \\
\hline Sea bass, white, or squ & & & & & & & 2, 243, 287 & 133, 693 \\
\hline Sheepshead & & & & & & & 1,373 & 14 \\
\hline Skates & & & 26,510 & 1,590 & & & 169,121
169 & 11,900 \\
\hline Sole.- & & & 166 & 10 & & & 115, 884 & 5,793 \\
\hline Striped bass & 104 & 16 & & & & & & \\
\hline Swordish. & & & & & & & 22, 563 & 469 \\
\hline Tomcod & & & & & & & & \\
\hline Whitebait & & & 20,874 & 1,252 & & & & \\
\hline Whitefish & & & & & & & 1, 521,641 & 1,421 \\
\hline Other fish. & & & 2, 768 & 138 & & & 1, 37, 576 & 1,132 \\
\hline Crabs & & & 115, 236 & 5,238 & & & & \\
\hline Spiny lobster & & & & & & & 158,500 & 12, 874 \\
\hline Clams, hard. & & & 20, 242 & 1, 013 & & & 2,290 & 160 \\
\hline Clams, soft Cockles & & & 2,516 & & & & 162 & 16 \\
\hline Octopus. & & & & & & & 5, 981 & 235 \\
\hline Squid. & & & & & & & 22,772 & 1,136 \\
\hline Turtles. & & & & & & & 1,377 & 56 \\
\hline Total & 52, 386 & 8,364 & 1, 259, 047 & 91, 288 & 106, 500 & 11,715 & 86, 803, 137 & 2, 771, 177 \\
\hline
\end{tabular}

Persons engaged, investment, and products of the fisheries of California in 1922, by counties-Continued


Persons engaged, investment, and products of the fisheries of California in 1922, by counties-Continued


Persons engaged, investment, and products of the fisheries of California in 1922, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Sacramento} & \multicolumn{2}{|l|}{San Diego} & \multicolumn{2}{|l|}{San Francisco} & \multicolumn{2}{|l|}{San Joaquin} \\
\hline PRODUCTS-Continued & Pounds & Value & Pounds & & Pounds & Value & Pounds & Value \\
\hline Rockfishes & & & 555, 832 & \$33, 348 & 747,137 & \$35, 700 & & \\
\hline Sablefish - Chinook & & & & & 212, 008 & 6,361 & & \\
\hline Salmon: Chinook & 157, 921 & \$18,950 & & & 722, 890 & 65, 060 & 238,637 & \$21,477 \\
\hline Sea bass, black, or jewfish & & & 13,545 & 182 & & & & \\
\hline Sea bass, white, or squeteagu & & & 439, 640 & 27, 130 & 31,350 & 2,820 & & \\
\hline Shad.- & 47,438 & 1,664 & & & 31,633 & 950 & 84,667 & 3,269 \\
\hline Sheepshead & & & 16,520 & 169 & & & & \\
\hline Smatt & & & 27,230 & 1,-574 & 110,588 & 6, 213 & & \\
\hline Sole. & & & 8,810 & 436 & 6, 509, 970 & 195, 298 & & \\
\hline Split-tail & 7,587 & 227 & & & & & 1,607 & 48 \\
\hline Striped bass & 8,317 & 1,247 & & & 166,761 & 25, 014 & 83,895 & 12, 584 \\
\hline Suckers & 1,348 & 27 & & & & & & \\
\hline Swordfish & & & 1,800 & 37 & 30,989 & & & \\
\hline Whitebait & & & & & 63,001 & 7,560 & & \\
\hline Whitefish & & & 3, 350 & 168 & & & & \\
\hline Yellowtail & & & 1, 873,300 & 37, 818 & & & & \\
\hline Other fish & & & 11, 020 & 331 & 98, 092 & 3,923 & & \\
\hline Crabs- & & & & & 669, 000 & 55, 749 & & \\
\hline Spiny lobs & & & 726, 278 & & 819, 275 & 77,427 & & \\
\hline Abalone. & & & 200 & 10 & & & & \\
\hline Clams, hard & & & & & 22 & & & \\
\hline Clams, soft & & & & & 54, 834 & 2, 742 & & \\
\hline Mussels. & & & & & 9, 256 & 370 & & \\
\hline Octopus & & & & & 11, 562 & 573 & & \\
\hline Squid.-- & & & 62, 000 & 3,100 & & & & \\
\hline Sperm oil & & & & & 37,875 & 2,525 & & \\
\hline Whale oil.--- & & & & & 6, 862, 500 & 366, 000 & & \\
\hline Other whale products & & & & & 3, 136, 000 & 64,330 & & \\
\hline Total & 260, 559 & 24,678 & 18, 241,117 & 852, 620 & 24, 929, 899 & 1,101, 288 & 412, 923 & 37,501 \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{San Luis Obispo} & \multicolumn{2}{|l|}{Santa Barbara} & \multicolumn{2}{|l|}{Santa Cruz} & \multicolumn{2}{|l|}{Solano} \\
\hline PERSONS ENGAGED & Number & Value & Number & Value & Number & Value & Number & Value \\
\hline In shore fisheries. & 32 & & 43 & & 17 & & 128 & \\
\hline Shoresmen. & 32 & & 14 & & 11 & & 4 & \\
\hline Total & 64 & & 57 & & 28 & & 135 & \\
\hline Vessels transporting & & & & & & & & \$2, 000 \\
\hline Tonnage & & & & & & & 10 & \\
\hline Power boats. & 8 & \$9, 875 & 10 & \$22, 800 & 8 & \$3, 760 & 82 & 51, 830 \\
\hline Rowboats, scows, etc & 4 & 100 & 6 & 120 & & & 56 & 12, 300 \\
\hline A pparatus, shore fisheries: Gill nets & 30 & 1,100 & 321 & 5, 000 & 3 & 240 & 44, 94 & 26,685 \\
\hline Lines...-...........- & & 600 & & 300 & 480 & 175 & 44, 150 & 60 \\
\hline Lampara nets & 2 & 400 & & & 8 & 3, 400 & & \\
\hline Haul seines & & & , & 500 & 2 & 250 & 1 & 300 \\
\hline Length, in yards & & & & & 200 & & 500 & \\
\hline Trammel nets & 4 & 150 & & 1,080 & & & & \\
\hline Length, in yards . & 160 & & 1,080 & & & & & \\
\hline Tongs, forks, rakes, and h & 50 & 75 & & & 10 & 20 & & \\
\hline Pots...--.-.-- & & & 1,000 & 3, 000 & & & & \\
\hline Miscellaneous apparatus. & 1 & 1,000 & & & & & & \\
\hline Shore and accessory property & & 15,500 & & 19, 500 & & 9,000 & & \\
\hline Oash capital.------......... & & 6,000 & & 3,500 & & 2,500 & & \\
\hline Total & & 34, 800 & & 55,800 & & 19, 355 & & 94,425 \\
\hline
\end{tabular}

Persons engaged, investment, and products of the fisheries of California in 1922, by counties-Continued


Persons engaged, investment, and products of the fisheries of California in 1922, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Sonoma} & \multicolumn{2}{|l|}{Ventura} & \multicolumn{2}{|l|}{Yolo} & \multicolumn{2}{|l|}{Total} \\
\hline investment-continued & & & & & & & & \\
\hline A pparatus, vessel fisheries-Con. & Number & Value & Number & Value & Number & Value & Number & Value \(\$ 3.99\) \\
\hline Trammel nets. & & & & & & & 493 & \$3, \({ }^{\text {17, }} 6.90\) \\
\hline Length, in yards. & & & & & & & 40, 488 & \\
\hline Shrimp nets-..-.-. & & & & & & & 30 & 700 \\
\hline Pots.: & & & & & & & 730 & 1,900 \\
\hline Abalone outft & & & & & & & 3 & 2,800 \\
\hline Harpoons.-. & & & & & & & 4 & 26,800 \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline Lines....-..........-- & & \$320 & & \$30 & & 2 & & 35, 102 \\
\hline Lampara nets & & & & & & & 257 & 126,550 \\
\hline Haul seines. \(\qquad\) & 1 & 120 & & 150 & & 350 & & 6,650 \\
\hline \begin{tabular}{l}
Length, in yards \\
Trammel nets.-.....-
\end{tabular} & & & 100 & 320 & 430 & & 8, 1,413 & 43,526 \\
\hline Length, in yards. & & & 640 & & & & 90, 870 & \\
\hline Tongs, forks, rakes, and & 9 & 14 & & & & & 271 & 486 \\
\hline Fyke nets.-........- & & & & & 127 & 762 & 222 & 1,332 \\
\hline Dip nets. & & & & & & & 74 & 2,200 \\
\hline Dip nets. & & & 70 & 200 & & & - 12 & 24
10,515 \\
\hline A balone outfit & & & & & & & & 1, 1 , 800 \\
\hline Miscellaneous apparatus & 145 & 355 & & & & & 3,222 & 6,710 \\
\hline Shore and accessory property & & 1,000 & & & & 200 & & 7,290, 269 \\
\hline Cash capital .-.......---- & & & & & & & & 935, 124 \\
\hline Total & & 13, 159 & & 2,300 & & 8,174 & & 13, 047, 414 \\
\hline PRODUCTS & Pounds & Value & Pounds & Value & Pounds & Volue & Pounds & Value \\
\hline Albacore and tuna & & & & & & & 25, 252, 392 & \$1, 269, 417 \\
\hline Anchovies. & & & & & & & 652,516 & 13, 049 \\
\hline Barracuda & & & 4,700 & \$423 & & & 6, 284, 065 & 439, 817 \\
\hline Bonito and skipjac & & & & & & & 11, 648, 5143 & 578, 150 \\
\hline Carp, German & & & & & 1,131 & \$34 & 55, 7 [34 & 1,649
1,005 \\
\hline Cod, salted & & & & & & & 1,680,000 & 84,000 \\
\hline Flounders. & & & 4,360 & 612 & 1,514 & 46 & 4, 742, 819 & 470, 813 \\
\hline Flyingfish & & & & & & & 8,495 & 174 \\
\hline Grayfish. & & & & & & & 314, 176 & 6,709 \\
\hline Hake...-- & & & & & & & 78,763 & 1,576 \\
\hline Halfmoon & & & & & & & \begin{tabular}{|l|} 
27, \\
18 \\
\hline
\end{tabular} & 183
1,183 \\
\hline Herring. & & & & & & & 341, 614 & 6, 832 \\
\hline Kingfish & & & & & & & 579, 754 & 11,595 \\
\hline "Lingcod" & 596 & \$30 & & & & & 569, 821 & 33, 936 \\
\hline Mackerel & & & 530 & 26 & & & 2, 498, 197 & 75,455 \\
\hline Mullet & & & & & & & 148, 628 & 16,341 \\
\hline \begin{tabular}{l}
Perch \\
Pike, Sacramen
\end{tabular} & 70 & & & & & & 236,431
7,370 & 9,056
230 \\
\hline Pilchard, or sardines. & & & & & & & 92, 114, 542 & 1,381,008 \\
\hline Pompano-..--..... & & & & & & & 16,494 & 1, 5,049 \\
\hline Rock bass & & & & & & & 285, 494 & 16,449 \\
\hline Rockfishes & 2, 245 & 112 & 2,530 & 152 & & & 4, 219, 650 & 205, 239 \\
\hline Sablefish. & & & & & & & 268, 905 & 8,067 \\
\hline Salmon: & & & & & & 2,258 & 7,084,950 & 579,211 \\
\hline Silver & 105,000 & 7,350 & & & 15,050 & 2, 258 & 7, 151, 630 & 11, 298 \\
\hline Sculpin. & & & & & & & 44, 176 & 889 \\
\hline Sea bass, black, or jewfish.- & & & & & & & 87, 559 & 4,502 \\
\hline Sea bass, white, or squeteague & & & 2, 700 & 270 & & & 2, 904, 054 & 176, 993 \\
\hline Shad & & & & & 31, 528 & 1,605 & 1, 133, 270 & 55, 513 \\
\hline Sheepshcad. & & & 25 & & & & 18,245 & 194 \\
\hline Skates.- & & & & & & & 121, 753 & 2,437 \\
\hline Smelt & 157 & 10 & 5,000 & 300 & & & 728, 406 & 51, 908 \\
\hline & & & 130 & & & & 6, 949, 557 & 211, 800 \\
\hline Splittail-.-.... & & & & & & & 10,408
2,490 & 310
174 \\
\hline Striped bass. & & & & & 3,446 & 517 & 678, 820 & 62, 747 \\
\hline Suckers & & & & & & & 1,348 & 27 \\
\hline Swordfish & & & & & & & 24,363 & 506 \\
\hline Tomcod & & & & & & & 31,344 & 1,251 \\
\hline Whitebait & & & & & & & 84, 007 & 8, 828 \\
\hline Whitefish- & & & & & & & 32, 184 & 1,609 \\
\hline Yellowtail & & & & & & & 3, 416, 572 & 68,671 \\
\hline Other fish & & & 31,000 & 930 & & & 217, 781 & 7,657 \\
\hline Crabs. & 12, 804 & & & & & & 844, 472 & 66,543 \\
\hline Spiny lobster. & & & 6,350 & 1,270 & & & 966, 632 & 86,302 \\
\hline
\end{tabular}

Persons engaged, investment, and products of the fisheries of California in 1922, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Sonoma} & \multicolumn{2}{|l|}{Ventura} & \multicolumn{2}{|l|}{Yolo} & \multicolumn{2}{|l|}{Total} \\
\hline PRODUCTS-continued & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Shrimp-- & & & & & & & 990, 349 & \$94, 534 \\
\hline Abalone-.-- & & & & & & & 1,523,543 & 60, 943 \\
\hline Clams, hard. & 50 & \$3 & & & & & 34, 189 & 2, 280 \\
\hline Clams, Pismo. & & & & & & & 191,980 & 9, 599 \\
\hline Clams, soft. & 3,621 & 181 & & & & & 341, 173 & 22, 114 \\
\hline Cockles. & 698 & 35 & & & & & 860 & 51 \\
\hline Mussels & & & & & & & 13,212 & 580 \\
\hline Oysters, eastern, & & & & & & & 94, 598 & 101, 351 \\
\hline Octopus. & & & & & & & 99, 274 & 3,409 \\
\hline Squid... & & & & & & & 208, 875 & 9, 200 \\
\hline Turtles & & & & & & & 1,452 & 64 \\
\hline Sperm oil. & & & & & & & 37, 875 & 2,525 \\
\hline Whale oil Other whale products & & & & & & & 6, 862, 500 & 366. 000 \\
\hline Other whale products & & & & & & & 3, 136, 000 & 64,330 \\
\hline Total & 125, 241 & 8,305 & 58, 185 & \$4, 040 & 52,675 & \$4,460 & 191, 126, 852 & 6,773,981 \\
\hline
\end{tabular}

The fisheries of California in 1922 employed in actual fishing 7 steam, 199 gasoline, and 3 sailing vessels of 5 tons net burden and over, as measured by the Customs Service, not including 53 vessels engaged in transporting fish. The yield of the fishing vessels amounted to \(77,556,811\) pounds, valued at \(\$ 2,523,979\).

Judging from the value of the catch, lines were the most important gear employed in the vessel fisheries, producing \(15,409,209\) pounds, valued at \(\$ 772,126\). Albacore and tuna were most important in this catch, contributing over half the yield; bonito and skipjack followed, with about one-third of the catch; the cod caught in Alaskan waters and the rockfishes caught principally off Los Angeles and San Diego were next in order, while some 20 species of fish caught in smaller quantities made up the remainder of the catch by this type of gear.

Purse seines, operated principally from the port of Los Angeles, were next in importance, with a total catch of \(8,500,584\) pounds, valued at \(\$ 420,373\). Their most important catches were barracuda, \(2,395,635\) pounds, valued at \(\$ 166,086\); tuna, \(3,891,781\) pounds, valued at \(\$ 142,084\); bonito and skipjack, 736,331 pounds, valued at \(\$ 36,710\); and white sea bass, 616,114 pounds, valued at \(\$ 36,056\). A number of other fishes caught incidentally in fishing for these principal species made up the remainder of the catch by purse seines.

Lampara nets produced an amount of fish much in excess of that produced by purse seines and nearly equaling the purse-seine catch in value, altogether amounting to \(31,692,669\) pounds, valued at \(\$ 412,662\). Three-quarters of the catch by this gear consisted of sardines, while smaller amounts of bonito, barracuda, yellowtail, mackerel, white sea bass, and other fishes made up the remainder. Lampara nets were also important in providing bait for the line fishery, although the amount of bait caught does not enter these statistics.

Paranzella nets, operated exclusively from the port of San Francisco, produced \(9,047,496\) pounds, valued at \(\$ 287,086\). Soles, flounders, and other bottom fish made up the catch of this gear.

Gill nets, fished principally for barracuda and white sea bass, caught 566,727 pounds, valued at \(\$ 32,228\); trammel nets, catching almost
exclusively flounders, made a total catch of 526,533 pounds, valued at \(\$ 72,168\); abalone outfits, operated exclusively from Monterey County, produced \(1,124,965\) pounds, valued at \(\$ 44,998\); lobster pots in San Diego and Los Angeles Counties caught 562,253 pounds of spiny lobsters, valued at \(\$ 44,983\); and shrimp nets in San Francisco County yielded 90,000 pounds, valued at \(\$ 4,500\).

Whaling apparatus employed on vessels sailing from San Francisco and landing their whales at a shore station located at Moss Landing, furnished the raw material from which products valued at \(\$ 432,855\) were made.

The following table gives the statistics of the vessel fishery of California in 1922, by species, counties, and apparatus:

Yield of the vessel fisheries of California in 1922, by counties, apparatus, and species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Los Angeles} & \multicolumn{2}{|l|}{San Diego} & \multicolumn{2}{|l|}{San Francisco} & \multicolumn{2}{|l|}{Total 1} \\
\hline Purse seines: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Albacore and tuna & 3, 595, 889 & \$131,785 & 295, 892 & \$10, 299 & & & 3, 891, 781 & \$142,084 \\
\hline Barracuda & 2, 343,435 & 162,429 & 52, 200 & 3,657 & & & 2, 395, 635 & 166, 086 \\
\hline Bonito and skipjack & 675, 231 & 33, 655 & 61,100 & 3,055 & & & 736,331 & 36,710 \\
\hline Flounders.- & 129, 594 & 18,006 & 3,100 & 434 & & & 132,694 & 18,440 \\
\hline Flying fish. & 380 & & & & & & 380 & \\
\hline Kingfish & -515 & 10 & & & & & 515 & 10 \\
\hline Mackerel & 100,542 & 3,012 & 1,000 & 30 & & & 101, 542 & 3,042 \\
\hline Mullet. & 13,328 & 1,458 & & & & & 13, 328 & 1,458 \\
\hline Perch---.-..----...-- & 16,445 & 830 & & & & & 16,445 & 830 \\
\hline Pilchard or sardines & 20, 830 & 208 & & & & & 20,830 & 208 \\
\hline Pompano------------------ & + 769 & - 258 & & & & & 769 & 257 \\
\hline Rock bass & 23,176
3,984 & 1,389 & 30 & 2 & & & 23,176
4,014 & 1,389
240 \\
\hline Sculpin.... & 720 & 17 & & & & & 720 & 240
17 \\
\hline Sea bass, black, or jewfish & 31,164 & 1,693 & 100 & 4 & & & 31,264 & 1,697 \\
\hline Sea bass, white, or squeteague. & 604, 774 & 35,376 & 11,340 & 680 & & & 616,114 & 36,056 \\
\hline Sheepshead & 150 & 1 & & & & & 150 & , 1 \\
\hline Skates_ & 35 & 1 & & & & & 35 & 1 \\
\hline Smelt & 9,159. & 640 & & & & & 9,159 & 640 \\
\hline Sole--..- & 15, 855 & 792 & 1,400 & 70 & & & 17, 255 & 862 \\
\hline Swordfish Tomeod & 750
90 & 23
4 & & & & & 750
90 & 23
4 \\
\hline Whitefish & 3,500 & 175 & & & & & 3,500 & 175 \\
\hline Yellowtail & 409, 679 & 8,182 & 69,000 & 1,720 & & & 478, 679 & 9, 902 \\
\hline Other fish & 1,397, & 43 & & & & & 1,397 & 43 \\
\hline Spiny lobster & \({ }^{27}\) & \({ }^{2}\) & & & & & 27 & 2 \\
\hline Squid- & 2,627 & 131 & & & & & 2, 627 & 131 \\
\hline Turtles & 1,377 & 56 & & & & & 1,377 & 56 \\
\hline Total & 8,005,422 & 400,422 & 495, 162 & 19, 951 & & & 8,500,584 & 420, 373 \\
\hline Gill nets: & & & & & & & & \\
\hline Barracuda & 106, 876 & 7,478 & 92, 800 & 6,404 & & & 199, 676 & 13, 882 \\
\hline \begin{tabular}{l}
Bonito \\
Flounder
\end{tabular} & 14,6.50 & 733 & 144,900
14,500 & 5,515
2,530 & & & 159,550 & 6, 278 \\
\hline Flying fish & 200 & & & & & & 14, 200 & 2,530 \\
\hline Grayfish & 4,450 & 89 & 11,200 & 344 & & & 15,650 & 433 \\
\hline Mackerel & 27, 118 & 813 & 3,400 & 102 & & & 30, 518 & 915 \\
\hline Perch- & 311 & 16 & 300 & 15 & & & 611 & 31 \\
\hline Rock bass & & & 400 & 24 & & & 400 & 24 \\
\hline Rockfishes -.--------...- & 27 & 2 & & & & & 27 & 2 \\
\hline Sea bass, black, or jewfish & 1,340 & 56 & 2, 720 & 95 & & & 4,060 & 151 \\
\hline Sea bass, white, or squeteague & 65, 265 & 3,923 & 60, 500 & 3,630 & & & 125,765 & 7,553 \\
\hline Smelt & 1,197 & 83 & 600 & 42 & & & 1,797 & 125 \\
\hline Sole-- & & & 150 & & & & 150 & 8 \\
\hline Other fish & \[
\begin{aligned}
& 1,600 \\
& 1,423
\end{aligned}
\] & 43 & 10,800 & 216 & & & 12,400 & 248
43 \\
\hline Total & 224,457 & 13, 273 & 342, 270 & 18, 955 & & & 566, 727 & 32, 228 \\
\hline
\end{tabular}
\({ }^{1}\) Includes \(1,124,965\) pounds of abalone, caught in Monterey County, and valued at \(\$ 44,998\).

Yield of the vessel fisheries of California in 1922, by counties, apparatus, and species-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Los Angeles} & \multicolumn{2}{|l|}{San Diego} & \multicolumn{2}{|l|}{San Francisco} & \multicolumn{2}{|l|}{Total} \\
\hline Lampara nets: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Barracuda.. & 240, 015 & \$16,800 & 39,680 & \$2,760 & & & 279, 695 & \$19,560 \\
\hline Bonito. & 1, 104,908 & 55, 212 & 88,400 & 4,420 & & & 1,193, 308 & 59,632 \\
\hline Flounders & 6,330 & 886 & & & & & 6,330 & 886 \\
\hline Grayfish & , 25 & 1 & 300 & 12 & & & 325 & 13 \\
\hline Kingfish & 25,301 & - 506 & 3,235 & 71 & & & 28, 536 & 577 \\
\hline "Lingcod" & 172 & - 8 & & & & & 172 & 8 \\
\hline Mackerel. & 246, 374 & 7,391 & 62,450 & 1,874 & & & 308, 824 & 9,265 \\
\hline Perch. & 400 & 20 & & & & & 400 & 20 \\
\hline Pilchard or & 27, 085, 392 & 282, 222 & 2,247,800 & 22,478 & & & 29, 333, 192 & 304,700 \\
\hline Pompano.-- & - 579 & 231 & & & & & 579 & 231 \\
\hline Rock bass & 5,820 & 349 & 200 & 12 & & & 6, 020 & 361 \\
\hline Rockfishes & 2,040 & 122 & & & & & 2,040 & 122 \\
\hline Sea bass, black, or jewfish. & 1,505 & 60 & 200 & 8 & & & 1,705 & 68 \\
\hline Sca bass, white, or squeteague & 98, 365 & 5, 903 & 17,900 & 1,086 & & & 116, 265 & 6,989 \\
\hline  & 185 & & & & & & 185 & 4 \\
\hline Smelt. & 9,177 & 642 & 5,780 & 403 & & & 14,957 & 1,045 \\
\hline Sole. & 6,362 & 318 & 1,100 & 55 & & & 7,462 & 373 \\
\hline Swordfish & 300 & 6 & 100 & 3 & & & 400 & 9 \\
\hline Whitefish & & & 40 & 2 & & & 40 & 2 \\
\hline Yellowtail & 200, 284 & 4,004 & 159,700 & 3,194 & & & 359, 984 & 7,198 \\
\hline Other fish & -655 & 19 & & & & & \%655 & 19 \\
\hline Squid.- & 95 & 5 & 31, 500 & 1,575 & & & 31,595 & 1,580 \\
\hline Total & 29,034, 284 & 374,709 & 2,658,385 & 37, 953 & & & 31,692,669 & 412,662 \\
\hline Paranzella nets: & & & & & & & & \\
\hline Flounders & & & & & 1,600, 941 & \$51, 207 & 1, 600,941 & 51,207 \\
\hline Hake & & & & & 68, 213 & 1,365 & 68,213 & 1,365 \\
\hline Kingfish & & & & & 1,825 & 1,37 & 1,825 & , 37 \\
\hline "Lingcod & & & & & 249,361 & 14,960 & 249,361 & 14,960 \\
\hline Perch.- & & & & & 300 & 9 & 300 & 9 \\
\hline Pompano & & & & & 1,376 & 412 & 1,376 & 412 \\
\hline Rockfishe & & & & & 289,498 & 14,050 & 289,498 & 14,050 \\
\hline Sablefish & & & & & 75,753 & 2,273 & 75,753 & 2,273 \\
\hline Pilchard or sardines & & & & & 2, 245 & 45 & 2,245 & 45 \\
\hline Sea bass, white, or squeteague. \(\qquad\) & & & & & 3,423 & 308 & 3,423 & 308 \\
\hline Skates & & & & & 110,538 & 2,212 & 110,538 & 2,212 \\
\hline Smelt & & & & & 4,037 & 322 & 4,037 & 322 \\
\hline Sole. & & & & & 6,474,454 & 194, 233 & 6,474,454 & 194, 233 \\
\hline Tomcod & & & & & 5,445 & , 218 & 5,445 & -218 \\
\hline Other fis & & & & & 93, 860 & 3,754 & 93,860 & 3,754 \\
\hline Crabs. & & & & & 4,008 & 333 & 4,008 & 333 \\
\hline Clams, har & & & & & 22 & 1 & 22 & \\
\hline Clams, soft & & & & & 26 & 2 & 26 & 2 \\
\hline Octopus. & & & & & 3,540 & 172 & 3,540 & 172 \\
\hline Total & & & & & 9,047,496 & 287, 086 & 9,047,496 & 287,086 \\
\hline Lines: & & & & & & & & \\
\hline Albacore and tuna & 3, 979,546 & \[
213,529
\] & & & & & \[
8,110,051
\] & \\
\hline Barracuda & 12,930 & \[
905
\] & \[
54,600
\] & 3,918 & & & \[
67,530
\] & \[
4,823
\] \\
\hline Bonito & 2,438, 605 & 121, 927 & 2,240, 800 & 109, 494 & & & 4, 679,405 & 231,421 \\
\hline Cod, salted & & & & & 1,680,000 & 84,000 & 1,680,000 & 84, 000 \\
\hline Founders & & & 8,860 & 1, 207 & & & 8,860 & 1,207 \\
\hline Grayfish & & & 14,500 & 539 & & & 14,500 & 539 \\
\hline Kingfish & & & 1,000 & 20 & & & 1,000 & 20 \\
\hline Mackerel & 600 & 18 & 5,490 & 164 & & & 6,090 & 182 \\
\hline Mullet & & & 6,800 & 748 & & & 6, 800 & 748 \\
\hline Perch & & & 200 & 11 & & & 200 & 11 \\
\hline Pompano & & & 220 & 88 & & & 220 & 88 \\
\hline Rock bass & & & 13,350 & 801 & & & 13,350 & 801 \\
\hline Rockfishes & 22, 112 & 1,327 & 318, 180 & 19,089 & & & 340, 292 & 20,416 \\
\hline Sculpin & & & 200 & & & & 200 & 4 \\
\hline Sea bass, hlack, or jewfish & 920 & 37 & 8,425 & 294 & & & 9,345 & 331 \\
\hline Sea bass, white, or squeteaguc & & & 25,300 & 2,278 & & & 25,300 & 2,278 \\
\hline Sheopshead.- & 40 & 1 & 520 & 9 & & & 560 & 10 \\
\hline Skates & 760 & 15 & & & & & 760 & 15 \\
\hline Smelt & & & 50 & 3 & & & 50 & 3 \\
\hline Sole. & & & 50 & 2 & & & 50 & 2 \\
\hline Swordfish & 780 & 25 & & & & & 780 & 25 \\
\hline Whitefish & & & 870 & 44 & & & 870 & 44 \\
\hline Yellowtail & 39,896 & 798 & 403, 100 & 8,074 & & & 442,996 & 8,872 \\
\hline Total & 6,496, 189 & 338, 582 & 7,233,020 & 349, 544 & 1,680,000 & 84,000 & 15,409, 209 & 772,126 \\
\hline
\end{tabular}

Yield of the vessel fisheries of California in 1922, by counties, apparatus, and species-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Los Angeles} & \multicolumn{2}{|l|}{San Diego} & \multicolumn{2}{|l|}{San Francisco} & \multicolumn{2}{|l|}{Total} \\
\hline Trammel nets: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Founders. & 118,872 & \$16,641 & 389, 100 & 54,510 & & & 507, 972 & 71,151 \\
\hline Kingfish. & & & 100 & & & & 100 & 2 \\
\hline Perch- & 477 & 24 & & & & & 477 & 24 \\
\hline Rockfishes & & & 410 & 24 & & & 410 & 24 \\
\hline Sea bass, black, or jewfish. & 455 & 18 & & & & & 455 & 18 \\
\hline Sea bass, white, or squeteague & & & 400 & 24 & & & 400 & 24 \\
\hline  & & & 300 & 21 & & & 300 & 21 \\
\hline Sole. & 2,009 & 100 & 10 & 1 & & & 2,019 & 101 \\
\hline Yellowta & & & 100 & 2 & & & 100 & \\
\hline Total & 121, 813 & 16,783 & 404, 720 & 55,385 & & & 526, 533 & 72,168 \\
\hline Shrimp nets: Shrimp Pots: Spiny lobsters & 23,858 & 1,908 & 538, 395 & 43,075 & 90,000 & \$4,500 & \[
\begin{array}{r}
90,000 \\
562,253
\end{array}
\] & \[
\begin{array}{r}
4,500 \\
44,983
\end{array}
\] \\
\hline Harpoons: & & & & & & & & \\
\hline Whale oil & & & & & 6, 862, 500 & 366, 520 & 6, \(\begin{array}{r}37 \\ \hline 62,800\end{array}\) & 2,525 \\
\hline Other whale products. & & & & & 3, 136, 000 & 64, 330 & 3,
3 & \\
\hline Total & & & & & 10,036, 375 & 432, 855 & 10,036, 375 & 432, 855 \\
\hline Grand total & 43, 906, 023 & 1,145, 677 & 11,671, 952 & 524,863 & 20, 853, 871 & 808, 441 & 77, 556, 811 & 2,523,979 \\
\hline
\end{tabular}

SHORE AND BOAT FISHERIES
The shore and boat fisheries of California in 1922 employed 3,133 fishermen on 1,207 power boats and 292 rowboats, scows, and similar inshore fishing craft. The total yield was \(113,570,041\) pounds, valued at \(\$ 4,250,002\).

As in the vessel fisheries, the greatest production was by lines, which contributed \(28,067,355\) pounds, valued at \(\$ 1,529,745\). Albacore and tuna yielded \(13,250,560\) pounds, valued at \(\$ 711,047\); salmon \(4,270,980\) pounds, valued at \(\$ 337,689\); rockfishes, \(3,582,283\) pounds, valued at \(\$ 170,320\); bonito and skipjack, \(2,844,417\) pounds, valued at \(\$ 142,277\); barracuda, mackerel, and yellowtail in considerable amounts, and other fishes in lesser amounts.

Lampara nets followed lines in importance. Their total yield was \(69,763,499\) pounds, valued at \(\$ 1,353,915\), made up largely of sardines, bonito and skipjack, barracuda, mackerel, white sea bass, and yellowtail.

Gill nets yielded \(9,072,270\) pounds, valued at \(\$ 628,285\). About one-third of this was salmon; one-fifth, barracuda; one-sixth, white sea bass; one-tenth, striped bass; and one-tenth, shad. Other fishes were caught in smaller amounts.

Trammel nets yielded \(2,460,900\) pounds, valued at \(\$ 319,756\), consisting almost entirely of flounders. Haul seines yielded a total catch of 795,421 pounds, valued at \(\$ 61,815\), consisting principally of chinook salmon and smelts.

Bag nets catching herring and shrimp; fyke nets catching carp, catfish, hardhead, Sacramento pike, and splittail; dip nets catching perch; lobster pots catching spiny lobsters; abalone outfits yielding abalone; tongs, forks, rakes, hoes, and miscellaneous apparatus employed in fishing for shellfish, produced the remainder of the catch of the shore fisheries.

\section*{The following tables give the yield of the shore fisheries of California} in 1922 by species, apparatus, and counties:

\section*{Yield of the shore fisheries of California in-1922, by counties, species, and apparatus}

BY HAUL SEINES


\title{
Yield of the shore fisheries of California in 1922, by counties, species, and apparatus-Continued
}

BY GILL NETS


Yield of the shore fisheries of California in 1922, by counties, species, and
apparatus-Continued
BY GILL NETS-Continued


Yield of the shore fisheries of California in 1922, by counties, species, and
apparatus-Continued BY LAMPARA NETS


BY TRAMMEL NETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Los Angeles} & \multicolumn{2}{|l|}{Monterey} & \multicolumn{2}{|r|}{Orange} & \multicolumn{2}{|l|}{San Dicgo} \\
\hline Flounders & \[
\begin{gathered}
\text { Pounds } \\
1,403,358
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 196,316
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
\text { Pounds } \\
26,550
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { Value } \\
\$ 1, \$ 94
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pounds } \\
& 87,741
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 12,280
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pounds } \\
& 314,520
\end{aligned}
\] & \[
\begin{array}{r}
\text { Value } \\
\$ 44,033
\end{array}
\] \\
\hline Grayfish H - & & & & & & & 35, 000 & 700 \\
\hline Perch & 4,802 & 240 & & & & & 1,600 & \\
\hline Rock bass & & & & & & & 64, 000 & 3,200 \\
\hline Rockfishes & & & & & & & 340 & 21 \\
\hline Whie --.-- & 140 & 7 & & & & & & \\
\hline Whitefish & & & & & & & 1,300 & 65 \\
\hline Total & 1,415, 653 & 196, 783 & 26, 550 & 1,894 & 87,741 & 12, 280 & 416, 760 & 48,099 \\
\hline
\end{tabular}

Yield of the shore fisheries of California in 1922, by counties, species, and apparatus-Continued
BY TRAMMEL NETS-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Santa Barbara} & \multicolumn{2}{|l|}{Santa Cruz} & \multicolumn{2}{|l|}{San Luis Obispo} & \multicolumn{2}{|l|}{Ventura} & \multicolumn{2}{|l|}{Total} \\
\hline Flounders & \[
\begin{aligned}
& \text { Pounds } \\
& 360,895
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 50,506
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Pounds } \\
73,191
\end{array}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 2,338
\end{gathered}
\] & Pounds
38,320 & \[
\begin{aligned}
& \text { Value } \\
& \$ 5,364
\end{aligned}
\] & \[
\begin{gathered}
\text { Pounds } \\
4,360
\end{gathered}
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 612
\end{aligned}
\] & \[
\begin{gathered}
\text { Pounds } \\
2,308,935
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 313,343
\end{gathered}
\] \\
\hline Grayfish... & & & & & & & & & 35, 000 & 700 \\
\hline Halfmoon & & & & & & & & & 7,353 & 220 \\
\hline Perch. & & & & & & & & & 6,402 & 320 \\
\hline Rock bass. & & & & & & & & & 64, 000 & 3,200 \\
\hline Rockfishes. & & & & & & & & & 340 & 21 \\
\hline Sole.. & 26,700 & 1,335 & & & 10,600 & 530 & 130 & 15 & 37,430 & 1,880 \\
\hline Whitefish & & & & & & & & & 1,300 & 65 \\
\hline Total & 387, 595 & 51,841 & 73,191 & 2,338 & 48, 920 & 5,894 & 4,490 & 627 & 2, 460,900 & 319, 756 \\
\hline
\end{tabular}

BY FYKE NETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Sacramento} & \multicolumn{2}{|l|}{San Joaquin} & \multicolumn{2}{|l|}{Yolo} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Volue & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Carp, German & 4,000 & \$120 & 3,102 & \$93 & 1,131 & \$34 & 8,233 & \$247 \\
\hline Catfish & 7,118 & 996 & & & & & 7,118 & 996 \\
\hline Hardhead & 10, 000 & 650 & & & & & 10,000 & 650 \\
\hline Pike, Sacramento & 1,466 & 50 & 1,015 & 30 & & & 2,481 & 80 \\
\hline Splittail... & 7, 587 & 227 & 1,607 & 48 & & & 9,194 & 275 \\
\hline Total & 30, 171 & 2,043 & 5,724 & 171 & 1,131 & 34 & 37,026 & 2,248 \\
\hline
\end{tabular}

BY BAG NETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Alameda} & \multicolumn{2}{|l|}{Marin} & \multicolumn{2}{|l|}{San Francisco} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Volue & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Herring & 40,345
44,124 & +\$807 & 126, 950 & \$12, 695 & 729, 275 & \$72,927 & 40,345
900,349 &  \\
\hline Total & 84,469 & 5, 219 & 126, 950 & 12, 695 & 729, 275 & 72,927 & 940, 694 & 90,841 \\
\hline
\end{tabular}

BY DIP NETS
\begin{tabular}{|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Humboldt} \\
\hline Perch. & \[
\begin{array}{r}
\text { Pounds } \\
24,000
\end{array}
\] & Value \(\$ 960\) \\
\hline
\end{tabular}

BY LINES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Alameda} & \multicolumn{2}{|l|}{Contra Costa} & \multicolumn{2}{|l|}{Del Norte} & \multicolumn{2}{|l|}{Humboldt} \\
\hline & Pounds & Volue & Pounds & Volue & Pounds & Value & Pounds & Value \\
\hline Flounders & 1,500 & \$45 & & & 707 & \$64 & 47, 309 & \$4, 258 \\
\hline Grayfish. & 600 & 12 & & & & & & \\
\hline Kingfish & 25 & 1 & & & & & & \\
\hline "Lingcod" & & & & & 3, 645 & 182 & 12, 060 & 603 \\
\hline Rock fishes & & & & & 9,132 & 457 & 10,010 & 500 \\
\hline Salmon: & & & & & & & & \\
\hline Chinook & 7,000 & 630 & 25, 000 & \$2, 250 & 2,478 & 174 & \[
\begin{array}{r}
875,246 \\
36,468
\end{array}
\] & \[
\begin{array}{r}
70,020 \\
2,917
\end{array}
\] \\
\hline Sea bass, white, or squetea & & & & & 133 & 11 & & ------ \\
\hline Smelt. & 4,000 & 320 & & & & & & \\
\hline Sole.- & & & & & & & 166 & 10 \\
\hline Striped bass. & 3,454 & 483 & & & & & & \\
\hline Other fish..- & & & & & & & 2,768 & 138 \\
\hline Total & 16,579 & 1,491 & 25, 000 & 2, 250 & 16, 095 & 838 & 984, 027 & 78, 446 \\
\hline
\end{tabular}

\section*{Yield of the shore fisheries of California in 1922, by counties, species, and apparatus-Continued}

BY LINES-Continued


\section*{Yield of the shore fisheries of California in 1922, by counties, species, and apparatus-Continued}

BY LINES-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{San Luis Obispo} & \multicolumn{2}{|l|}{Solano} & \multicolumn{2}{|l|}{Sonoma} & \multicolumn{2}{|l|}{Ventura} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Albacore and tuna. & & & & & & & & & 13, 250, 560 & \$711,047 \\
\hline Barracuda & 4,200 & \$378 & & & & & 4,700
590 & \(\$ 423\)
35 & 848, 959 & 59,605
142,277 \\
\hline Flounders..-.---.-.- & & & & & & & & & 2, 111,973 & 14, 468 \\
\hline Grayfish.. & & & & & & & & & 132,000 & 2,640 \\
\hline Halimoon. & & & & & & & & & 12, 396 & 370 \\
\hline Kingfish & & & & & & & & & 144, 315 & 2,887 \\
\hline "Lingcod" & 15 & & & & 596 & \$30 & & & 244,842 & 14, 442 \\
\hline Mackerel & 180 & 9 & & & & & & & 934, 445 & 28, 251 \\
\hline Mullet.-- & & & & & & & & & 22, 000 & 2, 420 \\
\hline Perch. & & & & & & & & & 8, 346 & 257 \\
\hline Pompano & & & & & & & & & 736 & 220 \\
\hline Rock bass & & & & & & & & & 134, 431 & 8,068 \\
\hline Rockfishes & 72, 750 & 4, 366 & & & 2, 245 & 112 & 2,530 & 152 & 3, 582, 283 & 170, 320 \\
\hline Sablefish.--- & & & & & & & & & 136,255 & 4,088 \\
\hline Salmon: Chinook & 30 & & 5, 000 & \$450 & 100, 000 & 7,000 & & & 4, 143, 842 & 328, 125 \\
\hline Silver... & & & & & 100,00 & & & & , 127, 138 & 9, 564 \\
\hline Sculpin---.--- & & & & & & & & & 43, 141 & 864 \\
\hline Sea bass, black, or jewfish & & & & & & & & & 36,321 & 1,972 \\
\hline Sea bass, white, or squeteagne & & & & & & & & & 110, 555 & 5,961 \\
\hline Sheepshead & & & & & & & 25 & 1 & 17, 208 & 173 \\
\hline Skates & & & & & & & & & 10, 235 & 205 \\
\hline Smelt. & & & & & & & & & 4,000 & 320 \\
\hline Sole. & & & & & & & & & 59, 841 & 2, 280 \\
\hline Striped bass & & & & & & & & & 6,871 & 995 \\
\hline Swordfish & & & & & & & & & 21, 843 & 437 \\
\hline Whitefish & & & & & & & & & 6,515 & 326 \\
\hline Yellowtail & & & & & & & & \({ }^{6}\) & 1, 018,330 & 20, 367 \\
\hline Other fish & 800 & 32 & & & & & 15, 000 & 450 & 47,576 & 1,561 \\
\hline Octopus.. & & & & & & & & & 5,981 & 235 \\
\hline Tot & 77, 975 & 4,791 & 5,000 & 450 & 102, 841 & 7,142 & 23, 115 & 1, 067 & 28,067, 355 & 1, 529, 745 \\
\hline
\end{tabular}

BY LOBSTER POTS AND ABALONE OUTFITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & Los An & geles & Mont & erey & Oran & & San D & cgo \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Spiny lobsters. \\
Abalone \(\qquad\)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Pounds } \\
& 134,615
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Value } \\
\$ 10,964
\end{gathered}
\]} & Pounds & Value & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Pounds } \\
17,504
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Value } \\
\$ 2,107
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Pounds } \\
\text { 187, } 883
\end{gathered}
\]} & \multirow[t]{2}{*}{Value \(\$ 15,376\)} \\
\hline & & & 379,978 & \$15, 199 & & & & \\
\hline Species & \multicolumn{2}{|l|}{San Luis Obispo} & \multicolumn{2}{|l|}{Santa Barbara} & \multicolumn{2}{|l|}{Ventura} & \multicolumn{2}{|l|}{Total} \\
\hline \multirow[b]{2}{*}{Spiny lobsters} & Pounds & Value & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Pounds } \\
58,000
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Value } \\
\$ 11,600
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Pounds } \\
6,350
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Value } \\
\$ 1,270
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pounds \\
404, 352 \\
398, 378
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Value } \\
\$ 11,317 \\
15,935
\end{array}
\]} \\
\hline & 18,400 & \$736- & & & & & & \\
\hline
\end{tabular}

BY TONGS, FORKS, RAKES, HOES, AND BY HAND
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Alameda} & \multicolumn{2}{|l|}{Contra Costa} & \multicolumn{2}{|l|}{Humboldt} & \multicolumn{2}{|l|}{Los Angeles} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Clams, hard & 14, 575 & \$874 & 184, 737 & \$9, 236 & 20,242
2,516 & \[
\begin{aligned}
& 1,013 \\
& 125
\end{aligned}
\] & & \\
\hline Cockles.... & & & & & & & 162 & 16 \\
\hline Mussels. & 2, 724 & 109 & & & & & & \\
\hline Total & 17, 299 & 983 & 184, 737 & 9, 236 & 22,758 & 1,138 & 2, 452 & 176 \\
\hline
\end{tabular}

Yield of the shore fisheries of California in 1922, by counties, species, and apparatus-Continued
BY TONGS, FORKS, RAKES, HOES, AND BY HAND-Continued


BY MISCELLANEOUS APPARATUS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Species} & \multicolumn{2}{|l|}{Alameda} & \multicolumn{2}{|l|}{Del Norte} & \multicolumn{2}{|l|}{Humboldt} & \multicolumn{4}{|c|}{Marin} & \multicolumn{2}{|l|}{Monterey} \\
\hline & \[
\begin{gathered}
\text { Pounds } \\
1,804
\end{gathered}
\] & \[
\begin{aligned}
& V \text { alue } \\
& \$ 250
\end{aligned}
\] & \[
\begin{array}{r}
\text { Pounds } \\
15,862 \\
83
\end{array}
\] & \[
\left|\begin{array}{r}
\text { Value } \\
\$ 721 \\
4
\end{array}\right|
\] & \begin{tabular}{l}
Pounds \\
115, 236
\end{tabular} & \[
\begin{gathered}
\text { Value } \\
\$ 5,238
\end{gathered}
\] & & & & & \[
\begin{gathered}
\text { Pounds } \\
44 \\
66,802
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 3 \\
2,004
\end{gathered}
\] \\
\hline Total & 1,804 & 250 & 15,945 & 725 & 115, 236 & 5,238 & & & & & 66,846 & 2,007 \\
\hline Species & \multicolumn{3}{|c|}{San Francisco} & \multicolumn{2}{|l|}{Santa Cruz} & \multicolumn{4}{|c|}{Sonoma} & \multicolumn{3}{|c|}{Total} \\
\hline Crabs.-. Octopus. & \multicolumn{2}{|l|}{\[
\begin{array}{r}
\text { Pounds } \\
664,992 \\
8,022
\end{array}
\]} & \[
\begin{aligned}
& \text { Value } \\
& 50,416 \\
& 401
\end{aligned}
\] & \[
\begin{array}{r}
\text { Pounds } \\
2,222 \\
14,796
\end{array}
\] & \[
\begin{array}{r}
\text { Value } \\
\$ 250 \\
591
\end{array}
\] & Poun 12, & & & \[
\begin{aligned}
& \text { lue } \\
& 582
\end{aligned}
\] & & \[
\begin{aligned}
& u n d s \\
& 0,464 \\
& 9,703
\end{aligned}
\] & Value \(\$ 66,210\) 3,000 \\
\hline Total. & \multicolumn{2}{|l|}{673, 014} & 5, 817 & 17, 018 & 841 & 12, 8 & & & 582 & & , 167 & 69,210 \\
\hline
\end{tabular}

In 1922 there were 36 canning establishments in California. These employed 3,370 persons, paid wages amounting to \(\$ 1,562,469\), had an investment of \(\$ 5,562,594\), and produced a quantity of canned fishery products equal to \(1,068,727\) cases of forty-eight 1 -pound cans each, valued at \(\$ 8,119,109\). The sardine was the most important species canned, having a production in this year equal to 715,359 cases, each containing forty-eight 1 -pound cans, and valued at \(\$ 3,361,480\). The group of tuna and tunalike fishes, consisting of albacore, yellowfin tuna, bluefin tuna, striped tuna or skipjack, bonito, and yellowtail, produced a total pack exceeding that of sardines in value though not in quantity. It amounted to a quantity equal to 336,141 cases of forty-eight 1-pound cans each, valued at \(\$ 4,511, \$ 73\). The pack of canned salmon amounted to 11,831 cases of forty-eight 1-pound cans, valued at \(\$ 196,310\), and the pack of miscellaneous fishery products amounted to 5,396 cases of forty-eight 1-pound cans, valued at \(\$ 49,446\).

The following table gives the statistics of the canning industry of California in 1922:

Canning industry of California in 1922
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Items & Number & Number & Value & Items & Number & Number & Value \\
\hline Establishments Cash capital & 36 & & \[
\begin{array}{r}
\$ 5,071,744 \\
490,850
\end{array}
\] & Tuna, bluefin and yellowfin-Con. & & & \\
\hline Persons engaged & 3,370 & & & \(1 / 2 \mathrm{lb}\). round ( 48 to & & & \\
\hline Wages paid.-- & & & 1,562,469 & case) .......-..... & 101, 737 & 50, 868 & \$613, 344 \\
\hline Products & & & & case) & 22,926 & 22,926 & 255, 437 \\
\hline Salmon, chinook: & Cases as & Standard & & Total & & 84, 423 & 1,047,621 \\
\hline \(1 / 2-\mathrm{lb}\). flat (48 to case) & packed & \[
\begin{gathered}
\text { cases } 1 \\
7,669
\end{gathered}
\] & \begin{tabular}{l}
Value \\
138, 042
\end{tabular} & Tuna, striped: & & & \\
\hline 1-1b. flat (48 to case) & 4, 162 & 4,162 & 58,268 & \(1 / 4-\mathrm{lb}\). round ( 48 to & & & \\
\hline \multirow[t]{33}{*}{\begin{tabular}{l}
Total \\
Sardines: \\
In oil- \\
\(1 / 4-\mathrm{lb}\). square ( 100 to case) \\
\(1 / 2\)-lb. square ( 100 to case) \\
\(1 / 2-1 \mathrm{lb}\). oval ( 48 to case) \\
1-lb. oval (48 to case) \\
In mustard- \\
1-lb. oval (48 to case) \\
In tomato sauce-- \\
\(1 / 4-\mathrm{lb}\). square ( 100 to case) \\
\(1 / 2\)-lb. square ( 100 to case) \\
\(1 / 2-\mathrm{lb}\). oval ( 48 to case) \\
1-lb. oval ( 48 to case) \\
1-lb. tall (48 to case) \\
All others- \\
\(1 / 2-\mathrm{lb}\). oval ( 48 to case) \\
1-1b. oval ( 48 to case) \(\qquad\) \\
Total \(\qquad\) \\
Albacore: \\
\(1 / 4-\mathrm{lb}\). round ( 48 to case) \\
\(1 / 4-1 \mathrm{~b}\). round ( 100 to case) \(\qquad\) \\
\(1 / 2\)-lb, round ( 48 to \\
2-lb. round (50 to case)
\(\qquad\) \\
\(1-\mathrm{lb}\). roind ( 48 to case) \\
4-lb. tall ( 12 to case) \\
Total \(\qquad\) \\
Tuna, bluefin and yellowfin: \\
\(1 / 4-\mathrm{lb}\). round ( 48 to case) \(\qquad\) case). \(\qquad\)
\end{tabular}} & & 11,831 & 196, 310 & \(1 / 4\) case) round ( 100 to & 3,162 & 1,647 & 33, 690 \\
\hline & \multirow[b]{2}{*}{21,086} & \multirow[b]{2}{*}{10,982} & \multirow[b]{2}{*}{217, 763} & \(1 / 2-\mathrm{lb}\). round ( 48 to case) & 122, 310 & 61,155 & 622,565 \\
\hline & & & & \(1-\mathrm{lb}\). round ( 48 to case) & 17,502 & 17, 502 & 159, 423 \\
\hline & 2, 413 & 2, 514 & 28, 952 & Total------------- & & 88, 997 & 942,356 \\
\hline & \multirow[b]{2}{*}{376
650} & 188 & 4, 51 & \multirow[t]{2}{*}{"Tonno:"
1/4-b. round ( 48 to} & & & \\
\hline & & 650 & 2,600 & & 21, 221 & 5,305 & 110,919 \\
\hline & \multirow[b]{2}{*}{53,993} & \multirow[b]{2}{*}{53,993} & \multirow[b]{2}{*}{295, 111} & & 1,467 & 764 & 14,670 \\
\hline & & & & \(1 / 2-\mathrm{lb}\). round ( 48 to case) & 1,575 & 788 & 13,478 \\
\hline & 38 & \multirow[t]{2}{*}{20} & \multirow[t]{2}{*}{190} & Tot & & 6,857 & 139, 067 \\
\hline & & & & \multirow[b]{3}{*}{\begin{tabular}{l}
Bonito: \\
1/4-lb. round ( 100 to \\
case)
\end{tabular}} & & & \\
\hline & 482 & 502 & 3,401 & & & & \\
\hline & & 2,148 & 14,835 & & & & \\
\hline & \[
601,111
\] & \[
601,111
\] & \[
2,518,843
\] & \(1 / 2-1 \mathrm{~b}\). round ( 48 to case) \(\qquad\) & & & \\
\hline & \multirow[t]{2}{*}{78} & \multirow[t]{2}{*}{78} & \multirow[t]{2}{*}{32} & Tota & & 5,404 & 58,900 \\
\hline & & & & \multirow[b]{3}{*}{\begin{tabular}{l}
Yellowtail: \\
\(1 / 2-\mathrm{lb}\). round ( 48 to case)
\end{tabular}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& 4,088 \\
& 315
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{array}{r}
2,044 \\
315
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{array}{r}
17,104 \\
1,890
\end{array}
\]} \\
\hline & 2, 567 & 1,284 & 12,835 & & & & \\
\hline & & & 262, 206 & & & & \\
\hline & & 715, 359 & 3, 361, 480 & Tota & & 2, 359 & 18, 994 \\
\hline & \multirow[b]{2}{*}{24,962} & \multirow[b]{2}{*}{6,240} & \multirow[b]{2}{*}{126, 139} & Miscellaneous: \({ }^{2}\) & \multirow[b]{2}{*}{1,336} & \multirow[b]{2}{*}{334} & \multirow[b]{2}{*}{4,866} \\
\hline & & & & \(1 / 4-\mathrm{lb}\). round ( 48 to case) & & & \\
\hline & & \multirow[b]{2}{*}{7,719} & \multirow[b]{2}{*}{222, 300} & \(1 / 2-\mathrm{lb}\). round ( 48 to & \multirow[b]{2}{*}{2,474} & \multirow[t]{2}{*}{1,237} & \multirow[b]{2}{*}{11,716} \\
\hline & 14,820 & & & case) & & & \\
\hline & 188, 235 & 94,118 & 1, 368,883 & \[
\begin{aligned}
& 1 / 2-1 \mathrm{~b} \text {. flat ( } 48 \text { to } \\
& \text { case) }
\end{aligned}
\] & 220 & 110 & 5,280 \\
\hline & & \multirow[t]{2}{*}{4,914} & 108, 514 & \multirow[t]{2}{*}{1-lb. round (48 to case)} & \multirow[t]{2}{*}{219} & \multirow[t]{2}{*}{219} & \multirow[t]{2}{*}{1,861} \\
\hline & & & \multirow[b]{3}{*}{\[
\begin{array}{r}
466,399 \\
12,700
\end{array}
\]} & & & & \\
\hline & 34,475 & \multirow[t]{2}{*}{34,475
635} & & \multirow[t]{2}{*}{\begin{tabular}{l}
\(1-\mathrm{lb}\). oval (48 to case) \\
1-1h. tall (48 to case)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{r}
205 \\
3,291
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
205 \\
3,291
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
1,640 \\
24,085
\end{array}
\]} \\
\hline & & & & & & & \\
\hline & & 148, 101 & 2,304, 935 & Tota & & 5,396 & 49,446 \\
\hline & \multirow{5}{*}{\[
\begin{array}{r}
37,537 \\
2,390
\end{array}
\]} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 9,384 \\
& 1,245
\end{aligned}
\]} & \multirow[b]{3}{*}{154, 757} & \multirow[t]{5}{*}{Grand total.} & & \multirow[t]{5}{*}{1, 068, 727} & \multirow[t]{5}{*}{8,119,109} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & 24,083 & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
1 Cases shown in this column have been reduced to the standard basis of forty-cight l-pound cans.
\({ }^{2}\) Includes fish flakes, abalone, mackerel, squid, shad, and shad roe.
}

\section*{WHOLESALE FISH TRADE}

The wholesale fish trade of California in 1922 was conducted in 60 establishments valued at \(\$ 1,023,904\) and employing \(\$ 195,074\) cash capital and 456 persons, who received wages totaling \(\$ 487,115\).

The following table gives the detailed statistics of the wholesale fish trade of California in 1922:

Investment, persons engaged, and wages paid in the wholesale fish trade of California in 1922
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Localities} & \multicolumn{2}{|l|}{Establishments} & Cash capital & Persons engaged & Wages \\
\hline & \multirow[t]{8}{*}{Num.
ber
11
4
11
8
8
8
3
3
12} & & & & \\
\hline San Francisco & & \$47, 730 & \$30,000 & & \$64, 417 \\
\hline San Pedro-- & & 501, 209 & 28,014 & 68 & 80, 208 \\
\hline San Diego-- & & 121, 293 & 29, 860 & 118 & 99, 023 \\
\hline Los Angeles. & & 136, 682 & 38, 000 & 88 & 127, 265 \\
\hline Monterey...----- & & 22, 740 & 3,000 & 12 & 6, 240 \\
\hline Sacramento and Pittsburg & & 46,500 & 8800 & 19 & 8,860 \\
\hline Miscellaneous localities... & & 77, 800 & 27,000 & 56 & 46, 552 \\
\hline Total & 60 & 1, 023,904 & 195, 074 & 456 & 487, 115 \\
\hline
\end{tabular}

FISHERIES OF THE PACIFIC COAST STATES, 1923
Realizing the value, both to the conservationist and to the fish trade, of annual statistics on our fisheries, the general canvass of the Pacific Coast States for 1922 was followed by a similar though less detailed cauvass for 1923 . This was done in part to determine the feasibility of taking annual statistics with the limited personnel and funds available for this purpose. The Pacific Coast States were particularly favorable for such a trial, for a certain amount of statistics on the fisheries are collected annually by the State organizations responsible for the administration of the fisheries of those States. In California statistics were available on the number and type of fishing boats and vessels, number of fishermen, and the catch of each species by counties or by groups of counties. In Washington and Oregon statistics were available on the number of fishermen and the catch of certain fishes in Territorial waters. The statistics given herein are the available State statistics, supplemented and made uniform in character and scope by canvassing the industry for the necessary additional information.

In 1922 the total number of fishermen in the Pacific Coast States was 14,223 , the number of fishing vessels 555 , the number of boats 5,741 , and the total catch \(409,885,597\) pounds, valued at \(\$ 18,914,976\). The following table gives the detailed statistics, by States, of the Pacific Coast States in 1923:

Fisheries of the Pacific Coast States, 1923
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|l|}{Oregon} & \multicolumn{2}{|l|}{California} & \multicolumn{2}{|l|}{Total} \\
\hline Vessel fishery: & \multirow[t]{4}{*}{Number 1,945 267
6,980} & \multirow[t]{3}{*}{Value} & \multirow[t]{2}{*}{Number \({ }_{15}\)} & \multirow[t]{2}{*}{Value} & & \multirow[t]{2}{*}{Value} & \multirow[t]{2}{*}{Number
\[
3,932
\]} & Value \\
\hline Fishermen. & & & & & \[
1,972
\] & & & \\
\hline Vessels.- & & & 3 & & 285 & & 555 & \\
\hline Tonnage... & & & 44 & & 4, 071 & & 11, 095 & \\
\hline Shore fishery: & & & & & & & 10,309 & \\
\hline Power boats & 3,454 & & 2, 042 & & 1,307 & & 5,100 & \\
\hline Sail and row boats. & 289 & & 233 & & 135 & & 657 & \\
\hline FISH & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Albacore & & & & & 12, 514, 833 & 1, 627, 193 & 12, 514, 833 & \$1, 627, 193 \\
\hline Anchovies. & & & & & 307, 074 & 19, 292 & 307, 074 & 19, 292 \\
\hline Barracuda. & & & & & 7, 200, 575 & 575, 285 & 7, 200, 575 & 575, 285 \\
\hline Bonito & & & & & 1, 115, 2477 & 47, 310 & 1,115, 247 & 47,310 \\
\hline Carp. & 383, 705 & \$11, 511 & & & 148, 607, & 2,972 & 532, 312 & 14,483 \\
\hline
\end{tabular}

Fisheries of the Pacific Coast States, 1923-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|l|}{Oregon} & \multicolumn{2}{|l|}{California} & \multicolumn{2}{|l|}{Total} \\
\hline FISH-continued & pounds & & Pounds & Value & & & & Value \\
\hline Catfish & 1,230 & \$62 & Pounas & & 129, 286 & \[
\$ 23,271
\] & \[
130,516
\] & \$23,333 \\
\hline Cod, fresh & 162, 642 & 7,167 & & & & & 162, 642 & 7,167 \\
\hline Cod, salted & 3, 680, 711 & 184,036 & & & 1, 398, 000 & 69,900 & 5, 078, 711 & 253,936 \\
\hline Dels-.-.-.........- & 69 & & & & & & 18,249
69 & 548
3 \\
\hline Flounders. & 195, 600 & 4,092 & 5,000 & \$150 & 4,282, 659 & 459,840 & 4, 483, 259 & 464, 082 \\
\hline Grayfish & 59,400 & 85 & & & 360,363 & 1, 802 & 419,763 & 1,887 \\
\hline Hake--- & & & & & 78,969 & 789 & 78, 969 & 789
876 \\
\hline Hardhea & 24, 151, 374 & & & 136, 056 & 9,563 & 96 & \(25,015,540\)
9,563 & , 876 \\
\hline Herring & 425, 389 & 4,254 & 93, 750 & 1,876 & 383, 950 & 3,994 & 903, 089 & 10, 124 \\
\hline Kingfish & & & & & 411,564 & 10,301 & 411,564 & 10,301 \\
\hline "Lingcod & 223,088 & 5, 292 & 77, 500 & 2,325 & 467, 357 & 23, 369 & 767, 945 & 30, 986 \\
\hline Maekerel & & & & & 3, 592, 446 & 144, 082 & 3, 592, 466 & 144, 083 \\
\hline Mullet. & & & & & 74, 225 & 8,065 & 74, 225 & 8,065 \\
\hline Perch. & 53,743 & 2, 224 & 15,000 & 750 & 359, 682 & 19,682 & 428, 425 & 22,656 \\
\hline Pike, Sacramento & & & & & 50, 4,624 & & 4, 624 & \\
\hline Pilchard or sardine & & & & & 159, 197, 006 & 704, 280 & 159, 197, 006 & 704,280 \\
\hline Pompano & & & & & 32, 918 & 13, 298 & 32, 918 & 13, 298 \\
\hline Rock bas & & & & & 357, 269 & 30,301 & 357, 269 & 30,301 \\
\hline Rockfishe & 192, 997 & 4, 625 & 62, 510 & 1,875 & 4, 950,244 & 250, 314 & 5, 205, 751 & 256, 814 \\
\hline Sablefish. & 2, 226, 480 & 112, 074 & 250,000 & 12,500 & 538,292 & 32, 297 & 3, 014, 772 & 156, 871 \\
\hline Salmon. & 71, 720, 053 3 & , 512, 467 & ,278, 859 & 57, 937 & 7, 090, 260 & 638, 122 & 106, 089, 172 & 7,208, 526 \\
\hline Seulpin & & & & & 60, 466 & 6,046 & 60, 466 & 6,046 \\
\hline Sea bass, black & & & & & 226, 995 & 22, 168 & 226, 995 & 22,168 \\
\hline Sea bass, white, or squeteague. & 532 & 13 & & & 2, 520, 263 & 224, 869 & 2, 520,795 & 224,882 \\
\hline Shad..- & 88,767 & 2, 710 & 403, 859 & 6, 072 & 1, 285, 383 & 58, 088 & 1, 778, 009 & 66,870 \\
\hline Sheepshea & & & & & 31, 628 & 639 & 31, 628 & 639 \\
\hline Skates -- & 7,210 & 74 & & & 133, 988 & 717 & 141, 198 & 791 \\
\hline Skipjack or striped tuna & & & & & 11,462, 522 & 298, 085 & 11, 462, 522 & 298, 085 \\
\hline Smelt & 1,178, 551 & 28, 623 & 277, 195 & 2,771 & 806, 380 & 24, 149 & 2, 262, 126 & 55,543 \\
\hline Sole- & 119, 904 & 3,637 & & & 7,086,035 & 286, 631 & 7, 205, 939 & 290, 268 \\
\hline Steelhead & 1,400,973 & 100,902 & 2, 855,543 & 200, 181 & 13, 311 & 422 & 4, 259, 527 & 301, 505 \\
\hline Striped bas & & & & & 909, 573 & 90, 957 & 909, 573 & 90, 957 \\
\hline Sturgeon. & 84, 057 & 6,798 & 124,121 & 9,928 & & & 208, 178 & 16, 726 \\
\hline Suckers & & & & & 342 & 3 & 342 & \\
\hline Tomcod & 784 & & & 400 & 11, 4176 & 3, 341 & 47, 551 & 1, 7 , 754 \\
\hline Tuna, bluefin & & & & & 3,301,087 & 165, 885 & 3,301, 087 & 165, 885 \\
\hline Tuna, yellowfin & & & & & 10, 836, 925 & 600,412 & 10, 836, 925 & 600,412 \\
\hline Tuna, mix & & & & & 662, 370 & 35,471 & 662,370 & 35,471 \\
\hline Whitefish & & & & & 39,908 & 2,089 & 39, 908 & 2, 089 \\
\hline Yellowtail & & & & & 3, 979, 611 & 217, 050 & 3,979,611 & 217, 050 \\
\hline Other fish & & & & & 252, 012 & 21, 055 & 252, 012 & 21,055 \\
\hline \multicolumn{9}{|l|}{} \\
\hline SuELLFISH & & & & & & & & \\
\hline Crabs & \multirow[t]{3}{*}{1, 145,540} & \multirow[t]{2}{*}{54,384} & \multirow[t]{3}{*}{\[
\begin{array}{r}
359,283 \\
141,800
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 47,737 \\
& 12,000
\end{aligned}
\]} & \multirow[t]{2}{*}{1, 075, 800} & 148,459 & \multirow[t]{2}{*}{\[
\begin{array}{r}
2,580,623 \\
141,800
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
250,580 \\
12,000
\end{array}
\]} \\
\hline Crawfish & & & & & & & & \\
\hline Spiny lo & & & & & 1, 092, 858 & \multirow[t]{2}{*}{225,656
66,801} & \multirow[t]{2}{*}{\begin{tabular}{l}
1,092, 858 \\
\(1,148,015\)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{r}
225,656 \\
71,305
\end{array}
\]} \\
\hline Shrimp & 34,657 & 4, 504 & - & & 1, 113, 358 & & & \\
\hline Clams: & & & & & \multirow[t]{2}{*}{36,117} & \multirow[t]{2}{*}{3,973} & \multirow[t]{2}{*}{\[
\begin{array}{r}
36,117 \\
598,685
\end{array}
\]} & 3,973 \\
\hline 1 ard & \multirow[t]{2}{*}{598, 685} & \multirow[t]{2}{*}{17, 276} & \multirow[t]{2}{*}{-.-.-.-.---} & & & & & 17,276 \\
\hline Mixed & & & & & 25,845 & 2,076 & 25, 845 & 2,076 \\
\hline Pismo & & & & & 237, 918 & 16,656 & 237, 948 & 16,656 \\
\hline Razor & \multirow[t]{2}{*}{983, 900} & \multirow[t]{2}{*}{44,275} & \multirow[t]{2}{*}{137,305} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 6,180 \\
& 1,429
\end{aligned}
\]} & --.---- & & 1, 121, 205 & \multirow[t]{2}{*}{50,455} \\
\hline Soft-- & & & & & \multirow[t]{2}{*}{\[
\begin{array}{r}
283,095 \\
60,026
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
11,323 \\
3,002
\end{array}
\]} & \multirow[t]{2}{*}{314,811
60,026} & \\
\hline Mussels & & & & & & & & \[
\begin{array}{r}
12,752 \\
3,002
\end{array}
\] \\
\hline Oysters, eastern, market & & & & & 9,600 & 3,360 & 9,600 & 3,360 \\
\hline Oysters, native, market. & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{267, 000} & \multirow[t]{2}{*}{19,200} & \multirow[t]{2}{*}{16,800} & & & & 283, 800 \\
\hline A balone & & & & & 1,587, 733 & 60,367 & \[
\begin{aligned}
& 2,759,160 \\
& 1,587,733
\end{aligned}
\] & 60, 367 \\
\hline Octopu & \multirow[t]{2}{*}{52,377} & \multirow[t]{2}{*}{1,573} & \multirow[t]{3}{*}{71} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{110,222
\(1,180,446\)} & 11,022 & 162, 670 & \multirow[t]{2}{*}{12,599
7,680} \\
\hline Squid. & & & & & & 7,680 & 1,180, 446 & \\
\hline Terrapin & & & & & 1,270 & 77 & 1,270 & 77 \\
\hline Total & 5, 555, 119 & 389, 012 & 689, 375 & 84, 150 & 6, 814,318 & 560, 452 & 13, 058, 812 & 1,033, 614 \\
\hline whale products & & & & & & & & \\
\hline Sperm oil & \multirow[t]{3}{*}{\[
\begin{array}{r}
347,250 \\
1,375,500 \\
744,000
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 18,500 \\
& 91,500 \\
& 18,51
\end{aligned}
\]} & \multirow[t]{3}{*}{} & & 15,585 & 1,282 & 362, 835 & \\
\hline Whale oil & & & & & \multirow[t]{2}{*}{4, 644, 293 2, 370, 000} & 316, 450 & 6, 019, 793 & \multirow[t]{2}{*}{\[
\begin{array}{r}
407,950 \\
100,306
\end{array}
\]} \\
\hline Other products & & & & & & 81,796 & 3, 114, 000 & \\
\hline Total & 2, 466,750 & 128,510 & -------- & -------- & 7,029, 878 & 399, 528 & 9, 496, 628 & 528, 038 \\
\hline Grand total & \multicolumn{2}{|l|}{\[
114,379,148,7,692,005
\]} & \[
33,001,878
\] & \[
3,516,971
\] & \[
262,533,371
\] & \[
7,726,160
\] & \[
409,914,397
\] & \(18,935,136\) \\
\hline
\end{tabular}

\section*{WASHINGTON}

In 1923 the fisheries of Washington employed 5,399 fishermen, 267 fishing vessels, 1,751 power boats, 289 rowboats, sink floats, and scows, and yielded \(114,379,148\) pounds of fishery products, valued at \$7,692,005.

The vessel fishery was carried on largely with gas vessels, all of the 267 mentioned above being of this type with the exception of 3 steamers at Grays Harbor engaged in whaling, 1 steamer and 2 schooners in King County in the line fishery, and 3 schooners in Skagit County also engaged in the line fishery. The total number of fishermen on vessels was 1,945 , and the yield of vessels amounted to \(56,323,616\) pounds, valued at \(\$ 4,358,928\). The shore and boat fisheries employed 3,454 fishermen and yielded \(58,055,532\) pounds, valued at \(\$ 3,333,077\).

The following tables give the number, crew, and tonnage of fishing vessels, by apparatus employed and counties; the number of power and other boats employed in the shore or boat fisheries, by fishing apparatus and counties; the number of fishermen in the shore and boat fisheries, by counties; the yield of the vessel fisheries, by counties; the yield of the shore or boat fisheries, by counties; and the total yield of the fisheries of Washington, by counties.

Vessels engaged in the fisheries of Washington in 1923, by apparatus and persons
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Fishery} & \multicolumn{3}{|l|}{Grays Harbor
County} & \multicolumn{3}{|l|}{Island County} & \multicolumn{3}{|l|}{Jefferson County} & \multicolumn{3}{|l|}{King County} \\
\hline & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage \\
\hline Lines. & \[
\begin{gathered}
\text { Num- } \\
\text { ber }
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Net } \\
& \text { ton }
\end{aligned}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber }
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber }
\end{gathered}
\] & \[
\begin{gathered}
\text { Nct } \\
\text { tons }
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
2
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
6
\end{gathered}
\] & \[
\begin{array}{r}
\text { Net } \\
\text { tons } \\
13
\end{array}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
134
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
92.1
\end{gathered}
\] & \[
\begin{gathered}
\text { Net } \\
\text { tons } \\
3,335
\end{gathered}
\] \\
\hline Purse seines & 2 & 14 & 48 & 1 & 7 & 10 & 1 & 8 & 16 & 29 & 197 & 577 \\
\hline Haul seines Beam trawls & & & & & & & & & & 2
1 & 13. & 34
20 \\
\hline Drag bag nets. & & & & & & & & & & 3 & 18 & 45 \\
\hline Whaling apparatu & 3 & 30 & 195 & & & & & & & & & \\
\hline Total \({ }^{1}\) & 5 & 44 & 243 & 1 & 7 & 10 & 3 & 14 & 29 & 158 & 1,095 & 3,842 \\
\hline \multirow[b]{2}{*}{Fishery} & \multicolumn{3}{|l|}{Kitsap County} & \multicolumn{3}{|l|}{Pierce County} & \multicolumn{3}{|l|}{San Juan County} & \multicolumn{3}{|l|}{Skagit County} \\
\hline & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage \\
\hline Lines. & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
9
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
53
\end{gathered}
\] & \[
\begin{gathered}
\text { Net } \\
\text { tons } \\
111
\end{gathered}
\] & \[
\underset{{ }_{6}}{\text { Numm- }^{\prime}}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
29
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Net} \\
\text { tons } \\
81
\end{gathered}
\] & Number & \[
\underset{b \in r}{\text { Num- }}
\] & \[
\begin{gathered}
\text { Net } \\
\text { tons }
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
{ }_{\text {Ber }}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Num- } \\
& \text { ber } \\
& 109
\end{aligned}
\] & \[
\begin{gathered}
\text { Net } \\
\text { tons } \\
921
\end{gathered}
\] \\
\hline Purse scines & 20 & 128 & 300 & 30 & 227 & 681 & 1 & 5 & 10 & 7 & 57 & 170 \\
\hline Beam trawls & 2 & 12 & 34 & & & & & & & & & \\
\hline Drag bag nets & 1 & 7 & 17 & & & & & & & & & \\
\hline Crab traps.-- & & & & & & & & & & 1 & 8 & 25 \\
\hline Total \({ }^{1}\) & 22 & 138 & 317 & 36 & 256 & 762 & 1 & 5 & 10 & 11 & 166 & 1,091 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Exclusive of duplication.
}
\(V\) essels engaged in the fisheries of Washington in 1923, by apparatus and persons-
Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Fishery} & \multicolumn{3}{|l|}{Snohomish County} & \multicolumn{3}{|l|}{Whatcom County} & \multicolumn{3}{|c|}{Total} \\
\hline & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage \\
\hline & Number & Number & Net tons & Number & Number & Net tons & Number & Number & Net tons \\
\hline Purse Seines & 12 & 89 & 256 & & & 420 & 155 & 1,121 & 4,461
\(\mathbf{2 , 4 8 8}\) \\
\hline Haul seines. & & & & 3 & 21 & 69 & 11 & 74 & 190 \\
\hline Beam trawls. & & & & & & & 3 & 19 & 54 \\
\hline Drag bag nets. & & & & & & & 4 & 25 & 62 \\
\hline Whaling apparatus & & & & & & & 3 & 30 & 195 \\
\hline Crab traps.-- & 2 & 14 & 25 & 1 & 8 & 18 & 4 & 30 & 68 \\
\hline Total \({ }^{1}\) & 12 & 89 & 256 & 18 & 131 & 420 & 267 & 1,945 & 6,980 \\
\hline
\end{tabular}

Boats (by apparatus) and persons engaged in the shore fisheries of Washington in 1923, by counties


\footnotetext{
\({ }^{1}\) Exclusive of duplication.
}

\section*{Boats (by apparatus) and persons engaged in the shore fisheries of Washington in 1923, by counties-Continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Boats, by apparatus & Skagit & \[
\begin{aligned}
& \text { Ska- } \\
& \text { mania }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Sno- } \\
& \text { hom- } \\
& \text { ish }
\end{aligned}
\] & \[
\begin{gathered}
\text { Thurs- } \\
\text { ton }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Wah- } \\
& \text { kia- } \\
& \text { kum }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Walla } \\
& \text { Walla }
\end{aligned}
\] & Whatcom & Whitman & Total \\
\hline Gill nets, drift: Gas & 85 & 1 & 12 & & 162 & & & & 527 \\
\hline Gill nets, set: & & & & & & & & & \\
\hline Gas & 1 & 6 & & & 7 & & 1 & & 127 \\
\hline Row- & & & & & & & & & \\
\hline Haul seines: & 6 & 1 & 8 & 7 & 4 & & 2 & 3 & 94 \\
\hline Row & & & & & 2 & & & & 6 \\
\hline Pound nets: Gas & 13 & 2 & & & 21 & & 35 & & 176 \\
\hline Lines: Gas - & 45 & 2 & 45 & 6 & 2 & 3 & 30 & & 698 \\
\hline Drag bag nets: Gas & 3 & & 1 & & & & & & 18 \\
\hline Dip bag nets: Gas. & 1 & & 2 & 5 & & & 1 & & 67 \\
\hline Reef nets: Gas..- & & & & & & & & & 5 \\
\hline Beam trawl: Gas & 1 & & 1 & 1 & & & & & 18 \\
\hline Fish wheels: Gas. & & & & & & & & & \\
\hline Brush wier: Gas & & & & & & & 1 & & \\
\hline Ring nets: Gas . & & & & & & & & & \\
\hline Crab traps: Gas & 25 & & 10 & & & & 8 & & 65 \\
\hline Clam hoes, shovels, and forks: Gas & & & & & & & & & \\
\hline Oyster forks, rakes, and baskets: & & & & & & & & & \\
\hline Row, sink floats, and scows. & 8 & & & \[
\begin{array}{r}
14 \\
168
\end{array}
\] & & & & & 218 \\
\hline Total: 1 & & & & & & & & & \\
\hline Gas.---- & 146 & 12 & 75 & 31 & 184 & 3 & 80 & 3 & 1,751 \\
\hline Row, sink floats, and scows & 8 & 2 & & 168 & 2 & & & & 289 \\
\hline Persons engaged. & 217 & 17 & 90 & 113 & 293 & 3 & 172 & 6 & 3,454 \\
\hline
\end{tabular}

1 Exclusive of duplication.
Yield of the fisheries of Washington in 1923, by counties and species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Asotin} & \multicolumn{2}{|l|}{Benton} & \multicolumn{3}{|c|}{Clallam} & \multicolumn{2}{|l|}{Clarke} \\
\hline Card & Pounds & Value & Pounds & Value & Pounds & Val & & \begin{tabular}{l}
Pounds \\
190, 080
\end{tabular} & \begin{tabular}{l}
Value \\
\$5,702
\end{tabular} \\
\hline Cod, fresh & & & & & 463 & & 14 & & \\
\hline Dolly Varden trout & & & & & & & 1 & & \\
\hline Halibut & & & & & 500, 220 & & & & \\
\hline "Lingcod" & & & & & & & & & \\
\hline Salmon: & & & & & & & & & \\
\hline Blueback or sockeye & \[
\begin{aligned}
& 4,000 \\
& 8,609
\end{aligned}
\] & \[
\begin{array}{r}
\$ 540 \\
1,205
\end{array}
\] & & & 651, 498 & 8 66, & & 84,324
307,636 & 11, 385 \\
\hline Chum & & & & & 4, 602 & & 116 & 13,841 & 139 \\
\hline Silver. & & & & & 765, 901 & 1 34, & & 61, 436 & 3,073 \\
\hline Shad... & & & & & & & & 31, 414 & 471 \\
\hline Smelt. & & & & & 6, 802 & & 544 & 9,700 & 97 \\
\hline Steelhead trout & 19, 592 & 1,371 & & & 2,080 & & 187 & 58, 484 & 4,095 \\
\hline Sturgeon. & 218 & 17 & 330 & \$26 & & & & 8,682 & 694 \\
\hline Crabs.-- & & & & & 57, 13 & & 857 & & \\
\hline Octopus. & & & & & 42, 06 & & 262 & & \\
\hline Total & 32,419 & 3,133 & 330 & 26 & 2, 030, 864 & 4 168, & & 765, 597 & 68,854 \\
\hline Species & Cowl & litz & Garf & field & Gra & & & rays Ha & rbor \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & & \(u n d s\) & Value \\
\hline Salmon: & & & & & & & & & \\
\hline Blueback or sockeye & 225, 009 & \$30, 376 & 1,596 & \$215 & & & & 15, 249 & \$2, 110 \\
\hline Chinook. & 435, 622 & 60,847 & 360 & 32 & & & & 18,761 & 58, 632 \\
\hline Chum & 148, 823 & 1,489 & & & & & 1, 52 & 27, 843 & 23, 852 \\
\hline Humpback & 172,910 & & 2880 & 144 & & & 1,132 & 38,693 & 79, 188 \\
\hline Shad & 5, 385 & & 2, 88 & & & & & 189 & 37,399
3 \\
\hline Smelt & 901, 495 & 9,014 & & & & & & & \\
\hline Steelhead trout & 144, 345 & 10, 105 & & & & & & 6,499 & 608 \\
\hline Sturgeon. & 7, 206 & 574 & & & & & & 7,727 & 605 \\
\hline Crabs.. & & & & & & & & 64, 724 & 3,136 \\
\hline Clams, razor & & & & & & & & 39, 138 & 28,762 \\
\hline Sperm oil & & & & & & & & 47, 250 & 18,500 \\
\hline Whale oil & & & & & & & 1, 37 & 75, 500 & 91,500 \\
\hline Other whale products. & & & & & & & & 44, 000 & 18,510 \\
\hline Total & 2, 040,795 & 121, 134 & 4,836 & 391 & 193, 625 & 5,809 & 8,25 & 53, 061 & 362,805 \\
\hline
\end{tabular}

Yicld of the fisheries of Washington in 1923, by counties and species-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Specics & \multicolumn{2}{|l|}{Pierce} & \multicolumn{2}{|l|}{San Juan} & \multicolumn{2}{|l|}{Skagit} & \multicolumn{2}{|l|}{Skamania} \\
\hline Cod, fresh & \[
\begin{array}{r}
\text { Pounds } \\
630
\end{array}
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 19
\end{aligned}
\] & \[
\begin{array}{r}
\text { Pounds } \\
44
\end{array}
\] & Value \$1 & Pounds
\[
1,360
\] & Value \(\$ 41\) & Pounds & \(V\) alue \\
\hline Cod, salted & & & & & 2, 324,000 & 116, 200 & & \\
\hline Flounders. & 748 & 15 & & & +437 & & & \\
\hline Halibut.. & 1,118,210 & 145, 767 & 1,200 & 190 & 8,492 & 1,347 & & \\
\hline "Lingeod" & 1,296 & 26 & 3, 013 & 78 & 6,030
2,571 & 60
51 & & \\
\hline Perch & 4,091 & 163 & & & & & & \\
\hline Rockfish & 295 & 6 & 9,137 & 183 & 1,159 & 24 & & \\
\hline Sablefish & 47,000 & 2,350 & & & & & & \\
\hline Salmon: & & & & & & & & \\
\hline Blueback or sockeye & 310, 704 & 43,438 & 59,976 & 8,516 & 412, 350 & 59, 036 & 9,362 & \$1. 263 \\
\hline Chinook & 221,256
\(1,336,679\) & 22,379
32,203 & 217,226
54,517 & 21,518
1,348 & \(1,612,271\)
587,690 & 146,869
14,522 & 29,723
12,072 & 4,161 \\
\hline Humpback & 4,766, 248 & 150,183 & 258,505 & 8,616 & 3,358, 766 & 117,851 & & \\
\hline Silver--... & 1,043, 282 & 33,445 & 312,641 & 12,148 & 1,258, 753 & 40,336 & 14,393 & 719 \\
\hline Sea bass, white, or squeteague & 88 & 2 & & & \({ }_{220}^{273}\) & \({ }^{6}\) & & \\
\hline Skates. & 500 & 5 & & & 30 & 1 & 23 & 3 \\
\hline
\end{tabular}

Yield of the fisheries of Washington in 1923, by counties and species-Continued


Yield of the vessel fisheries of Washington in 1923, by counties and species

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Snohomish} & \multicolumn{2}{|l|}{Whatcom} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Cod, fresh & & & & & 150, 484 & \$6, 802 \\
\hline Cod, saltcd & & & & & 3, 680, 711 & 184, 036 \\
\hline Flounders.- & & & & & & \\
\hline Halibut.. & & & & & 23, 640, 663 & 3,119, 622 \\
\hline Herring & & & 49,600 & \$496 & 172, 820 & 1,729 \\
\hline "Lingcod" & & & & & 210,199 & 5, 033 \\
\hline Perch & & & & & 7,667 & 350 \\
\hline Rock fish. & & & & & 165, 611 & 4,073 \\
\hline Sablefish. & & & & & 2, 226, 480 & 112, 074 \\
\hline Salmon: & & & & & & 116,785 \\
\hline Clinook ---.... & 25, 360 & \(\$ 12,354\)
2,270 & 12,961 & 1,148 & 154, 248 & 114,042 \\
\hline Chum. & . 589, 193 & 14,748 & 844, 608 & 20, 254 & 5,500,301 & 130, 293 \\
\hline Humpback & 1,690, 430 & 53, 383 & 1,831, 745 & 57,367 & 14, 205,132 & 449, 752 \\
\hline Silver & 326, 616 & 9, 434 & 201, 593 & 5, 819 & 2, 812, 830 & 80, 814 \\
\hline Skate & 1,000 & 10 & & & 1,105 & 11 \\
\hline Smclt & & & 8,541 & 683 & 12, 680 & 1,015 \\
\hline Sole --....-...- & & & & & 38, 662 & 1, 200 \\
\hline Steelhead trout & 54 & 5 & 104 & 9 & 755
380 & 62
46 \\
\hline Crabs.- & 17,578 & 879 & 4,620 & 231 & 34,958 & 1,748 \\
\hline Shrimp- & & & & & 7,063 & 918 \\
\hline Sperm oil & & & & & 347, 250 & 18,500 \\
\hline Whale oil & & & & & 1,375,500 & 91,500 \\
\hline Other whale products & & & & & 744,000 & 18,510 \\
\hline Total & 2, 738, 083 & 94, 083 & 3, 054, 750 & 99, 169 & 56, 323,616 & 4,358,928 \\
\hline
\end{tabular}

\section*{Yield of the shore fisheries of Washington in 1923, by counties and species}


Yield of the shore fisheries of Washington in 1923, by counties and species-Contd.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Klickitat} & \multicolumn{2}{|c|}{Mason} & \multicolumn{2}{|l|}{Okanogan} & \multicolumn{2}{|l|}{Pacific} \\
\hline Cod & Pounds & Value & \[
\begin{array}{r}
\text { Pounds } \\
46
\end{array}
\] & \[
\begin{array}{r}
\text { Value } \\
\$ 1
\end{array}
\] & Pounds & Value & Pounds & Value \\
\hline Flounders & & & 115 & 2 & & & & \\
\hline "Lingcod" & & & 16 & 1 & & & & \\
\hline Perch --- & & & 16,810 & 672 & & & 550 & \$22 \\
\hline Rockfish & & & 941 & 19 & & & & \\
\hline Salmon: \({ }_{\text {Blueback or socke }}\) & & & & & & & & \\
\hline Chiueback or socke & 2,
27, 250 & \(\$ 406\)
3,097 & 4,167 & 427 & & & 2, 231,572 & 31,262
267,419 \\
\hline Chum. & 12,919 & 130 & & & & & 259, 099 & 4,674 \\
\hline Silve & 203, 328 & 8,000 & 4,166 & 198 & & & 1,107, 557 & 52,749 \\
\hline Shad-- & & & & & & & 43, 238 & 1,977 \\
\hline Smelt & & & 25,420 & 2,017 & & & & \\
\hline Sole. & & & 1,240 & 37 & & & & \\
\hline Steelhead trout & 161, 005 & 12, 508 & & & & & 454, 424 & 31, 815 \\
\hline Sturgeon & 7,102 & 572 & & & 720 & \$58 & 21,019 & 1,762 \\
\hline Crabs.- & & & & & & & & 10,648 \\
\hline Shrimp & & & 2, 880 & 374 & & & & \\
\hline Clams, hard Clams, razor & & & 11, 569 & 463 & & & 287, 686 & 12,945 \\
\hline Oysters.-- & & & 300, 000 & 28,000 & & & 28, & 12,94 \\
\hline Total & 414, 541 & 24,713 & 367, 370 & 32, 211 & 720 & 58 & 4, 620, 476 & 415, 273 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Pierce} & \multicolumn{2}{|l|}{San Juan} & \multicolumn{2}{|l|}{Skagit} & \multicolumn{2}{|l|}{Skamania} \\
\hline Cod. & Pounds 630 & \[
\begin{array}{r}
\text { Value } \\
\$ 19
\end{array}
\] & Pounds 44 & \[
\begin{array}{r}
\text { Value } \\
\$ 1
\end{array}
\] & Pounds 1,360 & Value \$4 & Pounds & Value \\
\hline Flounders & 748 & 15 & & & 1,437 & 9 & & \\
\hline Halibut.- & & & 1,200 & 190 & 8,492 & 1,347 & & \\
\hline Herring & & & & & 6,030 & 60 & & \\
\hline "Lingcod" & 295 & 3 & 3,913 & 78 & 2,571 & 51 & & \\
\hline Perch---. & \[
4,091
\] & 163 & & & & & & \\
\hline Rockfish & 295 & 6 & 9, 137 & 183 & 1,159 & 24 & & \\
\hline \begin{tabular}{l}
Salmon: \\
Blueback or sockey
\end{tabular} & 552 & 78 & 59,976 & 8,516 & 392, 400 & 56, 241 & 9,362 & \$1,263 \\
\hline Chinook-.-------- & 200, 396 & 20, 530 & 217, 226 & 21,518 & 1,610,282 & 146, 692 & 29,723 & 4,161 \\
\hline Chum- & , 305 & - 8 & 23, 103 & 2188 & 267, 405 & 6,738 & 12,072 & 121 \\
\hline Humpback & 2,180 & 73 & 251, 505 & 8, 616 & 2, 928, 475 & 103, 955 & & \\
\hline  & 204,666 & 9,640 & 310, 241 & 12, 079 & 1, 131, 793 & 36,647 & 14,393 & 719 \\
\hline Sea bass, white, or squeteague Shad & 88 & 2 & & & 277
220 & \({ }_{11}^{6}\) & 233 & 3 \\
\hline Skate- & 500 & 5 & & & 30 & 1 & & \\
\hline Smelt & 13, 857 & 1, 075 & 579 & 46 & 8,717 & 698 & & \\
\hline Sole & 18, 300 & 549 & & & 1,460 & 44 & & \\
\hline Steelhead trout & & & 16 & 1 & 22, 088 & 1,988 & 32, 192 & 2,253 \\
\hline Sturgeon & & & & & 4,145 & 373 & 4, 813 & 386 \\
\hline Tomeod. Crabs & \[
\begin{gathered}
274 \\
594
\end{gathered}
\] & 3 & & & 353, 870 & 17,691 & & \\
\hline Shrimp & 2,457 & 319 & & & 13, 054 & 1,697 & & \\
\hline Clams, hard & 57,240 & 2, 290 & & & 7,251 & 290 & & \\
\hline Oysters.- & & & & & 99, 960 & 5,000 & & \\
\hline Octopus & 1,250 & 38 & 200 & 6 & 1,206 & 37 & & \\
\hline Total & 508, 719 & 34,849 & 884, 140 & 51,812 & 6, 862, 682 & 379,644 & 102,788 & 8,906 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Snohomish} & \multicolumn{2}{|l|}{Thurston} & \multicolumn{2}{|l|}{Wahkiakum} & \multicolumn{2}{|l|}{Walla Walla} \\
\hline Flounders & \begin{tabular}{l}
Pounds \\
121, 314
\end{tabular} & \[
\begin{gathered}
\text { Value } \\
\$ 2,427
\end{gathered}
\] & \[
\begin{gathered}
\text { Pounds } \\
120
\end{gathered}
\] & Value \$2 & Pounds & Value & Pounds & Value \\
\hline \#lerring-- & 200 & 2 & & & & & & \\
\hline "Lingcod" & 594 & 13 & & & & & & \\
\hline Perch & 1,822 & 73 & & & & & & \\
\hline Rockfish & 401 & 9 & & & & & & \\
\hline Salmon: & & & & & & & & \\
\hline Blueback or soc & 7,680
235,503 & 891
23,588 & & 3,843 & 1, 127, 652 & \$17, \({ }^{179} 4\) & & \\
\hline Chum & 23, 22,971 & 23, 588 & 37,503 & 3,843 & 1, 287, 404 & 179,407
2,576 & & \\
\hline Humpb & 3,745 & 125 & & & & & & \\
\hline Shad.---- & 271,472 & 11,645 & 37, 494 & 1,781 & 434,509
8,019 & & 198 & \$10 \\
\hline Smeit. & 4,302 & 344 & 87,394 & 6,992 & & & & \\
\hline Steelhead tr & 44 & 1 & & & 451, 633 & 31, 612 & & \\
\hline Sturgeon. & & & & & 17,380 & 1,391 & 475 & 38 \\
\hline Crabs-- & 60, 038 & 3, 002 & & & & & & \\
\hline Shrimp \(\qquad\) & 400 & 16 & 3,124 & 406 & & & & \\
\hline Clams, razor & & & & & 2,651 & 119 & & \\
\hline Oysters. & & & 2, 340,000 & 234, 000 & & & & \\
\hline Octopus & 208 & 6 & -------.-- & & & & & \\
\hline Total & 730,694 & 42, 716 & 2,505,635 & 247, 024 & 2, 580, 929 & 254,314 & 673 & 48 \\
\hline
\end{tabular}

Yield of the shore fisheries of Washington in 1923, by counties and species-Contd.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Whatcom} & \multicolumn{2}{|l|}{Whitman} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Carp-.. & & & & & 383, 705 & \[
\$ 11,511
\] \\
\hline Cod. & & & & & 12, 158 & 365 \\
\hline Dolly Varden trout & & & & & & 3 \\
\hline Flounders.-- & & & & & 195, 147 & 4, 079 \\
\hline Grayfish. & & & & & 59, 400 & 85 \\
\hline Halibut. & \({ }_{70} 71\) & \$119 & & & 510, 711 & 64, 198 \\
\hline  & 79, 000 & 790 & & & 252, 569 & 2, 525 \\
\hline "Lingcod" & 245 & 5 & & & 12,889 & 259 \\
\hline Perch Rock - & 77 & 2 & & & 46,076 & 1, 874 \\
\hline Salmon: & & & & & 27, 386 & 552 \\
\hline Blueback or sockeye & 1,616, 519 & 229, 546 & 750 & \$65 & 2, 830,581 & 397, 472 \\
\hline Chinook.-.-------- & 2, 294,489 & 209, 268 & 5, 164 & 723 & 13, 063, 176 & 1,360, 162 \\
\hline Chum & 724,133 & 8, 103 & & & 3, 290, 784 & 59, 365 \\
\hline Humpback & 7, 907, 675 & 263, 589 & & & 18, 891, 808 & 510, 838 \\
\hline Sea bass, white, or sque & 1,619, 430 & 52, 339 & 2,100 & 105 & 10, 137, 529 & 392, 444 \\
\hline shad & & & & & 88,767 & 13
2,710 \\
\hline Skate. & & & & & 6, 105 & 63 \\
\hline Smelt & 1,595 & 128 & & & 1, 165, 871 & 27, 608 \\
\hline Steelhead trout & & & & & 81,242 & 2, 437 \\
\hline Sturgeon-.-... & 1,240 & 1,732 & 155 & 12 & 1,400, 218 & 100, 840 \\
\hline Tomeod. & & & & & 83, 784 & , 13 \\
\hline Crabs & 251, 658 & 9,801 & & & 1,110,582 & 52, 636 \\
\hline Shrimp. & & & & & 27, 594 & 3, 586 \\
\hline Clams, hard. & 3, 100 & 62 & & & 598, 685 & 17,276 \\
\hline Clams, razor & & & & & 983, 900 & 44, 275 \\
\hline Oysters. & & & & & 2, 739, 960 & 267, 000 \\
\hline Octopus & & & & & 52,377 & 1,573 \\
\hline Tot & 14, 117, 912 & 775, 484 & 8,669 & 940 & 58, 055, 532 & 3,333, 077 \\
\hline
\end{tabular}

\section*{OREGON}

The fisheries of Oregon in 1923 employed 4,230 fishermen, 3 vessels, 2,042 power boats, 218 rowboats, and yielded \(32,982,678\) pounds of fish valued at \(\$ 3,500,171\), of which 161,659 pounds, valued at \(\$ 9,293\), consisting of halibut and salmon, were caught by 3 vessels sailing from Clatsop County. These vessels had a total net tonnage of 44 and carried a total of 15 fishermen. Two of them operated lines and one was a purse seiner.

The following tables give the number of boats using each kind of fishing apparatus, by counties, the number of fishermen by counties, and the total catch of the fisheries of Oregon by species and counties:
Boats (by apparatus) and persons engaged in the shore fisheries of Oregon in 1923, by counties
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Boats, by apparatus & Clackmas & Clatsop & \[
\underset{\text { bia }}{\text { Colum- }}
\] & Coos & Curry & Douglas & Hood River \\
\hline Gill nets, drift, gas & 32 & 694 & 258 & 48 & 64 & 106 & 5 \\
\hline Gill nets, set: & & & & & & & \\
\hline Gas... & 9 & 19 & 5 & 29 & 4 & 39 & 3 \\
\hline Row
Haul seines: & 10 & 16 & 12 & 23 & 2 & 62 & 4 \\
\hline Gas...-- & & 11 & 4 & 3 & 2 & & \\
\hline Row & & 7 & 2 & 3 & 2 & & \\
\hline Pound nets, gas & & 15 & & & & & 1 \\
\hline Lines, gas.....- & & 50 & 5 & 2 & & 5 & \\
\hline Drag bag nets, gas & & & 5 & & & & \\
\hline Ring nets, gas. & & 22 & & 14 & & 33 & \\
\hline Total: \({ }^{1}\) & & & & & & & \\
\hline Gas. & 33 & 790 & & & & 151 & \\
\hline Row & 10 & 23 & 14 & 24 & & 62 & 4 \\
\hline Persons engaged & 75 & 1,653 & 529 & 166 & 140 & 345 & 19 \\
\hline
\end{tabular}
\({ }^{1}\) Exclusive of duplication.
69239-26†- 9

Boats (by apparatus) and persons engaged in the shore fisheries of Oregon in 1923, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Boats, by apparatus & Jackson & Josephine & Lane & \[
\begin{aligned}
& \text { Lin- } \\
& \text { coln }
\end{aligned}
\] & Multnomah & \[
\begin{aligned}
& \text { Tilla- } \\
& \text { mook }
\end{aligned}
\] & Wasco & Total \\
\hline Gill nets, drift, gas... & 2 & 16 & 22 & 67 & 143 & 140 & 11 & 1,608 \\
\hline Gill nets, set: Gas & & & 27 & 81 & 18 & 129 & 1 & 364 \\
\hline Row. & & & 15 & 12 & 14 & 31 & & 201 \\
\hline Haul seines: & & & & & & & & \\
\hline Gas.. & & & & & 3 & & 1 & 24 \\
\hline Row...-- & & & & & 3 & & 1 & 18 \\
\hline Pound nets, gas. & & & & & 3 & & & 19 \\
\hline Lines, gas.- & & & 2 & 2 & 6 & & & 72 \\
\hline Drag bag nets, gas. & & & & & & & & 5 \\
\hline Fish wheels, gas.. & & & & & 1 & & & 1 \\
\hline Ring nets, gas... & & & 4 & 71 & & 32 & & 176 \\
\hline Tongs and dredges, scows \({ }^{1}\) & & & & 15 & & & & 15 \\
\hline Total: \({ }^{2}\) & & & & & & & & \\
\hline Gas. & 2 & 16 & 42 & 175 & 166 & 230 & & 2,042 \\
\hline Row. & & & 15 & 27 & 19 & 31 & 1 & 233 \\
\hline Persons engaged.. & 4 & 32 & 90 & 301 & 373 & 473 & 30 & 4,230 \\
\hline
\end{tabular}
\({ }^{1}\) Exclusive of duplication.
\({ }^{2}\) In addition to the above there were 30 men and 30 gas boats fishing crab traps on the Molalla, Columbia, Willamette, and Yambill Rivers, which could not be divided by counties.

Yield of the fisheries of Oregon in 1923 by counties and species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Specles & \multicolumn{2}{|l|}{Clackamas} & \multicolumn{2}{|r|}{Clatsop} & \multicolumn{3}{|c|}{Columbia} & \multicolumn{2}{|l|}{Coos} \\
\hline Halibut & Pounds & V Value & \[
\begin{gathered}
\text { Pounds } \\
369,600
\end{gathered}
\] & Value \$56, 926 & 6 Poun & & Value & \[
\begin{array}{r}
\text { Pounds } \\
70,653
\end{array}
\] & \begin{tabular}{l}
Value \\
\$11, 304
\end{tabular} \\
\hline Herring & & & 15, 625 & - 313 & & & & & \\
\hline "Lingcod" & & & 66, 428 & 1,993 & & & & & \\
\hline Rockfishes. & & & 26, 046 & 6 781 & & & & 31, 256 & 938 \\
\hline Salmon: Chinook & 627, 948 & \$87, 913 & 8, 160, 331 & 1,142,445 & 5 2, 421, & & \$338, 972 & 444, 008 & 62,162 \\
\hline Chum. & 627,018 & 87, & 8, 281,342 & 1, 3,381 & 1 127, & & 1,279 & 15, 704 & 62, 157 \\
\hline Humpback & & & 50, 105 & 1,570 & & & & & \\
\hline Silver. & 48, 068 & 2,403 & 1, 083, 832 & - 53, 787 & & 484 & 3,574 & 422, 464 & 21, 123 \\
\hline Sockey & & & 514,
45,092 & 69,512 & & & 84,962
2,570 & & \\
\hline Shad.-... & 168 & 3 & 45, 097 & 679 & & & 2, 570 & 3,114 & 46 \\
\hline Steelhead trout
Sturgeon.-.--- & 13,451 & 942
25 & \(\begin{array}{r}825,561 \\ 60,709 \\ \hline\end{array}\) & 57,926
4,856 &  & 959 & 21,626
1,517 & \(\begin{array}{r}166,672 \\ \hline 18\end{array}\) & 11,764
73 \\
\hline Sturgeon. & 324 & 25 & 60,709
5,000 & 4,856
400 & & & 1,517 & & \\
\hline Crabs.- & & & 5,368 & 698 & & & & 20,592 & 2,677 \\
\hline Clams, razor & & & 137, 305 & 5 6,180 & & & & & \\
\hline Octapus, & & & & & & 71 & 4 & 7,24 & 327 \\
\hline Total. & 690, 311 & 91,334 & 11,647, 211 & 1 1,401,447 & 7 3,776, & 462 & 454, 775 & 1,182, 600 & 110,471 \\
\hline Species & & Cur & & Doug & & & od River & Josep & hine \\
\hline Salmon: & & \begin{tabular}{l}
Pounds \\
1, 120, 753
\end{tabular} & \[
\begin{gathered}
\text { Value } \\
\$ 156,905
\end{gathered}
\] & \begin{tabular}{l}
Pounds \\
427, 899
\end{tabular} & \begin{tabular}{l}
Value \\
\(\$ 59,907\)
\end{tabular} & Pou & \[
\begin{aligned}
& \text { nds Value } \\
& 216 \text { \$3,670 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pounds } \\
& 100,146
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 14,020
\end{gathered}
\] \\
\hline Chum & & & & & & 9,5 & 25 \({ }^{\text {a }}\) & & \\
\hline Silver- & & 14,100 & 705 & 1,318,540 & 65, 927 & 6, 3 & 394320 & & \\
\hline Sockeye. & & & & & & 5,2 & 744 & & \\
\hline Shad..- & & & & 148, 038 & 2,221 & & 376 6 & & \\
\hline Steelhead trout & & 42,452 & 2,971 & 202, 949 & 14,206 & 16, 4 & (r \({ }^{76}\) 1,153 & & \\
\hline \begin{tabular}{l}
Sturgeon \\
Crabs
\end{tabular} & & & & \(\begin{array}{r}\text { 8, } \\ 98 \\ \hline\end{array} 396\) & & & & & \\
\hline Clams, soft & & & & -380 & 12, 14 & & & & \\
\hline Total & & 1, 177, 305 & 160, 581 & 2, 244, 762 & 156, 124 & 64, 8 & (89 6,006 & 100, 146 & 14,020 \\
\hline
\end{tabular}

Yield of the fisheries of Oregon in 1923 by counties and species-Continued


\footnotetext{
1 In addition to the above there were caught in the Molalla, Willamette, Columbia, and Yamhill Rivers 141,800 pounds of crawfish, valued at \(\$ 12,000\), bringing the grand total to \(33,001,878\) pounds, valued at \(\$ 3,516,971\).
}

\section*{CALIFORNIA}

The fisheries of California in 1923 employed 4,594 fishermen, 285 vessels, 1,306 power boats, and 135 sail and row boats, and yielded \(262,523,771\) pounds of fishery products, valued at \(\$ 7,722,800\). This includes the fisheries prosecuted by California fishermen in waters off the coast of Mexico, the total yield of which amounted to \(23,954,-\) 007 pounds, valued at \(\$ 1,479,447\), in 1923.

The vessel fishery of California employed 1,972 fishermen, sailing on 285 vessels, all of which were gas vessels excepting 11 sailing from San Francisco. Of these 5 were steamers in the paranzella fishery, 2 were schooners in the hand-line fishery, and 4 were steamers engaged in whaling.

The following tables give the number, crew, and tonnage of vessels using each kind of fishing apparatus, by counties; the number of boats using each kind of fishing apparatus, by counties; the number of persons in the shore or boat fisheries, by counties; the total yield of the fisheries of California, by species and counties; and the yield of the fisheries prosecuted by California fishermen in waters off the coast of Mexico, by species and landing ports.

Vessels engaged in the fisheries of California in 1923
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Fishery} & \multicolumn{3}{|r|}{Los Angeles County} & \multicolumn{3}{|c|}{San Dicgo County} & \multicolumn{3}{|l|}{San Francisco County} & \multicolumn{3}{|c|}{Total} \\
\hline & Vessels & Crew & Tonnage & Vessels & Crew & \[
\begin{aligned}
& \text { Ton- } \\
& \text { nage }
\end{aligned}
\] & Vessels & Crew & Tonnage & Vessels & Crew & Tonnage \\
\hline Lines. & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
89
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
844
\end{gathered}
\] & \[
\begin{array}{r}
\text { Net } \\
\text { tons } \\
691
\end{array}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
67
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
288
\end{gathered}
\] & \[
\begin{array}{r}
\text { Net } \\
\text { tons } \\
527
\end{array}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
3
\end{gathered}
\] & \[
\begin{gathered}
\text { Num } \\
\text { ber } \\
61
\end{gathered}
\] & \[
\begin{aligned}
& \text { Net } \\
& \text { tons } \\
& 733
\end{aligned}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
159
\end{gathered}
\] & \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
1,193
\end{gathered}
\] & \[
\begin{aligned}
& \text { Net } \\
& \text { tons } \\
& 1,955
\end{aligned}
\] \\
\hline Lampara nets & 125 & 1,078 & 1,012 & \({ }_{6}^{6}\) & 28 & 42 & & & & 131 & 1, 106 & 1,054 \\
\hline Purse seines. & 43 & 351 & 1, 039 & 3 & 18 & 54 & & & & 46 & 369 & 1,093 \\
\hline Trammel nets. & 13 & 53 & 94 & 10 & 38 & 74 & & & & 23 & 91 & 168 \\
\hline Paranzella nets & 1 & 8 & 24 & & & & 11 & 44 & 254 & 12 & 52 & 278 \\
\hline Gill nets. & 4 & 17 & 25 & 10 & 38 & 74 & & & & 14 & 55 & 99 \\
\hline Lobster traps & & & & 2 & 10 & 24 & & & & , & 10 & 24 \\
\hline Abalone outfit. & & & & & & & 1 & 5 & \({ }^{8}\) & 1 & 5 & \({ }^{8}\) \\
\hline Wbaling apparatu & & & & & & & 4 & 44 & 235 & 4 & 44 & 235 \\
\hline Total \({ }^{1}\) & 191 & 1,490 & 2, 213 & 75 & 328 & 624 & 19 & 154 & 1,234 & 285 & 1,972 & 4,071 \\
\hline
\end{tabular}

Exclusive of duplication.
Boats (by apparatus) and persons engaged in the shore fisheries of California in 1923, by counties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Boats, by apparatus & Del Norte and Humboldt & Mendocino, Sonoma, and Lake & Marin & Solano and Yolo & Coluso, Glenn, and Sutter & Sacramento and San Joaquin & \[
\begin{array}{|c|}
\text { Ala- } \\
\text { meda } \\
\text { and } \\
\text { Contra } \\
\text { Costa }
\end{array}
\] & \begin{tabular}{l}
San \\
Francisco and San Mateo
\end{tabular} \\
\hline Lines: & & & & & & & & \\
\hline Gas & 41 & 75 & 29 & & & 3 & & 178 \\
\hline Sail and row & & & & & 1 & & & \\
\hline Gill nets: Gas. & 4 & 4 & 6 & 71 & 2 & 41 & 78 & 47 \\
\hline Sail and row & & & 3 & 1 & 4 & 3 & 7 & \\
\hline Lampara nets: Gas & & & & & & & & 1 \\
\hline Trammel nets: Gas. & & & 1 & & & & & \\
\hline Bag nets: Gas.... & & & & & & & & 10 \\
\hline Paranzelia nets: Gas & & & & & & & & 1 \\
\hline Fyke nets: & & & & & & & & \\
\hline Row & & & & 1 & 2 & 2 & & \\
\hline Haul seines: & & & & & & & & \\
\hline Gas..-- & 2 & 1 & & & & & 1 & 1 \\
\hline Row. & & & 1 & & 3 & & & \\
\hline Lobster traps: Gas & & & & & & & & 1 \\
\hline Crab nets: & & & & & & & & \\
\hline Gas.- & 11 & 6 & 22 & & & 3 & 1 & 105 \\
\hline Abalone outfit: Gas & & & & & & 1 & & \\
\hline Other gear: Gas...-- & & & 2 & & & & & 2 \\
\hline Total: 1 & & & & & & & & \\
\hline Gas. & 45 & 80 & 37 & 71 & 2 & 43 & 84 & 207 \\
\hline & & & & & & & & \\
\hline Persons engaged. & 253 & 90 & 50 & 134 & 16 & 81 & 171 & 326 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Exclusive of duplication.
}

Boats (by apparatus) and persons engaged in the shore fisheries of California in 1923, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Boats, by apparatus & Santa Cruz & Monterey & San
Louis
Obispo,
Santa
Bar-
bara,
and
Ven-
tura & \[
\begin{aligned}
& \text { Los } \\
& \text { An- } \\
& \text { geles }
\end{aligned}
\] & Orange & \[
\underset{\text { Diego }}{\text { San }}
\] & Total \\
\hline \multicolumn{8}{|l|}{} \\
\hline Gas.- & 27 & 182 & 18 & 376 & 29 & 104 & 1,065 \\
\hline \multicolumn{8}{|l|}{Gill nets:} \\
\hline Gas.- & 10 & 5 & 5 & 26 & 2 & 27 & 328 \\
\hline Sail and row & & & 3 & 1 & & & 110 \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline Gas.-- & & & 2 & 21 & 3 & 13 & 40 \\
\hline \multicolumn{8}{|l|}{\multirow[b]{2}{*}{}} \\
\hline & & & & & & & \\
\hline Gas... & & & & & & & \\
\hline Row -- & & & & & & & \\
\hline \multicolumn{8}{|l|}{Haul seines:} \\
\hline Row.-.. & & & & & & & 4 \\
\hline Lobster traps: Gas & & 1 & 1 & 5 & 4 & 5 & 17 \\
\hline \multicolumn{8}{|l|}{Crab nets:} \\
\hline Gas... & 2 & 1 & & & & & 151 \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Other gear: Gas.... & & & & & & & \\
\hline \multicolumn{8}{|l|}{Total: 1} \\
\hline Gas. & 18 & 192 & 27 & 363 & 32 & 106 & 1,307 \\
\hline Sail and row. & & & 2 & 9 & 1 & & 135 \\
\hline  & 30 & 416 & 63 & 724 & 47 & 224 & 2, 625 \\
\hline
\end{tabular}
\({ }^{1}\) Exclusive of duplication.
Yield of the fisheries of California in 1923, by counties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Del Norte and Humboldt} & \multicolumn{2}{|l|}{Mendocino, Sonoma, and Lake} & \multicolumn{2}{|c|}{Marin} & \multicolumn{2}{|l|}{Solano and
Yolo} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Catfish & & & 12,185 & 9244 & & & 3,257 & \$65 \\
\hline Flounder & 186, 144 & \$26, 124 & 8,351 & 1,253 & 1,649 & \$164 & 3,210 & 96 \\
\hline Herring & 3,341 & 25 & & & 28,035 & 210 & & \\
\hline "Lingcod" & 13, 122 & 656 & 6,562 & 328 & 23, 332 & 17 & & \\
\hline Perch --... & 43,317 & 2,166 & & & 23, 148 & 1,157 & 108 & 5 \\
\hline Pike, Sacramento & 5, 864 & 293 & 1,609 & 80 & & & 111 & 2 \\
\hline Salmon. & 1,990, 235 & 179, 121 & 812, 867 & 73, 158 & 31, 129 & 2, 802 & 475,812 & 42,823 \\
\hline Sea bass, white, or squeteague. & & & & & 6,020 & 548 & & \\
\hline Shad & & & & & & & 1,565 & 31 \\
\hline Shad, buck & & & & & & & 47, 266 & 945 \\
\hline Shad, roe & & & & & & & 110,248 & 6,615 \\
\hline Smelt & 32, 166 & 322 & 2, 765 & 28 & 42, 104 & 421 & & \\
\hline Sole & 10, 153 & 406 & & & 182 & 7 & & \\
\hline Steelhead trout & 3,011 & 422 & & & & & & \\
\hline Striped bass & & & & & 2,593 & 259 & 78, 030 & 7,803 \\
\hline Other fish. & 26,759 & 5,117 & 4,700 & 188 & 1,051 & 210 & 1,482 & 59 \\
\hline Crabs & 254, 640 & 35, 140 & 6,480 & 894 & 16, 776 & 2,315 & & \\
\hline Shrimp.- & & & & & 418,773 & 25,126 & & \\
\hline Clams, cockle & 5,538 & 609 & 20 & 2 & 23, 145 & 2,546 & & \\
\hline Clams, mixed & 14, 551 & 1,164 & & & 10,497 & 240 & & \\
\hline Mussels-..- & & & 530 & 21 & 78,560
230 & 3, 142 & & \\
\hline Oysters, eastern, & & & & & 9, 600 & 3, 360 & & \\
\hline A balone.- & & & & & - 40 & , 2 & & \\
\hline Octopus & & & & & 219 & 22 & & \\
\hline Total & 2, 588,841 & 251, 565 & 906, 953 & 85, 355 & 697, 544 & 43, 346 & 721,912 & 58, 582 \\
\hline
\end{tabular}

Yield of fisheries of California in 1923, by counties-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Santa Cruz} & \multicolumn{2}{|l|}{Monterey} & \multicolumn{2}{|l|}{San Luis Obispo, Santa Barbara, and Ventura} & \multicolumn{2}{|l|}{Los Angeles} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Anchovies & & & 85,016 & \$188 & & & 8,514, 349 & 106, 865 \\
\hline Barracuda & & & 6,982 & 510 & 21,693 & \$1, 584 & 5,925, 768 & 507,658 \\
\hline Bonito & & & 3, 325 & 143 & 2, 288 & & 1,006, 531 & 43, 281 \\
\hline Flounder & 185, 024 & \$7, 264 & 12, 720 & 922 & 333, 398 & 49,995 & -877, 628 & 140, 673 \\
\hline Grayfish. & 1,345 & & & & & & 5,645 & 28 \\
\hline Hake.-- & 8,737 & 87 & & & & & & \\
\hline Herring & 188 & 1 & & & & & & \\
\hline Kingfish & 50, 848 & 2, 034 & 110, 207 & 4,408 & 26 & 1 & 238, 722 & 3,660 \\
\hline "Lingcod & 28,693 & 1,435 & 93, 677 & 4,684 & & & & \\
\hline Mackerel & 944 & 38 & 570, 371 & 22,815 & 13, 012 & 520 & 2, 688, 143 & 107, 864 \\
\hline Mullet_ & 1,884 & & & & & 49 & 10,805
164,110 & 1,184
9,846 \\
\hline Pilchard or sardines. & , 275 & 1 & 86, 060, 322 & 344, 241 & 1,060 & & 67, 493, 419 & 337, 467 \\
\hline Pompano. & 187 & 75 & - 106 & - 42 & & & 20,997 & 8, 453 \\
\hline Rock bass & & & & & 2, 041 & 171 & 220, 395 & 18,685 \\
\hline Rockfishes & 559, 561 & 26, 217 & 1, 468, 475 & 66,844 & 68, 408 & 3,312 & 1,343,236 & 77, 910 \\
\hline Sablefish & 329, 238 & 19,754 & 10, 464 & 628 & & & & \\
\hline Salmon. & 306, 336 & 27, 570 & 422, 000 & 37,980 & & & & \\
\hline Sculpin--.-... & & & & & & & 44,623 & 4,462 \\
\hline Sea bass, black-------- & & & & & 2, 703 & 246 & 47,398 & 4,433 \\
\hline Sea bass, white, or squeteague & 119, 368 & 2, 561 & 30,187 & 655 & 149, 870 & 13,638 & 1,583,470 & 146, 230 \\
\hline
\end{tabular}

Yield of fisheries of California in 1923, by counties-Continued


Yield of fisheries of California in 1923, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Species} & \multicolumn{2}{|l|}{Orange} & \multicolumn{2}{|l|}{San Diego and Imperial} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Suckers. & & & & & 342 & \\
\hline Swordfish & & & 5,414 & \$683 & 11,691 & 1,468 \\
\hline Tomcod & & & & & 41,767 & 3,341 \\
\hline Tuna, bluefin & & & 1,399, 753 & 69,988 & 3, 301, 087 & 165, 885 \\
\hline Tuna, yellowfin & & & 3, 998, 184 & 222, 040 & 10, 836, 925 & 600, 412 \\
\hline Tuna, mixed.- & 15 & \$1 & & & 662, 370 & 35, 471 \\
\hline Whitefish & 595 & 30 & 12, 247 & 669 & 39,908 & 2,089 \\
\hline Yellowtail & 2, 748 & 143 & 2, 373, 696 & 131, 108 & 3, 979, 611 & 217,050 \\
\hline Other fish. & 440 & 18 & 13,213 & 616 & 252,012 & 21, 055 \\
\hline Crabs.- & & & & & 1, 075,800 & 148, 438 \\
\hline Sea crawfish or spiny & 25, 206 & 5, 041 & 822, 601 & 171,492 & 1,092, 858 & 225, 656 \\
\hline Shrimp .-----....... & & & & & 1, 113, 36,117 & 66,801
3,973 \\
\hline Clams, mixed. & & & 400 & 36 & 25, 845 & 2,076 \\
\hline Clams, Pismo. & & & & & 237, 948 & 16,656 \\
\hline Clams, soft & & & & & 283, 095 & 11, 323 \\
\hline Mussels... & 45, 100 & 2, 255 & & & 60, 023 & 3, 002 \\
\hline Oysters, eastern, mark & & & & & 9,600 & 3,360 \\
\hline Abalone. & & & & & 1, 587, 733 & 60,367 \\
\hline Octopus & & & & & 110, 222 & 11,022 \\
\hline Squid & & & 925 & 6 & 1,180,446 & 7,680 \\
\hline Terrapin & & & & & 1,270 & 77 \\
\hline Sperm oil & & & & & 15,585 & 1,282 \\
\hline Whale oil & & & & & 4,644,293 & 316,450 \\
\hline Other whale products & & & & & 2, 370, 000 & 81,796 \\
\hline Total & 454, 258 & 30, 492 & 26, 400, 334 & 1, 626,209 & 262, 533, 371 & 7,726, 160 \\
\hline
\end{tabular}

Yield of the fisheries prosecuted by California fisherman in waters off the coast of Mexico
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Species} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Landed at San } \\
& \text { Pedro }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Landed at } S a n \\
\text { Diego }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Albacore & & & 26,634 & \$3,729 & 26,634 & \$3,729 \\
\hline Barracuda & 1, 561, 909 & \$145, 458 & 502,842 & 36,708 & 2, 064, 751 & 182, 166 \\
\hline Bonito & 564, 818 & 24, 287 & 71, 658 & 2,436 & 636, 476 & 26, 723. \\
\hline Flounders & 70, 924 & 11,348 & 811, 389 & 139, 536 & 882, 313 & 150, 884 \\
\hline Kingfish & 7,822 & 196 & 307 & & 8, 129 & 204 \\
\hline "Lingcod" & & & 47 & 3 & 47 & 3 \\
\hline Markerel & 33, 826 & 1,691 & 4,669 & 233 & 38, 495 & 1,924 \\
\hline Mullet & 10, 302 & 1,133 & 53,916 & 5,931 & 64, 218 & 7.064 \\
\hline Perch. & 28, 840 & 1,730 & 4,793 & 288 & 33, 633 & 2,018 \\
\hline Pompano & 5,456 & 2,237 & 7,682 & 3,150 & 13, 138 & 5,387 \\
\hline Rock bass. & 17, 238 & 1,620 & 11,992 & 1,127 & 29, 230 & 2,747 \\
\hline Rock fishes & 675 & 41 & 17, 219 & 1,033 & 17, 894 & 1,074 \\
\hline Sea bass, black & 11,993 & 1,211 & 139, 262 & 14,065 & 151,255 & 15, 276 \\
\hline Sea bass, white, or squet & 213, 374 & 21, 551 & 378, 503 & 38, 228 & 591, 877 & 59,779 \\
\hline 8heepshead. & & & & 16 & 517 & 16. \\
\hline Skipjack or striped tuna & 4, 531, 884 & 135, 957 & 2, 351, 561 & 70,547 & 6,883, 445 & 206, 504 \\
\hline Smelt & 4,465 & 238 & 3, 075 & 164 & 7,540 & 402 \\
\hline Sole. & 146 & - & 804 & 48 & 950 & 57 \\
\hline Swordfish. & & & 635 & 86 & 635 & 86 \\
\hline Tuna, bluefin & 82,997 & 4,980 & & & 82,997 & 4,980 \\
\hline Tuna, yellowfin & 6, 515, 754 & 363, 579 & 3, 892, 275 & 217, 189 & 10, 408, 029 & 580, 768 \\
\hline Tuna, mixed. & 235, 204 & 14,112 & & & 235, 204 & 14,112 \\
\hline Whitefish & 957 & & 4,438 & 271 & 5, 405 & 330 \\
\hline Ycllowtail & 243, 523 & 15, 098 & 767, 492 & 47, 585 & 1,011,015 & 62, 683 \\
\hline Other fish & 5, 027 & 251 & 8,757 & 438 & 13, 784 & 689 \\
\hline Spiny lobster & 11,300* & 2, 373 & 697, 177 & 146,407 & 708, 477 & 148, 780 \\
\hline Clams, mixed & 397 & 36 & 400 & 36 & 797 & 72 \\
\hline Abalone. & 32, 599 & 945 & & & 32,599 & 945 \\
\hline Squid. & 4,381 & 36 & & & 4, 381 & 36 \\
\hline Terrapin & 142 & 9 & & & 142 & 9 \\
\hline Total. & 14, 195, 963 & 750, 185 & 9, 758, 044 & 729, 262 & 23, 954, 007 & 1,479,447 \\
\hline
\end{tabular}

\section*{FISHERIES OF THE SOUTH ATLANTIC STATES IN 1923}

The statistics of the fisheries contained in this report apply to the commercial coast fisheries of North Carolina, South Carolina, Georgia, and the eastern coast of Florida for the calendar year 1923. They are the result of a canvass made by the bureau's agents \({ }^{3}\) during 1924, and in so far as possible the methods used were similar to those employed in the corresponding canvass of this section for 1918 in order that the statistics obtained might be strictly comparable. The results of the canvass have already been published in condensed form in Statistical Bulletin No. 652 and distributed to the trade. The detailed statistics are published herewith for the first time.

\section*{EARLIER PUBLICATIONS}

Some of the earlier publications relating to the fisheries of the South Atlantic States and published in Washington, D. C., follow: 1887. North Carolina and Its Fisheries. By R. Edward Earll. In The Fisheries and Fishery Industries of the United States, by G. Brown Goode et al., Sec. II, Pt. XII, p. 475-497.
The Fisheries of South Carolina and Georgia. By R. Edward Earll. Ibid., Sec. II, Pt. XIII, p. 499-518.
Eastern Florida and Its Fisheries. By R. Edward Earll. Ibid., Sec. II, Pt. XIV, p. 519-531.
History and Methods of the Fisheries. Ibid., Sec. V, Vol. 1 (xi +808 pp.), Vol. II ( \(\mathrm{xx}+881 \mathrm{pp}\).), and atlas of 275 pls.
1892. V. The Fisheries of the South Atlantic States [1887 and 1888]. In Statistical Review of the Coast Fisheries of the United States, prepared under the direction of J. W. Collins. Report, U. S. Commission of Fish and Fisheries, 1888 (1892), pp. 351-361.
1893. Report on the Fisheries of the South Atlantic States. By Hugh M. Smith. Bulletin, U. S. Fish Commission, Vol. XI, 1891 (1893), pp. 269-356, Pls. XLIII-LXXIV.
1897. Report on the Fisheries of Indian River, Fla. By John J. Brice et al. Report, U. S. Commission of Fish and Fisheries, 1896 (1898), pp. 223262, pls. 23-59.
1898. Report on the Fish and Fisheries of the Coastal Waters of Florida. By John J. Brice. Report, U. S. Commission of Fish and Fisheries, 1896 (1898), pp. 263-342.
1899. Notes on the Extent and Condition of the Alewife Fisheries of the United States in 1896. By Hugh M. Smith. Report, U. S. Commission of Fish and Fisheries, 1898 (1899), pp. 31-43.
The Shad Fisheries of the Atlantic Coast of the United States. By Charles H. Stevenson. Ibid., pp. 101-176.
1900. Statistics of the Fisheries of the South Atlantic States [1897]. Report, U. S. Commission of Fish and Fisheries, 1899 (1900), pp. 171-227.
1905. Statistics of the South Atlantic States, 1902. Report, U. S. Commission of Fish and Fisheries, 1903 (1905), pp. 343-410.
1911. Fisheries of the United States, 1908. Special Reports, Bureau of the Census, 1911.
1921. Fishery Industries of the United States. Report of the Division of Statistics and Methods of the Fisheries for 1920. By Lewis Radcliffe. Appendix V to the Report of the U. S. Commissioner of Fisheries for 1921, pp. 59-120.

\section*{COMMON AND SCLENTIFIC NAMES OF FIGHES}

Trade usage in the nomenclature of fishes is often confused and sometimes renders it impossible to properly separate and distinguish species occurring in the statistical reports. In the following statistics

\footnotetext{
\({ }^{3}\) The data were collected by Winthrop A. Roberts and Rob Leon Greer, assisted by Carl B. Tendick, James Buckley, and Frank E. Kingsbury.
}
of the South Atlantic States it was found impossible to separate the crappie from the other sunfishes except in the State of Florida. Harvest fish (Peprilus alepidotus), caught together with butterfish (Poronotus triancanthus), and selling at the same price, were often included with the latter, but separation of the statistics has been made in so far as possible. The pigfish (Orthopristis chrysopterus) is sometimes known as hogfish in North Carolina, and it is possible that some of the hogfish reported in North Carolina may be this species rather than the hogfish (Lachnolaimus maximus) more commonly found in the Florida waters. Both the fresh-water catfish (Ameiurus species and Ictalurus species) and the salt-water catfish (Felichthys species and Galeichthys species) were included together. In North Carolina it was possible to report the gray trout (Cynoscion regalis) and the speckled trout (Cynoscion nebulosus) separately; elsewhere they have been included together under the name squeteague or "sea trout."

The following list gives the scientific names of the fishes corresponding to the common names as listed in the statistics in so far as it has been possible to determine them:



GENERAL STATLSTICS
The number of persons engaged in the fisheries of the South Atlantic States in 1923 was 16,298, of whom 1,480 were on vessels fishing, 180 on vessels transporting fishery products, 8,614 in shore fisheries and 6,024 shoresmen in the wholesale fishery trade, fish canneries, and similar industries connected with the fisheries. Of the total 9,308 of the persons were in North Carolina, 2,164 in South Carolina, 2,019 in Georgia, and 2,807 on the east coast of Florida.

The capital invested in the fisheries of this region amounted to \(\$ 8,505,259\), distributed as follows: North Carolina, \(\$ 4,198,894\); South Carolina, \(\$ 606,781\); Georgia, \(\$ 1,378,704\); and the east coast of Florida, \(\$ 2,320,880\). The investment included vessels and boats valued at \(\$ 2,545,644\); fishing apparatus used by vessels and boats, \(\$ 699,604\); shore and accessory property to the value of \(\$ 4,530,711\); and cash capital to the amount of \(\$ 729,300\).

The products of the fisheries of this region amounted to \(228,747,930\) pounds, valued at \(\$ 5,087,340\). Of this total North Carolina produced \(95,192,343\) pounds, valued at \(\$ 2,414,499\); South Carolina, \(6,763,279\) pounds, valued at \(\$ 284,791\); Georgia, \(39,896,386\) pounds, valued at \(\$ 668,129\); and the east coast of Florida \(86,895,922\) pounds, valued at \(\$ 1,719,921\).

Arranged in order of value, some of the more important fishery products are as follows: Shrimp 23,705,901 pounds, valued at \(\$ 821,-\) 861; menhaden, \(148,180,970\) pounds, valued at \(\$ 752,026\); shad, \(3,190,666\) pounds, ralued at \(\$ 716,649\); oysters, from both public and private beds, \(11,172,336\) pounds, valued at \(\$ 448,137\); squeteagues or "sea trout," \(5,258,047\) pounds, valued at \(\$ 381,155\); mullet, \(7,734,412\)
pounds fresh and 622,000 pounds salted, valued altogether at \(\$ 378,301\); bluefish, \(2,004,244\) pounds, valued at \(\$ 214,826\); Spanish mackerel, \(2,652,341\) pounds, valued at \(\$ 205,987\); cero and kingfish, \(1,966,596\) pounds, valued at \(\$ 161,201\); and alewives or river herring, 2,609,347 pounds fresh and \(4,961,050\) pounds salted, valued altogether at \$146,104.

Compared with the statistics for 1918 there was an increase of 8.3 per cent in the persons engaged, an increase of 14.6 per cent in the investment, and a decrease of 31.2 per cent in the quantity and 4.9 per cent in the value of the products of the fisheries. In North Carolina there was an increase of 15.8 per cent in persons engaged, a decrease of 0.6 per cent in the investment, and a decrease of 54.8 per cent in the quantity and 18.9 per cent in the value of products of the fisheries. In South Carolina there was an increase of 8.2 per cent in persons engaged, 174.2 per cent in investment, and 80.5 per cent in the quantity and 37.1 per cent in the value of products of the fisheries. The fisheries of Georgia also showed increases in all phases of the industry; there was an increase of 20.2 per cent in persons engaged, 79 per cent in the investment, 7.4 per cent in the quantity, and 60.6 per cent in the value of the production. On the east coast of Florida there was a decrease of 15.7 per cent of persons engaged, an increase of 5 per cent in the investment, an increase of 7 per cent in quantity of fishery products, and a decrease of 1.5 per cent in the value of the products.

Practically all of the decrease in production may be attributed to a failure in the menhaden fishery, which in 1923 produced only 148,180,970 pounds, as compared with \(257,757,799\) pounds in 1918. Other fishes showing a severe decrease since 1918 are alewives, cero and kingfish, red and black drum, mullet, and Spanish mackerel. The yield of shad and squeteague or "sea trout" increased somewhat, and the production of shrimp and oysters was greatly increased over that of 1918.

Persons engaged in the fisheries of the South Atlantic States in 1923
\begin{tabular}{|c|c|c|c|c|c|}
\hline States & On vessels fishing & On vessels transporting & In shore fisheries & Shoresmen & Total \\
\hline North Carolina. & 1,055 & 51 & 5,140 & 3, 062 & 9, 308 \\
\hline South Carolina. & & 94 & 1,044 & 1,018 & 2,164 \\
\hline Georgia_ & 186 & 29 & 620 & 1,184 & 2,019 \\
\hline Florida (east coast) & 231 & 6 & 1,810 & 1,760 & 2, 807 \\
\hline Total & 1,480 & 180 & 8,614 & 6,024 & 16,298 \\
\hline
\end{tabular}

\section*{Investment in the fisheries of the South Atlantic States in 1923}


\footnotetext{
Note.-In this report all craft of 5 net tons and upward are classed as vessels and all under 5 net tons areclassed as boats.
}

Yield of the fisheries of the South Atlantic States, 1923
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{North Carolina} & \multicolumn{2}{|l|}{South Carolina} & \multicolumn{2}{|r|}{Georgia} \\
\hline Alewives, fresh & \begin{tabular}{l}
Pounds \\
1, 589, 347
\end{tabular} & Value \(\$ 33,366\) & Pounds & Value & Pounds & Value \\
\hline Alewives, salted & 4, 933, 050 & 86, 038 & & & & \\
\hline Angel fish... & 7,305 & & & & & \\
\hline Black bass & 331, 161 & 47, 227 & & & & \\
\hline Bluefish. & 896, 694 & 66, 805 & 7,000 & \$700 & & \\
\hline Bonito. & 43, 070 & 2, 688 & & & & \\
\hline Bowfin & 21, 009 & 390 & & & & \\
\hline Butterfish & 298, 990 & 14, 625 & & & & \\
\hline Carp, German & 209, 147 & 10,438 & & & & \\
\hline Catfish & 255, 318 & 6,877 & 2, 500 & 79 & & \\
\hline Cero and kingfish & 1,139 & 124 & & & & \\
\hline Cod. & 340 & 10 & & & & \\
\hline Crevalle & 325 & 16 & 7,000 & 350 & & \\
\hline Croaker-1. & \(2,262,308\)
1,794 & 53,993
194 & 26,000
13,050 & 1,274 & & \\
\hline Drum, red, or redifish & 245, 443 & 10,763 & 31,000 & 1,730 & 600 & \$36 \\
\hline Eels.. & 179, 526 & 17, 036 & & & & \\
\hline Flounders & 332, 773 & 22,039 & 27,650 & 2, 164 & 200 & 12 \\
\hline Groupers.-. & & & 8,000 & 480 & 11, 113 & 571 \\
\hline Grunts.-- & 1,100 & 33 & & & 123 & 10 \\
\hline Harvestfish or "starfish" & 520, 816 & 22, 217 & & & & \\
\hline Hickory shad & 381, 521 & 29, 598 & 7, 500 & 750 & 10,510 & 1,066 \\
\hline Jewfish----- & 560, 159 & 21,326 & 83,400 & 7,823 & 2,767
1,000 & \\
\hline Menhaden. & 63, 289, 940 & 325, 967 & & & 26, 973, 000 & 149,850 \\
\hline Mullet, fresh & 1, 379, 712 & 109, 464 & 152,500 & 11,600 & 4,000 & 240 \\
\hline Mullet, salted & 369, 000 & 39,305 & 253, 000 & & & \\
\hline Pigfish. & 385, 270 & 8, 823 & & & & \\
\hline Pike---.----7ilors choice & 13, 910 & 1,413 & & & & \\
\hline Pinfish or sailor's choice
Pompano----------- & 13,860
49,547 & 425
3,681 & & & 400 & 24 \\
\hline Pompano-- & 49,547 & 3,681 & 8,500 & 605 & 1,601 & 182 \\
\hline Sea bass.-- & 102, 265 & 8,217 & 218,000 & 20,300 & 104, 090 & 8,327 \\
\hline Sbad & 2,370, 134 & 582, 591 & 183, 916 & 43, 721 & 133, 750 & 27,890 \\
\hline Sbarks...- & & & 18,000
1,000 & & & \\
\hline Sheepshead & 51,685 & 3,421 & 1,000
3,000 & 80
60 & & \\
\hline Snapper, red & 1,200 & 84 & 2,000 & 200 & 104,970 & 7,347 \\
\hline Spanish mackerel & 182, 941 & 18,740 & & & & \\
\hline Spot, fresh & \(1,672,223\)
78,500 & 54,647
5,750 & \[
\begin{aligned}
& 56,500 \\
& 50,000
\end{aligned}
\] & \[
\begin{aligned}
& 3,880 \\
& 4.600
\end{aligned}
\] & 600 & 36 \\
\hline Spot, salted ..--.-.-.-- & 1,78,500 & 5,750
250,847 & 50,000
70,300 & 4, 600 & 5, 000 & 500 \\
\hline Striped bass.- & 477,001 & 75, 953 & & & 360 & 29 \\
\hline Sturgeon-..- & 18,854 & 3,129 & 49, 406 & 14,983
1,725 & 32,000 & 3,600 \\
\hline Sturgeon caviar & 305
1,394 & 593
17 & & 1,725 & & 114 \\
\hline Suckers & 42,383 & 815 & 1,500 & 120 & & \\
\hline Tautog & 75 & 5 & & & & \\
\hline Tripletail. & 181 & - 9 & & & & \\
\hline White perch & 438, 542 & 33, 749 & & & & \\
\hline Yellow perch & 268, 397 & 16, 007 & & & & \\
\hline Other fish.- & 213 & 13 & & & & \\
\hline Crabs, hard & 331,350
182,296 & 5,395
27,692 & 9,000 & 270 & 120,000 & 7,000 \\
\hline Crabs, soit & 1,658,476 & 50,772 & 355, 000 & 12, 425 & 10, 688,380 & -773, 303 \\
\hline Clams, hard & 263, 536 & 64, 064 & 85, 640 & 9, 611 & & \\
\hline Oysters, market, public & 3, 904, 446 & 228, 351 & 4, 587, 226 & 99, 534 & 948, 787 & 57,380 \\
\hline Oysters, market, & 12,950
554,574 & 1,225
46,214 & 445, 116 & 14, 421 & 771, 547 & 29,391 \\
\hline Scallops. & 554, 574 & 46, 214 & & & 50 & 10 \\
\hline Terrapin & 360 & 120 & & & 1,200 & 1,000 \\
\hline Turtles & 0,086 & 583 & & & & \\
\hline Total & 95, 192, 343 & 2, 414, 499 & 6,763, 279 & 284, 791 & 39, 896, 386 & 668,129 \\
\hline
\end{tabular}

Yield of the fisheries of the South Atlantic States, 1923-Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Florida (east coast)} & \multicolumn{2}{|c|}{Total} \\
\hline & Pounds & Value & Pounds & Value \\
\hline Alewives, fresh & 1,020,000 & \$25, 500 & 2,609,347 & \$58, 866 \\
\hline Alewives, salted. & 28, 000 & 1,200 & 4,961, 050 & 87, 238 \\
\hline Amber fish & 4, 100 & 128 & 4, 100 & 128 \\
\hline Angel fish- & 3,200
2,700 & 118 & 10,505 & 536 \\
\hline Black bass & \(\begin{array}{r}2,700 \\ 82 \\ \hline\end{array}\) & 86 & 2,700 & 86 \\
\hline Bluefish. & 1, 100, 550 & 147, 321 & 2, 004,244 & 55. 606 \\
\hline Blue runner or hardt & 179, 400 & 4,244 & -179, 400 & -4,244 \\
\hline Bonito. & 350 & 12 & 43, 420 & 2,700 \\
\hline Bowfin- & & & 21,009 & 2, 390 \\
\hline Butterfish. & & & 298, 990 & 14,625 \\
\hline Carp, German. & & & 209, 147 & 10,438 \\
\hline Catfish & 783,440 & 38.372 & 1.041, 258 & 45, 329 \\
\hline Cero and king & 1,965, 457 & 161, 077 & 1,966, 596 & 161, 201 \\
\hline Crevalle & 164, 600 & 5,049 & 171,925 & 3,532 \\
\hline Croaker & 21, 500 & '674 & 2, 309, 858 & 55,941 \\
\hline Drum, black & 46,700 & 1, 519 & 61, 541 & 2, 105 \\
\hline Drum, red, or redfish & 121,850 & 4, 434 & 398, 893 & 16,963 \\
\hline Eels. & & & 179, 526 & 17,036 \\
\hline Flounders & 5,850 & 489 & 366, 473 & 24, 704 \\
\hline Gizzard shad & & & 8,905 & 20 \\
\hline Groupers & 17, 200 & 900 & 36,613 & 1,951 \\
\hline Grunts & 7,650 & 307 & 8, 873 & 350 \\
\hline Harvestfish or "starfish & & & 520,816 & 22, 217 \\
\hline Hickory shad & & & 399, 531 & 31,414 \\
\hline Hogfish. & 1,550 & 64 & 1,550 & 64 \\
\hline Jewfish & 250 & 7 & 3,017 & 118 \\
\hline King whiting ---7.-...-' & 175, 300 & 6, 812 & 819, 859 & 36, 061 \\
\hline Leatherjacket or "turbot' & 57, 918,030 & - 16 & 400 & 16 \\
\hline Mooufish & \[
\begin{array}{r}
8,030 \\
2,200
\end{array}
\] & 276, 209 & \(148,180,970\)
2,200 & 752,026
69 \\
\hline Mullet, fresh & 6, 198, 200 & 194, 092 & 7, 734, 412 & 315, 396 \\
\hline Mullet, salted & & & 622, 000 & 62,905 \\
\hline Permit... & 5, 700 & 179 & 5,700 & 179 \\
\hline Pigfish & 14,150 & 435 & 399, 420 & 9,258 \\
\hline Pinfish or sailor's choice & 51, 130 & 1,561 & 13,910
65,390 & 1,413
2,010 \\
\hline Pompano & 60, 650 & 8,926 & 110, 197 & 12,607 \\
\hline Porkfish. & 2,000 & 60 & 2,000 & 60 \\
\hline Scup or norgy & 2,000 & 110 & 12, 101 & 897 \\
\hline Sea bass & 4,175 & 264 & 428, 530 & 37, 108 \\
\hline Sergeant fish or snook & 139, 700 & 4,273 & 139, 700 & 4,273 \\
\hline Shad. & 502, 866 & 62,447 & 3, 190,666 & 716, 649 \\
\hline Sharks & & & 18,000 & 360 \\
\hline Sheepshead. & 32, 100 & 1,329 & 84, 785 & 4,830 \\
\hline Skate ........-.-...- & & & 3, 000 & 60 \\
\hline Snapper, mangrove & 26,500 & 1,004 & 26, 500 & 1,004 \\
\hline Snapper, mutton. & 123, 100 & 4,305 & 123, 100 & 4,305 \\
\hline Snapper, red & 11,600 & 776 & 119, 770 & 8,407 \\
\hline Spanish mackerel & 2, 469,400 & 187, 247 & 2, 652,341 & 205, 987 \\
\hline Spot, fresh & 71,700 & 2, 877 & 1, 801, 023 & 61,440 \\
\hline Spot, salted ---- & & & 128,500 & 10,350 \\
\hline Squeteague or "sea trout" & 1,198, 400 & 122,854 & 5, 258, 047 & 381, 155 \\
\hline Striped ba & & & 477,361 & 75, 982 \\
\hline Sturgeon & & & 100, 260 & 21, 712 \\
\hline Suckers.-- & & & 918 & 2,432 \\
\hline Sunfish & 476, 809 & 19,672- & 520, 692 & 20,607 \\
\hline Tautog. & & & 75 & \\
\hline Tripletail & & & 181 & 9 \\
\hline White perch & & & 438, 542 & 33,749. \\
\hline Yellow perch ----.---..---, & & & 268, 397 & 16,007 \\
\hline Yellowtail or "silver perch" & 28,650 & 897 & 28, 650 & 897 \\
\hline Other fish & & & 213 & 13 \\
\hline Crabs, hard & 72,000 & 3,600 & 1532,350 & 16, 265 \\
\hline Crabs, soft craw fish or spiny lobsters & & & ' 182, 296 & 27,692 \\
\hline Sea crawfish or spiny lobsters & 156, 200 & 11,634 & 156, 200 & 11, 634 \\
\hline Clams, hard & 11,024, 045 & 385, 361 & 23, 705, 901 & 821, 861 \\
\hline Oysters, market, public & 4,560 & 1,665 & \({ }^{3} 353,736\) & 75. 340 \\
\hline Oysters, market, private & 464,214
36 & 14,475 & -9,906,673 & 399, 740 \\
\hline Scallops.-- & 36,050 & 3,360 & \({ }^{1} 1,265,663\) & 48,397 \\
\hline Octupus.- & & & & 40, 10 \\
\hline Terrapin. & & & 1,560 & 1,120 \\
\hline Turtles & & & 9,086 & 583 \\
\hline Tot & 86, 895, 922 & , 719,921 & 228, 747, 930 & 5, 087, 340 \\
\hline \begin{tabular}{l}
\({ }^{1} 1,597,050\) in number. \\
\({ }^{2} 546,888\) in number.
\end{tabular} & ushels. bushels. & & ,809 busbels 429 bushels. & \\
\hline
\end{tabular}

Extent of the fisheries of the South Allantic States, various years, 1880 to \(1923^{1}\)

\({ }^{1}\) Statistics for 1908 are from data published by the Bureau of the Census.
\({ }^{2}\) Statistics not available.

\section*{COMPARISON OF YIELD OF CERTAIN SPECIES IN VARIOUS YEARS}

In the foregoing statistics of the products of the fisheries a number of species have been shown fresh and salted as marketed by the fishermen, the quantity salted varying more or less in different years. In order to afford a comparison of the total catch of the more important species on a uniform basis, the quantities salted by the fishermen have been converted to the equivalent of weights of fresh fish, and the total catch of each species is shown as in the fresh condition in the tables below. Varying practices in salting fish make it difficult to determine the actual shrinkage that may have occurred when the fresh fish were salted, but the losses in salting of various species are thought to be approximately as follows: Alewives, croaker, mullet, shad, and spot, \(331 / 3\) per cent; bluefish, sheepshead, Spanish mackere!, squeteague, and striped bass, 50 per cent; red and black drum, 65 per
cent. These figures were used as a basis for converting the salt fish to a fresh-fish basis throughout the comparisons. The statistics on oysters, clams, and scallops are given in pounds and represent the meat or edible portion only.

Certain species of importance occurring in all of the South Atlantic States have been assembled in the first of the following tables. It is interesting to note that of the seven fishery products listed, only shrimp have shown a continuously increased production during years for which statistics are available. This product has increased from comparative insignificance in 1897 to a commodity of first importance in 1923, its production in the latter year exceeding \(23,000,000\) pounds, as compared with about 600,000 pounds in 1897 . The production of oysters reached its peak in 1908, when nearly \(30,000,000\) pounds were reported; in 1918 the production had dropped below \(6,000,000\) pounds, and in 1923 it increased again to over \(11,000,000\) pounds, which is approximately one-third of the maximum production recorded. Of the fishes, shad is probably of most interest. In 1897 this species showed the greatest yield-over \(11,000,000\) pounds. Since then the decline was continuous until 1918 and 1923, when about \(3,000,000\) pounds were reported. The production of alewives, amounting to \(22,000,000\) pounds in 1890, dropped to less than \(14,000,000\) pounds in 1908, increased again to \(18,000,000\) pounds in 1918, and then decreased to \(10,000,000\) pounds in 1923. This is the lowest production on record and is less than one-half of the peak production. Mullet, one of the staple food fishes of the South, reached its maximum production of \(16,000,000\) pounds in 1902 , and the catch has since declined continuously, until in 1923 its production totaled less than \(9,000,000\) pounds. Squeteagues and drum attained their maximum production in 1908 and have since shown a distinct reduction in yield. It is apparent that the most important food fishes of the South Atlantic States are being caught in alarmingly smaller quantities in the recent years than in the earlier years of the fishery. Reference to tables showing the yield of certain species in each of the States also reveals a strikingly lower production of many of the more important fishes in recent years as compared with the previous years.

The following tables give comparative statistics of the yield of certain fishery products in the South Atlantic States in various years, 1889 to 1923.

Comparative statistics of the yield of certain fishery products of the South Atlantic States in various years, 1889 to 1923
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Alewives & Drum, red and black & Mullet & Shad & Squeteague or "sea trout" & Shrimp & Oysters \\
\hline 1889 & Pounds 19, 389, 254 & \begin{tabular}{l}
Pounds \\
1, 038, 197
\end{tabular} & \begin{tabular}{l}
Pounds \\
5, 990,867
\end{tabular} & Pounds
\(8,387,428\) & \begin{tabular}{l}
Pounds \\
2, 460, 950
\end{tabular} & \[
\begin{gathered}
\text { Pounds } \\
743,640
\end{gathered}
\] & \begin{tabular}{l}
Pounds \\
8, 895, 572
\end{tabular} \\
\hline 1890 & 22.174, 325 & \({ }^{\text {1, }} 745\), 605 & 7,065, 944 & 9, 432,029 & 2, 613,584 & 744, 025 & 8, 344, 805 \\
\hline 1897 & 20, 906, 968 & 846, 683 & 7, 281, 722 & 11, 268, 343 & 3, 824, 770 & 627, 221 & 11, 285, 268 \\
\hline 1902 & 15, 601, 672 & 583, 394 & 16, 034, 101 & 9, 849.338 & 5, 050,419 & 3, 810,641 & 22,719, 074 \\
\hline 1908 & 13, 782, 000 & 1,421, 000 & 15, 489, 200 & 8,572, 000 & 8, 628,000 & 5, 697, 000 & 29, 973, 000 \\
\hline 1918 & 18, 057, 523 & 1, 007, 311 & 11, 986, 343 & 2, 888, 644 & 5, 105, 329 & 15, 656, 903 & 5, 871, 376 \\
\hline 1923 & 10, 050, 922 & 460, 437 & 8,667, 412 & 3, 190, 666 & 5, 258,047 & 23, 705, 901 & 11, 172, 336 \\
\hline
\end{tabular}

Compararative statistics of the yield of certain fishery products of North Carolina in various years, 1889 to 1923
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Species & 1889 & 1890 & 1897 & 1902 & 1908 & 1918 & 1923 \\
\hline & Pounds & Por & Poun & Pounds & Poun & Pounds & Poun \\
\hline Alewives & 19, 316, 094 & 22, 111, 605 & 20, 838, 555 & 15, 173, 475 & 12, 530, 000 & 17, 355, 758 & 8, 988, 922 \\
\hline Bluefish & 1, 077,611 & 1, 539, 008 & 1, 909, 975 & 1, 049, 342 & 1,257, 800 & 322, 744 & 896, 694 \\
\hline Butterfisl & & & 94,750 & 83, 218 & 1, 302, 000 & 731. 257 & 819,806 \\
\hline Croaker & 327, 868 & 353, 52.5 & & 1,938, 635 & 1,177, 000 & 386,807 & 2, 262, 308 \\
\hline Drum, red and & 515, 290 & 219, 417 & 230, 801 & 211, 309 & 343, 000 & 99,546 & 247, 237 \\
\hline Eels. & 55, 250 & 160, 615 & 96, 700 & 507, 111 & 258, 000 & 174,541 & 179, 526 \\
\hline Flounders & 48,200 & 48, 630 & 173, 975 & 261, 762 & 403, 000 & 91, 121 & 332, 773 \\
\hline Menhade & 8, 753, 250 & 12, 410, 400 & 11, 310, 000 & 18, 862, 000 & 57, 412,000 & 179, 910, 599 & 63, 289, 940 \\
\hline Mullet & 4, 252, 726 & 4, 891, 564 & 4, 715, 665 & 8, 428, 785 & 6, 013,700 & 1, 285, 704 & 1, 933, 212 \\
\hline Pompano & 8,200 & 9,750 & 53, 175 & 19, 390 & 11, 000 & 8, 685 & 49,547 \\
\hline Sea bass & 228, 900 & 33, 075 & 189, 225 & 57, 250 & 72,000 & 111,650 & 102, 265 \\
\hline Shad. & 5, 402, 586 & 5, 815, 088 & 8, 963, 488 & 6, 566, 724 & 3, 942,000 & 1,657, 036 & 2, 370, 134 \\
\hline Sheepshead & 187, 202 & 202, 025 & 271, 206 & 154, 929 & 249,000 & 26, 223 & 51,685 \\
\hline Spanish mackerel & 82, 445 & 100, 050 & 330, 840 & 354, 084 & 457,000 & 149, 440 & 182, 941 \\
\hline Spot. & 440,565 & 498, 810 & (1) & 977,095 & 852, 000 & 1, 257, 508 & 1, 789, 973 \\
\hline Squeteagu & 1, 971, 119 & 2, 131, 194 & 3, 173, 750 & 3,983,606 & 4, 648, 000 & 3, 361, 406 & 3, 984, 3.47 \\
\hline Striped bas & 536, 449 & 573, 841 & 845, 123 & 1, 175, 400 & 510, 000 & 286, 528 & 477, 001 \\
\hline Sturgeon & 227, 797 & 175, 210 & 404, 125 & 144, 705 & 62,000 & 7,587 & 19, 159 \\
\hline Crabs & 50, 000 & 47, 400 & 1, 026, 720 & 203, 441 & 390, 000 & 379, 310 & 513, 646 \\
\hline Shrimp & 135, 240 & 144, 200 & 146, 496 & 84, 160 & 371,000 & 940, 120 & 1, 658, 476 \\
\hline Clams, ha & & & 937,808 & 1,175, 176 & 726,0¢0 & 197, 576 & 263, 536 \\
\hline Oysters, market & 7,011,340 & 5, 650, 820 & 6, 011, 726 & 7, 159, 691 & 5, 275,000 & 1, 518, 734 & 3, 917, 396 \\
\hline Scallops & 15. 750 & 18,000 & 118, 323 & 13, 020 & \({ }^{(1)}\) & 422, 832 & 554, 574 \\
\hline
\end{tabular}

1 Statistics not available.
Comparative statistics of the yield of certain fishery products of South Carolina in various years, 1889 to 1923
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Species & 1889 & 1890 & 1897 & 1902 & 1908 & 1918 & 1923 \\
\hline Alewives & \[
\begin{array}{r}
\text { Pounds } \\
37,160
\end{array}
\] & \[
\begin{array}{r}
\text { Pounds } \\
28,600
\end{array}
\] & Pounds
\[
2,000
\] & Pounds & Pounds & Pounds
\[
9,500
\] & Pounds \\
\hline Bluefish & 110, 060 & 100,480 & 40,000 & 1,000 & 7,400 & 3, 000 & 7.000 \\
\hline Croaker & (1) & (1) & (1) & 27,000 & 85, 000 & 16,000 & 26,000 \\
\hline Drum, red and & 261, 175 & 273, 028 & 325, 000 & 177, 200 & 109, 000 & 6, 000 & 44,050 \\
\hline Flounder & & & & 1,900 & 4,700 & 16, 200 & 27,650 \\
\hline Mullet & 464, 400 & 552, 813 & 61, 000 & 138, 600 & 708, 500 & 272, 100 & 532, 000 \\
\hline Sea bab & 886, 274 & 826, 164 & 632,400 & 709,545 & 491, 000 & 132, 000 & 218, 000 \\
\hline Shad. & 577, 457 & 563, 259 & 506, 125 & 434, 133 & 464, 000 & 167,462 & 183, 916 \\
\hline Sheepshea & 38,640 & 39,100 & 36, 200 & 26, 650 & 20, 000 & 2, 100 & 1,000 \\
\hline Spot. & (1) & (1) & & 21, 800 & 66, 000 & 75, 325 & 131,500 \\
\hline Squeteague & 116, 113 & 103, 106 & 80, 000 & 85, 700 & 183, 000 & 59,150 & 70, 300 \\
\hline Striped bass & 10,785 & 11, 560 & 10,100 & 9,800 & 5,000 & & \\
\hline Sturgeon & 284, 730 & 216, 099 & 480, 905 & 94, 150 & & 117,890 & 49,981 \\
\hline Crabs, har & 86, 230 & 93, 260 & 110, 000 & 96, 200 & 33,000 & 18,000 & 9,000 \\
\hline Shrimp & 380, 400 & 371,840 & 374,500 & 369, 500 & 452, 000 & 55, 400 & 355, 000 \\
\hline Clams, hard & & & \(\begin{array}{r}185,400 \\ \hline 1504,300\end{array}\) & 225,064
4827 & 76,000
\(10,941,000\) & 800 & 85, 640 \\
\hline Oysters, m & 305, 340 & 442, 050 & 1,504,300 & 4, 827, 900 & 10,941,000 & 2, 783, 830 & 5, 032, 342 \\
\hline
\end{tabular}
! Statistics not available. •
Comparative statistics of the yield of certain fishery products of Georgia in various years, 1889 to 1923
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Species & 1889 & 1890 & 1897 & 1902 & 1908 & 1918 & 1923 \\
\hline wi & Pounds
36,000 & Pounds & Pounds & Pounds & Pounds & Pounds & Pounds \\
\hline Drum, red and blark.- & 48,675 & 53, 870 & 38,100 & 60,000 & 151,000 & 1,-674 & 600 \\
\hline Flounders. & & & 6,500 & 2, 600 & 7, 200 & 10, 800 & 200 \\
\hline Groupers. & & & & 50,000 & 160, 000 & 27,758 & 11,413 \\
\hline Menhaden & & & & & & 29, 484, 600 & 26, 973,000 \\
\hline Mullet & 57,425 & 52, 740 & 56,000 & 125, 800 & 194, 000 & 10,650 & 4,000 \\
\hline Sea bass & 8,200. & 10,000 & & 76,500 & 233, 000 & 292,615 & 104, 090 \\
\hline Shad. & 356, 352 & 399, 660 & 787, 550 & 1, 029,050 & 1,333,000 & 100,540 & 133,750 \\
\hline Sheepshead & 5,165 & 5,000 & 25,000 & 50,000 & 64,000 & 400 & \\
\hline Snapper, red & & & & 125, 000 & 880,000 & 112, 349 & 104, 970 \\
\hline Squeteague & 130, 337 & 144,000 & 54,650 & 82, 550 & 140, 000 & 39, 550 & 5,000 \\
\hline Striped bass & 13, 260 & 9,000 & 9,000 & 2,500 & 8,900 & 125 & 360 \\
\hline Sturgeon. & 212, 235 & 83, 560 & 157, 300 & & 100, 000 & 39, 150 & 32,038 \\
\hline Crabs, hard & 43, 267 & 47, 866 & 74, 660 & 80,000 & 196, 000 & 8, 455 & 120,000 \\
\hline Shrimp.- & 150, 000 & 162, 160 & 67,600 & 344, 127 & 528, 000 & 5,793, 465 & 10, 668,380 \\
\hline Oysters, market & 1,142,400 & 1, 570,485 & 3, 406, 440 & 8, 568, 000 & 10,053,000 & 1,109, 822 & 1,720, 334 \\
\hline
\end{tabular}

Compurative statistics of the yield of certain fishery products of the east coast of Florida in various years, 1889 to 1923
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Species & 1889 & 1890 & 1897 & 1902 & 1908 & 1918 & 1923 \\
\hline & Pounds & Pounds & Pounds & Pounds & Pounds & Pounds & Poun \\
\hline Alewive & & 10, 120 & 41, 413 & 405, 697 & 1,220, 000 & 692,265 & 1, 062, 000 \\
\hline Bream and sunfish & 5,240
497,305 & r88, 190 & -46, 421 & 79, 6430 & 372,000 & 561, 301 & 1, 100, 5550 \\
\hline CCroaker & (1) & (1) & (1) & 64,593 & \(1,409,000\)
92,000 & \({ }_{124,} 278\) & 476,809
21,550 \\
\hline Drum, red and black & 213, 057 & 199, 290 & 252, 782 & 134, 885 & 818, 000 & 900, 091 & 168, 550 \\
\hline Flounders & & & & 49,380 & 99, 000 & 13, 490 & 5,850 \\
\hline Groupers & & & & 26,910 & 45, 000 & 74,783 & 17, 200 \\
\hline Menhade & 8, 000 & & & & & 48, 362, 600 & 57, 918, 030 \\
\hline Mullet & 1,216,316 & 1, 568, 827 & 2, 449, 057 & 7,340,916 & 8, 573,000 & 10, 417, 889 & 6, 198, 200 \\
\hline Pompano & 12,434 & - 30, 135 & 196, 344 & 265, 231 & -276, 000 & -133,419 & -60,650 \\
\hline 'Sea bass & 10, 800 & 10, 445 & 5, 570 & 29,800 & 110, 000 & 41, 331 & 4, 175 \\
\hline Shad & 2, 051, 033 & 2,654, 022 & 1,011, 180 & 1, 819, 431 & 2,833, 000 & 963, 606 & 502, 866 \\
\hline Sheepshead & 264, 491 & 274, 113 & 390, 164 & 404, 251 & 1, 098, 000 & 104, 303 & 32, 100 \\
\hline - Snapper, red & & & & 20, 000 & 60,000 & 20, 200 & 11, 600 \\
\hline Snapper, other- & & & & 8, 043 & 110,000 & 264, 264 & 149, 600 \\
\hline :Spanish mackerel & & & 3,450 & 659, 088 & 1, 228, 000 & 3,061,965 & 2, 469, 400 \\
\hline Spot..... & \({ }^{(1)}\) & \({ }^{(1)}\) & \({ }_{51}\) (1) 770 & 32, 451 & 130,000 & 393, 030 & 71, 700 \\
\hline Squeteague & 243,381
42,620 & 235,284
29,930 & 516,370 & 898, 563 & \(3,657,000\)
55,000 & 1,645, 223 & 1,198, 400 \\
\hline -Crabs, har & 4, 3 , 000 & 29, 100 & 3,700 & 6,066 & 146,000 & 52,000 & 72,000 \\
\hline Shrimp. & 78,000 & 65, 825 & 38,625 & 3, 012, 854 & 4,346, 000 & 8, 867, 918 & 11, 024,045 \\
\hline - Oysters, market & 436, 492 & 681, 450 & 362, 802 & 2, 163, 483 & 3, 704, 000 & 458, 990 & 502, 264 \\
\hline
\end{tabular}
: Statistics not available.

\section*{MENHADEN INDUSTRY}

The menhaden industry of the South Atlantic States in 1923 was prosecuted in North Carolina, Georgia, and on the east coast of Florida. There were 20 factories in operation, having a value of \(\$ 1,835,751\). The cash or working capital employed amounted to \(\$ 212,000\). There were 906 persons engaged in the factories, and the wages paid amounted to \(\$ 175,215\). The vessels and boats employed included 6 steam vessels, 39 gas vessels, 1 transporting vessel, and 3 motor boats, having a value of \(\$ 965,029\). The tonnage of the vessels was 2,138 net tons, and there were 997 fishermen. There were 49 purse seines used with vessels and boats, and the catch amounted to \(148,180,970\) pounds, or \(246,968,283\) in number, valued at \(\$ 752,026\). In addition to this there were \(16,309,167\) pounds or \(27,181,945\) menhaden, valued at \(\$ 83,176\), delivered to the menhaden firms by vessels other than those having their home ports in the South Atlantic States, making a total of \(164,490,137\) pounds, or \(274,150,228\) menhaden, valued at \(\$ 835,202\), utilized by these firms. Of the 20 menhaden factories 17 were located in North Carolina, but the greater part of the catch was taken in Georgia and on the east coast of Florida. The products, consisting of oil, fish scrap, and meal, in North Carolina were valued at \(\$ 738,743\), and in Georgia and the east coast of Florida at \(\$ 593,008\). The statistics are given in detail in the following table:

Menhaden industry of the South Atlantic States, 1923
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{North Carolina} & \multicolumn{2}{|l|}{Georgia and Florida (east coast)} & \multicolumn{2}{|l|}{Total} \\
\hline Firms & Number 17 & \begin{tabular}{l}
Value \\
\$1, 508, 899
\end{tabular} & \[
\text { Number }{ }_{3}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 326,852
\end{gathered}
\] & Number 20 & \[
\begin{gathered}
\text { Value } \\
\$ 1,835,751
\end{gathered}
\] \\
\hline Cash capital & & 87, 000 & & 125, 000 & & 212,000 \\
\hline Shoresmen & 791 & & 115 & & 906 & \\
\hline Wages paid
Fishermen & 660 & 119,543 & 337 & 55,672 & 997 & 175, 215 \\
\hline Vessels, steam & 2 & 67, 400 & 4 & 180,833 & \({ }^{6}\) & 248.233 \\
\hline Net tonnage & 160
32 & 492, 728 & 353 & 216, 068 & 513
39 & 708, 795 \\
\hline Net tonnage & 1,240 & & 369 & & 1,609 & \\
\hline Power boats..- & 3 & 1,500 & & & 3 & 1,500 \\
\hline Transporting vessels Net tonnage & 16 & 6. 500 & & & 16 & 6,500 \\
\hline Purse seines: & & & & & & \\
\hline On steam vessels. & 2 & 3,000 & 4 & 6,100 & , & 9,100 \\
\hline On gas vessels. & 33 & 50, 200 & 7 & 10,400 & 40 & 60,600 \\
\hline On boats. & 3 & 4,000 & & & 3 & 4,000 \\
\hline Total & 38 & 57,200 & 11 & 16,500 & 49 & 73,700 \\
\hline Catch: & & & & & & \\
\hline By steam vessels.-..-pounds. & 2, 292,400 & 22, 930 & 33, 172, 260 & 161,472 & 35, 464, 660 & 184, 402 \\
\hline By gas vessels........- do & 59, 497, 540 & 295, 537 & 51, 718, 770 & 264,587 & 111,216, 310 & 560,124
7,500 \\
\hline Total. & 1, 20,00 & & 84, 891, 030 & 426, 059 & & \\
\hline & 63, 230, 0 & & & & 148,100,970 & \\
\hline Menhaden utilized \({ }^{2}\)-.-.-..-do. & 79,599, 107 & 409, 143 & 84, 891, 030 & 426, 059 & \({ }^{3} 164,490,137\) & 835, 202 \\
\hline Products: & 777, 829 & 349, 245 & 433,700 & 181, 641 & 1,211,529 & 530, 886 \\
\hline Dry scrap and meal.--tons.- & 4,596 & 210, 712 & 5,744 & 277, 327 & 1, 10,340 & 488, 039 \\
\hline Acidulated scrap... pounds.. & 7,068 & 178,786 & 5,168 & 134, 010 & 12,236 & 312,826 \\
\hline Total & & 738, 743 & & 593, 008 & & 1,331,751 \\
\hline
\end{tabular}
\({ }^{1} 246,968,283\) in number.
\({ }^{2}\) This item includes in addition to the catch \(16,309,167\) pounds, or \(27,181,945\) menhaden, valued at \(\$ 83,176\), delivered to North Carolina firms by vessels other than those having their home ports in the South Atlantic States.
\({ }^{3} 274,150,228\) in number.

\section*{FISHERIES OF NORTH CAROLINA}

The fisheries of North Carolina in 1923 furnished employment for 9,308 persons, of whom 6,246 were directly employed in fishing operations and the transporting of fish to landing points, 669 in the wholesale fishery trade, and 2,393 in the canning, by-products, and other fishery industries.

The investment in the fishing equipment and fishery industries amounted to \(\$ 4,198,894\), of which \(\$ 1,244,653\) were invested in fishing and transporting vessels and boats, \(\$ 523,286\) in fishing gear, and \(\$ 2,430,955\) in investment and cash capital used in the fish trade and industries.

The production of fishery products by fishermen amounted to \(95,192,343\) pounds, valued at \(\$ 2,414,499\), of which \(88,275,269\) pounds, valued at \(\$ 1,990,083\), were fish, and \(6,917,074\) pounds, valued at \(\$ 424,416\), were shellfish. Some of the more important fishes, arranged in order of value, were the following: Shad, \(2,370,134\) pounds, valued at \(\$ 582,591\); menhaden, \(63,289,940\) pounds, valued at \(\$ 325,-\) 967; squeteagues, \(3,984,347\) pounds, valued at \(\$ 250,847\), of which \(3,070,437\) pounds, valued at \(\$ 134,531\), were gray "trout" and 913,910 pounds, valued at \(\$ 116,316\), were speckled "trout"; mullet, 1,379,712 pounds fresh and 369,000 pounds salted, valued at \(\$ 148,769\); alewives, \(1,589,347\) pounds fresh and \(4,933,050\) pounds salted, valued at \(\$ 119,404\); striped bass, 477,001 pounds, valed at \(\$ 75,953\); bluefish, 896,694 pounds, valued at \(\$ 66,805\); spot, \(1,672,223\) pounds fresh and 78,500 pounds salted, valued at \(\$ 60,397\); and croakers, \(2,262,308\)
pounds, valued at \(\$ 53,993\). Of the shellfish the following, arranged in order of value, were most important: Oysters, \(3,904,446\) pounds from public beds and 12,950 pounds from private beds, valued at \(\$ 229,576\); hard clams, 263,536 pounds, valued at \(\$ 64,064\); shrimp, \(1,658,476\) pounds, valued at \(\$ 50,772\); and scallops, 554,574 pounds, valued at \(\$ 46,214\).

Compared with 1918 there was an increase in the number of persons employed of 1,272 , or 15.83 per cent, but a decrease in the investment of \(\$ 23,149\), or 0.55 per cent. There was also a decrease in the products of \(115,309,407\) pounds, or 54.78 per cent, in quantity and of \(\$ 564,209\), or 18.94 per cent, in value. The decrease in production was due to a falling off in the catch of menhaden.

The following tables give the number of persons employed, investment, and products of the fisheries of North Carolina, by counties, in 1923:

Persons engaged in the fisheries of North Carolina in 1923, by counties
\begin{tabular}{|c|c|c|c|c|c|}
\hline Counties & On vessels fishing & On vessels transporting & In shore fisheries & Shoresmen & Total \\
\hline Beaufort & 51 & 9 & 155 & 150 & 365 \\
\hline Bertie.-- & & & 23 & 16 & 39 \\
\hline Bladen & & & 25 & & 25 \\
\hline Brunswick & 189 & 8 & 583 & 301 & 1,081 \\
\hline Camden. & 630 & 22 & & & \\
\hline Chowan & & & 1, 193 & 1,540 & 3,495 \\
\hline Craven & 3 & 1 & 51 & 10 & 65 \\
\hline Cumberland & & & 50 & & 50 \\
\hline Currituck & & & 298 & & 298 \\
\hline Dare & 9 & 2 & 697 & 73 & 781 \\
\hline Duplin. & & --.-.....- & 75 & & 75 \\
\hline Gates.-- & & & 38 & & 38 \\
\hline Hertford & & & 20 & 10 & 30 \\
\hline Hyde... & 21 & 2 & 230 & 4 & 257 \\
\hline Jones & & & 2 & & 2 \\
\hline Martin & & & 67 & 34 & 101 \\
\hline New Hanover. & 60 & & 504 & 547 & 1,111 \\
\hline Onslow .- & & & 185 & 24 & 209 \\
\hline Pamlico & 85 & 2 & 194 & 159 & 440 \\
\hline Pasquotank & 7 & & 36 & 10 & 53 \\
\hline Pender----- & & & 157 & & 157 \\
\hline Perquimans & & & 88 & & \({ }_{93}^{58}\) \\
\hline Washington & & 5 & 88 108 & \[
\begin{array}{r}
5 \\
65
\end{array}
\] & 93
178 \\
\hline Total & 1,055 & 51 & 5,140 & 3, 062 & 9,308 \\
\hline
\end{tabular}

Investment in the fisheries of North Carolina in 1923, by counties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|r|}{Beaufort} & \multicolumn{2}{|c|}{Bertie} & \multicolumn{2}{|c|}{Bladen} & \multicolumn{2}{|l|}{Brunswick} \\
\hline Vessels fishing: Gasoline. & \multirow[t]{3}{*}{\[
\begin{array}{|r|}
\hline \text { Number } \\
1 \\
0
\end{array}
\]} & Value \(\$ 700\) & \multirow[t]{3}{*}{Number} & \multirow[t]{3}{*}{Value} & \multirow[t]{3}{*}{Number} & \multirow[t]{3}{*}{Value} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Number } \\
12 \\
414
\end{gathered}
\]} & \[
\begin{gathered}
\text { Value } \\
\$ 161,300
\end{gathered}
\] \\
\hline Tonnage & & & & & & & & \\
\hline Sail Outfit. & & 30 & & & & & & 22,870 \\
\hline Sail Tonnag & 16 & 13,700 & & & & & & \\
\hline Outfit & & 1720 & & & & & & \\
\hline Accessory gasoline boa & 9 & 1,150 & & & & & & \\
\hline Vessels transporting: & & & & & & & & \\
\hline Gasoline....- & 5 & 12, 300 & & & & & & 14, 000 \\
\hline Tonnage & 40 & & & & & & 54 & \\
\hline Sail Outfit. & & 6,460 & & & & & & 1,625 \\
\hline Sail Tonnage & & & & & & & 16 & 4,000 \\
\hline Outfit... & & & & & & & & \\
\hline Power boats & & 9,000 & 5 & \$675 & & & 43 & 42,900 \\
\hline Sailboats... & 7 & 2,200 & & & & & & \\
\hline Rowboats, etc. & 70 & 1,380 & 10 & 145 & 25 & \$150 & 219 & 3,185 \\
\hline Apparatus, vessel fishe Purse seines. & & & & & & & 10 & 17, 500 \\
\hline Otter trawls. & & & & & & & 2 & 110 \\
\hline Dredges.. & 34 & 908 & & & & & & \\
\hline
\end{tabular}

Investment in the fisheries of North Carolina in 1923, by counties-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|r|}{Beaufort} & \multicolumn{2}{|l|}{Bertic} & \multicolumn{2}{|l|}{Bladen} & \multicolumn{2}{|l|}{Brunswick} \\
\hline Apparatus, shore fisheries: & Number & Value & Number & Value & Number & Value & Number & Value \\
\hline Haul seines_...------ & & \$3,400 & & & & & 21 & \$2, 630 \\
\hline Gill nets. & 424 & 2,415 & & & 25 & \$350 & 59 & 1,360 \\
\hline Pound nets & 123 & 12, 110 & 56 & \$4, 520 & & & & \\
\hline Eel pots.- & 130 & 300 & & & & & & \\
\hline Otter trawls... & & & & & & & 34 & 1,955 \\
\hline Oyster dredges.-. & 14 & 350 & - & & & & & \\
\hline Tongs and rakes........ & & & & & & & 216 & 567 \\
\hline Shore and accessory prope & & 109, 220 & & 2, 000 & & 50 & & \[
508,440
\] \\
\hline Cash capital & & 34,500 & & & & & & \\
\hline Total & & 211, 843 & & 7, 340 & & 550 & & 817, 317 \\
\hline
\end{tabular}


\section*{Investment in the fisheries of North Carolina in 1923, by counties-Continued}


Investment in the fisheries of North Carolina in 1923, by counties-Continued


Yield of the fisheries of North Carolina in 1923, by counties and species


Yield of the fisheries of North Carolina in 1923, by counties and species-Contd.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|c|}{Camden} & \multicolumn{2}{|l|}{Carteret} & \multicolumn{2}{|l|}{Chowan} & \multicolumn{2}{|l|}{Craven} \\
\hline Squeteague ("sea trout'), speckled & Pounds & Value & \begin{tabular}{l}
Pounds \\
418, 900
\end{tabular} & \[
\begin{gathered}
\text { Value } \\
\$ 46,699
\end{gathered}
\] & Pounds & Value & \[
\begin{gathered}
\text { Pounds } \\
73,000
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 10,950
\end{gathered}
\] \\
\hline Striped bass & 500 & \$100 & 35, 990 & 6, 502 & 45,650 & \$7,242 & 19,425 & 3,622 \\
\hline Sunfish.- & 1,000 & & & & & & 2,500 & 150 \\
\hline Tautog-...-. & 734 & 57 & 75
300 & \[
\begin{aligned}
& 5 \\
& 54
\end{aligned}
\] & 29,660 & 2,972 & 23, 200 & 2, 320 \\
\hline Yellow perch & 9,866 & 744 & & & 5,122 & 2,398 & 1,750 & , 105 \\
\hline Crabs, soft. & & & 181,996 & 27,673 & & & & \\
\hline Shrimp - & & & 252, 792 & 8,606 & & & & \\
\hline Clams, hard & & & 115, 192 & 26, 292 & & & & \\
\hline Oysters, market, public & & & 1, 591, 158 & 89, 477 & & & 28,000 & 1,800 \\
\hline Scallops...............-- & & & 554, 574 & 46, 214 & & & & \\
\hline Turtles. & & & 300 & 7 & & & & \\
\hline Total & 27,650 & 3,687 4 & 49, 765, 511 & 729, 363 & 3,792, 576 & 121, 469 & 608, 137 & 86, 170 \\
\hline Species & \multicolumn{2}{|r|}{Cumberland} & \multicolumn{2}{|l|}{Currituck} & \multicolumn{2}{|l|}{Dare} & \multicolumn{2}{|r|}{Duplin} \\
\hline Alewives, fresh & Poun & ds Value & \[
\begin{gathered}
\text { Pounds } \\
13,050
\end{gathered}
\] & Value \(\$ 562\) & \[
\begin{gathered}
\text { Pounds } \\
276,228
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 11,477
\end{gathered}
\] & \[
\begin{array}{r}
\text { Pounds } \\
150
\end{array}
\] & Value \$6 \\
\hline Alewives, salted & & & 15,000 & 300 & 20,400 & 254 & & \\
\hline Angel fish-- & & & & & 785 & 48 & & \\
\hline Black bass & & & 270, 750 & 39, 733 & 41, 145 & 4,884 & & \\
\hline Bluefish. & & & 2,200 & 176 & 326, 881 & 16, 555 & & \\
\hline Bonito. & & & 800 & 19 & 4,400 & 112 & & \\
\hline Bowfin- & & & 16,950 & 190 & 213 & 4 & & \\
\hline Butterfish. & & & 500 & 10 & 53, 264 & 3, 359 & & \\
\hline Carp, Germa & & & 179, 037 & 9, 260 & 15,649 & 519 & & \\
\hline Codfish....-- & & & 71,026 & 1,643 & 36, \({ }_{340}\) & 949 & & \\
\hline Croaker & & & 10,200 & 204 & 180, 078 & 6, 883 & & \\
\hline Drum, black & & & & & 154 & & & \\
\hline Drum, red, or redfish & & --..--- & 1,100 & 19 & 73, 938 & 3,980 & & \\
\hline \begin{tabular}{l}
Eels. \\
Flounders
\end{tabular} & & & 95,192
7,900 & 7,980
289 & 23,089
162,991 & 994
9,577 & & \\
\hline Gizzard shad. & & & & & 162, 504 & , 10 & & \\
\hline Harvest fish or "starfish" & & & 1,550 & 31 & 155, 526 & 10, 404 & & \\
\hline Hickory shad & & & 1,000 & 35 & 37, 419 & 2, 520 & 315 & 57 \\
\hline King whiting & & & 38,000 & 760 & 230, 474 & 4, 925 & & \\
\hline Mullet, fresh & & & & & 50, 867 & 4, 032 & & \\
\hline Pigfish. & & & & & 10,000 & 400 & & \\
\hline Pike.-..- & & & 3,550
3,500 & 166 & 22, 212 & +142 & & \\
\hline Shad.-..- & 9, 5 & 00 \(\$ 2,200\) & 11,825 & 4, 005 & 1,164, 106 & 299, 972 & 3,970 & 1,095 \\
\hline Sheepshead & & & 2,000 & -138 & 9,375 & 568 & & \\
\hline Spanish mackerel & & & 1,050 & 105 & 25, 248 & 2,124 & & \\
\hline Spot, fresh & & & 44, 000 & 880 & 486, 345 & 15, 220 & & \\
\hline Squcteague ("sea trout'), gray \({ }^{\text {Squeteague ("sea trout }}\) & & & 10,600 & 444 & 1, 072, 128 & 53, 241 & & \\
\hline speckled & & & 8,400 & 840 & 208, 828 & 27,692 & & \\
\hline Striped bass. & & & 31, 490 & 5,534 & 96, 054 & 13, 062 & & \\
\hline Sturgeon--- & & & & & 13, 964 & 2, 306 & -...- & \\
\hline Suckers....- & & & 1,300 & 13 & & & & \\
\hline Sunfish. & & & 35,965 & 412 & 285 & 15 & & \\
\hline Tripletail & & & & & 181 & 9 & & \\
\hline White perch & & & 203, 400 & 13,943 & 31,233 & 1,591 & & \\
\hline Yellow perch & & & 151,912 & 9, 492 & 10,250 163 & 400 & & \\
\hline Crabs, hard. & & & & & 331, 350 & 5,395 & & \\
\hline Crabs, soft & & & & & 300 & 19 & & \\
\hline Clams, hard. & & & & & 344 & 97 & & \\
\hline Oysters, market, public & & & & & 57, 288 & 4,485 & & \\
\hline Terrapin Turtles. & & & & & 360
8,786 & 120
576 & & \\
\hline Total & 9, 5 & (1) 2, 200 & 1, 233, 247 & 97, 503 & 5,240,801 & 510, 881 & 4,435 & 1,158 \\
\hline
\end{tabular}

Yield of the fisheries of North Carolina in 1923, by counties and species-Contd.


Yield of the fisheries of North Carolina in 1923, by counties and species-Contd.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Pasquotank} & \multicolumn{2}{|l|}{Pender} & \multicolumn{2}{|l|}{Perquimans} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Alewives, fresh. & 10,200 & \$612 & 125 & \$3 & 83,975 & \$719 \\
\hline Alewives, salted. & 10,000 & 50 & & & 25,000 & 175 \\
\hline Angel fish.- & & & 400 & 20 & & \\
\hline Black bass & 3,636 & 509 & & & 425 & 70 \\
\hline Bowfin. & 976 & 19 & 2,500 & 250 & 70 & 1 \\
\hline Carp, German. & 1,554 & 70 & & & 451 & 18 \\
\hline Catfish. & 23, 214 & 813 & & & 2, 844 & 85 \\
\hline Croaker. & & & 8, 000 & 400 & & \\
\hline Drum, red, or redfish & & & 8, 000 & 460 & & \\
\hline Eels.. & 2, 100 & 235 & & & 1,000 & 100 \\
\hline Flounders & 630 & 43 & 14, 500 & 2, 220 & 377 & 25 \\
\hline Gizzard shad & 4,536 & 92 & & & 3,665 & 73 \\
\hline Hickory shad. & 4,915 & 344 & 150 & 25 & 18,091 & 1,870 \\
\hline King whiting & & & 3,000 & 120 & & \\
\hline Mullet, fresh. & 601 & 48 & 71,000 & 6,940 & 50 & 4 \\
\hline Pigfish.-- & & & 800 & 80 & & \\
\hline Pike.- & 1,750 & 131 & & & 85 & 8. \\
\hline Pompano & & & 250 & 25 & & \\
\hline Shad.- & 40, 238 & 11, 863 & 3,150 & 895 & 68, 641 & 13, 703 \\
\hline Sheepskead & & & 500 & 75 & & \\
\hline Spot, fresh. & & & 78,500 & 4, 575 & & \\
\hline Squeteague ("sea trout"), gr & & & 4,000 & 160 & & \\
\hline Squeteague ("sea trout"), sp & & & 9, 000 & 1,275 & & \\
\hline Striped bass. & 6, 028 & 904 & 500 & 100 & 18,514 & 2,948 \\
\hline Stugeon-- & & & & & 90 & \\
\hline Suckers. & 69 & 3 & & & 25 & 1 \\
\hline Sunfish. & 1,008 & 121 & - & & 75 & 9 \\
\hline White perch. & 9, 106 & 820 & & & 2,479 & 226 \\
\hline Yellow perch & 4,277 & 342 & & & 350 & 28 \\
\hline Other fish.. & & & & & 50 & 8 \\
\hline Clams, hard & & & 10,000 & 2, 500 & & \\
\hline Oysters, market, public & 29,050 & 2,450 & 29,400 & 1,400 & & \\
\hline Total & 153, 888 & 19,469 & 243, 775 & 21, 523 & 226, 257 & 20,094 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Tyrrell} & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|c|}{Total} \\
\hline Alewives, fresh & \[
\begin{gathered}
\text { Pounds } \\
2,000
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 25
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pounds } \\
& 7,900
\end{aligned}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 999
\end{gathered}
\] & \[
\begin{gathered}
\text { Pounds } \\
1,589,347
\end{gathered}
\] & Value
\[
\$ 33,366
\] \\
\hline Alewives, salted & 251, 500 & 3,771 & 1,304, 000 & 25,515 & 4, 933, 050 & 86,038 \\
\hline Angel hass. & 1,550 & 279 & 600 & 108 & 331, 161 & 47,227 \\
\hline Bluefish.. & & & & & 896, 694 & 66,805 \\
\hline Bonito- & & & & & 43, 070 & 2,688 \\
\hline Bowfin & & & & & 21, 009 & \\
\hline Butterfish. & & & & & \({ }^{298} 91990\) & 14,625 \\
\hline Carp, German & 1,425
18,595 & 744 & 8,750 & 29 & 209,147
255,318 & 10,438
6,877 \\
\hline Cero. & & & & & 1,139 & 124 \\
\hline Cod. & & & & & 340 & 10 \\
\hline Crevalie. & & & & & 325 & 16 \\
\hline Croaker- & & & & & 2, 262,308 & 53, 993 \\
\hline Drum, black & & & & & 1,794 & \\
\hline \({ }_{\text {Dels }}\) Drum, red, or redfish & 2,000 & 200 & 675 & 71 & 245,443 & 10,763
17,036 \\
\hline Flounders & 2,00 & & & 71 & 1732,773 & \({ }_{22,039}^{17,036}\) \\
\hline Garísh. & & & & & 2,150 & 20 \\
\hline Gizzard shad & & & & & 8,905 & \({ }_{17}^{177}\) \\
\hline Grunts. & & & & & 1,100 & \\
\hline Harvest fish or "starish & & & & & 520, 816 & \({ }_{29}^{22,217}\) \\
\hline Hickory shad- & 40,800 & 4,070 & 16,900 & 1,457 & 381,521
560,159 & \({ }_{21,326}^{29,598}\) \\
\hline King whiting & & & & & 63, 289,940 & 21,326
325,967 \\
\hline Mullet, fresh & & & & & 1,379, 712 & 109, 464 \\
\hline Mullet, salted. & & & & & \({ }^{369}\) 36, 270 & 39, \({ }_{8} 823\) \\
\hline Pike & 1,000 & 230 & 350 & 88 & 13,910 & 1,413 \\
\hline Pinfish or sailor's choice & & & & & 13, 860 & \\
\hline Pompano & & & & & 49,547 & 3,681 \\
\hline Red snapper & & & & & 1,200 & \\
\hline Shad & 59,850 & 13,444 & 73,726 & 15, 872 & 2, 370, 134 & 582,591 \\
\hline Sheepshead & & & & & 51, 685 & 3,421 \\
\hline \({ }_{\text {Spanish mack }}^{\text {Spot }}\) & & & & & 1,672, 2241 & - 54,647 \\
\hline Spot, salted. & & & & & 78, 500 & 5,759 \\
\hline
\end{tabular}

Yield of the fisheries of North Carolina in 1923, by counties and species-Contd.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|c|}{Tyrrell} & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|c|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Squeteague ("sea trout"), gray & & & & & 3, 070, 437 & \$134, 531 \\
\hline Squeteague ("sea trout"), speckled & & & & & 913, 910 & 116, 316 \\
\hline Striped bass & 41,000 & \$7, 380 & 92,775 & \$14, 358 & 477, 001 & 75, 953 \\
\hline Sturgeon... & & & & --- -- & 18,854 & 3, 129 \\
\hline Sturgeon caviar & & & & & 305 & 593 \\
\hline Suckers. & & & & & 1,394 & 17 \\
\hline Sunfish & & & & & 42, 383 & 815 \\
\hline Tautog & & & & & 75 & - 5 \\
\hline Tripletail & & & & & 181 & 9 \\
\hline White perch & 30,170 & 3, 620 & 65,750 & 4,729 & 438,542 & 33,749 \\
\hline Yellow perch & 3,150 & 315 & 790 & 68 & 268, 397 & 16,007 \\
\hline Other fish. & & & & & 213 & 13 \\
\hline Crabs, hard & & & & & \({ }^{1} 331,350\) & 5,395 \\
\hline Crabs, soft & ------ & ---- & & & \({ }^{2} 182,296\) & 27,692 \\
\hline Shrimp & & & & & 1,658, 476 & 50,772 \\
\hline Clams, hard & & & & & \({ }^{3}\) 263, 536 & 64, 064 \\
\hline Oysters, market, public & & & & & 4 3, 904, 446 & 228,351 \\
\hline Oysters, market, private & & & & & \({ }^{5} 12,950\) & 1,225 \\
\hline Scallops. & & & & & \({ }^{6} 554,574\) & 46,214 \\
\hline Terrapin & & & & & 360 & 120 \\
\hline Turtles & & & & & 9,086 & 583 \\
\hline Total & 453, 040 & 34, 120 & 1,573, 091 & 62, 682 & 95, 192, 343 & 2,414,499 \\
\hline 1994,050 in number. \({ }^{2} 546,888\) in number. & \[
\begin{aligned}
& 3 \\
& \\
& +55,9
\end{aligned}
\] & 2 bushe 78 bush & & \[
\begin{aligned}
& 51,85 \\
& 692,
\end{aligned}
\] & bushels. 29 bushels. & \\
\hline
\end{tabular}

FISHERIES BY APPARATUS
The vessel fisheries of North Carolina in 1923 employed 3 steamers, 64 motor vessels, 74 sailing vessels, and in addition 82 accessory gas boats, some of them employed as auxiliary power for sailing vessels and others in connection with the long-haul seine fishing. There were 35 purse seines, 34 haul seines, 2 otter trawls, 156 dredges, 40 tongs, and lines to the value of \(\$ 130\) used in the vessel fisheries The total yield by all forms of apparatus used on ressels was \(66,355,182\) pounds, valued at \(\$ 543,167\).

The catch by purse seines, consisting entirely of menhaden, and by far the most important apparatus in the vessel fishery, amounted to \(61,789,940\) pounds, valued at \(\$ 318,467\). The catch by dredges, which was next in importance, consisted of \(2,048,508\) pounds or 292,644 bushels of oysters, valued at \(\$ 120,692\), and 26,600 pounds of hard crabs, valued at \(\$ 500\). Haul seines were third in importance, with a catch of \(2,128,505\) pounds, valued at \(\$ 71,439\), most of which consisted of squeteagues, or "sea trout," and croaker. Next in order of value was the catch by lines, amounting to 132,220 pounds, valued at \(\$ 19,054\), consisting largely of sea bass and bluefish. The catch by tongs, consisting of oysters, and the catch by otter trawls, consisting of shrimp, made up the remainder of the yield of the vessel fishery.

In the shore or boat fisheries the total yield by all forms of apparatus was \(28,837,161\) pounds, valued at \(\$ 1,871,332\). The catch by pound nets, which were the most productive form of apparatus used in the shore fisheries, amounted to \(9,279,555\) pounds, valued at \(\$ 532,667\). Some of the more important species taken in pound nets were alewives่, \(1,233,805\) pounds fresh and \(3,326,550\) pounds salted, valued together at \(\$ 81,984\); squeteagues, \(1,781,808\) pounds, valued at \(\$ 72,117\); and shad, \(1,110,678\) pounds, valued at \(\$ 270,421\).

A number of other species were taken in considerable quantities also. The catch with purse and haul seines in the shore fisheries. amounted to \(9,408,598\) pounds, valued at \(\$ 444,599\). The catch with purse seines was \(1,516,023\) pounds, valued at \(\$ 9,825\), of which \(1,500,000\) pounds, valued at \(\$ 7,500\), was menhaden, while the remainder consisted of striped bass and squeteagues. The catch with haul seines was \(7,892,575\) pounds, valued at \(\$ 434,774\). Among the more important species taken in haul seines were alewives, 102,815 pounds fresh and \(1,533,000\) pounds salted, valued together at \(\$ 31,012\); spot, \(1,040,316\) pounds fresh and 66,000 pounds salted, valued together at \(\$ 36,449\); mullet, 582,474 pounds fresh and 271,000 pounds salted, valued together at \(\$ 74,296\); and squeteagues, 826,536 pounds, valued at \(\$ 74,457\). Various other species, as black bass, bluefish, German carp, catfish, croaker, red drum, king whiting, pigfish, striped bass, white perch, yellow perch, crabs, and shrimp, were also taken in large quantities. The yield by gill nets, which was much less in quantity but exceeded that of seines in value, amounted to \(5,221,200\) pounds, valued at \(\$ 581,849\). The principal species included in the catch, in the order of their value, were shad, \(1,182,898\) pounds, valued at \(\$ 293,320\); mullet, 796,060 pounds fresh and 98,000 pounds salted, valued together at \(\$ 74,377\); squeteagues 775,697 pounds fresh and 202,006 pounds salted, valued together at \(\$ 73,968\); bluefish 483,287 pounds, valued at \(\$ 30,680\); and striped bass, 158,124 pounds valued at \(\$ 27,865\). The catch taken with dredges, tongs, rakes, and hands totaled \(2,506,697\) pounds, valued at \(\$ 207,633\). The catch consisted principally of oysters, scallops, and hard clams. A small quantity of soft crabs was also taken with rakes. Various species were taken with fyke nets, amounting to 210,121 pounds, valued at \(\$ 14,533\), and with lines, 356,750 pounds, valued at \(\$ 8,678\).

The catch with otter trawls amounted to \(1,470,174\) pounds, ralued at \(\$ 44,250\), of which \(1,440,940\) pounds, valued at \(\$ 43,287\), were shrimp and the remainder consisted of various species of fish. The catch with eelpots consisted of 160,402 pounds of eels, valued at \(\$ 15,569\) and with spears, 73,000 pounds of flounders, valued at \(\$ 7,280\). With other forms of apparatus, such as stop nets, cast nets, dip nets, revolving traps, crab traps, drag nets, and turtle traps, there were taken 150,664 pounds of various species, valued at \(\$ 14,254\). The largest item in this catch was 84,121 pounds of soft crabs, valued at \(\$ 12,592\). The products of the vessel and shore fisheries are shown separately by counties in the appended tables:

Yield of the vessel fisheries of North Carolina in 1923, by counties, apparatus, and species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Brunswick} & \multicolumn{2}{|l|}{Cartaret} & \multicolumn{2}{|l|}{New Hanover} & \multicolumn{2}{|l|}{Total} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Purse seines: Menhaden. \\
Haul seines:
\end{tabular}} & \[
\begin{gathered}
\text { Pounds } \\
20,289,600
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 99,398
\end{gathered}
\] & \[
\begin{gathered}
\text { Pounds } \\
39,207,940
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 196,139
\end{gathered}
\] & \[
\begin{array}{r}
\text { Pounds } \\
2,292,400 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Value } \\
\$ 22,930 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Pounds } \\
61,789,940
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 318,467:
\end{gathered}
\] \\
\hline & & & & & & & & \\
\hline Angel fish... & & & 4,000
79,200 & 200
3,960 & & & 4,000
79,200 & 200
960 \\
\hline Butterfish & & & 35,600 & 1,780 & & & 35,600 & 1,780. \\
\hline Croaker & & & 1,20, 000 & 24,400 & & & 220,000 & 24, 400 \\
\hline Flounders. & & & 4, 535 & 199 & & & 4, 535 & 199 \\
\hline \begin{tabular}{l}
Harvest fish or "star- \\
fish"
\end{tabular} & & & 48,000 & 2,400 & & & 48, 000 & 2,400 \\
\hline
\end{tabular}

Yield of the vessel fisheries of North Carolina in 1923, by counties, apparatus, and species-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Brunswick} & \multicolumn{2}{|l|}{Cartaret} & \multicolumn{2}{|l|}{New Hanover} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline King whiting & & & 11,900 & \$595 & & & 11,900 & \$595 \\
\hline Pigfish...--- & & & 138, 000 & 2,760 & & & 138, 000 & 2,760 \\
\hline Pompano- & & & 6,300 & 630 & & & 6,300 & 630 \\
\hline Speepshead & & & 2,000
3,950 & 200 & & & 2,000
3,950 & 200
395 \\
\hline Spot-.-...-- & & & 128,000 & 2, 560 & & & 128, 000 & 2, 560 \\
\hline Squeteague ("; e- a trout'), gray & & & 189, 200 & 9, 460 & & & 189, 200 & 9,460 \\
\hline Squeteague ("s ea trout"), speckled.. & & & 205, 200 & 20,520 & & & 205, 200 & 20,520 \\
\hline Total & & & 2, 128, 505 & 71,439 & & & 2,128,505 & 71,439 \\
\hline \multicolumn{9}{|l|}{Lines:} \\
\hline Angel fish & & & 61360 & \({ }^{20}\) & & & 360 & \\
\hline Bluefish.. & & & 61,800 & 13, 476 & & & 61,800 & 13,476 \\
\hline Grunt... & & & 800 & 24 & & & 800 & 24 \\
\hline Pigfish.-- & & & 300 & 9 & & & 300 & 9 \\
\hline Pinfish or sailor's choice. & & & 660 & 26 & & & 660 & 26 \\
\hline Red snapper & & & 700 & 49 & & & 700 & 49 \\
\hline Sea bass... & & & 66, 700 & 5,400 & & & 66, 700 & 5,400 \\
\hline Total & & & 132, 220 & 19,054 & & & 132, 220 & 19,054 \\
\hline Otter trawls: Shrimp & 50, 524 & \$1,515 & & & & & 50, 524 & 1,515 \\
\hline Apparatus and species & \multicolumn{2}{|l|}{Beaufort} & \multicolumn{2}{|c|}{Carteret} & \multicolumn{2}{|l|}{Craven} & \multicolumn{2}{|l|}{Dare} \\
\hline Dredges: Crabs, hard & Pounds & Value & Pounds & Value & Pounds & Value & \[
\begin{gathered}
\text { Pounds } \\
26,600
\end{gathered}
\] & Value \(\$ 500\) \\
\hline Oysters, market, public. & 291, 200 & \$22,875 & 753,963 & \$42, 947 & 28,000 & \$1,800 & 14,000 & 1,000 \\
\hline Oysters, market, private & 4.200 & 600 & & & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Total \\
Tongs: Oysters, market, public.
\end{tabular}} & 295. 400 & 23.475 & 753,963 & 42,947 & 28,000 & 1,800 & 40,600 & 1,500 \\
\hline & & & 171,885 & 11,000 & & & 7,000 & 500 \\
\hline Apparatus and species & \multicolumn{2}{|l|}{Hyde} & \multicolumn{2}{|l|}{Pamlico} & \multicolumn{2}{|l|}{Pasquotank} & \multicolumn{2}{|l|}{Total} \\
\hline Dredges: Crabs, hard & Pounds & Value & Pounds & Value & Pounds & Value & Pounds 26, 600 & Value \(\$ 500\) \\
\hline Oysters, market, public & \multirow[t]{2}{*}{104.300} & \multirow[t]{2}{*}{\$6,015} & \multirow[t]{2}{*}{823, 705} & \multirow[t]{2}{*}{\$43, 005} & \multirow[t]{2}{*}{29,050} & \multirow[t]{2}{*}{\$2,450} & \multirow[t]{2}{*}{\[
\begin{array}{r}
2,044,308 \\
4,200
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
120,092 \\
600
\end{array}
\]} \\
\hline Oysters, market, private. & & & & & & & & \\
\hline Total & 104, 300 & 6,015 & 823,795 & 43,005 & 29,050 & 2,450 & 2,075,108 & 121, 192 \\
\hline Tongs: Oysters, market, public. & & & & & & & 178,885 & 11,500 \\
\hline
\end{tabular}

Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species

\section*{BY PURSE SEINES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Carteret} & \multicolumn{2}{|l|}{Dare} & \multicolumn{2}{|l|}{Total} \\
\hline Menhaden. & \begin{tabular}{l}
Pounds \\
1,500,000
\end{tabular} & \begin{tabular}{l}
Value \\
\(\$ 7,500\)
\end{tabular} & Pounds & Value & \begin{tabular}{l}
Pounds \\
1,500,000
\end{tabular} & Value \(\$ 7,500\) \\
\hline Squeteague, speckled & & & 500 & & & \\
\hline Striped bass.......... & & & 15, 523 & 2, 252 & 15,523 & 2,252 \\
\hline Total & 1,500,000 & 7,500 & 16, 023 & 2,325 & 1,516, 023 & 9,825 \\
\hline
\end{tabular}

Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued

BY HAUL SEINES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|r|}{Beaufort} & \multicolumn{2}{|l|}{Brunswick} & \multicolumn{2}{|r|}{Cartaret} & \multicolumn{2}{|c|}{Craven} \\
\hline Alewives, fresh & \[
\begin{gathered}
\text { Pounds } \\
40.285
\end{gathered}
\] & Value \(\$ 424\) & Pounds & Value & \[
\begin{gathered}
\text { Pounds } \\
5,000
\end{gathered}
\] & Value & \[
\begin{gathered}
\text { Pounds } \\
36,000
\end{gathered}
\] & Value \$280 \\
\hline Angel fish...... & & & & & 5, 540 & \(\stackrel{+}{27}\) & & \\
\hline Black bass & 1,500 & 75 & & & & & & \\
\hline Bluefish. & & & & & 186, 045 & 12, 198 & & \\
\hline Bonito.- & & & & & 1,600 & & & \\
\hline Carp, German & & & & & 20,475 & 784 & 2025 & 1 \\
\hline Catfish & 28, 368 & 292 & & & & & 21, 400 & 428 \\
\hline Croaker--.-.....----- & 7, 150 & 191 & 500 & \$20 & 345, 840 & 6, 903 & 73, 500 & 2,940 \\
\hline Drum, red, or redfish & 4, 350 & 174 & & & 42,035 & 1,903 & & \\
\hline Eels-..--- & 8,475 & 340 & & & & & & \\
\hline Flounders Garfish & 1,280 & 111 & & & 13,842 & 687 & 2,150
2,150 & 194
20 \\
\hline Harvest fish or "starfis & & & & & 11,050 & 590 & & \\
\hline Hickory shad. & 26,859 & 1,260 & & & 8,150 & 417 & & \\
\hline King whiting & & & 500 & 25 & 37, 860 & 1,846 & & \\
\hline Mullet, fresh & & & 9,000 & 740 & 227, 500 & 16,025 & 15, 500 & 1,550 \\
\hline Pigfish & 78, 165 & 1, 604 & 27,000 & 27, 400 & 124, 600 & 2,509 & & \\
\hline Pompano & & & & & 8, 8145 & 2, 815 & & \\
\hline Shad.- & 11,141 & 2,562 & & & 4,265 & 1,725 & & \\
\hline Sheepshead. & & & & & 21, 220 & 1, 082 & & \\
\hline Spanish mackerel & & & & & 38,535 & 3, 800 & & \\
\hline Spot, fresh. & 3, 890 & 311 & 7,300 & 335 & 417, 950 & 9, 057 & 36, 500 & 1,460 \\
\hline Spot, salted -...-. & & & 66,000
2,000 & 4,800
200 & & & & \\
\hline Squeteague, speckled & 3,880 & 359 & & & 184, 275 & 22,069 & 73, 000 & 2,712
10,950 \\
\hline Striped ba & 8, 190 & 1,232 & & & & & 13, 200 & 2,376 \\
\hline White perch & 5,900 & 10 & & & & & 8,100 & 810 \\
\hline Yellow perch & 24, 475 & 1,224 & & & & & & \\
\hline Other fish \({ }^{1}\) & & & 100 & 4 & 75 & 5 & & \\
\hline Crabs, soft & & & & & 96, 543 & 14,881 & & \\
\hline Shrimp & & & & & 115, 673 & 4,430 & & \\
\hline Total. & 261, 808 & 11,114 & 356, 400 & 33, 524 & 2, 038, 193 & 110,007 & 317, 425 & 23, 741 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Currituck} & \multicolumn{2}{|c|}{Dare} & \multicolumn{2}{|l|}{Duplin} & \multicolumn{2}{|l|}{Hertford} \\
\hline Alewives, fresh & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Alewives, salted & & & 8,000 & +160 & & & 15, 000 & 225 \\
\hline Angel fish.. & & & 613 & 37 & & & & \\
\hline Black bass & 268, 700 & 39, 389 & 40,750 & 4,830 & & & & \\
\hline Bluefish. & 2, 200 & 176 & 43,425 & 2, 872 & & & & \\
\hline Bonito & 800 & 19 & 4,400 & 112 & & & & \\
\hline Bowfin. & 15,000 & 151 & 100 & 2 & & & & \\
\hline Butterfish. & 500 & 10 & 2,300 & 46 & & & & \\
\hline Carp, German & 154, 037 & 7,760 & 15,000 & 490 & & & & \\
\hline Catfish & 65, 526 & 1,400 & 13, 075 & 238 & & & & \\
\hline Cod & & & 182 & 5 & & & & \\
\hline Croaker & 10,200 & 204 & 105, 682 & 3, 519 & & & & \\
\hline Drum, black & & & 64 & 2 & & & & \\
\hline Drum, red, or redfish & 1,100 & 19 & 36,829 & 1,753 & & & & \\
\hline Flounders & 7,900 & 289 & 51, 832 & 2,266 & & & & \\
\hline Harvest fish or "starfish & 1,550 & 31 & 6,800 & 136 & & & & \\
\hline Hickory shad & 1,000 & 35 & 10,000 & 600 & 170 & 30 & & \\
\hline King whiting & 38,000 & 760 & 221, 402 & 4, 470 & & & & \\
\hline Mullet, fresh & & & 2,574 & 97 & & & & \\
\hline Piffish. & & & 10, 000 & 400 & & & & \\
\hline Pike & 3,550 & 320 & 1,300 & 142 & & & & \\
\hline Pompano & 3,500 & 166 & 19,620 & 1,005 & & & & \\
\hline Shad.. & & & 52, 035 & 12, 381 & 1,925 & 520 & & \\
\hline Sheepshead & 2,000 & 138 & 9,200 & 552 & & & & \\
\hline Spanish mackerel & 1,050 & 105 & 6,900 & 656 & & & & \\
\hline Spot, fresh. & 44,000 & 880 & 387, 476 & 11, 226 & & & & \\
\hline Squeteague, gray & 10,600 & 444 & 119, 176 & 5, 574 & & & & \\
\hline Squeteague, speckled & 8,400 & 840 & 107, 860 & 13, 094 & & & & \\
\hline Striped bass. & 24, 140 & 3, 869 & 45, 917 & 5,681 & & & & \\
\hline Suckers. & 1,300 & 13 & & & & & & \\
\hline Sunfish.- & 30, 765 & 308 & 200 & 8 & & & & \\
\hline White perch & 189, 400 & 12,225 & 24,000 & 920 & & & 100 & 10 \\
\hline Yellow perc & 75, 012 & 3,821 & 9,000 & 300 & & & & \\
\hline Total & 962,680 & 73,414 & 1,359, 712 & 73, 789 & 2,175 & 553 & 30, 100 & 423 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Crevalle, hogfish, pinfish, and tautog.
}

Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued

BY HAUL SEINES-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|c|}{Hyde} & \multicolumn{2}{|l|}{Martin} & \multicolumn{2}{|l|}{New Hanover} & \multicolumn{2}{|l|}{Onslow} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Alewi ves, salted & & & 310, 000 & & 200 & \$10 & & \\
\hline Bluefish. & 620 & \$37 & & & 5,700 & 1, 425 & 6, 300 & \$504 \\
\hline Croaker & 2, 800 & 43 & & & 13, 400 & 670 & & \\
\hline Drum, black & & & & & & 75 & & \\
\hline Drum, red, or redfish & 5, 000 & 100 & & & 3, 400 & 170 & & \\
\hline Flounders & 40 & 2 & & & 100 & 15 & & \\
\hline Harvest fish or "starfish & 835 & 25 & & & & & & \\
\hline Hickory shad. & & & 1,450 & 59 & & & & \\
\hline King whiting & 225 & 10 & & & 5,500 & 290 & 45, 650 & 2,282 \\
\hline Mullet, fresh & 5,000 & 500 & & & 254, 700 & 21, 770 & 20, 200 & 1, 544 \\
\hline Pigfish. & 750 & 11 & & & 10, 450 & 778 & & \\
\hline Pompano. & & & & & 200 & 25 & & \\
\hline Shad.. & & & 2,192 & 392 & & & & \\
\hline Sheepshead. & 100 & 10 & & & & & & \\
\hline Spot, fresh & 10, 700 & 160 & & & 50, 000 & 3, 750 & & \\
\hline Squeteague, gray & 63, 500 & 1,715 & & & & & 14, 452 & 1,011 \\
\hline Squeteague, speckled & 5,250 & 525 & & & 6,300 & 1,260 & 5, 267 & 532 \\
\hline White perch. & & & 5, 3200 & 795
810 & 500 & 25 & 2, 400 & 415 \\
\hline Other fish 1. & & & & & 575 & 29 & & \\
\hline Shrimp. & & & & & 48,000 & 1, 440 & & \\
\hline Total & 94, 820 & 3,138 & 331, 542 & 7,481 & 399,525 & 31, 732 & 94, 269 & 6,288 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Pamlico} & \multicolumn{2}{|l|}{Pender} & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Alewives, fresh & & & & & & & 102, 815 & \$1, 202 \\
\hline Alewives, salted & & & & & 1, 200, 000 & \$24, 000 & 1,533, 000 & 29, 810 \\
\hline Angel fish. & & & 400 & \$20 & & & 1,753 & 94 \\
\hline Black bass & & & & & & & 310,950 & 44, 294 \\
\hline Bluefish. & 300 & \$36 & 2,500 & 250 & & & 247, 090 & 17, 498 \\
\hline Bonito. & & & & & & & 6, 800 & 163 \\
\hline Bowfin. & & & & & & & 15, 100 & 153 \\
\hline Butterfish & & & & & & & 23, 275 & 840 \\
\hline Carp, German & & & & & & & 171,062 & 8,271 \\
\hline Catifish. & 400 & 10 & & & & & 128, 769 & 2, 368 \\
\hline Cod. & & & & & & & 182 & \\
\hline \begin{tabular}{l}
Croaker \\
Drum, black
\end{tabular} & 77,000 & 1, 545 & 8,000 & 400 & & & 644, 072 & 16, 435 \\
\hline Drum, red, or redfis & 8, 300 & 189 & 8,000 & 460 & & & 109, 014 & 4,768 \\
\hline Eels. & & & & & & & 8,475 & , 340 \\
\hline Flounder & 2,400 & 210 & 1,500 & 240 & & & 81, 044 & 4, 014 \\
\hline Garfish. & & & & & & & 2,150 & 20 \\
\hline Harvest fish or "star & & & & & & & 20, 235 & 782 \\
\hline Hickory shad. & & & & & & & 47,629 & 2, 401 \\
\hline King whiting & & & 3,000 & 120 & & & 352, 137 & 9, 803 \\
\hline Mullet, fresh & & & 48,000 & 4,670 & & & 582, 474 & 46, 896 \\
\hline Mullet, salted & & & & & & & 271, 000 & 27, 400 \\
\hline Pigfish. & 200 & 12 & 800 & 80 & & & 224, 965 & 5, 394 \\
\hline Pike. & & & & & & & 4,850 & 462 \\
\hline Pompano & 675 & 81 & 250 & 25 & & & 32,390 & 2,117 \\
\hline Shad.-.-.-. & & & & & 5,000 & 1,270 & 76,558 & 18,850 \\
\hline Sheepshead----- & & & 500 & 75 & & & 33, 020 & 1,857 \\
\hline Spanish mackerel & 300 & 45 & & & & & 46,785 & 4, 606 \\
\hline Spot, fresh
Spot, & 10,000 & 345 & 72, 500 & 4, 125 & & & 1, 040, 316 & 31, 649 \\
\hline Spot, salted....... & & & & & & & 66,000
409,339 & 4, 800 \\
\hline Squeteague, gray & \[
\begin{gathered}
26,936 \\
13,965
\end{gathered}
\] & \[
\begin{array}{r}
845 \\
2,082
\end{array}
\] & \[
\begin{aligned}
& 4,000 \\
& 9,000
\end{aligned}
\] & 160
1,275 & & & 409,339
417,197 & 21,171
53,286 \\
\hline Squeteague, speckle & 13,965
9,500 & I, 2,000 & 9, 500 & 1,275
100 & 80, 000 & 12,000 & 189, 147 & 28, 368 \\
\hline Suckers. & & & & & & & 1,300 & 13 \\
\hline Wunfish & & & & & & & 31, 065 & 326 \\
\hline Yellow perch & & & & & 50, 000 & 3, 000 & 290, 600 & 18, 107 \\
\hline Other fish \({ }^{1}\) & & & & & & & 108, 750 & 5,345
38 \\
\hline Crabs, soft & & & & & & & 96,543 & 14,881 \\
\hline Shrimp & & & & & & & 163, 673 & 5,870 \\
\hline Total & 149, 976 & 7,300 & 158,950 & 12,000 & 1, 335, 000 & 40, 270 & 7,892, 575 & 434, 774 \\
\hline
\end{tabular}

1 Crevalle, hogfish, pinfish, and tautog.

Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued

BY GILL NETS


\section*{Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued}

BY GILL NETS—Continued


Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued
BY GILL NETS-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Perquinans} & \multicolumn{2}{|c|}{Tyrrell} & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|c|}{Total} \\
\hline Alewives, fresh & \[
\begin{array}{r}
\text { Pounds } \\
8,975
\end{array}
\] & Value \$269 & \[
\begin{array}{r}
\text { Pounds } \\
2,000
\end{array}
\] & \[
\begin{array}{r}
\text { Value } \\
\$ 25
\end{array}
\] & Pounds & Value & \begin{tabular}{l}
Pounds \\
196, 627
\end{tabular} & Value
\[
\$ 1,609
\] \\
\hline Alewives, salted & & & 11,500 & 171 & 14,000 & \$240 & 73,500 & 1, 106 \\
\hline Angel fish.. & & & & & & & 545 & 62 \\
\hline Black bass & 400 & 66 & & & & & 8,825 & 1,108 \\
\hline Bluefish & & & & & & & 483, 287 & 30,680 \\
\hline Bonito- & & & & & & & 30, 000 & 2, 400 \\
\hline Butterfish & & & & & & & 375 & 30 \\
\hline Carp, Germa & 426 & 17 & 1,175 & 35 & 500 & 15 & 2, 651 & 84 \\
\hline Catfish.- & 2, 444 & 73 & 5,095 & 204 & 1,500 & 50 & 22,419 & 921 \\
\hline Croaker & & & & & & & 500 & \(\begin{array}{r}60 \\ 7 \\ \hline 174\end{array}\) \\
\hline Drum, black & & & & & & & 1,140 & 7, 7117 \\
\hline Drum, red, or redfish & & & & & & & 48, 621 & 3, 070 \\
\hline Flounders.. & 377 & 25 & & & & & 16, 442 & 1,368 \\
\hline Gizzard shad & 3, 665 & 73 & & & & & 8, 201 & 165 \\
\hline Harvest fish or "star & & & & & & & 2,025 & 117 \\
\hline Hickory shad. & 17, 791 & 1,834 & 37, 700 & 3,760 & 16, 500 & 1,425 & 165, 198 & 14, 297 \\
\hline King whiting & & & & & & & 160,736 & 9, 732 \\
\hline Mullet, fresh & 50 & 4 & & & & & 796, 060 & 62,472 \\
\hline Mullet, salted & & & & & & & 98, 000 & 11,905 \\
\hline Pigfish. & & & & & & & 19,705 & 618 \\
\hline Pike Pinfo-.-.-.-...-. & 60 & 4 & & & & & 5,735 & 458 \\
\hline Pinfish or sailor's & & & & & & & 11, 250 & 335 \\
\hline Shad & 64, 141 & 13, 079 & 53, 250 & 11,959 & 42, 275 & 8, 952 & 1, 182, 898 & 293, 320 \\
\hline Sheepshead & & & & & & & 14, 315 & 1,250 \\
\hline Spanish mackerel & & & & & & & 55, 120 & 6,297 \\
\hline Spot, fresh. & & & & & & & \[
\begin{array}{r}
352,308 \\
12,500
\end{array}
\] & 15, 108 \\
\hline Squeteague, gray & & & & & & & 775, 697 & 44, 240 \\
\hline Squetengue, speckled & & & & & & & 202, 006 & 29,728 \\
\hline Striped bass & 18, 364 & 2,921 & 39, 000 & 7, 020 & 11, 150 & 2,065 & 158, 124 & 27, 865 \\
\hline Sturgeon. & 90 & 23 & & & & & 15,390 & 2, 573 \\
\hline Sturgeon caviar & & & & & & & 145 & 193 \\
\hline Sunfish. & 75 & 9 & & & & & 2, 675 & 169 \\
\hline White perch- & 2,229 & 201 & 2, 020 & 242 & 750 & 79 & 35, 358 & 3, 938 \\
\hline Yellow perch & 100 & 8 & 950 & 95 & 50 & 5 & 51, 621 & 2,755 \\
\hline Other fish. & 95 & 2 & & & & & 95 & 2 \\
\hline Tot & 119, 282 & 18,608 & 152,690 & 23,511 & 86, 725 & 12,841 & 5,221, 200 & 581, 849 \\
\hline
\end{tabular}

\section*{BY POUND NETS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Beaufort} & \multicolumn{2}{|l|}{Bertie} & \multicolumn{2}{|r|}{Carteret} & \multicolumn{2}{|l|}{Chowan} \\
\hline Alewives, fresh & \begin{tabular}{l}
Pounds \\
118, 535
\end{tabular} & \[
\begin{gathered}
\text { Value } \\
\$ 1,404
\end{gathered}
\] & Pounds
\[
22,832
\] & \[
\begin{aligned}
& \text { Value } \\
& \$ 330
\end{aligned}
\] & \[
\begin{array}{r}
\text { Pounds } \\
7,350
\end{array}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 220
\end{gathered}
\] & \begin{tabular}{l}
Pounds \\
626, 600
\end{tabular} & \begin{tabular}{l}
Value \\
\(\$ 9,802\)
\end{tabular} \\
\hline Alewives, salted & & & 111, 550 & 2, 123 & & & 2, 787, 600 & 46,880 \\
\hline Black bass.- & 850 & 110 & 180 & 45 & & & & \\
\hline Bluefish. & 815 & 45 & & & 1,555 & 125 & & \\
\hline Bonito-- & 1,400 & 35 & & & 6,270
120 & 6, 125 & & \\
\hline Carp, Germa & 1,400 & 35 & & & & 6,756 & 4,381 & 280 \\
\hline Catfish. & 3, 700 & 62 & 975 & 37 & & & 11,415 & 457 \\
\hline Croaker. & 26,590 & 826 & & & 55, 285 & 918 & & \\
\hline Drum, red, or & 1,150 & 13 & & & 1, 100 & 15 & & \\
\hline Flounders & 1,928 & 129 & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & 6
3 & 14,245 & 580 & 6, 585 & 721 \\
\hline Harvestfish or "starfish & & & & & 157,995 & 4,785 & & \\
\hline Hickory shad & 35, 375 & 2,586 & 1,200 & 98 & 19, 400 & 902 & 39, 285 & 3, 582 \\
\hline King whiting & & & & & 335 & 10 & & \\
\hline Pigfish & 850 & 17 & 100 & 20 & & & & \\
\hline Pinfish or sailor's cho & 1,200 & 30 & & & & & & \\
\hline Pompano & & & & & & & & \\
\hline Shad------- & 51, 107 & 9, 900 & 7,555 & 1,869 & \(\begin{array}{r}59,314 \\ 150 \\ \hline 15\end{array}\) & & 85, 916 & 19,846 \\
\hline Spanish mackerel & 620 & 74 & & & 39, 118 & 3, 911 & & \\
\hline Spot & 27,725 & 857 & & & 21,073 & 512 & & \\
\hline Squeteague, gray & 185, 549 & 5,635 & & & 363, 360 & 12,492 & & \\
\hline Squeteague, speckled & 7,511 & 1,147 & & & & & & \\
\hline Striped bass Sunfish & 20,195
1,350 & 2, 272 & 3, 425 & 684 & 11,030 & 1,755 & 32, 350 & 4, 981 \\
\hline White perch & 1,615 & 132 & 1,095 & 110 & & & 26, 610 & 2, 667 \\
\hline Yellow perch & 1,990 & 104 & 100 & 8 & & & 5,122 & 398 \\
\hline Other fish. & 375 & 26 & 200 & 2 & 1,204 & 81 & & \\
\hline Turtles & & & & & 300 & 7 & & \\
\hline Total & 490,430 & 25,472 & 149, 312 & 5,335 & 880,975 & 45,655 & 3,625,864 & 89, 614 \\
\hline
\end{tabular}

Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued

BY POUND NETS-Continued


Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued
BY POUND NETS-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Species} & \multicolumn{2}{|c|}{Tyrrel]} & \multicolumn{2}{|l|}{Washington} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Alewives, fresh & & & 7,900 & \$99 & 1,233, 805 & \$26, 862 \\
\hline Alewives, salted & 240, 000 & \$3,600 & 90,000 & 1,275 & 3, 326, 550 & 55,122 \\
\hline Black bass.. & 1,550 & 279 & 600 & 108 & 3,850 & , 644 \\
\hline Bonito. & & & & & 24,
6, 270 & 1,131 \\
\hline Butterfish. & & & & & 239, 740 & 11,975 \\
\hline Carp, German & 250 & 7 & 375 & 10 & 8,180 & 477 \\
\hline Catfish & 13, 500 & 540 & 7,250 & 242 & 65,566 & 2,276 \\
\hline Cod & & & & & 158 & \\
\hline Croaker & & & & & 184, 768 & 5,341 \\
\hline Drum, red, or red & & & & & 23,185 & 945 \\
\hline Eels.-... & 2,000 & 200 & 675 & 71 & 10,649 & 1,127 \\
\hline Flounders Harvest fish or "istarfish, & & & & & 141, 022 & 8, 560 \\
\hline Hickory shad. & 3,100 & 310 & 400 & 32 & 168,694 & 18,918
12,900 \\
\hline King whiting & & & & & 27,586 & 12,951 \\
\hline Mullet & & & & & 577 & 48 \\
\hline Pigfish & 1.000 & 230 & & & 2,100
1,575 & 36
362 \\
\hline Pinfish or sailors choice & 1,000 & 230 & 350 & 88 & 1,575
1,200 & 362
30 \\
\hline Pompano. & & & & & 10,857 & 934 \\
\hline Shad--..- & 6,600 & 1,485 & 26,451 & 5,640 & 1,110,678 & 270,421 \\
\hline Sheepshead & & & & & 2,350 & 114 \\
\hline Spanish mackere & & & & & 77,086 & 7,442 \\
\hline Squeteague, gray & & & & & 1,693, 301 & 5,224
59
59 \\
\hline Squeteague, speckle & & & & & 88, 507 & 12, 634 \\
\hline Striped bass.---- & 2,000 & 360 & 1,625 & 293 & 110,607 & 16, 748 \\
\hline Sturgeon & & & & & 3,464 & 556 \\
\hline Sunfish...-... & & & & & 160 & 400 \\
\hline Trippleptail & & & & & 1,481 & 9 \\
\hline White perch & 28,150 & 3, 378 & 15,000 & 1,650 & 87, 278 & 9,374 \\
\hline Yellow perch & 2, 200 & 220 & 740 & 63 & 17,412 & 1,187 \\
\hline Other fish & & & & & 2,871 & 148 \\
\hline Turtles & ---- & ----- & -------- & ---1-- & 4,086 & 83 \\
\hline Total & 300,350 & 10,609 & 151,366 & 9,571 & 9, 279, 555 & \(\stackrel{532,667}{ }\) \\
\hline
\end{tabular}

BY FYKE NETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Camden} & \multicolumn{2}{|l|}{Currituck} & \multicolumn{2}{|l|}{Gates} & \multicolumn{2}{|l|}{Pasquotank} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Alawlves, fr & 500 & \$10 & 1,600 & \$35 & & & 3, 636 & \$509 & 2,100 & \\
\hline Bowfin. & 800 & 16 & 1,950 & 34 & 2,000 & \$288 & 3,636
976 & 19 & 5,726 & 1, 181 \\
\hline Carp, Germa & 3, 000 & 180 & 22, 500 & 1,350 & & & 1,554 & 70 & 27, 054 & 1,600 \\
\hline Catfish. & 500 & 20 & 3,750 & 150 & 10,800 & 324 & 23, 214 & 813 & 38, 264 & 1, 307 \\
\hline Flounders & & & & & & & 630 & 43 & 630 & 40 \\
\hline Mullet & & & & & & & 601 & 48 & 601 & 48 \\
\hline Pike. & & & & & & & 1,750 & 131 & 1,750 & 131 \\
\hline Striped b & 500 & 100 & 3, 100 & 620 & & & & & 3,600 & 720 \\
\hline Suckers & & & & & & & 69 & 3 & 69 & 3 \\
\hline Sunfish -.-- & 1, 000 & 20 & 5,200 & 104 & & & 1,008 & 121 & 7,208 & 245 \\
\hline White perch & 500 & 38 & 4,000 & 293 & & 1,260 & 7, 606 & 685 & 24, 706 & 2,276 \\
\hline Yellow perch. & 9, 000 & 675 & 76,000 & 5,575 & 3,600 & 288 & 2,277 & 182 & 90,877 & 6,720 \\
\hline Total & 16, 050 & 1,099 & 120.150 & 8,510 & 30,600 & 2,320 & 43,321 & 2,624 & 210, 121 & 14,553 \\
\hline
\end{tabular}

BY LINES


Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued
BY OTTER TRAWLS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Brunswick} & \multicolumn{2}{|l|}{Carteret} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Croaker & 2,365 & \$70 & & & 2,365 & \$70 \\
\hline Flounders & 14, 500 & 475 & 500 & \$40 & 15, 000 & 515 \\
\hline King whiting & 7,800 & 245 & & & 7,800 & 245 \\
\hline Spot.-. & 3,165 & 106 & & & 3,165 & 106 \\
\hline Squeteague, gray & 900 & 27 & & & 900 & 27 \\
\hline Shrimp-.-.--- & 1,307, 160 & 39, 211 & 133, 784 & 4,076 & 1,440,944 & 43, 287 \\
\hline Total & 1,335, 890 & 40, 134 & 134, 284 & 4,116 & 1,470, 174 & 44, 250 \\
\hline
\end{tabular}

BY EELPOTS AND SPEARS
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Counties} & \multicolumn{2}{|l|}{Eelpots} & \multicolumn{2}{|c|}{Spears} \\
\hline & \multicolumn{2}{|c|}{Eels} & \multicolumn{2}{|c|}{Flounders} \\
\hline & Pounds & Value
\(\$ 2,600\) & Pounds & Value \\
\hline Beaufort.- & 13,000
1,000 & \$2,600 & & \\
\hline Carteret & 15, 335 & 2, 325 & 35,000 & \$1,750 \\
\hline Currituck. & 95, 192 & 7,980 & & \\
\hline Dare & 23, 000 & 990
13 & & 100 \\
\hline New Hanover. & & & 23, 000 & 3,450 \\
\hline Pamlico... & 10,325 & 1,326 & & \\
\hline Pasquotank & 2,100 & 235 & & \\
\hline Pender.-...- & & & 13,000 & 1,980 \\
\hline Total & 160, 402 & 15, 569 & 73, 000 & 7, 280 \\
\hline
\end{tabular}

BY DREDGES
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Counties} & \multicolumn{2}{|l|}{Oyster dredges} & \multicolumn{2}{|l|}{Scallop dredges} \\
\hline & \multicolumn{2}{|l|}{Oysters, market, public} & \multicolumn{2}{|c|}{Scallops} \\
\hline Beaufort & Pounds 56, 700 & Value \(\$ 5,250\) & Pounds & Value \\
\hline Carteret & 12,950 & 1, 203 & 439, 128 & \$36, 594 \\
\hline Dare.-- & 7,000 & 500 & & \\
\hline Hyde. & 117, 600 & 8,400 & -- & \\
\hline Pamlico & 292, 250 & 16,675 & & \\
\hline Total & 486, 500 & 32,028 & 439,128 & 36, 594 \\
\hline
\end{tabular}

BY TONGS, RAKES, AND HAND
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Brunswick} & \multicolumn{2}{|r|}{Carteret} & \multicolumn{2}{|l|}{Dare} & \multicolumn{2}{|l|}{Hyde} \\
\hline Tongs: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Clams, hard ---......-- & 30, 400 & \$7, 600 & & & \[
\begin{array}{r}
344 \\
14637
\end{array}
\] & \[
\begin{array}{r}
\$ 97 \\
1,242
\end{array}
\] & - 316,442 & \$15, 063 \\
\hline Oysters, market, public. Oysters, market, private & & & \[
\begin{array}{r}
383,600 \\
1,750
\end{array}
\] & \[
\begin{array}{r}
22,101 \\
125
\end{array}
\] & & & & \$15, 063 \\
\hline Total & 30,400 & 7,600 & 385, 950 & 22, 376 & 14,981 & 1,339 & 316, 442 & 15,063 \\
\hline Rakes: & & & & & & & & \\
\hline Clams, hard. & 71,200 & 17,800 & 79,728 & 18,860 & & & 3,200 & 600 \\
\hline Crabs, soft Oysters, market, & & & 1,332
5,180 & 200
444 & 14,651 & 1,243 & & \\
\hline Scallops........-- & & & 112,698 & 9,391 & & & & \\
\hline Total & 71,200 & 17, 800 & 198, 938 & 28,895 & 14,651 & 1,243 & 3,200 & 600 \\
\hline Hand: & & & & & & & & \\
\hline Clams, hard --- & 2,400 & 600 & 34, 864 & 7,282 & & & & \\
\hline Oysters, market, public. & 25,900 & 925 & 263, 578 & 11, 782 & & & & \\
\hline Total & 28, 300 & 1,525 & 298, 442 & 19,064 & & & & \\
\hline
\end{tabular}

Yield of shore fisheries of North Carolina in 1923, by apparatus, counties, and species-Continued

BY TONGS, RAKES, AND HAND-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{New Hanover} & \multicolumn{2}{|l|}{Onslow} & \multicolumn{2}{|l|}{Pamlico} & \multicolumn{2}{|l|}{Pender} & \multicolumn{2}{|l|}{Total} \\
\hline Tongs: & Pounds & Value & Pounds & Value & Pounds & Value & \[
\begin{gathered}
\text { Pounds } \\
2,800
\end{gathered}
\] & Value \(\$ 700\) & Pounds
\[
34,144
\] & Value \$8, 547 \\
\hline Oysters, market, public. & & & 58,415 & \$6, 021 & 54,950 & \$3, 110 & 21,000 & 1,000 & 849,044 & 48,537 \\
\hline Oysters, market, private. & & & & & 7,000 & 500 & & & 8,750 & 625 \\
\hline Total & & & 58, 415 & 6,021 & 61,950 & 3,610 & 23, 800 & 1,700 & 891, 938 & 57,709 \\
\hline \begin{tabular}{l}
Rakes: \\
Clams, hard
\end{tabular} & 18,000 & \$5,375 & & & & & 7, 200 & 1,800 & 179,328 & 44,435 \\
\hline Crabs, soft & & & & & & & & & 1,332 & 200 \\
\hline Oysters, market, public. & & & & & & & & & \[
19,831
\] & 1,687 \\
\hline Scallops.....-.-.-...- & & & & & & & & & \[
112,698
\] & 9,391 \\
\hline Total & 18, 000 & 5,375 & & & & & 7,200 & 1,800 & 313, 189 & 55,713 \\
\hline Hand: Clams, hard & & & 12,800 & 3, 200 & & & & & 50,064 & 11,082 \\
\hline Oysters, market, public. & 28,000 & 1,400 & & & & & 8,400 & 400 & 325, 878 & 14,507 \\
\hline Total & 28,000 & 1,400 & 12,800 & 3,200 & & & 8,400 & 400 & 375,942 & 25,589 \\
\hline
\end{tabular}

BY OTHER APPARATUS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|c|}{Carteret} & \multicolumn{2}{|c|}{Dare} & \multicolumn{2}{|c|}{Martin} & \multicolumn{2}{|c|}{Total} \\
\hline Alewives & Pounds & Value & Pounds & Value & Pounds
\[
54,000
\] & Value \$648 & Pounds
\[
54,000
\] & Value \(\$ 648\) \\
\hline Carp. & & & & & 200 & 6 & 200 & 6 \\
\hline Catfish. & & & & & 300 & 5 & 300 & 5 \\
\hline White perch & & & & & 600 & 54 & 600 & 54 \\
\hline Crabs, soft & 84, 121 & \$12,592 & & & & & 84, 121 & 12,592 \\
\hline Shrimp...- & 3,335 & - 100 & & & - & & 3,335 & 100 \\
\hline Scallops. & 2,748 & 229 & & & & & 2,748 & 229 \\
\hline Turtles. & & & 360 & \$120 & & & 5,360 & 120 \\
\hline Terrapin & & & 5,000 & 500 & & & 5,000 & 500 \\
\hline Total & 90,204 & 12,921 & 5,360 & 620 & 55,100 & 713 & 150,664 & 14, 254 \\
\hline
\end{tabular}

\section*{INDUSTRIES}

Wholesale trade.-The wholesale trade in fresh fish, oysters, etc., in North Carolina in 1923 was conducted by 54 firms, having an investment of \(\$ 301,192\). The number of persons employed was 475 and the wages paid amounted to \(\$ 112,646\). In the salt-fish trade there were 22 establishments with an investment of \(\$ 282,428\). There were 194 persons employed and the wages paid amounted to \(\$ 82,459\). The products salted included alewives, 8,200 pounds, valued at \(\$ 202\); mullet, 531,000 pounds, valued at \(\$ 56,895\); and spot, 271,000 pounds, valued at \(\$ 21,775\); a total of 810,200 pounds, valued at \(\$ 78,872\). Most of these firms engaged in the fresh-fish trade also.

Oyster-canning industry.-There were six establishments, valued at \(\$ 144,440\), engaged in canning oysters, having a working capital of \(\$ 20,500\) and employing 300 persons, to whom \(\$ 50,548\) were paid in wages. The products included 37,857 eases of canned oysters, valued at \(\$ 190,613\), and 4,400 tons of lime made from oyster shells, valued at \(\$ 23,750\).

Statistics of these industries are given in detail in the following tables:

Wholesale fresh-fish trade of North Carolina in 1923


Salt-fish trade of North Carolina in 1923
\begin{tabular}{|c|c|c|c|}
\hline & Items & Number & Value \\
\hline Establishments & & 22 & \$241, 428 \\
\hline Cash capital.-- & & & 41, 000 \\
\hline Persons engaged. & & 194 & \\
\hline Wages paid & & & 82,459 \\
\hline & cts salted & & \\
\hline Alewives_ & & 8,200 & 202 \\
\hline Mullet. & & 531,000 & 56,895 \\
\hline Spot.- & & 271,000 & 21,775 \\
\hline Total & & 810, 200 & 78,872 \\
\hline
\end{tabular}

Note.-Most of the above firms also handled fresh fish.
Oyster canning and by-products industries of North Carolina in 1923
\begin{tabular}{|c|c|c|c|}
\hline & Items & Number & Value \\
\hline Establishments. & & 6 & \$144, 440 \\
\hline Cash capital & & & 20, 500 \\
\hline \begin{tabular}{l}
Persons engaged \\
Wages paid
\end{tabular} & & 300 & 50, 548 \\
\hline \multicolumn{4}{|c|}{PRODUCTS} \\
\hline 4-ounce (4 dozen) - & & 667 & 3,337 \\
\hline 5-ounce (4 dozen) & & 33, 222 & 167,958 \\
\hline 10-ounce (2 dozen) & & 3,968 & 19,318 \\
\hline Total & & 37,857 & 190,613 \\
\hline \multicolumn{4}{|c|}{BY-PRODUCTS} \\
\hline Lime. & & 4,400 & 23, 750 \\
\hline
\end{tabular}

Note.-The poultry grit output of two firms is included under South Carolina. The statistics for one firm canning shrimp are included under the east coast of Florida. In addition to the canned products and by-products above, there were produced canned alewives and porpoise oil having a combined value of \(\$ 11,119\).

\section*{FISHERIES OF SOUTH CAROLINA}

The fisheries of South Carolina are less extensive than those of the other South Atlantic States. In 1923 the number of persons engaged was 2,164 , of whom 1,052 were fishermen in the vessel and shore fisheries, 94 were on transporting vessels, and 1,018 were engaged in fishery industries, including the wholesale fishery trade and canning industry.

The investment in the fisheries was \(\$ 606,781\), which included 50 fishing and transporting vessels of 597 net tons, valued at \(\$ 73,300\), with outfits valued at \(\$ 8,200 ; 750\) boats, valued at \(\$ 38,025\); fishing apparatus used on vessels and boats to the value of \(\$ 24,872\); shore and accessory property valued at \(\$ 366,884\); and cash or working capital amounting to \(\$ 95,500\).
\[
69239-26 \dagger-12
\]

The total yield of the fisheries in 1923 was \(6,763,279\) pounds, valued at \(\$ 284,791\). The most important species taken, arranged in order of value, were oysters, \(5,032,342\) pounds or 718,906 bushels valued at \(\$ 113,955\); shad, 183,916 pounds, valued at \(\$ 43,721\); mullet, 152,500 pounds fresh and 253,000 pounds salted, valued together at \(\$ 35,200\); sca bass, 218,000 pounds, valued at \(\$ 20,300\); and sturgeon, including sturgeon caviar, 49,981 pounds, valued at \(\$ 16,708\).

Compared with 1918 there was an increase of 164 , or 8.20 per cent, in the number of persons engaged; \(\$ 385,530\), or 174.25 per cent, in the investment; and \(3,016,347\) pounds, or 80.50 per cent, in the quantity and \(\$ 77,101\), or 37.12 per cent, in the value of the products. There was an increase in the oyster production of 321,216 bushels, or 81 per cent, and \(\$ 17,413\), or 18 per cent, in value. There was also an increase in the catch of shad, mullet, sea bass, and various other species. In the catch of sturgeon and a few other species there was a decrease.

The following tables give, by counties, the number of persons engaged, investment, and products of the fisheries of South Carolina in 1923:

Persons engaged in the fisheries of South Carolina in 1923, by counties
\begin{tabular}{|c|c|c|c|c|c|}
\hline Counties & On vessels fishing & On vessels transporting & In shore fisheries & Shoremen & Total \\
\hline Beaufort & & 84 & 225 & 622 & 931 \\
\hline Charleston. & 8 & 10 & 283 & 331 & 632 \\
\hline Colleton-- & & & 72 & & 72 \\
\hline Georgetown. & & & 284 & 60 & 344 \\
\hline Horry .-...-- & & & 180 & 5 & 185 \\
\hline Total. & 8 & 94 & 1, 044 & 1,018 & 2,164 \\
\hline
\end{tabular}

Investment in the fisheries of South Carolina, in 1923, by counties


Yield of the fisheries of South Carolina in 1923, by counties and species
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Beaufort} & \multicolumn{2}{|l|}{Charleston} & \multicolumn{2}{|l|}{Colleton} \\
\hline & Pounds & Value & Pounds & ue & Pounds & Value \\
\hline Crevalie & & & 7,000 & \$800 & & \\
\hline Craaker- & & & 20,000 & 1,000 & & \\
\hline Drum, black & & & 10,000 & 300 & & \\
\hline Drum, red, or redish & & & 17,000
1,000 & 850
50 & & \\
\hline Groupers & & & 8 8,000 & 480 & & \\
\hline King whitin & & & 60, 000 & 6,000 & & \\
\hline Reup or porgy & & & 7,500 & 525 & & \\
\hline Sea bass. & & & 218,000 & 20,300 & & \\
\hline Shad & 23, 450 & \$6,900 & 27, 440 & 5,880 & 34,867 & 87,584 \\
\hline Sharks-1- & & & 18,000 & 360
80 & & \\
\hline Skates . & & & 3,000 & \[
\begin{aligned}
& 80 \\
& 60
\end{aligned}
\] & & \\
\hline Spot, fresh. & & & 500 & 30 & & \\
\hline Squeteague or "sea trout" & & & 60, 000 & 6,000 & & \\
\hline Sturgeon- & & & 3,213 & 1,125 & & \\
\hline Crabs, hard-..- & & & 9,000 & 270 & & \\
\hline Shrimp & 20,000 & 700 & & & & \\
\hline Clams, hard--.... & & & 776 & 125 & & \\
\hline Oysters, market, public-
Oysters, market, private & \[
\begin{array}{r}
3,080,875 \\
67,116
\end{array}
\] & \[
\begin{array}{r}
71,7,40 \\
2,921
\end{array}
\] & \(1,305,157\)
343,000 & \[
\begin{aligned}
& 23,967 \\
& 10,750
\end{aligned}
\] & \[
\begin{aligned}
& 89,194 \\
& 35,000
\end{aligned}
\] & 1,912 \\
\hline Total & 3, 191, 441 & 81, 926 & 2, 123, 616 & 78, 852 & 159, 061 & 10, 246 \\
\hline Species & George & own & Horr & & Tota & \\
\hline Bluefish. & Pounds
2,000 & \begin{tabular}{|c} 
Value \\
\(\$ 300\)
\end{tabular} & Pounds & \[
\begin{aligned}
& \text { Value } \\
& \$ 440
\end{aligned}
\] & \begin{tabular}{c} 
Pounds \\
7,000 \\
\hline
\end{tabular} & Value \\
\hline Catfish & & & & & 2, 500 & \\
\hline Crevalle & & & & & 7,000 & 350 \\
\hline Croaker- & 3, \({ }_{3}^{4,200}\) & \({ }_{92}^{106}\) & 1,800 & 108 & \({ }_{13}^{26,000}\) & 1, \({ }_{392}\) \\
\hline Drum, red, or redfish. & 8 8,000 & 400 & 6,000 & 480 & 31,000 & 1,730 \\
\hline Flounders & 6, 600 & 510 & 20, 050 & 1,604 & 27,650 & 2,164 \\
\hline Groupers & & & & & & 480 \\
\hline King whiting & 2, 300 & 135 & & 1,688 & 83, 400 & 7,823 \\
\hline Mullet, fresh & 20,000 & 1,000 & 132, 500 & 10,600 & 152, 500 & \({ }^{11,600}\) \\
\hline Mullet, salted & 85,000 & 6,800 & 168, 000 & 16,800 & 253, 0000 & 23, 200 \\
\hline Scup or porg & & & 1,000 & 80 & 8,500 & 605 \\
\hline Sea ba & & & & & 218,000 & 20, 300 \\
\hline Shad. & 82,619 & 19,997 & 15,540 & 3,360 & 183,916 & 43, 721 \\
\hline Sheepshead & & & & & 1,000 & 80 \\
\hline Skates & & & & & 3,000 & 60 \\
\hline Spot, fresh & \({ }^{21,000}\) & 1,050 & 35, 000 & 2,800 & 56, 5000 & 3, 3 , 800 \\
\hline Squeteague or "'sea trout; & 10, 600 & 600
650 & 40,000
3,800 & 4, 304 & 50,
700 & \({ }_{6}^{4,954}\) \\
\hline Sturgeon & 46, 193 & 13, 858 & & & 49, 406 & 14, 983 \\
\hline Sturgeon caviar & 545 & 1,635 & 1,500 & 120 & 1,500 & 1, \({ }^{125}\) \\
\hline Crabs, hard & & & 1,500 & 120 & 1 \({ }_{\text {9, }}^{1,000}\) & \({ }_{270}^{120}\) \\
\hline Shrimp & & & & & 355, 000 & 12, 425 \\
\hline Clams, hard & 64, 360 & 6,923 & 20, 504 & 2, 563 & - \(\begin{array}{r}285,640 \\ 345 \\ \hline\end{array}\) & 9, 611 \\
\hline Oysters, market, pubice & 105, 000 & 1,500 & 7,000 & 750 & \[
\begin{array}{r}
34,587,226 \\
1445,116
\end{array}
\] & \begin{tabular}{l} 
99, \\
14,421 \\
\hline
\end{tabular} \\
\hline Tot & 810, 367 & 68,110 & 478, 794 & 45, 657 & 6, 763, 279 & 284, 791 \\
\hline
\end{tabular}

\section*{FISHERIES BY APPARATUS}

In South Carolina in 1923 there was only one vessel engaged in fishing. The entire catch, consisting of groupers, red snappers, and sea bass, was taken with lines and amounted to 160,000 pounds, valued at \(\$ 14,180\). In the shore or boat fisheries a number of forms of fishing apparatus were used, the most productive of which were grabs, taking 4,884,362 pounds or 697,766 bushels, of oysters, valued at \(\$ 101,134\). The catch with haul seines, consisting chiefly of mullet and spot, amounted to 443,900 pounds, valued at \(\$ 39,011\). The catch with gill nets, consisting chiefly of shad, mullet, and sturgeon,
amounted to 351,897 pounds, valued at \(\$ 68,774\). Lines, which were used only in Charleston County, took 284,000 pounds of various species, valued at \(\$ 22,735\). The principal species taken with this apparatus were king whiting, sea bass, and squeteague or "sea trout." The catch of shrimp, amounting to 355,000 pounds, valued at \(\$ 12,425\), was taken with otter trawls. The catch with tongs included oysters, 140,980 pounds or 20,140 bushels, valued at \(\$ 12,071\); and hard clams 22,448 pounds or 2,806 bushels, valued at \(\$ 1,684\). Hard clams taken with rakes amounted to 63,192 pounds or 7,899 bushels, valued at \(\$ 7,927\). Oysters taken by hand without apparatus amounted to 7,000 pounds or 1,000 bushels, valued at \(\$ 750\). The catch with stop nets, consisting of mullet and spot, amounted to 19,000 pounds, valued at \(\$ 1,580\), and the catch with gigs or spears, consisting of redfish or red drum, flounders, and squeteague or "sea trout," amounted to 31,500 pounds, valued at \(\$ 2,520\).

The products of the vessel and shore or boat fisheries by counties, apparatus, and species are given in the following tables:
Yield of the vessel fisheries of South Carolina in 1923, by counties, apparatus, and species
\begin{tabular}{|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Charleston} \\
\hline Lines: & Pounds & Value \\
\hline Groupers.- & 8,000 & \$480 \\
\hline Red snappers. & 2,000 & \({ }^{200}\) \\
\hline Sea bass-...-- & 150,000 & 13,500. \\
\hline Total & 160,000 & 14, 180 \\
\hline
\end{tabular}

Yield of the shore fisheries of South Carolina in 1923, by counties, apparatus, and species
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Beaufort} & \multicolumn{2}{|l|}{Charleston} & \multicolumn{2}{|l|}{Colleton} \\
\hline Gill nets: & Pounds & Value & Pounds & Talue & Pounds & Value \\
\hline & 23, 450 & & 27,440 & \$5, 880 & 34, 867 & \[
\$ 7,584
\] \\
\hline Sturgeon ------ & & & 3,213
30 & \[
\begin{array}{r}
1,125 \\
90
\end{array}
\] & & \\
\hline Total_ & 23, 450 & 6,900 & 30,683 & 7,095 & 34,867 & 7,584 \\
\hline Lines: & & & & & & \\
\hline Catfish & & & 2,000 & 60 & & \\
\hline Croaker & & & 20,000 & 1,000 & & \\
\hline Crovalle---- & & & 7 7,000 & 350 & & \\
\hline Drum, black --.-.-. & & & 10,000
17,000 & 850 & & \\
\hline Flounders-.-. & & & 1,000 & 50 & & \\
\hline King whiting- & & & 60, 000 & 6, 000 & & \\
\hline Scup or porgy & & & 7,500
68,000 & 6, 800 & & \\
\hline Sheepshead & & & 1,000 & 6,80 & & \\
\hline Sharks & & & 18,000 & 360 & & \\
\hline Skates & & & 3, 000 & 60 & & \\
\hline  & & & \({ }_{60} 500\) & 6 30 & & \\
\hline Squeteague or "sca trout' & & & 60,000 & 6, 000 & & \\
\hline Crabs, hard.........-....- & & & 9,000 & 270 & & \\
\hline Total. & & --п---- & 284, 000 & 22,735 & ----- & \\
\hline Otter trawls: Shrimp & 20,000 & 700 & - & --.-. & ----- & \\
\hline Tongs: & & & & & & \\
\hline Oysters, market, public.- & 83,321 & 5,952 & & & & \\
\hline Oysters, market, private & 29,659 & 2,119 & 28,000 & 4,000 & & \\
\hline Total & 112,980 & 8,071 & 28,000 & 4,000 & & \\
\hline Grabs: & & & & & & 1,912 \\
\hline Oysters, market, public Oysters, market, private & \[
\begin{array}{r}
2,997,554 \\
37,457
\end{array}
\] & 65, 802 & \[
\begin{array}{r}
1,305,157 \\
315,000 \\
\hline
\end{array}
\] & 6, \({ }^{23,90}\) & 35, 000 & 1, 750 \\
\hline Total & 3, 035,011 & 66, 255 & 1,620,157 & 30,717 & 124, 194 & 2,662 \\
\hline Rakes: Clams, hard & & & 776 & 125 & ------ & \\
\hline Grand total & 3,191, 441 & 81,926 & 1,963,616 & 64, 672 & 159, 061 & 10, 246 \\
\hline
\end{tabular}

Yield of the shore fisheries of South Carolina in 1923, by counties, apparatus, and species-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|l|}{Georgetown} & \multicolumn{2}{|l|}{Horry} & \multicolumn{2}{|l|}{Total} \\
\hline Haul seines: & Pounds & Value & Pounds & Value & Pcunds & Value \\
\hline Bluefish & & & & & 5,000 & \$400 \\
\hline Croaker & 200 & 6 & 1,800 & 108 & 2,000 & 114 \\
\hline Drum, black & 50 & 2 & & & 50 & 2 \\
\hline Drum, red, or redfish & & & 1,000 & 80 & 1,000 & 80 \\
\hline Flounders.. & 300 & 15 & 50 & 4 & 350 & 19 \\
\hline King whiting & 300 & 15 & 21, 100 & 1,688 & 21,400 & 1,703 \\
\hline Mullet, fresh & 5,000 & 250 & 117,500 & 9, 400 & 122, 500 & 9,650 \\
\hline I Iullet, salted & 30,000 & 2,400 & 165,000 & 16,500 & 195, 000 & 18,900 \\
\hline Scup or porgy & & & 1,000 & 80 & 1,000 & 80 \\
\hline Spot, fresh & 6,000 & 300 & 34, 000 & 2, 720 & 40, 000 & 3, 020 \\
\hline Spot, salted & 10,000 & 600 & 40, 000 & 4,000 & 50, 000 & 4, 600 \\
\hline Squeteague or "sea trout" & 500 & 50 & 3,300 & 264 & 3,800 & 314 \\
\hline Total & 52,650 & 3,647 & 391, 250 & 35,364 & 443,900 & 39,011 \\
\hline \multicolumn{7}{|l|}{Gill nets:} \\
\hline Bluefish & 2,000 & 300 & & & 2,000 & 300
10 \\
\hline Croaker & 4,000 & 160 & & & 4, 000 & 160 \\
\hline Drum, black & 3,000 & 90 & & & 3,000 & 90 \\
\hline Drum, red, or redfish & 8,000 & 400 & & & 8,000 & 400 \\
\hline Flounders.. & 300 & 15 & & & 300 & 15 \\
\hline Hickory shad & 7,500 & 750 & & & 7,500 & 750 \\
\hline King whiting & 2,000 & 120 & & & 2,000 & 120 \\
\hline Mullet, fresh & 15,000 & 750 & & & 15,000 & 750 \\
\hline Mullet, salted. & 55, 000 & 4,400 & & & 55, 000 & 4,400 \\
\hline Shad & 82,619 & 19,997 & 15,540 & \$3,360 & 183,916 & 43,721 \\
\hline Spot & 15, 000 & +750 & & & 15, 000 & 750 \\
\hline Sturgeon. & 46, 193 & 13, 858 & & & 49, 406 & 14,983 \\
\hline Sturgeon caviar \({ }^{\text {Squeteague or }}\) "sea trout & 545
6,000 & 1,635
600 & & & 575
6,000 & 1,725
600 \\
\hline Total & 247, 357 & 43, 835 & 15,540 & 3,360 & 351, 897 & 68,774 \\
\hline \multicolumn{7}{|l|}{Stop nets:} \\
\hline Mullet, salted & & & 3,000 & 300 & 3,000 & 300 \\
\hline Spot & & & 1,000 & & 1,000 & 80 \\
\hline Total & & & 19,000 & 1,580 & 19,000 & 1,580 \\
\hline \multicolumn{7}{|l|}{Lines:} \\
\hline \begin{tabular}{l}
Catfish. \\
Croaker
\end{tabular} & & & & & 2,000
20,000 & 60
1,000 \\
\hline Crevalle & & & & & 7,000 & 350 \\
\hline Drum, black & & & & & 10,000 & 300 \\
\hline Drum, red, or redfish & & & & & 17, 000 & 850 \\
\hline Flounders.-- & & & & & 1,000 & 50 \\
\hline King whiting & & & & & 60, 000 & 6,000 \\
\hline Scup or porgy & & & & & 7,500 & 525 \\
\hline Sea bass.-. & & & & & 68, 000 & 6,800 \\
\hline Sheepshead & & & & & 1,000 & 80 \\
\hline Sharks & & & & & 18,000 & 360 \\
\hline Skates & & & & & 3,000 & 60 \\
\hline  & & & & & 500 & 30 \\
\hline Squeteague or "sea trout" & & & & & 60,000 & 6,000 \\
\hline Crabs, hard.------------- & & & & & 9,000 & 270 \\
\hline Total & & & & & 284, 000 & 22,735 \\
\hline \multicolumn{7}{|l|}{Gigs or spears:} \\
\hline Drum, red, or redfish. & & & & & 5,000 & \\
\hline  & 6,000 & 480 & 20, 000 & 1,600 & 26, 000 & 2,080 \\
\hline Squeteague or "sea trout" & & & & & 500 & \\
\hline Total & 6,000 & 480 & 25,500 & 2,040 & 31,500 & 2,520 \\
\hline Otter trawls: Shrimp & 335, 000 & 11,725 & & & 355, 000 & 12,425 \\
\hline \multicolumn{7}{|l|}{Tongs:} \\
\hline Clams, hard.-------- & 22,448 & 1,684 & & & & \\
\hline Oysters, market, public
Oysters, market, private & & & & & 83,321
57,659 & 5,952
6,119 \\
\hline Total. & & & & & & \\
\hline & 22, 448 & 1,084 & & & 160, 428 & 13,755 \\
\hline
\end{tabular}

Yield of the shore fisheries of South Carolina in 1923, by counties, apparatus, and species-Continued


\section*{INDUSTRIES}

Wholesale trade.-In the wholesale fish trade in 1923 there were 7 establishments, valued at \(\$ 55,162\), with cash capital amounting to \(\$ 8,500\), employing 43 persons, to whom \(\$ 35,073\) were paid in wages. These firms handled fresh fish, oysters, and hard clams.

Oyster-canning industry.-There were 14 establishments engaged in canning oysters and in utilizing oyster shells, valued at \(\$ 309,922\), with cash capital amounting to \(\$ 77,100\), and employing 973 persons, to whom \(\$ 135,522\) were paid in wages. The pack of canned oysters amounted to 103,956 cases, or \(4,546,800\) cans of various sizes, valued at \(\$ 510,829\). In addition to this pack there were prepared from osyter shells, including the product of three plants in other States, 8,586 tons of poultry grit, valued at \(\$ 82,048\), and 1,324 tons of lime, valued at \(\$ 9,775\). The following tables give statistics of the wholesale trade and oyster-canning industry of South Carolina in 1923.

Wholesale fishery trade of South Carolina in 1923
\begin{tabular}{|c|c|c|c|}
\hline & Items & Number & Value \\
\hline Establishments & & 7 & \$55, 162 \\
\hline Cash capital.-- & & & 8, 500 \\
\hline Persons engaged & & 43 & 35, 073 \\
\hline
\end{tabular}

Oyster canning and by-products industries of South Carolina in 1923


\footnotetext{
1 Includes poultry grit from oyster shells, made by one firm in Georgia and two firms in North Carolina.
Includes lime from oyster shells made by one firm on the east coast of Florida.
Note.-The statistics for one firm canning shrimp are included under the east coast of Florida.
}

\section*{FISHERIES OF GEORGIA}

The fisheries of Georgia in 1923 gave employment to 2,019 persons, of whom 186 were on vessels fishing, 29 on vessels transporting fishery products, 620 in the shore or boat fisheries, and 1,184 were shoremen in the wholesale fishery trade and oyster and shrimp canning industries.

The investment amounted to \(\$ 1,378,704\), which includes 42 fishing vessels and transporting vessels, valued at \(\$ 202,275\), with a net tonnage of 679 and outfits valued at \(\$ 36,443 ; 492\) power and other boats, valued at \(\$ 137,765\); fishing apparatus employed on vessels and boats valued at \(\$ 19,832\); shore and accessory property valued at \(\$ 859,889\); and cash capital amounting to \(\$ 122,500\).

The products amounted to \(39,896,386\) pounds, valued at \(\$ 668,129\). The most important species, arranged in the order of their value, were shrimp, \(10,668,380\) pounds, valued at \(\$ 373,303\); menhaden, \(26,973,000\) pounds, valued at \(\$ 149,850\); oysters, \(1,720,334\) pounds or 245,762 bushels, valued at \(\$ 86,771\); shad, 133,750 pounds, valued at \(\$ 27,890\); sea bass, 104,090 pounds, valued at \(\$ 8,327\); red snapper, 104,970 pounds, valued at \(\$ 7,347\); and hard crabs, 120,000 pounds, valued at \(\$ 7,000\).

Compared with 1918 there was an increase of 339 , or 20.18 per cent, in the number of persons engaged in the fisheries and fishery industries; \(\$ 608,706\), or 79.05 per cent, in the investment; and \(2,742,433\) pounds, or 7.38 per cent, in the quantity and \(\$ 252,086\), or 60.59 per cent, in the value of the products. There was an increase in the catch of shrimp of \(4,874,915\) pounds and \(\$ 199,313\) in value and a considerable increase in the catch of shad and oysters. The catch of menhaden decreased \(2,511,600\) pounds in quantity but increased \(\$ 61,397\) in value. There was a decrease in the catch of red snapper and sea bass but a large increase in the catch of hard crabs.

The following tables give, by counties, the number of persons employed, investment, and the quantity and value of the products of the fisheries in 1923:

Persons engaged in the fisheries of Georgia in 1923, by counties
\begin{tabular}{|c|c|c|c|c|c|}
\hline Counties & On vessels fishing & On vessels transporting & In shore fisheries & Shoremen & Total \\
\hline Bryan-- & & & 36 & & 36 \\
\hline Camden. & 122 & & 36 & 91 & 249 \\
\hline Chatham. & 42 & 16 & 207 & 175 & 440 \\
\hline Effingham. & & & 16 & & 16 \\
\hline Glynn- & 22 & 7 & 190 & 545 & 764 \\
\hline Liberty. & & 2 & 36 & 46 & 84 \\
\hline Long --.-- & & & 2 & & 2 \\
\hline McIntosh & & 4 & 83 & 327 & 414 \\
\hline Wayne. & & & 14 & & 14 \\
\hline Total & 186 & 29 & 620 & 1,184 & 2,019 \\
\hline
\end{tabular}

Investment in the fisheries of Georgia in 1923, by counties


Yield of the fisheries of Georgia in 1923, by counties and species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Bryan} & \multicolumn{3}{|c|}{Camden} & \multicolumn{2}{|l|}{Chatham} & \multicolumn{2}{|l|}{Effingham} & \multicolumn{2}{|l|}{Qlynn} \\
\hline Drum, red, or & Lbs. & Value & Lbs & & Value & Lbs. & Value & Lbs. & Value & \(L b s\).
600 & Value \\
\hline Flounders..- & & & & & & & & & & 200 & 12 \\
\hline Groupers & & & & & & 11, 413 & \$571 & & & & \\
\hline Grunts... & & & & & & 123 & 10 & & & & \\
\hline Jewfish & & & & & & 2,767 & 111 & & & & \\
\hline King whiting & & & & & & & & & & 1,000 & 100 \\
\hline \begin{tabular}{l}
Menhaden \\
Mullet
\end{tabular} & & & 26, 973, & 000 \$14 & 49,850 & & & & & 4, 000 & 240 \\
\hline Pinfish or sailor's choice & & & & & & & 24 & & & & 240 \\
\hline Red snapper & & & & & & 104, 970 & 7,347 & & & & \\
\hline Scup or porg & & & & & & 1,601 & -182 & & & & \\
\hline Sea bass & 35, 640 & \$7, 560 & & 000 & 600 & \[
\begin{array}{r}
104,090 \\
65,230
\end{array}
\] & 8,327
14,260 & 15, 840 & \$3,360 & & \\
\hline Spot.- & 35, 040 & 8, 500 & & 00 & & & & 15,840 & \$3,360 & 5,600 & 36 \\
\hline Squeteague or "sea trout" & & & & & & & & & & 5,000 & 500 \\
\hline Striped bass...-.-.-.-.-.-- & & & & & & 360 & 29 & & & & \\
\hline Crabs, hard. & & & & & & 120, 000 & 7,000 & & & & \\
\hline Shrimp-..--.-...-.-.-.-. & & & 560, & 000 & 19,600 & 135, 000 & \(\begin{array}{r}4,725 \\ 50 \\ \hline 18\end{array}\) & & & 7, 982,380 & 279, 293 \\
\hline Oysters, market, public---
Oysters, & & & & & & 712, 775 & \[
\begin{array}{r}
50,913 \\
8.336
\end{array}
\] & & & \[
\begin{array}{r}
49,595 \\
3,500
\end{array}
\] & 1.063
250 \\
\hline Oysters, market, private.- & & & & & & \[
\begin{array}{r}
139,125 \\
50
\end{array}
\] & \[
\begin{array}{r}
8,336 \\
10
\end{array}
\] & & & 3,500 & 250 \\
\hline Terrapin. & & & & & & 1,200 & 1,000 & & & & \\
\hline T & 35, 640 & 7, 560 & 27, 540, & & 170, 050 & 1,399, 104 & 102,845 & 15,840 & 3,360 & 8, 050, 175 & 282, 230 \\
\hline Species & & \multicolumn{2}{|l|}{Liberty} & \multicolumn{2}{|l|}{Long} & \multicolumn{2}{|l|}{McIntosh} & \multicolumn{2}{|l|}{Wayne} & \multicolumn{2}{|l|}{Total} \\
\hline Drum, red, or redfish & & Lbs. & Value & Lbs. & Value & Lbs. & Value & Lbs. & Value & Lbs. \({ }_{600}\) & Value \(\$ 36\) \\
\hline Flounders.-.-.-...... & & & & & & & & & & 200 & 12 \\
\hline Groupers & & & & & & & & & & 11, 413 & 571 \\
\hline Grunts & & & & & & & & & & 123 & 10 \\
\hline Hickory shad & & & & 1,000 & \$100 & 5,660 & \$576 & 3,850 & \$390 & 10,510 & 1,066 \\
\hline Jewfish King whiting & & & & & & & - & & & 2,767
1,000 & 111. \\
\hline Menhaden -- & & & & & & & & & & 26, 973,000 & 149, 850 \\
\hline Mullet. & & & & & & & & & & 4,000 & 240 , \\
\hline Pinfish or sailor's choice & & & & & & & & & & 400 & 24 \\
\hline Red snapper- & & & & & & & & & & 104, 970 & 7,347 \\
\hline \begin{tabular}{l}
Scup or porgy \\
Sea bass
\end{tabular} & & & & & & & & & & 104, 090 & 182
8,327 \\
\hline Shad.. & & & & 330 & 70 & 4,100 & 850 & 2,310 & 490 & 133, 750 & 27, 890 \\
\hline Spot.. & & & & & & & & & & 600 & 36 \\
\hline Squeteague, or "sea trou & & & & & & & & & & 5,000 & 500
09 \\
\hline Striped bass Sturgeon & & & & & & 32,000 & 3, 600 & & & 360
32,000 & \\
\hline Sturgeon cavia & & & & & & & 114 & & & & 114 \\
\hline Crabs, hard & & & & & & & & & & 1120,000 & 7,000 \\
\hline Shrimp.. & & & & & & 1,991, 000 & 69,685 & & & 10, 668, 380 & 373, 303 \\
\hline Oysters, market, public & & 45, 731 & \$1,960 & & & 140,686 & 3, 444 & & & 2 948, 787 & 57, 380 \\
\hline Oysters, market, private & & 84, 522 & 10,025 & & & 344, 400 & 10, 780 & & & \({ }^{3} 771,547\) & 29,391 \\
\hline Octopus... Terrapin.- & & & & & & & & & & [r 50 & 1,000 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Total}} & 11,985 & 1,330 & 170 & 2, 517, 884 & 89,049 & 6,160 & 880 & 39, 896, 386 & 668, 129 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
\({ }^{3} 110,221\) bushels.

\section*{FISHERIES BY APPARATUS}

The yield of all forms of apparatus employed in the vessel fisheries of Georgia in 1923 amounted to \(28,233,374\) pounds, valued at \(\$ 203,602\). The catch by purse seines, consisting entirely of menhaden, amounted to \(26,973,000\) pounds, valued at \(\$ 149,850\). The catch with lines, consisting of various species, the more important of which were red snapper and sea bass, amounted to 225,774 pounds, valued at \(\$ 16,611\). Otter trawls were used in taking shrimp, the catch amounting to \(1,006,600\) pounds, valued at \(\$ 35,141\). The catch with dredges consisted of 28,000 pounds, or 4,000 bushels, of oysters, valued at \(\$ 2,000\).

In the shore or boat fisheries the catch amounted to \(11,663,012\) pounds, valued at \(\$ 464,527\). The apparatus used included gill nets, grabs, tongs, otter trawls, and lines. The catch with gill nets, consisting of a number of species and including as its most important item the entire catch of shad, amounted to 188,298 pounds, valued at \(\$ 34,094\). The catch with grabs consisted of 824,670 pounds, or 117,810 bushels, of oysters, valued at \(\$ 38,918\), and with tongs, 776,545 pounds, or 110,935 bushels, valued at \(\$ 43,865\). Otter trawls took \(9,661,780\) pounds of shrimp, valued at \(\$ 338,162\). The entire catch of shrimp in both the vessel and shore fisheries was taken with this apparatus, but no other species was taken. Lines were used in taking hard crabs, the catch amounting to 120,000 pounds, valued at \(\$ 7,000\), which was the total catch of this species for the State. There were taken by hand, without apparatus, 91,119 pounds, or 13,017 bushels, of oysters, valued at \(\$ 1,988\), and 600 pounds of terrapin, valued at \(\$ 500\).

The products taken with the various forms of fishing apparatus employed in the vessel and shore or boat fisheries are given by counties and species in the appended tables:

Yield of the vessel fisheries of Georgia in 1923, by apparatus, species, and counties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Camden} & \multicolumn{2}{|l|}{Chatham} & \multicolumn{2}{|r|}{Glynn} & \multicolumn{2}{|l|}{Total} \\
\hline Purse seines: Menhaden & \[
\begin{gathered}
\text { Pounds } \\
26,973,000
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 149,850
\end{gathered}
\] & Pounds & Value & Pounds & Value & \[
\begin{gathered}
\text { Pounds } \\
26,973,000
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 149,850
\end{gathered}
\] \\
\hline Lines: & & & & & & & & \\
\hline Grunts. & & & \({ }_{123}\) & 10 & & & \({ }_{123}\) & 10 \\
\hline Jewfish. & & & 2,767 & 111 & & & 2,767 & 111 \\
\hline Pinfish or sailor's & & & 400 & 24 & & & 400 & 24 \\
\hline Red snapper & & & 104,970 & 7,347 & & & 104, 970 & 7,347 \\
\hline Scup or porgy & & & 1,601 & 182 & & & 1,601 & 182 \\
\hline Sea bass & & & 104,090 & 8,327 & & & 104, 090 & 8,327 \\
\hline Striped bass & & & 360 & 29 & & & 360 & 29 \\
\hline Octopus. & & & 50 & 10 & & & 50 & 10 \\
\hline Total & & & 225,774 & 16,611 & & & 225, 774 & 16,611 \\
\hline Otter trawls: Shrimp & 100, 000 & 3, 500 & 135,000 & 4,725 & 771,600 & \$26, 916 & 1,006, 600 & 35, 141 \\
\hline Dredges: Oysters, market, private & & & 28,000 & 2,000 & & & 28, 000 & 2,000 \\
\hline Grand total & 27, 073, 000 & 153, 350 & 388, 774 & 23,336 & 771,600 & 26,916 & 28, 233, 374 & 203, 602 \\
\hline
\end{tabular}

Yield of the shore fisheries of Georgia in 1923, by apparatus, species, and counties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|r|}{Bryan} & \multicolumn{2}{|l|}{Camden} & \multicolumn{2}{|l|}{Chatham} & \multicolumn{2}{|l|}{Effingham} & \multicolumn{2}{|l|}{Glynn} \\
\hline Gill nets: & Lbs. & Value & Lbs. & Value & Lbs. & Value & Lbs. & Value & \(L b s\). & Value \\
\hline Drum, red, or redfish & & & & & & & & & 600 & \$36 \\
\hline Flounders. & & & & & & & & & 200 & 12 \\
\hline King whiting & & & & & & & & & 1,000 & 100 \\
\hline Mullet.... & & & & & & & & & 4, 000 & 240 \\
\hline Shad & 35, 640 & \$7, 560 & 7,000 & \$600 & 65, 230 & \$14, 260 & 15, 840 & \$3,360 & 3,300 & 700 \\
\hline Squeteague or "sea trout & & & & & & & & & 600
5,000 & 36
500 \\
\hline Terrapin.---.-.-.-...-- & & & & & 600 & 500 & & & & \\
\hline Total. & 35, 640 & 7,560 & 7,000 & 600 & 65, 830 & 14, 760 & 15, 840 & 3,360 & 14,700 & 1,624 \\
\hline Grabs: & & & & & & & & & & \\
\hline Oysters, market, public. & & & & & 285, 110 & 20,365 & & & 39,676 & 850 \\
\hline Oysters, market, private. & & & & & 39, 375 & 2,212 & & & 2, 800 & 200 \\
\hline Total & & & & & 324, 485 & 22, 577 & & & 42,476 & 1,050 \\
\hline
\end{tabular}

Yield of the shore fisheries of Georgia in 1923, by apparatus, species, and countiesContinued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Liberty} & \multicolumn{2}{|r|}{Long} & \multicolumn{2}{|l|}{McIntosh} & \multicolumn{2}{|l|}{Wayne} & \multicolumn{2}{|l|}{Total} \\
\hline Gill nets: & Lbs. & Value & Lbs. & Value & Lbs. & Value & \(L b s\). & Value & Lbs. & Value \\
\hline Drum, red, or redfish & & & & & & & & & 600 & \$36 \\
\hline Flounders-.-- & & & 1,000 & \$100 & 5,660 & \$576 & 3, 850 & \$390 & 10, 200 & 1,066 \\
\hline King whiting & & & & & & & & & 1,000 & 100 \\
\hline Mullet.-. & & & & & & & & & 4, 000 & 240 \\
\hline Shad. & & & 330 & 70 & 4, 100 & 850 & 2, 310 & 490 & 133, 750 & 27, 890 \\
\hline Spot.- & & & & & & & & & 600 & 36 \\
\hline Squeteague or "sea trout & & & & & & & & & 5, 000 & 500 \\
\hline Sturgeon --...- & & & & & 32,000 & 3, 600 & & & 32, 000 & 3, 600 \\
\hline Sturgeon caviar & & & & & 38 & 114 & & & 38 & 114 \\
\hline Terrapin....--- & & & & & & & & & 600 & \\
\hline Total & & & 1,330 & 170 & 41,798 & 5,140 & 6, 160 & 880 & 188, 298 & 34, 094 \\
\hline Grabs: & & & & & & & & & & \\
\hline Oysters, market, public. Oysters, market, private & \[
\begin{array}{r}
22,862 \\
142,261
\end{array}
\] & \(\$ 980\)
5,012 & & & \[
\begin{array}{r}
60,186 \\
232,400
\end{array}
\] & \[
\begin{aligned}
& 1,719 \\
& 7,580
\end{aligned}
\] & & & \[
\left\lvert\, \begin{array}{r}
--\quad 407,834 \\
416,836
\end{array}\right.
\] & \[
\begin{aligned}
& 23,914 \\
& 15,004
\end{aligned}
\] \\
\hline Total & 165, 123 & 5,992 & & & 292, 586 & 9, 299 & & & 824,670 & 38,918 \\
\hline \begin{tabular}{l}
Tongs: \\
Oysters, market, public
\end{tabular} & 22, 869 & 980 & & & & & & & 450, 534 & 31, 528 \\
\hline Oysters, market, private & 142, 261 & 5,013 & & & 112, 000 & 3, 200 & & & 326, 011 & 12, 337 \\
\hline Tota & 165, 130 & 5,993 & & & 112,000 & 3,200 & & & 776, 545 & 43, 865 \\
\hline Otter trawls: Shrimp & & ---- & & & 1,991,000 & 69,685 & & & 9, 661, 780 & 338,162 \\
\hline Lines: Crabs, hard & & & & & & & & ---- & 120,000 & 7,000 \\
\hline \begin{tabular}{l}
By hand: \\
Oysters, market, public
\end{tabular} & & & & & 80, 500 & 1,725 & & & 90, 419 & \\
\hline Oysters, market, private & & & & & & & & & 700 & 50 \\
\hline Terrapin.------.--------- & & & & & & & & & 600 & 500 \\
\hline Total & & & & & 80,500 & 1,725 & & & 91, 719 & 2,488 \\
\hline Grand total & 330, 253 & 11,985 & 1,330 & 170 & 2, 517,884 & 89, 049 & 6, 160 & 880 & 11, 663, 012 & 464, 527 \\
\hline
\end{tabular}

\section*{indugtries}

Wholesale trade.-In 1923 there were 13 establishments in the wholesale fresh-fish trade in Georgia, valued at \(\$ 175,701\), with cash capital amounting to \(\$ 37,000\) and employing 179 persons, to whom \(\$ 85,462\) were paid in wages. These firms handled fresh fish, oysters, and shrimp.

Canning industry.-There were 13 establishments, including 2 firms on the east coast of Florida, in the canning industry, valued at \(\$ 294,578\). The cash capital used amounted to \(\$ 83,000\). There
were 1,050 persons employed, to whom \(\$ 150,859\) were paid in wages. These firms were engaged in canning oysters, shrimp, and other fishery products and also in the preparation of poultry grit from oyster shells, which is included in the statistics for South Carolina. The canned products included 24,449 cases, or \(1,154,736\) cans, of canned oysters, valued at \(\$ 126,877\), and 93,019 cases, or \(4,315,488\) cans, valued at \(\$ 554,660\). Other canned fishery products were ralued at \(\$ 3,200\). Statistics of the wholesale fresh fish trade and canning industry in 1923 are given in the following tables:

Wholesale fishery trade of Georgia in 1923
\begin{tabular}{|c|c|c|c|}
\hline & Items & Number & Value \\
\hline Establishments & & 13 & \$175, 701 \\
\hline Cash capital.... & & & 37, 0001 \\
\hline Persons engaged & & 179 & 85, 462 \\
\hline
\end{tabular}

Nore.-The statistics for Georgia's one menhaden plant are included under the general tables for the South Atlantic States, and the output of its one shell plant is included under South Carolina.

Oyster and shrimp canning industry of Georgia in \(1923^{1}\)

\({ }^{1}\) Includes two firms in Florida (east coast).
Note. - In addition to canned shrimp and oysters there were produced \(\$ 3,200\) worth of miscellaneous canned fishery products.

\section*{FISHERIES OF EAST COAST OF FLORIDA}

The statistics here presented are for the east coast of Florida, which among the South Atlantic States was surpassed in the extent of its fisheries only by North Carolina. The number of persons engaged in the fisheries in 1923 was 2,807, of whom 237 were on fishing and transporting vessels, 1,810 were in the shore or boat fisheries, and 760 in the wholesale fish trade, menhaden industry, and canning industry.

The investment amounted to \(\$ 2,320,880\) and includes 14 fishing and transporting vessels, valued at \(\$ 226,400\), with a net tonnage of 594 tons and outfits valued at \(\$ 46,033 ; 1,306\) power and row boats, valued at \(\$ 532,550\); fishing apparatus used on vessels and boats, valued at \(\$ 131,614\); shore and accessory property to the value of \(\$ 1,106,083\); and cash capital amounting to \(\$ 278,200\).

The products amounted to \(86,895,922\) pounds, valued at \(\$ 1,719,921\). The principal species taken, arranged in the order of their value, were shrimp, 11,024,045 pounds, valued at \(\$ 385,361\); menhaden, \(57,918,030\) pounds, valued at \(\$ 276,209\); mullet, \(6,198,200\) pounds, valued \(\$ 194,092\); Spanish mackerel \(2,469,400\) pounds, valued at \(\$ 187,247\); cero and kingfish, \(1,965,457\) pounds, valued at \(\$ 161,077\); bluefish, \(1,100,550\) pounds, valued at \(\$ 147,321\); squeteague or "sea trout," 1,198,400 pounds, valued at \(\$ 122,854\); shad, 502,866 pounds, valued at \(\$ 62,447\); catfish, 783,440 pounds, valued at \(\$ 38,372\); alewives, \(1,048,000\) pounds, valued at \(\$ 26,700\); sunfish, 476,809 pounds, valued at \(\$ 19,672\); oysters, 502,264 pounds, or 71,752 bushels, valued at \(\$ 17,835\); and sea crawfish or spiny lobster, 156,200 pounds, valued at \$11,634.

Compared with 1918, there was a decrease of 523 , or 15.71 per cent, in the number of persons engaged but an increase of \(\$ 110,201\), or 4.98 per cent, in the investment. There was an increase of \(5,684,434\) pounds, or 7 per cent, in the quantity, with a decrease of \(\$ 26,254\), or 1.5 per cent, in the value of the products. There was an increase in the catch of alewives, bluefish, blue runner or hardtail, catfish, menhaden, squeteague or "sea trout," shrimp, crabs, sea crawfish or spiny lobster, oysters, and various other species. There was a decrease in a number of species, the more important of which were mullet, pinfish or sailor's choice, pompano, sergeant fish or snook, shad, Spanish mackerel, and spot.

Statistics of the number of persons engaged, investment, and products of the fisheries of the east coast of Florida in 1923, by counties, are given in the following table:

Persons engaged in the fisheries of the east coast of Florida in 1923
\begin{tabular}{|c|c|c|c|c|c|}
\hline Counties & On vessels fishing & On vessels transporting & In shore fisheries & Shoresmen & Total \\
\hline Brevard & & & 149 & 18 & 167 \\
\hline Broward & & & 10 & & 10 \\
\hline Clay & & & 17 & & 17 \\
\hline Dade & 8 & & 104 & 13 & 125 \\
\hline Duvall & 99 & ----------- & 156 & 90 & 345 \\
\hline Lake. & & & 12 & & 12 \\
\hline Nassau & 124 & 4 & 433 & 534 & 1,095 \\
\hline Palm Beach & & & 377 & 47 & 424 \\
\hline Putnam.- & & & 164 & 3 & 167 \\
\hline St. John. & & 2 & 51 & 31 & 84 \\
\hline St. Lucie & & & 212 & 24 & 236 \\
\hline Seminole. & & - & 65 & - & 65 \\
\hline Volusia. & & & 60 & & 60 \\
\hline Total. & 231 & 6 & 1,810 & 760 & 2, 307 \\
\hline
\end{tabular}

Investment in the fisheries of the east coast of Florida in 1923, by counties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Items & \multicolumn{2}{|r|}{Brevard} & \multicolumn{2}{|l|}{Broward} & \multicolumn{2}{|r|}{Clay} & \multicolumn{2}{|r|}{Dade} & \multicolumn{2}{|r|}{Duvall} & \multicolumn{2}{|r|}{Lake} & \multicolumn{2}{|r|}{Nassau} \\
\hline Vessels fishing: & No. & Value & No. & Value & No. & Value & No. & Value & No. & Value & No. & Value & No. & Value \\
\hline Steam-...--- & & & & & & & & & & \$30,600 & & & & \$124, 700 \\
\hline Tonnage & & & & & & & & & 64 & & & & 289 & \\
\hline Gasoline.- & & & & & & & & 1 \$1, 500 & & \[
\begin{aligned}
& 10,200 \\
& 26.2
\end{aligned}
\] & & & 4 & 16,683
39,300 \\
\hline Tonnage & & & & & & & & & 93 & & & & 106 & \\
\hline Outfit...- & & & & & & & & 250 & & 14,000 & & & & 4,550 \\
\hline Vessels transporting: Gasoline & & & & & & & & & & & & & & \\
\hline Tonnage & & & & & & & & & & & & & 24 & ,00 \\
\hline Outfit.- & & & & & & & & & & & & & 24 & \\
\hline Power boats & 68 & \$21,500 & & \$1,000 & 4 & \$800 & 39 & 20, 650 & 71 & 28, 450 & 2 & \$400 & 207 & 292, 800 \\
\hline Rowboats-.-.-.------.- & 139 & 4,020 & & & 13 & 330 & & & 35 & 1, 050 & 6 & 165 & 36 & 850 \\
\hline \begin{tabular}{l}
Apparatus, vessel fisheries: \\
Purse seines
\end{tabular} & & & & & & & & & & & & & 4 & \\
\hline Otter trawls.. & & & & & & & & & & & & & 3 & 150 \\
\hline \multicolumn{15}{|l|}{} \\
\hline Haul seines & & & & 400 & 4 & 750 & & & 10 & 420 & 6 & 1,300 & & \\
\hline Gill nets. & 141 & 16,950 & & 300 & & & 20 & -2,500 & 72 & 10, 200 & & & 10 & 300 \\
\hline Lines ---.-.- & & & & 30 & & 90 & & 700 & & 120 & & & & \\
\hline Otter trawls & & & & & & & & & 10 & 400 & & & 204 & 11,000 \\
\hline Crab traps & & & & & & & & & 30 & 75 & & & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Grabs \\
Shore and accessory property. \\
Cash capital \(\qquad\)
\end{tabular}} & & & & & & & 31 & 162 & & & & & & 4 \\
\hline & & 43, 200 & & & & & & & & 418, 369 & & 2,000 & & \\
\hline & & 9, 000 & & & & & & 7,500 & & 109, 500 & & & & 98, 000 \\
\hline T & & 94, 670 & & 1,805 & & 2, 010 & & 59, 162 & & 651, 484 & & 3,865 & & 961,273. \\
\hline Items & \multicolumn{2}{|l|}{\begin{tabular}{l}
Palm \\
Beach
\end{tabular}} & \multicolumn{2}{|l|}{Putnam} & \multicolumn{2}{|l|}{Seminole} & \multicolumn{2}{|l|}{St. John} & \multicolumn{2}{|l|}{St. Lucie} & \multicolumn{2}{|l|}{Volusia} & \multicolumn{2}{|r|}{Total} \\
\hline Vessels fishing: & No. & Value & No. V & Value & No. & Value & No. V & Value & No. & Value & No. V & Value & & \\
\hline \multicolumn{15}{|l|}{Steam...-.-...-....-...-} \\
\hline Outfit... & & & & & & & & & & & & & & \\
\hline Gasoline & & & & & & & & & & & & & & 67, 000 s \\
\hline \multirow[t]{2}{*}{Tonnag} & & & & & & & & & & & & & 208 & \\
\hline & & & & & & & & & & & & & & 18,800 \\
\hline \multicolumn{15}{|l|}{Vessels transporting:} \\
\hline \multirow[t]{2}{*}{Oonnage} & & & & & & & & & & & & & 33 & \\
\hline & & & & & & & & 100 & & & & & & \\
\hline \multirow[t]{2}{*}{Power boat Rowboats.} & 202 & \$73, 250 & & 7, 850 & 14 & \$2, 650 & 271 & 14, 250 & 105 & 50, 000 & & 4,050 & 792 & 517, 650 \\
\hline \multicolumn{15}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{c}
\begin{tabular}{c} 
Apparatus, vessel fish- \\
eries: \\
Purse seines.
\end{tabular} \\
\hline
\end{tabular}}} \\
\hline & & & & & & & & & & & & & & \\
\hline \begin{tabular}{l}
Purse seines \\
Otter trawls
\end{tabular} & & & & & & & & & & & & & 8 & 10,300 \\
\hline \multicolumn{15}{|l|}{\multirow[t]{2}{*}{Apparatus, shore fisheries:}} \\
\hline & & & & & & & & & & & & & & \\
\hline Purse seines-.-..---------- & 3 & 1, 800 & 27 & & 27 & 4,350 & & 590 & & & & & & 7, 500 \\
\hline \multirow[t]{2}{*}{Gill nets.} & 126 & 20, 325 & 29 & 2, 750 & & & 2 & 100 & 125 & 21,250 & 41 & 5,800 & 568 & 80, 475 , \\
\hline & & 2,675 & & & & & & 100 & & 860 & & & & 4,595. \\
\hline \multirow[t]{2}{*}{Cast net} & & & & & & & & 30 & & & & & 6 & 30 \\
\hline & & & & & & & 3 & 3 & & & & & 3 & \\
\hline Otter trawls & & & & & & & 12 & 600 & & & & & 226
30 & 2, 000 \\
\hline \multirow[t]{2}{*}{Dip nets} & & & & & & & & & & & & & 31 & 62 \\
\hline & 1 & & & & & & 12 & 90 & & 35 & 17 & 119 & 35 & 251 \\
\hline Rakes. & & & & & & & 12 & & & & & & 12 & 9 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Shore and accessory property \\
Cash capital
\end{tabular}} & & & & & & & & & & & & & 4 & 4 \\
\hline & & 111, 300 & & & & 2,025 & & 43, 392 & & & & 5, 100 & & \\
\hline & & 28, 200 & & 2,000 & & & & 2, 500 & & 21, 500 & & & & \[
\begin{aligned}
& 278,200
\end{aligned}
\] \\
\hline Total & & 240, 147 & 37 & 37, 098 & & 10,150 & & 64, 914 & & 77, 293. & 17 & 7,009 & & ,320, 880 \\
\hline
\end{tabular}

Yield of the fisheries of the east coast of Florida in 1923 by counties and species


Yield of the fisheries of the east coast of Florida in 1923 by counties and speciesContinued


\section*{FISHERIES BY APPARATUS}

The total catch taken by vessels in the fisheries of the east coast of Florida in 1923 amounted to \(58,118,030\) pounds, valued at \(\$ 280,709\), the species taken being menhaden, mullet, and shrimp. The only forms of fishing apparatus used on vessels were purse seines and otter trawls. The catch with purse seines included \(57,918,030\) pounds of menhaden, valued at \(\$ 276,209\), which was the entire catch of this species. There were also taken with this apparatus 100,000 pounds of mullet, valued at \(\$ 1,500\). The catch with otter trawls consisted of 100,000 pounds of shrimp, valued at \(\$ 3,000\).

In the shore or boat fisheries the catch amounted to \(28,777,892\) pounds, valued at \(\$ 1,439,212\). The forms of fishing apparatus used include purse seines, haul seines, gill nets, lines, otter trawls, cast nets, spears, crab traps, dip nets, tongs, rakes, and grabs. Gill nets were the most productive form of apparatus used, the catch amounting to \(11,038,780\) pounds, valued at \(\$ 675,056\). The principal species taken with gill nets were mullet, \(5,381,200\) pounds, valued at \(\$ 175,562\); Spanish mackerel, \(2,418,500\) pounds, valued at \(\$ 183,110\); squeteagues or "sea trout," 1,056,900 pounds, valued at \(\$ 108,834\); bluefish, 980,800 pounds, valued at \(\$ 133,240\); and shad 278,750 pounds, ralued at \(\$ 38,935\). The catch with otter trawls, which was next in importance, amounted to \(11,034,045\) pounds, valued at \(\$ 384,661\), and included \(10,924,045\) pounds of shrimp, valued at \(\$ 382,361\); 100,000 pounds of king whiting, valued at \(\$ 2,000\); and 10,000 pounds of squeteague or "sea trout," valued at \(\$ 300\). The entire catch of shrimp was taken with this form of apparatus. The catch with seines amounted to \(3,565,611\) pounds, valued at \(\$ 148,551\). Purse seines took 684,000 pounds, valued at \(\$ 16,050\), including 660,000 pounds of mullet, valued at \(\$ 14,850\), and 24,000 pounds of bluefish, valued at \(\$ 1,200\).

The catch with haul seines amounted to \(2,881,611\) pounds, valued at \(\$ 132,501\). The principal species taken were alewives, \(1,048,000\) pounds, valued at \(\$ 26,700\); catfish, 743,440 pounds, valued at \(\$ 36,372\); shad, 224,116 pounds, valued at \(\$ 23,512\); and sunfish, 476,809 pounds, valued at \(\$ 19,672\). The catch with lines amounted to 2,434,782 pounds, valued at \(\$ 197,663\). Among the more important species taken with lines were bluefish, 76,200 pounds, valued at \(\$ 10,544\); catfish, 40,000 pounds, valued at \(\$ 2,000\); cero and kingfish, \(1,962,457\) pounds, valued at \(\$ 160,777\); snook or sergeant fish, 36,900 pounds, valued at \(\$ 1,116\); Spanish mackerel, 32,900 pounds, valued at \(\$ 2,457\); squeteague or "sea trout," 118,000 pounds, valued at \(\$ 12,110\); and hard crabs, 40,000 pounds, valued at \(\$ 2,000\). The catch of mullet and various other species with cast nets amounted to 8,150 pounds, valued at \(\$ 457\). There were taken with spears 1,500 pounds of flounders, valued at \(\$ 90\). Crab traps were used in taking hard crabs, the catch amounting to 32,000 pounds, valued at \(\$ 1,600\). The total catch of sea crawfish or spiny lobster, amounting to 156,200 pounds, valued at \(\$ 11,634\), was taken with dip nets. The forms of apparatus used in taking oysters and hard clams were tongs, rakes, and grabs. The catch of hard clams with tongs amounted to 3,040 pounds, or 380 bushels, valued at \(\$ 1,110\); and with rakes 1,520 pounds, or 190 bushels, valued at \(\$ 555\). The catch of oysters with tongs amounted to 155,414 pounds, or 22,202 bushels,
valued at \(\$ 9,900\); with rakes to 12,600 pounds, or 1,800 bushels, valued at \(\$ 1,350\); and with grabs to 14,000 pounds, or 2,000 bushels, valued at \(\$ 1,490\). There were also taken by hand, without apparatus, 320,250 pounds of oysters, or 45,750 bushels, valued at \(\$ 5,095\). The products of the vessel and shore fisheries of the east coast of Florida taken by each form of fishing apparatus in 1923 are given by counties and species in the following tables:

Yield of vessel fisheries of the east coast of Florida in 1923, by counties, apparatus, and species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Dade} & \multicolumn{2}{|l|}{Duvall} & \multicolumn{2}{|l|}{Nassau} & \multicolumn{2}{|l|}{Total} \\
\hline \begin{tabular}{l}
Purse seines: \\
Menhaden
\end{tabular} & Pounds & & \[
\begin{gathered}
\text { Pounds } \\
24,639,030
\end{gathered}
\] & \[
\begin{gathered}
\text { Value } \\
\$ 109,643
\end{gathered}
\] & Pounds
\[
33,279,000
\] & \[
\begin{gathered}
\text { Value } \\
\$ 166,566
\end{gathered}
\] & Pounds
57,918
030 & \[
\begin{gathered}
\text { Value } \\
\$ 276,209
\end{gathered}
\] \\
\hline Mullet. & 100,000 & \$1, 500 & & & & & 100,000 & 1,500 \\
\hline Total
Otter trawls: Shrimp.-- & 100,000 & 1,500 & 24, 639, 030 & 109, 643 & \[
\begin{array}{r}
33,279,000 \\
100,000
\end{array}
\] & \[
\begin{array}{r}
166,566 \\
3,000
\end{array}
\] & \[
\begin{array}{r}
58,018,030 \\
100,000
\end{array}
\] & \[
\begin{array}{r}
277,709 \\
3,000
\end{array}
\] \\
\hline Grand total & 100, 000 & 1,500 & 24, 639, 030 & 109, 643 & 33, 379, 000 & 169, 566 & 58, 118, 030 & 280,709 \\
\hline
\end{tabular}

Yield of the shore fisheries of the east coast of Florida in 1923, by counties, apparatus, and species

BY SEINES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline A pparatus and species & \multicolumn{2}{|l|}{Broward} & \multicolumn{2}{|l|}{Clay} & \multicolumn{2}{|c|}{Dade} & \multicolumn{2}{|l|}{Duvall} \\
\hline Purse seines: Bluefish. & Pounds & Value & Pounds & Value & \begin{tabular}{l}
Pounds \\
20, 000
\end{tabular} & Value \(\$ 600\) & Pounds & V'alue \\
\hline Mullet. & & & & & 550, 000 & 11,000 & & \\
\hline Total & & & & & 570,000 & 11,600 & & \\
\hline Haul seines: & & & & & & & & \\
\hline Bluefish.. & 1,200 & \$180 & & & & & 150 & \$23 \\
\hline Catfish & & & 60,000 & 3,000 & & & & \\
\hline Crappie. & & & 2, 200 & 154 & & & & \\
\hline Crevalle Drum, black & & & & & & & 300 & 15 \\
\hline Drum, red, or red fish & & & & & & & 1,250 & 90 \\
\hline Flounders, -- & & & & & & & 5200 & 12 \\
\hline King whiting. & & 450 & & & & & 5, 600 & 480 \\
\hline Pompano & 10,00 & & & & & & 2,000
150 & 150
38 \\
\hline Spot--.----- & & & & & & & 600 & 45 \\
\hline Squeteague or "sea trout" & & & & & & & 5,500 & 660 \\
\hline Sunfish. & & & 28,000 & 1,680 & & & & \\
\hline Total & 16,200 & 630 & 92,600 & 5,194 & & & 16,350 & 1,543 \\
\hline Grand total. & 16,200 & 630 & 92,600 & 5,194 & 570,000 & 11,600 & 16,350 & 1,543 \\
\hline
\end{tabular}

Yield of the shore fisheries of the east coast of Florida in 1923, by counties, apparatus, and species-Continued

BY SEINES—Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Lake} & \multicolumn{2}{|l|}{Palm Beach} & \multicolumn{2}{|r|}{Putnam} & \multicolumn{2}{|l|}{Seminole} \\
\hline Purse seines: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Mulle & & & 110,000 & 3,850 & & & & \\
\hline Total & & & 114,000 & 4,450 & & & & \\
\hline Haul seines: & \multirow[b]{2}{*}{260} & \multirow[b]{2}{*}{\$6,500} & & & \multirow[b]{3}{*}{760,000 28, 000 30, 100} & \multirow[b]{3}{*}{\[
\begin{array}{r}
\$ 9,000 \\
1,200 \\
3,000
\end{array}
\]} & \multirow{4}{*}{-} & \\
\hline Alewives, fre & & & & & & & & \multirow[b]{2}{*}{\$2,959} \\
\hline Black bass & 20, 200 & 2,020 & \multirow[b]{3}{*}{\[
\begin{array}{r}
14,000 \\
2,000 \\
100
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1,600 \\
100 \\
4
\end{array}
\]} & & & & \\
\hline Bluefish-------- & & & & & & & & \\
\hline Contio- & 92,000 & 4,700 & & & \(\cdots 350,000\) & 16,600 & 241,440 & 12,072 \\
\hline Cero and & & & 3,000 & 300 & \multirow[b]{2}{*}{34,000} & \multirow[b]{2}{*}{i,910} & & \\
\hline Crappalle & 10,800 & 548 & 8,000 & 240 & & & 18,403 & 920 \\
\hline King whitir & & & 200 & 10 & \multirow[b]{2}{*}{4,000} & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline \(\xrightarrow{\text { Mullet- }}\) Permit. & & & 25,000 & 750 & & 200 & & \\
\hline Pinfish or sailor's choic & & & 3,000 & 90 & & & & \\
\hline Pompano & \multirow[t]{2}{*}{27,000} & \multirow[t]{2}{*}{3,397} & 2,000 & 400 & \multirow[t]{2}{*}{135,800} & \multirow[t]{2}{*}{12,071} & \multirow[t]{2}{*}{61, 316} & \multirow[t]{2}{*}{8,04} \\
\hline Snapper, mut & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 60,00 \\
& 18,000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1,800 \\
& 1,680
\end{aligned}
\]} & & & & \\
\hline Sunfish. & 81,000 & 3,240 & & & 299,000 & 12,000 & 68, 809 & 2,752 \\
\hline Total & 491,000 & 20,405 & 135,400 & 6,979 & 1,640,900 & 66, 021 & 1 419,561 & 26, 747 \\
\hline Grand total & 491,000 & 20,405 & 249,400 & 11,429 & 1,640,900 & 66, 021 & 1 419,561 & 26,747 \\
\hline A pparatus and species & \multicolumn{2}{|r|}{St. John} & \multicolumn{2}{|r|}{St. Lucie} & \multicolumn{2}{|l|}{Volusia} & \multicolumn{2}{|l|}{Total} \\
\hline Purse seines: & Pounds & Value & Pounds & Value & Pounds & Value & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Pounds } \\
24,000 \\
660,000
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Value \\
1,200
14,850
\end{tabular}} \\
\hline Mullet.- & & & & & & ----- & & \\
\hline Tota & & & & & & -.... & 684, 000 & 16, 050 \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline Aarracuda .- & & & \multirow[t]{2}{*}{200} & \multirow[t]{2}{*}{\$6} & \multicolumn{2}{|l|}{} & \[
\begin{array}{r}
1,020,000 \\
28,000 \\
0,0
\end{array}
\] & 25,500
1,200
6 \\
\hline Black bass & & & & & & & 82, 293 & \multirow[t]{2}{*}{\[
\begin{array}{r}
8,379 \\
2,37 \\
250
\end{array}
\]} \\
\hline Bluefish......- & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3, \\
& 5,000
\end{aligned}
\]} & \[
\begin{aligned}
& 384 \\
& 150
\end{aligned}
\] & 1,000 & \$150 & \multirow[t]{2}{*}{\(\begin{array}{r}19,550 \\ 7,000 \\ \hline\end{array}\)} & \\
\hline Bonito- & & & & & & & & \\
\hline Catish.-- & & & & & & & 743, 440 & \multirow[t]{2}{*}{36,372
300} \\
\hline Crappie.. & & & & & & & & \\
\hline Crevalle & \multirow[t]{4}{*}{\[
\begin{array}{r}
4,0 \\
1,000 \\
5,000
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{array}{r}
\$ 20 \\
30 \\
250
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 8,000 \\
& 1,000 \\
& 2,000
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
240 \\
30 \\
60
\end{array}
\]} & 1,000 & 60 & -65, \({ }^{17} 300\) &  \\
\hline Croaker & & & & & & & & 50 \\
\hline Drum, black & & & & & \[
\begin{aligned}
& 2,000 \\
& 4,000
\end{aligned}
\] & \multirow[t]{2}{*}{\[
\begin{gathered}
120 \\
\hline 240
\end{gathered}
\]} & \multirow[t]{2}{*}{\(\begin{array}{r}\text { 5, } \\ 10,250 \\ \hline\end{array}\)} & \multirow[t]{2}{*}{240
580
12} \\
\hline Flounders.-- & & & & & & & & \\
\hline Grunts- \({ }^{\text {Ki }}\) & \multirow[t]{3}{*}{1,000} & \multirow{3}{*}{80} & 800 & 24 & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{\(\begin{array}{r}\text { 800 } \\ 15800 \\ \hline 800\end{array}\)} & \multirow[b]{2}{*}{1,090} \\
\hline King whiting & & & 4,000 & 120 & 5,000 & 400 & & \\
\hline Mullet. & & & 1,000 & 30 & 4,000 & 240 & 51, 000 & \multirow[t]{2}{*}{1,820} \\
\hline \({ }_{\text {Pigfish }}\) & \multirow[t]{4}{*}{\[
\begin{array}{r}
100 \\
500 \\
1,000
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
5 \\
25 \\
200
\end{array}
\]} & \multirow[t]{2}{*}{400
400} & \multirow[t]{2}{*}{12} & & & 500
500 & \\
\hline Pinfish or sailor's cho & & & & & & & 3,500 & 115 \\
\hline Pompano & & & \multirow[t]{2}{*}{2,000} & \multirow[t]{2}{*}{\[
\begin{array}{r}
400 \\
48
\end{array}
\]} & 2,000 & \multirow[t]{2}{*}{500} & \multirow[t]{2}{*}{\[
\begin{array}{r}
7,150 \\
824,116
\end{array}
\]} & \\
\hline Shad. & & & & & & & & - \({ }_{\text {28, }}^{48}\) \\
\hline Sheepshead- & \multirow[t]{3}{*}{200} & \multirow[t]{2}{*}{12} & \multirow[t]{2}{*}{--------} & \multirow[t]{3}{*}{---.--} & \multirow[t]{2}{*}{-------} & \multirow[t]{2}{*}{------} & \multirow[t]{2}{*}{60,000} & 20, 12 \\
\hline Snapper, mutton, & & & & & & & & 1,800
30 \\
\hline Spanish mackerel & & & \multirow[t]{2}{*}{} & & & & & \\
\hline Spot, & \multirow[t]{3}{*}{\[
\begin{aligned}
& 2,000 \\
& 5,000 \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 100 \\
& 500 \\
& \\
& \hline
\end{aligned}
\]} & & \multirow[t]{2}{*}{------} & \multirow[t]{2}{*}{\[
\begin{array}{r}
200 \\
3,000
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
12 \\
450
\end{gathered}
\]} & 2, & \multirow[t]{2}{*}{1,68
1,610
19} \\
\hline Squeteague or "sea & & & & & & & 13,500 & \\
\hline Yunflowtail. & & & 1,000 & 30 & & & \[
\begin{array}{r}
476,809 \\
1,00
\end{array}
\] & 19,672
30 \\
\hline Total & 16,200 & 1,222 & 31,200 & 1,588 & 22,200 & 2,172 & 2,881,611 & 132, 501 \\
\hline Grand total. & 16,200 & 1,222 & 31,200 & 1,588 & 22, 200 & 2,172 & 3, 565, 611 & 148, 551 \\
\hline
\end{tabular}

Yield of the shore fisheries of the east coast of Florida in 1923, by counties, apparatus, and species-Continued

BY GILL NETS


\section*{Yield of the shore fisheries of the east coast of Florida in 1923, by counties, apparatus, and species-Continued}

BY GILL NETS—Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline A pparatus and species & \multicolumn{2}{|l|}{St. Lucie} & \multicolumn{2}{|c|}{Volusia} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Amberfish & 200 & & & & & \$6 \\
\hline Angel fish- & 800
400 & 12 & & & 1, 100 & 54 \\
\hline Bluefish.. & 380, 400 & 43, 340 & & & 980,800 & 133, 240 \\
\hline Blue runner or hardtail & 42, 800 & 1,096 & & & 171, 800 & 3,946 \\
\hline Crevalle. & 76, 200 & 2,346 & & & 126, 000 & 3,850 \\
\hline Croaker & 7,200 & 216 & 300 & \$12 & 19,650 & 599 \\
\hline Drum, black & 20, 400 & 616 & 4, 400 & 132 & 37, 700 & 1,137 \\
\hline Drum, red, or redfish & 68, 000 & 2, 206 & 3, 000 & 110 & 94, 800 & 3,045 \\
\hline Flounders & 1,400 & 270 & 1,400 & 54 & 3,600 & 359 \\
\hline Grunts. & 3,600 & 120 & & & 4, 200 & 152 \\
\hline Hogfish & 1,000 & 30 & & & 1,000 & 30 \\
\hline King whiting & 17, 200 & 798 & 8,600 & 780 & 50,100 & 3, 200 \\
\hline Moonfish & 400 & 12 & & & 1,800 & 57 \\
\hline Mullet & 1,360,600 & 41, 838 & 438,000 & 13,830 & 5,381, 200 & 175, 562 \\
\hline Permit. & 3, 200 & & & & 5, 200 & 162 \\
\hline Pigfish & 400 & 12 & 7,000 & 210 & 13, 550 & 415 \\
\hline Pinfish or sailor's choice & 17,600 & 540 & 3, 000 & 90 & 47, 430 & 1,438 \\
\hline Pompano & 19, 400 & 3,880 & 4,000 & 800 & 51, 300 & 6,948 \\
\hline Porkfish & & & & & 2,000 & 60 \\
\hline Scup or porgy & & & & & 1,000 & 30 \\
\hline Sea bass & 1,000 & 60 & & & 1,450 & \({ }^{88}\) \\
\hline Shad. & & & & & 278, 750 & 38,935 \\
\hline Sheepshead. & 6, 800 & 260 & 1,600 & 54 & 24, 500 & 980 \\
\hline Snapper, mangrove & 7,600 & & & & 14, 200 & 472 \\
\hline Snapper, mutton. & 37, 400 & 1,182 & & & 52, 100 & 1,673 \\
\hline Snook or sergeant fish & 88, 600 & 2, 731 & 300 & 9 & 101, 800 & 3, 127 \\
\hline Spanish mackerel & 1, 239, 000 & 88,540 & & & 2, 418, 500 & 183, 110 \\
\hline Spot & 32, 000 & 1,390 & 14, 000 & 540 & 68,500 & 2, 700 \\
\hline Squeteague or "sea trout" & 467,000 & 47, 160 & 82, 400 & 7,114 & 1,056, 900 & 108, 834 \\
\hline Yellowtail or "silver perch" & 4,600 & 138 & & & 27, 250 & 835 \\
\hline Total & 3, 905, 200 & 239, 203 & 568,000 & 23, 735 & 11,038, 780 & 675, 056 \\
\hline
\end{tabular}

BY LINES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{Broward} & \multicolumn{2}{|l|}{Clay} & \multicolumn{2}{|l|}{Dade} & \multicolumn{2}{|l|}{Duval} & \multicolumn{2}{|l|}{Palm Beach} \\
\hline & Lbs. & Value & Lbs. & Value & Lbs. & Value & Lbs. & Value & Lbs. & Value \\
\hline & & & & & & & & & & \(\$ 122\)
60 \\
\hline Angelfish & & & & & 100 & \({ }_{20}^{10}\) & & & 2,000 & 60
48 \\
\hline Bluefish. & & & & & 100 & 15 & 1,000 & \$80 & 48, 300 & 7, 245 \\
\hline Blue runner or hardtail & & & & & 600 & 48 & & & & \\
\hline Bonito -- & & & & & & & & & 250 & 8 \\
\hline Catfish. & & & 40,000 & \$2, 000 & & & & & & \\
\hline Cero and kingfish & 15, 000 & \$1, 200 & & & 258, 857 & 25, 885 & & & 1, 584, 000 & 126, 370 \\
\hline Crevalle & & & & & 500 & 20 & & & 16, 000 & 480 \\
\hline Drum, black & & & & & & & 1,500 & 75 & 400 & 12 \\
\hline Drum, red, or redfish & & & & & & & 1,500 & 105 & 2, 500 & 158 \\
\hline Flounders..-- & & & & & & 360 & & & 100 & 5
444 \\
\hline Grunts & & & & & 6, 300 & 24 & & & 2, 250 & 104 \\
\hline Hogfish & & & & & 350 & 28 & & & 200 & 6 \\
\hline Jewfish & & & & & & & & & 250 & 7 \\
\hline King whiting. & & & & & & & 8,000 & 480 & 400 & 12 \\
\hline Leatherjacket or "turbot" & & & & & & & & & 400 & 16 \\
\hline Pinfish or sailor's choice & & & & & 100 & & & & & \\
\hline Pompano.-.- & & & & & 200 & 40 & & & & \\
\hline Scup or porgy & & & & & 1,000 & 80 & & & & \\
\hline Sea bass.-- & & & & & & & 1,000 & 70 & 425 & \\
\hline Sheepshead --...- & & & & & & & & & 5,150 & \\
\hline Snapper, mangrove & & & & & 2,000 & 200 & & & 3,300 & 122 \\
\hline Snapper, mutton. & & & & & 5,600 & 560 & & & 3,400 & 212 \\
\hline Snapper, red..... & & & & & 3, 000 & 300 & 800 & 56 & 4, 000 & 230 \\
\hline Snook or sergeant fish & & & & & & & & & 32, 700 & 990 \\
\hline Spanish mackerel. & & & & & 1, 500 & 225 & & & 5, 400 & 412 \\
\hline Squeteague or "sea trout"' & & & & & & & 24, 000 & 2,880 & 29, 000 & 2,900 \\
\hline Yellowtail or "silver perch" & & & & & 400 & & 40,000 & 2,000 & & \\
\hline Crabs, hard-..-... & & & & & & & 40,000 & 2,000 & & \\
\hline Total & 15, 000 & 1,200 & 40,000 & 2,000 & 281, 107 & 27, 846 & 77,800 & 5, 746 & 1,754, 725 & 140, 259 \\
\hline
\end{tabular}

Yield of the shore fisheries of the east coast of Florida in 1929, by counties, apparatus. and species-Continued

BY LINES-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|l|}{St. Johns} & \multicolumn{2}{|l|}{St. Lucie} & \multicolumn{2}{|l|}{Volusia} & \multicolumn{2}{|l|}{Total} \\
\hline & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Amberfish & & & & & & & 3,900 & \$122 \\
\hline Angelfish. & & & & & & & 2, 100 & 64 \\
\hline Barracuda & & & & & & & 2, 100 & \\
\hline Bluefish.- & 600 & \$60 & 26, 200 & \$3, 144 & & & 76, 200 & 10,544 \\
\hline Blue runner or hardtail & & & & & & & 600 & 48 \\
\hline Bonito & & & & & & & 250 & 8 \\
\hline Catfish --...- & & & & & & & 40, 000 & 2,000 \\
\hline Cero and kingfish & & & 104, 600 & 7, 322 & & & 1, 962, 457 & 160, 777 \\
\hline Crevalle & & & 4, 800 & 144 & & & 21, 300 & 644 \\
\hline Drum, black & 500 & 15 & & & & & 2,400 & 102 \\
\hline Drum, red, or redfish & 2,000 & 120 & 10, 200 & 408 & 600 & \$18 & 16,800 & 809 \\
\hline Flounders & 150 & 9 & 200 & & & & 450 & 22 \\
\hline Groupers & & & 2, 400 & 96 & & & 17,200 & 900 \\
\hline Grunts & 100 & 3 & & & & & 2,650 & 131. \\
\hline Hogfish & & & & & & & 550 & 34 \\
\hline Jewfish & & & & & & & 250 & 7 \\
\hline King whiting. & & & 1,000 & 30 & & & 9,400 & 522 \\
\hline Leatherjacket or "turbot" & & & & & & & 400 & 16. \\
\hline Pigfish-- & 100 & 3 & & & & & 100 & 3 \\
\hline & & & & & & & - & \\
\hline Pompano. & & & 2,000 & 40 & & & 1,200 & 440
80 \\
\hline Sea bass.- & 500 & 30 & & & & & 1, 925 & 128. \\
\hline Sheepshead & & & 2,200 & 66 & & & 7,350 & 334 \\
\hline Snapper, mangrove & & & 7,000 & 210 & & & 12, 300 & 532 \\
\hline Snapper, mutton & & & 2, 000 & 60 & & & 11, 000 & 832 \\
\hline Snapper, red. & & & 3,800 & & & & 11,600 & \%776. \\
\hline Snook or sergeant fish & & & 4, 200 & & & & 36,900 & 1,116. \\
\hline Spanish mackerel---.---], & & & 27, 000 & 1,820 & & & 32,900 & 2, 457
12,110 \\
\hline Squeteague or "sea trout", Yellowtail or "silver perch" & 15, 500 & 1,550 & 37, 500 & 3,810 & 12, 000 & 970 & 118, 000 & 12,110
32 \\
\hline Crabs, hard.-.-.........-- & & & & & & & 40,000 & 2,000, \\
\hline Total & 19, 450 & 1,790 & 234, 100 & 17, 834 & 12, 600 & 988 & 2, 434, 782 & 197, 663. \\
\hline
\end{tabular}

BY CAST NETS, SPEARS, AND OTTER TRAWLS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Apparatus and speries & \multicolumn{2}{|c|}{Duval} & \multicolumn{2}{|l|}{Nassau} & \multicolumn{2}{|l|}{St. Johns} & \multicolumn{2}{|l|}{Total} \\
\hline Cast nets: & Pounds & Value & Pounds & Value & Pounds & Value & Pounds & Value \(\$ 25\) \\
\hline Croaker Drum, black & & & & & 1,000 & \$25 & 1,000 & 40 \\
\hline Flounders. - & & & & & 100 & 6 & 100 & 6 \\
\hline Mullet & & & & & 6,000 & 360 & 6, 000 & 360 \\
\hline Pinfish or sailor's & & & & & 100 & 3 & 100 & 3 \\
\hline Sheepshead...... & & & & & 50 & 3 & 50 & 3 \\
\hline Spot.... & & & & & 400 & 20 & 400 & 20 \\
\hline Total & & & & & 8,150 & 457 & 8. 150 & 457 \\
\hline Spears: Flounders.. & & & & & 1,500 & 90 & 1,500 & 90 \\
\hline Otter trawls: & & & & & & & & \\
\hline King whiting ---. & & & 100,000 & \$2,000 & & & 100,000 & 2,000 \\
\hline Squeteague or "sea
trout" & & & & 300 & & & 10,000 & 300 \\
\hline Shrimp. & 150,000 & \$5, 250 & 10, 324, 04.5 & 361, 341 & 450,000 & 15,770 & 10, 924,045 & 382, 361 \\
\hline Total & 150, 000 & 5, 250 & 10,434, 045 & 363, 641 & 450,000 & 15,770 & 11, 034, 045 & 384, 661 \\
\hline
\end{tabular}

BY CRAB TRAPS AND DIP NETS
\begin{tabular}{l|c|c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Apparatus and species } & \multicolumn{2}{|c|}{ Dade } & \multicolumn{2}{c|}{ Duval } & \multicolumn{2}{c}{ Total } \\
\hline
\end{tabular}

Yield of the shore fisheries of the east coast of Florida in 1923, by counties, apparatus, and species-Continued

BY TONGS, RAKES, GRABS, AND HAND
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Apparatus and species & \multicolumn{2}{|c|}{Nassau} & \multicolumn{2}{|l|}{Palm Beach} & \multicolumn{2}{|c|}{St. Johns} \\
\hline Tongs: & Pounds & Value & Pounds & Value & Pounds & Value \\
\hline Clams, hard. & & & & & 3,040 & \$1,110. \\
\hline Oysters, market, public & & & 1,050 & \$120 & 14,000 & 1,500 \\
\hline Oysters, market, private. & & & & & 11,200 & 1,200 \\
\hline Total & & & 1,050 & 120 & 28,240 & 3,810 \\
\hline \multicolumn{7}{|l|}{Rakes} \\
\hline Clams, hard...- & & & & & 1,520 & 553 \\
\hline Oysters, market, public. & & & & & 7,000 & 750 \\
\hline Oysters, market, private & & & & & 5, 600 & 600 \\
\hline Total & & & & & 14, 120 & 1,905 \\
\hline \multicolumn{7}{|l|}{Grabs:} \\
\hline Oysters, market, private & 3,500 & 590 & & & & \\
\hline Total & 14,000 & 1.490 & & & & \\
\hline \multicolumn{7}{|l|}{By hand:} \\
\hline Oysters, market, private & \[
\begin{array}{r}
213,500 \\
1,750
\end{array}
\] & 3,300
295 & & & 105,000 & 1,5000 \\
\hline Total_ & 215, 250 & 3,595 & & & 105,000 & 1,500. \\
\hline Apparatus and species & \multicolumn{2}{|c|}{St Lucie} & \multicolumn{2}{|c|}{Volusia} & \multicolumn{2}{|c|}{Total} \\
\hline \begin{tabular}{l}
Tongs: \\
Clams, hard
\end{tabular} & Pounds & Value & Pounds & Value & Pounds
\[
3,040
\] & Value
\[
\$ 1,110
\] \\
\hline Oysters, market, public & 17,500 & \$2,000 & 97, 664 & \$4,405 & 130, 214 & 8,025 \\
\hline Oysters, market, private & & & 14,000 & 675 & 25, 200 & 1,875 \\
\hline Total & 17,500 & 2,000 & 111, 664 & 5,080 & 158, 454 & 11,010 \\
\hline \multicolumn{7}{|l|}{Rakes:} \\
\hline Clams, hard & & & & & 1,520 & 555 \\
\hline Oysters, market, public & & & & & 7,000 & 750 \\
\hline Oysters, market, private & & & & & 5,600 & 600 \\
\hline Total & & & & & 14, 120 & 1,905 \\
\hline \multicolumn{7}{|l|}{Grabs:} \\
\hline Oysters, market, public. & & & & & 10,500 & 900 \\
\hline Oysters, market, private. & & & & & 3,500 & 590 \\
\hline Total & & & & & 14,000 & 1,490 \\
\hline \multicolumn{7}{|l|}{By hand:} \\
\hline Oysters, market, public. & & & & & & 4,800 \\
\hline Oysters, market, private & & & & & \[
1,750
\] & 295 \\
\hline Total & & & & & 320, 250 & 5,095 \\
\hline
\end{tabular}

\section*{industries}

Wholesale trade.-There were 50 establishments on the east coast of Florida in 1923 engaged in the wholesale trade in fishery products, valued at \(\$ 524,475\). The cash capital amounted to \(\$ 115,700\). There were 321 persons employed, to whom \(\$ 172,064\) were paid in wages.

Canning industry.-In the shrimp-canning industry in 1923 there were 7 establishments, including 1 in North Carolina and 1 in South Carolina, valued at \(\$ 210,970\). The cash capital amounted to \(\$ 40,000\), and 501 persons were employed, to whom \(\$ 114,909\) were paid in wages. The pack of canned shrimp in these canneries amounted to 53,857 cases, or \(2,074,392\) cans of various sizes, valued at \(\$ 302,199\). By-products to the value of \(\$ 10,600\) were also prepared
from shrimp on the east coast of Florida. Two oyster canneries on the east coast of Florida are included in the statistics for Georgia, and the lime from oyster shells at one plant with the statistics for South Carolina.

The following tables give statistics of the wholesale fish trade and shrimp-canning industry:

Wholesale fishery trade of the east coast of Florida in 1923


Shrimp-canning industry of the east coast of Florida in 1923 .


\section*{\({ }^{1}\) Includes one firm in North Carolina and one firm in South Carolina.}

Note.-In addition to canned shrimp on the east coast of Florida there were \(\$ 10,600\) worth of by-products from shrimp. Two firms canning oysters on the east coast of Florida are included under Ceorgia, and the output of lime from one shell plant is included under South Carolina. The statistics for its two menhaden plants arc included under the general tables for the South Atlantic States.

\section*{FURTHER EXPERIMENTS ON THE PRESERVATION OF FISH NETS \({ }^{1}\)}
By Harden F. Taylor, formerly chief technologist, and Arthur W. Wells, assistant technologist, U.S. Bureau of FisheriesCONTENTS
Page
409
Introduction
410
410
 ..... 411
Notation of samples ..... 411
Method of taking samples ..... 412
Series exposed in sea water at Beaufort, N. C ..... 413
Series exposed in sea water at Boothbay Harbor, Me ..... 414
Series exposed in sea water at Astoria, Oreg ..... 417
Series exposed in fresh water at Put in Bay, Ohio ..... 420
Series exposed in fresh water at Charlevoix, Mich ..... 423
Series exposed in fresh water at Fairport, Iowa ..... 425
Series exposed in fresh water of the Potomac River at Washington, D. C ..... 432
Increase in weight caused by application of preservatives ..... 434
Shrinkage caused by application of preservatives ..... 434
Effect of exposure to sunlight ..... 435
Results of practical application of copper oleate by fishermen ..... 436
Bibliography ..... 437

\section*{INTRODUCTION}

In a previous paper, \({ }^{2}\) published in 1923, results were reported of a series of tests made on cotton and linen thread with the view of determining what preservatives were most effective. Copper oleate, a substance the use of which for purposes of net preservation was first proposed and tried by the writers, was given particular consideration. Data of much value were obtained from this series, but there still remained many phases of the work upon which more complete information was desired. Therefore, a second series of tests was prepared, much larger than that already reported and including, in addition to cotton and linen thread, a number of samples of manila hemp. The results of these experiments, together with information obtained from actual trials by fishermen of some of the preservatives, are reported in this paper.

The preservatives and preservative methods tested included copper oleate alone and in combination, tar, tanbark, and numerous proprietary substances used as preservatives. The tests were made in salt water at two places in the Atlantic Ocean, one place in the Pacific Ocean, and in fresh water at four places.

\footnotetext{
\({ }^{1}\) Appendix VIII to the Report of the U. S. Commissioner of Fisheries for 1925. B. F. Doc. 998. Technological contribution No. 23 .
\({ }^{2}\) Properties and Values of Certain Fish-net Preservatives. A ppendix I, Report of the U. S. Commissioner of Fisheries for 1923, 69 pp., 35 figs. B. F. Doc. 947, 1923.
Note.-The Bureau of Standards, Department of Commerce, through its division of textiles, cooperated freely with the Bureau of Fisheries in furnishing apparatus and facilities in a room of constant temperature and humidity for making the measurements of tensile strength.
}

\section*{CONCLUSIONS}

The principal results and conclusions drawn from the present work are as follows:
1. The combination of copper oleate with coal tar was the best preservative of tensile strength of those tested.
2. Both the proprietary waterproofing material and the proprietary wood preservative did some good as preservatives, but neither one was as effective as copper oleate or coal tar.
3. At all places where tests were made linen lines, both treated and untreated, were completely rotten in less than two months.
4. Azulmic acid, a dye tested as a preservative, proved to be of no value for this purpose.
5. The combination of rare earths and copper oleate was rery little better than copper oleate used alone.
6. Combinations of copper oleate with paraffin, boiled, and raw linseed oil did not preserve tensile strength any better than copper oleate alone.
7. The copper oleate and linseed oil combinations appeared to wash out less rapidly than copper oleate alone, but did not prevent fouling by marine growth as well.
8. With the exception of the quercitron-ammoniacal coppersulphate treatment, the effectiveness of the several preservatives is of the same order on hemp as on cotton.
9. For hemp lines the copper oleate-coal tar mixture was the best preservative of tensile strength, copper oleate coming second at all places except Fairport, Iowa, where coal tar was second best.
10. The quercitron-ammoniacal copper-sulphate treatment ( L ) did not make as good a showing on cotton samples in the 1923 tests as it did in 1922. We do not know of any cause for this other than that due to the variation in water conditions at different localities and in the same locality from one year to another.
11. The quercitron-ammoniacal copper-sulphate treatment (L) made a very poor showing on hemp samples. The hot-water solution of quercitron seems to damage hemp, causing an exceedingly large diminution of tensile strength, and probably is the cause of the poor results of this treatment on hemp.
12. In fresh water of the Mississippi River at Fairport, Iowa, sample lines suffered more rapid deterioration than at any other point where tests were made. Coal tar preserved cotton lines at Fairport for three months. Lines treated by all other methods were completely rotten after two months' exposure.
13. Twine that is removed from the water every 30 days, dried, and treated with copper oleate lasts more than twice as long as that which is treated but once.
14. In fresh water at Put in Bay, Ohio, results with copper oleate were more satisfactory than in the previous series there.
15. The results at Put in Bay, Ohio, indicate that the rate of deterioration of nets not only varies from one locality to another but differs in different years in the same locality.

\section*{EXPERIMENTAL EXPOSURE AND TESTING OF LINES}

Eight series of experiments were undertaken, some of which were for the purpose of determining the effects which various preservatives would hare in the several geographical regions chosen and others were for the purpose of obtaining certain special information which could best be obtained at the particular location chosen. These regular and special tests will be described later in connection with the experiments. The cotton twine used throughout the experiments was No. 24 cable-laid, hard-finish; the linen line was 10 -ply 40, Irish flax, salmon thread, and the hemp was 2 -ply manila lobster marlin.

\section*{NOTATION OF SAMPLES}

\section*{Cotton lines}
A.-.--- Untreated-used as a control.

EE---- Copper oleate- 15 per cent concentration in gasoline. The lines were dipped into this solution and allowed to become thoroughly saturated. This required but two or three minutes. The lines were then removed and spread out to dry (not piled in a heap).
FF_--_ Copper oleate, to which was added 25 per cent of paraffin (by weight) 15 per cent concentration in gasoline. Applied same as EE.
GG---- Copper oleate, to which was added 15 per cent of boiled linseed oil (by weight)- 15 per cent concentration in gasoline. Applied same as EE.
HH _--- Copper oleate, to which was added 15 per cent of raw linseed oil (by weight)- 15 per cent concentration in gasoline. Applied same as EE.
L_-----Quercitron and ammoniacal copper sulphate (called Dutch method in former paper). The lines were steeped in a hot solution of quercitron, 1 pound to 2 gallons of water, until the solution was cold, dried, again steeped in the same way, and again dried. They were then immersed for a few minutes in an ammoniacal solution of copper sulphate containing 1 pound of copper sulphate and 3 pounds of 25 per cent ammonia for every \(121 / 2\) gallons of water. For a full description of this method see Olie (1918).
JJ....-. This is a proprietary waterproofing substance manufactured and sold under a trade name. It is especially recommended as a mildew proofing for canvas. The product is ready for use as purchased from the manufacturer and is applied by immersing the twine in the solution for a short time, then removing and allowing it to dry.
KK.-.-. Coal tar. The coal tar used for these experiments was slightly lighter than that used in 1922. (The specific gravity was about 1.16.) Equal weights of this tar and benzol were mixed, the benzol thinning the tar sufficiently so that no heating was necessary. The lines were immersed in this mixture, surplus tar removed by passing them between the fingers, and the lines strung up to dry. It should be noted that this is not the commonly used method of tarring nets. They are usually drawn through hot tar.
LL_. .-. This is a proprietary wood and twine preservative sold under a trade name. The lines were stceped in the solution two hours, then removed and dried.
MM_... Azulmic acid. The dye was dissolved in N/10 sodium hydroxide solution and the twine immersed in this solution for two hours in the cold. The twine was then rinsed in pure water containing a very small amount of hydrochloric acid.
RE_.... Rare earths. Samples of twine were treated by a company having a special process for waterproofing materials with certain rare-earths compounds which they believed would have a preservative effect.
RC_-..-Rare earths and copper oleate. Samples of twine that had been treated by the rare-earths processwere treated with copper oleate in the regular way, the same as EE.
Y........This preservative is a mixture of 50 per cent coal tar, 35 per cent benzol, and 15 per cent copper oleate (each by weight), applied same as KK.

\section*{Linen lines}

T----- Untreated-used as a control.
NN_----Copper oleate- 15 per cent concentration in gasoline. This is the same preservative as was described under EE for cotton thread.
OO_-.--Copper oleate-paraffin combination. This is the same preservative as was described under FF for cotton thread.
PP....- Copper oleate-boiled linseed oil combination. This is the same preservative as was described under GG for cotton thread.
QQ_-.--Copper oleate-raw linseed oil combination. This is the same preservative as was described under HH for cotton thread.
W-----Quercitron and ammoniacal copper sulphate. This is the same method as was described under L for cotton thread.
RR_---- Copper sulphate. The lines were steeped in a 3 per cent aqueous solution of copper sulphate, removed, and dried.

Manila hemp lines
DD_-.-- Untreated-used as a control.
SS------Copper oleate- 15 per cent solution in gasoline. This is the same preservative as was described under EE for cotton thread.
TT .-.... Copper oleate-paraffin combination. This is the same preservative as described under FF for cotton thread.
UU_---- Copper oleate-boiled linseed oil combination. This is the same preservative as described under GG for cotton thread.
VV .-... Copper oleate-raw linseed oil combination. This is the same preservative as described under HH for cotton thread.
WW_---Quercitron and ammoniacal copper sulphate. This is the same preservative method as described under \(L\) for cotton thread.
XX_---. Coal tar. The same preservative as described under KK for cotton thread.
YY_---- Copper oleate-coal-tar combination. The same preservative as described under Y for cotton thread.

\section*{METHOD OF TAKING SAMPLES}

Irregularities in the previous year's results, which are thought to have been due to variations in the samples used, made it seem desirable to standardize the samples more strictly. The method of measuring the samples under a given pull, described in the previous report on this subject, was again used. In addition to this, however, the number of strands was counted in both ends of each individual sample.

It was found that many of the lines were "off-count"; that is, instead of containing 24 threads, as they were supposed to, many of them contained \(23,26,27\), etc. All "off-count" samples were discarded. The samples containing the proper number of threads were then weighed and the average weight determined. All samples weighing more than 1 gram heavier or lighter than the determined average were discarded. The procedure followed gave the investigators a series of experimental lines all measured under a given pull, of correct thread count, and not varying more than \(\pm 1\) gram in weight per 75 feet of sample. After the samples had thus been carefully selected they were treated with a preservative and again accurately weighed and measured.

By the above method a set of samples was obtained very much more uniform than those used for previous experiments. The results indicate by the smoothness of the curves that the samples were more uniform. Even with this special attention to the proper selection of samples there are certain irregularities in the curves which can only be explained by the fact that there were differences
in the physical properties of the original samples. A rise in the curve at some point during the course of the test must not be taken as indicative of an increase in the tensile strength of the line, but rather of a difference in the tensile strength of the original sample.

SERIES EXPOSED IN SEA WATER AT BEAUFORT, N. C.

\section*{MATERIALS TESTED}

Cotton-line samples were prepared with each of the following preservatives according to the preservative methods described: Copper oleate in four different combinations (EE, FF, GG, and HH), quercitron and ammoniacal copper sulphate ( L ) ; the proprietary waterproofing (JJ), coal tar (KK), the copper oleate-coal tar combination (Y), a proprietary wood preservative (LL), azulmic acid (MM), rare-earths treatment (RE), rare earths and copper oleate combined \((\mathrm{RC})\), and untreated line (A) used as a control. Seven samples were prepared by each treatment, one to be held as an unexposed check and the other six to be exposed. The exposures were made in the water of Beaufort Harbor at the wharf of the Bureau of Fisheries biological laboratory from June 1 to December 1, 1923. Water conditions at this point were discussed in the previous report. Temperatures and salinities of the water over the period of the test are given in Table 1.

Table 1.-Water conditions at Beaufort, N. C.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year and month} & \multicolumn{6}{|c|}{Temperature} & \multicolumn{3}{|c|}{Specific gravity} \\
\hline & \multicolumn{2}{|l|}{Maximum} & \multicolumn{2}{|l|}{Minimum} & \multicolumn{2}{|l|}{A verage} & Maximum & Minimum & A verage \\
\hline 1923 & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & & & \\
\hline & 81 & 27 & 73 & 23 & 79 & 26 & 1.023 & 1.021 & 1.021 \\
\hline August & 86 & 31 & 81 & \({ }^{27}\) & 81 & \({ }_{30} 7\) & 1. 023 & 1.017 & 1. 023 \\
\hline September & 86 & 30 & 68 & 20 & 79 & 26 & 1.022 & 1017 & 1.019 \\
\hline October. & 77 & 25 & 57 & 14 & 66 & 19 & 1. 020 & 1.015 & 1.017 \\
\hline November. & 63 & 17 & 50 & 10 & 55 & 13 & 1.025 & 1. 017 & 1.018 \\
\hline
\end{tabular}

TENSILE STRENGTH
Most of the preservatives here considered caused an immediate decrease in tensile strength of the lines, the exceptions being the proprietary wood preservative (LL), azulmic acid (MM), and the rare-earths treatment (RE). The results of tensile-strength measurements of the individual samples are shown graphically in Figure 1.

Upon exposure the preservative ( Y ), a mixture of copper oleate and coal tar, proved to be a better preservative of tensile strength than any other tested. The sample treated with this material, together with two samples preserved with the copper oleates (EE and GG) and one preseryed with coal tar (KK), were the only ones that lasted over a period of six months at Beaufort. The dast three were of about equal value. Next in order of diminishing tensile strength come the lines treated-with the copper oleate-paraffin mixture (FF), copper oleate and raw linseed oil (HH), and the propric.tary wood preservative (LL). Samples treated with the three lastnamed preservatives were completely rotten at the end of five
months. The quercitron-ammoniacal copper sulphate method (L), and the proprietary waterproofing (JJ) seemed to be of little value as preservatives. Samples treated with these materials were completely rotten in four months, while the untreated white line (A) lasted for three months. The quercitron method did not show as satisfactory results during this test at Beaufort as it did during the 1922 test. Azulmic acid (MM) showed no preservative qualities.

\section*{SUMMARY OF RESULTS AT BEAUFORT}
1. In the preservation of tensile strength of cotton lines the materials tested may be divided into five groups, according to their value, as follows: (1) The copper oleate-coal tar mixture, (2) coal tar, copper oleate, and the copper oleate-boiled linseed oil combina-


Fig. 1.-Tensile strength of cotton line at Beaufort, N. C.
tion, (3) copper oleate-raw linseed oil, copper oleate-paraffin combinations, and the proprietary wood preservative, (4) the quercitronammoniacal copper sulphate treatment and the proprietary waterproofing, and (5) azulmic acid.
2. The quercitron-ammoniacal copper sulphate method was less effective as a preservative in 1923 than it was during the previous year's tests. This may be due to a difference in water conditions.
3. The addition of linseed oil to copper oleate appeared to decrease the solubility of the latter to a slight degree. However, this combination was less resistant to fouling by marine growth than copper oleate alone.

SERIES EXPOSED IN SEA WATER AT BOOTHBAY HARBOR, ME.
PURPOSE OF THE EXPERIMENT
Beginning June 19 and extending to December 19, 1923, two • series of cotton lines preserved with various materials were exposed in sea water at Boothbay Harbor, Me. Some question had arisen
as to whether or not twine deteriorated more rapidly when continuously or when periodically submerged. The experiment here described was intended to furnish some information regarding this point. The location at Boothbay Harbor was chosen because it afforded facilities at the Bureau of Fisheries hatchery for suspending sample lines in sea water in such a manner that one set would be submerged continuously while a second set, identical with the first, would be submerged only at high tide.

\section*{WATER CONDITIONS AT BOOTHBAY HARBOR}

The average monthly temperatures of the water at Boothbay Harbor over the period of the test are given in Table 2. Salinity records are not available.

Table 2.-Water conditions at Boothbay Harbor, Me.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Temperature} \\
\hline & & Max & mum & Min & num & A v & age \\
\hline & 1923 & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). \\
\hline July & & 66 & 19 & 56 & 13.0 & 61 & 16 \\
\hline August & & 64 & 18 & 52 & 11.0 & 59 & 15 \\
\hline September & & 62 & 17 & 52 & 11.0 & 58 & 14 \\
\hline October.. & & 52 & 11 & 47 & 8.0 & 51 & 11 \\
\hline November. & & 48 & 9 & 40 & 5.0 & 44 & 7 \\
\hline December. & & 44 & 7 & 33 & 0.5 & 41 & 5 \\
\hline
\end{tabular}

Materials TESTED
The twine used in this series of tests was of the same kind as that used in the preceding experiments-No. 24 cable-laid hard-finish cotton. The preservatives and preservative methods tested were copper oleate in four variations (EE, FF, GG, and HH) ; quercitron and ammoniacal copper sulphate (L), a proprietary waterproofing (JJ), coal tar (KK), and the coal tar-copper oleate mixture (Y). The lines were measured, weighed, treated, and again measured and weighed, as previously described. The shrinkage and increase in weight will be discussed under a separate heading.

\section*{TENSILE STRENGTH}

The results of tensile-strength measurements on the continuously exposed series are shown graphically in Figure 2. Here it will be noted that coal tar, the copper oleate-coal tar mixture, and all copper oleate samples except the one combined with paraffin preserve lines well throughout the period of exposure. Sample lines treated with the copper oleate-paraffin mixture ( FF ), the proprietary waterproofing (JJ), and the quercitron-ammoniacal copper sulphate preservative (L) lasted throughout the six months' test, but showed a marked diminution of tensile strength near the end of the period. The untreated line (A) lasted for four months, as against two months at Beaufort, N. C. All sample lines deteriorated much less rapidly at Boothbay Harbor than at Beaufort.

In Figure 3 are shown graphically the results of tensile-strength tests on the lines that were submerged only at high tide at Boothbay
\[
78209-26 \dagger-2
\]


Fig. 2.-Tensile strength of cotton lines immersed continuously at Boothbay Harbor, Me.


Fig. 3.-Tensile strength of cotton lines immersed intermittently at Boothbay Harbor, Me.

Harbor. In this case there was only a very slight decrease in tensile strength of any of the samples, even the untreated line lasting for six months with very little decrease in strength. These results indicate that twine undergoes a much more rapid disintegration when continuously submerged in water than it docs when periodically submerged.

\section*{SUMMARY OF RESULTS AT BOOTHBAY HARBOR}
1. Duplicate sets of test lines were used, one of which was suspended in such a manner as to be continuously submerged in water, the other being suspended so as to be submerged only at high tide.
2. The periodically submerged samples showed very little deterioration over the six-month period of exposure.
3. Sample lines subjected to continuous submersion deteriorated much more rapidly than those submerged periodically.
4. Copper oleate, coal tar, and the copper oleate-coal tar mixture preserved well at Boothbay Harbor.
5. Action of the water at Boothbay Harbor, Me., was much less severe than at Beaufort, N. C., untreated lines at the former location lasting twice as long as at the latter.

SERIES EXPOSED IN SEA WATER AT ASTORIA, OREG.
A series of lines, including cotton, linen, and hemp samples treated with the various materials, was exposed in sea water at the mouth of the Columbia River near Astoria, Oreg., from July 6, 1923, to Janu-ary-6, 1924.

\section*{WATER CONDITIONS AT ASTORIA}

Records of the average monthly temperature and salinity of the water at this point are not available. It is known, however, that the temperature during the period of the test varied from about \(65^{\circ}\) or \(70^{\circ} \mathrm{F}\). during the summer months to about \(40^{\circ}\) or \(45^{\circ} \mathrm{F}\). during the winter months. The salinity of the water at this point also varies over a wide range. At very high tide the water reaches a salinity equal to that of full sea water, while at other times, when immense quantities of water come down from inland, it contains scarcely any salt.

TESTS WITH COTTON LINES
Materials tested.-The twine used for this series of tests was of the same lot as that described in the preceding experiments-No. 24, cable-laid, hard-finish cotton. The preservatives and preservative methods tested were copper oleate in four variations (EE, FF, GG, and HH), quercitron, followed by ammoniacal copper sulphate (L), a proprietary waterproofing (JJ), coal tar (KK), a copper oleate-coal tar mixture ( Y ), and the untreated cotton line (A) as a control. The lines were measured, weighed, treated with a preservative, and again measured and weighed, as previously described.

Tensile strength. - The results of tensile-strength measurements are shown graphically in Figure 4. The action of the water on lines exposed at this point was very severe. The untreated line (A), that treated with the quercitron-ammoniacal copper sulphate method (L), and the one treated with the proprietary waterproofing (JJ) were
completely rotten at the end of two months, the two preservatives apparently doing very little good. Here it will be noted that tar is a better preservative than copper oleate, but the copper oleate-coal tar mixture is much better than either tar or copper oleate used separately. The results are in keeping with results obtained with the same preservatives at Beaufort, N. C.

TESTS WITH LINEN LINES
Materials tested.-In this series of experiments samples of linen lines were also included. The linen selected for this purpose was 10-ply 40 "Irish flax salmon thread," loose-laid, such as is used for gill netting for salmon on the Pacific coast. The preservatives and preservative methods tested on this material were copper oleate in four variations (NN, OO, PP, and QQ), quercitron, followed by


Fig. 4.-Tensile strength of cotton lines at Astoria, Oreg.
ammoniacal copper sulphate (W), copper sulphate (RR), and the untreated sample ( T ).

Tensile strength.-The results of the measurements of tensile strength are shown graphically in Figure 5. Here the samples treated with copper oleate led at the end of one month, the sample treated with quercitron and ammoniacal copper sulphate coming second, and that treated with copper sulphate alone coming third. The untreated sample was completely rotten at the end of one month. At the end of two months all samples were completely rotten and had fallen from the frames. These results bear out conclusions drawn from previous tests- that is, that linen thread disintegrates much more rapidly than cotton under the same conditions in salt water.

\section*{TESTS WITH MANILA HEMP LINES}

Materials tested.-Besides the tests made with cotton and linen lines, there were also included at Astoria some samples of manila hemp. The twine selected was two-ply manila hemp lobster marlin, such as is used by many lobster fishermen for funnels in lobster pots. The tensile strength of the untreated, unexposed line was 230.8 pounds. The preservatives tested on the manila samples were as follows: Copper oleate in four variations (SS, TT, UU, and VV), the quercitron-ammoniacal copper sulphate treatment (WW), coal tar (XX), the copper oleate-coal tar mixture (YY), and the untreated sample (DD).


Fig. 5.-Tensile strength of linen lines at Astoria, Oreg.
Tensile strength.-The results of tensile-strength measurements of the individual samples are shown graphically in Figure 6. The effectiveness of the various preservatives used is of the same order on manila as on cotton. The four copper oleates, coal tar, and the copper oleate-coal tar mixture preserved manila over the entire six months of exposure, although in all cases a considerable diminution of strength occurred. The quercitron and ammoniacal copper sulphate treatment (WW) was of no value here as a preservative for manila. This treatment caused an immediate dimunition of tensile strength of 82.7 pounds, or about 35 per cent, and thereafter the tensile strength decreased at about the same rate as in the untreated material.
1. The best preservative of tensile strength tested on hemp and cotton was the copper oleate-coal tar mixture.
2. As preservatives of tensile strength of manila hemp, there is very little difference between coal tar and the copper oleates.
3. At this place the effectiveness of the several preservatives is the same for hemp as for cotton.
4. The quercitron and ammoniacal copper sulphate mixture caused an immediate decrease in tensile strength of manila hemp and was of no value as a preservative for this material.


Fig. 6.-Tensile strength of hemp lines at Astoria, Oreg.

SERIES EXPOSED IN FRESH WATER AT PUT IN BAY, OHIO

PURPOSE OF THE EXPERIMENT
For the purpose of obtaining further data upon the variation in rate of deterioration of twine exposed in different years in the same locality a second series of lines was exposed in Lake Erie at Put in Bay, Ohio, from June 25 to December 25, 1923.

\section*{WATER CONDITIONS AT PUT IN BAY}

The average monthly temperatures of the water at Put in Bay during the period of the test are shown in Table 3.

Table 3.-T'emperature of the water at Put in Bay, Ohio
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Year and month} & \multicolumn{2}{|l|}{Maximum} & \multicolumn{2}{|l|}{Minimum} & \multicolumn{2}{|l|}{A verage} \\
\hline & 1923 & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). \\
\hline July & & 78 & 26 & 70 & 21 & 73 & 22 \\
\hline August & & 78 & 26 & 68 & 20 & 75 & 24 \\
\hline September & & 75 & 24 & 63 & 17 & 68 & 20 \\
\hline October- & & 65 & 18 & 50 & 10 & 56 & 13 \\
\hline November & & 48 & 9 & 41 & 5 & 44 & 7 \\
\hline December. & & 42 & 6 & 38 & 3 & 39 & 4 \\
\hline
\end{tabular}


Fig. 7.-Tensile strength of cotton lines at Put in Bay, Ohio

\section*{TESTS WITH COTTON LINES}

Materials tested.-The preservatives and preservative methods tested on cotton lines were copper oleate in four variations (EE, FF, GG, and HH), the quercitron-ammoniacal copper sulphate method (L), a proprietary waterproofing (JJ), coal tar (KK), the copper oleatecoal tar mixture (Y), and an untreated control (A).

Tensile strength. - The tensile strength of the cotton lines exposed at Put in Bay is shown graphically in Figure 7. Here, again, the copper oleate-tar combination is in the lead as a preservative of tensile strength, keeping twine over a six-months period of exposure with only a very slight diminution of tensile strength. The copper oleates and coal tar used separately also preserved well, each of them keeping sample lines so treated in very good condition. Sample lines treated with the quercitron-ammoniacal copper sulphate treatment were completely rotten at the end of five months. In this connection it is very interesting to note that this same preservative method, used in the same water during 1922, kept twine in good condition for six
months, while that treated with copper oleate in 1922 was rotten at the end of five months. This would indicate that there is a considerable seasonal variation in the water at this point. Test lines treated with the proprietary waterproofing substance lasted during the entire six months but were of very low tensile strength at the end of the period.

TESTS WITH MANILA HEMP LINES
Materials tested.- In addition to the samples of cotton twine there were also included a number of samples of manila hemp treated with the various preservatives. The preservatives and preservative


Fig. 8.-Tensile strength of hemp lines at Put in Bay, Ohio
methods tested were copper oleate in four variations (SS, TT, UU, and VV), quercitron and ammoniacal copper sulphate (WW), coal \(\operatorname{tar}\) (XX), the copper oleate-coal tar mixture (YY), and an untreated control (DD).

Tensile strength. - The tensile strength of the manila lines exposed at Put in Bay is shown graphically in Figure 8. The four copper nleates and the copper oleate-coal tar mixture were all of about equal value as preservatives of tensile strength. Lines treated with each of these preservatives lasted through the entire six months with only very slight diminution of strength. Coal tar was not as effective on hemp at Put in Bay as it was at other places. The lines treated with
this material showed a considerable depreciation of tensile strength at the end of two months and continued to lose throughout the period of test. The quercitron-ammoniacal copper sulphate treatment caused an immediate weakening of the manila fiber, and the lines deteriorated even more rapidly than the untreated samples.

\section*{SUMMARY OF RESULTS AT PUT IN BAY, OHIO}
1. Cotton lines treated with copper oleate were preserved much more satisfactorily than during the previous year, lasting six months with only slight diminution of strength, whereas in 1922 lines similarly treated were completely rotten in five months.
2. Cotton lines treated by the quercitron-ammoniacal copper sulphate method were completely rotten at the end of five months, whereas in 1922 similar samples remained well preserved for six months.
3. Copper oleate and the copper oleate-tar mixture proved to be the best preservatives for manila hemp at Put in Bay.
4. Coal tar did not preserve hemp as satisfactorily at Put in Bay as at most other places.
5. The quercitron-ammoniacal copper sulphate treatment proved injurious to manila fiber, and lines so treated deteriorated more rapidly than the untreated lines.
6. The copper oleate-tar combination proved an excellent preservative of tensile strength for both cotton and hemp lines.

\section*{SERIES EXPOSED IN FRESH WATER AT CHARLEVOIX, MICH.}

For the purpose of obtaining further data as to the effect of Great Lakes water on twine a series of test lines identical with those exposed at Put in Bay was exposed in Lake Michigan at the Bureau of Fisheries' hatchery at Charlevoix, Mich., from June 19 to December 19, 1923.

\section*{WATER CONDITIONS AT CHARLEVOIX}

Complete records of temperature conditions of the water at this point are not available, but it is known to vary from a temperature of about \(70^{\circ} \mathrm{F}\). during the summer months to about \(40^{\circ} \mathrm{F}\). during the early part of the winter, when these tests were completed.

Materials tested.-The preservatives and preservative methods tested on cotton lines were copper oleate in four variations (EE, FF, GG, and HH), the quercitron-ammoniacal copper sulphate treatment (L), a proprietary waterproofing (JJ), coal tar (KK), the copper oleate-coal tar combination ( Y ), and an untreated control line (A).

Tensile strength.-The results of tensile-strength measurements of these lines are shown graphically in Figure 9. The water at Charlevoix does not cause as rapid deterioration of twine as the water of Lake Erie at Put in Bay. At the former location the untreated line still possessed some strength at the end of six months' exposure, whereas at the latter place untreated lines were completely rotten at the end of four months. At Charlevoix samples treated with the
following preservatives lasted throughout the entire period of the test with almost no diminuation of strength: The four copper oleates (EE, FF, GG, and HH), coal tar (KK), and the copper oleate-coal tar combination (Y). Samples treated with quercitron and ammoniacal copper sulphate (L) and the proprictary waterproofing (JJ) also lasted for six months, although they had suffered a considerable decrease in tensile strength.


Fig. 9.-Tensile strength of eotton lines exposed at Charlevoix, Mich.

\section*{TESTS WITH MANILA HEMP LINES}

Matcriuls tested.-The preservatives and preservative methods tested on manila hemp were copper oleate in four variations (SS, TT, UU, and VV), quercitron and ammoniacal copper sulphate (WW), coal tar (XX), the copper oleate-coal tar combination (YY), and the untreated sample (DD).

Tensile strength. -The results of the tensile-strength measurements of the individual samples are shown graphically in Figure 10. Here the preservatives rank higher but in about the same position relative to each other as at Put in Bay. In decreasing order of effectiveness the preservatives tested at Charlevoix arrange themselves in the following order: Copper oleate-coal tar combination, copper oleate, coal tar, and the quercitron-ammoniacal copper sulphate method. The untreated sample lasted longer than the one treated by the quereitron method.
1. Copper oleate, coal tar, and the copper oleate-coal tar mixtures preserved twine for six months' continuous exposure with but slight diminution of strength.
2. The proprietary waterproofing substance (JJ) did some good as a preservative but did not compare favorably with copper oleate, tar, or the copper oleate-tar mixture.
3. The quercitron-ammoniacal copper sulphate method did no good whatever on cotton and had a harmful effect upon hemp lines.
4. The action of the water at Charlevoix is less severe on twine than it is at Put in Bay, Ohio.


Fig. 10.-Tensile strength of hemp lines at Charlevoix, Mich.
SERIES Exposed in fresil Water at falrport, IOWA
A series of lines, including cotton, linen, and manila hemp samples, treated with the various preservatives, was exposed in the Mississippi River at the Bureau of Fisheries biological laboratory at Fairport, Iowa, from June 1 to December 1, 1923. On the Fairport samples, in addition to the tensile-strength tests, measurements of the wearing quality and flexibility were also made. These factors will be discussed in connection with the data concerning them.

The temperatures of the water at Fairport over the period of the test are given in Table 4.

Table 4.-T'emperature of water at Fairport, Iowa
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Year and month & \multicolumn{2}{|l|}{Maximum} & \multicolumn{2}{|l|}{Minimum} & \multicolumn{2}{|l|}{A verage} \\
\hline & 1923 & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). & \({ }^{\circ} \mathrm{F}\). & \({ }^{\circ} \mathrm{C}\). \\
\hline June. & & 86 & 30 & 69 & 21 & 78 & 26 \\
\hline July.. & & 86 & 30 & 76 & 24 & 82 & 28 \\
\hline August & & 83 & 28 & 72 & 22 & 77 & 25 \\
\hline September & & 77 & 25 & 62 & 17 & 68 & 20 \\
\hline October-- & & 67 & 19 & 44 & 7 & 56 & 13 \\
\hline Novcmber & & 46 & 8 & 37 & 3 & 43 & 6 \\
\hline
\end{tabular}


Fig. 11.-Tensile strength of eotton lines exposed at Fairport, lowa
The water of the Mississippi River carries immense quantities of suspended matter, which settled on the test lines covering them with a heavy coating of mud.

Materials tested.-The preservatives and preservative methods tested on cotton lines were copper oleate in four variations (EE, FF, GG, and HH), the quercitron-ammoniacal copper sulphate method (L), the proprietary waterproofing (JJ), coal tar (KK), the copper oleate-coal tar combination (Y), a proprietary wood preservative (LL), azulmic acid (MM), and the untreated control (A).

Tensile strength. - The results of the tensile-strength measurements are shown graphically in Figure 11. Deterioration of twine submerged at this point was extremely rapid. Sample lines treated with


Fig. 12.-Flexibility of cotton lines exposed at Fairport, Iowa
coal tar (KK) lasted only four months; all others were completely disintegrated at the end of two months. Lines treated with the copper oleates (EE, FF, GG, and HH), those treated with the copper oleate-coal tar mixture (Y), and those treated with the proprietary wood preservative (LL) were completely rotten at the end of two months' exposure. Azulmic acid (MM), the quercitronammoniacal copper sulphate method (L), and the proprietary waterproofing (JJ) were here of no value as preservatives. Samples treated with the last three materials, together with the untreated sample, were completely rotten at the end of one month.

Flexibility.-The great importance of flexibility in many kinds of fishing gear was discussed at some length in our previous paper on this subject. \({ }^{3}\) Measurements made at 30-day intervals throughout the period of submersion showed that the twine became more flexible as its tensile strength decreased. The important factor to consider is the change in flexibility of the twine immediately after treatment


Fig. 13.-Wearing quality of cotton lines exposed at Fairport, Iowa
with a preservative material. Inasmuch as this measurement had already been made for most of the preservatives tested, and also on account of the great amount of time and labor necessary to carry the

\footnotetext{
\({ }^{8}\) Properties and Values of Certain Fish-Net Preservatives, by Harden F. Taylor and Arthur W. Wells. Appendix I, Report of the U. S. Commissioner of Fisheries, 1923, 69 pp., 35 figs. Washington. B. F. Doc. 947.
}
flexibility tests throughout the entire period of exposure, they were omitted in 1923 on all series except the one exposed at Fairport, Iowa. The results of these measurements are shown graphically in Figure 12.

It will be noted that the twine used during the 1922 season was somewhat less flexible than that used in the present work. The copper oleates caused a slight decrease of flexibility immediately after treatment, which may have been due to the use of a slightly harder material caused by differences in manufacture. At the end of the first month, however, the flexibility showed a marked increase, and it will be remembered that the tensile strength decreased rapidly during this same period. Coal tar (KK) caused an immediate decrease in flexibility, which decrease became gradually greater until the end of the second month, when it began to increase. During the same period the tensile strength remained about constant. However, at the end of the second month a sharp decrease occurred, with a corresponding increase in flexibility. The proprietary wood preservative (LL) and azulmic acid (MM) caused an immediate increase in the flexibility while all others caused a decrease.

Resistance to mechanical wear or abrasion (wearing quality).-Tests of the wearing quality of cotton lines were also made on the test lines at Fairport, Iowa. This work was done by the method described in our previous report. These results are shown graphically in Figure 13. On the unexposed samples the copper oleates (GG and HH) lead in effectiveness. Coal tar (KK) and the copper oleates (FF and EE) follow in the order named. At the end of one month's exposure, however, coal tar was easily first in resisting mechanical wear and continued so throughout the test. Samples that had been exposed for three months still withstood some 8 or 10 strokes on the test apparatus. Of the remaining sample lines, those treated with copper oleate were in the best condition after one month's exposure, withstanding several strokes on the tester, whereas lines treated with other preservatives were completely rotten and showed no wearing resistance whatever at the end of one month.

\section*{TESTS WITH MANILA HEMP LINES}

Materials tested.-The preservatives and preservative methods tested on hemp were copper oleate in four variations (NN, OO, PP, and QQ ), the quercitron-ammoniacal copper sulphate method ( WW ), coal tar (XX), the copper oleate-coal tar mixture (YY), and the untreated control line (DD).

Tensile strength. -The results of tensile-strength measurements on manila hemp samples are shown graphically in Figure 14. None of the sample lines lasted for the full six-month period of exposure. Coal tar (XX) and the copper oleate-coal tar mixture were about equal in their effects, samples treated with these materials lasting for five months. Lines treated with the copper oleates (SS, TT, UU, and VV) come next, these samples lasting for three months. The samples treated by the quercitron-ammoniacal sulphate method (WW) lasted but two months, while the untreated sample (DD) was completely rotten in less than two months.

Flexibility. - The flexibility of hemp lines was measured at Fairport for the first time, and the results of the tests are shown graphically in Figure 15. The coal tar treatment (XX) caused the greatest amount of stiffening, resulting in an immediate drop of about 70 per cent in the number of oscillations of the pendulum. Next in increasing order of flexibility come the lines treated with the copper oleate-coal tar mixture (YY) and next the lines treated with the copper oleate combination (SS, TT, UU; and VV). Lines treated with quercitron and ammoniacal copper sulphate (WW) showed the greatest immediate increase in flexibility, but it will be remembered that these same lines also showed the greatest immediate decrease in tensile strength.


Fig. 14.-Tensile strength of hemp lines exposed at Fairport, Iowa
Resistance to mechanical wear.-Tests upon the wearing quality of manila hemp lines were also made on the series exposed at Fairport, Iowa. Here, again, we find the same general tendencies as were previously noted in the tests on the wearing quality of cotton linesthat is, that the resistance to abrasion decreases directly as the decrease in tensile strength. The results of these measurements are shown graphically in Figure 16. The samples showing the greatest resistance to wear were those treated with the copper oleates (SS, TT, UU, and VV), coal tar (XX), and the copper oleate-coal tar mixture (YY). The quercitron and ammoniacal copper sulphate treatment (WW) caused a decided immediate decrease in wearing quality.

A set of linen lines treated with the rarious preservatives was also exposed at Fairport, Iowa. The action of the water was so severe at this point, however, that none of the samples lasted until the end of the first month, so that no measurements could be made of the factors under consideration.


Fig. 15.-Flexibility of hemp lines exposed at Fairport, Iowa

\section*{SUMMARY OF RESULTS AT FAIRPORT}
1. At Fairport coal tar was the best preservative of the tensile strength of cotton, sample lines so treated lasting four months.
2. The copper oleates and the copper oleate-coal tar mixture preserved cotton lines for two months.
3. All sample lines except those mentioned above were entirely rotten in one month.
4. Coal tar and the copper oleate-coal tar mixture preserved hemp for five months.
5. Copper oleate preserved hemp samples for three months.
6. All linen samples were rotten in less than one month.
7. Lines treated with copper oleate were not as flexible as those used for previous tests. This was due to slight differences in the manufacture of the oleate.
8. It was again shown that as tensile strength decreases flexibility increases.
9. Resistance to mechanical wear decreases in direct proportion to the decrease in tensile strength.


Fig. 16.-Wearing quality of hemp lines exposed at Fairport, Iowa
SERIES EXPOSED IN FRESH WATER OF THE POTOMAC RIVER AT WASHINGTON, D. C.

Two identical series of cotton lines were exposed in the Potomac River under the highway bridge at Washington, D. C. These series were for the special purpose of determining how much the life of twine could be prolonged by removing it from the water every 30 days, washing, drying, and treating it with copper oleate.

For this series of tests only cotton twine similar to that used throughout the other tests was used. The preservatives tested were copper oleate (EE), the copper oleate-boiled linseed oil combination (GG), rare-earths treatment (RE), and the rare earths and copper oleate ( RC ). The untreated line (A) was used as a control. Two sets of six lines each were treated with the preservatives mentioned. One of these sets was to remain in water continuously from May 25, 1923, to November 25, 1923, a sample being removed at the end of each 30 days and tested for tensile strength. The other set was removed at the end of each 30 days, washed, dried, treated with copper oleate, and again placed in the water, a sample line being kept out each month for measurement of tensile strength.


Fig. 17.-Tensile strength of cotton lines exposed in the Potomac River at Washington, D C.

TENSILE STRENGTH
The results of the tensile strength measurements are shown graphically in Figure 17. In this graph the broken lines show the samples that were treated only at the beginning of the test, while the heavy lines show the samples treated with copper oleate every 30 days. The samples receiving only one treatment of copper oleate showed a sharp decline in tensile strength after the third month and were completely rotten at the end of the fourth month. The samples treated every 30 days (represented in the graph by heavy lines) were as strong at the end of six months' exposure as at the beginning of the test.

SUMMARY OF RESULTS IN THE POTOMAC RIVER AT WASHINGTON, D. C.
1. The most important result of this test was the discovery that by removing gear from the water once each month and washing, drying, and treating it with copper oleate the life of twine can be more than doubled.
2. The rare-earths treatment (RE), when used alone, is not very effective as a preservative.
3. When the treatment is not repeated monthly, the combination of copper oleate and rare earths is somewhat better than copper oleate used alone.


Fig. 18.-Increase of weight caused by one application of preservative
INCREASE IN WEIGHT CAUSED BY APPLICATION OF PRESERVATIVES
In a previous paper on this subject \({ }^{4}\) we discussed the desirability of lightness as a property of textiles used for fishing gear. In all experiments described in the present work this factor was again accurately measured. The results of these measurements are shown graphically in Figure 18, where the original weight of the line is represented by the height of the rectangle up to 100 . The diagonally hatched part above 100 represents the weight added by the preservative, and the total height of the rectangle represents the total weight of the line after treatment.

\section*{SHRINKAGE CAUSED BY APPLICATION OF PRESERVATIVES}

The measurements of the sample lines before and after treatment revealed any changes in length. The results so obtained are shown graphically in Figure 19. In the case of hemp the lines treated with

\footnotetext{
4. See footnote 2, p. 409.
}
copper oleate, tar, and the copper oleate-tar mixture showed a slight increase in length after treatment. This was probably due to the decrease in resistance of the fibers against each other, caused by the lubricating effect of the preservatives. The quercitron-ammoniacal copper sulphate caused a very appreciable amount of shrinkage on hemp.

\section*{EFFECT OF EXPOSURE TO SUNLIGHT}

Attention should be directed to effects of exposure of nets to sunlight. It is common practice for fishermen, whenever opportunity offers, to wash their nets and lay them out on the sand or grass to dry. This practice may have a marked effect on nets, either untreated or treated with a preservative.


Fig. 19.-Shrinkage of lines, caused by one application of preservative
Waentig (1923) showed that cotton fibers of 7.2 grams tensile strength before illumination were reduced to 3 grams by direct illumination with mercury vapor are ultra-violet light for 24 hours. Sunlight is known to contain a considerable proportion of these rays.

DePuyster (1923) points out that in the presence of air cotton fibers are yellowed and weakened by exposure to sunlight. He also shows that the presence of salts of copper and iron accelerate this deteriorating action of light. This is an important consideration where copper oleate is concerned. Taken together, with the fact that copper oleate appears to be decomposed by sunlight, this argues strongly against exposure of nets, especially those treated with copper oleate or bluestone, to sunlight. The nets should be dried in the shade or on cloudy days, if possible.

Holman and Jarrell (1923) show that cotton twine suffers deterioration on exposure to the weather under a great variety of protecting
treatments, including that of copper oleate. They also show that oleic acid has a marked deteriorating effect. This latter fact is of great importance in its bearing on the possibility that commercial grades of copper oleate may contain some free oleic acid.

\section*{RESULTS OF PRACTICAL APPLICATION OF COPPER OLEATE BY FISHERMEN}

During the 1923 season between 60,000 and 100,000 pounds of copper oleate were used by fishermen. In order to determine whether these practical trials had produced satisfactory results, we visited the fishermen along the New England and middle Atlantic coasts, examined their nets, and obtained from them their observations and opinions.

Lobster and pound-net fishermen from Maine to Long Island have, with fow exceptions, had excellent results. At the time the survey was made copper oleate had been tried on but a very few gill nets in this region.

Those fishermen who used copper oleate found that it was an excellent antifouling agent and preservative as long as it remained in the twine. The length of time during which it remained in the twine varied from 14 days to 5 or 6 months. In those cases where it washed out in 14 days the fishermen believe that the grade of copper oleate used was very poor.

Various combinations of copper oleate with other substances were tried by the fishermen. One of the most successful of these was a mixture of a small amount of copper paint with the kerosene solution of copper oleate. This is reported as being an excellent preservative for use on pound nets.

The fishermen were about equally divided in their opinions as to whether gasoline or kerosene gave better results as a solvent. Gasoline seems to give a more uniform distribution of oleate through twine, drys more rapidly, and leaves twine less oily than kerosene. On the other hand, kerosene is cheaper than gasoline and also safer because it is not so inflammable. It was also found that in most cases better results were obtained when the net or webbing was allowed to steep in the solution for several hours, preferably over night, instead of 5 or 10 minutes, as was first recommended.

The principal suggestions from users of copper oleate were as follows:
1. Steps should be taken to prevent copper oleate from washing out of the webbing as rapidly as it now does.
2. There is need for some substance which, when combined with copper olcate, will give it more body, so that the webbing will be better protected from mechanical wear.
3. When copper oleate is used on seines, some substance should be added to prevent the slipping of knots when the seine is hauled.

With respect to the first of these suggestions, one must remember that if copper oleate is to prevent growth successfully it is necessary for it to be at least slightly soluble in water. An entirely insoluble substance would not preserve at all. It is doubtful, therefore, if it would be advisable to decrease the solubility of copper oleate to any great extent. We have conducted experiments that have indicated that if the solubility is appreciably decreased by such substances as
linseed oil or paraffin, copper oleate is less effective as an antifouling agent.

In regard to the second and third suggestions, it has been found from our experiments that a mixture of copper oleate and coal tar makes an excellent preservative; in fact, one of the most effective tested. Where considerable increase in weight and stiffening is objectionable, such a treatment, of course, would not be permissible. This treatment would also eliminate the slipping of knots.

These objections from the users of copper oleate are important. It is believed, however, that if serious effort were made to overcome them this could be done, at least to some extent. Work on these problems is now being done.

\section*{BIBLIOGRAPHY}
[This list contains only references not listed in our previous publications, except one by Olie specifically referred to in this paper]
Atkins, W. R. G.
1923. Factors affecting the durability of silk plankton townets and youngfish trawlnets. Journal, Marine Biological Association of the United Kingdom, new series, Vol. XIII, No. 1, December, 1923, pp. 276-281. Plymouth.
De Puyster, Barrington.
1923. Chemical properties of cotton; action of light. Color Trade Journal, Vol. XIII, 1923, pp. 23-26. New York.
Holman, H. P., and Jarrell, T. D.
1923. The effects of waterproofing materials and outdoor exposure upon the tensile strength of cotton yarn. Industrial and Engineering Chemistry, vol. 15, No. 3, March 1, 1923, pp. 236-240. Easton, Pa.
Olie, J., Jr.
1918. Verslag van der directeur van het Nederlandsch Visscherij-Proefstation over het jaar 1917. Bijlage, Jaarverslag van het VisscherijProefstation over 1917, No. 21, Mededeelingen en Yerslagen van de Visscherijinspectie. Uitgegeven voor rekening van het Department van Landbouw, Nijverheid en Handel, 's-Gravenhage. (See especially Voorschriften voor de behandeling van netten met kopersulfaat en ammonia, pp. 40-42.)
1924. Taancarbolineum. Appendix 10, Jaarverslag van het Nederlandsche Visscherij Proefstation over 1924, 6 pp.
1925. Bescherming van het want tegen nettenvernielers: \(1^{\circ}\) door "Tanol," \(2^{\circ}\) door Koperoleaat. Nederlandsche Visscherijproefstation, Mededeelingen, 1925, 11 pp . Utrecht.
1925a. Sur l'emploi du latex dans le traitement des filets de pêche. Office Scientifique et Technique des Pêches Maratimes, Notes et Mémoires, No. 47, 1925, 7 pp . Paris.
Waentig, P.
1923. Uber den Einfluss des Lichts auf Textilfasern. Zeitschrift für Angewandte Chemie, Band XXXVI, 1923, pp. 357-358. Leipzig.

\title{
PROPAGATION AND DISTRIBUTION OF FOOD FISHES, FISCAL YEAR \(1925^{1}\)
}

\author{
By Glen C. Leach, Assistant in Charge, Division of Fish Culture
}

CONTENTS
Page.
Introduction ..... 441
Part 1.-FISH PRODUCTION: PROPAGATION AND RESCUE WORK
Tabular summaries of operations ..... 443
Species of fishes haudled ..... 443
Cooperation with States, other Federal agencies, and foreign govern- ments ..... 444
Output ..... 445
Assignments of fish eggs to State and Territorial fish commissions ..... 446
Shipments of fish and fish eggs to foreign countries and the Canal Zone ..... 446
Egg collections ..... 446
Fish-rescue work ..... 447
Stations and substations and output of each ..... 448
Transfers of eggs between stations ..... 454
Egg collecting at auxiliary stations ..... 455
Fish food used at hatcheries ..... 456
Hatchery fish-cultural notes ..... 458
Decision regulating fishing in the Quinault River ..... 458
Fish conservation in West Virginia ..... 458
Experimental feeding of young trout ..... 458
Successful stocking of Montana's largest lake with Great Lakes white- fish ..... 459
Brood pike at Swanton, Vt ..... 459
Ripe halibut eggs ..... 459
Commercial fishes ..... 459
Pacific salmons ..... 459
Afognak (Alaska) station ..... 460
Yes Bay (Alaska) station ..... 460
Baker Lake (Wash.) station and substations ..... 461
Baker Lake (Wash.) station ..... 461
Birdsview (Wash.) substation ..... 461
Duckabush (Wash.) substation ..... 462
Quilcene (Wash.) substation ..... 463
Sultan (Wash.) substation ..... 463
Quinault (Wash.) station ..... 463
Clackamas (Oreg.) station and substations ..... 464
Clackamas (Oreg.) station ..... 464
Upper Clackamas (Oreg.) substation ..... 464
Little White Salmon (Wash.) substation ..... 465
Big White Salmon (Wash.) substation ..... 465
Rogue River (Oreg.) substation ..... 465
Applegate Creek (Oreg.) substation ..... 465
Salmon (Idaho) substation ..... 465
Sandy River (Oreg.) substation ..... 466
Baird (Calif.) station and substations ..... 466
Baird (Calif.) station ..... 466
Battle Creek (Calif.) substation ..... 466
Mill Creek (Calif.) substation ..... 466

\footnotetext{
\({ }^{1}\) A ppendix IX to Report of U. S. Commissioner of Fisheries for 1925. B. F. Doc. No. 999.
}
Commercial fishes-Continued. Page
Fishes of the Great Lakes ..... 466
Duluth (Minn.) station ..... 467
Northville (Mich.) station and substations ..... 467
Alpena (Mich.) substation ..... 468
Charlevoix (Mich.) substation ..... 468
Put in Bay (Ohio) station ..... 468
Cape Vincent (N. Y.) station and substation ..... 469
Swanton (Vt.) substation ..... 470
Bryans Point (Md.) substation ..... 470
Rescue operations ..... 471
Homer (Minn.) station and substations ..... 471
LaCrosse (Wis.) substation ..... 471
Bellevue (Iowa) substation ..... 471
Atchafalaya (La.) substation ..... 471
Mussel infection in conjunction with the rescue of landlocked fishes ..... 472
Marine fishes ..... 472
Boothbay Harbor (Me.) station ..... 473
Gloucester (Mass.) station ..... 473
Woods Hole (Mass.) station ..... 474
Anadromous fishes of the Atlantic coast ..... 475
Shad ..... 475
Bryans Point (Md.) substation ..... 475
Shad and river herrings. Edenton (N. C.) station ..... 475
Atlantic salmon. Craig Brook (Me.) station ..... 476
Fishes of minor interior waters ..... 476
Rocky Mountain trout stations ..... 477
Bozeman (Mont.) station and substations ..... 477
Bozeman (Mont.) station ..... 477
Meadow Creek (Mont.) substation ..... 478
Glacier Park (Mont.) substation ..... 478
Leadville (Colo.) station ..... 478
Yellowstone National Park (Wyo.) substation ..... 479
Saratoga (Wyo.) station ..... 479
Spearfish (S. Dak.) station ..... 480
Springville (Utah) station ..... 481
New England trout and salmon stations ..... 481
Berkshire (Mass.) station ..... 481
Craig Brook (Me.) station ..... 482
St. Johnshury (Vt.) station ..... 483
Grand Lake Stream (Me.) substation ..... 482
Green Lake (Me.) substation ..... 483
St. Johnsbury (Vt.) station and substations ..... 483
Holden (Vt.) substation ..... 483
York Pond (N. H.) substation ..... 483
Nashua (N. H.) station ..... 483
Combination trout and pond stations ..... 484
Erwin (Tenn.) station ..... 484
Manchester (Iowa) station ..... 484
Neosho (Mo.) station ..... 485
Bourbon (Mo.) substation ..... 486
Langdon (Kans.) substation ..... 486
White Sulphur Springs (W. Va.) station ..... 486
Wytheville (Va.) station ..... 487
Pondfish-cultural stations ..... 488
Cold Spring (Ga.) station ..... 488
Harris Ponds (Ga.) substation ..... 489
Edenton (N. C.) station ..... 459
Louisville (Ky.) station ..... 489
Mammoth Springs (Ark.) station ..... 490
Orangeburg (S. C.) station ..... 490
San Marcos (Tex.) station ..... 490
Tupelo (Miss.) station ..... 491
Lakeland (Mc.) Ponds substation ..... 491 ..... 491
Central station and aquarium, Washington, D. C ..... 491
Summaries of distribution ..... 492
Page
Method of distribution
Distribution of fishes of interior waters ..... 495
Car No. 3 ..... 496
Car No. 4. ..... 497
Car No. 7 ..... 498
Car No. 8 ..... 499
Car No. 9 ..... 499

\section*{INTRODUCTION}

The development of a cooperative plan of fish rearing with fish and game associations throughout the country represents the chief change in the fish-cultural methods of the bureau in 1925. This work gives promise of largely increasing the production of fish of the larger fingerling sizes and of arousing the interest of anglers to extend greater assistance to Federal and State officials in the work of maintaining the supply of fish in our streams.

The output of eggs, fry, and fingerling fish was \(5,301,862,500\), as compared with \(5,361,810,600\) in the fiscal year 1924. The operation of the bureau's fish-cultural stations has been developed to a high standard of efficiency, and further development will depend upon a larger investment of funds to increase the working capacity of the stations. Only by such methods may the bureau hope to materially increase its output and keep pace with the growing demand for fish.

The demand for fish for stocking interior waters exceeded that of the preceding year to some extent and was much greater than the bureau could meet, especially with regard to the warm-water species. There has been no noteworthy increase in the activities of the various States, respecting the establishment of fish-cultural stations or the enlargement of their game-warden service.

The public demand is for larger fingerling fish for stocking purposes, but owing to shortage of funds and insufficient rearing facilities it has not been possible for the bureau to produce them in adequate numbers at its hatcheries. To meet this condition it was deemed essential to solicit the aid of fish and game organizations, and this was done by addressing a letter signed by the Secretary of Commerce, to such organizations throughout the country. In this letter the Secretary called attention to the ability of the organizations to render practical assistance to the Government in its efforts to produce fingerling fish for stocking public waters, especially such fishes as the black basses and crappie.

Numerous responses and offers of assistance were received from fishing clubs in different parts of the country, and as a result approximately 20 cooperative fish nurseries were placed in operation before the close of the fiscal year. Thus far their activities have been directed mainly to the rearing of small fingerling trout to a length of 4 or 5 inches before liberating them in open waters. Such work in the eastern sections of the country, notably in New York and Pennsylvania, has been begun on a very encouraging basis. As an illustration, the organization known as the Central Pennsylvania Fish and Game Protective Association, of Harrisburg, Pa., purchased a

16 -acre tract of land containing a large spring, and constructed ponds with the view of holding and feeding until October the small trout turned over to them during the spring months by the bureau's hatcheries. In cases of this kind the bureau will inspect the projects at regular intervals during the summer, and will assume charge of the distribution of the fish in the fall of the year. The Texas and Blockhouse Fish and Game Association, Williamsport, Pa., was the first to undertake cooperative trout culture in the castern part of the United States. The ponds and troughs of this organization were built under the supervision of the Bureau of Fisheries.

Judging from the information now at hand, it is probable that a number of cooperative nurseries will be established in the Southern States and in sections where warm-water pondfishes, especially the basses, are in great demand. The production of fingerling fish by this method will greatly lessen the dependence heretofore placed on the collection of rescued fishes from overflowed lands along the Mississippi River to supplement the general distributions. The facilities at the bureau's fish-cultural stations are too limited to meet the demands for the so-called warm-water fishes, and it is not considered good policy to draw heavily on the supply of fish salvaged from the upper Mississippi River for shipment to remote sections of the United States. It is the intention of the bureau to make each section self-supporting, so far as possible, in the production of indigenous fishes.

The bureau has pursued its formerly established policy with regard to the collection of food fishes from overflowed lands bordering the Mississippi River. In the prosecution of such work a great deal of State aid is given in salvaging the fish from landlocked pools and distributing them in interior waters. In this connection, the State conservation commissions of Illinois, Iowa, and Wisconsin have utilized their cars to remove fish from the bureau's retaining stations and plant them in suitable waters. Such assistance permits the bureau to expend a larger portion of its funds on the salvage work. and as its experienced personnel is able to devote more time to that branch of the operations, it can render much more efficient service than would otherwise be possible.

Under the act establishing the upper Mississippi wild life and fish refuge, approved June 7, 1924, certain overflowed lands in the upper Mississippi River district will be purchased by the Federal Government and set aside as natural hatcheries for the production of native fishes. The lakes included in this territory will be supervised by the fish-cultural force in that region and utilized in connection with the rescue operations. It is the eventual aim of the bureau to produce the entire stock of bass and other fishos needed for distribution to applicants and to return to the river all fish salvaged from the overflowed lands. It is probable that the adjacent States will aid in the project, not only in a police capacity but in the acquirement of additional land for its enlargement. The pursuance of such a policy will be of great benefit to the States, as it will mean the expansion of their conservation work.

The bureau has followed its usual custom with regard to placing spawn takers on the commercial fishing boats in the Great Lakes region to collect eggs of the whitefish, lake trout, and pike perch. The fishermen generally have cooperated in this work, and have


made it possible to conserve many millions of eggs which would otherwise have gone to market in the fish and been wasted. Besides assisting the bureati to collect the eggs, many of the fishermen have given the use of their boats during the spring months for the purpose of distributing the fry on suitable reefs on the natural spawning grounds.

Very unusual conditions were experienced at the Woods Hole (Mass.) station, in that it proved impossible to obtain a brood stock of cod as a source of egg supply. Cod failed to appear on their usual spawning grounds, and it was not considered feasible to charter a boat to transport brood fish from more remote fields to the hatchery. Under such conditions no cod eggs were available for propagation at this station.

As in past years, spawn takers were placed on the commercial fishing boats operating in fields at a considerable distance from shore during the spring months. Since these boats are absent from the home port for several days on each trip, all eggs thus collected must be fertilized and immediately returned to the native spawning grounds. The object of this work is to prevent the enormous waste of eggs which would otherwise result when dressing the fish for the market.

The bureau has continued its policy of refusing to issue countersigned permits allowing gill-net fishermen to fish for shad in the restricted territory above the railroad bridge at Edenton, N. C. It became apparent, from the small number of eggs obtained from the gill-net fishermen in former years, that greater results might be expected if the shad were permitted to spawn naturally. A number of gill-net and pound-net fishermen operating in other sections have cooperated with the bureau by furnishing considerable numbers of shad and herring eggs.

The decline of the shad in the Potomac River in recent years has been very marked, and it is evident that it will be necessary to enact and enforce very stringent legislation if this important fishery is to be maintained.

\section*{Part 1.-FISH PRODUCTION: PROPAGATION AND RESCUE WORK}

\section*{TABULAR SUMMARIES OF OPERATIONS}

\section*{SPECIES OF FISHES HANDLED}

During the fiscal year 1925 the fish-cultural work of the bureau. including artificial propagation and rescue work, involved the handling of 48 species of fishes, as follows:

Catfishes (Silurides):
Blue catfish (Ictalurus furcatus).
Channel catfish (Ictalurus punctatus).
Horned pout, bullhead (Ameiurus nebulosus).
Mud catfish (Leptops olivaris).
Suckers (Catostomids):
Common buffalo fish (I ctiobus cyprinella).
Smallmouth buffalo fish (Ictiobus bubalus).
Carps (Cyprinide): German carp (Cyprinus carpio).

Shads and herrings (Clupeide):
Shad (Alosa sapidissima).
Glut herring (Pomolobus æstivalis).
Salmons, trouts, whitefishes, etc. (Salmonide):
Common whitefishes (Coregonus albus and C. clupeaformis).
Cisco (Argyrosomus artedi).
Chinook salmon, king salmon, quinnat salmon (Oncorhynchus tschawytscha).
Chum salmon, dog salmon (Oncorhynchus keta).
Humpback salmon, pink salmon (Oncorhynchus gorbuscha).
Silver salmon, coho salmon (Oncorhynchus kisutch).
Sockeye salmon, blueback salmon, redfish (Oncorhynchus nerka).
Steelhead salmon (Salmo gairdneri).
Atlantic salmon (Salmo salar).
Landlocked salmon (Salmo sebago).
Rainbow trout (Salmo shasta).
Black-spotted trout, redthroat trout (Salmo lewisi).
Loch Leven trout (Salmo levenensis).
Lake trout, Mackinaw trout (Cristivomer namaycush).
Brook trout (Salvelinus fontinalis).
Brown trout (Salmo fario).
Graylings (Thymallide): Montana grayling (Thymallus montanus).
Pikes (Esocide): Common pickerel (Esox lucius).
Sunfishes, black basses, and crappies (Centrarchide):
Crappies (Pomoxis annularis and P. sparoides).
Largemouth black bass (Micropterus salmoides).
Smallmouth black bass (Micropterus dolomieu).
Rock bass (Ambloplites rupestris).
Warmouth bass, goggle-eye (Chænobryttus gulosus).
Green sunfish (A pomotis cyanellus).
Red-breasted bream (Lepomis auritus).
Bluegill sunfish (Lepomis pallidus).
Long-eared sunfish (Lepomis megalotis).
Common sunfish (Eupomotis gibbosus).
Perches (Percides):
Pike perch (Stizostedion vitreum).
Sauger (Stizostedion canadense).
Yellow perch, ringed perch (Perca favescens).
Sea basses (Serranide): White bass (Roccus chrysops).
Drums (Scienidex): Fresh-water drum, lake sheepshead (Aplodinotus grunniens).
Mackerel (Scomber linneus): Common mackerel (Scomber scombrus).
Cods (Gadides):
Cod (Gadus callarias).
Haddock (Melanogrammus æglifinus).
Pollock (Pollachius virens).
Flounders (Pleuronectide): Winter flounder, American flatfish (Pseudopleuronectes americanus).

\section*{COOPERATION WITH STATES, OTHER FEDERAL AGENCIES, AND FOREIGN GOVERNMENTS}

During the year the bureau exchanged eggs with the Dominion of Canada and supplied eggs to several European and South American countries. The exchanges made with the Canadian authorities have been of material advantage to the bureau, since it received in return eggs of the valuable Atlantic salmon. A number of the States have been supplied with fish and eggs in exchange for eggs of species which the bureau would otherwise have had to purchase. In many instances the States have agreed to incubate eggs and distribute the resulting fry without cost to the bureau, which will effect a material saving in the expense of handling such fish.

A large number of fish and game organizations have offered to contribute the use of ponds and lakes under their control for the purpose of rearing to a larger size the small fish which the bureau
ordinarily distributes in the spring months, putting them out as fingerlings in September or October. This cooperative assistance will be a great aid to the bureau, and it is believed it will go far toward increasing the supply of fish life in the streams and lakes.

\section*{OUTPUT}

The output of the fish-cultural stations and of the rescue fields bordering the Mississippi River aggregated \(5,301,950,325\) fish and fish eggs. Losses in transportation amounted to 87,742 , leaving a net output of \(5,301,862,583\) actually distributed, which shows a falling off of approximately \(60,000,000\), as compared with last year's figures. Practically the entire production of the commercial fishes was returned to the waters in which the eggs originated.

Summary, by species, of the output of fish and fish eggs during the fiscal year ended June 30, 1925
\begin{tabular}{|c|c|c|c|c|}
\hline Species & Eggs & Fry & Fingerlings & Total \\
\hline Catfish. & & & 14, 310, 290 & 14, 310, 290 \\
\hline Buffalo fish & 127, 400,000 & 12, 562, 500 & 4, 261, 430 & 144, 223, 930 \\
\hline Carp. & & 31, 500, 000 & 10,959, 465 & 42, 459, 465 \\
\hline & & 17, 158, 671 & & 17, 158, 671 \\
\hline Glut herring & & \(92,000,000\) & & \(92,000,000\) \\
\hline Whitefish & 340,000 & 172, 630,000 & & 172, 970, 000 \\
\hline Cisco- & 8. 000,000 & 118, 900, 000 & & 126, 900,000 \\
\hline Chinook salmon & 7, 504, 880 & 2, 528, 800 & 42, 684, 200 & 52, 717, 880 \\
\hline Chum salmon. & & 16, 051, 650 & & 16, 051, 650 \\
\hline Silver salmon & 862,000 & 10, 177, 650 & 3, 797, 639 & 14, 837, 289 \\
\hline Sockeye salmon & 3, 150,000 & 28, 070,000 & 3, 891, 700 & 35, 111,700 \\
\hline Humpback salmon & & 10, 892, 500 & & 10, 892, 500 \\
\hline Steelhead salmon & 601, 000 & 124,580 & 1,327, 184 & 2, 055,764 \\
\hline Atlantic salmon. & & 1, 410, 000 & 12,500 & 1, 422, 500 \\
\hline Landlocked salmon & 81, 000 & 816,621 & 219,825 & 1,117, 446 \\
\hline Rainbow trout & 3, 008,754 & 1, 989,500 & 2, 326, 485 & 7, 324, 739 \\
\hline Black-spotted trout & 16, 802, 060 & 4, 776, 100 & 1, 584, 817 & 23, 162, 977 \\
\hline Loch Leven trout & 8, 803, 000 & & 784, 341 & 9, 587, 341 \\
\hline Lake trout & 2, 940, 000 & 32, 822, 613 & 309, 815 & 36, 072,428 \\
\hline Brook trout & 500,000 & 2, 776, 469 & 12, 755, 628 & 16,032, 097 \\
\hline Silver trout & & & 100, 000 & 100,000 \\
\hline Grayling..- & & 4, 877, 000 & & 4, 877, 029 \\
\hline Pike and picker & & 3,517, 000 & 709, 077 & 709,077 \\
\hline Crappie.- & & 3, 017,00 & 16,884, 251 & \(3,517,000\)
\(16,884,251\) \\
\hline Largemouth black bass. & & 1,135, 100 & 1,615, 021 & 2, 750, 121 \\
\hline Smallmouth black bass. & & 545, 400 & 41, 927 & 587, 327 \\
\hline Rock bass-- & & & 60, 560 & 60,560 \\
\hline Warmouth ba & & & 5,370 & 5,370 \\
\hline Sunfish. & & & 13, 894,947 & 13, 894,947 \\
\hline Pike perch & 122, 450, 000 & 116, 100, 000 & 141, 584 & 238, 691,584 \\
\hline Yellow perch & 5, 850, 000 & 83, 988, 800 & 555, 340 & 90, 394, 140 \\
\hline White bass.-- & & & 4,425 & 4,425 \\
\hline Fresh-water d & & & 19,590 & 19,590 \\
\hline Haddock & 598, 065, 000 & 462, 712, 000 & & 1, 060, 777, 000 \\
\hline Pollock & 139, 366, 000 & 222, 811,000 & & \[
\begin{aligned}
& \begin{array}{l}
163,877,000 \\
222,890,000
\end{array}
\end{aligned}
\] \\
\hline Winter flounder & \(4,667,000\) & 2, 637, 051,000 & & 2, 641, 718,000 \\
\hline Miscellaneous fishes & & & 3,696,495 & 3, 696, 495 \\
\hline Total & 1, 050, 393, 694 & 4,114, 514, 954 & 136, 953, 935 & 5, 301, 862, 583 \\
\hline 79810-26† & & & & \\
\hline
\end{tabular}

Assignments of fish eggs to State and Territorial fish commissions, fiscal year 1925


Shipments of fish and fish eggs to foreign countries and the Canal Zone, fiscal year 1925
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country and species & Number of eggs & Number of fish & Country and species & Number
of eggs & Number of fish \\
\hline Canada: & \multirow{5}{*}{\[
\begin{aligned}
& 500,000 \\
& 500,000
\end{aligned}
\]} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Colombia: Loch Leven trout \\
Netherlands: Rainbow trout \\
Panama: Rainbow trout
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 50,000 \\
& 50,000 \\
& 25,000
\end{aligned}
\]} & \\
\hline Lake trout Loch Leven trout & & & & & \\
\hline Canal Zone: & & \multirow[b]{3}{*}{\[
\begin{array}{r}
2,250 \\
\begin{array}{r}
500 \\
500
\end{array}
\end{array}
\]} & \multirow{3}{*}{Tota} & & \\
\hline Largemouth black bas & & & & \multirow[t]{2}{*}{1,125, 000} & \multirow[t]{2}{*}{3,250} \\
\hline Bream. & & & & & \\
\hline
\end{tabular}

\section*{EGG COLLECTIONS}

The commercial fisheries of the Atlantic coast and the Great Lakes are the principal sources of supply for eggs for the bureau's work. Vast numbers of the eggs available in these fields would be wasted were it not for the efforts put forth by the bureau to conserve them. In some cases the eggs are planted on the spawning grounds immediately after fertilization is accomplished, but whenever conditions make it possible they are transferred to hatcheries, incubated, and the resulting fry liberated on suitable spawning grounds in the region in which the eggs were taken.

As compared with the statement of the preceding year, the records of last year show a slight increase in the total number of eggs collected, the most important increases being among the pike perch, cod, and winter flounder.

Comparison of egg collections, fiscal years 1925 and 1924
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & 1925 & 1924 & Species & 1925 & 1924 \\
\hline Buffalo fish_ & 140, 400, 000 & 376, 778, 500 & Brown trout. & 31,000 & \\
\hline Carp. & 44, 875, 000 & 55, 325, 000 & Lake trout & 66, 908, 500 & 78,016, 233 \\
\hline Shad & 26, 772, 000 & 16, 452, 000 & Brook trout & 19, 684, 794 & 18, 488, 304 \\
\hline Glut herring & 336, 700, 000 & 222, 740, 000 & Grayling & 917, 000 & \\
\hline Whitefis & 252, 925, 000 & 481, 018,000 & Smelt & 17, & 18,000,000 \\
\hline Ciseo & 187, 800,000 & 200, 790, 000 & Mackerel & 3, 821, 000 & \\
\hline Chinook salmon. & 54, 437, 000 & 55, 474, 800 & Pike perch & 416, 640,000 & 333, 875,000 \\
\hline Chum salmon. & 17, 110, 000 & 25, 344, 700 & Sauger & & 8, 400, 000 \\
\hline Humpback salmon. & & 1,573, 000 & Yellow perch & 116, 460, 000 & 224, 780, 000 \\
\hline Silver salmon. & 11, 578, 000 & 22, 722, 000 & Cod. & 1,356, 823, 000 & 1,002, 814, 000 \\
\hline Sockeye salmon. & 64, 465, 000 & 46, 688, 000 & Haddock & 216, 825,000 & 239,610, 000 \\
\hline Steelhead salmon...- & 4,174,969 & 6, 031, 164 & Pollock & 430, 648,000 & 401, 824, 000 \\
\hline Landlocked salmon. & 1,263,000 & 1, 298, 600 & Winter flo & 2,882,065,000 & 2, 404, 887, 000 \\
\hline Rainbow trout....- & 13, 914, 384 & 11, 433, 217 & & & \\
\hline Black-spotted trout. & 26,030, 000 & 39, 859,500 & Total & 6, 705, 428, 297 & 6,302, 143, 468 \\
\hline Loch Leven trout. & 12, 160, 650 & 7, 920, 050 & & & \\
\hline
\end{tabular}

\section*{FISH-RESCUE WORK}

Salvage operations in the Mississippi Valley were greatly curtailed owing to the abnormally high water stages which prevailed in the Mississippi River during the greater part of the summer and fall. The territory covered by the work extended from Preseott, Wis., on the north, to Andalusia, Ill., on the south, and the following table shows the results accomplished:

Number and disposition of fish rescued fiscal year 1925
\begin{tabular}{|c|c|c|c|}
\hline Locality and speeies & Delivered to applicants & Restored to original waters & Total number of fish rescued \\
\hline Homer, Minn.: & & & \\
\hline Black bass & 57,380
163,060 & 129, 170 & 186,550
135,800 \\
\hline Buffalo fish & & 8, 95, 250 & , 95, 250 \\
\hline Carp- & & \begin{tabular}{l}
\(3,438,020\) \\
\(2,889,820\) \\
\hline
\end{tabular} & 3,438,020 \\
\hline Crappie & 239, 750 & 8, 506, 200 & 8,745, 950 \\
\hline Fresl-water & & -, 14,950 & 14,950 \\
\hline Pike perch. & 30 & 141, 260 & 141, 290 \\
\hline White bass. & & 1, 870 & 1, 870 \\
\hline Yellow perch & 18,400 & 167,010 & 185, 400 \\
\hline Miscellaneous & 1,450 & 93, 490 & 94, 940 \\
\hline Total & 524, 970 & 24, 449, 780 & 24, 974,750 \\
\hline La Crosse, Wis.: & & & \\
\hline Black bass... & 81,910
12 & 9,120
1,499530 & 91, 030 \\
\hline Buffalo fish. & & 1,499, 6980 & 1, 6989,000 \\
\hline Carp- & & 2,024,500 & 2, \({ }^{2}\), 24,500 \\
\hline Crappie- & 29, 640 & 1,864,040 & 1, 893 , 680 \\
\hline Fresh-water drum & & 5, 000 & 5,000 \\
\hline Pike and pickerel & & 469, 400 & 469, 400 \\
\hline Yellow perch & 4, 130 & 251, 980 & 256, 110 \\
\hline Miscellaneous. & & 1,115,500 & 1, 115, 500 \\
\hline Total & 164, 440 & 11, 115, 620 & 11, 280, 060 \\
\hline Lynxville, Wis.: & & & \\
\hline Black bass... & 2, 270 & 5,440 & 7,710 \\
\hline \({ }_{\text {Bream }} \mathrm{B}\) - & 5,380 & 527, 330 & 532, 810 \\
\hline Carp. & & 1,948, 100 & 1,948, 100 \\
\hline Catfish & 13,690 & 2, 775,460 & 2, 789, 150 \\
\hline Prike and piekerel. & 23,350 & 1, 3121,980 & 1,855, 930 \\
\hline Yellow perch & 1,350 & 62, 080 & 63, 430 \\
\hline Miscellaneous. & & 186, 950 & 186, 950 \\
\hline Total & 46, 040 & 7, 579, 700 & 7,625,740 \\
\hline
\end{tabular}

Number and disposition of fish rescued fiscal year 1925-Continued
\begin{tabular}{|c|c|c|c|}
\hline Locality and species & \[
\begin{aligned}
& \text { Delivered } \\
& \text { to } \\
& \text { applicants }
\end{aligned}
\] & Restored to original waters & Total number of fish rescued \\
\hline Marquette, Iowa: & & & \\
\hline Black bass... & 22,810 & 23,680 & 46,490 \\
\hline Bream- & 7,600 & 1,353, 100 & 1,360,700 \\
\hline Buffalo fish & & 644,480 & 644,480 \\
\hline Carp- & & 688,450 & 688,450 \\
\hline Crappie & & 3, 451, 200 & 3, 451, 200 \\
\hline Pike and pickerel & & 1, 53, 510 & 1, 508, \({ }^{53,510}\) \\
\hline Yellow perch.- & 780 & 46, 200 & 46,980 \\
\hline Miscellaneous. & & 586, 800 & 586, 800 \\
\hline Total & 34, 520 & 8,353,000 & 8,387, 520 \\
\hline Bellevue, Iowa: & & & \\
\hline Black bass & 8,720 & 1,790 & 10,510 \\
\hline Bream- & 49,060 & 119,450 & 168,510 \\
\hline Buffalo fish & 20 & 1,844,990 & 1,845, 010 \\
\hline Carp-- & 130 & 1,824, 880 & 1,825, 010 \\
\hline Catfish & 27, 320 & 841,980 & 869,300 \\
\hline Crappie ------ & 55, 060 & 742,650 & 797, 710 \\
\hline Pike and pickerel & 20 & 1,590
340 & 1,610
340 \\
\hline Yellow perch. & 1,070 & 310 & 1.380 \\
\hline Miscellaneous & 100 & 824,900 & 825, 000 \\
\hline Total & 141, 500 & 6, 202, 880 & 6, 344, 380 \\
\hline Rock Island, Ill.: & & & \\
\hline Black bass.- & & 8,500 & 8,500 \\
\hline Bream-...- & & 491, 000 & 491,000 \\
\hline Cuffalo fish & & 229,600
352,400 & 229,600
352,400 \\
\hline Catfish. & & 325, 500 & 325, 500 \\
\hline Crappie & & 1,711,000 & 1,711,000 \\
\hline Pike and pickerel & & 11, 750 & 11,750 \\
\hline \begin{tabular}{l}
White bass. \\
Miscellaneous.
\end{tabular} & & 900
478,000 & 900
478,000 \\
\hline Total. & & 3, 608,650 & 3,608, 650 \\
\hline Fairport, Iowa: & & & \\
\hline Black bass. & & 13, 150 & 13,150 \\
\hline Bream---ish & 20,940 & 59,700 & 80, 640 \\
\hline Carp..... & & - 32,000 & 18, 3800 \\
\hline Catfish. & & 23,920 & 23,920 \\
\hline Crappie & 1,620 & 106,910 & 108, 530 \\
\hline Pike and pickerel & & & 80 \\
\hline White bass. & & 30 & 30 \\
\hline Miscellaneous & & 5,710 & 5,710 \\
\hline Total. & 22,560 & 250,080 & 282, 640 \\
\hline A tchafalaya, La.: & & & \\
\hline Black bass... & 3,300 & 2, 480 & 5,780 \\
\hline Bream--- & 2, 130 & 96, 270 & 98, 400 \\
\hline Buffalo fish. & & 579, 600 & 579, 600 \\
\hline Catfish & & 6551,000 & 651, 000 \\
\hline Crappie & & 227, 300 & 227, 300 \\
\hline Pike and piekerel & & 1,000 & 1,000 \\
\hline White bass- & & 100 & 100 \\
\hline Y ellow pereh -- & & 100 & 100 \\
\hline Miscellaneous. & & 403, 600 & 403, 600 \\
\hline Total & 5,430 & 2,636,450 & 2,641,880 \\
\hline
\end{tabular}

\section*{STATIONS AND SUBSTATIONS AND OUTPUT OF EACH}

During the fiscal year 1925 fish-cultural work was conducted at 36 stations, 38 substations, and a considerable number of egg-collecting stations, the latter being in operation only during the spawning season of the various fishes handled. The following table lists the stations in alphabetical order with their auxiliary substations immediately following each. The output of fish and fish eggs from each station for the year is also shown.

Stations and substations operated and output of each, fiscal year 1925
(Asterisk (*) denotes transfer of eggs. See table, p. 454)
\begin{tabular}{|c|c|c|c|c|}
\hline Stations, substations, and species & Eggs & Fry & Fingerlings, yearlings, and adults & Total \({ }^{\text { }}\) \\
\hline Baird, Calif.: Chinook salmon & & 300, 000 & 833, 500 & 1,133,500 \\
\hline Battle Creek, Calif.: Chinook salmon & & 250, 000 & 1,059,000 & 1, 309, 000 \\
\hline Mill Creek, Calif.: Chinook salmon. & (*) & 1,598, 800 & & 1,598,800 \\
\hline Baker Lake, Wash.: Sockeye salmon-..- & (*) & 20, 770, 000 & & 20, 770, 000 \\
\hline \begin{tabular}{l}
Birdsview, Wash.: \\
Humpback salmon
\end{tabular} & & 1,134,000 & & 1,134,000 \\
\hline Silver salmon....-- & 100,000 & 2, 845,000 & 740,000 & 3, 685, 000 \\
\hline Sockeye salmon & 150, 000 & & & 150, 000 \\
\hline Steelhead salmon. & * 100, 000 & & 418,000 & 518, 000 \\
\hline Duckabush, Wash.: Chinook salmon & & & & \\
\hline Chum salmon..- & & 12, 310, 500 & 497,000 & 12,310, 500 \\
\hline Humpback salmon & & 4, 390, 000 & & 4, 390, 000 \\
\hline Silver salmon.... & & 2, 093, 400 & & 2,093, 400 \\
\hline Steelhead salmon & & & 90, 400 & 90,400 \\
\hline Quilcene, Wash.:
Chinook salmon & & & & \\
\hline Chinook samon. & & 3, 741, 150 & 465, 200 & 465,200
\(3,741,150\) \\
\hline Humpback salmon & & 5, 368, 500 & & 5, 368,500 \\
\hline Silver salmon.- & & 3, 911, 250 & 746, 639 & 4, 657,889 \\
\hline Steelhead salmon & & 50, 000 & 117,875 & 167, 875 \\
\hline \begin{tabular}{l}
Sultan, Wash.: \\
Chinook salmon
\end{tabular} & & & 198, 000 & 578, 000 \\
\hline Silver salmon... & & 454, 000 & 230, 000 & 684,000 \\
\hline Steelhead salmon. & & & 83,000 & 83, 000 \\
\hline Berkshire trout hatchery, Mass.: & & & & \\
\hline Brook trout-- & & 400, 000 & 85, 200 & 85,200
400,000 \\
\hline Rainbow trout & & & 54,100 & 54, 100 \\
\hline Smallmouth black bass & & & 640 & 640 \\
\hline Boothbay Harbor, Me.: Winter flounder & & , 884, 436, 000 & & 1,884, 436,000 \\
\hline \begin{tabular}{l}
Bozeman, Mont.: \\
Black-spotted trout
\end{tabular} & 310, 000 & 956, 000 & 517,017 & 1, 783, 017 \\
\hline Brook trout. & 310, & & 1, 074,840 & 1,074, 840 \\
\hline Catfish & & & & \\
\hline Grayling- & & & 29 & 29 \\
\hline Lake trout .-.-.-. & & & 9, 100 & 9, 100 \\
\hline Loch Leven trout & 598, 000 & & 155, 511 & 735,511 \\
\hline \begin{tabular}{l}
Rainbow trout \\
Glacier Park, Mont.:
\end{tabular} & & 311,000 & 12,000 & 323, 000 \\
\hline Glacier Park, Mont.: Black-spotted trout & 245, 800 & 75, 000 & 155, 000 & 475, 800 \\
\hline Rainbow trout. & & 342, 000 & & 342, 000 \\
\hline Meadow Creek, Mont.: Black-spotted trout & & 41,000 & & 41,000 \\
\hline Grayling......... & & 4, 877, 000 & & 4, 877, 000 \\
\hline Loch Leven trout & 8, 200, 000 & & & 8, 200, 000 \\
\hline Rainbow trout & 230, 000 & 1, 308, 000 & & 1,538, 000 \\
\hline Cape Vincent, N. Y.: Brook trout & & 581,500 & 19, 400 & 600,900 \\
\hline Cisco & *, 000,000 & 118, 500,000 & & 126, 500, 000 \\
\hline Lake trout & & 265, 000 & & 265,000 \\
\hline Landlocked salmon & & 6,000 & & 6,000 \\
\hline Pike perch. & & 5,900,000 & & 5, 900, 000 \\
\hline Rainbow trout - & & 30,500 & & 30, 500 \\
\hline Smallmouth black bass & *140, 000 & 36,500,000 & 95 & 36,640, 95 \\
\hline Yellow perch & 14, & 3, 900, 000 & & 3, 900, 000 \\
\hline Swanton, Vt.: & & & & \\
\hline \begin{tabular}{l}
Pike perch \\
Smallmouth black bas
\end{tabular} & 84, 650, 000 & 33, 000, 000 & 57 & 117,650, 000 \\
\hline Yellow perch ......... & (*) & 24,700, 000 & & 24, 700, 000 \\
\hline Central station, Washington, D. C.: & & & & \\
\hline Black bass & & & & \\
\hline Brook trout & & & 111, 800 & 111,800 \\
\hline Cisco--.---- & & 400, 000 & & 400, 000 \\
\hline Rainbow trout & & 200, 000 & 19,000 & 19,000 \\
\hline Yellow perch & 5,850,000 & & & 5, 850,000 \\
\hline Shad..........---- & & 1 & 25 & 16,678,671 \\
\hline Yellow perch & (*) & 34, 420,800 & 370 & 34, 421, 170 \\
\hline Lakeland, Md.: & & & & \\
\hline Brook trout & & & 47, \({ }^{24}\) & 47,376 \\
\hline Catfish... & & & 123 & 123 \\
\hline Crapple & & & 14,595 & 14,595 \\
\hline Rainbow trout & & & 150 & 150 \\
\hline Rock bass & & & 6,900 & 6, 900 \\
\hline Sunfish. & & & 43, 115 & 43, 115 \\
\hline
\end{tabular}

Stations and substations operated and output of each, fiscal year 1925-Continued


Stations and substations operated and output of each, fiscal year 1925-Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Stations, substations, and species & Eggs & Fry & Fingerlings, yearlings, and adults & Total \\
\hline \multicolumn{5}{|l|}{Homer, Minn.:} \\
\hline Largemouth black bass. Buffalo fish & & & 186,550 & 186, 550 \\
\hline Carp.-...------- & & & 95, 245 & 95,245 \\
\hline Catisish & & & 3, 934,710 & 3, 438, 015 \\
\hline Fresh-water drum & & & 8, 745, 950 & 8, 8 , 745,950 \\
\hline Pike perch & & & 14, 1490 & 14,590 \\
\hline Pike and pickerel & & & 141,285
80,079 & 141,285
80 \\
\hline Rainhow trout & & & 60, 500 & 80,079
60,500 \\
\hline White bass- & & & 9, 135, 800 & 60,500
\(9,135,800\) \\
\hline Yellow perch. & & & 1, 865 & 1, 865 \\
\hline Miscellaneous & & & 185,405
94,935 & 185, 405 \\
\hline \multicolumn{5}{|l|}{} \\
\hline Buffalo fish. & 127, 400000 & & 5,575 & 5,575 \\
\hline Carp.-...- & 127,400,000 & 12, 562,500 & 579,600 & 140, 542, 100 \\
\hline Crappie.-.-.-.---- & & & 675, 000 & 651,000
675,000 \\
\hline Pike and pickerel & & & 227, 300 & 227, 300 \\
\hline White bass. & & & 98,400 & 98, 400 \\
\hline Yellow perch.-- & & & 100 & 100 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & \\
\hline Buffalo fish. & & & 8,495 & 8,495 \\
\hline Carp- & & & 1,825, 000 & 1,825, 000 \\
\hline Crappie... & & & 899, 300 & 869,300 \\
\hline Pike perch & & & 797, 299 & 797, 700 \\
\hline Sunfish....-...-- & & & 1,605 & 1,605 \\
\hline White bass...- & & & 168, 510 & 168, 510 \\
\hline Yellow perch
Miscellaneous & & & 1,375 & 335
1,375 \\
\hline Miscellaneous & & & 825, 000 & 825, 000 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{La Crosse, Wis.:}} \\
\hline & & & 91,030 & 91, 030 \\
\hline Brook trout.- & & & 643, 800 & 643, 800 \\
\hline Carp......- & & & \(\begin{array}{r}698,000 \\ 2024 \\ \hline\end{array}\) & 698, 000 \\
\hline Catfish. & & & \(2,024,500\)
\(3,212,250\) & \(2,024,500\)
\(3,212,250\) \\
\hline Crappie. & & & 1, 893, 675 & 1, \(1,893,675\) \\
\hline Lresh-water drum & & & 5,000 & 5,000 \\
\hline Pike and pickerel. & & & 59,300
469,400 & 59,300 \\
\hline Rainhow trout. & & & 147, 100 & 147, 100 \\
\hline Whntish --.-- & & & 1,512,485 & 1,512,485 \\
\hline Yellow perch.. & & & 2, 100 & 2, 100 \\
\hline Miscellaneous & & & 1,115, 500 & 1, 115,500 \\
\hline \multicolumn{3}{|l|}{Lynxville, Wis.:} & & \\
\hline Buffalo fish.........--- & & & 150, 585 & 7,705 \\
\hline Carp-... & & & 1,948,100 & 150,585
\(1,948,100\) \\
\hline Crappie & & & 2,789, 150 & 2, 789, 150 \\
\hline Pike and pickerel & & & 1,855, 325 & 1, 855, 325 \\
\hline Sunfish...... & & & 532,800 & 532,800 \\
\hline Miscellaneous & & & 63,425 & 63,425 \\
\hline \multicolumn{5}{|l|}{} \\
\hline Largemouth black bass & & & 46,485 & 46,485 \\
\hline Carp-.. & & & 644,475
688,450 & 644, 475 \\
\hline Crappie & & & 3,451,200 & 3,451,200 \\
\hline Pike and pickerel & & & 1, 508,900 & 1, 508, 900 \\
\hline Sunfish....- & & & 53,510 & 53, 510 \\
\hline Yellow perch.- & & & 1,46,975 & 1, 46,975 \\
\hline \multicolumn{5}{|l|}{Rock Island, Ill.:} \\
\hline \multicolumn{5}{|l|}{} \\
\hline Burfalo fish. & & & 229, 600 & 229,600 \\
\hline Catfish.- & & & 352, 400 & 352,400 \\
\hline Crappie & & & 1,711,000 & 325,500 \\
\hline Pike and pickerel & & & 1, \({ }_{11} 11,745\) & 1, 711, 11,745 \\
\hline Sunfish......- & & & 491, 000 & 491,000 \\
\hline Yellowstone, W yo.: Black-spotted & & & 478, 000 & 478, 000 \\
\hline trout. & *16, 246, 260 & 3,710, 100 & & 19, 956, 360 \\
\hline
\end{tabular}

Stations and substations operated and output of each, fiscal year 1925-Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Stations, substations, and species & Eggs & Fry & Fingerlings, yearlings, and adults & Total \\
\hline Leadville, Colo.: & & & & \\
\hline Black-spotted trout
Brook trout.-....- & *500,000 & 400, 000 & 801,000
\(4,503,500\) & 801,000
\(5,403,500\) \\
\hline Lake trout. & & & 57,000 & 57, 000 \\
\hline Loeh Leven trout & & & 42,500 & 42,500 \\
\hline Rainbow trout- & & & 19, 000 & 19,000 \\
\hline Steelhead trout. & & & 23,500 & 23, 500 \\
\hline \multicolumn{5}{|l|}{Louisville, K y : \({ }^{\text {a }}\) (} \\
\hline Rock bass & & & 4, 525 & 4,650
525 \\
\hline Smallmouth black bass & & 420,000 & 2,725 & 2,725 \\
\hline Sunfish....-- & & & 16,700 & 16,700 \\
\hline \multicolumn{5}{|l|}{Mammoth Spring, Ark.:} \\
\hline Catfish-...-.......- & & & 700 & \({ }_{700}\) \\
\hline Crappie.- & & & 1,500 & 1,500 \\
\hline Rock bass. & & & 13,850 & 13, 850 \\
\hline Smallmouth black bass & & 16,000 & 12,300 & 28,300 \\
\hline Sunfish... & & & 13,950 & 13,950 \\
\hline \multicolumn{5}{|l|}{Manchester, Yowa:} \\
\hline Catfish..... & & & 300 & 300 \\
\hline Rainbow trout & *615, 500 & & 141,904 & 757, 404 \\
\hline Rock bass--- \({ }_{\text {Small }}\) - & & & 7,000
500 & 7,000 \\
\hline Smanfish...--- --------- & & & 500
600 & 500
600 \\
\hline \multicolumn{5}{|l|}{} \\
\hline Lake trout & & & 3,500 & 3,500 \\
\hline Landlocked salmon & & & 20,000 & 20,000 \\
\hline Loch Leven trout & & & 1,200 & 1,200 \\
\hline Pike perch Rainbow trout. & & 660, 000 & 87, 850 & \\
\hline Smallmouth black bass. & & 28,400 & 87, 85 & 28,400 \\
\hline \multicolumn{5}{|l|}{Neosho, Mo.:} \\
\hline Catfish & & & 4, 050 & 4, 050 \\
\hline Crappie.- & & & 11, 575 & 11, 575 \\
\hline Rainbow trout & *312,000 & ----------- & 96,613 & 96, 613 \\
\hline Rock bass & & & 3,450
75,462 & 3,450
75,462 \\
\hline Yellow perch & & & 1, 044 & 1,044 \\
\hline \multicolumn{5}{|l|}{} \\
\hline \begin{tabular}{l}
Langdon, Kans.: \\
Largemouth black bass
\end{tabular} & & & 15,690 & 15, 690 \\
\hline Catfish.........-- & & & 5,525 & 5, 525 \\
\hline Crappie & & & 7, 680 & 7,680 \\
\hline Rock bass. & & & 2, 050 & 2, 050 \\
\hline Sunfish-...- & & & 46, 900 & 46, 900 \\
\hline Yellow perch
orthville, Mich.: & \multicolumn{4}{|c|}{rthville, Mich.:} \\
\hline Brook trout. & & 290, 000 & 731,920 & 1, 021, 920 \\
\hline Rainbow trout. & & & 117,800 & 117, 800 \\
\hline Smallmouth black bass & & 75,000 & 25, 300 & 100, 300 \\
\hline \multicolumn{5}{|l|}{\multirow[b]{2}{*}{Alpena, Mich.:}} \\
\hline & & & & \\
\hline Lake trout Whitcfish & \[
\begin{array}{r}
50,000 \\
200,000
\end{array}
\] & \[
\begin{aligned}
& 3,827,000 \\
& 8,750,000
\end{aligned}
\] & & \[
\begin{aligned}
& 3,877,000 \\
& 8,950,000
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{Charlevoix, Mieh.:} \\
\hline Lake trout --....... & 1,415,000 & 16, 10,000 & & 10,000 \\
\hline Steelhead salmon. & & 35, 500 & & 35,500 \\
\hline Whitefish. & & 17,000,000 & & 17, 000,000 \\
\hline \multicolumn{5}{|l|}{Orangeburg, S. C.:} \\
\hline Catfish.......-....-...--- & & & 265 & 225 \\
\hline Crappie. & & & 200 & 200 \\
\hline Sunfish--- & & & 10,815 & 10, 815 \\
\hline Warmouth & & & 1,855 & 1,855 \\
\hline \multicolumn{5}{|l|}{Put in Bay, Ohio:} \\
\hline Pike perch & \(37,800,000\) & \(63,140,000\) & & 100, 940, 000 \\
\hline Smalimouth black bass & & & 30 & 109, 080,000 \\
\hline Yellow perch. & & 19, 968, 000 & & 19, 968, 000 \\
\hline \multicolumn{5}{|l|}{Quinault, Wash.:} \\
\hline Chinook salmor & * 10, 000 & & 24, 00 & 10, 000 \\
\hline Silver salmon... & & 874,000 & & 874,000 \\
\hline Sockeye salmon. & 3, 000,000 & 1,000,000 & 2, 845, 000 & 6, 845, 000 \\
\hline
\end{tabular}

Stations and substations operated and output of each, fiscal year 1925-Continued


\section*{TRANSFERS OF EGGS BETWEEN STATIONS}

Large numbers of eggs are transferred annually between various stations of the bureau. In every instance such transfers are made in the interest of economy and convenience in the distribution of the product.

Transfer of eggs between stations, fiscal year 1925


\section*{EGG COLLECTING AT AUXILIARY STATIONS}

The eggs incubated at the main stations and substations of the bureau are very often transferred from auxiliary collecting stations, which are located as near as possible to the base of egg supply. Such stations are usually temporary in character and are occupied only while egg collecting is in progress. The following table shows the egg-collecting stations, the main stations under which they are operated, the period of operation, and the species handled.

\section*{Egg-collecting stations}


\section*{Egg-collecting stations-Continued}
\begin{tabular}{|c|c|c|}
\hline Station & Period of operation & Species handled \\
\hline Put in Bay, Ohio: & & Whitefish. \\
\hline Porto....-...-- & Apr. 6-May 4 --- & Pike perch and yellow perch. \\
\hline Do. & June 2-25. & Carp. \\
\hline Cataw ba Island, Ohio & Nov. 13-Dec. 1 & Do. \\
\hline Middle Bass, Ohio & ---do-... & \({ }_{\text {Dise }}^{\text {Do. }}\) \\
\hline Do & Apr. 10-28-. & Pike perch. \\
\hline North Bass, Ohio & \begin{tabular}{l}
Nov. 12-Dec. 1 \\
A pr. 16-28.
\end{tabular} & Pike perch. \\
\hline Toledo, Ohio & Nov. 19-Dec. 3 & Whitefish. \\
\hline Do.- & Apr. 7-May 4 & Pike perch. \\
\hline St. Johnsbury, Vt.: Lake Dunmore, Vt - & Oct. 24-Nov. 9 & Lake trout. \\
\hline  & October and November. & Brook trout. \\
\hline Sage and Canon Creeks, Wyo-------- & March, April, and May. & Rainbow trout. \\
\hline Springville, Utab:
Fish Lake, Utah & & \\
\hline Fish Lake, Utah - \({ }^{\text {Panguitch Lake, }}\) Utah & \[
\begin{aligned}
& \text { Nov. 6-Dec. } 3 \\
& \text { Apr. } 19-\mathrm{May} 26
\end{aligned}
\] & Rainbow trout, black-spotted trout. \\
\hline Strawberry Reservoir, Utah-.------.---- & May 29 -June 13 & Black-spotted trout. \\
\hline Woods Hole, Mass.: & Feb. 1-Apr, 13 & Winter flounder. \\
\hline Menemsha Bight, Mass & Feb. 13-Apr. 13 & Do. \\
\hline Newport, R. I. & Mar. 20-Apr. 11 & Do. \\
\hline
\end{tabular}

\section*{FISH FOOD USED AT HATCHERIES}

The following table shows the amounts and kinds of food used at fish-cultural stations of the bureau during 1925, with the cost per pound of each.

Pounds and cost per pound of fish food used during the fiscal year 1925 PACIFIC SALMON STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Station & Salted & salmon & Canned & salmon & Salted eg & \begin{tabular}{l}
salmon \\
s
\end{tabular} & Beef & ver \\
\hline \multirow[b]{5}{*}{\begin{tabular}{l}
Baird and substations, Calif \\
Baker Lake and substations, Wash Clackamas and substations, Oreg \\
Quinault, Wash \\
Yes Bay, Alaska.
\end{tabular}} & Pounds & Cost & Pounds & Cost & Pounds & Cost & Pounds & Cost \\
\hline & 7,000 & \$0. 02 & & & & & 755 & \$0. 10 \\
\hline & 23,000 & . 0236 & - 6 6, 6450 & \$0.0016 & 400 & \$0.005 & 1,469 & 10 \\
\hline & & & 3,900 & . 035 & & & 68 & . 06 \\
\hline & 1,400 & . 0164 & 100 & . 005 & & & 200 & . 11 \\
\hline Total & 32, 500 & & 37, 299 & & 400 & & 4,800 & \\
\hline Station & \multicolumn{2}{|l|}{Beef spleen} & \multicolumn{2}{|l|}{Sheep liver} & \multicolumn{2}{|l|}{Hog liver} & \multicolumn{2}{|c|}{Lights} \\
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Baird and substations, Calif \\
Baker Lake and substations, Wash Clackamas and substations, Oreg Quinault, Wash................-............
\end{tabular}} & \multirow[t]{4}{*}{Pounds
1,123
2,050
15,394} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Cost } \\
\$ 0.08 \\
.0576 \\
.0436
\end{gathered}
\]} & Pounds & Cost & Pounds & Cost & Pounds & Cost \\
\hline & & & & & & & & \\
\hline & & & & & 641 & \$0.085 & 756 & \$0.085 \\
\hline & & & 1,390 & \$0.0615 & 50 & . 06 & & \\
\hline Total-.-.-.-.-....................- & 18,567 & ------- & 1,390 & ------- & 691 & -------- & 756 & \\
\hline
\end{tabular}

ROCKY MOUNTAIN TROUT STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Station & \multicolumn{2}{|l|}{Beefliver} & \multicolumn{2}{|l|}{Ifog liver} & \multicolumn{2}{|c|}{Ccreal} & \multicolumn{2}{|l|}{Beef hearts} & \multicolumn{2}{|l|}{Sheepliver} \\
\hline Bozeman, Mon & \begin{tabular}{l}
Pounds \\
11, 123
\end{tabular} & Cost \(\$ 0.0666\) & \begin{tabular}{l}
Pounds \\
11, 314
\end{tabular} & \begin{tabular}{l}
Cost \\
\(\$ 0.0543\)
\end{tabular} & Pounds & Cost & Pounds & Cost & Pounds & Cost \\
\hline Leadville, Colo. & & & & & & & 2, 702 & \$0.0455 & & \\
\hline Saratoga, W yo & 3,740 & . 065 & & & & & 2,566 & . 05 & & \\
\hline Springville, Utah & 11,529 & . 0454 & & & 10,500 & \(\$ 0.0283\) & 13,364 & . 055 & & \\
\hline Spearfish, S. Dak & 26 & . 07 & & & & & 1,950 & . 0475 & 8,237 & \$0.0475 \\
\hline Total & 26,418 & & 11,314 & & 10,500 & & 20,582 & -------- & 8,237 & \\
\hline
\end{tabular}

Pounds and cost per pound of fish food used during the fiscal year 1925-Con.
NEW ENGLAND TROUT AND SALMON STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Station & \multicolumn{2}{|c|}{Beef liver} & \multicolumn{2}{|l|}{Beef spleen} & \multicolumn{2}{|l|}{Beef hearts} \\
\hline \multirow[b]{6}{*}{\begin{tabular}{l}
Berkshire trout hatchery, Mass \\
Craig Brook, Me \\
Nashua, N. H \\
St. Johnsbury, Vt \\
York Pond, N. H. \\
Total.
\end{tabular}} & Pounds 696 & \[
\begin{gathered}
\text { Cost } \\
\$ 0.1197
\end{gathered}
\] & Pounds
\[
3,076
\] & \[
\begin{gathered}
\text { Cost } \\
\$ 0.0516
\end{gathered}
\] & Pounds & Cost \\
\hline & 619 & . 119 & & & 3551/4 & \$0.066 \\
\hline & 1,104 & . 0895 & & & & \\
\hline & 1,921 & . 05 & & & 19 & -5-- \\
\hline & 1,637 & . 05 & & & 3,270 & . 0472 \\
\hline & 4,980 & & 3, 076 & & 3,6441/4 & \\
\hline Station & \multicolumn{2}{|l|}{Sheep liver} & \multicolumn{2}{|c|}{Hog liver} & \multicolumn{2}{|l|}{Fish meal} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Craig Brook, Me Nashua, N. H... \\
Total...--
\end{tabular}} & Pounds 1, 244 & \[
\begin{gathered}
\text { Cost } \\
\$ 0.0664
\end{gathered}
\] & \[
\begin{array}{r}
\text { Pounds } \\
6,063
\end{array}
\] & \begin{tabular}{l}
Cost \\
\(\$ 0.054\)
\end{tabular} & Pounds & \\
\hline & 7,721 & . 0462 & & & 100 & \$0.037 \\
\hline & 8, ¢65 & & 6, 063 & & 100 & \\
\hline
\end{tabular}
\({ }^{1}\) The York Pond substation also consumed 505 pounds of horse meat at \(\$ 0.013\) per pound, 245 pounds of fish trimmings at \(\$ 0.01,100\) pounds of beef and bob veal at \(\$ 0.01\), and 2 gallons of cod-liver oil at \(\$ 3.40\).

COMBINATION TROUT AND POND FISH-CULTURAL STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Station & \multicolumn{2}{|l|}{Beef hearts} & \multicolumn{2}{|l|}{Sheep liver} & \multicolumn{2}{|l|}{Low-grade
flour} & \multicolumn{2}{|r|}{Cereals} \\
\hline & Pounds & Cost & Pounds & Cost & Pounds & Cost & Pounds & Cost \\
\hline Erwin, Tenn & 10, 904 & \$0.055 & 8,356 & \$0.0525 & & & 3, 900 & \$0. 0265 \\
\hline Manchester, lowa........... & 7, 783 & . 0455 & 9, 894 & . 0426 & 1,200 & \$0.02 & 250 & \\
\hline Neosho, Mo., and substations. & 8, 615 & . 035 & 5,897
15,786 & . 035 & 1,200 & & & \\
\hline W ytheville, Va-----...-......-- & 15, 536 & . 0575 & & & 14,842 & . 005 & & \\
\hline Total & 54, 048 & & 40, 433 & & 16,452 & & 4,150 & ----- \\
\hline Station & \multicolumn{2}{|l|}{Fish meal} & \multicolumn{2}{|l|}{IIog hearts} & \multicolumn{2}{|l|}{Clabbered milk} & \multicolumn{2}{|l|}{Beef liver} \\
\hline Erwin, Tenn & \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { Pounds } \\
100 \\
100
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Cost } \\
\$ 0.037 \\
.037
\end{array}
\]} & Pounds & C'cst & Pounds & Cost & Pounds & Cost \\
\hline Manchester, Iowa & & & \multirow[t]{2}{*}{6,105} & \multirow[t]{2}{*}{\$0.035} & \multirow[t]{2}{*}{77} & \multirow[t]{2}{*}{\$0.10} & & \\
\hline Neosho, Mo., and substations & & & & & & & \multirow[t]{2}{*}{510} & \$0.08 \\
\hline W ytheville, Va..---..------- & 50 & . 0238 & & & & & & \\
\hline Total & 250 & & 6,155 & -------- & 77 & & 510 & ------- \\
\hline
\end{tabular}

POND FISH-CULTURAL STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Station & \multicolumn{2}{|l|}{Fish} & \multicolumn{2}{|l|}{Fish meal} & \multicolumn{2}{|l|}{Low-grade
flour} & \multicolumn{2}{|l|}{Beel héarts} & \multicolumn{2}{|l|}{Beef liver} \\
\hline Cold Springs, Ga & \[
\begin{gathered}
\text { Pounds } \\
3,780
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Cost} \\
\$ 0.10
\end{gathered}
\] & \[
\begin{gathered}
\text { Pounds } \\
313
\end{gathered}
\] & \[
\begin{gathered}
\text { Cost } \\
\$ 0.085
\end{gathered}
\] & \[
\begin{array}{r}
\text { Pounds } \\
267
\end{array}
\] & \[
\begin{aligned}
& \text { Cost } \\
& \$ 0.03
\end{aligned}
\] & Pounds & Cost & Pounds & Cost \\
\hline \begin{tabular}{l}
Edenton, N. C.-... \\
Louisville K
\end{tabular} & \(241 / 2\) & & & & & & & & & \\
\hline Louisville, Ky.-...- & & & & & & & 634 & \$0.10 & 81/2 & \$0.10 \\
\hline Ark & & & & & & & 1,471 & . 0678 & & \\
\hline Orangeburg, S. C- & & & & & & & 2, 177 & . 10 & & \\
\hline Tupelo, Miss.- & & & & & & & 2, 557 & . 09 & & \\
\hline Total & 3, 80411/2 & & 313 & & 267 & & 6,839 & & 81/2 & \\
\hline
\end{tabular}

\section*{HATCHERY FISH-CULTURAL NOTES}

\section*{DECISION REGULATING FISHING IN THE QUINAULT RIVER}

Under date of December 15, 1924, new regulations governing salmon fishing in the Quinault River were approved and promulgated by the Bureau of Indian Affairs. With the view of regulating fishing within the reservation the regulations contain a clause providing for the collection of a royalty from Indians catching more than a specified amount of fish. The enforcement of this provision created so much dissension among the Indians occupying the most. advantageous fishing grounds that they requested an injunction restraining the department from enforcing the regulations.

The case was taken up in the Federal court at Tacoma, Wash., and a decision rendered late in April was to the effect that the Indians have the right to fish within the waters of the reservation at any point and at any time. It also decreed that the entire system of fishing locations is untenable, and that one Indian has as much right to a certain location as another. Another important feature of the decision is that the department is authorized to enforce only such regulations as the tribe may see fit to adopt.

According to this decision the Government has no jurisdiction over the fishing in the Quinault reservation, and apparently there is nothing to prevent the Indians from fishing even in Quinault Lake. This means the depletion of the sockeye salmon of the Quinault River, because the Indians are permitted to fish in its lower reaches as long as the salmon runs justify it, and then to follow the runs to Quinault Lake and there resume fishing on the spawning grounds.

\section*{FISH CONSERVATION IN WEST VIRGINIA}

The fisheries authorities of the State of West Virginia are thoroughly alive to the importance of restocking the streams of the State with the more valuable species of fish, and have recently passed very effective protective laws. Many of the streams have been closed to fishing, and wardens have been employed to patrol them constantly.

An effort is being made to climinate, or at least greatly reduce, the pollution of the waters of the State, and if the present plan can be carried out successfully West Virginia will rank among the foremost States in the matter of conservation.

\section*{EXPERIMENTAL FEEDING OF YOUNG TROUT}

Early in the year the bureau conducted feeding experiments at several of its stations for the purpose of determining the value of fish meal as a food for trout.

On January 26 two lots of young trout, each containing 1,000 fish and weighing 10 ounces, which had previously been fed for 30 days on beef heart exclusively, were segregated at the Wytheville (Va.) station. One lot was fed on a mixture of becf heart and fish meal in equal proportions, while the other (the control lot) continued on a beef-heart diet. At the close of the test, on February 26, the control lot numbered 869 and weighed 17.5 ounces, while the other lot had
been reduced to 827 fish with a total weight of 15.25 ounces. This was typical of the results achieved at other stations, and appears to indicate the superiority of an all beef-heart food.

\section*{SUCCESSFUL STOCKING OF MONTANA'S LARGEST LAKE WITH GREAT LAKES WHITEFISH}

About four years ago the Montana fish and game authorities obtained from one of the bureau's Great Lakes stations a consignment of eyed whitefish eggs with the view of determining the possibility of developing a commercial fishery in Flathead Lake. The attempt to commercialize this lake aroused so much adverse criticism and antagonism on the part of the fishermen of the State that after making one plant of fish the work was abandoned. While the State fish and game commission was engaged in net fishing in the lake in June, 1925, it was discorered that the initial plant of fry had borne results, practically every seine haul containing fine examples of whitefish (Coregonus clupeiformis). This demonstrated success of a single plant of the species has renewed interest in the project, and many of the sportsmen who formerly opposed it on the ground that it might prove detrimental to game fishing are now in favor of the scheme.

\section*{BROOD PIKE AT SWANTON, VT.}

An interesting feature of the pike perch work at Swanton, Vt., was the unusually large number of brood fish taken in seines, 7,379 of such fish being secured, as compired with 4,319 in the preceding year. At one of the seining beaches over 1,000 large brood fish were taker in a single day.

\section*{RIPE HALIBUT EGGS}

Ripe halibut eggs in large quantities were found in close proximity to the ice fields off Riggs Point, in the Strait of Belle Isle, on May 21, 1925. Captain Morrissey, of the schooner Henry Ford, stated that for the first time in his many years of experience in the halibut fisheries he saw large numbers of halibut with eggs running freely.

\section*{COMMERCIAL FISHERIES}

The work at a majority of the bureau's stations and substations is devoted principally to the propagation or salvage of the more important commercial fishes. Some of the species referred to this classification are the salmons of the Pacific coast, the lake trout, whitefish, and cisco of the Great Lakes, the marine fishes of the Atlantic coast (including the cod, pollock, haddock, and flounder), such anadromous fishes as the shad, glut herring, and Atlantic salmon, the buffalo fishes of the Mississippi River region, and the carp. The work with the latter species is confined to certain sections of Lake Erie.

\section*{PACIFIC SALMONS}

Fish-cultural operations dealing almost exclusively with the Pacific salmons are conducted at all of the bureau's stations and substations located on the Pacific coast. The results of the year's work in this
region generally indicate a considerable decline in the distributions as compared with 1924, due principally to adverse climatic conditions prevailing in some sections during the spawning season.

\author{
Afognak (Alaska) Station
}
[Frank L. Snipes, Superintendent]
For the second successive season the number of sockeye salmon ascending to spawning grounds in the vicinity of the Afognak station was very small, in consequence of which it was deemed advisable to again defer propagation work and allow the few fish in evidence to deposit their spawn naturally. The annual run of this species into Letnik Lake lasted from May 30 to September 20, the total escapement for that period amounting to 10,317 , but little in excess of last year's record.

In the fall of 1921 this station made a fair collection of sockeye-salmon eggs, but during the succeeding spring the fry were attacked by disease and suffered heavy mortality. Shortly after the surviving fish had been planted, the yearling salmon in the lake appeared to be affected by the same trouble, and they perished in large numbers. According to the 4 -year cycle theory, therefore, a poor run of salmon may be expected in Letnik Lake during the 1926 season, which conditions at the close of the fiscal year 1925 would seem to confirm. Between July 31 and September 26, 1924, a large run of humpback salmon entered Letnik Lake, the count registering nearly 16,000 . It is very unusual for humpback salmon to ascend this lake to any extent.

The annual ascent of large numbers of Dolly Varden trout into the lake is considered a serious obstacle to the success of salmon propagation at the Afognak station. These fish commence devouring the eggs as soon as they are deposited, and continue to prey upon the young salmon as long as there are any in the lake. The destruction of thousands of the trout every year has not seemed to make much impression upon their numbers. Quite recently a trap was installed for the purpose of intercepting the fish at the counting weir, but this device is still in the experimental stage. As an illustration of the destructiveness of Dolly Varden trout, an examination of the stomachs of large numbers of them revealed from 300 to 400 undigested salmon eggs and fry. It is not unusual to find from 100 to 200 salmon eggs and fry in the stomach of a trout 8 to 10 inches long.

Among the more important items of repair work accomplished during the year may be mentioned the completion of the wagon road leading from the station grounds to tidewater on Letnik Bay and the construction of a new bulkhead to protect the station grounds fronting on the lake.

\section*{Yes Bay (Alaska) Station}

\section*{[J. L. Gardner, Superintendent] .}

The year's work at this station was confined to the propagation of the sockeye salmon. Shortly after completing the installation of the racks, on July 22, a few sockeye and humpback salmon appeared in the river below, but no eggs were taken until September 8. During the intervening period the seining grounds were improved by the removal of all débris between the rack and the lake, and two of the seining beaches were extended (one 20 feet and the other 40 feet) by grading the river banks and covering them with gravel. Heavy rains late in August raised the river level to a point within 2 inches of the top of the rack, and on September 3 and 4 the entire station force was constantly employed in keeping it cleared of leaves and débris. During this time water was flowing around both ends of the rack on the shores, permitting the passage of fish in small numbers. The flood began to subside on the 5th, and three days later fishing was taken up and continued to be prosecuted up to the 25 th of the month, during which time \(30,080,000\) eggs were secured. This figure does not represent all that could be obtained, as collections were suspended as soon as a sufficient number werc on hand to fill the hatchery to capacity with fry, and fish enough to yield from \(15,000,000\) to \(20,000,000\) additional eggs were released to spawn under natural conditions.

When taken, the eggs appeared to be of extra fine quality, but by the time the eye spots had developed it was apparent that a considerable number were unfertilized, undoubtedly because the eggs were taken from fish not fully matured.

The results of incubation were very good, however, the losses amounting to only about \(81 / 4\) per cent.

Early in the winter the entire water-supply pipe line froze during a protracted cold spell, and as very little water was available in the hatchery the \(6,300,000\) fry on hand had to be liberated and the eggs crowded into a comparatively small space. In this way they were safely carried through the succeeding 15 days, at the expiration of which time water conditions were again normal. All fry hatched from these eggs were reserved for rearing to the fingerling stage, and most of them were still on hand at the close of the fiscal year. Due probably to the occurrence of heavy rains and ususually cold water during the incubation period, there was no evidence during the season of the trouble which has occasionally been experienced in recent years from the accumulation of gas in the hatchery water supply.

During the year 3,219 predatory fish were taken in gill nets and destroyed. Very few Dolly Varden trout were seen on the spawning grounds, probably because they were intensively fished for earlier in the season.

\section*{Baker Lake (Wash.) Station and Substations}

\section*{[Joseph Kemmerich, Superintendent]}

Fish-cultural work in this field was conducted at only five points, the Brinnon eying plant, formerly operated, having, been abandoned as a result of experiments made during the previous year which demonstrated that eggs collected in that region could be successfully transported in the green state to the Duckabush and Quilcene hatcheries. From the several species of salmon handled at this group of stations, \(48,578,000\) eggs were obtained; this being a reduction of approximately \(2,000,000\), compared with the total of the previous year. The decrease is attributed to the unfavorable weather encountered in some fields while certain species were spawning, and to the fact that it was an off year for the run of humpback salmon in Puget Sound waters. The collections were augmented by the receipt, from outside sources, of more than \(16,000,000\) eyed eggs of the chinook, silver, and humpback salmons. Such transfers were handled at the Birdsview, Duckabush, and Quilcene substations.

Baker Lake (Wash.) station.-Fish-cultured operations, addressed to the sockeye and silver salmons, were in progress practically throughout the year. Very gratifying work was accomplished with the sockeye salmon, the egg collections being the largest in the history of the station. Beginning July 1, the trap previously installed in Baker River was fished almost daily until the end of the run on August 21, and 14,558 captured salmon were removed therefrom to the station inclosure. All of the \(22,000,000\) eggs secured from these fish were of uniformly good quality, and the losses, both in the incubation and fry stages, were merely nominal.

The run of silver salmon in Baker River was the smallest in some years. This, no doubt, was occasioned in part by unsatisfatory water conditions, but the power dam in course of construction at Concrete, Wash., was a contributing factor, as it was apparent that the fish were unable to pass through the diversion tunnel. Of the brood salmon captured late in October and held for ripening, the 404 females available at spawning time yielded \(1,380,000\) eggs of good quality. Following the practice of recent years, the eggs were eyed at the station and then transferred to the Birdsview substation, the mode of conveyance being by pack horse as far as Concrete and by autotruck the remainder of the distance.

Birdsview (Wash.) substation.-As in recent years, salmon propagation at this point was seriously hampered by turbid water in Grandy Creek, the result of the tearing up of the banks and bed of the stream by the extensive logging operations going on near its headwaters. The water entering the hatchery was so muddy that the eggs and fry in the troughs could not be seen, and it was almost constantly necessary to remove the accumulation of sediment in the trays. During September and early October, ordinarily the spawning season for chinook salmon in this creek, the water level was so low that fish could not enter. Following several light rains later in October a few chinooks were taken in the trap and 180,000 eggs secured. At the close of the fiscal year the fingerlings resulting from these eggs were being held in ponds and fed, at which time they were \(21 / 2\) inches long.

The few fingerling silver salmon carried over from the previous fiscal year were liberated early in August in the Skagit River. Eggs of this species to the number of \(3,163,000\) were secured between October 18 and January 24, a great many of the carlier ones being taken from fish that had been held in pens for some time to ripen. These, with the addition of the eggs furnished from the

Baker Lake station early in March, produced 4,113,000 fry and one consignment of 100,000 eyed eggs, the latter being shipped to the Lincoln Park Aquarium, Chicago, Ill. The fry were carried on trays until the yolk sac was absorbed, when most of them were planted. A few were held to be reared to the fingerling stage.

Following a slight rise in water level, a few male and female sockeye salmon entered the creek, and 35,000 eggs taken from them were hatched. The resulting fish, in the No. \(11 / 2\) stage, were on hand at the end of June. One hundred and fifty thousand sockeye eggs, transferred to this point from Baker Lake station, were transported by means of truck and pack team to Illabot Creek, 11 miles distant from Birdsview; and seeded in the gravel along the shores of the lake. This is a cold, glacial body of water, and as there is a good volume of water in its tributary creek during the summer and fall months, it is believed it may be possible to establish a run of salmon in the lake. With this object in view, plants of eggs will be made here every spring until a sufficient length of time has elapsed to determine what the results will be.

The fry and fingerling steelhead saimon on hand at the opening of the year were distributed during August, various applicants being supplied, and the remainder was planted in tributaries of the Skagit River. Steelhead eggs to a total of 584,000 were taken between March 7 and May 21, this being a fair average compared with the work of recent years. However, owing to the necessity of holding the brood fish in pens for a considerable period to ripen, a large percentage of them proved infertile.

Duckabush (Wash.) substation.-The new trap site used for the first time last season having been destroyed by flood waters during the succeeding winter, permission was obtained to install a temporary trap under the State Olympic highway bridge. The first chum salmon of the season appeared here late in August, and beginning September 1 seining operations were conducted almost daily up to September 20 , when a 20 -foot section of the rack was carried away when a rise of several feet in the water level occurred. The fish held below were thus able to escape upstream, and during the week intervening before the river was again at its normal height the remainder of the run passed up, putting an end to the season's work. The egg collections amounted to \(3,340,000\).

The trap in Walcotts Slough, near the former eying station at Brinnon, Wash., was placed in condition for work late in November with the view of collecting eggs from the late run of chum salmon in that field. Brood females to the number of 3,508 were taken between December 1 and January 3, and from them \(9,760,000\) eggs were secured for transfer to the Duckabush hatchery. Though transported a considerable distance in the green stage, the losses on these eggs during incubation were no greater than on the local collections. On a number of occasions men were detailed from the Quilcene substation to assist in the work at Wolcotts Slough and took back with them such surplus eggs as could not be handled in the Duckabush hatchery. Operating in this manner, it is estimated that a saving of at least \(\$ 1,000\) was effected over the old system of eying the eggs at Brimnon. The product of the eggs was conveyed back to the slough and liberated in native waters.

A large run of silver salmon appeared in the Duckabush River in December and January, but the water level at that time was so high that practically all of the fish surmounted the rack and spawned upstream. Early in February the station received \(2,000,000\) eyed silver-salmon eggs from the Gold Bar hatchery of the Washington Fish Commission. These were incubated with the local collections and the fry were released in the sac-absorbed stage.

As 1924 was the alternate year for the run of humpback salmon into Puget Sound waters, no eggs of that species were available during the fall. However, the station received by transfer \(4,500,000\) of the humpback eggs taken in Alaskan waters by the Washington fisheries authorities, and the product was placed in the station ponds in the advanced fry stage, the pond screens being removed so that they might pass at will into the Duckabush River. In an effort to establish a run of chinook salmon in the Duckabush River 500,000 eyed eggs of that species were transferred to the station early in December from the Little White Salmon (Wash.) hatehery. When ready to take food, the fry resulting from this consignment were transferred from trays to the ponds and fed three times daily until May 28, when they were liberated. On account of the prevailing high water during the spring, most of the run of steelhead salmon was able to surmount the permanent rack and pass up the river, and only 35,000 eggs were secured. At the close of the year the fry incubated from these eggs were being cared for in troughs in the hatchery.

Quilcene (Wash.) substation.-Fish-cultural operations in this field were in progress practically throughout the year. Collections of chum, silver, and steelhead-salmon eggs were made, while eyed eggs of the humpback, chinook, and silver salmons received from other hatcheries were handled. The efforts put forth to collect eggs from the early run of chum salmon met with slight success. Owing to the prevailing low water in both the Big and Little Quilcene Rivers very few fish entered these streams, and the total mumber of eggs collected was only 585,000, notwithstanding the fact that both traps were fished at frequent intervals and both rivers were seined daily below the racks as long as there was any hope of securing returns. During the late run of this species, beginning about November 15, water conditions were so much improved that nearly \(3,000,000\) eggs were obtained. At this time some of the station employees were making frequent trips to Walcotts Slough to assist in the work there and to transfer to the home station such eggs as could not be cared for at Duckabush. As a consequence of the operations at all points and during both runs of salmon \(4,010,000\) eggs were secured, from which \(3,741,150\) fry in the advanced stage were developed and released in local tributaries of Puget Sound.

From a shipment of \(5,500,000\) eyed humpback-salmon eggs taken in Alaska waters by the State of Washington and turned over to this station for incubation, \(5,368,500\) fry were produced. Of these, \(2,968,000\) were released in the advanced stage in the Big Quilcene River; the remainder were returned to the State to be used in connection with a feeding experiment to be conducted in a pond located in a salt-water lagoon not far from the Quilcene hatchery.

Between October 27 and February 6 the station collected 2,120,000 silversalmon eggs. These were incubated with \(2,000,000\) eyed eggs of that species furnished from the Gold Bar hatchery of the Washington fisheries department, and the resulting fry, in the sac-absorbed stage, were liberated locally. Transfers of eggs from other fields included one shipment of 500,000 of the chinook salmon furnished by the Little White Salmon hatchery with the view of attempting to establish a run of that species in Quilcene waters. During the steelhead spawning season (extending from March 17 to May 11) 375,000 eggs were collected, some being taken from brood fish held for a time in the station ponds to ripen. The resulting fry were on hand at the close of the fiscal year.

Sultan ( \(\mathbf{W}\) ash.) substation.-Elwell Creek, upon which this substation depends for its egg collections, was visited during the fall by a large run of chinook and silver salmon, enough fish of each species to yield several million eggs being in evidence. Unfortunately the station was poorly equipped to take advantage of the opportunity. The trap in use was old and partly ineffective, and dependence had to be placed on hooking and dip nets for the capture of the fish. Working under such conditions, 806,000 chinook-salmon eggs were taken; but in October, shortly after the run of silver salmon began, the trap was entirely demolished as a result of a considerable rise in the water level of the creek, putting an end to the work. The collection of silver-salmon eggs amounted to 690,000 . Approximately 85,000 fry and fingerling steelhead salmon, the product of the previous fiscal year, were liberated in local waters during July. Owing to inability to conduct fishing operations, no eggs of that species were collected during the spring of 1925.

Quinault (Wash.) Station
[Phlo B. Hawley, Superintendent]
The construction of a rearing-pond system at this station, undertaken during the previous fiscal year, was completed in May, 1925. The series comprises six concrete ponds of the long, narrow type, with sloping sides, each inclosure being 75 feet long and 6 feet wide and with an average depth of 30 inches. The addition of this system provides the station with a capacity for rearing 300,000 sockeye-salmon fingerlings.

As has been explained previously, the sockeye-salmon run into the lower Quinault River extends from about April 1 to the end of August, making it impossible to include in a single annual report a complete census covering an an entire season's run. The daily count maintained during the spring and summer of 1924 indicated the passage of 136,774 salmon, this number being approximately 27,000 less than the count of the previous year and about 100,000 less than that in 1922. In the spring of 1925 counting was begun on March 19, and by the end of the fiscal year the record indicated that the number of salmon passing was materially smaller than in any corresponding period since the weir was established.

The reports received from the superintendent of the Quinault Indian Reservation show that during the commercial fishing season of 1925 , extending from April 1 to July \(1,54,000\) salmon, in round numbers, were captured by the Indians, who received for their catch 75 eents per fish. This is the highest price ever paid for sockeye salmon in the Quinault region.

During the spring of 1925 the station's counting operations occasioned considerable ill feeling on the part of the local Indians, who charged that the weir was detrimental to a large salmon run in that many of the fish were killed by jumping against the webbing of the leads and traps. In order to gain first-hand information in the matter two trips were made to a point several miles below the weir, the first on June 30 , when 30 dead fish were discovered, and the second on July 17. The latter trip was oceasioned by the receipt of advice from the superintendent of the reservation that hundreds of dead salmon were to be seen along the river as a result of injuries received at the weir, but only 20 were discovered. From the investigations made it was clear that the reports spread by the Indians. were greatly exaggerated and were circulated because of their antagonistic attitude toward the bureau's work.

Fish-cultural operations at this station are concerned principally with the sockeye salmon. Racks and traps were installed in Big and Merryman ereeks 10 days prior to the opening of the spawning season for the purpose of collecting eggs, and the first were secured on November 1, a time extremely unfavorable for the work because of heavy freshets. Late in October and early in November the racks in both creeks were under water for the greater portions of the time, and it was impossible to operate a seine to advantage before November 10. From that time on conditions were more favorable, and collections were made daily up to the close of the season on December 12. A total of \(12,350,000\) eggs of fine quality was secured, of which \(3,000,000\) in the eyed stage were sent to the Oregon Fish Commission. The remaining eggs were hatched, and the output of fry liberated on the local spawning grounds, most of them in the fingerling stage.

Although no special effort had been made to secure them, a considerable number of silver-salmon eggs and a few chinook eggs were taken incidentally with the sockeye eggs. More than 100,000 steelhead-salmon eggs were collected in May from fish taken in the counting weir. The resulting fry were on hand at the close of the year, it being the intention to rear them to fingerling size and then plant them in Quinault Lake or its tributaries. A consignment of 25,000 eyed brook-trout eggs received from the Washington State Fish Commission was incubated practically without loss, and the resulting fry were used to stoek virgin lakes in the upper Olympie Mountains.

Late in January 260,000 silver trout eggs were received from the Lake Whateom hatchery of the Washington Fish Commission. After being reared to suitable size, the fry from these eggs will be marked and then liberated in the lower Quinault River, well on their way to the ocean, the object being to determine whether they will eventually return as fish of larger size than the ordinary silver trout which remain constantly in fresh water.

\section*{Clackamas (Oreg.) Station and Substations}

Clackamas (Oreg.) station.-The installation of racks and other necessary equipment having been completed previously, the eapture of adult ehinook salmon was undertaken on the 1st of October and proseeuted continuously for a month, at the expiration of which time the prevailing heavy rains had brought the Clackamas River to such a high level that the racks were swept away. The brood fish secured yielded \(2,223,000\) eggs, which, with eggs transferred from other fields in the State, gave the hatchery a total of \(8,497,600\). These were incubated with a loss of only 2 per eent, and the product was liberated on suitable spawning grounds as Nos. \(2,2 \frac{1}{2}\), and 3 fingerlings. In the course of the year the station received small numbers of silver salmon, steelhead salmon, and brook trout eggs from various auxiliaries, which were successfully incubated. It also received 200,000 eggs of the so-called "silver trout," which were furnished by one of the Washington State hatcheries.

With the view of attempting the establishment of a run of smelt in the Clackamas River, the station force and the Oregon fish and game authorities, working in cooperation, captured approximately 13,000 live smelt during the spring run in Sandy River and transplanted them in the Clackamas River.

Upper Clackamas (Oreg.) substation.-Collections of ehinook-salmon eggs in this field were conducted from August 26 to September 19, 2,291,600 being obtained, which exceeds last year's collections by approximately 400,000 eggs.

After being developed to the eyed stage, the entire lot was transferred to the Clackamas station, and the substation was closed for the season.

Little White Salmon (Wash.) substation.-Fishing for brood chinook salmon began on September 17, and by October 10 a number sufficient to meet all requirements had been secured. The racks were therefore removed and the remaining fish allowed to ascend the river to the spawning grounds. Due to the continued low stage of the stream much difficulty was experienced in maintaining a depth of water necessary for the maintenance of the fish in the live pens, and it finally became necessary to excavate a location for the pens in the bed of the river. Eggs to the number of \(22,640,000\) were taken, of which approximately \(6,562,000\) were shipped in the eyed stage to other points. The remaining eggs were incubated and the product reared to the No. \(21 / 2\) fingerling stage, when they were liberated in the Little White Salmon River.

A consignment of 200,000 brook-trout eggs, received from one of the Washinton State hatcheries, was successfully incubated, and part of the resulting fry were distributed to applicants. The product of 95,000 steelhead salmon eggs, transferred from the Applegate Creek auxiliary, was still on hand at the close of June.

Big White Salmon (Wash.) substation.-There was an unusually good run of chinook salmon in the Big White Salmon River and also in Spring Creek, the latter yielding about half the season's take of eggs. An advantage in work on this creek is the entire lack of high-water stages and the fact that no expensive racks need be constructed and maintained. As they ascend the mouth of the creek, the salmon pass through a fish ladder into a pool, where they are readily accessible. They are simply dipped out, assorted, and the males and females segregated in separate inclosures prepared for them in the creek. During the period from September 20 to October 7, a total of \(14,420.000\) eggs was taken in both streams. On reaching the eyed stage, approximately \(5,000,000\) were shipped to the Oregon Fish Commission. The young fish hatched from the remaining eggs were reared to the No. \(21 / 2\) fingerling stage and then released on the native spawning grounds. The food used in the rearing operations consisted of salted salmon, canned salmon, and cattle spleen.

Rogue River (Oreg.) substation.-Despite the handicap of a very low water level in the Rogue River during the summer, which necessitated the building of wing dams at each water wheel to insure its efficient operation, the yield of chinook salmon eggs at this point was about on a par with results in recent years. Immediately after the completion of the chinook-salmon run, racks were installed in Big Butte and Elk Creeks for the interception of silver and steelhead salmon, though the equipment in the former was washed out during a later period of high water, allowing most of the silver salmon held below to escape. The egg collections of this species, amounting to \(1,336,000\), were made between October 30 and December 11. The spring collection of steelhead eggs was somewhat above the average, the total amounting to 868,000 , as compared with 506,000 in the preceding year. Small numbers of eggs of the sockeye salmon and silver trout, received by transfer from other stations, were successfully incubated, as was also a consignment of brook trout eggs donated by the State of Washington. Some of the product of this stock was still on hand when the fiscal year closed.

Applegate Creek (Oreg.) substation.-Active fish-cultural operations for the season began at this point on November 18 with the collection of the first lot of silver salmon eggs. As the best part of the run of this species occurred during high-water stages, and a majority of the fish were able to ascend to spawning grounds above the dam, the yield of eggs for propagation purposes was small, amounting to only \(1,749,000\). During the very favorable natural conditions existing in the early spring, a sufficient number of steelhead salmon were captured to yield at least \(3,000,000\) eggs, but many of the penned fish died later and only \(1,771,000\) eggs were obtained. On reaching the eyed stage, 500,000 of these were shipped on assignment; the fry hatched from the remainder were in process of rearing when the fiscal year closed.

Salmon (Idaho) substation.-At the opening of the fiscal year 100,000 young chinook salmon, the product of eggs shipped from the Little White Salmon substation, were on hand. On reaching the No. 3 fingerling stage they were tagged and released in local streams to determine whether it would be possible to establish an earlier run of fall-spawning salmon in the Columbia River.

In the Lemhi River field egg collections were made from the middle of August into early September, \(3,658,000\) eggs being taken. The racks in the Pahsimeroi River were installed about 10 miles below the site of last year's operations and eggs were taken throughout the last half of September. Owing to the very low
water level in this stream, however, most of the run of fish spawned in the Snake River channel and less than 500,000 eggs were secured.

Two consignments of rainbow-trout eggs-one of 105,000 shipped by the Idaho State Fish Commission, and one of 25,000 transferred from the Meadow Creek (Mont.) field-were hatched during the season and the product liberated as fingerling fish in various waters of the region.

Sandy River (Oreg.) substation.-The principal fish-cultural work at this point consisted in the incubation of \(1,000,000\) chinook salmon eggs transferred from one of the Oregon State hatcheries and the rearing of the product. The young fish were released in the Sandy River in the Nos. 2 and \(21 / 2\) fingerling stages. A fair run of chinook salmon made its appearance below the dam in this river, but as has occurred in previous seasons, the entire flow of water in the river channel was diverted by the Portland Electric Co. for industrial use, and all of the fish perished. During the spring traps were built in the fish ladder to intercept the run of steelheads. The take of eggs of this species was small and of inferior quality, and on the first of June it was decided to close the station for an indefinite period.

\section*{Baird (Calif.) Station and Substations}

The outcome of fish-cultural operations in the California field was very discouraging, the egg collections as a whole being much smaller than in 1924 and the output of young fish correspondingly smaller. The poor results are attributed to abnormally low water stages in the streams at spawning time and unusually muddy water, the latter condition being brought about by the deposit of volcanic ash from Mount Shasta.

Baird (Calif.) station.- At this station traps for intercepting the run of chinook salmon in the McCloud River were installed early in August, 1924. Owing to the low stage of the stream this was easy of accomplishment, but as the water remained low throughout the spawning period only comparatively few salmon were secured. The work of capturing adult fish was conducted from August 28 to October 16, though the bulk of the fish was obtained in late September. Late afternoon was chosen as the time for spawning operations, experience having demonstrated that better results are obtainable then. The collections, totaling \(1,200,000\) eggs, produced 200,000 eggs in excess of the take of the previous year. On account of the prevailing drouth it was impossible to obtain water from the usual source of supply for incubating the eggs, and they were held in temporary troughs connected with a supply taken from a small creek until they were nearly ready to hatch, when they were transferred to the hatchery and a water supply secured by pumping.

Because of heavy rains much difficulty was experienced in the work of placing the rack for the spring run of salmon in 1925, and it was accomplished only through strenuous effort. Shortly after its completion, a 75 -foot section of the structure was carried away by a heavy rainstorm, which continued unabated for 60 hours. The break was repaired as soon as possible, though it could not be made absolutely secure on account of the continued high water.

Battle Creek (Calif.) substation.-Arrangements were made early in the year for the collection of chinook-salmon eggs in the Battle Creek tributary of the Sacramento River. The work of seining the creek for adult fish was taken up on October 21 and continued until the run was over on December 1 , when operations were transferred to the main river, but as no material results were obtained there the work was discontinued within a few days. As a result of the operations in the creek and river 887,500 eggs were secured. In order to supplement the stock in the hatchery, 500,000 eggs were transferred from the Mill Creek field and from the aggregate lot \(1,330,000\) healthy fry were incubated.

Mill Creek (Calif.) substation.-The drouth which prevailed in other parts of the California field also interfered with the work at the Mill Creek substation to the extent that the results attained were the most unsatisfactory in several years. Fish-cultural operations were undertaken as usual in late October, seining being conducted practically every day up to and including December 29. The eggs collected during the season amounted to \(2,300,000\), as compared with approximately \(3,000,000\) in 1924.

\section*{FISHES OF THE GREAT LAKES}

The suceess of the bureau's fish-cultural operations in the Great Lakes region is dependent mainly upon the weather prevailing during the spawning season of the species handled. The range of operations
extends from Rainv Lake, Minn., eastward to Lake Champlain, and the commercially valuable fishes to which particular attention is directed are the lake trout, whitefish, cisco, pike perch, and carp. Owing to unfavorable weather in practically all fields during the egg-collecting season, the output of these stations was considerably smaller than in the preceding year, the largest decline being in the case of the whitefish.

\section*{Duluth (Minn.) Station}

\section*{[S. P. Wires, Superintendent]}

During the early fall arrangements were made for the collection of lake-trout eggs in Lakes Superior and Michigan. Small numbers were obtained daily at Washington Harbor and at other points near Isle Royale, Mich., between September 28 and October 9, when the beginning of the closed season necessitated discontinuing the work. It was resumed on October 15 and prosecuted to the middle of November, but the results were small owing to bad weather and the light run of fish in this region. Along the south shore of Lake Superior, where spawning was most active from October 13 to the close of that month, there was a good run of fish, and egg collections were correspondingly large. The eggs secured from the 15 fields occupied aggregated \(21,535,000\). On reaching the eyed stage \(1,550,000\) were shipped to applicants; fry and fingerling fish to the number of \(12,752,500\) were produced from the remaining stock and distributed, a large proportion being returned to the native spawning grounds.

On account of almost constant stormy weather no nets were set for the capture of whitefish on the natural spawning grounds at Munising, Mich., hence the station's collections of eggs of that species were limited to the Isle Royale field, where \(1,560,000\) were secured. As a result of operations in the vicinity of the Bemidji State hatchery, conducted in conjunction with the Minnesota Game and Fish Department, the station secured approximately \(27,500,000\) pike perch eggs between April 17 and May 3. To avoid the heavy losses incident to handling in the green state, the eggs were eyed at the point of collection and then transferred to Duluth. Managed in this way, the losses were kept at a minimum. The resulting fry, amounting to \(13,000,000\), were delivered to applicants in Minnesota, Michigan, and Wisconsin. The year's work also included the incubation of 360,000 eyed brook-trout eggs received during the early winter from commercial hatcheries in Massachusetts, Rhose Island, and Wisconsin, and 45,000 steelhead eggs transferred during the early part of May from the Clackamas (Oreg.) station.

Northville (Mich.) Station and Substations
[W. W. Thayer, Superintendent]
The year's work at the Northville station consisted in the propagation of smallmouth black bass, bluegill bream, brook trout, and rainbow trout, the eggs of the two latter species being derived from outside sources. The smallmouth bass fry on hand at the beginning of the year were reared and distributed as fingerlings Nos. 2 and 3. On the last day of the following April, when the work of apportioning adult bass in the station breeding ponds was undertaken, it was liscovered that some of the fish had spawned in their winter quarters, this fact being disclosed by the presence of several nests containing dead eggs. It is believed that this unusually early spawning was occasioned by the spell of unduly warm weather which prevailed in the latter part of April, and that the eggs were killed by a sudden lowering of the temperature which occurred shortly before the ponds were drawn.

In addition to the bass carried through the winter at the station, 196 adults were furnished from the Put in Bay (Ohio) station about the middle of May, this acquisition bringing the total to 325 brood fish. Spawning began in the breeding ponds on May 10 in water of \(58^{\circ}\). After rising to \(60^{\circ}\) on the 17 th, the temperature suddenly dropped to \(52^{\circ}\) on the 18 th, but to all appearances the fry were unharmed. Approximately 200,000 fry of this species were hatched, of which 94,000 , in the fry and fingerling stages, were distributed before the close of the year.

During the early part of the winter of 1924-25 the station received \(1,100,000\) eyed brook-trout eggs, 500,000 of which were transferred from the Pleasant Mount hatchery of the Pennsylvania Fish Commission. The balance consisted
of commercial eggs purchased from dealers in Rhode Island and Massachusetts. All of this stock was of fine quality and from it a large percentage of healthy vigorous fry was produced. From a consignment of 129,000 rainbow-trout eggs received in May from the Paris (Mich.) State hatchery, 117,800 fry were hatched and distributed.

Alpena (Mich.) substation.-Negotiations in progress at the beginning of the fiscal year between the bureau and the city of Alpena led to the bureau's obtaining a 50 -year lease on 1 acre of city land containing a 2 -story brick building and a 1-story frame cottage, said property being used during the World War by the Navy Department in the operation of a radio plant. As soon as the transaction could be completed the hatchery was removed from its old location to the new site, and installed on a brick foundation in the rear of the brick building, which was fitted up as an office and an aquarial exhibit for the display of fishes common to the region.

From October 23 to December 4, 10,560,000 lake-trout eggs and 34,640,000 whitefish eggs were obtained over a territory extending from Black River to Cheboygan. Most of these were of good quality, though some of the eggs from around Cheboygan were poor. The partial failure in that field may probably be accounted for by the faulty method employed by the fishermen in taking and caring for the eggs prior to their delivery at the hatchery. In an effort to correct this condition an experienced spawn taker will be assigned to oversee the work near Cheboygan throughout the next collecting season.

The delay occasioned by the removal of the hatchery building and the installation of new piping for a water supply necessitated the retention of the eggs for a considerable time in egg cases and floating boxes. The percentage of hatch from those in the cases was very good, as they could be given daily attention, but the eggs in the boxes, held in the slip in the rear of the hatchery, were nearly a total loss. In the distribution of the fry, which work extended from March 27 to May 25 , all plants intended for waters within a comparatively short distance of the hatchery were made by the local fishermen without expense to the bureau, thus materially reducing the cost of the work.

Charlevoix (Mich.) substation.-The high winds prevailing throughout the spawning season in the fields covered by the Charlevoix substation tended to reduce somewhat the collections of lake-trout eggs, though the loss was compensated for in large measure by the substitution of improved methods in the hatchery, so that the output of fry was nearly equal to the average of former years. Eggs of this species were received at the hatchery from November 3 to November 28, the season's take from the seven fields covered amounting to \(34,361,000\). In the course of the whitefish spawning period-from November 1 to November 30-22,960,000 eggs were taken in fields near Scotts Point, Naubinway, and St. Ignace. All of these were of good quality.

In addition to its work with the commercial species, the station received and hatched 11,000 landlocked-salmon eggs transferred from the Craig Brook (Me.) station, and 40,000 steelhead eggs shipped from the Grants Pass (Oreg.) substation. The resulting fry were delivered to applicants at Frankfort, Menominee, and Charlevoix, Mich. A filter for the improvement of the water supply was under construction during the early part of the fiscal year, and while not fully completed it was used to good advantage during the hatching season, removing practically all slime and other impurities from the water.

> Put in Bay (Ohio) Station
[David Davies, Superintendent]
Shortly after November 1 the usual arrangements for obtaining whitefish eggs were effected with the commercial fishermen operating in various parts of Lake Erie, and on November 12 and 13 the field foremen visited the various fields for the purpose of distributing the necessary spawn-taking outfits. The season as a whole proved disappointing. Only a comparatively small catch of whitefish was made by the fishermen collecting eggs for the station, and in its efforts to obtain eggs in other parts of the lake the same conditions were encountered by the Statc. Up to the end of November it was generally believed by the fishermen that a larger run of whitefish would occur, but at about that time the weather suddenly turned cold, ice formed on the lake, and the fishermen were unable to reach their nets, many of which were frozen in the ice. Eggs were received at the station between November 18 and December 7, the total for the season amounting to \(138,280,000\). Of these, the Port Clinton field furnished \(57,340,000\), while the remaining eggs were derived from fisheries in the
vicinity of Put in Bay, Toledo, Catawba, Middle Bass, and North Bass Islands. In view of the small collections, no shipments of either green or eyed eggs were made to other points, and all fry hatched were distributed on the natural spawning grounds within a radius of 10 miles from the station.

As compared with the results of former years the outcome of the pike-perch season's egg collections was fairly satisfactory, \(218,200,000\) eggs being secured. Of these, \(177,775,000\) were obtained in the Toledo field. Heretofore there has nearly always been a scarcity of large female fish, but last season such fish were captured in considerable numbers. The majority of the large fish were unripe, however, and many millions of eggs were lost because they were not in condition for propagation.

The collection of yellow-perch eggs was much larger than usual, exceeding last year's by more than \(22,000,000\). They were of good quality and produced a high percentage of strong, vigorous fry. One consignment of \(6,000,000\) green eggs was shipped by messenger to the Mammoth Spring (Ark.) station, and from the remainder \(19,968,000\) fry were hatched and liberated in Lake Erie.

Owing to unusually low water in the lake during June, the carp-propagation work was somewhat disappointing. Between June 2 and June 25 44,875,000 eggs were taken and from them \(31,500,000\) fry were hatched and distributed. All plants were made in the Portage River several miles above Port Clinton, Ohio.

\section*{Cape Vincent (N. Y.) Station and Substations}

\section*{[J. P. Snyder, Superintendent]}

Active fish-cultural operations began at this station on October 18, when the work of collecting lake-trout eggs at Stony Island, N. Y., was undertaken. Heretofore practically all eggs of this species collected for the station have been obtained in the Province of Ontario in the vicinity of Pigeon and Simcoe Islands. Early in the fall preparations were made for the resumption of collecting operations in those fields, but a few days before the opening of the spawning season the islands were visited by a representative of the Ontario govermment, who notified the local fishermen that all eggs secured by them in those fields were to be turned over to the provincial hatcheries. The closing of the fields to the bureau left only two possible sources of supply for lake-trout eggs-Stony Island and Charity Shoals-which yielded a total of 114,000 . The station also received 200,000 eyed eggs from the Charlevoix (Mich.) station. The fry resulting from both lots were delivered to applicants and planted in New York State waters.

The collection of whitefish eggs was again seriously curtailed by the refusal of the provincial authorities to permit the bureau's men to enter some of the more important fields on the northern side of the lake. The station was allowed to collect any available eggs in the vicinity of Brighton, Cobourg, and Port Hope, Ontario, but the results of the work at all these points were disappointing, due to unfavorable weather. Storm after storm occurred in rapid succession, destroying the nets and discouraging the fishermen. Only \(8,100,000\) eggs were secured at the three points.

On the New York side of the lake eggs were collected in the open waters near Cape Vincent as well as in Chaumont Bay, where there was a fairly good run of large whitefish. One of the peculiarities of the run in this section was that only a comparatively few sinall fish were in evidence. The run along the open shore of the lake was the largest that has occurred in many years, but weather conditions were extremely unfavorable. During a period of nearly two weeks at the height of the spawning season there was only one day when the nets could be lifted. On that occasion approximately \(17,000,000\) eggs were secured. In the somewhat better protected waters of Chaumont Bay the nets were lifted oftener and a fairly good collection of eggs resulted. Of the total number secured-55,485,-\(000-420,000\) were shipped in the eyed stage to applicants. The remainder were hatched, producing \(36,500,000\) fry, all of which were planted in Chaumont Bay and on other spawning grounds of the species.

Operations for the collection of cisco eggs were conducted in Chaumont, Fairhaven, and Sodus Bays on the American side of the lake and in Wellers Bay on the opposite side, permission to enter this field having been obtained from the Canadian authorities. In these four fields approximately \(188,000,000\) eggs were taken, the collection exceeding that in the fall of 1923, though the catch of fish was the smallest in some years. This falling off in the catch appeared to be general in all sections of Lake Ontario and can not be accounted for. The vegetable growth which formed on the whitefish and cisco eggs during the previous year gave no trouble last season.

In the latter part of December 586,000 eyed brook-trout eggs were received from commercial dealers in Rhode Island and Massachusetts and 483,600 were turned over to the station by the Pennsylvania Department of Fisheries; 136,920 rainbow trout eggs were received from a hatchery of the Miehigan Conservation Department in return for ciseo eggs previously furnished the State, and from the Swanton (Vt.) station \(11,000,000\) green pike-perch eggs and \(4,000,000\) eyed yellow-pereh eggs were received. The fry from all of this stock was utilized in supplying applieants and in making publie plants in suitable waters.

In response to a general demand for fingerling fish in preference to fry, 24 troughs and 12 large rearing tanks were constructed during the winter, and in cooperation with the Jefferson County Game and Fish Association these, with 24 additional troughs belonging to the association, were set up in a field near Watertown, N. Y., and used for the rearing of brook and rainbow trout to the large fingerling size before distributing them. The water supply for this rearing project was obtained from two spring-fed brooks.

\section*{Swanton (Vt.) Substation}

\section*{[J. P. Snyder, Superintendent]}

During September, 1924, a considerable amount of repair and improvement work was accomplished at this substation. All pens for the holding of brood fish were enlarged and placed in good condition, power boats and skiffs were repaired and painted, a new live ear for the transportation of brood pike perch from the fishing grounds to the hatchery was constructed, 200 additional jars were provided, and many minor \(\cdot\) repairs were made. Arrangements were completed early in March with the States of Pennsylvania and Vermont for the propagation of pike perch on a cooperative basis. Under the plan agreed upon the bureau furnished the services of two experienced fish-culturists, Pennsylvania supplied most of the requisite funds and the services of two men, receiving as its share of the returns 50 per cent of the eggs collected, while Vermont provided the services of one man and allowed the fishermen to sell all nongame fish taken in the nets to compensate them for the delivery of their brood pike perch for the hatchery work.

By March 23 the hatchery and its equipment were ready for active operations. Seining was undertaken as soon as the ice broke on Lake Champlain, the first brood fish being captured on April 6, and by the 13 th of April 4,057 large female and 1,553 male pike perch had been assembled in the pens. In view of the very low water level in the lake it was considered unsafe to carry a larger number, hence further seining was deferred until the 17 th, when an effort was made to secure additional male fish. Within a few days after the work started it became necessary to release over 1,000 of the females, as the crowded condition of the pens and the low stage of the water were causing the development of fungus. Eggs were taken between April 15 and April 29, the total for the season amounting to \(170,720,000\). As a result of an actual count of green and eyed eggs during the first days of the season the eggs were estimated to run 110,000 to the quart. Formerly 150,000 eggs to the quart was the measure used.

Incidental to the pike perch work, \(29,300,000\) yellow-perch eggs were collected from the marshes in the vicinity of the hatchery. Practically all of these produced fry, some of whicn were supplied to applicants. Collections of eggs of this species at the Swanton substation are limited only by the space and facilities available for their development.

\section*{Bryans Point (Md.) Substation}

\section*{[L. G. Harron, Superintendent]}

During the first half of March the Bryans Point station was engaged in assembling a brood stock of yellow perch as a source of egg supply for the hatehery. As the season's catch of this species by the Potomac River fishermen proved to be very small, only 6,047 could be secured, less than one-third the number handled at the station in the previous year. These fish spawned in live boxes between the 15 th and the 27 th of March, yielding 48, 875,000 eggs. On attaining the eved stage, \(5,850,000\) were shipped to central station, Washington, D. C., and \(\dot{3} 4,420,800\) fry were developed from the remainder and liberated on the spawning grounds in the Potomac River.

Observation has shown that the great and growing scarcity of yellow perch in this region may justly be attributed to the present extensive use of fyke nets. Many of the fishermen are employing what is known as the sunken fyke, a device
consisting of a string of from 10 to 25 nets in a line, no part of them being visible above the surface of the water. These are spread out from shore to shore, not only on the river flats but in tributary streams, and as they are in operation practically throughout the year, their destructive effects are only too apparent. For discussion of the collection of shad eggs see page 475 .

\section*{RESCUE OPERATIONS}

\section*{Homer (Minn.) Station and Substations}

\section*{[C. F. Culler, in charge]}

With the Homer (Minn.) station as a central directing base, fish-rescue operations were conducted during the summer and fall on the Mississippi River bottoms lying between Prescott, Wis., on the north and Andalusia, Ill., on the south. Owing to unusual natural conditions the results of the work were much smaller than the average returns of recent years. Activities cxtended from early July to the close of November, which period was marked by exceptionally cold, wet weather, the late spring and frequent rains maintaining the ponds and sloughs in a fresh state and preventing any material shrinkage of the water area. While not conducive to large collections, this situation constituted a favorable environment for young fish, the unusually wide range affording them ample feeding grounds, while large numbers were able to find their way into the main channel of the river. All rescue areas previously occupied were thoroughly worked, but, as in past years, an extensive amount of fruitful territory remained uncovered because of lack of funds, though several new fields might have been established had it been possible to foretcll what the weather would be when the season opened.

On account of their more elevated location and the consequent lowering of the water at a comparatively early period, the fields in the vicinity of the Homer station and at Genoa, Wis., were the most productive, the former alone yielding nearly half the total of the season's returns. Rescue work in cooperation with the Wisconsin fisheries authorities having been contemplated in the vicinity of Lynxville, Wis., two crews were sent by the State to cover that territory in the latter part of July. However, heavy rains interfered with successful work and the field was abandoned early in August. Along the upper river 62,220,565 fish were rescued, this number being less than half the total of the preceding year. All of the rescued fish were released in the Mississippi River and its adjacent tributaries with the exception of approximately 911,000 reserved for delivery to applicants.

The season's mussel-infection work resulted in the relcase of \(1,783,561,850\) glochidia of the commercial fresh-water mussels on suitable host fishes, this number exceeding last year's total by approximately \(500,000,000\).

La Crosse (Wis.) substation.-A new 2-story hatchery building, 85 feet long and \(501 / 2\) feet wide, was recently constructed at this point on land acquired from the city of La Crosse. In addition to the hatching room, which is equipped with a sufficient number of galvanized-iron hatching and retaining troughs to handle approximately \(2,500,000\) eyed trout eggs, the lower floor of the building contains an aquarium and an office. Part of the space on the upper floor is utilized for a carpenter shop and the remainder is fitted up as sleeping quarters for the station employees.

During the winter of \(1924-25,763,400\) eyed brook-trout eggs were acquired, part of them from Cedar Island Lodge at Brule, Wis., and the remainder from a commercial dealer in that State. The substation also handled 371,000 rainbowtrout eggs transferred from other stations of the bureau, and approximately 96,000 eggs of the Loch Leven trout from the Madison Valley (Mont.) field. All of these were successfully incubated and the resulting fry carried to the fingerling stage with an aggregate loss of less than 25 per cent.

Bellevue (Iowa) substation.-The territory included in this field extends from Dubuque to Green Island in the State of Iowa. Due to high water, the output of rescued fish was greatly reduced as compared with that of the preceding year.

Atchafalaya (La.) substation.-The season's work at this station began on February 14, when preliminary arrangements for the propagation of buffalo fish were begun. The earliest eggs were obtained on March 7 and the latest on March 24, the total amounting to \(140,400,000\). Owing to the flooded condition of the Ouachita River and the consequent pollution of the local water supply, the eggs could not be developed in the Atchafalaya hatchery and most of them
were planted on the spawning grounds immediately after ferilization had been accomplished. A few millions, reserved with the object of testing the water supply at a new site on the Bayou Plaquemine, were successfully incubated at that point with only a 2 per cent loss, and the resulting fry were vigorous and healtlyy. On account of the higher water temperature at the new site, the incubation period is materially shorter than at Atchafalaya.

\section*{Mussel Infection in Conjunction with the Rescue of Landlocked Fishes}

\section*{[H. L. Canfield, in charge]}

As in past years, mussel-infection operations were conducted in connection with the salvage of food fishes from overflowed lands along the Mississippi River. This work is receiving the hearty commendation of practically all who are engaged in the various branches of the mussel industry, including clammers, buyers, and pearl-button manufacturers, and many of them have expressed their approval in writing.

While weather conditions during the summer and fall of 1924 were unfavorable for the prosecution of the rescue work, they were in the main favorable to infection operations. This is explained by the fact that only strong, vigorous fish can be used to advautage in the infections, and during protracted warm periods most of the fish handled are so soft that they will not suceessfully endure the treatment.

The first five-year term of the mussel closure law in force along the Mississippi River and its tributaries in Wisconsin, Minnesota, Iowa, and Illinois having expired, the areas in which it was applicable are now open, while other areas will be closed for a seeond period of five years. No definite data as to the effects of this law will be available until the close of the second period, but judging from current reports it is believed it has proved beneficial.

The fields in which mussel-infection operations were conducted during the year and the numbers and species of mussels handled in each are shown in the following table:

Summary of infection of fishes, fiscal year 1925
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Stations} & \multicolumn{3}{|c|}{Speeies} \\
\hline & Grass mucket (L. luteola) & \begin{tabular}{l}
River mucket \\
(L. ligamentina)
\end{tabular} & Pocketbook (L. ventricosa) 1 \\
\hline Prescott, Wis & & 4, 330, 500 & \\
\hline Winasha, Minn & & \(\begin{array}{r}\text { 3, } \\ \text { 3, } 374,000 \\ 236143 \\ \hline 1400\end{array}\) & \\
\hline Winona, Minn & \(257,121,000\)
\(159,944,500\) & 236, 143, 4300 & \\
\hline Dakota, Minn & & 95, 972, 500 & \\
\hline La Crosse, Wis & 22, 127, 500 & & \\
\hline Genoa, Wis & 84, 590, 000 & 136, 810,000 & 3, 300,000 \\
\hline Ferryville, Wis. & 11,500, 000 & & \\
\hline Lynxville, Wis.. & 38, 185, 000 & 36, 405, 000 & \\
\hline Guttenberg, Iowa & 50, 245, 000 & 4,
2 , 633,000 & \\
\hline Bellevue, Iowa. & 18, 358, 250 & 57, 128,100 & \\
\hline Andulusia, 111. & & 129, 177, 500 & \\
\hline Total & 642, 336, 750 & 1,137, 925, 100 & 3,300,000 \\
\hline
\end{tabular}
\({ }^{1}\) This mussel is not of best quality and fishes are infected with it only when first-class mussels are not a vailable.

\section*{MARINE FISHES}

A very successful season was experienced in the propagation of the marine fishes of the New England coast. The eggs collected at the three stations comprising this group aggregated \(4,886,182,000\), as compared with \(4,049,135,000\) in the preceding year, while the output of eggs and fry amounted to \(4,092,807,000\), a gain of about 13 per cent compared with corresponding figures for 1924. The heavy increase shown is accounted for by the phenomenal abundance of cod in fields around Gloucester, Mass., and by an unusually heavy run of winter flounder along the Maine coast.

Boothbay Harbor (Me.) Station

\section*{[E. E. Hahn, Superintendent]}

As in recent years, fish-cultural operations at this station were confined to the propagation of winter flounder, a careful watch maintained by the station force on all fishing grounds in the vicinity having failed to disclose any source of supply for eod, haddock, mackerel, or alewife eggs. On March 1 the work of obtaining brood winter flounder was taken up by the steamer Gannet and two smaller vessels, S8 fyke nets being set in numerous coves and harbors over an area extending from Penobscot Bay to Casco Bay. Of these, 46 were operated by the Gannet and its crew while the station force in the smaller boats tended the remaining nets. Collections were discontinued on May 11, 9,203 breeders having been secured. The number would have been much larger but for the occurrence of an accident at the height of the season. While operating nets in Casco Bay the steamer's skag was carried away in a gale, necessitating the withdrawal of the boat from the field for two weeks while a new skag was cast and installed. The captured fish provided 2,027,901,000 eggs, establishing a record far better than that of any season in the station's history: The fish were held in tanks in the hatchery pending the full development of the eggs when they were stripped and immediately liberated in the station harbor. At one time during the spawning season eggs were taken in such numbers that the hatchery was filled to overflowing and a large surplus had to be held in floating boxes installed in the harbor until the development of older lots of eggs provided hatching space for them.

On the completion of fish-cultural activities a supply of local fishes, seals, and Crustacea was collected with the view of providing the usual summer aquarial display, 25 tanks arranged in the hatching room being used for the exhibit. This feature of the work is of great interest to the many daily visitors to the hatchery.

\section*{Gloucester (Mass.) Station}

\section*{[C. G. Corliss, Superintendent]}

Reports having been received late in October that ripe pollock were being taken in large numbers near Plymouth, Mass., employees from the Gloucester station were sent out some days in advance of the usual time to make collections. The first eggs were taken on October 28, and between that time and the close of spawning operations on the 7th of January, 430,648,000 had been secured. Over 90 per cent of these were derived from gill nets operating around Plymouth and Duxbury, the fisheries off Cape Ann yielding only comparatively few. During the first three weeks of the season the eggs were, from some unknown cause, inferior in quality, and the losses during incubation were large. As a result of the work with this species \(222,890,000\) fry were hatched and planted in the coastal waters of Massachusetts.

The results of the year's work in cod propagation were the best in the history of the station. The egg-collecting season was a long one, extending from shortly after the middle of November to nearly the close of the third week in May. The first eggs were secured incidentally, in occasional small batches, with pollock spawn. As soon as the pollock work ended the energies of the station force were concentrated on the cod work. However, the results during January were poor, owing to stormy weather, but from the beginning of February to the close of the spawning season natural conditions were generally favorable and the egg receipts during that entire period were very large. Up to the first of April all eggs taken were brought to the hatchery and incubated, but subsequent to that date the low water density (resulting from spring freshets) necessitated the fertilization and immediate planting of all eggs on the spawning grounds. Of the total collections, amounting to \(1,219,468,000\) eggs, over one-third were incubated and the resulting fry liberated off Cape Ann and adjacent points. The Woods Hole (Mass.) station was furnished \(1,750,000\) green eggs for experimental work, and the remaining eggs were planted.

Haddock propagation was taken up late in March and prosecuted in connection with the cod work. The daily cateh of haddock being small, the fishermen soon became discouraged and transferred their attention to the more remunerative cod, thus reducing the supply of eggs. Nearly all of the \(174,603,000\) secured during the season (extending from March 20 to May 16) had to be planted as soon as fertilized, owing to unsuitable water conditions in the hatchery.

During the first week in March fyke nets for the capture of a brood stock of winter flounder were set in the outer harbor near Gloucester and 336 gravid fish were taken, the catch being nearly twice as large as that of last year. These fish yielded 199,258,000 eggs for incubation.

In the conduct of the so-called "offshore" work, prosecuted under the direction of the superintendent of this station, experienced spawn takers are detailed to accompany the fishing fleet to the Georges Bank fisheries to take eggs from the ripe fish caught for the market, fertilize, and plant them on the fishing grounds. During the past season this work was in progress from February 5 to April 7, and resulted in the planting of \(137,355,000\) fertilized cod eggs and \(42,222,000\) fertilized haddock eggs.

\section*{Woods Hole (Mass.) Station}

\section*{[W. H. Thomas and G. R. Hoffses, Superintendents]}

Well in advance of the spawning season the customary arrangements for securing adult cod were made with trap fishermen at Newport and Narragansett Pier, R. I. It was expected that enough brood fish to serve as an egg supply for the hatchery could be obtained at these points, but inclement weather prevented the fish from entering the traps in substantial numbers. By the middle of November, however, a sufficient number had assembled and were being held in pens for transfer to the hatchery. Not having a boat fitted for carrying live fish, the station is dependent upon the charter of fishing vessels equipped with wells, and as a boat of this kind is available only at the convenience of the owner, arrangements for the immediate transfer of the fish were impossible and before the required facilities could be provided the violent storm of November 22 and 23 destroyed the inclosure and released the fish. The fishermen's equipment was so seriously damaged by the storm that the owners concluded it would not be profitable to repair it for further work, as weather conditions in that locality rarely permit trap fishing much beyond the date mentioned. With the close of cod fishing and the loss of all fish previously taken, the possibility of securing a brood stock for the station failed. The circumstances described and their practical duplication during the preceding year present a most convincing argument in support of the station's need for a boat suitably equipped for the carrying of live fish.

Quite satisfactory work in the propagation of winter flounder was made possible in the Waquoit (Mass.) field by the generally favorable weather prevailing throughout the spawning period. Operations were undertaken there on February 1 and vigorously prosecuted until April 11, during which time 584,000,000 eggs were secured, 90 per cent of which produced good fry. At one time when the entire hatching space was filled to capacity some \(4,500,000\) eggs were planted on the spawning grounds immediately after being fertilized. On March 20, when the collection of eggs of this species was undertaken at Newport, R. I., natural conditions appeared to be entirely favorable, the mild weather permitting regular visits to the nets, and fish of large size being plentiful. Notwithstanding these advantages, the outcome of the work was disappointing, only \(42,820,000\) eggs boing secured. The failure to produce adequate results was due to arrested development of the eggs in the fish. Such eggs were not voided and attempts to take them by artificial means were unsuccessful. While the reason for this trouble is not understood, it is presumably due to injuries sustained by the fish during handling, and is accentuated by holding them in a restricted environment. The ovaries of the fish are unduly distended, which under normal conditions gradually become softer to the touch with the approach of maturity. A fish thus affected seems unable to extrude its eggs and eventually dies.

In the course of the season now methods were tested in an effort to devise means for the safe transportation of brood winter flounder to the Woods Hole station. Owing to the peculiar nature of this fish, experience has shown that it can not be carried to advantage in the 10 -gallon transportation cans in general use by the burcau. If some method can be evolved whereby adequate numbers of the adult fish can be delivered in good condition at the hatchery it will probably go far toward climinating the difficulty referred to and will obviate to a great extent the heavy losses that appear to be unavoidable under the present methods of conducting the work. In addition to the eggs mentioned, upward of \(24,000,000\) were obtained from commercial fishermen operating at Menemsha Pond and other points in Marthas Vineyard Sound. Eggs taken by incision
from a few fish late in the season were readily fertilized and successfully incubated, and it is possible that this method may have to be more extensively resorted to hereafter.

During the spring mackerel appeared to be abundant in local waters and throughout the spawning season the one small boat available was in constant attendance on such traps as could be reached, with spawn takers to secure all available eggs. As a result of these efforts \(3,517,000 \mathrm{eggs}\) of good quality were taken and incubated. Advantage was taken of the opportunity afforded to attach tags to a considerable number of adult mackerel, in continuance of the rather extensive fish-tagging program recently inaugurated by the bureau. Scup, another highly important food fish, was also present in fair numbers, though none containing ripe eggs was found in the traps visited. If a suitable boat had been available for the prosecution of the work it seems certain that many more mackerel eggs and quite probably eggs of the scup in considerable numbers might have been salvaged.

Some 50,000 eggs of the steelhead salmon were received in May from the Applegate Creek (Oreg.) substation. The consignment arrived in rather poor condition, a considerable number of the eggs having hatched on the trays en route. The surviving eggs were successfully incubated and the resulting fish were distributed in various tributary streams of Johns Pond, Waquoit, Mass.

\section*{ANADROMOUS FISHES OF THE ATLANTIC COAST}

Fish-cultural work with fishes of this class is conducted at three stations, located in Maryland, North Carolina, and Maine. The species handled are the shad, river herrings, and Atlantic salmon. The general results of the work in 1925 did not vary materially from those of the preceding year.

\section*{Shad}

Bryans Point (Md.) substation.-Though weather conditions throughout the winter and early spring were favorable to a good run of shad, the fish failed to appear in any considerable numbers and the catch made by the Potomac River fishermen proved the smallest ever recorded. Overfishing and a total lack of protection are undoubtedly responsible for this falling off. In the course of the spawning period (from April 16 to May 18) small daily collections of eggs were made, aggregating \(26,270,000\) for the season. In accordance with the policy heretofore pursued, no eggs were measured or paid for until the second day after their receipt at the hatchery, thus obviating the possibility of paying for defective eggs and insuring a large percentage of hatch. Seven hundred thousand eggs in the eyed stage were shipped for development in the central station (Wash.) aquarium, and \(16,678,671\) fry were hatched from those retained. Five hundred thousand of the fry were furnished to the Connecticut State Board of Fisheries and Game, and the remainder were released on the natural spawning grounds, being divided equally between Maryland and Virginia waters.

Shad and River Herring. Edenton (N. C.) Station
[Wm. S. Vincent, Superintendent]
The two anadromous fishes of commercial importance handled at this station are shad and river herring. Though the station was established primarily for the propagation of shad, this work has gradually declined in volume and is now of minor importance, owing to the growing scarcity of shad in the Albemarle Sound region.

At the opening of the spring fishing season it was anticipated that a goodly number of shad in spawning condition might be secured at the Capehart Beach fishery, but this hope proved futile. Only 2,000 fisl were taken, as compared with a catch of 12,000 the preceding year, and after endeavoring for 10 days to obtain eggs the work was finally abandoned. The total collections of eggs during this period amounted to only 502,000 . A discouraging feature of the work was the difficulty of obtaining male and roe shad at the same time. The morning catch was very apt to consist almost entirely of males, while in the evening conditions were usually reversed.

Large numbers of river herring were captured during the spring, and commercial fishing for that species proved more profitable than in many years; more eggs were therefore taken for propagation than in any previous season since the Edenton station was established, the total exceeding \(336,000,000\). The percentage of fertilization was very low, however, owing to unusual adhesiveness of the eggs, and only about half of the collections was hatched. Every known method was employed to overcome the adhesiveness, among these being the use of muck and starch, taking the eggs at different periods of the day, feathering, etc., but all to no purpose. An apparently plausible theory was advanced by some of the fishermen to account for the faulty condition of the eggs. The almost total lack of rain during the spring caused the water in the river to drop to a very low stage at spawning time, when as a general thing very muddy, high water may be looked for during this period, and the fishermen were of the opinion that lack of sediment in the water may have been responsible for the failure of the eggs to develop as usual. In past seasons many schools of young herring have been observed near the docks and fish houses. Last season, the schools were late in appearing and their numbers were greatly reduced, seemingly justifying the assumption that the percentage of hatch under natural conditions was also below normal.

About 400 brood yellow perch, purchased early in the spring from local fishermen, were held in one of the station ponds. After the fish had spawned, the eggs were gathered up in small dip nets and developed in hatching jars. The percentage of fertilization was high and incubation was accomplished with a loss of only 5 per cent. The resulting fry were utilized to supply applicants and make plants in public waters.

\section*{Atlantic Salmon. Craig Brook (Me.) Station}

\section*{[J. D. De Rocher, Superintendent]}

In view of the continued antagonistic attitude of the salmon-weir fishermen as regards the collection of Atlantic-salmon eggs in Maine rivers, no effort was made to procure a brood stock of that species. The small number of Atlanticsalmon fry on hand at the beginning of the fiscal year was carried to the No. 2 fingerling stage and then liberated in Dead Brook and Dennys River. Early in March two consignments of eggs of this species were received from hatcheries operated by the Canadian Government, one of \(1,000,000\) eggs coming from South Esk, New Brunswick, and another of 500,000 from Gaspe, Province of Quebec. Approximately 954,000 fry were hatched from the first lot, while the second produced more than 490,000 . The fish were distributed in the advanced fry stage, plants being made in the Penobscot, Piscataquis, Salmon, Pleasant, Dennys, St. Croix, and Narragaugus Rivers.

\section*{FISHES OF MINOR INTERIOR WATERS}

The ever growing demands for fish and fish eggs of practically all of the game species propagated by the burcau are making it increasingly difficult to keep pace with them. Of late years the expansion in this direction has been greatly intensified by the wide use of the automobile as a means of travel, and by the building of roarls into hitherto inaccessible regions, thereby opening up to public fishing and subsequent depletion many waters that formerly contained fish in abundance.

Among the fishes most frequently called for are the rainbow trout, brook trout, black basses, rock bass, sunfishes, and crappie. Thus far it has been possible to produce the rainbow trout in quantities adequate to meet the requirements, but in the case of the brook trout the dwindling supply of wild fish has necessitated reliance upon commercial trout-culturists for a large percentage of the eggs needed for stocking the bureau's hatcheries. During the past year the demands for practically all of the pondfishes have been entirely out of proportion to the available supply, and in its efforts to cope with
the situation, both as regards the pondfishes and the brook trout, the bureau has endeavored to enlist the active cooperation not only of the State fisheries authorities but also of many prominent fish and game associations on a scale never previously attempted.

Aside from unpropitious weather conditions, the principal obstacle encountered in the pondfish-cultural work is lack of sufficient rearing space. In an effort to overcome this deficiency the bureau is endeavoring to secure the use of land and water facilities at the command of numerous clubs and fishing organizations for the conduct of rearing operations on an equal share basis. Its efforts in that direction have thus far met with a most encouraging response. A number of cooperative projects have been undertaken, and in some cases organizations have volunteered to construct ponds and troughs at their own expense with the view of rearing young fish, furnished by the bureau's hatcheries, to the fingerling size before liberation in open waters. The influence of such organizations has also been beneficial in securing more effective State fisheries legislation and in developing respect for fish protection on the part of the general public.

\section*{ROCKY MOUNTAIN TROUT STATIONS}

The eight stations and substations comprising this group are among the more important of those whose activities are confined to the production of game fishes. The aggregate distributions of fish and eggs of the brook, rainbow, black-spotted, and Loch Leven trouts and the grayling made by these stations compare favorably with their output in previous years.

\section*{Bozeman (Mont.) Station and Substations}
[W. T. Thompson, Superintendent]
The results of the year's fish-cultural work in this field (the most successful the station has ever experienced) are in a large measure attributable to the close cooperative relations that have existed between the bureau and the Montana Fish and Game Department. Since its recent reorganization, this department has rendered valuable assistance to the station in its work of stocking the numerous waters throughout the State of Montana.

Bozeman (Mont.) station.--The distribution of the large stock of fingerling trout on hand at the opening of the fiscal year was made by one of the bureau's distribution cars, the work extending from early July to the close of November. During this period \(1,074,840\) brook trout, 312,000 rainbow trout, 155,511 Loch Leven trout, and 9,100 lake trout of various sizes were delivered to applicants or planted in public waters. The losses sustained while the distribution was in progress aggregated 143,160 fish, or slightly less than 11 per cent of the original stock.

Of the \(1,606,300\) black-spotted trout eggs received early in the fiscal year from Yellowstone Park, 310,000 were turned over to the district national forester to be planted in the distant and almost inaccessible waters of the Lolo and Missoula National Forests. From the remainder 1,270,000 fry were hatched, these, in addition to the young fish on hand at the beginning of July, giving the station a total of \(1,473,000\) black-spotted trout. All of this stock was distributed in the advanced fry and fingerling stages by the car that was engaged in the shipment of fingerling trout of other species.

During the fall and winter the station acquired over \(1,000,000\) brook-trout eggs, 500,000 of which were forwarded from the Springville (Utah) station, an equal number from the Leadville (Colo.) field, and 100,000 from the cstablishment of the Southside Sportmen's Club of Oakdale, N. Y., the latter being a donation in recognition of the service rendered by the station in securing from the State of Montana a consignment of grayling eggs for the club's hatchery. There were also obtained 67,600 eggs from a small stock of brood brook trout
carried in the station ponds. The losses on some of the eggs were above normal, notably on the consignments from the Utah and Colorado fields, which sustained a mortality in the egg and early fry stages of 152,000 and 190,500 , respectively. The eggs from Leadville were unusually small in size, and the losses were largely increased by the fact that the eggs were practically at the hatching stage when received. The product of this lot was distributed during the spring, but the fry resulting from the Utah consignment were being carried at the close of the fiscal year.

In November and December several shipments of Loch Leven trout eggs, aggregating \(1,393,000\) eggs in round numbers, were received from the Meadow Creek (Mont.) auxiliary. Of these, 598,000 were immediately repacked and shipped on assignment. The remainder produced 509,000 fry, some of which were distributed in May and June. A small lot of landlocked-salmon eggs, received in March from the bureau's Craig Brook (Me.) station, was successfully incubated. It is the intention to plant the young fish of this species in a lake in Montana in the hope of being able eventually to develop a collecting field for eggs. The incubation of \(1,391,000\) rainbow-trout eggs received from the Madison Valley field was completed during May and June, the losses in hatching amounting to slightly more than 4 per cent.

Meadow Creek (Mont.) substation.-Preparations for the season's fish-cultural operations in this field began in September with the installation of traps at several points in Odell Creek for the capture of Loch Leven trout. While good weather lasted large collections of eggs were made every day between October 13 and November 15, on which date the work was brought to a sudden close by the weather turning cold. Of the \(11,750,840\) eggs obtained, approximately 90 per cent were shipped in the eyed stage, some for supplying applicants and some in exchange for eggs of other species.

The rainbow-trout spawning season in this field opened on March 20, fully two weeks in advance of any previous season since the station was established. Eggs were obtained daily from that time until May 21, 3,991,000 of exceedingly fine quality being secured. A considerable number of rainbow trout and numerous grayling were captured in several experimental traps installed in various channels of the Madison River near the head of Meadow Lake. Their eggs were not mature, however, and the current was too swift for the retention of the fish in pens to ripen. Approximately 50 per cent of the fry resulting from the collections were released in parent waters, the Madison Valley Anglers Club and the deputy State warden of Montana assisting in the distribution.

In pursuance of an arrangement effected with the Montana fisheries authorities, whereby the resulting fry were to be liberated in Meadow Creek and other waters in the Madison Valley, this substation incubated in excess of 5,220,000 grayling eggs and 990,000 black-spotted trout eggs and planted the product.

Glacier Park (Mont.) substation.-After carrying to the fingerling stage the 342,000 rainbow-trout fry on hand at the beginning of the fiscal year, the product was turned over to the local park authorities for distribution in the waters of Glacier Park. A consigmment of 484,000 eyed black-spotted trout eggs was received in July, 1924, about half of which were planted in some of the more distant and inaccessible waters near the top of the continental divide. The remainder were incubated and the product planted as fingerling fish in park waters.

During the spring of \(1925,551,000\) eyed rainbow-trout eggs were received from the Meadow Creek field. These were hatched with a small loss, leaving approximately 537,000 fry in the hatchery at the close of June. Green blackspotted trout eggs to the number of 940,380 were received early in June from the Georgetown hatchery of the Montana Fish and Game Department, with the understanding that an equal number would be returned to the State from the Yellowstone Park collections later in the season. About the same time 1,027,000 green grayling eggs were received from the State in exchange for Loch Leven eggs to be supplied later.

Leadville (Colo.) Station
[C. H. Van Atta, Superintendent]
The work at this station is concerned mainly with the production of brook trout. It differs from that at most of the other brook-trout stations in that the supply of eggs is derived almost entirely from collections made on a share basis from privately owned lakes and reservoirs. From five projects located within a radius of about 150 miles from the station over \(6,000,000\) brook-trout eggs


Fig. 3.-Virgin lake in the Sawtooth National Forest, Idaho. Eleration 9,000 feet


Fig. 4.-Pack outfit on the meadows of Hell Roaring Creek, Sarwooth National Forest, Idaho. Typical of the meadow streams in the region
U. S. B. F. Doc. 999


Fig. 5.-Loading pack horses, flacier National Park


Fig. 6.-Forest ranger planting fish, Glacier National Park
were obtained in the fall of 1924 at an average cost of 7 cents per 1,000. Among the most prolific is the property known as the Engelbrecht Lakes, consisting of two inclosures of 50 and \(S 0\) acres, fed by a small creek. While egg collecting is in progress the owner of these lakes furnishes board and lodging to the bureau's spawn takers and receives as his part of the proceeds 30 per cent of the eyed eggs and fry.

The Mount Massive Trout Club holdings comprise a group of 20 lakes, ranging in area from 1 acre to 18 acres, the series being fed by a ditch leading from a neighboring creek. The work here is conducted on an equal share basis. A third collecting point is Turquoise Lake, a reservoir of approximately 800 acres owned by the Colorado Fuel \& Iron Co. Due to the fact that this lake was drawn down about 18 feet below its normal level during the fall of 1924, laying bare the usual spawning area, there was a falling off in output of more than half a million eggs as compared with the results of the preceding year. Collecting projects of smaller extent arc Carroll Lakes, two inclosures having a combined area of 20 acres, controlled by the Colorado Springs Fly-Casting Club, and a series of four, known as Wurtz Lakes, ranging in size from 1 to 5 acres.

In addition to the collections mentioned the station received \(1,266,000\) eggs from a privately owned fish-cultural establishment at Creede, Colo. In this case the owner of the plant made the collection of eggs at his expense, and in return for 50 per cent of the developed eggs the station assumed the care of the entire lot to the eyed stage and packed the owner's share for shipment to points directed by him.

In the course of the year the station acquired 162,200 rainbow-trout eggs, collected in Baker Lake, near Jefferson, Colo., and from the Evergreen Lakes on the station grounds. Eyed eggs of this species were also received from the bureau's Springville (Utah) and Saratoga (Wyo.) stations. From a consignment of 814,000 eyed black-spotted trout eggs, received from the Iellowstone Park, 801,000 No. 1 fingerling fish were produced and distributed. The station also handled 75,000 eyed lake trout eggs transferred early in March from the Duluth (Minn.) station.

\section*{Yellowstone National Park (Wyo.) Substation \\ [C. F. Culler, in charge]}

The collections of eggs of the black-spotted trout in this field during July, 1924, amounted to \(19,522,500\). These were eyed in the bureau's hatchery near Lake Hotel, together with \(12,477,500\) taken earlier in the season. The unusually small water supply available for incubation work making it hazardous, if not impossible, to complete the development of this large stock, it was decided to utilize eyed eggs in larger inumbers than heretofore for stocking the more distant and inaccessible waters of the park, especially since close observation had disclosed encouraging results from previous plants of eggs. No available means exist for transporting fry in large numbers to such waters, and even where the waters to be stocked are accessible by boat an excessive amount of time is involved in making the plant. Taking into consideration the number of streams where eggs are collected, it is estimated that fully 20 days would have been necessary to carry out the bureau's policy of returning to parent waters 25 per cent of the fry resulting from such collections, whereas the time spent in making this return in the form of eyed eggs did not exceed 4 days. Approximately 45 per cent of the product of the eggs collected was planted in the waters of the park either in the form of eyed eggs or as advanced fry. The remainder of the output, consisting of eyed eggs, was shipped to applicants and to other stations of the bureau.

Unusually high water obtained in all the park streams in the following spring from the time the station was opened-about the middle of May-up to the close of the fiscal year. This condition and the fact that ice-cold water in large quantities was flowing into the streams from adjacent mountains made a rather discouraging outlook for egg collections.

Saratoga (Wyo.) Station
[0. N. Baldwin, Superintendent]
Brook-trout operations were conducted as usual. Part of the 318,000 fingerlings of this species carried over from the hatch of the preceding year were distributed to applicants in the course of the summer, and the remainder was turned
over to Forest Service officials to be planted in streams located within the forest reserve. A somewhat smaller number of eggs than usual was realized from the adult brook trout held in the station ponds and were of a lower grade than those of the preceding year, the percentage of hatch amounting to only 67 . The unusually poor quality of these eggs is attributed to the fact that it became necessary to confine the brood stock in small concrete pools for an extended period prior to the spawning season. Satisfactory terms for the collection of brook-trout eggs in Big Creek Lakes, under the control of the Big Horn Cattle \& Improvement Co., having been effected with the new manager of the company, spawning operations in that field were undertaken on October 8 and continued to December 11 , resulting in the collection of \(663,050 \mathrm{cggs}\) of excellent quality. An equitable percentage of the fry hatched from this lot will be reared to fingerlings and returned to their native waters.

By a recent decision of the courts future fishing privileges in these lakes will be vested in the Forest Service, and when the property has been turned over to that service it will doubtless be possible, through the exercise of adequate protective measures, to develop a field station that can be depended upon to yield several millions of brook-trout eggs annually.

The rainbow-trout work in the Sage Creek, Canon Creek, and Lost Creek fields extended from April 22 to May 19. When the spawning season opened Sage Creek was at its normal level, the fish appeared to be running well, and all indications pointed to a record egg collection. About the middle of May, however, the work was brought to a sudden close by a heavy rain, which lasted for about 36 hours. In the course of the storm the debris, caused by the breaking of an irrigation dam a short distance above, came down in a solid body against the upper rack, destroying the trap and liberating a brood stock of approximately 800 fish confined therein. A small stream under natural conditions, Canon Creek usually yields approximately half of the rainbow-trout eggs collected in the Wyoming field. During the past season, however, the water was so low as to hardly cover the larger fish in the stream, and the thousands of cranes that annually visit this section inflicted heavy losses on the brood stock. Under existing conditions the eggs collected numbered less than 200,000. Owing to the more favorable water stage in Lost Creek a fairly successful season was experienced, and the total egg collections for the three fields aggregated 1,038,620.

Loch Leven trout eggs to the number of 201,560 were obtained during the fall from the station brood stock, which included a number of 2-year-old fish, and at the close of the fiscal year there were 155,000 fingerling fish of this species on hand. A shipment of black-spotted trout eggs, received from the Yellowstone Park late in July, was incubated with very little loss, yielding 320,000 fry for deposit in suitable waters of the region.

Among the many more important improvements made at this station during the year was the construction of a modern 5 -room cottage for the use of the foreman and the installation of a Westinghouse 32 -volt electric plant for lightng the hatchery and grounds.

\section*{Spearfish (S. Dak.) Station}

\section*{[D. C. Bоotr, Superintendent]}

Fish-cultural operations were conducted as usual, though on a somewhat enlarged scale. With the recent extension of the pond system, the stock of brook trout was considerably increased by the capture of fish in neighboring streams. Eggs of this species handled during the year included 365,000 taken from the station brood stock, 295,000 obtained by purchase from a commercial dealer in Massachusetts, and 500,000 transferred from the Leadville (Colo.) field. Fry resulting from this stock, to the number of 874,600 , were distributed in the Nos. 1 and \(11 / 2\) fingerling stages, and a small balance was on hand at the close of June.

The station collections included 37,255 eggs of the rainbow trout and 208,250 of the Loch Leven trout. Three hundred thousand additional Loch Leven trout eggs were shipped from the Bozeman (Mont.) station and 116,000 rainbow eggs were received from the Neosho (Mo.) and Saratoga (Wyo.) stations. All of these were of excellent quality and produced a good percentage of fry.

In the way of construction the station accomplished considerable. The extension of the pond area undertaken during the previous fiscal year was completed and a concrete reservoir of 425,000 gallons capacity was built. Water from this reservoir can be successfully used from six to seven times in succession, first in the hatchery and then in each of the ponds on the lower level of the reservation.
[Claudius Wallich, Superintendent]
Fish-cultural operations at this station consisted mainly in the propagation of brook, rainbow, and black-spotted trout, though they included also the capture of a limited number of catfish in Utah Lake for filling applications submitted by residents of the State of Utah.

The work of collecting brook-trout eggs in the Fish Lake ficld, conducted in cooperation with and under the direction of the Utah fisheries authorities, was taken up November 6, at least 12 days after spawning began, as reported by the forest ranger of that district. The delay occurred because the State officials were not prepared to enter the field at an earlier date. Over \(1,000,000\) eggs were taken in the first day's operations and later collcctions were good, though maximum results were not attained owing to the decision of the State operatives not to make daily collections. The last eggs of the season were taken December 3, the total yield being approximately \(3,500,000\), of which the bureau's share was \(1,341,000\). Of the 950,000 eggs eyed from this lot, 500,000 were shipped to the Bozeman (Mont.) station. The remainder were incubated, and most of the resulting fry were used in filling applications and making public plants in suitable waters in Utah. In this connection an equitable proportion of the output was returned to the waters of Fish Lake.

At the beginning of the fiscal year there were on hand 60,000 fingerling rainbow trout No. \(2 \frac{1}{2}\) and 507,000 fry, the latter being the product of spring collections of eggs in Fish Lake. Excessive losses, probably due in part to the use of fertilizing medium from black-spotted trout when the stock of male rainbow trout was inadequate, reduced the output of this lot to 295,050 fingerling fish. Eggs were taken from the brood rainbow trout held in the station ponds between December 11 and February 25, the returns aggregating 988,370. Owing to imperfect fertilization only 574,000 of these were developed to the eyed stage. During April and May, 1925, collections of eggs of this species were made at Fish Lake under the direct supervision of the State authorities, and of the 21 cases of eggs secured the station received 4 cases containing 700,000 . The percentage of fertilization on these was also low, only about one-fourth of them surviving to the eyed stage. The returns from cooperative black-spotted trout work along the same lines at Strawberry Reservoir, Utah, were \(3,000,000\) eggs, of which the station received one-tenth, or 300,000 . These were of such poor quality that nearly two-thirds of them perished before the end of June.

\section*{NEW ENGLAND TROUT AND SALMON STATIONS}

Included under this head are the stations located at Hartsville, Mass., Nashua, N. H., East Orland, Me., and St. Johnsbury, Vt., with their several auxiliary stations. The work of the group was concerned principally with the propagation of trout and landlocked salmon, though small numbers of other species were handled also. Their output as a whole slightly exceeded that of last year.

\section*{Berkshire (Mass.) Station}

\section*{[W. H. Thomas, Superintendent]}

From the stock of brook trout carried in the station ponds, consisting of 474 fish 2 years old and older, 264,700 eggs were secured at spawning time. With the consent of the proprietor, 45,000 eggs were collected from brook trout contained in a privately owned pond, and 165,300 were purchased from a commercial fish-culturist in Massachusetts. The fry from all this stock continued to develop normally up to March 11, when the loss on one lot began increasing rapidly and within four days had assumed epidemic proportions. Each lot of fry was similarly attacked on reaching a certain stage, and practically all the fish were lost eventually. Twice previously in recent years the station has undergone a like experience with its brook-trout fry, on each occasion after a heavy snow or rainfall. From the information that could be obtained it is believed that the losses were in some way connected with the entrance of surface water in large quantities into the intake pond. A noteworthy feature of the mortality is that the rainbow trout were not affected but continued to develop normally even
when placed in troughs supplied with water from the troughs in which brook trout were dying in large numbers. This would seem to indicate that the disease is not infectious.

As an experiment, yeast and cod-liver oil were mixed with the ground liver fed to these fish, in the proportion of 2 parts yeast and \(11 / 2\) of oil to \(961 / 2\) parts liver; but it was soon discovered from the quantity of food left on the bottom of the troughs that the fish were rejecting the material, and it was observed that they were preving upon one another. Plain liver was substituted and was taken eagerly, nothing being allowed to accumulate.

Five hundred thousand pike-percin eggs were transferred during the spring from the Swanton (Vt.) station. They were of fine quality when received and the loss of 100,000 sustained during the incubation period is believed to have been due to the instability of the hatchery water supply.

During the month of May 45 adult smallmouth bass, furnished from the Cape Vincent (N. Y.) station, were apportioned among the breeding ponds. A few days afterward indications of nest building were noted, and at the close of the fiscal year 4 nests, estimated to contain 5,000 eggs, were observed.

Craig Brook (Me.) Station
[J. D. De Rocher, Superintendent]
An account of the year's work in the propagation of Atlantic salmon may be found on page 476 under the heading "Anadromous Fishes of the Atlantic Coast." The landlocked-satmon fry and fingerlings on hand at the beginning of the fiscal year-approximately 53,000 -were reared to the No. 3 fingerling stage and released in suitable lakes in the region. From 70 adult landlocked salmon captured during November in trap rets set in Toddy Pond, 23,800 eggs were secured and incubated with 142,500 green eggs forwarded from the Green Lake substation. In February and NIarch two shipments of eyed eggs of this species, aggregating 501,000, were received from the Grand Lake Stream auxiliary, and a consignment of nearly 200,000 was furnished the station by the State of Maine from its Caribou hatchery. In the course of the season the station shipped 160,200 eyed eggs, and 528,200 fry were hatched and liberated in the waters of Maine.

In January 1,149,000 eyed brook-trout eggs were purchased from commercial dealers in Massachusetts and New York, and a consignment of 53,000 was received from a Massachusetts dealer in exchange for eggs of the landlocked salmon. A good percentage of hatch was attained with both lots of the purchased eggs but the losses of fry were large, in the case of the Masachusetts consignment amounting to more thau one-fifth of the original stock. All the young fish resulting from these two shipments were distributed in the advanced fry stage, while those derived from the exchange were on hand at the close of the year. The output of the station also included a few lake-trout fingerlings and fry, the product of eggs forwarded from its Grand Lake Stream auxiliary and the Charlevoix (Mich.) field.

Grand Lake Stream (Me.) substation.-At the opening of fiscal year 150,000 landlocked-salmon fry were being held in feeding ponds constructed in the canal formerly used for the passage of boats. They were fed from three to five times daily on sheep liver and beef heart, and when released, about the middle of September, they were fine active fisls in the No. 3 fingerling stage.

The canal ponds are proving far superior to the trough-feeding system for the rearing of landlocked salmon. They not only require much less work but the losses are lighter, the fish are in better health, and attain a larger growth. Eggs of the landlocked salmon to the number of \(1,096,700\) were secured in November from 782 brood fish, which were captured by means of three crib nets and a trap installed in Grand Lake. The collection of eggs was larger than last year, when operations were conducted at both Grand and Dobsis Lakes, by approximately 112,000 . On attaining the eyed stage 501,000 of the eggs were transferred to the main station. Plants of fry aggregating 273,250, part of the product of the remaining eggs, were made early in June in suitable local lakes, and the eanal system was again stocked with 150,000 with the object of distributing them as fingerlings in the fall.

Owing to unfavorable weather and the difficulty of setting mets, the work of obtaining lake-trout eggs during October in the open waters of Grand Lake did not meet with much success, only 17,000 being secured. These were the yield of the four female fish captured, one of which weighed 30 pounds. The eggs were carried to the eyed stage with a loss of about 11 per cent.

Green Lake (Me.) substation.-Fish-cultural activities at this point were confined to the collection of eggs from the run of landlocked salmon in Great Brook. In the course of the spawning season (from November 9 to November 22) 249 brood fish were taken in the traps placed at the mouth of this stream, and from the 86 females contained in the lot 142,500 eggs of superior quality were secured and forwarded to the main station for development. As no hatching operations were possible, owing to the poor condition of the water-supply flume, the usual spring work in the propagation of smelt had to be omitted.

\section*{St. Johnsbury (Vt.) Station and Substations}

\section*{[A. H. Dinsmore, Superintendent]}

The main station at St. Johnsbury, and its two auxiliaries at Holden, Vt., and York Pond, N. H., were operated throughout the year. The principal activities at St. Johnsbury and Holden were connected with the production of brook trout for distribution in the advanced fry stage, while at York Pond the work was largely confined to the development of a project to serve as a future source of supply for trout eggs for stocking various hatcheries of the bureau.

St. Johnsbury (Vt.) station.-Owing to the high summer temperature of the water in Sleepers River, from which stream the hatchery water supply is drawn, this station is not equipped for trout rearing and its work with the Salmonidx is limited to the production of fry for distribution just prior to the feeding stage. In the course of the year the station handled 500,000 eyed brook-trout eggs purchased from commercial fish-culturists, and, in pursuance of a cooperative arrangement with the owners of Darling Pond, Vt., approximately 742,000 brooktrout eggs collected in that body of water and transferred to the station without expense to the bureau were incubated on shares, the station receiving one-third of the resulting fry and turning back two-thirds to the owners. In addition to the above 400,000 eggs of this species, the property of two fish and game clubs of the region were incubated and the resulting fry placed at the disposal of the clubs to be planted by them in certain public waters. Small numbers of eggs of the landlocked salmon, steelhead salmon, and lake trout were also hatched and the product distributed to applicants of the bureau.

Holden (Vt.) substation.-Fish-cultural work at this point began with the collection of lake-trout eggs in Lake Dunmore in cooperation with the State of Vermont. The spawning period extended from October 24 to November 9, and 312,500 eggs were secured. On reaching the eyed stage 50 per cent of these were turned over to Vermont and about one-third of the remaining 50 per cent were forwarded to the St. Johnsbury hatchery. The remainder were incubated at Holden. Approximately 569,000 brook-trout eggs were handled during the season, including a lot of 200,000 purchased at the expense of a local fish and game association. The fry hatched from this lot were turned back to the association for liberation in public waters of the region.

York Pond (N.H.) substation.-The development work which has been in progress for several years in this field was continued as other operations would permit. The diversion ditch carrying water from Cold Brook through Sky and Bog Ponds into York Pond was enlarged so that it will now carry the entire normal flow from the brook. Work on the West Branch diversion ditch, begun in late November, was prosecuted as continuously as possible. Eventually this ditch will bring the West Branch water into York Pond through a swamp, which will form another pond about 5 acres in area. A water wheel designed by the bureau's architect and engineer was constructed and placed in position for operation, and a dynamo and transmission lines capable of furnishing sufficient power to light the station buildings and operate small machinery were installed.

During October and November 1,249 female brook trout were captured and spawned, yielding slightly more than 437,000 eggs. Approximately 69,000 of these were transferred in the eyed stage to the Holden substation, and from the remainder upward of 144,000 fry and fingerling fish were produced and distributed.

\section*{Nashua (N. H.) Station}
[W. F. Hubbard, Superintendent]
There was no departure from past methods in the conduct of fish-cultural work at this station. The total output of fingerling fish, amounting to approximately 470,000 , was divided as to species among the brook, rainbow, lake, and Loch Leven trouts and the landlocked salmon. The station also incubated \(1,000,000\)
eyed pike-perch eggs transferred from the Swanton (Vt.) hatchery, and distributed the product as fry. Eggs were obtained from the small brood stock of brook trout and rainbow trout, carried in the station ponds, between November 11 and January 14, the first-named species yielding about 28,000 and the rainbows slightly in excess of 125,000 . This supply was supplemented by the purchase of 694,000 brook-trout eggs from commercial dealers in New England and the transfer of 53,000 rainbow trout eggs from the White Sulphur Springs (W. Va.) hatchery. There was a very heavy loss of fry resulting from one lot of the commercial eggs, the mortality amounting to nearly 50 per cent of the original stock. From approximately 23,000 landlocked-salmon eggs, shipped during the spring from the Craig Brook (Me.) station, 20,000 fingerling fish were produced and distributed. About the middle of June the station force undertook the collection of smallmouth-bass fry from Lake Sunapee for supplying applicants, but owing to the high winds, which prevailed almost continuously during the hatching period and until the schools of fry had dispersed, the attempt was almost a failure, only 28,000 being secured.

\section*{COMBINATION TROUT AND POND STATIONS}

At these stations, located in the States of Iowa, West Virginia, Virginia, Tennessee, and Missouri, the fishes propagated included not only the various trouts but also several species of warm-water pondfishes. Fish-cultural activities of some kind are in progress throughout the year, which makes these stations very attractive to the general public. As compared with last year's results, the production of both trout and pondfishes was materially increased.

\section*{Erwin (Tenn.), Station}

\section*{[A. G. Keesecker, Superintendent]}

The species of fish propagated at this station during the past year included rainbow, Loch Leven, and brook trout, steelhead salmon, largemouth and smallmouth black bass, rock bass, and sunfish. The total distributions of fish and fish eggs exceeded those of the previous year by approximately 165,000 . Between November 2 and January 6 the brood stock of rainbow trout yielded 647,700 eggs. Though the collection was considerably smaller than that of the previous year, the quality of the eggs was far superior, over 72 per cent being successfully eyed, as compared with less than 63 per cent in 1924. This improvement in fertility is attributed to the fact that a large part of the brood stock consisted of young fish that had been reared in earth-bottom ponds containing a plentiful supply of natural food. A consignment of 25,000 eyed rainbow-tront eggs taken from wild fish was received during the spring from the Meadow Creek (Mont.) field. The fry hatched from them will be reared for increasing the station brood stock of that species.

Four hundred and fifty thousand brook-trout eggs of good quality, received early in the winter from one of the commercial hatcheries in Massachusetts, yielded 386,750 No. 2 fingerling fish for distribution. The brood steelhead salmon held in the station ponds spawned between June 13 and March 24, yielding approximately 264,000 eggs. Their fertility was poor, only about 60 per cent surviving to the eyed stage and less than 30 per cent producing fry. In view of the unsatisfactory results attained it was decided to discontinue the propagation of the species and the brood stock was distributed by one of the burean's cars during the spring.

The output of pondfishes was somewhat larger than in the preceding year, and at the close of June from 60,000 to 70,000 of the various species were being carried in the ponds for fall distribution. All buildings on the station grounds were painted during the year, this being the only improvement for which funds were a vailable.

\section*{Manchester (Iowa) Station}

\section*{[F. E. Hare, Superintendent]}

On June 15, 1925, the Manchester station had the misfortune to receive the full effects of one of the severest rainstorms that has ever visited this region. The storm broke suddenly and with unparalleled fury, washing out roadways,
bridges, retaining walls, and water-supply pipes, and covering the reservation with water to a depth of several feet. The large stock of brood rainbow trout, smallmouth black bass, and rock bass on hand in the station ponds was released by the flood waters into Spring Branch, though a considerable number of the fish were recovered later with seines and will be used as the basis for a new brood stock. In the hatchery, where fingerling brook and rainhow trout aggregating 627,000 were being held in troughs awaiting distribution, the entire stock was swept away, all, with the exception of the few lost on the grounds when the waters receded, being carried into the Maquoketa River and Spring Branch.

During the previous winter rainbow-trout eggs of fine quality were obtained from the station brood stock between December 9 and March 26, the total amounting to \(1,076,000\), or nearly twice the number collected the preceding year. On reaching the eyed stage 690,000 were shipped to applicants in five States. The remaining eggs were incubated in the hatchery, and the resulting fry were carried away during the flood, together with the product of 25,000 eggs from wild rainbow trout received in May from the Meadow Creek (Mont.) field.

Eight hundred and twenty thousand eyed brook-trout eggs were received from commercial dealers in exchange for eggs of other species, and 500,000 were transferred from the Leadville (Colo.) field. The fry resulting from the latter were among the fish carried away by the flood, but the majority of those hatched from the commercial eggs had been distributed previous to its occurrence. The year's output also included limited numbers of fingerling smallmouth bass and rock bass, the product of the spring spawning of the previous year. Hope had been entertained that a good showing might be made in the production of pondfishes in the spring of 1925 , but all efforts along that line were nullified by the storm. All brood smallmouth bass and rock bass, together with an unknown number of fry, were released, the results of the spring work proving a complete failure. In the course of the year a considerable amount of improvement work on the hatchery and other buildings was accomplished, all of it being done by the station force.

\section*{Neosho (Mo.) Station}

\section*{[F. J. Foster, Superintendent]}

The year at this station was one of the most successful in its history. As in former years, fish-cultural activities were confined mainly to the propagation of rainbow trout and largemouth black bass, though considerable numbers of fish of other species were incidentally produced. In the course of the rainbow-trout spawning season (from November 1 to February 28) 1,357,160 eggs were collected, of which 696,000 in the eyed stage were consigned to applicants and other stations of the bureau. An outstanding feature of the work with this species was the material increase over past years in the number of large fingerlings produced, approximately two-thirds of the fingerlings distributed being in the No. 4 stage or larger. It is believed that the present policy of discarding practically all brood trout after their first spawning season is at least partially responsible for the marked improvement in the quality and quantity of the spawn collected, the comparatively large size of the fish distributed, and the low average cost of egg production, the latter item, based on the food consumed by the parent stock, amounting to \(231 / 2\) cents per thousand, a reduction of \(51 / 2\) cents as compared with its cost in the preceding year.

Though the health of the adult and yearling trout was generally satisfactory throughout the year, a constant and vigilant watch had to be maintained to prevent heavy losses of fingerling fish from the ravages of parasitic enemies. Monthly and often bimonthly treatments with vinegar solution were applied for the removal of gyrodactylus, and one trough of fry, still in the sac stage, became heavily infested with ichthyophthirius. As the fish at that time were still at the bottom of the trough, remedial measures were difficult to apply and fully half of this lot succumbed before the parasite could be eliminated.

The greatest loss experienced at this station continues to be from the affection known as crystals in the kidnevs, which makes its appearance in fingerling fish from \(11 / 2\) to \(21 / 2\) inches long. There is ground for the hope that this trouble may be overcome, one reason being that the brood fish resulting from eggs shipped from the Madison Valley (Mont.) field two years ago have never been seriously affected by it; another is that the lot of fish experimentally fed on yeast and cod-liver oil continued in good health to the end of the season. Apparently the disorder is local as it has never been known to develop in fingerlings hatched from eggs shipped by the station to other points.

Early in the spring a new and peculiar disease, apparently of nervous origin, broke out among the rainbow-trout fingerlings, not only at the main station but also at the Bourbon auxiliary and at two private hatcheries in Missouri. Strong evidence of the disease was visible in some troughs while in other adjoining troughs there was not the slightest discernible trace of it. It invariably attacked fish of the same size-about 2 inches in length. Its presence was first made evident by a marked restlessness and loss of appetite and within a day or two afterward the slightest disturbance, even the passing of a hand over the trough, would cause the affected fish to go into convulsions, the mouth opening, the gills distending, and the fish pursuing a rapid darting and frequently a turning motion. Within a few seconds thereafter the diseased fish would sink to the bottom of the trough and die. The mouth closed at death and the gills became normal but the body invariably assumed a crescent shape as if the muscles along the lateral line on one side had contracted abnormally. If allowed to run its course, the duration of the disease was from a week to 10 days, terminating fatally. The treatment adopted was to darken the troughs on the first appearance of the trouble, carefully guarding against the slightest disturbance, and discontinue feeding for a period of 36 to 48 hours. At the expiration of that time the covers were carefully lifted and the fish fed lightly on clabbered milk, this diet being continued for two days. In the troughs subjected to this treatment the losses averaged less than 10 per cent, while the rate of mortality in the troughs where nothing was done to check the disease amounted to fully 50 per cent.

In its work with the pondfishes the station was quite successful, its output of fingerlings being more than 10 per cent in excess of the record of any previous year in its history. The importance of this statement is increased by the fact that over half the production consisted of black bass, for which there is such a heavy demand. The output of bass was four times greater than last year's, and exceeded that of any previous year by a substantial margin. The improvement in results, particularly as regards the bass, is attributed to a complete renewal of the brood stock preceded by a period of nearly a year when no bass were in the ponds, the purpose being to break the life cycle of the parasites which have in the past proved such a detriment to the pond work at this station.

Bourbon (Mo.) substation.-Very gratifying results were attained during the third year of operations at this point. A total of \(1,304,170\) rainbow-trout eggs was collected, nearly three times the total of last year, and its entire cost amounted to only \(\$ 160.44\). On reaching the eyed stage, approximately 748,000 of these eggs were distributed to applicants and to other stations of the bureau, while from the remaining stock nearly 60,000 fingerling fish were produced, more than half of them being 6 inches in length when distributed.

The health of the brood stock of rainbow trout remained good throughout the year, though considerable losses were sustained among the fingerlings owing to the development of crystals in the kidneys. The few parasitic attacks encountered were easily controlled by the application of vinegar baths, but no entirely satisfactory remedy could be found for combating the kidney affection.

Langdon (Kans.) substation.-In the conduct of work at this point greater difficulty than last year was experienced, owing to the larger number of ponds in operation and the scarcity of experienced help, the services of only one trained fish-culturist and two temporary assistants being available. Despite these handieaps and the further fact that climatic conditions during the spawning season of the black bass were unfavorable, the output exceeded last year's and the results were accomplished at a cost of \(\$ 2.40\) less per thousand than last year's cost, which amounted to \(\$ 32.68\). In arriving at this cost, salaries of the statutory employees engaged in the work were not considered.

\section*{White Sulphur Springs (W. Va.) Station}

\section*{[Edw. M. Haynes, Superintendent]}

The methods employed in the fish-cultural work at this station did not vary in any essential respect from those of recent years. Three species of trout were handled-brook, rainbow, and Loch Leven-and of these only the rainbow trout originated from eggs produced on the reservation. Because of the heavy mortality in variably experienced in the many attempts that have been made to hold adult brook trout through the reproductive season, it has been found advisable to restrict such work to an experimental basis. During the year all brook trout eggs handled-1,741,000-were secured either by purchase or by exchange for eggs of other species. For several years the station has accomplished quite extensive brook-trout work through cooperation with the West Virginia State
authorities, the State purchasing the eggs from commercial fish-culturists and distributing the fry by means of its fisheries car. The bureau's part of the work comprises the incubation of the eggs and the care of the young fish produced until they arrive at a suitable age for liberation in open waters. Such operations during the past year involved the purchase and incubation of \(1,041,000\) eggs and the distribution of nearly \(1,000,000\) fingerling fish. Seven hundred thousand brook-trout eggs, received in exchange for those of other species, produced, in round numbers, 450,000 fingerlings. These fish were distributed by the bureau's force.

From the brood stock of rainbow trout carried in the station ponds, \(1,200,000\) eggs were collected, the spawning season extending from November 10 to the end of January. Of these, approximately 360,000 were shipped in the eyed stage to applicants and to other stations of the bureau. From the retained eggs more than 400,000 fingerling fish were produced and distributed, 63,000 being on hand at the close of the fiscal year. The bureau recently undertook the propagation of Loch Leven trout at this station with the view of providing a substitute for the brook trout in many of the streams of West Virginia where that species was formerly abundant but no longer thrives, owing to changed conditions. With this plan in view, 150,000 Loch Leven eggs were forwarded to the station from the Madison Valley (Mont.) field during the winter. They were of fine quality and produced a large percentage of fry. Three thousand fingerling fish, part of the results of a similar shipment in the preceding year, are being reared for a future brood stock.

An interesting and conclusive feeding experiment was conducted during the spring. A lot of 15,000 rainbow-trout fingerlings was fed on beef heart and fish meal mixed in equal proportions, while another lot, similar in every respect to the first, was maintained on a diet of beef heart solely. When undertaken it was the intention to prolong the test for 60 days, but by the end of the fortyseventh day the fish in lot 1 had become so emaciated and the daily losses were so heavy that it was necessary to abandon the experiment. In the course of the 47 days the increase in the weight of the first lot was only 5.075 pounds, and 1,721 of its number had perished. The control lot had gained 12.3 pounds and the entire loss for the period was only 288 fish. Practically no loss occurred in the first lot until the end of the thirtieth day, after which time the rate of mortality increased rapidly, and when the test was discontinued it had attained the alarming total of 250 fish per day.

Another feeding experiment was made with the view of noting its effect on the quality of the eggs obtained from the brood stock. For some time prior to the spawning season a number of adult rainbow trout were maintained on a mixture of sheep liver and cod-liver oil, while another lot was fed sheep liver alone. The results were in favor of the straight liver diet, the fish thus fed yielding a considerably larger percentage of good eggs than those subsisting on the liver and oil mixture.

The work with the warm-water pondfishes was materially hampered by cold, unseasonable weather during the spring. In an effort to obviate the loss of eggs through the sudden and extreme temperature changes to which this region is peculiarly subject, the adult largemouth bass were transferred from their winter quarters early in March to a pond supplied with a heavy flow of water, the idea being to retard the development of their eggs until all danger of extreme temperature changes would be at a minimum. This measure proved partially successful, though a severe temperature fluctuation occurring as late as May 27 injuriously affected the results.

\section*{Wytheville (Va.) Station}

\section*{[C. B. Grater, Superintendent]}

The spawning season of the rainbow trout began on October 19 and clnsed February 2, the yield of eggs being 965,000 . The quality of the spawn was appreciably impaired as a consequence of the very low water supply available for the brood fish during the preceding spring and summer. The condition finally became so acute that it was necessary to transfer them to a series of ponds on a lower level, where more water was available. The effect of this increased flow of water of somewhat higher temperature than customary was to noticeably advance the maturity of the fish and lower the quality of their spawn. On attaining the eyed stage 201,000 of the eggs were shipped on assignment. Less than 38 per cent of the remaining stock hatched, and subsequent losses of fry in process of rearing reduced the output of fingerling fish to 129,600 . Late the
following May the station received a shipment of 25,000 eggs of wild rainbow trout from the Springville (Utah) field, and the 15,000 fingerlings derived from this stock were on hand at the close of June.

In order to test the efficacy of cod-liver oil and yeast in maintaining the health of fish, 300 adult rainbow trout, equally divided as to sex, were segregated in one of the ponds for some time prior to the spawning season, and were fed a diet of beef heart mixed with these materials in the proportion of 2 parts oil and 4 parts yeast to 100 parts of the heart. That the food is beneficial was clearly shown by the improved results at spawning time, the eggs from the trout used in the experiment being superior to those from the control lot (fed exclusively on beef heart), both as to quality and quantity.

The disease known as Octomitus, prevalent at this station during the two preceding years, made its appearance again, somewhat earlier than usual, and considerable numbers of fingerling fish were lost as a result of its ravages.

With the view of ascertaining the relative value of their spawn, brood rainbow trout of various ages were segregated in different ponds and their eggs developed in separate troughs. The mortality among eggs from 3 -year-old and 4 -year-old fish did not vary greatly, amounting to 43.3 and 43.61 per cent, respectively. The loss among the 6 -year-old fish was 40 per cent, while \(571 / 2\) per cent of the eggs taken from fish 7 years of age proved worthless.

In addition to its work with the rainbow trout, the Wytheville hatchery incubated 31,000 brown-trout eggs of inferior quality, the product of 9002 -year-old fish held in the station pounds, as well as 400,000 brook-trout eggs purchased from a commercial fish-culturist in Massachusetts. The latter were of an excellent quality vielding a high percentage of fingerling fish.

The outcome of the year's work in the propagation of the warm-water pondfishes was comparatively successful. Besides an output of more than 2,000 advanced fingerling largemouth black bass in the fall of 1924, 232,000 fry and No. 1 fingerling fish of that species were distributed at the close of the year, this stock being the progeny of 250 adult bass that spawned during the spring in a single large pond. The distributions also included limited numbers of rock bass, bream, and catfish.

\section*{PONDFISH-CULTURAL STATIONS}

The results of the year's work at the seven main stations and five auxiliaries included in this classification were quite satisfactory, the total output exceeding that of the previous season by approximately 343,000 fish. Owing to the impossibility of obtaining an adequate stock of brood black bass, the work with that fish was considerably curtailed at some points. Following is a statement of the aggregate output of these stations, by species, during the fiscal years 1924 and 1925:


Cold Spring (Ga.) Station
[Chas. A. Bullock, Superintendent]
In the work of propagating the largemouth black bass it is the practice at this station to collect all brood fish at the close of a breeding season and store them in ponds until the approach of the next spawning period in February. This makes it possible to allow all the other ponds on the reservation to remain dry for approximately six months of the year, thus tending to correct any acidity
of the soil, check a too abundant plant growth, and eliminate destructive beetles and other carnivorous aquatic insect life.

In advance of the spawning season steps were taken to supplement the supply of brood bass with wild adults from local waters, and a sufficient number were secured to stock three breeding ponds. Spawning began on March 20, about 10 days later than usual, the delay being due to cool weather occurring throughout January and February. There was an absence of sudden changes in temperature and heavy electrical storms while the fish were nesting, these favorable conditions, together with the improved quality of the brood stock, making possible a marked increase in production, the output for the year consisting of 400,495 fry and fingerling bass, 20,000 of which were still on hand at the end of June. The highest record previously attained in the bass work in this field was in 1893, when 271,000 were distributed.

To facilitate the work of collecting bass fry from the ponds for distribution, a decidedly novel scheme was resorted to. Every pondfish-culturist is familiar with the fact that it is very hard to locate schools of young bass in the ponds when the weather is windy. In an effort to overcome this difficulty a small quantity of menhaden fish oil was sprinkled on the surface of the pond and proved quite effectual, the water within a short time becoming smooth and quiet and remaining in that condition for about 15 minutes.

Harris Ponds (Ga.) substation.-Work in this field is confined to the propagation of bream and catfish, and while the demands for the former are constantly increasing, thus far it has been possible to keep pace with them. The ponds are drawn late in the summer and the fingerling fish transferred to the main station for convenience in distributing them to applicants.

\section*{Edenton (N. C.) Station}

\section*{[W. S. Vincent, Superintendent]}

The enlarging and improving of the pond system at this station during the fall of 1924 enabled the bureau to produce the largest number of largemouth black bass in its history in the spring of 1925 . The brood fish, obtained from local waters, were large, many of them weighing from 5 to 6 pounds, hence their ability to produce eggs was at its maximum. Several of the schools of fry were counted and were found to contain from 10,000 to 15,000 each. During May and the first part of June 155,450 advanced fry and fingerling fish were gathered from the ponds and supplied to applicants. Shortly before the middle of June the weather became so warm and the difficulty of tempering the water for the shipment of fish so great that the distribution work had to be postponed to await more favorable conditions. In addition to largemouth bass, sunfish, crappie, and warmouth bass were produced in small numbers.

\section*{Louisville (Ky.) Station}

\section*{[C. W. Burnham, Superintendent]}

The spawning season of the pondfishes handled at this station opened on April 12, about 10 days earlier than usual, eggs of the smallmouth bass being discovered on that date. In the course of the season several periods of cold weather intervened, but there was nothing to indicate that either the eggs or the fry were injured by it. The output of largemouth bass was small, as only a small brood stock of that species was available for the work. Three hundred and fifty adult fish constituted the brood stock of smallmouth bass, about onethird of which were obtained from Lake Erie with the consent of the Ohio fisheries authorities. It was originally planned to secure 300 from that source, but the demands of other stations had to be met also and the total supply was comparatively small. The season's output of young fish of this species consisted of 420,000 fry and 2,725 fingerlings.

Heretofore it has been customary, as soon as the bass were removed from the ponds, to use part of the space thus occupied for the propagation of bream. However, in view of the fact that the number of bream produced in this way exceeded the demand for them, the work with that species last season was limited to a single pond. The station also produced a small number of rock bass for distribution.

\section*{Mammoth Spring (Ark.) Station}

\section*{[Dell Brown, Superintendent]}

The stock of brood smallmouth black bass on hand at the opening of spring was supplemented late in April by the acquisition of 92 adults transferred from Lake Erie waters. The fish began nesting on March 26, and spawning occurred daily for some time thereafter. It was soon discovered, however, that the nests contained very few eggs and that in every instance they were being deserted by the parent fisli. The reason for this unnatural action has not been determined, but it is thought to have been caused in part, at least, by blasting operations going on at the time in the vicinity of the station. At the close of the fiscal year only 28,300 fry and fingerling bass had been produced from the entire brood stock of 416 fish.

Somewhat better results were attained in the work with the largemouth bass, though it was apparent that they, too, were greatly disturbed by the heavy explosions. Many nests were seen in the ponds, but only 20 of them contained live fry. The output from these amounted to 77,135 No. 1 fingerlings. In addition to the work with the black bass, limited numbers of rock bass, bream, catfish, and crappie were produced and distributed.

Orangeburg (S. C.) Station
[G. W. N. Brown, Superintendent]
The nesting of black bass began on February 14, earlier than in any previous year in the history of the station, and was prolonged almost to the middle of June. A very unusual occurrence-at least it has never before been noted in connection with the work here-was the breaking up of several schools of young bass before they had attained the advanced fry stage. This is believed to have been due to the severely cold weather which occurred shortly after the eggs hatched, causing the parent fish to abandon the schools. The same thing was observed at other pond stations of the bureau last season. The station's output of bass for the year consisted of 107,500 fry and 265,055 fingerlings from 1 to 4 inches in length. Deliveries were made to applicants in North Carolina, South Carolina, and Georgia, and the Edisto River at Orangeburg was stocked. In addition to the above, limited numbers of sunfish, warmouth bass, crappie, and catfish were produced and distributed to applicants.

\section*{San Marcos (Tex.) Station}
[MARK Riley, Superintendent]
Six species of fish were handled at this station, the most important being the black bass. Owing to an inadequate brood stock, both as to number and size, and to the occurrence of high winds during the height of the spring distributing season, making it impossible to capture many of the schools of young fish before they dispersed in the ponds, the output of black bass was below the average. The year's distribution amounted to 224,861 fingerlings ranging in size from No. 1 to No. 9. In addition to the station output of pondfishes, considerable numbers of black bass and sunfish were produced in Kerrville, Medina Lake, and New Braunfels, Tex., at which places the bureau is cooperating with the municipal authorities in the conduct of pondfish-cultural work.

A prolonged drought, the most enduring in the history of the State, caused the evaporation of the water in practically all ponds and tanks in the region, and even some of the larger streams were reduced to mere chains of isolated pools. Taking advantage of the opportunity offered by these conditions, the station seined the stagnant and rapidly disappearing waters and transferred the fish collected therein to running streams, thus accomplishing a larger amount of salvage work than has ever before been possible in the history of the station.

Within recent years the distributions of crappie from the San Marcos station have been considerably increased by drawing upon the stock of young crappie produced in privately owned ponds. These inclosures were originally stocked by the bureau with the understanding that the station would be allowed to draw upon them to a reasonable extent in supplying the public demands for crappie. Because of the drought and the consequent failure of this source of supply, there was a very limited output of this species during the year.

An assignment of rainbow-trout eggs, transferred from the Saratoga (Wyo.) station, and one of steelhead salmon, shipped from one of the Oregon substations, were received during the spring and incubated at Medina Lake. In each case considerable losses were sustained in the egg and fry stages, though enough survived to justify the experiment. Of the few thousands of these fish thus far planted locally, many are known to be doing well in the swift waters of the Medina River, just below the large dam.

\section*{Tupelo (Miss.) Station}

\section*{[C. R. Wiant, Superintendent]}

By means of stocks of wild fish obtained from local ponds and streams during the late summer and fall of 1924, the station's brood stock of large-mouth black bass was increased to 500 fish, ranging in weight from 1 to 5 pounds. At the approach of the spawning season the fish were apportioned in four ponds, according to size. Three hundred and forty of the larger ones were divided between two ponds covering an area of 2.38 acres; 110 fish, ranging from 1 to 2 pounds in weight, were installed in a pond slightly larger than two-thirds of an acre, while the remaining 50 , averaging about 1 pound each, were placed in a shallow pond abundantly stocked with aquatic vegetation. Very few, if any, returns were expected from the latter pond. However, these fish and those in the pond next in size were the first to begin spawning. The segregation of the fish according to size proved of material advantage in the work, since thereby the fry came on in two periods, allowing time for the entire collection and distribution to be made by the station force, and as soon as the fry season was over in the ponds where spawning first occurred it was possible to seine them for fingerling fish without endangering the nests of the late spawners. The distribution of young bass from the four ponds during the fiscal year aggregated 430,000 advanced fry and 137,205 fingerlings.

A fairly successful season was experienced in the propagation of sunfish. The distribution of this fish was undertaken on September 9, and in the course of the fall 73,375 fingerlings were delivered, supplying 205 applicants in various parts of Mississippi and Alabama. Small distributions of crappie, rock bass, and catfish were also made.

\section*{Lakeland (Md.) Ponds Substation}
[Supervised by Washington office of fish culture]
This pond system, located about 8 miles from the city of Washington, was leased by the Bureau of Fisheries in the spring of 1923. Early in the spring of 1924 two of the ponds-Nos. 1 and 3-were stocked with adult largemouth black bass obtained from the Potomac River, and a third pond, known as No. 2, was stocked with brood crappie transferred from the Edenton (N. C.) station. As a result of such stocking 47,376 black bass from 2 to 6 inches in length and 14,595 fingerling crappie were collected for distribution to applicants in the fall of 1924.

An interesting feature of the work was the growth attained by all of the fingerling fish, especially the black bass. On June 17, 1924, 3,000 No. 1 fingerling largemouth bass were transferred from pond No. 3 to pond No. 5, which has no connection with other ponds of the series. This pond was drained early in October and approximately 1,900 fish from 4 to 6 inches long were secured from it.

During the spring of 1925 the ponds were again stocked with largemouth bass and crappic, as well as smallmouth bass and bream.

\title{
CENTRAL STATION AND AQUARIUM, WASHINGTON, D. C.
}

\section*{[L. G. Harron, Superintendent]}

The maintenance of the aquarial exhibit at central station was more than ordinarily successful, due to the decreased use of chlorine in the city water supply. During the year 1,980 specimens of fish and marine animals, representing 36 species, were on display, while in the small exhibit hatchery eggs of the brook trout, rainbow trout, whitefish, cisco, shad, and yellow perch, all of which were shipped from the bureau's stations, were incubated, and the resulting fry retained for a time. The supply of live fish was replenished as necessary from collections
made at La Crosse, Wis., the Potomac River, and the Lakeland ponds. A fine display of adult brook trout and rainbow trout was received from the White Sulphur Springs (W. Va.) station, and the Bozeman (Mont.) station contributed a small number of adult grayl ng and black-spotted trout.

During the spring considerable trouble was experienced from the parasite Ichthyophthirius in the aquarium tanks, and before its ravages could be checked it occasioned a heavy loss of fish. It was finally eradicated through the use of strong solutions of lime water in the tanks, and by the end if June all surviving fish were well on their way to recovery.

\section*{Part 2.-DISTRIBUTION OF FISH AND FISH EGGS}
[E. C. Fearnow, Superintendent of Fish Distribution]
The \(5,301,862,583\) fish and fish eggs comprising the net output of the hatcheries and rescue stations operated by the Bureau of Fisheries during the fiscal year 1925 were widely disseminated, distributions being made in practically every State in the Union, the Territory of Alaska, and the Canal Zone. Approximately 90 per cent of the output consisted of commercially important fish, such as the salmons, whitefish, pike perch, shad, yellow perch, lake trout, cod, pollock, haddock, flounder, buffalo fish, and carp. Such species are planted in waters in the vieinity of the hatcheries or near the source of egg supply, with the exception of a comparatively small number used for stocking waters where natural conditions appear to be favorable for the development of new fisheries. They are not supplied to applicants for the stocking of private waters. Under the head of commercial species are included the many food fishes annually salvaged from overflowed areas along the Mississippi River.

Among the important species propagated for stocking waters of the interior are the brook trout, rainbow trout, black-spotted trout, largemouth black bass, smallmouth black bass, rock bass, sunfish, crappie, and catfish. This branch of the bureau's work brings it into close relation with the general public, as is evidenced by the large number of applications submitted every year. In the course of the fiscal year 1925, 10,400 applications were filled and the bureau made about 1,800 plants in public waters on its own initiative, bringing the total number of assignments to 12,200 , or 200 more than were made in 1924. The Izaak Walton League and various fisheries organizations during the past year submitted an unusually large number of applications, and in view of the large membership interested in the distribution of fish the allotments were liberal.

Summary, by species, of distribution of fish, fiscal year 1925
\begin{tabular}{|c|c|c|c|}
\hline State and species & Number & State and species & Number \\
\hline Alabama: & & Arkansas: & \\
\hline Catfish & 3,400 & Catfish & 385 \\
\hline Crappie & 10,600 & Rainbow trout & 7,751 \\
\hline Largemouth black bass & 249,375 & Crappie. & 5,500 \\
\hline Sunfish... & 94,800 & Largemouth black bass & 94,550 \\
\hline Yellow perch..-.-. & 7. 450 & Smallmouth black bass & 27, 300 \\
\hline Alaska: Sockeye salmon & 7,300,000 & Rock bass & 14,700 \\
\hline Arizona: & & Sunfish. & 22, 720 \\
\hline Catfish & 150 & Yellow perch & 525 \\
\hline Steelhead salmon & 23,500 & California: Chinook salmon & 4,042,300 \\
\hline Loch Leven trout & 22,500 & Colorado: & \\
\hline Lake trout & 57,000 & Rainbow trout & 25, 536 \\
\hline Brook trout & 48,500 & Black-spotted trout & 751, 517 \\
\hline Largemouth black bass & 555 & Loch Leven trout. & 44,000 \\
\hline Sunfish.-----.-.-.-.-. & 700 & Brook trout. & 4,526,536 \\
\hline
\end{tabular}

Summary, by species, of distribution of fish, fiscal year 1925-Continued
\begin{tabular}{|c|c|c|c|}
\hline State and species & Number & State and species & Number \\
\hline Connecticut: & & Louisiana: & \\
\hline Shad & 500, 000 & Catifish & 675,000 \\
\hline Rainbow trout & 8,900 & Buffalo fish & 13, 142, 100 \\
\hline Loch Leven trout & 320 & Carp.- & 651, 000 \\
\hline Brook trout & 32, 700 & Pike and pickere! & 995 \\
\hline Large mouth black bass & 400 & Crappie & 227, 300 \\
\hline Pike perch. & 640,000 & Largemouth hlack bass & 11,085 \\
\hline Yellow perch & 150 & Sunfish & 98, 600 \\
\hline Delaware: & & Yellow nerch & 100 \\
\hline Crappie.-----.-.-.... & 300
2
561 & White bass-..--..... & 100
403,600 \\
\hline Largemouth black bass & 2,561 & Maine: & 403,600 \\
\hline District of Columbia: & & Atlantic salmon. & 1, 422, 500 \\
\hline Shad......-- & 600,000
1,500 & Landlocked salmon & 970, 880 \\
\hline Georgia: & & Rainbow trout & 1,200 \\
\hline Catfish & 4, 700 & Loch Leven trout & 480 \\
\hline Steelhead salmon & 18, 680 & Brook trout & - 30,450 \\
\hline Rainbow trout & 21, 000 & Smallmouth black bas & 1,172. 1485 \\
\hline Brook trout & 19,000 & Winter flounder. & 1,884, 436,000 \\
\hline Crappie.- & 50 & Maryland: & \\
\hline Largemouth black bass & 224, 865 & Shad & 8,967,602 \\
\hline Rock bass & 2, 200 & Rainbow trout & 24, 800 \\
\hline Sunfish & 57, 613 & L.och Leven trout & 2, 100 \\
\hline Idaho: & & Brook trout & 108, 350 \\
\hline Catfish & 60 & Crappie. & 2, 268 \\
\hline Chinook salmon & 2,117, 500 & Largemouth black bas & 4, 570 \\
\hline Rainbow trout & 1,416, 300 & Rock bass. & 4,475 \\
\hline Black-spotted trout & 167, 000 & Sunfish. & 11,300 \\
\hline Lake trout & 1,600 & Yellow perch & 17,212, 245 \\
\hline Brook trout & 35, 850 & Massachusetts: & \\
\hline Graylings & 4, 877, 029 & Steelhead salmon & 28.080 \\
\hline Illinois: & & Landlocked salmon & 11,000 \\
\hline Catfish. & 347, 550 & Rainbow trout. & 45,355 \\
\hline Buffalo fish & 235, 500 & Brook trout & 136, 560 \\
\hline Carp & 709, 975 & Mackerel & 2,517,000 \\
\hline Rainbow trout & 5,000 & Smallmouth black hass & 9, 760 \\
\hline Pike and pickere & 11, 745 & Cod. & 462, 712.000 \\
\hline Crappie. & 1,811, 866 & Haddock & 24,511.000 \\
\hline Largemouth black bass & 15, 721 & Pollock & 222, 990,000 \\
\hline Sunfish & 510,455 & Winter flounder & 728, 500, 000 \\
\hline Miscellaneous fish & 479, 536 & Michigan: & \\
\hline Indiana: & & Catfish & 6,500 \\
\hline Cat fish & 5,570 & Whitefish & 26, 850, 0 C0 \\
\hline Carp & 12.5 & Steelhead salmon & 40,500 \\
\hline Rainbow trout & 8,600 & Landlocked salmon & 10,000 \\
\hline Brook trout & 53, 500 & Rainbow trout & 100, 800 \\
\hline Crappie.- & 8, 025 & Lake trout & 28,426, 500 \\
\hline Largemouth black bass & 10,410 & Brook trout & 1,054,720 \\
\hline Smallmouth black bass. & 119,500 & Crappie. & 3,325 \\
\hline Rock bass. & 100 & Largemouth black hass & 11,030 \\
\hline Sunfish & 13,550 & Smallmouth black ba & 11,925 \\
\hline Yellow perch & 3,125 & Sunfish & 10,115 \\
\hline Iowa: & & Pike perch & 2,600,000 \\
\hline Catfish. & 4, 323, 042 & Yellow perc & 1,650 \\
\hline Buffalo fish & 2, 498,600 & Minnesota: & \\
\hline Carp.- & 2, 187, 750 & Catfish. & 2,882, 560 \\
\hline Rainhow trout & 18,804 & Buffalo fish & 95, 245 \\
\hline Loch Leven trout & 2,000 & Carp & 3,438,015 \\
\hline Brook trout & 31, 250 & Steelhead salmon & 24,000 \\
\hline Pike and pickerel & 55, 193 & Rainbow trout. & 90, 355 \\
\hline Crappie. & 1,714, 399 & Loch Leven trout & 15,500 \\
\hline Largemouth black bass & 39,305 & Lake trout & 2, 241,500 \\
\hline Smallmouth black bass. & 500 & Brook trout & 182, 800 \\
\hline Sunfish & 1,559, 6.52 & Pike and picke & 80,079 \\
\hline Pike perch & & Crappie. & 9, 208, 698 \\
\hline Yellow pereh & 47,890 & Largemouth black bas & 119, 203 \\
\hline White bass & & Sunfish. & 8,976,865 \\
\hline Miscellaneous fishes & 1,417,409 & Pike perch & 1, 341, 285 \\
\hline Kansas: & & Yellow perch & 167, 505 \\
\hline Catfish & 600 & White bass. & 1, 865 \\
\hline Crappie. & 600 & Fresh-water drum. & 14,590 \\
\hline Largemouth black bass & 2, 200 & Miscellaneous fisbes & 93, 500 \\
\hline Rock bass & 200 & Mississippi: & \\
\hline Sunfish & 11,900 & Catfish. & 200 \\
\hline Kentucky: & & Crappie & 11,000 \\
\hline Largemouth black hass & 1,900 & Largemouth black bas & 520,035 \\
\hline Smallinouth black bass_ & 166, 500 & Rock bass. & 150 \\
\hline Rock hass. & 575 & Warmouth ba & 538 \\
\hline Sunfish & 11,500 & Sunfish. & 41,975 \\
\hline
\end{tabular}

Summary, by species, of distribution of fish, fiscal year 1925-Continued
\begin{tabular}{|c|c|c|c|}
\hline State and species & Number & State and species & Number \\
\hline Missouri: & & North Dakota: & \\
\hline Catfish & 9,145 & Catfish. & 10,650 \\
\hline Rainbow trout & 148, 852 & Crappie. & 14,900 \\
\hline Crappie. & 9,275 & Largemouth black bass. & 3,280 \\
\hline Largemouth black bass & 37, 720 & Sunfish. & 10,000 \\
\hline Rock bass & 2, 800 & Ohio: \({ }_{\text {Clfish }}\) & \\
\hline Sunfish & 70,742 & Catish & 627 \\
\hline Yellow perch & 564 & Buffalo fis & 61, 6,870 \\
\hline Montana: & & Whatefish & \(31,500,000\) \\
\hline Catfish & 360 & Whitefish... & 109, 080, 000 \\
\hline Rainbow trout & 635,000 & Rainbow trout & 150 \\
\hline Black-spotted trout & 1,497,000 & Brook trout & 4, 000 \\
\hline Loch Leven trout & 113, 711 & Crappie & 3,450 \\
\hline Lake trout. & 7,500 & Largemouth blac & 9,470 \\
\hline Brook trout & 987,460 & Smallmouth black bass & 223, 088 \\
\hline Crappie. & 50 & Sunfish. & 13,380 \\
\hline Largemouth black bas & 2, 600 & Pike perch. & \(63,140,000\) \\
\hline Sunfish. & 330 & Yellow perch & 19, 969, 200 \\
\hline Yellow perch & 600 & Oklahoma: & \\
\hline Nebraska: & & Catfish & 1,170 \\
\hline Catfish & 300 & Crappie. & 3,310 \\
\hline Rainbow trout & 34,850 & Largemouth black bass & 7,610 \\
\hline Brook trout. & 81,250 & Rock bass & 900 \\
\hline Largemouth black & 2, 278 & Sunfish & 24, 150 \\
\hline Nevada: & & Oregon: & \\
\hline Rainbow trout & 30,000 & Chinook salmon & 10, 828, 000 \\
\hline Brook trout & 31,50G & Silver salmon. & 2,081, 000 \\
\hline Crappie & 2, 200 & Sockeye salmon. & 46, 700 \\
\hline Sunfish & 2,250 & Steelhead salmon & 474,000 \\
\hline New Hampshire: & & Landlocked salmon & 9, 100 \\
\hline Landlocked salm & 6,400 & Brook trout. & 65, 000 \\
\hline Rainbow trout. & 78,150 & Silver trout & 100, 000 \\
\hline Loch Leven trout & 800 & Pennsylvania: & \\
\hline Lake trout & 9, 500 & Catfish.- & 3,684 \\
\hline Brook trout & 422, 208 & Steelhead salmon & 292 \\
\hline Largemouth black bass & 3, 780 & Rainbow trout. & 187, 550 \\
\hline Smallmouth black bass & 9,000 & Loch Leven trout & 54,900 \\
\hline Pike perch. & 660,000 & Brook trout & 753, 474 \\
\hline New Jersey: & & Crappie-- & 12, 215 \\
\hline Rainbow trout & 3,000 & Largemouth black bass & 12,810 \\
\hline Brook trout & 1,500 & Smallmouth black bass & 6,000 \\
\hline Crappie-... & 225 & Rock bass.- & 300 \\
\hline Largemouth black bass & 4,620 & Sunfish & 11, 170 \\
\hline Smallmouth black bass & 600 & Yellow perch. & 100 \\
\hline Sunfish.- & 225 & Rhode Island: Largemouth & \\
\hline New Mexico: & & bass..- & 2,000 \\
\hline Catfish. & 225 & South Carolina: & \\
\hline Rainbow trout & 400 & Catfish. & 225 \\
\hline Black-spotted trout & 41,300 & Rainbow trout & 32,600 \\
\hline Brook trout. & 46, 500 & Brook trout & 23, 250 \\
\hline Crappie. & 870 & Crappie. & 50 \\
\hline Largemouth black bass & 1,325 & Largemouth black bass & 340, 240 \\
\hline Rock bass. & 350 & Rock bass. & 1,000 \\
\hline Sunfish. & 2, 600 & Warmouth b & 110 \\
\hline New York: & & Sunfish.-- & 11,240 \\
\hline Whitefish & 36,700, 000 & South Dakota: & \\
\hline Cisco & 118, 900, 000 & Catfish & 3, 000 \\
\hline Landlocked salmon & 17, 240 & Steelhead salmon & 54, 600 \\
\hline Rainbow trout & 38,345 & Rainbow trout & 52,850 \\
\hline Lake trout & 277, 000 & Loch Leven trout & 347, 400 \\
\hline Brook trout & 624,700 & Brook trout. & 860,900 \\
\hline Crappie. & 1,400 & Crappie. & 4, 150 \\
\hline Largemouth black bass & 2,790 & Largemouth black bass & 6,000 \\
\hline Smallmouth black hass & 92 & Sunfish. & 3, 200 \\
\hline Pike perch & 6,500,000 & Yellow perch & 810 \\
\hline Ycllow perch & 4, 400, 000 & Tennessee: & \\
\hline Winter founder & 24, 115, 000 & Steelhead salmon & 462 \\
\hline North Carolina: & & Rainhow trout. & 80, 912 \\
\hline Sbad. & 480,000 & Loch Leven trout & 1,040 \\
\hline Clut herring & 92, 000, 000 & Brook trout & 33, 400 \\
\hline Steelhead salmon & 8,350 & Crappic. & 800 \\
\hline Rainbow trout. & 45, 800 & Largemouth black hass & 81,350 \\
\hline Loch Leven trout & 6, 890 & Rock bass. & 2, 100 \\
\hline Broak trout. & 286, 700 & Sunfish.- & 1,400 \\
\hline Crappie. & 2,165 & Texas: & \\
\hline Largemouth black bass & 181,830 & Catfish & 8, 140 \\
\hline Smallmouth black bass & 22.5 & Steelhead salmon. & 2, 800 \\
\hline Rock bass & 17,250 & Crappie. & 700 \\
\hline Warmouth bass & 20 & Largemouth black bass. & 298, 613 \\
\hline Sunfish & 19, 090 & Smallmouth black bass... & 1,000 \\
\hline Yellow perch & 1,000,331 & Rock bass. & 85 \\
\hline
\end{tabular}

Summary, by species, of distribution of fish, fiscal year 1925-Continued


\section*{METHOD OF DISTRIBUTION}

Upon receipt of a request for fish, the bureau furnishes a blank form calling for a complete description of the waters to be stocked. After it has been properly filled out and returned, with the indorsement of a Member of Congress, the bureau endeavors to assign a suitable species of fish to be delivered as soon as a supply is available. As the information given on the application is used as a basis for determining what species should be assigned, applicants should endeavor to give as accurate descriptions as possible.

Applicants should confine their choice of fish to species that are indigenous to the waters of the region concerned. Many of the State fish and game authorities have requested that all applications for nonindigenous or predacious fishes be submitted to them for consideration, a policy with which the bureau is in full accord, and all such applications, including those for carp, are referred to the proper State officials before they are accepted. Even with the State's approval, the bureau reserves the right to exercise its own discretion in allotting fish.

Every species of fish reproduces at a particular season of the year. Brook trout and the domesticated rainbow trout spawn in eastern waters in the fall or early winter; the black-spotted trout, steelhead, and wild rainbow trout of western waters spawn in the spring, while all of the so-called warm-water pondfishes do so in the spring or carly summer.

With the exception of a comparatively few brook and rainbow trout, which are held until they have attained the fingerling, or yearling stage, each species is distributed as soon as the fish have attained a suitable size for shipment; and after a season's supply has been exhausted no more are available for a year. In the Eastern States, trout are distributed between March and the last of June, while in the Rocky Mountain States the distribution usually begins in July and extends to about October 1.

The basses, bream, and other pondfishes are distributed within from one week to several months after they are hatched, the last lots of bass shipped usually ranging from 4 to 6 inches in length, while the sunfish range from 2 to 4 inches long. Such commercial species as the whitefish, cod, and pike perch, which are hatched in great numbers, are necessarily distributed as fry.

Immediately upon the receipt of a request, the applicant is notified concerning the species assigned him and as to the approximate datewhen the fish can be delivered. Just prior to the shipment a second notice is sent, usually by wire, stating the exact time the fish will arrive at the railroad station named in the application. On account of the comparatively heary cost of shipping fish to distant points, such trips are postponed until a sufficient number of applications from a given section have accumulated to warrant the expense of making a shipment.

In making a distribution, the fish are usually sent out in the bureau's fisheries cars which are stationed at some central railroad point in a given section, while deliveries by messengers are made to applicants living at some distance off the main line. The messengers travel in the baggage cars of regular passenger trains and deliver the fish at destination as the train makes its regular stops. Delivery is made to the applicant's railroad station without expense to him, but he is required to furnish containers for transporting the fish to the waters to be stocked. The bureau's cans can not be lent for this purpose, since the cars and messengers must proceed at once to other points.

\section*{DISTRIBUTION OF FISHES OF INTERIOR WATERS}

\section*{CAR NO. 3}

\section*{[E. R. Widmyer, Captain]}

The distribution of warm-water fishes from the La Crosse (Wis.) substation was taken up on July 12, and between that time and the close of the Mississippi River operations on the 4th of December, 266,185 fingerling fish were delivered to applicants, the work involving both car trips and messenger shipments and extending into the States of Wisconsin, Minnesota, Iowa, Ohio, Illinois, North Dakota, and South Dakota. Early in January the car was placed in the shops of the Chicago, Milwaukee \& St. Paul Railway Co. at Milwaukee, Wis., and while undergoing annual repairs an electrically driven air compressor was installed.

For the purpose of relieving overcrowded conditions in the La Crosse hatchery during the latter part of March, the car transferred 153,000 rainbow trout from La Crosse to Lynxville, Wis. On April 1 it carried a load of trout from La Crosse to Homer, Minn., and after


Fig. 7.--IIauling fish on a hand car, Cedar Island Lodge, Brule, Wis.


Fif. S.-Transportation equipment of ear No. 3
making a shipment of trout from that point to Eau Claire, Wis., it proceeded to Duluth to take up the season's distribution of whitefish, pike perch, and trout from the Duluth station. This work was in progress from April 26 to June 20 and included the shipment 1,100,000 whitefish, \(13,000,000\) pike perch, and \(10,848,500\) lake trout, all in the fry stage, as well as 189,000 fingerling brook trout and 29,000 steel-head-salmon fingerlings.

In moving truckloads of fish from the hatchery to the railroad station and boat wharves care was taken to a void carrying only partial loads, and the shipment of the fish was so planned that in transporting several species to a given section the work might be accomplished without duplication of trips except in cases where very heavy consignments were to be delivered. One messenger carried 60 pails of brook trout in a single baggage-car shipment. The very successful and economical results attained in this distribution work were made possible in large measure by the close cooperation afforded by the Chicago, Milwaukee \& St. Paul and the Minneapolis, St. Paul \& Sault Ste.Marie Railway Cos.

During the fiscal year ended June 30, 1925, Car No. 3 traveled 11,742 miles and delivered \(25,166,500\) fish.

\section*{CAR NO. 4}

\section*{[James L. Gardner, Acting captain]}

At the opening of the fiscal year Car No. 4 was engaged in the shipment of black bass from the Lakeland (Md.) ponds, and during the first week in July it distributed from these ponds 12,200 fingerling fish. On July 7 the car was ordered to the White Sulphur Springs (W. Va.) station to make carload shipments of trout to Elkins, W. Va., and Williamsport, Pa. On the completion of this work it proceeded to La Crosse, Wis., to assist in the distribution of miscellaneous river fishes from the upper Mississippi River rescue stations. In connection with this work the car made trips to Watersmeet, Mich., Green Bay, Wis., Fort Wayne, Ind., and Harrisburg, Pa., returning from the latter point to Washington, D. C. In its work in the rescue field the car transported 87,745 fingerling and adult fish.

During October the car distributed from the Lakeland (Md.) ponds 46,420 miscellaneous pondfishes ranging in size from fingerlings to adults, and from the White Sulphur Springs (W. Va.), station it distributed 31,000 brook and Loch Leven trout. During the months of November and December it was stationed at Washington, D. C., where it was used as living quarters for the car-service employees on detail in the Washington office of the bureau.

On January 6 the car was taken to the plant of the American Car \& Foundry Co. at Wilmington, Del., for annual repairs. On the completion of this work, late in January, it returned to Washington and was again used as living quarters for its crew until the middle of March, when it proceeded to Wytheville, Va., and received a load of 150,250 fingerling trout. Returning on March 26 to Washington, the car made plants of fish en route and by messenger shipments on its arrival there. Soon afterward it left for Erwin, Tenn., and took up the distribution from the hatchery at that point, making nine carload trips and a number of detached messenger shipments and carrying a total of 532,727 trout, bass, and bream for delivery to applicants in

Tennessee, Virginia, North Carolina, South Carolina, Georgia, and Pennsylvania. The shipment of fingerling black bass, rock bass, and bream in connection with the trout distribution effected a considerable saving of funds.

On May 8 the car arrived at White Sulphur Springs, W. Va., where it received 54,950 fingerling trout for distribution to applicants in central Pennsylvania. From Pennsylvania it proceeded to Bucksport, Me, via Nashua, N. H., receiving at Nashua 60,940 trout and landlocked salmon for delivery to applicants in the southwestern section of Maine. It arrived at Bucksport on May 23, and took up the distribution from the Craig Brook (Me.) station on May 27. Four carload trips and a number of detached messenger shipments with brook trout and landlocked salmon were made, also six carload trips with Atlantic salmon. In the course of the work from this station the car and its messengers covered practically all of the State of Maine and distributed a total of \(3,202,145\) salmon and trout.

During the year the car traveled 14,266 miles, made 32 trips, delivered or planted 4,188,801 fish, and filled 1,500 applications.

\section*{CAR NO. 7}

\author{
[E. M. Lamon, Captain]
}

Car No. 7 was engaged in the shipment of fish from the upper Mississippi River collecting stations between September 29 and the end of November, during which time it distributed 114,100 bass and miscellaneous fishes suitable for pond culture to applicants in Wisconsin, Michigan, Iowa, Pennsylrania, Kentucky, Mississippi, Alabama, and Nevada. At the close of the rescue work the crew of the car was detailed for duty during the winter at fish-cultural stations of the bureau, and in February it was placed in the shops of the Chicago, Milwaukee \& St. Paul Railway Co. for annual repairs. In the course of this work it was outfitted with an electrically driven air compressor, which has given such satisfaction that except in times of emergency the use of the steam-driven compressor can be entirely dispensed with and a considerable saring in fuel effected thereby.

About the middle of April the car took up the distribution of trout from the Manchester (Iowa) station, leaving there on April 16 with a load of fish for applicants in northern Wisconsin. After completing this trip the car obtained a load of 300,000 brook trout from the Cedar Island Lodge hatchery at Brule, Wis., and distributed them to applicants in the vicinity of Fond du Lac, Wis. It then proceeded to La Crosse, and between April 25 and May 16 distributed from the hatchery at that point 497,800 brook trout, 51,900 Loch Leven trout and 177,100 rainbow trout, delivering them to applicants in Wisconsin and Minnesota.

On completion of the La Crosse distribution the car resumed its work from the Manchester station, making carload shipments of trout to Madison and Milwaukee, Wis. It then obtained 40,500 young rainbow trout from the Lincoln Park Aquarium at Chicago, Ill., and distributed them in Wisconsin. Returning to Manchester it made a trip with trout to Minocqua, Wis., and then proceeded to Dubuque, Iowa. About this time the work at Manchester was brought to an abrupt close, the destructive flood which occurred on the night of

June 14 liberating all fish on hand at the station. On June 28 the car left Dubuque to take up the distribution of trout from the Bozeman (Mont.) station.

Car No. 7 traveled 11,335 miles in the course of the fiseal year, made 16 trips, and distributed \(1,905,800\) fingerling fish.

CAR NO. 8

\section*{[E. K. Burnham, Captain]}

During the fiscal vear 1925 this car distributed fish from stations loeated at Neosho, Mo., Langdon, Kans., and Leadville, Colo., and assisted in the shipments from the upper Mississippi River field. In connection with its work it entered 10 States, traveled 9,615 miles, made 18 carload trips over 8 trunk-line railroads, and distributed 2,627 cans of fish to 471 applicants. The numbers and speeies of fish handled in its work are shown in the following table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Fingerlings & Yearlings & & Fingerlings & Yearlings \\
\hline Brook trout & 2,603,000 & & Crappie. & 6,000 & \\
\hline Rainhow trout... & & 3, 200 & Bream. & 51, 300 & \\
\hline Black-spotted trou & 549, 000 & & Yellow perch & & 45 \\
\hline Steelhead salmon. & 22,500
51,000 & & Catfish ... & 5, 098
1,300 & 600 \\
\hline Loch Leven trout. & 38, 500 & & & & \\
\hline Black bass......--- & 11, 230 & & Total & 3,338, 928 & 3,845 \\
\hline
\end{tabular}

In January this ear was placed in the shops of the Denver \& Rio Grande Western Railroad Co., at Denver, Colo., for annual repairs, which consisted of painting the exterior surface, generally overhauling its trucks, and installing a hard-maple floor throughout. The crew made minor repairs to the interior of the ear, changing its air, steam, and water pipe systems so that an even pressure might be maintained in all eans of fish. Its piping was also made self-draining to minimize the danger from freezing, and its capacity was increased to carry 20 additional fish pails, making its normal load 120 pails and seventy 10 -gallon cans.

CAR NO. 9
[H. F. Johnston, Captain]
The distribution work of this ear for the fiseal year 1925 began on July 22, when it left the Homer (Minn.) station with a miscellaneous load of river fishes for delivery to applieants in Nebraska, Wyoming, and Montana, en route to its destination at Bozeman, Mont. The distribution work from the Bozeman station extended from July 28 to October 13 and included the shipment of \(1,609,710\) trout of five species and their delivery in three States.

The annual repairs to this car were made in February by the Ameriean Car \& Foundry Co. at Wilmington, Del., and included numerous changes, the more important being the rearrangement of the dining room and the construction of lockers for the storage of the rerating equipment when not in use. The covers of the lockers were upholstered, making very comfortable seats. During the month of March the crew changed the aerating apparatus to handle 250

Fearnow pails, which number was added to the carrying equipment of the car.

Between April 1 and June 25 this car was occupied in distributing trout from the Wytheville (Va.) and White Sulphur Springs (W. Va.) stations and in rendering assistance to the State of Maryland. These distributions were made in Pennsylvania, Virginia, West Virginia, Maryland, and New York.

In consequence of a 12 -hour delay en route from the White Sulphur Springs station with a full load of trout, and later on for a period of 8 hours with half a load, the electrically driven air compressor of this car was in continuous operation without weakening the batteries to any appreciable extent. This practical test demonstrates that it will seldom be necessary to use the steam-controlled air compressors.

In the course of the year car No. 9 traveled 22,825 miles, making 31 trips and supplying 1,173 applicants. It entered 11 States and carried a total of \(2,933,568\) trout and 29,588 miscellaneous river fishes.

\section*{NUTRITIVE VALUE OF FISH AND SHELLFISH \({ }^{1}\)}
CONTENTS
Paga
Introduction ..... 502
I.-Chemical composition of fish and shellfish. By E. D. Clark and R. W. Clough ..... 502
Harvests from the sea, lakes, and rivers ..... 502
The human body-a perfect transformer of energy ..... 503
General composition of fish and shellfish ..... 504
Fresh fish ..... 504
Preserved fish ..... 508
Salted, smoked, and dehydrated fish ..... 512
Mollusks, crustaceans, etc ..... 513
Percentage of waste in fish ..... 515
Effect of cooking on the composition of fish ..... 516
Variations in the composition of fish ..... 517
Seasonal and maturity variations ..... 517
Variations due to locality ..... 519
Individual variations ..... 522
Variation in the composition of different parts of the flesh of the same fish ..... 522
Food value of fish and shellfish compared with that of other food prod- ucts ..... 523
II.-Fish and shellfish as a source of protein. By Donald K. Tressler ..... 527
Introduction ..... 527
Characteristics of proteins required for the nutrition of man ..... 527
Digestibility ..... 528
Analyses of the proteins ..... 529
Form of nitrogen ..... 529
Amino-acid analyses ..... 530
Interpretation of analyses ..... 531
Summary and conclusions ..... 531
III.- Oils and fats from fish and shellfish. By Arthur D. Holmes_ ..... 532
Composition ..... 532
Digestibility ..... 534
Palatability ..... 535
Present consumption ..... 535
Energy value ..... 536
Liver oils, richest natural source of fat-soluble vitamins ..... 537
Increasing the consumption of fish fats ..... 538
Summary ..... 539
IV.-Mineral constituents of fish and shellfish. By Harden F. Taylor ..... 539
Introduction ..... 539
Constituents of sea water ..... 541
Assimilation and concentration of mineral substances by marine plants and animals ..... 541
Analytical data concerning mineral substances in fish and shellfish_ ..... 542
Ash ..... 542
Heavy metals ..... 544
Importance of mineral substances in the diet ..... 545
V.-Vitamins in fish and shelffish. By E. V. McCollum ..... 546
Bibliography ..... 549

\footnotetext{
\({ }^{1}\) Appendix X to the Report of the U. S. Commissioner of Fisheries for 1925. B. F. Doc. 1000. Technological contribution No. 27.
}

\section*{INTRODUCTION}

During recent ycars knowledge of the nutritive value of foods has been widely expanded. The great importance of proper diet in promoting the right kind of growth and in maintaining life and health at their best is now realized. It is generally believed that the food supply as a whole should furnish (a) enough digestible organic foodstuffs to meet the body's needs for energy, (b) enough protein of suitable sorts to supply all needs for essential amino acids, (c) sufficient mineral constituents in the right proportions, and (d) enough of the rarious kinds of vitamins.

The main bulk of most of the staple foods consists of the following groups of substances: Carbohydrates, fats, proteins, minerals, and vitamins. With the exception of carbohydrates, which are practically lacking, all of these substances are known to be abundantly present in fish and shellfish.

It was for the purpose of summarizing present knowledge regarding the nutritive value of these substances and the general subject of the composition of fish and shellfish that this document was prepared. The various chapters comprising it were prepared by scientists well qualified to write upon the subject. These papers show that fish and shellfish furnish an excellent supply of very valuable proteins and fats and, as a source of certain vitamins and minerals, they are of great importance.

\author{
Harry R. Beard, Chief Technologist.
}

\section*{1.-CHEMICAL COMPOSITION OF FISH AND SHELLFISH}

By E. D. Clark, Director, and R. W. Clough, Chemist, National Canners Association, Northwest Branch, Scattle, Wash.

\section*{HARVESTS FROM THE SEA, LAKES, AND RIVERS}

Not only the land but the sea, lakes, and rivers as well provide mankind with crops of food. In some ways-for example, in the matter of the dependence of animal life upon green plants-land and water are alike. On the other hand, there is a fundamental difference between gathering crops on land and gathering them from the water. Plant and animal products derived from agriculture are produced under the control of man and are still capable of being increased by the use of more land whenever the demand warrants such a course. Aquatic harvests, however, are neither planted by man nor cultivated by him, nor does he exercise much, if any, control over them.

The sea is not merely an expanse of blue water, but may be likened to productive green fields on land-it is alive. The sea, too, has its cycles of life, in which inorganic matter, under the influence of green plants, microscopic or otherwise, is built up into organic matter in the form of vegetable materials. These in turn are eaten by the lower forms of animal life, and then they, too, succumb to still higher orders of animal life, until finally man may utilize for his own food some of the links in the chain, such as seaweeds, mollusks, crustaceans, and fishes. Ultimately, however, all animal life in the sea is dependent for its store of energy upon sunlight, which is fixed first by green plants.

At some stage in the development of man he found that little effort was required to secure essential foods by domesticating animals and allowing them to gather and eat the grass, grain, etc. They transformed these raw materials into meat, milk, dairy products, and eggs. It is clear that the food fishes are doing likewise in the sea, lakes, and rivers.

It is not the purpose of this chapter to discuss anything more than the general composition of fish and shellfish from the nutrition standpoint. Other fascinating subjects, such as the rôle of iodine in fish, the wonderful power of certain fishes to store vitamins, as in the case of the liver oil of certain fishes, and the occurrence of unusual elements and metallic derivatives in these foods will be discussed in separate chapters. The storing of certain essential amino acids in the protein of the muscles of fishes will also be discussed later.

\section*{THE HUMAN BODY-A PERFECT TRANSFORMER OF ENERGY}

Like every other engine or motor that depends upon heat for its power, our bodies can only transform as much energy as is made available to them. In other words, the human body can not create energy; it can only change the stored energy existing in the foods that we eat into heat to keep the body always at its temperature of \(98.6^{\circ} \mathrm{F}\). and to supply it with the energy necessary for the work which it performs. In addition, our foods must replace the materials utilized and destroyed in the body cells during their life activities.

This time-worn figure of speech-comparing the human body to an engine or motor-is only a very crude simile. As a matter of fact, the efficiency of the human body in converting food (fuel) into heat and work is almost 100 per cent, while that of the most highly developed internal-combustion engine or mercury-rapor power plant is very much less. Furthermore, the human body is a self-sustaining and regulating mechanism unlike any machine ever devised by man. It builds itself up out of the foods which we eat; it maintains itself in the same way and makes good its losses; it provides its own lubrication, eliminates all of its waste products, and regulates its own body processes to suit the needs of the occasion. In other words, it is a most wonderful transformer of energy.

As has been stated, the real source of energy in our foods is ultimately the sun; so our bodies are at all times actually utilizing for various purposes the stored-up energy of the sun, just as our steampower generating plants and internal-combustion engines are transforming into useful work the solar energy fixed ages ago in the form of coal and petroleum.

Just as the engineer can estimate the amount of energy available in different kinds of fuel for purposes of producing power, so can we determine, by proper apparatus, the fuel value of foods. A common unit for these energy measurements is the "calorie." Speaking in terms of the everyday units of measurement, a calorie is the amount of heat necessary to raise the temperature of 1 pound of water \(4^{\circ}\) F.; or, stating it another way, 1 pound of starch, if completely burned to produce heat and energy either outside the human body or within it, will develop enough heat to raise 1,900 pounds of water \(4^{\circ} \mathrm{F}\). in temperature or to raise about 5 gallons of water from the freezing point just to the boiling point.

This example, showing the amount of energy or heat units in starch, is not the whole story. It happens that many foods, and particularly fish, contain larger amounts of the so-called protein and fat types of food material than they do of the carbohydrate type (starches or sugars), which is so characteristic of vegetable foodstuffs. Fats or oils have the highest food value and are commonly recognized to be the most concentrated form of energy. They supply the quickly-burned fuels for the body, while the proteins play a particularly important rôle in replacing losses from wear and tear in the body cells themselves.

Table 1.-Analyses of the ash of fish flesh
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fish & \[
\underset{(\mathrm{CaO})}{\mathrm{Lime}}
\] & Phosphorus \(\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)\) & Magne\(\underset{(\mathrm{MgO})}{\operatorname{simm}_{2}}\) & \[
\begin{aligned}
& \text { Potas- } \\
& \text { sium } \\
& (\mathrm{K}, \mathrm{O})
\end{aligned}
\] & \[
\begin{aligned}
& \text { Sodium } \\
& \left(\mathrm{Na}_{2} \mathrm{O}\right)
\end{aligned}
\] & \[
\underset{\left(\mathrm{SO}_{3}\right)}{\text { Sulphur }}
\] & \[
\begin{gathered}
\text { Chlorine } \\
\text { (Cl) }
\end{gathered}
\] \\
\hline Anchovies (salted) & \begin{tabular}{l}
Per cent \\
4. 22
\end{tabular} & Per cent 18. 11 & \begin{tabular}{l}
Per cent \\
1. 88
\end{tabular} & Per cent 2. 17 & \begin{tabular}{l}
Per cent \\
38.80
\end{tabular} & \[
\begin{array}{r}
\text { Per cent } \\
0.93
\end{array}
\] & Per cent 33. 25 \\
\hline Eel & 45. 83 & 43. 18 & & 18 & 9. 48 & & . 17 \\
\hline Maddock (Salted) & 3. 39 & 13. 70 & 1. 90 & 13.84 & 36. 51 & 31 & 38. 11 \\
\hline Pike. & 7.38 & 33. 16 & 3.81 & 23.92 & 20.45 & 2.50 & 4. 74 \\
\hline Salmon (fresh) & 8. 60 & 20.32 & 9. 49 & 24.40 & 13. 65 & & 21.44 \\
\hline
\end{tabular}

Both the proteins or nitrogenous constituents of foods and the carbohydrate or starchy constituents of foods have the same fuel value; namely, 1,860 calories per pound. On the other hand, the fats or oils have a fuel value of 4,220 calories per pound. The proteins do not give up all their energy in the body as fats and carbohydrates do. The reason for this is simple; namely, the fats and carbohydrates in the body (as well as when burned outside) are completely consumed to form carbon dioxide and water, while the proteins are only partially consumed and are excreted in the form of creatinin, urea, ammonia, and so on.

In addition to the proteins, fats, and carbohydrates (which constitute by far the greater proportion of our foods) there is another highly important food essential, namely, the inorganic matter more commonly given in food-value tables as ash. All living matter contains inorganic or ash constituents, and in the case of bones and teeth the percentage of these is high. Because our body can neither be built nor function without these inorganic substances, our foods must contain them. Deficiencies in the diet of calcium (lime) or iodine, for instance, give rise to serious ailments and physical deformities. Fortunately, fish and shellfish are characterized by containing an unusually wide range of the necessary mincral elements. Goiter is extremely rare among the Japanese, and this may probably be attributed to their extensive use of both animal and vegetable sea foods. Table 1 shows the percentage of various types of mineral matter in several species of fish.

> GENERAL COMPOSITION OF FISH AND SHELLFISH

\section*{FRESH FISHI}

The pioneer work on the composition of American fish was done by Prof. W. O. Atwater (1888) for the United States Bureau of Fisheries during the period 1880-1887. This is a classical piece of
research on the composition of a certain class of food materials, and in completeness and thoroughness has never been surpassed by any investigations on American fishery products. Table 2 gives a highly condensed summary of the composition of the edible portions of the more common American fishes which Atwater analyzed in the fresh condition.

Table 2.-Chemical composition and food value of some typical American fishes, etc.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & Total solids & Fat & \[
\begin{gathered}
\text { Protein } \\
(\mathrm{N} \times 6.25)
\end{gathered}
\] & Ash (inorganic matter) & Fue! value per pound \\
\hline & Per cent & Per cent & Per cent & Per cent & Calories \\
\hline Alewife.- & 25. 6 & 4.9 & 19.4 & 1.5 & 570 \\
\hline Bass, black & 23. 3 & 1.7 & 20. 6 & 1.2 & 455 \\
\hline Bass, red.- & 18.4 & . 5 & 16.9 & 1.2 & 335 \\
\hline Bass, sea & 20.7 & . 5 & 19. 3 & 1.4 & 390 \\
\hline Bass, striped. & 22.3 & 2.8 & 18.6 & 1. 2 & 465 \\
\hline Bluefish & 21.5 & 1.2 & 19. 4 & 1.3 & 410 \\
\hline Buffalo fish. & 21.4 & 2.3 & 18.0 & 1.2 & 430 \\
\hline Butterfish. & 30. 0 & 11.0 & 18.0 & 1.2 & 800 \\
\hline Catfish. & 35.9 & 20.6 & 14.4 & . 9 & 1, 135 \\
\hline Ciscoe. & 26.0 & 6.8 & 18.5 & 1. 1 & 630
325 \\
\hline Cusk & 18.0 & \(\stackrel{4}{2}\) & 16.5
17.0 & 1.2 & \({ }_{325}\) \\
\hline Eels, salt water & 25.4 & 9.1 & 18.6 & 1.0 & 730 \\
\hline Eulachon (Columbia River sm & 25.3 & 11.2 & 13.2 & 1.4 & 718 \\
\hline Flounder & 15.8 & . 6 & 14.2 & 1.3 & 290 \\
\hline Haddock & 18.3 & . 3 & 17.2 & 1.2 & 335 \\
\hline Hake. & 16.9 & . 7 & 15.4 & 1.0 & 315 \\
\hline Halibut & 24.6 & 5. 2 & 18.6 & 1.0 & 565 \\
\hline Herring & 27.5 & 7.1 & 19.5 & 1.5 & 660 \\
\hline Kingfish & 20.8 & . 9 & 18.9 & 1.2 & 330 \\
\hline Mackerel & 26.6 & 7.1 & 18.7 & 1.2 & 645 \\
\hline Mullet & 25.1 & 4. 6 & 19.5 & 1.2 & 555 \\
\hline Perch, white & 24.3 & 4.0 & 19.3 & 1.2 & 530 \\
\hline Perch, yellow & 20.7 & . 8 & 18.7 & 1. 2 & 380 \\
\hline Pickerel, pike. & 20.2 & . 5 & 18.7 & 1.1 & 370 \\
\hline Pollock.-- & 24.0 & . 8 & 21.6 & 1. 5 & 435 \\
\hline Pompano. & 27.2 & 7.5 & 18.8 & 1. 0 & 665 \\
\hline Porgy & 25.0 & 5.1 & 18.6 & 1.4 & 560 \\
\hline Red grouper & 20.5 & . 6 & 19.3 & 1. 1 & 335 \\
\hline Red snapper & 21.5 & 1.0 & 19.7 & 1.3 & 410 \\
\hline Salmon, Atlantic--..-.-.-. & 35. 4 & 12.8 & 22.0 & 1. 4 & 950 \\
\hline Salmon (Atlantic), landlocked, & 22.3 & 3.3 & 17.8 & 1.2 & 470 \\
\hline Salmon, chinook, California & 36.4 & 17.8 & 17.8 & 1.1 & 1,050 \\
\hline Shad.--- & 29.4 & 9.5 & 18. 8 & 1.3 & 750 \\
\hline Sheepshead & 24.4 & 3.7 & 20.1 & 1.2 & 530 \\
\hline Smelt & 20.8 & 1.8 & 17.6 & 1. 7 & 405 \\
\hline Spanish mackerel & 31.9 & 9.4 & 21.5 & 1.5 & 795 \\
\hline Sturgeon & 21. 3 & 1.9 & 18.1 & 1.4 & 415 \\
\hline Trout, brook & 22.2 & 2.1 & 19.2 & 1.2 & 445 \\
\hline Trout, salmon, Atlantic & 29.2 & 10.3 & 17.8 & 1.2 & 765 \\
\hline Weakfish. & 21. 0 & 2. 4 & 17.8 & 1. 2 & 430 \\
\hline Whitefish & 30. 2 & 6. 5 & 22. 9 & 1. 6 & 700 \\
\hline Whale meat (mammal) & 28.8 & 4.2 & 23.1 & 1.2 & 607 \\
\hline
\end{tabular}

In glancing over Table 2 it is evident that there is a considerable variation in the composition and food value of the different species of fish. For instance, a typical lean fish like the cod may run as low in fat content as two to four-tenths of 1 per cent, the percentage of protein not running particularly high in this case and the fuel value bcing only 325 calories. At the other extreme we may take a popular fresh-water fish in the Middle West, like the catfish, and find that the percentage of fat in this case is 20.6 , while the percentage of protein is 14.4 and the total fuel value 1,135 calories per pound. Most of the other common fresh and salt-water fishes will fall in between these extreme limits of variation.

There are two considerations that should be mentioned in connection with the composition of fish, as they will run through all tables
presented in this chapter. In the first place, the main fluctuations in the composition of fish flesh are in the percentage of moisture and the percentage of fat. The percentage of protein does not fluctuate widely. The other consideration to be borne in mind is that there is very slight variation in the percentage of ash or inorganic matter in the different types of fish. This might appear surprising at first glance, but it is not. Just as the protein or cell substance does not vary much in composition, neither does the amount of inorganic matter associated with it. As already pointed out, a certain minimum amount of inorganic matter of certain types must be present for the normal life of the cells of the body, which select from the food materials offered to them those inorganic constituents which they need for their growth and functioning. The rest is eliminated, as inorganic substances are not stored in the body to any great extent.

There is one difficulty in drawing general conclusions from Atwater's analyses as to the average composition of the various types of fish. It is this. Professor Atwater usually analyzed but one or two samples of the different species of fish, and it became apparent to other investigators in the years that passed after this pioneer work had been done that there was a great variation in the composition of the same kind of food fishes, due to several factors. In the first place, individual fish of the same school caught at the same time often differ widely in composition. This is not due to different stages of development, age, or sex, but must be ascribed to what is called "individual variation," or, more likely, to the greater success of some fish in securing their food in the struggle for existence. Then, there is another factor, namely, the proximity to the time of spawning. This is a very important factor and one which will be shown quite clearly in the tables to appear later on. Third, there is considerable evidence that the locality where fish are caught may cause its own type of variation in composition. Whether such variation, apparently due to locality, is caused primarily by differences in food supply or to some more fundamental consideration we do not know as yet.

Table 3.-Variation in composition of some important food fishes analyzed at different seasons of the year
[Analyses of the edible portion on the fresh basis]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Common names & When caught & Total solids & Fat & \[
\begin{gathered}
\text { Protein } \\
(\mathrm{N} \times 6.25)
\end{gathered}
\] & Ash ganic matter) & Fuel value per pound \\
\hline Atlantic coast: & & Percent & Ptr cent & Per cent & Per cent & \({ }_{\text {Calorics }}\) \\
\hline Bonito.- & June 12 & 26.06 & Ptr 0.15 & & & \\
\hline Cod. & Nov. 24 & 18.65 & . 09 & 18.42 & 1.23 & 346 \\
\hline Herring & June 12 & 22. 90 & 2.41 & 18.92 & 1.66 & 454 \\
\hline Kingfish & May 4 & 24. 60 & 5. 24 & 17. 69 & 1.39 & 550 \\
\hline Ling & Nov. 18 & 18. 30 & . 12 & 16.81 & 1.15 & 318 \\
\hline P'orgy & May 14 & 23.39 & 2. 59 & 18.87 & 1.37 & 460 \\
\hline Tilefish & Dee. 17 & 19.66 & . 51 & 17. 50 & 1.35 & 347 \\
\hline Silver hak & May 26 & 18.86 & 1.41 & 16. 25 & 1. 22 & 362 \\
\hline Bluefish & May 7 & 23.83 & 1. 54. & 21.00 & 1.16 & 456 \\
\hline Do. & Sept. 28 & 29.04 & 8.10 & 20.38 & 1.11 & 721 \\
\hline Butterfisl & May 19 & 25. 66 & 5. 96 & 18, 06 & 1.49 & 887 \\
\hline Do. & Oct. 12 & 30. 01 & 13. 52 & 18. 25 & 1. 40 & 910 \\
\hline Carp suck & May 29 & 22. 80 & 2.10 & 18. 63 & 1. 20 & 435 \\
\hline & Oct. 20 & 24. 79 & 4. 17 & 19.94 & 1. 20 & 547
384 \\
\hline & Apr. 10 & 24. 77 & 1.25
3.23 & 17. 81 & 1.18
1,37 & 384 \\
\hline Flounder & Apr. 19 & 17.54 & . 20 & 16.00 & 1.17 & 306 \\
\hline Do.- & Sept. 22 & 21. 59 & .37 & 15. 87 & 1.34 & 311 \\
\hline
\end{tabular}

Table 3.-Variation in composition of some important food fishes analyzed at different seasons of the year-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Common names & When caught & Total solids & Fat & \[
\begin{gathered}
\text { Protein } \\
(\mathrm{N} \times 6.25)
\end{gathered}
\] & Ash (inor\(\underset{\text { gatter }}{\substack{\text { ganic } \\ \text { mat }}}\) & Fuel value per pound \\
\hline Haddock & Apr. 2 & Per cent
18.32 & Per cent & Per cent 14. 56 & \begin{tabular}{l}
Percent \\
1. 11
\end{tabular} & Calories 277 \\
\hline Do. & Aug. 31 & 20.83 & . 09 & 16.19 & 1.01 & 305 \\
\hline Striped bass & Apr. 16 & 25. 70 & 3. 58 & 20.06 & 1. 26 & 524 \\
\hline Do.- & Oct. 16 & 19.83 & 2.98 & 19. 19 & 1. 26 & 483 \\
\hline Sea bass & May 12 & 22. 02 & 1.61 & 18.62 & 1.23 & 414 \\
\hline Do. & Sept. 14 & 19. 44 & 1. 60 & & 1.09 & \\
\hline Spanish mack & June 4 & 33. 01 & 12. 59 & 19.56 & 1.20 & 895 \\
\hline Do- & Oct. 26 & 35. 70 & 16. 24 & 19.32 & 1.11 & 1,045 \\
\hline Weakfish & May 1 & 21.41 & 2. 34 & 17.70 & 1. 25 & 428 \\
\hline Do... & Sept. 25 & 19.35 & . 52 & & 1. 20 & \\
\hline Shad (male) & Apr. \({ }^{2}\) & 35. 32 & 14. 43 & 19.87 & 1. 34 & 978 \\
\hline Shad (female) & Apr. 13 & 34. 17 & 13. 93 & 18. 74 & 1. 40 & 936 \\
\hline Shad (female) spent & May 22 & 26.00 & 5.87 & 18.19 & 1.29 & 586 \\
\hline Shad (female) spent
Pacific coast: & June 19 & 23.38 & 2.95 & 18.62 & 1.53 & 471 \\
\hline Pacific coast: Albacore & (1) & 35.76 & 10.51 & 24.00 & 1.36 & 890 \\
\hline Atkafish & (1) & 21. 00 & 3.1 & 14.88 & 1.2 & 408 \\
\hline Barracuda & June 11 & 25. 28 & 2. 72 & 21. 69 & 1. 10 & 518 \\
\hline Do. & Dec. 15 & 25. 14 & 1.85 & 22.31 & 1. 26 & 493 \\
\hline Do. & --do.- & 28. 10 & 6.45 & 20.69 & 1. 26 & 657 \\
\hline Do.- & Jan. 7 & 21. 74 & 1. 51 & 20.25 & 1. 53 & 440 \\
\hline California halibut & May 16 & 20.14 & 2.01 & 17. 25 & 1. 10 & 406 \\
\hline Do.- & Feb. 7 & 24.45 & . 85 & 22.31 & 1.41 & 451 \\
\hline Cultus cod & May 25 & 18. 67 & 1.34 & 17.19 & 1. 08 & 376 \\
\hline Hake.- & June 13 & 19.27 & 1.30 & 16. 25 & 1. 21 & 357 \\
\hline Herring & Mar. \(2{ }^{\text {a }}\) & 20.15 & 78 & 17. 63 & 1.66 & 361 \\
\hline Do. & Feb. 3 & 20.67 & 4.39 & 15.69 & . 96 & 477 \\
\hline Horse macke & June 22 & 28. 57 & 5. 62 & 21. 56 & 1. 24 & 638 \\
\hline Jacts smelt & June 27 & 22. 70 & 1. 60 & 19.69 & 1.11 & 434 \\
\hline Do- & Jan. 6 & 23. 88 & 1.34 & 21. 50 & 1. 34 & 457 \\
\hline King Salmon & May 27 & 32.55 & 11. 82 & 19.13 & 1.18 & 855 \\
\hline Kingfish. & June 22 & 20.41 & . 76 & 18.13 & 1. 23 & 369 \\
\hline Do.. & Nov. 15 & 20.24 & . 89 & 17.75 & 1.32 & 368 \\
\hline Little smelt & Apr. 10 & 22.61 & . 74 & 19.81 & & 400 \\
\hline Rock cod ("Chili pepper") & May 25 & 20.35 & . 45 & 19.00 & 1.17 & 372 \\
\hline Rock cod ("bullhead"). & June 25 & 20.81 & 1. 46 & 17.94 & 1.12 & 395 \\
\hline Rock cod & Feb. 7 & 19.71 & 1. 20 & 17.88 & 1. 20 & 383 \\
\hline Sablefish, small & Apr. 3 & 18. 05 & . 07 & 16. 69 & 1. 57 & 313 \\
\hline Sablefish, large & June 11 & 29.34 & 14.87 & 13. 31 & . 95 & 875 \\
\hline Sand dab & May 29 & 18. 05 & . 28 & 16. 75 & . 87 & 323 \\
\hline Do-- & Jan. 4 & 17. 77 & . 16 & 16. 69 & 1. 09 & 317 \\
\hline Sea bass & June 3 & 23. 72 & . 50 & 21. 44 & 1.40 & 420 \\
\hline Shad (male) & Mar. 20 & 35. 14 & 15. 90 & 18.38 & 1.35 & 1,013 \\
\hline Shad (female) & Apr. 10 & 27. 40 & 7.86 & 18. 25 & 1.46 & 672 \\
\hline Sole & Apr. 3 & 19. 62 & . 69 & 17.38 & 1.70 & 352 \\
\hline Striped bas & May 27 & 21. 68 & . 78 & 19.38 & 1. 32 & 393 \\
\hline Skipjack-...-..-. & (1) 12 & 41. 08 & 19. 21 & 20. 44 & 1.34 & 1,191 \\
\hline Yellowfin croaker & May 12 & 20.97 & . 76 & 19. 19 & 1. 17 & 389 \\
\hline Yellowtail & Aug. 20 & 24. 31 & 3. 21 & 19.75 & 1. 34 & 502 \\
\hline Do. & Oct. 23 & 30.27 & 7.51 & 22.13 & 1.32 & 729 \\
\hline
\end{tabular}
\({ }^{1}\) Summer.
In order to avoid the pitfall of analyzing but one sample of fish caught in one place at one time of the year, Clark and Almy (1918) made a study of the common food fishes of the Middle Atlantic coast, and Dill (1921) did the same with important Pacific coast fishes (Table 3), with the idea of checking the question of seasonal variation. Even a casual inspection of this table makes it clear that in the case of many of the fish studied there is a seasonal variation in their composition and food value, which is generally in the direction of a tendency toward increase in the fat content from spring to fall. For instance, the percentage of fat in a group of bluefish caught May 7 was 1.54 , while that of another group caught September 28 was 8.10. In the case of butterfish, a group caught on May 19 averaged 5.96 per cent and another group caught in the fall (on October 12) averaged 13.52 per cent.
\(84503^{\circ}-26-2\)

Another tendency, however, is plain in the case of the shad, which run in the spring and spawn at that time of the year. Three female shad analyzed April 13, May 22, and June 19 show percentages of fat running from 13.93 to 5.87 and down to 2.95 . This is a case where the fat of the tissue of the fish was being rapidly transferred from the flesh into the roe (eggs), the variation being due not so much to seasonal factors as to the approaching maturity of the fish. In all of these cases, whether bluefish, butterfish, or shad, changes in the percentage of fat are reflected by great changes in the fuel value per pound. In other words, a person who bought a female shad on June 19 got considerably less than one-half the same number of calories as the person who bought one two months earlier.

It does not seem worth while to present any more general tables giving the food value of fish flesh in this connection, but under the section entitled "Variation in composition" some very interesting and important tables are shown to illustrate the different kinds of variation already mentioned. However, it may be of interest to many people who enjoy eating the roe of shad and other fishes to know that the food value is usually quite high, particularly from the standpoint of the percentage of protein, which is the most essential and valuable constituent in fish and shellish. Table 4 gives an idea of the food value of the roe of some typical food fishes.

Table 4.-Composition of the roe of various fishes
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & Total solids & Fat & \[
\begin{aligned}
& \text { Protein } \\
& (\mathrm{N} \times 6.25)
\end{aligned}
\] & Ash (in. organic matter) & Fuel value per pound \\
\hline Shad. & Per cent 28.75 & \[
\begin{array}{r}
\text { Per cent } \\
3.78
\end{array}
\] & Per cent 23. 44 & Per cent & Calories 595 \\
\hline Sturgeon & 43.03 & 12. 85 & 27.87 & 2.31 & 1,060 \\
\hline Salmon (chinook) & 42. 32 & 13. 60 & 26. 66 & 66 & 1,070 \\
\hline Herring & 23. 12 & 2.41 & 17.53 & 2. 18 & 428 \\
\hline
\end{tabular}

Table 5.-Composition of various canned fish
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Total solids & Fat & \[
\begin{gathered}
\text { Protein } \\
(\mathrm{N} \times 6.25)
\end{gathered}
\] & Ash (inorganic matter) & Fuel value per pound \\
\hline Mackerel & \[
\begin{array}{r}
\text { Per cent } \\
31.82
\end{array}
\] & \[
\begin{array}{r}
\text { Per cent } \\
8.68
\end{array}
\] & Per cent 19. 63 & \[
\begin{array}{r}
\text { Per cent } \\
1.30
\end{array}
\] & Calories 781 \\
\hline Salmon, chinook (Atwater, 1888) & 38.12 & 15. 70 & 20.18 & 1.32 & 1,037 \\
\hline Salimon (Shostrom, Clough, and Clark, 1924): & 35. 22 & 11.22 & 20.80 & 1. 23 & 890 \\
\hline Chinook & 36. 83 & 15. 72 & 17.67 & 1.21 & 991 \\
\hline Coho & 32. 51 & 8. 49 & 21.08 & 1. 24 & 750 \\
\hline Pink & 30. 20 & 6. 99 & 21. 40 & . 76 & 696 \\
\hline Chum & 29.96 & 6. 69 & 20.67 & 1.02 & 524 \\
\hline Stcelhead trout & 33.16 & 8.95 & 21.32 & 1.21 & 792 \\
\hline Atlantic salmon & 35. 70 & 12.49 & 21.14 & 1.22 & 920 \\
\hline Sardines in oil (French) & 43.63 & 12.71 & 24. 87 & 15.61 & 993 \\
\hline Sardines in oil (American) & 47.85 & 25. 52 & 19.17 & 13.84 & 1,433 \\
\hline Sardines in tomato sauce (Americau) & 32. 33 & 5. 55 & 18.08 & 13.94 & 570 \\
\hline 'luna in oil & 46.40 & 19.60 & 25.40 & 1.40 & 1,298 \\
\hline
\end{tabular}

\footnotetext{
IIncludes salt.
}

\section*{PRESERVE1) IPISH}

As canning is the most important, economically, of all the methods of preserving fish, we give Table 5, which shows the composition and food value of the more important types of canned fish. As the
individual items in this table were assembled from a great variety of sources, it will not be possible to give credit to the individual investigators.

In the case of salmon-which is the most important sea food canned, amounting in value (to the packer) to some \(\$ 50,000,000\) a year-there are few changes in the manufacturing process except that due to the addition of salt. On the other hand, in the case of sardines, tuna, and products of that sort, the fish are usually precooked, fried, steamed, or dried before being packed, and then olive oil, cottonseed oil, or tomato sauce may be added just before the can is sealed. In the case of canned salmon the food value is quite high for most species because of their fat content. All species of canned fish have a considerable percentage of protein, and that, of course, is the main constituent that makes them valuable. Where additional oil is added, as in the case of sardines and tuna, the food value is naturally very high, in terms of calories, because of the added oil. As salt is always used in canning, it will appear in analyses under the heading of "ash," except in those cases where particular pains were taken to determine the salt separately from the rest of the ash constituents.

In regard to the percentage of solids or moisture in canned fish it should be noted that those products that are put into the can in the raw state, like canned salmon, undergo shrinkage and elimination of water during the high temperatures of sterilization, so that the composition of canned salmon is more like that of cooked fresh fish unless all the liquids in the can, which were cooked out, are mixed with the fish when prepared for the table. In the analytical work reported above, Shostrom, Clough, and Clark (1924) analyzed the edible contents of the can, including the liquid, so the food values of the drained salmon as usually eaten would be considerably higher than those given in the table.

The most complete data we have on any canned fishery product is that of Shostrom, Clough, and Clark (1924) on the Pacific coast salmon, given in the above table. In connection with this work some 786 separate cans of salmon were analyzed. Many of theso cans consisted of identical cuts of individual salmon so as to eliminate variation in composition due to different parts of the same fish being canned. The average number of calories per pound for all species and grades of salmon from all districts was 738 in the special packs just described and 768 for the commercial packs that were analyzed and in which no special pains were taken to secure uniformity of the section of the fish analyzed. The steelhead trout, while not a salmon, is a fish of considerable economic importance on the Pacific coast, and its food value when canned was found to average about 972 calories per pound. A few samples of Atlantic coast salmon were analyzed and were found to have an average fuel value of 920 calorics per pound. This agrees very closely with the fuel value of the Pacific coast chinook salmon, which is 928 calories, although the Atlantic and Pacific species are entirely distinct.

Of all the ways of preserving fish there is none more important than canning. The great development of the salmon-canning industry on the Pacific coast shows that canned fish is a staple article in the United States and certain other countrias like Great Britain, Canada,

Australia, etc. When properly handled before canning and thoroughly sterilized, canned fish become available for shipment into any part of the world and can be enjoyed by people where fresh fish are not available. The loss in using canned fish is very slight, and as the cooking has already been done the product can be eaten cold, as a salad, if so desired.

There is a growing popularity in the Orient and South Sea Islands for canned fish, not only among the white residents but also among the natives. The coolies and workers on rubber and sugar plantations find canned salmon and canned sardines very valuable foods, and the same is true in many parts of the United States where canned fish are the only kind of fish available. It is hard to see how great industrial developments such as the building of railroads, lumber camps, mining, oil drilling, etc., in difficultly accessible places could be carried on without the use of canned products like fish, meat, fruits, vegetables, and milk. Not only has the conquest of the Tropics been made possible by the discovery of the connection between the mosquito and yellow fever, but also by the great development and utilization of canned and sterilized foods, among which fish and shellfish are always popular and, as we have seen, provide the essential foodstuff-protein-at a reasonable cost.

Next in economic importance to the canning of sea foods comes the freezing of fish. This is a very important industry both in the United States and abroad. While freezing fish has some disadvantages, compared with canning, it has certain advantages-namely, the flavor and appearance of the fish are practically unchanged by the freezing process. At times the public has shown an unjustifiable suspicion of frozen fish. The assumption has been that fish that can not be sold fresh are frozen, and that, furthermore, during the freezing process and storage there is considerable deterioration which affects the food value and palatability of the product. It was in order to study this question most carefully that Clark and Almy (1920) undertook a long series of experiments and investigations on the behavior of Atlantic coast weakfish and bluefish during freezing and after storage. They analyzed groups of fish to determine the normal composition when fresh (before freezing) and then analyzed other individuals of the same lots of fish which had been frozen and stored for periods of time up to and over 27 months. As a matter of fact, frozen fish are not kept any longer than eight months or a year at the most, because the normal cycle-first, of scarcity and then of plenty-usually requires a year to be completed. There is no economic reason whatever for carrying frozen fish over into the season when the fresh fish are being obtained and frozen for a coming period of scarcity. In Table 6, taken from a publication of Clark and Almy (1920), the composition of weakfish and bluefish before and after freezing and storing is given.

Table 6.-Effect of freezing and storage on the composition of food fishes
[Analyses of the edible portion on the moist basis]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name & \begin{tabular}{l}
Storage \\
period, in months
\end{tabular} & Total solids & Fat & \[
\begin{aligned}
& \text { Protein } \\
& (\mathrm{N} \times 6.25)
\end{aligned}
\] & Ash (inorganic matter) & \[
\begin{aligned}
& \text { Fuel } \\
& \text { value } \\
& \text { per } \\
& \text { pound }
\end{aligned}
\] \\
\hline & & Per cent & Percent & Per cent & Per cent & Calories \\
\hline Fresh, evisceratod weak fish & & 24.41 & 5.15 & 18.75 & 1.18 & 586 \\
\hline  & & 21.30 & 1.76 & 18.50 & 1.24 & 418 \\
\hline Frozen, eviscerated weakfish (glazed, not & & & & & & \\
\hline  & 2 & 22.39 & 1.91 & 18. 69 & . 96 & 428 \\
\hline Do & 8 & 23. 08 & 1.99 & 19.50 & 1.18 & 446 \\
\hline Do. & 13 & 24.86 & 2. 82 & 20.00 & 1.16 & 491 \\
\hline Do. & 25 & 24.84 & 2.87 & 19.80 & 1.10 & 489 \\
\hline Fresh, eviscerated bluefish & & 23.98 & 1.13 & 21. 50 & 1.34 & 447 \\
\hline Do.......--------- & & 24.36 & 1.82 & 20. 68 & 1.32 & 461 \\
\hline Frozen, eviscerated bluefish (glazed, not & & & & & & \\
\hline wrapped in paper) & 4 & 25. 80 & 3.33 & 20. 87 & . 99 & 529 \\
\hline Do.- & 5 & 26.02 & 3.19 & 20.31 & 1. 14 & 512 \\
\hline Do & 8 & 25. 68 & 2. 02 & 22. 30 & 1.27 & 500 \\
\hline Do. & 12 & 25. 26 & 1.85 & 21.06 & 1.22 & 470 \\
\hline Do & 16 & 25. 71 & 1.81 & 21. 06 & 1.23 & 468 \\
\hline Do & 16 & 24.33 & . 63 & 22. 30 & 1.26 & 442 \\
\hline Do... & 27.5 & 26. 22 & 1.33 & 22. 69 & 1.23 & 478 \\
\hline
\end{tabular}

During storage the fish were kept glazed; that is, dipped into water immediately after freczing and thus covered with a thin coating of ice. The object of this glaze is to prevent mechanical damage to the skin of the fish and at the same time prevent evaporation or loss of water. If fish were not glazed, their skins would rapidly dry out and take on a most unattractive appearance. It may seem strange that moisture will evaporate from frozen fish at a temperature of only \(5^{\circ}\) above zero; but this has to be guarded against constantly in the storage of frozen products. The same thing happens to a cake of ice standing in the open air. Even when the temperatures are far below freezing it will soon be noticed that the edges of the cake become rounded, and that it gradually shrinks in size and finally disappears. The water in the form of ice has evaporated directly from the solid state into the state of vapor without any apparent sign of becoming a liquid. This is exactly what happens to frozen fish when stored without glazing.

While the storage period which these experimental fish passed through was probably about three times as long as that commonly used in commercial practice, it is evident that there was no detectable change in chemical composition or food value during that period. The glaze on the fish apparently prevented the eraporation of any considerable amount of water, and, as could be expected, there was no change in the fat, protein, or ash content, except such variations as are always found when individual fish are being analyzed. In addition to the work reported in the table given above, Clark and Almy (1920) found no significant changes in the more refined analyses which they made on the individual nitrogenous substances found in fresh fish. These substances are supposed to be quickly influenced by any signs of decomposition, but such changes were not detected. In conclusion, we may say that the process of freezing and storing of fish in cold rooms is one in which there is no appreciable change in the quality or food value of the fish.

\section*{SALTED, SMOKED, AND DEIIYDRATED FISH}

The carliest way, probably, in which foods were proserved for future use by man was through the process of smoking. Later on the use of salt was combined with the smoke as an added preservative. Being essentially perishable and yet worthy of special effort in the matter of preserving them for future use, prehistoric man gradually learned to provide himself with fish for the winter season of scarcity by means of smoking, drying, or a combination of smoking and salting. We know that the Indians in the United States and Alaska used to go long distances in order to capture and preserve fish for their winter supply at a time when the fish were running in the rivers. Even to-day the Indians in Alaska smoke and dry large quantities of salmon to be used as food for themselves and their dogs during the winter, when no other food is available.

In our colonial times the people consumed considerable quantities of salt codfish, salt salmon, herring, etc., which they sometimes prepared themselves when the fish happened to run in their rivers, or which were prepared at some central salting and drying place like Gloucester, Mass. It was not a strange faney that led the early colonists to adopt the tradition of keeping the "sacred codfish" in the Massachusetts capitol building in Boston. In those days of hardships, had it not been for the salt cod it would have been practically impossible for the colonists to have maintained themselves on the edge of a rather inhospitable country that they were beginning to subdue to the purposes of civilization.

Unfortunately there is not very much data available on the composition and food value of salted and smoked fish. In Table 7 are given data on some of the more common forms of salted and dehydrated fish.

Table 7.-Composition of salted, smoked, pickled, and dehydrated fish
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & \[
\begin{aligned}
& \text { Total } \\
& \text { solids }
\end{aligned}
\] & Fat & \[
\begin{aligned}
& \text { Protein } \\
& (\mathrm{N} \times 6.25)
\end{aligned}
\] & Ash (inorganic matter & \[
\begin{aligned}
& \text { Fuel } \\
& \text { value per } \\
& \text { pound }
\end{aligned}
\] \\
\hline Boneless salt cor & Per cent 45 & \[
\begin{gathered}
\text { Per cent } \\
0.3
\end{gathered}
\] & \[
\begin{gathered}
\text { Per cent } \\
26.3
\end{gathered}
\] & \[
\begin{aligned}
& \text { Per cent } \\
& 123.2
\end{aligned}
\] & Calories 502 \\
\hline Desictated cod & 88.4 & 4.9 & 72.0 & 5.2 & 1, 5446 \\
\hline Smoked hadiock & 27.4 & \(15 .{ }^{2}\) & 20.8 & 1.15 & 1,020 \\
\hline Picklod herring. & 3 57.7 & 19.7 & 25.0 & 4.0 & 1,297 \\
\hline Smokod herring & 65.5
56.1 & 15.8
25.1 & 36.9
18.6 & 1.5
2.6 & 1, 1,405 \\
\hline & & & & & 1,405 \\
\hline
\end{tabular}
\({ }^{1}\) Salt included.
\({ }^{2}\) Contaius 4.04 per eent of undetermined acids, sugar, etc.
Of course, one of the outstanding features in the composition of salted and smoked fish is naturally the elimination of water. Fundamentally the salting of fish or meat products results in the withdrawal of water. In other words, whether the fish are dried naturally or salted, the effeet is the same; namely, to reduce the percentage of water to the point where bacteria and molds can not grow and destroy these food products. Of course, smoking adds a slight amount of ereosote and similar materials to the surface of these produets, which act as a sort of preservative and at the same time give them their characteristie flavor. Because a considerable pro-
portion of the water existing in the flesh of the fish is removed by salting and drying operations, salt fish like cod and smoked herring are quite highly concentrated forms of protein. In the case of smoked herring there is the additional advantage of a rather high percentage of fat. Similarly, salt mackerel owes its chief fuel value to its very high content of oil; namely, 25.1 per cent. This, together with its protein content, gives it the unusually high fuel value of 1,405 calories per pound. However, probably the most commonly used form of salted fish is the salt cod. This does not gain much in food value from its fat content, which is very low, but does have a considerable percentage of protein-namely, 26.3 per cent-and a total fuel value of 502 calories per pound. Pickled herring and mild-cured salmon are prepared in large quantities and used in many countries.

MOLLUSKS, CRUSTACEANS, ETC.
Up to the present point we have been considering only fish in the narrow meaning of the word. However, it was probably quite early in the development of mankind that they learned to utilize oysters and clams as well as crabs, shrimp, etc., which they could gather along the seashore. Just as pointed out in the case of the early native tribes flocking to the rivers at certain seasons in order to catch fish and preserve them for the winter, it is also true that in Europe and North America the natives frequented certain favorite places along the shores in order to enjoy oysters and clams. Judging by the enormous size of some shell mounds in Europe and on both our coasts, large quantities of these mollusks must have been consumed over long periods of time. The fragments of pottery, arrowheads, and other prehistoric traces show that these mounds were built up slowly, sometimes one over another, where the remains of one civilization would be buried along with the shells, only to be followed by later deposits. Modern man has not lost his taste for mollusks and crustaceans, and the consumption of oysters, clams, scallops, mussels, lobsters, crabs, and shrimp is quite large.

The most important of the mollusks, industrially, is the oyster. Great quantities are eaten raw on the seaboard and also shipped long distances inland in refrigerator cars. The flavor of the oyster seems to be one that is particularly attractive to many people. From the standpoint of composition the oyster is very interesting for the reason that a quart of oysters and a quart of milk have very nearly the same composition and about the same food value. Oysters are also peculiar from a scientific standpoint in that they contain some unusual inorganic constituents like copper and zinc. Of course, not enough of these metals is present to affect injuriously their value for human food.

Generally speaking the food value of the edible part of mollusks and crustaceans is not as high as in fish flesh. This is made plain in Table 8. The reason for this is that mollusks do not contain very much fat, while the flesh of many fishes does. On the other hand, there is one characteristic of this class of sea foods which is interesting and important; that is, they contain some carbohydrate or starchy type of nutrients, which is quite unusual in sea foods. As a matter of fact, carbohydrates are not determined in ordinary analyses of fish flesh becauso they exist in quantities of considerably
less than one-half of 1 per cent. In the present class of sea foods, however, the percentage of carbohydrates ranges from 1 to 5.2 . The carbohydrates usually exist in the form of glycogen, sometimes called animal starch, which is a form of sugar storage in the muscles of the mollusks and crustaceans as well as in the liver of human beings and mammals. The muscles that hold the parts of the shells together are quite powerful, and it seems that the glycogen storage takes place in these muscles.

Table 8 -Composition of the edible portion of mollusks, crustaceans, ctc.


Oarkohydrates present but undetermined.
While it is true that the food value of mollusks and crustaceans as a class is not as great on the average as that of fish ficsh, still these products play an important part in the diet, because they contain considerable quantities of protein (essential for muscle-building purposes) and are particularly noted for their delicate and unusual flavors, which add variety to the diet and whet the appetite. It is probably not purely by accident that in most civilized countries dinners often begin with a course in which oysters, clams, crabs, or lobsters figure as the appetizer:

Owing to the almost universal popularity of mollusks and crustaceans people wish to eat them in seasons when they are not available in the fresh state. This has led to the development of several important industries, such as the canning of clams, crabs, lobsters, oysters, and shrimp. In Table 8 will be found some interesting data on canned and dried sea foods of this type. Some of the canned products, such as oysters, shrimp, and clams, are packed in their own liquor or in a light brine, and this appears to reduce their food value, as a certain percentage of the nutrients dissolve in the liquid duwing the sterilizing process. This is of no great importance,
however, as in most eases the consumer realizes that much of the flavor has passed into the liquor and he uses this along with the product itself.

Dried abalone is rather striking on account of its high percentage of protein and carbohydrate, which is about 36 and 21 per cent, respectively, giving it a fucl value of 1,079 calories per pound. Dried shrimp is even more surprising in this regard, as the total solids aro increased by drying to 87.5 per cent, the protein being 71.4 per cent, with a considerable percentage of glycogen, which was not determined in these analyses. Leaving out, of course, the undetermined glycogen, the fuel value of dried shrimp is 1,540 calories per pound. For some reason this product is not as popular with American consumers as it ought to be. It can be prepared, shipped, and stored at rather small expense, and soaks up in water to give a product rery similar to the original fresh substance in flavor and appearance. The Chinese on the Atlantic coast consume considerable quantities of this article, which is prepared in the South Atlantic and Gulf States. In the San Francisco Bay region large quantities of shrimp are dried and exported to China, where it is quite popular.

Table 9.-Percentage of edible portions of fish and meat as commonly purchased


\section*{PERCENTAGE OF WASTE IN FISII}

Some consideration must now be given to the subject of the losses that occur in preparing fish for the table. These losses are generally greater than in the case of meat, which, of course, is the food to which fish bears the closest similarity.

The housewife may buy fish whole, and this is usually the case with the smaller ones like herring, smelt, butterfish, etc. Mora commonly the fish are dressed-that is, the entrails and very often the head are removed. On the average, dressing the fish in this way causes a loss of some 25 to 30 per cent, varying with the species. Of course, there are certain types of the larger fish, such as swordfish,
\(84503^{\circ}-26\) - 3
halibut, salmon, cod, striped bass, etc., that are sold by having slices cut off to suit the convenience of the purchaser. In such cases the edible portion comprises most of the part purchased, the only loss being a section of the backbone and attached smaller bones.

To give an idea of the percentage of the edible portion that nay be obtained from the whole fish as originally caught or the dressed fish as bought in the market as compared with similar meat products, Table 9 is given.

It is apparent that there is usually more loss in preparing fish for the table than is the case with meat. Of course, the reason is ohviousnamely, that a quarter of beef or leg of mutton, for instance, consists of relatively large pieces from which portions for individual families can be removed with minimum loss. Furthermore, most animal food products as placed on the market represent but a fraction of the original live weight of the animal. Fish have a good deal of waste in the form of head, entrails, tail, fins, etc., removed before they can be cooked and put on the table.

Referring now to preserved fish products, naturally the waste is very much less than in fresh fish, as they have already been treated in much the same way as when being prepared for the table. This is true in the case of boneless codfish, in which there is no waste whatever, and to a slightly less extent with canned salmon, where the only waste would be the skin and bone, which two items constitute a small percentage of the total contents of the can. In the case of canned shrimp, oysters, sardines, tuna, etc., there is no waste.

\section*{EFFECT OF COOKING ON THE COMPOSITLON OF FISH}

Naturally, it makes a great deal of difference whether the fish are cooked by baking or frying, where the main loss is moisture, or by boiling, where another element comes in-namely, the dissolving of soluble substances from the fish flesh by the hot water. Table 10 is based upon some work done in Europe and some done by Atwater. (Atwater and Bryant, 1899.)

Table 10.-Analyses of fresh and cooked fish, edible poriion
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Namo & Fat & \[
\begin{gathered}
\text { Protain } \\
(\mathrm{N} \times 6.25)
\end{gathered}
\] & Nitrogen frce extractive matter & Ash (inorganic matter) & Pure ash & Salt & Fuel value per pound \\
\hline On dry basis: \({ }^{1}\) & & & & & & & \\
\hline Salmon- & Per cent & Per cont & Per cent & Per cent & Per cent & \[
\begin{gathered}
\text { Per cent } \\
0.34
\end{gathered}
\] & Calories
\[
2,314
\] \\
\hline Boiled. & 23.92 & 68. 63 & 3.25 & 4. 20 & 3. 33 & . 87 & 2, 285 \\
\hline Baked & 20.59 & 69. 38 & 1. 69 & 8. 34 & 4.62 & 3. 72 & 2,159 \\
\hline Smokod & 24.32 & 51. 06 & 3.87 & 20.77 & 3. 50 & 17.27 & 1,974 \\
\hline Herring- & & & & & & & \\
\hline Fresh
Smoked & 29.14
29.79 & 63.94
56.50 & 3. 04
1.47 & 3.88
12.24 & 3.65
6.64 & .23
5.60 & 2, 2,318 \\
\hline & & & Total & & & & \\
\hline On moist basis: & 4. 50 & 25. 90 & solids
31.80 & 1.20 & & & 670 \\
\hline Spanish mackerel, broiled & 6.50 & 23. 70 & 31.10 & 1. 40 & & & 715 \\
\hline & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) These results are calculated on the dry basis and are approximately threo times as high as they would bo if calculated on the moist basis.

As one might expect, it is evident that the changes which occur in the composition of fish during cooking are not very noticeable, con-
}
sisting mainly in the slight loss of moisture where the cooking takes place under dry conditions and, on the other hand, a loss in nitrogenous or protein material where the fish are boiled. The main object in cooking fish is to make them palatable in accordance with the tastes of civilized man. It should be noted, however, that many of the native tribes and many of the people in civilized countries do eat fish raw. In Japan it is quite customary to eat fish flesh without cooking, but in Europe and America it is usually only pickled herring, smoked salmon, etc., that are eaten without any real cooking by heat.

\section*{VARIATIONS IN THE COMPOSITION OF FISH}

\section*{SEASONAL AND MATURITY VARIATIONS}

It has already been mentioned in connection with the discussion of Tables 2 and 3, giving the general composition of food fishes, that very marked variations occur in the composition of fish. These changes may be roughly classified as due to (a) season or maturity, (b) locality, (c) variations in individuals, and (d) variations in the different parts of the body of the same fish. In this section the seasonal and maturity variations only will be discussed.

In Table 11 Dill (1921) presents the analyses at different times of the year of some important economic fishes of the mackerel family caught off the coast of California.

Table 11.-Analyses of various fishes of the mackerel family caught off the coast of California
[Analyses of the edible portion on the fresh basis]


In the case of the albacore, for instance, which is so important for canning purposes, it will be seen that the percentage of fat, which so largely influences the fuel value, seems to reach its peak about the first wreek in September and then falls off again during October and November. Expressed in terms of fuel value, tho albacore caught early in the season averaged about 690 calories per pound, while those caught the first week in September averaged 986 calories per pound. Later on in the fall the fuel value dropped down to an average of 750 calories. We find the same thing illustrated in the analysis of the yellowfin tuna, where the fat content seems to reach
the maximum about the first week in September and drops of again like the albacore.

In Table 12 Dill (1921a) presents a special study of the variation of the average monthly composition of the larger-sizad California sardines which are used in packing pound oval cans. We hare in this table data running through two years, based upon analyses of a conciderable number of fish caught at monthly periods during the seacons when the sardines are present in considerable numbers off the southern California coast.

TABLE 12.-Monthly ancrage composition of "large oval" size sardines caught off the coast of California
[Analyses of the edible portion on the fresh basis]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Month & Number of analyses & Total solids & Fat & \[
\begin{gathered}
\text { Protein } \\
(\mathrm{N} \times 6.25)
\end{gathered}
\] & Fuel value per pound \\
\hline & -1919 & & Per cent & Per cent & Per cent & Calories \\
\hline January & & & 37.71 & 14. 20 & 17.44 & 1,135 \\
\hline February & & 2 & 33.34 & 14. 02 & 18.00 & 1,927 \\
\hline April. & & 2 & 21.08 & 1.75 & 18.93 & 1,664 \\
\hline May. & & 5 & 23.27 & 2. 74 & 19.07 & 470 \\
\hline December & & 4 & 40.30) & 21.38 & 18.00 & 1,237 \\
\hline & 1920 & & & & & \\
\hline January & & 4 & 37.91 & 17. 89 & 19.00 & 1,108 \\
\hline February & & 17 & 38. 34 & 18. 88 & 18.06 & 1,133 \\
\hline March & & 20 & 36. 53 & 17.04 & 18.06 & 1,055 \\
\hline A pril & & 20 & 27.52 & 6. 67 & 19. 25 & 639 \\
\hline May. & & 10 & 25. 78 & 4. 00 & 20.75 & 555 \\
\hline June. & & 4 & 25. 22 & 2. 75 & 21. 13 & 509 \\
\hline
\end{tabular}

Again, using the percentage of fat as an index of the rariation (and that is fair because, as we have already pointed out, the percentages of ash and protein do not vary greatly for one reason, and for another it is the changes in fat content that cause the greatest variation in fuel value per pound), we see that there is a marked cycle of variation in each year. During January, February, and March these sardines are at their maximum degree of richnessnamely, have an average fat content of about 17 per cent. Howerer, in April, May, and June, the cycle swings downward and the percentage of fat decreases to an arerage of only 3 or 4 per cent. This is a very great change in composition and has considerable economic significance because the large oval sardines are packed in tomato sauce and not oil and for that reason must be packed at a time of the year when the fish are at the maximum degree of fatness. This has been found by experience to be during the winter and early spring.

In Alaska there is a somewhat similar variation in the composition of herring, on which a large industry has been founded in preserving the fish by the Scotch-cure method. It is during the season of the year when the fish are in the stage of maximum fatness that most of the Scotch-curing operations are carried on. We sce, therefore, that the question of seasonal variation of fish is one not only of importance to the consumer from the standpoint of calories obtained for a given unit of expenditure, but also that large industries with many millions of dollars involved and many people employed must shape their operations in accordance with variations in the composition of the fish.

Table 13.-Composition of the muscle tissue of the chinook salmon during the spawning migration
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Collecting station & Date & Total solids & Fat & \[
\begin{aligned}
& \text { Protein } \\
& \text { ( } \mathrm{N} \times 6.25 \text { ) }
\end{aligned}
\] & Ash (inorganic matter) & Organic extractives \\
\hline 11 wien, Wash., tidewater & Aug. 15-20.- & \[
\begin{array}{r}
\text { Per cent } \\
36.83
\end{array}
\] & \[
\begin{array}{r}
\text { Per cent } \\
16.43
\end{array}
\] & \[
\begin{array}{r}
\text { Per cenl } \\
16.97
\end{array}
\] & \[
\begin{array}{r}
\text { Per cent } \\
0.90
\end{array}
\] & \[
\begin{array}{r}
\text { Per cent } \\
2.48
\end{array}
\] \\
\hline Warrendale, Oreg., 100 miles from sea- & Aug. 5-7.-.- & 37.32 & 17.17 & 16.88 & . 89 & 2. 49 \\
\hline Scuferts, Oreg., 210 miles from sea_-. & July 11-31..- & 36. 64 & 16.33 & 17.01 & . 95 & 2.49 \\
\hline Outario, Oreg., 700 miles from sea- & Sent. 6-11. & 31. 02 & 10.73 & 16. 31 & 1. 00 & 2. 94 \\
\hline Cazadero, Oreg., spawning grounds... & Aug. 25-28-- & 20.32 & 2.63 & 13.71 & . 94 & 2.95 \\
\hline
\end{tabular}

The chinook salmon of the Pacific coast is rery important from the standpoint of the large amount that is eaten fresh, because it is the basis of the large mild-cure salmon industry, and finally because of the large amount of it that is canned. A typical salmon river is the Columbia River. From time immemorial the Indians have come there to catch their salmon at certain seasons, and it was one of the earliest salmon-canning districts to be developed by the white man. From the standpoint of fuel value as well as economic value in connection with canning operations the variation in the fatness of the chinook salmon as it enters the Columbia River from salt water and proceeds upstream to spawn has always been important. It is also particularly interesting from a scientific standpoint, because by taking fish at different points on the river, from tidewater to the spawning beds, it is possible to study the changes in composition and fuel value of the flesh as the fish approach the time of spawning.

Greene (1919) has studied this problem in a most painstaking way, and in Table 13 it is easily seen that as the fish progress up the Columbia River on their way to the spawning areas many hundreds of miles from salt water their flesh suffers a deterioration, particularly as regards the fat content and to a less extent in the matter of protein. It is evident that the flesh of the chinook salmon is gradually depleted of its most valuable constituents-namely, its fat and protein-in order to provide for the coming generation. This is also very interesting for the reason that as the parents die soon after spawning it would be a waste in the scheme of nature for large amounts of valuable nutrients to remain in the flesh. (As a matter of fact the bodies of the parents disintegrate after death and provide the young fish with one of their first foods when they emerge from the gravel after being hatched.) From the standpoint of the use as food of spawning or spawned lout fish, it only needs to be pointed out that the fuel value of such fish is relatively low and their flesh is always watery and more or less unpalatable and lacking in the characteristic firmness, flavor, and richness of the flesh of salmon taken in salt water or very early in the spawning migration up the rivers.

\section*{VARIATIONS DUE TO LOCALITY}

From the earliest days it has been known that the fish in certain localities are unusually fat as compared with those taken from other places, and fishing operations have often been conducted with this in view. The variations in composition of the herring in European waters have been studied very carefully by various investigators but nced not be discussed in this chapter on the composition of American food fishes.

In our own country, for example, it has been known for many years that the salmon that run in certain streans are unusually rich and desirable from the market standpoint. This is true, for instance, in the case of chinooks from the Columbia River and sockeye salmon from the Fraser River. In Alaska it is also true, as the fish in the Copper and Yukon Rivers, for instance, are famous for their high fat content. There has been a tradition in connection with this to the effect that the fish that run in the longer rivers are considerably richer than those that spawn in the shorter rivers of the coast. Unfortunately for this theory, however, which seems to be true in a general way, there are some notable exceptions. For instance, the chinook salmon that run in the Rogue River on the Oregon coast, the Klamath River on the California coast, and the red salmon in the Quinault River on the Washington coast are unusually rich, yet these rivers are small and can not be classed with majestic streams like the Columbia and Yukon.

In connection with the detailed study made by Shostrom, Clough, and Clark (1924) on the composition of salmon used for canning on the Pacific coast, sections from 216 individual chinook salmon taken from practically all of the canning districts under the American flag on the Pacific coast were considered in great detail. Table 14 gives a highly condensed summary of this work, referring only to chinook salmon.
Table 14.-Variations in composition of the canned chinook salmon caught in various localities
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Locality & Number of fish lyzed & Solids & Fat & Pro\(\stackrel{\text { tein }}{\mathrm{N} \times}\) 6.25) & Saltfree ash & Fuel value per pound \\
\hline alaska & & & & & & \\
\hline Western Alaska: Bristol Bay- & & Per
cent & Per cent & \[
\begin{aligned}
& \text { Per } \\
& \text { cent }
\end{aligned}
\] & Per cent & Calo- \\
\hline Nushagak River & 9 & 31.47 & 9.33 & 19.60 & 1. 19 & 758 \\
\hline Kvichak River. & 9 & 32.33 & 10.30 & 19.77 & 1.31 & 802 \\
\hline Naknek River. & 9 & 32.88 & 11. 12 & 19.01 & 1. 24 & 822 \\
\hline Central Alaska: & & & & & & \\
\hline Alaska Peninsula, Chignik River & 9 & \[
\begin{aligned}
& 35.94 \\
& 32.23
\end{aligned}
\] & \[
\begin{array}{r}
14.24 \\
\text { 8. } 59
\end{array}
\] & \[
\begin{aligned}
& 18.29 \\
& 20.92
\end{aligned}
\] & \[
\begin{aligned}
& 1.19 \\
& 1.32
\end{aligned}
\] & 940
751 \\
\hline & & & & & & \\
\hline Average for Alaska fish & & 32.98 & 10.71 & 19. 51 & 1.25 & 814 \\
\hline united states & & & & & & \\
\hline \begin{tabular}{l}
Puget Sound: \\
Blaine, Wash.-
\end{tabular} & & & & & & \\
\hline A. Red-fleshed fish_ & 9 & 37.94 & 12.19 & 20.75 & 1.15 & 900 \\
\hline 13. White-lleshed fish & 9 & 38.02 & 13. 24 & 19.15 & 1.17 & 915 \\
\hline Average for Puget Sound & & 37.98 & 12.71 & 19.95 & 1.16 & 908 \\
\hline Columbia Rivor: & & & & & & \\
\hline Near mouth- & & & & & & \\
\hline B. Grade 2 & 40 & 35. 86 & 13. 59 & 19.31 & 1.17 & -932 \\
\hline O. Grade 3 & 20 & 32.06 & 9.58 & 19.98 & 1.20 & 776 \\
\hline D. White-fleshed fish & & 31.90 & 10. 26 & 19.53 & 1.21 & 796 \\
\hline 200 miles from mouth- & & & & & & \\
\hline A. Grade 1. & 11 & 39. 65 & 16. 83 & 19.16 & 1.18 & 1,066 \\
\hline B. Grade 2 & 11 & 38. 61 & 17. 18 & 18.80 & 1.12 & 1,074 \\
\hline A verage for Columbia River & & 36. 57 & 14.12 & 19.34 & 1.18 & 955 \\
\hline Oregon coast: & & & & & & \\
\hline \begin{tabular}{l}
Coquille River, Grade 1. \\
Rogue laiver, Grade 1
\end{tabular} & 11 & \[
37.00
\]
\[
38.30
\] & 12.94
15.40 & 20.68
19.76 & 1. 26 & 931
1,017 \\
\hline Northern California coast: Klamath River, Grade 1 -- & 11 & 38. 71 & 16. 36 & 19.94 & 1. 20 & 1,061 \\
\hline Average for Oregon and California coastal rivers. & & 38.00 & 14.90 & 20.13 & 1. 23 & 1, 003 \\
\hline A verage of all chinook salmon. & & 36.02 & 13. 41 & 19.51 & 1. 21 & 928 \\
\hline
\end{tabular}

This table shows that in addition to the variations of fish in different streams there are certain general changes that are obvious. In the first place the chinook or king salmon in Alaska, with the exception of the Chignik River, is not as rich in oil and consequently in fuel value as the salmon from the canning districts in the United States. The chinooks caught on Puget Sound average about the same in food value as those caught in the Columbia River. However, there is no careful grading system in effect in the Puget Sound district such as on the Columbia River, and so we have no class of selected No. 2 grade, for instance, that compares with No. 2 chinooks on the Columbia River.

A detailed study was made of the composition of chinooks eaught at Astoria, near the mouth of the Columbia River, with those caught 200 miles from the mouth, and it was found in a general way that there was little, if any, variation in fuel value in this 200 -mile stretch of river. A further study of the composition of the three difierent grades on the river showed that in a general way the grading that was done for color seemed also to show a certain correlation in the matter of the percentage of oil, as the fuel value seemed to run in proportion to the grading, the primary object of which was to select the brightestcolored fish for the higher grades. On the one hand, analyses of whitefleshed fish on Puget Sound, as compared with red-fleshed fish taken at the same time and at the same place, showed that there was little, if any, difference in the fat content between the red and the white varieties, at least in that particular locality; on the other hand, the white-fleshed chinooks on the Columbia River seemed to run about the same as a No. 3 grade chinook-namely, relatively low in oil as well as poor in color. However, more work will have to be done along this line to prove conclusively that color and food value have any necessary relationship.

Table 15.-Variation in the composition of individual California mackerel (Scomber japonicus), based upon analysis of the edible portion on the fresh basis
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Num- } \\
\text { ber } \\
\text { ana- } \\
\text { lyzed }
\end{gathered}
\] & Description & A verage weight, grams & Date & Total solids & Fat & \[
\begin{gathered}
\text { Protein } \\
(\mathrm{N} \times 6.25)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Ash } \\
& \text { (inor- } \\
& \text { ganic } \\
& \text { matter) }
\end{aligned}
\] & Fuel valủe per pound \\
\hline & & & 1918 & Percent & Per cent & Per cent & Per cent & Calories \\
\hline 1 & & 496 & Oet. 25-- & 25. 92 & 1. 27 & 23. 50 & 1. 27 & 491 \\
\hline 1 & & 526 & --do.-.- & 26. 20 & . 85 & 24.31 & 1. 52 & 488 \\
\hline 1 & & 546 & do. & 31. 71 & 7.88 & 22.88 & 1. 34 & 758 \\
\hline 6 & Males & 511 & Nov. 17 & 24.35 & . 41 & 23. 06 & 1. 41 & 446 \\
\hline 6 & Females & 511 & ---do---- & 24.89 & . 85 & 23.37 & 1. 37 & 471 \\
\hline & & & 1919 & & & & & \\
\hline 1 & Male, spent & 582 & Aug. 7 & 28. 16 & 3. 50 & 23. 56 & 1. 45 & 586 \\
\hline 1 & Fernale, spent & 596 & .-do. & 26.83 & 2. 91 & 22. 81 & 1. 47 & 547 \\
\hline 1 & ---do. & 596 & -..do. & 28. 03 & 3.87 & 23. 05 & 1. 47 & 592 \\
\hline 1 & --do & 624 & ---do & 28. 18 & 4.48 & 21.81 & 1. 44 & 595 \\
\hline 1 & Fernale, full & 823 & .-.do. & 32. 65 & 9. 81 & 21. 44 & 1. 32 & 813 \\
\hline 1 & ---do & 1,135 & Aug. 11 & 30.36 & 6.35 & 23. 06 & 1. 40 & 697 \\
\hline 9 & Males, full & 1,220 & ..-do... & 30. 69 & 7. 50 & 21.87 & 1. 31 & 722 \\
\hline 1 & Fernale.-- & 538 & Nov. 18 & 28. 57 & 5. 25 & 22. 38 & 1. 56 & 638 \\
\hline 1 & -.-.-do. & 568 & -- do...- & 32. 57 & 9. 78 & 21.88 & 1. 43 & 820 \\
\hline 1 & -.-do & 568 & ...do. & 32.31 & 9.34 & 22. 19 & 1. 23 & 807 \\
\hline 1 & ....-do. & 625 & -.-do. & 34. 21 & 11. 68 & 22. 88 & 1.35 & 919 \\
\hline 1 & ---do & 682 & --do. & 32. 96 & 10. 69 & 22. 06 & 1. 37 & 861 \\
\hline 1 & Male & 1,022 & --do. & 29.33 & 6. 86 & 21. 68 & 1. 33 & 695 \\
\hline 1 & --do & 1,079 & ...do & 37. 67 & 15. 45 & 20.81 & 1. 28 & 1,039 \\
\hline 1 & Female & 1,193 & -...do. & 37.25 & 15. 81 & 20. 44 & 1. 20 & 1,048 \\
\hline 1 & ....do & 1,332 & -- - do. & 39.84 & 18. 93 & 20.31 & 1. 04 & 1,177 \\
\hline 1 & Male. & 1, 333 & do--- & 41.05 & 20. 32 & 20. 44 & 1. 04 & 1,237 \\
\hline 1 & & 538 & Dec. 10 & 30. 65 & 8. 41 & 22. 00 & 1. 23 & 764 \\
\hline 1 & & 625 & -- do.-.- & 33. 00 & 10. 32 & 21.56 & 1. 31 & 836 \\
\hline 1 & & 681 & -- \({ }^{\text {- }}\) & 33.99 & 12.35 & 21. 56 & 1.35 & 922 \\
\hline 1 & & 838 & - do. & 37.48 & 17.79 & 21. 25 & 1. 34 & 1,145 \\
\hline 1 & & 938 & --do & 30.31 & 7.77 & 21. 56 & 1. 52 & 729 \\
\hline
\end{tabular}

\section*{INDIVIDUAL VARIATIONS}

It has already become erident that the composition of fish flesh is greatly influenced by such factors as the time of year when caught, relation to maturity, and locality. Of course, the variation due to locality is somewhat complicated by the fact that this may be due rather to the unusual prevalence of food in or off the mouths of certain rivers like the Rogue, Columbia, and Yukon.

There is another type of variation which should be considered, and that is what we may call "individual" variation, for which we can find no other explanation than that it is due to the individuality of different fish. It is a well-known fact that no two biological individuals, whether of plant or of animal origin, are exactly alike. The amount of food they eat, the amount of energy they transform, and other conditions of ten seem to vary greatly for no apparent reason. This may be the cause of the so-called "individual" rariation in fish that may be caught in the same school, where the conditions of time, place, school, and sex are apparently identical. Dill (1921) has analyzed a large number of individual California mackerel by groups caught at the same time, often of the same sex, and approximately the same size.

It takes only a very brief glance at Table 15, where Dill's results are tabulated, to bring out how great this factor of individual rariation may be. For instance, in three individual mackerel caught on October 25 there was a variation in fat content from a minimum figure of 0.85 per cent to a maximum of 7.88 per cent. \(\Lambda\) gain, at a later date-namely, December 10-five of the California mackerel varied individually in the percentage of fat from a minimum of 7.77 to a maximum of 17.78 , or, when expressed in calories, from a minimum fuel value of 729 calories to a maximum of 1,145 calories per pound. The variation in the percentage of protein and ash is not very great, the main difference being in the percentage of fat, with a corresponding inverse change in the percentage of moisture.

VíRIATION IN TIE COMPOSITION OF DIFFERENT PARTS OF THE FLESH OF THE SAME FISH

Everyone who eats fish habitually has probably noticed that slices taken from different parts of the same fish will show a different degree of richness. This is also very well known to canners or preservers of fish. Many people, for instance, are very fond of the so-called "checks" of salmon and halibut. These portions of flesh on each side of the head are unusually rich and have a flaror of their own. Other parts of the body vary, also, as is well shown in Table 16, in which the results of Shostrom, Clough, and Clark (1924) on the analyses of different parts of the same salmon and Dill's work on the yellowtail and skipjack are presented.

Table 16.-Variation in composition of different parts of the same fish
[Analyses of the edible portion on the fresh basis]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name & Cross scction analyzed & Total solids & Fat & \[
\begin{gathered}
\text { Protein } \\
(\mathrm{N} \times 6.25)
\end{gathered}
\] &  & Fuel value per pound \\
\hline & & Per cent & Per cent & Per cent & Per cent & Calories \\
\hline Salmon (red chinook) .- & Near head. & \begin{tabular}{l}
39.47 \\
31.87 \\
\hline
\end{tabular} & 20.15 & 17.62
17.92 & 1.19
1.12 & 1,178 \\
\hline Salmon (white chinook) & Near head & 35. 71 & 15.10 & 19.00 & 1.40 & 990 \\
\hline Do-- & Near tail & 29.80 & 8.10 & 19.93 & 1.31 & 712 \\
\hline Yellowtail & Middle & 24.31 & 3.21 & 19.76 & 1.35 & 503 \\
\hline Do & Near tail. & 23. 68 & 1.38 & 20.95 & 1.35 & 448 \\
\hline Skipjack & Belly only & 45.45 & 25. 80 & 18.31 & 1.35 & 1,430 \\
\hline Do. & White meat only & 38. 68 & 15. 39 & 21.87 & 1.39 & 1,056 \\
\hline & Dark meat only & 41.57 & 22.38 & 18.16 & 1.03 & 1,282 \\
\hline
\end{tabular}

In the case of the white and red chinook salmon there was a variation of almost 100 per cent in the fat content of the flesh taken from a slice near the tail as compared with a slice taken near the head. In the case of the yellowtail there was some variation, but less, between slices taken from the tail and the middle of the fish. The analyses of different parts of the skipjack are rather surprising in that the fat content in the belly pieces is larger than that of the dark meat. It is one of the characteristics of the mackerel and herringlike fishes, which include in the two groups mackerel, tuna, herring, sardines, shad, etc., all fishes of great economic importance, that they have a considerable lateral strip of dark meat which is known to be very rich in fat. In the white meat of the skipjack only 15.39 per cent of fat was present as compared with 22.38 per cent in the dark meat. In the case of the small fishes this variation in the individual part of the fish makes very little cifference to the consumer because practically the whole edible part of the fish is consumed. On the other hand, where larger fish are canned or sold fresh in the form of slices this variation assumes greater proportions.

\section*{FOOD VALUE OF FISH AND SHELLFISH COMPARED WITH THAT OF OTHER FOOD PRODUCTS}

In order to appreciate the real significance of fish in the diet it is necessary to make some comparisons in highly condensed form between the composition of fish and that of common animal and vegetable foods. We have already seen that the great value of fish is their content of protein, in the first place, and, in the second place, that the proteins of fish, like those of meat, contain essential nitrogenous substances like the amino acids tryptophane, cystine, and histidine, without which the body can not replace its wear and tear and either develop or function normally.

There is a great lack of carbohydrates in fish when compared with vegetable products. On the other hand, it is not at all necessary for fish or meat to compete with vegetable products in the matter either of fat or of carbohydrates, as it is commonly known that foods of vegetable origin are primarily of the carbohydrate or starchy type; furthermore, vegetable fats are relatively cheap. Some fish contain as much or more fat than meat, but generally speaking they do not. Fish can compete with meat in the dietary on the basis of the cost
\[
84503^{\circ}-26-4
\]
of the protein involved, and that will become clear in a table to be used later on. In Table 17, which is taken from Atwater's (1888) original publication, these considerations are presented in rather striking form.

Table 17.-Comparison of the composition and food value of various types of food materials
[A nalyses of the edible portion on the fresh basis]
\begin{tabular}{c|r|r|r|r|r|r} 
Food materials & & & & \\
\hline
\end{tabular}

In order to appreciate better the real significance of fish in the dietary and the relative cost of obtaining protein (which is the essential part of both fish and meat) Table 18 is given. This table is taken from a bulletin by Langworthy (1907), entitled "Fish as food," and is well worth careful study by anyone interested in matters of diet and the preparation of menus, particularly where the cost of food is a factor.

Table 18.-Comparalive cost of protein and energy, as furnished by a number of food materials, at certain prices \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Kind of food material} & \multirow[b]{2}{*}{Price per pound} & \multirow[b]{2}{*}{Cost of 1 pound proteia} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Cost of } \\
& 1,000 \\
& \text { calories } \\
& \text { energy }
\end{aligned}
\]} & \multicolumn{3}{|l|}{Amounts for 10 cents} \\
\hline & & & & Total weight of food material & Protein & Energy \\
\hline & Cents & Dollars & Cents & Pounds & Pounds & Calories \\
\hline Codfish, whole, fresh. & - 10 & 0.90 & & 1. 000 & 0.111 & 209 \\
\hline Codfish, steaks.. & 12 & . 71 & 36 & . 833 & . 142 & 274 \\
\hline Bluefish. & 12 & 1.20 & 58 & . 833 & . 083 & 172 \\
\hline Halibut. & 18 & 1.18 & 40 & . 556 & . 085 & 253 \\
\hline Codfish, salt & 7 & . 44 & 23 & 1. 429 & . 229 & 437 \\
\hline Mackerel, salt & 10 & . 61 & 10 & 1. 000 & . 163 & 998 \\
\hline Salmon, canned & 12 & . 62 & 18 & . 833 & . 162 & 547 \\
\hline Oysters (solids, 30 cents quart) & 15 & 2.50 & 68 & . 667 & . 040 & 147 \\
\hline Oysters (solids, 60 cents quart) & 30 & 5. 00 & 136 & . 333 & . 020 & 74 \\
\hline Lobster & 18 & 3.05 & 129 & . 536 & . 033 & 77 \\
\hline Beef, sirloin steak & 25 & 1. 52 & 26 & . 400 & . 066 & 380 \\
\hline Do.....- & 20 & 1.21 & 21 & . 500 & . 083 & 475 \\
\hline Beef, round. & 14 & . 74 & 16 & . 714 & . 136 & 615 \\
\hline Beef, stew meat.- & 5 & . 38 & 5 & 2. 000 & . 266 & 1,862 \\
\hline Beef, dried, chipped & 25 & . 95 & 33 & . 400 & . 106 & 303 \\
\hline Mutton, chops, loin & 20 & 1.48 & 14 & . 500 & . 068 & 694 \\
\hline Mutton, leg & 22 & 1.46 & 25 & . 454 & . 069 & 394 \\
\hline Pork, roast, loin & 12 & . 90 & 10 & . 833 & . 112 & 1,016 \\
\hline Pork, smoked ham & 22 & 1. 55 & 14 & -454 & . 064 & 729 \\
\hline Milk ( 7 cents quart) & \(31 / 2\) & 1.06 & 11 & 2. 857 & . 094 & 891 \\
\hline Milk (6 cents quart) & 3 & . 91 & 10 & 3. 333 & . 110 & 1,040 \\
\hline Wheat flour.- & 3 & - 26 & 2 & 3. 333 & . 330 & 5,363 \\
\hline Corn meal & 2 & . 22 & 1 & 5. 000 & . 460 & 8, 055 \\
\hline Potatoes (90 cents bushel) & \(11 / 2\) & . 83 & 5 & 6. 667 & . 120 & 2, 020 \\
\hline Potatoes ( 45 cents bushel) & \(3 / 4\) & . 42 & 2 & 13.333 & . 240 & 4, 040 \\
\hline Cabbage.--- & 21/2 & 1. 79 & 21 & 4.000 & . 056 & 484 \\
\hline Corn, canned & 10 & 3. 57 & 23 & 1. 000 & . 028 & 444 \\
\hline Apples. & \(11 / 2\) & 5. 00 & 7 & 6.667 & . 020 & 1,420 \\
\hline Bananas. & 7 & 8.75 & 24 & 1. 429 & . 011 & 414 \\
\hline Strawberries & 7 & 7.78 & 42 & 1. 429 & . 013 & 240 \\
\hline
\end{tabular}
\({ }^{1}\) Data taken from Farmers' Bulletin No. 85, U. S. Department of Agriculture, "Fish as food," by Langworthy. The prices are therefore based on pre-war conditions.

Of course, the relative cost of the different foods in this table is based on prices that were in effect several years ago. In using this scale of prices it will be necessary to make an addition of some 50 or 60 per cent to the figures to make them accord with the increased cost of living at present, as determined by the various indexes of commodity prices, most of which are based on prices current in the year 1913 as 100 units. Furthermore, it would not be possible to give any exact figures on the cost of foods that actually represent conditions all over the country, as there is considerable variation between different localities. However, this table serves a very good purpose because it makes the comparisons between the different food products on the basis of the cost of protein, the essential ingredient, and also on the cost of total calories, which is not quite as important. It is erident that fish compare quite well with meat products in the matter of protein. It is also striking that the cost, where calories only are a consideration, is lowest in the case of vegetable products like wheat, flour, corn meal, potatoes, etc. It has been pointed out by an eminent physiologist that a man could probably keep body and soul together at a cost of 10 cents per day on the basis of calories only. However, as civilization advances and the standard of living reaches a high point as it has in the United States, the consumer is not interested so much in stoking his human furnace with the required number of
calories in the form of bread or potatoes, for instance, as he is in getting a varied diet consisting of palatable foods with attractive flavors.

There is no question that flavor is the thing that makes foods attractive, and it has a great deal to do with establishing their price in competition with other foods. It is just in this matter of flavor that fish and shellfish stand out most conspicuously. It is a wellknow fact that one of the first things people do when they travel from the interior to any of the coasts is to indulge in oysters, clams, and fish products. It is, first, the flavor that they are anxious to get, and, secondly, the change in diet; at the same time they usually are securing an unaccustomed source of nitrogenous nutrients. It is surprising how popular "shore dinners" are in some places on the New England coast and "sea-food dinners," so-called, served in other places. From beginning to end such meals may consist of various fishery products and yet not give one the impression of overdoing the matter. It is not the purpose of this chapter to go into the matter of dietaries or the discussion of various attractive ways in which fish can be prepared.

There is one popular misconception regarding fish and shellfish, particularly fish, that should be corrected. The early investigators on the composition of fish reported that considerable phosphorus was present, and the idea that fish must be brain food on account of its phosphorus content immediately gained popularity. As a matter of fact, there is absolutely no foundation for this belief. The analyses made do not show that there is an unusual amount of phosphorus in fish, and even if this were the case it does not follow that the phosphorus in them would be absorbed and transferred especially to the brain for the maintenance of that organ and thus enable brain workers to excel in their particular line of activity. It is true that the brain does contain considerable amounts of substances in which phosphorus and nitrogen play an important part. However, all the cells of the body, as well as of the brain, obtain the necessary ingredients for their life activities from the blood stream, selecting the materials necessary for their life processes. There is no indication whatever that the brain could function any better without water or without nitrogen or sulphur or potassium than it could without phosphorus. The truth of the matter is the brain must have all of these elements. It has already been pointed out that the only safe course for an individual to follow is to cat a raried diet consisting of the proper proportion of fats, carbohydrates, and proteins, derived from fish, meat, exgs, dairy products, cereals, fruit, and vegetables. When this is done, and if pains are taken that the vitamins are not neglected in the diet, the body can grow, maintain itself, and function in a normal way.

\title{
II.-FISH AND SHELLFISH AS A SOURCE OF PROTEIN
}

By Donald K. Tressler, Industrial Fellow, Mellon Institute of Industrial Research, University of Pittsburgh

\section*{INTRODUCTION}

Protein is one of the most important components of our diet. Fats and carbohydrates are primarily energy-yielding foods, whereas proteins are not only sources of energy but are tissue-builders as well. Our bodies form the proteins characteristic of our own tissues; they can not build them up from simple inorganic substances but must depend upon the digestion products obtained from the food. Neither the growth of the young nor the satisfactory nutrition of adults can take place without an adequate source of proteins in the diet. Further, recent studies in nutrition have pointed out the danger of attempting to live over the entire span of adult life on a diet containing just sufficient proteins of good quality to support growth at approximately the maximum rate to the full adult size. A generous protein ingestion during our entire lives is required to maintain optimal vigor for the longest possible period.

An examination of the tables given in the preceding section indicates that fish resemble meats in containing a high percentage of protein. Live crabs, lobsters, shrimp, scallops, mussels, clams, and oysters contain much calcareous matter in their shells and also contain much water; for these reasons their protein content is apparently much lower, but when the analyses of water-free substance of the edible portion of these shellfishes is considered it is seen that its protein content is also high.

Near the seashore and in the markets of the large cities where fish may be purchased cheaply in season they constitute a low-priced source of protein. Well-cooked fish are delicious and offer a welcome change from a steady diet of meat. Protein purchased in the form of crabs, lobsters, scallops, clams, and. oysters at the usual prices of these shellfish is more expensive. However, these mollusks and crustaceans have other nutritive values and should not be omitted from well-planned diets.

Inasmuch as proteinaceous foods are so essential for the well-being of man, and as fish and shellfish contain much protein, a consideration of the nutritive value of their proteins should be made if these foods are to be given their proper place in the diet.

\section*{CHARACTERISTICS OF PROTEIN REQUIRED FOR THE NUTRITION OF MAN}

Proteins, whether found in plants or animals, are complex compounds of high molecular weight built up of a number of relatively simple substances called amino acids, which are combined in various proportions. The amino acids of common proteins include the following: Glycine, alanine, valine, leucine, phenylalanine, tyrosine, serine, cystine, aspartic acid, glutamic acid, ornithine, arginine, lysine, histidine, proline, tryptophane, and oxyproline.

During the digestion of a protein it is split up into these amino acids or into combinations of a few of them called peptids. The amino acids and peptids are absorbed by the blood stream; those required for the building of tissues are so utilized, and those left
over are used for their energy. Their waste products-urea, etc.are removed by the kidneys and excreted in the urinc.

The proteins of the human tissues are definite chemical compounds. Various proportions of the common amino acids are required for their synthesis. In other words, the amino acids constitute the building stones or units out of which the great protein structure is put together.

Formerly the nutritive value of proteins was discussed in terms of digestibility, physical properties, and their content of carbon, hydrogen, oxygen, nitrogen, and sulphur. Osborne and Mendel (1911 to 1924) have done much to establish the modern conception that the nutritive value of proteins is largely determined by the amounts of each of the amino acids which they yield. Many, if not all, of these amino acids are essential for the construction and maintenance of tissues. The efficiency of any individual protein in nutrition depends upon the minimum of any indispensable amino acid that it yields on digestion, for it is known that several of the amino acids can not be synthesized in the human body. For example, if a protein or mixture of proteins, comparatively deficient in the amino acid tryptophane, be supplied in the diet as the sole source of combined nitrogen, the synthesis of protein molecules containing this amino acid would be limited by the amount available in the diet. Thus, maintenance and growth would be limited by the minimum of the essential unit.

As yet we do not know how many of the amino acids are essential in the diet, but nutrition experts have shown that the following amino acids are absolutely essential for growth and maintenance: Tyrosine, tryptophane, lysine, cystine, and either histidine or arginine. Further, many believe that valine, leucine, and phenylalanine are also essential units. On the other hand, it has been demonstrated that neither glycine nor proline need be provided readymade in the food.

Since the proteins of the protoplasm of our bodies are built up from the amino acids in the digestion products of the proteins of our foods, it is probable that the more nearly the amino acid composition of the proteins of the food resembles that of the body the greater is their nutritive ralue.

\section*{DIGESTIBILITY}

Several scientists (Milner, 1905; White and Crozier, 1911; and Holmes, 1918) have shown that the proteins of fish are as easily digested as those of beef and other meats. The digestibility of the proteins of salmon, mackerel, butterfish, and dogfish have been determined both by the use of the enzyme, trypsin, and by experiments with human subjects. These proteins were in all cases easily and nearly completely digested. On the average, about 92 per cent of the proteins were digested.

The proteins of oysters, clams, scallops, and mussels also are readily digested. Whate meat has been found to be as easily and as completely digested as becf. Very few experiments have been carried out to determine the digestibility of crabs, lobsters, shrimp, and other crustaceans, but by analogy we may conclude that the proteins of these shellfish are readily digested.

\section*{ANALYSES OF THE PROTEINS}

\section*{FORM OF NITROGEN}

Upon extraction of fresh fish muscle with water the following substances are obtained: Histidine, hypoxanthine, carnosine, tyrosine, creatine, and creatinine. Of these, histidine and tyrosine are especially valuable in nutrition.

A study of the proteins of fish by the Hausmann me'hod of analysis gives some information concerning their nutritive value. According to this procedure the amounts of ammonia nitrogen, monoamino nitrogen, diamino nitrogen, and humin nitrogen are determined. Since humin nitrogen is found chiefly by the decomposition of the amino acid tryptophane, which is essential for proper nutrition, the percentage of humin nitrogen found may be taken as an index of the quantity of tryptophane in the protein. The diamino nitrogen includes the nitrogen in the form of the diamino acids, arginine, histidine, and lysine. Since any diet must contain an ample amount of lysine and either arginine or histidine, or both, it is interesting to note whether or not the fish that have been analyzed are deficient in diamino nitrogen. From the data given in Table 19 it is seen that the proteins of halibut, cod, herring and scallops compare very farorably with those of beef and chicken in their content of diamino and humin nitrogen.

Table 19.-Analyses showing form of nitrogen in certain fish, meats, etc. \({ }^{1}\)
[Total nitrogen \(=100\) ]
\begin{tabular}{|c|c|c|c|c|}
\hline Source of protein & Ammonia & Humin & Monoamino & Diamino \\
\hline Falibut & 6. 70 & 2. 37 & 60.80 & 30. 20 \\
\hline Cod & 5. 82 & 2. 30 & 61.20 & 30. 00 \\
\hline Herring & 6.05 & 2. 64 & 61.40 & 29. 70 \\
\hline Scallops & 6.33 & 2.34 & 64.81 & 26.51 \\
\hline Beef & 5, 51 & 2. 66 & 64.40 & 27.30 \\
\hline Chicken & 6.63 & 1. 76 & 61.55 & 30. 27 \\
\hline Glutenin from wheat & 18. 86 & 1. 09 & 68.32 & 11. 72 \\
\hline Globulin from wheat & 7.72 & 1.52 & 53.39 & 37.14 \\
\hline Zein from corn & 18.41 & . 99 & 77.56 & 3.03 \\
\hline Legumin from pea. & 9.40 & . 94 & 60.27 & 28.82 \\
\hline
\end{tabular}
\({ }^{1}\) Compiled from papers published by Drummond (1918-1919), and Osborne and Heyl (1908).
The Hausmann method does not give much information concerning proteins that is of value from a nutrition viewpoint, but as it is comparatively rapid and does not require a high degree of skill it has been used in the examination of a very large number of proteins. Physiological experimentation and the determination of the individual amino acids are required to obtain much information concerning the nutritive ralue of protiens. No two physiological chemists agree entirely as to the procedure that should be followed in feeding experiments in determining the nutritive value of a given protein. On this account there is some disagrecment between chemists as to the exact value of many proteins in the diet. The increase in our knowledge concerning the amino acid content of proteins is aiding in the proper evaluation of proteins from a nutritive standpoint.

\section*{AMINO ACID ANALYSES}

The methods of determining the several amino acids obtained by the hydrolysis of proteins while not especially accurate are fairly well standardized, and on this account different workers can check each other with a fair degree of accuracy. Unfortunately, comparatively few fish have been analyzed for their amino acid content. In Table 20 are given the amounts of amino acids obtained upon the hydrolysis of 100 grams of ash and moisture-free muscle protein of those that have been analyzed, viz, porgy, halibut, bonito, cod, whale, and scallops. The analyses of the proteins of chicken and beef are given for comparision.

Table 20.-Cleavage products of proteins of various fish and shellfish and some meats
[Expressed in grams obtained from 100 grams of ash and moisture-free musele protein]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Product} & \multirow[b]{2}{*}{\begin{tabular}{l}
Porgy \\
(Pagrus \\
major)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Haliout \\
(Hippo- \\
glossus \\
hippo- \\
glossus)
\end{tabular}} & \multicolumn{2}{|l|}{Bonito (Katsuwonus pelamis)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cod \\
(Gadus calla-
orias)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Carp } \\
\text { (Cypri- } \\
\text { nuss } \\
\text { carpio) }
\end{gathered}
\]} & \multirow{2}{*}{Whale} & \multirow{2}{*}{Scallop} & \multirow{2}{*}{\begin{tabular}{l}
Chick- \\
en
\end{tabular}} & \multirow{2}{*}{Beet} \\
\hline & & & \[
\begin{aligned}
& \text { Light } \\
& \text { fiesh }
\end{aligned}
\] & Dark flesh & & & & & & \\
\hline Glycize. & 10.0 & 0.0 & 0.0 & 0.0 & 10.0 & 2.0 & 0.0 & 0.0 & 0.68 & 2.06 \\
\hline Alanine & 1.04 & (2) & 2.3 & 1.1 & 3. 53 & 5.7 & 4. 66 & \({ }^{(2)}\) & 2.28 & 3.72 \\
\hline Valine. & 2.77 & . 79 & 2.8 & 1.8 & 3.88 & - 5.7 & 6.25 & \(\left({ }^{2}\right)\) & (2) & . 81 \\
\hline Leucine & 8.82 & 10.33 & 10.4 & 9.4 & 2.46 & -8.0 & 3. 54 & 8.78 & 11. 19 & 11. 65 \\
\hline Proline & 1.22 & 3.17 & 3.1 & 3.0 & 1.68 & 10.5 & 1.51 & 2.28 & 4. 74 & 5.82 \\
\hline Phenylalanine & 4. 72 & 3.04 & 4. 1 & 1.6 & 2.31 & 3.9 & 2. 59 & 4.90 & 3.53 & 3.15 \\
\hline Aspartic acid & 1. 66 & 2.73 & 3.3 & 3.2 & . 61 & . 9 & 1.47 & 4.37 & 3.21 & 4.51 \\
\hline Glutamic acid & 1., 63 & 10. 13 & 8.1 & 12.1 & 5.24 & 12.9 & 3.28 & 14.88 & 16. 48 & \\
\hline Serine-. & \({ }^{(2)}\) & \({ }^{(2)}\) & \({ }^{2}\) ) & (2) & . 51 & (3) & . 49 & \({ }^{(2)}\) & \({ }^{(2)}\) & \\
\hline Tyrosine & 2.64 & 2. 39 & 2.1 & 2.9 & 2. 46 & 3.5 & 2. 40 & 1.95 & 2.16 & 2. 20 \\
\hline Arginine & 5.15 & 6. 34 & 7.8 & 7.08 & 6. 63 & 14.0 & 6. 48 & 7.38 & 6. 50 & 7.47 \\
\hline Fistidine & 2.07 & 2.55 & 3.04 & 3.16 & 2.29 & 12.3 & 3.44 & 2.02 & 2.47 & 1.76 \\
\hline Lysine. & 6. \(2 \times\) & 7.45 & 7.41 & 6. 78 & 8.35 & 11.3 & 9.48 & 5.77 & 7.94 & 7. 59 \\
\hline Ammonia & 1.32 & 1.33 & (3) 64 & (3) 78 & (8) 7 & 1.4 & (3) 91 & 1.08 & 1.67 & 1. 07 \\
\hline Tryptophane & \(\left.{ }^{3}\right)\) & \({ }^{(3)}\) & \({ }^{(3)}\) & \({ }^{(3)}\) & \({ }^{(3)}\) & \({ }^{(3)}\) & \(\left.{ }^{3}\right)\) & \({ }^{(3)}\) & (3) & \({ }^{(3)}\) \\
\hline Guanine & (2) & \(\left.{ }^{2}\right)\) & . 09 & . 12 & (2) & (2) & (2) & (2) & (2) & (2) \\
\hline Adenine. & (2) & (2) & . 04 & . 1 & (2) & (2) & (2) & (2) & (2) & (2) \\
\hline Hypoxathine & \({ }^{(2)}\) & (2) & . 08 & . 03 & \({ }^{(2)}\) & (2) & (2) & (2) & (2) & \({ }^{(2)}\) \\
\hline
\end{tabular}

1Or trace.
:Present but not determined.
: Not determined.
Note.- Compiled from data published by Osborne and Heyl (1908), Okuda (1919), Okuda and Oyama (1912-1916), Okuda, Okimoto, and Yada (1919), and Okuda and Matsuda (1923).

These data indicate that the tyrosine, arginine, histidine, and lysine content of various fishes is about the same, whereas the content of the various monoamino acids varies considerably. In general, it may be said that the proportions of amino acids found in fish proteins are approximately the same as those found in chicken muscle, except that the protcins of fishes are curiously low in glycine, an amino acid not essential in the diet. If the analysis of the proteins of halibut muscle is compared with that of chicken proteins, it is seen that the halibut proteins are much lower in the nonessential amino acids, glycine, and valine and somewhat lower in proline, phenylalanine, and glutamic acid, but that these proteins are almost identical in their content of the essential amino acids, tyrosine, arginine, histidine, and lysine.

The analysis of the proteins of the porgy is curiously low in glutamic acid, probably on account of an error in technique on the part
of the analyst. The analysis of cod proteins is very low in leucine, and this perhaps may be explained in the same way.

The data given in the table indicate that the proteins of whale and beef resemble each other closely. The proteins of whale meat are low in glycine, glutamic, and aspartic acids, and in prolinc and leucine; the other amino acids exist in both whale and beef proteins in practically identical proportions.

One would herdly expect the proteins of scallop muscle to resemble in composition those of chicken and beef, yet the analysis given in Table 20 shows that this is the case. Except for a lower content of leucine and proline and a deficiency in the nonessential amino acid glycinc, scallop muscle proteins are similar in composition to meat proteins.

\section*{INTERPRETATION OF ANALYSES}

Thus, it is seen that fish, scallop, and whale proteins are valuable sources of nitrogenous substances for the nutrition of man and other animals, for they are complete proteins, lacking only in the simple amino acid glycine, which can be formed in the body by the splitting of other amino acids.

The presence of considerable amounts of tyrosine, tryptophane, lysine, histidine, and arginine is noteworthy, as these amino acids are essential for proper nutrition. Fishes and whale meat also have been shown to contain adequate amounts of valine, leucine, and phenylalanine, which are valuable constituents of proteins and are also considered essential by many nutrition experts.

Cereal proteins are, for the most part, deficient in arginine, histidine, and lysine. The amounts of these three amino acids contained in many restricted vegetarian diets are the limiting factors that determine their value for maintenance and growth. The ability of many Japanese to subsist on a vegetarian diet supplemented by fish is due to the fat-soluble vitamins found in the fish fats and the amino acids arginine, histidine, and lysine found in fish proteins. The Japaneso also eat considerable quantities of whale meat. Whale proteins are especially high in lysine and are also high in histidine and arginine, and on these accounts they are valuable in supplementing vegetable proteins.

Scallops also contain relatively large amounts of lysine, arginine, and histidine, and for this reason furnish the amino acids deficient in a vegetarian diet. Although no analyses are available to prove the point, it may be assumed that the proteins of oysters, clams, mussels, and other mollusks also contain adequate amounts of these amino acids, which are so valuable in supplementing restricted vegetarian diets.

\section*{SUMMARY AND CONCLUSIONS}

Fishes, mollusks, and crustaceans are rich sources of proteins. Many of them are available to the wealthy and the poor alike on account of their low cost. For these reasons the nutritive value of the proteins of fish and shellfish is of much importance in determining the proper place of these foods in the diet.

The proteins of fish, mollusks, and whale meat have been shown to be easily and completely digested. The digestion products consist of a number of amino acids and peptids (groups of amino
acids). The nutrilive value of any protein depends upon the quantity and quality of these amino acids which it yields on digestion.

Only a few of the proteins of fish and shellfish have been analyzed for their content of the individual amino acids. From the available data the following conclusions may be drawn:
1. The proteins of fishes, scallops, and whales are complete, viz, they contain all of the amino acids required for the growth and maintenance of the human body. They are lacking in only one amino acid-glycine-which can be obtained by the body by the splitting of other amino acids; many investigators have demonstrated that its presence in food is nonessential for proper nutrition.
2. The amino acid composition of the proteins of other shellfish has not been determined.
3. The proteins of the fishes, scallops, and whales, which have been analyzed for their amino acid content, have been shown to be high in tyrosine, lysine, tryptophane, arginine, and histidine, the amino acids which have been demonstrated as being required in considerable quantities by the human body for growth and maintenance.
4. The presence of a high percentage of lysine, histidine, and arginine is particularly noteworthy, as these amino acids are deficient in most vegetable proteins. Because of this fish and shellfish may be served as the principal dish of a meal consisting largely of fruits and vegetables with the assurance that the fish proteins will completely supplement the vegetable proteins.
5. The proteins of fish and shellfish are superior to most vegetable proteins and equal to most meat proteins in nutritive qualities.

\section*{III. OILS AND FATS FROM FISH AND SHELLFISH}

\section*{By Arthur D. Holmes, E. L. Patch Co., jormerly specialist in charge of nutrition experiments, Office of Home Economics, States Relations Service, United States Department of Agriculture}

The dietary value of fish oils, like that of fats and oils obtained from land animals and plants, depends on a number of factors, the principal ones being their composition or nature, digestibility, and vitamin content.

\section*{COMPOSITION}

Considered from a chemical standpoint, the edible fats and oils consists chiefly of glycerides of fatty acids; or, in other words, they are compounds of glycerin and fatty acids, and, as every one knows, when fats are saponified (made into soaps) one obtains soap (which is a mineral salt of fatty acid) and glycerin as a by-product.

The fatty acids most commonly occurring in the edible fats and oils are olecic, linolic, palmitic, and stearic. These fatty acids differ from one another principally as regards chemical composition and the temperature at which they molt. The difference in the physical condition of fats is largely due to this fact.

Referring briefly to the above four fatty acids, the chemist would say that the degree of saturation and the melting point increase as one progresses in the series. In practical terms this means that fats such as olive, peanut, and cottonseed oils, which contain a high percentage of the glyceride of oleic acid, would become rancid more
quickly and would melt at a lower temperature than such fats as beef or mutton tallow, which contain a high percentage of the glyoeride of stearic acid.

The fats from land sources consist largely of the glycerides of oleic, palmitic, and stearic acids. In addition to these, fish oils contain others to a greater or less extent. Various investigators have submitted experimental evidence to show that from fish fats one may obtain jecoric acid, jecoleic acid, therapic acid, and culpanodonic acid. The discovery of the presence of the glycerides of culpanodonic acid in marine animal fats was of more than scientific interest, for Tsujimoto, a Japanese investigator, has apparently shown that the characteristic fishy odor of these fats is due very largely to this substance. When the glyceride of culpanodonic acid was removed from marine fats, or by hydrogenation was transformed into a glyceride of some other fatty acids, the characteristic odor of fish fats disappeared.

The edible fats obtained from land animals and plants are naturally divided into two groups-those that are solid and those that are liquid at ordinary temperature. In general, the fats of animal origin, such as lard, butter, and beef and mutton suet, are solid at ordinary temperature. With a few exceptions, such as cocoa butter and coconut fat, those from the vegetable kingdom are liquid at ordinary temperatures. In addition, there are, to be sure, a few border-line fats, such as chicken fat, that are semisolid at ordinary temperature.

In comparing the nature of fish fats with those obtained from land plants and animals it will be found that a much larger proportion of the former are liquid at ordinary temperature than is the case with fats of land origin. In fact, with the exception of that obtained from the Pacific coast eulachon, all fats obtained from fish are liquid at ordinary temperature.

Crude fish-liver oils, such as cod-liver oil, are very nearly on the border line between liquid and solid fats, for if the temperature is lowered stearin begins to solidify and separate from crude cod-liver oil.

In considering the nature of fish fats there is one factor that should be given attention-their tendency to oxidize and become rancid. Considered chemically, fats may be divided into three groups-drying, semidrying, and nondrying oils. This classification of oils is based on the power of oils to take up oxygen. Oils that can absorb relatively large amounts of oxygen are called drying oils and are in demand for use in paints. The best-known member of this group is linseed oil. Next comes the semidrying oils, or those which can take up some oxygen but not enough to make them good paint oils. The nondrying oils are characterized by a low iodine number and do not absorb oxygen readily.

While fish and marine animal oils differ from the terrestrial animal oils to some extent as regards color, odor, and viscosity, they are quite different chemically. The terrestrial animal oils resemble closely the nondrying oils in that they do not easily absorb oxygen. The fish and marine animal oils resemble the drying oils and have the power to absorb oxygen. Due to this chemical difference a cook would have relatively little difficulty in keeping beef or mutton fat, lard, chicken fat, or butter without oxidizing and becoming rancid, but
more care would be necessary for the storage of fats from fish and marine animals.

In using fish fats for culinary purposes attention should be given to the possible necessity for modifying somewhat the procedure involved in the culinary use of common fats such as lard and butter. Studies with regard to the scorching temperature of common culinary fats show that in frving (particularly deep frying) there is a definite temperature for each fat at which food is most satisfactorily cooked and with the absorption of a minimum of fat. In a previous publication \({ }^{1}\) it was noted that this temperature is about \(260^{\circ} \mathrm{F}\). for beef fat, \(350^{\circ} \mathrm{F}\). for lard, and \(390^{\circ} \mathrm{F}\). for cottonseed, coconut, and peanut oils. Tt was noted further that if these temperatures were lowered \(20^{\circ}\) for the animal fats and \(40^{\circ}\) for the vegetable fats the amount of fat absorbed by the cooked foods increased 25 per cent. Accordingly, when using fish fats for culinary purposes one should be prepared to modify culinary practices in accordance with the nature of the particular fat under consideration.

\section*{DIGESTIBILITY}

Hundreds of digestion experiments with human subjects have been conducted to determine the extent to which the cdible fats from land plants and animals are utilized by the human body. These show that the liquid fats as a class are more completely utilized by the body than are the solid fats. While in some instances there is little difference between the digestibility of solid fats with a relatively high meiting point and that of the liquid fats, there may be a difference of 10 or 12 per cent between the digestibility of the more completely digested liquid fats and that of the less completely digested solid fats.

Applying this gencralization concerning the digestibility of fats obtained from land plants and animals to the digestibility of fatty substances obtainable from fish, one would conclude that the digestibility of edible fish fats would be quite similar to that of regetable fats.

As regards actral data concerning the digestibility of fish fats, one finds very little information recorded. The digestibility of fish fats has been studied to a limited extent by a number of investigators, who conducted digestion experiments with human subjects. Mihner (1905) studied the digestibility of fat contained in canned salmon and in fresh cod steaks when they were eaten as constituents of a simple mixed diet. He found that the fat of both the salmon and cod was 97 per cent digested. Oshima (1905) reports the digestibility of the fat contained in the edible portion of fresh fish to be as follows: Porgy, 73 per cent; salmon, 94 per cent; poulpe, 60 per cent; shellfish (Tapes Philippinarum), 85 per cent; and dried herring, 80 per cent.

The results of digestion experiments conducted by the writer \({ }^{2}\) while employed at the United States Department of Agriculture show that fish fats are well utilized by the human body. In studies with fresh mackerel and butterfish and canned salmon and dogfish the digestibility of the fat was found to be 95 per cent for Boston

\footnotetext{
\({ }^{1}\) Holmes, A. D., and H. L. Lang: Fats and their ceonomical use in the home. United States Department of Agriculture Bulletin No. 469, Dec. 15, 1916, 26 pp .2 figs. Washington. (See p. 19.)
\({ }^{2} 11\) olmes, A. D.: Experiments on the digestibility of fish. United States Department of Agriculture Bulletin No. 649, A [13. 13, 1918, 14 pp. Washington. (Sce p. 14.)
}
mackerel, 86 per cent for butterfish, 94 per cent for dogfish, and 94 per cent for salmon.

From this limited data concerning the digestibility of fish fats one is inclined to conclude that they are quite satisfactorily utilized by the human body.

\section*{PALATABILITY}

The palatability of fish oils is influenced by many factors. When the oils are separated from the fish and prepared for consumption, careful attention should be given to the source of the oil and manufacturing conditions. It is essential that the body or liver of fish from which the oils are extracted should be strictly fresh. Manufacturing processes, also, should be developed so that only the highest possible grade product is produced.

At the present time the greater portion of fish oils is consumed in conjunction with the tissues in which they naturally occur. Many people are very fond of fat-rich fish, such as butterfish, mackerel, and salmon, and as a result add fish oils to their dietary. Persons who desire to increase the fat content of their diet do not consider eating lard for that purpose. However, they often find crisp bacon very appetizing. In the same manner one may not wish to include separated fish oils in the dietary but would find well-cooked, fat-rich fish a welcome addition to their daily fare. In fact, those who are accustomed to eating fish of ten become very enthusiastic concerning the unusual palatability of broiled mackerel or broiled fresh salmon when done to a turn and well garnished with a little parsley and plenty of fresh lemon juice.

\section*{PRESENT CONSUMPTION}

It is difficult to accurately estimate the quantity of fish fats used for food. Relatively speaking, very little fish fat is included in the human dietary as such, but large amounts are eaten in conjunction with the flesh of some of the well-known fat fish. For instance, the 1923 pack of salmon amounted to \(6,500,000\) cases, or \(312,000,000\) pounds. Since canned salmon contains nearly 11 per cent of oil, this amount contributed something like \(33,900,000\) pounds of salmon body oil to the human dietary.

The amount of oil which may be contributed by other fish can be estimated if one remembers that \(16,000,000\) pounds of mackerel have been taken by the New England fisheries in one season; that a single year's catch of butterfish off the New York-New Jersey coast amounted to \(5,000,000\) pounds; and that the edible portions of these fish at some seasons may contain as much as 12 per cent fat. Perhaps a better conception of the amount of fish oil which finds its way into the human dietary can be gained if it is noted that of the many millions of pounds of fish caught the general arerage percentage of fat is about 10 per cent of the edible portion.

A consideration of fish and marine animal oils would not be complete without mention of whale oil. Many romances of the sea have centered about expeditions of whaling vessels. In earlier times whale oil was used largely for illumination, but with the advent of kerosene, gas, and electricity relatively little whale oil is now used for that purpose.

Under ordinary conditions of preparation whale oil is not very satisfactory for food. It is difficult to obtain accurate figures concorning the use of whale oil, but probably the larger portion is hydrogenated. It is reported that in Europe considerable quantities of hydrogenated whale fat are used in the manufacture of margarines.

\section*{ENERGY VALUE}

As is well known, the energy value of fats is greater than that of any other substance included in the human dietary. Protein and carbohydrates, such as starches and sugars, produce approximately 4 calories per gram when burned in the body. Fats, on the other hand, supply about 9 calories per gram when oxidized under the same conditions. Accordingly, fats have an energy value roughly \(21 / 4\) times that of protein and carbohydrates.

Fats that have been separated from extraneous substances, such as water, tissues, and cellular material, have an energy value of about \(4 ; 080\) calories per pound. On the other hand, products like butter and margarines contain water, cascin, and salt, and therefore possess a lower energy value. Since the legal standard for butter and oleomargarine requires that they contain 80 per cent fat, we might assume that the energy value of butter and margarines is something like 3,300 calories per pound. Considered from a dietary standpoint, the energy value of fish fats would be approximately 4,080 calories per pound, which is the same as that for vegetable fats, and roughly one-fourth greater than that of butter and margarine.

A further conception of the dietary value of some fat-rich fish and fish products may be obtained by comparing these with some common* articles of the diet. It is generally considered that such foods as veal, whole milk, baked beans, and sirloin steak are very hearty and are well suited to the needs of those engaged in strenuous labor. On the other hand, one commonly thinks of mackerel and smoked herring as valuable only for thee Friday dinner; of canned sardines as a constituent of the pienic lunch, to be eaten when one is carefully avoiding strenuous labor; and of shad roe as a delicacy consumed for palatability rather than for energy value. As a matter of fact, we find \({ }^{3}\) that smoked herring supplies 755 calories per pound as compared with it5 calories per pound of breast of real; mackerel supplies 370 calories per pound as compared with 310 calories for whole milk; canned sardines furnish 950 calories per pound as compared with 975 calories per pound supplied by sirloin steak; and shad roe furnishes 600 calories per pound, as compared with 555 calories per pound of baked heans.

Obviously, a portion of the energy value of these foods is derived from their protein content, but the above comparisons have been included with the hope of correcting the misconception concerning the inferiority as a source of energy of canned sardines, mackerel, shad roe, and smoked herring to such food materials as veal, milk, sirloin steak, and baked beans.

\footnotetext{
\({ }^{3}\) Atwater, W. O.: Principles of nutrition and nutritive valus of food. United States Department of Agriculture Farmers' Bulletin No. 142, 1902, 43 pp., 1 chart. Washington. (Seo pp. 16 and 17.)
}

\section*{LIVER OILS, RICHEST NATURAL SOURCE OF FAT-SOLUBLE VITARINS}

In considering the dietary value of fish fats and oils one should consider their value as a source of vitamins as well as of energy. Considered from the standpoint of vitamin content, the liver oils of the family Gadidæ (which includes cod, hake, haddock, and pollock) are gencrally acknowledged to be the richest known source of the antiophthalmic and antirachitic vitamins. The antiophthalmic vitanin is also known as vitamin \(A\), and the antirachitic vitamin is sometimes referred to as vitamin D.

It has been shown by the writer (Holmes, 1925) that the vitamin A content of cod-liver oil is more than 100 times as potent as that of dairy butter, which is believed to be one of the substances richest in fat-soluble vitamins. The writer has also found that the liver oils of pollock, hake, haddock, halibut, and dogfish have a high content of vitamin A (Holmes, 1922 and 1924; Holmes and Pigott, 1925). Other studies (Holmes, 1924a) show that the vitamin content of codliver oil varies over wide limits, and that its extent is influenced to a great degree by the condition of the fish from which the livers are taken, as well as by manufacturing processes and storage conditions. To prepare a wholesome, palatable cod-liver oil having a high vitamin coutent it is necessary to use only strictly fresh livers, and these should be cooked within a short time after the fish are caught.

The process of manufacturing cod-liver oil is much like that of making a cake. If the cook is provided with strictly fresh eggs she should be able to prepare a tasty cake, at least in so far as the eggs are concerned; but if stale, musty, or bad eggs are used it is difficult if not impossible to make a satisfactory cake. In the same way if cod livers have begun to decompose the oil obtained from them can be used only for industrial purposes unless it is chemically processed. By chemically treating industrial or even "rotted" cod-liver oil it is possible to so improve the color, odor, and other characteristics that such renovated oils will pass for medicinal cod-liver oil. In this connection it is important to remember that such refining does not increase the vitamin potency of these low-grade oils, which ordinarily have little if any value as a source of vitamins.

As noted above, large quantities of fish body fats that are intimately associated with muscular tissues are eaten annually. The question, therefore, naturally arises as to whether the fish body fats also contain large amounts of the fat-soluble vitamins. Vitamin tests were conducted by the author (Holnies, 1925a; Holmes and Pigott, 1925a) to sccure information concerning the vitamin potency of shad and salmon body fats, and it was found that these fats were not as rich in vitamin \(A\) as were cod and other fish liver fats.

Since in evaluating an edible fat one must consider both the energy value and the vitamin content, it is of interest to note here the recent work by Fridericia (1924) regarding the vitamin content of whale fat. He reports that additions of 20 per cent hydrogenated whale fat to the diet of experimental animals did not contribute sufficient vitamin A to enable the animals to make scarcely any growth. Furthermore, he shows that the hydrogenated whale fat actually had destructive action on the vitamin \(A\) content of butterfat when the two fats were mixed after they had been melted. He very properly points out the results that this undesirable property of
hydrogenated whale fat might lave in the manufacture of margarines if it or other fats possessing this destructive power were included as components of margarine or lard compounds.

The foregoing remarks concerning the fat-soluble vitamins in fish fats have been included here because of the close relation of fatsolible vitamins and fish fats. The general subject of the distribution, availability, and value of vitamins in fish and shellfish is more fully covered in another chapter.

\section*{INCREASING THE CONSUMPTION OF FISH FATS}

In the foregoing reference has been made to the amount of fish fats that are eaten as a part of fish flesh. The amount of fish fats ingested in conjunction with the consumption of fresh fish far exceeds the estimate of anyone who has not examined market records. This amount of fish fat is greatly exceeded by the amount eaten as a part of fish preserved by drying, salting, pickling, smoking, and canning. The total of the fats eaten as a part of both fresh and preserved fish is many times exceeded by the quantity of separated fish fats prepared annually.

To indicate briefly the extent to which such fish fats are available, it may be noted that as much as \(6,260,478\) gallons of menhaden, 170,977 gallons of sardine, 450,362 gallons of herring, and 25,989 gallons of salmon oils have been prepared during a year. At the present time these are used largely for industrial purposes. In selecting fats for food the purchaser ordinarily considers such factors as price, quality, palatability, and individual preference. The question of the third factor-palatability-has to a very great extent been the deciding factor against the use of fish fats. To be sure, individual preference plays an important part in the decision against the use of fish fats in cooking, but this objection would not be of long standing if their quality and palatability were improved. In support of this assumption attention may be called to the status of cottonseed oil, which is now used on its own merits. Years ago it was in decided ill repute as a salad oil, for it was considered a substitute for olive oil. At the present time cottonseed oil (which has an energy value as high as that of any fat) is freely used for salads and cooking purposes with no thought of comparing it with olive oil. Similarly, if fish fats could be offered to the average consumer in an attractive and palatable form at a price not in excess of that of commonly used fats they would bo used for cooking in constantly increasing quantities in spite of any present personal prejudices.

To be sure, it would be necessary to refine such fats in order to make them attractive to the average consumer. This is also the case with cottonseed oil, for when it is first ohtained from the hot, pressed seed it is a heavy ruby or dark red oil that is far from attractive as a food, but when refined by treating it with various decolorizing, deodorizing, neutralizing, and bleaching agents it is transformed into an attractive, light ycllow oil that may be used for salads or in cooking, and it may be further transformed by hydrogenation into a white, bland, solid fat of any desired consistency.

The results of numerous investigations show that the hydrogenation process is most suitable for improving the quality of fish fats. It is largely used for hardening liquid fats and consists of heating
under proper pressure an intimate mixture of finely divided nickel or other catalyst, hydrogen, and the oil to be hardened. The hydrogenation of fish fats is doubly successful. First, as pointed out above, it deodorizes the fat, and, second, by this process it is possible to harden the liquid fats to the consistency of lard.

From the foregoing it is evident that when economic conditions demand it chemists will be able to transform fish fats into products suited to the consumer's taste. Furthermore, it is evident that there must be an ever-increasing supply of edible fats, for the present-day dietitian feels that the human diet to be satisfactory should contain a certain percentage of fats. It therefore appears to be only a question of time until fish fats will be more extensively used in the human dietary.

\section*{SUMMARY}

Fish and marine animal fats have somewhat the same composition as the terrestrial fats. Due to their greater power to absorb oxygen, they should be protected from the air during storage.

From the data at present available it appears that fish fats are as completely digested as terrestrial fats of like melting point.

The use of fat-rich fish increases the fat content of the diet by adding fish fats in a very palatable form.

The energy value of the separated fish fats is equal to that of the common salad and culinary fats.

Some of the fat-rich sea foods, such as canned sardines, salmon, and shad roe, have an energy value equal to that of popular hearty foods such as veal, milk, sirloin steak, and baked beans.

Fish fats such as the liver oils are the richest known natural source of the essential fat-soluble vitamins.

Fish fats are available in large quantities and may be modified to suit requirements by rarious refining processes whenever economic conditions warrant.

\section*{IV.-MINERAL CONSTITUENTS OF FISH AND SHELLFISH}

By Marden F. Taylor, Vice President for Investigation and Research, Atlantic Coast Fisheries Co. Formerly chief technologist, United States Bureau of Fisheries

\section*{INTRODUCTION}

Perhaps every student taking his first course in chemistry has wondered what would happen if some of all the chemicals were dumped in a big jar and allowed to react as they would. The ocean is such a reaction jar on a world scale. Into it the rivers have for geologic ages been unceasingly delivering the washings of the land, containing the soluble compounds of the earth, and leaving them there, the water being distilled as rain to return and percolate through the earth again and again. Volcanoes have thrown their ashes and dusts high into the air to settle down in the ocean or be carried down by the rains. Springs issuing from the earth bring out large quantities of dissolved matter from below the surface, and the cosmic dust and meteors coming from distant space add another part to the constituents of the sea. Furthermore, these chemical compounds that find their way into the sea that we think of as insoluble in water
are only relatively so; it is the view of chemists that all substances aro soluble in some degreo, however slight, in water.

In view of these facts, the reader need not be surprised to find in the ocean very many if not all the elements known to exist on the earth-eighty-odd in number. Thirty-two of them have been definitely detected by chemical methods, and most of the 32 have been quantitatively determined. The animals and plants that live in the sea live all their lives in a medium that contains every chemical element that can be needed, and the food on which each animal lives has also grown in this universal solution. It is difficult to imagine a lack in their environment of any substance useful or necessary to life.

This can not be said of land animals and plants that derive their mineral constituents from the soil. The science of soil fertility and fertilizers is based on widespread deficiency of important substances in the soil, such as nitrogen, phosphorus, potassium, calcium, and magnesium. In man and other land animals disorders and diseases are known to be caused or influenced by deficiencies of calcium, phosphorus, iodine, iron, etc., and research continues to bring out facts of this kind. It has been shown that even the minutest traces of certain mineral substances may have a profound effect on life processes.

For example, it was discovered several years ago (Bayliss, 1924) that zine in infinitesimal quantity has an extraordinary effect in stimulating the growth of the mold fungus Aspergillus, one part of zinc in \(25,000,000\) parts of water increasing growth 50 per cent. It was revealed by further research that manganese in extreme dilution had a similar effect; and that zine and manganese had a stronger effect than either alone. In the presence of zine and iron in traces the fungus grew freely but bore its fruit (conidia) only if traces of manganese were present. These metals, though required in only infinitesimal quantities, are considered absolutely indispensable to the normal functional capacity of protoplasm.

Copper has a similar but opposite effect, being destructive to algæ and other lower plants. A copper coin allowed to remain in a liter of distilled water four days gave up only 1 part of copper to \(77,000,000\) parts of the water, yet the water killed the alga Spirogyra in one minute. It may or may not be significant that copper is found habitually, zinc often, and manganese occasionally in human bile (Hammarsten and Hedin, 1915), and that the human intestine is the normal habitat of a diversity of fungi to which these metals may bear an important relation.

Manganese has been found to occur in fairly constant quantity in the blood and various organs of man and seems to be a normal constituent (Reiman and Minot, 1920). The results of analysis of four adult brains and one fetal brain indicate that copper and zinc are normal constituents of the human brain (Bodansky, 1921). From analysis of one fetal brain it appears that during intrauterine life there is a more rapid storage of zinc and copper in the brain than there is after birth. In this respect the behavior of these elements is similar to that of iodine and other inorganic constituents. Other investigators (Bertrand and Medigreceanu, 1912) found, by 250 determinations on about 60 different species of animals, the constant presence of manganeso in all of them excepting only the white
of eggs of birds. They regard this constant occurrence of manganese in animals as evidence of a physiological significance. Future research may be expected to bring forth other results dealing with what have been regarded as unimportant or insignificant substances in the animal organism, perhaps having a bearing on the problems of health under conditions of civilization.

Meanwhile there is some satisfaction to be found in the fact that fish as a class contain the elements necessary for life, whether or not we know at the present time which ones are necessary or important or in what way. If we subsist on foods derived from the land, deficiencies may and do oceur; they seem much less likely in fish, especially those from the sea.

\section*{CONSTITUENTS OF SEA WATER}

The following are the more important elements present in solution in sea water (Clarke, 1920):
\begin{tabular}{|c|c|c|c|}
\hline Element or radical & Per cent & Element or radical & Per cent \\
\hline Chlorine. & 1. 935 & Sodium & 1. 0171 \\
\hline Bromine. & . 0066 & Potassium & . 0387 \\
\hline Sulphate ( \(\mathrm{SO}_{4}\) ) & . 269 & Calcium & . 0419 \\
\hline Carbonate \(\left(\mathrm{CO}_{3}\right)\) & . 0072 & Magnesium_ & . 1304 \\
\hline
\end{tabular}

Besides these, the following elements exist in smaller quantities. Figures, where given, are milligrams per liter of water:
\begin{tabular}{|c|c|}
\hline Iodine & 2.38. Found in considerable quantities in ashes of seaweeds. \\
\hline Fluorine & 0.S22. Found in the shells of mollusks. \\
\hline Phosphor & Present as phosphate. \\
\hline Arsenic. & 0.01 to 0.08. \\
\hline Silicon & 0.2 to 1.4. \\
\hline Boron & Present in sea water and in ashes of marine plants. \\
\hline Lithium & Present in sea water. \\
\hline Rubidium & 14. \\
\hline Crsium & Present in sea water. \\
\hline Barium & Can be detected by ordinary methods. Present in ashes of seaweeds and marine boiler scale. \\
\hline Strontium & Can be detected by ordinary methods. Present in ashes of seaweeds and marine boiler scale. \\
\hline Aluminu & Easily detected by direct methods. \\
\hline & Easily detected by direct methods. \\
\hline Manganese & Easily detected. Abundant in mud of ocean bottom; present in ashes of seaweeds, and in shells and tissues of mollusks. \\
\hline Nickel & Present in ashes of certain marine plants. \\
\hline Cobalt & Present in ashes of certain marine plants. \\
\hline Copper & Present in sea water and in ashes of some seaweeds and corals. \\
\hline Zinc & 0.002 . \\
\hline Lead & Present in certain corals and conchs. \\
\hline Silver & 0.01 to 0.169. \\
\hline Gold & 0.005 to 0.016 . Also present in kelp and bottom dredgings. \\
\hline Radium & 0.000000000017. \\
\hline
\end{tabular}

\section*{assimilation and concentration of mineral substances by marine plants and animals}

Some of the elements are present in sea water in merest traces, yet plants and animals living in the sea have the ability to extract them as needed and concentrate them. For example, iodine exists in sea water to the extent of about 2.38 milligrans per liter, yet
dried seaweed contains 900 and bath sponge 3,870 milligrams per kilogram. In fact, man depends on the concentrated supply of iodine in the seaweed for an important part of his supply of that element. Mussels in fresh water that contains only 0.0000066 per cent manganese may contain as much as 2.1 per cent of the metal in the liver (Bradley, 1910). Copper, as will be seen below, may be present in considerable quantity in oysters, though its quantity in sea water is very slight. Silicon is dissolved in sea water to the extent of only 0.2 to 1.4 parts per million, yet it makes up the shells or skeletons of billions of diatoms, the most important ultimate source of food in the sea for larger organisms. Calcium, occurring in relatively small quantity in sea water, constitutes the greater part of the shells and skeletons of nearly all animals in the ocean. fron is the principal source of red color in the shells of mollusks and is of vital importance in the blood of all red-blooded animals such as fish. It is also stored in considerable quantity in the hepato-pancreas or liver of oysters and clams, yet it exists in only a small quantity dissolved in sea water. Phosphorus is not in great concentration in sea water, but it is essential to life and is concentrated as calcium phosphate in bones and in organic compounds of fundamental importance in the life processes of marine animals.

The organisms thus perform a most important function in collecting the needed elements of the ocean in acceptable form for human food.

\section*{ANALYTICAL DATA CONCERNING MINERAL SUBSTANCES IN FISH AND SHELLFISH}

It must be admitted that chemists have neglected the inorganic in favor of the organic constituents of fish. The analyses usually made give data concerning fat, protein, etc., but the ash has not often been completely analyzed. This neglect seems the more noteworthy in that one of the most important distinctions of fish in comparison with other foods exists in the inorganic constituents.

\section*{ASII}

Most of the analytical data relating to the mineral matters in fish are for total ash, from which, in some cases, individual elements have been separated and determined. Table 21 gives data relating to total ash, phosphorus, and sulphur of some common sea foods that are fairly representative of fish and shellfish in general.

Table 21.-Total ash, phosphorus, and sulphur in the edible portion of some common American fish and shellfish
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Product & Total & Phosphorus calculated \(\stackrel{\text { as }}{\mathrm{P}_{2} \mathrm{O}_{5}}\) & Sulphur calculated as \(\mathrm{SO}_{3}\) & Product & Total ash & Phosphorus calculated \(\stackrel{\text { as }}{\mathrm{P}_{2} \mathrm{O}_{5}}\) & Sulphu calculated as \(\mathrm{SO}_{3}\) \\
\hline & Per cent & Per cent & Per cent & & Per cent & Per cent & Per cent \\
\hline Shad....... & 1.50
1.35 & 0.55
.60 & & Oysters, Atantic & 2.21 & & . 82 \\
\hline Shad roe & 1. 53 & & & Liquid & 2.00 & & \\
\hline Smelt. & 1.68 & . 81 & . 66 & Canned salmon. & 1.20 & . 80 & \\
\hline Salmon: & & & & Canned tuna & 1.70 & & \\
\hline Chinook & 1.06 & . 57 & . 52 & Canned Sardines. & 5.30 & & \\
\hline Atiantic & 1.14 & . 59 & & Smoked halibut. & 1.90 & . 62 & . 53 \\
\hline Eel & 1.01 & . 51 & & Smoked herring & . 90 & . 84 & 1.49 \\
\hline Mackerel & 1. 28 & . 56 & . 56 & Salt mackerel & 1.70 & . 35 & . 73 \\
\hline Spanish mackere & 1. 50 & . 60 & . 70 & Salt cod....... & 1. 20 & . 25 & . 89 \\
\hline Bluefish. & 1.27 & . 63 & & Clams, quohaug: & & & \\
\hline Butterfish. & 1.14 & & & Flesh.- & 2. 22 & . 40 & 1.07 \\
\hline Striped bass (rock) & 1.16 & . 48 & & Liquid. & 3.17 & & \\
\hline Sea bass & 1.44 & & & Mussels, sea: & & & \\
\hline Red snapper & 1.31 & . 47 & . 66 & Flesh.... & 1.73 & & \\
\hline Haddock. & 1.27 & . 47 & & Liquid & 2. 23 & & \\
\hline Cod.-. & . 1.09 & . 44 & & Scallops. & 1.38 & . 48 & . 60 \\
\hline Flounder & 1.28 & . 40 & . 55 & Lobster, & 2.47 & . 23 & . 58 \\
\hline Sardines, Californi & 1.60 & & & Orab, blue & 3. 13 & & \\
\hline & & & & Shrimp, canne & 2.58 & &  \\
\hline
\end{tabular}

The figures in Table 21 representing ash show that fish, as a rule, contains on the average somewhat more than 1 per cent of ash and about one-half of 1 per cent each of phosphorus and sulphur calculated as oxides. Shellfish contain nearly twice as much ash as true fishes. This is in part due to the iron stored in the liver and in part to the calcium in the mantle (of mollusks), which, being the tissue from which the shell is secreted, is heavily charged with mineral salts. The figures in this table were taken from Atwater (1892) and Dill (1921).

Table 22.-Percentage of mineral elements in flesh of various animals
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Potassium & Sodium & Iron & Calcium & Magnesium & Phos* phorus & Chlorine & Sulphur & Water \\
\hline Man & 1. 1659 & 0. 2906 & 0.0535 & 0.0273 & 0.0771 & 0.7406 & 0.2552 & 0.7576 & 72.53 \\
\hline Pig & . 9363 & . 5752 & . 0218 & . 0298 & . 1042 & . 7848 & . 1787 & . 7536 & 72. 89 \\
\hline Ox & 1. 5200 & . 2695 & . 1019 & . 0088 & . 1006 & . 7090 & . 2342 & . 7719 & 75.80 \\
\hline Calf & 1. 5444 & . 3492 & . 0356 & . 0587 & . 1237 & . 8928 & . 2733 & . 9178 & 75.39 \\
\hline Rabbit & 1. 7179 & . 1974 & . 0233 & . 0790 & . 1240 & 1. 0922 & . 2206 & . 8500 & 76. 83 \\
\hline Hen & 1. 4700 & . 3008 & . 0295 & . 0333 & . 1174 & . 8164 & . 1904 & . 9234 & 68. 38 \\
\hline Frog & 1. 6756 & . 3005 & . 0339 & . 0852 & . 1280 & 1. 0130 & . 2190 & . 8835 & 81.62 \\
\hline Haddock & 1. 7281 & . 5118 & . 0300 & . . 1138 & . 0863 & . 7067 & 1. 2447 & 1. 1514 & 80.64 \\
\hline Eel & . 6519 & . 0812 & . 0148 & . 1061 & . 0483 & . 4796 & . 0935 & . 3657 & 63.10 \\
\hline Pike. & 2. 0176 & . 1426 & . 0209 & . 1929 & . 1505 & 1. 0285 & . 1548 & 1. 0576 & 79.38 \\
\hline & & & & & & - & & & \\
\hline
\end{tabular}

It will be noticed in Table 22 (taken from Katz, 1896) that fish, with respect to mineral constituents, is richer in calcium than other flesh foods. It is relatively low in iron because it does not retain hemoglobin of the blood in the muscle, for example, as the flesh of the ox does.

Although iodine probably exists in the living fish only in organic combination, it remains in the ash upon combustion and in this sense may be classified with the mineral substances present. In Table

23 are given data (from Tressler and Wells, 1924) concerning the iodine content of various food materials, including fish.

Table 23.-Iodine content of various foods
\begin{tabular}{|c|c|c|c|c|c|}
\hline Product & Source & Iodine, parts per billion & Produet & Soureo & Iodine, parts per \\
\hline Lettice, leaf & Signau & 27 & Bluefish. & Atlantic Ocean-- & 250 \\
\hline & & \({ }_{15}^{6}\) & & & 240 \\
\hline Lemons, whole. & & 106 & Pollock & do & 120 \\
\hline Wheat. & Canada- & 3 & Pompano & do & 80 \\
\hline & Anstralia & 19 & Seup & do & 300 \\
\hline Milk & Bern. & 5 & Spot & do & 590 \\
\hline Butter & & 106 & Spotted squeteague & & 20 \\
\hline Eggs & Bulgaria & 27 & Squeteague (weakfish) & --do & 230 \\
\hline Veal & Bern- & 22 & Winter flounder & - do & 180 \\
\hline Beef & ----do. & 5 & Albatore, canned. & Pacific Ocean. & 320 \\
\hline Dried seaweed & Atlantic Oc & 900,000 & Salmon, canned & & 250 \\
\hline Clams..- & ----do.....- & 1,370
1,160 & Sardines, canned. & California.....- & 430
570 \\
\hline Orabsers.-.---1-- & & 1, 180 & Cod, salted. & Atlantie Ocean.- & 570
660 \\
\hline Lobster ....-...-- & do & 1,380 & Maekerel, salted & ---do-.-.------ & 400 \\
\hline Shrimp. & do & 450 & Herring, smoked.-- & do--------------- & 530 \\
\hline
\end{tabular}

Iodine is necessary for the proper functioning of the thyroid gland. Deficiency of iodine is believed to be the cause of goiter and other serious disorders. In inland regions, where natural land foods contain little iodine, goiter is comnon. In Table 23 it will be seen that the same food material from different sources may vary in iodine content, but fish as a group contain far more iodine than land foods. For this reason fish, especially salt-water fish and shellfish, have been proposed as a valuable preventive of thyroid disorders.

\section*{HEAVY METALS}

It was pointed out above that copper and zine may have some function in the body. Zinc is present in most of our foods, both meat and vegetable. Both zinc and copper have been found in all marine invertebrates that have been examined for them, except one species of clam. Table 24 gives data (taken from Bodansky, 1920; Rose and Bodansky, 1920; and Severy, 1922) concerning the prevalence of these elements in Atlantic and Pacific coast marine animals. (See also Willard (1908).)

Table 24.-Copper and zinc in marine animals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Product & Number of sam- & Copper, parts billion & Zine, parts billion & Produet & Number of sam-
plos plos & Coppor, parts billion & Zirrc, parts per billion \\
\hline Oysters: & & & & Crabs: & & & \\
\hline Eastern & 5 & 43.85 & 259.88 & Wastern. & \({ }_{0}^{2}\) & 5. 750 & \\
\hline Clams: & & 3.925 & 64. 97 & Salmon, chinook & 2 & 4.000 & 8.00 \\
\hline Eastern & 1 & . 000 & 77.00 & Abalono-....-. & 5 & . 796 & 24.12 \\
\hline Western. & 3 & . 000 & 11.03 & Whale & 6 & . 000 & 40.00 \\
\hline Shrimp: & & & & & & & \\
\hline Western & 6 & \begin{tabular}{l}
13.000 \\
13.070
\end{tabular} & 17. 18.65 & & & & \\
\hline
\end{tabular}

Copper is a normal and necessary constituent of shellfish as oxygencarrying pigment of the blood, like iron in the vertebrates. It is also taken up in quantity by oysters growing in the presence of copper. That zinc and manganese are also probably normal and pliysiological in some way in the lower marine animals and not derived from accidental contamination is shown by data obtained from 22 species of marine invertebrates around Tortugas, Fla., which is in pure ocean water far removed from land. The metals occur in theso animals in greater concentration than they do in sea water. These data are given in Table 25 (taken from Phillips, 1917).
Table 25.-Copper, zinc, iron, and manganese in 22 species of marine invertebrates around Tortugas
[Quantities in grams per 20 -gram sample]


In another work on Pacific coast mollusks (Albrecht, 1923) further data are given on the inorganic constituents of the livers of shellfish. These are shown in Table 26.

Table 26.-Inorganic constituents of the livers of Pacific coast mollusks, based on 100-gram samples
\begin{tabular}{|c|c|c|c|c|}
\hline Constituent, & A balone & Pismo clam & Cryptochiton & Ischnochiton \\
\hline Silica \(\left(\mathrm{SiO}_{2}\right)\) & Per cent 3.00 & Per cent & Per cent & Per cent \\
\hline Iron ( \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) ) & 3.00 & 1.96 & 6. 76 & 4. 23 \\
\hline Calcium ( CaO ) & . 65 & . 63 & 1.44 & 1.36 \\
\hline Magnesium (Mgo) & . 83 & . 15 & . 26 & 30 \\
\hline Total ash & 5. 79 & 5.93 & 3.38 & 9.12 \\
\hline Iron, per cent of total ash & 31.90 & 21. 70 & 27.00 & 29. 20 \\
\hline
\end{tabular}

In Table 26 the high percentage of minerals in the livers, as represented by total ash, is significant, especially the iron, which amounts to nearly one-third of the total ash. The liver seems to serve as an iron-storage body in these animals.

Traces of arsenic have been found in oysters (Hiltner and Wiclmann, 1919). In 15 samples the minimum was 0 , the maximum 1.47, and the average 0.99 milligrams per kilogram or parts per billion. Arsenic is found normally in human hair and nails.

\section*{importance of mineral substances in the diet}

The chemical elements that occur regularly in the human body are oxygen, hydrogen, nitrogen, carbon, phosphorus, sulphur, chlorine, fluorine, iodine, iron, calcium, magnesium, sodium, and potassium. Besides these, arsenic, copper, zinc, and manganese occur in small quantities and are of unknown significance. All of these elements occur in sea water and sea foods. As they are absolutely necessary for normal human life (with the possible exception of the last four), it would be idle to discuss their relative importance. Such fundamental processes of life as respiration, digestion, muscle contraction, nerve
impulse, regulation of heart beat, coagulation of the blood, reproduction, gland secretion, cell permeability, and other vital processes depend on proper amounts of these elements that remain in the ash on ignition. The important question concerning them for the general reader is, Do they occur in sufficient quantities and proper proportions in our daily dict?

There is believed to be a danger of deficiency and disproportion in some of them. We demand our food highly cleaned and selected, and parts containing valuable mineral substances such as husks, peelings, bones, and skins are frequently discarded. If, for example, in our meat foods we should grind up the entire animal and eat equal proportions of it all we would get about the proper amounts of mineral; but we discard bones and often glands, and prefer muscle tissue, which contains more potassium than do the other tissues and is deficient in calcium. Deficiency of iodine is at the danger point in many localities.

Table 22 shows that that part of fish which we usually eat contains relatively more calcium than other meat foods do. This applies particularly to such canned fish as salmon and sardines, where the bones are softened and edible. It applies also to shellfish, such as oysters and clams, where tho shell-secreting mantle contains a high percentage of calcium. The livers of shellfish also contain much iron. Fish, especially salt-water fish and shellfish, generally contain much iodine and are particularly valuable in this respect. Concerning the possible value of the heavy metals in fish we have no exact data at present.

It seems permissible to conclude that fish as a class are a safeguard against mineral deficiencies in the diet, and that they deserve more attention than they have had from chemists and dieticians from this point of view.

\section*{V.-VITAMINS IN FISH AND SHELLFISH}

By E. V. McCollum, Professor of Chemical Hygiene, School of Hygiene and Public Health, Johns Hopkins University

On the evidence brought to light by the extensive researches in the field of foods and nutrition during the last 20 years, it is now universally believed that there exist a number of chemical substances that are indispensable for normal nutrition in man and animals. When one or another of these is left out of an otherwise complete diet, certain pathological symptoms appear, which can be produced in no way other than by vitamin deficiency. The diseases characteristic of vitamin deficiency can be prevented or cured only by the inclusion in the diet of the vitamin with which each is associated. No one or more of the vitamins can be omitted from the diet without profound disturbance to health. Fortunately, most of our ordinary foods contain at least small amounts of one or more of them, so that when we eat a fairly wide variety of natural foods the danger of vitamin deficiency is smali, except in the case of a single one, viz, vitamin D.

The vitamins are of unknown chemical nature and are known by the names vitamin \(\Lambda\), vitamin \(B\), vitamin \(C\), vitamin \(D\), and vitamin E. A lack of vitamin A in experimental animals caused the appearance of an eye disease, which results from a loss of power of the tear
glands to produce tears. The eyes become dry and suffer profound injury as a result of this and of bacterial infection. The salivary glands are likewise affected, losing their capacity to secrete saliva. The nose and ears become filled with a purulent discharge. These are the most prominent effects of vitamin A deficiency.

Vitamin B is most abundant in natural foods. All ordinary foods used in America, except white flour, polished rice, degerminated corn meal, sugar, starch, and the fats and oils, contain more or less of the ritamin \(B\). All lean meats are very poor sources of it, but liver, kidney, and other glandular organs are cxcellent sources of it.

Vitamin C is found in appreciable amounts only in fresh, raw foods, especially in fruits and regetables. The citrous fruits are especially valuable in this respect.

Vitamin \(D\) is especially interesting in that it is contained in rery small amounts in any foods thus far studied, except in the oils of fishes. Many foods of both animal and regetable origin are apparently entirely lacking in it. The leaves of cdible plants contain small amounts of it, at least in certain cases. Cereals, tubers, root vegetables, lean meats, ordinary animal and vegetable fats, fruits, etc., are entirely lacking in this remarkable nutrient principle. Vitamin D is especially important in the diet for the purpose of insuring the normal development of the bones. The condition which results from starvation for this vitamin (when the diet is not properly constituted with respect to certain other nutrients, especially calcium and phosphorus) is gencrally designated as rickets. It is not confined to the bones, but affects all the tissues of the body and may result in profound damage to health. Curiously enough, while the vitamin D is very abundant in certain fish oils it is apparently entircly lacking in the liver fats and in the other fats of the bodies of mammals, such as beef, pork, etc.

The vitamin E is concerned with the reproduction. It, like the vitamins A and D , is soluble in fats and oils and is found in certain of these. It is especially abundant in the oil from the germ of wheat. It is said to be absent from cod-liver oil and is certainly not abundant in the ordinary fats that are rich in vitamin \(A\), such as butterfat, cod-liver oil, etc.

All fats and oils from fish or other marine animals whenever examined have been found to be rich in vitamin A. Oil from herring, shark liver, and cod liver are examples, the liver oils being especially rich. Whale oil and seal oil are likewise rich in vitamin \(\Lambda\), probably because their food is rich in it. Lesser amounts of the vitamin have been found in the oils from salmon and menhaden. It seems probable that the fats in the flesh as well as in the livers of all marine animals are rich in vitamin \(A\). It has been the custom for centuries in Japan to give eel fat to children who were suffering from lack of vitamin A. This disease was so common among children that it was well known as hikan. It is interesting that eel fat, like codliver oil, should have been discovered as a result of common experience to have therapeutic value and for very different conditions.

Herring and cod roe are the only roes that have been studied. These are found to contain vitamin \(A\), probably in as large amount as do eggs generally.

It is said that vitamin \(B\) is lacking in codfish muscle and salmon muscle, but that the vitamin is present in the entire body of the
herring. The latter result may mean that the herring muscle is lacking in it but that the substance is contained in the glandular organs. It is present in turbot roe and is probably found in the reproductive tissues of fish generally, as is true of mammals.

The most interesting aspect of the investigations of fish products from the food standpoint relates to the peculiar value of certain fish oils in the prevention and cure of rickets in children and in animals. Rickets is an extremely common disease affecting the skeletal development of children and of certain farm animals. Codliver oil is a specific remedy against this disease. It is generally agreed by pediatricians that every child should be given appropriate doses of cod-liver oil from early infancy as a routine measure to safeguard the development of the bones and probably also the teeth. This property is due to the presence in the oil of vitamin D, a substance distinct in its properties from vitamin A.

Vitamin \(D\) is apparently present in considerable amounts in the liver oils of fish generally, but the liver oil of the cod is believed to be exceptionally potent as a source of it. Cod, shark, and burbot liver oils are known to be effective in the cure of rickets.

It has long been observed that in regions where fish are regularly eaten in considerable amounts goiter is rare, whereas it is very common in many regions because of lack of iodine. Sea foods such as fish furnish this element in appropriate amounts to supply the needs of the body. A similar statement may be made concerning rickets in children. Even in those parts of the world where the climatic and hygienic conditions are such as to favor the development of bone defects these are rare among children where fish forms a prominent article of diet. The administration of cod-liver oil is an effective substitute for the eating of fish for this specific purpose.

Shellfish, such as oysters, clams, and lobsters, are of great importance. Oysters are so universally liked and their culture has been so much extended that they deserve especial mention in any discussion of the food value of fish. Little attention has been given to the study of the nutritive value of the oyster. Such observations as have been made show that it contains both the vitamins B and C. Since both oysters and clams are frequently eaten in the raw state, they occupy an unique position in that they are the only foods of animal origin which in the temperate regions can take the place, in a measure, of fresh, raw, vegetable foods. It is universally agreed that it is desirable to take some food daily which is capable of supplying vitamin C, since scurvy will develop after a few weeks of deprivation of this vitamin. There is good reason to believe that at certain times and places oysters and clams have played a special rôle as antiscorbutic foods in the human dietary.

Nothing is known of the vitamin content of the lobster. Crabs, especially soft-shell crabs, are probably comparable to oysters in their vitamin content, but no studies seem to have been made with them.

Modern researches on foods and nutrition have brought to light many surprises, both as regards the nutritive needs of the body and the dietary properties of individual foodstuffs, among which the most marked contrasts have been found. In no case have any foods gained more recognition as having unique dietary values than have the principal fish and shellfish.

\section*{BIBLIOGRAPHY}

\section*{I. CHEMICAL COMPOSITION}

Atwater, W. O.
1888. The chemical composition and nutritive values of food fishes and aquatic invertebrates. Report, Commissioner of Fish and Fisheries, 1888 (1892), pp. 679-868. Washington.
Atwater, W. O., and A. P. Bryant.
1899. The chemical composition of American food materials. Bulletin No. 28 (revised 1906), United States Department of Agriculture, Office of Experiment Stations, p. 50. Washington.
Clark, Ernest D., and Lloyd H. Almy.
1918. A chemical study of food fishes. The analysis of twenty common food fishes with especial reference to a seasonal variation in composition. Journal of Biological Chemistry, Vol. XXXIII, No. 3, pp. 483-498. Baltimore.
1920. A chemical study of frozen fish in storage for short and long periods. Journal of Industrial and Engineering Chemistry, Vol. XII, No. 7, July, 1920, pp. 656-663. Washington.
Dill, D. B.
1921. A chemical study of certain Pacific Coast fishes. Journal of Biological Chemistry, Vol. XLVIII, No. 1, pp. 73-82. Baltimore.
1921a. A chemical study of the California sardine (Sardinia cærulea). Ibid., pp. 93-103. Baltimore.
Greene, Charles W.
1919. Biochemical changes in the muscle tissue of king salmon during the fast of spawning migration. Ibid., Vol. XXXIX, No. 3, pp. 435456. Baltimore.

Shostrom, O. E., R. W. Clough, and E. D. Clark.
1924. A chemical study of canned salmon. I-Variations in composition of the Pacific Coast salmons and steelhead trout as influenced by species and locality where caught. Journal of Industrial and Engineering Chemistry, Vol. XVI, No. 3, March, 1924, pp. 283-289. Washington.
Langworthy, C. F.
1907. Fish as food. United States Department of Agriculture, Farmers' Bulletin No. 85, 32 pp. Washington.

\section*{II. SOURCE OF PROTEIN}

Drummond, J. C.
1918. The nutritive value of certain fish. Journal of Physiology, Vol. LII, 1918-1919, pp. 95-109, figs. 1-9. London.
Holmes, A. D.
1918. Experiments on the digestibility of fish. United States Department of Agriculture Bulletin No. 649, April 13, 1918, 14 pp. Washington. (See p. 14.)
Milneir, R. D.
1905. Experiments on the digestibility of fish and poultry. Seventeenth Annual Report of the Storrs Agricultural Experiment Station, Storrs, Conn., 1905 (1906), pp. 116-142. Middletown, Conn.
Okuda, Yuzuru.
1919. On the chemistry of "chiai" flesh. Journal, College of Agriculture, Imperial University of Tokyo, Vol. VII, No. 1, 1919, pp. 1-28, 1 fig. Tokyo.
Okuda, Yuzuru, and S. Matsuda.
1923. Hydrolysis of the whole body of carps. Journal, Scientific Agricultural Society, Tokyo, No. 248, 1923, pp. 337-341. Tokyo.
Okuda, Yuzuru, and Kiyoshi Orama.
1916. Hydrolysis of fish muscle. Journal, College of Agriculture, Imperial University of Tokyo, Vol. V, No. 4, 1916, pp. 365-372. Tokyo.
Okuda, Yuzuru, Tamazo Okimoto, and Takeshi Yada.
1919. Hydrolysis of the muscle-proteins of the whale and the cod. Journal, College of Agriculture, Imperial University of Tokyo, Vol. VII, No. 1, 1919, pp. 29-37. Tokyo.
Osborne, Thomas B.
1909. The vegetable proteins. Monograplis on biochemistry. 125 pp .; 1909. Longmans, Green \& Co., London.

Osbonne, Thomas B., and Frederick W. Meyl.
1908. Hydrolysis of fish muscle. American Journal of Physiology, Vol. XXIII, No. II, November 2, 1908, pp. 81-89. Boston.
Obborne, Thomas B., and Lafayette B. Mendel.
1911. Feeding experiments with isolated food substances. Publication No. 156, Carnegie Institution of Washington, 1911. Washington.
1912. Maintenance experiments with isolated proteins. Journal of Biological Chemistry, Vol. XIII, 1912, No. 2, pp. 233-276, charts 1-21. Baltimore.
1914. Amino-acids in nutrition and growth. Ibid., Vol. XVII, No. 3, 1914, pp. 325-349, charts I-VIII. Baltimore.
1915. The comparative nutritive value of certain protcins in growth, and the problem of the protein minimum. Ibid., Vol. XX, No. 3, 1915, pp. 351-378, charts I-X. Baltimore.
1915a. Protein minima for maintenance. Ibid., Vol. XXII, No. 2, 1915, pp. 241-258, 1 chart. Baltimore.
1916. The amino-acid minimum for maintenance and growth, as exemplified by further experiments with lysine and tryptophane. Ibid., Vol. XXV, No. 1, 1916, pp. 1-12, charts I-IV. Baltimore.
1916a. The effect of the amino-acid content of the diet on the growth of chickens. Ibid., Vol. XXVI, No. 2, 1916, pp. 293-300; 1 pl. Baltimore.
1916b. The relative value of certain proteins and protein concentrates as supplements to corn gluten. Ibid., Vol. XXIX, No. 1, 1916, pp. 69-92. Baltimore.
1919. The nutritive value of the wheat kernel and its milling products Ibid., Vol. XXXVII, No. 4, 1919, pp. 557-601, charts I-XIV. Baltimore.
1919a. The nutritive valuc of yeast protein. Ibid., Vol. XXXVIII, No. 2, 1919, pp. 223-227, 1 chart. Baltimore.
1920. Nutritive value of the proteins of barley, oat, ryc, and wheat kernels. Ibid., Vol. XLI, No. 3, 1920, pp. 275-306, charts I-XIII. Baltimore.
1924. The nutritive value of lactalbumin. Ibid., Vol. LIX, No. 2, 1924, pp. 339-345, 1 chart. Baltimore.
Osborne, Thomas B., Donald D. Van Slyke, Charles S. Leavenworth, and Marian Vinograd.
1915. Some products of hydrolysis of gliadin, lactalbumin, and the protein of rice kernel. Journal of Biological Chemistry, Vol. XXII, No. 2, 1915, pp. 259-280. Baltimore.
White, George F., and William Crozier.
1911. Comparative proteolysis in experiments with trypsin. Journal, American Chemical Society, Vol. XXXIII, 1911, pp. 2042-2048, figs 1 and 2. Easton, Pa.

\section*{III. OILS AND FATS}

Fridericia, L. S.
1924. Inactivating action of some fats on vitamin \(A\) in other fats. Journal of Biological Chemistry; Vol. LXII, No. 2, December, 1924, pp. 471-485, figs. 1-8. Baltimore.
Holmes, Arthur D.
1922. Studies of the vitamin potency of cod-liver oils. III-The potency of pollock-liver oil. Journal of Metabolic Research, vol. 2, no. 2, pp. 361-365. Morristown, N. J.
1924. Studies of the vitamin potency of cod-liver oil. VII-The vitamin A potency of hake-liver oil. Industrial and Engineering Chemistry, vol. 16, no. 4, April, 1924, pp. 379-380. Easton, Pa.
1924a. Vitamin potency of cod-liver oils. X-Medicinal cod-liver oils. Industrial and Engineering Chemistry, vol. 16, no. 11, November, 1924, pp. 1181-1184. Easton, Pa.
1925. Vitamin potency of cod-liver oils. XI-Butter fats produced on summer feeds. Industrial and Engineering Chemistry, vol. 17, no. 1, January, 1925, pp. 75-78. Easton, Pa.
1925a. Studics of the vitamin potency of cod-liver oils. XVI-The vitamin A potency of shad body oil. Boston Medical and Surgical Journal, vol. 192, no. 7, 1925, pp. 300-302. Boston.

Holmes, Arthur D.; and Madeleine G. Pigott.
1925. Vitamin poteney of cod-liver oils. XIII-Vitamin A potency of dogfish-liver oil. Industrial and Enginecring Chemistry, vol. 17, no. 3, March, 1925, pp. 310-311. Easton, Pa:
1925a. Studies of the vitamin potency of cod-liver oils. XVII-The vitamin potency of salmon body oil. Boston Medical and Surgical Journal, vol. 193, no. 16, Oct. 15, 1925, pp. 726-728. Boston.
Milner, R. D.
1905. Experiments on the digestibility of fish and poultry. Seventeenth Annual Report of the Storrs Agricultural Experiment Station, Storrs, Conn., 1905 (1906), pp. 116-142. Middletown, Conn.
Oshima, Kintaro.
1905. A.digest of Japanese investigations on the nutrition of man. United States Department of Agriculture, Office of Experiment Stations, Bulletin No. 159, 1905, 224 pp. Washington. (See p. 187.)

\section*{IV. MINERAL CONSTITUENTS}

Albrichit, P. Gehhard.
1923. Chemical study of several marine mollusks of the Pacific coast. The liver. Journal of Biological Chemistry, Vol. LVII, No. 3, pp. 789-794. Baltimore.
Atwater, W. O.
1892. The chemical composition and nutritive values of fuod fishes and aquatic invertebrates. Report, United States Commissioner of Fish and Fisheries, 1888 (1892), pp. 679-868. Washington.
Bayliss, William Maddock.
1924. Principles of General Physiology. \(\delta 82\) pp., illus., 1924. London. (See pp. 221-222 for discussion and citations of original works.)
Bertrand, G., and F. Medigreceanu.
1912. Sur la présence normale du manganèse chez les animaux. Original communications, eighth international congress of applied chemistry, Vol. XV, Section VII, p. 35, 1912. New York and Washington.
Bodansky, Meyer.
1920. Biochemical studies on marine organisms. II. The occurrence of zinc. Journal of Biological Chemistry, Vol. XLIV, No. 2, pp. 399-407. Baltimore.
1921. The zine and copper content of the human brain. Ibid., Vol.

Bradley, H. C.
1910. Manganese of the tissues of lower animals. Journal of Biological Chemistry, Vol. VIII, pp. 237-249. Baltimore.
Clarke, Frank Wigglesworth.
1920. The data of geochemistry. U. S. Geological Survey Bulletin 695. Washington. (Figures from various sources.)
Dill, D: B.
1921. A chemical study of certain Pacific coast fishes. Journal of Biologieal Chemistry, Vol. XLVIII, No. 1, pp. 73-82. Baltimore.
Hammarsten, Olof, and S. G. Hedin.
1915. A textbook of physiological chemistry. 7 th edition, \(1915,1026 \mathrm{pp}\). New York. (See p. 436.)
Hiltaer, R. S., and H. J. Wichmann.
1919. Zinc in oysters. Journal of Biological Chemistry, Vol. XXXVIII, No. 2, pp. 205-221. Baltimore.
Katz, Julius.
1896. Die mineralischen Bestandtheile des Muskelfleisches. Archiv für die gesanmte Physiologie, Band 63, 1896, pp. 1-85, figs. 1-3. Bonn.
Phillifg, Alexander H.
1917. Analytical search for metals in Tortugas marine organisms. Papers from the Department of Marine Biology of the Carnegie Institution of Washington, Vol. XI, Publication no. 251, pp. 89-93. Washington.

Reiman, Clarence K., and Annie S. Minot.
1920. A method for manganese quantitation in biological material together with data on the manganese content of human blood and tissues. Journal of Biological Chemistry, Vol. XLII, No. 2, 1920, pp. 329345. Baltimore.

Rose, William C., and Meyer Bodansky.
1920. Chemical studies on marine organisms. I. The occurrence of copper. Journal of Biological Chemistry, Vol. XLIV, No. 1, 1920, p1. 99112. Baltimore.

Severy, Hazel W.
1922. The occurrence of copper and zinc in certain marine animals. Journal of Biological Chemistry, Vol. LV, No. 1 (1923), pp. 79-92. Baltimore.
Tressler, Donald K., and Arthur W. Wells.
1924. Iodine content of sea foods. Report, United States Commissioner of Fisheries, 1924 (1925), pp. 1-12. Washington.
Willard, J. T.
1908. On the occurrence of copper in oysters. Journal, American Chemical Society, Vol. XXX, 1908, pp. 902-904. Easton, Pa.

Fig. 1.-A catch of Lake Erie herring in spawning time (November, 1918) . Part of a 30 -ton catch. The lift was so heavy that the gill nets were

\title{
FISHING INDUSTRY OF THE GREAT LAKES \({ }^{1}\)
}

\author{
By Walter Koelz \\ Associate Aquatic Biologist, U. S. Bureau of Fisheries
}

\section*{CONTENTS}
Page.
Introduction ..... 554
Fishing industry ..... 555
Historical ..... 555 ..... 555
Boats ..... 555
Apparatus ..... 556
Organization ..... 559
Products ..... 560
Lake Michigan ..... 561
Description ..... 561
Fishing industry ..... 561
History ..... 61
Present status, methods, and apparatus ..... 563
Fishing districts ..... 563
Principal species ..... 563
Lake trout ..... 564
Chubs ..... 564
Herring ..... 566
Whitefish ..... 566
Yellow perch ..... 566
Suckers. ..... 567
Sturgeon ..... 567
Other indigenous species ..... 567 ..... 567
Introduced species ..... 567
Carp ..... 567
Steelhead trout ..... 567
Smelt ..... 68
Fishing regulations ..... 568
Apparatus ..... 568
Size limits ..... 569
Closed seasons ..... 569
Lake Superior ..... 570
Description ..... 570
Fishing industry ..... 570
History ..... 570
Present status, methods, and apparatus ..... 573
Fishing districts ..... 573
Principal species. ..... 574
Lake trout ..... 574
Whitefish ..... 574
Herring ..... 575
Bluefin and chubs ..... 575
Other indigenous species ..... 576
Fishing regulations ..... 576
A pparatus ..... 576
Size limits ..... 677
Closed seasons ..... 577
Lake Huron ..... 577
Description ..... 577
Fishing industry ..... 578
History ..... 578
Present status, methods, and apparatus ..... 581
Fishing districts ..... 581
Principal species ..... 82
Lake trout ..... 582
Whitefish ..... 582
Herring ..... 583
Chubs ..... 583
W all-eyed pike ..... 584
Yellow perch ..... 584
Suckers. ..... 585 ..... 585
Sturgeon ..... 585
\({ }^{1}\) Appendix XI to the Report of the U. S. Commissioner of Fisheries for i925. B. F. Doc. 1001.

\section*{INTRODUCTION}

In the preparation of this account of fishing conditions on the Great Lakes, the reports of the Department of Marine and Fisheries of Canada and the Game and Fisheries Department of Ontario, which give statistics of the Canadian fisheries, and the statistical bulletins of the United States Bureau of Fisheries were drawn upon. I am indebted for cortain dates relative to the commencement of fishing operations on the various lakes to the very excellent report of Richard Rathbun and William Wakeham with regard to the preservation of the fisheries in waters contiguous to the United States and Canada. \({ }^{2}\) The sections dealing with fisheries regulations were prepared from the latest issues of the fish and game laws of the various Governments and were supplemented in certain cases by special rulings and license stipulations. Other material was, in the main, collected by me while studying the systematic relationships and natural history of the whitefishes and lake herrings of the Great Lakes since 1919, and present conditions as herein reported are such as obtained at some time subsequent to that date. \({ }^{3}\) The systematic and ecological account of the commercial species has been reserved for another publication. The aim of this paper has been to picture, with a historical background, the condition of the fisheries of the Great Lakes as they are to-day and to call attention to the need of intelligent action to preserve those fisheries.

The statements of annual production appearing in the statistical publications, and which have been abstracted in the various tables herein presented, \({ }^{4}\) do not, for one reason or another, lend themselves to statistical treatment. Many more data than are included in these publications are needed for statistical analysis; for example, the total yardage of gill netting or the number of gill nets in use is given, but it is not stated what percentage of these nets were of the various meshes employed in the fisheries.

The method of collecting statistics is also open to much objection, and I am aware that in several cases serious discrepancies occur between the actual and reported catches. The tables giving the total catch in pounds and which indicate the relative abundance of the species are therefore intended to show only how the production of the various lakes has changed in character. If the catch of those species that were sought in the beginning of the fisheries has declined, it may be assumed that those species are now rarer, and if new species appear in the tables, their appearance may be accounted for by the assumption that they have grown in favor rather than in abundance. The tables thus also show, although only roughly, the present abundance of the various commercial species.

The five Great Lakes occupy a group of valleys which apparently were changed into lakes by events associated with the glacial epoch, and are therefore, geologically speaking, of relatively recent date.

\footnotetext{
\({ }^{2}\) Preservation of the Fisheries in Waters Contiguous to the United States and Canada. Message from the President of the United States relating to the report of the joint commissioncrs. (H. Doc. No. 315, 54th Cong., 2 d sess., Feb. 24, 1897; Washington.)
\({ }_{3}\) This report was submitted to the bureau, virtually in its present form, in March, 1924, but publication has been unavoidably delayed. It has been revised since then only to include the latest statistical figures for American waters, so that changes in the fishing laws and such scientific publications as have appeared subsequent to that date have not been made use of.
4 The quantity of salt fish is often given in barrels in the Canadian returns, and these have been converted into pounds at the rate of 200 pounds to the barrcl.
}

They have a combined area of over 95,000 square miles, and all of them, excepting Lake Erie, have depths of 600 feet or more. A depth of over 1,000 feet is known to exist in Lake Superior. From a limnological point of view the lakes are very primitive; that is, they have little except algal vegetation, although, of course, larger plants grow in the bays and river mouths, in which semipond conditions obtain. The lakes are very cold, also, and in most of them the bottom waters beyond a depth of 350 feet are never warmer than \(4^{\circ} \mathrm{C}\). ( \(39.2^{\circ}\) F.). \({ }^{5}\) The wind stirs up the water sufficiently so that oxygen is distributed throughout, and some sort of life occurs even at the maximum depths.

The conditions present in the lakes are favorable to the development of fish life, and before their commercial exploitation fish were extremely abundant in them. Records of the abundance of fish are found in the relations of the Jesuit Fathers as early as the beginning of the seventeenth century, and these accounts do not fail to mention the excellent quality of these fish. Even within the memory of the present generation the fish supply exceeded any limits now known to us. For the last 50 years the annual production has averaged over \(100,000,000\) pounds, and the output in 1922 totaled over 140,000,000 pounds, valued at more than \(\$ 9,000,000\). The capital invested in fishing runs into millions of dollars, and over 12,000 persons are directly engaged in the industry.

\section*{FISHING INDUSTRY}

\section*{HISTORICAL}

The original fisheries were prosecuted by means of seines, which were drawn along the shores during the spring and fall when the fish came into shallow water. At first enough fish were taken by this method to supply the limited demands, but as the fish became fewer (as a result of intensive and wasteful methods) and the demand increased, pound nets and gill nets were employed. All netting was originally made by hand, and there are fishermen still plying their trade who once spent their winter evenings weaving the webbing for their summer's use. The first pound nets were not radically different from those now in use, but the gill nets were much more crude. Instead of lead weights, stones, fastened by strings, sunk the nets and hand-whittled cedar splinters 6 to 10 inches long, split at one end and pinched onto the float line after the manner of a clothespin, served as floats. Both weights and floats were removed every time the nets were brought ashore, a procedure so laborious that only a few thousand feet of netting could be used. This equipment was carried by rowboats or sailboats to its place in the lake, which was always within sight of shore.

\section*{BOATS}

The fishing industry has long outgrown such methods. Rowboats are no longer used except in conjunction with mechanically propelled craft, and sailboats have been abandoned since the early part of the present century. They were last in general use on the Canadian

\footnotetext{
\({ }^{5}\) Lake Superior lies 2 to 3 degrees of latitude farther north, and the temperature readings, so far known, indicate that this temperature probably is seldom exceeded below 200 feet.
}
shore of Lake Ontario. The fishing vessels are now driven by steam and gasoline. The gasoline boats as a rule are only small launches 25 to 50 feet long, and they are engaged chiefly near shore in the pound and trap-net fisheries (in which case they tow a rowboat) or where gill nets are set in the shallow waters near the harbor. However, there are a few large tugs that have installed modern, oilburning engines. Most of the steam tugs are less than 65 feet in length, since this is the maximum length of a craft that may be operated with an unlicensed pilot and engineer, and some expense in salary for the pilot and engineer is thereby saved by the operators of smaller tugs. Most of the pilots, however, own their boats, and many of them are licensed. One of the largest tugs on the lakes, in use out of Alpena on Lake Huron, is 97 feet long with 80 gross tons displacement. Most of the boats are specially constructed for use in fishing and the largest ones have a cruising radius of more than 100 miles. Gill nets are the chief apparatus employed by tugs.

Until about 1891 gill nets were lifted by hand over a roller, but since about 1900 the tugs have been equipped with automatic lifters. There are two types of lifter, but the one most widely used is the revolving drum bearing along its circumference two rows of rubbertipped teeth, which bite together and separate again as the drum revolves. The cork and lead lines of the gill net are caught by several teeth on one side of the drum and are carried along. As each pair of teeth releases the lines after bearing them about half a revolution, another pair closes over a new stretch of lines and in this manner the nets are hauled aboard. The speed of revolution can be controlled and the nets may therefore be lifted according to requirements.

\section*{APPARATUS}

Hooks.-Large numbers of hooks are employed in certain fisheries, but their most important use is in the capture of lake trout. For trout fishing the hooks are tied to a fine line about 4 feet long, and these lines are fastened at definite intervals along a heavy cord. The length of the cord depends upon the number of hooks used and may be several miles. Ordinarily 2,500 to 3,000 hooks are set in a hook gang. Small bloaters (Leucichthys hoyi)-so-called because they bloat from the expansion of gas in the air bladder when brought to the surface-serve as bait, and when the main cord is set on the bottom these air-filled fish float the hooks off the bottom. The entire gang may also be floated at any desired depth level by the use of air cans.

Seines.-Seines have long since become unprofitable for general use and are now employed only in special fisheries. A seine is made of heavy cotton netting, and as generally used in commercial fisheries consists of a bag and wings. The wings are strips of netting not more than 20 feet wide and of any desired length. They are fastened on each side of the bag, which is only a pocket in which the fish are collected. In operation a section of the shore waters is surrounded by the extended wings, which are then drawn ashore, reducing the area of inclosure and forcing the fish into the bag.

Pound nets.-A pound net is constructed of coarse cotton netting and is maintained in position by a series of stakes driven into the bottom. The stakes are so arranged and the netting so employed
that there are three parts to a pound - the lead, the heart, and the pot or crib. The lead is simply a fence of netting which extends from the bottom to the surface and runs in a straight line, usually from shore, until it enters the base of the heart. A lead may be 60 or 70 rods long. The heart is likewise a fence of netting, but the stakes are so driven that the netting on them roughly outlines a heart. The figure is not complete, however, since its halves do not join at the base. At its apex the heart is modified into the tunnel, a completely inclosed passageway that leads into the pot. The pot is a basket of netting open at the top and with sides extending above the surface.

In principle the net works as follows: The fish, in swimming along the shore, meet the lead, which for whitefish and trout is composed of netting with meshes \(21 / 2\) to \(31 / 2\) inches square \({ }^{6}\) ( 5 to 7 inches stretched mesh), and find their way barred. They turn, then, toward deeper water, follow the lead, and enter the heart through the opening at its base. Once in the heart escape is not easy, and the fish eventually pass through the tunnel at the apex into the pot. To prevent the fish from becoming gilled in the netting its mesh in the heart is reduced to 5 inches and in the pot to 4 inches and 3 inches- 3 inches on the outer side or back of the pot, which becomes the bottom in lifting, and 4 inches on the bottom and other three sides. \({ }^{7}\) These nets are set on soft bottom, into which the stakes can be driven, and the pot is located at depths of 25 to about 80 feet. It is impossible to set pound nets at greater depths, as there is a limit to the length of stakes that can be obtained. The nets are usually lifted daily, and the fish are alive when taken.

Trap nets.-The trap net is a modification of the pound net, in which the lead is maintained in position by leads and corks instead of by stakes, and the heart and pot by anchors, and in which the pot and heart are entirely closed like a covered basket. The net may therefore be submerged, and for this reason the fishermen often call it the "submarine."

Crib nets.-A net called the crib net is widely used on Lake Erie and Saginaw Bay, which has features of both the pound net and trap net. There are, however, two pots connected by a tunnel and two hearts. The pots are covered, as in a trap net, but the hearts are open, as in a pound.

Fyke nets.-The fyke net is also a sort of trap net, but there is no lead or heart. Two wings of variable length, held in position by stakes, converge into a tunnel which leads into the pot. The pot is cylindrical and is supported by hoops. There may be several compartments in the cylinder, each connected with the other by a tunnel, by which arrangement the escape of the fish is much complicated.

Gill nets.-A gill net consists of two heavy cotton lines-the cork and lead lines-and the netting. The first line hears aluminum or wooden floats and the latter is strung with leads, both at intervals of 6 to 10 feet, according to the option of the fishermen. The netting. proper is made of fine linen or sea-island cotton thread, the size of

\footnotetext{
- The mesh of nets may be described as square or stretched. By square mesh is meant the length of one side of a quadrangular opening; by stretched mesh is meant the sum of the length of two sides of such an opening. The latter measurement is obtained by stretching the mesh until the opening is obliterated. Dimensions given elsewhere in this paper refer to stretched mesh.
7 The figures given for size of the meshes are relative and are intended to show only that the size of the mesh changes in each part of the pound. The size of meshes used varies widely according to the laws or according to the species of fish sought.
}
the thread varying with the mesh of the netting, and is purchased according to order by the fishermen. It is then seamed onto the lead and cork lines, so that one diagonal of the quadrangular openings of the netting is perpendicular to these lines. Three sorts of gill nets are in use by the Great Lakes fishermen-(1) nets for whitefish and trout, which are regularly of 4 to \(43 / 4\) inch mesh, depending on the regulations of the various Governments, though nets up to 7 inches are used on the spawning grounds; (2) small-meshed nets, which are of \(21 / 8\) to 3 inch mesh and are used for herring, chubs, perch, etc.; (3) nets of \(13 / 8\) to 2 inch mesh, which are used to catch bait for the trout hooks in American waters only. In Canadian waters \(21 / 8\) to \(21 / 4\) inch nets are permitted for this purpose. All three sorts of gill nets are set chiefly in the deeper waters of the Lakes to depths of 600 feet, though at certain seasons the first two are employed to advantage on the shoals. The nets are from 50 to 90 leads long and are handled in boxes, 3 or 4 nets to a box. In use they are united, end to end, to form gangs, one of which may reach 4 to 8 miles.

In setting a gang a buoy is thrown overboard, to which a line, somewhat longer than the depth of the water at that point, has been attached. A few rods from the lower end of this line an anchor is fastened, and the end of the line is made fast to the joined lead and cork lines of one end of the gang. The anchor is then thrown overboard and the net paid out from the moving steamer. When the end of the gang has been reached a second rope and anchor are attached to it. To the second rope a line with attached buoy is made fast and the net is allowed to sink to the bottom, where it stands upright like a tennis net. The fish swimming along the bottom run into the net and become entangled in the meshes. Since the fine threads of the net usually are caught under the gill covers of the fish they are said to be "gilled." The fish are often dead when taken.

The boats use either large-meshed gill nets exclusively and catch whitefish and trout, or use small-meshed nets exclusively; or they may, at certain seasons at least, have gangs of both. The gangs are lifted at intervals of one to six days, depending on the temperature of the water. The nets used to catch bait for the boats' "fishing hooks" are lifted daily or on every second day. The hook tugs use no other nets.

By the methods of fishing in general use on the Great Lakes (excepting Lake Erie) fish are captured from the surface to the bottom only in the shallower shore waters having a maximum depth of about 80 feet. In the deeper water they are taken by gill nets within about 5 feet of the bottom only. The fish are therefore free from capture in these deeper waters from the surface to within 5 feet of the bottom, except that trout may be taken by floated hooks.

In Lake Erie, however, nets have commonly been floated off the bottom since the beginning of the present century. From the practice of floating nets, Clarence Jackway, of Westficld, N. Y., is credited with having evolved the "bull net" about 1905, which is merely a very deep gill net. Where the ordinary gill net would take fish only within 5 feet from the bottom, the bull net, if set on the bottom, would catch fish to four or five times that height. Experience taught, however, that the currents along the bottom were frequently so strong that a bull net would be brushed flat, and for that


Fig. 2.-A rough day on Lake Michigan. Nets are not lifted if the lake is much rougher than this


F1G. 3.- Returning to harbor with the day's catch of Lake Erie's fish. Note that these tugs are housed fore, while that in Figure 2 has an open deck. Both types are in use on the lakes


Fig. 4.-Typical fish-packing house. The tracks lead from the docks to the packing shed. At the left is the ice house. The buoys are those used for marking the location of the net gangs in the lake, and the boxes along the track are "lake boxes." in which the fish are orought ashore


FIG. 5.-.Typical net shet and reels. The nets are ahways reehed when bronght ashore, and when mented are stored in such buildings as those shown here
reason this type of net is usually floated above the bottom. The vertical position of the gill-net gangs in Lake Erie varies from day to day-at times they are high, then on the bottom, according as the fish rise or drop. Relatively few of the bull nets are of larger mesh than 3 inches.

The practice of floating nets has been followed by European fishermen for many years, and the method was employed in the taking of herring, presumably by immigrants from Europe, on the western end of Lake Superior and also at certain points on the Canadian shore of Lake Erie long before 1900. The herring fisheries here, however, had not attained much importance, and the method was therefore little advertised, so that it remained for the American fishermen on Lake Erie to invent it anew. It is said that a fisherman at the eastern end of the lake by accident rearrived at the idea of floating nets about 1902, when a part of his gang, which had become entangled in the buoy line and was therefore suspended between the surface and the bottom, made a good catch of fish. At present the idea, on account of its usefulness in Lake Erie, has spread to other lakes, and even trap nets are floated in certain localities at certain seasons.

\section*{ORGANIZATION}

Only two men are required to operate pound and trap nets, and the labor of lifting such nets is soon performed.

The personnel in the gill-net industry is differentiated into two classes - the "lake hands" and the "shore hands." The larger boats carry six or seven men-a licensed pilot, a licensed engineer, a fireman, and a crew of three or four men, who must be trained in the fishing industry. When fishing is heary an additional man may be added to the crew. The pilot determines where the nets are to be set and is responsible for the boat in general; the engineer and fireman run the engine; and the crew lift and set the nets, remove the fish from the netting, dress them, and when the nets are brought ashore put them on the reels to dry. The engineer and fireman are exempt from duties other than those pertaining to their machinery, except that the fireman often is expected to help with the reeling.

The boats leave port at any time from 2 to \(6 \mathrm{a} . \mathrm{m}\)., and usually return (depending on the length of the cruise) in the afternoon, but sometimes not until late at night. In any case, the nets must be spread on the reels before the men's work is ended. When the weather interferes with lifting the nets the boat crew has a holiday, but if there have been two such holidays in a week the following Sunday usually is reckoned a working day. The lake hands are laid off when the fishing season is over.

The nets are mended and put in readiness to set again by the shore hands, who, unlike the boat workers, have regular working hours. In the winter, when the boats do not fish, these men are kept employed in making new nets or more carefully repairing the old ones. The shore hands may properly be called skilled labor, and experience gives them an amazing dexterity in handling netting.

The laborer usually is given a definite wage, except on Lake Erie, where the boats often fish "on shares." Where such an arrangement exists no wages are paid to the lake hands, but the catch of a boat is sold to the company-owning it and the proceeds are divided. The
owner gets about one-third and the remainder is prorated among the employees.

Excepting on the American shore of Lake Erie, and sometimes in the larger ports elsewhere, labor is not organized. On the American shore of Lake Erie the labor organizations are so powerful that in a measure they fix the minimum price per pound for their catches. Everywhere it is becoming increasingly difficult to obtain help. No new recruits are being added to replace those who die and the fluctuating supply of unskilled labor can not be used.

\section*{PRODUCTS}

Most of the fish are sold fresh, when they are shipped in wooden boxes containing 100 to 150 pounds of fish well packed in ice. The express companies require adequate ice packing and charge one-fourth the weight of the fish extra for the ice, however much or little it may weigh. The fish are sorted and packed by one or two men who do nothing else, and are shipped according to the instructions of the manager.

Some of the fish companies have a retail trade (which, however, never assumes the proportions which the furnishing of fresh fish at cheap prices should), but most of the products are sold to distributors. Large producers or wholesalers on the Lakes maintain freezers, in which their catches are frozen and kept until market conditions are favorable. Except for the chubs and some Lake Erie herring, which are smoked, and sometimes the herring from other lakes, which are often salted, the bulk of the fish is put on the market in a fresh state. All of the fish are dressed as soon as caught, excepting those intended for the Jewish trade in the New York markets. Whitefish, walleyed pike, carp, and suckers are the chief support of this trade and are mainly taken in pound and trap nets. The salted and smoked fish are prepared chiefly for the consumption of the foreign-born population, but the latter product is also widely esteemed by the native population where its qualities are known. Unlike the ocean herring, these lake fish are salted lightly and are smoked over a fire which cooks them at the same time. Thus prepared the product is perishable and must be disposed of within a week or two.

A small quantity of oil is rendered from the fish offal at a few of the ports, but for the most part the offal, though abundant and rich in oil, is destroyed because there are so many difficulties in the way of converting it into a marketable product. Latterly the practice of making caviar out of whitefish and herring roe to take the place of sturgeon caviar, which is becoming rare, has spread to various ports, but the production has not yet become significant.

The principal species in the Great Lakes, as given by the Bureau of Fisheries' census for American waters for the year 1922, given in order of magnitude of the catch, are ciscoes (herring and chubs), blue pike, lake trout, carp, sauger suckers, yellow perch, whitefish, yellow pike, and sheepshead. Species of minor importance include catfish and bullheads, lawyer, eel, white bass, Menominee whitefish, pike, bowfin, rock bass, sturgeon, and sunfish. The Canadian statistics for 1922 do not separate the species in so much detail. The principal species listed in order of abundance on the Canadian shore are herring, trout, blue pike, whitefish, "coarse fish" (including every species
not enumerated), yellow perch, yellow pike, pike, and carp. Species of minor importance are sturgeon, eel, catfish, and chubs. The relative importance of the species varies from census to census, and the production of the Lakes is by no means equal, nor is the proportion of the species the same for each lake.

In the succeeding sections are given a historical résumé and a statement of present conditions for each of the Great Lakes.

\section*{LAKE MICHIGAN}

\section*{DESCRIPTION}

Lake Michigan is the only one of the Great Lakes that lies wholly within American jurisdiction. On the north and east its waters are controlled by the State of Michigan, on the west by Wisconsin and Illinois, and at the extreme south by Indiana. The lake is about 325 miles long, with an average width of 65 miles and an area of about 22,000 square miles. In the lake bottom are two basins-one at each end-separated in the center by an uneven stretch about 60 miles in length, which bears several well-defined though uncharted reefs. From the south the bottom slopes very gradually (at the rate of 1 or 2 fathoms to a mile) into a basin with a maximum recorded depth of 97 fathoms. In this depression a somewhat circular area, about 40 miles in diameter, is inclosed by the 60 -fathom contour. The rise to the elevation in the center is rather abrupt and begins about 100 miles from the southern shore. The most extensive depression extends for about 100 miles in the northern half of the lake and is overlaid by 90 to 144 fathoms of water. The 90 -fathom contour roughly outlines a triangle, with the apex pointing north. For about 50 miles the figure has an average width of 30 miles and then tapers rapidly. So far as is known this area is virtually a desert. The rest of the northern sector is dotted with islands and reefs, with conspicuous depressions between. Green Bay, with an approximate area of 1,700 square miles and a maximum depth of about 20 fathoms, and Grand Traverse Bay, with an area of about 300 square miles and a maximum depth of more than 100 fathoms, are the only extensive bays, and both lie near the north end. The bottom along the shore is largely sand, but there are stretches of clay and, in the north, of rock. The deeper waters overlie clay for the most part.

\section*{FISHING INDUSTRY}

\section*{HISTORY}

The exact date when fishing operations began on Lake Michigan is not known, but it was without doubt coincident with the founding of settlements along its shores. On account of the proximity of good markets the fisheries resources have been exploited to the limit from the earliest times, and the lake has been exceeded only by Lake Erie in productiveness and amount of capital invested. The industry was originally prosecuted with seines and later with gill nets. Pounds were not used much before 1860, and they have never been used very extensively except in the bays and around the islands in the northern sector of the lake. The principal fishing at first was for the whitefish, but trout became increasingly important after 1880, and even before 1870 other species (principally herring in Green Bay) were significant in the fisheries. The sturgeon was originally discarded, but by 1880 it had found a market and had risen to second place in abundance.

The whitefish and sturgeon, although extremely abundant at first, soon decreased because of wasteful fishing methods and the pollution of shores by sawdust, fish offal, etc., and the gill-net fisheries were carried into deeper water, where chiefly trout were caught. A few boats also fished with hooks for trout on the west shore as early as 1870, but the method decreased in effectiveness as the trout supply fell off, and not until about 1900, with the perfection of a new technique, did hook fishing begin to assume an important rôle in fishing methods.

The predilection for smoked fish of the Teutonic peoples who settled abundantly along the shores soon gave rise to another industry. About 1880, out of Milwaukee, a fisherman began bringing ashore the deep-water herring that became snarled in abundance in his trout nets, and finding them suitable for smoking on account of their rich flesh, he began to fish nets of 3 -inch mesh for them. During the nineties this method of fishing spread to almost all the ports on the lake where gill nets were used, and the maximum annual output probably approached \(10,000,000\) pounds. These fish have decreased decidedly in abundance, and where previously boats fished for nothing else, now all boats use small-meshed nets only when it is most profitable. With the decrease of the whitefish and sturgeon from the shores the pound nets depended chiefly on suckers, perch, and other "rough fish," and latterly pounds have given place, as elsewhere, to the less expensive trap net as a means of taking such fish.

The quality of the production has varied with the change in apparatus, but since these changes did not affect the entire lake at the same time, but rather were instituted in different sections as conditions demanded them, statistics, unless they be very detailed, can not be expected to reflect their effects. The nine censuses made by the Federal Government do not give the required details, but they show in a very general way what the trend has been. In Table 1 is given the relative abundance of the principal commercial species for the nine years when censuses were taken. The interesting features of the table are the decline of the sturgeon to insignificance after 1890, the increase in importance of the trout after 1880, and the immense increase in the importance of the chub fisheries and the improvement in whitefish production between 1899 and 1922.

Table 1.-Rclative abundance as shown by the weight, in pounds, of the annual catch of the principal commercial species of fish of Lake Michigan, as shown by various censuses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Specics & 1880 & 1885 & 1890 & 1893 & 1899 & 1903 & 1908 & 1917 & 1922 \\
\hline Whitefish_ & 12,030, 000 & 8, 682, 000 & 5, 455, 000 & 2,330,000 & 1,510,000 & 1,972,000 & 2,490, 000 & 3, 047, 000 & 1,547,000 \\
\hline Sturgeon. & 3,839, 000 & 1, 406, 000 & 946, 000 & 311, 000 & 108, 000 & 56,000 & 70,000 & \({ }^{1} 10,000\) & 9,000 \\
\hline Herring and chubs \({ }^{2}\) & 3, 050,00 & 3, 312, 000 & 6, 082, 000 & \(13,279,000\) & 22, 072,000 & 14, 684, 000 & 21, 842, 0 & 18, 259, 00 & 6, 810,000 \\
\hline Trout-.......- & 2, 659,000 & 6, 431, 000 & 8, 364, 000 & 8, 216,000 & 5, 488, 000 & 9, 049, 000 & 7, 892,000 & 8, 650, 000 & 8, 735, 000 \\
\hline \[
\begin{aligned}
& \text { Perch } \\
& \text { cluding } \\
& \text { some white }
\end{aligned}
\] & & & & & & & & & \\
\hline bass) -...... & (8) & (8) & 1,943,000 & 3, 451,000 & 3,077,000 & 3,313,000 & 3, 256, 000 & 2, 362,000 & 1, 244, 000 \\
\hline Suckers... & (3) & (3) & 1,800, 000 & 1,690,000 & 1,043,000 & 2, 917,000 & 2,510,000 & 2, 118, 000 & 1,519,000 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Closed season on sturgeon in Wisconsin.
\({ }^{2}\) After 1885 the catches are in large part chubs.
\({ }^{8}\) Not itemized.
}

\section*{PRESENT STATUS, METHODS, AND APPARATUS}

There were engaged in the fishing industry on Lake Michigan, according to the census of 1922,87 steam tugs, with a total tonnage of 1,709 , and 269 other vessels, with a tonnage of 2,442 , equipped with 35,930 gill nets. There were, in addition, rowboats and small power boats which used 704 pound and trap nets and 10,453 gill nets besides fyke nets and seines. The number of vessels and boats was reported to have been greater only in 1893, but the amount of apparatus employed was the least on record since 1890, and the total production was the smallest on record.

Most of the boats are engaged in gill netting for trout, whitefish, and chubs, though in late years the markets for chubs have become so unstable on account of the increased use of Lake Erie herring for smoking, and the supply so uncertain, that few boats fish for chubs exclusively but many have gangs of both kinds of nets.

Many vessels, particularly on the Wisconsin shore, fish hooks for trout only. The effectiveness of this method, when properly employed, and the relatively small cost of operation have maintained its popularity. In 1917 a number of the hook tugs migrated to the waters of Lakes Huron and Superior for part of the season, a practice which has become more common as the trout supply in Lake Michigan has fallen below that of the other lakes. Those tugs that can make their way through the ice frequently fish all winter.

Pound nets and trap nets are scattered here and there all along the shores, but they are used most in the northern end of the lake, in Green Bay and Grand Traverse Bay and in the sector north of those regions. The catches are principally "rough fish," but many herring and whitefish are taken also in certain localities. Trap nets are now far more numerous than pound nets.

\section*{FISHING DISTRICTS}

The principal gill-net centers are on the Michigan shore at Manistique, Charlevoix, Northport, St. James, Frankfort, Ludington, Grand Haven, and St. Joseph; on the Indiana shore at Michigan City; on the Illinois shore at Waukegan; and on the Wisconsin shore at Racine, Milwaukee, Port Washington, Sheboygan, Manitowoc, Kewaunee, Sturgeon Bay, Washington Harbor, and Marinette. Practically all the pound and trap nets licensed on the lake are employed in the north from Green Bay to Grand Traverse Bay. The boats engaged in this fishery are for the most part small launches, and as these can find shelter in any of the bays and harbors they are not assembled at any particular point, as is the case with large gill-net boats.

\section*{PRINCIPAL SPECIES}

The Federal census of 1922 indicates that, listed in the order of magnitude of the catch, lake trout, chubs and herring, whitefish, sucker, and yellow perch constitute the principal species taken in the lake. The total number of pounds of each of these species caught in 1922 is shown in Table 1.

\section*{LAKE TROUT}

Since 1885 Lake Michigan has produced more trout than all the other Great Lakes together. Trout support the fisheries with large-meshed gill nets and are still caught out of almost all ports, but the principal catches are made in the northern end of the lake around the islands and on the reefs, on the reefs off the Wisconsin shore, and in the southern basin. The southern trout, which are taken chiefly by Milwaukee, Racine, and Grand Haven tugs, live and spawn on clay at depths of 40 to 60 fathoms. The northern trout are shoal forms and spawn off the shores on rock bottom. There are no deep-water trout known in the north. The principal mode of capture is by means of gill nets, though hooks are used out of almost every port, but most commonly on the Wisconsin shore.

Trout were little esteemed as long as whitefish were plentiful, and relatively few were caught. In 1890, however, the catch of trout was greater than that of any other species, but since then it has been exceeded in abundance by herring and chubs in every census except that of 1922. The species is apparently maintaining itself and is in no danger of extermination, though it is by no means as abundant as formerly. It is only nominally protected by a closed season, since both Wisconsin and Michigan, within the jurisdiction of which States the spawning grounds lie, permit fishing if the spawn be saved. Trout are extensively propagated by both the Federal and State Governments.

\section*{CHUBS}

In all Federal statistics the "chubs" have been grouped with the lake herring-a fish by no means equal to them in value or importance except in Lake Erie-under the name " cisco," and since little has been published pertaining to these fish, a short general account may be of service to those who may wish to understand the general scope of the fisheries.

There are in Lake Michigan sev^n species of deep-water herring, three of them until recently unknown to science, which are known to the trade and to the majority of the Lake "Michigan fishermen as "chubs." The fishermen also call them "longjaws," "bluefins," (abbreviated to "jaws" and "fins"), "mooneyes," and "kiyis". All these names are used locally in varying senses and are not applied to the same fish by fishermen in different parts of the lake, but wherever any of these colloquial names are current any one of them may be used to designate a catch containing the seven species. All seven are fat, herringlike fish. They differ from one another in their choice of habitat, but all inhabit the deeper waters of the lake. Each ranges during the year over a rather broad, vertical zone, and the habitat zones of all the species overlap more or less at all times, so that in most large catches of chubs, at least, a few individuals of all seven species are taken, except when the nets are set on the spawning grounds of any one of the species, and in that case only the spawning species is taken. Usually, however, one or two species constitute the bulk of any large catch. The proportion of the various species varies at the different ports and also with the season at the same port.

Chubs are caught almost solely in gill nets, which in the waters of the State of Michigan are of \(23 / 4\)-inch mesh and in the waters of other States are of \(21 / 2\)-inch mesh. The chub nets are fished on the bottom
U. S. B. F. Doc. 1001

Fig. 6.-Steclhead trout taken in Lake Michigan in June, 1909. Weight, 17 pounds. Steelheads have been introduced into the Great Lakes


\footnotetext{
Fuc, s--Lake trout. The specimen shown weighed 5fi pounds
and was taken in Lake Michigan in the catch of a gang of trout hooks.
Lakes
}

iti. 7.-Sturgeon. This huge specimen of an al-
most exterminated species was captured in Lake most exterm June 29, 1922, and weighed 310 pounds. Its length may be judged from eomparison with a 6 -foot man. Specimens of such size linve
seldom been taken in the Great Lakes
as a rule between 35 and 70 fathoms, the depth usually depending on the behavior of the species which is predominant in the catches.

As each species exhibits peculiarities in the selection of a habitat, so each has a definite spawning behavior, and no two species are known to spawn on the same grounds. The spawning grounds for one species may be in water as shallow as 50 to 60 feet, and for another as deep as 300 to 350 feet, and as for the time of spawning, the eggs of one species or another are deposited during some part of every month in the year except June and July. Some spawning grounds of each of the species are known, and the fish are taken abundantly while they are spawning.

At present the greatest quantity of chubs is taken along the Wisconsin shore, especially from Manitowoc southward. This productive area extends around the lake as far north as Grand Haven on the east shore. Some chubs are caught all along the shores of the lake except in Green Bay, where the water is too shallow, but northward from Manitowoc and Grand Haven the ledge along the shore becomes narrower and the species of chubs fewer, until in the northern end of the lake the industry is supported solely by one or two species, compared with five or six in the more hospitable southern end.

As far as can be learned, chubs were first taken about 1869 in Grand Traverse Bay out of Northport. These fish were caught only in November, when they were spawning along the shores, and \(33 / 4\)-inch nets were used. They were salted and sold to wholesale grocers along with whitefish and other species. About 1883 chubs were taken out of Racine in 3 -inch and \(27 / 8\)-inch nets and about 1885 they were caught out of Milwaukee in nets with a 3 -inch mesh. By 1885 they were also being produced out of other ports on the west and east shores of the lake, but only at certain seasons and in limited quantities to meet the demand for salt fish and cheap fresh fish.

The market for such products at that time was not large, and not until they came into demand for smoking were chubs extensively caught. Trout and whitefish had long been prepared smoked, but C. H. Fischer, of Milwaukee, is credited with having first introduced smoked chubs. About 1885 the smoked product had become so popular that it was shipped to various large cities of the middle west and many of the fishermen took to chub fishing. By 1891 chubs were being caught regularly from Sheboygan to St. Joseph, and the supply for a time exceeded the demand. During the nineties, however, there was a sharp decline in the abundance of these fish at ports where they had been taken for several years, and nets of \(23 / 4\) inches were substituted for larger mesh. Since in general the larger fish were in better demand, persons who had begun late to fish for chubs used the largest possible mesh at first.

By 1900 chub fishing had become an industry at most of the ports on the lake, but by 1910 chubs had so declined in numbers that the Wisconsin boats reduced the mesh of the chub nets to \(21 / 2\) inches. Their example was followed later by vessels from Illinois and Indiana, but Michigan fisherman have never been allowed to use a net of smaller mesh than \(23 / 4\) inches. In these small-meshed nets there were now taken in abundance three species of smaller chubs, of which only the largest individuals were ever gilled in the \(23 / 4\)-inch nets
previously in use, and the chub-fishing industry for a time flourished as never before.

Chubs have latterly again become scarce, and in the summer of 1920 chub fishing had to be discontinued out of many ports. Since then the catches have been larger, but any increase can be only temporary. One of the species-the blackfin-has already become commercially extinct, and the longjaw, which is the principal species off Charlevoix, is conceded to be much reduced in numbers. None of the species has ever been protected anywhere and no serious effort to propagate them has ever been made.

Trout fishermen in general are opposed to chub fishing because small trout are caught in the chub nets. The percentage of small trout taken is often high, it is true, but it has not yet been ascertained that small trout are present throughout the area frequented by the various species of chubs, and it seems not improbable that when the behavior of the former is better known the use of chub nets may be so regulated that the capture of undersized trout will be reduced to a minimum.

\section*{HERRING}

The most important herring fisheries are located in Green Bay, where they are taken by means of gill nets and pounds chiefly in the fall, when they come ashore to spawn. Some are also taken in the deepest waters of the bay by gill nets in summer and are known then as bluefins. In fall they are either salted or sold fresh. Some are taken for market at points along the lake shore, but the quantity is relatively insignificant. The price paid is so low (in the past not more than 1 to 3 cents per pound) that unless the fish can be taken abundantly and easily it is not worth the effort to fish for them. They are nowhere protected by a closed season, and none are propagated.

\section*{WHITEFISH}

From first place in the fisheries of Lake Michigan in 1880, the whitefish now ranks third in quantity and is produced from areas that were least exploited in 1880. Practically the entire yield is taken in pound nets and gill nets around the islands of Michigan at the north end of the lake. Over most of the lake where this fish was once abundant it is now scarce. The causes of depletion have been pointed out by every investigator and are those factors which will eventually eliminate the species elsewhere-wasteful and extravagant modes of fishing and pollution. As in the case of the trout, there is no effective closed season, but the species is extensively propagated.

\section*{YELLOW PERCH}

The yellow perch is taken chiefly by the gill nets and trap nets of the shore fishermen. Most of the catch now comes from the Green Bay region, though some of it is produced out of almost every other port. Formerly they were much more abundant, according to the fishermen, and in many localities they have become commercially unimportant. Except in Wisconsin, where they are protected from April 15 to May 20, there is no closed season for perch. Some are propagated.

\section*{SUCKERS}

Suckers ranked fourth in quantity among the fish of this lake in 1922, and though they have maintained their relative position in the fishery, as shown by previous censuses, the fishermen generally concede that they are less abundant than formerly. They are caught chiefly in traps, but also to some extent in gill nets. The white sucker is the principal species marketed, though the sturgeon-nose is sold to a greater extent here than in any of the other upper-lake regions. A few suckers are taken everywhere, but the bulk of the catch originates in Green Bay, with the next largest quantity from Grand Traverse Bay. Most of the catch is now sold fresh, but in 1885 it was chiefly salted. There is no closed season for suckers and none are propagated.

\section*{STURGEON}

The sturgeon is now practically exterminated and claims mention only because of the important position it once held in the fisheries. Prior to about 1875 these fish were either drawn onto the beaches or else fatally wounded and released in the lake when taken in the pound nets, and immense numbers are said to have been destroyed in this way. By 1880 sturgeon had a market value, and the catch of this species on the lake in that year amounted to nearly \(4,000,000\) pounds. In 1890 the output had fallen to less than \(1,000,000\) pounds, and thereafter the decline was rapid. Except in Wisconsin, where there has been a closed season since 1915, sturgeon may still be taken at any time, and in certain waters there are not even size limits to protect the immature. No sturgeon are propagated.

\section*{OTHER INDIGENOUS SPECIES}

All the species of fish native to the basin occur in Lake Michigan and are marketed. In 1922 there were taken more than \(1,000,000\) pounds of fish other than those mentioned above, most of which were produced in Green Bay.

\section*{INTRODUCED SPECIES}

\section*{CARP}

The carp has gained a foothold in Lake Michigan and is to be found almost everywhere. It is important in the fisheries only in Green Bay, where 742,000 pounds were marketed in 1922.

\section*{STEELHEAD TROUT}

The steelhead is likewise established in the lake and spawns - abundantly in several of the larger streams emptying into it, and probably also on the beaches. It is important in the commercial fisheries along the Indiana shore only, but there are ports on other shores where it could be taken in commercial quantities if the law permitted.

The smelt has been planted several times in inland lakes of Michigan, notably Torch and Crystal Lakes in the lower peninsula and in Trout and Howe Lakes in Marquette County in the upper peninsula. It is now known to be well established in all of these lakes except Torch. It has also escaped into Lake Michigan and is apparently spreading there at a rapid rate. In what numbers it occurs is not known, but specimens have been taken off Frankfort and in Grand Traverse Bay off Northport and even across the lake in Big Bay de Noc and at Manistique.

The introduction of the smelt into the Great Lakes must be deplored since its presence there can not serve any useful purpose and there is some reason to believe that it is a menace to native species now commercially important. It has been argued that the smelt is itself a valuable food fish and that it serves as food for trout. In reply it may be said that there is difficulty at present in finding a market for species quite or almost as delectable as the smelt, and that if the lake originally supported a trout population many times the size of the present one it is probably capable of taking care of the few remaining individuals, especially since none of those now taken show any evidence of undernourishment. Furthermore, even if the species should become marketable, the nets required to capture fish as small as the smelt would most probably be destructive to the young of the native species. On the other hand, Carl L. Hubbs and J. Metzelaar, of the University of Michigan, who recently completed an analysis of the stomach contents of smelt collected in Crystal Lake during August and September, 1923, found that the present food of the smelt consists almost exclusively of the pelagic minnow Notropis atherinoides. If in Lake Michigan the smelt preys upon the small whitefish and trout that are at first pelagic, its introduction must have important consequences. We have already accumulated so much experience from the introduction of foreign species of vertebrates that it would seem unnecessary to caution against a continuation of the practice, and it is to be hoped that no organization will in the future assume the responsibility of the importation of any uncontrollable nonindigenous animal.

\section*{FISHING REGULATIONS}

\section*{APPARATUS}

Gill nets.-The States of Michigan and Illinois do not permit the use of nets with a mesh smaller than \(41 / 2\) inches for taking trout and whitefish. Wisconsin and Indiana allow a 4 -inch mesh. For the capture of chubs the State of Michigan allows nothing less than \(23 / 4\)-inch mesh. Other States allow a \(21 / 2\)-inch minimum, and the law of Wisconsin provides that nothing larger than \(23 / 4\)-inch may be used. Formerly a \(31 / 2\)-inch net was allowed for bluefins but was employed largely to take young trout. Fish other than chubs may be taken in Indiana with nets having a minimum mesh of \(21 / 4\) inches; in Wisconsin and Illinois \(21 / 2\) inches in the minimum size; in Michigan they may be taken only with \(23 / 4\)-inch nets, except that \(21 / 2\)-inch mesh may be used for herring from November 1 to December 15 , or at any time if set not more than 2 fathoms below
the surface in waters of not less than 10 fathoms depth. Wisconsin has special laws for Green Bay, effective since January 1, 1925, which differ from those in force on Lake Michigan in that the minimum mesh for general use shall be \(23 / 8\) inches, but that \(21 / 8\)-inch nets may be used to catch herring from December 1 until the ice goes out. In Wisconsin nets used for catching bait for the trout hooks are of \(13 / 8^{-}\) inch mesh, and in Indiana and Michigan they measure \(11 / 2\) to 2 inches.

Seines.-In Wisconsin seines may have a mesh of not less than 3 inches, in Illinois not less than 5 inches, and in Michigan not less than 4 inches in the wings and \(21 / 4\) inches in the bag. The length of seines is restricted to 1,000 yards in Illinois, and their use is prohibited from April 15 to July 31, inclusive. Michigan laws prohibit the seining of whitefish and trout, but Indiana has no laws regulating seining in Lake Michigan.

Pounds and traps.-A pound or trap in Wisconsin may not have a pot of mesh larger than 2 inches; in Illinois the pot mesh may not measure less than \(41 / 2\) inches for trout and whitefish or less than \(21 / 2\) inches for other species; in Indiana the mesh of the back may not be smaller than 2 inches, as manufactured, and of the rest of the pot not smaller than \(2 \frac{1}{2}\) inches. In Michigan pound-net pots for whitefish and trout may not have a back of net measuring more than 2 inches, as manufactured, for at least 15 feet below the surface of the water, and not less than \(31 / 2\) inches on the bottom and sides, as used; or, if the mesh of the pot does not measure less than 4 inches, as fished, the net need not have a small-meshed back. For use in taking other fish Michigan laws further provide for a pound with a pot having a back made of mesh no larger than 2 inches and sides and bottom not less than \(21 / 4\) inches. For the taking of herring alone between the dates of October 1 and June 15, a pound, the pot of which is constructed of netting with a mesh of not less than 2 inches thoughout, as manufactured, may be used where such nets do not take immature whitefish and trout as well.

\section*{SIZE LIMITS}

Indiana does not limit the size of any Great Lakes species taken except wall-eyed pike, which may not be less than 12 inches long. Wisconsin has established the minimum legal size of trout as 12 inches; of whitefish, 13 inches; suckers, 12 inches; perch, 7 inches; wall-eyed pike, 16 inches; catfish, 20 inches; buffalofish, 18 inches; and all others, 8 inches. In Illinois a minimum weight of \(11 / 4\) pounds, dressed, obtains for trout and whitefish; a minimum length of 15 inches for buffalofish; 8 inches for bullheads; 10 inches for white bass; 7 inches for perch; and 13 inches for catfish. Pike and walleyed pike may not be taken in nets in the Illinois waters of Lake Michigan. The minima provided by Michigan laws are as follows: Trout, \(11 / 2\) pounds round or \(11 / 4\) pounds dressed; whitefish, 2 pounds round or 1 pound 10 ounces dressed; sturgeon, 20 pounds round; suckers, 1 pound round; wall-eyed pike, \(11 / 4\) pounds round; catfish and pike, 2 pounds round; bullheads, 8 ounces; perch, 9 inches.

\section*{CLOSED SEASONS}

Indiana has no closed season for the Great Lakes. Wisconsin provides a closed season for trout from October 15 to November 21; for whitefish from October 15 to December 1; pike and wall-eyed
pike, March 10 to May 1; and all others, except trout, whitefish, suckers, carp, and herring, from April 15 to May 20, inclusive. There is a closed season on sturgeon at all times in Wisconsin. Illinois prohibits fishing for trout and whitefish from November 1 to December 1, inclusive, while Michigan provides a closed season for trout from October 10 to November 4, inclusive, and for whitefish from November 20 to December 15, inclusive. Wisconsin and Michigan permit net fishing during a closed season if the spawn be saved, impregnated, and delivered to the proper authorities.

\section*{LAKE SUPERIOR}

\section*{DESCRIPTION}

Lake Superior lies at the head of the Great Lakes and is the largest, deepest, and coldest of the chain. It receives the waters of Lake Nipigon to the northward and drains through St. Marys River into the North Channel. The lake is broadly crescentic in shape, with a length of about 355 miles and a width on the western half of about 70 miles and on the eastern half of 90 to 110 miles. Its area is about 32,000 square miles. The main body of the lake is more than 100 fathoms in depth, and a sounding of 196 fathoms has been recorded. The shore on the outer curve of the crescent is precipitous, and at many points a 100 -fathom depth can be reached within 2 miles of land. The bottom slopes more gradually from the southern shore, and the 50 -fathom contour is on the average about 5 or 6 miles out. There are several bays and a number of large islands in the lake, in and around which conditions are more tempered than in the lake itself. These areas, however, are relatively insignificant, and the only important stretches of shallow water lie in the Apostle Islands region, Whitefish Bay, and in the bay region on the north shore. The shores are rocky for the most part, except on the south, where there are broad stretches of sand, gravel, and clay. Most of the bottom in the deeper parts is clay.

\section*{FISHING INDUSTRY}

\section*{HISTORY}

The fishery resources of Lake Superior were the last to be tapped, though the earliest explorers had some idea as to their wealth. As the other lakes began to show signs of depletion, these remoter areas were investigated in order to meet the demand for fish. The opening of the interior lakes of Canada is but another and the last step in this movement.

As elsewhere, the whitefish was the principal species sought and a pound-net fishery to take them was cstablished at the head of Whitefish Bay at Whitefish Point about 1860. From thence the fisheries spread westward, and less than 10 years later fishing operations were begun on the Canadian side. The Canadian fishing grounds have never been so extensively exploited, and when about 1890 production fell off on the American shore much American capital
was transferred to the other side. A considerable percentage of the money invested in the Canadian fisheries at present is American.

Seines were largely used on the southern shore in the earliest fisheries, but to a less extent elsewhere because the bottom does not favor their use over most of the Minnesota and Canadian shores. Pound nets were never so important in the fisheries of Superior as in those of the southern lakes because of unfavorable bottom conditions, and such as were used were located chiefly in the bays and around the islands. Latterly their use has markedly declined on the American shore, to be replaced sixfold by the less expensive and more conveniently operated traps. There are a great many more pound nets in use now than there were in the nineties, and most of them are employed on the Canadian shore.

The principal fishing gear in use everywhere has been the gill net. The first gill nets were set along shore for whitefish and trout, and except on the Canadian shore the size of the mesh was not very effectively regulated until after 1913. After 1890 the use of nets for trout was supplemented on the west shore by hooks, which were baited with pieces of fish. In recent years the whole-bait method has been most commonly employed, having received impetus from the success achieved with it in Lake Michigan. Lake Michigan fishermen have during recent years migrated to Lake Superior as far west as Marquette to fish hooks, but their operations have been much hampered by the difficulty of finding bait in Lake Superior with the \(11 / 2\)-inch nets. When the shore species became less abundant the nets were shifted deeper and the deep-water trout or ciscowets for a while supported the industry. The large-meshed nets are at present fished chiefly inside 60 fathoms.

About 1899, with the growing demand for fish by the smoked-fish trade, a fishery for bluefins at depths of 60 to 100 fathoms arose and was prosecuted with exceptional vigor out of Grand Marais, Marquette, Ontonagon, and Bayfield on the south shore and to less extent in a few other places, chiefly on the American side of the lake. The nets used were of 3 to \(31 / 2\) inch mesh. After about six years the supply declined sharply. Fishing with the small-meshed nets was continued more or less actively out of some of the ports along the southern shore until about 1915, but the bluefins became rarer and rarer and only the inclusion of large quantities of small ciscowets in these nets made their use profitable. At present none are employed anywhere.

Chub fishing has been carried on at intervals and for short periods only at several ports, chiefly American, and though these fish are abundant they find no favor in the Chicago markets and most of those caught are consumed locally.

The catching of herring in November has become an increasingly important industry since 1900, and at present these fish are extensively taken around the Apostle Islands and in Thunder Bay. A few are also taken along the Minnesota shore, at Isle Royale, and at Marquette.

The history of production has been about the same on both sides of the boundary. In Tables 2 and 3 are given itemized accounts of the catches of the principal species over a period of years.

Table 2.-Relative abundance of the principal species, as shown by the weight, in pounds, of the annual catch of the principal species in the American waters of Lake Superior, as shown by nine censuses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & 1880 & 1885 & 1890 & 1893 & 1899 & 1903 & 1908 & 1917 & 1922 \\
\hline Whitefish & 2, 257, 000 & 4, 571, 000 & 3, 213,000 & 2, 732,000 & 693, 000 & 794, 000 & 910, 000 & 302, 000 & 380, 000 \\
\hline Trout & 1, 464, 000 & \(3,488,000\) & 2, 613, 000 & 4, 342, 000 & 3, 118, 000 & 4, 954, 000 & 2, 752, 000 & 2, 588, 000 & 2, 833, 000 \\
\hline Herring & 34, 000 & 324,000 & 199, 000 & 660, 000 & I, 125,000 & 4, 742, 000 & 5, 360, 000 & 12, 258, 000 & 7, 394, 000 \\
\hline Sturgeon & & 182, 000 & 47, 000 & 62,000 & 4,000 & 13,000 & 67,000 & & \\
\hline Suckers & & & & 118, 000 & 11, 000 & 183, 000 & 290, 000 & 342, 000 & 296, 000 \\
\hline Bluefins, including chubs & & & & 36,000 & 435, 000 & \[
2,385,000
\] & & & \\
\hline All other species... & 60,000 & 258,000 & 42,000 & 144, 000 & 41, 000 & 131, 000 & \({ }^{1} 587,000\) & \[
56,000
\] & 83,000 \\
\hline
\end{tabular}
\({ }^{1}\) Probably includes fish from inland waters.
Table 3.-Relative abundance of the principal species, as shown by the weight, in pounds, of the annual catch, and the amount of apparatus employed in the Canadian waters of Lake Superior, as shown by 10 censuses. (From 1895 on the catches of a few inland lakes are included, but the statistics of Lake Nipigon have been subtracted wherever they appeared)


In considering these statistics it must be borne in mind that the production has varied from year to year in different sections of the lake, and that the figures given for the entire lake do not reflect this variation. In the Canadian waters of the lake these local fluctuations have been especially great, since the fishing districts have never been as crowded as on the American side, and when old grounds were exhausted the gear was simply moved to new ones. The abolition by Canada of the closed season, since the war, which has made possible the capture of trout and whitefish over a longer period each year, has also helped to increase the catch in recent years.

Up to 1890 whitefish constituted the most important element in the catches in American waters and usually the most important in Canadian waters, but after that date trout occupied first position and the catches of whitefish dwindled. On the American side herring grow in favor from about 1900, and since 1908 have exceeded the output of trout. They did not become significant in the Canadian yield until 1910, and then for several years crowded the trout out of first place in abundance.

Sturgeon and other shore species have never been abundant anywhere. Of these shore forms the wall-eyed pike has always been in demand, and since 1903 on the American side and about 1913 on the Canadian side the production of suckers has increased. The amount of apparatus used on the Canadian shore has declined since 1915, while the statistics for 1922 showed an increase over previous censuses in the number of traps and pounds used on the American side but a decrease in the number of gill nets employed.

\section*{PRESENT STATUS, METHODS, AND APPARATUS}

There are at present less than a dozen tugs engaged in fishing on the American side of Lake Superior, but there are a number of smaller vessels at various ports. Usually one or two hook tugs from Lake Michigan operate out of ports as far west as Marquette during the spring months. A few local boats also fish hooks, but none of them do so throughout the season, as is the case on Lakes Michigan and Huron, for the reason probably that the small fish needed for bait are scarce and can not always be had.

Most of the boats fish gill nets, and trout is the principal species sought. The nets are usually set in less than 60 fathoms, and at present few ciscowets or fat trout are taken. Small-meshed nets are used in November for herring where these occur in commercial quantities, and at certain ports this fishery is very important. The chubs spawn at about the same time, and a few lifts of these may also be taken.

In addition to these larger craft there are a considerable number of smaller ones that fish gill nets near the shores and operate trap nets and pound nets. The catches of most of these consist principally of rough fish, but they also take whitefish and trout and supply the local demand for herring and chubs.

There are still fewer large boats engaged in fishing on the Canadian shore, though there are several that transport fish or combine fishing with transporting. Gill nets are the chief apparatus employed, and trout are mainly caught. The best ciscowet grounds in the lake lie off the eastern shore, and ciscowets are an important item in the fisheries out of Port Coldwell.

All trout spawn in the early fall in Lake Superior, and the fishing season is over by November, but all the gill-net boats that conveniently can fish herring in Thunder Bay during that month. In recent years the use of pound nets in the bays of the north and east shores has increased, and in 1922 there were 53 such nets. They produce most of the whitefish and rough fish taken on that shore.

Hook fishing is insignificant in the Canadian waters, and in winter practically all fishing operations are suspended on both sides of the boundary.

\section*{FISHING DISTRICTS}

The most important fishing centers on Lake Superior are Sault Ste. Marie, Grand Marais, Munising, Marquette, Houghton, Ontonagon, Bayfield, and Duluth on the American shore, and Fort William, Port Arthur, Rossport, Port Coldwell, and Michipicoten Island on the Canadian side. There are also individual fishermen located in camps among the Apostle Islands, in villages on Isle Royale, and
along the Minnesota shore, whose fish are transported (in the case of the former) to Bayfield and (in case of the others) to Duluth. Across the boundary there are numerous fishing camps among the islands between Fort William and Rossport, from which the fish are collected by Fort William and Port Arthur boats; and several fishing settlements lie between Michipicoten River and Gros Cap, from whence the fish are carried to Sault Ste. Marie. The fish from these small fisheries form the greater part of the total production from the ports that receive them for distribution.

\section*{PRINCIPAL SPECIES}

In 1922 the principal species in the American waters, judged by weight of catch, were herring, trout, whitefish, and suckers; in Canadian waters the census of 1922 showed that trout, herring, whitefish, and wall-eyed pike were most important. Detailed statements of the catches of these species at the time of the various censuses are given in Tables 2 and 3 (p. 572).

\section*{LAKE TROUT}

The shoal trout is the most important species of Lake Superior. It supports the gill-net fishery out of every port and is the principal species taken in most of the pounds. A small percentage of the catch on the American side of the lake is taken by hooks.

There are several races of trout in the lake, not including the ciscowet, and some of them grow to large size, especially among the islands along the north shore. The ciscowet, which is a deep-water race, so fat that it may be called inedible, is now common only at points along the Minnesota shore of Lake Superior and the eastern shore of Ontario in depths of 60 fathoms or more. It supports a fishery during most of the season at Port Coldwell.

Trout are now less abundant than formerly, according to the testimony of the fishermen and as indicated by the census returns. On the American shore, census figures show that there has been a marked decrease since 1903. Though the registered amount of apparatus has been about the same during the period, the production given for each of the last three census years has been only a little over half of that recorded for 1903. In Canadian waters the fact that the amount of apparatus used is decreasing in the face of higher prices is a good indication of a decrease in abundance. There is no closed season on trout in Canadian waters and virtually none in Michigan and Wisconsin, since all fishermen are permitted to fish for spawn during that period. Minnesota has a closed season in November, but the fish usually spawn in October and the closed season has therefore no protective effect on the spawning fish. Trout are extensively propagated artificially.

\section*{WHITEFISH}

The whitefish is virtually extinct along the American shore from a commercial point of view and is present in appreciable numbers only around the Apostle Islands and in the vicinity of Whitefish Bay. The census of 1922 showed a catch of only 380,000 pounds, and this with about the greatest amount of equipment and highest prices in the


Fig. 9.-Fishing through the ice on Lake Superior. The nets are set through a series of holes chopped in the ice. Note that the catch is chiefly wall-eyed pike and whitefish


Fig. 10.-Lake Superior on May 7, 1923, still jammed with ice. Stannard Rock Light, ou the right, is one of the most interesting lighthouses on the Lakes, inasmuch as it is built on a submerged rock, \(2 x\) miles from land, and is surrounded by depths of 400 or 500 feet
history of the fishery. The catch of 1885 was over \(4,500,000\) pounds. This fish has disappeared to an alarming degree along the Canadian shore also, though the shifting of fishing apparatus, chiefly pound nets, to new districts has helped to maintain the output in the last 10 years. From about \(1,000,000\) in 1895, the catch has fallen to 300,000 pounds in 1922. Most of the whitefish now produced on the Canadian shore are from Black Bay, Nipigon Bay, and along the east shore of the lake, and they are taken in pound nets. The closed season is the same for whitefish as for trout. The laws of Minnesota with respect to closed seasons need not to be considered, as the State has no productive whitefish areas within its jurisdiction.

\section*{HERRING}

Until 1899 herring were taken chiefly for local consumption, but thereafter herring fishing became increasingly important. The war gave a decided impetus to production, particularly on the Canadian shore. The chief catches are made during the spawning season in November, and the most favorable spawning grounds are on the west end of the lake from the Apostle Islands to Thunder Bay. These two extremes have been the most productive areas. Fishermen with small equipment also fish for herring to some extent in summer with floated nets off the Minnesota shore and off Isle Royale.

The species never has been and is not now protected or propagated, and in one center of abundance-namely, around the Apostle Islandsit is generally conceded to be considerably less abundant now than formerly. In Thunder Bay herring have not been taken in sufficient quantities long enough to show any marked decrease, but the dumping of wheat screening on their spawning grounds is said to have affected the abundance in the last few years.

\section*{BLUEFIN AND CHUBS}

Bluefins were first caught in numbers about 1897, chiefly out of Ontonagon, but the industry did not become important until 1900. Nets of 3 to \(31 / 2\)-inch mesh were used, and the average size of the fish taken was \(11 / 2\) pounds. These fish were caught throughout the season on the bottom at depths of 60 to 100 fathoms, and were so abundant that for several years some boats fished for nothing else and lifts of 3 tons were not uncommon. The principal catches were made out of Ontonagon, Marquette, and Grand Marais on the Michigan shore, but they were also fished out of Bayfield, Wis., and Grand Marais, Minn., and to some extent along the Canadian shore, chiefly on Michipicoten Island. About 1907 the catch fell off sharply and bluefin fishing was gradually discontinued, until at present no one fishes for them anywhere and it is not known that they occur any longer in commercial quantities. At no time were any but the largest individuals taken, and it is therefore not clear as to how intensive fishing could have so abruptly reduced the supply. This species has disappeared in the same fashion in Lakes Michigan and Ontario, but still occurs abundantly in parts of Lake Huron.

Chubs are everywhere numerous but are not in demand. A few are caught every year somewhere along the American shore, chiefly for local use. Since there is only one generally distributed species of chub in the lake, and since the area suited to it is quite restricted, it is not likely that it could support an intensive fishery for long.

\section*{OTHER INDIGENOUS SPECIES}

Lake Superior contains few localities in which it is possible for the shore species to thrive, and except for the bays of the north shore, Whitefish Bay, and around the northern islands and the Apostle Islands there are no sheltered places. Consequently sturgeon were never abundant and the wall-eyed pike is confined to the areas mentioned. The sturgeon is almost extinct and the wall-eyed pike is of minor importance, particularly on the American shore. Suckers are also relatively scarce. They have been marketed on the American side for more than 30 years, but only in the last 10 years have they been brought to market from Canadian waters.

\section*{FISHING REGULATIONS}

Jurisdiction over Lake Superior is divided between Ontario, Minnesota, Wisconsin, and Michigan; Wisconsin controlling a geographically small, but very important section.

\section*{APPARATUS}

Gill nets.-Except for Wisconsin, which permits the use of a 4-inch gill net for taking whitefish and trout, the other governments allow nothing smaller than \(41 / 2\)-inch mesh. With respect to the capture of herring the laws vary. Minnesota permits \(23 / 8\)-inch netting to be used until such time as Wisconsin may declare a minimum of \(21 / 2^{-}\) inches. Wisconsin allows a \(23 / 8\)-inch mesh in November and December; Michigan \(21 / 2\)-inch from November 1 to December 15, or at any time if set not more than 2 fathoms below the surface in waters of not less than 10 fathoms; and Ontario \(21 / 2\)-inch, or \(21 / 4\)-inch if fished in less than 8 fathoms. Michigan permits \(11 / 2\) to 2 -inch nets, and Wisconsin \(13 / 8\)-inch nets for the purpose of taking bait for hooks.

Seines.-Seines in Wisconsin may be of not less than 3-inch mesh, and in Michigan of not less than 4 inches in the wings and \(2 \frac{1}{4}\). inches in the bag. No whitefish or trout may be taken with seines in Michigan waters. Ontario and Minnesota do not regulate the mesh of seines.

Traps and pounds.-For traps or pounds Minnesota has no regulations, since none are employed on that shore. Ontario prohibits traps but does not regulate the mesh of pound nets. Wisconsin states that the mesh of pound-net pots may not be larger than 2 inches. The Michigan pound-net law has been devised with more care, and the mesh of pound-net pots may not be smaller than \(31 / 2\) inches, as fished, with a back made of net no larger than 2 inches, as manufactured, for at least 15 feet below the surface of the water. The back may be constructed of any size mesh if 4 -inch netting is used elsewhere in the pot.

For the taking of herring, where not more than 10 per cent of the year's catch is of mature whitefish and trout, not less than \(21 / 4\)-inch mesh may be used in the pot and not larger than 2-inch mesh in the back. For the taking of herring alone, between the dates of October 1 and June 15, a pound with the pot of netting not smaller than 2 inches throughout, as manufactured, may be used where such nets do not take immature whitefish and trout.

\section*{SIZE LIMITS}

Wisconsin has no size limit for any species. Minnesota prohibits the taking of whitefish or trout less than 16 inches in length and wall-eyed pike smaller than 14 inches. The provincial law of Ontario prohibits the taking of whitefish under 2 pounds in the round, trout under 2 pounds in the round, herring under 6 ounces in the round, wall-eyed pike under 15 inches, perch under 9 inches, and sturgeon under 42 inches. The minima provided by Michigan laws are as follows: Trout, \(11 / 2\) pounds round or \(11 / 4\) pounds dressed; whitefish, 2 pounds round or 1 pound 10 ounces dressed; sturgeon 20 pounds round; sucker 1 pound round; wall-eyed pike \(11 / 2\) pounds round; pike 2 pounds round; bullheads 8 ounces; and perch, 9 inches.

CLOSED SEASONS
Minnesota prohibits the taking of trout during November. Wisconsin prohibits the capture of trout and whitefish during October. Michigan protects trout from October 10 to November 4 and whitefish from November 20 to December 15, but issues permits to fish for spawn. Ontario has no closed season.

The protective legislation is so variable that somewhere and at some time it must miss its purpose. There is no protection for herring, though Minnesota has signified a willingness to prohibit the capture of herring during November, when the species spawns, if Wisconsin will enact a similar law. The taking of chubs is prohibited only in Minnesota, where they are protected when spawning in November.

\section*{LAKE HURON}

\section*{DESCRIPTION}

Lake Huron is situated in the center of the Great Lakes chain and its waters lie about equally within the jurisdiction of the Province of Ontario on the east and the State of Michigan on the west. It receives the waters of Lake Superior through St. Marys River, and those of Lake Michigan through the Straits of Mackinaw. It drains southward through the St. Clair River, Lake St. Clair, and the Detroit River into Lake Erie. Its greatest length, from the head of the St. Clair River to the Straits of Mackinaw, is about 250 miles, and the greatest width (near the middle) about 100 miles. Excluding Georgian Bay and the North Channel, the lake has an area of approximately 17,500 square miles.

Lake Huron is divided into two approximately equal areas by the Big Reef, which extends continuously from Point Clark, Ont., to North Point, Mich. North of the reef lie the deepest waters of the lake. The 30 -fathom contour is rarely more than 10 miles from shore, and a considerable portion of the area lies within the 60 -fathom curve. The maximum depth of 125 fathoms known in the lake is found here. The southern portion is shallower. Here depths of 30 fathoms and less are more extensive and the maximum depth known is only 54 fathoms. The bottom alongshore is variable in character, consisting of rocks, bowlders, gravel, sand, clay, and mud, irregularly distributed. The deeper waters overlie chiefly clay and mud.

Separated from the main body of the lake and wholly within Canadian territory are the divisions known as the North Channel and Georgian Bay. Their water surfaces are approximately 1,500 and 5,000 square miles. From the junction of the North Channel with the St. Marys River to the foot of Georgian Bay at Collingwood is a distance of about 240 miles, while the greatest width of the district, from the mouth of the French River to the junction of Georgian Bay with Lake Huron, is about 60 miles. The North Channel and the northern and eastern shoros of the bay are dotted with numerous islands and reefs, and the best fishing grounds are in these sections. The water in the North Channel deepens from north to south, with the maximum depth of 29 fathoms off the Manitoulin Island, which forms its southern shore. The average depth is about 20 fathoms. The floor of Georgian Bay is also tilted, but from east to west, so that the deepest waters lie hard off the Bruce Peninsula. From the east the slope is gradual and the 40 -fathom contour approximately bisects the bay from north to south. The descent into depths of 60 to 90 fathoms is rapid. The shores are for the most part rocky, but stretches of sand, gravel, and clay are not uncommon., In the deep water the bottom is clay.

\section*{FISHING INDUSTRY}

\section*{History}

The fishing industry was established on Lake Huron later than on Michigan or the lower lakes. Seines and pound nets were not used as extensively from the beginning as on the lower lakes, and until 1880 it appears that gill nets were the main apparatus employed.

Gill netting was begun in Lake Huron, around Alpena, about 1835, and at about the same time in Georgian Bay. Whitefish were the chief species sought, and the nets were therefore set in shallow water. When the supply of whitefish was exhausted the nets were shifted into deeper waters for trout. In 1902 chub fishing, which had for many years been a considerable industry on Lake Michigan, was begun on Lake Huron out of Alpena, and by 1911 boats were fishing chubs out of about 10 ports on the lake, using \(23 / 4\)-inch gill nets on the American side and 3 -inch nets on the Canadian side. In Georgian Bay chub fishing began about 1912. Chubs have fallen off in the last five years so that few boats now fish them exclusively, and the gill-net industry has since been supported by trout and whitefish.

Hook fishing, introduced on the lake by Lake Michigan fishermen about 1916, has grown in favor on both sides of the boundary, but its development has been hampered somewhat on the Canadian shore by the restrictions against bait catching.

Pound nets are said to have been introduced on the American shore as early as 1854 , but they were not fished in very considerable numbers till after 1885. The number increased during the nineties, but with the increase in value of "rough fish" they have in recent years given place largely to trap nets and are now employed extensively only in Saginaw Bay and the Thunder Bay region. On the Canadian shore pounds were first fished about 1882. Most of the pounds have been licensed in the North Channel and at the lower end of Lake Huron. The number has fluctuated considerably and their use has at times
been prohibited, particularly in parts of Georgian Bay, but in the last few years the quantity of such nets has increased.

Seines were never very widely used, probably because the bottom in many areas is too rough to permit drawing the nets, and only in Saginaw Bay and at the lower end of the lake as far northas Goderich does seine fishing appear to have attained any importance. By 1880 the more profitable method of fishing with pound nets became so general in Saginaw Bay that there was no longer room or inducement to haul the seines, and in 1894 the Canadian Government substituted pound-net licenses for seine licenses. In the last 10 years, with the increase of carp, seines have again come into growing use in these areas.

The production of the lake has varied, both in quantity and quality, from year to year. These changes are too complicated to be treated in detail, but in Tables 4, 5, and 6 is shown the general trend of production in American and Canadian waters.

Table 4.-Relative abundance as shown by the total weight, in pounds, of the annual catch of the principal species in the American waters of Lake Muron, as shown by nine censuses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & 1880 & 1885 & 1890 & 1893 & 1899 & 1903 & 1908 & 1917 & 1922 \\
\hline Herring, including chubs & 246, 000 & 1, 265, 000 & 2, 514, 000 & 2, 758, 000 & 3, 699, 000 & 4, 715, 000 & 4, 791, 000 & 5,381,000 & 5, 49f, 000 \\
\hline Whitefish & 2, 700, 000 & I, 425, 000 & 1,004, 000 & 1, 178, 000 & 592, 000 & 692, 000 & 719,000 & 996, 000 & 1, 300, 000 \\
\hline Trout & 2, 084, 000 & 2, 539, 000 & 1,505, 000 & 3, 439, 000 & 1, 887, 000 & 2, 108, 000 & 1, 358, 000 & 2, 079, 000 & \(2,108.000\) \\
\hline Wall-eyed pi & & 940,000 & \({ }^{1} 1,483,000\) & 1827,000 & 1, 110,000 & 1, 598,000 & 829, 000 & 994, 000 & 1, 260,000 \\
\hline Sturgeon & 204, 000 & 215, 000 & 365, 000 & 79, 000 & 30,000 & 34,000 & 9, 000 & 4, 000 & 2, 000 \\
\hline Suckers. & & \({ }^{(2)}\) & 1,110,000 & 1, 824, 000 & 1, 107, 000 & 2, 690,000 & 2, 575, 000 & 1, 776, 000 & 1, 859, 000 \\
\hline Perch:- & & (2) & 1, 817, 000 & 1, 758,000 & 2, 740,000 & 1,911,000 & 1, 805, 000 & 844, 000 & 633, 000 \\
\hline Catfish & & 808, 000 & 172, 000 & 109, 000 & 574, 000 & 155, 000 & 174,000 & 33, 000 & 64, 000 \\
\hline Carp. & & & & & B, 000 & 37, 000 & 407, 000 & 1, 145, 000 & \(1,065,000\) \\
\hline
\end{tabular}
\({ }^{1}\) Including pike.
\({ }^{2}\) Not itemized.
Table 5.-Relative abundance as shown by the total weight, in pounds, of the annual catch of the principal species in the Canadian waters of Lake Huron, as shown by 11 censuses
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & 1875 & 1880 & 1885 & 1890 & 1895 & 1900 \\
\hline Whitefish. & 1,166,000 & 762, 000 & 1,233,000 & 442, 000 & 58, 000 & 27, 000 \\
\hline Trout. & 375, 000 & 469, 000 & 610,000 & 1,410,000 & 1, 450,000 & 1, 027,000 \\
\hline Merring & 1, 049, 000 & 183, 000 & 1, 382, 000 & 1,346, 000 & 741, 000 & 261, 000 \\
\hline Wall-eyed pike & 165, 000 & 22, 000 & 246, 000 & 182, 000 & 285, 000 & 281, 000 \\
\hline Sturgcon- & & 5,000 & 347, 000 & 223,000 & 517,000 & 147, 000 \\
\hline Mixed and rough fi & & & & 39, 000 & 105, 000 & 27, 000 \\
\hline Perch. & & & & & 102, 000 & 17, 000 \\
\hline Species & & 1905 & 1910 & 1915 & 1920 & 1922 \\
\hline Whitefish & & 78,000 & 92,000 & 56,000 & 83,000 & 47, 000 \\
\hline Trout-- & & 968, 000 & 893, 000 & 985, 000 & 847,000 & 884, 000 \\
\hline 1Ierring----- & & 403, 000 & 365,000 & 302, 000 & 180, 000 & 173,000 \\
\hline Wall-eyed pike. & & 408, 000 & 169,000 & 167,000 & 141, 000 & 171,000 \\
\hline Sturgeon- & & 17,000 & 14,000 & 12, 000 & 9,000 & 10, 000 \\
\hline Mixed and rough fish & & 146, 000 & 92, 000 & 80, 000 & 99, 000 & 104, 000 \\
\hline Perch-- & & 13,000 & 92, 000 & 161,000
269,000 & 129,000
206,000 & 126,000
130,000 \\
\hline
\end{tabular}

Table 6.-Relative abundance as shown by the total weight, in pounds, of the annual catch of the principal species in the waters of North Channel and Georgian Bay, as shown by 11 censuses
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & 1875 & 1880 & 1885 & 1890 & 1895 & 1900 \\
\hline Whitefish & 2,346,000 & 1, 042,000 & 1, 421,000 & 5, 498, 000 & 1,355, 000 & 1,530,000 \\
\hline Trout & 826, 000 & 1,001,000 & 3, 369,000 & 3, 497, 000 & 3, 062,000 & 2, 913, 000 \\
\hline Herring & 53, 000 & 12, 000 & 187, 000 & 78,000 & 600, 000 & 161,000 \\
\hline Sturgeon. & & & 478, 000 & 127, 000 & 79, 000 & 176, 000 \\
\hline Wall-eyed pike & & 10, 000 & 353, 000 & 635, 000 & 592, 000 & 690, 000 \\
\hline Mixed and rough fish & 23,000 & 21, 000 & 39,000 & 48, 000 & 136, 000 & 38, 000 \\
\hline Pike & & & 17,000 & 38,000 & 270,000 & 100, 000 \\
\hline Species & & 1905 & 1910 & 1915 & 1920 & 1922 \\
\hline Whitefish. & & 1, 018,000 & 1, 072,000 & 1,335, 000 & 1,303, 000 & 1,306, 000 \\
\hline Trout. & & 2, 346,000 & 2, 795, 000 & 3, 881,000 & 1,965, 000 & 2, 816, 000 \\
\hline Herring & & 160, 000 & 343, 000 & 258, 000 & 52,000 & 70,000 \\
\hline Sturgeon & & 44,000 & 1 18,000 & 33, 000 & 15,000 & 14, 000 \\
\hline Wall-eyed pike & & 594, 000 & 247, 000 & 417, 000 & 301, 000 & 273, 000 \\
\hline Mised and rough fish & & 84, 000 & 144,000 & 471, 000 & 431, 000 & 441, 000 \\
\hline Pike.. & & 100, 000 & 94, 000 & 177, 000 & 100, 000 & 195, 000 \\
\hline
\end{tabular}
\({ }^{1}\) After 1909 the catches of other species not previously itemized were greater than of sturgeon.
The Canadian waters are divided roughly into three districtsLake Huron proper, Georgian Bay, and the North Channel. The statistics published by the Ontario government do not separate accurately the catch of these three regions, fish taken in Lake Huron being included with those of the other two districts and some taken in Georgain Bay being credited to the North Channel. However, except off the Duck Islands and of Tobermory, few fishing boats penetrate far into the waters of Lake Huron proper north of Cape Hurd, and for convenience the North Channel and Georgain Bay are treated as a unit. Lake Huron proper really includes, then, only the ports from Southampton to the American boundary.

The most interesting features of Table 4 are the decline, in American waters, of the whitefish from first place in 1880 to sixth place in 1890, which position it has held practically ever since. The sturgeon is gone as an important element in the fisheries and the perch and catfish are declining. Suckers, on the other hand, are coming to the fore, and the introduced carp has captured a prominent place.

As shown in Table 5, for the Canadian side of Lake Huron proper, the whitefish has become relatively insignificant since 1890 and the sturgeon since 1900. Chubs and perch, which of late years have increased in importance in the catch, have become more marketable rather than more abundant. Trout have maintained first place since 1885 with the decrease of the whitefish, and herring have kept a relatively high position though the weight of the catches has steadily declined. Table 6, for the North Channel and Georgian Bay, shows that trout have definitely replaced the whitefish in relative abundance since 1895. The table may be taken to indicate that wall-eyed pike have become less abundant and that pike and rough fish have come into greater demand rather than increased in numbers. Sturgeon have passed out as a commercially valuable species.


Fig. 11.-Lifting a pound net. The punt is inside the pot and the lifting has just begun. The stakes of the heart are visihle in the background. This pound is on Lake Huron


Fig. 12.-The pound net lifted. The fish have been driven into the opposite end of the pot and may now be scooped up


Fig. 13.-Tug and stake driver used to drive the pound-net stakes into the bottom


Fig. 14.-Herring pound net with fish gilled in the netting

The principal fisheries on the American side of Lake Huron are at present conducted by means of gill nets and the chief product taken by them is trout, but at certain seasons whitefish are also an important element in the catch. Latterly no boats have fished for chubs exclusively, but in the spring of 1923, when for a time Lake Huron chubs brought 15 cents per pound (the first time in history that such fish brought a higher price than trout), all the boats owning suitable nets took to chub fishing, and in a few weeks the price fell to 5 cents and the nets were pulled out. Alpena is now the only important chub-fishing port. Small-meshed nets are also used to a considerable extent to take herring, Menominees, and perch, but except that the large tugs frequently make a few lifts of the two last-mentioned species in fall and sometimes again in spring, these nets are used only by the shore fishermen.

Hook tishing for trout is carried on out of several ports, but the practice has not spread very rapidly in the last few years.

The chief pound-net district in American waters is in Saginaw Bay, and large numbers of traps and fykes are also employed in this region. Elsewhere traps have largely replaced pounds. The increasing value of "rough fish" has been responsible for the rise of an important trap-net fishery at the north end of the lake, which vies in production with the established fisheries in Saginaw Bay.

On the Canadian shore a large portion of the production is yielded by pound nets, most of which are located in the North Channel district, on the north and east shores of Georgian Bay and on the shores at the foot of the lake. In 1922, 288 pound nets were licensed in the Canadian waters, and these produced most of the whitefish, wall-eyed pike, pike, and rough fish, and a significant percentage of the trout taken in that year. Most of the gill nets are in use in Georgian Bay and in the main lake, and their catches are chiefly trout, though some whitefish and chubs are also taken. Hooks are also rather commonly employed in these sections to take trout. No trap nets are allowed, and there are few fishermen who use smallmeshed nets for herring and rough fish along the shores.

\section*{FISHING DISTRICTS}

Gill netting is carried on chiefly out of Cheboygan, Alpena, and Harbor Beach on the American side, and to a lesser extent out of Detour, Rogers, and Oscoda. Southampton, on Lake Huron, is the largest tug center on the Canadian shore, but there are numerous other hamlets and stations out of which are operated small boats having a considerable equipment of gill nets. In Georgian Bay the fishing ports are for the most part towns, and those most worthy of mention are Tobermory, Meaford, Owen Sound, Collingwood, and Parry Sound. In the North Channel and around the islands that inclose it are many sheltered harbors, and the fishing boats are therefore widely scattered in this section.

Most of the pound nets and trap nets in use on the American shore are employed in Saginaw Bay, though many are also fished in the straits, around islands at the north end of the lake, and in the vicinity of Thunder Bay. The chief pound-net areas on the Canadian shore
are around the islands in and inclosing the North Channel and off the north and east shores of Georgian Bay and on the shores at the southern end of Lake Huron.

\section*{PRINCIPAL SPECIES}

On the American shore, according to the census of 1922, chubs and herring, which are grouped together in the statistics, were first in abundance. The other important species, in order of their abundance, were trout, suckers, whitefish, wall-eyed pike, carp, and yellow perch. On the Canadian shore in 1922 the lake trout was by far the principal species, with herring, wall-eyed pike, chubs, and perch ranking next. In the North Channel and Georgian Bay trout and whitefish comprise the bulk of the take, with wall-eyed pike and pike also important in the catches. The relative and absolute abundance of these species over a period of years are given in Tables 4, 5, and 6.

\section*{LAKE TROUT}

Trout occur throughout the lake and in its bays (excepting Saginaw Bay), and also on the reefs in the center of the lake. For the last 40 years this species has been the chief element in the gill-net fisheries, and in some areas, particularly on the Canadian shore, it has entirely replaced the whitefish.

There are several races and they all live in relatively shallow water. These races may differ in behavior, especially in the matter of time of spawning, the black trout on the Big Reef, for example, spawning as late as December. There are no longer any important fisheries for trout in 60 fathoms and deeper, and chub nets set at these depths take relatively few small individuals. Trout are taken largely in gill nets, though in 1917 about one-third and in 1922 about onefourth the entire catch on the American shore was on set lines by hook fishermen. Until recent years large quantities were also caught for the market on trolling lines in early summer when the trout rise off the bottom. Some are still caught in this manner but the number is now insignificant. The pound nets in certain localities, especially in the North Channel, are also effective in the capture of trout. There is at present virtually no closed season on trout, but quantities of fry are planted yearly.

\section*{WHITEFISH}

Half the lake's annual production of whitefish at present comes from North Channel and Georgian Bay. The most productive areas are from Parry Sound northward in Georgian Bay and around Manitoulin Island. The catch in Lake Huron is made chiefly from Harbor Beach northward. Gill nets and pounds are the principal apparatus of capture.

The whitefish was originally the most abundant species taken in the commercial catches. It appears to have maintained itself best in North Channel and Georgian Bay, where it still holds second place, but in the lake as a whole it has fallen to fourth place on the American shore and to seventh on the Canadian shore. Though there are now no areas in Lake Huron and a very few elsewhere in which a gill-net fisherman could operate if he had to depend on whitefish
alone, there appears to have been no serious depletion in this fishery since 1900 and in several localities the fishermen even report increases. It is not possible to establish statistically the question of abundance during this period, since the statistical bulletins do not furnish the kind of data that are needed. In some areas of greater abundance the increase has been attributed to the effects of propagation, but in others, particularly in North Channel and Georgian Bay, where no plants were made previous to the reported increase, some other explanation must be sought. The increased catches of 1917 and 1922 in American waters, on which to a greater or less degree the opinions of increase are based, were at least in part due to the higher value of rough fish, which are taken in the shoal waters along with the whitefish. Thus, while the opening of the interior lakes of Canada has kept the price of whitefish down to a point where in many areas it would be unprofitable to prosecuie fisheries dependent on this species alone, with the rise in value of species taken incidentally, the shore fisheries have been stimulated and the catch of whitefish, even though the species may not actually be more abundant, has increased.

HERRING
The bulk of the catch of lake herring or blueback is taken in the pound nets of Saginaw Bay. Herring are taken also on the American shore in the fall by gill nets out of Oscoda, Alpena, and along the northern shores of the lake. The Canadian fishermen take few herring, relatively and absolutely, and the bulk of the catch is produced along the Bruce peninsula and at the south end of Lake Huron. There has never been a closed season on herring, and few have ever been planted, but the fishermen at Bay City are of the opinion that the supply has not diminished significantly.

Each locality has its own race of herring, and these races are often characterized by size differences, considerations that have induced the Michigan legislators to permit a \(21 / 2\)-inch mesh for the taking of these fish. One of the largest races occurs in Thunder Bay and northward to Middle Island, where it is the object of a considerable fishery when it spawns in November.

Originally the herring was but little esteemed and was taken, as in other lakes, only if it could be sold at all. Latterly, with the falling off of other available species, it has been caught regularly at localities where it could be taken in quantities. Most of these fish are salted, though increasingly large quantities find their way to the markets in the fresh state.

\section*{CHUBS}

Fishing for chubs began later in Lake Huron than in any of the other lakes. What factors were responsible for the delay is not exactly clear, inasmuch as their presence was discovered many years previously when the deep-water trout nets took them, but it is probable that trout were sufficiently abundant and prices satisactory enough to afford no stimulus for experimenting with a new industry, particularly when it involved the purchase of an entirely different equipment of netting. In 1902 chubs were fished for in 60 fathoms off Alpena with \(23 / 4\)-inch nets, and a few years later they were taken
off the Duck Islands with \(3 \frac{1}{4}\)-inch nets, which were later reduced to 3 inch. From 1911 to 1918 was the period of greatest production, and at some time during this period boats were fishing chubs out of Cheboygan, Rogers, Alpena, Harbor Beach, Goderich, Kincardine, Southampton, Tobermory, Lion's Head, Cabot's Head, and Wiarton.

There are four species of commercial chubs in Lake Huron, all but one apparently of general distribution throughout the deeper waters of the lake and of Georgian Bay. They are taken only in gill nets, which are of \(23 / 4\)-inch mesh in American waters and 3 -inch mesh in Canadian waters. The chub nets usually are set in depths of 60 fathoms or more, except where such depths are not attainable, as at the northern and southern ends of the lake, and then 30 fathoms usually is the lower limit. The spawning season for the four species ranges between the middle of August and January, and some of the spawning areas of two of the species are known. At this time they are taken as abundantly as possible. Chubs have never been protected by a closed season, nor are they propagated.

It is generally believed by American fishermen that chubs have decreased in Lake Huron. At any rate, it is now necessary to increase the equipment in order to maintain the catch, and off Cheboygan, where one species is caught on its spawning grounds in September and October, the lifts are no longer as heavy as formerly. On the Canadian shores the decrease is more marked. With 3-inch nets the Canadian fishermen have always had a considerably smaller percentage of the chub population to draw from, and they were early forced to discontinue fishing where they met the American \(23 / 4\)-inch nets, as off the Duck Islands. Off Southampton the catches on the chub grounds west-northwest of the city fell off after about three years, and the boats have been unable to find new grounds. In Georgian Bay chubs have been fished since 1912, but since about 1916 the numbers taken have been much reduced. The fishermen say that the lawyer is now a conspicuous clement here in the chub nets set at 60 fathoms. Whether the lawyer has appropriated the area vacated by the chubs or is directly responsible for their decrease is not known.

\section*{WALL-EYED PIKE}

Only the yellow race of the wall-eyed pike is commercially important in Lake Huron, and the principal catches on the American side are made in the pounds and traps of Saginaw Bay and in Canadian waters chiefly in the pounds around the islands of the North Channel, on the east coast of Georgian Bay, and around Sarnia on the St. Clair River. The wall-eyed pike has always been esteemed as a food fish and has been intensively fished for. Latterly the demand has increased and the price of the fish has risen enormously at certain seasons ( 40 cents per pound has been paid by the New York markets), and production everywhere has fallen off. The fish is nowhere protected by a closed season but is extensively propagated.

\section*{YELLOW PERCH}

In American waters the yellow perch is taken in abundance only in Saginaw Bay, while on the Canadian shore the bulk of the catch is made off Huron County at the lower end of the lake. Pounds and
traps are the principal mode of capture. Perch were an important element in the fisheries on the American shore as early as 1885, and during the late nineties and between 1900 and 1908 production was greatest. There has been a decrease from the maximum recorded catch of 2,740,669 pounds in American waters in 1899 to 633,188 pounds in 1922. On the Canadian shore perch have been much less important, and until 1894 were not reported in the statistics of the fisheries. The maximum catch recorded was only 321,680 pounds taken in 1907, which was never approached before nor has it been since. There is no closed season for perch. The species is propagated to some extent, but only in American waters.

\section*{SUCKERS}

The white sucker is the principal one of this species marketed, and most of the production is sold fresh in the round to the New York markets. At present the chief catches are made in trap nets in American waters north of Cheboygan, in traps and pounds in Saginaw Bay, and with pound nets in the North Channel. Up to 1890 practically the entire catch of suckers on the American shore came from Saginaw Bay and Saginaw River, but since about 1905 an increasingly large percentage has come from the northern waters and the abundance of suckers in Saginaw Bay has diminished, so that in 1917 a little more than one-third of the total catch, which was roughly 60 per cent more than it was in 1890, originated in Saginaw Bay. In 1922, however, the northern sucker fisheries declined and those in Saginaw Bay improved so that the bulk of the catch again originated in Saginaw Bay. Fishermen hold that the pollution of Saginaw River has seriously affected the abundance of the sucker in that area.

On the Canadian shore suckers have become increasingly important since 1910 .

There is no closed season for suckers, and none are propagated.

\section*{STURGEON}

The sturgeon has never been extremely abundant in Lake Huron, but in the earliest fisheries of the lake it was commonly hauled ashore from the pounds and seines as a nuisance. By 1880 it was marketable on the American side of the lake, and by 1885 it was generally taken for sale in Canadian waters. At present it is the most expensive and rarest fish in the lake. The principal production is now credited to North Channel and the St. Clair River mouth, but no more than 30,000 pounds are now produced annually. There is no closed season for the species and none are propagated.

\section*{OTHER INDIGENOUS SPECIES}

The only other native species of importance in the fisheries are the pike in the North Channel and Georgian Bay and the Menominee in the northern American waters.

\section*{INTRODUCED SPECIES}

CARP
The carp is the only abundant nonindigenous species in the lake. The catch is taken almost exclusively in Saginaw Bay, and seines are the chief apparatus of capture. In the census of 1903 it was
insignificant ( 37,491 pounds) in the American fisheries, and in 1917 ranked fourth with \(1,145,250\) pounds. The catch in 1922 was slightly less in quantity and relatively less important.

GIZZARD SHAD
The gizzard shad or sawbelly is a small commercially unimportant fish that is said to have found its way into Lakes Erie and Michigan from the Mississippi drainage through certain connecting canals and is now working its way northward. In November, 1919, a fisherman brought me specimens which he selected from the swarms present in his pound nets in Colpoy Bay (a small indention in Georgian Bay), and it is said that in 1920 they were extremely abundant in Saginaw Bay. The presence of the gizzard shad here has no ecological significance so far as is known.

\section*{FISHING REGULATIONS}

Regulations similar to those promulgated by the governments of Michigan and Ontario for Lake Superior are in force. (See p. 576.)

\section*{1 LAKE ERIE}

\section*{DESCRIPTION}

Lake Erie has an area of approximately 10,000 square miles, exceeding in size only Lake Ontario. Its length is about 250 miles and the average width is about 45 miles. It is bounded on the north by the Province of Ontario, on the west by the State of Michigan, on the south by Ohio and Pennsylvania, and on the east by New York. Lake Erie receives the waters of the upper Great Lakes through the Detroit River, and drains through the Niagara River. The deepest water occurs in the eastern sector, in that part which is bordered by Pennsylvania, New York, and the portion of the Canadian shore lying eastward of Long Point. The maximum depth recorded is 35 fathoms off Long Point. The stretch for 100 miles between Long Point and Point Pelee is a nearly flat plain covered by no more than 14 fathoms of water. East of Point Pelee is a shelf with numerous islands and reefs, having a maximum depth of 7 fathoms.

\section*{FISHING INDUSTRY}

\section*{HSSTORY}

Lake Erie offers most favorable conditions for the growth of fish, and in practically every census, in spite of its small size, it has led all the lakes in quantity of production. On account of its shallowness, warmth, and diversified conditions many species of fish occur in its waters, and no less than 15 species have at one time or another been important in the commercial catches.

Every device known to the fishermen of the Great Lakes is cmployed on Lake Erie. In a general way the kind of apparatus used depends upon the species to be taken, and since in the past the important species have varied from year to year, and since the devices of capture have gradually been improved, the history of the fisheries of
this lake is extremely complicated. For that reason in the historical treatment emphasis will be laid on the changes in production rather than on the modes of production.

Fishing is said to have been begun on Lake Erie as early as 1815. Seines were used, chiefly in the rivers and bays, until about 1850 , when pound nets were introduced at the west end and gill nets at the east end in the American waters. The first species sought to be taken with the new apparatus was the whitefish, but soon smallmeshed nets were used for other species. Commercial fishing appears to have been in full swing by 1870, and has grown in intensity since then. Gill nets, pound nets, trap nets, fyke nets, seines, and set lines were the chief apparatus employed on the American shore, similar apparatus being used in Canadian waters except that no trap nets were allowed.

On no other lake has the use of pounds and traps assumed such proportions as on Lake Erie. The shore fisheries-that is, the fisheries conducted with pound nets, trap nets, and gill nets by small boats along the shores-have been extremely important on both sides of the boundary, and the output has exceeded that of the large boats fishing gill nets only. In late years, on the American shore, the pound net has been almost entirely replaced by the crib net, which has a much lower original cost and can be moved at will. The gill-net fisheries have increased in importance with the introduction, about 1899, of the steam lifter, an improvement which made it possible for every boat to handle a great many more nets, and latterly with the practice of floating gill nets. Nets have been extensively floated since about 1903, and bull nets have become more and more widely used since about 1906, chiefly in American waters (see description on page 558), practices that have made it possible for fish to be caught while swimming off the bottom and which have increased the catch of the fish considerably.

In 1879 most of the gill netting on the American shore was carried on east of Ashtabula and practically all pound netting west of that place. Thereafter the use of gill nets in conjunction with the pound nets was begun, until in 1899 most of the gill nets as well as pound nets were owned in the west. By 1903 the pendulum had started to swing back, and in 1922 the gill nets were again owned chiefly in the east. In 1890 gill nets took most of the blue pike, sturgeon, whitefish, and trout, while the majority of herring, yellow perch, saugers, wall-eyed pike, catfish, and practically all other fish were taken in other nets. (While the pounds took the larger quantity of herring, the fish were smaller and brought less return to the fishermen.) In 1903 gill nets took most of the herring, blue pike, whitefish, and yellow perch, and excepting the seines, which took all the carp, the rest of the species were taken in greatest abundance in other gear. In 1922 the gill nets took only herring in greatest abundance, and again excepting the seines for carp, all other species were taken most abundantly with traps and pounds.

West of Port Stanley, on the Canadian shore, pound netting has been the principal industry. Gill netting was carried on chiefly from Port Dover eastward until about 1905, when Port Stanley became the principal gill-net center on the lake and has remained so since, but the east has owned the bulk of the remaining gill nets. The Canadian statistics do not separate the production according to apparatus em-
ployed, so that it is not possible to state how the constitution of the catches of the various kinds of apparatus has changed from year to year.

The fisheries have always been of more importance on the American shore, though the relative importance has changed decidedly in recent years. Where in 1885 , with a catch of \(51,456,000\) pounds in American waters, the ratio between American and Canadian production stood 6.7 to 1 in favor of the United States, in 1899, with a catch of \(58,393,000\) pounds, the ratio was 5.7 to 1 , and in 1922, with a catch of \(55,079,000\) pounds on the American shore, it had dropped to 3.1 to 1 in favor of the United States. Production on both sides of the lake has varied considerably from year to year in the last few decades, and this variation has not always been correlated with variations in the amount of apparatus employed. In the two succeeding paragraphs sufficient data are given to show what the relation of apparatus and production has been, and a discussion of the changes in the quality of the production follows.

According to the latest statistics issued by the Bureau of Fisheries, in 1922 there were engaged in the fisheries in American waters 1,041 vessels and boats, which operated 42,404 gill nets, 3,931 trap and pound nets, and 213 seines. In Table 7 are given the statistics of the fast three censuses made of the fisheries on the American side of Lake Erie, showing the relation between apparatus and catch. The figures for traps, pounds, and seines are the highest on record, and only in 1890 were more gill nets reported. The number of vessels and boats employed ( 608 in 1903; 1,133 in 1917; and 1,063 in 1922) is the highest since 1893.

Table 7.-Relation between gear employed and production of fish in the American waters of Lake Erie since 1903, as shown by censuses taken from 1903 to 1922
\begin{tabular}{|c|c|c|c|}
\hline & Number & Total yield & Yield
per net \\
\hline 1903: Gill nets- & & & \\
\hline Vessels & 28,755 & 12,421,089 & Pounds.
432 \\
\hline Boats & 6,396 & 937,733 & 147 \\
\hline Pound nets and traps & 1,469
110 & \begin{tabular}{l} 
5, \\
\(2,637,420\) \\
\hline 1
\end{tabular} & 3,974
23,939 \\
\hline Total & -..-- & 21, 829, 509 & \\
\hline & & & \\
\hline Gill nets- & & & \\
\hline Vessels & 38,007 & 17, 151, 247 & \\
\hline  & 5,011 & +1, \(1,3193,248\) & \\
\hline Seines.... & \({ }^{5} 285\) & 5, 505, 997 & 19,319 \\
\hline Total.. & .-... & 37, 830, 086 & --.---- \\
\hline 1922: & & & \\
\hline Gill & & & \\
\hline Boats... &  & 1, \({ }^{24,636,282}\) & \({ }_{280}^{605}\) \\
\hline Pound nets and traps & 3, 931 & 22, 118 , 403 & 5, 627 \\
\hline Seines. & & 5, 618, 210 & 26,377 \\
\hline Total.. & & 53,670, 202 & \\
\hline
\end{tabular}

The entire 1917 production was over \(3,000,000\) pounds less than that of 1908 . which was \(41,906,000\) pounds; but the catch for 1908 was almost double that shown by the census of 1903 . The catch in

1922 was nearly \(12,000,000\) pounds greater than that of 1908 and almost \(15,000,000\) pounds greater than the 1917 catch. The increase since 1903 has been chiefly in the production of rough fish by the shore fisheries and in the catch of herring.

The statistics of the Province of Ontario, for the Canadian shore of Lake Erie, show that in 1922 there were 39 tugs, 158 launches, and 204 sail and row boats, employing \(1.362,748\) yards of gill net and 655 pound nets, which yielded a total of \(17,686,240\) pounds of fish products. In Table 8 are given the statistics of 14 censuses, showing the relation between apparatus and catch.

Table 8.-Relation between gear (except seines) and production in the Canadian waters of Lake Erie, as shown by various censuses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Pound
nets & Gill nets & Yield & Year & Pound nets & Gill nets & Yield \\
\hline 1875 & \[
\begin{array}{r}
\text { Number } \\
16
\end{array}
\] & Yards 5, 665 & Pounds 959, 000 & 1910 & Number 295 & \begin{tabular}{l}
Yards \\
506, , 00
\end{tabular} & \begin{tabular}{l}
Pounds \\
\(14,421,000\)
\end{tabular} \\
\hline 1880 & 54 & \({ }_{330}\) & 2, 00s, 000 & 1912 & 297 & 569, 753 & 22, 007, 000 \\
\hline 1885 & 132 & 33, 520 & 7,654,000 & 1914 & 499 & 681,672 & 17, 020, 000 \\
\hline 1890 & 197 & 49, 200 & 8,423, 000 & 1916 & 638 & 1,546, 005 & 10, 088, 000 \\
\hline 1895 & 204 & 111, 700 & 8, 706, 000 & 1918. & 689 & 1,587, 740 & 19, 496, 000 \\
\hline 1900 & 258 & 301, 590 & 10, 495, 000 & 1920 & 637 & 1,402, 600 & 16, 812, 000 \\
\hline 1905 & 275 & 395, 400 & 7, 318, 000 & 1922 & 655 & 1,362, 748 & 17,686, 000 \\
\hline
\end{tabular}

The table shows an immense increase in the development of the Canadian fisheries since 1910. The upward movement began with a great increase in quantity of the apparatus for taking herring around Port Stanley, and the catches of this species increased thereafter so that in the next year herring made up about two-thirds the output of fish on the entire lake. After that apparatus increased everywhere, until the peak was reached in 1918, but production has not kept pace with the increase in apparatus employed.

Table 8 shows that the increase of apparatus has been greater than the increase in production on the Canadian side. From 1916 to 1922 the number of yards of gill netting in use increased ten times and the number of pound nets three times over the figures for 1895 , while production only doubled. Table 7, for the American shore, though only three censuses are given, shows with each census not only an increase in total production but in general, also an increase in the productivity of the gear, facts that point to an improvement in the fisheries.

Conditions do not warrant the unquestioned acceptance of the conclusions that might be drawn from the data in Table 7. Depletion is generally considered to be less serious in the Canadian waters of Lake Erie, and for that reason, in part, the duty on Canadian fish was asked by American fishing interests. The figures may be interpreted to show the opposite.

Production in American waters in the season of 1925 and also in the winter of \(1925-26\) is reported to have been unusually low, a situation one would not expect from the census of 1922. Furthermore, in 1922, in the face of 50 per cent and greater increases in the productivity of gear, the amount employed was less than in 1917. This is not the usual economic reaction to prosperous conditions. It may also be argued that between 1917 and 1922, for which period statistics are lacking, production may have declined and gear have
been reduced on that account. In such a case, the increased production of 1922 may be quite as well explained by assuming possible fluctuations in the five variables mentioned in the following paragraph, as by assuming that fish have become more numerous. Finally, it is not entirely probable that fish can increase under conditions of pollution, virtually unrestricted and most intensive fishing, and little propagation.

It has been stated elsewhere in this paper that the available statistics of the Great Lakes fisheries can not be statistically treated and in these two tables the reason can be shown.
1. None of the figures show the mesh of the gear employed. The size of the mesh determines not only the kind of species that will be taken but also the abundance of the species in the catch. The data given on page 611 indicate that a fishery for deep-water Leucichthys in Lake Ontario, which might soon fail with a \(23 / 4\)-inch minimum mesh, would flourish if the mesh were reduced \(1 / 4 . \mathrm{inch}\). Of course, in Lake Erie the size of meshes used has not varied greatly in the last few years, but there have always been two classes of gill nets, one chiefly for whitefish and one for smaller species. Thus, the increased catch may be due chiefly to the catch of smaller fish by nets with smaller mesh.
2. The length of the gill nets is given in Canadian waters, but not the depth, which is an extremely important factor. For American waters no dimensions whatever are given. The effectiveness of such apparatus depends also to a very great degree on its state of repair, the material of which it is spun, the fineness of its threads, etc.
3. The method of employing the apparatus is nowhere reflected in the statistics. On other pages it has been stated that the floating of nets has greatly increased the catches.
4. It is not known whether market conditions favored the capture of all species throughout the season of each yeer for which statistics are recorded. In 1920 thousands of pounds of blue pike and herring could not be sold because the markets were glutted, and the fisheries reacted accordingly. Such conditions have obtained at other times and their effects, of course, determine production.
5. Even if gear, market conditions, etc., were stabilized and the number of fish in the lake remained unchanged, the yield would certainly vary from year to year as a result of other conditions, especially those influensed by the weather. Being taken at about 5 -year intervals, the American statistics do not permit evaluation of this annual fluctuation, even if the data were given in sufficient detail.

If, then, fish are not more abundant now than formerly, the increase in or the maintenance of the general level of production must be determined by some other factor, and the only other factor likely to influence production is increased demand, which is reflected in higher prices.

Since there are no cities on the Canadian shore of Lake Erie, and since the populaton of the Province of Ontario may obtain its fish supply from other lakes that are nearer, the Canadian fishermen are chiefly dependent on American markets. Therefore the following table of comparative prices for American waters will apply to the Canadian side also. There are statements of value for each year in the Ontario statistical bulletins, but the values given were constant over long periods, and hence must have been fixed arbitrarily.

Table 9.-Average price per pound, in cents, and index number of prices of the principal commercial fishes of the American waters of Lake Erie, as shown by the various censuses taken
[Base of index numbers: Average price in \(1899=100\) ]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{1890, average price} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 1893, } \\
& \text { aver } \\
& \text { age } \\
& \text { price }
\end{aligned}
\]} & \multicolumn{2}{|c|}{1899} & \multicolumn{2}{|c|}{1903} & \multicolumn{2}{|l|}{1908} & \multicolumn{2}{|l|}{1917} & \multicolumn{2}{|l|}{1922} \\
\hline & & & \[
\begin{array}{|l|}
\text { Aver- } \\
\text { age } \\
\text { price }
\end{array}
\] & \[
\begin{aligned}
& \text { In- } \\
& \text { dex } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Aver- } \\
& \text { age } \\
& \text { price }
\end{aligned}
\] & \[
\begin{aligned}
& \text { In- } \\
& \text { dex } \\
& \text { No. }
\end{aligned}
\] & Average price & \[
\begin{aligned}
& \text { In- } \\
& \text { dex } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Aver- } \\
& \text { age } \\
& \text { price }
\end{aligned}
\] & \[
\begin{gathered}
\text { In- } \\
\text { dex } \\
\text { price }
\end{gathered}
\] & Average price & \[
\begin{aligned}
& \text { In- } \\
& \text { dex } \\
& \text { No. }
\end{aligned}
\] \\
\hline Whitefish & 4.95 & 6. 09 & 7.36 & 100 & 7.59 & 103 & 8.17 & 111 & 13. 26 & 180 & 18.80 & 255 \\
\hline Trout.- & 4.27 & 4.92 & 5.41 & 100 & 5. 29 & 98 & 4. 84 & 89 & 10. 45 & 193 & 8.86 & 164 \\
\hline Herring & 1.03 & 1.24 & 1. 29 & 100 & 3.80 & 294 & 2. 70 & 209 & 6.10 & 473 & 4.98 & 386 \\
\hline Yellow pike & 4. 30 & & 4.98 & 100 & 5. 44 & 109 & 4.15 & 83 & 11.55 & 232 & 14.84 & 297 \\
\hline Blue pike. & 1.98 & 2. 50 & \{3.07 & 100 & 3. 83 & 125 & 3.01 & 98 & 6.57 & 214 & 4.96 & 162 \\
\hline Sauger. & 1. 24 & & 2. 49 & 100 & 2. 46 & 99 & 3. 05 & 122 & 6. 11 & 245 & 4. 92 & 198 \\
\hline Sturgeon & 3. 55 & 3.96 & 6. 76 & 100 & 7. 34 & 109 & 14.40 & 213 & 21.36 & 316 & 27.74 & 410 \\
\hline Black bas & 5. 44 & 3.80 & 7.38 & & 8. 02 & & & & & & & \\
\hline Perch. & 1. 06 & 1.37 & 1.59 & 100 & 3.27 & 206 & 3. 69 & 232 & 7.26 & 457 & 5. 98 & 376 \\
\hline Suckers & & 1. 09 & 1.15 & 100 & 1. 21 & 105 & 1.47 & 128 & 3.51 & 305 & 3. 10 & 269 \\
\hline Carp. & & 2. 59 & 1. 42 & 100 & 1. 67 & 118 & 1.81 & 127 & 4.54 & 320 & 4. 12 & 290 \\
\hline Catfish & 2.38 & 3. 04 & 3. 04 & 100 & 4. 11 & 135 & 4. 49 & 148 & 6.24 & 205 & 7. 24 & 238 \\
\hline Sheepshea & & & . 67 & 100 & . 70 & 105 & . 90 & 134 & 2. 43 & 363 & 2. 41 & 360 \\
\hline Lawyer. & & 1. 20 & & & . 72 & & 1.02 & & 1. 23 & & 1.72 & \\
\hline Bowfin & & & & & . 56 & & & & 1.34 & & & \\
\hline White bass & & & 1.92 & 100 & 3. 40 & 177 & 4.75 & 247 & 6. 02 & 314 & 4. 11 & 214 \\
\hline All commo & & & & 100 & ---- & 115 & ------ & 120 & ------ & 236 & & 199 \\
\hline
\end{tabular}

This table discloses a great increase in price for every species since 1899. This increase is particularly noticeable between 1908 and 1917. Between 1917 and 1922 the prices of whitefish, yellow pike, sturgeon, catfish, and lawyer continued to increase. All of the other species decreased in price. It must be remembered that 1917 was a year of inflated values in general, and prices in 1922, while not inflated as much as in 1917, were far above those of the earliest years given in this table. Although the values given in the table indicate that prices of certain fishes have doubled, trebled, and, in some cases, quadrupled, since the earliest years, it is not evident whether the greatly increased prices in 1922 may be explained entirely by the generally inflated values of recent years, or whether they indicate the relatively increased demand for fish.

In order to examine this feature, index numbers of the prices of fish with the year 1899 as a base, as compared with the index numbers of all commodities, \({ }^{8}\) based on the same year, have been graphically shown in Figure 15. The curve for all commodities, as shown by the heavy line, indicates that in general wholesale prices were nearly two and one-half times as high in 1917 as they were in 1899, and fully twice as high in 1922 as in 1899. If the demand for the various species of fish had remained relatively the same as in 1899, it would be expected that the prices would have very closely followed the heavy line curve; but that is not the case. It is evident from the graph that the great majority of species now cost relatively much more than in 1899, even when inflated values are taken into consideration. Trout and blue pike alone have fallen below the general level of prices. Saugers have followed general prices very closely. All other

\footnotetext{
\({ }^{8}\) From Wholesale Prices, 1890 to 1922, Bulletin, U. S. Bureau of Labor Statistics, No. 335, 1923. Washington.
}
principal species have increased in value out of proportion to general prices.

It may be concluded from this that the demand has outstripped the supply of all species except sauger, trout, and blue pike since 1899, and that the supplies of sturgeon, herring, perch, and sheepshead are so far below the demand that the prices are relatively twice as great now as they were in 1899.

Along with price advances and the change in the quantity of production, there has also been a change in the quality of the production. According to the Federal statistics of 1922, the principal species taken in American waters, in order of size of catch, were herring, blue pike, sauger, carp, perch, sheepshead, yellow pike, and suckers. The relative abundance of the various species, as published in the censuses, is shown in Table 10.


FIG. 15
Table 10.-Relative abundance of the most important species as shown by the total weight, in pounds, of the annual catch of the principal species in the American waters of Lake Erie, as shown by nine censuses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & 1880 & 1885 & 1890 & 1893 & 1899 & 1903 & 1908 & 1917 & 1922 \\
\hline Whitefish & 3,333,000 & 3, 531,000 & 2,341,000 & 1,292,000 & 2,066, 000 & 302,000 & 1,503, 000 & 1,755,000 & 922,000 \\
\hline Herring -- & 11, 774,000 & 19, 354, 000 & 38, 868,000 & 20, 931,000 & 33, 427, 0008 & 8, 788,000 & 10,599, 000 & 17, 160,000 & 16, 158, 000 \\
\hline Trout. & 26,000 & 106,000 & 121,000 & 203, 000 & 32,000 & 15,000 & 6,000 & 1,000 & 1,000 \\
\hline Yellow pike & & 2, 694,000 & 2,105, 000 & & \(\{1,735,000\) & 908, 000 & 3, 506, 000 & 1,291,000 & 1,813,000 \\
\hline Blue pike. & & 7, 899, 000 & 7, 488, 000 & 12, 529, 000 & \{4,544,000 4 & 4,915,000 & 9, 072,000 & 2, 057,000 & 14, 542, 000 \\
\hline Sauger. & & 5,466, 000 & 4, 179,000 & & [3,026, 0001 & 1,940,000 & 2, 417, 000 & 3, 929, 000 & 6, 002, 000 \\
\hline Perch. & & 1, 601,000 & 2, 870,000 & 2, 594,000 & 3, 315,000 & 830, 000 & 1, 742,000 & 959,000 & 2,969,000 \\
\hline Sturgeon- & 1,970,000 & 4, 727, 000 & 2,078,000 & 793,000 & 789,000 & 294,000 & 63,000 & 28, 000 & 15, 000 \\
\hline Suckers.-.-- & & 2,373,000 & \(\left.{ }^{1}\right)\) & \(\{1,360,000\) & 1, 568, 000 & 721, 000 & 1, 719,000 & 1, 035, 000 & 1, 598, 000 \\
\hline Sheepshead & & 2,373,000 & (1) & & 1,147,000 & 642,000 & \[
\begin{aligned}
& 1,394,000
\end{aligned}
\] & \[
2,855,000
\] & \[
\begin{aligned}
& 2,362,000 \\
& 5,899000
\end{aligned}
\] \\
\hline Carp-- & & & & 635,000
776,000 & 3,633,000 3 & 3, 546, 000 & \[
\begin{array}{r}
8,893,000 \\
579,000
\end{array}
\] & \[
6,044,000
\] & 5, 899, 000 1,337,000 \\
\hline Catfish -.. & & 2, 802,000 & 1,926, 000 & 776,000 & \[
\begin{aligned}
& 1,002,000 \\
& 1,596,000
\end{aligned}
\] & \[
\begin{array}{r}
181,000 \\
27,000
\end{array}
\] & \[
\begin{aligned}
& 579,000 \\
& 217,000
\end{aligned}
\] & \[
\begin{aligned}
& 628,000 \\
& 286,000
\end{aligned}
\] & \[
\begin{aligned}
& 1,337,000 \\
& 1,022,000
\end{aligned}
\] \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Very few sheepshead were marketed before the late nineties.
}

It appears from this table that until 1890 the order of abundance was as follows: Herring, blue pike, sauger, sturgeon, whitefish, catfish, yellow pike, and suckers. The yellow perch changed places with the sturgeon in 1890, but in 1899 the sturgeon and catfish fell permanently below eighth place and the list was disturbed by the appearance of the carp and white bass. In the census of 1903 the white bass and whitefish dropped out of the series and the sheepshead and sucker came in. (The sucker, being a cheap fish, has fluctuated in importance from year to year according to the tone of the markets.) In 1908 the whitefish recovered eighth place from the sheepshead, and in 1917 displaced the perch from sixth.

The main features of the 1922 statistics are the great rise in importance of the blue pike and perch, occasioned by an enormous increase in production, and the decline in importance of the carp and whitefish. The latter again dropped out of the series in this census. Thus, of the eight species that were most important in the fisheries before 1890, five still maintained that distinction in 1922.

The principal species on the Canadian shore in 1922 were, in order of abundance, blue pike, herring, perch, "coarse fish" (including suckers, sauger, and white bass), whitefish, wall-eyed pike, carp, and pike. The relative abundance of the various species as shown by the annual catches at five-year intervals over a period of years is given in Table 11.

Table 11.-Relative abundance as shown by total weight, in pounds, of the annual catch of the principal species taken in the Canadian waters of Lake Erie, as shown by 11 censuses
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & 1875 & 1880 & 1885 & 1890 & 1895 & 1900 \\
\hline Herring & 316, 000 & 854, 000 & 5,935, 000 & 5, 393, 000 & 5, 139, 000 & 6,526, 000 \\
\hline Whitefish & 125, 000 & 205, 000 & 186, 000 & 204,000 & 148,000 & 401, 000 \\
\hline Yellow pike & 193, 000 & 143, 000 & 685, 000 & 961, 000 & 1,642,000 & 1, 218,000 \\
\hline Pike.- & 13,000 & 19,000 & 17, 000 & 62,000 & 30,000 & 821,000 \\
\hline Sturgeon & & 213, 000 & 459, 000 & 580,000 & 319, 000 & 169,000 \\
\hline Perch-..-...-.-.-- & & & & & 396, 000 & 694,000 \\
\hline & 39,000 & 69,000 & 110,000 & 134,000 & 45,000 & 37,000 \\
\hline \multicolumn{2}{|l|}{Species} & 1905 & 1910 & 1915 & 1920 & 1922 \\
\hline \multicolumn{2}{|l|}{Herring.} & \multirow[t]{3}{*}{\[
\begin{array}{r}
3,015,000 \\
304,000 \\
1,692,000
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 6,959,000 \\
& 1,383,000 \\
& 923,000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 5,594,000 \\
& 1,832,000
\end{aligned}
\]} & 9,651, 000 & 6, 306, 000 \\
\hline Whitefish & & & & & 838, 000 & 751,000 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Yellow pike Blue pike}} & & & 607,000 & 166, 000 & 505, 000 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Pike--.---}} & \multirow[t]{2}{*}{935000} & \multirow[t]{2}{*}{- \(2,516,000\)} & \multirow[t]{2}{*}{\(4,882,000\)
630,000} & 3, 354, 000 & 6, 312, 000 \\
\hline & & & & & 115, 000 & 143, 000 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sturgeon. \\
Perch
\end{tabular}}} & \multirow[t]{2}{*}{74,000
552,000} & 61, 000 & 56, 000 & & 36,000 \\
\hline & & & 674, 000 & 1,042,000 & 1, 272,000 & 2, 109, 000 \\
\hline \multicolumn{2}{|l|}{Perch--.-.-.-.-.----} & 703, 000 & 883, 000 & 948, 000 & 900, 000 & 1, 227, \({ }^{233}, 000\) \\
\hline \multicolumn{2}{|l|}{} & & 979, 000 & 904, 000 & 431, 000 & 233, 000 \\
\hline
\end{tabular}
\({ }^{1}\) These fish were certainly not all pike, but probably included blue pike.
The interesting features of the table are the rise in production and the corresponding change in relative abundance since 1910, at about which time the increased demand for certain species raised the prices paid by American markets. The statistics have not been treated in a way to permit detailed analysis, but nevertheless certain tendencies are indicated by them. The sturgeon has declined to insignificance, and blue pike, perch, and "coarse fish" have steadily risen in importance since 1910. The whitefish, which also rose to prominence at that
time, fell off to an alarming degree by 1920. The once important carp has steadily declined. Bass and other game fish have for many years been placed on the protected list everywhere in Lake Erie and also in others of the Great Lakes.

\section*{PRESENT STATUS, METHODS, AND APPARATUS}

The amount of apparatus in use on Lake Erie, as stated in Table 8, has latterly been reduced on the Canadian shore and production has fallen off. Statistics for American waters also show a decline in the quantity of apparatus employed. As in the past, the fisheries on the western flat are at present mostly shore fisheries, conducted by means of traps on the American side and by pounds across the boundary. Their products are rough fish, though at certain seasons a few whitefish are also taken. Gill nets, chiefly of 3 -inch mesh, are also abundantly employed by the shore fishermen to take the same species, and at certain seasons seines are used, principally for the capture of carp in the marshes.

The tugs operating with gill nets alone are owned almost entirely on the eastern half of the lake. They use principally 3 -inch herring. nets, which at certain seasons they also set for blue pike and perch. All boats are now equipped with bull nets, and every boat has the necessary apparatus for floating nets. At certain seasons \(41 / 2\) to \(43 / 4\) inch whitefish nets are employed, but only for short periods, but most boats have a few gangs of such nets.

The fishing seasons vary in different sections of the lake, and it is now common practice for the tugs to migrate to other ports or even into the waters of other States and to return home again when fish appear near their own ports. There are no such migrations across the boundary line; though the Canadian authorities have had difficulty with American tugs that set nets in Canadian waters, and a patrol is maintained and such nets as are found are seized.

Considering the immense quantity of netting employed in so small an area as Lake Erie, it is surprising that any fish are left. At times, however, the fish seem to avoid all netting, and floated or sunken nets are alike useless. At such times fishing is discontinued or the efforts of the fishermen are directed toward less elusive species.

\section*{FISHING DISTRICTS}

On the Amcrican shore the principal gill-net ports, in geographical order, are Cleveland, Ashtabula, Erie, and Dunkirk, while on the Canadian shore Port Maitland, Port Dover, Port Burwell, Port Stanley, and Rondeau are most important. There are very important shore fisheries scattered all along the lake, particularly at the western end, but since the small boats engaged in these fisheries can find shelter almost anywhere along the shore they are not collected into harbors as is the case with the gill-net tugs. Cleveland, Loraine, Vermilion, Huron, Sandusky, and Toledo are the important centers handling the shore production on the American side of the lake, and on the Canadian shore most of such fish are shipped from Kingsville, Leamington, Rondeau, and Port Stanley.


Fig. 16.-Boats comprising the fishing fleet operating on Lake Nipigon lying at anchor off the little fishing station of Macdiarmid


Fig. 17.-A typical Lake Erie wholesale fish Jouse, loeated at Sandusky. The small launches are used in the shore fisheries, and the larger boats collect the production of the fishermen among near-hy islands


Fif. 18.-Clearing the gill nets. One man is arranging the net in the box as it is delivered by the lifter (the drum in the center); the other is removing the fish (herring) from the netting. At the right are the cleared fish in "lake boxes." Above these are the "net boxes," in which the netting is handled


Fig. 19.- Setting gill nets from the stern of a moving tug. The nets have just been lifted, so that the snarls have to be goten out as the nets are let into the lake

\section*{PRINCIPAL SPECIES}

Unlike any other of the Great Lakes the chief production of Lake Erie is "rough fish"; that is, species other than whitefish, herring, and trout. The species taken most abundantly in 1922 in American waters were, in order of abundance, herring, blue pike, sauger, carp, perch, sheepshead, yellow pike, and suckers. In 1922 the principal species on the Canadian side were blue pike, herring, perch, whitefish, and yellow pike. The relative abundance of these and other species as shown by the annual catches made on both sides of the international boundary at various censuses are given in Tables 10 and 11 (pp. 592 and 593).

\section*{WHITEFISH}

Whitefish formerly were produced principally on the flat at the western end of the lake, where they spawned, but now most of them are taken at other places on the lake, especially out of Erie, Dunkirk, and Port Maitland. Trap nets and pounds are chiefly used to take them in the west, while gill nets are employed in the east. In American waters the total catch showed decided improvement between 1903 and 1917. It is stated by the fishermen that the pollution of the Detroit River has driven the fish from many of their spawning grounds at the western end of the lake, and since 1920 the catches on these grounds are said to have been almost insignificant. The Canadian whitefish supply was not exploited to the limit until about 1908, and the catches in the last three years have fallen off considerably in spite of increased apparatus. The species is nowhere protected by a closed season, but spawn is collected to the capacity of the various State and Federal hatcheries.

\section*{HERRING}

The herring were for many years the mainstay of the fisheries, but with the rise in value of "rough fish" they no longer occupy so important a position. They occur throughout the lake except on the western flat, where they have been practically exterminated; but there are several races, and the schools do not migrate from one end of the lake to the other, as many of the fishermen suppose. They are taken chiefly in special gill nets, which may be 25 feet deep and are often floated off the bottom. The pound nets on the north shore are also an important apparatus of capture. It is interesting that at certain seasons the fishermen find it impossible to take them with netting of any sort.

Originally herring were so abundant that the fishermen were content if they could dispose of a fraction of what they were able to catch, but in late years their numbers have become very much reduced, and were it not for the fact that the price asked for them by the organized producers has risen to such an extent that the demand is thereby curtailed, the species must by now have been more seriously depleted. As it is, it is certain that the herring fishery could not have been maintained at its present level without the use of floated nets. The nets often take too many fish to suit the dealers, and it is not uncommon to limit the weight of the lift that a boat may bring ashore, or even to cease fishing operations entirely if the
supply exceeds the demand. Large quantities are stored in freezers and are later sold frozen or smoked. On account of their rich flesh and large size they have lately competed strongly with the chubs, which are superior in quality but much smaller in size and consequently are taken in nets of \(1 / 2\)-inch smaller mesh.

No States protect the herring with a closed season, but in recent years space in hatcheries not filled by whitefish eggs has been given over to the rearing of herring fry.

\section*{WALL-EYED PIKE}

There are in Lake Erie two races of wall-eyed pike-the yellow and the blue. Intermediates, called "grays," are also sometimes recognized.

The status of the blue pike has so far never been established. Various scientists have expressed the opinion that the "blues" are different from the "yellows," but except for rate of growth and color no differences have been fixed. The yellows occur chiefly on the flat at the western end of the lake; the blues occur there, too, but are most common in other sections. The laws of practically all the States differentiate between the two as between two species, and the size limit for the blue race is lower in every State. The gill-net tugs frequently fish for the blues, but both kinds are commonly taken in the pounds and traps, the blues often in such abundance that they can not be sold.

The yellows have decreased in abundance, and in 1917, in American waters, the blues showed a decrease, but since then they have again increased, particularly at the eastern end of the lake. In Canadian waters they have been taken abundantly for only 10 years, and their production appears not yet to have passed it zenith.

There is no closed season to protect either race, but the yellow pike is protected in New York and has everywhere been extensively propagated. Recently attempts to propagate blue pike met with some success. It is interesting to note that of the two species the blues are holding their own better.

\section*{SAUGER}

The sauger is a close relative of the wall-eyed pike and is often combined with it in the statistics. The chief catches are made in the waters of western Ohio. It is caught in the same apparatus with blue pike, and is not protected or propagated. Apparently it is maintaining itself as well as are its relatives.

\section*{YELLOW PERCH}

The bulk of the perch catch is taken on the western flat, though some are found all along the lake's shores. Pounds and traps are the chief apparatus of capture, though many perch are also taken by gill nets.

The yellow perch has long been a favorite in the American markets, and even before 1890 it occupied a prominent place in the catches of Lake Erie. The supply fell off sharply before 1917, and about 1910 the production on the Canadian shoré began to increase. From 1890
to 1899 the perch held fourth place in the production on the American side, but in 1917 it had fallen to ninth place. However, the price obtained rose from 1.5 cents in 1899 to 7.2 cents in 1917. In 1922 it ranked fifth, with an average price of 5.98 cents. On the Canadian side in 1910, at the beginning of the great spurt in production, the perch ranked about seventh, but by 1920 it had risen to third place, being exceeded in abundance only by the blue pike and herring.

\section*{STURGEON}

Sturgeon were first made use of on Lake Erie, where they were marketable, as early as 1860. The catch of this species in 1885 amounted to nearly \(5,000,000\) pounds, but after 1890 production fell rapidly, and in 1922 only 15,000 pounds were reported. Practically the only sturgeon now produced are taken at the eastern and western ends of the lake on the Canadian shore and in New York waters. In Canada the apparatus of capture includes pounds, night lines, and gill nets, and excepting pounds the same gear is used in New York. The quantity caught decreases from year to year and the extermination of the species seems certain.

As yet no protection is granted the sturgeon by any State except Ohio, but all have a size limit. None are propagated. Ohio has a permanent closed season on all sturgeon, and Pennsylvania, New York, and Ontario individually enacted laws for a closed season, but suspended their operation because their neighbors had not at that time enacted similar legislation.

\section*{SHEEPSHEAD}

The sheepshead is taken chiefly on the western flat, and until 10 years ago was considered hardly worth bringing ashore. The domand has now increased, however, and in 1922 this fish brought an average price of 2.4 cents, as compared with 0.9 cent recorded in the census of 1908. In 1923 as high as 6 cents was paid to the fishermen. The catches are made almost entirely with trap nets, and in the past three years have declined considerably. The species is not protected by a closed season and is not propagated.

\section*{SUCKERS}

Suckers occur all along the shores, but most of the catch is now made on the western flat in trap nets, though other devices are used also. Suckers have long been in demand as a cheap fish, and the supply shows a general decrease. There is no closed season and no propagation.

\section*{OTHER INDIGENOUS SPECIES}

Every fish taken in Lake Erie now has a market value. Most of the less important species are relatively rare and the price of some of them is low. As a general thing these are taken only incidentally in the catches of more valuable and abundant species. Among these miscellaneous fish may be mentioned the catfish, bullheads, white bass, pike, mooneye, sunfish, rock bass, bowfin, lawyer, and trout.

All of them except the trout and possibly the lawyer thrive best on the western flat and are taken chiefly in traps.

The trout frequents the deeper waters at the eastern end of the lake, and is caught in gill nets. Catfish, bullheads, and white bass at one time or another held an important place in the fisheries, but though they still bring good prices their numbers have been much reduced. The trout is one of the most valuable species in the lake and also one of the rarest. It was never as abundant in Lake Erie as in the other Great Lakes, and in late years has become so rare that almost no effort is made to take it. None of the species mentioned are protected by a closed season and none of them are propagated.

\section*{INTRODUCED SPECIES}

\section*{CARP}

The carp is now one of the most abundant species on the American shore of Lake Erie and has become quite popular with the fish dealers. The principal catches are made west of Sandusky, where they are taken in the marshes at certain seasons by means of seines. They are often kept alive in ponds and sold during the winter when fish are scarce and prices are higher. New York City is the most important market for carp. These fish were not originally planted in Lake Erie but are said to have escaped into the lake from private ponds about 1883 . They increased rapidly, and 10 years later were abundant enough to be mentioned in the census. In the last 5 years carp have decreased significantly everywhere in the lake.

\section*{GOLDFISH}

Goldfish are reported to be very abundant in Maumee Bay, where they are taken in traps in the spring. It has been estimated that from 10 to 15 tons are taken annually in the bay, but they have no market value and are therefore liberated. Carl L. Hubbs, of the Museum of Zoology, University of Michigan, informed me that individuals of the species are not uncommonly caught in the nets at Monroe, and fishermen report occasional specimens on the north shore.
GIZZARD SHAD

The gizzard shad, or sawbelly, is one of the commercially insignificant species of the lake. It is said to have entered the lake through canals from the southward, and has now spread even into Lake Huron.

\section*{FISHING REGULATIONS}

Fishing laws on Lake Erie are administered by the States of New York, Pennsylvania, Ohio, and Michigan, and the Province of Ontario. These laws are compared in the following sections.

\section*{APPARATUS}

Gill nets.-Michigan and Ontario do not permit the use of gill nets of smaller mesh than \(41 / 2\) inches for taking whitefish, and in New York nothing smaller than \(43 / 4\)-inch netting may be used. Ohio and Pennsylvania do not regulate the size of the mesh for taking
whitefish but prohibit the taking of fish smaller than \(13 / 4\) pounds in the round.

The laws regarding trout nets are the same as for whitefish, except that Pennsylvania requires that the mesh be not smaller than \(51 / 2\) inches. For all other species excepting sturgeon no net of smaller mesh than 3 inches may be employed, except in Michigan where the minimum mesh is virtually \(23 / 4\) inches.

The laws provide for the use of \(21 / 2\)-inch nets for taking blue-backed herring from November 1 to December 15, but few such fish occur in Michigan waters at that season. Until 1923 23/4-inch nets were allowed in the eastern end of the lake in Canadian waters.

For the capture of sturgeon the State of New York requires 10-inch nets. Michigan, Pennsylvania, and Ontario have no regulations with respect to nets for catching sturgeon but limit the size of the fish that that may be taken, while Ohio entirely prohibits their capture.

Ontario and Pennsylvania have enacted laws to prohibit the use of bull nets. In Ontario waters no gill net may be deeper than 36 meshes, while in Pennsylvania 30 meshes is the maximum depth allowed. The Ontario law has been in force since January 1, 1923, but in Pennsylvania the law will not become effective until Ohio and New York have provided similar restrictions.

Seines.-In Michigan the mesh of seine wings may not be smaller than 4 inches and that of the bag not less than \(21 / 4\) inches, while in New York no seine with smaller meshes than 3 inches is licensed. Ohio places no restriction on the use of seines in the open lake, but permits nothing less than 4 -inch mesh in the marshes. In Ontario and Pennstylvania there are no regulations governing seines.

Pound nets.- In Michigan pound nets for taking whitefish and trout may have the mesh of the bottom, sides, and front of the pot not less than \(31 / 2\) inches in size, as used, and that of the back not more than 2 inches, as manufactured, for at least 15 feet below the surface of the water. If the mesh of the bottom, sides, and front of the pot is not less than 4 inches, as used, the size of mesh necessary in the back is not specified. Pound nets with the front, sides, and bottom of the pot of mesh not smaller than \(21 / 4\) inches and the back with meshes of not more than 2 inches may be used for other fish if they do not catch more than 10 per cent of mature whitefish and trout in a season. The size of mesh in the lead and heart is also specified throughout, and provision is made for the use, from October 1 to June 15, of a pound with a pot made of mesh not smaller than 2 inches throughout, as manufactured, for the purpose of taking bluebacked herring.

There are no regulations governing the mesh of pound nets in Ontario, but the size of the fish that may be taken is regulated. In Ohio one-third the back of the pot of pounds must be constructed of mesh not less than \(27 / 8\) inches in size, as fished, and the back shall hang squarely. In Pennsylvania no pound-net pot may have a mesh of less than \(2 \frac{1}{2}\) inches, as fished. New York does not license pound nets.

Trap nets and fyke nets.-In Michigan, Ohio, and Pennsylvania the laws governing trap nets and fykes are practically the same as for pounds. In Ontario no traps are licensed and the mesh of fykes may be not less than \(21 / 2\) inches. In New York no trap net or fyke may have meshes smaller than 3 inches.

The regulations governing legal size of fish are given in Table 12.
Table 12.-Minimum size limits of fish that may be taken in Lake Erie, as decreed by the laws of the various States
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & New York & Ontario & Pennsylvania & Ohio & Michigan \\
\hline Whitefish.-- & \[
\begin{aligned}
& 13 / 4 \text { poun nds, } \\
& \text { round. }
\end{aligned}
\] & 2 pounds, round.
8 ounces....---- & \begin{tabular}{l}
\(13 / 4\) pounds, round. \\
6 ounces, round
\end{tabular} & \begin{tabular}{l}
\(13 / 4\) pounds, round. \\
11 inches
\end{tabular} & 2 pounds, round. \\
\hline Blue pike. & & 11 inches. & 11 inches.-.-- & ---do- & \\
\hline Yellow pike. & 12 inches. & 15 inches. & 13 inches. & 13 inches. & \[
11 / 2 \text { pounds, }
\] \\
\hline Sauger--- & & & 11 inches & 11 inches. & \\
\hline Catfish & & 9 inches & & 15 inches_ & 2 pounds, round 9 inches. \\
\hline White bass.- & & 9nches. & & --.-do.- & \\
\hline Bullhead...- & & & & --do- & 8 ounces, round. \\
\hline Sheepshead & & 12 inches & & 11 inches. & \\
\hline Carp_------- & & 3 pounds, round. & & 15 inches.-.---- & \\
\hline Sturgeon-- & 42 inches & 42 inches & 48 inches. & (Closed season). & 20 pounds , round. \\
\hline Trout... & 15 inches.. & 2 pounds, round. & & & \(11 / 2\) pounds round. \\
\hline Sucker Pike & & & & & 1 pound, round. 2 pounds, round. \\
\hline
\end{tabular}

Ontario specifies that the length of a fish shall be measured from the tip of the nose to the center of the tail. Other States do not define length.

\author{
CLOSED SEASONS
}

There is a winter closed season along the lake in Pennsylvania from December 16 to March 1, both dates inclusive, during which all fishing is prohibited. In Ontario the closed season extends from December 15 to March 15 west of longitude \(80^{\circ} 30^{\prime}\) west, and in Ohio it covers the period from December 15 to March 14. New York has no winter closed season but will probably enact one for the sake of uniformity.

Whitefish and trout are protected nowhere except in Michigan, where a closed season operates during the spawning period. However, Ohio prohibits using nets on the reefs except with the permission of the Secretary of Agriculture. Since whitefish spawn on the reefs, the taking of spawn is in this way controlled. Michigan has never had trout in its waters and at present has but few whitefish, but the State has declared a closed season on whitefish from November 20 to December 15. Fishing is permitted during the spawning season if the spawn is saved. New York provides in its fishing licenses that the spawn of these species must be saved.

Yellow pike are protected in New York waters from March 2 to May 9, both dates inclusive. The blue pike, which are by far the more numerous, are not included in this protection.

No sturgeon may be taken in the State of Ohio. New York, Pennsylvania, and Ontario have tried for a number of years to come to an agreement to protect the sturgeon, but so far have met with no success, and fish larger than the minimum size provided by the various State laws may still be taken. It is deplorable that laws can not be enacted to save the sturgeon.

There are no closed seasons in any State for the protection of any species except those mentioned.

The laws are in no respect so seriously at variance with one another as in the matter of trap and pound nets. The smallest mesh that may be used in New York is 3 inches, in Pennsylvania \(21 / 2\) inches, and in Ohio \(27 / 8\) inches. In Michigan the mesh of the back of the pot may not be larger than 2 inches unless the mesh of the rest of the pot be at least 4 inches in size. Ontario has no regulations at all governing the size of mesh. Furthermore, some of the States do not distinguish between meshes as manufactured and as fished. Before the netting is used it is tarred, and this treatment increases the diameter of the twine and the water later shrinks it; all of which reduces the size of the mesh. The Ohio law alone specifies that the mesh shall hang squarely so that small fish may be able to escape. If the netting is not properly strung, the openings of the mesh are reduced and the escape of small fish is restricted. Many conservationists believe that up to a certain point the meshes of trap nets can not be made too small, since when they are small fewer fish gill themselves in the twine when the net is lifted. This might be true if the fishermen could be persuaded to take time to lift their nets so slowly that it would be possible to sort out the marketable fish and release the rest without injuring them; but such procedure is not always practicable, and the young are too frequently injured or even destroyed in the lifting. There are, furthermore, provisions in the laws of most of the States permitting the possession of from 3 to 10 per cent of undersized fish.

Many States fail to provide size limits for certain species. However, except for the sucker and the pike the other undesignated species are not sufficiently important in the various States, where the laws now make no provision for them, to become the objects of particular legislation.

\section*{LAKE ONTARIO}

\section*{DESCRIPTION}

Lake Ontario is the smallest and the farthest east of the Great Lakes and is bounded on the north and west by the Province of Ontario and on the south and east by the State of New York. It has a length of 185 miles and an average width of 40 miles, and, with its bays, a total area of about 7,300 square miles. There are no islands or shoals except near the outlet, where it discharges into the St. Lawrence River. The shores everywhere slope rapidly into deep water, but most rapidly on the south, and the deep trough runs nearer this shore. The 30 -fathom contour on an average runs less than 3 miles from land on the southern shore, while on the north it is about 5 to 10 miles distant. The trough broadens toward the east and is overlaid by depths of 70 to 90 fathoms in the western half and by 90 to 123 fathoms in the eastern half. The bottom over most of the lake is clay, with narrow stretches of sand and rock along the shores, particularly among the islands at the eastern end.

\section*{FISHING INDUSTRY}

\section*{HISTORY}

The fisheries of Lake Ontario began with the settling of its shores, and the first species sought were the whitefish and trout. These were taken with seines, which gear, it is said, was used as early as 1807. Fishing by this method was conducted principally on the northeastern and eastern shores, but seines were also drawn wherever the bottom was suitable. According to all accounts large numbers of sturgeon and herring were included with the whitefish and trout, but these were not desired and were destroyed as nuisances along with the smaller whitefish. The catch was salted, and this practice was continued until about 1860 , when the fish became rare in the shore waters. Gill nets were then employed, since thereby the deeper waters could be reached. Pound nets were never widely used on Lake Ontario, and in recent years none have been licensed. With the general decline in abundance of whitefish and trout gill nets of smaller mesh were set for herring and the sturgeon was marketed.

The catch of trout and whitefish in American waters dropped off to insignificance as early as 1885, and by that year the chief production on the Canadian shore was herring and ciscoes. The latter were discovered in the western waters about 1860, and played an important rôle in the fisheries of that section for many years. The best fishing grounds on the Canadian side are at the east end of the lake, and at first fishing was most intense there. With the exhaustion of the original whitefish and trout grounds here and the increase in the demand for herring the center of fishing activities swung to the west end of the lake westward from Toronto. By 1910 the economic forces that stimulated fish production on the Canadian side of Lake Eric and in other Canadian waters at about the same time were felt on Lake Ontario, and fishing apparatus increased enormously, resulting in a more intensive and extensive exploitation of the fishery resources, particularly of the salmonids. Since this date over two-thirds of all the netting on the lake has been employed in a small sector to the eastward from Brighton.

Only a narrow shelf along the American shore is suited for shore fishing, and since this area was thoroughly exploited from the beginning the American fishermen had no other place in which to look for whitefish or trout and turned their attention to other species.

About 1875, out of Oswego, a large deep-water herring was discovered in 60 fathoms and deeper, which supported the fishing industry out of that port for about 12 years. These fish were known as "bloaters" and were caught with \(31 / 2\) to 4 inch nets. Bloater fishing spread along the shore, and by 1890 was established at Wilson. By 1895 the bloater was everywhere so rare that no one fished in deep water, and since then the little fishing done on the American shore has been carried on chiefly by means of trap nets, which had been in growing use since 1885.

The trend of the fisheries on the American shore may be clearly expressed by a digest of the statistics over a period of years, itemized in Table 13.

Table 13.-Weight, in pounds, of the annual catch of the principal species of fish taken in the American waters of Lake Ontario, as shown by eight censuses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & 1880 & 1885 & 1890 & 1893 & 1899 & 1903 & 1908 & 1917 & 1922 \\
\hline Whitefish & 1,064,000 & 90,000 & 148,000 & 45,000 & 161,000 & 25,000 & 56,000 & 88, 000 & 54, 000 \\
\hline Trout- & 569,000 & 20,000 & 41,000 & 6,000 & 15,000 & 4,000 & 14,000 & 23, 000 & 46,000 \\
\hline Herring (including bloaters) & 611,000 & 403, 000 & 598, 000 & 164,000 & 86,000 & 121,000 & 35,000 & 424,000 & 187, 000 \\
\hline Sturgeon. & 545, 000 & 386,000 & 541,000 & 125, 000 & 189,000 & 110,000 & 37,000 & 10,000 & 34,000 \\
\hline Wall-eyed pi & (1) & \({ }^{2} 269,000\) & 331,000 & \({ }^{2} 216,000\) & 197, 000 & 68,000 & 154, 000 & 35,000 & 141,000 \\
\hline Perch & (1) & (1) & 358, 000 & 131,000 & 407, 000 & 122, 000 & 35, 000 & 31,000 & 30,000 \\
\hline Catfish and bullheads & (1) & 442,000 & 471,000 & 69,000 & 518,000 & 349, 000 & 122,000 & 45, 000 & 107,000 \\
\hline Suckers & (1) & \(\left.{ }^{1}\right)\) & 279,000 & 47,000 & 278, 000 & 773,000 & 128,000 & 71, 000 & 77,000 \\
\hline Pike. & (1) & & 129, 000 & & 100, 000 & 31,000 & 87,000 & 15, 000 & 19,000 \\
\hline Carp & & & & & 1,000 & 4,000 & 4,000 & 25, 000 & 138,000 \\
\hline Eels.- & (1) & 61,000 & 257, 000 & (1) & 123, 000 & 73,000 & 44,000 & 41,000 & 45, 000 \\
\hline Lawyer. & & & & & & & & 61, 000 & 15,000 \\
\hline
\end{tabular}
\({ }^{1}\) Not itemized.
\({ }^{2}\) Including pike.
In 1880 whitefish, trout, herring, and sturgeon made up over 75 per cent of the total production of \(3,640,000\) pounds; the greatest year on record. In the six censuses taken between 1885 and 1908 the catch of these species, combined, was less than half that of "rough fish"principally wall-eyed pike, perch, eels, suckers, and such other species as frequent the shores. The high point in the production of rough fish was reached in 1890, and the catch has declined since, so that in 1917, even with the stimulant of war prices, the total yield of these species fell below that of any previous census and was exceeded by the 424,000 -pound catch of herring in that year. In 1921 the New York law was amended to permit fishing to within \(1 / 2\) mile of shore, instead of 1 mile, and it is possible that the slightly increased catch of 1922 was partly due to the enlarging of the available fishing grounds.

The history of Canadian fisheries has been more cheerful, due to better fishing grounds on that side of the lake and also to the greater care taken of them. After the whitefish and trout fell off (in about 1885) the chief fisheries were for ciscoes, herring, and rough fish, and not until 1905, when netting was more commonly used in the eastern waters, which have always produced most of the whitefish and trout, did these species rise to prominence again. They are now the mainstay of the Canadian fisheries, though significant quantities of herring and rough fish are also produced. Ciscoes have for many years been commercially extinct. Herring were caught chiefly west of Toronto until 1918, but since then they have become rarer in these waters and the catches in the east have increased so that now the east side of the lake exceeds the west side in the output of these fish. Rough fish have always been most abundant in the east.

\section*{PRESENT STATUS, METHODS, AND APPARATUS}

On the American shore only small launches are now used in the fisheries and trap nets and fyke nets are their chief equipment. Occasionally, however, a larger boat, usually from Lake Erie, equipped with abundant up-to-date apparatus, has been lured to Lake Ontario by the prospect of great fish wealth present in the deeper waters, into which the frail craft of the native fishermen do not venture, but the prospectors soon become disillusioned and return whence they come. There are still a few gill-net fishermen, mainly
at the eastern end of the lake, who fish during the summer for whitefish and herring, and some fishermen still use gill nets at certain seasons for taking sturgeon. Hooks are also used for taking sturgeon, as well as for eels. No pound nets are licensed.

Many of the fishermen now ply their trade only when runs of certain species may be expected, and at other times they withdraw their netting. The schools of herring that come ashore at certain places in the fall receire especial attention.

The best fishing obtains off the Canadian shore, and the majority of fishermen on the lake are Canadians. Here, also, the fishing boats are small launches and rowboats, but gill nets are the chief apparatus. These are lifted by hand. Trout and whitefish are the principal species taken with large-meshed gill nets and herring with the smallmeshed nets. Pound and trap nets are not licensed. Fykes may be fished but are used only at the eastern end, where their catch consists chiefly of rough fish. Hooks are also employed in this region for taking eels and catfish, and a few seines are operated here and elsewhere. The amount of apparatus engaged in the fisheries is increasing.

\section*{FISHING DISTRICTS}

Since only small boats are employed in the fisheries, these can find shelter almost anywhere along the shore, and the principal fishing districts may be most conveniently designated by the larger political subdivisions. On the New York shore these are Jefferson and Oswego Counties, and on the Ontario shore Lincoln and Halton Counties on the west and Durham, Northumberland, and Prince Edward Counties, including the Bay of Quinte, on the east are the important districts.

\section*{PRINCIPAL SPECIES}

The principal species on the American shore in 1922, the last census year, was the herring, of which about 187,000 pounds were taken. Wall-eyed pike ranked second, with 141,000 pounds, while carp and bullheads came third and fourth, respectively, with 138,000 and 107,000 pounds.

On the Canadian shore in 1922 whitefish ranked first, with a production of \(2,098,000\) pounds, while trout were second with 721,000 pounds. Coarse fish-chiefly suckers, pike, catfish, eels, wall-eyed pike, carp, and perch-ranked next in order of abundance. The production in 1917 and 1922 is more fully shown in Tables 13 and 14.
Table 14.-Weight, in pounds, of the annual catch of each of the important species and amount of gill netting used in the Canadian waters of Lake Ontario, as shown by 10 censuses
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & 1880 & 1885 & 1890 & 1895 & 1900 \\
\hline Whitefish_ & 729, 000 & 360,000 & 404, 000 & 126, 000 & 129, 000 \\
\hline Trout. & 249, 000 & 307, 000 & 106, 000 & 109, 000 & 60, 000 \\
\hline Herring, including ciscoes & 233, 000 & 1,503,000 & 2, 484,000 & 1,407,000 & 1,095,000 \\
\hline Sturgcon & 16,000 & 55, 000 & 41,000 & 39,000 & 18,000 \\
\hline Pickerel & 139, 000 & 229, 000 & 135, 000 & 245, 000 & 34, 000 \\
\hline Pike. & 80,000 & 255, 000 & 213, 000 & 445, 000 & 232, 000 \\
\hline Eels & (1) & 18,000 & 29,000 & 37,000 & 40,000 \\
\hline Perch & (1) & & & 249, 000 & 283, 000 \\
\hline Catfish & (1) & (1) & \({ }^{(1)}\) & (1) & \\
\hline Carp & & & (1) & (1) & (1) \\
\hline Mixed and coarse fish & 978, 000 & 936, 000 & 780, 000 & 714,000 & 722,000 \\
\hline Gill nets, yards.- & 399, 000 & 236, 000 & 305, 000 & 346,000 & 462, 000 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Not separated from "mixed and coarse fish."
}

Table 14.-Weight, in pounds, of the annual catch of each of the important species and amount of gill netting used in the Canadian waters of Lake Ontario, as shown by 10 censuses-Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & 1905 & 1910 & 1915 & 1920 & 1922 \\
\hline Whitefish. & 472,000 & 694,000 & 817,000 & 2,027,000 & 2,098,000 \\
\hline Trout. & 75,000 & 413, 000 & 555, 000 & 462,000 & 721,000 \\
\hline Herring, including ciscoe & 1,390, 000 & 997, 000 & 1, 801, 000 & 1,291,000 & 345,000 \\
\hline Sturgeon & 14,000 & & 1,000 & & 1,000 \\
\hline Pickerel & 48, 000 & 60, 000 & 85,000 & 46,000 & 144,000 \\
\hline Pike.. & 203, 000 & 378, 000 & 366,000 & 311, 000 & 250, 000 \\
\hline Eels & 19,000 & 104,000 & 219, 000 & 91, 000 & 146. 000 \\
\hline Perch & 179, 000 & 128,000 & 119, 000 & 107, 000 & 74,000 \\
\hline Catfish & 135, 000 & 269, 000 & 267, 000 & 170,000 & 177,000 \\
\hline Carp & & 140,000 & 112,000 & 65, 000 & 121,000 \\
\hline Mixed and coarse fish & 257,000 & 367, 000 & 438, 000 & 413, 000 & 448, 000 \\
\hline Gill nets, yards.. & 499, 000 & 1,075, 000 & 887,000 & 1,057,000 & 1,600,000 \\
\hline
\end{tabular}
\({ }^{1}\) Not separated from "mixed and coarse fish."

\section*{WHITEFISH}

The whitefish originally ranked first in the fisheries on the American shore, but few are now taken and thase are produced for the most part in Jefferson and Oswego Counties. At other points along the American shore they are taken only occasionally. The whitefish is now first in abundance on the Canadian side of the lake and still supports a fishery out of many ports, but by far the most productive whitefish area lies eastward from Brighton. The best spawning grounds are also in this region. Gill nets are the principal apparatus of capture. There have been times when in many sections the species was rarer than at present and the fishermen ascribe the increase to planting and to the unusually low mortality among the alewives in recent years. There is no closed season for whitefish on the lake, but the species is extensively propagated.

\section*{LAKE TROUT}

The lake trout is now an insignificant element in the American waters and such few as are taken come from the eastern end of the lake. On the Canadian shore the trout is next in importance to the whitefish, and its geographical distribution is similar to that of the whitefish, being most abundant at the eastern end. The fish is taken chiefly in gill nets, though there was a time prior to 1900 when set lines were employed to some extent. There is no closed season on trout and the species has not been very extensively propagated.

\section*{HERRING}

On the American shore of Lake Ontario herring are taken principally in the area from Sodus Bay eastward to the St. Lawrence River. Most of them are caught in the fall in trap nets and gill nets when they come ashore to spawn, but a few fishermen, particularly in Oswego County, fish for them with gill nets during the summer and take them abundantly in water as deep as 200 feet.

On the Canadian shore most of the herring are taken in shallow water at the west end of the lake and in the Bay of Quinte region. Herring are also found at the west end in deep water, and until 1923
it was permissible to use a mesh of \(21 / 2\) inches to take them in this area. These deep-water herring are fatter than those taken along the shores or from other sections of the lake, and are sometimes smoked. The use of \(21 / 2\)-inch nets dates back to the "cisco" fishing of 1860 and thereafter, but the fishermen are unanimous in their opinion that these herring have succeeded the "ciscoes."

Herring are not protected by a closed season, but are sometimes propagated. They have fluctuated in abundance from year to year in certain areas of the lake, now appearing on certain spawning grounds in immense schools and then forsaking them for a period of years, often to return again in apparently undiminished abundance.

\section*{bloaters and ciscoes}

The bloater is a deep-water herring that attained a weight of about \(11 / 2\) pounds, which was taken principally along the American shore, though for three or four years, in the nineties, it was also taken out of the Canadian ports at the west end of the lake. Nowhere else does a depth of 60 fathoms (which is the depth at which the bloater lived) occur within sight of shore, and the sailboats, which were chiefly in use at that time, could not set nets and expect to find them again unless it was possible to take range of their location from points along the shore.

The first fishery for bloaters was carried on out of Oswego about 1875. A fisherman operating out oif that port found a few individuals in the outer ends of his whitefish gangs and conceived the idea that it might be profitable to fish them. The fish were sold fresh and were so much in demand that at one time there were several boats engaged exclusively in bloater fishing out of that port. The industry gradually spread to the westward, and by 1890 bloaters were being taken out of Wilson. At first they were extremely abundant and it was never necessary in American waters to use a net of smaller mesh than 3 inches, and usually the mesh employed was \(31 / 2\) inches, but before 1900 the bloater was commercially exterminated, and efforts to revive the industry since then have met with absolute failure. Repeated efforts to locate these fish, made by me in the summers of 1921 and 1923, failed, and not a single specimen was found, so that it appears likely that the species is extinct. No cause for its extermination suggests itself. At no time were any but the largest examples of the species taken, and so far as known it had no important vertebrate enemies. The case has close parallels in the related blackfin of Lake Michigan and the bluefin in Lake Superior, which suddenly became commercially insignificant, though not extinct, under identical conditions.
1 The "ciscoes" were also deep-water fish, which were discovered off Burlington Beach about 1860. Until about 1895 they were taken in \(21 / 2\)-inch nets at a depth of 35 fathoms and more, chiefly in late fall when they spawned. In the nineties, from all accounts, the bloaters appeared off the shore, because the Canadian fishermen found it necessary to use nets of \(31 / 4\) inches to take them. These nets were used for three or four years. Since 1900 there have been no more "ciscoes," according to the fishermen.

What the "ciscoes" were can not be positively stated, but it is likely that they were Leucichthys hoyi, which is known to occur more of less abundantly in other parts of the lake, though none are taken
because nets of small enough mesh are not permitted. Two other species of deep-water herring occur with hoyi in depths of 50 to 70 fathoms, but these are also small and can not be taken in the minimum 3 -inch net which is now allowed. The nets of \(21 / 2\) inch and \(23 / 4\)-inch mesh set by me in the summer of 1921 showed that these three species occur off Wilson, Rochester, and Sodus Point. Since about half the entire area of Lake Ontario is frequented by no other fish than these three species and the lawyer, it would be a distinct economic gain if they might be taken commercially.

\section*{OTHER INDIGENOUS SPECIES}

The "rough fish" are found only in the shallowest water, and such areas have been pretty well protected on Lake Ontario. The New York law allowed no nets within 1 mile of shore from about 1890 until 1921, and the Canadians licensed practically no traps or pounds. The chief species are sturgeon, eels, pike, wall-eyed pike, suckers, catfish, bullheads, perch, and lawyer. The Atlantic salmon, which was at one time abundant in the streams emptying into Lake Ontario, is now probably extinct.

The sturgeon, once valueless, is now the most valuable of all the species in the lake, and though almost exterminated it is still abundant enough on the American shore so that several fishermen make particular efforts during the summer to capture it. Gill nets and set lines are used, and the output is a few hundred fish yearly.

The eel, which obtains access to the lake from the St. Lawrence River, is taken chiefly on night lines, and all the other species are taken in fykes, traps, or gill nets. The greatest amount of each species, except the sturgeon and lawyer, is taken on the Canadian side, where the most sheltered situations occur.

The lawyers are abundant enough everywhere, but the Canadians have no market for them and the Americans have just begun to utilize them. The campaign of the United States Bureau of Fisheries to acquaint people with the food qualities of this species is no doubt largely responsible for the increased demand.

None of the species mentioned in this section are protected by a closed season except the wall-eyed pike, which in New York may not be taken from March 2 to May 9, both dates inclusive. However, most of the wall-eyed pike in American waters are of the blue race, and these are not protected in any manner whatever.

\section*{INTRODUCED SPECIES}

\section*{ALEWIFE}

An account of the Ontario fisheries is not complete without mention of the alewife, which was present in abundance in the lake as early as 1873, according to a letter found in the files of Fisheries Inspector John W. Kerr, of Hamilton, dated June 10, 1873. It is supposed to have been introduced, and is at present very abundant along the shores but is not taken for market. Its chief interest lies in the heary mortality among adults in the spring, when they are said to occur frequently in windrows on the beaches. To the decay of these carcasses the fishermen attribute in large part the decrease of the whitefish, and from personal observations I believe that it is not
improbable that this may have been a factor. On August 24, 1923, while witnessing the lifting of a 3 -inch gill net set for lake herring in 30 fathoms off Sandy Pond, from three to nine dead and decayed fish were brought up between each two corks (about 8 feet), wrapped about the threads of the net. The nets had been out for two nights and a stiff breeze had induced the currents, which swept the fish along the bottom and entangled some of them in the nets.

\section*{CARP}

Another important nonindigenous species is the carp, which is thriving in Lake Ontario, where conditions are suited to it. They are caught for market at several points on both the American and the Canadian shore, chiefly at the eastern and western ends. They are taken for the most part in seines and traps on the American side and by seines on the Canadian shore.

\section*{SHAD}

Shad were introduced into Lake Ontario many years ago and for a time were occasionally taken. Specimens are still reported at rare intervals.

\section*{FISHING REGULATIONS}

\section*{APPARATUS}

Gill nets.-The New York law allows no gill net of a mesh less than \(43 / 4\) inches to take whitefish or trout in Lake Ontario, and the Ontario law allows none smaller than \(41 / 2\) inches. For sturgeon New York requires a gill net of not less than 10 -inch mesh, while Ontario has no requirements but regulates the length of the sturgeon that may be possessed. For all other species gill nets of not less than 3 -inch mesh are legal. In addition, the New York law specifies that no net may be set within \(1 / 2\) mile of land or within 1 mile of the mouth of the Niagara River, except that nets may be set for herring from October 15 to December 15 outside of an area 500 feet from shore and outside a radius of 1,000 feet from the mouth of any river, bay, inlet, or outlet. There are exceptions to this law in the case of some of the larger bays.

No Canadian fisherman may use a gill net of greater depth than 36 meshes, and certain restrictions are placed on fishing in the Bay of Quinte.

Seines.-No seine of less than 3 -inch mesh may be used in New York waters. Ontario does not specify the size of mesh that may be used.

Trap nets.-Pound nets are not licensed on Lake Ontario. Trap nets are prohibited in the Ontario waters of the lake, but fyke nets are allowed and may be of a mesh not smaller than \(21 \frac{1}{2}\) inches. Both traps and fykes are allowed in New York but may not be of mesh smaller than 3 inches.

\section*{SIZE LIMITS}

New York State prohibits the taking of whitefish of less than \(13 / 4\) pounds in the round, trout less than 15 inches in length, wall-eyed pike (yellow only) less than 12 inches, or sturgeon less than 42 inches.

The Ontario law prohibits the taking of whitefish or trout under 2 pounds in the round, herring under 8 ounces, carp under 3 pounds, sturgeon under 42 inches, wall-eyed pike (blue) under 11 inches, wall-eyed pike (yellow) under 15 inches, perch under 9 inches, sheepshead under 12 inches, and white bass under 9 inches.

\section*{CLOSED SEASONS}

There is no closed season on any species except that wall-eyed pike (yellow) may not be taken in New York waters from March 2 to May 9, both dates inclusive.

\section*{CONSERVATION OF THE GREAT LAKES FISHERIES}

\section*{DEPLETION AND ITS CAUSES}

The preservation of the fisheries has been discussed often during the past 50 years, and more excellent suggestions have been made than have been followed. In the meantime the fish supply has continued to decrease. No argument is necessary to prove that fish are now less abundant than they were 50 years ago, but it is of interest to express, if possible, the relationship between present and past abundance. The complete statistics for American waters gathered in 1917 disclose a 100 per cent inflation in the value of fisheries products, which stimulated a production hardly equal to that of a preceding survey in 1908 and below the level reached in 1890 and 1899. Fifty per cent more gill nets and about 90 per cent more traps were needed to attain this level. The 1922 data show the amount of apparatus to have declined somewhat, and the catch to have increased slightly, but the quantity of apparatus is still greater than that reported at any census previous to 1917, and the catch of what were "rough fish" in 1880 is by far the highest on record. On the Canadian shore fishing has not been prosecuted so intensipely or extensively as on the American shore until within the last 10 years, but the Canadian statistics show the same unequal relationship between the increase in apparatus and the increase in production. The statistics do not show what part of the total yield is made up of previously undesirable species, nor do they reflect the effectiveness of the superior apparatus now generally employed.

If we turn from incomplete statistics to a consideration of the testimony of the fishermen we are forced to the same conclusion. While in certain localities the pursuit of the remnants of certain species has so fallen off as to allow them to maintain their numbers or even to increase somewhat, in general, the situation can not be viewed with any satisfaction. We are faced with the extermination of the sturgeon in all the lakes, of the bluefin in Lake Superior, the blackfin in Lake Michigan, and the bloater in Lake Ontario, and with the reduction of the whitefish from first place in abundance in 1880 to fourth place in 1922, with that place contested closely by the sucker, which was in 1880 not considered worth the catching.

\section*{POLLUTION}

The pollution of the streams and shores that serve as feeding and spawning grounds for the fish is believed to have contributed in no small degree to the reduction of the fish supply. In the days of lum-
bering, sawdust, bark, and logs were thrown into the water, and often streams were blocked with this refuse. The bottoms of the lakes are still strewn with this debris, and in stormy weather the nets in shallow water are in danger of destruction from the logs and bark, which have becu preserved in the cold water for the last five decades and are washed hither and thither by the waves. These substances have probably long since ceased to be chemically active, but their mechanical effect in smothering the bottom can not be negligible.

In later years the pollution of rivers and bays by modern industrial plants has made barren some of the most productive fishing grounds, and the continuation of the evil is not only preventing the recovery of these grounds but is spreading its effects. The dumping of ashes into the lakes by steamboats must also have an effect, even on waters so extensive in area as those of the Great Lakes, especially when one considers that the tonnage of shipping that annually passes through the Soo locks alone is greater than that through the Panama Canal. The total weight of such waste must every year run into thousands of tons, and so generally is it distributed that it is not uncommon to pick up clinkers in the gill nets in deep water.

The practice of dumping fish offal into the lake, even where gulls are at hand to feed on it, is also to be deplored. The gulls are not always hungry enough to consume even such particles as float and those that sink lie on the bottom for months, decomposing but slowly because the water is of such low temperature. There are laws prohibiting the dumping of fish refuse, but it is not surprising that such laws are not strictly adhered to when their violators are constantly and in every way reminded of pollution from more noxious sources.

The effects of this pollution are mechanical or chemical, or both. No one can defend the introduction into the lakes of substances that smother the bottom, but it is possible to argue in favor of certain forms of chemical pollution. The argument must be drawn from analogy of the effects of such chemicals in small lakes, but since the conditions in shallow lakes are so radically different from those in bodies of water like the Great Lakes that they even maintain an entirely different fauna it must be admitted that a strict analogy is not possible. The fact that pure water will not maintain aquatic life is generally known, and it is a conspicuous feature of the waters of the Great Lakes that they are relatively so very pure. The quality of the water, within certain limits, of course, affects fish only indirectly by influencing their food. In the case of the Great Lakes we know that prior to human interference in their economy the animals that comprised the food of the typical Great Lakes' species were sufficiently abundant to support a fish population vastly denser than that of to-day, and it must follow that to introduce into the water foreign substances of unknown effect may be deleterious to this food supply.

\section*{WASTEFUL FISIING METHODS}

Even though the fishermen may be justified in their complaints against others for spoiling the waters for fish, they have no one but themselves to blame for tho wasteful fishing methods that have been one of the main factors in the decline of the fisheries. It has often been recorded how sturgeon, herring, and other fish, and immature whitefish and trout were originally destroyed because they
were a nuisance in the seines and pounds, and how, after fish became rarer, nets were even set with the special object of taking the immature individuals, often of a size too small to be marketable. Such fish must have been diminutive indeed. The failure of the responsible Governments to check such wanton destruction can not be too severely censured, but in view of the fact that other natural resources hare been and still are being squandered in the same way it is not surprising that wealth apparently so unlimited as that of the Great Lakes should not have been conserved.

More interest has been shown in conservation on the Canadian side of the boundary than on the American side, and the Canadian laws regulating fishing not only antedate most of those on the American side by many years but have been throughout much more conservative.

\section*{REMEDIAL MEASURES}

LEGISLATION
At present there are laws everywhere regulating the taking of fish, which are more or less effectively enforced. It has already been shown how these laws often vary in character on the same lake, due to diversity of opinion among the legislators responsible for their framing, and it has also been shown how the enactment of protective legislation lags behind the need for protection. The necessity for protecting the fish can be understood by anyone, but few persons other than fishermen can appreciate the significance of the variations in the stipulations of the laws, particularly of those governing the size of the mesh of the netting.

By way of illustrating the importance of apparently insignificant differences in the provisions of these regulations, data relative to the difference in effectiveness of nets which differ in size of mesh to the amount of \(1 / 4\) inch are given. The netting used for the experiments was linen gill netting of \(21 / 2\) and \(23 / 4\) inch mesh set in Lake Ontario in 1921 at depths of more than 60 fathoms. The two kinds of nets were equal as regards quality and fineness of thread, manner of hanging, and length of pieces, and the fish caught were of two species only, both practically equal in the matter of absolute size attained. On July 4, off Braddock Point Light, three pieces of \(23 / 4\)-inch net took 22,20 , and 19 fish, and one piece of \(21 / 2\)-inch net took 59 fish. On July 16, off Wilson, three pieces of \(23 / 4\)-inch net took 49,48 , and 51 fish, while one piece of \(21 / 2\) took 106 tish. Thus, a difference of \(1 / 4\) inch in these two cases more than doubled the catch. From these results it may be conjectured what bearing the inequality of the provisions of the various laws regulating the size of netting has on the conservation of the fisheries. Variations in the type of apparatus allowed is a subject too complicated to discuss in all its phases within the limited scope of this paper, however, and I will therefore pass on to a consideration of the quantity of apparatus used, a subject which has been recommended to conservationists for attention before but which so far has received but little.

There are no laws limiting the number of nets that may be set or the quantity of fish that may be taken in the Great Lakes. The Canadian authorities have placed definite limits on the amount of fish that may be caught annually in the important inland lakes but
have not applied such restrictions to the Great Lakes, most probably because they are so large. It is this immensity in size that sustains the general belief in the inexhaustibility of their resources. Most people believe that water is all that any fish requires and that any and all fish can survive and thrive if only there is water, but the fisherman knows that the maintenance of the fish supply is dependent on other things as well. Certain species occur only within certain depth limits, and within these limits only where certain bottom conditions obtain. Thus in Lake Superior, for example, with its area of some 32,000 square miles, there are hundreds of miles of shore line where whitefish are practically unknown, and in over one-fourth its area there occurs no marketable species of fish. Yet, in spite of this, Governments on both sides of the international boundary expend money every year planting fish in virgin waters, in which, if the fish could find suitable conditions, they most probably would have flourished from the beginning.

Even if the Great Lakes were suited throughout their extent for all kinds of fish and were they ever so much larger than they are, the supply must nevertheless just as certainly be in danger of exhaustion if at any time the bulk of the species came within human control. In the Great Lakes this dangerous control may be exerted in the case of most species during the spawning season. The individuals of the more important species congregate to spawn near the shores where bottom conditions are favorable, usually within limits which, in comparison with the normal range of the fish, are extremely restricted. During the excitement of the mating act they not only approach the bottom, and thus come within the range of influence of the nets, but they appear also to lose there awareness of the netting, \({ }^{9}\) a faculty which protects them to some extent from capture at other times, and they are taken in an abundance unknown at other seasons.

For the benefit of those, if any such there be, who believe that the practice of commercial fishing must necessarily, in itself, deplete any body of water, I present an abstract of an article written by Dr. J. Heuscher, \({ }^{10}\) in which he gives the history of Lake Sempach, a Swiss lake of approximately \(51 / 2\) square miles area, which, under judicious control, maintained a commercial fishery on a large scale for over 400 years and which was depleted only when fishing operations were allowed to go on uncontrolled.

The lake has a maximum depth of about 47 fathoms over an area of nearly 2 miles, and limnological conditions in this lake approximate those in the Great Lakes. At one time this body of water supported immense numbers of a whitefish, related to those in our lakes. Fishing rights in Lake Sempach were legally established as early as the tenth century. In 1394 these rights came into the possession of the city of Lucerne, which disposed of them in various ways at various times, mainly in the form of leases stipulating the cession to the city of a certain percentage of the fish caught. The city's documents record the number of fish thus taken annually from 1418 to 1853. The catches varied from year to year, chiefly between 100,000 and 600,000 fish.

\footnotetext{
- It can not be doubted that the fish are aware of gill netting in the shallower waters. The principle of the pound net and all trap nets is bascd on the ability of the fish to perceive the lead, which is of a mesh large enough to,permit them to swim through it uninjured. To reason further in the same strain, if they are aware of their food in deeper water they must likewise retain the capacity of sensing the presence of the netting.

10 Swiss Fishery Journal, Vol. III, 1895.
}

There are still extant fishing regulations drafted in 1421 in which closed seasons, reserve zones, minimum mesh, and maximum equipment are fixed. Control over the waters relaxed, however, in 1798, and various abuses crept in. In 1825 improved apparatus supplanted the primitive gear, and in 1853, when the fishing leases were sold outright, the production was so enormous that fish were fed to the pigs. The last good year was 1856, and thereafter the supply dwindled. Drastic regulations were drafted to protect the fish, and fry were planted annually, but until about 1918 it had not been possible to restore the productivity of the lake. From 1918 to 1920, according to a letter from Dr. G. Surbeck, Swiss fish inspector at Berne, dated February 18, 1924, the production of whitefish in Lake Sempach increased considerably, and it is estimated that 35,000 to 45,000 pounds were taken annually during this period-a total probably about equal to the average annual yield of the nineteenth century. Doctor Surbeck and other investigators are of the opinion, however, that the whitefish now caught is not of the same species as that which originally inhabited the lake, but of a species which has replaced the original form. Latterly the catches have again declined markedly.

The history of the Sempach fish has more than a philosophical interest and teaches another lesson besides the obvious one. Our experience with the bluefin of Lake Superior, which has been undisturbed for from 10 to 20 years, and of the bloater of Lake Ontario, which has not been fished for in 25 years, both of which have apparently continued to decrease in abundance, closely parallels the case of this Swiss whitefish and emphasizes the danger of reducing a gregarious species below certain limits.

If, then, there is danger of exhausting the fish supply by overfishing, the production should be regulated in some manner. It is generally recognized that the taking of game must be controlled both by bag limits and closed seasons, and similar restrictions are considered necessary to preserve the game fishes. It can not, therefore, appear illogical to urge the application of the same kind of legislation to the commercial fisheries. What form such legislation should take the writer can not say. Over an area so extensive as that of the Great Lakes, which is influenced by such diverse climatic as well as physiographic conditions, no one may expect to apply a simple or uniform remedy; but, faced by the need of action, the dictates of common sense will point out a way, and these directions must not be ignored, even if they entail sacrifice on the part of some.

\section*{PROPAGATION}

The work of hatching eggs of the important commercial species has been carried on more vigorously than ever in recent years. The output of species originally propagated has increased, and operations have been extended to include species previously ignored. In the stocking of streams and small lakes notable success has been achieved, and through making observations on conditions in such relatively limited areas positive evidence of the benefit of introducing fry and fingerlings has been gathered: Unfortunately there are no criteria by which we may judge the effect of propagation in the Great Lakes. There areas are so extensive and the migrations and
interrelations of the species so little known that though fish increase, or appear to increase, after extensive plants it can not be positively stated that such increase is due to planting. Enemies of the species may have decreased or the increase may have been due to natural multiplication. The fact that there are areas where whitefish are said to have increased in recent years without the aid of artificial propagation, and the fact that the sucker, perch, sauger, blue pike, chubs, and herring, in spite of the persecution they have sustained, do not make a worse showing in the statistics than the carefully fostered whitefish and trout, at least justify an attitude of skepticism toward the enthusiastic claims of some of the propagationists.

At this point it is only fair to state that the leading fish-culturists now regard artificial propagation rather as a supplement to than an improved substitute for nature, but the rank and file of the conservationists of the Great Lakes area are still influenced by the exuberant optimism of the pioneer fish-culturists, who, inspired by the novel achievement of being able to hatch countless fry, entertained rosy visions of the possibilities of the new-found art. This optimism, first and last, arises out of the natural propensity of the human mind to be impressed by figures of inconceivable magnitude. If the hatching of a billion fish eggs is reported in a hatchery bulletin, certainly, one argues, that immense number can not fail to affect the fish supply advantageously; but no statistical bulletins can show what an insignificant fraction of nature's production of fish eggs this huge figure represents, after all, and nowhere is advertised nature's amazing prodigality in dealing with these eggs, though her stupendous carelessness in this particular can be demonstrated by anyone who is familiar with mathematical progressions.

Whatever the results of fish hatching on the Great Lakes may be, confidence in the effectiveness of propagation has had most important consequences, and the methods of propagation and the effects of this confidence ought to be carefully considered. In a vast section of the Great Lakes there is no closed season on any species of fish, and for some, commercial fishing is allowed as soon as 40 per cent of the fish, as shown by test nets, are ripe. The case of the whitefish will serve to illustrate the situation.

In the year 1919 one boat which set test nets on the "north grounds" at Alpena took 5,000 pounds of whitcfish, practically all males, indicating that spawning had not yet begun, since the first run on the spawning grounds consists of males. These males are often so reduced in number by uncontrolled fishing that later on it is not possible to secure enough milt to fertilize the eggs that are collected. Let us assume, however, that half of these Alpena fish were females. Then there should have been produced by this boat, in one day, \(2,500 \times\) 10,000 (the average number of eggs estimated by fish-culturists to be produced by each pound of fish), or \(25,000,000\) eggs. The production of whitefish on the spawning grounds at Alpena in that year was over 50,000 pounds, or a potential \(250,000,000\) eggs, and the "north ground" off Alpena is only one of the many places in Lake Huron where whitefish spawn. On Lake Huron alone, then, the production of whitefish eggs might have far exceeded the entire collections by all the hatcheries on both sides of the boundary. It is not necessary to state that no such quantity of cggs was collected on Lake Huron.

Most of the eggs were wasted, nor could this destruction, under the circumstances, have been avoided.

No fisherman would assert that it is possible to save more than a fraction of the spawn, since many of the fish are green or dead when taken. If the nets are caught in a blow, and blows are the rule in the fall, most of the fish taken are dead. Even under favorable conditions the fishermen, where the collection of eggs is left entirely in their hands, give first attention to handling the fish and care for the spawn afterward. Many of them know well enough that the collection of a few hundred thousand eggs a trip is quite likely to satisfy the hatchery official to whom the spawn must be surrendered, and they act accordingly.

Since the taking of whitefish from the spawning giounds was permitted everywhere on all five of the Great Lakes, but since the entire collection of eggs was equal at most to the quantity which Lake Huron would have produced if the eggs of all the fish taken could have been saved, it may be assumed then that conservationists consider that the effectiveness of the output of one lake, handled by the hatcheries, equal to that of the other lakes left to natural conditions. Furthermore, since whitefish are liberated as fry, the practice of hatching must be based on the assumption that very few eggs hatch under natural conditions. Either they are not fertilized in nature or they are destroyed after fertilization by enemies or natural forces, or both. There are no other possibilities. It can not be stated too positively that any statements made with regard to the history of the whitefish egg, or of the egg of any other Great Lakes fish, for that matter, are purely theoretical. There is not a particle of evidence to show that the eggs are not fertilized in nature, notwithstanding assertions to the contrary, and all experience with fish breeding in nature indicates that they are fertilized. As for enemies, it must be remembered that the eggs of the whitefish are deposited at a time when other fish are least active and take the minimum of food or cease feeding entirely. The scale theory, which is now well established, is based on this assumption. Besides, the eggs are laid on rough bottom, so that many must fall into crevices where they would be comparatively safe.

While it is very desirable that as many eggs as possible should hatch, it can not be conceded that with the hatching of the egg the most dangerous stage in the development of the individual has passed. We have not yet the necessary knowledge of the life history of any Great Lakes fish to enable us to state which are the critical periods in the life history. It is apparent, however, to all field workers, and to fish-culturists in particular, that an immense percentage of the young fish die before they become an inch long and many more perish before they attain double that length, else the stocking of waters with fish would be a simple matter indeed. For this reason it is essential that the question of whether fry planted by the hatcheries have as much chance of surviving as those which are hatched naturally, or whether they have any chance at all, be given consideration.

Although there is no doubt that the distribution of fry in the Great Lakes has been carried out with the best of intentions, it is nevertheless true that no one is qualified to say what are the most favorable conditions for the planting of fry, and for safety's sake they should be planted on the natural spawning grounds. In many cases this has
been done. However, there have come to my attention too many instances of carcless distribution, when fry were dumped at random into waters of any depth or even into polluted rivers. Since the hatcheries frequently are forced to rely for distribution of their products on the charity of well-intentioned but often incompetent people, perhaps better results can not be expected, but the damage done by such an irresponsible procedure can not be mended nor can the practice be condoned by any excuse, however valid.

It is also a singular fact that many people who have distributed fry never knew, or had forgotten, that a sudden change of temperature is fatal even to an adult fish, and therefore made no provision for acclimatizing the fry to their new surroundings. In the case of whitefish and trout the water in the lakes at the time of planting is probably nearly at zero, and if the fry were iced in the cans they would be subjected to no great change in temperature, but when plants are made at other times abrupt changes of temperature should be most carefully guarded against.

A further consideration, which has been neglected, concerns the proper time for making plants. It is not practicable to feed the fry, but they can be retained without food without heavy mortality for some time after hatching, though it is not known what the consequences of such retention are. In some young animals feeding instincts atrophy if they are not exercised within a certain period, and it is not inconceivable that the withholding of food from fish fry for even a day at the critical time may be fatal.

To recapitulate, the practice of propagating whitefish or other Great Lakes species is not in itself condemned, but an effort has been made to show that the present system of permitting fishing during the spawning season is vastly wasteful. No one may safely affirm that the relatively few eggs that are artificially hatchedfew in comparison with the numbers destroyed in the effort to collect them-can compensate for the benefits that might be derived if all the fish were allowed to spawn naturally. Particular force is lent to this argument by the fact that we now know absolutely nothing about the percentage of eggs hatched under natural conditions and nothing about the proper attention fry should receive after they have been hatched. It follows, then, that nature should not be interfered with blindly, lest more harm than good be done, a maxim the soundness of which, as applied to certain species, fish-culturists have already subscribed to. The closed season during spawning time should be restored at once, and studies into the effectiveness of propagation should be begun without delay. The collection of such spawn as is thereafter deemed necessary should be under the supervision of State and Federal authorities.

\section*{RECOMMENDATIONS}
1. The needs of the Great Lakes fishories should be studied, and in the light of the knowledge gained regulations having for their object the conserving of the fisheries should be created. We already have data to show that no single law can be devised to meet the varying conditions presented by one lake, to say nothing of applying one law to several of the lakes. The application of any laws found advisable must be independent of political boundaries. The present
division of authority over the fisheries among several States impedes the enactment and complicates the administration of any legisfative provisions, and it is therefore urgently recommended that some definite and responsible organization, international in character, be provided through which a coordinated control of the fisheries may be secured.
2. The closed season to protect spawning fish should be restored wherever practicable, and no spawn should be collected if investigations and experiments fail to establish the desirability and effectiveness of propagation.
3. Investigations to determine the life histories of the important species already begun should be continued, and statistics reflecting the condition of the fisheries should be collected from year to year to supplement these studies. Only by means of such statistics, interpreted in the light of life-history facts, can the fishing industry be intelligently controlled.

SCIENTIFIC NAMES OF FISHES
The following are the scientific names of the species of fish mentioned in the text:

vam wro kuyay

WH1AJl```

