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IN my late father s Will no instructions were left as

to the publication of his Writings, nor specially as to

that of the &quot; ELEMENTS OF QUATERNIONS,&quot; which, but

for his late fatal illness, would have been before now,

in all their completeness, in the hands of the Public.

My brother, the Rev. A. H. Hamilton, who was

named Executor, being too much engaged in his cle

rical duties to undertake the publication, deputed this

task to me.

It was then for me to consider how I could best

fulfil my triple duty in this matter First, and chiefly,

to the dead
; secondly, to the present public ; and,

thirdly, to succeeding generations. I came to the con

clusion that my duty was to publish the work as I found

it, adding merely proof sheets, partially corrected by

my late father and from which I removed a few typo

graphical errors, and editing only in the literal sense

of giving forth.

Shortly before my father s death, I had several con

versations with him on the subject of the &quot;

ELEMENTS.&quot;

In these he spoke of anticipated applications of Qua
ternions to Electricity, and to all questions in which

the idea of Polarity is involved applications which

he never in his own lifetime expected to be able fully

to develope, bows to be reserved for the hands of

another Ulysses. He also discussed a good deal the

nature of his own forthcoming Preface
;
and I may

intimate, that after dealing with its more important

topics, he intended to advert to the great labour which



the writing of the &quot;

ELEMENTS&quot; had cost him labour

both mental and mechanical; as, besides a mass of

subsidiary and unprinted calculations, he wrote out

all the manuscript, and corrected the proof sheets,

without assistance.

And here I must gratefully acknowledge the ge

nerous act of the Board of Trinity College, Dublin, in

relieving us of the remaining pecuniary liability, and

thus incurring the main expense, of the publication of

this volume. The announcement of their intention to

do so, gratifying as it was, surprised me the less, when

I remembered that they had, after the publication of

my father s former book,
&quot; Lectures on Quaternions,&quot;

defrayed its entire cost
;
an extension of their liberality

beyond what was recorded by him at the end of his

Preface to the &quot;

Lectures,&quot; which doubtless he would

have acknowledged, had he lived to complete the Pre

face of the &quot;

ELEMENTS.&quot;

He intended also, I know, to express his sense of

the care bestowed upon the typographical correctness

of this volume by Mr. M. H. Gill of the University

Press, and upon the delineation of the figures by the

Engraver, Mr. Oldham.

I annex the commencement of a Preface, left in ma

nuscript by my father, and which he might possibly

have modified or rewritten. Believing that I have

thus best fulfilled my part as trustee of the unpub
lished &quot;

ELEMENTS,&quot; I now place them in the hands of

the scientific public.

WILLIAM EDWIN HAMILTON.

January 1st, 1866.



PREFACE.

[1.] THE volume now submitted to the public is founded on

the same principles as the &quot;

LECTURES,&quot;
(I) which were pub

lished on the same subject about ten years ago : but the plan

adopted is entirely new, and the present work can in no sense

be considered as a second edition of that former one. The

Table of Contents, by collecting into one view the headings of

the various Chapters and Sections, may suffice to give, to

readers already acquainted with the subject, a notion of the

course pursued : but it seems proper to offer here a few intro

ductory remarks, especially as regards the method of expo

sition, which it has been thought convenient on this occasion

to adopt.

[2.] The present treatise is divided into Three Books, each

designed to develope one guiding conception or^view, and to

illustrate it by a sufficient but not excessive number of exam

ples or applications. The First Book relates to the Concep
tion of a Vector, considered as a directed right line, in space of

three dimensions. The Second Book introduces a First Con

ception of a Quaternion, considered as the Quotient of two such

Vectors. And the Third Book treats of Products and Powers

of Vectors, regarded as constituting a Second Principal Form
of the Conception of Quaternions in Geometry.

* This fragment, by the Author, was found in one of his manuscript books

by the Editor.
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BOOK I.

ON VECTORS, CONSIDERED WITHOUT REFERENCE TO

ANGLES, OR TO ROTATIONS, . . . . 1-102

CHAPTER* I.

FUNDAMENTAL PRINCIPLES RESPECTING VECTORS, . 1-1 1

SECTIONJ 1. On the Conception of a Vector
;
and on Equa

lity of Vectors, 1-3

SECTION 2. On Differences and Sums of Vectors, taken two

by two, 3-5

SECTION 3. On Sums of Three or more Vectors, .... 5-7
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This short First Chapter should be read with care by a beginner ;

any misconception of the meaning of the word &quot;Vector&quot; being fatal

to progress in the Quaternions. The Chapter contains explana

tions also of the connected, but not all equally important, words

or phrases,
&quot;

revector,&quot; &quot;provector,&quot;
&quot; transvector,&quot; &quot;actual and

null
vectors,&quot; &quot;opposite and successive vectors,&quot;

&quot;

origin and term of

a vector,&quot;
&quot;

equal and unequal vectors,&quot; &quot;addition and subtraction

of vectors,&quot;
&quot;

multiples and fractions of vectors,&quot; &c.
;
with the nota

tion B - A, for the Vector (or directed right line) AB : and a deduction

of the result, essential but not peculiar^ to quaternions, that (what
is here called) the vector-sum, of two co-initial sides of a parallelo

gram, is the intermediate and co-initial diagonal. The term &quot;

Scalar&quot;

is also introduced, in connexion with coefficients of vectors.

* This Chapter may be referred to, as I. i.
;
the next as I. ii.

;
the first Chap

ter of the Second Book, as II. i.
;
and similarly for the rest.

f This Section may be referred to, as I. i. 1
;
the next, as I. i. 2

;
the sixth

Section of the second Chapter of the Third Book, as III. ii. 6
;
and so on.

J Compare the second Note to page 203.

b
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Among other results of this Chapter, a theorem is given in page 43,

which seems to offer a new geometrical generation of (plane or spheri

cal) curves of the third order. The anharmonic co-ordinates and equa
tions employed, for the plane and for space, were suggested to the

writer by some of his own vector forms ; but their geometrical inter

pretations are assigned. The geometrical nets were first discussed by
Professor Mobius, in his Barycentric Calculus (Note B), but they are

treated in the present work by an entirely new analysis : and, at least

for space, their theory has been thereby much extended in the Chapter
to which we next proceed.

CHAPTER III.

APPLICATIONS OF VECTORS TO SPACE, . . . 49-102

SECTION 1 On Linear Equations between Vectors not Corn-

planar, 49-56

It has already been recommended to the student to read the first

two Articles of this Section, even in his first perusal of the Volume
;

and then to pass to the Second Book.

SECTION 2 On Quinary Symbols for Points and Planes in

Space, 57-62
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rycentres, occurs in p. 87. The anharmonic generation of a ruled hy-

perboloid (or paraboloid) is employed to illustrate anharmonic equa
tions

;
and (among other examples) certain cones, ofthe second and third

orders, have their vector equations assigned. In the last Section, a defi

nition of differentials (of vectors and scalars) is proposed, &quot;which is

afterwards extended to differentials of quaternions, and which is in

dependent of developments and of infinitesimals, but involves the

conception of limits. Vectors of Velocity and Acceleration are men
tioned

;
and a hint of Hodographs is given.

BOOK II.

ON QUATERNIONS, CONSIDERED AS QUOTIENTS OF

VECTORS, AND AS INVOLVING ANGULAR RELA

TIONS, 103-300

CHAPTER L

FUNDAMENTAL PRINCIPLES RESPECTING QUOTIENTS OF VECTORS, 103-239

Very little, if any, of this Chapter II. i., should be omitted, even

in a first perusal ;
since it contains the most essential conceptions

and notations of the Calculus of Quaternions, at least so far as quo

tients of vectors are concerned, with numerous geometrical illustra

tions. Still there are a few investigations respecting circumscribed

cones, imaginary intersections, and ellipsoids, in the thirteenth Sec

tion, which a student may pass over, and which will be indicated in

the proper place in this Table.

SECTION 1 Introductory Remarks
;

First Principles

adopted from Algebra, 103-106

SECTION 2. First Motive for naming the Quotient of two

Vectors a Quaternion, 106-110

SECTIONS. Additional Illustrations, 110-112

It is shown, by consideration of an anyle on a desk, or inclined

plane, that the complex relation of one vector to another, in length and
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Many other motives, leading to the adoption of the name,
&quot; Quater

nion,&quot; for the subject of the present Calculus, from its fundamental

connexion -with the number &quot;

Four,&quot; are found to present themselves

in the course of the work.

SECTION 4. On Equality of Quaternions ;
and on the Plane

of a Quaternion, 112-117

SECTION 5. On the Axis and Angle of a Quaternion ;
and

on the Index of a Right Quotient, or Quaternion, . . 117-120

SECTION 6. On the Reciprocal, Conjugate, Opposite, and
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account it is found convenient to retain the old signification of that

symbol, as denoting the (uninterpreted) Imaginary of Algebra, or
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SECTION 9 On Vector-Arcs, and Vector-Angles, consi

dered as Representatives of Versors of Quaternions ;

and on the Multiplication and Division ofany one such

Versor by another, 142-157

This Section is important, on account of its constructions of mul

tiplication and division
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which show that the product of two diplanar

versors, and therefore of two such quaternions, is not independent of

the order of the factors.

SECTION 10. On a System of Three Right Versors, in

Three Rectangular Planes
;
and on the Laws of the

Symbols, ij/c,
157-162

The student ought to make himself familiar with these laws,

which are all included in the Fundamental Formula,

,-2=/ = A2 = p = _ 1 . (A)
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Mean Proportional, Square Root
;
General Reduction
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monic Means of Vectors
;
with Remarks on the Anhar-

monic Quaternion of a Group of Four Points, and on

Conditions of Concircularity, 279-285

In this last Section (II. ii. 7) tlie short first Article 258, and the

following Art. 259, as far as the formula VIII. in p. 280, should be

read, as a preparation for the Third Book, to which the Student may
next proceed.
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ON DIPLANAR QUATERNIONS, OR QUOTIENTS OF VECTORS IN

SPACE : AND ESPECIALLY ON THE ASSOCIATIVE PRINCIPLE

OF MULTIPLICATION OF SUCH QUATERNIONS, 286-300
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;
where a&quot;

1
(or Ra) is the previously defined Reciprocal

(II. ii. 7) of the vector a, namely a second vector, which has an in

verse length, and an opposite direction. Multiplication of Vectors is

thus proved to he (like that of Quaternions) a Distributive, but not

generally a Commutative Operation. The Square of a Vector is shown

to be always a Negative Scalar, namely the negative of the square of

the tensor of that vector, or of the number which expresses its length ;

and some geometrical applications of this fertile principle, to spheres,

&c., are given. The Index of the Eight Part of a Product of Two Co-

initial Vectors, OA, OB, is proved to be a right line, perpendicular to

the Plane of the Triangle OAB, and representing by its length the

Double A.rea of that triangle ;
while the Rotation round this Index,

from the Multiplier to the Multiplicand, is positive. This right part,

or vector part, Va/3, of the product vanishes, when the factors are

parallel (to one common line) ;
and the scalar part, Scr/3, when they

are rectangular.

SECTION 3. On a Second Method of arriving at the same

Interpretation, of a Binary Product of Vectors, . . .308-310
SECTION 4. On the Symbolical Identification of a Right

Quaternion with its own Index : and on the Construc

tion of a Product of Two Rectangular Lines, by a Third

Line, rectangular to both, ......... 310-313

SECTION 5. On some Simplifications of Notation, or of

Expression, resulting from this Identification
;
and on

the Conception of an Unit-Line as a Right Versor, . 313-316
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In this second interpretation, which is found to agree in all its re

sults with the first, but is better adapted to an extension of the theory,

as in the following Sections, to ternary products of vectors, a product

of two vectors is treated as the product of the two right quaternions, of

which those vectors are the indices (II. i. 5). It is shown that, on

the same plan, the Sum of a Scalar and a Vector is a Quaternion.

SECTION 6. On the Interpretation of a Product of Three

or more Yectors as a Quaternion, 316-330

This interpretation is effected by the substitution, as in recent

Sections, of Eight Quaternions for Vectors, without change oforder of

the factors. Multiplication of Vectors, like that of Quaternions, is

thus proved to be an Associative Operation. A vector, generally, is

reduced to the Standard Trinomial Form,

p = ix+jy+fa; (C)

in which i, j, k are the peculiar symbols already considered (II. i.

10), but are regarded now as denoting Three Rectangular Vector- Units,

while the three scalars x, y, z are simply rectangular co-ordinates ; from

the known theory of which last, illustrations of results are derived.

The Scalar of the Product of Three coinitial Vectors, OA, OB, oc, is found

to represent, with a sign depending on the direction of a rotation, the

Volume of the Parallelepiped under those three lines
;

so that it va

nishes when they are complanar. Constructions are given also for pro

ducts of successive sides of triangles, and other closedpolygons, inscribed

in circles, or in spheres ; for example, a characteristic property of the

circle is contained in the theorem, that the product of the four suc

cessive sides of an inscribed quadrilateral is a scalar : and an equally

characteristic (but less obvious) property of the sphere is included in

this other theorem, that the product of the Jive successive sides of an

inscribed gauche pentagon is equal to a tangential vector, drawn from

the point at which the pentagon begins (or ends]. Some general For

mula of Transformation of Vector Expressions are given &amp;gt;

with which

a student ought to render himself very familiar, as they are of con

tinual occurrence in the practice of this Calculus
; especially the four

formulae (pp. 316, 317) :

V.yV/3a=S/3y-/3Sya; (D)

/3Sya + ySa/3; (E)

/3Syap + ySa/3p ; (F)

pSa/3y = V/3ySap + VyaS/3p + Va/3Syp ; (G)

in which a, (3, y, p are anyfour vectors, while S and V are signs of

the operations of taking separately the scalar and vector parts of a qua
ternion. On the whole, this Section (III. i. 6) must be considered

to be (as regards the present exposition) an important one
;
and if

it have been read with care, after a perusal ofthe portions previously

indicated, no difficulty will be experienced in passing to any subse

quent applications of Quaternions, in the present or any other work.
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angular Vector Units.
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It may be well to read this Section (III. i. 10), especially for

the Exponential Connexions which it establishes, between Quaternions

and Spherical Trigonometry, or rather Polygonometry, by a species of

extension of Moivrtfs theorem, from the plane to space, or to the sphere.

For example, there is given (in p. 381) an equation of six terms,

which holds good for every spherical pentagon, and is deduced in this

way from an extended exponentialformula. The calculations in the

sub-articles to Art. 312 (pp. 375-379) may however be passed over;
and perhaps Art. 315, with its sub-articles (pp. 383, 384). But Art.

314, and its sub-articles, pp. 381-383, should be read, on account of

the exponentialforms which they contain, of equations of the circle,
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It may suffice to read Art. 316, and its first eleven sub-articles,

pp. 384-386. In this Section, the adopted Logarithm, \q, of a Qua
ternion q, is the simplest root, q ,

of the transcendental equation,

and its expression is found to he,

(H)

in which T and U are the signs of tensor and versor, while L q is the

angle of q, supposed usually to he between and IT. Such logarithms

are found to he often useful in this Calculus, although they do not gene

rally possess the elementary property, that the sum of the logarithms

oftwo quaternions is equal to the logarithm of theirproduct : this ap

parent paradox, or at least deviation from ordinary algebraic rules,

arising necessarily from the corresponding property of quaternion

multiplication, which has been already seen to be not generally a com

mutative operation (q q&quot;
not =

q&quot;q ,
unless q and

q&quot;
be complanar}.

And here, perhaps, a student might consider his first perusal of this

work as closed.*

CHAPTER II.

ON DIFFERENTIALS AND DEVELOPMENTS OF FUNCTIONS OF QUA

TERNIONS
;
AND ON SOME APPLICATIONS OF QUATERNIONS

TO GEOMETRICAL AND PHYSICAL QUESTIONS, 391-495

It has been already said, that this Chapter may be omitted in a

first perusal of the work.

SECTION 1 . On. the Definition of Simultaneous Differen

tials, . 391-393

* If he should choose to proceed to the Differential Calculus of Quaternions in

the next Chapter (III. ii.), and to the Geometrical and other Applications in the

third Chapter (III. iii.) of the present Book, it might be useful to read at this

stage the last Section (I. iii. 7) of the First Book, which treats of Differentials of

Vectors (pp. 98-102); and perhaps the omitted parts of the Section II. i. 13,

namely Articles 213-220, with their subarticles (pp. 214-233), which relate,

among other things, to a Construction of the Ellipsoid, suggested by the present

Calculus. But the writer will now abstain from making any further suggestions

of this kind, after having indicated as above what appeared to him a minimum

course of study, amounting to rather less than 200 pages (or parts of pages)

of this Volume, which will be recapitulated for the convenience of the student

at the end of the present Table.
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SECTION 2. Elementary Illustrations of the Definition,

from Algebra and Geometry, ........ 394-398

In the view here adopted (comp. I. iii. 7), differentials are not ne

cessarily, nor even generally, small. But it is shown at a later stage

(Art. 401, pp. 626-630), that the principles of this Calculus allow us,

whenever any advantage may be thereby gained, to treat differentials

as infinitesimals ; and so to abridge calculation, at least in many ap

plications.

SECTION 3. On some general Consequences of the Defini

tion, ................ 398-409

Partial differentials and derivatives are introduced ; and differen

tials offunctions offunctions.

SECTION 4 Examples of Quaternion Differentiation, . . 409-419

One of the most important rules is, to differentiate thefactors of a

quaternion product, in situ ; thus (by p. 405),

d.gtf^&q.f + q.dtf. (I)

The formula (p. 399), d. q-* = - q~
l
&q.q-\ (J)

for the differential of the reciprocal of a quaternion Cor vector), is also

very often useful; and so are the equations (p. 413),

dT? d? dU?_ AqW 7 ; W 7
and (p. 411), d a* =Y a&amp;lt;+ld*

; (L)

q being any quaternion, and a any constant vector-unit, while t is a

variable scalar. It is important to remember (comp. III. i. 11), that

we have not in quaternions the usual equation,

*-*
unless q and dig be complanar ; and therefore that we have not generally,

dlp
= ^,

P

if p be a variable vector ; although we have, in this Calculus, the

scarcely less simple equation, which is useful in questions respecting

orbital motion,

if a be any constant vector, and if the plane of a and p be given (or

constant).

SECTION 5. On Successive Differentials and Developments,

of Functions of Quaternions, ..... .... 420-435
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In this Section principles are established (pp. 423-426), respect

ing quaternion functions which vanish together ; and a form of deve

lopment (pp. 427, 428) is assigned, analogous* to Taylor s Series,

and like it capable of being concisely expressed by the symbolical

equation, 1-f A = td (p. 432). As an example of partial and succes

sive differentiation, the expression (pp. 432, 433),

&quot;which may represent any vector, is operated on
;
and an application

is made, by means of definite integration (pp. 434, 435), to deduce the

known area and volume of a sphere, or of portions thereof
; together

with the theorem, that the vector sum of the directed elements of a

spheric segment is zero : each element of surface being represented by an

inward normal, proportional to the elementary area, and correspond

ing in hydrostatics to the pressure of a fluid on that element.

SECTION 6. On the Differentiation of Implicit Functions

of Quaternions ;
and on the General Inversion of a Li

near Function, of a Yector or a Quaternion : with

some connected Investigations, ...&quot; ..... 435-495

In this Section it is shown, among other things, that a Linear

and Vector Symbol, &amp;lt;f&amp;gt;,

of Operation on a Vector, p, satisfies (p. 443) a

Symbolic and Cubic Equation, of the form,

= m - m
&amp;lt;t&amp;gt;

+ m&quot;^
-
$
3

; (N)

whence
m&amp;lt;f&amp;gt;~i

= m
m&quot;$

4 2 =
fy, (N )

= another symbol of linear operation, which it is shown how to de

duce otherwise from
&amp;lt;f&amp;gt;,

as well as the three scalar constants, m, m ,
m&quot;.

The connected algebraical cubic (pp. 460, 461),

M=m + me + m&quot;c* + c3 = 0, (0)

is found to have important applications ;
and it is provedf (pp. 460,

462) that if S\0p = Sp$X, independently of X and p, in which case

the function is said to be self-conjugate, then this last cubic has three

real roots, c\, c%, c$ ; while, in the same case, the vector equation,

Vp0p =
0, (P)

is satisfied by a system of Three Real and Rectangular Directions :

namely (compare pp. 468, 469, and the Section III. iii. 7), those of

the axes of a (biconcyclic) system of surfaces of the second order, re

presented by the scalar equation,

* At a later stage (Art. 375, pp. 509, 510), a new Enunciation of Taylor s

Theorem is given, with a new proof,
but still in aform adapted to quaternions.

f A simplified proof, of some of the chief results for this important case of

self-conjugation, is given at a later stage, in the few first subarticles to Art. 415

(pp. 698, 699).
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&amp;lt;7p

2 4
C&quot;,

in which C and C&quot; are constants. (Q)

Cases are discussed
;
and general forms (called cyclic, rectangular,

focal, bifocal, &c., from their chief geometrical uses) are assigned,

for the vector and scalar functions 0p and Sp^p : one useful pair of

such (cyclic) forms
&quot;being,

with real and constant values of g, X, \n,

^p2 + SAp/up. (R)

And finally it is shown (pp. 491, 492) that iffq be a linear and qua

ternion function of a quaternion, q, then the Symbol of Operation, f,

satisfies a certain Symbolic and Biquadratic Equation, analogous to the

cubic equation in 0, and capable of similar applications.

CHAPTER III.

ON SOME ADDITIONAL APPLICATIONS OF QUATERNIONS, WITH

SOME CONCLUDING REMARKS, . . 495 to the end.

This Chapter, like the one preceding it, may be omitted in a first

perusal of the Volume, as has indeed been already remarked.

SECTION 1. Remarks Introductory to this Concluding

Chapter, ............... 495-496

SECTION 2__On Tangents and Normal Planes to Curves in

Space, ................ 496-501

SECTION 3. On Normals and Tangent Planes to Surfaces, 501-510

SECTION 4. On Osculating Planes, and Absolute Normals,

to Curves of Double Curvature, ........ 511-515

SECTION 5. On Geodetic Lines, and Families of Surfaces, 515-531

In these Sections, dp usually denotes a tangent to a curve, and v

a normal to a surface. Some of the theorems or constructions may
perhaps be new ;

for instance, those connected with the cone ofparal
lels (pp. 498, 513, &c.) to the tangents to a curve of double curvature ;

and possibly the theorem (p. 525), respecting reciprocal curves in

space : at least, the deductions here given of these results may serve

as exemplifications of the Calculus employed. In treating of Families

ofSurfaces by quaternions, a sort of analogue (pp. 529, 530) to the for

mation and integration of Partial Differential Equations presents

itself; as indeed it had done, on a similar occasion, in the Lectures

(p. 574).

SECTION 6. On Osculating Circles and Spheres, to Curves

in Space; with some connected Constructions, . . . 531-630

The analysis, however condensed, ofthis long Section (III. in. 6),

cannot conveniently be performed otherwise than under the heads of

the respective Articles (389-401) which compose it: each Article
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being followed by several subarticles, which form with it a sort of

Series*

ARTICLE 389. Osculating Circle defined, as the limit of a circle,

which touches a given curve (plane or of double curvature) at a given

point P, and cuts the curve at a near point Q (see Fig. 77, p. 511).

Deduction and interpretation of general expressions for the vector K

of the centre K of the circle so defined. The reciprocal of the radius

KP being called the vector of curvature, we have generally,

Vector of Curvature = (p
-

*)-i
= = - V = &c.

; (S)
1 dp dp dp

and if the arc (s) of the curve be made the independent variable, then

Vector of Curvature =
p&quot;

= D s*p
=i (S )

Examples : curvatures of helix, ellipse, hyperbola, logarithmic spiral ;

locus of centres of curvature of helix, plane evolute of plane ellipse, 531-535

ARTICLE 390 Abridged general calculations; return from (S )

to (S), ..................... 535, 536

ARTICLE 391__Centre determined by three scalar equations ;

Polar Axis, Polar Developable, ............. 537

ARTICLE 392. Vector Equation of osculating circle, ..... 538,539
ARTICLE 393. Intersection (or intersections) of a circle with a

plane curve to which it osculates
; example, hyperbola, ..... 539-541

ARTICLE 394. Intersection (or intersections) of a spherical curve

with a small circle osculating thereto
; example, spherical conic ; con

structions for the spherical centre (or pole) of the circle osculating to

such a curve, and for the point of intersection above mentioned, . . 541-549

ARTICLE 395. Osculating Sphere, to a curve of double curvature,

defined as the limit of a sphere, which contains the osculating circle to

the curve at a given point p, and cuts the same curve at a near point

a (comp. Art. 389). The centre s, of the sphere so found, is (as usual)

the point in which the polar axis (Art. 39 1) touches the cusp-edge of

the polar developable. Other general construction for the same centre

(p. 551, comp. p. 573). General expressions for the vector, a = os,

and for the radius, H = sp ;
R~ l is the spherical curvature (comp. Art.

397). Condition of Sphericity ($=1), and Coefficient ofNon-sphericity

(S 1), for a curve in space. When this last coefficient is positive

(as it is for the helix), the curve lies outside the sphere, at least in the

neighbourhood of the point of osculation, ......... 549-553

ARTICLE 396. Notations r, r, . . for Dsp, D s
2
p, &c.

; properties

of a curve depending on the square (s
2
) of its arc, measured from a

given point P ;
r = unit-tangent, T = vector ofcurvature, r~ l = Tr = cur-

(or first curvature, comp. Art. 397), v = TT = binormal ; the

* A Table of initial Pages of all the Articles will be elsewhere given, which will

much facilitate reference.
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three planes, respectively perpendicular to r, r

, v, are the normal

plane, the rectifying plane, and the osculating plane ; general theory
of emanant lines and planes, vector ofrotation, axis ofdisplacement, oscu

lating screw surface ; condition of developability of surj&quot;ace ofemanants, 554559
AKTICLE 397. Properties depending on the cube (s

3
) of the arc ;

Radius r (denoted here, for distinction, hy a roman letter), and Vector

TT I

T, of Second Curvature ; this radius r may be either positive or ne

gative (whereas the radius r of first curvature is always treated as

positive}, and its reciprocal r 1 may be thus expressed (pp. 563, 559),

Second Curvature* = r~ l = S p
, (T), or, ir. = S ~, (T )

the independent variable being the arc in (T ), while it is arbitrary in

(T) : but quaternions supply a vast variety of other expressions for this

important scalar (see, for instance, the Table in pp. 574, 575). &quot;We

have also (by p. 560, comp. Arts. 389, 395, 396),

Vector of Spherical Curvature = sp&quot;
1 = (p cr)-

1 = &c., (U)

= projection of vector (r ) of (simple orjirst) curvature, on radius (J2)

of osculating sphere : and if p and P denote the linear and angular

elevations, of the centre (s) of this sphere above the osculating plane,

then (by same page 560),

p = r tan P= R sin P = r r = rD sr. (U )

Again (pp. 560, 561), if we write (comp. Art. 396),

X = V =r-1 r + rr = Vector of Second Curvature plus Binormal, (V)

this line X may be called the Rectifying Vector
;
and ifH denote the

inclination (considered first by Lancret), of this rectifying line (X) to

the tangent (r) to the curve, then

tan H=r -
1 tan P = r~ ] r. (V)

Known right cone with rectifying line for its axis, and with H for its

semiangle, which osculates at P to the developable locus of tangents to

the curve (or by p. 568 to the cone of parallels already mentioned) ;

new right cone, with a new semiangle, C, connected with H by the

relation (p. 562),

tan
(7=|

tan H, (V&quot;)

which osculates to the cone of chords, drawn from the given point P

* In this Article, or Series, 397, and indeed also in 396 and 398, several re

ferences are given to a very interesting Memoir by M. de Saint-Venant,
&quot; Sur

les lignes courbes non planes :&quot; in which, however, that able writer objects to such

known phrases as second curvature, torsion, &c., and proposes in their stead a new
name &quot;

cambrure,&quot; which it has not been thought necessary here to adopt.

(Journal de VE cole Polytechnique, Cahier xxx )
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to other points Q of the given curve. Other osculating cones, cylinders,

helix, and. parabola ; this last being (pp. 562, 566) the parabola which

osculates to the projection of the curve, on its own osculating plane. De

viation of curve, at any near point a, from the osculating circle at P,

decomposed (p. 566) into two rectangular deviations, from osculating

helix and parabola. Additional formulae (p. 576), for the general

theory of emanants (Art. 396) ;
case of normally emanant lines, or of

tangentially emanant planes. General auxiliary spherical curve (pp.

576-578, comp. p. 515) ;
new proof of the second expression (V) for

tan H, and of the theorem that if this ratio of curvatures be constant,

the proposed curve is a geodetic on a cylinder : new proof that if each

curvature (r
1
,

r&quot;
1
) be constant, the cylinder is right, and therefore

the curve a helix, . . 559-578

ARTICLE 398. Properties of a curve in space, depending on the

fourth K&& fifth powers (s*, s5) of its arc (*), 578-612

This Series 398 is so much longer than any other in the Volume,
and is supposed to contain so much original matter, that it seems

necessary here to subdivide the analysis under several separate heads,

lettered as (a), (), (c), &c.

(). Neglecting s5
,
we may write (p. 578, comp. Art. 396),

OP,= ps = p + sr + sV + s3 r&quot; + ^psV&quot; ; (W)

or (comp. p. 587), ps = p + xs T -f ysrr + zsrv, (W)

with expressions (p. 588) for the coefficients (or co-ordinates} xs, ys,
zs,

in terms of r
, r, r&quot;, r, r

,
and s. If s5 be taken into account, it be

comes necessary to add to the expression (W) the term, T^*5rlv
;

with corresponding additions to the scalar coefficients in (W), intro

ducing r&quot; and r&quot; : the laws for forming which additional terms, and

for extending them to higher powers of the arc, are assigned in a

subsequent Series (399, pp. 612, 617).

(). Analogous expressions for
r&quot;, v&quot;, K&quot;, V, &amp;lt;?,

and p, R ,
P

,
H

,

to serve in questions in which s$ is neglected, are assigned (in p. 579) ;

T&quot; v
, K, X, a, and p, R, P, J2, having been previously expressed (in

Series 397) ;
while rIT

, v&quot;, K&quot;, X&quot;, &amp;lt;r&quot;,

&c. enter into investigations

which take account of s5 : the arc being treated as the independent

variable in all these derivations.

(c). One of the chief results of the present Series (398), is the

introduction (p. 581, &c.) of a new auxiliary angle, J, analogous in

several respects to the known angle H (397), but belonging to a

higher order of theorems, respecting curves in space : because the new

angle / depends on the fourth (and lower) powers of the arc *, while

Lancret s angle H depends only on s3 (including s 1 and s2
). In fact,

while tan His represented by the expressions (V), whereof one is

r -i tan P, tan /admits (with many transformations) of the following

analogous expression (p. 581),

tan J- ft i tan P; (X)
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where R depends* by (b) on s4

,
while r and P depend (397) on no

higher power than s3.

(d}. To give a more distinct geometrical meaning to this new angle

/, than can be easily gathered from such a formula as (X), respecting

which it may be observed, in passing, that /is in general more simply
denned by expressions for its cotangent (pp. 581, 588), than for its

tangent, we are to conceive that, at each point P of any proposed
curve of double curvature, there is drawn a tangentplane to the sphere,

which osculates (395) to the curve at that point ;
and that then the

envelope of all these planes is determined, which envelope (for reasons

afterwards more fully explained) is called here (p. 581) the &quot; Cir

cumscribed Developable :&quot; being a surface analogous to the &quot;Rectifying

Developable&quot; of Lancret, but belonging (c) to a higher order of ques
tions. And then, as the known angle H denotes (397) the inclina

tion, suitably measured, of the rectifying line (X), which is a genera.-

trix of the rectifying developable, to the tangent (r) to the curve; so

the new angle / represents the inclination of a generating line (0), of

what has just been called the circumscribed developable, to the same

tangent (r), measured likewise in a denned direction (p. 581), but

in the tangent plane to the sphere. It may be noted as another ana

logy (p. 582), that while H is a right angle for a plane curve, so J
is right when the curve is spherical. For the helix (p. 585), the an

gles H and / are equal ; and the rectifying and circumscribed deve-

lopables coincide, with each other and with the right cylinder, on

which the helix is a geodetic line.

(/), If the recent line be measured from the given point P, in

a suitable direction (as contrasted with the opposite), and with a suit

able length, it becomes what may be called (comp. 396) the Vector of

Rotation of the Tangent Plane (d) to the Osculating Sphere ; and then

it satisfies, among others, the equations (pp. 579, 581, comp. (V)),

&amp;lt;p

= V
V

, T0 = 7?-i cosec /; (X )

this last being an expression for the velocity of rotation of the plane

just mentioned, or of its normal, namely the spherical radius R, if the

given curve be conceived to be described by a point moving with a con-

* In other words, the calculation of r and P introduces no differentials

higher than the third order ; but that of R requires the fourth order of differen

tials. In the language of modern geometry, the former can be determined by
the consideration offour consecutive points of the curve, or by that of two consecu

tive osculating circles ; but the latter requires the consideration of two consecu

tive osculating spheres, and therefore ofJive consecutive points of the curve (sup

posed to be one of double curvature). Other investigations, in the present and

immediately following Series (398, 399), especially those connected with what

we shall shortly call the Osculating Tivisted Cubic, will be found to involve the

consideration of six consecutive points of a curve.

d
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stant velocity, assumed = 1. And if we denote by v the point in which

the given radius E or PS is nearest to a consecutive radius of the same

kind, or to the radius of a consecutive osculating sphere, then this point v

divides the line PS internally, into segments which may (ultimately) be

thus expressed (pp. 580, 581),

fv&quot;
=

.Ksin2&amp;lt;7, vs=J2cos2 /.
(X&quot;)

But these and other connected results, depending on s4
,
have their

known analogues (with H for /, and r for ), in that earlier theory

(c) which introduces only s 3 (besides s 1 and s2) : and they are all in

cluded in the general theory ofemanant lines and planes (396, 397), of

which some new geometrical illustrations (pp. 582-584) are here

given.

(/). New auxiliary scalar n (=p-^EE = cot /secP= &c.),
= ve

locity of centre s of osculating sphere, if the velocity of the point P of

the given curve be taken as unity (e) ;
n vanishes with R

,
cot J, and

(comp. 395) the coefficient S- 1 (= wr 1
) of non- sphericity, for the

case of a spherical curve (p. 584). Arcs, first and second curvatures,

and rectifying planes and lines, of the cusp-edges of the polar and

rectifying* developables ;
these can all be expressed without going

beyond s5, and some without using any higher power than s4
,
or diffe

rentials of the orders corresponding ; n = nr, and ri = nr, are the

scalar radii of first and second curvature of the former cusp-edge, r\

being positive when that curve turns its concavity at s towards the

given curve at P : determination of the point R, in which the latter

cusp-edge is touched by the rectifying line \ to the original curve

(pp. 584-587).

(^). Equation with one arbitrary constant (p. 587), of a cone of

the second order, which has its vertex at the given point p, and has

contact of the third order (or four-side contact) with the cone of chords

(397) from that point; equation (p. 590) of a cylinder of the second

order, which has an arbitrary line PE from P as one side, and has

contact of the fourth order (or five-point contact) with the curve at p;

the constant above mentioned can be so determined, that the right line

PE shall be a side of the cone also, and therefore a, part ofthe intersec

tion of cone and cylinder ; and then the remaining or curvilinear

part, of the complete intersection of those two surfaces of the second

* The rectifying plane, of the cusp-edge of the rectifying developable, is the

plane of \ and T
,
of which the formula LIV. in p. 587 is the equation ; and the

rectifying line RH, of the same cusp-edge, intersects the absolute normal PK to the

given curve, or the radius (r) of first curvature, in the point H in which that

radius is nearest (e) to a consecutive radius of the same kind. But this last theo

rem, which is here deduced by quaternions, had been previously arrived at by
M. de Saint-Venant (comp. the Note to p. xv.), through an entirely different

analysis, confirmed by geometrical considerations.
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order, is (by known principles) a gauche curve of the third order,

or what is briefly called* a Twisted Cubic : and this last curve, in

virtue of its construction above described, and whatever the as

sumed direction of the auxiliary line PE may be, has contact of the

fourth order (or Jive-point contact&quot;)
with the given curve of double cur

vature at P (pp. 587-590, comp. pp. 563, 572).

(A). Determination (p. 590) of the constant in the equation ofthe

cone (/), so that this cone may have contact of the fourth order (or

Jive-side contact] with the cone of chords from P
;
the cone thus found

may be called the Osculating Oblique Gone (comp. 397), of the second

order, to that cone of chords
;
and the coefficients of its equation in

volve only r, r, r, r
,
r

f

, r&quot;,
but not r

&quot;, although this last derivative

is of no higher order than
r&quot;,

since each depends only on s5 (and lower

powers), or introduces only fifth differentials. Again, the cylinder

(g) will have contact of the fifth order (or six-point contact) with the

given curve at P, if the line PE, which is by construction a side ofthat

cylinder, and has hitherto had an arbitrary direction, be now obliged

to be a side of a certain cubic cone, of which the equation (p. 590) in

volves as constants not only rr/r /
r&quot;,

like that of the osculating cone

just determined, but also r&quot;. The two cones last mentioned have the

tangent (r) to the given curve for a common side,-f but they have also

three other common sides, whereof one at least is real, since they are

assigned by a cubic equation (same p. 590) ;
and by taking this side

for the line PE in (g), there results a new cylinder of the second order,

which cuts the osculating oblique cone, partly in that right line PE itself,

and partly in a gauche curve of the third order, which it is proposed to

call an Osculating Twisted Cubic (comp. again (#)), because it has con

tact of thefifth order (or six-point contact} with the given curve at P

(pp. 590, 591).

(e). In general, and independently of any question of osculation,

a Twisted Cubic (g\ if passing through the origin o, may be repre

sented by any one of the vector equations (pp. 592, 593),

*
By Dr. Salmon, in his excellent Treatise on Analytic Geometry of Three

Dimensions (Dublin, 1862), which is several times cited in the Notes to this final

Chapter (III. iii.) of these Elements. The gauche curves, above mentioned, have

been studied with much success, of late years, by M. Chasles, Sig. Cremona, and

other geometers : but their existence, and some of their leading properties, ap

pear to have been first perceived and published by Prof. Mobius (see his Ilary-

centric Calculus, Leipzig, 1827, pp. 114-122, especially p. 117&amp;gt;

f This side, however, counts as three (p. 614), in the system of the six lines of

intersection (real or imaginary) of these two cones, which have a common vertex P,

and are respectively of the second and. third orders (or degrees). Additional light

will be thrown on this whole subject, in the following Series (399) ;
in which also

it will be shown that there is only one osculating twisted cubic, at a given point,

to a given curve of double curvature ;
and that this cubic curve can be determined,

without resolving any cubic or other equation.
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, (Y); or (^ + c}p = a, (Y )

or p = (0 + c)-
l
a, (Y&quot;);

or Vap + pVyp + VpVXpjt* = 0, (Y &quot;)

in which a, y, X, /*
are real and constant vectors, but is a variable sca

lar ; while 0p denotes (comp. the Section III. ii. 6, or pp. xii., xiii.) a

linear and vector function, which is here generally no t self-conjugate,

of the variable vector p of the cubic curve. The number of the scalar

constants, in the form (Y &quot;),
or in any other form of the equation, is

found to be ten (p. 593), with the foregoing supposition that the curve

passes through the origin, a restriction which it is easy to remove.

The curve (Y) is cut, as it ought to be, in three points (real or imagi

nary), by an arbitrary secant plane ; and its three asymptotes (real or

imaginary) have the directions of the three vector roots j3 (see again

the last cited Section) of the equation (same p. 593),

V/30/3 = 0: (Z)

so that by (P), p. xii., these three asymptotes compose a real and rect

angular system, for the case of self-conjugation of the function

in(Y).

(/). Deviation ofa near point PS ofthe given curve, from the sphere

(395) which osculates at the given point P
;
this deviation (by p. 593,

comp. pp. 553, 584) is

riS4 R S MS4

it is ultimately equal (p. 595) to the quarter of the deviation (397)
of the same near point FS from the osculating circle at P, multiplied by
the sine ofthe small angle SPSS ,

which the small arc ss of the locus of

the spheric centre s (or of the cusp-edge of the polar developable) sub-

tends at the same point P
;
and it has an outward or an inward direc

tion, according as this last arc is concave or convex (/) at s, towards the

given curve at P (pp. 585, 595). It is also ultimately equal (p. 596)

to the deviation PSS PSS S,
of the given point p from the near sphere,

which osculates at the near point ps ;
and likewise (p. 597) to the com

ponent, in the direction of SP, of the deviation of that near point from

the osculating circle at P, measured in a direction parallel to the nor

mal plane at that point, if this last deviation be now expressed to the

accuracy of &efourth order : whereas it has hitherto been considered

sufficient to develope this deviation from the osculating circle (397) as

far as the third order (or third dimension of s) ;
and therefore to treat

it as having a direction, tangential to the osculating sphere (comp.

pp. 566, 594).

(&). The deviation (Ai) is also equal to the third part (p. 598) of

the deviation of the near point ps from the given circle (which osculates

at P), if measured in the near normal plane (at ps), and decomposed in.

the direction of the radius Es of the near sphere ; or to the thirdpart.

(with direction preserved) of the deviation of the new near point in

which the given circle is cut by tbe near plane,from the near sphere : or

finally to the thirdpart (as before, and still with an unchanged direc-
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tion) of the deviation from the given sphere, of that other near point

c, in which the near circle (osculating at PS) is cut by the given normal

plane (at P), and which is found to satisfy the equation,

sc = 3sps
- 2sp. (Bi)

Geometrical connexions (p. 599) between these various results (/) (&),

illustrated by a diagram (Fig. 83).

(T). The Surface, which is the Locus of the Oscillating Circle to

a given curve in space, may be represented rigorously by the vector

expression (p. 600),

ws,
= p s + rsTs sin u + rs*r vers u

; (C i)

in which s and u are two independent scalar variables, whereof s is

(as before) the arc PPS of the given curve, but is not now treated as

small : and u is the (small or large) angle subtended at the centre KS of

the circle, by the arc of that circle, measured from its point of oscula

tion PS . But the same superficial locus (comp. 392) may be repre

sented also by the vector equation (p. 611), involving apparently only
one scalar variable (s),

V-?!L + V-S= O, (DO

in which vs - TSTS ,
and w= o&amp;gt;S)U

= the vector of an arbitrary point

of the surface. The general method (p. 501), of the Section III. iii.

3, shows that the normal to this surface (Ci), at any proposed point

thereof, has the direction of ws , M &amp;lt;rs ;
that is (p. 600), the direction

of the radius of the sphere, which contains the circle through that

point, and has the same point of osculation ps to the given curve. The

locus of the osculating circle is therefore found, by this little calculation

with quaternions, to be at the same time the Envelope of the Osculat

ing Sphere, as was to be expected from geometrical considerations

(comp. the Note to p. 600).

(m). The curvilinear locus of the point c in (&) is one branch of

the section of the surface (T), made by the normal plane to the given
curve at P

;
and if D be the projection of c on the tangent at P to this

new curve, which tangent PD has a directionperpendicular to the ra

dius PS or R of the osculating sphere at P (see again Fig. 83, in p.

599), while the ordinate DC is parallel to that radius, then (attending

only to principal terms, pp. 598, 599) we have the expressions,

and therefore ultimately (p. 600),

DC3 81 w3
&amp;gt;-

5
r(&amp;lt;r-

from which it follows that P is a singular point of the section here

considered, but not a cusp of that section, although the curvature

at p is infinite : the ordinate DC varying ultimately as the power
with exponent of the abscissa PD. Contrast (pp. 600, 601), of this
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section, with that of the developable Locus of Tangents, made by the

same normal plane at P to the given curve ;
the vectors analogous to

PD and DC are in this case nearly equal to - fs
2r and $s?r~

} v
;
so

that the latter varies ultimately as the power f of the former, and the

point P is (as it is known to be) a cusp of this last section.

(n). A given Curve of double curvature is therefore generally a

Singular Line (p. 601), although not a cusp-edge, upon that Surface (/),

which is at once the Locus of its osculating Circle, and the Envelope

of its osculating Sphere : and the new developable surface (d~), as being

circumscribed to this superficial locus (or envelope), so as to touch it

along this singular line (p. 612), may naturally be called, as above,

the Circumscribed Developable (p. 581).

(0). Additional light may be thrown on this whole theory of the

singular line (), by considering (pp. 601-611) a problem which was

discussed by Monge, in two distinct Sections (xxii. xxvi.) of his well-

known Analyse (comp. the Notes to pp. 602, 603, 609, 610 of these

Elements) ; namely, to determine the envelope of a sphere with varying

radius R, whereof the centre s traverses a given curve in space ; or

briefly, to find the Envelope of a Sphere with One varying Parameter

(comp. p. 624) : especially for the Case of Coincidence (p. 603, &c.), of

what are usually two distinct branches (p. 602) of a certain Charac

teristic Curve (or arete de rebroussemenf), namely the curvilinear enve

lope (real or imaginary) of all the circles, along which the superficial

envelope of the spheres is touched by those spheres themselves.

(p). Quaternion forms (pp. 603, 604) of the condition of coinci

dence (0) ; one of these can be at once translated into Monge s equa

tion of condition (p. 603), or into an equation slightly more general,

as leaving the independent variable arbitrary ;
but a simpler and

more easily interpretable form is the following (p. 604),

in which r is the radius of the circle of contact, of a sphere with its

envelope (0), while n is the radius of (first) curvature of the curve (s),

which is the locus of the centre s of the sphere.

(q). The singular line into which the two branches of the curvi

linear envelope arefused, when this condition is satisfied, is in general
an orthogonal trajectory (p. 607) to the osculating planes of the curve

(s) ; that curve, which is now the given one, is therefore (comp. 391,

395) the cusp-edge (p. 607) of the polar developable, corresponding to

tbe singular line just mentioned, or to what may be called the curve

(p), which was formerly the given curve. In this way there arise

many verifications of formula (pp. 607, 608) ;
for example, the

equation (Gi) is easily shown to be consistent with the results of (./*).

(r). &quot;With the geometrical hints thus gained from interpretation

of quaternion results, there is now no difficulty in assigning the Com

plete and General Integral of the Equation of Condition (p), which was

presented by Monge under the form (comp. p. 603) of a non-linear

differential equation of the second order, involving three variables
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(0, 4/, TT) considered as functions of a fourth (a), namely the co-or

dinates of the centre of the sphere, regarded as varying with the ra

dius, but which does not appear to have been either integrated or

interpreted by that illustrious analyst. The general integral here

found presents itself at first in a quaternion form (p. 609), but is easily

translated (p. 610) into the usual language of analysis. A less ge

neral integral is also assigned, and its geometrical signification exhi

bited, as answering to a case for which the singular line lately consi

dered reduces itself to a singular point (pp. 610, 611).

(s). Among the verifications (jf) of this whole theory, it is shown

(pp. 608, 609) that although, when the two branches (0) of the general

curvilinear envelope of the circles of the system are real and distinct,

each branch is a cusp-edge (or arete de rebroussement, as Monge per

ceived it to be), upon the superficial envelope of the spheres, yet in the

case of fusion (p) this cuspidal character is lost (as was likewise

seen by Monge*) : and that then a section of the surface, made by
a normal plane to the singular line, has precisely the form (m), ex

pressed by the equation (Fi). In short, the result is in many ways

confirmed, by calculation and by geometry, that when the condition of

coincidence (p) is satisfied, the Surface is, as in (n), at once the Enve

lope of the osculating Sphere and the Locus of the osculating Circle, to

that Singular Line on itself, into which by (?) the tivo branches (p)

of its general cusp-edge are fused.

(). Other applications of preceding formula? might be given ;

for instance, the formula for K&quot; enables us to assign general ex

pressions (p. 611) for the centre and radius of the circle, which oscu

lates at K. to the locus of the centre of the osculating circle, to a given
curve in space : with an elementary verification, for the case of the

plane evolute of the plane evolute of aplane curve. But it is time to con

clude this long analysis, which however could scarcely have been

much abridged, of the results of Series 398, and to pass to a more

brief account of the investigations in the following Series.

ARTICLE 399. Additional general investigations, respecting that

gauche curve of the third order (or degree), which has been above

called an Osculating Twisted Cubic (398, (A))&amp;gt;
to any proposed curve

of double curvature
;
with applications to the case, where the given

curve is a helix, 612-621

(a). In general (p. 614), the tangent FT to the given curve is a

nodal side of the cubic cone 398, (A) ;
one tangent plane to that cone

(Cs), along that side, being the osculating plane (P) to the curve, and

therefore touching also, along the same side, the osculating oblique cone

(62) of the second order, to the cone of chords (397) from r
;
while the

other tangent plane to the cubic cone ((73) crosses thatjirst plane (P),

or the quadric cone
(C&quot;

2), at an angle of which the trigonometric cotan-

*
Compare the first Note to p. 609 of these Elements,



XXIV CONTENTS.

Pages.

gent Qr ) is equal to half the differential of the radius (r) of second

curvature, divided by the differential of the arc (s). And the three

common sides, PE, PE
, PE&quot;,

of these two cones, which remain when the

tangent PT is excluded, and of which one at least must be real, are the

parallels through the given point p to the three asymptotes (398, ( ))

to the gauche curve sought ; being also sides of three quadric cylin

ders, say (-2), ( 2), (-^&quot;2),
which contain those asymptotes as other

sides (or generating lines) : and of which each contains the twisted

cubic sought, and is cut in it by the quadric cone (#2).

(i). On applying this First Method to the case of a given helix, it

is found (p. 614) that the general cubic cone (Ca) breaks up into the

system of a new quadric cone, (C-z}, and a new plane (P ) ;
which lat

ter is the rectifying plane (396) of the helix, or the tangentplane at P

to the right cylinder, whereon that given curve is traced. The two

quadric cones, (ft) and (C^ ), touch each other and the plane (P) along

the tangent PT, and have no other real common side : whence two of

the sought asymptotes, and tivo of the corresponding cylinders (), are

in this case imaginary, although they can still be used in calculation

(pp. 614, 615, 617). But the plane (P ) cuts the cone (Cz\ not only

in the tangent PT, but also in a second real side PE, to which the real

asymptote is parallel (a) ;
and which is at the same time a side of a

real quadric cylinder (L-z), which has that asymptote for another side

(p. 617), and contains the twisted cubic : this gauche curve being thus

the curvilinear part (p. 615) of the intersection of the real cone ((72),

with the real cylinder (-3).

(c). Transformations and verifications ofthis result
; fractional ex

pressions (p. 616), for the co-ordinates of the twisted cubic
; expres

sion (p. 615) for the deviation of the helix from that osculating curve,

which deviation is directed inwards, and is of the sixth order : the

least distance, between the tangent PT and the real asymptote, is a right

line PB, which is cut internally (p. 617) by the axis of the right cylin

der (b), in a point A such that PA is to AB as three to seven.

(&amp;lt;?).
The First Method (a), which had been established in the pre

ceding Series (398), succeeds then for the case of the helix, with a faci

lity which arises chiefly from the circumstance (b), that for this case

the general cubic cone (63) breaks up into two separate loci, whereof

one is a plane (P ). But usually the foregoing method requires, as in

398, (A)), the solution of a cubic equation : an inconvenience which is

completely avoided, by the employment of a Second General Method,
as follows.

(e). This Second Method consists in taking, for a second locus of the

gauche osculatrix sought, a certain Cubic Surface ( 3), of which

every point is the vertex* of a quadric cone, having six-point con-

* It is known that the locus of the vertex of a quadric cone, which passes

through six given points of space, A, n, c, D, E, F, whereof no four are in one
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tact with the given curve at P : so that this new surface is cut by the

plane at infinity, in the same cubic curve as the cubic cone (3). It is

found (p. 620) to be a Ruled Surface, with the tangent PT for a Sin

gular Line ; and when this right line is set aside, the remaining (that

is, the curvilinear) part of the intersection of the two loci, ((72) and

(3), is the Osculating Twisted Cubic sought : which gauche osculatrix

is thus completely &&& generally determined, without any such difficulty

or apparent variety, as might be supposed to attend the solution of a

cubic equation (d\ and with new verifications for the case of the helix

(p. 621).

ARTICLE 400. On Involutes and Evolutes in Space, .... 621-626

(a). The usual points of Monge s theory are deduced from the two

fundamental quaternion equations (p. 621),

S(&amp;lt;r-p)p
=

0, V(&amp;lt;r-p)c7 =0, (HO

in which p and a are corresponding vectors of involute and evolute
;

together with a theorem of Prof. De Morgan (p. 622), respecting the

case when the involute is a spherical curve.

(b). An involute in space is generally the only real part (p. 624) of

the envelope of a certain variable sphere (comp. 398), which has its

centre on the evolute, while its radius R is the variable intercept be

tween the two curves : but because we have here the relation (p. 622,

comp. p. 602),
I?2 + &amp;lt;r

2 = 0, (HV)

the circles of contact (398, (0)) reduce themselves each to a point (or

rather to a. pair of imaginary right lines, intersecting in a real point),

and the preceding theory (398), of envelopes of spheres with one

varying parameter, undergoes important modifications in its results,

the conditions of the application being different. In particular, the

involute is indeed, as the equations (Hi) express, an orthogonal tra

jectory to the tangents of the evolute; but not to the osculating planes

plane, is generally a Surface, say (4), of the Fourth Degree : in fact, it is cut by
the plane of the triangle ABC in a system of four right lines, whereof three are

the sides of that triangle, and the fourth is the intersection of the two planes,

ABC and DEF. If then we investigate the intersection of this surface (4) with

the quadric cone, (A.BCDEF), or say (#2), which has A for vertex, and passes

through the five other given points, we might expect to find (in some sense) a

curve of the eighth degree. But when we set aside the Jive right lines, AB, AC, AD,

AE, AF, which are common to the two surfaces here considered, we find that the

(remaining or) curvilinear part of the complete intersection is reduced to a curve

of the third degree, which is precisely the twisted cubic through the six givenpoints.

In applying this general (and perhaps new) method, to the problem of the oscu

lating twisted cubic to a curve, the osculatingplane to that curve may be excluded,

as foreign to the question : and then the quartic surface (#4) is reduced to the

cubic surface (3), above described.

e
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of that curve, as the singular line (398, (?)) of the former envelope

was, to those of the curve which was the locus of the centres of the

spheres hefore considered, when a certain condition of coincidence (or

offusion, 398, (j^)) was satisfied.

(c). Curvature of hodograph of evolute (p. 625) ;
if P, PI, P2, . and

s, Si, 82, . . be corresponding points of involute and evolute, and if we

draw right lines STI, ST2, . . in the directions of SIPI, 82P2, and with

a common length = SP, the spherical curve PTiT2 . . will have contact

of the second order at P, with the involute ppiP2 . . (pp. 625, 626).

ARTICLE 401. Calculations abridged, by the treatment of quater

nion differentials (which have hitherto been finite, comp. p. xi.) as

infinitesimals ;* new deductions of osculating plane, circle, and sphere,

with the vector equation (392) of the circle
;
and of the first and se

cond curvatures of a curve in space, 626-630

SECTION 7 On Surfaces of the Second Order; and on

Curvatures of Surfaces, 630-706

ARTICLE 402. References to some equations of Surfaces, in earlier

parts of the Volume, 630,631
ARTICLE 403. Quaternion equations of the Sphere (p2

= -
1, &c.), 631-633

In some of these equations, the notation N for norm is employed

(comp. the Section II. i. 6).

ARTICLE 404. Quaternion equations of the Ellipsoid, .... 633-635

One of the simplest of these forms is (pp. 307, 635) the equation,

*
Although, for the sake of brevity, and even of clearness, some phrases have

been used in the foregoing analysis of the Series 398 and 399, such as four-side

or five-side contact between cones, and five-point or six-point contact between.

curves, or between a curve and a surface, which are borrowed from the doctrine

of consecutive points and lines, and therefore from that of infinitesimals ; with a

few other expressions of modern geometry, such as the plane at infinity, &c.
;

yet the reasonings in the text of these Elements have all been rigorously reduced,

so far, or are all obviously reducible, to the fundamental conception of Limits :

compare the definitions of the osculating circle and sphere, assigned in Articles

389, 395. The object of Art. 401 is to make it visible how, without abandoning
such ultimate reference to limits, it is possible to abridge calculation, in several

cases, by treating (at this stage) the differential symbols, dp, d2
p, &c., as if

they represented infinitely small differences, Ap, A2
p, &c.

;
without taking the

trouble to write these latter symbols first, as denoting finite differences, in the

rigorous statement of a problem, of which statement it is not always easy to assign

the proper form, for the case of points, &c., ok finite distances : and then having
the additional trouble of reducing \hc complex expressions so found to simplerforms,

in which differentials shall finally appear. In short, it is shown that in Quater*

nions, as in other parts of Analysis, the rigour of limits can be combined with

the facility of infinitesimals.
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in which t and K are real and constant vectors, in the directions of

the cyclic normals. This form (Ii) is intimately connected with, and

indeed served to suggest, that Construction of the Ellipsoid (II. i. 13),

by means of a Diacentric Sphere and a Point (p. 227, comp. Fig. 53,

p. 226), which was among the earliest geometrical results of the Qua
ternions. The three semiaxes, a, b, c, are expressed (comp. p. 230) in

terms of t, K as follows :

a = Te + TK
; *=^~- c =T-T; (Ii )

whence ab^c = T (i
-

K). (Ii&quot;)

ARTICLE 405. General Central Surface of the Second Order (or

central quadric), Sp&amp;lt;pp fp = 1, ............ 636-638

ARTICLE 406. General Cone of the Second Order (or quadric cone),

Sp0p=/p = 0, ............... . . 638-643

ARTICLE 407. Bifocal Form of the equation of a central hut non-

conical surface of the second order : with some quaternion formulae,

relating to Confocal Surfaces, ............. 643-653

(a). The bifocal form here adopted (comp. the Section III. ii. 6)

is the equation,

Cfp = (Sa,o)2
- 2*Sap8a p + (Sa p) + (1

- *2 ) p
2 =

C, (Ji)

in which, C= (e* -!)( + Saa ) I
2

. (JY)

a, a are two (real) focal unit-lines, common to the whole system of

confocals
;
the (real and positive) scalar I is also constant for that sys

tem : hut the scalar e varies, in passing from surface to surface, and

may be regarded as a parameter, of which the value serves to distin&quot;

guish one confocal, say (e), from another (pp. 643, 644).

(b). The squares (p. 644) of the three scalar semiaxes (real or ima

ginary), arranged in algebraically descending order, are,

wnencc

and the three vector semiaxes corresponding are,

aU (a + a ), iUVaa
, cU(a-a ). (Mi)

(e). Rectangular, unifocal, and cyclic forms (pp. 644, 648, 650),

of the scalar function fp, to each of which corresponds a form of the

vector function 0p ; deduction, by a new analysis, of several known
theorems* (pp. 644, 645, 648, 652, 653) respecting confocal surfaces,

* For example, it is proved by quaternions (pp. 652, 653), that the focal

lines of the focal cone, which has any proposed point p for vertex, and rests on

the focal hyperbola, are generating lines of the single-sheeted hijperboloid (of the

given confocal system), which passes through that point : and an extension of

this result, to the focal lines of any cone circumscribed to a confocal, is deduced

by a similar analysis, in a subsequent Series (408, p. 656). But such known
theorems respecting confocals can only be alluded to, in these Contents.
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and their focal conies ; the lines a, a are asymptotes to the focal hy

perbola (p. 647), whatever the species of the surface may be : refe

rences (in Notes to pp. 648, 649) to the Lectures,* for thefocal ellipse

of the Ellipsoid, and for several different generations of this last sur

face.

(&amp;lt;?).
General Exponential Transformation (p. 651), of the equation

ric ;

/3, (Ni), with
x&quot;-fa + y*/UVaa =

1, (NY)

a - ea

this auxiliary vector (3 is constant, for any one confocal (i) ;
the expo

nent, t, in (Ni), is an arbitrary or variable scalar ; and the coefficients,

x and y, are two other scalar variables, which are however connected

with each other by the relation (Ni ).

(0). If any fixed value be assigned to t, the equation (Ni) then re

presents the section made by a plane through a (p. 651), which sec

tion is an ellipse if the surface be an ellipsoid, but an hyperbola for

either hyperboloid ; and the cutting plane makes with the focal plane

of a, a, or with the plane of the focal hyperbola, an angle = \tir.

(/). If, on the other hand, we allow t to vary, but assign to

x and y any constant values consistent with (Ni ), the equation (Ni)
then represents an ellipse (p. 651), whatever the species of the surface

may be
;
x represents the distance of its centre from the centre o of the

surface, measured along the focal line a; y is, the radius of a right

cylinder, with a for its axis, of which the ellipse is a section, or the

radius of a circle in a plane perpendicular to a, into which that ellipse

can be orthogonally projected : and the angle \tjr is now the excentric

anomaly. Such elliptic sections of a central quadric may be otherwise

obtained from the unifocal form (c) of the equation of the surface ;

they are, in some points of view, almost as interesting as the known
circular sections : and it is proposed (p. 649) to call them Centro-

Focal Ellipses.

(^). And it is obvious that, by interchanging the two focal lines

a, a in
((/),

a Second Exponential Transformation is obtained, with a

Second System of centro-focal ellipses, whereof the proposed surface is

the locus, as well as of the first system (/), but which have their

centres on the line a
,
and are projected into circles, on a plane per

pendicular to this latter line (p. 649).

(A). Equation of Confocals (p. 652),

ARTICLE 408. On Circumscribed Quadric Cones; and on the

Umbilics of a central quadric, ............. 653-663

* Lectures on Quaternions (by the present author), Dublin, Hodges and

Smith, 1853.
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(a). Equations (p. 653) of Conjugate Points, and of Conjugate Di

rections, with respect to the surface /p =
1,

/(p, p )
=

1, (PO, and/(p, p )
=

; (PO
Condition of Contact, of the same surface with the right line PP

,

(/(p, P )
-

1)
2 = (/P

-
1)W -

1) ; (QO

this latter is also a form of the equation of the Cone, with vertex at

p
,
which is circumscribed to the same quadric (fp = 1).

(#). The condition (Qi) may also be thus transformed (p. 654),

F being a scalar function, connected with / by certain relations of

reciprocity (comp. p. 483) ;
and a simple geometrical interpretation

may be assigned, for this last equation.

(c). The Reciprocal Cone, or Cone of Normals a at p .to the circum

scribed cone (0,0 or (Qi ) maY be represented (p. 655) by the very

simple equation,

which likewise admits of an extremely simple interpretation.

(&amp;lt;).
A given right line (p. 656) is touched by two confocals, and

other known results are easy consequences of the present analysis ;

for example (pp. 658, 659), the cone circumscribed to any surface of

the system, from any point of either of the two real focal curves, is a

cone of revolution (real or imaginary) : but a similar conclusion holds

good, when the vertex is on the third (or imaginary) focal, and even

more generally (p. 663), when that vertex is any point of the (known
and imaginary) developable envelope of the confocal system.

(e). A central quadric has in general Twelve Umbilics (p. 659),

whereof only four (at most) can be real, and which are its intersections

with the threefocal curves : and these twelvepoints are ranged, three by

three, on eight imaginary right lines (p. 662), which intersect the circle

at infinity, and which it is proposd to call the Eight ITmbilicar Ge

neratrices of the surface.

(/). These (imaginary) umbilicar generatrices of a quadric are

found to possess several interesting properties, especially in relation

to the lines of curvature : and their locus, for a confocal system, is a

developable surface (p. 663), namely the known envelope (d) of that

system.

ARTICLE 409. Geodetic Lines on Central Surfaces of the Second

Order, 664-667

(). One form of the general differential equation of geodetics on

an arbitrary surface being, by III. iii. 5 (p. 515),

Vvds
p = 0, (Ri), if Tap = const., (Ri )

this is shown (p. 664) to conduct, for central quadrics, to the first

integral,

where Pis \hcpcrpendicularfrom the centre o on the tangent plane,
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and D is the (real or imaginary) semidiameter of the surface, which

is parallel to the tangent (dp) to the curve. The known equation

of Joachimstal, P. _D = const., is therefore proved anew; this last

constant, however, heing by no means necessarily real, if the surface

be not an ellipsoid.

(*). Deduction (p. 665) of a theorem of M. Chasles, that the tan

gents to a geodetic, on any one central quadric (e), touch also a common

confocal (e^) ;
and of an integral (p. 666) of the form,

e\ sin2 v\ 4 e% cos2 v\ = e, const.
, (Si )

which agrees with one of M. Liouville.

(0). Without the restriction (Hi ), the differential of the scalar h

in (Si) may be thus decomposed into factors (p. 666),

dA = d. P-2D-2 = 2Svdi/dp-i. Svdp-Wp ; (Si&quot;)

but, by the lately cited Section (III. iii. 5, p. 515), the differential

equation of the second order,

Si&amp;gt;d,od

2p=0, (Hi&quot;)

with an arbitrary scalar variable, represents the geodetic lines on any

surface : the theorem (#) is therefore in this way reproduced.

(d). But we see, at the same time, by (Si&quot;),
that the quantity h,

or P.D = 7H, is constant, not only for \hvgeodetics on a central quadric,

but also for a certain other set of curves, determined by the differen

tial equation of the^-s^ order, Svdvdp = 0, which will be seen, in the

next Series, to represent the lines of curvature.

ARTICLE 410. On Lines of Curvature generally ;
and in particu

lar on such lines, for the case of a Central Quadric, 667-674

(&amp;lt;?).
The differential equation (comp. 409, (/)),

Sz;dvdp = 0, (TO

represents (p. 667) \he Lines of Curvature, -upon an. arbitrary surface;

because it is a limitingform of this other equation,

SvAi/Ap = 0, (TV)

which is the condition of intersection (or of parallelism), of the normals

drawn at the extremities of the two vectors p and p + Ap.

(). The normal vector v, in the equation (Ti), may be multiplied

(pp. .673, 700) by any constant or variable scalar n, without any real

change in that equation ;
but in this whole theory, of the treatment

of Curvatures of Surfaces by Quaternions, it is advantageous to con

sider the expression Si/dp as denoting the exact differential of some

scalar function ofp ;
for then (by pp. 486, 487) we shall have an equa

tion of the form,

dv = 0dp = a self-conjugatefunction of dp, (Ui)

which usually involves p also. For instance, we may write generally

(p. 669, comp. (R), p. xiii),

dv = gAp + VXdp/* ; (Ui
f

)
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the scalar g, and the vectors X, p being real, and being generally* func

tions of p, but not involving dp.

(c). This being understood, the two-\ directions of the tangent dp,

which satisfy at once the general equation (Ti) of the lines of curva

ture, and the differential equation S^dp = of the surface, are easily

found to be represented by the two vector expressions (p. 669),

uvi/x+uvv/i; (TO

they are therefore generally rectangular to each other, as they have

long been known to be.

(d~). The surface itself remaining still quite arbitrary, it is found

useful to introduce the conception of an Auxiliary Surface of the Se

cond Order (p. 670), of which the variable vector is p -f p ,
and the

equation is,

Sp&amp;gt;p
= ^p

2 + SXp /ip
= 1

, (Ui&quot;)

or more generally = const.
;
and it is proposed to call this surface, of

which the centre is at the given point P, the Index Surface, partly

because its diametral section, made by the tangent plane to the given

surface at P, is a certain Index Curve (p. 668), which may be consi-

dercd to coincide with the known &quot;

indicatrice&quot; of Dupin.

(tf). The expressions (Ti&quot;)
show (p. 670), that whatever the given

surface may be, the tangents to the lines of curvature bisect the angles

formed by the traces of the two cyclic planes of the Index Surface (&amp;lt;),

on the tangent plane to the given surface
;
these two tangents have

also (as was seen by Dupin) the directions of the axes of the Index

Curve (p. 668) ;
and they are distinguished (as he likewise saw) from

all other tangents to the given surface, at the given point p, by the

condition that each is perpendicular to its own conjugate, with respect

to that indicating curve : the equation of such conjugation, of two

tangents r and r
, being in the present notation (see again p. 668),

Sr^r =
0, or Sr ^r = 0. (UT)

(/). New proof (p. 669) of another theorem of Dupin, namely
that if a developable be circumscribed to any surface, along any curve

thereon, its generating lines are everywhere conjugate, as tangents to

the surface, to the corresponding tangents to the curve.

(^). Case of a central quadric ;
new proof (p. 671) of still another

theorem of Dupin, namely that the curve of orthogonal intersection

(p. 645), of two confocal surfaces, is a line of curvature on each.

(A). The system of the eight umbilicar generatrices (408, (&amp;lt;?)),
of a

central quadric, is the imaginary envelope of the lines of curvature on

that surface (p. 671) ;
and each such generatrix is itselfan imaginary

* For the case of a central quadric, g, X, p are constants.

f Generally two ; but in some cases more. It will soon be seen, that three

lines of curvature pass through an umbilic of a quadric.
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line of curvature thereon : so that through each of the twelve umbilics

(see again 408, (e)} there pass three lines of curvature (comp. p. 677),
whereof however only one, at most, can be real : namely two genera

trices, and a principal section of the surface. These last results, which
are perhaps new, will be illustrated, and otherwise proved, in the

following Series (411).

ARTICLE 411. Additional illustrations and confirmations of the

foregoing theory, for the case of a Central* Quadric ; and especially

of the theorem respecting the Three Lines of Curvature through an

Umbilic, whereof two are always imaginary and rectilinear, .... 674-679

(). The general equation of condition (Ti ), or SvAvAjo = 0, for

the intersection of two finitely distant normals, may be easily trans

formed for the case of a quadric, so as to express (p. 675), that when

the normals at P and P intersect (or are parallel), the chord PP is per

pendicular to its own polar.

(i). Under the same conditions, if the point P be given, the locus

of the chord PP is usually (p. 676) a quadric cone, say () ;
and there

fore the locus of the point P is usually a quartic curve, with P for a

double poinj, whereat two branches of the curve cut each other at right

angles, and touch the two lines of curvature.

(c). If the point P be one of aprincipal section of the given surface,

but not an umbilic, the cone
(&amp;lt;7)

breaks up into a pair ofplanes, whereof

one, say (P), is the plane of the section, and the other, (P ) i-s perpen

dicular thereto, and is not tangential to the surface
;
and thus the

quartic (&) breaks up into & pair of conies through P, whereof one is

the principal section itself, and the other is perpendicular to it.

(&amp;lt;).
But if the given point P be an umbilic, the second plane (P )

becomes a tangent plane to the surface
;
and the second conic (c) breaks

up, at the same time, into a pair of imaginary^ right lines, namely
the two umbilicar generatrices through P (pp. 676, 678, 679).

(0). It follows that the normal PN at a real umbilic P (of an ellip

soid, or a double-sheeted hyperboloid) is not intersected by any other

real normal, except those which are in the same principal section ; but

that this real normal PN is intersected, in an imaginary sense, by all

the normals P N
,
which are drawn at points P of either of the two ima

ginary generatrices through the real umbilic P
;
so that each of these

*
Many, indeed most, of the results apply, without modification, to the case of

the Paraboloids ; and the rest can easily be adapted to this latter case, by the con

sideration of infinitely distant points. &quot;We shall therefore often, for conciseness,

omit the term central, and simply speak of quadrics, or surfaces of the second

order.

f It is well known that the single-sheeted hyperboloid, which (alone of

central quadrics) has real generating lines, has at the same time no real umbilics

(comp. pp. 661, 662).
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imaginary right lines is scon anew to be a line* ofcurvature, on the sur

face (comp. 410, (/*)), because all the normals P N
,
at points of this

line, are situated in one common (imaginary) normal plane (p. 676) :

and as before, there are thus three lines of curvature through an urn-

bilic.

(/). These geometrical results are in various ways deducible from

calculation with quaternions ;
for example, a form of the equation of

the lines of curvature on a quadric is seen (p. 677) to become an

identity at an umbilic (v || \) : while the differential of that equation

breaks up into two factors, whereof one represents the tangent to the

principal section, while the other (S\d
2
p = 0) assigns the directions of

the two generatrices.

(^). The equation of the cone (tf), which has already presented

itself as a certain locus of chords (), admits of many quaternion

transformations ;
for instance (see p. 675), it may be written thus,

SapAp Sa pAp

SaAp
*

Sa Ap
&quot;

p being the vector of the vertex p, and p + Ap that of any other point

p* of the cone
; while a, a are still, as in 407, (a), two realfocal lines,

of which the lengths are here arbitrary, but of which the directions

are constant, as before, for a whole confocal system.

(A). This cone (C
f

), or (Vi), is also the locus (p. 678) of a system

* It might be natural to suppose, from the known general theory (410, (c))

of the tu o rectangular directions, that each such generatrix PP is crossedperpendi

cularly, at every one of its non-umbilicar points p
, by a second (and distinct,

although imaginary) line of curvature. But it is an almost equally well known

ts& received remit ofmodern geometry, paradoxical as it must at first appear, that

when a right line is directed to the circle at infinity, as (by 408, (ej) the gene

ratrices in question are, then this imaginary line is everywhere perpendicular to

itself. Compare the Notes to pages 459, 672. Quaternions are not at all re

sponsible for the introduction of this principle into geometry, but they recognise

and employ it, under the following very simple form : that if a non-evanescent

vector be directed to the circle at infinity, it is an imaginary value of the symbol 0*

(comp. pp. 300, 459, 662, 671, 672) ;
and conversely, that when this last symbol

represents a vector which is not null, the vector thus denoted is an imaginary line,

which cuts that circle. It may be noted here, that such is the case with the reci

procal polar of every chord of a quadric, connecting any two umbilies which are not

in one principal plane ; and that thus the quadratic equation (XXI., in p. 669)

from which the two directions (410, (c)) can usually be derived, becomes an iden

tity for every umbilic, real or imaginary : as it ought to do, for consistency with

the foregoing theory of the three lines through that umbilic. And as an addi

tional illustration of the coincidence of directions of the lines of curvature at any

non-umbilicar point P of an umbilicar generatrix, it may be added that the cone

of chords ((7), in 411, (i), is found to touch the quadric along that generatrix,

when its vertex is at any such point P .

f
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of three rectangular lines ; and if it be cut by any plane perpendicular

to a side, and not passing through the vertex, the section is an equila

teral hyperbola.

( ). The same cone (C
r

) has, for three of its sides FP
,
the normals

(p. 677) to the three confocals (p. 644) of a given system which pass

through its vertex P
;
and therefore also, by 410, (#), the tangents

to the three lines of curvature through that point, which are the inter-

sections of those three confocals.

(/). And because its equation (Vi) does not involve the constant

I, of 407, (a), (3), we arrive at the following theorem (p. 678) : If

indefinitely many quadrics. with a common centre o, have their asymp
totic cones biconfocal, andpass through a common point p, their normals

at that point have a quadric cone
(&amp;lt;7) for their locus.

ARTICLE 412 On Centres of Curvature of Surfaces, .... 679-689

(). If &amp;lt;7 be the vector of the centre s of curvature of a normal

section of an arbitrary surface, which touches one of the two lines of

curvature thereon, at any given point p, we have the two fundamental

equations (p. 679),

a = p -f KUv, (Wi), and -*fy -f dUV =
; (Wi

f

)
whence

VdpdUv = 0, (Wi&quot;),
and ^+S^ = 0; (W)

the equation (Wi&quot;) being a newform of the general differential equa
tion of the lines of curvature.

(). Deduction (pp. 680, 681, &c.) of some known theorems from

these equations ;
and of some which introduce the new and general

conception of the Index Surface (410, (&amp;lt;?)),
as well as that of the

known Index Curve.

(&amp;lt;;). Introducing the auxiliary scalar (p. 682),

in which r
(|| dp) is a tangent to a line of curvature, while dv = 0dp,

as in (Ui), the two values of r, which answer to the two rectangular

directions (Ti&quot;)
in 410, (c), are given (p. 680) by the expression,

in which g, X, /i are, for any given point P, the constants in the equa
tion

(Ui&quot;)
of the index surface; the difference of the two curvatures

R~\ therefore vanishes at an umbilic of the given surface, whatever the

form of that surface may be : that is, at a point, where v
\\
X or

|| /j,

and where consequently the index curve is a circle.

(d). At any other point P of the given surface, which is as yet en

tirely arbitrary, the values ofr may be thus expressed (p. 681),

n = ar2
, f2= a2

&quot;2
, (Xi&quot;)

ai, &z being the scalar semiaxes (real or imaginary) of the index curve

(defined, comp. 410, (d], by the equations Sp ^p =
1, Svp = 0).
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(e). The quadratic equation, of which n and 2,

or the inverse

squares of the two last semiaxes, are the roots, may he written (p. 683)
under the symbolicalform,

S&amp;gt;-i(0-t-r)-iv
= 0; (Yj)

which may be developed (same page) into this other form,

r2 + rSv -i Xv -tSv -1^=^=0, (Y O
the linear and vector functions, -fy

and %, being derived from the func

tion 0, on the plan of the Section III. ii. 6 (pp. 440, 443).

(/). Hence, generally, the product of the two curvatures of a sur

face is expressed (same p. 683) by the formula,

(Zi)

which will bo found useful in the following series (413), in connexion

with the theory of the Measure of Curvature.

(g). The given surface being still quite general, if we write

(p. 686),

T = Ud/o, r = U (vdp), (A2), and therefore rr = Uv,
*

(A 2)

so that T and r are unit tangents to the lines of curvature, it is easily

proved that

dr = rSr dr, (B2), or that Vrdr = 0; (B 2)

this general parallelism of dr to r being geometrically explained, by

observing that a line of curvature on any surface is, at the same time,

a line of curvature on the developable normal surface, which rests upon
that line, and to which r or VT is normal, if r be tangential to the

line.

(/*). If the vector of curvature (389) of a line of curvature be

projected on the normal v to the given surface, the projection

(p. 686) is the vector of curvature of the normal section of that sur

face, which has the same tangent r
;
but this result, and an analo

gous one (same page) for the developable normal surface (g), are

virtually included in Meusnier s theorem, which will be proved by

quaternions in Scries 414.

(), The vector a of a centre s of curvature of the given surface,

answering to a given point P thereon, may (by (Wj) and (Xi)) be ex

pressed by the equation,
(T = p + r-iv; (C2)

which may be regarded also as a generalform of the Vector Equation
of the Surface of Centres, or of the locus of the centre s : the vari

able vector p of the point P of the given surface being supposed (p. 501)
to be expressed as a vector function of two independent and scalar

variables, whereof therefore v, r, and a become also functions,

although the two last involve an ambiguous sign, on account of the

Two Sheets of the surface of centres.

(j ). The normal at s, to what may be called the first Sheet, has

the direction of the tangent T to what may (on the same plan) be

called the First Line of Curvature at P ;
and the vector v of the point
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corresponding to a, on tho corresponding sheet of the Reciprocal (comp.

pp. 507, 508) of the Surface of Centres, has (by p. 684) the expres

sion,

w-r(Spr)-i; (D2)

which may also be considered (comp. ( )) to be a form of the Vector

Equation of that Reciprocal Surface.

(/*;).
The vector v satisfies generally (by same page) the equations

of reciprocity,

Svff= S(7v = l, Sv&r = 0, S&amp;lt;rfo&amp;gt; = 0, (D2 )

dff, dv denoting any infinitesimal variations of the vectors a and v,

consistent with the equations ofthe surface of centres and its recipro

cal, or any linear and vector elements of those two surfaces, at two

corresponding points ;
we have also the relations (pp. 684, 685),

Spv = l, Si/u = 0, Si/v0u
= 0. (W)

(Z). The equation Sv (
~
p) = 0, or more simply,

Si/w = l, (E2)

in which w is a variable vector, represents (p. 684) the normal plane

to fae first. line (/) of curvature at P; or the tangent plane at s to the

first sheet of the surface of centres : or finally, the tangent plane to

that developable normal surface (&amp;lt;?),
which rests upon the second line of

curvature, and touches the first sheet along a certain curve, whereofwe
shall shortly meet with an example. And if v be regarded, comp. ( ),

as a vector function of two scalar variables, the envelope of the variable

plane (E2) is a sheet of the surface of centres ; or rather, on account of

tho ambiguous sign (i), it is that surface of centres itself: while, in

like manner, the reciprocal surface (/) is the envelope of this other

plane^
Saw = 1. (E2 )

(m). The equations (Wi), (Wi ) give (comp. the Note to p. 684),

dff = d72.Uv; (F2)

combining which with (C2), we see that the equations (Hi) of p. xxv.

are satisfied, when the derived vectors p and a are changed to the cor

responding differentials, dp and d&amp;lt;r. The known theorem (of Monge),
that each Line of Curvature is generally an involute, with the corre

sponding Curve of Centres for one of its evolutes (400), is therefore in

this way reproduced : and the connected theorem (also of Monge),
that this evolute is a geodetic on its own sheet of the surface of centres,

follows easily from what precedes.

(n). In the foregoing paragraphs of this analysis, the given sur

face has throughout been arbitrary, or general, as stated in (d) and

(?). But if we now consider specially the case of a central quadric,

several less general but interesting results arise, whereof many, but

perhaps not all, are known ;
and of which some may be mentioned

here-
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(0). Supposing, then, that not only da&amp;gt;
=

0d|0, but also v = $p, and

Spv =fp = 1, the Index Surface (410, (d)} becomes simply (p. 670) the

given surface, with its centre transported from o to P
; whence many

simplifications follow.

(_p). For example, the semiaxes ai, a2 of the index curve are now

equal (p. 681) to the semiaxes of the diametral section of the given

surface, made by a plane parallel to the tangent plane ;
and TV is, as

in 409, the reciprocal P 1 of the perpendicular, from the centre on this

latter plane ;
whence (by (Xi) and

Xi&quot;))
these known expressions

for the two* curvatures result :

.Br 1 =Par2
;

.R2
-i = Pa2

- 3
. (G2)

(#). Hence, by (e), if a new surface be derived from a given cen

tral quadric (of any species), as the locus of the extremities of normals,

erected at the centre, to the planes of diametral sections of the given

surface, each such normal (when real) having the length of one of the

semiaxes of that section, the equation of this neiv surface^ admits

(p. 683) of being written thus :

Sp(0-p-)-ip = 0. (Ha)

(r). Under the conditions (o), the expression (C2) for a gives (p. 684)

the two converse forms,

whence (pp. 684, 689),

v = r (0 + r)~i 0(7, (JO, &amp;lt;r
= (p-i+r)j/; (J2 )

and therefore (p. 689), by (d}, (p), and by the theory (407) of con-

focal surfaces,

G\ = $i~
lv = fa Vp&amp;gt; (K2)

if 2 be formed from by changing the semiaxes ale to a-^zc-2, ;
it

being understood that the given quadric (abc] is cut by the two confo-

cals (a\biCi) and (a252 &amp;lt;?2), in the first and second lines of curvature

through the given point P : and that o\ is here the vector of thatjtfrstf

centre s of curvature, which answers to thc^rs^ line (comp. (/). Of

course, on the same plan, we have the analogous expression,

*
Throughout the present Series 412, we attend only (comp. (a)) to the curva

tures of the two normal sections of a surface, which have the directions of the two

lines ofcurvature : these being in fact what are always regarded as the ttvoprinci

pal curvatures (or simply as the two curvatures) of the surface. But, in a shortly

subsequent Series (414), the more general case will be considered, of the curva

ture of any section, normal or oblique.

f- When the given surface is an ellipsoid, the derived surface is the celebrated

Wave Surface of Fresnel : which thus has (H2) for a symbolicalform of its equa

tion. When the given surface is an hyperboloid, and a semiaxis of a section is

imaginary, the (scalar and now positive) square, of the (imaginary) normal erected,

is still to be made equal to the square of that semiaxis.



xxxviii CONTENTS.

Pages.

for the vector of the second centre.

(&quot;).
These expressions for 01, &amp;lt;r2 include (p. G89) a theorem ofDr.

Salmon, namely that the centres of curvature of a given quadric at a

given point are the poles of the tangent plane, with respect to the two

confocals through that point ;
and either of them may be regarded,

by admission of an ambiguous sign (comp. ()), as a new Vector Form*

of the Equation of the Surface of Centres, for the case (0) of a given

central quadric.

(f). In connexion with the same expressions for a\, &amp;lt;r2 ,
it may be

observed that if r\, ? 2 be the corresponding values of the auxiliary

scalar r in (c), and if T, r still denote the unit tangents (&amp;lt;?)
to the

first and second lines of curvature, while abc, a\b\c\, and a^cz retain

their recent significations (r), then (comp. pp. 686, 687, see also p.

652),
n =fr =/Ud,o = (&amp;gt;2

_ a22)-i = &c .
} (L2)

and rz =/r =/tJi/dp = (a
2 - ai

2
)-

= &c.
; (L2 )

this association of r\ and a\ with a2, &c., and of r2 and &amp;lt;r2 with a\,

&c., arising from the circumstance that the tangents r and r have re

spectively the directions of the normals vz and v\, to the two confocal

surfaces, (og&v$0 and (a\b.\c\).

(M). By the properties of such surfaces, the scalar here called r2 is

therefore constant, in the whole extent of a first line of curvature ;

and the same constancy of r%, or the equation,

d/U^dp = 0, (M2)

may in various ways be proved by quaternions (p. 687).

(w). Writing simply r and r for ri and rz, so that r is constant,

but r variable, for a first line of curvature, while conversely r is con

stant and r variable for a second line, it is found (pp. 684, 685, 586),

that the scalar equation of the surface of centres (?) may be regarded

as the result of the elimination of r~ l between the two equations,

l =
S.&amp;lt;r(l + r-V)-2^cr, (]S

T
2), and = S.cr (l+r-ty)-^

2*
; (N2 )

whereof the latter is the derivative of the former, with respect to the

scalar r&quot;

1
. It follows (comp. p. 688), that the First Sheet of the Sur

face of Centres is touched by an Auxiliary Quadric (N2), along a Quartic

Curve (N2) (N2 ), which curve is the Locus of the Centres of First Cur

vature, for all the points of a Line of Second Curvature ; the same

sheet being also touched (see again p. 688), along the same curve, by
the developable normal surface (T), which rests on the same second line :

with permission to interchange the words, first and second, through

out the whole of this enunciation.

(yS).
The given surface being still a central quadric (0), the vec

tors p, &amp;lt;r,

v can be expressed as functions of v (comp. (/) (Jc) (/)),

* Dr. Salmon s result, that this surface ofcentres is of the twelfth degree, may
be easily deduced from this form.
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and conversely the latter can be expressed as a function of any one of

the former ;
we have, for example, the reciprocal equations (p. 685),

&amp;lt;T=(l4-r-*&amp;lt;j&amp;gt;)*&amp;lt;p-iv, (2)i and w = (l + r^fr* &amp;lt;p&amp;lt;r ; (02 )

from which last the formula (N2) may be obtained anew, by observ

ing (&) that S&amp;lt;ru
= 1. Hence also, by (r), we can infer the expres

sions,*

p = (0
-i + r-i) v = 02

-1
v, (P2), and u = 02 p

= v2 ; (Pa*)

and in fact it is easy to see otherwise (comp. p. 645), that vz \\
r

\\ v,

and Spj/2 = 1 = Spv, whence vz v as before.

(x). More fully, the two sheets of the reciprocal (/) of the surface

of centres may have their separate vector equations written thus,

vi = 02 p = V2, i&amp;gt;2 = 0ip
= n ; (Pa&quot;)

and the scalar equation-^ of this reciprocal surface itself, considered

as including 3oi!A sheets, may (by page 685) be thus written, the func

tions/and F being related as in 408, (),

with several equivalent forms
;
one way of obtaining this equation

being the elimination of r between the two following (same p. 685) :

Fv + r -i v* = 1, (Q2 ) ; fu + rv* = 0.
(Qa&quot;)

(y). The two last equations may also be written thus, for t\LQfirst

sheet of the reciprocal surface,

Fz vi = 1, (Ea), and/Uvi = r
} (RaO

in which (comp. pp. 685, 689),

_F2U = s w 2
-i u = Sy(0-i+r-i)u; (Ra&quot;)

and accordingly (comp. pp. 483, 645), we have ^2^2 = Fv= 1, and

(z). For a line of second curvature on the given surface, the scalar

r is constant, as before
;
and then the two equations (Q2 ) (Qs&quot;)i

or

(R.2), (^ 2), represent jointly (comp. the slightly different enunciation

in p. 688) a certain qnartic curve, in which the quadric reciprocal (^2),

of the second confocal (#2 ^2 c2), intersects the first sheet (y) of the Re

ciprocal Surface (Q2) ;
this quartic curve, being at the same time the

intersection of the quadric surface (Q2 ) or(R2), with the quadric cone

(Qa&quot;) or (R^), which is Mconcyclic with the given quadric,fp- 1.

* The equation u = v2 ,
= the normal to the confocal (a2 bz cz) at P, is not ac

tually given in the text of Series 412; but it is easily deduced, as above, from

the formulae and methods of that Series.

f The equation (Q2) is one of the fourth degree; and, when expanded by co

ordinates, it agrees perfectly with that which was first assigned by Dr. Booth

(see a Note to p. 685), for the Tangential Equation of the Surface of Centres of a

quadric, or for the Cartesian equation of the Reciprocal Surface.
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ARTICLE 413. On the Measure of Curvature of a Surface, . . 689-693.

The object of this short Scries 413 is the deduction by quaternions,

somewhat more briefly and perhaps more clearly than in the Lectures,

of the principal results of Gauss (comp. Note to p. 690), respecting

the Measure of Curvature ofa Surface, and questions therewith con

nected.

(0). Let P, PI, Pabe any three near points on a given but arbitrary

surface, and R, RI, R2 the three correspondingpoints (near to each other]

on the unit sphere, which are determined by the parallelism ofthe radii

OR, ORi, ORa to the normals PN, PINI, ?2 N2 ;
then the areas of the two

small triangles thus formed will bear to each other the ultimate ratio

p. 690),
ARR!R2 V.dUl/^TJl/ _ 1 . 1

(S2)

whence, with Gauss s definition of the measure of curvature, as the

ultimate ratio of corresponding areas on surface and sphere, we have, by
the formula (Zi) in 412, (/), his fundamental theorem,

Measure of Curvature = J?i
-1

%
&quot;

, (S2 )

= Product of the two Principal Curvatures of Sections.

(b~). If the vector p of the surface be considered as a function of

two scalar variables, t and u, and if derivations with respect to these

be denoted by upper and lower accents, this general transformation

results (p. 691),

Measure of Curvature = S S -
[ S I, (T2)

V V \ V }

in which v \p p, ; (T2 )

with a verification for the notation pqrst of Mongo.

(c). The square of a linear element As, of the given but arbitrary

surface, may be expressed (p. 691) as follows :

ds2 = (Tdp
2
=) edt* + Zfdtdu + ffdu* ; (U2)

and with the recent use () of accents, the measure (T2) is proved

(same page) to be an explicit function of the ten scalars,

,/,?; * ,/,/; /$ ,; and ^-2/;+/ ; (U2 )

the form of this function (p. 692) agreeing, in all its details, with the

corresponding expression assigned by Gauss. *

(&amp;lt;?).
Hence follow at once (p. 692) two of the most important

results of that great mathematician on this subject; namely, that

every Deformation ofa Surface, consistent with the conception of it as

an infinitely thin and flexible but inextcnsible solid, leaves unaltered,

* References are given, in Notes to pp. 690, &c. of the present Series 413,

to the pages of Gauss s beautiful Memoir,
&quot;

Disquisitiones gcncralcs circa Superfi

cies Curvas,&quot; as reprinted in the Additions to Liouville s Monge.
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1st, the Measure of Curvature at any Point, and Hud, the Total

Curvature of any Area : this last being the area of the corresponding

portion (a} of the unit-sphere.

(e). By a suitable choice of t and n, as certain geodetic co-ordinates,

the expression (U2) may be reduced (p. 692) to the following,

ds2 = dt2 + n2du2
; (U2 &quot;)

where t is the length of a geodetic arc AP, from a fixed point A to a

variable point p of the surface, and u is the angle BAP which this

variable arc makes with a fixed geodetic AB : so that in the immediate

neighbourhood of A, we have n = t, and n = T)tn = 1.

(/). The general expression (c) for the measure of curvature takes

thus the very simple form (p. 692),

tfri.ffjfi = - n-in&quot; = - n^D t
an

; (V2)

and we have (comp. (^)) the equation (p. 693),

Total Curvature of Area APQ = Au J n du
; OY)

this area being bounded by two geodetics, AP and AQ, which make with

each other an angle = Aw, and by an arc PQ, of an arbitrary curve on

the given surface, for which
t, and therefore

, may be conceived to

be a given function of u.

(jf).
If this arc PQ be itself & geodetic, and if we denote by v the

variable angle which it makes at p with AP prolonged, so that tan v

= ndu : dt, it is found that dv = - n du
;
and thus the equation (V2 )

conducts (p. 693) to another very remarkable and general theorem of

Gauss, for an arbitrary surface, which may be thus expressed,

Total Curvature of a Geodetic Triangle ABC = A + B+C ?r, (VY )

= what may be called the Spheroidal Excess of that triangle, the total

area (4?r) of the unit-sphere being represented by eight right angles :

with extensions to Geodetic Polygons, and modifications for the case of

what may on the same plan be called the Spheroidal Defect, when the

tivo curvatures of the surface are oppositely directed.

ARTICLE 414. On Curvatures of Sections (Normal and Oblique)

of Surfaces
;
and on Geodetic Curvatures, 694-698

(). The curvatures considered in the two preceding Series hav

ing been those of the principal normal sections of a surface, the present

Scries 414 treats briefly the more general case, where the section is

made by an arbitrary plane, such as the osculating plane at P to an

arbitrary curve upon the surface.

(). The vector of curvature (389) of any such curve or section

being (p /c)&quot;

1 = Ds3
p&amp;gt;

its normal and tangential components &TQ found

to be (p. 694),

(p
- ff

)-&amp;gt;

= v S^ = (p
-

ai)-i cos2 v -\- (p
- (T2)-i sin2

v, (Wa)

and (p-^)-=j/- dp- Si/dp-Jd
2
p; (W)

the former component being the Vector of Normal Curvature of the

g
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Surface, for the direction of the tangent to the curve : and the latter

&quot;being
the Vector of Geodetic Curvature of the same Curve (or section).

(0). In the foregoing expressions, &amp;lt;r and are the vectors of the

points s and x, in which the axis of the osculating circle to the curve

intersects respectively the normal and the tangent plane to the sur

face (p. 694) ;
s is also the centre of the sphere, which osculates to

the surface in the direction dp of the tangent ; &amp;lt;n,

ff2 are the vectors

of the two centres Si, 83, of curvature of the surface, considered in Se

ries 412, which are at the same time the centres of the two osculating

spheres, of which the curvatures are (algehraically) the greatest and

least : and v is the angle at which the curve here considered crosses

the first line of curvature,

(d). The equation (W2) contains a theorem of Euler, under the

form (p. 695),
R- 1 = .Rr i cos2 v + Jfe-i sin

2 v
; (W2

&quot;)

it contains also Meusnier s theorem (same page), under the form

(comp. 412, (A)) that the vector of normal curvature (#) of a surface,

for any given direction, is the projection on the normal v, of the vector

of oblique curvature, whatever the inclination of the plane of the sec

tion to the tangent plane may be.

(i). The expression (W2 ), for the vector of geodetic curvature, ad

mits (p. 697) of various transformations, with corresponding expres

sions for the radius T(p ) of geodetic curvature, which is also the

radius ofplane curvature of the developed curve, when the developable

circumscribed to the given surface along the given curve is unfolded

into a plane : and when this radius is constant, so that the developed

curve is a circle, or part of one, it is proposed (p. 698) to call the given

curve aDidonia (as in the Lectures), from its possession of a certain iso-

perimetrical property, which was first considered by M. Delaunay,
and is represented in quaternions by the formula (p. 697),

5JS(Ui/.dpJ(o) + ^JTdp = 0; (X2)

or &amp;lt;r dp = V(Uv . dUdp), (X 2)

by the rules of what may be called the Calculus of Variations in Qua
ternions : c being a constant, which represents generally (p. 698)

the radius of the developed circle, and becomes infinite for geodetic

lines, which are thus included as a case of Didonias.

ARTICLE 41 5. Supplementary Remarks, 698-706

(a). Simplified proof (referred to in a Note to p. xii), of the gene
ral existence of a system of three real and rectangular directions, which

satisfy the vector equation Vp0p =
0, (P), when is a linear, vector,

and self-conjugate function ;
and of a system of three real roots of the

cubic equation M=Q (p. xii), under the same condition (pp. 698-

700).

(#). It may happen (p. 701) that the differential equation,

0, (Y2)
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is integrable, or represents a system of surfaces, without the expression

Sj/dp being an exact differential, as it was in 410, (&amp;lt;5&amp;gt;).

In this case,

there exists some scalar factor, n, such that Snvdp is the exact diffe

rential of a scalar function of p, without the assumption that this vec

tor p is itself a function of a scalar variable, t
;
and then if we write

(pp. 701, 702, comp. p. xxx),

(iv = 0dp, d . nv =
&amp;lt;5djo, 0^ )

this new vector function &amp;lt;t&amp;gt; will be self-conjugate, although the function

is not such now, as it was in the equation (Ui).

(c). In this manner it is found (p. 702), that the Condition* ofln-

tegrability of the equation (Y3) is expressed by the very simple for

mula,

Syv=0; (Y3
&quot;)

in which y is a vector function of p, not generally linear, and deduced

from on the plan of the Section Ill.^ii. 6 (p. 442), by the relation,

0dp
-

dp = 2Vydp ; (Y2
&quot;

)

$ being the conjugate of 0, but not here equal to it.

(d). Connexions (pp. 702, 703) of the Mixed Transformations in

the last cited Section, with the known Modular and Umbilicar Gene

rations of a surface of the second order.

(0). The equation (p. 704),

T(p-V./3Vya)=:T(a-V.yV/3p), (Z2)

in which a, (3, y are any three vector constants, represents a central

quadric, and appears to offer a new mode of generation^ of such a sur

face, on which there is not room to enter, at this late stage of the

work.

(/). The vector of the centre of the quadric, represented by the

equation fp 2Sgp = const., with fp
-
Sp^p, is generally K= $-

l t

= m tyt (p. 704) ;
case ofparaboloids, and of cylinders.

(#). The equation (p. 705),

&WQ
f

pg&quot;p + si0p + s
ri + c = o, (Z2 )

represents the general surface of the third degree, or briefly the General

Cubic Surface ; C being a constant scalar, y a constant vector, and q,

q , q&quot;
three constant quaternions, while $p is here again a linear,

vector, and self-conjugate function of p.

(A). The General Cubic Cone, with its vertex at the origin, is thus

represented in quaternions by the monomial equation (same page),

*
It is shown, in a Note to p. 702, that this monomial equation (Y&quot;2) be

comes, when expanded, the known equation of six terms, which expresses the con

dition of integrability of the differential equation pdx+ q&y + rdz = 0.

f In a Note to p. 649 (already mentioned in p. xxviii), the reader will find

references to the Lectures, for several different generations of the ellipsoid, derived

from quaternion forms of its equation.
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= 0. (Z 3

(t). Screiv Surface, Screw Sections (p. 705) ;
Skew Centre ofSketv

Arch, with illustration by a diagram (Fig. 85, p. 708).

SECTION 8. On a few Specimens of Physical Applications

of Quaternions, with some Concluding Eemarks, 707 to the end.

ARTICLE 416. On the Statics of a Rigid Body, ..... 707-709

(). Equation of Equilibrium,

Vr 2/3 = 2V/3; (A 3)

each a is a vector of application ; (3 the corresponding vector ofapplied

force ; y an arbitrary vector : and this one quaternion formula (A3)

is equivalent to the system of the six usual scalar equations

(X = 0, r= 0, Z=0,L = 0, M= 0, N= 0).

O) When S(2/3.2Va/3) = 0, (B3), but not 2/3 = 0, (C3)

the applied forces have an unique resultant 2/3, which acts along

the line whereof (A3) is then the equation, with y for its variable

vector.

(c). When the condition (3) is satisfied, the forces compound
themselves generally into one couple, of which the axis = 2Va/3, what

ever may be the position of the assumed origin o of vectors.

(/). When 2\r
a/3

=
0, (D3), with or without (C3),

the forces have no tendency to turn the body round that point o ;
and

when the equation (A3) holds good, as in (a), for an arbitrary vector

y, the forces do not tend to produce a rotation* round any point c,

so that they completely balance each other, as before, and both the

conditions (C3) and (D3) are satisfied.

(0). In the general case, when neither (C3) nor (D3) is satisfied, ifq
be an auxiliary quaternion, such that

0Z/3 = 2Va/3, (E3)

then Y^ is the vector perpendicular from the origin, on the central

axis of the system ;
and if c = Sy, then c2/3 represents, both in quan

tity and in direction, the axis of the central couple.

(/). If Q, be another auxiliary quaternion, such that

Q2/3 = 2a/3, (F3)

with T2/3 &amp;gt; 0, then SQ = c = central moment divided by totalforce ;

* It is easy to prove that the moment of the force /3, acting at the end of the

vector a from o, and estimated with respect to any unit-line i from the same ori

gin, or the energy with which the force so acting tends to cause the body to turn

round that line t, regarded as a fixed axis, is represented by the scalar,
-

Sca/3, or

Sr a/3 ;
so that when the condition (D3) is satisfied, the applied forces have no

tendency to produce rotation round any axis through the origin : which origin

becomes an arbitrary point c, when the equation of equilibrium (A 3) holds good.
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and VQ is the vector y of a point c upon the central axis -which does

not vary with the origin o, and which there are reasons for considering

as the Central Point of the system, or as the general centre of applied

forces : in fact, for the case ofparallelism, this point c coincides with

what is usually called the centre of parallel forces.

(ff). Conceptions of the Total Moment 2a/3, regarded as being ge

nerally a quaternion ; and of the Total Tension, Scr/3, considered as

a scalar to which that quaternion with its sign changed rcducesjtself

for the case of equilibrium (a), and of which the value is in that

case independent of the origin of vectors.

(/*). Principle of Virtual Velocities,

2S/Wa = 0, (G 3)

ARTICLE 417. On the Dynamics of a Rigid Body, 709-713

(a). General Equation of Dynamics,

2wS(D*2a-)&i = 0; (H3)

the vector representing the accelerating force, or m% the moving-

force, acting on a particle m of which the vector at the time t is a
;

and So. being any infinitesimal variation of this last vector, geometri

cally compatible with the connexions between the parts of the

system, which need not here be a rigid one.

(#). For the case of a free si/stem, we may change each $a to e + Vta,
e and i being any tivo infinitesimal vectors, which do not change in

passing from one particle m to another
;
and thus the general equa

tion (H3) furnishes two general vector equations, namely,

2w (D f2a - )
=

0, (I3), and 2iVa (D^a - )
=

; (J3)

which contain respectively the law of the motion of the centre of

gravity, and the law of description of areas.

(c]. If a body be supposed to be rigid, and to have a fixed point

o, then only the equation (J3) need be retained
;
and we may write,

D&amp;lt;a=Vwr, (K3)

i being here a. finite vector, namely the Vector Axis of Instantaneous

Rotation : its versor Ut denoting the direction of that axis, and its

tensor Tt representing the angular velocity of the body about it, at the

time t.

(d}. When the forces vanish, or balance each other, or compound
themselves into a single force acting at the fixed point, as for the case

of a heavy body turning freely about its centre of gravity, then

2-wVa =
0, (L3) ;

and if we write, &amp;lt;pi

= 2waVat, (M 3)

so that again denotes a linear, vector, and self-conjugate function,
we shall have the equations,

0D,i + V*0i=0, (N3); &amp;lt;t+y
=

0, (03) ; Si0i = A3; (P3)

whence Sty + 7*2 = 0, (Q3), and
fD&amp;lt;i

= Viy; (R3)

the vector y being what we may call the Constant of Areas, and the

scalar 7i
2
being the Constant of Living Force.



xlvi CONTENTS.

Pages.
(e). One of Poinsot s representations ofthe motion ofa body, under

the circumstances last supposed, is thus reproduced under the form,
that the Ellipsoid of Living Force (P3), with its centre at infixed

point o, rolls without gliding on the fixed plane (Qs), which is parallel

to the Plane ofAreas (Sty = 0) ;
the variable semidlameter of contact,

, being the vector-axis (c) of instantaneous rotation of the body.

(/). The Moment of Inertia, with respect to any axis i through o,

is equal to the living force (7i
2
) divided by the square (Ti

2
) of the

semidiameter of the ellipsoid (P3), which has the direction of that axis
;

and hence may be derived, with the help of the first general construc

tion of an ellipsoid, suggested by quaternions, a simple geometrical

representation (p. 711) of the square-root of the moment of inertia

of a body, with respect to any axis AD passing through a given point

A, as a certain right line ED, if CD = CA, with the help of two other

points B and c, which are likewise fixed in the body, but may be

chosen in more ways than one.

(^). A cone of the second degree,

Si*/=0, (S3), with v = y20t
_

Jf-Qh, (T3)

isjlxed in the body, but rolls in space on that other cone, which is the

locus of the instantaneous axis i
;
and thus a second representation,

proposed by Poinsot, is found for the motion of the body, as the rolling

of one cone on another.

(A). Some of Mac Cullagh s results, respecting the motion here

considered, are obtained with equal ease by the same quaternion

analysis ;
for example, the line y, although fixed in space, describes

in the body an easily assigned cone ofthe second degree (p. 712), which

cuts the reciprocal ellipsoid,

in a certain sphero-conic : and the cone of normals to the last men

tioned cone (or the locus of the line t + /^y
1

) rolls on the plane of areas

(Siy
=

0).

(i). The Three (Principal) Axes of Inertia of the body, for the

given point o, have the directions (p. 712) of the three rectangular and

vector roots (comp. (P), p. xii., and the paragraph 415, (a), p. xlii.)

of the equation

Vi^i = 0, (V3), because, for each, D*i = ; (V3 )

and if A, B, C denote the three Principal Moments of incrtis. corre

sponding, then the Symbolical Cubic in
&amp;lt;f&amp;gt; (comp. the formula (N) in

page xii.) may be thus written,

0. (W3)

(./). Passage (p. 713), from moments referred to axes passing

through a given point o, to those which correspond to respectively

parallel axes, through any other point Q of the body.
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ARTICLE 418. On the motions of a System of Bodies, considered

as free particles m, m ,
. . which attract each other according to the

law of the Inverse Square ............... 713-717

(a). Equation of motion of the system,

ZmSDpada + SP= 0, (X3), if P= Zmm T (a
- a )*

1

; (Y3)

a is the vector, at the time t,
of the mass or particle m ;

P is the po
tential (or force-function) ;

and the infinitesimal variations da are ar

bitrary.

(). Extension of the notation of derivatives,

P=SS(DaP.a). (Z3)

(&amp;lt;?).
The differential equations of motion of the separate masses

m, . . become thus,

and the laws of the centre of gravity, of areas, and of living force,

are obtained under the forms,

2wD&amp;lt;a = /3, (B4); 2wVaD&amp;lt;a = y; (C4)

and T=-2m(T&amp;gt;ta) = P+]I; (D/)

(3, y being two vector constants, and H a scalar constant.

(d). Writing,

F= f (P+ T) d*, (E4), and V= f 2 Tdt = JF+^ (F4)

jP may be called the Principal* Function, and V the Characteristic

Function, of the motion of the system ;
each depending on the final

vectors of position, a, a
,

. . and on the initial vectors, ao, a o, . .
; but

F depending also (explicitly) on the time, t, while V (= the Action)

depends instead on the constant H of living force, in addition to those

final and initial vectors : the masses m, m
,

. . being supposed to be

known, or constant.

(&amp;lt;i).
&quot;We are led thus to equations of the forms,

mDta + VaF= 0, . . (G4) ;
-mD o + D^F= 0, . . (H4) ;

(DJO = -Jff, (10

whereof the system (G4) contains what may be called the Interme

diate Integrals, while the system (H4) contains the Final Integrals,

of the differential Equations of Motion (A4).

(/). In like manner we find equations of the forms,

Da F=-wD&amp;lt;a, .. (J4); D
ao
F=wD a, . . (K4); DHY=f) (L4)

the intermediate integrals (i) being here the result of the elimination

* References are given to two Essays by the present writer,
&quot; On a General

Method in Dynamics,&quot; in the Philosophical Transactions for 1834 and 1835, in

which iheAction (V), and a certain other function (S), which is here denoted by F,

were called, as above, the Characteristic and Principal Functions. But the ana

lysis here used, as being founded on the Calculus of Quaternions, is altogether

unlike the analysis which was employed in those former Essays.
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of H, between the system (J4) and the equation (1,4) ;

and the final

integrals, of the same system of differential equations (A4), being now

(theoretically) obtained, by eliminating the same constantH between

(K4) and (L4).

(#). The functions F and V are obliged to satisfy certain Partial

Differential Equations in Quaternions, of which those relative to the

final vectors a, a, . . are the following,

and they are subject to certain geometrical conditions, from which

can be deduced, in a new way, and as new verifications, the law ofmo
tion of the centre of gravity, and the law of description of areas.

(A). General appro^mate expressions (p. 717) for the functions

Pand V, and for their derivativesHand
t,

for the case of a, short mo

tion of the system.

ARTICLE 419. On the Relative Motion of a Binary System ;
and

on the Law of the Circular Hodograph, .......... 717-733

(#). The vector of one body from the other being a, and the dis

tance being r (= Ta), while the sum of the masses is M, the differen

tial equation of the relative motion is, with the law of the inverse

square,
D 2a = Jlfa-V-i

; (04)

D being here used as a characteristic of derivation, with respect to the

time t.

(#). As a first integral, which holds good also for any other law

of central force, we have

VaDa =
/3
= a constant vector ; (Pi)

which includes the two usual laws, of the constant plane (-J- /3), and

of the constant areal velocity I
- = i]

(c). Writing T - Da -vector of relative velocity, and conceiving this

new vector T to be drawn from that one of the two bodies which is

here selected for the origin o, the locus of the extremities of the vector

T is (by earlier definitions) the Hodograph of the Relative Motion ;

and this hodograph is proved to be, for the Law of the Inverse Square,

a Circle.

(d). In fact, it is^shown (p. 720), that for any law of central force,

the radius of curvature of the hodograph is equal to the force, multi

plied into the square of the distance, and divided by the doubled areal

velocity; or by the constant parallelogram c, under the vectors (a

and r) of position and velocity, or of the orbit and the hodograph.

(&amp;lt;?).
It follows then, conversely, that the law ofthe inverse square

is the only law which renders the hodograph generally a circle ; so

that the law of nature may be characterized, as the Law of the Circular

Hodograph : from which latter law, however, it is easy to deduce

the form of the Orbit, as a conic section with a focus at o.
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(/). If the semiparameter of this orbit be denoted, as usual, by

p, and if h be the radius of the hodograph, then (p. 719),

(&amp;lt;?).
The orbital excentricity e is also the hodographic excentri-

city, in the sense that eh is the distance of the centre H of the hodo-

graph, from the point o which is here treated as the centre of force.

(A). The orbit is an ellipse, when the point o is interior to the

hodographic circle (e &amp;lt; 1) ;
it is a parabola, when o is on the circum

ference of that circle (e= 1) ;
and it is an hyperbola, when o is an ex

terior point (e&amp;gt; 1). And in all these cases, if we write

the constant a will have its usual signification, relatively to the

orbit.

(*) The quantity Mr~ }

being here called the Potential, and de

noted by P, geometrical constructions for this quantityP are assigned,

with the help of the hodograph (p. 723) ;
and for the harmonic mean,

1M(r 4- r )-
1

,
between the two potentials, P and P

,
which answer to

the extremities T, T of any proposed chord of that circle : all which

constructions are illustrated by a new diagram (Fig. 86).

(j ). If u be the pole of the chord TT
; M, M the points in which

the line ou cuts the circle
;
L the middle point, and N the pole, of the

new chord MM
,
one secant from which last pole is thus the line NTT

;

u the intersection of this secant with the chord MM
,
or the harmonic

conjugate of the point u, with respect to the same chord
;
and NT,T/

any near secant from N, while u, (on the line ou) is the pole of the

near chord TjiJ : then the two small arcs, T,T and T T/, of the hodo

graph, intercepted between these two secants, are proved to be ulti

mately proportional to the two potentials, P andP
; or to the two

ordinates TV, T V
, namely the perpendiculars let fall from T and T

,
on

what may here be called the hodographic axis LN. Also, the harmonic

mean between these two ordinates is obviously (by the construction)

the line U L; while UT, ux
,
and u/r

&amp;lt;t U,T/ are four tangents to the

hodograph, so that this circle is cut orthogonally, in the two pairs of

points, T, T and T,, T/, by two other circles, which have the two near

points IT, u, for their centres (pp. 724, 725).

(&). In general, for any motion of a point (absolute or relative, in

one plane or in space, for example, in the motion of the centre ofthe

moon about that of the earth, under the perturbations produced by the

attractions of the sun and planets), with a for the variable vector (418)

opposition of the point, the time dt which corresponds to any vector-

element dDa of the hodograph, or what may be called the time of ho-

dographically describing that element, is the quotient obtained by

dividing the same element of the hodograph, by the vector of accelera

tion D 9a in the orbit ; because we may write generally (p. 724),

if
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(0- For the law of the inverse square (comp. (a) and (0), the

measure of the force is,

the times &t, df
,
of hodographically describing the small circular

arcs T,T and T T/ of the hodograph, being found by multiplying the

lengths (/) of those two arcs by the mass, and dividing each product

by the square of the potential corresponding, are therefore inversely

as those two potentials, P, P ,
or directly as the distances, r, r

,
in the

orbit : so that we have the proportion,

&t: & :& + & = r:r :r + r . (U4)

(in). If we suppose that the mass, M, and the jive points o, L, M,

u, u, upon the chord MM are given, or constant, but that the ra

dius, h, of the hodograph, or the position of the centre H on the hodo-

graphic axis LN, is altered, it is found in this way (p. 725) that

although the two elements of time, dt, At
, separately vary, yet their

sum remains unchanged : from which it follows, that even if the two

circular arcs, T,T, T T/, be not small, but still intercepted (/) between

two secants from the pole N of the fixed chord MM
,
the sum (say, A +

Af) of the two times is independent of the radius, h.

(n). And hence may be deduced (p. 726), by supposing one secant

to become a tangent, this Theorem of Hodographic Isochronism, which

was communicated without demonstration, several years ago, to the

Royal Irish Academy,* and has since been treated as a subject of

investigation by several able writers :

If two circular hodographs, having a common chord, which passes

through, or tends towards, a common centre offorce, be cut perpendicu

larly by a third circle, the times of hodographically describing the inter

cepted arcs will be equal.

(o). This common time can easily be expressed (p. 726), under the

form of the definite integral,

__; (V.)
g o (1-0 cosw)

2

Zg being the length of infixed chord MM
;

e the quotient LO : LM,

which reduces itself to 1 when o is at M
,
that is for the case of a pa

rabolic orbit ; e lying between 1 for an ellipse, and outside those limits

for an hyperbola, but being, in all these cases, constant ; while w is a

certain auxiliary angle, of which the sine = ur : ul, (p. 727), or

= s (r + r )
1
,
if s denote the length pp of the chord of the orbit, cor

responding to the chord TT of the hodograph ; and w varies from to TT,

when the whole periodic time 27m&quot; 1 for a closed orbit is to be computed :

with the verification, that the integral (V4) gives, in this last case,

Jf=%2
,
as usual. (W4)

* See the Proceedings of the 16th of March, 1847. It is understood that the

common centre o offorce is occupied by a common was*, M.
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(p). By examining the general composition of the definite inte

gral (Vi), or by more purely geometrical considerations, which are

illustrated by Fig. 87, it is found that, with the law of the inverse

square, the time t of describing an arc PP of the orbit (closed or un

closed) is & function (p. 729) of the three ratios,

a3 r + r s

and therefore simply a function of the chord
(s, or pp ) of the orbit,

and of the sum of the distances (r + r , or OP + OP ) whenM and a are

given : which is a form of the Theorem of Lambert,

(q). The same important theorem may be otherwise deduced,

through a quite different analysis, by an employment ofpartial deri

vatives, and of partial differential equations in quaternions, which is

analogous to that used in a recent investigation (418), respecting tho

motions of an attracting system of any number of bodies, m, m ,
&c.

(r). Writing now (comp. p. xlvii) the following expression for the

relative living force, or for the mass (M= m + m ^), multiplied into the

square of the relative velocity (TDa),

2T= -MDa* = 2 (P+ H} =M(2r - a- ) ; (Y4)

introducing the two new integrals (p. 729),

and V= 2Td* = F+ tH, (A5)

which have thus (comp. (E^) and (F)) the same forms as before, but

with different (although analogous} significations, and may still be

called the Principal and Characteristic Functions of the motion
;
and

denoting by a, a 1

(instead of ao, a) the initial an&Jinal vectors ofpo

sition, or of the orbit, while r, r are the two distances, and T, T the

two corresponding vectors of velocity, or of the hodograph : it is found

that when M is given, F may be treated as a function of a, a
, t, or

of r, r, 5, t,
and F as a function of a, a, a, or ofr, r

t s, andH
,
and

that their partial derivatives, in the first view of these two functions,

are (p. 729),

Da-F=DF=r, (B5); Da&amp;gt;F= Da F= - r
; (C5)

H, (D 6); and D^F = Da r=&amp;lt;; (E5)

while, in the second view of the same functions, they satisfy the tivo

partial differential equations (p. 730),

DrF^Dr F, (F5), and D,F=D/F; (G5)

along with two other equations of the same kind, but of the second

degree, for each of the functions here considered, which are analogous

to those mentioned in p. xlviii.

(s). The equations (F 6) (G5) express, that tho two distances, r

and r, enter into each of the two functions only by their sum ; so that,

ifM be still treated as given, F may be regarded as a function of the
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three quantities, r + r

, s, and t
;
while F, and therefore also t by

(E5), is found in like manner to be a function of the three scalars,

r + r
, s, and a : which last result respecting the time agrees with

(.&amp;gt;),
and furnishes a new proof of Z/amberf s Theorem.

(0- The three partial differential equations (r) in F conduct, by

merely algebraical combinations, to expressions for the three partial

derivatives, Dr V, D, F(=D r F), and DJr
;
and thus, with the help

of (E5), to two new definite integrals* (p. 731), which express respec

tively the Action and the Time, in the relative motion of a Unary

system here considered, namely, the two following :

F=
r + r + s

^/__
Ls\r + r +s a j

whereof the latter is not to be extended, without modification, be

yond the limits within which the radical is finite.

ARTICLE 420. On the determination of the Distance of a Comet,
or new Planet, from the Earth, ............. 733, 734

(a). The masses of earth and comet being neglected, and the mass

of the sun being denoted by M, let r and w denote the distances of

earth and comet from sun, and z their distance from each other, while

a is the heliocentric vector of the earth (Ta = r), known by the theory

of the sun, and p is the unit-vector, determined by observation, which

is directed from the earth to the comet. Then it is easily proved by

quaternions, that we have the equation (p. 734),

SpDpD p r(M M
SpDpUa

~
z\r&amp;gt;

w3
j

1

with w2 = t* 4- 22 - 2zSap ; (K5)

eliminating w between these two formulce, clearing of fractious, and

dividing by z, we are therefore conducted in this way to an algebrai

cal equation of the seventh degree, whereof one root is the sought dis

tance, z.

(). The final equation, thus obtained, differs only by its notation,

and by the facility of its deduction, from that assigned for the same

purpose in the Mecanique Celeste; and thereofLaplace there given,

for determining, by inspection of a celestial globe, which of the two

* References are given to the First Essay, &c., by the present writer (comp.
the Note to p. xlvii.), in which were assigned integrals, substantially equivalent

to (H5) and (I5), but deduced by a quite different analysis. It has recently been

remarked to him, by his friend Professor Tait of Edinburgh, that while the area

described, with Newton s Law, about ike full focus of an orbit, has long been

known to be proportional to the time corresponding, so the area about the empty

fncua represents (or is proportional to) the action.
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bodies (earth and comet) is the nearer to the sun, results at sight from

the formula (Js).

ARTICLE 421. On the Development of the Disturbing Force of

the Sun on the Moon
;
or of one Planet on another, which is nearer

than itself to the Sun, ................ 734-736

(a). Let a, &amp;lt;r be the geocentric vectors ofmoon and sun
; r(= Ta),

and
*(=T&amp;lt;r),

their geocentric distances
;
If the sum of the masses of

earth and moon
;
S the mass of the sun

;
and D (as in recent Series)

the mark of derivation with respect to the time : then the differential

equation of the disturbed motion of the moon about the earth is,

D 2
a=J/0a+77, (L5), if 0a = ^(a) = a-&amp;gt;Ta-

1

, (M5)

and i}
= Vector of Disturbing Force = S

(0&amp;lt;r

-
(a a)) ; . (No)

denoting here a vector function, but not a linear one.

(). If we neglect 77,
the equation (L5) reduces itself to the form

D 2a = M(f)a ;
which contains (comp. (64)) the laws of undisturbed

elliptic motion.

(c). If we develope the disturbing vector 77, according to ascend

ing powers of the quotient r : s, of the distances ofmoon and sun from

the earth, we obtain an infinite series of terms, each representing a

finite group of partial disturbing forces, which may be thus denoted,

r\
=

771 + 772 + *?3 + &C.
; (05)

(P5)

these partial forces increasing in number, but diminishing in intensity,

in the passage from any one group to the following ;
and being con

nected with each other, within any such group, by simple numerical

ratios and angular relations.

(d}. For example, the two forces 771,1, 771,2 of the first group

are, rigorously, proportional to the numbers 1 and 3
;
the three forces

72)i&amp;gt; 92, 2, &amp;gt;72,3
of the second group are as the numbers 1, 2, 5

;
and

the four forces of the third group are proportional to 5, 9, 15, 35 :

while the separate intensities of the first forces, in these three first

groups, have the expressions,

,(e). All these partial forces are conceived to act at the moon ; but

their directions may be represented by the respectively parallel unit-

lines 11771,1, &c., drawn from the earth, and terminating on a great

circle of the celestial sphere (supposed here to have its radius equal to

unity), which passes through the geocentric (or apparent) places, Q
and

X&amp;gt;,

of the sun and moon in the heavens.

(y). Denoting then the geocentric elongation D ofmoon from sun

(in the plane of the three bodies) by 4 ;
and by Qi, 02, and j)i, Ds,

Da, what may be called t^vo fictitious suns, and threefictitious moons,

of which the corresponding elongations from 0, in the same great
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circle, are -f 20,

-
20, and -0, + 30,

-
30, as illustrated by Fig. 88

(p. 735); it is found that the directions of the two forces of the^rs^

group are represented by the two radii of this unit-circle, which termi

nate in 3) and j)i ; those of the three forces of the second group, by the

three radii to Q l5 0, and 2; and those of the four forces of the

third group, by the radii to 3) 2 , D, Di, and
J&amp;gt;3 ;

with facilities for ex

tending all these results (with the requisite modifications), to the

fourth and subsequent groups, by the same quaternion analysis.

O). And it is important to observe, that no supposition is here

made respecting any smallness of excentricities or inclinations (p. 736) ;

so that all the formulae apply, with the necessary changes of geocen

tric to heliocentric vectors, &c., to the perturbations of the motion of a

comet aboiit the sun, produced by the attraction of a planet, which is

(at the time) more distant than the comet from the sun.

ARTICLE 422. On Fresnel s Wave, 736-756

(a). If p and fi be two corresponding vectors, of ray-velocity and

wave-slowness, or briefly Ray and Index, in a biaxal crystal, the velo

city of light in a vacuum being unity ;
and if dp and fy* be any infi

nitesimal variations of these two vectors, consistent with the equa
tions (supposed to be as yet unknown), of the Wave (or wave-surface),
and its reciprocal, the Index-Surface (or surface ofivave-sloivness} : we
have then first the fundamental Equations of Reciprocity (comp. p.

417),

Sjip=-l, (KB); Sp*p = 0, (S5); Sp*/*
=

0, (T5)

which are independent of any hypothesis respecting the vibrations of

the ether.

(#). If dp be next regarded as a displacement (or vibration), tan

gential to the wave, and if Ss denote the elastic force resulting, there

exists then, on Fresnel s principles, a relation between these two small

vectors
;
which relation may (with our notations) be expressed by

either of the two following equations,

& =
0-ify, (U5), or fy=0fc; (V6)

the function being of that linear, vector, and self-conjugate kind,

which has been frequently employed in these Elements.

(c). The fundamental connexion, between the functional symbol

0, and the optical constants abc of the crystal, is expressed (p. 741,

comp. the formula (W3) in p. xlvi) by the symbolic and cubic equa

tion,

(0 + -2) (0 + -2) (0 + &amp;lt;r

2
)
=

; (W5)

of which an extensive use is made in the present Series.

(&amp;lt;?).
The normal component, ju^S/xdt, of the elastic force 8e, is in

effective in Fresnel s theory, on account of the supposed incomprcssi-

bility of the ether; and the tangential component, &amp;lt;f&amp;gt;~

l

dp ^-iS/jfo, is

(in the same theory, and with present notations) to be equated to
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/n-

2
fy&amp;gt;,

for the propagation of a rectilinear vibration (p. 737) ;
we ob

tain then thus, for such a vibration or tangential displacement, p, the

expression,

fy = (0-i -,r&amp;gt;)-Vr Sjifc; (X5)

and therefore by (S5) the equation,

O^Sjrift- -Ar
2
)- /*-

1

, (Y5)

which is a Symbolical Form of the scalar Equation of the Index-Sur

face, and may be thus transformed,

(e). The Wave-Surface, as being the reciprocal (a) of the index-

surface (cT), is easily found (p. 738) to be represented by this other

Symbolical Equation,

0= Sp-ifo -p-O- p-i; (Ae)

or l = Sp(p2-0-i)-ip. (B6)

(/). In such transitions, from one of these reciprocal surfaces to

the other, it is found convenient to introduce two auxiliary vectors,

v and w(= 0u), namely the lines ou and ow of Fig. 89
;
both drawn

from the common centre o of the two surfaces
;
but v terminating (p.

738) on the tangent plane to the wave, and being parallel to the direc

tion of the elastic force 8e
;
whereas w terminates (p. 739) on the tan

gent plane to the index-surface, and is parallel to the displacement dp.

(#). Besides the relation,

w=fu, or u = 0-iw, (C6)

connecting the two new vectors (/) with each other, they are con

nected with p and /* by the equations (pp. 738, 739),

S/iv = -l, (D6); Spv = 0; (E6)

Spw = -l, (F6); S/iw = 0; (G6)

and generally (p. 739), the following Rule of the Interchanges holds

good: In anyformula involving p, /j, v, w, and 0, or some of them,
it is permitted to exchange p with

ju,
v with

o&amp;gt;,

and with 1
; pro

vided that we at the same time interchange &amp;lt;5p
with Se, but not gene

rally* Sfji with dp, when these variations, or any of them occur.

(A). &quot;We have also the relations (pp. 739, 740),

(H6)

= p + or 1

; (I6)

* This apparent exception arises (pp. 739, 740) from the circumstance, that

dp and de have their directions generally fixed, in this whole investigation

(although subject to a common reversal by +), when p and \i
are given ; whereas

fy continues to be used, as in (a), to denote any infinitesimal vector, tangential to

the indtx-surface at the end of p.
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with others easily deduced, whiclvmay all be illustrated by the above-

cited Fig. 89.

(z). Among such deductions, the following equations (p. 740)

may be mentioned,

(Vw0u)
2 +

Sv&amp;lt;j&amp;gt;v

=
0, (J6); (Vw0-

1

w)
a + Sw^-

1w=0; (K6)

which show that the Locus of each of the tivo Auxiliary Points, u and

w, wherein the two vectors v and w terminate (/), is a Surface of

the Fourth Degree, or briefly, a Quartic Surface ; ofwhich two loci the

constructions may be connected (as stated in p. 741) with those of the

two reciprocal ellipsoids,

Sp0p=l, (L6), and Sp0-ip = l; (M6)

p denoting, for each, an arbitrary semidiameter.

(/). It is, however, a much more interesting use of these two

ellipsoids, of which (by (Ws), &c.) the scalar semiaxcs are a, b, c for

the first, and ar 1
,

i&quot;
1
,
c- 1 for the second, to observe that they may be

employed (pp. 738, 739) for the Constructions of the Wave and the

Index-Surface, respectively, by a very simple rule, which (at least for

the first of these two reciprocal surfaces (#)) was assigned by Fres-

nel himself.

(&). In fact, on comparing the symbolicalform (Ae) of the equa
tion of the Wave, with the form (Ho) in p. xxxvii, or with the equa
tion 412, XLL, in p. 683, we derive at once FresncVs Construction :

namely, that if the ellipsoid (ale} be cut, by an arbitrary plane

through its centre, and ifperpendiculars to that plane be erected at

that central point, which shall have the lengths of the semiaxes of

the section, then the locus of the extremities, of the perpendiculars so

erected, will be the sought Wave-Surface.

(jT).
A precisely similar construction applies, to the derivation of

the Index-Surface from the ellipsoid (ar i ic- 1
) : and thus the two

auxiliary surfaces, (L 6) and (M6), may be briefly called the Generat

ing Ellipsoid, and the Reciprocal Ellipsoid.

(w). The cubic (W5) in enables us easily to express (p. 741) the

inverse function (0 4- e)-i, where e is any scalar
;
and thus, by chang

ing e to p~
2

, &c., new forms of the equation (Ac) of the wave are

obtained, whereof one is,

=
(0-ip)

2 + (p2 + a + p + c*) Sp0-&amp;gt;p
- atbW

; (N6)

with an analogous equation in p (comp. the rule in (^)), to represent

the index-surface : so that each of these two surfaces is of the fourth

degree, as indeed is otherwise known.

(M). If either Sp^r p or p
2 be treated as constant in (Ne), the

degree of that equation is depressed from the fourth to the second ;

and therefore the Wave is cut, by each of the two concentric yuadrics,

Sp0-V&amp;gt;
= *S (06), p + * =

&amp;lt;&amp;gt;, (P, ;)

in a (real or imaginary) curve of thefourth degree : of which ticoquar-
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tie curves, answering to all scalar values of the constants h and r, the

wave is the common locus.

(o). The new ellipsoid (06) is similar to the ellipsoid (M6), and

similarly placed, while the sphere (P6) has r for radius ; and every

quartic of the second system () is a sphero-conic, because it is, by the

equation (A$) of the wave, the intersection of that sphere (Pe) with

the concentric and quadric cone,

= Sp (0 + r-2)-ip ; (Qe)

or, by (B6), with this other concentric quadric,*

-l = Sp(0-i + rO-ip, (Re)

whereof the conjugate (obtained by changing
- ] to + 1 in the last

equation) has
2_

r2)
2 _

y2) C2_r2, (S6)

for the squares of its scalar semiaxes, and is therefore confocal with

the generating ellipsoid (Lg).

(p). For any point p of the wave, or at the end of any ray p, the

tangents to the two curves (n) have the directions of w and fjn ;
so

that these two quartics cross each other at right angles, and each is a

common orthogonal in all the curves of the other system.

(q). But the vibration Sp is easily proved to be parallel to o&amp;gt;

;

hence the curves of the first system (w) are Lines of Vibration of the

Wave : and the curves of the second system are the Orthogonal Trajec

tories^ to those Lines.

(r). In general, the vibration dp has (on Fresnel s principles) the

direction of the projection of the ray p on the tangent plane to the

wave ; and the elastic force de has in like manner the direction of the

projection of the index-vector fi on the tangent plane to the index-

surface : so that the ray is thus perpendicular to the elastic force

ARTICLE 423. Mac Cullagh s Theorem of the Polar Plane, . . 757-762

* For real curves of the second system (w), this new quadric (B6) is an hy-

perboloid, with one sheet or with two, according as the constant r lies between a

and b, or between b and c
; and, of course, the conjugate hyperboloid (0) has two

sheets or one, in the same two cases respectively.

f In a different theory of light (comp. the next Series, 423), these sphero-

conics on the wave are themselves the lines of vibration.
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ELEMENTS OF QUATERNIONS,

BOOK I.

ON VECTORS, CONSIDERED WITHOUT REFERENCE TO ANGLES,
OR TO ROTATIONS.

CHAPTER I.

FUNDAMENTAL PRINCIPLES RESPECTING VECTORS.

SECTION 1. On the Conception of a Vector; and on Equality

of Vectors.

ART. 1 . A right line AB, considered as having not only length,

but also direction, is said to be a VECTOR. Its initial point A

is said to be its origin; and its final point B is said to be its

term. A vector AB is conceived to be (or to construct) the

difference of its two extreme points ; or, more fully, to be the

result of the subtraction of its own origin from its own term ;

and, in conformity with this conception, it is also denoted by
the symbol B - A : a notation which will be found to be exten

sively useful, on account of the analogies which it serves

to express between geometrical and algebraical operations.

When the extreme points A and B are distinct, the vector AB

or B - A is said to be an actual (or an effective) vector
;
but

when (as a limit) those two points are conceived to coincide,

the vector AA or A -
A, which then results, is said to be null.

Opposite vectors, such as AB and BA, vector.

or B - A and A - B, are sometimes B ~A

called vector and revector. Succes- A_ B
sive vectors, such as AB and BC, or Revector.

B - A and c - B, are occasionally said Fi 1 *

to be vector and provector: the line AC, or c -
A, which is

B
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drawn from the origin A of the first to the term c of the second.

being then said to be the trans-

vector. At a later stage, we shall

have to consider vector-arcs and

vector-angles ; but at present, our

only vectors are (as above) right A-

lines.

2. Two vectors are said to be EQUAL to each other, or the

equation AB = CD, or B - A = D -
c, is said to hold good, when

(and only when) the origin and term of the one can be brought
to coincide respectively with the corresponding points of the

other, by transports (or by translations) without rotation. It

follows that all null vectors are equal, and may therefore be

denoted by a common symbol, such as that used for zero ; so that

we may write, A - A= B - B 0;

but that two actual vectors, AB and CD, are not (in the present

full sense) equal to each other, unless they have not merely

equal lengths, but also similar directions. If tben they do not

happen to be parts of one common line, they must be opposite

sides of a parallelogram,
ABDC ; the two lines AD, BC

becoming thus the two dia

gonals of such a figure, and

consequently bisecting each

other, in some point E.

Conversely, ifthe two equa

tions,

D - E = E -
A, and

are satisfied, so that the two lines

AD and BC are commedial, or have

a common middle point E, then even

if they be parts of one right line,

the equation D-C=B-AIS satis

fied. Two radii, AB, AC, of any Fig. 4.

one circle (or sphere), can never be equal vectors ; because their

directions differ.
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3. An equation between vectors, considered as an equidif-

ference ofpoints, admits of inversion and c D
alternation ; or in symbols, if ]T~ ~~7

then

and

D - C = B -
A,

C - D = A- B,

D - B = C - A.

Fig. 5.

Two vectors, CD and EF, which are

equal to the same third vector, AB,

are also equal to each other ; and

these three equal vectors are, in

general, the three parallel edges of

a prism.

E F

Fig. 6.

SECTION 2. On Differences and Sums of Vectors taken two

by two.

4. In order to be able to write, as in algebra,

(c - A )
-
(B

-
A)

= c -
B, if c - A = c - A,

we next define, that when a first vector AB is subtracted from

a second vector AC which is co-initial with it, or from a third

vector A C which is equal to that second vector, the remainder

is that fourth vector BC, which is drawn from the term B ofthe

first to the term c of the second vector : so that ifa vector be

subtracted from a transvector (Art. 1), the remainder is the

projector corresponding. It is evident that this geometrical

subtraction of vectors answers to a decomposition of vections (or

Emotions) ; and that, by such a decomposition of a null vec-

tion into two opposite vections, we have the formula,

-
(B

-
A)

=
(A

-
A)

-
(B

-
A) = A - B

;

so that, if an actual vector AB be subtracted from a null vector

AA, the remainder is the revector BA. If then we agree to

abridge, generally, an expression of the form a to the

shorter form, -
, we may write briefly,

- AB = BA
;
a and - a

being thus symbols of opposite vectors, while a and -
(- a) are,
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for the same reason, symbols of one common vector : so that

we may write, as in algebra, the identity,

5. Aiming still at agreement with algebra, and adopting

on that account the formula ofrelation between the two signs,

+ and -,

(b
-
a) + a =

b,

in which we shall say as usual that b - a is added to a, and that

their sum is b, while relatively to it they may be jointly called

summands, we shall have the two following consequences :

I. If a vector, AB or B - A, be added to its own origin A,

the sum is its term B (Art. 1) ; and

II. If a provector BC be added to a vector AB, the sum is

the transvector AC
;
or in symbols,

I. . (B
-
A) + A = B

;
and II. . (c

-
B) + (B

-
A)

= c - A.

In fact, the first equation is an immediate consequence of the

general formula which, as above, connects the signs + and -,

when combined with the conception (Art. 1 ) of a vector as a dif

ference of two points ; and the second is a result of the same

formula, combined with the definition of the geometrical sub

traction of one such vector from another, which was assigned

in Art. 4, and according to which we have (as in algebra) for

any three points, A, B, c, the identity,

(c
-
A)

-
(B

-
A) = c - B.

It is clear that this geometrical addition of successive vectors

corresponds (comp. Art. 4) to a composition of successive vec-

tions, or motions ; and that the sum of

two opposite vectors (or of vector and

revector) is a null line ; so that

BA + AB = 0, or (A
-
B) + (B

-
A)

= 0.

It follows also that the sums of equal

pairs of successive vectors are equal; &quot;j,. 7

or more fully that

if B - A = B -
A, and c - B = c -

B, then c - A = c - A ;
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the two triangles, ABC and A B C , being in general the two oppo
sitefaces of & prism (comp. Art. 3).

6. Again, in order to have, as in algebra,

(c
- B

) + (B
-
A)

= c - A, if c - B = c - B,

we shall define that if there be two successive vectors, AB, BC,

and if a third vector B C be equal to the second, but not suc

cessive to the first, the sum obtained by adding the third to the

first is that fourth vector, AC, which is drawn from the origin
A of the first to the term c of the se

cond. It follows that the sum of any
two co-initial sides

, AB, AC, ofsmy paral

lelogram ABDC, is the intermediate and

co-initial diagonal AD ; or, in symbols,

(C-A) + (B- A)
= D-A, if D-C = B-A; Fig. 8.

because we have then (by 3) C-A = D-B.
7. The sum ofany two given vectors has thus a value which

is independent of their order ; or, in symbols, a -J- /3
=

|3 + a.

If equal vectors be added to equal vectors, the sums are equal

vectors, even if the surnmands be not given as successive

(comp. 5) ; and if a null vector be added to an actual vector,

the sum is that actual vector
; or, in symbols, + a = a. If

then we agree to abridge generally (comp. 4) the expression
+ a to +

,
and if a still denote a vector, then + a, and + (+ a),

&c., are other symbols for the same vector; and we have, as

in algebra, the identities,

-
(- a) = -f a, -f (- a)

= -
(+ a) = -

a, (+ a) + (- a)
= 0, &c.

*

SECTION 3. On Sums of three or more Vectors.

8. The sum of three given vectors, a, j3, y, is next defined

to be that fourth vector,

S = y + (j3 + a), or briefly, g=y + j3 + a,

which is obtained by adding the third to the sum of the first

and second ;
and in like manner the sum of any number of

vectors is formed by adding the last to the sum of all that
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precede it: also, for any four vectors, a, /3, y, 8, the sum
S + (7 + /3 + a) is denoted simply by 8 + j + fl

+ a, without pa
rentheses, and so on for any number of summands.

9. The sum of any number of successive vectors, AB, BC,

CD, is thus the line AD, which is

drawn from the origin A ofthe first,

to the term D of the last ; and be

cause, when there are three such vec

tors, we can draw (as in Fig. 9) the

two diagonals AC, BD of the (plane
^

Fi 9

or gauche) quadrilateral ABCD, and

may then at pleasure regard AD, either as the sum of AB, BD,
or as the sum of AC, CD, we are allowed to establish the follow

ing general formula of association, for the case of any three

summand lines, a, /3, y :

by combining which with theformula ofcommutation (Art. 7),

namely, with the equation,

a + )3
=

]3 + a,

which had been previously established for the case of any two

such summands, it is easy to conclude that the Addition of
Vectors is always both an Associative and a Commutative Ope
ration. In other words, the sum ofany number ofgiven vectors

has a value which is independent of their order
-,
and of the

mode ofgrouping them
;
so that if the lengths and directions of

the summands be preserved) the length and direction of the

sum will also remain unchanged : except that this last direction

may be regarded as indeterminate, when the length of the sum-

line happens to vanish, as in the case

which we are about to consider.

10. When any n surnmand-lines,

AB, BC, CA, Or AB, BC, CD, DA, &C.,

arranged in any one order, are the n

successive sides of a triangle ABC, or of A
Fj r ^

a quadrilateral ABCD, or ofany other

closed polygon, their sum is a null line, AA ; and conversely,
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when the sum of any given system of n vectors is thus equal
to zero, they may be made (in any order, by transports without

rotation) the n successive sides of a closed polygon (plane or

gauche). Hence, if there be yiven any such polygon (P), sup

pose a pentagon ABCDE, it is possible to construct another

closed polygon (p ) 5 such as A B C D E
, with an arbitrary initial

point A
, but with the same number of sides, A B ,

. . E A , which

new sides shall be equal (as vectors) to the old sides AB, . . EA,

taken in any arbitrary order. For example, if we dr&wfour
successive vectors, as follows,

A B = CD, B C =AB, C D = EA, D E =BC,

and then complete the new pentagon by drawing the line E A ,

this closing side of the second figure (P ) will be equal to the

remaining side DE of the^rs^ figure (P).

11. Since a closed figure ABC . . is still a closed one, when

all its points are projected on any assumed plane, by any system

of parallel ordinates (although the

area of the projected figure A B C . . .

may happen to vanish), it follows that

if the sum of any number of given

vectors a, )3, y, . . be zero, and if we

project them all on any one plane by

parallel lines drawn from their extre

mities, the sum of the projected vec

tors a, ]3 , y 9
will likewise be null;

so that these latter vectors, like the

former, can be so placed as to become the successive sides of a

closed polygon, even if they be not already such. (In Fig. 1 1
,

A&quot;B&quot;C&quot; is considered as such a polygon, namely, as a triangle

with evanescent area ; and we have the equation,

Fig. 11.

as well as

A&quot;B&quot; + B&quot;C&quot; -f C&quot;A&quot;
= 0,

A B + B C + cV = 0, and AB + BC + CA =
0.)
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SECTION 4. On Coefficients of Vectors.

12. The simple or single vector, a, is also denoted by la,

or by 1 . a, or by (+ 1
) a ;

and in like manner, the double vector,

a + a, is denoted by 2a, or 2 . a, or (+ 2) a, &c. ; the rule being,
that for any algebraical integer, m, regarded as a coefficient by
which the vector a is multiplied, we have always,

the symbol 1 -f m being here interpreted as in algebra. Thus,

Oa = 0, the zero on the one side denoting a null coefficient, and

the zero on the other side denoting a null vector; because by
the rule,

la 4 Oa =
(l + 0)a = la = a, and . .Oa = a-a = 0.

Again, because (1) a -f (- 1) a =
(1

-
1) a = Oa = 0, we have

(_ l) a =
- a = -a = -(la); in like manner, since(l)a4- (-2)a

=
(
1 - 2) a = (- 1

) a
= -

a, we infer that (-2)a = -a-a = -
(2a) ;

and generally, (- m) a = -
(ma), whatever whole number m

may be : so that we may, without danger of confusion, omit

the parentheses in these last symbols, and write simply,
-

la,

- 2a, -ma.
13. It follows that whatever two whole numbers (positive or

negative, or null) may be represented by m and n, and ivhat-

Fig. 12.

ever two vectors may be denoted by a and /3, we have always,

as in algebra, the formula,

na ma =
(n m) a, n (ma) = (nm) a = nma,

and (compare Fig. 12),

m ()3 a)
= m]3 + ma ;



CHAP. I.J
FUNDAMENTAL PRINCIPLES-VECTORS.

so that the multiplication of vectors by coefficients is a doubly

distributive operation, at least if the multipliers be whole

numbers; a restriction which, however, will soon be re

moved.

14. If ma =
J3,

the coefficient m being still whole, the vector

j3 is said to be a multiple of a ; and conversely (at least if the

integer m be different from zero), the vector a is said to be a

sub-multiple of /3.
A multiple ofa sub-multiple of a vector is

said to be afraction ofthat vector ; thus, if ]3
= ma, and y = wa,

then y is a fraction of
j3,

which is denoted as follows, y =
]3 ;

also ]3
is said to be multiplied by the fractional coefficient ,

and y is said to be the product of this multiplication. It fol

lows that if # and y be any two fractions (positive or negative

or null, whole numbers being included), and if a and /3 be any
two vectors, then

ya xa = (yx)a, y(xa) = (yx)a
= yxa , x(fi a) =

xfi Xa ;

results which include those of Art. 1 3, and may be extended

to the case where x and y are incommensurable coefficients, con

sidered as limits offractional ones.

15. For any actual vector a, and for any coefficient x, of

any of the foregoing kinds, theproduct xa, interpreted as above,

represents always a vector
/3, which has the same direction as

the multiplicand-line a, if x&amp;gt; 0, but has the opposite direction

if x &amp;lt; 0, becoming null if x = 0. Conversely, if a and
J3 be any

two actual vectors, with directions either similar or opposite, in

each of which two cases we shall say that they are parallel

vectors, and shall write j3 ||
a (because both are then parallel,

in the usual sense of the word, to one common line), we can

always find, or conceive as found, a coefficient x ^ 0, which shall

satisfy the equation /3
= xa

; or, as we shall also write it,

j3
= a#; and the positive or negative number x, so found, will

bear to + 1 the same ratio, as that which the length of the line

8 bears to the length of a.
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16. Hence it is natural to say that this coefficient x is the

quotient which results, from the division of the vector
|3, by the

parallel vector a
;
and to write, accordingly,

x =
|3 -T- a, or x =

j3 : a, or x =
;

a

so that we shall have, identically, as in algebra, at least if the

divisor-Line a be an actual vector, and if the dividend-line |3 be

parallel thereto, the equations,

(8 : a) . a = a = ]3, and xa:a = = a-;
a a

which will afterwards be extended, by definition, to the case of

non-parallel vectors. We may write also, under the same

conditions, a =
, and may say that the vector a is the quotientx

of the division of the other vector j3 by the number x ; so that

we shall have these other identities,

3 / \ /3 ,1
aX

-.x = (ax=)p, and = a.

17. The positive or negative quotient, #--=
, which is thus

a

obtained by the division of one of two parallel vectors by ano

ther, including zero as a limit, may also be called a SCALAR;
because it can always be found, and in a certain sense con

structed, by the comparison ofpositions upon one common scale

(or axis) ; or can be put under the form,

c - A AC

B - A AB

where the three points, A, B, c, are collinear (as in the figure

annexed). Such scalars are, there- A B c

fore, simply the REA LS (or real quan- ~~^
~~

titles) of Algebra; but, in combina

tion with the not less real VECTORS above considered, they

form one of the main elements of the System, or Calculus, to
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which the present work relates. In fact it will be shown, at

a later stage, that there is an important sense in which we can

conceive a scalar to be added to a vector ; and that the sum

so obtained, or the combination,

&amp;lt; Scalar plus Vector&quot;

is a QUATERNION.

CHAPTER II.

APPLICATIONS TO POINTS AND LINES IN A GIVEN PLANE.

SECTION 1. On Linear Equations connecting two Co-initial

Vectors.

18. WHEN several vectors, OA, OB, . . are all drawn from

one common point o, that point is said to be the Origin of the

System ; and each particular vector, such as OA, is said to be

the vector ofits own term, A. In the present and future sec

tions we shall always suppose, ifthe contrary be not expressed,

that all the vectors a, |3, . . which we may have occasion to

consider, are thus drawn from one common origin. But if it

be desired to change that origin o, without changing the term-

points A, . . we shall only have to subtract, from each of their

old vectors a, . . one common vector w, namely, the old vector

oo of the new origin o ; since the remainders, a - w, |3
- w, . .

will be the new vectors a , |3 ,
. . of the old points A, B, . . . For

example, we shall have

a = O A = A-O =
(A

-
o) -(o -o) = OA - oo = a - w.

19. If two vectors a, /3, or OA, OB, be thus drawn from a

given origin o, and if their o A u

directions be either similar or
~~^

~

opposite, so that the three

points, o, A, B, are situated on one right line (as in the figure



12 ELEMENTS OF QUATERNIONS. [BOOK I.

annexed), then (by 16, 17) their quotient is some positive or
a

negative scalar, such as x
;
and conversely, the equation

/3
= xa, interpreted with this reference to an origin, expresses

the condition ofcollinearity, of the points o, A, B ;
the particu

lar values, x = Q, x= 1, corresponding to the particular posi

tions, o and A, of the variable point B, whereof the indefinite

right line OA is the locus.

20. The linear equation, connecting the two vectors a and

)3, acquires a more symmetricform, when we write it thus :

aa + fy3
=

;

where a and b are two scalars, of which however only the ratio

is important. The condition ofcoincidence, of the two points

A and B, answering above to x- 1, is now = 1 ; or, more

symmetrically,

Accordingly, when a = -
b, the linear equation becomes

ci-0 or 3-a =

since we do not suppose that both the coefficients vanish ; and

the equation j3
= a, or OB = OA, requires that ihepointv should

coincide with the point A : a case which may also be conve

niently expressed by the formula,

B = A;

coincident points being thus treated (in notation at least) as

equal. In general, the linear equation gives,

a . OA + b . OB = 0, and therefore a : b = BO : OA.

SECTION 2. On Linear Equations between three co-initial

Vectors.

21. If two (actual and co-initial) vectors, a, )3, be not con

nected by any equation of the form aa 4
fy3

= 0, with any two

scalar coefficients a and b whatever, their directions can neither

be similar nor opposite to each other ; they therefore determine
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a plane AOB, in which the (now actual) vector, represented by
the sum aa + &/3, is situated. For if, for the sake ofsymmetry,
we denote this sum by the

symbol -
cy, where c is some

third scalar, and y = oc is

some third vector, so that the

three co-initial vectors, a, J3,

7, are connected by the linear

equation,

aa + bfi + cy =
;

and if we make

A
Fig. 15.

OA
-aa

OB

then the two auxiliary points, A and B
, will be situated (by

19) on the two indefinite right lines, OA, OB, respectively:

and we shall have the equation,

oc = OA + OB
,

so that the figure A OB C is (by 6) a parallelogram, and conse

quently plane.

22. Conversely, if c be any point in the plane AOB, we can

draw from it the ordinates, CA and CB , to the lines OA and OB,

and can determine the ratios ofthe three scalars, a, b, c, so as

to satisfy the two equations,

a _ OA b OB

c OA c OB

after which we shall have the recent expressions for OA
,
OB ,

with the relation oc = OA + OB as before ; and shall thus be

brought back to the linear equation aa + bj3 -f cy
= 0, which

equation may therefore be said to express the condition ofcom-

planarity ofthefour points, o, A, B, c. And if we write it under

the form,
Xa + yj3 + zy = o,

and consider the vectors a and
j3 as given, but y as a variable

vector, Avhile x, y, z are variable scalars, the locus of the va

riable point c will then be the given plane, OAB.
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23. It may happen that the point c is situated on the right

line AB, which is here considered as a given one. In that

AC
case (comp. Art. 17, Fig. 13), the quotient must be equalAB

to some scalar, suppose t
;
so that we shall have an equation of

the form,

y
^- =

t, or 7 = a + *(|3-a), or (1 -) + */3
-
7 =

;

by comparing which last form

with the linear equation ofArt.

21, we see that the condition

of collinearity of the three

points A, B, c, in the given

plane OAB, is expressed by the

formula,

a 4 b + c = 0. Fig- itf-

This condition may also be thus written,

- a -b OA OB
1 = + ,

or + = 1
;

C C OA OB

and under this last form it expresses a geometrical relation,

which is otherwise known to exist.

24. When we have thus the two equations,

aa + bf3 + cy
= 0, and a + b + c = 0,

so that the three co-initial vectors a, /3, 7 terminate on one

right line, and may on that account be said to be termino-col-

linear, if we eliminate, successively and separately, each of

the three scalars a, b, c, we are conducted to these three other

equations, expressing certain ratios of segments :

a) + c(y-a) = 0, c(y
-

/3) + a(a -
(3)

= 0,

or

-i C.AC = C.BC -f fl!.BA Z&amp;gt;.CB.

Hence follows this proportion, between coefficients and seg

ments,
a :b:c = BC : CA : AB.
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We might also have observed that the proposed equations

give,

bfi + Cy cy + da da + bf3
&quot; ~ ~~

whence
AC - a b b

7 1 v^ ^.

AB p - a a +0 C

25. If we still treat a and j3 as given, but regard 7 and

- as variable, the equationx

will express that the variable point c is situated somewhere

on the indefinite right line AB, or that it has this ZzVze for its

locus : while it divides thefinite line AB into segments, of which

the variable quotient is,

AC
= y

CB x

Let c be another point on the same line, and let its vector be,

then, in like manner, we shall have this other ratio ofseg

ments,

C B x

ourIf, then, we agree to employ, generally, for any group off
collinear points, the notation,

. AB CD AB AD
(ABCD) = --- = : ;

BC DA BC DC

so that this symbol,

(ABCD),

may be said to denote the anharmonic function, or anharmonic

quotient, or simply the anharmonic ofthe group, A, B, c, D : we

shall have, in the present case, the equation,

AC AC vx
(ACBC) = -i-.4^T

CB c B yy
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26. When the anharmonic quotient becomes equal to nega

tive unity, the group becomes (as is well known) harmonic.

If then we have the two equations,

x + y x -y

the two points c and c are harmonically conjugate to each other,

with respect to the two given points, A and B
; and when they

vary together, in consequence of the variation of the value of

-, they form (in a well-known sense), on the indefinite rightx

line AB, divisions in involution; the double points (or. foci) of

this involution, namely, the points of which each is its own

conjugate, being the points A and B themselves. As a verifi

cation, ifwe denote by ju
the vector of the middle point M of

the given interval AB, so that
A M c B c

Fig. 17.

we easily find that

7
~ M _y ~ x _fi

~ M MC MB

J3-fjL y + x~y-fj
9 MB~~MC

so that the rectangle under the distances MC, MC , of the two

variable but conjugate points, c, c , from the centre M of the

involution, is equal to the constant square of half the interval

between the two double points, A, B. More generally, if we

write

Xa +
?//3 ,

Ixa + myfi
^ x + y Ix + my

/ 77 T*

where the anharmonic quotient
=

;
is any constant scalar,

then in another known and modern* phraseology, the points

c and c will form, on the indefinite line AB, two homographic

divisions, of which A and B are still the double points. More

generally still, if we establish the two equations,

* See the Geometric Suptrieure of M. Chasles, p. 107. (Paris, 1852.)
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xa + t

y=
,

and ,
x + y Ix + my

-
being still constant, but - variable, while a - OA

, ]3
= OB ,

Jit OC

and j = oc , the two given lines, AB and A B , are then homo-

graphically divided^ by the two variable points, c and c , not

now supposed to move along one common line.

27. When the linear equation aa 4 bf3 + cj
= subsists,

without the relation -f b + c= between its coefficients, then

the three co-initial vectors a, j3, 7 are still complanar, but they
no longer terminate on one right line ; their term-points A, B, c

being now the corners of a triangle.

In this more general case, we may propose to find the vec

tors a , ]3 , 7 ofthe three points,

A =OA-BC, B =OB-CA,
c = OC-AB ;

that is to say, of the points in

which the lines drawn from the

origin o to the three corners of

the triangle intersect the three

respectively opposite sides. The three collineations OAA , &c.,

give (by 19) three expressions of the forms,

where x, y, z are three scalars, which it is required to deter

mine by means of the three other collineations, A BC, &c., with

the help of relations derived from the principle of Art. 23.

Substituting therefore for a its value x l

a\ in the given linear

equation, and equating to zero the sum of the coefficients of

the new linear equation which results, namely,

x~ l aa + bfi -f Cj ;

and eliminating similarly |3, 7, each in its turn, from the ori

ginal equation ;
we find the values,

-a -b
x =-

, y = --
,

b + c c + a
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whence the sought vectors are expressed in either of the two

following ways :

-aa
1. . . a =

or

, b3 + cy n , cy + aa
,

aa + bi
11. . . a = -= , P =

j 7= Tb + c c + a a 4

I. ..a = 7 , p = -, 7= =-,
+ C c + a a + o

In fact we see, by one of these expressions for a , that A is on

the line OA
;
and by the other expression for the same vector

a, that the same point A is on the line BC. As another veri

fication, we may observe that the last expressions for a, j3 , y,

coincide with those which were found in Art. 24, for a, ]3, y

themselves, on the particular supposition that the three points

A, B, c were collinear.

28. We may next propose to determine the ratios of the

segments of the sides of the triangle ABC, made by the points

A
, B , c . For this purpose, we may write the last equations

for a
, ]3 , y under the form,

and we see that they then give the required ratios, as follows :

BA c CB a AC b

A C
~

B A c C B a

whence we obtain at once the known equation of six segments,

BA CB AC

A C B A C B .

as the condition of concurrence of the three right lines AA ,
BB

,

cc , in a common point, such as o. It is easy also to infer, from

the same ratios of segments, the following proportion of coeffi

cients and areas,

a:b:c= OBC : OCA : OAB,

in which we must, in general, attend to algebraic signs ; a tri

angle being conceived to pass (through zero) from positive to

negative, or vice versa, as compared with any given triangle in
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its own plane, when (in the course of any continuous change)
its vertex crosses its base. It may be observed that with this

convention (which is, in fact, a necessary one, for the establish

ment of general formulas) we have, for any three points, the

equation
ABC -i- BAC = 0,

exactly as we had (in Art. 5) for any two points, the equa
tion

AB 4 BA = 0.

More fully, we have, on this plan, the formula?,

ABC = - BAC = BCA = - CBA = CAB = - ACB
;

and any two complanar triangles, ABC, A B C , bear to each other

& positive or a negative ratio, according as the two rotations,

which may be conceived to be denoted by the same symbols

ABC, A B C , are similarly or oppositely directed.

29. If A and B bisect respectively the sides EC and CA,

then
a = b =

c,

and c bisects AB
;
whence the known theorem follows, that

the three bisectors of the sides ofa triangle concur, in a point

which is often called the centre ofgravity, but which we pre

fer to call the mean point of the triangle, and which is here the

origin o. At the same time, the first expressions in Art. 27

for a , ft , 7 become,

a=
~2

=
~2 7

&quot;~2

whence this other known theorem results, that the three bisec

tors trisect each other.

30. The linear equation between a, j3, 7 reduces itself, in

the case last considered, to the form,

a + |3 4 7 = 0, or OA + OB + oc =
;

the three vectors a, [3, 7, or OA, OB, oc, are therefore, in this

case, adapted (by Art. 10) to become the successive aides of a
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triangle, by transports without rotation ; and accordingly, if

we complete (as in Fig. 19) the

parallelogram AOBD, the triangle

OAD will have the property in

question.
*

It follows (by 11)

that if we project thejf&ttf points

o, A, B, c, by any system ofpa
rallel ordinates, into four other

points, o,,
A

y ,
B

/?
c

/?
on any as

sumed plane, the sum ofthe three

projected vectors, a,, /3,, 7,, or Fig. 19.

O,A , &c., will be null; so that we shall have the new linear

equation.

or,

;

and in fact it is evident (see

Fig. 20) that the projected

mean point O
7
will be the mean

point ofthe projected triangle,

A
f,
B

t
, c,.

We shall have also the equation,

where

hence

- a - OA =

^ (A Ay

or the ordinate ofthe mean point ofa triangle is the mean of

the ordinates of the three corners.

SECTION 3. On Plane Geometrical Nets.

31. Resuming the more general case of Art. 27, in which

the coefficients a, b, c are supposed to be unequal^ we may next

inquire, in what points A&quot;, B&quot;,
c&quot; do the lines B C , C A , A B

meet respectively the sides BC, CA, AB, of the triangle ;
or may

seek to assign the vectors
a&quot;, /3&quot;, j&quot;

of the points of intersec

tion (comp. 27),
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A&quot;=BC BC, B =CA CA, C * *B AB.

The first expressions in Art. 27 for |3 , 7 , give the equa

tions,

Fig. 21.

whence

b - c (a + b)
-

(c + a)

but (by 25) one member is the vector of a point on BC, and

the other of a point on B C
;
each therefore is a value for the

vector a&quot; of
A&quot;,

and similarly for
j3&quot;

and
7&quot;.

We may there

fore write,

bQ Cy ., Cy da da bQ
*J r * fJ *

f\t
-

b-C c- a a-b

and by comparing these expressions with the second set of

values of a , j3 , y in Art. 27, we see (by 26) that the points

A&quot;, B&quot;,
c&quot; are, respectively, the harmonic conjugates (as they

are indeed known to be) of the points A , B
, c , with respect

to the three pairs of points, B, c
; c, A

; A, B
;
so that, in the

notation of Art. 25, we have the equations,

(BA CA&quot;)
=
(CB AB&quot;)

= (AC BC&quot;)
=- I.

And because the expressions for
a&quot;, |3&quot;, y&quot;

conduct to the fol

lowing linear equation between those three vectors,
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(b
-

c) a&quot; +(c-a) ]3&quot;
+ (a

-
b) y&quot;

=
0,

with the relation

between its coefficients, we arrive (by 23) at this other known

theorem, that the three points A&quot;, B&quot;,
c&quot; are coliinear, as indi

cated by one of the dotted lines in the recent Fig. 2 1 .

32. The line A&quot;B C may represent any rectilinear transver

sal, cutting the sides of a triangle ABC
;
and because we have

BA^ = q&quot;-/3 _ _
C

A&quot;C y
-

a&quot; b

. .. CB a T AC b . . .

while -7- = -5 and ~r- = -, as before, we arrive at this oilier
BA c CB a

equation of six segments, for any triangle cut by a right line

(comp. 28),
BA&quot; CB AC

A&quot;C B A C B

which again agrees with known results.

33. Eliminating )3
and y between cither set of expressions

(27) for )3
and y , with the help of the given linear equation,

we arrive at this other equation, connecting the three vectors

a, ]3 , y :

O = - aa + (c + )j3 + (a + b)y .

Treating this on the same plan as the given equation between

a? j3, y 5
we find that if (as in Fig. 21) we make,

A&quot;
= OA B C , B &quot; = OB C A , c

&quot; = oc A B ,

the vectors of these three new points of intersection may be ex

pressed in either of the two following ways, whereof the first

is shorter, but the second is, for some purposes (comp. 34, 36)

more convenient :

aa bQ cy

or

,
2aa + bfi + cy 26/3 + cy + aa

~a~~bc~~ 2b + c + a

, 2cy 4 aa + bfi

&quot;2c + a + b
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And the three equations, of which the following is one,

(b- c
)a&quot;- (

&amp;lt;2b+c +
a)(3&quot;

f

+(2c+a + b) 7
&quot; = 0,

with the relations between their coefficients which are evident

on inspection, show (by 23) that we have the three additional

collineations, A&quot;B &quot;C
&quot;,

B&quot;C&quot; A
&quot;,

C&quot;A&quot; B
&quot;,

as indicated by three of

the dotted lines in the figure. Also, because we have the two

expressions,

we see (by 26) that the two points A&quot;,
A&quot; are harmonically con

jugate with respect to B and c ; and similarly for the two

other pairs of points, B&quot;,
B

&quot;,
and

c&quot;,
c

&quot;, compared with c
,
A

,

and with A , B : so that, in a notation already employed (25,

31), we may write,

(B A VA&quot;)
=
(C B &quot;A

B&quot;)

=
(A C

VC&quot;)
= - 1.

34. If we bet/in, as above, with any four complanarpoints,

o, A, B, c, of which no three are collinear, we can (as in Fig.

18), by what may be called a First Construction, derive from

them six lines, connecting them two by two, and intersecting

each other in three new points, A
,
B

, c
;
and then by a Second

Construction (represented in Fig. 21), we may connect these

by three new lines, which will give, by their intersections with

the former lines, six new points, A&quot;,
. . c &quot;. We might pro

ceed to connect these with each other, and with the given

points, by sixteen new lines, or lines of a Third Construction,

namely, the four dotted lines of Fig. 21, and twelve other

lines, whereof three should be drawn from each of the four

given points : and these would be found to determine eighty-

four new points of intersection, of which some maybe seen,

although they are not marked, in the figure.

But however far these processes of linear construction may
be continued, so as to form what has been called* a plane

* By Prof. A. F. Momus, in page 274 of his Barycentric Calculus (dcr baryoen-

trische Calcul, Leipzig, 1827).
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geometrical net, the vectors of the points thus determined have

all one common property : namely, that each can be represented

by an expression of the form,

xaa + ybf3 4- zcy
p j

xa + yb + zc

where the coefficients x
9 y, z are some whole numbers. In fact

we see (by 27, 31, 33) that such expressions can be assigned
for the nine derived vectors, a ,

... y &quot;,
which alone have been

hitherto considered ; and it is not difficult to perceive, from

the nature of the calculations employed, that a similar result

must hold good, for every vector subsequently deduced. But

this and other connected results will become more completely

evident, and their geometrical signification will be better un

derstood, after a somewhat closer consideration of anharmonic

quotients, and the introduction of a certain system of anhar

monic co-ordinates, for points and lines in one plane, to which

we shall next proceed : reserving, for a subsequent Chapter,

any applications of the same theory to space.

SECTION 4. On Anharmonic Co-ordinates and Equations of

Points and Lines in one Plane.

35. If we compare the last equations of Art. 33 with the

corresponding equations of Art. 31, we see that the harmonic

group BA
CA&quot;,

on the side BC of the triangle ABC in Fig. 21,

has been simply reflected into another such group, B A&quot; C
A&quot;,

on

the line B C
, by a harmonic pencil of four rays, all passing

through the point o ; and similarly for the other groups.

More generally, let OA, OB, oc, OD, or briefly o . A BCD, be

any pencil, with the point o for vertex ; and let the new ray

OD be cut, as in Fig. 22, by the three sides of the triangle

ABC, in the three points AI, B l5 c t ;
let also

ybfi + zcy
OA^Cfi^ ~ L

,

yb 4- zc

so that (by 25) we shall have the anharmonic quotients,

(BA CA,)
=

^, (CA BA,) - -
;

z y
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and let us seek to express the two other vectors of intersec

tion, )3i and y l5 with a view to

determining the anharmonic ra

tios of the groups on the two

other sides. The given equation

(27),
aa -f A/3 + cy

= 0,

shows us at once that these two
vectors are,

(y-z
A, A

Fig. 22.

zaa

(z-y)b + za

whence we derive (by 25) these two other anharmonics,

y-z
(BCAd) = z-y

y z

so that we have the relations,

(CB ABJ) + (CA BA^ = (BCACI) -f (BA CA^ = 1.

Bat in general, for any four collinear points A, B, c, D, it is

not difficult to prove that

AB AC-- CD-*. -- BD= DA;BC CB

whence by the definition (25) of the signification of the sym
bol (ABCD), the following identity is derived,

(ABCD) + (ACBD)= 1.

Comparing this, then, with the recently found relations, we

have, for Fig. 22, the following anharmonic equations :

(BAC d) =

and we see that (as was to be expected from known princi-
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pies) the anharmonic of the group does not change, when we

pass from one side of the triangle, considered as a transversal

of the pencil, to another such side, or transversal. We may
therefore speak (as usual) of such an anharmonic of a group,

as being at the same time the Anharmonic ofa Pencil ; and,

with attention to the order ofthe rays, and to the definition

(25), may denote the two last anharmonics by the two following

reciprocal expressions :

(O.CABD) = -; (O.BACD) = -;
y

with other resulting values, when the order of the rays is

changed ;
it being understood that

(o . CABD) = (cVfiV),

if the rays oc, OA, OB, OD be cut, in the points c , A\ B\ D\

by any one right line.

36. The expression (34),

_ xaa + yop + zcy

xa + yb + zc

may represent the vector ofany point P in the given plane, by a

suitable choice of the coefficients x, y, x, or simply of their ra

tios. For since (by 22) the three complanar vectors PA, PB,

PC must be connected by some linear equation, of the form

a . PA + b . PB + c . PC = 0,

or

which gives

_ a a + b
fi + c y

we have only to write

- = * -= - = z
a b c

and the proposed expression for p will be obtained. Hence

it is easy to infer, on principles already explained, that if we

write (compare- the annexed Fig. 23),
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P l =PA BC, P2
= PB*CA, P3

= PC AB,

we shall have, with the same coefficients xyz, the following

expressions for the vectors OP I} oP2 ,

OP3 , or p 19 pi, pu ofthese three points

of intersection, PI, *P2, P3 :

ybf3 + zcy zcy + xaa

zc + xa

_ xaa + ybfl

xa + yb Figi23 .

which give at once the following anharmonics of pencils, or of

groups,

(A . BOCP) = (BA CP^ = -
;v z

(B . COAP) = (CB AP2)
= -

;

(C . AOBP) =
(AC BP 3)

= -
;

whereof we see that the product is unity. Any two of these

three pencils suffice to determine the position of the point p,

when the triangle ABC, and the origin o are given ; and there

fore it appears that the three coefficients x, y, z, or any scalars

proportional to them, of which the quotients thus represent the

anharmonics of those pencils, may be conveniently called the

ANHARMONIC CO-ORDINATES ofthat point, p, with respect to

the given triangle and origin : while the point P itself may be

denoted by the Symbol,

p = (x, y, z).

With this notation, the thirteen points of Fig. 2 1 come to be

thus symbolized :

A =(1,0,0), B =(0,1,0), c =(0,0,1), o =
(1,1,1);

A =(0,1,1), B =
(1,0,1), c - (1,1,0);

A&quot; = (0, 1,-1), B&quot;
= (-1,0,1), c&quot;

= (l,-l,0);
A

&quot;

=(2, 1,1), B &quot;= (1,2,1), c &quot;=(l,l,2).
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37. If P! and P 3 be any two points in the given plane,

P! = (#!, y l9 z,), P2
= (#2, y2 ,

Z2),

and if t and u be any two scalar coefficients, then the following
third point i

p =
(tx l

+ ux2 , ty^ + uy^ tz l + uz2),

is collinear with the two former points, or (in other words) is

situated on the right line p^. For, if we make

y = tyl 4 uyt9 z = tz^ + uz2r
and

xaa + . .

these vectors of the three points PiP2P are connected by the

/md?r equation,

t (#! + .

.) pi + u (xza + . .)
/
o2

-
(ara + . .) p =

;

in which (comp. 23), the sum of the coefficients is zero. Con

versely, the point P cannot be collinear with p l9 P2 , unless its

co-ordinates admit of being thus expressed in terms of theirs.

It follows that if a variable point p be obliged to move along a

given right line p^, or if it have such a line (in the given

plane) for its locus, its co-ordinates xyz must satisfy a homo-

aeneous equation ofthe first degree, with constant coefficients ;

which, in the known notation of determinants, may be thus

written,

x, y, z

xl9 y l9 z,

or, more fully,

= x (y

or briefly,
= Lx + my + nz,

where /, w, n are three constant scalar
s&amp;gt;

whereof the quotients

determine the position of the right line A, which is thus the

locus of the point p. It is natural to call the equation, which
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thus connects the co-ordinates of the point P, the Anharmonic

Equation of the Line A; and we shall find it convenient also

to speak of the coefficients I, m, n, in that equation, as being
the Anharmonic Co-ordinates of that Line: which line may
also be denoted by the Symbol,

A=
[/, m, ].

38. For example, the three sides BC, CA, AB of the given

triangle have thus for their equations,

x = 0, y = 0, 2=0,

and for their symbols,

[1,0,0], [0,1,0], [0,0,1].

The three additional lines OA, OB, oc, of Fig. 18, have, in like

manner, for their equations and symbols,

[0, 1,-1J, [-1,0,1], [1,-1,0]

The lines B C
A&quot;,

C A
B&quot;,

A B
C&quot;,

of Fig. 21, are

or

[-1,1,1], [1,-1,1], [1,1,-!];

the lines A&quot;B &quot;C
&quot;,

B&quot;C &quot;A
&quot;, cVV, of the same figure, are in like

manner represented by the equations and symbols,

[-3,1,1], [l,-3, 1], [1,1, -3];

and the line A&quot;B&quot;C&quot; is

x + y + z = 0, or [1, 1, 1].

Finally, we may remark that on the same plan, the equation
and the symbol of what is often called the line at infinity, or

of the locus of all the infinitely distant points in the given plane,

are respectively,

ax + by + cz = 0, and [a, b, c] ;
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because the linear function, ax + by + cz, of the co-ordinates

z, y, z of a point P in the plane, is the denominator of the ex

pression (34, 36) for the vector p of that point : so that the

point P is at an infinite distance from the origin o, when, and

only when, this linear function vanishes.

39- These anharmonic co-ordinates of a line, although
above interpreted (37) with reference to the equation of that

line, considered as connecting the co-ordinates of a variable

point thereof, are capable of receiving an independent geome
trical interpretation. For the three points L, M, N, in which

the line A, or [/, m, n], or Ix + my + nz = 0, intersects the three

sides BC, CA, AB of the given triangle ABC, or the three given
lines # = 0, y = Q, z = Q (38), may evidently (on the plan of

36) be thus denoted :

L =
(0, n,

- m) ; M = (- n, 0, /) ; N =
(m,

-
/, 0).

But we had also (by 36),

A&quot;= (0, 1,
-

1) ; B&quot;= (- 1, 0, 1) ; c&quot;= (1, -1,0);

whence it is easy to infer, on the principles of recent articles,

that

n / n \ I n \ m / n \

=(BACL); - = (CBAM); -T-=(ACBN);

with the resulting relation,

(BA&quot;CL)
.

(CB&quot;AM)
.
(AC&quot;BN)

= 1.

40. Conversely, this last equation is easily proved, with

the help of the known and general relation between segments

(32), applied to any two transversals, A&quot;B&quot;C&quot; and LMN, of any

triangle ABC. In fact, we have thus the two equations,

BA&quot; CB&quot; AC&quot; BL CM AN

A&quot;C B&quot;A C&quot;B LC MA NB

on dividing the former of which by the latter, the last formula

of the last article results. We might therefore in this way
have been led, without any consideration of a variable point P,



CHAP.
II.]

POINTS AND LINES IN A GIVEN PLANE. 31

to introduce three auxiliary scalars, /, m 9 n, defined as having

their quotients , -, equal respectively, as in 39, to the

three anharmonics of groups,

(BA&quot;CL), (CB&quot;AM), (AC&quot;BN) ;

and then it would have been evident that these three scalars,

/, m, n (or any others proportional thereto), are sufficient to

determine the position of the right line A, or LMN, considered

as a transversal of the given triangle ABC : so that they might

naturally have been called, on this account, as above, the an-

harmonic co-ordinates of that line. But although the anhar-

monic co-ordinates of a point and of a line may thus be inde

pendently defined, yet the geometrical utility of such definitions

will be found to depend mainly on their combination : or on the

formula Ix 4 my + nz = of 37, which may at pleasure be con

sidered as expressing, either that the variable point (x, y, z) is

situated somewhere upon the given right line
[/, m, n\ ; or else

that the variable line
[/, m, n~\ passes, in some direction, through

the given point (x, y, z).

41. If AI and A 2 be any two right lines in the given plane,

then any third right line A in the same plane, which passes

through the intersection ArAgj or (in other words) which con

curs with them (at a finite or infinite distance), may be repre

sented (comp. 37) by a symbol of the form,

A =
[tli

+ ^4) tm l + um29 tni + un^\ 9

where t and u are scalar coefficients. Or, what comes to the

same thing, if Z, m 9
n be the anharmonic co-ordinates of the

line A, then (comp. again 37), the equation

.*
= l(m,n,- n,m,) + &c.

must be satisfied ; because, if
(-XT,

Y
9 Z) be the supposed point

common to the three lines, the three equations
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= 0,

must co-exist. Conversely, this coexistence will be possible,

and the three lines will have a common point (which may be

infinitely distant), if the recent condition ofconcurrence be sa

tisfied. For example, because [a, b, c] has been seen (in 38)
to be the symbol of the line at infinity (at least if we still re

tain the same significations of the scalars a, b, c as in articles

27, &c.), it follows that

A =
[/, m, ri\ ,

and A =
[/ + ua, m + ub, n + uc] ,

are symbols of two parallel lines ; because they concur at infi

nity. In general, all problems respecting intersections of right

lines, collineations of points, &c., in the given plane, when
treated by this anharmonic method, conduct to easy elimina

tions between linear equations (of the scalar kind), on which

we need not here delay : the mechanism of such calculations

being for the most part the same as in the known method of

trilinear co-ordinates : although (as we have seen) the geome
trical interpretations are altogether different.

SECTION 5. On Plane Geometrical Nets, resumed.

42. Ifwe now resume, for a moment, the consideration of

those plane geometrical nets, which were mentioned in Art. 34
;

and agree to call those points and lines, in the given plane, ra

tional points and rational lines, respectively, which have their

anharmonic co-ordinates equal (or proportional) to whole num

bers ; because then the anharmonic quotients, which were dis

cussed in the last Section, are rational ; but to say that a point

or line is irrational, or that it is irrationally related to the

given system offour initial points o, A, B, c, when its anhar

monic co-ordinates are not thus all equal (or proportional) to

integers ; it is clear that whateverfour points we may assume

as initial, and howeverfar the construction of the net may be

carried, the net-points and net-lines which result will all be ra

tional, in the sense just now defined. In fact, we begin with

such; and the subsequent eliminations (41) oan never after-
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wards conduct to any, that are of the contrary kind: the right

line which connects two rational points being always a rational

line
;
and the point of intersection of two rational lines being

necessarily a rational point. The assertion made in Art. 34

is therefore fully justified.

43. Conversely, every rational point of the given plane,

with respect to the four assumed initial points OABC, is a point

ofthe net which those four points determine. To prove this,

it is evidently sufficient to show that every rational point

AX = (0, y, z), on any one side BC of the given triangle ABC, can

be so constructed. Making, as in Fig. 22,

B 1
= oA 1

f

CA, and C I
= OA I AB,

we have (by 35, 36) the expressions,

BI = (y, 0, y -
z), d =

(z, z -
y, 0) ;

from which it is easy to infer (by 36, 37), that

C B I BC =
(0, y, z - y), B d BC =

(0, y
-

z, z) ;

and thus we can reduce the linear construction of the rational

point (0, y&amp;gt; z), in which the two whole numbers y and z may
be supposed to be prime to each other, to depend on that of

the point (0, 1, 1), which has already been constructed as A .

It follows that although no irrational point Q of the plane can

be a net-point^ yet every such point can be indefinitely approached

to, by continuing the linear construction;

so that it can be included within a quadrila
teral interstice pjpgPaPi, or even within a tri

angular interstice P 1P2P3 , which interstice of

the net can be made as small as we may de

sire. Analogous remarks apply to irrational

lines in the plane, which can never coincide

with net-lines, but may always be indefinitely approximated is

by such.

44. If P, PI, P2 be any three collinear points of the net, so

that the formulae of 37 apply, and if P be anyfourth net-point

(x, y , z ) upon the same line, then writing

x^a + yj) + z^c = v i9 x2a + yJb + zc = t?2 ,

F
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we shall have two expressions of the forms,

_ tv^ + UV2p z , _ tv^ + UV2p z

tVi -f UV2 t v l + UVZ

in which the coefficients tut u are rational, because the co-or

dinates xyz, &c., are such, whatever the constants abc may be.

We have therefore (by 25) the following rational expression

for the anharmonic of this net-group :

(r rr r )
= = -

1

tit (xyz
- yx2 ) (x y,

- y x,)

and similarly for every other group ofthe same kind. Hence

every group of four collinear net-points, and consequently also

every pencil of four concurrent net-lines, has a rational value for

its anharmonicfunction ; which value depends only on the pro-

cesses of linear construction employed, in arriving at that group
or pencil, and is quite independent of the configuration or ar

rangement of the four initial points : because the three initial

constants, a, b, c, disappear from the expression which results.

It was thus that, in Fig. 21, the nine pencils, which had the

nine derived points A . . c
&quot;

for their vertices, were all harmo

nic pencils, in whatever manner the four points o, A, B, c

might be arranged. In general, it may be said that plane

geometrical nets are all homographicfigures ;* and conversely,

in any two such planefigures, corresponding points may be con

sidered as either coinciding, or at least (by 43) as indefinitely

approaching to coincidence, with similarly constructed points

of two plane nets : that is, with points of which (in their re

spective systems) the anharmonic co-ordinates (36) are equal

integers.

45. Without entering heref on any general theory of trans

formation of anharmonic co-ordinates, we may already see that

if we select anyfour net-points o l5 A 19 B I? Cj, of which no three

are collinear, every other point p of the same net is rationally

related (42) to these ; because (by 44) the three new anhar-

* Compare the Geometric Superieure of M. Chasles, p. 362..

f See Note A, on Anharmonic Co-ordinates.
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monies of pencils, (A : . BIC^P) =
, &c., are rational : and

therefore (comp. 36) the new co-ordinates x19 y 1} zl of the point

p, as well its old co-ordinates xyz, are equal or proportional to

whole numbers. It follows (by 43) that every point P of the

net can be linearly constructed, if any four such points be

given (no three being collinear, as above) ; or, in other words,

that the whole net can be reconstructed* if any one of its qua
drilaterals (such as the interstice in Fig. 24) be known. As
an example, we may suppose that the four points OA B C in

Fig. 21 are given, and that it is required to recover from them

the three points ABC, which had previously been among the

data of the construction. For this purpose, it is only neces

sary to determine first the three auxiliary points A
,
B

&quot;,
c

&quot;,
as

the intersections OA B C , &c. ; and next the three other auxi

liary points A&quot;, B&quot;, c&quot;,
as B C B

V&quot;, &c. : after which the for

mulas, A = B B&quot; c
c&quot;, &c., will enable us to return, as required,

to the points A, B, c, as intersections of known right lines.

SECTION 6. On Anharmonic Equations, and Vector Expres

sions, for Curves in a given Plane.

46. When, in the expressions 34 or 36 for a variable vec

tor p = OP, the three variable scalars (or anharmonic co-ordi

nates) x, y, z are connected by any given algebraic equation,

such as

fp (x, y, 2)
= 0,

supposed to be rational and integral, and homogeneous of the

pth
degree, then the locus of the term p (Art. 1) of that vector

is a plane curve of the p
th

order; because (comp. 37) it is cut

* This theorem (45) of the possible reconstruction of a plane net, from any one

of its quadrilaterals, and the theorem (43) respecting the possibility of indefi

nitely approaching by net-lines to the points above called irrational (42), without

ever reaching such points by any processes of linear construction of the kind here

considered, have been taken, as regards their substance (although investigated by a

totally different analysis), from that highly original treatise of Moiuus, which was

referred to in a former note (p. 23). Compare Note B, upon the Barycentric Calcu

lus; and the remarks in the following Chapter, upon nets in space.
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in p points (distinct or coincident, and real or imaginary), by

any given right line, lx+ my+nz = 0, in the given plane.

For example, if we write

t
zaa + tfb + vzc

where t, u, v are three new variable scalars, of which we shall

suppose that the sum is zero, then, by eliminating these be

tween the four equations,

x = t
z
, y = uz

, z=vz
,

t + u -t- v = 0,

we are conducted to the following equation of the second

degree, .fta* + f + *-3yz-tzx-**v ,

so that here p = 2, and the locus of P is a conic section. In fact,

it is the conic which touches the sides ofthe given triangle ABC,

at the points above called A
,
B

, c ; for if we seek its intersec

tions with the side BC, by making x =
(38), we obtain a

quadratic with equal roots, namely, (y-z)
2 = Q; which shows

that there is contact with this side at the point (0, 1, 1), or A

(36) : and similarly for the two other sides.

47. If the point o, in which the three right lines AA
, BB ,

cc concur, be (as in Fig. 18, &c.) interior to the triangle ABC,

the sides of that triangle are then all cut internally, by the

points A , B , c of contact with the conic
;
so that in this case

(by 28) the ratios of the constants a, b, c are all positive, and

the denominator ofthe recent expression (46) for p cannot va

nish, for any real values of the va

riable scalars t, u, v ; and conse

quently no such values can render

infinite that vector p. The conic is

therefore generally in this case, as in

Fig. 25, an inscribed ellipse ; which

becomes however the inscribed cir

cle, when

or 1
: r l

: c~
l = s - a : s - b : s - c ;

a, b, c denoting here the lengths of

the sides of the triangle, and s being their semi-sum.
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48. But if the point of concourse o be exterior to the tri

angle of tangents ABC, so that two of its sides are cut externally,

then two of the three ratios of segments (28) are negative; and

therefore one of the three constants a, b, c may be treated as

&amp;lt; 0, but each of the two others as &amp;gt; 0. Thus if we suppose

that

c&amp;gt;0, #&amp;lt;0, a + 5&amp;gt;0, a+c&amp;gt;0,

A will be a point on the side B itself, but the points B
, c

,
o

will be on the lines AC, AB, \b! prolonged, as in Fig. 26 ; and

then the conic A B C will be an

ellipse (including the case of a

circle), or a parabola, or an hy

perbola, according as the roots of D
the quadratic,

(a -f c) t
z + 2ctu +(b + c)u*

= 0,

obtained by equating the deno

minator (46) of the vector p to
Fig. 26.

zero, are either, 1st, imaginary ; or Ilnd, real and equal] or

Illrd, real and unequal: that is, according as we have

bc + ca + ab&amp;gt; Q, or = 0, or &amp;lt;

;

or (because the product abc is here negative), according as

a~ l + b~
l + cr

1
&amp;lt; 0, or =0, or &amp;gt; 0.

For example, if the conic be what is often called the exscribed

circle, the known ratios of segments give the proportion,

and
Zr

1
: cr

l = - s : s - c : s - b ;

-s + s-c + s-b&amp;lt;0.

49. More generally, if c, be (as in Fig. 26) a point upon
the side AB, or on that side prolonged, such that cc, is parallel

to the chord B C ,
then

c,c : AC = CB : AB = - a : c, and AB : AC = a + b : b ;

writing then the condition (48) of ellipticity (or circularity)
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under the form, &amp;lt;

-
, we see that the conic is an ellipse,

c o

parabola, or hyperbola, according as cc &amp;lt; or = or &amp;gt; AB ; the

arrangement being still, in other respects, that which is repre

sented in Fig. 26. Or, to express the same thing more sym

metrically, if we complete the parallelogram CABD, then ac

cording as the point D falls, 1st, beyond the chord B C , with

respect to the point A; or llnd, on that chord; or Illrd,

within the triangle AB C
,
the general arrangement of the same

Figure being retained, the curve is elliptic, or parabolic, or

hyperbolic. In that other arrangement or configuration, which

answers to the system of inequalities, &amp;gt; 0, c&amp;gt;0, a + b + c &amp;lt; 0,

the point A is still upon the side BC itself, but o is on the line

A A prolonged through A
;
and then the inequality,

a (b + c) + be &amp;lt;

-
(b* + be + c2

) &amp;lt; 0,

shows that the conic is necessarily an hyperbola ; whereof it is

easily seen that one branch is touched by the side BC at A ,

while the other branch is touched in B and c , by the sides

CA and BA prolonged through A. The curve is also hyperbo

lic, if either a + b or a + c be negative, while b and c are posi

tive as before.

50. When the quadratic (48) has its roots real and un

equal, so that the conic is an hyperbola, then the directions of

the asymptotes may be found, by substituting those roots,

or the values of t, u, v which correspond to them (or any
scalars proportional thereto), in the numerator of the expres

sion (46) for p ; and similarly we can find the direction of the

axis of the parabola, for the case when the roots are real but

equal : for we shall thus obtain the directions, or direction, in

which a right line OP must be drawn from o, so as to meet the

conic at infinity. And the same conditions as before, for dis

tinguishing the species of the conic, may be otherwise obtained

by combining the anharmonic equation, f= (46), of that

conic, with the corresponding equation ax -f by + cz = (38) of

the line at infinity; so as to inquire (on known principles of

modern geometry) whether that line meets that curve in two
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imaginary points , or touches it, or cuts it, in points which (al

though infinitely distant) are here to be considered as real.

51. In general, if/(#, ?/, z)
= be the anharmonic equa

tion (46) of any plane curve, considered as the locus ofa varia

ble point P
;
and if the differential* of this equation be thus

denoted,
=
d/(#,?/, z)

= Xdx + Ydy+Zdz;
then because, by the supposed homogeneity (46) of the func

tion/, we have the relation

Xas+Yy + Zz** 0,

we shall have also this other but analogous relation,

Xx +Yy + Zz = 0,

if

x - x : y
- y : z - z = d# : dy : dz

;

that is (by the principles of Art. 37), if P = (X } y , zf) be any

point upon the tangent to the curve, drawn at the point
p = (#, //, z), and regarded as the limit ofa secant. The sym
bol (37) of this tangent at P may therefore be thus written,

[X,Y,Z], or [D,/ D,,/ D./] ;

where D^, D,,,
D Z are known characteristics ofpartial deriva

tion.

52. For example, when /has the form assigned in 46, as an

swering to the conic lately considered, we have D.T/= 2
(x-y-z)&amp;gt;

&c. ; whence the tangent at any point (x, y, z) of this curve

may be denoted by the symbol,

\x-y-z, y-z-x, z-x-y\\

in which, as usual, the co-ordinates of the line may be replaced

by any others proportional to them. Thus at the point A
, or

(by 36) at (0, 1, 1), which is evidently (by the form of/) a

point upon the curve, the tangent is the line [- 2, 0, 0], or

[1, 0, 0] ; that is (by 38), the side BC ofthe given triangle, as

* In the theory of quaternions, as distinguished from (although including) that

of vectors, it will be found necessary to introduce a new definition ofdifferentials, on

account of the non- commutative property of quaternion-multiplication : but, for the

present, the usual significations of the signs d aud D are sufficient.
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was otherwise found before (46). And in general it is easy to

see that the recent symbol denotes the right line, which is (in

a well known sense) the polar of the point (#, y, 2), with re

spect to the same given conic
;
or that the line [_X 9 Y 9 Z ~\

is

the polar of the point (# , y, z) : because the equation

Xx + Yy + Zz = 0,

which for a conic may be written as X x + Yy + Z z = 0,

expresses (by 51) the condition requisite, in order that a point

Or, y, z) ofthe curve* should belong to a tangent which passes

through the point (# , y , z). Conversely, the point (x, y, z)

is (in the same well-known sense) the pole of the line \_X, Y, Z~\ ;

so that the centre of the conic, which is (by known principles)

the pole of the line at infinity (38), is the point which satisfies

the conditions a~ lX=b~ l Y=c~lZ; it is therefore, for the pre

sent conic, the point K =
(b + c, c + a, a + #), of which the

vector OK is easily reduced, by the help of the linear equation,

aa + bfi + cy
=

(27), to the form,

~
ab)

with the verification that the denominator vanishes, by 48,

when the conic is a parabola. In the more general case, when

this denominator is different from zero, it can be shown that

every chord of the curve, which is drawn through the extremity

K of the vector K, is bisected at that point K : which point

would therefore in this way be seen again to be the centre.

53. Instead of the inscribed conic (46), which has been the

subject of recent articles, we may, as another example, consi

der that exscribed (or circumscribed) conic, which passes

through the three corners A, B, c of the given triangle, and

touches there the lines A
A&quot;, BB&quot;, cc&quot; of Fig. 21. The anhar-

monic equation of this new conic is easily seen to be,

* If the curve/= were of a degree higher than the second, then the two equa

tions above written would represent what are called t\ie first polar, and the last or

the line-polar, of the point (T , y ,
z

), with respect to the given curve.
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the vector of a variable point P of the curve may therefore be

expressed as follows,

t~
laa -f

t~
la + u lb + v~

lc

with the condition t + u 4 v = 0, as before. The vector of its

centre K is found to be,

a 2 + b* 4- c2 - 2bc - 2ca

and it is an ellipse, a parabola, or an hyperbola, according as

the denominator of this last expression is negative, or null, or

positive. And because these two recent vectors, K, K ,
bear a

scalar ratio to each other, it follows (by 19) that the three

points o, K, K are collinear ; or in other words, that the line

ofcentres KK , of the two conies here considered, passes through
the point ofconcourse o ofthe three lines AA , BB , cc . More

generally, if L be the pole of any given right line A =
[/, m, ri\

(37), with respect to the inscribed conic (46), and if L be the

pole of the same line A with respect to the exscribed conic of

the present article, it can be shown that the vectors OL, or/, or

A, A , of these two poles are of the forms,

A = k (laa + mbfi + ncy), A = h (laa + mbfl + ncy),

where k and k are scalars ; the three points o, L, L are there

fore ranged on one right line.

54. As an example of a vector-expression for a curve of an

order higher than the second, the following may be taken :

with t + u + v = 0, as before. Making x = /
3
, y = u3

,
z = v*, we

find here by elimination of t, u, v the anharmonic equation,

the locus ofthe point P is therefore, in this example, a curve of

the third order, or briefly a cubic curve. The mechanism (41)

G
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of calculations \vith anharmonic co-ordinates is so much the

same as that of the known triiinear method, that it may suffice

to remark briefly here that the sides of the given triangle ABC

are the three (real) tangents of inflexion; the points ofinflexion

being those which are marked as
A&quot;, B&quot;,

c&quot; in Fig. 2 1 ; and the

origin ofvectors o being a conjugate point* If a = b - c, in which

case (by 29) this origin o becomes (as in Fig. 19) the mean

point of the trian

gle, the chord of

inflexion A&quot;B&quot;C&quot; is

then the line at

infinity, and the

curve takes the

form represented

Fig 27
in Fig. 27; hav

ing three infinite

branches, inscribed within the angles vertically opposite to

those of the given triangle ABC, of which the sides are the

three asymptotes.

55. It would be improper to enter here into any details of

discussion of such cubic curves, for which the reader will na

turally turn to other works.f But it may be remarked, in

passing, that because the general cubic may be represented, on

the present plan, by combining the general expression of Art.

34 or 36 for the vector p, with the scalar equation

.s
3 = %lkxyz, where s = x + y + z

;

k denoting an arbitrary constant, which becomes equal to

unity, when the origin is (as in 54) a conjugate point; it fol

lows that if P =
(x, yy z) and P =

(x , y , z) be any two points

ofthe curve, and if we make s = x + y + z, we shall have the

relation,
xs ys zs

sy

I lit Af&amp;gt; Ud 4&
xyzs

* = xuzs*, or
,

.
, ;

= 1 :
*/ / ^

*&amp;gt;/ ... ft&amp;lt;+sx

* Answering to the values f= 1, u = 9, v=02
,
where 6 is one of the imaginary

cube-roots of unity ;
which values of t, M, v give x = y z, and p = 0.

f Especially the excellent Treatise on Higher Plane Curves, by the Rev. George

Salmon, F.T.C.D., &c. Dublin, 1852.
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in which it is not difficult to prove that

^=(A&quot;.PBP B&quot;); ^,= (B&quot;.
PCP

C&quot;)
; ,= (c&quot;.

PAP
A&quot;);

sx sy sz

the notation (35) of anharmonics of pencils being retained.

We obtain therefore thus the following Theorem :
&quot;

Ifthe

sides ofany given plane* triangle ABC be cut (as in Fig. 21) by

any given rectilinear transversal
A&quot;B&quot;C&quot;,

and ifany two points

p and P in its plane be such as to satisfy the anharmonic rela

tion

(A&quot;.
PBP

B&quot;)
.

(B&quot;.
PCP

C&quot;)
.

(c&quot;.
PAP

A&quot;)

= 1,

then these two points P, P are on one common cubic curve, which

has the three collinear points A&quot;, B&quot;,
c&quot; for its three real points

of inflexion, and has the sides BC, CA, AB ofthe trianglefor its

three tangents at those points ;&quot;
a result which seems to offer

a new geometrical generationfor curves of the third order.

56. Whatever the order of a plane curve may be, or what

ever may be the degree p of thefunctionf in 46, we saw in 51

that the tangent to the curve at any point P = (x, y, z) is the

right line

A =
[/, m, n], if 1= nxf, m =

Dyf, n = D^;

expressions which, by the supposed homogeneity off, give the

relation, Ix + my + nz = 0, and therefore enable us to establish

the system of the two following differential equations,

Idx + m&y + n&z = 0, xd.1 + ydm + zdn = 0.

If then, by elimination ofthe ratios of x, y, z, we arrive at a new

homogeneous equation of the form,

=
F(Drf, Dyf, D*/),

as one that is true for all values of #, y, z which render the

function f= (although it may require to be cleared offactors,

introduced by this elimination), we shall have the equation

m

* This Theorem may be extended, with scarcely any modification, from plane to

spherical curves, of the third order.
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as a condition that must be satisfied by the tangent A to the

curve, in all the positions which can be assumed by that right line.

And, by comparing the two differential equations,

dr (/, m, n)
= 0, xdl -f y&m + z&n = 0,

we see that we may write the proportion,

x:y:z= D/F : D WIF : DnF, and the symbol P =
(D/F, D,HF, DWF),

if (#, y, z) be, as above, the point ofcontact P of the variable

line
[/, 77?, w], in any one of its positions, with the curve which

is its envelope. Hence we can pass (or return) from the tan

gential equation F = 0, of a curve considered as the envelope of
a right line A, to the local equationf= 0, of the same curve

considered (as in 46) as the locus ofa point P : since, ifwe ob

tain, by elimination of the ratios of /, m, n, an equation of the

form

O=/(D/F, DWIF, DBF),

(cleared, if it be necessary, of foreign factors) as a conse

quence of the homogeneous equation F = 0, we have only to

substitute for these partial derivatives^ D/F, &c., the anhar-

monic co-ordinates x, y, z, to which they are proportional.

And when the functions ./and F are not only homogeneous (as

we shall always suppose them to be), but also rational and

integral (which it is sometimes convenient not to assume them

as being), then, while the degree of the function ^/J or of the

local equation, marks (as before) the order of the curve, the

degree of the other homogeneousfunction F, or of the tangential

equation F = 0, is easily seen to denote, in this anharmonic

method (as, from the analogy of other and older methods, it

might have been expected to do), the class of the curve to

which that equation belongs : or the number oftangents (dis

tinct or coincident, and real or imaginary), which can be drawn

to that curve^from an arbitrary point in its plane.

57. As an example (comp. 52), if we eliminate x, y, z be

tween the equations,

= x-y-z, m-y z-x^ n = z-x-y,

where /, m, n are the co-ordinates of the tangent to the inscribed
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conic of Art. 46, we are conducted to the following tangen
tial equation of that conic, or curve of the second class,

F(/, m, n)
= mn + nl + Im =

;

with the verification that the sides [1, 0, 0], &c. (38), of the

triangle ABC are among the lines which satisfy this equation.

Conversely, if this tangential equation were given, we might

(by 56) derive from it expressions for the co-ordinates of con

tact x, y, z
9
as follows :

x = D/F = m + n, y = n + I, z=l+m\

with the verification that the side [1, 0, 0] touches the conic,

considered now as an envelope ,
in the point (0, 1, 1), or A , as

before : and then, by eliminating /, m, n, we should be brought
back to the local equation,f= 0, of 46. In like manner, from

the local equation/= yz + zx + xy = of the exscribed conic (53),

we can derive by differentiation the tangential co-ordinates,*

and so obtain by elimination the tangential equation, namely,

F/, m, n = l* + m*+n*- 2mn - 2nl - 2lm =
;

from which we could in turn deduce the local equation. And

(comp. 40), the very simple formula

Ix + my + nz = 0,

which we have so often had occasion to employ, as connecting
two sets of anharmonic co-ordinates, may not only be consi

dered (as in 37) as the local equation ofa given right line A,

along which a point p moves, but also as the tangential equa
tion of a given point, round which a right line turns : according
as we suppose the set 7, r/z, n, or the set oj, y, z, to be given.

Thus, while the right line
A&quot;B&quot;C&quot;,

or [1, 1, 1], of Fig. 21, was

* This name of &quot;

tangential co-ordinates&quot; appears to have been first introduced

by Dr. Booth in a Tract published in 1840, to which the author of the present Ele

ments cannot now more particularly refer : but the system of Dr. Booth was entirely

different from his own. See the reference in Salmon s Higher Plane Curies, note to

page 16.
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represented in 38 by the equation x + y + z = 0, the point o of

the same figure, or the point (1, 1, 1), may be represented by
the analogous equation,

l+m + n = 0;

because the co-ordinates I, m, n of every line, which passes

through this point o, must satisfy this equation of the first de

gree, as may be seen exemplified, in the same Art. 38, by the

lines OA, OB, oc.

58. To give an instance or two of the use of forms, which,

although homogeneous, are yet not rational and integral (56),

we may write the local equation of the inneribed conic (46) as

follows :

#4 + ?/4 -i- zl =
;

and then (suppressing the common numerical factor i), the

partial derivatives are

Z = or4, ra = ?/-*, rc = z-i;

so that a form of the tangential equation for this conic is,

l-l + m-l +n-l = Q .

which evidently, when cleared of fractions, agrees with the first

form of the last Article : with the verification (48), that

a-\ + -1 + c
~ l = when the curve is a parabola ; that is, when

it is touched (50) by the line at infinity (38). For the ex-

scribed conic (53), we may write the local equation thus,

or1 + y l
-f z- 1 =

;

whence it is allowed to write also,

and

a form of the tangential equation which, when cleared of radi

cals, agrees again Avith 57. And it is evident that we could

return, with equal ease, from these tangential to these local

equations.

59. For the cubic curve with a conjugate point (54), the

local equation may be thus written,*

*
Compare Salmon s Higher Plane Curves, page 172.
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aj4 + y* + zl = ;

we may therefore assume for its tangential co-ordinates the

expressions,
Z = arl, m =

?/-?, w = sr! ;

and a form of its tangential equation is thus found to be,

Conversely, if this tangential form were given, we might re

turn to the local equation, by making

x = H, y = rt, z = wt,

which would give x$ + y$ + z& = 0, as before. The tangential

equation just now found becomes, when it is cleared of radi

cals,
= Z-

2
4- m-2 + w-2 - 2m 1w 1 - ^n~l I 1 - 2Z 1 nr l

;

or, when it is also cleared offractions,

= F

of which the biquadratic form shows (by 56) that this cubic

is a curve of the fourth class, as indeed it is known to be.

The inflexional character (54) of the points A&quot;, B&quot;,
c&quot; upon

this curve is here recognised by the circumstance, that when
we make m - n = 0, in order to find the four tangents from

A&quot; =(0, 1,- 1) (36), the resulting biquadratic, = m*- 41m3
, has

three equal roots ; so that the line [1, 0, 0], or the side BC,

counts as three, and is therefore a tangent ofinflexion : thefourth

tangent from A&quot; being the line [1, 4, 4], which touches the

cubic at the point (- 8, 1* 1).

60. In general, the two equations (56),

nDrf- /D*/= 0, nDyf- mv zf= 0,

may be considered as expressing that the homogeneous equa

tion,

f(nx 9 ny, -Ix- my) = 0,

which is obtained by eliminating z with the help of the rela

tion lx + my + nz= 0, from f(x, y, z)
= 0, and which we may
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denote by $(#,#) = 0, has two equal roots x : y, if 7, m, n be

still the co-ordinates of a tangent to the curve/*; an equality
which obviously corresponds to the coincidence oftwo intersec

tions of that line with that curve. Conversely, if we seek by
the usual methods the condition ofequality of two roots x : y of

the homogeneous equation of the pth

degree,

=
(x, y) =f(nx, ny, -Ix- my),

by eliminating the ratio x : y between the two derived homo

geneous equations, =
Dj-0,

= D^, we shall in general be

conducted to a result of the dimension 2p(p- 1) in /, m, n,

and of theform,
= nP (P~v F (/, m, n) ;

and so, by the rejection of the foreign factor nv (v- l

\ introduced

by this elimination,* we shall obtain the tangential equation

F = 0, which will be in general of the degreep(p-\)\ such being

generally the known class (56) of the curve of which the

order (46) is denoted by p : with (of course) a similar mode of

passing, reciprocally, from a tangential to a local equation.

61. As an example, when the function/has the cubicform

assigned in 54, we are thus led to investigate the condition for

the existence of two equal roots in the cubic equation,

=
0(#, y)= {(n-l)x + (m -

/)?/}
3 + 21n*xy(lx+ my),

by eliminating x : y between two derived and quadratic equa
tions ; and the result presents itself, in the first instance, as of

the twelfth dimension in the tangential co-ordinates /, in, n;

but it is found to be divisible by ?i
r&amp;gt;

,
and when this division is

effected, it is reduced to the sixth degree, thus appearing to

imply that the curve is of the sixth class, as in fact the general

cubic is well known to be. A. further reduction is however

possible in the present case, on account of the conjugate point

o (54), which introduces (comp. 57) the quadratic factor,

*
Compare the method employed in Salmon s Higher Plane Curves, page 98, to

find the equation of the reciprocal of a given curve, with respect to the imaginary

conic, *2
4- y3 + zz = 0. In general, if the function F be deduced from /as above,

then Y(xyz}- 0, and /(o-yz)
= are equations of two reciprocal curves.



CHAP. III.] VECTORS OF POINTS IN SPACE. 49

and when this factor also is set aside, the tangential equation
is found to be reduced to the biquadraticform* already assigned
in 59

;
the algebraic division, last performed, corresponding

to the known geometric depression of a cubic curve with a

double point, from the sixth to thefourth class. But it is time

to close this Section on Plane Curves ; and to proceed, as in

the next Chapter we propose to do, to the consideration and

comparison of vectors ofpoints in space.

CHAPTER III.

APPLICATIONS OF VECTORS TO SPACE.

SECTION 1 . On Linear Equations between Vectors not Corn-

planar.

62. When three given and actual vectors OA, OB, oc, or

&amp;gt; j3? y, are not contained in any common plane, and when
the three scalars , b, c do not all vanish, then (by 21, 22)

the expression aa + bfl + cy cannot become equal to zero; it

must therefore represent some actual vector (I), which we may,
for the sake of symmetry, denote by the symbol

- rfS : where

the new (actual) vector S, or OD, is not contained in any one

* If we multiply that form F = (59) by z*, and then change nz to-lx- my,
we obtain a biquadratic equation in I : m, namely,

Q = ^(l,m)=(l- m)2 (Ix + myj- + llm (I + m) (Ix + my) 2

and if we then eliminate I : m between the two derived cubics, =
DJI//,

= Dn,^,

we are conducted to the following equation of the twelfth degree, = aflyWffa y, a),

where /has the same cubic form as in 54. We are therefore thus brought back

(comp. 59) from the tangential to the local equation of the cubic curve (54) ;
com

plicated, however, as we see, with the factor x 3
y
3z3

,
which corresponds to the sys

tem of the three real tangents of inflexion to that curve, each tangent being taken

three times. The reason why we have not here been obliged to reject also the foreign

factor, z2 ?
as by the general theory (60) we might have expected to be, is that we

multiplied the biquadratic function F only by z2
,
and not by z 4

.

H



50 ELEMENTS OF QUATERNIONS. [BOOK i.

of the three given and distinct planes, BOC, COA, AOB, unless

some one, at least, of the three given coefficients a, b, c, va
nishes

;
and where the new scalar, d, is either greater or less

than zero. We shall thus have a linear equation between four
vectors,

act + bf3 + cy + d$ =
;

which will give

- aa -bf3 -cy or OD = OA + OB + oc

oroc,

, are the

Fig. 28.

where OA
, OB

,

-aa -bf3 -cy
d ~d~ ~d

vectors of the three points
A

, B
, c , into which the

point D is projected, on the

three given lines OA, OB, oc,

by planes drawn parallel to

the three given planes, BOC,
&c.

; so that they are the

three co-initial edges of a

parallelepiped, whereof the sum, OD or S, is the internal

and co-initial diagonal (comp. 6). Or we may project D on

the three planes, by lines DA&quot;, DB&quot;, DC&quot; parallel to the three

given lines, and then shall have OA&quot; = OB + oc =
, &c.,

and
g = OD = OA -f OA&quot; = OB + OB&quot; = oc + oc&quot;.

And it is evident that this construction will apply to anyfifth

point D of space, if i\\e,four points OABC be still supposed to be

given, and not complanar : but that some at least of the three

ratios of the four scalars a, b, c, d (which last letter is not

here used as a mark of differentiation) will vary with the po
sition of the point D, or with the value of its vector . For

example, we shall have a = 0, if D be situated in the plane BOC ;

and similarly for the two other given planes through o.

63. We may inquire (comp. 23), what relation between

these scalar coefficients must exist, in order that the point D
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may be situated in the fourth given plane ABC ; or what is the

condition of complanarity of the four points, A, B, c, D. Since

the three vectors DA, DB, DC are now supposed to be complanar,

they must (by 22) be connected by a linear equation, of the

form

a(a
-

S) + 6(|3
-
S) + c(y

-
8)

=
;

comparing which with the recent and more general form (62),

we see that the required condition is,

a + b + c + d= 0.

This equation may be written (comp. again 23) as

- a ~ b - c OA OB oc
7 + 7 + -7 = 1 , or + + = 1 ;

d d d OA OB oc

and, under this last form, it expresses a known geometrical

property of a plane ABCD, referred to three co-ordinate axes

OA, OB, oc, which are drawn from any common origin o, and

terminate upon the plane. We have also, in this case ofcom

planarity (comp. 28), the following proportion of coefficients

and areas :

a :b : c :- d = DEC : DCA : DAB : ABC
;

or, more symmetrically, with attention to signs of areas,

a : b : c : d = BCD :
- CDA : DAB :

- ABC ;

where Fig. 18 may serve for illustration, if we conceive o in

that Figure to be replaced by D.

64. When we have thus at once the two equations,

aa + bfi + cy + d$ = 0, and a + b + c + o?=0,

so that the four co-initial vectors a, |3, y, terminate (as above)

on one commonplane , and may therefore be said (comp. 24) to

be termino-complanar, it is evident that the two right lines,

DA and BC, which connect two pairs of the four complanar

points, must intersect each other in some point A of the plane,

at a finite or infinite distance. And there i no difficulty in

perceiving, on the plan of 31, that the vectors of the three
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points A
,
B

,
c of intersection, which thus result, are the fol

lowing :

r
c , , bfi + cy aa + d$
lor A = BC DA, a =-

lor B =CA-DB,

for C=AB-DC,

,

fi =

b + c

y -f aa

c + a

bQ + d$
;b+d

expressions which are independent of the position of the arbi

trary origin o, and which accordingly coincide with the cor

responding expressions in 27, when we place that origin in the

point D, or make 8 = 0. Indeed, these last results hold good

(comp. 31), even when the jour vectors a, /3, y, S, or thejfoe

points o, A, B, c, D, are all complanar. For, although there

then exist two linear equations between those four vectors,

which may in general be written thus,

a a + b
fi
+ cy + dTS = 0, a a f

6&quot;j3
-f

c&quot;y
-f d&quot;S

= 0,

without the relations, a + &c. = 0, a&quot; + &c. = 0, between the

coefficients, yet if we form from these another linear equation,

of the form,

0,
(a&quot;

+ ta)a +
(b&quot;

+ tf)/3 +
(c&quot;

+ tc )y -f
(d&quot;

-f

and determine t by the condition,

a + b + c + d

we shall only have to make a =
a&quot; + ta, &c., and the two equa

tions written at the commencement of the present article will

then both be satisfied; and will conduct to the expressions

assigned above, for the three vectors of intersection : which

vectors may thus be found, without its being necessary to em

ploy those processes of scalar elimination^ which were treated

of in the foregoing Chapter.

As an Example, let the two given equations be (comp. 27, 33),

aa + b(3 -f cy = 0, (2a -f b + c)a
&quot;- aa =

;
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and let it be required to determine the vectors of the intersections of the three pairs

of lines BC, AA&quot;
; CA, BA

&quot;

;
and AB, CA &quot;. Forming the combination,

(2a + 6 + c)a
&quot; - aa + t(aa + bfi + cy)

=
0,

and determining t by the condition,

(2a + 6 + c)
- a + t(a + b + c)

= 0,

which gives t = 1, we have for the three sought vectors the expressions,

6/3 + cy cy + 2aa 2aa + b(B

b + c c+2a

whereof the first = a
, by 27. Accordingly, in Fig. 21, the line AA &quot;

intersects BC in

the point A
;
and although the two other points of intersection here considered,

which belong to what has been called (in 34) a Third Construction, are not marked

in that Figure, yet their anharmonic symbols (36), namely, (2, 0, 1) and (2, 1, 0),

might have been otherwise found by combining the equations y and x = 2z for the

two lines CA, BA&quot;
;
and by combining z = 0, x = 2y for the remaining pair of lines.

65. In the more general case, when the four given points

A, B, c, D, are not in any common plane, let E be anyfifth given

point of space, not situated on any one of thefourfaces of the

given pyramid ABCD, nor on any such face prolonged ;
and let

its vector OE = c. Then the four co-initial vectors, EA, EB, EC,

ED, whereof(by supposition) no three are complanar, and which

do not terminate upon one plane, must be (by 62) connected

by some equation of the form,

tf .EA + b.EB + C.EC-h d.EV =
J

where thefour scalars, a, b, c, d, and their sum, which we shall

denote by -
e, are all different from zero. Hence, because

EA = a - e, &c., we may establish the following linear equation

betweenfive co-initial vectors, a, j3, y, S, c, whereofnofour are

termino-complanar (64),

aa + bfi + cy + dS + et = ;

with the relation, a+ b + c + d+ e- 0, between ihefive scalars

a, b, c, d, e, whereof no one now separately vanishes. Hence

also, a = (aa + i]3 + cy + d$) : (a + b -f c + d), &c.

66. Under these conditions, if we write

DI = DE-ABC, and oo^Si,

that is, if we denote by Si the vector of the point DI in which

the right line DE intersects the plane ABC, we shall have
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~ aa + bQ + cy =
5
-

a + e

In fact, these two expressions are equivalent, or represent one

common vector, in virtue of the given equations; but the first

shows (by 63) that this vector B\ terminates on the plane ABC,

and the second shows (by 25) that it terminates on the line

DE ; its extremity D X must therefore be, as required, the inter

section of this line with that plane. We have therefore the two

equations,

II.. .

whence (by 28 and 24) follow the two proportions,

I . . . a : b : c = D^C : D^A : DiAB ;
A

II . . . d . e = EDi : DiD ;

the arrangement of the points, in the

annexed Fig. 29, answering to the case

where all the four coefficients a,b,c,d

are positive (or have one common sign),

and when therefore the remaining co

efficient e is negative (or has the opposite sign).

67. For the three complanar triangles, in the first propor

tion, we may substitute any three pyramidal volumes, which

rest upon those triangles as their bases, and which have one

common vertex, such as D or E
;
and because the collineation

DED X gives DDiBC - EDiBC - DEBC, &c., we may write this other

proportion,

I&quot;. . . a : b : c = DEBC : DECA : DEAB.

Again, the same collineation gives

EDi : DD X
= EABC I DABC J

we have therefore, by IP., the proportion,

II&quot;. . . d . e = EABC DABC.

But
DEBC + DECA + DEAB + EABC = DABC,

and
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a+ b + c + d = -e ;

we may therefore establish the following fuller formula of

proportion, between coefficients and volumes :

III. . . a:b:c:d:-e= DEBC : DECA : DEAB : EABC : DABC
;

the ratios of all these five pyramids to each other being consi

dered as positive, for the particular arrangement of the points

which is represented in the recent figure.

68. The formula III. may however be regarded as per

fectly general, ifwe agree to saythat apyramidal volumechanges

sign, or rather that it changes its algebraical character, as po
sitive or negative, in comparison with a given pyramid, and

with a given arrangement of points, in passing through zero

(comp. 28) ; namely when, in the course of any continuous

change, any one of its vertices crosses the corresponding base.

With this convention* we shall have, generally,

DABC = -ADBC = ABDC = - ABCD, DEBC = BCDE, DECA = CDEA ;

the proportion III. may therefore be expressed in the follow

ing more symmetric, but equally general form :

III . . . a:b:c:d:.e = BCDE : CDEA: DEAB : EABC : ABCD ;

the sum of these Jive pyramids being always equal to zero,

when signs (as above) are attended to.

69. We saw (in 24) that the two equations,

aa + bfi + cy
= 0, a + b + c = 0,

gave the proportion of segments,

a : b :c = BC : CA : AB,

whatever might be the position of the origin o. In like man

ner we saw (in 63) that the two other equations,

* Among the consequences of this convention respecting signs of volumes, which

has already been adopted by some modern geometers, and which indeed is necessary

(comp. 28) for the establishment of general formulai, one is that any two pyramids,

ABCD, A B C D
,
bear to each other a positive or a negative ratio, according as the two

rotations, BCD and B C D
, supposed to be seen respectively from the points A and A

,

have similar or opposite directions, as right-handed or left-handed.
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aa. + bfi + cy + d$ = 0, a + b + c + d = 0,

gave the proportion of areas,

a:b:c:d=BCD:- CDA : DAB :
- ABC ;

where again the origin is arbitrary. And we have just deduced

(in 68) a corresponding proportion of volumes, from the two

analogous equations (65),

aa + bfl -t- cy + d$ + ee = 0, a + b + c -f d + e = 0,

with an equally arbitrary origin. If then we conceive these

segments, areas, and volumes to be replaced by the scalars to

which they are thus proportional, we may establish the three

generalformula :

I. OA.BC+ OB.CA + OC.AB =
;

II. OA.BCD -OB. CDA -f OC.DAB -OD.ABC =
;

III. OA.BCDE + OB . CDEA-H OC.DEAB + OD . EABC+ OE . ABCD =
;

where in I., A, B, c are any three collinear points ;

in II., A, B, c, D are any four complanar points ;

and in III., A, B, c, D, E are anyfive points ofspace ;

while o is, in each of the three formulae, an entirely arbitrary

point. It must, however, be remembered, that the additions

and subtractions are supposed to be performed according to the

rules of vectors, as stated in the First Chapter of the present
Book

;
the segments, or areas, or volumes, which the equations

indicate, being treated as coefficients of those vectors. We
might still further abridge the notations^ while retaining the

meaning of these formulae, by omitting the symbol of the arbi

trary origin o
;
and by thus writing,*

I . A.BC + B.CA + C.AB = 0,

for any three collinear points ; with corresponding formula II .

and III ., for any four complanar points, and for any five points

of space.

* We should thus have some of the notations of the Barycentric Calculus (see

Note B), but employed here with different interpretations.
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SECTION 2. On Quinary Symbolsfor Points and Planes in

Space.

70. The equations of Art. 65 being still supposed to hold good,

the vector p of any point P of space may, in indefinitely many ways,

be expressed (comp. 36) under the form:

xaa + yb& + zcv + wdS + vee
I. ..op=/3 = = -=

;

xa +yo + zc +wd + ve

in which the ratios of the differences of the Jive coefficients, xyzwv, de

termine the position of the point. In fact, because the four points

ABCD are not in any common plane, there necessarily exists (comp.

65) a determined linear relation between thefour vectors drawn to

them from the point P, which may be written thus,

x*a . PA + y
1

b . PB + z c . PC + w d . PD = 0,

giving the expression,

_ x aa. + y bp -f z c7 + w dd

x a + y b + z c + w d

in which the ratios of the four scalar s x y z w
, depend upon, and

conversely determine, the position of P
; writing, then,

x - tx + v, y = ty + v, z- tz + v, w- tw + v,

where t and v are two new and arbitrary scalars, and remembering
that aa + . . + ee = 0, and a + . . + e = (65), we are conducted to the

form for
/&amp;gt;, assigned above.

71. When the vector p is thus expressed, the point P may be

denoted by the Quinary Symbol (x, y, z, w, v) ; and we may write

the equation,
p = (x, y, z, w, v).

But we see that the same point P may also be denoted by this other

symbol, of the same kind, (x*, y , z
, w\ v

), provided that the follow

ing proportion between differences of coefficients (70) holds good:

x - v f
: y - v : z - v : iv - v - x - v : y

- v : z - v : to - v.

Under this condition, we shall therefore write the following formula

of congruence,

(x
f

, y ,
z

,
w

,
v ) E (x, y, z, w, v),

to express that these two quinary symbols, although not identical in

composition, have yet the same geometrical signification, or denote one

common point. And we shall reserve the symbolic equation,

(x
f

, /, 2
,
w 1

,
v

1

}
=

(x, y, z, w, v),

I
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to express that the Jive coefficients, xf
. . . v f

,
of the one symbol, are

separately equal to the corresponding coefficients of the other,

x = x, . . v f = v.

72. Writing also, generally,

(tx, ty, tz, tw, tv) = t(x, y, z, w, v),

(x
f + x, . . v + v)

=
(a? ,

. . v
) + (x, . . v), &c.,

and abridging the particular symbol* (1, 1, 1, 1, 1) to (U), while

(Q), (Q ),
. . may briefly denote the quinary symbols (a?,

. . v),

(x ,
. . v), . . we may thus establish the congruence (71),

(Q )E(Q), if (Q) = (Q ) + (tf);

in which t and u are arbitrary coefficients. For example,

(0,0,0, 0,1)
=

(1,1, 1,1,0), and (0, 0,0, 1, !)
=

(!, 1, 1,0,0);

each symbol of the first pair denoting (65) the given point E; and

each symbol of the second pair denoting (66) the derived point D,.

When the coefficients are 50 simple as in these last expressions, we

may occasionally omit the commas, and thus write, still more briefly,

(00001) E (1 1 1 10) ; (00011) E (1 1 100).

73. If three vectors, p, p , p&quot;, expressed each under the first

form (70), be termino-collinear (24) and if we denote their denomi-

tors, xa + . .
,
x a + . .

,
x&quot;a + . .

, by m, m, m&quot;, they must then (23) be

connected by a linear equation, with a null sum of coefficients, which

may be written thus:

imp + t m p +
t&quot;m&quot;p&quot;

=
;

tm + t m + t&quot;m&quot; + 0.

We have, therefore, the two equations of condition,

t (xaa + .. + vee) + 1 (x aa + . . + v ee) + 1&quot; (x&quot;aa + . . +
v&quot;ee)

=
;

t(xa + . . + ve) + 1 (x a + . . + v e) + 1&quot;
(x&quot;a + . . +

v&quot;e]
=

;

where t, t
,

t&quot; are three new scalars, while the five vectors a . . e, and

the five scalars a..e, are subject only to the two equations (65):

but these equations of condition are satisfied by supposing that

tx + t x + t&quot;x&quot;
=

. .
= tv + t v + t&quot;v&quot;

= -u,

where u is some new scalar, and they cannot be satisfied otherwise.

Hence the condition of collinearity of the three points P, P
, P&quot;,

in

which the three vectors p, p , p&quot; terminate, and of which the qui

nary symbols are (Q), (Q
r

)&amp;gt; (Q
/x

) mav briefly be expressed by the

equation,

* This quinary symbol ( U&quot;)
denotes no determined point, since it corresponds

(by 70, 71) to the indeterminate vector p
-

; but it admits of useful combinations

with other quirnuy symbols, as above.
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so that if any four scalars, t, t
, t&quot;, u, can be found, which satisfy this

last symbolic equation, then, but not in any other case, those three

points PP P&quot; are ranged on one right line. For example, the three

points D, E, Dn which are denoted (72) by the quinary symbols,

(00010), (00001), (11100), are collmear; because the sum of these

three symbols is ( U). And if we have the equation,

where t, t
,
u are any three scalars, then (Q&quot;)

is a symbol for a point

p&quot;,
on the right line PP . For example, the symbol (0, 0, 0, t, t

) may
denote any point on the line DE.

74. By reasonings precisely similar it may be proved, that if

(Q) (QO (Q&quot;) (Q&quot;0
be quinary symbols for any four points pp p&quot;p&quot;

in any common plane, so that the four vectors pp
f

p
ff

p
&quot; are termino-

complanar (64), then an equation, of the form

must hold good; and conversely, that if the fourth symbol can be

expressed as follows,

with any scalar values of t, t
f

,
t
ff

, u, then the fourth point P &quot; is situ

ated in the plane PP P&quot; of the other three. For example, the four

points,

(10000), (01000), (00100), (11100),

or A, B, c, D! (66), are complanar; and the symbol (t,
t

, t&quot;, 0, 0)

may represent any point in the plane ABC.

75. When a point P is thus complanar with three given points,

PO ,
PM P;,, we have therefore expressions of the following forms, for

the five coefficients x, . . v of its quinary symbol, in terms of the fif

teen given coefficients of their symbols, and offour new and arbitrary

scalars:

x = t x -f t&i + tsXi + u;... v = tQVo + tfli + tgtfjj + u.

And hence, by elimination of these four scalars, t . . u, we are con

ducted to a linear equation of the form

/ (x
-
v) + m (y

-
v) + n (z -v) + r(w-v) = 0,

which may be called the Quinary Equation of the Plane P PiP., or of

the supposed locus of the point P: because it expresses a common

property of all the points of that locus; and because the three ratios

of the four new coefficients /, wi, n, r, determine the position ofthe plane
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in space. It is, however, more symmetrical, to write the quinary

equation of a plane II as follows,

lx + my + nz + nv + sv = 0,

where iheffth coefficient, s, is connected with the others by the rela

tion,

and then we may say that
[/, m, n, r, s] is (comp. 37) the Quinary

Symbol of the Plane n, and may write the equation,

II =
[/, m, n, r, *].

For example, the coefficients of the symbol for a point P in the plane
ABC may be thus expressed (comp. 74) :

x - 1 + u, y = ti + u, z = tz + u, w-u, v = u ;

between which the only relation, independent of the four arbitrary

scalars tQ . . u, is w - v = ; this therefore is the equation of the plane

ABC, and the symbol of that plane is [0, 0, 0, 1,
-

1]; which may
(comp. 72) be sometimes written more briefly, without commas, as

[0001 1]. It is evident that, in any such symbol, the coefficients may
all be multiplied by any common factor.

76. The symbol of the plane P PiP2 having been thus determined,

we may next propose to find a symbol for the point, P, in which that

plane is intersected by a given line P3P4 : or to determine the coefficients

x . . v, or at least the ratios of their differences (70), in the quinary

symbol of that point,

(x, y, z, w, v)
= p = P P!P2 P3p4 .

Combining, for this purpose, the expressions,

x = t2x3 + t&i + u
,

. . v = t3v3 + t^ + u y

(which are included in the symbolical equation (73),

and express the collinearity PP3P4,) with the equations

Ix + . . + sv = 0, / + . . + s = 0,

(which express the complanarity pp p
t
p2,) we are conducted to the

formula,
*3 (Ix3 + .. + sv3) -t- 1 (lx 4- . . + svj = 0;

which determines the ratio t3 : ti} and contains the solution of the

problem. For example, if p be a point on the line DE, then (comp.

73),
x*=-z-u w = t3 +u v = t + u
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but if it be also a point in the plane ABC, then w-v-Q (75), and

therefore t3
- f4

=
;
hence

(Q) = *3 (0001 !) + * (11 111), or (Q) = (00011);

which last symbol had accordingly been found (72) to represent the

intersection (66), D! = ABC DE.

77- When the five coefficients, xyzwv, of any given quinary

symbol (Q) for a point P, or those of any congruent symbol (71), are

any whole numbers (positive or negative, or zero), we shall say

(comp. 42) that the point P is rationally related to the five givenpoints,

A . . E ; or briefly, that it is a Rational Point of the System, which

those five points determine. And in like manner, when the five

coefficients, Imnrs, of the quinary symbol (75) of a plane II are either

equal or proportional to integers, we shall say that the plane is a Ra
tional Plane of the same System; or that it is rationally related to the

same five points. On the contrary, when the quinary symbol of a

point, or of a plane, has not thus already whole coefficients, and can

not be transformed (comp. 72) so as to have them, we shall say that

the point or plane is irrationally related to the given points; or

briefly, that it is irrational. A right line which connects two rational

points, or is the intersection of two rational planes, may be called, on

the same plan, a Rational Line ; and lines which cannot in either

of these two ways be constructed, may be said by contrast to be

Irrational Lines. It is evident from the nature of the eliminations

employed (comp. again 42), that a plane, which is determined as con

taining three rational points, is necessarily a rational plane; and in

like manner, that a point, which is determined as the common inter

section of three rational planes, is always a rationalpoint : as is also

every point which is obtained by the intersection of a rational line

with a rational plane; or of two rational lines with each other (when

they happen to be complanar).

78. Finally, when two points, or two planes, differ only by the ar

rangement (or order) of the coefficients in their quinary symbols, those

points or planes may be said to have one common type; or briefly

to be syntypical For example, the five given points, A, . . E, are thus

syntypical, as being represented by the quinary symbols (10000), . .

(00001); and the ten planes, obtained by taking all the ternary

combinations of those five points, have in like manner one common

type. Thus, the quinary symbol of the plane ABC has been seen

(75) to be [000 lT]; and the analogous symbol [lIoOO] represents
the plane CDE, &c. Other examples will present themselves, in a
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shortly subsequent Section, on the subject of Nets in Space. But
it seems proper to say here a few words, respecting those Anhar-

monic Co-ordinates, Equations, Symbols, and Types, for Space, which

are obtained from the theory and expressions of the present Section,

by reducing (as we are allowed to do) the number of the coefficients,

in each symbol or equation, from Jive to four.

SECTION 3. On Anharmonic Co-ordinates in Space.

79. When we adopt the secondform (70) for
/&amp;gt;,

or suppose (as

we may) that the fifth coefficient in the first form vanishes, we get this

other general expression (comp. 34, 36), for the vector of a point in

space :

xaa + yb/3 + zcv + wdd
OP = p = -

;

xa + yb + zc + wd

and may then write the symbolic equation (comp. 36, 71),

p = (x, y, z, w),

and call this last the Quaternary Symbol of the Point P : although
we shall soon see cause for calling it also the Anharmonic Symbol of

that point. Meanwhile we may remark, that the only congruent

symbols (71), of this last form, are those which differ merely by the

introduction of a common factor : the three ratios of the four coeffi

cients., x . .w, being all required, in order to determine the position of
the point; whereof those four coefficients may accordingly be said

(comp. 36) to be the Anharmonic Coordinates in Space.

80. When we thus suppose that v = 0, in the quinary symbol of

the point p, we may suppress the fifth term sv, in the quinary equation
of a, plane IT, lx + . . + sv = (75) ;

and therefore may suppress also (as

here unnecessary) the fifth coefficient, s, in the quinary symbol of that

plane, which is thus reduced to the quaternary form,

II = p, m, n, r~\.

This last may also be said (37, 79), to be the Anharmonic Symbol of
the Plane, of which the Anharmonic Equation is

lx + my + nz + rw =
;

the/&amp;lt;^r coefficients, Imnr, which we shall call also (comp. again 37)
the Anharmonic Co-ordinates of that Plane n, being not connected

among themselves by any general relation (such as /+ . . + 5 = 0): since

their three ratios (comp. 79) are all in general necessary, in order to

determine the position of the plane in space.

81. If we suppose that the fourth coefficient, w, also vanishes, in
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the recent symbol of a point, thatpoint P is in theplane ABC ; and may
then be sufficiently represented (as in 36) by the Ternary Symbol

(x, y, z). And if we attend only to the points in which an arbitrary

plane H intersects the given plane ABC, we may suppress its fourth co

efficient, r, as being for such points unnecessary. In this manner,

then, we are reconducted to the equation, lx+my + nz= 0, and to the

symbol, A= [/, m, rc],
for a right line (37) in theplane ABC, considered

here as the trace, on that plane, of an arbitrary plane II in space. If

this plane II be given by its quinary symbol (75), we thus obtain

the ternary symbol for its trace A, by simply suppressing the two last

coefficients, r and s.

82. In the more general case, when the point P is not confined

to the plane ABC, if we denote (comp. 72) its quaternary symbol by
(Q), the lately established formulae of collineation and complanarity

(73, 74) will still hold good: provided that we now suppress the

symbol ( U&quot;),
or suppose its coefficient to be zero. Thus, the formula,

expresses that the point P is in the planepW ;
and if the coeffi

cient t
&quot;

vanish, the equation which then remains, namely,

signifies that P is thus complanar with the two given points ? f

, p&quot;,

and with an arbitrary third point; or, in other words, that it is on

the right line P
P&quot;;

whence (comp. 76) problems of intersections of

lines with planes can easily be resolved. In like manner, if we de

note briefly by [-K] the quaternary symbol [7, m, n, r~]
for a plane

II, the formula

[#] = t [# ] + 1&quot; [ JB&quot;]
+ t

1 &quot;

[72&quot; ]

expresses that the plane II passes through the intersection of the three

planes, II
, II&quot;,

II&quot;
;
and if we suppose t

&quot; = 0, so that

the formula thus found denotes that the plane II passes through
the point of intersection of the two planes, II

, II&quot;,
with any third

plane-, or (comp. 41), that this plane II contains the line of intersec

tion of II
, II&quot;;

in which case the three planes, II, II
, II&quot;, may be

said to be coUinear. Hence it appears that either of the two expres

sions,

!...* ( QO + 1&quot; ( Q&quot;),
II. . . t [ ] + 1&quot;

[7?&quot;],

may be used as a Symbol of a Right Line in Space : according as we

consider that line A either, 1st, as connecting two giien point,*, or
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Ilnd, as being the intersection oftwo given planes. The remarks (77)

on rational and irrational points , planes, and lines require no modifi

cation here; and those on types (78) adapt themselves as easily to

quaternary as to quinary symbols.

83. From the foregoing general formulae of collineation and com-

planarity, it follows that the point P , in which the line AB inter

sects the plane CDP through CD and any proposed point ? = (x,yzw)

of space, may be denoted thus:

p = AB CDP = (xyQG) ;

for example, E = (1 1 1 1), and c = AB CDE = (1100). In general, if

ABCDEF be any six points of space, the four collinear planes (82), ABC,

ABD, ABE, ABF, are said to form a pencil through AB; and if this be

cut by any rectilinear transversal, in. four points, c, D, E\ F
,
then

(comp. 35) the anharmonic function of this group of points (25) is

called also the Anharmonic of the Pencil of Planes: which may be

thus denoted,

(AB . CDEF)
=

(&amp;lt;*ViV).

Hence (comp. again 25, 35), by what has just been shown respect

ing c and p
,
we may establish the important formula:

/

(CD . AEBP) = (AC BP )
= -

;

\s

so that this ratio of coefficients, in the symbol (xytw) for a variable

point P (79), represents the anharmonic ofa pencil ofplanes, of which

the variable plane CDP is one; the three other planes of this pencil

being given. In like manner,

(AD.BECP)=-, and (BD.CEAP)=-;

so that (comp. 36) the product of these three last anharmonics is

unity. On the same plan we have also,

OC 1J 2

(BC.AEDP)= , (CA.BEUP) = , (AB.CEDP) = -;w w w
so that the three ratios, of the three first coefficients xyz to the

fourth coefficient w, suffice to determine the three planes, BCP, CAP,

ABP, whereof the point P is the common intersection, by means of the

anharmonics of three pencils of planes, to which the three planes re

spectively belong. And thus we see a motive (besides that of analogy

to expressions already used for points in a given plane], for calling

the/owr coefficients, xyzw, in the quaternary symbol (79) for a point in

space, the Anharmonic Co-ordinates of that Point.

84. In general, if there be any four collinear points, PO ,
. . p3 ,

so
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that (comp. 82) their symbols are connected by two linear equations,

such as the following,

(Qi)
= (&) +

&amp;lt;Q2 )&amp;gt; (Qs)
= (&) + K (Q2),

then the anharmonic of their group may be expressed (comp. 25, 44)

as follows :

. ut

(w^=^;
as appears by considering the pencil (CD . P P!P2

P3),
and the transversal

AB (83). And in like manner, if we have (comp. again 82) the two

other symbolic equations, connecting four collinear planes I1 . . II3 ,

the anharmonic of their pencil (83) is expressed by the precisely

similar formula,
ut

(njiji.n^-;

as may be proved by supposing the pencil to be cut by the same

transversal line AB.

85. It follows that if f(xyzw) andf (xyzw) be any two homo

geneous and linear functions of x, y, z, w; and if we determine four

collinear planes II . . n3 (82), by the four equations,

/=0, /!=/, /! = 0, /,
=

*/,

where k is any scalar
;
we shall have the following value of the an

harmonic function, of the pencil of planes thus determined :

Hence we derive this Theorem, which is important in the application

of the present system of co-ordinates to space :

u The Quotient of any two given homogeneous and linear Functions,

ofthe anharmonic Co-ordinates (79) ofa variable Point P in space, may
be expressed as the Anharmonic (UQ^U^U^) of a Pencil of Planes;
whereof three are given, while the fourth passes through the variable

point P, and through a given right line A which is common to the three

former planes.&quot;

86. And in like manner may be proved this other but analogous
Theorem:

&quot; The Quotient ofany two given homogeneous and linear Functions,

of the anharmonic Co-ordinates (80) of a variable Plane n, may be ex

pressed as the Anharmonic (p PiP3P3) of a Group of Points; whereof

three are given and collinear, and the fourth is the intersection, A 17,

of their common and given right line A, with the variable plane n.&quot;

K
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More fully, if the two given functions of Imnr be F and FP and

if we determine three points PO?^ by the equations (comp. 57)
F =0, F, = F, F! = O, and denote by P3 the intersection of their com
mon line A with II, we shall have the quotient,

For example, if we suppose that

A2
=
(1001), B2

=
(0101), c2 =(0011),

A 2
=
(1001), B 2

=
(0101), c 2

=
(OOlT),

so that

A2
= DA*BCE, &C., and (DA 2AA7

2)
=-

1, &C.,

we find that the three ratios of /, m, n to r, in the symbol II = [lmnr~\,

may be expressed (comp. 39) under the form of anharmonics of

groups, as follows:

- = (DA 2AQ) ;
= (DB JJBR) ;

U
- =

(DC ZCS) ;

where Q, R, s denote the intersections of the plane II with the three

given right lines, DA, DB, DC. And thus v/e have a motive (comp.

83) besides that of analogy to lines in a given plane (37), for calling

(as above) theybwr coefficients /, m, n, r, in the quaternary symbol (80)

for & plane n, the Anharmonic Co-ordinates of that Plane in Space.

87. It may be added, that if we denote by L, M, N the points in

which the same plane II is cut by the three given lines BC, CA, AB,

and retain the notations
A&quot;, B&quot;,

c&quot; for those other points on the same

three lines which were so marked before (in 31, &c.), so that we may
now write (comp. 36)

A&quot; = (oiio), B&quot;=(Foio), c&quot;= (iToo),

we shall have (comp. 39, 83) these three other anharmonics of groups,

with their product equal to unity:

~ -
(CA&quot;BL) ;

^
=

(AB&quot;CM) ;
~ =

(BC&quot;AN) ;

and theses givenpoints, A&quot;, B&quot;, c&quot;,
A r

2,
B 2, C

X
2,
are all in one given plane

[E], of which the equation and symbol are:

x + y + z + w = 0; [E]
=
[111 11].

The six groups of points, of which the anharmonic functions thus

represent the six ratios of the four anharmonic co-ordinates, Imnr,

of a variable plane n, are therefore situated on the six edges of the

given pyramid, ABCD ;
two points in each group being corners of that
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pyramid, and the two others being the intersections of the edge with

the two planes, [E] and n. Finally, the plane [E] is (in a known

modern sense) the plane ofhomology* and the point E is the centre

of homology, of the given pyramid ABCD, and of an inscribed pyramid

A^dDj, where A I
= EA*BCD, &c. ; so that D

{
retains its recent signi

fication (66, 76), and we may write the anharmonic symbols,

Al = (0111), B^OOll), 0^(1101), ^ =
(1110).

And if we denote by A^B^C^D^ the harmonic conjugates to these

last points, with respect to the lines EA, EB, EC, ED, so that

we have the corresponding symbols,

Many other relations of position exist, between these various points,

lines, and planes, of which some will come naturally to be noticed,

in that theory of nets in space to which in the following Section we

shall proceed.

SECTION 4. On Geometrical Nets in Space.

88. When we have (as in 65) five given points A . . E, whereof no

four are complanar, we can connect any two of them by a right line,

and the three others by a plane, and determine the point in which

these last intersect one another: deriving thus a system of ten lines A
1?

ten planes nh and ten points P 15 from the given system ofJive points

PO, by what may be called (comp. 34) a First Construction. We may
next propose to determine all the new and distinct lines, A2, and

planes, n2, which connect the ten derived points Px with the five

given points P
,
and with each other; and may then inquire what

new and distinct points P2 arise (at this stage) as intersections of lines

with planes, or of lines in one plane with each other: all such new lines,

planes, and points being said (comp. again 34) to belong to a Second

Construction. And then we might proceed to a Third Construction

of the same kind, and so on for ever : building up thus what has

been calledf a Geometrical Net in Space. To express this geome
trical process by quinary symbols (71, 75, 82) ofpoints, planes, and

lines, and by quinary types (78), so far at least as to the end of the

second construction, will be found to be an useful exercise in the

* See Poncelet s Traitt des Propric tes Projectives (Paris, 1822).

f By Mobius, in p. 291 of his already cited Barycentric Calculus,
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application of principles lately established : and therefore ulti

mately in that METHOD OF VECTORS, which is the subject of the

present Book. And the quinary form will here be more convenient

than the quaternary ,
because it will exhibit more clearly the geome

trical dependence of the derived points and planes on the jive given

points, and will thereby enable us, through a principle of symmetry,

to reduce the number of distinct types.

89- Of the Jive given points, PO ,
the quinary type has been seen

(78) to be (10000); while of the ten derived points p,, of first con

struction, the corresponding type may be taken as (00011); in fact,

considered as symbols, these two represent the points A and D
t
. The

nine other points P! are A/B/C/A181C1AtB3Cj; and we have now (comp.

83, 87, 86) the symbols,

A = BC ADE = (01 100), A! = EA BCD = (10001),
A2
= DA -BCE = (10010);

also, in any symbol or equation of the present form, it is permitted
to change A, B, c to B, G, A, provided that we at the same time write

the third, first, and second co-efficients, in the places of the first,

second, and third: thus, B = CA BDE = (10100), &c. The symbol

(#yOOO) represents an arbitrary point on the line AB; and the sym
bol [OOrcrs], with n + r + s = 0, represents an arbitrary plane through

that line : each therefore may be regarded (comp. 82) as a symbol also

of the line AB itself, and at the same time as a type of the ten lines

A
t ; while the symbol [000 ll], of the plane ABC (75), may be taken

(78) as a type of the ten planes H^ Finally, the five pyramids,

BCDE, CADE, ABDE, ABCE, ABCD,

and the ten triangles, such as ABC, whereof each is a common face of

two such pyramids, may be called pyramids R^ and triangles 2\, of

the First Construction.

90. Proceeding to a Second Construction (88), we soon find that

the lines A2 may be arranged in two distinct groups; one group con

sisting offifteen lines A2 , 1? such as the line* AA D,, whereof each con

nects two points P!, and passes also through one point PO, being the inter

section of two planes li^ through that point, as here of ABC, ADE;

while the other group consists of thirty lines A2 , 2, such as B C , each

connecting two points Pb but not passing through any point r , and

being one of the thirty edges offive new pyramids R^ namely,

C B A 2Ai, A C/BjBj, B A C^C,, A^B^D,,

o, ABoCi, DA AI, EA AO, are other lines of this group.
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which pyramids 7?2 niay be said (comp. 87) to be inscribed homo-

logues of the five former pyramids Rlt the centres ofhomology for these

five pairs ofpyramids being the five given points A . . E
;
and theplanes

ofhomology being five planes [A] . . [E], whereof the last has been

already mentioned (87), but which belong properly to a third con

struction (88). The planes II2 ,
of second construction, form in like

manner two groups; one consisting offifteen planes II2 , i, such as the

plane of the five points, AB^C^, whereof each passes through one

point P , and through four points P l5 and contains two lines A2, 1? as

here the lines ABjC2, AdB 2 ,
besides containing four lines A2 , 2, as here

B^, &c. ; while the other group is composed of twenty planes IT
a , 2,

such as A^CJ, namely, the twentyfaces of the five recent pyramids 7?2 ,

whereof each contains three points p
t ,

and three lines A2 , 2, but does

not pass through any point PO. It is now required to express these

geometrical conceptions* of the forty-five lines A2 ; the thirty-fiveplanes
n2 ; and the five planes ofhomology of pyramids, [A] . . . [E], by qui

nary symbols and types, before proceeding to determine the points P2

of second construction.

91. An arbitrary point on the right line AA D! (90) may be re

presented by the symbol (tuuQQ); and an arbitrary plane through
that line by this other symbol, \_Qmmrr~], where m and r are written

(to save commas) instead of-ra and -r\ hence these two symbols

may also (comp. 82) denote the line AA DI itself, and may be used as

types (78) to represent the group of lines A2 , 1
The particular sym

bol [01111], of the last form, represents that particular plane

through the last-mentioned line, which contains also the line AB^
of the same group ;

and may serve as a type for the group of planes

ITa,!. The line B C ,
and the group A2, 2, may be represented by

(stuQO) and [tuns], if we agreef to write s = t + u, and s = - s; while

the plane B C A.,, and the group n2 , 2 , may be denoted by [11112],

Finally, the plane [E] has for its symbol [11114]; and the four

other planes [A], &c., of homology of pyramids (90), have this last

for their common type.

92. The points p
a ,

of second construction (88), are more nume-

* Mobius (in his Barycentric Calculus, p. 284, &c.) has very clearly pointed

out the existence and chief properties of the foregoing lines and planes ; but besides

that his analysis is altogether different from ours, he does not appear to have aimed

at enumerating, or even at classifying, all the points of what has been above called

(88) the second construction, as we propose shortly to do.

f With this convention, the line AB, and the group AI, may be denoted by
the plane- symbol [OOtas] their point-symbol being (^000).
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rous than the lines A2 and planes n2 of that construction: yet with

the help of types, as above, it is not difficult to classify and to

enumerate them. It will be sufficient here to write down these

types, which are found to be eight, and to offer some remarks re

specting them ; in doing which we shall avail ourselves of the eight

following typical points, whereof the two first have already occurred,

and which are all situated in the plane of ABC :

A&quot;
= (OHOO); A &quot; =

(2 1.1. 00); A V
=(21100); Av =(02100);

AVI = (02TOO) ;
AVI1 =

(
1 2 1 00) ; Avm = (32 1 00) ; AIX =

(23 1 00) ;

the second and third of these having (TOOll) and (30011) for con

gruent symbols (71). It is easy to see that these eight types repre

sent, respectively, ten, thirty, thirty, twenty, twenty, sixty, sixty,

and sixty distinct points, belonging to eight groups, which we shall

mark as p2, i, . . P2 &amp;gt; 8 ; so that the total number of the points P2 is 290.

If then we consent (88) to close the present inquiry, at the end of

what we have above defined to be the Second Construction, the total

number of the net points, p x ,
P2,

which are thus derived by lines

and planes from the five given points PO,
is found to be exactly three

hundred: while the joint number of the net-lines, A 15
A

2, and of the

net-planes, !! n
2 ,

has been seen to be one hundred, so far.

(1.) To the type P2,i belong the ten points,

A&quot;B&quot;C&quot;,
A 2B 2c 2, A IB IC JD I,

with the quinary symbols,

A&quot; =(01100),.. A 2 =(100lo),.. ^ = (10001),.. D I= (00011),

which are the harmonic conjugates of the ten points PI, namely, of

A B C
, A2B2C2, AiBiCiPi,

with respect to the ten lines Ai,on which those points are situated
;
so that we have

ten harmonic equations, (BA CA&quot;)
=

1, &c., as already seen (31, 86, 87). Each point

P2 , i is the common intersection of a line AI with three lines A 2, 2 ;
thus we may esta

blish the four following formula of concurrence (equivalent, by 89, to ten such for

mulae) :

A&quot; =BC B c B 1CrB2C2 ;
A 2 = DA DiAi

&amp;lt; B C2
t c B3 ;

A i
= EA DiA2 B Ci

1 c Bi; D I
= DE AiA2*BiB2 CiC2.

Each point P2 , i is also situated in three planes II i ;
in three other planes, of the

group II2,i; and in six planes n2,2j for example, A&quot; is a point common to the

twelve planes,

ABC, BCD, BCE; ABiCoCiBo, DB BiC d, EB B2c c2 J

B C AI, BiCiAi, B2C2A2 ,
B c Ao, BiCjDi, B3CVDi.

Each line, AI or A 2,2, contains-one point P2 , i; but no line A2 , i contains any. Each

plane, Hi or Tl2,2, contains three such points; and each plane JI 2 , \ contains two,
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which are the intersections of opposite sides of a quadrilateral Q2 in that plane,

whereof the diagonals intersect in a point PO : for example, the diagonals BiC2,
B2Ci

of the quadrilateral BjB2C2Ci, which is (by 90) in one of the planes Ilg,!, intersect*

each other in the point A ;
while the opposite sides CiBi, B2C2 intersect in A&quot;

;
and

the two other opposite sides, BiB2, 0201 have the point D I for their intersection.

The ten points P2 , i are also ranged, three by three, on ten lines of third construction

Ag, namely, on the axes ofhomology,

. A&quot;B&quot;C&quot;

of ten pairs of triangles T\, T%, which are situated in the ten planes FIi, and of

which the centres of homology are the ten points PI : for example, the dotted line

A&quot;B&quot;C&quot;,
in Fig. 21, is the axis ofhomology of the two triangles, ABC, A B C

,
whereof

the latter is inscribed in the former, with the point o in that figure (replaced by DI

in Fig. 29), to represent their centre of homology. The same ten points P2,i are

also ranged six by six, and the ten last lines AS are ranged four by four, in five

planes Us, namely in the planes of homology of five pairs of pyramids, RI, JR%,

already mentioned (90) : for example, the plane [E] contains (87) the six points

A&quot;B&quot;c&quot;A 2B 2c 2) and the four right lines,

A&quot;B 2c 2 ,
B&quot;c 2A 2,

c&quot;A 2B 2,
A&quot;B&quot;C&quot;

;

which latter are the intersections of the four faces,

DCB, DAC, DBA, ABC,

of the pyramid ABCD, with the corresponding faces,

of its inscribed homologue AiBiCiDi ;
and are contained, besides, in the four other

planes,
A2B c

,
B2C A ,

C2A B , A2B2C2 :

the three triangles, ABC, AiBiCi, A2B2C2, for instance, being all homologous, although

in different planes, and having the line A&quot;B&quot;C&quot; for their common axis ofhomology.

We may also say, that this line A&quot;B&quot;C&quot; is the common trace (81) of twoplanes II2 , 2,

namely of AiBiCi and A2B2c2,
on the plane ABC

;
and in like manner, that the point

A&quot; is the common trace, on that plane II
i,

of two lines A2, 2 , namely of BiCi and B2C2 :

being also the common trace of the two lines B IC I and B 2c 2 ,
which belong to the

third construction.

(2.) On the whole, these ten points, of second construction, A&quot;. .
., may be

considered to be already well known to geometers, in connexion with the theory

of transversal^ lines and planes in space : but it is important here to observe,

with what simplicity and clearness their geometrical relations are expressed (88),

by the quinary symbols and quinary types employed. For example, the col-

linearity (82) of the four planes, ABC, AiBiCi, A2B2C2 ,
and [E], becomes evident

from mere inspection of their four symbols,

*
Compare the Note to page 68.

f&quot;

The collinear, complanar, and harmonic relations between the ten points,

which we have above marked as P2, i, and which have been considered by Mobius

also, in connexion with his theory of nets in space, appear to have been first noticed

by Carnot, in a Memoir upon transversals.
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[oooilj, [mil], [11112], [mil],
which represent (75) the four quinary equations,

w-v=0, x+y+z-2w w=0, x+y+z w 2u=0, x + y + z + w 4v = 0;

with this additional consequence, that the ternary symbol (81) of the common trace,

of the three latter on the former, is [111]: so that this trace is (by 38) the line

A&quot;B&quot;C&quot; of Fig. 21, as above. And if we briefly denote the quinary symbols of the

four planes, taken in the same form and order as above, by [/?o] [-Ri] [#2] [-Ra]&amp;gt;
we

see that they are connected by the two relations,

[*i] =- [flo] + [Ba] ; M =
2[/Zo] 4- [K2] ;

whence if we denote the planes themselves by TIi, TTo, IT2, HS, we have (comp. 84)

the following value for the anharmonic of their pencil,

(n 1n 2n 2n3)
= -2;

a result which can be very simply verified, for the case when ABCD is a regular py

ramid, and E (comp. 29) is its mean point : the plane Ila, or [E], becoming in this

case (comp. 38) the plane at infinity, while the three other planes, ABC, AiBiCi,

A 2BoC2 ,
are parallel ; the second being intermediate between the other two, but twice

as near to the third as to the first.

(3.) We must be a little more concise in our remarks on the seven other types of

points P2,
which indeed, if not so well known,* are perhaps also, on the whole, not

quite so interesting : although it seems that some circumstances of their arrangement

in space may deserve to be noted here, especially as affording an additional exercise

(88), in the present system of symbols and types. The type r2 , 2 represents, then, a group

of thirty points, of which
A&quot;,

in Fig. 21, is an example; each being the intersection

of a line A 2, i with a line A 2, 2,
as A

&quot;

is the point in which AA intersects B C : but

each belonging to no other line, among those which have been hitherto considered.

But without aiming to describe here all the lines, planes, and points, of what we have

called the third construction, we may already see that they must be expected to be

numerous : and that the planes Us, and the lines AS, of that construction, as well as

the pyramids 7?2 ,
and the triangles To, of the second construction, above noticed, can

only be regarded as specimens, which in a closer study of the subject, it becomes ne

cessary to mark more fully, on the present plan, as ITs, i, . . T*2 , i. Accordingly it is

found that not only is each point P2, 2 one of the corners of a triangle T$, i of third

construction (as A
&quot;

is of A&quot; B&quot; C
&quot;

in Fig. 21), the sides of which new triangle are

lines AS, 2, passing each through one point P2,i and through two points P2 , 2 (like

the dotted line A&quot;B &quot;C

&quot;

of Fig. 21) ;
but also each such point P2 , 2 is the intersection

of two new lines of third construction, AS, 3, whereof each connects a point PO with a

* It does not appear that any of these other types, or groups, of points P2 ,
have

hitherto been noticed, in connexion with the net in space, except the one which we

have ranked as the fifth, P2 , 5,
and which represents two points on each line Aj, as

the type P2 , i has been seen to represent one point on each of those ten lines of first con

struction : but that fifth group, which may be exemplified by the intersections of the

line DE with the two planes AiBjCi and A 2B2C2 ,
has been indicated by Mobius (in

page 290 of his already cited work), although with a different notation^ and as the re

sult of a different analysis.
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point P2ji For example, the point A
&quot;

is the common trace (ou the plane ABC) oftlie

two iiew lines, DA I,
EA 2 : because, if we adopt for this point A &quot;

the second of its two

congruent symbols, we have (comp. 73, 82) the expressions,

A &quot;= (10011) = (D)
-
(A I)

=
(E)

-
(A 2).

We may therefore establish the formula of concurrence (comp. the first sub-article) :

A &quot; = AA B C DA I EA 2 ;

which represents a system of thirty such formulae.

(4.) It has been remarked that the point A
&quot;

may be represented, not only by the

quinary symbol (21100), but also by the congruent symbol, (10011) ;
if then we

write,

A =
(IllOO), B =

(11100), C = (11100),

these three new points AOBOCO, in the plane of ABC, must be considered to be syntypical,

in the quinary sense (78), with the three points A &quot;B &quot;C
&quot;,

or to belong to the same

group P2 , 2 , although they have (comp. 88) a different ternary type. It is easy to

see that, while the triangle A&quot; B &quot;C

&quot;

is (comp. again Fig. 21) an inscribed homo-

logue T-A,\ of the triangle A B C
,
which is itself (comp. sub-article 1) an inscribed

homologue T^, i of a triangle T\, namely of ABC, with A&quot;B&quot;O&quot; for their common a is

of homology, the new triangle AOBOCO is on the contrary an exscrihed homologue

^3,2, with the same axis A3 , i,
of the same given triangle TI. But from the sytity-

pical relation, existing as above for space between the points A
&quot;

and AO, we may
expect to find that these two points P2, 2 admit of being similarly constructed, when

the five points PO are treated as entering symmetrically (or similarly), as geometri

cal elements, into the constructions. The point A must therefore be situated, not

only on a line A2,i, namely, on AA
,
but also on a line A 0,2, which is easily found to

be AiA2 ,
and on two lines AS, 3,

each connecting a point PO with a point P2, i ;
which

latter lines are soon seen to be BB&quot; and cc&quot;. We may therefore establish the formula

of concurrence (comp. the last sub-article) :

A = AA AiAs BB&quot; cc;&quot; ;

and may consider the three points AO, B O ,
C as the traces of the three lines AiAo,

BiB2 , CiC2 : while the three new lines AA
, BB&quot;, cc&quot;,

which coincide in position

with the sides of the exscribed triangle AoBoOo, are the traces AS, 3 of three planes

112, i, such as ABiC2B2Ci, which pass through the three given points A, B, c, but do

not contain the lines A2 , \ whereon the six points P2 , 2 in their plane HI are situated.

Every other plane HI contains, in like manner, six points P2 of the present group ;

every plane IT2, i contains eight of them
;
and every plane IT 2 , 2 contains three ; each

line A2, i passing through two such points, but each line A2, 3 only through one.

But besides being (as above) the intersection of two lines A2 ,
each point of this group

P2, 2 is common to two planes H\, four planes 1T3 , i, and two planes I1 2,2; while

each of these thirty points is also a common corner of two different triangles of

tf/urrf construction, of the lately mentioned kinds Jo, i and Tj, 2, situated respectively

in the two planes offirst construction which contain the point itself. It may be

added that each of the two points P3 , 2,
on a line A 2, i, is the harmonic conjugate of

one of the two points PI, with respect to the point PO, and to the other point PI ou

that line
;
thus we have here the two harmonic equations,

(AA DIA
&quot;)

= (ADIA AQ) = 1,

by which the positions of the two points A
&quot;

and A might be determined.

L
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(5.) A thirdgroup, p2 , 3,
ofsecond construction, consists (like the preceding group)

of thirty points, ranged two by two on the fifteen lines A 2 , i,
and six by six on the

ten planes II i, but so that each is common to two such planes ;
each is also situated

in two planes II 2 , i,
in two planes 112,2, and on one line j\ 3,i in which (by sub -art. 1)

these two last planes intersect each other, and two of the five planes n3 , \ ; each

plane IIo, i contains four such points, and each plane 112,2 contains three of them
;

but no point of this group is on any line AI, or A 2,2 The six points P2 , 3 ,
which

are in the plane ABC, are represented (like the corresponding points of the last

group) by two ternary types, namely by (211) and (311) ; and may be exemplified

by the two following points, of which these last are the ternary symbols :

AIV = AA A&quot;B&quot;C&quot; = AA AiBiCi A2B2C2 ;

AI
IV = AA -D IA^A i

= AA -B C^ C BIBO.

The three points of the first sub-group A
IV

. . are collinear
;
but the three points AI

IV
, .

of the second sub-group are the corners of a new triangle, 7^,3, which is homologous

to the triangle ABC, and to all the other triangles in its plane which have been hitherto

considered, as well as to the two triangles AjBiCi and A2B2c2 ;
the line of the three

former points being their common axis of homology ;
and the sides of the new trian

gle, AI
IV
BI

IV
CI

IV
, being the traces of the three planes (comp. 90) of homology ofpyra

mids, [A], [B], [c] ;
as (comp. sub-art. 2) the line AIVBIVCIV or A&quot;B&quot;C&quot; is the com

mon trace of the two other planes of the same group n 3 , i, namely of [D] and [E], We

may also say that the point AI
IV

is the trace of the line A IA O
;
and because the lines

B OO, C BO are the traces of the two planes IT 2 , 2 in which that point is contained, we

may write the formula of concurrence,

AI
IV = AA A. iA. z B CO C BQ.

(G.) It may be also remarked, that each of the two points P2 , 3, on any line A 2 , i,
is

the harmonic conjugate of a point P2 , 2,
with respect to the point PO, and to one of

the two points PI on that line
; being also the harmonic conjugate of this last point,

with respect to the same point PO, and the other point P2 , 2 : thus, on the line AA DI,

we have the four harmonic equations, which are not however all independent, since

two of them can be deduced from the two others, with the help of the two analogous

equations of the fourth sub-article :

(AA &quot;A AIV
)
= (AA AOAIV

)
= (AAODIAI

IV
)
=

(ADIA&quot; AI
IV
)
= - 1.

And the three pairs of derived points PI, P2 , 2, P2, 3,
on any such line -A 2 , i, will

be found (comp. 26) to compose an involution, with the given point PO on the line for

one of its two double points (or/ocz) : the other double point of this involution being

a point PS of third construction
; namely, the point in which the line A2 , i meets that

one of the five planes of homology n 3, i, which corresponds (comp. 90) to the par

ticular point P as centre. Thus, in the present example, if we denote by Ax the

point in which the line AA meets the plane [A], of which (by 81, 91) the trace on

ABC is the line [411], and therefore is (as has been stated) the side BI
IV
CI

IV of the

lately mentioned triangle T3 , 2,
so that

AX = (1 22) = AA BC
&quot;

CB
&quot;

BI
IV
CI

IV
,

we shall have the three harmonic equations,

(AA A*DI) = (AA &quot;A
XA O)

= (AA
IV
A*AI

IV
)
= - 1

;

which express that this new point A x is the common harmonic conjugate of the given
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point A, with respect to the three pairs ofpoints, A DI, A &quot;A O ,
AIr

Ai
IV

; and therefore

that these threepairs form (as has been said) an involution, with A and Ax for its two

double points.

(7.) It will be found that we have now exhausted all the types of points of

second construction, which are situated upon lines A 2 , i ;
there being only four

such points on each such line. But there are still to be considered two new groups

of points P3 on lines AI, and three others on lines A 2 , 2 . Attending first to the former

set of lines, we may observe that each of the two new types, p2,4, p2 , 5 , represents

twenty points, situated two by two on the ten lines otfirst construction, but not on

any line A2 ;
and therefore six by six in the ten planes ITi, each point however being

common to three such planes : also each point P2,4 is common to three planes IT2 , 2 ,

and each point P2, 5 is situated in one such plane ;
while each of these last planes

contains three points P2 , 4, but only one point P2 , 5. Ifwe attend only to points in the

plane ABC, we can represent these two new groups by the two ternary types, (021)

and (021), which as symbols denote the two typical points,

Av = EC C*AiA 2 DiAiBi U iA2B2 ;
AVI = BC c BiB2 = BC C BQ ;

we have also the concurrence,

AV = BC O AO DI.C&quot; AB &quot;.

It may be noted that Av is the harmonic conjugate of c
,
with respect to A and

BI
IV

,
which last point is on the same trace C AO ,

of the plane c A]A2 ;
and that AVI

is

harmonically conjugate to BIV,
with respect to c and BO ,

on the trace of the plane

c BiB2 ,
where BIV denotes (by an analogy which will soon become more evident) the

intersection of that trace with the line CA : so that we have the two equations,

(AOC BI
IVAV

)
= (BOBI

VC AVI
)
= 1.

(8.) Each line AI, contains thus two points P2 ,
of each of the two last new

groups, besides the point P2 , i,
the point PI, and the two points PO, which had been

previously considered : it contains therefore eight points in all, ifwe still abstain (88)

from proceeding beyond the Second Construction. And it is easy to prove that these

eight points can, in two distinct modes, be so arranged as to form (comp. sub-art. 6)

an involution, with two of them for the two double points thereof. Thus, if we attend

only to points on the line BC, and represent them by ternary symbols, we may write,

c=(001), A

and the resulting harmonic equations

I. . . (BA CA&quot;)
= (BA

VCAVI
)
=
(BAI

V
C*AI

VI
)
=

1,

II. . . (A BA&quot;C)
= (A A

V
A&quot;AI

V
)
= (A A

VI
A&quot;AI

VI
)
= -

1,

will then suffice to show : 1st., that the two points PO ,
on any line AI, are the double

points of an involution, in which the points PI, P^iform one pair of conjugates,

while the two other pairs are of the common form, P2, 4 ,
P2,5 ;

and Ilnd., that the

two points PI and P2, i, on any such line AI, are the double points of a second invo

lution, obtained by pairing the two points of each of the three other groups. Also

each of the two points PO, on a line AI, is the harmonic conjugate of one of the

two points p2 , 5 on that line, with respect to the other point of the same group, and

to the point PI on the same line
; thus,
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(BA AI
TIAVI

)
= (CAA

TI
AI

VI
)
= - 1.

(9.) It remains to consider briefly three other groups of points P2, each group

containing sixty points, which are situated, two by two, on the thirty lines A 2, 2, and

six by six in the ten planes III. Confining our attention to those which are in the

plane ABC, and denoting them by their ternary symbols, we have thus, on the line

B C
,
the three new typical points, of the three remaining groups, p2 , 6 , P2,7, P2,s :

AVII
=(121); AVIII = (321); A&quot; = (231.);

with which may be combined these three others, of the same three types, and on the

same line B C :

Ai = (112); Ai
vm = (312); AI = (213).

Considered as intersections of a line A2,2 with lines AS in the same plane II i, or with

planes IT2 (in which latter character alone they belong to the second construction),

the three points AT
&quot;, &c., may be thus denoted :

Avn = B C BB&quot; CB
&quot; AAVI= B C BCIA2Aica ;

Avm _ B c .

DlB
&quot;

. AB
&quot;

Av _ B c .

DiCiAi DiC2A2 ;

AIX = B C ACoBi
IV
Ci

vBVI BAlv
Bi

VI
Bi

vn = B C A dC2 ;

with the harmonic equation,

(COA CIVA
X
)
= -

1,

and with analogous expressions for the three other points, AI
VIT

,
&c. The line B C thus

intersects one plane 112, i (or its trace BB&quot; on the plane ABC), in the point Avn
;

it

intersects two planes FT
2, 2 (or their common trace

DIB&quot;)
in Avm ; and one other plane

II2,2 (or its trace A CO) in AIX
: and similarly for the other points, AI

V
&quot;, &c., of the same

three groups. Eachplane n 2 , i contains twelve points P2,6, eight points P2,7, and eight

points P2,8; while every plane 172,2 contains six points P2,e, twelve points P2,7,

and nine points ?2, $. Each point P2,6 is contained in one plane HI; in three

planes n2,i; and in two planes n2,2 Each point P2,7 is in one plane III, in two

planes 112, i, and in four planes Tlz, %. And each point P2,s is situated in one plane ITi,

in two planes II 2 , i, and in three planes II 2, 2-

(10.) The points of the three last groups are situated only on lines A 2,2 ; but, on

each such line, two points of each of those three groups are situated
; which, along

with one point of each of the two former groups, P2,i and P2, 2,
and with the two

points PI, whereby the line itself is determined, make up a system oftenpoints upon
that line. For example, the line B C contains, besides the six points mentioned in

the last sub -article, the four others:

B =(101); c =(110); A&quot; = (011); A &quot; =
(211).

Of these ten points, the two last mentioned, namely the points 1*2,1 and P2,2upon the

line A 2, 2, are the doublepoints (comp. sub-art. 8) ofanew involution, in which the two

points of each of the four other groups compose a conjugate pair, as is expressed by
the harmonic equations,

(A&quot;B
A &quot;C ) = (A&quot;A

V
&quot;A &quot;AI

V
&quot;)

=
(A&quot;A

VI
&quot;A&quot; AI

VIU
)
=

(A&quot;A
*A &quot;AI

IX
)
= - 1.

And the analogous equations,

(B A&quot;C A
&quot;)

=
(B A VIIC AVI

)
=

(B Ai
yllc Ai

VI
)
=-

1,

show that the two points PI on any line A2,2 are the double points of of another invo

lution (comp. again sub-art. 8), whereof the two points PS, i, r2 , 2 on that line form
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one conjugate pair, while each of the two points p3,e is paired with one of the points

P2 , 7 as its conjugate. In fact, the eight-rayed pencil (A.c B A &quot;A&quot;A
vmAVII

Ai
vm

AiTTI
)

coincides in position with the pencil (A . BCA A&quot;A
VAVI

AIVAI
VI

), and may be said to be

a pencil in double involution ; the third and fourth, the fifth and sixth, and the se

venth and eighth rays forming one involution, whereof the first and second are the

two double* rays ; while the first and second, the fifth and seventh, and the sixth

and eighth rays compose another involution, whereof the double rays are the third

and fourth of the pencil.

(11.) If we proceeded to connect systematically the points P2 among themselves,

and with the points PI and PO ,
we should find many remarkable lines and planes of

third construction (88), besides those which have been incidentally noticed above
;
for

example, we should have a group IIg, 2 of twenty new planes, exemplified by the

two following,

[BD] = [11103], [DE]
= [11130],

which have the same common trace A 3 , i, namely the line
A&quot;B&quot;C&quot;,

on the plane ABC,

as the two planes AiBiCi, A2B2c2,
and the two planes [D], [E], of the groups II2, 2 and

Us, i, which have been considered in former sub-articles
;
and each of these new planes

113,2 would be found to contain one point PO, three points P2, i, six points P2 , 2 ,
and

three points P2,s. It might be proved also that these twenty new planes are the

twenty faces offive new pyramids RS, which are the exscribed homologues of the five

old pyramids RI (89), with the five given points PO for the corresponding centres of

homology. But it would lead us beyond the proposed limits, to pursue this dis

cussion further : although a few additional remarks may be useful, as serving to

establish the completeness of the enumeration above given, of the lines, planes, and

points of second construction.

93. Iri general, if there be any n given points, whereof no four

are situated in any common plane, the numler N of the derived

points, which are immediately obtained from them, as intersections

A-I1 of line with plane (each line being drawn through two of the

given points, and each plane through three others), or the number of

points of the form AB-CDE, is easily seen to be,

_ n(n-l)(n-2)(n-3)(n-4)~J() ~
2.2.3

so that N = 10, as before, when n = 5. But if we were to apply this

formula to the case n- 15, we should find, for that case, the value,

^=/(15)=15.14. 13.11 = 30030;

and thus fifteen given and independent points of space would conduct,

by what might (relatively to them) be called a First Construction

(comp. 88), to a system of more than thirty thousand points. Yet it

has been lately stated (92), that from the fifteen points above called

P , PI, there can be derived, in this way, only two hundred and ninety

*
Compare page i72 of the (,, &amp;lt;..... re oi i T.
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points P2 ,
as intersections of the form* A II; and therefore fewer

than three hundred. That this reduction of the number of derived

points, at the end of what has been called (88) the Second Construc

tion for the net in space, arising from the dependence of the ten points

P! on the five points PO ,
would be found to be so considerable, might

not perhaps have been anticipated; and although the foregoing ex

amination proves that all the eight types (92) do really represent

points P2 ,
it may appear possible, at this stage, that some other type

of such points has been omitted. A study of the manner in which

the types ofpoints result, from those of the lines and planes of which

they are the intersections, would indeed decide this question ;
and

it was, in fact, in that way that the eight types, or groups, p2, 15 .
.P;&amp;gt;, 8 ,

of points of second construction for space, were investigated, and

found to be sufficient: yet it may be useful (compare the last sub-

art.) to verify, as below, the completeness of the foregoing enumeration.

(1.) The fifteen points, PO, PI, admit of 105 binary, and of 455 ternary combina

tions; but these are far from determining so many distinct lines and planes. In fact,

those 15 points are connected by 25 collineations, represented by the 25 lines AI,

A
2, i; which lines therefore count as 75, among the 105 binary combinations of

points : and there remain only 30 combinations of this sort, which are constructed

by the 30 other lines, A 2, 2 . Again, there are 25 ternary combinations of points,

which are represented (as above) by lines, and therefore do not determine any plane.

Also, in each of the ten planes HI, there are 29 (=35 -
6) triangles TI, T2 ,

because

each of those planes contains 7 points PO, PI, connected by 6 relations of collinearity.

In like manner, each of ihe fifteen planes II2, i contains 8 (= 10 2) other triangles

T2 ,
because it contains 5 points PO , PI, connected by two collineations. There re

main therefore only 20 (=455-25-290-120) ternary combinations of points to

be accounted for ; and these are represented by the 20 planes II2)2 . The complete

ness of the enumeration of the lines and planes of the second construction is therefore

verified ; and it only remains to verify that the 305 points, PO , PI, ?2, above consi

dered, represent all the intersections A II, of the 55 lines A i,
A2,

with the 45 planes

Hi, H 2 .

(2.) Each plane HI contains three lines of each of the three groups, AI, A 2 , i,

A 2)2 ;
each plane Ila, i contains two lines A 2,1, and four lines A 2 , 2 ;

and each plane

112,2 contains three lines A 2, 2. Hence (or because each line AI is contained in three

planes III ;
each line Ao,i in two planes II

i, and in two planes II2 , i; and each

jine A2)2 in one plane Hi, in two planes TT2,i, and in two planes IF2, 2), it follows that,

without going beyond the second construction, there are 240 (= 30 -t- 30 + 30 + 30

* The definition (88) of the points P2 admits, indeed, intersections A A of corn-

planar lines, when they are not already points PO or PI ;
but all such intersections

are also points of the form A II
;

so that no generality is lost, by confining ourselves

to this last form, as in the present discussion we propose to do.
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+ 60 + 60) cases of coincidence of line and plane; so that the number of cases of
intersection is reduced, hereby, from 55 . 45 = 2475, to 2235 (= 2475 - 240).

(3.) Each point PO repi-esents twelve intersections of the form Ai ITi ; because it

is common to four lines AI, and to six planes IIi, each plane containing two of those

four lines, but being intersected by the two others in that point PO ;
as the plane

ABC, for example, is intersected in A by the two lines, AD and AE. Again, each

point PO is common to three planes IIo, i, no one of which contains any of the four

lines AI through that point ;
it represents therefore a system of twelve other inter

sections, of the form AI IT2, i. Again, each point PO is common to three lines A2 , i,

each of which is contained in two of the six planes ITi, but intersects the four others

in that point PO; which therefore counts as twelve intersections, of the form A2 , rlli.

Finally, each of the points PO represents three intersections, A 2,1 112,1; and it re

presents no other intersection, of the form A IT, within the limits of the present

inquiry. Thus, each of the five given points is to be considered as representing, or

constructing, thirty-nine (= 12 -1- 12 + 12 +3) intersections of line with plane; and

there remain only 2040 (= 2235 195) other cases of such intersection A IT, to be

accountedfor (in the present verification) by the 300 derived points, PI, P2 .

(4.) For this purpose, the nine columns, headed as I. to IX. in the following

Table, contain the numbers of such intersections which belong respectively to the

nine forms,

Ai IIi, AI 1X2,1, AI 1X0,2; A 2 , 1 IXi, A 2,1 1X2,1, -A 2,1 1X2, 2;

A
2j 2 Hi, Ao, 2 -IT2 , i,

A2,2 XT2,2,

for each of the nine typical derived points, A ... AIX
,
of the nine groups PI, P2 , i,

. .

P2 , 8. Column X. contains, for each point, the sum of the nine numbers, thus tabu

lated in the preceding columns
;
and expresses therefore the entire number of inter

sections, which any one such point represents. Column XI. states the number of the

points for each type ; and column XII. contains theproduct of the two last numbers, or

the number of intersections A . II which are represented (or constructed) by the group.

Finally, the sum of the numbers in each of the two last columns is written at its foot
;

and because the 300 derived points, of first and second constructions, are thus found

to represent the 2 040 intersections which were to be accounted for, the verification is

seen to be complete : and no new type, of points P2 ,
remains to be discovered.

(5.) TABLE of Intersections A -11.

Type.
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(6.) It is to be remembered that we have not admitted, by our definition (88),

any points which can only be determined by intersections of three planes TTi, n 3,

as belonging to the second construction : nor have we counted, as lines A 2 of that

construction, any lines which can only be found as intersections of two such planes.

For example, we do not regard the traces
AA&quot;, (fee., of certain planes A2,i considered

in recent sub-articles, as among the lines of second construction, although they would

present themselves early in an enumeration of the lines AS of the third. And any

point in the plane ABC, which can only be determined (at the present stage) as the

intersection of two such traces, is not regarded as a point PO. A student might find

it however to be not useless, as an exercise, to investigate the expressions for such

intersections ;
and for that reason it may be noted here, that the ternary types (comp.

81) of the forty-four traces ofplanes III, 1X2, on the plane ABC, which are found to

compose a system of only twenty-two distinct lines in that plane, whereof nine are

lines AI, Ag, are the seven following (comp. 38) :

[100], [Oil], [111], [111], [Oil], [211], [211] 5

which, as ternary symbols, represent the seven lines,

EC, AA
,

B C
, A&quot;B&quot;C&quot;, AA&quot;, DIA&quot;,

A CQ.

(7.) Again, on the same principle, and with reference to the same definition, that

new point, say F, which may be denoted by either of the two congruent quinary

symbols (71),
F = (43210)

=
(01234),

and which, as a quinary type (78), represents a new group of sixty points of space

(and of no more, on account of this last congruence, whereas a quinary type, with all

its five coefficients unequal, represents generally a group of 120 distinct points), is

not regarded by us as a point P2 ; although this new point F is easily seen to be the

intersection of three planes of second construction, namely, of the three following,

which all belong to the group U^ i :

[Olfll], [lioll], [11110],

or AA DiCiB2 , cc DiBiA2 ,
EB B2c c2. It may, however, be remarked in passing, that

each plane II o, i contains twelve points PS of this new group : every such point being

common (as is evident from what has been shown) to three such planes.

94. From the foregoing discussion it appears that the five given

points P
,
and the three hundred derived points PM P2, are arranged in

space, upon the fifty-Jive lines Au A,, and in the forty-five planes 11,,

I12,
as follows. Each line A x contains eight of the 305 points, forming

on it what may be called (see the sub-article (8.) to 92) a double in

volution. Each line A2 , i contains seven points, whereof one, namely

the given point, PO ,
has been seen (in the earlier sub-art. (6.)) to be

a double point of another involution, to which the three derived pairs

of points, PI, P
2 ,
on the same line belong. And each line A 2 , 2 con

tains ten points, forming on it a new involution; while eight of these

ten points, with a different order of succession, compose still another
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involution* (92, (10.))- Again, each plane II, contains fifty-two

points, namely three given points, four points offirst, and 45 points

of second construction. Each plane Flo,! contains forty-seven points,

whereof owe is a given point, four are points PI, and 42 are points

* These theorems respecting the relations of involution, of given and derived

points on lines offirst and second constructions, for a net in space, are perhaps new ;

although some of the harmonic relations, above mentioned, have been noticed under

other forms by Mbbius : to whom, indeed, as has been stated, the conception of such

a net is due. Thus, if we consider (compare the Note to page 72) the two intersec

tions,

we easily find that they may be denoted by the quinary symbols,

EI = (00012), E2 = (00021) ;

they are, therefore, by Art. 92, the two points P2 , 5 on the line DE : and consequently,

by the theorem stated at the end of sub-art. 8, the harmonic conjugate of each, taken

with respect to the other and to the point DI, must be one of the two points D, E on

that line. Accordingly, we soon derive, by comparison of the symbols of thesefive

points, DEDiEiE2 ,
the two following harmonic equations, which belong to the same

type as the two last of that sub-art. 8 :

(DiDE2Ei) = - 1
; (DiEEiEj) = - 1

;

but these two equations have been assigned (with notations slightly different) in the

formerly cited page 290 of the Barycentric Calculus. (Comp. again the recent Note

to page 72.) The geometrical meaning of the last equation may be illustrated, by

conceiving that ABCD is a regular pyramid, and that E is its mean point; for thea

(comp. 92, sub-art. (2.) ), DI is the mean point of the base ABC
; DID is the altitude

of the pyramid ;
and the three segments DIE, DiEi, DiE2 are, respectively, the quar

ter, the third part, and the half of that altitude : they compose therefore (as the for

mula expresses) a harmonic progression; or DI and EI are conjugate points, with

respect to E and E2. But in order to exemplify the double involution of the same

sub-art. (8.), it would be necessary to consider three other points P2,
on the same line

DE
;
whereof one, above called D I, belongs to a known group P2, i (92, (2.)); but

the two others are of the group P2 , 4 ,
and do not seem to have been previously noticed.

As an example of an involution on a line of third construction, it may be remarked

that on each line of the group AS, 3, or on each of the sides of any one of the ten tri

angles T3 , 2,
in addition to one given point PO, and one derived point P2 , i, there are

two points P2 , 2 ,
and two points P2 , 6 ;

and that the two first points are the double

points of an involution, to which the tAvo last pairs belong : thus, on the side

AOBCO of the exscribed triangle AOBOCO, or on the trace of the plane BCiA2AiCj, we

have the two harmonic equations,

(BAOB&quot;CO)
=

(BA&quot; B&quot;ci
Tn

)
= - 1.

Again, on the trace A CO of the plane A ciC2 , (which latter trace is a line not passing

through any one of the given points,) c; and EI
IV are the double points of an invo

lution, wherein A is conjugate to Ci
v and AIT to B TI

. But it would be tedious to

multiply such instances.

M
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P2 : of which last, 38 are situated on the six lines A2 in the plane, but

four are intersections of that plane II,, t with/owr other lines of second

construction. Finally, each plane IL, 2 passes through no given

point, but contains forty-three derived points, whereof 40 are points

of second construction. And because the planes offirst construc

tion alone contain specimens of all the ten groups of points, PO, PI,

P
2i&amp;gt; 1*2, 8&amp;gt; given or derived, and of all the three groups of lines, At,

A i, A2, 2 ,
at the close of that second construction (since the types

^2,4, *:&amp;gt;, 5&amp;gt; A! are not represented by any points or lines in any plane

IT-j,!, nor are the types PO ,
A 1?

A2jl represented in a plane I12, 2), it

has been thought convenient to prepare the annexed diagram (Fig.

30), which may serve to illustrate, by some selected instances, the

arrangement of fat fifty-two points PO , pb P2 in a plane n^ namely, in

the plane ABC; as well as the arrangement of the nine lines Aj, A2

in that plane, and the traces A3 of other planes upon it.

View of the Arrangement of the Principal Points and Lines in a Plane

of First Construction.

In this Figure, the triangle ABC is suppposed, for simplicity, to be the equilateral

base of a regular pyramid ABCD (comp. sub-art. (2.) to 92) ; andDi, again replaced

by o, is supposed to be its mean point (29). The first inscribed triangle, A B C
,

therefore, Insects the three sides ; and the axis ofhomology A&quot;B&quot;C&quot; is the line at in

finity (38): the number 1, on the line C B prolonged, being designed to suggest that
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the point A&quot;,
to -which that line tends, is of the type p^i, or belongs to i\\e first

group of points of second construction, A second inscribed triangle, A&quot; B&quot; C
&quot;,

for

which Fig. 21 may be consulted, is only indicated by the number 2 placed at the

middle of the side B C
,
to suggest that this bisecting point A

&quot;

belongs to the second

group of points Pa. The same number 2, but with an accent, 2
,
is placed near the

corner A of the exscribed triangle A B Co, to remind us that this corner also belongs

(by a syntypical relation in space) to the group Pa, 3. The point A
IV

,
which is now

infinitely distant, is indicated by the number 3, on the dotted line at the top ; while

the same number with an accent, lower down, marks the position of the point AI
IV

.

Finally, the ten other numbers, unaccented or accented, 4, 4
, 5, 5

, 6, 6
, 7, 7

,

8, 8
,
denote the places of the ten points, AV

, AI
V

,
AVI

, AI
TI

,
Avn

, AI
V

&quot;,

ATI11

, AI
TI &quot;

A IX
, Ai

1
*. And the principal harmonic relations, and relations of involution, above

mentioned, may be verified by inspection of this Diagram.

95. However far the series of construction of the net in space

may be continued, we may now regard it as evident, at least on com

parison with the analogous property (42) of the plane net, that every

point, line, or plane, to which such constructions can conduct, must

necessarily be rational (77) ; or that it must be rationally related to

the system of the Jive given points: because the anharmonic co-ordi

nates (79, 80) of every net-point, and of every net-plane, are equal or

proportional to whole numbers. Conversely (comp. 43) every point,

line, or plane, in space, which is thus rationally related to the system of

points ABCDE, is a point, line, or plane ofthe net, which those five points

determine. Hence (comp. again 43), every irrational
point, line, or

plane (77), is indeed incapable of being rigorously constructed, by any

processes of the kind above described; but it admits of being inde

finitely approximated to, by points, lines, or planes of the net. Every
anharmonic ratio, whether of a group of net-points, or of & pencil of

net-lines, or of net-planes, has a rational value (comp. 44), which de

pends only on the processes of linear construction employed, in the

generation of that group or pencil, and is entirely independent of the

arrangement, or configuration, of the five given points in space. Also,

all relations of collineation, and of complanarity, are preserved, in the

passage from one net to another, by a change of the given system of

points: so that it may be briefly said (comp. again 44) that all geo

metrical nets in space are homographic figures. Finally, any five points
*

of such a net, of which no four are in one plane, are sufficient (comp.

* These general properties (95) of the space-net are in substance taken from

Mobius, although (as has been remarked before) the analysis here employed appears

to be new : as do also most of the theorems above given, respecting the points ofsecond

construction (92), at least after we pass beyond the first group P2, i of ten such points,

which (as already stated) have been known comparatively long.
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45) for the determination of the ivhole net: or for the linear construc

tion of all its points, including the ^VQ given ones.

(1.) As an Example, let the five points AiBiCii and E be now supposed to be

given ; and let it be required to derive the four points ABCD, by linear constructions,

from these new data. In other words, we are now required to exscribe a pyramid
ABCD to a given pyramid AiBjCiDi, so that it may be homologous thereto, with the

point E for their given centre of homology. An obvious process is (comp. 45) to t.
scribe another homologous pyramid, A3B3C3D3,, so as to have A3 = EAi BiCiDi, &c,

;

and then to determine the intersections of corresponding faces, such as AiBiCi and

A3B3Ca ;
for these^/bwr lines of intersection will be in the common plane [E], of homology

of the three pyramids, and will be the traces on that plane of the^wr sought planes,

ABC, &c., drawn through the four given points DI, &c. If it were only required to

construct one corner A of the exscribed pyramid, we might find the point above

called AIV as the common intersection of three planes, as follows,

AIT = AiBiCi A! DiE A3B3C3 ;

and then should have this other formula of intersection,

A = EAi DiAIT
.

Or the point A might be determined by the anharmonic equation,

(EAAiAg) = 3,

which for a regular pyramid is easily verified.

(2.) As regards the general passage from one net in space to another, let the

symbols PI =(x\. . v{), . . P5 = (z5 . . 5) denote any five given points, whereofno four

are complanar ;
and let a b c d e and be six coefficients, of which the five ratios are

such as to satisfy the symbolical equation (comp. 71, 72),

a (Pi) + & (P2) + c (P3 ) + cf (P4) + e (p5)
= - (/):

or the five ordinary equations which it includes, namely,

a x\ + . . + e x$ = . .
= a v\ + . . -f e v5 = - u.

Let P be any sixth point of space, of which the quinary symbol satisfies the equa

tion,

(p )
= rra (pi)-f y& (p2) + *c (r3) -t- trd (

pO + ve (r5)+u( V) ;

then it will be found that this last point P can be derived from the five points PI . . PS

by precisely the same constructions, as those by which the point p= (xyzwv) is de

rived from the five points ABCDE. As an example, if v = x + y + z + w-
3t&amp;gt;,

then

the point (xyzwv) is derived from AiBiCiDjE, by the same constructions as (xyzwv)

from ABCDE
;
thus A itself may be constructed from AI . . E, as the point P = (30001)

is from A . . E
;
which would conduct anew to the anharmonic equation of the last

sub-article.

(3.) It may be briefly added here, that instead of anharmonic ratios, as con

nected with a net in space, or indeed generally in relation to spatial problems, we

are permitted (cornp. 68) to substitute products (or quotients) of quotients ofvolumes

of pyramids; as a specimen of which substitution, it may be remarked, that the an

harmonic relation, just referred to, admits of being replaced by the following equa

tion, involving one such quotient of pyramids, but introducing no auxiliary point :
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EA : AjA =

In general, if xyzw be (us in 79, 83) the anharmonic co-ordinates of a point p in

space, we may write,
* PBCD EBCD

y PCDA ECDA

with other equations of the same type, on which we cannot here delay.

SECTION 5. On Barycenires of Systems of Points ; and on

Simple and Complex Means of Vectors.

96. In general, when the sum Sa of any number of co-initial

vectors,

a^OA!, .. om = OAw ,

is divided (16) by their number, m, the resulting vector,

a = OM = 2a = 2oA,m m

is said to be the Simple Mean of those m vectors ; and the point M,

in which this mean vector terminates, and of which the position

(comp. 18) is easily seen to be independent of the position of the

common origin o, is said to be the Mean Point (comp. 29), of the

system of the m points, A l5 . . A OT . It is evident that we have the equa

tion,

o - (o l

-
p) + . . + (am

-
ft)

= 2 (a
-
p) = SMA ;

or that the sum of the m vectors, drawn/ro??i the mean point M, to the

points A of the system, is equal to zero. And hence (comp. 10, 11, 30),

it follows, 1st., that these m vectors are equal to the m successive

sides of a closed polygon ; Ilnd., that if the system and its mean

point be projected, by any parallel ordinates, on any assumed plane

(or line), the projection M
,
of the mean point M, is the mean point of

the projected system : and Illrd., that the ordinate MM
,
of the mean

point, is the mean of all the other ordinates, A I A\, . . AOTA m. It fol

lows, also, that if N be the mean point of another system, BI? . . BM ;

and if s be the mean point of the total system, A X . . Bn, of the m + n

- s points obtained by combining the two former, considered as par
tial systems ; while v and a may denote the vectors, ON and os, of

these two last mean points : then we shall have the equations,

m(a-/ii) = n(i&amp;gt;- a), W.MS=W.SN;

so that the general mean point, s, is situated on the right line MN,

which connects the two partial mean points, M and N; and divides
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that line (internally), into two segments MS and SN, which are inversely

proportional to the two whole numbers, m and n.

(1.) As an Example, let ABCD be a gauche quadrilateral, and let E be its mean

point ; or more fully, let

OE =^(OA + OB -t- oc + OD),
or

that is to say, let a = b = c = d, in the equations of Art. Go. Then, with notations

lately used, for certain derived points DI, &c., if we write the vector formula,

we shall have seven different expressions for the mean vector, e
; namely, the follow

ing:

And these conduct to the seven equations between segments,

AE = 3EAi, . . DE = 3EDi ;

A K = EA2, . . C E = EC25

which prove (what is otherwise known) that the four right lines, here denoted by

AAi, . . DDI, whereof each connects a corner of the pyramid ABCD with the mean

point of the opposite face, intersect and quadrisect each other, in one common

point, E
;
and that the three common bisectors A AO, B BO, c co, of pairs of opposite

edges, such as BC and DA, intersect and bisect each other, in the same mean point :

so that the four middle points, c
,
A

, Cz, A2, of the four successive sides AB, &c., of

the gauche quadrilateral ABCD, are situated in one common plane, which bisects also

the common bisector, B B2, oftliQtwo diagonals, AC and BD.

(2.) In this example, the number s of the points A . . D being four, the number

of the derived lines, which thus cross each other in their general mean point E is seen

to be seven ; and the number of the derived planes through that point is nine :

namely, in the notation lately used for the net in space, four lines AI, three lines Aa, i,

six planes Ilj, and three planes Ila, i. Of these nine planes, the six former may (in

the present connexion) be called triple planes, because each contains three lines (as

the plane ABE, for instance, contains the lines AAi, BBi, c C2), all passing through the

mean point E; and the three latter may be said, by contrast, to be non-triple planes,

because each contains only two lines through that point, determined on the foregoing

principles.

(3.) In general, let (*) denote the number of the lines, through the general mean

point s of a total system of s given points, which is thus, in all possible ways, decom

posed into partial systems ; let/(s) denote the number of the triple planes, obtained

by grouping the given points into three such partial systems ;
let

4&amp;gt; (s) denote the

number of non-triple planes, each determined by grouping those * points in two dif

ferent ways into tico partial systems ;
and let F() =/() + ^ (s) represent the entire

number of distinct planes through the point s : so that
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Then it is easy to perceive that if we introduce a new point c, each old line MN fur

nishes two new lines, according as we group the new point with one or other of the

two old partial systems, (M) aud (A
7

) ;
and that there is, besides, one other new line,

namely cs : we have, therefore, the equation infinite differences,

0(s + l) = 2p(*) + l;

which, with the particular value above assigned for 0(4), or even with the simpler

and more obvious value, ^ (2) = 1, conducts to the general expression,

f(.)2-&amp;gt;-l.

(4.) Again, if (A/) (AQ (P) be any three partial systems, which jointly make

up the old or given total system ($) ;
and

if, by grouping a new point c with each

of these in turn, we form three new partial systems, (M ) (N ) (P ) ;
then each

old triple plane such as MNP, will furnish three new triple planes,

M NP, MN P, MNP
;

while each old line, KL, will give one new triple plane, CKL : nor can any new triple

plane be obtained in any other way. We have, therefore, this new equation in dif

ferences :

But we have seen that

if then we write, for a moment,

/(

we have this other equation in finite differences,

Also,

/(3)-l, 0(8) = 8,

therefore,
2X 0) = 3^-

and

(5.) Finally, it is clear that we have the relation,

because the triple planes, each treated as three, and the non-triple planes, each treated

as one, must jointly represent all the binary combinations of the lines, drawn through

the mean point s of the whole system. Hence,

and

so that

and

which last equation in finite differences admits of an independent geometrical inter

pretation.

(6.) For instance, these general expressions give,

0(5) = 15; /(5) = 25; //(5)
= 30; F(5) = 55;

so that if we assume a gauche pentagon, or a system office points in space, A . . E,
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and determine the mean point F of this system, there will in general be a set offif

teen lines, of the kind above considered, all passing through this sixth point F : and

these will be arranged generally in fifty-five distinct planes, whereof twenty-five will

be what we have called triple, the thirty others being of the non-triple kind.

97. More generally, if a
L

. . am be, as before, a system of m given

and co-initial vectors, and if a,, . . am be any system of m given sca-

lars (17), then that new co-initial vector /3, or OB, which is deduced

from these by the formula,

or OB =---- -
,

--
,

a, + . . + am 2a 2a

or by the equation

2a(o-/3) = 0, or 2aBA = 0,

may be said to be the Complex Mean of those m given vectors a, or

OA, considered as affected (or combined) with that system of given

scalars, a, as coefficients, or as multipliers (12, 14). It may also be said

that the derived point B, of which (comp. 96) the position is inde

pendent of that of the origin o, is the Barycentre (or centre ofgravity)
of the given system of points A! . .

., considered as loaded with the

given weights a
l
.. .; and theorems of intersections of lines and planes

arise, from the comparison of these complex means, or barycentres, of

partial and total systems, which are entirely analogous to those lately

considered (96), for simple means of vectors and of points.

(1.) As an Example, in the case of Art. 24, the point c is the barycentre of the

system of the two points, A and B, with the weights a and b
; while, under the con

ditions of 27, the origin o is the barycentre of the three points A, B, c, with the three

weights a, 6, c
;
and if we use the formula for p, assigned in 34 or 36, the same three

given points A, B, c, when loaded with xa, yb, zc as weights, have the point p in

their plane for their barycentre. Again, with the equations of 65, E is the barycen

tre of the system of the four given points, A, B, c, D, with the weights a, b, c, d ;

and if the expression of 79 for the vector OP be adopted, then xa, yb, zc, wd are

equal (or proportional) to the weights with which the same four points A . . D must

be loaded, in order that the point p of space may be their barycentre. In all these

cases, the weights are thus proportional (by 69) to certain segments, or areas, or

volumes, of kinds which have been already considered
;
and what we have called the

anharmonic co-ordinates of a variable point P, in a plane (36), or in space (79),

may be said, on the same plan, to be quotients of quotients of weights.

(2.) The circumstance that the position of a barycentre (97), like that of a sim

ple mean point (96), is independent of the position of the assumed origin of vectors,

might induce us (comp. 69) to suppress the symbol o of that arbitrary and foreign

point; and therefore to write* simply, under the lately supposed conditions,

* We should thus have some of the principal notations of the Bart/centric Calcu

lus : but used mainly with a reference to vectors. Compare the Note to page 50.
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or bB=ZaA, if 6 = a.M
It is easy to prove (comp. 96), by principles already established, that the ordi-

nate of the barycentre of any given system of points is the complex mean (in

the sense above defined, and with the same system of weights), of the ordinates of
the points of that system, with reference to any given plane : and that the projection

of the barycentre, on any such plane, is the barycentre of the projected system.

(3. ) Without any reference to ordinates, or to any foreign origin, the barycentric

notation B =- may be interpreted, by means of our fundamental convention
2a

(Art. 1) respecting the geometrical signification of the symbol B A, considered as

denoting the vector from A to B : together with the rules for multiplying such vec

tors by scalars (14, 17), and for taking the sums (6, 7, 8, 9) of those (generally

new) vectors, which are (15) the products of such multiplications. For we have only

to write the formula as follows,

Sa(A-B) = 0,

in order to perceive that it may be considered as signifying, that the system of the

vectors from the barycentre B, to the system of the given points AI, A2 ,
. . when mul

tiplied respectively by the scalars (or coefficients) of the given system a\, a%, . . be

comes (generally) a new system of vectors with a null sum : in such a manner that

these lust vectors, a\ . BAi, 0%. BA2 , . . can be made (10) the successive sides ofa closed

polygon, by transports without rotation.

(4.) Thus if we meet the formula,

we may indeed interpret it as an abridged form of the equation,

OB = |(OAi -f OA2) ;

which implies that if O be any arbitrary point, and ifo be the point which completes

(comp. 6) the parallelogram AiOA2o ,
then B is the point which bisects the diagonal

oo
,
and therefore also the given line AiA2,

which is here the other diagonal. But we

may also regard the formula as a mere symbolical transformation of the equation,

(A2 -B)+(Ai-B)=0;
which (by the earliest principles of the present Book) expresses that the two vectors,

from B to the two given points AI and A2,
have a null sum; or that they are equal in

length, but opposite in direction : which can only be, by B bisecting AjA2,
as before.

(5.) Again, the formula, BI=^(AI + A2 i A 3), may be interpreted as an abridg

ment of the equation,

OBi = (OAi -f OA 2 + OA3),

which expresses that the point B trisects the diagonal oo of the parallelepiped

(comp. 62), which has OAi, OA2 ,
OA3 for three co-initial edges. But the same for

mula may also be considered to express, in full consistency with the foregoing inter

pretation, that the sum of the three vectors, from B to the three points AI, A2,
A 3,

va

nishes : which is the characteristic property (30) of the mean point of the triangle

AiA2Aa. And similarly in more complex cases: the legitimacy of such transforma

tions being here regarded as a consequence of the original interpretation (1) of the

symbol is - A, and of the rules for operations on vectors, so far as as they have been

hitherto established.

N
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SECTION 6 On Anharmonic Equations, and Vector-Expres

sions, of Surfaces and Curves in Space.

98. When, in the expression 79 for the vector p of a variable

point P of space, the four variable scalars, or anharmonic co-ordi

nates, xyzw, are connected (comp. 46) by a given algebraic equation,

fp (x, y, z, w) = 0, or briefly /= 0,

supposed to be rational and integral, and homogeneous of the pth

dimension, then the point p has for its locus a surface ofthe p
th
order,

whereof/= may be said (comp. 56) to be the local equation. For

if we substitute instead of the co-ordinates x . . w, expressions of the

forms,
x = tx + ux { ,

. . w = tw + uw
l ,

to indicate (82) that p is collinear with two given points, PO, p^ the

resulting algebraic equation \n.t\u is of the p
th

degree ; so that (ac

cording to a received modern mode of speaking), the surface may be

said to be cut in p points (distinct or coincident, and real or imagi

nary*), by any arbitrary right line, P,^. And in like manner, when

the four anharmonic co-ordinates Imnr of a variable plane n (80) are

connected by an algebraical equation, of the form,

F
q (l, m, n, r)

= 0, or briefly F = 0,

where p denotes a rational and integral function, supposed to be ho

mogeneous of the q
th
dimension, then this plane n has for its enve

lope (comp. 56) a surface of the q
th

class, with F= for its tangential

equation , because if we make

l = tl
() +ul^... r = tr + uri,

to express (comp. 82) that the variable plane n passes through a given

right line n. H
lf we are conducted to an algebraical equation of the

q
th

degree, which gives q (real or imaginary) values for the ratio t:u,

and thereby assigns q (real or imaginary!) tangent planes to the sur-

*
It is to be observed, that no interpretation is here proposed, for imaginary in

tersections of this kind, such as those of a sphere with a right line, which is wholly

external thereto. The language of modern geometry requires that such imaginary

intersections should be spoken of, and even that they should be enumerated : exactly

as the language of algebra requires that we should count what are called the imagi

nary roots of an equation. But it would be an error to confound geometrical imagi-

naries, of this sort, with those square roots of negatives, fur which it will soon be seen

that the Calculus of Quaternions supplies, from the outset, a d&amp;gt;finite and real in

terpretation.

t As regards the uninterpreted character of such imaginary contacts in geometry,

the preceding Note to the present Article, respecting imaginary intersections, may be

consulted.
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face, drawn through any such given but arbitrary right line. We
may add (comp. 51, 56), that if the functions /and F be only ho

mogeneous (without necessarily being rational and integral), then

[D,/, D,/, D,/, Dw/]

is the anharmonic symbol (80) of the tangent plane to the surface

f= 0, at the point (xyzw) ;
and that

(D,F, DmF, DnF, D,.F)

is in like manner, a symbol for the point of contact of the plane

\lmnr~], with its enveloped surface, F = 0; D,., . . D;, . . being charac

teristics of partial derivation.

(1.) As an Example, the surface of the second order, which passes through the

nine points called lately

A, c
, B, A

, c, C2, D, A2 , E,

has for its local equation,

Q=f=zz-yw;
which gives, by differentiation,

so that

s = (00zw;), T = (xOQw\

n= D3/=^; r=vwf=-y:

[z,
-

w, x, -y]

is a symbol for the tangent plane, at the point (x, y, z, w).

(2.) In fact, the surface here considered is the ruled (or hyperbolic) hyperboloid,

on which the gauche quadrilateral ABCD is superscribed, and which passes also

through the point E. And if we write

p = (xyzrv\ Q = (aryOO), R = (OyzO),

then QS and RT (see the annexed Figure 31),

namely, the lines drawn through p to intersect the

two pairs, AB, CD, and EC, DA, of opposite sides

of that quadrilateral ABCD, are the two generating

lines, or generatrices, through that point ;
so that

their plane, QRST, is the tangent plane to the sur

face, at the point p. If, then, we denote that tan

gent plane by the symbol [Zmnr], we have the

equations of condition,

= Ix + my = my + nz = nz -f rw = rw -f Ix
;

whence follows the proportion,

1: m : n : r or 1
: y

1
: 2&quot;

1
: w

;

or, because xz = yw,
1: m: n: r= z : i

as before.

(3.) At the same time we see that

x:-y,

(AC BQ) = - = =
(DC-^CS) ;
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so that the variable generatrix QS divides (as is known) the two fixed generatrices

AB and DC homographically* ; AD, BC, and c cj being three of its positions. Con

versely, if it were proposed to find the locus of the right line QS, which thus divides

homographically (comp. 26) two given right lines in space, we might take AB and DC
for those two given lines, and AD, BC, G CS (with the recent meanings of the letters)

for three given positions of the variable line
;
and then should have, for the two va

riable but corresponding (or homologous) points Q, s themselves, and for any arbitrary

point P collinear with them, anharmonic symbols of the forms,

Q =(,, 0,0), s=(o,o,,), P=(MW, ,);
because, by 82, we should have, between these three symbols, a relation of the form,

(P)=*(Q) + (S):

if then we write P = (x, y, z, w\ we have the anharmonic equation xz = yw, as before
;

so that the locus, whether of the line QS, or of the point F, is (as is known) a ruled

surface of the second order.

(4.) As regards the known double generation of that surface, it may suffice to

observe that if we write, in like manner,

R=(0f0), T =
(&amp;lt;00i), (P)=(R) + *(T),

we shall have again the expression,

p = (st, tu, uv, 0s), giving xz = yw,

as before : so that the same hyperboloid is also the locus of that other line RT, which

divides the other pair of opposite sides BC, AD of the same gauche quadrilateral ABCD

homographically ; BA, CD, and A A2 being three of its positions ;
and the lines A AS,

c c2 being still supposed to intersect each other in the given point E.

(5.) The symbol of an arbitrary point on the variable line KT is (by sub-art. 2)

of the form, t(Q, y, z, 0) + u(x, 0, 0, M&amp;gt;),

or (ux, ty, tz, uw~) ;
while the symbol of an

arbitrary point on the given line c c2 is (t
r

,
t

, u, u
). And these two symbols repre

sent one common point (comp. Fig. 31),

p = RT-c c3 =(y,y,2, 2),
when we suppose

y 2

Hence the known theorem results, that a variable generatrix, KT, of one system, in

tersects three fixed lines, BC, AD, c c2, which are generatrices of the other system.

Conversely, by the same comparison of symbols, for points on the two lines RT and

c cs, we should be conducted to the equation xz =yw, as the condition for their inter

section ; and thus should obtain this other known theorem, that the locus of a right

line, which intersects three given right lines in space, is generally an hyperboloid

with those three lines for generatrices. A similar analysis shows that QS intersects

A AO, in a point (comp. again Fig. 31) which may be thus denoted :

P&quot; = QS A AS = (xyyx).

(6.) As another example of the treatment of surfaces by their anharmonic and

local equations, we may remark that the recent symbols for p and p
, combined with

Compare p. 298 of the Gt ometrie Superieure.
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those of sub-art. 2 for p, Q, R, s, T; with the symbols of 83, 86 for c
,
A

, Ca, A2, E;

and with the equation xz = yw, give the expressions :

(E) = (c ) + (c2)
= (A ) + (A2) ; (P&quot;)

= y (A ) + x (A2)
= (Q) + *-

(s)
.

whence it follows (84) that the two points p
, p&quot;,

and the sides of the quadrilateral

ABCD, divide the four generating lines through p and E in the following anharmonic

ratios :

(c Ec2p )
=

(QP&quot;SP)
= - = (BA CR) = (AA2ox) ;

y
(A EA 2p&quot;)

= (RP TP) = - = (BC AQ) = (cc2os) ;

so that (as again is known) the variable generatrices, as well as thefixed ones, of the

hyperboloid, are all divided homographically.

(7.) The tangential equation of the present surface is easily found, by the expres

sions in sub-art. 1 for the co-ordinates Imnr of the tangent plane, to be the follow

ing:
= F = In mr ;

which may be interpreted as expressing, that this hyperboloid is the surface of the

second class, which touches the nine planes,

[1000], [0100], [0010], [0001], [1100], [0110], [0011], [1001], [1111] ;

or with the literal symbols lately employed (comp. 86, 87),

BCD, CDA, DAB, ABC, CDc&quot;, DAA&quot;, ABC 2,
BCA 2,

and [E].*

Or we may interpret the same tangential equation F= as expressing (comp. again

86, 87, where Q, L,, N are now replaced by T, R, Q), that the surface is the envelope of
a plane QRST, which satisfies either of the two connected conditions of homography :

(BC AQ) = = = (cc2os) ;m n

(CA BR) = = = (oA2AT) ;

n r

a double generation of the hyperboloid thus showing itself in a new way. And as re

gards the passage (or return), from the tangential to the local equation (comp. 56),

we have in the present example the formulae :

x = D/F n
; y = DOTF = r

;
z = DWF = Z

;
w = DrF = m;

whence

as before.

(8.) More generally, when the surface is of the second order, and therefore also

of the second class, so that the two functionsf and F, when presented under rational

and integral forms, are both homogeneous of the second dimension, then whether we

derive I . . r from x . . w by the formulae,

*
In the anharmonic symbol of Art. 87, for the plane of homology [E], the co

efficient 1 occurred, through inadvertence, fire times.
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or x . . w from / . . r by the converse formulae,

X = DjF, y = DOTF, Z = DnF, W = D,-F,

the point p = (xyzuf) is, relatively to that surface, what is usually called (comp. 52)
the pole of the plane II = [Zwmr] ;

and conversely, the plane II is the polar of the

point P
;
wherever in space the point p and plane II, thus related to each other,

may be situated. And because the centre of a surface of the second order is known

to be (comp. again 52) the pole of (what is called) the plane at infinity; while (comp.

38) the equation and the symbol of this last plane are, respectively,

ax -f by -f cz -f- die = 0, and [a, 6, c, J],

if the four constants abed have still the same significations as in G5, 70, 79, &c.,

with reference to the system of the five given points ABCDE : it follows that we may
denote this centre by the symbol,

K=(DaF ,
D6F ,

DCF , DrfF ) ;

where FO denotes, for abridgment, the function F (abed), and d is still a scalar con

stant.

(9.) In the recent example, we have FO = ac bd
;
and the anharmonic symbol

for the centre of the hyperboloid becomes thus,

K=(C,-d,a,-5).

Accordingly if we assume (comp. sub- arts. 3, 4),

p =
(fit, tu, uv, ws), P = (*Y, t u, uv ,

= rV),

where s, t, u, v are any four scalars, and p is a new point, while

a = l)t -\- cv, t = cu + ds, u = dv + at, v = as -f bu ;

if also we write, for abridgment,

e=ac-bd, w = ast + btu + cuv + dvs
;

we shall then have the symbolic relations,

e (P)+(F)=/(K), e
(p)-(P&amp;gt;(p&quot;),

if p&quot;
=

(x&quot;y&quot;z&quot;w&quot;}
be that new point, of which the co-ordinates are,

x&quot; 2e st civ
, y&quot;

= 2e tu + dw
,

z&quot; = 2e uv aw
,

w&quot; = 2e vs -f bw\

and therefore,
ax&quot; + by&quot; + cz&quot; + dw&quot; 0.

That is to say, if PP be any chord of the hyperboloid, which passes through the fixed

point K, and if p&quot; be the harmonic conjugate of that fixed point, with respect to that

variable chord, so that (PKP P&quot;)

=
1, then this conjugate point p&quot; is on the infinitely

distant plane [abed] : or in other words, the fixed point K bisects all the chords PP

which pass through it, and is therefore (as above asserted) the centre of the surface.

(10.) With the same meanings (65, 79) of the constants a, b, c, d, the mean

point (96) of the quadrilateral ABCD, or of the system of its corners, may be denoted

by the svmbol,
M = (-, 6-1, c-i, d-i);

if then this mean point be on the surface, so that

ac-bd-Q,

the centre K is on the plane [, /, r, d] ;
or in other words, it is infinitely distant: so
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that the surface becomes, in this case, a ruled (or hyperbolic} paraboloid. In gene

ral (comp. sub-art. 8), if FQ = 0, the surface of the second order is a paraboloid of

some kind, because its centre is then at infinity, in virtue of the equation

(aDa -f bDb -f CDC + dud) FO = ;

or because (comp. 50, 58) the plane [et&cd] at infinity is then one of its tangent

planes, as satisfying its tangential equation, F = 0.

(11.) It is evident that a curve in space may be represented by a system of two

anharmonic and local equations ; because it may be regarded as the intersection nf

two surfaces. And then its order, or the number ofpoints (real or imaginary*), in

which it is cut by an arbitrary plane, is obviously the product of the orders of those

two surfaces
;
or the product of the degrees of their two local equations, supposed to

be rational and integral.

(12.) A curve of double curvature may also be considered as the edge of regres

sion (or arete de rebroussemenf) of a developable surface, namely of the locus of the

tangents to the curve ; and this surface may be supposed to be circumscribed at once

to two given surfaces, which are envelopes of variable planes (98), and are repre

sented, as such, by their tangential equations. In this view, a curve of double cur

vature may itself be represented by a system of two anharmonic and tangential equa

tions
;
and if the class of such a curve be denned to be the number of its osculating

planes, which pass through an arbitrary point of space, then this class is the product

of the classen of the two curved surfaces just now mentioned: or (what comes to the

same thing) it is the product of the dimensions of the two tangential equations, by
which the curve is (on this plan) symbolized. But we cannot enter further into these

details; the mechanism of calculation respecting which would indeed be found to be

the same, as that employed in the known method (comp. 41) of quadriplanar co-or

dinates.

99- Instead of anharmonic co-ordinates, we may consider any
other system of n variable scalars, x

{ ,
. . XM which enter into the ex

pression of a variable vector, p; for example, into an expression of

the form (comp. 96, 97),

And then, if those n scalars x be all functions ofone independent and

variable scalar, t, we may regard this vector p as being itself a func
tion of that single scalar; and may write,

t
:&amp;gt;*(/&amp;gt;

But if the n scalars x . . be functions of two independent and scalar

variables, t and u, then p becomes a function of those two scalars,

and we may write accordingly,

II...p = &amp;lt;b(t,u).

In the 1st case, the term p (comp. 1) of the variable vector p has

*
Compare the Notes to page 90.



96 ELEMENTS OF QUATERNIONS. [BOOK I.

generally for its locus a curve in space, which may be plane or of

double curvature, or may even become a right line, according to the

form of the vector-function (p ;
and p may be said to be the vector of

this line, or curve. In the Ilnd case, p is the vector ofa surface, plane

or curved, according to the form of (p (t, u) ; or to the manner in which

this vector p depends on the two independent scalars that enter into

its expression.

(1.) As Examples (comp. 25, 63), the expressions,

I... p
=^. II...

signify, 1st, that p is the vector of a variable point p on the right line AB
;
or that

it is the vector of that line itself, considered as the locus of a point; and Ilnd, that

p is the vector ofthe plane ABC, considered in like manner as the locus of an arbitrary

point P thereon.

(2.) The equations,

I. . . p = xa + yfl, II. . . p = xa + y(3 -t- zy,
with

x* + y*=l for the 1st, and x* + y* + z2 = 1 for the Ilnd,

signify 1st, that p is the vector of an ellipse, and Hud, that it is the vector of an

ellipsoid, with the origin o for their common centre, and with OA, OB, or OA, OB,

OC, for conjugate semi-diameters.

(3.) The equation (comp. 46),

p = t*a + w2
/3 + (t -t )

2
y,

expresses that p is the vector of a cone of the second order, with o for its vertex (or

centre&quot;),
which is touched by the three planes OBC, OCA, OAB ;

the section of this cone,

f&amp;gt;

made by the plane ABC, being an ellipse (comp. Fig. 25), which is inscribed in the

triangle ABC
;
and the middle points A

,
B

,
c

,
of the sides of that triangle, being the

points of contact of those sides with that conic.

(4.) The equation (comp. 53),

expresses that p is the vector of another cone of the second order, with o still for

vertex, but with OA, OB, oc for three of its sides (or rays&quot;).
The section by the

plane ABC is a new ellipse, circumscribed to the triangle ABC, and having \tstangents

at the corners of that triangle respectively parallel to the opposite sides thereof.

(5 ) The equation (comp. 54),

p = t3a + uZfi + t?
3
y, with t 4- u + v = 0,

signifies that p is the vector of a cone of the third order, of which the vertex is still

the origin ;
its section (comp. Fig. 27) by the plane ABC being a cubic curve, whereof

the sides of the triangle ABC are at once the asymptotes, and the three (real) tangents

of inflexion; while the mean point (say o
)

of that triangle is a conjugate point of

the curve; and therefore the right line oo
,
from the vertex o to that mean point,

may be said to be a conjugate ray of the cone.

(6.) The equation (comp. 98, sub-art. (3.) ),
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staa + tubft + uvcy + vsdd

sta + tub + uvc -f vsd

in which - and - are two variable scalars, while a, b, c, d are still four constant
u v

scalars, and a, (3, y, d are four constant vectors, but p is still a variable vector, ex

presses that p is the vector of a ruled (or single-sheeted) hyperboloid, on which the

gauche quadrilateral ABCD is superscribed, and which passes through the given point

K, whereof the vector e is assigned in 65.

(7.) If we make (comp. 98, sub-art (9.)),

s t aa - t u bft + u v cy v s dd

s t a t u b + u v c v s d
where

s =bt + cv, t = cu + ds, u =dv + at, v = as + bu,

then p = OP is the vector of another point P on the same hyperboloid; and because

it is found that the sum of these two last vectors is constant,

it follows that K is the vector of & fixed point K, which bisects every chord PP that

passes through it : or in other words (comp. 52), that this point K is the centre of

the surface.

(8.) The three vectors,
a + y (B+$

*
~2~ ~2~

are termino-collinear (24) ;
if then a gauche quadrilateral ABCD be superscribed OR

a ruled hyperboloid, the common bisector ofthe two diagonals, AC, BD, passes through

the centre K.

(9.) When ac = bd, or when we have the equation,

_ sta + tu[3 + uvy + vsd

st + tu + uv + vs

or simply,

p = sta -t- tuft + uvy + vs, with * +u=t + v = l,

p is then the vector ofa ruled paraboloid, of which the centre (comp. 52, and 98, sub-

art. (10.) ), is infinitely distant, but upon which the quadrilateral ABCD is still super

scribed. And this surface passes through the mean point M of that quadrilateral, or

of the system of the four given points A . . D
; because, when s = t = u = v =

%,
th

variable vector p takes the value (comp. 96, sub-art. (1.)),

/tt
= |(a + /3 + y + ^).

(10.) In general, it is easy to prove, from the last vector-expression for p, that

this paraboloid is the locus of a right line, which divides similarly the two opposite

tides AB and DC of the same gauche quadrilateral ABCD
;

or the other pair of oppo

site sides, BC and AD.
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SECTION 7 On Differentials of Vectors.

100. The equation (99, I.),

in which
/&amp;gt;

= OP is generally the vector of a point P of a, curve in space,

PQ, . . ., gives evidently, for the vector OQ of another point Q of the

same curve, an expression of the form

so that the chord PQ, regarded as being

itself a vector, comes thus to be repre

sented (4) by the finite difference,

Suppose now that the other finite dif-
Fig. 32.

ference, At, is the nth
part of a new

scalar, u ; and that the chord
A/&amp;gt;,

or PQ,, is in like manner (comp.

Fig. 32), the nth

part of a new vector, an , or PR
; so that we may

write,
n&t = u, and nAp = n . PQ = an - PR.

Then, if we treat the two scalars, t and u, as constant, but the num

ber n as variable (the form of the vector-function 0, and the origin o,

being given), the vector p and the point P will be fixed: but the two

points Q and R, the two differences At and Ap, and the multiple vector

nAp, or ffn,
will (in general) vary together. And if this number n

be indefinitely increased, or made to tend to infinity, then each of the

two differences At, Ap will in general tend to zero ; such being the

common limit, of n~ }

u, and of
&amp;lt;f&amp;gt; (2 + n~ l

u)
-

&amp;lt;$&amp;gt; (t)
: so that the variable

point Q, of the curve will tend to coincide with ilie fixed point P. But

although the chord PQ will thus be indefinitely shortened, its nth mul

tiple,
PR or &amp;lt;rn ,

will tend (generally) to a, finite limit,* depending on

the supposed continuity of the function
&amp;lt;j&amp;gt; (t) ; namely, to a certain

definite vector, PT, or a*, or (say) r, which vector PT will evidently

be (in general) tangential to the curve: or, in other words, the variable

point R will tend to a fixed position T, on the tangent to that curve at P.

We shall thus have a limiting equation, of the form

T - PT = lim. PR = a* = lim. nA0 (t), if nAt = u
;

t and u being, as above, two given and (generally) finite scalars. And

*
Compare Newton s Prhicipia.
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if we then agree to call the second of these two given scalars the dif

ferential of the first, and to denote it by the symbol dt, we shall de-

fineihat the vector-limit, r or o-,, is the (corresponding) differential of
the vector

/&amp;gt;,

and shall denote it by the corresponding symbol, d/&amp;gt;;
so

as to have, under the supposed conditions,

u = dt, and T = dp.

Or, eliminating the two symbols u and T, and not necessarily suppos

ing that P is & point of a curve, we may express our Definition* of the

Differential of a Vector p, considered as a Function $ of a Scalar t,

by the following General Formula :

lim. n
|0(*

+

in which t and dt are two arbitrary and independent scalars, both ge

nerally finite ; and dp is, in general, a new andfinite vector, depending

on those TWO scalars, according to a law expressed by the formula,
and derived from that given law, whereby the old or former vector, p

or Q(t), depends upon the single scalar, t.

(1.) As an example, let the given vector-function have the form,

P 0(0 =^2
&amp;gt;

where a is a given vector.

u
Then, making A =

,
where u is any given scalar, and n is a variable whole number,

we have

aw ( f -f ; &amp;lt;rx = atu
;

and finally, writing dt and dp for M and

(2.) In general, let
&amp;lt;p (/)

= af(t\ where a is still a given or constant vector, and

notes a scalar function of the scalar variable, t. Then because a is a common

factor within the brackets
{ } of the recent general formula (100) for dp, we may

write,

dp = d0 (0 = d . a/(0 = od/(&amp;lt;) ;

provided that we now define that the differential of a scalar function, f(t}, is a new

scalar function of two independent scalars, t and dt, determined by the precisely

similar formula :

*
Compare the Note to page 39.
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which can easily be proved to agree, in all its consequences, with the usual rules for

differentiating functions of one variable.

(3.) For example, if we write dt = nh, where h is a new variable scalar, namely,

the nth
part of the given and (generally) finite differential, At, we shall thus have

the equation,

dt H=Q h

in which the first member is here considered as the actual quotient of two finite sca-

lars, df(t) : dt, and not merely as a differential coefficient. We may, however, as

usual, consider this quotient, from the expression of which the differential dt disap

pears, as a derived function of theformer variable, t
;
and may denote it, as such, by

either of the two usual symbols,

/ (O and D,/(0-

(4.) In like manner we may write, for the derivative ofa vector-function,* 0(f)&amp;gt;

the formula :

dp

these two last forms denoting that actual and finite vector, p or &amp;lt;*&amp;gt; (f), which is

obtained, or derived, by dividing (comp. 16) the not less actual (or finite) vector,

dp or d&amp;lt;b (), by the finite scalar, dt. And if again we denote the nfh
part of this

last scalar by h, we shall thus have the equally general formula :

Dtp = D^0 (0 lim - T 5

with the equations^

exactly as if the vector-function, p or 0, were a scalar function, f.

(5.) The particular value, dt = 1, gives thus dp = p ; so that the derived vector

p is (with our definitions) a particular but important case of the differential of a

vector. In applications to mechanics, if t denote the time, and if the term p of

the variable vector p be considered as a moving point, this derived vector p may be

called the Vector of Velocity : because its length represents the amount, and its di

rection is the direction of the velocity. And if, by setting off vectors ov = p (comp.

again Fig. 32)/rom one origin, to represent thus the velocities of a point moving in

space according to any supposed law, expressed by the equation p = &amp;lt;j) (t~), we con

struct a new curve vw .. of which the corresponding equation maybe written as

p =
(0&amp;gt;

then this new curve has been defined to be the HoDOGKAPH,f as the old

curve PQ. . may be called the orbit of the motion, or of the moving point.

*
In the theory of Differentials of Functions of Quaternions, a definition of the

differential d0 (5) will be proposed, which is expressed by an equation of precisely

the same form as those above assigned, for df(fy, and for d0 (0 ;
but it will be found

that, for quaternions, the quotient d(&amp;gt;&amp;gt;(q&quot;):dq
is not generally independent of dq ;

and consequently that it cannot properly be called a derivedfunction, such as ^ (9),

of the quaternion q alone. (Compare again the Note to page 39.)

t The subject of the Hodograph will be resumed, at a subsequent stage of this

work. In fact, it almost requires the assistance of Quaternions, to connect it, in

what appears to be the best mode, with Newton s Law of Gravitation.



CHAP. III.]
DIFFERENTIALS OF VECTORS. 101

(6.) We may differentiate a vector-function twice (or oftener), and so obtain its

successive differentials. For example, if we differentiate the derived vector p ,
we

obtain a result of the form,

dp =
p&quot;d,

where
p&quot;

=
D&amp;lt;p

=
vfip,

by an obvious extension of notation
;
and if we suppose that the second differential,

AAt or A-t, of the scalar t is zero, then the second differential of the vector p is,

d2p = ddp = d . p dt = dp . At -
p&quot;.

AP
;

.where At2
,
as usual, denotes

(d&amp;lt;)

2
;
and where it is important to observe that, with

the definitions adopted, d2
p is as finite a vector as dp, or as p itself. In applications

to motion, if t denote the time, p&quot; may be said to be the Vector of Acceleration.

(7.) We may also say that, in mechanics, the finite differential dp, of the Sector

of Position p, represents, in length and in direction, the right line (suppose PT in

Fig. 32) which would have been described, by a freely moving point P, in the finite

interval of time At, immediately following the time t, if at the end of this time t all

foreign forces had ceased to act.*

(8.) In geometry, if p = &amp;lt;f&amp;gt;(f]

be the equation of a curve of double curvature, re

garded as the edge of regression (comp. 98, (12.) ) of a developable surface, then the

equation of that surface itself, considered as the locus of the tangents to the curve,

may be thus written (comp. 99, II.) :

p = (&amp;lt;)
+ (*) ;

or simply, p = (0 + (ty (0,

if it be remembered that u, or At, may be any arbitrary scalar.

(9.) If any other curved surface (comp. again 99, II.) be represented by an equa

tion of the form, p = (a;, y), where
&amp;lt;p

now denotes a vector-function oftwo indepen

dent and scalar variables, x and y, we may then differentiate this equation, or this

expression for p, with respect to either variable separately, and so obtain what may
be called two partial (but finite) differentials, Axp, A

tjp, and two partial derivatives,

Dj-p, Dj/p, whereof the former are connected with the latter, and with the two arbitrary

(but t/wie) scalars, Ax, Ay, by the relations,

d*p = D-i-p
. Ax ;

Ayp = D,jp . Ay.

And these two differentials (or derivatives) of the vector p of the surface denote two

tangential vectors, or at least two vectors parallel to two tangents to that surface at

the point p : so that their plane is (or is parallel to) the tangent plane at that point.

(10.) The mechanism of all such differentiations of vector-functions is, at the

present stage, precisely the same as in the usual processes of the Differential Calcu

lus; because the most generalform of such a vector-function, which has been consi

dered in the present Book, is that of a sum ofproducts (comp. 99) of the form xa,

where a is a constant vector, and a; is a variable scalar: so that we have only to

operate on these scalar coefficients x . ., by the usual rules of the calculus, the vec

tors a. . being treated as constant factors (comp. sub-art. 2). But when we shall

come to consider quotients or products of vectors, or generally those new functions of
vectors which can only be expressed (in our system) by Quaternions, then some few

new rules of differentiation become necessary, although deduced from the same (or

nearly the same) definitions, as those which have been established in the present

Section.

As is well illustrated by Atwood s machine.
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(11.) As an example of partial differentiation (comp. sub-art. 9), of a vector

function (the word &quot;

vector&quot; being here used as an adjective) of two scalar variables,

let us take the equation,

in which p (comp. 99, (3.) ) is the vector of a certain cone of the second order; or

more precisely, the vector of one sheet of such a cone, if x and y be supposed to be

real scalars. Here, the two partial derivatives of p are the following :

vxp = xa + (x + y}y, T&amp;gt;vp = yf3 + (x + .y) y ;

and therefore,

so that the three vectors, p, D^p, v,,p, if drawn (18) from one common origin, are con

tained (22) in one common plane; which implies that the tangent plane to the sur

face, at any point P, passes through the origin o : and thereby verifies the conical

character of the locus of that point r, in which the variable vector p, or OP, termi

nates.

(12.) If, in the same example, we make x = 1, y = - 1, we have the values,

whence it follows that the middle point, say c
,
of the right line AB, is one of the

points of the conical locus
;
and that (comp. again the sub-art. 3 to Art. 99, and the

recent sub-art. 9) the right lines OA and OB are parallel to two of the tangents to the

surface at that point ;
so that the cone in question is touched by the plane AOB, along

the side (or ray} oc . And in like manner it may be proved, that the same cone is

touched by the two other planes, BOC and COA, at the middle points A and B of the

two other lines BC and CA
;
and therefore along the two other sides (or rays), OA

and OB : Avhich again agrees with former results.

(13.) It will be found that a vector function of the sum of two scalar variables,

t and dt, may generally be developed, by an extension of Taylor s Series, under the

form,

it being supposed that d2 =0, d3
&amp;lt;

=
0, &c. (comp. sub-art. 6). Thus, if

0&amp;lt;= |a*
2

,

(as in sub-art. 1), where a is a constant vector, we have d(pt
= atdt, d20=ad 2

,

&(f&amp;gt;t

=
0, &c.

;
and

(t + dO = fa (t + di)
2 = |a*

2 + atdt 4 fad*2,

rigorously, without any supposition that At is small.

(14.) When we thus suppose Af = d, and develops the finite difference, A0 (t)

&amp;lt;p (t + d&amp;lt;) 0()&amp;gt; tbcjtnrf term of the development so obtained, or the term offirst

dimension relatively to dt, is hence (by a theorem, which holds good for vector -func

tions, as well as for scalar functions) theirs* differential d(pt of the function ; but

we do not choose to define that this Differential is (or means} t\\i\t first term: be

cause the Formula (100), which we prefer, does not postulate the possibility, nor even

suppose the conception, of any such development. Many recent remarks will perhaps

appear more clear, when we shall come to connect them, at a later stage, with that

theory of Quaternions, to which we next proceed.



BOOK II.

ON QUATERNIONS, CONSIDERED AS QUOTIENTS OF VECTORS,

AND AS INVOLVING ANGULAR RELATIONS.

CHAPTER I.

FUNDAMENTAL PRINCIPLES RESPECTING QUOTIENTS OF VECTORS.

SECTION 1. Introductory Remarks ; First Principles adopted

from Algebra.

ART. 101. The only angular relations, considered in the fore

going Book, have been those of parallelism between vectors

(Art. 2, &c.) ;
and the only quotients, hitherto employed, have

been of the three following kinds :

I. Scalar quotients ofscalars, such as the arithmeticalfrac

tion in Art. 14
;m

II. Vector quotients, of vectors divided by scalars, as = a

in Art. 16
;

III. Scalar quotients of vectors, with directions either simi

lar or opposite, as = x in the last cited Article. But we now

propose to treat of other geometric QUOTIENTS (or geometric

Fractions, as we shall also call them), such as

= &amp;lt;- =
&amp;lt;7,

with 8 not
||
a (comp. 15);OA a

for each of which the Divisor (or denominator), a or OA, and

the Dividend (or numerator), /3 or OB, shall not only both be
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Vectors, but shall also be inclined to each other at an ANGLE,
distinct (in general) from zero, and from two* right angles.

102. In introducing this new conception, of a General Quo
tient of Vectors, with Angular Relations in a given plane, or

in space, it will obviously be necessary to employ some proper

ties of circles and spheres, which were not wanted for the pur

pose of the former Book. But, on the other hand, it will be

possible and useful to suppose a much less degree of acquaint

ance with many important theories-)- of modern geometry, than

that of which the possession was assumed, in several of the

foregoing Sections. Indeed it is hoped that a very moderate

amount of geometrical, algebraical, and trigonometrical prepa
ration will be found sufficient to render the present Book, as

well as the early parts of the preceding one, fully and easily

intelligible to any attentive reader.

103. It may be proper to premise a few general principles

respecting quotients of vectors, which are indeed suggested by

algebra, but are here adopted by definition. And 1st, it is

evident that the supposed operation of division (whatever its

full geometrical import may afterwards be found to be), by
which we here conceive ourselves to pass from a given divisor-

line a, and from a given dividend-line
]3,

to what we have called

(provisionally) their geometric quotient, q, may (or rather

must) be conceived to correspond to some converse act (as yet

not fully known) of geometrical multiplication : in which new
act the former quotient, q, becomes a FACTOR, and operates on

the line a, so as to produce (or generate) the line
(3. We shall

therefore write, as in algebra,

/3
=

q- a, or simply, /3
=
qa, when /3

: a = q ;

* More generally speaking, from every even multiple of a right angle.

f Such as homology, homography, involution, and generally whatever depends

on anharmonic ratio : although all that is needful to be known respecting such

ratio, for the applications subsequently made, may be learned, without reference to

any other treatise, from the definitions incidentally given, in Art. 25, &c. It was,

perhaps, not strictly necessary to introduce any of these modern geometrical theories,

in any part of the present work
;
but it was thought that it might interest one class,

at least, of students, to see how they could be combined with that fundamental con

ception of the VECTOB, which the First Book was designed to develope.
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even if the two lines a and )3, or OA and OB, be supposed to

be inclined to each other, as in Fig. 33. And this very sim

ple and natural notation (comp. 16) will then allow us to treat

as identities the two following formulae :

a

although we shall, for the present, abstain from writing also

such formulae* as the following:

where a, ]3 still denote two vectors, and q denotes their geo
metrical quotient : because we have not yet even begun to con

sider the multiplication ofone vector by another, or the division

ofa quotient by a line.

104. As a Ilnd general principle, suggested by algebra,

we shall next lay it down, that if

^=2, and a = a, then |3
=
/3;

a a

or in words, and under a slightly varied form, that unequal

vectors, divided by equal vectors, give unequal quotients. The

importance of this very natural and obvious assumption will

soon be seen in its applications.

105. As a Illrd principle, which indeed may be consi

dered to pervade the whole of mathematical language, and

without adopting which we could not usefully speak, in any

case, of EQUALITY as existing between any two geometrical

quotients, we shall next assume that two such quotients can

never be equal to the same t/iird^ quotient, without being at the

same time equal to each other: or in symbols, that

if q =
q, and

q&quot;

=
q, then

q&quot;

=
q.

*
It will be seen, however, at a later stage, that these two formulae are permitted,

and even required, in the development of the Quaternion System,

f It is scarcely necessary to add, what is indeed included in this Illrd principle,

in virtue of the identity q
=

q, that if q q, then q = q ;
or in words, that we shall

never admit that any two geometrical quotients, q and q ,
are equal to each other in

one order, without at the same time admitting that they are equal, in the opposite

order also.

P
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106. In the IVth place, as a preparation for operations

on geometrical quotients, we shall say that any two such quo

tients, orfractions (101), which have a common divisor-line, or

(in more familiar words) a common denominator, are added,

subtracted, or divided, among themselves, by adding, subtract

ing, or dividing their numerators: the common denominator

being retained, in each of the two former of these three cases.

In symbols, we thus define (comp. 14) that, for any three (ac

tual) vectors, a, )3, 7,

and

aiming still at agreement with algebra.

107. Finally, as a Vth principle, designed (like the fore

going) to assimilate, so far as can be done, the present Calculus

to Algebra, in its operations on geometrical quotients,we shall

define that the following formula holds good :

Z \zP_y.
J3 a jjSa a

or that if two geometricalfractions, q and^S be so related, that

the denominator, /3,
of the multiplier q (here written towards

the left-hand) is equal to the numerator of the multiplicand q,

then the product, q
-

q or q q, is that third fraction, whereof

the numerator is the numerator j ofthe multiplier, and the

denominator is the denominator a ofthe multiplicand : all such

denominators, or divisor-lines, being still supposed (16) to be

actual (and not null) vectors.

SECTION 2. First Motive for naming the Quotient oftwo Fee-

tors a Quaternion.

108. Already we may see grounds for the application of

the name, QUATERNION, to such a Quotient oftwo Vectors as

has been spoken of in recent articles. In the first place, such

a quotient cannot generally be what we have called (17) a SCA-
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LAR : or in other words, it cannot generally be equal to any
of the (so-called) reals of algebra, whether of the positive or of

the negative kind. For let x denote any such (actual*) scalar,

and let a denote any (actual) vector; then we have seen (15)

that the product xa denotes another (actual) vector, say ft ,

which is either similar or opposite in direction to a, according

as the scalar coefficient, or factor, x, is positive or negative ;

in neither case, then, can it represent any vector, such as /3,

which is inclined to a, at any actual angle, whether acute, or

right, or obtuse : or in other words (comp. 2), the equation

ft
-

j3,
or xa =

)3, is impossible, under the conditions here sup

posed. But we have agreed (16, 103) to write, as in algebra,
7*fl

= x
; we must, therefore (by the Ilnd principle of the fore-

a

going Section, stated in Art. 104), abstain from writing also

= x, under the same conditions : x still denoting a scalar.
a

Whatever else a quotient of two inclined vectors may be found

to be, it is thus, at least, a NON-SCALAR.

109. Now, in forming the conception of the scalar itself,

as the quotient of two parallel^ vectors (17), we took into ac

count not only relative length, or ratio of the usual kind, but

also relative direction, under the form of similarity or opposition.

In passing from a to xa, we altered generally (15) the length of

the line a, in the ratio of x to 1
;
and we preserved or reversed

the direction of that line, according as the scalar coefficient x

was positive or negative. And in like manner, in proceeding to

form, more definitely than we have yet done, the conception of

the non-scalar quotient (108), q
=

/3
: a = OB : OA, oftwo inclined

vectors, which for simplicity may be supposed (18) to be co-

* By an actual scalar, as by an actual vector (comp. 1), we mean here one that

is differentfrom zero. An actual vector, multiplied by a null scalar, has for product

(15) a null vector ; it is therefore unnecessary to prove that the quotient of two actual

vectors cannot be a null scalar, or zero.

f It is to be remembered that we have proposed (15) to extend the use of this

term parallel, to the case of two vectors which are (in the usual sense of the word)

parallel to one common line, even when they happen to be parts of one and the same

right line.
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initial, we have sh// to take account both of the relative length,

and of the relative direction, of the two lines compared. But

while the former element of the complex relation here consi

dered, between these two lines or vectors, is still represented

by a simple RATIO (of the kind commonly considered in geo

metry), or by a number* expressing that ratio ; the latter ele

ment of the same complex relation is now represented by an

ANGLE, AOB : and not simply (as it was before) by an alge

braical sign, + or -.

110. Again in estimating this angle, for the purpose of

distinguishing one quotient of vectors from another, we must

consider not only its magnitude (or quantity), but also its

PLANE : since otherwise, in violation of the principle stated

in Art. 104, we should have OB : OA = OB : OA, if OB and OB

were two distinct rays or sides of a cone of revolution, with OA

for its axis; in which case (by 2) they would necessarily be

unequal vectors. For a similar reason, we must attend also to

the contrast between two opposite angles, of equal magnitudes,
and in one common plane. In short, for the purpose ofknow-

ingfully the relative direction of two co-initial lines OA, OB in

space, we ought to know not only how many degrees, or other

parts of some angular unit, the angle

AOB contains; but also (comp. Fig. 33)

the direction of the rotation from OA to

OB : including a knowledge of the plane,

in which the rotation is performed ; and Fi - 33&amp;gt;

ofthe hand (as right mleft, when viewed from a known side of

the plane), towards ichich the rotation is directed.

111. Or, if we agree to select some onefixed hand (suppose

the right} hand), and to call all rotations positive when they

* This number, which we shall presently call the tensor of the quotient, may be

whole or fractional, or even incommensurable with unity ;
but it may always be

equated, in calculation, to a positive scalar : although it might perhaps more pro

perly be said to be a signless number, as being derived solely from comparison of

lengths, without any reference to directions.

f If right-handed rotation be thus considered as positive, then the positive axis

of the rotation AOB, in Fig. 33, must be conceived to be directed downward, or below

the plane of the paper.
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are directed towards this selected hand, but all rotations nega
tive when they are directed towards the other hand, then, for

any given angle AOB, supposed for simplicity to be less than two

right angles, and considered as representing a rotation in a given

plane from OA to OB, we may speak of one perpendicular oc to

that plane AOB as being the positive axis of that rotation
;
and

of the opposite perpendicular oc to the same plane as being the

negative axis thereof: the rotation round the positive axis being

itself positive, and vice versa. And then the rotation AOB may
be considered to be entirely known., ifwe know, 1st, its quantity,

or the ratio which it bears to a right rotation ; and Ilnd, the

direction of its positive axis, oc : but not without a knowledge
of these two things, or of some data equivalent to them. But
whether we consider the direction of an Axis, or the aspect of
a PLANE, we find (as indeed is well known) that the determi

nation of such a direction, or ofsuch an aspect, depends on TWO

polar co-ordinates*, or other angular elements.

112. It appears, then, from the foregoing discussion, that

for the complete determination, of what we have called the geo
metrical QUOTIENT of two co-initial Vectors, a System ofFour

Elements, admitting each separately of numerical expression,

is generally required. Of these four elements, one serves (109)
to determine the relative length of the two lines compared ;

and the other three are in general necessary, in order to deter

mine^//*/ their relative direction. Again, of these three latter

elements, one represents the mutual inclination, or elongation,

of the two lines
;
or the magnitude (or quantity) of the angle

between them ; while the two others serve to determine the

direction of the axis, perpendicular to their common plane,

round which a rotation through that angle is to be performed,
in a sense previously selected as the positive one (or towards

a fixed and previously selected hand), for the purpose ofpass

ing (in the simplest way, and therefore in the plane of the two

lines) from the direction of the divisor-line, to the direction of

* The actual (or at least the frequent) use of such co -ordinates is foreign to the spirit

of the present System : but the mention of them here seems likely to assist a student,

by suggesting an appeal to results, with which his previous reading can scarcely fail

to have rendered him familiar.
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the dividend-line. And no more than four numerical elements

are necessary, for our present purpose: because the relative

length of two lines is not changed, when their two lengths are

altered proportionally, nor is their relative direction changed,
when the angle which they form is merely turned about, in its

own plane. On account, then, of this essential connexion of

that complex relation (109) between two lines, which is com

pounded of a relation of lengths, and of a relation of directions,

and to which we have given (by an extension from the theory

of scalars] the name of a geometrical quotient, with a System

o/*FouR numerical Elements, we have already a motive* for

saying, that &quot; the Quotient of two Vectors is generally a Qua
ternion.&quot;

SECTION 3. Additional Illustrations.

113. Some additional light may be thrown, on this first concep

tion of a Quaternion, by the annexed Figure 34. In that Figure,

the letters CDEFG are

designed to indicate

corners of a prisma
tic desk, resting upon
a horizontal table.

The angle HCD (sup

posed to be one of

thirty degrees) repre

sents a (left-handed)

rotation, whereby the G

horizontal ledge CD of

the desk is conceived

to be elongated (or

removed) from a given horizontal line on, -which may be imagined to

be an edge of the table. The angle GCF (supposed here to contain

forty degrees) represents the slope] of the desk, or the amount of its

inclination to the table. On the/ace CDEF of the desk are drawn two si

milar and similarly turned triangles, A OB and A O B
,
which are supposed

to be halves of two equilateral triangles ;
in such a manner that each

*
Several other reasons for thus speaking will offer themselves, in the course of the

present work.

i These two angles, iicn and GCF, may thus be considered to correspond to longi

tude of node, and inclination of orbit, of a planet or comet in astronomy.

Fig. 34.
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rotation, AOB or A oV is one of sixty degrees, and is directed towards

one common hand (namely the right hand in the Figure): while if

lengths alone be attended to, the side OB is to the side OA, in one tri

angle, as the side O B is to the sideVA ,
in the other; or as the num

ber two to one.

114. Under these conditions of construction, we consider the two

quotients, or the two geometric fractions,

OB O B
OB:OA and OB :OA, or and -,

OA O A

as being equal to each other; because we regard the two lines, OA and

OB, as having the same relative length, and the same relative direction,

as the two other lines, O A and O B . And we consider and speak of

each Quotient, or Fraction^ as a Quaternion: because its complete con

struction (or determination) depends, for all that is essential to its

conception, and requisite to distinguish it from others, on a system of

four numerical elements (comp. 112); which are, in this Example, the

four numbers,

2, 60, 30, and 40.

115. Of these four elements (to recapitulate what has been above supposed), the

1st, namely the number 2, expresses that the length of the dividend-line, OB or

O B
,

is double of the length of the divisor-line, OA or O A . The Ilnd numerical

element, namely 60, expresses here that the angle AOB or A O B
,
is one of sixty de

grees; while the corresponding rotation, from OA to OB, or from O A to O B
,
is to

wards a known hand (in this case the right hand, as seen by a person looking at the

face ODEF of the desk), which hand is the same for both of these two equal angles.

The Illrd element, namely 30, expresses that the horizontal ledge CD of the desk

makes an angle of thirty degrees with a known horizontal line CH, being removed

from it, by that angular quantity, in a known direction (which in this case happens

to be towards the left hand, as seen from above). Finally, the IVth element,

namely 40, expresses here that the desk has an elevation of forty degrees as before.

116. Now an alteration in any one of these Four Elements, such as an altera

tion of the slope or aspect of the desk, would make (in the view here taken) an es

sential change in the Quaternion, which is (in the same view) the Quotient ofthe two

lines compared: although (as the Figure is in part designed to suggest) no such

change is conceived to take place, when the triangle AOB is merely turned about, in

its own plane, without being turned over (comp. Fig. 36) ;
or when the sides of that

triangle are lengthened or shortened proportionally, so as to preserve the ratio (in the

old sense of that word), of any one to any other of those sides. We may then briefly

say, in this mode of illustrating the notion of a QUATERNION* in geometry, by refe-

* As to the mere word, Quaternion, it signifies primarily (as is well known), like

its Latin original,
&quot;

Quaternio,&quot; or the Greek noun TTpaKr6f, a Set of Four : but

it is obviously used here, and elsewhere in the present work, in a technical sense.
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rence to an angle on a desk, that the Four Elements which it involves are the follow

ing:
Ratio, Angle, Ledge, and Slope;

although the two latter elements are in fact themselves angles also, but are not im

mediately obtained as such, from the simple comparison of the two lines, of which the

Quaternion is the Quotient.

SECTION 4 On Equality of Quaternions; and on the Plane

ofa Quaternion.

117. It is an immediate consequence ofthe foregoing con

ception of a Quaternion, that two quaternions, or two quotients

of vectors, supposed for simplicity to be all co-initial (18), are

regarded as being EQUAL to each other, or that the EQUATION,

g 8 OD OB
^V-M~ * \}L ~~~&quot;

9

y a OC OA

is by us considered and defined to hold good, when the two tri

angles, AOB and COD, are similar and similarly turned, and in

one common plane, as represented in the
^

annexed Fig. 35 : the RELATIVE LENGTH

(109), and the RELATIVE DIRECTION

(110), of the two lines, OA, OB, being

then in all respects the same as the re

lative length and the relative direction

of the two other lines, oc, OD.

118. Under the same conditions, we

shall write the following formula of direct similitude,

A AOB a COD ;

reserving this other formula,

A AOB oc AOB , or A A OB a A OB ,

which we shall call aformula of inverse simili

tude, to denote that the two triangles, AOB and

AOB , or A OB and A OB , although otherwise simi

lar (and even, in this case, equal,* on account

of their having a common side, OA or OA ), are

Fig. 35.

Fig. 36.

* That is to say, equal in absolute amount of area, but with opposite algebraic

signs (28). The two quotients OB : OA, and OB : OA, although not equal (110), will

soon be denned to be conjugate quaternions.

write also the formula,
A AOB a COD.

Under the same conditions, we shall
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oppositely turned (comp. Fig. 36), as if one were the reflexion

of the other in a mirror
;
or as if the one triangle were derived

(or generated) from the other, by a rotation of itsplane through
two right angles. We may therefore write,

OB OD .,.
=

,
II A AOB OC COD.

OA OC

119. When the vectors are thus all drawn from one com

mon origin o, the plane AOB of any two ofthem maybe called

the Plane ofthe Quaternion (or of the Quotient), OB: OA; and

of course also the plane of the inverse (or reciprocal) quater

nion (or of the inverse quotient), OA : OB. And any two qua

ternions^ which have a common plane (through o), may be said

to be Complanar* Quaternions, or complanar quotients, or

fractions
;
but any two quaternions (or quotients), which have

different planes (intersecting therefore in a right line through
the origin), may be said, by contrast, to be Diplanar.

120. Any two quaternions, considered as geometric frac
tions (101), can be reduced to a common denominator without

OTl

change of the value\ of either of them, as follows. Let and

be the two given fractions, or quaternions ; and if they be
OC

complanar (119), let OE be any lineiu their common plane ; but

if they be diplanar (see again 1 19), then let OE be any assumed

part of the line ofintersection of the two planes : so that, in

each case, the line OE is situated at once in the plane AOB, and

also in the plane COD. We can then always conceive two other

lines, OF, OG, to be determined so as to satisfy the two condi

tions of direct similitude (118),

A EOF oc AOB, AEOGOCCOD;

* It is, however, convenient to extend the use of this word, complanar, so as to

include the case of quaternions represented by angles in parallel planes. Indeed, as

all vectors which have equal lengths, and similar directions, are equal (2), so the

quaternion, which is a quotient of two such vectors, ought not to be considered as

undergoing any change, when cither vector is merely changed in position, by a trans

port without rotation.

f That is to say, the new or transformed quaternions will be respectively equal to

the old or given ones.

Q
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and therefore also the two equations between quotients (117,

118),
OF OB OG OD

OE OA OE OC

and thus the required reduction is effected, OE being the com

mon denominator sought, while OF, OG are the new or reduced

numerators. It may be added that if H be a new point in the

plane AOB, such that A HOE oc AOB, we shall have also,

OE OB OF

OH OA OE

and therefore, by 106, 107,

OD OB OG+OF OD OB OG OD OB OG

oc
~
OA

~
OE OC OA~OF oc OA~OH

ivhatever two geometric quotients (complanar or diplanar) may
be represented by OB : OA and OD : oc.

121. If now the two triangles AOB, COD are not only com

planar but directly similar (118), so that A AOB oc COD, we shall

evidently have A EOF oc EOG; so that we may write OF = OG

(or F = G, by 20), the two new lines OF, OG (or the two new

points F, G) in this case coinciding. The general construction

(120), for the reduction to a common denominator, gives there

fore here only one new triangle, EOF, and one new quotient,

OF : OK, to which in this case each (comp. 105) of the two given

equal and complanar quotients, OB : OA and OD : oc, is equal.

122. But if these two latter symbols (or the fractional

forms corresponding) denote two diplanar* quotients, then the

two new numerator lines, OF and OG, have different directions,

as being situated in two different planes, drawn through the new

denominator-line OE, without having either the direction of that

line itself, or the direction opposite thereto ; they are therefore

(by 2) unequal vectors, even if they should happen to be

equally long ; whence it follows (by 104) that the two new

quotients, Had therefore also (by 105) that the two old orgiven

quotients, are unequal, as a consequence of their diplanarity

* And therefore non scalar (108) ;
for a scalar, considered as a quotient (17),

has no determined plane, but must be considered as complanar with every geometric

quotient; since it may be represented (or constructed) by the quotient of two simi

larly or oppositely directed lines, in any proposed plane whatever.
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It results, then, from this analysis, that diplanar quotients of

vectors, and therefore that Diplanar Quaternions (119), are

always unequal ; a new and comparatively technical process

thus confirming the conclusion, to which we had arrived by

general considerations, and in (what might be called) a popular

way before, and which we had sought to illustrate (comp. Fig.

34) by the consideration of angles on a desk: namely, that a

Quaternion, considered as the quotient of two mutually inclined

lines in space, involves generally a Plane, as an essential part

(comp. 110) of its constitution, and as necessary to the com

pleteness of its conception.

123. We propose to use the mark

in

as a Sign of Complanarity, whether of lines or of quotients ;

thus we shall write the formula,

to express that the three vectors, a, j3, y, supposed to be (or to

be made) co-initial (18), are situated in one plane ; and the

analogous formula,

i \\\q, or
^Hlf

to express that the two quaternions, denoted here by q and q,

and therefore that the four vectors, a, /3, 7, S, are complanar

(119). And because we have just found (122) that diplanar

quotients are unequal, we see that one equation ofquaternions
includes two complanarities ofvectors; in such a manner that we

may write,

7 HI a, /3, and S|||a,/3, if - =;
7 o

the equation of quotients,
=

, being impossible, unless all
OC O A.

the four lines from o be in one common plane. We shall also

employ the notation

y.Hlfc

to express that the vector 7 is in (or parallel to) the plane of
the quaternion q.
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124. With the same notation for complanarity, we may
write generally,

a and
/3 being any two vectors, and x being any scalar ; be

cause, if a = OA and |3
= OB as before, then (by 15, 17) xa = OA ,

where A is some point on the indefinite right line through the

points o and A : so that the plane AOB contains the line OA .

For a similar reason, we have generally the following formula

of complanarity of quotients,

$1110

whatever two scalars x and y may be ; a and /3 still denoting

any two vectors.

125. It is evident (comp. Fig. 35) that

if A AOB oc COD, then A BOA oc DOC, and A AOC ex BOD
;

whence it is easy to infer that for quaternions, as well as for

ordinary or algebraic quotients,

if - = -, then, inversely, -^
= -L and alternately,

- = _
;

a 7 pc a p
it being permitted now to establish the converse ofthe last for

mula of 1 18, or to say that

. OB OD
if =

, then A AOB a COD.
OA oc

Under the same condition, by combining inversion with alter

nation, we have also this other equation,
- =

^.
i

126. If the sides, OA, OB, of a triangle AOB, or those sides

either way prolonged, be cut (as in

Fig. 37) by any parallel, A B or A
B&quot;,

to the base AB, we have evidently the

relations of direct similarity (118),

A A OB oc AOB, A A&quot;OB&quot; oc AOB ;

whence (comp. Art. 13 and Fig. 12)

it follows that we may write, for qua
ternions as in algebra, the general

equation, or identity,
1&amp;lt;lg

37
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xa a

where x is again any scalar, and a, |3 are any two vectors. It

is easy also to see, that for any quaternion q, and any scalar x,

we have the product (comp. 107),

_x$ j3 a/3 j3 a

^&quot;&quot;P&quot;a

=T =^ =
a ^&quot;a~^

so that, in the multiplication ofa quaternion by a scalar (as in

the multiplication of a vector by a scalar, 15), the orcfer o//^

factors is indifferent.

SECTION 5 On the Axis and Angle of a Quaternion ; and on

the Index of a Right Quotient, or Quaternion.

127. From what has been already said (111, 112), we are

naturally led to define that the Axis, or more fully that the

positive axis, ofany quaternion (or geometric quotient} OB : OA,

is a right lineperpendicular to the plane AOB of that quaternion ;

and is such that the rotation round this axis, from the divisor-

line OA, to the dividend-line OB, is positive : or (as we shall

henceforth assume) directed towards the right-hand,* like the

motion of the hands of a watch.

128. To render still more definite this conception of the

axis of a quaternion, we may add, 1st, that the rotation, here

spoken of, is supposed (112) to be the simplest possible, and

therefore to be in the plane of the two lines (or of the quater

nion), being also generally less than a semi-revolution in that

plane ; Ilnd, that the axis shall be usually supposed to be a

line ox drawn from the assumed origin o
;
and Illrd, that the

length of this line shall be supposed to be given, orjixed, and

to be equal to some assumed unit of length : so that the term

x, of this axis ox, is situated (by its construction) on a given

spheric surface described about the origin o as centre, which

surface we may call the surface of the UNIT-SPHERE.

129. In this manner, for every given non-scalar quotietit

* This is, of course, merely conventional, and the reader may (if he pleases) sub

stitute the left-hand throughout.
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(108), or for every given quaternion q which does not reduce

itself (or degenerate) to a mere positive or negative number, the

axis will be an entirely definite vector, which may be called an

UNIT-VECTOR, on account of its assumed length, and which we
shall denote*, for the present, by the symbol Ax . q. Employ

ing then the usual sign ofperpendicularity, J_ , we may now

write, for any two vectors a, |3, the formula :

Ax.j_a; Ax.2j_/3; or briefly, Ax.2_L (0.a a a (a

130. The ANGLE ofa quaternion, such as OB : OA, shall

simply be, with us, the angle AOB between the two lines, of

which the quaternion is the quotient; this angle being sup

posed here to be one of the usual kind (such as are considered

by Euclid) : and therefore being acute, or right, or obtuse (but

not of any class distinct from these), when the quaternion is a

non-scalar (108). We shall denote this angle ofa quaternion

q, by the symbol, L q ; and thus shall have, generally, the two

inequalities-^ following :

L q &amp;gt; ; L q &amp;lt; TT
;

where TT is used as a symbol for two right angles.

131. When the general quaternion, q, degenerates into a

scalar, x, then the axis (like the plane\) becomes entirely in

determinate in its direction; and the angle takes, at the same

time, either zero or two right angles for its value, according as

the scalar is positive or negative. Denoting then, as above, any
such scalar by x, we have :

* At a later stage, reasons will be assigned for denoting this axis, Ax .q, of a

quaternion q, by the less arbitrary (or more systematic) symbol, UVg ;
but for the

present, the notation in the text may suffice.

f In some investigations respecting complanar quaternions, and powers or roots

of quaternions, it is convenient to consider negative angles, and angles greater than

two right angles: but these may then be called AMPLITUDES
;
and the word &quot;An

gle,&quot;
like the word &quot;

Ratio,&quot; may thus be restricted, at least for the present, to its

ordinary geometrical sense.

I Compare the Note to page 114. The angle, as well as the axis, becomes in

determinate, when the quaternion reduces itself to zero ; unless we happen to know

a law, according to which the dividend-line tends to become null, in the transition

from - to -.
a a
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Ax . x = an indeterminate unit-vector ;

L x = 0, if x &amp;gt; ; L x =
TT, if x &amp;lt; 0.

132. Of- non-scalar quaternions, the most im- B

portant are those of which the angle is right ^ as in

the annexed Figure 38 ; and when we have thus,

OB 7T

q= , and OB_L_OA, or z.q
= -,

the quaternion q may then be said to be a RIGHT

QUOTIENT ;* or sometimes, a Right Quaternion.

(1.) If then a = OA and a OP, where o and A are two given (or fixed) points,

but P is a variable point, the equation

L
~a

=
~i

expresses that the locus of this point P is the plane through o, perpendicular to the

line OA
;

for it is equivalent to the formula ofperpendicularity p j_ a (129).

(2.) More generally, if /3= OB, B being any third given point, the equation,

expresses that the locus of P is one sheet of a cone of revolution, with o for vertex,

and OA for axis, and passing through the point B
;
because it implies that the angles

AOB and AOP are equal in amount, but not necessarily in one common plane.

(3.) The equation (coinp. 128, 129),

expresses that the /ocws of the variable point P is the given plane AOB ; or rather the

indefinite half-plane, which contains all the points P that are at once complanar
with the three given points o, A, B, and are also at the same side of the indefinite

right line OA, as the point B.

(4.) The system of the two equations,

a a a a

expresses that the point p is situated, either on the finite right Kne1e&, or on that line

prolonged through}*, but not through o; so that the locus of p may in this case be

said to be the indefinite half-line, or ray, which sets out from o in the direction of the

vector OB or (3 ;
and we may write p = xj3, x &amp;gt; (x being understood to be a sca

lar}, instead of the equations assigned above.

* Kcasons will afterwards be assigned, for equating such a quotient, or quater

nion, to a Vector; namely to the line which will presently (133) be called the Index

of the Right Quotient.



120 ELEMENTS OF QUATERNIONS. [BOOK II,

(5. ) This other system of two equations,

a a a a

expresses that the locus of P is the opposite ray from o
;

or that P is situated on the prolongation of the revec-

tor BO (1) ;
or that p=x(3, x &amp;lt; ;

or that pX
p = x(3 ,

x
&amp;gt; 0, if j3

= OB = -
13.

Fig- 33 6is -

(Comp. Fig. 33, 6fc.)

(6.) OfAer notations, for representing these and other geometric loci, will be found

to be supplied, in great abundance, by the Calculus of Quaternions ; but it seemed

proper to point out these, at the present stage, as serving already to show that even

the two symbols of the present Section, Ax. and L, when considered as Characteris

tics of Operation on quotients of vectors, enable us to express, very simply and con

cisely, several useful geometrical conceptions.

133. If a third line, 01, be drawn in the direction of the

axis ox of such a right quotient (and therefore perpendicular,

by 127, 129, to each of the two given rectangular lines, OA,

OB) ; and if the length of this new line 01 bear to the length

of that axis ox (and therefore also, by 128, to the assumed

unit of length) the same ratio, which the length ofthe dividend-

line, OB, bears to the length of the divisor-line, OA ; then the

line or, thus determined, is said to be the INDEX ofthe Eight

Quotient. And it is evident, from this definition of such an

Index, combined with our general definition (117, 118) of

Equality between Quaternions, that two right quotients are

equal or unequal to each other, according as their two index-

lines (or indices) are equal or unequal vectors.

SECTION 6 On the Reciprocal, Conjugate, Opposite, and Norm

of a Quaternion; and on Null Quaternions.

134. The RECIPROCAL (or the Inverse, comp. 119) of a

quaternion, such as q
=

, is that other quaternion,

I

which is formed by interchanging the divisor-line and the divi

dend-line ; and in thus passing from any non-scalar quater

nion to its reciprocal, it is evident that the angle (as lately
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defined in 130) remains unchanged, but that the axis (127,

128) is reversed in direction: so that we may write gene

rally,
a /3 a . j3Z
J3

= Z
a

;
*

/3

=
a

135. The product of two reciprocal quaternions is always

equal to positive unity ; and each is equal to the quotient of

unity divided by the other; because we have, by 106, 107,

j3 a )3 a a 3 a!:_: and -.*-. I.
a a a p p a a

It is therefore unnecessary to introduce any new or peculiar

notation, to express the mutual relation existing between a

quaternion and its reciprocal; since, if one be denoted by the

symbol q, the other may (in the present System, as in Alge

bra) be denoted by the connected symbol,* 1 : q t or -. We

have thus the two general formulas (comp. 134) :

1 1

q&quot;

q * k

?~

136. Without yet entering on the general theory of multi

plication and division of quaternions, beyond what has been

done in Art. 120, it may be here remarked that if any two

quaternions q and q be (as in 134) reciprocal to each other, so

that q -q= 1 (by 135), and if
q&quot;

be any third quaternion, then

(as in algebra), we have the general formula,

?&quot;:^?&quot;.? =?&quot;.i;

because if (by 120) we reduce q and q to a common denomina

tor a, and denote the new numerators by |3 and y, we shall have

(by the definitions in 106, 107),

&quot;. _ y . & _ i. _ x - &quot;

137. When two complanar triangles AOB, AOB , with a com-

* The symbol gr
l

,
for the reciprocal of a quaternion g-,

is also permitted in the

present Calculus
;
but we defer the use of it, until its legitimacy shall have been

established, in connexion with a general theory of powers of Quaternions.

R
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mon side OA, are (as in Fig. 36) inversely similar (118), so that

the formula A AOB oc AOB holds good, then the two unequal
, c

quotients,* and
, are said to be CONJUGATE QUATER-

OA OA

NIONS
;
and if the first of them be still denoted by q, then the

second, which is thus the conjugate of that^rs^, or ofany other

quaternion which is equal thereto, is denoted by the new sym
bol, K^i : in which the letter K may be said to be the Charac

teristic of Conjugation. Thus, with the construction above

supposed (comp. again Fig. 36), we may write,

OB OB T -. T-^OB= q ;
=

K&amp;lt;?
= K .

OA OA OA

138. From this definition of conjugate quaternions, it follows,

1st, that if the equation K hold good, then the (iniOB maybe

called (118) the reflexion of the line-on (and conversely, the latter line

the reflexion of theformer), with respect to the line OA
; Ilnd, that, under

the same condition, the line OA (prolonged if necessary) bisects per

pendicularly the line BB
,
in some point A 7

(as represented in Fig. 36) ;

and Illrd, that any two conjugate quaternions (like any two reciprocal

quaternions, comp. 134, 135) have equal angles, but opposite axes:

so that we may write, generally,

L^q=Lq\ Ax. Kq = - Ax.&amp;lt;?;

and thereforef (by 135),

Z.K&amp;lt;7
= Z.-; Ax.K&amp;lt;7 = Ax.-.

q q

139. The reciprocal of a scalar, x, is simply another scalar,

-, or or 1

, having the same algebraic sign, and in all other re-
x

speCts related to x as in algebra. But the conjugate K#, of a

scalar x, considered as a limit of a quaternion, is equal to that

scalar x itself; as may be seen by supposing the two equal but

opposite angles, AOB and AOB , in Fig. 36, to tend together to

* Compare the Note to page 112.

f It will soon be seen that these two last equations (138) express, that the con

jugate and the reciprocal, of any proposed quaternion 9, have always equal versors,

although they have in general unequal tensors.
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zero, or to two right angles. We may therefore write, gene

rally,
Kx = x, ifx be any scalar

;

and conversely*,

q
= a scalar, if Kq =

q

because then (by 104) we must have OB = OB
,
BB =O; and

therefore each of the two (now coincident) points, B, B
, must

be situated somewhere on the indefinite right line OA.O
140. In general, by the construction represented in the

same Figure, the sum (comp. 6) of the two numerators (or di

vidend-lines, OB and OB ), ofthe two conjugatefractions (or quo
tients, or quaternions), q and Kq (137), is equal to the double

of the line OA
; whence (by 106), the sum ofthose two conju

gate quaternions themselves is,

ir IT 2oA
Kq-rq =

q + Kq = --
;

\J A.

this sum is therefore always scalar, being positive if the angle

L q be acute, but negative if that angle be obtuse.

141. In the intermediate case, when the angle AOB is right,

the interval OA between the origin o and the line BB vanishes ;

and the two lately mentioned numerators, OB, OB , become two

opposite vectors, of which the sum is null (5) . Now, in gene

ral, it is natural, and will be found useful, or rather necessary

(for consistency with former definitions), to admit that a null

vector, divided by an actual vector, gives always a NULL QUA
TERNION as the quotient; and to denote this null quotient by
the usual symbol for Zero. In fact, we have (by 106) the

equation,

the zero in the numerator of the left-h&ml fraction represent

ing here a null line (or a null vector, 1,2); but the zero on the

right-hand side of the equation denoting a null quotient (or

quaternion). And thus we are entitled to infer that the sum,

* Somewhat later it will be seen that the equation Kq = q may also be written

as Vg = ;
and that this last is another mode of expressing that the quaternion,

q&amp;gt;

degenerates (131) into a scalar.
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K^ + q, or q + Kg, of a right-angled quaternion, or right quo
tient (132), and of its conjugate, is always equal to zero.

142. We have, therefore, the three following formulae,

whereof the second exhibits a continuity in the transition from

thefirst to the third :

I. . . q + Kq &amp;gt; 0, if L q &amp;lt;

-
5

II... + K-0 if L=\

III. . . q + Kg &amp;lt; 0, if L q &amp;gt;

^
.

And because a quaternion, or geometric quotient, with an ac-

taflr/ and^wzYe divisor-line (as here OA), cannot become equal to

zero unless its dividend-line vanishes, because (by 104) the

equation

B - o = -
requires the equation j3

= 0,
a a

if a be any actual and finite vector, we may infer, conversely, that

the sum q + Kg cannot oanish, without the line OA also vanish

ing ;
that is, without the lines OB, OB becoming opposite vectors,

and therefore the quaternion q becoming a right quotient (132).

We are therefore entitled to establish the three following con

verse formulae (which indeed result from the three former) :

I . . . if q +
K&amp;lt;7

&amp;gt; 0, then L q &amp;lt;

-
;

2i

II . . . if q +
K&amp;lt;7

= 0, then L q = -
;

2t

III . ..if
&amp;lt;7

+
K?&amp;lt;0,

then
zy&amp;gt;|.

143. When two opposite vectors (1), as ]3 and-)3, are both

divided by one common (and actual) vector, a, we shall say that

the two quotients,
thus obtained are OPPOSITE QUATERNIONS;

so that the opposite of any quaternion q, or of any quotient

j3 : a, may be denoted as follows (comp. 4) :
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while the quaternion q itselfmay, on the same plan, be denoted

(comp. 7) by the symbol + q, or + q. The sum of any two

opposite quaternions is zero, and their quotient is negative

unity; so that we may write, as in algebra (comp. again 7),

because, by 106 and 141,

The reciprocals of opposite quaternions are themselves oppo

site ; or in symbols (comp. 126),

1 1 , a a a
=

, because -5
=

~75~
= ~

73-

Opposite quaternions have opposite axes, and supplementary

angles (comp. Fig. 33, bis) ; so that we may establish (comp.

132, (5.) ) the two following general formulas,

L (- q)
= TT - L q 5

Ax . (- y)
= - Ax . q.

144. We may also now write, in full consistency with the

recent formula II. and II . of 142, the equation,

II&quot;. . . K^ = -
q, if z q =

-
;

and conversely* (comp. 138),

II
7

&quot;. . . if
K&amp;lt;7

= -
q, then L.1.q-Lq = .

In words, the conjugate of a right quotient, or ofa right-angled

(or right) quaternion (132), is the right quotient opposite

thereto ; and conversely, ifan actual quaternion (that is, one

which is not null) be opposite to its own conjugate, it must be

a right quotient.

(1.) If then we meet the equation,

,
,

or +
a a a a

we shall know that p a. a
;
and therefore (if a = OA, and p = OP, as before), that the

* It will be seen at a later stage, that the equation Kg- = q, or q + Kg- = 0,

may be transformed to this other equation, Sq = ;
and that, under this last form, it

expresses that the scalar part of the quaternion q vanishes : or that this quaternion

is a right quotient (132).
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locus of the point P is the plane through o, perpendicular to the line OA (as in 132,

(I-) )

(2.) On the other hand, the equation,

- = + -, or - =
a a a a

expresses (by 139) that the quotient p : a is a scalar ; and therefore (by 131) that

its angle L (p : a) is either or TT
;,

so that in this case, the locus of p is the indefi

nite right line through the two points o and A.

145. As the opposite of the opposite, or the reciprocal of the reci

procal, so also the conjugate ofthe conjugate, of any quaternion, is that

quaternion itself; or in symbols,

so that, by abstracting from the subject of the operation, we may write

briefly,
K=KK=1.

It is easy also to prove, that the conjugates of opposite quaternions are

themselves opposite quaternions ;
and that the conjugates ofreciprocals

are reciprocal: or in symbols, that

I...K(-q) = -Kq, or K?+K(- ?) = 0;
and

II. ..Ki=l:K&amp;lt;7, or ~Kq.K-=l.
? ?

(1.) The equation K(-g-) = -Kj is included (comp. 143) in this more general

formula, K^g-) = xKq, where x is any scalar; and this last equation (comp. 126)

may be proved, by simply conceiving that the two lines OB, OB
,
in Fig. 36, are

multiplied by any common scalar
;
or that they are both cut by any parallel to the

line BB .

(2.) To prove that conjugates of reci-

l

procals are reciprocal, or that
K&amp;lt;?

. K - =
1,

1
we may conceive that, as in the annexed /

Figure 36, bis, while we have still the
j

relation of inverse similitude, \

A AOB a* AOB (118, 137),

as in the former Figure 36, a new point c

is determined, either on the line OA itself,

or on that line prolonged through A, so as

to satisfy either of the two following con- F g- 36, bis.

nected conditions of direct similitude :

A BOC oc AOB
; A B OC ot AOB

;

or simply, as a relation between the four points o, A, B, c, the formula,

A BOO a AOB.



CHAP. I.]
GEOMETRICAL EXAMPLES. 127

For then we shall have the transformations,

1 OA ~OB _ OB _ OA _ 1
Iv == Jv ^^ iV- =

7 TT-
*

q OB OC OC OB &q

(3.) The two quotients, OB : OA, and OB : oc, that is to say, the quaternion q

itself, and the conjugate of its reciprocal, or* the reciprocal of its conjugate, have

the same angle, and the same axis ; we may therefore write, generally,

(4.) Since OA : OB and OA : OB have thus been proved (by sub-art. 2) to be

a pair of conjugate quotients, we can now infer this theorem, that any two geo

metric fractions, and
,
which have a common numerator a, are conjugate qua

ternions, if the denominator (3 of the second be the reflexion of the denominator j3 of

the first, with respect to that common numerator (comp. 138, I.); whereas it had

only been previously assumed, as a definition (137), that such conjugation exists,

under the same geometrical condition, between the two other (or inverse&quot;) fractions,

and
;
the three vectors a, j3, /3 being supposed to be all co-initial (18).

a a

(5.) Conversely, if we meet, in any investigation, the formula

OA : OB = K (OA : OB),

we shall know that the point B is the reflexion of the point B, with respect to the

line OA ; or that this line, OA, prolonged if necessary in either of two opposite direc

tions, bisects at right angles the line BB
,
in some point A ,

as in either of the two

Figures 36 (comp. 138, II.).

(6.) Under the recent conditions of construction, it follows from the most ele

mentary principles of geometiy, that the circle, which passes through the three points

A, B, c, is touched at B, ly the right line OB
;
and that this line is, in length, a mean

proportional between the lines OA, OC. Let then OD be such a geometric mean, and

let it be set off from o in the common direction of the two last mentioned lines, so

that the point D falls between A and c
;

also let the vectors oc, OD be denoted by the

symbols, y, d
;
we shall then have expressions of the forms,

d = aa, -y=a2
,

where a is some positive scalar, a &amp;gt; ;
and the vector /3 of B will be connected

(comp. sub-art. 2) with this scalar a, and with the vector a, by the formula,

OB OA oc OB a2a 3
=K

&amp;gt;,

or = K
,

or r = K .

oc OB OB OA j3 a

(7.) Conversely, if we still suppose that y
= a2

a, this last formula expresses the in

verse similitude oftriangles, A BOC oc AOB
;
and it expresses nothing more: or in other

*
It will be seen afterwards, that the common value of these two equal quater

nions, K - and
, may be represented by either of the two new symbols, Uq : Tgr,

q Kq
or q :

N&amp;lt;7 ;
or in words, that it is equal to the versor divided by the tensor ; and also

to the quaternion itself divided by the norm.
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words, it is satisfied by the vector (3 of every point B, -which gives that inverse simili

tude. But for this purpose it is only requisite that the length of OB should be (as

above) a geometric mean between the lengths of OA, oc
;
or that the two lines, OB,

OD (sub-art. 6), should be equally long: or finally, that B should be situated some

where on the surface of a sphere, which is described so as to pass through the point D

(in Fig. 86, bis^),
and to have the origin o for its centre.

(8). If then we meet an equation of the form,

a-a p p p= K-, or -K-=a2
,pa a a

in which a = OA, p = OP, and a is a scalar, as before, we shall know that the locus

of the point p is a spheric surface, with its centre at the point o, and with the vector

aa for a radius ; and also that if we determine a point c by the equation oc = a^a,

this spheric locus of p is a common orthogonal to all the circles APC, which can be

described, so as to pass through the two fixed points, A and c : because every radius

OP of the sphere is a tangent, at the variable point p, to the circle APC, exactly as

OB is to ABC in the recent Figure.

(9.) In the same Fig. 3G, b.is, the similar triangles show (by elementary princi

ples) that the length of BC is to that of AB in the sub-duplicate ratio of oc to OA
;
or

in the simple ratio of OD to OA
;
or as the scalar a to 1. If then we meet, in any re

search, the recent equation in p (sub-art. 8), we shall know that

length of(p a2
a) = a x length o/(p a) ;

while the recent interpretation of the same equation gives this other relation of the

same kind :

length ofp = a x length of a.

(10.) At a subsequent stage, it will be shown that the Calculus of Quaternions

supplies Rules of Transformation, by which we can pass from any one to any other

of these last equations respecting p, without (at the time) constructing any Figure,

or (immediately) appealing to Geometry : but it was thought useful to point out,

already, how much geometrical meaning* is contained in so simple a formula, as that

of the last sub- art. 8.

(11.) The product of two conjugate quaternions is said to be their common

NoRM,f and is denoted thus:

* A student of ancient geometry may recognise, in the two equations of sub-art.

9, a sort of translation, into the language of vectors, of a celebrated local theorem of

At-OLLONius of Perga, which has been preserved through a citation made by his early

commentator, Eutocius, and may be thus enunciated : Given any two points (as here

A and c) in a plane, and any ratio of inequality (as here that of 1 to a), it is possible

to construct a circle in the plane (as here the circle BDB
), such that the (lengths of

the) two right lines (as here AB and CB, or AP and CP), which are inflected from the

two given points to any common point (as B or p) of the circumference, shall be to

each other in the given ratio. (Avo SoOkvTwv atjfitiwv, K. r. \. Page 11 of Halley s

Edition of Apollonius, Oxford, MDCCX.)

f This name, NORM, and the corresponding characteristic, N, are here adopted,
as suggestions from the Theory ofNumbers ; but, in the present work, they will not
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It follows that
NKg&amp;gt;

= Nq ;
and that the norm of a quaternion is generally a positive

scalar : namely, the square of the quotient of the lengths of the two lines, of which

(as vectors) the quaternion itself is the quotient (112). In fact we have, by sub-art.

6, and by the definition of a norm, the transformations :

OB OB oc OB oc OB oc / OD\2

N =N = ,-
= = =

I ;

OA OA OB OA OB OA OA \OA /

As a limit, we may say that the norm of a mill quaternion is zero; or in symbols,

N0 = 0.

(12.) With this notation, the equation of the spheric locus (sub-art. 8), which

has the point o for its centre, and the vector aa for one of its radii, assumes the

shorter form :

N- = a3
;

or N = 1.
a aa

SECTION 7. On Radial Quotients; and on the Square ofa

Quaternion.

146. It was early seen (comp. Art. 2, and Fig. 4) that any
two radii, AB, AC, of any one circle, or sphere, are necessarily

unequal vectors ; because their directions differ. On the other

hand, when we are attending only to relative direction (110),

we may suppose that all the vectors compared are not merely
co-initial (18), but are also equally long ; so that if their com

mon length be taken for the unit, they are all radii, OA, OB, . .

ofwhat we have called the Unit- Sphere ( 1 28), described round

the origin as centre; and may all be

said to be Unit-Vectors (129). And
then the quaternion, which is the

quotient ofany one such vector divi

ded by any other, or generally the

quotient of any two equally long vec

tors, may be called a Radial Quotient; or sometimes sim

ply a RADIAL. (Compare the annexed Figure 39.)

be often wanted, although it may occasionally be convenient to employ them. For

we shall soon introduce the conception, and the characteristic, of the Tensor, 1q, of

a quaternion, which is of greater geometrical utility than the Norm, but of which it

will be proved that this norm is simply the square,

Compare the Note to sub-art. 3.
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147. The two Unit- Scalars, namely, Positive and Nega
tive Unity, may be considered as limiting cases of radial quo
tients, corresponding to the two extreme values, and TT, of the

angle AOB, or L q (131). In the intermediate

case, when AOB is a right angle, or L q = -,

as in Fig. 40, the resulting quotient, or qua

ternion, may be called (comp. 132) a Right
Radial Quotient; or simply, a RIGHT KA
DIAL. The consideration ofsuch right radials

Fig. 40.

will be found to be of great importance, in the whole theory
and practice of Quaternions.

1 48. The most important general property of the quotients
last mentioned is the following : that the Square ofevery Right
Radial is equal to Negative Unity ; it being understood that

we write generally, as in algebra,

o

Fig. 41.

and call this product of two equal quaternions the SQUARE of

each of them. For if, as in Fig. 41, we
describe a semicircle ABA , with o for cen

tre, and with OB for the bisecting radius,

then the two right quotients, OB : OA,

and OA : OB, are equal (comp. 117); and

therefore their common square is (comp.

107) the product,

OB\ 2 OA OB OA
= = = - 1 ;

OAy OB OA OA

where OA and OB may represent any
two equally long, but mutually rect

angular lines. More generally, the

Square of every Right Quotient

(132) is equal to a Negative Scalar; namely, to the negative of
the square of the number, which represents the ratio of the

lengths* of the two rectangular lines compared ; or to zero

Fi - 41 bis -

*
Hence, by 145, (11.), ?

? = -
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minus the square of the number which denotes (comp. 133) the

length of the Index of that Right Quotient : as appears from

Fig. 41, bis, in which OB is only an ordinate, and not (as be

fore) a radius, of the semicircle ABA ; for we have thus,

OB\ 2 OA ilenqth 0/*OB\2

= = -
7 ,

~
, if OB J_ OA.

OA/ OA \lengthofoLj

149. Thus every Right Radial is, in the present System,
one of the Square Roots ofNegative Unity ; and may there

fore be said to be one ofthe Values ofthe Symbol ^ - 1 ; which

celebrated symbol has thus a certain degree of vagueness, or at

least of indetermination, of meaning in this theory, on account

of which we shall not often employ it. For although it thus

admits of a perfectly clear and geometrically real Interpretation,

as denoting what has been above called a Right Radial Quo-

tient, yet the Plane ofthat Quotient, is arbitrary; and therefore

the symbol itself must be considered to have (in the present

system) indefinitely many values ; or in other words the Equa
tion,

g i,

has (in the Calculus of Quaternions) indefinitely many Roots,*

which are all Geometrical Reals : besides any other roots, of

a purely symbolical character, which the same equation may be

conceived to possess, and which may be called Geometrical

Imaginaries.^ Conversely, if q be any real quaternion, which

* It will be subsequently shown, that if
a;, y, z be any three scalars, ofwhich

the sum of the squares is unity, so that

#2 + y
2 + z2 = 1

;

and if z, j, k be any three right radials, in three mutually rectangular planes ; then

the expression,

q = ix jy + hz,

denotes another right radial, which satisfies (as such, and by symbolical laws to be

assigned) the equation q
2 = 1

;
and is therefore one ofthe geometrically real values

of the symbol V 1.

f Such imaginaries will be found to offer themselves, in the treatment by Qua
ternions (or rather by what will be called Biquaternions*), of ideal intersections, and

of ideal contacts, in geometry ; but we confine our attention, for the present, to
geo.-&amp;lt;

metrical reals alone. Compare the Notes to page 90.
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satisfies the equation g
2 = -

1, it must be a right radial; for if,

as in Fig. 42, we suppose that A AOB oc BOC,

we shall have

OC
.

OB

OB

OA

OC

OA

and this square of q cannot become equal to

negative unity, except by oc being = - OA,

or = OA in Fig. 4 1 ; that is, by the line OB

being at right angles to the line OA, and

being at the same time equally long, as in

Fig. 40.

(1.) If then we meet the equation,

Fig. 42.

where a = OA, and p =OP, as before, we shall know that the locus of the point P is

the circumference of a circle, with o for its centre, and with a radius which has the

same length as the line OA ; while the plane of the circle is perpendicular to that

given line. In other words, the locus of P is a great circle, on a sphere ofwhich the

centre is the origin ;
and the given point A, on the same spheric surface, is one of the

poles of that circle.

(2.) In general, the equation q
2 = a 2

,
where a is any (real) scalar, requires

that the quaternion q (if real) should be some right quotient (132) ;
the number

denoting the length of the index (133), of that right quotient or quaternion (comp.
Art 148, and Fig. 41, bis~). But the plane of q is still entirely arbitrary; and

therefore the equation

like the equation q*= 1, which it includes, must be considered to have (in the

present system) indefinitely many geometrically real roots.

(3.) Hence the equation,

in which we may suppose that a&amp;gt; 0, expresses that the locus of the point p is a

(new) circular circumference, with the line OA for its axis,* and with a radius of

which the length = a x the length of OA.

150. It may be added that the index (133), and the axis (128),

of a right radial (147), are the same; and that its reciprocal (134), its

conjugate (137), and its opposite (143), are all equal to each other. Con

versely, if the reciprocal of a given quaternion q be equal to the opposite

* It being understood, that the axis of a circle is a right line perpendicular to

the plane of that circle, and passing through its centre.
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of that quaternion, then q is a right radial; because its square, #
2

,

is then equal (comp. 136) to the quaternion itself, divided by its op

posite; and therefore (by 143) to negative unity. But the conjugate

of every radial quotient is equal to the reciprocal of that quotient ;

because if, in Fig. 36, we conceive that the three lines OA, OB, OB are

equally long, or if, in Fig. 39, we prolong the arc BA, by an equal arc

AB
, we have the equation,

OB OA 1

K# = = = -.
OA OB q

And conversely,*

if Kq =
-, or if qKq - \

,

then the quaternion q is a radial quotient.

SECTION 8. On the Versor of a Quaternion, or ofa Vector ;

and on some General Formula of Transformation.

151. When a quaternion q
=

j3 : a is thus a radial quotient

(146), or when the lengths of the two lines a and
]3 are equal,

the effect of this quaternion q, considered as a FACTOR (103),

in the equation qa =
/3,

is simply the turning of the multipli

cand-line a, in the plane ofq (119), and towards the hand de

termined by the direction of the positive axis Ax . q (129),

through the angle denoted by L q (130) ; so as to bring that

line a (or a revolving line which had coincided therewith) into

a new direction : namely, into that of the product-line ]3.
And

with reference to this conceived operation of turning-, we shall

now say that every Radial Quotient is a VERSOR.

152. A Versor has thus, in general, & plane, an axis, and

an angle ; namely, those of the Radial (146) to which it cor

responds, or is equal : the only difference between them being

a difference in the points of view\ from which they are respec

tively regarded ; namely, the radial as the quotient^ q, in the

*
Hence, in the notation of norms (145, (11.)), if Nj= 1, then q is a radial ;

and conversely, the norm of a radial quotient is always equal to positive unity.

f In a slightly metaphysical mode of expression it may be said, that the radial

quotient is the result of an analysis, wherein two radii of one sphere (or circle) are

compared, as regards their relative direction ; and that the equal versor is the instru

ment of a corresponding synthesis, wherein one radius is conceived to be genera ted, by

a certain rotation, from the other.
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formula, q = )3
: a ; and the versor as the (equal) factor, q, in

the converse formula, f3
= q.a , where it is still supposed that

the two vectors, a and /3, are equally long.

153. A versor, like a radial (1 47), cannot degenerate into a scalar,

except by its angle acquiring one or other of the two limit-values,

and IT. In the first case, it becomes positive unity ; and in the second

case, it becomes negative unity : each of these two unit-scalars (147)

being here regarded as a factor (or coefficient, comp. 12), which ope

rates on a line, to preserve or to reverse its direction. In this view, we

may say that - 1 is an Inversor ; and that every Right Versor (or ver

sor with an angle
= -

j

is a Semi-inversor :* because it half-inverts the

line on which it operates, or turns it through half of two right angles

(comp. Fig. 41). For the same reason, we are led to consider every

right versor (like every right radial, 149, from which indeed we have

just seen, in 152, that it differs only as factor differs from quotient),

as being one of the square-roots of negative unity : or as one of the va

lues of the symbol ^/
- 1 .

154. In fact we may observe that the effect of a right versor, con

sidered as operating on a line (in its own plane), is to turn that line,

towards a given hand, through a right angle. If then q be such a ver

sor, and ifqa = (3, we shall have also (comp. Fig. 41), q(3--a; so

that, if a be any line in the plane of a right versor q, we have the

equation,

q.qa = -a;

whence it is natural to write, under the same condition,

as in 149- On the other hand, no versor, which is not right-angled,

can be a value of ^ - 1
;
or can satisfy the equation q

2a --a, as Fig.

42 may serve to illustrate. For it is included in the meaning of this

last equation, as applied to the theory of versors, that a rotation

through 2 L q, or through the double of the angle of q itself, is equi-

* This word,
&quot;

semi-inversor,&quot; will not be often used ; but the introduction of it

here, in passing, seems adapted to throw light on the view taken, in the present work,

of the symbol V 1, when regarded as denoting a certain important class (149) of

Reals in Geometry. There are uses of that symbol, to denote Geometrical Imagi-

naries (comp. again Art. 149, and the Notes to page 90), considered as connected

with ideal intersections, and with ideal contacts ; but with such uses of V - 1 ^e

have, at present, nothing to do.
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valent to an inversion of direction ; and therefore to a rotation through
two right angles.

155. In general, if a be any vector, and if a be used as a

temporary* symbol for the number expressing its length; so

that a is here a positive scalar, which bears to positive unity,

or to the scalar + 1, the same ratio as that which the length of

the line a bears to the assumed unit of length (comp. 128);
then the quotient a : a denotes generally (comp. 16) a new vec

tor, which has the same direction as the proposed vector a, but

has its length equal to that assumed unit : so that it is (comp.

146) the Unit- Vector in the direction ofa. We shall denote this

unit-vector by the symbol, Ua ;
and so shall write, generally,

Ua = -, if a =
length of a ;

that is, more fully, if a be, as above supposed, the number

(commensurable or incommensurable, but positive) which re

presents that length, with reference to some selected standard.

156. Suppose now that q
=

j3 : a is (as at first) a general

quaternion, or the quotient ofany two vectors, a and
]3,

whether

equal or unequal in length. Such a Quaternion will not (gene

rally) be a Versor (or at least not simply such), according to the

definition lately given ; because its effect , when operating as a

factor (103) on a, will not in general be simply to turn that

line (151) : but will (generally) alter the length,^ as well as the

direction. But if we reduce the two proposed vectors, a and J3,

to the two wiit-vectors Ua and U/3 (155), and form the quotient

of these, we shall then have taken account of relative direction

alone : and the result will therefore be a versor, in the sense

lately defined (151). We propose to call the quotient, or the

versor, thus obtained, the versor-element, or briefly, the VER

SOR, of the Quaternion q ; and shall find it convenient to em-

* We shall soon propose a general notation for representing the lengths ofvectors,

according to which the symbol Ta will denote what has been above called a ; but

are unwilling to introduce more than one new characteristic of operation, such as K,

or T, or U, &c., at one time.

f By what we shall soon call call an act of tension, which will lead us to the

consideration of the tensor of a quaternion.
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ploy the same* Characteristic, U, to denote the operation of

taking the versor ofa quaternion, as that employed above to

denote the operation (155) of reducing a vector to the unit of

length, without any change of its direction. On this plan, the

symbol Uq will denote the versor ofq ; and the foregoing de

finitions will enable us to establish the General Formula :

-
a Ua

in which the two unit-vectors, Ua and Uj3, may be called, by

analogy, and for other reasons which will afterwards appear,

the versors^ of the vectors, a and )3.

157. In thus passing from a given quaternion, q, to its ver

sor, \]q, we have only changed (in general) the lengths of the

two lines compared, namely, by reducing each to the assumed

unit of length (155, 156), without making any change in their

directions. Hence the plane (119), the axis (127, 128), and

the angle (130), of the quaternion, remain unaltered in this

passage ; so that we may establish the two following general

formulae :

Z.
U&amp;lt;7

= L q ; Ax . Uy = Ax . q.

More generally we may write,

* For the moment, this double use of the characteristic U, to assist in denoting

both the unit-vector Ua derived from a given line a, and also the versor U^ derived

from a quaternion q, may be regarded as established here by arbitrary definition;

but as permitted, because the difference of the symbols, as here a and q, which serve

for the present to denote vectors and quaternions, considered as the subjects of these

two operations U, will prevent such double use of that characteristic from giving rise

to any confusion. But we shall further find that several important analogies are by

anticipation expressed, or at least suggested, when the proposed notation is employed.

Thus it will be found (comp. the Note to page 119), that every vector a may usefully

be equated to that right quotient, of which it is (133) the index ; and that then the

unit-vector ~Ua may be, on the same plan, equated to that right radial (147), which

is (in the sense lately defined) the versor of that right quotient. We shall also find

ourselves led to regard every unit-vector as the axis of a quadrantal (or right} rota

tion, in a plane perpendicular to that axis; which will supply another inducement,

to speak of every such vector as a versor. On the whole, it appears that there will

be no inconvenience, but rather a prospective advantage, in our already reading the

symbol Ua as &quot;versor of a /&quot; just as we may read the analogous symbol Uq, as

&quot;versor
ofq.&quot;

t Compare the Note immediately preceding.
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L q = L q, and Ax . q
= Ax . q, if \Jq

=
\Jq ;

the versor ofa quaternion depending solely on, but conversely

being sufficient to determine, the relative direction (156) of the

two lines, of which (as vectors) the quaternion itself is the quo
tient (112); or the axis and angle of the rotation, in the plane

of those two lines, from the divisor to the dividend (128) : so

that any two quaternions, which have equal versors, must also

have equal angles, and equal (or coincident) axes, as is ex

pressed by the last written formula. Conversely, from this

dependence of the versor Uq on relative direction* alone, it

follows that any two quaternions, of which the angles and the

axes are equal, have also equal versors; or in symbols, that

Uy=U&amp;lt;7,
if Lq ^Lq, and Ax.q = Ax.q.

For example, we saw (in 138) that the conjugate and the re

ciprocal of any quaternion have thus their angles and their

axes the same; it follows, therefore, that the versor of the

conjugate is always equal to the versor ofthe reciprocal; so

that we are permitted to establish the following general for-

mula,f

158. Again, because

it follows that the versor of the reciprocal ofany quaternion is,

at the same time, the reciprocal of the versor ; so that we may
write,

* The unit-vector Ua, which we have recently proposed (156) to call the versor

of the vector a, depends in like manner on the direction of that vector alone; which

exclusive reference, in each of these two cases, to DIRECTION, may serve as an addi

tional motive for employing, as we have lately done, one common name, VERSOR,
and one common characteristic, U, to assist in describing or denoting both the Unit-

Vector Ua itself, and the Quotient of two such Unit- Vectors, U&amp;lt;?

= U/3 : Ua
;

all

danger of confusion being sufficiently guarded against (comp. the Note to Art. 156),

by the difference of the two symbols, a and q, employed to denote the vector and the

quaternion, which are respectively the subjects of the two operations U ; while those

two operations agree in this essential point, that each serves to eliminate the quan
titative element, of absolute or relative length.

f Compare the Note to Art, 138,

T
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U-L-L; or U?.ui=l.
q IV ?

Hence, by the recent result (157), we have also, generally,

=
; or, U

Also, because the versor Uq is always a radial quotient (151,

152), it is (by 150) the conjugate ofits own reciprocal ; and

therefore at the same time (comp. 145), the reciprocal of its

own conjugate; so that the product of tivo conjugate versors,

or what we have called (145, (11.) ) their common NORM, is

always equal to positive unity ; or in symbols (comp. 150),

For the same reason, the conjugate of the versor of any qua
ternion is equal to the reciprocal of that versor, or (by what

has just been seen) to the versor of the reciprocal of that qua

ternion; and therefore also (by 157), to the versor of the con

jugate; so that we may write generally, as a summary of re

cent results, the formula :

each of these four symbols denoting a new versor, which has

the same plane, and the same angle, as the old or given versor

U&amp;lt;?,
but has an opposite axis, or an opposite direction of rota

tion . so that, with respect to that given Versor, it may na

turally be called a BEVERSOR.

159. As regards the versor itself, whether of a vector or of

a quaternion, the definition (155) of Ua gives,

U#a = + Ua, or = - Ua, according as x&amp;gt; or &amp;lt;

;

because (by 15) the scalar coefficient x preserves, in the first

case, but reverses, in the second case, the direction of the vec

tor a ; whence also, by the definition (156) of U^, we have

generally (comp. 126, 143),

&quot;Uxq
= + Uq, or = -

Uq, according as as &amp;gt; or &amp;lt; 0.

The versor of a scalar, regarded as the limit ofa quaternion

(131, 139), is equal to positive or negative unity (comp. 147,
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153), according as the scalar itself is positive or negative ; or

in symbols,

ILr = +1, or = -
1, according as x &amp;gt; or &amp;lt;

;

the plane and axis of each ofthese two unit scalars (147), con

sidered as versors (153), being (as we have already seen) inde

terminate. The versor of a null quaternion (141) must be re

garded as wholly arbitrary, unless we happen to know a law,*

according to which the quaternion tends to zero, before actually

reaching that limit
;
in which latter case, the plane, the axis,

and the angle of the versor} UO may all become determined, as

limits deduced from that law. The versor of a right quotient

(132), or of a right-angled quaternion (141), is always a right

radial (147), or a right versor (153) ; and therefore is, as such,

one of the square roots ofnegative unity (149), or one of the

values of the symbol &amp;lt;\f

1 ; while (by 150) the axis and the

index of such a versor coincide ; and in like manner its recipro

cal, its conjugate, and its opposite are all equal to each other.

160. It is evident that ifa proposed quaternion q be already

a versor (151), in the sense of being a radial (146), the ope
ration Staking its versor (156) produces no change ; and in

like manner that, if a given vector a be already an unit-vector,

it remains the same vector, when it is divided (155) by its own

length; that is, in this case, by the number one. For example,
we have assumed (128, 129), that the axis of every quaternion
is an unit-vector ; we may therefore write, generally, in the no

tation of 155, the equation,

U(Ax . q)
= Ax . q.

A second operation U leaves thus the result oftheirs* opera

tion U unchanged, whether the subject of such successive ope
rations be a line, or a quaternion; we have therefore the two

*
Compare the Note to Art. 131.

f When the zero in this symbol, UO, is considered as denoting a null vector (2),

the symbol itself denotes generally, by the foregoing principles, an indeterminate

unit-vector; although the direction of this unit-vector may, in certain questions, be

come determined, as a limit resulting from a law.
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following general formulae, differing only in the symbols of

that subject :

UUa=Ua;

whence, by abstracting (comp. 145) from the subject of the

operation, we may write, briefly and symbolically,

161. Hence, with the help of 145, 158, 159, we easily deduce

the following (among other) transformations of the versor of a qua

ternion :

U^ = Uxq, if x &amp;gt; ;
= -

TJxq, if x &amp;lt; 0.

We may also write, generally,

the parentheses being here unnecessary, because (as will soon be more

fully seen) the symbol ~Uq
2 denotes one common versor, whether we

interpret it as denoting the square of the versor, or as the versor of
the square, of q. The present Calculus will be found to abound in

General Transformations of this sort; which all (or nearly all), like

the foregoing, depend ultimately on very simple geometrical concep

tions ; but which, notwithstanding (or rather, perhaps, on account

of) this extreme simplicity of their origin, are often useful, as elements

of a new kind of Symbolical Language in Geometry: and generally,

as instruments of expression, in all those mathematical or physical
researches to which the Calculus of Quaternions can be applied. It

is, however, by no means necessary that a student of the subject,

at the present stage, should make himself familiar with all the

recent transformations of U^; although it may be well that he

should satisfy himself of their correctness, in doing which the fol

lowing remarks will perhaps be found to assist.

(1.) To give a geometrical illustration, which may also serve as a proof, of the

recent equation,
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we may employ Fig. 36, bis; in which, by 145, (2.), we have

J_ = OB OA =
OB

K OA OB OB
=

OD OA

(2.) As regards the equation, U(^
2
)
= (U#)

2
,
we have only to conceive that the

three lines OA, OB, oc, of Fig. 42, are cut (as in Fig. 42, bis~)
in

three new points, A , B , c
, by an unit-circle (or by a circle with

a radius equal to the unit of length), which is described about

their common origin o as centre, and in their common plane ; for

then if these three lines be called a, /3, y, the three new lines OA
,

OB
,
oc are (by 155) the three unit-vectors denoted by the sym

bols, Ua, U/3, Uy ;
and we have the transformations (comp. 148,

149),

rr = El = l = (2
B
_,)

2

=(u5)
2

.

a Ua OA \OA

(3.) As regards other recent transformations (161), although

we have seen (135) that it is not necessary to invent any new or

peculiar symbol, to represent the reciprocal of a quaternion, yet

if, for the sake of present convenience, and as a merely temporary

notation, we write

A A
Fig. 42, bis.

employing thus, for a moment, the letter R as a characteristic of reciprocation, or

of the operation of taking the reciprocal, we shall then have the symbolical equations

(comp. 145, 158) :

R2 = K2 = 1; RK = KR; KU = UR = KU= UK ;

but we have also (by 160), U2 = U
;
whence it easily follows that

U = RUR =RKU = RUK= KUR = KRU = KUK
= URK = UKR = UKUR = UKRU = (UK)

2 = &c.

(4.) The equation

U = lf, or simply, Up = U/3,a a

expresses that the locus of the point p is the indefinite right line, or ray (comp. 132,

(4.)), which is drawn from o in the direction O/OB,* but not in the opposite direc

tion
;
because it is equivalent to

U-^=l;
or

^|=0;
or p = x(3, x

&amp;gt; 0.

(5.) On the other hand the equation,

u = -u, or Up=-U/3,a a

expresses (comp. 132, (5.)) that the locus of p is the opposite ray from o ;
or that

it is the indefinite prolongation of the revector BO
;
because it may be transformed to

In 132, (4.), p, 119, OA and A ought to have been OB and B.
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U - = 1 : or L = TT ;
or p = x8&amp;gt; x&amp;lt;0.

ft (3

(6.) If a, /3, y denote (as in sub-art. 2) the three lines OA, OB, oc of Fig. 42 (or

y ( /3\
2

of Fig. 42, 6is), so that (by 149) we have the equation
- =

I 1
,
then this other

equation,

expresses generally that the locus of P is the system of the two last loci
;

or that it is

the whole indefinite right line, both ways prolonged, through the two points o and B

(comp. 144, (2.)).

(7.) But if it happen that the line y, or oc, like OA in Fig. 41 (or in Fig. 41,

fos), has the direction opposite to that of a, or of OA, so that the last equation takes

the particular form.

ufiY-i,
/

then U- must be (by 154) a right versor ; and reciprocally, every right versor, with
a

a plane containing a, will be (by 153) a value satisfying the equation. In this case,

therefore, the locus of the point P is (as in 132, (1,), or in 144, (1.)) the plane

through o, perpendicular to the line OA
;
and the recent equation itself, if supposed

to be satified by a real* vector p, may be put under either of these two earlier but

equivalent forms :

L*^-, pJ-.a 2

SECTION 9. On Vector-Arcs, and Vector-Angles, considered

as Representatives of Versors of Quaternions ; and on the

Multiplication and Division of any one such Versor by
another.

162. Since every unit-vector OA (129), drawn from the

origin o, terminates in some point A on the surface ofwhat we
have called the unit-sphere (128), that term A (1) may be

considered as a Representative Point, of which the position on

that surface determines, and may be said to represent, the

direction of the line OA in space ; or of that line multiplied

(12, 17) by any positive scalar. And then the Quaternion

which is the quotient (112) of any two such unit-vectors, and

which is in one view a Radial (146), and in another view a

Versor (151), may be said to have the arc ofa great circle,

AB, upon the unit sphere, which connects the terms of the two

*
Compare 149, (2.) ;

also the second Note to the same Article
;
and the Notes

to page 90.
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vectors, for its Representative Arc. We may also call this

arc a VECTOR ARC, on account of its having a definite direc

tion (comp. Art. 1), such as is indicated (for example) by a

curved arrow in Fig. 39 ;
and as being thus contrasted with

its own opposite, or with what may be called by analogy the

Revector Arc BA (comp. again 1) : this latter arc represent

ing, on the present plan, at once the reciprocal (134), and the

conjugate (137), of the former versor ; because it represents

the corresponding Reversor (158).

163. This mode of representation, ofversors ofquaternions

by vector arcs, would obviously be very imperfect, unless

equals were to be represented by equals. We shall therefore

define, as it is otherwise natural to do, that a vector arc, AB,

upon the unit sphere, is equal to every other vector arc CD

which can be derived from it, by simply causing (or conceiv

ing) it to slide* in its own great circle, without any change of

length, or reversal of direction. In fact, the two isosceles and

plane triangles AOB, COD, which have the origin o for their

common vector, and rest upon the chords of these two arcs as

bases, are thus complanar, similar, and similarly turned
;
so

that (by 117, 118) we may here write,

OB OD
A AOB oc COD, =

;

OA oc

the condition of the equality of the quotients (that is, here, of

the versors), represented by the two arcs, being thus satisfied.

We shall sometimes denote this sort of equality of two vector

arcs, AB and CD, by the formula,

AB = /x CD;

and then it is clear (comp. 125, and the ear

lier Art. 3) that we shall also have, by what

may be called inversion and alternation,

these two other formulae of arcual equality,

~BA=r&amp;gt;DC; AC = /N BD.

(Compare the annexed Figure 35, bis.)

* Some aid to the conception may here be derived from the inspection of Fig

34
;
in which two equal angles are supposed to be traced on the surface of one com-
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164. Conversely, unequal versors ought to be represented

(on the present plan) by unequal vector arcs; and accordingly,

we purpose to regard any two such arcs, as being, for the pre

sent purpose, unequal (comp. 2), even when they agree in

quantity, or contain the same number ofdegrees^ provided that

they differ in direction : which may happen in either of two

principal ways, as follows. For, 1st, they may be opposite

arcs of one great circle; as, for example, a vector arc AB, and

the corresponding revector arc BA ; and so may represent (162)

a versor, OB : OA, and the corresponding reversor, OA: OB, re

spectively. Or, Ilnd, the two arcs may belong to different

great circles, like AB and BC in Fig. 43 ; in which latter case,

they represent two radial quotients

(146) in different planes ; or (comp.

119) two diplanar versors, OB : OA,

and oc : OB ; but it has been shown

generally (122), that diplanar qua
ternions are always unequal: we
consider therefore, here again the

arcs, AB and EC, themselves, to be

(as has been said) unequal vectors.

165. In this manner, then, we may be led (comp. 122) to

regard the conception of a plane, or of imposition ofa great
circle on the unit sphere, as entering, essentially, in general,*
into the conception ofa vector-arc, considered as the representa
tive ofa versor (162). But even without expressly referring
to versors, we may see that if, in Fig. 43, we suppose that B
is the middle point of an arc AA of a great circle, so that in a

recent notation (163) we may establish the arcual equation,

r\ AB = r\ BA ,

we ought then (comp. 105) not to write also,

AB = BC
;

mon desk. Or the four lines OA, OB, oc, OD, of Fig. 35, may now be conceived to

be equally long; or to be cut by a circle with o for centre, as in the modification of
that Figure, which is given in Article 163, a little lower down.

* We say, in general; for it will soon be seen that there is a sense in which all

great semicircles, considered as vector arcs, may be said to be eqval to each other.
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because the two co-initial arcs, BA and BC, which terminate

differently, must be considered (comp. 2) to be, as vector-arcs,

unequal. On the other hand, if we should refuse to admit (as

in 163) that any two complanar arcs, if equally long, and simi

larly (not oppositely) directed, like AB and CD in the recent

Fig. 35, bis, are equal vectors, we could not usefully speak of

equality between vector-arcs as existing under any circum

stances. We are then thus led again to include, generally, the

conception of a plane, or of one great circle as distinguished

from another, as an element in the conception of a Vector-Arc.

And hence an equation between two such arcs must in general
be conceived to include two relations of co-arcuality. For

example, the equation AB = ^ CD, of Art. 163, includes gene

rally, as apart of its signification, the assertion (comp. 123)
that the four points A, B, c, D belong to one, common great cir

cle of the unit-sphere; or that each of the two points, cand D,

is co-arcual with the two other points, A and B.

166. There is, however, a remarkable case of exception, in which

two vector arcs may be said to be equal, although situated in diffe

rent planes: namely, when they are both great semicircles. In fact,

upon the present plan, every great semicircle, AA , considered as a

vector arc, represents an inversor (153); or it represents negative

unity (OA : OA = - a : a =
1), considered as one limit of a versor;

but we have seen (159) that such a versor has in general an indeter

minate plane. Accordingly, whereas the initial andfinal points, or

(comp. 1) the origin A and the term B, of a vector arc AB, are in ge

neral sufficient to determine the plane of that arc, considered as the

shortest or the most direct path (comp. 112, 128) from the one point
to the other on the sphere; in the particular case when one of the

two given points is diametrically opposite to the other, as A to A,

the direction of this path becomes, on the contrary, indeterminate.

If then we only attend to the effect produced, in the way of change

of position of a point, by a conceived vection (or motion) upon the

sphere, we are permitted to say that all great semicircles are equal
vector arcs; each serving simply, in the present view, to transport a

point from one position to the opposite; and thereby to reverse (like

the factor -
1, of which it is here the representative) the direction of

the radius which is drawn to that point of the unit sphere.

u
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(1.) The equation,
r&amp;gt; AA = n BB

,

in which it is here supposed that A is opposite to A, and B to B, satisfies evidently

the general conditions of co-arcuality (165); because the/owr points ABA B are all

on one great circle. It is evident that the same arcual equation admits (as in 163)
of inversion and alternation ; so that

o A A = &amp;lt;&quot;&amp;gt; B B, and n AB = A B .

(2.) We may also say (comp. 2) that all null arcs are equal, as producing no

effect on the position of a point upon the sphere ;
and thus may write generally,

o AA = r BB = 0,

with the alternate equation, or identity, r AB = o AB.

(3.) Every such null vector arc AA is a representative, on the present plan, of the

other unit scalar, namely positive unity, considered as another limit of a versor (153) ;

and its plane is again indeterminate (159), unless some law be given, according to

which the arcual vection may be conceived to begin, from a given point A, to an in

definitely near point B upon the sphere.

167. The principal use of Vector Arcs, in the present

theory, is to assist in representing, and (so to speak) in con

structing , by means of a Spherical Triangle^ the Multiplica

tion and Division of any two Diplanar VersorK (comp. 119,

164). In fact, any two such versors of quaternions (156),

considered as radial quotients (152), can easily be reduced (by
the general process of Art. 120) to the forms,

q = j3 : a = OB : OA, q = 7 :
|3
= oc : OB,

where A, B, c are corners of such a triangle on the unit sphere ;

and then (by 107), the former quotient multiplied by the lat

ter will give for product :

q .q
= y : a = OC : OA.

If then (on the plan of Art. 1) any two successive arcs, as AB

and BC in Fig. 43, be called (in relation to each other) vector

and provector ; while that third arc AC, which is drawn from

the initial point of the first to the final point of the second,

shall be called (on the same plan) the transvecior : we may now

say that in the multiplication of any one versor (of a quater

nion) by any other, if the multiplicand* q be represented (162)

by a vector-arc AB, and if the multiplier q be in like manner

*
Here, as in 107, and elsewhere, we write the symbol of the multiplier towards

the left-hand, and that of the multiplicand towards the right.
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represented by a provector-arc BC, which mode of representa
tion is always possible, by what has been already shown, then

the product q . q, or qq, is represented, at the same time, by
the transvector-arc AC corresponding.

168. One ofthe most remarkable consequences of this con

struction of the multiplication ofversors is the following : that

the value of the product oftwo diplanar versors (164) depends

upon the order ofthefactors ; or that q q and qq are unequal,

unless q be complanar (119) with q. For let AA and cc be

any two arcs of great circles, in different planes, bisecting each

other in the point B, as Fig. 43 is designed to suggest; so

that we have the two arcual equations (163),

^ AB = BA
, and BC = C B ;

then one or other of the two following alternatives will hold

good. Either, 1st, the two mutually bisecting arcs will both

be semicircles, in which case the two new arcs, AC and C A
,
will

indeed both belong to one great circle, namely to that of which

B is a pole, but will have opposite directions therein
; because,

in this case, A and c will be diametrically opposite to A and c,

and therefore (by 166, (1.) ) the equation

AC = A C
,

but not the equation
~ AC = C A

,

will be satisfied. Or, Ilnd, the arcs AA and cc
, which are

supposed to bisect each other in B, will not both be semicircles,

even if one of them happen to be such ; and in this case, the

arcs AC, C A will belong to two distinct great circles, so that they
will be diplanar, and therefore unequal, when considered as

vectors. (Compare the 1st and Ilnd cases of Art. 164.) In

each case, therefore, AC and C A are unequal vector arcs; but the

former has been seen (167) to represent the product qq\ and

the latter represents, in like manner, the other product, qq, of

the same two versors taken in the opposite order, because it is

the new transvector arc, when C B (= BC) is treated as the new

vector arc, and BA (= AB) as the new provector arc, as is indi

cated by the curved arrows in Fig. 43. The two products,
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qq and qq, are therefore themselves unequal, as above asserted,

under the supposed condition of diplanarity.

169. On the other hand, when the two factors, q and q,

are complanar versors, it is easy to prove, in several different

ways, that their products, qq and qq, are equal., as in algebra.

Thus we may conceive that the arc cc ,
in Fig. 43, is made to

turn round its middle point B, until the spherical angle CBA

vanishes ; and then the two new transvector-arcs, AC and cV,
will evidently become not only complanar but equal, in the

sense of Art. 163, as being still equally long, and being now

similarly directed. Or, in Fig. 35, bis, of the last cited Arti

cle, we may conceive a point E, bisecting the arc BC, and there

fore also the arc AD, which is commedial therewith (comp.
Art. 2, and the second Figure 3 of that Article) ; and then,

if we represent the one versor q by either of the two equal

arcs, AE, ED, we may at the same time represent the other

versor q by either of the two other equal arcs, EC, BE ;
so that

the one product, qq, will be represented by the arc AC, and

the other product, qq , by the equal arc BD. Or, without re

ference to vector arcs, we may suppose that the two factors

are,

q =
/3: a = OB : OA,

&amp;lt;/

= j : a= OC : OA,

OA, OB, oc being any three complanar and equally long right

lines (see again Fig. 35, bis) ;
for thus we have only to deter

mine a fourth line, S or OD, ofthe same length, and in the same

plane, which shall satisfy the equation S : 7 =
/3

: a (117), and

therefore also (by 125) the alternate equation, o :
j3
= 7 : a ;

and it will then immediately follow* (by 107), that

We may therefore infer, for any two versors of quaternions, q

and q\ the two following reciprocal relations :

* It is evident that, in this last process of reasoning, we make no -use of the sup

posed equality of lengths of the four lines compared ;
so that we might prove, in ex

actly the same way, that qq qq if
&amp;lt;/ | j | q (123), without assuming that these two

complanar factors, or quaternions, q and q ,
are versors.
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I.. .q q
= qq ,

if ? ||| &amp;lt;/ (123) ;

II. . . if q q
= qq , then ^ |[| y (168) ;

convertibility offactors (as regards their places in the product)

being thus at once a consequence and a proof of complanarity.

170. In the 1st case of Art. 168, the factors q and q are both

right versors (153) ;
and because we have seen that then their two

products, q q and qq ,
are versors represented by equally long but op

positely directed arcs of one great circle, as in the 1st case of 164, it

follows (comp. 162), that these two products are at once reciprocal

(134), and conjugate (137), to each other; or that they are related

as versor and reversor (158). We may therefore write, generally,

I. . . =K
,

and II. .. =
*

if q anc] q be any two right versors; because the multiplication of

any two such versors, in two opposite orders, may always be repre
sented or constructed by a Figure such as that lately numbered

43, in which the bisecting arcs AA and cc are semicircles. The Ilnd

formula may also be thus written (comp. 135, 154):

III. .. if * = -!, and q *=-\, then qq.qq =+I;

and under this form it evidently agrees with ordinary algebra, be

cause it expresses that, under the supposed conditions,

q q.qq = q*.q*;

but it will be found that this last equation is not an identity, in the

general theory of quaternions.

171. If the two bisecting semicircles cross each other at right

angles, the conjugate products are represented by two quadrants,

oppositely turned, of one great circle. It follows that if two right

versors, in two mutually rectangular planes, be multiplied together in two

opposite orders, the two resulting products will be two opposite right

versors, in a third plane, rectangular to the twoformer; or in symbols,
that

if q*
- -

\, q
2 = -

1, and Ax. q a. Ax. q,

then

(? &amp;lt;?)

2 =
(?&amp;lt;?? i, &amp;lt;?*

=-& \

and
Ax. q q -i- Ax. q, Ax. q q J- Ax. q .

In this case, therefore, we have what would be in algebra a paradox,

namely the equation,
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if q and q be any two right versors, in two rectangular planes ; but we

see that this result is not more paradoxical, in appearance, than the

equation

qq^-Mi
which exists, under the same conditions. And when we come to ex

amine what, in the last analysis, may be said to be the meaning of this

last equation, we find it to be simply this : that any two quadrantal or

right rotations, in planes perpendicular to each other, compound them

selves into a third right rotation, as their resultant, in a plane perpendi

cular to each of them: and that this third or resultant rotation has

one or other of two opposite directions, according to the order in which

the two component rotations are taken, so that one shall be successive

to the other.

172. We propose to return, in the next Section, to the

consideration of such a System of Right Versors, as that which

we have here briefly touched upon : but desire at present to

remark (comp. 167) that a spherical triangle ABC may serve to

construct, by means Q? representative arcs (162), not only the

multiplication, but also the division, ofany one oftwo diplanar

versors (or radial quotients) by the other. In fact, we have

only to conceive (comp. Fig. 43) that the vector arc AB repre

sents a given divisor, say q, or j3
: a, and that the transvector

arc AC (167) represents a given dividend, suppose q&quot;,
or j : a;

for then the projector arc BC (comp. again 167) will represent,

on the same plan, the quotient of these two versors, namely

q&quot;

: q, or y : /3 (106), or the versor lately called q ; since we

have generally, by 106, 107, 120, for quaternions, as in alge

bra, the two identities :

(q&quot;: q).q =
q&quot;

, ? ? : ?
= ?

173. It is however to be observed that, for reasons already as

signed, we must not employ, for diplanar versors, such an equation

as q. (q&quot;: q]
=

q&quot; , because we have found (168) that, for such ver

sors, the ordinary algebraic identity, qq
f =q q, ceases to be true. In

fact by 169, we may now establish the two converse formulas:

I. .. q(q&quot;:q)=q&quot;,
if

3&quot; III? (123);

II. . . if
q(q&quot;:q)

=
q&quot;,

then
q&quot;

HI q.

Accordingly, in Fig. 43, if q, q , q&quot;
be still represented by the

arcs AB, BC, AC, the product q (q&quot;
: q], or qq

f

,
is not represented by
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AC, but by the different arc C A (168), which as a vector arc has been

seen to be unequal thereto: although it is true that these two last

arcs, AC and C A
,
are always equally long, and therefore subtend

equal angles at the centre o of the unit sphere; so that we may write,

generally, for any two versors (or indeed for any two quaternions),*

q and
q&quot; ,

the formula,

Lq(q&quot;:q)
=

Lq&quot;.

174. Another mode of Representation of Versors, or rather two

such new modes, although intimately connected with each other,

may be briefly noticed here.

1st. We may consider the angle AOB, at the centre o of the unit-

sphere, when conceived to have not only a definite quantity, but also

a determined plane (110), and a given direction therein (as indicated

by one of the curved arrows in Fig. 39, or by the arrow in Fig. 33),

as being what may be called by analogy a Vector-Angle ; and may

say that it represents, or that it is the Representative Angle of, the

Versor OB : OA, where OA, OB are radii of the unit- sphere.

Ilnd. Or we may replace this rectilinear angle AOB at the centre,

by the equal Spherical Angle AC B, at what may be

called the Positive Pole of the representative arc AB
;

so that C A. and O B are quadrants; and the rotation,

at this pole c ,
from the first of these two quadrants

to the second (as seen from a point outside the

sphere), has the direction which has been selected

(111, 127) for the positive one, as indicated in the

annexed Figure 44: and then we may consider this

spherical angle as a new Angular Representative of the same versor q,

or OB : OA, as before.

175. Conceive now that after employing & first spherical trian

gle ABC, to construct (as in 167) the multiplication of any one given
versor q, by any other given versor q , we form a second or polar

triangle, of which the corners A
,
B

,
c shall be respectively (in the

sense just stated) the positive poles of the three successive sides, BC,

CA, AB, of the former triangle ;
and that then we pass to a third tri

angle AW, as part of the same lune B B&quot; with the second, by tak

ing for B&quot; the point diametrically opposite to B
; so that B&quot; shall be

* It will soon be seen that several of the formulae of the present Section, respect

ing the multiplication and division of versors, considered as radial quotients (151),

require little or no modification, in the passage to the corresponding operations on

quaternions, considered as general quotients of vectors (112).
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the negative pole of the arc CA, or the positive pole of what

called (167) the transvector-arc AC: also let

c&quot; be, in like manner, the point opposite

to c on the unit sphere. Then we may not

only write (comp. 129),

Ax . q = oc ,
Ax . q = OA ,

Ax . q q = OB&quot;,

but shall also have the equations,

[BOOK ii.

was lately

r B

these three spherical angles, namely the two

base-angles at c and A , and the external

vertical angle at
B&quot;,

of the new or third

triangle AW, will therefore represent, re

spectively, on the plan of 174, II., the mul

tiplicand, q, the multiplier, q, and the pro

duct, q q. (Compare the annexed Figure 45.)

176. Without expressly referring to the former triangle ABC,

we can connect this last construction of multiplication of versors (175)

with the general formula (107), as follows.

Let a and ft be now conceived to be two unit-tangents* to the

sphere at c
, perpendicular respectively to

the two arcs C B&quot; and C A
, and drawn to

wards the same sides of those arcs as the

points A and B respectively; and let two

other unit-tangents, equal to these, and

denoted by the same letters, be dra\vn (as

in the annexed Figure 45, bis) at the points

B&quot; and A
,
so as to be normal there to the

same arcs C B&quot; and cV, and to fall towards

the same sides of them as before. Let also

two other unit-tangents, equal to each B /

other, and each denoted by 7, be drawn at

the two last points B&quot; and A
,
so as to be both perpendicular to the

arc A
B&quot;,

and to fall towards the same side of it as the point c . Then

(comp. 174, II.) the two quotients, /3 : a and 7 : /3, will be equal to the

two versors, q and q, which were lately represented (in Fig. 45) by the

* By an unit tangent is here meant simply an unit line (or unit vector, 129) so

drawn as to be tangential to the unit-sphere, and to have its origin, or its initial

point (1), on the surface of that sphere, and not (as we have usually supposed) at

the centre thoreof.

Fig. 45, bis.
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two base angles, at c and A
, of the spherical triangle A B V

; the pro

duct, q q, of these two versors, is therefore (by 107) equal to the third

quotient, 7 : a
;
and consequently it is represented^ as before, by the

external vertical angle C VA of the same triangle, which is evidently

equal in quantity to the angle of this third quotient, and has the same

axis
OB&quot;,

and the same direction of rotation, as the arrows in Fig. 45,

bis, may assist to show.

177. In each of the two last Figures, the internal vertical angle

at B&quot; is thus equal to the Supplement, TT - /_ q q, of the angle of the

product; and it is important to observe that the corresponding ro

tation at the vertex
B&quot;, from the side B&quot;A to the side B&quot;C , or (as we

may briefly express it) from the point A to the point c
,
is positive; a

result which is easily seen to be a general one, by the reasoning of

the foregoing Article.* We may then infer, generally, that when

the multiplication ofany two versors is constructed by a spherical trian

gle, of which the two base angles represent (as in the two last Articles)

the factors, while the external vertical angle represents the product,

then the rotation round the axis
(OB&quot;) of that product q q, from the

axis (OA ) of the multiplier q
f

,
to the axis (oc

r

) of the multiplicand q, is

positive: whence it follows that the rotation round the axis Ax. q

of the multiplier, from the axis Ax. q of the multiplicand, to the

axis Ax. q q of the product, is also positive. Or, to express the

same thing more fully, since the only rotations hitherto considered

have been plane ones (as in 128, &c.), we may say that if the two

latter axes be projected on a plane perpendicular to the former, so as

still to have a common origin o, then the rotation round Ax. q ,

from the projection of Ax. q to the projection of Ax. q q, will be di

rected (with our conventions) towards the right hand.

178. We have therefore thus a new mode ofgeometrically

exhibiting the inequality of the two products, q q and^ , of two

diplanar versors (168), when taken as factors in two different

orders. For this purpose, let

Ax.g=op, AX.&amp;lt;/=OQ, Ax. q q
= OR;

and prolong to some point s the arc PR of a great circle on the

unit sphere. Then, for the spherical triangle PQR, by prin-

* If a person be supposed to stand on the sphere at
B&quot;,

arid to look towards the

arc A C
,

it would appear to him to have a right-handed direction, which is the one

here adopted as positive (127).

X
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ciples lately established, we shall have (comp. 175) the follow

ing values of the two internal base angles at P and Q, and of

the external vertical angle at R :

RPQ = L q ; PQR = L q &amp;gt;

SRQ = L qq ;

and the rotation at Q, from the side QP to the side QR will be

right-handed. Let fall an arcual perpendi- s

cular, RT, from the vertex R on the base PQ,

and prolong this perpendicular to R
,
in such

a manner as to have

r\ RT = ~ TR ;

p
also prolong PR to some point s . We shall

then have a new triangle PQR , which will

be a sort of reflexion (comp. 138) of the old

one with respect to their common base PQ ;

and this new triangle will serve to construct

the new product, qq. For the rotation at p

from PQ to PR will be right-handed, as it ought to be ; and

we shall have the equations,

so that the new external and spherical angle, QR S , will repre

sent the new versor, qq ,
as the old angle SRQ represented the

old versor, qq, obtained from a different order of the factors.

And although, no doubt, these two angles, at R and R , are

always equal in quantity, so that we may establish (comp. 1 73)

the generalformula,

yet as vector angles (174), and therefore as representatives of
versors, they must be considered to be unequal: because they
have different planes, namely, the tangent planes to the sphere
at the two vertices R and R ; or the two planes respectively

parallel to these, which are drawn through the centre o.

179- Division of Versors (comp. 172) can be constructed by
means of Representative Angles (174), as well as by representative arcs

(162). Thus to divide
q&quot; by q, or rather to represent such division

geometrically, on a plan entirely similar to that last employed for
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multiplication, we have only to determine the two points P and R,

in Fig. 46, by the two conditions,

OP = Ax.
,

OR = Ax.
2&quot;,

and then to find a third point Q, by the two angular equations,

RPQ = L q, QRP = w - L
q&quot;,

the rotation round P from PR towards PQ being positive; after which

we shall have,

Ax.
(q&quot;

: q}= OQ; L
(q&quot;

: q)
= PQR.

(1.) Instead of conceiving, in Fig. 46, that the dotted line RTK
,
which connects

the vertices of the two triangles, with PQ for their common base (178), is an arc of
a great circle, perpendicularly bisected by that base, we may imagine it to be an arc

of a small circle, described with the point P for its positive pole (comp. 174, II.).

And then we may say that the passage (comp. 1 73) from the versor
q&quot;,

or q q, to

the unequal versor q (9&quot;
: q), or qq, is geometrically performed by a Conical Rota

tion of the Axis Ax.
q&quot;,

round the axis Ax. q, through an angle = 2 L q, without

any (quantitative) change of the angle Lq&quot; &amp;gt;

so that we have, as before, the general

formula (comp. again 173),

Lq(q&quot; q) = Lq&quot;.

(2.) Or if we prefer to employ the construction of multiplication and division by

representative arcs, which Fig. 43 was designed to illustrate, and conceive that a

new point c&quot; is determined in that Figure by the condition &amp;lt;&quot;&amp;gt; A C&quot;
= n C A

,
we may

then say that in the passage from the versor
q&quot;,

which is represented by AC, to the

versor q (9&quot;
: q), represented by C A or by A C

,
the representative arc of q&quot;

is made

to move, without change of length, so as to preserve a constant inclination* to the

representative arc AB of q, while its initial point describes the double of that arc AB,

in passing from A to A .

(3.) It maybe seen, by these few Examples, that if, even independently of some

new characteristics of operation, such as K and U, new combinations of old symbols,

such as
q(q&quot;

: q), occur in the present Calculus, which are not wanted in Algebra,

they admit for the most part of geometrical interpretations, of an easy and interest -

ing kind
;
and in fact represent conceptions, which cannot well be dispensed with,

and which it is useful to be able to express, with so much simplicity and conciseness.

(Compare the remarks in Art. 161
;
and the sub-articles to 132, 145.)

180. In connexion with the construction indicated by the

two Figures 45, it may be here remarked, that if ABC be any

spherical triangle, and if A , B , c be (as in 175) the positive

poles of its three successive sides, BC, CA, AB, then the rotation

(comp. 177, 179) round A from B to c ,
or that round B from

* In a manner analogous to the motion of the equator on the ecliptic, by luni-

solar precession, in astronomy.
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c to A , &c., is positive. The easiest way, perhaps, of seeing

the truth of this assertion, is to conceive that if the rotation

round A from B to c be not already positive, we make it such,

by passing to the diametrically opposite triangle on the sphere,

which will not change the poles A , B , c . Assuming then that

these poles are thus the near ones to the corresponding corners

of the given triangle, we arrive without any difficulty at the

conclusion stated above : which has been virtually employed
in our construction of multiplication (and division) of versors,

by means ofRepresentative Angles (1 75, 176) ; and which may
be otherwise justified (as before), by the consideration of the

unit-tangents of Fig. 45, bis.

(1.) Let then a, /3, y be any three given unit vectors, such that the rotation

round the first, from the second to the third, is positive (in the sense of Art. 177);

and let a
, /3 , y be three other unit vectors, derived from these by the equations,

a = Ax . (y : /3), /3
= Ax . (a : y), / = Ax . Q3 : a) ;

then the rotation round a
,
from j3 to y ,

will be positive also; and we shall have

the converse formula?,

= Ax.(y :/5 ), /3
= Ax.(a :y ) f y = Ax . (/3 : a).

(2.) If the rotation round a from j3 to y were given to be negative, a
, /3 , y

being still deduced from those three vectors by the same three equations as before,

then the signs of a, /3, y would all require to be changed, in the three last (or reci

procal^) formulae
;
but the rotation round a

,
from /3 to y ,

would still be positive.

(3.) Before closing this Section, it may be briefly noticed, that it is sometimes

convenient, from motives of analogy (comp. Art. 5), to speak of the Transvector-

Arc (167), which has been seen to represent & product of two versors. as being the

ARCHAT, SUM of the two successive vector-arcs, which represent (on the same plan)

the factors ; Provector being still said to be added to Vector : but the Order of such

Addition of Diplanar Arcs being not now indifferent (168), as the corresponding

order had been early found (in 7) to be, when the vectors to be added were right

lines.

(4.) We may also speak occasionally, by an extension of the same analogy, of

the External Vertical Angle of a spherical triangle, as being the SPHERICAL SUM of

the two Base Angles of that triangle, taken in a suitable order of summation (comp.

Fig. 46); the Angle which represents (174) the Multiplier being then said to be

added (as a sort of Angular Provector) to that other Vector-Angle which represents

the Multiplicand; whilst what is here called the sum of these two angles (and is,

with respect to them, a species of Transvector-Angle*) represents, as has been proved,

the Product.

(5.) This conception of angular transvsction becomes perhaps a little more clear,

when (on the plan of 174, 1.) we assume the centre o as the common vertex of three

angles AOB, BOG, AOC, situated generally in three different planes. For then we may
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conceive a revolving radius to be either carried by two successive angular motions,

from OA to OB, and thence to oc
;
or to be transported immediately, by one such

motion, from the first to the third position.

(6.) Finally, as regards the construction indicated by Fig. 45, bis, in which tan

gents instead of radii were employed, it may be well to remark distinctly here, that

A B&quot;C
,
in that Figure, may be any given spherical triangle, for which the rotation

round B&quot; from A to c is positive (177); and that then, if the two factors, q and q ,

be defined to be the two versors, of which the internal angles at c and A are (in the

sense of 174, II.) the representatives, the reasonings of Art. 176 will prove, without

necessarily referring, even in thought, to any other triangle (such as ABC), that the

external angle at B&quot; is (in the same sense) the representative of the product, q q, as

before.

SECTION 10. On a System of Three Right Versors, in Three

Rectangular Planes; and on the Laws of the Symbols,

i,j,k.

181. Suppose that 01, oj, OK are any three given and co-

initial but rectangular unit-lines, the rotation round the first

from the second to the third being positive; and let 01 , oj ,

OK be the three unit-vectors respectively opposite to these, so

that

oi = or, oj oj, OK = OK,

Let the three new symbols i,j, k denote a system (comp. 172)

of three right versors, in three mutually rectangular planes,

with the three given lines for their respective axes; so that

and

= OK:OJ, =01: OK,

as Figure 47 may serve to illustrate.

We shall then have these other expres
sions for the same three versors :

oj : OK

j = OK : 01

k = 01 : OJ

OK : oj = OJ : OK

01 : OK = OK : 01

oj : 01 = 01 : oj ;

while the three respectively opposite versors may be thus ex

pressed :

- i = OJ : OK = OK : oj = oj : OK = OK : oj ;

-j - OK : 01 = 01 : OK = OK : 01 = 01 : OK
;

- k = 01 : oj = oj : 01 01 : oj = oj : 01 .
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And from the comparison of these different expressions seve

ral important symbolical consequences follow, which it will be

worth while to enunciate separately here, although some of

them are virtually included in the results of former Sections.

182. In tliQjirst place, since

i
2 = (oj : OK) . (OK : oj)

= oj : OJ, &c.,

we deduce (comp. 148) the following equal values for the

squares of the new symbols:

I...*i--l; / = -!; *--!;
as might indeed have been at once inferred (154), from the

circumstance that the three radial quotients (146), denoted here

by i,j, k, are all right versors (181).

In the second place, since

ij= (OJ:OK ) .(OK :OI)
= oj : 01, &c.,

we have the following values for the products of the same three

symbols, or versors, when taken tivo by two, and in a certain

order of succession (comp. 168, 171) :

J.JL. 11 = rt
J

1ft = 1 \ K1 J

But in the third place (comp. again 171), since

j . i = (01 : OK) . (OK : oj) = 01 : oj, &c.,

we have these other and contrasted formula, for the binary

products of the same three right versors, when taken as fac

tors with an opposite order :

Hence, while the square of each of the three right versors, de

noted by these three new symbols, ijk, is equal (154) to nega
tive unity, the product of any two of them is

equal either to the third itself, or to the oppo- ,

site (171) of that third versor, according as

the multiplier precedes orfollows the multipli

cand, in the cyclical succession, \7.

* J) k, i, j, . . .
Fig. 47, bit.

which the annexed Figure 47, bis, may give some help towards

remembering.
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(1.) To connect such multiplications oft,,/, k with the theory of representative

arcs (162), and of representative angles (174), we may regard any one of the four

quadrantal arcs, JK, KJ
,
J K

,
K J, in Fig. 47, or any one of the four spherical right

angles, JIK, KIJ
,
J IK

,
K IJ, which those arcs subtend at their common pole i, as re

presenting the versor i
;
and similarly for./ and k, with the introduction of the point

i opposite to i, which is to be conceived as being at the back of the Figure.

(2.) The squaring of
2,

or the equation i
2 = -

1, comes thus to be geometrically

constructed by the doubling (comp. Arts. 148, 154, and Figs. 41, 42) of an arc, or of

an angle. Thus, we may conceive the quadrant KJ to be added to the equal arc JK,

their sum being the great semicircle Jj
,
which (by 166) represents an inversor (153),

or negative unity considered as a, factor. Or we may add the right angle KIJ to the

equal angle JIK, and so obtain a rotation through two right angles at the pole i, or

at the centre o; which rotation is equivalent (comp. 154, 174) to an inversion of

direction, or to a passage from the radius OJ, to the opposite radius oj .

(3.) The multiplication ofj by i,
or the equation ij

=
k, may in like manner

be arcually constructed, by the addition of K J, as a provector-arc (167), to IK as

a vector-arc (162), giving u, which is a representative of k, as the transvector-arc,

or arcual-sum (180, (3.) ). Or the same multiplication may be angularly con

structed, with the help of the spherical triangle UK ;
in which the base-angles at I

and J represent respectively the multiplier, i, and the multiplicand, j, the rotation

round I from j to K being positive : while their spherical sum (180, (4.)), or the ex

ternal vertical angle at K (comp. 175, 176), represents the same product, k, as

before.

(4.) The contrasted multiplication of i by j, or ofj into* i, may in like manner

be constructed, or geometrically represented, either by the addition of the arc KI, as

a new provector, to the arc JK as a new vector, which new process gives Ji (instead

of u) as the new transvector ; or with the aid of the new triangle UK (comp. Figs.

46, 47), in which the rotation round I from J to the new vertex K is negative, so

that the angle at i represents now the multiplicand, and the resulting angle at the

new pole K represents the new and opposite product, ji
= k.

183. Since we have thus ji
= -

ij (as we had q q =
-
qq in

171), we see that the laws ofcombination of the new symbols,

i,j, k, are not in all respects the same as the corresponding
laws in algebra; since the Commutative Property ofMultipli

cation, or the convertibility (169) of the places of the factors

without change of value of the product, does not here hold

good: which arises (168) from the circumstance, that the

factors to be combined are here diplanar versors (181). It is

therefore important to observe, that there is a respect in which

* A multiplicand is said to be multiplied by the multiplier ; while, on the other

hand, a multiplier is said to be multiplied into the multiplicand: a distinction of this

sort between the tivo factors being necessary, as we have seen, for quaternions,

although it is not needed for algebra.
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the laws of z, j9 k agree with usual and algebraic laws : namely,
in the Associative Property of Multiplication ; or in the pro

perty that the new symbols always obey the associative for

mula (comp. 9),
t.icX = f/c.X,

whichever of them may be substituted for /, for K, and for X ;

in virtue of which equality of values we may omit the point, in

any such symbol of a ternary product (whether of equal or of

unequal factors), and write it simply as t/cX. In particular

we have thus,

ijk = i t i = p= _ 1 ; ij.k
= k.k = fc = - 1 ;

or briefly,

ijk
= -\.

We may, therefore, by 182, establish the following important
Formula :

P =
j*

= k* = ijk
= -l

; (A)
to which we shall occasionally refer, as to &quot; Formula A,&quot; and

which we shall find to contain (virtually) all the laws of the

symbols ijk, and therefore to be a sufficient symbolical basis

for the whole Calculus of Quaternions :* because it will be

shown that every quaternion can be reduced to the Quadrino-
mial Form,

q=w + ix +jy + kz,

where w, x, y, z compose a system offour scalar s, while z, J, k

are the same three right versors as above.

(1.) A direct proof of the equation, ijk
=

1, may be derived from the definitions

of the symbols in Art. 181. In fact, we have only to remember that those defini

tions were seen to give,

* This formula (A) was accordingly made the basis of that Calculus in the first

communication on the subject, by the present writer, to the Royal Irish Academy in

1843
;
and the letters, i, 7, ,

continued to be, for some time, the only peculiar sym
bols of the calculus in question. But it was gradually found to be useful to incor

porate with these a few other notations (such as K and U, &c.), for representing

Operations on Quaternions. It was also thought to be instructive to establish the

principles of that Calculus, on a more geometrical (or less exclusively symbolical^

foundation than at first
;
which was accordingly afterwards done, in the volume en

titled : Lectures on Quaternions (Dublin, 1853) ;
and is again attempted in the pre

sent work, although with many differences in the adopted plan of exposition, and in

the application* brought forward, or suppressed.
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f = oj : OK, j = OK.: 01
,

k = 01 : OJ ;

and to observe that, by the general formula of multiplication (107), whatever four

lines may be denoted by a, /3, y, d, we have always,

.? z-f *_?_* P-ii 2.
y (3 a y a |8*a y /3 a

or briefly, as in algebra,

y /3 a a

the point being thus omitted without danger of confusion : so that

ijk
= oj : OJ = - 1, as before.

Similarly, we have these two other ternary products :

jki = (OK : 01) (01 : oj ) (oj : OK) = OK : OK = 1 ;

kij
=

(oi : oj) (oj : OK ) (OK : oi) = oi : 01 = 1 .

(2.) On the other hand,

kji (oj : oi) (oi : OK) (OK : oj) =oj : oj = -f 1 ;

and in like manner,

i/ij
= -f 1, and jik = 4-1.

(3.) The equations in 182 give also these other ternary products, in which the

law of association offactors is still obeyed :

t . ij
= ik = -j = i

2
j = ii . j, iij

= -j ;

i .ji
=i.k = -ik=j = hi = y . i, iji

= +j ;

i.jj=i.-l=-i = hj
=

ij.j, ijj
= - i

;

with others deducible from these, by mere cyclical permutation of the letters, on the

plan illustrated by Fig. 47, bis.

(4.) In general, if the Associative Law of Combination exist for any three

symbols whatever of a given class, and for a given mode of combination, as for addi

tion of lines in Art. 9, or for multiplication of ijk in the present Article, the same law

exists for any four (or more) symbols of the same class, and combinations of the same

kind. For example, if each of the four letters t, K, X, n denote some one of the three

symbols z, j, k (but not necessarily the same one), we have the formula,

t . K\fJ,
= t . K .

XjLt
= IK .

XfJ,
= IK . X .

(Jl
= IK\ .

fJ,
=

lK\ft.

(5.) Hence, any multiple (or complex) product of the symbols ijk, in any manner

repeated, but taken in one given order, may be interpreted, with one definite result,

by any mode ofassociation, or of reduction to partialfactors, which can be performed

without commutation, or change of place of the given factors. For example, the

symbol ijhhji may be interpreted in either of the two following (among other) ways :

ij . hk.ji = ij. ji = i. -f* . z = ti = 1
; ijk. kji=-l.l=l.

184. The formula (A) of 183 includes obviously the three equa

tions (I.) of 182. To show that it includes also the six other

equations, (II.), (HI-)&amp;gt;
of the last cited Article, we may observe that

it gives, with the help of the associative principle of multiplication

(which may be suggested to the memory by the absence of the point

in the symbol ijk),

Y



1G2 ELEMENTS OF QUATERNIONS. [BOOK II.

kj= ij J =
ij*

= -
i; Jci =-j = -ji

2
=+j.

And then it is easy to prove, without any reference to geometry, if the

foregoing laws of the symbols be admitted, that we have also,

jki = kij
= - 1

, kji =jik = ikj
= + 1

,

as otherwise and geometrically shown in recent sub-articles. It may
be added that the mere inspection of the formula (A) is sufficient to

show that the three* square roots of negative unity, denoted in it by

i,j, k, cannot be subject to all the ordinary rules of algebra: because

that formula gives, at sight,

the non-commutative character (183), of the multiplication ofsuch roots

among themselves, being thus put in evidence.

SECTION 11. On the Tensor ofa Vector, or ofa Quaternion ;

and on the Product or Quotient ofany two Quaternions.

185. Having now sufficiently availed ourselves, in the two

last Sections, of the conceptions (alluded to, so early as in the

First Article of these Elements) of a vector-arc (162), and of

a vector-angle (174), in illustration^ of the laws of multiplica

tion and division of versors of quaternions ;
we propose to re

turn to that use of the word, VECTOR, with which alone the

First Book, and the first eight Sections of this First Chapter
of the Second Book, have been concerned : and shall therefore

henceforth mean again, exclusively, by that word &quot;

vector,&quot; a

Directed Right Line (as in I). And because we have already

considered and expressed the Direction of any such line, by

*
It is evident that

i, j, k are also, on the same principles, values of the

symbol V 1; because they also are right versors (153); or because (- qy*=q*.
More generally (comp. a Note to page 131), if

a:, y, z be any three scalars which sa

tisfy the condition x2
-f

y&quot;

2 + z2 = 1, it will be proved, at a later stage, that

f One of the chief uses of such vectors, in connexion with those laws, has been

to illustrate the non-com&amp;gt;hutative property (1G8) of multiplication of versors, by ex

hibiting a corresponding property of what has been called, by analogy to the earlier

operation of the same kind on linear vectors (5), the addition of arcs and anolei on

a sphere. Compare 180, (3.), (4.).
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introducing the conception and notation (155) of the Unit-

Vector, Ua, which has the same direction with the line a, and

which we have proposed (156) to call the Versor ofthat Vec

tor, a
;
we now propose to consider and express the Length of

the same line a, by introducing the new name TENSOR, and the

new symbol,* Ta
;
which latter symbol we shall read, as the

Tensor of the Vector a : and shall define it to be, or to denote,

the Number (comp. again 155) which represents the Length of
that line a, by expressing the Ratio which that length bears

to some assumed standard, or Unit (128).

186. To connect more closely these two conceptions, of

the versor and the tensor of a vector, we may remember that

when we employed (in 155) the letter a as a temporary sym
bol for the number which thus expresses the length of the line

a, we had the equation, Ua = a : a, as one form of the defini

tion of the unit-vector denoted by Ua. We might therefore

have written also these two other forms of equation (comp. 15,

16),

a=#.Ua, a = a:Ua,

to express the dependence of the vector, a, and of the scalar,

a, on each other, and on what has been called (156) the versor,

Ua. For example, with the construction of Fig. 42, bis (comp.

161, (2.) ), we may write the three equations,

a = OA : OA ,
= OB:OB , c = oc:oc ,

if a
, b, c be thus the three positive scalars, which denote the

lengths of the three lines, OA, OB, oc
;
and these three scalars

may then be considered as factors, or as coefficients (12), by
which the three unit-vectors Ua, Uj3, Uy, or OA , OB , oc (in

the cited Figure), are to be respectively multiplied (15), in

order to change them into the three other vectors a, j3, y, or

OA, OB, oc, by altering their lengths, without any change in

their directions. But such an exclusive Operation, on the

Length (or on the extension) of aline, may be said to be an Act

of Tension ;t as an operation on direction alone may be called

(comp. 151) an act of version. We have then thus a motive

*
Compare the Note to Art. 155.

f Compare the Note to Art. 156, in page 135.
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for the introduction of the name, Tensor, as applied to the

positive number which (as above) represents the length of a

line. And when the notation Ta (instead of a) is employed
for such a tensor, we see that we may write generally, for any
vector a, the equations (compare again 15, 16) :

Ua = a : Ta ; Ta = a : Ua ; a - Ta . Ua = Ua . Ta.

For example, if a be an unit-vector, so that Ua - a (160),

then Ta = 1 ; and therefore, generally, whatever vector may
be denoted by a, we have always,

TUa=l.
For the same reason, whatever quaternion may be denoted by

q, we have always (comp. again 160) the equation,

T(Ax. ? )
= l.

(1.) Hence the equation

T&amp;gt;

=
1,

where p = or, expresses that the locus of the variable point p is the surface of the

unit sphere (128).

(2.) The equation Tp = Ta expresses that the locus of P is the spheric surface

with o for centre, which passes through the point A.

(3.) On the other hand, for the sphere through o, which has its centre at A, we
have the equation, A * ^

T(p-a) =

which expresses that the lengths of the two lines, AP, AC, are equal. , .

(4.) More generally, the equation,

-

expresses that the locus of P is the spheric surface through B, which has its centre

at A.

(5.) The equation of the Apollonian* Locus, 145, (8.), (9.), may be written

under either of the two following forms : r

T(p-aa) = aT(p-); Tp=aTa; ,

^ ^
from each of which we shall find ourselves able to pass to the other, at a later stage,

by general Rules of Transformation, without appealing to geometry (comp. 145, (10.)).

(6.) The equation,

expresses that the locus of P is the plane through o, perpendicular to the line OA
;

because it expresses that if OA = -
OA, then the point p is equally distant from the

two points A and A . It represents therefore the same locus as the equation,

* Compare the first Note to page 128.
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L- =
^&amp;gt;

of 132, (1.);

or as the equation,

? + K^=0, of 144, (1.);

PY=-1, of 161, (7.);

or as the simple geometrical formula, p -J- a (129). And in fact it will be found

possible, by General Rules of this Calculus, to transform any one of these five for

mula? into any other of them
;
or into this sixth form,

which expresses that the scalar part* of the quaternion
- is zero, and therefore that

this quaternion is a right quotient (132).

(7.) In like manner, the equation

T(p-/3)=T(p-)
expresses that the locus of p is the plane which perpendicularly bisects the line AB ;

because it expresses that p is equally distant from the two points A and B.

(8.) The tensor, T, being generally a positive scalar, but vanishing (as a limit]

with a, we have,

Txa = xTa, according as x
&amp;gt;

or &amp;lt; ;

thus, in particular,

T(-a) = Ta; and TOa = TO = 0.

(9.) That

T(/3 + a) = T/3+Ta, if U/3 = Ua,

but not otherwise (a and ft being any two actual vectors), will be seen, at a later

stage, to be a symbolical consequence from the rules of the present Calculus ; but in

the mean time it may be geometrically proved, by conceiving that while a = OA, as

usual, we make /3 + a = oc, and therefore (3
= oc OA = AC (4) ;

for thus we shall

see that while, in general, the three points o, A, c are corners of a triangle, and there

fore the length of the side oc is less than the sum of the lengths of the two other

sides OA and AC, the former length becomes, on the contrary, equal to the latter sum,

in the particular case when the triangle vanishes, by the point A falling on the finite

line oc ; in which case, OA and AC, or a and
j3,

have one common direction, as the

equation Ua = U/3 implies.

(10.) If a and /3 be any actual vectors, and if their versors be unequal (Ua not

= U/3), then

an inequality which results at once from the consideration of the recent triangle OAC ;

but which (as it will be found) may also be symbolically proved, by rules of the

calculus of quaternions.

*
Compare the Note to page 125

;
and the following Section of the present

ater.Chapt
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(11.) If U/3 = - Ua, then T(/3 + a) = + (T/3
-
To), according as

T/3&amp;gt;
or &amp;lt; Ta ;

but

T(/3+a)&amp;gt;(T/3-Ta), if U/3no*=-Ua.

187. The quotient, Uj3 : Ua, of the versors of the two vec

tors, a and /3, has been called (in 156) the Versor of the Quo

tient, or quaternion, q
=

/3
: a ;

and has been denoted, as such,

by the symbol, Uq. On the same plan, we propose now to

call the quotient, Tj3 : Ta, of the tensors of the same two vec

tors, the Tensor* of the Quaternion q, or |3 : a, and to denote

it by the corresponding symbol, Tq. And then, as we have

called the letter U (in 156) the characteristic of the operation

of taking the versor, so we may now speak of T as the Cha

racteristic ofthe (corresponding) Operation oftaking the Ten

sor, whether of a Vector, a, or of a Quaternion, q. We shall

thus have, generally,

T(j3 : a)
= Tj3 : Ta, as we had U(/3 : a)

=
TJ/3 : Ua (156) ;

and may say that as the versor \Jq depended solely on, but

conversely was sufficient to determine, the relative direction

(157), so the tensor Tq depends on and determines the relative

length^ (109), of the two vectors, a and /3, of which the qua
ternion q is the quotient (112).

(1.) Hence the equation T- =
l, like Tp = Ta, to which it is equivalent, ex

presses that the locus of P is the sphere with o for centre, which passes through the

point A.

* Compare the Note to Art. 109, in page 108; and that to Art. 156, in page

135.

f It has been shown, in Art. 112, and in the Additional Illustrations of the

third Section of the present Chapter (113-116), that Relative Length, as well as

relative direction, enters as an essential element into the very Conception of a Qua
ternion. Accordingly, in Art. 117, an agreement of relative lengths (as well as an

agreement of relative directions) was made one of the conditions ofequality, between

any two quaternions, considered as quotients of vectors : so that we may now say,

that the tensors (as well as the versors*) of equal quaternions are equal. Compare
the first Note to page 137, as regards what was there called the quantitative element,

of absolute or relative length, which was eliminated from o, or from q, by means of

the characteristic U; whereas the new characteristic, T, of the present Section,

serves on the contrary to retain that element alone, and to eliminate what may be

called by contrast the qualitative element, of absolute or relative direction.
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(2.) The equation comp. 186, (G.) ),

T?.I,
p
- a

expresses that the locus of P is the plane through o, perpendicular to the line OA.

(3.) Other examples of the same sort may easily be derived from the sub-arti

cles to 186, by introducing the notation (187) for the tensor of a quotient, or qua

ternion, as additional to that for the tensor of a vector (185).

(4.) T(/3 : a) &amp;gt;, =, or &amp;lt; 1, according as T/3 &amp;gt;, =, or &amp;lt; Ta.

(5.) The tensor ofa right quotient (132) is always equal to the tensor of its in

dex (133).

(6.) The tensor of a radial (146) is always positive unity; thus we have, ge

nerally, by 156,

and in particular, by 181,
Tt = T/ = TA=l.

(7.) Txq = xTq, according as x
&amp;gt; or &amp;lt; ;

thus, in particular, T(-g) = T&amp;lt;7,
or the tensors of opposite quaternions are equal.

(8.) Ta? = + x, according as x&amp;gt; or &amp;lt; ;

thus, the tensor of a scalar is that scalar taken positively.

(9.) Hence,
TTa = Ta, TTq=Tq;

so that, by abstracting from the subject of the operation T (comp. 145, 160), we

may establish the symbolical equation,

T2 = TT=T.

(10.) Because the tensor of a quaternion is generally a positive scalar, such a

tensor is its own conjugate (139) ;
its angle is zero (131) ;

and its versor (159) is

positive unity : or in symbols,

KTq^Tq; tTq=Q; UT?=1.

(11.) T(l: 9) = T(a:0) = Ta:T/3=l:Tj;
or in words, the tensor of the reciprocal of a quaternion is equal to the reciprocal of
the tensor.

(12.) Again, since the two lines, OB and OB
,
in Fig. 36, are equally long, the de

finition (137) of a conjugate gives

or in words, the tensors of conjugate quaternions are equal.

(13.) It is scarcely necessary to remark, that any two quaternions which have

equal tensors, and equal versors, are themselves equal : or in symbols, that

q
f =

q, if Tq = Tq, and Ug = Uq.

188. Since we have, generally,

==
&quot;nn TT rp -r T

~~ TT *

Tpa la.Ua la Ua Ua la

we may establish the two following general formulae of decom-
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position of a quaternion into two factors, of the tensor and ver-

sor kinds :

I. ..q=Tq.Uq , II. . . q = Uq .Tq ;

which are exactly analogous to the formulae (186) for the cor

responding decomposition of a vector, into factors of the same

two kinds : namely,

T. . .a = Ta.Ua; II .. . a = Ua.Ta.

To illustrate this last decomposition of a quaternion, q, or

OB : OA, into factors, we may conceive that AA and BB are two

concentric and circular, but oppositely directed arcs, which

terminate respectively on the two

lines OB and OA, or rather on the

longer of those two lines itself, and

on the shorter of them prolonged,
as in the annexed Figure 48 ; so

that OA has the length of OA, but

the direction ofOB, while OB , on the

contrary, has the length of OB, but

the direction of OA
;
and that therefore we may write, by what

has been defined respecting versors and tensors of vectors (155,

156, 185, 186),

OA = T.U/3; oB =T/3.Ua.

Then, by the definitions in 156, 187, of the versor and tensor

of a quaternion.,

U&amp;lt;7

= U(OB : OA) = OA : OA = OB : OB ;

Tq = T (OB : OA) = OB : OA = OB : OA ;

whence, by the general formula of multiplication of quotients

(107),

I. . q = OB : OA = (OB : OA ) . (OA : OA) = Tq . Uq ;

and
II. . q

= OB : OA = (OB : OB
) . (OB : OA) = U^ . Tq,

as above.

189. In words, if we wish to pass from the vector a to the vec

tor /3, or from the line OA to the line OB, we are at liberty either,

1st, to begin by turning, from OA to OA
,
and then to end by stretching,
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from OA to OB, as Fig. 48 may serve to illustrate; or, Ilnd, to begin

by stretching, from OA to OB
,
and end by turning, from OB to OB.

The act of multiplication of a line a by a quaternion q, considered as

a factor (103), which affects both length and direction (109), may
thus be decomposed into two distinct and partial acts, of the kinds

which we have called Version and Tension ; and these two acts may
be performed, at pleasure, in either of two orders of succession. And

although, if we attended merely to lengths, we might be led to say

that the tensor of a quaternion was a signless number,* expressive of

a geometrical ratio of magnitudes, yet when the recent construction

(Fig. 48) is adopted, we see, by either of the two resulting expres

sions (188) for Tq, that there is & propriety in treating this tensor

as a positive scalar, as we have lately done, and propose systemati

cally to do.

190. Since TK =
T&amp;lt;7, by 187, (12.), and UKq= l:\Jq, by 158,

we may write, generally, for any quaternion and its conjugate, the

two connected expressions :

I. . .q=Tq.Uq-, II. ., K^T^U?;
whence, by multiplication and division,

III. . . q . Kq = (T?)
2

; IV. . . q : Kg = (U?)
2

.

This last formula had occurred before; and we saw (161) that in it

the parentheses might be omitted, because
(U&amp;lt;?)

2 = U(q
2
). In like

manner (comp. 161, (2.) ), we have also

parentheses being again omitted ; or in words, the tensor ofthe square

of a quaternion is always equal to the square of the tensor: as ap

pears (among other ways) from inspection of Fig. 42, bis, in which

the lengths of OA, OB, oc form a geometrical progression ; whence

T
__ _ /T.OB\ 2

^OAy OA T.OA \T.OA.

At the same time, we see again that the product qKq of two conju

gate quaternions, which has been called (145, (11.) ) their common

Norm, and denoted by the symbol Nq, represents geometrically the

square of the quotient of the lengths of the two lines, of which (when

considered as vectors) the quaternion q is itself the quotient (112).

&quot;We may therefore write generally,!

V. . . &amp;lt;7K&amp;lt;7
= T02 = Ntf; VI. ..Tq =

*
Compare the Note in page 108, to Art. 109.

f Compare the Note in page 129.
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(1.) We have also, by II., the following other general transformations for the

tensor of a quateraion :

VII. . . Tq = Kg . Uq ;
VIII. . . Tq = Ug . Kg ;

of which the geometrical significations might easily be exhibited by a diagram, but

of which the validity is sufficiently proved by what precedes.

(2.) Also (comp. 158),

(3.) The reciprocal of a quaternion, and the conjugate* of that reciprocal, may
now be thus expressed :

1 _ K? _ K? __
KU? _ _L

1 - J_ JL
g

=
7

iy
=
Ng

~
Tq Ug Tg

~
Tg Ug

K l = -i = -i. = H? = JL

9 % Tg
2

T? Kg*

(4.) We may also write, generally,

IX. . . Kg=Tg.

191. In general, let any two quaternions, q and&amp;lt;/,
be con

sidered as multiplicand and multiplier, and let them be re

duced (by 120) to the forms j3 : a and 7 i
]3 ;

then the tensor

and versor of that third quaternion, 7:0, which is (by 107)

their product qq, may be thus expressed :

where Tq q and ^Uq q are written, for simplicity, instead of

T(q .q) and U(q .q). Hence, in any such multiplication, the

tensor of the product is the product of the tensor; and the ver

sor of the product is the product ofthe versors ; the order of

the factors being generally retained for the latter (comp. 168,

&c.), although it may be varied for the former, on account of

the scalar character of a tensor. In like manner, for the divi

sion of any one quaternion q\ by any other q, we have the

analogous formula :

III. ..T(? : ?)
= T? :T? ;

IV. . . U(? : ?)
= U? : Ug;

or in words, the tensor of the quotient of any two quater
nions is equal to the quotient of the tensors; and similarly, the

versor of the quotient is equal to the quotient ofthe versors.

And because multiplication and division of tensors are per
formed according to the rules of algebra, or rather of arithme-

*
Compare Art. 145, and the Note to page 127.



CHAP. I.] PRODUCT OR QUOTIENT OF TWO QUATERNIONS. 171

tic (a tensor being always, by what precedes, a positive num

ber), we see that the difficulty (whatever it may be) of the

general multiplication and division of quaternions is thus re

duced to that of the corresponding operations on versors : for

which latter operations geometrical constructions have been

assigned, in the ninth Section of the present Chapter.

(1.) The two products, q q and qq ,
of any two quaternions taken as factors in

two different orders, are equal or unequal, according as those two factors are compla-

nar or diplanar ; because such equality (169), or inequality (168), has been already

proved to exist, for the case* when each tensor is unity : but we hare always

(comp. 178),

Tq q - Iqq, and Lq q=L qq.

(2.) If L q = L q ,
then qq = Kq q (170) ,

so that the products of two right

quotients, or right quaternions (132), taken in opposite orders, are always conju

gate quaternions.

t (3.) If L q = L q =
j,

and Ax . q J- Ax . q, then qq = - qq,

Lqq =Lq q =
^,

Ax . q q J- Ax . q, Ax . q q J- Ax . q (171) ;

so that the product of two right quaternions, in two rectangular planes, is a third

right quaternion, in a plane rectangular to both ; and is changed to its own opposite,

when the order of the factors is reversed : as we had ij-k=-ji (182).

(4.) In general, if q and q be any two diplanar quaternions, the rotation round

Ax . q, from Ax . q to Ax . q q, is positive (177).

(5.) Under the same condition, q\(q : 7) is a quaternion with the same tensor,

and same angle, as q ,
but with a different axis ; and this new axis, Ax .q(q : 9),

may be derived (179, (1.) ) from the old axis, Ax . q, by a conical rotation (in the

positive direction) round Ax . q, through an angle = 2 L q-

(6.) The product or quotient of two complanar quaternions is, in general, a third

quaternion complanar with both
;
but if they be both scalar, or both right, then this

product or quotient degenerates (131) into a scalar.

(7.) Whether q and q be complanar or diplanar, we have always as in algebra

(comp. 106, 107, 136) the two identical equations:

V. . . (q : 9) . q = q ;
VI. ..(? . ?) : q = q &amp;gt;

(8.) Also, by 190, V., and 191, I., we have this other general formula :

VII. . . N? 9 = N9 .N2 ;

or in words, the norm of the product is equal to the product of the norms.

192. Let q
=

|3
: a, and q

= y : |3, as before ; then

l:^=l:(7 :a)=a: 7 = (a:]3).(/3: 7)
= (l:^).(l:^);

so that the reciprocal of the product of any two quaternions is

*
Compare the Notes to pages 148, 151.
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equal to the product of the reciprocals, taken in an inverted

order: or briefly,
I. . . Rq q

= R? . R? ,

ifE be again used (as in 161, (3.)) as a (temporary) charac

teristic ofreciprocation. And because we have then (by the

same sub-article) the symbolical equation, KU = UR, or in

words, the conjugate of the versor of any quaternion q is equal

( 158) to the versor of the reciprocal of that quaternion ; while

the versor ofa product is equal (191) to the product of the

versors : we see that

KUq q
= URq q

= U% . UR/ = KU? . KU? .

But

Kq = Tq . KU?, by 190, IX. ; and Tq q = Tq .Tq =T?.1V/,

by 191 ; we arrive then thus at the following other important
and general formula :

II. . . Kq q = Kq . Kq ;

or in words, the conjugate ofthe product of any two quater
nions is equal to the product of the conjugates, taken (still)

in an inverted order.

(1.) These two results, I., II., may be illustrated, for versors (Tg = Tg =
l), by

the consideration of a spherical triangle ABC (comp. Fig. 43) ;
in which the sides

AB and EC (comp. 167) may represent q and q ,
the arc AC then representing q q&amp;gt;

For then the new multiplier Rg = Kq (158) is represented (162) by BA, and the new

multiplicand Eq = Kq by CB
;
whence the new product, Rq,R,q Kg. Kg ,

is re

presented by the inverse arc CA, and is therefore at once the reciprocal Rq q, and the

conjugate Kg g, of the old product q q.

(2.) If q and q be right quaternions, then Kq = -
g, Kq = q (by 144) ;

and!

the recent formula II. becomes, Kq q = qq ,
as in 170.

(3.) In general, that formula II. (of 192) may be thus written :

IIL..KK.K(
a a

/3

where a, /3, y may denote any three vectors.

(4.) Suppose then that, as in the annexed

Fig. 49, we have the two following relations of in

verse similitude of triangles (118),

A AOB *

BOC, ABOEOC DOB;

and therefore (by 137) the two equations,

/ Fig. 49.
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we shall have, by III.,

y
*

- = K-, or ADOCOC AOE:
d a

so that this third formula of inverse similitude is a consequence from the other two.

(5.) If then (comp. 145, (6.) ) any two circles, whether in one plane or in space,

touch one another at a point B
;
and if from any point o, on the common tangent BO,

two secants OAC, OED be drawn, to these two circles
;
the four points of section,

A, c, D, E, will be on one common circle : for such concircularity is an easy conse

quence (through equal angles, &c.), from the last inverse similitude.

(6.) The same conclusion (respecting concircularity, &c.) may be otherwise and

geometrically drawn, from the equality of the two rectangles, AOC and DOE, each

being equal to the square of the tangent OB ; which may serve as an instructive

verification of the recent formula III., and as an example of the consistency of the

results, to which calculations with qtiaternions conduct.

(7.) It may be noticed that the construction would in general give three circles,

although only one is drawn in the Figure ;
but that if the two triangles ABC and

DBE be situated in different planes, then these three circles, and of course ihefive

points ABCDE, are situated on one common sphere.

193. An important application of the foregoing general

theory of Multiplication and Division, is to the case of Right

Quaternions (132), taken in connexion with theirIndex- Vec

tors, or Indices (133).

Considering division first, and employing the general for

mula of 1 06, let |3
and y be each J_ a ; and let /3 and y be the

respective indices of the two right quotients, q =
]3

: a, and

q = 7 : a . We shall thus have the two complanarities, ]3 ||| /3, y,

and y HI |3, 7 (comp. 123), because the four lines /3, y, j3 , y
are all perpendicular to a ; and within their common plane it

is easy to see, from definitions already given, that these four

lines form a proportion of vectors, in the same sense in which

5 j3, 7, 8 did so, in the fourth Section ofthe present Chapter :

so that we may write the equation ofquotients,

7 :/3
=
-y:0.

In fact, we have (by 133, 185, 187) the following relations of

length,

Tj3 =
T|3 : T, T7 = T7 : Ta, and .-. T (y :

ft )
= T (y : ft) ;

while the relation of directions, expressed by the formula,

U(7 :j3&amp;gt;U(7 :/3), or U7 : U/3 = U7 : U|3,

is easily established by means of the equations,
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/(7 : T) = ^O :/3)
=
|;

Ax . (y : y)
= Ax .

( :/3)
= Ua.

We arrive, then, at tins general Theorem (comp. again 133):
that &quot;the Quotient of any two Right Quaternions is equal to

the Quotient oftheir Indices.&quot;*

(1.) For example (comp. 150, 159, 181), the indices of the right versors i,j, k
are the axes of those three versors, namely, the lines 01, oj, OK

;
and we have the

equal quotients,

j : = 01 : oj = k = OJ : 01, &c.

(2.) In like manner, the indices of i, j, k are 01
,
oj

,
OK

;
and

i : j = oj : oi = k = oi : oj
,
&c.

(3.) In general the quotient of any two right versors is equal to the quotient of
their axes ; as the theory of representative arcs, and of their poles, may easily

serve to illustrate.

1 94. As regards the multiplication oftwo right quaternions,

in connexion with their indices, it may here suffice to observe

that, by 106 and 107, the product j : a =
(y :

/3) . (]3 : a) is equal

(comp. 136) to the quotient, (y : ]3) : (a : j3) ;
whence it is easy

to infer that the Product, q q, ofany two Right Quaternions,

is equal to the Quotient of the Index ofthe Multiplier, q, di

vided by the Index of the Reciprocal of the Multiplicand, q&quot;

It follows that the plane, whether of the product or ofthe

quotient of two right quaternions, coincides with the plane of
their indices ; and therefore also with the plane oftheir axes ;

because we have, generally, by principles already established,

the transformation,

if L q
= -, then Index ofq = Tq . Ax . q.2

* We have thus a new point of agreement, or of connexion, between right qua

ternions, and their index-vectors, tending to justify the ultimate assumption (not yet

made), of equality between the former and the latter. In fact, we shall soon prove

that the index of the sum (or difference), of any two right quotients (132), is equal to

the sum (or difference) of their indices ; and shall find it convenient subsequently to

interpret the product /3a of any two vectors, as being the quaternion-product (194)

of the two ri(/ht quaternions, of which those two lines are the indices (133): after

which, the above-mentioned assumption of equality will appear natural, and be found

to be useful. (Compare the Notes to pages 119, 136.)
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SECTION 12. On the Sum or Difference ofany two Quater

nions ; and on the Scalar (or Scalar Part) of a Quater

nion.

195. The Addition of any given quaternion q, considered

as a geometrical quotient orfraction (101), to any other given

quaternion q, considered also as a fraction, can always be ac

complished by the first general formula of Art. 106, when these

two fractions have a common denominator ; and if they be not

already given as having such, they can always be reduced so as

to have one, by the process of Art. 120. And because the ad

dition ofany two lines was early seen to be a commutative ope

ration (7, 9), so that we have always y + |3
=

j3
+ 7, it follows

(by 106) that the addition ofany two quaternions is likewise a

commutative operation, or in symbols, that

I. . . q + q = q + q;

so that the SUM of any two* Quaternions has a Value, which

is independent of their Order : and which (by what precedes)

must be considered to be given, or at least known, or definite,

when the two summand quaternions are given. It is easy also

to see that the conjugate of any such sum is equal to the sum

of the conjugates, or in symbols, that

II. .

(1.) The important formula last written becomes geometrically evident, when it

is presented under the following form. Let OBDC be any parallelogram, and let OA

be any right line, drawn from one corner of it, but not generally in its plane. Let

the three other corners, B, c, D, be reflected (in the sense of 145, (5.) ) with respect

to that line OA, into three new points, B
,
c

,
D

;
or let the three lines OB, oc, OD be

reflected (in the sense of 138) with respect to the same line OA; which thus bisects

at right angles the three joining lines, BB , cc
,
DD

,
as it does BE in Fig. 36. Then

each of the lines OB, oc, OD, and therefore also the whole plane figure owe, may be

considered to have simply revolved round the line OA as an axis, by a conical rota

tion through two right angles ; and consequently the new figure OB D C
,
like that old

one OBDC, must be a. parallelogram. Thus (comp. 106, 137), we have

OD = oc + OB
,

d = y + (3 ,
o : a = (y : a) + (/3 : a) ;

and the recent formula II. is justified.

*
It will be found that this result admits of being extended to the case of three

(or more) quaternions ; but, for the moment, we content ourselves with two.
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(2.) Simple as this last reasoning is, and unnecessary as it appears to be to draw

any new Diagram to illustrate it, the reader s attention may be once more invited to

the great simplicity of expression, with which many important geometrical concep

tions, respecting space of three dimensions, are stated in the present Calculus : and

are thereby kept ready for future application, and for easy combination with other

results of the same kind. Compare the remarks already made in 132, (6.) ; 145,

(10.); 161; 179, (3.); 192, (6.) ;
and some of the shortly following sub-articles to

196, respecting properties of an oblique cone with circular base.

196. One of the most important cases of addition, is that

of two conjugate summands, q and Kq ;
of which it has been

seen (in 140) that the sum is always a scalar. We propose
now to denote the half of this sum by the symbol,

Sq;
thus writing generally,

I. . . q + Kq = Kq + q = 2Sq ;

or defining the new symbol 8*7 by the formula,

II. . . Sq = i (q + Kq) ;
or briefly, II . . . S = J (1 + K).

For reasons which will soon more fully appear, we shall also

call this new quantity, Sq, the scalar part, or simply the SCA

LAR, of the Quaternion, q ; and shall therefore call the letter

S, thus used, the Characteristic of the Operation of taking the

Scalar of a quaternion. (Comp. 132, (6.) ; 137; 156; 187.)

It follows that not only equal quaternions, but also conjugate

quaternions, have equal scalars ; or in symbols,

III. . . Sq =
Sq, if q

=
q\ and IV. . . SKq = S? ;

or briefly,
IV. . . SK=S.

And because we have seen that Kq = + q, ifq be a scalar
(

1 39),

but that Kq = -q, if q be a right quotient (144), we find that

the scalar ofa scalar (considered as a degenerate quaternion,

131) is equal to that scalar itself, but that the scalar ofa right

quaternion is zero. We may therefore now write (comp. 160):

V. .Sx = x, if x be a scalar; VI. . .SSq =
Sq, S 2 = SS = S;

and VII. . . S? = 0, if
7T

Again, because OA in Fig. 36 is multiplied by x, when OB is

multiplied thereby, we may write, generally,
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VIII. . . Sxq = xSq 9 if x be any scalar;

and therefore in particular (by 188),

IX. . . S

Also because SKq=Sq, by IV., while KU? = U-, by 158,

we have the general equation,

X . .SU? = Sui; or X . . . SU^ = SU ;

q

whence, by IX.,

XL ..S-Ttf.Suij or XI . .

a

;

p

and therefore also, by 190, (V.), since T^.T- = 1,

XII. . . S0~iy.S--N0.s; XII . .. S =N-S &quot;

q q a a
)3

The results of 142, combined with the recent definition I. or

II., enable us to extend the recent formula VIL, by writing,

XIII. . . Sq &amp;gt;, =, or &amp;lt; 0, according as L
/&amp;lt;,=,

or &amp;gt;

-
;

and conversely,

XIV. . . z ? &amp;lt;, =, or &amp;gt; -, according as Sq &amp;gt;, =, or &amp;lt; Q.

In fact, if we compare that definition I. with the formula of

140, and with Fig. 36, we see at once that because, in that

Figure,
S(OB : OA) = OA : OA,

we may write, generally,

XV. . .
S&amp;lt;?

= T? . cos Z ; or XVI. . . SU? = cos L q ;

equations which will be found of great importance, as serving
to connect quaternions with trigonometry; and which show

that

XVII. ..Lq =Lq, if Slty-SUy,

the angle L q being still taken (as in 130), so as not to fall

outside the limits and ?r
;
whence also,

2 A
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XVIII. ..Lq Lq&amp;gt;
if $q = Sq t and Tq = Tq,

the
aw&amp;lt;7/ 0/# quaternion being thus given, when the scalar

and the tercsor of that quaternion are given, or known. Fi

nally because, in the same Figure 36 (comp. 15, 103), the

line,

OA = (OA : OA) . OA = OA . S (OB : OA),

may be said to be the projection of OB on OA, since A is the

foot of the perpendicular let fall from the point B upon this

latter line OA, we may establish this other general formula :

XIX. . . aS = S 2 a = projection of (3
on a ;

a a

a result which will be found to be of great utility, in investi

gations respecting geometrical loci, and which may be also

written thus :

XX. . . Projection of Q on a = Ua . T/3 . SU &
;

a

with other transformations deducible from principles stated

above. It is scarcely necessary to remark that, on account

of the scalar character of 8*7, we have, generally, by 159, and

187, (8.), the expressions,

XXI. . . US0 = 1; XXII. . . TSq = Sq;

while, for the same reason, we have always, by 139, the equa
tion (comp. IV.),

XXIII. . . KSq = S? ; or XXIII. . . KS = S
;

and, by 131,

XXIV. . . L S^ = 0, or =
TT, unless L g =

| ;

in which last case Sq = 0, by VII., and therefore L Sq is inde

terminate :*
US&amp;lt;? becoming at the same time indeterminate,

by 159, but TS^ vanishing, by 186, 187.

(1.) The equation,

S- =0,
a

is now seen to be equivalent to the formula, p
-A- a

;
and therefore to denote the

Compare the Note in page 118, to Art. 131.
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same plane locus for p, as that which is represented by any one of the four other

equations of 186, (6.) ;
or by the equation,

T^ = l,ofl87,(2.).
p a

(2.) The equation,

S^=0, s=S*
&quot; &quot; ^ A f

? =
expresses that BP j_ OA

;
or that the points B and p have the same projection on OA ;

or that the locus of p is the plane through B, perpendicular to the line OA.

(3.) The equation,

SU=SU2
a a

expresses (comp. 132, (2.) ) that P is on one sheet of a cone of revolution, with o for

vertex, and OA for axis, and passing through the point B.

(4.) The other sheet of the same cone is represented by this other equation,

a

and both sheets jointly by the equation,

(5.) The equation,

P P &

a a
~

p

expresses that the locus of p is the plane through A, perpendicular to the line OA
;

because it expresses (comp. XIX .) that the projection of OP on OA is the line OA it

self; or that the angle OAP is right ; or that S = 0.
&quot;

(6.) On the other hand the equation,

l&amp;lt;-

expresses that the projection of OB on OP is OP itself
;
or that the angle OPB is right ;

or that the locus of P is that spheric surface, which has the line OB for a diameter.

(7.) Hence the system of the two equations,

a~ p~
represents the circle, in which the sphere (6.), with OB for a diameter, is cut by the

plane (5.), with OA for the perpendicular let fall on it from O.

(8.) And therefore this new equation,

a p~~

obtained by multiplying the two last, represents the Cyclic* Cone (or cone of the

*
Historically speaking, the oblique cone with circular base may deserve to be

named the Apollonian Cone, from Apollonius of Perga, in whose great work on Co-
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second order, but not generally of revolution), which rests on this last circle (7.) as

its base, and has the point o for its vertex. In fact, the equation (8.) is evidently

satisfied, when the tnro equations (7.) are so; and therefore every point of the circu

lar circumference, denoted by those two equations, must be a point of the locus, re

presented by the equation (8.). But the latter equation remains unchanged, at least

essentially, when p is changed to xp, x being any scalar ; the locus (8.) is, there

fore, some conical surface, with its vertex at the origin, o
;
and consequently it can

be none other than that particular cone (both ways prolonged), which rests (as

above) on the given circular base (7.).

(9.) The system of the two equations,

S P. 82 =
1, S^l,

a p y

(in writing the first of which the point may be omitted,) represents a conic section ;

namely that section, in which the cone (8.) is cut by the new plane, which has oc

for the perpendicular let fall upon it, from the origin of vectors o.

(10.) Conversely, every plane ellipse (or other conic section) in space, of which

the plane does not pass through the origin, may be represented by a system of two

equations, of this lastfortn (9.) ;
because the cone which rests on any such conic as

its base, and has its vertex at any given point o, is known to be a cyclic cone.

(11.) The curve (or rather the pair of curves), in which an oblique but cyclic

cone (8.) is cut by a concentric sphere (that is to say, a cone resting on a circular

base by a sphere which has its centre at the vertex of that cone), has come, in mo
dern times, to be called a Spherical Conic. And an} such conic may, on the fore

going plan, be represented by the system of the two equations,

G P C P rpS- S- =
l, Tp=l;a p

the length of the radius of the sphere being here, for simplicity, supposed to be the

unit of length. But, by writing Tp -
a, where a may denote any constant and posi

tive scalar, we can at once remove this last restriction, if it be thought useful or con

venient to do so.

(12.) The equation (8.) may be written, by XII. or XII
.,
under the form (comp.

191, VII.):

or br fly,

nics (KwvtK-liv), already referred Lo in a Note to page 128, the properties of such a

cone appear to have been first treated systematically; although the cone of revolu

tion had been studied by Euclid. But the designation
&quot;

cyclic cone&quot; is shorter
;
and

it seems more natural, in geometry, to speak of the above-mentioned oblique cone

thus, for the purpose of marking its connexion with the circle, than to call it, as is

now usually done, a cone of the second order, or of the second degree : although
these phrases also have their advantages.
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if a = /3T-=Ta.U/3, and /3 =aT^=T/3.Ua ;

P

so that a and /3 are here the lines OA and OB
,
of Art. 188, and Fig. 48.

(13.) Hence the cone (8.) is cut, not only by the plane (5.) in the circle (7.),

which is on the sphere (6.), but also by the (generally) new plane, S ~ = 1, in the

(generally) new circle, in which this new plane cuts the (generally) new sphere,

S = 1 ; or in the circle which is represented by the system of the two equations,

a P

(14.) In the particular case when (3 \\
a (15), so that the quotient /3 : a is a sca

lar, which must be positive and greater than unity, in order that the plane (5.) may

(really} cut the sphere (6.), and therefore that the circle (7.) and the cone (8.) may
be real, we may write

/3=a
2
a, a&amp;gt;l, T(/3:a) = a, a =

a, /3
=

/3;

and the circle (13.) coincides with the circle (7.).

(1 5.) In the same case, the cone is one of revolution ; every point p of its circu

lar base (that is, of the circumference thereof) being at one constant distance from

the vertex o, namely at a distance = aTa. For, in the case supposed, the equations

(7.) give, by XII.,

N?- = S?:S-=l:S- = a*:S^= 2
;

or Tp = aTa.
a a p p p

(Compare 145, (12.), and 186, (5.).)

(16.) Conversely, if the cone be one of revolution, the equations (7.) must con

duct to a result of the form,

(comp. (2.) ), S
a a p p p p

which can only be by the line j3 a2a vanishing, or by our having /3
= a*a, as in

(14.) ;
since otherwise we should have, by XIV., p 4-

j3 az
a, and all the points of

the base would be situated in one plane passing through the vertex o, which (for any

actual cone) would be absurd.

(17.) Supposing, then, that we have not (3 \\ a, and therefore not a =a, /3
=

/?,

as in (14.), nor even a
\\ a, /3 || (3, we see that the cone (8.) is not a cone of revolu

tion (or what is often called a right cone} ;
but that it is, on the contrary, an oblique

(or scalene) cone, although still a cyclic one. And we see that such a cone is cut in

two distinct series* of circular sections, by planes parallel to the two distinct (and

mutually non-parallel) planes, (5.) and (13.) ;
or to two new planes, drawn through

the vertex o, which have been called! the two Cyclic Planes of the cone, namely, the

two following :

* These two series of sub- contrary (or antiparalleV) but circular sections of a

cyclic cone, appear to have been first discovered by Apollonius : see the Fifth Propo

sition of his First Book, in which he says, KaXft&amp;lt;70o&amp;gt; Sk r) roiavrrj ropr) virtvavria

(page 22 of Halley s Edition).

f By M. Chasles.
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a /3

while the two lines from the vertex, OA and OB, which are perpendicular to these two

planes respectively, may be said to be the two Cyclic Normals.

(18.) Of these two lines, a and
(3, the second has been seen to be a diameter of

the sphere (6.), which may be said to be circumscribed to the cone (8. ), when that

cone is considered as having the circle (7.) for its base ; the second cyclic plane (17.)

is therefore the tangent plane at the vertex of the cone, to that first circumscribed

sphere (6.).

(19.) The sphere (13.) may in like manner be said to be circumscribed to the

cone, if the latter be considered as resting on the new circle (13.), or as terminated by
that circle as its new base ; and the diameter of this new sphere is the line OB

,
or

/3 ,

which has by (12.) the direction of the line a, or of the first cyclic normal (17.) ;
so

that (comp. (18.)) theirs* cyclic plane is the tangent plane at the vertex, to the

second circumscribed sphere (13.).

(20.) Any other sphere through the vertex, which touches the first cyclic plane,

and which therefore has its diameterfrom the vertex = b (B ,
where b is some scalar

co-efficient, is represented by the equation,

e^-i, o, 8 &amp;lt;r.i,

p p b

it therefore cutt the cone in a circle, of which (by (12.) ) the equation of the plane is

S = y, or S^ =
l,

a b a

so that the perpendicularfrom the vertex is b a
|| (3 (comp. (5.) ) ;

and consequently
this plane of section of sphere and cone is parallel to the second cyclic plane (17.).

(21.) In like manner any sphere, such as

6/3
S =

1, where b is any scalar,
P

which touches the second cyclic plane at the vertex, intersects the cone (8.) in a cir

cle, of which the plane has for equation,

and is therefore parallel to the first cyclic plane.

(22.) The equation of the cone (by IX., X., XVI.) may also be thus written :

a p /3 a /3 /3

it expresses, therefore, that the product of the cosines of the inclinations, of any va

riable side (p) of an oblique cyclic cone, to two fixed lines (a and /3), namely to the

two cyclic normals (17.), is constant ; or that the product ofthe sines of the inclina

tions, of the same variable side (or ray, p) of the cone, to two fixedplanes, namely to

the two cyclic planes, is thus a constant quantity.

(23.) The two great circles, in which the concentric sphere Tp = 1 is cut by the two

cyclic planes, have been called the two Cyclic Arcs* of the Spherical Conic (11.), in

* By M. Cbasles.
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which that sphere is cut by the cone. It follows (by (22.) ) that the product ofthe

sines of the (arcuaV) perpendiculars, let fallfrom any point p of a given spherical

conic, on its two cyclic arcs, is constant.

(24.) These properties of cyclic cones, and of spherical conies, are not put for

ward as new; but they are of importance enough, and have been here deduced with

sufficient facility, to show that we are already in possession of a Calculus, with its

own Rules* of Transformation, whereby owe enunciation of a geometrical theorem, or

problem, or construction, can be translated into several others, of which some may
be clearer, or simpler, or more elegant, than the one first proposed.

197. Let a, /3, 7 be any three co-initial vectors, OA, &c.,

and let oo = S = 7-f/3, so that OBDC is a parallelogram (6);

then, if we write /

(3:a
=

q, y: a =
q , and 8 : a =

q&quot;

=
q + q (106),

and suppose that B
, c

,
D are the feet of perpendiculars let

fall from the points B, c, D on the line OA, we shall have, by
196, XIX., the expressions,

(OB =) )3
=

aS&amp;lt;7, 7 = aSq , $ =
aSq&quot;

= aS (q + q).

But also OB = CD, and therefore OB = C D , the similar projec

tions of equal lines being equal ; hence (comp. 11) the sum of
the projections of the lines |3, 7 must be equal to the projec
tion of the sum, or in symbols,

OD = oc -f OB , g = y +|3 , $ : a = (y : a) + ()3 : a).

Hence, generally, for any two quaternions^ q and q, we have

the formula :

or in words, the scalar of the sum is equal to the sum of the

scalars. It is easy to extend this result to the case of any three

(or more) quaternions, with their respective scalars
; thus, if

q be a third arbitrary quaternion, we may write

S
{ q&quot;

+ (q + q) }
= S/ + S (q + q)

= S/ +
(S&amp;lt;/

+ Sq) ;

where, on account of the scalar character ofthe summands, the

last parentheses may be omitted. We may therefore write,

generally,

II. . . S^q = 2Sg, or briefly, SS = 2S ;

where S is used as a sign of Summation : and may say that

*
Comp. 145, (10.), &c.



184 ELEMENTS OF QUATERNIONS. [BOOK II.

the Operation of taking the Scalar ofa Quaternion is a Dis

tributive Operation (comp. 13). As to the general Subtrac

tion ofany one quaternion from any other, there is no difficulty

in reducing it, by the method of Art. 120, to the second gene

ral formula of 1 06
;
nor in proving that the Scalar oftheDiffe

rence* is always equal to the Difference ofthe Scalars. In

symbols,
III. . . S(q -q) = Sq -$q ,

or briefly,

iv. .

when A is used as the characteristic of the operation of taking

a difference, by subtracting one quaternion, or one scalar, from

another.

(1.) It has not yet been proved (comp. 195), that the Addition of any number

of Quaternions, q, q , g&quot;,
. . is an associative and a commutative operation (comp. 9).

But we see, already, that the scalar of the sum of any such set of quaternions has

a value, which is independent of their order, and of the mode of grouping them.

(2.) If the summands be all right quaternions (132), the scalar of each separately

vanishes, by 196, VII.
;
wherefore the scalar of their sum vanishes also, and that

sum is consequently itself, by 196, XIV., a right quaternion : a result which it is

easy to verify. In fact, if /3
-^- a and y

-I-
or, then y + (3

-J-
a, because a is then per

pendicular to the plane of /3 and y ; hence, by 106, the sum of any two right qua
ternions is a right quaternion, and therefore also the sum of any number of such qua

ternions.

(3.) Whatever two quaternions q and q
1

may be, we have always, as in algebra,

the two identities (comp. 191, (7.) ) :

V.
..(&amp;lt;? -?) + q = q ;

VI. ..(? +
&amp;lt;?) -g=? .

198. Without yet entering on the general theory of scalars of

products or quotients of quaternions, we may observe here that be

cause, by 196, XV., the scalar of a quaternion depends only on the

tensor and the angle, and is independent of the axis, we are at liberty

to write generally (comp. 173, 178, and 191, (1.), (5.)),

L..S^ = S^; II. ..S. ? (&amp;lt;? :?)
= S? ;

the two products, qq
f and q q, having thus always equal scalars,

although they have been seen to have unequal axes, for the general

case of diplanarity (168, 191). It may also be noticed, that in vir

tue of what was shown in 193, respecting the quotient, and in 194

*
Examples have already occurred in 196, (2.), (5.), (16.).



CHAP. I.]
SCALAR OF A PRODUCT, QUOTIENT, OR SQUARE. 185

respecting the product, of any two right quaternions (132), in con

nexion with their indices (133), we may now establish, for any
such quaternions, the formulae:

III. . . S (q
f

: q)
= S (I? : I?)

- T (q : q) . cos L (Ax. q : Ax. q) ;

IV. . . Sq q = S (q
1

. q}
= S ( lq

f
\ I -} = - Tq q.cos L (Ax. q: Ax. q) ;

where the new symbol Iq is used, as a temporary abridgment, to

denote the Index of the quaternion q, supposed here (as above) to be

a right one. With the same supposition, we have therefore also

these other and shorter formulas :

V. . . SU (? :?)=+ cos Z(Ax. # : Ax.?);
VI. . . SUq q = - cos L (Ax. q : Ax. q) ;

which may, by 196, XVI., be interpreted as expressing that, under

the same condition of rectangularity of q and q
f

,

VII. . .^:0) = /:(Ax. ? :Ax.0);
VIII. . . L q q

= TT - L (Ax. q : Ax. q).

In words, the Angle of the Quotient of two Right Quaternions is equal

to the Angle of their Axes; but the Angle of the Product, of two such

quaternions, is equal to the Supplement of the Angle of the Axes.

There is no difficulty in proving these results otherwise, by con

structions such as that employed in Art. 193; nor in illustrating

them by the consideration ofisosceles quadrantal triangles, upon the

surface of a sphere.

199. Another important case of the scalar of a product, is

the case of the scalar of the square of a quaternion. On refer

ring to Art. 149, and to Fig. 42, we see that while we have

always T (g
2

)
= (Tg)

2
, as in 190, and U(?

2

)
=

U(&amp;lt;?)

2
, asinlGl,

we have also,

I. . . L(qY = 2Lq, and Ax.
(&amp;lt;?

2

)
= Ax. q, if

d of Ax.but, by the adopted definitions of
Z&amp;lt;?(130),

and of Ax. q

(127, 128),

II. ..z(?
2
)
=

2(7r-z&amp;lt;7),
Ax. (?*)

= -
Ax.?, if Lq

In each case, however, by 196, XVI., we may write,

in. .

2 B
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a formula w

which gives,

7T

a formula which holds even when L q is 0, or -, or TT, and

IV.. .

Hence, generally, the scalar of q
2
may be put under either of

the two following forms :

V. .. S(2
2

)
= TV.cos2^; VI. . . S (?

2

)
= 2 (S?)

3 - T?
2

;

where we see that it would not be safe to omit the parentheses,

without some convention previously made, and to write simply

S&amp;lt;?

2
,
without first deciding whether this last symbol shall be

understood to signify the scalar ofthe square, or the square of

the scalar of q: these two things being generally unequal.

The latter of them, however, occurring rather oftener than the

former, it appears convenient to fix on it as that which is to

be understood by S&amp;lt;?

2
, while the other may occasionally be

written with a point thus, S . q* ;
and then, with these conven

tions respecting notation* we may write :

VII. .. S?
2

=--

(S?)
2

;
VIII. . . S . f = S

(q*)&amp;gt;

But the square ofthe conjugate of any quaternion is easily seen

to be the conjugate ofthe square ; so that we have generally

(comp. 190, II.) the formula:

IX. . . K?2 = K (
2
)
= (K?)

2
--= T(f : Uq*.

(1.) A quaternion, like a positive scalar, may be said to have in general two oppo

site square roots ; because the squares of opposite quaternions are always equal

(comp. (3.) ). But of these two roots the principal (or simpler) one, and that which

we shall denote by the symbol Vg-, or Mq, and shall call by eminence the Square Root

of q, is that which has its angle acute, and not obtuse. We shall therefore write,

generally,

X. . . L \ q = $ L q; Ax. Vg = Ax. q

*
As, in the Differential Calculus, it is usual to write d#2 instead of (dz)

2
;

while d(a:
2
) is sometimes written as d.ar2 . But as d2

a; denotes a second differential,

so it seems safest not to denote the square of Sq by the symbol S2
*?,

which properly

signifies 887, or Sq, as in 196, VI.
;
the second scalar (like the second tensor, 187,

(9.), or the second versor, 160) being equal to the^r^. Still every calculator will

of course use his own discretion
;
and the employment of the notation S2

? for (Si?)
2

,

as cos zx is often written for (cos a;)
2

, may sometimes cause a saving of space.
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with the reservation that, when L q = 0, or = TT, this common axis of q and Vg- be

comes (by 131, 149) an indeterminate unit-line.

(2.) Hence,
XI. . .SVg&amp;gt;0, if Lq&amp;lt;ir;

while this scalar of the square root of a quaternion may, by VI., be thus trans-,
:

^

formed :

XII. . .

a formula which holds good, even at the limit Lq=7r.

(3.) The principle* (1.), that in quaternions, as in algebra, the equation,

XIII. . .(-?) 2 = ?
2

,

is an identity, may be illustrated by conceiving that, in Fig. 42, a point B is deter

mined by the equation OB =BO
;

for then we shall have (comp. Fig. 33, 6zs),

(_ o)2 = I
]
= = 02 because A AOB a B OC.

\OA I OA

200. Another useful connexion between scalars and tensors (or

norms) of quaternions may be derived as follows. In any plane tri

angle AOB, we havef the relation,

(T. AB)
2 =

(T. OA)
2 - 2 (T. OA) . (T. OB) . cos AOB + (T. os)

2
;

in which the symbols T. OA, &c., denote (by 185, 186) the lengths of

the sides OA, &c. ; but if we still write q
= OB : OA, we have q

- 1

-AB: OA; dividing therefore by (T. OA)
2
, the formula becomes (by

196, &c.),

or

II. . .

But q is here a perfectly general quaternion; we may therefore

change its sign, and write,

III. . .T(\+qY=l + 2Sq+Tq
i

i IV. . . N (1 + q)
= 1 + 2Sq + Nq.

And since it is easy to prove (by 106, 107) that

whatever two quaternions q and q may be, while /

\ ZY &quot;/ I **- C-^^-

%
\

we easily infer this other general formula, 1/f Ajf

VII. . . N ((/ + q) =T$q + 2S . qKg + %; .

~
*/J ^ ^ **f

:

which gives, if x be any scalar,

VIII. . . N (q 4 x)
=

N&quot;^
-f 2xSq + x*.

*
Compare the first Note to page 162.

f By the Second Book of Euclid, or by plane trigonometry.
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(1.) We are now prepared to effect, by rules* of transformation, some otherpas

sages from one mode of expression to another, of the kind which has been alluded to,

and partly exemplified, in former sub-articles. Take, for example, the formula,

T^Ul, of 187, (2.);
p-a

or the equivalent formula,

TO + a)=T(&amp;gt;-a), of 186, (6.) ;

which has been seen, on geometrical grounds, to represent a certain locus, namely the

plane through o, perpendicular to the line OA
;
and therefor the same locus as that

which is represented by the equation,

S- = 0, of 196, (1.).
a

To pass now from the former equations to the latter, by calculation, we have only

to denote the quotient p : a by q, and to observe that the first or second form, as just

now cited, becomes then,

T(? + 1) = T(7 -1); or N(9 + 1)
= N (g

-
1) ;

or finally, by II. and IV.,

S?=0,

which gives the third form of equation, as required.

(2.) Conversely, from S - =
0, we can return, by the same general formulae II.

a *

and IV., to the equation N f
- 1 \ = N [

- + 1\ or by I, and III. to T f
P- - 1

\a ] \a j \a

= T - + 1 \ orto T(p- a) = T(p+a), or to T P-^=
1, as above

;
and gene-

\a J p-a
rally,

Stf
= gives T(g-l) = T(gr+l), or T^ii=l;

while the latter equations, in turn, involve, as has been seen, the former.

(3.) Again, if we take the Apollonian Locus, 145, (8.), (9.), and employ tiic first

of the two forms 186, (5.) of its equation, namely,

T (p
- a2

a)
= aT (p

-
a),

where a is a given positive scalar different from unity, we may write it as

T(g-a2) = aT(?-l), or as N (q- a^ = a^N(q- 1);

or by VIII.,

Nq - 2o2
S? + a4 = a2

(Ng
- 2Sq + 1) ;

or, after suppressing
- 2a2

Sq, transposing, and dividing by a2
1,

N? = a2
; or, Np = a2Na; or, Tp = aTa

;

which last is the secondform 186, (5.), and is thus deducedfrom the first, by calcu

lation alone, without any immediate appeal to geometry, or the construction of any

diagram.

Compare 145, (10.) ;
and several subsequent sub-articles.
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(4.) Conversely if we take the equation,

N^ = a2
,
of 145, (12.),a

which was there seen to represent the same locus, considered as a spheric surface,

with o for centre, and act for one of its radii, and write it as
N&amp;lt;?

= a2
,
we can then

by calculation return to the form

N(g-a2
)
= a2N(? -l), or T (?-a2

)
= aT (q

-
1),

or finally,

T (p
- 2

a) = aT (p
-

a), as in 186, (5.) ;

this firstform of that sub-article being thus deduced from the second, namely from

Tp = aTa, or T = a.

(5.) It is far from being the intention of the foregoing remarks, to discourage

attention to the geometrical interpretation of the various forms of expression, and

general rules of transformation, which thus offer themselves in working with qua- -^

ternions
;
on the contrary, one main object of the present Chapter has been to es

tablish a firm geometrical basis, for all such forms and rules. But when such a.foun
dation has once been laid, it is, as we see, not necessary that we should continually

recur to the examination of it, in building up the superstructure. That each of the

two forms, in 186, (5.), involves the other, may be proved, as above, by calculation ;

but it is interesting to inquire what is the meaning of this result : and in seeking to

interpret it, we should be led anew to the theorem of the Apollonian Locus.

(6.) The result (4.) of calculation, that

N (q
- a 2

)
= a 2N (q

-
1), if% =

a*,

may be expressed under the form of an identify, as follows :

IX. ..Nfo-Ng) = Ng.N(g-l);
in which q may be any quaternion.

(7.) Or, by 191, VII., because it will soon be sen that

q (q 1)
= g

2
q, as in algebra,

we may write it as this other identity :

X. ..Nfo-N0) = N(g
*-

?).

(8.) If T
(&amp;lt;7

-
1) = 1, then S- = -

;
and conversely, the former equation follows

from the latter; because each may be put under the form (comp. 196, XII.),

(9.) Hence, if T (p
-

a) = Ta, then S =
1, and reciprocally. In fact (comp.

196, (6.) ), each of these two equations expresses that the locus of P is the sphere

which passes through o, and has its centre at A
;

or which has on = 2a for a dia

meter.

(10.) By changing q to q 4 1 in (8), we find that

if Tfl
= 1

,
then S ^ =

0, and reciprocally.
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(11.) Hence if Tp = Ta, then S^-^ =
0, and reciprocally ; because (by 106)

p + a

p-a p-a p +

p + a a a

(12.) Each of these two equations (11.) expresses that the locus of pis the

sphere through A, which has its centre at o
;
and their proved agreement is a recog

nition, by quaternions, of the elementary geometrical theorem, that the angle in a

semicircle is a right angle.

SECTION 13. On the Eight Part (or Vector Part} ofa Qua
ternion ; and on the Distributive Property of the Multipli

cation of Quaternions.

201. A given vector OB can always be decomposed, in one

but in only one way, into two component vectors, of which it

is the sum (6) ;
and of which one, as OB in Fig. 50, is parallel

(15) to another given vector OA, while

the other, as OB&quot; in the same Figure, is

perpendicular to that given line OA
;

namely, by letting fall the perpendicu
lar BB on OA, and drawing OB&quot; = B B, so

that OB BB&quot; shall be a rectangle. In

other words, if a and ]3 be any two given,

actual, and co-initial vectors, it is always possible to deduce

from them, in one definite way, two other co-initial vectors,

|3
and

/3&quot;,
which need not however both be actual (1); and

which shall satisfy (comp. 6, 15, 129) the conditions,

P-P + F-P + P, /3 ||/3, pty
P vanishing, when /3 _L a ; and

j3&quot; being null, when
]3 ||

a ;

but both being (what we may call) determinate vector-func
tions of a and j3.

And of these two functions, it is evident

that j3
is the orthographic projection of j3 on the line a ; and

that
|3&quot;

is the corresponding projection offt on theplane through

o, which is perpendicular to a.

202. Hence it is easy to infer, that there is always one,

but only one way, of decomposing a given quaternion,

7
= OB : OA =

j3 :a,

into two parts or summands (195), of which one shall be, as in
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196, a scalar, while the other shall be a right quotient (132).

Of these two parts, informer has been already called (196)
the scalar part, or simply the Scalar of the Quaternion, and

has been denoted by the symbol S&amp;lt;?
; so that, with reference

to the recent Figure 50, we have

I. . .

S&amp;lt;7

= S(oB : OA) = OB : OA ; or, S (]3 : a)
=

j3 : a.

And we now propose to call the latter part the EIGHT PART*

of the same quaternion, and to denote it by the new symbol

V?;

writing thus, in connexion with the same Figure,

II. . . V? = V(OB:OA) =
OB&quot;:OA; or, V(3 : a)

=
/3&quot;:

a.

The System of Notations, peculiar to the present Calculus,

will thus have been completed ;
and we shall have the follow

ing general Formula ofDecomposition ofa Quaternion into two

Summands (comp. 188), of the Scalar and Right kinds :

III.. .q=Sq + Vq = Vq + Sg,

or, briefly and symbolically,

IV. . . 1 = S + V = V+S.

(1.) In connexion with the same Fig. 50, we may write also,

V (OB : OA) = B B : OA,

because, by construction, B B = OB&quot;.

(2.) In like manner, for Fig. 36, we have the equation,

V (OB : OA) = A B : OA.

(3.) Under the recent conditions,

V(/3 :a) = 0, and
8(18&quot;: )

= 0.

(4.) In general, it is evident that

V. . . q = 0, if Sg = 0, and
V&amp;lt;f

=
;
and reciprocally.

(5.) More generally,

VI. . . q q, if Sq = $q, and Vg = Vg; with the converse.

(G.) Also VII. ..9 =
0, if Lq =

0, or =?r;

or VIII. . . V(/3:a) = 0, if (3 \\
a

;

the right part of a scalar being zero.

* This Right Part, V&amp;lt;/,
will come to be also called the Vector Part, or simply

the VECTOR, of the Quaternion ;
because it will be found possible and useful to iden

tify such part with its own Index-Vector (133). Compare the Notes to pages 119,

136, 174.



192 ELEMENTS OF QUATERNIONS. [BOOK II.

(7.) On the other hand,

IX. ..Vq = q, if
Lq=^i

a right quaternion being its own right part.

203. We had (196, XIX.) a formula which may now be

written thus,

I. . . OB = S(OB : OA) . OA, or j3
= S -a,

a

to express the projection O/&quot;OB
on OA, or of the vector

|3 on a ;

and we have evidently, by the definition of the new symbol

V&amp;lt;/,
the analogous formula,

II. . . OB&quot; = V (OB : OA) . OA, or
j3&quot;

= V -
a,

to express the projection 0//3 on the plane (through o), which

is drawn so as to be perpendicular to a ; and which has been

considered in several former sub-articles (comp. 186, (6.), and

196, (1.) ).
It follows (by 186, &c.) that

III. . .

T/3&quot;

= TV - Ta =perpendicular distance of v from OA
;

this perpendicular being here considered with reference to its

length alone, as the characteristic T of the tensor implies. It

is to be observed that because therefor, V , in the recent
a

formula II. for the projection j3&quot;,

is not a scalar , we must write

that factor as a multiplier ,
and ?zoas a multiplicand ; although

we were at liberty, in consequence of a general convention

(15), respecting the multiplication of vectors and scalars, to

denote the other projection j3 under the form,

(1.) The equation,

a

expresses that the locus of r is the indefinite right line OA.

(2.) The equation, ~
a~ a
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expresses that the locus of P is the indefinite right line BB&quot;,
in Fig. 50, which is

drawn through the point B, parallel to the line OA.

(3.) The equation

S^? =
0, or S^ = S-, of 196, (2.),

a a a

has been seen to express that the locus of P is the plane through B, perpendicular

to the line OA
;

if then we combine it with the recent equation (2.), we shall express

that the point P is situated at the intersection of the two last mentioned loci
;
or that

it coincides with the point B.

(4.) Accordingly, whether we take the two first or the two last of these recent

forms (2.), (3.), namely,

v^L/Lo, s p-^=o, or v^=v, s? = s,
a a a a a a

we can infer this position of the point P : in the first case by inferring, through 202,

V., that - - =
0, whence p

-
(3= 0, by 142

;
and in the second case by inferring,

a

P P
through 202, VL, that - =

; so that we have in each case (comp. 104), or as a
a a

consequence from each system, the equality p
=

(3, or OP = OB
;
or finally (comp. 20)

the coincidence, p = B.

(5.) The equation, TV P =Ty /3

a a

expresses that the locus of the point p is the cylindric surface of revolution, which

passes through the point B, and has the line OA for its axis
;
for it expresses, by III.,

that the perpendicular distances of P and B, from this latter line, are equal.

(6.) The system of the two equations,

a a y

expresses that the locus of P is the (generally) elliptic section of the cylinder (5.),

made by the plane through o, which is perpendicular to the line oc.

(7.) If we employ an analogous decomposition of p, by supposing that

p=p +
p&quot;, p \\a, p&quot;-*-a,

the three rectilinear or plane loci, (1.), (2.), (3.), may have their equations thus

briefly written :

p&quot;

= 0; p&quot;

=
/3&quot;; p =

/3 :

while the combination of the two last of these gives p =/3, as in (4.).

(8.) The equation of the cylindric locus, (5.), takes at the same time the form,

Tp&quot;
=

T/3&quot;;

which last equation expresses that the projection p&quot; of the point p, on the plane through

o perpendicular to OA, falls somewhere on the circumference of a circle, with o for

centre, and OB&quot; for radius : and this circle may accordingly be considered as the base

of the right cylinder, in the sub-article last cited.

204. From the mere circumstance that Vq is always a

right quotient (132), whenceUV^ is a right versor (153), of

2 c
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which the plane (1 19), and the axis (127), coincide with those

of
&amp;lt;?,

several general consequences easily follow. Thus we have

generally, by principles already established, the relations :

I. . .^V7 =
|;

IL. . Ax.V? =
Ax.UV&amp;lt;7

= Ax.?;

III. . . KVq = - V?, or KV = -V (144) ;

IV. .

.SV&amp;lt;7
= 0, or SV = 0(196, VII.);

V. . . (UV?)
2 = -1 (153,159);

and therefore,

VI. . . (V?)
2

==-(TV?)
2 = -NV?,*

because, by the general decomposition (188) of a quaternion

iniQ factors, we have

VII. . . Vq = TVq.UVq.
We have also (comp. 196, VI.),

VIII. . . VSq = 0, or VS =
(202, VII.) ;

IX. . . Wq = Vg, or V2 = VV = V (202, IX.) ;

and X. . . VKq=-Vq }
or VK = - V,

because conjugate quaternions have opposite right parts, by the

definitions in 137, 202, and by the construction of Fig. 36.

For the same reason, we have this other general formula,

XI. . . Kq = Sg-Vq, or K = S-V;
but we had

q
= Sq + Vq, or 1 = S + V, by 202, III., IV. ;

hence not only, by addition,

q + Kq=2Sq, or 1 + K = 2S, as in 196, I.,

but also, by subtraction,

XII. ..0-K0 = 2Vy, or 1-K = 2V;

whence the Characteristic) V, of the Operation of taking the

Right Part ofa Quaternion (comp. 132, (6.) ;
137 ;

156
; 187 ;

196), may be defined by either of the two foliowing symbolical

equations :

xm. . . v = i-S(202, iv.); xiv. . . v = i(i-K) ;

whereof the former connects it with the characteristic S, and

*
Compare the Note to page 130.
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the latter with the characteristic K
;
while the dependence of

K on S and V is expressed by the recent formula XI. ; and

that of S on K by 196, II . Again, if the line OB, in Fig. 50,

be multiplied (15) by any scalar coefficient, the perpendicular
BB is evidently multiplied by the same

; hence, generally,

XV. . . Vxq = xVq, if x be any scalar ;

and therefore, by 188, 191,

XVI. . . V? = Tq .VU?, and XVII. . . TV? = Tq .TVU?.

But the consideration of the right-angled triangle, OB B, in the

same Figure, shows that

XVIII. . .

because, by 202, II., we have

and
T. OB&quot;

= T.OB . sin AOB ;

we arrive then thus at the following general and useful for

mula, connecting quaternions with trigonometry anew :

XIX. . . TVU? = sinz?;

by combining which with the formula,

SU? =
cosz&amp;lt;7(196, XVL),

we arrive at the general relation :

XX. . .(SU?)
2 + (TVU2)

2 =1;

which may also (by XVII., and by 196, IX.) be written thus :

and might have been immediately deduced, without sines and

cosines, from the right-angled triangle, by the property of the

square of the hypotenuse, under the form,

(T.OB )

2
+(T.B B)

2

=(T.OB)
2

.

The same important relation may be expressed in various other

ways ; for example, we may write,

XXII. . .N^T^S^-V?2
,

where it is assumed, as an abridgment of notation (comp. 199,

VII., VIII.), that

XXIII. . . V?
2 = (V?)

2
, but that XXIV. . . V.

&amp;lt;?

=



196 ELEMENTS OF QUATERNIONS. [BOOK II.

the import of this last symbol remaining to be examined.

And because, by the definition of a norm, and by the proper

ties of Sq and
V&amp;lt;?,

XXV. . . NS? = S?
2
,

but XXVI. . . NV? = - V?2
,

we may write also,

XXVII. . . % = N(S? + V?) = NS9 + NV?;
a result which is indeed included in the formula 200, VIII.,

since that equation gives, generally,

XXVIII. . . N(0 + x) = N? + Nz, if ? =
;

x being, as usual, any scalar. It may be added that because

(by 106, 143) we have, as in algebra, the identity,

XXIX. ..-(? + ?)
= -

?
-
?,

the opposite of the sum ofany two quaternions being thus equal
to the sum ofthe opposites, we may (by XL) establish this

other general formula :

XXX. ..-K? = V?-S?;
the opposite ofthe conjugate of any quaternion q having thus

the same right part as that quaternion, but an opposite scalar

part.

(1.) From the last formula it may be inferred, that

if g = -Kg, then V = + V?, but Sg = -S?;
and therefore that

Tq = T, and Ax. q = Ax. 9, but L q = IT [_ q ;

which two last relations might have been deduced from 138 and 143, without the

introduction of the characteristics S and V.

(2.) The equation,

(
V Y =

f V Q ^

2

,
or (by XXVI.), NV =NV

,

\ a
) \ a j a a

like the equation of 203, (5.), expresses that the locus of p is the right cylinder, or

cylinder of revolution, with OA for its axis, which passes through the point B.

(3.) The system of the two equations,

like the corresponding system in 203, (6.), represents generally an elliptic section of

the same right cylinder ;
but if it happen that y || ,

the section then becomes cir

cular.
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(4.) The system of the two equations,

&amp;gt;- i with *&amp;gt;-!

represents the circle,* in which the cylinder of revolution, with OAfor axis, and with

(1 #2
)*Ta for radius, is perpendicularly cut by a plane at a distance = + xTa from

o
;
the vector of the centre of this circular section being xa.

(5.) While the scalar x increases (algebraically) from 1 to 0, and thence to

+ 1, the connected scalar V(l #2
) at first increases from to 1, and then decreases

from 1 to
;
the radius of the circle (4.) at the same time enlarging from zero to a

maximum =Ta, and then again diminishing to zero
;
while the position of the centre

of the circle varies continuously, in one constant direction, from a,first limit-point A ,

if OA = a, to the point A, as a second limit.

(6.) The locus of all such circles is the sphere, with AA for a diameter, and there

fore with o for centre
; namely, the sphere which has already been represented by the

equation Tp = Ta of 186, (2.); or by T- = 1, of 187, (1.) ;
or bya

S - =
0, of200, (11.);

but which now presents itself under the new form,

/ D\ 2 I 0\2
s*] - vH i,

\ a) \ a)
obtained by eliminating x between the two recent equations (4).

(7.) It is easy, however, to return from the last form to the second, and thence

to the first, or to the third, by rules of calculation already established, or by the ge
neral relations between the symbols used. In fact, the last equation (6.) may be

written, by XXII., under the form,

a
whence

T=l, by 190, VI.;
a

and therefore also Tp = Ta, by 187, and S^^ = 0, by 200, (11.).

(8.) Conversely, the sphere through A, with o for centre, might already have

been seen, by the first definition and property of a norm, stated in 145, (11.), to ad

mit (comp. 145, (12.) ) of being represented by the equation N - = 1
;

and there
of

fore, by XXII., under the recent form (6.) ; in which if we write x to denote the

variable scalar S -, as in the first of the two equations (4.), we recover the second of

those equations : and thus might be led to consider, as in (6.), the sphere in question

* By the word &quot;

circle,&quot;
in these pages, is usually meant a circumference, and

not an area; and in like manner, the words &quot;

sphere,&quot;
&quot;

cylinder,&quot;
u

cone,&quot; &c., are

usually here employed to denote surfaces, and not volumes.
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aa the locus of a variable circle, which is (as above) the intersection of a variable

cylinder, with a variable plane perpendicular to its axis.

(9.) The same sphere may also, by XXVII., have its equation written thus,

(10.) If, in each variable plane representecTby the first equation (4.), we conceive

the radius of the circle, or that of the variable cylinder, to be multiplied by any con

stant and positive scalar a, the centre of the circle and the axis of the cylinder re -

maining unchanged, we shall pass thus to a new system of circles, represented by this

new system of equations,

(11.) The locus of these new circles will evidently be a Spheroid of Revolution ;

the centre of this new surface being the centre o, and the axis of the same surface

being the diameter AA
,
of the sphere lately considered : which sphere is therefore

either inscribed or circumscribed to the spheroid, according as the constant a &amp;gt; or

&amp;lt; 1 ;
because the radii of the new circles are in the first case greater, but in the se

cond case less, than the radii of the old circles
;
or because the radius ofthe equator

of the spheroid = aTa, while the radius of the sphere = Ta.

(12.) The equations of the two co-axal cylinders of revolution, which envelope

respectively the sphere and spheroid (or are circumscribed thereto) are :

or

a a

(13.) The system of the two equations,

represents (comp. (3.) ) a variable ellipse, if the scalar x be still treated as a va

riable.

(14.) The result of the elimination of a; between the two last equations, namely
this new equation,

or

P o
NS -+FVg= 1, by XXV., XXVI.

or

or finally,

75)=!. by 190, VI.,a
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represents the locus of all such ellipses (13.), and will be found to be an adequate

representation, through quaternions, of the general ELLIPSOID (with three unequal

axes} : that celebrated surface being here referred to its centre, as the origin o of

vectors to its points ;
and the six scalar (or algebraic) constants, which enter into

the usual algebraic equation (by co-ordinates) of such a central ellipsoid, being here

virtually included in the two independent vectors, a and
(3,

which may be called its

two Vector- Constants.*

(15.) The equation (comp. (12.) ),

,41, or
KV|=1,

or
Tv|-l,

represents a cylinder of revolution, circumscribed to the ellipsoid, and touching it

along the ellipse which answers to the value x = 0, in (13.) ;
so that the plane of

this ellipse of contact is represented by the equation,

a

the normal to this plane being thus (comp. 196, (17.) ) the vector a, or OA
;
while

the axis of the lately mentioned enveloping cylinder is
[3,

or OB.

(16.) Postponing any further discussion of the recent quaternion equation of the

ellipsoid (14.), it may be noted here that we have generally, by XXII., the two fol

lowing useful transformations for the squares, of the scalar S, and of the rightpart

V&amp;lt;7,
of any quaternion q :

XXXI. . . Sg
2 = T9

2
4. Y9

2
;

XXXII. . . Vg2 = Sq
z - Tg

2
.

(17.) In referring briefly to these, and to the connected formula XXII., upon

occasion, it may be somewhat safer to write/

(S)
2 = (T)

2 + (Y)2
, (V) = (S)

2 -
(T)

2
, (T)a

=
(S)

2 -
(V)

2
,

than S2 = T2 + V 2
,
&c.

;
because these last forms of notation, S2

, &c., have been

otherwise interpreted already, in analogy to the known Functional Notation, or No
tation of the Calculus of Functions, or of Operations (comp. 187, (9.); 196, VI.

;

and 204, IX.).

(18.) In pursuance of the same analogy, any scalar may be denoted by the gene

ral symbol,
V- O;

because scalars are the only quaternions of which the right parts vanish.

(19.) In like manner, a right quaternion, generally, may be denoted by the sym
bol,

S- O;

and since this includes (comp. 204, I.) the right part of any quaternion, we may
establish this general symbolic transformation of a Quaternion :

(20.) With this form of notation, we should have generally, at least for realf

quaternions, the inequalities,

*
It will be found, however, that other pairs of vector-constants, for the central

ellipsoid, may occasionally be used with advantage.

f Compare Art. 149
;
and the Notes to pages 90, 134.
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(V-iO)2&amp;gt;0; (

so that a (geometrically real) Quaternion is generally of the form :

Square-root of a Positive, plus Square-root ofa Negative.

(21.) The equations 196, XVI. and 204, XIX. give, as a new link between qua

ternions and trigonometry, the formula :

XXXIII. . . tan L q = TVU? : SU? = TV9 : Sq.

(22.) It may not be entirely in accordance with the theory of that Functional

(or Operational) Notation, to which allusion has lately been made, but it will be

found to be convenient in practice, to write this last result under one or other of the

abridgedforms :*

TV
XXXIV. . . tan z; 9 = -

. g ;
or XXXIV. . . tan L q = (TV : S) q ;S

which have the advantage of saving the repetition of the symbol of the quaternion,

when that symbol happens to be a complex expression, and not, as here, a single let

ter, q.

(23.) The transformation 194, for the index of a right quotient, gives generally,

by II., for any quaternion q, the formulas :

XXXV. . . IV? = TV? . Ax. q ;
XXXVI. . . IUVq = Ax. q ;

so that we may establish generally the symbolical! equation,

XXXVI . . . IUV = Ax.

(24.) And because Ax. (1 : V?) = Ax. V?, by 135, and therefore = Ax. q, by

II., we may write also, by XXXV.,

XXXV. . . I (1 : Vq) = - Ax. q : TV?.

205. If any parallelogram OBDC (comp. 197) be projected

on the plane through o, which is perpendicular to OA, the pro

jected figure OB&quot;D&quot;C&quot; (comp. 11) is still a parallelogram; so

that

OD&quot; = oc&quot; + OB&quot; (6), or S&quot;
=

7&quot;
+

)3&quot;
;

and therefore, by 106,

S&quot;:a=(7 &quot;:)
+

(j3&quot;:a).

Hence, by 120, 202, for any two quaternions, q and q ,
we have

the general formula,

Compare the Note to Art. 199.

f At a later stage it will be found possible (comp. the Note to page 174, &c.),

to write, generallv,

and then (comp. the Note in page 118 to Art. 129) the recent equations, XXXVI.,
XXXVI

.,
will take these shorter forms :

Ax. q = UV? ;
Ax. = UV.
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with which it is easy to connect this other,

Hence also, for any three quaternions, ^, &amp;lt;?
, q&quot;,

and similarly for any greater number of summands : so that

we may write generally (comp. 197, II.),

III. . . VS? = sVy, or briefly III . . . VS = SV ;

while the formula II. (comp. 197, IV.) may, in like manner,

be thus written,

IV. ..VA = AV, or IV. ..VA

the order of the terms added, and the mode ofgrouping them,

in III., being as yet supposed to remain unaltered, although

both those restrictions will soon be removed. We conclude

then, that the characteristic V, of the operation of taking the

right part (202, 204) of a quaternion, like the characteristic S

of taking the scalar (196, 197), and the characteristic K of

taking the conjugate (137, 195*), is a Distributive Symbol, or

represents a distributive operation: whereas the characteris

tics, Ax., z, N, U, T, of the operations of taking respectively

thea;m(128, 129), thea?zyfe(130), the norm (145, (11.) ), the

versor (156), and the tensor (187), are not thus distributive

symbols (comp. 186, (10.), and 200, VII.) ;
or do not operate

upon a whole (or sum), by operating on its parts (or sum

mands) .

(1.) We may now recover the symbolical equation K 2 = 1 (14.5), under the form

(comp. 196, VI.; 202, IV.
;
and 204, IV. VIII. IX. XL):

V. . . K2 = (S-V)2 = S2 -SV-VS + V2 = S + V=1.

(2.) In like manner we can recover eacli of the expressions for S2
,
V2 from the

other, under the forms (comp. again 202, IV.) :

VI. . . S2 =
(1
- V) 2 = 1 - 2V + V2 = 1 - V = S, as in 196, VI.

;

VII. . . V 2 = (l -S)3 =1-2S+S2 = 1-S = V, as in 204, IX.;

or thus (comp. 196, II ., and 204, XIV.), from the expressions for S and V in terms

ofK:

*
Indeed, it has only been proved as yet (comp. 195, (1.)), that K2g=

for the case of two summands ;
but this result will soon be extended.

2 D
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VIII. . . S2 = i

IX. . . V 2 =i

(3.) Similarly,

X. . . SV = (1 + K) (1- K) = (1-K2) = 0, as in 204, IV.;

and XI. . . VS = i(l-K) (l + K) = i(l- K8
)=0, as in 204, VIII.

206. As regards the addition (or subtraction) of such right

parts, &quot;Vq, V^ ,
or generally of any two right quaternions

(132), we may connect it with the addition (or subtraction) of

their indices (133), as follows. Let OBDC be again any paral

lelogram (197, 205), but let OA be now an unit-vector (129)

perpendicular to its plane ; so that

Ta=l, Z(/3:a) = Z(Y :a) = ^(8:a)=|,
8= T+ /3.

Let OB D C be another parallelogram in the same plane, ob

tained by a positive rotation of the former, through a right

angle, round OA as an axis
;

so that

Ax. (|3 : j3)
= Ax. (y : y)

= Ax. (S : 8)
= .

Then the three right quotients, /3 : a, y : a, and S : a, may re

present any two right quaternions, q, q , and their sum, q + q,

which is always (by 197, (2.) ) itself & right quaternion; and

the indices of these three right quotients are (comp. 133, 193)
the three lines ]3 , y } 8 , so that we may write, under the fore

going conditions of construction,

/3 =I(j3:a), y -I(y:a), ff-I(8:a).

But this third index is (by the second parallelogram) the sum

of the two former indices, or in symbols, &amp;lt;$

= y + /3 ; we may
therefore write,

I. . . I(q + q)
=
lq + lq, if

Lq=Lq=^ ,

or in words the Index of the Sum* of any two Right Quater
nions is equal to the Sum of their Indices. Hence, generally,

for any two quaternions, q and q, we have the formula,

II. ..IV +

*
Compare the Note to page 174.
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because
V&amp;lt;7, Vq are always right quotients (202, 204), and

y (q + q) i g always their sum (205, I.) ; so that the index of
the right part ofthe sum ofany two quaternions is the sum of
the indices of the right parts. In like manner, there is no diffi

culty in proving that

III. ..!(? -q) = lq- lq, if Lq -Lq-\\
and generally, that

IV. . . IV (q
-

)
= IVq

- IVq ;

the Index of the Difference of any two right quotients, or of

the right parts of any two quaternions, being thus equal to the

Difference of the Indices.* We may then reduce the addition

or subtraction of any two such quotients, or parts, to the addi

tion or subtraction of their indices ; a right quaternion being

always (by 133) determined, when its index is given, or

known.

207. We see, then, that as the MULTIPLICATION ofany
two Quaternions was (in 191) reduced to (1st) the arithmetical

operation of multiplying their tensors, and (Ilnd) the geometri

cal operation of multiplying their versors, which latter was con

structed by a certain composition of rotations, and was repre

sented (in either of two distinct but connected ways, 167, 175)

by sides or angles of a spherical triangle: so the ADDITION of

any two Quaternions maybe reduced (by 197, 1., and 206, II.)

to, 1st, the algebraical addition oftheir scalar parts, considered

as two positive or negative numbers (16) ; and, Ilnd, the geo

metrical addition ofthe indices of their right parts , considered

as certain vectors (1): this latter Addition ofLines being per

formed according to the Rule ofthe Parallelogram (6.).| In

* Compare again the Note to page 174.

f It does not fall within the plan of these Notes to allude often to the history of

the subject ;
but it ought to be distinctly stated that this celebrated Rule, for what

may be called Geometrical Addition of right lines, considered as analogous io compo

sition of motions (or of forces^), had occurred to several writers, before the invention

of the quaternions : although the method adopted, in the present and in a former

work, of deducing that rule, by algebraical analogies, from the symbol B A (1)

for the line AB, may possibly not have been anticipated. The reader may com

pare the Notes to the Preface to the author s Volume of Lectures on Quaternions

(Dublin, 1853).
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like manner, as the general Division of Quaternions was seen (in

191) to admit of being reduced to an arithmetical division of

tensors, and & geometrical division ofversors, so we may now

(by 197, III., and 206, IV.) reduce, generally, the Subtrac

tion ofQuaternions to (1st) an algebraical subtraction ofsca-

Iars
9 and (Ilndi & geometrical subtraction of vectors: this last

operation being again constructed by a parallelogram, or even

by a plane triangle (comp. Art. 4, and Fig. 2). And because

the sum of any given set of vectors was early seen to have a

value (9), which is independent of their order, and of the mode
ofgrouping them, we may now infer that the Sum ofany num
ber ofgiven Quaternions has, in like manner, a Value (comp.

197, (!))&amp;gt;
which is independent of the Order, and of the

Grouping ofthe Summands: or in other words, that the general
Addition of Quaternions is a Commutative* and an Associative

Operation.

(1.) The formula,

,
of 205, III.,

is now seen to hold good, for any number of quaternions, independently of the arrange

ment of the terms in each of the two sums, and of the manner in which they may be

associated.

(2.) We can infer anew that

K
(&amp;lt;/

4- q)
= Kg 4 Kg, as in 195, II.,

under the form of the equation or identity,

S
(&amp;lt;!

+ q)
- V (? + 9) = (Sg

- Vg ) 4 (89
-
Vg).

(3.) More generally, it may be proved, in the same way, that

K2g = 2 Kg, or briefly, K2 = 2K,

whatever the number of the summands may be.

208. As regards the quotient or product of the right parts, Vq and

V*? ,
of any two quaternions, let t and t

r denote the tensors of those

two parts, and let x denote the angle of their indices, or of their axes,

or the mutual inclination of the axes, or of the planes,] .of the two

quaternions q and q
f

themselves, so that (by 204, XVIII.),

* Compare the Note to page 175.

f Two planes, of course, make with each other, in general, two unequal and sup

plementary angles ; but we here suppose that these are mutually distinguished, by

taking account of the aspect of each plane, as distinguished from the opposite aspect :

which is most easily done (11 1.), by considering the axes as above.
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t = TVq = Tq . sin Lq, t = TVq
f = Tq . sin L q ,

and
x = L (lVq

f
: IVj) = L (Ax. q : Ax. q).

Then, by 193, 194, and by 204, XXXV., XXXV .,

I. . .Vq :Vq = IVq :lVq = + (TVq : TVq) . (Ax. g : Ax. q) ;

II. . . V^.V? = IV^:I^---(TVr/.TVg).(Ax.^ :Ax.^) ;

and therefore (comp. 198), with the temporary abridgments pro

posed above,

III. . . S (Vq : Vq) = t tr
l cos x

; IV. . . SU (Vq : Vq) = + cos x ;

V.. . SOY.Vg)=-i *cosa;; VI.. . SU (Vq . Vq) = - cosa;

VII. ,.{.(Vq :Vq) = X , VIII. . . (Vq . Vq)= v-x.

We have also generally (comp. 204, XVIII., XIX.),

IX. . . TV (Vq
1

: Vq) = t tr* sin x ; X. . . TVU
(Vq : Vq) = sin x ;

XI... TV(Vq .Vq) = t t8mx ,
XII. . . TVU (Vq . Vq) = sin or;

and in particular,

XIII. . . V (Vq : Vq) = 0, and XIV. . . V (Vq . Vq) = 0,

if ? |||0(123);

because (comp. 191, (6.), and 204, VI.) the quotient or product of

the right parts of two complanar quaternions (supposed here to be

both non-scalar (108), so that t andf are each
&amp;gt;0) degenerates (131)

into a scalar, which may be thus expressed :

XV. . . Vq 1
: Vq = + t t\ and XVI. . . Vq .Vq = - t t, if x =

;

but

XVII. . . Vq :Vq = -t f

t-\ and XVIII. .. Vq
f

.Vq = + t t, if# =
7r;

the first case being that of coincident, and the second case that of

opposite axes. In the more general case of diplanarity (119), if we

denote by 8 the unit-line which is perpendicular to both their axes,

and therefore common to their two planes, or in which those planes

intersect, and which is so directed that the rotation round it from.

Ax. q to Ax. q is positive (comp. 127, 128), the recent formula I.,

II. give easily,

XIX. . . Ax.(Vq :Vq)=+8; XX. . . Ax. (Vq
f

. Vq) =- 3;

and therefore (by IX., XI., and by 204, XXXV.), the indices of the

right parts, of the quotient and product of the right parts of any two

diplanar quaternions, may be expressed as follows:

XXI. . . IV(Vq :Vq) = +S.tf
t-

l

siux;

XXII. . . IV (Vj .V?) = -.* sin a?.
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(1.) Let ABC be any triangle upon the unit-sphere (128), of which the spheri

cal angles and the corners may be denoted by the same letters A, B, c, while the sides

shall as usual be denoted by a, b, c
;
and let it be supposed that the rotation (comp.

177) round A from c to B, and therefore that round B from A to c, &c., is positive,

as in Fig. 43. Then writing, as we have often done,

q = /3 : a, and q = y : (3, where a = OA, &c.,

we easily obtain the the following expressions for the three scalars t, , x, and for

the vector 8 :

t = sin c
;

t = sin a
;

x TT B
;

S = -
(3.

(2.) In fact we have here,

whence t and t are as just stated. Also if A
,
B

,
c be (as in 175) the positive poles

of the three successive sides BC, CA, AB, of the given triangle, and therefore the points

A, B, c the negative poles (comp. 180, (2.) ) of the new arcs B C
,
C A

,
A B

,
then

Ax. q = oc
,

Ax. q = OA
;

but x and S are the angle and the axis of the quotient of these two axes, or of the

quaternion which is represented (162) by the arc C A
;

therefore x is, as above

stated, the supplement of the angle B, and S is directed to the point upon the sphere,

which is diametrically opposite to the point B.

(3.) Hence, by III. V. VII. VIII. IX. XL, for any triangle ABC on the unit-

sphere, with a =OA, &c., we have the formulae:

XXIII. . . S

XXIV.

^ sin a cosec c cos B
;

f V^.V-
\ P a

V 13 aj
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V ^ : V -
|

=

\ P

or IV V : V -
|

= + 3 sin a cosec c sin B ;

V ft a J

the four formulae of (4.) would therefore still subsist, provided that, for this new

direction of rotation in the given triangle, we were to change the sign o//3, in the

second member of each.

(6.) Abridging, generally IVg : 8*7 to (IV: 8)7, as TVq: Sg was abridged, in

204, XXXIV ., to (TV: 8)9, we have by (5.), and by XXIV., XXXII., this other

general formula, for any three unit-vectors a, /3, y, considered still as terminating

at the corners of a spherical triangle ABC :

XXXIII.
\
V

p&quot;

V
a)

the upper or the lower sign being taken, according as the rotation round B from A to

c, or that round (B from a to y, which might perhaps be denoted by the symbol /?y,

and which in quantity is equal to the spherical angle B, is positive or negative.

209. When the planes of any three quaternions q, # , 5&quot;,
consi

dered as all passing through the origin o (119), contain any common

line, those three may then be said to be Collinear* Quaternions ; and

because the axis of each is then perpendicular to that line, it follows

that the Axes of Collinear Quaternions are Complanar : while con

versely, the complanarity of the axes insures the collinearity of the

quaternions, because the perpendicular to theplane of the axes is a line

common to the planes of the quaternions.

(1.) Complanar quaternions are always collinear
;
but the converse proposition

does not hold good, collinear quaternions being not necessarily Complanar.

(2.) Collinear quaternions, considered as fractions (101), can always be reduced

to a common denominator (120) ;
and conversely, if three or more quaternions can be

so reduced, as to appear iinder the form of fractions with a common denominator f
,

those quaternions must be collinear : because the line c is then common to all their

planes.

(3.) Any two quaternions are collinear with any scalar ; the plane of a scalar

being indeterminate^- (1B1).

(4.) Hence the scalar and right parts, 89, Sg , Vq, Vg , of any two quaternions,

are always collinear with each other.

(5.) The conjugates of collinear quaternions are themselves collinear.

*
Quaternions of which the planes are parallel to any common line may also be

said to be collinear. Compare the first Note to page 113.

f Compare the Note to page 114.
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210. Let q, q , q&quot;
be any three collinear quaternions; and let a

denote a line common to their planes. Then we may determine

(comp. 120) three other lines /3, 7, ,
such that

a a

and thus may conclude that (as in algebra),

I-
.(&amp;lt;?

because, by 106, 107,

7 a_7 + a_7 + _7 _ 7 a a

a a j
$ a d d B $ a 8 a 8

In like manner, at least under the same condition of collinearity,* it

may be proved that

H. ..(q -q)q&quot;
= q q&quot;-qq&quot;.

Operating by the characteristic K upon these two equations, and

attending to 192, II., and 195, II., we find that

III. . . K
IV. . . Kq

where (by 209, (5.) ) the three conjugates of arbitrary collinears,

Kq, K*?
7

, Kg-&quot;, may represent any three collinear quaternions. We
have, therefore, with the same degree of generality as before,

V. . .
q&quot; fe + 0)

=
q&quot;g&amp;gt;

+
q&quot;q ; VI. . . q (q&amp;gt; -q) =

q&quot;q&amp;gt;

-
q&quot;q.

If, then, q, q
f

, q&quot;, q &quot;\)Q any four collinear quaternions, we may esta

blish the formula (again agreeing with algebra) :

VII. . .
(q&quot;

f +
q&quot;) (q

1

+ q)
-

q&quot; q +
q&quot;q

+ q &quot;q
+

q&quot;q ;

and similarly for any greater number, so that we may write briefly,

VIII. .. 2^.2^ = 2^,
where

2^ = q l + qz + . . + qm, 2^ = q\ + q 2 + . . +
,,,

and

Zq q
=
q\q, + . . q l

/

qm +q
f

.qi + ... + q nq,M

m and n being any positive whole numbers. In words (comp. 13),

the Multiplication of Collinear\ Quaternions is a Doubly Distributive

Operation.

* It will soon be seen, however, that this condition is unnecessary.

f This distributive property ofmultiplication will soon be found (compare the last

Note) to extend to tho more general case, in which the quaternions are not colli-
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(1.) Hence, by 209, (4.), and 202, III., we have this general transformation,

for the product of any two quaternions :

IX. . . q q = Sq . Sq + Vq . Sq + Sq.Vq + Vq .Vq.

(2.) Hence also, for the square of any quaternion, we have the transformation

(comp. 126; 199, VII.
;
and 204, XXIII.) :

X. . . 9
2 =S9

2 + 2S9.V9 + Vg2
.

(3.) Separating the scalar and right parts of this last expression, we find these

other general formulae :

XI. . . S . 9
2 = S?2 + V9

2
;

XII. . . V . 9
2 =

2S&amp;lt;7
. Vq ;

whence also, dividing by T&amp;lt;?

3
, we have

XIII. . . 811(92)
= (SU9)

2 + (VUtf)
2

;
XIV. . . VU(92

)
= 2SU? .VUq.

(4.) By supposing q = Kq, in IX., and therefore Sq =
89, Vq = Vq, and trans

posing the two conjugate and therefore complanar factors (comp. 191, (1.) ), we ob^-

tain this general transformation for a norm, or for the square ofa tensor (comp. 190,

V.
; 202, III.

;
and 204, XI.) :

XV. . . T92 = Ng = qKq = (Sq + Vg) (89 - Vg) = S2
2 - V5

2
;

which had indeed presented itself before (in 204, XXII.) but is now obtained in a

new way, and without any employment of sines, or cosines, or even of the well-known

theorem respecting the square of the hypotenuse.

(5.) Eliminating V5
2

, by XV., from XI., and dividing by T92
,
we find that

XVI. . . S . g
2 = 2S9

2 - Tg* ;
XVII. . . SU(g

2
)
= 2 (SU?)

2 - 1
;

agreeing with 199, VI. and IV., but obtained here without any use of the known

formula for the cosine of the double of an angle.

(6.) Taking the scalar and right parts of the expression IX., we obtain these other

general expressions :

XVIII. . . Sqq = Sq. Sq + S (Vq . V?) ;

XIX. . . Vq q = Vq . Sq + Vq.Sq + V(Vg . V?) ;

in the latter of which we may (by 126) transpose the two factors, Vq , Sq, or
V&amp;lt;?,

89 . We may also (by 206, 207) write, instead of XIX., this other formula :

XIX . . . IVq q = IVq*. Sq + IVq.Sq + IV(V? . Vg).

(7.) If we suppose, in VII., that
q&quot;

= Kq, q&quot;

= Kq
r

,
and transpose (comp. (4.) )

the two complanar (because conjugate) factors, q + q and K(^ + 9), we obtain the

following general expression for the norm ofa sum :

(q + q) K (q +q) = q Kq + qKq + q Kq + qKq ;

or briefly,
XX. . . N (q + 7) =Ny + 2S . qKq + %, as in 200, VII. ;

because

q Kq = K. qKq, by 192, II., and (1 + K). 9K5 = 28.9% , by 196, II .

(8.) By changing q to x in XX., or by forming the product of q + x and

Kq + x, where x is any scalar, we find that

XXL. . N(? +aO = N? + 2o:Sg + x2
,
as in 200, VIII.

;

whence, in particular,

XXI . . . N(7 -
1) = N? - 2S? -I- 1, as in 200, II.

2 E
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(9.) Changing g to ft : a, and multiplying by the square of Ta, we get, for any

two vectors, a and /3, the formula,

XXII. . . T(/3
-
a)

2 = T/3
2 -

2T/3 . Ta . SU
^
+ Ta2

,

in which Ta2 denotes* (To)*; because (by 190, and by 196, IX.),

and Se~^8ua la a

(10.) In any plane triangle, ABC, with sides of which the lengths are as usual

denoted by a, b, c, let the vertex c be taken as the origin o of vectors
;
then

a = CA, /3
= CB. /3-a = AB, Ta = Z, T/3

=
a, T(/3-a) = c, SU- = cosc;

a

we recover therefore, from XXII., the fundamental formula of plane trigonometry,

under the form,
XXIII. . . c2 = a2 - 2a6 cos c -f- 62

.

(11.) It is important to observe that we have not here been arguing in a circle
;

because although, in Art. 200, we assumed, for the convenience of the student, a pre

vious knowledge of the last written formula, in order to arrive more rapidly at certain

applications, yet in these recent deductions from the distributive property VIII. of

multiplication of (at least) collinear quaternions, we have founded nothing on the re

sults of that former Article
;
and have made no use of any properties of oblique-an

gled triangles, or even of right-angled ones, since the theorem of the square of the

hypotenuse has been virtually proved anew in (4.) : nor is it necessary to the argu

ment, that any properties of trigonometric functions should be known, beyond the

mere definition of a cosine, as a certain projecting factor, from which the formula

196, XVI. was derived, and which justifies us in writing cose in the last equation

(10.). The geometrical Examples, in the sub-articles to 200, may therefore be read

again, and their validity be seen anew, without any appeal to even plane trigonometry

being now supposed.

(12.) The formula XV. gives S?
2 = T52 +

V&amp;lt;?

2
,
as in 204, XXXI. ;

and we know

that V^2
,
as being generally the square of a right quaternion, is equal to a negative

scalar (comp. 204, VI.), so that

XXIV . . Vg
2

&amp;lt; 0, unless L g = 0, or =
TT,

in each of which two cases Vg =
0, by 202, (6.), and therefore its square vanishes

;

hence,
XXV. . .S9

2
&amp;lt;T?2, (SU9)

2
&amp;lt;1,

in every other case.

* We are not yet at liberty to interpret the symbol Ta2 as denoting also T(a
2
) ;

because we have not yet assigned any meaning to the square ofa vector, or generally

to the product of two vectors. In the Third Book of these Elements it will be shown,

that such a square or product can be interpreted as being a quaternion : and then it

will be found (comp. 190), that

T(a
2
)
= (Ta)

8 = Ta2
,

whatever vector a may be,
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(13.) It might therefore have been thus proved, without any use of the transfor

mation
SU&amp;lt;?

= cos L q (196, XVI.), that (for any real quaternion q) we have the in

equalities,

XXVI. . . SU?&amp;lt;+1, SU?&amp;gt;-1, and Sq&amp;lt;+Tq, Sq&amp;gt;-Tq,

unless it happen that L q = 0, or = TT ; SUg being =4-1, and S? = + Tq, in the first

case
;
whereas SUg = 1, and Sq = Tq, in the second case.

(14.) Since T?
2 = N?, and Tq.Tq=T.qKq =T . q Kq = Nq.T (q q), while

S . gKg = S . g Kg = N? . S (q I q), the formula XX. gives, by XXVI.,

XXVII. . . (Ts +T0)-T(9 + 9) = 2(T-S)sK9 = 2N? .(T-S) (&amp;lt;?

: ?) &amp;gt; 0,

if we adopt the abridged notation,

XXVIII. . . Tq - Sq = (T - S)g,

and suppose that the quotient q : q is not a positive scalar
; hence,

XXIX. . . Tq + Tg&amp;gt;T(q + q), unless q = xq, and #&amp;gt;0;

in which excepted case, each member of this last inequality becomes = (1 + a;)Tg.

(15.) Writing q fi : a, q y : a, and multiplying by Ta, the formula XXIX.

becomes,
XXX. . . Ty + T/3 &amp;gt; T(y + /3), unless y = */3, x &amp;gt; ;

in which latter case, but not in any other, we have Uy = U/3 (155). We therefore

arrive anew at the results of 186, (9.), (10.), but without its having been necessary

to consider any triangle, as was done in those former sub-articles.

(16.) On the other hand, with a corresponding abridgment of notation, we have,

by XXVI.,
XXXI. . . Tq + Sg=(T-f S)g&amp;gt;0,

unless Lq = Tr;

also, by XX., &c.,

XXXII. . . T( (? +^-(T5 -Tg)2=2(T + S) 9K9 = 2Ng.(T+S) (/:?);

hence,

XXXI II. . . T (q t 9) &amp;gt; (Tq -
Tg), unless q = -xq, x

&amp;gt; ;

where either sign may be taken.

(17.) And hence, on the plan of (15.), for any two vectors /3, y,

XXXIV. . . T(y + /3) &amp;gt; + (Ty
-

T/3), unless Uy = -
Uj3,

whichever sign be adopted ; but, on the contrary,

XXXV. ..T(y + j8)
= (Ty- T/3), if Uy = -U/3,

the upper or the lower sign being taken, according as Ty &amp;gt;
or

&amp;lt; T/3 : all which

agrees with Avhat was inferred, in 186, (11.), from geometrical considerations alone,

combined with the definition of Ta. In fact, if we make (3
= OB, y = oc, and -

y
= oc

,
then OBC will be in general a plane triangle, in which the length of the side

BC exceeds the difference of the lengths of the two other sides ; but if it happen that

the directions of the two lines OB, oc coincide, or in other words that the lines OB,

oc have opposite directions, then the difference of lengths of these two lines becomes

equal to the length of the line BC .

(18.) With the representations of q and q , assigned in 208, (L), by two sides of

a spherical triangle ABC, we have the values,

Sq q = S(y : a) = cos I
;
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the equation XVIII. gives therefore, by 208, XXIV., the fundamental formula of

spherical trigonometry (comp. (10.) ), as follows :

XXXVI. . . cos b = cos a cos c + sin a sin c cos B.

(19.) To interpret, with reference to the same spherical triangle, the connected

equation XIX., or XIX ., let it be now supposed, as in 208, (5.), that the rotation

round B from c to A is positive, so that B and B are situated at the same side of the

arc CA, if B be still, as in 208, (2.), the positive pole of that arc. Then writing

a = OA
, &c., we have

TVq = y sin c
; IVq = a sin a

; TVq q /3 sin b
;

and IV (Vq. V$) = - (3 sin a sin c sin B (comp. 208, (5.) ),

with the recent values (18.), for Sq and Sq ;
thus the formula XIX . becomes, by

transposition of the two terms last written:

XXXVII. . . /3 sin a sin c sin B = a sin a cos c + /3 sin b + y sin c cos a.

(20.) Let p = OP be any unit-vector; then, dividing each term of the last equa

tion by p, and taking the scalar of each of the four quotients, we have, by 196, XVI.,
this new equation :

XXXVIII. . . sin a sin c sin B cos PB = sin a cos c cos PA -f- sin b cos PB

-f sin c cos a cos PC
;

where a, 6, c are as usual the sides of the spherical triangle ABC, and A
,
B

, c are

still, as in 208, (2.), the positive poles of those sides
;
but p is an arbitrary point,

upon the surface of the sphere. Also cos PA
,
cos PB

,
cos PC

,
are evidently the sines

of the arcual perpendiculars, let fall from that point upon those sides
; being positive

when P
is, relatively to them, in the same hemispheres as the opposite corners of the

triangle, but negative in the contrary case
;
so that cos AA

, &c., are positive, and

are the sines of the three altitudes of the triangle.

(21.) If we place p at B, two of these perpendiculars vanish, and the last formula

becomes, by 208, XXVIII.,

XXXIX. . . sin 6 cos BB = sin a sin c sin B = TV I V -. V -
|
:

\ P a I

such then is the quaternion expression for the product of the sine of the side CA, mul

tiplied by the sine of the perpendicular let fall upon that side, from the opposite ver

tex B.

(22.) Placing P at A, dividing by sin a cos c, and then interchanging B and c, we

get this other fundamental formula of spherical trigonometry,

XL. . . cos AA = sin c sin B = sin b sin c
;

and we see that this is included in the interpretation of the quaternion equation

XIX., or XIX
.,

as the formula XXXVI. was seen in (18.) to be the interpretation

of the connected equation XVIII.

(23.) By assigning other positions to p, other formulae of spherical trigonometry

may be deduced, from the recent equation XXXVIII. Thus if we suppose P to co

incide with B
,
and observe that (by the supplementary* triangle),

* No previous knowledge of spherical trigonometry, properly so called, is here

supposed ;
the supplementary relations of two polar triangles to each other forming

rather a part, and a very elementary one, of spherical geometry.
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B C = 7T A, CV = 7T B, A B = 7T C,

while
cos BB = sin a sin c = sin c sin A, by XL.,

we easily deduce the formula,

XLI. . . sin a sin c sin A sin B sin c = sin B cos c cos c sin A - cos a cos A sin c
;

which obviously agrees, at the plane limit, with the elementary relation,

A + B + C = 7T.

(24.) Again, by placing p at A
,
the general equation becomes,

XLII. . . sin a cos c = sin b cos c + sin c cos a cos B
;

with the verification that, at the plane limit,

a = b cos c + c cos B.

But we cannot here delay on such deductions, or verifications : although it appeared

to be worth while to point out, that the whole of spherical trigonometry may thus be

developed, from the fundamental equation of multiplication of quaternions (107), when

that equation is operated on by the two characteristics S and V, and the results

interpreted as above.

211. It may next be proved, as follows, that the distributive for

mula I. of the last Article holds good, when the three quaternions,

#, q , q&quot;,
which enter into it, without being now necessarily colli-

near, are right; in which case their reciprocals (135), and their sums

(197, (2.) ),
will be right also. Let then

and therefore,

We shall then have, by 106, 194, 206,

=
(lq&quot;

:
I&amp;lt;7/)

+ (Iq
f

: I^J

and the distributive property in question is proved.

(1.) By taking conjugates, as in 210, it is easy hence to infer, that the other dis

tributive formula, 210, V., holds good for any three right quaternions; or that

(2.) For any three quaternions, we have therefore the two equations:

W + V? ) . V? . V?&quot;
. Vq + Vq . V? ;

V? . (Vq&quot; + V9 )
= V? .

Vg&quot; -f Vq . Vq .

(3.) The quaternions 7, 7 , q&quot; being still arbitrary, we have thus, by 210, IX.,
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(q&quot;
+

q&quot;)q
=

(Sq&quot; + S?) . Sq + (V&amp;lt;?&quot;
+ Vff ) . Sq + V? .

(87&quot; + 89 ) + ( Vg&quot; + Vg ) , Vq

=
q&quot;q

+ q q ;

so that the formula 210, I., and therefore also (by conjugates) the formula 210, V.,

212. The General* Multiplication of Quaternions is there

fore (comp. 13,210) a Doubly Distributive Operation; so that

we may extend, to quaternions generally, the formula (comp.

210, VIII.),
I. . . 20 . 20*2/0:

however many the summands of each set may be, and whe
ther they be, or be not, collinear (209), or right (211).

(1.) Hence, as an extension of 210, XX., we have now,

II. . .N27 = 2ISr? + 2ZS?K9 ;

where the second sign of summation refers to all possible binary combinations of the

quaternions q, q\ .

(2.) And, as an extension of 210, XXIX., we have the inequality,

III. . . 2T2&amp;gt;TZ?,

unless all the quaternions q, q , . . bear scalar and positive ratios to each other, in

which case the two members of this inequality become equal : so that the sum ofthe

tensors, of any set of quaternions, is greater than the tensor of the sum, in every

other case.

(3.) In general, as an extension of 210, XXVII.,

IV. . . (2T?)2-(TSg)2 = 22(T-S)tfK? .

(4.) The formulae, 210, XVIII., XIX., admit easily of analogous extensions.

(5.) We have also (comp. 168) the general equation,

V. ..(2 9)

in which, by 210, IX.,

VI. t .qq +q q=2(Sq.S

because, by 208, we have generally

VII. . .

or VIII. . . Vq q = - Vqq ,
if Lq=Lq =

^.

(Comp. 191, (2.), and 204, X.)

213. Besides the advantage which the Calculus of Quaternions

gains, from the general establishment (212) of the Distributive Prin

ciple, or Distributive Property of Multiplication, by being, so far,

*
Compare the Notes to page 208.
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assimilated to Algebra, in processes which are of continual occur

rence, this principle or property will be found to be of great im

portance, in applications ofthat calculus to Geometry; and especially

in questions respecting the (real or ideal*) intersections of right

lines with spheres, or other surfaces of the second order, including

contacts (real or ideal), as limits of such intersections. The follow

ing Examples may serve to give some notion, how the general dis

tributive principle admits of being applied to such questions : in

some of which however the less general principle (210), respecting

the multiplication of collinear quaternions (209), would be sufficient.

And first we shall take the case of chords of a sphere, drawn from a

given point upon its surface.

(1.) From a point A, of a sphere with o for centre, let it be required to draw a

chord AP, which shall be parallel to a given

line OB
;
or more fully, to assign the vector,

p OP, of the extremity ofthe chord so drawn,

as a function ofthe two given vectors, a = OA,

and j3
= OB

;
or rather of a and U/3, since it

is evident that the length of the line j3 cannot

affect the result of the construction, which Fig.

51 may serve to illustrate.

(2.) Since AP
|| OB, or p a

\\ /3, we may
begin by writing the expression,

Fig. 51.

which may be considered (comp. 23, 99) as a form of the equation of the right line

AP
;
and in which it remains to determine the scalar coefficient x, so as to satisfy the

equation of the sphere,

Tp=:Ta (186, (2.))-

In short, we are to seek to satisfy the equation,

by some scalar x which shall be (in general) different from zero
;
and then to sub -

stitute this scalar in the expression p
= a + x(3, in order to determine the required

vector p. ** *&quot;

(3.) For this purpose, an obvious process is, after dividing both sides by T/3, to

square, and to employ the formula 210, XXI., which had indeed occurred before, as

200, VIII., but not then as a consequence of the distributive property of multiplica

tion. In this manner we are conducted to a quadratic equation, which admits of

division by #, and gives then,

*
Compare the Notes to page 90, &c.
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the problem (1.) being thus resolved, with the verification that (3 may be replaced

by U/3, in the resulting expression for p.

(4.) As a mere exercise of calculation, we may vary the last process (3.), by

dividing the last equation (2.) by Ta, instead of T/3, and then going on as before.

This last procedure gives,

a I a a

and therefore,

ic = -2S-:N-=-2S- (by 196, XII .),
as before.

a a p

(5.) In general, by 196, II
.,

1-2S = -K;
hence, by (3.),

and finally,

a new expression for p, in which it is not permitted generally, as it was in (3.), to

treat the vector (3 as the multiplier,* instead of the multiplicand.

(6.) It is noAV easy to see that the second equation of (2.) is satisfied
;

for the

expression (5.) for p gives (by 186, 187, &c.),

as was required.

(7.) To interpret the solution (3.), let c in Fig. 51 be the middle point of the

chord AP, and let D be the foot of the perpendicular let fall from A on OB
j
then the

expression (3.) for p gives, by 196, XIX.,

and accordingly, OCAD is a parallelogram.

(8.) To interpret the expression (5.), which gives

p a OP OA
- = K , or =K

,
if OP =PO,

j3 ]3 OB OB

we have only to observe (comp. 138) that the angle AOP is bisected internally, or

the supplementary angle AOP externally, by the indefinite right line OB (see again

Fig. 51).

(9.) Conversely, the geometrical considerations which have thus served in (7.)

and (8.) to interpret or to verify the two forms of solution (3.), (5.), might have

been employed to deduce those two forms, if we had not seen how to obtain them,

by rules of calculation
,
from the proposed conditions&quot; of the question. (Comp. 145,

(10.), &c.)

(10.) It is evident, from the nature of that question, that a ought to be deduci-

Compare the Note to page 159,
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blc from /3 and p, by exactly the same processes as those which have served us to de

duce p from (3 and a. Accordingly, the form (3.) of p gives,

and the form (5.) gives,

And since the first form can be recovered from the second, we see that each leads us

back to the parallelism, p
- a

|| /3 (2.).

(11.) The solution (3.) for x shows that

a; = 0, p = a, P = A, if S (a : j3)
=

0, or if /3
-U a.

And the geometrical meaning of this result is obvious
; namely, that a right line

drawn at the extremity of a radius OA of a sphere, so as to be perpendicular to that

radius, does not (in strictness) intersect the sphere, but touches it : its second point

of meeting the surface coinciding, in this case, as a limit, with the first.

(12.) Hence we may infer that the plane represented by the equation,

is the tangent plane (comp. 196, (5.)) to the sphere here considered, at the point A.

(13.) Since j3 may be replaced by any vector parallel thereto, we may substitute

for it y ,
if y = oc be the vector of any given point c upon the chord AP, whether

(as in Fig. 51) the middle point, or not; we may therefore write, by (3.) and (5.),

214. In the Examples of the foregoing Article, there was no

room for the occurrence of imaginary roots of an equation, or for

ideal intersections of line and surface. To give now a case in which

such imaginary intersections may occur, we shall proceed to con

sider the question of drawing a secant to a sphere, in a given direc

tion, from a given external point ; the recent Figure 51 still serving

us for illustration.

(1.) Suppose then that e is the vector of any given point E, through which it is

required to draw a chord or secant EPQPI, parallel to the same given line /3 as before.

We have now, if po = opo,

po
= e + *wj3, Ta = Tpo = T (e + a?

|3),

being a new scalar ;
and similarly, if pi =

2 F
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by transformations* which will easily occur to any one who lias read recent articles

with attention. And the points PO , PI will be together real, or together imaginary,

according as the quantity under the radical sign is positive or negative ; that is, ac

cording as we have one or other of the two following inequalities,

(2.) The equation (comp. 203, (5.) ),

represents a cylinder of revolution, with OB for its axis, and with Ta for the radius

of its base. If E be a point of this cylindric surface, the quantity under the radical

sign in (1.) vanishes
;
and the two roots ar

, x\ of the quadratic become equal. In

this case, then, the line through B, which is parallel to OB, touches the given sphere ;

as is otherwise evident geometrically, since the cylinder envelopes the sphere (comp.

204, (12.) ), and the line is one of its generatrices. If E be internal to the cylinder,

the intersections PO, PI are real ; but if E be external to the same surface, those in

tersections are ideal, or imaginary.

(3.) In this last case, if we make, for abridgment,

* = o -,

s and t being thus two given and real scalars, we may write,

where V 1 is the old and ordinary imaginary symbol of Algebra, and is not in

vested here with any sort of Geometrical Interpretation.-^ We merely express thus

the fact of calculation, that (with these meanings of the symbols a, /3, e, * and )

the formula Ta = T(e + a:/3), (1.), when treated by the rules ofquaternions, conducts

to the quadratic equation,

(x -
s)

2 + f
2 =

0,

which has no real root ; the reason being that the right line through E is, in the

present case, wholly external to the sphere, and therefore does not really intersect it

at all ; although, for the sake of generalization of language, we may agree to say,

as usual, that the line intersects the sphere in two imaginary points.

(4.) We must however agree, then, for consistency of symbolical expression, to

consider these two ideal points as having determinate but imaginary vectors, namely,

the two following :

in which it is easy to prove, 1st, that the real part t + s/3 is the vector t
f

of the foot

E of the perpendicular let fall from the centre o on the line through E which is drawn

(as above) parallel to OB
;
and Ilnd, that the real tensor tT0 of the coefficient of

* It does not seem to be necessary, at the present stage, to supply so many refe

rences to former Articles, or Sub-articles, as it has hitherto been thought useful to

give ;
but such may still, from time to time, be given.

f Compare again the Notes to page 90, and Art. 149.
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V - 1 in the imaginary part of each expression, represents the length of a tangent

E R&quot; to the sphere, drawn from that external point, or foot, E .

(6.) In fact, if we write OE = S = s + sj3, we shall have

E E = c = - s{3 j3S
=

projection of OE on OB
;

which proves the 1st assertion (4.), whether the points PO, PI be real or imaginary.

And because

we have, for the case of imaginary intersections,

tT(3 = V(1Y2 _ T 2
)
= T . E

E&quot;,

and the Ilnd assertion (4.) is justified.

(6.) An expression of the form (4.), or of the following,

in which /3 and y are two real vectors, while V - 1 is the (scalar) imaginary of al

gebra, and not a symbol for & geometrically real right versor (149, 153), may be said

to be a BIVECTOR.

(7.) In like manner, an expression of the form (3.), or x = s -f t V 1, where *

and t are two real scalars, but V - 1 is still the ordinary imaginary of algebra, may
be said by analogy to be a BISCALAR. Imaginary roots of algebraic equations are

thus, in general, biscalars.

(8.) And if a bivector (6.) be divided by a (real) vector, the quotient, such as

in which qo and 51 are two real quaternions, but V 1 is, as before, imaginary, may
be said to be a BIQUATERNION. *

n215. The same distributive principle (212) may be employed i

investigations respecting circumscribed
cones&amp;gt; and the tangents (real

or ideal), which can be drawn to a given sphere from a given point.

(1.) Instead of conceiving that o, A, B are three given points, and that limits of

position of the point E are sought, as in 214, (2.), which shall allow the points of in

tersection PO, PI to be real, we may suppose that o, A, E (which may be assumed to

be collinear, without loss of generality, since a enters only by its tensor) are now the

data of the question ;
and that limits of direction of the line OB are to be assigned,

which shall permit the same reality : EFOPI being still drawn parallel to OB, as in

214, (1.).

(2.) Dividing the equation Ta = T(e + rr/3) by Tf, and squaring, we have

Compare the second Note to page 131.
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the quadratic in x may therefore be thus written,

and its roots are real and unequal, or real and equal, or imaginary, according as

TVU-&amp;lt; or= or&amp;gt;T-;

that is, according as

sin BOB &amp;lt;
or = or &amp;gt;T.OA: T.OE.

(3.) If E be interior to the sphere, then Te &amp;lt; Ta, T(a : e) &amp;gt; 1 ; but TVU? can

never exceed unity (by 204, XIX., or by 210, XV., &c.) ;
we have, therefore, in

this case, the first of the three recent alternatives, and the two roots of the quadratic

are necessarily real and unequal, whatever the direction of (3 may be. Accordingly

it is evident, geometrically, that every indefinite right line, drawn through an inter

nal point, must cut the spheric surface in two distinct and real points.

(4.) If the point E be superficial, so that Tf = Ta, T (a :*) = !, then the first

alternative (2.) still exists, except at the limit for which /3
-1-

e, and therefore

TVU (/3 : t)
=

1, in which case we have the second alternative. One root of the qua

dratic in # is now = 0, for every direction of (3 ;
and the other root, namely

x = -
2S(e :/3), is likewise always real, but vanishes for the case when the angle

BOB is right. In short, we have here the same system of chords and of tangents,

from a point upon the surface, as in 213
;
the only difference being, that we now

write E for A, or for a.

(5.) But finally, if E be an external point, so that Tf &amp;gt; Ta, and T(a : t) &amp;lt; 1,

then TVU(/3 : E) may either fall short of this last tensor, or equal, or exceed it
;
so

that any one of the three alternatives (2.) may come to exist, according to the vary

ing direction of (3.

(6.) To illustrate geometrically Q
the law of passage from one such

alternative to another, we may ob-

serve that the equation,

or

represents (when E is thus external)

a real cone of revolution, with its

vertex at the centre o of the sphere ;

and according as the line OB lies in

side this cone, or on it, or outside
it,

the first or the second or the third of

the three alternatives (2.) is to be

adopted ;
or in other words, the line

through E, drawn parallel (as before) to OB, either cuts the sphere, or touches it, or

does not (really) meet it at all. (Compare the annexed Fig. 52.)

FiS- 52 -
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(7.) Ifsbe still an external point, the cone of tangents which can be drawn

from it to the sphere is real ; and the equation of this enveloping or circumscribed

cone, with its vertex at E, may be obtained from that of the recent cone (6.), by

simply changing p to p
- e

;
it is, therefore, or at least one form of it is,

TVU^ -=T-; or sinoEp = T. OA : T.OE.

(8.) In general, if 5 be any quaternion, and x any scalar,

VU(9 + aO = V9 :T(? + aO;

the recent equation (7.) may therefore be thus written :

T V(p;Q.6=T a.

p-e e

or

T.p r:T.EP=T.OA:T.OE,

if P be the foot of the perpendicular let fall from P on OE
;
and in fact the first quo

tient is evidently = sin OEP.

(9.) We may also write,

-1 or = -
f i

1

I e

as another form of the equation of the circumscribed cone.

(10.) If then we make also

to express that the point P is on the enveloped sphere, as well as on the enveloping

cone, we find the following equation of the plane of contact, or of what is called the

polar plane of the point E, with respect to the given sphere :

c e J_ -&

while the fact that it i a plane of contact&quot; is exhibited by the occurrence of the ex

ponent 2, or by its equation entering through its square.

(11.) The vector,

is that of the point E in which the polar plane (10.) ofs cuts perpendicularly the

right line OE
;
and we see that

Tf.Te = Ta2
,

or T.OE.T.OE = (T.OA)
2

,

as was to be expected from elementary theorems, of spherical or even of plane geo

metry.

* In fact a modern geometer would say, that we have here a case of two coinci

dent planes of intersection, merged into a single plane of contact.
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(12.) The equation (10.), of the polar plane of E, may easily be thus trans

formed :

l. (Stiff. H
P V P I P

or - =
;

P P P

it continues therefore to hold good, when c and p are interchanged. If then we take,

as the vertex of a new enveloping cone, any point o external to the sphere, and

situated on the polar plane FF . . of the former external point E, the new plane of

contact, or the polar plane DD . . of the new point c, will pass through the former

vertex E : a geometrical relation of reciprocity, or of conjugation, between the two

points c and E, which is indeed well-known, but which it appeared useful for our pur

pose to prove by quaternions* anew.

(13.) In general, each of the two connected equations,

p p p p

which may also be thus written,

P a
\r P \ a P IT P 1 e P TT P

. JN = o . Jtv
, 1 = o . Jv ,

ap a
}

a a a a

may be said to be a form of the Equation of Conjugation between any two points p and

p (not those so marked in Fig. 52), of which the vectors satisfy it : because it ex

presses that those two points are, in a well-known sense, conjugate to each other, with

respect to the given sphere, Tp = Ta.

(14.) If one of the two points, as p
,
be given by its vector p ,

while the other

point P and vector p are variable, the equation then represents a plane locus;

namely, what is still called the polar plane of the given point, whether that point be

external or internal, or on the surface of the sphere.

(15.) Let P, P be thus two conjugate points; and let it be proposed to find the

points s, s
,
in which the right line PP intersects the sphere. Assuming (comp. 25)

that

os = a = xp + yp ,

and attending to the equation of conj ugation (13.), we have, by 210, XX., or by
200, VII., the following quadratic equation in y : x,

which gives,

(16.) Hence it is evident that, if the points of intersection s, s are to be real, one

of the two points P, P must be interior, and the other must be exterior to the sphere ;

because, of the two norms here occurring, one must be greater and the other less than

unity. And because the two roots of the quadratic, or the two values ofy.x, differ

In fact, it will easily be seen that the investigations in recent sub-articles are

put forward, almost entirely, as exercises in the Language and Calculus of Quaternions,

and riot as offering any geometrical novelty of result.
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only by their signs, it follows (by 26) that the right line PP is harmonically divided

(as indeed it is well known to be), at the two points s, s at which it meets the sphere :

or that in a notation already several times employed (25, 31, &c.), we have the har

monic formula,
(PSPY)=- 1.

(17.) From a real but internal point p, we can still speak of a cone oftangents,

as being drawn to the sphere : but if so, we must say that those tangents are ideal,

or imaginary ;
* and must consider them as terminating on an imaginary circle of

contact ; of which the real but wholly external plane is, by quaternions, as by mo
dern geometry, recognised as being (comp. (14.) ) the polar plane of the supposed

internal point.

216. Some readers may find it useful, or at least interest

ing, to see here a few examples of the application of the General

Distributive Principle (212) of multiplication to the Ellipsoid,

of which some forms of the Quaternion Equation were lately

assigned (in 204, (14.) ) ; especially as those forms have been

found to conductf to a Geometrical Construction, previously

unknown, for that celebrated and important Surface : or ra

ther to several such constructions. In what follows, it will

be su-pposed that any such reader has made himself already

sufficiently familiar with the chief formulae of the preceding
Articles

;
and therefore comparatively few references^ will be

given, at least upon the present subject.

(1.) To prove, first, that the locus of the variable ellipse,

I...s = *, fv^y^-l, 204, (13.)

which locus is represented by the equation,

the two constant vectors a, (3 being supposed to be real, and to be inclined to each

other at some acute or obtuse (but not right) angle, is a surface ofthe second order,

*
Compare again the second Note to page 90, and others formerly referred to.

f See the Proceedings of the Royal Irish Academy, for the year 1846.

J Compare the Note to page 218.

If (3
-4- a, the system I. represents (not an ellipse but) a pair of right lines,

real or ideal, in which the cylinder of revolution, denoted by the second equation of

that system, is cut by a plane parallel to its axis, and represented by the first equa
tion.
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in the sense that it is cut by an arbitrary rectilinear transversal in two (real or ima

ginary) points, and in no more than two, let us assume two points L, M, or their

vectors X = OL, /*
= OM, as given ;

and let us seek to determine the points r (real or

imaginary), in which the indefinite right line LM intersects the locus II.
; or rather

the number of such intersections, which will be sufficient for the present purpose.

(2.) Making then p = --
(25), we have, for y : z, the following quadratic

equation,

without proceeding to resolve which, we see already, by its mere degree, that the num
ber sought is two ; and therefore that the locus II. is, as above stated, a surface of

the second order.

(3.) The equation II. remains unchanged, when -
p is substituted for p ;

the

surface has therefore a centre, and this centre is at the origin o of vectors.

(4.) It has been seen that the equation of the surface may also be thus written :

IV. . . T(
S^-t- V^ =1; 204, (14.)

it gives therefore, for the reciprocal of the radius vector from the centre, the expres

sion,

and this expression has a real value, which never vanishes,* whatever real value may
be assigned to the versor Up, that is, whatever direction may be assigned to p : the

surface is therefore closed, andj^ntVe.

(5.) Introducing two new constant and auxiliary vectors, determined by the two

expressions,

which give (by 125) these other expressions,

vr... T = ^L. A
t

we have

--M- H

vir...&quot;-+?
7

and under these conditions, y is said to be the harmonic mean between the two for

mer vectors, a and /3 ; and in like manner, d is the harmonic mean between a and

/3 ;
while 2a is the corresponding mean between y, 5 ; and 2/3 is so, between y

and - S.

*
It is to be remembered that we have excluded in (1.) the case where /3

-* a ;

in which case it can be shown that the equation II. represents an elliptic cylinder.
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(6.) Under the same conditions, for any arbitrary vector p, we have the trans

formations,

the equation IV. of the surface may therefore be thus written :

the geometrical meaning of which new forms will soon be seen.geometrical meaning or wmcii new lunua win suou u seen.

(7.) The system of the two planes through the origin, which are respectively

perpendicular to the new vectors y and
,
is represented by the equation,

xi... s^=o, or m.:(Y-(fiYiy

combining which with the equation II. we get

XIII. ..l =f8Y-fvY=N; or, XIV. . . Tp = T/3.

These two diametral planes therefore cut the surface in two circular sections, withT/3

for their common radius
;
and the normals y and d, to the same two planes, may bo

called (comp. 196, (17.) ) the cyclic normals of the surface; while the planes them

selves may be called its cyclic planes.

(8.) Conversely, if we seek the intersection of the surface with the concentric

sphere XIV., of which the radius is T/3, we are conducted to the equation XII. of

the system of the two cyclic planes, and therefore to the two circular sections (7.) ;

so that every radius vector of the surface, which is not drawn in one or other of these

two planes, has a length either greater or less than the radius T/3 of the sphere.

(9.) By all these marks, it is clear that the locus II., or 204, (14.), is (as above

asserted) an Ellipsoid; its centre being at the origin (3.), and its mean semiaxis

being =T/3 ;
while U/3 has, by 204, (15.), the direction of the axis of a circum

scribed cylinder of revolution, of which cylinder the radius is T/3; and a is, by the

last cited sub-article, perpendicular to the plane of the ellipse of contact.

(10.) Those who are familiar with modern geometry, and who have caught the

notations of quaternions, will easily see that this ellipsoid II., or IV., is a deforma

tion of what may be called the mean sphere XIV., and is homologous thereto
;
the

infinitely distant point in the direction of (3 being a centre ofhomology, and either

of the two planes XL or XII. being a plane ofhomology corresponding.

217. The recent form, X. or X ., of the quaternion equa

tion of the ellipsoid,
admits of being interpreted, in such a way

as to conduct (comp. 216) to a simple construction of that sur

face
;
which we shall first investigate by calculation, and then

illustrate by geometry.
2 G
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(1.) Carrying on the Roman numerals from the sub-articles to 216, and observ

ing that (by 190, &c.),

y p y p 6

the equation X. takes the form,

vV 1 T J I
- o-TC \ .

r
v, .

A- V . A A ^ I m T *
PTTlii I 7Z~Z t &amp;gt;

or

XVI. . . 1-=T|

if we make

XVII... _l = i and ^ =
^,

when t and K are two new constant vectors, and t is a new constant scalar, which we

shall suppose to be positive, but of which the value may be chosen at pleasure.

(2.) The comparison of the forms X. and X . shows that y and S may be inter

changed, or that they enter symmetrically into the equation of the ellipsoid, although

they may not at first seem to do so
;

it is therefore allowed to assume that

XVIII. . . Ty &amp;gt; Tfl, and therefore that XVIII . . . Tt &amp;gt; TK ;

for the supposition Ty = Td would give, by VI.,

T(/3 + a) = T(/3-a), and .-. (by 186, (6.) &c.) (3
-L-

&amp;lt;r,

which latter case was excluded in 216, (1.).

(3.) We have thus,

XIX. . . U = I

XX. . . Tt = -

Ti2 - T/c2

XXI. . ,

(4.) Let ABC be a plane triangle,

such that

XXII. . . CB = I, CA=K;
let also

AE = p.

Then if a sphere, which we shall call the

diacentric sphere, be described round the

point c as centre, with a radius = T/c, and

therefore so as to pass through the centre

A (here written instead of o) of the ellip

soid, and if D be the point in which the

line AE meets this sphere again, we shall

have, by 213, (5.), (13.),

-K-.p,
p

T

XXIII. . .

and therefore
Fig. 53,

XXIII .

0?
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so that the equation XVI. becomes,

XXIV. . . *2 =T.AE.T.DB.

(5.) The point B is external to the diacentric sphere (4.), by the assumption (2.) ;

a real tangent (or rather cone of tangents) to this sphere can therefore be drawn from

that point ;
and if we select the length of such a tangent as the value (1.) of the sca

lar t, that is to say, if we make each member of the formula XXI. equal to unity?

and denote by D the second intersection of the right line BD with the sphere, as in

Fig. 53, we shall have (by Euclid III.) the elementary relation,

XXV. . . &amp;lt;

2 = T.DB.T.BD ;

whence follows this Geometrical Equation of the Ellipsoid,

XXVI. . . T.AE = T.BD
;

or in a somewhat more familiar notation,

XXVII. . . AE = m7;

where AE denotes the length of the line AE, and similarly for BD .

(6.) The following very simple Rule of Construction (comp. the recent Fig. 53)

results thereforeTrom our quaternion analysis :

From a fixed point A, on the surface of a given sphere, draw any chord AD
;

let

D be the second point of intersection of the same spheric surface with the secant BD,

drawn from a fixed external* point B
;
and lake a radius vector AE, equal in

length to the line BD
,
and in direction either coincident with, or opposite to, the chord

AD : the locus ofthe point E will be an ellipsoid, with A for its centre, and with sfor

a point of its surface.

(7.) Or thus:

If, of a plane but variable quadrilateral ABED , ofwhich one side AB is given in

length and in position, the two diagonals AE, BD be equal to each other in length, and

if their intersection D be always situated upon the surface of a given sphere, whereof

the side AD of the quadrilateral is a chord, then the opposite side BE is a chord of

a given ellipsoid.

218. From either of the two foregoing statements, of the

Rule of Construction for the Ellipsoid to which quaternions

have conducted, many geometrical consequences can easily be

inferred, a few of which may be mentioned here, with their

proofs by calculation annexed : the present Calculus being, of

course, still employed.

(1.) That the corner B, of what may be called the Generating Triangle ABC, is

in fact a point of the generated surface, with the construction 217, (6.), may be

*
It is merely to fix the conceptions, that the point B is here supposed to be exter

nal^.} ;
the calculations and the construction would be almost the same, if we as

sumed B to be an internal point, or Tt &amp;lt; Tic, Ty &amp;lt; To.
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proved, by conceiving the variable chord AD of the given diacentric sphere to take the

position AG; where G is the second intersection of the line AB with that spheric sur

face.

(2.) If D be conceived to approach to A (instead of G), and therefore D to o

(instead of A), the direction of AE (or of AD) then tends to become tangential to the

sphere at A, while the length of AE (or of BD ) tends, by the construction, to become

equal to the length of BG
;
the surface has therefore a diametral and circular section,

in a plane which touches the diacentric sphere at A, and with a radius = BG.

(3.) Conceive a circular section of the sphere through A, made by a plane perpen

dicular to BC ;
if D move along this circle, D will move along a parallel circle through

G, and the length of BD
,
or that of AE, will again be equal to BG f*such then is the

radius of a second diametral and circular section of the ellipsoid, made by the lately

mentioned plane.

(4.) The construction gives us thus two cyclic planes through A
;
the perpendi

culars to which planes, or the two cyclic normals (216, (7.)) of the ellipsoid, are

seen to have the directions of the two sides, CA, CB, of the generating triangle ABC

(1.).

(5.) Again, since the rectangle

BA . BG = BD . BD = BD . AE = double area of triangle ABE : sin BDE,

we have the equation,

XXVIII. . . perpendicular distance of E from AB = BG . sin BDE
;

the third side, AB, of the generating triangle (1.), is therefore the axis of revolution

of a cylinder, which envelopes the ellipsoid, and of which the radius has the same

length, BG, as the radius of each of the two diametral and circular sections.

(6.) For the points of contact of ellipsoid and cylinder, we have the geometrical

relation,

XXIX. . . BDE = a right angle ;
or XXIX . . . ADB = a right angle ;

the point D is therefore situated on a second spheric surface, which has the line AB

for a diameter, and intersects the diacentric sphere in a circle, whereof the plane passes

through A, and cuts the enveloping cylinder in an ellipse of contact (comp. 204,

(15.), and 216, (9.) ), of that cylinder with the ellipsoid.

(7.) Let AC meet the diacentric sphere again in F, and let BF meet it again in P

(as in Fig. 53) ;
the common plane of the last-mentioned circle and ellipse (6.) can

then be easily proved to cut perpendicularly the plane of the generating triangle ABC

in the line AF
;
so that the line F B is normal to this plane of contact; and there

fore also (by conjugate diameters, &c.) to the ellipsoid, at B.

(8.) These geometrical consequences of the construction (217), to which many
others might be added, can all be shown to be consistent with, and confirmed bv, the

quaternion analysis from which that construction itself was derived. Thus, the two

circular sections (2.) (3.) had presented themselves in 216, (7.) ;
and their two cy

clic normals (4.), or the sides CA, CB of the triangle, being (by 217, (4.) ) the two

vectors K
} i,

have (by 217, (1 .) or (3.) ) the directions of the two former vectors y, d
;

which again agrees with 216, (7.).

(9.) Again, it will be found that the assumed relations between the three pairs of
constant vectors, a, /3; y, d

,
and i, K, any one of \vhich pairs is sufficient to deter-
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mine the ellipsoid, conduct to the following expressions (of which the investigation is

left to the student, as an exercise) :

xxx -

the letters B, F
,
G referring here to Fig. 53, while a/3yfl retain their former mean

ings (216), and are not interpreted as vectors of the points ABCD in that Figure.

Hence the recent geometrical inferences, that AB (or BG) is the axis of revolution of

an enveloping cylinder (5.), and that F B is normal to the plane of the ellipse of con

tact (7.), agree with the former conclusions (216, (9.), or 204, (15.) ), that /3 is

such an axis, and that a is such a normal.

(10.) It is easy to prove, generally, that

s 9-l_o(g-l)(K7+l) = Ng-1 *9 +l = ^g- 1
-

f + 1 (j+l)(K? +l) N (J + 1 )
1

9-1 N (?-l)
whence

i - K _ Tt 2 - T/c 2
t + K _ Tt2 - T 2

rrr&quot;T
-

rtt* ^ &quot;

iT^TT xot
l + K T(l + K)

a l-K T(l-K)8

whatever two vectors i and K may he. But we have here,

XXXIII. . . &amp;lt;a
= Tt2 - T/c 2

, by 2 17, (5.) ;

the recent expressions (9.) for a and
/3 become, therefore,

XXXIV. . . a= + +
ic)S^;

= -
(i
-

K) s|~.

The last form 204, (14.), of the equation of the ellipsoid, may therefore be now thus

written :

l + K l+K l-K l-

in which the sign of the right part may be changed. And thus we verify by calcu

lation the recent result (1.) of the construction, namely that B is a point of the sur

face
;
for we see that the last equation is satisfied, when we suppose

XXXVI. . . p = AB = e-fc=/3:S-;
a

a value of p which evidently satisfies also the form 216, IV.

(11.) From the form 216, II., combined with the value XXXIV. of a, it is easy

to infer that the plane,

XXXVII. .. s=l, or XXXVII . . . S-^- = S
,

a i + K t -f K

which corresponds to the value x 1 in 216, I., touches the ellipsoid at the point B,

of which the vector p has been thus determined (10) ;
the normal to the surface, at

that point, has therefore the direction of t -f K, or of a, that is, of FB, or of F B : so

that the last geometrical inference (7.) is thus confirmed, by calculation with quater-

219. A few other consequences of the construction (217)

be here noted; especially as regards the geometrical determination
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of the three principal semiaxes of the ellipsoid, and the major and

minor semiaxes of any elliptic and diametral section ; together with

the assigning of a certain system of spherical conies, of which the

surface may be considered to be the locus.

(1.) Let a, 6, c denote the lengths of the greatest, the mean, and the least semi-

axes of the ellipsoid, respectively ;
then if the side EC of the generating triangle cut

the diacentric sphere in the points 11 and H
,
the former lying (as in Fig. 53) between

the points B and c, -we have the values,

XXXVIII. .. a = BH&quot;
;

& = BG; C = BH;

so that the lengths of the sides of the triangle ABC may be thns expressed, in terms

of these semiaxes,

XXXIX. . . =Te=; c7=T/c=; IB~ = T(i
-

K) = y ;

and we may write,

Tt3 IV2

XL. .. = TI+TK; &=-; c=Ti-T/c.

(2.) If, in the respective directions of the two supplementary chords AH, AH of the

sphere, or in the opposite directions, we set off lines AL, AN, with the lengths of BH
,

BH, the points L, N, thus obtained, will be respectively a major and a minor summit

of the surface. And if we erect, at the centre A of that surface, a perpendicular AM
to the plane of the triangle, with a length = BG, the point M (which will be common

to the two circular sections, and will be situated on the enveloping cylinder) will be a

mean summit thereof.

(3.) Conceive that the sphere and ellipsoid are both cut by a plane through A, on

which the points B and c shall be supposed to be the projections of B and c
;
then c

will be the centre of the circular section of the sphere ;
and if the line B C cut this

new circle in the points DI, D 2 ,
of which DI may be supposed to be the nearer to B

,

the two supplementary chords ADi, AD2 of the circle have the directions of the major

and minor semiaxes of the elliptic section of the ellipsoid ;
while the lengths of those

semiaxes are, respectively, BA . BG : BDI, and BA . BG : BDo
;
or BD I and BD O, if the

secants BDI and BD2 meet the sphere again in DI and D2 .

(4.) If these two semiaxes of the section be called a
t
and c,, and if we still de

note by t the tangent from B to the sphere, we have thus,

XLL . . BDI = t
*

: a
t
= oca/

1
; BD2 = t~ : c

t
= acc~ l

;

but if we denote by p\ and p2 the inclinations of the plane of the section to the two

cyclic planes of the ellipsoid, whereto CA and CB are perpendicular, so that the pro

jections of these two sides of the triangle are

XLII. ..
C B = CB . sinjt?2

= ^ ( + c) sin^2 ,

we have

XLIII. . . BD2
2 - BDi 2 = B D2

2 B Di
2 = 4B c . C A = (a

3 C2 ) Sill Ji sill
p&amp;lt;

;

whence follows the important formula,

XL1V. . . c,-
2 -

a,
2 =

(c
2 - a 2) si
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or in words, the known and useful theorem, that &quot; the difference of the inverse

squares of the semiaxes, of a plane and diametral section of an ellipsoid, varies as

the product of the sines of the inclinations of the cutting plane, to the two planes of

circular section.

(5.) As verifications, if the plane be that of the generating triangle ABC, we

have

Pi=P*=-^&amp;gt;

and
/

= C
/
= C

5

but if the plane be perpendicular to either of the two sides, CA, CB, then either p\ or

pz = 0, and c
t
= a

t
.

(6.) If the ellipsoid be cut by any concentric sphere, distinct from the mean

sphere XIV., so that

XLV. . . AB = Tp = r^ 6, where r is a given positive scalar
;

then

XLVI. . . BD = t*r-
1 &amp;lt;

act- 1

,
that is, ^ BA

;

so that the locus of what may be called the guide-point D, through which, by the

construction, the variable semidiameter AE of the ellipsoid (or one of its prolongations)

passes, and which is still at a constant distance from the given external point B, is

now again a circle of the diacentric sphere, but one of which the plane does not pass

(as it did in 218, (3.) ) through the centre A of the ellipsoid. The point E has there

fore here, for one locus, the cyclic cone which has A for vertex, and rests on the last-

mentioned circle as its base; and since it is also on the concentric sphere XLV., it

must be on one or other of the two spherical conies, in which (comp. 196, (11.)) the

cone and sphere last mentioned intersect.

(7.) The intersection of an ellipsoid with a concentric sphere is therefore, gene

rally, a system of two such conies, varying with the value of the radius r, and be

coming, as a limit, the system of the two circular sections, for the particular value

r = b; and the ellipsoid itself may be considered as the locus of all such spherical co

nies, including those two circles.

(8.) And we see, by (6.), that the two cyclic planes (comp. 196, (17.), &c.) of

any one of the concentric cones, which rest on any such conic, coincide with the two

cyclic planes of the ellipsoid : all this resulting, with the greatest ease, from the con

struction (217) to which quaternions had conducted.

(9.) With respect to the Figure 53, which was designed to illustrate that con

struction, the signification of the letters ABCDD EFF GHH LN has been already ex

plained. But as regards the other letters we may here add, 1st, that N is a second

minor summit of the surface, so that AN = NA
; Ilnd, that K is a point in which the

chord AF
,
of what we may here call the diacentric circle AGF, intersects what may

be called the principal ellipse,* or the section NBLEN of the ellipsoid, made by the

plane of the greatest and least axes, that is by the plane of the generating triangle

ABC, so that the lengths of AK. and BF are equal ; IIFrd, that the tangent, VKV
,
to

this ellipse at this point, is parallel to the side AB of the triangle, or to the axis of

* In the plane of what is called, by many modern geometers, the focal hyper
bola of the ellipsoid.
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revolution of the enveloping cylinder 218, (5.), being in fact one side (or generatrix)

of that cylinder ; IVth, that AK, AB are thus two conjugate semidiameters of the

ellipse, and therefore the tangent TBT
,
at the point B of that ellipse, is parallel to

the line AKF
,
or perpendicular to the line BFF

; Vth, that this latter line is thus the

normal (comp. 218, (7.), (11.) ) to the same elliptic section, and therefore also to the

ellipsoid, at B
; Vlth, that the least distance KK between the parallels AB, KV, being

= the radius b of the cylinder, is equal in length to the line EG, and also to each of

the two semidiameters, AS, AS
,
of the ellipse, which are radii of the two circular

sections of the ellipsoid, in planes perpendicular to the plane of the Figure ; Vllth,

that AS touches the circle at A; and VHIth, that the point s is on the chord AI of

that circle, which is drawn at right angles to the side BC of the triangle.

220. The reader will easily conceive that the quaternion equa
tion of the ellipsoid admits of being put under several other forms;

among which, however, it may here suffice to mention one, and to

assign its geometrical interpretation.

(I.) For any three vectors, t, K, p, we have the transformations,

Hi + H + S8^ W&
P P P P

I p
&quot;

p ,0
I K

p K/ \p K
+

p

N (

Ui.Tr _U/c.TA
+ K^^-^ UN ^^+K

\ P P

whence follows this other general transformation :

XLVIII. . . T f t + K -
. p ] = T f UK . Ti + K HilJ^

. p \

(2.) If then we introduce two new auxiliary and constant vectors, t and
,
de

fined by the equations,

XLIX. . . i = -UK.T&amp;lt;, K
f = -Ui.Tie,

which give,

L. . . TV = Tt, TV = T/c, T (t
- K

&quot;)

= T
(t
-

*), Tt 2 - IV2 = *2
,

we may write the equation XVI. (in 217) of the ellipsoid under the following pre

cisely similar form :

in which i and K have simply taken the places of t and K.

(3.) Retaining then the centre A of the ellipsoid, construct a new diacentric

sphere, with a new centre c
,
and a new generating triangle AB C

,
where B is a new

fixed external point, but the lengths of the sides are the same, by the conditions,

LII. . AC = K
,

C B = -f t
,

arid therefore AB = i - K
;

draw any secant B D&quot;I&amp;gt;

&quot;

(instead of BDD
),

and set off a line AE in the direction of
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AD&quot;,
or in the opposite direction, with a length equal to that of BD

&quot;;
the locus of

the point E will be the same ellipsoid as before.

(4.) The only inference which we shall here* draw from this new construction

is, that there exists (as is known) a second enveloping cylinder ofrevolution, and that

its axis is the side AB of the new triangle AB C
;
but that the radius of this second

cylinder is equal to that of the first, namely to the mean semiaxis, 6, of the ellipsoid ;

and that the major semiaxis, a, or the line AL in Fig. 53, bisects the angle BAB ,

between the two axes of revolution of these two circumscribed cylinders : the plane

of the new ellipse of contact being geometrically determined by a process exactly

similar to that employed in 218, (7.); and being perpendicular to the new vector,

t + K
,
as the old plane of contact was (by 218, (11.)) to i + K.

SECTION 14. On the Reduction of the General Quaternion
to a Standard Quadrinomial Form ; with a First Proofof
the Associative Principle of Multiplication of Quaternions.

221. Retaining the significations (181) of the three rect

angular unit-lines 01, oj, OK, as the axes, and therefore also

the indices (159), of three given right versors i,j, k, in three

mutually rectangular planes, we can express the index OQ of

any other right quaternion, such as Vq, under the trinomial

form (comp. 62),

I. . .

IV&amp;lt;7

= OQ = #.oi+y.OJ + z. OK;

where xyz are some three scalar coefficients, namely, the three

rectangular co-ordinates of the extremity Q of the index, with

respect to the three axes 01, oj, OK. Hence we may write

also generally, by 206 and 126,

II. . .
V&amp;lt;7

= xi + yj + zk = ix +jy + kz ;

and this last form, ix +jy + kz, may be said to be a Standard

Trinomial Form, to which every right quaternion, or the right

part Vq of any proposed quaternion q, can be (as above) re

duced. If then we denote by w the scalar part, Sq, of the same

general quaternion q, we shall have, by 202, the following

General Reduction of a Quaternion to a STANDARD QUADRI
NOMIAL FORM (183):

* If room shall allow, a few additional remarks may be made, on the relations

of the constant vectors t, /c, &c., to the ellipsoid, and on some other constructions of

that surface, when, in the following Book, its equation shall come to be put under the

new form,

T(tp + pK) = *c
2 -i2

.

2 H
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III. . . q
= (Sq + Vq =)w + ix +jy + kz

;

in which the four scalars, wxyz, may be said to be the Four

Constituents ofthe Quaternion. And it is evident (comp. 202,

(5.), and 133), that if we write in like manner,

IV. . . q
= w 4 ix +jy + kz\

where ijk denote the same three given right versors (181) as

before, then the equation

V...f-q,
between these two quaternions, q and q\ includes thefourfollow

ing scalar equations between the constituents :

VI. . . w = w, x = x, y =
y, z = z

;

which is a new justification (comp. 112, 116) of the propriety

of naming, as we have done throughout the present Chapter,
the General Quotient oftwo Vectors (101) a QUATERNION.

222. When the Standard Quadrinomial Form (221) is

adopted, we have then not only

I. . . Sq = w, and
V&amp;lt;/

= ix +jy + kz,

as before, but also, by 204, XI.,

II. . .
K&amp;lt;7

= (Sq
- Vq =) 10 - ix -jy

- kz.

And because the distributive property ofmultiplication of qua
ternions (212), combined with the laics of of the symbols ijk

(182), or with the General and Fundamental Formula ofthis

whole Calculus (183), namely with the formula,

gives the transformation,

III. . . (ix +jy + kz)
z = -

(x*

we have, by 204, &c., the following new expressions :

IV. . . NV2
V. . .

VI. . . UVq =
(ix +jy + kz) : ^ (x

2 + y
2 + zz

) ;

VII. . . N^ = lY = S^-V^2 = w;
2 +a;2 + y

2 + 2:
2

VIII. . . Tq
IX. . . U? = (w 4 ix +jy + kz) :
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X. . . SU^ = w : V (wz + x2 +
y&quot;-

+

XL . . VUy =
(ix +jy + kz): &amp;lt;J (w

z
-f re

2

xz + y
1 4 zz

+ *2 + */
2 + 22

(1.) To prove the recent formula III., we may arrange as follows the steps of

the multiplication (com p. again 182) :

V? = ix +jy + kz,

Vg = ix +jy + kz

ix .
V&amp;lt;?

= - *2 + kxy jxz ;

jy , ~Vq = - y
2 - kyx 4 iyz,

kz . Vq = z2 +jzx izy ;

(2.) We have, therefore,

XIII. . . (ix +jy + kz)* = -
1, if a* 4 y

2 + z* = 1,

a result to which we have already alluded,* in connexion with the partial indeter-

minateness of signification, in the present calculus, of the symbol V 1, when consi

dered as denoting a right radial (149), or a right versor (153), of which the plane

or the axis is arbitrary.

(3.) If
q&quot;

= q q, then Nq&quot;= Ng . N?, by 191, (8.); but if q = w + &c.,

..,
then

w&quot; = w w (x x 4- y y + z z),

x&quot; = (w x + x w) + (y z - z y),

y&quot;
= (wy 4- y w) 4 (z x x z),

z&quot; = (wz 4 z w) + (xy y x) ;

and conversely these four scalar equations are jointly equivalent to, and may be

summed up in, the quaternion formula,

XV. . . w&quot; + ix&quot;
+jy&quot; + kz&quot;= (w + ix +jy + kz ) (to 4 ix +jy + kz) ;

we ought therefore, under these conditions XIV., to have the equation,

which can in fact be verified by so easy an algebraical calculation, that its truth

may be said to be obvious upon mere inspection, at least when the terms in the four

quadrinomial expressions w&quot; . . z are arrangedf as above.

* Compare the first Note to page 131
;
and that to page 162.

f From having somewhat otherwise arranged those terms, the author had some

little trouble at first, in verifying that the twenty-four double products, in the ex

pansion of w 2
4- &c., destroy each other, leaving only the sixteen products ofsquares,

or that XVI. follows from XIV,, when he was led to anticipate that result through

quaternions, in the year 1843. He believes, however, that the algebraic theorem

XVI., as distinguished from the quaternion formula XV., with which it is here con

nected, had been discovered by the celebrated EULEB.
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223. The principal use which we shall here make of the

standard quadrinomial form (221), is to prove by it the gene

ral associative property ofmultiplication of quaternions ; which

can now with great ease be done, the distributive* property

(212) of such multiplication having been already proved. In

fact, if we write, as in 222, (3.),

f q
= w + ix + jy + kz,

I. . .

&amp;lt;j

g
= iv 4- ix + jy + kz

9

\jf
^w&quot; + ix&quot; +

jy&quot;
.+

kz&quot;,

without now assuming that the relation
q&quot;

=
q q, or any other

relation, exists between the three quaternions q, q\ q \ and

inquire whether it be true that the associative formula,

II. . . qq.q =
q&quot;&amp;gt;q q,

holds good, we see, by the distributive principle, that we have

only to try whether this last formula is valid when the three

quaternion factors ^, &amp;lt;/, q are replaced, in any one common
order on both sides of the equation, and with or without repe

tition, by the three given right versors ijk ;
but this has al

ready been proved, in Art. 183. We arrive then, thus, at the

important conclusion, that the General Multiplication ofQua
ternions is an Associative Operation, as it had been previously

seen (212) to be a Distributive one: although we had also

found (168, 183, 191) that such Multiplication is not (in ge

neral) Commutative : or that the two products, q q and qq\ are

generally unequal. We may therefore omit the point (as in

183), and may denote each member of the equation II. by the

symbol q&quot;q q&amp;gt;

(1.) Let = Vg, t&amp;gt;

=
V&amp;lt;7 ,

v&quot; =
Vg-&quot;;

so that v, ,
v&quot; are any three right qua

ternions, and therefore, by 191, (2.), and 196, 204,

Kv v = vv, Sv v = %(v v + vv ), Vv v= |(v v - tn/).

Let this last right quaternion be called u,, and let Sv v = so that v v =
s, + v, ;

we

shall then have the equations,

At a later stage, a sketch will be given of at least one proof of this Associative

Principle of Multiplication, which will not presuppose the Distributive Principle.
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2Vv&quot;v
(

= v v, vv&quot;
;

= v&quot;s
t

sv&quot;
;

whence, by addition,

2 Vv&quot;v
t

= v&quot;. v v v v . v&quot;

= (vV + v
v&quot;)v

- v
(v&quot;v -f vp&quot;)

= 2vSv v&quot;
- 2v Sv&quot;v

;

and therefore generally, if v, v
,

v&quot; be still right, as above,

III. . . V.v&quot;Vv v = vSv v&quot;- v Sv v;

a formula with which the student ought to make himself completely familiar, on ac

count of its extensive utility.

(2.) With the recent notation?,

V . v&quot;Sv v = Vv X = v&quot;s
t
= v&quot;Sw

;

we have therefore this other very useful formula,

IV. . . V . v&quot;v v = vSw v&quot;- v Sv&quot;v + v&quot;Svv
,

where the point in the first member may often for simplicity be dispensed with
;
and

in which it is still supposed that

7T

ttttf&quot;*~.

(3.) The formula III. gives (by 206),

V. . . IV . v Vv v = Iv . SvV - Iv . Sv&quot;v
;

hence this last vector, which is evidently complanar with the two indices Iv and Iv
,

is at the same time (by 208) perpendicular to the third index
Iv&quot;,

and therefore (by

(1.) ) complanar with the third quaternion q&quot;.

(4.) With the recent notations, the vector,

is (by 208, XXII.) a line perpendicular to both Iv and Iv
;
or common to theplanes

of q and q ; being also such that the rotation round it from Iv to Iv is positive :

while its length,

TIv,, or TV,, or TV. v v, or TV(Vj . V#),

bears to the unit of length the same ratio, as that which the parallelogram under the

indices, Iv and Iv
,
bears to the unit of area.

(5.) To interpret (comp. IV.) the scalar expression,

VII. . . SvVv = Sv v,
= S. v Vv v,

(because Sv&quot;*^ 0), we may employ the formula 208, V.
;
which gives the the trans

formation,
VIII. . . Sv Vv = TV&quot;. TV . cos (TT

-
x) ;

where TV&quot; denotes the length of the line
Iv&quot;,

and TV, represents by (4.) the area

(positively taken) of the parallelogram under Iv and Iv
;
while x is (by 208), the

angle between the two indices
Iv&quot;, Iv,. This angle will be obtuse, and therefore the

cosine of its supplement will be positive, and equal to the sine of the inclination of
the line Iv&quot; to the plane oflv and Iv

,
if the rotation round Iv&quot; from Iv to Iv be

negative, that is, if the rotation round Iv from Iv to Iv&quot; be positive ; but that cosine

will be equal the negative of this sine, if the direction of this rotation be reversed.

We have therefore the important interpretation :

IX. . . Sv&quot;v v = volume ofparallelepiped under It, Iv
,

Iv&quot;
\
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the upper or the lower sign being taken, according as the rotation round Ir, from

! to
Iv&quot;,

is positively or negatively directed.

(6.) For example, we saw that the ternary products ijk and kji have scalar va

lues, namely,

ijk
= -\, kji

= +l t by 183, (1,), (2.)?

and accordingly the parallelepiped of indices becomes, in this case, an unit-cube ;

while the rotation round the index oft, from that ofj to that of
,
is positive (181).

(7.) In general, for any three right quaternions vv
v&quot;,

we have the formula,

X. . . S V = - Sv&quot;v v
;

and when the three indices are complanar, so that the volume mentioned in IX. va

nishes, then each of these two last scalars becomes zero ; so that we may write, as a

new formula ofComplanarity ;

XI. . . Sv&quot;v v = 0, if It&amp;gt;&quot;

1 1 1 It/, Iv (123) :

while, on the other hand, this scalar cannot vanish in any other case, if the quater

nions (or their indices) be still supposed to be actual (1, 144) ;
because it then re

presents an actual volume.

(8.) Hence also we may establish the following Formula ofCollinearity, for any
three quaternions :

XII...S(Vy .V0 .Vg) = 0, if IVq&quot;\\\IVq , IVg;
that is, by 209, if the planes of 9, q , q&quot;

have any common line,

(9.) In general, if we employ the standard trinomialform 221, II., namely,

v = Vq = ix +jy +kz, v = ix + &c., v&quot; = ix&quot; + &c.,

the laws (182, 183) of the symbols i,j, k give the transformation,

XIII. . . Sv &quot;v v =
x&quot;(z y - y z) + y \x z - z x} + z&quot;(y

x - x y) ;

and accordingly this is the known expression for the volume (with a suitable sign)

of the parallelepiped, which has the three lines OP, OP
,

OP&quot; for three co-initial

edges, if the rectangular co-ordinates* of the four corners, o, P, p
,

P&quot; be 000, xyz,

xy z, x&quot;y&quot;z&quot;.

(10.) Again, as another important consequence of the general associative pro

perty of multiplication, it may be here observed, that although products of more than

two quaternions have not generally equal scalars, for all possible permutations of the

factors, since we have just seen a case X. in which such a change of arrangement

produces a change of sign in the result, yet cyclical permutation is permitted, under

the sign S
;
or in symbols, that for any three quaternions (and the result is easily ex -

tended to any greater number of such factors) the following formula holds good :

XIV. . . Sq q q = $qq&quot;q
.

In fact, to prove this equality, we have only to write it thus,

and to remember that the scalar of the product of any two quaternions remains unal

tered (198, I.), when the order of those two factors is changed.

* This result may serve as an example of the manner in which quaternions,

although not based on any usual doctrine of co-ordinates, may yet be employed to

deduce, or to recover, and often with great ease, important co-ordinate expressions.
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(11.) In like manner, by 192, II., it may be inferred that

XV. . . K qq q = K(y . q q) = Kq q .
Kq&quot;

= Kq . Kq .
Kq&quot;,

with a corresponding result for any greater number of factors; whence by 192, I.,

if Uq and II 9 denote the products of any one set of quaternions taken in two op

posite orders, we may write,

XVI. . . KHq = Il Kq ; XVII. . . RII? = H %.

(12.) But if v be right, as above, then Kv = - v, by 144
; hence,

xvm. ..Knt&amp;gt;=ir; xix. . . sn =+sn t;; xx. . . vn =+vn w
;

upper or lower signs being taken, according as the number of the right factors is

even or odd; and under the same conditions,

xxi. . . sn = i (n n
t&amp;gt;) ;.

xxn. . . vn = (Uv + n t?) ;

as was lately exemplified (1.), for the c&se where the number is two.

(13.) For the case where that number is three, the four last formulae give,

XXIII. . . Sv&quot;v v = Svv v&quot;
=

^(v&quot;v
v vv

v&quot;) ;

XXIV. . . VrVr= +VtV = J(Vo + !&amp;gt;

&quot;);

results which obviously agree with X. and IV.

224. For the case of Complanar Quaternions (119), the power of

reducing each (120) to the form of a fraction (101) which shall have,

at pleasure, for its denominator or for its numerator, any arbitrary

line in the given plane, furnishes some peculiar facilities for proving

the commutative and associative properties of Addition (207), and the

distributive and associative properties of Multiplication (212, 223);

while, for this case of multiplication of quaternions, we have already

seen (191, (I-)) tnat *^e commutative property also holds good, as

it does in algebraic multiplication. It may therefore be not irrele

vant nor useless to insert here a short Second Chapter on the subject

of such complanars : in treating briefly of which, while assuming as

proved the existence of all the foregoing properties, we shall have an

opportunity to say something of Powers and Roots and Logarithms ;

and of the connexion of Quaternions with Plane Trigonometry, and

with Algebraical Equations. After which, in the Third and last

Chapter of this Second Book, we propose to resume, for a short time,

the consideration of Diplanar Quaternions; and especially to show

how the Associative Principle of Multiplication can be established,

for them, without* employing the Distributive Principle.

*
Compare the Note to page 236.



240 ELEMENTS OF QUATERNIONS. [BOOK II.

CHAPTER II.

ON COMPLANAR QUATERNIONS, OR QUOTIENTS OF VECTORS IN

ONE PLANE; AND ON POWERS, ROOTS, AND

LOGARITHMS OF QUATERNIONS.

SECTION 1. On Complanar Proportion of Vectors; Fourth

Proportional to Three, Third Proportional to Two, Mean

Proportional, Square Root ; General Reduction ofa Qua
ternion in a given Plane, to a Standard Binomial Form.

225. The Quaternions of the present Chapter shall all be

supposed to be complanar (119); their common plane being

assumed to coincide.with that of the given right versor i
( 1 8 1

).

And all the lines, or vectors, such as a, j3, 7, &c., or a , ai, a 2
&amp;gt;

&c., to be here employed, shall be conceived to be in that

given plane of z; so that we may write (by 123), for the pur

poses of this Chapter, theformula ofcomplanarity :

226. Under these conditions, we can always (by 103, 117)

interpret any symbol of the form (]3 : a) .7, as denoting a line

8 in the given plane; which line may also be denoted (125)

by the symbol (7 : a) .)3,
but not* (comp. 103) by either ofthe

two apparently equivalent symbols, (j3-7):a, (7j3):a; so

that we may write,

and may say that this line 8 is the Fourth Proportional to the

* In fact the symbols j3 . y, y .
/3, or /3y, y/3, have not as yet received with us

any interpretation ;
and even when they shall come to be interpreted as represent

ing certain quaternions, it will be found (comp. 168) that the two combinations,

-
y and

,
have generally different significations.a a
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three lines a, (3, 7 ;
or to the three lines a, 7, /3 ; the two

Means, ft and 7, of any such Complanar Proportion ofFour

Vectors, admitting thus of being interchanged, as in algebra.

Under the same conditions we may write also (by 125),

so that (still as in algebra) the two Extremes, a and S, of any
such proportion of four lines a, j3, 7, S, may likewise change

places among themselves : while we may also make the means

become the extremes, if we at the same time change the ex

tremes to means. More generally, if a, /3, y, S, c . . . be any
odd number of vectors in the given plane, we can always find

another vector p in that plane, which shall satisfy the equa

tion,

111...... a= or

and when such a formula holds good, for any one arrangement
of the numerator-lines a, 7, f, ... and ofthe denominator-lines

p, /3,
. . . it can easily be proved to hold good also for any

other arrangement of the numerators, and any other arrange
ment of the denominators. For example, whatever four (corn-

planar) vectors may be denoted by flyde, we have the trans

formations,

the two numerators being thus interchanged. Again,

IV i* -~i. i? bvIV
8/3 ]38 |3g

Dy -

so that the two denominators also may change places.

227. An interesting case of such proportion (226) is that

in which the means coincide; so that only three distinct lines,

such as a, ]3, 7, are involved : and that we have (comp. Art.

149, and Fig. 42) an equation of the form,

ct *y

2 i
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but not* y =
)3j3 : a, nor a =

|3j3 : 7. In this case, it is said that

the three lines a]3y form a Continued Proportion ; of which a

and y are now the Extremes, and (3 is the Mean : this line |3

being also said to be t Mean Proportional between the two

others, a and y ; while y is the Third Proportional to the two

lines a and |3 ; and a is, at the same time, the third propor
tional to y and /3. Under the same conditions, we have

so that this mean, /3, between a and y, is also the fourth pro

portional (226) to itself, asfirst, and to those two other lines.

We have also (comp. again 149),

TTT (fi\
z _ y (fi\ a

111. . . I 1
,

I =
;

\ / a \y / y

whence it is natural to write,

and therefore (by 103),

although we are TZO here to write ]3
=

(ya)i, nor (3
=

(ay)?.
But because we have always, as in algebra (comp. 199, (3.) ),

the equation or identity, (- q)
z =

g* 9 we are equally well enti

tled to write,

the symbol &amp;lt;/2 denoting thus, in general, either oftwo opposite

quaternions, whereof however one, namely that one of which

the angle is acute, has been already selected iu 199, (I.), as that

which shall be called by us the Square Root of the quaternion

* Compare the Note to the foregoing Article.

f We say, a mean proportional; because we shall shortly see that the opposite

line, /3, is in the same sense another mean; although a rule will presently be given,

for distinguishing between them, and for selecting one, as that which may be called,

by eminence, the mean proportional.
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q, and denoted by \f q. We may therefore establish the for

mula,

VII... 3 =

if a, /3, 7 ibrm, as above, a continued proportion ; the upper

signs being taken when (as in Fig. 42) the angle AOC, between

the extreme lines a, y, is bisected by the line OB, or )3, itself;

but the lower signs, when that angle is bisected by the opposite

line,
-

/3,
or when j3 bisects the vertically opposite angle (comp.

again 199, (3.) ): but the proportion of tensors,

VIII. . . Ty : T/3
=
T/3 : T,

and the resulting formula?,

IX. . . T/3
2 = T .Ty, T/3 = V (Ta .T7 ),

in c^ case holding good. And when we shall speak simply

of the Mean Proportional between two vectors, a and y, which

make any acute, or right, or obtuse angle with each other, we

shall always henceforth understand the former of these two

bisectors ; namely, the bisector OB of that angle AOC itself, and

not that of the opposite angle : thus taking upper signs, in the

recent formula VII.

(1.) At the limit when the angle AOC vanishes, so that Uy = Ua, then U/3

each of these two unit-lines ;
and the mean proportional /3 has the same common

direction as each of the two given extremes. This comes to our agreeing to write,

X. . . V 1 = + 1, and generally, X . . . V(a
2
)
= + a,

if a be any positive scalar.

(2.) At the other limit, when AOC = TT, or Uy = - TJa, the length of the mean

proportional /3 is still determined by IX., as the geometric mean (in the usual sense)

between the lengths of the two given extremes (comp. the two Figures 41) ; but,

even with the supposed restriction (225) on the plane in which all the lines are

situated, an ambiguity arises in this case, from the doubt which of the two opposite

perpendiculars at o, to the line AOC, is to be taken as the direction of the mean vec

tor. To remove this ambiguity, we shall suppose that the rotation round the axis

of i (to which axis all the lines considered in this Chapter are, by 225, perpendicu

lar), from the first line OA to the second line OB, is in this case positive ; which

supposition is equivalent to writing, for present purposes,

XL* .. V- ! = + ;
and XI . . . V(- a2

)
= ia, if a&amp;gt;0.

*
It is to be carefully observed that this square root of negative unity is not, in

any sense, imaginary, nor even ambiguous, in its geometrical interpretation, but

denotes a real and given right versor (181).
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And thus the mean proportional between two vectors (in the given plane) becomes,

in all cases, determined : at least if their order (as first and third) be given.

(3.) If the restriction (225) on the common plane of the lines, were removed, we

might then, on the recent plan (227), fix definitely the direction, as well as the

length, of the mean OB, in every case but one: this excepted case being that in

which, as in (2.), the i\\Q given extremes, OA, oc, have exactly opposite directions
;
so

that the angle (AOC = TT) between them has no one definite bisector. In this case, the

sought point B would have no one determined position, but only a locus : namely the

circumference of a circle, with o for centre, and with a radius equal to the geome

tric mean between OA, oc, while its plane would be perpendicular to the given right

line AOC. (Comp. again the Figures 41
;
and the remarks in 148, 149, 153, 154,

on the square of a right radial, or versor, and on the partially indeterminate cha

racter of the square root of a negative scalar, when interpreted, on the plan of this

Calculus, as a real in geometry.)

228. The quotient ofany two complanar and right quater

nions has been seen (191, (6.) ) to be a scalar ; since then we
here suppose (225) that g\\\i9 we are at liberty to write,

and consequently may establish the following Reduction ofa

Quaternion in the given Plane (of i) to a Standard Binomial

Form* (comp. 221):

II. . . q^x + iy, if q\\\i\

x and y being some two scalars, which may be called the two

constituents (comp. again 221) of this binomial. And then an

equation between two quaternions, considered as binomials of

this form, such as the equation,

III. . . q
=

q, or III . . . x + iy
= x+ iyt

breaks up (by 202, (5.) ) into two scalar equations between

their respective constituents^ namely,

IV. . . x = x9 y =
y,

notwithstanding the geometrical reality of the right versor, .

(1.) On comparing the recent equations II., III., IV., with those marked as III.,

V., VI., in 221, we see that, in thus passing from general to complanar quaternions,

we have merely suppressed the coefficients ofj and k, as being for our present purpose,

null ; and have then written x and y, instead of w and x.

*
It is permitted, by 227, XL, to write this expression as x + y V 1

;
but the

form x + iy is shorter, and perhaps less liable to any ambiguity of interpretation.
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(2.) As the word &quot;

binomial&quot; has other meanings in algebra, it may be conve

nient to call the form II. a COUPLE
;
and the two constituent scalars x and y, of

which the values serve to distinguish one such couple from another, may not unna

turally be said to be the Co-ordinates of that Couple, for a reason which it may be

useful to state.

(3.) Conceive, then, that the plane of Fig. 50 coincides with that of i, and that

positive rotation round Ax.i is, in that Figure, directed towards the left-hand;

which may be reconciled with our general convention (127), by imagining that this

axis of i is directed from o towards the back of the Figure ;
or below* it, if horizon

tal. This being assumed, and perpendiculars BB
,

BE&quot; being let fall (as in the Fi

gure) on the indefinite line OA itself, and on a normal to that line at o, which nor

mal we may call OA
,
and may suppose it to have a length equal to that of OA, with

a left-handed rotation AOA
,
so that

V. . . OA = I.OA, or briefly, V. . . a = ia,

while /3
= OB

,
and

/3&quot;= OB&quot;, as in 201, and q = (3
: a, as in 202

;

then, on whichever side of the indefinite right line OA the point B may be situated,

a comparison of the quaternion q with the binomial form II. will give the two equa

tions,

VI. . .(8f)/9r

:a; y (= Vg : f=
)3&quot;:ta) =/3&quot;

: a
;

so that these two scalars, x and y, are precisely the two rectangular co-ordinates of
the point B, referred to the two lines OA and OA

,
as two rectangular unit-axes, of

the ordinary (or Cartesian) kind. And since every other quaternion, q x + iy ,

in the given plane, can be reduced to the form y : a, or oc : OA, where c is a point

in that plane, which can be projected into c and c&quot; in the same way (comp. 197,

205), we see that the two new scalars, or constituents, x and y ,
are simply (for

the same reason) the co-ordinates of the new point c, referred to the same pair of

axes.

(4.) It is evident (from the principles of the foregoing Chapter), that if we thus

express as couples (2.) any two complanar quaternion?, q and q ,
we shall have the

following general transformations for their sum, difference, and product :

VIII. . . q . q = (xx - y y) + i (xy + y ar).

(5.) Again, for any one such couple, q, we have (comp. 222) not only Sq = x, and

=
iy, as above, but also,

IX. . . Kq = x-iy; X. . . N? = *2 +y2
; XI. . . Tq =

XII. . . u*=- ,
xill. . . = L

;
&c.

V0**+y
2
) q

(G.) Hence, for the quotient of any two such couples, we have,

|Y =
x + iy =

x + iy&quot; n . _
XIV. ..Jo x + iv a?

2 +va
* y ~

y&amp;gt; =xx+ y y, y&quot;

= y x x y.

Compare the second Note to page 108.
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(7.) The law of the norms (191, (8.) ), or the formula, JXq q = Ng . N9 ,
is ex

pressed here (comp. 222, (3.)) by the well-known algebraic equation, or identity,

XV. . . O^ + y

in which xyx y may be any four scalars.

SECTION 2. On Continued Proportion of Four or more Vec

tors ; Whole Powers and Roots of Quaternions ; and Roots

of Unity.

229. The conception of continued proportion (227) may
easily be extended from the case of three to that of four or

more (complanar) vectors; and thus a theory may be formed

of cubes and higher whole powers of quaternions ,
with a corre

spondingly extended theory of roots of quaternions, including
roots of scalars, and in particular of unity. Thus if we sup

pose that the four vectors ajSyS form a continued proportion,

expressed by the formulas,

8 y j3 8 Sy3 /j3
I. ..- =

^ = S whence II. . .
- = - =

7 p a a y p a \ a

(by an obvious extension of usual algebraic notation,) we may

say that the quaternion S : a is the cube, or the /rc? power, of

|3 : a ; and that the latter quaternion is, conversely, a cube-

root (or third root) of the former
; which last relation may na

turally be denoted by writing,

III. . .
=
(-Y, or III. ../3

=
f-Ya(comp.227,IV.,V.).a \aj \a/

230. But it is important to observe that as the equation

q~
= Q, in which q is a sought and Q is a given quaternion,

was found to be satisfied by two opposite quaternions q, of the

form V Q (comp. 227, VII.), so the slightly less simple

equation q
3 = Q is satisfied by three distinct and real quater

nions, if Q be actual and real
;
whereof each, divided by either

of the other two, gives for quotient a real quaternion, which

is equal to one of the cube-roots ofpositive unity. In fact, if

we conceive (comp. the annexed Fig. 54) that ]3 and
/3&quot;

are

two other but equally long vectors in the given plane, ob-
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tained from j3 by two successive and positive rotations, each

through the third part of a circumference,

so that
*^&amp;lt;

, B

J3

7
&quot;

ft

~
]3

or

IV.. .-=_ =
,

and therefore

_w
we shall have

. and

so that we are equally entitled, at this stage, to write, instead

of III. or III
7

., these other equations :

VII. . .

or

231. A (real and actual) quaternion Q may thus be said

to have three (real, actual, and) distinct cube-roots ; of which

however only one can have an angle less than sixty degrees ;

while none can have an angle equal to sixty degrees, unless the

proposed quaternion Q degenerates into a negative scalar. In

every other case, one of the three cube-roots of Q, or one ofthe

three values of the symbol QA, may be considered as simpler
than either of the other two, because it has a smaller angle

(comp. 199, (!)) and if we, for the present, denote this one,

which we shall call the Principal Cube-Root ofthe quaternion

Q, by the symbol ^/ Q, we shall thus be enabled to establish

the formula of inequality,

VIII.
..z^Q&amp;lt;|,

if ^Q&amp;lt;;r.

232. At the limit, when Q degenerates, as above, into a negative

scalar, owe of its cube-roots is itself & negative scalar, and has there-
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fore its angle =w; while each of the two other roots has its angle

= -. In this case, among these two roots of which the angles are
o

equal to each other, and are less than that of the third, we shall

consider as simpler, and therefore as principal, the one which an

swers (comp. 227, (2.) ) to a positive rotation through sixty degrees ;

and so shall be led to write,

using thus the positive sign for the radical \/3, by which i is multi

plied in the expression IX. for 2^/- 1
; with the connected for

mula,

if

although it might at first have seemed more natural to adopt as

principal the scalar value, and to write thus,

3/_l=-l ;

which latter is in fact one value of the symbol, (- 1)*.

(1.) We have, however, on the present plan, as in arithmetic,

XI. ..^/1 = 1; and XI . . . ^/(a
3
)
=

a, if a&amp;gt;0.

(2.) The equations,

can be verified in calculation, by actual cubing, exactly as in algebra ; the only dif

ference being, as regards the conception of the subject, that although i satisfies the

equation t
2 =

1, it is regarded here as altogether real; namely, as a real right ver-

sor* (181).

233. There is no difficulty in conceiving how the same general

principles may be extended (comp. 229) to a continued proportion

of n + 1 complanar vectors,

I. . . a, a lt a 3, . . . a
rt ,

* This conception differs fundamentally from one which had occurred to seve

ral able writers, before the invention of the quaternions ;
and according to which

the symbols 1 and V 1 were interpreted as representing a pair of equally long and

mutually rectangular right lines, in a given plane. In Quaternions, no line is repre

sented by the number, ONE, except as regards its length ; the reason being, mainly,

that we require, in the present Calculus, to be able to deal with all possible planes ;

and that no one right line is common to all such.
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when n is a whole number greater than three ;
nor in interpreting,

in connexion therewith, the equations,

Denoting, for the moment, what we shall call the principal nth root

of a quaternion Q by the gymbol y/Q, we have, on this plan (comp.

231, VIII.),

V. ..zyQ&amp;lt;-, if zQ&amp;lt;7r;

VI. . . L (
n
/- 1)

=
^;

VII. . . V(/-

this last condition, namely that there shall be a positive (scalar) co

efficient y of t, in the binomial (or couple) form x-^iy (228), for the

quaternion y/
-

1, thus serving to complete the determination of

that principal nth root of negative unity ; or of any other negative sca

lar, since - 1 may be changed to -a, if a&amp;gt;0, in each of the two last

formulas. And as to the general nth root of a quaternion, we may

write, on the same principles,

VIIL.. CF=l
i

where the factor 1, representing the general nth root of positive

unity, has n different values, depending on the division of the cir

cumference of a circle into n equal parts, in the way lately illus

trated, for the case n = 3, by Figure 54 ; and only differing from

ordinary algebra by the reality here attributed to i. In fact, each

of these nth roots of unity is with us a real versor; namely the quo

tient of two radii of a circle, which make with each other an angle,

equal to the nth
part of some whole number of circumferences.

!_

(1.) We propose, however, to interpret the particular symbol t&quot;,

as always de

noting the principal value of the nth root of i
;
thus writing,

IX. . . = y/
i;

whence it will follow that when this root is expressed under the form of a couple

(228), the two constituents x and y shall both be positive, and the quotient y : x

shall have a smaller value than for any other couple x + iy (with constituents thus

positive), of which the nth power equals f.

(2 ) For example, although the equation

is satisfied by the two values, (1 + ) : ^2
&amp;gt;

we shall write definitely,

2 K
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(3.) And although the equation,

q* =

is satisfied by the three distinct and real couples, (t V3) : 2, and - i,
we shall adopt

only the one value,

xi...^
(4.) In general, -we shall thus have the expression,

which we shall occasionally abridge to the following :

XII . . . i = cis
;

2n
i

and this roof, iw
,
thus interpreted, denotes a versor, which turns any line on which it

operates, through an angle equal to the nth
part of a right angle, in the positive di

rection of rotation, round the given axis of i.

234. If m and n be any two positive whole numbers, and q

any quaternion, the definition contained in the formula 233,

II., of the whole power, q
n
, enables us to write, as in algebra,

the two equations :

I. . . q
m
q
n =

q
m

; II. . . (q
n
)
m =

q
mn

;

and we propose to extend the former to the case of null and

negative whole exponents, writing therefore,

III. . . q= 1 ; IV. . . q
m-n

=q
m
:q

n
;

and in particular,

V. . . q~
l = 1 : q

= - = reciprocal* (134) of q.

We shall also extend the formula II., by writing

VI. . .

whether m be positive or negative ; so that this last symbol,
if m and n be still whole numbers, whereof n may be supposed
to be positive, has as many distinct values as there are units in

the denominator of itsfractional exponent, when reduced to its

*
Compare the Note to page 121.
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m
least terms ; among which values of

q&quot;,
we shall naturally

consider as the principal one, that which is the mth
power of

the principal nih root (233) of q.

(1.) For example, the symbol
&amp;lt;? denotes, on this plan, the square of any cube-

root of q ;
it has therefore three distinct values, namely, the three values of the cube-

root ofthe square of the same quaternion q ;
but among these we regard as principal,

the square of the principal cube-root (231) of that proposed quaternion.

(2.) Again, the symbol q$ is interpreted, on the same plan, as denoting the

square of any fourth root of q ;
but because (I*)

2 = li = + 1, this square has only
two distinct values, namely those of the square root q*, the fractional exponent |

being thus reduced to its least terms; and among these the principal value is the

square ofthe principal fourth root, which square is, at the same time, the principal

square root (199, (1.), or 227) of the quaternion q.

(3.) The symbol q~% denotes, as in algebra, the reciprocal of a square-root of q ;

while q
2 denotes the reciprocal of the square, &c.

(4.) If the exponent t,
in a symbol of the form q

f

,
be still a scalar, but a surd (or

incommensurable), we may consider this surd exponent, t,
as a limit, towards which

a variable fraction tends : and the symbol itselfmay then be interpreted as the corre

sponding limit of a fractional power of a quaternion, which has however (in this case)

indefinitely many values, and can therefore be of little or no use, until a selection

shall have been made, of one value of this surdpower as principal, according to a law

which will be best understood by the introduction of the conception of the amplitude

of a quaternion, to which in the next Section we shall proceed.

(5.) Meanwhile (comp. 233), (4.) ), we may already definitely interpret the sym
bol i

f
- as denoting a versor, which turns any line in the given plane, through t riylit

angles, round Ax.i, in the positive or negative direction, according as this scalar ex

ponent, t,
whether rational or irrational, is itself positive or negative ;

and thus may
establish the formula,

VII. . . V = cos - + isin
;

2, 2j
or briefly (comp. 233, XII .),

VIII.. . t = cis .

SECTION 3. -On the Amplitudes of Quaternions in a given

Plane; and on Trigonometric Expressionsfor such Quater
nions ,

andfor their Powers.

235. Using the binomial or couple form (228) for a qua
ternion in the plane of i (225), if we introduce two new and

real scalars, r and z
9 whereof the former shall be supposed to

be positive, and which are connected with the two former sca

lars x and y by the equations,

I. . . x = r cos z
9 y = r sin z

t
r

&amp;gt; 0,
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we shall then evidently have the formulae (comp. 228, (5.) ):

m./T$-T(*4vt|f)-rj
III. . . Uq = *U(x + iy)

= cosz + i sin z ;

which last expression may be conveniently abridged (comp.

233, XII ., and 234, VIII.) to the following :

IV. . .
U&amp;lt;?

= cis z ; so that V. . . q = r cis z.

And the arcual or angular quantity, z, maybe called the Am
plitude* of the quaternion q ;

this name being here preferred

by us to &quot;

Angle&quot;
because we have already appropriated

the latter name, and the corresponding symbol L q, to denote

(130) an angle of the Euclidean kind, or at least one not ex

ceeding, in either direction, the limits and TT ; whereas the

amplitude, z, considered as obliged only to satisfy the equa

tions I., may have any real and scalar value. We shall denote

this amplitude, at least for the present, by i\\Q symbol^ am.^,
or simply, am q ; and thus shall have the following formula,

of connexion between amplitude and angle,

VI. . . (z =) am . q
= 2w?r + L q ;

*
Compare the Note to Art. 130.

f The symbol V was spoken of, in 202, as completing the system of notations

peculiar to the present Calculus
;
and in fact, besides the three letters, i, j, fi,

of which

the laws are expressed by thefundamentalformula (A) of Art. 183, and which were

originally (namely in the year 1843, and in the two following years) the only pecu
liar symbols of quaternions (see Note to page 160), that Calculus does rot habi

tually employ, with peculiar significations, any more than the five characteristics of

operation, K, S, T, U, V, for conjugate, scalar, tensor, versor, and vector (or right

party : although perhaps the mark N for norm, which in the present work has been

adopted from the Theory of Numbers, will gradually come more into use than

it has yet done, in connexion with quaternions also. As to the marks, L, Ax., I, Rr

and now am . (or am,,), for angle, axis, index, reciprocal, and amplitude, they are to

be considered as chiefly available for the present exposition of the system, and as not

often wanted, nor employed, in the subsequent practice thereof
;
and the same remark

applies to the recent abridgment cis, for cos + i sin
;
to some notations in the present

Section for powers and roots, serving to express the conception of one nth
root, &c.,

as distinguished from another
;
and to the characteristic P, of what we shall call in the

next section the ponential of a quaternion, though not requiring that notation after

wards. No apology need be made for employing the purely geometrical signs, -L,

||, |||,
for perpendicularity, parallelism, and complanarity : although the last of

them was perhaps first introduced by the present writer, who has found it frequently

useful.



CHAP. II.] ADDITION AND SUBTRACTION OF AMPLITUDES. 253

the upper or the lower sign being taken, according as Ax. q
= Ax. i ; and n being any whole number

, positive or negative
or null. We may then write also (for any quaternion q\\\i)

the general transformations following :

VII. . . \Jq
= cis am q ;

VIII. . . q = Tq . cis am q.

(1.) Writing q /3 : a, the amplitude am. q, or am (/3 : a), is thus a scalar quan

tity, expressing (with its proper sign) the amount of rotation, round Ax.
i,
from the

line a to the line
f3 ;

and admitting, in general, of being increased or diminished by

any whole number of circumferences, or of entire revolutions, when only the direc

tions of the two lines, a and
(3,

in the given plane of z, are given.

(2.) But the particular quaternion, or right versor, i itself, shall be considered

as having definitely, for its amplitude, one right angle; so that we shall establish the

particular formula,

IX. . . am.t = z. t = .

(3.) When, for any other given quaternion q, the generally arbitrary integer

n in VI. receives any one determined value, the corresponding value of the ampli

tude may be denoted by either of the two following temporary symbols,* which we

here treat as equivalent to each other,

amn .q, or Ln q ;

so that (with the same rule of signs as before) we may write, as a more definite for

mula than VI., the equation :

X. . . amn .q = /_n q =

and may say that this last quantity is the n th value ofthe amplitude of q ;
while the

zero-value, amo q, may be called the principal amplitude (or the principal value of

the amplitude).

(4.) With these notations, and with the convention, amo ( I)
= + TT, we may

write,
XI. . . am q = Loq = q ,

XII. . . amw a = amn 1 = Ln 1 = 27r, if a
&amp;gt; ;

and
XIII. . . amn (-a) = aran (-l) = M (-l) = (2n+l)7r,

if a be still a positive scalar.

236. From the foregoing definition ofamplitude, and from

the formerly established connexion of multiplication ofversors,

with composition ofrotations (207), it is obvious that (within

the given plane, and with abstraction made of tensors) multi

plication and division of quaternions answer respectively to

*
Compare the recent Note, respecting the notations employed.
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(algebraical) addition and subtraction ofamplitudes : so that,

if the symbol am.^ be interpreted in the general (or indefinite)

sense of the equation 235, VI., we may write :

I. . . am (q
f

. q)
= am q + am q ; II. . . am (q : q)

= am q am q ;

implying hereby that, in each formula, one ofthe values,of the

first member is among the values of the second member ; but

not here specifying which value. With the same generality
of signification, it follows evidently that, for a product of any
number of (complanar) quaternions, and for a wholepower ofany
one quaternion, we have the analogous formulae :

III. . . am Uq = S am q ; IV. . . am . qP
=p . am q ;

where the exponent p may be any positive or negative integer,

or zero.

(1.) It was proved, in 191, II., that for any two quaternions, the formula IT// *?

= \Jq .Uq holds good; a result which, by the associative principle of multiplication

(223), is easily extended to any number of quaternion factors (complauar or dipla-

nar), with an analogous result for tensors : so that we may write, generally,

V. . . UII? = nUg ;
VI. .. TUq = TIT?.

(2.) Confining ourselves to the first of these two equations, and combining it with

III., and with 235, VII., we arrive at the important formula :

VII. . . II cis am q (= THJq IJUq = cis am Ilg) = cis 2 am q ;

whence iu particular (comp. IV.),

VIII. . . (cis am q)? = cisQa . am q},

at least if the exponent p be still any whole number.

(3.) In these last formulae, the amplitudes am.
5-,

am. q , &c., may represent any

angular quantities, z, z
,
&c. ;

we may therefore write them thus,

IX. . . II cis z cis Sz
;

X. . . (cis Z)P = cispz ;

including thus, under abridgedforms, some known and useful theorems, respecting

cosines and sines of sums and multiples of arcs.

(4.) For example, if the number of factors of the form cis z be two, we have

thus,
IX . . . cis z . cis z = cis (z + z) ;

X . . . (cis z)
2 = cis 2z

;

whence
cos (z + z)

= S (cis z . cis z) cos z cos z sin z sin z ;

sin (z + z)
= i 1

V(cis z . cis z) = cos z sin z + sin z cos z
;

cos 2z = (cos z)
2

(sin z)
2

;
sin 2z = 2 cos z sin z

;

with similar results for more factors than two.

(5.) Without expressly introducing the conception, or at least the notation of

amplitude, we may derive the recent formulas IX. and X., from the consideration of

the power i&amp;gt; (234), as follows. That power oft, with a scalar exponent, t, has been
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interpreted in 234, (5.), as a symbol satisfying an equation which may be written

thus:

XI. . . i = cisz, if 2 = ^7r;

or geometrically as a versor, which turns a line through t right angles, where t may
be any scalar. We see then at once, from this interpretation, that if t be either the

same or any other scalar, the formula,

XII. . . VV ^W, or XIII. .. n. = s
*,

must hold good, as in algebra. And because the number of the factors t* is easily

seen to be arbitrary in this last formula, we may write also,

XIV. ..
(&amp;gt;

= {?,

ifp be any whole* number. But the two last formulae may be changed by XI., to

the equations IX. and X., which are therefore thus again obtained
; although the

later forms, namely XIII. and XIV., are perhaps somewhat simpler: having in

deed the appearance of being mere algebraical identities, although we see that their

geometrical interpretations, as given above, are important.

(6.) In connexion with the same interpretation XI. of the same useful symbol *,

it may be noticed here that

XV. .. K. # =
;-&amp;lt;;

and that therefore,

XVI. . . cos ~ = S. t =
$(i&amp;lt;

+ i-) 5

XVII. . . sin y = i- V.t&amp;lt;
= Ri (it

-
1-9.

(7.) Hence, by raising the double of each member of XVI. to any positive whole

power /;, halving, and substituting z for \t TT, we get the equation,

XVIII. . . 2P-^(cosz}p=^(i
t +i- t

)p
= i(ipt+i-p^ + ip(^(p-z)t + i(2-p}^ + &Cf

= cospz+p cos(/&amp;gt;

-
2)z +

~
cos (p

~
4) z+ &c.,

with the usual rule for halving the coefficient of cos Oz, ifp be an even integer ;
and

with analogous processes for obtaining the known expansions of 2*&amp;gt;~

I

(sin Z)P, for any

positive whole value, even or odd, of p ;
and many other known results of the same

kind.

237. Ifp be still a whole number, we have thus the transforma

tion,

I. . . q
p =

(r cis z)
p = rp cispz = (T#)

p cis (p . am q) ;

in which (comp. 190, 161) the two factors, of the tensor and versor

kinds, may be thus written :

II. . . T (qY = (Tq)= iy&amp;gt;;
III. . .

Ufa&quot;)
- (Uqf =

U&amp;lt;f ;

and any value (235) of the amplitude am.q may be taken, since all

*
It will soon be seen that there is a sense, although one not quite so definite, in

which this formula holds good, even when the exponent p is fractional, or surd
;

namely, that the second member is then one of the values of the first
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will conduct to one common value of this whole power q
p

. And if,

for I., we substitute this slightly different formula (comp. 235,

(3.)),

IV. . . (q
p
)n
= TV . cis (p.&mn q), with p =

,
n &amp;gt; 0,

m
,
n

,
n being whole numbers whereof the first is supposed to be

prime to the second, so that the exponent p is here & fraction in its

least terms, with a positive denominator n t while the factor Tqp is

interpreted as a positive scalar (of which the positive or negative

logarithm, in any given system, is equal to p x the logarithm of Tq),

then the expression in the second member admits of n distinct va

lues, answering to different values of n
;
which are precisely the n!

values (comp. 234) of the fractional power q
p
, on principles already

established : the principal value of that power corresponding to the

value n = 0.

(1.) For any value of the integer n, we may say that the symbol (9^)&quot;?
defined

by the formula IV., represents the nth value of the power qp ;
such values, however,

recurring periodically, when p is, as above, &fraction.

(2.) Abridging (!?) to IPH ,
we have thus, generally, by 235, XII.,

V. . . lPn = cis 2/m7r, ifp be any fraction,

a restriction which however we shall soon remove
;
and in particular,

VI. . . Principal value oflP= IPO = 1.

(3.) Thus, making successively p = \ , p = ,
we have

VII. ..!* = cis nTr, lo = +l, l*i=-l, 1*2 = +1, &c.;

. 2fi7r -l+tV3 --
VIII. .. !* = cis -, 1*0 = 1, lh=-r- , 1*2 =-5

-
, 1*3=1, &c.

o 2

(4.) Denoting in like manner the nth value of (- I)P by the abridged symbol

(- I)PW ,
we have, on the same plan (comp. 235, XIII.), for any fractional* value

Of*
IX. . . (- l)pn =cisp(2n+ l)?r; whence (comp. 232),

cs

and

these three values of ( 1)* recurring periodically.

(5.) The formula IV. gives, generally, by V., the transformation,

XII. . . (QTP)B
=

(gp) cis 2pnir = lP(gP) ;

so that the nth value of qP is equal to the principal value of that power of q, multi-

* As before, this restriction is only a temporary one.
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plied by the corresponding value of the same power ofpositive unity ; and it maybe

remarked, that if the base a be any positive scalar, the principal p tjl

power, (aP)o,

is simply, by our definitions, the arithmetical value of aP.

(6.) The nth value of the p th power of any negative scalar, a, is in like man

ner equal to the arithmeticalp th
power of the positive opposite, + a, multiplied by

the corresponding value of the same power of negative unity ; or in symbols,

XIII. . . (- a}pn
= (- I)PM (OP)O

= (P)o cis^p (2 + 1) TT.

(7.) The formula IV., with its consequences V. VI. IX. XII. XIII., may be

extended so as to include, as a limit, the case when the exponent p being still scalar,

becomes incommensurable, or surd
;
and although the number of values of the power

qp becomes thus unlimited (comp. 234, (4.)), yet we can still consider one of them

as the principal value of this (now) surd power : namely the value,

XIV. . . (gp) = TqP . cis (p am q},

which answers to the principal amplitude (235, (3.)) of the proposed quaternion q,

238. We may therefore consider the symbol,

in which the base, q, is any quaternion^ while the exponent, p,

is any scalar, as being now fully interpreted; but no interpre

tation has been as yet assigned to this other symbol of the

same kind,
^&amp;lt;z

}

in which both the base
&amp;lt;?,

and the exponent q, are supposed

to be (generally) quaternions, although for the purposes of this

Chapter complanar (225). To do this, in a way which shall

be completely consistent with the foregoing conventions and

conclusions, or rather which shall include and reproduce them,

for the case where the new quaternion exponent, q, degenerates

(131) into a scalar, will be one main object of the following

Section : which however will also contain a theory of loga

rithms ofquaternions, and of the connexion of both logarithms

and powers with the properties of a certain function, which

we shall call the ponential of a quaternion, and to consider

which we next proceed.

SECTION 4. On the Ponential and Logarithm of a Quater-

ternion; and on Powers of Quaternions ,
ivith Quaternions

for their Exponents.

239. If we consider the polynomial function,

I. . . P(q, ro)
= l+?, +

&amp;lt;?
2 + ..?,,

2 L
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in which q is any quaternion, and m is any positive whole number,

while it is supposed (for conciseness) that

__
qm 1.2.3..m

then it is not difficult to prove that however great, but finite and
:

given, the tensor Tq may be, a finite number m can be assigned, for

which the inequality

III. . . T(P(0, m+n)-P(q, m))&amp;lt;a,
if

&amp;gt;0,

shall be satisfied, however large the (positive whole) number n may
be, and however small the (positive) scalar a, provided that this last

is given. In other words, if we write (comp. 228),

IV. . . q = x + iy, P(q, m) =Xm + iYw
a finite value of the number m can always be assigned, such that the

following inequality,

V. . . (Xm+n - JTm
)&amp;gt;

+ (Ym+n
- Tmy &amp;lt; a\

shall hold good, however large the number n, and however small

(but given and &amp;gt; 0) the scalar a may be. It follows evidently that

each of the two scalar series, or succession of scalar functions,

VI. ..JT =1, ^=1+*,
VII. ..F = 0, F,=y,

converges ultimately to a fixed andfinite limit, whereof the one may be

called JTcc, or simply X, and the latter Foo, or F, and of which each

is a certain function of the two scalars, x and y. Writing then

vni. . . Q = x*&amp;gt;+iYcc=x+iY,

we must consider this quaternion Q (namely the limit to which the

following series of quaternions,

)=l + ? +
2

,..

converges ultimately) as being in like manner acertain/ttnofton, which

we shall call the ponentialfunction, or simply &amp;lt;Ae Ponential of q, in

consequence of its possessing certain exponential properties ; and

which may be denoted by any one of the three symbols,

P
(&amp;lt;?, oo), or P (q), or simply P?.

We have therefore the equation,

X. . . Ponential ofq=Q = Pq=l+q l + q.2 +.. + q^ &amp;gt;

with the signification II. of the term qm .
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(1.) In connexion with the convergence of this ponential series, or with the in

equality JIL, it may be remarked that if we write (comp. 235) r = T^, and rm = Tqm ,

we shall have, by 212, (2.),

it is sufficient then to prove that this last difference, or the sum of the n positive

terms, rm+i,
rmJrn,

can be made &amp;lt;. Now if we take a number
p&amp;gt;

2r -
1, we

shall have rp+i &amp;lt;^rp ,
rp+2 &amp;lt;

|&quot;p+i, &c., so that a finite number m
&amp;gt;p

&amp;gt; 2r - 1 can

be assigned, such that rm &amp;lt; a ;
and then,

the asserted inequality is therefore proved to exist.

(2.) In general, if an ascending series with positive coefficients, such as

XIII. . . AQ + Ai&amp;lt;7
+ A22

2
4- &c., where AO&amp;gt; o, AI&amp;gt;O, &c.,

be convergent when q is changed to a positive scalar, it will d fortiori converge,

when q is a quaternion.

240. Let and q
f be any two complanar quaternions, and let

q&quot;

be their sum, so that

then, as in algebra, with the signification 239, II. of qm9 and with

corresponding significations of q m and q
f
m, we have

TT *. If ^-Z JL
*

-.,/ \ nf s* \ j~*f .cv \ \ ^f ^

where 0o
= = 1. Hence, writing again r = Tq, rm = T0,M1 and in

like manner r = T0 ,
r&quot;

=
T0&quot;, &c., the two differences, _

III. . . P (r , m) . P (r, m) - P
(r&quot; , in\

**
.

i
^&quot;

A*.

and
IV. . .

P(r&quot;, 2m)-P(r , f).P(r,), ^
can be expanded as sums of positive terms of the form r

pl
.rp (one

sum containing m(m+ 1), and the other containing m(m+ 1) such
-./J-,

terms); but, by 239, III., the sum of these two positive differences

can be made less than any given small positive scalar a, since

V. . . P
(r&quot;, 2m) - P

(r&quot;, m)&amp;lt;a,
if a &amp;gt; 0,

provided that the number m is taken large enough ; each difference,

therefore, separately tends to 0, as m tends to GO
;
a tendency which

must exist a fortiori, when the tensors, r, r
, r&quot;, are replaced by the

quaternions, q, q , q&quot;.
The function Pq is therefore subject to the

Exponential Law,

VI. . . P(? + 0)
= P0 ?q= P0 . P# , if

|||0.
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(1.) If we write (comp. 237, (5.) ),

VII. . . PI = e, then VIII. . .Px = (*)o = arithmetical value oft*]

where t is the known base of the natural system of logarithms, and x is any scalar.

We shall henceforth write simply ix to denote this principal (or arithmetical) value of

the Xth power of f
,
and so shall have the simplified equation,

VIII . . . Px = t*.

(2.) Already we have thus a motive for writing, generally,

IX. . .P9 = ;

but this formula is here to be considered merely as a definition of the sense in which

we interpret this exponential symbol, 6?
; namely as what we have lately called the

ponential function, Pq, considered as the sum of the infinite but converging series,

239, X. It will however be soon seen to be included in a more general definition

(comp. 238) of the symbol qi ,

(3.) For any scalar x, we have by VIII. the transformation :

X. . . x = \Px = natural logarithm ofponential of x.

241. The exponential law (240) gives the following general de

composition of a ponential into factors,

in which we have just seen that the factor Px is a positive scalar.

The other factor, Piy, is easily proved to be a versor, and therefore

to be the versor ofPq, while Px is the tensor of the same ponen
tial; because we have in general,

II. . . P0.P(-2) = PO=1, and III. ..PKq = KPq,
since IV. . . (Kj)

= K (q
m
)
=
(say) Kq

m
(comp. 199, IX.) ;

and therefore, in particular (comp. 150, 158),

V...l:Piy=P(-iy) = KPiy, or VI. . .NP*y = l.

We may therefore write (comp. 240, IX., X.),

VII. . . TPq = PSq = Px=e*- VIII. . . x=Sq = lTPq-
IX. . . UP? = PVq = Pit/

= c V = cis y (comp. 235, IV.) ;

this last transformation being obtained from the two series,

y2
X. . . SPiy=l -^ + &c.

XL . . I- VPiy = y- |1 + &c. =
Z . o

Hence the ponential P^ may be thus transformed :

XII. . . Pq=P (x + iy)
= c r

cis y.
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(1) If we had not chosen to assume as known the series for cosine and sine, nor

to select (at first) any one unit of angle, such as that known one on which their va

lidity depends, we might then have proceeded as follows. Writing

- = -XIII. . . Piy=fy + i&amp;lt;py, /(-y) *=+.#, 0(-y) = -0y,

we should have, by the exponential law (240),

XIV. . .

xv. . .f(y-y )
= fy.

and then the functional equation, which results, namely,

XVI. . .

would show that

I y \
XVII. . . fy = cos I

- x a right angle ,

whatever unit of angle may be adopted, provided that we determine the constant c

by the condition,

XVIII. . . c = hast positive root of the equation fy(= SPiy~)
=

;

or nearly,

XVIII . . . c 1-5708, as the study of the series* would show.

(2.) A motive would thus arise for representing a right angle by this numerical

constant, c; or for so selecting the angular unit, as to have the equation (TT still de

noting two right angles),

XIX. . . TT = 2c = least positive root of t&amp;lt;ke equation fy = 1
;

giving nearly,
XIX . . . TT = 3-14159, as usual;

for thus we should reduce XVII. to the simpler form,

XX. . .fy = cosy.

(3.) As to the function 0y, since

XXI. . . (/y)
2 + ft&y)

2 = Pfy. P(- iy)
=

1,

it is evident that $y = sin y ;
and it is easy to prove that the upper sign is to be

taken. In fact, it can be shown (without supposing any previous knowledge of co-

sines or sines) that 0c is positive, land therefore that

XXII. . .
&amp;lt;pc

= + 1, or XXIII. . . Ptc= i
;

whence
XXIV. . . 0y = S.i- 1

Pty
and

XXV. ..Piy=

If then we replace c by -, we have

* In fact, the value of the constant c may be obtained to this degree of accuracy,

by simple interpolation between the two approximate values of the function /,

- /(l-5)=+ 0-070737, /(l-6) = -0-029200;

and of course there arc artifices, not necessary to be mentioned here, by which a far

more accurate value can be found.
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XXVI. . . 0y = cos I y -
]

= sin y ;
and XXVII. . . Pty = cis y, as in IX.

[ (4.) The series X. XI. for cosine and sine might thus be deduced, instead of being

assumed as known : and since we have the limiting value,

XXIX. . . lim.y-i siny = lim.y-i-
1

VPty = l,

it follows that the unit of angle, which thus gives Piy = cisy, is (as usual) the angle

subtended at the centre by the arc equal to radius ; or that the number TT (or 2c) is

to 1, as the circumference is to the diameter of a circle.

(5.) If any other angular unit had been, for any reason, chosen, then a right

angle would of course be represented by a different number, and not by 1 5708 nearly ;

but we should still have the transformation,

I y \
XXX. . . Piy = cis I

- x a right angle ,

though not the same series as before, for cos y and sin y.

242. The usual unit being retained, we see, by 241, XII., that

I. . . P. 2in7r = 1, and II. ..P(q + 2in7r)
= Pq,

if n be any whole number; it follows, then, that the inverse ponen-

tialfunction, P~ l

q, or what we may call the Imponential, of a given

quaternion q, has indefinitely many values, which may all be repre

sented by the formula,

III. . . P -V

and of which each satisfies the equation,

....
while the one which corresponds to n = may be called the Princi

pal Imponential. It will be found that when the exponent p is any

scalar, the definition already given (237, IV., XII.) for the nth
value

of the p
th
power of q enables us to establish the formula,

and we now propose to extend this last formula, by a new definition,

to the more general case (238), when the exponent is a quaternion q:
thus writing generally, for any two complanar quaternions, q and q,

the General Exponential Formula,

the principal value of q
qf
being still conceived to correspond to n = 0,

or to the principal amplitude of q (comp. 235, (3.) ).
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(1.) For example,

VII. . . ( &amp;lt;0o

= PfaPo
1

*)
= Pg, because P(f

!
e = le = 1

;

the ponential Pg, which we agreed, in 240, (2.), to denote simply by t$, is therefore

now seen to be in fact, by our general definition, the principal value of that power,

or exponential.

(2.) With the same notations,

VIII. ../ = cis y, cos y = ^ (VV + -*
&amp;lt;/),

sin y = (e
V - -V)

these two last only differing from the usual imaginary expressions for cosine and sine,

by the geometrical reality* of the versor i.

(3.) The cosine and sine ofa quaternion (in the given plane) may now be defined

by the equations :

IX. . . cos q = J (t
1? + e-

&amp;lt;?)
; X. . . sin q =

and we may write (comp. 241, IX.),

XI. . . cis q = *
&amp;lt;? = P^.

(4.) With this interpretation of cis 9, the exponential properties, 236, IX., X.,

continue to hold good ;
and we may write,

XII. . . (^ ) rt =P(^lT9).POVamn g)=(T?V cis(g amng);

a formula which evidently includes the corresponding one, 237, IV., for the nth value

of the pth power of g, when p is scalar.

(5.) The definitions III. and VI., combined with 235, XII., give generally,

XIII. . . ! = (19% = P . 2in7rq ;
XIV. . .

this last equation including the formula 237, XII.

(6.) The same definitions give,

XV. . . P -it = y ;
XVI. . .

(i&amp;gt;

= r!f
;

which last equation agrees with a known interpretation of the symbol,

considered as denoting in algebra a real quantity.

(7.) The formula VI. may even be extended to the case where the exponent q is

a quaternion, which is not in the given plane ofi, and therefore not complanar with

the base q ;
thus we may write,

but it would be foreign (225) to the plan of this Chapter to enter into any further de

tails, on the subject of the interpretation of the exponential symbol qi ,
for this case

of diplanar quaternions, though we see that there would be no difficulty in treating

it, after what has been shown respecting complanars.

*
Compare 232, (2.), and the Notes to pages 243, 248.
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243. As regards the general logarithm q ofa quaternion q (in the

given plane), we may regard it as any quaternion which satisfies the

equation,
I. . . &amp;lt;*

= Pq =
q;

and in this view it is simply the Imponential P 1

^, of which the nth

value is expressed by the formula 242, III. But the principal impo-

nejitial, which answers (as above) to n= 0, may be said to be the prin

cipal logarithm, or simply the Logarithm, of the quaternion q, and may
be denoted by the symbol,

i$;
so that we may write,

I. . . Iq
= Po

1

^ = ITq + i am q ;

or still more simply,

II. . . \q
= 1 (Tq . U0) = \Tq + lUq,

because
1TU&amp;lt;7

= 11 =0, and therefore,

III. . . 1U^ = i am q.

We have thus the two general equations,

IV. .. Sl = lT; V. . .

in which ITq is still the scalar and natural logarithm of the positive

scalar T^.

(1.) As examples (comp. 235, (2.) and (4.) ),

VI. ..! =
|t7T ;

VII. . . 1(- 1) = tV.

(2.) The general logarithm of q may be denoted by any one of the symbols,

log . q, or log 5, or (log q\,

this last denoting the nth value ; and then \ve shall have,

VIII. .. (log0)n= 10 + 2Mr.
(3.) The formula,

IX. . . log . q q= log q + log q, if q \\\ q,

holds good, in the sense that every value of the first member is one of the values of

the second (comp. 236).

(4.) Principal value ofqi = 2 &amp;lt;z

;
and one value of log .

q&amp;lt;* =q lq.

(5.) The quotient of two general logarithms,

may be said to be the general logarithm of the quaternion, q ,
to the complanar qua

ternion base, q ;
and we see that its expression involves* two arbitrary and indepen

dent integers, while its principal value may be defined to be \q : \q.

As the corresponding expression in algebra, according to Graves and Ohm.
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SECTION 5. On Finite* (or Polynomial) Equations of Alge
braic Form, involving Complanar Quaternions ; and on tlte

Existence ofn Real Quaternion Roots, ofany such Equa
tion ofthe nth

Degree.

244. We have seen (233) that an equation of the form,

I. . .0--Q-0,
where n is any given positive integer, and Q is anyt given,

real, and actual quaternion (144), has always n real, actual,

and unequal quaternion roots, q, complanar with Q ; namely,

the n distinct and real values of the symbol Ql

(233, VIII.),
determined on a plan lately laid down. This result is, how

ever, included in a much more general Theorem, respecting

Quaternion Equations of A Igebraic Form ; namely, that if

q\&amp;gt; q-x gn be any n given, real, and complanar quaternions,
then the equation,

II. . . q
n + q,q

n 1 + q 2q
n ~z + . . + 9,,

= 0,

has always n real quaternion roots, q, q l q
(n
\ and no more

in the given plane ; of which roots it is possible however that

some, or all may become equal, in consequence of certain

relations existing between the n given coefficients.

245. As another statement of the same Theorem, if we

write,
I. . . Fnq

=
q
n + q^q

n-
1 + . . + qn ,

the coefficients q l . . q n being as before, we may say that every

such polynomial function, Y nq, is equal to a product ofn real,

complanar, and linear (or binomial) factors, of the form q-q \

or that an equation of the form,

II. .. *q = (q-q )(q-q&quot;)*.(q-q),

can be proved in all cases to exist : although we may not be

* By saying finite equations, we merely intend to exclude here equations with

infinitely many terms, such as P^= 1, which has been seen (242) to have infinitely

many roots, represented by the expression q=2imr, where n may be any whole

number.

f It is true that we have supposed Q \ \ \

i (225) ;
but nothing hinders us, in any

other case, from substituting for i the versor UVQ, and then proceeding as before.

2 M
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able, with our present methods, to assign expressionsfor the

roots, q ,
. . q

(n
\ in terms of the coefficients q l9 . . . qn .

246. Or we may say that there is always a certain system

ofn real quaternions, q, &c., ||| z, which satisfies the system of

equations, of known algebraic form,

r q +g&quot;+
.. + #

(n) =-?i;
III . . J

qq&quot;
+

qq&quot;
+

qq&quot;
+ . . = + $ 2 ;

-- = -3 &c.

247. Or because the difference Ynq
- Fnq is divisible by

q
-
q, as in algebra, under the supposed conditions of compla-

narity (224), it is sufficient to say that at least one real quater

nion q always exists (whether we can assign it or not), which

satisfies the equation,

IV. ..F^ = 0,

with the foregoing form (245, 1.) of the polynomial function F.

248. Or finally, because the theorem is evidently true for

the case n= 1, while the case 244, 1., has been considered, and

the case qn - is satisfied by the supposition q
= 0, we may,

without essential loss of generality, reduce the enunciation to

the following:

Every equation of the form,*

in which q, q&quot;,

. . and Q are any n real and given quaternions
in the given plane, whereof at least Q and

&amp;lt;f may be supposed
actual (144), is satisfied by at least one real, actual, and corn-

planar quaternion, q.

* The corresponding form, of the algebraical equation of the nth
degree, was pro

posed by Mourey, in his very ingenious and original little work, entitled La vraie

theorie des Quantites Negatives, et des Quantites pretendues Imaginaires (Paris,

1828). Suggestions also, towards the geometrical proof of the theorem in the text

have been taken from the same work
;
in which, however, the curve here called (in

251) an oval is not perhaps defined with sufficient precision : the inequality, here

numbered as 251, XII., being not employed. It is to be observed that Mourey s

book contains no hint of the present calculus, being confined, like the Double Alge
bra of Prof. De Morgan (London, 1849), and like the earlier work of Mr. Warren

(Cambridge, 1828), to questions within the plane : whereas the very conception of the

Quaternion involves, as we have seen, a reference to Tridimensional SPACE.
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249- Supposing that the m- 1 last of the n- 1 given quater

nions q
f

. . q
(n

~
l] vanish, but that the n - m first of them are actual,

where m may be any whole number from 1 to n - 1, and introduc

ing a new real, known, complanar, and actual quaternion qQf which

satisfies the condition,

u**^*a?5%ri^
1

we may write thus the recent equation I.,

and may (by 187, 159, 235) decompose it into the two following:

IV. . ,T/g=l; and V. ..U/2=l, or VI. . . am/2 = 2pr;

in which p is some whole number (negatives and zero included).

250. To give a more geometrical form to the equation, let A, be

any given or assumed line
||| z, and let it be supposed that a, /3, . .

and p, a, or OA, OB, . . . and OP, os, are n - m + 2 other lines in the

same planes, and that
&amp;lt;(&amp;gt;/&amp;gt;

is a known scalar function of
/&amp;gt;,

such that

VII. ..a = X, p =
q&quot;\,.. P = q\ ff=qQ *&amp;gt;,

and

vm. . . fr_a.(Y.t;.#. .=(r..H . . ;

\&amp;lt;r)

a /3 \OSJ OA OB

the theorem to be proved may then be said to be, that whatever sys

tem of real points, o, A, B, . . and s, in a given plane, and whatever

2)ositive whole number m, may be assumed, or given, there is always at

least one real point P, in the same plane, which satisfies the two condi

tions:

IX...T&amp;gt;p=l; X. . . am fa = 2pir.

251. Whatever value
&amp;lt;|||i*

we may assume for the versor (or

unit-vector) U/&amp;gt;,
there always exists at least one value of the tensor

T/&amp;gt;,
which satisfies the condition IX. ; because the function T0p va

nishes with
T/&amp;gt;,

and becomes infinite when
T/&amp;gt;

=
oo, having varied

continuously (although perhaps with fluctuations) in the interval.

Attending then only to the least value (if there be more than one)

of T/a, which thus renders T^p equal to unity, we can conceive a real,

unambiguous, and scalar function ya, which shall have the two fol

lowing properties:

XI. .. lV(n/r t)=l; XII. . . T0(ai^)&amp;lt; 1 if

And in this way the equation, or system of equations,
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XIII. . . P = tYa, or XIV. . . Up =
, T/&amp;gt;

= y* f

may be conceived to determine a real, finite, and plane closed curve,

which we shall call generally an Oval, and which shall have the two

following properties: 1st, every right line, or ray, drawnfrom the ori

gin o, in any arbitrary direction within the plane, meets the curve

once, but once only; and Ilnd, no one of the n- m other given points

A, B, . . is on the oval, because $a = &amp;lt;j&amp;gt;,3

=
. .
= 0.

252. This being laid down, let us conceive a point P to perform

one circuit of the oval, moving in the positive direction relatively to the

given interior point o; so that, whatever the given direction of the

line os may be, the amplitude am(/:&amp;lt;r),
if supposed to vary conti

nuously,* will have increased by four right angles, or by 2?r, in the

course of this one positive circuit; and consequently, the amplitude
of the left-hand factor

(/&amp;gt;: &amp;lt;r)

TO

,
of

&amp;lt;f&amp;gt;p,

will have increased, at the same

time, by 2/7Z7r. Then, if the point A be also interior to the oval, so

that the line OA must be prolonged to meet that curve, the ray AP will

have likewise made one positive revolution, and the amplitude of the

factor (p
-

a) : a will have increased by 2?r. But if A be an exterior

point, so that the finite line OA intersects the curve in a point M, and

therefore never meets it again if prolonged, although the prolonga
tion of the opposite line AO must meet it once in some point N, then

while the point P performs first what we may call the positive half-

circuit from M to N, and afterwards the other positive half-circuit

from N to M again, the ray AP has only oscillated about its initial and

final direction, namely that of the line AO, without ever attaining the

opposite direction ; in this case, therefore, the amplitude am(AP: OA),
if still supposed to vary continuously, has only fluctuated in its value,

and has (upon the whole) undergone no change at all. And since

precisely similar remarks apply to the other given points, B, &c.,

it follows that the amplitude, am 0p, of the product (VIII.) of all

these factors, has (by 236) received a total increment = 2(ra-M)7r, if

t be the number (perhaps zero) of given internal points, A, B, . . ;

while the number m is (by 249) at least = 1. Thus, while p per
forms (as above) one positive circuit, the amplitude am typ has passed
at least m times, and therefore at least once, through a value of the

form 2p7r; and consequently the condition X. has been at least once

satisfied. But the other condition, IX., is satisfied throughout, by the

* That is, so as not to receive any sudden increment, or decrement, of one or

more whole circumferences (eornp. 235, (!))



CHAP. II.]
GEOMETRICAL ILLUSTRATIONS, QUADRATICS. 269

supposed construction of the oval : there is therefore at least one real

position P, upon that curve, for which Qp or fq = 1 ; so that, for this

position of that point, the equation 249, III., and therefore also the

equation 248, I., is satisfied. The theorem of Art. 248, and conse

quently also, by 247, the theorem of 244, with its transformations

245 and 246, is therefore in this manner proved.

253. This conclusion is so important, that it may be use

ful to illustrate the general reasoning, by applying it to the

case of a quadratic equation, of the form,

1 ; or II.
a \ a OS OA

Fig. 55.

We have now to prove (comp. 250, VIII.) that a (real) point P

exists, which renders the fourth

proportional (226) to the three

lines OA, OP, AP equal to a s -

given line os, or AB, if this lat

ter be drawn = os
;
or which

satisfies the following condition of similarity of triangles

(118),

III. . . A AOP OC PAB
;

which includes the equation of rectangles,

IV. . . OP-AP = OA.AB.

(Compare the annexed Figures, 55, and

55, bis.) Conceive, then, that a conti

nuous curve* is described as a locus (or
Fig. 55, bis.

as part of the locus) of P, by means of this equality IV., with

the additional condition

when necessary, that o

shall be within it; in such

a manner that when (as in s

Fig. 56) a right line from

o meets the general or total

locus in several points, M,
Fig. 56.

* This curve of the fourth degree is the -welt-known Cassinian; but when it

breaks up, as in Fig. 56, into two separate ovals, we here retain, as the oval of the

proof, only the one round o, rejecting for the present that round A.
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M , N , we reject all but the point M which is nearest to o, as not

belonging (comp. 25 1
, XII.) to the oval here considered. Then

while P moves upon that oval, in the positive direction rela

tively to o, from M to N, and from N to M again, so that the

ray OP performs one positive revolution, and the amplitude of

the factor OP : os increases continuously by 27r, the ray AP

performs in like manner one positive revolution, or (on the

whole) does not revolve at all, and the amplitude of the factor

AP : OA increases by 2?r or by 0, according as the point A is in

terior or exterior to the oval. In the one case, therefore, the

amplitude am &amp;lt;pp

of the product increases by 4?r (as in Fig. 55,

bis) ; and in the other case, it increases by 2?r (as in Fig. 56) ;

so that in each case, it passes at least once through a value of

the^rm 2p7r, whatever its initial value may have been. Hence,

for at least one real position, P, upon the oval, we have

V. . . am $p = 1 , and therefore VI. . . U$p = 1 ;

but VII.
..T&amp;gt;P =

1,

throughout, by the construction) or by the equation ofthe locus

IV. ; the geometrical condition $p=\ (II.) is therefore satisfied

by at least one real vector p ;
and consequently the quadratic

equation^]
= 1 (I.) is satisfied by at least one real quaternion

root, q
= p : A (250, VII.). But the recent form I. has the same

generality as the earlier form,

VIII. . . F 2q
=
(f + q^q + q z

= (comp. 245),

where q and qz are any two given, real, actual, and complanar

quaternions ;
thus there is always a real quaternion q

f

in the

given plane, which satisfies the equation,

VIII . . . i?zq
=
q

2 + q,q + #2
= (comp. 247) ;

subtracting, therefore, and dividing by q-q&amp;gt;
as in algebra

(comp. 224), we obtain the following depressed or linear equa
tion q,

IX. . . q + q +
&amp;lt;?i

= 0, or IX . . . q = q&quot;

= -
q
-

q\ (comp. 246).

The quadratic VIII. has therefore a second real quaternion root,

q, related in this manner to ihejirst ; and because the qua

dratic function F2q (comp. again 245) is thus decomposable
into two linear factors, or can be put under the form,
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X. . .*zq=(q-q )(q-q&quot;),

it cannot vanish for any third real quaternion, q ; so that

(comp. 244) the quadratic equation has no more than two such

real roots.

(1.) The cubic equation may therefore be put under theform (comp. 248),

X. . . F3 =

it has therefore one real root, say 9 , by the general proof (252 ),
which has been

above illustrated by the case of the quadratic equation; subtracting therefore (com

pare 247) the equation F3j =
0, and dividing by q q\ we can depress the cubic to

a quadratic, which will have two new real roots, q* and
q&quot; ;

and thus the cubic

function may be put under the form,

XI. . . FZq = (q
-

q&quot;) (q
-

g&quot;) (q
-

0&quot; ),

which cannot vanish for any fourth real value of q ;
the cubic equation X. has there

fore no more than three real quaternion roots (comp. 244) : and similarly for equa

tions of higher degrees.

(2.) The existence of two real roots q of the quadratic I., or of two real vectors,

p and p ,
which satisfy the equation II., might have been geometrically anticipated,

from the recently proved increase = 4?r of amplitude typ, in the course of one circuit,

for the case of Fig. 55, bis, in consequence of which there must be two real positions,

p and P
,
on the one oval of that Figure, of which each satisfies the condition of si

milarity III.
;
and for the case of Fig. 56, from the consideration that the second (or

lighter) oval, which in this case exists, although not employed above, is related to A

exactly as the first (or dark) oval of the Figure is related to o
;

so that, to the real

position P on the first, there must correspond another real position p
, upon the se

cond.

(3.) As regards the law of this correspondence, if the equation II. be put under

the form,

and if we now write

XIII. . . p = qa, we may write XIV. . . q\ = 1, qz = -&amp;lt;r:a,

for comparison with the form VIII.
;
and then the recent relation IX . (or 246) be

tween the two roots will take the form of the following relation between vectors,

XV. . . p + p = a
;

or XV. . . OP = p = a -
p = PA

;

so that the point p completes (as in the cited Figures) the parallelogram OPAP ,
and

the line PP is bisected by the middle point c of OA. Accordingly, with this position

of P
,
we have (comp. III.) the similarity, and (comp. II. and 226) the equation,

XVI. . . A AOP a P AB
;

XVII. . . $p = 0(a
-

p) = &amp;lt;j&amp;gt;p

= 1.

(4.) The other relation between the two roots of the quadratic VIII.
, namely

(comp. 246),

XVIII . . . q q&quot;

=
q-2 , gives XIX. ..% = -*;
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and accordingly, the line
&amp;lt;r,

or os, is a fourth proportional to the three lines OA, OP,

and AP, or a, p, and p .

(5.) The actual solution, by calculation, of the quadratic equationVIII. in corn-

planar quaternions, is performed exactly as in algebra ; the formula being,

XX. ..^-i^fVGhi2
-^),

in which, however, the square root is to be interpreted as a real quaternion, on prin

ciples already laid down.

(6.) Cubic and biquadratic equations, with quaternion coefficients of the kind

considered in 244, are in like manner resolved by the known formula of algebra;

but we have now (as has been proved) three real (quaternion) roots for the former,

and four such real roots for the latter.

254. The following is another mode of presenting the geometri

cal reasonings of the foregoing Article, without expressly intro

ducing the notation or conception of amplitude. The equation

0/o= 1 of 253 being written as follows,

I. . . &amp;lt;r
=

x/3 =-(/&amp;gt;- a), or II. . . T&amp;lt;r
=

Tx/&amp;gt;,
and III. . . U&amp;lt;r

=
Ux/&amp;gt;,

a

we may thus regard the vector a as a known function of the vector p,

or the point s as & function of the point P; in the sense that, while o

and A arefixed, p and s vary together : although it may (and does) hap

pen, that s may return to a former position without p having similarly

returned. Now the essential property of the oval (253) may be said

to be this: that it is the locus of the points P nearest to o, for which the

tensor
TX/&amp;gt;

has a given value, say b
; namely the given value of To-, or

of os, when the point s, like o and A, is given. If then we conceive

the point P to move, as before, along the oval, and the point s also to

move, according to the law expressed by the recent formula I., this

latter point must move (by II.) on the circumference of a given circle

(comp. again Fig. 56), with the given origin o for centre ; and the

theorem is, that in so moving, s will pass, at least once, through every

position on that circle, while P performs one circuit of the oval. And
this may be proved by observing that (by III.) the angular motion of
the radius os is equal to the sum ofthe angular motions of the two rays,

OP and AP; but this latter sum amounts to eight right angles for the

case of Fig. 55-, bis,, and to four right angles for the case of Fig. 56;

the radius os, and the point s, must therefore have revolved twice in

the first case, and once in the second case, which proves the theorem

in question.

(1.) In the first of these two cases, namely when A is an interior point, each of

the three angular velocities is positive throughout, and the mean angular velocity of
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the radius os is double of that of each of the two rays OP, AP. But in the second case,

when A is exterior, the mean angular velocity of the ray AP is zero; and we might

for a moment doubt, whether the sometimes negative velocity of that ray might not,

for parts of the circuit, exceed the always positive velocity of the ray OP, and so

cause the radius os to move backwards^ for a while. This cannot be, however
;

for

if we conceive p to describe, like p
,
a circuit of the other (or lighter) oval, in Fig. 56,

the point s (if still dependent on it by the law I.) would again traverse the whole of

the same circumference as before
;

if then it could ever fluctuate in its motion, it

would pass more than twice through some given series of real positions on that circle,

during the successive description of the two ovals by P
;
and thus, within certain

limiting values of the coefficients, the quadratic equation would have more than two

real roots : a result which has been proved to be impossible.

(2.) While s thus describes a circle round o, we may conceive the connectedpoint

B to describe an equal circle round A
;
and in the case at least of Fig. 56, it is easy

to prove geometrically, from the constant equality (253, IV.) of the rectangles OP-AP
and OA. AB, that these two circles (Avith T U and T U as diameters), and the two ovals

(with MN and M N as axes), have two common tangents, parallel to the line OA,

which connects what we may call the two given foci (or focal points), o and A : the

new or third circle, which is described on this focal interval OA as diameter, passing

through thefour points of contact on the ovals, as the Figure may serve to exhibit.

(3.) To prove the same things by quaternions, we shall find it convenient to

change the origin (18), for the sake of symmetry, to the central point c; and thus

to denote now CP by p, and CA by a, writing also CA = Ta = a, and representing still

the radius of each of the two equal circles by b. We shall then have, as the joint

equation of the system of the two ovals, the following :

IV. . . T(p-f a).T(p-a) = 2a;
or

V. . . T(9
2 -l)=2c, if q = ^ and c = -.

a a

But because \\el\avegeneraUy (by 199, 204, &c.) the transformations,

VI. . . S .

&amp;lt;p

= 2S9
2 - T52 = T22 +

2V&amp;lt;?

2 = 2NS? - Nq = N? - 2NV?,

the square of the equation V. may (by 210, (8.) ) be written under either of the two

following forms :

VII. . . (% - I)
2 + 4NV? = 4c2

;
VIII. . . (Ng + 1)2

_ 4NSg = 4c2 .

whereof the first shows that the maximum value of
TV&amp;lt;?

is c, at least if 2c &amp;lt; 1, as

happens for this case of Fig. 56; and that this maximum corresponds to the value

Tq = 1, or Tp = a : results which, when interpreted, reproduce those of the preceding
sub-article.

(4.) When 2c &amp;gt; 1, it is permitted to suppose Sg = 0, NVq = Nq = 2c - 1
;
and

then we have only one continuous oval, as in the case of Fig. 55, bis; but if c&amp;lt; 1

though &amp;gt; f,
there exists a certain undulation in the form of the curve (not represented

in that Figure), TVg being a minimum for Sq = 0, or for p 4- a
,
but becoming (as

before) a maximum when Tq = 1, and vanishing when Sq
2 = 2c -f 1, namely at the

two summits M, N, where the oval meets the axis.

(5.) In the intermediate ca^e, when 2c = l, the Cassinian curve IV. becomes (as
is known) a lemniscata; of which the quaternion equation may, by V., be written

(comp. 200, (8.) ) under any one of the following forms :

2 N
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IX. . .
T(&amp;lt;?

2 -1)=1; or X. . . N^=2S.?2
;

or XI. . .
T&amp;lt;?

2 = 2SU . g
2

;

or finally,

XII. . . Tp
2 = 2Ta2 cos 2 L - ;

a

which last, when written as

XII . . . CP2 = 2CA2 COS 2ACP,

agrees evidently with known results.

(6.) This corresponds to the case when

XIII. . . &amp;lt;r

=
,

and XIV. . . p = /

= + -, in 253, XII.,

that quadratic equation having thus its roots equal; and in general, for all degrees,

cases of equal roots answer to some interesting peculiarities ofform of the ovals, on

which we cannot here delay.

(7.) It may, however, be remarked, in passing, that if we remove the restriction

that the vector p, or CP, shall be in a given plane (225), drawn through the line

which connects the two foci, o and A, the recent equation V. will then represent the

surface (or surfaces} generated by the revolution of the oval (or ovals), orlemniscata,

about that line OA as an axis.

255. If we look back, for a moment, on the formula of similarity,

253, III., we shall see that it involves not merely inequality of rect

angles, 253, IV., but also an equality of angles, AOP and PAB; so that

the angle OAB represents (in the Figures 55) a given difference of the

base angles AOP, PAO of the triangle OAP: but to construct a triangle,

by means of such a given difference, combined with a given base, and

a given rectangle of sides, is a known problem of elementary geome

try. To solve it briefly, as an exercise, by quaternions, let the given

base be the line AA , with o for its middle point, as in the annexed

Figure 57 ; let BAA represent the given diffe

rence of base angles, PAA - AA P
;
and let OA . IB

be equal to the given rectangle of sides, AP AT.

We shall then have the similarity and equa- CJ

tion,

I. . . A OA P a PAB
; II. .. - ? = f?

p-a
p

whence it follows by the simplest calculations,

that

or that p is a mean proportional (227) between a and j3. Draw,
therefore, a line OP, which shall be in length a geometric mean be

tween the two given lines, OA, OB, and shall also bisect their angle
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AOB
;

its extremity will be the required vertex, p, of the sought tri

angle AA P: a result of the quaternion analysis, which geometrical syn
thesis* easily confirms.

(1.) The equation III. is however satisfied also (comp. 227) by the opposite vec

tor, OP = PO, or p = p ;
and because (3

=
(p : a) . p, we have

TV _P_/_p TV ,
P B _ OP _ OB _ or

A v t
&quot; &quot;&quot;&quot; &quot; ~-

,j
or j. v m

f
L~&quot; -~

p +aapa PAOAOP OA

so that the four following triangles are similar (the two first of them indeed being

equal) :

V. . . A A OP a AOP a FOB aAP B
;

as geometry again would confirm.

(2.) The angles AP B, EPA, are therefore supplementary, their sum being equal to

the sum of the augles in the triangle OAP
;
whence it follows that the fair points A,

P, B, P are concircular rf or in other words, the quadrilateral APBP is inscriptible

in a circle, which (we may add) passes through the centre c of the circle OAB (see

again Fig. 57), because the angle AOB is double of the angle AP B, by what has been

already proved.

(3.) Quadratic equations in quaternions may also be employed in the solution

of many other geometrical problems ;
for example, to decompose a given vector into

two others, which shall have a given geometrical mean, &c.

SECTION 6__ On the n2 - n Imaginary (or Symbolical) Hoots

of a Quaternion Equation of the nth

Degree, ivith Coeffi

cients of the kind considered in theforegoing Section.

256. The polynomial function Fttq (245), like the quaternions

q, q lt . . qn on which it depends, may always be reduced to the form of

a couple (228) ;
and thus we may establish the transformation (comp.

239),

Xn and Tn ,
or Gn and Hm being two known, real, finite, and scalar

functions of the two sought scalars, x and y ;
which functions, rela-

* In fact, the two triangles I. are similar, as required, because their angles at o

and P are equal, and the sides about them are proportional.

f Geometrically, the construction gives at once the similarity,

A AOP &amp;lt;x POB, whence L BPA = OPA + PAO = POA
;

and if we complete the parallelogram APA P
,
the new similarity,

A OA P &amp;lt;* OP B, gives L AP B = OA P + A PO = AOP
;

thus the opposite angles BPA, AP B are supplementary, and the quadrilateral Arm&amp;gt; is

inscriptible. It will be shown, in a shortly subsequent Section, that these .four

points, A, P, B, P
,
form a harmonic group upon their common circle.
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tively to them, are each of the nth
dimension, but which involve also,

though only in the first dimension, the 2n given and real scalars,

#!, yM . . . XM yn . And since the one quaternion (or couple) equation,

Fnq = Q, is equivalent (by 228, IV.) to the system of the two scalar

equations,

II. . . JTn = 0, F
7J
= 0, or III. . . . 6?n (a?,y&amp;gt;

= 0, Hn (x,y)=Q,

we see (by what has been stated in 244, and proved in 252) that

such a system, of two equations of the nth
dimension, can always be

satisfied by n systems (or pairs) of real scalars, and by not more than

n, such as

IV. ..* ,*/ ; s&quot;,y&quot;;.. ar,yW;

although it may happen that two or more of these systems shall coin

cide with (or become equal to) each other.

(1.) If x and y be treated as co-ordinates (comp. 228, (3.) ), the two equations

II. or III. represent a system of two curves, in the given plane ;
and then the theo

rem is, that these two curves intersect each other (generally*} in n real points, and

in no more : although two or more of these n points may happen to coincide with

each other.

(2.) Let h denote, as a temporary abridgment, the old or ordinary imaginary,

V 1, of algebra, considered as an uninterpreted symbol, and as not equal to any

real versor, such as i (comp. 181, and 214, (3.) ), but as following the rules of sca

lars, especially as regards the commutative property of multiplication (126) ;
so that

V. ..A2 + 1=0, and VI. . . hi = ih, but VII. . . h not = + .

(3.) Let q denote still a real quaternion, or real couple, x + iy ;
and with the

meaning just now proposed of h, let [9] denote the connected but imaginary alge

braic quantify, or bi-scalar (214, (7.) ), x + hy ;
so that

VIII. q=x + iy, but IX. . . [0]
= * + fy;

and let any biquaternion (214), (8.), or (as we may here call it) BI-COUPLK, of the

form [7 ] + t[g&quot;],
be said to be complanar with i; with the old notation (123) of

complanarity.

(4.) Then, for the polynomial equation in real and complanar quaternions,

Fnq = (244, 245), we may be led to substitute the following connected algebraical

equation, of the same degree, n, and involving real scalars similarly :

X. . . [F,l9]
=

[?&amp;gt;
+

[&amp;gt;,] [

i + . . + [7n] = ;

* Cases of equal roots may cause points of intersection, which are generally ima

ginary, to become real, but coincident with each other, and with former real roots:

for instance the hyperbola, x 2 - y
2 =

a, is intersected in two real and distinct points,

by the pair of right lines xy = 0, if the scalar a &amp;gt; or &amp;lt; ;
but for the case a = 0, the

two pairs of lines, #2
y- = and xy = 0, may be considered to have^btfr coincident

intersections at the origin.
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which, after the reductions depending on the substitution V. of - 1 for h*, receives

the form,
XI... [Fnq]=Xn + hrn =0;

where Xn and Yn are the same real and scalar functions as in I.

(5.) But we have seen in II., that these two real functions can be made to va

nish together, by selecting any one ofn real pairs IV. of scalar values, x and y ;
the

General Algebraical Equation X., ofthe n
th

Degree, has therefore n Real or Imagi

nary Roots,* of the Form x + y V 1
;
and it has no more than n such roots.

(6.) Elimination of y, between the two equations II. or III., conducts generally

to an algebraic equation in x, of the degree n2
;
which equation has therefore n2

alge

braic roots (5.), real or imaginary ; namely, by what has been lately proved, n real

and scalar roots, x
,

. . x(n\ with real and scalar values y ,
. .yW (comp. IV.) of y

to correspond; andn(rc 1) other roots, with the same number of corresponding-

values of y, which may be thus denoted,

XII. . .
|&amp;gt;(+i),

. .
[&amp;gt;(

2

)] ;
XIII. . . ry+i)], . .

[&amp;gt;^] ;

and which are either themselves imaginary (or bi-scalar, 214, (7.)), or at least cor

respond, by the supposed elimination, to imaginary or bi-scalar values ofy; since if

#(+!) and y(
/l+1

),
for example, could both be real, the quaternion equation Fnq=0

would then have an (n + l)st real root, of the form, g(
41

) = %(n+V + fy(&quot;+

1

), contrary

to what has been proved (252).

257- On the whole, then, it results that the equation Fnq
= Q in

complanar quaternions, of the nth

degree, with real coefficients,

while it admits of only n real quaternion roots,

is symbolically satisfied also (comp. 214, (3.)) by n(n- 1) imaginary

quaternion roots, or by n2 -n bi-quaternions (214, (8.) ), or bi-couples

(256, (3.) ),
which may be thus denoted,

and of which the first, for example, has the form,

III. . .
;ntl) - &amp;lt;

N+1) + t** 1 = a;&quot;*&quot;
&amp;lt;

where #/
n+1)

, tf//
(n+1)

, #/
M+I)

,
and ?///

(n+1)
are/owr real scalars, but h is

the imaginary of algebra (256, (2.) ).

(1.) There must, for instance, be n(ra 1) imaginary nth roots of unity, in the

given plane of i (comp. 256, (3.)), besides the n real roots already determined (233,

* This celebrated Theorem of Algebra has long been known, and has been proved

in other ways; but it seemed necessary, or at least useful, for the purpose of the pre

sent work, to prove it anew, in connexion with Quaternions : or rather to establish

the theorem (244, 252), to which in the present Calculus it corresponds. Compare
the Note to page 266.
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237); and accordingly in the case n = 2, we have the four following square-roots

of I
1 1 1 t, two real and two imaginary :

IV. ..+1, -1; +hi, -hi;

for, by 256, (2.), we have

V. . . ( At)
8 = ft

8
*
8 =(-!)(- = + 1.

And the two imaginary roots of the quadratic equation F%q 0, which generally

exist, at least as symbols (214, (3.) ), may be obtained by multiplying the square-

root in the formula 253, XX. by hi
;
so that in the particular case, when that radi

cal vanishes, thefour roots of the equation become real and equal : zero having thus

only itself for a square-root.

(2.) Again, if we write (comp. 237, (3.)),

-l+tV3 -l-tV3
VI. ..9=1*1=---

, g2 = 1 |2=-_-
^

so that 1, q, 9
2 are the three real cube-roots ofpositive unity, in the given plane ;

and if we write also,

.

so that 9 and 2 are (as usual) the two ordinary (or algebraical) imaginary cube-

roots of unity ; then the nine cube-roots of 1
(| 1 1 z)

are the following :

VIII. . . 1
; ?, ?2 ; 0, 02

; 00, &q ; 9*q,
2
?2 ;

whereof the first is a real scalar ; the two next are real couples, or quaternions \ \\i ;

the two following are imaginary scalars, or biscalars ; and the four that remain are

imaginary couples, or bi-couples, or biquaternions.

(3.) The sixteen fourth roots of unity (||| z) are:

IX. . .+1; +t; 7i; + 7
; (1 7t) (1 + i) ;

the three ambiguous signs in the last expression being all independent of each other.

(4.) Imaginary roots, of this sort, are sometimes useful, or rather necessary, in

calculations respecting ic?ea intersections,* and iWea^ contacts, in geometry : although

in what remains of the present Volume, we shall have little or no occasion to employ

them.

(5.) We may, however, here observe, that when the restriction (225) on the

plane of the quaternion q is removed, the General Quaternion Equation of the nth

Degree admits, by the foregoing principles, no fewer than n* Hoots, real or imagi

nary : because, when that general equation is reduced, by 221, to the Standard

Quadrinomial Form,

X...F,tQ = Wn + iXn +jYn + kZn = 0,

it breaks up (comp. 221, VI.) into a System of Four Scalar Equations, each (gene

rally) of the n th
dimension, in w, x, y, z

; namely,

XL . . Wn = 0, Xn = 0, yn = 0, Z, = ;

and if x, y, z be eliminated between these four, the result is (generally) a scalar (or

algebraical) equation of the degree n4
, relatively to the remaining constituent, w ;

*
Comp. Art. 214, and the Notes there referred to.
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which therefore has n1
(algebraical) values, real or imaginary : and similarly for the

three other constituents, #, y, z, of the sought quaternion q.

(6.) It may even happen, when no plane is given, that the number of roots (or

solutions) of a finite* equation in quaternions shall become infinite; as has been

seen to be the case for the equation q
2 = 1 (149, 154), even when we confine our

selves to what we have considered as real roots. If imaginary roots be admitted,

we may write, still more generally, besides the two biscalar values, + h, the expres

sion,

XII. . . (-l)i = + A
,

St&amp;gt;=Su =Sw/=0, No-N =l;
v and v being thus any two real and right quaternions, in rectangular planes, pro

vided that the norm of the first exceeds that of the secondby unity.

(7.) And in like manner, besides the two real and scalar values, + 1, we have

this general symbolical expression for a square root of positive unity, with merely
the difference of the norms reversed :

XIII. . . V=

SECTION 7. On the Reciprocal of a Vector, and on Harmo
nic Means of Vectors; with Remarks on the Anharmonic

Quaternion of a Group ofFour Points, and on Conditions

of Concircularity.

258. When two vectors, a and a , are so related that

I. . . a = - Ua : Ta, and therefore II. . . a = - Ua : Ta,

or that

III. . . T.Ta =l, and IV. . . Ua + Ua = 0,

we shall say that each of these two vectors is the Reciprocal}
of the other ; and shall (at least for the present) denote this

relation between them, by writing

V. ..a = Ka, or VI. ..a = Ba ;

so that for every vector a, and every right quotient v,

VII. . . Ra = -Ua:T; VIII. . .R*a = RRa =
;

and

IX. . . RIv = IEv (comp. 161, (3.), and 204, XXXV.).
259. One of the most important properties of such reci

procals is contained in the following theorem :

*
Compare the Note to page 265.

f Accordingly, under these conditions, we shall afterwards denote this recipro
cal of a vector a by the symbol of 1

; but we postpone the use of this notation, until

we shall be prepared to connect it with a general theory of products and poivers Of
vectors. Compare 234, V., and the Note to page 121. And as regards the tempo
rary use of the characteristic R, compare the second Note to page 252.
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If any two vectors OA, OB, have OA , OB for their recipro

cals, then (comp. Fig. 58) the right line A B

is parallel to the tangent OD, at the origin o,

to the circle OAB ; and the two triangles,

OAB, OB A
,
are inversely similar (118). Or

in symbols,

I. . . if OA =R.OA, and OB = R.OB,

then
A OAB oc OB A .

Fig. 58.

(1.) Of course, under the same conditions, the tangent at o to the circle OA B is

parallel to the line AB.

(2.) The angles BAG and OB A or BOD being equal, the fourth proportional (226)
to AB, AO, and OB, or to BA, OA, and OB, has the direction of OD, or the direction op

posite to that of A B
;
and its length is easily proved to be the reciprocal (or inverse)

of the length of the same line A B
,
because the similar triangles give,

II. . . (OA : BA) . OB = (OB ; A B ). OB = 1 : A B
,

it being remembered that

III. . . OA . OA = OB . OB = 1
;

we may therefore write,

IV. . . (OA:BA).OB = R.A B
,

or V. . . -^-/3
= R(R0- R),

whatever two vectors a and ft may be.

(3.) Changing a and (3 to their reciprocals, the last formula becomes,

VI. . . R^- a)
=
IiaK/3

- R^; or VII. ..(OA :B A ).OB = R.AB.

(4.) The inverse similarity I. gives also, generally, the relation,

VIII. . .K= .

a R/3

(5.) Since, then, by 195, II., or 207, (2.),

IX...K^-fl =K^-a
,

wehave X. . . ?i^ = _5fL_a~ a R/3 R(/3a)
the lower signs agreeing with VI.

(6.) In general, the reciprocals of opposite vectors are themselves opposite ; or

in symbols,
XL . . R(-a) = -Ra.

(7.) More generally,
XII. .. Rxa = x-*Ra,

if x be any scalar.

(8.) Taking lower signs in X., changing a to y, dividing, and taking conjugates,
we find for any three vectors a, |3, y (complanar or diplanar) the formula :

XIII K Ry ~ R/3 =Kf Ry BQ8-a)\ a y-0 OA BC

Ra-R/3 VR(/3-y) Ra J /3- -
y
~
AB* co

if a = OA, j3
= OB, and y = oc, as usual.



CHAP. II.] ANHARMONIC AND EVOLUTIONARY QUATERNIONS. 281

(9.) If then we extend, to any four points ofspace, the notation (25),

XIV... (ABCD) =^.,BC DA

interpreting each of these two factor-quotients as a quaternion, and defining that

their product (in this order) is the anharmonic quaternion function, or simply the

Anharmonic, of the Group offour points A, B, c, D, or of the (plane or gauche) Qua-
drilateral ABCD, we shall have the following general and useful formula oftransfor
mation :

where OA
,
OB

,
OB are supposed to be reciprocals of OA, OB, oc.

(10.) With this notation XIV., we have generally, and not merely for collinear

groups (35), the relations:

XVI. . . (ABCD) + (ACBD) = 1
;

XVII. . . (ABCD). (ADCB) = 1.

(11.) Let o, A, B, c, D be any jive points, and OA
,

. . OD the reciprocals of OA, . .

OD
; we shall then have, by XV.,

XVIII. . .^ = K (OCBA), = K(OADC) ;

B c D A
and therefore,

XIX. . . K (A B C D )
= (OADC) (OCBA) = -

(OADCBA),

if we agree to write generally, for any six points, the formula,*

. AB CD EF
XX. . . (ABCDEF) = . . .

BC DE FA

(12.) If then the five points o . . D be complanar (225), we have, by 226, and

by XIV.,

XXI. . . K (A B C D )
= (ABCD), or XXI . . . (A B C D )

= K (ABCD) ;

the anharmonic quaternion (ABCD) being thus changed to its conjugate, when the

four rays OA, , . OD are changed to their reciprocals.

260. Another very important consequence from the defi

nition (258) of reciprocals of vectors, or from the recent theo

rem (259), may be expressed as follows:

Ifany three coinitial vectors, OA, OB, oc, be chords ofone

common circle, then (see again Fig. 58) their three coinitial re-

* There is a convenience in calling, generally, this product of three quotients,

(ABCDEF), the evolutionary quaternion, or simply the Evolutionary, of the Group

of Six Points, A . . F, or (if they be not collinear) of the plane or gauche Hexagon
ABCDEF : because the equation,

(ABCA B C )
= -

1,

expresses either 1st, that the three pairs ofpoints, AA , BB ,
cc

,
form a collinear in

volution (26) of a well-known kind
;
or Ilnd, that those thveepairs, or the three cor

responding diagonals of the hexagon, compose a complanar or a homospheric Involu

tion, of a new kind suggested by quaternions (comp. 261, (11.)).

2 o
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ciprocals, OA
, OB , oc , are termino-collinear (24) : or, in other

words, ifthefourpoints o, A, B, c be concircular, then the three

points A , B ,
c are situated on one right line.

And conversely, if three coinitial vectors, OA , OB , oc , thus

terminate on one right line, then their three coinitial recipro

cals^ OA, OB, oc, are chords of one circle; the tangent to which

circle, at the origin, is parallel to the right line ; while the

anharmonic function (259, (9.) ), of the inscribed quadrilateral

OABC, reduces itself to a scalar quotient ofsegments ofthat line

(which therefore is its own conjugate, by 139) : namely,

I. . . (OABC) = B C : B A =
(OO A B C )

= (O.OABC),

if the symbol oo be used here to denote the point at infinity on

the right line A B C
;
and if, in thus employing the notation

(35) for the anharmonic ofa plane pencil, we consider the null

chord, oo, as having the direction* of the tangent, OD.

(1.) If p = OP be the variable vector of a point P upon the circle OAB, the qua
ternion equation of that circle may be thus written :

II. . . Ep = R/3 + x(Ra -
R/3), where III. . . x = (OABP) ;

the coefficient x being thus a variable scalar (comp. 99, I.), which depends on the

variable position of the point P on the circumference.

(2.) Or we may write,

...
,t+u

as another form of the equation of the same circle OAB
;
with which may usefully be

contrasted the earlier form (comp. 25), of the equation of the line AB,

v jta+ufi
&quot; P ~ t+u

(3.) Or, dividing the second member of IV. by the first, and taking conjugates,

we have for the circle,

vi. . .re* :=* + ;
while vii. . . -+ : = * + ,

a p p p
for the right line.

(4.) Or we may write, by II.,

, Ro-R/3
. V =

; or

this latter symbol, by 204, (18.), denoting any scalar.

*
Compare the remarks in the second Note to page 139, respecting the possible

determinateness of signification of the symbol UO, when the zero denotes a line,

which vanishes according to a law.
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(5.) Or still more briefly,

IX. . . V(OABP) = ;
or IX . . . (OABP) = V-i 0.

(6.) If the four points o, A, B, c be still concircular, and if p be any fifth point

in their plane, while POi, . . PCi are the reciprocals of PO, . . PO, then by 259, XXI.,
we have the relation,

X. , , (OiAiBiCi) = K(OABC) = (OABC) = V&quot;
;

the four new points Oi . . Cj. are therefore generally concircular.

(7.) If, however, the point P be again placed on the circle OABC, those four new

points are (by the present Article) collinear; being the intersections of the pencil

p . OABG with a parallel to the tangent at P. In this case, therefore, we have the

equation,
XI. . . (P. OABC) = (OIAIBICI) = (OABC) ;

so that the constant anharmonic of the pencil (35) is thus eeen to be equal to what

we have defined (259, (9.) ) to be the anharmonic of the group.

(8.) And because the anharmonic of a circular group is a scalar, it is equal (by

187, (8.) ) to its own tensor, either positively or negatively taken : we may therefore

write, for any inscribed quadrilateral OABC, the formula,

XII. . . (OABC) = + T (OABC) = + (OA . EC) : (AB .
co)&amp;gt;

= + a quotient of rectangles of opposite sides; the upper or the lower sign being

taken, according as the point B falls, or does not fall, between the points A and c :

that is, according as the quadrilateral OABC is an uncrossed or a crossed one.

{ (9.) Hence it is easy to infer thatybr any circular group o, A, B, c, we have the

equation,

XIII... U^+C ?;
AB CB

the upper sign being taken when the succession OABO is a direct one, that is, when

the quadrilateral OABC is uncrossed; and the lower sign, in the contrary case,

namely, when the succession is (what may be called) indirect, or when the quadri

lateral is crossed: Avhile conversely this equation XIII. is sufficient to prove, when

ever it occurs, that the anharmonic (OABC) is a negative or a positive scalar, and

therefore by (5.) that the group is circular (if not linear), as above.

(10.) If A, B, c, D, E be any five homospheric points (or points upon the surface

of OTIC sphere), and if o be any sixth point ofspace, while OA
,

. . OE are the reciprocals

of OA, . . OE, then tliefive new points A . . E are generally homospheric (with each

other) ;
but if o happens to be on the sphere ABCDE, then A . . E are complanar,

their common plane being parallel to the tangent plane to the given sphere at O :

with resulting anharmonic relations, on which we cannot here delay.

26 1 . An interesting case of the foregoing theory is that

when the generally scalar anharmonic of a circular group be

comes equal to negative unity : in which case (comp. 26), the

group is said to be harmonic. A few remarks upon such cir

cular and harmonic groups may here be briefly made : the stu-
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dent being left to fill up hints for himself, as what must be

now to him an easy exercise of calculation.

(1.) For such a group (comp. again Fig. 58), we have thus the equation,

I. . . (OABC) = - 1
;

and therefore II. . . A B = B C
;

or III. . . R/3=|(Ra + Ry);

and under this condition, we shall say (comp. 216, (5.) that the Vector (3 is the Har

monic Mean between the two vectors, a and y.

(2.) Dividing, and taking conjugates (comp. 260, (3.), and 216, (5.) ), we thus

obtain the equation,

VI. . .(3
= -y = 7

-a, if VII. .. =

thus denoting here the vector OE (Fig. 58) of the middle point of the chord AC,

We may then say that the harmonic mean between any two lines is (as in algebra)

thefourth proportional to their semisum, and to themselves.

(3.) Geometrically, we have thus the similar triangles,

VIII. . . A AOB OC EOC
;

VIII . . . A AOE a BOC ;

whence, either because the angles OBA and OCA, or because the angles OAC and OBC

are equal, we may infer (comp. 260, (5.) ) that, when the equation I. is satisfied,

the four points o, A, B, c, if not collinear, are concircular.

(4.) We have also the similarities,

IX. . . A OEC oc CEB, and IX . . . A OEA ex AEB
;

or the equations,

X...ti = I^, and r;. ; fiZ?*-Zf,
y e - t a- t

in fact we have, by VI. and VII.,

Ci 6

(5.) Hence the line EC, in Fig. 58, is the mean proportional (227) between the

lines EO and EB
;
or in words, the semisum (OE), the semidifference (EC), and the

excess (BE) of the semisum oner the harmonic mean (OB), form (as in algebra) a

continued proportion (227).

(6.) Conversely, if any three coinitial vectors, EO, EC, EB, form thus a continued

proportion, and if we take EA = CE, then the four points OABC will compose a circu

lar and harmonic group; for example, the points APBP of Fig. 57 are arranged so

as to form such a group.*

(7.) It is easy to prove that, for the inscribed quadrilateral OABC of Fig. 58,

the rectangles under opposite sides are each equal to half of the rectangle under the

*
Compare (he Note to 255, (2.). In that sub-article, the text should have run

thus : of which (we may add) the centre c is on the circle OAB, &c. In Fig. 58, the

centre of the circle OABC is concircular with the three points o, E, B.
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diagonals; which geometrical relation answers to either of the two anharmonic

equations (comp. 259, (10.)) :

XIII. . . (OBAC) = + 2
;

XIII . . . (OCAB) = + .

(8.) Hence, or in other ways, it may be inferred that these diagonals, OB, AC, are

conjugate chords of the circle to which they belong : in the sense that each passes

through the pole of the other, and that thus the line DB is the second tangent from

the point D, in which the chord AC prolonged intersects the tangent at o.

(9.) Under the same conditions, it is easy to prove, either by quaternions or by

geometry, that we have the harmonic equations :

XIV. . . (ABCO) = (BCOA) = (COAB) = 1
;

so that AC is the harmonic mean between AB and AO
;
BO is such a mean between

EC and BA
;
and CA between co and CB.

(10.) In any such group, any two opposite points (or opposite corners of the qua

drilateral), as for example o and B, may be said to be harmonically conjugate to each

other, with respect to the two other points, A and c
;
and we see that when these two

points A and c are given, then to every third point o (whether in a given plane, or

in space) there always corresponds a fourth point B, which is in this sense conju

gate to that third point : this fourth point being always complanar with the three

points A, c, o, and being even concircular with them, unless they happen to be colli-

near with each other
;
in which extreme (or limiting) case, the fourth point B is still

determined, but is now collinear with the others (as in 26, &c.).

(11.) When, after thus selecting two* points, A and c, or treating them as given

or fixed, we determine (10.) the harmonic conjugates B, B
, B&quot;,

with respect to them,

of any three assumed points, o, o , o&quot;,
then the three pairs of points, O, B

;
o

,
B

;

o&quot;, B&quot;, may be said to form an Involution,^ either on the right line AC, (in which

case it will only be one of an already well-known kind), or in a plane through that

line, or even generally in space : and the two points A, c may in all these cases be

said to be the two Double Points (or Foci) of this Involution. But the field thus

opened, for geometrical investigation by Quaternions, is far too extensive to be more

than mentioned here.

(12.) We shall therefore only at present add, that the conception of the harmonic

mean between two vectors may easily be extended to any number of such, and need

not be limited to the plane : since we may define that ij is the harmonic mean of the

n arbitrary vectors 01, . . a,,, when it satisfies the equation,

;
or XVI. . . nllr, = SRa.

(13.) Finally, as regards the notation Ra, and the definition (258) of the recipro

cal of a vector, it may be observed that if we had chosen to define reciprocal vectors as

having similar (instead of opposite) directions, we should indeed have had the posi

tive sign in the equation 258, VII.
;
but should have been obliged to write, instead of

258, IX., the much less simple formula,

RIi&amp;gt; =- IRt&amp;gt;.

* There is a sense in which the geometrical process here spoken of can be applied,

even when the two fixed points, or foci, are imaginary. Compare the Geometric

Supcrieure of M. Chasles, page 136.

f Compare the Note to 259, (11.).
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CHAPTEE III.

ON DIPLANAR QUATERNIONS, OR QUOTIENTS OF VECTORS IN

SPACE I AND ESPECIALLY ON THE ASSOCIATIVE PRINCI

PLE OF MULTIPLICATION OF SUCH QUATERNIONS.

SECTION 1. On some Enunciations of the Associative Pro

perty, or Principle, ofMultiplication of Diplanar Quater-

262. In the preceding Chapter we have confined ourselves

almost entirely, as had been proposed (224, 225), to the con

sideration of quaternions in a given plane (that of /) ; alluding

only, in some instances, to possible extensions* of results so

obtained. But we must now return to consider, as in the

First Chapter of this Second Book, the subject of General

Quotients of Vectors : and especially their Associative Multi

plication (223), which has hitherto been only proved in con

nexion with the Distributive Principle (212), and with the

Laws ofthe Symbols i,j, k (183). And first we shall give a

few geometrical enunciations of that associative principle, which

shall be independent of the distributive one, and in which it

will be sufficient to consider (comp. 191) the multiplication of

versors; because the multiplication of tensors is evidently an

associative operation, as corresponding simply to arithmetical

multiplication, or to the composition of ratios in geometry.f

We shall therefore suppose, throughout the present Chapter,

that y, r, s are some three given but arbitrary versors, in three

given and distinct planes ;J and our object will be to throw

* As in 227, (3.); 242, (7.); 254, (7.); 257, (6.) and (7.) ; 259, (8.), (9.),

(10.), (11.) ; 2GO, (10.) ;
and 2G1, (11.) and (12.).

f Or, move generally, for any three pairs of magnitudes, each pair separately

being homogeneous.
*

If the factors
&amp;lt;?, r, s were complanar, we could always (by 120) put them
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some additional light, by new enunciations in this Section,

and by new demonstrations in the next, on the very impor

tant, although very simple, Associative Formula (223, II.),

which may be written thus :

or thus, more fully,

II. . . g g
=

t, if q - sr, s rq, and t - ss
;

q, s, and t being here three new and derived versors, in three

new and derived planes.

263. Already we may see that this Associative Theorem

of Multiplication, in all its forms, has an essential reference to

a System of Six Planes, namely the planes of these six ver

sors,

IV. . . q, r, s, rq, sr, srq, or IV. . . q, r, s, s, q , t\

on the judicious selection and arrangement ofwhich, the clear

ness and elegance of every geometrical statement or proof of

the theorem must very much depend : while the versor cha

racter of the factors (in the only part ofthe theorem for which

proof is required) suggests a reference to a Sphere, namely to

what we have called the unit-sphere (128). And the three

following arrangements of the six planes appear to be the most

natural and simple that can be considered : namely, 1st, the

arrangement in which the planes all pass through the centre of

the sphere ; Ilnd, that in which they all touch its surface
;

and Illrd, that in which they are the six faces of an inscribed

solid. We proceed to consider successively these three ar

rangements.

264. When the first arrangement (263) is adopted, it is natural

to employ arcs of great circles, as representatives of the versorsy
on the

under the forms,

]3 y d
q =

a&amp;gt;

&amp;gt; =
/3

=
y

5

and then should have (comp. 183, (1.) ) the two equal ternary products,

=-=J = -Z =
/3 a a y a

so that in this case (comp. 224) the associative property would be proved without any

difficulty.
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plan of Art. 162. Representing thus the factor q by the arc AB,

and r by the successive arc BC, we represent (167) their product rq,

or s
, by AC; or by any equal arc (165), such as DE, in Fig. 59, may

be supposed to be. Again, representing s by EF, we shall have DF

as the representative of the ternary

product s.rq, or ss
,
or t, taken in

one order of association. To repre

sent the other ternary product,

sr. q, or q q, we may first determine

three new points, G, H, i, by arcual

equations (165), between GH, BC, Fig. 59.

and between HI, EF, so that BC, EF

intersect in H, as the arcs representing s f and s had intersected in E;

and then, after thus finding an arc GI which represents sr, or q
f

, may
determine three other points, K, L, M, by equations between KL, AB,

and between LM, GI, so that these two new arcs, KL, LM, represent q
and q

f

,
and that AB, GI intersect in L

; for in this way we shall have

an arc, namely KM, which represents q q as required. And the theo

rem then is, that this last arc KM is equal to the former arc DF, in the

full sense of Art. 165; or that when (as under the foregoing condi

tions of construction) the five arcual equations,

. . . o AB = &amp;lt;- KL, r&amp;gt; 30 = ^611, n EF = HI, ^AC = ODE, nGI=^LM,

exist, then this sixth equation of the same kind is satisfied also,

II. . .
*-&amp;gt; DF = &amp;lt;&quot; KM:

the two points, K and M, being both on the same great circle as the two

previously determined points, D and F; or D and M being on the

great circle through F and K : and the two arcs, DF and KM, of that

great circle, or the two dotted arcs, DK, FM in the Figure, being

equally long, and similarly directed (165).

(1.) Or, after determining the nine points A . . i so as to satisfy the three middle

equations I., we might determine the three other points, K, L, M, without any other

arcual equations, as intersections of the three pairs of ares AB, DF ; AB, GI
; DF, GI

;

and then the theorem would be, that (if these three last points be suitably distin

guished from their own opposites upon the sphere) the two extreme equations I., and

the equation II., are satisfied,

(2.) The same geometrical theorem may also be thus enunciated : If the first,

third, andfifth sides (KL, GH, ED) of a spherical hexagon KLGHED be respectively

and arcually equal (165)fo thefirst, second, and third sides (AB, BC, CA) of & sphe

rical triangle ABC, then the second, fourth, and sixth sides (LG, HE, DK) ofthe same

hexagon are equal to the three successive sides (MI, IF, FM) ofanother spherical tri-

angh, MIF.
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(3.) It may also be said, that iffive successive sides (KL, . . ED) of one spherical

hexagon be respectively and arcually equal to the Jive successive diagonals (AB, MI,

EC, IF, CA) of another such hexagon (AMBICF), then the sixth side (DK) of the first

is equal to the sixth diagonal (FM) of the second.

(4.) Or, if we adopt the conception mentioned in 180, (3.), of an arcualsum, and

denote such a sum by inserting + between the symbols of the two summands, that of

the added arc being written to the left-hand, we may state the theorem, in connexion

with the recent Fig. 59, by the formula :

III. . .
n DF -f BA= o EF + r&amp;gt; BO, if DA = o EC

;

where B and F may denote any two points upon the sphere.

(5.) We may also express* the same principle, although somewhat less simply

as follows (see again Fig. 59, and compare sub-art. (2.) ) :

IV. . . if &amp;lt;-, ED + n GH + KL = 0, then o DK + - HE + n LG= 0.

(6.) If, for a moment, we agree to write (comp. Art. 1),

V. . .
^ AB = B A,

we may then express the recent statement IV. a little more lucidly thus :

VI. . . ifD E+H-G + L-K =
0, theil K-D+E-H+G L = 0.

(7 ) Or still more simply, if
&amp;lt;&amp;gt;,

&amp;lt;&amp;gt;

,
&amp;lt;&amp;gt;&quot; be supposed to denote any three dipla-

nar arcs, which are to be added according to the rule (180, (3.) ) above referred to,

the theorem may be said to be, that

VII. . . (o&quot;+o )+^ = o&quot; + (o +n);

or in words, that Addition of Arcs on a Sphere is an Associative Operation.

(8.) Conversely, if any independent demonstration be given, of the truth of any
one of the foregoing statements, considered as expressing a theorem of spherical geo

metry,^ a new proof will thereby be furnished, of the associative property of multi

plication of quaternions.

265. In the second arrangement (263) of the six planes, instead

of representing the three given versors, and their partial or total

products, by arcs, it is natural to represent them (174, II.) by an

gles on the sphere. Conceive then that the two versors, q and r,

are represented, in Fig. 60, by the two spherical angles, EAB and

ABE; and therefore (175) that their product, rq or s f

,
is represented

by the external vertical angle at E, of the triangle ABE. Let the

* Some of these formulae and figures, in connexion with the associative principle,

are taken, though for the most part with modifications, from the author s Sixth Lec

ture on Quaternions, in which that whole subject is very fully treated. Comp. the

Note to page 160.

f Such a demonstration, namely a deduction of the equation II. from the five

equations I., by known properties of spherical conies, will be briefly given in the en

suing Section.

2 P
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second versor r be also represented by the angle FBC, and the third

versor s by BCF; then the

other binary product, sr or

q ,
will be represented by

the external angle at F, of

the new triangle BCF. Again,

to represent the first ternary

product, t = ss =
s.rq, we have

only to take the external an

gle at D of the triangle BCD, A
if D be a point determined Fig. 60.

by the two conditions, that the angle ECD shall be equal to BCF,

and DEC supplementary to BEA. On the other hand, if we conceive

a point D determined by the conditions that D AF shall be equal toEAB,

and AFD supplementary to CFB, then the external angle at D
, of the

triangle AFD
, will represent the second ternary product, q q = sr. q,

which (by the associative principle) must be equal to the first.

Conceiving then that ED is prolonged to G, and FD to H, the

two spherical angles, GDC and AD H, must be equal in all respects ; their

vertices D and D coinciding, and the rotations (174, 177) which they

represent being not only equal in amount, but also similarly directed.

Or, to express the same thing otherwise, we may enunciate (262) the

Associative Principle by saying, that when the three angular equations,

I. ..ABE = FBC, BCF = ECD, DEC=7T-BEA,
are satisfied, then these three other equations,

II. . . DAF = EAB, FDA = CDE, AFD = IT - CFB,

are satisfied also. For not only is this theorem ofspherical geometry a

consequence of the associative principle of multiplication of quaternions t

but conversely any independent demonstration* of the theorem is,

at the same time, a proof of the principle.

266. The third arrangement (263) of

the six planes may be illustrated by con

ceiving a gauche hexagon, AB CA BC , to be

inscribed in a sphere, in such a manner that

the intersection D of the three planes, C AB
,

B CA
,
A BC ,

is on the surface; and there

fore that the three small circles, denoted by
these three last triliteral symbols, concur F

.

6

* Such as we shall sketch, in the following Section, with the help of the known

properties of the spherical conies. Compare the Note to the foregoing Article.
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in one point D; while the second intersection of the two other small

circles, AB C, CA B, may be denoted by the letter D
,
as in the annexed

Fig. 61. Let it be also for simplicity at first supposed, that (as in

the Figure) the Jive circular successions,

I. . . C AB D, AB CD , B CA D, CA BD
,

A BC D,

are all direct ; or that the Jive inscribed quadrilaterals, denoted by
these symbols I., are all uncrossed ones. Then (by 260, (9.) ) it is

allowed to introduce three versors, q, r, s, each having two expres

sions, as follows :

TT B/D TT AB/ TT DA TT CA/
II.. . o =U = +U ; r=U - = + U

7 ;

DC AC B D CB f

TT CD TT BD/
s =U -= + U ;

CA A B

although (by the cited sub-article) the last members of these three

formula should receive the negative sign, if the first, third, and

fourth of the successions I. were to become indirect, or if the corre

sponding quadrilaterals were crossed ones. We have thus (by 191)
the derived expressions,

r TT DA/ TT A B TT CI&amp;gt;/ TT D A
III. . . s = rq = \J =U ,;

= -=U = U ,;DC BCr CBr AB r

whereof, however, the two versors in the first formula would differ

in their signs, if the fifth succession I. were indirect; and those in

the second formula, if the second succession were such. Hence,

IV.. ,fr.jyU^| rt-r.$=:U ;

and since, by the associative principle, these two last versors are to

be equal, it follows that, under the supposed conditions of construc

tion, the four points, B, c
, A, D

, compose a circular and direct suc

cession ; or that the quadrilateral, BC AD
,

is
plane&amp;gt; inscriptible,* and

uncrossed.

267. It is easy, by suitable changes of sign, to adapt
the recent reasoning to the case where some or all of the suc

cessions I. are indirect; and thus to infer, from the associa

tive principle, this theorem of spherical geometry : T/*AB CA BC

* Of course, since the four points BC AD are known to be homospheric (comp.

260. (10.)), the inscriptibility of the quadrilateral in a circle would follow from its

being plane, if the latter were otherwise proved : but it is here deduced from the

equality of the two versors IV., on the plan of 260, (9.J.
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be a spherical hexagon, such that the three small circles C AB ,

B CA , A BC concur in one point D, then, 1st, the three other small

circles, AB C, CA B, BC A, concur in another point, D ; and Ilnd,

of the six circular successions, 266, I., and BC AD , the number

of those which are indirect is always even (including zero).

And conversely, any independent demonstration* of this geo
metrical theorem will be a new proofof the associative prin

ciple.

268. The same fertile principle of associative multiplication may
be enunciated in other ways, without limiting the factors to be ver-

sors, and without introducing the conception of a sphere. Thus we

may say (comp. 264, (2.)), that if O.ABCDEF (comp. 35) be any

pencil of six rays in space, and O.A B C any pencil of three rays, and

if the three angles AOB, COD, EOF of the first pencil be respectively

equal to the angles B OC
,
C OA

,
A OB of the second, then another

pencil of three rays, o . A^B^O&quot;, can be assigned, such that the three

other angles BOC, DOE, FOA of the first pencil shall be equal to the

angles B&quot;OC&quot;, C&quot;OA&quot;,
A&quot;OB&quot; of the third: equality of angles (with

one vertex) being here understood (comp. 165) to include complana-

rity, and similarity of direction of rotations.

(1.) Again (comp. 264, (4.)), we may establish the following formula, in which

the four vectors apyS form a complanar proportion (226), but t and are any two

lines in space :

I.. .?*=*/? if
*
= .

y e a c y a

for, under this last condition, we have (comp. 125),

II *?:=? * = * P*
ye aye. a d e

(2.) Another enunciation of the associative principle is the following :

m...if?M then iS*
y a e ay S

for if we determine (120) six new vectors, r]9i, and X^, so that

fO 8 n j3
i

=
,

- =
, whence - = -,

a i e

and

- = !, *=,
K a

/it y

* An elementary proof, by stenographic projection, will be proposed in the fol

lowing Section.
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we shall have the transformations,

VT --?
&quot;

_

6*770 ei O PS 3

(3.) Conversely, the assertion that this last equation or proportion VI. is true,

whenever the twelve vectors a . .
JJL

are connected by the five proportions IV., is a

form of enunciation of the associative principle ;
for it conducts (comp. IV. and V.)

to the equation,

but, even with this last restriction, the three factor-quotients in VII. may represent

any three quaternions.

SECTION 2. On some Geometrical Proofs ofthe Associative

Property of Multiplication of Quaternions, which are inde

pendent of the Distributive* Principle.

269. We propose, in this Section, to furnish three geome
trical Demonstrations of the Associative Principle, in con

nexion with the three Figures (59-61) which were employed
in the last Section for its Enunciation ; and with the three ar

rangements of six planes, which were described in Art. 263.

The two first of these proofs will suppose the knowledge of a

few properties of spherical conies (196, (11.)); but the third

will only employ the doctrine of stereographic projection, and

will therefore be of a more strictly elementary character. The

Principle itself is, however, of such great importance in this

Calculus, that its nature and its evidence can scarcely be put
in too many different points of view.

270. The only properties of a spherical conic, which we shall in

this Article assume as known,f are the three following: 1st, that

through any three given points on a given sphere, which are not on a

great circle, a conic can be described (consisting generally oftwo oppo
site ovals), which shall have a given great circle for one of its two cyclic

arcs; Ilnd, that if a transversal arc cut both these arcs, and the conic,

the intercepts (suitably measured) on this transversal are equal; and

Illrd, that if the vertex of a spherical angle move along the conic,

while its legs pass always through two fixed points thereof, those legs

*
Compare 224 and 262

;
and the Note to page 236.

f The reader may consult the Translation (Dublin, 1841, pp. 46, 50, 55) by the

present Dean Graves, of two Memoirs by M. Chaslcs, on Cones of the Second De
gree, and Spherical Conies.
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intercept a constant interval, upon each cyclic arc, separately taken.

Admitting these three properties, we see that if, in Fig. 59, we con

ceive a spherical conic to be described, so as to pass through the

three points B, F, H, and to have the great circle DAEC for one cyclic

arc, the second and third equations I. of 264 will prove that the arc

GLIM is the other cyclic arc for this conic; the first equation I. proves

next that the conic passes through K
;
and if the arcual chord FK be

drawn and prolonged, the two remaining equations prove that it

meets the cyclic arcs in D and M; after which, the equation II. of

the same Art. 264 immediately results, at least with the arrange

ment* adopted in the Figure.

(1.) The 1st property is easily seen to correspond to the possibility of circum

scribing a circle about a given plane triangle, namely that of which the corners are

the intersections of a plane parallel to the plane of the given cyclic arc, with the

three radii drawn to the three given points upon the sphere : but it may be worth

while, as an exercise, to prove here the Ilnd property by quaternions.

(2.) Take then the equation of a cyclic cone, 196, (8.), which may (by 196,

XII.) be written thus :

p and p being thus two rays (or sides) of the cone, which may also be considered to

be the vectors of two points p and P of a spherical conic, by supposing that their

lengths are each unity. Let T and r be the vectors of the two points T and T on

the two cyclic arcs, in which the arcual chord PP of the conic cuts them
;
so that

III. ..S- = 0, S^=0, and IV. . . Tr = Tr = 1.
a ft

The theorem may then be stated thus : that

V. . . if p =XT + XT ,
then VI. . . p = x r + XT

;

or that this expression VI. satisfies II., if the equations I. III. IV. V. be satisfied.

Now, by III. V. VI., we have

VIL^Se^S^-V, S^ = *S^=* S^Y
a a x a (3 (3 x ft

1

whence it follows that the first members of I. and II. are equal, and it only remains

to prove that their second members are equal also, or that Tp = Tp, if Tr = Tr.

Accordingly we have, by V. and VI.,

TIIL
TP

=
SrvTrf =s&quot;

by 200
&amp;lt;

u
-&amp;gt;

and 20

and the property in question is proved.

* Modifications of that arrangement may be conceived, to which however it would

be easy to adapt the reasoning.
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271. To prove the associative principle, with the help of Fig. 60,

three other properties of a spherical conic shall be supposed known :*

1st, that for every such curve two focal points exist, possessing seve

ral important relations to it, one of which is, that if these two foci

and one tangent arc be given, the conic can be constructed; Ilnd,

that if, from any point upon the sphere, two tangents be drawn to the

conic, and also two arcs to the foci, then one focal arc makes with one

tangent the same angle as the other focal arc with the other tangent;
and Illrd, that if a spherical quadrilateral be circumscribed to such

a conic (supposed here for simplicity to be a spherical ellipse, or the

opposite ellipse being neglected), opposite sides subtend supplementary

angles, at either of the two (interior) foci. Admitting these known

properties, and supposing the arrangement to be as in Fig. 60, we

may conceive a conic described, which shall have E and F for its two

focal points, and shall touch the arc BC ;
and then the two first of the

equations I., in 265, will prove that it touches also the arcs AB and

CD, while the third of those equations proves that it touches AD, so

that ABCD is a circumscribedf quadrilateral: after which the three

equations II., of the same article, are consequences of the same pro

perties of the curve.

272. Finally, to prove the same important Principle in a

more completely elementary way, by means of the arrangement

represented in Fig. 61, or to prove the theorem of spherical

geometry enunciated in Art. 267, we may assume the point D

as the pole of a stereograpliic projection, in which the three

small circles through that point shall be represented by right

lines,lout the three othersby circles,

all being in one common plane. And
then (interchanging accents) the

theorem comes to be thus stated :

If A, B , c be any three points

(comp. Fig. 62) on the sides BC,

CA, AB ofany plane triangle, or on

those sides prolonged, then, 1st,

the three circles,

Fig. 62.

* The reader may again consult pages 46 and 50 of the Translation lately cited.

In strictness, there are of course four foci, opposite two by two.

f The writer has elsewhere proposed the notation, EF
(. .; ABCD, to denote the

relation of the focal points E, F to this circumscribed quadrilateral.
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I. . . C AB ,
A BC ,

B CA ,

will meet in one point D
;
and Ilnd, an even number (if any)

of the six (linear or circular) successions,

II. . . AB C, BC A, CA B, and II . . . C AB D, A BC D, B CA D,

will be direct; an even number therefore also (if any) being

indirect. But, under this./bnw,* the theorem can be proved

by very elementary considerations, and still without any em

ployment of the distributive principle (224, 262).

(1.) The first part of the theorem, as thus stated, is evident from the Third Book

of Euclid ;
but to prove both parts together, it may be useful to proceed as follows,

admitting the conception (235) of amplitudes, or of angles as representing rotations,

which may have any values, positive or negative, and are to be added with attention

to their signs.

(2.) We may thus write the three equations,

III. . . AB C = mr, BC A = nir, CA B = n V,

to express the three collineations, AB C, &c. of Fig. 62
;
the integer, n, being odd or

even, according as the point B is on the finite line AC, or on a prolongation of that

line
;
or in other words, according as the first succession II. is direct or indirect :

and similarly for the two other coefficients, n and n&quot;.

(3.) Again, if OPQU be any four points in one plane, we may establish the for

mula,
IV. . . POQ -f QOR = POR -f 2m7r,

with the same conception of addition of amplitudes ;
if then D be any point in the

plane of the triangle ABC, we may write,

V. . . AB D + DB C = mr, BC D + DC A = nV, CA D + DA B = n&quot;rr
;

and therefore,

VI. . . (AB D + DC A) + (BC D + DA B) 4 (CA D + DB C) = (n+n+ n&quot;)
IT.

(4.) Again, if any four points OPQR be not merely complanar but concircular,

we have the general formula,

VII. . . OPQ + QRO=/?7T,

the integer/) being odd or even, according as the succession OPQR is direct or indi-

* The Associative Principle of Multiplication was stated nearly under this form,

and was illustrated by the same simple diagram, in paragraph XXII. of a commu

nication by the present author, which was entitled Letters on Quaternions, and has

been printed in the First and Second Editions of the late Dr. Nichol s Cyclopaedia of

the Physical Sciences (London and Glasgow, 1857 and 1860). The same commu

nication contained other illustrations and consequences of the same principle, which it

has not been thought necessary here to reproduce (compare however Note C) ;
and

others ma) be found in the Sixth of the author s already cited Lectures on Quater

nions (Dublin, 1853), from which (as already observed) some of the formula? and

figures of this Chapter have been taken.
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rect ; if then we denote by D the second intersection of the first and second circles I.
,

whereof c is a first intersection, we shall have

VIII. . . AB D -f DC A = PTT, BC D + DA B =P TT,

p and p being odd, when the two first successions II . are direct, but even in the con

trary case.

(5.) Hence, by VI., we have,

IX.. . CA D -|-DB O =P&quot;TT, where X. .. p -f // + /&amp;gt;&quot;

= -f n -f n ;

the third succession II . is therefore always circular, or the third circle I. passes

through the intersection D of the two first; and it is direct or indirect, that is to

say, p&quot;
is odd or even, according as the number of even coefficients, among the five

previously considered, is itself even or odd ; or in other words, according as the

number of indirect successions, among the five previously considered, is even (includ

ing zero), or odd.

(6.) In every case, therefore, the total number of successions ofeach kind is even,

and both parts of the theorem are proved : the importance of the second part of it

(respecting the even partition, if any, of the six successions II. II .) arising from

the necessity of proving that we have always, as in algebra,

XI . . sr . q = + s . rq, and never XII. . . sr . q s . rq,

if q, r, s be any three actual quaternions,

(7.) The associative principle of multiplication may also be proved, without the

distributive principle, by certain considerations of rotations ofa system, on which we

cannot enter here.

SECTION 3. On some Additional Formula.

273. Before concluding the Second Book, a few additional re

marks may be made, as regards some of the notations and transfor

mations which have already occurred, or others analogous to them.

And first as to notation, although we have reserved for the Third

Book the interpretation of such expressions as /3a, or a2
, yet we have

agreed, in 210, (9-), to abridge the frequently occurring symbol (Ta)
2

to Ta2
; and we now propose to abridge it still further to Na, and to

call this square of the tensor (or of the length) of a vector, a, the Norm

of that Vector: as we had (in 190, &c.), the equation T^^N^, and

called N&amp;lt; the norm of the quaternion q (in 145, (11.) ). We shall

therefore now write generally, for any vector a, the formula,

I.. . (Ta)
2 = Tft2 = N.

(1.) The equations (comp. 186, (1.) (2.) (3.) (4.) ),

II. ..Np=l; III. ,.Np = Na; IV. . . N(p - a) = Na ;

V. . .N(p-a) = N(/3-),

represent, respectively, the unit-sphere; the sphere through A, with o for centre
;

the sphere through o, with A for centre
;
and the sphere through B, with the same

centre A.

2Q
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(2.) The equations (comp. 186, (6.) (7.) ),

VI. . .N(p + )
= N(p-tt); VII. . . N(p-/3) = N(p- a),

represent, respectively, the plane through o, perpendicular to the line OA
;
and the

plane which perpendicularly bisects the line AB.

274. As regards transformations, the few following may here be

added, which relate partly to the quaternion forms (204, 216, &c.)

of the Equation* of the Ellipsoid.

(1.) Changing K(JC : p) to Rp : RK, by 259, VIII., in the equation 217, XVI.

of the ellipsoid, and observing that the three vectors p, Rp, and RK are complanar,

while 1 : Tp = TRp by 258, that equation becomes, when divided by TRp, and when

the value 217, (5.) for t
2 is taken, and the notation 273 is employed :

of which the first member will soon be seen to admit of being writtent as T(tp + p*),

and the second member as ;c
2 - i

2
.

(2.) If, in connexion Avith the earlier forms (204, 216) of the equation of the

same surface, we introduce a new auxiliary vector, & or os, such that (comp. 216,

VIII.)

the equation may, by 204, (14.), be reduced to the following extremely simple form :

III. . .
T&amp;lt;r=T/3;

which expresses that the locus of the new auxiliary point s is what we have called

the mean sphere, 216, XIV.
;
while the line PS, or a p, which connects any two

corresponding points, p and s, on the ellipsoid and sphere, is seen to be parallel to

the fixed line ft; which is one element of the homology, mentioned in 216, (10.).

(3.) It is easy to prove that

IV...S^ = s2s5, and therefore V. . . s:S? = s: S&
o a o coco

if p and a be the vectors of two new but corresponding points, p and s
,
on the

ellipsoid and sphere; whence it is easy to infer this other element of the homology,
that any two corresponding chords, PP and ss

,
of the two surfaces, intersect each

other on the cyclic plane which has d for its cyclic normal (comp. 216, (7.) ) : in

fact, they intersect in the point T of which the vector is,

* In the verification 216, (2.) of the equation 216, (1.), considered as repre

senting a surface ofthe second order, V- and V^ ought to have been printed, in

stead of V - and V -
5
but this does not affect the reasoning.a a

t Compare the Note to page 233.



CHAT. III.] HOMOLOGIES OF ELLIPSOID AND SPHERE. 299

and this point is on the plane just mentioned (coinp. 216, XI.), because

VII. . . S^=0.

(4.) Quite similar results would have followed, if we had assumed

VIII. . . &amp;lt;r

= (-
S^-fV

which would have given again, as in III.,

IX. . . Tff = Tft but with X. . . S- =- S^ S-
;

y a y

the other cyclic plane, with y instead of S for its normal, might therefore have been

taken (as asserted in 216, (10.) ), as another plane of homology of ellipsoid and

sphere, with the same centre of homology as before : namely, the point at infinity on

the line
/3,

or on the axis (204, (15.) ) of one of the two circumscribed cylinders of

revolution (comp. 220, (4.)).

(5.) The same ellipsoid is, in two other ways, homologous to the same mean

sphere, with the same two cyclic planes asplanes of homology, but with a new centre

of homology, which is the infinitely distant point on the axis of the second circum

scribed cylinder (or on the line AB of the sub-article last cited).

(6.) Although not specially connected with the ellipsoid, the following general

transformations may be noted here (comp. 199, XII., and 204, XXXIV.) :

XL . . TVVg=V{KT?-S?)} ;
XII. , , tan \L 7 = (TV: S) V 7 =

(7.) The equations 204, XVI. and XXXV., give easily,

XIII. . . UV2 = UVU? ;
XIV. . . UIV? = Ax. q ;

XV. . . TIV? = TV? ;

or the more symbolical forms,

XIII . . . UVU = UV
;

XIV. . . UIV = Ax.
;

XV. . . T1V = TV
;

and the identity 200, IX. becomes more evident, when we observe that

XVI. . . g-Ng=2(l-Kg).

(8.) We have also generally (comp. 200, (10.) and 218, (10.)),

XVII 9
&quot;

(f + 1) (Kf+ 1)

(9.) The formula,*

XVIII. . . U(r? + K9r) = U(Sr.S(7 + Vr.V^)=r-i(rV-) i ^ 1

,

in which q and r may be any two quaternions, is not perhaps of any great importance
in itself, but will be found to furnish a student with several useful exercises in trans

formation.

(10.) When it was said, in 257, (1.), that zero had only itself for a square-root,

the meaning Was (comp. 225), that no binomial expression of the form x + iy (228)

could satisfy the equation,

XIX. . . = ?2= (x

* This formula was given, but in like manner without proof, in page 587 of the

author s Lectures on Quaternions.
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for any real or imaginary values of the two scalar coefficients x and y, different

from zero ;* for if biquaternions (214, (8.) ) be admitted, and if h again denote, as

in 256, (2.), the imaginary of algebra, then (comp. 257, (6.) and (7.) ) we may

write, generally, besides the real value 0* = 0, the imaginary expression,

XX. . . = -f A
,

if St&amp;gt;
= S = Sr = N -N = 0;

v and v being thus any two real right quaternions, with equal norms (or with equal

tensors), in planes perperpendicular to each other.

(11.) For example, by 256, (2.) and by the laws(183) of ijk, we have the trans

formations,
XXI. . . (i + A/)

= i -j
2 + h (ij +ji) = + hO =

;

so that the bi-quaternion i + hj is one of the imaginary values of the symbol 0*.

(12.) In general, when bi-quaternions are admitted into calculation, not only the

square of one, but the product of two such factors may vanish, without either of them

separately vanishing : a circumstance which may throw some light on the existence

of those imaginary (or symbolical) roots of equations, which were treated of in 257.

(13.) For example, although the equation

XXII. . . 9*-l = (g -l)(? +l) =

has no real roots except + 1, and therefore cannot be verified by the substitution of

any other real scalar, or real quaternion, for q, yet if we substitute for q the bi-qua

ternion^ v + hv\ with the conditions 257, XIII., this equation XXII. is verified.

(14.) It will be found, however, that when two imaginary but non-evanescent

factors give thus a null product, the norm of each is zero; provided that we agree

to extend to bi-quaternions the formula Ng= Sqt-Vq2
(204, XXII.) ;

or to define

that the Norm of a Biquaternion (like that of an ordinary or real quaternion) is

equal to the Square of the Scalar Part, minus the Square of the Might Part: each

of these two parts being generally imaginary, and the former being what we have

called a Bi-scalar.

(15.) With this definition, if q and q be any two real quaternions, and if h be,

as above, the ordinary imaginary of algebra, we may establish the formula :

XXIII. . . N(y + hq) = (Sq + AS9 )
2 - (Vg + hVq )* 5

or (comp. 200, VII., and 210, XX.),

XXIV. . . N (q + hq )
= N5

-% + 2AS . qKq .

(16.) As regards the norm of the sum of any two real quaternions, or real vec

tors (273), the following transformations are occasionally useful (comp. 220, (2.) )

XXV. . . N (9 + 9) = N (Tg . Uq + T? . Tig ) ;

XXVI. . . N(/3 + a)=N(T/3.Ua + Ta.U/3);
in each of which it is permitted to change the norms to the tensors of which they are

the squares, or to write T for N.

*
Compare the Note to page 276.

t This includes the expression + hi, of 257, (1.), for a symbolical square-root of

positive unity. Other such roots are + hj, and + hk.



BOOK III.

ON QUATERNIONS, CONSIDERED AS PRODUCTS OR POWERS OF

VECTORS ; AND ON SOME APPLICATIONS OF QUATERNIONS.

CHAPTER I.

ON THE INTERPRETATION OF A PRODUCT OF VECTORS, OR

POWER OF A VECTOR, AS A QUATERNION.

SECTION 1. On a First Method of interpreting a Product of
Two Vectors as a Quaternion.

ART. 275. In the First Book of these Elements we inter

preted, 1st, the difference of any two directed right lines in

space (4) ; Ilnd, the sum oftwo or more such lines (5-9) ; Illrd,

the product of one such line, multiplied by or into a positive

or negative number (15) ; IVth, the quotient of such a line,

divided by such a number (16), or by what we have called

generally a SCALAR (17) ; and Vth, the sum of a system of

such lines, each affected (97) with a scalar coefficient (99), as

being in each case itself(generally) a Directed Line* in Space,

or what we have called a VECTOR (1).

276. In the Second Book, the fundamental principle or

pervading conception has been, that the Quotient of two such

Vectors is, generally, a QUATERNION (112, 116). It is how
ever to be remembered, that we have included under this ge
neral conception, which usually relates to what may be called

an Oblique Quotient, or the quotient of two lines in space

making either an acute or an obtuse angle with each other

* The Fourth Proportional to any three complanar lines has also been since in

terpreted (226), as being another line in the same plane.
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(130), the three following particular cases: 1st, the limiting

case, when the angle becomes null, or when the two lines are

similarly directed, in which case the quotient degenerates (131)

into a positive scalar; Ilnd, the other limiting case, when the

angle is equal to two right angles, or when the lines are oppo

sitely directed, and when in consequence the quotient again

degenerates, but now into a negative scalar ; and Illrd, the

intermediate case, when the angle is right, or when the two

lines are perpendicular (132), instead of being parallel (15),

and when therefore their quotient becomes what we have

called (132) a Right Quotient, or a EIGHT QUATERNION:
which has been seen to be a case not less important than the

two former ones.

277. But no Interpretation has been assigned, in either of

the two foregoing Books, for a PRODUCT of two or more Vec

tors ; or for the SQUARE, or other POWER ofa Vector : so that

the Symbols,

I. . .

|3a, y/3a, . . and II. . . a
2
, a3

,
. . a 1

,
. . . a ,

in which a, j3, y . . denote vectors, but t denotes a scalar, re

main as yet entirely uninterpreted ; and we are thereforefree

to assign, at this stage, any meanings to these new symbols, or

new combinations of symbols, which shall not contradict each

other, and shall appear to be consistent with convenience and

analogy. And to do so will be the chief object of this First

Chapter ofthe Third (and last) Book of these Elements: which

is designed to be a much shorter one than either of the fore

going.

278. As a commencement of such Interpretation we shall

here define, that a vector a is multiplied by another vector
|3,

or that the latter vector is multiplied into* the former, or

that the product fia is obtained, when the multiplier-line (3

is divided by the reciprocal Ret (258) of the multiplicand-line a ;

as we had proved (136) that one quaternion is multiplied info

another, when it is divided by the reciprocal thereof. In sym

bols, we shall therefore write, as a first definition, the for

mula :

* Compare the Notes to pages 14G, 159.
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I. . . |3a=/3:Ra; where II. . . Ra = - Ua :T (258, VII.).

And we proceed to consider, in the following Section, some of

the general consequences of this definition, or interpretation, of

a Product oftwo Vectors, as being equal to a certain Quotient,,

or Quaternion.

SECTION 2. On some Consequences of the foregoing Inter

pretation.

279. The definition (278) gives the formula :

I. . . /3a
=

^j-
; and similarly, I . . . a/3

it gives therefore, by 259, VIII., the general relation,

II. . . /3a
= Kaj3 ;

or II . . . a]3
=
K/3a.

The Products of two Vectors, taken in two opposite orders, are

therefore Conjugate Quaternions; and the Multiplication of
Vectors, like that of Quaternions (168), is (generally) a Non-

Commutative Operation.

(1.) It follows from II. (by 196, comp. 223, (1.) ), that

III. . . S/3a = + Sa/3 = (j3a + a/3).

(2.) It follows also (by 204, comp. again 223, (1.) ), that

IV. . . V/3a = -
Va/3 = J (pa - a/3).

280. Again, by the same general formula 259, VIII., we
have the transformations,

-K +
R(aW)

^

K/3

it follows, then, from the definition (278), that

II. - . /3(aW)=/3a + /3a ;

whence also, by taking conjugates (279), we have this other

general equation,

III. . . (a + a ) 13
=

aj3 H- a/3.

Multiplication of Vectors is, therefore, like that of Quaternions

(212), a Doubly Distributive Operation.

281. As we have not yet assigned any signification for a

ternary product of vectors, such as 7/3cr, we are not yet pre-
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pared to pronounce, whether the Associative Principle (223)

of Multiplication of Quaternions does or does not extend to

Vector-Multiplication. But we can already derive several other

consequences from the definition (278) of a. binary product, |3a ;

among which, attention may be called to the Scalar character

of a Product oftwo Parallel Vectors; and to the Right cha

racter of a Product of two Perpendicular Vectors, or of two

lines at right angles with each other.

(1.) The definition (278) may be thus written,

I.. . |3a
= -T/3.Ta.U03:a);

it gives, therefore,

II. ..T/3a=T/3.Ta; III.. . U/3a = -U(/3 : a) = U/3.Ua ;

the tensor and versor of the product of two vectors being thus equal (as for quater
-

nions, 191) to the product of the tensors, and to the product of the versors, re

spectively.

(2.) Writing for abridgment (comp. 208),

IV...a = Ta, 6 = T/3, r =Ax.(/3:a), x = L(P .a),

we have thus,

V. . . T/3a = 6a; VI. . . S/3a = Sa|3 = - ba cos x
;

VII. .. SU3a = SUa3 = -cos*; VIII. . .

so that (comp. 198) the angle of the product of any two vectors is the supplement of
the angle of the quotient.

(3.) We have next the transformations (comp. again 208),

IX. .. TVj3o = TVa/3 = la sin x
;

X. . . TVU/3a = TVUa0 = sin x
;

XI. . . IV/3a = - y&a sin x
;

XI . . . IVa/3 = + yab sin x
;

XII. . . IUV/3a = Ax. /3a = - y ;
XII . . . IUVa/3= Ax. a/3

= + y ;

so that the rotation round the axis of a product of two vectors, from the multiplier to

the multiplicand, is positive.

(4.) It follows also, by IX., that the tensor of the right part of such a. product,

/3a, is equal to the parallelogram under the factors ; or to the double of the area of
the triangle OAB, whereof those two factors a, /3, or OA, OB, are two coinitial sides :

so that if we denote here this last-mentioned area by the symbol

A OAB,
we may write the equation,

XIII. . . TV/3a = parallelogram under a, (3,
= 2A OAB ;

and the index, IV/3a, is a right line perpendicular to the plane of this parallelogram,
of which line the length represents its area, in the sense that they bear equal ratios

to their respective units (of length and of area).

(5.) Hence, by 279, IV.,

XIV. . . T(j3o
-

a)3) = 2 x parallelogram = 4 A OAB.

(6.) For any two vectors, , /3,
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XV. . . S/3a = -Na.S(/3:a); XVI. . . V/3a = -Na . V(/3 : a);

or briefly,*
XVII. . . /3a

= -Na.(/3:a),

with the signification (273) of Nor, as denoting (Ta)
2

.

(7.) If the two factor-lines be perpendicular to each other, so that a; is a right

angle, then the parallelogram (4.) becomes a rectangle, and the product j3a becomes

a right quaternion (132) ;
so that we may write,

XVIII. . . S(3a = Sa/3 = 0, if (3
J-

a, and reciprocally.

(8.) Under the same condition of perpendicularity,

XIX. . . Lpa=Lap =
,

XX. . . I/3a
= -

y&a ;
XXI. . . Iaj3 = + ya&.

(9.) On the other hand, if the two factor-lines be parallel, the right part of their

product vanishes, or that product reduces itself to a scalar, which is negative or po

sitive according as the two vectors multiplied have similar or opposite directions ; for

we may establish the formula,

XXII. . . if
(3 || a, then V/3a = 0, Va/3 = ;

and, under the same condition of parallelism,

XXIII. . . (3a
=

a/3
= S/3a = Sa/3 = + la,

the upper or the lower sign being taken, according as x = 0, or = TT.

(10.) We may also write (by 279, (1.) and (2.) ) the followingformula ofper

pendicularity, and formula ofparallelism :

XXIV. . . if j3
4- a, then (3a = - a/3, and reciprocally ;

XXV. . . if
/3 || a, then (3a

= + a/3, with the converse.

(11.) If a, (3, y be any three unit-lines, considered as vectors of the corners

A, B, c of a spherical triangle, with sides equal to three new positive scalars, a, 6, c,

then because, by XVII., (3a
= -

j3 : a, and y/3
= -

y : /3, the sub-articles to 208 allow

us to write,
XXVI. . . S (Vy/3 .V/3a) = sin a sin c cos B

;

XXVII. . . IV(Vy/3.V/3a) = /3sinasincsinB;

XXVIII. . . (IV: S) (Vy/3.V/3a)
= + /3 tan B

;

upper or lower signs being taken, in the two last formulae, according as the rotation

round (3 from a to y, or that round B from A to c, is positive or negative.

(12.) The equation 274, I., of the Ellipsoid, may now be written thus :

XXIX. . . T/ + /c = Ti2- T(c; or XXX. . .

282. Under the general head of a product of two parallel

vectors, two interesting cases occur, which furnish two first

examples of Powers of Vectors : namely, 1st, the case when

* All the consequences of the interpretation (278), of the product j3a of two vec

tors, might be deduced from this formula XVII. ; which, however, it would not have

been so natural to have assumed for a definition of that symbol, as it was to assume

the formula 278, I.

2 R



306 ELEMENTS OF QUATERNIONS. [BOOK III.

the two factors are equal, which gives this remarkable result,

that the Square of a Vector is always equal to a Negative Sca

lar; and Ilnd, the case when the factors are (in the sense

already defined, 258) reciprocal to each other, in which case

it follows from the definition (278) that their product is equal

to Positive Unity : so that each may, in this case, be consi

dered as equal to unity divided by the other , or to the Power

of that other which has Negative Unity for its Exponent.

(1.) When /3
= a, the product (3a reduces itself to what we may call the square

of a, and may denote by a2
;

and thus we may write, as a particular but important

case of 281, XXIII., the formula (comp. 273),

I. . . a2=-a2 =-(Ta)2 = -Na;
so that the square of any vector a is equal to the negative of the norm (273) of that

vector; or to the negative of the square of the number Ta, which expresses (185)
the length of the same vector.

(2.) More immediately, the definition (278) gives,

II. . . a2 = aa = a : Ra = - (Ta)
8 = - Na, as before.

(3.) Hence (compare the notations 161, 190, 199, 204),

III. . .S.o2 = -Na; IV. . .V.a2=0;
and

V. . . T.a2 = T(a2
)
= + Na = (Ta)2= Ta2;

the omission of the parentheses, or of the point, in this last symbol of a tensor,
* for

the square of a vector, as well as for the square of a quaternion (190), being thus

justified : and in like manner we may write,

VI. . . U.a2 = U(a2) = -l=(Ua)2 = Ua 2
;

the square of an unit-vector (129) being always equal to negative unity, and paren

theses (or points) being again omitted.

(4.) The equation

VII. . . p
2 =

a&amp;gt;&amp;gt; gives VII . . . Np = Na, or VII&quot;. . . Tp = Ta ;

it represents therefore, by 186, (2.), the sphere with o for centre, which passes

through the point A.

(5.) The more general equation,

VIII. . . (p
-
a)

2 =
(/3

-
a)*, (comp.f 186, (4.), )

represents the sphere with A for centre, which passes through the point B.

(6.) For example, the equation,

IX. . . (p
-
a)

2 =
a*, (comp. 186, (3.), )

represents the sphere with A for centre, which passes through the origin o.

*
Compare the Note to page 210.

f Compare also the sub-articles to 278.
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(7.) The equations (comp. 18G, (6.), (?.))&amp;gt;

X. . . (p + a)2 =(P~)2
;

XI. . .
0&amp;gt;-/3)2

= (p-a)2,

represent, respectively, the plane through o, perpendicular to the line OA
;
and the

plane which perpendicularly bisects the line AB.

(8.) The distributive principle of vector-multiplication (280), and the formula

279, III., enable us to establish generally (comp. 210, (9.) ) the formula,

XII. . .

the recent equations IX. and X. may therefore be thus transformed :

IX . . . p-
= 2Sap ; and X . . . Sap = 0.

(9.) The equations,

XIII. ..pHa = 0; XIV. . . ps + i^o,

represent the spheres with o for centre, which have a and 1 for their respective radii
;

so that this very simple formula, p
2 + 1 = 0, is (comp. 186, (1.) ) aform ofthe Equa

tion of the Unit-Sphere (128), and is, as such, of great importance in the present

Calculus.

(10.) The equation,
XV. . . p*-

may be transformed to the following,

XVI. . .N(p-a) = -(p-a)2 = c-a2 = c + Na;
or XVI . . . T(p-a)=V(c-a2) = V(c + Na);

it represents therefore a (real or imaginary) sphere, with A for centre, and with this

last radical (if real) for radius.

(11.) This sphere is therefore necessarily real, if c be & positive scalar
;
or if this

scalar constant, c, though negative, be (algebraically) greater than a2
,
or than - Na :

but it becomes imaginary, if c + Na &amp;lt; 0.

(12.) The radical plane of the two spheres,

XVII. . . p2
- 2Sap + c = 0, p2

- 2Sa p + c = 0,

has for equation,
XVIII. . . 2S(a -a)p = c -c;

it is therefore always real, if the given vectors a, a and the given scalars c, c be

such, even if one or both of the spheres themselves be imaginary.

(13.) The equation 281, XXIX., or XXX., of the Central Ellipsoid (or of the

ellipsoid with its centre taken for the origin of vectors), may now be still further sim

plified,* as follows :

XIX. . .

(14.) The definition (278) gives also,

XX. . . aRa = a : a = 1
;

or XX . . . Ra . a = Ra : Ra = 1
;

whence it is natural to write,f

*
Compare the Note to page 233.

f Compare the second Note to page 279.



308 ELEMENTS OF QUATERNIONS. [BOOK III.

XXI. . . Ra = l:l = a-,
a

if we so far anticipate here the general theory of powers of vectors, above alluded to

(277), as to use this last symbol to denote the quotient, of unity divided by the vector

a
;

so as to have identically, or for every vector, the equation,

XXII. . . a.a-i = a- 1 .a=l.

(15.) It follows, by 258, VII., that

XXIII. . . a- 1 = - Ua : Ta ;
and XXIV. . . /3a

=
/3 : a 1

.

(16.) If we had adopted the equation XXIII. a* a definition* ofthesymbol a 1

,

then the formula XXIV. might have been used, as & formula of interpretation for

the symbol /3a. But we proceed to consider an entirely different method, of arriving

at the same (or an equivalent) Interpretation of this latter symbol : or of a Binary

Product of Vectors, considered as equal to a Quaternion.

SECTION 3. On a Second Method of arriving at the same In

terpretation, of a Binary Product of Vectors.

283. It cannot fail to have been observed by any attentive

reader of the Second Book, how close and intimate a connexion}

has been found to exist, between a Right Quaternion (132), and

its Index, or Index- Vector (133). Thus, if v and v denote (as

in 223, (I.), &c.) any two right quaternions, and if Iv, Iv de

note, as usual, their indices, we have already seen that

I. . . Iv = Iv, if v =v, and conversely (133) ;

II. . . I(t/t&amp;gt;)-It/+Ii7 (206);
III. . . Iv: Iv=v :v (193);

to which may be added the more recent formula,

IV. . .
EIt&amp;gt;=IRi?(258, IX.).

284. It could not therefore have appeared strange, if we
had proposed to establish this new formula of the same kind,

I. . . Iv .Iv -v. v = v v,

as a definition (supposing that the recent definition 278 had

not occurred to us), whereby to interpret the product ofany two

indices of right quaternions, as being equal to the product of
those two quaternions themselves. And then, to interpret the

product f3a, of any two given vectors, taken in a given order,

*
Compare the Note to page 305.

t Compare the Note to page 174.
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we should only have had to conceive (as we always may), that

the two proposed factors, a and
|3,

are the indices oftwo rig fit

quaternions, v and v, and to multiply these latter, in the same

order. For thus we should have been led to establish the for

mula,
II. . . /3a

= v v, if a = Iv, and /3
= Iv ;

or we should have this slightly more symbolical equation,

III. ..^a = p.a = I-
1

j3.r
i

a;

in which the symbols,
I a and T

/B,

are understood to denote the two right quaternions, whereof

the two lines a and
|3 are the indices.

(1.) To establish now the substantial identity ofthese two interpretations, 278 and

284, of a Unary product of vectors (3a, notwithstanding the difference ofform of

the definitional equations by which they have been expressed, we have only to ob

serve that it has been found, as a theorem (194), that

IV. . . v v = Iv : I (1 : v)
= Iv: IRr

;

but the definition (258) of Ra gave us the lately cited equation, RIv = lEv ; we have

therefore, by the recent formula II., the equation,

V. . . Iv .Iv = Iv :RIv; or VI. . . [3.a = (3 : Ra,

as in 278, I.
;
a and /3 still denoting any two vectors. The two interpretations

therefore coincide
)
at least in their results, although they have been obtained by dif

ferent processes, or suggestions, and are expressed by two different /ormw&E.

(2.) The result 279, II., respecting conjugate products of vectors, corresponds

thus to the result 191, (2.), or to the first formula of 223, (I.)-

(3.) The two formulae of 279, (1.) and (2.), respecting the scalar and right

parts of the product (3a, answer to the two other formulae of the same sub-article,

223, (1.), respecting the corresponding parts of v v.

(4.) The doubly distributive property (280), of vector-multiplication, is on this

plan seen to be included in the corresponding but more general property (212), of

multiplication of quaternions,

(5.) By changing IVg-, IVg , t,
t

,
and o, to a, /3, a, b, and y, in those formula)

of Art. 208 which are previous to its sub-articles, we should obtain, with the recent

definition (or interpretation) II. of /3a, several of the consequences lately given (in

sub-arts, to 281), as resulting from the former definition, 278, I. Thus, the equa

tions,

VI., VII., VIII,, IX., X., XL, XII., XXIL, and XXIII.,

of 281, correspond to, and may (with our last definition) be deduced from, the for

mula,

V., VI., VIII., XL, XIL, XXIL, XX., XIV., and XVI., XVIII.,

of 208. (Some of the consequences from the sub-articles to 208 have been already

considered, in 281, (11.))
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(6.) The geometrical properties of the line IV/3a, deduced from the first defini

tion (278) of (3a in 281, (3.) and (4.), (namely, the positive rotation round that line,

from /3 to a
;

its perpendicularity to their plane ; and the representation by the same

line of the paralellogram under those two factors, regard being had to units of length

and of area,) might also have been deduced from 223, (4.), by means of the second

definition (284), of the same product, (3a.

SECTION 4. On the Symbolical Identification ofa Right Qua
ternion with its own Index: and on the Construction of a

Product of Two Rectangular Lines, by a Third Line, rect

angular to both.

285. It has been seen, then, that the recent formula 284,

II. or III., may replace theformula 278, 1., as a second definition

of a product oftwo vectors, which conducts to the same conse

quences, and therefore ultimately to the same interpretation

of such a product, as t\\Q first. Now, in the second formula,

we have interpreted that product, )3a, by changing the twofac

tor-lines, a and
|3,

to the two right quaternions, v and v, or

T !

a and I 1

^, of which they are the indices; and by then de

fining that the sought product /3a is equal to the product v v,

of those two right quaternions. It becomes, therefore, impor
tant to inquire, at this stage, howfar such substitution, of I&quot;

!a

for a, or of v for Iv 9 together with the converse substitution, is

permitted in this Calculus, consistently with principles already

established. For it is evident that if such substitutions can

be shown to be generally legitimate, or allowable, we shall

thereby be enabled to enlarge greatly the existing field of inter

pretation: and to treat, in all cases, Functions of Vectors, as

being, at the same time, Functions ofRight Quaternions.

286. We have first, by 133 (comp. 283, I.), the equality,

L..I-V3 = I-X if p = a.

In the next place, by 206 (comp. 283, II.), we have the formula of

addition or subtraction,

II. ..r i

(/3a)=I- /3 I-;

with these more general results of the same kind (comp. 207

and 99),
III. . . I- 2o = Si- 1 *

; IV. .. I- 2a:n = ^xl~l
a.
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In the third place, by 193 (comp. 283, III.), we have, for division,

the formula,
V... I-

l

p:I-*a = p:a-9

while the second definition (284) of multiplication ofvectors, which has

been proved to be consistent with the first definition (278), has given

us the analogous equation,

VI. . . I- }

p.I-
} a = p.a = pa.

It would seem, then, that we might at once proceed to define, for the

purpose of interpreting any proposed Function of Vectors as a Quater-

ternion, that the following general Equation exists :

VII. .. 1-^ = 0; or VIII. . . It&amp;gt;
=

v, if v =
^;

or still more briefly and symbolically, if it be understood that the

subject of the operation I is always a right quaternion,

IX. ..1=1.

But, before finally adopting this conclusion, there is a case (or rather

a class of cases), which it is necessary to examine, in order to be cer

tain that no contradiction to former results can ever be thereby caused.

287. The most general form of a vector-function, or of a vector

regarded as a function of other vectors and of scalars, which was

considered in the First Book, was the form (99, comp. 275),

and we have seen that if we change, in this form, each vector a to the

corresponding right quaternion I 1

a, and then take the index of the

new right quaternion which results, we shall thus be conducted to

precisely the same vector p, as that which had been otherwise ob

tained before; or in symbols, that

II. . . 2xa = ISotf- a (comp. 286, IV.).

But another form of a vector-function has been considered in the Se

cond Book ; namely, the form,

III.. ./&amp;gt;=...^ (226, III.);

in which a, /3, 7, d,
e . . . are any odd number of complanar vectors,

And before we accept, as general, the equation VII. or VIII. or IX.

of 286, we must inquire whether we are at liberty to write, under
the same conditions of complanarity, and with the same signification

of the vector p, the equation,
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288. To examine this, let there be at first only three given com-

planar vectors, &amp;lt;y\\\a, P; in which case there will always be (by

226) a, fourth vector
/&amp;gt;,

in the same plane, which will represent or

construct the function (7:^). a; namely, the fourth proportional to

/3, 7, a. Taking then what we may call the Inverse Index-Functions,
or operating on these four vectors a, /3, 7, p by the characteristic I 1

,

we obtain four collinear and right quaternions (209), which may be

denoted by v, v
, v&quot;,

v &quot;

;
and we shall have the equation,

V. . . v &quot;:v= (p: a=7:j3=)y&quot;:v ;

or VI. . . v&quot;
=

(v&quot;:v ).v\

which proves what was required. Or, more symbolically,

VII
r

&amp;gt;

)

-&amp;gt;

)

_
fY- IX

T^-a-p-

VIII. .. Z.a = p = I(I-V)

And it is so easy to extend this reasoning to the case of any greater

odd number of given vectors in one plane, that we may now consi

der the recent formula IV. as proved.

289. We shall therefore adopt, as general, the symbolical

equations VII. VIII. IX. of 286
;
and shall thus be enabled,

in a shortly subsequent Section, to interpret ternary (and other)

products ofvectors, as well as powers and other Functions of

Vectors, as being generally Quaternions; although they may,
in particular cases, degenerate (131) into scalars, or may be

come right quaternions (
1 32) : in which latter event they may,

in virtue of the same principle, be represented by, and equated

to, their own indices (133), and so be treated as vectors. In

symbols, we shall write generally, for any set of vectors a, /3,

y,
. . . and any function/ the equation,

I. /(, |3, 7, )
=

/(!-&amp;gt;, r&amp;gt;/3,
I- y, . .

.)
=

q,

q being some quaternion; while in the particular case when

this quaternion is right, or when
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we shall write also, and usually by preference (for that case),

the formula,

II. . ./(a, (3, y, . . .)
= I/a-a, P/3, 1 1

?, . .
.) -p,

p being a vector.

290. For example, instead of saying (as in 281) that the

Product ofany two Rectangular Vectors is a Right Quaternion,

with certain properties of its Index, already pointed out (284,

(6.) ), we may now say that such a product is equal to that in

dex. And hence will follow the important consequence, that

the Product of any Two Rectangular Lines in Space is equal

to (or may be constructed by) a Third Line, rectangular to

both ; the Rotation round this Product-Line, from the Multi

plier-Line to the Multiplicand Line, being Positive : and the

Length of the Product being equal to the Product of the

Lengths of the Factors, or representing (with a suitable refe

rence to units) the Area of the Rectangle under them. And

generally we may now, for all purposes of calculation and ex-

pression, identify* a Right Quaternion with its own Index.

SECTIONS On some Simplifications ofNotation, or of Ex

pression, resultingfrom this Identification ; and on the Con

ception of an Unit-Line as a Right Versor.

291. An immediate consequence of the symbolical equa
tion 286, IX., is that we may now suppress the Characteristic

I, ofthe Index ofa Right Quaternion, in all the formulae into

which it has entered ; and so may simplify the Notation. Thus,

instead of writing,

Ax. q
= lUVg, or Ax. = IUV, as in 204, (23.),

or Ax.2 = UIV?, Ax. = UIV, as in 274, (7.),

we may now write simplyt,

I. . . Ax.2=UV?; or II. ..Ax. = UV.

The Characteristic Ax., ofthe Operation oftaking the Axis of

a Quaternion (132, (6.) ), may therefore henceforth be replaced

*
Compare the Notes to pages 119, 136, 174, 191, 200.

f Compare the first Note to page 118, and the second Note to page 200.

2 s
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whenever we may think fit to dispense with it, by this combina

tion of two other characteristics, U and V, which are of greater
and more general utility, and indeed cannot* be dispensed with,

in the practice of the present Calculus.

292. We are now enabled also to diminish, to some extent,

the number oftechnical terms, which have been employed in

the foregoing Book. Thus, whereas we defined, in 202, that

the right quaternion V^ was the Right Part of the Quater
nion q, or of the sum Sq + Vq, we may now, by 290, identify

that part with its own index-vector IVq, and so may be led to

call it the vector part, or simply the VECTOR, j-
of that Quater

nion q, without henceforth speaking ofthe right part: although
the plan of exposition, adopted in the Second Book, required
that we should do so for some time. And thus an enuncia

tion, which was put forward at an early stage of the present

work, namely, at the end of the First Chapter of the First

Book, or the assertion (17) that

&quot; Scalar plus Vector equals Quaternion&quot;

becomes entirely intelligible, and acquires a perfectly definite

signification. For we are in this manner led to conceive a

Number (positive or negative) as being added to a Line,%
when it is added (according to rules already established) to

that right quotient (132), of which the line is the Index. In

symbols, we are thus led to establish the formula,

I. . . q
= a + a, when II. . . q

= a + I&quot;

]

a ;

* Of course, any one who chooses may invent new symbols, to denote the same

operations on quaternions, as those which are denoted in these Elements, and in the

elsewhere cited Lectures, by the letters U and V
; but, under some form, such sym

bols must be used : and it appears to have been hitherto thought expedient, by other

writers, not hastily to innovate on notations which have been already employed in

several published researches, and have been found to answer their purpose. As to the

type used for these, and for the analogous characteristics K, S, T, that must evidently

be a mere affair of taste and convenience : and in fact they have all been printed

as small italic capitals, in some examination-papers by the author.

f Compare the Note to page 191.

J On account of this possibility of conceiving a quaternion to be the sum of a

number and a line, it was at one time suggested by the present author, that a Qua

ternion might also be called a Grammarithm, by a combination of the two Greek

words, y pafjifjirf
and apiQuog, \\hich signify respectively a Line and a Number.
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whatever scalar, and whatever vector, may be denoted by a

and a. And because either of these two parts, or summands,

may vanish separately, we are entitled to say, that both Sca-

lars and Vectors, or Numbers and Lines, are included in the

Conception of a Quaternion, as now enlarged or modified.

293. Again, the same symbolical identification of Iv with

v (286, VIII.) leads to the forming of a new conception ofan

Unit-Line, or Unit-Vector (129), as being also a Right Versor

(153) ; or an Operator, of which the effect is to turn a line, in

a plane perpendicular to itself, through a positive quadrant of
rotation : and thereby to oblige the Operand-Line to take a

new direction, at right angles to its old direction, but without

any change of length. And then the remarks (154) on the

equation &amp;lt;?

2 = -l, where q was a right versor in the former
sense (which is still a permitted one) of its being a right ra

dial quotient (147), or the quotient oftwo equally long but mu

tually rectangular lines, become immediately applicable to the

interpretation of the equation,

|0

2 = -1, or p + 1 = (282, XIV.) ;

where p is still an unit-vector.

(1.) Thus (comp. Fig. 41), if a be any line perpendicular to such a vector p,

we have the equations,

I. ..po=j3; II. . . jo2a
=

p/3
= a =-a;

(3 being anotlier line perpendicular to p, which is, at the same time, at right angles

to a, and of the same length with it
;
and from which a third line a

,
or a, oppo

site to the line a, but still equally long, is formed by a repetition of the operation,

denoted by (what we may here call) the characteristic p ;
or having that unit-vec

tor p for the operator, or instrument employed, as a sort of handle, or axis* of ro

tation.

(2.) More generally (comp. 290), if a, /3, y be any three lines at right angles to

each other, and if the length of y be numerically equal to the product of the lengths

of a and
/3,

then (by what precedes) the line y represents, or constructs, or is equal

to, the product of the two other lines, at least if a certain order of the factors

(comp. 279) be observed: so that we may write the equation (comp. 281, XXI.),

IIL..oj3 = y, if IV. . . J- a, y J-
a, y 4- 0, and V. , . To. T/3 = Ty,

Compare the first Note to page 136.
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provided that the rotation round a, from /3 to y, or that round y from a to
/3, &c.,

has the direction taken as the positive one.

(3.) In this more general case, we may still conceive that the multiplier- line

a has operated on the multiplicand-line ]8,
so as to produce (or generate) the pro

duct-line y ;
but not now by an operation of version alone, since the tensor of j3 is

(generally) multiplied by that of a, in order to form, by V., the tensor of the pro-

(4.) And if (comp. Fig. 41, bis, in which a was first changed to /3, and then to

a ) we repeat this compound operation, of tension and version combined (comp. 189),

or if we multiply again by a, we obtain a. fourth line /3 ,
in the plane of /3, y, but

with a direction opposite to that of /3, and with a length generally different : namely

the line,

VI. . . ay=ao/3 = a2/3=/3 = -a2/3, if a = Ta.

(5.) The operator a2
,
or aa, is therefore equivalent, in its effect on /3, to the ne

gative scalar, a2
,
or (Ta)

3
,
or Na, considered as a coefficient, or as a (scalar)

multiplier (15) : whence the equation,

VII. . . a2= -Na(282, I.),

may be again deduced, but now with a new interpretation, which is, however, as we

see, completely consistent, in all its consequences, with the one first proposed (282).

SECTION 6. On the Interpretation ofa Product of Three or

more Vectors, as a Quaternion.

294. There is now no difficulty in interpreting a ternary

product ofvectors (comp. 277, I.), or a product of more vec

tors than three, taken always in some given order ; namely, as

the result (289, I.) of the substitution of the corresponding

right quaternions in that product: which result is generally
what we have lately called (276) an Oblique Quotient, or a

Quaternion with either an acute or an obtuse angle (130) ; but

may degenerate (131) into a scalar, or may become itself &

right quaternion (132), and so be constructed (289, II.) by a

new vector. It follows (comp. 28 1), that Multiplication of Vec

tors, like that of Quaternions (223), in which indeed we now
see that it is included, is an Associative Operation : or that

we may write generally (comp. 223, II.), for any three vec

tors, a, ]3, 7, the Formula,

I. . . y/3 a = y . /3a.

(1.) The formulae 223, III. and IV., are now replaced by the following :

II. . . V.yV/3a = aS/3y -/3Sya;
III. . . Vy0a = aSj3y

-
/3Sya + ySa/3 ;
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in which Vy/3a is written, for simplicity, instead of V(y/3a), or V. y/3a ;
and with

which, as with the earlier equations referred to, a student of this Calculus will find

it useful to render himself very familiar.

(2.) Another useful form of the equation II. is the following :

IV. . . V(Va/3.y) = aS/3y-/3Sya.

(3.) The equations IX. X. XIV. of 223 enable us now to write, for any three

vectors, the formula :

V. . . Sy/3a = - Sa/3y = Say(3
= -

S]3ya = S/3ay = - Sya/3
= + volume ofparallelepiped -under a, /3, y,

= + 6 X volume ofpyramid OABC
;

upper or lower signs being taken, according as the rotation round a from /3 to y is

positive or negative : or in other words, the scalar Sy/3a, of the ternary product of
vectors y/3a, being positive in the first case, but negative in the second.

(4.) The condition of complanarity of three vectors, a, /3, y, is therefore ex

pressed by the equation (comp. 223, XI.) :

VI. . . Sy/3a = ;
or VI . . . Sa/3y = ;

&c.

(5.) If a, /3, y be any three vectors, complanar or diplanar, the expression,

VII. .. = aS/3y-/3Sya,

gives ^VIII. . . Sy=0, and IX. . . Sa/3 = 0;

it represents therefore (comp. II. and IV.) & fourth vector S, which Is perpendicular

to y, but complanar with a and (3 : or in symbols,

X. ..flo-y, and XL . . d
||| a, 0.

(Compare the notations 123, 129.)

(6.) For any four vectors, we have by II. and IV. the transformations,

XII. . . V(Va]3 . Vyfl) =
XIII. . .

and each of these three equivalent expressions represents a. fifth vector e, which is at

once complanar with a, /3,
and with y ,

S
;
or a line OE, which is in the intersection

of the two planes, OAB and OCD.

(7.) Comparing them, we see that any arbitrary vector p may be expressed as

a linear function of any three given diplanar vectors, a, /3, y, by the formula :

XIV. . . pSajSy = aS/Byp + /3Syap + ySa/3p ;

which is found to be one of extensive utility.

(8.) Another very useful formula, of the same kind, is the following :

XV. . . pSa/3y = V|3y . Sap + Vya . S/3p + Vaj3 . Syp ;

in the second member of which, the points may be omitted.

(9.) One mode of proving the correctness of this last formula XV., is to operate

on both members of it, by the three symbols, or characteristics of operation,

XVI. ..S. a, S./3, S.y;

the common results on both sides being respectively the three scalar products,

XVII. . . Sap . Sa/3y, S/3p . Sa/3y, Syp . Sa/3y ;

where again the points may be omitted.
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(10.) We here employ the principle, that if the three vectors a, (3, y be actual

and diplanar, then no actual vector \ can satisfy at once the three scalar equations,

XVIII. . . Sa\ = 0, S|3X
-

0, SyX = ;

because it cannot be perpendicular at once to those three diplanar vectors.

(11.) If, then, in any investigation -with quaternions, we meet a system of this

form XVIII., we can at once infer that

XIX. . . X= 0, if XX. .. Say
&amp;gt;

;

while, conversely, if X be an actual vector, then a, (3, y must be complanar vectors,

or Scr/3y
=

0, as in VI .

(12.) Hence also, under the same condition XX., the three scalar equations,

XXI. . . SaX = Sajw, S/3X = S/3/i, SyX = Sy/i,

give XXII. ..\ =
/i.

(13.) Operating (comp. (9.)) on the equation XV. by the symbol, or charac

teristic, S . d, in which 8 is any new vector, we find a result which may be written

thus (with or without the points) :

XXIII. . . = Sap . S(3yd
-

S;3p . Sya + Syp . Sda(3
- Sdp . Sa/3y ;

where a, /3, y, d, p may denote any Jive vectors.

(14.) In drawing this last inference, we assume that the equation XV. holds

good, even when the three vectors a, (3, y are complanar : which in fact must be true,

as a limit, since the equation has been proved, by (9.) and (12.), to be valid, if y be

ever so little out of the plane of a and (3.

(15.) We have therefore this new formula :

XXIV. . . V/3ySap + Vya S,3p + Va/3Syjo
=

0, if Sa/3y = ;

in which p may denote any fourth vector, whether in, or out of, the common plane

of a, )3, y.

(16.) If p be perpendicular to that plane, the last formula is evidently true, each

term of the first member vanishing separately, by 281, (7.) ;
and if we change p to

a vector S in the plane of a, (3, y, we are conducted to the following equation, as an

interpretation of the same formula XXIV., which expresses a known theorem of

plane trigonometry, including several others under it:

XXV. . . sin BOC . cos AOD + sin COA . cos BOD + sin AOB . cos COD = 0,

for any four complanar and co-initial lines, OA, OB, oc, OD.

(17.) By passing from OD to a line perpendicular thereto, but in their common

plane, we have this other known* equation :

XXVI. . . sin BOC sin A9D + sin COA sin BOD + sin AOB sin COD =
;

which, like the former, admits of many transformations, but is only mentioned here

as offering itself naturally to our notice, when we seek to interpret the formula

XXIV. obtained as above by quaternions.

(18.) Operating on that formula by S.$, and changing p to e, we have this new

equation :

* Compare page 20 of the Geometric Superieure of M. Chasles.
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XXVII. . . = SatSfad + S/3 Sya + SyeSa/3, if Sa/3y = ;

which might indeed have been at once deduced from XXIII.

(19.) The equation XIV., as well as XV., must hold good at the limit, when a,

(3, y are complanar ; hence

XXVIII. . . aS/3yp + /3Syap + ySa/3p = 0, if Sa/3y = 0.

(20.) This last formula is evidently true, by (4.), if p be in the common plane
of the three other vectors ; and if we suppose it to be perpendicular to that plane,
so that

XXIX...p||V/3y|[Vya||Va/3,

and therefore, by 281, (9.), since S (S/3y . p) = 0,

XXX. . . S/3yp
= S(V/3y.p) = V/3y.p, &c.,

we may divide each term by p, and so obtain this other formula,

XXXI. . . aVj3y + /3Vy + yVa/3 = 0, if Sa/3y = 0.

(21.) In general, the vector (292) of this last expression vanishes by II.; the

expression is therefore equal to its own scalar, and we may write,

XXXTI. . . aV/3y + /3Vya + yVa/3 = 3Sa/3y,

whatever three vectors may be denoted by a, (3, y.

(22.) For the case of complanarity, if we suppose that the three vectors are

equally long, we have the proportion,

XXXIII. . . Vj3y : Vya : Va/3 = sin BOC : sin COA : sin AOB
;

and the formula XXXI. becomes thus,

XXXIV. . . OA . sin BOC + OB . sin COA + oc . sin AOB =
;

where OA, OB, oc are any three radii ofone circle, and the equation is interpreted as

in Articles 10, 11, &c.

(23.) The equation XXIII. might have been deduced from XIV., instead of

XV., by first operating with S., and then interchanging 8 and p.

(24.) A vector p may in general be considered (221) as depending on three sca-

lars (the co-ordinates of its term) ;
it cannot then be determined by fewer than three

scalar equations ; nor can it be eliminated between fewer than four.

(25.) As an example of such determination of a vector, let a, (3, y be again any
three given and diplanar vectors ; and let the three given equations be,

XXXV. . . Sap = a, S/3p
=

b, Syp = c
;

in which a, b, c are supposed to denote three given scalars. Then the sought vector

p has for its expression, by XV.,

t
XXXVI. . . p = e-i(aV/3y + 6Vya + cVa/3), if XXXVII. . . e = Sa/3y.

(26.) As another example, let the three equations be,

XXXVIII. . . S/3yp
= a

, Syap = I
, Sa/3p = c

;

then, with the same signification of the scalar e, we have, by XIV.,

XXXIX. . . p = e- 1

(a a + b
/3 + c y).

(27.) As an example of elimination of a vector, let there be the four scalar

equations,
XL. ..Sap = a, S(3p

=
b, Syp =

c, S&amp;lt;V

=
c?;



320 ELEMENTS OF QUATERNIONS. [BOOK III.

then, by XXIII., we have this resulting equation, into which p does not enter, but

only the four vectors, a . . #, and thefour scalars, a . . d:

XLI. . . a . Sfiyd
- b . Sya + c . SflajS

- d. Sa/3y = 0.

(28.) This last equation may therefore be considered as the condition of concur

rence of the four planes, represented by the four scalar equations XL., in one com

mon point; for, although it has not been expressly stated before, it follows evidently

from the definition 278 of a binary product of vectors, combined with 196, (5.),

that every scalar equation of the linear form (comp. 282, XVIII.),

XLII. . . Sap = a, or Spa = a,

in which a = OA, and p = OP, as usual, represents a plane locus of the point P
;
the

vector of the foot s, of the perpendicular on that plane from the origin, being

XLIII. . . os = cr=Ra=oa- 1

(282, XXL).

(29.) If we conceive a pyramidal volume (68) as having an algebraical (or sca

lar} character, so as to be capable of bearing either a positive or a negative ratio to

the volume of a given pyramid, with a given order of its points, we may then omit

the ambiguous sign, in the last expression (3.) for the scalar ofa ternary product of

vectors : and so may write, generally, OABC denoting such a volume, the formula,

XLIV. . . Srr/3y
= 6 . OABC,

= a positive or a negative scalar, according as the rotation round OA from OB to oc is

negative or positive.

(30.) More generally, changing o to D, and OA or a to a S, &c., we have thus

the formula :

XLV. . . 6 . DABC = S (a
-

fl) (|3
-

) (y
-

c)
= Sa/3y

-
S/3y5 -f Sy a - Sa/3 ;

in which it may be observed, that the expression is changed to its own opposite, or

negative, or is multiplied by 1, when any two ofthe four vectors, a, (3, y, d, or when

any two of the four points, A, B, c, D, change places with each other; and therefore

is restored to its former value, by a second such binary interchange.

(31.) Denoting then the new origin of a, (3, y, S by E, we have first, by XLIV.,

XLV., the equation,

XLVI. . . DABC = EABC EBCD + ECDA EDAB
;

and may then write the result (comp. 68) under the more symmetricform (because

EBCD = BECD = &C.) :

XLVII. . . BCDE 4 CDEA -f DEAB + EABC + ABCD = ;

in which A, B, C, D, E may denote any five points ofspace.

(32.) And an analogous formula (69, III.) of the First Book, for any six points

OABCDE, namely the equation (comp. 65, 70),

XLVIII. . . OA. BCDE + OB. CDEA + OC. DEAB + OD. EABC -f OE. ABCD = 0,

in which the additions are performed according to the rules of vectors, the volumes

being treated as scalar coefficients, is easily recovered from the foregoing principles

and results. In fact, by XLVII., this last formula may be written as

XLIX. . . ED . EABC = EA . EBCD + EB . ECAD -f EC . EABD
;

or, substituting a, /5, y, S for EA, EB, EC, ED, as
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L. .

which is only another form of XIV., and ought to be familiar to the student.

(33.) The formula 69, II. may be deduced from XXXI., by observing that, when

the three vectors a, /3, y are complanar, we have the proportion,

LI. . . V(8y : Vya : Va/3 : V (/3y + ya + a/3)
= OBC : OCA : OAB : ABC,

\fsigns (or algebraic or scalar ratios) of areas be attended to (28, 63); and the

formula 69, I., for the case of three collinear points A, B, c, may now be written as

follows :

if the three coinitial vectors a, j8, y be termino-coUinear (24).

(34.) The case whenjfawr coinitial vectors a, /3, y, S are termino-complanar
or when they terminate in four complanar points A, B, c, D, is expressed by equating

to zero the second or the third member of the formula XLV.

(35 ) Finally, for ternary products of vectors in general, Ave have the formula:

LIU. . . a2
/3

2
y
2 + (Sa/3y) = (Va/3y)2 = (aS/3y

-
/3Sya + ySa/3)2

= a2
(S/3y)2 + |33 (Sya)2 + y2 (Sa/3)2

-
2S/3y Sya Sa/3.

295. The identity (290) of a n^# quaternion with its m-

efea?, and the conception (293) of an unit-line as a r0^ verso? ,

allow us noAV to treat the three important versors, i
9 j9 k, as

constructed by, and even as (in our present view) identical

with, their own axes ; or with the three lines 01, oj, OK of 181,

considered as being each a certain instrument, or operator, or

agent in a right rotation (293, (!.)) which causes any line, in

a plane perpendicular to itself, to turn in that plane, through
a positive quadrant, without any change of its length. With
this conception, or construction, the Laws of the Symbols ijk

are still included in the Fundamental Formula of 183, namely,

?-^-#*|SU--l; (A)
and ifwe now, in conformity with the same conception, transfer

the Standard Trinomial Form (221) from Right Quaternions

to Vectors, so as to write generally an expression of the form,

I. . . p
= ix +jy + kz, or I . . . a = ia +jb -t- he, &c.,

where xyz and abc are scalars (namely, rectangular co-ordi

nates], we can recover many ofthe foregoing results with ease :

and can, if we think fit, connect them with co-ordinates.

(1.) As to the laws (182), included in the Fundamental Formula A, the law
2 =- 1, &c., may be interpreted on the plan of 293, (1.), as representing the rever

sal which results from two successive qnadrantal rotations.

2 T
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(2.) The two contrasted laws, or formulae,

ij
= + k, ji = -

k, (182, II. and III.)

may now be interpreted as expressing, that although a positive rotation through a

right angle, round the line i as an axis, brings a revolving line from the position j to

the position k, or + k, yet, on the contrary, a. positive quadrantal rotation round the

line j, as a new axis, brings a new revolving line from a new initial position, i,
to a

new final position, denoted by -
k, or opposite* to the old final position, -f k.

(3.) Finally, the law ijk
= 1 (183) may be interpreted by conceiving, that we

operate on a line a, which has at first the direction of +j, by the three lines, k,j, i,

in succession ; which gives three new but equally long lines, /3, y, d, in the direc

tions of - i, -f k, j, and so conducts at last to a line a, which has a direction op

posite to the initial one.

(4.) The foregoing laws of ijk, which are all (as has been said) included (184)

in the Formula A, when combined with the recent expression I. for p, give (comp.

222, (1.) ) for the square of that vector the value :

II. . . p
2 =

(ix +jy + hz)* = - (.r* + y + 22) ;

this square of the line p is therefore equal to the negative of the square of its length

Tp (185), or to the negative of its norm Np (273), which agrees with the former

resultf 282, (1.) or (2.).

(5.) The condition ofperpendicularity of the two lines p and a, when they are

represented by the two trinomials I. and I
., may be expressed (281, XVIII.) by the

formula,
III. . . = Sap = - (ax + by + cz) ;

which agrees with a well-known theorem of rectangular co-ordinates.

(6.) The condition of complanarity of three lines, p, p , p&quot;, represented by the

trinomial forms,

IV. . . p = ix +jy + kz, p = ix + &c., p&quot;
ix&quot; + &c.,

is (by 294, VI.) expressed by the formula (comp. 223, XIIL),

V. . . =
Sp&quot;p p = x&quot;(zy

- y z) + y&quot;(x z - z x) + z&quot;(y
x - x y) ;

agreeing again with known results.

(7.) When the three lines p, p , p&quot;,
or OP, OP

, OP&quot;,
are not in one plane, the

recent expression for
Sp&quot;p p gives, by 294, (3.), the volume of the parallelepiped

* In the Lectures, the three rectangular unit-lines, i,j, k, were supposed (in

order to fix the conceptions, and with a reference to northern latitudes) to be directed,

respectively, towards the south, the west, and the zenith ; and then the contrast of

the two formulae, ij
= + k, ji = k, came to be illustrated by conceiving, that we at

one time turn a moveable line, which is at first directed westward, round an axis

(or handle) directed towards the south, with a right-handed (or screwing} motion,

through a right angle, which causes the line to take an upward position, as Its final

one
;
and that at another time we operate, in a precisely similar manner, on a line

directed at first southward, with an axis directed to the west, which obliges this new

line to take finally a downward (instead of, as before, an upward) direction.

f Compare also 222, IV.
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(conip. 223, (9.) ) of which they are edges ; and this volume, thus expressed, is a

positive or a negative scalar, according as the rotation round p from p to o&quot; is itself

positive or negative : that is, according as it has the same direction as that round

+ # from -\-y to +z (or round i from j to ), or the direction opposite thereto.

(8.) It may be noticed here (comp. 223, (13.) ), that if a, (3, y be any three

vectors, then (by 294, III. and V.) we have :

VI. . . Safa = - Sri8a = i (a/3y
-

y/3a) ;

VII. . . Va/3y = + Vy/3a = |(a/3y + y/3a).

(9.) More generally (comp. 223, (12.) ), since a vector, considered as represent

ing a right quaternion (290), is always (by 144) the opposite ofits own conjugate, so

that we have the important formula,
*

VIII. . . Ka = - a, and therefore IX. . . KUa = Il a,

we may write for any number of vectors, the transformations,

X. . . SETa = + Sira=!(ria + n a),

XI. . . VHa = + Vn a = |(na + Il a),

upper or lower signs being taken, according as that number is even or odd : it being

understood that

XII. . . II a=...y/3a, if Ha = a/3y...

(10.) The relations of rectangularity,

XIII. . . Ax. i J- Ax. j ; Ax.j -i- Ax. k
;

Ax. k 4- Ax. i,

which result at once from the definitions (181), may now be written more briefly, as

follows :

XIV. . .i-A-j; jJ-k, k^i;
and similarly in other cases, where the axes, or the planes, of any two right quater

nions are at right angles to each other.

(11.) But, with the notations of the Second Book, we might also have writtten,

by 123, 181, such formulae of complanarity as the following, Ax.y \\\i, to express

(comp. 225) that the axis ofj was a line in the plane oft
;
and it might cause some

confusion, if we were now to abridge that formula toj |||
i. In general, it seems

convenient that we should not henceforth employ the sign |||, except as connecting

either symbols of three lines, considered still as complanar; or else symbols of three

right quaternions, considered as being collinear (209), because their indices (or axes)

are complanar : or finally, any two complanar quaternions (123).

(12.) On the other hand, no inconvenience will result, if we now insert the sign of

parallelism, between the symbols of two right quaternions which are, in the former

sense (123), complanar : for example, we may write, on our present plan,

XV. ..a* IK yj\\j, zk\\k t

if xyz be any three scalars.

*
If, in like manner, we interpret, on our present plan, the symbols Ua, Ta, Na

as equivalent to Ul^a, Tl^a, Nr a, we are reconducted (compare the Notes to

page 136) to the same significations of those symbols as before (155, 185, 273) ;
and

it is evident that oil the same plan we have now,

Sa = 0, Va = a.
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296. There are a few particular but remarkable cases, of ternary

and other products of vectors, which it may be well to mention here,

and of which some may be worth a student s while to remember:

especially as regards the products of successive sides of closed polygons,

inscribed in circles, or in spheres.

(1.) If A, B, c, D be any four concircular points, we know, by the sub-articles to

260, that their (inharmonic function (ABCD), as defined in 259, (9.), Is scalar; being

also positive or negative, according to a law of arrangement of those four points,

which has been already stated.

(2.) But, by that definition, and by the scalar (though negative*) character of the

square of a vector (282), we have generally, for any plane or gauche quadrilateral

ABCD, the formula :

I. . . C-(ABCD) = AB.BC.CD.DA= the continued product of the four sides;

in which the coefficient e2 is a positive scalar, namely the product of two negative

or of two positive squares, as follows :

II. . . e2 = BC2 .DA2 =BC2.DA2
&amp;gt;0.

(3.) If then ABCD be a plane and inscribed quadrilateral, we have, by 260, (8.),

the formula,

III. . . AB. BO. CD. DA = a positive or negative scalar,

according as this quadrilateral in a circle is a crossed or an uncrossed one.

(4.) The product a(3y of any three complanar vectors is a vector, because its

scalar part Sa/3y vanishes, by 294, (3.) and (4.); and if the factors be three suc

cessive sides AB, BC, CD of a quadrilateral thus inscribed in a circle, their product has

either the direction of the fourth successive side, DA, or else the opposite direction,

or in symbols,
IV. . . AB . BC . CD : DA &amp;gt; or &amp;lt; 0,

according as the quadrilateral ABCD is an uncrossed or a crossed one.

(5.) By conceiving the fourth point D to approach, continuously and indefinitely,

to the first point A, we find that the product of the

three successive sides of any plane triangle, ABC, is

given by an equation of the form :

V. . . AB . BC . CA = AT
;

AT being a line (comp. Fig. 63) which touches the

circumscribed circle, or (more fully) which touches

the segment ABC of that circle, at the point A
;
or re

presents the initial direction of motion, along the cir

cumference, from A through B to c : while the length

of this tangential product-line, AT, is equal to, or

represents, with the usual reference to an unit of length, the product of the lengths

of the three sides, of the same inscribed triangle ABC.

(6.) Conversely, if this theorem respecting the product of the sides of an inscribed

triangle be supposed to have been otherwise proved, and if it be remembered, then

since it will give in like manner the equation,
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A
Fig. 63, bis.

VI. . . AC.CD.DA=AU,

if D be any fourth point, concircular with A, B, c, while AU is, as in the annexed

Figures 63, a tangent to the new segment ACD, we can

recover easily the theorem (3.), respecting the product

of the sides of an inscribed quadrilateral ; and thence

can return to the corresponding theorem (260, (8.) ),

respecting the anharmonic function of any such figure

ABCD : for we shall thus have, by V. and VI., the

equation,

VII. . . AB. EC. CD. DA = (AT.AU) : (CA.AC),

in which the divisor CA.AC or N.AC, or Xc2
*

is always

positive (282, (1.) ), but the dividend AT.AU is nega

tive (281, (9.)) for the case of an uncrossed quadrilateral (Fig. 63), being on the

contrary positive for the other case of a crossed one (Fig. 63, bis).

(7.) If P be any point on the circle through a given point A, which touches at a

given origin o a given line OT = r, as represented in Fig. 64, we shall then have by

(5.) an equation of the form,

VIII. . . OA.AP.PO=iC.OT,

in which x is some scalar coefficient, which

varies with the position of P. Making then

OA= a, and OP= p, as usual, we shall have

IX. . . a (p
-
a)p = -

xr,
or

IX . . . p-
1

a&quot;
1 = XT : a2

p
2

,

or

IX&quot;. . . Vrp-i = Vra-i ;

and any one of these may be considered as a

form of the equation ofthe circle, determined by the given conditions.

(8.) Geometrically, the last formula IX.&quot; expresses, that the line p-i-cr 1

,
or

Rp - R, or A P (see again Fig. 64), if OA = cr 1 = Ra = R. OA, and OP = p-
1 = R. OP,

is parallel to the given tangent r at o
;
which agrees with Fig. 58, and with Art.

260.

(9.) If B be the point opposite to o upon the circle, then the diameter OB, or
/?,

as being 4- r, so that r(3~
l is a vector, is given by the formula,

X. . . r/3-
1 = Vra- 1

;
or X . . . (3

= - T : Vra i;

in which the tangent r admits, as it ought to do, of being multiplied by any scalar,
without the value of j3 being changed.

(10.) As another verification, the last formula gives,

XI. . . OB = T/3 = Ta : TVUra i - oi : sin AOT.

(11.) If a quadrilateral OABC be not inscriptible in a circle, then, whether it be

plane or gauche, we can always circumscribe (as in Fig. 65) two circles, OAB and OBC
about the two triangles, formed by drawing the diagonal OB

;
and then, on the plan

of (6.), we can draAv two tangents OT, ou, to the two segments OAB, OBC, so as to repre
sent the two ternary products,
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OA.AB.BO, and OB.BC.CO;

after which we shall have the quaternary product,

XII. . . OA.AB.BC.CO = OT.OU:OB2
;

where the divisor, c-B
2

,
or BO . OB, or N . OB, is a

positive scalar, but the dividend OT.OU, and there

fore also the quotient in the second member, or the

product in thefirst member, is a quaternion.

(12.) The axis of this quaternion is perpen

dicular to the plane TOU of the two tangents ; and

therefore to the plane itself of the quadrilateral

OABC, if that be a plane figure ; but if it be gauche,

then the axis is normal to the circumscribed sphere

at the point o : being also in all cases such, that the rotation round it, from ox to

OU, is positive.

(13.) The angle of the same quaternion is the supplement of the angle TOU be

tween the two tangents above mentioned
;

it is therefore equal to the angle U OT, if

ou touch the new segment OCB, or proceed in a new and opposite direction from o

(see again Fig. 65) ;
it may therefore be said to be the angle between the two arcs,

OAB and OCB, along which a point should move, in order to go from o, on the two

circumferences, to the opposite corner B of the quadrilateral OABC, through the two

other corners, A and c, respectively : or the angle between the arcs OCB, OAB.

(14.) These results, respecting the axis and angle of the product of the four suc

cessive sides, of any quadrilateral OABC, or ABCD, apply without anv modification to

the anharmonic quaternion (259, (9.)) of the same quadrilateral; and although,

for the case of a quadrilateral in a circle, the axis becomes indeterminate, because

the quaternary product and the anharmonic function degenerate together into sea-

lars, or because the figure may then be conceived to be inscribed in indefinitely many

spheres, yet the angle may still be determined by the same rule as in the general

case : this angle being TT, for the inscribed and uncrossed quadrilateral (Fig. 63) ;

but =0, for the inscribed and crossed one (Fig. 63, bis).

(15.) For the gauche quadrilateral OABC, which may always be conceived to be

inscribed in a determined sphere, we may say, by (13.), that the angle of the qua

ternion product, L (OA.AB.BC.CO), is equal to the angle of the lunule, bounded

(generally) by the two arcs of small circles OAB, OCB
;
with the same construction

for the equal angle of the anharmonic,

L (OABC), or L (OA : AB. EC : co).

(16.) It is evident that the general principle 223, (10.), of the permissibility of

cyclical permutation of quaternion factors under the sign S, must hold good for

the case when those quaternions degenerate (294) into vectors ; and it is still more

obvious, that every permutation of factors is allowed, under the sign T : whence

cyclical permutation is again allowed, under this other sign SU
;
and consequently

also (comp. 196, XVI.) under the sign L.

(17.) Hence generally, for any four vectors, we have the three equations,

XIII. . . Safiyd = Spy da. ; XIV. . . SUa/3?o = SU/3ya ;

XV. . . L a/3yS = L fiyda ;
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and in particular, for the successive sides of any plane or gauche quadrilateral ABCD,

we have the/oz/r equal angles,

XVI. . . L (AB . BC . CD . DA) = L (BC . CD . DA . AB) = &c.
;

with the corresponding equality of the angles of the four anharmonics,

XVII. . . L (ABCD) = L (BCDA) = L (CDAB) = L (DABC) ;

or of those of the four reciprocal anharmonics (259, XVII.),

XVII . . . L (ADCB) = L (BADC) = L (CBAD) = L (DCBA).

F

(18.) Interpreting now, by (13.) and (15.), these last equations, we derive from

them the following theorem, for the plane, or for space :

Let ABCD be any four points, connected layfour circles, each

passing through three of the points : then, not only is the angle

at A, between the arcs ABC, ADC, equal to the angle at c, be

tween CDA and CBA, but also it is equal (comp. Fig. 66) to the

angle at B, between the two other arcs BCD and BAD, and to

the angle at D, between the arcs DAB, DCB.

(19.) Again, let ABODE be any pentagon, inscribed in a

sphere ; and conceive that the two diagonals AC, AD are drawn.

We shall then have three equations, of the forms,

XVIII. . . AB.BC.CA = AT; AC.CD.DA = AU;
AD.DE .EA=AV;

where AT, AU, AV are three tangents to the sphere at A, so that their product is a

fourth tangent at that point. But the equations XVIII. give

XIX. . . AB.BC . CD . DE . EA = (AT . AU . Av) : (5* . ^D2
)

= AW = a new vector, which touches the sphere at A.

We have therefore this Theorem, which includes several others
-

under it :_
&quot; The product of thejive successive sides, ofany (generally gauche} pentagon

inscribed in a sphere, is equal to a tangential vector, drawn from thepoint at which
the pentagon begins and ends&quot;

(20.) Let then p be a point on the sphere which passes through o, and through
three given points A, B, c

;
we shall have the equation,

XX. .. = So-A.AB.Bc.CP.Po

(21.) Comparing with 294, XIV., we see that the condition for the four co-ini

tial vectors a, j3, y, p thus terminating on one spheric surface, which passes through
their common origin o, may be thus expressed :

XXL . . if p = xa + y/3 + zy, then p
2 = cca 2 + y/3

2 + zy2.

(22.) If then we project (comp. 62) the variable point p into points A ,
B

,
c on

the three given chords OA, OB, oc, by three planes through that point p, respectively
parallel to the planes BOC, COA, AOB, we shall have the equation :

XXII. . . op2 = OA.OA

(23.) That the equation XX. does in fact represent a spheric locus for the point
p, is evident from its mere form (comp. 282, (10.) ); and that this sphere passes
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through the four given points, o, A, B, c, may be proved by observing that the equa

tion is satisfied, when we change p to any one of the four vectors, 0, a, /3, y.

(24.) Introducing an auxiliary vector, OD or 8, determined by the equation,

XX II 1. . . S/3y = a*V/3y +/32Vya + y
?
Va/3,

or by the system of the three scalar equations (comp. 294, (25.) ),

XXIV. . . a2 = Sa, {& = Sfl/3, y
2 = Sy,

or XXIV. . . Star* =S^ 1 = Soy- = 1
,

the equation XX. of the sphere becomes simply,

XXV. . . p
2 = SSp, or XXV. . . Sfyr

1 = 1
;

so that D is the point of the sphere opposite to o, and d is a diameter (comp. 282,

IX .; and 196, (6.)).

(25.) The formula XXIII., which determines this diameter, may be written, in

this other way :

XXVI. . . Sa/3y = Va (/3
-

a) (y
-

/3) y ;

Or XXVI . . . 6.OABC.OD = - V(OA.AB.BC.CO) ;

where the symbol OABC, considered as a coefficient, is interpreted as in 294, XLIV.
;

namely, as denoting the volume of the pyramid OABC, which is here an inscribed

one.

(26.) This result of calculation, so far as it regards the direction of the axis of

the quaternion OA.AB.BC.co, agrees with, and may be used to confirm, the theorem

(12.), respecting tlieproduct of the successive, sides of a gauche quadrilateral, OABC ;

including the rule of rotation, which distinguishes that axis from its opposite.

(27.) The formula XXIII. for the diameter d may also be thus written :

XXVII. .. o.Sa-lB-
-

and the equation XX. of the sphere may be transformed to the following :

XXVIII. . . = S (0-
1 -

a-i) (y-i
- a-) (p

1 -
a&quot;

1

) ;

which expresses (by 294, (34.), comp. 260, (10.) ), that the four reciprocal vec

tors,

XXIX. . . OA = a = a- 1
,

OB =
(3
=

(3~
l
, oc = y =y~l

,
or = p =p~

}

,

are termino-complanar (64) ; the plane A B C P
,
in which they all terminate, being

parallel to the tangent plane to the sphere at o : because the perpendicular let fall

on this plane from o is

XXX. . . 8 =
a-i,

as appears from the three scalar equations,

XXXI. . . Sa S = Sfi d = Sy d = 1.

(28.) In general, if D be ihefoot of the perpendicularfrom o, on the plane ABC,

then

XXXII. . . S = S/3y : V(/3y + ya + a/3) ;

because this expression satisfies, and may be deduced from, the three equations,

XXXIII. . . Sa-i = SpH =
Syfr-

1 = 1.

As a verification, the formula shows that the length To, of this perpendicular, or

altitude, OD, is equal to the sextuple volume of the pyramid OABC, divided by the dou

ble area of the triangular base ABC. (Compare 281, (4.), and 294, (3.), (33.).)
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(29.) The equation XX., of the sphere OABC, might have been obtained by the

elimination of the vector
&amp;lt;5,

between the four scalar equations XXIV. and XXV., on

the plan of 294, (27.).

(30.) And another form of equation of the same sphere, answering to the deve

lopment of XXVIII., may be obtained by the analogous elimination of the same vec

tor S, between the four other equations ,
XXIV. and XXV .

(31.) The product of any even number of complanar vectors is generally a qua
ternion with an axis perpendicular to their plane ; but the product of the successive

sides of a hexagon ABCDEF, or any other even-sidedfigure, inscribed in a circle, is

a scalar : because by drawing diagonals AC, AD, AE from the first (or lasfy point A

of the polygon, we findfis in (6.) that it differs only by a scalar coefficient, or divisor,

from the product of an even number of tangents, at the first point.

(32.) On the other hand, the product of any odd number of complanar vectors is

always a line, in the same plane; and in particular (comp. (19.)), the product of

the successive sides of a pentagon, or heptagon, &c., inscribed in a circle, is equal to

a tangential vector, drawn from the first point of that inscribed and odd-sided poly

gon : because it differs only by a scalar coefficient from the product of an odd num

ber of such tangents.

(33.) The product of any number of lines in space is generally a quaternion

(289) ;
and if they be the successive sides of a hexagon, or other even-sided polygon,

inscribed in a sphere, the axis of this quaternion (comp. (12.) ) is normal to that

sphere, at the initial (or final) point of the polygon.

(34.) But the product of the successive sides of a heptagon, or other odd-sided

polygon in a sphere, is equal (comp. (19.) ) to a vector, which touches the sphere at

the initial or final point ;
because it bears a scalar ratio to the product of an odd

number of vectors, in the tangent plane at that point.

(35.) The equation XX., or its transformation XXVIII., may be called the con

dition or equation of homosphericity (comp. 260, (10.)) of the five points o, A, B,

c, P
;
and the analogous equation for the five points ABCDE, with vectors a/3yde

from any arbitrary origin o, may be written thus :

XXXIV. . . = S(a-/3) (/3-y) (y-fl)(fl-0 (
- a );

or thus, XXXV. . .
= aa2 + b($ + cy2 + dS2 + et 2

,

six times the second member of this last formula being found to be equal to the se

cond member of the one preceding it, if

XXXVI. . . a = BCDE, 6 = CDEA, C = DEAB, d = EABC, e =
ABCI&amp;gt;,

or more fully,

XXXVII. . . 60 == S (y
-

]3) (^
-

j3) (
-

|3)
= S (y fo

-
fo/3 + e/3y

-
/3yfl), &c.

;

so that, by 294, XLVIII. and XLVII., we have also (comp. Go, 70) the equation,

XXXVIII. . . = aa + 6/3 + cy + dS + ee,

with the relation between the coefficients,

XXXIX. . . = o + 6 + c + d + e,

which allows (as above) the origin of vectors to be arbitrary.

(36.) The equation or condition XXXV. may be obtained as the result of an

elimination (294, (27.) ), of a vector K, and of a scalar g, between five scalar equa
tions of the form 282, (10.), namely the five following,

2 u
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XL. . . a2 -2Sica-f ^ = 0, /3*-2Si:/3 + $f
=

0, . .
2 -2S/e-f g = ;

K being the rector ofthe centre K of the sphere ABCD, of which the equation may be

written as

XLI. . .

g being some scalar constant
;
and on which, by the condition referred to, the fifth

point E is situated.

(37.) By treating this fifth point, or its vector c, as arbitrary, we recover the

condition or equation of concircularity (3.), of the four points A, B, c, D ; or the

formula,
XLII. .. = V(a- 0)O-r)(r-*) (-)

(38.) The equation of the circle ABC, and the equation ofthe sphere ABCD, may
in general be written thus :

XLIII. ..0 = V(a-/3)(/3-y)(y-p)(p-a) ;

XLIV. . . = S(a -
j3) (j3

-
y) (y- *) (*-p) (p-a) ;

p being as usual the vector of a variable point P, on the one or the other locus.

(39.) The equations of the tangent to the circle ABC, and of the tangent plane
to the sphere ABCU, at the point A, are respectively,

XLV. . . 0=V(-/3) 03
-
y) (r -&amp;lt;0 (p-),

and XLVI. . . = S(o -/3) (/3-y) (y
-

5) (fl
-
a) (p

-
a).

(40.) Accordingly, whether we combine the two equations XLIII. and XLV.,
or XLIV. and XLVI., we find in each case the equation,

XLVIL . . (p
-

0)2
=

0, giving p = a, or p = A(20);

it being supposed that the three points A, B, c are not col/inear, and that the four

points, A, B, c, D are not complanar.

(41.) If the centre of the sphere ABCD be taken for the origin o, so that

XLVIII. . . a2 =
/3

2 = y
2 = 2 = - r2

,
or XLIX. . . Ta = T/3 = Ty = Td = r,

the positive scalar r denoting the radius, then after some reductions we obtain the

transformation,

L. ..V(a- /3)(/3-y)(y-^(^-a) = 2aS(/3-a)(y-a)(^-).

(42.) Hence, generally, if K be, as in (36.), the centre of the sphere, we have the

equation (comp. XXVI .),

LI. . . V(AB.BC.CD.DA) = 12KA.ABCD.

(43.) We may therefore enunciate this theorem :

il The vector part of the product offour successive sides, of a gauche quadrila

teral inscribed in a sphere, is equal to the diameter drawn to the initial point of the

polygon, multiplied by the sextuple volume of the pyramid, which its four points de

termine&quot;

(44.) In effecting the reductions (41.), the following general formulae of trans

formation have been employed, which may be useful on other occasions :

LII. . . aq + qa = 2 (aSq + Sga) ;
LII . . . aqa = a?Kq + ZaSqa ;

where a may be any vector, and q may be any quaternion.
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SECTION 7- On the Fourth Proportional to Three Diplanar
Vectors.

297. In general, when any four quaternions, q, q , q&quot;, q &quot;, satisfy

the equation of quotients,

I...q .q&quot;=q :q,

or the equivalent formula,

II..
.q&quot;&amp;gt;=(q .q).q&quot;

= q fq&quot;,

we shall say that they form a Proportion ; and that the fourth,

namely q &quot;,
is the Fourth Proportional to ihe first, second, and third

quaternions, namely to q, q
f

,
and

q&quot;,
taken in this given order.

This definition will include (by 288) the one which was assigned in

226, for the fourth proportional to three complanar vectors, a, /3, 7,

namely that fourth vector in the same plane, ^ = /3a~
1

fy, which has been

already considered; and it will enable us to interpret (comp. 289)

the symbol
III. . . ^a-

1

^, when 7 not
\\\ a, (3,

as denoting not indeed a Vector, in this new case, but at least a Qua

ternion, which may be called (on the present general plan) the Fourth

Proportional to these Three Diplanar Vectors, a, /?, 7. Such fourth

proportionals possess some interesting properties, especially with re

ference to their vector parts, which it will be useful briefly to consi

der, and to illustrate by showing their connexion with spherical

trigonometry, and generally with spherical geometry.

(1.) Let a, /3, y be (as in 208, (1.), &c.) the vectors of the corners of a triangle

ABC on the unit-sphere, whereof the sides are a, 6, c
;
and let us write,

IV. .

Z = cos a = Sy/3
1 = -

S/3y,

m = cos 6 = Say
1 = -

Sya,
n - cos c = S/Sa

1 = -
Sa/3;

where it is understood that

V. . . a2 = 02 = y
2 =-l, or VI. . . Ta =T/3 = Ty = 1

;

it being also at first supposed, for the sake of 6xing the conceptions, that each of these

three cosines, /, m, n, is greater than zero, or that each side of the triangle ABC is

less than a quadrant.

(2.) Then, introducing three new vectors, fl,
i
, ,

denned by the equations,

VII. . . 6 = Vy/3-
Ja = Va/S^y = ny + la -

m(3,

= Za +?H/3-ny,
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we find that these three derived tectors have all one common length, say r, because

they have one common norm ; namely,

VIII. . . N=N = N = J
2 + m2 + n2-2Zm=:r2

;

so that IX. . . T = Tt = T = r = V(/
s + m2 + W 2 _

2/ntn).

(3.) This common length, r, is less than unity; for if we write,

X. . .

we shall have the relation,

and the scalar e is different from zero, because the vectors a, /3, y are diplanar.

(4.) Dividing the three lines S, e, % by their length, r, we change them to their

versors (155, 156); and so obtain a new triangle, DEF, on the unit-sphere, of which

the corners are determined by the three new unit-vectors,

(5.) The sides opposite to D, E, F, in this new or de

rived triangle, are bisected, as in Fig. 67, by the corners

A, B, c of the old or given triangle ;
because we have the

three equations,

(6.) Denoting the halves of the new sides by a
,
b

,
c (so that the arc EF = 2a

,

&c.), the equations XIII. show also, by IV. and IX., that

XIV. . . cos a = r cos a
,

cosb = r cos 6
,

cos c = r cos c
;

the cosines of the half-sides of the new (or bisected} triangle, DEF, are therefore pro

portional to the cosines of the sides of the old (or bisecting) triangle ABC.

(7.) The equations IV. give, by 279, (1.),

XV. . . 2Z = (/3y + y/3), 2m = -(ya + ay), 2n = (a/3 + /3a) ;

we have therefore, by VII., the three following equations between quaternions,

which may also be.thus written,

XVI . . . fa = a, /3
=

/3d, &amp;lt;5y

=
yt,

and express in a new way the relations of bisection (5.).

(8.) We have therefore the equations between vectors,

&quot;Y&quot;VTT Y -I Y /? ^/3-l /? ~I

or XVII . . . = ata-i, d = /3/3-i,
= y fy-i.

(9.) Hence also, by V., or because a, j3, y are unit-vectors,

&quot;V&quot;T7T TT c Y Y /3\/3 A

or XVIII . . . = ctiu
,

d = /3/3, = y5y.

(10.) In general, whatever the length of the vector a may be, the first equation

XVII. expresses that the line c is (comp. 138) the reflexion ofthe line
,
with respect

to that vector a
;
because it may be put (comp. 279) under the form,

XIX. . . fri-^a-^Kea- 1

,
or XIX . . . fa- 1 =Ka- .

(11.) Another mode of arriving at the same interpretation of the equation
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e = a%a~\ is to conceive decomposed into two summand vectors, and
&quot;,

one pa
rallel and the other perpendicular to a, in such a manner that

xx. ..?=r + r, n, T-L;
for then we shall have, by 281, (10.), the transformations,

XXI. . . c = a a-i + aSV1 = aa-i - &quot;-! = T - T 5

the parallel part of being thus preserved, but the perpendicular part being reversed,

by the operation a( )a~
1

.

(12.) Or we may return from c = a^or 1 to the form &amp;lt;x

= a, that is, to the first

equation XVI .
;
and then this equation between quaternions will show, as suggested

in (7.), that whatever may be the length of a, we must have,

XXII. . . Tf = T, Ax.* fa = Ax. a, Lea=LaZ;
so that the two lines e, are equally long, and the rotation from to a is egwa/ to

that from a to
;
these two rotations being similarly directed, and in one common

plane.

(13.) We may also write the equations XVII. XVII . under the forms,

XXIIL . . 6 = a- 1

, &c.; XXIII . . .
=a-&amp;gt;6a, &c.

(14.) Substituting this last expression for in the second equation XVII ., we
derive this new equation,

XXIV. . . S = (3a-haj3-i ;
or XXIV. . . e = a/3-^/Sa-

1

;

that is, more briefly,

XXV. . . 3 = qiq-\ and XXV. .. e = 9-^9, if XXVI. ..9= /3a- .

(15.) An expression of this/orm, namely one with such a symbol as

XXVII. . . 9( )g-i

for an operator, occurred before, in 179, (1.), and in 191, (5.) ;
and was seen to in

dicate a conical rotation of the axis of the operand quaternion (of which the symbol
is to be conceived as being written within the parentheses), round the axis of q,

through an angle = 2 Z. 9, without any change of the angle, or of the tensor, of that

operand; so that a vector must remain a vector, after any operation of this sort, as

being still a right-angled quaternion (290) ;
or (comp. 223, (10.) ) because

XXVIII. . . 89,09-!
= S9-V = Sp = 0.

(16.) If then we conceive two opposite points, p and p, to be determined on the

unit-sphere, by the conditions of being respectively the positive poles of the two op

posite arcs, AB and BA, so that

XXIX. . . OP = Ax. (3a~
l = Ax. 9, and op= p o = Ax. a/3-

1 = Ax. 9- ,

we can infer from XXIV. that the line OD may be derivedfrom the line OE, by a co

nical rotation round the line OP as an axis, through an angle equal to the double of
the angle AOB (if o be still the centre of the sphere).

(17.) And in like manner we can infer from XXIV ., that the line OE admits

* It was remarked in 291, that this characteristic Ax. can be dispensed with,

because it admits of being replaced by UV ;
but there may still be a convenience in

employing it occasionally.
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of being derived from OD, by an equal but opposite conical rotation, round the line

OP as a new positive axis, through an angle equal to twice the angle BOA.

(18.) To illustrate these and other connected results, the annexed Figure 68 is

drawn
;

in which p represents, as above,

the positive pole of the arc BA, and arcs are

drawn from it to D, E, F, meeting the great

circle through A and B in the points R, s, T.

(The other letters in the Figure are not, for

the moment, required, but their significa

tions will soon be explained.)

(19.) This being understood, we see,
L

first, that because the arcs EF and FD are

bisected (5.) at A and B, the three arcual

perpendiculars, ES, FT, DR, let fall from E,

F, D, on the great circle through A and B,

are equally long; and that therefore the

point P is the interior pole of the small cir

cle DBF
,
if F be the point diametrically op

posite toF: so that a conical rotation round

this pole p, or round the axis OP, would in fact bring the point D, or the line OD, to

the position E, or OE, which is one part of the theorem (17.).

(20.) Again, the quantity of this conical rotation, is evidently measured by the

arc RS of the great circle with p for pole ; but the bisections above mentioned give

(comp. 165) the two arcual equations,

XXX. . . r, RB= BT,
n TA = ~ AS

;
whence XXXI. . . RS = 2 BA,

and the other part of the same theorem (17.) is proved.

(21.) The point F may be said to be the reflexion, on the sphere, of the point D,

with respect to the point B, which bisects the interval between them
;
and thus we

may say that two successive reflexions of an arbitrary point upon a sphere (as here

fromo to F, and then from F to E), with respect to two given points (B and A) of a

given great circle, are jointly equivalent to one conical rotation, round the pole (p) of

that great circle ; or to the description of an arc ofa small circle, round that/?o/e, or

parallel to that great circle : and that the angular quantity (DPE) of this rotation

is double of that represented by the arc (BA) connecting the two given points ; or is

the double of the angle (BPA), which that given arc subtends, at the same pole (p)

(22.) There is, as we see, no difficulty in geometrically proving this theorem of
rotation : but it is remarkable how simply quaternions express it : namely by the

formula,
.A-X A.IT. . . a Q~^ pf3 * CL~ a j3

~

p I3ct~^*

in which a, (3, p may denote any three vectors ; and which, as we see by the points
}

involves essentially the associative principle of multiplication.

(23.) Instead of conceiving that the point D, or the T
line OD, has been reflected into the position F, or OF, /&quot; /fx.
with respect to the point B, or to the line OB, with a simi- / R B/ I ^XA S

lar successive reflexion from F to E, we may conceive that

a point has moved along a small semicircle, with B for

pole, from D to F, as indicated in Fig. 69, and then along Fig. 69.
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another small semicircle, with A for pole, from F to E
;
and we see that \.he result, or

effect,
of these two successive anil semicircular motions is equivalent to a motion along

an arc DE of a third small circle, which is parallel (as before) to the great circle

through B and A, and has a projection RS thereon, which (still as before) is double of
the given arc BA.

(24.) And instead of thus conceiving two successive arcual motions of a point D

upon a sphere, or two successive conical rotations ofa radius OD, considered as com

pounding themselves into one resultant motion of that point, or rotation of that ra

dius, we may conceive an analogous composition of two successive rotations of a

solid body (or rigid system), round axes passing through a point o, which Isfixed in

space (and in the body) : and so obtain a theorem respecting such rotation, which

easily suggests itself from what precedes, and on which we may perhaps return.

(25.) But to draw some additional consequences from the equations VII., &c., and

from the recent Fig. 68, especially as regards the Construction of the Fourth Pro

portional to three diplanar vectors, let us first remark, generally, that when we have

(as in 62) a linear equation, of the form

aa + fe/3+ cy4 di=0,

connecting four co-initial vectors a . . 5, whereof MO three are complanar, then this

fifth vector,
= act i 6/3

= cy dS,

is evidently complanar (22) with a, f3,
and also with y, 8 (comp. 294, (6.) ) ;

it is

therefore part of the indefinite line of intersection of the plane AOB, COD, of these

two pairs of vectors.

(26.) And if we divide this fifth vector t by the two (generally unequal) sca

lars,
a 4 5, and - c - d,

the two (generally unequal) vectors,

(aa + */3) : (a + 6), and (cy 4 dc~) : (c -f d),

which are obtained as the quotients of these two divisions, are (comp. 25, 64) the

vectors of two (generally distinct) points of intersection, of lines with planes, namely
the two following :

AB OCD, and CD OAB.

(27.) When the two lines, AB and CD, happen to intersect each other, the two

last-mentioned points coincide ; and thus we recover, in a new way, the condition

(63), for the complanarity of the four points o, A, B, c, or for the termino-compla-

narity of the four vectors a, f3, y, S
; namely the equation

ab + c + d=Q,

which may be compared with 294, XLV. and L.

(28.) Resuming now the recent equations VII., and introducing the new vector,

XXXIII. . . \ = ;a-mj3=K-a),
which gives,

XXXIV. .. Sy\ =
0, and XXXV. .. TA = V(r*

- n) = r sin c,

we see that the two arcs BA, DE, prolonged, meet in a point L (corap. Fig. 68), for

which OL= UX, and which is distant by a quadrant from c : a result which may be

confirmed by elementary considerations, because (by a well-kno vn theorem respect-



336 ELEMENTS OF QUATERNIONS. [BOOK III.

ing transversal area) the common bisector BA of the two sides, DE and EF, must meet

the third side in a point i., for which

sin DL = sin EL.

(29.) To prove by quaternions this last equality of sines, and to assign their

common value, we have only to observe that by XXXIII.,

XXXVI. . . VflX = V fX = fVfo ;

in which,
TS\ - T\ = r2 sin c

,
and TVfo =

r&amp;gt; sin 2c
;

the sines in question are therefore (by 204, XIX.),

XXXVI . . . TVUdX = TVUA =
|r2 sin 2c : r* sin c = cos c .

(30.) On similar principles, we may interpret the two vector-equations?

XXXVII. . . V/3X = /V/3a, Va\ = iV/3a,
in which

XXXVIII. . . T\ : TV/3a = r sin c : sin c = tan c : tan e,

an equivalent to the trigonometric equations,

tan CD COSBC cos AC

tan AB sin BL sin AT,

(31.) Accordingly, if we let fall the perpendicular CQ on AB (see again Fig. 68) r

so that Q bisects RS, and if we determine two new points M, N by the arcual equa

tions,
XL. . . I,M = AB = QR, ^ LN = O CD,

the arcs MR, ND will be quadrants ; and because the angle at R is right by construc

tion (18.), M is the pole of DR, and DM is a quadrant; whence D is the pole of MN
and the angle LNM is right : conceiving then that the arcs CA and CB are drawn, we

have three triangles, right-angled at Q and N, which show, by elementary principles,

that the three trigonometric quotients in XXXIX. have in fact a common value,

namely cos CQ, or cos L.

(32.) To prove this last result by quaternions, and without employing the auxi

liary points M, N, Q, R, we have the transformations, ..
V&amp;lt;5e yX V/3a yX V/3a

because

XLII. . . fl = ny-X, e =
and

XLIII. . . S^ =
yX

it being remembered that X -J-
y, whence

Vy\ = yX = -Xy, (yX)* = -
y
2X8 = X2

, SyX^ = 0.

(33.) At the same time we see that if p be (as before) the positive pole of BA
T

and if K, K be the negative and positive poles of DE, while L is the negative (as L

is the positive) pole of CQ, whereby all the letters in Fig. 68 have their significations

determined, we may write,

XL1V. . .OP = UV/3a; OK -yUX; OK = - yUX ;
Oi/ = - UX

;

while oi, = + UX, as before.
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(34.) Writing also,

XLV. ..K = -y\, or X = yK, and /*
=

/3a-
l
A,

so that XLV. . . OK = U/c, and OM = U/*,

we have XLVI. . . (3a^.y = /i\-.XK
- 1 ^ir 1

;

this fourth proportional, to the three equally long but diplanar vectors, a, /3, y, is

therefore a versor, of which the representative arc (162) is KM, and the representa

tive angle (174) is RDM, or L DR, or EDP
;
and we may write for this versor, or qua

ternion, the expression :

XLVII. . (3a~
l

y = cos L DR + OD . sin L DR.

(35.) The double of this representative angle is the sum of the two base-angles of

the isosceles triangle DPK ;
and because the two other triangles, EPP

,
F PD, are also

isosceles (19.), the lune FF shows that this sum is what remains, when we subtract

the vertical angle F, of the triangle DBF, from the sum of the supplements of the two

base-angles D and B of that triangle ;
or when we subtract the sum of the three an

gles of the same trianglefrom four right angles. We have therefore this very simple

expression for the Angle of the Fourth Proportional :

XLVIII. . . L /3a- y = L DR = TT - (D + E +
F&amp;gt;

(36.) Or, if we introduce the area, or the spherical excess, say 2, of the triangle

DBF, writing thus

XLIX. . . 2 = D+E+F-7T,

we have these other expressions :

L. . . /3a-
l

y = i7r-f2; LI. . . /3a- y = sin 2 i r^c cos 2
;

because

D = U =
r-io, by XII.

(37.) Having thus expressed f3a~
l
y, we require no new appeal to the Figure, in

order to express this other fourth proportional, ya&quot; */3, which is the negative of its

conjugate, or has an opposite scalar, but an equal vector part (comp. 204, (1.), and

295, (9.) ) : the geometrical difference being merely this, that because the rotation

round a from j3 to y has been supposed to be negative, the rotation round a from y
to (3 must be, on the contrary, positive.

(38.) We may thus write, at once,

LII. . . ya-!/3
= - K/Scr

1
y = - sin |2 + r-*8 cos f2 ;

and we have, for the angle of this new fourth proportional, to the same three vector*

a, /3, y, of which the second and third have merely changed places with each other,

the formula :

LTII. . - Aa- 1 3 = EDL

(39.) But the common vector part of these two fourth proportionals is 3, by VII.
;

we have therefore, by XI.,

LIV. . . r = cos|2 ;
e = sini2;

the upper sign being taken, when the rotation round a from /3 to y is negative, as

above supposed.

(40.) It follows by (6.) that when the sides la
,
25

,
2c

,
of a spherical triangle

2 x
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DBF, of which the area is 2, are bisected by the corners A, B, c of another spherical

triangle, of which the sides* are a, 6, c, then.

LV. . . cos a : cos a = cosb: cos b cos c : cos c = cos 2.

(41.) It follows also, from what lias been recently shown, that the angle RDK, or

MDN, or the arc MN in Fig. 68, represents the semi-area of the bisected triangle DBF;

whence, by the right-angled triangle OIN, we can infer that the sine of this semi-area

is equal to the sine of a side of the bisecting triangle ABC, multiplied into the sine of

the perpendicular, let fall upon that side from the opposite corner of the latter trian

gle ; because we have

LVI. . . sin 12 = sin MX = sin LM . sin L = sin AB . sin CQ.

(42.) The same conclusion can be drawn immediately, by quaternions, from the

expression,

LVII. . . sinS = e = Sa/3y = S(V/3a.y-0 = TV/3a.SU(V/3a:y);

in which one factor is the sine of AB, and the other factor is the cosine of er, or the

sine of CQ.

(43.) Under the same conditions, since

LVIII. . . a = U ( 4 = if 1

(e + 0, &c.
,

we may write also,

LIX. . . sin S=SU(e +)(?+*) (tf + = Sfa : 4/roii
;

in which, by IV. and XIII.,

LX. . . 4tom = -S(fl + e) ( + S)=r3-S( +

(44.) Hence also, by LIV.,

LXI. . . cos |2 = r = (r
3 - rS ( + 5 + fa) ) :

1 _e_
111 5

~ ~
3

and under &amp;lt;7is last form, we have a general expression for the tangent ofhalf the

spherical opening at o, of any triangular pyramid ODEF, whatever the lengths Tfl,

T, T^ o/*Ae ec^es a&amp;lt; O TTZOJ/ be.

(45.) As a verification, we have

LXIII. . . (4/mn)2 =-( + 2
(? 4 ^)

2
(^ + O1

= 2 (r*
-
Se?) (r2

- SS) (r
-
Sfa) ;

but the elimination of |2 between LIX. LXI. gives,

LXIV. . . (4/mn)
2 = (Sfa)

2 + (r3
- r(S^ + SS + Sfa) )

2
;

we ought then to find that

LXV. . .
(S&amp;lt;^)2

= r6-r2{(S02 -KSW+(S0~}-2SiSSfa,
if * = 2 = ?3 = r2

;
and in fact this equality results immediately from the general

formula 294, LIII.

(46.) Under the same condition, respecting the equal lengths of #, E, ,
we have

also the formula,

* These sides abc, of the bisecting triangle ABC, have been hitherto supposed for

simplicity (1.) to be each less than a quadrant, but it will be found that the for
mula LV. holds good, without any such restriction.
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LXVI. . .
-
V(fl + (e +

whence other verifications may be derived.

(47.) If ff denote the area* of the bisecting triangle ABC, the general principle

LXLI. enables us to infer that

LXVII...tan?
2 1 - S/3y

- Sya - Sa/3

sin c sin p .

1 + cos a -t- cos 6 + cos c

if
/j denote the perpendicular CQ from c on AB, so that

e = sin c sinj
= sin I sin c sin A= &C. (comp. 210, (21.) ).

(48.) But, by (IX.) and (XL),

LXVIII. . . e2 + (l + f + + )
2
=2(l + (1 + m) (1+n

/ a b c
=U cos- cos -cos -

hence the cosine and sine of the new semi-area are,

a 1 -I- cos a 4 cos b 4 cos c

LXIX...cos- =---
6

.
a

.
b

.

sin sin - sin c

LXX. . . sin *- = --- - &c.

008
\

(49.) Returning to the bisected triangle, DEF, the last formula gives,

sin a sin b sin F
LXXI. . . sin f2 =--

7
- = sin jo sin o sec c

,

ifp denote the perpendicular from F on the bisecting arc AB, or FT in Fig. 68
;

but cos 12 = cos c sec c
, by LV.

;
hence

LXXII. . . tan \ S = sin/) tan c = sin FT . tan AB.

Accordingly, in Fig. 68, we have, by spherical trigonometry,

sin FT = sin ES = sin LE sin L = cos LN sin MN cosec LM = tan MN cot AB.

(50.) The arc MN, which thus represents in quantity the semiarea of DEF, has its

pole at the point D, and may be considered as the representative arc (162) of a certain

new quaternion, Q, or of its versor, of which the axis is the radius OD, or U$
;
and

this new quaternion may be thus expressed :

LXXIII. . . Q = ya/3
= -

&amp;lt;52 +&quot; Sa/3y
= r* 4 e$ ;

its tensor and versor being, respectively,

LXXIV. . . TQ = r = cosfS; LXXV. . . UQ=cosS -i-oD.sin^S.

(51.) An important transformation of this last versor maybe obtained as fol

lows :

* The reader will observe that the more usual symbol 2, for this area of ABC,

is hae employed (36.) to denote the area of the vxscribed triangle DEF.
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LXXVI. . . UQ
so that

LXXVII. . . l

these powers of quaternions, with exponents each =
f- , being interpreted as square

roots (199, (1.) ), or as equivalent to the symbols V (tie-*), &c.

(52.) The conjugate (or reciprocal) versor, UQ&quot;
1
,
which has NM for its repre

sentative arc, may be deduced from UQ by simply interchanging /3
and y, or c and

;
the corresponding quaternion is,

LXXVIII. . . #= KQ= fl/fay
= r*-efl;

and we have

LXXIX. . . UQ = cosf2-OD.smi2 = (^- &amp;gt; (&- )* (tfl-
1

)
1

;

the rotation round D, from E to F, being still supposed to be negative.

(53.) Let H be any other point upon the sphere, and let OH = q ; also let 2 be

the area of the new spherical triangle, DFH
; then the same reasoning shows that

LXXX. . . cos 1 2 + OD.sin |2 = (d^
1

)
1 (ST 1

)* (^ OH

if the rotation round D from F to H be negative ;
and therefore, by multiplication of

the two co-axal versors, LXXVI. and LXXX., we have, by LXXV. the analogous

formula :

LXXXI. . . cos i(S + 2 ) + OD. sin |(S + 2 )
=

(fo-i&amp;gt; (e -i)i (frr
1

)
1 OM) J

where 2 + 2 denotes the arm o/tfAe spherical quadrilateral, DEFH.

(54.) It is easy to extend this result to the area of awy spherical polygon, or to

the spherical opening (44.) of any pyramid; and we may even conceive an exten

sion of it, as a limit, to the area of any closed curve upon the sphere, considered as

decomposed into an indefinite number of indefinitely small triangles, with some com

mon vertex, such as the point D, on the spheric surface, and with indefinitely small

arcs EF, FH, , . of the curve, for their respective bases : or to the spherical opening

of any cone, expressed thus as the Angle of a Quaternion, which is the limit* ofthe

product of indefinitely many factors ,
each equal to the square-root of a quaternion,

ivhich differs indefinitely little from, unity.

(55.) To assist the recollection of this result, it may be stated as follows (com p.

180, (3.) for the definition of an arcual sum):
&quot; The Arcual Sum of the Halves ofthe successive Sides, of any Spherical Poly

gon, is equal to an arc of a Great Circle, which has the Initial (or Final) Point of

* This Limit is closely analogous to a definite integral, of the ordinary kind
;
or

rather, we may say that it is a Definite Integral, but one of a new kind, which could

not easily have been introduced without Quaternions. In fact, if we did not employ

the non-commutative property (168) of quaternion multiplication, the Products here

considered would evidently become each equal to unity : so that they would fur

nish no expressions for spherical or other areas, and in short, it would be useless to

speak of them. On the contrary, when that property or principle of multiplication

is introduced, these expressions ofproduct-form are found, as above, to have ex

tremely useful significations in spherical geometry ; and it will be seen that they sug

gest and embody a remarkable theorem, respecting i\\Q resultant of rotations of a sys

tem, round any number of successive axes, all passing through one fixed point, but in

other respects succeeding each other with any gradual or sudden changes.
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the Polygon for its Pole, and represents the Semi-area of the Figure ;&quot; it being un

derstood that this resultant arc is reversed in direction, when the half-sides are (ar-

cually) added in an opposite order.

(56.) As regards the order thus referred to, it may be observed that in the arcual

addition, which corresponds to the quaternion multiplication in LXXVL, we con

ceive a point to move, first, from B to F, through half the arc DF
;
which half-side

of the triangle DBF answers to the right-hand factor, or square-root, (d~
i

y. We
then conceive the same point to move next from F to A, through half the arc FE,

which answers to the factor placed immediately to the left of the former ; having
thus moved, on the whole, so far, through the resultant arc BA (as a transvec-

tor, 180, (3.))) or through any equal arc (163), such as ML in Fig. 68. And

finally, we conceive a motion through half the arc ED, or through any arc equal to

that half, such as the arc LN in the same Figure, to correspond to the extreme left-

handfactor in the formula
;
the final resultant (or total transvector arc}, which

answers to the product of the three square roots, as arranged in the formula, being

thus represented by the final arc MN, which has the point D for its positive pole, and

the half-area, 2, for the angle (51.) of the quaternion (or versor} product which

it represents.

(57.) Now the direction of positive rotation on the sphere has been supposed to

be that round D, from F to E; and therefore along the perimeter, in the order DFE,
as seen* from any point of the surface within the triangle : that is, in the order in

which the successive sides DF, FE, ED have been taken, before adding (or compound

ing} their halves. And accordingly, in the conjugate (or reciprocal} formula

LXXIX., we took the opposite order, DBF, in proceeding as usual from right-hand
to left-hand factors, whereof the former are supposed to be multiplied &yf the latter;

while the result was, as we saw in (52.), a new versor, in the expression for which,

the area 2 of the triangle was simply changed to its own negative.

(58.) To give an example of the reduction of the area to zero, we have only to

conceive that the three points D, E, F are co-arcual (165), or situated on one great
circle ; or that the three lines S, e, % are complanar. For this case, by the lawsj
of complanar quaternions, we have the formula,

LXXXII. . . (ri)i (eS-J)l ($- )*= 1, if

thus cos IS = 1, and 2 = 0.

* In this and other cases of the sort, the spectator is imagined to stand on the

point of the sphere, round which the rotation on the surface is conceived to be per
formed

;
his body being outside the sphere. And similarly when we say, for exam

ple, that the rotation round the line, or radius, OA, from the line OB to the line OC,
is negative (or left-handed), as in the recent Figures, we mean that such would ap

pear to be the direction of that rotation, to a person standing thus with his feet on

A, and with his body in the direction of OA prolonged: or else standing on the centre

(or origin) o, with his head at the point A. Compare 174, II.
; 177; and the Note

to page 153.

f Compare the Notes to pages 146, 159.

J Compare the Second Chapter of the Second Book.
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(59.) Again, in (53.) let the point H beco-arcual with D and F, or let S5r) = ;

then, because

Lxxxir. . . (^r
1

)* 0?fl-0
i = (S^

1

)*.
if s^ ;

=
o,

the product offour factors LXXXI. reduces itself to the product of three factors

LXXVI.
;
the geometrical reason being evidently that in this case the added area

2 vanishes ; so that the quadrilateral DEFH has only the same area as the triangle

DBF.

(60.) But this added area (53.) may even have a negative* effect, as for exam

ple when the new point H falls on the old side DE. Accordingly, if we write

LXXXIII. . . QI = (?-!)* (Sir
1

) OOs
and denote the product LXXXI. of four square-roots by Q2

&amp;gt;

we shall have the trans

formation,
LXXXIV. . . Qa= (fc-

1

)* Qi (fl-)*. if Sfoij = ;

which shows (comp. (15.) ) that in this case the angle of the quaternary product Qz

is that of the ternary product Qi, or the half-area of the triangle EFH (= DEF DHF),

although the axis of Q3 is transferred from the position of the axis of Qi, by a ro

tation round the pole of the arc ED, which brings it from OE to OD.

(Gl.) From this example, it may be considered to be sufficiently evident, how the

formula LXXXI. may be applied and extended, so as to represent (comp. (54.) ) the

area ofany closedfigure on the sphere, with any assumed point D on the surface as

a sort of spherical origin; even when this auxiliary point is not situated on the pe

rimeter, but is either external or internal thereto.

(62 ) A new quaternion Qo, with the same axis OD as the quaternion Q of (50.),

but with a double angle, and with a tensor equal to unity, may be formed by simply

squaring the versor UQ ;
and although this squaring cannot be effected by removing

the fractional exponents,^ in the formula LXXVI., yet it can easily be accomplished

in other ways. For example we have, by LXXIII. LXXIV., and by VII. IX. X.,

the transformations :%

LXXXV. . . Qo - U Q2 = r* (5yn/3)a = - fl- . yafic .

= - (y/5)2 = - -
&amp;lt;D

2 = r* - e^ + 2ed
;

and in fact, because 5 = r. OD, by XII., the trigonometric values L1V. for r and e

enable us to write this last result under the form,

LXXXVI. . . Qo = -
(y/3)

2 = cos S + OD . sin 2.

(63.) To show its geometrical signification, let us conceive that ABC and LMN

* In some investigations respecting areas on a sphere, it may be convenient to

distinguish (comp. 28, 63) between the two symbols DEF and DFE, and to consider

them as denoting two opposite triangles, of which the turn is zero. But for the pre

sent, we are content to express this distinction, by means of the two conjugate qua

ternion products, (51.) and (52.).

f Compare the Note to (54.).

J The equation dyafi = ya/3$ is not valid generally ; butwehave/ir d= Vya/3;

and in general, 7p =
pg, if p \\ \q.
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have the same meanings in the new Fig. 70, as in Fig. 68
;
and that

three new points, determined by the three arcual equations (163),

LXXXV1I. r&amp;gt;AC = ^CAj, &quot;BC=^CBi,

&amp;lt;&quot;&amp;gt; MN = &amp;lt;~&amp;gt; NMi ;

which easily conduct to this fourth equation of

the same kind,

LXXXVII . . . ft LM! = BIAI.
A,

This new arc L,MI represents thus (comp. 167, and

Fig. 43) the product aiy-
l

.y/3r
= ya-i./Sy

1
;

while the old arc ML, or its equal BA (31.), represents afl~
l

;
whence the arc MMI,

which has its pole at D, and is numerically equal to the whole area S of DEF (be

cause MX was seen to be equal (50.) to half that area), represents the product

ya-ijSy-J.a/^
1

,
or - (ya/3)

2
,
or Q - The formula LXXXVI. has therefore been

interpreted, and may be said to have been proved anew, by these simple geometri

cal considerations.

(64.) We see, at the same time, how to interpret the symbol,

LXXXVIII. . . Q =^- ;

a y /3

namely as denoting a versor, of which the axis is directed to, or from, the corner D

of a certain auxiliary spherical triangle DEF, whereof the sides, respectively opposite

to D, E, F, are bisected (5.) by the given points A, B, c, according as the rotation round

a from (3 to y is negative or positive ; and of which the angle represents, or is numeri

cally equal to, the area S of that auxiliary triangle : at least if we still suppose, as

we have hitherto for simplicity done (1.), that the sides of the given triangle ABC are

each less than a quadrant.

298. The case when the sides of the given triangle are all greater,

instead of being all less, than quadrants, may deserve next to be

(although more briefly) considered; the case when they are all

equal to quadrants, being reserved for a short subsequent Article:

and other cases being easily referred to these, by limits, or by passing
from a given line to its opposite.

(1.) Supposing now that

I. . . I &amp;lt; 0, m
&amp;lt; 0, n

&amp;lt; 0,

or that II. . .a&amp;gt; , b&amp;gt; , c&amp;gt; ,

2 2 2

we may still retain the recent equations IV. to XI.
;
XIII.

;
and XV. to XXVI., of

297
;
but we must change the sign of the radical, r, in the equations XII. and XIV.,

and also the signs of the versors U$, UE, U in XII., if we desire that the aides of

the auxiliary triangle, DEF, may still be bisected (as in Figures 67, 68) by the cor

ners of the given triangle ABC, of which the sides a, b, c are now each greater than

a quadrant. Thus, r being still the common tensor of d, , ,
and therefore being still

supposed to be itself&amp;gt;0,
we must write now, under these new conditions I. or

II.,

the new equations,
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III. . . OD = -Ufl = -r-i$; OE = -U6=-r- c; OF = - U = - r
-

;

IV. . . cos a = r cos a
,

cos 6 = r cos 6
,

cos c = r cos c .

(2.) The equations IV. and VIII. of 297 still holding good, we may now write,

V. . . + 2r cos a cos 6 cos c = cos a 2 + cos 6 2 + cos c *
1,

according as we adopt positive values (297), or negative values (298), for the co

sines I, m, n of the sides of the bisecting triangle ;
the value of r being still supposed

to be positive.

(3.) It is not difficult to prove (comp. 297, LI V., LXIX.), that

VI. . . r= + cos |S, according as l&amp;gt; 0, &c., or /&amp;lt; 0, &c. ;

the recent formula V. may therefore be written unambiguously as follows :

VII. . . 2 cos a cos b cos c cos 2 = cos a 2 + cos 6 2 + cos c 2 1
;

and the formula 297, LV. continues to hold good.

(4.) In like manner, we may write, without an ambiguous sign (comp. 297, LI.),

the following expression for the fourth proportional (Sa~
l
y to three unit-vectors o, /3,

y, the rotation round the first from the second to the third being negative :

VIII. . . 3a- 1

where the scalar part changes sign, when the rotation is reversed.

(5.) It is, however, to be observed, that although this/ormwZa VIII. holds good,

not only in the cases of the last article and of the present, but also in that which has

been reserved for the next, namely when 1= 0, &c.
; yet because, in the present case

(298) we have the area 2
&amp;gt; TT, the radius OD is no longer the (positive) axis U of

the fourth proportional (3a~
l

y ;
nor is \ir 2 any longer, as in 297, L., the (posi

tive) angle of that versor. On the contrary we have now, for this axis and angle,

the expressions :

IX. . . Ax. /3-iy = DO=-OD; X. . . /3a-iy
= (2-7r).

(6.) To illustrate these results by a construction, we may remark that if, in Fig.

67, the bisecting arcs EC, CA, AB be supposed each greater than a quadrant, and if

we proceed to form from it a new Figure, analogous to 68, the perpendicular CQ will

also exceed a quadrant, and the poles p and K will fall between the points c and Q ;

also M and n will fall on the arcs LQ and QL prolonged: and although the arc KM,

or the angle KDM, or I/DR, or EDP, may still be considered, as in 297, (34.), to re

present the versor (3a~
l

y, yet the corresponding rotation round the point u is now o*

a negative character.

(7.) And as regards the quantity of this rotation, or the magnitude of the angle

at D, it is again, as in Fig. 68, a base-angle of one

of three isosceles triangles, with p for their common

vertex
;
but we have now, as in Fig. 71, a new ar

rangement, in virtue of which this angle is to be

found by halving what remains, when the sum of

the supplements of the angles at D and E, in the tri

angle DEF, is subtractedfrom the angle at F, instead

of our subtracting (as in 297, (35.) ) the latter angle from the former sum
;

it u

therefore now, in agreement with the recent expression X.,

XI. . . Z./3a- y = i(D \ E t F)-TT.
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(8.) The negative of the conjugate of the formula VIII. gives,

XII. . . a- 13 =

and by taking the negative of the square of this equation, -we are conducted to the

following :

XIII. . . =-(ya-i (3)2 = c

a result which had only been proved before (comp. 297, (62.), (64.) ) for the case

2
&amp;lt; TT ;

and in which it is still supposed that the rotation round a from (3 to y is

negative.

(9.) With the same direction of rotation, we have also the conjugate or recipro

cal formula,

XIV. . . l-a-
(/3a-

1

y)2
= cos 2 - OD . sin 2.

(10.) If it happened that only owe side, as AB, of the given triangle ABC, was

greater, while each of the two others was less tban a quadrant, or that we had l&amp;gt; 0,

m
&amp;gt; 0, but n

&amp;lt; ;
and if we wished to represent the fourth proportional to a, /3, y by

means of the foregoing constructions : we should only have to introduce the point c

opposite to c, or to change y to y =
y ;

for thus the new triangle ABC Avould have

each side greater than a quadrant, and so would fall under the case of the present

Article; after employing the construction for which, we should only have to change
the resulting versor to its negative.

(11.) And in like manner, if we had I and m negative, but n positive, we might

again substitute for c its opposite point c
,
and so fall back on the construction of

Art. 297: and similarly in other cases.

(12.) In general, if we begin with the equations 297, XII., attributing any arbi

trary (but positive) value to the common tensor, r, of the three co-initial vectors

d, s, ,
of which the versors, or the unit-vectors US, &c., terminate at the corners of

a given or assumed triangle DBF, with sides = 2a
,
26

,
2c

,
we may then suppose

(comp. Fig. 67) that another triangle ABC, with sides denoted by a, 5, c, and with

their cosines denoted by /, m, n, is derived from this one, by the condition of bisect

ing its sides ; and therefore by the equations (comp. 297, LVIIL),

XV. ..OA=o = U(e + O, OB = /3=U(? + 5), oc = y = U(5 + e),

with the relations 297, IV. V. VI., as before; or by these other equations (comp.

297, XIII. XIV.),

XVI. . . e + = 2ra cos a
, + S = 2r/3 cos b\ $+e = 2ry cose .

(13.) When this simple construction is adopted, we have at once (comp. 297,

LX.), by merely taking scalars ofproducts of vectors, and without any reference to

areas (compare however 297, LXIX,, and 298, VII.), the equations,

XVII. . . 4 cos a cos b cos c = 4 cos b cos c cos a = 4 cos c cos a cos b

= -r-2S(+ o) (d + e)
= &c. = 1 + cos 2a + cos 26 + cos 2c

;

or

cos a _ cos 6 _ cose cos a 2 + cos b 2 + cos c 2 1
A V 111. .

-
f
-&quot;&quot; =-

f
~ ^ --

cos a cos o cos c 2 cos a cos b cos c

which can indeed be otherwise deduced, by the known formulae of spherical trigo

nometry.

2 Y
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(14.) We see, then, that according as the sum of the squares of the conines of
the half-sides, of a given or assumed spherical triangle, DEF, is greater than unity,

or equal to unity, or less than unity, the sides ofthe inscribed and bisecting triangle,

ABC, are together less than quadrants, or together equal to quadrants, or together

greater than quadrants.

(15.) Conversely, if the sides of a given spherical triangle ABC be thus all less,

or all greater than quadrants, a triangle DEF, but only oree* such triangle, can be

exscribed to it, so as to have its sides bisected, as above : the simplest process being

to let fall a perpendicular, such as CQ in Fig. 68, from c on AB, &c.
;
and then to draw

new arcs, through c, &c., perpendicular to these perpendiculars, and therefore coin

ciding in position with the sought sides DE, &c., of DEF.

(16.) The trigonometrical results of recent sub-articles, especially as regards the

areaf of a spherical triangle, are probably all well known, as certainly some ofthem

are
;
but they are here brought forward only in connexion with quaternionformula;

and as one of that class, which is not irrelevant to the present subject, and includes

the formula 294, LI II., the following may be mentioned, wherein a, /3, y denote any

three vectors, but the order of the factors is important :

XIX . . (a/3y)2
= 2a2

/32y* + a2
(/3y)

? 4 (3* (ay)2 + y- (a/3 / - 4ay Sa/3 S/3y.

(17.) And if, as in 297, (1.), &c., we suppose that a, (3, y are three unit-vec

tors, OA, OB, oc, and denote, as in 297, (47.), by a the area of the triangle ABC,

the principle expressed by the recent formula XIII. may be stated under this appa

rently different, but essentially equivalent form :

a + /3 y + a /3 + yXX. . .
--

.
-

.
- - = cos a + a sin a ;

/3 + y a-f/3 y + a

which admits of several verifications.

(18.) We may, for instance, transform it as follows (comp. 297, LXVII.) :

XXI
K(a + /3) (/3 + y) (y + a) + 2&amp;lt;? + 2a(l + l+m + )

l + / + m-)-n ea a a cr

1 - a tan - cos -- a sin -

f a . o-\ 2

=
I cos --fa sin = cos a + a sin a, as above.

* In the next Article, we shall consider a case of indeterminateness, or of the ex

istence of indefinitely many exscribed triangles DEF : namely, when the sides of ABC

are all equal to quadrants.

f This opportunity may be taken of referring to an interesting Note, to pages

96, 97 of Luby s Trigonometry (Dublin, 1852); in which an elegant construction,

connected with the area of a spherical triangle, is acknowledged as having been men

tioned to Dr. Luby, by a since deceased and lamented friend, the Rev. William Digby

Sadleir, F. T.C. D. A construction nearly the same, described in the sub-articles to

297, was suggested to the present writer by quaternions, several years ago.
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(19.) This seems to be a natural place for observing (comp. (16.) ), that if
or, j8,

y, 8 be any four vectors, the lately cited equation 294, LIIL, and the square of the

equation 294, XV., with d written in it instead of p, conduct easily to the following

very general and symmetric formula :

XXII. . . a2
/3

2
y
2 5 2 + (S/3ySa)

2 + (SyaS/3S)
2 + (Sa/3Sy)2

+ 2a2S/3yS/WSyfl + 2/3
?SyaSySa -f 2y2Sa/3SS/3&amp;lt;S + 2 2

Sa/3S/3ySya
=

2SyaSa/3S/3&amp;lt;SSyfl +

+ (8
2
y
2
(

(20.) If then we take any spherical quadrilateral ABCD, and write

XXIII. . . I = cos AD = - SUad, m = cos BD = -
SU/35, n = cos CD = &c.,

treating or, (3, y as the unit-vectors of the points A, B, c, and /, m, n as the cosines

of the arcs BC, CA, AB, as in 297, (1.), we have the equation,

XXIV. . . 1 + PI * + m-m z + V2 -f 2Jm -f 2mnT 4- 2nlm + limn

= 2mnm n + 2nln l + llml m
+ 73 4 m2 + n2 + /

2 + m 2 + n &amp;gt;2 .

which can be confirmed by elementary considerations,* but is here given merely as

an interpretation of the quaternion formula XXII.

(21.) In squaring the lately cited equation 294, XV., we have used the two

following formulas of transformation (comp. 204, XXII., and 210, XVIII.), in

which
, (3, y may be any three vectors, and which are often found to be useful :

XXV. . . (Va/3)2 = (Sa/3)2
- tfp ;

XXVI. . . S (V/3y . Vy )
= y Sa/S

-
S/3ySya.

299- The tioo cases, for which the three sides a, b, c, of the given

triangle ABC, are all less, or all greater, than quadrants, having been

considered in the two foregoing Articles, with a reduction, in 298,

(10.) and (11.), of certain other cases to these, it only remains to

consider that third principal case, for which the sides of that given

triangle are all equal to quadrants : or to inquire what is, on our

general principles, the Fourth Proportional to Three Rectangular
Vectors. And we shall find, not only that this fourth proportional

is not itself a Vector, but that it does not even contain any vector

part (292) different from zero : although, as being found to be equal
to a Scalar, it is still included (131, 276) in the general conception
of a Quaternion.

(1.) In fact, if we suppose, in 297, (1.), that

I. . . Z = 0, m =
0, n = 0, or that II. . . a = b = e =

,

* A formula equivalent to this last equation ofseventeen terms, connecting the

six cosines of the arcs which join, two by two, the corners of a spherical quadrilateral

ABCD, is given at page 407 of Carnot s Geometric de Position (Paris, 1803).
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or III. . .S/3y = Sya = So/3 = 0, while IV. . . To =
T/3 = Ty = 1,

the formula 297, VII. give,

V. . . S = 0, e = 0,
=

;

but these are the vector parts of the three pairs offourth proportionals to the three

rectangular unit-lines, a, (3, y, taken in all possible orders; and the same evane

scence of vector parts must evidently take place, if the three given lines be only at

right angles to each other, without being equally long.

(2.) Continuing, however, for simplicity, to suppose that they are unit lines, and

that the rotation round a from (3 to y is negative, as before, we see that we have now

r=0, and c=l, in 297, (3.); and that thus the six fourth proportionals reduce

themselves to their scalar parts, namely (here) to positive or negative unity. In

this manner we find, under the supposed conditions, the values :

VI. . . /3a~ y = y/3~ a = ay~
l

fi
= + 1

;
VI . . . ya~

l

fS
=

a/3~
J

y = /3y~
l a = 1.

(3.) For example (comp. 295) we have, by the laws (182) of i,j, k, the values,

VII. . . ij-^k=jk-
l
i = ki- l

j = + 1
;

VII . . . kj-H = ik- 1

j=ji-
1k = ~l.

In fact, the two fourth proportionals, ij~
lk and kj-

l

i, are respectively equal to the

two ternary products, ijk and - kji, and therefore to + 1 and -
1, by the laws in

cluded in the Fundamental Formula A (183).

(4.) To connect this important result with the constructions of the two last Ar

ticles, we may observe that when we seek, on the general plan of 298, (15.), to

exscribe a spherical triangle, DEF, to a given tri-quadrantal (or tri-rectangular}

triangle, ABC, as for instance to the triangle UK (or JIK) of 181, in such a manner

that the sides of the new triangle shall be bisected by the corners of the old, the

problem is found to admit of indefinitely many solutions. Any point p may be as

sumed, in the interior of the given triangle ABC ;
and then, if its reflexions D, E, F

be taken, with respect to the three sides a, b, c, so that (comp. Fig. 72) the arcs

PD, PE, PF are perpendicularly bisected by those

three sides, the three other arcs EF, FD, DE will be

bisected by the points A, B, c, as required : because

the arcs AE, AF have each the same length as AP,

and the angles subtended at A by PE and PF are to

gether equal to two right angles, &c.

(5.) The positions of the auxiliary points, D, E,

F, are therefore, in the present case, indeterminate,
^

or variable ; but the sum of the angles at those three
pj,,. 79

points is constant, and equal to four right angles ;

because, by the six isosceles triangles on PD, PE, PF as bases, that sum of the

three angles D, E, F is equal to the sum of the angles subtended by the sides of the

given triangle ABC, at the assumed interior point p. The spherical excess of the

triangle DBF is therefore equal to two right angles, and its area 2 = TT
;
as may be

otherwise seen from the same Figure 72, and might have been inferred from the for

mula 297, LV., or LVI.

(6.) The radius OD, in the formula 297, XLVIL, for the fourth proportional

fia.-
l

y, becomes therefore, in the present case, indeterminate ; but because the angle

I/DR, or \ (TT
-

2), in the same equation, vanishes, the formula becomes simply



CHAP. I.J
OTHER VIEW OF A FOURTH PROPORTIONAL. 349

/3cr
1
y = 1, as in the recent equations VI.

;
and similarly in other examples, of the

class here considered.

(7.) The conclusion, that the Fourth Proportional to Three Rectangular Lines

is a Scalar, may in several other ways be deduced, from the principles of the present

Book. For example, with the recent suppositions, w
re may write,

VIII. . . /3a-i
= -

y, y/3-i
= -a, ay-l=-/3;

VIII . ..ya-i= + /3, a/3-
= + y, /By-

1 = + a
;

the three fourth proportionals VI. are therefore equal, respectively, to y
2

,

- a 2
,

-
j8

2
,
and consequently to + 1

;
while the corresponding expressions VI . are equal

to + /3
2

, + y
2

, + a2
,
and therefore to - 1.

(8.) Or (comp. (3.) ) we may write generally the transformation (comp. 282,

XXL*),
IX. . . /3a-iy

= a-2. /3ay, if cr2 = 1 : a2
,

in which the factor a~2 is always a scalar, whatever vector a may be
;
while the

vector part of the ternary product (Bay vanishes, by 294, III., when the recent con

ditions of rectangularity III. are satisfied.

(9.) Conversely, this ternary product /3ay, and this fourth proportional (3a~
l

y,

can never reduce themselves to scalars, unless the three vectors a, /3, y (supposed to

be all actual (Art. 1)) are perpendicular each to each.

SECTION 8. On an equivalent Interpretation of the Fourth

Proportional to Three Diplanar Vectors, deducedfrom the

Principles ofthe Second Book.

300. In the foregoing Section, we naturally employed the results

of preceding Sections of the present Book, to assist ourselves in at

taching a definite signification to the Fourth Proportional (297)

to Three Diplanar Vectors ;
and thus, in order to interpret the sym

bol (3a-
l

&amp;lt;y,

we availed ourselves of the interpretations previously ob

tained, in this Third Book, of cr 1 as a line, and of a/3, aySry as quater

nions. But it may be interesting, and not uninstructive, to inquire

how the equivalent symbol,

8
I. . . (/3: a).&amp;lt;v,

or
&amp;lt;y,

with
&amp;lt;y

not
\\\ a, /3,

might have been interpreted, on the principles of the Second Book, with

out at first assuming as known, or even seeking to discover, any in

terpretation of the three lately mentioned symbols,

II. . . a~ !

, 0/3, a/3^.

It will be found that the inquiry conducts to an expression of the

form,

* The formula here referred to should have been printed as Ra = 1 : a = cr 1
.
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III. . . 08:a).7

where is the same vector, and e is the same scalar, as in the recent

sub-articles to 297; while u is employed as a temporary symbol, to

denote a certain. Fourth Proportional to Three Rectangular Unit

Lines, namely, to the three lines OQ,, oi/, and OP in Fig. 68; so

that, with reference to the construction represented by that Figure,

we should be led, by the principles of the Second Book, to write the

equation:

IV. . . (OB : OA) . oc = OD . cos JS + (OL/ : OQ) . OP. sin ^2.

And when we proceed to consider what signification should be at

tached, on the principles of the same Second Book, to that particular

fourth proportional, which is here the coefficient of sin JS, and has

been provisionally denoted by u, we find that although it may be

regarded as being in one sense a Line, or at least homogeneous with a

line, yet it must not be equated to any Vector: being rather analogous,

in Geometry, to the Scalar Unit ofAlgebra, so that it may be naturally

and conveniently denoted by the usual symbol 1, or + 1, or be equated
to Positive Unity. But when we thus write M=l, the last term

of the formula III. or IV., of the present Article, becomes simply

e, or sin -^2 ; and while this term (or part) of the result comes to be

considered as a species of Geometrical Scalar, the complete Expres
sion for the General Fourth Proportional to Three Diplanar Vectors

takes the Form of a Geometrical Quaternion: and thus fatformula

297, XLVIL, or 298, VIIL, is reproduced, at least if we substitute

iu it, for the present, (/3: a).&amp;lt;y
for fia-

}

&amp;lt;y,

to avoid the necessity of

interpreting here the recent symbols II.

(1.) The construction of Fig. 68 being retained, but no principles peculiar to the

Third Book being employed, we may write, with the same significations of c, /&amp;gt;, &c.,

as before,

V. . . OB : OA = OR : OQ = cos c + (OL : OQ) sin c
;

VI. . . oo = OQ . cosp -f OP . sin p .

(2.) Admitting then, as is natural, for the purposes of the sought interpretation,

that distributive property which has been proved (212) to hold good for the multi

plication of quaternions (n& it does for multiplication in algebra); and writing for

abridgment,
VII. . . =

(oi/ : OQ) . OP;

we have the quadrinomial expression :

VIII. . . (OB : OA). oc = oi/. sin c cos/j + OQ . cos ccosp
+ OP . cos c sin p + u . sin c sinp ;

in which it may be observed that the sum of the squares of thefour coefficients of the
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three rectangular unit-vectors, OQ, OL
, OP, and of their fourth proportional, u, is

equal to unity.

(3.) But the coefficient of this fourth proportional, which may be regarded as a

species offourth unit, is

IX. . . sin c sin p = sin MN = sin 12 = e
;

\ve must therefore expect to rind that the three other coefficients in VIII., when di

vided by cos 2, or by r, give quotients which are the cosines of the arcual distances

of some point x upon the unit-sphere, from the three points i/, Q, P
;
or that a point

x can be assigned, for which

X. . . sin c cosp = r cos i/x
;

cos c cosp r cos Qx ;
cos c sin p = r cos PX.

(4.) Accordingly it is found that these three last equations are satisfied, when we

substitute D for x
;
and therefore that we have the transformation,

XI. . . oi/. sine cos /?+ OQ .cos c cosp + OP. cose sinp = on . cosi2 =
fl,

whence follow the equations IV. and III.
;
and it only remains to study and interpret

the fourth unit, u, which enters as a factor into the remaining part of the quadrino-

mial expression VIII., without employing any principles except those of the Second

Booh : and therefore without using the Interpretations 278, 284, of /3a, &c.

301. In general, when two sets of three vectors, a, /3, 7, and

a
, /3 , 7 ,

are connected by the relation,

it is natural to write this other equation,

and to say that these two fourth proportionals (297), to a, /3, 7, and

to a
, /3 , 7

r

, are equal to each other: whatever the full signification of

each of these two last symbols III., supposed for the moment to be

not yet fully known, may be afterwards found to be. In short, we

may propose to make it a condition of the sought Interpretation, on

the principles of the Second Book, of the phrase,

&quot;Fourth Proportional to Three Vectors,&quot;

and of either of the two equivalent Symbols 300, I., that the recent

Equation III. shall follow from I. or II.; just as, at the commence
ment of that Second Book, and before concluding (112) that the ge
neral Geometric Quotient fi: a of any two lines in space is a Quaternion,

we made it a condition (103) of the interpretation of such a quotient,

that the equation (ft: a).
=

/3 should be satisfied.

302. There are however two tests (comp. 287), to which the re

cent equation III. must be submitted, before its final adoption; in
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order that we may be sure of its consistency, 1st, with the previous

interpretation (226) of a Fourth Proportional to Three Complanar

Vectors, as a Line in their common plane; and Ilnd, with the gene-

ral principle of all mathematical language (105), that things equal to

the same thing, are to be considered as equal to each other. And it

is found, on trial, that both these tests are borne : so that they form

no objection to our adopting the equation 301, III., as true by defini

tion, whenever the preceding equation II., or I., is satisfied.

(1.) It may happen that the first member of that equation III. is equal to a line

tf, as in 226
; namely, when a, /3, y are complanar. In this case, we have by II.

the equation,

iv. . r-ff,, or rr...fy -*- T!
y y y a a

so that a
, /3 , y are also complanar (among themselves), and the line d is their

fourth proportional likewise : and the equation III. is satisfied, both members being

symbols for one common line, d, which is in general situated in the intersection of
the two planes, a/3y and a /3 y ; although those planes may happen to coincide ,

without disturbing the truth of the equation.

(2.) Again, for the more general case of diplanarity of a, /3, y, we may con

ceive that the equation* II. co-exists with this other of the same form,

a y a

if the definition 301 be adopted. If then that definition be consistent with general

principles of equality, we ought to find, by III. and VI., that this third equation be

tween two fourth proportionals holds good :

a a a y a

when the equations II. and V. are satisfied. And accordingly, those two equations

give, by the general principles of the Second Book, respecting quaternions considered

as quotients of vectors, the transformation,

(3
r

y (3 y y /3 y /3&quot;

-, -^ = -
, -v = -

-7;
=

-7,, as required.
ay ayy ay a

303. It is then permitted to interpret the equation 301, III., on

the principles of the Second Book, as being simply a transformation

(as it is in algebra) ofthe immediately preceding equation II., or I.;

and therefore to write, generally,

I. .. = if II. ..: =

* In this and other cases of reference, the numeral cited is always supposed to be

the one which (with the same number) has last occurred before, although perhaps

it may have been in connexion with a shortly preceding Article. Compare 217, (1.).
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where 7, 7 are any two vectors, and q, q are any two quaternions,

which satisfy this last condition. Now, if v and v be any two right

quaternions, we have (by 193, comp. 283) the equation,

III. . . Iv:Iw = v:v = vv
~ }

,

or

IV. . . v- 1

(Iv : Iv )
= w

- 1

; whence V. . . v~ l
. Iv = v

~ l
. Iv ,

by the principle which has just been enunciated. It follows, then,

that
&quot;if

a right Line (Iv) be multiplied by the Reciprocal (tr
1

) of the

Right Quaternion (v), of which it is the Index, the Product (v~
l

lv) is

independent of the Length, and of the Direction, of the Line thus ope

rated on
;&quot; or, in other words, that this Product has one common Va

lue, for all possible Lines (a) in Space: which common or constant

value may be regarded as a kind of new Geometrical Unit, and is equal

to what we have lately denoted, in 300, III., and VII., by the tem

porary symbol w; because, in the last cited formula, the line OP is

the index of the right quotient OQ,: oi/. Retaining, then, for the

moment, this symbol, u, we have,/br every line a in space, considered

as the index of a right quaternion, v, the four equations :

VI. . . v-*a = u; VII. . . a=VU; VIII. . . V = O:M;

IX. . . v&quot;

1 = u:a-,

in which it is understood that a = Iv, and the three last are here re

garded as being merely transformations of the first, which is deduced

and interpreted as above. And hence it is easy to infer, that for

any given system of three rectangular lines a, /3, 7, we have the general

expression :

X. . . (ft : a) . 7 - xu, if a-L/8, /J-i-7, 70.0;

where the scalar co-efficient, x, of the new unit, u, is determined by
the equation,

XL . . o; = (T0:Ta).T7, according as XII. . . U7 = Ax. (a: /3).

This coefficient x is therefore always equal, in magnitude (or absolute

quantity), to the fourth proportional to the lengths of the three given

lines o/fy ; but it is positively or negatively taken, according as the

rotation round the third line 7, from the second line ft, to thejirst line

a, is itself positive or negative: or in other words, according as the

rotation round the first line, from the second to the third, is on the

contrary negative or positive (compare 294, (3.) ).

(I.) In illustration of the constancy of that fourth proportional which has been,

for the present, denoted by u, while the system of the three rectangular unit-lines

2 z
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from whi&amp;lt;:h it is conceived to be derived is in any manner turned about, we may ob

serve that the three equations, or proportions,

XIII. . .u:y=j3:a; y:a=a:-y; /3 :
-

y = y : &
conduct immediately to this fourth equation of the same kind,

XIV. . . :a = y:/3. or* = (y:/3).a;

if we admit that this new quantity, or symbol, ,
is to be operated on at all, or com

bined with other symbols, according to the general rules of vectors and quaternions.

(2.) It is, then, permitted to change the three letters a, /3, y, by a cyclical per

mutation., to the three other letters /3, y, a (considered again as representing unit-

lines), without altering the value of the fourth proportional, u
;

or in other words, it

is allowed to make the system of the three rectangular lines revolve, through the third

part of four right angles, round the interior and co-initial diagonal of the unit-cube,

of which they are three co-initial edges.

(3.) And it is still more evident, that no such change of value will take place, if

we merely cause the system of the two first lines to revolve, through any angle, in

its own plane, round the third line as an axis
;
since thus we shall merely substitute,

for the factor ft : a, another factor equal thereto. But by combining these two last

modes of rotation, we can represent any rotation whatever, round an origin supposed

to be fixed.

( !.) And as regards the scalar ratio of any one fourth proportional, such as

/3 : a . y ,
to any other, of the kind here considered, such as (3 : a . y, or u, it is suffi

cient to suggest that, without any real change in the former, we are allowed to sup

pose it to be so prepared, that we shall have

XV. . . a = a
; /3

=
/3 ; y = xy ;

x being some scalar coefficient, and representing the ratio required.

304. In the more general case, when the three given lines are

not rectangular, nor unit-lines, we may on similar principles de

termine their fourth proportional, without referring to Fig. 68, as

follows. Without any real loss of generality, we may suppose that

the planes of a, /3 and a, 7 are perpendicular to each other; since

this comes merely to substituting, if necessary, for the quotient

/3: a, another quotient equal thereto. Having thus

I. . . Ax.(/3:) JL Ax. (7: ), let II. . . =
/3 +

&quot;, 7 = 7 + 7 &quot;,

where /3 and 7 are parallel to a, but
ft&quot;

and 7
&quot; are perpendicular

to it, and to each other; so that, by 203, I. and II., we shall have

the expressions,

III. .. = 8^.0 =s2.a,

* In equations of this form, the parentheses may be omitted, though for greater

clearness they are here retained.
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and IV. . .
/3&quot;

= V-.a, 7
&quot; = V-.n.

a a

We may then deduce, by the distributive principle (300, (2.) ), the

transformations,

8f 8 B&quot; Q&quot;

= P.
n/ + tL

7&quot;
+ C- y + _ y / = a + ^ .

a a a a

where

VI. .. 8 = 0S- + 7&quot;S =7S- + /3&quot;S-, and VII. ..aw=
7&quot;.

a a a a a

The latter part, a?, is what we have called (300) the (geometrically)
scalar part, of the sought fourth proportional ; while the former part
8 may (still) be called its vector part: and we see that this part is

represented by a line, which is at once in the two planes, of /3 ; 7&quot;,
and

of 7, ft&quot; ; or in two planes which may be generally constructed as fol

lows, without now assuming that the planes a/3 and ay are rectangu

lar^ as in I. Let 7 be the projection of the line 7 on the plane of

a, /3, and operate on this projection by the quotient 8: a as a multi

plier ;
theplane which is drawn through the line 8: a . 7 so obtained,

at right angles to the plane a/3, is one locus for the sought line & :

and the plane through 7, which is perpendicular to the plane 77 ,

is another locus for that line. And as regards the length of this line,

or vector part 8, and the magnitude (or quantity) of the scalar part

xu, it is easy to prove that

VIII. . . T = Zcoss, and IX. . . x = tsins,
where

X. . . * = T/3:Ta.T7, and XL . . sin s -sine sin p,

if c denote the angle between the two given lines a, /3, and p the

inclination of the third given line 7 to their plane: the sign of the

scalar coefficient, x, being positive or negative, according as the rota

tion round a from (3 to 7 is negative or positive.

(1.) Comparing the recent construction with Fig. 68, we see that when the con

dition I. is satisfied, the four unit-lined Uy, Ua, U/3, U take the directions of the

four radii oc, OQ, OR, OD, which terminate at the four corners of what may be called

a tri-rectangular quadrilateral CQRD on the sphere.

(2.) It may be remarked that the area of this quadrilateral is exactly equal to

ha If the area 2 of the triangle DEF ;
which may be inferred, either from the circum-
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stance that its spherical excess (over four right angles) is constructed by the angle

MDK
;
or from the triangles DBR and KAS being together equal to the triangle ABF,

so that the area of DESK is 2, and therefore that of CQRD is 2, as before.

(3.) The two sides CQ, QR of this quadrilateral, which are remote from the obtuse

angle at D, being still called p and c, and the side CD which is opposite to c being

still denoted by c
,

let the side DR which is opposite to p be now called p ;
also let

the diagonals CR, QD be denoted by d and d
;
and let s denote the spherical excess

(ODR ATT), or the area of the quadrilateral. We shall then have the relations,

cos d = cos p cos c
;

cos d = cosp cos c
;

XII. tan c = cosp tan c
;

tan p = cos c tan p ;

cos * = cos p sec// = cos c sec c = cos d sec d
;

of which some have virtually occurred before, and all are easily proved by right-an

gled triangles, arcs being when necessary prolonged.

(4.) If we take now two points, A and B, on the side QR, which satisfy the arcual

e Cation (coinp. 297, XL., and Fig. 68),

XIII. . . &quot; AB = OQR ;

and if we then join AC, and let fall on this new arc the perpendiculars BB
,
DD

;
it

is easy to prove that the projection B D of the side BD on the arc AC is equal to that

arc, and that the angle DBB is right : so that we have the two new equations,

XIV. . . n B D =oAC; XV. . . DBB =
|7r ;

and the new quadrilateral BB D D is also tri-rectangular.

(5.) Hence the point i&amp;gt; may be derived from the three points ABC, by any two of
the four following conditions: 1st, the equality XIII. of the arcs AB, QR ; Ilnd, the

corresponding equality XIV. of the arcs AC, B D
; Illrd, the tri-rectangular charac

ter of the quadrilateral CQKD ; IVth, the corresponding character of BB D D.

(6.) In other words, this derived point D is the common intersection of the four

perpendiculars, to the four arcs AB, AC, CQ, BB
,
erected at thefour points R, D , c, B ;

CQ, BB being still the perpendiculars from c and B, on AB and AC; and R and D

being deduced from Q and B
, by equal arcs, as above.

305. These consequences of the construction employed in 297,

&c., are here mentioned merely in connexion with that theory of

fourth proportionals to vectors, which they have thus served to illus

trate; but they are perhaps numerous and interesting enough, to

justify us in suggesting the name, Spherical Parallelogram,&quot;* for

the quadrilateral CABD, or BACD, in Fig. 68 (or 67) ; and in proposing
to say that D is the Fourth Point, which completes such a, parallelogram,

when the three points c, A, B, or B, A, c, are given upon the sphere,

IL* first, second, and third. It must however be carefully observed,

taut the analogy to the plane is here thus far imperfect, that in the

* By the same analogy, the quadrilateral CQRD, in Fig. 68, may be called a

leal Rectangle.
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general case,, when the three given points are not co-arcual, but on the

contrary are corners of a spherical triangle ABC, then ifwe take c, D, B,

or B, D, c, for the three first points of a new spherical parallelogram, of

the kind here considered, the new fourth point, say AU will not coin

cide with the old second point A; although it will very nearly do so,

if the sides of the triangle ABC be small: the deviation AAj being in

fact found to be small of the third order, if those sides of the given

triangle be supposed to be small of the first order; and being always
directed towards the foot of the perpendicular, let fall from A on BC.

(1.) To investigate the law of this deviation, let /3, y be still any two given

unit-vectors, OB, oc, making with each other an angle equal to a, of which the co

sine is I
;
and let p or OP be any third vector. Then, if we write,

OQ=Up, OQi = Upi,

the new or derived vector, fyp or pi, or OPi, will be the common vector part of the

two fourth proportionals, to p, (3, y, and to p, y, (3, multiplied by the square of the

length of p ; anduQCQi will be what we have lately called a sphericalparallelogram.

We shall also have the transformation (compare 297, (2.)),

and the distributive symbol of operation &amp;lt;f&amp;gt;

will be such that

III. ..0p|||Ay, and
&amp;lt;j&amp;gt;*p

=
p, if

but IV. . .0p = -Zp, if p ||
Ax. (y : /3).

(2.) This being understood, let

V. ..p = p +
p&quot;; 0p = p i; p l||/3,y, p&quot;|| Ax.(y:/3);

so that p ,
or OP

,
is the projection of p on the plane of /3y ;

and
p&quot;,

or
OP&quot;,

is the

part (or component) of p, which is perpendicular to that plane. Then we shall have

an indefinite series of derived vectors, pi, p2, ps5
or rather two such series, suc

ceeding each other alternately, as follows :

=
&amp;gt;p

= pl
-

p ; p2 = p =
= 3

P = p l
- ^

3
p&quot;; P4 = 4

P = p -r
l*p&quot; ; &c.

;

the two series of derived points, PI, P2, PS, PI, ... being thus ranged, alternately,

on the two perpendiculars, PP and PIP I, which are let fallfrom the points p and PI,

on the given plane BOG
;
and the intervals, PP2 , PIPS, P2P4, . forming a geometri

cal progression, in which each is equal to the one before it, multiplied by the con

stant factor I, or by the negative of the cosine of the given angle BOC.

(3.) If then this angle be still supposed to be distinct from and TT, and also

in general from the intermediate value TT, we shall have the two limiting values,

VII. . . p2n
= P , p2n+l

= p l,
if U = 00

;

or in words, the derived points l 2, I
J

4, of even orders, tend to the point p
?
and the

other derived points, PI, Pa, . . of odd orders, tend to the other point r
i, a* limiting



358 ELKMKNTS OF QUATERNIONS. [BOOK III.

positions: these two limit points being the feet of the two (rectilinear) perpendicu

lars, let fall (as above) from r and p on the plane BOC.

(4.) But even theirs* deviation pp2 ,
is small of the third order, if the length Tp

of the line OP be considered as neither large nor small, and if the sides of the spheri

cal triangle BQC be small of theirs* order. For we have by VI. the following ex

pressions for that deviation,

VIII. . . PP2= P2
-
p = (P - 1) p&quot;

= - sin a* . sin pa . Tp .
Up&quot; ;

where pa denotes the inclination of the line p to the plane /3y ;
or the arcual perpen

dicular from the point Q on the side BC, or a, of the triangle. The statements lately

made (305) are therefore proved to have been correct.

(5.) And if we now resume and extend the spherical construction, and conceive

that DI is deduced from BAIC, as AI was from BDC, or D from BAC
;
while A2 may

be supposed to be deduced by the same rule from BDiC, and D2 from BA2c, &c.,

through an indefinite series of spherical parallelograms, in which the fourth point

of any one is treated as the second point of the next, while the first and third points

remain constant : we see that the points AI, A2,
. . are all situated on the arcual

perpendicular let fall from A on BC
;
and that in like manner the points DI, D2,

. .

are all situated on that other arcual perpendicular, which is let fall from D on BC.

We see also that the ultimate positions, AQO and DOO, coincide precisely with the feet

of those two perpendiculars : a remarkable theorem, which it would perhaps be diffi

cult to prove, by any other method than that of the Quaternions, at least with calcu

lations so simple as those which have been employed above.

(6.) It may be remarked that the construction of Fig. 68 might have been other

wise suggested (comp. 223, IV.), by the principles of the Second Book, if we had

sought to assign the fourth proportional (297) to three right quaternions; for ex

ample, to three right versors, v, v, v&quot;,
whereof the unit lines a, /3, y should be sup

posed to be the axes. For the result would be in general a quaternion v v~*v
f

,
with

e for its scalar part, and with S for the index of its right part : e and d denoting

the same scalar, and the same vector, as in the sub-articles to 297.

306. Quaternions may also be employed to furnish a new con

struction, which shall complete (comp. 305, (5.)) the graphical deter

mination of the two series of derived points,

I. . . D, AU D,, A2 , DJJ, &C.,

when the JAree points A, B, c are given upon the unit-sphere ;
and

thus shall render visible (so to speak), with the help of anew Figure,

the tendencies of those derived points to approach, alternately and

indefinitely, to
the/e&amp;lt;tf, say D and A

,
of the two arcual perpendiculars

let fall from the two opposite corners, D and A, of the first spherical

parallelogram, BACD, on its given diagonal BC; which diagonal (as we

have seen) is common to all the successive parallelograms.

(1.) The given triangle ABC being supposed for simplicity to have its sides ale

less than quadrants, as in 297, so that their cosines Imn are positive, let A
,
B

,
c be
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the feet of the perpendiculars let fall on these three sides from the points A, B, c ;

also let M and N be two auxiliary points, determined by the equations,

II. . . BM = r&amp;gt; MC, ^ AM = r MN ;

so that the arcs AN and BC bisect each other in M. Let fall from N a perpendicular

ND on BC, so that

III. . . BD = n A C;

and let
B&quot;,

c&quot; be two other auxiliary points, on the sides b and c, or on those sides

prolonged, which satisfy these two other equations,

IV. . . r&amp;gt; B B&quot; = ^ AC, r C C&quot;
= ft AB.

(2.) Then the perpendiculars to these last sides, CA and AB, erected at these last

points, B&quot; and
c&quot;,

will intersect each other in the point D, which completes (305) the

spherical parallelogram BACD
;
and the /oof of the perpendicular from this point D,

on the third side BC of the given triangle, will coincide (comp. 305, (2.) ) with the

foot D of the perpendicular on the same side from N
;

so that this last perpendicular

ND is one locus of the point D.

(3.) To obtain another locus for that point, adapted to our present purpose, let

E denote now* that new point in which the two diagonals, AD and BC, intersect each

other ;
then because (comp. 297, (2.) ) we have the expression,

V. . . OD = u(m/3 + ny
-

/a),

we may write (comp. 297, (25.), and (30.) ),

VI. . . OE = u (m/3 -f- wy), whence VII. . . sin BE : sin EC = n : m = cos BA : cos A C ;

the diagonal AD thus dividing the arc BC into segments, of which the sines are pro

portional to the cosines of the adjacent sides of the given triangle, or to the cosines

of their projections BA and A C on BC
;
so that the greater segment is adjacent to the

lesser side, and the middle point M of BC (1.) lies between the points A and E.

(4.) The intersection E is therefore a known point, and the great circle through

A and E is a second known locus for

D
;

which point may therefore be

found, as the intersection of the arc

AE prolonged, with the perpendicular

ND from N (1.). And because E lies

(3.) beyond the middle point M of BC,

with respect to the foot A of the per

pendicular on BC from A, but (as it

is easy to prove) not so far beyond

M as the point D
,
or in other words

falls between M and D (when the arc

BC is, as above supposed, less than a

quadranf), the prolonged arc AE cuts

ND between N and D
;

or in other

words, the perpendicular distance of

the sought fourth point D, from the

given diagonal BC of the parallelo

gram, is less than the distance of the

given second point A, from the same given diagonal. (Compare the annexed Fig. 73.)

It will be observed that M, N, E have not here the same significations as in
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(5.) Proceeding next (305) to derive a new point AI from B, L&amp;gt;, c, as D has been

derived from B, A, c, we see that we have only to determine a new* auxiliary point

F, by the equation,
VIII. . . ~EM = r,Mp;

and then to draw DF, and prolong it till it meets AA in the required point AI, which

will thus complete the second parallelogram, BDOAi, with EC (as before) for a given

diagonal.

(6.) In like manner, to complete (comp. 305, (5.)), the third parallelogram,

BAICDI, with the same given diagonal BC, we have only to draw the arc AIE, and

prolong it till it cuts ND in DI ;
after which we should find the point A2 of a fourth

successive parallelogram BDiCA2, by drawing DIF, and so on lor ever.

(7.) The constant and indefinite tendency, of the derivedpoints n, DI, . . to the

limit-point D ,
and of the other (or alternate) derived points AI, A2,

. . to the other

limit-point A ,
becomes therefore evident from this new construction ; the final (or

limiting) results of which, we may express by these two equations (comp. again

305, (5.) ),

IX. . . Do, = D
5 Arc = A .

(8.) But the smallness (305) of the first deviation AAi, when the sides of the

given triangle ABC are small, becomes at the same time evident, by means of the

same construction, with the help of the formula VII.
;
which shows that the interval^

EM, or the equal interval MF (5.), is small of the third order, when the sides of the

given triangle are supposed to be small of theirs* order: agreeing thus with the

equation 305, VIII.

(9.) The theory of such spherical parallelograms admits of some interesting ap

plications, especially in connexion with spherical conies ; on which however we can

not enter here, beyond the mere enunciation of a Theorem, J of which (comp. 271)

the proof by quaternions is easy :

Fig. 68 ; and that the present letters c and c&quot; correspond to Q and R in that Fi

gure.
* This new point, and the intersection of the perpendiculars of the given trian

gle, are evidently not the same in the new Figure 73, as the points denoted by the

same letters, F and p, in the former Figure 68
; although the four points A, B, c, D

are conceived to bear to each other the same relations in the two Figures, and indeed

in Fig. 67 also ; BACD being, in that Figure also, what we have proposed to call a

spherical parallelogram. Compare the Note to (3.).

f The formula VII. gives easily the relation,

VII . . . tan EM = tan MA f tan -
j

2

;

hence the interval EM is small of the third order, hi the case (8.) here supposed ;
and

generally, if a &amp;lt; -, as in (1.), while b and c are unequal, the formula shows that this

interval EM is less than MA
,
or than D M, so that E falls between M and D

,
as in (4.).

J This Theorem was communicated to the Royal Irish Academy in June, 1845,

as a consequence of the principles of Quaternions. See the Proceedings of that date

(Vol. III., page 109).
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&quot;

T/&quot;KLMN be any spherical quadrilateral, and.l any point on the sphere ; ifalso

we complete the spherical parallelograms,

X. . . KILA, LIMB, MINC, NIKD,

and determine the poles E and F of the diagonals KM and LN of the quadrilateral :

then these two poles are the foci* ofa spherical conic, inscribed in the derived quadri

lateral ABCD, or touching its four sides.&quot;

(10.) Hence, in a notationf elsewhere proposed, we shall have, under these con

ditions of construction, the formula :

XI. . . EF
(. .) ABCD ;

Or XI . . . EF
(. .) BCDA ;

&C.

(11.) Before closing this Article and Section, it seems not irrelevant to remark,

that the projection y&quot;

of the unit-vector y, on the plane of a and /3,
is given by the

formula,
a sin a cos B + /3 sin b cos A

XII. . . y =-
.
--

;

sine

and that therefore the point P, in which (see again Fig. 73) the three arcual perpen

diculars of the triangle ABC intersect, is on the vector,

XIII. . . p = a tan A -f (3 tan B -f y tan c.

(12.) It may be added, as regards the construction in 305, (2.), that the right

lines,

XIV. . . PPi, PiP2 ,
P2P3, PsP4, .

however far their series may be continued, intersect the given plane BOC, alternately,

in two points s and T, of which the vectors are,

sv.. ._ -

and which thus become two fixed points in the plane, when the position of the point

p in space is given, or assumed.

SECTION 9. On a Third Method ofinterpreting a Product or

Function of Vectors as a Quaternion ; and on the Consis

tency of the Results of the Interpretation so obtained, with

those which have been deducedfrom the two preceding Me
thods ofthe present Book.

307. The Conception of the Fourth Proportional to Three

Rectangular Unit- Lines, as being itself a species ofFourth Unit

in Geometry ) is eminently characteristic of the present Calcu

lus ; and offers a Third Method of interpreting a Product of
two Vectors as a Quaternion: which is however found to be

* In the language of modern geometry, the conic in question may be said to

touch eight given arcs ; four real, namely the sides AB, BC, CD, DA
; and/owr ima

ginary, namely two from each of the focal points, E and F.

f Compare the Second Note to page 295.

3 A
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consistent, in all its results, with the two former methods (278,

284) of the present Book ;
and admits of being easily extended

to products of three or more lines in space, and generally to

Functions of Vectors (289). In fact we have only to conceive*

*
It was in a somewhat analogous way that Des Cartes showed, in his Geome-

tria (Schooten s Edition, Amsterdam, 1659), that all products and powers of lines,

considered relatively to their lengths alone, and without any reference to their direc

tions, could be interpreted as lines, by the suitable introduction of a line taken for

unity, however high the dimension of the product or power might be. Thus (at

page 3 of the cited work) the following remark occurs :

&quot; Ubi notandum est, quod per a2 vel 6 3
, similesve, communiter, non nisi lineas

omnino simplices concipiam, licet illas, ut nominibus in Algebra usitatis utar, Qua-

drata aut Cubos, &c. appellern.&quot;

But it was much more difficult to accomplish the corresponding multiplication of

directed lines in space ; on account of the non-existence of any such line, which is

symmetrically related to all other lines, or common to all possible planes (comp. the

Note to page 248). The Unit of Vector-Multiplication cannot properly be itself a.

Vector, if the conception of the Symmetry of Space is to be retained, and duly com

bined with the other elements of the question. This difficulty however disappears,

at least in theory, when we come to consider that new Unit, of a scalar kind (300),

which has been above denoted by the temporary symbol u, and has been obtained,

in the foregoing Section, as a certain Fourth Proportional to Three Rectangular

Unit-Lines, such as the three co-initial edges, AB, AC, AD of what we have called an

Unit- Cube : for this fourth proportional, by the proposed conception of it, undergoes

no change, when the cube ABCD is in any manner moved, or turned ; and therefore

may be considered to be symmetrically related to all directions of lines in space, or to

all possible vections (or translations} of a point, or body. In fact, we conceive its de

termination, and the distinction of it (as + u) from the opposite unit of the same kind

( u), to depend only on the usual assumption of an unit of length, combined with

the selection of a hand (as, for example, the right hand), rotation towards which

hand shall be considered to be positive, and contrasted (as such) with rotation to

wards the other hand, round the same arbitrary axis. Now in whatever manner the

supposed cube may be thrown about in space, the conceived rotation round the edge

AB, from AC to AD, will have the same character, as right-handed or left-handed, at

the end as at the beginning of the motion. If then the fourth proportional to these

three edges, taken in this order, be denoted by + u, or simply by -f 1, at one stage of

that arbitrary motion, it may (on the plan here considered) be denoted by the same

symbol, at every other stage : while the opposite character of the (conceived) rota

tion, round the same edge AB, from AD to AC, leads us to regard the fourth propor

tional to AB, AD, AC as being on the contrary equal to u, or to 1. It is true that

this conception of a new unit for space, symmetrically related (as above) to all linear

directions therein, may appear somewhat abstract and metaphysical ;
but readers

who think it such can of course confine their attention to the rules of calculation,

which have been above derived from it, and from other connected considerations : and

which have (it is hoped) been stated and exemplified, in this and in a fonner Vo

lume, with sufficient clearness and fullness.
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that each proposed vector, a, is divided by the new OY fourth

unit, u 9 above alluded to ; and that the quotient so obtained,

which is always (by 303, VIII.) the right quaternion T a,

whereof the vector a is the index, is substituted for that vec

tor : the resulting quaternion being finally, if we think it con

venient, multiplied into the same fourth unit. F6r in this way
we shall merely reproduce the process of 284, or 289, although

now as a consequence of a different train ofthought, or of a dis

tinct but Consistent Interpretation : which thus conducts, by a

new Method, to the same Rules of Calculation as before.

(1.) The equation of the unit-sphere, pt + l = Q (282, XIV.), may thus be con

ceived to be an abridgment of the following fuller equation :

the quotient p : u being considered as equal (by 303) to the right quaternion, I

which must here be a right versor (154), because its square is negative unity.

(2.) The equation of the ellipsoid,

T(ip + pic)
= *2 - i* (282, XIX.),

may be supposed, in like manner, to be abridged from this other equation :

and similarly in other cases.

(3.) We might also write these equations, of the sphere and ellipsoid, under these

other, but connected forms :

with intepretations which easily offer themselves, on the principles of the foregoing

Section.

(4.) It is, however, to be distinctly understood, that we do not propose to adopt

this Form of Notation, in the practice of the present Calculus : and that we merely

suggest it, in passing, as one which may serve to throw some additional light on the

Conception, introduced in this Third Book, of a Product of two Vectors as a Qua

ternion.

(5.) In general, the Notation of Products, which has been employed throughout

the greater part of the present Book and Chapter, appears to be much more conve

nient, for actual use in calculation, than any Notation of Quotients : either such as

has been just now suggested for the sake of illustration, or such as was employed in

the Second Book, in connexion with that First Conception of a Quaternion (112),

to which that Book mainly related, as the Quotient of two Vectors (or of two di

rected lines in space). The notations of the two Books are, however, intimately con

nected, and the former was judged to be an useful preparation for the latter, even as
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regarded the quotient-forms of many of the expressions used : while the Characteris

tics of Operation, such as

S, V, T, U, K, N,

are employed according to exactly the same laws in both. In short, a reader of the

Second Book has nothing to unlearn in the Third
; although he may be supposed to

have become prepared for the use of somewhat shorter and more convenient pro

cesses, than those before employed.

SECTION 10 On the Interpretation of a Power ofa Vector

as a Quaternion.

308. The only symbols, of the kinds mentioned in 277,

which we have not yet interpreted, are the cube a3
, and the

general power a*, of an arbitrary vector base, a, with an arbi

trary scalar exponent, t
; for we have already assigned inter

pretations (282, (1.), (14.), and 299, (8.) ) for the particular

symbols a2
, a&quot;

1

, a&quot;

2
,
which are included in this lastform. And

we shall preserve those particular interpretations if we now

define, in full consistency with the principles ofthe present and

preceding Books, that this Power of is generally a Quaternion.,

which may be decomposed into two factors, of the tensor and

versor kinds, as follows :

I. . . &amp;lt;=TaMJa&amp;lt;;

IV denoting the arithmetical value of the tth power of the po
sitive number Ta, which represents (as usual) the length ofthe

base-line a ; and UV denoting a versor, which causes any line

p, perpendicular to that line a, to revolve round it as an axis,

through t right angles, or quadrants, and in a positive or nega
tive direction, according as the scalar exponent, t, is itself a

positive or negative number (comp. 234, (5.) ).

(1.) As regards the omission of parentheses in the formula I., we may observe

that the recent definition, or interpretation, of the symbol a
,
enables us to write

(comp. 237, II. III.),

] I. . . T (o )
= (Ta) = Ta ; III. . . U (a*)

=
(Ua)&amp;lt;

= Ua*.

(2.) The axis and angle of the power a f
,
considered as a quaternion, are generally

determined by the two following formulae :

IV. . . Ax. a&amp;lt;
= Ua

;
V. . . L - a&amp;lt;

= 2n7r \t* ;

the signs accompanying each other, and the (positive or negative or null) integer, ,

being so chosen as to bring the angle within the usual limits, and TT.
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(3.) In general (comp. 235), we may speak of the (positive or negative) product

%tir, as being the amplitude of the same power, with reference to the line a as an

axis of rotation ; and may write accordingly,

VI. . . am. a = f &amp;lt;TT.

(4.) We may write also (comp. 234, VII. VIII.),

VII. . . Ua&amp;lt; = cos + Ua . sin ^ ;
or briefly, VIII. . . Ua* = cas

y.

(5.) In particular,

IX. . . Ua*&quot;= cas mr = 1
;

IX . . . Ua^i= Ua
;

upper or lower signs being taken, according as the number n (supposed to be whole)

is even or odd. For example, we have thus the cubes,

X. ..Ua 3 = -Ua; X . . . a3 = -aNa.

(6.) The conjugate and norm of the power a* may be thus expressed (it being

remembered that to turn a line -1- a through \tTT round + a, is equivalent to turn

ing that line through + \tir round - a) :

XI. . . Ka* = Ta* . Ua- = (- a) ;
XII. .. Na* = Ta

;

parentheses being unnecessary, because (by 295, VIII.) Ka = a.

(7.) The scalar, vector, and reciprocal of the same power are given by the for

mulae :

XIII. . . S . a* = Ta. cos y ;
XIV. . . V. a* = Ta . Ua . sin y ;

XV.. . l:a* = Ta-*.Ua- = a-*=Ka:Na (comp. 190, (3.)).

(8.) If we decompose any vector p into parts p and
p&quot;,

which are respectively

parallel and perpendicular to a, we have the general transformation :*

XVI. . . o*pa-*
= a(p +

p&quot;)
a-* = p + Ua2

.
p&quot;,

the new vector obtained by causing p to revolve conically through an angular quan

tity expressed by tir, round the line a as an axis (comp. 297, (15.)).

(9.) More generally (comp. 191, (5.) ), if q be any quaternion, and if

XVII. ..atqa- ^q,

the new quaternion q is formed from q by such a conical rotation of its own axis

Ax. q, through tir, round a, without any change of its angle L q, or of its tensor Tq.

(10.) Treating ijk as three rectangular unit-lines (295), the symbol, or expres

sion,

XVIII. . . p = rktj kj- k-*, or XIX. . . p = r&juki-*,
in which

XX...r&amp;gt;0, s^O, &amp;lt;1, *&amp;gt;0, *&amp;lt;2,

may represent any vector ; the length or tensor of this line p being r
;

its inclina

tion^- to k being sir
;
and the angle through which the variable plane kp may be

* Compare the shortly following sub-article (11.).

f If we conceive (compare the first Note to page 322) that the two lines i

are directed respectively towards the south and west points of the horizon, while the

third line k is directed towards the zenith, then sir is the zenith-distance of p- and
tTr is the azimuth of the same line, measured from south to west, and thence (if ne-

cessary) through north and east, to south again.
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conceived to have revolved, frem the initial position ki, with an initial direction to

wards the position kj, being tir.

(11.) In accomplishing the transformation XVI., and in passing from the ex

pression XVIII. to the less symmetric but equivalent expression XIX., we employ

the principle that

XXI. . . kj-
= S- 1 = - K (#-) =j*k ;

which easily admits of extension, and may be confirmed by such transformations as

VII. or VIII.

(12.) It is scarcely necessaiy to remark, that the definition or interpretation I.,

of the power a* of any vector a, gives (as in algebra) the exponential property,

XXII. . .ao*=o +*
l

whatever scalars may be denoted by s and t
;
and similarly when there are more than

two factors of this form.

(13.) As verifications of the expression XVIII,, considered as representing a vec

tor, we may observe that it gives,

XXIII. . . p=-K,o; and XXIV. . . p
2 =-r.

(14.) More generally, it will be found that if u* be any scalar, we have the

eminently simple transformation :

XXV. . . v=

In fact, the two last expressions denote generally two equal quaternions, because

they have, 1st, equal tensors, each = ru
; Ilnd, equal angles, each = L (A

M
) ;

and

Illrd, equal (or coincident) axes, each formed from +k by one common system of

two successive rotations, one through sir round j, and the other through tir round k.

309. Any quaternion, q, which is not simply a scalar, may
be brought to the form a , by a suitable choice of the base, a,

and ofthe exponent, t , which latter may moreover be supposed
to fall between the limits and 2 ; since for this purpose we
have only to write,

I. . . *=^; II. . . Ta = T III. . . TJa = Ax.

and thus the general dependence ofa Quaternion, on a Scalar

and a Vector Element, presents itself in a new way (comp. 17,

207, 292). When the proposed quaternion is a versor, Tq =
1,

* The employment of this letter u, to denote what we called, in the two preced

ing Sections, a fourth unit, &c., was stated to be a merely temporary one. In gene

ral, we shall henceforth simply equate that scalar unit to the number one ; and de

note it (when necessary to be denoted at all) by the usual symbol, 1, for that num

ber.
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we have thus Ta = 1
; or in other words, the base a, of the

equivalent power a ,
is an unit- line. Conversely, every versor

may be considered as a power ofan unit-line^ with a scalar ex

ponent, ,
which may be supposed to be in general positive, and

less than two ; so that we may write generally ,

IV. . .U? = a , with V. . . a = Ax.? =
T-&amp;gt;l,

and VI. . . t &amp;gt; 0, t &amp;lt; 2 ;

although if this versor degenerate into 1 or -
1, the exponent

t becomes or 2, and the base a has an indeterminate or ar

bitrary direction. And from such transformations ofversors

new methods may be deduced, for treating questions of sphe

rical trigonometry, and generally of spherical geometry.

(1.) Conceive that P, Q, K, in Fig. 46, are replaced by A, B, c, with unit-vec

tors a, /3, y as usual
;
and let x, y, z be three scalars between and 2, determined

by the three equations,

VII. . . 7r = 2A, J/7T
= 2B, Z7T = 2C;

where A, B, c denote the angles of the spherical triangle. The three versors, indi

cated by the three arrows in the upper part of the Figure, come then to be thus de

noted :

VIII. ..q = a*; q = pv, ? ? = y
2-z

;

so that we have the equation,

IX. . . I3ya*= y
2-z

;
or X. . . y

z
/32/a*

= - 1
;

from which last, by easy divisions and multiplications, these two others immediately

follow :

X . . . a*y*p = - 1
;

X&quot;. . . j32/a*y
z = - 1

;

the rotation round a from /3 to y being again supposed to be negative.

(2.) In X. we may write (by 308, VIII.),

XI. . . a a: = casA; /3^
= c/3sB; y

z = cysc;

and then the formula becomes, for any spherical triangle, in which the order of ro

tation is as above :

XII. . . cysc . c/3sB . casA = 1;

or (comp. IX.),

XIII. . . cos c + y sin c = (cos B -f (3 sin B) (cos A + a sin A).

(3.) Taking the scalars on both sides of this last equation, and remembering that

S/3a= - cos c, we thus immediately derive one form of the fundamental equation of

spherical trigonometry ; namely, the equation,

XIV. . . cos c + cos A cos B = cos c sin A sin B.

(4.) Taking the vectors, we have this other formula :

XV. . . y sin c = a sin A cos B + ft sin B cos A + V/3nt sin A sin B
;

which is easily seen to agree with 306, XII., and may also be usefully compared
with the equation 210, XXXVII.
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(5.) The result XV. may be enunciated in the form of a Theorem, as follows :

&quot;

If there be any spherical triangle ABC, and three lines be drawn from the

centre o of the sphere, one towards the point A, with a length = sin A cos B
; another

towards the point B, with a length sin B cos A ; and the third perpendicular to the

plane AOB, and towards the same side of it as the point C, with a length == sin c sin A

sin B
;
and if, with these three lines as edges, we construct a parallelepiped : the

intermediate diagonal from o will be directed towards c, and will have a length

= sin c.&quot;

(6.) Dividing both members of the same equation XV. by p, and taking scalars,

we find that if p be any fourth point on the sphere, and Q the foot of the perpendi

cular let fall from this point on the arc AB, this perpendicular PQ being considered as

positive when c and p are situated at one common side of that arc (or in one common

hemisphere, of the two into which the great circle through A and B divides the sphe

ric surface), we have then,

XVI. . . sin c cos PC = sin A cos B cos PA + sin B cos A cos PB -f sin A sin B sin c sin PQ ;

a formula which might have been derived from the equation 210, XXXVIII.
, by first

cyclically changing afccABC to &CCBCA, and then passing from the former triangle to

its polar, or supplementary : and from which many less general equations may be

deduced, by assigning particular positions to P.

(7.) For example, if we conceive the point P to be the centre ofthe circumscribed

small circle ABC, and denote by J? the arcual radius of that circle, and by s the

semisum of the three angles, so that 2s=A + B + c=7r + er,
if a again denote, as in

297, (47.), the area* of the triangle ABC, whence

XVII. . . PA = PB = PC = It, and sin PQ = sin R sin (s c),

the formula XVI. gives easily,

XVIII. . . 2 cot R sin = sin A sin B sin c
;

a relation between radius and area, which agrees with kno\\n results, and from which

we may, by 297, LXX., &c., deduce the known equation :

XIX. . . e tan R = 4 sin - sin - sin -
;

in which we have still, as in 297, (47.), &c.,

XX. . . e = (Sa/3y =_) sin a sin b sin c = &c.

(8.) In like manner we might have supposed, in the corresponding general equa

tion 210, XXXV1IL, that p was placed at the centre of the inscribed small circlei

and that the arcual radius of that circle was r, the semisum of the sides being s
;

and thus should have with ease deduced thb other known relation, which is a sort

of polar reciprocal of XVIII.,

XXI. . . 2tanr.sins=e.

But these results are mentioned here, only to exemplify the fertility of the formulae,

to which the present calculus conducts, and from which the theorem in (5.) was

early seen to be a consequence.

Compare the Note to the cited sub-article.
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(9.) We might develops the ternary product in the equation XII., as we deve

loped the binary product XIII.
; compare scalar and vector parts ;

and operate on

the latter, by the symbol S . p~
l
. New general theorems, or at least new general

forms, would thus arise, of which it may be sufficient in this place to have merely

suggested the investigation.

(10.) As regards the order of rotation (1.) (2.), it is clear, from a mere inspec

tion of the formula XV., that the rotation round y from (3 to a, or that round c from

B to A, must be positive, when that equation XV. ttolds good; at least if the angles

A, B, c, of the triangle ABC, be (as usual) treated as positive : because the rotation

round the line V/3a from (3 to a is always positive (by 281, (3.) ).

(11.) If, then, for any given spherical triangle, ABC, with angles still supposed

to be positive, the rotation round c from B to A should happen to be (on the con

trary) negative, we should be obliged to modify the formula XV.
;
which could be

done, for example, so as to restore its correctness, by interchanging a with (3, and at

the same time A with B.

(12.) There is, however, a sense in which the formula might be considered as

still remaining true, without any change in the mode of writing it
; namely, if we were

to interpret the symbols A, B, c as denoting negative angles, for the case last sup

posed (11.). Accordingly, if we take the reciprocal of the equation X., we get this

other equation,
XXII. . . o-*/3-fy-

= -l;

where x, y, z are positive, as before, and therefore the new exponents, x, y, z,

are negative, if the rotation round a from (3 to y be itself negative, as in (1.).

(13.) On the whole, then, if a, (3, y be any given system of three co-initial and

diplanar unit-lines, OA, OB, OC, we can always assign a system of three scalars,

x, y, z, which shall satisfy the exponential equation X., and shall have relations of
the form VII. to the spherical angles A, B, c

;
but these three scalars, if determined

so as to fall between the limits + 2, will be all positive, or all negative, according as

the rotation round a from /3 to y is negative, as in (1.), or positive, as in (11.).

(14.) As regards the limits just mentioned, or the inequalities,

XXIII. . . x &amp;lt; 2, y&amp;lt;2, z&amp;lt;2; x&amp;gt;-2, y &amp;gt;

-
2, z&amp;gt;-2,

they are introduced with a view to render the problem of finding the exponents xyz
in the formula X. determinate ; for since we have, by 308,

XXIV. . .a* =
|3

4 =
y
4 =+l, if Ta = T/3

= Ty=l,

we might otherwise add any multiple (positive or negative) of the number four, to

the value of the exponent of any unit-line, and the value of the resulting power would

not be altered.

(15.) If we admitted exponents = + 2, we might render the problem of satisfy

ing the equation X. indeterminate in another way ;
for it would then be sufficient to

suppose that any one of the three exponents was thus equal to + 2, or 2, and that

the two others were each =
;
or else that all three were of the form + 2.

(16.) When it was lately said (13.), that the exponents, x, y, z, in the formula

X., if limited as above, would have one common sign, the case was tacitly excluded,

for which those exponents, or some of them, when multiplied each by a quadrant,

give angles not equal to those of the spherical triangle ABC, whether positively or

3 B
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negatively taken
;
but equal to the supplements of those angles, or to the negatives

of those supplements.

(17.) In fact, it is evident (because a2 =
/8

2 = y
2 = -

1), that the equation X., or

the reciprocal equation XXII., if it be satisfied by any one system of values of xyz,

will still be satisfied, when we divide or multiply any two of the three exponential

factors, by the squares of the two unit-vectors, of which those factors are supposed to

be powers: or in other words, if we subtract or add the number two, in each of two

exponents.

(18.) We may, for example, derive from XXII. this other equation :

XXV. . . a -*/3*-yy-*=:
- 1

;
or XXVI. . . a2

-*/?2-./
=

yZ
-2 .

which, when the rotation is as supposed in (1.), so that xyz are positive, maybe in

terpreted as follows.

(19.) Conceive a June cc
,
with points A and B on its two bounding semicircles,

and with a negative rotation round A from B to c
; or, what comes to the same thing,

with a positive rotation round A from B to c . Then, on the plan illustrated by Fi

gures 45 and 46, the supplements TT - A, TT -B, of the angles A and B in the triangle

ABC, or the angles at the same points A and B in the co-lunar triangle ABC ,
will

represent two versors, a multiplier, and a multiplicand, which are precisely those

denoted, in XXVI., by the twofactors, a2 * and flp-v ;
and the product of these two

factors, taken in this order, is that third versor, which has its axis directed to o
,

and is represented, on the same general plan (177), by the external angle ofthe tune,

at that point c
; which, in quantity, is equal to the external angle of the same lune

at c, or to the angle TT-C. This product is therefore equal to that power of the

2
unit-line oc , or -

y, which has its exponent = -
(TT c) = 2 z ; we have there

fore, by this construction, the equation,

XXVII. . . a2
-*j3

2^ = (-y)2-* ;

which (by 308, (6.) ) agrees with the recent formula XXVI.

310. The equation,
2C 2B 2A

I.. . 7
-
j3^a

7 = -l,

which results from 309, (1.), and in which a, /3, 7 are the

unit-vectors OA, OB, oc ofany three points on the unit-sphere;

while the three scalars A, B, c, in the exponents of the three

factors, represent generally the angular quantities of rotation,

round those three unit-lines, or radii, a, /3, 7, from the plane

AOC to the plane AOB, from BOA to BOC, and from COB to COA,

and are positive or negative according as these rotations of

planes are themselves positive or negative : must be regarded

as an important formula, in the applications of the present

Calculus. It includes^ for example, the whole doctrine of

Spherical Triangles; not merely because it conducts, as we
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have seen (309? (3.) ),
to one form of the fundamental scalar

equation of spherical trigonometry, namely to the equation,

II. . . cos c + cos A cos B = cos c sin A sm B
;

but also because it gives a vector equation (309, (4.) ), which

serves to connect the angles, or the rotations, A, B, c, with the

directions* ofthe radii, a, j3, 7, or OA, OB, oc, for any system
of three diverging right lines from one origin. It may, there

fore, be not improper to make here a few additional remarks,

respecting the nature, evidence and extension of the recent

formula I.

(1.) Multiplying both members of the equation L, by the inverse exponential
20

y ff
,
we have the transformation (comp. 309, (1.) ) :

2a 2* 2c 2(7T C)

III. . . j3^ a^~ = -y&quot;
= y .

(2.) Again, multiplying both members of I. into~\ a *, we obtain this other for

mula:
2c 2B 2A 2(ff A)

IV. . .y
7r

j3
7r =-a~ 7r =a n

(3.) Multiplying this last equation IV. by a*&quot;,
and the equation III. into y &quot;&quot;,

we derive these other forms :

* This may be considered to be another instance of that habitual reference to

direction, as distinguished from mere quantity (or magnitude), although combined

therewith, which pervades the present Calculus, and is eminently characteristic of

it
;
whereas Des Cartes, on the contrary, had aimed to reduce all problems of geo

metry to the determination of the lengths of right lines : although (as all who use

his co-ordinates are of course well aware) a certain reference to direction is even in

his theory inevitable, in connexion with the interpretation of negative roots (by him

called inverse or false roots) of equations. Thus in the first sentence of Schooten s

recently cited translation (1659) of the Geometry of Des Cartes, we find it said:

&quot; Omian Geometries Problemata facile ad hujusmodi terminos reduci possunt, ut

deinde ad illorum constructionem, opus tantum sit rectarum quarundam longitudinem

cognoscere.&quot;

The very different view ofgeometry, to which the present writer has been led,

makes it the more proper to express here the profound admiration with which he re

gards the cited Treatise of Des Cartes : containing as it does the germs of so large a

portion of all that has since been done in mathematical science, even as concerns

imaginary roots of equations, considered as marks of geometrical impossibility.

f For the distinction between multiplying a quaternion into and by a factor, see

the Notes to pages 146, 159.
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2A 2c 2B 2B 2A 2c

V. . . a w
y&quot;

1

/3* =-1; VI. . . /3
71

&quot;

a w
y
w = - 1

;

so that cyclical permutation of the letters, a, /3, y, and A, B, c, is allowed in the

equation I.
;
as indeed was to be expected, from the nature of the theorem which

that equation expresses.

(4.) From either V. or VI. we can deduce the formula :

2A 2C 2B 2(7T B)

VII. . . a.&quot; y
* = -

/3~
* =

/3 ~;
by comparing which with III. and IV., we see that cyclical permutation of letters

is permitted, in these equations also.

(5.) Taking the reciprocal (or conjugate) of the equation I., we obtain (com

pare 309, XXII.) this other equation:

/3
*

in which cyclical permutation of letters is again allowed, and from which (or from

III.) we can at once derive the formula,

2A 2B 2C

X. . . a&quot; (3~
&quot; = -

y .

(6.) The equation X. may also be thus written (comp. 309, XXVII ) :

2(7T A) 2 (7T B) 2(7T C) 2 (ff c)

XI. . . a * = y~
= (-y)

*
.

(7.) And all the foregoing equations may be interpreted (comp. 309, (19.) ), and

at the same time proved, by a reference to that general construction (177) for the

multiplication ofversors, which the Figures 45 and 46 were designed to illustrate; if

we bear in mind that a power a*, of an unit-line a, with a scalar exponent, t, is (by

308, 309) a versor, which has the effect of turning a line -L
a, through t right an

gles, round a as an axis of rotation.

(8.) The principle expressed by the equation I
,
from which all the subsequent

equations have been deduced, may be stated in the following manner, if we adopt the

definition proposed in an earlier part of this work (180, (4.) ),
for the spherical sum

of two angles on a spheric surface :

&quot; For any spherical triangle, the Spherical Sum of the three angles, if taken in a

suitable Order, is equal to Two Right Angles.&quot;

(9.) In fact, when the rotation round A from B to c is negative, if we spherically

add the angle B to the angle A, the spherical sum so obtained is (by the definition

referred to) equal to the external angle at c
;

if then we add to this sum, or supple

ment of c, the angle c itself, we get a final or total sum, which is exactly equal to

TT
;
addition of spherical angles at one vertex, and therefore in one plane, being ac

complished in the usual manner; but the spherical summation of angles with diffe

rent vertices being performed according to those new rules, which were deduced in the

Ninth Section of Book II., Chapter I.
;
and were connected (180, (5.) ) with the

conception of angular transvection, or of the composition of angular motions, in dif

ferent and successive planes.
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(10.) Without pretending to attach importance to the following notation, we may

just propose it in passing, as one which may serve to recall and represent the con

ception here referred to. Using a plus in parentheses, as a symbol or characteristic

of such spherical addition of angles, the formula I. may be abridged as follows:

XII.. . C(+)B(+)A=TT;

the symbol ofan added angle being written to the left of the symbol of the angle to

which it is added (comp. 264, (4.) ) ;
because such addition corresponds (as above)

to a multiplication ofversors, and we have agreed to write the symbol of the multi

plier to the left* of the symbol of the multiplicand, in every multiplication of qua

ternions.

311. There is, however, another view of the important equation

310, I., according to which it is connected rather with addition of

arcs (180, (3.) ),
than with addition of angles (180, (4.) ); and may

be interpreted, and proved anew, with the help of the supplementary

or polar triangle, A B C
,
as follows.

(1.) The rotation round A from E to c being still supposed to be negative, let

A
,
B

,
c be (as in 175) the positive poles of the sides EC, CA, AB; and let a

, ft , y
be their unit-vectors. Then, because the rotation round a from y to /3 is positive

(by 180, (2.) ), and is in quantity the supplement of the spherical angle A, the pro
duct y fl will be (by 281, (2.), (3.)) a versor, of which a is the axis, and A the

angle ; with similar results for the two other products, ay , /3V.

(2.) If then we write (comp. 291),

I. ..a =UV0y, /3
= UVya, y = UVa/3,

supposing that

II. ..Ta = T/8 = Ty = l, and III. . . Sa/3y &amp;gt; 0,

we shall have (comp. again 180, (2.)),

IV. . . a = UVy /3 , /3
= UVa y , y = UV/3V,

and V. . . A = L y /3 ,
B = i_ ay ,

c = L /3V ;

whence (by 308 or 309) we have the following exponential expressions for these

three last products of unit-lines,
2A 2a 2c

VI. . . y p =a~&quot;, a y =P~&amp;gt;; /3V = y.

(3.) Multiplying these three expressions, in an inverted order, we have, there

fore, the new product :

2c 2n 2A

VII. . . y* |3 a* = /3V. a y . y /3
= y 2/3V2 = - 1

5

and the equation 310, I. is in this way proved anew.

(4.) And because, instead of VI., we might have written,

* Compare the Note to page 146,
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2A
,

2B
,

20

VIII.
..u=-|;; ;p5

r^--&quot;

we see that the equation to be proved may be reduced to the form of the identity

aud may be interpreted as expressing, what is evident, that if a point be supposed to

move first along the side B C
,
of the polar triangle A B C

,
from B to c

;
then along

the successive side C A
,
from c to A

;
and finally along the remaining side A B

,

from A to B
,
it will thus have returned to the position from which it set out, or will

on the whole have not changed place at all.

(5.) In this view, then, we perform what we have elsewhere called an addition of

arcs (instead of angles as in 310) ;
and in a notation already used (264, (4.) ), we

may express the result by the formula,

X. . . A B + &amp;lt;-&amp;gt; C A 4 B C =
;

each of the the two left-hand symbols denoting au arc, which is conceived to be added

(as a successive vector-arc, 180, (3.) ), to the arc whose symbol immediately follows

it, or is written next it, but towards the right-hand.

(6.) The expressions VI. or VIIL, for the exponential factors in 310, L, show

in a new way the necessity of attending to the order of those factors, in that formula :

for if we should invert that order, without altering (as in 310, VIIL) the exponents,

we may now see that we should obtain this new product :

2A 2B 2c
, ,

XI. . . a &quot;=-

which, on account of the diplanarity of the lines a
, (3 , y ,

is not equal to negative

unity, but to a certain other versor ; the properties of which may be inferred from

what was shown in 297, (64.), and in 298, (8.), but upon which we cannot here

delay.

312. In general (comp. 221), an equation, such as

I... j-g,
between two quaternions, includes a system offour* scalar equa

tions, such as the following :

II. . . S =
S&amp;lt;

where a, j3, 7 may be any three actual and diplanar vectors :

and conversely, if a, /3, 7 be any three such vectors, then the

four scalar equations II. reproduce, and are sufficiently re-

* The propriety, which such results as this establish, for the use of the name,

QUATERNIONS, as applied to this whole Calculus, on account of its essential connexion

with the number FOUR, does not require to be again insisted on.
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placed by, the one quaternion equation I. But an equation

between two vectors is equivalent only to a system of three sca

lar equations, such as the three last equations II. ; for exam

ple, in 294, (12.), the one vector equation XXII. is equivalent

to the three scalar equations XXI., under the immediately

preceding condition of diplanarity XX. In like manner, an

equation between two versors ofquaternions,* such as the equa

tion

III. . .U0 =U?,

includes generally a system of three, but of not more than

three, scalar equations ;
because the versor Uq depends gene

rally (comp. 157) on a system of three scalars, namely the two

which determine its axis Ax. q, and the one which determines

its angle L q ; or because the versor equation III. requires to

be combined with the tensor equation,

IV. . . Tq = Tq, compare 187 (13.),

in order to reproduce the quaternion equation I. Now the re

cent equation, 310, I., is evidently of this versor-^form III., if

a, )3, 7 be still supposed to be unit-lines. If then we met that

equation, or if one of its form had occurred to us, without any

knowledge of its geometrical signification, we might propose to

resolve it, with respect to the three scalars A, B, c, treated as

three unknown quantities. The few following remarks, on the

problem thus proposed, may be not out of place, nor unin-

structive, here.

(1.) Writing for abridgment,

V. . . cot A = t, cot B = ,
cot c = v,

and VI. . . s = cosec A cosec B cosec c,

the equation to be resolved becomes (by 308, VII., or 309, XII.),

VII. . . ( + y) ( + /3) (* + a) = 8
;

in which the tensors on both sides are already equal, because

* An equation, Up = Up, or UV? = UV?, between two versors ofvectors (156),

or between the axes of two quaternions (291), is equivalent only to a system of two

scalar equations ; because the direction of an axis, or of a vector, depends on a sys

tem of two angular elements (111).
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VIII. . . *2 =
(t;

2 + 1) (2 + 1) (/ + 1).

(2.) Multiplying the equation VII. by t + a, and into t-a, and dividing the re

sult by
2 + t, we have this new equation of the s&meform, but differing by cyclical

permutation (comp. 310, (3.)) :

IX. . . (f + a) (+y)(+/3) =
;

and in like manner,

(3.) Taking the half difference of the two last equations, and observing that (by

279, IV., and 294, II.)

XI n(/3y - ay/3)
= V. jSVay = ySa/3- aS/3y,

UG3a-a/3) = V/3a, |(/3y-y/3) = V/3y,

we arrive at this new equation, of vectorform :

XII. . . = V/3a + *V/3y + ySa/3
-
aS/3y ;

which is equivalent only to a system of two scalar equations, because it gives =
0,

when operated on by S./3 (comp. 294, (9.) ).

(4.) It enables us, however, to determine the two scalars, t and v
;
for ifwe ope

rate on it by S.a, we get (comp. 298, XXVI.),

and if we operate on the same equation XII. by S. y, we get in like manner,

XIV. . .
i&amp;gt;Sa/3y

= y2Sa/3
-
Say Sy/3 = S(Vay.Vy/3).

(5.) Processes quite similar give the analogous result,

XV. . . wSa/3y = ,32Sya
-

Sy/3 S/3a
= S (Vy/3 .V/3a) :

and thus the problem is resolved, in the sense that expressions have been found for

the three sought scalars t, w, v, or for the cotangents V. of the three sought angles

A, B, c : whence the fourth scalar, s, in the quaternion equation VII., can easily be

deduced, as follows.

(6.) Since (by 294, (6.), changing S to a, and afterwards cyclically permuting)

we have, for any three vectors a, j3, y, the general transformations,

XVI. . . aSa/3y = V(V/3a .Vay), /3Sa/3y
= V(V713 .V/3a),

ySa/3y = V(ay.Vy/3),

the expressions XIII. XV. XIV. give,

(t + a)Sa/3y = V/3a .Vay ;

XVII. . . (u + /3) Sa/3y = Vy/3 .V/3a ;

( + y)Sa/3y=: Vay .Vy/3;

whence, by VII
,

and thus the remaining scalar, s, is also entirely determined.

( 7.) And the equation VIII. may be verified, by observing that the expressions

XVII. give,

XIX..

(8.) The equations XIII. XIV. XV. XVI. give, by elimination of Sa/3y, these

new expressions :
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XX. . . a^ = (V : S) (Vj3a .Vay) ; /3ir
== (V : S) (Vy/3 . V/5a) ;

yiri=(V:S)(Vay.Vy/3);

by comparing which with the formula 281, XXVIIL, after suppressing (291) the

characteristic I, we find that the three scalars, t, u, v, are either 1st, the cotangents

of the angles opposite to the sides a, b, c, of the spherical triangle in which the three

given unit-lines a, j3, y terminate, or Ilnd, the negatives of those cotangents, the

angles themselves of that triangle being as usual supposed to be positive (309, (10.) ),

according as the rotation round a from (3 to y is negative or positive : that is (294,

(3.) ), according as Sa/3y &amp;gt;or &amp;lt; ;
or finally, by XVIIL, according as the fourth

scalar, s, is negative or positive, because the second member of that equation XVIII.

is always negative, as being the product of three squares of vectors (282, 292).

(9.) In the 1st case, which is that of 309, (1.), we see then anew, by V. and VI.,

that we are permitted to interpret the scalars A, B, c, in the exponentialformula

310, I., as equal to the angles of the spherical triangle (8.), which are usually de

noted by the same letters. But we see also, that we may add any even multiples of
ir to those three angles, without disturbing the exponential equation ; or any one

even, and two odd multiples of TT, in any order, so as to preserve a, positive product

of cosecants, because s is, for this case, negative in VI., by (8.).

(10.) In the Ilnd case, which is that of 309, (11.), we may, for similar reasons,

interpret the scalars A, B, c, in the formula 310, I., as equal to the negatives of the

angles of the triangle; and as thus having, what VI. now requires, because s is now

positive (8.), a negative product of cosecants, while their cotangents have the values

required. But we may also add, as in (9.), any multiples O/TT, to the scalars thus

found for the formula, provided that the number of the odd multiples, so added, is

itself even (0 or 2).

(11.) The conclusions of 309, or 310, respecting the interpretation of the expo

nentialformula, are therefere confirmed, and might have been anticipated, by the

present new analysis : in conducting which it is evident that we have been dealing

with real scalars, and with real vectors, only.

(12.) If this last restriction were removed, and imaginary values admitted, in

the solution of the quaternion equation VII., we might have begun by operating, as

in II., on that equation, by the four characteristics,

XXI. . . S, S . a, S .
|3, and S . y ;

which would have given, with the significations 297, (1.), (3.), of/, m, n, and e,

and therefore with the following relation between those four scalar data,

XXII. . . e2 = l-f2_ TO2_

a system offour scalar equations, involving ihefour sought scalars, s, t, ,
v

;
from

which it might have been required to deduce the (real or imaginary) values of those

four scalars, by the ordinary processes of algebra.

(13.) The four scalar equations, so obtained, are the following :

= e + It -f mu -f nv - tuv + s
;

ev + tu -\- Itv + muv n
;

3 c
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eliminating uv and M between the three last of which, we find, with the help of XXII.,

the determinant,

1, mt, ntv + et-l

XXIV. . .
= m, t, Itv + ev n

n, It-e, tv-\- m-2/n

and analogous eliminations give,

XXV. . .
=

e(*2 + 1) (eu
- m + nZ),

and XXVI. . . 0=
(&amp;lt;

2 + I){e
2 - (m-Z) (n

-
Irn) + (1

-
Z*) (^-

(14.) Rejecting then the factor t* + 1 we find, as the only real solution of the

problem (12.), the following system of values:

XXVII. .. et = l mn; eu = m nl] ev =nlm;
and XXVIII. . . e* = - (1

-
/*) (1

-m2
) (1

-
n*) ;

which correspond precisely to those otherwise found before, in (4.) (5.) (6.), and might
therefore serve to reproduce the interpretation of the exponentialformula (310).

(15.) But on the purely algebraic side, it is found, by a similar analysis, that

the four equations XXIII. are satisfied also by a system offour imaginary solutions,

represented by the following formula? :

xxix. ..
= tuv It - mu nv e =

;

which it may be sufficient to have mentioned in passing, since they do not appear to

have any such geometrical interest, as to deserve to be dwelt on here : though, as

regards the consistency of the different processes employed, it may be remembered

that in passing (2.) from the equation VII. to IX., after certain preliminary multi

plications, we divided by tz + 1, as we were entitled to do, when seeking only for real

solutions, because t was supposed to be a scalar.

(16.) This seems to be a natural occasion for remarking that the following gene

ral transformation exists, whatever three vectors may be denoted by a, /3, y :

XXX. . . S(V/3y.Vya.Va/3)=-(Sa/3y)
2

;

which proves in a new way (comp. 180), that the rotation round the line V/3y, from

Vya to Va/3, is always positive ; or is directed in the same sense (281, (3.) ), as the

rotation round Vo/3 from a to (3, &c.

(17.) In like manner we have generally,

XXXI. . . S(Va/3.Vya.V/3y) = -f(Sa/3y)2,

and XXXII. . . S(Vy/3 .Vay.V/3a) =+ (Sa/3y)* ;

BO that the rotation round Vy/3 from Vay to V/3a is negative, whatever arrange

ment the three diplanar vectors a, (3, y may have among themselves.

(18.) If then
A&quot;, B&quot;,

c&quot; be the negative poles of the three successive sides, BC, CA,

AB, of any spherical triangle, the rotation round A&quot;from B&quot; to c&quot; is negative : which

is entirely consistent with the opposite result (180), respecting the system of the

three positive poles A.
,
B

,
c .

(19.) A quantitative interpretation*of the equation XXX. may also be easily as

signed : for we may infer from it (by 281, (4.), and 294, (3.) ) that I/OABC be any

pyramid, and if normals OA
,
OB

,
Od to the three faces BOC, COA, AOB have their

lengths numerically equal to the areas of those faces (as bearing the same ratios to
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units, &c,), then (with a similar reference to units) the volume of the new pyramid,
OA B C

,
will be three quarters of the square of the volume of the old pyramid,

OABC.

313. But an allusion was made, in 310, to an extension of

the exponential formula which has lately been under discus

sion
;
and in fact, that formula admits of being easily extended,

from triangles to polygons upon the sphere : for we may write,

generally,
2A,, 2AM-j 2Aa 2A],

I. a n
n

an-i
n

. ; . o w
a! ~= (- l)

n
,

if AiA 2 . . . An _! An be any spherical polygon, and if the scalars

AU A 2 ,
. . . in the exponents denote the positive or negative

angles of that polygon, considered as the rotations A^A^,
A!A2A 3 ,

. . . namely those from A^ to A^, &c. ; while n is any
positive whole number* &amp;gt; 2.

(1.) One mode of proving this extended formula is the following. Letoc = y
be the unit-vector of an arbitrary point c on the spheric surface

;
and conceive that

arcs of great circles are drawn from this point c to the n successive corners of the

polygon. We shall thus have a system of n spherical triangles, and each angle of

the polygon will (generally) be decomposed into two (positive or negative) partial

angles, which may be thus denoted :

II. . . CAiA2 = AI ,
CA2A 3 = A2 ,

. . .
;

III. . . AnAiC = AI&quot;, AiA2C = A2&quot;,

. . .
;

so that, with attention to signs of angles in the additions,

IV. . . AI = AI + AI&quot;,
A2 = A2 + A2 &quot;,

&c.

Also let

V. . . AoCAi = Ci, AaCA2 = C2, &C.
;

and therefore

VI. . . Ci + c2 + . . -f c,4
= an even multiple of TT,

which reduces itself to 2?r in the simple case of a polygon with no re-entrant angles,

and with the point c in its interior.

(2.) Then, for the triangle CAiA2,
of which the angles Are GI, AI ,

A2 &quot;,
we have,

by 310, III., the equation,
2A2

&quot;

2A! 2Ci

VII. . . a^~ Ul

~
= - y ;

and in like manner, for the triangle CA2Aa, we have

* The formula admits of interpretation, even for the case n = 2.
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2A;, *A 3 2C2

viii. . . a3
&quot;

2
w = -

r &quot; &c -

Bat, when we multiply VII. by VIII., we obtain, by IV., the product,

2A3
&quot;

8A2 Z\i 2 (Cl + C2)

IX. . . a3

~
az

* ai * = + y

and so proceeding, we have at last, by VI., a product of the form,

2Ai&quot;
2An 2A2 2\i

X. . . ai * an . . . a2 ai = (- l)
n

;

_2Ai&quot;
SA/

which reduces itself to I., when it is multiplied by a *
,
and into a *

(comp.

310, (3.) ). The theorem is therefore proved.

(3.) In words (comp. 310, (8.) ),
&quot; the spherical sum of the successive angles of

any spherical polygon, iftaken in a suitable order, is equal to a multiple oftwo right

angles, which is odd or even, according as the number of the sides (or corners) of the

polygon is itself odd or even&quot; : the definition formerly given (180, (4.) ),
of a Sphe

rical Sum of Angles, being of course retained. And the reasoning may be briefly

stated thus. When an arbitrary point c is taken on the spherical surface, as in (1.),

the spherical sum of the two partial angles, at the ends of any one side, is the supple

ment of the angle which that side subtends, at the point c
;
but the sum of all such

subtended angles is either four right angles, or some whole multiple thereof: there

fore the sum of their supplements can differ only by some such multiple from mr, if

n be the number of the sides.

(4.) Whatever that number may be, if we denote by pn the exponential product

in the formula I., we have for every vector p, and for every quaternion q, the equa

tions :

XI. . . Pnppn 1 = p J
XII. . . pnqpn

~
l = ? 5

whereof the former may (by 308, (8.), be thus interpreted:
u
If any line OP, drawn from the centre O of a sphere, be made to revolve coni-

cally round any n radii, OAi, . . OAM ,
as n successive axes of rotation, through an

gles equal respectively to the doubles of the angles of the spherical polygon AI . . A,
the line will be brought back to its initial position, by the composition ofthese n rota

tions.&quot;

(5.) Another way of proving the extended formula I., for any spherical polygon,

is analogous to that which was employed in 311 for the case of a triangle on a sphere,

and may be stated as follows. Let AI , A2 ,
. . . A,, be the positive poles of the arcs

AiA2 ,
A2A3 ,

. . . AMAi ;
and let a/, a2 ,

. . . a be the unit-vectors of those n poles.

Then the point AI is the positive pole of the new arc AI AM ,
and the angle AI of the

polygon at that point is measured by the supplement of that arc
;
with similar re

sults for other corners of the polygon. Thus we have the system of expressions

(comp. 311, VI.):
2Ai 2A

XIII. . . ai if ai a ;
. . . a /t

w = an a n-i ;

so that the product of powers in I. is equal to the following product of n squares of

unit-lines, and therefore to the n h
power of negative unity,
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XIV. . . a nCt n-l . a n-ia n-2 . &quot;Wl o ltt n = (- l)
n

;

and thus the extended theorem is proved anew.

(6.) This latter process may be translated into another theorem of rotation, on

which it is possible that we may briefly return,* in the Second and last Chapter of

this Third Book, but upon which we cannot here delay.

(7.) It may be remarked however here (comp. 309, XII.), that the extended

exponential formula I. may be thus written :

XV. . . cans An . can-iSAM_i . . . caas A% . cais AI = (- l)
n

.

(8.) For example, if ABCD be any spherical quadrilateral, of which the angles

(suitably measured) are denoted by A, . . D, so that A represents the positive or ne

gative rotation from AD to AB, &c., while a, (3, y, d are the unit vectors of its cor

ners, then

XVI. . . ctfsD.cysc. c/3sB.casA = + l.

(9.) Hence (comp. 309, XIII.), we may write also,

XVII. . . (cos c
-
y sin c) (cos D - 8 sin D) = (cos B + /3 sin B) (cos A + a sin A) ;

and therefore, by taking scalars on both sides, and changing signs,

XVIII. . . cos c cos D + sin c sin D cos CD = cos B cos A + sin B sin A cos BA
;

in fact, each member of this last formula is equal (by 309, XIV.) to the cosine of

the angle AEB, or CED, if the opposite sides AD, BC of the quadrilateral intersect in E.

(10.) Let p = OP be the unit vector of any fifth point, P, upon the spheric sur

face ; then operating by S . p on XVII., we obtain this other general formula,

J&quot;

= sin A cos B cos AP + sin B cos A cos BP -f- sin A sin B sin AB sin PQ

\ + sin c cos D cos CP + sin D cos c cos DP -f sin c sin D sin CD sin PR
;

in which the sines of the sides AB, CD are treated as always positive ; but the sines

of the perpendiculars PQ and PR, on those two sides, are regarded as positive or ne

gative, according as the rotations round P, from A to B and from c to D, are negative

or positive : and hence, by assigning particular positions to p, several other but less

general equations of spherical tetragonometry can be derived.

(11.) For example, if we place P at the intersection, say F, of the opposite sides

AB, CD, the two last perpendiculars will vanish, and two of the six terms will disap

pear, from the general formula XIX.
;
and a similar reduction to four terms will

occur, if we make the arbitrary point p the pole of a side, or of a diagonal.

314. The definition of the power a*, which was assigned in 308,

enables us to form some useful expressions, by quaternions, for cir

cular, elliptic, and spiral loci, in a given plane, or in space, a few of

which may be mentioned here.

(1.) Let a beany given unit-vector OA, and /3 any other given line OB, perpendi

cular to it
; then, by the definition (308), if we write,

Compare 297, (24.).
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I. . . op = p = a /3, Ta = l, Sa/3 = 0,

the locus of the point P will be the circumference of a circle, with o for centre, and

OB for radius, and in a plane perpendicular to OA.

(2.) If we retain the condition Ta = 1, but not the condition Sa/3 = 0, then the

product a (

fi will be in general a quaternion, and not merely a vector ; but if we take

its vector-part (292), we can form this new vector-expression,

II. . . OP = p = V. a*/3
=

(3 cos x + y sin x,

where III. . . 2x = tir, and IV. . . y = oc = Va/3 ;

and now the ZOCMS of p is a plane ellipse, with its centre at o, and with OB and oc

for its major and minor semiaxes : while the angular quantity, x, is what is often

called the excentric anomaly.

(3.) Ifwe write, under the same conditions (2.),

V. . . OB =/3 = V/3a: a = a- 1

y, and VI. . . OP =
p = Vpa : a = aVpa,

so thatB and p are the projections (203) of B and P on a plane drawn through o, at

right angles to the unit-line OA, we have then, by II., the equation,

VII. . . p =
j3 cosaj+ysina? = o j8

/

;

so that the locus of this projected point p is a circle, with OB and oc for two rectan

gular radii.

(4.) Under the same conditions, the elliptic locus (2.), of the point P itself, is the

section of the right cylinder (compare 203, (5.) ),

VIII. . . TVap = TVa/3 = Ty,
made by the plane,

lX...O = Sy/3p, or IX . ../3
2
Sap = Sa/3 S/3p (comp. 298, XXVI.);

as a confirmation of which last form we have, by II. and IV.,

X. . . Sap = Sa/3 cos x, S/3p = /3
2 cos x.

(5.) If we retain the condition Sa/3 = (1.), but not now the condition Ta = 1,

we may again write the equation I. for p ;
but the locus of p will now be a loga

rithmic spiral, with o for its pole, in the plane perpendicular to OA
;
because equal

angular motions, of the turning line OP, correspond now to equal multiplications of
the length of that line p.

(6.) For example, when the scalar exponent t is increased by 4, so that the re

volving unit line,

XL. . Up = Ua*.U/3

returns (comp. 309, XXIV.) to the direction which it had before the increase of t

was made, the length Tp of the turning line p itself, or of the radius vector of the

locus, is multiplied by Ta4
;
which constant and positive scalar is not now equal to

unity.

(7.) If we reject both the conditions (I.),

Ta=l, and Sa/3 = 0,

so that the line a, or the base of the power a f
,
is now neither an unit-line, nor per

pendicular to (3, namely to the line on which that power operates, as a, factor, we

must again take vector parts, but we have now this new expression :

XII. . . OP = p = V.
a&amp;lt;/3

=
a&amp;lt;(/3

cos x + y sin a)

in which we have written, for abridgment,



CHAP. I.] EXPRESSIONS FOR CERTAIN SPIRALS. 383

XIII. ..a = Ta, y = V(Ua./3).

(8.) In this more complex case, the locus of P is still a plane curve, and maybe
said to be now an elliptic* logarithmic spiral; for if we suppress the scalar factor,

at, we fall back on the form II., and have again an ellipse as the locus: but when

we take account of that factor, we find (comp. (2.) ) that equal increments of ex-

centric anomaly (#), in the auxiliary ellipse so determined, correspond to equal mul

tiplications ofthe length (Tp), of the vector of the new spiral.

(9.) We may also project B and p, as in (3.), into points B and P
,
on the plane

through o perpendicular to OA, which plane still contains the extremity c of the

auxiliary vector y ;
and then, since it is easily proved that y = Ua .

/3 ,
the equa

tion of the projected spiral becomes (with Ta &amp;gt; or &amp;lt; 1),

XIV. . . p =
a*(/3 cos x + y sin a) = a/3 ;

so that we are brought back to the case (5.), and the projected curve is seen to be a

logarithmic spiral, of the known and ordinary kind.

(10.) Several spirals of double curvature are easily represented, on the same ge
neral plan, by merely introducing a vector-term proportional to t, combined or not

with a constant vector-term, in each of the expressions above given, for the variable

vector p. For example, the equation,

XV. . . p = eta + a% with Ta = 1, and Sa/3 = 0,

while c is any constant scalar different from zero, represents a helix, on the right
circular cylinder VIII.

(11.) And if we introduce a new and variable scalar, u, as & factor in the right-
hand term, and so write,

XVI. . . p = eta + ua%
we shall have an expression for a variable vector p, considered as depending on two

variable scalars (t and ), which thus becomes (99) the expression for a vectorofa

surface : namely of that important Screw Surface, which is the locus ofthe perpen

diculars, let fall from the various points of a given helix, on the axis of the cylinder
of revolution, on which that helix, or spiral curve, is traced.

315. Without at present pursuing farther the study of these loci

by quaternions, it may be remarked that the definition (308) of the

power , especially for the case when Ta= 1, combined with the

laws (182) of i, j\ &, and with the identification (295) of those three

important right versors with their own indices, enables us to esta

blish the following among other transformations, which will be found
useful on several occasions.

(1.) Let a be any unit-vector, and let t be any scalar ; then,

I. . . S . flT = S . a*
;

II. . . S . a--i = S . a*** = - S . a -1

;

* The usual logarithmic spiral might perhaps be called, by contrast to this one,
a circular logarithmic spiral Compare the following sub-article (9.), respecting the

projection of what is here called an elliptic logarithmic spiral.
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III. . . a^S.a + aS.a
-

1

;
IV. . . a~ = S . a - aS. a&amp;lt;-i

;

V. . . (S . a*)
2 + (S. a*-O

2 = aa- = 1.

(2.) Let a and i 6e any #M?O unit-vectors, and let tf be still any scalar ; then

VI. . . S.a = S.i; VII. . . V.a = oS. a*- 1

;

VIII. . . aV. a = a2S . a - 1 = S . a* 1
.

(3.) Hence, by the laws of z
, .;, ,

IX. . . iV.i^jV.j* = *V.# = S . aM .

(4.) We have also, by the same principles and laws,

X. . . fV. j*
= V. k*

; jV.# = V. i
;

/iV. t&amp;lt;
= V.j* ;

XI. . . jV. t*= - V. k*
; V./ = - V. i*

;
tV.# = -

V.j*.

(5.) The expression 308, (10.), for an arbitrary vector p, may be put under the

following form :

XII. . . prrrV.*3

(6.) And it may be expanded as follows :

XIII. . . p = r
{ (i cos t-K +j sin TT) sin s^r + k cos s?r

}
.

(7.) We shall return, briefly, in the Second Chapter of this Book, on some of

these last expressions, in connexion with differentials and derivatives of powers of
vectors ; but, for the purposes of the present Section, they may suffice.

SECTION 11. On Powers and Logarithms ofDiplanar Qua
ternions; with some Additional Formula.

316. We shall conclude the present Chapter with a short Sup

plementary Section, in which the recent definition (308) of a power

of a vector, with a scalar exponent, shall be extended so as to include

the general case&amp;gt;
of a Power of a Quaternion, with a Quaternion Ex

ponent, even when the two quaternions so combined are diplanar:

and a connected definition shall be given (consistent with the less

general one of the same kind, which was assigned in the Second

Chapter of the Second Book), for the Logarithm of a Quaternion in

an arbitrary Plane :* together with a few additional Formula, which

could not be so conveniently introduced before.

(1.) We propose, then, to write, generally,

q being any quaternion, and being the real and known base of the natural (or Na

pierian) system of logarithms, of real and positive scalars : so that (as usual),

* The quaternions considered, in the Chapter referred to, were all supposed to be

in the plane of the right versor f. But see the Second Note to page 265.
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II. . . e = i=l++ --L&c.rr 2-71828...

(Compare 240, (1.) and (2.).)

(2.) We shall also write, for any quaternion q, the following expression for what

we shall call its principal logarithm, or simply its Logarithm:

and thus shall have (comp. 243) the equation,

IV. .,-- q.

(3.) When q is any actual quaternion (144), which does not degenerate (131)
into a negative scalar, the formula III. assigns a definite value for the logarithm,

Iq ;
which is such (comp. again 243) that

V. ..Sl9 = lT^; VI. . . Vlg
VII. . . UVlg = UV9 ;

VIII.

the scalar part of the logarithm being thus the (natural) logarithm of the tensor ;

and the vector part of the same logarithm \q being constructed by a line in the direc

tion of the axis Ax. q, of which the length bears, to the assumed unit of length, the

same ratio as that which the angle L q bears, to the usual unit of angle (comp. 241,

(2.), (4.)).

(4.) If it were merely required to satisfy the equation,

IX...e = ? ,

in which q is supposed to be a given and actual quaternion, which is not equal to

any negative scalar (3.), we might do this by writing (compare again 243),

X. . . q =
(log q)n =\q + 27rUV?,

where n is any whole number, positive or negative or null
;
and in this view, what

we have called the logarithm, \q, of the quaternion q, is only what may be considered

as the simplest solution of the exponential equation IX., arid may, as such, be thus

denoted :

XL . .I? = (log 9) .

(5.) The excepted case (3.), where q is a negative scalar, becomes on this plan

a case of indetermination, but not of impossibility ; since we have, for example, by

the definition III., the following expression for the logarithm of negative unity,

XII. .. l(-l) = 7rV-l;

which in its form agrees
-

?vith old and well-known results, but is here interpreted as

signifying any unit-vector, of which the length bears to the unit of length the ratio

of TT to 1 (comp. 243, VII.).

(6.) We propose also to write, generally, for any two quaternions, q and q ,
even

ifdiplanar, the following expression (comp. 243, (4.) ) for what may be called the

principal value of the power, or simply the Power, in which the former quaternion q

is the base, while the latter quaternion q is the exponent :

XIII. . . 9? =
&amp;lt;2 l&amp;lt;z

;

and thus this quaternion power receives, in general, with the help of the definitions I.

and III., a perfectly definite signification.

(7.) When the base, q, becomes a rector, p, \tsangle becomes a right angle ; the

definition III. gives therefore, for this case,

3 D
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XIV. . . lp=lTp +

and this is the quaternion which is to be multipled by g ,
in the expression,

XV. . . p
= P.

(8.) When, for the same vector-base, the exponent q becomes a scalar, t,
the

last formula becomes :

XVI. . . p
t = iw = T/o .

*U
P, if 2z = 1TT

;

and because, by L, the relation (Up)
2 =- 1 gives,

XVII. . .
rUp = cos x + Up sin #, or briefly, XVII . . . t*Up = cpsx,

we see that the former definition, 308, L, of the power a*, is in this way reproduced,

as one which is included In the more general definition XIII., of the power qi ;
for

we may write, by the last mentioned definition,

XVIII. . . (Upy = *Up = cps (comp. 234, VIII.),

with the recent values XVI. and XVII., of x and t*up.

(9.) In the present theory of diplanar quaternions, we cannot expect to find

that the sum of the logarithms of any two proposed factors, shall bo generally equal

to the logarithm of the product ; but for the simpler and earlier case of complanar

quaternions, that algebraic property may be considered to exist, with due modifica

tions for multiplicity of value *

(10.) The definition III. enables us, however, to establish generally the very

simple formula (comp. 243, II. III.) :

XIX. . . \q
= 1 (Tg . Uq) = ITq + 1U9 ;

in which (comp. (B.) ),

XX. . . 1U? = L q UVg = Vly ;
XXI. . . TlUg = /. q ;

XXII. . . UlUg = UVq.

(11.) We have also generally, by XIII., for any scalar exponent, t,
and any

quaternion tase, q, the power,

XXIII. . . 9*
= 6f = (T0). (cos t L q + UV? . sin t L q) ;

or briefly,
XXIII . . . q*

= Tq* . cvs t {. g, if v = UV9;

in which the parentheses about T^ may be omitted, because

XXIV. . . T(g9 = (Tgr)*=Ty (comp. 237, II.).

(12 ) When the base and exponent of a power are two rectangular vectors, p and

p , then, whatever their lengths may be, the product p lp is, by XIV., a vector ; but

t is always a versor,

XXV. . . e = cos Ta + Ua sin Ta, if a be any vector
;

we have therefore,

* In 243, (3.), it might have been observed, that every value of each member of

the formula IX., there given, is one ofthe values of the other member; and a similar

remark applies to the formula) I. and II. of 236.
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XXVI. . . T.pp =l, if S.pp =0;

or in words, the power pp is a versor, under this condition of rectangularity.

(13.) For example (corap. 242, (7.),* and the shortly following formula

XXVIII.),
XXVII. . . i/ = JV = - k

; j*
= e y = + k

;

and generally, if the base be an unit-line, and the exponent a line of any length, but

perpendicular to the base, the cms ofthe power is a Hue perpendicular to both ; un

less the direction ofthat axis becomes indeterminate, by the power reducing itself to a

scalar, which in certain cases may happen.

(14.) Thus, whatever scalar c may be, we may write,

XXVIII. . . ttf = &amp;lt;-/! = 6-i * = cos y - k sin
;

this power, then, is a versor (12.), and its axis is generally the line + k
;
but in the

case when c is any whole and even number, this versor degenerates into positive or ne

gative unity (153), and the axis becomes indeterminate (131).

(15.) If, for any real quaternion q, we write again,

XXIX. . . UV? = v, and therefore XXX. . . vq = qv, and XXXI. . . ua = - 1
,

the process of 239 will hold good, when we change i to v
;
the series, denoted in I.

by ?, is therefore always at last convergent,^- however great (but finite) the tensor

Tq may be ; and in like manner the two following other series, derived from it, which

represent (comp. 242, (3.) ) what we shall call, generally, by analogy to known ex

pressions, the cosine and sine of the quaternion q, are always ultimately convergent :

XXXII. . . cos q = | (&quot;
+

-&quot;9)
= 1

XXXIII. . . sin q = ~ (e&quot;9- r&quot;?)
=

|

(16.) We shall also define that the secant, cosecant, tangent, and cotangent of

a quaternion, supposed still to be real, are the functions :

XXXIV. . . sec q = ;
cosec a =

;

tvq i f-vq f vq _ f-vq

...I
( t vq f- v9} i&amp;gt; ( tv1 d- t- v1*)

XXXV. . . tan q = ; cot g = ;
tin . ttfi an _iin

and thus shall have the usual relations, sec q 1 : cos q, &c.

(17.) We shall also have,

XXXVI. . .

u&amp;lt;? = cos q + v sin q, e-
y* = cos q

- v sin q ;

* In the theory of complanar quaternions, it was found convenient to admit a

certain multiplicity of value for a power, when the exponent was not a whole num

ber; and therefore a notation for the principal value of a power was employed, with

which the conventions of the present Section enable us now to dispense.

f In fact, it can be proved that this final convergence exists, even when the qua

ternion is imaginary, or when it is replaced by a biquaternion (214, (8.) ) ;
but we

have no occasion here to consider any but real quatei nions.
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and therefore, as in trigonometry (comp. 315, (1.) ),

XXXVII. . . (cos 9)2 + (sin ?)2 = &quot;&amp;lt;?

.

whatever quaternion q may be.

(18.) And all theformula of trigonometry ,
for cosines and sines of sums of two or

more arcs, &c., will thus hold good for quaternions also, provided that the quater

nions to be combined are in any common plane ; for example,

XXXVIII. . . cos (g + 9) = cos q cos q
- sin q sin q, if 9 1 1 1 7.

(19.) This condition of complanarity is here a necessary one; because (comp.

(9. ) ) it is necessary for the establishment of the exponential relation between sums and

powers.

(20.) Thus, we may indeed write,

XXXIX. , . +&amp;lt;? = efl . 6, / 2 1 1 1 q ;

but, in general, the developments of these two expressions give the difference,

XL. . .
+ 1 - = + terms of third and higher dimensions ;

and XLI. . . %(qq -q q)=V(Vq.Vq l

an expression which does not vanish, when the quaternions q and q are diplanar.

(21.) A few supplementary formulae, connected with the present Chapter, may be

appended here, as was mentioned at the commencement of this Article (316). And
first it may be remarked, as connected with the theory of powers of vectors, that if

a, (3, y be any three unit-lines, OA, OB, oc, and if a denote the area of the spherical

triangle ABC, then the formula 298, XX. may be thus written:

+ y + a

the exponent being here a scalar.

(22.) The immediately preceding formula, 298, XIX., gives for any three vec

tors, the relation :

XLIII. . . (Ua/3y)
2 + (U/3y)

2 + (Uay)
2 + (Ua/3)

2 + 4Uay . SUa/3. SU/3y = - 2
;

for example, if a, /3, y be made equal to i,j, k, the first member of this equation be

comes, 1-1-1-1 + = - 2.

(23.) The following is a much more complex identity, involving as it does not

only three arbitrary vectors a, /3, y, but also four arbitrary scalars, a, b, c, and r
;

but it has some geometrical applications, and a student would find it a good exercise

in transformations, to investigate a proof of it for himself. To abridge notation, the

three vectors a, /3, y, and the three scalars a, b, c, are considered as each composing
a cycle, with respect to which are formed sums 2, and products IT, on a plan which

may be thus exemplified :

XLIV. . . 2aV/3y = aV/3y + 6Vya + cVa/3 ;
Ha2 = a262c.

This being understood, the formula to be proved is the following :

XLV. . . (Sa/3y)
2 + (2aV/3y&amp;gt;+ r2(2V/3y)2-r2(Sa(/3-y) )

2

+ 2n (r2 + S/3y + 6c) = 211 (r
2 + a2

) + 2 IIa

+ 2 (r2 + a2 + a5
) { (V/3y)

2
-f 26c (r

2 + S/3y )
- r2 (0

-
y)

8
} ;

the sign of summation in the last line governing all that follows it.
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(24.) For example, by making the four scalars a, 6, c, r each =0, this formula

gives, for any three vectors a, (3, y, the relation.

XLVI. . . (Sa|3y) + 2nS/3y = 2Ha2
4- 2 . a2(V/3y)

2
;

which agrees with the very useful equation 294, LIII., because

XLVII. . . a2(V/3y)
2 = a2{(S j3y)

2 -
1

82
y
2
}
= (aS/3y)2-na2.

(25.) Let a, /3, y be the vectors of three points A, B, c, which are exterior to a

given sphere, of which the radius is r, and the equation is,

XLVIII. . . p2+ r2 = (comp. 282, XIII.) ;

and let a, 6, c denote the lengths of the tangents to that sphere, which are drawn

from those three points respectively. We shall then have the relations :

XLIX. ..

thus r2 + a2= a2
, &c., and the second member of the formula XLV. vanishes

;
the

first member of that formula is therefore also equal to zero, for these significations of

the letters : and thus a theorem is obtained, which is found to be extremely useful,

in the investigation by quaternions of the system of the eight (real or imaginary)
small circles, which touch a given set of three small circles on a sphere.

(26.) We cannot enter upon that investigation here
;
but may remark that be

cause the vector p of the foot p, of the perpendicular OP let fall the origin o on the

right line AB, is given by the expression,

as may be proved in various ways, the condition ofcontact of that right line AB with

the sphere XLVII I. is expressed by the equation,

LI. . . TV/3a = rT (a
-

j3) ;
or LII. . . (V/3a)

2 = r* (a
-

/3)
2

;

or by another easy transformation, with the help of XLIX.,

LIII. . . (r
2 + Sa

/8)2 = (r* + a2
) (r

2 + 02) = a2fc2.

(27.) This last equation evidently admits of decomposition into two factors, re

presenting two alternative conditions, namely,

LIV. . . r2 + Sa/3
- ab =

;
LV. . . r2 + Sa/3 + db =

;

and if we still consider the tangents a and 6 (25.) as positive, it is easy to prove, in

several different ways, that the first or the second factor is to be selected, according
as the point p, at which the line AB touches the sphere, does or does not fall between

the points A and B
;
or in other words, according as the length of that line is equal

to the sum, or to the difference, of those two tangents.

(28.) In fact we have, for the first case,

LVI. . . T(j3-a) = 6 + a, or = (/3- a)
2 + (6 + a)3 = _2 (r2+ Sa/3 -ab},

in virtue of the relations XLIX.
; but, for the second case,

LVII. ..T(/3-a)=(6-a), or =
(/3 -a)

2
-f (6

-
a)2 = - 2 (r + Sa/3 + a&) ;

and it may be remarked, that we might in this way have been led to find the system
of the two conditions (27.), and thence the equation LIII., or its transformations

LII. and LI.
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(29.) We may conceive a cone of tangents from A, circumscribing the sphere

XLVIII., and touching it along a small circle, of which iksplane, or the polarplane

of the point A, is easily found to have for its equation,

LVIII. . . Sap + r* = Q (comp. 294, (28.), and 215, (10.));

and in like manner the equation,

LIX. . . S/3o + r2 = 0,

represents the polar plane of the point B, which plane cuts the sphere in a second

small circle : and these two circles touch each other, when either of the two con

ditions (27.) is satisfied; such contact being external for the caseLIV., but internal

for the case LV.

(30.) The condition of contact (26.), of the line and sphere, might have been

otherwise found, as the condition of equality of roots in the quadratic equation

(comp. 216, (2.)),

LX. . .
=

(.ra + y/3)2 + (x + y)
2 r2

,

or LXI. . . = x* (r
2 + a*) + 2xy (r* + Sa/3) + y2 (r

2 + /3
2
) ;

the contact being thus considered here las a case of coincidence of intersections.

(31.) The equation of conjugation (comp. 215, (13.)), which expresses that

each of the two points A and B is in the polar plane of the other, is (with the present

notations),
LXII. . . r -f S/3 = 0;

the equal but opposite roots of LXI., which then exist if the line cuts the sphere,

answering here to the well-known harmonic division of the secant line AB (comp.

215, (16.) ), which thus connects two conjugate points.

(32.) In like manner, from the quadratic equation* 216, III., we get this analo

gous equation,

.

(3 (3

connecting the vectors X, /u
of any two points L, M, which are conjugate relatively to

the ellipsoid 216, II.
;
and if we place the point L on the surface, the equation LXIII.

will represent the tangent plane at that point L, considered as the locus of the conju

gate point M ;
whence it is easy to deduce the normal, at any point of the ellipsoid.

But all researches respecting normals to surfaces can be better conducted, in con

nexion with the Differential Calculus of Quaternions, to which we shall next pro

ceed.

(33.) It may however be added here, as regards Powers of Quaternions with

scalar exponents (11.), that the symbol qtrq-* represents a quaternion formed from r,

by a conical rotation of its axis round that of q, through an angle = It L q ;
and that

both members of the equation,

LXIV. ..(qrq^ = qrtq-\

are symbols of one common quaternion.

* Corrected as in the first Note to page 298.
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CHAPTER II.

ON DIFFERENTIALS AND DEVELOPMENTS OF FUNCTIONS OF

QUATERNIONS; AND ON SOME APPLICATIONS OF QUATER

NIONS, TO GEOMETRICAL AND PHYSICAL QUESTIONS.

SECTION 1 On the Definition of Simultaneous Differentials.

317. IN the foregoing Chapter of the present Book, and in

several parts of the Book preceding it, we have taken occasion

to exhibit, as we went along, a considerable variety of Exam

ples, ofthe Geometrical Application of Quaternions : but these

have been given, chiefly as assisting to impress on the reader

the meanings of new notations, or of new combinations of sym

bols, when such presented themselves in turn to our notice.

In this concluding Chapter, we desire to offer a few additional

examples, of the same geometrical kind, but dealing, more

freely than before, with tangents and normals to curves and

surfaces ; and to give at least some specimens, of the applica

tion of quaternions to Physical Inquiries. But it seems ne

cessary that we should first establish here some Principles, and

some Notations, respecting Differentials of Quaternions, and

of their Functions, generally.

318. The usual definitions, of differential coefficients, and

of derived functions, are found to be inapplicable generally to

the present Calculus, on account of the (generally) non-com-

mutative character ofquaternion- multiplication (168, 191). It

becomes, therefore, necessary to have recourse to a new Defi
nition of Differentials, which yet ought to be so framed, as to

be consistent with, and to include, the usual Rules of Diffe
rentiation: because scalars (131), as well as vectors (292),

have been seen to be included, under the general Conception

of Quaternions.

319- In seeking for such a new definition, it is natural to
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go back to the first principles of the whole subject of Diffe

rentials : and to consider how the great Inventor of Fluxions

might be supposed to have dealt with the question, if he had

been deprived of that powerful resource of common calculation,

which is supplied by the commutative property of algebraic

multiplication ; or by the familiar equation,

xy=yx,

considered as a general one, or as subsisting for every pair of

factors, x and y ;
while limits should still be allowed, but in-

finitesimals be still excluded : and indeed the fluxions them

selves should be regarded as generally finite,* according to

what seems to have been the ultimate view of NEWTON.
320. The answer to this question, which a study of the

Principia appears to suggest, is contained in the following

Definition, which we believe to be a perfectly general one, as

regards the older Calculus, and which we propose to adopt

for Quaternions :

&quot; Simultaneous Differentials (or Corresponding Fluxions)

are Limits ofEquimultiples^ of Simultaneous and Decreasing

Differences.&quot;

*
Compare the remarks annexed to the Second Lemma of the Second Book of the

Principia (Third Edition, London, 1726) ;
and especially the following passage (page

244):
&quot;

Neque enim spectatur in hoc Lemmate magnitude momentorum, sed prima

nascentium proportio. Eodem recidit si loco momentorum usurpentur vel velocitates

incrementorum ac decrementorum (quas etiam motus, mutationes et fluxiones quan-

titatum nominare licet) vel finitse qusevis quantitates velocitatibus hisce proportion-

ales.&quot;

f As regards the notion of multiplying such differences, or generally any quanti

ties which all diminish together, in order to render their ultimate relations more evi

dent, it may be suggested by various parts of the Principia of Sir Isaac Newton
;
but

especially by the First Section of the First Book. See for example the Seventh Lemma

(p. 31), under which such expressions as the following occur :

&quot;

intelligantur semper

AB et AD ad puncta longinqua b et d produci,&quot; . . . .
&quot;

ideoque rectoe semper finita?

Ab, Ad, . . .&quot; The direction, &quot;ad puncta longinqua produci,&quot;
is repeated in con

nexion with the Eighth and Ninth Lemmas of the same Book and Section
;
while

under the former of those two Lemmas we meet the expression,
&quot;

triangula semper

n
nita,&quot; applied to the magnified representations of three triangles, which all diminish

indefinitely together : and under the latter Lemma the words occur,
&quot; manente longi-

tudine Ae&quot; where Ae is a finite and constant line, obtained by a constantly increas

ing multiplication of a constantly diminishing line AE (page 33 of the edition

cited).
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And conversely, whenever any simultaneous differences, of

any system of variables, all tend to vanish together, according
to any law, or system of laws

; then, if any equimultiples of

those decreasing differences all tend together to any system of

finite limits, those Limits are said to be Simultaneous Diffe
rentials of the related Variables of the System; and are de

noted, as such, by prefixing the letter d, as a characteristic of

differentiation, to the Symbol of each such variable.

321. More fully and symbolically, let

I. . . q, r, 5, . . .

denote any system of connected variables (quaternions or others); and

let

II. . .
A&amp;lt;7, Ar, As, . . .

denote, as usual, a system of their connected (or simultaneous) diffe

rences ; in such a manner that the sums,

III. . . q + Aq, r + Ar, s + As, . . .

shall be a new system of variables, satisfying the same laws of con

nexion, whatever they may be, as those which are satisfied by the old

system I. Then, in returning gradually from the new system to the

old one, or in proceeding gradually from the old to the new, the

simultaneous differences II. can all be made (in general) to approach

together to zero, since it is evident that they may all vanish together.

But
z/,

while the differences themselves are thus supposed to decrease*

indefinitely together, we multiply them all by some one common but

increasing number, n, the system of their equimultiples,

IV. . . n&q, wAr, wAs, . . .

may tend to become equal to some determined system offinite limits.

And when this happens, as in all ordinary cases it may be made to do,

by a suitable adjustment of the increase of n to the decrease of Aq,

&c., the limits thus obtained are said to be simultaneous differentials

of the related variables, q,r,s\ and are denoted, as such, by the sym
bols,

V. . . d?, dr, ds, . . .

* A quaternion may be said to decrease, when its tensor decreases ; and to de

crease indefinitely, when that tensor tends to zero,

SB
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SECTION 2__Elementary Illustrations of the Definition, from

Algebra and Geometry.

322. To leave no possible doubt, or obscurity, on the im

port of the foregoing Definition, we shall here apply it to de

termine the differential ofa square, in algebra, and that of a

rectangle, in geometry; in doing which we shall show, that

while for such cases the old rules are reproduced, the differen

tials treated of need not be small; and that it would be a vitia

tion, and not a correction, ofthe results, ifany additional terms

were introduced into their expressions, for the purpose ofren

dering all the differentials equal to the corresponding diffe

rences : though some of them may be assumed to be so,

namely, in the first Example, one, and in the second Exam

ple, two.

(1.) In Algebra, then, let us consider the equation,

I...y = *2,

which gives,
II. ..

and therefore, as usual,*

III. . . Ay = 2o;Aa; + A*2
;

or what comes to the same thing,

IV. . . nAy = 2xn&x + n&quot;
1

(nAa;)
2
,

where n is an arbitrary multiplier, which may be supposed, for simplicity, to be a

positive whole number.

(2.) Conceive now that while the differences Ax and Ay, remaining always con

nected with each other and with x by the equation III., decrease, and tend together

to zero, the number n increases, in the transformed equation IV., and tends to infi

nity, in such a manner that the product, or multiple, nAx, tends to some finite limit

a
;
which may happen, for example, by our obliging Az to satisfy always the con

dition,

V. . . Ax = n~l
a, or nAx a,

after a previous selection of some given and finite value for a.

* We write here, as is common, Aa;2 to denote (Ao;)
2

;
while A. a;2 would be

written, on the same known plan, for A (a;
2
), or Ay. In like manner we shall write

dx2
,
as usual, for (da;)

2
;
and shall denote d(#

2
) by d..r2. Compare the notations

Sfl
2

, S.?
2

,
and Vg2

,
V. 9

2
,
in 199 and 204.
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(3.) We shall then have, -with this last condition V., the following expression

by IV., for the equimultiple nAy, of the other difference, Ay :

VI. . . nAy = 2xa + n la* = b + n~W, if b = 2:ra.

But because a, and therefore a2
,
is given and finite, (2.), while the number n in

creases indefinitely, the term - a2
,
in this expression VI. for nAy, indefinitely tends

to zero, and its limit is rigorously null. Hence the two finite quantities, a and 6

(since x is supposed to be finite), are two simultaneous limits, to which, under the

supposed conditions, the two equimultiples, nAx and. nAy, tend;* they are, therefore,

by the definition (320), simultaneous differentials of x and y : and we may write ac

cordingly (321),
VII. . . da; = a, dy = b = 2xa

;

or, as usual, after elimination of a,

VIII. . . d = d..r2

(4.) And it would not improve, but vitiate, according to the adopted definition

(320), this usual expression for the differential of the square of a variable x in alge

bra, if we were to add to it the term da;2
,
in imitation of the formula III. for the

difference A.x2
. For this would come to supposing that, for a given and finite

value, a, of da?, or of nAx, the term n~ ]a2
,
or n ldx 2

,
in the expression VI. for nAy,

couldfail to tend to zero, while the number, n, by which the square of dx is divided,

increases without limit, or tends (as above) to infinity.

(5.) As an arithmetical example, let there be the given values,

IX. . . x = 2, y = x2 = 4, da; = 1000
;

and let it be required to compute, as a consequence of the definition (320), the arith-

rithmetical value of the simultaneous differential, dy. We have now the following

equimultiples of simultaneous differences,

X. . . nAa; = daj = 1000; nAy = 4000+ 1000000n-J
;

but the limit of the nth
part of a million (or of any greater, but given andfinite num

ber) is exactly zero, if n increase without limit ; the required value of dy is, therefore,

rigorously, in this example,
XI. . . dy = 4000.

(6.) And we see that these two simultaneous differentials,

XII. . . da? = 1000, dy = 4000,

are not, in this example, even approximately equal to the two simultaneous diffe

rences,
XIII. . . Ax = Ax = 1000, Ay = 10022 - 2 2 = 1004000,

which answer to the value n = 1
; although, no doubt, from the very conception of

simultaneous differentials, as embodied in the definition (320), they must admit of

having such equisubmultiples of themselves taken,

XIV. . . n~ l dx and n- dy,

* In this case, indeed, the multiple nAx has by V. a constant value, namely a
;

but it is found convenient to extend the use of the word, limit, so as to include the

case of constants : or to say, generally, that a constant is its own limit.
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as to be nearly equal, for large values of the number n, to some system of simulta

neous and decreasing differences,

XV. . . Aa; and Ay;

and more and more nearly equal to such a system, even in the way of ratio, as they

all become smaller and smaller together, and tend together to vanish.

(7.) For example, while the differentials themselves retain the constant values

XII., their millionth parts are, respectively,

XVI. ..
-

ldz = O OOl, and w-My = 004, if n=1000000;

and the same value of the number n gives, by X., the equally rigorous values of two

simultaneous differences, as follows,

XVII. .. Ax = 0-001, and Ay = 0-004001;

so that these values of the decreasing differences XV. may already be considered to

be nearly equal to the two equisubmultiples, XIV. or XVI., of the two simultaneous

differentials, XII. And it is evident that this approximation would be improved,

by taking higher values of the number, n, Avithout the rigorous and constant values

XII., of dx and dy, being at all affected thereby.

(8.) It is, however, evident also, that after assuming y x*, and x = 2, as in IX.,

we might have assumed any other finite value for the differential da:, instead of the

value 1000
;
and should then have deduced a different (but still finite) value for the

other differential, dy, and not the formerly deduced value, 4000 : but there would

always exist, in this example, or for this form of the function, y, and for this value

of the variable, x, the rigorous relation between the two simultaneous differentials,

Ax and dy,

XVIII. . .dy = 4da:,

which is obviously a case of the equation VIII.
,
and can be proved by similar rea

sonings.

323. Proceeding to the promised Examplefrom Geometry (322),

we shall again see that differences and differentials are not in gene
ral to be confounded with each other, and that the latter (like the

former) need not be small. But we shall also see that the differentials

(like the differences), which enter into a statement of relation, or into

the enunciation of a proposition, respecting quantities which vary to

gether, according to any law or laws, need not even be homogeneous

among themselves : it being sufficient that each separately should be

homogeneous with the variable to which it corresponds, and of which it

is the differential, as line of line, or area of area. It will also be seen

that the definition (320) enables us to construct the differential of a

rectangle, as the sum of two other (finite) rectangles, without any refe

rence to units of length, or of area, and without even the thought of

employing any numerical calculation whatever.



CHAP. II.] ILLUSTRATION FROM GEOMETRY. 397

(1.) Let, then, as in the annexed Figure 74, ABCD be any given rectangle, and

let BE and DG be any arbitrary but given and finite

increments of its sides, AB and AD. Complete the

increased rectangle GAEF, or briefly AF, which will

thus exceed the given rectangle AC, or CA, by the sum

of the three partial rectangles, CE, CF, CG
;
or by

what we may call the gnomon,
* CBEFGDC. On the

diagonal CF take a point i, so that the line ci may
be any arbitrarily selected submultiple of that diago

nal
;
and draw through i, as in the Figure, lines HM,

KL, parallel to the sides AD, AB
;
and therefore in

tercepting, on the sides AB, AD prolonged, equisubmultiples BH, DK of the two given

increments, BE, DG, of those two given sides.

(2.) Conceive now that, in this construction, ihepoint i approaches to c, or that

we take a series of new points i, on the given diagonal OF, nearer and nearer to the

given point c, by taking the line ci successively a smaller and smaller part of that

diagonal. Then the two new linear intervals, BH, DK, and the new gnomon, CBHIKDC,
or the sum of the three new partial rectangles, CH, ci, CK, will all indefinitely de

crease, and will tend to vanish together : remaining, however, always a system of

three simultaneous differences (or increments^, of the two given sides, AB, AD, and

of the given area, or rectangle, AC.

(3.) But the given increments, BE and DG, of the two given sides, are always

(by the construction) equimultiples of the two firstt
of the three new and decreasing

differences ; they may, therefore, by the definition (320), be arbitrarily taken as two

simultaneous differentials of the two sides, AB and AD, provided that we then treat,

as the corresponding or simultaneous differential of the rectangle AC, the limit ofthe

equimultiple of the new gnomon (2.), or of the decreasing difference between the two

rectangles, AC and Ai, whereof the first is given.

(4.) &quot;We are then, first, to increase this new gnomon, or the difference of AC, AI, or

the sum (2.) of the three partial rectangles, CH, ci, CK, in the ratio of BE to BH, or

of DG to DK
;
and secondly, to seek the limit of the area so increased. For this last

limit will, by the definition (320), be exactly and rigorously equal to the sought dif

ferential of the rectangle AC
; if the given and finite increments, BE and DG, be as

sumed (as by (3.) they may) to be the differentials of the sides, AB, AD.

(5.) Now when we thus increase the two new partial rectangles, CH and CK, we

get precisely the two old partial rectangles, CE and CG
; which, as being given and

constant, must be considered to be their own limits.^ But when we increase, in the

same ratio, the other new partial rectangle ci, we do not recover the old partial

rectangle CF, corresponding to it
;
but obtain the new rectangle CL, or the equal

rectangle CM, which is not constant, but diminishes indefinitely as the point I ap

proaches to c
;
in such a manner that the limit of the area, of this new rectangle CL

or CM, is rigorously null.

* The word, gnomon, is here used with a slightly more extended signification,

than in the Second Book of Euclid,

f Compare the Note to page 395.
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(6.) //*, then, the given increments, BE, DO, be still assumed to be the differen

tials of the given sides AB, AD (an assumption which has been seen to be permitted),

the differential of the given area, or rectangle, AC, is proved (not assumed} to be, as

a necessary consequence of the definition (320), exactly and rigorously equal to the

sum of the two partial rectangles CE and CG
;

because such is the limit (5.) of the

multiple of the new gnomon (2.), in the construction.

(7.) And if any one were to suppose that he could improve this known value for

the differential ofa rectangle, by adding to it the rectangle CF, as a new term, or

part, so as to make it equal to the old or given gnomon (1.), he would (the definition

being granted) commit a geometrical error, equivalent to that of supposing that the

two similar rectangles ci and CF, bear to each other the simple ratio, instead of bear

ing (as they do) the duplicate ratio, of their homologous sides.

SECTION 3. On some general Consequences of the Definition.

324. Let there be any proposed equation of the form,

and let dq, dr, ... be any assumed (but generally finite) and

simultaneous differentials of the variables, q, r, . . . whether

scalars, or vectors, or quaternions, on which Q is supposed to

depend, by the equation I. Then the corresponding (or simul

taneous) differential of their function, Q, is equal (by the de

finition 320, compare 321) to the following limit :

II. . . dQ = lim.n{F(q + n-
l

dq 9 r + n^dr, . . .)
-
F(q, r, ...));

where n is any whole number (or other positive* scalar) which,

as the formula expresses, is conceived to become indefinitely

greater and greater, and so to tend to infinity. And if, in

particular, we consider the function Q as involving only one

variable q, so that

III. ..Q =/(?)=/?,
then

IV. ..

& formula for the differential of a single explicit function of a

single variable, which agrees perfectly with those given, near

the end ofthe First Book, for the differentials of a vector, and

of a scalar, considered each as a function (100) ofa single sea-

*
Except iu some rare cases of discontinuity, not at present under our considera

tion, this scalar n may as well be conceived to tend to negative infinity.
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lar variable, t : but which is now extended, as a consequence

of the general definition (320), to the case when the connected

variables, q, Q, and their differentials, d^, dQ, are quaternions :

with an analogous application, of the still more general For

mula of Differentiation II., to Functions of several Quater

nions.

(1.) As an example of the use of the formula IV., let the function of q be its

square, so that

V. ..Q=fq=q*.
Then, by the formula,

VI. . . dQ = d/&amp;lt;7

= lim. ^{(g + n- d?)
2 -^}

n- oo

= Km. (q . dq -t- dq . q + n~ l

dq
2
),

n= oo

where dq- signifies* the square of dq ;
that is,

VII. . . d.q
2
=q.dq + dq.q;

or without the pointsf between q and dq,

VII . . . d . g
2 = qdq + dq q ;

an expression for the differential of the square of a quaternion, which does not in gene

ral admit of any further reduction : because q and
d&amp;lt;?

are not generally commutative,

as factors in multiplication. When, however, it happens, as in algebra, that q.dq
= dq.q, by the two quaternions q and dq being complanar, the expression VII. then

evidently reproduces the usual form, 322, VIII., or becomes,

VIII. . . d.q
i = 2qdq, if dy[||g(123).

(2.) As another example, let the function be the reciprocal,

IX... Q=fq=T\

Then, because

X. . .

=
(q + n-i dgr)-i { q

-
(q + n-

of which, when multiplied by n, the limit is - q~
l

dq&amp;gt;q~
l

,
we have the following ex

pression for the differential of the reciprocal of a quaternion,

XL . . d. 1 =--!.d.- 1

*
Compare the Note to page 394.

f The point between d and q
2

,
in the first member of VII., is indispensable, to

distinguish the differential of the square from the square of the differential. But

just as this latter square is denoted briefly by d&amp;lt;?

2
,
so the products, q . dq and dq . q,

may be written as qdq and
d&amp;lt;? q ;

the symbol, dq, being thus treated as a whole one,

or as if it were a single letter. Yet, for greater clearness of expression, we shall re

tain the point between q and dq, in several (though not in all) of the subsequent for

mulae, leaving it to the student to omit it, at his pleasure.
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or without the points* in the second member, dq being treated (as in VII
.)

as a

XI . . . d. ?-l
= -q-^dq grl;

an expression which does not generally admit of being any farther reduced, but be

comes, as in the ordinary calculus,

XII...d.grI = -g-2dy, if Aq\\\q,

that is, for the case ofcomplanarity, of the quaternion and its differential.

325. Other Examples of Quaternion Differentiation will be given

in the following Section ;
but the two foregoing may serve sufficiently

to exhibit the nature of the operation, and to show the analogy of

its results to those of the older Calculus, while exemplifying also

the distinction which generally exists between them. And we shall

here proceed to explain a notation, which (at least in the statement of

the present theory of differentials) appears to possess some advan

tages ; and will enable us to offer a still more brief symbolical defi

nition, of the differential of afunction fq, than before.

(1.) We have defined (320, 324), that if d^ be called the differential of a (qua

ternion or other) variable, q, then the limit of the multiple,

of an indefinitely decreasing difference of the function fq, of that (single) variable q,

when taken relatively to an indefinite increase of the multiplying number, n, is the

corresponding or simultaneous differential of that function, and is denoted, as such,

by the symbol dfq.

(2.) But before we thus pass to the limit, relatively to n, and while that multi

plier, n, is still considered and treated as finite, the multiple I. is evidently a. func
tion of that number, n, as well as of the two independent variables, q and dq. And
we propose to denote (at least for the present) this newfunction of the three variables,

II. . . n, q, and dq,

of which the/orw depends, according to the law expressed by the formula I., on the

form of the given function, f, by the new symbol,

dL. ./.(ftdt)i

in such a manner as to write, for any two variables, q and q, and any number, n, the

equation,

which may obviously be also written thus,

V. . . f(q + n-1 9 ) =fq + -!/ (q, q ),

and is here regarded as rigorously exact, in virtue of the definitions, and without

anything whatever being neglected, as small.

Compare the Note immediately preceding.
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(3.) For example, it appears from the little calculation in 324, (1.), that,

VI. ..fn(q, g) = qq + q q + n^ q\ iffq = &amp;lt;? ;

and from 324, (2.), that,

VII. , . fn(q, ? )
= -

(q +
-

g )-
1
q T\ if

/&amp;lt;?

=
&amp;lt;T

-

(4.) And the definition of d/g may now be briefly thus expressed :

VIII.
..&amp;lt;tfq=fa (q, dg);

or, if the sub-index ^ be understood, we may write, still more simply,

IX...d/7 =/(? , dg);

this last expression, /(&amp;lt;/, dg), or/(&amp;lt;7, g ), denoting thus a, function of two indepen

dent variables, q and q, of which the form is derived* or deduced (comp. (2.) ), from

the given or proposedform of the function fq of a single variable, q, according to a

law which it is one of the main objects of the Differential Calculus (at least as re

gards Quaternions) to study.

326. One of the most important general properties, of the

functions of this class f(q, q ),
is that they are all distributive

with respect to the second independent variable, q, which is in

troduced in the foregoing process of what we have called de

rivation^ from some given function fq, of a single variable, q:

a theorem which may be proved as follows, whether the two

independent variables be, or be not, quaternions.

(1.) Let
q&quot;

be any third independent variable, and let n be any number ; then

the formula 325, V. gives the three following equations, resulting from the law of de

rivation oifn (q, q } from/g- :

I. . .f(q + n-lq&quot;)=fq + n-%(q, q&quot;} ;

II. . . f(q + n~lq&quot; + n^q } =f(q + n^q&quot;} + n %(q + n l

q&quot;, 9 ) ;

III. .

* It was remarked, or hinted, in 318, that the usual definition of a derivedfunc

tion, namely, that given by Lagrange in the Calcul des Fonctions, cannot be taken

as a, foundation for a differential calculus of quaternions: although such derived

functions of scalars present themselves occasionally in the applications of that cal

culus, as in 100, (3.) and (4.), and in some analogous but more general cases, which

will be noticed soon. The present Law of Derivation is of an entirely different

kind, since it conducts, as we see, from a given function of one variable, to a derived

function of two variables, which are in general independent of each other. The

function/ (9, g )&amp;gt;

of the three variables, n, q, q , may also be called a derivedfunc

tion, since it is deduced, by the fixed law IV., from the same given function fq,

although it has in general a less simple form than its own limit, fx (q, q ^ Or

/(&amp;lt;?, &amp;lt;?
)

f Compare the Note immediately preceding.
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by comparing which we see at once that

the/orm of the original function, fq, and the values of the/owr variables, q, q , q&quot;,

and n, remaining altogether arbitrary: except that n is supposed to be a number, or

at least a scalar, while 7, &amp;lt;?
, #&quot; may (or may o/) 6e quaternions.

(2.) For example, if we take the particular function fq = q%, which gives the

form 325, VI. of the derived function/,,^, q ), we have

v. .. /
VL

../,,(&amp;lt;?, ? +&amp;lt;?&quot;)

and therefore

VII. . .fn (q, q +q&quot;)-fn (q, &amp;lt;?&quot;)

=
?&amp;lt;?

+ q q + n^(q^ + q q

=/n (? +
-

?&quot;, ? ),

as required by the formula IV.

(3.) Admitting then that formula as proved, for all values of the number n, we

have only to conceive that number (or scalar) to tend to infinity, in order to deduce

this limiting form of the equation :

VIII. . ./& q +
&quot;)

or simply, with the abridged notation of 325, (4.),

IX. . .f(q, ? +?&quot;)

which contains the expression of the functional property, above asserted to exist.

(4.) For example, by what has been already shown (comp. 325, (3.) and (4.)),

X. . . if fq = 0, then f(q, # )
= qq + q q ;

and XL . . if fq = q~\ then f(q, q
f

)
=- q^q q

1
;

in each of which instances we see that the derivedfunction /(#, q } is distributive

relatively to q , although it is only in the first of them that it happens to be distri

butive with respect to q also.

(5.) It follows at once from the formula IX. that we have generally*

XII... /(?, 0)=0;
and it is not difficult to prove, as a result including this, that

XIII. .
./(&amp;lt;7, xq )

=
xf(q, q ), if x be any scalar.

(6.) As a confirmation of this last result, we may observe that the definition of

f(q, q&quot;) may be expressed by the following formula (comp. 324, IV., and 325, IX.):

xiv. . ., = iim

we have therefore, if a; be any finite scalar, and m = x- l
n,

XV. . . ) = *.lim.

a transformation which gives the recent property XIII., since it is evident that the

letter m may be written instead of n, in the formula of definition XIV.

* We abstract here from some exceptional cases of discontinuity, &c,
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327. Resuming then the general expression 325, IX., or

writing anew,
I. ..d/? =/(?, dy),

we see (by 326, IX.) that this derivedfunction, &fq, of q and

dq, is always (as in the examples 324, VII. and XL) distribu

tive with respect to that differential dq, considered as an inde

pendent variable, whatever theform of the given function fq

may be. We see also (by 326, XIIL), that if the differential

d.q of the variable, q, be multiplied by any scalar, x, the diffe

rential dfq, of the functionfq, comes to be multiplied, at the

same time, by the same scalar, or that

II. . .f(q, xdq) =
xf(q, dq), if x be any scalar.

And in fact it is evident, from the very conception and defini

tion (320) of simultaneous differentials, that every system of

such differentials must admit of being all changed together to

any system of equimultiples, or equisubmultiples, of themselves,

without ceasing to be simultaneous differentials : or more gene

rally, that it is permitted to multiply all the differentials^ of a

system, by any common scalar.

(1.) It follows that the quotient,

nL. .&amp;lt;|fri4r-/fe4)i4fi

of the two simultaneous differentials, dfq and d^, does not change when the differen

tial d^is thus multiplied by any scalar ; and consequently that this quotient III. is

independent of the tensor Idq, although it is not generally independent of the versor

Udq, if q and dq be quaternions : except that it remains in general unchanged, when
we merely change that versor to its own opposite (or negative),or to Ud#, because

this comes to multiplying dq by 1, which is a scalar.

(2.) For example, the quotient,

IV. . . d.qz
: dq = q + dq.q.dq 1 ^ q i- Udq.q. Ud^ 1

,

in which
d^&quot;

1 and
&quot;Udq~

l denote the reciprocals of dq and
Ud&amp;lt;7,

is very far from being

independent of dq, or at least of Ud^ ;
since it represents, as we see, the sum of the

given quaternion q, and of a certain other quaternion, which latter, in its geometrical

interpretation (comp. 191, (5.)), maybe considered as being derived from q, by a

conical rotation of Ax.q round Ax.dq, through an angle = 1l_dq : so that both the

axis and the quantity of this rotation depend on the versor Ud^, and vary with that

versor.

(3.) In general we may, if we please, say that the quotient III. is a Differential

Quotient; but we ought not to call it a Differential Coefficient (coinp. 318) be

cause dfq does not generally admit of decomposition into two factors, whereof one

shall be the differential dq, and the other a function nfq alone.



404 ELEMENTS OF QUATERNIONS. [BOOK III.

(4.) And for the same reason, we ought not to call that Quotient a Derived

Function (comp. again 318), unless in so speaking we understand a Function of Two*

independent Variables, namely of q and Udq, as before.

(5.) When, however, a quaternion, q, is considered as a. function of a scalar va

riable, t,
so that we have an equation of the form,

V. . . q ft, where t denotes a scalar,

it is then permitted (comp. 100, (3.) and (4.)) to write,

VI. . . dq : dt=dft : d* = lim. (/(* +
-
}-ft\

n =co at
\_ \ n

/ J

= lira. A-

and to call this limit, as usual, a derivedfunction oft, because it is (in fact) a func
tion of that scalar variable, t, alone, and is independent of the scalar differential,

dt.

(6.) We may also write, under these circumstances, the differential equation,

VII. . . dq = D tq. dt, or VIII. . . dfq =ft.dt,

and may call the derived quaternion, Dtq, or ft, as usual, a differential coefficient in

this formula, because the scalar differentia/, dt, is (in fact) multiplied by it, in the

expression thus found for the quaternion differential, dq or dft.

(7.) But as regards the logic of the question (comp. again 100, (3.)), it is im

portant to remember that we regard this derivedfunction, or differential coefficient,

IX. . . ft, or Dtft, or D tq,

as being an actual quotient VI., obtained by dividing an actual quaternion,

X. . . Aft, or dq,

by an actual scalar, dt, of which the value is altogether arbitrary, and may (if we

choose) be supposed to be large (comp. 322); while the dividend quaternion X. de

pends, far its value, on the values of the two independent scalars, t and dt, and on

the form of the function ft, according to the law which is expressed by the general

formula 324, IV., for the differentiation of explicit functions of any single variable.

328. It is easy to conceive that similar remarks apply to

quaternionfunctions ofmore variables than one; and that when

the differential of such a function is expressed (comp. 324, II.)

under the form,

I. . . dQ = dF(q, r, s, .

.)
= F(q, r, s

9
. . dq, dr, ds, .

.),

the newfunction F is always distributive, with respect to each.

separately of the differentials, dg, dr, ds, . .
; being also homo

geneous ofthefirst dimension (comp. 327), with respect to all

those differentials, considered as a system ; in such a manner

*
Compare the Note to 325, (4.).
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that, whatever may be the/&amp;lt;?rw
of the given quaternion func

tion, Q, or F, the derived* function F9 or the third member of

the formula I., must possess this generalfunctional property

(comp. 326, XIII., and 327, II.),

II. . . F(q, r, s, . . xdq, xdr, xds . .)

= xF(q, r, s, . . dq, dr, d.9, . .),

where x may be any scalar: so that products, as well as

squares, of the differentials d^, dr, &c., of
&amp;lt;?,

r, &c. considered

as so many variables on which Q depends, are excluded from the

expanded expression of the differential dQ of the function Q.

(1.) For example, if the function to be differentiated be a product of two qua

ternions,
III... Q = F(q,r)=qr,

then it is easily found from the general formula 324, II., that (because the limit of

n~ l

.d^.dr is nw//, when the number n increases without limit) the differential of the

function is,

IV. . . dQ = d.qr = dF(q,r) = F(q,r,dq,dr)=q.dr + dq.r;

with analogous results, for differentials of products of more than two quaternions.

(2.) Again, if we take this other function,

V... Q=F(?,r) = 7-ir,

then, applying the same general formula 324, II., and observing that we have, for

all values of the number (or other scalar), n, and of the four quaternions, q, r, q\ r
,

the identical transformation (comp. 324, (2.) ),

VI. ..{(?+ n-i? )-
1 (r+n-V)-qr r}

=
&amp;lt;T

V -
(7 + IT 1

tfT
1 flY 1

(r + &quot;- O,

we find, as the required limit, when n tends to infinity, the following differential of

the function :

VII. . . &Q=d.q-*r = dF(q, r)
= F(q,r, &q, dr)

=
q~

l
. dr - q~

}
. dq . q-*r ;

which is again, like the expression IV., distributive with respect to each of the dif

ferentials dq, dr, of the variables q, r, and does not involve the product of those two

differentials: although these two differential expressions, IV. and VII., are both en

tirely rigorous, and are not in any way dependent on any supposition that the ten

sors of dq and dr are small (comp. again 322).

329. In thus differentiating a function of more variables

than one, we are led to consider what may be called Partial

Differentials of Functions oftwo or more Quaternions; which

may be thus denoted,

*
Compare the Note last referred to.
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L. .a
q Q, ar Q, ds Q, ...

if Q be a function, as above, of g, r, s, . . . which is here sup

posed to be differentiated with respect to each variable sepa

rately, as //&quot;the
others were constant. And then, if dQ de

note, as before, what may be called, by contrast, the Total

Differential of the function Q, we shall have the General For

mula,
II. . . dQ = d

gQ + dry + d sQ + ...;

or, briefly and symbolically,

III. . . d = d
q
+ d r + ds + . . .,

if q, r, s, . . . denote the quaternion variables on which the

quaternionfunction depends, of which the total differential is

to be taken
;
whether those variables be all independent, or be

connected with each other, by any relation or relations.

(1.) For example (comp. 328, (1.)),

IV. . . if Q=qr, then dqQ = dq.r, anddrQ = g.dr;

and the sum of these two partial differentials of Q makes up its total differential d Q,

as otherwise found above.

(2.) Again (comp. 328, (2.) ),

V. . . if Q = q~
l

r, then dq Qz=-q-ldq.q-*r ;
dr Q = q~

l dr;

and dgQ + drQ = the same d Q as that which was otherwise found before, for this form

of the function Q.

(3.) To exemplify the possibility of a relation existing between the variables q

and r, let those variables be now supposed equal to each other in V.
;
we shall then

have Q=l, dQ = 0; and accordingly we have here dq Q = ~q~idq = dr Q.

(4.) Again, in IV., let gr = c = any constant quaternion; we shall then again

have 0=dQ=d2Q+d r Q; and may infer that

VI. . . dr = -
q~

l
.

d&amp;lt;/

. r, if qr = c = const.
;

a result which evidently agrees with, and includes, the expression 324, XL, for the

differential of a reciprocal.

(5.) A quaternion, q, may happen to be expressed as a, function oftwo or more

scalar variables, *,,...; and then it will have, as such, by the present Article,

its partial differentials, dtq, duq, &c. But because, by 327, VII., we may in this

case write,
VII. . . d t

&amp;lt;?

= V tq . dt, duq = DMg. d, . . .

where the coefficients are independent of the differentials (as in the ordinary calcu

lus), we shall have (by II.) an expression for the total differential dq, of the form,

VIII. . . dg = dtq + duq+ . . . = D tq. dt + D,/9 .d+ . . .
;

and may at pleasure say, under ihe conditions here supposed, that the derived qua-

terniong,
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IX. . . D tg, Dug,

are either the Partial Derivatives, or the Partial Differential Coefficients, of the

Quaternion Function,
x. .. 9 = F(t, u, ...);

with analogous remarks for the case, when the quaternion, g, degenerates (comp.

289) into a vector, p.

330. In general, it may be considered as evident, from the

definition in 320, that the differential ofa constant is zero ;

so that if Q be changed to any constant quaternion, c9 in the

equation 324, I., then dQ is to be replaced by 0, in the diffe

rentiated equation, 324, II. And if there be given any system

ofequations, connecting the quaternion variables, q, r, s, . . .

we may treat the corresponding system ofdifferentiated equa

tions, as holding good, for the system of simultaneous differen

tials, dq, dr, ds, . . . ; and may therefore, legitimately in

theory, whenever in practice it shall be found to be possible,

eliminate any one or more of those differentials, between the

equations of this system.

(1.) As an example, let there be the two equations,

I. . . qr = c, and II. . . &amp;lt;s

= r2
,

where c denotes a constant quaternion, Then (comp. 328, (1.), and 324, (1.) ) we
have the two differentiated equations corresponding,

III. . . q . dr + dq . r =
; IV. . . ds = r . dr + dr. r

;

in which the points* might be omitted. The former gives,

V. . . dr = -gridg.r, as in 329, VI.
;

and when we substitute this value in the latter, we thereby eliminate the differen

tial dr, and obtain this new differential equation,

VI. . . ds = rq~
l

.dq.r q~
l
.(\q.r

2
.

(2.) The equation I. gives also the expression,

VII. . . r=g- c;

the equation II. gives therefore this other expression,

VIII.. . =
(g-

1

c)
2
=g- c9

-
c,

by elimination before differentiation. And if, in the formula VI., we substitute the

expressions VII. and VIII. for r and s, we get this other differential equation,

*
Compare the second Note to 324, (1.).
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IX. . .
d.(0-&amp;gt;c)

2 = 9-109- . dq.q ^c - q~
l

.dq.q~
]

cq~
l

c;

which might have been otherwise obtained (comp. again 324, (1.) and (2.) ), under

the form,

331. No special rules are required, for the differentiation of

functions offunctions of quaternions ; but it may be instructive

to show, briefly, how the consideration of such differentiation

conducts (comp. 326) to & general property offunctions ofthe

class
f(q&amp;gt; &amp;lt;/ ) ;

and how that property can be otherwise esta

blished.

(1.) Let/, 0, and
-fy

denote any functional operators, such that

I. .. V
then writing

II. . . r =fq, and III. . . s = 0r, we have IV. . . s = tyq ;

whence V. . . ds = d\^q
-

d&amp;lt;f&amp;gt;r.

That is, we may (as usual) differentiate the compound function, 0(/9), as iffq were

an independent variable, r
;
and then, in the expression so found, replace the diffe

rential dfq by its value, obtained by differentiating the simplefunction, fq. For this

comes virtually to the elimination of the differential dr, or of the symbol dfq, in a

way which we have seen to be permitted (330).

(2.) But, by the definitions of Afq and/n(9, 9 ), we saw (325, VIII. IX.) that

the differential dfq might generally be denoted byfx (q, d&amp;lt;?),
or briefly by f(q, dg);

whence d0r and d-^q may also, by an extension of the same notation, be represented

by the analogous symbols, ^(r, dr) and ^(9, d&amp;lt;?),
or simply by 0(r, dr) and

Kft d?)-

(3.) We ought, therefore, to find that

VI. . . V (9, &amp;lt;ty)

=
X (fq, / (q, d?)), if $q = 0C/9) ;

or briefly that

VII. . . iK, ? )
= 0(/9. /(? 9 )), if ^9 = 0/g,

for any &amp;lt;wo quaternions, q, q ,
and any two functions, f, 0; provided that the func

tions/,,^, 9 ), 0n(&amp;lt;7, ? )&amp;gt; ^nC?? &amp;lt;? ) are deduced (or derived) from the functions /y,

0g, 4/7, according to the Zaw expressed by the formula 325, IV.
;
and that then the

limits to which these derived functionsfn (q, q ), &c. tend, when the number n tends

to infinity, are denoted by these other functional symbols, f(q, 9 ), &c.

(4.) To prove this otherwise, or to establish this general property VII., offunc

tions of this class
/(&amp;lt;7, 9 ) without any use of differentials, we may observe that the

general and rigorous transformation 325, V., of the formula 325, IV. by which the

functions/M (9, 9 ) are defined, gives for all values of n the equation :

VIII. . . 0/(9 + n-Y) = 0(/?-l-n-i/n ( g&amp;gt; 9 ))

n (9, 9 ));

but also, by the same general transformation,
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IX. . . ^ (q + n 1

5 )
= $q + n-l $n (q, 9 ) ;

hence generally, for all values of the number n, as well as for all values of the two

independent quaternions, 5, ,
and for all forms of the two functions, f, 0, we may

write,

X. . . ^,, (gr, ? )
= n (/gr,/ (,7, ? )), if ^g =^ ;

an equation of which the limitingform, for =
o&amp;gt;,

is (with the notations used) the

equation VII. which was to be proved.

(5.) It is scarcely worth while to verify the general formula X., by any parti

cular example : yet, merely as an exercise, it may be remarked that if we take the

forms,

XI. . . fq = q
2

, $q = q
2

, $q =
g
4
,

of which the two first give, by 325, VI., the common derived form,

XII. . .

/(&amp;lt;?, q }
= n (gr, q }

= qq + q q +
-

q *,

the formula X. becomes,

XIII. . . $n (q, g )
= 0(?s

qq +fq + n-iq
*
)

= ftW+l l + ~V2
) + (n+qq + n~ l

q
2
)q

2
+n~&amp;gt; (qq

f

+ q q + n-iq *)* ;

which agrees with the value deduced immediately from the function
~4&amp;gt;q

or q^ by the

definition 325, IV., namely,

(6.) In general, the theorem, or rwZe, for differentiating as ill (1.) a. function of

a function, of a quaternion or other variable, may be briefly and symbolically ex

pressed by the formula,

and if we did not otherwise know it, a proof of its correctness would be supplied, by
the recent proof of the correctness of the equivalent formula VII.

SECTION 4. Examples of Quaternion Differentiation.

332. It will now be easy and useful to give a short collection of

Examples of Differentiation of Quaternion Functions and Equations,

additional to and inclusive of those which have incidentally occurred

already, in treating of the principles of the subject.

(1.) If c be any constant quaternion (as in 330), then

I. ..dc = 0; II. ..

III. . . d.c/S = cd/j; IV. . .

(2.) In general,

V. . . d(/g + 09 + . .
= d/ + &amp;lt;%

+ . . .
;

or briefly, VI. . . d2 = 2d,

if 2 be used as a mark of summation.

(3.) Also, VII. . . d(/? .0g) = d/g.0g+/g.d09 ;

and similarly for a product of more functions than two : the rule being simply, to

differentiate each factor separately, in its own place, or without disturbing the order

3 G
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of the factors (comp. 318, 319); and then to add together the partial results (comp.

329).

(4.) In particular, if m be any positive whole number,

VIII. . . d . q
=

q
m ~ l

dq + q-2
dq . q . . + qdq . q

m~z + dq . q
m~

l

;

and because we have seen (324, (2.)) that

IX. . . d.0-i=-gr&amp;gt;.dj.gri,

we have this analogous expression for the differential of a power of a quaternion, with

a negative but whole exponent,

X. . . d . q~
m =

q~
m d . q

m
. q~

m

=
q~

l

dq . q~
m

q~
2
dq . q^~

m
. . q

l
~m

dq . q~
2

q-*
1

dq . q~
}
.

(5.) To differentiate a square root, we are to resolve the linear equation,*

XI. . . ql . d .
&amp;lt;2

+ d . ql . q*
= dq ;

or XI . . . rr + r r = q ,

if we write, for abridgment,

XII. . . r = ql, q =dq, r d . ql = dr.

(6.) Writing also, for this purpose,

XIII. . . s = Kr=K.^,
whence (by 190, 196) it will follow that

XIV. . . rs = Nr = T/-2 =T9 ,
and XV. . . r + s = 2Sr = 2S.?*,

the product and sum of these two conjugate quaternions, r and s, being thus scalars

(140, 145), we have, by XI
., ^ /&amp;gt;&quot;

/**!$ *f

XVI. . . r- q s = r s + sr
; ^ /t

f
&amp;gt;

whence, by addition,

XVII. . . q + r-iq s = (r + s) r + r (r + )
= 2r (r + *) i

and finally,

an expression for the differential of the square -root of a quaternion, which will be

found to admit of many transformations, not needful to be considered here.

(7.) In the three last sub-articles, as in the three preceding them, it has been sup

posed, for the sake of generality, that q and
d&amp;lt;/

are two diplanar quaternions ; but

if in any application they happen, on the contrary, to be complanar, the expressions

are then simplified, and take usual, or algebraic forms, as follows;

XX. . . d ,g*
= mqn-i dq ; XXI. . . d . gr

= - mq~~idq ;

and XXII. ..d.^ = |?-id&amp;lt;7, */ XXIII. .. dq \\\ q (123);

*
Although such solution of a linear equation, or equation of the first degree, in

quaternions, is easily enough accomplished in the present instance, yet in general the

problem presents difficulties, without the consideration of which the theory of diffe

rentiation of implicitfunctions of quaternions would be entirely incomplete. But a

general method, for the solution of all such equations, will be sketched in a subse

quent Section.
t
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because, when q is complanar with q, and therefore with gi, or with r, in the ex

pression XVIIL, the numerator of that expression may be written as r&quot;
1

q (r + s).

(8.) More generally, if x be any scalar exponent, we may write, as in the ordi

nary calculus, but still under the condition of complanarity XXIII.,

XXIV. . . d.q* = xqz-
l

dq; or XXV. . . #d . q* = xq* dx.

333. Thefunctions of quaternions, which have been lately diffe

rentiated, may be said to be of algebraicform ; the following are a

few examples of differentials of what may be called, by contrast,

transcendental functions ofquaternions : the condition of complanarity

(dq HI q) being however here supposed to be satisfied, in order that

the expressions may not become too complex. In fact, with this sim

plification, they will be found to assume, for the most part, the known

and usualforms, of the ordinary differential calculus.

(1.) Admitting the definitions in 316, and supposing throughout that dg ||j q,

we have the usual expressions for the differentials of and lq, namely,

I. . . d. = ?d5 ;
II. .. dlq = q-

l

dq.

(2.) We have also, by the same system of definitions (316),

III. . . d sin q cos qdq ;
IV. . . d cos q = sin q&q ;

&c.

(3.) Also, if r and dr be complanar with q and dg, then, by 316,

IV. . . d . q
r = d. 6r]9 = q

r
&.r\q = q

r
(\qdr + q~

l

rdq) ;

or in the notation of partial differentials (329),

V. . . dq .q
r
=rqr-

l

dq, and VI. . . dr . q
r = g

r
lgdr.

(4.) In particular, if the base q be a given or constant vector, a, and if the ex

ponent r be a variable scalar, t, then (by the value 316, XIV. of lp) the recent for

mula IV. becomes,

VII. . . d.a

(5.) If then the base a be a given unit line, so that ITa = 0, and Ua = nr, we .
*

i -

may write simply,

VIII. ..d.a =
|aWd*,

if da = 0, and Ta=l.

(6.) This useful formula, for the differential of a power of a constant unit line,

with a variable scalar exponent, may be obtained more rapidly from the equation

308, VII., which gives,

IX. - . a f = cos + a sin
,

if Ta = 1
;

2 2

since it is evident that the differential of this expression is equal to the expression

itself multiplied by |?rad, because a2 = - 1.

(7.) The formula VIII. admits also of a simple geometrical interpretation, con

nected with the rotation through t right angles, in a plane perpendicular to a, of



412 ELEMENTS OF QUATERNIONS. [BOOK III.

which rotation, or version, the power a
,
or the versor

Ua&amp;lt;,
is considered (308) to be

the instrument,* or agent, or operator (comp. 293).

334. Besides algebraical and transcendental forms, there are other

results of operation on a quaternion, q, or on a function thereof,

which may be regarded as forming a new class (or kind) offunc

tions, arising out of the principles and rules of the Quaternion Cal

culus itself : namely those which we have denoted in former Chapters

by the symbols,
I. . . Kfr S0, V?, Nft Tgr, Ug,

or by symbols formed through combinations of the same signs of

operation, such as

II. . . SU?, VUq, UVy, &c.

And it is essential that we should know how to differentiate expres

sions of these forms, which can be done in the following manner,

with the help of the principles of the present and former Chapters,

and without now assuming the complanarity , &q\\\q.-

(1.) In general, let /represent, for a moment, any distributive symbol, so that for

any two quaternions, q and q ,
we shall have the equation,

in. ../(? + &amp;lt;? )=/?+/&amp;lt;? ;

and therefore alsof (comp. 326, (5.)),

IV. . . f(xq} = xfq, if x be any scalar.

(2.) Then, with the notation 325, IV., we shall have

and therefore, by 325, VIII., for any such function fq, we shall have the differential

expression,
VI. . .

d/?=/d&amp;lt;7.

(3.) But S, V, K have been seen to be distributive symbols (107, 207) ;
we can

therefore infer at once that

VII. . . dKj = Kdq ; VIII. . . dS? = Sd? ;
IX. .. dV? = Vd? ;

or in words, that the differentials of the conjugate, the scalar, and the vector of a

quaternion are, respectively, the conjugate, the scalar, and the vector of the differen

tial of that quaternion.

(4.) To find the differential of the norm, Ny, or to deduce an expression for

dN#, we have (by VII. and 145) the equation,

*
Compare the second Note to page 133.

f In quaternions the equation III. is not a necessary consequence of IV., al

though the latter is so of the former; for example, the equation IV., but not the

equation III., will be satisfied, if we assume fq = qcq*c q, where c and c are any
two constant quaternions, which do not degenerate into scalars.
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X. . . dN^ = d . qKq = dg . Kq + g . K&q ;

but qKq = K . q Kq, by 145, and 192, II.
;

and (1 4- K) . q Kq = 2S . q Kq = 2S(Kq . q \ by 196, II., and 198, I.
;

therefore XI. . . dNg = 2S(Kg . dg).

(5.) Or we might have deduced this expression XI. for dNg, more immediately,

by the general formula 324, IV., from the earlier expression 200, VII., or 210, XX.,
for the norm of a sum, under the form,

XI . . . d% = lira . n N(g + n~ l

d?
- N?}

= lim . (2S(K? . d?) + n-

as before.

(6.) The tensor, Tq, is the square-root (190) of the norm, Ng; and because Tq
and Ng are scalars, the formula 332, XXII. may be applied ;

which gives, for the

differential of the tensor of a quaternion, the expression (comp. 158),

XII. . . dT? =

a result which is more easily remembered, under the form,

Tq q

(7.) The versor Ug is equal (by 188) to the quotient, q : Tq, of the quaternion

q divided by its tensor Tq ;
hence the differential of the versor is,

I A A \ ^ **8~38&amp;gt;
q I dq uq \ q ttq

,j ^
q

Tq \ q q } Tq q

whence follows at once this formula, analogous to XIII., and like it easily remem

bered,

gr q

(8.) We might also have observed that because (by 188), we have generally

q = Tq . Uq, therefore (by 332, (3.)) we have also,

XVI. . . d? = dT? . U? 4- Tq . dUg,
and

dq ATq dU?

7
=

T?
+ W ;

if then we have in any manner established the equation XIII., we can immediately

deduce XV.
;
and conversely, the former equation would follow at once from the

latter.

(9.) It maybe considered as remarkable, that we should thus have generally, or

for any two quaternions, q and Aq, the formula :*

* When the connexion of the theory of normals to surfaces, with the differential

calculus of quaternions, shall have been (even briefly) explained in a subsequent

Section, the student will perhaps be able to perceive, in this formula XVIII., a re

cognition, though not a very direct one, of the geometrical principle, that the radii

of a sphere are its normals.



414 ELEMENTS OF QUATERNIONS. [fiOOK III.

XVIII. . . S (dUg : IL?) = ;
or XVIII . . . dU? : Uq = S-&amp;gt;

;

but this vector character of the quotient dUq : ~Uq can easily be confirmed, as fol

lows. Taking the conjugate of that quotient, we have, by VII. (comp. 192, II.
;

158
;
and 324, XI.),

XIX. . . K (dU? . U0-i) = KU^-i . dKU? = Vg . d (U^-i) = - dU? . U?- 1

;

whence
XX. ..Cl + K)(dU? .Uri)=0;

which agrees (by 196, II.) with XVIII.

(10.) The scalar character of the tensor, Tq, enables us always to write, as in

the ordinary calculus,

XXI. . . AlTq = dT? : Tg ;

but IT? = Sty, by 316, V.; the recent formula XIII. may therefore by VIII. be

thus written,

XXII. . . Sdl? = dSty = dTg : d? = S (cty : ?) ;
or XXII . . . dlq

-
?- d? = S 1 0.

(11.) When d# HI 7, this last difference vanishes, by 333, II.
;
and the equation

XV. takes the form,
XXIII. . . dlU? = Vdlg = dVl? .

And in fact we have generally, lUq = Vty, by 316, XX., although the differentials

of these two equal expressions do not separately coincide with the members of the re

cent formula XV., when q and dq are diplanar. We may however write generally

(comp. XXII.),

XXIV. . . dlU? - dUg : U? = V(dl9 - dq : 9) = %-d? : q.

335. We have now differentiated the six simple functions 334, I.,

which are formed by the operation of the six characteristics,

K, S,V, N, T, U;
and as regards the differentiation of the compoundfunctions 334, II,

which are formed by combinations of those former operations, it is

easy on the same principles to determine them, as may be seen in

the few following examples.

(1.) The axis Ax. q of a quaternion has been seen (291) to admit of being re

presented by the combination UVq ; the differential of this axis may therefore, by

334, IX. and XIV., be thus expressed :

I. . . d (Ax. ?) = dUV? = V (Vd? : V?) . UV? ;

whence

.^ Vdg
Ax. q UV? V 9

The differential of the axis is therefore, generally, a line perpendicular to that axis,

or situated in the plane of the quaternion; but it vanishes, when the plane (and

therefore the axis] of that quaternion is constant ; or when the quaternion and its

differential are complanar.

(2.) Hence,
III. . .dUV0 =

0, if IV. . .dfllUg;

and conversely this complanarity IV. may be expressed by the equation III.
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(3.) It is easy to prove, on similar principles, that

and

VI. . . dSU? = SdU? = SI V ^.

(4.) But in general, for any two quaternions, q and /, we have (comp. 223,

(o.) ) the transformations,

VII. . . S(V9 .) = S(V? .V,7) = S./V9 ;

and when we thus suppress the characteristic V before dq : 7, and insert it before

U&amp;lt;7,
under the sign S in the last expression VI., we may replace the new factor VUg

by TVU?. UVU# (188), or by TVU? . UV? (274, XIII.), or by - TVU? : UV?
(204, V.), where the scalar factor TVU^ may be taken outside (by 196, VIII.);

also for q~
l

: UVg we may substitute 1 : (UVq . #), or 1 : qWq, because UV^ | j | q ;

the formula VI. may therefore be thus written,

(5.) Now it may be remembered, that among the earliest connexions of quater-

ternions with trigonometry, the following formulae occurred (196, XVI., and 204,

XIX.),
IX. . . SUq = cos L q, TVU? = sin L q ;

we had also, in 316, these expressions for the angle of a quaternion,

X. . . Zg=TVlg =
TlU&amp;lt;?;

we may therefore establish the following expression for the differential of the angle

of a quaternion,

XL. . dZg = dTVty = dTlUg = S-~-.

(6.) The following is another way of arriving at the same result, through the

differentiation of the sine instead of the cosine of the angle, or through the calcula

tion of dTVUf?, instead of dSUg. For this purpose, it is only necessary to remark

that we have, by 334, XII. XIV., and by some easy transformations of the kind

lately employed in (4.), the formula,

dividing which by SUg-, and attending to IX. and X., we arrive again at the ex

pression XI., for the differential of the angle of a quaternion.

(7.) Eliminating S (&q : gUVj) between VIII. and XII., we obtain the differen

tial equation^
XIII. . . SU^ . dSU? + TVU? . dTVU? = ;

of which, on account of the scalar character of the differentiated variables, the inte

gral is evidently of ths/orm,

XIV. . . (SU?)2 + (TVUg)2 = const.;

and accordingly we saw, in 204, XX., that the sum in the first member of this equa

tion is constantly equal to positive unity.
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(8.) The formula XI. may also be thus written,

XV. . . d L q = S (V(d? : 9) : UV?);

with the verification, that when we suppose d^UI^, as in IV., and therefore

dUVj = by III., the expression under the sign S becomes the differential of the

quotient, Vl#: UVg, and therefore, by 316, VI., of the angle L q itself.

336. An important application of the foregoing principles and

rules consists in the differentiation ofscalarfunctions of vectors, when

those functions are denned and expressed according to the laws and

notations of quaternions. It will be found, in fact, that such diffe

rentiations play a very extensive part, in the applications of quater
nions to geometry ; but, for the moment, we shall treat them here, as

merely exercises of calculation. The following are a few exam

ples.

(1.) Let p denote, in these sub-articles, a variable vector; and let the following

equation be proposed,

I. . . r2 + p2 = o, in which Vr = 0,

so that r is a (generally variable) scalar. Differentiating, and observing that, by

279, III., pp + p p = 2Spp ,
if p be any second vector, such as we suppose dp to be,

we have, by 322, VIII., and 324, VII., the equation,

II. . . rdr + Spdp = ;
or III. . . dr = r lSpd/^rSp 1

dp.

In fact, if r be supposed positive, it is here, by 282, II., the tensor of p ;
so that this

last expression III. for dr is included in the general formula, 334, XIII.

(2.) If this tensor, r, be constant, the differential equation II. becomes simply,

IV. . . Spdp = 0, if -
p
2 = const, or if dTp = 0.

(3.) Again, let the proposed equation be (comp. 282, XIX.),

V. . . /-2 = T(tp + pK), with di = 0, dK = 0,

so that i and K are here two constant vectors. Then, squaring and differentiating,

we have (by 334, XL, because Kip = pi, &c.),

VI. . . 2r3 dr = idNrip + pO = SCpi + :0
&amp;gt;

)( id/u-|-d0/c )

&quot;

f

/
VII.

, .
.

or more briefly,
-i

if v be an auxiliary vector, determined by the equation,

VIII. . . r*v =
(i

2 + K 2
) p + 2V*pi ;

which admits of several transformations.

(4.) For example we may write, by 295, VII.,

IX. . . r^v - (i
2 + K2

) p + Kpi + ipK
=

t(tp + pK) + /c(pt+ Kp);

or, by 294, III., and 282, XIL,

X. . . r*v = (i
2

-f K2) p -f 2 (icSip
-

pStfc +
=

(i
- K)

2
p + 2 (iS/cp + (cSip) ;

&c.

Li -
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(5.) The equation V. gives (comp. 190, V.), when squared without differentia

tion,

XL . . r* = N (ip + pic)
=(+ pe) (pi + KP)

=
(i

2 + K2)p
2

-t- tp

=
(t
-

fc)
2
p
2 + 4Sip S/cp

= &c.,

by transformations of the same kind as before; we have therefore, by the recent ex

pressions for r4
v, the following remarkably simple relation between the two variable

vectors, p and v,
XII. . . Svp = 1 ; or XII . . . Spv = 1.

(6.) When the scalar, r, is constant, we have, by VII., the differential equa

tion,

XIII. . . Svdp = ;
whence also XI V. . . Spdv = 0, by XII.

;

a relation of reciprocity thus existing, between the two vectors p and v, of which the

geometrical signification will soon be seen.

(7.) Meanwhile, supposing r again to vary, we see that the last expression VI.

for 2r 3dr may be otherwise obtained, by taking half the differential of either of the

two last expanded expressions XI. for r4
;

it being remembered, in all these little

calculations, that cyclical permutation offactors, under the sign S, is permitted

(223, (10.)), even if those factors be quaternions, and whatever their number may
be : and that if they be vectors, and if their number be odd, it is then permitted,

under the sign V, to invert their order (295, (9.)), and so to write, for instance,

VtpK instead of V/cpt, in the formula VIII.

(8.) As another example of a scalar function of a vector, let p denote the proxi

mity (or nearness} of a variable point p to the origin o
;
so that

XV.
../&amp;gt;

= (- p
2
)-i

=
Tp-!, or XV. . . p-* + p

2 = 0.

Then,
XVI. . . dp = Svdp, if XVII. . . v=p sp=l 9

Up;

v being here a new auxiliary vector, distinct from the one lately considered (VIII.) t

and having (as we see) the same versor (or the same direction) as the vector p it

self, but having its tensor equal to the square of the proximity of p to o
;
or equal

to the inverse square of the distance, of one of those two points from the other.

337. On the other hand, we have often occasion, in the applica

tions, to consider vectors as functions of scalars, as in 99, but now
with forms arising out of operations on quaternions, and therefore

such as had not been considered in the First Book. And whenever

we have thus an expression such as either of the two following,

I. ..f=i0(0, or II. . . P =&amp;lt;t&amp;gt;(s, t),

for the variable vector of a curve, or of a surface (cornp. again 99), s

and t being fwo variable scalars, and
&amp;lt;t&amp;gt;(t)

and ^(s, denoting any

functions of vector form, whereof the latter is here supposed to be en

tirely independent* of the/ormer, we may then employ (comp. 100,

* We are therefore not employing here the temporary notation of some recent

Articles, according to which we should have had, d^y = ^(7, d^).

3H
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(4.) and (9.), and the more recent sub-articles, 327, (5.), (6.), and

329, (5.) ) the notation of derivatives, total or partial; and so may

write, as the differentiated equations, resulting from the forms I. and

TT. respectively, the following :

III. . .
d/&amp;gt;

=

IV. . . dp = d sp

of which the geometrical significations have been already partially

seen, in the sub-articles to 100, and will soon be more fully deve

loped.

(1.) Thus, for the circular locus, 314, (1.), for which

V. ..p = aj3, Ta=l, Sa/3 = 0,

we have, by 333, VIII., the following derived vector,

VI. ..p = D,p = |a^/3
=
fp.

(2.) And for the elliptic locus, 314, (2.), for which

VII. . . p=V.o /3, Ta = l, butwo* Sa/3=0,

we have, in like manner, this other derived vector,

VIII.. . p =Dp =
|v.a*/3.

(3.) As an example of a vector-function of more scalars than one, let us resume

the expression (308, XVIII.),

IX. .. p = rk t

j*kj-k-
t

;

in which we shall now suppose that the tensor r is given, so that p is the variable

vector of a point upon a given spheric surface, of which the radius is r, and the cen

tre is at the origin ;
while s and t are two independent scalar variables, with respect

to which the two partial derivatives of the vector p are to be determined.

(4.) The derivation relatively to t is easy; for, since ijk are vector-units (295),

and since we have generally, by 333, VIII.,

X. . . d . a* =
^

a*+i da?, and therefore XI. . . D, . a* = a** D tx,

if Ta = 1, and if x be any scalar function of
t, we may write, at once, by 279, IV.,

XII. . .D,p=

and we see that

XIII. . .

a result which was to be expected, on account of the equation,

XIV. . .p2 + r2 =
,

which follows, by 308, XXIV., from the recent expression IX. for p.

(5.) To form an expression of about the same degree of simplicity, for the other

partial derivative of p, we may observe that/
*

Ay
-&quot; is equal to its own vector part

(its scalar vanishing) ;
hence
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XV. . . D 8p = irk jk-tp ;
or XVI. . . Dsp =

by the transformation 308, (11.). And because the scalar of Wjk-* is zero, we have

thus the equation,
XVII. . . SpDsj

o = 0,

which is analogous to XIII., and might have been otherwise obtained, by taking the

derivative of XIV. with respect to the variable scalar s.

(6.) The partial derivative D sp must be a vector ; hence, by XV. or XVI., p

must be perpendicular to the vector ktjk t,
or K2tj, orjJr

zt
,
a result which, under

the last form, is easily confirmed by the expression 315, XII. for p. In fact that

expression gives, by 315, (3.) and (4.), and by the recent values XII. XVI., these

other forms for the two partial derivatives of p, which have been above considered :

XVIII. . . D
&amp;lt;|0

= TrrAW.j*; XIX. . . D sp = irr(AV.t
a + - V.A*) ;

which might have been immediately obtained, by partial derivations, from the ex

pression 315, XII. itself, and of which both are vector-forms.

(7.) And hence, or immediately by derivating the expanded expression 315,

XII L, we obtain these new forms for^the partial derivatives of p :

XX. . . Dtp = Trr (j cos ttr - i sin tir~) sin sir
;

XXL . . Dsp = Trr { (i cos tir + .;
sin

&amp;lt;TT)
cos sir k sin sir }

.

(8.) We may add that not only ia the variable vector p perpendicular to each of

the two derived vectors, Dsp and Dtp, but also they are perpendicular to each other ;

for we may write, by XII. and XVI.,

XXII. . . $(T)tp.Vtp) = - ir*S.1iPjffik
=

&amp;gt;ir*r*&.k**i=Q\

and the same conclusion may be drawn from the expressions XX. and XXI.

(9.) A vector may be considered as a function of three independent scalar varia

bles, such as r, s,
t

;
or rather it must be so considered, if it is to admit of being the

vector of an arbitrary point of space : and then it will have a total differential (329)

of the trinomial form,

XXIII. . . dp = drp + dsp + d,|0
= Df.p.dr + DAjo.ds-f D tp.dt;

and will thus have three* partial derivatives.

(10.) For example, when p has the expression IX., we have this third partial

derivative,
XXIV. . . Drp = r-ip

=
\Jp,

which may also be thus more fully written (comp. again 315, XIII.),

XXV. . . Drp = ktjskj-fk-*
=

(t cos t-rr +j sin tir} sin sir + k cos sir
;

and we see that the three derived vectors,

XXVI. . . Drp, D,p, Dtp,

compose here a rectangular system.

* That is to say, three of the first order; for we shall soon have occasion to con

sider successive differentials,
of functions of one or more variables, and so shall be

conducted to the consideration of orders of differentials and derivatives, higher than

the first.
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SECTION 5. On Successive Differentials, and Developments,

ofFunctions of Quaternions.

338. There will now be no difficulty in the successive dif

ferentiation, total or partial, of functions of one or more qua
ternions

;
and such differentiation will be found to be useful,

as in the ordinary calculus, in connexion with developments of

functions : besides that it is necessary for many of those geo
metrical and physical applications of differentials of quater

nions, on which we have not entered yet. A few examples of

successive differentiation may serve to show, more easily than

any general precepts, the nature and effects of the operation ;

and we shall begin, for simplicity, with explicitfunctions ofone

quaternion variable.

(1.) Take then the square, q*, of a quaternion, as a function/*/, which is to be

twice differentiated. We saw, in 324, VII., that a first differentiation gave the

equation,

but we are now to differentiate again, in order to form the second differential (Pfq

of the function g
2

, treating the differential of the variable q as still equal to
d&amp;lt;?,

and

in general writing dc g = d 2
^, where d2

g is a new arbitrary quaternion, of which the

tensor, Td2
g, need not be small (comp. 322). And thus we get, in general, this

twice differentiated expression, or differential of the second order,

II. . . dda.
(2.) The second differential of the reciprocal of a quaternion is generally (comp.

324, XL),
III. . . d2.-i = 2- d 2 (-i

(3.) If p be a variable vector, then (comp. 336, (1.)) we have, for the first and

second differentials of its square, the expressions :

IV. . . d . p2
= 2Spdp ;

V. . . d2
. p

2 = 2Spd
2
p + 2dp

2
.

(4.) Iffp be any other scalar function of a variable vector p, and if (comp. again

the sub-articles to 336) its first differential be put under theform,

VI. . . d/p = 2Svdp, when v is another variable vector,

then the second differential of the same function may be expressed as follows:

VII. . . d2/p = 2Si/d2p + 2Sdi&amp;gt;dp ;

in which we have written, briefly, Sdj/dp, instead of S(di/.dp).

(5.) The following very simple equation will be found useful, in the theory of

motions, performed under the influence of central forces :

VIII. . . dVpdp = Vpd?p ;
because V . dp

2 = 0.

(6.) As an example of the second differential of a quaternion, considered as a
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function of a scalar variable (comp. 333, VIII., and 337, (1.) ), thaifollowing may
be assigned, in which a denotes a given unit line, so that a 2 =

1, da = 0, but x

is a variable scalar :

IX. . . d2.a*=d( ^a^ida }
= -a*^&x-(-

\2 J 2 \2

(7.) The second differential of the product of any two functions of a quaternion

q may be expressed as follows (comp. II.) :

X. ..

339. The second differential, d2

^, of the variable quaternion q,

enters generally (as has been seen) into the expression of the second

differential d2

^, of the function fq, as a new and arbitrary quater

nion : but, for that very reason, it is permitted, and it is frequently

found to be convenient, to assume that this second differential d2
&amp;lt;?

is

equal to zero : or, what comes to the same thing, that the first dif

ferential dq is constant. And when we make this new supposition,

I. . . dq = constant, or I7
. . . d2

^
= 0,

the expressions for d2

/^ become of course more simple, as in the

following examples.

(1.) With this last supposition, I. or I
.,
we have the following second differen

tials, of the square and the reciprocal of a quaternion :

II. . . d2. 9
2 = 2d9

2
;

III. . . d2.9-i=2(?-idg)V 1 = 2?-
1

(d&amp;lt;? .2-i)/

(2.) Again, if we suppose that c
, ci, c2 are any three constant quaternions, and

take the function,
IV. . .fq = c qciqc2,

we find, under the same condition I. or 1 ., that its first and second differentials are,

V. . .
d/&amp;lt;7

=
code? . 01902 + Coqc\dq. c2 ;

VI. . . d2
/*?

= 2tf dg cidg . c2 ;

in writing which, the points* may be omitted.

(3.) The first differential, d^, remaining still entirely arbitrary (comp. 322, (8.),

and 325, (2.) ), so that no supposition is made that its tensor
Td&amp;lt;?

is small, although

we now suppose this differential d^ to be constant (I.) we have rigorously,

VII. . . (2 + d?)2=2
2 + d. 2 + Ad2.g2 ;

an equation which may be also written thus,

VIII. . . (q + d?)
2 = (1 + d + d2) . ^2.

(4.) And in like manner we shall have, more generally, under the same condi

tion of constancy of
d&amp;lt;/,

the equation,

IX. ../fe+dg) = (l + d+ |d2)/g,

if the function fq be the sum of any number of monomes, each separately of the/om

Compare the second Note to page 399,
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IV., and therefcre each rational, integral, and homogeneous of the second dimension,

with respect to the variable quaternion, q ;
or of such monomes, combined with others

of the first dimension, and with constant terms : that is, if ao, bQ, &i, 6
,
b

\,
. . and

co, c\i c%) C Q, c \y c z, . . be any constant quaternions, and

X. . . fq = OQ +

340. It is easy to carry on the operation of differentiating, to the

third and higher orders ; remembering only that if, in any former

stage, we have denoted the first differentials of q, dq, . . by dq, d
2

&amp;lt;?,

. .

we then continue so to denote them, in every subsequent stage of the

successive differentiation : and that if we find it convenient to treat

any one differential as constant, we must then treat all its successive

differentials as vanishing. A. few examples may be given, chiefly

with a view to the extension of the recent formula 339, IX., for the

function f(q + dq) of a sum, of any two quaternions, q and dq, to po

lynomialforms, of dimensions higher than the second.

(1.) The third differential of a square is generally (comp. 338, II.),

I. . . d3
. ?3 = q , &q +&q . q +^q . $tq + tfq .

flg).

(2.) More generally, the third differential of a product of two quaternion func
tions (comp. 338, X.) may be thus expressed :

II. . .
&*(fq.&amp;lt;pq)

=
fq.&amp;lt;!&amp;gt;q

+ 3$i

fq.a&amp;lt;t&amp;gt;q
+ Bafq.&(t&amp;gt;q+fq.V&amp;lt;!&amp;gt;q.

(3.) More generally still, the n* differential of a product is, as in the ordinary

calculus,

III. . . &n
fq.&amp;lt;&amp;gt;q)

= &n

the only thing peculiar to quaternions being, that we are obliged to retain (gene

rally) the order of the factors, in each term of this expansion III.

(4.) Hence, in particular, denoting briefly the function fq by r, and changing

$q to ?,

IV. . .
d&quot;.r^

= d r.g + nd - 1

r.d&amp;lt;7,
if &q = 0.

(5.) Hence also, under this condition that
d&amp;lt;?

is constant, if c be any other con

stant quaternion, we have the transformation,

2
...

(6.) Hence, by 339, (4.), it is easy to infer that if we interpret the symbol t
d
by

the equation (comp. 316, I.),

VI. . . t
d = 1 + d f id2 + -L d3 + &c.,

2t o

that is,
if we interpret this other symbol i

A
fq, as concisely denoting the series which
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is formed from fq, by operating on it with this symbolic development ;
and if the

function fq, thus operated on, be any finite potynome, involving (like the expression

339, X.) no fractional nor negative exponents ; we may then Avrite, as an extension

of a recent equation (339, IX.), the formula :

VII... d/?=/(9+d7), if d27 = 0;

which is here a perfectly rigorous one, all the terms of this expansion for a.function

of a sum of two quaternions, q and Aq, becoming separately equal to zero, as soon as

the symbolic exponent of d becomes greater than the dimension of the polynome.

(7.) We shall soon see that there is a sense, in which this exponential transfor

mation VII. may be extended, to other functional forms which are not composed as

above : and that thus an analogue of Taylor s Theorem can be established for Qua
ternions. Meanwhile it may be observed that by changing d&amp;lt;?

to Aq, in the finite

expansion obtained as above, we may write the formula as follows :

VIII. . . t*fq =f(q + A?) = (1 + A)/?, or briefly, IX. . . cj = 1 -I- A ;

which last symbolical equation may be operated on, or transformed, as in the ysual

calculus of differences and differentials. For instance, it being understood that we
treat A2

g as well as &q as vanishing, we have thus (for any positive and whole ex

ponent TO), the two following transformations of IX.,

X. . . A =
(e

d -
I)&quot;,

and XI. . . d = (log ( 1 + A) ) ;

the results of operating, with the symbols thus equated, on any polynomial function

fq, of the kind above described, being always finite expansions, which are rigorously

equal to each other.

341. Let Fx and $x be any two functions of a scalar va

riable, of which both vanish with that variable ; so that they

satisfy the two conditions,

I. . . FO = 0, 00 = 0.

Then the three simultaneous values,

II. . . x, Fx, 0#,

of the variable and the two functions, are at the same time

(comp. 320, 321) three simultaneous differences, as compared
with this other system of three simultaneous values,

III. . . 0, FQ, 00.

If, then, any equimultiples,

IV. . . nx, nFx, n$x,

of the three values II., can be made, by any suitable increase

of the number, n, combined with a decrease of the variable, x,

to tend together to any system of limits, those limits must (by
the definition in 320, compare again 321) admit of being con

sidered as a system ofsimultaneous differentials,
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V. . . dx, dFx 9 &$x,

answering to the system of initial values III.
;
and must be

proportional to the ultimate values of the connected system of

derivatives,

VI. . . 1, F x, ar, when x tends to zero.

We may therefore write, as expressions for those ultimate va

lues of the two last derived functions,

VII. . . FQ = lim. nF-, = lim. nfi -, if FQ = 00 = 0.r

And i/cw. ifthese last values vanish, or if the M?O ?zew&amp;gt; condi

tions

VIII. . . F O = 0, f = 0,

are satisfied, so that x, .F #, and a? are now (comp. II.) &new

system of simultaneous differences, we may sfoV/ establish the

following equation of limits ofquotients, which is independent

of these last conditions VIII.,

IX. . .lim(F*:^)lim(F;r:f*), if ^0 = 00 = 0;
,r&amp;lt;=o #&amp;lt;=0

it being understood that, in certain cases, these two quotients

may fctf/* vanish with x ; or may tend together to infinity, when
x tends, as before, to zero.

(1.) This theorem is so important, that it will not be useless to confirm it by a

geometrical illustration, which may at the same time serve for a geometrical proof;

at least for the extensive case where both the functionsfx and $x are of scalarforms,

and consequently may be represented, or constructed, by the corresponding ordi-

nates, XY and XZ (or ordinates answering to one common abscissa OX), of two

curves OyY and OzZ, which are i one plane, and set out from (or pass through)

one common origin O, as in the annexed Figure 75. We shall afterwards see that

the result, so obtained, can be extended to quaternion functions.

(2.) Suppose then, first, that the ordinates of these two curves are proportional,

or that they bear to each other one fixed and constant ratio
,

so that the equation,

X. . . XY : XZ = xy : xz,

is satisfied for every pair of abscisses, OX and 0#, however great or small the corre

sponding ordinates may be. Prolonging then (if necessary&quot;) the chord Yy of the

first curve, to meet the axis of abscissae in some point t, and so to determine a sub-

secant
&amp;lt;X,

we see at once (by similar triangles) that the corresponding chord Zz of

thes econd curve will meet the same axis in the same point, t; and therefore that

it will determine (rigorously} the same subsecant, tX,
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(3.) Hence, if the point x be conceived to approach to X, so that the secant Yyt
of the first curve tends to coincide with the tangent YT to that curve at the point Y,

the secant Zzt of the second curve must tend to

coincide with the line ZT, which line therefore

must be the tangent to that second curve : or in

other words, corresponding subtangents coincide,

and of course are equal, under the supposed con

dition X., of a constant proportionality of ordi

nates.

(4.) Suppose next that corresponding ordi-

nates only tend to bear a given or constant ratio

to each other
;
or that their (now) variable ratio

tends to a given or fixed limit, when the com-
O / T X ~JC

mon abscissa is indefinitely diminished, or when

the point X tends to 0; and let T be still the
Fl - 75&amp;gt;

variable point in which the tangent to the first curve at Y meets the axis, so that the

line TX is still the first subtangent. Then the corresponding tangent to the second

curve at Z will not in general pass through the point T, but will meet the axis in

some different point U. But the ratio of the two corresponding subtangents, TX and

UX, which had been a ratio of equality, when the condition of proportionality X.

was satisfied rigorously, will now at least tend to such a ratio; so that we shall have,

under this new condition, of tendency to proportionality of ordinates, the limiting

equation,
XI. . . lira (TX : UX) = 1

;

whence the equation IX. results, under the geometrical form,

XII. .. lira (tan XTY : tan XUZ) = lim (XY : XZ).

(5.) We might also have observed that, when the proportion X. is rigorous, cor

responding areas *
(such as xXYy and xXZz) of the two curves are then exactly in

the given ratio of the ordinates ; so that this other equation, or proportion,

XIII. . . OXYyO : OXZzO = XY : XZ,

is then also rigorous. Hence if we only suppose, as in (4.), that the ordinates tend

to some fixed limiting ratio, the areas must tend to the same ; so that if the second

member of the equation IX. have any definite value, as a limit, the first member

must have the same : whereas the recent proof, by subtangents, served rather to

show that if the first (or left hand) limit in IX. existed, then the second limit in

that equation existed also, and was equal to the first.

(6.) If the function Fx be a quaternion, we may (by 221) express it as follows,

XIV. ..Fx=; W+ iX +jy + kZ,

where W, X, Y, Z are four scalar functions of x, of which each separately can be

* Compare the Fourth Lemma of the First Book of the Principia ;
and see espe

cially its Corollary, in which the reasoning of the present sub -article i virtually an

ticipated.

3 i
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constructed, as the ordinate of a plane curve ;
and the recent geometrical* reasoning

will thus apply to each of them, and therefore to their linear combination Fx: which

quaternion function reduces itself to a vector function of
a.-,

when W= 0.

(7.) And if \^x were another quaternion or vector function, we might first sub

stitute it for Fx, and then eliminate the scalar function $x ;
so that a limiting equa

tion of the form IX. may thus be proved to hold good, when both the functions com

pared are rectors, or quaternions, supposed still to vanish witli x.

(8.) The general considerations, however, on which the equation IX. was lately

established, appear to be more simple and direct
;
and it is evident that they give,

in like manner, this other but analogous equation, in which F&quot;x and
0&quot;#

are second

derivatives, and the conditions VIII. are now supposed to be satisfied:

XV. . . lim (F x : $ x] = lira
(F&quot;x

: for), if F Q = 0,
= 0.

x=0 x =

And so we might proceed, as long as successive derivatives, of higher orders, conti

nue to vanish together.

(9.) Hence, in particular, if we take this scalar form,

which evidently gives the values,

XVII. ..00 = 0, = 0, 0&quot;

=
0, ... 0(-i)0 = 0, 0()0=1,

and if we suppose that the function F.c is such that

XVIII. . . FO = 0, F Q = 0, F&quot;0 = 0, . . . F(- DO = 0,

while .FMO has any finite value, we may then establish this limiting equation :

XIX. . . lim (Fx : $x) = FMQ ;

a; =

in which the function Fx, and the value F^Q, are here supposed to be generally

quaternions ; although they may happen, in particular cases, to reduce themselves

(292) to vectors, or to scalars.

* Instead of the equation IX., it has become usual, in modern works on the Dif

ferential Calculus, to give one of the following form (deduced from principles of La-

grange) :

^ =^)
}

lf *X) = *( )
=

5

9 denoting some proper fraction, or quantity between and 1. And a geometrical

illustration, which is also a geometrical proof, when the functions Fx and $x can be

constructed (or conceived to be constructed) as the ordinates of two plane curves, is

sometimes derived from the axiom (or geometrical intuition), that the chord of any
finite and plane arc must be parallel to the tangent, drawn at some point of that

finite arc. But this parallelism no longer exists, in general, when the curve is one

of double curvature ; and accordingly the equation in this Note is not generally true,

when the functions are quaternions ; or even when one of them is a quaternion, or

a vector.
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342. It will now be easy to extend the Exponential Trans

formation 340, VII.
;
and to show that there is a sense in

which that very important Formula,

which is, in fact, a known* mode of expressing the Series or

Theorem of Taylor, holds good for Quaternion Functions ge

nerally ,
and not merely for those functions offinite and poly

nomialform, with positive and whole exponents, for which it

was lately deduced, in 340, (6.). For let^ and/^ + dg)

denote any two states, or values, of which neither is infinite, of

anyfunction ofa quaternion; and of the m first differentials,

II. . . (\fq, d 2

fq, . . d&quot;

l

/&amp;lt;7,

in which (\q
= const.,

let it be supposed that no one is infinite, and that the last of

them is different from zero ; while all that precede it, and the

functions^ and/(^ + dq) themselves, may or may not happen
to vanish. Let the first m terms, of the exponential develop

ment of the symbol (V
1 -

\}fq, be denoted briefly by &amp;lt;/i, q 2 ,
. .

qm ; and let rm denote what may be called the remainder ofthe

series, or the correction which must be conceived to be added

to the sum of these m terms, in order to produce the exact value

of the difference,

III. . . A/? =f(q + A?) -fq =f(q + d?) -fq ;

in such a manner that we shall have rigorously, by the nota

tions employed, the equation,

dmfq
IV. . . f(q -h dq) =fq + #1 + ? 3 + + ?/ + rm ,

where qm = -
;

Zi .O . . Ill

this term qm being different from zero, but no one of the terms

being infinite, by what has been above supposed. Then we

shall prove, as a Theorem, that

*
Lacroix, for instance, in page 168 of the First Volume of his larger Treatise

on the Differential and Integral Calculus (Paris, 1810), presents the Theorem of

Taylor under the form,

where u denotes the value which the function u receives, when the variable x re

ceives the arbitrary increment dx (1 accroissement quelconque d#).
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V. . . lim (Tr,H : Tqm)
= 0, if lim. Td? =

;

or in words, that the tensor of the remainder may be made to

bear as small a ratio as we please, to the tensor of the last term

retained, by diminishing the tensor, without changing the ver~

sor, of the differential (or difference) d^. And this very gene
ral result, which will soon be seen to extend to functions of

several quaternions, is in the present Calculus that analogue
of Taylor s theorem to which we lately alluded (in 340, (7.) ) ;

and it may be called, for the sake of reference,
&quot;

Taylor s

Theorem adapted to Quaternions&quot;

(1.) Writing

VI. .. Fx=

we shall have the following successive derivatives with respect to or,

r
F x = d/fo + xtq)

-
d/g

VII. . .4

because, by 327, VI., and 324, IV.,

VIII. ..

2.3..(m-3)
% dw - }

f(q + x&q)
- d.m ~

l

fq ;
and finally

d- &amp;gt;

and in like manner,

IX. . . D2/(? + o%) = d2
/(9 + tcdj), &c.

;

the mark of derivation D referring to the scalar variable #, while d operates on q

alone, and not here on #, nor on Aq.

(2.) We have therefore, by VI. and VII., the values,

X. . . FO = 0, F O = 0, F&quot;0 = 0, . . F( - =
0, FWO = d

&quot;/? ;

whence, by 341, XIX., we have this limiting equation,

XI... lim.

XII. . . lim (Fa; : ^z) = 1, if ^
*=o

(3.) But these two functions, Fx and ^/.r, are formed by IV. from qm -f- rm and

7,n , by changing dq toxdq ;
and instead of thus multiplying dq by a decreasing sca

lar, x, we may diminish its tensor Tdy, without changing its wrsor Udy. We may
therefore say that, when this is done, the quotient (qm +rm} : qm tends to unity, or

this other quotient r,n : qm to zero, as its limit; or in other words, the limiting equa
tion V. holds good.
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(4.) As an example, let the function fq be the reciprocal, q~i ;
then (comp. 339,

III.) its mth differential is (for dq = const),

XIII. ..d/0 = d*.g-l = 2.3...OT.&amp;lt;r
1 (-0BI

&amp;gt;

if r = dq.q~^;

and it is easy to prove, without differentials, that

XLV. . .(? + r?)-i=g-i(l-hr)- =r {l-r + r3-.. + (-r) + (-r)^(l +
r)-&amp;gt;};

we have therefore here

XV. . . qm = 9
-&amp;gt;

(- ry\ rm = - qwr (1 + r)-&amp;gt;, T(rm : g,M)
= Tr . T(l + r)-i ;

and this last tensor indefinitely diminishes with Tdq, the quaternion q being sup

posed to have some given value different from zero.

(5.) In general, if we establish the following equation,

XVI. ../(, + n-ld?) =fq + n-ldfq + ~ Vfq + . . + -
g &amp;gt;

* 1

&amp;gt;

*_ 1
dw

&quot;^

2.;

as a definitional extension of the equation 325, V.
;
and if we suppose that neither

the function fq itself, nor any one of its differentials as far as dm l

fq is infinite
;
the

result contained in the limiting equation XI. may then be expressed by the formula,

XVII. . . f^f* (g, dq) = dmfq ,

which for the particular value m =
1, if we suppress the upper index, coincides with

the form 325, VIII. of the definition dfx, but for higher values of m contains a theo

rem : namely (when dmfq is supposed neither to vanish, nor to become infinite^),

what we have called Taylor s Theorem adapted to Quaternions.

343. That very important theorem may be applied to cases, in

which a quaternion (as in 327, (o.) ),
or a vector (as in 337), is ex

pressed as a, function of a scalar ; also to transcendentalforms (333),

whenever the differentiations can be effected; and to those new

forms (334), which result from the peculiar operations of the present

Calculus itself. A few such applications may here be given.

(1.) Taking first this transcendental and quaternion function of a variable scalar,

I. . . q =ft = a f

,
with Ta = 1, da = 0, dt = const.,

we have, by 333, VIII., the general term,

dividing then ed . a* by a*, we obtain an infinite series, which is found to be correct,

and convergent ; namely (comp. 308, (4.) ),

(o;a)2 (act)
&quot; irdt irdtin...=l + ara4-^r +..4- -^ + ..=* = co8 + sm .

(2.) Correct and finite expansions, for 8(9 + dq), V(# + dg-), K(q + d&amp;lt;?),
and

N(^ + dg), are obtained when we operate with e
d on Sq, Vq, Kg, and Ng; for ex

ample (dq being still constant), the third and higher differentials of Ng vanish by

334, XL, and we have
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IV. . .
&amp;lt;*%

=
(1 + d + |d

2
)N ?

= N? + 2S(K? . d?) + Nd? = N(? + d ?) ;

an expression for the norm of a sum, which agrees with 210, XX., and with 200,

VII.

(3.) To develope, on like principles, the tensor and versor of a sum, let us again

write r for dg- : q, and denote the scalar and vector parts of this quotient by s and v
;

so that, by 334, XIII. and XV.,

V... s = Sr = S^ = ^; VI... = V,P V
*

= .

q Lq q Lq

(4.) Then writing also, for abridgment, as in a known notation offactorials,

VII. ..[-!] = (-!). (-2). (-3).... (-,),

we shall have, by 342, XIII., dq being still treated as constant, the equation,

VIII. . . d(* + )
= d*r = [- l]W l = [- 1] (s + iO+i,

of which it is easy to separate the scalar and vector parts ; for example,

IX. . . d = -S.(* + )
2

(5.) We have also, by V. and VI.,

x . . .

the notation being such that we have, for instance, by IX.,

XII. . . +
XIII. . . (v + d) 1 = v

; (v + d)2 1 = ( y + d&amp;gt;
= 2 + d = w2 - 2*r&amp;gt;.

(6.) The exponential formula 342, L, gives, therefore,

XIV. . . T(? +d?)=edT^ = ^l.T? ;

XV. . . U(^ + d?) = 1U7 = ^Jl.U? ;

or, dividing and substituting, .

XVI. ..T(l + + )= +d
l; XVIL .. U(l + * + )= l fd

l; ^
* and v being here a scalar and a vector, which are entirely independent of each

other
;
but of which, in the applications, the tensors must not be taken too large, in

order that the series may converge.

(7.) The symbolical expressions, XVI. and XVII., for those two series, may be

developed by (4.) and (5.) ; thus, if we only write down the terms which do not exceed

the second dimension, with respect to s and v, we have by XII. and XIII. the deve

lopment,
XVIII.

XIX. .

of which accordingly the product is 1 + * + v, to the same order of approximation.

(8.) A function ofa sum of two quaternions can sometimes be developed, with

out differentials, by processes of a more algebraical character ; and when this hap

pens, we may compare the result with the form given by Taylor s Series, as adapted

to quaternions in 342, and so deduce the values of the successive differentials of the

function; for example, we can infer the expression 342, XIII. for d&quot;. q~
}

,
from the

series 342, XIV., for the reciprocal of a sum.
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(9.) And not only may we verify the recent developments, XVIII. and XIX., by

comparing them with the more algebraical forms,

XX. . .T(l
XXL . . U(l+*+}(!

but also, if the first of these for example (when expanded by ordinary processes,

which are in this case applicable) have given us, without differentials,

XXII. . . T(q + &amp;lt;? )
=

(1 + s - v* . .)Tj, where = SjV ,
and v = V5V

we can then infer the values of the first and second differentials of the tensor of a

quaternion, as follows :

XXIII. . . dTg = S^.Tqr;
9

whereof the first agrees with 334, XII. or XIII., and the second can be deduced from

it, under the form,

(10.) In general, if we can only develope a function/(g -f 9 ) as far as the term

or terms which are of the first dimension relatively to q ,
we shall still obtain thus

an expression for the first differential Afq, by merely writing &q in the place of q .

But we have not chosen (comp. 100, (14.) ) to regard this property of the differen

tial of a function as the fundamental one, or to adopt it as the definition of dfq ;
be

cause we have not chosen to postulate the general possibility of such developments of

functions of quaternion sums, of which in fact it is in many cases difficult to discover

the laws, or even to prove the existence, except in some such way as that above ex

plained.

(11.) This opportunity may be taken to observe, that (with recent notations) we

have, by VIII., the symbolical expression,

XXV. . . e +e+d ! = ! + * + ;
or XXVI. . . f+d 1 = l+r.

344. Successive differentials are also connected with successive dif

ferences, by laws which it is easy to investigate, and on which only

a few words need here be said.

(1.) We can easily prove, from the definition 324, IV. of Afq, that if
d&amp;lt;?

be con

t,stant

with analogous expressions for differentials of higher orders.

(2.) Hence we may say (comp. 840, X.) that the successive differentials,

II. . . Afq, d2
/?, d3

/9, .. for d2
? = 0,

are limits to which the following multiples of successive differences,

lll...nAfq, n*tffq, n 3A 3
/?, . . for A2

? = 0,

all simultaneously tend, when the multiple nAq is either constantly equal to Aq, or at

least tends to become equal thereto, while the number n increases indefinitely.

(3.) And hence we might prove, in a new way, that if the function f(q + d#)



432 ELEMENTS OF QUATERNIONS. [BOOK III.

can be developed, in a series proceeding according to ascending and whole dimensions

with respect to dg, the parts of this series, which are of those successive dimensions,

must follow the law expressed by Taylor s Theorem* adapted to Quaternions

(342).

345. It is easy to conceive that the foregoing results may be ex

tended (comp. 338), to the successive differentiations of functions of

several quaternions; and that thus there arises, in each such case, a

system of successive differentials, total and partial : as also a system of

partial derivatives, of orders higher than the first, when a quaternion,

or a vector, is regarded (comp. 337) as a function of several scalars.

(1.) The general expression for the second total differential,

involves d2
g-,

d2
r, . .

;
but it is often convenient to suppose that all these second dif

ferentials vanish, or that the first differentials &q, dr, . . are constant ; and then

d K
Q, or dmF(q, r, .

.),
becomes a rational, integral, and homogeneous function of

the mth
dimension, of those first differentials dg, dr, . .

,
which may (comp. 329,

III.) be thus denoted,

II. .. d&quot;Q
= (d !Z

+ dr + ..)
m Q; or briefly, III. . . d =

(da + dr + . .),

in developing which symbolical power, the multinomial theorem of algebra may be

employed : because we have generally, for quaternions as in the ordinary calculus,

IV. . . d,ds - d
4dr .

(2.) For example, if we denote dg and dr by q and r
,
and suppose

V. . . Q = rqr, then VI. . . d3 Q = rq r
;

VII. .. d,. Q = r qr + rqr ;

and VIII. . . drd fl Q = d
fl
d. Q = rq r + rq r.

And in general, each of the two equated symbols IV. gives, by its operation on

F(q, r), the limit of this other function, or product (comp. 344, I.),

IX. . . nn { F(q +
-
d?, r + n - 1

dr)
-

JFfy, r 4- n
-

dr)
-
F(q + n- dg, r) + F(? , r) } ;

in which the numbers n and n are supposed to tend to infinity.

(3.) We may also write, for functions of several quaternions,

X. .. Q+&Q = F(q + &q, r+dr,..)=cVV&quot;-F(g, r) 5

or briefly, XI. . . 1 -f A = eVV = e
d

;

with interpretations and transformations analogous to those which have occurred

already, for functions of a single quaternion.

(4.) Finally, as an example of successive and partial derivation, if we resume

the vector expression 308, XVIII. (comp. 315, XII. and XIII.), namely,

XII. . . p = rk*j*kj-k-*,

* Some remarks on the adaptation and proof of this important theorem will be

found in the Lectures, pages 589, &c.
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which has been seen to be capable of representing the vector of any point of space,

we may observe that it gives, without trigonometry, by the principle mentioned in

308, (11.), and by the sub-articles to 315, not only the form,

XIII. . . p = rtfjtoJi
1

-*, as in 308, XIX.,

but also, if a be any vector unit,

XIV. . . p*r^i&amp;gt;-^r#(*&.*+ S.- &amp;gt;)**&quot;* 5

whence XV. . . p = rV. k^^ + rWV. i2
*, as in 315, XII.

(5.) We have therefore the following new expressions (compare the sub- articles

to 337), for the two partial derivatives of the first order, of this variable vector p,

taken with respect to s and t :

XVI. . . Dsp

with the verification, that

XVII. . . p1)8p=iv
and XVIII. . . D tp = irrk^y.j^ = irrWjS . a2s~ l = r^pDsp . S. a^-\
whence XIX. . . pD,p = -rDsp.S.a

2
*-i,

and XX. . . ~Dsp.Vtp= TrVpS.a
2*-

;

while XXI. . . D,p = r^p = */*/-*-, as in 337, XXV. ;

so that we have the following ternary product of these derived vectors of the first

order,

XXII. . . Drp.Dtp.D tp= 7r2p2S. a2*-i = 7rr2DsS.a2s
;

the scalar character of which product depends (comp. 299, (9.)) on the circum

stance, that the vectors thus multiplied compose (337, (10.) ) a rectangular system,

(6.) It is easy then to infer, for the six partial derivatives of p, of the second

order, taken with respect to the same three scalar variables, r, s, t, the expressions :

XXIII. . . Dr
2
p = ;

DrDsp = D sDrp =
XXIV. . . Ds

2
p = - 7r

2
p ; VsVtp = DiDsp

=

(7.) The three partial differentials of the first order, of the same variable vector

p, are the following:

XXV. . . d,.p
=

r-ipdr ;
d sp = Dsp . ds

; d^p
=

T&amp;gt;tp . df
;

with the products,
XXVI. . . d sp . dtp

= - TrrpdS . a2*. &amp;lt;lt

;

XXVII. . . drp . dsp . dtp
= 7rr2dr . dS . a2 *

. d*.

(8.) These differential vectors, d,-p, dsp, d^p, are (in the present theory) gene

rally finite ; d,.p, like D,-p, being a line in the direction of p, or of theradius of this

sphere round the origin, at least if dr, like r, be positive ;
while d sp, like Dsp, is

(comp. 100, (9.) ) a tangent to the meridian of that spheric surface, for which r

and t are constant ; but
d&amp;lt;p,

like D^p, is on the contrary a tangent to the small circle

(or parallel&quot;),
on the same sphere, for which r and s are constant.

(9.) Treating only the radius r as constant, and writing p =OP, if we pass from

the point P, or (*, &amp;lt;),

to another point Q, or (s + As, ), on the same meridian, the

chord PQ is represented by tlie finite difference, Asp ;
and in like manner, if we pass

from P to a point R, or (s,
t +

A&amp;lt;),
on the same parallel, the new chord PK is repre

sented by the other partial and finite difference, A&amp;lt;p ;
while the point (s + As, t + At}

may be denoted by s.

(10.) If now the two points Q and R be conceived to approach to r, and to come

to be very near it, the chords PQ and PR will very nearly coincide with the two cor-

3 K
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responding arcs of meridian and parallel ;
or with the tangents to the same two cir

cles at P, so drawn as to have the lengths of those two arcs : or finally with the dif

ferential and tangential vectors, dsp and d^p, if we suppose (as we may, comp. 322)
that the two arbitrary and scalar differentials, ds and dt, are so assumed as to be

constantly equal to the two differences, As and At, and consequently to diminish

with them.

(11.) Whether the differentials ds and dt be large or small, the product dsp.d tp,

like the product Dsp . Dtp, represents rigorously a normal vector (as in XXVI. and

XX.) ;
of which the length bears to the unit of length (comp. 281) the same ratio, as

that which the rectangle under the two perpendicular tangents, d sp and dtp, to the

sphere, bears to the unit of area. Hence, with the recent suppositions (10.), we

may regard this product dsp . d tp as representing, with a continually and indefinitely

increasing accuracy, even in the way of ratio, what we may call the directed element

of spheric surface, PQRS, considered as thus represented (or constructed) bv a nor

mal at P
;
and the tensor of the same product, namely (by XXVI.),

XXVIII. . . T(d s,o
. d,p)

= - 7rr2dS . a 2
*, d^,

in which the negative sign is retained, because S . a2 * decreases from -f 1 to 1, while

s increases from to 1, is an expression on the same plan for what we may call by con

trast the undirected element of spheric area, or that element considered with reference

merely to quantity, and not with reference to direction.

(12.) Integrating, then, this last differential expression XXVIII., from t = to

# = 2, and from S = SQ to s = *i, that is, taking the limit of the sum of all the elements

PQRS between these bounding values, we find the following equation :

XXIX. . . Area of Spheric Zone = 2?rr2S (a
2s - 2s

i) ;

whence

XXX. . . Area of Spheric Cap (s)
=

2?rr2(l
- S . a2

*)
= 4?rr2 (TV. a s

)
2

;

and finally,
XXXI. . . Area of Sphere = 47rr?

,
as usual.

(13.) In like manner the expression XXVII., with its sign changed (on account

of the decrease of S . a2s
,
as in (11.) ), represents the element of volume ; and thus,

by integrating from r = r to r = r\, from s = to s = l, and from t = to * = 2,

we obtain anew the known values :

XXXII. . . Volume of Spheric Shell = (n
3 - r 3

) ;

o

and

XXXIII. . . Volume of Sphere (r)
= 4

?,
as usual.

O

(14.) These are however only specimens of what may be called Scalar Integra

tion, although connected with quaternion forms ; and it will be more characteristic

of the present Calculus, if we apply it briefly to take the Vector Integral, or the limit

of the vector-sum of the directed elements (11.), of a portion of a spheric surface:

a problem which corresponds, in hydrostatics, to calculating the resultant ofthe pres
sures on that surface, each pressure having a normal direction, and a quantity pro

portional to the element of area.

(15.) For this purpose, we may employ the expression XXVI. with its sign

changed, in order to denote an inward normal, or a. pressure acting/row without ;

and if we then substitute for p its value XV., and observe that
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XXXIV. . .
f

8
A 2 cU=0, because &2 =-l,

Jo

and remember that V.&2 *+1 =kS . a2s
,
we easily deduce the expressions:

XXXV. . . Sum of Directed Elements of Elementary Zone = 7rr2 d . (S . a^ ;

XXXVI. . . Sum of Directed Elements of Spheric Cap (s)
= - 7rrU (l

-
(S.a

2s
)
2
)

= 7rr
2

(V. a
2
*)

2 = ir^k (D,p)2
= Trk (V&p) .

(16.) But the radius of the plane and circular base, of the spheric segment cor

responding, is TV&p, so that its area is in quantity =-it (V#p)
2

;
and the common

direction of all its inward normals is that of + k
;
hence if we still represent the di

rected elements by normals thus drawn inwards, we have this new expression :

XXXVII. . . Sum of Directed Elements of Circular Base = - irk (Vp)2
;

comparing which with XXXVI., we arrive at the formula,

XXXVIII. . . Sum of Directed Elements of Spheric Segment = Zero ;

a result which may be greatly extended, and which evidently answers to a known

case of equilibrium in hydrostatics.

(17.) These few examples may serve to show already, that Differentials of Qua

ternions (or of Vectors^) may be applied to various geometrical and physical ques

tions ; and that, when so applied, it is permitted to treat them as small, if any con

venience be gained thereby, as in cases of integration there always is. But we must

now pass to an important investigation of another kind, with which differentials will

be found to have only a sort of indirect or suggestive connexion.

SECTION 6__ On the Differentiation of Implicit Functions of

Quaternions ; and on the General Inversion of a Linear

Function, ofa Vector or a Quaternion : with some connected

Investigations.

346. We saw, when differentiating the square-root of a

quaternion (332, (5.) and (6.) ), that it was necessary for that

purpose to resolve a linear equation,* or an equation of the

first degree; namely the equation,

I . . rr + r r =
q,

in which r and q represented two given quaternions, q% and

dq, while r represented a sought quaternion, namely dr or d .

q^.

And generally, from the linear or distributive form (327), of

the quaternion differential

of any given and explicit function fq, when considered as de

pending on the differential
d&amp;lt;/

of the quaternion variable q, we

see that the return from the former differential to the latter,

*
Compare the Note to page 410.
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that is from dQ to dq, or the differentiation of the inverse or

implicit function f~
l

Q, requires for its accomplishment the So

lution of an Equation of the First Degree : or what may be

called the Inversion of a Linear Function of a Quaternion.

We are therefore led to consider here that general Problem
;

to which accordingly, and to investigations connected with

which, we shall devote the present Section, dismissing how
ever now the special consideration cf the Differentials above

mentioned, or treating them only as Quaternions, sought or

given, of which the relations to each other are to be studied.

347. Whatever the particular form of the given linear or dis

tributive function, fq, may be, we can always decompose it as follows:

taking then separately scalars and vectors, or operating with S and

V on the proposed linear equation,

II. ../J = r,

where r is a given quaternion, and q a sought one, we can in general

eliminate Sq, and so reduce the problem to the solution of a linear

and vector equation, of the form,

III. . .
0/&amp;gt;= &amp;lt;r\

where &amp;lt;r is a given vector, but
/&amp;gt;(= Vq) is a sought one, and is used

as the characteristic of a given linear and vectorfunction of a vector,

which function we shall throughout suppose to be a real one, or to

involve no imaginary constants in its composition. But, to every such

function $p, there always corresponds what may be called a conjugate

linear and vector function
/&amp;gt;,

connected with it by the following

Equation of Conjugation,

IV..

where A and p are any two vectors. Assuming then, as we may, that

p. and v are two auxiliary vectors, so chosen as to satisfy the equa

tion,

V. . . V// =
&amp;lt;r,

and therefore also,

VI. .. SX&amp;lt;r
=

SX/ii&amp;gt;, Spy = 0, Sva = 0,

where X is a third auxiliary and arbitrary vector, we may (comp. 312)

replace the one vector equation III. by the three scalar equations,
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VII. . . S/0 A = S^/tf, S/J0&amp;gt;
=

0, S/V v = Q.

And these give, by principles with which the reader is supposed to

be already familiar,* the expression,

VIII. . . mp =
fyar,

or IX. . . p = $-
l
ff=: m^tyr,

ifm be a vector-constant, and ty a^ auxiliary linear and vectorfunction,

of which the value and theform are determined by the two following

equations :

X. . . mSA/&amp;gt;
= SO X.0&amp;gt;.0V); ^ /? _

XL . . yr(V/u/)
=

V(&amp;gt;&amp;gt;.tf&amp;gt;V);

or briefly, t/e~ c
&amp;gt;

X . . &amp;gt;

and

XI

And thus the proposed Problem of Inversion, of the linear and vector

function 0, may be considered to be, in all its generality, resolved;

because it is always possible so to prepare the second members of the

equations X. and XL, that they shall take theforms indicated in the

first members of those equations.

(1.) For example, if we assume any three diplanar vectors a, a
, a&quot;,

and deduce

from them three other vectors /3o, /3 , /3&quot;o, by the equations,

XII. . . j3 Saa a&quot; = Va
a&quot;, /3 Saa a&quot;

=
Va&quot;a, j8&quot;

Saa a&quot;
= Vaa

,

then any vector p may, by 294, XV., be expressed as follows,

XIII. . . p = /3 Sap + /3 Sa p + /3&quot; Sa&quot;p ;

if then we write,
XIV. . . j3

=
0/3o, ]3

= 0/V, |8&quot;

=
0/3&quot;o,

we shall have the following General Expression, or Standard Trinomial Form, for

a Linear and Vector Function of a Vector,

XV. . . 0p = /SSap + /3 Sa p + j3&quot;Sa&quot;p ;

containing, as we see, three vector constants, /3, /3 , /3&quot;,
or Tiiwe scalar constants,

such as

XVI. .. So/3, Sa |3, Sa&quot;/3; Saj3 ,
Sa /3 , So&quot;/3 5 Sa^&quot;,

Sa
/3&quot;, Sa&quot;/3&quot;;

which may (and generally will) all vary, in passing from one linear and vectorfunc
tion

&amp;lt;j&amp;gt;p

to another such function
;
but which are all supposed to be real, and given,

for each particular form of that function.

(2.) Passing to what we have called the conjugate linear function p, the form

XV. gives, by IV., the expression,

* A student might find it useful, at this stage, to read again the Sixth Section of

the preceding Chapter; or at least the early sub-articles to Art. 294, a familiar ac

quaintance with which is presumed in the present Section.
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XVII. . . pp = aS
t3p + a S/3 p + a&quot;S/3&quot;p ;

but

V. (aS/3/i + a S/3 (aS/3r + a S/3V) =Vaa S . /3 (vS/3/x
- MS/3y)

= Vaa S . j3 V. /3V/iv = Yaa S .

therefore the transformation XL succeeds, and gives,

XVIII. . . tp = Vaa&quot;Sp&quot;P p + Va

as an expression for the auxiliary function ^ ;
of which the conjugate may be thus

written.

XIX. . . Vp = Vpp Sa a p + V/3&quot;/3Saa&quot;p + V/3/3 Sa ap ;

so that -^ is changed to
;//,

when is changed to
, by interchanging each of the

three alphas with the corresponding beta.

(3.) If we write, as in this whole investigation we propose to do,

XX. . . X =V^v, n = Vv\, j/ = VX/z,

the formulae XL and X. become,

XXL . . }\ = V.
0&amp;gt;pV,

and XXII. . . roSXV = S. X^X ,

with the same sort of abridgment of notation as in XI .
;
and because the coefficient

of Saa a&quot; in this last expression XXII. is by XVII. XVIIL,

S/3XS/3&quot;/3 X + S/3 XS/3/3&quot;X + S/3&quot;XS/3 /3X
=

S/3&quot;/3 /3SXX ,

the division by SXX
,
or by SX/zv, succeeds, and we find the expression,

XXIII. . . m = Saa
a&quot;S/3&quot;/3 /3 ;

which may also be thus written,

XXIII . . . i=S/3/3 /3&quot;Sa&quot;a a,

so that m does not change when we pass from to
,
on which account we may

write also,

XXIV. . . mSXX =
S.0Xi// X f

or XXIV. . . mSXfjLv = S.0X0^v,

because, by (2.), we can deduce from XL the conjugate expression,

XXV. . . 4/X =
V.0/itf&amp;gt;v.

(4.) We ought then to find that the linear equation,

XXVI. . . a = 0p =/3Sap + jS Sa p + /3&quot;Sa&quot;(&amp;gt;,

has its solution expressed (comp. VIII.) by the formula,

XXVII. . . PSaa a&quot;S/3&quot;/3 /3
= Va

a&quot;S/3&quot;/3 (T+ Va&quot;aS/3/3&quot;&amp;lt;r + Vaa S/3 /3or ;

and accordingly, if we operate on the expression XXVI. for a with the three sym

bols,

XXVIII. .. S./T/3 , S./3/3&quot;, S./3 /3,

we obtain the three scalar equations,

XXIX. . .
S/3&quot;/3

(r =
Sj3&quot;/3 /3Sap, &c.,

from which the equation XXVII. follows immediately, without any introduction of

the auxiliary vectors X, /*, v, although these are useful in the theory generally.

(5.) Conversely, if the equation XXVII. were given, and the value of a sought,

we might operate with the three symbols,

XXX. ..S. a, S./3, S.y,

and so obtain the three scalar equations XXIX., from which the expression XXVI.
for &amp;lt;r would follow.
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(6.) It \vill be found an useful check on formulas of this sort, to consider each beta,

in what we have called the Standard Form (I.)of0|0, as being of the first dimension;

for then we may say that and are also of the first dimension, but i// and i//
of

the second, and m of the third; and every formula, into which these symbols enter,

will thus be homogeneous: a, a
, a&quot;,

and X, ju, v, p, being not counted, in this mode

of estimating dimensions, but a being treated as of the first dimension, when it is

taken as representing 0p.

(7.) And although the trinomial form XV. has been seen to be sufficiently gene

ral, yet if we choose to take the more expanded form,

XXXI. . . 0p = 2/3Sap, which gives XXXII. . . p = SaS/SjO,

any number of terms of 0p, such as jSSap, /3 Sa p, &c
, being now included in the

sum 2, there is no difficulty in proving that the equations &quot;VIII. and IX. are satis

fied, when we write,

XXXIII. . . ij/p
= ZVaa S/3 /3p, with XXXIV. . .

t//&amp;gt;

= 2V/3/3 Sa p,

and
XXXV. . . m = 2Saa

a&quot;S/3&quot;/3 )
3= 2Sj3j3 /3&quot;Sa&quot;a

a.

(8.) The important property (2.), that the auxiliary function
i//

is changed to its

own conjugate i// ,
when is changed to

, may be proved without any reference to

the form 2/3Sot|0 of
&amp;lt;pp, by means of the definitions IV. and XL, of and

xp,
as fol

lows. Whatever four vectors
/*, v, /ui, and vi may be, if we write

XXXVI. . . X i
=

V/aii/i, and XXXVII. . . fVpv = V. A&amp;lt;0v,

adopting here this last equation as a definition of the/wnc^ow i//,
we may proceed to

prove that it is conjugate to
//, by observing that we have the transformations,

XXXVIII. . . SXT

which establish the relation in question, between
;//

and
t//.

(^9.)
And the not less important property (3.), that m remains unchanged when

we pass from
&amp;lt;f&amp;gt;

to
, may in like manner be proved, without reference to theform

XV. or XXXI. of 0p, by observing that we have by XXXVII., &c. the transfor

mations,

XXXIX. . . S . 0X0/U0I/ = S . 0X4//Y = SX 4/^X = mSX X = mSX^v,

because the equations III. and VIII. give,

XL. . . i|/0p
= mp, whatever vector p may be

;

so that the value of this scalar constant m may now be derived from the original

linear function 0, exactly as it was in X. or X . from the conjugate function .

348. It is found, then, that the linear and vector equation,

I. . . $p =
&amp;lt;T, gives II. . . mp = ^v9

as its formula of solution; with i\\Q general method, above ex

plained, of deducing m and \p from 0. We have therefore the

two identities,
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III. . . ma =
$^&amp;lt;r, mp = ^p ;

or briefly and symbolically,

III . . . 7/Z = 0T//=T//0;

with which, by what has been shown, we may connect these

conjugate equations ,

III&quot;. . . m =
(^ \fj

-
\l/&amp;lt;p

Changing then successively ju and v to
i///i

and
i//V,

in the

equation of definition of the auxiliary function
i//,

or in the

formula,

347, XI .,

we get these two other equations,

IV. . .
- V. v&amp;lt;/u

= mV. v ; V. . .

in the former of which the points may be omitted, while in

each of them accented may be exchanged with unaccented

symbols of operation : and we see that the law ofhomogeneity

(347, (6.) ) is preserved. And many other transformations of

the same sort may be made, of which the following are a few

examples.

(1.) Operating on V. by i/r
1
,
or by nr 0, we get this new formula,

VI. . .

comparing which with the lately cited definition of
^/, we see that we may change

&amp;lt;p

to
;//, if we at the same time change &amp;gt; to

m&amp;lt;j),
and therefore also m to m2

; being

then changed to
// , and

&amp;lt;//

to mQ .

(2.) For example, we may thus pass from IV. and V. to the formula;,

VII. . .
-

0V*/0 /t
=

V/T.//V, and VIII. . . 0V.0 /i0V =mV/uv ;

In which we see that the lately cited law of homogeneity is still observed.

(3.) The equation VII. might have been otherwise obtained, by interchanging

H and v in IV., and operating with - nrty, or with -^r 1

;
and the formula VIII.

may be at once deduced from the equation of definition of
-,//, by operating on it

with 0. In fact, our rule of inversion, of the linear function 0, may be said to be

contained in the formula,

IX. . . 0-lV/HJ/
=

rlV.0&amp;gt;0V;

where m is a scalar constant, as above.

(4.) By similar operations and substitutions,

X. . . 2

XI. . . 7W

XII. . . m2

XIII. . . V. 2
//0

2 v =
\f/
V. 6 fiQ v = ^

2V^v
;
&c.
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(5.) But we have also,

XIV. . . S . X02p = S . 0pfX = S . p0 *X,

so that the secondfunctions
2 and 2 are conjugate (compare 347, IV.) ; hence, by

XIII., i//

2 is formed from $2
,
as ^/ from

&amp;lt;p
;
and generally it will be found, that if

n be any whole number, and if we change &amp;lt;p

to
0&quot;,

we change at the same time
$&amp;gt;

to

&quot;, i//
to

i//
w

, $ to
i//

n
,
and m to m.

(6.) It may also be remarked that the changes (1.) conduct to the equation,

XV. . . (S. 0X0/B0I/)*
=

SX/ii/S..

and to many other analogous formulae.

349. The expressions,

with the significations 347, XX. of X , //, i/, and others of the

same type, are easily proved to vanish when X, ju, v are COTTZ-

planar, and therefore to be divisible by SX^uv, since each such

expression involves each of the three auxiliary vectors X, ju, v

in i\ivfirst degree only ; the quotients of such divisions being
therefore certain constant quaternions, independent of X, /x, v,

and depending only on the particular form of 0, or on the

(scalar or vector, but real) constants, which enter into the

composition of that given function. Writing, then,

fj(pfJL
+ V$v) : yUf,

and II. . . qz
=
(X ^X + ju i//(

tt + v^v) : SX/uv,

we shall find it useful to consider separately the scalar and

vector parts of these two quaternion constants, q\ and q 2 ;

which constants are, respectively, of the^rs^ and second di

mensions, in a sense lately explained.

(1.) Since VX ^X= /Sv0X- ^SX^, &c., it follows that the vector parts of^i
and g2 change signs, when is changed to

,
and therefore ^ to

4&amp;gt;

. On the other

hand, we may change the arbitrary vectors X, /u,
v to X

, /i ,
v

,
if we at the same

time change X to V/*V, or to XSX/^v, &c., and SX/zy, or SXX
,
to -(SX/wv)

2
;

di

viding then by
-

SX/jv, we find these new expressions,

III. . . q\ = (X0X + n$p. + v0v ) : SX/*r,

IV. . . 73 = (X^X -f n^p + v^v ) : SX/i i&amp;gt;

;

operating on which by S, we return to the scalars of the expressions I. and II., with

$ and ^ changed to and ;//.

(2.) Hence the conjugate quaternion constants, Kq\ and Kg?, are obtained by

passing to the conjugate linear functions ; and thus we may write,

/* .
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V. . . Kg, = (X A +

VI. . . K 2

or, interchanging X with X
, &c., in the dividends,

vii. . . K^i = (x^ X +
/j#&amp;gt;y

+ v(
t&amp;gt;

v
}

VIII. . . K?2l
=

(X^&amp;gt; + /iij/y + viJ V) : SX|uv ;

where X = V/iv, &c., as before.

(3.) Operating with V.p on Vgi, and observing that

V.
pVX&amp;gt;X

= 0(XSX p)
- X SXfp, &c.,

while (XSX p + pSju p + vSv p) = QpSXfiv,

and X SX^ p + n S/jup p + v &vQ p = pSX/iv,

with similar transformations for V.
pV&amp;lt;?2,

we find that

IX. . . V.pV2i = 0p-0 p;

and X. . . V. pV?2 = ^P - ^ p-

(4.) Accordingly, since

SpOp - fp)
= - Sp (0p - =

0,

the vector 0p
-

&amp;lt;p p, if it do not vanish, must be a line perpendicular to p, and there

fore of the form,
XI... 0p-fp =

in which y is some constant vector
;
so that we may write,

XII. . . 0p = p + Vyp, &amp;lt;/&amp;gt; p = p-Vyp,

where the function p is #s own conjugate, or is the common self-conjugate part of

0p and p ; namely the part,

XIII. . . p = K0p4fp).
And we see that, with this signification of y,

XIV. . . V(\ 0\ + p fp + v Qv} = - 2ySX/iv, or XIV. . . Vi = -
2y ;

while we have, in like manner,

XV. . . V(X ^X + p ^n + v tyv) = - 2^SX/iv, or XV. . . V?2 = -
2^,

if XVI. . .
i//p

- Vp = 2VSp.

As a confirmation, the part 0o of has by (1.) no effect on Vgi ;
and if we change

0X to VyX, &c., in the first member of XIV., we have thus,

(XSyX -f /*Sy|K + i/Syv )
- yS (XX + /*/ + vv }

= ySX/iv
-

3ySX/iv.

(5.) Since V\ ^ \ = - c&VX0 X , &c., by 348, VII., while we may write, by (1.),

(2.), and C4.),
XVII. . .

XVIII. . .

or XIX. . .

and XX. .

we have this relation between the two new vector constants,

XXI. . . d = -
$y = y = y ;

for 0, ^ ,
and have all the same

effect, on this particular vector, y.

(6.) We may add that the vector constant y is of the first dimension, and that

8 is of the second dimension, with respect to the betas of the standardform ; in fact,

with that/brm, 047, XV., of 0p, we have the expressions,
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XXII. . . y = \ V(/3a 4 ft a +
ft&quot; a&quot;),

and XXIII. . . S = fV(V/3 /3&quot;.Va a&quot;4 V/3&quot;/3.Va&quot;a 4 V/3/3 .Vaa )-

(7.) If we denote by ^o and m
,
what ^ and m become when is changed to

,

we easily find that ^

XXIV. . . ^/p
=

^/op ySyp 4Vp ; XXV. . . t//p
=

i^op 7^yp V$p ;

so that the self-conjugate part of ^/p contains a term, ySyp, which involves the

vector y, but only in the second degree; and in like manner,

y again entering only in an even degree, because m remains unchanged, when we pass

from to
,
or from y to - y.

(8.) It is evident that we have the relations,

XXVII. . . m = 0o^o = ^o0o ;

and that, in a sense already explained, fa, ^o, and m are of the first, second, and

third dimensions, respectively.

350. After thus considering the vector parts of the two

quaternion constants, q and q^, we proceed to consider their

scalar parts ; which will introduce two new scalar constant*,

m&quot; and m , and will lead to the employment of two new conju

gate auxiliary functions, %p and xp 5 whence also will result

the establishment of a certain Symbolic and Cubic Equation,

which is satisfied by the Linear Symbol of Operation, $, and

is of great importance in this whole Theory of Linear Func

tions.

(1.) Writing, then,

II. . . m&quot;=S#i, and III. . . m -
Sq^,

we see first that neither of these two new constants changes value, when we pass from

to
,
or from y to y ; because, in such a passage, it has been seen that we only

change q\ and qz to Kgi and
K&amp;lt;?2- Accordingly, if we denote by m and m&quot; what

m and m&quot; become, when is changed to
&amp;lt;f&amp;gt;Q,

we easily find the expressions,

IV. . . m&quot; = m&quot;o] and V. . . m = m o y
2

.

(2.) It may be noted that
m&quot;,

or m&quot;
,

is of theirs* dimension, but that m and

m o are of the second, with respect to the standard form of
;
and accordingly, with

that form we have,
VI. . . m&quot; = Sa/3 4 Sa /3 4

Sa&quot;/3&quot; ;

and VII. . . m = S(Va a&quot;.V/3&quot;/3
4 Va&quot;a.V/3/3&quot;4 Vaa .V/3 /3).

(3.) If we introduce two new linear functions, xp an^ x Pi sacn tnat

VIII.

aiul IX. .
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it is easily proved that these functions are conjugate to each other, and that each is

of theirs* dimension
;
in fact, with the standard form of 0p, we have the expres

sions,

X. . . xp=
XI. . . xp =

and S . XaV/3p = S.p/3VrtX, &c. Also, if Xo be formed from 0o, as x from 0, it will

be found that

XII. .. XP = Xof&amp;gt;-Vyp,
and XIII. . . x p =

where xo is of the first dimension.

(4.) Since

SXXX = S.
X(&amp;gt;

the expression II. gives, by 349, V., the equation,

XIV. . .

X and X being two arbitrary and independent vectors
;
which can only be, by our

having the functional relation,

XV. . .
&amp;lt;}&amp;gt;p

+ xp^m&quot;p;
or briefly and symbolically,

XVI. . . X H- d = &quot;.

Accordingly it is evident that the relation XV. is verified, by the form X. of xp,

combined with the standard form of ^p, and with the expression VI. for the con

stant TO&quot;.

(5.) The formula XVI. gives,

xvn. . . x0=&amp;gt;-0
2 = 0x;

and accordingly the identity of X and X may easily be otherwise proved, by

changing p and v to
t// /i and

-fy
v in the definition VIII. of x and remembering that

V.
-fy ntyv = m^Vfjtv^ -&amp;lt;//

=
TM, and V/u fyv = -

for thus we have,

XVIII. . .

as required.

(6.) Since, then,

S .

the value III. of m gives, by 349, VI., the equation,

XIX. . . m SXX = S .

X and X being independent vectors
; hence,

XX. . .

\l/p + X|0
= m p,

or briefly,

XXI. . .

And in fact, with the standard form of 0/o, we have

XXII. . . XP = X0P = V(V/3 /3&quot;.VpVa tt&quot;+ V/3&quot;/3
. V()Va&quot;a + V/3/3 .VpVaa ) ;

which verifies the equation XX., when it is combined with the value VII. of m
,
and

with the expression 347, XVIII. for
\}/p.

(7.) Eliminating the symbol x, between the two equations XVI. and XXI., and

remembering that 0\p
=

^&amp;lt;p

= m, we find the symbolic expression,
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XXIII. . . mf-i = t//
= m -

m&quot;&amp;lt;t&amp;gt;

+
&amp;lt;j&amp;gt;*

;

and thus the symbolic and cubic equation I. is proved.

(8.) And because the coefficients, m, m , wi&quot;,
of that equation, have been seen to

remain unaltered, in the passage from
&amp;lt;J&amp;gt;

to
,
we may write also this conjugate

equation,
XXIV. . , = m - m fi + m&quot;0

2 - 3
.

(9.) Multiplying symbolically the equation I. by m- 1

!//
3

,
and reducing by

4/0
= w, we eliminate the symbol &amp;lt;f&amp;gt;,

and obtain this cubic in ^/,

XXV. . . = m2 - mm&quot;^ + m^ - ip ;

in which i// may be substituted for $.

(10.) In general, it may be remarked, that when we change to
i//,

and there

fore ^ to m0, as before, we change not only m to m2
,
but also m to

mm&quot;,
and m&quot; to

m
;
while % is at the same time changed to 0%, or to ^0, and the quaternion qi is

changed to q%. Accordingly, we may thus pass from the relation XVI. to XXL
;

and conversely, from the latter to the former.

(11.) And if the two new auxiliary functions, x and X )
be considered as defined

by the equations VIII. and IX., their conjugate relation (3.) to each other may be

proved, without any reference to the standardform of 0p, by reasonings similar to

those which were employed in 347, (8.), to establish the corresponding conjugation

of the functions ^ and
*//.

(12.) It may be added that the relations between 0, , ^ # ,
and m&quot; give the

following additional transformations, which are occasionally useful :

XXVI. . .

XXVII. . .

with others on which we cannot here delay.

35 1 . The cubic in may be thus written :

I. . . = mp - m typ +
m&quot;(j)

2
p
-
Q

3

p ;

where p is an arbitrary vector. If then it happen that for some

particular but actual vector, p, the linear function $p vanishes,

so that
&amp;lt;jo

= 0,
2
/o
= 0,

3

/o
= 0, &c., the constant m must be

zero ; or in symbols,

II. . . if 0p = 0, and
!&amp;gt;

&amp;gt; 0, then m = 0.

Hence, by the expression 347, XXIII. for m, when the

standard form for $p is adopted, we must have either

III. . . Sao o&quot;
= 0, or else IV. . .

S/3&quot;0 j3
=

;

so that, in each case, that generally trinomialform&amp;gt;, 347, XV.,
must admit of being reduced to a binomial Conversely, when

we have thus a function of the particular form,



446 ELEMENTS OF QUATERNIONS. [BOOK III.

V. . .
&amp;lt;f)p

= fiSap + /3 Sa /o,

we have then,
VI. . . 0Vaa =

;

so that if a and a be actual and non-parallel lines, the real and

actual vector Vaa will be a value of p, which will satisfy the

equation typ
=

;
but no other real and actual value of p, ex

cept p
= xVaa, will satisfy that equation, if |3 and |3 be actual,

and non-parallel. In this case V., the operation
(f&amp;gt;

reduces

every other vector to the fixed plane of
)3, /3 , which plane is

therefore the locus of 0p ; and since we have also,

VII. . .

we see that the locus of the functionally conjugate vector,
&amp;lt;f&amp;gt; p,

is anotherfixed plane, namely that of a, a . Also, the normal

to the latter plane is the line which is destroyed by theformer

operation, namely by ; while the normal to theformer plane
is in like manner the line, which is annihilated by the latter

operation, $ , since we have,

VIII.. . Vj3j3
= 0,

but not
/o
= 0, for any actual p, in any direction except that

of V/3/3 , or its opposite, which may however, for the present

purpose, be regarded as the same.*. In this case we have

also monomialforms for typ and $p, namely

IX. . . $P = Vaa SjS ^p, and X. . .
^&amp;gt;

=
V/3/3 Sa ap ;

so that the operation \p destroys every line in the first fixed

plane (of |3, /3 ), and the conjugate operation $ annihilates

every line in the second fixed plane (of a, a ). On the other

hand, the operation i//
reduces every line, which is out of the

first plane, to infixed direction of the normal to the second

plane; and the operation $ reduces every line which is out of
the second plane, to that otherfixed direction^ which is normal

to thefirst plane. And thus it comes to pass, that whether we

operate first with
^/,

and then with ; or first with 0, and.

then with T^ ; or first with
i//

and then with $ ; or first with
&amp;lt;(/,

*
Accordingly, in the present investigation, whenever we shall speak of a &quot;

fixed

direction&quot; or the
&quot; direction of a given /me,&quot; &c., we are always to be understood

as meaning,
&quot; or the opposite of that direction.&quot;
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and then with
;// ; in all these cases, we arrive at last at a null

line, in conformity with the symbolic equations,

XL . . 0i
=

i/,0
= 0Y/ = i//0

= m = 0,

which belong to the case here considered.

(1.) Without recurring to the standard form of 0p, the equation 348, VI.,

namely V.^^ v =
m&amp;lt;j&amp;gt;V(jiv,

and the analogous equation V. tyu^v = mti Vp) ,

might have enabled us to foresee that |/p and
i//p,

if they do not both constantly va

nish, must (if m= 0) have each & fixed direction; and therefore that each must be

expressible by a monome, as above : the fixed direction of \fsp being that of a line

which is annihilated by the operation 0, and similarly for ^/ p and
tp

.

(2.) And because, by 347, XI. and XXV., we have

and ; VitJ&amp;gt; = V. iv,

so that the line $ n, if actual, is perpendicular to i//V//v, and the line 0/i perpendicu

lar to ^/V/zv, we see that each of the two lines, p and and 0p, must have (in the

present case) a plane locus ; whence the binomial forms of the two conjugate vector

functions, &amp;lt;pp

and p, might have been foreseen : typ and
4&amp;gt; p being here supposed to

be actual vectors.

(3.) The relations ofrectangularity, of the two fixed lines (or directions}, to the

two fixed planes, might also have been thus deduced, through the two conjugate bi

nomial forms, V. and VIL, without the previous establishment of the more general

trinomial (or standard} form of
&amp;lt;}&amp;gt;p.

(4.) The existence of a plane locus for 0p, and of another for
&amp;lt;f&amp;gt; p, for the case

when m 0, might also have been foreseen from the equations,

S . 0X0jU0i/ = S .
&amp;lt;j) \&amp;lt;p u&amp;lt;l)

v = m$\uv
;

and the same equations might have enabled us to foresee, that the scalar constant

m must be zero, if for any one actual vector, such as X, either
^&amp;gt;X

or
&amp;lt;p

\ becomes

null.

(5.) And the reducibility of the trinomial to the binomial form, when this last

condition is satisfied, might have been anticipated, without any reference to the com

position of the constant TO, from the simple consideration (comp. 294, (10.)), that

no actual vector p can be perpendicular, at once, to three diplanar lines.

352. It may happen, that besides the recent reduction

(351) of the linear function $p to a binomialform, when the

relation

I. . . m =

exists between the constants of that function, in which case the

symbolic and cubic equation 350, I. reduces itself to the form,

II. .. 3 -my + m = 0,

thus losing its absolute term, or having one root equal to zero,
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this equation may undergo a further reduction, by two of its

roots becoming equal to each other; namely either by our

having
III. . .m = 0, and IV. . .

2

(0
-

m&quot;)
= 0;

or in another way, by the existence of these other equations,

V. . . m&quot;
z - 4m = 0, and VI. . . (0

-
iw&quot;)

2 = 0.

In each of these two cases, we shall find that certain new geo
metrical relations arise, which it may be interesting briefly to

investigate ;
and of which the principal is the mutual rectan

gularity of twofixed planes, which are the loci (comp. 351) of

certain derived, and functionally conjugate vectors : namely, in

the case III. IV., the loci of $p and fip ; and in the case V.

VI., the loci of
&amp;lt;$p

and 3&amp;gt; p, if

VII. ..&amp;lt;!&amp;gt;
= -

JOT&quot;,
and VIII. . .

&amp;lt;!&amp;gt;

= -
JOT&quot;,

so that, in this last case, the symbol &amp;lt; satisfies this new cubic,

IX. . . =
&amp;lt;P

2

(3&amp;gt;
+

iw&quot;) ;

while $ satisfies at the same time a cubic equation with the

same coefficients (comp. 350, (8.)), namely

X . .
=

3&amp;gt;

/2

(&amp;lt;

+
lm&quot;).

(1.) We saw in 351, (1.), (2.), that when m = the line i//p has generally afaed

direction, to which that of the line 0p is perpendicular ; and that in like manner the

line T//p has then another fixed direction, to which p is perpendicular. If then the

plane loci of
&amp;lt;j&amp;gt;p

and p be at right angles to each other, we must also have the

fixed lines i//X and \pp, rectangular, or

XI. .. = S.i//X^ = S\i//V,

independently of the directions of X and
/i ;

whence

XII. . . =
i//2/i,

or XIII. . . $* = 0,

since
/j

is an arbitrary vector.

(2.). Now in general, by the functional relation 350, XXI. combined with

if/&amp;lt;f) m, we have the transformation,

XIV. . .
i//

2 =
4/(m -0x)

= 7n i//-mx ;

if then TO = 0, as in I., the symbol i//
must satisfy the depressed or quadratic equa

tion,

XV. . . = TO
I//
- ^ ;

which is accordingly afactor of the cubic equation,

XVI... = m -4/2_^3 ?

whereto the general equation 350, XXV. is reduced, by this supposition of m va

nishing.
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(3.) If then we have not only m =
0, as in I., but also m = 0, as in III., the

condition XIII. is satisfied, by XV.
;
and the two planes, above referred to, are ge

nerally rectangular.

(4.) We might indeed propose to satisfy that condition XIII., by supposing that

we had always,
XVII. . . tp

=
0, that is, XVII . . .

*//p
=

0,

for every direction of p ;
but in this case, the quaternion constant q? would vanish (by

349, II.) ;
and therefore the constant m

,
as being its scalar part (by 350, III.),

would still be equal to zero.

(5.) The particular supposition XVII. would however alter completely the geo

metrical character of the question ;
for it would imply (comp. 351, (2.)) that the

directions of the lines
&amp;lt;pp

and p (when not evanescent^) tire fixed, instead of those

lines having only certain planes for their loci, as before.

(6.) On the side of calculation, we should thus have, for the two conjugate

functions, &amp;lt;pp

and
&amp;lt;p p, monomial expressions of the forms,

XVIII. . . 0p = (3Sap, p = aS/3p ;

whence, by 347, XVIII., and 350, VII., we should recover the equations, ^/p
=

and m = 0.

(7.) We should have also, in this particular case,

XIX. . .0p = 0, if /o_j_a, and XX. . . p = 0, if p -U
/3;

so that
&amp;lt;pp

now vanishes, if p be any line in thefixed plane perpendicular to a
;
and

in like manner p is a null line, if p be in that other fixed plane, which is at right

angles to the other given line, j3.

(8.) These two planes, or their normals a and /3, or the fixed directions of the

two lines $ p and 0p, will be rectangular (comp. (1.) ), if we have this new equa

tion.

XXI. . .
2 = 0, or XXI . . .

2
p
=

0,

for every direction of p ;
and accordingly the expression XVIII. gives

2
p = Sct/3. 0p = 0, if j3

-L
,
and reciprocally.

(9.) Without expressly introducing a and
/3,

the equation 350, XXIII. shows

that when
i|/
=

0, and therefore also m = 0, as in (4.), the symbol (p
satisfies (comp-

(2.)) the new quadratic or depressed equation,

XXII. . . = 2 -
ro&amp;gt; ;

which is accordingly a factor of the cubic IV., but to which that cubic is not redu

cible, unless we have thus $ =
0, as well as m = 0.

(10.) The condition, then, of the existence and rectangularity of the two planes

(7.), for which we have respectively &amp;lt;pp

= and p = 0, without $p generally va

nishing (a case which it would be useless to consider), is that the four following

equations should subsist :

XXIII. . . m = 0, m = 0, m&quot; = 0, and XVII. . . ^ =
;

or that the cubic IV., and its quadratic factor XXII., should reduce themselves to

the very simple forms,

XXIV. . .
tf&amp;gt;

3 =
0, and XXV. . . =

;

the cubic in
&amp;lt;/&amp;gt;

having thus its three roots equal, and null, and ^p vanishing.

3 M
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(11.) We may also observe that as, when even one root of the general cubic 3 50,

I. is zero, that is when m = 0, the vector equation

XXVI. . . 0p =

was seen (in 351) to be satisfied by one real direction of p, so when we have also

TO =
0, or when the cubic in has two null roots, or takes the form IV., then the

two vector equations,
XXVII. . .

tf&amp;gt;p

= 0, &amp;lt;//p

=
0,

are satisfied by one common direction of the real and actual line p ;
because we have,

by 350, XVII. and XX., the general relation,

4/p
= m p

-
x^p.

(12.) And because, by 350, XV., we have also the relation %p = i&quot;p

-
0p, it fol

lows that when the three roots of the cubic all vanish, or when the three scalar

equations XXIII. are satisfied, then the three vector equations,

XXVIII. ..
tf&amp;gt;p=0, ^p = 0, %p = 0,

have a common (real and
actual&quot;)

vector root ; or are alt satisfied by one common

direction of p.

(13.) Since m&quot; $ = x, the cubic IV. may be written under any one of the fol

lowing forms,
XXIX. . . = 2

x = 0X0 = X02 =
0&amp;gt;0X

= &cM

in which accented may be substituted for unaccented symbols : and its geometrical

signification may be illustrated by a reference to certain fixed lines, andfixed planes,

as follows.

(14.) Suppose first that m and in both vanish, but that m&quot; is different from zero,

so that the cubic in is reducible to the form IV., but not to the form XXIV. ;
and

that the operation //,
which is here equivalent to

$x&amp;gt;
or to ~

X0&amp;gt;
does not annihi

late every vector p, so that (comp. (4.) (5.) (6.) ) 0p arid p havewof the directions

of two fixed lines, but have only (comp. (1.) and (3.) )
two fixed and rectangular

planes, II and II
,
as their loci ; and let the normals to these two planes be denoted

by X and X
,
so that these two rectangular lines, X and X

,
are situated respectively

in the planes II and II .

(15.) Then it is easily shown (comp. 351) that the operation destroys the line X

itself, white it reduces* every other line (that is, every line which is not of the form

ccX
,
with Vo; = 0) to the plane II J- X

;
and that it reduces every line in that

plane to & fixed direction, p,,
in the same plane, which is thus the common direction

of all the lines 2
p, whatever the direction of p may be. And the symbolical equa

tion, x 2 =
0, expresses that this fixed direction

fj,
of 2

p may also be denoted by

X
M

;
or that we have the equation,

XXX. . . =
x/*

=
&amp;gt;

-
&amp;lt;PV,

if
/*
=

tf&amp;gt;V

which can accordingly be otherwise proved : with similar results for the conjugate

symbols, $ and x

* We propose to include the case where an operation of this sort destroys a line,

or reduces it to zero, under the case when the same operation reduces a tine to &fixed

direction, or to afixed plane.
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(16.) For example, we may represent the conditions of the present case by the

following system of equations (comp. 351, V. VII. IX. X., and 350, VI. VII. X.

XI):
&amp;lt;pp

= fiSap + /3 Sa p, p = aS/3p + a S/3 p,

XXXI. . . = m = S (Vaa .V/3 /3)
= Sa/3 Sa /3

-
Sa/3 Sa /3,

f xp = V(aV/3p + a V/3 p)
=

m&quot;p
-

xxxii 1
x p =v^VaP + ^ Va = m

&quot;&amp;lt;

- v/ = = = Vaa

_

and may then write (not here supposing X = V/wr, &c.),

SXX =0,XXXTTT

after which we easily find that

XXXIV *

(17.) Since we have thus xV =
^&amp;gt;

where
p,

is a line in the fixed direction of

2
p, we have also the equation,

XXXV. . .
= SpXy=

S/i xp, or XP -1-
/* 5

the Zoews of xp is therefore a p/awe perpendicular to the line
/* ;

and in like manner,

ju
is the normal to a plane, which is the locus of the line x p- And the symbolical

equations, &amp;lt;p

. 0x = 0&amp;gt;

2
X - ^ may be interpreted as expressing, that the operation

reduces every line in this new plane of xp to thefixed direction of 0-
!

0, or of X
;
and

that the operation
2
destroys every line in this plane -L-

/z ;
with analogous results,

when accented are interchanged with unaccented symbols. Accordingly we see, by

XXXII., that 0xi has the fixed direction of Vaa
,
or of X

;
and that .

&amp;lt;J&amp;gt;xp

=
0,

because
&amp;lt;p\

= 0.

(18.) We see also, that the operation 0x? or X0 destroys every line in the plane

II, to which the operation $ reduces every line
;
and that thus the symbolical equa

tions, 0x =
0&amp;gt; X0 =

0&amp;gt;

ma7 he interpreted.

(19.) As a verification, it may be remarked that the fixed direction \
,
of 0xP

or
x0P&amp;gt; ought to be that of the line of intersection of the two fixed planes of 0p and

Xp; and accordingly it is perpendicular by XXXIII. to their two normals, \ and

p,
: with similar remarks respecting the fixed direction X, of ^ x p or x lj which

is perpendicular to X and to ju.

(20.) Let us next suppose, that besides m = 0, and m =
0, we have

4&amp;gt;

=
0, but

that TO&quot; is still different from zero. In this case, it has been seen (6.) that the expres

sion for 0p reduces itself to the monomialform, /3Sap; and therefore that the opera

tion destroys every line in a. fixed plane (-J- a), while it reduces every other line to

& fixed direction (\\ /3),
which is not contained in that plane, because we have not

now Sa/3 = 0.

(21.) In this case we have by (16.), equating a or /3 to 0, the expressions,

= /3Sap, p
=

aS/3p, m&quot; = Sa/3 ^ 0,

so that the equations XVIII. are reproduced ;
and the depressed cubic, or the qua

dratic XXII. in 0, may be written under the very simple form,

XXXVI.
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XXXVII. . .
= 0x = X0-

(22.) Accordingly (comp. (5.) and (7.) ), the operation &amp;lt;p

here reduces an arbi

trary line to the fixed direction of (3,
while x destroys every line in that direction

;

and conversely, the operation x reduces an arbitrary line to the fixed plane perpen

dicular to a, and destroys every line in that fixed plane. But because we do not

here suppose that m&quot; = 0, the fixed direction of
&amp;lt;pp

is not contained in the fixed plane

of xpi an(i (comp. (8.) and (10.)) the directions of 0p and p are not rectangular

to each other.

(23.) On the other hand, if we suppose that the three roots of the cubic in
&amp;lt;p

va

nish, or that we have m=0, m =
0, and m&quot; = 0, as in XXIII., but that the equa

tion j//p
= is not satisfied for all directions of p, then the binomialforms XXXI.

of
&amp;lt;pp

and p reappear, but with these two equations of condition between their vector

constants, whereof only one had occurred before :

XXXVIII. . . = SapSa p -
Sa/3 Sa /3,

= Sa/3 + Sa /3 .

(24.) We have also now the expressions,

XXXIX. . . xp &amp;lt;}&amp;gt;pi x P = ~$ pi

and the cubic in
&amp;lt;j&amp;gt;

becomes simply
3 =

0, as in XXIV. ; but it is important to ob

serve that we have not here (comp. (9.) ) the depressed or quadratic equation
2 =

0,

since we have now on the contrary the two conjugate expressions,

XL. . . ^p =
i//p

= Vaa S/3 /3p, &amp;lt;J&amp;gt;

2
p = i// p = V/3j3 Sa ap,

which do not generally vanish. And the equation
3 = is now interpreted, by ob

serving that 2 here reduces every line to the fixed direction of -1
;
while reduces

an arbitrary vector to thatfixed plane, all lines in which are destroyed by 2
.

(25.) In this last case (23.), in which all the roots of the cubic in are equal,

and are null, the theorem (12.), of the existence of a common vector root of the three

equations XXVIII., may be verified by observing that we have now,

XLI. . . 0Vaa =
0, -^Vaa =0, xVaa = 0;

the third of which would not have here held good, unless we had supposed m&quot;= 0.

(26.) This last condition allows us to write, by (16.),

XLII. . . 0/j
=

0, 0X =
0, VjuX = 0, V/X =

0, S/i/i
=

0,

the lines p and p thus coinciding in direction with the normals X and X
,

to the

planes II and II
;

if then we write,

XLIII. . . v = VXX
|| VfjLfi ,

so that Spv = 0, Sp v = 0,

this new vector v will be a line in the intersection of those two rectangular planesi
which were lately seen (14.) to be the loci of the lines 0p and p, and are now

(comp. (17.) ) the loci of xpand x p ,
and the three lines

//, p ,
v (or X

, X, v) will

Compose a rectangular system.

(27.) In general, it is easy to prove that the expressions,

xnv.

in which a, /3, a
, (3 may be any four vectors, and a, b, a

,
b may be any four sca-

lart, conduct to the following transformations (in which p may be any vector) :
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XLV. . .

XLVI. . . frSaip + /3 iSa ip
= /8Sap + /3 Sa p ;

XLVII. . . Vaia i.V/3 i/3i
= Vaa .V/3 /3 ;

so that the scalar, Sa/3 + Sa /3 ;
the vector, /3Sap + jS Sa p ;

and the quaternion*

Vaa .V/3 /3, remain unaltered in value, when we pass from a given system offour

vectors a(3a (3 ,
to another system of four vectors oij3io ij3 i, by expressions of the

forms XLIV.

(28.) With the help of this general principle (27.), and of the remarks in (26.),

it may be shown, without difficulty, that in the case (23.) the vector constants of

the binomial expression ftSap + (3 Sa p for
&amp;lt;pp may, without any real loss of genera

lity, 6e supposed subject to thefour following conditions,

XLVIII. . .
= Sa/3 = Sa jS

=
S/3/3

= Sa /3 ;

which evidently conduct to these other expressions,

XLIX. . . fsp = /3Sa/3 Sa p, $*p = ;

and thus put in evidence, in a very simple manner, the general non-depression of the

cubic
(p

3 =
0, to the quadratic,

2 = 0.

(29.) The case, or sub-case, when we have not only m = Q, m =
Q, m&quot;

-
0, but

also
i//
=

0, and therefore 2 =
0, as a depressed form of 3 =

0, by the linear function

0p reducing itself to the monomial (BSap, with the relation Sa/3 = between its con

stants, has been already considered (in (10.)); and thus the consequences of the

supposition III., that there are (at least) two equal but null roots of the cubic in 0,

have been perhaps sufficiently discussed.

(30.) As regards the other principal case of equal roots, of the cubic equation in

0, namely that in which the vector constants are connected by the relation V., or by

the equation of condition,

L. . .
= m&quot;2

- 4m =
(Sa/3 + Sa /3 )

2 - 4S(Vaa .V/3 /3)

it may suffice to remark that it conducts, by VI., or by VII. and IX., to the sym
bolical equation,

LI. . . = 0*2
,

if $ = ^
-

|m&quot; ;

and that thus its interpretation is precisely similar to that of the analogous equation,

X0
2 =

0, where x =m&quot;-0, XXIX.,

as given in (14.), and in the following sub-articles.

353. When we have m = 0, but not m = 0, nor m&quot;
2 - 4m ,

the three roots of the cubic in are all unequal, while one of

them is still null, as before ;
and the two roots of the quadratic

and scalar equation, with real coefficients (347),

I. . . = c2 +

* We have, in these transformations, examples of what may be called Quater

nion Invariants.
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which is formed from the cubic by changing to -
c, and then

dividing by c, are also necessarily unequal, whether they be

real or imaginary. We shall find that when these two scalar

roots, c lt C2 , are real, there are then two real directions, p l and

p 2 ,
in thatybW plane n which is the locus (351, 352) of the

line 0p, possessing the property that for each of them the ho

mogeneous and vector equation of the second degree,

II. . . V/00/o
= 0, or 0p || p,

is satisfied, without p vanishing; namely by our having, for the

first of these two directions, the equation

III. . .
&amp;lt;t&amp;gt;
pl

= - c
lj0l , or

1/0l
= 0, if 0i

= + Ci ;

and for the second of them the analogous equation,

IV. . . 0/o 2
= -c2p 2, or

2/
o 2
= 0, if 2

= + c2 :

but that wo o/ie?r direction of the rea / and actual vector p, sa

tisfies the equation V., except that fo&amp;gt;&amp;lt; which has already

been considered (351), as satisfying the linear and vector equa

tion,

V. . . 0p = 0, with Tp &amp;gt; 0.

It will also be shown that these two directions, p l9 p z ,
are not

only real, but rectangular, to each other and to the third

direction p, when the linear function fyp is self-conjugate (349,

(4.) ), or when the condition

VI. . .
(j) p

=
$p, or VI . . .

SA0/&amp;gt;
= SP0A,

is satisfied by the given form of 0, or by the constants which

enter into the composition of that linear symbol; but that when

this condition of self-conjugation is not satisfied, the roots of the

quadratic I. may happen to be imaginary : and that in this

case there exists no real direction of p, for which the vector

equation II. of the second degree is satisfied, by actual values

of p, except that one direction which has been seen before to

satisfy the linear equation V.

(1.) The most obvious mode of seeking to satisfy II., otherwise than through V.,

is to assume an expression of the form, p = x{3 + aj
/3 ,

and to seek thereby to satisfy

the equation, (0 + c) p = 0, with 0p = fiSap + /3 Sa p, by satisfying separately the two

scalar equations,

VII. . . = x (c + Sa/3) + s Sa/3 ,
= x (c f Sa /T) + a?Sa /3,



CHAP. II.] CASE OF UNEQUAL REAL ROOTS. 455

which give, by elimination of yf: x, the following quadratic in e,

VIII. . . (c + Sa/3) (c + Sa jS )
= Sa/3 Sa /3,

which is easily seen to be only another form of I. Denoting then, as above, by c
l

and c2 ,
the roots of that quadratic I., supposed for the present to be real, we have

these two real directions for p, in the plane II of (3, /3 :

IX. . . pi
=

)3(ci + Sa /3 )
-

/3 Sa /3
=

ci/3 + Va Vj3 /3 ;

X. . . p2 = (3 (c2 + Sa /3 )
-

/3 Sa |3
= c2/3 + Va V/3 /3 ;

which satisfy the equations III. and IV. In fact, the expression IX. gives

0pi = ci0/3 + ?n73
= -cipi, or 0ipj

=
0,

because we may write it thus,

XI. . . pi
=

(ro + Ci)/3-0/3 = -c2/3-0/3=-0o/3 = -0/3-m ci-
1

/3;

and in like manner, the expression X. may be thus written,

XII. . . p 2 = (m&quot; + c2)/3
-

0/3
= -

ci/3
-

0/3
= -

0i/3
= -

0/3
- m c^/3,

and gives,

0p2 = c20/3 + m /3
= - c

2jo, or
2|
o 2 = 0.

(2.) We may also write,

XIII. . . p i
=

/3 (ci + Srt/3)-/3Sa/3 = c 1/3 + VaV/3/3 = -02/3 || Pl ;

XIV. . . p 2 = /3 (c2 + Sa/3)
-

/3Sa/3
= c

2]
3 + VaV/3/3 = - 0i/3 || p2 ;

and shall then have the equations,

XV. . . 0ip i = 0, 2p 2 = ;

but the directions of p i and p 2 will be the same by VIII. as those of pi and p2,
and

so will furnish no new solution of the problem just resolved.

(3.) Since we have thus,

XVI... 0a/3 ||02/3 || pi || 0rM), and XVI . . . 0i/3 || 0i/3 || p2 || 2 0,

it follows that the operation 2 reduces every line in the fixed plane of 0p to the

fixed direction of 0r ;
and that, in like manner, the operation 0i reduces every line,

in the same fixed plane of 0p, to the other fixed direction of 2
~

1 0.

(4.) Hence we may write the symbolic equations,

XVII. . . 01 . 020
= 0, 2 . 010 = 0,

in which the points may be omitted
;
and in fact we have the transformations,

XVIII. . . 0i02 = 20i
= (0 + ci) (0 + c2)

= 08
-

m&quot;0 + m = i,

so that 0102-0= 0201-
= ^0 =m = 0.

(5.) If we propose to form
i|/i

from 0i, by the same general rule (347, XI.) by
which

\jj
is formed from 0, we have

XIX. . .
^iV/ii&amp;gt;

= V. ift0 ii/ = V.(0 /* + ci/i) (0V -t- en/),

and therefore, by the definition 350, VIII. of x,

XX. . .
i//ip

= ^p + cixp + C!
2
p, or XXI. . . ^i = ^ + cix + ci2 ;

and in like manner,
XXII. . .

1//2
=

4/ + C2% + C22,

eren if m be different from zero, and if ci, c2 be arbitrary scalars.

(6.) Accordingly, without assuming that m vanishes, if we operate on
-&amp;lt;//ip

with



456 ELEMENTS OF QUATERNIONS. [BOOK III.

0i, or symbolically multiply the expression XXI. for ^i by 0i, we get the symbolic

product,
XXIII. . . 0i^i = (&amp;lt;f&amp;gt;

+ Ci) (I// + CiX + C!
2
)

= 0ip 4- ci (0x+& + *1
8O + X) + c i

3

=m + c\m + ci
2

m&quot; + ci
3 = mi,

where m\ is what the scalar m becomes, when is changed to 0i, or is such that

XXIV. . . miSA/uv = S.0 iX0V0 iy = S.(0 X+ d\) (0V + ci//) (0V + en/) ;

as appears by the definitions of
, ^, x, ,

*
, w&quot;,

and by the relations between

those symbols which have been established hi recent Articles, or in the sub-articles

appended to them.

(7.) Supposing now again that m = 0, and that ci, c2 are the roots of the quadra
tic I. hi c, we have by XXIII.,

XXV. . . 0i^i = mi = ;
and in like manner XXVI. . . 2i//2

= w2 = 0,

if mz be formed from mi, by changing ci to c%.

(8.) Comparing XXV. with XVII., we may be led to suspect the existence of an

intimate connexion existing between i//i
and 20, since each reduces an arbitrary vec

tor to the fixed direction of 0r ]

0, or of p\ ;
and in fact these two operations are iden

tical, because, by XXI., and by the known relations between the symbols, we have

the transformations,

XXVII. . .
i//i
= $ + ax + ci

2 =O -
m&quot;0 + 2

) + ci (m&quot;

-
0) + ci

2

= 02
_

(m
&quot;

+ Cl )
= 02 4 C2 = 002

.

and similarly, XXVIII. . . ^2 = 3 + ci0 = 00i ;

while
i//
=

0i03, as before.

(9.) We have thus the new symbolic equation,

XXIX. . . 00i02 = 0,

in which the three symbolic factors 0, 0i, 2 may be in any manner grouped and

transposed, so that it includes the two equations XVII.
;
and in which the subject

of operation is an arbitrary vector p. Its interpretation has been already partly

given ;
but we may add, that while reduces every vector to the fixed plane IT,

01 reduces every line to another fixed plane, HI, and 2 reduces to a third plane,

H2 ;
thus 0i02, or 20i, while it destroys two lines pi, po, and therefore every line in

the plane IT, reduces an arbitrary line to t\\Q fixed direction of the intersection of the

two planes niTl2, which intersection must thus have the direction of 0~!0 ; and in

like manner, the fixed direction pi of 0r
1

0, as being that to which an arbitrary vec

tor is reduced (3.) by the compound operation 20, or 002,
must be that of the inter

section of the planes niI 2 ;
and p 2,

or 2
~

1
0, has the direction of the intersection of

nili ;
while on the other hand 002 destroys every line in TIi, and 00i every line in

II 2 : so that these three planes, with their three lines of intersection, are the chief

elements in the geometrical interpretation of the equation 00i0 2 = 0.

(10.) The conjugate equation,

xxx. . . 0yi02=o,

may be interpreted in a similar way, and so conducts to the consideration of a con

jugate system of planes and lines ; namely the planes IT
,

IT
i,

II 2 ,
which are the

loci of p, ip, 2/o, while the operations i0
f

2. 20 i? and i destroy all lines
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in these three planes respectively, and reduce arbitrary lines to the fixed directions

of the intersections, n iIT2 ,
n 2 Il ,

II II i,
which are also those of ^ -&amp;gt;0, 0V 1

0,

flV O.

(11.; It is important to observe that these three last lines are the normals to the

three first planes, IT, IT, II&quot;;
and that, in like manner, the three former line*

are perpendicular to the three latter planes. To prove this, it is sufficient to ob

serve that

XXXI. . .
Sp&amp;gt;p

= Sp0V = 0, if 0V = 0, or that 0p 4- -
;

and similarly, p
-J-

0- 0, &c.

(12.) Instead of eliminating # : x between the two equations VII., we might

have eliminated c
;
which would have given this other quadratic,

XXXII. . . = a;2Sa j3 + .r.T(Sa /3 -Sa/3)-aj 2Sa
/
3 ;

also, if x \ : x\ and ar2 : xz be the two values of x : x, then

XXXIII. . . pi || *i/3 + x\F, p2 II
*2/3 + * 2/3 ,

and XXXIV. . . X&* : (x&\ + f# $ : x\x % = - Sa/3 : (So/3
- Sa /3 ) : Sa /3 ;

hence the condition of rectangularity of the wo lines pi, p2, or ^r O, 02~ 0, is ex

pressed by the equation,

XXXV. . . = -
/3

2
Sa/3 + S/3/3 (Soj3

- Sa /?) + /3 *Sa /3
= S . /3/3T(/3a + /3V) ;

and consequently it is satisfied, if the given function be self-conjugate (VI.), be

cause we have then the relation,

XXXVI. . . V/3a -f V/3 a =
;

in fact the binomial form of gives (comp. 349, XXII.),

XXXVII. . . p
-
0p = (aS/3p

-
/3Sap)+ (a S/3 p -/3 Sa p)

= V.pV(/3a + /3V),

which cannot vanish independently of p, unless the constants satisfy the condition

XXXVI.

(13.) With this condition then, of self- conjugation of
&amp;lt;f&amp;gt;,

we have the relation of

rectangularity,
XXXVIII. . . Spip3

=
0, or 0fiO -L

Z-&amp;gt;0
;

at least if these directions pi and p2 be real, which they can easily be proved to be,

as follows. The condition XXXVI. gives,

XXXIX. . . = S . aa V(/3a + /3V) = a*Sa p + Saa (Sa /3
-

Sa/3)
- a ?

Sa/3 ;

hence (a
2
Sa/3

- a^Sa^)8 = (Saa )
2
(Sa/3

- Sa /3 )
2

,

a2a 2
(m &quot;2 4m )

= aV2{ (Sa/3
- Sa jS )

2 + 4Sa
j
8 Sa /3}

= (a
2a 2 - (Saa )

2
) (a/3

- Sa /3 )
2 + (a Sa /3-f a aSajS )

2
&amp;gt; 0,

and XL. . . (Sa/3
- Sa /3 )

2 + 4Sa/3 Sa /3
= m&quot;2- 4m &amp;gt; ;

so that each of the two quadratics, I. (or VIIL), and XXXII., has real and unequal

roots : a conclusion which may also be otherwise derived, from the expressions

/3
= aa + 6a

, /3
= ba + a a

,
which the condition allows us to substitute for (3 and /3 .

(14.) The same condition XXXVI. shows that the four vectors a/3a /3 are corn-

planar, or that we have the relations,

XLI. . . Sa/3/3
=

0, Sa /3/3
=

0, V(Vaa .V/3 /3)
=

;

hence Vaa
,
or -1 is now normal to t\\Q plane U

; and therefore by (13.), when

the function is self-conjugate (VI.), the three directions,

3 N
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XLII. . . p, pi, po, or
0-&amp;gt;0, 01^0, 02

H
0,

compose a real and rectangular system.

(15.) In the present series of subarticles (to 353), we suppose that the three

roots of the cubic in are all unequal, the cases of equal roots (with m = 0) having

been discussed in a preceding series (352) ;
but it may be remarked in passing, that

when a self-conjugate function 0p is reducible to the monomialform /3Sp, we must

have the relation V/3a = ;
and that thus the line j3, to infixed direction of which

(comp. 352, (5.) and (6.)) the operation then reduces an arbitrary vector, is per

pendicular to the fixed plane (352, (7.) ), every line in which is destroyed by that

operation 0.

(16.) In general, if be thus self-conjugate, it is evident that the three planes

IT, II i, n
f

2, which are (comp. (10.) ) the loci of p, 0i p, 2p, coincide with the

planes n, Hi, 1T3 ,
which are the loci of 0p, 0ip, 02p.

(17.) When is not self-conjugate, so that 0p and p are not generally equal,

it has been remarked that the scalar quadratic I., and therefore also the symbolical

cubic in 0, may have imaginary roots; and that, in this case, the vector equation IT.

of the second degree cannot be satisfied by any real direction of p, except that one

which satisfies the linear equation V., or causes 0p itself to vanish, while p remains

real and actual. As an example of such imaginary scalars, as roots of I., and of

what may be called imaginary directions, or imaginary vectors (comp. 214, (4.)),

which correspond to those scalars, and are themselves imaginary roots of II., we may
take the very simple expressions (comp. 349, XII.),

XLIII. . . 0p = Vyp, p = - Vyp ;

in which y denotes some real and given vector, and Avhich evidently do not satisfv

the condition VI., the function being here the negative of its own conjugate, so that

its self- conjugate part 0o is zero (comp. 349, XIII.). We have thus,

XLIV. . .m =0, m =
0, 7&quot; =0, 0o = 0, ^ =

0, %o = 0&amp;gt;

and consequently, by the sub-articles to 349 and 350,

XLV. ..m = 0, m = -y 2
, m&quot;=0, i//p

= -ySyp, x/o
= -Vyp;

the quadratic I., and its roots cj, c2 ,
become therefore,

XLVI. . .C 2 -y 2 = 0, Ci = + v/Tl.Ty, C
2p
= -^~\ . Ty,

where ^/ 1 is the imaginary of algebra (comp. 214, (3.)) ;
thus by XX. or XXI.,

and XXII.) we have now

XLVII. . . $10 = - ySya - c^Vya + cfo = (y
-
ci)Vy er, i//2 &amp;lt;r

= (y
- c2)Vy(T ;

hence

Sy^i(T = 0, Vy4/i&amp;lt;r= yt//i&amp;lt;7, &c.,

and

XLVIII. . .
0iiJ/i&amp;lt;r

= (0 + CI&amp;gt;//ICT
=

(y + ci) (y
-

Ci)Vycr
=

(y
2 -

Ci
2
)Vytr = 0,

and in like manner XLVIII . . . 2^2a = ;

if then we take an arbitrary vector
&amp;lt;r,

and derive (or rather conceive as derived) from

it two (imaginary&quot;) vectors pi and p 2 by the (imaginary) operations i//i
and

^/2 ,
we

shall have (comp. III. and IV.) the equations,

XLIX. .. pi = i//i(T, 0ipi = 0, 0pi = -cjpi, Vpi0p1==0,
and L. . . p2 = ^zcr, 2pz = 0, 0p2 = - c2

pz&amp;gt; Vp20p2 = 0,
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as ones which are at least symbolically true. We find then that the two imaginary

directions, pi and p%, satisfy (at least in a symbolical sense, or as far as calculation

is concerned) the vector equation II., or that pi and pz are two imaginary vector roots

of Vp^p = ;
but that, because the scalar quadratic I. has here imaginary roots,

this vector equation II. has (as above stated) no real vector root p, except one in the

direction of the given and real vector y, which satisfies the linear equation V., or

gives 0p = 0.

(18.) This particular example might have been more simply treated, by a less

general method, as follows. We wish to satisfy the equation,

LI. . .
= V.pVyp = pSyp-p2y;

which gives, when we operate on it by V. y and V.p, these others,

LII. . . 0=Vyp.Syp, = p3Vyp;

if then we wish to avoid supposing &amp;lt;pp

= Vyp = 0, we must seek to satisfy the two

scalar equations,
LIII. . . Syp = 0, p2=0;

and conversely, if we can satisfy these by any (real or imaginary) p, we shall have

satisfied (really or symbolically) the vector equation LI. Now the first equation

LIII. is satisfied, when we assume the expression,

LIV. . . p = (c + y)Vy&amp;lt;r
= Vy(T . (c

-
y),

where a is an arbitrary vector, and c is any scalar, or symbol subject to the laws of

scalars; and this expression LIV. for p, with its transformation just assigned, gives

LV. . . p2=(c2_y2)(Vytr)2 = 0, if c2 - y2
=

;

the quadratic XLVI. is therefore reproduced, and we have the same imaginary roots,

and imaginary directions, as before.

(19.) Geometrically, the imaginary character of the recent problem, of satisfying

the equation V. pVyp = by any direction of p except that of the given line y, is

apparent from the circumstance that 0p, or Vyp, is here a vectorperpendicular to p,

if both be actual lines; and that therefore the one cannot be also parallel to the

other, so long as both are real.*

354. In the three preceding Articles, and in the sub-arti

cles annexed, we have supposed throughout that the absolute

term of the cubic in
(p

is wanting, or that the condition m =

is satisfied ;
in which case we have seen (351) that it is always

possible to satisfy the linear equation typ
= 0, by at least one

real and actual value of p (with an arbitrary scalar coefficient) ;

or by at least one real direction. It will be easy now to show,

*
Accordingly the two imaginary directions, above found for p, are easily seen to

be those which in modern geometry are called the directions of lines drawn in a given

plane (perpendicular here to the given line y), to the circular points at infinity : of

Avhich supposed directions the imaginary character may be said to be precisely this,

that each is (in the given plane) its own perpendicular.
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that although conversely (comp. 351, (4.)) the function
&amp;lt;j&amp;gt;p

cannot vanish for any actual vector p, unless we have thus

m = 0, yet there is always at least one real direction for which

the vector equation ofthe second degree,

which has already been considered (353) in combination with

the condition m = 0, is satisfied ; and that if the function be

a self-conjugate one, then this equation I. is always satisfied

by at least three real and rectangular directions, but not gene

rally by more directions than three ; although, in this case of

self-conjugation, namely when

II. . .
&amp;lt;j&amp;gt; p =

$p, or II . . .

S\(f&amp;gt;p

=
S/00A,

for all values of the vectors p and X, the equation I. may hap

pen to become true, for one real direction of p, and for every

direction perpendicular thereto : or even for all possible direc

tions, according to the particular system of constants, which

enter into the composition of the function $p. We shall show

also that the scalar (or algebraic) and cubic equation,

III. . .
= m + m c + m&quot;c

2 + c3
,

which is formed from the symbolic and cubic equation 350, L,

by changing to -
c, enters importantly into this whole

theory ; and that if it have one real and two imaginary roots,

the quadratic and vector equation I. is satisfied by only one

real direction of p ; but that it may then be said (comp. 353,

(17.)) to be satisfied also by two imaginary directions, or to

have two imaginary and vector roots : so that this equation
I. may be said to represent generally a system ofthree right

lines, whereof one at least must be real. For the case II., the

scalar roots of III. will be proved to be always real; so that

if m ,
m Q , and m&quot;Q be formed (as in sub-articles to 349 and 350)

from the self-conjugate part &amp;lt;p p of any linear and vectorfunc
tion $p, as m, m, and m&quot; are formed from that function

&amp;lt;j&amp;gt;p

it

self, then the new cubic,

IV. . . = m + ni c f m&quot; c- + c3
,

which thus results, can never have imaginary roots.
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(1.) If we write,

V. . .
&amp;lt;p

=
&amp;lt;pp

f cp, 3&amp;gt; p = p + cp, or briefly, V. . . &amp;lt;E&amp;gt;

= + c, &amp;lt;t&amp;gt;

= + c,

where c is an arbitrary scalar, and if we denote by Vr, ,
and M what

;//, ^/ ,
and

m become, by this change of to + c or
&amp;lt;J,

the calculations in 353, (5.), (6.),
show that we have the expressions,

VI. . . * =
i//
+ cx + c2

,
^ =

i// +cx +c2
,

and VII. . . M=m + me + m&quot;c
2 + c 3

,

with VIII. . . M= $ =
3&amp;gt;
= $ = ^ fc .

(2.) Hence it may be inferred that the functions Xi x i
and tne constants m

,

m&quot; become,

IX. . . X=Dc = x + 2c, X =D c
. = x + 2c,

fM = DcAf= m + 2m&quot;c + 3c2
,

\M&quot;=|Dc2A? = m&quot;+3c;

with the verifications,

XL . . J&amp;gt; + X = * + X =

as we had, by the sub-articles to 350,

+ X = + X = w
&quot;&amp;gt;

(3.) The new linear symbol $ must satisfy the new cubic,

XII. . . = M- M &amp;lt;& + M&quot;*2 _ $3 .

which accordingly can be at once derived from the old cubic 350, I., under the form,

XIII. . . = m 4 nt (c
-
*) + w&quot;(c

-
*)2 + (c

-
*)3.

(4.) Now it is always possible to satisfy the condition,

XIV. . . M=0,

by substituting for c a real root of the scalar cubic III.
;
and thereby to reduce the

we&amp;gt; symbolical cubic XII. to the/orm,

XV. . . 0=* 3
-M&quot;$2 + M 4;

which is precisely similar to the form,

= 3
-m&amp;gt;Hwt&amp;gt;, 352,11.,

and conducts to analogous consequences, which need not here be developed in detail,

since they can easily be supplied by any one who will take the trouble to read again

the few recent series of sub-articles.

(5.) For example, unless it happen that ^fp constantly vanishes, in which case

M =
0, and *p (if not identically nulV) takes a monomial form, which is reduced to

zero (comp. 352, (7.) ) for every direction of p in a given plane, the operation ^
reduces (comp. 351) an arbitrary vector to a given direction; and the operation &amp;lt;!&amp;gt;

destroys every line in that direction : so that, in every case, there is at least one real

way of satisfying the vector equation $p 0, and therefore also (as above asserted)

the equation I., without causing p itself to vanish.

(6.) And since that equation I. may be thus written,

XVI. . . Vp*p = 0, or *p || p,

we see that it can be satisfied without
&amp;lt;fp vanishing, if this new scalar and quadratic

equation,
XVII. , . = O + M&quot;C+ M , comp. 353, I.,
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have real and unequal roots Ci, C2 ;
for if we then write,

XVIII. .. fci = * + 0i, J2=&amp;lt;I&amp;gt;+C2 ,

the line
4&amp;gt;p

will generally have for its locus a given plane, and there will be two real

and distinct directions pi and p% in that plane, for one of which
&amp;lt;I&amp;gt;ipi

= 0. while

&amp;lt;J&amp;gt;op
2 = for the other, so that each satisfies XVI., or I.

;
and these are precisely the

fixed directions of ip and
&quot;sp,

if 1 and 3 be formed from by changing * to

$1 and $2 respectively.

(7.) Cases of equal and of imaginary roots need not be dwelt on here
;
but it may

be remarked in passing, that if the function 0p have the particular form (^ being

any scalar constant),

XIX. . . 0p = gp, then XX. . . (g
-
0)

3 =
0, and XXI. . . M= (g + c)

3
;

the cubic XIV. or III. having thus all its roots equal, and Che equation I. being sa

tisfied by every direction of p, in this particular case.

(8.) The general existence of a real and rectangular system of three directions

satisfying I., when the condition II. is satisfied, may be proved as in 353, (14.);

and it is unnecessary to dwell on the case where, by two roots of the cubic becoming

equal, all lines in a given plane, and also- the normal to that plane, are vector roots

of I., with the same condition II.

(9.) And because the quadratic, = c3 + m&quot;c + m (353, I.), has been proved to

have always real roots (353, (13.)) when p = 0p, the analogous quadratic XVII.

must likewise then have real roots, Ci, Ca ;
whence it immediately follows (comp.

XII. and XIII.), that (under the same condition of self-conjugation) the cubic III.

has three real roots, c, c + Ci, c + C2 ;
and therefore that (as above stated) the other

cubic IV., which is formed from the self-conjugate part of the general linear and

vector function 0, and which may on that account be thus denoted,

XXII. . . MQ-= 0, has its roots always real.

(10.) If we denote in like manner by $ the symbol 0o +
c&amp;gt;

the equation

m = m -
Sy^oy (349, XXVI., comp. 349, XXI.) becomes,

XXIII. . . M= Mo - Sy* y ;

whence, by comparing powers of c, we recover the relations,

m = m o-y 2
,

and m&quot; = m&quot;
,
as in 350, (1.).

(11.) On a similar plan, the equation mtp Vfjiv
= V.^^v becomes,

XXIV. . . M4&amp;gt; V/ij;=V./i*-r, comp. 348, (1.),

in which
/*
and v are arbitrary vectors, and c is an arbitrary scalar ; or more fully,

XXV. . . (m + me + m&quot;c
2 + c3) (0

P

+ c)V/zv = V.

whence follow these new equations,

XXVI. .

XXVII. . . (m
XXVIII.

which can all be otherwise proved, and from the last of which (by changing to ^,

&c.) we can infer this other of the same kind,

XXIX. . . (m + V)Vpv = VOipx* -
i/0 x/1 ).

(12.) As an example of the existence of a ?
-ea/ and rectangular system of Mrec

directions (8.), represented jointly by an equation of the form I,, and of a system of
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three real roots of the scalar cubic III., when the condition II. is satisfied, let us

take the form,
XXX. . . 0p =gp + VXpfj,

=
p,

g being here any real and given scalar, and X, /t any real and non-parallel given

vectors ; to whichybrwz, indeed, we shall soon find that every self-conjugate function

p can be brought. We have now (after some reductions),

XXXI. . . ^p=VXp/uSX/i
XXXII. . . X p = -

and XXXIII. . . m = (g
-

SX/i) (g
2 - X^2

),
m = - \*p

2 -
2gS\n + Bg*,

m&quot; = -
SX/i + 3#;

where the part of typ which is independent ofg may be put under several other forins,

such as the following,

XXXIV. . . V(Xp/iSXAi-XAtSXp ju) = Xp/iSX j
it-X

/iSX^
= X(pSX/u + SX/*p)/u,

=
|X(Xjup + pX/i)jii

= X(XSjup + /nSXjO
-

Xp/*)/i, &c.
;

and
&amp;lt;J&amp;gt;,

^r, X, M, M ,
M&quot; may be formed from 0, i//, ^, m, m

, m&quot;, by simply

changing # to c+g. The equation Jf= has therefore here three real and unequal

roots, namely the three following,

XXXV. . . c = -g + SXfi, c+Ci = -g + TXp, c+ C2 = -$ -TX/i;

and the corresponding forms of
&quot;^p

are found to be,

XXXVI. . . p
= VX^SX/ip, 1P

= -
(XT/i + /*TXJ S . p(XT/i + /*TX),

Thus ^p, ^ip, and
&quot;*&quot;2P

have in fact the three fixed and rectangular directions of

VXjit, XT/x + juTX, and XT/i
-

jtTX, namely of the normal to the given plane of X,

/u ;
and the bisectors of the angles made by those two given lines

;
and these are ac

cordingly the only directions which satisfy the vector equation of the second degree,

XXXVII. . . (Vp0p=V.pVXp/t=)VpXS)up + Vp/iSXp = 0;

so that this last equation represents (as was expected) a system of three right lines,

in these three respective directions.

(13.) In general, if cj, cz, c3 denote the three roots (real or imaginary) of the

cubic equation M = 0, and if we write,

XXXVIII. ..$! = + ci, $2=0 + c2 , $3 = 0ic3 ,

the corresponding values of &quot;*&quot; will be (comp. VI.),

XXXIX. .. ^1 =

also we have the relations,

c\ 4- C2 + e3 = m&quot;
&amp;lt;j&amp;gt;

dC2c3 = m = 0i// ;

whence it is easy to infer the expressions,

which enable us to express the functions 3&amp;gt;ip, $2pj ^&amp;gt;sP
as binomials (comp. 351,

&c.), when ^ip, * 2p, ^sp have been expressed as monomes, and to assign the

planes (real or imaginary), which are the loci of the lines *ip, &amp;lt;J 2p, *3p.
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(14.) Accordingly, the three operations, &amp;lt;, *i, *2, by which lines in the three

lately determined directions (12.) are destroyed, or reduced to zero, and which at

first present themselves under the forms,

XLII. . . *p = XS//p + /*SXp, *ip = VXp/t + pTX/i, $2 = VXp/*
-

pTX/i,

are found to admit of the transformations,

where M
, V\, ^2 have the recent forms XXXVI., and the Zoci of

&amp;lt;Jp, *ip, &amp;lt;f&amp;gt;2p com

pose a system of three rectangular planes.

(15.) In general, the relations (13.) give also (comp. 353, (8.)),

XLIV. . . 1
= $2*3, 2 = $3$i, 3 = $i&amp;lt;I&amp;gt;2,

and XLV. . . fc^i = $2^2 = #3*3 = $i$2$3 = 0,

whence also, XLVI. . . i^2 = 2*3 = 3*1 = 0,

the symbols (in anyone system of this sort) admitting of being transposed and grouped

at pleasure; if then the roots of M=Q be real and unequal, there arises a system

of three real and distinct planes, which are connected with the interpretation of the

symbolical equation, 3i&amp;lt;I&amp;gt;2$3
=

0, exactly as the three planes in 353, (9.) were con

nected with the analogous equation, 00102 = 0.

(16.) And when the cubic has two imaginary roots, it may then be said that there

is one real plane (such as the plane -J-
y in 353, (18.), (19.) ), containing the two

imaginary directions which then satisfy the equation I.
;
and two imaginary planes,

which respectively contain those two directions, and intersect each other in one real

line (such as the line y in the example cited), namely the one real vector root of

the same equation I.

355. Some additional light may be thrown upon that vector

equation of the second degree, by considering the system of the two

scalar equations,

I. . .
ti*p&amp;lt;j&amp;gt;p

= 0, and II. . . SA/S = 0,

and investigating the condition of the reality of the two* directions,

pi and p2 , by which they are generally satisfied, and for each of

which the plane of p and
&amp;lt;pp

contains generally the given line A in

I., or is normal to the plane locus II. of p. We shall find that these

two directions are always real and rectangular (except that they may
become indeterminate), when the linear function $ is its own conju

gate ; and that then, if A be a root p of the vector equation,

III. ..

*
Geometrically, the equation I. represents a cone of the second order, with X

for one side, and with the three lines p which satisfy III. for three other sides
;
and

II. represents a plane through the vertex, perpendicular to the side X. The two direc

tions sought are thus the two sides, in which this plane cuts the cone.
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which has been already otherwise discussed, the lines pi and pz are

also roots of that equation ;
the general existence (354) of a system of

three real and rectangular directions, which satisfy this equation III.

when $ p = 0/5, being thus proved anew : whence also will follow a

new proof of the reality of the scalar roots of the cubic M= 0, for this

case of self-conjugation of ; and therefore of the necessary reality of

the roots of that other cubic, M = 0, which is formed (354, IV. or

XXII.) from the self-conjugate part of the general linear and vec

tor function 0,
as M=0 was formed from

&amp;lt;t&amp;gt;.

(1.) Let X, p.,
v be a system of three rectangular vector units, following in all

respects the laws (182, 183), of the symbols i, j, k. Writing then,

IV. . . p = y\L + zv, and therefore, \p = yv z\a, &amp;lt;j&amp;gt;p yQp + zfyv,

the equation II. is satisfied, and I. becomes,

V. . . = ytSvQn + yz ($v&amp;lt;j&amp;gt;v

-
S/*0/*)

- z2S/*0 v ;

the roots of which quadratic will be real and unequal, if

VI. . . (Sv0v-S/^ju)
2 + 48/^8^ &amp;gt;0;

and the corresponding directions of p will be rectangular, if

VII. . . = S(yi/ + ziv) (yzfA + 23v) = - (yiyz + 21*2) ;

that is, if

VIII. . .

at least for this particular pair of vectors, fi
and v.

(2.) Introducing now the expression, 0p = 0op-!-Vyp (349, XII.), the condi

tions VI. and VIII. take the forms,

IX. . . (S j&amp;gt;0ov

- S/^o/0
2 + 4S G*0ov)

8
&amp;gt;
4 (Sy/*0

2
,

and X. . . Syjui/
=

;

which are both satisfied generally when y = 0, or
&amp;lt;f&amp;gt;

= =
&amp;lt;p

;
the only exception

being, that the quadratic V. may happen to become an identity, by all its coefficients

vanishing : but the opposite inequality (to VI. and IX.) can never hold good, that

is to say, the roofs of that quadratic can never be imaginary, when is thus self-

conjugate.

(3.) On the other hand, when y is actual, or p not generally =$p, the condi

tion X. of rectangularity can only accidentally be satisfied, namely by the given or

fixed line y happening to be in the assumed plane of
//,

v
;
and when the two direc

tions of p are thus not rectangular, or when the scalar Sy/jv does not vanish, we

have only to suppose that the square of this scalar becomes large enough, in order to

render (by IX.) those directions coincident, or imaginary.

(4.) When =
0, or y =0, we may take p,

and v for the two rectangular direc

tions of p, or may reduce the quadratic to the very simple form yz = ; but, for this

purpose, we must establish the relations,

XL . . Suv =
Sv&amp;lt;j&amp;gt;n

= 0.

(5.) And if, at the same time, X satisfies the equation III., so that
&amp;lt;p\ || X, we

shall have these other scalar equations,

3 o
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XII. . . - S/z0X = Sv&amp;lt;p\

whence $u ||
VvX

|| u, and

or, XIII. . . = VX0X

X, j, v thus forming (as above stated) a system, of Mree real and rectangular roots

of that vector equation III.

(6.) But in general, if III. be satisfied by even two real and distinct directions

of p, the scalar and cubic equation M= can have no imaginary root; for if those

two directions give two unequal but real and scalar values, ci and c2 ,
for the quo

tient 0p : p, then ci and c2 are two real roots of the cubic, of which therefore

the third root is also real
;
and if, on the other hand, the two directions pi and p2

give one common real and scalar value, such as ci, for that quotient, then 0p = cip,

or
&amp;lt;$ip

= (0 + cj)p
=

0, for every line in the plane of pi, p2 ;
so that 0p must be of

the form, c\p + j8Spip 2p, and the cubic will have at least two equal roots, since it

will take the form,
XIV. . . =

(c
-

ci)z (c
- ci + Spip2/3),

as is easily shown from principles and formulae already established.

(7.) It is then proved anew, that the equation M=0 has all its roots real, if

p = 0p j
and therefore that the equation MQ = (as above stated) can never have

an imaginary root.

(8.) And we see, at the same time, how the scalar cubic M= might have been

deduced from the symbolical cubic 350, I.,
or from the equation 351, L, as the con

dition for the vector equation III. being satisfied by any actual p ; namely by ob

serving that if 0p = ep, then 2
p = c2p, ^p = ~ c 3p, &c., and therefore Mp = 0, in

which p, by supposition, is different from zero.

(9.) Finally, as regards the case* ofindetermination, above alluded to, when

the quadratic V. fails to assign any definite values to y : z, or any definite directions

in the given plane to p, this case is evidently distinguished by the condition,

XV. . . Sj0/ = SV0V,

in combination with the equations XL

356. The existence of the Symbolic and Cubic Equation (350),
which is satisfied by the linear and vector symbol 0, suggests a Theo

rem^ of Geometrical Deformation, which may be thus enunciated:

*
It will be found that this case corresponds to the circular sections of a surface

of the second order; while the less particular case in which p = &amp;lt;pp,
but not

Su&amp;lt;f&amp;gt;iJ,

=
Sv&amp;lt;j)V,

so that the two directions of p are determined, real, and rectangular,

corresponds to the axes of a non-circular section of such a surface.

f This theorem was stated, nearly in the same way, in page 568 of the Lectures;

and the problem of inversion of a linear and vector function was treated, in the few

preceding pages (559, &c.), though with somewhat less of completeness and perhaps

of simplicity than in the present Section, and with a slightly different notation. The

general form of such a function which was there adopted may now be thus ex

pressed :

0p = 2/3Sap + Vrp, r being a given quaternion ;

the resulting value of m was found to be (page 561),
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&quot;

If, by any given Mode, or Law, of Linear Derivation, of the

kind above denoted by the symbol 0, we pass from any assumed Vec

tor p to a Series of Successively Derived Vectors, ply /&amp;gt;2 , /&amp;gt;3 ,
. . . or ^p,

0V&amp;gt; 0V&amp;gt; &amp;gt;

and
tfi by constructing a Parallelepiped, we decompose any

Line of this Series, such as p2 ,
into three partial or component lines,

mp, -m p!, mrf
p^ in the Directions of the three which precede it, as here

of p, PI, p2 ;
then the Three Scalar Coefficients, m, - m

, m&quot;,
or the Three

Eatios which these three Components of the Fourth Line p3 bear to the

Three Preceding Lines of the Series, will depend only on the given Mode

or Law of Derivation, and will be entirely independent of the assumed

Length and Direction of the Initial Vector.&quot;

(1.) As an Example of such successive Derivation, let us take the law,

I. . . pi
=

(pp
= - V/3py, p3 = 2

p = - V/3piy, &c.,

which answers to the construction in 305, (1.), &e., when we suppose that /3 and y

are unit-lines. Treating them at first as any two given vectors, our general method

conducts to the equation,

II. . . p3 = mp - m pi + m&quot;p 2 ,

with the following values of the coefficients,

III. . . m = - 2
y
2
S/3y, i = -|3Vi m&quot;=S/3y;

as may be seen, without any new calculation, by merely changing a, X, and
/it,

in 354, XXXIII., to 0, /3,
and - y.

(2.) Supposing next, for comparison with 305, that

IV. . . /32=y*=-l, and S|3y=-/,

so that /3, y are unit lines, and I is the cosine of their inclination to each other, the

values III. become,
V. ..m = l, m = - 1, m&quot; = I;

and the equation II., connecting four successive lines of the series, takes the form,

VI. . , 3
=

Zp + pi-Jp2, or VII. . . p 3 -pi = -fO&amp;gt;2-p);

m = 2Sao a&quot;S/3&quot;/3 |3 + SS (rVao .V/3 /3) + Sr2Sa/?r
-
2SarS/3r + SrTr* ;

and the auxiliary function which we now denote by i// was,

mtfr a =
4/&amp;lt;r

= SVaa S|3 j3(r + SV. aV(Vj3(T.r) + (VarSr
-

VrS&amp;lt;rr) ;

where the sum of the two last terms of tya might have been written as arSr-

A student might find it an useful exercise, to prove the correctness of these expres

sions by the principles of the present Section. One way of doing so would be, to

treat 2/3Sp and r as respectively equal to 0op + Vyp and c + e; which would

transform m and
i//ff,

as above written, into the following,

M - S(y + (0o + (y +0&amp;gt;
and *or- (y + e) S(y + ) &amp;lt;r + V(T(0 + c) (y + 5

that is into the new values which the M and &quot;SPo- of the Section assume, when
&amp;lt;E&amp;gt;p

takes the new value, *p = (&amp;gt;o
+ c) p + V(y -I- e) p.
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a result which agrees with 305, (2.), since we there found that if p = OP, &c., the

interval PIPS was = I x PPg.

(3.) And as regards the inversion of a linear and vector function (347), or the

return from any one line pi of such a series to the line p which precedes it, our ge

neral method gives, for the example I., by 354, (12.),

VIII. ..M
and

a result which it is easy to verify and to interpret, on principles already explained.

357. We are now prepared to assign some new and gene
ral Forms, to which the Linear and Vector Function (with real

constants) of a variable vector can be brought, without assum

ing its self-conjugation; one of the simplest of which forms is

the following,

I. . .
(f&amp;gt;p

=
V&amp;lt;7op

+ VXpju, with I . . . q = g + y-9

qQ being here a real and constant quaternion, and X, ju
two real

and constant vectors, which can all be definitely assigned, when

the particular form of is given : except that X and p may be

interchanged (by 295, VII.) s and that either may be multiplied

by any scalar, if the other be divided by the same. It will

follow that the scalar, quadratic, and homogeneousfunction of
a vector, denoted by Sp&amp;lt;pp,

can always be thus expressed :

II. . . SpQp = gp* + SXpup ;

or thus,

II . . . S/o0p =g p
z + ZSXpSjup, if g =g -

SX^u ;

a general and (as above remarked) definite transformation,

which is found to be one of great utility in the theory of Sur

faces* of the Second Order.

(1.) Attending first to the case of self-conjugate functions 0op, from which we
can pass to the general case by merely adding the term Vyp, and supposing (in vir

tue of what precedes) that a\a-zaz are three real and rectangular vector-units, and

cicaca three real scalars (the roots of the cubic Mo = 0), such that

* In the theory of such surfaces, the two constant and real vectors, X and
/*,

have the directions of what are called the cyclic normals.
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we may write

IV. . . p = (ctiSaip+ a2Sa2p + a3Sa3p),

and therefore

V. . . 0op = ciaiSaip -\- c2a2Sa2p ~l&quot;
c3a 3Sa3p ;

so that

0ip = (c2 c?i)
a2Sa2p + (c3 C 3Sa3p,

VI. . . 2p = (&amp;lt;*3 c-z) a 3Sa3p + (ci
-

02) t

the binomialforms of 0i, 2 , fa being thus put in evidence.

(2.) We have thus the general but scalar expressions :

VII. . .
-

p
2 = (Saip)2 + (Sa2p)

2 + (Sa3p)
2

VIII. . . Sp0p = Sp$&op
=

= -
&amp;lt;?!p2

+ (c2
-

ci) (Sa2p)2 + (c3
-

ci) (Sa 3p)
2

= - c2p
2 -

(c2
-

ci) (Saip)
2

-f (c3
-

cz) (Sa3p)
2

= - c3p
? -

(c3
-

ci) (Saip)
2 -

(c3
- c2) (Sa 2p)

2
:

in which it is in general permitted to assume that

IX. . . ci&amp;lt;c2 &amp;lt;c3 ,
or that X. . . c2 -ci = 2e2

,
c3-c2= 2e 2

,

e and e being real scalars, and the numerical coefficients being introduced for a mo

tive of convenience which will presently appear.

(3.) Comparing the last but one of the expressions VIII. with II
.,
we see that

we may bring Sp0p to the proposed form II., by assuming,

XI. . . X = eai -f e a 3 , /-t
= ea\ 4- e a3, g = SX/z c2 = 5 (ci + c3),

because SXju
= e2 e 2 = c2

~
(c\ + c3).

(4.) But in general (comp. 349, (4.)) we cannot have, for all values of p,

XII. . . Sp0p = Sp0 p, unless XIII. . . 0op=0 op?

that is, unless the self-conjugate parts of and be equal ; we can therefore infer

from II. that p = ffp + VXp/j, because VXp/i = V/zpX = its own conjugate; and

thus the transformation I. is proved to be possible, and real.

(5.) Accordingly, with the values XI. of X, p, g, the expression,

XIV. . . p = op + VXp/i = p(g- SXfjt) + XS/zp + /iSXp,

becomes,

XV. . . 0op = ~ c2p + (e a3 -f eai) S (e a3 ea\) p + (e a3 eai) S (e a3 + eai) p
= C2P 2e2aiSaip + 2e 2asSa3p ;

which agrees, by X., with VI.

(6.) Conversely if
&amp;lt;/, X, and

p, be constants such that 0op &amp;lt;7P
+ VXp/i, then

VX^ = &amp;lt;; VX/z, where g =g -
SXj, as before

;
hence - g must be one of the three

roots ci, c2 ,
c3 of the cubic MO = 0, and the normal to the plane of X, /*

must have

one of the three directions of ai, 2j 3 ;
if then we assume, on trial, that this plane

is that of ai, a3 ,
and write accordingly,

XVI. . . X = aai + a a3 , /z
= 6ai + 6 a3 , ^ 2p = XS/ip + /iSXp,

we are, by VI., to seek for scalars aa bb which shall satisfy the three conditions,

XVII. . . 2a6 = ci
- c2,

2a 6 = c3
- c2 ,

aV + ba -
;

but these give
XVIII. . . C2ai )2
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so that if the transformation is to be a real one, we must suppose that c2
-

ci and

C3 _ c2 are either both positive, as in IX., or else both negative ; or in other words?

we must so arrange the three real roots of the cubic, that c2 may be (algebraically)

intermediate in value between the other two. Adopting then the order IX., with

the values X., we satisfy the conditions XVII. by supposing that

XIX. . . a = b = e, a = -b = e]

and are thus led back from XVI. to the expressions XI., as the only real ones for X,

H, and g which render possible the transformations I. and II.
; except that X and

ju

may be interchanged, &c.
,
as before.

(7.) We see, however, that in an imaginary sense there exist two other solutions

of the problem, to transform 0p and Sp0p as above
;

for if we retain the order IX., and

equate a in II . to either - ci or -
03, we may in each case conceive the corresponding

sum of two squares in VIII. as being the product of two imaginary but linear fac

tors ; the planes of the two imaginary pairs of vectors which result being real, and

perpendiciilar respectively to a\ and 3.

(8.) And if the real expression XIV. for p be given, and it be required to pass

from it to the expression V., with the order of inequality IX., the investigation in

354, (12.) enables us at once to establish the formulae :

XX. . . ci = -$r-TX/z, c2 = -#-fSX/i, c3 = -$r+TXju;
XXL . . ai = U(XT&amp;gt;

-
/iTX), 2 = UVX/i, a3 = U(XT&amp;gt; + /*TX) ;

in which however it is permitted to change the sign of any one of the three vector

units. Accordingly the expressions XI. give,

TXfi + SXfj,
= 2e2 = c2

-
ci, TXju,

-
SXp.

= 2e 2 = c3
- c2 ,

TX =
1&amp;gt;, .X-/i = 2eai, VX/i = - 2ee a 3ai = + 2ee a2 ,

(9.) We have also the two identical transformations,

XXII. . . SXpjup = p2TXjt + { (SXjup)2 + (SXp1&amp;gt; + SyupTX)
2
} (TX^ - S\/i)-i,

XXIII. . . SXp/ip
= -

p2TX/*
-

{(SX/zp)
? + (SXp1&amp;gt;

- S^pTX)2} (TX/* + SX/*)-i,

which hold good for any three vectors, X, /*, p, and may (among other ways) be de

duced, through the expressions XX. and XXL, from II. and VIII.

(10.) Finally, as regards the expressions VI. for (pip, &c., if we denote the cor

responding forms of
i//p by ^ip, &c., we have (comp. 354, (15.) ) these other ex

pressions, which are as usual (comp. 351, &c.) of monomialform :

p2p
=

030ip = (&amp;lt;?
3
- c2) (c2

-
ci) a2Sa2p ;

p = 0i02p = (ci
- c3) (c3

- c2) cf3Sa3p ;

and which verify the relations 354, XLL, and several other parts of the whole fore

going theory.

358. The general linear and vector function $p of a vector has been

seen (347, (1.) ) to contain, at least implicitly, nine scalar constants ;

and accordingly the expression 357, 1. involves that number, namely

four in the term Vq p, on account of the constant quaternion q ,
and

five in the other term
VX/&amp;gt;/i,

each of the two unit-vectors, UX and
U&amp;gt;,

counting as two scalars, and the tensor TX/t as one more. But a self-
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conjugate linear and vector function, or the self-conjugate part /&amp;gt;

of

the general function
^&amp;gt;/a,

involves only six scalar constants; either be

cause three disappear with the term
Vfy/&amp;gt;

of
&amp;lt;pp

;
or because the con

dition of self-conjugation, 2V/3a = 27 = (comp. 349, XXII. and 35 3,

XXXVI.), which arises when we take for
&amp;lt;p/&amp;gt;

the form 2/3Sa/&amp;gt; (347,

XXXI.), is equivalent to a system of three scalar equations, connect

ing the nine constants. And for the same reason the general quadra

tic but scalar function, SpQp, involves in like manner only six scalar

constants. Accordingly there enter only six such constants into the

expressions 357, II., II ., V., VIII., XIV.; Cj, C2 , C3 ,
for instance,

being three such, and the rectangular unit system a 1?
a2, 3 answer

ing to three others. The following other general transformations of

Sp&amp;lt;l&amp;gt;p
and

/3, although not quite so simple as 357, II. and XIV., in

volve the same number (six) of scalar constants, and deserve to be

briefly considered: namely the forms,

II. . . V = - aaVa

in which a, I are two real scalars, and a, /3 are two real unit-vec

tors. We shall merely set down the leading formulae, leaving the

reader to supply the analysis, which at this stage he cannot find

difficult.

(1.) In accomplishing the reduction of the expressions,

Sptf&amp;gt;p
= ci(Saip)2+c2 (Sa2p)2+c3 (Sa3 p)

2
, 357, VIII.

and p = ciaiSaip -f c2a 2Sa-2p 4- c3a3Sa3p, 357, V.,

to these new forms I. and II., it is found that, if the result is to be a real one, a

must be that root of the scalar cubic Af =
0, the reciprocal of which is algebraically

intermediate, between the reciprocals of the other two. It is therefore convenient

here to assume this new condition, respecting the order of the inequalities,

III. . . cr 1
&amp;gt; c2~i &amp;gt; c3

-
J

;

which will indeed coincide with the arrangement 357, IX., if the three roots ci, 02,

03, be all positive, but will be incompatible with it in every other case.

(2.) This being laid down (or even, if we choose, the opposite order being taken),

the (real) values of a, b, a, /3 may be thus expressed :

IV. . . a = c2 ,
b = ci c2 + c3 ;

V. . . a xa\ -f zas, (3
= x a\

in which

ca-
VI. .

VII. ..
C

J^=~ = l(xx -f 2* )
= -

6Sa/3 = (say) V ;
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VIII. . . 6 2 = CiC^Cyb = d2*2 + C32z2 ;
IX. . . X* + #

2 = X &amp;gt;Z + y
2 = 1 ;

. . .xz=c2xz;

XI. . . cia* + &amp;lt;-3z
2 = nco-icg = Zri& 2 = 6 (Sa/3)

2
, Cic3 = - ab (Sa/3)

2
;

XII. ,.b (3
= - &/3Sa/3

(3.) And there result the transformations :

XIII. . . 2p =(&amp;lt;?!

- c2)aiSaip -f (c3
- c2)a3Sa3p

= -c2(ca 1 +za3) S^ai + zaiOp-f-^-^ciai + zcsas) S(#ciai + zc3a3)p;

XIV. . . p = ciaiSaip + c2a2Sa2p + c3a3S 3p

C2= c%(xa l +2 3) V(ccai + za3)p H-- (aciai + zc3a3)

XV. . .

which last, t/cic3 be positive, gives this ofAer real form,

XVI.

a;2 and z2 being determined by the expressions VI.

(4.) Those expressions allow us to change the sign of z : x, and thereby to deter

mine a secondpair of real unit lines, a and /3 ,
which may be substituted for a and ^3

in the forms I. and II.
;
the order of inequalities III. (or the opposite order), and the

values IV. of a and 6, remaining unchanged. We have therefore the double trans

formations :

XVII. . . Sp^p = - c2(Vap)
2 + (ci

- c2 -f c3) (S/3p)
2 = - c2 (Va p)2

+ (ci
- c2 + c3) (S/3 p)2 ;

XVIII. . . 0op
= c2aVap + (ci

- c2 + c3)/3S|3p
= c2a Va p -f- (GI

- c2 -f- c3) |3 Sj3 p.

(5.) If either of the two connected /on/is I. and II. had been given, we might

have proposed to deduce from it the values of Cic2c3,
and of aia2a3 , by the general

method of this Section. &quot;VYe should thus have had the cubic,

XIX. . . = Jf =

and because the quadratic (c+ a)~
1 Af = may be thus written,

XX. . . (c-i+a-i)2 (Sa|3)2-(c-i+ a-i) (a-iS. (a/3)2 + 6 ) + a-2
(Va/3)

2 =
0,

it gives two real values of c 1 + a- 1
,
one positive and the other negative ;

if then we

arrange the reciprocals of the three roots of MQ= in the order III., we have the

expressions,

= |(6
-

a)
-
|a6 V

the signs of the radical being determined by the condition that (ci c3) : ab (Sa/3)
2

= cr 1 - c3
&quot;

!
&amp;gt; 0. Accordingly these expressions for the roots agree evidently with

the former results, IV. and XI., because S . (a/3)
2 = 2 (S/3)

2 - 1.

(6.) The roots ci, c2 ,
c3 being thus known, the same general method gives for

the directions of ai, a2,
a3 the versors of the following expressions (or of their nega

tives) :
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p^aca-^caa + &/3Sa/3) S (c3a + 6j3Sa/3) p ;

XXII...

i/3p
= acjfi (cia + &/3Sa/3) S (cLa + &/3Sa/3) p

of which the monomialforms may again be noted, and which give,

XXII . . . ai = + U(c3a + fc/SSa^), a2 = UVa/3, a3 = U(cia + 6/3Sa/3).

(7.) Accordingly the expresssions in (2.), give (if we suppose a3ai = + a 2),

XXIII. . . c3a + /3Sa/3
=

(c3
-

ci)a?oi, Va/3 = (x z - xz
}
a2 , cja + 6/3Sa/3

and as an additional verification of the consistency of the various parts of this whole

theory, it may be observed (comp. 357, XXIV.), that

XXIV. . .
- ac3-i(c3a + &/3Sa/3)

2 =
(c2

-
ci) (ci

- c3), a(Va/3)
2

=
(c3

- c2) (c2
-

ci),
-
acri(cia + 6/3Sa/3)2

=
(ci

- c3) (c3
- c2).

(8.) As regards the second transformations, XVII. and XVIII., it is easy to

prove that we may write,

XXV. . . (c3
-

ci) a =
6/3a/3

-
act, (c3

-
ci)/3

= aa(3a
-

6/3,

XXVI. . .
-

(c3
-

ci)
2 =

(6j3a/3
-
aa)

2 = (aa/3a
-

6/3)
2

;

so that we have the following equation,

XXVII. . . (a(Vap)2+6(Sj3p)
2
) (o2 + 2a6S.(a/3)2+6

2
)

= a (V(6/3a/3
- aa + 6 (S(aa/3a

-
6/3)p),

which is true for any vector p, any two unit lines a, /3,
and any two scalars a, 6.

(9.) Accordingly it is evident from (4.), that i, a3 must be the bisectors of the

angles made by a, a
,
and also of those made by /3, (3 ;

and the expressions XXV.

may be thus written (because b - a = ci + c3),

XXVIII. . . (c3 -ci)a =
(c3 +ci)a+ 2&/3Sa/3, (ci

- c3)/3
=

(ci + c3)j3
-
2aaSa/3;

whence, by XXIII., we may write,

XXIX. . . a + a =2xai, a-a = 2za3 ;

so that ai bisects the internal angle, and a3 the external angle, of the lines a, a .

(10.) At the same time we have these other expressions,

XXX. . . (ci
- c3) (/3 + )3 )

= 2 (cij3
-
aaSa/3), (c3

-
ci) (/3

-
/8&quot;)

= 2 (c3]
3 - aaSa/3) .

which can easily be reduced to the simple forms,

XXXI. . . /3 + /3
= 2* oi, /3

-
j3
= 2z a3,

with the recent meanings of the coefficients x and z .

(11.) And although, for the sake of obtaining real transformations, we have

supposed (comp. III.) that

XXXII. . . (cri
- of (C2

M ~
a

1
) &amp;gt; 0,

because the assumed relation a = arai-fza3 between the three unit vectors aa\a^

whereof the two latter are rectangular, gives x2 + z* 1, as in IX., so that each of

the two expressions VI. involves the other, and their comparison gives the ratio,

XXXIII. . .^:22 = (cri-c2-i):(c2-i-r3

-
1

),

3 P
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yet we see that, without this inequality XXXII. existing, the foregoing transforma

tions hold good in an imaginary (or merely symbolical ) sense : so that we may say,

in general, that the functions Sp0p and 0op can be brought to theforms I. and II.

in six distinct ways, whereof two are real, and the four others are imaginary.

(12.) It may be added that the first equation XXII. admits of being replaced by
the following,

XXXIV. . . // 1p=-^r 1

(ci/3-aaSa/3)S(tfi J3-aaSa/3) /o,

with a corresponding form for i^p; and that thus, instead of XXII ., we are at

liberty to write the expressions,

XXXV. . . ai = U
(&amp;lt;?i|3

-
aaSa/3), a 3 = UVa/3, a3 = U (c3{3

-
aaSa/3),

for the rectangular unit system, deduced from I. or II.

359. If we call, as we naturally may, the expressions

I. . .
/&amp;gt;

= Cj^Sa,/) + CaaaSa-j/B + CgflgSag/), 357, V.,

and II. . . S/B0p = Ci(Sa1/B) + c2 (Sa2/3)
2 + c3 (Sa3/

&amp;gt;)

2
&amp;gt; 357, VIII.,

the Rectangular Transformations of the Functions
/&amp;gt;

and
S/a0/&amp;gt;,

then by another geometrical analogy, which will be seen when we
come to speak briefly of the theory of Surfaces of the Second Order,

we may call the expressions,

.
III. ..&amp;lt;j&amp;gt; p=gp + VX/v*, 357, XIV.,

and IV. . . Sp$p = gp
2 + SX/v*/&amp;gt;, 357, II.,

the Cyclic* Transformations of the same two functions; and may

say that the two other and more recent expressions,

V. . .
/3
= - aaVap + bpSfip, 358, II.,

and VI. . .
S/&amp;gt;0/&amp;gt;

=
a(V/&amp;gt;) H&(S/3/&amp;gt;)

2
, 358, I.,

are Focal\ Transformations of the same. We have already shown

(357) how to exchange rectangular forms with cyclic ones; and also

(358) how to pass from rectangular expressions to focal ones, and

reciprocally : but it may be worth while to consider briefly the mu
tual relations which exist, between cyclic and focal expressions, and

the modes of passing from either to the other.

(1.) To pass from IV. to VI., or from the cyclic to the/oca/ form, we may first

accomplish the rectangular transformation II., with the values 357, XX., and XXL,
of ci, ca, ca, and of ai, 0.2, 3, the order of inequality being assumed to be

*
Compare the Note to Art. 357.

f It will be found that the two real vectors a, a
,
of 358, are the two real focal

lines of the real or imaginary cone, which is asymptotic to the surface ofthe second

order, Sp0p = const.
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VII. . . c3 &amp;gt;c2 &amp;gt;ci,
as in 357, IX. ;

and then shall have (comp. 358, XV.) the following expressions :

VIII. . . 4Sp0p = { S . p (^(UX - U/0 + c3*(UX + U/i)) }
*

-
{V. p (cii(UX 4- U/0 + c3i(U\ - IT,*))}

2
;

VIII . ..4SP0p=-{S.p((-c 1&amp;gt;(U\~U/i) + (-c3&amp;gt;(U\ + U/i))}2

+ {V.p((- Cl)i (U\ + Up) + (- c3
&amp;gt; (U\ - U/0)}

f
;

IX. . . (c3 -c2

X. . . (c2
-

- (S.p(- c2JVXju + (- ci)* (XT&amp;gt;

-

in which it is to be remembered that (by 357, XX.),

XL . . Cl = -g-T\fi, c2 = -&amp;lt;7 + SXp, c3 = --TXju;
and of which all are symbolically true, or give (as in IV.) the real value gp* + SXp/*p

for Sp^p, if g, X, /i, p be real And in this symbolical sense, although they have

been written down as four, they only count as three distinct focal transformations,

of a given and real cyclicform ; because the expression VIII . is an immediate con

sequence of VIII.
;
and other formulae IX . and X . might in like manner be at once

derived from IX. and X.

(2.) But if we wish to confine ourselves to realfocal forms, there are thenybw
cases to be considered, in each of which some one of ihefour equations VIII. VIII .

IX. X. is to be adopted, to the exclusion of the other three. Thus,

if XII. . . c3 &amp;gt;
c3 &amp;gt; ci &amp;gt; 0, and therefore cr 1

&amp;gt; cfi &amp;gt; cf l
&amp;gt; 0,

theform VIII. is the only real one. If

XIII. . . c3 &amp;gt;
c3 &amp;gt; &amp;gt; ci, eg

1
&amp;gt; cs

1
&amp;gt; &amp;gt; cr1

,
then X. is the real form.

If XIV. . . c3 &amp;gt; &amp;gt; c2 &amp;gt; ci, cs&quot;

1
&amp;gt; &amp;gt; ci-i &amp;gt;

c3
-

,
the only real form is IX.

Finally if XV. . .
&amp;gt;

c3 &amp;gt; c2 &amp;gt; ci, &amp;gt; cr 1
&amp;gt; cf l

&amp;gt; eg
1
,

that is, if all the roots of the cubic MQ = be negative, then VIII . is the form to be

adopted, xinder the same condition of reality.

(3.) When all the roots c are positive, or in the case when VIII. is the realfo

cal form, the unit lines a, )3 in VI. may be thus expressed :

XVI. .

with b = ci ci + c3 as before (358, IV.).

(4.) In the same case VIII., the expressions for 4Sp0p may be written (comp.

358, XVI.) under either of these two other realforms :

XVII. . . 4Sptfp
= N { (c3 + cii) p .UX 4- (c3

i - c^) U/* . p } ;

XVII . . . 4

so that if we write, for abridgment,

XVIII. . .

we shall have, briefly,

XIX, .
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(5.) Or we may make

XX. . . i = (or! + 4fi) UX, K = i Ofi - c3-)U/i, whence jc
- i

2 = c^cf* ;

and shall then have the transformation,

which may be compared with the equation 281, XXIX. of the ellipsoid, and for the

reality of which form, or of its two vector constants, i, K, it is necessary that the

roots c of the cubic should all be positive as above.

(6.) It was lately shown (in 358, (8.), &c.), how to pass from a given and real

focal form to a second of the same kind, with its new real unit lines a
, f3

in the

same plane as the two old or given lines, a, (3 ;
but we have not yet shown how to

pass from a focal form to a cyclic one, although the converse passage has been re

cently discussed. Let us then now suppose that theform VI. is real and given, or

that the two scalar constants a, b, and the two unit vectors a, |8, have real and

given values
;
and let us seek to reduce this expression VI. to the earlier form IV.

(7.) We might, for this purpose, begin by assuming that

XXII. . . cr 1
&amp;gt; c2

-1
&amp;gt;C3-

1
, as in 358, III.

;

which would give the expressions 358, XXI. and XXII., for c\c-zcz and a\a^a^, and

so would supply the rectangular transformation, from which we could pass, as be

fore, to the cyclic one.

(8.) But to vary a little the analysis, let us now suppose that the given focal

form is some one of the four following (comp. (1.) ) :

XXIII. . . SpQp = (S/3 p)
2 -

(Vaop)* ;
XXIII . . . Sp^p = (Va p)

2 -
(S/3 p)

2
;

XXIV. . .
Sp&amp;lt;pp

=
(S/3 p)

2 + (Va p)
2

;
XXIV. . . Sptfp

= - (V p)
2 -

(S/3 p)
2

;

in each of which ao and /3o are conceived to be given and real vectors, but not gene

rally unit lines; and which are in fact the four cases included under the general

form, a(Vap)2
4- 6(S/3p)

2
, according as the scalars a and b are positive or negative.

It will be sufficient to consider the two cases, XXIII. and XXIV., from which the

two others will follow at once.

(9.) For the case XXIII. we easily derive the real cyclic transformation,

XXV. . . Sp^p = (S/3 p)
2 -

(Saop)
2 + ao2p

2

= S (j3o + o) P S (j3
- a ) p -f

2
p
2

= #p
2 + SXp^p = (g

-
SX/*)p

2 + 2SX/iS/ip,

where XXVI. . . X = j3 + ao, n = \ (A&amp;gt;

-
ao), 9 = | (o2 4- /3 ) ;

and the equations 357, (9.) enable us to pass thence to the two imaginary cyclic

forms.

(10.) For example, if the proposed function be (comp. XIX.),

XXVII. . . Sp0p =N(iop + PKO)
= (S(o+ &amp;lt;co)p)

2 -(V( to
-

*co)p)
2
,

we may write

ao = o KO, /?o
= to-ffo, X=2to, /i

=
ieo, g =

and the required transformation is (comp. 336, XL),

XXVIII. . . N(t p-f pK )
=

(io
2 +Ko2

)

(11.) To treat the case XXIV. by our general method, we may omit for simpli

city the subindices
n,
and write simply (comp. V. and VI.) the expressions,
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XXIX. . . 0p = - aVap + /3S/3p, and XXX. . . Sp^p = (Vap)2 + (S/3p)
2

;

in which however it is to be observed that a and
/3, though real vectors, are not now

unit lines (8.). Hence because - aVap = aSap - a2
p, we easily form the expres

sions :

XXXI. . .m = a2
(Sa/3)

2
,
m = a2

(a
2 -

/3
2
)
-

(Sa/3)
2

,
m&quot; = /3

2 -2a2;

$p = Va/3S/3ap
- a2(aVap + /3V/3p) + a 4

p

XXXII. . . = Vap/3Sa/3 + a (a
2 -

(B
2
) Sap,

and therefore XXXIII. . . Af=(c-a
2
) (c

2 + (/3
s
-a)c-(Sa/3)),

and XXXIV. . . p = Vap/3Sa/3 + (J&
- a) (cp

- aSap) - c(aSap -f /3S/3p) + c2p

= (a(a
2 -

/3
2 -

c) + /3Sa/3) Sap + (aSa/3
-

c/3) S/3p + (c
2 + (/3

2 - a2
) c - (Sa/3)

2
)p.

(12.) Introducing then a real and positive scalar constant, r, such that

XXXV. . . r4 = (a
2 -

/3
2
)
2 + 4 (Sa/3)

2 = (a
2 + /3

2
)
2 + 4 (Va/3)

2

= a- 2
(a

3 + /3a/3)
2 =

/3-
2
(/3

3 + a/3a)
2 =

Sec.,

in which (by 199, &c.),

S . (a/3)2
=

(Sa/3)2 + (Va/3)2 = 2 (Sa/3)*
- a2

/32
= 2 (Va/3)* + a2j3,

the roots of M= admit of being expressed as follows :

XXXVI. . . n = \ (a
2 -

/3
2 + r2), c2 = a*, c3 = 4 (a

2 -
j3

2 - r) ;

and when they are thus arranged, we have the inequalities,

XXXVII. . . ci &amp;gt; &amp;gt;
c3 &amp;gt; c2 , cr 1

&amp;gt; &amp;gt; c2
- 1

&amp;gt; cj,-i.

(13.) The corresponding forms of ^fp are the three monomial expressions,

XXXVIII i^lp
= C;fl(aC3 + ^Sa^ S ^a 3 + PSa& &amp;lt; &P = Va/3S/3ap,

which may be variously transformed and verified, and give the three following rect

angular vector units,

XXXIX. .. a 1
= U(ac3 + /3Sa/3), a2= UVa/3,

in connexion with which it is easy to prove that

XL. . .

the radicals being all real, by XXXVII.

(14.) We have thus, for the given focal form XXX., the rectangular transfor

mation,

XLI. . . Sp0p = (Vap) 2
-f (S/3p)

2

-czci-c&amp;lt;r (ci-ez)fa-&amp;lt;k)

or briefly,

XLII. . . Sp0p = (Vap)
4 + (S^p)

2 = ci (S . pU(ac3 + )8Saj3)p)
2

+ a 2
(S. pUVa/3)

2 + c3 (S .pU(a&amp;lt;?i + /3Sa/3))2 ;

in which the first term is positive, but the two others are negative, and
&amp;lt;?i,

c3 are

the roots of the quadratic,

XLIII. . . = c2 + (/3
2 - a2

) c
-

(Sa/3) .
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(15.) We have also the parallelisms,

XLIV. . . acs + /3Sa/3 || (3d
-

aSa/3, ad + /3Sa/3 || (3c3
-

aSa/3,

because ^3 = -(Sa/3)
2

;

and may therefore write,

XLV. . . Sp0p = (Vap)
2 + (S/3p)

2 = ci(8 . pU(/3ci
-

aSa/3))
2

+ a2
(S. pUVa/3)2 + c3 (S. pU(/3c3

-
aSa/3)) ;

while

XLVI. . . T (fid
-
aSa/3) = rci (d

-
&amp;lt;*),

T (/fo
-

aSa/3) = r (- &amp;lt;*)! (&amp;lt;&

- c2
&amp;gt;,

and r = (ci
-

&)*, with real radicals as before.

(16.) Multiplying then by r2 (TVa/3)3, or by (ci
-

2) (d-fc) (&amp;lt;&-&amp;lt;&),
we ob

tain this new equation,

XLVII. . . (d -
&amp;lt;*) {(TVa/3)

2
((Vap)

2 + (S/3p))
- a2

(Sa/3p)2}
=

(&amp;lt;*- a2) (dS/3p
-
Sa/3Sap)2

-
(d

- o) (c3S/3p
-
aSa/3)

2
;

which is only another way of expressing the same rectangular transformation as be

fore, but has the advantage of being freed from divisors.

(17.) Developing the second member of XLVII., and dividing by c\ c3,
we

obtain this new transformation :

XLVIII. . . (TVa/3)2 Sp0p = -
(Va/3) ((Vop) + (S/3p)2)

= a2
(Sa/3p)2

-
(Sa/3)

2
(Sap)

2 + 2a2Sa
J3SapS (3p + C(S&&amp;gt;)2 ;

in which we have written for abridgment,

XLIX. . . C=cic3
-

(18.) The expressions XXXVI. for ci, c3 give thus,

L. . . C=-a*-(Va/3)
2

;

and accordingly, when this value is substituted for C in XLVIII., that equation

becomes an identity, or holds good for all values of the three vectors, a, /3, p ;
as

may be proved* in various ways.

(19.) Admitting this result, we see that for the mere establishment of the equa

tion XLVII., it is not necessary that ci and c% should be roots of the particular qua
dratic XLIII. It is sufficient, for this purpose, that they should be roots of any qua

dratic,

LI. . . c2 + Ac + B =
0, with the relation LII. . . Aaz + B + a* + (Va/3)

2 = 0,

between its coefficients. But when we combine with this the condition ofrectangu-

larity, a3
-1-

ai, or

LIII. . . = S . (ci/3
-
aSa/3) (c3/3

-
aSa/3) = A (Sa/3&amp;gt; + B(3

2 + a9
(Sa/3)

2
,

we obtain thus a second relation, which gives definitely, for the two coefficients, the

values,
LIV. . . A =

)3
- a, B= -

(Sa/3)
2

;

and so conducts, in a new way, to the equation XLIII.

* Many such proofs, or verifications, as the one here alluded to, are purposely

left, at this stage, as exercises, to the student.
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(20.) In this manner, then, we might have been led to perceive the truth of the

rectangular transformation XLVII., with the quadratic equation XLIII. of which

c\ and 03 are roots, without having previously found the cubic XXXIII., of which

the quadratic is a /actor, and of which the other root is 03 = a 2
. But if we had not

employed the general method of the present Section, which conducted us to formers*

that cubic equation, there would have been nothing to suggest the particular form

XLVII., which could thus have only been by some sort of chance arrived at.

(21.) The values of aia2a3 give also (comp. 357, VIL),

LV. . .
-

p
2 = (S . pU(|3ci

-
aSa/3))2 + (S . pUVa/3)* + (S . pU(|8c3

-
aSa/3))

2
;

that is, by XL. and XLVL,

LVI. . . ciC3(ci-C3) (p2(Va/3)
2
-(Sa/3p)

2
)
=

03(03 -a2
) (ciS/3p

-
Sa/3Sap)2

-
ci (ci

- a2
) (c3S|3p

-
Sa/3Sap) ;

and accordingly the values XXXVI. of ci, c3 enable us to express each member of

this last equation under the common form, 0103(01 03) (S/3p /3Sap)
2

.

(22.) Comparing the recent inequalities ci&amp;gt;c3 &amp;gt;o2 (XXXVII.) with the ar

rangement 357, IX., we see, by 357, (6.), that for the real cyclic transformation

(6.) at present sought, the plane of X, fjt
is to be perpendicular to 03 (and not to a^

as in 357, (3.), &c.). We are therefore to eliminate (c3S/3p
-

Sa/3Sap)
2 between

the equations XLVII. and LVI., which gives (after a few reductions) the real trans

formation :

LVII. . . ((Sa/3)2- oi/32) ((Vap)
2 4 (S/3p)2)

-
(&amp;lt;?i

- a2
) (Sa/3)y

= S . p (&amp;lt;?i/3

-
aSa/3 + Ci*Va/3) S . p (ctf

-
aSa/3

-

which is of the kind required.

(23.) Accordingly it will be found that the following equation,

LVIII. . . ((Sa/3)2-c/32) (Vap)2+(c-a
2
) (c(S/3p)

2 -
p
2
S(a/3)

2
)

= (cS/3p
-

Sa/3Sap)2
-

c(Sa/3p)
2

,

is an identity, or that it holds good for all values of the scalar o, and of the vectors

a, ]3, p ; since, by addition of c(Va/3)
2
p
2 on both sides, it takes this obviously iden

tical form,

LIX. . . ((Sa/3)2
-

c/32) (Sap)
2 + c(c

- a2
) (S/3p)

2 =
(cS/3p

-
Sa/3Sap)2

so that if ci be either root of the quadratic XLIII., or if ci(ci
-

a2) = (Sa/3)
2 -

ci/3
2

,

the transformation LVII. is at least symbolically valid : but we must take, as above,

the positive root of that quadratic for ci, if we wish that transformation to be a real

one, as regards the constants which it employs. And if we had happened (comp.

(20.)) to perceive this identity LIX., and to see its transformation LVIII., we

might have been in that way led to form the quadratic XLIII., without having

previously formed the cubic XXXIII.

(24.) Already, then, we see how to obtain one of the two imaginary cyclic trans

formations of the given focalform XXX., namely by changing ci to 03 in LVII.
;

and the other imaginary transformation is had, on principles before explained, by

eliminating (Sa/3p)
2 between XLVII. and LVI.

;
a process which easily conducts to

the equation,
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LX. . .

where the second member is the sum of two squares (ci being &amp;gt; 0, but 03 &amp;lt; 0), as the

second expression LVII. would also become, if c\ were replaced by c3 . Accordingly,

each member of LX. is equal to (Sap)
2 + (S/3p)

2
,
if

&amp;lt;?i,

c3 be the roots of any quadra

tic LI., with only the one condition,

LXI. . . cic3= 5= -(Sa/3)
2

;

which however, when combined with the condition of rectangularity LIII., suffices

to give also A =
/3

2 a2
,
as in LIV., and so to lead us back to the quadratic XLIIL,

which had been deduced by the general method, as & factor of the cubic equation

XXXIII.

(25.) And since the values XXXVI. of ci, c3 reduce, as above, the second mem
ber of LX. to the simple form (Sap)

2 + (S/3p)
2

,
we may thus, or even without em

ploying the roots ci, c3 at all, deduce the following expression for the last imaginary

cyclic transformation :

LXI I. . . Sp0p = (Vap)
2 + (S/3p)2

= -
a2p2 + S (a + ^/^T/S) p . S (a

-v71^) p,

where */ 1 is the imaginary of algebra (comp. 214, (6.)) ;
while the real scalar

;* of XXXV. may at the same time receive the connected imaginaryform,

LXIII. . . r* = (a
2 -

/3
2
)
2 + 4 (Sa/3)

2 = (a +V/^W (a
- v/^lj3).

(26.) Finally, as regards the passage from the given form XXX., to a second

real focalform (comp. 358, (4.) ), or the transformation,

LXIV. . . (Vap)2 + (Sj3|o)2= (Va p)
2 + (S/3 p)

2
,

in which a and (3 are real vectors, distinct from + a and + j3, but in the same plane

with them, it may be sufficient (comp. 358, (8.) ), to write down the formulae :

LXV. . . r2a = -
(a

3 + /3a/3), r/3 = -
(j8 + a/3a),

with the same real value of r* as before
;
so that (by XXXV., &c.) we have the

relations,

LXVI. . . Ta = Ta, T/3 = T/3, Sa /3
= Sa/3 ;

TXVII /^(+ )
=

(
-2 - 2 + ]3

2
)-2/3Sa/3 = -2(ac3 + /3Sa/3)t|ai,

\r2(a - a )
= a (r

2 + a2 -
/3

2
) + 2,3Sa/3

- 2 (an + /3Sa/3) ||
a3 ;

rr2( j
3 + /3 )

=
/3(r

2 + a2
-/3

2)-2aSa/3=2( /
3c 1 -aSa

j3)||a 1 ,

lr2(/3-/3 )
=

/3(7-2-a2 + /32)-f 2aSa;3 = -2(/3c3 -aSa/3) ||
a3 .

(27.) We have then the identity,

LXIX. . . (V(a3 + /3a/3)p)
2 + (S(j3 + a

j8a)p)2
= (a4+2S.(a/3)H/3

4
) ((Vap)

2 + (S/3p)
2
) ;

with which may be combined this other of the same kind,

LXX. . .
- (V(a3

-
/3a/3)p)

2 + (S(/3
-

a/3a)p)
2

=
(a*

- 28. (a/3)
2 + 0*) (-(Vap)

2 + (S/3p)
2
),

which enables us to pass from the focal form XXIIL, to a second real focal form,

with its two new lines in the same plane as the two old ones : and it may be noted

that we can pass from LXIX. to LXX., by changing a to a\/- 1.
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360. Besides the rectangular, cyclic, and focal transformations

of
S/&amp;gt;0/&amp;gt;,

which have been already considered, there are others, al

though perhaps of less importance: but we shall here mention only
two of them, as specimens, whereof one may be called the Bifocal,

and the other the Mixed Transformation.

(1.) The two lines a, a
,
of 359, LXV., being called focal lines,* an expression

which shall introduce them both may be called on that account a bifocal transforma

tion.

(2.) Retaining then the value 359, XXXV. of r*, and introducing a new auxi

liary constant e
t which shall satisfy the equation,

I. . .
/3

2 - a 2 = T2e, and therefore II. . . 4 (Sa)3) = r4 (1
- e2),

so that III. . . 4e2
(So/3)= (1

- e2 ) (/3
2 - a2

)
2
,

the first equation 359, LXV. gives,

IV. . . r2 (ea - a )
=

2/3Sa/3, V. . . r2 (eSap
- Sa p) = 2Sa/3S/3p ;

and therefore, with the form 359, XXX. of Sp^p,

VI. . . (1
- e2 ) Sp0p = (1

- e2 ) ((Vap)* + (S/3p)
2
)

=
(1
- e2) (Vap)

2 + (eSap
- Sa p)

2

= (e
2 -

i; aV + (Sap)
2 ~

2eSapSa p + (Sa p)
2

;

in which p2 = a 2
, by 359, LXVL, so that a and a may be considered to enter sym

metrically into this last transformation, which is of the bifocal kind above men

tioned.

(3.) For the same reason, the expression last found for Sp^p involves again

(comp. 358) six scalar constants; namely, e, Ta(=Ta ), and the four involved in

the two unit lines, Ua, Ua .

(4.) In all the foregoing transformations, the scalar and quadratic function Sp0p
has been evidently homogeneous, or has been seen to involve no terms below the se

cond degree in p. We may however also employ this apparently heterogeneous or

mixed form,
vii. ..Spft&amp;gt;=^(p-e) + 2SX(P -os/i(p-0 + e;

in which g , X, p have the same significations as in 357, but e, e, are three new

constants, subject to the two conditions of homogeneity,

VIII. . . g t + XS/* + )uSA =
0,

and IX. . . g f + 2SXSju + e = 0,

in order that the expression VII. may admit of reduction to the form,

X. . . Sp^p =# p
2

4- 2SXpS/ip, as in 357, II .

(5.) Other general homogeneous transformations of Sp^p, which are themselves

real, although connected with imaginary^ cyclic forms (comp. 357, (7.)), because

*
Compare the Note to Art. 359.

f Xi + ^/ 1 pi, and X3 \/- 1
//s, may here be said to be two pairs of ima

ginary cyclic normals, of that real surface of the second order, of which the equa
tion is, as before, Sp^p = const. Compare the Notes to pages 4G8, 474.

3 Q
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a sum of two squares of linear and scalar functions is, in an imaginary sense, a pro

duct of two such functions, are the two following (comp. 357, (9.) ) :

XL .

XII. . .

in which (comp. 357, (2.) and (8.) ),

XIII. . . $ri=0 + TX/*
= -ci, #3 =#-TX^ = -c3 ,

xiv. . . x^vx/iCTXji-SA/o-i, ^^(XT^ + ^TX) (TA/*
-

sx/i)-*,

and XV. . . X 3 = VX/i (TX/z + SX/i)-, j*8
=

(XT&amp;gt;

-
/*TX) (TX/i + SXji)- ;

so that 0i, AI, fiij
and 3 ,

X3 , //3 are real, if g, X, /* be such.

(6.) We have therefore the two new mixed transformations following :

XVII. . . Sp0p = 3 (p
-

fa)
2 -

(SX3 (p
-

with these two new pairs of equations, as conditions of homogeneity,

XVIII. . . fflci + XiS^Xi + jiiS&pi = 0,

XIX. . .
&amp;lt;7 lfl

2 + (S&XO* + (S^O2 + ei = 0,

and XX. . . ^363 X3S^3X 3 ;u3S^3/i 3
= 0,

XXL . . ## - S?3X 3
2 - Ss^ 2 + c3 = 0.

361. We saw, in the sub-articles to 336, that the diffe

rential, d/Jo, of a scalar function of a vector, may in general be

expressed under the form,

I. . . d/p-nSyd/D,

where v is a derived vectorfunction, of the same variable vec

tor
|o,

and n is a scalar coefficient. And we now propose to

show, that if

II. . .fp = Sp^p,

0/o still denoting the linear and vector function which has been

considered in the present Section, and of which Q p is still the

self-conjugate part, we shall have the equation I. with the va

lues,

III. . . ra = 2, v = jo;

so that the part
&amp;lt;j) p may thus be deduced from $p by operat

ing with ^dS.p, and seeking the coefficient of d/o under the

sign S . in the result : while there exist certain general rela

tions of reciprocity (comp. 336, (6.)), between the two vectors

p and v, which are in this way connected, as linearfunctions of
each other.

(1.) We have here, by the supposed linearform of 0p, the differential equation

(comp. 334, VI.),
IV. . . d = d

;
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also S(dp.0p)=S(^p.dp), and

heuce, by 349, XIII., we have, as asserted,

V. . . dSp^p = S (0p + p) dp = 2S . 0opdp.

(2.) As an example of the employment of this formula, in the deduction of

from 0p, let us take the expression,

VI. . . 0p = S/3Sap, 347. XXXI.,
which gives,

VII. . ./p
and therefore

VIII. . . d/p = S (j3Sap 4- aSjSp) dp.

mparing this with the general formula,

IX. . . ^d/p = Si/dp = S. 0opdp,

we find that the form VI. of 0p has for its self-conjugate part,

X. . . v= p = f2 (/3Sap -1- aS/3p) ;

and in fact we saw (347, XXXII.) that this form gives, as its conjugate, the ex

pression,
XL . . fp = SaS]3p.

(3.) Supposing now, for simplicity, that the function
&amp;lt;p

is given, or made, self-

conjugate, by taking (if necessary) the semisum of itself and its own conjugate func

tion, we may write instead of 0o, and shall thus have, simply,

XII. ..v = $p, XIII. . ./p = Srp, XIV. . . d/p = 2Svdp;

whence also (comp. 348, I. II.),

XV. . . p = &amp;lt;j&amp;gt;-

lv = m-^v, and XVI. . . Si/dp
=

Spd)/.

(4.) Writing, then,

XVII. . . Fv =
Sv&amp;lt;j&amp;gt;-

} v = m-i$v^v,

we shall have the equations,

XVIII. . . Fv =fp, XIX. . . &Fv = 2Spdv = 2S. ty^v&v ;

so that p may be deducedfrom Fv, as v was deduced from fp ;
and generally, as

above stated, there exists a perfect reciprocity of relations, between the vectors p and

v, and also between their scalar functions, fp and Fv.

(5.) As regards the deduction, or derivation, of v from/p, and of p from Fv, it

may occasionally be convenient to denote it thus :

XX. . . v = I (S . dp) -id/p ;
XXL . . p - A

(S . dv}~^Fv ;

in fact, these last may be considered as only symbolical transformations of the ex

pressions,
XXII. . . d/p = 2S(dp.v), dFv = 2S(dv.p),

which follow immediately from XIV. and XIX.

(6.) As an example of the passage from an expression such as fp, to an equal

expression of the reciprocal form Fv, let us resume the cyclic form 357, II., writing

thus,
XXIII. . . fp = Sp^p = &amp;lt;?p

2 + SXp/ip,

and supposing that
g., \, and p are real. Here, by what has been already shown (in

sub-articles to 354 and 357), if
&amp;lt;pp

be supposed self-conjugate, as in (3.), we have,
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XXIV. . . i/ = 0p=
XXV. . . m = (g

-
S\/i) (&amp;lt;?

2 - XV) = -

XXVI. . . tyv
=

VXt&amp;gt;/iSX/i-VA/iSX^

and therefore

XXVII. . . mFv =

= (0 XV 2
)

which last, when compared with 360, VI., is seen to be what we have called a bifo

cal form : its focal lines a, a (360, (1.)) having here the directions of X, /u,
that is

of what may be called the cyclic lines* of the form XXIII. The cyclic and bifocal

transformations are therefore reciprocals of each other.

(7.) As another example of this reciprocal relation between cyclic and focal lines,

in the passage from fp to Fv, or conversely from the latter to the former, let us now

begin with the focalform,

XXVIII. . . fp = Spfp = (Vap)2 + (S/3p)
2

, 359, XXX.,

in which a and j3 are supposed to be given and real vectors. We have now, by 359,

a (a2
-

|3
2
) Sai&amp;gt;,

and therefore,

XXX. . . mFv = a 2
(Sa/3)

2 Fv = Si //v

- - v* (Sa/3)2 + Sav ((a
- /) Sa i/ +

= -v2
(Sa/3)

2 + SavS(a
3 + /3a/3)v,

an expression which is of cyclic form ; one cyclic line of Fv being the given focal

line a offp ;
and the other cyclic line of Fv having the direction of + (a

3 + /3a/3),

and consequently (by 359, LXV.) of + et
,
where a is the second real and focal line

of/p.

(8.) And to verify the equation XVIII., or to show by an example that the two

functions fp and Fv are equal in value, although they are (generally) different in

form, it is sufficient to substitute in XXX. the value XXIX. of v
; which, after a

few reductions, will exhibit the asserted equality.

362. It is often convenient to introduce a certain scalar and sym
metric function of two independent vectors, p and

/a , which is linear

with respect to each of them, and is deduced from the linear and

self-conjugate vector function 0/&amp;gt;,
of a single vector p, as follows:

I. . /(* P
f

) =/(/, P)
=

V&amp;lt;7V
=

S/&amp;gt;0/&amp;gt;
.

With this notation, we have

* They are in fact (compare the Note to page 468) the cyclic normals, or the

normals to the cyclic planes, of that surface of the second order, which has for its

equation /p = const.
;
while they are, as above, tha focal lines of that other or re

ciprocal surface, of which v is the variable vector, and the equation is Fv const.
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II. . .
/&amp;lt;&amp;gt;

+ P
&amp;gt;) =fp -f 2/0, p ) +//&amp;gt; ;

III. . .
/(/&amp;gt;, P

&amp;gt; +
p&quot;) =/0, p } +/(/&amp;gt;, P&quot;) ;

IV. . . /(* p) =//&amp;gt; ; V. . .

VI.
../(*/&amp;gt;, *//&amp;gt;)

and as a verification,

VII...

a result which might have been obtained, without introducing this

new function I.

(1.) It appears to be unnecessary, at this stage, to write down proofs of the fore

going consequences, II. to VI., of the definition I.; but it may be worth remarking,

that we here depart a little, in the formula V., from a notation (325) which was

used in some early Articles of the present Chapter, although avowedly only as a

temporary one, and adopted merely for convenience of exposition of the principles of

Quaternion Differentials.

(2.) In that provisional notation (comp. 325, IX.) we should have had, for the

differentiation of the recent function /p (361, II.), the formula?,

the numerical coefficient being thus transferred from one of them to the other, as

compared with the recent equations, I. and V. But there is a convenience now in

adopting these last equations V. and I., namely,

d/p
= 2/(p, dp), /0&amp;gt;, p )

= Sp 0p ;

because tins function Sp ^p, or Sp0p ,
occurs frequently in the applications of qua

ternions to surfaces of the second order, and not always with the coefficient 2.

(3.) Retaining then the recent notations, and treating dp as constant, or d2
p as

null, successive differentiation of/p gives, by IV. and V., the formulas,

VIII. . . d2
/p = 2/(dp) ;

d3
/p = ;

&c.
;

so that the theorem 342, I. is here verified, under the form,

IX. ..e&quot;

or briefly, X. . . td/p =/(p + dp),

an equation which by II. is rigorously exact (comp. 339, (4.)), without any suppo

sition whatever being made, respecting any smallness of the tensor, Tdp.

363. Linear and vector functions of vectors, such as those con

sidered in the present Section, although not generally satisfying the

condition of self-conjugation, present themselves generally in the dif

ferentiation of non-linear lout vector functions of vectors. In fact, if

we denote for the moment such a non-linear function by w(p), or

simply by wp, the general distributive property (326) of differential

expressions allows us to write,

I. . .
dw(/&amp;gt;)= 0(d/&amp;gt;),

or briefly, 1 . . .
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\vhere has all the properties hitherto employed, including that of

not being generally self-conjugate, as has been just observed. There

is, however, as we shall soon see, an extensive and important case,

in which the property of self-conjugation exists, for such a function

0; namely when the differentiated function, wp, is itself the result v

of the differentiation of a scalar function fp of the variable vector p,

although not necessarily a function of the second dimension, such as

has been recently considered (361); or more fully, when it is the

coefficient of
d/&amp;gt;,

under the sign S., in the differential (361, I.) of

that scalar function fp, whether it be multiplied or not by any sca

lar constant (such as n, in the formula last referred to). And gene

rally (comp. 346), the inversion of the linear and vector function

in I. corresponds to the differentiation of the inverse (or implicit) func

tion or 1

;
in such a manner that the equation I. or I , may be writ

ten under this other form,

II. . . dfcr l
0- = 0~

1d0-=m~ i

y&amp;lt;-d&amp;lt;r,

if o- =
o&amp;gt;/&amp;gt;.

(1.) As a very simple example of a non-linear but vector function, let us take

the form,
III. . . a = w(jo)

=
pap, where a is a constant vector.

This gives, if dp = p ,

IV. . .0p =
&amp;lt;pd.p

= dwp = p ap + pap = 2Vpap ;

V. . . SX0p = 2SXpap = Sp X
;

VI. . . X = 2VXpa = 2VapX, p = 2Vapp ;

so that 0p and p are unequal, and the linear function 0p is not self- conjugate.

(2.) To find its self-conjugate part p , by the method of Art. 361, we are to

form the scalar expression,

of which the differential, taken with respect to p ,
is

VIII. . . Jd/p = S . p dp = 2SapSp dp , giving IX. . . p = 2p Sap ;

and accordingly this is equal to the semisum of the two expressions, IV. and VI., for

0p and its conjugate.

(3.) On the other hand, as an example of the self- conjugation of the linear and

vector function,

X. . . di/ = dwp = 0dp, when X . . . d/p = 2Svdp = 2S . wpdp,

even if the scalar function fp be of a higher dimension than the second, let this

last function have the form,

XI. . . fp = $qp&amp;lt;l pq&quot;p, q, &amp;lt;? , q&quot; being three constant quaternions.

Here XII. . . v = wp = %V(qpq pq&quot; + q pq pq + q&quot;pqpq ) ;

XIII. . . dv = 0dp = 0p =
fVO/pYp?&quot; + q pq p q) + l~V(q p q&quot;pq + q&quot;pqp q )



CHAP. II.]
LINEAR FUNCTION OF A QUATERNION. 487

and XIV. . . S\0p = JS . q pq&quot;(^qp + p gX) + &c. = Sp ^X ;

so that =
&amp;lt;f),

as asserted.

(4.) In general, if d be used as a second and independent symbol of differentia

tion, we may write (comp. 345, IV.),

XV. . . Sdifq
= ASfq,

where /g may denote any function of a quaternion ;
in fact, each member is, by the

principles of the present Chapter (comp. 344, I., and 345, IX.), an expression for

the limit,*

XVI. . . lira, nn {/(g + n- dg + n -^g) -/(g + n- dg) -/(g + n -%) +/g } .

ft =&quot;00

n =oo

(5.) As another statement of the same theorem, we may remark that a first dif

ferentiation of/g, with each symbol separately taken, gives results of the forms,

XVII. . . d/g =/(g, dg), Sfq =/(g, Sq) ;

and then the assertion is, that if we differentiate the first of these with d, and the se

cond with d, operating only on g with each, and not on dg nor on dg, we obtain

equal results, of these other forms,

XVIII. . . 3d/g=/(g, dg, g) =/(g, g, dg) = d/g.

For example, if

XIX. . . fq = qcq, where c is a constant quaternion,

the common value of these last expressions is,

(6.) Writing then, by X.,

XXI. ..d/p = 2Swpdp, Sfp-.

and XXII. . . #wp = &amp;lt;f&amp;gt;&amp;lt;$p,

with dwp = 0dp, as before,

we have the general equation,

XXIII. S (dp 0^P )
~ S (cp 0clp j.

in which dp and dp may represent any two vectors ; the linear and vector function,

0, which is thus derived from a scalarfunction fp by differentiation, is therefore (as

above asserted and exemplified) always self-conjugate.

(7.) The equation XXIII. may be thus briefly written,

XXIV. . . Sdpdv = Sfydv ;

and it will be found to be virtually equivalent to the following system of three known

equations, in the calculus of partial differential coefficients,

XXV. . . DxDy
= D

tJ
Dx,

DyVz = DZD,,, D-D* = D*Da .

364. At the commencement of the present Section, we

reduced (in 347) the problem of the inversion (346) ofa linear

(or distributive) quaternion function of a quaternion, to the

* We may also say that each of the two symbols XV. represents the coefficient

of o; yi, in the development off(q + xdq +y8q) according to ascending powers of x

and y, when such development is possible.
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corresponding problem for vectors; and, under this reduced

or simplified form, have resolved it. Yet it may be interest

ing, and it will now be easy, to resume the linear and quater

nion equation,

I...fq =
r, With ll...f(q + q )=fq+fq ,

and to assign a quaternion expression for the solution of that

equation, or for the inverse quaternionfunction,

ill. ..?=/-v,
with the aid of notations already employed, and of results al

ready established.

(1.) The conjugate of the linear and quaternion function^ being defined (comp.

347, IV.) by the equation,
IV. . .

in which p and q are arbitrary quaternions, if we set out (comp. 347, XXXI.) with

the form,
V. . . fq =tqs + t qs + . . = Stqs,

in which s, s
,

. . . and
t,

t
,

. . . are arbitrary but constant quaternions, and which is

more than sufficiently general, we shall have (comp. 347, XXXII.) the conjugate

form,
VI. . .fp = spt + s pt + . . . = Sspt ;

whence VII. . . /I = Ste, and VIII. . . /I = 2s#;

it is then possible, for each given particularform of the linear function fq, to assign

one scalar constant e, and two vector constants, f
, ,

such that

IX. . ./l = e + e, / l^e+c ;

and then we shall have the general transformations (cornp. 347, I.) :

X. . . Sfq = S . gf l = eSq + St ? ;

XL . . Vfq = tSq + V.fVq = tSq + 0V0 ;

and XII. . . fq = (e + Sq + St q + $Vq ;

in which St q = S.e Vq, and 0Vg or V/Vg is a ftnear and vector function of Vg, of

the kind already considered in this Section
; being also such that, with the form V.

of fq, we have
XIII. . . $p = 2V&amp;lt;p*.

(2.) As regards the number of independent and scalar constants which enter, at

least implicitly, into the composition of the quaternion function fq, it may in various

ways be shown to be sixteen; and accordingly, in the expression XII., the scalar e

is one; the two vectors, s and t
,
count each as three; and the linear and vector

function, 0V#, counts as nine (comp. 347, (!.))

(3.) Since we already know (347, &c.) how to invert a function of this last kind

0, we may in general write,

XIV. . . r = Sr + Vr = Sr +
&amp;lt;j&amp;gt;p,

where XV. . . p = tfr
Vr = r tyVr ;

the scaZar constant, m, and the auxiliary linear and vectorfunction, i|/, being deduced
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from the function
&amp;lt;p by methods already explained. It is required then to express &amp;lt;/,

or
S&amp;lt;?

and Vq, in terms of r, or of Sr and p, so as to satisfy the linear equation,

XVI.
..(&amp;lt;?

+
&amp;lt;) S? + Sc 9 + 0V? = Sr -f 0p ;

the constants e, s, E
,
and the form of

&amp;lt;f&amp;gt;,
being given.

(4.) Assuming for this purpose the expression,

XVII. ..q = q + p,

in -which q is a new sought quaternion, we have the new equation,

XVIII. . . fq = Sr + 0p -fp = S (r
-

p) ;

whence XIX. . . g =S(r-e./-il,
and XX. . . ? = p + S(r-e p)./-il;

in which p is (by supposition) a known vector, and S(r c p) is a known scalar; so

that it only remains to determine the unknown but constant quaternion, /&quot; I, or to

resolve the particular equation,

XXI. . ./jo = 1, in which XXII. . . q = c + y =f~ l
l,

c being a new and sought scalar constant, and y being a new and sought vector con

stant.

(5.) Taking scalar and vector parts, the quaternion equation XXI. breaks up

into the two following (comp. X. and XI.) :

XXIII. . . 1 = S/(c + y) = ec + St y ;
XXIV. . .

= V/(c + y) = ec + 0y ;

which give the required values of c and y, namely,

XXV. . . c = (e
- Se

^e)&quot;
1
,

and XXVI. . . y = - cf e
;

whence XXVII. . . /- 1 =
* &quot;

f
**

;O
&amp;lt;p

1 t

and accordingly we have, by XII., the equation,

XXVIII. . . /(I
-

0-ie)
= e - Se 0-ie

= V-iO.

(6.) The problem of quaternion inversion is therefore reduced anew to that of

vector inversion, and solved thereby ;
but we can now advance some steps further,

in the elimination of inverse operations, and in the substitution for them of direct

ones. Thus, if we observe, that
&amp;lt;p~

l

=m-ty, as before, and write for abridgment,

XXIX. . . n = me-S^t=f(m-^s),
so that re is a new and known scalar constant, we shall have, by XV. XX. XXVII.

XXIX.,
XXX. . . nip

=
&amp;lt;|/Vr;

XXXI. . . n/-l =MI-
i//e ;

and XXXII. . . mnq = n^Vr + (mSr - Si ^Vr) . (m - ^f),

an expression from which all inverse operations have disappeared, but which still ad

mits of being simplified, through a division by m, as follows.

(7.) Substituting (by XXIX.), in the term n^Vr of XXXIL, the value me

Se ^t for n, and changing (by XXX.) tpVr to mp, in the terms which are not ob

viously divisible by m, such a division gives,

XXXIII. . . nq = (m - ^5) Sr + e^Vr - Se i//Vr + a,

where XXXIV. . . cr =-p6 ^ + ^cSe p = V.t Vp^f.

But (by 348, VII., interchanging accents) we have the transformation,

XXXV. . . Vp4/
=

3 R
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because 0p = Vr, by XIV. or XV.
; everything inverse therefore again disappears,

with this new elimination of the auxiliary vector p, and we have this final expres

sion,

XXXVI. . . nq = nf-ir
= (me-Sfyt).f-

lr

= O -
;//) Sr + e^Vr - Si

&amp;lt;//Vr

- Vc fVtVr,
in which each symbol of operation governs all that follows it, except where a point

indicates the contrary, and which it appears to be impossible further to reduce, as

the formula ofsolution of the linear equation I., with iheform XII. of the quater

nion function, fq.

(8.) Such having been the analysis of the problem, the synthesis, by which an

a posteriori proof of the correctness of the resulting formula is to be given, may be

simplified by using the scalar value XXIX. off(rn
-

-^/e) ;
and it is sufficient to

show (denoting Vr by w), that for every vector w the following equation holds good,
with the same form XII. of/:

XXXVII. .
./(e&amp;lt;//

w - Se tJ/w) -/VcyVtw = (me
- Sg ^f)- &amp;lt;&quot;

(9.) Accordingly, that form of/ gives, with the help of the principle employed
in XXXV.,

xxxvni w = - +

because Swi//Y = St ^w, &c.
;
and thus the equation XXXVI. is proved, by actually

operating with/

(10.) As an example, if we take the particular form,

XXXIX. . . rfqpq-rgp,
in which XL. . . p =a -f a = a given quaternion,

we have then,

XLI . . /I =/ ! = 2p, e = 2a, t = i = 2a, 0p = 2ap ;

whence by the theory of linear and vector functions,

XLII. - . p = 2ap, i//p
= 4a2

p, m = 8a3
,

and therefore, XLIII. . .
//e
= 8a2

a, m-tyt = 8a2
(a

-
a), n - 16a*(a2

- a2
) ;

so that, dividing by 8ct, the formula XXXVI. becomes,

XLIV. . . 2a (a
2 - a) q = a (a

-
a) Sr + a?Vr - aS . aVr - aV. aVr,

or XLV. . . 2a (a + a) q = aSr + ( + a) Vr Sar,

or XLVI. . . 2pqSp = S . rKp + pVr = rSp -f V (Vp .Vr),

or XLVII. . . 4pqSp = 2r$p + (pr
-

r/&amp;gt;)

=pr + rKp ;

or finally,

XLVIII. . . g=/-..r=
r +^lr^ =

r +
Kp-rp~\

4Sp 4S/&amp;gt;

Accordingly,

XLIX. . . (pr + rKp) + (rp -f Kp . r)
= 2r (p + Kp} = 4rSp.

(11.) In so simple an example as the last, we may with advantage avail our

selves of special methods; for instance (comp. 346), we may use that which was

employed in 332, (6.), to differentiate the square root of a quaternion, and which

conducted there more rapidly to a formula (332, XIX.) agreeing with the recent

XLVIII.

(12.) We might also have observed, in the same case XXXIX., that
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L. . .pr-7p= jp2g -^2
whence pq qp, and therefore jog and

g/&amp;gt;,
can be at once deduced, with the same re

sulting value for 9, or for/- r, as before : and generally it is possible to differentiate,

on a similar plan, the nth root of a quaternion.

365. We shall conclude this Section on Linear Functions,

of the kinds above considered, by proving the general exist

ence of a Symbolic and Biquadratic Equation, of the form,

I. . . = n - rif+ rif* - rif* +/4
,

which is thus satisfied by the Symbol (/) ofLinear and Qua
ternion Operation on a Quaternion, as the Symbolic and Cubic

Equation,
I . . . = m - m

&amp;lt;j)

-f
m&quot;&amp;lt;^

- 3
, 350, I.,

was satisfied by the symbol (0) of linear and vector operation

on a vector; the four coefficients, n, n, n&quot;,
n

&quot;, being^owr sca

lar constants, deduced from the functionf in this extended or

quaternion theory, as the three scalar coefficients m, m, m&quot;

were constants deduced from 0, in the former or vector theory.

And at the same time we shall see that there exists a System,
of Three Auxiliary Functions, F, G, H, of the Linear and

Quaternion kind, analogous to the two vectorfunctions, $ and

X? which have been so useful in the foregoing theory of vec

tors, and like them connected with each other, and with the

given quaternion function yj by several simple and useful re

lations.

(I.) The formula of solution, 364, XXXVI., of the linear and quaternion equa
tion fq = r, being denoted briefly as follows,

U...j/-r=J&amp;gt;,

so that (comp. 348, III .) we may write, briefly and symbolically,

III. . . fF= Ff= n,

it may next be proposed to examine the changes which the scalarn and the function

Fr undergo, when/r is changed to/r + cr, or/to/+c, where c is any scalar con

stant; that is, by 364, XII., when e is changed to e+ e, and to + c
; , ^/,

and
m being at the same time changed, according to the laws of the earlier theory.

(2.) Writing, then,

IV. ../c =/+c, ec = e + c, c
= 0-fc, c = + c

,

and V. . .
i/^c

=
i//

-f c% + c2, mc = m + m c + m&quot;c* + c3
,

we may represent the new form of the equation 364, XXXVI. as follows:

VI. . . nc/c-ir =Fcr, or VII. . . fcFc = nc ;
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where VIII. . . Fcr = (mc
- fa) Sr + ec^cVr - Se ^cVr _ Vc cVeVr,

and IX. . . nc =ecmc St ipcf-

(3.) In this manner it is seen that we may write,

and XI. . . nc = n + n c + &quot;c2 + nV + c 4
;

where F, G, H, are three functional symbols, such that

Fr =(m- i//e) Sr + e^/Vr
- Se

i//
Vr - Vt V Vr

;

XII. . . &amp;lt;?r
= (m - x ) Sr + (eX + ^/)Vr

- St xVr - Vf VfVr
;

md n, n, n&quot;,
n&quot; are four scalar constants, namely,

XXIX);

XIII.

C n = em St ^/e (as in 364,

\ , ,, i

(4.) Developing then the symbolical equation VII., with the help of X. and XL,
and comparing powers of c, we obtain these new symbolical equations (comp. 350,

XVI. XXI. XXIII.) :

H= &quot;-/;

F= n -fG = ri -
n&quot;f+ ri&quot;fz -f3

;

and finally,

XV. . . n = Ff= nf- n&quot;f* -f
&quot;/

_
/4j

which is only another way of writing the symbolic and biquadratic equation I.

(5.) Other functional relations exist, between these various symbols of operation,

which we cannot here delay to develope : but we may remark that, as in the theory

of linear and vector functions, these usually introduce a mixture of functions with

their conjugates (comp. 347, XL, &c.).

(6.) This seems however to be a proper place for observing, that if we Avrite, as

temporary notations, for any four quaternions, p, q, r, s, the equations,

XVI. . . p7j pq qp j
XVII. . . \pqr) = S .p \_qr\ ;

XVIII. . . [pqr] = (P9 r) + [rq] Sp +
[&amp;gt;r] Sq+ [9p] Sr ;

and XIX. . . (pqrs] =S.p [&amp;gt;s],

so that [pq] is a vector, (pqr) and (pqrs~) are scalars, and [pqr~] is a quaternion, we

shall have, in the first place, the relations :

XX. . . [pq] = [#p], [pp] = ;

XXI. . . (pqr} = -
(ypr) = (qrp} = &c., (ppr} = ;

XXII. . . [pqr] = [qpr~\
= [qrp] = &c., [ppr] = ;

and XXIII. . .
(p&amp;lt;?r) (qprs~)

=
(qrps)

=
(qrsp} = &c., (pprs) = 0.

(7.) In the next place, if t be any fifth quaternion, the quaternion equation,

XXIV. . . =p(qrst) + q(rstp} -\-r(sfpq}

which may also be thus written,

XXV. . . q (^prst)

and which is analogous to the vector equation,

XXVI. . . = aJ
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or to the continually* occurring transformation (comp. 294, XIV.),

XXVII. . . SSafiy = aS/3y + /3Say + ySa(33,

is satisfied generally, because it is satisfied for the four distinct suppositions,

XXVIII. . . q =p, q = r, q = s, q=t.

(8.) In the third place, we have this other general quaternion equation,

XXIX. . . q(prsf) - [rst] Spq
-

[stp] Srq + \tpr\ Ssq
-

[prs] Stq,

which is analogous to this other-\- useful vector formula (comp. 294, XV.),

because the equation XXIX. gives true results, when it is operated on by the four
distinct symbols (comp. 312),

XXXI. . . S.p, S.r, S.s, S.t.

(9.) Assuming then any four quaternions, p, r, s, t, which are not connected by
the relation,

XXXII. . . (j9rs) = 0.

and deducing from them four others, p ,
r

,
s

,
t

, by the equations,

XXXIII. .

t (prst*)
=-f \_prs-],

in which /is still supposed to be a symbol of linear and quaternion operation on a

quaternion, the formula XXIX. allows us to write generally, as an expression for

the function fq, which may here be denoted by q (because r is now otherwise used) :

XXXIV. . . q =fq =p Spq + r Srq + s Ssq + t Stq

and its sixteen scalar constants (comp. 364, (2.)) are now those which are involved

in its four quaternion constants, p ,
r

,
s

,
t .

(10.) Operating on this last equation with the four symbols,

XXXV. ..S.OVf], S.r/ty ], S.[&amp;lt;pV], S.[p rV],

we obtain the four following results :

ffo rYO = (pVYO Spq ; (q s tp }
= (r s t p } Srq ;

U9
f

yO=(.YpV)S?; (qp r s )^(tp r S )Stq;

and when the values thus found for the four scalars,

XXXVII. . . Spq, Srq, Ssq, Stq,

are substituted in the formula XXIX., we have the following new formula ofquater
nion inversion :

XXXVIII. . . (//rYO (prsf)q
= (pV* f) (pr^O/ V

=
[rsf] (g rVf) + [*&amp;lt;p] (q s t

p&quot;) + [tpr~] (q tp r) + [prs] (qp r
s&quot;) ;

* The equations XXVII. and XXX., which had been proved under slightly diffe

rent forms in the sub-articles to 294, have been in fact freely employed as trans

formations in the course of the present Chapter, and are supposed to be familiar to

the student. Compare the Note to page 437.

t Compare the Note immediately preceding.
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which shows, in a new way, how to resolve a linear equation in quaternions, when

put under what we may call (comp. 347, (1.)) the Standard Quadrinomial Form,

XXXIV.

(11.) Accordingly, if we operate on the formula XXXVIII. with/, attending to

the equations XXXIII., and dividing by (prst), we get this new equation,

XXXIX. . . (p r s t )fq = p (q r s t }
- r (q s tp) + s (q tp r }

- 1 (qp r s } ;

whence fq = ? , by XXV.

(12.) It has been remarked (9.), that p, r, s, t, in recent formula?, may be any

four quaternions, which do not satisfy the equation XXXII. ;
we may therefore as

sume,
XL. ../&amp;gt;=!,

r= i, s=j, t = K,

with the laws of 182, &c., for the symbols i,j, k, because those laws give here,

XLI. . .

and then it will be found that the equations XXXIII. give simply,

XLII. ..j/=/l, r = -fi, s = -fj, * = -/*;

so that the standard quadrinomial form XXXIV. becomes, with this selection of

prst,
XLIII. . .fq = fl.8q-ft.Siq-fj.Bjg-fk.Skq,

and admits of an immediate verification, because any quaternion, q, may be ex

pressed (comp. 221) by the quadrinomial,

XLIV. . . q = Sq - iSiq -jSjq
-

JcSkq.

(13.) Conversely, if we set out with the expression,

XLV. . .q = w + ix +jy + kz, 221, III.,

which gives,
XLVI. . .fq = wfl + xfi + yfj + zffi,

or briefly,
XLVIL . . e = aw + bx + cy + dz,

the letters abode being here used to denote five known quaternions, while wxyz are

four sought scalars, the problem of quaternion inversion comes to be that of the se

parate determination (comp. 312) of these four scalars, so as to satisfy the one

equation XLVII.
;
and it is resolved (comp. XXV.) by the system of the four fol

lowing formulae :

tw(abcd) = (ebcd); x(abcd) = (aecd);

\y (abed} = (abed} ;
z (abed) = (abce) ;

the notations (6.) being retained.

(14.) Finally it may be shown, as follows, that the biquadratic equation I., for

linear functions of quaternions, includes* the cubic I
., or 350, I., for vectors. Sup-

* In like manner it may be said, that the cubic equation includes a quadratic

one, when we confine ourselves to the consideration of vectors in one plane ; for

which case m =
0, and also \^p

=
0, if p be a line in the given plane : for we have

then 0x = m&amp;gt;
~

ty m
i
or

&amp;lt;p m&quot;fy -f tn = 0,
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pose, for this purpose, that the linear and quaternion function, /&amp;lt;?,
reduces itself to

the last term of the general expression 364, XII., or becomes,

XLIX. . .fq = &amp;lt;t&amp;gt;
Vq, so that L. . . e = 0, 6=e =0, /1=/ 1 = 0;

the coefficients n, n, n&quot;,
ri&quot; take then, by XIII., the values,

LI. . . n = 0, n = m, n&quot;
= m

,
n

&quot; =
m&quot;;

and the biquadratic I. becomes,

LII. . . = -

But/g- is now a vector, by XLIX., and it may be any vector, p ;
also the operation

f is now equivalent to that denoted by 0, when the subject of the operation is a vec

tor
;
we may therefore, in the case here considered, write this last equation LII. under

the form,
LIII. . . = (- m + m&amp;lt;f&amp;gt;

-
wi&quot;02 + 03) pj

which agrees with 351, I., and reproduces the symbolical cubic, when the symbol of

the operand (p) is suppressed.

CHAPTER III.

ON SOME ADDITIONAL APPLICATIONS OF QUATERNIONS, WITH
SOME CONCLUDING REMARKS.

SECTION 1. Remarks Introductory to this Concluding

Chapter.

366. WHEN the Third Book of the present Elements was

begun, it was hoped (277) that this Book might be made a

much shorter one, than either of the two preceding. That

purpose it was found impossible to accomplish, without injus

tice to the subject; but at least an intention was expressed

(317), at the commencement of the Second Chapter, ofrender

ing that Chapter the last : while some new Examples of Geo-

with this understanding as to the operand. In fact, the cubic gives here (because

m = 0),

(02_ m &quot;0-|-
m )^|0

= 0;

and therefore (0
2 -

m&quot;&amp;lt;f&amp;gt;

+
m&quot;)

a =
;

if &amp;lt;r be already the result of an operation with 0, on any vector p : that is if it be, as

above supposed, a line in the given plane.
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metrical Applications, and some few Specimens of Physical

ones, were promised.

367. The promise, thus referred to, has been perhaps al

ready in part redeemed ;
for instance, by the investigations

(3 15) respecting certain tangents, normals, areas, volumes, and

pressures, which have served to illustrate certain portions of

the theory of differentials and integrals of quaternions. But it

may be admitted, that the six preceding Sections have treated

chiefly of that Theory of Quaternion Differentials, including
of course its Principles and Rules; and of the connected and

scarcely less important theory of Linear or Distributive Func

tions, of Vectors and Quaternions : Examples and Applica
tions having thus played hitherto a merely subordinate or illus

trative part, in the progress of the present Volume.

368. Such was, indeed, designed from the outset to be,

upon the whole, the result of the present undertaking : which

was rather to teach, than to apply, the Calculus ofQuaternions .

Yet it still appears to be possible, without quite exceeding
suitable limits, and accordingly we shall now endeavour, to

condense into a short Third Chapter some Additional Exam

ples, geometrical and physical, of the application ofthe princi

ples and rules of that Calculus, supposed to be already known,
and even to have become by this time familiar* to the reader.

And then, with a few general remarks, the work may be

brought to its close.

SECTION 2 On Tangents and Normal Planes to Curves in

Space.

369- It was shown (100) towards the close of the First Book,
that if the equation of a curve in space, whether plane or of double

curvature, be given under the form,

I.. ./ = 0(0=0*,

where t is a scalar variable, and is a functional sign, then the de

rived vector,

II. . . D&amp;gt;

*
Accordingly, even references to former Articles will now be supplied more

sparingly than before.
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represents a line which is, or is parallel to, the tangent to the curve,

drawn at the extremity of the variable vector p. If then we sup

pose that T is a point situated upon the tangent thus drawn to a

curve PQ, at P and that u is a point in the corresponding normal

plane, so that the angle TPU is right, and if we denote the vectors

OP, OT, ou by /&amp;gt;, T, v, the equations of the tangent line and normal

plane at P may now be thus expressed :

III. .. V(T-p)p = 0; IV.. . S(ti-p)p = 0;

the vector T being treated as the only variable in III., and in like

manner v as the only variable in IV., when once the curve PQ, is

given, and the point p is selected.

(1.) It is permitted, however, to express these last equations under other forms;
for example, we may replace p by dp, and thus write, for the same tangent line and

normal plane,
V. . . V(r-p)dp = 0; VI. . . S(v-p)dp = ;

where the vector differential dp may represent any Zme, parallel to the tangent to

the curve at P, and is not necessarily small (compare again 100).

(2.) We may also write, as the equation of the tangent,

VII. . . T = p + xp ,
where OMS a scalar variable

;

and as the equation of the normal plane,

VIII. ..d
pT(v-p)

=
0, or VIII . . .dT(w-p)=0, if dy = 0;

because this partial differential of T(w-p), or of Fu, is (by 334, XII., &c.),

IX. . . dT(w-p) = S(U(v-p).dp).

(3.) For the circular locus 314, (1.), or 337, (1.), of which the equation is,

X. . .p = a
/3, with Ta=l, and Sa/3 = 0,

the equation of the tangent is, by VII., and by the value 337, VI. of p ,

XL . . r = p +yp, where y is a new scalar variable
;

the perpendicularity of the tangent to the radius being thus put in evidence.

(4.) For the plane but elliptic locus, 314, (2.), or 337, (2:), for which,

XII. . . p
= V. o/3, with Ta =

1, but not Sa/3 = 0,

the value 337, VIII. of p shows that the tangent, at the extremity of any one semi-
diameter p, is parallel to the conjugate semidiameter of the curve

;
that is, to the

one obtained by altering the excentric anomaly (314, (2.)), by a quadrant: or to

the value of p which results, when we change t to t + 1.

(5.) For the helix, 314, (10.), of which the equation is,

XIII. . . p = eta + a/3, with Ta = 1, and Sa/3 = 0,

c being a scalar constant, we have the derived vector,

XIV. . . p = ca + 1 a*i/3 ; whence XV. . . Sa- p =
c,

XVI. . . TVV = m and XVII. . . (TV: S)- =^
3s
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the tangent line (p ) to the helix is therefore inclined to the axis (a) of the cylinder

whereon that curve is traced, at a constant angle (a), whereof the trigonometrical

tangent (tan a) is given by this formula XVII.
;
and accordingly, the numerator

7rT/3 of that formula represents the semicircumference of the cylindric base ; while

the denominator 2c is an expression for half the interval between two successive

spires, measured in a direction parallel to the axis. We may then write,

XVIII. . . 7rT/3
= 2c tan a = 2c cot b,

if a thus denote the constant inclination of the helix to the axis, while b denotes the

constant and complementary inclination of that curve to the base, or to the circles

which it crosses on the cylinder.

(6.) In general, the parallels p to the tangents to a curve of double curvature,

which are drawn from & fixed origin o, have a certain cone for their locus; and for

the case of the helix, the equation of this cone is given by the formula XVII., or by

any legitimate transformation thereof, such as the following,

XIX. . .
SUa-V&amp;gt;

= +cosa=+sin6;
it is therefore, in this case, a cone of revolution, with its semiangle =a.

(7.) As an example of the determination of a normal plane to a curve of double

curvature, we may observe that the equation XIII. of the helix gives,

XX. . . p2= 02
- cW, and therefore XXI. . . Spp = - c*t

;

the equation IV. becomes therefore, for the case of this curve,

XXII. . . = Sp v -f c% with the value XIV. of p .

(8.) If then it be required to assign the point u in which the normal plane to the

helix meets the axis of the cylinder, we have only to combine this equation XXII.

with the condition v
|| a, and we find, by XIII. and XIV.,

XXIII. . . ou = v = - c^ta : Sap = eta, XXIV. . . Sa (w
-
p) = ;

the line PU is therefore perpendicular to the axis, being in fact a normal to the cy
linder.

370. Another view of tangents and normalplanes may be proposed,
which shall connect them in calculation with Taylor s Series adapted
to quaternions (342), as follows.

(1.) Writing I. . . p t
=

po + uttp o, or briefly, 1 . . . p t
-

p + utp ,

the cqffiecient ut or u will generally be a quaternion, but its limiting value will be

positive unity, when t tends to zero as its limit
;
or in symbols,

II. . . = lim. u=l.
t=o

(2.) Admitting this, which follows either from Taylor s Series, or (in so simple a

case) from the mere definition of the derived vector p ,
we may conceive that vector

p to be constructed by some given line PT, without yet supposing it to be known that

this line is tangential at P to the curve PQ, of which the variable vector is OQ =
p&amp;lt;,

while OP = po
=

p, so that the line PQ = utp is a vector chord from p, which diminishes

indefinitely with the scalar variable, t, and is small, if t be small.
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(3.) Conceiving next that w = OR = the vector of some new and arbitrary point

B, we may let fall a perpendicular QM on the line PR, and so decompose the chord

PQ into the two rectangular lines, PM and MQ ; which, when divided by the same

chord, give rigorously the two (generally) quaternion quotients,

-
P) jy

MQ _ V&quot;p (fa&amp;gt;

~
P)

PQ Z/p ((0
-
p) PQ Up ((jJ

-
p)

the variable t thus disappearing through the division, except so far as it enters into

,
which tends as above to 1.

(4.) Passing then to the limits, we have these other rigorous equations,

V. . . lim. = VI. . . Mm. =. . . .

PQ p(w-p) PQ p(w-p)

by comparing which with 369, III. and IV., we see that those two equations repre

sent respectively, as before stated, the tangent and the normal plane to the proposed

curve at p; because, if Vp (w
-
p) = 0, the chord PQ tends, by V. or VI., to coin

cide, both in length and in direction, with its projection PM on the line PR
;
while*

on the other hand, if Sp (w p) 0, that projection tends to vanish, even as compared
with the chord PQ ;

which chord tends now to coincide with its other projection MQ,
or with the perpendicular to the line PR, erected so as to reach the point Q : whence

PR must, in this last case, be a normal to the curve at p.

(5.) We may also investigate an equation for the normal plane, by considering it

as the limiting position of the plane which perpendicularly bisects the chord. If R

be supposed to be a point of this last plane, then, with the recent notations, the vec

tor o&amp;gt;
= OR must satisfy the condition,

VII. . . TO - pO = T(o&amp;gt;

-
po), or VIII. . . (w - p

- M
&amp;lt;p )

2 =O -
p)

2
,

or IX. . . 2St/p (a&amp;gt; p)
=

&amp;lt;(p )
2

,

in which it may be noted that up is a vector (in the direction of the chord, PQ), al

though u itself is generally a quaternion, as before : such then is the equation of the

bisecting plane, with w for its variable vector, and its limit 4B,

X. . . Sp (o&amp;gt;

-
p) = 0, as before.

(6.) The last process may also be presented under the form,

XI. . .
= lim.ri{T(w-p*)-T(w-po)}=D/T(w-pf), when * = 0;

and thus the equation 369, VIII. may be obtained anew.

(7.) Geometrically, if we set off on P.Q a portion RS equal in

length to RP, as in the annexed Figure 76, we shall have the

limiting equation,

XII. . . SQ : PQ = (RQ BP) : PQ = (ultimately) cos RPT
;

which agrees with 369, IX.

(8.) If then the point R be taken out of the normal

plane at p, this limit of the quotient, RQ RP divided by PQ,

has a. finite value, positive or negative; and if the chord PQ be

called small of the first order, the difference of distances of its extremities from R

may then be said to be small of the same (first) order. But if R be taken in the nor

mal plane a* p (and not coincident with that point P itself), this difference of dis-
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tances may then be said to be small, of an order higher than thefirst : which an

swers to the evanescence of the first differential of the tensor, T(UJ p) in XL, or

T(u-p)in 369, VIII .

371. A curve may occasionally be represented in quaternions, by
an equation which is not of the form, 369, I., although it must

always be conceived capable of reduction to that form: for instance,

this new equation,

I. . . Vap.Vpa = (Va )
2
, with TVaa &amp;gt; 0,

is not immediately of the form p =
&amp;lt;fit,

but it is reducible to that form

as follows,

II. . . p = ta + tr
l a .

An equation such as I. may therefore have its differential or its deri

vative taken, with respect to the scalar variable t on which p is thus

conceived to depend, even if the exact law of such dependence be un

known: and dp, or //, may then be changed to the tangential vector

ID - p to which it is parallel, in order to form an equation of the tan

gent, or a condition which the vector &amp;lt;u of a point on that sought

line must satisfy.

(1.) To pass from I. to II., we may first operate with the sign V, which gives,

III. . . pSau p = 0, or simply, III . . . Saa p = ;

whence, t and t being scalars, we may write,

IV. . . p = ta + t a
, Vap = t Van , Vpa = tVaa

,
tt = 1,

and the required reduction is effected : while the return from II. to I., or the elimi

nation of the scalar
t, is an even easier operation.

(2.) Under the form II., it is at once seen that p is the vector of a. plane hyper

bola, with the origin for centre, and the lines a, a for asymptotes; and accordingly
all the properties of such a curve may be deduced from the expression II., by the

rules of the present Calculus.

(3.) For example, since the derivative of that expression is,

V. . . p = a - t-*a,

the tangent may (comp. 369, VII.) have its equation thus written :

VI. . . u =
(t + x)a + t-

2
(t-x)a ;

it intersects therefore the lines a, a in the points of which the vectors are 2*a, 2r ] a
;

so that (as is well known) the intercept, upon the tangent, between the asymptotes,
is bisected at the point of contact : and the intercepted area is constant, because

V(ta.Ha )
= Vaa

,
&c.

(4.) But we may also operate immediately, as above remarked, on the/or/w I.
;

and thus arrive (by substitution ofw-pfordp, &c.) at the equation of conjuga

tion,

VII. . . Yaw .Vpa + Vrrp .Vw = 2(Vaff )
8
,
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which expresses (comp. 215, (13.), &c.) that if
JO
= OP, and w = OR, as before, then

either K is on the tangent to the curve, at the point P, or at least each of these two

points is situated on the polar of the other, with respect to the same hyperbola.

(5.) Again, it is frequently convenient to consider a curve as the intersection of

two surfaces; and, in connexion with this conception, to represent it by a system of

two scalar equations, not explicitly involving any scalar variable : in which case,

both equations are to be differentiated, or derivated, with reference to such a varia

ble understood, and dp or p deduced, or replaced by w p as before.

(6.) Thus we may substitute, for the equation I., the system of the two follow

ing (whereof the first had occurred as III
.) ;

VIII. . . Saa p = 0, p
2Saa - SapSa p = (Vaa )

2
;

and the derivated equations corresponding are,

IX. . . Saa p = 0, 2Saa S
1
oo - Sap Sa p

- SapSa p =
;

or, with the substitution of w p for p , &c.,

X . . Saa w = 0, 2Saa Spw - SawSa p
- SapSa w = 2 (Vaa )

2
;

the last of which might also have been deduced from VII., by operating with S.

(7.) And it may be remarked that the two equations VIII. represent respectively

in general a plane and an hyperboloid, of which the intersection (5.) is the hyperbola
I. or II.; or a plane and an hyperbolic cylinder, if Saa = 0.

SECTION 3. On Normals and Tangent Planes to Surfaces.

372- It was early shown (100, (9.)), that when a curved surface

is represented by an equation of the form,

I. . . 9 =
4&amp;gt;(x,y\

in which is a functional sign, and x, y are two independent and

scalar variables, then either the two partial differentials, or the two

partial derivatives, of the first order,

II. . . d,P , d/, or III. . . D,p, Dyp,

represent two tangential vectors, or at least vectors parallel to two

tangents to the surface, drawn at the extremity or term p of
/&amp;gt;;

so

that the plane of these two differential vectors, or of lines parallel

to them, is (or is parallel to) the tangent plane at that point: and
the principle has been since exemplified, in 100, (11.) and (12.),

and in the sub-articles to 345, &c. It follows that any vector v,

which is perpendicular to both of two such non-parallel differentials,

or derivatives, must (comp. 345, (11.)) be a normal vector at P, or at

least one having the direction of the normal to the surface at that

point; so that each of the two vectors,

IV. . . V.d.,pdyp, V. . . V. D rpD,/,

if actual, represents such a normal.
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(1.) As an additional example, let us take the case of the ruled paraboloid, on

which a given gauche quadrilateral ABCD is superscribed. The expression for the

vector p of a variable point p of this surface, considered as a function of two inde

pendent and scalar variables, x and y, may be thus written (comp. 99, (9.)) :

VI. ..,o
= *ya + (l-:Oy/3 + a-*)(l-y)y+*(l-y)^

where the supposition y = 1 places the point P on the line AB
;
x = places it on BC ;

y = 0, on CD
;
and x = 1, on DA.

(2.) We have here, by partial derivations,

these then represent the directions of two distinct tangents to the paraboloid VI., at

what may be called the point (x, y); whence it is easy to deduce the tangent plane

and the normal at that point, by constructions on which we cannot here delay, ex

cept to remark that if (comp. Fig. 31, Art. 98) we draw two right lines, QS and RT,

through p, so as to cut the sides AB, BC, CD, DA of the quadrilateral in points Q, R,

s, T, we shall have by VI. the vectors,

VIIL ..

-#) y,

and therefore, by VII.,

IX. . . Dxp = RT, Dyp = SQ ;

so that these two tangents are simply the two generating lines of the surface, which

pass through the proposed point P.

(3.) For example, at the point (1, 1), or A, the tangents thus found are the sides

BA, DA, and the tangent plane is that of the angle BAD, as indeed is evident from

geometry.

(4.) Again, the equation of the screw surface (comp. 314, XVI.),

X. . . p = cza+ya*(3, with To = l, and Sa/3 = 0,

gives the two tangents,

XI. . . Dxp
- ca +

^ya*
+
1/3,

Dyp = a*/3,

whereof the latter is perpendicular to the former, and to the axis a of the cylinder ;

so that the corresponding normal to the surface X. at the point (x, y) is represented

by the product,

XII. . . v = Dr . D

373. Whenever a variable vector p is thus expressed or even

conceived to be expressed, as a function of two scalar variables, x and

y (or s and t, &c.), if we assume any three diplanar vectors, such as

a
) Pi 7 (

or l
&amp;gt;

K
&amp;gt; ^i &c

)&amp;gt;

tne three scalar expressions, Sap, S/3p, 87^

(or Stp, SK,O, SAP, &c.) will then be functions of the same two scalar

variables; and will therefore be connected with each other by some

one scalar equation, of the form,

I. . . F(Sap, S/3p, 87,0)= 0,

or briefly,
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II. ../P-C;
where C is a scalar constant, introduced (instead of zero) for greater

generality of expression ;
and F, f are used as functional but scalar

signs. If then (comp. 361, XIV.) we express the fast differential of

this scalar function fp under the form,

III. . . d/p
= 2Svdp,

in which v is a certain derived vector, and is here considered as being

(at least implicitly) a vector function (like p) of the two scalar varia

bles above mentioned, we shall have the two equations,

IV.. .8^ =
0, Sixty =0,

or these two other and corresponding ones,

V. . . Si/D,p = 0, S*JV = 0;

from which it follows (by 372) that v has the direction of the nor

mal to the surface I. or II., at the point p in which the vector p ter

minates. Hence the equation of that normal (with co for its variable

vector) may, under these conditions, be thus written:

VI. . . Vi/(w-p) = 0;

and the corresponding equation ofthe tangent plane at the same point
p is,

VII. . .S*(-p) = 0.

(l.j For example, if we take the expression 308, XVIII., or 345, XII., namely

VIII. . . p = rWj kj- k-*, in which kj~* =js
k, &c.,

treating the scalar r as constant, but s and t as variable, we have then (comp. 345,

XIV.), the equations, a denoting any unit-vector,

IX. .. S*p = rS.a 2
&amp;lt;S.a

2 *+
i, S/p = rS.o8 - 1 S.a s*+

i, Skp = rS . a^*
;

between which s and t can be eliminated, by simply adding their squares, because

(a )
2 + (a

-1
)
2 =

1, by 315, V., if Ta = 1. In this manner then we arrive at equa
tions of the forms I. and II., namely (comp. 357, VII., and 308, (10.) and (13.)),

X. . . (Sip)2 + (S/p)
2 + (Sty)*

- r2 = 0,

and XL . ./p = p
2 = -r2 = const,, or XI . . .Tp = r;

which last results had indeed been otherwise obtained before.

(2.) With this form XI. of/p, we have the differential expression of the first

order,
XII. . . d/p

= 2Svdp = 2Spdp, whence XIII. . . v = p ;

and if we still conceive that p is, as above, some vector function of two scalar varia

bles, s and #, although the particular law VIII. of its dependence on them may now
be supposed to be unknown (or to be forgotten), we may write also,

XIV. . . |d/p = Svdp = Spdp = Sp (ds + d*) p = SpD.p . d* + SpD,p . At
;

if then the function fp have (as above) a value, =-r2
,
which is constant, or isinde-
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pendent of both the variables, s and t, while their differentials are arbitrary, and are

independent of each other, we shall thus have separately (comp. V., and 337, XIIL,

XVII.),
XV. . .

The radius p of the sphere XL is therefore in this way seen to have the direction of

the normal at its own extremity, because it is perpendicular to two distinct tangents,

Dsp and Dtp, at that point ;
which are indeed, in the present case, perpendicular to

each other also (337, (8.)).

(3.) Instead of treating the two scalar variables, x and y, or s and t, &c., as both

entirely arbitrary and independent, we may conceive that one is an arbitrary (but

scalar) function of the other; and then the vector v, determined by the equation

III., will be seen anew to be the normal at the extremity p of p, because it is per

pendicular to the tangent at P to an arbitrary curve upon the surface, which passes

through that point : or (otherwise stated) because it is a line in an arbitrary normal

plane at p, if a normal plane to a curve on a surface be called (as usual) a normal

plane to that surface also.

(4.) For example, if we conceive that s in VIII. is thus an arbitrary function of

t, the last expression XIV. will take the form,

XVI. . . = id/p = S . p (s Dsp + D tp~) d/, if ds = s dt
;

whence, At being still arbitrary, we have the one scalar equation,

XVII. . . S . p (s Dsp + Dtp) = 0, or XVIII. . . p J- s Dsp + Dtp ,

and although, on account of the arbitrary coefficient s
,
this one equation XVII. is

equivalent to the system of the two equations XV., yet it immediately signifies, as in

XVIII., that the directed radius p, of the sphere XL, is perpendicular to the arbi

trary tangent, s Dsp 4- Dtp ;
or to the tangent to an arbitrary spherical curve through

p, the centre o and tensor Tp (or undirected radius, r) remaining as before.

(5.) As regards the logic of the subject, it may be worth while to read again the

proof (331), of the validity of the rule for differentiating a function of a function;
because this rule is virtually employed, when after thus reducing, or conceiving as

reduced, the scalar function fp of a vector p, to another scalar function such as Ft of

a scalar t, by treating p as equal to some vector function
fyt of this last scalar, we

infer that

XIX. .. &amp;lt;\Ft = d/0* = 2S. vfyt, if Afy = 2Svdp, as before.

(6.) And as regards the applications of the formulae VI. and VII., or of the equa
tions given by them for the normal and tangent plane to a surface generally, the

difficulty is only to select, out of a multitude of examples which might be given :

yet it may not be useless to add a few such here, the case of the sphere having of

course been only taken to illustrate the theory, because the normal property of its

radii was manifest, independently of any calculation.

(7.) Taking then the equation of the ellipsoid, under the form,

XX. . . T(p + p) = K2 - 1
2

, 282, XIX.,

of which the first differential may (see the sub-articles to 336) be thus wiitten,

XXL. . = S.{(t-/c)2p-H2(iSKp + KStp

and introducing an auxiliary vector, ON or
,
such that

XXII. . . ON = = -2(i-ic)-2 (tS/cp+K-Stp),
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we have v
|| p

-
,
and may write, as the equation of the normal at the extremity r

of p, the following,

XXIII. .. V. (- p) (w - p) = 0, or XXIV. .. w = p + aj(- p ),

in which a; is a scalar variable (comp. 369, VII.) ; making then x= 1, we see that

is the vector of the point N in which the normal intersects the plane of the two
fixed lines

t, K, supposed to be drawn from the origin, which is here the centre of

the ellipsoid.

(8.) If we look back on the sub-articles to 216 and 217, we shall see that these

lines
i, K have the directions of the two real cyclic normals, or of the normals to the

two (real) cyclic planes; which planes are now represented by the two equations.

XXV. . . Sip = 0, SKP = 0.

Accordingly the equation XX. of the ellipsoid may be put (comp. 336, 357, 359)
under the cyclic forms,

XXVI. . . Sp^p = (12 + /e
2
)p

2 + 2Siprcp
=

(i
-

/e)2 p2 + 4SipSKp = (K
2 -

12)2
= const.

;

hence each of the two diametral planes XXV. cuts the surface in a circle, the com

mon radius of these two circular sections being

where b denotes, as in 219, (1.), the length of the mean semiaxis of the ellipsoid;

and in fact, this value of Tp can be at once obtained from the equation XX., by

making either tp
= -

pt, or pfc
=

up, in virtue of XXV.

(9.) By the sub-article last cited, the greatest and least semiaxes have for their

lengths,
XXVIII. . . a = Tt + T/e, c = Ti-T/c;

and the construction in 219, (2.) shows (by Fig. 53, annexed to 217, C4.)) that

these three semiaxes a, b, c have the respective directions of the lines,

XXIX. . . tT* - KTi, VIK, iTic + icTi
;

all which agrees with the rectangular transformation,

Tt -lV* \ TTTlc

in deducing which (comp. 359, (1.)) from 357, VIII., by means of the formulae

357, XX. and XXI., we employ the values (comp. XXVI.),

XXXI. . . g = i + K2
,

X =-
2t, p,

= K.

(10.) Thefixed plane (7.), of the cyclic normals i and K (8.), is therefore also

the plane of the extreme semiaxes, a and c (9.), or that which may be called per

haps the principal plane* of the ellipsoid : namely, the plane of the generating tri-

* This plane may also be said to be the plane of the principal elliptic section

(219, (9.)) ;
or it may be distinguished (comp. the Note to page 231) as the plane

of the focal hyperbola, of which important curve we shall soon assign the equation

in quaternions.

3 T
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angle (218), (1.)), in that construction of the surface (217, (6.) or (7.)) which is

illustrated by Fig. 53, and was deduced as an interpretation of the quaternion equa

tion XX., or of the somewhat less simple form 217, XVI., with the value TV- TK*

of t\

(11.) Let n denote the length of that portion of the normal, which is intercepted

between the surface and the principal plane. (10.), so that, by (7.),

XXXII. ..n = N]? = T(p-), n2=-G&amp;gt;-$)
2

,

with the value XXII. of . Let a = os be the vector of a point s on the surface of

a new or auxiliary sphere, described about the point N as centre, with a radius = n,

and therefore tangential to the ellipsoid at P
;
and let us inquire in what curve or

curves, real or imaginary, does this sphere cut the ellipsoid.

(12.) The equations (comp. 371, (5.)) of the sought intersection are the two fol

lowing,

XXXIII. ..
(&amp;lt;r-)

2
4- n2 = 0, and XXXIV. ..

T(i&amp;lt;r
+ OK} = it

2 - fi
;

whereof the first expresses that s is a point of the sphere, and the second that it is a

point of the ellipsoid ;
while p or OP enters virtually into XXXIII.

, through arid n,

but is here treated as a constant, the point p being now supposed to be a given one.

(13.) We shall remove (18) the origin to this point P of the ellipsoid, if we

write,

XXXV. . . ff =
p-f&amp;lt;r ,

or XXXV. . . tr = a -p = PS
;

and thus we obtain the new or transformed equations,

XXXVI. . .
=

&amp;lt;r a+2S(p-X, XXXVII. . . =N( t (r + aV) + 2Sva
;

in which (as in (7.), comp. also 210, XX.),

XXXVIII. . . v = (i
-

ic)
a
P + 2 (eSicp + fcStp)

=
(t

-
ic)

2 -
*),

and XXXIX. . . N (KT + &amp;lt;T K)
=

(i
-

*)
2 * 2 + 4Siff

/

Sjc(r .

(14.) Eliminating then a 2
,
we obtain from the two equations XXXVI. and

XXXVII. this other,

XL. . . Stff . SKCT =
;

which like them is of the second degree in a, but breaks up, as we see, into two linear

and scalar factors, representing two distinct planes, parallel by XXV. to the two

diametral and cyclic planes of the ellipsoid. The sought intersection consists then

of a pair of (real) circles, iipon that given surface
; namely, two circular (but not

diametral} sections, which pass through the given point p.

(15.) Conversely, because the equations XXXVII. XXXVIII. XXXIX. XL.

give XXXVI. and XXXIII,, with the foregoing values of and n, it follows that

these two plane sections of the ellipsoid at P are on one common sphere, namely
that which has x for centre, and n for radius, as above

;
and thus we might have

found, without differentials, that the line PN is the normal at P; or that this normal

crosses the principal plane (10.), in the point determined by the formula XXII.

(1G.) In general, the cyclic form of the equation of any central surface of the

second order, namely the form (comp. 357, II.),

XLI. . . Sp0p=p p
2 + 2S\pS/ip = C= const.,

shows that the two circles (real or imaginary) in which that surface is cut by any
two planes,

XLII. . . SX = 7 Sua = m
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drawn parallel respectively to the two real cyclic planes, which are jointly repre

sented (comp. XL., and 216, (7.)) by the one equation,

XLIII. . . SXpSjwp = 0,

are homospherical, being both on that one sphere of which the equation is,

XLI V. . . /p
2 + 2 (ZSjup + mSXp) = 2Zm + C.

(17.) But the centre (say N) of this new sphere, has for its vector (say ),

XLV. . . ON = g = - $r
M

it is therefore situated in the plane of the two real cyclic normals, \ and
jj, ;

and if

I and m in XLV. receive the values XLII., then this new is the vector ofintersec

tion of that plane, with the normal to the surface at p : because it is (comp. 15.))

the vector of the centre of a sphere which touches (though also cutting, in the two

circular sections) the surface at that point.

(18.) We can therefore thus infer (comp. again (15.)), without the differential

calculus, that the line,

XLVI. . . g (p
-

?)
= g p + XS/zp + juSXp = 0p,

as having the direction of NP, is the normal at p to the surface XLI.
;
which agrees

with, and may be considered as confirming (if confirmation were required), the con

clusion otherwise obtained through the differential expression (361),

XLVII. . . dSp0p = 2Si dp = 2S0pdp;

the linear function 0p being here supposed (comp. 361, (3.)) to be self-conjugate.

(19.) Hence, with the notation 362, I., the equation of the tangent plane to a

central surface of the second order, at the same point P, may by VII. be thus

written,
XLVIII. . .

/(o&amp;gt;, p)
= C, if Sp0p = C= const,

;

in which it is to be remembered, that

XLIX. . . /(w, p) =/(p, w) = Sw^p = Sp#w.

(20.) And if we choose to interpret this equation XLVIII., which is only of the

first degree (362) with respect to each separately of the tivo vectors, p and
&amp;lt;D,

or OP

and ou, and involves them symmetrically, without requiring that P shall be a point

on the surface, we may then say (comp. 215, (13.), and 316, (31.)), that the for

mula in question is an equation of conjugation, which expresses that each of the two

points P and R, is situated in the polar plane of the other.

(21.) In general, if we suppose that the length and direction of a line v are so

adjusted as to satisfy the two equations (comp. 336, XII. XIII. XIV.),

L. . . Svp = 1, S^dp = 0, and therefore also LI. . . $pdv = ;

then, because the equation VII. of the tangent plane to any curved surface may now

be thus written,
LII. . . Sv(o;-v-

J

)
=

0,

it follows that v&quot;* represents, in length and direction, the perpendicularfrom o on

that tangent plane at p
;
so that v itself represents the reciprocal of that perpendi

cular, or what may be called (comp. 336, (8.)) the vector ofproximity, of the tan

gent plane to the origin. And we see, by LI., that the two vectors, p and v, if

drawn from a common origin, terminate on two surfaces which are, in a known and
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important sense (comp. the sub-arts, to 361), reciprocals* of one another: the line

p-i, for instance, being the perpendicular from o on the tangent plane to the second

surface, at the extremity of the vector v.

374. In the two preceding Articles, we have treated the symbol

dp as representing (rigorously) a tangent to a curve on a given surface,

and therefore also to that surface itself; and thus the formula

Svdp = has been considered as expressing that v has the direction of

the normal to that surface, because it is perpendicular to two tangents

(372), and therefore generally to every tangent (373), which can be

drawn at a given point p. But without at present introducing any

other^ signification for this symbol dp, we may interpret in another

way, and with a reference to chords rather than to curves, the diffe

rential equation,
I. . .

d//&amp;gt;=2Si d/&amp;gt;,

supposed still to be a rigorous one (in virtue of our definitions of dif

ferentials, which do not require that dp should be small) ; and may
still deduce from it the normal property of the vector v, but now with

the help of Taylors Series adapted to quaternions (comp. 342, 370).

In fact, that series gives here a differenced equation, of the form,

II. . .
A//&amp;gt;

=
2Si&amp;gt;A/ + #;

where R is a scalar remainder (comp. again 342), having the pro

perty that

III. . . lira. (#:TA/0 = 0, if li

whence IV. . . lim. (A//? : T&p) = 2 lim.

whatever the ultimate direction of A/&amp;gt; may be. If then we conceive that

*
Compare the Note to page 484.

f It is permitted, for example, by general principles above explained, to treat the

differential dp as denoting a chorda! vector, or to substitute it for Ap, and so to re

present the differenced equation of the surface under the form (comp. 342),

= A/p = (
d -

l)/p = d/p + |d
2
/o + &c.

;

but with this meaning of the symbol dp, the equation d/p = 0, or S^dp = 0, is no

longer rigorous, and must (for rigour) be replaced by such an equation as the follow

ing,
= 2Svdp + Sdj/dp + R, if d/p = 2Svdp, as before;

the remainder R vanishing, when the surface is only of the second order (comp.

362, (3.)). Accordingly this last form is useful in some investigations, especially

in those which relate to the curvatures of normal sections : but for the present it

seems to be clearer to adhere to the recent signification of dp, and therefore to treat

it as still denoting a tangent, which may or may not be small.
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A/&amp;gt; represents a small and indefinitely decreasing chord PQ, of the sur

face, drawn from the extremity P of p, so that

V. . . Afp =f (p + A/&amp;gt;) -fp = 0, and lim.
TA/&amp;gt;

= 0,

the equation IV. becomes simply,

VI.. .lim. S*UA/&amp;gt;
= 0;

and thus proves, in a new way, that v is normal to the surface at the

proposed point P, by proving that it is ultimately perpendicular to all

the chords FQ,from that point, -when those chords become indefinitely

small, or tend indefinitely to vanish.

(1.) For example, if

VII. . . fp = p
2
,

v = p, then VIII. . . R= Ap
2

,
and /2:TAp = -TAp;

thus, for every point of space, we have rigorously, with this form of fp,

IX. . . A/p : TAp = 2SpUAp - TAp ;

and for every point Q of the spheric surface, fp const., we have with equal rigour,

X. . . 2SpUAp = TAp, or XL . . PQ = 26p.cosopQ ;

in fact, either of these two last formulae expresses simply, that the projection of a

diameter of a sphere, on a conterminous chord, is equal to that chord itself, and of

course diminishes with it.

(2.) Passing then to the limit, or conceiving the point Q of the surface to ap

proach indefinitely to P, we derive the limiting equations,

XII. . . lim. SpUAp = ;
XIII. . . lim. cos OPQ = ;

either of which shows, in a new way, that the radii of a sphere are its normals ;

with the analogous result for other surfaces, that the vector v in I. has a normal di

rection, as before : because its projection on a chord PQ tends indefinitely to diminish

with that chord.

(3.) We may also interpret the differential equation I. as expressing, through
II. and III., that the plane 373, VII., which is drawn through the point P in a

direction perpendicular to v, is the tangent plane to the surface : because the pro

jection of the chord Ap on the normal v to that plane, or theperpendicular distance,

XIV. . .
- S (Ui/. Ap) = 1R. TI/-I,

ofa near point qfrom the plane thus drawn through p, is small of an order higher
than the first (comp. 370, (8.)), if the chord PQ itself be considered as small of the

first order.

375. This occasion may be taken (comp. 374, 1. II. III.), to give
a new Enunciation of Taylor s Theorem, in a form adapted to Quater

nions, which has some advantages over that given (342) in the pre

ceding Chapter. We shall therefore now express that important
Theorem as follows:

&quot;

If none of the m + 1 functions,
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d
&quot;/&amp;lt;?

in which d2? =
0,

become infinite in the immediate vicinity of a given quaternion q, then the

quotient,

II. . . Q=

_
2.3..m) 2. 3.. TO

caw 5e made to tend indefinitely to zero, for any ultimate value of the

versor
Ud&amp;lt;?, ly indefinitely diminishing the tensor

(1.) The proof of the theorem, as thus enunciated, can easily be supplied by an

attentive reader of Articles 341, 342, and their sub-articles; a few hints may how

ever here be given.

(2.) We do not now suppose, as in 342, that dmfq must be differentfrom zero;

we only assume that it is not infinite : and we add, to the expression 342, VI. for

Fx, the term,

m... -***.
2.3. ..m

(3.) Hence each of the expressions 342, VII, for the successive derivatives of

Fx, receives an additional term ; the last of them thus becoming,

IV. . . D^Fx = F(^x = d /(g + xdx)
-
d^fq ;

so that we have now (com p. 342, X.) the values

V. ...F0=0, -F O, JF&quot; 0=0, ... FC-i)0 = 0, PC)0 = 0.

(4.) Assuming therefore now (comp. 342, XII.) the new auxiliary function,

xm &amp;lt;\q

m
VL &quot;^

=
2T3T^

with
Td?&amp;gt;0

which gives,

VII. . . ij/0
=

0, iJ/
O = 0, ^&quot;0

=
0, . . ^(-)0 = 0, i//0 = dr/,

we find (by 341, (8.), (9.), comp. again 342, XII.) that

VIII. . . lim.(Far:^a?)=0.
x=0

(5.) But these two new functions, Fx and
^/j-, are formed from the dividend and

the divisor of the quotient Q in II., by changing dq to x&q\ and (comp. 342, (3.))

instead of thus multiplying a given quaternion differential dg, by a small and indefi

nitely decreasing scalar, x, we may indefinitely diminish the tensor, Tdq, without

changing the versor, Udg .

(G.) And even ifVdq be changed, while the differential dq is thus made to tend

to zero, we can always conceive that it tends to some, limit ; which limiting or ulti

mate value of that versor Udj may then be treated as if it were a constant one, with

out affecting the limit of the quotient Q.

(7.) The theorem, as above enunciated, is therefore fully proved ;
and we are at

liberty to choose, in any application, between the two forms of statement, 342 and

375, of which one is more convenient at one time, and the other at another.
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SECTION 4 On Osculating Planes, and Absolute Normals, to

Curves of Double Curvature.

376. The variable vector p t of a curve in space may in general

be thus expressed, with the help of Taylor s Series (corap. 370,

(10):
I.

../&amp;gt;&amp;lt;

=
/&amp;gt;

+ tp
f + \$up&quot;,

with uQ
= 1 ;

P-&amp;gt; P -&amp;gt; P&quot;&amp;gt;

u being here abridged symbols for
/o p o, p

f/
o-&amp;gt;

ut\ and tne

product up&quot; being a vector, although the factor u is generally a qua

ternion (comp. 370, (5.)). And the different terms of this expres

sion I. may be thus constructed (compare the annexed Figure 77)

II. . . p = OP ; tp*
= PT ; %t*up&quot;

= TQ ;

while III... /O*
= OQ, and tp

1 +
%Pup&quot;

= PQ ;

the line TQ, or the term ^Pup
ff

, being thus what

maybe called the deflexion of thecwn;epQR, at Q,

from its tangent PT at P, measured in a direction

which depends on the law according to which p t

varies with t, and on the distance of Q from p.

The equation of the plane of the triangle PTQ, is

rigorously (by II.) the following, with ia for its

variable vector,

IV.. .
0=Sttf&amp;gt;V(&quot;-rt;

this plane IV. then touches the curve at P, and (generally) cuts it at

0,; so that if the point Q, be conceived to approach indefinitely top,

the resulting formula,

v. . . Q = $p&quot;p (u-p\ or v/ - o =
s/&amp;gt;y(w-/&amp;gt;),

is the equation of the plane PTQ in that limiting position, in which it

is called the osculating plane, or is said to osculate to the curve PQR,

at the point P.

(1.) If the variable vector p be immediately given as a function p s of a variable

scalar, s, which is itself a. function of the former scalar variable t,
we shall then

have (comp. 331) the expressions,

VI. . . p t
= s Dsp s, p&quot;

t
= s &quot;Dsps+s *Ds

2
p s,

with s = D,s, s&quot;=D^s;

thus the vector
p&quot; may change, even in direction, when we change the independent

scalar variable ; but
p&quot;

will always be a line, either in or parallel to the osculating

plane ; while p will always represent a tangent, whatever scalar variable may be

selected.

(2.) As an example, let us take the equation 314, XV., or 369, XIII., of the



512 ELEiMENTS OF QUATERNIONS. [BOOK III.

helix. With the independent variable t of that equation, we have (comp. 369, XIV.)
the derived expressions,

VII. . . = c + a*i/3, P&quot;

=

p&quot;
has therefore here (comp. 369, (8.)) the direction of the normal to the cylinder ;

and consequently, the osculating plane to the helix is a normal plane to the cylinder

of revolution, on which that curve is traced : a result well known, and which will

soon be greatly extended.

(3.) When a curve of double curvature degenerates into & plane curve, its oscu

lating plane becomes constant, and reciprocally. The condition of planarity of a

curve in space may therefore be expressed by the equation,

VIII. . . UVp p&quot;

= + a constant unit line
;

or, by 335, II., and 338, VIII.,

,

or finally, X. . . Sp p&quot;p&quot;

=
0, or XI. . .

p&quot; \\\ p , p&quot;.

(4.) Accordingly, for a plane curve, if X be a given normal to its plane, we have

the three equations,

XII. . . SXp = 0, SXp&quot;
=

0, SXp
&quot; =

;

which conduct, by 294, (11.), to X.

(5.) For example, if we had not otherwise known that the equation 337, (2.)

represented a plane ellipse, we might have perceived that it was the equation of some

plane curve, because it gives the three successive derivatives,

XIII. . . p =-- ^ Vai/3,

which are complanar lines, the third having a direction opposite to the first.

(6.) And generally, the formula X. enables us to assign, on any curve of double

curvature, for which p is expressed as a function of t, the points* at which it most

resembles a plane curve, or approaches most closely to its own osculating plane.

377. An important and characteristic property of the osculating

plane to a curve of double curvature, is that the perpendiculars let

fall on it, from points of the curve near to the point of osculation,

are small of an order higher than the second, if their distances from

that point be considered as small of i\\e first order.

(1.) To exhibit this by quaternions, let us begin by considering an arbitrary

plane,

*
Namely, in a modern phraseology, the places of four-point contact with a

plane. The equation, Vp p&quot;= 0, indicates in like manner the places, if any, at which

a curve has three-point contact with a right line. For curves of double curvature,

these are also called points of simple and double inflexion.
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I. . . SX (w - p) = 0, with T\ = 1,

drawn through a point p of the curve. Using the expression 376, I., for the vector

OQ, or pt, of another point Q of the same curve, we have, for the perpendicular dis

tance of Q from the plane I., this other rigorous expression,

II. . . S\(p t
-
p) = tS\p + f^SAwp&quot; ;

which represents, in general, a small quantity of theirs* order, if* be assumed to

be such.

(2.) The expression II. represents however, generally, a small quantity of the

second order, if the direction of A. satisfy the condition,

III. ..SX// = 0;

that is, if the plane I. touch the curve.

(3.) And if the condition,
IV. . . SAp&quot;=0,

be also satisfied by X, then, but not otherwise, the expression II. tends to bear an

evanescent ratio to tz
,
or is small of an order higher than the second.

(4.) But the combination of the two conditions, III. and IV., conducts to the

expression,
V. ..X = + UVp p&quot;;

comparing which with 376, V., we see that the property above stated is one which

belongs to the osculating plane, and to no other.

378. Another remarkable property* of the osculating plane to a

curve is, that it is the tangent plane to the cone ofparallels to tangents

(369, (6.)), which has its vertex at the point of osculation.

(1.) In general, if p &amp;lt;px

be (comp. 369, I.) the equation of a curve in space,

the equation of the cone which has its vertex at the origin, and passes through this

curve, is of the form,
I. . . p = y$x ,

in which x and y are two independent and scalar variables.

(2.) We have thus the two partial derivatives,

II. . . Dar/o
=

y&amp;lt;p x, Dyp = (px ;

and the tangent plane along the side (x) has for equation,

III. . .
= S(w . 0a? . a) ;

or briefly, III . . . = Sw00 .

(3.) Changing then x, 0, ,
w to

t, p , p&quot;,
o&amp;gt; p, we see that the equation 376,

V., of the osculating plane to the curve 376, I., is also that of the tangent plane to

the cone ofparallels, &c., as asserted.

379- Among all the normals to a curve, at any one point, there

are two which deserve special attention ; namely the one which is in

* The writer does not remember seeing this property in print ; but of course it

is an easy consequence from the doctrine of infinitesimals, which doctrine however it

has not been thought convenient to adopt, as the basis of the present exposition.

3 u
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the osculating plane, and is called the absolute (or principal) normal;

and the one which is perpendicular to that plane, and which it has

been lately proposed to name the binormal.* It is easy to assign ex

pressions, by quaternions, for these two normals, as follows.

(1.) The absolute normal, as being perpendicular to p ,
but complanar &quot;with p

and
p&quot;,

has a direction expressed by any one of the following formulae (comp. 203,

334):
I. . . Vp p .p

-
1

;
or IT. . . dUp ;

or III. . . dUdp.

(2.) There is an extensive classf of cases, for which the following equations hold

good:
IV. . . Tp = const.

;
V. . . p

2 = const.
;

VI. .. Sp p&quot;

=
;

and in all such cases, the expression I. reduces itself to
p&quot;,

which is therefore then a

representative of the absolute normal.

(3.) For example, in the case of the helix, with the equation several times be

fore employed, the conditions (2.) are satisfied ; and accordingly the absolute nor

mal to that curve coincides with the normal
p&quot;

to the cylinder, on which it is traced ;

the locus of the absolute normal being here that screw surface or ITelicoid, which

has been already partially considered (comp. 314, (11.), and 372, (4.)).

(4.J And as regards the binormal, it may be sufficient here to remark, that be

cause it is perpendicular to the osculating plane, it has the direction expressed by
one or other of the two symbols (comp. 377, V.),

VII. . . Vp p&quot;,
or VII . . . Vdpd

2
p.

(5.) There exists, of course, a system of three rectangular planes, the osculating

plane being one, which are connected with the system of the three rectangular lines,

the tangent, the absolute normal, and the binormal, and of which any one who has

studied the Quaternions so far can easily form the expressions.

(6.) And a construction^, for the absolute normal may be assigned, analogous

to and including that lately given (378) for the osculating plane, as an interpreta

tion of the expression II. or III., or of the symbol dUp or dUdp. From any origin

o conceive a system of unit lines (Up or Udp) to be drawn, in the directions of the

successive tangents to the given curve of double curvature ; these lines will terminate

* By M. de Saint-Venant, as being perpendicular at once to two consecutive ele

ments of the curve, in the infinitesimal treatment of this subject. See page 261 of the

very valuable Treatise on Analytic Geometry of Three Dimensions (Hodges and Smith,

Dublin), by the Rev. George Salmon, D. D., which has been published in the present

year (1862), but not till after the printing of these Elements of Quaternions (begun in

1860) had been too far advanced, to allow the writer of them to profit by the study

of it, so much as he would otherwise have sought to do.

t Namely, those in which the arc ofthe curve, or that arc multiplied by a scalar

constant, is taken as the independent variable.

J This construction also has not been met with by the writer in print, so far as

he remembers
;
but it may easily have escaped his notice, even in the books which he

has seen.
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on a certain spherical curve; and the tangent, say ss
,
to this new curve, at the point

s which corresponds to the point P of the old one, will have the direction of the ab

solute normal at that old point.

(7.) At the same time, the plane oss of the great circle, which touches the new

curve upon the unit sphere, being the tangent plane to the cone ofparallels (378),

has the direction of the osculating plane to the old curve
;
and the radius drawn to

its pole is parallel to the binormal.

(8.) As an example of the auxiliary (or spherical] curve, constructed as in (6.),

we may take again the helix (369, XIII., &c.) as the given curve of double curva

ture, and observe that the expression 369, XIV., namely,

VIII. . . p = ca 4-
- a &amp;lt;+1

/3, gives IX. . . p
2 = - c2 + ^ = const (comp. (3.));

whence Tp is constant (as in IV.), and we have the equation (comp. 369, XV.

XIX.),
/ 7r

2
/3

2 Vi
X. . . SaUjo = -c( c2

J

= -cos a = const.,

a being again the inclination of the helix to the axis of its cylinder ;
which shows

that the new curve is in this case a plane one, namely a certain small circle of

the unit sphere.

(9.) In general, if the given curve be conceived to be an orbit described by a

point, which moves with a constant velocity taken for unity, the auxiliary or sphe

rical curve becomes what we have proposed (100, (5.)) to call the hodograph of that

motion.

(10.) And if the given curve be supposed to be described with a variable velo

city, the hodograph is still some curve upon the cone ofparallels to tangents.

SECTION 5. On Geodetic Lines, and Families of Surfaces.

380. Adopting as the definition of a geodetic line, on any proposed

curved surface, the property that it is one of which the osculating

plane is always a normal plane to that surface, or that the absolute

normal to the curve is also the normal to the surface, we have two

principal modes of expressing by quaternions this general and charac

teristicproperty . For we may either write,

I. . . Svp p&quot;

=
0, or II. . . Svdp&p = 0,

to express that the normal v to the surface (cornp. 373) is perpen
dicular to the binormal Vp p

ff or
Vd/&amp;gt;d

2
/&amp;gt;

to the curve (comp. 379,

VII. VII .) ;
or else, at pleasure,

III. . . Vv(W) = 0, or IV. . . V^dUd/j = 0,

to express that
(

the same normal v has the direction of the absolute

normal (Up ) or dUd/a (comp. 379 II.
HI.)&amp;gt;

to tne same geodetic

line. And thus it becomes easy to deduce the known relations of

such lines (or curves) to some important families ofsurfaces, on which
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they can be traced. Accordingly, after beginning for simplicity

with the sphere, we shall proceed in the following sub-articles to de-,

termine the geodetic lines on cylindrical and conical surfaces, with

arbitrary bases; intending afterwards to show how the correspond

ing lines can be investigated, upon developable surfaces, and surfaces

of revolution.

(1.) On a sphere, with centre at the origin, we have v
j| p, and the differential

equation IV. admits of an immediate integration ;* for it here becomes,

V. . . 0=VpdUdp = dVpUdp, whence VI. . . V
j
oUd

j

o = w, and VII. . . Swp = 0,

w being some constant vector
;
the curve is therefore in this case a great circle, as

being wholly contained in one diametral plane.

(2.) Or we may observe that the equation,

VIII. . . Spp p&quot;=0, or IX. . . Spdpd2|0 = 0,

obtained by changing v to p in I. or II., has generally for a first integral (comp.

335, (!.))&amp;gt;
whether Tp be constant or variable,

X. . . UVpp = UVpdp = a) const.
;

it expresses therefore that p is the vector of some curve (or line) in a plane through

the origin ; which curve must consequently be here a great circle, as before.

(3.) Accordingly, as a verification of X., if we write

XI. . . p = ax + fly, x and y being scalar functions of t,

where t is still some independent scalar variable, and a, {3 are two vector constants,

we shall have the derivatives,

XII. . . p = ax + (By , p&quot;

= ax&quot; +
(3y&quot; \ \ \ p, p ;

so that the equation VIII. is satisfied.

(4.) For an arbitrary cylinder, with generating lines parallel to a fixed line a,

we may write,

XIII. . . Sai/ = 0, XIV. . . SadUdp = 0, XV. . . SaUdp = const.
;

a geodetic on a cylinder crosses therefore the generating lines at a constant angle,
and consequently becomes a right line when the cylinder is unfolded into a plane :

both which known properties are accordingly verified (comp. 369, (5.), and 376,

(2.)) for the case of a cylinder of revolution, in which case the geodetic is a helix.

(5.) For an arbitrary cone, with vertex at the origin, we have the equations,

XVI. . . Svp = 0, XVII. . . SpdUdp = 0,

XVIII. . . dSpUdp = S(dp.Udp) = - Tdp ;

multiplying the last of which equations by 2SpUdp, and observing that -
2Spdp

= - d . p -, we obtain the transformations,

* We here assume as evident, that the differential of a variable cannot be con

stantly zero (comp. 335, (7.)) ;
and we employ the principle (comp. 338, (5.)),

that V. dp Udp = - VTdp = 0.
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XIX. . . = d{(SpUdp)2-f-p
2
}
= d.(VpUdp), XX. . . TVpUdp = const.

;

the perpendicular from the vertex, on a tangent to any one geodetic -upon a cone, has

therefore a constant length; and all such tangents touch also a concentric sphere,*

or one which has its centre at the vertex of the cone.

(6.) Conceive then that at each point P or p of the geodetic a tangent PT or P T

is drawn, and that the angles OTP, OT P are right ;
we shall have, by what has just

been shown,

XXI. . . or = or = const. = radius of concentric sphere ;

and if the cone be developed (or unfolded) into a plane, this constant or common

length, of the perpendiculars from o on the tan

gents, will remain unchanged, because the length

OP and the angle OPT are unaltered by such de

velopment ;
the geodetic becomes therefore some

plane line, with the same property as before
;

and although this property would belong, not

only to a right line, but also to a circle with o

for centre (compare the second part of the an

nexed Figure 78), yet we have in this result

merely an effect of the foreign factor SpUdp,
which was introduced in (5.), in order to facili

tate the integration of the differential equation
J^*

XVIII., and which (by that very equation) cannot be constantly equal to zero. We
are therefore to exclude the curves in which the cone is cut by spheres concentric

with it : and there remain, as the sought geodetic lines, only those of which the de

velopments are rectilinear, as in (4 ).

(7.) Another mode of interpreting, and at the same time of integrating, the

equation XVIII., is connected with the interpretation of the symbol Tdp ;
which can

be proved, on the principles of the present Calculus, to represent rigorously the dif

ferential ds of the arc (*) of that curve, whatever it may be, of which p is the varia

ble vector ; so that we have the general and rigorous equation,

XXII. . . Tdp = ds, if s thus denote the arc :

whether that arc itself, or some other scalar, t, be taken as the independent variable;

and whether its differential ds be small or large, provided that it be positive.

(8.) In fact if we suppose, for the sake of greater generality, that the vector p
and the scalar s are thus both functions, pt and st, of some one independent and sca

lar variable, t, our principles direct us first to take, or to conceive as taken, a submul-

tiple, n~ }

dt, of the finite differential dt, considered as an assumed and arbitrary in

crement of that independent variable, t
;

to determine next the vector pt+H
~
l
dt, and

the scalar st+nr l
&amp;lt;it,

which correspond to the point p^n
~

d&amp;lt;
of the curve on which pt ter

minates in P*, and of which st is the arc, p7p*&amp;gt;
measured to

P&amp;lt;
from some fixed point

PO on the same curve
;

to take the differences,

* When the cone is of the second order, this becomes a case of a known theorem

respecting geodetic lines on a surface of the same second order, the tangents to any
one of which curves touch also a confocal surface.
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which represent respectively the directed chord, and the length, of the arc
FtPt+n~*&amp;lt;u,

which arc will generally be small, if the number n be large, and will indefinitely di

minish when that number tends to infinity; to multiply these two decreasing diffe

rences, of pt and st, by n
;
and finally to seek the limits to which the products tend,

when n thus tends to oc : such limits being, by our definitions, the values of the two

sought and simultaneous differentials, dp and ds, which answer to the assumed va

lues of t and dt. And because the small arc, As, and the length, TAp, of its small

chord, in the foregoing construction, tend indefinitely to a ratio of equality, such

must be the rigorous ratio of ds and Tdp, which are (comp. 320) the limits of their

equimultiples.

(9.) Admitting then the exact equality XXII. of Tdp and As, at least when the

latter like the former is taken positively, we have only to substitute ds for - Tdp in

the equation XVIII., which then becomes immediately integrable, and gives,

XXIII. . . s + SpUdp = s - S (p : Udp) = const. ;

where S(p :lldp) denotes the projection TP, of the vector p or OP, on the tangent to

the geodetic at P, considered as a positive scalar when p makes an acute angle

with dp, that is, when the distance Tp or OP from the vertex is increasing ; while s

denotes, as above, the length of the arc POP of the same curve, measured from some

fixed point PO thereon, and considered as a scalar which changes sign, when the va

riable point P passes through the position PO

(10.) But the length of TP does not change (comp. (6.)), when the cone is deve

loped, as before
;
we have therefore the equations (comp. again Fig. 78),

^-S _ /-N _ /~^ _ _
XXIV. . . POP TP = const. = POP - T P

,
XXV. . . PP = T P TP,

which must hold good both before and after the supposed development of the conical

surface ; and it is easy to see that this can only be, by the geodetic on the cone be

coming a right line, as before. In fact, if OT in the plane be supposed to intersect

the tangent TP in a point T\ and if P be conceived to approach to P, the second

member of XXV. bears a limiting ratio of equality to the first member, increased or

diminished by TT ;
which latter line, and therefore also the angle TOT between the

perpendiculars on the two near tangents, or the angle between those tangents them

selves, if existing, must bear an indefinitely decreasing ratio to the arc PP
;
so that

the radius of curvature of the supposed curve is infinite, or T coincides with T, and

the development is rectilinear as before.

(11.) The important and general equation, Tdp = ds (XXII.), conducts to many
other consequences, and may be put under several other forms. For example, we

may write generally,

XXVI. . . TDsp = 1, XXVII. . . (Dsp)
2 + 1 = 0;

also XXVIII. . . (n,p)2 + (D,s)2
=

0, or XXIX. . . p H s 2 =
0,

if p and s be the first derivatives of p and s, taken with respect to any independent

scalar variable, such as t
; whence, by continued derivation,

XXX. . . Sp p&quot;+s
s&quot; = 0, XXXI. . . Sp p&quot;

+
p&quot;2

+ sV&quot; + s&quot;2=0, &c.

(12.) And if the arc s be itself taken as the independent variable, then (comp.

379, (2.)) the equations XXIX., &c., become,

XXXII. .. p
* + 1 = 0, Sp p&quot;

=
0, Sp p &quot;-f ^ 2 = 0, &c.
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381. In general, if we conceive (comp. 372, I.) that the vector p

of a given surface is expressed as a given function of two scalar varia

bles, x and ?/, whereof one, suppose y, is regarded at first as an un

known function of the other, so that we have again,

!.../&amp;gt;
=
0(#, ?/),

but now with II. . . y =fx,

where theform of is known, but that of/is sought; we may then

regard p as being implicitly a function of the single (or independent)

scalar variable, x, and may consider the equation,

III. ..p = $(x,fx\

as being that of some curve on the given surface, to be determined by

assigned conditions. Denoting then the unknown total derivative

D&amp;lt;p(x,fx) by /&amp;gt; , but the known partial derivatives of the same first

order by D^0 and D
y0, with analogous notations for orders higher

than the first, we have (comp. 376, VI.) the expressions,

IV. . p = D,0 + y T&amp;gt;

y &amp;lt;t&amp;gt;, p&quot; =D/0 + 2/0,0,0 + y
2

c/0 + y&quot;v$,
&c. ;

in which y = vxy -f x, y
// = Dj!y=ff

Xj &c. Hence, writing for the

normal v to the surface the expression,

V. . . v = V(D,0 . D,0)
= V. 0,00,0, comp. 372, V.,

or this vector multiplied by any scalar, the equation 380, I. of a

geodetic line takes this new form,

vi. . . o = s^y / = s(V.D,0D J/0.v/&amp;gt;y
/

);

or, by a general transformation which has been often employed

already (comp. 352, XXXI., &c.),

VII. . . 0=S&amp;gt;
/D.S /

D-S&amp;gt; D

and thus, by substituting the expressions IV. for p and
p&quot;,

we ob

tain an ordinary (or scalar) differential equation, of the second order,

in x and y, which is satisfied by all the geodetics on the given surface,

and of which the complete integral (when found) expresses, with two

arbitrary and scalar constants, the/om of the scalarfunctionf in II.,

or the law of the dependence of y on x, for the geodetic curves in

question.

(1.) As&quot;an example, let us take the equation,

VIII. . . p = (a?, y}=ytyx, comp. 378, I,

of a cone with its vertex at the origin ;
which cone becomes a known one, when the

form of the vector function ty is given, that is, when we know a guiding curve p = i|/#,

through which the sides of the cone all pass. We have here the partial derivatives,
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IX. . . D.C0
= yDxtyx =y&amp;lt;/&amp;gt; ,

vy &amp;lt;j&amp;gt;

= $x = / , comp. 378, II.
;

and X. . . 0*20 = yoxtyx = yty&quot;, D^D^ = ^ , Dj,
2 =

;

the expressions IV. become, then,

XI. . . p = yty + y ty, p&quot;

=yV + 2y \// + y ty ;

and since only the direction of the normal is important, we may divide V. by y,

and write,
XII. . . v = ViH/ .

(2.) The expressions XI. and XII. give (comp. VI. and VII.) for the geodetics

on the cone VIII., the differential equation of the second order,

XIII. . . =

- SW + 2y f + y&quot;SW) (ySW +
y&amp;gt;

2
),

in which
i|/

2 and
i//

2 are abridged symbols for (i^r)
2 and (^/ a;)

2
;
but this equation in

x and y may be greatly simplified, by some permitted suppositions.

(3.) Thus, we are allowed to suppose that the guiding curve (1.) is the intersec

tion of the cone with the concentric unit sphere, so that

XIV. ..T^=l, ^2 = -l, S-^ =0, SH&quot; + ^ 2 = 0;

and if we further assume that the arc of this spherical curve is taken as the inde

pendent variable, x, we have then, by 380, (12.), combined with the last equation

XIV.,
XV. . . Tftf= 1, ip = - 1, Si//f = 0, SW = - V* = 1.

(4.) With these simplifications, the differential equation XIII. becomes,

XVI. . . 0~(y-y&quot;)(-y)-(-2y )(-y )=yy&quot;-2y 2-y2
;

and its complete integral is found ly ordinary methods to be,

XVII. . . y = 6 sec (x + c),

in which 6 and c are two arbitraiy but scalar constants.

(5.) To interpret now this integrated and scalar equation in cc and y, of the geo

detics on an arbitrary cone, we may observe that, by the suppositions (3.), y repre

sents the distance, Tp or op, from the vertex o, and x 4- c represents the angle AOP,
in the developed state of cone and curve, from some fixed line OA in the plane, to the

variable line OP
;
the projection of this new OP on Hintfixed line OA is therefore con

stant (being
=

i, by XVIL), and the developed geodetic is again found to be a right

line, as before.

382. Let ABCDE . . . (see the annexed Figure 79) be any given se

ries of points in space. Draw the succes-

sive right lines, AB, BC, CD, DE, . . and pro-

long them to points Br

,
c

,
D

,
E

,
. . . the

lengths of these prolongations being ar- A E

bitrary ; join also B C
,
C D

,
D E

, ... We Figl 79

shall thus have a series ofplane triangles, B BC , c rCD
,
D rDE r

, . . . all ge

nerally in different planes ; so that BCD C/B , CDE D^, . . . are generally

gauche pentagons, while BCDE D C B is a gauche heptagon, &c. But we
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can conceive the first triangle B BC to turn round its sideBCc
,
till it

comes into the plane of the second triangle, C CD
; which will trans

form the first gauche pentagon into a plane one, denoted still by
BCD C B . We can then conceive this plane figure to turn round its

side CDD
,
till it comes into the plane of the third triangle, D DE ;

whereby the first gauche heptagon will have become a plane one, de

noted as before by BCDE D C B : and so we can proceed indefinitely.

Passing then to the limit, at which the points ABCDE . . . are conceived

to be each indefinitely near to the one which precedes or follows it in

the series, we conclude as usual (comp. 98, (12.)) that the locus of

the tangents to a curve of double curvature is a developable surface : or

that it admits of being unfolded (like a cone or cylinder) into a plane,

without any breach of continuity. It is now proposed to translate

these conceptions into the language of quaternions, and to draw from

them some of their consequences: especially as regards the determi

nation of the geodetic lines, on such a developable surface.

(1.) Let tyr, or simply i//,
denote the variable vector of a point upon the curve,

or cusp-edge, or edge of regression of the developable, to which curve the generating

lines of that surface are thus tangents, considered as a. function i//
of its arc, x, mea

sured from some fixed point A upon it
;
so that while the equation of the surface

will be of the form (comp. 100, (8.)),

T. . . p = $(x, y) = ^x + y^ x ^+y^ i

y being a second scalar variable, we shall have the relations (comp. 381, XV.),

II. . .T// x=l, &amp;lt;//

2 = -l, Sipy=0, Si/Ap
&quot; =

-i//&quot;a
= z 2

,
if

z=Ti//&quot;.

(2.) Hence III. . . D*0 = ^ + y^&quot;,
Dy

=
i// ;

IV.. . p = (l+y )^ + y^&quot;, p&quot;=y&amp;gt;
+ (l + 2y )T//&quot;

+ y^ &quot;;

and V. . . j/ =
Vi//4/&quot;

= ^ ^&quot;, multiplied by any scalar.

(3.) The differential equation of the geodetics may therefore be thus written

(comp. 381, XIIL),

VI. . . =
S(V^&quot;.Vp&amp;gt;&quot;;

= Sp ^ Sp

in which, by (1.) and (2.),

fSpV = -yz*,
*

lSp&amp;gt; =-(l + 2y )z-y l

the equation becomes therefore, after division by -
z,

viu. . . = z{(i +y )
2 + O2)

2
} 4 (i +y ) (y*) -yVi

or simply,

2 + =0, or IX . . . TdJ/ + d=0, if X. . . tan ~, -ilL.1+ 1+
IX.

(4.) To interpret now this very simple equation IX. or IX
.,
we may observe

that z, or T// ,
or Tdi//: da;, expresses the limiting ratio, which the angle between

two near tangents i// and // + At// ,
to the cusp-edge (1.), bears to the sma# arc Aa;

3 x
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of that curve which is intercepted between their points of contact
;
while v is, by IV.,

that other angle, at which such a variable tangent, or generating line of the deve

lopable, crosses the geodetic on that surface ;
and therefore its derivative, v or dr : dor,

represents the limiting ratio, which the change Aw of this last angle, in passing from

one generating line to another, bears to the same small arc Ao; of the curve which

those lines touch.

(5.) Referring then to Figure 79, in which, instead of tiro continuous curves,

there were two gauche polygons, or at least two systems of successive right lines, con

nected by prolongations of the lines of the first system, we see that the recent formula

IX. or IX . is equivalent to this limiting equation,

CD C - BC B
XI. . . lira.

C CD

but these three angles remain unaltered, in the development of the surface : the bent

line B C D for space becomes therefore ultimately a straight line in the plane, and si

milarly for all other portions of the original polygon, or twisted line, B C D E . .
.,

of

which B C D was a part.

(6.) Returning then to curves and surfaces in space, the quaternion analysis (3.)

is found, by this simple reasoning,* to conduct to an expression for the known and

characteristic property of the geodetics on a developable : namely that they become

right lines, as those on cylinders (380, (4.)), and on cones (380, (6.) and (10.), or

381, (5.)), were lately seen to do, when the surface on which they are thus traced

is unfolded into a plane.

383. This known result, respecting geodetics on developables, may
be very simply verified, by means of a new determination of the ab

solute^ normal (379) to a curve in space, as follows.

(1.) The arc s of any curve being taken for the independent variable, we may
write (comp. 376, I.), by Taylor s Series, the following rigorous expressions,

I. . . p.,
- p - sp + $

2
u_,p&quot;, po = p, p*

= p + sp + |*
8

,p
w

,
with u =

1,

for the vectors of three near points, p_ g ,
PO , P, on the curve, whereof the second bi-

sects the arc, 2s, intercepted between the first and third.

(2.) If then we conceive the parallelogram P_SV ()
PSRS to be completed, we shall

have, for the two diagonals of this new figure these other rigorous expressions,

II. .. p.,p,= p,-p.,= 2p + s2(s- _,)p&quot;;

III. . . P R =
PS + p_8

-
2p =

i*-( s + _s)p&quot; ;

* In the Lectures (page 581), nearly the same analysis was employed, for geo
detics on a developable ;

but the interpretation of the result was made to depend on

an equation which, with the recent significations of
i//

and r, may be thus written, as

the integral of IX
.,

v + jTdi//
= const.

;
where jTd^ represents tliQ finite angle be

tween the extreme tangents to infinite arc jTdi//, or A:r, of the cusp-edge, when
that curve is developed into a plane one.

f Called also, and perhaps more usually, the principal normal.
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which give the limiting equations,

IV. . . lim. s^p-gPs = 2p ;
V. . . lim. S^PQKS

=
p&quot;.

5=0 S=0

(3.) But the length r_sps of what may be called the long diagonal, or the chord

of the double arc, 2s, is ultimately equal to that double arc ; we have therefore, by

IV., the equation,

VI. . . Tp =
1, if p = Dsp, and if* denote the arc,

considered as the scalar variable on which the vector p depends : a result agreeing

with what was otherwise found in 380, (12.)-

(4.) At the same time, since the ultimate direction of the same long diagonal is

evidently that of the tangent at PO ,
we see anew that the same first derived vector p

represents what may be called the unit-tangent* to the curve at that point.

(5.) And because the lengths of the two sides P_PO and POPS ,
considered as chords

of the two successive and equal arcs, s and *, are ultimately equal to them and to

each other, it follows that the parallelogram (2.) is ultimately equilateral, and there

fore that its diagonals are ultimately rectangular; but these diagonals, by IV. and

V., have ultimately the directions of p and
p&quot; ;

we find therefore anew the equation,

VII. . . Sp |&quot;

=
0, if the arc be the independent variable,

which had been otherwise deduced before, in 380, (12.).

(6.) But under the same condition, we saw (379, (2.)) that the second derived

vector
p&quot;

has the direction of the absolute normal to the curve
;
such then is by V.

the ultimate direction of what we may call the short diagonal P RS,
constructed as

in (2.) ; or, ultimately, the direction of the bisector of the (obtuse) angle P^POP*. be

tween the two near and nearly equal chords from the point PO : while the plane of

the parallelogram becomes ultimately the osculating plane.

(7.) All this is quite independent of the consideration of any surface, on which

the curve may be conceived to be traced. But if we now conceive that this curve

is formed from a right line B C D . . . (comp. Fig. 79), by wrapping round a develop

able surface a plane on which the line had been drawn, and if the successive por

tions B C
,
C D

,
. . of that line be supposed to have been equal, then because the two

right lines C B and C D originally made supplementary angles with any other line

c c in the plane, the two chords C B and C D of the curve on the developable tend to

make supplementary angles with the generatrix c c of that surface
;
on which ac

count the bisector (6.) of their angle B C D tends to be perpendicular to that generat

ing line c c, as well as to the chord B D
,
or ultimately to the tangent to the curve at

c
,
when chords and arcs diminish together. The absolute normal (6.) to the curve

thus formed is therefore perpendicular to two distinct tangents to the surface at c
,

and is consequently (comp. 372) the normal to that surface at that point ; whence,

by the definition (380), the curve is, as before, a geodetic on the developable.

(8.) As regards the asserted rectangularity (7.), of the bisector of the angle

B C D to the line c c, when the angles CC B and CC D are supposed to be supple

mentary, but not in one plane, a simple proof may be given by conceiving that the

Compare the Note to page 152.
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right line B C is prolonged to
c&quot;,

in such a manner that C C&quot;= C D
;
for then tKese

two equally long lines from c make equal angles with the line c c, so that the one may
be formed from the other by a rotation round that line as an axis; whence C&quot;D

,

\vhich is evidently parallel to the bisector of B C D
,

is also perpendicular to c c.

(9.) In quaternions, if a and p be any two vectors, and if* be any scalar, we

have the equation,
VIII. . . S

which is, by 308, (8.), an expression for the geometrical principle last stated.

384. The recent analysis (382) enables us to deduce with ease,

by quaternions, other known and important properties of develop

able surfaces: for instance, the property that each such surface may
be considered as the envelope of a series ofplanes, involving only one

scalar and arbitrary constant (or parameter) in their common equation;

and that each plane of this series osculates to the cusp-edge of the de

velopable.

(I.) The equation of the developable surface being still,

1. . . p = (a;, y) =^ + y$ x = $ + yf, as in 382, I.,

its normal v is easily found to have as in 382, V., the direction of
V*J/4&amp;gt;&quot;,

whether

the scalar variable x be, or be not, the arc of the cusp- edge, of which curve the

equation is,

II. ..p = $x .

(2.) Hence, by 373, VII., the equation of the tangent plane takes the form,

III.. .
SanJn//&quot;

= SM/ V/&quot;,

from which the second scalar variable y thus disappears : this common equation, of

all the tangent planes to the developable, involves therefore, as above stated, only

one variable and scalar parameter, namely x
;
and the envelope of all these planes is

the developable surface itself.

(3.) The plane III., for any given value of this parameter x, that is, for any given

point of the cusp-edge, touches the surface along the whole extent of the generating

line, which is the tangent to this last curve.

(4.) And by comparing its equation III. with the formula 376, V., we see at

once that this plane osculates to the same cusp-edge, at the point of contact of that

curve with the same generatrix of the developable.

385. If the reciprocals of the perpendiculars, let fall from a given

origin, on the tangent planes to a developable surface, be considered

as being themselves vectors from that origin, they terminate on a

curve, which is connected with the cusp-edge of the developable by
some interesting relations of reciprocity (comp. 373, (21.)): in such

a manner that if this new curve be made the cusp-edge of a new de

velopable, we can return from it to the former surface, and to its cusp-

edge, by a similar process of construction.
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(1.) In general, if \^x and x* or briefly \|/
and

x&amp;gt;
be two vector functions of a

scalar variable #, such that x may be deduced from ^/ by the three scalar equa

tions,
I. . . Si//x

=
c, S4/x = 0, S4/&quot;x

=
0,

in which S^% is written briefly for S(^.x*) and c is any scalar constant, we have

then this reciprocal system of three such equations,

II. ..SX^ = c,

an intermediate step being the equation,

III. . . Sf
(2.) Hence, generally, ^

IV... ifx=
W

then V... *=

(3.) But if p be the variable vector of a curve in space, and p , p&quot;
its first and

second derivatives with respect to any scalar variable, then, by the equation 376, V.

of the osculating plane to the curve, we have the general expression,

VI. . .&amp;lt;

- = perpendicular from origin on osculating plane;
Vpp

so that if ip and x be considered as the vectors of two curves, each vector is c x the

reciprocal of the perpendicular, thus let fall from a common point, on the osculating

plane to the other.

(4.) We have therefore this Theorem:

If, from any assumed point, o, there be drawn lines equal to the reciprocals of

the perpendicularsfrom that point, on the osculating planes to a given curve ofdou

ble curvature, or to those perpendiculars multiplied by any given and constant sca

lar ; then the locus of the extremities of the lines so drawn will be a second* curve,

from which we can return to the first curve by a precisely similar process.

386. The theory of developable surfaces, considered as envelopes

ofplanes -with one scalar and variable parameter (384), may be addi

tionally illustrated by connecting it with
Taylor&quot;

1

s Series ,
as follows.

(1.) Let at denote any vector function of a scalar variable t, so that

I. . . at = o + tuta o = a + tua
,

with UQ = 1 ;

or, by another step in the expansion,

II. . . at= ao+ &amp;lt;a o+ ^t
2

vta&quot;o
= a + ta + %t?va&quot;, VQ = 1

;

where u and v are generally quaternions, but ua and va&quot; are vectors.

* The two curves may be said to be polar reciprocals, with respect to the (real or

imaginary) sphere, p
2 = r; and an analogous relation ofreciprocity exists generally,

when the points of one curve are the poles of the osculating planes of the other, with

respect to any surface of the second order: corresponding tangents being then reci

procal polars. Compare the theory of developables reciprocal to curves, given in

Salmon s Analytical Geometry of Three Dimensions, page 89; see also Chapter XL

(page 224, &c.), of the same excellent work.
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(2.) Then, as the rigorous equation of the variable plane, the reciprocal of the

perpendicular on which from the origin is at, we have either,

III. . .
- 1 = Satp

= Sap -i- tSua p,

or

IV. . .
- 1 = Sap + tSa p + %t

2
Sva&quot;p,

according as we adopt the expression I., or the equally but not more rigorous ex

pression II., for the variable vector a.

(3.) Hence, by the form III., the line of intersection of the two planes, which

answer to the two values and t of the scalar variable, or parameter, t, is rigorously

represented by the system of the two scalar equations,

V. ..Sap+l =
0, Sa p = 0.

(4.) And the limiting position of this right line V., which answers to the con

ceived indefinite approach of the second plane to the first, is given with equal rigour

by the equations,
VI. . . Sap+ 1=0, Sa p = 0;

whereof it is seen that the second may be formed from theirs*, by derivating with

respect to
t,
and treating p as constant: although no such rule of calculation had

been previously laid down, for the comparatively geometrical process which is here

supposed to be adopted.

(5.) The locus of all the lines VI. is evidently some ruled surface; to determine

the normal v to which, at the extremity of the vector p, we may consider that vec

tor to be a function (372) of two independent and scalar variables, whereof one is t,

and the other may be called for the moment w
;
and thus we shall have the two

partial derivatives,

VII. . . SaDtp = 0, SaDwp = 0, giving v
||
a.

(6.) Hence the line a has the direction of the required normal v ;
the plane

Sap +1 = touches the surface (comp. 384, (3.)) along the whole extent of the li

miting line VI.
;
and the locus of all such lines is the envelope of all the planes, of

the system recently considered.

(7.) The line VI. cuts generally the plane IV., in a point which is rigorously de

termined by the three equations,

VIII. . . Sap + 1 = 0, Sa p = 0, Swa p = ;

and the limiting position of this intersection is, with equal rigour, the point deter

mined by this other system of equations,

IX. . . Sap + 1 = 0, Sa p = 0, Sa&quot;p
=

;

in which it may be remarked (comp. (4.)), that the third is the derivative of the

second, if p be treated as constant.

(8.) The locus of all these points IX. is generally some curve upon the surface

(5.), which is the locus of the lines VI., and has been seen to be the envelope (6.) of

the planes III. or IV.
;
and to find the tangent to this curve, at the point answering

to a given value of t, or to a given line VI., we have by IX. the derived equations,

X. . . Sap = 0, Sa p =0, whence p ||
Vaa

;

comparing which with the equations VI. we see that the lines VI. touch the curve,

which is thus their common envelope.
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(9.) We see then, in a new way, that the envelope ofthe planes III., which have

one scalar parameter (&amp;lt;)

in their common equation, and may represent any system of

planes subject to this condition, is a developable surface : because it is in general

(comp. 382) the locus of the tangents to a curve in space, although this curve may
reduce itself to a point, as we shall shortly see.

(10.) We may add that if at in III. be considered as the vector of a. given curve^

this curve is the locus of the poles* of the tangent planes to the developable, taken

with respect to the unit sphere; and conversely, that the developable surface is the

envelope of the polar planes of the points of the same given curve, with respect to

the same sphere.

(11.) If then it happen that this given curve, with at for vector, is a plane one,

so that we have this new condition,

XI. . . $(3at +1 = 0, /3 being any constant vector,

namely the vector of the pole of the supposed plane of the given curve, the variable

plane III., or
Sp&amp;lt; + 1 = 0, of which the surface (5.) is the envelope, passes con

stantly through this fixed pole ; so that the developable becomes in this case a cone,

with (3 for the vector of its vertex: the equations IX. giving now p = (3.

(12.) The same degeneration, of a developable into a comcaZ surface, may also

be conceived to take place in another way, by the cusp-edge (or at least some finite

portion thereof) tending to become indefinitely small., while yet the direction of its

tangents does not tend to become constant. For example, with recent notations, the

developable which is the locus of the tangents to the helix may have its equation

written thus :

2
XII. . . p = 0(ar,j^

= c(a:a4--tana.a*U/3)+ya(l + tana.a*U/3);
7T

which when the quarter-interval, c, between the spires, tends to zero, without their

inclination a to the axis a being changed, tends to become a cone of revolution

round that axis, with its semiangle = a.

387. So far, then, we may be said to have considered, in the pre

sent Section, and in connexion with geodetic lines, the four following

families of surfaces (if the first of them may be so called). First,

spherical surfaces, of which the characteristic property is expressed

by the equation,

I. . . Vv(p - a)
= 0, if a be vector of centre ;

second, cylindrical surfaces, with the property,

II. . . Si^a= 0, if a be parallel to the generating lines ;

third, conical surfaces, with the property,

III. . .
Si/(/&amp;gt;

-
a) =0, if be vector of vertex ;

and fourth, developable surfaces, with the distinguishing property

expressed by the more general equation,

*
Compare the Note to page 525.
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IV. . . Wdi&amp;gt; =0, if dp have the direction of a generatrix ;

v being in each the normal vector to the surface, so that

V. . . Svdp = 0, for all tangential directions of
d/&amp;gt;;

&nd the fourth family including the third, which in its turn includes

the second. A few additional remarks on these equations may be

here made.

(1.) The geometrical signification of the equation I. (as regards the radii) is ob

vious
;
but on the side of calculation it may be useful to remark, that elimination of

v between I. and V. gives, for spheres,

VI. . . S(p-a)dp = 0, or VII. . . T(p -a) = const.

(2.) The equations II. and V. show that dp, and therefore Ap, may have the

given direction of a
;

for an arbitrary cylinder, then, we have the vector equation

(372),
VIII. . .p = 0(*,y) = ik+ycr,

where
\f/x is an arbitrary vectorfunction of x.

(3.) From VIII. we can at once infer, that

IX. . . S/3p = S/3i^, Syp = Syijfc, if o = V/3y ;

the scalar equation (373) of a cylindrical surface is therefore generally of the form

(comp. 371, (6.), (7.)),

X...O=F(S/3p,Syp);

(3 and y being two constant vectors, and the generating lines being perpendicular to

both.

(4.) The equation III. may be thus written,

XI. . . Sv~Ua = Tcr l

Svp; whence XII. . . SvUa = 0, if Ta = oo;

the equation for cones includes therefore that for cylinders, as was to be expected,

and reduces itself thereto, when the vertex becomes infinitely distant.

(5.) The same equation III., when compared with V., shows that dp may have

the direction of p
-

a, and therefore that p
- a may be multiplied by any scalar

;
the

vector equation of a conical surface is therefore of the form,

XIII. . . p a + yfyxi $x being an arbitrary vector function.

(6.) The scalar equation of a cone may be said to be the result of the elimination

of a scalar variable
t,
between two equations of the forms,

XIV. .. S(p-a)x* = 0, S(p-a) X *
=

0,

which express that the cone is the envelope (comp. 386, (11.)) f a variable plane,

which passes through a.fixed point, and involves only one scalar parameter in its

equation : with a new reduction to a cylinder, in a case on which we need not here

delay.

(7.) The equation IV. implies, that for each point of the surface there is a direc

tion along which we may move, without changing the tangent plane ; and therefore

that the surface is an envelope ofplanes, &c., as in 386, and consequently that it is

developable, in the sense of Art. 382.

(8.) The vector equation of a general developable surface may be written under

the form,
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XV. . . p = (a, y) =

the sign of a versor being here introduced, for the sake of facilitating the passage,

at a certain limit, to a cone (comp. 386, (12.)).

(9.) And the scalar equation of the same arbitrary developable may be repre

sented as the result of the elimination of t, between the two equations,

XVI. . . Spxt +1=0, Spx t
=

;

in which xt is an arbitrary vector function of t.

(10.) The envelope of a plane with two arbitrary and scalar parameters, t and

M, is generally a curved but undevelopable surface, which may be represented by the

system of the three scalar equations,

XVII. . . Spxt, u + 1 = 0, SpDtx = 0, SpDuX = ;

where x denotes the reciprocal of the perpendicular from the origin on the tan

gent plane to the surface, at what may be called the point (t, u).

388. It remains, on the plan lately stated (380), to consider

briefly surfaces of revolution, and to investigate the geodetic lines, on

this additional family of surfaces; of which the equation, analogous

to those marked I. II. III. IV. in 387, for spheres, cylinders, cones,

and developables, is of the form,

if a be a given line in the direction of the axis of revolution, sup

posed for simplicity to pass through the origin ; but which may also

be represented by either of these two other equations, not involving

the normal v,

II. . .
T/&amp;gt; =/(Sa/&amp;gt;),

or III. . . TVop = I1

(Sap),

where /and F are used as characteristics of two arbitrary but sca

lar functions : between which
S/&amp;gt; may be conceived to be eliminated,

and so a thirdform of the same sort obtained.

(1.) In fact, the equation I. expresses that v
\\\ a, p, or that the normal to the

surface intersects the axis ; while II. expresses that the distance from a,fixed point

upon that axis is a. function of its own projection on the same fixed line, or that the

sections made by planes perpendicular to the axis are circles ; arid the same circu

larity of these sections is otherwise expressed by III., since that equation signifies

that the distancefrom the axis depends on the position of the cutting plane, and is

constant or variable with it : while the two last forms are connected with each other

in calculation, by means of the general relation (comp. 204, XXI.),

IV. . . (Top)a
= (Sap)* + (TVap) -.

(2.) The equation I. is analogous, in quaternions, to a partial differential equa

tion of the first order, and either of the two other equations, II. and III., is analogovi

to the integral of that equation, in the usual differential calculus of scalars.

3 Y
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(3.) To accomplish the corresponding integration in quaternions, or to pass from

the form I. to II., whence III. can be deduced by IV., we may observe that the

equation I. allows us to write (because Svdp = 0),

V. . . v = xa + yp, VI. . . xSadp + ySpdp = 0,

so that the two scalars Sap and Tp are together constant, or together variable, and

must therefore be functions of each other.

(4.) Conversely, to eliminate the arbitrary function from the form II., quater

nion differentiation gives,

VII. . .
= S (Up . dp) +/ (Sap) . Sadp = S . (Up + a/ Sap) dp ;

hence VIII. . . v
\\ Up + a/ Sap, and IX. . . v

\ \ \ a, p, as before
;

so that we can return in this way to the equation I., the functional sign f disappear

ing.

(5.) We have thus the germs of a Calculus of Partial Differentials in Quater

nions* analogous to that employed by Monge, in his researches respecting families

of surfaces: but we cannot attempt to pursue the subject farther here.

(6.) But as regards the geodetic lines upon a surface of revolution, we have only

to substitute for v, in the recent formula I., by 380, IV., the expression dUdp,
which gives at once the differential equation,

X. . . = SapdUdp = d.SapUdp (because S(adp.Udp) = - SaTdp = 0) ;

whence, by a first integration, c being a scalar constant,

XI. . . c = SapUdp = TVp.SU(Vap.dp).

(7.) The characteristic property of the sought curves is, therefore, that for each

of them the perpendicular distancefrom the axis of revolution varies inversely as the

cosine^- of the angle, at which the geodetic crosses a parallel, or circular section of

the surface : because, if Ta = 1, the line Vap has the length of the perpendicular let

fall from a point of the curve on the axis, and has the direction of a tangent to the

parallel.

* The same remark was made in page 574 of the Lectures, in which also was

given the elimination of the arbitrary function from an equation of the recent form

III. It was also observed, in page 578, that geodetics furnish a very simple example
of what may be called the Calculus of Variations in Quaternions; since we may
write,

= -
J S(Udp . dp) = - AS (Udp . dp) + J S (dUdp . fy),

and therefore dUdp || v, or VvdUdp =
0, as in 380, IV., in order that the expression

under the last integral sign may vanish for all variations dp consistent with the

equation of the surface : while the evanescence of the part which is outside that sign

J supplies the equations of limits, or shows that the shortest line between two curves

on a given surface is perpendicular to both, as usual.

f Unless it happen that this cosine is constantly zero, in which case c = 0, and

the geodetic is a meridian of the surface.
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(8.) The equation XI. may also be thus written,

XII. . . cTp = Sapp ,
where p =

Dtp ;

and if the independent variable t be supposed to denote the time, while the geodetic

is conceived to be a curve described by a moving point, then while Tp evidently re

presents the linear velocity of that point, as being = ds : dt, if s denote the arc (comp.

100, (5.), and 380, (7.), (ll.))&amp;gt;
il is eas7 to Prove tnat Sapp represents the double

areal velocity, projected on a plane perpendicular to the axis; the one of these two

velocities varies therefore directly as the other : and in fact, it is known from mecha

nics, that each velocity would be constant,* if t\\Q point were to describe the curve,

subject only to the normal reaction of the surface, and undisturbed by any other

force.

(9.) As regards the analysis, it is to be observed that the differential equation

X. is satisfied, not only by the geodetics on the surface of revolution, but also by the

parallels on that surface : which fact of calculation is connected with the obvious

geometrical property, that every normal plane to such a parallel contains the axis of

revolution.

(10.) In fact if we draw the normal plane to any curve on the surface, at a point

where it crosses a parallel, this plane will intersect the axis, in the point where that

axis is met by the normal to the surface, drawn at the same point of crossing ;
but

this construction fails to determine that normal, if the curve coincide with, or even

touch a parallel, at the point where its normal plane is drawn.

SECTION 6 On Osculating Circles and Spheres, to Curves

in Space; with some connected Constructions.

389. Resuming the expression 376, I. for pt, and referring again
to Fig. 77, we see that if a circle PQD be described, so as to touch a

given curve PQR, or its tangent PT, at a given point p, and to cut the

curve at a near point Q, and if PN be the projection of the chord PQ

on the diameter PD, or on the radius CP, then because we have, rigo

rously,
I. . . PQ,= tp

f
-^ \tfup&quot;,

with u=l for t = Q,

we have also

and
1 2 2PN Vup&quot;P

JLJ.J.I
~~ -

PC PD PQ2

(// + fyup&quot;)

2
p

Conceiving then that the near point Q, approaches indefinitely to the

given point P, in which case the ultimate state or limiting position of

* This remark is virtually made in page 443 of Professor De Morgan s Diffe
rential and Integral Calculus (London, 1842), which was alluded to in page 578
of the Lectures on Quaternions.
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the circle PQD is said to be that of the osculating circle to the curve at

that point P, we see that while the plane of this last circle is the os-

culating plane (376), the vector K of its centre K, or of the limiting po
sition of the point c, is rigorously expressed by the formula:

v//y
which may however be in many ways transformed, by the rules of

the present Calculus.

(1.) Thus, we may write, as transformations of the expression IV., the follow

ing:

......4^r.. Tp&amp;gt; -- v
or introducing differentials instead of derivatives, but leaving still the independent

variable arbitrary,

_ _ dP
3

dp Tdp _ ds
K ~P-

Vdpd2p~
P + Vd 8

pdp~
1

~~ P
dUp

~ P
dUdp

if s be the arc of the curve
;
so that the last expression gives this very simple for

mula, for the reciprocal of the radius of curvature, or for the ultimate value of

1 : CP,
VII. . . (p

-
K)~

I = DsUp ,
where Up = Udp, as before.

(2.) To interpret this result, we may employ again that auxiliary and spherical

curve, upon the cone ofparallels to tangents, which has already served us to con

struct, in 379, (6.) and (7.), the osculating plane, the absolute normal, and the bi-

normal, to the given curve in space. And thus we see, that while the semidiameter

PC has ultimately the direction ofdUp ,
and therefore that of the absolute normal

(379, II.) at P, the length of the same radius is ultimately equal to the arc PQ (or

As) of the given curve, divided by the corresponding arc of the auxiliary curve ; or

that the radius of curvature, or radius of the osculating circle at p, is equal to the

ultimate quotient of the arc PQ, divided by the angle between the tangents, PT and

(say) QU, to that arc PQ itself at p, and to ^prolongation QR at Q, although these

two tangents are generally in different planes, and have no common point, so long
as PQ remains finite: because we suppose that the given curve is in general one of

double curvature, although the formulae, and the construction, above given, are ap

plicable to plane curves also.

(3.) For the helix, the formula IV. gives, by values already assigned for p, p , p&quot;,

and a, the expression,

VIII. . . K = eta - a /3 cot2 a, whence IX. . . p K = a*/3 cosec
2
a,

a being the inclination of the given helix to the axis
;
the locus of the centre of the

osculating circle is therefore in this case a second helix, on the same cylinder, if

7T

a ,
but otherwise on a co-axal cylinder, of which the radius = the given radius

T/3, multiplied by the square of the cotangent of a; and the radius of curvature

= T(p - K) = T/3 x cosec2 a, so that this radius always exceeds the radius of the cy

linder, and is cut perpendicularly (without being prolonged} by the axis.
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(4.) In general, if Tp =
const., and therefore Sp p&quot;= (comp. 379, (2.)), the

expression IV. becomes,*

X. ..K = p + ; whence, XI. . . K = p
-

p&quot;

1
,

if Tp =
l,

P

that is, if the arc be taken as the independent variable (380, (12.)). Under this

last condition, then, the formula VII. reduces itself to the following,

XII. . . (p
-

K)-
=

p&quot;

= D s
2
p = ultimate reciprocal of radius CP

;

so that
p&quot; (for Tp =

1) may be called the Vector of Curvature, because its tensor

Tp&quot;
is a numerical measure for what is usually called the curvature^ at the point P,

and its versor
Up&quot; represents the ultimate direction of the semidiameter PC, of the

circle constructed as above.

(5.) As an example of the application (2.) of the formula IV. for
K:,

to a plane

curve, let us take the ellipse,

XIII. . . p = Va*/3, Ta=l, Sa/3^0,
337, (2.),

considered as an oblique section (314, (4.)) of a right cylinder. The expressions

376, (5.) for the derivatives of p, combined with the expression XIII. for that vec

tor itself, give here the relations,

XIV. .
.Vpp&quot;

= 0, Vp p &quot;=0;

and therefore comp. (338, (5.)),
/ \ _

XV. . . Vpp = const4 = - /3y, Vp p&quot;

= const. = (
-

j
|3y, if y = Va/3 ;

hence for the present curve we have by IV.,

XVI. . . K; = p
-

(6.) To interpret this result, we may write it as follows,

XVII. . . K = p
- P

]* , ., where XVIII. . . pi
= -p =

\pp.p~
1 7T

so that pi is the conjugate semidiameter of the ellipse (comp. 369, (4.)), and Vpp :p

is the perpendicularfrom the centre of that curve on the tangent. We recover then,

by this simple analysis, the known result, that the radius of curvature of an ellipse

is equal to the square of the conjugate semidiameter, divided by the perpendicular.

(7.) We may also write the equation XVI. under the form,

XIX. . . K = O- =^ ,
where XX. .. Vppi=/3y = const.

;

* The expressions X. XI. may also be easily deduced by limits, from the con

struction in 383, (2.).

f It may be remarked that the quantity z, or
T\//&quot;,

in the investigation (382)

respecting geodetics on a developable, represents thus the curvature of the cusp-edge,

for any proposed value of the arc, x, of that curve.

J These values XV. might have been obtained without integrations, but this

seemed to be the readiest way.
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and may interpret it as expressing, that the radius of curvature is equal to the cube

of the conjugate semidiameter, divided by the constant parallelogram under any two

such conjugates ;
or by the rectangle under the major and minor semiaxes, which

are here the vectors /3 and y (comp. 314, (2.)).

(8.) The expression XVI. or XIX. for K is easily seen to vanish, as it ought to

do, at the limit where the ellipse becomes a circle, by the cylinder being cut perpen

dicularly, or by the condition Saj3 = being satisfied
;
and accordingly if we write,

XXI. . . e = SUa/3 = excentricity of ellipse, or XXII. . . y2
= (1

_ e2)^
we easily find the expressions,

XXIII. . . p = /3S.a +yS.a*-i, pl
= -/3S.a-i + yS.a j

.pi = /P(i (8.09*),

BO that the formula XIX. becomes,

XXV. . . K =

thus containing e2 as a factor.

(9.) And it may be remarked in passing, that the expression XVI., or its recent

transformation XXV., for K as a function of t, may be considered as being in qua

ternions the vector equation (comp. 99, I., or 369, I.) of the evolute* of the ellipse,

or the equation of the locus of centres of curvature of that plane curve
;
and that the

last form gives, by elimination of t (comp.f 315, (!), and 371, (5.)), the following

system of two scalar equations for the same evolute,

or XXVI . . . (S/3/e + (SyK) = (), &c.
;

which will be found to agree with known results.

(10.) As another example of application to a. plane curve, we may consider the

hyperbola,
XXVII. . . p = ta + H/3, comp. 371, II.,

with a and (3 for asymptotes, and with its centre at the origin. In this case the de

rived vectors are,

XXVIII. . . p = o -
&amp;lt;-2/3, p&quot;

= 2*-3/3,

whence XXIX. . .
Vp&quot;p

=
2*-3V/3a = r Vpp ,

and the formula IV. becomes,

xxx (&amp;lt;p&amp;gt;)2
PT2

AAA. . . K - O = -
;

-
,
= -

,

Vpp : p ov

where ov is the perpendicular from the centre o on the tangent to the curve at r,

and TT is the portion of that tangent, intercepted between the same point p and an

asymptote (comp. (6.) and 371, (3.)).

* That is to say, of ihe plane evolute; for we shall soon have occasion to consi

der briefly those evolutes of double curvature, which have been shown by Monge to

exist, even when the given curve is plane.

f In lately referring (373, (&quot;!.))
to the formula 315, V., that formula was inad

vertently printed as (a*)
2 + (a

&amp;lt;

- 1

)
2 =

1, the sign S. before each power being omitted.
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(11.) We may also interpret the denominator in XXX. as denoting the projec
tion of the semidiameter OP on the normal, or as the line NP where N is the foot of

the perpendicular from the curve on that normal line
;

if then K be the sought centre

of the osculating circle, we have the geometrical equations,

XXXI. . . NP . PK = PT2, XXXII. . . L NTK = -
;

whereof the last furnishes evidently an extremely simple construction for the centre

of curvature of an hyperbola, which we shall soon find to admit of being extended,
with little modification, to a spherical conic* and its cyclic arcs.

(12.) The logarithmic spiral with its pole at the origin,

XXXIII. . . p = a/3, Sa(3 = 0, Ta &amp;gt;

1, comp. 314, (5.)

may be taken as a third example of a plane curve, for the application of the foregoing
formulae. A first derivation gives, by 333, VII.,

XXXIV. . . p =
(c + y)p = p(c

-
y), p p

i = c + y, if e = ITa, and y = ^ Ua;

the constant quaternion quotient, p : p, here showing that the prolonged vector OP

makes with the tangent FT a constant angle, n, which is given by the formula,

XXXV. . . tan n = (TV : S) (p :p) = f iTy, or cot n = - ITa ;f

and a second derivation gives next,

XXXVI. . .
p&quot;

=
(c + y)2p, Vp&quot;p

=
(c2

-
y*) p2y = ply.

The formula IV. becomes therefore, in this case,

XXXVII. . . fc = p + p y-i
=

pcy-i
= -cy-ip= -^.a &amp;lt;+l

/3;

the evolute is therefore a second spiral, of the same kind as the first, and the radius

of curvature KP subtends a right angle at the common pole. But we cannot longer

here delay on applications within the plane, and must resume the treatment by qua
ternions of curves of double curvature.

390. When the logic by which the expression 389, IV. was ob

tained, for the vector K of the centre of the osculating circle, has

once been fully understood, the process may be conveniently and safely

abridged, as follows. Referring still to Fig. 77, we may write briefly,

* It was in fact for the spherical curve that the geometrical construction alluded

to was first perceived by the writer, soon after the invention of the quaternions, and

as a consequence of calculation with them : but it has been thought that a sub-arti

cle or two might be devoted, as above, to the plane case, or hyperbolic limit, which

may serve at least as a verification.

f If r be radius vector, and 9 polar angle, and if we suppose for simplicity that

T/3 = 1, the ordinary polar equation of the spiral becomes r = aO, with a = Ta^, and

cot n = la, as usual.
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as equations which are all ultimately true, or true at the limit, in a

sense which is supposed to be now distinctly seen:

PN=(part ofpQ JLPT=) -j,
by 203, &c. ; whence, ultimately,

_ PQ
2

_ PT2

_ d/&amp;gt;

3

as before: this last expression, in which Vd2
/t&amp;gt;d/&amp;gt;

denotes briefly

V(d
2

/&amp;gt;.d/&amp;gt;), being rigorous, and permitting the choice of any scalar,

to be used as the independent variable. And then, by writing,

III. . . dp = p dt, d~t = 0, d2
/&amp;gt;

=
/&amp;gt;&quot;di

2
,

the factor dZ3 disappears, and we pass at once to the expression,

IV. ..*-,, =^L, 389, IV.,

which had been otherwise found before.

(1.) When the arc of the curve is taken for the independent variable, then (comp.

380, (12.), &c.) the expresssion II. reduces itself to the following,

do2

V. . . K-p=-j-, because Sd2pdp=0;

and accordingly the angle PTQ in Fig. 77 is then ultimately right (comp. 383, (5.)),

so that we may at once write, with this choice of the scalar variable,

pp2 do^
VI. . . K O = Cult.} PC = Cult.} =

,
as above.

2xQ d-*p

(2.) Suppose then that we have thus geometrically (and very simply} deduced

the expression V. for K p, for this particular choice of the scalar variable
;
and let

us consider how we might thence pass, in calculation, to the more general formula

II., in which that variable is left arbitrary. For this purpose, we may write, by

principles already stated,

_ d2
p 1 dp dlldp Vd2

pdp-i.Udp
. . . (p -K)- =^^ = =

-^-
=

Tdp

\*fl
UL/

and the required transformation is accomplished.

(3.) And generally, if s denote the arc of any curve of which p is the variable

vector, we may establish the symbolical equations,

VIII. . . DS = ,^-d; D,2= d-- d = f d Y; &c.
Tdp Tdp Tdp \Tdp /

(4.) For example (comp. 389, XII.), the Vector of Curvature, D4
9
p, admits of

being expressed generally under any one of the five last forms VII.
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391. Instead of determining the vector K of the centre of the os

culating circle by one vector expression, such as 389, IV., or any of

its transformations, we may determine it by a system of three scalar

equations, such as the following,

I. . . S(/c -/&amp;gt;)/&amp;gt;

= 0; II. . . S^c-ri^ -//
2 ^;

III. ..S
(*-/&amp;gt;)/ /&quot;

= 0,

of which it may be observed that the second is the derivative of the

first, if K be treated as constant (comp. 386, (4.)) ;
and of which the

first expresses (369, IV-) that the sought centre is in the normal

plane to the curve, while the third expresses (376, V.) that it is in

the osculating plane ; and the second serves to fix its position on the

absolute normal (379) &amp;gt;

in which those two planes intersect.

(1.) Using differentials instead of derivatives, but leaviug still the independent

variable arbitrary, we may establish this equivalent system of three equations,

IV. . . S(&amp;lt;c-p)dp
= 0; V. . . S(/c- p)cl2p_dp2 = o

;
VI. . . S(K-p)dpd2p = ;

of which the second is the differential of the first, if K be again treated as constant.

(2.) It is also permitted (comp. 369, (2.), 376, (3.), and 380, (2.)), with the

same supposition respecting K, to write these equations under the forms,

VII. . . dT(K-p) = 0; VIII. . .drT(ic-p) = 0; IX. . . dUV(K - p)dp = ;

and to connect them with geometrical interpretations.

(3.) For instance, we may say that the centre of the osculating circle is the point,

in which the osculating plane, III. or VI. or IX., is intersected by the axis of that

circle
; namely, by the right line which is drawn through its centre, at right angles

to its plane : and which is represented by the two scalar equations,

I. and II., or IV. and V., or VII. and VIII.

(4.) And we may observe (comp. 370, (8.)), that whereas for a point R taken

arbitrarily in the normal plane to a curve at a given point P, we can only say in ge

neral, that if a chord PQ be called small of theirs* order, then the difference of dis

tances, RQ KP, is small of an order higher than the first ; yet, if the point R be

taken on the axis (3.) of the osculating circle, then this difference of distances is

small, of an order higher than the second, in virtue of the equations VII. and VIII.

(5.) The right line I. II., or IV. V., or VII. VIII., as being the locus of points

which may be called poles of the osculating circle, on all possible spheres passing

through it, is also called the Polar Axis of the curve itself, corresponding to the

given point of osculation.

(6.) And because the equation II. is (as above remarked) the derivative of I., the

known theorem follows (comp. 386), that the locus of all such polar axes is a deve

lopable surface, namely that which is called the Polar Developable, or the envelope

of the normal planes to the given curve; of which surface we shall soon have oc

casion to consider briefly the cusp-edge.

3 z
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392. The following is an entirely different method of investigat

ing, by quaternions, not merely the radius or the centre of the oscu

lating circle to a curve in space, but the vector equation of that circle

itself: and in a way which is applicable alike, to plane curves, and to

curves of double curvature.

(1.) In general, conceive that OT = r is a given tangent to a circle, at a given

point which is for the moment taken as the origin ;
and let PP = p represent a va

riable tangent, drawn at the extremity of the variable chord OP= p : also let u be

the intersection, ox pp
,
of these two tangents. Then the isosceles triangle OUP,

combined with the formula 324, XI. for the differential of a reciprocal, gives easily

the equations,

I. . . p || pr-V ;
II. .. Vrp-ip p-

1 = - (Vrp-i) =
;

III. . .
Vrp&quot;

1 = const. = Vrcr 1
,
as in 296, IX.&quot;,

if a be the vector OA of any second given point A of the circumference.

(2.) The vector equation of the circle PQD (389) is therefore,

IV. . . V -^- =V -?- = - V. (1 + ffup p -O-
1 = -

V.p&quot;p
-i

(1 + itep p
-

1

)-
1

;

(i) p Pt-p t

whence, passing to the limit (t = 0, u= 1), the analogous equation of the osculating

ciccle is at once found to be,

b&amp;gt; p dp

with the verification (comp. 296, (9.)), that when we suppose,

VII. ..-p = 2(c-p)4-p
f

,

the vector K of the centre is seen to satisfy the equation,

K-p p K-p dp c ,

which agrees with recent results (389, IV., &c.)-

(3.) Instead of conceiving that a circle is described (389), so as to touch a given

curve (Fig. 77) at P, and to cut it at one near point Q, we may conceive that a circle

cuts the curve in the given point p, and also in two near points, Q and R, uncon

nected by any given law, but both tending together to coincidence with p : and may

inquire what is the limiting position (if any) of the circle PQR, which thus intersects

the curve in three near points, whereof one (p) is given.

(4.) In general, if a, /3, p be three co-initial chords, OA, OB, OP, of any one cir

cle, their reciprocals or 1

, j3~
l

, p&quot;

1
,
if still co-initial, are termino-colUnear(2QQ) , ap

plying which principle, we are led to investigate the condition for the three co-ini

tial vectors,
X. . . (u p)

-1
, (sp + is^sp )&quot;

1

) ( p 4
l^w^p&quot;)&quot;

1
,

with MO =
1&amp;gt;

thus ultimately terminating on one right line ; or for our having ulti

mately a relation of the form,

xs + yt _ x y
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... .__
w - p 1 + fA p p

- 1 I + tp &quot;p

-i

= x + y - 2 (^ + yO P Y&quot;

1 + &c - :

in which last equation, both members are generally quaternions.

(5.) The comparison of the scalar parts gives here no useful information, on ac

count of the arbitrary character of the coefficients x and y ;
but these disappear, with

the two other scalars, s and t, in the comparison of the vector parts, whence follows

the determinate and limiting equation,

XIII. . . 2Vp (w-p)-
1

=-Vp&quot;p -i,

which evidently agrees with V.

(6.) It is then found, by this little quaternion calculation, as was of course to be

expected,* that the circle (3.), through any three near points of a curve in space,

coincides ultimately with the osculating circle, if the latter be still defined (389) with

reference to a given tangent, and a near point, which tends to coincide with the given

point of contact.

393. An osculating circle to a curve of double curvature does

not generally meet that curve again; but it intersects generally a

plane curve, of the degree n, to which it osculates, in 2n - 3 points,

distinct from the point p of osculation, whereof one at least must be

real, although it may happen to coincide with that point P : and

such a circle intersects also generally a spherical curve of double

curvature, and of the degree n, in n - 3 other points, namely in

those where the osculating plane to the curve meets it again. An

example of each of these two last cases, as treated by quaternions,

may be useful.

(1.) In general, if we clear the recent equation, 392, V. or XIII., of fractions, it

becomes,
I. . . = 2p 2Vp O-jo) + (w-p)

2
Vp&quot;p ;

in which p = OP = the vector of the given point of osculation, and p , p&quot;
are its first

and second derivatives, taken with respect to any scalar variable t, and for the par

ticular value (whether zero or not) of that variable, which answers to the particular

point P
;
while w denotes generally the vector of any point upon the circle, which

osculates to the given curve at that point p.

(2.) Writing then (comp. 389, (10.)),

II. . . p = ta + ri/3, p =a- t-*(3, p&quot;

=
2rs/3,

and III. . . o&amp;gt;
= OQ = xa + ori/3,

to express that we are seeking for the remaining intersection Q of a plane hyperbola

* This conclusion is indeed so well known, and follows so obviously from the doc

trine of infinitesimals, that it is only deduced here as a verification of previous for

mulae, and for the sake of practice in the present Calculus.
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with its osculating circle at P, the equation I. becomes, after a few easy reductions,

including a division by Va/3, the following biquadratic in x,

IV. . .
-

(a;
-
tj (t*a?x

-
/3

2
) ;

in which the cubic factor is to be set aside, as answering only to the point P itself.

(3.) Substituting then, in III., the remaining value IV. of #, we find the ex-

presssion,

comparing which with 371, (3.), we see that if the tangent to the hyperbola at the

given point P intersects the asymptotes in the points A, B, then the tangent at the

sought point Q meets the same lines OA, OB in points A ,
B

,
such that

VI. . . OA . OA = OB2
,

OB . OB = OA =

;

whence Q is at once found, as the bisecting point of the line A B .

(4.) A still more simple construction, and one more obviously agreeing with

known results, may be derived from the following expression for the chord PQ :

VII. . . PQ = o) - p = (r-/3-
2 - r2a-2

) (ta*(3
- t a/3

2
)

whence it follows (comp. 226) that if this chord PQ, both ways prolonged, meets the

two asymptotes OB and OA in the points R and s, we have then the inverse similitude

of triangles (118),
VIII. . . A KOS oc AOB.

(5.) As regards the equality of the intercepts, KP and QS, it can be verified

without specifying the second point Q on the hyperbola, or the second scalar, x. by

observing that the formula III., combined with the first equation II.
,
conducts to

the expressions,

X t t, 3C

which give, generally,
X. . . . EP = QS = ta - ari/3.

(6.) And as regards the general reduction, of the determination of the osculating

circle to a spherical curve of double curvature, to the determination of the oscu

lating plane, it is sufficient to observe that when we take the centre of the sphere for

the origin, and therefore write (comp. 381, XIV.),

XI. . . p2 = const., Spp =
0, Spp&quot;

= -
p

2
,

then if we operate on the vector equation I. with the symbol V. p, and divide by

p
3

,
there results the scalar equation,

XII. . . =
2Sp(o&amp;gt;

-
p) -{-

(o&amp;gt;

-
p)

2 = w 2 -
p2,

which expresses that the circle is entirely contained on the same spheric* surface as

the curve
;
while the other scalar equation,

XIII____ =
Sp&quot;p (6&amp;gt;

-
p),

obtained by operating on I. with S .
p&quot;, expresses (comp. 376, V.) that the same

* This conclusion is geometrically evident, but is here drawn as above, for the

sake of practice in the quaternions.
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circle is in the osculating plane :* so that its centre K is the foot of the perpendi

cular let fall on that plane from the origin, and we may therefore write (comp.

385, VI.),

XIV. . . OK = K =^-^ with the relations, XV. . . S
^
= S = 1

;

and with the verification that the expression XIV. agrees with the general formula,

389, IV., because

XVI. ..pVp&quot;p + p
3 = S

j

o&quot;
j

o p,

when the conditions XI. are satisfied.

(7.) And even if the given curve be not a spherical one, yet if we retain the

general expression for K,

XVII... K =
|
+
^,, 389, IV.,

and operate on I. with
S.p&quot;

and
S.p&quot;p ,

we find again the equation XIII. of the os

culating plane, combined with a new scalar equation, which may after a few reduc

tions be written thus,

XVIII. . . (w-ic)* = 0o-jc)2;

and which represents a new sphere, whereon the osculating circle to the curve is a

great circle.

394. To give now an example of a spherical curve of double cur

vature, with its osculating circle and pla ne for any proposed point P,

and with a determination of the point Q in which these meet the

curve again (393), we may consider that spherical conic, or sphero-

conic, of which the equations are (comp. 357, II.),

I. . . &amp;gt;

2 + r8 = II. ..*

namely the intersection of the sphere, which has its centre at the

origin, and its radius r, with a cone of the second order, which has

the same origin for vertex, and has the given lines X and
/t for its

two (real) cyclic normals. And thus we shall be led to some suffi

ciently simple spherical constructions, which include, as their plane

limits, the analogous constructions recently assigned for the case of

the common hyperbola.

(1.) Since SXp/up = 2SXpS/ip
-

p
2
SXju (comp. 357, II

.), the equations I. and II.

allow us to write, as their first derivatives, or at least as equations consistent there

with,
III. . . Spp =

0, SXp + SXp = 0, Sjup
-

S/ip
=

0,

because the independent variable is here arbitrary, so that we may conceive the first

derived vector p to be multiplied by any convenient scalar
;

in fact, it is only the

*
Compare the Note immediately preceding.
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direction of this tangential vector p which is here important, although we must con

tinue the derivations consistently, and so must write, as consequences of III., the

equations,
IV. . .

S/op&quot;
+ p

2 =
0, S\p&quot;+ SX|t&amp;gt;

=
0, S/zp&quot;

-
S/ijo

= 0.

(2.) Introducing then the auxiliary vectors,

V. ..?7=VX/i, &amp;lt;7

whence

VI. . . =
Sj7&amp;lt;r=S\r

=
S/i

and by new derivations,

VII. . . (r = V7O r = o -

we see first that r and v are the vectors ox and ou of the points in which the recti

linear tangent to the curve at P meets the two cyclic planes, perpendicular respec

tively to X and
fj, ;

and because the radius OP is seen to be the perpendicular bisector

of the linear intercept xu between those two planes, so that

VIII. . . p = PX = UP -L OP, we have IX. . . UOP = POX,
or X. . . o AP = o PB,

if the tangent arc on the sphere, to the same conic at the same point p, meet the two

cyclic arcs CA and CB in the points A and B : the intercepted arc AB being thus bi

sected at its point of contact p, which is a well-known property of such a curve.

(3.) Another known property of a sphero-conic is, that for any one such curve

the sum of the two spherical angles CAB and ABC, and therefore also the area of the

spherical triangle ABC, is constant. We can only here remark, in passing, that

quaternions recognise this property, under the form (comp. II.),

XL . . cos (A + B) = - SUXp/tp = -g: TX/t = const.

(4.) The scalar equations III. and IV. give immediately the vector expressions,

or by (2.),

XIV. ..p =^, and XV.
..p&quot;

= p-?, if XVI. . . = ?
Sfljo Sijp

= T - T - V + V
,

the new auxiliary vector being thus that of the point x, in which the osculating

plane to the conic at P meets the line t] of intersection of the cyclic planes : so that

we have the geometrical expressions,

XVII. . .
p&quot;

= XP, r = xx, -t&amp;gt; = xu, if = ox,

and the lines* T and v are the traces of the osculating plane on those two cyclic

* We may also consider the derived vectors r and v
,
or the lines xx and xu,

as corresponding tangents, at the points T and u (2.), to the two sections, made by
the cyclic planes, of that developable surface which is the locus of the tangents TPU

to the spherical conic in question.
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planes, or of the latter on the former
;
while a and &amp;lt;r

,
as being perpendicular respec

tively to p and p, while each -i-
77, are the traces on the plane X/t of the two cyclic

normals, of the normal plane to the conic at the point p, and of the tangent

plane to the sphere at that point : or at least these lines have the directions of those

traces.

(5.) Already, from the expression XVI. for the portion ox of the radius oc (2.),

or of that radius prolonged, which is cut off by the osculating plane at P, we can

derive a simple construction for the position of the spherical centre, or pole, say E,

of the small circle which osculates at that point p, to the proposed sphero-conic.

For if we take the radius r for unity, we have the trigonometric expressions,

XVIII. . . sec CE cos EP = (T = Tr2
: SU?j-ip =) sec2 PB sec CP

;

or letting fall (comp. Fig. 80) the perpendicular CD on the normal arc PE,

XIX. . . COS DE = COS DP COS PB . COS PB COS PE = COS DB COS BE
;

or finally, XX. . . DBE (or DAE) = -.

(6.) But although it is a perfectly legitimate process to mix thus spherical tri

gonometry with quaternions (since in fact the latter include the former), yet it may
be satisfactory to deduce this last result by a more purely quatermomc method, which

can easily be done as follows. The values (4.) of p and
p&quot; give,

XXI. . . Vp p&quot;S?7p
= pS0 p&quot; (rSpp&quot;=pSp(7+p

2
(7

= (r
-
p ) Sar + crSpY = rStrr + Vrp o-

1 1 1
r, VrpV,

in which p &amp;lt;r denotes a vector -A- p (because Sp cr = 0), and ] 1 1 77, p (because Sqp p a

=
o) 5

this line p er has therefore the direction of the projection of the line r} on a

plane perpendicular to p ,
and we are thus led to draw, through the line oc of inter

section of the cyclic planes, aplane COD perpendicular to the normal plane to the conic

at p, or to let fall (as in Fig. 80) a perpendicular arc CD on the normal arc PD
;

after

which the normal to the sought osculating plane, or the axis OE of the osculating

circle sought, as being || Vp p&quot;,
will be contained in the plane through the trace r, or

OT, or OB, which is perpendicular to the plane of T and pV, or to the plane DOB
;

and therefore the spherical angle DBE (or DAE) will be a right angle, as before.

(7.) We may also observe that if K be the centre of the osculating circle, consi

dered in its own plane, or the foot of the perpendicular on that plane from O, then

by XXI.,



544 ELEMENTS OF QUATERNIONS. [BOOK III.

mi... o.== a . ,

--
Vp p pSpo- + pV pSp&amp;lt;r + pV

and therefore

XXIII. . . = ^ = J P^i XXIV. . . tan EP = sin2 PB cot PD,
OK K T- O

which gives again the angular relation XX.
;
the quotient XXIII. being thus a vec

tor, as it ought by 393, XV. to be
;
and the trigonometric formula XXIV. being ob

tained from its expression, by observing that

XXV. . . TpV1 = px : or = sin POT = sin PB, and (V : S) per
= Up . cot PD,

because a -*-
p ff,

but
) | j p, p a, or p ff -L

ff, but
j 1 1 p, &amp;lt;r.

(8.) The rectangularity of the planes of r, K and T, p cr is also expressed by the

equation,
XXVI. . . = S (Vjcr .Vp trr)

= S/crSp trr - r2
Sp ;

in proving which we may employ the values,

XXVII. . . Sr/c-i = 1, SpW-i = (- r-y2
S;p =) Sp &amp;lt;rr-i.

(9.) We may also interpret these equations XXVII., as expressing the system of

the two relations,

XXVIII. .. K- I -T~ I

J-r, K-I - r-i J-
p ff

;

from which it follows that K&quot;
1

,
and therefore also that K, is a line in the plane so

drawn through r, as to be perpendicular to the plane through r and p ff, as before.

(10.) And the two relations XXVIII. are both included in the following ex

pression,
XXIX. . . K-I - r- 1 = Vr- pV : Spcr.

(11.) We may also easily deduce, from the foregoing spherical construction, the

following trigonometric expressions, for the arcual radius r = EP of the osculating

small circle (5.), and for the angle a = PAE = EBP which it subtends at A or at B :

XXX. . . tan r = sin - tan a ;
XXXI. . . tan a = (cot A + cot B) ;

A and B here denoting, as in XL, the base angles of the triangle ABC with c for ver

tex, and c denoting as usual the base AB, namely the portion of the arcual tangent

(2.) to the conic, which is intercepted between the cyclic arcs.

(12.) The osculating plane and circle at p being thus fully and in various ways
determined, we may next inquire (393) in what point Q do they meet the conic

again. In symbols, denoting by o&amp;gt; the vector of this point, we have the three sca

lar equations,
XXXII. . . Sicw = S/cp, SXwS^w = SXpS/ijO, w2 = p

2
,

which are all evidently satisfied by the value w = p, but can in general be satisfied

also by one other vector value, which it is the object of the problem to assign.

(13.) We satisfy the two first of these three equations XXXIL, by assuming the

expression,
XXXIII. . . a&amp;gt;

= % + i&amp;lt;ix-iT

t -xv
),

in which x is any scalar
;
in fact we have the relations,

XXXIV. . . S =
S/cp, SXi/ = - 2S\p, Sjur =

28/up,
= SA =

S/*
= SXr = SpV = SKT = SKV

,

whence XXXIII. gives, XXXV. . . S\w = xSXp, S^w = or S/ip, &c.
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And because

XXXVI. . . p = Z + $(?
- v ),

we shall satisfy also the third equation XXXII., if we adopt for x any root of that

new scalar equation, which is obtained by equating the square of the expression

XXXIII. for oi, to what that square becomes when x is changed to t.

(14.) To facilitate the formation of this new equation, we rnay observe that the

relations,

=
p-p&quot;,

T=o +
p&quot;,

i/ = p -p&quot;, Spp =0, Spp&quot;=-p 3,

which have all occurred before, give

XXXVII. . .
- 4Sr = 3r 2

-f t/2
,
4Sv = r 2 + 3u 2

;

the resulting equation is therefore, after a few slight reductions, the following biqua

dratic in x,

XXXVIII. . . = (x - I)
3
(v

2x - r 2
) 5

of which the cubic factor is to be rejected (comp. 393, (2.)), as answering only to

the point p itself.

(15.) We have then the values,

XXXIX. . . x = r V-2, and XL. . . OQ = u&amp;gt;

comparing which last expression with the formulae XVII., we see that the required

point of intersection Q, of the sphero-conic with its osculating circle, can be constructed

by the following rule. On the traces (4.), of the osculating plane on the two cyclic

planes, determine two points T
L
and Uj, by the conditions,

XLI. . . xT.XTi=xu 2
, xu.xui = xT2

;
then XLII. . . TIQ = QUi,

or in words, the right line TiUi is bisected by the sought point Q.

(16.) But a still more simple or more graphic construction may be obtained, by

investigating (comp. 393, (4.)) the direction of the chord PQ. The vector value of

this rectilinear chord is, by XXXVI. and XL.,

XLIII. . . pQ = w -p =
I p

2
p 2 \

the chord PQ has therefore the direction (or its opposite) of the fourth proportional

(226) to the three vectors, p ,
r

,
and - v

,
or PT, XT, and xu; if then we conceive

this chord or its prolongations to meet the traces XT, xu in two new points Tg, Ug,

we shall have (comp. 393, VIII.) the two inversely similar triangles (118),

XLIV. . . A T2XU2 &amp;lt;x UXT.

(17.) To deduce hence a spherical construction for Q, we may conceive four

planes, through the axis ORE, perpendicular respectively to the four following right

lines in the osculating plane :

XLV. . . r
,

- v
, p , u) p, or XT, xu, PT, PQ ;

which planes will cut the sphere mfour great circles, whereof the four arcs,

XLVI. . . EF, EG, KP, EH,

are parts, if F, G, H (see again Fig. 80) be the feet of the three arcualperpendiculars

from the pole E of the osculating circle on the two cyclic arcs CB, CA, and on the

arcual chord PQ.

4 A
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(18.) These four arcs XLVI. are therefore connected by the same angular rela

tion as the/owr lines XLV.
;
and we have thus the very simple formula,

XLVII. . . GEH = PEF,

expressing an equality between two spherical angles at the pole E, which serves to

determine the direction of the arc EH, and therefore also the positions of the points

H and Q, by means of the relations,

XLVIII. . . PHE =
,

o PH = O HQ.

(19.) If the arcual chord PQ, both ways prolonged, or any chord of the conic,

cut the cyclic arcs CB and CA in the points R and s (Fig. 80), it is well known that

there exists the equality of intercepts (comp. 270, (2.)),

XLIX. . . RP = n QS ;

and conversely this equation, combined with the formulae (11.), or with the trigono

metric expression,

L. . . tan PE = tan r = \ sin (cot A + cot B),

for the tangent of the arcual radius of the osculating circle, enables us to determine

what may be called perhaps the arcual chord of osculation PQ, by determining the

spherical angle RPB, or simply P, from principles of spherical trigonometry atone,

in a -way which may serve as a verification of the results above deduced from quater

nions.

(20.) Denoting by t the semitransversal RH = HS, and by s the semichord PII = HQ,

the oblique-angled triangles RPB, SPA give the equations,

c c
cot (t

-
s) sin - = cos P cos - + sin P cot B,

LI. . .
J

cot (t + s) sin - = cos p cos sin P cot A
;

while the right angled triangle PHE gives,

LII. . . tan s = sin p tan r.

Equating then the values of cot 2s, deduced from LI. and LII., we eliminate s and
t,

and obtain a quadratic in tan p, of which one root is zero, when tan r has the value

L.
;
such then might in this new way be inferred to be the tangent of the arcual ra

dius of curvature of the conic, and the remaining root of the equation is then,

cos - (cot B - cot A)
LIII. . . tanp= ;

c
cot A cot B -f cos2 tan2 r

a formula which ought to determine the inclination p, or RPB, or QPA, of the chord

PQ to the tangent PA, but which does not appear at first sight to admit ofany simple

interpi etation*

* We might however at once see from this formula, that p = A - B at the plane
limit; which agrees with the known construction 393, (4.), for the corresponding
chord PQ in the case of the plane hyperbola.
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(21.) On the other hand, the construction (17.) (18.), to which the quaternion

analysis led us, gives

LIV. . . HEP = GEP - GEH = GEP - PEF = FED 4- GEA,

and therefore, by the four right-angled triangles, PHE, BFE, AGE, and BPE or EPA,

conducts to this other formula,

/ C
LV. . . cot&quot;

1
(cos r cot P) = cot-i I cos r cos - tan (B + o)

cot- 1
I cos r cos - tan (A + a \

in which a is the same auxiliary angle as in XXXI.
;
we ought therefore to find, as

the proposed verification (19.), that this last equation LV. expresses virtually the same

relation between A, B, c, and P, as the formula LIII., although there seems at first to

be no connexion between them
;
and such agreement can accordingly be proved to

exist, by a chain of ordinary trigonometric transformations, which it may be left to

the reader to investigate.

(22.) A geometrical proof of the validity of the construction (17.) (18.) may
be derived in the following way. The product of the sines of the arcual perpendi

culars, from a point of a given sphero-conic on its two cyclic arcs, is well known to

be constant ; hence also the rectangle under the distances of the same variable point

from the two cyclic planes is constant, and the curve is therefore the intersection of

the sphere with an hyperbolic cylinder, to which those planes are asymptotic. It

may then be considered to be thus geometrically evident, that the circle which oscu

lates to the spherical curve, at any given point P, osculates also to the hyperbola,

which is the section of that cylinder, made by the osculating plane at this point ;

and that the point Q, of recent investigations, is the point in which this hyperbola is

met again, by its own osculating circle at P. But the determination 393, (4.) of

such a point of intersection, although above deduced (for practice) by quaternions,

is a plane problem of which the solution was known ; we may then be considered to

have reduced, to this known and plane problem, the corresponding spherical prob

lem (12.); and thus the inverse similarity of the two plane triangles XLIV.,

although found by the quaternion analysis, may be said to be geometrically ex

plained, or accounted for : the traces XT and xu, or r and - v
,
of the osculating

plane to the conic on the two cyclic planes (4.), being evidently the asymptotes of

the hyperbola in question.

(23.) In quaternions, the constant product of sines, &c., is expressed by this

form of the equation II. of the cone,

LVI. . - SUXp . SU/zp = (g
-

SX/i) : 2TXjw = const. ;

and the scalar equation of the hyperbolic cylinder, obtained by eliminating p
2 be

tween I. and II., after the first substitution (1.), is

. LVII. . . SXpS/wp
= ir

2
(g
-

SX/i)
= const.

;

while the expression XXXIII. for w may be considered as the vector equation of

the hyperbola, of which the intersection Q with the circle, or with the sphere, is de

termined by combining that equation with the condition w2 = p2(=_ r2
).
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(24.) In the foregoing investigation, we have treated a sphero-conic in connexion

with its cyclic arcs (2.) ; but it would have been about equally easy to have treated

the same curve, with reference to its/oca/ points: or to the/oca? lines of the cone,

of which it is the intersection with a concentric sphere. (Compare what has been

called the bifocal transformation, in 360, (2.)).

(25.) We can however only state generally here the result of such an application

of quaternions, as regards the construction of the osculating small circle to a spheri

cal conic, considered relatively to its foci : which construction* can indeed be also

geometrically deduced, as a certain polar reciprocal of the one given above. Two

focal points (not mutually opposite) being called F and G, let PN be the normal arc

at P, which is thus equally inclined, by a well-known principle, to the two vector

arcs, FP, GP ; so that if the focus G be suitably distinguished from its OAvn opposite,

the spherical angle FPG is bisected by the arc PN, which is here supposed to termi

nate on the given arc FG. At N erect an arc QNK, perpendicular to PX, and termi

nating in Q and R on the two vector arcs. Perpendiculars, QE, RE, to these last

arcs, will meet on the normal arc PN, in the sought pole (or spherical centre) E, of

the sought small circle, which osculates to the conic at the given point P.

(26.) The two focal and arcual chords of curvature from P, which pass through

F and G, and terminate on the osculating circle, are evidently bisected at Q and R,

in virtue of the foregoing construction, which may therefore be thus enunciated :

The great circle QR, which is the common bisector of the two focal and arcual

chords of curvature from a given point p, intersects the normal arc PN on the fixed

arc FG, connecting the two foci ; that is, on the arcual major axis of the conic.

(27.) The construction (5.) fails to determine the position of the auxiliary point

D in Fig. 80, for the case when the given point P is on the minor axis of the conic
;

and in fact the expressions (4.) for p and o&quot; become infinite, when the denominator

SXjLtjO is zero. But it is easy to see that the auxiliary vector v, which represents

generally the trace of the normal plane to the curve on the plane of the two cyclic

normals, becomes at the limit here considered the required axis of the osculating

circle
;
and accordingly, if we assume simply (comp. (1.) and (2.)),

LVIII. . . p =
Vp&amp;lt;r,

and therefore
p&quot;

= Vp rr + Vpo- ,

we have LIX. . . a =
0, and Vp p&quot; | a, when SXfip

= 0.

(28.) In general, if we determine three points L, M, s in the plane of
\/ji, by the

formulas (comp. again (2.)),

Xp2
up&quot;- &amp;lt;rp

2

LX. . . OL = --, OM = p- , os =^ = |(OL + OM),
SXp Sup So-p

then L and M will be the intersections of the cyclic normals X, /j,
with the tangent

* The reader can easily draw the Figure for himself. As regards the known

rule, lately alluded to (in 393, (4.), and 394, (22.)), for determining the chord of

intersection of a plane conic with its osculating circle, it will be found (for instance)

in page 194 of Hamilton s Conic Sections (in Latin, London, 1758). The two sphe

rical constructions, for the small circle osculating to a spherical conic, were early

deduced and published by the present writer, as consequences of quaternion cal

culations. Compare the first Note to page 535.
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plane to the sphere at r, and the normal plane to the curve at the same point will

bisect the right line LM in the point s
;
we shall also have this proportion of sines,

LXI. . . sin LOS : sin SOM = SUXp : SU/zp
= cos LOP : cos POM = sin PPI : sin pp2, comp. (23.),

if PPI, PPa be the arcual perpendiculars from the point p of the conic on the two cyclic

arcs
;
and this general ride for determining the position of the line os, or cr, applies

even to the limiting case (27.), when that variable line becomes the axis of the oscu

lating circle, at a minor summit of the curve.

(29.) As an example, let us suppose that the constants g, X, p.
in the equation

II. are connected by the relation,

LXII. . . g = - SAjw, whence LXIII. . . S (V\p /V&amp;gt;|o)
=

;

the cyclic normals are therefore in this case sides of the cone, and the two planes

which connect them with any third side are mutually rectangular; so that the conic

is now the locus of the vertex of a right-angled spherical triangle, of which the

hypotenuse is given. And by applying either the formula LXI., or the construction

(28.) which it represents, we find that the trigonometric tangent of the arcual radius

of the osculating small circle to such a conic, at either end of the given hypotenuse,

is equal to half* the tangent of that hypotenuse itself.

(30.) It is obvious that every determination, of an osculating circle to a spherical

curve, is at the same time the determination of what may be (and is) called an os

culating right cone (or cone of revolution^, to the cone which rests upon that curve,

and has its vertex at the centre of the sphere. Applying this remark to the last ex

ample (29.), we arrive at the following theorem, which can however be otherwise

deduced :

If a cone be cut in a circle by a plane perpendicular to a side, the axis of the

right cone which osculates to it along that side passes through the centre of the sec

tion.

395. When a given curve of double curvature is not a spherical

curve, we may propose to investigate the spheric surface which ap

proaches to it most closely, at any assigned point. An osculating

circle has been defined (389) to be the limit of a circle, which touches

a given curve, or its tangent PT, at a given point p, and cuts the same

curve at a near point Q ; while the tangent PT itself had been regarded

(100) as the limit of a rectilinear secant, or as the ultimate position

of the small chord PQ. It is natural then to define the osculating

sphere, as being the limit of a spheric surface, which passes through

the osculating circle, at a given point P of a curve, and also cuts that

curve in a point Q, which is supposed to approach indefinitely to P,

and ultimately to coincide with it. Accordingly we shall find that

this definition conducts by quaternions to formula? sufficiently sim-

* This may also be inferred by limits from the formula? (11.) ;
in which r and

a were used, provisionally, to denote a certain spherical arc and angle.
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pie; and that their geometrical interpretations are consistent with

known results: for example, the centre of spherical curvature, or the

centre of the osculating sphere, will thus be shown to be, as usual, the

point in which the polar axis (391, (5.)) touches the cusp-edge of the

polar developable (391, (6.))- I fc will also be seen,that whereas in

general, if R be a point in the normal plane (370, (8.)) to a given

curve at P, we can only say that the difference of distances, RQ - RP,

is small of an order higher than the first, if the chord PR be small

of the first order ; and whereas, even if R be on the polar axis (391,

(4.)), we can only say generally that this difference of distances is

small, of an order higher than the second; yet, if R be placed at the

centre s of spherical curvature, the difference SQ-SP is small, of an

order higher than the third: so that the distance ofa near point o,,from

the osculating sphere at the given point P, is generally small of the fourth

order, the chord being still small of the first.

(1.) Operating with S.X, where X is an arbitrary line, on the vector equation

392. V. of the osculating circle, we obtain the scalar equation of a sphere through

that circle under the form,

L..t-M - + ,

w-p p

which may however, by 393, (7.), be brought to this other form, better suited to

our present purpose,

II. . . (w
-

ic)2
= (p

-
K)

2 + 2cSp&quot;p (w - p) ;

c being any scalar constant, while K is still the vector of the centre K of the circle :

and the vector &amp;lt;j of the centre s of the sphere is given by the formula,

III. . . a = K + cVp&quot;p ,

which evidently expresses that this last centre is on the polar axis.

(2.) To express now that this sphere cuts the curve in a near point Q, we are to

substitute for w the expression,

IV. . . w = p t
= p + tp + f &amp;lt;2

&quot;

+ i&amp;lt;3

M&amp;lt;p

&quot;

5
w -

lth = i
;

but K has been seen (in 391) to satisfy the three equations,

v. . . o = Sp Oc-p), o = sP&quot;Oc-p)-p ,
o =

Sp&quot;p ( K -p);

reducing then, dividing by ^*
3
, and passing to the limit, we find for the osculating

sphere the condition,

VI. . . S&quot;

so that finally the vector &amp;lt;r satisfies the three scalar equations,

VII. .. 0=Sp (&amp;lt;r-p?,
=

Sp&quot;(tr-p)-p
2
,

= Sp &quot;(&amp;lt;r-p)-3Sp p&quot;,

by which it is completely determined, and of which the two last are seen to be the

successive derivatives of the first, while that first is the equation of the normal plane :



CHAP. III.] CONSTRUCTION FOR CENTRE OF SPHERE. 551

whence the centre s of this sphere is (by the sub-arts, to 386, comp. 391, (6.)) the

point where the polar axis KS touches the cusp-edge of the polar developable.

(3.) Differentials may be substituted for derivatives in the equations VII.,

which may also be thus written (comp. 391, (4.)),

VIII. . . =
dT(p-&amp;lt;r),

= d2
T(p-(r), = d 3

T(p-(r), if dcr = 0;

the distance of a near point Q of the given curve from the osculating sphere is there

fore small (as above said), of an order higher than the third, if the chord PQ be small

of the first order.

(4.) The two first equations VII., combined with V., give also

IX. . . 0=Sp (&amp;lt;r-/c),
=

Sp&quot; (&amp;lt;7

-
/c),

= S(K-p) ((T-K);

which express that the line KS is perpendicular to the osculating plane and absolute

normal at p, as it ought to be, because it is part of the polar axis.

(5.) Conceiving the three points P, K, s, or their vectors p, K, cr, to vary together,

the equations V. and VII., combined with their own derivatives, give among other

results the following :

X. . .
= S/c p = Scry = Scr

p&quot;

= Scr (K
-
p) = Sa&quot;p ;

of which the geometrical interpretations are easily perceived.

(6.) Another easy combination is the following,

XL . . = SK ((? -f p
-

2/e),

as appears by derivating the last equation IX., with attention to other relations ;

but 2/c - p is the vector of the extremity, say M, of the diameter of the osculating

circle, drawn from the given point p ; we have therefore this construction :

On the tangent KK to the locus of the centre of the osculating circle, let fall a

perpendicular from the extremity M of the diameter drawn from the given point P
;

this perpendicular prolonged will intersect the polar axis, in the centre s ofthe oscu

lating sphere to the given curve at p.

(7.) In general, the three scalar equations VII. conduct to the vector expres

sion,

3Vp p&quot;Sp p&quot;
+ p

2VpV
All. . . (7 = p + ~~

,5 , ;

Spp p

or with differentials,

3Vdpd2
XIII. . . o = p+ -

the scalar variable being still left arbitrary.

(8.) And if, as an example, we introduce the values for the helix,

7T / 7T\2
XIV. . . p = eta + a3, p

= ca + - aM
(3, p&quot;

= - -
) a/3,

2 \2 ]

whereof the three first occurred before, we find after some slight reductions the ex

pression, in which a denotes again the constant inclination of the curve to the axis of

the cylinder,
XV. . . (7 = p a*/3 cosec2 a = eta a*/3 cot2 a

;

but this is precisely what we found for ic,
in 389, VIII.

; for the helix, then, the

two centres, K and S, of absolute and spherical curvature, coincide.
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(9.) This known result is a consequence, and may serve as an illustration, of the

general construction (6.) ;
because it is easy to infer, from what was shown in 389,

(3.), respecting the locus of the centre K of the osculating circle to the helix, as being

another helix on a co-axal cylinder, that the tangent KK to this locus is perpendi

cular to the radius of curvature KP, while the same tangent (KK or K ) is always

perpendicular (X.) to the tangent (PP or p ) to the curve ; KK is therefore here at

right angles to the osculating plane of the given helix, or coincides with its polar

axis : so that the perpendicular on it from the extremity M of the diameter of cur

vature falls at the point K itself, with which consequently the point s in the present

case coincides, as found by calculation in (8.).

(10.) In general, if we introduce the expressions 376, VI., or the following,

XVI. ../&
= s l&amp;gt;sp, p&quot;=

2D4
2
p + s&quot;r&amp;gt;sp, O

&quot; 3DA
3
p + 3sV D4

.
2
(0 + s&quot; Dj,p,

in which s denotes the arc of the curve, but the accents still indicate derivations with

respect to an arbitrary scalar t
;
and if we observe (comp. 380, (12.)) that the re

lations,

XVII. . . Dsp2
= -

1, S.DspDs2p = 0, S.D4pDs
3
p + D^p

2 =0,

in which D4p
2 and Ds

2
p
2 denote the squares of Dp and Ds

2
p, and S . D^pD^p denotes

S(Dso.Ds
2
p), &c., exist independently of iheform of the curve

;
we find that s&quot; and

s&quot; disappear from the numerator and denominator of the expression XII. for a p,

and that they have s 6 fora common factor: setting aside which, we have thus the

simpler formulas,

YVTTrAvlll. . . a p
S .

And accordingly the three scalar equations VII., which determine the centre of the

osculating sphere, may now be written thus,

XIX. . .
S(&amp;lt;r-p)Dap

=
0, S(&amp;lt;T-p)DA

.

2p4 1 = 0, S(&amp;lt;r-p)Ds
3
p = 0.

(11.) Conversely, when we have any formula involving thus the successive deri

vatives of the vector p taken with respect to the arc, s, we can always and easily

generalize the expression, and introduce an arbitrary variable t, by inverting the

equations XVI.
;
or by writing (comp. 390, VIII.),

xx. . . Dsp = s -y, D^p = s -i(s -y) = -y - /-vy, &c.

(12.) It may happen (comp. 379, (2.)) that the independent variable t is only

proportional to s, without being equal thereto; but as we have the general relation,

XXI. . . T&amp;gt; t
n
p = s D/ p, if * = nts = To =

const.,

it is nearly or quite as easy to effect the transformations (10.) and (11.) in the case

here supposed, or to pass from t to s and reciprocally, as if we had s = 1.

(13.) If the vector &amp;lt;r be treated as constant in the derivations, or if we consider

for a moment the centre s of the sphere as a fixed point, and attend only to the va

riations of distance of a point on the curve from it, then (remembering that T(p &amp;lt;r)

2

= -(p &amp;lt;r)-)
we not only easily put (comp. VIII.) the three equations XIX. under

the forms,
XXII. . .

= DsT(p-&amp;lt;r)=Ds2T(p-&amp;lt;r)=D4
3

T(p-&amp;lt;r),

but also obtain by XVII. this fourth equation,

XXIII. . . T(p -
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(14.) If then we write, for abridgment,

XXIV. . . r = T(K - p) = TDs2p-i
= radius of osculating circle ;

XXV. . . R T(cr p)
= radius of osculating sphere ;

and

XXVI S =
S ( &amp;lt;T

~
) IV&amp;gt;P _ S . D,p

8D,3pp,
4
|0

-02 . DD.23D.3

we see that this scalar, S, must be constantly equal to unity, for every spherical

curve ; but that for a curve which is non-spherical, the distance SQ of a near point

Q, from the centre s of the osculating sphere at P, is generally given by an expres
sion of the form,

XXVII. . .SQ= fl + T, with =1;
24r~ n

so that, at least for near points Q, on each side of the given point p, the cz&amp;lt;rve lies

without or within the sphere which osculates at that given point, according as the sca

lar, s, determined as above, is greater or less than unity.

(15.) Iii the case (12.), the formula XXVI. may be thus written,

xxvm... s= |:S.

whence, by carrying the derivations one step farther than in (8.), we find for the

helix,

XXIX. .. S = cosec2 a &amp;gt; 1, or XXIX . . . S- l = cot2 a&amp;gt;0 ;

and accordingly it is easy to prove that this curve lies wholly without its osculating

sphere, except at the point of osculation.

(16.) In general, the scalar S - 1, which vanishes (14.) for all spherical curves,

and which enters as a coefficient into the expression XXVII. for the deviation

SQ SP of a near point of any other curve from its own osculating sphere, may be

called the Coefficient of Non- Sphericity ; and if QT be the perpendicular from that

near point Q on the tangent PT to the curve at the given point P, we have then this

limiting equation, by which the value of that coefficient may be expressed,

XXX. . . 5-1 = lira. 3
Qf 2

)

(17.) Besides the forms XVIII., other transformations of the expressions XII.

XIII. for the vector a of the centre of an osculating sphere might be assigned ;
but

it seems sufficient here to suggest that some useful practice may be had, in proving

that those expressions for a reduce themselves generally to zero, when the condition,

XXXI. . . Tp
- const,

is satisfied.

(18.) It may just be remarked, that as r-i is often called (comp. 389, (4.)) the

absolute curvature, or simply the curvature, of the curve in space which is consi

dered, so 7?&quot;
1 is sometimes called the spherical curvature of that curve : while r and

R are called the radii* of those two curvatures respectively.

*
&quot;We shall soon have occasion to consider another scalar radius, which we pro

pose to denote by the small roman letter r, of what is not uncommonly called the

torsion, or the second curvature, of the same curve in space.

4 B
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396. When the arc (s) of the curve is made the independent

variable, the calculations (as we have seen) become considerably sim

plified, while no essential generality is lost, because the transforma

tions requisite for the introduction of an arbitrary scalar variable (t)

follow a simple and uniform law (395, (ll.) &C0- Adopting then

the expression (comp. 395, IV.),

I. Ps
= P + ST + JsV 4- sVr&quot;, with M = 1

,

in which
II. ..T =

D,/&amp;gt;,
T = D,V, T&quot;=D.V,

and therefore

III. ..7* +1=0, STT =
(), STT&quot;+T

2 = 0,

we shall proceed to deduce some other affections of the curve, besides

its spherical curvature (395, (18.)), which do not involve the consi

deration of the fourth power of the arc (or chord). In particular, we

shall determine expressions for that known Second Curvature (or

torsion), which depends on the change of the osculating plane, and is

measured by the ultimate ratio of that change, expressed as an angle,

to the. arc of the curve itself; and shall assign the quaternion equa
tions of the known Rectifying Plane, and Rectifying Line, which are

respectively the tangent plane, and the generating line, of that known

Rectifying Developable, whereon the proposed curve is a geodetic (382) :

so that it would become a right line, by the unfolding of this last sur

face into a plane. But first it may be well to express, in this new

notation, the principal affections or properties of the curve, which

depend only on the three first terms of the expansion I., or on the

three initial vectors p, T,
T

,
or rather on the two last of these; and

which include, as we shall see, the rectifying plane, but not the recti

fying line : nor what has been called above the second* curvature.

(1.) Using then first, instead of I., this less expanded but still rigorous expres

sion (eomp. 376, I.),

IV. . . ps = p + sr + |
2M sr ,

with o = 1

* In a Note to a very able and interesting Memoir,
&quot; Sur les lignes courbes non

planes&quot; (referred to by Dr. Salmon in the Note to page 277 of his already cited

Treatise, and published in Cahier XXX. of the Journal de VEcoh Poll/technique),

M. de Saint-Venant brings forward several objections to the use of this appellation,

and also to the phrases torsion, flexion, &c., instead of which he proposes to intro

duce the new name,
&quot; cambrure :&quot; but the expression

&quot; second curvature&quot; may
serve us for the present, as being at least not unusual, and appearing to be suffi

ciently suggestive.
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and with the relations II. and III., we have at once the following system of three

rectangular lines, which are conceived to be all drawn from the given point p of the

curve :

V. . . r = unit tangent ; VI. . . r = vector of curvature (389, (4.);

and VII. . . v = rr T T = r r&quot;
1 = binomial (comp. 379, (4.)) ;

T being a line drawn in the direction of a conceived motion along the curve, in virtue

of which the arc (s) increases; while r is directed towards the centre of curvature,

or of the osculating circle, of which centre K the vector is now,

VIII. . . OK = K = p r
&quot;

1 = p + rV = p + rtJr ,

if IX. . . r&quot;
1 = Tr = curvature at P, or IX . . . r = r

fr -
l = radius of curvature ;

and the third line v (which is normal at P to the surface of tangents to the curve)

has the same length (TV = r- 1

) as r
,
and is directed so that the rotation round it

from r to r is positive.

(2.) At the same time, we have evidently a system of three rectangular vector

units from the same point P, which may be called respectively the tangent unit, the

normal unit, and the binormal unit, namely the three lines,

X. . . Ur = r, Ur =rr
,

Ui/ = rrr
;

the normal unit being thus directed (like r ) towards the centre of curvature.

(3.) The vector equation (comp. 392, (2.)) of the circle of curvature takes now
the form,

tt. .vJt r*,
o&amp;gt;-p

with the verification that it is satisfied by the value,

XII. . . w =
/u
= 2K-p = p-2rM ,

in which
JJL (comp. 395. (6.)) is the vector OH of the extremity of the diameter of

curvature PM.

(4.) The normal plane, the rectifying plane, and the osculating plane, to the

curve at the given point, form a ^rectangular system ofplanes (comp. 379, (5.)),

perpendicular respectively to the three lines (1.) ;
so that their scalar equations are, in

the present notation,

XIII. . . Sr(w-p) = 0; XIV. . . Sr (w-p)=0; XV. . . Si/(w-p) = ;

by pairing which we can represent the tangent, normal, and binormal to the curve,

regarded as indefinite right lines ; or by the three vector equations,

XVI. .. Vr(w-p) = 0; XVII. . . Vr (w
-

p) = ;
XVIII. .. Vi/(- p) = 0.

(5.) In general, if the two vector equations,

XIX. . . Vj (w
-

p) = 0, and XIX . . . V^ s (ws -p s)
=

0,

represent two right lines, PH and PSH, which are conceived to emanate according to

any given law from any given curve in space, the identicalformula,*

* It is obvious that we have thus an easy quaternion solution of the problem, to

draw a common perpendicular to any two right lines in space.
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shows that the common perpendicular to these two emanants, which as a vector is re

presented by either member of this formula XX., intersects the two lines in the two

points of which the vectors are,

s
~

P) nVYT d YYTXXI. . . a) = p + ?S
-

;
AAI . . . ws = p s -f j;

VTJJ/S /jTg

(6.) In general also, the passage ofa right line from any one given position in

space to any other may be conceived to be accomplished by a sort of screw motion, with

the common perpendicular for the axis of the screw, and with two proportional velo

cities, of translation along, and of rotation remndthat axis : the locus of the two given

and of a// the intermediate positions of the Zfne (when /ms interpolated} being a

Screw Surface, such as that of which the vector equation was assigned in 314, (1 1.),

and was used in 372, (4.).

(7.) Again, for any quaternion, q, we have (by 316, XX. and XXIII.*) the two

equations,

XXII. . . lU? = L q.UVg, XXII . . . VU? = sin L ?.UV9 ;

comparing which we see that

XXIII. . . VU? :
1U&amp;lt;/

= sin L q : L q = (very nearly) 1,

if the angle of the quaternion be small ; so that the logarithm and the vector of the

versor of a small-angled quaternion are very nearly equal to each other, and we may
write the following general approximate formula for such a versor :

XXIV. . . Uq = (t
lvi =)

vu
?, nearly, if L q be small;

the error of this last formula being in fact small of the third order, if the angle be

small of the//*.

(8.) And thus or otherwise (comp. 334, XIII. and XV.), we may perceive that

if the quaternion q have the form (comp. (5.)),

XXV. .. q = risr} \ with XXVI. . . rh = T? + sr) + .
.,

and if we write for abridgment,

XXVII. . . e = V -, and XXVIII. . . h = S -,
rj T)

we shall then have nearly, if s be small, the expressions,

XXIX. .. Uq =U- =
ts9, and XXX. . . To = T- = 1 + sh ;

n ri

or, neglecting *2 ,

XXXI. . . r) s
= (1 + sh~) i*9ri

= e^rj + shr,,

in which last binomial, the first (or exponential) term alone influences the direction

of the near emanant line (5.).

*
Although the expression XXII . for VU? is here deduced from 316, XXIII., yet

it might have been introduced at a much earlier stage of these Elements ; for instance,

in connexion with the formula 204, XIX., namely TVU7 = sin L g-
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(9.) At the same time, by supposing s to tend to 0, the formula XXI. gives, as a

limit,

XXXII. . .OH = w --
/ ( -,

Vntj 9rj

for the vector of the point, say H, on the given emanant PH, in which that given

line is ultimately intersected by the common perpendicular (5.), or by the axis of

the screw rotation (6.) ;
but the direction of that axis is represented by the versor

U0, and the angular velocity of that rotation is represented by the tensor T9, if the

velocity of motion (1.) aloug the given curve be taken as unity : we may therefore

Bay that the vector 9 itself, or the factor which multiplies the arc, s, in the exponential

term XXXI., if set offfrom the point H determined by XXXII., is the Vector of
Rotation of the Emanant, whatever the law (5.) of the emanation may be.

(10.) And as regards the screw translation (6.), its linear velocity is in like

manner represented, in length and in direction, by the following expression (obtained

by limits from XX.),

XXXIII. . . i = 0S -
(set off from H) = Vector of Translation of Emanant,

projection of unit-tangent on screw-axis (or of r on 0).

And the indefinite right line through the point H, of which this line t is a part, may
be called the Axis of Displacement of the Emanant.

(11.) It is easy in this manner to assign what may be called the Osculating
Screw Surface to the (generally gauche) Surface of Emanants, or indeed to any

proposed skew surface ; namely, the screw surface which has the given emanant

(or other) line for one of its generatrices, and touches the skew surface in the whole

extent of that right line.

(12.) It is however more important here to observe, that in the case when the

surface of emanants is developable, the vector t of translation vanishes ; and that

conversely this vector i cannot be constantly zero, if that surface be undevelopable.

The Condition of Developability of the Surface of Emanants is therefore expressed

by the equation,

XXXIV. ..t = 0, or Sr0 = 0, or XXXIV. .. S?;r/r= 0;

and accordingly this condition is satisfied (as was to be expected) when rj r, that

is, for the surface of tangents.

(13.) In the same case, of
rj
= or

|| r, the vector 9 of rotation becomes equal (by
XXVII. and VII.) to the binomial v

;
and the expression XXXIL, for the vector w

of the foot H of the axis reduces itself to p ;
and thus we might be led to see (what

indeed is otherwise evident), that the passage from a given tangent to a near one

may be approximately made, by a rotation round the binomial, through the small

angle, sTv =sr~ 1 = arc divided by radius of curvature.

(14.) Instead of emanating lines, we may consider a system of emanating planes,
which are respectively perpendicular to those lines, and pass through the samepoints
of the given curve. It may be sufficient here to remark, that the passage from one

to another of two such near emanant planes, represented by the equations,

XXXV. . . Sij(w-p) = 0, XXXV. . . Sfl,(w-p) = 0,

may be conceived to be made by a rotation through an angle sT9, round the right

line,
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XXXVI. . . SriO -
p)
=

0, S; (a&amp;gt;

-
p)

- S^r= 0,

or XXXVI . . . V0((u-|o)4-;-
1Sqr=0,

in which the plane XXXV. touches its developable envelope, and which is parallel

to the recent vector 9, or to the vector of rotation (9.) of the emanant line ; so that

if an equal vector be set off on this new line XXXVI., it may be said to be the Vec

tor Axis of Rotation of the Emanant Plane.

(15.) For example, if we again make f/
=

r, so that the equation XXXV. repre

sents now the normal plane to the curve, we are led to combine the equation XIII. of

that plane with its derived equation, and so to form the system of the two scalar

equations,
XXXVII. . . Sr(w - p) = 0, Sr

(o&amp;gt;

-
p) + 1 = 0,

whereof the second represents a plane parallel to the rectifying plane XIV., and

drawn through the centre of curvature VIII.
;
and which jointly represent the polar

axis (391, (5.)), considered as an indefinite right line, which is represented otherwise

by the one vector equation,

XXXVIII. . . Vv (w
-

fc)
=

0, or XXXVIII . . . Vv (
-

p) = - r.

(16.) And if, on this indefinite line, we set off a portion equal to the binormal v,

such portion (which may conveniently be measured from the centre K) may be said,

by (14.), to be the Vector Axis of Rotation of the Normal Plane ; or briefly, the

Polar Axis, considered as representing not only the direction but also the velocity of

that rotation, which velocity
= 1v = r~ l = the curvature (IX.) of the given curve :

while another portion = Uv = the binormal unit (2,), set off on the same axis from

the same centre of curvature, may be called the Polar Unit.

(17.) This suggests a new way of representing the osculating circle by a vector

equation (comp. (3.), and 316), as follows:

XXXIX. . . w4 = +
&quot;( io-if) = P + (e

il -l)r -&amp;gt;

= p + ST + (
s &quot; - 1 - si ) r

-
1

= p + ST 4 s2r + (i
sv -\-sv- *s2v2

) r
- 1

;

which agrees, as we see, with the expression I. or IV., if * 3 be neglected; and of

which, when the expansion is continued, the next term is,

XL. .

(18.) The complete expansion of the exponentialform XXXIX., for the variable

vector of the osculating circle, may be briefly summed up in the following trigono

metric (but vector) expression :

XLI. . . w s = K -t- f cos - + U v . Bin -
j
(p K),

in which, XLII. . . p
- K = - r2 r

, and Uv. (p-fc) = ri/r
~

1 = rr
;

so that we may also write, neglecting no power ofst

XLIII. . . ws = p + rr sin - -f r2/ vers -
;

r r

and if this be subtracted from the full expression for the vector p s ,
the remainder may

be called the deviation ofthe given curve in space, from its own circle of curvature ;

which deviation, as we already see, is small of the third order, and will soon be do-
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composed into its two principal parts, or terms, of that order, in the directions of the

normal and the binormal respectively.

(19.) Meantime we may remark, that if we only neglect terms of the fourth

order, the expansion I. gives, by III. and IX., for the length of a small chord pp,.

the formula :

XLIV. . . pps
= T(p s -p)=T(*r + |sV-f isV)

this length then is the same (to this degree of approximation), as that ofthecAord of
an equally long arc of the osculating circle: and although the chord of even a small

arc of a curve is always shorter than that arc
itself, yet we see that the difference is

generally a small quantity of the third* order, if the arc be small of the first.

397. Resuming now the expression 396, I., but suppressing here

the coefficient us ,
of which the limit is unity, and therefore writing

simply,

with the relations,

II. . . T- = - 1
, STT = 0, STT&quot; = - r 2 = r~\ ST T&quot; =

if s = arc, and r&quot;

1 = TV =
curvature,^ as before, or r- radius ofcurva

ture
(&amp;gt; 0), while r = D sr; and introducing the new scalar,

T&quot; v
III. . . r 1 = S = T- V - = Secondi Curvature,

TT i/

with i/ = TT = binormal, or the flew vector,

r&quot; v
IV. . . r~ T = TS = V = Vector of Second Curvature,

TT v

supposed to be set off tangentially from the given point p of the

curve, or finally this other new scalar
(&amp;gt;

or
&amp;lt;0),

V. . . r = ( S V = Radius of Second Curvature,

* This ought to have been expressly stated in the reasoning of 383, (5 ), for

which it was not sufficient to observe that the arc and chord tend to bear to each other

a ratio of equality, without showing (or at least mentioning) that their difference

tends to vanish, even as compared with a line which is ultimately of the same order

as the square of either.

f Whenever this word curvature is thus used, without any qualifying adjective,

it is always to be understood as denoting the absolute (QIfirst} curvature of the curve

in space.

% Compare the Note to page 554.
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which gives the expression,

VI. . . T&quot; = - r 2T - rVV + T- TT

we proceed to deduce some of the chief affections of a curve in space,

which depend on the third power of the arc or chord. In doing this,

although everything new can be ultimately reduced to a dependence

on the two new scalars, r and r, or on the one new vector
7&quot;,

or even on

v =
VTT&quot;, yet some auxiliary symbols will be found useful, and almost

necessary. Retaining then the symbols v, /c, &amp;lt;r, 7?, as well as T, T
, ?%

and therefore writing as before (comp. 396, VIII.),

VII. . . OK=a/&amp;gt;-T
M

pB/&amp;gt;trU
&amp;lt;r/ ~^-f-rV,

VIII. . .
-

*)~
l = r-

l

U(K -
p}
= T - D.V = Fector of Curvature,

we may now write also, by 395, XVIIL,

v
IX. . . os = a = p -

f f

- K + rr rv = K + r rUV,

and

X. . . (p
-

&amp;lt;r)-&amp;gt;

= R- l

U(ff
-
p)
= i/

- SrV = Fecfor o/ Spherical Curvature,

=
projection of vector (T ) ofcurvature on radius (R) ofosculating sphere ;

because we have now, by VI.,

XL . . v =
(TT )

= VTT&quot; = - rV - rlr v,

or XI . . . (U) =
(rv)

f = - rrV = - r Ur ,

and XII. . . SrV = - SrrV = - rV2 = r^r1
.

If then we denote by p and P the linear and angular elevations, of the

centre s of the osculating sphere above the osculating plane, we shall

have these 100 new auxiliary scalars, which are positive or negative

together, according as the linear height KS has the direction of + v

or of - v :

XIII. . . P =^ = r/

r; XIV. . . P= KPS =
tan-^

= sin 1 -cos 1

;

while XV. , . ^=T &amp;lt;r-&amp;gt;=/r2 +

the aft^fe P being treated as generally acute. Another important

line, and an accompanying angle of elevation, are given by the for

mula),

XVI. . . \ =
V^-

= r8Vr/T / = rV + rr = r Ur + r-
JU^

=
&quot;Vv v 1 + v = Rectifying Vector (set off from given point P),

= Vector of Second Curvature plus Binormal;
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XVII. . . H= L - = tan&quot;
1 - = Elevation of Rectifying Line

(&amp;gt;0, &amp;lt;TT),

= the angle (acute or obtuse, but here regarded as positive),

which that known and important line (396) makes with the tangent

to the curve; so that (by XIII., XIV.) these two auxiliary angles,*

H and P, from which (instead of deducing them from r and r)

all the affections of the curve depending on s
3 can be deduced, are

connected with each other and with r by the relation,

XVIII. ..tan P = rf tan H.

Many other combinations of the symbols offer themselves easily, by
the rules of the present calculus ; for instance, the vector a may be

determined by the three scalar equations (comp. 395, XIX.),

XIX. .. ST(r-/) = 0, ST
(&amp;lt;T -/&amp;gt;)

= -!, ^ (a-p) = 0,

whence, by XVI.,

XX. . . rV = r2V(VTV. (a
-

p))
= V\(a -

p),

a result which also follows from the expressions,

/ T&quot; T&quot;

XXL. . T&quot;= V+S-
and XXII. . . a-p= rV + rpi/

= rU

because XXIII. . . rpV\v = - rprV = - rrV ;

we may therefore replace the formula I. for the vector of the curve

by the following, which is true to the same order of approximation,!

XXIV. ..ps
= p +sr^~( K -p) +

and may thus exhibit, even to the eye, the dependence of all affec

tions connected with s
3
, on the two new lines, \ and

&amp;lt;?-/&amp;gt;,
which were

not required when s3 was neglected, but can now be determined by
the two scalars r and p (or r and r

,
or H and P as before). The

geometrical signification of the scalar p is evident from what precedes,

namely, the height (KS) of the centre of the osculating sphere above

that of the osculating circle, divided by the binormal unit (UV) ; and

* The angle H appears to have been first considered by Lancret, in connexion

with his theory of rectifying lines, planes, and surfaces : but the angle here called P
was virtually included in the earlier results of Monge.

f As regards the homogeneity of such expressions, if we treat the four vectors

p s , p, K, and a, and the five scalars s, r, R, p, and r, as being each of the first di

mension, we are then to regard the dimensions of r, r
,
K

, H, andP as being each zero ;

those of r
, v, and X as each equal to 1

;
and that of either r&quot;or v as being = 2.

4 c



562 ELEMENTS OF QUATERNIONS. [BOOK III.

as regards what has been called the radius r of second curvature (V.),

we shall see that this is in fact the geometrical radius of a second cir

cle, which osculates, at the extremity of the tangential vector rr, to the

principal normal section of the developable Surface of Tangents ; and

thereby determines an osculating oblique cone to that important sur

face, and also an osculating right cone* thereto, of which latter cone the

semiangle is II, and the rectifying line \ is the axis of revolution :

being also a side of an osculating right cylinder, on which is traced

what is called the osculating helix. We shall assign the quaternion

equations of these two cones, and of this cylinder, and helix
;
and shall

show that although the helix has not generally complete contact of the

third order with fas given curve, yet it approaches more nearly to that

curve (supposed to be of double curvature), than does the osculating

circle. But an osculating parabola will also be assigned, namely, the

parabola which osculates to the projection of the curve, on its own os

culating plane: and it will be shown that this parabola represents

or constructs one of the two principal and rectangular components (396,

(18.)), of the deviation of the curve from its osculating circle, in a

direction which is (ultimately) tangential to the osculating sphere, while

the helix constructs the other component. An osculating right cone to the

cone of chords, drawn from a given point of the curve, will also be as

signed by quaternions : and will be shown to have in general a smaller

acute semiangle G (or TT - C), than the acute semiangle IT (or TT- H),
of the osculating right cone (above mentioned) to the surface oftan-

gentSj or (as will be seen) to the cone of parallels to tangents (369,

(6.), &c.) : the relation between these two semiangles, oftivo osculating

right cones, being rigorously expressed by the formula,

XXV... tan (7 = f tan H.

A new oblique cone of the second order will be assigned, which has con

tact of the same order with the cone of chords, as the second right cone

(C), while the latter osculates to both of them; and also an oscu-

culating parabolic cylinder, which rests upon the osculating parabola,

and is cut perpendicularly in that auxiliary curve by the osculating

plane to the given curve. And the intersection of these two last sur

faces of the second order (oblique cone and parabolic cylinder) will

* These two osculating cones, oblique and right, to the surface of tangents,

appear to have been first assigned, in the Memoir already cited, by M. de Saint Ve-

nant : the osculating (circular) helix, and the osculating (circular) cylinder, having
been previously considered by M. Olivier.
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be found to consist partly of the binormal at the given point, and

partly of a certain twisted cubic* (or gauche curve of the third degree),

which latter curve has complete contact of the third order with the

given curve in space. Constructions (comp. 395, (6.)) will be assigned,

which will connect, more closely than before, the tangent to the

locus ofcentres of curvature, with other properties or affections of that

given curve. And finally we shall prove, by a very simple quaternion

analysis, as a consequence of the formula XI ., the known theorem,f

that when the ratio of the two curvatures is constant, the curve is a

geodetic on a cylinder.

(1.) The scalar expression III., for the second curvature of a curve in space, as

defined in 896, may be deduced from the formulae (396, (5.), &c.) of the recent

theory of emanants, which give,

XXVI. .. 6&amp;gt;

= VvVi = r- 1

r, w =
p, &amp;lt;

=
r, if

ri
= v,

while the line of contact (396, (14.)), of the emanant/jfane with its envelope, coin

cides in position with the tangent to the curve; in passing, then, from the given

point P to the near point PS,
the binormal (i/) and the osculatingplane (

J- v) have

(nearly) revolved together, round that tangent (r) as a common axis, through a

small angle =T~ I
S, and therefore with a velocity =r~ , if this symbol have the value

assigned by III., or by the following extended expression, in which the scalar va

riable (*) is arbitrary (comp. 395, (11.), &c.),

XXVII. . . r- 1 = S --;, = S
d8

** = Second Curvature :

Vp p VdpcPp

while the binormal has at the same time been translated (nearly), in a direction

perpendicular to the tangent T, through the small interval is =ST, which (in the pre

sent order of approximation) represents the small chord PPS.

(2.) As an example, if we take this newform of the equation of the helix,

XXVIII. . . p = 6(acoto + a
*/3), with Ta = T/3=l, and Sa/3 = 0,

which gives the derived vectors,

XXIX. ..p t
= ba (cot a + t

a
/3), p t

&quot; = - beat(3, p t

&quot; =
apt&quot;,

and this expression for the arc s (supposed to begin with f),

XXX. . . s = s t, where s = Tp = b cosec a = const.,

we easily find (after a few reductions) the following values for the two curvatures :

* This convenient appellation (of twisted cubic) has been proposed by Dr. Sal

mon, for a curve of the kind here considered : see pages 241, &c., of his already cited

Treatise. The osculating twisted cubic will be considered somewhat later.

f This theorem was established, on sufficient grounds, in the cited Memoir of M.

de Saint Venant (page 26); but it has also been otherwise deduced by M. Serret,

in the Additions to M. Liouville s Edition of Monge (Pans, 1850, page 561, &c.).
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XXXI. . . r- 1 = 6~l sin2 a, r~&amp;gt;
= b l sin a cos a

;

while the common centre (395), of the osculating circle and sphere, has now for its

vector (comp. 389, (3.)),

XXXII. . . ic = cr = pt
- & a

/3 cosec
2 a = 6 cot a (a*

- 1 at(3 cot a) ;

b being here the radius of the cylinder, but a denoting still the constant inclination

of the tangent (p ) to the arm (a).

(3.) The rectifying line (396), considered merely as to its position, being the

line of contact of the rectifying plane (396, XIV.) with its own envelope, is repre

sented by the equations,

XXXIII. . . =
S/(o&amp;gt;

-
p)
=

Sr&quot;(oi
-

p), or XXXIII . . . = VX(w - p),

with the signification XVI. of X
;
and accordingly, if we treat the rectifying planes

as emanants, or change 17 to r
,
we find the value 0=Vr&quot;r

- 1 = X, which shows also

that in the passage from p to Ps the rectifying plane turns (nearly) round the rectify

ing line, through a small angle = sTX, or with a velocity of rotation represented by

the tensor,
XXXIV. . . TX = V (r-2 + r-2)

= r-i cosec J3&quot;= r* sec #;

so that what we have called the rectifying vector, X, coincides in fact (by the general

theory of emanants) with the vector axis (396, (14.)) of this rotation of the rectify

ing plane : as the vector ofsecond curvature (r- r) has been seen to be, in the same

full sense (comp. (1.)), the vector axis of rotation of the osculating plane, when velo

city, direction, and position are all taken into account.

(4.) When the derivative s of the arc is only constant, without being equal to

unity (comp. 395, (12.)), the expression XVI. may be put under this slightly more

general form,

XXXV. . . X =V -F-r = V -*- = Rectifying Vector ;
s p dsd2

p

and accordingly for the helix (2.) we have thus the values,

XXXVI. . . X = as -i = a&~i sin a = ar-i cosec a, UX = a
;

the rectifying line is therefore, for this curve, parallel to the axis, and coincides with

the generating line of the cylinder, as is otherwise evident from geometry. The

value, TX = b~ l sin a, of the velocity of rotation of the rectifying plane, which is

here the tangent plane to the cylinder, when compared with a conceived velocity of

motion along the curve, is also easily interpreted; and the formula XVI L, XVIII.

give, for the same helix (by XXXI.), the values,

XXXVII. . . r = 0, H= a, P = 0.

(5.) The normal (or the radius of curvature), as being perpendicular to the

rectifying plane, revolves with the same velocity, and round a parallel line ; to de

termine the position of which new line, or the point H in which it cuts the normal,
we have only to change i\ to r in the formula 396, XXXIL, which then becomes,

XXXVIII. . . OH = w - p
- r S

,

= p
-

AT*

= p cos2 H4 K sin2 H.
;
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the vector of rotation (396, (9.)) of the normal is therefore a line
||
and = X, which

divides (internally) the radius (r) of curvature into the two segments*

XXXIX. . . pg = r sin2 H, UK^rcos2 ^;

namely, into segments which are proportional to the squares (r~
2 and r~2)of theirs*

and second curvatures.

(6.) At the same time, what we have called generally the vector of translation

of an emanant line becomes, for the normal (by 396, (10.), changing 9 to X), the

line

XL. . . i = \S - = U\ cos jff= - r \-i, set off from the same point H ;

A

and the indefinite right line, or axis, through that point H,

XLI. . . = VX(w - w ), or XLI . . . = V\ (w
-
p cos2 H - K sin2 H),

along which axis the normal moves, through the small line si, while it turns round

the same axis (as before) through the small angle sTX, may be called (comp. again

396, (10.)) the Axis ofDisplacement of the Normal (or of the radius of curvature).

(7.) As a verification, for the helix (2.) we have thus the values,

XLII. ..PH = &, o)o = t -btat 3 = batcota, t = acosa;

so that the axis of displacement (6.) coincides with the axis (a) of the cylinder, as

was of course to be expected.

(8.) When the given curve is not a helix, the values VI., XVI., XXXVIII.,

and XL., of
T&quot;, X, w

,
and t,

enable us to put the expression I. for p s under the

form,

XLIII. . . p
= w + st + sX (l- wo)

---
;

the curve therefore generally deviates, by this last small vector of the third order,

namely by that part of the term i*V which has the direction of the normal T
,
or of

r , and which depends on /, from the osculating helix,

XLIV. . . MS
= w + si + *x

(p
-

wo),

and from the osculating right cylinder,

XLV. . . TVX(w - wo) = sin H,

whereon that helix is traced, and of which the rectifying line (XXXIII.) is a side,

while its axis of revolution (comp. (7.)) is the axis of displacement (XLI.) of the

normal.

(9.) Another general transformation, of the expression I. for the vector of the

curve, is had by the substitution,

t
2r t3

XLVI... *=*+&;+-,

in which t is a new scalar variable ;
for this gives the new form,

* This law of division of a radius of curvature into segments, by the common

perpendicular to that radius and to its consecutive, has been otherwise deduced by

M. de Saint Venant, in the Memoir already referred to.
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XLVII. . . pt
= p + tr + it

2
(
T +^ )

+

and therefore shows that the curve deviates, by this other small vector of the third

order,
XLVIII. . .

that is, by the part of the term s 3 r&quot; which has the direction of the binomial v, and

which depends on r, from what we propose to call the Osculating Parabola, namely

that new auxiliary curve of which the equation is,

XLIX. . . w,=

or from the parabola which osculates at the given point P, to the projection of the

given curve on its own osculating plane.

(10.) And because the small deviation XLVIII. of the curve from the parabola

is also the deviation of the same curve from this last plane, if we conceive that a

near point Q of the curve is projected into three new points Qi, Q2, Qa, on the tan

gent, normal, and binormal respectively, we shall have the limiting equation,

3PQ3
L. . . lim. = r-1 = Second Curvature ;

the sign of this scalar quotient being determined by the rules of quaternions.

(11.) But we may also(comp. 396, (17.), (18.)) employ this third general trans

formation of L, analogous to the forms XLIII. and XLVIL,

I pv ( _ f! v
6

with the value XI. of v
;
in which the sum of the two first terms gives the vector of

the point of the osculating circle, which is distant from the given point PPS by an arc

of that circle equal to the arc s of the given curve ; and the third term,

which represents the deviation from the same circle, measured in a direction (comp.

IX. or X.) tangential to the osculating sphere, is (as we see) the vector sum of two

rectangular components, which represent respectively the deviations of the curve,

from the osculating helix (8.), and from the osculating parabola (9.).

(12.) It follows, then, that although neither helix nor parabola has in general

complete contact of the third order with a given curve in space, since the deviation

from each is generally a small vector of that (third) order, yet each of these two

auxiliary curves, one on a right cylinder XLV., and the other on the osculating

plane, approaches in general more closely to the given curve, than does the osculating

circle : while circle, helix, and parabola have, all three, complete contact of the se

cond* order with the curve, and with each other.

*
It appears then that we may say that the helix and parabola have each a con

tact with the curve in space, which is intermediate between the second and third or

ders : or that the exponent of the order of each contact is the fractional index, 2~.

But it must be left to mathematicians to judge, whether this phraseology can pro

perly be adopted.
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(13.) As regards the geometrical signification of the new variable scalar, t, in

the equation XLIX. of the parabola, that equation gives,

and therefore (to the present order of approximation),

LIV. . . Arc of Osculating Parabola (from o&amp;gt;o
to W()

f

=
J

= t+- + = *(byXLVI.)
OF or&quot;

= Arc of Curve in Space (from po to p s) ;

if then an arc = s be thus set off upon the parabola, with the same initial point P,

and the same initial direction, and if this parabolic arc, or its chord ut WQ, be ob-

liquely projected on the initial tangent r, by drawing a diameter of the parabola

through its final point, the oblique tangential projection so obtained will be tr by
XLIX.

;
and its length, or the ordinate to that diameter, will be the scalar t.

(14.) And as regards the direction of the diameter of the osculating parabola,

drawn as we may suppose from P, if we denote for a moment by D its inclination

to the normal + r, regarded as positive when towards the tangent -f r, we have (by

XLIX. and XVIII.) the formula,

LV. . . tan D = *- = i tan P cot H:
o

which is an instance of the reducibility, above mentioned, of all affections of the curve

depending on *3
,
to a dependence on the two angles, H and P.

(15.) Some of these affections, besides the direction of the rectifying line X, can

be deduced from the angle H alone. As an example, we may observe that the vec

tor equation of the surface of tangents is of the form,

LVI. . . w s, t
=

p* + tp s = ps + trs,

in which s and t are two independent and scalar variables, and

s3

LVIL .. TS=T + ST + -
r&quot;,

+ terms depending on s4 in ps . If then we cut this developable LVI. by the plane,

LVIII. . . Sr(w - p) = c = any given scalar constant,

which is, relatively to the surface, a normal plane at the extremity of the tangen

tial vector cr from P, while this tangent is also a generating line, we getthusajorzre-

cipal* normal section, of which the variable vector has for its approximate expres

sion,

LIX. . . us = (p + CT) + (es +. .) r + (r- 1 + . .) v ;

the terms suppressed being of higher orders than the terms retained, and having no

influence on the curvature of the section. We find then thus, that the vector of the

centre of the osculating circle to this normal section of the surface of tangents to the

given curve is, rigorously,

* Some general acquaintance with the known theory of sections of surfaces is

here supposed, although that subject will soon be briefly treated by quaternions.
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LX. . . p + cr + = p + c(r + ri&amp;gt;)

=
p + cr\

;

c*2r -ij/

so that the locus of all such centres is the rectifying line XXXIII . And
if,

in parti

cular, we make c = r, or cut the developable at the extremity of the tangential vec

tor rr, the expression LX. becomes then p -f rr + rUV
;
which expresses that the

radius of the circle of curvature of this normal section of the surface is precisely

what has been called the Radius (r) of Second Curvature, of the given curve in

space. But this radius (r
= rtan If) depends only on the angle IT, when the radius

(r) of (absolute) curvature is given, or has been previously determined.

(16.) The cone of the second order, represented by the quaternion equation,

LXI. . . = 2rSr (01
-

p) Sv (01
-
p) + (Vr (o&amp;gt;

-
p))

2
,

has its vertex at the given point p, and rests upon the circle last determined
;

it is

then the locus of all the circles lately mentioned (15.), and is therefore (in a known

sense) an osculating oblique cone to the developable surface.of tangents : its cyclic

normals (comp. 357, &c.) being r and r + 2rv, or r and rr + 2rUv. But, by 394,

(30.), the osculating right cone to this cone LXL, and therefore also (in a sense

likewise known) to the surface of tangents itself, is one which has the recent locus

of centres (15.), namely the rectifying line (\), for its axis of revolution, while the

tangent (r) to the curve is one of its sides : its semiangle is therefore = H, and a form

of the quaternion equation of this osculating right cone is the following (comp. XLV.),

LXII. . . TVU\(u&amp;gt;-p)=sin.ff.

(17.) The right cone LXII., which thus osculates to the developable surface of

tangents LVL, along the given tangent r, osculates also along that tangential line

to the cone ofparallels to tangents, which has its vertex at the given point P
;

as is

at once seen (comp. 394, (30.)), by changing p and
p&quot;

to r and
T&quot;,

in the general

expression Vp p&quot; (393, (6.), or 394, (6.)), for a line in the direction of the axis of

the osculating circle to a curve upon a sphere. And the axis of the right cone thus

determined, namely (again) the rectifying line (X), intersects the plane of the great

circle of the osculating sphere, which is parallel to the osculating plane, in a point

L, of which the vector is,

LXIII. . . OL = p + rpX = + rr r + rpv.

(18.) We have thus, in general, a gauche quadrilateral, PKSL, right-angled ex

cept at L, with the help of which one figure all affections of the curve, not depending

on *4
,
can be geometrically represented or constructed : although it must be observed

that when r = 0, which happens for the helix (XXXVII.), the osculating circle is

then itself a. great circle of the osculating sphere, and the points P and L, like the

points K and s, coincide.

(19.) In the general case, it may assist the conceptions to suppose lines set off,

from the given point P, on the tangent and binomial, as follows :

LXIV. . . PT = BL = rr r
;

PB = TL = KS = rpv ;

for thus we shall have a right triangular prism, with the two right-angled triangles,

TPK and LBS, in the osculating plane and in the parallel plane (17.), for two of its

faces, while the three others are the rectangles, PKSB, PBLT, KSLT, whereof the two

first are situated respectively in the normal and rectifying planes.
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(20.) All scalar properties of this auxiliary prism may be deduced, by our ge
neral methods, from the three scalars, r, r, r

,
or r, H, P

;
and all vector properties

of the same prism can in like manner be deduced from the three vectors r, r
, r&quot;,

or

from r, v, v , which (as we have seen) are not entirely arbitrary, but are subject to

certain conditions.

(21.) As an example of such deduction (compare the annexed Figure 81), the

equation of the diagonal plane SPL, which contains the radius

(.ft) of spherical curvature and the rectifying line (X), and

the equation of the trace, say PU, of that plane on the oscu

lating plane, which trace is evidently parallel (by the con

struction) to the edges LS, TK of the prism, are in the recent

notations (comp. XX.),

LXV. . . =
Sr&quot;(w

-
p) ; LXVI. . .

= V(r-ir) (w
-

p) ;

with the verification that rSr r&quot;
= r Srr&quot;=r-V, by II.

(22.) In general, by 204, (22.), if a and (3 be any two

vectors, we have the expressions,
Fig. 81.

LXVII. . . tan L ~ = = - tan L Ba = - tan L aj3

the angles of quaternions here considered being supposed as usual (comp. 130) to be

generally &amp;gt; 0, but
&amp;lt;TT;

for example, we have thus,

LXVI1I. . . - r )
= rTr

as in XVII.
;
and in like manner we have generally, by principles already ex

plained (comp. 196, XVI.),

8 a
LXIX. . . cos L - = cos L - = - cos L (3a

= - cos L a/3a

(23.) Applying these principles to investigate the inclinations of the vector
r&quot;,

which is perpendicular to the diagonal plane LXV. of the prism, to the three

rectangular lines r, r
, v, or the inclinations of that diagonal plane itself to the nor

mal, rectifying, and osculating planes, with the help of the expressions deduced from

VI. for the three products,* rr&quot;,
r

r&quot;,
v

r&quot;,
we arrive easily at the following results :

* A student, who should be inclined to pursue this subject, might find it useful

to form for himself a table of all the binary products of the nine vectors,

r, r
, T&quot;, v, v

, X, &amp;lt;r p, &amp;lt;r u, and K
,

considered as so many quaternions, and reduced to the common quadrinomial form,

a+br + cr +ev, in which a, b, c, e are scalars, whereof some may vanish, but

which are generally functions of r, r, and r .

4 D



570 ELEMENTS OF QUATERNIONS. [BOOK III.

r
&quot;

r-8 r&quot; T ^r r&quot; r~ l r~ l

LXX...^^-^; 00.*-, ^; cos-=
;

Avith the verification, that the sum of the squares of these three cosines is unity, be

cause

LXXI. . . r2Tr&quot;= Vl + H2/?2)
= V(l + r 2 + r2r2

) ;

or LXXI . . . rTr&quot;

(24.) Or we may write, on the same general plan,

-= :^; tan ^=^7; tan L - = -
r lr r r v r

LXXIII. . . tan L TT&quot; = JlTr^
;

tan L rr&quot; = rr -iTX
;

tan L vr&quot;=- rr-i V(l + r 2) ;

and may modify the expressions, by introducing the auxiliary angles H and P,

with which may be combined, if we think fit, the following angle of the prism,

LXXIV. . . PKT = BSL = tan-i r .

(25.) Instead of thus comparing the plane SPL with the three rectangular planes

(379, (5.)) of the construction, we may inquire what is the value of the angle SPL,

which the radius (7?) of spherical cui vature makes with the rectifying line (X) ;
and

we find, on the same plan, by quaternions, the following very simple expression for

the cosine of this angle, which may however be deduced by spherical trigonometry

also,

LXXV. . . cos SPL = -
SUX(&amp;lt;r

-
p) = ~- = sin P sin H;Hi X

or LXXV. . . cos SPL = cos SPB cos BPL.

(26.) In general, it is easy to form, by methods already explained, the quater

nion equation of a cone which has a given vertex, and rests on a given curve in space ;

and also to determine the right cone which osculates (394, (30.)) to this general

cone, along any given side of it.

(27.) But if we merely wish to assign the osculating right cone to the cone of
chords from P, or to the locus of the line pps,

we may imitate a recent process : and

may observe that if this new cone be cut by the normal plane LVIII., the vector of

the section has the following approximate expression, analogous to LIX., and like it

sufficient for our purpose,

LXXVI. . . MS
= p + cr + ICST + icsVi/

;

from which it may be inferred (comp. (15.), (16.)), that the axis of revolution of the

new right cone has for equation,

LXXVII. . . = V(r-ir + f i/) (a.
-

p).

This axis is therefore situated in the rectifying plane, between the rectifying line

(X or r&quot;

Jr+ v), and the tangential vector (IV.) of second curvature (r
-1
r) : while the

semiangle C of the same new cone (measured like H from -f r towards + v) has the

value already assigned by anticipation in the formula XXV., and is therefore less

than the semiangle H if both be acute, but greater than H if both be obtuse; so that,

in each case, the new right cone () is sharper than the old right cone (H).

(28.) The same result may be otherwise obtained, by observing that an unit-
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vector in the direction of the chord PPS has (by 396, XLIV., and 397, I.) the ap

proximate expression,

r-V\
+ ~) i

whence the axis of the osculating right cone to the cone of chords (27.) has rigorously

the direction of the line V^ x&quot; (f r s 0), or of the vector,

LXXIX. . . ^-VrTrV + iO=\-iv = r- 1 r + ii/, as before.

(29.) This axis % makes (if we neglect s3) the same angle C, with the chord

PPS ,
as with the tangent r

;
whereas the former axis X makes unequal angles with

those two lines, within the same order (or degree) of approximation : for our methods

conduct to the expression,

TYXY / P*~P-E7 *2

kX...Z -S-
,

from which the relation XXV., between the two right cones, may easily be deduced

anew.

(30.) Neglecting only s4
,
and employing the substitution XLVI., the expression

XLVII. for the vector of the given curve becomes,

LXXXI. . . p*
= p + fr+i*w + # 3

r-iv, if LXXXII. . . v = T + ;

or

where the variable scalar t denotes, by (13.), the ordinate of the osculating para

bola, and the constant vector v has the direction, by (14.), of the diameter of that

parabola.

(31.) In the present order of approximation, then, the proposed curve in space

may be considered to be the common intersection of the three following surfaces ofthe

second order, all passing through the given point P :

LXXXIII. . . 2(Sr (w-p))s = 3rSv(w-p)Sw (w-p);
LXXXIV. . . 2Sr (-p) = -r3(Svi&amp;lt;-p))2;

LXXXV. . . 3rSv (w
-
p) = - r*Sr (u - p) Svv(w - p) ;

whereof the first represents a new osculating oblique cone, which has a contact of the

same (second) order with the cone of chords, as the osculating right cone (27.) ;
the

second represents an osculating parabolic cylinder, which is cut perpendicularly in

the osculating parabola (9.), by the osculating plane to the curve
;
and the third

represents a certain osculating hyperbolic (or ruled) paraboloid, whereof the tan

gent (r) is one of the generating lines, while the diameter (?;) of the osculating pa
rabola is another.

(32.) Each of these three surfaces (31.) has in fact generally a contact of the

third order with the given curve; or has its equation satisfied, not only (as is ob

vious on inspection) by the point p itself, but also when we derivate successively

with respect to the scalar variable t, and then substitute the values (comp. LXXXI.),
LXXXVI. . . u) = po

=
p, in = PQ T, o&amp;gt;&quot;

=
po&quot;

=
v, w &quot; =

PO
&quot; = r- ]

i&amp;gt;

;

r, r, p, T
, v, and u being treated as constants of the equation, or of the surface, in

each of these derivations.
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(33.) The cone LXXXIII., and the cylinder LXXXIV., have a common gene

ratrix, namely the binormal* (v) ;
and in like manner, another generating line of the

same cone, namely the tangent (r) to the curve, has just been seen (31.) to be a

line on the paraboloid LXXXV. : and although the cylinder and paraboloid have

no finitely distant rigid line common, yet each may be said to contain the line at in

finity, in the diametral plane of the cylinder, namely in the plane of v and v, of

which plane the quaternion equation is (comp. (14.)),

LXXXVII. . . = Svv
(o&amp;gt;

-
p), or LXXXVII . . . = S(rrY - 3r) (w

-
p) ;

or the line in which this diametral meets the parallel axial plane.

(34.) On the whole, then, it is clear, from the known theory of intersections of

surfaces of the second order having a common generating line, that the given curve of

double curvature (whatever it may be) has contact ofthe third order with the twisted

cubicrf or gauche curve of the third degree, which is represented without ambiguity

by the system of the two scalar equations,

LXXXVIII. . . y = x2
,

z = x3
,

if we write for abridgment,

LXXXIX. . . y = (t* =)
- 2r8 Sr

(o&amp;gt;

-
p),

(35.) As another geometrical connexion between the elements of the present

theory, it may be observed that while the osculating plane to the curve, of which

plane the equation is,

XC. . . Sv(w-,o) = 0, as in 396, XV.,

touches the oblique cone LXXXIII., along the tangent r to the same curve, the diame

tral plane LXXXVII. touches the same cone along the binormal v, which was lately

seen (33.) to be, as well as r, a side of that oblique cone ; but these two sides of

contact, r and v, are both in the rectifying plane (396, XIV.), and the two tangent

planes corresponding intersect in the diameter v of the parabola (9.) ;
we have

therefore this theorem :

The diameter of the osculating parabola to a curve of double curvature is the

polar of the rectifying plane, with respect to the osculating oblique cone LXXXIII. ;

that is, with respect to a certain cone of the second order, which has been above de

duced from the expression LXXXI. for the vector pt of the curve, as one naturally

suggested thereby, and as having a contact of the third order with the curve at P,

* The geometrical reason, for the osculating cone LXXXIII. to the cone ofchords

containing the binormal (v), is that if the expression LXXXI. for pt were rigorous,

and if the variable t were supposed to increase indefinitely, the ultimate direction of

the chord PP; would be perpendicular to the osculating plane. And the same binor

mal is a generating line of the parabolic cylinder also, because that cylinder passes

through P, and all its generating lines are perpendicular to the last mentioned plane.

It is sufficient however to observe, on the side of calculation, that the equations

LXXXIII. and LXXXIV. are satisfied, when we suppose w p ||
v.

f Compare again page 241, already cited, of Dr. Salmon s Treatise ;
also Art.

285, in page 225 of the same work.
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and therefore also a contact of the second order with the cone of chords from that

point.

(36.) Conversely, this particular cone LXXXIII. is geometrically distinguished

from all other* cones of the same
(second&quot;) order, which have their vertices at the

given point F, and have each a contact of the same second order, with the given

cone of chords from that point, or of the third order with the given curve, by the

condition that it is touched (as above), along the binormal (a/), by the diametral

plane (vv&quot;)
of the osculating parabolic cylinder LXXXIV.

(37.) We have already considered, in 395, (5.), the simultaneous variations of

the points p and K, or of the vectors p and K. With recent notations, including the

expression jn
= 2/e - p, we have the following among other transformations, for the

first derivative of the latter vector, and therefore for the tangent KK to the locus of

centres of curvature, of a given curve in space :

XCI. . . KK = DSK = K =
(p r

&quot;

1
)
= r + r^VY -

=
(p 4- rV) = r+ rV-4- 2rrY

= rr r + rh- lv = rr (r +/&amp;gt;&quot;

1

rj/)
= rr- 1

(pr -f rv)

rr rr rr (a /*)

p-K ff-K (ff
-

/c) (K
-

p)
= cot 7/(Ur tan P f UV) = r-i/2(Ur sin P + Uv cos P)
= r^vvr = r^r v v v~*v r ~i = r

= r- /HJ(i/(p

if then we draw the diameter of curvature PM, and let fall

a perpendicular KN from the centre K of the osculating cir

cle on the new radius SM of the osculating sphere (as in the

annexed Figure- 82), this perpendicular will touch^ the lo

cus of the centre K, a result which agrees with the construc

tion in 395, (6.) ;
and we see, at the same time, that the

length of the line KK ,
or the tensor TK

, may be expressed

(comp. LXXIII.) as follows,

XCII. . . KK = TV = .RTr- 1 = r*TV = tan L rr&quot;.

(38.) If we project the tangent KK ,
into its two rect- x

*. ,.--&quot;

angular components, KK, and KK\ on the diameter of cur- Fig. 82.

vature and the polar axis, we shall have by XCI. the expressions :

* The cone of this system (36.), which is touched along the binomial by the

normal plane, and which therefore intersects the parabolic cylinder LXXXIV. in

a new twisted cubic (comp. (34.)), having also contact of the third order with the

curve, is easily found to have, for its quaternion equation, the following:

2r2
(Sr (w

-
p))

2 = 3rSr
(o&amp;gt;

- p) Sv(w - p) ;

and with respect to this cone (comp. (35.)), the polar of the rectifying plane is the

(absolute&quot;)
normal (r ) to the curve.

f Geometrically, and by infinitesimals, if we conceive K to be an infinitely near

point of the locus of K, and therefore in the normal plane at P, the angle PK S (like

PKS) will be right, and the point K will be on the semicircle PKS
;
but the radius of

this semicircle drawn to K (comp. Fig. 82) is parallel to the line SM, to which line

the tangent KK is therefore perpendicular, as above.
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XCTII. . . KK, = rrV = r Ur = -^ = &c.
;

P-K
_ rr

&amp;gt;

XCIV. . . KK =r*r !v = rr^Uv =- = &c. ;

O K

these two projections then, or the vector-tangent KK itself, would suffice to determine

r and r
,
or # and P, and thereby all the affections of the curve which depend on

s 3
,
but not on s*.

(39.) We have also the similar triangles (see again Fig. 82),

XCV. . . A K^K K &amp;lt;x K KK &amp;lt;x KMS ;

and the vector equations,

XCVI. . . KK : SM = KK, : SK= KK : KM = KK
%

: PK
= r-1r = Vector of second curvature (IV.) ;

whence also result the scalar expressions,

XCVII. . . tan KSK, = tan KPK = r- 1 = Second* Curvature (III.) :

this last scalar being positive or negative, according as the rotation KSK
/ (or KPK )

appears to be positive or negative, when seen from that side of the normal plane,

towards which the conceived motion (396, (1.)) along the given curve, or the unit

tangent + T, is directed.f

(40.) Besides the seven expressions, III., XXVII., L., and XCVII., this impor

tant scalar r&quot;
1 admits of many others, of which the following, numbered for reference

as 8, 9, &c., and deduced from formulae and principles already laid down, are ex

amples: and may serve as exercises in transformation, according to the rules of the

present Calculus, while some of them may also be found useful, in future geometrical

applications.

(41.) We have then (among others) the transformations :

XCVI II. . . Second Curvature = r&quot;
1 (= seven preceding expressions^

(8, 9,10, 11)

(12, 13, 14, 15)

(16, 17, 18, 19)

(20, 21, 22, 23)
= rWXv = r2SXvr = SXrV* = SXr - v (24, 25, 26, 27

(28, 29, 30, 31)

(32, 33, 34, 35)

(rv\ T^V= Sv Xr&quot;-i = Tr&quot;-
2
SXi/r&quot;= -^ - = --

(36, 37, 38, 39)
rr &amp;lt;r

-
p

* In illustration it may be observed, that if d* be treated as infinitely small, and

if the line KK be supposed to represent (not the derivative K
, but) the differential

vector d/c = c ds, then the projections KKX
and KK become dr and rr- ds (comp. XCIII.

and XCIV.) ;
while KPK (in Fig. 82) represents the infinitesimal angle Hds, through

which the osculating plane (comp. (1.)) revolves, round the tangent T to the curve

during the change d* of the arc.

t This direction of + r is to be conceived (comp. Fig. 81) to be towards the back

of Fig. 82, as drawn, if the scalars r and r (and therefore also /?) be positive.
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=^ =^) = *- tan ^rr
&quot;

=JritaniIr: &amp;lt;..)

-&quot;&quot;&quot;
r/r - r

-.
T ^. =

f &quot;7 (44,45,46,47)r (r -1C (&amp;lt;f-)(p-*)

, P + rpX-: KL

V
d cos Z.

-

(81,82,68);

PKSL, in the forms 50 and 51, being points of the same gauche quadrilateral as in

(18.) ;
and a, in 52 and 53,* denoting any constant vector: while several other

varieties of form may be deduced from the foregoing by very simple processes, such

as the substitution of Ui/ for rv, &c., which gives for instance (cornp. XI .), from the

form 38, these others,

We may also write, with the significations (10.) of QI and Q3 ,
the following expres

sion analogous to L.,

XCVII1&quot;. . . ri = GKP.lim.^ (57),

which contains the law of the inflexion of the plane curve, into which the proposed

curve of double curvature is projected, on its own rectifying plane : the sign of the

scalar, to which this last expression ultimately reduces itself, being determined by
the rules of quaternions.

(42.) And besides the various expressions for the positive scalar r 2
,
which are

immediately obtained by squaring the foregoing forms, the following are a few

others :

XCIX. . . Square of Second Curvature - r-2 = Tr-2

= TX2 - r-2 = r2
Sr&quot;r X - r~z = r2Tj/2 - r~V* (1, 2, 3)

= r2 Sri/r&quot; - 7-V2 = r2Tr&quot;
2 - r* - r-V2 = R-* (r

4
Tr&quot;

2 -
1) (4, 5, 6)

=. JTMTj/2 = J2-21V2 = R* tan2 i_ rr&quot; (7, 8, 9) ;

while the important vector
r&quot;,

besides its two original forms VI., admits of the fol

lowing among other expressions (comp. XX. XXI.) :

C. . . r&quot;=Ds
3
p (= the two expressions VI.)

=
r-2VX((T

-
p) = Xr - r-irV= v r - r^r (3, 4, 5)

= rVj/X = r-2r-V
(&amp;lt;r

-
p
-

r)
= r 3p + r-2X (a

-
p) (6, 7, 8)

= ((p- K)-i) = rX/c -Or = -r-2r-^-^ (9, 10, 11).

(43.) As regards the general theory (396, (5.), &c.) of emanant lines
(TJ) from

curves, it might have been observed that if we write,

* This last form 53 corresponds to and contains a theorem of M. Serret, alluded

to in the second Note to page 5G3.
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CI. ..? =V
r

,
with ft. :0=t-; as in 396, XXVIL,

9 n

the equation 396, XXXII. takes the simplified form,

GUI. . . PH = WQ- p
=

r]Sr)-
} % = projection of vector % on emanant

rj ;

for example, when rj
=

v, then = rr, and = 0, PH = 0, or w n = p, asin(L);

and when TJ
=

r, then = v,
= rV --

17,
so that the projection PH again vanishes,

as in 396, (13.)-

(44.) In an extensive class of applications, the emanant lines are perpendicular

to the given curve (ij
-1- r) ;

and since we have, by (43.),

CIV... 2 = WW =
,

Sn,=0,

we may write, for this case of normal emanation, the formula,

_ v_ projection of vector of curvature (/) on emanant line

square of velocity (T#) of rotation of that emanant

for example, when the emanant (/;) coincides with the absolute normal (r ), we have

then 9 = A, as in (3.), and the recent formula CV. becomes,

CVI. . . PH = w -
p = = r TX-* = rV sin2 fT= (K

-
p) sin2 #,

which agrees with the expression XXXVIII.

(45.) And in the corresponding case of tangential emanant planes, by making

Sr/ = in the second equation 396, XXXVI., and passing to a second derived

equation, we find for the intercept between the point P of the curve, and the point,

say R, in which the line of contact of the plane with its own envelope touches the

cusp-edge of that developable surface, the expression,

CVII PR = =
&quot;

=
Srjrj rj&quot; projection of ri&quot;

on 9

which accordingly vanishes, as it ought to do, when ij
= v, that is, when the emanant

plane S?j(a&amp;gt; p) = coincides with the osculating plane XC.

(46.) Some additional light may be thrown on this whole theory, of the affections

of a curve in space depending on the third power of the arc, and even on those affec

tions which depend on higher powers of s. by that conception of an auxiliary sphe

rical curve, which was employed in 379, (6 ) and (7.), to supply constructions (or

geometrical representations) for the directions, not only of the tangent (p ) to the

given curve, to which indeed the unit-vector (r) of the new curve is parallel, but

also of the absolute normal, the binormal, and the osculating plane ; while the same

auxiliary curve served also, in 389, (2.), to furnish a measure of the curvature of

the original curve, which is in fact the velocity* of motion in the new or spherical

curve, if that in the old or given one be supposed to be constant, and be taken for

unity.

*
Accordingly the vector of velocity T, of this conceived motion in the auxiliary

curve, is precisely what we have called (389, (4.), comp. 396, VI.) the vector ofcur

vature of the proposed curve in space : and its tensor (IV) is equal to the reciprocal

of the radius (r) of that curvature.
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(47.) We might for instance have observed, that while the normal plane to the

curve in space is represented (in direction) by the tangent plane to the sphere, the

rectifying plane (as being perpendicular to the absolute normal) is represented simi

larly by the normal plane to the spherical curve : and it is not difficult to prove

that the rectifying line has the direction of that new radius of the sphere, which ia

drawn to the point (say L) where the normal arc to the auxiliary curve touches its

own envelope.

(48.) The point L thus determined is the common spherical centre (comp. 394,

(5.)) of curvature, of the auxiliary curve itself, and of that reciprocal* curve on the

same sphere, of which the radii have the directions (comp. 379, (7.)) of the binor-

mals to the original curve
;
the trigonometric tangent of the arcual radius of curva

ture of the auxiliary curve is therefore ultimately equal to a small arc of that curve,

divided ly the corresponding arc of the reciprocal curve (or rather by the latter arc

with its direction reversed, if the point L, fall between the two curves upon the

sphere); and therefore to the first curvature (r~ ) of the given curve, divided by the

second curvature
(r&quot;

1
) : and thus we have not only a simple geometrical interpreta

tion of the quaternion equation XI ., but also a geometrical proof (which may be

said to require no calculation), of the important but known relation XVII., which

connects the ratio (r : r) of the two curvatures, with the angle (H) between the tan

gent (r) and the rectifying line (X), for any curve in space.

(49.) In whatever manner this known relation (tau H r: r) has once been es

tablished, it is geometrically evident, that if the ratio of the two curvatures be con

stant, then, because the curve crosses the generating lines of its own rectifying deve

lopable (396) under a constant angle (//), that developable surface must be cylin

drical : or in other words, the proposed curve ofdouble curvature must, in the case

supposed, be a geodetic-f on a cylinder (comp. 380, (4.)). Accordingly the point r,,

in the two last sub-articles, becomes then & fixed point upon the sphere, and is the

common pole of two complementary small circles, to which the auxiliary spherical

curve (46.), and the reciprocal curve (48.), in the case here considered, reduce them

selves
;
so that the tangent and the binormal to the curve in space make (in the

* The reciprocity here spoken of, between these two spherical curves, is of that

known kind, in which each point of one is a pole of the great-circle tangent, at the

corresponaing point of the other : and accordingly, with our recent symbols, we have

not only v = Vrr , but also, &quot;VW = r 2Vv v l = r-2r- r
||

r.

f The writer has not happened to meet with the geometricalproofot this known

theorem, which is attributed to M. Bertrand by M. Liouville, in page 558 of the

already cited Additions to Monge ;
but the deduction of it as above, from the fun

damental property (396) of the rectifying line, is sufficiently obvious, and appears to

have suggested the method employ ed by M. de Saint-Venant, in the part (p. 26) ofhis

Memoir sur les lignes courbes non planes, &c., before referred to, in which the result is

enunciated. Another, and perhaps even a simpler method, suggestedby quaternions,

of geometrically establishing the same theorem, will be sketched in the present sub-

article (49.); and in the following sub-article (50.), a proof by the quaternion ana

lysis will be given, which seems to leave nothing to be desired on the side of simpli

city of calculation.

4 E
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same case) constant angles, with the fixed radius drawn to that point : and the curve

itself is therefore (as before) a geodetic line, on some cylindrical surface.

(50.) By quaternions, when the two curvatures have thus a constant ratio, the

equations XI . and XVI. give,

CVIII. . . (r\)
= (Vv + rr-ir)

=
(rri) r = 0,

or CIX. . . rX = a constant vector ;

the tangent (r) makes therefore, in this case, a constant angle (#) with a constant

line (rX) : and the curve is thus seen again, by this very simple analysis, to be a

geodetic on a cylinder. And because it is easy to prove (comp. XXXI.), that we

have in the same case the expression,

CX. . . r sin2 H radius of curvature of base,

or of the section of the cylinder made by a plane perpendicular to the generating

lines, this other known theorem results, with which we shall conclude the present se

ries of sub-articles : When both the curvatures are constant, the curve is a geodetic

on a right circular cylinder (or cylinder of revolution) ;
or it is what has been called

above, for simplicity and by eminence, a helix. *

398. When the fourth power (s
4

)
of the arc is taken into account,

the expansion of the vector ps involves another term, and takes the

form (comp. 397, !.)

I...p, = P + ST + lV + i-sV + JTsv &quot;&amp;gt;

in which

II. . . T &quot; = D.V, and III. . . STT &quot; = - 3SrV = - Sr V ;

so that the new affections of the curve, thus introduced, depend only

on two new scalars, such as r and
r&quot;,

or r and Rf

,
or H and P ,

&c. We must be content to offer here a very few remarks on the

theory of such affections, and on the manner in which it may be ex

tended by the introduction of derivatives of higher orders.

* In general, the expression XLIV. for the vector ws of the osculating helix, in

which e = r^X&quot;
1 = r \ } T

,
and p

- w = X~2 r
, gives TVS

= 1
;

so that the devia

tion (8.) maybe considered (comp. (13.)) to be measured from the extremity of an

arc ofthe helix, which is equal in length to the arc s of the curve, and is set off from

the same initial point p, with the same initial direction : while w does not here de

note the value of w s answering to s -0, but has a special signification assigned by
the formula XXXVIII. It may also be noted that the conception, referred to in

(46.), of an auxiliary spherical curve, corresponds to the ideal substitution of the

motion ofa point with a varying velocity upon a sphere, for a motion with an uni

form velocity in space, in the investigation of the general properties of curves ofdou

ble curvature: and that thus it is intimately connected (comp. 379, (9 )) with the

general theory of hodographs.
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(1.) The new vector r
&quot;,

on which everything here depends, is easily reduced to

the following forms,* analogous to the expressions 397, VI. for T&quot; :

T T V

= 3r-Vr + (r(r-i)&quot; + \2) r + (r
-2 r-iy r

2v .

(2.) The first derivatives of the four vectors, i/, K
, X, a, taken in like manner

with respect to the arc s of the curve, are the following :

V. . . v &quot;= Vrr&quot; = Vr

VI. . . jc&quot;= -r-Vr+ (rr&quot;-

VII. . . X = CH)V + (r-i) rv, or VII . . . (rX) = (rri)V (comp. 397,CVIII.) ;

VIII. . . a =

in which last the scalar derivatives p and R are determined, in terms of r&quot; and r
,

by the equations,
IX. . . p = (r r)

=
r&quot;r -f r r

,

and X. . . R =R-i(pp + rr&quot;)=p smP+r cosP=(p + cotH}sinP.

We have also the derivatives,

xi...g =^^=
rl

^-p
r&amp;gt;

,

xii P = rp
~ rp = trr

&quot; ~
r&amp;gt;2)

r + rr&amp;gt;r

-

r2 + p2 #2
and the relations,

XIII. . . SrrV&quot; = Sv:

XIV. . . SrrV&quot;=Si/V&quot; =

which may be proved in various ways, and by the two first (or the two last) of

which, the derivatives r and//, and therefore also H and P
,
can be separately

calculated, as scalar functions of the four vectors r, r
, r&quot;,

r
&quot;,

or of some three

of them, including the new vector r &quot;.

(3.) We may also deduce, from either V. or VIII., the following vector expres

sions, of which the geometrical signification is evident from the recent theory (39G,

397) of emanant lines and planes :

XVI. . . Vector of Rotation of Radius (#) of Spherical Curvature

Vector ofRotation of Tangent Plane to Osculating Sphere

& p
(1, 2, 3)

whence follows this tensor value for the common angular velocity of these two con

nected rotations, compared still with the velocity of motion along the curve,

* In these new expressions, on the plan of the second Note to page 561, the

scalars r
, //, R ,

and the vector &amp;lt;r

,
are to be regarded as of the dimension zero ; r&quot;,

H
,
P , and K&quot; of the dimension 1

;
X of the dimension - 2

;
and v&quot; and r

&quot;,

as

being each of the dimension - 3.
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XVII. . . Velocity of Rotation of Radius (R\ or of Tangent Plane to Sphere,

=
1&amp;gt;

= TV -^7
= R-i V(l -f 7? 2 cot2 P) = .R-i V {

1 + (// + cot #)2 cos P} ;

with the verifications, for the case of the helix, for which p = 0, p =
0, P- 0, and

R=r, that these expressions XVI. and XVII. become,

XVI . . .
= X, and XVII . . . T0 = XX = r~i cosec H,

which agree with those found before, for the vector and velocity of rotation of the

radius (r) of absolute curvature.

(4.) As another verification, we have R = for every spherical curve, and the

general expressions take then the forms,

XVI&quot;. . . = ^-, and XVII&quot;. . . T0 = R~\a- p

of which the interpretation is easy.

(5.) In general, the formula XVII. may also be thus written,

XVIII. . . #2
02 + l = _ #2 cot2 P = R 2

-p-*R2R
2 = R 2 + &amp;lt;r

2 =
&amp;lt;r

2 cos2 P ;

or thus, XIX. . . #T0 = V(l + Ter 2 cos2 P) = V (1 + TV2 - #2) ;

or finally, XX. . . JFTty = V(2 _ r2 ff-2)
=

V(fl2 +rW) ;

so that the small angle, sT0, between the two near radii of spherical curvature, R
and Rs ,

is ultimately equal to the square root of the sum of the squares of the two

small angles, in two rectangular planes, sR~ l and rsR ^Ta
,
or PSPS and SPS^, which

are subtended, respectively, at the centre s of the osculating sphere by the small arc

a of the pi tfen curve, and cr&amp;lt; #Ae ^zrerc point p by the smaW corresponding arc sTV
of the locus of centres s of spherical curvature, or of the cusp-edge (395, (2.)) of the

polar developable ; exactly* as the small angle *TX, between two near radii (397,

(5.)) of absolute curvature, r and rs ,
is ultimately the square root of the sum of the

squares of the two other small angles, sr~\ and sr* 1

,
or PKPS and KPK$, which are

likewise situated in two rectangular planes, and are subtended at the centre K of the

osculating circle by the small arc s of the curve, and at the given point p by the

corresponding arc sTcc of the locus of the centre K (comp. 397, XXXIV., XCIV.).

(6.) The point, say v, in which the radius R of the osculating sphere at P ap

proaches most nearly to the near radius Rs from p,, is ultimately determined (comp.

397, CV. and X.) by the formula,

__._
Y

Vector of Spherical Curvature

Square of Angular Velocity of Radius (/{)

the vector of this point v (in its ultimate position) is therefore

XXII. . . ov =

with the verification, that (by X., comp. XVII.) the scalar p-^rR or R cot P re-

*
It will soon be seen that these two results, and others connected with them,

depend geometrically on one common principle, which extends to all systems of

normal emanants (397, (44.)).
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duccs itself to cot H, or to rr 1

,
for the case p 0, p 0, P= (corap. (3.)) : and

that thus the expression 397, XXXVIII., for the vector OH of the point of nearest

approach, of a radius (r) of absolute curvature to a consecutive* radius of the

same kind, is reproduced.

(7.) In general, if we introduce a new auxiliary angle, J, determined by the

formula,

XXIII. . . cot J=p-irR = R cot P=(p + cot H] cos P= R
(r&amp;gt;

the expression XXII. takes the simplified form (comp. again 397, XXXVIII.),

XXIV. . . ov = p 4- = p cos2 J+ &amp;lt;r sin2 J;

and the segments, into which the point v divides (internally) the radius R of the

sphere, have the values (comp. 397, XXXIX.),

XXV. . . PV = R sin- J, vs = R cos2 /.

(8.) A geometrical signification may be assigned for this new angle J, which is

analogous to the known signification of the angle H (397, XVII.). In fact, the

tangent plane to the osculating sphere at P touches its own developable envelope

along a new right line, of which the scalar equations are,

XXVI. . .
S(&amp;lt;r-(t&amp;gt;) (o&amp;gt;-p)

= 0, S(&amp;lt;7 -r)(a&amp;gt;-p)=0;

and because the developable locus of all such /ines can be shown to be circumscribed,

along the given curve, to the locus of the osculating circle, which is at the same time

the envelope of the osculating sphere, we shall briefly call this locus of the line

XXVI. the Circumscribed Developable. And the inclination of the generatrix of

this new developable surface, to the tangent to the given curve at p, if suitably mea
sured in the tangent plane to the sphere, is precisely the angle which has been

above denoted by J.

(9.) To render this conception more completely clear, let us suppose that a

finite right line pj is set off from the given point p, on the indefinite line XXVI., so

as to represent, by its length and direction, the velocity of the rotation ofthe tangent

plane to the osculating sphere; and so to be, in the phraseology (396, (14.)) of the

general theory of emanants, the vector-axis of that rotation. We shall then have

the values,

XXVII. . . PJ= 0(= the six expressions XVI.)
= R-IT (cot J+ U (0-

-
p)) = ^ l cosec J(r cos J+

rU(&amp;lt;r

-
p) sin /) (7, 8) ;

the angle / being determined by the formula XXIII., and a new expression,

T0 = jft-i cosec J, being thus obtained for the velocity XVII.

(10.) Hence the new angle J, if conceived to be included (like H) between the

limits and TT, may be considered to be measuredfrom r to 0, orfrom the unit-tan

gent to the curve at P, to the generating line PJ of the circumscribed developable

(8.), in the direction from T to r(a -
p) : which last tangent to the osculating sphere

* This usual expression, consecutive, is obviously borrowed here from the lan

guage of infinitesimals, but is supposed to be interpreted, like those used in other

parts of the present series of Articles, by a reference to the conception of limits.
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makes generally, like the tangent or PJ itself, an acute angle with the positive

binormal v, as appears from the common sign of the scalar coefficients of that vec

tor, in their developed expressions.

(11.) It may also be remarked, as an additional point of analogy, and as serv

ing to verify some formulae, that while the older angle H becomes right, when the

given curve is plane, so the neu&amp;gt; angle J= ,
for every spherical ctirve.

(12.) As another geometrical illustration of the properties of the angle /, and of

some other results of recent sub-articles, which may serve to connect them, still

more closely, with the general theory of normal emanants from curves (397, (44.)),

let us conceive that AB, BC, CD are three successive right lines, perpendicular each

to each
;

let us denote by a and b the angles BCA and CBD, and by c the inclination

of the line AD to BC : and let us suppose that these two lines are intersected by their

common perpendicular in the points G and H respectively.

(13.) Then, by completing the rectangle BCDE, and letting fall the perpendicular

BF on the hypotenuse of the right-angled triangle ABE, we obtain the projections,

AE and FB, of the two lines AD and OH, on the plane through B perpendicular to BC ;

and hence, by elementary reasonings, we can infer the relations :

XXVIII. .

BH AG AF AB2

and XXIX. . . = = = - = sm-AEB,
BC AD AE AE2

or XXIX . . . BH = BC sin2/, if tanj = tan o cot ft
;

nothing here being supposed to be small. It may also be observed, that the tico

rectilinear angles, BCA and CBD, or a and b, represent respectively the inclinations

of the plane ACD to the plane BCD, and of the plane ABD to the plane ABC.

(14.) Conceive next that PQ and PSQ S are two near normal emanants, touching

the polar developable in the points Q and Q S , whereof Q is thus on the given polar

axis KS, and QS is on the near polar axis KSQ S ;
and let the second emanant be

cut, in the points p and Q , by planes through p and Q, perpendicular to the first

emanaut PQ. The line PP will then be very nearly tangential to the given curve at

p
;
and the line QQ will be very nearly situated in the corresponding normal plane

to that curve : so that these two new lines will be very nearly perpendicular to each

other, and the gauche quadrilateral P PQQ will ultimately have the properties of the

recently considered quadrilateral ABCD.

(15.) This being perceived, if we denote by e the length of the emanant line PQ,

the small angle a is very nearly = e-*s
;
and if the small angle b be put under the

form b s, then the new coefficient b is ultimately equal (by XXIX .) to e~ l

cotj :

where j is an auxiliary angle, not generally small, and is such that we have ulti

mately PH = PQ . sin2/, if H be the point in which the given normal emanant PQ

approaches most closely to the consecutive emanant PSQS .

(16.) We have then the ultimate equation,

XXX. . . cot/ = eb = PQ x lim. (s*
1

. QPQ)
=

length of emanant line (PQ)
x angular velocity of the tangential plane (P PQ) containing it ;

this latter plane being here conceived as turning, for a moment, round the tangent to

the given curve at p, and the velocity of motion along that curve being still takrn

for unity.
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(17.) Accordingly, when we change e to r, b to H, aiidj to H, we recover in

this way the fundamental value cot // rr&quot;
1

(397, XVII.), for the cotangent of the

older angle //; and when, on the other hand, we treat the radius of spherical curva

ture as the normal emanant, supposing Q to coincide with s, and therefore changing
e to R, and b to r~ l + P ,

we recover the last of the expressions XXIII. for the co

tangent of the new but analogous angle J, namely cot J= R (r 1 + P ), together

with an interpretation, which may not have at first seemed obvious : although that

expression itself was deducible, in the following among other ways, from equations

previously established,

XXXI. . ./in cot J-r-i= ~- L=_:?(lY=-fe^r = P .

pR p p\R] sin P

(18.) As regards the angular velocity, say v, of the emanant line PQ, or the ul

timate quotient of the angle between two such near lines, divided by the small arc s

of the given curve, we see by XXVIII. (comp. (5.)) that this small angle vs is ulti

mately equal to the square root of the sum of the squares of the two other small an

gles, above denoted by a and 6, and found to be equal, nearly, to e^s and e ^s cotj

respectively : Ave may then establish the general formula,

XXXII. . . Angular Velocity ofNormal Emanant = v = e~ l

ccisecj ;

which reproduces the values, r~icosec//, and ft~ l
cosecJ, already found for the an

gular velocities of the two radii, r and /?.

(19.) And if we observe that the projection of the vector of curcature, KP-
,
on

the emanant PQ, is easily proved to be = QP~! = e~ 2 .PQ, we see by XXXII. that if

this projection be divided by the square of the angular velocity (r) of the line

PQ, the quotient is the line PQ.sin2
^ ,

or PH (15.): which reproduces the general

result, 397, CV., for all systems of normal emanants, together with a geometrical

interpretation.

(20.) As still another geometrical illustration of the properties of the new angle

/, we may observe that in the construction (12.) and (13.) the corresponding auxi

liary angle ; was equal to AEB, or to ABF, and that the line BF (= HG) was perpen

dicular to both BC and AD, although not intersecting the latter. Substituting then,

as in (14.), the quadrilateral P PQQ for ABCD, and passing to the limit, we may say

that if a new line PJ be a common perpendicular, at the given point P, to two conse

cutive* normal emanants, PQ and P Q ,
the general auxiliary angle j is simply the

inclination P PJ, of that common perpendicular PJ, to the tangent PP to the curve.

(21.) And
if, instead of normally emanating lines PQ, AVC consider a system of

tangential emanant planes (as in 397, (45.)), to which those lines are perpendicular,

we may then (comp. 396, (14.)) consider the recent line PJ as being a. generating
line of the developable surface, which is the envelope of all the planes of the system ;

the auxiliary angle,-\- j, is therefore generally by (20.) the inclination of this gene-

* Compare the Note to page 581.

f In these geometrical illustrations, the angle j has been treated, for simplicity,

as being both positive and acute ; although the general formula, which involve the

corresponding angles //and J, permit and require that we should occasionally attri

bute to them obtuse (but still positive) values : while those angles may also become

right, in some particular cases (comp. (11 .)).
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ratrix to the tangent : a result which agrees with, and includes, the known and fun

damental property (397, XVII.) of the angle H, in connexion with the Rectifying

Developable (396) ;
and also the analogous property of the newer angle ,7, connected

(8.) with what it has been above proposed to call the Circumscribed Developable.

(22.) We shall soon return briefly on the theory of that new developable surface

(8.), and of the new locus (of the osculating circle, or envelope of the osculating

sphere) to which it has been said to be circumscribed: but may here observe,

that if we write for abridgment (comp. VIII. and XXIII.).
9

7p
TV

XXXIII. . . n =_=-=, + cotH= cot /sec P,
rv p

then what has been called the coefficient of non-sphericity (comp. 395, (14.) and

(16.)) is easily seen to have by XIV. the values,

XXXIV. . . S- 1 = ~ - 1 = - nrSi/r
&quot; - 1 (t, 2)

(3,4,5)

= = cot HcotJsecP= -- (6,7,8):
rv pr. _

whence also the deviation of a near point p$ of the curve, from the osculating sphere

at P, is ultimately (by 395, XXVII.).

(5- -1)6-* ns* J2V
XXXV. . . SPS

- SP=

and accordingly, the square of the vector ps
- a is given now (comp. I.) by the ex

pression,

in which r*$ (a
-
p) /&quot; = 8=1 + nrri = &c., as above.

(23.) The same auxiliary scalar n enters into the following expressions for the arc,

and for the scalar radii of ihe first and second curvatures, of the locus of the centre

s of the osculating sphere, or of the cusp-edge of the polar developable (comp. 391,

(6.), and 395, (2.)) :

XXXVI. . . + J nds = Arc of that Cusp-Edge (or of locus o/s) ;

7? 7?*

XXXVI . . . ri = nr = r +p r = -7- = (Scalar) Radius of Curvature ofsame edge ;

XXXVI&quot;. . . ri =nr = a v~ l = (Scalar} Radius of Second Curvature ofsame curve ;

these two latter being here called scalar radii, because the^rs^ as well as the second

(comp. 397, V.) is conceived to have an algebraic sign. In fact, if we denote by KI

the centre of the osculating circle to the cusp-edge in question, its vector is (by the

general formula 389, IV.),

XXXVII. . . oKj = Ki= (T +
^ ;

= a -nrrT = p-p rrT -\-prv=:&amp;lt;T-rirT\

with the signification XXXVI . of n ;
because by XXXIII. (comp. 397, XI

.),

XXXVIII. . . a = nrv, v&quot; rirv + n(rv} -n rv -nr^r
,

and therefore

XXXIX. . . &amp;lt;r

* = -
n*, VtrV = wV r.
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We may also observe that the relation a
||
v gives (by 397, IV.),

XL. . . V - V = r~ r = Vector of Second Curvature ofgiven curve ;
a v

and that we have the equation,

XLI. . . = -

1 =
,

with r
&amp;gt; 0, but r\ &amp;gt; or &amp;lt; 0,PK K p r

according as the cusp-edge turns its concavity or its convexity towards the given

curve at p.

(24.) The radius of (first} curvature of that cusp-edge, when regarded as a po
sitive quantity, is therefore represented by the tensor,

WL.V^-tn-Tr.-ir^-i *(&amp;gt;),r dr

and as regards the scalar radius XXXVI&quot;. of second curvature of the same cusp-

edge, its expression follows by XXXVIII. from the general formula 397, XXVII.,
which gives here,

XLIII. . . rr 1 = S ^-r-n = S ^ =
-&amp;gt;/-!,

because XLIII . . . S -^
,
= 1

;

nr \vv \vv

the two scalar derivatives, n and
n&quot;,

which would have introduced the derived vec

tors riv and rv
, or D/p and Ds

6
p, of the fifth and sixth orders, thus disappearing

from the expressions of the two curvatures of the locus of the centre s of the osculat

ing sphere, as was to be expected from geometrical* considerations.

(25.) For the helix, the formula XXXVI I. gives KI - p, or KI = p
;
we have then

thus, as a verification, the known result, that the given point p of this curve is itself

the centre of curvature KI of that other helix (comp. 389, (3.), and 395, (8.)), which

is in this case the common locus of the two coincident centres, K. and s. It is scarcely

necessary to observe that for the helix we have also J= H.

(26.) In general, the rectifying plane of the locus ofs is parallel to the rectify

ing plane of the given curve, because the radii of their osculating circles are parallel ;

the rectifying lines for these two curves are therefore not only parallel but equal ;

and accordingly we have here the formula,

XLIV. . . \! =V ,
= V-,= \ (by 397, XVI.),n r

which will be found to agree with this other expression (comp. 397, XVII.),

XLV. . . tan Hi = - = - Un = cot H,
Iri r

the upper or lower sign being taken, according as the new curve is concave (as in

Figs. 81, 82), or is convex at s (comp. (23.)), towards the old (or given) curve at

P : and the new angle HI being measured in the new rectifying plane, from the new

* In fact, n represents here the velocity of motion of the point s along its own

locus, while r 1 and r-&amp;gt; represent respectively the velocities of rotation of the tangent

and binormal to that curve : so that nr and nr must be, as above, the radii of ita

two curvatures.

4 F
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tangent a or nrv, to the new rectifying line Xi, and in the direction from that new

tangent to the new binormal v\, or (comp. XL.) to a line from s which is equal to

the vector ofsecond curvature r^r of the given curve, multiplied by a positive scalar,

namely by Tn-i, or by the coefficient w 1 taken positively.

(27.) The former rectifying line X touches the cusp-edge of the rectifying deve

lopable (396) of the given curve, in a new point R (comp. Fig. 81), of which by

397, (45.), and by XV., the vector from the given point is, generally,

VrV r-2X rX UXsintf
XLVI. . . PR = -

SXr&quot; rr-i //

with the verification that this expression becomes infinite (comp. 397, (4.9.), (50.))

when the curve is a geodetic on a cylinder.

(28.) In general, the vector OR of the point of contact R, which vector we shall

here denote by v, may be thus expressed,

XLVIL ..v = on = p + l(J\, if XLVIII. . .Z =

and because (rX) = (rH) r, by VII ., its first derivative is,

XLIX. . . v = rX f

V

-^ }
= UX cosec H (I sin H} = UX (I -f cos H) ;

in which however the new derived scalar I involves
//&quot;,

and so depends on T IV
:

while the scalar coefficient I itself represents the portion (+PR) of the rectifying line,

intercepted between the given curve, and the cusp-edge (27.) of the rectifying deve

lopable, and considered as positive when the direction of this intercept PR coincides

with that of the line + X, but as negative in the contrary case.

(29.) For abridgment of discourse, the cusp-edge last considered, namely that of

the rectifying developable, as being the locus of a point which we have denoted by
the letter R, may be called simply

&quot; the curve (R) ;&quot;
while the former cusp-edge

(23.), or that of the polar developable, maybe called in like manner &quot;the curve

(s) ;&quot;
the locus of the centre K of (absolute) curvature maybe called &quot;the curve

(K) :&quot; and the given curve itself (comp. again Figs. 81, 82) may be called, on the

same plan,
&quot; the curve

(P).&quot;

(30.) The arc RR,, of the curve (R), is (by XLIX., comp. XXXVI.),

+ f

*

Tu ds = I,
- I -f f

*

cos Hds
;

&quot;Jo Jo

this arc being treated as positive, when the direction of motion along it coincides with

that of + X.

(31.) The expression VII. for X
, combined with the former expression 397,

XVI. for X, gives easily by the general formula 389, IV.,

LI. . . Vector of Centre of Curvature of the Curve (R)

v v
f v

whence LII. . . Radius of Curvature of Curve (R) = T
,
= T

,H d.H

the scalar variable being here arbitrary.

(32.) We see, at the same time, that the angular velocity of the rectifying line

X, or of the tangent to this curve (R), is represented by + H ;
or that the small
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angle* between two such near lines, X and X s ,
is nearly equal to sH

,
or to Hs

- H:
while the vector axis (VX X i) of rotation of the rectifying line, set off from the

point R, has /7 Ur
,
or - H rr ,

for its expression.

(33.) As regards the second curvature of the same curve (R), we may observe

that the expression (comp. VII. and LI.),

LIII. . . \&quot;=
(r-i)&quot;r + (r-i)&quot;rv + r l (rr)V = (r-i) V + (r^ rv + VXX ,

combined with the parallelism (XLIX.) of v to X, gives, by the general formula

397, XXVIL,

LIV. . . Radius of Second Curvature of Curve (R)

- ! * v
&quot;

V
1

_ v
l Q

x
&quot;

V
1

- u/ - r+cos//

~V VvV J

~
XV VXX J ~X

&quot;&quot;

TX

with the verification, that while Z + cos H represents, by (30.), the velocity of mo
tion along this curve (R), TX represents, by 397, (3.), the velocity of rotation of
its osculating plane, namely the rectifying plane of the given curve (p) : and it

is worth observing, that although each of these two radii of curvature, LII. and

LIV., depends on rIT through I (28.), yet neither of them depends on rv (comp.

(24.)). As another verification, it can be shown that the plane of the two lines X

and T from p, namely the plane,

LIV. . . Sr
X(&quot;&amp;gt;

-
p) = 0,

which is the normal plane to the rectifying developable along the rectifying line, and

contains the absolute normal to the given curve (P), touches its own developable en

velope along the line RH, if H be the point determined by the formula 397,

XXXVIII.
,
or the point of nearest approach of a radius of curvature (r) of that

given curve to its consecutive (comp. (6.); this line~RH must therefore be the recti

fying line of the curve (R) : and accordingly (comp. 397, XVII.), the trigonometric

tangent of its inclination to the tangent RP to this last curve has for expression

(abstracting from sign),

LIV&quot;. . . tan PRH = PH : PR = + Hr sin2 H=rH sin H = TX 1^
Radius (LIV.) of Second Curvature of Curve (R)^

~&quot;

Radius (LII.) of First Curvature of same Curve

(34.) Without even introducing r1T
,
we can assign as follows a twisted cubic

(comp. 397, (34.)), which shall have contact of the fourth order with the given

curve at P
;
or rather an indefinite variety of such cubics, or gauche curves of the

third degree. Writing, for abridgment,

LV. . . x= -
ST-(O -p), y = - Srr (w

-
p), z Srv(w-p),

so that LVI. . . w = p + XT + yrr + zrv,

the scalar equation,

* A result substantially equivalent to this is deduced, by an entirely different

analysis, in the above cited Memoir of M. de Saint-Venant, and is illustrated by

geometrical considerations : which also lead to expressions for the two curvatures

(or, as he calls them, the courbure and cambrure), of the cusp-edge of the rectifying

developable ;
and to a determination of the rectifying line of that cusp-edge.
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in which e is an arbitrary but scalar constant, represents evidently, by its/orm, a

cone of the second order, with its vertex at the given point p ; and this cone can be

proved to have contact of the fourth order with the curve* at that point : or of the

third order with the cone of chords from it (comp. 397, (31.), (32.)). In fact the

coefficients will be found to have been so determined, that the difference of the two

members of this equation LVII. contains *G as a factor, when we change w to p s ,
as

given by the formula I., or when we substitute for xyz their approximate values for

the curve, as functions of the arc s
; namely, by the expressions IV. for r

&quot;,

and

397, VI. for
r&quot;,

s 3 r *

&quot; P +
873

LVIII. .

where the terms set down are more than sufficient for the purpose of the proof. It

s 4

may be added that the coefficient of in ys ,
which is the only one at all complex

here, may be transformed as follows :

LVIII . . . Srry = -(r-7 -r-iX* = r-3S + p(r-Sri) ;

S being that scalar for which (or more immediately for its excess over unity) several

expressionsf have lately been assigned (22.), and which had occurred in an earlier

investigation (395, (14.), &c.).

(35.) With the same significations LV. of the three scalars xyz, this other equa

tion,

LIX. . . I8ry-(3x- r y)2 = (9 +r 2-
3rr&quot;

- 3r2 r-2)y
2

,

or LIX . . . 2ry
- (x - |r y)2 = (1

-
|r* (r*)&quot;

- |rr) y\

will be found to be satisfied when we substitute for x and y the values LVIII. of xs

and ys ,
and neglect or suppress s5

;
it therefore represents an elliptic (or hyperbolic)

cylinder, which is cut perpendicularly, by the osculating plane to the given curve at

P, in an ellipse (or hyperbola), having contact of the fourth order with the projec

tion (comp. 397, (9.)), of that given curve upon that osculating plane : and the cy

linder itseffhus contact of the same (fourth*) order with the curve in space, at the

* In the language of infinitesimals, the cone LVII. contains five consecutive

points of the curve, or has five-point contact therewith : but it contains onlyfour con

secutive sides of the cone of chords from the given point, or has only four-side con

tact with that cone, except for one particular value of the constant, e, which we shall

presently assign. It may be observed that xyz form here a (scalar) system of three

rectangular co-ordinates, of the usual kind, with their origin at the point p of the

curve, and with their positive semiaxes in the directions of the tangent r, the vector

of curvature r
,
and the binormal v-

f It might have been observed, in addition to the eight forms XXXIV., that

we have also,

XXXIV. . . S - 1 = J?r cot J= n cot H (9, 10).
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same given point P, so that we may call it (comp. 397, (31.)) the Osculating Elliptic

(or Hyperbolic&quot;) Cylinder, perpendicular to the osculating plane.

(36.) As a verification, if we suppress the second member of either LIX. or LIX
.,

we obtain, under a new form, the equation of what has been already called the Oscil

lating Parabolic Cylinder (397, LXXXIV.) ;
and as another verification, the co

efficient of y
2 in that second member vanishes, as it ought to do, when the given

curve is supposed to be a parabola : that plane curve, in fact, satisfying the differen

tial equation ofthe second order,

LX. . . 3rr&quot;
- r 2 =

9, or LX . . . r%
(r^)&quot;= 2,

or LX&quot;. . . r-t f f Y+ 1 \ = const. =/r,

if r be still the radius of curvature, considered as a function of the arc, s, while p is

here the semiparameter.

(37.) The binormal v is, by the construction, a generating line of the cylinder

LIX. ;
and although this line is not generally a side of the cone LVIL, yet we can

make it such, by assigning the particular value zero to the arbitrary constant, e, in

its equation, or by suppressing the term, ez2 . And when this is done, the cone LVII.

will intersect the cylinder LIX., not only in this common side v (comp. 397, (33.)),

but also in a certain twisted cubic, which will have contact of the fourth order with

t]ie given curve at P, as stated at the commencement of (34.).

(38.) But, as was also stated there, indefinitely many such cubics can be de

scribed, which shall have contact of the same (fourth ) order, with the same curve,

at the same point. For we may assume any point E of space, or any vector (comp.

LVL),
LXI. . . OE = e = p + ar + brr + cr v,

in which a, b, c are any three scalar constants ; and then the vector equation,

LXII. . . a) = p s + t (c
-

p),

in which t is a new scalar variable, will represent a cylindric surface, not generally

of the second order, but passing through the given curve, and having the line PE for

a generatrix. We can then cut (generally) this new cylinder by the osculating

plane to the curve at p, and so obtain (generally) a new and oblique projection of

the curve upon that plane ; the x and y of which new projected curve will depend on

the arc s of the original curve by the relations,

LXII I. . . x = xs ac~ lzs, y = ys bc Jzs ;

with the approximate expressions LVIII. for xsyszs . And if we then determine two

new scalar constants, J3 and C, by the condition that the substitution of these last

expressions LXIII. for x and y shall satisfy this new equation,

LXIV. . . 2ry =a;2 + 2xy + Cy
2

,

if only * 5 be neglected (comp. (35.)), or by equating the coefficients ofs
3 and s*,

in the result of such substitution, then, on restoring the significations LV. of xyz,

and writing for abridgment,

LXV. . . X= x - ac-Jz, Y = y - be
&amp;gt;z,

the equation of the second degree,
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LXVI. . . 2rF=Jr2 4-2/?*F4- CF2
,

will represent generally an oblique osculating elliptic (or hyperbolic) cylinder, which

has contact of the fourth order with the given curve at P, and contains the assumed

line PE. If then we determine finally the constant e in LVIL, by the result of the

substitution of abc for xyz, or by the condition,

2r6V (r\ 3 I r3=6-LXVII. .. =6 - }ac +
{

-\bc + ec\
\ r

I \t J \r*j

the cone LVII., and the cylinder LXVI., will have that line PE for a common side ; and

will intersect each other, not only in that line, but also (as before) in a twisted cubic,

although now a new one, which will have the required (fourth) order of contact, with

the given curve at the given point.

(39.) If, after the substitution (38.) in LXIV., we equate the coefficients of the

three powers, s3
,
*4

,
s5

,
and then eliminate B and

(7, we are conducted to an equa

tion of condition, which is found to be of the form,

LXVIII. . . at 3 + b&-c + c&c2 + ec 3 = ac(bg + ch) ;

in which the ratios of abc still serve to determine the direction of the generating line

PE, while the coefficients a, b, c, e, g, h are assignable functions of r, r, r
,
r

, r&quot;, r&quot;,

and r
&quot;, depending on the vector riv : and when this condition LXVIII. is satisfied,

the cylinder LXVI. has contact of the fifth order with the given curve at P.

(40.) Again, if we improve the approximate expressions LVIII. for the three

scalars xs, ys ,
zs, by taking account of s 5

,
or by introducing the new term

(comp. I.) of p s ,
and if we substitute the expressions so improved, instead of x, y, z

y

in the equation of the cone LVII. and then equate to zero (comp. (34.)) the coeffi

cient of *6 in the difference of the two members of that equation, we obtain a definite

expression for the constant, e, which had been arbitrary before, but becomes now a

given function of rrr r r&quot; and r&quot; (not involving r
&quot;), namely the following

21
r^

2

_ 3/ 3r r 27r 2 9

y2ra r4 ?
.3 r 3r 4r2r3 r

and when the constant e receives this value,* the cone has contact of the fifth order

with the curve at the given point.

(41.) Finally, if we multiply the equation LXVII. by 6g+ ch, we can at once

eliminate a by LXVIII., and so obtain a cubic equation in b: c, which has at least

one real root, answering to a real system of ratios a, b, c, and therefore to a real

direction of the line PE in (38.). It is therefore possible to assign at least one real

cylinder of the second order (39.), which shall have contact of the fifth order with

the curve at P, and shall at the same time have one side PE common with the cone

of the second order (40.), which has contact of the same (fifth) order with the curve

(or of the fourth order with the cone of chords) : and consequently it is possible in

this way to assign, as the intersection of this cylinder with this cone, at least one real

*
Compare the first Note to page 588.
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twisted cubic, which has contact of the fifth* order with the given curve of double

curvature, at the given point thereof. And such a cubic curve may be called, by

eminence, an Osculating-^- Twisted Cubic.

(42.) Not intending to return, in these Elements, on the subject of such cubic

curves, we may take this occasion to remark, that the very simple vector equation,^.

LXX. . . Vap = pVpPt

represents a curve of this Kind, if a and /3 be any two constant and non-parallel

vectors. In fact, if we operate on this equation by the symbol S.X, in which \ is

an arbitrary but constant vector, the scalar equation so obtained, namely,

LXXI. . . SXap = S\pS/3p
-

p
?
S/3X,

represents a surface of the second order, on which the curve is wholly contained;

making then successively X a and X = j3,
we get, in particular, the two equations,

LXXII. . . S (Vajo .V/3,o)
=

0, and LXXIII. . . (V/3p)2 + Sa/3p = 0,

representing respectively a cone and cylinder of that order, with the vector /3 from

the origin as a common side : and the remaining part of the intersection of these

two surfaces, is precisely the curve LXX., which therefore is a twisted cubic, in the

known sense already referred to.

(43.) Other surfaces of the same order, containing the same curve, would be

obtained by assigning other values to X
;
for example (comp. 397, (31.)), we should

get generally an hyperbolic paraboloid from the form LXXI., by taking \-i-j3.

But it may be more important here to observe, that without supposing any acquaint

ance with the theory of curved surfaces, the vector equation LXX. can be shown, by

*
Accordingly, it is known (see page 242 of Dr. Salmon s Treatise, already

cited), that a twisted cubic can generally be described through any six given points ;

and also (page 248), that three quadric cylinders (or cylinders of the second order

or degree) can be described, containing a given cubic curve, their edges being pa
rallel to the three (real or imaginary) asymptotes.

f Compare the first Note to page 563.

J This example was given in pages 679, c.. of the Lectures, with some con

nected transformations, the equation having been found as a certain condition for

the inscription of a gauche quadrilateral, or other even-sided polygon, in a given

spheric surface (comp. the sub-articles to 296) : the 2ra successive sides of the figure

being obliged to pass through the same even number of given points of space. It

was shown that the curve might be said to intersect the unit-sphere (p
2 = -

1) in two

imaginary points at infinity, and also in two real and two imaginarypoints, situated

on two real right lines, which were reciprocal polars relatively to the sphere, and

might be called chords of solution, with respect to the proposed problem of inscrip

tion of the polygon ;
and that analogous results existed for even-sided polygons in

ellipsoids, and other surfaces of the second order : whereas the corresponding prob

lem, of the inscription of an odd-sided polygon in such a surface, conducted only to

the assignment of a single chord of solution, as happens in the known and analogous

theory of polygons in conies, whether the number of sides be (in that theory) even

or odd. But we cannot here pursue the subject, which has been treated at some

length iu the Lectures, and in the Appendices to them.



592 ELEMENTS OF QUATERNIONS. [BOOK III.

quaternions, to represent a curve of the third degree, in the sense that it is cut, by

an arbitrary plane, in three points (real or imaginary). In fact, we may write the

equation as follows,

LXXIV. . . Vtfp
= -

,
if LXXV. . . g =g + /3,

q being here a quaternion, of which the vector part /3 is given, but the scalar part g

is arbitrary ; and then, by resolving (comp. 347) this linear equation LXXIV.,
we may still further transform it as follows,

LXXVI. ..a(o*-p^p = P$pa + aV(3a-g*a ,

which conducts to a cubic equation in g, when combined with the equation,

LXXVII. . . Sf
jt&amp;gt;

=
e,

of any proposed secant plane.

(44.) The vector equation LXX., however, is not sufficiently general, to repre

sent an arbitrary twisted cubic, through an assumed point taken as origin ; for

which purpose, ten scalar constants ought to be disposable, in order to allow of the

curve being made to pass throughyh&amp;gt;e* other arbitrary points : whereas the equa

tion referred to involves only five such constants, namely the four included in Ua
and U/3, and the one quotient of tensors T/3 : Ta (comp. 358).

(45.) It is easy, however, to accomplish the generalization thus required, with

the help of that theory of linear and vector functions (0p) of vectors, which was as

signed in the Sixth Section of the preceding Chapter (Arts. 347, &c.). We have

only to write, instead of the equation LXX., this other but analogous form which

includes it,

LXXVIII. . . Vap + Vp^p =
0, or LXXVIII . . . 0o + cp

= a,

and which gives, by principles and methods already explained (comp. 354, (1.)),

the transformation,

LXXIX. . . p-( + .)-&quot;-
.

in + me + m c2 -f- c3

a, \//a, and x being here fixed vectors, and m, m, m&quot; being fixed scalars, but c

being an arbitrary and variable scalar, which n;ay receive any value, without the

expression LXXIX. ceasing to satisfy the equation LXXVI 1 1.

*
Compare the first Note to page 591. In general, when a curve in space is

supposed to be represented (comp. 371, (5.)) by two scalar equations, each new ar

bitrary point, through which it is required to pass, introduces a necessity for two new

disposable constants, of the scalar kind : and accordingly each new order, say the

nth
,
of contact with such a curve, has been seen to introduce a new vector, D/!

p, or

r^&quot;
1

), subject to a condition resulting from the general equation TDsp = l, or

7-2 = _ 1 (comp. 380, XXVI., and 396, III.), but involving virtually two new scalar

constants. Thus, besides the four such constants, which enter through r and r into

the determination of the directions of the rectangular system of lines, tangent, nor

mal, and binormal (comp. 379, (5.), or 396, (2.)), and of the length of the radius

of (first) curvature, r, the three successive derivatives, r
, r&quot;, r

&quot;,
of that radius, and

the radius r of second curvature, with its two first derivatives, r and
r&quot;,

have been

seen to enter, through the three other vectors, T
&quot;,

r
&quot;,

rlv
,
into the determination

(41.) of the osculating twisted cubic.
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(46.) The curve LXXVIII. is therefore cut (comp. (43.)) by the plane

LXXVII. in three points (real or imaginary), answering to and determined by the

three roots of the cubic in c, which is formed by substituting the expression LXXIX.
for p in the equation of that secant plane ;

and consequently it is a curve of the third

degree, the three (i-eal or imaginary) asymptotes to which have directions correspond

ing to the three values of c, obtained by equating to zero the denominator of that

expression LXXIX., or by making M=0, in a notation formerly employed : so that

they have the directions of the three lines
/3,

which satisfy this other vector equa
tion (comp. 354, I.),

LXXX. . .V/30/3 = 0.

(47.) Accordingly, if /3 be such a line, and if y be any vector in the plane of a

and
/3, the curve LXXVIII. is a part of the intersection of the two surfaces of the

second order,

LXXXI. . . Sap0|0 = 0, and LXXXII. . . Syap + Syp^p = 0,

whereof the first is a cone, and which have the line
ft from the origin for a common

side (comp. (42.)) : the curve is therefore found anew to be a twisted cubic.

(48.) And as regards the number of the scalar constants, which are to be con

ceived as entering into its vector equation LXXVIII., when we take for
&amp;lt;j&amp;gt;p

theform

Vgop + VXpjw assigned in 357, I., in which 50 is an arbitrary but constant quater

nion, such as g+y, and X, \n,
are constant vectors, the term gp of 0p disappears

under the symbol of operation V.p, and the equation (45.) of the curve becomes,

LXXXIII. . . Vap + pVyp + VpVXp/A = ;

in which the four versors, Ua, Uy, UX, U/z, introduce each two scalar constants,

while the two tensor quotients, Ty : Ta and T\n : Ta, count as two others : so that

the required number of ten such constants (44.) is exactly made up, the curve being
still supposed to pass through an assumed origin, and therefore to have one point

given. It is scarcely worth observing, that we can at once remove this last restric

tion, by merely adding a new constant vector to p, in the last equation, LXXXIII.

(49.) Although, for the determination of the osculating twisted cubic (41.), to

a given curve of double curvature, it was necessary (comp. (40.)) to employ the

vector riv or D s
5
p, or to take account of s5 in the vector p, or in the connected sca-

lars xsyszs of (34.), and therefore to improve the expressions LVIII., by carrying in

each of them (or at least in the two latter) the approximation one step farther, yet
there are many other problems relating to curves in space, besides some that have been

already considered, for which those scalar expressions LVIII. are sufficiently ap

proximate : or for which the vector expression I, suffices.

(50.) Resuming, for instance, the questions considered in (22.) and (23.), we

may throw some additional light on the law of the deviation of a near point ps of the

curve, from the osculating sphere at p, as follows. Eliminating n by XXXVI .

from XXXV., we find this new expression,

LXXXI V. ~
24rr*5

the direction of tliis deviation from the sphere (J?) depends therefore on the sign

of the scalar radius r\ (23.) of curvature of the cusp-edge (s) of the polar deve

lopable: and it is outward or inward (comp. 395, (14.)), according as that cusp-

edge turns its concavity (comp. XLI.) or its convexity, at the centre s of the oscu-

4 G
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lating sphere, towards the point P of the given curve, that is, towards the point of

osculation.

(51.) Again, if we only take account of s3
,
the deviation of ps from the osculat

ing circle at P has been seen to be a vector tangential to the osculating sphere, which

may be thus expressed (comp. 397, IX., LIL),

if c be the point on the circle, which is distant from the given point P by an arc of

that circle =s, with the same initial direction of motion, or of departure from P, re

presented by the common unit tangent T ;
the quantity of this deviation is therefore

expressed by the scalar
^-:

that is, by the deviation (comp. 397, (9.), (10.))

from the osculating plane* at P, multiplied by the secant
(&amp;gt;&quot;

#) of the inclination

(P) of the radius (72) of spherical curvature, to the radius (r) of absolute curva

ture, and positive when this last deviation has the direction of the binormal v.

(52.) On the other hand (comp. (5.)) the small angle, which the small arc sss

of the cusp-edge (s) of the polar developable subtends at the point P, is ultimately

expressed by the scalar,

LXXXVI. . . SPS S = (PS,
-

PS) . R-* cot P =^ =~ (by XXXIII.),

this angle being treated as positive, when the corresponding rotation f round -f T from

* Besides the nine expressions in 397, (42.) for the square r 2 of the second

curvature, the following may be remarked, as containing the law ofthe regression of

the projection of a curve of double curvature on its own normal plane :

r
~
2 =

24;-
Um
-;S 897, MIX., (w) ,

K being still the centre of the osculating circle, and QI, Q2 , Q3 being still (as in 397,

(10.)) the projections of a near point Q (or PS), on the tangent, the absolute normal

(or inward radius of curvature PK), and the binormal at p. In fact, the principal

terms of the three vector projections corresponding, of the small chord PQ (or PPS),

are (comp. LVIII.) :

SV S3

PQi = ST
; PQ2 = (|*V =) - Ur

; PQ3 = Q* 3rV =) U*
;

whence, ultimately,

f Considered as a rotation, this small angle may be represented by the small

vector, rp-iR R l

sr; and if the vector deviation LXXXV. from the osculating circle

be multiplied by this, the quarter of the product is (comp. XXXV.) the vector devia

tion from the osculating sphere, under the form,
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PS to PSS is positive : and if we multiply this scalar, by that which has just been

assigned (51.), as an expression for the deviation CSPS from the osculating circle, we

get, by XXXV., the product,

. -.
6r2r pR Grrp

(53.) Combining then the recent results (50.), (51.), (52.), we arrive at the fol

lowing Theorem :

The deviation of a near point ps of a curve in space, from the osculating sphere

at the given point P, is ultlmaiely equal to the quarter of the deviation of the same

near point from the osculating circle at p, multiplied by the sine of the small an

gle which the arc ss s , of the locus of centres of spherical curvature (s), or of the

cusp-edge of the polar developable, subtends at the same point P
;
and this deviation

(SPS SP) from the sphere has an outward or an inward direction, according as the

same arc SSS is concave or convex towards the same given point.

(54.) The vector of the centre ss,
of the near osculating sphere at ps ,

is (in the

same order of approximation, comp. I.),

LXXXVIII. . . oss
=

&amp;lt;r,

= a + so + JV + -|*
3

&amp;lt;r

&quot;

+ -fa&ff
1*

;

and although a p is already a function (by 397, IX., &c.) of r, r
, T&quot;,

so that a

is (as in (2.) or (22.)) a function of r
, r&quot;,

r
&quot;,
and

or&quot;,
&amp;lt;r

&quot;,

&amp;lt;r

lv introduce respectively

the new derived vectors riv
,
rv

,
ryl

,
or DA

5
p, D/p, Ds

7
p, which we are not at pre

sent employing (49.), yet we have seen, in (23.) and (24.), that some useful combi

nations of a&quot; and a&quot; can be expressed without rlv
,
rv : and the following is another

remarkable example of the same species of reduction, involving not only a&quot; and a&quot;

but also tr
IT

,
but still admitting, like the former, of a simple geometrical interpreta

tion.

(55.) Remembering (comp. (22.), and 397, XV.) that

LXXXIX. . . (cr
-

p)* + E&amp;gt;
=

0, and XC. . . Sr
&quot;

(&amp;lt;r

-
p) = r-*S = r~2 + nr ^r

&amp;gt;,

and reducing the successive derivatives of LXXXIX. with the help of the equations

397, XIX., and of their derivatives, we are conducted easily to the following system

of equations, into which the derived vectors r, r
,
&c. do not expressly enter, but

which involve &amp;lt;r

, a&quot;,
a

&quot;,

tr
lv

,
and R

, R&quot;,
R

&quot;,

R&quot; :

XCI. . . Sa (&amp;lt;r-p) + RR = Q; XCII. . . S(r
&amp;lt;r&quot;(&amp;lt;r-p)

= 0;

XCIII. . .
S&amp;lt;r&quot;(&amp;lt;r

-
p) + er a + (RRJ = ;

XCIV. . . So-
&quot;

(&amp;lt;r

-
p) + BSff ff&quot; + (RR T =

;

XCV. . . S&amp;lt;T

IV
(&amp;lt;r-p) + 4S&amp;lt;7V&quot; + 3&amp;lt;r&quot;

2 + (72/2 )
&quot; = -

^~=~ ^
auxiliary equations being,

XCVI. . . So-V =
0, SerY = 0, So- V = 0, comp. 395, X.

and XCVII. . . Scr&quot;V = - S&amp;lt;rV = S&amp;lt;rY&quot;
- Srr&quot;

- S
(&amp;lt;r

-
p) r&quot;

(56.) But, if Rs denote the radius of the near sphere, and if we still neglect * 5
,

we have,

XCVIII. . . P^ = -
(&amp;lt;r.

-
p s)

2 = R*2

= R* + 2sRR + S&quot;(RRJ + (RRJ +
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whence follows, by LXXXVIII., and by the recent equations, this very simple ex

pression, from which (comp. (24.)) everything depending on rlv
,

T V
,
rvi has disap

peared,

and which gives (within the same order of approximation, attending to XXXV.)
the geometrical relation,

R si n*4

C...PS.-r* = T((r.-p)-JZ,= = _- = SP.-SP;

or C . . . SP 3PS
= SSPS

- SP = Rs R.

(57.) This result might have been foreseen, from the following very sim

ple consideration. When the coefficient S 1 of non-sphericity (395, (16.)), or

of the deviation of a curve from a sphere, is positive, so that a near point ps of the

curve is exterior to (what we may call) the given sphere, which osculates to that

curve at P, by an amount which is ultimately proportional to the fourth power
of the arc, s, of the curve, then the given point p must be, for the same rea

son, exterior to the near sphere, which osculates at the point T?s ;
and the two devia

tions, PSS PSS ,
and SPS SP, which have been found by calculation to be equal

(C.), if s5 be neglected, must in fact bear to each other an ultimate ratio ofequality,
because the two arcs, + s and s, from p to FS , and from ps back to p, are equally

long, although oppositely directed; or because (+s)
4 = (- s)

4
. And precisely the

same reasoning applies, when the coefficient S- 1 is negative, so that the deviations,

equated in the formula C., are both inwards.

(58.) As regards the deviation (51.) of the near point FS of the curve from the

osculating circle at P, we may generalize and render more exact the expression

LXXXV., by considering a point c&amp;lt;
of that circle, which is distant by a circular arc

= t from the given point p
;
and of which the vector is, rigorously, by 396, (18.),

CI. . . QCt = ut = P + rr sin - -f r^r vers -
:

r r

or if we only neglect *5
,

(59.) In this way we shall have (comp. (34.)) the vector deviation,

CIII. . . ctYs = p s -&amp;lt;,)t=Xr + Yrr -f Zrv,

with the scalar coefficients,

CIV. . . X=xs -rsm-, r= ys -rvers-, Z=zs
-,

or, neglecting s3 and tf, and attending to the expressions LVIII. and LVIII
.,

cv. ..

2r

in which r, r, r, p, and n have the same significations as before.
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(60.) Assuming then for the circular arc t the value,

which differs (as we see) by only a quantity of the fourth order from the arc s of the

curve, we shall have, to the same order of approximation, the expressions,

CVII. . . X= 0, JT= Z - . Z= zs
= &c., as before,

r 24r2r

the deviation at Ps from the circle being here measured in a direction parallel to the

normal plane at P
;
and if s4 be neglected (although the expressions enable us to

take account of it), this deviation is also parallel (as before) to the tangent r(&amp;lt;r p)

to the osculating sphere in that plane : while it is represented in quantity by Rr~^zs ,

which agrees with the result in (51.).

(61.) The expressions CVII. give also, without neglecting s4
,

such then is the component of the deviation from the osculating circle, which is pa
rallel to the normal PS to the sphere at P; and we see that it only differs in sign

(because it is positive when its direction is that of the inward normal, or inward ra

dius PS), from the expression XXXV. (comp. C.), for the outward deviation SPS sp

of the near point PS ,
from the same osculating sphere at the given point P.

(62.) This latter component (61.) is small, even as compared with the former

small component (60.) ;
and the small quotient, of the latter divided by the former,

is ultimately (by LXXXVL),

where the small angle SPSS is positive or negative, according to the rule stated in

(52.), and may be replaced by its sine, or by its tangent.

(63.) Instead of cutting the given osculating circle, as in (60.), by a plane which

is parallel to the given normal plane at P, we may propose to cut that circle by the

near normal plane at rs,
or to satisfy this new condition,

CX. . . = Srs (ps
-

(at), or CX . . . = X$TTS + FSrr r, + ZSrvr, ;

which is easily found to give by CV. the values (s and t being still supposed to be

small, and s5 being still neglected) :

CXI. ..* = -, and CXII. . . X= T
, Y~ &c., Z= &c., as in CVII. ;

24r 3 6r3

so that in passing to this new near point c-t of the circle, we only change X from

zero to a small quantity of the fourth order, and make no change in the values of Y
and Z.

(64.) The new deviation c trs from the given circle may be decomposed into two

partial deviations, in the near normal plane, of which one has the direction of the

unit-tangent Es
l

Ts(ffs p s) to the near sphere at Ps ,
and the other has that of the

unit-normal Rs
~ l

(as ps) to the same sphere at the same point (or the opposites of

these two directions) ;
and the scalar coefficients of these two vector units, if we at

tend only to principal terms, are easily found to be,
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(65.) We may then write :

CXV. . . Deviation of near point Pyfrom given osculating circle,

measured in the near normal plane to the curve at Ps,

= new QPS
= Ur,(r,

-
ps)

in which it may be observed, that the second scalar coefficient is equal to three times

the scalar deviation SPS
- sp (XXXV. or C.), of the near point ps of the curve, from

the given osculating sphere (at P).

(66.) But we may also interpret the new coefficient last mentioned, as represent

ing a new deviation ; namely, that of the point Ct of the given circle, from the near

osculating sphere at Ps,
considered as positive when that new point Ct is exterior to

that near sphere ;
or as denoting the difference of distances, ssct SSP. We have

therefore (comp. (56.)) this new geometrical relation, of an extremely simple kind :

CXVI. . . s^-s^s =3(sp s -sp) = 3(^p-s^Ps);

or CXVI . . . sic* = oSsP - 2Jwv

(67.) Supposing, then, at first, that the coefficient ofnon-sphericity S - 1 is posi

tive (comp. 395, (16.)), if we conceive a point to move lackivards, upon the curve,

from Ps to P, and then forwards, upon the circle which osculates at P, to the new

point Ct (63.), we see that it willjSrsi attain (at P) a position exterior to the sphere

which osculates at ps,
or will have an amount, determined in (56.), of outward devi

ation, with respect to that near osculating sphere ; and that it will afterwards attain

(at the new point c) a deviation of the same character (namely outwards, if S&amp;gt; 1),

from the same near sphere, but one of which the amount will be threefold the former :

this last relation holding also when S
&amp;lt; 1, or when both deviations are inwards.

(68.) It is easy also to infer from (65.), (comp. (57.)), that if we go backfrom
ps,

on the near circle which osculates at that near point, through an arc () of that

circle, which will only differ by a small quantity of the fourth order (comp. (60.))

from the arc (s) of the curve, so as to arrive at a point, which for the moment we

shall simply denote bye, and in which (as well as in another point of section, not

necessary here to be considered) the near osculating circle is cut by the given nor

mal plane at P, the vector deviation of this new point c of the new circle, from the

given point P of the curve, must be, nearly :

CIVIL.
.PC=|lur(.-rt-^U(.-p);

the coefficients being formed from those of the formula CXV., by first changing * to

s, and then changing the signs of the results :. while the relation CXVI. or

CXVI . takes now the form,

CXVIII. ..SC-SP =3 (SP,-SP), or CXVIII . . . c= 3sp,-2sp.

(69.) Accordingly if, after going from P to PS along the curve, we go forward or

backward, through any positive or negative arc, t,
of the circle which osculates at

that point P,, we shall arrive at a point which we may here denote by cs
,&amp;lt;;

and the

vector (comp. again 396, (18.)) of this near point (more general than any of those

hitherto considered) will be, rigorously,
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CXIX. . . ws, t
= ocs, t

= p s + rsrs sin + rsVs vers .

fs r$

And if we develope this new expression to the accuracy of the fourth order inclusive,

we find that we satisfy the new condition (comp. (63.)),

CXX. .. Sr(w,,-p) = 0, when CXXI. . . t = - s -
;

24r3

and that then the expression CXIX. agrees with CXVII., within the order of ap

proximation here considered.

(70.) A geometrical connexion can be shown to exist, between the two equiva
lents which have been found above, one for the quadruple (LXXXVIL, comp. (53.)),
and the other for the triple (CXVIII.), of the deviation sps

- sp of a near point ps

of the curve, from the sphere which osculates at the given point p : in such a manner
that if either of those two expressions be regarded as known, the other can be in

ferred from it.

(71.) In fact if we draw, in the normal plane, perpendiculars PD and PE to the

lines PS and PS, and determine points D and E upon them by drawing a parallel to

PS through the point c of (68.), letting fall also a perpendicular CF on PS5, the two

small lines PD and DC will ultimately represent the two terms or components CXVII.
of PC

;
and the small angle DPC will ultimately be equal to three quarters of the

small angle SPS, and will correspond to the same direction of rotation round r, be

cause

CXXIII. . . DPC = fSPS* = IDPE ;

so that we shall have the ultimate ratios (comp. the

annexed Fig. 83*):

CXXIV. . . DC : DE : CE (or FP) = 3 : 4 : 1.

But the line CF is ultimately the trace, on the given
normal plane, of the tangent plane at c to the near

osculating sphere; the small line FP (or CE) represents therefore the deviation

SSP- SSPS of the given point p from that near sphere, or the equal deviation (57.)

SPs sp ;
its ultimate quadruple, DE, represents the product mentioned in (52.) ;

and the ultimate triple, DC, of the same small line CE, is a geometrical representation

of that other deviation &quot;sc sp, which has been more recently considered.

(72.) When the two scalars, s and t, are supposed capable of receiving any va

lues, the point cs,t in (69.) may be any point of the Locus (8.) of the Osculating

Circle to the given curve of double curvature
;
and if we seek the direction of the

normal to this superficial locus, at this point, on the plan of Art. 372, writing first

the equation of the surface under the slightly simplified, but equally rigorous form,

* In Figs. 81, 82, the little arc near s is to be conceived as terminating there,

or as being a preceding arc of the curve which is the locus of s, if r
, r, n, and there

fore also p and ri, be positive (comp. the second Note to page 574). In the new Fi

gure 83, the triangle PDE is to be conceived as being in fact much smaller than

PKS, though magnified to exhibit angular and other relations.
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CXXV. . . ws ,
= ps + rsrs sin u + rs

2T s vers u,

with CXXVI. . . u = rs-*t = PSKSCS , ,,

so that M is here a new scalar variable, representing the angle subtended at the cen

tre KS,
of the osculating circle at PS, by the arc, t, of that circle, we are led, after a

few reductions, to the expression,

CXXVII. . . V(D (tw s, u . D sus , )
=

r,r,-&amp;gt; (w,,
-O vers

;

which proves, by quaternions, what was to be expected from geometrical* conside

rations, that the locus of the osculating circle is also (as stated in (8.) and (22.))

the Envelope of the Osculating Sphere.

(73.) The normal to this locus, at any proposed point cs , t of any one osculating

circle, is thus the radius of the sphere to which that circle belongs, or which has the

same point ofosculation ps with the given curve, whether the arc (s) of that curve,

and the arc (t) of the circle, be small or large. We must therefore consider the tan

gent plane to the locus, at the given point p of the curve, as coinciding with the tan

gent plane to the osculating sphere at that point ;
and in fact, while this latter plane

(-1- PS) contains the tangent T to the curve, which is at the same time a tangent to

the locus, it contains also the tangent T(G p) to the sphere, which is by CXVII.

another tangent to the locus, as being the tangent at P to the section of that surface,

which is made by the normal plane to the curve.

(74.) But when we come to examine, with the help of the same equation CXVII. ,

what is the law of the deviation DC (comp. Fig. 83) of that normal section of the

locus, considered as a new curve (c),/rom its own tangent PD, we find that this law

is ultimately expressed (comp. (71.)) by the formula,

32

hence DC varies ultimately as the power of
pj&amp;gt;,

which has thefraction for its expo

nent
;
the limit of PD2

: DC is therefore null, and the curvature ofthe section is infinite

at P.

(75.) It follows that this point P is a singular point of the curve (c), in which

thelocus (8.) is cut (73.), by the normal plane to the given curve at that point ;
but

it is not a cusp on that section, because the tangential component PD of the vector

chord PC is ultimately proportional to an odd power (namely to the cube, by CXVII.,

comp. (71.)) of the scalar variable, s, and therefore has its direction reversed, when

that variable changes sign : whereas the normal component DC of the same chord PC

is proportional to an even power (namely the fourth, by the same equation CXVII.)
of the same arc, s, of the given curve, and therefore retains its direction unchanged,

when we pass from a near point ps ,
on one side of the given point P, to a near point

p_ s on the other side of it.

(76.) To illustrate this by a contrasted case, let G be the point in which thetan-

gent to the given curve at rs is cut by the normal plane at p
;
or a point of the sec

tion, by that plane, of the developable surface of tangents. We shall then have

* In the language of infinitesimals, two consecutive osculating spheres, to any
curve in space, intersect each .other in an osculating circle to that curve.
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the sufficiently approximate expressions,

CXXIX. . .PG = p s -p

with tlie significations 397, (10.) of 02 and Qs; hence the point p of the curve is

(as is well known) a cusp of the section (G) of the developable surface of tangents

(comp. 397, (15.)), because the tangential component (- PQ2) of the vector chord

(PG) has here a.fixed direction, namely that of the outward radius (KP prolonged)

of the circle of curvature at P : while it is now the normal component ( 2pQs)

which changes direction, when the arc s of the curve changes sign. At the same

time we see* that the equation of this last section (G) may ultimately be thus ex

pressed :

comparing which with the equation CXXVIII., we see that although, in each case,

the curvature of the section is infinite, at the point P of the curve, yet the normal

component (or co-ordinate) varies (ultimately) as the power -|
of the tangential com

ponent, for the section (G) of the Surface of Tangents : whereas the former compo

nent varies by (74.) as the power f of the latter, for the corresponding section (c)

of the Locus of the Osculating Circle.

(77.) It follows also that the curve (p) itself, although it is not a cusp-edge of

the last-mentioned locus (8.), while it is such on the surface of tangents, is yet a

Singular Line upon that locus likewise : the nature and origin of which line will

perhaps be seen more clearly, by reverting to the view (8.), (22.), (72.), accord

ing to which that Locus of a Circle is at the same time the Envelope of a Sphere.

(78.) In general, if we suppose that a and R are any two real functions, of the

vector and scalar kinds, of any one real and scalar variable, t,
and that a

,
R

,
and

a&quot;, R&quot;,
&c. denote their successive derivatives, taken with respect to it, then a

may be conceived to be the variable vector of a point s of a curve in space, and R to

be the variable radius of a sphere, which has its centre at that point s, but alters ge

nerally its magnitude, at the same time that it alters its position, by the motion of

its centre along the curve (s).

(79.) Passing from one such sphere, with centre s and radius R, considered as

given, and represented by the scalar equation,f

(o-
-

p)2 + R2 = 0, LXXXIX.,

in which p is now conceived to be the vector of a variable point p upon its surface,

to a near sphere of the same system, for which v, s, and R are replaced by at, St, and

Rt ,
where t is supposed to be small, we easily infer (comp. 386, (4.)) that the equa

tion,
S(r ((T-p) + 7?/2 =0, XCL,

which is formed from LXXXIX. by once derivating cr and R with respect to t, but

*
Compare the first Note to page 594.

f This equation, and a few others which we shall require, occurred before in this

series, but in a connexion so different, that it appears convenient to repeat them

here.

4 H
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treating p as constant, represents the real plane (comp. 282, (12.)) of the (real or

imaginary ) circle, which is the ultimate intersection of the near sphere with the

given one
;
the radius of this circle, which we shall call r, being found by the follow

ing formula,

CXXXI. . . rV2 = R* (R
2

4- &amp;lt;r ),
or CXXXl . . . r*T&amp;lt;r

* =& (TV* - fl ),

and being therefore real when

CXXXII. . . R 2 + &amp;lt;7

2
&amp;lt;0,

or CXXXII . . . #2&amp;lt;TV2 ;

while the centre, say K, of the circle is always real, and its vector is,

CXXXI&quot;. . . OK = K = ff +

and the plane XCL of the same circle is parallel to the normal plane of the curve

(s).

(80.) With the condition CXXXII., the two scalar equations, LXXXIX. and

XCL, represent t\\en jointly a real circle ; and the locus of all such circles (comp.

386, (6.)) is easily proved to be also the envelope of all the spheres, of which one is

represented by the equation LXXXIX. alone ; each such sphere touching this locus,

in the whole extent of the corresponding circle of the system.

(81.) The plane XCI., considered as varying with t, has a developable surface

for its envelope ; and the real right line, or generatrix, along which one touches the

other, is represented (comp. again 386, (6.)) by the system of the two scalar equa

tions, XCI. and
S ff

&quot;

(&amp;lt;r

_
p) + &amp;lt;r

2 + (RR }
=

0, XCIII. j

where p is now the variable vector of the line of contact, although it has been treated

as constant (comp. 386, (4..)), in the process by which we are here conceived to pass,

by a second derivation, from LXXXIX. through XCI. to XCIII.

(82.) This real right line (81.) meets generally i\\Q sphere, and also the circle (as

being in its plane), in two (real or imaginary) points, say PI, Pg ;
and the curvilinear

locus of all such points forms generally a species of singular line,* upon the superfi

cial locus (or envelope^) recently considered (80.) ;
or rather it forms in general two

branches (real or imaginary) of such a line : which generally two-branched line (or

curve) is the (real or imaginary) envelope (comp. 386, (8.)), of all the circles of the

system.

(83.) The equation,
S&amp;lt;rV

(&amp;lt;r-p)
=

0, XCIL,

which now represents (comp. 376, V.) the osculating plane to the curve (s), shows

* Called by Monge an arete de rebroussement, except in the case to which we
shall next proceed, when its two branches coincide. The envelope (80.) of a varying

sphere has been considered in two distinct Sections, XXII. and XXVI., of the

Application de VAnalyse a la Geometric; but the author of that great work does

not appear to have perceived the interpretation which will soon be pointed out, of the

condition of such coincidence. Meantime it may be mentioned, in passing, that qua
ternions are found to confirm the geometrical result, that when the two branches (PI)

(p2) are distinct, then each is a cusp edge of the surface ; but that when they are

coincident, the singular line (p) in which they merge has then a different character.
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that tins plane through the centre s of the sphere is perpendicular to the right line

(81.), and consequently contains the perpendicular let fall from that centre on that

line: the foot p of this last perpendicular is therefore found by combining the three

linear and scalar equations, XCI., XCIL, XCIIL, and its vector is,.,
V a a

if CXXXIV. . . g = - &amp;lt;r

a - R * - RR&quot; = To- 2 - (RR } .

(84.) The condition of contact of the right line (81.) with the sphere (78.), or

with the circle (79.), or the condition of contact between two consecutive* circles Of

the system (80.), or finally the condition of coincidence of the two branches (82.)

of that singular line upon the surface which is touched by all those circles, is at the

same time the condition of coexistence of thefour scalar equations, LXXXIX., XCI.,

XCIL, XCIII.
;

it is therefore expressed by the equation (comp. CXXXIIL),

CXXXV. . .
JK2(V&amp;lt;rV)

2 = (ga + RR
a&quot;)* ;

which may also be thus written, f

CXXXVI. . . (S(rV -#&amp;lt;7)

2 = CR 2 + &amp;lt;r 2) (_RV 2 + ^),
or thus, CXXXVII. . . &(R* + &amp;lt;r

2
) (VaV )

2 =
(g&amp;lt;r

r* + _O S&amp;lt;rV )
2

5

the scalar variable t (78.), with respect to which the derivations are performed, re

maining still entirely arbitrary, but the point p, which is determined by the formula

CXXXIII., being now situated on both the sphere and the circle : and its curvilinear

locus, which we may call the curve (p), being now the singular line itself, in its re~

*
Compare the Note to page 581.

f In page 372 of Liouville s Edition already cited, or in page 325 of the Fourth

Edition (Paris, 1809), of the Application de VAnalyse, &c., it will be found that

this condition is assigned by Monge, as that of the evanescence of a certain radical,

under the form (an accidentally omitted exponent of TT&quot; in the second part of the first

member being here restored) :

[a(0&amp;gt;&quot;
+W + TT

TT&quot;)

- ^p + ft* [a
2
(0&quot;2

+f2 + 7r&quot;

2
)
- A 4

]
=

;

in which he writes, for abridgment,

h* = 1 - 2 -
l//

2 - 7T
2

,

and 0, ty, TT are the three rectangular co-ordinates of the centre of a moving sphere,

considered as functions of its radius a. Accordingly, ifwe change R to a, and a to

10 +j-fy -j. JCTT, supposing also that R a = 1, and R&quot; = a&quot;
=

0, whereby g is changed

to -A2
,
and J? 2 + a 2 to h2

,
in the condition CXXXVI., that condition takes, by the

rules of quaternions, the exact form of the equation cited in this Note : which, for the

sake of reference, we shall call, for the present, the Equation -of Monge, although

it does not appear to have been either interpreted or integrated by that illustrious

author. Indeed, if Monge had not hastened over this case of coincident branches,

on which he seems to have designed to return in a subsequent Memoir (unhappily

not written, or not published), he would scarcely have chosen such a symbol as h z

(instead of A2
),

to denote a quantity which is essentially negative, whenever (as

here) the envelope of the sphere is real.
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duced and one-branched state. And the lastform CXXXVII. shows, what was to

be expected from geometry, that when this condition of coincidence is satisfied, the

earlier condition of reality CXXXII. is satisfied also : together with this other in

equality,
CXXXVIII. . . .SV 2 + #

2
&amp;lt; 0,

which then results from the form CXXXVI.

(85.) The equations CXXXL, CXXXIV., and the general formula 389, IV.,

give the expressions,

_cxxxix. . .

-^7
-

--^
--

,
GXL. . . n

g
,6 ;

where r is still the radius of the circle of contact of the sphere with its envelope, and

ri is the radius of curvature of the locus of the centre s of the same variable sphere;

whence it is easy to infer, that the condition CXXXV. may be reduced to the fol

lowing very simple form (comp. XXXVI . and XLII.) :

CXLL . . (r n)
2 = (RE }

12

;
or CXLI . . . ndr = +MR ;

the independent variable being still arbitrary.

(86.) If the arc of the curve (s) be taken as that variable t, the form CXXXVI.
of the same condition is easily reduced to the following,

CXLII. . . jR2 = (RR Y + gtr^, with CXLIII. . . g = 1 - (% )

derivating then, and dividing by 2g, we have this new differential equation, which is

of linear form with respect to RR
,
whereas the condition itselfmaybe considered as

a differential equation of the second degree, as well as of the second order,*

CXLIV. . .RRt = r l (gr l y-, or CXLV. . . nV+ r^ (u
-

1) + u = 0,

if CXLVI. . . u = RR = RV tR, and therefore CXLVII. . .
2 = R* - r2

,

by CXXXL or CXXXI .,
because we have now,

CXLVIII. . . &amp;lt;r

z = -l, or T&amp;lt;r =l, or d* = Td(r:

so that the new scalar variable, RR ,
or u, with respect to which the linear equation

CXLIV. or CXLV. is only of the second order, represents the perpendicular height^

of the centre s of the sphere, above the plane of the circle, considered as a function

of the arc (t) of the curve (s), and as positive when the radius R of the sphere in

creases, for positive motion along that curve, or for an increasing value of its arc.

(87.) If the curve (s) be given, or even if we only know the law according to

which its radius of curvature (TI) depends on its arc
(&amp;lt;),

the coefficients of the linear

equation CXLV. are known ; and if we succeed in integrating that equation, so as to

* \Ve shall soon assign the complete integral of the differential equation in qua
ternions (84.), and also that of the corresponding Equation of Monge, cited in the

preceding Note.

t It will be found that this new scalar u, if we abstract from sign, corresponds

precisely to the p of earlier sub-articles, although presenting itself in a different con

nexion : for the sphere (78.), and the circle (79.), under the condition (84,), will

soon be shown to be the osculating sphere and circle to the recent curve (P), or to

the singular line (84.) upon the surface at present considered, that is, on the locus

or envelope (80.).
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find an expression for the perpendicular u as a function of that arc t, we shall then

be able to express also, as functions of the same arc, the radii It and r of the sphere

and circle, by the formulae,

CXLIX. . . +r= 5r1
= ri(l-tt ), and CL. . . It2 = 2jwd* = 2 + n2

(l -u ) ;

the third scalar constant, which the integral 2Jd would otherwise introduce into

the expression for H2
, being in this manner determined, by means of the other two,

which arise from the integration of the equation above mentioned.

(88.) For example, it may happen that the locus of the centre s of the sphere

has a constant curvature, or that r\ = const.
;
and then the complete integral of the

linear equation CXLV. is at once seen to be of the form,

CLT. . . u = a sin (rr*t + &),

a and b being two arbitrary (but scalar) constants
;
after which we may write, by

(87.),

CLII. . . + r = ri-acos(rfi&amp;lt; + &); CLIII. . . Rz = ri- 2ari cos (r^t+ ft)+ a2;

so that, in this case, both the radii, r and It, of circle and sphere, are periodical

functions of the arc of the curve (s).

(89.) In general, if that curve (s) be completely given, so that the vector &amp;lt;r is a

known function of a scalar variable, and if an expression have been found (or given)

for the scalar R which satisfies any one of the forms of the condition (84.), we can

then determine also the vector p, by the formula CXXXIII., as a function of the

same variable; and so can assign the point p of the singular line (84.), which cor

responds to any given position of the centre s of the sphere. For this purpose we

have, when the arc of the curve (s) is taken, as in (86.), for the independent varia

ble t, the formula,

CLIV. . . p = ff u&amp;lt;r (1 u
}

cr&quot;
1 = KI U&amp;lt;T ri

zu
ff&quot;,

if KI be the vector of the centre, say KI, of the osculating circle at s to that given

curve, so that (comp. 389, XI.) it has the value,

CLV. . . OKI = KI = &amp;lt;r

-
tr&quot;&quot;

1 =
&amp;lt;r + T!V, with CLV. . . &amp;lt;r&quot;

2 + rrs = 0.

If then we denote by v the distance of the point p from this centre KI, and attend to

the linear equation CXLV., we see that

CLVI. . . v = K^ = TCp - KI)
=

V(&quot;

2 + n2 2
),

and CLVF. .. = ririW, with TV = 1
;

or more generally, CLVII. . . vv si = r\r \u,

if CLVIF. . . u = BR *i -\ and CLVII&quot;. . . si = JTdcr,

while CLVI&quot;. . . & = u* +riW2
;

so that si denotes the arc of the curve (s), when the independent variable t is again

left arbitrary. This distance, v, is therefore constant (= a) in the case (88.), namely

when the radius of curvature r\ of that curve is itself a. constant quantity.

(90.) When 9\=f&amp;lt;r
=

1, as in CXLVIII., the part cr
- uo of the first expres

sion CLIV. for p becomes =
JP, by CXXXI&quot;. and CXLVI. ; attending then to CLV.,

we have the scalar quotient,

CLVIII. . .1^-? = !- ;

(7-Kl

whence generally,
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CLViir. . .

* ^
ff-Kl

the independent variable t being again arbitrary. Accordingly, if we combine the

general expression CXXXIII. for p, with the expression CXXXI&quot;. for
/c, and with

the following for KI (comp. 389, IV.),

ff
3

CLIX. . . KI = ff + ,,
for an arbitrary scalar variable,

V (T (T

we easily deduce this new form of the scalar quotient,

CLIX . . .
^ -^ = 1 + ((SE )

- RK Sff
-iff&quot;)

a *
;

ff&quot; S\
which agrees with CLVIII .,

because - a 2 = si
2

,
and S = .

ff S l

(91.) It has then been fully shown, how to determine the vector p as & function

of the scalar t, when ff and are two known functions of that variable, which satisfy-

any one of the forms of the condition (84.). It must then be possible to determine

also the derived vectors, p , p&quot;, &c., as functions of the same variable; and accord

ingly this can be done, by derivating any three of thefour scalar equations, LXXXIX.
XCI. XCII. XCIII., of which that condition (84.) expresses the coexistence. Now
if we derivate a first time the two first of these, and then reduce by the second and

fourth, we get the equations,

CLX. . . Sp (ff
-

p) = 0, SoV =
0, whence CLX . . . p ||

V(r (er
-
p) ;

and although this last formula only determines the direction of the tangent to the sin

gular line at p, namely that of the common tangent at that point to two consecutive

circles (84.), yet it enables us to infer, by the remaining equation XCII., that

CLXI. . . p -L a
&quot;, p ||

Vff
ff&quot;,

and CLXI . . . SpV =
;

reducing by which the derivative of XCIII., we find,

S(r
&quot;

(&amp;lt;r

-
p) + SSff ff&quot; + (Blty = 0, XCIV.,

the scalar variable being still arbitrary. And conversely, the system* of the four

equations LXXXIX. XCI. XCIII. XCIV. gives the three equations CLX. CLXI .,

and so conducts to the equation XCII., and thence to the condition (84.) ;
unless we

suppose that p is a constant vector a, or that the variable sphere passes through a

fixed point A, a case which we do not here consider, because in it the singular line

(p) would reduce itself to that one point.

(92.) Derivating the two equations CLX., and reducing with the help of

CLXI .,
we find these new equations,

CLXII. . .
Sp&quot;(&amp;lt;r

-
p)
-
p

2 = 0, SpV =
;

whence CLXIII. . .
Sp&quot; ((r

-
p)
-
3Sp p&quot;

= 0.

* In the language of infinitesimals, this system of equations expresses that four

consecutive spheres intersect, in one common point p. When that point happens

to be a fixed one, the condition (84.) requires that we should have the relation

SffV (ff a) = ; or geometrically, that the curve (s) should be in a plane through
the fixed point, which is then a singular point of the envelope.
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We are led then, by elimination of the derivatives of a, to the system of the three

equations 395, VII.
;
and we conclude, that the point s is the centre, and the radius

R is the radius, ofthe osculating sphere* to the singular line (p) : whence it is easy

to infer also, that the plane of contact (79.) of the sphere with its envelope is the

osculating plane, and that the circle of contact (80.) is the osculating circle (comp.

(72.)), to the same curve (P), at the point where two consecutive circles touch one

another (84.).

(93.) In general, and even without the condition (84.), the tangent to a branch

(82.) of the curvilinear envelope of the circles of the system, at any point PI of that

branch, has the direction represented by the vector V(/(or- pi), of the tangent to the

circle at that point ;
but when that condition is satisfied, so that the two branches

of the singular line coincide, the point p of that line is in the osculating plane (83.)

to the curve (s) : and then the equation XCII. shows that the tangent p ,
or

Vff ((r p), to the line, is perpendicular to
a&quot;,

or parallel to V&amp;lt;rV (comp. CLXI.),

and therefore that the singular line crosses that plane at right angles.

(94.) It follows that, with the condition (84.), the singular line (P) is an ortho

gonal trajectory to the system of osculating planes to the curve (s) ;
and whereas,

when this last curve is given, there ought to be one such trajectory for every point

of a given osculating plane, this circumstance is analytically represented, in our re

cent calculations, by the biordinalform of the differential equation CXLV., of which

the complete integral must be conceived (87.) to involve generally, as in the case

(88.), two arbitrary constants.

(95.) It follows also that, with the same condition of coincidence of branches,

the singular line (P) must have the curve (s) for the cusp-edge of its polar develop

able ; or that the sphere, with s for centre, and with R for radius, must be the oscu

lating sphere to the curve (p), as otherwise found by calculation in (92.) : while the

circle (80.) must be, as before, the osculating circle to that curve.

(96.) Accordingly, all equations, and inequalities, which have been stated in the

recent sub-articles (79.), &c., respecting the envelope of a moving sphere with va

riable radius, under that condition (84.), and without any special selection of the

independent variable, admit of being verified, by means of the earlier formulae for

the osculating circle and sphere to a curve (P) treated as a given one, when the arc

(&) of that curve is taken as such a variable.

(97.) For example, we had lately the two inequalities, JB + &amp;lt;r

2
&amp;lt; 0, CXXXIL,

and RI&amp;lt;J&quot;

Z
+gt &amp;lt; 0, CXXXVIII. And accordingly the earlier sub-articles (22.),

(23.) give, for those two combinations, the essentially negative values,

CLXIV. . . JB z + &amp;lt;r

2 = - p-
2 r2 tf 2

;
CLXV. . . &&amp;lt;;&quot;*+ g* = - ((r) )

2
;

* In the language of infinitesimals (comp. the preceding Note), if every four

consecutive spheres of a system intersect in one point of a curve, then each sphere

passes through four consecutive points of that curve. Simple as this geometrical

reasoning is, the writer is not aware that it has been anticipated ;
arid indeed he is

at present led to suppose that this whole theory, of the Locus of the Osculating

Circle, as the Envelope of the Osculating Sphere, is new. Monge had however

considered, but rejected (page 374 of Liouville s Edition), the case of a system o/

circles having each a simple contact with a curve in space.
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iu obtaining which last, the following transformations have been employed :

CLXVI. . . &amp;lt;r&quot;2
= - n 2 - 2r 2

;
CLXVII. ..g = -np+ nrr-i.

(98.) As regards the verification of the equations, it may be sufficient to give one

example; and we shall take for it the last generalform CLVIL of the differential

equation of condition (84.)- For this purpose we may now write, by (22.) and

(23.),

CLXVIII. . . s\=n, u = p, u = p , riMiV-isrjo rm 1 =
/&amp;gt;

r;

and have only to observe that

CLXIX. . . /)*+//2r2
) =P rr + /) r) &amp;gt;

because p = r r.

(99.) If we denote by c\, c2, 3 the first members of the equations XCL, XCIII.,

XCIV., then besides the equation LXXXIX., which may be regarded as a mere de

finition of the radius R, we have c\ = for the whole of the superficial locus or enve

lope (80.) ;
but we have not also c2 = 0, except for a point on one or other of the

two (generally distinct) branches of the singular line (82.) upon that locus. And

if, at any other and ordinary point, we cut the surface by a plane perpendicular to

the circle at that point, we find, by a process of the same kind as some which have

been already employed, expressions for the tangential and normal components of the

vector chord, whereof the principal terms involve the scalar c2 as & factor, while the

latter varies (ultimately) as the square of the former, so that the curvature of the

section is finite and known, but tends to become infinite when c2 tends to zero.

(100.) If the condition of coincidence (84.) be not satisfied, so that the two

branches of the singular line (82.) remain distinct, and that thus c2 = 0, but not

c3 = (comp. (91.))) f r an7 ordinary point on one of those two branches, then if we

cut the surface at that point by a plane perpendicular to the branch, or to the circle

which touches it there, we find an ultimate expression for the vector chord which

involves the scalar r?3 as a factor, and of which the normal component varies as the

sesquiplicate power of the tangential one : so that we have here the case of a semi-

cubical cusp, and each branch of the singular line is a cusp-edge* of the surface,

exactly in the same known sense (comp. (76.)) as that in which a curve of double

curvature is generally such, on the developable locus of its tangents.

(101.) But when the condition (84.) is satisfied, so that the two branches coin

cide, and that thus (comp. again (91.)) we have at once the three equations,

CLXX. . . ci = 0, c2 = 0, c3 = 0,

then the terms, which were lately the principal ones (100.), disappear : and a new

expression arises, for the vector chord of a section of the surface, made by a plane

perpendicular to the singular line, which (when we take t = s, as in (96.)) is found

to admit of being identified with the formula CXVII., and of course conducts to

precisely the same system of consequences ; the tangential component now varying

ultimately as the cube, and the normal component as the fourth power of a small

variable, so that the cuspidal property of the point p of the section no longer exists?

although the curvature at that point is still infinite, as in (74.) : and the Singular

Line, reduced now to a single branch, to which all the circles of the system osculate,

Compare the Note to page 602.
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(92.), (95.), is not a cusp -edge of the Surface, as had been otherwise found before

(77.), but a line of a different character,* which may thus be regarded, with refe

rence to a more general Envelope (80.), as the result of & Fusion (84.) of Two Cusp-

Edges.

(102.) The condition of such fusion (or coincidence) has been seen (84.) to be

expressible by the differential equation of the second order, and second degree,

(RSa o-&quot;
- flV)

2 = (R* + ff 2) (fl%&quot;2 + tf, CXXXVI.
with g = -&amp;lt;r *-(RR y, CXXXIV.

and with the independent variable arbitrary. And we are now prepared to assign

the complete general integral-]- of this differential equation ; namely the system of

the two following equations (comp. 395, (7.) and (14.)), of the vector and scalar

kinds,

CLXXI...&amp;lt;r =p+?^-^C^^
3

,
and CLXXII. . . R = T(o -p);

Sp p p

in which p is an arbitrary vector function of any scalar variable, t, and which ex

press, when geometrically interpreted, that &amp;lt;r is the variable vector of the centre s,

and that R is the variable radius, of the osculating sphere to an arbitrary curve (p),

of which the variable vector of a point P is p.

(103.) In fact, if we met the cited equation ofcondition CXXXVI., g represent

ing therein the expression CXXXIV., without any previous knowledge of its mean

ing or origin, we might first, by the rules of quaternions, and as a mere affair of

calculation, transform it to the equation CXXXV.
;
Avhich would evidently allow

the assumption of the formula CXXXIIL, p being treated as an auxiliary vector,

which satisfies (in virtue of the supposed condition) the system of the four scalar

equations, LXXXIX., XCL, XCIL, XCIII. ;
whence derivating and combining, as

in (91.) and (92.), we are led to a new system^ offour scalar equations, whereof one

* Compare the Note to page 602. Monge (in page 372 of Liouville s Edition) has

the remark, that (when a certain radical vanishes)
&quot;

les deux branches de la courbe

touchee par toutes les caracteristiques se confondent en une seule : et cette courbe,

sans cesser d etre une ligne singuliere de la surface, n est plus line arete de rebrous-

sement, elle est une ligne de striction.&quot; The propriety of this last name,
&quot; line of

striction,&quot; appears to the present writer questionable : although he has confirmed, as

above, by calculations with quaternions, the result that, in the case referred to, the

singular line is not a cusp-edge. Monge does not seem to have perceived that, in

the same case offusion, the curved line in question is not merely touched, but oscu

lated, by all the circles of the system.

f Compare the first Note to page 604. We say here, general integral, because a

less general one, although involving one arbitrary function (of the scalar kind),

will soon be pointed out.

J The Equation of Monge (comp. the second Note to page 603) may be consi

dered as the condition of coexistence of the four following equations, in which 0, ^,

rr are supposed to be functions of a, and to be differentiated or derivatod as such

4 i
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is again the equation LXXXIX., and may be written under the form CLXXII.
;

while the three others are those formerly numbered as 395, VII., and conduct (ex

cept in a particular case which we shall presently consider) to the vector expression

CLXXL, which conversely is sufficient to represent them, all derivatives of &amp;lt;r and of

R being thus eliminated.

(104.) The case just now alluded to, in which the general integral (102.) is re

placed by a less generalform, is the case (91.) when the variable sphere passes

through a.fixed point A, to which point, in that case, the singular line reduces itself.

And the integral equations,
* which then replace CLXXI. and CLXXII., maybe

thus written :

CLXXIII...&amp;lt;r=a + ^ + y, with u = F(t), and CLXXIV. .. 72 = T(f/3 + uy) ;

(1). ..(*-0)* + Cy-*)a + (*-7r)i = aaj

(2). . .(-0)0 + (y-W + (z-7r)7r +a =

(3).. . (*-
(4). . . (*-

whereof the first three have been employed by Monge himself, but the fourth does

not seem to have been perceived by him, the condition of evanescence of a radical

having been used in its stead. And by a translation of quaternion results, above

deduced, into the usual language of analysis, it is found that the complete and gene
ral integral, of the non-linear differential equation of the second order, which is ob

tained by the elimination of x, y, z between these four, is expressed by a new system
of four equations, the equation (1) being one of them

;
and the three others, in which

x, y, z are now treated as arbitrary functions of a, and are derivated as such, being
the following :

(5&amp;gt;..(*-fX4(r-f)y +(*-irX0;
(6). . . (x - 0)a?&quot; + (y

-W+ (z - TT) z&quot; -f x * + y 2 + z * =
;

(7). . .
(a;
-
0) x

&quot;

+ (y
-^y

&quot;

+ (z - TT) z&quot; + &(x x&quot; + y y&quot; + z
z&quot;)

= 0.

By treating a as a function of some other independent variable, t, the terms + a and
+ 1, in (2) and (3), come to be replaced by + aa and + aa&quot; + a 2

;
and the slightly

more generalform, which Monge s Equation thus assumes, has still its complete

general integral assigned by the system (1) (5) (6) (7), if x, y, z (as well as a) be

now regarded as arbitrary functions of the new variable t, in the place of which it is

permitted (for instance) to take x, and so to write * =
1, x&quot; = : only two arbitrary

functions thus entering, in the last analysis, into the general solution, as was to be

expected from the form of the equation.
* The particular integral corresponding, of the Equation of Monge, is expressed

by the following system :

(et + luj- + (ft -f m)2 + (gt -f w)* = a2
;

abcdefglmn being nine arbitrary constants, while t and are two functions of a,
whereof one is arbitrary, but the other is algebraically deduced from it, by means of
the fourth equation. The writer is not aware that either of these integrals has been

assigned before.
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the second scalar coefficient, u, being here an arbitrary function of the first

scalar coefficient, or of the independent variable t, and a, /3, y being three arbi

trary but constant vectors : so that the curve (s) is now obliged to lie in some one

plane* through the fixed point A, but remains in other respects arbitrary. Accord

ingly it will be found that this last integral system, although less general than the

former system (102.), and not properly included in it, satisfies the differential equa

tion CXXXVI. ; whereof the two members acquire, by the substitutions indicated,

this common value,

CLXXV. . . (RSv a&quot;
- Rgp = &c. = jft

2*2 (tu
-

u)
2

u&quot;
2
(V/3y)

4
.

(105.) Other problems might be proposed and resolved, with the help of formuljef

already given, respecting the properties or affections of curves in space which depend

on the fourth power (s
4
) of the arc, or on the fourth derivative D/p or T

&quot;

of the vec

tor p s ;
but it is time to conclude this series of sub-articles, which has extended to a

much greater length than was designed, by observing that, in virtue of the vector

form 396, XI. for the equation of a circle of curvature, the Locus (8.) of the Oscu

lating Circle may be concisely but sufficiently represented by the Vector Equation,

CLXXVI. . . V -^- + v, = 0,

*
Compare the Note to page 606.

f We might for example employ the formula VI. for
K&quot;,

in conjunction with

one of the expressions 397, XCI. for K
,
to determine, by the general formula 389,

IV., the vector (say ) of the centre of curvature of the curve (K), and therefore also

the radius of curvature of that curve, which is the locus of the centres of curvature of

the given curve (p), supposed to be in general one of double curvature. After a few

reductions, with the help of XII., we should thus find the equations,

CLXXVII. . . V - = ~^+ (r l -
P&amp;gt;,

K rte

CLXXVIII. . . = K + -!*= K +
&amp;lt;r

K ds r&K

in which last the denominator is a quaternion, and the scalar variable is arbitrary :

whence also,

CLXXIX. . . Radius of curvature of curve (K),

or of locus of centres of osculating circles to a given curve (P) in space,

with the verification, that for the case of a plane curve (p), for which therefore

dP
= 1 and - = = we have thus the elementary expression,

p r ds

CLXXX. . . Radius of Curvature of Plane Evolute = -f
-

r being still the radius of exirvature, and * the arc, of the given curve
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which apparently involves only one scalar variable, s, namely, the arc of the curve

(p), the other scalar variable, such as
t,
which corresponds (69.) to the arc of the cir

cle, disappearing under the sign V : and that the surface, which was called in (8.)

the Circumscribed Developable, is now seen to be in fact circumscribed to that Lo

cus, or Envelope, in a certain singular (or eminent) sense, as touching it along its

Singular Line.

399- When we take account of the fifth power (s
5
) of the arc,

the expression for ps receives a new term, and becomes (comp.

398, I.),

and although some of the consequences of such an expression have

been already considered, especially as regards the general determi

nation of what has been above called the Osculating Twisted Cubic

to a curve of double curvature, or the gauche curve of the third de

gree which has contact of the fifth order with a given curve in space,

yet, without repeating any calculations already made, some addi

tional light may be thrown on the subject as follows.

(1.) As regards the successive deduction of the derived vectors in the formula I.,

it may be remarked that if we write (comp. 398, LVL, LXL),

ii. . . DVV = r(n} =a r + 6 rr + c rj/
?

we shall have, genarally,

III. . . a,u i = a n - r~ l bn , &,, t i = b n + r^an - r
&amp;lt;?,

cn+i =c n + r &,

with the initial values,

IV. ..a =l, & = 0, c =0, or IV. . . ai = 0, Ji = r-i, ci = 0;

whence V
^3 = 3rV, 63 = (r-

1
)&quot;

- r- 3 - r-ir-2
,

c3 = r (r-
2
i-i) ,

as in the expressions 397, VI. for
T&quot;,

and 398, IV. for r
&quot;;

the corresponding co

efficients of rlv being in like manner found to be,

= _ 2
(r-2)&quot; + ((

VI... &, = (r-iy&quot;-2(r-9-

and being sufficient for the investigation of all affections or properties of a curve in

space, which depend only on the fifth power of the arc s.

(2.) For the helix the two curvatures are constant, so that all the derivatives of

the two radii r and r vanish
;
the expressions become therefore greatly simplified,

and a law is easily perceived, allowing us to sum the infinite series for os, and so

to obtain the following rigorous expressions for the co-ordinates* xs, ys, zs of this

* We have here, and in this whole investigation, an instance of the facility with

which quaternions can be combined with co-ordinates, whenever the geometrical na-
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particular curve, instead of those which were developed generally in 398, LVIIL,
but only as far as s4 inclusive :

VII. . . xt = fl (r-2* + r~* sin f) ; y, = Pr* vers t; zs = J3r-ir-i (t
_ 8[a j)

.

where I and t are an auxiliary constant and variable, namely,

VIII. . . I =
(r-&amp;gt; + r2

)-l
= r sin H, t = /- *,

/ being thus what was denoted in earlier formulae by TXr 1
,
and t being the angle be

tween two axial planes; while the origin is still placed at the point p of the curve,

and the tangent, normal, and binormal are still made the axes of xyz.

(3.) The cone of the second order, 398, (40.), which has generally a contact of
the fifth order with a proposed curve in space, at a point P taken for vertex, has in

this case of the helix the equation (comp. 398, LVIL* and LXIX.),

Accordingly it can be shown, by elementary methods, that if we write, for a mo

ment,
X. . . /(*) = 3 (t

- sin f) (Bt + 7 sin t)
- 20 vers2 1,

we have the eight evanescent values,

XL . . /O =/ =/&quot;0 =/ &quot;0 =/IV =/ -0 =fO =/TII =
;

whence it is easy to infer that this cone IX. has (in the present example, although
not generally) a contact as high as the sixth order^ with the curve, of which the

co-ordinates have here the expressions VII. ;
and consequently that the cone in ques

tion must wholly contain the osculating twisted cubic to that curve.

ture of a question may render it convenient so to combine them, by offering to our

notice any obvious planes of reference. If it be thought useful to pass to a system

connected more immediately with the right cylinder than with the helix, we may

write,
= l(r-*xs

- r z.)
= Pr-i sin t,

VII . . . ys
= p r-i -y, = Pi-l COS t,

where Z2r-1 = r sin3H is the radius of the cylinder, with converse formula; easily as

signed.
* In the corresponding equation 398, LXVII., the coefficient of Gac ought to

have been printed as (
-

j
,
like the coefficient of 6xz in the equation LVII.

f Or in modern language, seven-point contact, in the sense that the cone passes,

in this case, through seven consecutive points of the curve. It may be remarked

that the gauche curve of the fourth degree, or the quartic curve, in which this cone

cuts the cylinder of revolution whereon the helix is traced (cutting also in it a cer

tain other cylinder of the second order), and which has the point p for a double point,

crosses the helix by one of its two branches at that point, while it has seven-point

contact with the same helix by its other branch ; and that thus the fact of calcula

tion, expressed by the formula XI., is geometrically accounted for.
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(4.) In general, to find a second locus for such a cubic curve, the method of

recent sub-articles (398, (38.) &c.) leads us to form the equation (398, LXVI.)
of a. cylinder of the second order, or briefly of a quadric* cylinder, which like

the quadric cone (3.) shall have contact of the fifth order with the proposed

curve in space, at the given point p; the ratios of abc, which determine the

direction of a generating line PE, being obliged for, this purpose to satisfy a certain

equation of condition (398, LXVIII.), of which the/onn indicates that the locus of

this line PE is generally a certain cubic cone, having the tangent (say PT) to the

curve for a nodal side : along which side it is touched, not only (like the quadric

cone) by the osculating plane (z = 0) to that given curve, but also by a second

plane, whereof the equation (gy + hz = 0, or after reductions y - |r z = 0) shows

that the second branch of the cubic cone crosses the first branch, or the quadric cone,

or the osculating plane to the curve, at an angle of which the trigonometric cotan

gent is equal to half the differential of the radius (r) of second curvature, divided

by the differential of the arc (s) ;
so that this second tangent plane to the cone coin

cides with the rectifying plane to the curve, when the second curvature happens to be

constant. The tangent PT therefore counts as three of the six common sides of the

two cones with p for vertex : and the three other common sides, for the assigning of

which it has been shown (in 398, (41.)) how to form a cubic equation in b : c, are

the parallels from that point p to the three real or imaginary asymptotes^ of the

twisted cubic, and are generating lines PE of three quadric cylinders, whereof one at

least is necessarily real, and contains, as a second locus, that sought osculating gauche
curve of the third degree.

(5.) In applying this general method to the case of the helix, it is found that the

cubic cone breaks up, in this example, into a system of a new quadric cone, which

touches the former quadric cone IX. along the tangent PT to the curve (the two other

common sides of these two cones being imaginary^), and of a plane (y = 0), namely
the rectifying plane (comp. (4.)) of the helix, or the tangent plane to the cylinder of
revolution on which that given curve is traced : and that this last plane cuts the

first quadric cone in two real right lines, the tangent being again one of them, and

the other having the sought direction of a real asymptote to the sought osculating

twisted cubic. Without entering here into details of calculation, the resulting equa
tion of the reaZf quadric cylinder, on which that sought gauche curve is situated,

may be at once stated to be (with the present system of co-ordinates),

* So called by Dr. Salmon, in his Treatise already cited. Compare the first

Note to page 591 of these Elements.

f Compare again the Note last referred to,

J As regards the two imaginary quadric cylinders, their equations can be formed

by the same general method, employing as generating lines the two imaginary com

mon sides (5.), of the cone IX., and of that other quadric cone above referred to,

which is here a separable part of the general cubic locus, and has for equation,

-T & \Z

It seems sufficient here to remark, that by taking the sum and difference of the equa
tions of those two imaginary cylinders, two new real quadric surfaces are obtained,
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in such a manner that if we set aside the right line,

XIII... , = 0, *

which is a common side of the cone IX. and of the cylinder XII., the curve, which is

the remaining part of their complete intersection, is the twisted cubic sought. As an

elementary verification of the fact, that this gauche curve of intersection IX. XII,

has contact of the fifth order with the helix at the point P, it may be observed that

if we change the co-ordinates xyz in XII. to the expressions VII., and write for

abridgment,

XIV. . . F(t) = (3t + It sin
&amp;lt;)

2 - 200 vers t + GO vers2 t,

we have then (comp. X. XI.) the six evanescent values,

XV. ..^0 = ^0 = F&quot;0 = F &quot;Q
=F1V = F*Q = 0.

(6.) As another verification, which is at the same time a sufficient proof, of the

a posteriori kind, that the gauche curve IX. XII. has in fact contact of the fifth or

der with the helix, it can be shown that while the co-ordinates ys andzs of the latter

may (by VII., writing simply x for xs ,
and neglecting x7

) be thus developed,
&quot;

_x* x* /3 1 \ a;
6

/ 45 24 1

XVI.

~&quot;6rr

T
12Qrr\i

the corresponding co-ordinates y and z of the former, that is, of the curvilinear part

of the intersection of the cone IX. with the cylinder XII., have (in the same order

of approximation) developments which may be thus abridged,

_x* #5 / 9 1 \

Z ~
6rr

+
IJOnr *

&quot;*

5

(7.) The deviation of the helix from the gauche curve IX. XII. is therefore of

the sixth order (with respect to x, or s), and it has an inward direction, or in other

words, the osculating twisted cubic deviates outwardly from the helix, with respect

to the right cylinder ;
the ultimate (or initial) amount of this deviation, or the law

according to which it tends to vary, being represented by the formula,

which also contain the osculating twisted cubic, and intersect each other in that

gauche curve : namely two hyperbolic paraboloids, which have a common side at in

finity, and of which the equations can be otherwise deduced (by way of verifica

tion), without imaginaries, through easy algebraical combinations of the two real

equations IX. and XII.
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where t denotes as in (2.) the angle, which a plane drawn through a near point P,,

and through the axis of the right cylinder,*

I r \a / r2\
XVIII. . . 2ry=( x--z

j

+ ( l + -\y*,

whereon the helix is traced, makes with the plane drawn through the same axis of

revolution, or through the right line,

XIX. . . x =
T

-z, y = H(r;2 + r-s)-i =p r-\
t

and through the given point r : while ys is still the (inward) distance of the same

near point rs ,
from the tangent plane to the same cylinder at the same given point r.

(8.) If we cut the cone IX., and the cylinder XII., by any plane,

drawn through their common side XIII., we obtain two other sides, one for each of

these two quadric surfaces
;
and these two new right lines, in this plane XX., inter

sect each other in a a new point, f of which the co-ordinates xyz are given, as func

tions of the new variable w, by the three fractional expressions,*

3\MJ3

*&quot;

&quot;

B_

r2

J
M

2^ =-TO 6 =
F^&amp;gt;1 +

20 /2
+
20 Z

2
+
20 #

while the twisted cubic, which osculates (as above) to the helix at P, is the locus of

all the points of intersection thus determined. Accordingly, if we develop xyz by

XXL, in ascending powers of w, neglecting w7
(or #7

),
we are conducted, by elimi

nation of w, to expressions for y and z in terms of x, which agree with those found

in (6.), and thereby establish in a new way the existence of the required contact of

the fifth order, between the two curves of double curvature.

* With the co-ordinates VII . of a recent Note (to page 612), the equation of

this cylinder would be,

XVIII . . .x2 + y2 = /V2.

f The plane XX., as containing the line XIII., is parallel to an asymptote,

and therefore meets the cubic at infinity ;
it also passes through the given point r :

and therefore it can only cut the twisted cubic in one other point, of which the posi

tion is expressed by the equations XXL
J Quaternions suggest such fractional expressions, through the formula 398,

LXXIX. for the vector ($ -fc)
1 a

;
but it is proper to state that expressions of

fractionalform, for the co-ordinates of a curve in space of the third order (or degree)

were given by Mobius, who appears to have been the first to discover the existence

of such gauche curves, and who published several of their principal properties in his

Barycentric Calculus (der barycentrische Calcul, Leipzig, 1827). Compare the

Notes to pages 23 and 35, and Note B at the end of these Elements.
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(9.) The real asymptote to the cubic curve is found by supposing the auxiliary

variable w to tend to infinity in the expressions XXI.
;

it is therefore the right line

(comp. XX.),

namely the second side in which the elliptic cylinder XII. is cut by a normal plane

through the side XIII.
;
and by comparing the value of its y with the equation

XIX., we see that the least distance between the real asymptote to the osculating

twisted cubic, and the axis of revolution of the cylinder on which the helix is traced,

is equal to seven-thirds of the radius of that right cylinder.

(10.) As regards the two imaginary asymptotes, they correspond to the two ima

ginary values of w, which cause the common denominator of the expressionsXX I. to

vanish
; but it may be sufficient here to observe, that because those expressions give,

generally,

XXIIL . . %+f-- + l- }z=w,
\5r 5r j

the two imaginary lines in question are to be considered as being contained in two

imaginary planes, which are both parallel to the real plane* through p,

XXIV. . . x

namely to a certain common normal plane to the two real cylinders XII. and XVIII.,

or to the elliptic and right cylinders already mentioned.

(11.) In general, instead of seeking to determine, as above, a. cylinder of the

second order, which shall have contact of the fifth order with any given curve of

double curvature, at a given point P, we may propose to find a second cone of the

same (second) order, which shall have such contact with that curve at that point,

its vertex being at some other point of space (abc). Writing (comp. 398, LXVI.)

the equation of such a cone under the form,

XXV. . . 2r (cy
-

bz) (c
-

z) = (ex
-
az)

2
-f 2B(cx - az) (cy

-
bz} + C(cy

-
6z)

2
;

substituting for xyz the co-ordinates a?y4zA of the curve, under the forms (comp.

398, LVIIL),

\
Xs = S ~ W + 14

+
llo

XXVI.-. . \y, =-- + ^1 +
j

ys
2r 6r2 ^24 120

S 3 C3S
4 C4S5

in which the coefficients a363c3 and a464c4 have the values assigned in (1.) ; develop

ing according to powers of s, neglecting s6
,
and comparing coefficients of *3 , s 4

,
i 5

;

we find first the expressions,

* The right line at infinity, in this plane XXIV., is the common side of the

two hyperbolic paraboloids mentioned in the third Note to page 614, as each con

taining the whole twisted cubic.

4K
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which are the same for cone as for cylinder : and then are led to the new equation of

condition,

xxvm.. .

which differs from the corresponding equation for the determination of a cylinder

having the same (fifth) order of contact with the curve, but only by the one term

2
in the second member, which term vanishes when the co-ordinate c of the vertex

err

is infinite.

(12.) Eliminating B and C, and substituting for 036303 and 046404 their values

V. and VI., we find that the condition XXVIII. may be thus expressed (comp.

398, LXVIII.) :

XXIX. . . acf 6 -
r- c\- re2 = a&3 -f b62c + c6c2 -f ec3

;

in which we have written, for abridgment,

f 4r

XXX. . .
{
c = (6r&quot;r- 3rr&quot;

- 2rV*r - 6rY + Crrir 2 - 18nr + 12rr- ) ;
oO

1 e= (9/&quot;r2- 9r-i/r&quot;r2+ 4r-V 3r2 + 36r- 2r r2 + 18r -27rr~ir ).

The ZOOMS of the vertex of the sought quadric cone XXV. is therefore that cubic sur

face, or surface of the third order, which is represented by the equation XXIX. in

a&c; this surface, then, is a second locus (comp. (4.)) for the osculating twisted cu

bic, whatever the given curve in space may be: a. first locus for that cubic curve

being still the quadric cone (comp. (3.)), of which the equation in 060 is (by 398,

LXVII.* and LXIX.),

XXXI. ..

ri( 9 21
j

[
_ _ _ r 2

3r&quot; 3rV 27r 2
9r&quot;\___i_ __ _ _ I _ \ ri.

;* r3 r3r 4r2r? r2r

and which has contact of the//i!A order with the curve, while its vertex is at the

given point p of osculation.

* After making the correction indicated in a former Note (to page 613), so as to

bring the cited equation into agreement with the earlier formula 398, LVII. The

quadric cone XXXI. may be said to have Jive-side contact with the cone of chords

of the given curve (compare the first Note to page 588).
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(13.) Instead of thus introducing, as data, the derivatives of the two radii of

curvature, r and r, taken with respect to the arc, s, it may be more convenient in

many applications to treat the two co-ordinates y and z of the curve as functions of

the third co-ordinate x, assumed as the independent variable : and so to write

(comp. (6.)) these new developments,

x2 v &quot;x

3 yiv#4 yv# 5
a:
3 2iv

ari zv.r5

XXXII... .-+&amp;gt; +
&amp;gt;w + , ._+_ + _,

and then the equation of the quadric cone XXXI. will be found to become (in xyz),

with the coefficients,

XXXIV... ffss

XXXIII. . . y
2 = ?

T
-xz 4 2gyz + hz*,

while the cubic surface XXIX. will also come to be represented by an equation of

the sameform as before, namely (in xyz} by the following,

XXXV. . . xz (y + hz)
- rz2 = ay

3 + by2z + Cy2
2 + ez3

,

in which the coefficients are,

r 4r 4 r?r
a = - -

(as before) ;
b = - -

rty
&quot;

+ **; h = - rry
&quot;

+ |rrV* ;

XXXVI. . . -i c = -3

e = - i
v_ y

(14.) Whichever set of expressions for the coefficients we may adopt, some ge

neral consequences maybe drawn from the mereybr/ns of the equations, XXXI.

and XXIX., or XXXIII. and XXXV., of the quadric cone and cubic surface, con

sidered as two loci (12.) of the osculating twisted cubic to a given curve of double

curvature. Thus, if we eliminate ac (comp. 398, (41.)) from XXIX. by XXXI.,
or xz by XXXIII. from XXXV., we get an equation between b, c, or between y, z,

which rises no higher than the third degree, and is of theform,

XXXVII. . . 2rz2 = ays + b,z/
2 z + c,yz2 + e^3f

with the same value of a as before
;
such then is the equation of the projection of

the twisted cubic, on the normal plane to the curve; and we see that, as was to be

expected, the plane cubic thus obtained has a cusp at the given point P, which

(when we neglect s7 or a;7) coincides with the corresponding cusp
* of the projec

tion of the given curve of double curvature itself, on the same normal plane.

(15.) The equation XXXVII. may also be considered as representing a cubic

cylinder, which is a third locus of the twisted cubic
;
and on which the tangent PT

* Compare the first formula of the first Note to page 594.
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to the curve is a cusp-edge, in such a manner that an arbitrary plane through this

line, suppose the plane
XXXVIII. . . Brz = vy,

where v is any assumed constant, cuts the cylinder in that line twice, and a third

time in a real and parallel right line, which intersects the quadric cone in a point at

infinity (because the tangent FT is a side of that cone), and in another real point,

which is on the twisted cubic, and may be made to be any point of that sought curve,

by a suitable value of : in fact, the plane XXXVIII. touches loth curves at P, and

therefore intersects the cubic curve in one other real point. And thus may fractional

expressions (comp. (8.)) for the co-ordinates of the osculating cubic be found gene

rally, which we shall not here delay to write down.

(16.) Without introducing the cubic cylinder XXXVII., it is easy to see that

any plane, such as XXXVIII., which is tangential to the given curve at P,

cuts the cubic surface XXXV. in a section which may be said to consist of the

tangent twice taken, and of a certain other right line, which varies with the

.direction of this secant plane, so that the locus XXXV. or XXIX. is a Ruled

Cubic Surface, with the given tangent PT for a singular* line, which is in

tersected by all the other right lines on that surface, determined as above : and if we

set aside this line, the remaining part of the complete intersection of that cubic sur

face with the quadric cone XXXIII. or XXXI. is the twisted cubic sought. We
may then consider ourselves to have completely and generally determined the Oscu-

culating Twisted Cubic to a curve of double curvature, without requiring (as in 398,

(41.)), the solution of any cubic or other equation.^

(17.) As illustrations and verifications, it may be added that the general ruled

cubic surface, and cubic cylinder, lately considered, take for the case of the helix

(2.), the particular forms, J

* If the cubic surface be cut by a plane perpendicular to the tangent PT, at any

point T distinct from the point P itself, the section is a plane cubic, which has T for

a double point ; and this point counts for three of the six common points, or points of

intersection, of the plane cubic just mentioned with the plane conic in which the

quadric cone is cut by the same secant plane, because one branch, or one tangent,

of the plane cubic at T touches the plane conic at that point, in the osculating plane

to the given curve at P, while the other branch, or the other tangent, cuts that plane

conic there.

f It may be remarked that, by equating the second member of XXXVII. to

zero, and changing y, z to b, c, we obtain generally the cubic equation, referred to

in 398, (41.)? and that by suppressing the term - rc2 in XXIX., or the term - rz*

in XXXV., we pass, in like manner generally, from the cubic surface of recent sub-

articles, to the earlier cubic cone (4.).

J By suppressing the term - rz2
, dividing by ,

and transposing, we pass for the

case of the helix from the equation XXXIX. of the cubic locus, to the equation IX .

in the last Note to page 614 ; namely to the equation of that quadric cone which forms

(in this example) a separable part of the general cubic cone, the other part being here

the tangent plane (y = 0) to the right cylinder.
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*m.*.m**-*+[rT.\9r \5r 5r /

and

and that accordingly these two last equations are satisfied, independently of w, when

the fractional expressions XXI. are substituted for xyz.

400. The general theory* of evolutes of curves in space may be

briefly treated by quaternions, as follows: a second curve (in space,

or in one plane) being defined to bear to & first curve the relation of

evolute to involute, when the first cuts the tangents to the second at right

angles.

(1.) Let p and cr be corresponding vectors, OP and os, of involute and evolute,

and let p ,
cr

, p&quot;,
a&quot; denote their first and second derivatives, taken with respect to

a scalar variable t, on which they are both conceived to depend. Then the two fun

damental equations, which express the relation between the two curves, as above

defined, are the following :

I. . . S(&amp;lt;r-p)p
= 0; II. . .

V(&amp;lt;r-p)(r
= 0;

which express, respectively, that the point s is in the normal plane to the involute

at P, and that the latter point is on the tangent to the evolute at s : so that the locus

ofp (the involute) is a rectangular trajectory to all such tangents to the locus ofs

(the evolute).

(2.) Eliminating cr p between the two preceding equations, and taking their

derivatives, we find,

III. . . SpV = 0, IV. . .
S(&amp;lt;r-p)p&quot;-|o

2 =
0, V. ..

V(&amp;lt;r-p)&amp;lt;r&quot;-VpV
= 0;

whence also, VI. . . Sp oV =0.

(3.) Interpreting these results, we see first, by IV. combined with I. (comp. 391,

(5.)), that the point s of the evolute is on the polar axis of the involute at p, and

therefore that the evolute itself is some curve on the polar developable of the invo

lute; and second, by VI. (comp. 380, I.), that this curve is a geodetic line on that

polar surface, because the osculating plane to the evolute at s contains the tangent

to the involute at P, and therefore also the (parallel) normal to the locus of evolutes.

(4.) The locus of centres of curvature (395, (6.)) of a curve in space is not ge

nerally an evolute of that curve, because the tangents-^- KK to that locus do not gene

rally intersect the curve at all
;
but a given plane involute has always the locus just

* Invented by Monge.

f It might have been remarked, in connexion with a recent series of sub-arti-

ticles (397), that this tangent KK. or K is inclined to the rectifying line X, at an an

gle of which the cosine is,

- SUjc X = R 1TX~ } = sin JJcos P ;

upper or lower signs being taken, according as the second curvature H is positive

or negative, because SK \ = r&quot;

1
.
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mentioned for one. of its evolutes
;
and has, besides, indefinitely many others* which

are all geodetics on the cylinder which rests perpendicularly on that one plane evolute

as its base.

(5.) An easy combination of the foregoing equations gives,

VII. . .(T(&amp;lt;r-p)y
= -S(U(*-p).(&amp;lt;7 -pO) = +S&amp;lt;7 Uff = +T(r ,

or with differentials, VIII. . . dT
(&amp;lt;r

-
p)
= Tder

;

whence by an immediate integration (comp. 380, XXII. and 397, LIV.),

IX. . . AT(o--p) = jTd&amp;lt;T
= + arc of the evolute :

this arc then, between two points such as s and Si of the latter curve, is equal to the

difference between the lengths of the two lines, PS and PiSi, intercepted between the

two curves themselves.

(6.) Another quaternion combination of the same equations gives, after a few

steps of reduction, the differential formula (comp. 335, VI.),

,.-
P T

(&amp;lt;r-p) p

if then the involute be a curve on a given sphere, with its centre at the origin o, so

that the evolute is a geodetic on a concentric cone, this differential X. vanishes, and

we have the integrated equation,

XI. . . cos OPS = const., or simply, XI . . . OPS = const.
;

the tangents PS to the evolute being thus inclined (in the case here considered) at a

constant anglerf to the radii OP of the sphere.

(7.) In general, if we denote by It the interval ps between two corresponding

points of involute and evolute, we shall have the equation,

XII. . . (r-p)a+JB
2
=0, or XII . . . T(o- -p) = -R;

and the formula VIL may be replaced by the following,

XIII. . . R* + &amp;lt;r

2 =
0, or XIII . . . DtE = TDt

&amp;lt;r,

in which the independent variable t is still left arbitrary.

(8.) But if we take for that variable the arc soSj of the evolute, measured from

some fixed point of that curve, we may then write,

XIV. . . *=Td&amp;lt;r, XV. . .
&amp;lt;LR&amp;lt;

= + df, XVI. . .

*
Compare the first Note to page 534; from the formulae of which page it now

appears, that if the involute be an ellipse, with /3
= OB and y = oc for its major and

minor semiaxes, and therefore with the scalar equations,

the evolutes are geodetics on the cylinder of which the corresponding equation is,

j-
This property of the evolutes of a spherical curve was deduced by Professor

De Morgan, in a Paper On the Connexion of Involute and Evolute in Space (Cam
bridge and Dublin Mathematical Journal for November, 1851); in which also a

definition of involute and evolute was proposed, substantially the same as that above

adopted.
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whence

XVII. . . D* (jRt T = 0, and XVIII. . . R t + t = const. = J?
,

the integral IX. being thus under a new form reproduced.

(9.) In this last mode of obtaining the result,

XIX. . . Aps = .--Ro= + * = arc 8 St of evolute,

no use is made of infinitesimals,* or even of small differentials. We only infer, as

in XVIII. (comp. 380, (9.)), that the quantity Et T t is constant,^ because its deriva

tive is null : it having been previously proved (380, (8.)), as a consequence of our

definition of differentials (320, 324) that if s be the arc and p the vector of any

curve, then the equation ds = Tdp (380, XXII.) is rigorously satisfied, whatever

the independent variable t may be, and whether the two connected and simultaneous

differentials be small or large.

(10.) But when we employ the notation of integrals, and introduce, as above,

the symbol JTds, we are then led to interpret that symbol as denoting the limit of a

sum (comp. 345, (12.)); or to write, generally,

XX. . . J Tdp = lim. STAp, if lim. Ap = 0,

with analogous formulae for other cases of integration in quaternions. Geometri

cally, the equation,

XXL . . J Tdp = A*, or XXI . . .
jTd&amp;lt;r

= A t,

if s and t denote arcs of curves of which p and er are vectors, comes thus to be in

terpreted as an expression of the well-known principle, that the perimeter of any

curve (or of any part thereof) is the limit of the perimeter of an inscribed polygon

(or of the corresponding portion of that polj gon), when the number of the sides is

indefinitely increased, and when their lengths are diminished indefinitely.

(11.) The equations I. and XII. give,

XXII. . . Scr
(&amp;lt;r

-
p) + RR = 0,

the independent variable t being again arbitrary ;
but these equations XII. and

XXII. coincide with the formula? 398, LXXXIX. and XCI. ;
we may then, by

398, (79.) and (80.), consider the locus of the point p as the envelope of a variable

sphere, namely of the sphere which has s for centre and R for radius, and is repre

sented by the recent equation XII., ifp = op be the vector of a variable point

thereon.

(12.) But whereas such an envelope has been seen to be generally a surface, which

is real or imaginary (398. (79.)) according as R 2 + a 2
&amp;lt; or &amp;gt; 0, we have here by

XIII. the intermediate or limiting case (comp. 398, CXXXI.), for which the circles

* In general, it may have been observed that we have hitherto abstained, at

least in the text of this whole Chapter of Applications, from making any use of

infinitesimals, although they have been often referred to in these Notes, and employed

therein to assist the geometrical investigation or enunciation of results. But as

regards the mechanism of calculation, it is at least as easy to use infinitesimals in

quaternions as in any other system : as will perhaps be shown by a few examples,

farther on.

t Compare the Note to page 516.
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of the system become points, and the surface itself degenerates into a curve, \vhichis

here the involute (p)above considered. The involutes of a given curve (s) are there

fore included, as a. limit, in that general system of envelopes which was considered in

the lately cited subarticles, and in others immediately following.

(13.) The equation of condition, 398, CXXXVI., is in this case satisfied by
XIII., both members vanishing; but we cannot now put it under the form 398,

CXLL, because in the passage to that form, in 398, (85.), there was tacitly effected

a division by r2
,
which is not now allowed, the radius r of the circle on the envelope

being in the present case equal to zero. For a similar reason, we cannot now divide

by g, as was done iu 398, (86.); and because, in virtue of II., the two equations

398, CLX. reduce themselves to one, they no longer conduct to the formulae 398,

CLX . CLXI. CLXI . CLXIII. XCIV. ; nor to the second equation 398, CLXII.

(14.) The general geometrical relations of the curves (p) and (s), which were

investigated in the sub-articles to 398 for the case when the condition* above re

ferred to is satisfied, are therefore only very partially applicable to a system of invo

lute and evolute in space : at least if we still consider the former curve (the involute)

as being a rectangular trajectory to the tangents to the latter (the evolute), instead

of being, like the curve (p) previously considered, a rectangular trajectory (398, (94.))
to the osculating planes^ of the curve (s).

*
If, without thinking of evolutes, we merely suppose that the condition 398,

CXXXVI. is satisfied, as lately in (13.), by our having the relation R z + &amp;lt;r

2 =
0,

it will be found (comp. the symbolical expression 274, XX. for 0*, and the imagi

nary solution in 353, (18.) of the system Syp = 0, p
2 =

0), that the envelope of the

sphere (a
-

p)
2 + K* = 0, or the locus of the (null) circles in which such spheres are

(conceived to be) cut by the (tangent) planes, Ser
(&amp;lt;r

-
p) + RR =

0, may be said to

be generally the system of all those imaginary points, of which the vectors (or the

bivectors, comp. 214, (6.)) are assigned by the formula,

p = a - EH -
iff + (LV + &amp;lt;s/~l) Vff&amp;gt; ;

where /i is an arbitrary vector, and ^/ 1 is the old imaginary of algebra. By
making /i

= we reduce this expression for p to the real vector form,

= the K of 398, CXXXI.&quot;; and thus the curve (P), which is here the locus of the

centres of the null circles of contact, and coincides with the involute in the present

series of sub-articles, may still be called a Singular Line upon the Envelope of the

Sphere (with One Variable Parameter), as being in the present case the only real part
of that elsewhere imaginary surface.

f The curve to the osculating planes of which another curve is thus an or

thogonal trajectory, and which is therefore (398, (95.)&quot;)
the cusp-edge of the polar

developable of the latter curve, was called by Lancret its evolute by the plane (de-

veloppee par le plan) ; whereas the curve (s) of the present series (400) of sub-ar

ticles, to whose tangents the corresponding curve (P) is an orthogonal trajectory, has

been called by way of distinction the evolute by the thread (developpee par le fil) of

this last curve. It would be improper to delay here on subjects so well known to

geometers : but the student may be invited to read again, in connexion with them,
the sub-articles (88.) and (89.) to Art. 398.
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(15.) If the arc of the evolute be again taken for the independent variable
t, and

if the positive direction of motion along that arc be always towards the involute, we

may write,
XXIII. .. p = ff + Ro ,

K = -\, &amp;lt;r 2=-l, &c .
;

whence
XXIV. . . p =

Ra&quot;, p&quot;

= Ra&quot; -a&quot;, Vo&quot;p .= BFVa&quot;&quot;a&quot;

;

if then K = OK be the vector of the centre K of the circle which osculates to the invo

lute at P, the general formula 389, IV. gives, after a few reductions,* the expression

(comp. 397, XVI. XXXIV., and XCVIIL (15)),

XXV. .. K =
Vjo p

RS&amp;lt;r a
(j _1

= ff - tfrr Ar 1 = a + U\i. R cos HI,

if FI, HI, and \i be what r, H, and X in 397 become, when we pass from the curve

(p) to the curve (s), with the present relations between those two curves
;

this cen

tre of curvature K is therefore the foot of the perpendicular let fall/rom the point p

of the involute, on the rectifying line \\ of the evolute : as indeed is evident from

geometrical considerations, because by (3.) this rectifying line of the curve (s) is the

polar axis of the curve (P).

(16.) If we conceive (comp. 389, (2.)) an auxiliary spherical curve to be de

scribed, of which the variable unit-vector shall be,

XXVI. . . OT=r = a =U(p-&amp;lt;7)
=

-i(p-&amp;lt;r),

and suppose that v is the vector ou of the centre of curvature of this new curve, at

the point T which corresponds to the point s of the evolute, we shall then have by
XXV. the expression,

we have therefore this theorem, that the inward radius ofcurvature ofthe hodograph

of the evolute (conceived to be an orbit described, as in 379, (9.), with a constant

velocity taken for unity} is equal to the inward radius of curvature of the involute,

divided by the interval It between the two curves (P) and (s) : and that these two

radii of curvature, TU and PK, have one common direction, at least if the direction

of motion on the evolute be supposed, as in (15.), to be towards the involute.

(17.) The following is perhaps a simpler enunciation of the theoremf just sta

ted : Iff, PI, P2 ,
. . and s, Si, 83, . . be corresponding points of involute and evo-

*
Especially by observing that Vo- V&amp;lt;r&quot; &quot;a&quot;

= -
ff&quot;

3
,
because S&amp;lt;rV = 0, and S&amp;lt;rV&quot;

= -&amp;lt;r&quot;2.

f Some additional light may be thrown on this theorem, by comparing it with

the construction in 397, (48.) ;
and by observing that the equations 397, XVI.

XXXIV. give generally, in the notations of the Article referred to, for the vector of

the centre of curvature of the hodograph of any curve, the transformations,

T + = r + ^ = -
Vr V 1 A

4 L
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lute, and if we draw lines STi
||
SiPi, ST3 ||

S2P2 ,
. mth a common length = sp, the

spherical curve PT^TO . . will then have contact of the second order with the curve

pp 1p2 . .,
that is with the involute at P.

401. The fundamental formula 389, IV., for the vector of the

centre of the osculating circle to a curve in space, namely the for

mula,
3

d/&amp;gt;

3

which has been so extensively employed throughout the present

Section, has hitherto been established and used in connexion with

derivatives and differentials of vectors, rather than with differences,

great or small. We may however establish, in another way, an es

sentially equivalent formula, into which differences enter by their

limits (or rather by their limiting relations), namely, the following,

Ap3 A2
/&amp;gt;

III. . . K = p + lim. - . if lim.A0=0, and lim. = 0,VA2
/?A/&amp;gt; A/)

the denominator VA2
/&amp;gt;A/&amp;gt; being understood to signify the same thing

as V(A2

/9.A/&amp;gt;);
and then may, if we think fit, interpret the differen

tial expression II. as if d/a and d2
/&amp;gt;

in it denoted infinitesimals* of the

first and second orders : with similar interpretations in other but

analogous investigations.

(1.) If in the second expression 316, L., for the perpendicular from o on the line

AB, we change a and /3 to their reciprocals (comp. Figs. 58, 64) and then take the

reciprocal of the result, we obtain this new expression,

TV on = S =
- 1

V/3a ~V(OB.OA)
in the denominator of which, OB may be replaced by AB, or by AO + AB, for the

diameter OD of the circle OAB
;
so that if c be the centre of this circle, its vector

y = oc = $OD = $8 = &c. Supposing then that P, Q, R are any three points of any

given curve in space, while O is as usual an arbitrary origin, and writing

V. . . OP = p, OQ = p + Ap, OR = p + 2Ap + A2
p,

and therefore

VI. . .PQ = A

the centre c of the circle PQR has the following rigorous expression for its vector :

VII ..oc-v-pi

*
Compare 345, (17.), and the first Note to page 623.
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whence passing to the limit, we obtain successively the expressions III. and II. for

the vector K of the centre of curvature to the curve PQK at P ; the two other points,

Q and R, being both supposed to approach indefinitely to the given point P, accord

ing to any law (comp. 392, (6.)), which allows the two successive vector chords, PQ
and QR, to bear to each other an ultimate ratio of equality.

*(2.) Instead of thus first forming a rigorous expression, such as VII., involving

the differences Ap and A2
p ;

then simplifying the formula so found, by the rejection

of terms, which become indefinitely small, with respect to the terms retained
;
and

finally changing differences to differentials (comp. 344, (2.))&quot;, namely Ap to dp, and

A 2
p to d2

p, in the homogeneous expression which results, and of which the limit is to

be taken : we may abridge the calculation, by at once writing the differential sym

bols, in place of differences, and at onee suppressing any terms, of which we foresee

that they must disappear from the final result. Thus, in the recent example, when

we have perceived, by quaternions, that if K be the centre of the circle PQR, the

equation

.

V{(QR-PQ)PQ}
is rigorous, we may at once change each of the three factors of the numerator to dp,

while the factor QR - PQ in the denominator is to be changed to d2
p ;

and thus the

differential expression II., for the inward vector-radius of curvature K p, is at

once obtained.

(3.) It is scarcely necessary to observe, that this expression for that radius, as a

vector, agrees with and includes the known expressions for the same radius of curva

ture of a curve in space, considered as a (positive) scalar, which has been denoted in

the present Section by the italic letter r (because the more usual symbol p would

have here caused confusion). Thus, while the formula II. gives immediately (be

cause Tdp = ds) the equation,

IX. . . r-ids 3 = TVdpd2p,

it gives also (because dp
2 =- ds2

,
and Sdpd

2
p = dsd2

s) the transformed equation,

X. . . r- J ds2 = V(Td2p2_dV);

and it conducts (by 389, VI.) to this still simpler formula (comp. the equation r 1

= 1V, 396, IX.),
XI. . . r-ids = TdUdp.

(4.) Accordingly, ifwe employ the standard trinomialform (295, I.) for a vector,

XII. . . p = ix +jy + kz,

which gives, by the laws of the symbols ijk (182, 183),

f dp = icbr +jdy + Mz, ds = Tdp = V(do:
2 + dy* + dz 2

),

d2
p =

XIII. . . j Vdpd
2
p =

the recent equations IX. X. XI. take these known forms :

IX . . . r- d*3 = V((dyd
22 - dzd y)

2 + . .) ;

X .
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(5.) The formula IV., which lately served us to determine a diameter of a circle

through three given points, may be more symmetrically written as follows. //&quot;AD

be a diameter of the circle ABC, then

XIV. . . AD .V(AB . EC) = AB . BC . CA
;

an equation* in which V(AB.BC) may be changed to V(AB.AC), &c., and in whj^h

it may be remarked that each member is an expression (comp. 296, V.) for a vector

AT, which touches at A the segment ABC : while its length is at once a representa

tion of the product of the lengths of the sides of the triangle ABC, and also of the

double area of that triangle (comp. 281, XIII.), multiplied by the diameter of the

circumscribed circle.

(6.) In general, if PQRS be any four concircular points, they satisfy (by 260,

IX., comp. 296, (3.)) the condition of concircularity,

xv. . . v( .
]
=

o,

\ SQ RP I

which may be thus transformed :f

PS PR

Writing then (comp. VI., and the remarks in (2.)),

XVII. . . ps = w-p, pQ = dp, PR = 2dp + d2
,o, Qp + QR = d2

/o,

the second member is seen to be, on the present plan, an infinitesimal of the second

order, which is therefore to be suppressed, because the first member is only of the

first order ; and thus we obtain at once the following vector equation of the osculat

ing circle to the curve PQR at p,

* A student might find it useful practice to verify, that if we write in like man

ner,

XIV. . . BE.V(BC.CA)=BC.CA.AB,
so that BE is a second diameter, then AB = ED, or ABDE is a parallelogram. He may
employ the principles, that ay =

y[Sa, if Sa/3y = 0, and that fry
-

y/3
= 2V/3y ;

in

virtue of which, after subtracting XIV. from XIV., and dividing by V(BC.CA), or

by its equal V(AB.BC), the equation AD - BE = 2AB is obtained, and proves the re

lation mentioned. It is easy also to prove that

XIV&quot;. . . BD.V(BC.CA) = AB.S(BC.CA),
and therefore that ABDE is a rectangle.

f Without having recourse to this transformation XVI., we might treat the

condition XV. by infinitesimals, as follows :

XVII J
x &quot; x &amp;gt;-p-dp f

flip _ d2
p

2dp + d2p~
+
2d^

equating then to zero the vector part of the product of these two expressions, and

suppressing the infinitesimal of the second order, the equation XVIII. of the osculat

ing circle is obtained anew.
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xvm...
-P 2dp

which agrees with the equation 392, VI., although deduced in a quite different man

ner, and conducts anew to the expression II. for K p, under the form,

XIX. . .
-^- +V ^, as in 392, VIII.
K-p dp

(7.) Again, if OD = d be the diameter from the origin, of any sphere through that

point o, which passes also through any three other given points A, B, c, with OA = a,

&c., we have by 296, XXVI. the formula,

writing then (comp. XVIL),

XXI. ..a = dp, /3-a = dp + d2
p, y

-
)3 =dp + 2d2

p + d3
p,

and XXII. . . d = 2rs = 2
(&amp;gt;

-
p),

where a is (as in 395, &c.) the vector os (from an arbitrary origin o) of the centre

s of the osculating sphere to a curve of double curvature at P, we have by infinitesi

mals, suppressing terms which are of the seventh and higher orders, because the first

member is only of the sixth order, and reducing* by the rules of quaternions,

XXIII. . . (o-
-

p) Sdpd2pd
3
p = fVdp (dp + d2p) (dp + 2d2

p + d3
p) (3dp + 3d&quot;-p

+ d3
p)

= 3Vdpd
2
pSdpd2p + dp

2Vd3
pdp ;

which agrees precisely with the formula 395, XIII., although obtained by a process

so different.

(8.) Finally as regards the osculating plane, and the second curvature, of a curve

in space, infinitesimals give at once for that plane the equation,

XXIV. . . S (w
-

p) dpd2p = 0, agreeing with 376, V.
;

and if three consecutive elements of the curve be represented (comp. XXI.) by the

differential expressions,

XXV. . . PQ = dp, QR = dp + d2p, KS = dp + 2d2p + d3
p,

the second curvature r 1

,
defined as in 396, is easily seen to be connected as follows

with the angle of a certain auxiliary quaternion q, which differs infinitely little

from unity :

* Of the eighteen terms which would follow the sign of operation V, if the se

cond member of XXIII. were fully developed, one is of the fourth order, but is a

scalar ; three are of t\\e fifth order, but have a scalar sum ; nine are of orders higher

than the sixth
;
and two terms of the sixth order are scalars, so that there remain

only three terms of that order to be considered. In this manner it is found that the

second member in question reduces itself to the sum of the two vector parts,

fV. (dpd
2
p)

2 = 3Vdpd
2
p . Sdpd

2
p,

and |dp
2
V(dpd

3
p + 3d 3

pdp) = dp
2Vd3

pdp ;

and thus the third member of XXIII. is obtained.
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we have then the expression,

Vq d3p
XXVIII. . Second Curvature = n = = S ^^,

which agrees with the formula 397, XXVII., and has been illustrated, in the sub-

articles to 397 and 398, by numerous geometrical applications.

(9.) On the whole, then, it appears that although the logic of derived vectors,

and of differentials of vectors considered as finite lines, proportional to such deriva

tives, is perhaps a little clearer than that of infinitesimals, because it shows more

evidently (especially when combined with Taylor s Series adapted to Quaternions,

342, 375) that nothing is neglected, yet it is perfectly possible to combine* quater

nions, in practice, with methods founded on the more usual notion of Differentials,

as infinitely small differences : and that when this combination is judiciously made,

abridgments of calculation arise, without any ultimate error.

SECTION 7 On Surfaces of the Second Order ; and on Cur

vatures of Surfaces.

402. As early as in the First Book of these Elements, some spe

cimens were given of the treatment or expression of Surfaces of the

Second Order by Vectors ; or by Anharmonic Equations which were

derived from the theory of vectors, without any introduction, at that

stage, of Quaternions properly so called. Thus it was shown, in the

sub-articles to 98, that a very simple anharmonic equation (xz-yw)

might represent either a ruled paraboloid, or a ruled hyperboloid, ac

cording as a certain condition (ac = bd) was or was not satisfied, by
the constants of the surface. Again, in the sub-articles to 99, two

examples were given, of vector expressions for cones of the second or

der (and one such expression for a cone of the third order, with a

conjugate ray (99, (5 )) while an expression of the same sort,

namely,
I. . . p - xa + ?//3 + 37, with #3 ty +22 =

1,

was assigned (99, (2.)) as representing generally an ellipsoid,] with

a, /?, 7, or OA, OB, oc, for three conjugate semidiametcrs. And finally,

* Compare the first Note to page 62$. It will however be of course necessary,

in anyfuture applications of quaternions, to specify in which of these two senses, as a

finite differential, or as an infinitesimal, such a symbol as dp is employed.

f In like manner the expression,

II. . . p=xa+y(3+zy, with a:
8 +y -za =

1, or =- 1,

represents a general hyperloloid, of one sheet, or of two, with a/3y for conjugate semi-

diameters : while, with the scalar equation a;2 + y2 z3 = 0, the same vector cxpres-

tion represents their common asymptotic cone (not generally of revolution).
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in the sub-articles (11.) and (12.) to Art. 100, an instance was fur

nished of the determination of a tangential plane to a cone, by means

of partial derived vectors.

403. In the Second Book, a much greater range of expression

was attained, in consequence of the introduction of the peculiar sym

bols, or characteristics of operation, which belong to the present Cal

culus ;
but still with that limitation which was caused, by the con

ception and notation of a Quaternion being confined, in that Book, to

Quotients of Vectors (112, 116, comp. 307, (5.)), without yet admit

ting Products or Powers of Directed Lines in Space : although ver-

sors, tensors, and even norms* of such vectors were already intro

duced (156, 185, 273).

(1.) The Sphere^ for instance, which has its centre at the origin, and has the

vector OA, or a, with a length Ta = a, for one of its radii, admitted of being repre

sented, not only (comp. 402, I.) by the vector expression,

with

I . ..To=T/3 = Ty = a, and I&quot;. . .

S^
= S 2 = S

|
=

0,

but also by any one of the following equations, in which it is permitted to change a

to - a :

II. ..- =K; III...K*i = l; IV...N=1; 145, (8.), (12.)pa
V...Tp = a;
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(2.) Other forms of equation, for the same spheric surface, may on the same

principles be assigned ;
for example we may write,

XVI.. .^ = K-; XVII.. .N-=l; XVIII. .. T - = 1
;

a p P p

XIX... ^^-^; XX...S-^-=l; XXI. . . S -^-= 1
;

p+a 2 p+a p + a

or (comp. 186, (5.), and 200, (3.)),.

XXII...T(p-ca)=T(cp-a), c*
&amp;gt;

1
;

under which last form, the sphere may be considered to be generated by the revolu

tion of the circle, which has been already spoken of as the Apollonian* Locus.

(3.) And from any one to any other, of all these various forms, it is possible?

and easy to pass, by general Rules of Transformation,^ which were established in

the Second Book : while each of them is capable of receiving, on the principles of

the same Book, a Geometrical Interpretation.

(4.) But we could not, on the principles of the Second Book alone, advance to

such subsequent equations of the same sphere, as

XXIII. . . p
z = a2

,
or XXIV. . . p* + at =

Oj 282, VII. XIII.

whereof the latter includes (282, (9.)) the Important equation p
2 + 1 = 0, or p*

=
1,

of what we have called the Unit-Sphere (128) ;
nor to such an exponential expres

sion for the variable vector p of the same spheric surface, as

XXV. . . p = atfj lcj- k-*, 308, XVIII.

in which j and k belong to the fundamental system ijk of three rectangular unit-

lines (295), connected by the fundamental Formula A of Art. 183, namely,

t*=;=A =
i;A

= -l, (A)

while s and t are two arbitrary and scalar variables, with simple geometrical^, signi

fications : because we were not then prepared to introduce any symbol, such as p
3
,

or W, which should represent a square or other power of a vector. And similar re-

*
Compare the first Note to page 128.

f This richness of transformation, of quaternion expressions or equations, has

been noticed, by some friendly critics, as a characteristic of the present Calculus. In

the preceding parts of this work, the reader may compare pages 128, 140, 183, 573,

574, 575
;

in the two last of which, the variety of the expressions for the second

curvature (r
1

) of a curve in space may be considered worthy of remark. On the

other hand, it may be thought remarkable that, in this Calculus, a single expression,

such as that given by the first formula (389, IV.) of page 532, adapts itself with

equal ease to the determination of the vector (K) of the centre of the osculating

circle, to a plane curve, and to a curve of double curvature, as has been sufficiently

exemplified in the foregoing Section.

J Compare the second Note to page 365.

It is true that the formula A was established in the course of the Second Book

(page 160) ;
but it is to be remembered that the symbols ijk were there treated as de

noting a system of three right versors, in three mutually rectangular planes (181) :
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marks apply to the representation, by quaternions, of other surfaces of the second

order.

404. A brief review, or recapitulation, of some of the chief ex

pressions connected with the Ellipsoid, for example, which have been

already established in these Elements, with references to a few others,

may not be useless here.

(1.) Besides the vector expression p = xa + y/3+zy, with the scalar relation

#2 + y2 +2? =l, and with arbitrary vector values of the constants a, /3, y, which

was lately cited (402) from the First Book, or the equations 403, I., without

the conditions 403, I
., II . which are peculiar to the sphere, there were given in

the Second Book (204, (13.), (14.)) equations which differed from those lately num

bered as 403, XI. XII. XIII. XIV. XV., only by the substitution of V for V P~
;

P a

for instance, there was the equation,

analogous to 403, XI., and representing generally* an ellipsoid, regarded as the

locus of a certain system of ellipses, which were thus substituted for the czVcfesf

(403, XV.) of the sphere, by a species of geometrical deformation, which led to the

establishment of certain homologies (developed in the sub-articles to 274).

although it has since been found possible and useful, in this Third Book, to identify

those right versors with their own indices or axes (295), and so to treat them as a

system of three rectangular lines, as above.

* In the case ofparallelism of the two vector constants (/3 || a), the equation I.

represents generally a Spheroid of revolution, with its axis in the direction of a;

while in the contrary case ofperpendicularity (/3
-J-

a), the same equation I. repre

sents an elliptic Cylinder, with its generating lines in the direction of (3. Compare

204, (10.), (11.), and the Note to page 224.

f The equation I. might also have been thus written, on the principles of the Se

cond Book,

whence it would have followed at once (comp. 216, (7.)), that the ellipsoid I. is

cut in two circles, with a common radius = T/3, by the two diametral planes,

In fact, this equation I , is what was called in 359 a cyclic form, while I. itself is

what was there called a focalform, of the equation of the surface
;
the lines a 1 +

/3&quot;

1

being, by the Third Book, the two (real) cyclic normals, while (3 is one of the two

(real) focal lines of the (imaginary) asymptotic cone. Compare the Note to page

474.

4 M
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(2.) Employing still only quotients of vectors, but introducing two other pairs

of vector-constants, y, S and
i, K, instead of the pair a, j8 in the equation I., which

were however connected with that pair and with each other by certain assigned re

lations, that equation was transformed successively to

1, 216, X.

and to a form which may be written thus (comp. 217, (5.)),

III. . . T ( i + K -
. p\Tp =Ti- T/c2; 217, XVI.

and this last form was interpreted, so as to lead to a Rule of Construction* (217,

(6.), (7.)), which was illustrated by a Diagram (Fig. 53), and from which many

geometrical properties of that surface were deduced (218, 219) in a very simple

manner, and were confirmed by calculation with quaternions : the equation and con

struction being also modified afterwards, by the introduction (220) of a new pair of

vector-constants, i and K
,
which were shown to admit of being substituted for t

and K, in the recent form III.

(3.) And although the Equation of Conjugation,

. 316, LXIII.
p p 1

which connects the vectors X, p of any two points L, M, whereof one is on the polar

plane of the other, with respect to the ellipsoid I., was not assigned till near the end

of the First Chapter of the present Book, yet it was there deduced by principles and

processes of the Second Book alone : which thus were adequate, although not in

the most practically convenient way, to the treatment of questions respecting tangent

planes and normals to an ellipsoid, and similarly for other surfaces^ of the same

second order.

* This Construction of the Ellipsoid, by means of a Generating Triangle and a

Diacentric Sphere (page 227), is believed to have been new, when it was deduced

by the writer in 1846, and was in that year stated to the Royal Irish Academy

(see its Proceedings, vol. iii. pp. 288, 289), as a result of the Method of Quater

nions, which had been previously communicated by him to that Academy (in the

year 1843).

f The following are a few other references, on this subject, to the Second Book.

Expressions for a Right Cone (or for a single sheet of such a cone) have been given

in pages 119, 179, 220, 221. In page 179 the equation S - S - = 1, has been as-
a p

signed, with a transformation in page 180, to represent generally a Cyclic Cone, or

a cone of the second order, with its vertex at the origin ;
and to exhibit its cyclic

planes, and sulcontrary sections (pp. 181, 182). Right Cylinders have occurred in

pages 193, 196, 197, 198, 199, 218. A case of an Elliptic Cylinder has been

already mentioned (the case when /3
-L a in I.) ;

and a transformation of the equa
tion III. of the Ellipsoid, by means of reciprocals and norms of vectors, was assigned
in page 298. And several expressions (comp. 403), for a Sphere of which the ort-
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(4.) But in this Third Book we have been able to write the equation III. under

the simpler form,*
V. . . T (ip + p/0 = Ks - 12, 282, XXIX.

which has again admitted of numerous transformations
;

for instance, of all those

which are obtained by equating (/c
2 i2)

2 to any one of the expressions 336, (5.),

for the square of this last tensor in V., or for the norm of the quaternion ip + p/c ;

cyclic forms^c of equation thus arising, which are easily converted into focal forms

(359); while a rectangular transformation (373, XXX.) has subsequently been

assigned, whereby the lengths (a&e), and also the directions, of the three semiaxes of

the surface, are expressed in terms of the two vector-constants, i, K : the results thus

obtained by calculation being found to agree with those previously deduced, from the

geometrical construction (2.) in the Second Book.

(5.) The equation V. has also been differentiated (336), and a normal vector

v 0p has thus been deduced, such that, for the ellipsoid in question,

VI. . . Si/dp = 0, and VII. . . Svp = 1
;

a process which has since been extended (361), and appears to furnish one of the

best general methods of treating surfaces^, ofthe second order by quaternions : espe

cially when combined with that theory of linear and vector functions (0p) of vec

tors, which was developed in the Sixth Section of the Second Chapter of the pre

sent Book.

gin was not the centre, occurred in pages 164, 179, 189, and perhaps elsewhere,

without any employment of products of vectors.

* Mentioned by anticipation in the Note to page 233.

f Compare the second Note to page 633. The vectors i and K are here the

cyclic normals, and i K is one of the focal lines ; the other being the line i K of

page 232.

J The following are a few additional references to preceding parts of this Third

Book, which has extended to a much greater length than was designed (page 302).

In the First Chapter, the reader may consult pages 305, 306, 307, for some other

forms of equation of the ellipsoid and the sphere. In the Second Chapter, pages

416, 417 contain some useful practice, above alluded to, in the differentiation and

transformation of the equation ra = T(tp + /OK). As regards the Sixth Section of

that Chapter, which we are about to use (405), as one supposed to be familiar to the

reader, it may be sufficient here to mention Arts. 357-362, and the Notes (or some

of them) to pages 464, 466, 468, 474, 481, 484. In this Third Chapter, the sub-

articles (7.)-(21.) to 373 (pages 504, &c.) might be re-perused; and perhaps the

investigations respecting cones and sphero-conics, in 394 and its sub-articles (pages

541, &c.), including remarks on an hyperbolic cylinder, and its asymptotic planes

(in page 547). Finally, in a few longer and later series of sub-articles, to Arts.

397, &c., a certain degree offamiliarity with some of the chief properties of sur

faces of the second order has been assumed
;

as in pages 571, 588, 591, and generally

in the recent investigations respecting the osculating twisted cubic (pages 591, 620,

&c.), to a helix, or other curve in space.

It appears that this Section may be conveniently referred to, as III. ii. 6
;
and

similarly in other cases.
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405. Dismissing then, at least for the present, the special consi

deration of the ellipsoid, but still confining ourselves, for the mo

ment, to Central Surfaces of the Second Order, and using freely the

principles of this Third Book, but especially those of the Section

(III. ii. 6) last referred to, we may denote any such central and non-

conical surface by the scalar equation (comp. 361),

the asymptotic cone (real or imaginary) being represented by the

connected equation,
II. . .

=

and the equation of conjugation) between the vectors p, p
f of any two

points P, P
,
which are conjugate relatively to this surface I. (comp.

362, and 404, (3.), see also 373, (20.)), being,

III. . . f(P , //) =f(P , p)
=

$p&amp;lt;t&amp;gt;P = SP &amp;lt;t&amp;gt;p

= 1 ;

while the differential equation of the surface is of the form (361),

IV. . .
= dfp = 2Svd/&amp;gt;,

with Y. . . v =
&amp;lt;j&amp;gt;P

this vector-function 0/, which represents the normal v to the surface,

being at once linear and self-conjugate (361, (3.)) ; and the surface

itself being the locus of all the points p which are conjugate to them

selves, so that its equation I. may be thus written,

V.
../0&amp;gt;, /)

=
!, because f(p,p)=fP , by 362, IV.

(1.) Such being the form of
&amp;lt;}&amp;gt;p,

it has been seen that there are always three real

and rectangular unit-lines, a\, a2, 03, and three real scalars, GI, c2, 03, such as to

satisfy (comp. 357, III.) the three vector equations,

VI. . . 0ai = -cia!, &amp;lt;a2 = c2ct2, 03=-C3&amp;lt;*3;

whence also these three scalar equations are satisfied,

VI I. fa\ = ci, /ct3
= c2 , /or3

= 3 J

and therefore (comp. 362, VII.),

VIII. . ./(criai)=/(cz-iaa)=/(c3-Ja 3)
= l.

(2.) It follows then that the three (real or imaginary) rectangular lines,

IX. . .
/3i
= cr ai, /32

= c2-^a2, ]8a
= C3~la8,

are the three (real or imaginary) vector semiaxes of the surface I.
;
and that the three

(positive or negative) scalars, ci, c2 , 03, namely the three roots of the scalar and CM&/C

equation* M (comp. 357, (1.)), are the (always real) inverse squares of the three

(real or imaginary) scalar semiaxes, of the same central surface of the second order.

*
It is unnecessary here to write M = 0, as in page 462, &c., because the func

tion ^ is here supposed to be self- conjugate ; its constants being also real.



CHAP. III.] GENERAL CENTRAL SURFACE. 637

(3.) For the reality of that surface I., it is necessary and sufficient that one at

least of the three scalars ci, c2 ,
c3 should be positive ; if all be such, the surface is an

ellipsoid ; if two, but not the third, it is a single-sheeted hyperboloid ; and if only

one, it is a double-sheeted hyperboloid : those scalars being here supposed to be

each finite, and different from zero.

(4.) We have already seen (357, (2.)) how to obtain the rectangular transfor

mation,
X. . . fp = &amp;lt;?i (Saip)* + c2 (Sa 3lo)

2 + c3 (Sa3p)*,

which may now, by IX., be thus written,

XL . . = S3i-

but it is to be remembered that, by (2.) and (3.), one or even two of these three vec

tors /3i/32/33 may become imaginary, without the surface ceasing to be real.

(5.) We had also the cyclic transformation (357, II. II. ),

XII. . .fp = gp
2 + S\pup = p2(0

_
SX/z) + 2SXpSjup,

in which the scalar g and the vector X, p are real, and the latter have the directions

of the two (real) cyclic normals ;

* in fact it is obvious on inspection, that the surface

is cut in circles, by planes perpendicular to these two last lines.

(6.) It has been proved that the/owr real scalars, cic2 &amp;lt;?3y, and the^ye real vec

tors, aia2a 3Xju, are connected by the relations! (357, XX. and XXI.),

XIII. ..&amp;lt;!
= -#- TXju, c2 = -g+S\ft, c3 = -g + T\n;

XIV. . .ai=U(\T&amp;gt;-/iTA), a3 = UVXju, a3 = U(XT&amp;gt;-f ;uTX) ;

at least if the three roots eic2c3 of the cubic M=0 be arranged in algebraically as

cending order (357, IX.), so that &amp;lt;?i&amp;lt;c2 &amp;lt;c3 .

(7.) It may happen (comp. (3.)), that one of these three roots vanishes ; and in

that case (comp. (2.)), one of the three semiaxes becomes infinite, and the surface I.

becomes a cylinder.

(8.) Thus, in particular, if ci= 0, or g = - TXju, so that the two other roots are

both positive, the equation takes (by XII., comp. 357, XXII.) a form which may
be thus written,

XV. . . (SX/zp)2 + (SXjoT&amp;gt; -f SjpTX)2 = TX/t
-

SX/i &amp;gt; ;

and it represents an elliptic cylinder.

(9.) Again, if c2 = 0, or g = SX/z, the equation becomes,

XVI. . . 2SXPS/ip = 1,

and represents an hyperbolic cylinder ; the root ci being in this case negative, while

the remaining root c3 is positive.

*
Compare the Xote to page 468

;
see also the proof by quaternions, in 373, (1 6.),

&c., of the known theorem, that any two subcontrary circular sections are homosphe-

rical, with the equation (373, XLIV.) of their common sphere, which is found to have

its centre in the diametral plane of the two cyclic normals X, ft.

f These relations and a few others mentioned are so useful that, although they

occurred in an earlier part of the work, it seems convenient to restate them here.
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(10.) But if we suppose that c3 = 0, or ^ = TX/, so that ci and c2 are both nega

tive, the equation may (by 357, XXIII.) be reduced to the form,

XVII. . . (SX/jp)
2 + (SXpT/*

-
S/tpTX)2 = - TX/i

-
SX/i &amp;lt; ;

it represents therefore, in this case, nothing real, although it may be said to be, in the

same case, the equation of an imaginary* elliptic cylinder.

(11.) It is scarcely worth while to remark, that we have here supposed each of

the two vectors X and /*
to be not only real but actual (Art. 1) ;

for if either of them

were to vanish, the equation of the surface would take by XII. the form,

XVIII. . . p
2 =g-\ or XVIII . . . Tp = (-$0 *,

and would represent a real or imaginary sphere, according as the scalar constant g

was negative or positive : X and
/j,
have also distinct directions, except in the case

of surfaces of revolution.

(12.) In general, it results from the relations (6.), that the plane of the two (real)

cyclic normals, X, /j,
is perpendicular to the (real) direction of that (real or imagi

nary) semiaxis, of which, when considered as a scalar (2.), the inverse square c% is

algebraically intermediate between the inverse squares GI, c3 of the other two ; or that

the two diametral and cyclic planes (SXp = 0, S/ip
=

0) intersect in that real line

(VX/z) which has the direction of the real unit-vector a3 (1.), corresponding to the

mean root c2 of the cubic equation M= : all which agrees with known results, re

specting the circular sections of the (real), ellipsoid, and of the two hyperboloids .

406. Some additional light may be thrown on the theory of the

central surface 405, I., by the consideration of its asymptotic cone

405, II. ;
of which cone, by 405, XII., the equation may be thus

written,

I. - fp =W* t SX/w =
/&amp;gt;

2
(g

-
SX/O + 2SX/BS/V = ;

and which is real or imaginary, according as we have the inequa

lity,
II. . . g

2
&amp;lt; XV, or III. . . g* &amp;gt; \y ;

that is, by 405, (6.), according as the product C& of the extreme

roots of the cubic M= is negative or positive ; or finally, according
as the surfacefp- 1 is a (real) hyperloloid, or an ellipsoid (real or

imaginaryf).

* In the Section (III. ii. 6) above referred to, many symbolical results have been

established, respecting imaginary cyclic normals, or focal lines, &c., on which it is

unnecessary to return. But it may be remarked that as, when the scalarfunction

fp admits of changing sign, for a change of direction of the real vector p, so as to be

positive for some such directions, and negative for others, althoughf(p} =f(+ p),

the two equations, /p =+ 1,/p = 1, represent then two real and conjugate hyperbo

loids, of different species : so, when the function fp is either essentially positive, or

else essentially negative, for real values of p, the equations fp = 1 andfp=1 may
then be said to represent two conjugate ellipsoids, one real, and the other imaginary.

f Compare the Note immediately preceding ;
also the second Note to page 474.
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(1.) As regards the asserted reality of the cone I., when the condition II. is sa

tisfied, it may suffice to observe that if we cut the cone by the plane,

ir...;8X&amp;lt;&amp;gt;-jO--ft

the section is a circle of the real and diacentric sphere,

V...p* = 2S,ip, or V. ..(p-/02 =
/*
2

;

and a real circle, because it is on the real cylinder of revolution,

VI. . . TV(p - /i)U\ = (T&amp;gt;2 -#2TX-2)i,

so that its radius is equal to this last real radical.

(2.) For example, the cone

VII. . . S
9- S - = 1, or VIF. . . 2(SapS/3p

- a2
p
2
)
=

0,
a p

which under the form VII. occurred as early as 196, (8.), and for which X = a,

p = /3, g = Sa/3
- 2a 2

,
and therefore TX/* +# &amp;gt; 0, the condition II. reduces itself to

1\H-g &amp;gt; ;
or after division by 2Ta2

, &c., to the form (comp. 199, XII.),

...sJ2
T( Cl

viii. ..KT-f s)&amp;gt;i, or vm ...s&amp;gt;i|
(I T( Cl

and accordingly, when either of these two last inequalities exists, it will be found

that the sphere S = 1 is cut by the plane S - = 1 in a real circle, the base of a real

p a
cone VII.

(3.) As an example of the variety ofprocesses by which problems in this Calcu

lus may be treated, we might propose to determine, by the general formula 389, IV.,

the vector K of the centre of the osculating circle to the curve IV. V., considered

merely as an intersection of two surfaces. The first derivatives of the equations

would allow us to assume p = VX(p /j), and therefore
p&quot;

= Xp ; whence, by the

formula, we have

the section is therefore a circle, because its centre ofcurvature is constant ; and its

radius is,

= the radius of the cylinder VI.

(4.) When the opposite inequality III. exists, the radius X., the cylinder VI.,

the circle IV. V., and the cone I., become all four imaginary ; the plane IV. being

then wholly external to the sphere V., as happens, for instance, with the plane and

sphere in (2.), when the condition VIII. or VIII . is reversed.

(5.) In the intermediate case, when

XI. ..0* = \V, or XI . ..g = + T\u,

the radius r in X. vanishes ; the right cylinder VI. reduces itself to its axis ; and

the circle IV. V. becomes a point, in which the sphere is touched by the plane. In

this case, then, the cone I. is reduced to a single (real*) right line, which has

* It may however be said, that in this case the cone consists of a pair ofimagi

nary planes, which intersect in a real right line.
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(compare the equations of the elliptic cylinders, 405, XV. XVII.) the direction of

XT/i
-

/tTX, if g = - TX/i, but the perpendicular direction of XT/* + jiTX, if 9 =

(6.) In general (comp. 405, X.), the equation of the cone I. admits of the rect

angular transformation,

XII. . . /p = Ci (Saip)
2 + c2 (Sa2p)

2 + cs (Sasp)
8 =

;

and the two sub-cases last considered (5.) correspond respectively (by 405, (6.)) to

the evanescence of the rooty GI, c3 of the cubic TUf= 0, with the resulting directions a\,

03 of the only razJ side of the cone. An analogous but intermediate case (comp. 405,

(9.)) is that when c2 = 0, or g = SX/i ;
in which case, the cone I. reduces itself to the

nair q/ (reaT) planes,
XIII. . . SXp.S/*p=0,

namely to the asymptotic planes of the hyperbolic cylinder 405, XVI., or to those

which are usually the two cyclic* planes of the cone.

(7.) The case (comp. 394,-(29.)),

XIV. ..$r = -SXjt, or XIV. . . c 1

for which the equation I. of the cone becomes,

XV. . . =fp = 2(SXpS/ip
-
p3SX/0 = 2S(VXp .

may deserve a moment s attention. In this case, the two planes, of Xp and ;up,

which connect the two cyclic normals X and
fi with an arbitrary side p of the cone,

are always rectangular to each other
;
and these two normals to the cyclic planes

are at the same time sides of the cone, which thus is cut in circles, by planes perpen

dicular to those two sides. And because the equation of the cone may (in the same

case) be thus written,

XVI. . . TV(X + jt) p = TV(X - ,0 p,

while the lengths of X and
\i may vary, if their product TXju be left unchanged, so

that X + /i
and X

/A may represent any two lines from the vertex, in the plane of

the two cyclic normals, and harmonically conjugate with respect to them, it follows

that, for this cone XV., the sines of the inclinations ofan arbitrary side p, to these

two new lines, have a constant ratio to each other.

(8.) In general, the second form I. of/p shows (comp. 394, (23.)), that the con

stant product of the sines of the inclinations, of a side p of the cone to the two cyclic

planes, has for expression,

XVII. .-.. CM
x n

while the first form I. of the same function fp reproduces the condition ofreality II.,

by showing that g : TXu is (for a real cone) the cosine of a real angle, namely, that

of the quaternion product \pup, since it gives the relation,

XVIII. . .
-~ = SUXpup = cos L Xpwp = cos L .

* The cones and surfaces which have a common centre, and common values of

the vectors X and
/w, but different values of the scalar g, may thus be said, in a

known phraseology, to be biconcyclic.
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(9.) We may also observe that in the case of reality II., with exclusion of the

sub-case (6.), if or 3 have the direction of the internal axis of the cone, so that

XIX. ..ci&amp;lt;0, c2 &amp;lt;0,
c3 &amp;gt;0,

or XIX . . .

&amp;lt;7&amp;gt;SX//, &amp;lt;7&amp;lt;TX/u,

the two sides (of one sheet) in the plane of \p have the directions,

XX. . . pi
= c3-2a3+ (- ci)-iai, p2 = c3-*a 3

-
(- c^cti ;

if then their mutual inclination, or the angle of the cone in the plane of the cyclic

normals, be denoted by 2b, we have the values,

XXI...tanb =
,
XXI . . . --

- n + f3 TX/j

the angle of the quaternion \pfJ-p is therefore (by XVIII.), equal to this angle 2b,

namely to the arcual minor axis of the sphero-conic, in which the cone is cut by the

concentric unit-sphere.

(10.) The same condition of reality II. may be obtained in a quite different way,
as that of the reality of the reciprocal cone, which is the locus of the normal vector,

XXII. . . v = fp = gp + VXpju.

Inverting this linear function 0, by the method of the Section III. ii. 6, we find first

the expression (comp. 354, (12.), and 361, (6.)*),

XXIII. ..mp = ^v = n
2\S\v 4- \*pSp

in which XXIV. . . m = (g
-

SX/t) (#
2 -

and next the reciprocal equation (comp. 361, XXVII.),

XXV. . . = Sv$v = ^2 (SXv)2 + X2
(S/tiv)2

- ZgSXvSpv + (g
2 - XV) v2

,

which may be put under the form,

TX/t

the quotient g : TX/j, thus presenting itself anew as a cosine, namely as that of the

supplement of the sum of the inclinations of the normal v (to the cone I.), to the two

cyclic normals X, fj, (of that cone) ;
or as the cosinef of re - A B, if A and B denote

(comp. Fig. 80) the two spherical angles, which the tangent arc to the sphero-conic

(9.) makes with the two cyclic arcs : so that by comparison of XXI . and XXVI.
we have the relation,

V V
V--S7TTTT A _L T* / -L / ir 91iA.A. VI 1. . . A -(- B = 4 [_ 7T 60.

X
/x

(11.) Comparing the expression XXI . for cos 2b, with the last expression

* In the expression 361, XXVI. for ^v, the second term ought to have been

printed as - VXjuSXj^ ;
or else the sign should have been changed.

f This relation was mentioned by anticipation in 394, (3.) ;
and the relation in

XXVII. may easily be verified, by conceiving the point of contact p in Fig. 80

(page 543) to tend towards a minor summit of the conic, or the tangent arc APB to

tend to pass through the two points c, c
,
in which the cyclic arcs intersect.

4 N
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XVIII. for g : TX/u, \ve derive the following construction for a sphero-conic, which

may easily be verified by geometry :*

Having assumed two points (L, M) on a sphere, and having described a small

circle round one of them (say L), bisect the arcs (MQ) which are drawn to its circum

ference from the other point; the locus of the bisecting points (P) will be a sphero-

conic, with the two fixed points for its two cyclic poles (or for the poles of its cyclic

arcs), and with an arcual minor axis (2b) equal to the arcual radius of the small

circle.

(12.) As regards the arcual major axis (say 2a) of the same sphero-conic, it is

(with the conditions XIX.) the angle between the two sides (comp. XX.),

XXVIII. . . ps
= c3~*a3f (- C

2)&quot;

i
2, p4

= c3-*a 3 - (- c2)-*a3 ;

whence (comp. XXI.),

XXIX. . . tan2 a =
,

or XXIX . . . cos 2a =
~

C2
&quot; C3 =

(say) e,- C2 C2 + C3

and therefore, a few easy reductions being made,

from which we can at once infer, that if a. focus of the conic be determined, by draw

ing from a minor summit to the major axis an arc equal to the major semiaxis a,

the minor axis subtends at this focus (or at the other) a spherical angle equal to the

angle between the two cyclic arcs.

(13.) For the two real unifocal transformations of the equation of the cone, or

the forms,

XXXI. . . rt(Vap)
2 + 6(S/3p)

2 =
0, and XXXI . . . a(Va p)2 + 6(S/3 |o)^

=
0,

with one common set of real values of the scalar coefficients, a and b, but with two

real focal unit lines a, a
,
and two real directive normals (3, /3 corresponding, it

may be sufficient here to refer to the sub-articles to 358; except that it should be

noticed, that if the cone be real, and if the line rr 3 have the direction of its internal

axis, so that the inequalities XIX. are satisfied, and therefore also (by 405, (6.)),

XXXII. . . ca
1

&amp;gt; &amp;gt; cri &amp;gt; c3-i,

instead of the inequalities 358, III., or 359, XXXVII., we are now to change, in

the earlier formulae referred to, the symbols Cic2c3aia2a3 to C3cic2a3aia2, so that we
have now the values,

XXXIII. ..a = -ci, 6 = c3
-

Cl +c2 ,
if T/3 = T/3 =1.

(14.) And as regards the interpretation of the unifocalform XXXI., with these

last values, it is evidently contained in this other equation,

XXXIV. . . sin L- . sec L - = = = const.
;

a (3 -S/3p \
-

Cl )

the sines of the inclinations of an arbitrary side (p) of the cone, to a. focal line (a),

* In fact, the bisecting radii OP are parallel to the supplementary chords M Q, if

MM be a diameter of the sphere ; and the locus of all such chords is a cyclic cone,

resting on the small circle as its base.
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and to the corresponding director plane (-L /3), thus bearing to each other (as is

well known) a constant ratio, which remains unchanged when we pass to the other

(real) focal line (a ), and at the same time to the other (real) director plane (-1- /3 ) :

and the focal plane of these two lines (a, a ) being perpendicular to that one of the

three axes, which corresponds to the root (here c\, by XXXII.) of the cubic, of

which the reciprocal is algebraically intermediate between the reciprocals of the other

two.

(15.) It is, however, more symmetric to employ the bifocal transformation

(comp. 360, VI.*),

XXXV. . . = (Sap)2
- 2*SapSa p + (Sa p)

2 + (1
- e^p

2
;

in which the scalar constant e has the value (comp. XXIX .),

XXXVI. . . e = cos2a;

and a, a are the two-f real and focal unit lines, recently considered (13.).

(16.) The equation XXXV., for the case of a. real cone, may be thus written

(comp. XXVI. XXXVI.),

XXXVII. .. L-+ L ^ = cos-ie=2a;
a a

the sum$ of the inclinations of the side p to the two focal lines a, a being thus con

stant, and equal (as is well known) to the major axis of the spherical conic : and

although, when e&amp;gt; 1, the cone becomes imaginary, yet it is then asymptotic to a

real ellipsoid, as we shall shortly see.

407. The bifocal form (406, XXXV.) of the equation of a cone

may suggest the corresponding /orm,

in which a and a are given and generally non-parallel unit-lines,

while e and C are scalar constants, as capable of representing gene

rally (comp. 360, (2.), (3.)) a central but non-conical surface (fp
= 1)

of the second order. And we shall find that if, in passing from one

such surface to another, we suppose a and a! to remain unchanged,

but e and C to vary together, so as to be always connected by the

relation,
II.. . C =

(e
2 -

in which I is some real, positive, and given scalar, then all the sur-

* It is to be remembered that, in the formula here cited, the symbols a, a did

not denote unit- vectors.

f When these two vectors a, a remain constant, but the scalar e changes, there

arises a system of biconfocal cones : or, by their intersections with a concentric

sphere, a system of biconfocal sphe}-o- conies. Compare the Note to page 640.

+ Or the difference, according to the choice between two opposite directions, for

one of the two focal lines. The angular transformation XXXVII. may be accom

plished, by resolving the equation XXXV. as a quadratic in e, and then interpreting

the result.
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faces I. so deduced, or in other words the surfaces represented by

the common equation,

(Sap)*- 2eSapSa p
III. . . P=Pfp =

~(?T
with e for the only variable parameter, compose a Confocal System.

(1.) The scalarform III. of/p gives the connected vector form,

which may also be thus written, with the value II. of C,

V. . . Cv
C&amp;lt;pp

= (a
- ea ) Sap + (a

-
ea) Sa p + (1

- e2
) p,

so that the function is self-conjugate, as it ought to be.

(2.) And because we have thus,

VI. . . (e2
_

1) l^a = a -
ea, (e*

-
1) fitya

= a - ea
,

if we write, for abridgment,

VII. . . a2 = (e + 1) P, & = (e+ Saa ) P, c =
(e
-

1) /
,

we shall have the values,

VIII. .

comparing which with 405, (1.), (2.), we see that the three (real or imaginary)

lines,

IX. . . aU(a + a ), &UVaa
, cU(a - a ),

of any one of which the direction may be reversed, are the three vector semiaxes of

the surface fp = 1
;
and therefore, by VII., that the system III. is one of confocals,

as asserted.

(3.) The rectangular transformations, scalar and vector, are now (comp. 405,

X., and 357, V. VIII.) :

X P = l2f =

XI. . . l&quot;V =l

e + l e + Saa e-l

U(a + a ) . SpU(a + a ) UVaa . SpUVa
e+l e + Saa

U(a-a ).SpU(a-a )

~e-T-
which can both be established, by the rules of the present Calculus, in several other

ways, and from the first of which it follows that (as is well known) through any pro

posed point P of space there can in general be drawn three confocal surfaces, of a

given system III.
;
one an ellipsoid, for which e&amp;gt; 1, and therefore a2

&amp;gt;
b-

&amp;gt; c2 &amp;gt; ;

another a single-sheeted hyperboloid, for which e &amp;lt; 1, e&amp;gt;- Saa
,
a2

&amp;gt; b2 &amp;gt; &amp;gt; c2 ;

and the third a double- sheeted hyperboloid, for which e
&amp;lt;

- Saa
, e&amp;gt;-l, a2

&amp;gt;
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(4.) From the other rectangular transformation XI. it follows, that if we denote

by vi = $\p what the normal vector v =
&amp;lt;pp becomes, when p remains the same, but

e is changed to a second root e\ of the equation III. or X. of the surface, considered

as a cubic in e, then

XII.

but XIII. ..
SjOi/i

= Spj/=/!p=/p = 1,

fip being formed from/p, by the substitution of e\ for e
; therefore,

XIV. . . = S
jo0j/i

=
Si/i0p

= S iJ/,

and the known theorem results, that confocal surfaces cut each other orthogonally*

(5.) It follows, from V. and VI., that the inverse function 0~ip can be expressed
as follows :

XV. . . 0- p = Z*(aSa p + a Sap)
- 62p ;

or that p may be deduced from v by the formula,

XVI. . . p = 0-i v
= Z2 (aSa v + a Sav) - Wv,

which can easily be otherwise established. Hence (comp. 361, (4.)), the equation

of the surface reciprocal to the surface I. or III., or of that new surface which has v

(instead of p) for its variable vector, is

XVII. ..l = Fv = Sv&amp;lt;&amp;gt;-*v

the fixedfocal lines a, a of the confocal system III., or of the corresponding system

of the asymptotic cones, becoming thus (in agreement with known results) the fixed

cyclic normals (or cyclic lines, comp. 361, (6.)) of the reciprocal system XVII.

(6.) In thus deducing the equation XVII. from III., no use has been made of

the rectangular transformations X. XI., of the functions fp and 0p. Without the

transformations last referred to, we could therefore have inferred, by a slight modifi

cation of the form XVII., that the reciprocal surface (Fv = 1) with v for its vari

able vector, which has the same rectangular system of directions for its three semi-

axes as the original surface (/p = 1), but with inverse squares (the roots of its

cubic) equal to the direct squares of the original semiaxes, has for equation (comp.

405, XII.),

XVIII. . . 1 = Fv = Z
2
(Sava v - ev z

}
= SXvpv + gv\

if XIX. ..A = Za, p = Za
, g = - el2 = - eTXu

;

the values VII. of a2
,
bz

,
c2 being thus deduced anew, but by a process quite diffe

rent from that employed in (2.), under the forms (comp. 405, XIII.),

XX. . . a2 = c3 = -^ + TX^; 62 = Co = -p+ S\/i ;
c2 = a =-g -TXp ;

while the directions IX. of the corresponding semiaxes may be deduced as those of

03, 2, ai, from the formulae 405, XIV.

(7.) If the symbol o&amp;gt; (v), or simply wv, be used to denote a new linear and self-

conjugate vector function of v, defined by the equation,

XXI. . . wv =

* We shall soon see that the same formula XII., by expressing that v, v\, and

0vi or 0iv are complanar, contains this other part of the known theorem referred to,

that the intersection is a line of curvature, on each of the two confocals.
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with p here treated as a vector constant, then (because Spv = 1) the equation XVI.

may be thus written (comp. 354, &c.),

XXII. . . (w + Z&amp;gt;

2
&amp;gt;

= 0;

the three rectangular directions, of the three normals v, 1/1, v2 to the three confo-

cals through p, are therefore those which satisfy (comp. again 354) the vector qua

dratic equation,
XXIII. . .

and they are the directions of the axes of this new surface of the second order (comp.

357, &c.),
XXIV. . .

in which p is still treated as a constant vector, but v as a variable one.

(8.) The inverse squares of the scalar semiaxes of this new surface (Svuv = 1),

are the direct squares &2
, &i

2
,
622 of what may be called the mean semiaxes of the

three confocals ; these latter squares must therefore be the roots of this new cubic,

XXV. . . = m + mb* + m&quot; (b^ + (6
2
)3,

in which the coefficients m, m , m&quot;,
deduced here from the new function w, as they

were deduced from in the Section III. ii. 6, have the values,

(m = Z(Saa p)
2

;

XXVI. . . )m = Z*(Vaa02 +2Z2
S(Va/&amp;gt;.Va p);

jm&quot;=p
2 -2Z2 Saa .

Accordingly, if we observe that (because Ta = Ta = 1) we have among others the

transformation,

XXVII. . . (Saa p)
2 = p

2
(Vaa )

2 -
(Sap)

2 - 2Saa SapSa p
-
(Sa p)

2
,

we can express this last cubic equation XXV., with these values XXVI. of its co

efficients, under the form,

XXVIII. . . =
(62 + p2) { (52

_ j2Saa )2
_ Z

4
1

+ 2Z2 (62
- Z*Saa ) SapSa p

- Z* ((Sap)
2 + (Sa p)

2
) ;

which, when we change 62 by VII. to its value Z2 (e + Saa ), and divide by Z-
4
,
be

comes the cubic in e, or the equation III. under the form,

XXIX. . . =
(

2
-1) |Z

2
(e+Saa ) + p

2}+2eSapSa p- (Sap)
2 -(Sa p)

2
.

(9.) As an additional test of the consistency of this whole theory and method,

the directions of the three axes of the new surface XXIV., or those of the three

normals (7.) to the confocals, or the three vector roots (354) of the equation

XXIII., ought to admit of being assigned by three expressions of the forms,

XXX.
n2i/2 =

in which 62
, b^, 622 are the three scalar roots of the cubic XXV. or XXVIII., while

(t,
&amp;lt;TI,

(T2 are three arbitrary vectors; n, n\, n2 are three scalar coefficients, which

can be determined by the conditions Spv= Spvi = Spvz= 1 (comp. XIII.) ;
and

i//,

X are two new auxiliary linear and vector functions, to be deduced here from the

function w, in the same manner as they were deduced from in the Section lately

referred to.
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(10.) Accordingly, by the method of that Section, taking for convenience the

given* vector p (instead of the arbitrary vectors
&amp;lt;r, &amp;lt;n,

az) as the subject of the ope

rations
i//

and x, we find the expressions,

XXXI. . . $p = PVaa Saa p, XP = P(aSo
f

p + a Sap - 2pSaa ) ;

whence, after a few reductions, with elimination of n by the relation Spy = 1, and by
the cubic in &, the first equation XXX. becomes :

XXXII. . . =
(6*v + p) {(6

2 - ZsSaa )
8 - J4 }

+ P(& _ PSaa ) (aSa p + a Sap)
- Z

4
(aSap -1- a Sa p) ;

which is in fact a form of the relation between v and p, for any one of the confocals,

as appears (for instance) by again changing W- to I2 (e + Saa ), and comparing with

the equation IV.

(11.) Another and a more interesting auxiliary surface, of which the axes have

still the directions of the normals v, is found by inverting the new linear function o;,

or by forming from XXII. the inverse equation,

XXXIII.. . (w-
l + 6-a)j/ = 0;

in which,

XXXIV. . .
o&amp;gt;-ii/.(Saa p)

2 =Vaa SaaV + Z-2(v pSa pi/ + Va pSapv);

and from which it follows that the normals v to the confocals through p have the

directions of the axes of this new cone,

XXXV. . . Si/or 1 v = 0, or XXXVI. . . = Z2 (SaaV)3 + 2SapvSa p v,

with p treated as a constant, as before.

(12.) The vertex of this auxiliary cone being placed at the given point p, of in

tersection of the three confocals, we may inquire in what curve is the cone cut, by
the plane of the given focal lines, a, a

,
drawn through the common centre o of all

the surfaces. III. Denoting by a = ta + t a the vector of a point s of this sought

section, and writing
XXXVII. . . v = a-p=ta-s

r t a -
p,

the equation XXXVI. gives the relation,

XXXVIII. . . tf = - = ^^- = const.
;

the section is therefore an hyperbola, which is independent of the point p, and has

the focal lines of the system for its asymptotes. And because its vector equation may
be thus written (comp. 371, II.),

XXXIX.. . &amp;lt;T

= ta+|-W,
or what may be called its quaternion equation as follows (comp. 371, I.),

XL. . . 2Va&amp;lt;r.V&amp;lt;ra = Z2(Vaa )
2
,

it satisfies the two scalar equations,

XLI. .. =
0, m =

0,

with the significations XXVI. of m and m
;

it is therefore that important curve,

which is known by the name of the Focal Hyperbola :f namely the limit to which

* The general expressions for
;//&amp;lt;r

and
%&amp;lt;r

include terms, which vanish when

p.

f Compare the Notes to pages 231, 505.
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the section of the confocal surface by the plane of its extreme* axes tends, when the

mean axis (26) tends to vanish. We are then led thus to the known theorem, that

if,
with any assumed point P for vertex, and with the focal hyperbola^ for base, a

cone be constructed, the axes of this focal cone have the directions of the normals

to the confocals through P.

(13.) As regards the Focal Ellipse, its two scalar equations may be deduced

from the rectangular form X., by equating to zero both the numerator and the de

nominator of its last term
; they are therefore,

XLII. . . S (a
- a ) p = 0, 2Z2 = (SpU (a + a ))

3 + 1

\ SVaa

the curve being thus given as a perpendicular section of an elliptic cylinder, with

JV2 and JV(l-fSaa ),
or (a?

- c2)i and (bt-c^, for the semiaxes of its base,

or of the ellipse itself.

(14.) The same curve may also be represented by the equations,

XLIII. . . Sap = Sa p, TVap = (6*
- c2)i,

or XLIII . . . Sa p = Sap, TVa p = (ft
2 -

e)i ;

which express that it is the common intersection of its own plane (-
1- a a ) with two

right cylinders,^ which have the two focal lines a, a of the system for their axes of

revolution, and have equal radii, denoted each by the radical last written.

(15.) In general, the unifocal form (comp. 406, (13.)) of the equation III.,

namely,
XLIV. . . =

(1
-

e2) ((Vap)* + 62) + (S(a
-
ea) p)

3
,

in which a and a may be interchanged, shows that the two equal right cylinders,

XLV. . . (Vap)
2 + 62 =

0, XLV. . . (Va p)
2 + &2 =

0,

or XLVL . . TVap =
b, XLVI . . . TVa p = b,

which are real if their common radius b be such, that is, if the confocal (e) be either

an ellipsoid (supposed to be real), or else a single-sheeted hyperboloid, and which

have the focal lines a, a of the system for their axes of revolution, envelope^ that

confocal surface ; the planes of the two ellipses of contact (which again are real

curves, if b be real) being given by the equations,

XLVIT. . . S(a -ea)p = 0, XLVII . .. S(a-ea )p = 0;

so that they pass through the centre o of the surface (or of the system), and are the

(real) director planes (comp. 406, (14.)) of the asymptotic cone (real or imaginary),

to the particular confocal (e).

*
Namely, those two of which the squares algebraically include between them

that of the third
;
this latter being, for the same reason, considered here as the mean.

t We shall soon see that quaternions give, with equal ease, a more general known

theorem, in which this is included as a limit.

+ The reader may consult page 513 of the Lectures, for the case of this theorem

which answers to a given ellipsoid. The focal ellipse may also be represented gene

rally by the expression (comp. page 382 of these Elements),

or by the same expression, with a and a interchanged.

Compare pag^s 199, 228, 233, 299.
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(16.) Whether the mean semiaxis (6) be real or imaginary, the surface III.

(supposed to be itself real} is always, by the form XLIV. of its equation, the locus

of a system of real ellipses (comp. 404, (!.))&amp;gt;
in planes parallel to the director plane

XLVII., which have their centres on the focal line a, and are orthogonally projected
into circles on a plane perpendicular to that line.

(17.) The same surface is also the locus of a second system of such ellipses, re

lated similarly to the second focal line a
,
and to the second director plane XLVII .

;

and it appears that these two systems of elliptic sections of a surface of the second

order, which from some points of view are nearly as interesting as the circular sec

tions, may conveniently be called its Ceutro-Focal Ellipses.

(18.) For example, when the first quaternion form (204, (14.), or 404, I.) of

the equation of the ellipsoid is employed, one system of such ellipses coincides with

the system (204, (13.)) of which, in the firstgeneration* of the surface, the ellipsoid

*
Besides that first generation (I) of the Ellipsoid, which was a double one, in

the sense that a second system (17.) of generating ellipses might be employed, and

which served to connect the surface with a concentric sphere, by certain relations of

homology (274); and the second double generation or construction (II), by means

of either of two diacentric spheres (217, (4.), (6.), (7.), and 220, (3.)), which was

illustrated by Fig. 53 (page 226) : several other generations of the same important

surface were deduced from quaternions in the Lectures, to which it is only possible

here to refer. A reader, then, who happens to have a copy of that earlier work, may
consult page 499 for ^generation (III) of a system of two reciprocal ellipsoids, with

a common mean axis (%b), by means of a moving sphere, of which the radius (= 6)

is given, but of which the centre has the original ellipsoid for its locus ; while the

corresponding point on the reciprocal surface, and also the normals at the two points,

are easily deduced from the construction. In page 502, he will find another and per

haps a simpler generation (IV), of the same pair of reciprocal ellipsoids, by means of

quadrilaterals inscribed in a fixed sphere (the common mean sphere, comp. 216,

(10.)) ;
the directions of the four sides of such a quadrilateral being given, and one

pair of opposite sides intersecting in a point of one surface, while the other pair have

for their intersection the corresponding point of the other (or reciprocal) ellipsoid.

In the page last cited, and in the following page, there is given a new double genera&quot;

tion (V) of any one ellipsoid ;
its circular sections (of either system) being con

structed as intersections of two equal spheres (or spheric surfaces), of which the line

of centres retains a fixed direction, while the spheres slide within two equal and

right cylinders, whose axes intersect each other (in the centre of the generated sur

face), and of which the common radius is the mean semiaxis (6). Finally, in page 699

of the same volume, there will be found a new generation (VI) of the original ellip

soid (a&c), analogous to the generation (IV) by the fixed (mean) sphere, but with

new directions of the sides of the quadrilaterals, which are also (in this last genera

tion) inscribed in the circles of a certain mean ellipsoid (or prolate spheroid) of

revolution, which has the mean axis (2&) for its major axis, and has two medial

foci on that axis, whose common distance from the centre is represented by the ex

pression,

4o
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was treated as the locus ; and an analogous generation of the two hyperboloids, by

geometrical deformation of two corresponding surfaces of revolution, with certain

resulting homologies (comp. sub-arts, to 274), through substitution of (centra-focal)

ellipses for circles, conducts to equations of those hyperboloids of the same unifocal

form ; namely, if a and (3 have significations analogous to those in the cited equa

tion of the ellipsoid (so that /3 and not a is here a. focal /me),

the upper or the lower sign being taken, according as the surface consists of one

sheet or of two.

(19.) It may also be remarked that as, by changing (3 to a in the corresponding

equation of the ellipsoid, we could return (comp. 404, (1.)) to a form (403, XL) of

the equation of the sphere, so the same change in XLVIII. conducts to equations

of the equilateral hyperboloids of revolution, of one sheet and of two, under the very

simple forms* (comp. 210. XI.),

XLIX. .. S, -Y = ~l and L. . s(^V = +l;
\ a 1 \ a I

in which it seems unnecessary to insert points after the signs S, and of which the

geometrical interpretations become obvious when then they are written thus (comp.

199, V.),

n I TT p \ p p
LI. . . T

&quot; = Vsec2 - - L -
},

LII. . . T-=Vsec2z. -;
a \ 2 a j a

P P
where T - = op : oil while L - is the inclination AOP of the semidiameler OP to the

a a

axis of revolution OA, and L - is the inclination of the same semidiameter to a
2 a

plane perpendicular to that axis.

(20.) The real cyclic forms of the equation of the surface III. might be deduced

from the unifocal form XLIV., by the general method of the subarticles to 359
;
but

since we have ready the rectangular form X., it is simpler to obtain them from that

form, with the help of the identity,

LIIL . .
-
p
4 = (SpU (a + a ))

2 + (SpUVaa )
2 + (SpU (a

- a ))
3
,

by eliminating the first of these three terms for the case of a single-sheeted hyperbo-

the common tangent planes, to this mean (or medial) ellipsoid, and to the given (or

generated) ellipsoid (abc), which are parallel to their common axis (26), being pa
rallel also to the two umbilicar diameters of the latter surface.

* The same forms, but with &amp;lt;r for p, and (3 for a, may be deduced from XLVIII.

on the plan of 274, (2.), (4.), by assuming an auxiliary vector a such that

S- = + S -, and V -r = V -
;
the homologies, above alluded to. between the general

(5

-

a P P
hyperboloid of either species, and the equilateral hyperboloid of revolution of the

same species, admitting also thus of being easily exhibited.
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laid (for which 6 2
&amp;gt;

-2
&amp;gt; Q &amp;gt; c-2) ;

the second for an ellipsoid (c
2

&amp;gt; fc-2
&amp;gt; a-2

&amp;gt; 0) ;

and the third for a double-sheeted hyperboloid (ar
2

&amp;gt; &amp;gt;
c~2

&amp;gt; irs).

(21.) Whatever the species of the surface III. maybe, we can always derive from

the unifocal form XLIV. of its equation what may be called an Exponential Trans

formation ; namely the vector expression,

LIV. . . p = xa + yVa% with LV. . . x2
/a + y2/UVaa = 1 ;

the scalar exponent, t, remaining arbitrary, but the two scalar coefficients, x and y,

being connected by this last equation of the second degree : provided that the new

constant vector (3 be derived from a, a
,
and e, by the formula,

LTI... fl-
e + Saae aa

which gives after a few reductions (comp. the expression 315, III. for a*, when

Ta =
l),

LVII. . . V/3=UVaa , S(a -a)/3 = 0, Saa /3=0;
LVIII. . . Va = /3S.a+ UVaa .S.a - 1

; LIX. . . V.aVa*/3 = a&amp;lt;UVaa = T-il
;

LX. . . S(a -&amp;lt;?a),o
= #(e + Saa ), Vap=ya UVaa ;

while LXI. . ./a=a-2&2c-*, and LXII. . . //3 =/UVaa = 2
.

(22.) If we treat the exponent, t, as the only variable in the expression LIV.

for p, then (comp. 314, (2.)) that exponential expression represents what we have

called (17.) a centro-focal ellipse; the distance of its centre (or of its plane) from the

centre of the surface, measured along the focal line a, being represented by the co

efficient x; and the radius of the right cylinder, of which the ellipse is a section, or

the radius of the circle (16.) into which that ellipse is projected, on a plane
-L-

a,

being represented by the other coefficient, y : while \tir is the excentric anomaly.

(23.) If, on the contrary, we treat the exponent t as given, but the coefficients

x and y as varying together, so as to satisfy the equation LV. of the second degree,

the expression LIV. then represents a different section of the surface III., made by

a plane through the line a, which makes with the focal plane (of a, a ) an angle

=
;

this latter section (like the former) being always real, if the surface itself

be such : but being an ellipse for an ellipsoid, and an hyperbola for either hyperbo

loid, because

LXIII. . ./a./UVaa =a-2c-2 by LXI. and LXII.

(24.) And it is scarcely necessary to remark, that by interchanging a and a we

obtain a Second Exponential Transformation, connected with the second system (17.)

of centro-focal ellipses, as the first exponential transformation LIV. is connected with

theirs* system (16.).

(25.) The asymptotic conefp = Q has likewise its two systems of centro-focal

ellipses, and its equation admits in like manner of two exponential transformations,

of the form LIV.
;
the only difference being, that the equation LV. is replaced by

the following,
LXIV. . .

2,-2/a + y*fUVaa = 0,

in which, for a real cone, the coefficients of a;
2 anj y2 j,ave Oppos ite signs by (23.).

(26.) Finally, as regards the confocal relation of the surfaces III., which may
represent any confocal system of surfaces of the second order, it may be perceived
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from (4.) that an essential character of such a relation is expressed by the equa

tion,
LXV. . . .

which may perhaps be called, on that account, the Equation of Confocals.

(27.) It is understood that the two confocal surfaces here considered, are repre-

presented by the two scalar equations,

LXVI---- Spfp = I, Sp^p = 1, or LXVI . . . fp = 1, f,p = 1
;

and that the two linear and vector functions, v and v
t ,

of an arbitrary vector p,

which represent normals to the two concentric and similar and similarly posited sur

faces,
LXVII. . . fp = const., ftp = const.,

passing through any proposed point P, are expressed as follows,

LXVIII. . . v =
&amp;lt;pp t

v
t
=

&amp;lt;j&amp;gt; tp.

(28.) It is understood also, that the two surfaces LXVI. or LXVI . are not only

concentric, as their equations show, but also coaxal, so far as the directions of their

axes are concerned : or that the two vector quadratics (comp. 354),

LXIX. . .
Vp&amp;lt;f&amp;gt;p

=
0, and LXX. . . Vp^p = 0,

are satisfied by one common system of three rectangular unit lines. And with these

understandings, it will be found that the equation LXV., which has been called

above the Equation of Confocals, is not only necessary but sufficient, for the estab

lishment of the relation required.

(29.) It is worth while however to observe, before closing the present series of

subarticles, that the equations XII., and those formed from them by introducing

2 and 1/2, give the following among other relations :

LXXI. . . /Uvi
-

(6*
- 6i

8
)-i

= -/iUv ; f&vt
=

(6i
2 -

fc^)
1 = -/slM ;

&c.
;

and LXXII. . .f(n, j/a) =/i(v2, v) =/a (v, vi) = ;

and therefore,

LXXI 1 1. . ./t((M-M)M7*(*ls ~ft*&amp;gt;lM&quot;Oj

whence it is easy to see that the two vectors under the functional signfi in this last

expression have the directions of the generating lines of the single-sheeted hyperbo-

loid (ei) through P, if we suppose that b$ &amp;gt; bi2 &amp;gt; &amp;gt; 63, so that the confocal (e2) is

here an ellipsoid, and (e) a double-sheeted hyperboloid.

(30.) But if ff be taken to denote the variable vector of the auxiliary surface

XXIV., the equation of that surface may by (7.) and (8.) be brought to the follow

ing rectangular form, with the meaning XXI. of w,

LXXIV. . . 1 = Sffioo = (Spa)
2 - 2/2Sa(rSa (T = &2

(S&amp;lt;rU/)
2

hence, with the inequalities (29.), its cyclic normals, or those of its asymptotic cone

S(Tw&amp;lt;r = 0, or the^bca^ lines of the reciprocal cone S(TW&quot; &amp;lt;T= 0, that is of the cone

XXXVI., or finally the focal lines of the focal* cone (12.), which rests on the focal

hyperbola, have the directions of the lines LXXIII.
;
those focal lines are therefore

* A more general known theorem, including this, will soon be proved by quater

nions.
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(by what has just been seen) the generating lines of the hyperboloid (ci), which

passes through the given point P.

(31.) And for an arbitrary a we have the transformation,

LXXV. . .

408. The general equation* of conjugation,

!...(//&amp;gt;,/&amp;gt; )=!, 405,111.

connecting the vectors ^, p
f of any two points p, p which are con

jugate with respect to the central but non-conical surfacefp = 1, may
be called for that reason the Equation of Conjugate Points ; while

the analogous equation,

which replaces the former for the case of the asymptotic conefp = 0,

may be called by contrast the Equation of Conjugate Directions : in

fact, it is satisfied by any two conjugate semidiameters, as may be at

once inferred from the differential equation /(/&amp;gt;, dp)
= of the surface

fp = const, (comp. 362). Each of these two formulae admits of nu

merous applications, among which we shall here consider the

deduction, and some of the transformations, of the Equation of a

Circumscribed Cone,

III. . .(/(,, P )-l)* = (fp -!)(//-!);
which may also be considered as the Condition of Contact, of the right

line PP with the surfacefp= 1.

(1.) In this last view, the equation III. may be at once deduced, as the condi

tion of equal roots in the scalar and quadratic equation (comp. 216, (2.), and 316,

(30.)),
IV. . . =/(*p + afp&quot;)

-
(x +O2

,

or V. . . = x\fp - 1) 4- 2** (/0&amp;gt;, p )
-

1) + af*(fp
-

1) ;

which gives in general the two vectors of intersection, as the two values of the ex-

xp + x p-
.

x + x

(2.) If we treat the point P as given, and denote the two secants drawn from it

in any given direction T by ti~
lr and tz~

lT
t
then t\ and tz are the roots of this other

quadratic, f(p + f r) = 1, or

denoting then by t^T the harmonic mean of these two secants, so that 2t

and writing p
= p + *&amp;lt;fV, we have

vii. . . (i -fp&quot;) =/(p , 0, /(p, P )
= i ;

* For the notation used, Art. 362 may be again referred to.



654 ELEMENTS OF QUATERNIONS. [BOOK IIU

we are then led in this way to the formula I., as the Equation of the Polar Plane

of the point P
,

if that plane be here supposed to be defined by its well-known har

monic property (comp. 215, (16.), and 316, (31.), (32.)).

(3.) At the same time we obtain this otherform of the condition of contact III.,

as that of equal roots in VI.,

VIII. ../(p ,r)2=/r.(/p -l),

the first member being an abridgment of (/(p , r))* : and because this last equation

VIII. is homogeneous with respect to r, it represents a cone, namely the Cone of Tan

gents (r) to the given surface fp = 1, from the given point P . Accordingly it is easy

to prove that the equation III. may be thus written,

ix. .. f(P\ p
-
p )

2
=f(p - P ) - (fp

-
1),

under which last form it is seen to be homogeneous with respect to p p .

(4.) Without expressly introducing r, the transformation IX. shows that the

equation III. represents some cone, with the given point p for its vertex
;
and be

cause the intersection of this cone with the given surface is expressed by the square

of the equation I. of the polar plane of that point, the cone must be (as above stated)

circumscribed to the surfacefp= 1, touching it along the curve (real or imaginary)

in which that surface is cut by that plane I.

(5.) Another important transformation, or set of transformations, of the equation

III. may be obtained as follows. In general, for any two vectors p and p ,
if the

scalar constant m, the vector function ^/, and the scalar function F, be derived from

the linear and vector function 0, which is here self-conjugate (405), by the method

of the Section III. ii. 6, we have successively,

= S . pptyVpp = mS. pp 0-!Vpp = mFVpp ;

and thus the equation III. of the circumscribed cone becomes,

XI. . . mFVpp + /(p-p )
=

0, or XII. . . mFVrp +/r = 0,

if T = p
-
p be a tangent from p . Or because $$ = m, and m = - Cic3c3 = - ar*b *c~*,

by 406, XXIV., we may write (with r = p p ) either

XIII. . .
=

Sn//^r-t-Sw^- u, if v = Vrp = Vpp ,

or XIV. . . FVpp = a2fc c2/(p
-

p ),

as the condition of contact of the line PP with the surface fp = 1.

(6.) A geometrical interpretation, of this lastjftrm XIV. of that condition, can

easily be assigned as follows. Supposing at first for simplicity that the surface is an

ellipsoid, let p be the point of contact, so that fp = 1, /(p, r) = ;
and let the tangent

pp be taken equal to the parallel semidiameter OT, so that/r =/(p p )
= 1. Then,

with the signification XIII. of u, the equation XIV. becomes,

XV. . . -jFv = Tv.VFUv = abc;

in which the factor TV represents the area of the parallelogram under the conjugate

semidiameters OP, ox of the given surface fp = 1
;
while the other factor V-FUv re

presents the reciprocal of the semidiameter of the reciprocal surface Fv = 1, which is

perpendicular to their plane POT
;
or the perpendicular distance between that plane,

and a parallel plane which touches the given ellipsoid : so that their product V Fv is

equal, by elementary principles, to the product of the three semiaxes, as stated in the

formula XV. And the result may easily be extended by squaring, to other central

surfaces.
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(7.) It may be remarked in passing, that if p, a, r be any three conjugate semi-

diameters of any central surface fp = 1, so that

XVI. . .fp =fa =fr = 1, and XVII. . ./(p, &amp;lt;r) =/(&amp;lt;r, r) =/(r, p) = 0,

and if xp + ya + ZT be any other semidiameter of the same surface, we have then the

scalar equation,
XVIII. . . f(xp + ya + *r) = .r

2 + y*+ z* = 1
;

a relation between the coefficients, x, y, z, which has been already noticed for the

ellipsoid in 99, (2.), and in 402, I., and is indeed deducible for that surface, from

principles of real scalars and real vectors alone : but in extending which to the hy-

perboloids, one at least of those three coefficients becomes imaginary, as well as one

at least of the three vectors p, a, r.

(8.) Under the same conditions XVI. XVII., we have also,

XIX. . .
Vp&amp;lt;r=-f o6c0r = (-TO)-tyr;

XX. . . r = (- tfOty-^pcr = + (- m)-iV0p0&amp;lt;T ;

XXI. . . Spar = + abc = f (- m)-i ;

together with this very simple relation,

XXII. . .
Sp&amp;lt;rr.S0p0&amp;lt;r0r

= -l.

(9.) Under the same conditions, if xp + ya + zr and x p 4 y o -f Z T have only

conjugate directions, that is, if they have the directions of any two conjugate semi-

diameters, the six scalar coefficients must satisfy (com p. II.) the equation,

XXIII. .. xx + yy
1 + zz = Q.

(10.) The equation VIII., with p for p , may be written under the form,

XXIV. . . = Sar = Srwr, if XXV. . . a = UT = ^pSp^r 4 0r(l -/p),

a new linear and vector function, which represents a normal to the cone of tan

gents from P, to the surface fp = I. Inverting this last function, we find

1-fp
the equation in a of the reciprocal cone, or of the cone of normals to the circum

scribed cone from p, is therefore,

XXVII. . . Strata = 0, or XXVIII. . . Fa =
(Sp&amp;lt;r)

2
,

or finally

XXVIII . . . F(a : Spa) = 1
;

a remarkably simple form, which admits also of a simple interpretation. In fact,

the line a : Spa is the reciprocal of the perpendicular, from the centre o, on a tan

gent plane to the cone, which is also a tangent plane to the surface ; it is therefore one

of the values of the vector v (comp. (6.), and 373, (21.)), and consequently it is a

semidiameter of the reciprocal surface Fv= 1.

(11.) As an application of the equation XXVIII., let the surface be the confo-

cal (e), represented by the equation 407, III. or X., of which the reciprocal is re

presented by 407, XVII. or XVIII. Substituting for Fa its value thus deduced,

the equation of the reciprocal cone (10.), with a for a side, becomes,*

XXIX. . . ZPSaaSaa - (Sprr)2
= bW, or XXIX . . . Saaa a - /^(Spa)

2 = e^ ;

if then the vertex p be fixed, but the confocal vary, by a change of e, or of 6s which

* It may be observed that, when 6 = 0, this equation XXIX. represents the

asymptotic cone to the auxiliary surface 407, XXIV.
;
and at the same time the re

ciprocal of that focal cone, 407, XXXVI., which rests on the focal hyperbola.
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varies with it, the cone XXIX. will also vary, but will belong to a biconcyclic sys

tem ; whence it follows that the (direct or) circumscribed conesfrom a given point are

all biconfocal: and also, by 407, (30.), that their common focal lines are the gene

rating lines of the confocal hyperboloid* of one sheet, which passes through their

common vertex.

(12.) Changing e to e
t
in XXIX .,

and using the transformation 407, LXXV.,
with the identity (comp. 407, LIIL),

-
&amp;lt;7

a = (ScrUv)
2 + (SffUvi) + (S(rUi/2)

2
,

we find that if a be a normal to the cone of tangents from p to (et\ it satisfies the

equation,

XXX. . . = (e- e) (S&amp;lt;rUv)

2 + (i - ,) (StfUvj)
2 + (e2

-
e,) (S&amp;lt;rUv2)

2
;

and therefore that if r be a tangent from the same point P, to the same confocal (e,),

it satisfies this other condition,

XXXI. . . = (e
-

,)- (SrU&amp;gt;)
2 + (i - O&quot;

1
(SrUvi)* 4- (e2

-
e,)-i (SrUi/2)

2
,

which thus is a form of the equation of the circumscribed cone to (e,), with its wer-

tex at a 7t&amp;gt;en jwmf P : the confocal character (11.) of all swcA cones being hereby

exhibited anew.

(13.) It follows also from XXXI., that the axes of every cone thus circumscribed

have the directions of the normals v, vi, v2 to the &amp;lt;Aree confocals through p
;
and

this known theoremf may be otherwise deduced, from the Equation of Confocals

(407, LXV.), by our general method, as follows. That equation gives

vt~ v
II $,v (because tyv^tyv), and therefore,

XXXII. . .
(*,-iOSi&amp;gt;j/,

= 0X/iP-l) Vi/i/,Si/v / +Vj/0 Jv(l-/&amp;lt;p) = 0;

changing then V to S, and v to r, we see that v, vi, v2 ,
as being the roots (354) of

this last vector quadratic XXXII., have the directions of the axes of the cone, with

T for side,

XXXIII. . ./(p, r)
2
+/r.(l ~/p) = ;

that is, by VIII., the directions of the axes of the cone of tangents, from p to (ey).

(14.) As an application of the formula XIV., with the abridged symbols r and v

of (5.) for p
-

p and Vpp ,
the condition of contact of the line pp with the confo

cal (e) becomes, by the expressions 407, III., XVIII., and VII. for the functions

ft f, and the squares a2
,

ft
2

,
c2

,
the following quadratic in e :

XXXIV. . . (Sar)
- 2eSarSa r + (SaV)

2 + (1
-

&amp;lt;?*)
r2 = r2

(Sava v -
ei&amp;gt;2)

.

there are therefore in general (as is known) two confocals, say (e) and (e,), of a given

system, which touch a ^rt
ucn ri^fa line ; and their parameters,*, e and ^, are the two

roots of the last equation : for instance, their turn is given by the formula,

XXXV. . . (e + e&amp;gt;

2 =^ a ~ 2SorSa r.

* This theorem (which includes that of 407, (30.)) is cited from Jacobi, and is

proved, in page 143 of Dr. Salmon s Treatise, referred to in several former Notes.

f Compare the second Note to page 648.

$ This name of parameter is here given, as in 407, to the arbitrary constant

a2 + c2

=
a2 _ C8

of wnicn the value distinguishes one confocal (e) of a system from another.
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(15.) Conceive then that p is a given semidiameter of a given confocal (e), and

that dp is a tangent, given in direction, at its extremity ;
the equation XXXIV. will

then of course be satisfied,* if we change r to dp, and v to Vpdp, retaining the given

value of e
;
but it will also be satisfied, for the same p and dp (or for the same r and

v), when we change e to this new parameter,

XXXVI. . .
e,
= -e + 2SaUdp.Sa Udp-Z-

2
(VpUdp)

2
;

that is to say, the new confocal (&amp;lt;?,),

with a parameter determined by this last for

mula, will touch the given tangent to the given confocal (e).

(16.) If we at once make Z2= o in the equation 407, III. of a Confocal System

of Central Surfaces, leaving the parameter e finite, we fall back on the system 406,

XXXV. of Biconfocal Cones ; but if we conceive that Z
2
only tends to zero, and

that e at the same time tends to positive infinity, in such a manner that their pro

duct tends to a. finite limit, r2
,
or that

XXXVII. .. lim.J = 0, lim.=oo, lim.&amp;lt;?Z2 = r2,

then the equation of the surface (e) tends to this limiting form,

XXXVIII. . . p2 + r2= 0, or XXXVIII . . . Tp = r
;

a system of biconfocal cones is therefore to be combined with a system of concentric

spheres, in order to make up a complete confocal system.

(17.) Accordingly, any given right line PP is in general touched by only one

cone of the system just referred to, namely by that particular cone (e), for which

(comp. XXXIV.) we have the value,

XXXIX. . . e = Sai/aV 1

,
or XXXIX . . . e + Saa = 2SawSaV 1,

with v = Vpp ,
as before, so that v is perpendicular to the given plane OPP

,
which

contains the vertex and the line ; in fact, the reciprocals of the biconfocal cones

406, XXXV., when a, a are treated as given unit lines, but e as a variable para

meter, compose the biconcyclie^ system (comp. 407, XVIII.),

XL. . . Sai/aV=ei&amp;gt;2.

But, besides the tangent cone thus found, there is a tangent sphere with the same

centre o ;
of which, by passing to the limits XXXVIL, the radius r may be found

from the same formula XXXIV. to be,

TTT T V T^PPJLL1. . . r = 1 - 1 ;

r p-p
and such is in fact an expression (comp. 316, L.) for the length of the perpendicular

from the origin on the given line PP .

(18.) In general, the equation XXXIV. is a form of the equation of the cone,

with p for its variable vector, which has a given vertex p
,
and is circumscribed to a

given confocal (e). Accordingly, by making e=-Saa in that formula, we are

* In fact it follows easily from the transformations (5.), that

/p./dp-a^c-sFVpdp^p, dp)
2

.

f The bifocal form of the equation of this reciprocal system of cones XL. was

given in 406, XXV., but with other constants (\, /x, g), connected with the cyclic

form (406, I.) of the equation of the given system.

4 p
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led (after a few reductions, comp. 407, XXVIL) to an equation which may be thus

written,
XLII. . . 0=Z2

(SaaV)
? + 2SapVSa p r,

with the variable side r = p
-
p ,

as before ;
and which differs only by the substitution

of p and r for p and v, from the equation 407, XXXVI. for that focal cone, which

rests on the focal hyperbola. The other (real) focal cone which has the same arbi

trary vertex p
,
but rests on the focal ellipse, has for equation,

XLIII. . . P(S(a-a&quot;)Ty
= Sava v-v*,

as is found by changing e to 1 in the same formula XXXIV.

(19.) It is however simpler, or at least it gives more symmetric results, to change

e
t
in XXXI. to - Saa for the focal hyperbola, and to + 1 for the focal ellipse, in

order to obtain the two realfocal cones with p for vertex, which rest on those two

curves; while that third and wholly imaginary focal cone, which has the same ver

tex, but rests on the known imaginary focal curve, in the plane of b and c, is found

by changing e
/
to 1. This imaginary focal cone, and the two real ones which rest

as above on the hyperbola and ellipse respectively, may thus be represented by the

three equations,

XLIV. . . = -(SrUv)2 + i-*(SrTTj/i) +
XLV. . . = 6-2(SrlJ 1/)2 + &r2

(SrUvi)2 +
XLVI. . . = c-2 (SrUv)

9 + cr (SrUvi) + c2
-2 (SrU*) ;

T being in each case a side of the cone, and v, v\, v% having the same significations

as before.

(20.) On the other hand, if we place the vertex of a circumscribed cone at a point

P of &focal curve, real or imaginary, the enveloped surface being the confocal (e; ),

we find first, by XXX., for the reciprocal cones, or cones of normals &amp;lt;r,

with the

same order of succession as in (19.), the three equations,

XLVIII. . .

XLIX. ..

and next, for the circumscribed cones themselves, or cones of tangents r, the con

nected equations :

L. . . a2(vuvr)2+ 0,2
= 0;

LI. . .62 (vUvr)2 + 6,2
= 0;

LII. . .

all which have the forms of equations of cones of revolution, but on the geometri
cal meanings of the three last of which it may be worth while to say a few words.

(21.) The cone L. has an imaginary vertex, and is always itself imaginary ;
but

the two other cones, LI. and LII., have each a real vertex p, with 2
&amp;gt; for the

first, and c2
&amp;lt;

for the second; b being the mean semiaxis of the ellipsoid, which

passes through a given point of the focal hyperbola, and c2 being the negative and

algebraically least square of a scalar semiaxis of the double-sheeted hyperboloid,

which passes through a given point of the focal ellipse: while, tn each case, v
has the direction of the normal to the surface, which is also the tangent to the curve

at that point, and is at the same time the axis of revolution of the cone.

(22.) The semiangles of the two last cones, LI, and LII., have for their respec

tive sines the two quotients,
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LIII. . . b
t

: b, and LIV. . . (- c,
2
)* : (- c2)* ;

each of those two cones is therefore real, if circumscribed to a single-sheeted hyper

boloid, because, for such an enveloped surface (e,), 6
/

is real, and /ess than the 6 of

any confocal ellipsoid, while c
t
is imaginary, and its square is algebraically greater

(or nearer to zero) than the square of the imaginary semiaxis c of every double-

sheeted hyperboloid, of the same confocal system ;
but the cone LI. is imaginary, if

the enveloped surface (e,) be either an hyperboloid of two sheets (6, imaginary), or

an exterior ellipsoid (b
t

&amp;gt; ti) ;
and the other cone LIT. is imaginary, if the surface

(ey) be either any ellipsoid (c, real), or else an exterior and dow&Ze-sheeted hyperbo

loid (,
2

&amp;lt;

2
, c*&amp;lt;c

2
,
-c* &amp;gt;

c2 ). Accordingly it is known that the focal hyper

bola, which is the locus of the vertex of the cone LI., lies entirely inside every double-

sheeted hyperboloid of the system ;
while the focal ellipse, which is in like manner

the locus of the vertex of the cone LII., is interior to every ellipsoid : and real tan

gents to a single-sheeted hyperboloid can be drawn, from every real point of space.

(23.) The twelve points (whereof only four at most can be real}, in which a

surface (e) or (a&c) is cut by the three focal curves, are called the Umbilics of that

surface
;
the vectors, say w, w

( , o^, of three such umbilics, in the respective planes

of ca, ab, be, are :

LV. . . w = (a + a ) + -
(a
- a ) ;

&amp;gt;

LVH

1-Saa

c (a
- a ) _

1 + Saa 1 4 Saa

and the others can be formed from these, by changing the signs of the terms, or of

some of them. The four real umbilics of an ellipsoid are given by the formula LV.,

and those of a double-sheeted hyperboloid by LVL, with the changes of sign just

mentioned.

(24.) In transforming expressions of this sort, it is useful to observe that the ex

pressions for the squares of the semiaxes,

combined with Ta = Ta =
1, give not only a9 c2 = 2/2

,
but also,

a + a /I Saa
Lvni....

2W
LIX...T^

=^!^= Sin^ =

and LX. . . TVaa = V(l
- (Saa )

8
)
= sin L = l^ (

2 - & 2
) (6

3 -
&amp;lt;?)*,

with the verification, that because

LXI. . . (a
- a ) (a + a )

= 2Vaa
,

therefore LXI . . . T(a - a ).T(a + a )
= 2TVaa .

We have also the relations,

LXII.

LXIII.

with others easilv deduced.
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(25.) The expression LV. conducts to the following among other consequences,

which all admit of elementary verifications,* and may be illustrated by the annexed

Fig. 84. Let u, u be the two real points

in which an ellipsoid (a6c) is cut by one

branch of the focal hyperbola, with H for

summit, and with F for its interior focus
;

the adjacent major summit of the surface

being E, and R, R being (as in the Figure)

the adjacent points of intersection of the

same surface with the focal lines a, a
,
that ._

is, with the asymptotes to the hyperbola.

Let also v, T be the points in which the

same asymptotes a, a meet the tangent to
J

-pig. 84.

the hyperbola at u, or the normal to the

ellipsoid at that real umbilic, of which we may suppose that the vector ou is the o&amp;gt;

of the formula LV.
;
and let s be the foot of the perpendicular on this normal to the

surface, or tangent TV to the curve, let fall from the centre o. Then, besides the

obvious values,

LXIV. . . OE =
a, OF = (* - c2)i, oil = O3 -

&*&amp;gt;,

and the obvious relations, that the intercept TV is bisected at u, and that the point

F is at once a summit of the focal ellipse, and a focus of that other ellipse in which

the surface is cut by the plane (ac) of the figure, we shall have these vector expres

sions (comp. 371, (3.), and 407, VIII. LXI.) :

LXV. . . ov = (a + c) a, OT (a c)a ,
TV = a(a a )+ c(a + a ) ;

a 1
c&quot;i

LXVI. . . su-i = 0w = -
(a + a )

- -

(a
- a ), su = - ac : TU j

LXVII. . . OK = = ab-^ca. OK =
,
= db

&quot;

ca ;

V/a V/a

whence follow by (24.) these other values,

LXVIII. . . ov = + c, or = #-c, TV = 26;

LXIX. . . TU = TJV = 6, su = OR = OR = fl&~ 1 e
;

LXX. . . 6u = Tw = (s - 62 + e2 )* ;

LXXI. . . os = (
2 - 62 + c2 - a26-2c2)i

= J-i (a
2 - 6)i (62

- c
ss)J.

(26.) It follows that the lengths of the sides ov, OT, TV of the umbilicar triangle

TOV are equal to the sum and difference (a+ c) of the extreme semiaxes, and to the

mean axis (26) of the ellipsoid ; while the area of that triangle = os TU = (a
2 - 62

)i

(6
3 c2)

= the rectangle under the two semiaxes of the hyperbola, if both be treated

as real. The length (T^w)&quot;
1

,
or su, of the perpendicular from the centre o, on the

tangent plane at an umbilic u, is a6~ J

c; and the sphere concentric with the ellipsoid,

which touches thefour umbilicar tangent planes, passes through the points R, R of

intersection of that ellipsoid with the focal lines a, a
,
that is, as before, with the

* Some such verifications were given in the Lectures, pages 691, 692, in con

nexion with Fig. 102 of that former volume, which answered in several respects

to the present Fig. 84.
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asymptotes to the hyperbola ; or, by (21.)(22.), with the axes of the two circum

scribed right cylinders.* And finally the length, say u, of the umbilicar semidia-

meter ou, is given by the formula,

LXXII. . .
a = a2 - 62 + C2

;

all which agrees (25.) with known results.

(27.) An umbilic of a surface of the second order may be otherwise defined

(comp. (23.)), as a real or imaginary point at which the tangent plane is parallel to

a cyclic plane ; and accordingly it is easy to prove (comp. 407, (20.)) that the um
bilicar normal 0u in LXVI. has the direction of a cyclic normal. To employ this

known property in veriiication of the recent expressions (25.), (26.), for the lengths

of ou and su, it is only necessary to observe that the common radius of the diame

tral and circular sections of the ellipsoid is the mean semiaxis b (comp. 216, (7.)

(9.), &c.) ;
and that, by a slight extension of the analysis in (7.), (8.), (9.), it can be

shown that if p, &amp;lt;r,

r and p ,
a

,
r be any two systems of three conjugate semidiame-

ters of any central surface, fp = 1, then

LXXIII. . . p
2 + &amp;lt;r

2 + r 2 =
p* + &amp;lt;r* + T2, and LXXIV. . . (SpVV) 2 =

(Spcrr)*.

(28.) A less elementary verification of the value LXXII. of u 2
,
but one which is

useful for other purposes, may be obtained from either the cubic in 62
,
or that in e,

assigned in 407, (8.). For if 3
, &i

2
*2

2 be the roots of the former cubic, and e
,

ci, 2 the roots of the latter, inspection of those equations shows at once that we

have generally,

LXXV. . . -p2 = 6 2 + iM &2--2^Srta = /
2
(eo+ei + f2+Saa );

or LXXVI. . . OP 2 = Tp
2 = 2 + #i2 + &amp;lt;?2

2 = 6 2 + ci
2 + 2

2 = &c.,

where the semiaxes #o, &amp;gt;i,
2 belong to the three confocals through any proposed

point P. Making then,

LXXVII. . .
2 =

at, fei
2 -

0, c32 = c2 - V,

we recover the expression assigned above, for the square of the length u of an um
bilicar semidiamettr of an ellipsoid.

(29.) For any central surface, the principle (27.) shows that if X, ;u be, as in

405, (5.), &c., the two real cyclic normals, and if g be the real scalar associated with

them as before, then the vectors of thefour real umbilics (if such exist) must admit of

being thus expressed :

LXXVIII. . . + 0-i\ : VFX = ale (pU\ + /iTX) ;

LXXIX. . . 0- &amp;gt;

: VFu = abc (0U/i + XT
;

and thus we see anew, that an hyperboloid with one sheet has (as is well known) no

*
Compare 218, (5.), and 220, (4.); in which the points B, B (comp. also

Fig. 53, page 226) may now be conceived to coincide with the points K, R of the

iiew Figure 84. It is obvious that the theory of circumscribed cylinders is included

in that of circumscribed cones; so that the cylinder circumscribed to the confocal (e),

with its generating lines parallel to a given (real or imaginary) semidiameter y of

that surface (/y = 1), may be represented (comp. III. XIV.) by the equation,

III . . . /(p, y)
2
=fp - 1

;

or^
XIV. . . FVyp = a*62C

;

with interpretations easily deduced, from principles already established.
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real umbilic, because for that surface the product abc of the semiaxes is imaginary ;

or because it has no real tangent plane parallel to either of its two real planes of

circular section.

(30.) Of whatever species the surface may be, the three umbilicar vectors (23.),

of which only one at most can be real, with the particular signs there given, but

which have the/orm* of lines in the three principal planes, must be conceived, in

virtue of their expressions LV. LVI. LVIL, to terminate on an imaginary right

line, of which the vector equation is,

LXXX .

a + a Vaa

e being a scalar variable, which receives the three values,
- Saa

, + 1, and 1, when

p comes to coincide with w, w,, and w
lt respectively. And such an imaginary right

line, which is easily proved to satisfy, for all values of the variable e
,
both the rect

angular and the bifocal forms of the equation of the surface (e), or to be (in an

imaginary sense) wholly contained upon that surface, may be called an Umbilicar

Generatrix.

(31.) There are in general eight such generatrices of any central surface of the

second order, whereof each connects three umbilics, in the three principal planes,

two passing through each of the twelve umbilicar points (23.); and because e 2 dis

appears from the square of the expression LXXX. for p, which square reduces itself

to the following,

LXXXI. . . p2
= - Z2 (2e + e + Saa )

= - b2 - 2ZV,

they may be said to be the eight generating lines through the four imaginary points,

in which the surface meets the circle at infinity.

(32.) In general, from the cubics in e and in b?, or from either of them, it may
be without difficulty inferred (comp. (28.)), that the eight intersections (real or ima

ginary) of any three confocals (e ) (ei) (e%) have their vectors p represented by the

formula :

LXXXII. p
=

a + a )
-

Z2Vaa
~ V (a - a )

comparing which with the vector expression LXXX., we see that the three confo

cals, through the point determined by that former expression, for any given value of

e
,
are (e), (e ), and (e ) again ; and therefore that two of the three confocal surfaces

through any point of an umbilicar generatrix (30.) coincide : a result which gives

in a new way (comp.LXXV.) the expression LXXXI. for p
2

.

(33.) The locus of all such generatrices, for all the confocals (e) of the system,

is a certain ruled surface, of which the doubly variable vector may be thus expressed,

as a function of the two scalar variables, e and e :

TYYYTTT +l)
,

V~l/( + Sara*)* (e + Saa )LXXXIIL . . Pe, e
=

,

{

*(-!)! (e -l)
a a

and because we have thus, for any one set of signs, the differential relation,

LXXXIV. . . D c =D,,,/
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it follows that this ruled locus is a Developable Surface : its edge ofregression being

that wholly imaginary curve, of which the vector is p e , e ,
and which is therefore by

(32.) the locus of all the imaginary points, through each of which pass three coinci

dent confocals.

(34.) The only real part of this imaginary developable consists of the two real

focal curves, which are double lines upon it, as are also the imaginary focal, and the

circle at infinity (31.) ;
and the scalar equation of the same imaginary surface, ob

tained by elimination of the two arbitrary scalars e and e, is found to be of the

eighth degree, namely the following :

I&quot;
= 2m3aj8 + 22m (m -

n) #
6
y
2 + 2 (p

- 6mn)*V

LXXXV J
+ 22 (3Ml

*
&quot;

&quot;XW*
2 + 2S/(n -/&amp;gt;) + 2Sm(m/&amp;gt;

-
3n2) ajy*

j
+ 2 (m - M) (n

-
/&amp;gt;) (p

- m) 2%2=2 + 2m2
(m

2 -
6n/&amp;gt;)

4

1+ 2Swm(wm- 3/&amp;gt;

2)a;V + 22m2/?(p
_ TC)#2 + TO2n8pj ;

in which we have written, for abridgment,

LXXXVI. . . x = - S
ioU(a + a ), y = - SpUVaa ,

z = -
SjoU(a

- a ),

and LXXXVII. . . TO = &s - C3, n = o2 -a2
, p = a2 -62

,

so that LXXXVIII. . . in + n+/&amp;gt;
= 0;

while each sign S indicates a sum of three or of six terms, obtained by cyclical or

binary* interchanges.

(35.) From the manner in which the equation of this imaginary surface (33.) or

(34.) has been deduced, we easily see by (32.) that it has the double property :

I.st of being (comp. (20.)) the locus of the vertices of all the (real or imaginary)

right cones, which can be circumscribed to the confocals of the system ;
and II.nd of

being at the same time the common envelope of all those confocals: which envelope

accordingly is known to be a developable-^- surface.

(36.) The eight imaginary lines (31.) will come to be mentioned again, in con

nexion with the lines of curvature of a surface of the second order
;
and before closing

the present series of subarticles, it may be remarked that the equation in (15.), for the

determination of the second confocal (e^) which touches a given tangent, &p or PP
,
to

a given surface (e) of the same system, will soon appear under a new form, in con

nexion with that theory of geodetic lines, on surfaces of the second order, to which

we next proceed.

* When xyz and abc are cyclically changed to yzx and bca, then mnp are

similarly changed to npm ;
but when, for instance, retaining x and a unchanged, we

make only binary interchanges of y, z, and of b, c, we then change m, n, and p, to

- m, p, and n respectively.

f This theorem is given, for instance, in page 157 of the several times already

cited Treatise by Dr. Salmon, who also mentions the double lines &c. upon the sur

face
;
but the present writer does not yet know whether the theory above given, of

the eight umbilicar generatrices, has been anticipated: the locus (33.) of which ima

ginary right lines (30.) is here represented by the vector equation LXXXIIL, from

which the scalar equation LXXXV. has been above deduced (34.), and ought to be

found to agree (notation excepted) with the known co-ordinate equation of the

developable envelope (35.) of a confocal system.
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409. A general theory of geodetic lines, as treated by quater

nions, was given in the Fifth Section (III. iii. 5) of the present

Chapter ;
and was illustrated by applications to several different

families of surfaces. We can only here spare room for applying the

same theory to the deduction, in a new way, of a few known but

principal properties of geodetics on central surfaces of the second or

der ; the differential equation employed being one of those formerly

used, namely (comp. 380, IV.),

I. . . Vvd*p = 0, if II. . . Td/o = const. ;

that is, if the arc of the geodetic be made the independent variable.

(1.) In general, for any surface, of which v is a normal vector, so that the first

differential equation of the surface is Si/dp
= 0, the second differential equation

dSi dp = gives, by I., for a geodetic on that surface, the expression,

III. . . &p = -v- l

S&vdp.

(2.) Again, the surfacefp = const, being still quite general, if we write (comp.

363, X ., 373, III., &cO,

IV. . . d/p = 2Svdp = 2S0pdp, we shall have V. . . d/dp = 2S(0dp . d p) ;

and therefore, by III., for & geodetic,

(3.) For a central surface of the second order,
&amp;lt;pp

is a linear function, and we

may write (comp. 361, IV.),

VII. . . 0dp = d$6p
= dv, Sdpd^p = Sdp^dp =/dp ;

the general differential equation VI. becomes therefore here,

vni.
/d v

and gives, by a first integration, with the condition II.,

IX. . . *2
/dp = Mp 2

,
or IX . . . TV2/Udp = h = const.

;

or X. . . P-Z&amp;gt;-2 = h, or X . . . P.D = h~*= const.
;

where P = Tv~ l = perpendicularfrom centre on tangent plane,

and D = (/Udp)-* = semidiameter parallel to tangent ;

these two last quantities being treated as scalars, whereof the latter may be real or

imaginary,* together with the last scalar constant fi~i.

* For the case of the ellipsoid, for which the product P. D is necessarily real, the

foregoing deduction, by quaternions, of Joachimstal s celebrated first integral,
P.D = const, was given (in substance) in page 580 of the Lectures.



CHAP. III.] GEODETICS ON CENTRAL SURFACES. 665

(4.) The following is a quite different way of accomplishing a first integration,

which conducts to another known result of not less interest, although rather of a

graphic than of a metric kind. Operating on the equation 407, XVI. by S.dp, and

remembering that Spv= 1, and Sj/dp = 0, we obtain the differential equation,

XL . . SjOJ/SjodjO ^(SaVSadp + SavSa dp);

that is, by I. and IT.,

XII. . . Spdp.Spd
2p-p9

Sdpd
2
p = Z

2
d(Sadp.Sa dp),

in which the first member, like the second, is an exact differential, because

XIII. . . S(Vpdp.Vpd
2
p) = d(Vpdp)

2
;

hence, for the geodetic,

XIV. . . /-2 (Vpdp)
2 -2SadpSa dp=/ dp*,

or XV. . . 2SaUdp . Sa Udp - l~* (VpUdp)2 = A
,

h being a new scalar constant.

(5.) Comparing this last equation with the formula 408, XXXVL, we find that

the new constant h is the sum, e -\- e
t,

of what have been above called the parame

ters,* of the given surface (e) on which the geodetic is traced, and of the confocal (e,)

which touches a given tangent to that curve : whence follows the knownf theorem,

that the tangents to a geodetic, on any central surface of the second order, all touch

one common
confocal.&quot;^,

(6.) The new constant e
t (=h -e) may, by 407, LXXV. and 408, LXXV.

(with e for
&amp;lt;?o),

be thus transformed :

XVI. .. e,
= ei (TVUvidp)

2 + &amp;lt;?2 (TVUjA&amp;gt;dp)2

= ei(SUv2dp)
2

-f e2(SlMdp)
2 = const.

;

where e\, e2 are the parameters of the two confocals through the point p of the geo

detic on (e), and v\, v2 are as before the normals at that point, to those two surfaces

(0, (0-

(7.) In fact, the two equations last cited give the general transformation,

XVII. . .
Z-2(Vp&amp;lt;7)

2 ~2SaaSa &amp;lt;r

= e (VaUiO
2 + ei(V&amp;lt;rUvi)

2 + C2(V&amp;lt;7Uv2,)

2

&amp;lt;T being an arbitrary vector, which may for instance be replaced by dp. Equating

then this last expression to (e + e,)(T
2

,
or to e(VcrUv)

2 -
e,T&amp;lt;r2,

since Svff = 0, we

obtain the first and therefore also the second transformation XVI., because the three

normals vv\vi compose a rectangular system (comp. 407, (4.), &c.).

(8.) It is, however, simpler to deduce the second expression XVI. from the equa

tion 408, XXXI. of the cone of tangents from p to (e,), by changing T to Udp ;
and

then if we write

XVIII. . . vi = L t

v\

*
Compare the last Note to page 65G.

f Discovered by M. Chasles.

| This touched confocal becomes a sphere, when the given confocal is a cone.

Compare 380, (5.), and 408, (16.), (17.) ; also the Note to page 517,

4 Q
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so that ti denotes the angle at which the geodetic crosses the normal v\ to (ei),

considered as a tangent to the given surface (e), the first integral XVI. takes the

form,*
XIX. . . e

t

-
ei sin2 t?i -f e2 cos2 t&amp;gt;

1?

or XX. . . a? = ff i
2 sin2 n + 2

2 cos3
i,

&c.
;

in which the constant a
f
is the primary semiaxis of the touched confocal (5.).

(9.) Without supposing that Tdp is constant, we may investigate as follows the

differential of the real scalar h in IX. or X., or of the product P 2
. D ~, for (my curve

on a central surface of the second order. Leaving at first the surface arbitrary, as in

(1.) and (2.), and resolving d2
p in the three rectangular directions of v, dp, and vdp,

we get the general expression,

XXI. . . d2
,o
- - i/^Sdvdp + dp-iSdpd p + (vdpViSrdpd2

p ;

of which, under the conditions I. and II., the two last terms vanish, as in III.

Without assuming those conditions, if we now introduce the relations VII. which

belong to a central surface of the second order, we liave by V. and IX. the expres

sion^

XXII. . . id/i . dp2 = v2Sdvd 2
p + Si/di/Sdvdp

- ASdpd2
p = S&amp;gt;di/dp-i.Svdpd

2
p,

or XXIII. . . dA =

or finally, XXIV. , . dh . dp
4 =

2S/di/djO .

the scalar variable with respect to which the differentiations are performed being here

entirely arbitrary.

(10.) For a geodetic line on any surface, referred thus to any scalar variable,

we have by 380, II. the differential equation,

XXV.. . Sydpd2p = 0;

and therefore by XXIV., for such a line on a central surface of the second order, we

have again, as in (3.),

XXVI. . . dA = 0, or XXVF. . . h = const.,

withA = P-*D-2asin X.

(11.) But we now see, by XXIV., that for such a surface the condition XXVI.
is satisfied, not only by this differential equation of the second order XXV. but also

by this other differential equation,

XXVII. . . Si/di/dp
=

j

the product P 2
Z&amp;gt;

2
(or PD itself) is therefore constant, not only as in (3.) for every

* Under this form XX., the integral is easily seen to coincide with that of M.

Liouville,

/i
2 cos2 i + v2 sin2 i =

/*
2 = const.,

cited in page 290 of Dr. Salmon s Treatise.

f In deducing this expression, it is to be remembered that

dSdvdp = d/dp = 2Sdvd2
p ;

in fact, the linear and self-conjugate form of v =
&amp;lt;f*p gives,

Sdp&quot;d

2
v=/(dp, d2

p)
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geodetic on the surface, but also for every curve of another set* represented by this

last equation XXVII., which is only of ite first order, and the geometrical meaning
of which we next propose to consider.

410. In general, if v and v + Ay have the directions of the nor

mals to any surface, at the extremities of the vectors p and
/&amp;gt;

+
A/&amp;gt;,

the condition of intersection (or parallelism) of these two normals

is, rigorously,

the differential equation] of what are called the Lines of Curvature,

on an arbitrary surface, is therefore (comp. 409, XXVII.),

II. . .
Sydyd/&amp;gt;

= 0;

from which we are now to deduce a few general consequences, toge

ther with some that are peculiar to surfaces of the second order.

(1.) The differential equation of the surface being, as usual,

III. . .

the normal vector v is generally some function of p, although not generally linear,

because the surface is as yet arbitrary : its differential dv is therefore generally some

function of p and dp, which is linear relatively to the latter. And if, attending only

to the dependence of dy on dp, we write

IV. . . dv = 0dp,

it results from what has been already proved (363), that this linear and vector func

tion is at the same time self-conjugate.

(2.) Denoting then by T a tangent^ PT to a line of curvature, drawn at the

given extremity p of p, we see that the vector r must satisfy the two following sca

lar equations, in which v is supposed to be given,

*
Namely, the lines of curvature, as is known, and as will presently be proved

by quaternions.

f In this equation II., dp and dv are two simultaneous differentials, which may

(according to the theory of the present Chapter, and of the one preceding it) be at

pleasure regarded, either as two finite right lines, whereof dp is (rigorously) tangen

tial to the surface, and to the line of curvature ;
or else as two infinitely small vec

tors, dp being, on this latter plan, an infinitesimal chord Ap. (Compare pages 99,

392, 497, 626, and the first Notes to pages 623, 630.) The treatment of the equa

tions is the same, in these two views, whereof one may appear clearer to some readers,

and the other view to others.

t This symbol T is used here partly for abridgment, and partly that the reader

may not be obliged to interpret dp as denoting a finite tangent, although the princi

ples of this work allow him so to interpret it.
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V. . . SJT=O, and VI. . . Si/r0r=0 ;

this tangent r admits therefore (355) of two real and rectangular directions, but not

in general of more : opposite directions being not here counted as distinct. Hence, as

is indeed well known, through each point of any surface therepass generally two lines

of curvature : and these two curves intersect each other at right angles.

(3.) A construction for the two rectangular directions of T can easily be assigned

as follows. Assuming, as we may, that the length of the tangent T varies with its

direction, according to the law,

VII. . . Sr0r=l,
which gives

VIII. S (0r . dr) - 0, or briefly VIII . . . S^rdr = 0,

by the properties above mentioned of
;
and remembering that v is treated as a con

stant in V., so that we may write,

IX. . . Svdr = 0, and therefore (by VI.), X. . . Srdr=
;

we see that, under the conditions of the question, the above mentioned length Tr, of

this tangential vector r, is a maximum or minimum : and therefore that the two

directions sought are those of the two axes of the plane conic V. VII., which has its

centre at the given point p of the surface, and is in the tangent plane at that point.

(4.) This plane conic V. VII. may be called the Index Curve, for the given sur

face at the given point P
;

in fact it is easily proved to coincide, if we abstract from

mere dimensions, with the known indicatrix (la courbe indicatrice) of Dupin,* who

first pointed out the coincidence (3.) of the directions of its axes, with those of the

lines of curvature
;
and also established a more general relation of conjugation be

tween two tangents to a surface at one point, which exists when they have the direc

tions of any two conjugate semidiameters of that curve : so that the lines of curvature

are distinguished by this characteristic property, that the tangent to each is per

pendicular to its conjugate.

(5.) In our notations, this relation of conjugation between two tangents r, r
,

which satisfy as such the equations,

V. . . Svr= 0, and V. . . SIT =
0,

is expressed by the formula,

XI. . . Sr0r =
0, or XI . . . Sr ^r = ;

we have therefore the parallelisms,!

XII. . . r
I! Vi/0r ,

XII . . . r
I]

Vv&amp;lt;pr ;

so that the equation VI. may be written under the very simple form,

XIII.. . Srr =0,

which gives at once the rectangularity lately mentioned.

*
Developpements de Geometric (Paris, 1813), pages 48, 145, &c.

f The conjugate character of these two parallelisms, or the relation,

V. i/0Vj/0r || r, if SIT = 0,

may easily be deduced from the self-conjugate property of
&amp;lt;p,

with the help of the

formula 348, VII., in page 440.
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(6.) The parallelism XII . may be otherwise expressed by saying (comp. (4.))

that

XIV. . . dp and V^dv

have the directions of conjugate tangents ; or that the two vectors,

XV. . . Ap and Vi Av,

have ultimately such directions, when TAp diminishes indefinitely. But whatever

may be this length of the chord Ap, the vector VvAi; has the direction of the line

of intersection of the two tangent planes to the surface, drawn at its two extremi

ties : another theorem of Dupin* is therefore reproduced, namely, that if a develop

able be circumscribed to any surface, along any proposed curve thereon, the generat

ing lines of this developable are everywhere conjugate, as tangents to the surface, to

the corresponding tangents to the curve, with the recent definition (4.) of such con

jugation.

(7.) The following is a very simple mode of proving by quaternions, that if &

tangent T satisfies the equation VI., then the rectangular tangent,

XVI. . . T =VT,

satisfies the same equation. For this purpose AVC have only to observe, that the self-

conjugate property of ^ gives, by VI. and XVI.,

XVII. . . =
Sr&amp;gt;r

= Sr0r =v- 2
Sj/r&amp;gt;r

.

(8.) Another way of exhibiting, by quaternions, the mutual rectangularity of

the lines of curvature, is by employing (comp. 357, I.) the self-conjugate ^on?*,

XVIII. . . (j)r=gr+ VXr/x ;

in which the vectors X, /*,
and the scalar g, depend only on the surface and the point,

and are independent of the direction of the tangent. The equation VI. then be

comes by V.,
XIX. . . = Svr\Tp = Sj/rXS/ir 4- Svr/iSXr ;

assuming then the expression,

XX. . . r = *VjA + yW/z,
we easily find that

XXI. . . y2 (Vi&amp;gt;/0
2 = *2

(v &quot;x )
2

, or XXI . . .

the two directions of T are therefore those of the two lines,

XXII. . . UVvX

which are evidently perpendicularf to each other.

*
Dupin proved first (Der. de Geometric, pp. 43, 44, &c.), that tw such tangents

as are described in the text have a relation of reciprocity to each other, on which

account he called them &quot;

tangentes conjuguees :&quot; and afterwards he gave a sort of

image, or construction, of this relation and of others connected with it, by means of

the curve which he named &quot;

/ indicatrice&quot; (in his already cited page 48, &c.).

f This mode, however, of determining generally the directions of the lines of

curvature, gives only an illusory result, when the normal v has the direction of

either X or p, which happens at an umbilic of the surface. Compare 408, (27.), (29.),

and the first Note to page 466.
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(9.) An interpretation, of some interest, may be given to this last expression

XXII., by the introduction of a certain auxiliary surface of the second order, which

may be called the Index Surface, because the index curve (4.) is the diametral sec

tion of this new surface, made by the tangent plane to the Driven one. With the re

cent signification of 0, this index surface is represented by the equation VII., if T

be now supposed (comp. (2.)) to represent a line PT drawn in any direction from

the given point P, and therefore not now obliged to satisfy the condition V. of tan-

gency. Or if, for greater clearness, we denote by p + p the vector from the origin

o to a point of the index surface, the equation to be satisfied is, by the form XVIII.

of0 (comp. 357, II.),

XXIII. . . l

the centre of this auxiliary surface being thus at p, and its two (real) cyclic normals

being the lines X and
p.

: so that VvX and Vz/^ have the directions of the traces of

its two cyclic planes, on that diametral plane (Svp = 0) which touches the given

surface. We have therefore, by XXII., this general theorem, that the bisectors of
the angle formed by these two traces are the tangents to the two lines of curvature,

whatever theform of the given surface may be.

(10.) Supposing now that the given surface is itself one of the second order, and

that its centre is at the origin o, so that it may be represented (comp. 405, XII.)

by the equation,
XXIV. . . l

with constant values of X, ju,
and g, which will reproduce with those values the form

XVIII. of 0, we see that the index surface (9.) becomes in this case simply that

given one, with its centre transported from o to P
;
and therefore with a tangent

plane at the origin, which is parallel to the given tangent plane. And thus the

traces (9.), of the cyclic planes on the diametral plane of the index surface, become

here the tangents to the circular sections of the given surface. We recover then,

as a case of the general theorem in (9.). this known but less general theorem : that

the angles formed by the two circular sections, at any point of a surface of the se

cond order, are bisected by the lines of curvature, which pass through the same

point.

(11.) And because the tangents to these latter lines coincide generally, by (3.)

(4.) (9.), with the axes of the diametral section of the index surface, made by the

tangent plane to the given surface, they are parallel, in the case (10.), as indeed is

well known, to the axes of the parallel section of a given surface of the second

order

(12.) And ifwe now look back to the Equation of Confocals in 407, (26.), and

to the earlier formulee of 407, (4.), we shall see that because the vector v\, in the

last cited sub-article, represents a tangent to the given surface
Sp&amp;lt;j&amp;gt;p

=
1, complanar*

with the normal v and the derived vector
&amp;lt;pv\,

so that it satisfies (comp. 407, XII.

XIV., and the recent formulae V. VI.) the two scalar equations,

XXV. . . Swi =
0, and XXVI. . . Svvtfvi = 0,

which are likewise satisfied (comp. (7.)) when we change v\ to the rectangular tan-

Compare the Note to page 645.
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gent vi, it follows that these two vectors, v\ and vo, which are the normals to the

two confocals to (e) through p, are also the tangents to the two lines of curvature on

that given surface of the second order at that point : whence follows this other theo

rem* of Dupin, that the curve of orthogonal intersection (407, (4.)), of two confocal

surfaces, is a line of curvature on each.

(13.) And by combining this known theorem, with what was lately shown re

specting the umbilicar generatrices (in 408, (30.), (32.), comp. also (35.), (36.)),

we may see that while, on the one hand, the lines of curvature on a central surface

of the second order have no real envelope, yet on the other hand, in an imaginary

sense, they have for their common envelope-^- the system of the eight imaginary right

lines (408, (31.)), which connect the twelve (real or imaginary) umbilics of the sur

face, three by three, and are at once generating lines of the surface itself, and also of

the known developable envelope of the confocal system.

(14.) It may be added, as another curious property of these eight imaginary

right lines, that each is, in an imaginary sense, itself a line of curvature upon the

surface : or rather, each represents two coincident lines of that kind. In fact, if we
denote the variable vector 408, LXXX. of such a generatrix by the expression,

XXVII. .. p = e

in which e is a variable scalar, but
&amp;lt;r,

a are two given or constant but imaginary

vectors, such that

XXVIII. ..0-2=0, Sffff = - l\ (T 3 = -
fe,

and XXIX. . ./cr
=

S&amp;lt;r0&amp;lt;r= 0, /(&amp;lt;r,
&amp;lt;r )

=
S&amp;lt;r

0&amp;lt;r

=
0, /* =!,

we have the imaginary normal v, with (for the case of a real umbilic^) a real tensor,

XXX. . . v = e &amp;lt;t&amp;gt;ff + Aff J_&amp;lt;T XXXI. . .T&amp;gt; =
aoc

* Dc v. de Geometric, page 271, &c.

f- The writer is not aware that this theorem, to which he was conducted by qua

ternions, has been enunciated before
;
but it has evidently an intimate connexion

with a result of Professor Michael Roberts, cited in page 290 of Dr. Salmon s Trea

tise, respecting the imaginary geodetic tangents to a line ofcurvature, drawnyrom an

umbilicar point, which are analogous to the imaginary tangents to a plane conic,

drawn from a. focus of that curve. An illustration, which is almost a visible repre

sentation, of the theorem (13.) is supplied by Plate II. to Liouville s Monge (and by
the corresponding plate in an earlier edition), in which the prolonged and dotted

parts of certain ellipses, answering to the real projections of imaginary portions of

the lines of curvature of the ellipsoid, are seen to touch a system offour real right

lines, namely the projections (on the same plane of the greatest and least axes), of

theybwr real umbilicar tangent planes, and therefore also of what have been above

called (408, (30.), (31.)) the eight (imaginary ) umbilicar generatrices of the surface.

Accordingly Monge observes (page 150 of Liouville s edition), that &quot;

toutes les

ellipses, projections des lignes de courbure, seront inscrites dans ce parallelogramme

dont chacune d elles touchera les quatre cotes :&quot; with a similar remark in his expla

nation of the corresponding Figure (page 160).
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and we find, after reductions, the imaginary expression,

XXXII. .. vo-=V-lffTj/, whence XXXIII. .. Svy = 0, Sj/(70&amp;lt;r
= 0.

The differential equations V. VI. of a line of curvature are therefore symbolically

satisfied, when we substitute, for the tangential vector r, either the imaginary line

&amp;lt;r itself, or the apparently perpendicular but in an imaginary sense coincident* vec

tor va; and the recent assertions are justified.

(15.) As regards the real lines of curvature, on a central surface of the second

order, we see by comparing the general differential equation II. with the expres

sion 409, XXIII. for the differential of A, or of
P-2Z&amp;gt;-^,

that this latter product, or

the product P.D itself, is constant-^ for a line of curvature, as well as for a geo

detic line, on such a surface, as indeed it is well known to be : although this last

constant (P. -D) may become imaginary, for the case of a single-sheeted^ hyperbo-

loid, and must be such for a line of curvature on an hyperboloid of two sheets.

(16.) And as regards the general theory of the index surface (9.), it is to be ob

served that this auxiliary surface depends primarily on the scalar function f, in the

equation^p = 1, or generally fp = const., of the given surface ; and that it is not en

tirely determined by means of that surface alone. For if we write, for instance,

XXXIV. . . f/p
=

fl, with d/p
= 2Svdp as before,

we shall have, as the new first differential equation of the same given surface, instead

of III.,

XXXV. . . =
df/p

= 2Sravdp, with XXXVI. . . n = (fp;

and if we then write, by analogy to IV.,

XXXVII. . . d.nv =
&amp;lt;4djO

= n0d|0+ n vSvAp, with XXXVIII. . . n =
2f&quot;/p,

the new index surface, constructed on the plan (9.), will have for its equation,

analogous to XXIII., the following:

XXXIX. . . Sp 6p = nSp fp -+ (Sx/p )
2 = const -

* As regards the paradox, of the imaginary vector a being thus apparently per

pendicular to itself, a similar one had occurred before, in the investigation 353, (17.),

(18.), (19.) ;
and it is explained, on the principles of modern geometry, by observ

ing that this imaginary vector is directed to the circle at infinity. Compare 408,

(31.), and the Note to page 459.

f Compare the first Note to page 667.

J Although the writer has been content to employ, in the present work, some of

these usual but rather long appellations, he feels the elegance of Dupin s phraseology,

adopted also by Mbbius, and by some other authors, according to which the two cen

tral hyperboloids are distinguished, as elliptic (for the case of two sheets), and hy

perbolic (for the case of owe). The phrase
&quot;

quadric,&quot; for the general surface of the

second order (or second degree), employed by Dr. Salmon and Mr. Cayley, is also

very convenient. It may be here remarked, that Dupin was perfectly aware of, or

rather appears to have first discovered, the existence of what have since his time come

to be called the focal conies; which important curves were considered by him, as

being at once limits of confocal surfaces, and also loci ofumbilics. Comp. Dev. de

Geometric, pages 270, 277, 278, 279
;

see also page 390 of the Apercu Historiqve,

&c., by M. Chasles (Brussels, 1837).
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(17.) But if we take this last constant = n, the two index surfaces, XXIII. and

XXXIX., will have a common diametral section, made by the given tangent plane,

namely the index curve (4.) ;
and they will touch each other, in the whole extent of

that curve. And it will be found that the construction (9.), for the directions of the

lines of curvature, applies equally well to the one as to the other, of these two auxi

liary surfaces: in fact, it is evident that the differential equation II., namely

Si&amp;gt;dydp
=

0, receives no real alteration, when v is multiplied by any scalar, n, even

if that scalar should be variable.

(18.) And instead of supposing that the variable vector p is thus obliged, as in

373, to satisfy a given scalar equation, of the form*

fp = const.,

* If p = ix +jy + kz, and v =/p = F
(a:, y, z), and if we write,

do = pdx + qdy + rdz, dp =p Ax + r&quot;dy + q&quot;dz,

dq = q dy 4 p&quot;dz 4 r&quot;dx, dr = r dz + q&quot;dx +p&quot;dy,

we may then write also, on the present plan, which gives d/p = 2Svdp,

dp = idx +jdy 4 kdz, v = -\(ip +jq + kr),

dv = - \ (idp +jdq + Mr), Sdpdv = | (dxdp + dydq + d*dr) ;

and the index surface, constructed as in (9.), and with p changed to Ap = i

4 AAz, will thus have the equation,

(a). . . ip Aa;2 4 Iq Ay
1

* 4 |r Az2 +p&quot;AyAz 4 q AzAz + r&quot;Ax&y
=

1,

or more generally = const.
;

so that it may be made in this way to depend upon, and

be entirely determined by, the six partial differential coefficients ofthe second order,

p .
.p&quot;

.
.,

of the function v or/p, taken with respect to the three rectangular co

ordinates, xyz. And by comparing this equation (a) with the following equation

of the same auxiliary surface, which results more directly from the principles em

ployed in the text (comp. XVIII. XXIII.),

(b). . . SAp0Ap=^Ap24-SXAp^Ap=l,

we can easily deduce expressions for those six partial coefficients, in terms of g, X, /t.

Thus, for example,

ID^w = \p = -g 4
SXi&amp;gt;i

= SX/i -g+ 2St\Si/i ;

but StXSi/i + SjXSjV* 4 SkXSkfji
= - SX/i ; therefore,

(c). . . (DX2 4- Dy
2 + DZ2) = SX/t -Sg = C! + C2 + c3 = - m&quot;,

if c\, c2, es be the roots and m&quot; a coefficient of a certain cubic (354, III.), deduced

from the linear and vector function dv = 0dp, on a plan already explained. If

then the function v satisfy, as in several physical questions, the partial differential

equation,

(d). . . VJv 4 D/ 4 Ds
2

t&amp;gt;
= 0,

the sum of these three roots, d, c2 , cs, will vanish : and consequently, the asympto

tic cone to the index-surface, found by changing 1 to in the second member of (a),

is real, and has (comp. 406, XXI., XXIX.) the property that

(e). . . cota + cot2b = l,

if a, b denote its two extreme semiangles. An entirely different method of traos-

4 R
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we may suppose, as in 372, that p is a given vector function of two scalar varia

bles, x and y, between which there will then arise, by the same fundamental formula

II., a differential equation of the first order and second degree, to be integrated

(when possible) by known methods. For example, if we write,

XL. . . p = ix +jy + kz, dz =ptx + qdy,

we shall satisfy the equation III. by assuming (with a constant factor understood),

XLI. . . v = ip +jq
-

A, whence XLII. . . dv = i&p +jdq ;

and thus the general equation II., for the lines of curvature on an arbitrary surface,

receives (by the laws of
ijk&quot;)

the form,

XLII I. . . dp (Ay + q&z) = dg (da; + ;&amp;gt;dz) ;

which last form has accordingly been assigned, and in several important questions

employed, by Monge* : but which is now seen to be included in the still more con

cise (and more easily deduced and interpreted) quaternion equation,

= 0.

411. For a central surface of the second order, we have as usual

v = $p, Ay =
0A/&amp;gt;,

and therefore (by 347, 348, and by the self-con

jugate form of 0),

the general condition of intersection 410, I. of two normals, at the

extremities of & finite chord
A/&amp;gt;,

and the general differential equation

410, II. of the lines of curvature, may therefore for such a surface

receive these new and special forms :

forming, by quaternions, the well known equation (d), occurred early to the present

writer, and will be briefly mentioned somewhat farther on. In the mean time it

may be remarked, that because m = by (c), when the equation (d) is satisfied, we

have then, by the general theory III. ii. 6 of linear and vector functions, and espe

cially by the subarticles to 350, remembering that is here self-conjugate, the for

mulae,

(f). . . dv + xdp = 0, and (g). . .
I//&amp;lt;T

- 2
&amp;lt;r
= m

&amp;lt;r,

X, 4/ being auxiliary functions, and m another coefficient of the cubic, while &amp;lt;r is an

arbitrary vector. For the same reason, and under the same condition (d), the

function itself has the properties expressed by the equations,

(h). . . 0ViK = *0i
-

i0K, and (i). . .
2Vuc =V^K - rn Vuc

;

in which the two vectors t, K are arbitrary, and m is the same scalar coefficient as

before.

* See the enunciation of the formula here numbered as XLIIL, in page 133 of

Liouville s Monge: compare also the applications of it, in pages 274, 303, 305, 357.

(The corresponding pages of the Fourth Edition are, 115, 240, 265, 267, 312.)

The quaternion equation, Svdvdp = 0, was published by the present writer, in a

communication to the Philosophical Magazine, for the month of October, 1847

(page 289). See also the Supplement to the same Volume xxxi. (Third Series);

and the Proceedings of the Royal Irish Academy for July, 1846.
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II. . . SA/30-
1

V/&amp;gt;A/&amp;gt;

= 0, or II . . .

III. . . Sd/30-
1

V/&amp;gt;d/&amp;gt;

= 0, or IIP. . . Spd^dp =
;

which admit of geometrical interpretations, and conduct to some

new theorems, especially when they are transformed as follows :

IV. . .
SXA/&amp;gt;

.
S/&amp;gt;A/&amp;gt;0-&amp;gt;

+
S/tA/&amp;gt;. S/&amp;gt;A^0-

1X = 0,

V. . .
SXd/).S/&amp;gt;d/)0-&amp;gt; + S/id/&amp;gt;.S/)d/)0-

1X=0,

X and fi being (as in 405, (5.)&amp;gt; &c.) the two real cyclic normals of

the surface: while the same equations may also be written under

the still more simple forms,

VI. . .
SaA/&amp;gt;

.SaVV + Sa Ap . Sap&p = 0,

VII. .. Sadp . Sa pdp + Sa dp . Sapdp = 0,

a, a being, as in several recent investigations, the two real focal

unit lines
j
which are common to a whole confocal system.

(1.) The vector ^VpAp in II. has by I. the direction ofVvAj/; whence, by

410, (6.), the interpretation of the recent equation II., or (for the present purpose)

of the more general equation 410, L, is that the chord PP is perpendicular to its

own polar, if the normals at its extremities intersect. Accordingly, if their point of

intersection be called N, the polar of PP is perpendicular at once to PN and P N, and

therefore to PP itself.

(2.) The equation II . may be interpreted as expressing, that when the normals

at P and p thus intersect in a point N, there exists a point p in the diametral plane

OPP
,
at which the normal P&quot;N&quot; is parallel to the chord PP : a result which may be

otherwise deduced, from elementary principles of the geometry of surfaces of the

second order.

(3.) It is unnecessary to dwell on the converse propositions, that when either of

these conditions is satisfied, there is intersection (or parallelism) of the two normals

at P and p : or on the corresponding but limiting results, expressed by the equations

III. and II I .

(4.) In order, however, to make any use in calculation of these new forms II., III.,

we must select some suitable expression for the self-conjugate function 0, and deduce

a corresponding expression for the inverse function
&amp;lt;j&amp;gt;~

1
. The/orwi,*

VIII. . .
&amp;lt;j&amp;gt;p=ffp

+ V\piJi,

which has already several times occurred, has also been more than once inverted :

but the following new inverse f form,

* The vector form VIII. occurred, for instance, in pages 463, 469, 474, 484,

641, 669 ;
and the connected scalar form,

fp = #p
2 + SXp/zp, 357,11.

has likewise been frequently employed.

f Inverse forms, for $~
l
p or m~ l

i|/p,
have occurred in pages 463, 484, 641 (tha
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IX. ..(a- SX/i) . 0- p
= P

-

has an advantage, for our present purpose, over those assigned before. In fact, this

form IX. gives at once the equation,

X. . . (i/-SX/i).0-
IVpAp=V /oAp-XS i

oA
)o0-&amp;gt; -fiSpAp&amp;lt;j&amp;gt;-i\;

and so conducts immediately from II. to IV., or from III. to V. as a limit.

(5.) The equation IV. expresses generally, that the chord Ao, or PP
,
is a side of

a certain cone of the second order, which has its vertex at the point P of the given

surface, and passes through all the points P for which the normals to that surface in

tersect the given normal at P ;
and the equation V. expresses generally, that the two

sides of this last cone, in which it is cut by the given tangent plane at the same point

p, are the tangents to the lines of curvature.

(6.) But if the surface be an ellipsoid, or a double-sheeted hyperboloid, then

(comp. 408, (29.)) the always real vectors,* 0&quot;

!X and ^~
1
//,

have the directions of

semidiameters drawn to two of the four real umbilics ; supposing then that p is such

a semidiameter, and that it has the direction of + 0~
!

X, the second term of the first

member of the equation IV. vanishes, and the cone IV. breaks up into a pair of

planes, of which the equations in p are,

XI. . . SX (p
-
p) = 0, and XII. .. Sp ^X^- 1

/*
=

;

whereof the former represents the tangent plane at the umbilic P, and the latter re

presents the plane of the four real umbilics.

(7.) It follows, then, that the normal at the real umbilic P is not intersected by

any real normal to the surface, except those which are drawn at points p of that

principal section, on which all the real umbilics are situated: but that the same real

umbilicar normal PN is, in an imaginary sense, intersected by all the imaginary nor

mals, which are drawn from the imaginary points p of either of the two imaginary

generatrices through P.

(8.) In fact, the locus of the point P
,
under the condition of intersection of its

normal P N with a given normal PN, is generally a quartic curve, namely the inter

section of the given surface with the cone IV.
;
but when this cone breaks up, as in

(6.), into two planes, whereof one is normal, and the other tangential to the surface,

the general quartic is likewise decomposed, and becomes a system of a real conic

namely the principal section (7.), and a pair of imaginary right lines, namely the

two umbilicar generatrices at p.

(9.) We see, at the same time, in a new way (comp. 410, (14.)), that each such

generatrix is (in an imaginary sense) a line of curvature : because the (imaginary)
normals to the surface, at all the points of that generatrix, are situated by (7.) in

one common (imaginary) normal plane.

(10.) Hence through a real umbilic, on a surface of the second order, there pass

correction in a Note to which last page should be attended to). In comparing these

with the form IX., it will easily be seen (comp. page 661) that

, x _yX-\V gu-u*\
-^TXV ^V^WF

*
Compare the Note immediately preceding.
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three lines of curvature : whereof one is a real conic (8.), and the two others are

imaginary right lines, namely, the umbilicar generatrices as before.

(11.) If we prefer differentials to differences, and therefore use the equation V.

of the lines of curvature, we find that this equation takes the form =
0, if the

point P be an umbilic
;
and that if the normal at that point be parallel to X, the

differential of the equation V. breaks up into two factors, namely,

XIII. . . S\d?o = 0, and XIV. . . Sdptfr XtfrV =
;

whereof the former gives two imaginary directions, and the latter gives one real di

rection, coinciding precisely Avith the three directions (10.).

(12.) And if p, instead of being the vector of an umbilic, be only the vector of a

point on a generatrix corresponding, we shall still satisfy the differential equation

V., by supposing that dp belongs to the same imaginary right line : because we

shall then have, as at the umbilic itself,

XV. . . SXdp = 0, Spdp0-iX = 0.

An umbilicar generatrix is therefore proved anew (comp. (9.)) to be, in its whole

extent, a line of curvature.

(13.) The recent reasonings and calculations apply (6.), not only to an ellipsoid,

but also to a double-sheeted hyperboloid, four umbilics for each of these two sur-

faces being real. But if for a moment we now consider specially the case of an ellip-

a c

soid, and if we denote for abridgment the real
quotient
- by h, we may then

substitute in IV. and V. for X, /*, $~
l

\,
M

/t
the expressions,

,
26UX

XVI. ..a ha =-
;

ha - a =
a+c

, , -260-iUX , -2&fiUjt
. . a + ha = - --

;
-ha-a =-

jf
--r- ;

ac(a + c) etc (a + c)

and then, after division by A2 -
1, there remain only the two vector constants a a

,

the equation IV. reducing itself to VL, and V. to VII.

(14.) The simplified equations thus obtained are not however peculiar to ellip

soids, but extend to a whole confocal system. To prove this, we have only to com

bine the equations II. and III. with the inverse form,

XVIII. . . Z-^- p = aSa p + a Sap - p (e + Saa ),

which follows from 407, XV., and gives at once the equations VI. and VII., what

ever the species of the surface may be.

(15.) The differential equation VII. must then be satisfied by the three rectan

gular directions of dp, or of a tangent to a line of curvature, which answer to the

orthogonal intersections (410, (12.)) of the three confocals through a given point P ;

it ought therefore, as a verification, to be satisfied also, when we substitute v for dp,

v being a normal to a confocal through that point : that is, we ought to have the

equation,
XIX. . . SavSa pv + SavSapv = 0.

And accordingly this is at once obtained from 407, XVI., by operating with S.pv ;

so that the three normals v are all sides of this cone XIX., or of the cone VII. with

dp for a side, with which the cone V. is found to coincide (13.).

(16.) And because this last equation XIX., like VI. and VII., involves only the

two focal lines a, a as its constants, we may infer from it ihistheorem :
&quot;Ifinde-
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finitely many surfaces of the second order have only their asymptotic cones biconfo-

calt
* and pass through a given point, their normals at that point have a cone of the

second order for their locus ;&quot; which latter cone is also the locus of the tangents, at

the same point, to all the lines of curvature which pass through it, when different

values are successively assigned to the scalar constant a
1

* c2 (or 2Z2) : that is, when

the asymptotes a, a to the focal hyperbola remain unchanged in position, but the

semiaxes (2-fc2
)*, (ft

2 e2)* of that curve (here treated as both real) vary together.

(17.) The equation VI. of the cone of chords (5.) introduces the fixed focal

lines a, a by their directions only. But if we suppose that the lengths of those

two lines are equal, without being here obliged to assume that each of those lengths

is unity, we shall then have (comp. 407, (2.), (3.)), the following rectangular sys

tem of unit lines, in the directions of the axes of the system,

XX. .. U(q + a ), UVqq
, U(q-q ),

which obey in all respects the laws of ijk, and may often be conveniently denoted by
those symbols, in investigations such as the present. And then, by decomposing the

semidiameter p, and the chord Ap, in these three directions XX., we easily find the

following rectangular transformation^ of the foregoing equation VI.,

S(q + q )Ap S(a a )Ap S.Uaq Ap

in which it is permitted to change Ap to dp, in order to obtain a new form of the

differential equation of the lines of curvature ; or else at pleasure to v, and so to

find, in a new way, a condition satisfied by the three normals, to the three confocals

through P.

(18.) The cone, VI. or XXI., is generally the locus of a system of three rectan

gular lines ; each plane through the vertex, which is perpendicular to any real side,

cutting it in a real pair of mutually rectangular sides : while, for the same reason,

the section of the same cone, by any plane which does not pass through its vertex p,

but cuts any side perpendicularly, is generally an equilateral hyperbola.

(19.) If, however, the point P be situated in any one of the three principal

planes, perpendicular to the three lines XX., then the cone XXI. (as its equation

shows) breaks up (comp. (6.)) into a pair ofplanes, of which one is that principal

* That is, if the surfaces (supposed to have a common centre) be cut by the

plane at infinity in biconfocal couics, real or imaginary.

f The corresponding/o/-/n, in rectangular co-ordinates, of the condition of in

tersection, of normals at two points (xyz) and (x y z \ to the surface,

X* y* 23

55+5 + 5- 1

is the equation (probably a known one, although the writer has not happened to

meet with it),

(b*-c^x (c
2 -Qy (ft*-6

2X _
*-* y-y z-z

in which it is evident that xyz and x y z may be interchanged.
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plane itself, while the other is perpendicular thereto. And while the former plane
cuts the surface in a principal section, which is always a line of curvature through

p, the latter plane usually cuts the surface in another conic, which crosses the for

mer section at right angles, and gives the direction of the second line of curvature.

(20.) But if we further suppose, as in (6.), that the point p is an umbilic, then

(as has been seen) the second plane is a tangent plane ; and the second conic (19.)

is itself decomposed, into a pair ofimaginary right lines : namely, as before, the two

unibilicar generatrices through the point, which have been shown to be, in an ima

ginary sense, both lines of curvature themselves, and also a portion of the envelope

of all the others.

(21.) We shall only here add, as another transformation of the general equation

VI. of the cone of chords, which does not even assume Ta = Ta
,
the following :

XXII. . . S(a+a )Ap.S(a+a )pAp = S(a-a )Ap.S(a-a )pAp;

where the directions of the two new lines, a + a and a a
,
are only obliged to be

harmonically conjugate with respect to the directions of thefixed focal lines of the

system : or in other words, are those of any two conjugate semidiameters of the focal

hyperbola,

412. The subject of Lines of Curvature receives of course an

additional illustration, when it is combined with the known concep

tion of the corresponding Centres of Curvature. Without yet en

tering on the general theory of the curvatures of sections of an arbi

trary surface, we may at least consider here the curvatures of those

normal sections^ which touch at any given point the lines of curva

ture. Denoting then by a the vector of the centre s of curvature of

such a section, and by E the radius PS, considered as a scalar which

is positive when it has the direction of + f, it is easy to see that

we have the two fundamental equations :

I. ..&amp;lt;r
= p + E\3v\ II. . . Jft- d/j + dUV =

;

whence follows this new form of the general differential equation

410, II. of the lines of curvature,

III. . .
Vd/&amp;gt;dUi&amp;gt;

= 0;

with several other combinations or transformations, among which

the following may be noticed here:

(1.) The equation I. requires no proof; and from it the equation II. is obtained

by merely differentiating* as if a and R were constant : after which the formula III.

follows at once, and IV. is easily deduced.

* To students who are accustomed to infinitesimals, the easiest way is here to
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(2.) To obtain from this last equation a more developed expression for R, we

may assume for dv, considered as a linear and self-conjugate function of dp (410,

(1.)), the general form (comp. 410, XVIII.),

V. . . dv = ado + VXdpjw,

in which a, X, ft
are independent of dp ;

and then, while the tangent dp has (by 410,

XXII.) one or other of the two directions,

VI. . . dp ||
UVvX + UVi^,

the curvature R 1 receives one or other of the two values corresponding,

VII. . . ^i = -

(3.) One mode of arriving at this last transformation, or of showing that if

(comp. again 410, XXII.) we assume,

VIII. . . r = (or II)
UVXv

ITV&amp;gt;v,

then IX. . . SXr/zr-
1 = SXUv . S/tUi/ TVXUv.TV/jUv,

or X. . . 2SXr.S/xr-
1

=S(VXUv.V/^Uv) +TVXUv.TV/iUi&amp;gt;,

or finally, XI. . . 2SUXr.su/tr-
1 = S(VUXv.VU/^)TVUXv.TVU/tv,

is to introduce the auxiliary quaternion,

XII. . . q = VUXv.VU/zv ;

and to prove that, with the value (or direction) VIII. of r, we have thus the equa

tion (in which. V 2
,
as usual, represents the square of

V&amp;lt;?),

XIII. . . 2SUXr . SUur-i = Sq Tq = T?

(4.) And this may be done, by simply observing that we have thus (with the

value VIII.) the expressions,

XV

because XVI. . . V? = - Uv .

and XVII. . . r2 = -

(5.) Admitting then the expression VII., for the curvature 72~ l

,
we easily see

that it may be thus transformed :

XVIII. . . R-* = - Tv- 1

g + TX/i . cos
[
Z ^ + L -

and that the difference of the &amp;lt;u&amp;gt;o (principal) curvatures, of normal sections of an

arbitrary surface, answering generally to the &amp;lt;wo (rectangular) directions of the

conceive the differentials to be such. But it has already been abundantly shown, that

this view of the latter is by no means necessary, in the treatment of them by quater

nions. (Compare the second Note to page 667.)
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lines of curvature through the particular point considered, vanishes when the normal
v has the direction of either of the two cyclic normals, X, p, of the index surface

(410, (9.)); that is, when the index curve (410, (4.)), considered as a section of

that index surface, is a circle : or finally, when the point in question is, in a received

sense, an umbilic* of the given surface.

(6.) That surface, although considered to be a given one, has hitherto (in these

last sub-articles) been treated as quite general. But if we now suppose it to be a

central surface of the second order, and to be represented by the equation,

XIX. . . /p = gpz + SXp/tip
=

1,

which has already several times occurred, we see at once, from the formula VII. or

XVIII. (comp. 410, (10.)), that the difference of curvatures, of the two principal

normal sections of any such surface, varies proportionally to the perpendicular (Tv 1

or P) from the centre on the tangent plane, multiplied by the product of the sines of
the inclinations of that plane, to the two cyclic planes of the surface.

(7.) In general (comp. 409, (3.)), it is easy to see that

XX. ..S^
= Sr-^r = -Z)-2,

if D denote the (scalar) semidiameter of the index surface, in the direction of dp or

of r ; but for the two directions of the lines of curvature, these semidiameters become

(410, (3.), (4.)) the semiaxes of the index curve. Denoting then by ai and a2 these

last semiaxes, the two principal radii of curvature of any surface come by IV. to

be thus expressed :

XXL ..&= ai*lV ;
JR2 = a3

2 TV.

And if the surface be a central one, of the second order, then ai, a2 are the semiaxes

of the diametral section, parallel to the tangentplane ; while TV is (comp. again 409,

(3.)) tjie reciprocal. P-I of the perpendicular, let fall on that plane from the centre.

Accordingly (comp. (6.), and 219, (4.)), it is known that the difference of the in

verse squares of those semiaxes varies proportionally to the product of the sines of

the inclinations, of the plane of the section to the two cyclic planes.

(8.) And as regards the squares themselves, it follows from 407, LXXL, that

they may be thus expressed, in terms of the principal semiaxes of the confocal sur

faces, and in agreement with known results :

XXII. . . ai
2 = a2 -

i2 ;
a2

2 = 2 _ a-? ;

being thus both positive for the case of an ellipsoid; both negative, for that of a

double-sheeted hyperboloid ; and one positive, but the other negative, for the case of

an hyperboloid of one sheet (comp. 410, (15.)).

(9.) In all these cases, the normal -f v is drawn towards the same side of the

tangent plane, as that on which the centre o of the surface is situated (because

Svp
-

1); hence (by I. and XXI.) both the radii of curvature _7?i, RI are drawn

in this direction, or towards this side, for the ellipsoid ; but one such radius for the

*zn&amp;lt;7/-sheeted hyperboloid, and both radii for the hyperboloid of two sheets, are di

rected towards the opposite side, as indeed is evident from the forms of these surfaces.

*
Compare the second Note to page 669.

4 S
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(10.) The following is another method of deducing generally the two principal

curvatures of a surface, from the self-conjugate function,

XXIII. .. dj; = 0d jo, 410,1V.

which affords some good practice in the processes of the present Calculus. Writing,

for abridgment,

XXIV.. . r=-^-=J2-!Tv=-S^ = -Sr-Vr,
a p dp

where T is still a tangent to a line of curvature, the equation II. is easily brought to

the form,
XXV. . .

- rr =

where $ denotes a new linear and vector function, which however is not in general

self-conjugate, because we have not generally &amp;lt;j&amp;gt;v
\\
v. Treating then this new func

tion on the plan of the Section III. ii. 6, we derive from it a new cubic equation, of

the form,
XXVI. . . = M + M r + A/&quot;r2 4- r3

,

and with the coefficients,

XXVII. ..M=0, M = Sv- l

^v, M&quot; = m&quot;-Btr^vt

4/ being a certain auxiliary function (= m^&quot;
1

), and m&quot; being the coefficient* analo

gous to
M&quot;,

in the cubic derived from the function
&amp;lt;j&amp;gt;

itself. The root r = is foreign

to the present inquiry; but the two curvatures, -Si&quot;

1

, /Zg&quot;

1
*
are the two roots of the

following quadratic in R~ l

,
obtained from the equation XXVI. by the rejection of

that foreign root :

XXVIII. . . =
(.K-iTi/)

2 + M&quot;R-Wv + M.

(11.) As a first application of this general equation XXVIII., let 0r have again,

as in V., the form gr 4- VXryu ;
we shall then have the values,

XXIX. . . A/&quot;=2fr+S\Uj/.S/iU0,

and XXX. . . M =
(g + SXUv . S^Uv)

2 -
(VAUj/)

2
(V/zIJi/)

2
,

= a great variety of transformed expressions ;
and the two resulting curvatures agree

with those assigned by VII.

(12.) As a second application, let the surface be central of the second order, with

abc for its scalar semiaxes (real or imaginary) ;
then the symbolical cubic (350) in

becomes,

XXXI. . .
= 3 - w&quot;2

and the coefficients of the quadratic XXVIII. in Ji 1 take the values, in which N
denotes the semidiameter of the surface in the direction of the normal :

XXXII. . . 7?ri + -fo-
1 = - M&quot;Tv-

1 = -
(m&quot; +/Uv) P= (-* + 6~2 + &amp;lt;r

2 -

*
Compare the Note to page 673, continued in page 674. The reason of the

evanescence of the coefficient M, or of the occurrence of a null root of the cubic, is

that we have here
&amp;lt;b$~iv

=
0, so that the symbol $- may represent an actual vec

tor (comp. 351). Geometrically, this corresponds to the circumstance that when we

pass, along a semidiameter prolonged, from a surface of the second order to another

surface of the same kind, concentric, similar, and similarly placed, the direction of

the normal does not change.
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XXXIII. . . Ri-lRj-i = ATIV 2 = - mv-* = a^b^c^P^ ;

both of which agree with known results, and admit of elementary verifications. *

(13.) In general, if we observe that
m&quot;-(f&amp;gt;

= x (350, XVI.), we shall see that

the quadratic XXVIII. in r (or in R- l

1v) may be thus written:

XXXIV... =
Siri(r

2
i/ + rXv + ;//i/);

or thus more briefly (comp. 398, LXXIX.),

XXXV. . . =
Siri(0 + r)-i|/.

(14.) Accordingly, the formula XXV. gives the expression,

XXXVI. . . i/r = (0 + r)~iv . ST$V ;

from which, under the condition Svr = 0, the equation XXXV. follows at once.

(15.) We have therefore generally, for the product of the two principal curva

tures of sections of any surface at any point, the expression:

XXXVII. . . Ri-iRfi =r1r2TV2 = -iHS^j/=-S - J, - .

v T
v

which contains an important theorem of Gauss, whereto we shall presently proceed.

(16.) Meanwhile we may remark that the recent analysis shows, that the squares

ai
2

,
a22 (7.) of the semiaxes of the index-curve are generally the roots of the follow

ing equation,
XXXVIII. . .

when developed as a quadratic in a2
.

(17.) And that the same quadratic assigns the squares of the semiaxes of a dia

metral section, made by a plane -1-
v, of the central surface of the second order which

has
Sp$&amp;gt;p

= 1 for its equation.

(18.) Accordingly, Vp0p has the direction of a tangent to this surface, which is

perpendicular to p at its extremity ;
and therefore the vector,

XXXIX. . . &amp;lt;r

=
p-&amp;gt;Vp0p

= 0p - p-
1 =

(0
-
p

2
) p,

is perpendicular to the plane of the diametral section, which has the semidiameter p

for a semiaxis : so that it is perpendicular also to p itself. The equation,

XL. . . S(7(^- l

o-2 )-
1

&amp;lt;T

=
0,

assigns therefore the values of the squares (- p*
2

) of the scalar semiaxes of the cen

tral section -1-
&amp;lt;r;

which agrees with the formula XXXVIII.

(19.) If then a surface be derived from a given central surface of the second or

der, as the locus of the extremities of normals (erected at the centre) to the diame

tral sections of the given surface, each such normal (when real) having the length of

one of the semiaxes of that section, the equation of this new surface^- (or locus) will

admit of being written thus :

XLI. . . Sp(0-p-
2
)-ip=0.

* As an easy verification by quaternions of the expression XXXII., it may be

remarked (comp. 408, (27.)), that if a, (3, y be any three rectangular unit lines,

then

fa -f//3 +/y = const. = c
l -f c2 + 03 = cr 2 + 5 2 + &amp;lt;r

2
.

f When the given surface is an ellipsoid, this derived surface XLI. is therefore

the celebrated Wave Surface of Fresnel, which will be briefly mentioned somewhat

farther on.
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(20.) The first of the values XXIV., for the auxiliary scalar r, gives the expres

sion (if v = 0p, as it is for a central surface of the second order),

XLII. . . &amp;lt;r

= ,o+r-ii;
= (l+r-V)p = r-l(0 + r)p;

whence, by inversion, and operation with 0,

XLIII. . . p
=

r(0+r)-&amp;lt;r;
XLIV. . . v=

r(&amp;lt;p
+ r)-i0&amp;lt;r;

and therefore, because
Spi&amp;gt;

=
1,

XLV. . . r-2 = S((0 + 0~Icr -(0 + r)~
1

&amp;lt;

= s - &amp;lt;T (0 + r)~
2

0&amp;lt;

7 -

(21.) The following is a quite different way of arriving at this result, which is also

useful for other purposes. Considering a as the vector os of a point s on the Surface

of Centres, that is, on the locus of all the centres of curvature of principal normal sec

tions, the vector (say v) of the Reciprocal Surface is connected with a (comp. 373,

(21.)) by the equations of reciprocity
*

XLVI. . . Sffu - Suo- = 1
;

XLV1I. . . &wd&amp;lt;r=0; XLVIII. . . Sffdw = ;

which are all satisfied by the vector expression,

XLIX. ..*-,
Spr

where T is, as before, a tangent to the line of curvature : so that, if o&amp;gt; denote the va

riable vector of the normal plane to this last curve, the equation of that plane (comp.

369, IV.) may be thus written,

L. . .
Si&amp;gt;(w p) = 0.

This normal plane, to the line, of curvature at P, is therefore at the same time the

tangent plane to the surface of centres at s, as indeed it is known to be, from simple

geometrical considerations, independently of the form of the given surface, which re

mains here entirely arbitrary.

(22.) The expression XLIX. for v gives generally the relation,

LI. . . Spv= 1
;

giving also, by 410, V. and VI., these two other equations,

* It is understood that do- and dv, in the differential equations XLVIL,
XLVI II., are in general only obliged to have directions tangential to the surface

of centres, and to its reciprocal, at corresponding points: so that the equations

might be in some respects more clearly written thus, SvSff = 0, SaSv - 0, the mark

d being reserved to indicate changes which arise from motion along a given line of

curvature, while d should have a more general signification. Accordingly if, in par

ticular, we write Sp = vdp, for a variation answering to motion along the other line,

and denote the two radii of curvature for the two directions dp and Sp by RI and

7?2 ,
we shall have by II., R\ dp f dUv = 0, fl-r ^p + ^Uv = 0, and therefore by I.,

dtr = d/2i . Uy, Sff = ?p + 8 (7?iUv) = (1
- RiRz

~*
) vdp + SRi . Ui/

;

RO that we have both
Sdpd&amp;lt;r

=
0, and Sdpo-= 0, and therefore the tangent dp or T

to the given line of curvature has the direction of the normal v to the corresponding

sheet of the surface of centres, as is otherwise visible from geometry. And when

we have thus found an equation of the form tu= r, operation with S . &amp;lt;r gives l\v

XLVI. thp valup t = Snr, as in XLIX., because &amp;lt;r

-
p ||

v J- T.
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LII. . . Svv = 0, and LIII. . .
Svv&amp;lt;pv=Q,

which are still independent of the form of the given surface.

(23.) But if that surface be a central quadric,* then the equation LI. may be

thus written,

LIV. . . 1 = Suf-iv = Si/0-&amp;gt;w ;

combining which with LII. and LIII., we derive the expressions :

utyv-vfv v 3
-4&amp;gt;-ivfvLV. . . v= -

;
LVI. . . p = rt- 1 i/= -

v*-fv.Fv v*-fv.Fv

wherein fv = Sy0v, and Fv =
Sv&amp;lt;f&amp;gt;-

l
v, as usual.

(24.) Operating with S. v on this last expression for p, and attending to LII.

and LIV., we find the following quaternion forms of the Equation of the Reciprocal

of the Surface of Centres :

LVII. . . 1 = (Srp =)
vi~^ jr

5 or LVIII. ..v* = (Fv-1 )/u ;

or

LIX. . . l = (Fv-l)/i; or LX. . . Fv -
-^ = 1

; &c.,

/-
v

whereof the second, when translated into co-ordinates, is found to agree perfectly

with a knownf equation of the same reciprocal surface.

(25.) Differentiating the form LX., and observing that

LXI.
v

) fv
we find, by comparison with XLVI. and XLVIII., the expression :

LXII. . . (r = 0-&amp;gt;i;--4-+ ^ ;
or LXIII. . . &amp;lt;T

= $-IV+ -^-
+ f

V

-^

or finally by XLIX., with the recent signification XXIV. of r,

LXIV. . . &amp;lt;r

= r-2 (0 + r)20-iy, because LXV. . . r =/Ur=/Uu:

and, for the same reason, the equation LX. of the reciprocal surface may be thus

briefly written,

LXVI. . . Fv + r- w 2 =
1, while LXVI . . . fv + rv* = 0.

(26.) Inverting the last form for
&amp;lt;7,

and using again the relation XLVI., we first

find for v the expression,

LXVII. . . v =r2(0-f r)
2

0&amp;lt;7;

and then are conducted anew to the equation XLV., or to the following,

LXVIII. . . l=S.&amp;lt;rri + r- 1
0V2&amp;lt;6(r.

*
Compare the last note to page 672

;
see also the use made of this known name

&quot;quadric,&quot;
for a surface of the second order (or degree), in the sub-articles to 399

(pages 614, &c.).

f The equation alluded to, which is one of \\\Q fourth degree, appears to have been

first assigned by Dr. Booth, in a Tract on Tangential Co-ordinates (1840), cited in

page 163 of Dr. Salmon s Treatise. See also the Abstract of a Paper by Dr. Booth,

in the Proceedings of the Royal Society for April, 1858.
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(27.) This last equation may also be thus written,

LXIX. . . l = S.tr(l + r-V)-
3 (0+r-0

2
)tr;

but by combining XLIII. LI. LXVII. we have,

LXX. . . l = (Spy=)S.&amp;lt;r(l+r-ty)-
3

0&amp;lt;7;

hence LXXI. . . = S .
&amp;lt;r(l

+ r^-s^V,

a result which may be otherwise and more directly deduced, under the form Svv =

(LIL), from the expressions XLIV. LXVII. for v and v.

(28.) If we write,

LXXII. . . r = Ud/j, T = U(vdp), and therefore LXXIII. . . rr = Uv,

r and r being thus unit-tangents to the lines of curvature, the equation III. gives,

generally,

LXXIV. . . = Vrd(rr )
= - dr + rSr dr, whence LXXIV. . . dr

||
r

;

of which general parallelism of dr to r, the geometrical reason is (comp. again III.)

that a line of curvature on an arbitrary surface is, at the same time, a line of cur

vature on the developable normal surface which rests upon that line, and to which

the vectors r or vdp are normals.

(29.) The same substitution LXXIII. for Uj/ gives by II., if we denote by s the

arc of a line of curvature, measured from any fixed point thereof, so that (by 380,

(7.), &c.),
LXXV. . . Tdp = d, dp = rds, D,p = r,

the following general expression for the curvature of the given surface, in the direc

tion T of the given line, which by LXXIV. is also that of dr :

LXXVI. . . ^ = S.rD g r=-S.rr D,r = SUv

but D s2p is (by 389, (4.)) what we have called the vector of curvature of the line of

curvature, considered as a curve in space, and R~*\3v is the corresponding vector of

curvature of the normal section of the given surface, which has the same tangent r at

the given point : hence the latter vector of curvature is (generally) the projection of
the fonner, on the normal v to the given surface.

(30.) In like manner, if we denote for a moment by R~ l the curvature of the de

velopable normal surface (28.), for the same direction r, the general formula II.

gives, by LXXIV.,

LXXVII. . .
,-!
= rD,r = - Sr D.r = S .

the vector R, I T of this new curvature is therefore the projection on the new normal

r
,
of the vector of curvature Ds

2
p of the given line of curvature. But we shall soon

see that these two last results are included in one more general,* respecting allplane
sections of an arbitrary surface.

(31.) The general parallelism LXXIV. conducts easily, for the case of a central

quadric, to a known and important theorem, which may be thus investigated. Writ

ing, for such a surface,

LXXVI 1 1. . . r=/r, r =/r ,

*
Namely in Meusnier s Theorem, which can be proved generally by quaternions

with about the same ease as the two foregoing case* of it.
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so that r retains here its recent signification LXV., and r is the analogous scalar for

the other direction of curvature, we have by LXXIV. the differential,

LXXIX. . . dr =

because Sr0r = 0, by 410, XI.

(32.) We have then the relation,

LXXX. . . /U (vdp) =fr = r = const.
;

that is to say, the square (r -i) of the scalar semidiameter (Z) ) of the surface, which

is parallel to the second tangent (r ), is constant for any one line of curvature (r) ;

and accordingly (comp. XXII., and the expression 407, LXXI. for/U^i), the value

of this square is,

LXXXI. . . (/Uvdp)-i = r
-

1 = o 2 - a 2 = 62 _ & 2 = C2 _ c
2?

if a
,
6

,
c be the scalar semiaxes of the confocal, which cuts the given quadric (a6c)

along the line of curvature, whereof the variable tangent is r.

(33.) This constancy of/Uvdp may be proved in other ways ;
for instance, the

general equation Svdvdp = gives, for a line of curvature on an arbitrary surface,

LXXXII. . . dy=vSrldv+dpS~j LXXXIII. . .

and LXXXIV. . . S . dp0 (i/dp)
= 0, because dv = 0dp ;

while for a central quadric (yp =
1, 0p = j/) it is easy to show that we have also,

LXXXV. . .

hence, for such a surface, if we suppose for simplicity that ds or Tdp is constant,

which gives Vfd 2
p || dp, we have,

LXXXVI. . .

a differential equation of the second order, of which & first integral is evidently,

LXXXVII. . . /(vdp) =O 2
dp

2
,

or LXXXVII . . . /U(j/dp) = C = const.

(34.) But we see that the lines of curvature on a central quadric are thus in

cluded in a more general system of curves on the same surface, represented by the

differential equation LXXXVI., of which the complete integral would involve two

constants : and which expresses that the semidiameters parallel to those tangents to

the surface, which cross any one such curve at right angles, have a common square,

and therefore (if real) a common length, so that (in this case) they terminate on a

sphero-conic.*

(35.) Admitting however, as a case of this property, the constancy LXXX. of

the scalar lately called r
, namely the second root of the quadratic XXXIV. or

XXXV., of which the coefficients and the first root r vary, in passing from one point

to another of what we may call for the moment a line ofjirst curvature, we have only

to conceive r and v to be accented in the equations LXVI. LXV1
.,

in order to per

ceive this theorem, which perhaps is new :

Compare the sub-articles (6.) (7.) (8.) to 219, in page 231.
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The Curve* on the Reciprocal (24.) of the Surface of Centres of curvature of a

central quadric, which answers to the second curvature of that given surface for all

the points of a given line offirst curvature, or which is itselfin a known sense the

reciprocal (with respect to the given centre) of the developable normal surface (28.)

which rests upon that line, is the intersection oftwoquadrics ; whereof one (LXVI .)

is a cone, concyclic with the given surface (fp = 1) ;
while the other (LXVI.) is a

surface concyclic with the reciprocal of that given quadric (Fv = 1).

(36.) Again, the scalar Equation of the Surface of Centres (21.) may be said

to be the result of the elimination of r~ l between the equations LXVIII. and LXXL,
whereof the latter is the derivative^ of the former with respect to that scalar

;
we

have therefore this theorem :

An Auxiliary Quadric (LXVIII. or XLV.) touches the Second Sheet of the

Surface of Centres of a given quadric, along a Quartic Curve, which is the locus of

the centres of Second Curvature for all the points of a, Line ofFirst Curvature (35.) ;

and (for the same reason) the same auxiliary quadric is circumscribed, along the

same quartic, by the Developable Normal Surface (28.), which rests on ih&t first

line : with permission, of course, to interchange the words first and second, in this

enunciation.

(37.) When the arbitrary constant r is thus allowed to take successively all va

lues, corresponding to both systems of lines of curvature, the Surface of Centres is

therefore at once the Envelope^ of the Auxiliary Quadric LXVIII., and the Locus

of the Quartic Curve (36.), in which one or other of its two sheets is touched, by that

auxiliary quadric in one of its successive states, and also by one of the developable

surfaces of normals to the given surface.

(38.) To obtain the vector equation of that envelope or locus, we may proceed

* The variable vector of this curve is easily seen (comp. XLIX.) to be,

v =
Sr p

and the reciprocal surface (21.) or (24.) is by (25.) the locus of this quartic (35.).

f The analogous relation, between the co-ordinate forms of the equations, was

perhaps thought too obvious to be mentioned, in page 161 of Dr. Salmon s Treatise;

or possibly it may have escaped notice, since the quartic curve (36.) is only mentioned

there as an intersection of two quadrics, which is on the surface of centres, and

answers to points of a line of curvature upon the given surface. But as regards

the possible novelty, even in part, of any such geometrical deductions as those given

in the text from the quaternion analysis employed, the writer wishes to be under

stood as expressing himself with the utmost diffidence, and as most willing to be

corrected, if necessary. The power of derivating (or differentiating) any symbolical

expression of the form LXVIII., or of any analogous form, with respect to any sca

lar which it involves explicitly, as if the expression were algebraical, is an important

but an easy consequence from the principles of the Section III. ii. 6, which has been

so often referred to.

| Compare the Note immediately preceding.
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as follows, using a new expression for
&amp;lt;r,

in terms of v or of p, which may then be

transformed into a function of two independent and scalar variables. Denoting

(comp. (32.)) by ai, 61, GI the semiaxes of the confocal which cuts the given sur

face in the given Hue of curvature, and by 2 ,
62 ,

c2 those of the other confocal, so

that the normals v\, vz to these two confocals have the directions of the tangents T
,

T lately considered, we have not only the expressions LXXXI. for r -i, with a b c

changed to a\, b\, c\, but also the analogous expressions (comp. 407, LXXL),
LXXXVIII. . . r 1 = a* - a = b* - 62

2 = c2 - cz2 .

We have therefore by XLIL, combined with 407, XVI., this very simple expression
for &amp;lt;r :

J-J-A.-A.^1-X. (7 C0 T F~ J V 02~^ ^ =:
0ii~ ^$P 5

containing, in the present notation, and as a result of the present analysis, a known
and interesting theorem,* on which however we cannot here delay.

(39.) It follows from this last value of a, combined with the expression 408,
LXXXII. for p, that we may write,

xc. . .

=/-.(
2* + Yl^iw +^\

\ a + a Vaa a a
/

as the sought Vector Equation of the Surface of Centres of curvature of a given

quadric (a&c) ; ambiguous signs being virtually included in these three terms, be

cause in the subsequent eliminationsf the semiaxes enter only by their squares :

while
/, a, a are constants, as in 407, &c., for the whole confocal system, and abc

are also constant here, but a2 i
2 and a2

a&amp;lt;?,
or r

&quot;

1 and r~ l

(38.), are variable,

and may be considered to be the two independent scalars of which a is a vector func
tion.

413. Some brief remarks may here be made, on the connexion

of the general formula,

I. . . S^ 1

(0 + r)-
l v = 0, 412, XXXV.

in which r ~fi~ l
Ti&amp;gt; (412, XXIV.), and which when developed by the

rules qf the Section III, ii. 6 takes (comp. 398, LXXIX.) the form

of the quadratic,

* Namely Dr. Salmon s theorem (page 161 of his Treatise), that the centres of

curvature of a, given quadric at a given point are the poles of the tangent plane,

with respect to the two confocals. The connected theorem (page 136), respecting

the rectilinear locus of the poles of a given plane, with respect to the surfaces of a

confocal system, is at once deducible from the quaternion expression 407, XVI. for

0&quot;

1
!/, although the theorem did not happen to be known to the present writer, or at

least remembered by him, when he investigated that formula of inversion for other

applications, of which some have been already given.

f The corresponding elimination in co-ordinates was first effected by Dr. Salmon,

who thus determined the equation of the surface of centres of curvature of a quadric

to be one of the twelfth degree. (Compare pages 161, 162 of his already cited Trea

tise.)

4 T
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II. . . r8 * rS^ 1x^ + S^ 1^ = 0, 412, XXXIV.

with Gauss s* theory of the Measure of Curvature of a Surface; and

especially with his fundamental result, that this measure is equal to

the product of the two principal curvatures of sections of that surface:

a relation which, in our notations, may be thus expressed,

III. . . V.dU^U^tff^Vd/^.

(1.) As regards the deduction, by quaternions, of the equation III., in which d

and 5 may be regarded as twof distinct symbols of differentiation, performed with re

spect to two independent scalar variables, we may observe that, by principles and

rules already established,

IV. . . dUv = V-.Ui&amp;gt;, Ui/ = V .Ui/ = -Uv.V--;
v v v

and that therefore the first member of III. may be thus transformed :

V. . . V. dUv dUv = V (
V - .V ^ = - v- Sv- dvfo/.

\ v v }

(2.) Again, since we have dr = ^dp (410, IV., &c.), and in like manner 8v =

0fy&amp;gt;,
the relations Sj/dp = 0, Svdp = Q, and the self-conjugate property of 0, allow

us to write,

VI. . . Vdvdv = ^Vdpfy, and VII. . . Vdpfy = v^SvdpSp ;

whence follows at once by V. the formula III., if we remember the general expres

sion, deduced from the quadratic II.,

VIII. . . .Ri-i^-^- v-2nr3=-S -;//-. 412, XXXVII.
v v

(3.) If then we suppose that P, PI, P2 are any three near points on an arbi

trary surface, and that R, RI, R2 are three near and corresponding points on the

unit sphere, determined by the condition of parallelism of the radii OR, ORi, OR2 to

the normals PN, PiNi, P2N2 ,
the two small triangles thus formed will bear to each

other the ultimate ratio,

a result which justifies Calthough by an entirely new analysis) the adoption by Gauss

*
The. reader is referred to the Additions to Liouville s Monge (pages 505, &c.),

in which the beautiful Memoir by Gauss, entitled : Disquisitiones generales circa

superficies curvas, is with great good taste reprinted in the Latin, from the Commen-

tationes recentiores of the Royal Society of Gottingen. He is also supposed to look

back, if necessary, to the Section III. ii. 6 of these Elements (pages 435, &c.), and

especially to the deduction in page 437 of ^/ from 0, remembering that the latter

function (and therefore also the former) is here self- conjugate.

f Compare page 487, and the Note to page 684.
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of this product* of curvatures of sections, as the measure of the curvature of the

surface, with his signification of the phrase.

(4.) As another form of this important product or measure, if we conceive that

the vector p of the surface is expressed as a function (372) of two independent sca-

lars, t and
,
and if we write for abridgment,

X. ..D,p = p ,
D t{p = p,, IVp = l&quot;&amp;gt;

D,DMp = p/, DM2p=P,,,

which will allow us (comp. 372, V.) to assume for the normal vector v the expres

sion,

XI. . . i/ = Vp p,

it is easy to provef that we have generally,

V V

which takes as a verification the well-known form,

YTTT P -I 7? -I
s &quot;

Alii. . . JK\ /to =
,

when we write (comp. 410, (18.)),

XIV. . . p = ix +jy + kz, p = D*p = i + kp, p,
= Dyp =j + kg ;

XV. . . v = Vp p,
= k - ip -jq, p&quot;

= kr, p/ = ks, plt
= to.

(5.) In general, the equation XII. may be thus transformed,

XVI. , . v*RriRfi = S (Vi/p^Vvp,,)
- (Vvp/)

2
-f j/

2
(Sp&quot;p y/

-
p,

2
) ;

also XVII. . . Tdp
2 = ed&amp;lt;2 + 2/d*dtt + g&u&amp;gt;,

if XVIII. .. e =-p 2
, /=-Sp p,, g = -p?, whence XIX. . . v2 =/ - ^

and if we still denote, as in X., derivations relatively to t and u by upper and lower

accents, we may substitute in the quadruple of the equation XVI. the values,

XX. .

and XXI. . . 2
(Sp&quot;p,,

-
p/

2
)
= M

-
2// + /&quot; ;

hence the measure of curvature is an explicit function of the ten scalars,

XXII. . .
&amp;lt;?, /, g ;

e
, / , # ;

e
, / ^ ;

and e, (
- 2/ + p&quot;

:

and therefore, as was otherwise proved by Gauss, this measure depends only+ on the

* If it be supposed to be in any manner known that a limit such as IX. exists,

or that the quotient of the two vector areas in III. is a scalar independent of the di

rections of PPi, PP2, or of dp, dp, we have only to assume that these are the direc

tions of the lines of curvature, in order to obtain at once, by 412, II., the product

jfo-i.R.j-i as the value of this quotient or limit.

f The quadratic in R~i may be formed by operating on 412, II. with S.p and

S.p,, and then eliminating dt : du.

J The proof by quaternions, above given, of this exclusive dependence, is per

haps as simple as the subject will allow, and is somewhat shorter than the correspond

ing proof in the Lectures : in page 605 of which is given however the equation,
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expression (XVII.) of the square of a linear element, in terms of two independent

scalars (t, ),
and of their differentials (ctt, d).

(6.) Hence follow also these two other theorems* of Gauss :

If a surface be considered as an infinitely thin solid, and supposed to be flexible

but inextensible, then every deformation of it, as such, will leave -unaltered, 1st, the

Measure of Curvature at any Point, and Ilnd, the Total Curvature of any Area;

that is, the area of the corresponding portion of the unit sphere, determined as in (3.)

by radii parallel to normals.

(7.) Supposing now that t and u are geodetic co-ordinates, whereof the former re

presents the length of a geodetic APfrom a. fixed point A of the surface, and the latter

represents the angle BAP which this variable geodetic makes at A with a fixed geo

detic AB, it is easy to see that the general expression XVII. takes the shorter form,

XXIII. . . Tdp2 = d2 + n d, in which XXIV. . . n = Tp, = TV ;

so that we have now the values,

XXV. . ,e=l, /=0, g = n\ g = 2nn , g&quot;

= 2nn&quot; + 2n 2
,

and the derivatives of e and/all vanish. And thus the general expression XII. for

the measure of curvature reduces itself by (5.) to the very simple form,

XXVI. . . Ri l Rf* = - n- n&quot;
= - rrWw ;

in which 71 is generally a function of both t and u, although here twice derivated

with respect to the former only.

(8.) The point r being denoted by the symbol (t, ), and any other point p of

the surface by (t -f A, u + AM), we may consider the two connected points PI, P2 ,
of

which the corresponding symbols are (t + At, ) and (t,
u + Aw) ;

and then the

quadrilateral PPIP PZ, bounded by two portions PPi, P2r of geodetic lines from A,

and (as we may suppose) by two arcs PPa, PI? of geodetic circles round the same

fixed point, will have its area ultimately = nAtAu (by XXIII.), and therefore (by

XXVI., comp. (3.), (6.)) its total curvature ultimately = n&quot;AtAu, or = A^J .AM,

when At and AM diminish together, by an approach of p to p.

(9.) Again, in the immediate neighbourhood of A, we have n = t, n = 1 ; chang

ing then -A/in to - dj/i ,
and integrating with respect to t from t = 0, we obtain

1 - n as the coefficient of AM in the result, and are thus conducted to the expres

sion:

XXVII. . . Total Curvature of Triangle APP =
(1

-
) AM, ultimately,

if AP, AP be any two geodetic lines, making with each other a small angle = AM,

and if PP be any small arc (geodetic or not) on the same surface.

2 (eg -/) ( e/&amp;gt;

- 2// + g&quot;),

which may now be deduced at sight from XVI., by the substitutions XIX. XX.
XXL, and differs only in notation from the equation of Gauss (Liouville s Monge,
page 523, or Salmon, page 309).

* See page 524 of Liouville s Monge.
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(10.) Conceive then that PQ is a. finite arc of any curve upon the surface, for

which therefore t, and consequently n , may be conceived to be a function of
;
we

shall have this other expression of the same kind,

XXVIII. . . Total Curvature of Area APQ = J (1
-

) dw = Aw - J n du ;

the area here considered being bounded by the two geodetic lines AP, AQ, which

make with each other the finite angle AM, and by the arc PQ of the arbitrary curve.

(11.) If this curve be itself a. geodetic, and if we treat its co-ordinates t, ,
and

its vector p, as functions of its arc, s, then the second differential of p, namely,

XXIX. . . d2
p = pm + p&u + p&quot;dz

2
-f 2p/d/d + p, dw

2
,

must be normal to the surface at P, and consequently perpendicular to p and pf
.

Operating* therefore with S.p ,
and attending to the relations XVIII. and XXV.,

which give

XXX. . . p
2 = -

1, Sp p,
= S

I P&quot;

= s
i l ,

=
&amp;gt;

SIV// = ~ SP,P/ = nn/
&amp;gt;

we obtain the differential equation,

XXXI. . . d2f = wrc du2
,

or XXXII. . . du = - n dw,

if we observe that we may write,

XXXIII. .. d= cos vds, ndw = sinvds, because XXXIV. .. d^ + wdw* = da*
;

v being here the variable angle, which the geodetic PQ makes at P with AP pro

longed.

(12.) Substituting then for n du, in XXVIII., its value du given by XXXII.,
the integration becomes possible, and the result is A + Au

;
where AM is still the

angle at A, and TT + At = (TT v) + (v -f Av) is the sum of the angles at P and Q, in

the geodetic triangle APQ.

(13.) Writing then B and c instead of P and Q, we thus arrive at another most

remarkable Theoremf of Gauss, which may be expressed by the formula :

XXXV. . . Total Curvature of a Geodetic Triangle ABC = A-fB+c TT,

= what may be called the Spheroidal Excess ; A, B, c, in the second member, being

used to denote the three angles of the triangle : and the total surface of the unit

sphere (= 4?r) being represented by 720, when the part corresponding to the geodetic

triangle is thus represented by the angular excess, A + B+ c 180.

(14.) And it is easy to perceive, on the one hand, how this theorem admits df

being extended, as it was by Gauss, to all geodetic polygons .&quot; and on the other hand,

how it may require to be modified, as it was by the same eminent geometer, so as to

give what would on the same plan be called a spheroidal defect, when the measure

of curvature is negative, as it is for surfaces (or parts of surfaces) of whiclTthe prin

cipal sections have their curvatures oppositely directed.

* To operate with S.p, would give a result not quite so simple, but reducible to

the form XXXI., with the help of d2s = 0.

f The enunciation of this theorem, respecting which its illustrious discoverer

justly says,
&quot; Hoc theorema, quod, ni fallimur, ad elegantissima in theoria superficie-

rum curvarum referendum esse videtur,&quot; ... is given in page 533 of the Additions to
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414. The only sections of a surface, of which the curvatures

have been above determined, are the two principal normal sections at

any proposed point; but the general expressions of III. iii. 6 may
be applied to find the curvature of any plane section, normal or ob

lique, and therefore also of any curve on a given surface, when only

its osculating plane is known. Denoting (as in
389&amp;gt; &c.) by p and K

the vectors of the given point P, and of the centre K of the osculating

circle at that point, and by s the arc of the curve, we have generally

(by 389, XII. and VI.),

I. . . Vector of Curvature of Curve = KP 1 = (p - icY 1 = D,
2

/&amp;gt;

= V -r^ ;

ap QP

the independent variable in the last expression being arbitrary. And
if we denote by a and the vectors of the points s and x, in which

the axis of the osculating circle meets respectively the normal and

the tangent plane to the given surface, we shall have also, by the

right-angled triangles, the general decomposition, KP&quot;
1 =

SP&quot;

1 + XP 1

(as vectors), or

u..D&amp;gt;-(f-)ri(&amp;gt;-)-t+(f-0F&amp;lt; s

where the two components admit of being transformed as follows:

III. . . Normal Component of Vector of Curvature of Curve (or

&v
Section)

=
(p

-
&amp;lt;r)~

= //- S =
(/?- o-j)&quot;

1 cos2 v + (p
-

o^)
1 sin2 v

- Vector of Normal Curvature of Surface for the direction of

the given tangent;

&amp;lt;T!,

&amp;lt;r

2 being the vectors of the centres sb s^ (comp. 412) of the two

principal curvatures, and v being the angle at which the curve (or
its tangent dp) crosses the first line of curvature (or its tangent TJ),

while ff is the vector of the centre s of the sphere which is said to

oscillate to the surface, in the given direction (of d/&amp;gt;) ; and

IV. . . Tangential Component of Vector of Curvature

=
(p -)-i = v-idp-iSvdp-Wp

= Vector of Geodetic Curvature of Curve (or Section) ;

this latter vector being here so called, because in fact its tensor re-

Liouville s Monge. A proof by quaternions was published in the Lectures (pages

606-609, see also the few preceding pages), but the writer conceives that the one

given above will be found to be not only shorter, but more clear.
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presents what is known by the name of the geodetic* curvature of a

curve upon a surface : the independent variable being still arbi

trary.

(1.) As regards the decomposition II., if a, /3 be any two rectangular vectors

OA, OB, and if y = oc = the perpendicular from o on AB, then (comp. 316, L., and

408, XLL),

V v- 1 - + -
a&quot; + fl-i

Va/3
+

V/3a

(2.) To prove the first transformation III., we have, by I. and II.
, observing

that dSvdp = 0,

VT Q _
&amp;lt;J V - - _ G

V J..
- O -- O - V &quot;&quot;- - - -- O ~

p a p K dp dp dp
2

dp
2

dp

(3.) Hence, by 412, (7.), if we denote the vector III. of normal curvature by

JfZ&quot;

1

Ui&amp;gt;,
we have the general expressions (comp. 412, I. XXL),

VII. . . &amp;lt;r

= p4 #Ui/, R = DWv, with VIII. . . Tv=P-,

for the case of a central quadric ; D being generally the semidiameter of the tntfex

surface (410, (9.), &c.), or for a quadric the semidiameter of that surface itself,

which has the direction of the tangent (or of dp) : and P being, for the latter sur

face, the perpendicular from the centre on the tangent plane, as in some earlier for

mulae.

(4.) To deduce the second transformation III., which contains a theorem of

Euler, let r, n, r2 denote unit tangents to the section and the two lines of curvature,

so that

IX. . . T TI cosw + r2sinv, and r2 = n2 = r22 = - 1
;

we may then write generally (comp. 412, IV.),

&amp;lt;T p dp

and shall have the values (comp. 410, XI.),

XL . . Snpri^f TV, S^^-^Tv, Sn
whence XII. . . R~* = Ri 1 cos2 v + JV 1 sin2

,

and the required transformation is accomplished.

(5.) The theorem of Meusnier may be considered to be a result of the elimination

(2.) of d2
p from the expressions for the normal component III. of what we may call

the Vector Vs*p of Oblique Curvature ; and it may be expressed by the equation,

XIII. . . 8^-^=1, or XIII . . . S^^ =
0, which gives XIII&quot;. . . PKS =

^,
P-K P-K

if it be now understood that the point s, of which CT is the vector, is the centre of the

* The name,
&quot; courbure geodesique&quot; was introduced by M. Liouville, and has

been adopted by several other mathematical writers. Compare pages 568, 575, &c.

of his Additions to Monge.
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circle which osculates to the normal section ; or of the sphere which osculates in

the same direction to the surface, as will be more clearly seen by what follows.

(6.) In general, if p + Ap be the vector of any second point P of the given sur

face, the equation

XIV . S -
V

- = S
,
with M for a variable vector,

(D- p Ap

represents rigorously the sphere which touches the surface at the given point P, and

passes through the second point P
; conceiving then that the latter point approaches

to the former, and observing that the development* by Taylor s Series of the equa

tion fp = const, gives (if d/p
= 2Svdp, and dv = 0dp),

If (f)t\O

XV. . .
= Ap~

2
A/p = 2S --f- S^ -

-f terms which vanish generally with Ap,

even if they be not always null, we are conducted in a new way, by the known con

ception of the Osculating Sphere for a given direction to a surface, to the same cen

tre s, and radius R, as before : the equation of this sphere being,

.

Ap Ap

(7.) Conversely, if we assume a radius JR, such that R~l is algebraically inter

mediate between JSr1 and R%~\ the tangent sphere,

XVII... S-- or ...
to p R o&amp;gt; p

will cut the surface in two directions of osculation, assigned by the formula XII.
;

but if R 1 be outside those limits, there will be only contact, and not any (real) in

tersection, at least in the vicinity of P.

(8.) If P be again, as in (6.), any second point of the surface, and if we denote

for a moment by (II) and (2) the normal plane PNP and the normal section cor

responding, we may suppose that N is the point in which the normals to the plane

curve (2) at P and p intersect; and if we then erect a perpendicular at N to the

plane (II), it will be crossed by every perpendicular at P to the tangent P T to the

section, and therefore in particular by the normal at P to the surface, in a point

which we may call N : so that the line P N is the projection, on the plane PP N, of

this second normal P N to the surface. Conceiving then the plane (II) to be fixed,

but the point p to approach indefinitely to p, we see that the centre s of curvature

of the normal section (2), which is also by (G.) the centre of the osculating sphere

to the surface for the same direction, is the limiting position of the point N, in which

*
Compare Art. 374, and the Second Note to page 508. The occasional use,

there mentioned, of the differential symbol dp as signifying a finite and chordal vec

tor, in the development of/(p + dp), has appeared obscure, in the Lectures, to some

friends of the writer
;
and he has therefore aimed, for the sake of clearness, in at least

the text of these Elements, and especially in the geometrical applications, to confine

that symbol to its first signification (100, 369, 373, &c.},
as denoting a tangential

vector (finite or infinitely small, and to a curve or surface) : p itself being generally

regarded as a vectorfunction, and not as an independent variable (comp. 362, (3.)).
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the given normal at P is intersected by the projection* of the near normal P N
,
on

the given normal plane.

(9.) The two components III. and IV. are included in the binomial expression,

XVIII. . . Vector of Oblique Curvature (or of Curvature of Oblique Section&quot;)

= (p
-

K)-I
= v-iSdvdp-i -f v^dp-iSvdp- dap,

which is obtained by substituting in I. the general equivalent 409, XXI. for d2
p,

and in which (as before) the independent variable is arbitrary ;
and the tangential

component IV. may be otherwise found by observing that, by I. and II.,

XIX. . .
- = S - = S

p
-

p
- K dp

and that (i/dp)-
1 = v~ l

dp~
l
,

because S^dp = 0.

(10.) Another way of deducing the same component IV., is to resolve the follow

ing system of three scalar equations, which by the geometrical definition of the point

x the vector must satisfy :

XX. ..S(-p)i/ = 0; S(

and which give,

XXT g n=

or (p )-!
= &c., as before. We have also the transformations,

XXII. . . Vector of Geodetic Curvature = (p
-

)-
1

S (j^Udp . dUdp) = - i/dp S
Ap

*
P = &c.

(11.) The definition of the point x shows also easily, that ifa developable sur

face (D) be circumscribed to a given surface (s), along a given curve (c), and if,
in

the unfolding of the former surface, the point x be carried with the tangent plane,

originally drawn to the latter surface at P, it will become the centre ofcurvature, at

the new point (p), to the new or plane curve (c ) obtained by this development : so

that the radius (PX) ofgeodetic curvature is equal, as indeed it is knownf to be, to

the radius ofplane curvature of the developed curve.

(12.) This plane curve (c ) is therefore a circle^, (or part of one) if the condi

tion,
XXIII. . . px = T (5

-
p)
= const,

* The reader may compare the calculations and constructions, in pages 600, 601

of the Lectures. In the language of infinitesimals, an infinitely near normal P N

intersects the axis of the osculating circle, to the given normal section.

f Compare page 576 of the Additions to Liouville s Monge.

+ The curves on any given surface, which thus become circles by development,

have also the isoperimetrical property expressed in quaternions (com p. the first Note

to page 530) by the formula,

XXVI. . . 5JS(Uv.dpfy) + c/Tdp = 0,

which conducts to the differential equation,

XXVII. . . c- dp = V.Ui/dUdp (comp. 380, IV.),

4 u
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be satisfied ;
but it degenerates into a right line, if this radius of geodetic curvature

be infinite, that is, if

XXIV. . . T (p
-

O&quot;

1 =
&amp;gt;

or xxv- Svdpd
2
p = 0,

or finally (by 380, II., comp. 409, XXV.), if the original curve (c) be a geodetic line

on the given surface (s), and therefore also on the developable (D) : which agrees

with the fundamental property (382, 383) of geodetics on a developable surface.

(13.) Accordingly it may be here observed that the general formula IV., com

bined with the notations and calculations of 382, conducts to the expression

(z + t&amp;gt; ) Tp
- 1

,
or -, for the geodetic curvature of any curve on a developable

surface, whereof the element ds crosses a generating line at the variable angle 0, while

zda; is the angle between two such consecutive lines : a result easily confirmed by geo

metrical considerations, and agreeing with the differential equation z + v = 0^382,

IX.) of geodetics on a developable.

415. We shall conclude the present Section with a few supple

mentary remarks, including a new and simplified proof of an im

portant theorem (354), which we have had frequent occasion to

employ for purposes of geometry, and which presents itself often

in physical applications of quaternions also: namely, that if the linear

and vector function &amp;lt;p

be self-conjugate, then the Vector Quadratic,

I. . .
Vfxj&amp;gt;p

= 0, 354, I.

represents generally a System of Three Real and Rectangular Direc

tions ; and that these (comp. 405, (1.), (2.), &c.) are the directions

of the Axes of the Central Surfaces of the Second Order, which are

represented by the scalar equation,

II. . . Sp0/j
= const. ;

or more generally,

III. . .
Sp(j&amp;gt;p

=
(7/&amp;gt;

2 + Cf

,
where C and C are any two scalar constants.

(1.) It is an easy consequence of the theory (350) of the symbolic and cubic

equation in 0, that if c be a root of the derived algebraical cubic M=Q (354), and
if we write 3&amp;gt;

= + c (as in that Article), the new linear and vector function $p must
be reducible to the binomialform (351),

and in which the scalar constant c can be shown to have the value,

XXVIII. . . c = (
-
p) U. i/dp

= T (
-
p) = Radius of Geodetic Curvature,

= radius of developed circle ; and each such curve includes, by XXVI., on the given

surface, a maximum area with a given perimeter : on which account, and in allusion

to a well-known classical story, the writer ventured to propose, in page 582 of the

Lectures, the name &quot;

Didonia&quot; for a curve of this kind, while acknowledging that

the curves themselves had been discovered and discussed by M. Delaunay.
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IV. . .
&amp;lt;fp

= 0p + cp = /3Sap 4- jS Sa pj w^h V. . . V(3a + V/3 a =
0,

as the condition (353, XXXVI.) of self-conjugation. With this condition we may
then write,

VI. . . (3
= Aa + Ba, p = A a +Ba;

and it is easy to see that no essential generality is lost, by supposing that a and a

are two rectangular vector units, which may be turned about in their own plane, if

(3 and /3 be suitably modified : so that we may assume,

VII. . . a2 = a 2 = -
1, Saa =

;
whence VIII. . . *a = - j3, $a = -

/3 ,

and IX. . . V/3 a = Baa = - V/3a, V/3a = Aaa , V/3 a = - A aa .

(2.) The equation I., under the form,

X. . . Vp$p = 0, is satisfied by XI. . .
3&amp;gt;p

=
0, or XII. . . Vaa p = ;

and it cannot be satisfied otherwise, unless we suppose,

XIII. . . p = xa + x a
,

and XIV. . . V (xp + *
/3 ) (xa + x

a&quot;)

=
;

that is, by IX.,
XV... B(x*-x^ + (A-A&quot;)xx =0:

while conversely the expression XIII. will satisfy I., under this condition XV. But

this quadratic in x : x, of which the coefficients B and A A do not generally va

nish, has necessarily two real roots, with a product =- 1
;
hence there always ex

ists, as asserted, a system of three real and rectangular directions, such as the fol

lowing,
XVI. . . xa + x a

,
x a-xa ,

and act (or Vaa ),

which satisfy the equation I.
;
and this system is generally definite : which proves

\hpfirstpart of the Theorem.

(3.) The lines a, a may be made by (1.) to turn in their own plane, till they

coincide with the two first directions XVI. ;
which will give,

XVII. . . B = 0, (3=Aa, /8
= A a

,

and therefore,

XVIII. . . 0p = -
cp 4- ^laSap + A a Sa p

=
(c + A&quot;) aSap + (c + ^ ) a Sa p + caa Saa p ;

and thus the scalar equation II. will take the form,

XIX. . . Sp0p = (c + .4) (Sap)
2 + (c +O (Sa p)

2 + c(Saa p)*= const.,

which represents generally a central surface of the second order, with its three

axes in the three directions a, a, aa of p ;
and does not cease to represent such a

surface, and with such axes, when for Sp^p we substitute, as in III., this new ex

pression :

XX. . . Sp^p
-

Cp2 = Sp0p + C ((Sap)2 + (Sa p)2 + (Saa p)
2
)
= C = const. ;

the second surface being in fact concyclic (or having the same cyclic planes) with the

first, and the new term,
-

Cp, in $p, disappearing under the sign V.p : so that the

second part of the Theorem is proved anew.

(4.) It would be useless to dwell here on the cases, in which the surfaces XIX.,

XX. come to be of revolution, or even to be spheres, and when consequently the

directions of their axes, or of p in I., become partially or even wholly indeterminate.

But as an example of the reduction of an equation in quaternions to the/orm L,
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without its at first presenting itself under that form, we may take the very simple

equation,
XXI. . . pipK=ipicp, with K not

|| e,

which may be reduced (comp. 354, (12.)) to

XXII. . . V.pVip* = 0;

and which is accordingly satisfied (comp. 373, XXIX.) by the three rectangular di-

XXIII. . . Ui - U/c, Vtfc, Ui + UK,

of the axes (a&c) of the ellipsoid,

XXIV. . . T( fp + pe) = K2 -i*, 282, XIX.

which is one of the surfaces of the concydic system (comp. III.),

XXV. . . StpKp = Cp
2 +

C&quot;,

as appears from the transformations 336, XL, &c.

(5.) In applying the theorem thus recently proved anew, we have on several

occasions used the expression,

XXVI. . . dv = 0dp, 410, IV.

in which v is a vector normal to a surface whereof p is the variable vector, and the

function is treated as self-conjugate (363).

(6.) It is, however, important to remark that, in order to justify the assertion

of this last property, the following expression of integralform,

XXVII. . . jSj/dp,

must admit of being equated to some scalar function of p, such as |/p + const.,

without its being assumed that p itself is a function, of any determinate form, of a

scalar variable, t. The self-conjugation of the linear and vector function ^ in

XXVI., is the condition of the existence of the integral XXVIL, considered as re

presenting such a scalar function (comp. again 363).

(7.) There are indeed several investigations, in which it is sufficient to regard

v as denoting some normal vector, of which only the direction is important, and

which may therefore be multiplied by an arbitrary scalar coefficient, constant or

variable, without any change in the results (comp. the calculations respecting geode

tic lines, in the Section III. iii. 5, and many others which have already occurred).

(8.) And there have been other general investigations, such as those regarding

the lines of curvature on an arbitrary surface, in which di&amp;gt; was treated as a self-

conjugate function of dp, while yet (comp. 410, (17.)) the fundamental differential

equation Svdvdp = was not affected by any such multiplication of v by n.

(9.) But there are questions in which a factor of this sort may be introduced,

with advantage for some purposes, while yet it is inconsistent with the self-conjuga

tion above mentioned, unless the multiplier n be such as to render the new expres

sion Snvdp (comp. XXVII.) an exact differential of some scalar function of p.

(10.) For example, in the theory of Reciprocal Surfaces (comp. 412, (21.)), it

is convenient to employ the system of the three connected equations,

XXVIII. . . Si/p
=

1, Svdp = 0, Spdv = ; 373, L. LI.

but when the length of v is determined so as to satisfy theirs* of these equations,

v l

being then the vector perpendicular from the origin on the tangent plane to the
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given but arbitrary surface of which p is the vector, while
p&quot;

1 is the corresponding

perpendicular for the reciprocal surface with v for vector, the differential di&amp;gt; loses

generally its self- conjugate character, as a linear and vector function of dp : although

it retains that character if the scalar function /p be homogeneous, in the equation

fp = const, of the original surface, as it is for the case of a central quadric,* for

which v = 0p, dv = 0dp, &c., as in former Articles.

(1 1.) In fact, the introduction of the first equation XXVIII. is equivalent to the

multiplication of v by the factor = (Svp)~
1

;
and if we write (comp. 410, (16.)),

XXIX. . . d/p = 2Svdp, di/ = 0dp, dn = Serdp,

we shall have this new pair of conjugate linear and vector functions,

XXX. . . d . nv =
&amp;lt;fidp

= n^dp + vSffdp, XXXI. . . 6 dp = n0dp + &amp;lt;rSvdp ;

and these will not be equal generally, because we shall not in general have &amp;lt;r

||
v.

But this last parallelism exists in the case of homogeneity (10.), because we have

then the relations,

XXXII. . . 2Svp =r/p, d.n 1 =dSvp = rSvdp,

if r be the number which represents the dimension offp (supposed to be whole).

(12.) On the other hand it may happen, that the differential equation Si/dp
=

represents a surface, or rather a set of surfaces, without the expression Si dp being

an exact differential, as in (6.) ; and then there necessarily exists a scalar factor,

or multiplier, n, which renders it such a differential.

(13.) For example the differential equation,

XXXIII. . . Sypdp = Svdp = 0, with XXXIV. . . v = Vyp, dv = Vydp = 0dp,

represents an arbitrary plane (or a set ofplanes), drawn through a given line y ;

but the expression Sypdp itself is not an exact differential, and the integral XXVII.

represents no scalar function of p, with the present form of v, of which the differen

tial dv is accordingly a linear function 0dp, which is not conjugate to
itself, but to

its opposite (comp. 349, (4.)), so that we have here dp = - 0dp.

(14.) But if we multiply v by the factor,

XXXV. . . n = j/-
2 = (Vyp)-2, which gives XXXVI. . . d = Sadp, or = 22yVyp,

and therefore Sytr = 0, Sp&amp;lt;r

= - 2n, then the new normal vector nv, or i/-
1
,
is found

to have the self-conjugate differential,

XXXVII. . . d . nv = d . iri = - v 1Vydp . v~ l =
&amp;lt;%

= d dp ;

and accordingly the new expression,

XXXVIII. . . Snvdp = SjHdp = S
^-,

with y constant,

is easily seen to be an exact differential, namely (if Ty = 1), that of the angle which

the plane of y and p makes with a. fixed plane through y : so that, when v is thus

* It was for this reason that the symbol TV was not interpreted generally as

denoting the reciprocal, P&quot;
1

,
of the length of the perpendicular from the origin on the

tangent plane, in the formulae of 410, 412, 414 : although, in several of those for

mula}, as in an equation of 409, (3.), that symbol was so interpreted, for the case of

a central surface of the second order.
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changed to nv, the integral in XXVII. acquires a geometrical signification, which is

often useful in physical applications, since it then represents the change of this angle,

in passing from one position of p to another ;
or the angle through which the variable

plane of yp has revolved.

(15.) In fact, the general formula 335, XV. for the differential of the angle of

a quaternion gives, if we write

Vvo
XXXIX. . . q = ^^, y = const., pQ = const., Ty = 1,

the two connected expressions :

which contain the above-stated result, and can easily be otherwise established.

(16.) In general, if the linear and vector function dv = pdp be not self-conju

gate, and if the function d.nv = (5dp be formed from it as in (11.), it results from

that sub-article, and from 349, (4.), that we may write,

XLII. . . (0
- f) dp = 2Vydp, (6 - &amp;lt;* ) dp = 2Vy,dp,

with the relation,
XLIII. . . 2y,

= 2ny-f Vi/ff
;

where y, y, are independent of dip, although they may depend on p itself. If then

the new linear function
&amp;lt;idp

is to be self-conjugate, so that y,= 0, we must have

XLIV. . . 2ny 4- Vvff = 0, and therefore XLV. . . Syv = ;

which latter very simple equation, not involving either n or a, is thus a form, in

quaternions, of the Condition of Integrability* of the differential equation Si/dp = 0,

if the vector y be deduced from v as above.

(17.) The Bifocal Transformation of
Sp$&amp;gt;p,

in 360, (2.), has been sufficiently

considered in the present Section (III. iii. 7) ;
but it may be useful to remark here,

that the Three Mixed Transformations of the same scalar function fp, in the same

series of sub-articles, include virtually the whole known theory of the Modular and

Umbilicar Generations of Surfaces of the Second Order.

(18.) Thus, in the formulae of 360, (4.), if we make e = 1, c is the vector of an

Umbilicar Focus of the surface fp = 1, and is the vector of a point on the Umbili

car Directrix corresponding ,
whence the umbilicar focal conic and dirigent cylin

der (real or imaginary) can be deduced, as the loci of this point and line.

(19.) Again, by making e\ and e3 each = 1, in the formulae of 360, (6.), we ob

tain Two Modular Transformations of the equation of the same surface; ci, 3 being

* If the proposed equation be

Svdp =po.x + gdy + rdz = 0, so that v--(ip +jq +

we easily find that 2y = iP +j Q + kR, where

P=D2?-D J/r, Q = Dxr-D~p, R^Dyp-D^q;
the condition of integrability XLV. becomes therefore here,

pP+ qQi rR- 0, which agrees with known results.
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vectors of Modular Foci, in two distinct planes, and
1, 3 being vectors of points

upon the Modular Directrices corresponding : whence the modular focal conies, and

dirigent cylinders (real or imaginary), are found by easy eliminations.

(20.) Thus, by assuming that either

XLVI. . .S\(p-i) =
0, SX(p- 3)

=
0,

or XLVII. . . S/i (p
- &) = 0, S/i (p

-
3)
=

0,

the equations 360, XVI., XVII. may be brought to the forms,

XLVIII. . . (p
- fO2 = mi (p

-
i)

2
,

XLIX. . . (p
-

f3)2
= m3

2
(p
-

3)2,

with the values,

L. ..mi2 = l--, and LI. . . m= 1- - ;

;

ci c3

in which c\, 03, c3 are the three roots of a certain cubic (M=0), or the inverse

squares of the three scalar semiaxes (real or imaginary) of the surface, arranged in

algebraically ascending order (357, IX., XX.
; 405, (6.), &c.): and mi, m3 are the

two (real or imaginary) Moduli, or represent the modular ratios, in the two modes

of Modular Generation* corresponding.

(21.) It is obvious that an equation of the form,

LII. . . T0p= C= const.,

represents a central quadric, if 0p be any linear-f and vector function of p, of the

* Mac Cullagh s rule of modular generation, which includes both those modes,

was expressed in page 437 of the Lectures by an equation of the form,

T(p-a)=TV.yV/3p;

in which the origin is on a directrix, (3 is the vector of another point of that right

line, a is the vector of the corresponding focus, y is perpendicular to a directive

(that is, generally, to a cyclic) plane, p is the vector of any point p of the surface,

and + S/3y is the constant modular ratio, of the distance AP of r from the focus, to

the distance of the same point P from the directrix OB, measured parallel to the di

rective plane. The new forms (360), above referred to, are however much better

adapted to the working out of the various consequences of the construction
;
but it

cannot be necessary, at this stage, to enter into any details of the quaternion trans

formations : still less need we here pause to give references on a subject so interest

ing, but by this time so -well known to geometers, as that of the modular and um-

bilicar generations of surfaces of the second order. But it may just be noted, in order

to facilitate the applications of the formulae L. and LI., that if we write, as usual,

for all the central quadrics, a2
&amp;gt; b2 &amp;gt; c

2
,
whether &2 and c2 be positive or negative,

then the roots c\, c2 ,
c3 coincide, for the ellipsoid, with a&quot;

2
, 6-2, c-2

;
for the single-

sheeted hyperboloid, with c- 2
,

a&quot;

2
,
b 2

; and for the double- sheeted hyperboloid with

Zr2
,
c~2

,
a&quot;

2
, (comp. page 651).

f In page 664 the notation,

dp = 2Svdp = 2S0pdp, 409, IV.

was employed for an arbitrary surface ; but with the understanding that this func
tion

&amp;lt;f&amp;gt;p (comp. 363) was generally non-linear. It may be better, however, as a
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kind considered in the Section III. ii. 6, whether self-conjugate or not; but it re

quires a little more attention to perceive, that an equation of this other form,

LIII. . . T(p-V./3Vya) = T(a-V.yV/Sp),

represents such a surface, whatever the three vector constants a, (3, y may be. The

discussion of this last form would present some circumstances of interest, and might

be considered to supply a new mode ofgeneration, on which however we cannot

enter here.

(22.) The surfaces of the second order, considered hitherto in the present Section,

have all had the origin for centre. But if, retaining the significations of 0, /, and F,

we compare the two equations,

LIV. . . /(p - K) = C, and LV. . . fp - 2S p = C&quot;,

we shall see (by 362, &c.) that the constants are connected by the two relations,

LVI. . .e = 0K, C&quot;=C-//c= C-S/C=C-F;
so that the equation,

LVII. ..fp- 2S p =/(p - 0-i)
- F,

is an identity.

(23.) If then we meet an equation of the form LV., in which (as has been usual)

we have still fp = Sp0| = a scalar and homogeneous function of p, of the second

dimension, we shall know that it represents generally a surface of that order, with

the expression (comp. 347, IX., &c.),

LVIII. . . fc = 0-
1 t = m-tye = Sector of Centre.

(24.) It may happen, however, that the two relations,

LIX. ..m=0, T4/g&amp;gt;0,

exist together ;
and then the centre may be said to be at an infinite distance, but in a

definite direction : and the surface becomes a Para boloid, elliptic or hyperbolic, accord

ing to conditions which are easy consequences from what has been already shown.

(25.) On the other hand it may happen that the two equations,

LX. . .in=0, V =

are satisfied together; and then the vector K of the centre acquires, by LVIII., an

indeterminate value, and the surface becomes a Cylinder, as has been already suffi

ciently exemplified.

(26.) It would be tedious to dwell here on such details ; but it may be worth

general rule, to avoid writing v = 0p, except for central quadrics ;
and to confine

ourselves to the notation dv= 0dp, as in some recent and several earlier sub-articles,

when we wish, for the sake of association with other investigations and results, to

treat the function as linear (or distributive^) ; because we shall thus be at liberty

to treat the surface as general, notwithstanding this property of 0. As regards

the methods of generating a quadric, it may be worth while to look back at the Note

to page 649, respecting the Six Generations of the Ellipsoid, which were given bv

the writer in the Lectures, with suggestions of a few others, as interpretations of

quaternion equations.
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while to observe, that the general equation of a Surface of the Third Degree may
be thus written :

LXI. . . Sqpq pq p + Sp0p + Syp + C- ;

C and y being any scalar and vector constants
; 0p any linear, vector, and self-con

jugate function
;
and q, q , q&quot; any three constant quaternions : while p is, as usual,

the variable vector of the surface.

(27.) In fact, besides the one scalar constant, C, three are included in the vector

y, and six others in the function (comp. 358) ;
and of the ten which remain to be

introduced, for the expression of a scalar and homogeneous function of p, of the third

degree, the three versors Uq, U&amp;lt;? , U^&quot; supply nine (comp. 312), and the tensor

T . qq q&quot;
is the tenth.

(28.) And for the same reason the monomial equation,

LXII. . . Sqpq pq&quot;?
=

0,

with the same significations of q, q , q&quot;, represents the general Cone of the Third

Degree, or Cubic Cone, which has its vertex at the origin of vectors.

(29.) If then we combine this last equation with that of a secant plane, such as

Stp + 1 = 0, we shall get a quaternion expression for a Plane Cubic, or plane curve

of the third degree : and if we combine it with the equation p
2 + 1 = of the unit-

sphere, we shall obtain a corresponding expression for a Spherical Cvlic* or for a

curve upon a spheric surface, which is cut by an arbitrary great circle in three pairs

of opposite points, real or imaginary.

(30.) Finally, as an example of sections of surfaces, represented by transcen

dental equations, let us consider the Screw Surface, or Helicoidrf of which the vec

tor equation may be thus written (comp. the sub-arts, to 314) :

LXIII. ..p = c(s + )a + ya*y, with Ta = l, y = Va/3, and y&amp;gt;0;

a being the unit axis, while (3, y are two other constant vectors, a, c two scalar

constants, and x, y two variable scalar?.

(31.) Cutting this surface by the plane of /3y, or supposing that

LXIV. . . =
Sy/3p

=
]8

2
Sap

-
Sa/3S/3p, and writing LXV. . . c = b$a(3,

we easily find that the scalar and vector equations of what we may call the Screw

Section may be thus written :

LXVI. . . 6(a;+0)=yS.a*-i; LXVIL . . p =y(yS.a*- /3S.a*- ).

(32.) Derivating these with respect to x, and eliminating /3 and y ,
we arrive

at the equation,

LXVIII. . . p = (or + a) p -f zy, if LXIX. . . 26* = Try* ;

*
Compare the Note to page 43 ;

see also the theorem in that page, which con

tains perhaps a new mode of generation of cubic curves in a given plane : or, by

an easy modification, of the corresponding curves upon a sphere.

t Already mentioned in pages 383, 502, 514, 557. The condition
y&amp;gt;0 an

swers to the supposition that, in the generation of the surface, the perpendiculars

from a given helix on the axis of the cylinder are not prolonged beyond that axis.

4 x
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but zy in LXVIII. is the vector of the point, say o, in which the tangent to the sec

tion at the point (a;, y), or P, intersects the given line y, namely the line in the plane

of that section which is perpendicular to the axis a : we see then, by LXIX., that

this point of intersection depends only on the constant, b, and on the variable, y,

being independent of the constant, a, and of the variable, x.

(33.) To interpret this result of calculation, which might have been otherwise

found with the help of the expression 372, XII. (with (3 changed to y) for the nor

mal v to a screw- surface, we may observe, first, that the equation LXVII., which

may be written as follows,

LXX. . . p =yV.a** /3, and gives LXXI. . . TVap = yTy,

would represent an ellipse, if the coefficient y were treated as constant ; namely, the

section of the right cylinder LXXI. by the plane LXIV. ; the vector semiaxes (ma

jor and minor) of this ellipse being y/3 and yy (comp. 314, (2.)).

(34.) By assigning a new value to the constant , we pass to a new screw sur

face (30.), which differs only in position from the former, and may be conceived to

be formed from it by sliding along the axis a
;
while the value of x, corresponding

to a given y, will vary by LXVI., and thus we shall have a new screw section (31.),

which will cross the ellipse (33.) in a new point Q : but the tangent to the section at

this point will intersect by (32.) the minor axis of the ellipse in the same point G as

before.

(35.) We shall thus have a Figure* such as the following (Fig. 85); in which

if F be a.focus of the ellipse EC, and G (as

above) the point of convergence of the tan

gents to the screw sections at the points P, Q,

&c., of that ellipse, it is easy to prove, by

pursuing the same analysis a little farther,

1st, that the angle (#), subtended at this

focus F by the minor semiaxis oc, which is

also a radius (r) of the cylinder LXXI., is

equal to the inclination of the axis (a) of

that cylinder to the plane of the ellipse, as may indeed be inferred from elementary

principles ;
and Ilnd, what is less obvious, that the other angle (/t), subtended at the

same focus (F) by the interval OG, or by what may be called (with reference to the

present construction, in which it is supposed that b &amp;lt; 0, or that the angles made by
Dxp and /3 with a are either both acute, or both obtuse} the Depression (s) ofthe Skew
Centre (G), is equal to the inclination of the same axis (a) to the helix on the same

cylinder, which is obtained (comp. 314, (10.)) by treating y as constant, in the

equation LXIII. of the Screiv Surface.

* Those who are acquainted, even slightly, with the theory of Oblique Arches (or

skew bridges), will at once see that this Figure 85 may be taken as representing rudely
such an arch : and it will be found that the construction above deduced agrees with

the celebrated Rule of the Focal Excentricity, discovered practically by the late Mr.

Buck. This application of Quaternions Avas alluded to, in page 620 of the Lec

tures.
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SECTION 8. On a few Specimens of Physical Application of

Quaternions, with some Concluding Remarks.

416. It remains to give, according to promise (368), before con

cluding this work, some examples* ofphysical applications of the

present Calculus: and as a first specimen, we shall take the Statics

of a Rigid Body.

(1.) Let ai, . . nn be n Vectors ofApplication, and let /3i, . .
/3, be n correspond

ing Vectors of Force, in the sense that n forces are applied at the points AI, . . An of

a, free but rigid system, and are represented as usual by so many right lines from

those points, to which lines the vectors OBI, . . OBH are equal, though drawn from a

common origin; and let y(=oc) be the vector of an arbitrary point c of space.

Then the Equation^- of Equilibrium of the system or body, under the action of these

n applied forces, may be thus written :

I. . . 2V(a-y)/3=0; or thus, I . . . Vy2/3 = 2Va/3.

(2.) The supposed arbitrariness (1.) of y enables us to break up the formula I.

or I
.,

into the two vector equations :

II.. . 2/3 = 0; III. . . 2Va/3=0;

of each of which it is easy to assign, as follows, the physical signification.

(3.) The equation II. expresses that if the forces, which are applied at the points

AI . . of the body, were all transported to the origin o, their statical resultant, or

vector sum, would be zero.

(4.) The equation III. expresses that the resultant of all the couples, produced

in the usual way by such a transference of the applied forces to the assumed origin,

is null.

(5.) And the equation I., which as above includes both II. and III., expresses

that if all the given forces be transported to any common point c, the couples hence

arising will balance each other : which is a sufficient condition of equilibrium of the

system.

(6.) When we have only the relation,

IV. . . S(2/3.2Va/3) = 0,

without 2/3 vanishing, the applied forces have then an Unique Resultant 2/3,

acting along the line of which I. or I , is the equation, with y for its variable vec

tor.

* The reader may compare the remarks on hydrostatic pressure, in pages 434,

435.

f We say here,
&quot;

equation :&quot; because the single quaternion formula, I. or I
.,

contains virtually the six usual sea/or equations, or conditions, of the equilibrium at

present considered.
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(7.) And the physical interpretation of this condition IV. is, that when the

forces are transported to o, as in (3.) and (4.) the resultant force is in the plane of

the resultant couple.

(8.) When the equation II., but not III., is satisfied, the applied forces compound

themselves into One Couple, of which the Axis 2Va/3, whatever may be the posi

tion of the origin.

(9.) When neither II. nor III. is satisfied, we may still propose so to place the

auxiliary point c, that when the fiven forces are transferred to it, as in (5.), the

resultant force 2/3 may have the direction of the axis 2V(a-y)/3 of the resultant

couple, or else the opposite of that direction
;
so that, in each case, the condition,*

shall be satisfied by a suitable limitation of the auxiliary vector y.

(10.) This last equation V. represents therefore the Central Axis of the given

system of applied forces, with y for the variable vector of that right line : or the axis

of the screw-motion which those forces tend to produce, when they are not in balance,

as in (1.), and neither tend to produce translation alone, as in (6.), nor rotation

alone, as in (8.).

(11.) In general, if q be an auxiliary quaternion, such that

VI. . . 9 2/3 = 2Va,3,

its vector part, Vq, is equal by (V.) to the Vector-Perpendicular, let fall from the

origin on the central axis ; while its scalar part, Sq, is easily proved to be the quo

tient, of what may be called the Central Moment, divided by the Total Force : so

that V*? = when the central axis passes through the origin, and Sq = when there

exists an unique resultant.

(12.) When the total force 2/3 does not vanish, let Q be a new auxiliary qua

ternion, such that

2/3 2/3

with VIII. . . c = SQ = S2, and IX. . . y = oc = VQ,

for its scalar and vector parts ;
then c2^ represents, both in quantity and in direction,

the Axis of the Central Couple (9.), and y is the vector of a point c which is on the

central axis (10.), considered as a right line having situation in space : while the

position of this point on this line depends only on the given system of applied forces,

and does not vary with the assumed origin o.

(13.) Under the same conditions, we have the transformations,

X... 2a/3=(c + y)2/3; XI. . . T2a/3 = (C2-y2)iT2/3 ;

XII. . . 2Va/3 = c2/3 + Vy2/3 ;
XIII. . . (2Va/3)

2 =
c*(2/3)2 4- (Vy 2/3)* ;

* The equation V. may also be obtained from the condition,

V. . . T2V( -
y)/3 = a minimum,

when y is treated as the only variable vector
;
which answers to a known property

of the Central Moment.
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whereof XII. contains the known law, according to which the axis of the couple (4.),

obtained by transferring all the forces to an assumed point o, varies generally in

quantity and in direction with the position of that point : while XIII. expresses the

known corollary from that law, in virtue of which the quantity alone, or the energy

(T2V/3) of the couple here considered, is the same for all the points o of any one

right cylinder, which has the central axis of the system for its axis of revolution.

(14.) If we agree to call the quaternion product rA. AA the quaternion moment,

or simply the Moment, of the appliedforce AA at A, with respect to the Point p, the

quaternion sum 2aj3 in X. may then be said to be the Total Moment of the given

system of forces, with respect to the assumed origin o
;
and the formula XL ex

presses that the tensor of this sum, or what may be called the quantity of this total

moment, is constant for all points o which are situated on any one spheric surface,

with the point c determined in (12.) for its centre : being also a minimum when o is

placed at that point c itself, and being then equal to what has been already called

the central moment, or the energy of the central couple.

(15.) For these and other reasons, it appears not improper to call generally the

point c, above determined, the Central Point, or simply the Centre, of the given

system of applied forces, when the total force does not vanish
;
and accordingly in

the particular but important case, when all those forces are parallel, without their

sum being zero, so that we may write,

XIV. . . ]3i
=

6i/3, . . (3n
= bn(3, T2/3 &amp;gt;0,

the scalar c in (12.) vanishes, and the vector y becomes (comp. Art. 97 on bary-

centres),

&ii + . + bnan 26a
XV. . . oc = y = , ;

=
;

61 +..+& 26

so that the point c, thus determined, is independent of the common direction
/3, and

coincides with what is usually called the Centre of Parallel Forces.

(16.) The conditions of equilibrium (1.), which have been already expressed by

the formula I., may also be included in this other quaternion equation,

XVI. . . Total Moment = 2a/3 = a scalar constant,

of which the value is independent of the origin ; and which, with its sign changed

represents what may perhaps be called the Total Tension of the system.

(17.) Any infinitely small change, in the position of a rigid body, is equivalent to

the alteration of each of its vectors a to another of the form,

XVII. . . a + Sa = a + -1- Via,

c and i being two arbitrary but infinitesimal vectors, which do not vary in the pas

sage from one point A of the body to another : and thus the conditions ofequilibrium

(1.) may be expressed by this other formula,

XVIII. . . 2S/3a=0,

which contains, for the case here considered, the Principle of Virtual Velocities, and

admits of being extended easily to other cases of Statics.

417. The general Equation of Dynamics may be thus written,
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with significations of the symbols which will soon be stated ; but as

we only propose (416) to give here some specimens of physical appli

cation, we shall aim chiefly, in the following sub-articles, at the de

duction of a few formulas and theorems, respecting Axes and Mo
ments of Inertia, and subjects therewith connected.

(1.) In the formula I., a is the vector of position, at the time
t,

of an element

m of the system ;
da is any variation of that vector, geometrically compatible with

the mutual connexions between the parts of that system; the vector m represents

a moving force, or an accelerating force, which acts on the element m of mass
;
D

and S are marks, as usual, of derivating and taking the scalar; and the summation

denoted by 2 extends to all the elements, and is generally equivalent to a triple in

tegration, or to an addition of triple integrals in space. And the formula is ob

tained (comp. 416, (17.)), by a combination of D Alernbert s principle with the prin

ciple of virtual velocities, which is analogous to that employed in the Mecanique

Analytique by Lagrange.

(2.) For the case of a, free but rigid body, we may substitute for da the expres

sion t-i-Via, assigned by 416, XVII.; and then, on account of the arbitrariness

of the two infinitesimal vectors t and t, the formula I. breaks up into the two follow-

II. . . 2m (D,2a-0 = 0; III. . . 2mVa (Df
2a - )

=
;

which correspond to the two statical equations 416, II. and III., and contain re

spectively the law of motion of the centre of gravity, and the law of description of

areas.

(3.) If the body have & fixed point, which we may take for the origin o, we

eliminate the reaction at that point, by attending only to the eqxiation III.
;
and

may then express the connexions between the elements m by the formula,

IV. . . D ta = Vta, whence V. . . D,2a = iVta - VaT) t i ;

i being the Vector-Axis of instantaneous Rotation of the body, in the sense that its

versor Ut represents the direction of the axis, and that its tensor Tt represents the

angular velocity, of such rotation at the time t.

(4.) By V., the equation III. becomes,

VI. . .

and other easy combinations give the laws of areas and living force, under the forms,

VII. . . 2maD&amp;lt;a- 2mV/ad = y = a constant vector;

VIII. . .
|2m(D&amp;lt;a)

2
-2roSJ iad* = c = a constant scalar.

(5.) When the applied forces vanish, or balance each other, or more generally

when they compound themselves into a single force acting at the fixed point, so that

in each case the condition

IX. .

is satisfied, the equations (4.) are simplified ;
and if we introduce a linear, vector,

and self-conjugate function 0, such that

X. . . 0t = 2mVat = i2wa 2 - SmaSat,
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and write h2 for - 2c, they take the forms,

XL .
.&amp;gt;D&amp;lt;e

+ Vi0i = 0; XII. . .
&amp;lt;pi
+ y = 0; XIII. . . Si0i= A;

y and h being two real constants, of the vector and scalar kinds, connected with each

other and with t by the relation,

XIV. . . Sty + A* =
;

also XV. . . 0D,t = Vty.

It may be added that y is now the vector sum of the doubled areal velocities of all the

elements of the body, multiplied each by the mass m of that element, and each re

presented by a right line aDta perpendicular to the plane of the area described

round the fixed point o in the time dt
;
and that /t2 is the living force, or vis viva of

the body, namely the positive sum of all the products obtained by multiplying each

element m by the square of its linear velocity, regarded as a scalar
(TD&amp;lt;a).

(6.) &quot;When t is regarded as a variable vector, the equation XIII. represents an

ellipsoid, wmch isfixed in the body, but movealle with it ; and the equation XIV.

represents a tangent plane to this ellipsoid, which plane is fixed in space, but changes

in general its position relatively to the body. And thus the motion of that body may

generally be conceived, as was shown by Poinsot, to be performed by the rolling

(without gliding) of an ellipsoid upon a plane ; the former carrying the body with it,

while its centre o remainsfixed : and the semidiameter (t) of contact being the vec

tor-axis (3.) of instantaneous rotation.

(7.) The ellipsoid XIII. maybe called, perhaps, the Ellipsoid of Living Force,

on account of the signification (5.) of the constant 7t2 in its equation ;
and the fixed

plane XIV., on which it rolls, is parallel to what may be called the Plane of
Areas (Siy

= 0) : no use whatever having hitherto been made, in this investigation,

of any axes or moments of inertia. But if we here admit the usual definition of such

a moment, we may say that the Moment of Inertia of the body, with respect to any

axis i through the fixed point, is equal to the living force 7t2 divided by the square*

ofthe semidiameter Ti of the ellipsoid XIII.
;
because this moment is,

XVI. . . Sm(TVaU0 2 =i-22KVt )
a=

-Si-&amp;gt;
= /i

2Tr2.

(8.) The equations XII. and XIII. give,

XVII. . . = y
2
Si0i

-
W(0t)

2 = Stv, if XVIII. . .
v=y*&amp;lt;j&amp;gt;i

-
h*(p*t ;

and this equation XVII. represents a cone of the second degree, fixed in the body

(comp. (6.)), but moveable with it, of which the axis t is always a side, and to which

the normal, at any point of that side, has the direction of the line v. But it follows

* Hence it may easily be inferred, with the help of the general construction ofan

ellipsoid (217, (6.)), illustrated by Figure 53 in page 226, that for any solid body,

and any given point A thereof, there can always be found (indeed in more ways than

one) two other points, B and c, which are \ikewisefixed in the body, and are such that

the square-root of the moment of inertia, round any axis AD, is geometrically con

structed by the line BD, if the point D be determined on the axis, by the condition that

A and D shall be equally distant from c. This theorem, with some others here re

produced, was given in the Abstract of a Paper read before the Royal Irish Academy
on the 10th of January, 1848, and was published in the Proceedings of that date.
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from XL, or from XII. XV., and from the properties of the function $, that
T&amp;gt;ti

i^

perpendicular to both $i and 2
t,
and therefore also by XVIII. to v

;
the cone XVII.

is therefore touched, along the side i, by that other cone, which is the locus in space

of the instantaneous axis of rotation. We are then led, by this simple quaternion

analysis, to a second representation of the motion of the body, which also was pro

posed by Poinsot : namely, as the rolling of one cone on another.

(9.) To treat briefly by quaternions some of Mac Cullagh s results on this sub

ject, it may be noted that the line y, thoughfixed in space, describes in the body a

cone of the second degree, of which the equation is, by what precedes,

XIX. . . ^Syf- y + AV =
i

if XX. ..0=Ty, or XXL . . y
2 + g* = ;

while, if we write y = oc, the point c is indeed fixed in space, but describes a

sphero-conic in the body, which is part of the common intersection of the cone

XIX., the sphere XXL, and the reciprocal ellipsoid (conip. XUL),

XXII. . . Sy0-iy = 2.

(10.) Also, the normal to the new cone (9.), at any point of the side y, has the

direction of g*$-*y + A2
y, or of t + ^2

y&quot; (comp. XIV.) ;
and if a line in this direc

tion be drawn through the fixed point o, it will be the side of contact of the plane

of areas (7.), with the cone of normals at o to the cone XIX.
;
which last (or reci

procal) cone rolls on that plane of areas.

(11.) As regards the Axes of Inertia, it may be sufficient here to observe that

if the body revolve round a permanent axis, and with a constant velocity, the vec

tor axis t is constant
;
and must therefore satisfy the equation,

XXIII. . . Vi0i = 0, because XXIV. . . Dt i
=

;

it has therefore in general (comp. 415) one or other of Three Real and Rectangular

Directions, determined by the condition XXIII.: namely, those of the Axes of
Figure of either of the two Reciprocal Ellipsoids, XIII. XXII.

(12.) And the Three Principal Moments, say A, B, C, corresponding to those

three principal axes, are by XVI. the three scalar values of - r 1^ ;
so that the

symbolical cubic (350) in
&amp;lt;p may be thus written,

XXV. . . (0 + A) (0 + J?) (0 + C) = 0.

(13.) Forming then this symbolical cubic by the general method of the Section

III. ii. 6, we find that the three moments A, J3, C, are the three roots (always real,

by this analysis) of the algebraic and cubic equation,

XXVI. ..A 3 - 2n*A* + (nl + n ) A - (n
2n 2 -

*) = Q
;

in which, n2
,
n 2

, n 2 are three positive scalars, namely,

XXVII. ..- Sma2; n 2 = - Smm (Vaa )
2

;
n&quot;

2= 2mm
m&quot;(Saa a&quot;)

2
;

and the combination nV- n&quot;2 is another positive scalar, of which the value may
be thus expressed,

XXVIII. . . ABC = n*n * -
n&quot;

2 = SmWa8
(Vaa )

2

+ 2SwjmV (Taa Ta a&quot;Ta&quot;a + Saa Sa
a&quot;Sa&quot;a),

if a, a
, a&quot;, &c. be the vectors of the mass-elements m, m , m&quot;,

&c.
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(14.) And because the equation XXV. gives this other symbolical result,

XXIX. . . -ABC$~ l =
&amp;lt;J)*
+ (A + J5+ C)0+ J5C+ CA + AB,

it follows that XXX. . , 0-iQ
=

;

and therefore, by XV., &c., that if a body, with a fixed point, &c., begin to revolve

round one of its three principal axes of inertia, it will continue to revolve round that

axis, with an unchanged velocity of rotation.

(15.) It has hitherto been supposed, that all the moments of inertia are referred

to axes passing through one point o of the body ;
but it is easy to remove this re

striction. For example, if we denote the moment XVI. by 7 ,
and if I be the cor

responding moment for an axis parallel to t, but drawn through a new point Q, of

which the vector is w, then

XXXI. . . 7w = r
8
:SM(Vi(a-aO)8

= /o + 22m. S (wrWiic) + j
2
Si,

if XXXII. . . K^m = Sma, and XXXIII. ..p = TVwUt,

so that K is the vector of the centre of inertia (or of gravity) of the body, and p is

the distance between the two parallel axes.

(16.) If then we suppose that the condition

XXXIV. . . Viic =

is satisfied, that is, if the axis i pass through the centre of inertia, we shall have the

very simple relation,

XXXV. .. Ia = I +p*2m;

which agrees with known results.

418. As a third specimen of physical applications of quaternions,

we propose to consider briefly the motions of a System of Bodies,

m, m , m&quot;,
. . . regarded as free material points, of which the variable

vectors are
,
a

, a&quot;,
. . . and which are supposed to attract each other

according to the law of the inverse square: the fundamental for

mula employed being the following,

+ tp=o. if lu.p-a-^fiSU,,

P thus denoting the Potential (or force-function) of the system, and

the variations fa, fa
,

. . . being infinitesimal, but otherwise arbi

trary.

(1.) To deduce the formula I., with the signification II. of P, from the general

equation 417, 1. of dynamics, we have first, for the case of two bodies, the following

expressions for the accelerating forces,

III. ..g=
m

. ?=^--, if r =T(-a );
(a-a )r (a

-
a)r

4 Y
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whence follows the transformation,*

IV...-

a result easily extended, as above. If the law of attraction were supposed different,

there would be no difficulty in modifying the expression for the potential accordingly.

(2.) In general, when a scalar,f (as here P), is & function of one or more vec.

tors, a, a
,
... its variation (or differential) can be expressed as a linear and scalar

function of their variations (or differentials), of the form S/3a + S/3 da + . . (or

2S/3da) ;
in which (3, j3 . . . are certain new and finite vectors, and are them

selves generally functions of o, a, . .
.,

derived from the given scalar function/. And

we shall find it convenient to extend the Notation^ of Derivatives, so as to denote

these derived vectors /3, (3 , &c., by the symbols, D rt/, Darf, &c. In this manner we

shall be able to write,

V. . . P= SS (DaP.da) ;

and the differential equations of motion of the bodies m, m
, m&quot;,

. . will take by
I. the forms :

VI. . . mDf-a + DUP= 0, m D tV + D P =
0, &c.

;

or more fully,

VII. . . D..a-
( ,, (_,.;

+
(a

_ a..

) T (a
_ a-.)

+ --- &C

(3.) The laws of the centre of gravity, of areas, and of living force, result imme

diately from these equations, under the forms,

VIII. . . 2mDz =
(3 ; IX. .. ZmVaT&amp;gt; ta = y ;

and X. . . r=-J-

in which /3, y are constant vectors, H is a constant scalar, and 2 T is the living

force of the system (comp. 417, (5.)).

(4.) One mode (comp. 417, (2.)) of deducing the three equations, of which these

are the first integrals, is the following. To obtain VIII., change every variation

da in I. to one common but arbitrary infinitesimal vector, 6. For IX., change da

to Vta, da to Via
,
&c.

;
i being another arbitrary and infinitesimal vector. Finally,

to arrive at X., change variations to differentials (da to da, &c.), and integrate

once, as for the two former equations, with respect to the time t.

(5.) The formula I. admits of being integrated by parts, without any restric

tion on the variations da, by means of the general transformation,

XL . . S(D (
2
a.da) = D;S(D*a.da)-d.(D^a) 2

,

combined with the introduction of the following definite integral (comp. X.),

XII. . . F=

* It may not be useless here to compare the expression in page 417, for the dif

ferential of a proximity.

f In this extended notation, such a formula as d/p = 2Svd|0 would give,
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(6.) In fact, if we denote by ao, a o, . the initial values of the vectors a, a
,

. .

or their values when t = 0, and by D a, D a
,

. . the corresponding values of D ta,

D^a ,
. .

,
we shall thus have, as a first integral of the equation I., the formula,

XIII. . . 2mS (D*a . Set - D a . Sa ) + SF= ;

in&quot;which no variation St is assigned to t,
and which conducts to important conse

quences.

(7.) To draw from it some of these, we may observe that if the masses m, m ,
. .

be treated as constant and known, the complete integrals of the equations VI. or

VII. must be conceived to give what may be called ihefinal vectors of position a,

,
. . and of velocity D ta, Dta ,

. . in terms of the initial vectors ao, a o, DO (

D a
,

. . and of the time, t : whence, conversely, we may conceive the initial vectors

of velocity to be expressible as functions of the initial and final vectors of position, and

of the time. In this way, then, we are led to consider P, T, and F as being scalar

functions (whether we are or are not prepared to express them as such), of a, a
,

. .

ao, a o, . . and t; and thus, by (2.), the recent formula XIII. breaks up into the two

following systems of equations :

XIV. . . mD,a + D aF=0, m D ta + Da F= 0, &c.
;

and XV. . .
- mD a + ~Da

Q
F= 0,

- m D o + Da F= 0, &c.
;

whereof the former may be said to be intermediate integrals, and the latter to be

final integrals, of the differential equations of motion of the system, which are in

cluded in the formula I.

(8.) In fact, the equations XIV. do not involve the final vectors of acceleration

D t
2
a, . . as the differential equations VI. or VII. had done; and the equations XV.

express, at least theoretically, the dependence of the final vectors of position a, . . on

the time, t,
and on the initial vectors of position a

,
. . and of velocity D a, . . as by

(7.) the complete integrals ought to do. And on account of these and other impor

tant properties, the function here denoted by F may be called the Principal* Func

tion of Motion of the System.

(9.) If the initial vectors ao, . . and D
,

. . be given, that is, if we consider the

actual progress in space of the mutually attracting system of masses TO, . . from one

set of positions to another, then the function F depends upon the time alone
;
and

by its definition XII., its rate or velocity of increase, or its total derivative with re

spect to t, is thus expressed,

XVI. . . V tF=P+ T.

(10.) But we may inquire what is the partial derivative, say (JDtF), of the

same definite integral F, when regarded (7.) as a function of the final and initial vectors

of position a, . . a
,

. . which involves also the time explicitly, and is now to be deri-

vated with respect only to that variable t,
as ifthe final vectors a, . . were constant :

whereas in fact those vectors alter with the time, in the course of any actual mo

tions of the system.

* This function was in fact so called, in two Essays by the present writer,
&quot; On

a General Method in Dynamics,&quot; published in the Philosophical Transactions (Lon

don), for the years 1834 and 1835 ; although of course coordinates, and not qua

ternions, were then employed, the latter not having been discovered until 1843 :

and the notation S, since adopted for scalar, was then used instead of F.
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(11.) For this purpose, it is sufficient to observe that the part of the total deri

vative Dt F, which arises, from the last mentioned changes of a, . . is (by XIV.

and X.),
XVII. . . 2S(Da F.D&amp;lt;a)

= 2T;

and therefore (by XVI. and X.), that the remaining part must be,

XVIII. . . (D,F) = P- T=-H.

(12.) The complete variation of the function Fis therefore (comp. XIII.), when

t as well as a, . . and
cto&amp;gt;

is treated as varying,

XIX. . . F=-^-SmSDiaa + 2mSDoa&amp;lt;$ao.

(13.) And hence, with the help of the equations X. XIV. XV., it is easy to infer

that the principal function F must satisfy the two following Partial Differential

Equations in Quaternions :

XX. . .

XXI. . .

in which P denotes the initial value of the potential P.

(14.) If we write

XXII. . . F=

so that F represents what is called the Action, or the accumulated living force, of

the system during the time
*, then by X. and XII. the two definite integrals Fand

V are connected by the very simple relation,

whence by XIX. the complete variation of F, considered as a function of the final

and initial vectors of position, and of the constant H of living force, which does not

explicitly involve the time, may be thus expressed,

XXIV. . . 8V = tSH- 2mSD*afa+ 2mSD afa .

(15.) The partial derivatives of this new function F, which is for some purposes
more useful than F, and may be called, by way of distinction from it, the Charac
teristic* Function of the motion of the system, are therefore,

XXV. . . Da F= - mD,a, &c.
;

XXVI. . . D
QOF= + mD a, &c.

;

and XXVII. . .DaV=t.

(16.) The intermediate integrals (7.) of the differential equations of motion,
which were before expressed by the formulae XIV., may now, somewhat less simply,
be regarded as the result of the elimination ofH between the formula; XXV. XXVII.

;

and the/aZ integrals of those equations VI. or VII., which were expressed by XV.,
are now to be obtained by eliminating the same constant# between the recent equa
tions XXVI. XXVII.

* The Action, F, was in fact so called, in the two Essays mentioned in the pre-
cding Note. The properties of this Characteristic Function had been perceived by

the writer, before those of that which he came afterwards to call the Principal
Function, as above.
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(17.) The Characteristic Function, V, is obliged (comp. (13.)) to satisfy the two

following partial differential equations,

XXVIII. . . iSro-i (Da F)2 + P + H= ;

XXIX. . . iSm-i (Dao F)2 + P + H= ;

it vanishes, like F, when t = 0, at which epoch a = o
,
a = a o, &c. ; each of these

two functions, F and F, depends symmetrically on the initial and final vectors of po
sition : and each does so, only by depending on the mutual configuration of all those

initial and final positions.

(18.) It follows (comp. (4.), see also 416, (17.), and 417, (2.)), that the func

tion F must satisfy the two conditions,

XXX. . . S(DaF+Da0F) = 0; XXXI. . . 2V(aDa^ + a D
a0F)= ;

which accordingly are forms, by XIV. XV., of the equations VIII. and IX., and

therefore are expressions for the law of motion of the centre ofgravity, and the law of

description of areas. And, in like manner, the function F is obliged to satisfy these

two analogous conditions,

XXXII. . . 2(Da F + Dao F)
= 0; XXXIII. . . 2V(aDa F+ D

a0 F) = 0;

which accordingly, by XXV. XXVI., are new forms of the same equations VIII. IX.,

and consequently are new expressions of the same two laws.

(19.) All the foregoing conditions are satisfied when t is small, that is, when the

time of motion of the system is short, by the following approximate expressions for the

functions Fand F, with the respectively derived and mutually connected expressions

for H and t :

XXXIV. . . F= *- (P+ P ) + ;

XXXV. . . F=r

XXXVI. . . H = -(

XXXVII. . . t = DHV= s(P+P + 27TH ;

n which s denotes a real and positive scalar, such that

XXXVIII. . . s 2 = - 2m (a
- a )

2
,

or XXXIX. . . s = V2wT (a
-

).

419. As a, fourth specimen, \ve shall take the case of a free point

or particle, attracted to a fixed centre* o, from which its variable

vector is a, with an accelerating force = Mr 2
,

if r = T = the distance

* When tiro free masses, m and m
,
with variable vectors a and a

,
attract each

other according to the law of the inverse square, the differential equation of the rela

tive motion of m about m is, by 418, VII.,

I . .. D (o-o )
=0+0 (- )

&quot;

lr S if &amp;gt;-
= T(a- );

and this equation I , reduces itself to I., when wo write a for a - a
,
and M for

m -f in. .
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of the point from the centre, while M is the attracting mass: the

differential equation of the motion being,

I. .. D2 = J/a- 1r 1

,

if D (abridged from D,) be the sign of derivation/ with respect to

the time t.

(1.) Operating on I. with V.a, and integrating, we obtain immediately the

equation (comp. 338, (5.)),

II. .. VaDa=/3= const. :

which expresses at once that the orbit is plane, and also that the area described in

it is proportional to the time ; U/3 being the fixed unit-normal to the plane, round

which the point, in its angular motion, revolves positively ; and T/3 representing in

quantity the double areal velocity, which is often denoted by c.

(2.) And it is important to remark, that these conclusions (1.) would have been

obtained by the same analysis, if r-Hn I. had been replaced by any other scalar

function, /(r), of the distance ; that is, for any other law of centralforce, instead of

the law of the inverse square.

(3.) In general, we have the transformation,

III. .. a- Ta-i = d

because, by 334, XV., &c., we have,

IV. . . dUa = V(da.a-i.Ua = a-2

the equation I. may therefore by II. be transformed as follows,

V. . . D?a = yDUa, if VI. . . y = - M(3^ ;

and thus it gives, by an immediate integration,

VII. . . Da = y(Ua-), OT VII . . . Da = (
- Ua) y,

f being a new constant vector, but one situated in the plane of the orbit, to which

plane /3 and y are perpendicular.

(4.) But a, Da, D2a are here (comp. 100, (5.) (6.) (7.)) the vectors ofposition,

velocity, and acceleration of the moving point; and it has been defined (100, (5.))
that if, for any motion of a point, the vectors of velocity be set off from any common

origin, the curve on which they terminate is the Hodograph* of that motion.

(5.) Hence a and Da, if the latter like the former be drawn from the fixed point

o, are the vectors, of corresponding points of orbit and hodograph ; and because the

formula VII. gives,

VIII. . . SyDa =
0, and IX. . . (Da -f yt)

? = y
2

,

it follows that the hodograph is, in the present question, a Circle, in the plane of the

*
Compare Fig. 32, p. 98; sec also pages 100, 515, 578, from the two latti-r

of which it may be perceived, that the conception of the hodograph admits of some

purely geometrical applications.
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orbit, with - yc (or + y) for the vector of its centre, and with Ty = A/T/3-&quot;
for its

radius, which radius we shall also denote by h.

(6.) The Law of the Circular* Hodograph is therefore a- mathematical conse

quence of the Law of the Inverse Square ; and conversely it will soon be proved, that

no other law of centralforce would allow generally the hodograph to be a circle.

(7.) For the law of nature, the Radius (h} ofthe Hodograph is equal, by (1.) and

(5.), to the quotient of the attracting mass (Af), divided by the double areal velocity

(T/3 or c) in the orbit ; and if we write

X... e=Tf
,

this positive scalar e may be called the Excentricity of the hodograph, regarded as a

circle excentrically situated, with respect to i\\Q fixed centre offorce, o.

(8.) Thus, if e
&amp;lt; 1, the fixed point o is interior to the hodographic circle

;
if e - 1,

the point o is on the circumference ; and if e&amp;gt; 1, the centre o of force is then exte

rior to the hodograph, being however, in all these cases, situated in its plane.

(9.) The equation VII. gives,

XI. . . f-Ua=--y- 1Da = Da.y-
1

;

operating then on this with S. a, and writing for abridgment,

XII. . .p=fiy-\ = M- iT/32
= c2Jf-i, and XIII. . . SUat = cosv,

so that p is a constant and positive scalar, while v is the inclination of o to - e, we

find,

XIV. . .r + Sae = or XV. . . r=
1 + e cos v

the orbit is therefore a plane conic, with the centre offeree o for a. focus, having e

for its excentricity, and p for its semiparameter.

(10.) And we see, by XII., that if this semiparameter p be multiplied by the

attracting mass Af, the product is the square of the double areal velocity c
;

so

that this constant c may be denoted by (Mp^, which agrees with known results.

(11.) If, on the other hand, we divide the mass (A/) by the semiparameter (/&amp;gt;),

the quotient is by XII. the square of the radius (J/T/3
1 or h) of the hodograph.

(12.) And if we multiply the same semiparameter p by this radius MTj3~* of

the hodograph, the product is then, by the same formula XII., the constant T/3 or

c of double areal velocity in the orbit, so that h = Mc~ l = cp~ .

(13.) If we had operated with V. a on VII
.,
we should have found,

XVI. . ./3
= V.n(-

which would have conducted to the same equations XIV. XV. as before.

* This law of the circular hodograph was deduced geometrically, in a paper read

before the Royal Irish Academy, by the present author, on the 14th of December,

1846 ;
but it was virtually contained in a quaternion formula, equivalent to the re

cent equation VII., which had formed part of an earlier communication, in July, 1 845.

(See the Proceedings for those dates
;
and especially pages 345, 347, and xxxix.,

xlix., of Vol. III.)
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(14.) If \ve operate on VII. with S.a, we find this other equation,

XVII. . .
- rDr = SaDa = yVa ;

but XVIII. . .
-

y
2 = /i

2 = (by VI. and XII., comp. (1 1.)),

and XIX. . . -(Va0 2 = *V2-(p-r)2=X2r-p-r?a-i),
P

if we write XX. . . a =
v2

;

hence squaring XVII., and dividing by r, we obtain the equation,

(15.) It is obvious that this last equation, XXI., connects the distance, r, with

the time, t, as the formula XV. connects the same distance r with the true anomaly,

v
;
that is, with the angular elongation in the orbit, from the position of least dis

tance. But it would be improper here to delay on any of the elementary conse

quences of these two known equations : although it seemed useful to show, as above,

how the equations themselves might easily be deduced by quaternions, and be con

nected with the theory of the hodograph.

(16.) The equation II. may be interpreted as expressing, that the parallelogram

(comp. Fig. 32) under the vectors a and Da of position and velocity, or under any

two corresponding vectors (5.) of the orbit and hodograph, has a constant plane and

area, represented by the constant vector
j3,

which Is perpendicular (1.) to that plane.

But it is to be observed that, by (2.), these constancies, and this representation, are

not peculiar to the law of the inverse square, but exist for all other laws of central

force.

(17.) In general, if any scalar function R (instead of M/-~ 2
) represent the acce

lerating force of attraction, at the distance r from the fixed centre o, the differential

equation of motion will be (instead of I.),

XXII. . . D2a = Rra-i = - XUa
;

and if we still write VaDa =
/3,

as in II., the formula IV. will give,

XXIII. . . D 3a - - DR. Ua - Rr -2
/3Ua, and XXIV. . . V = r2

/3 ;D~a
in which j3

=
cU/3, if c = T/3, as before.

(18.) Applying then the general formula 414, I., we have, for any law* offorce,
the expressions,

XXV. . . Vector of Curvature of Ilodograph = V =
C

Ua/3 ;D 2a D2a Rrz

XXVI. . . Radius (A) of Curvature of Hodograph = Rr*c~i

Force x Square of Distance~
Double A real Velocity in Orbit

* The general value XXVI., of the radius of curvature of the hodograph, was

geometrically deduced in the Paper of 1846, referred to in a recent Note.
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of which the last not only conducts, in a new way, for the law of nature, to the con

stant value (7.), h =
A/T&amp;gt;,

but also proves, as stated in (6.), that for any oilier law

of central force the hodograph cannot be a circle, unless indeed the orbit happens to

be such, and to have moreover the centre of force at its centre.

(19.) Confining ourselves however at present to the law of the inverse square,
and writing for abridgment (comp. (5.)),

XXVII. . . K = OH = ey = Vector of Centre H ofHodograph,

which gives, by (5.) and (7.),

XXVIII. . . TK =
eh,

the origin o of vectors being still the centre offorce, we see by the properties of the

circle, that the product of any two opposite velocities in the orbit is constant ; and

that this constant product* may be expressed as follows,

XXIX. . . (e-l)AUjc.(c+l)/tUic = A2 (l-e2)=-M 1
,

by XVIII. and XX.

(20.) The expression XXIX. may be otherwise written as K2 -
y2; and if v be

the vector of any point u external to the circle, but in its plane, and u the length
of a tangent UT from that point, we have the analogous formula,

XXX. . . ttS=y2-(t;-iOa=T(i; -)*-#.
(21.) Let T and r be the vectors ox, OT of the two points of contact of tan

gents thus drawn to the hodograph, from an external point u in its plane ;
then

each must satisfy the system of the three following scalar equations,

XXXI. . .Syr = 0; XXXII. ..
(r-&amp;lt;c)

2 =
?
z

;
XXXIII. . . S (r

- K)(V - K) = y2 ;

whereof the first alone represents the plane ; the two first jointly represent (comp.

(5.)) the circle ; and the third expresses the condition of conjugation of the points

T and u, and may be regarded as the scalar equation ofthe polar of the latter point.

It is understood that Syu =
0, as well as Sy =

0, &c., because y is perpendicular

(3.) to the plane.

(22.) Solving this system of equations (21.), we find the two expressions,

XXXIV. . . r = JC+y(y + tt)(w-jc)-&amp;gt;;
XXXIV. . . r = K + y (y-u) (

- B)-i ;

in which the scalar u has the same value as in (20.). As a verification, these ex

pressions give, by what precedes,

* In strictness, it is only for a closed orbit, that is, for the case (8.) of the centre

of force being interior to the hodograph (e &amp;lt; 1), that two velocities can be opposite ;

their vectors having then, by the fundamental rules of quaternions, a scalar and posi

tive product, which is here found to be= Ma&quot;
1

, by XXIX., in consistency with the

known theory of elliptic motion. The result however admits of an interpretation, in

other cases also. It is obvious that when the centre o of force is exterior to the hodo

graph, the polar of that point divides the circle into two parts, whereof one is con

cave, and the other convex, towards o ; and there is no difficulty in seeing, that the

former part corresponds to the branch of an hyperbolic orbit, which can be described

under the influence of an attracting force : while the latter part answers to that

other branch of the same complete hyperbola, whereof the description would require

the force to be repulsive.

4 z
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XXXV. . . S(r-iO(r-tO = 0; XXXV. . . S(r
- K) (r -v)=0;

and XXXVI. . . (r
-

w) = (r
- v^ = - u2

.

In fact it is found that

XXXVII. .. r - =
*( + y)(v -)- ;

XXXVIII. . . T( + y) = T(v - K) ;

and XXXIX. . . (r- u) (r
-

ic)
= y ;

u + y being here a quaternion.

(23.) If v be the vector ou of any point u
,
on the polar of the point u with

respect to the circle, then changing r to v
,
and u to 2, in XXXIV., we find this vector

form (comp. (21.)) of the equation of that polar,

XL. . . v = K + y (y + z) (v- )-,

or, by an easy transformation,

XLI. . .
(/t

2 + w2) v = /*2v + M2
/c + *y (K

-
v),

in which 2 is an arbitrary scalar.

(24.) If then we suppose that u is the intersection of the chord TT with the

right line ou, the condition

u2V/cu
XLII. . . Yt/u - will give XLIII. . . zy = 5 ;

v 2 S*cy

but XLIV. . . V/cu .
(/c
-

v)
= KS (KU

- w 2
) + vS (KV

- 2
) ;

the coefficient then of K, in the expanded expression for v
, disappears as it ought to

do : and we find, after a few reductions,

XLV. . . V =V ---
,

v ir l S/ev

a result which might have been otherwise obtained, by eliminating a new scalar y

between the two equations,

XLVI. . . w =yw, S (yv
-

K) (v
-

K)
= y

2
.

(25.) Introducing then two auxiliary vectors, X, /i,
such that

XLV1I. . . X = V-ISKU, or S*cu = v\ = Xi;,

and therefore XLVII . . . X - K = v iV/cu, S/cX = X2
, (X - )

= K 2 - X2
,

and XLVIII. . . /i=xf 1+f 1+^V\ whence
/u || X, (/*-ic)

2 =
y*,

we have the very simple relation,

XLIX. . . (v
-
X) (v

-
X)
-

(ft
- X)

2
,

or L. . . LU . LU = LM2
,

if X = OL, and /X
= OM. Accordingly, the point L is the foot of the perpendicular let

fall from the centre n on the right line ou, while M is one of the two points M, M of

intersection of that line with the circle
;
so that the equation L. expresses, that the

points u, u are harmonically conjugate, with respect to the chord MM
,
of which L is

the middle point, as is otherwise evident from geometry.

(26.) The vector a of the orbit (or of position), which corresponds to the vector

T (= Da) of the hodograph (or of
velocity&quot;),

and of which the length is Ta = r = the

distance, may be deduced from r by the equations,

LI. . . a = r(K -r)y-i, and LII. . . Vra = -/3= My ;

whence follow the expressions,

1,111... Potential = Mr ^ =
(say) P= Sr (K

-
r) = Sv (K

-
r) ;
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the second expression for P being deduced from the first, by means of the relation

XXXV.

(27.) The first expression LIII. for P shows that the potential is equal, 1st, to

the rectangle under the radius of the hodograph, and the perpendicular from the

centre o of force, on the tangent at T to that circle
;
and Ilnd, to the square of the

tangent from the same point T of the hodograph, to what may be called the Circle of

Excentricity, namely to that new circle which has on for a diameter. And the first

of these values of the potential may be otherwise deduced from the equality (7.) of the

mass M, to the product he of the radius h of the hodograph, multiplied by the constant

c of double areal velocity, or by the constant parallelogram (16.) under any two cor

responding vectors.

(28.) The second expression LIII. for the potential P, corresponding to the

point T of the hodograph, may (by XXXIV., &c.) be thus transformed, with the

help of a few reductions of the same kind as those recently employed :

LIV...P=^
=

&quot;-^-^,
if LV...y = Oc-,),

q being thus an auxiliary quaternion ;
and in like manner, for the other point T

lately considered, we have the analogous value,

=
~7

=

whence

LVII. . . P.P =

and therefore,

LVIII...;=P-.i

T TX = P 1

M S?
2

t- uW
and finally,

2M 2PP &quot;M2y2

LX . . .
^L = =-= Sy + = v(\ -) = OU.U L.

r + r P+P Sy u a

(29.) In fact, the same second expression LIII. shows, that if v and v be the

feet of perpendiculars from T and T on HL, then the potentials are,

LXI. . . P= ou . TV, and P = ou . T V ;

and it is easy to prove, geometrically, that the segment U L is the harmonic mean be

tween what may be called the ordinates, TV, T V
,
to the hodographic axis HL.

(30.) If we suppose the point u to take any new but near position u, in the plane,

the polar chord TT ,
and (in general) the length of the tangent UT, will change ;

and

we shall have the differential relations :

LXII. . . dr = (r
-

v)-iS (r
-

ic) dw ;

LXI1 . . . dr = (r
-

w) S (T
-

K) dv ;

an(j t LXIIL . . du = i-S (K
-

v) du.

(31.) Conceiving next that u moves along the line ou, or LU, so that we may

write,
LU LM ,

LO

LXIV. . . v = (#-e )(/*-X), if s = - = -: and e=--,
LM LU UB

we shall have,
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so that LXVIII. . . Tdr = if d# &amp;gt; 0.

LXV. . . dv = (u
-
X) dx = v (x

- e )-icLs, with as &amp;gt; 1 &amp;gt; e ,

if u be on LM prolonged, and if o be on the concave side of the arc TMT
;
and thus,

by LIIL, the differential expressions (30.) become,

and LXVII. . . du = u-^Sq.(x-e )-
l

dx, with
S&amp;lt;?

= v(\- v) ;

da; , _ P da;

-e) u(x-e

Such then are the lengths of the two elementary arcs TT, and T T, of the hodograph,

intercepted between two near secants NTT and NT/T/ drawn from the pole N of the

chord MM
,
and having u and u, for their own poles ;

and we see that these arcs are

proportional to the potentials, P and P
,
or by LXI. to the ordinates, TV, T V

,
or

finally to the lines NT, NT : and accordingly we have the inverse similarity (comp.

118), of the two small triangles with N for vertex,

LXIX. . . A NTT, OC NT/T ,

as appears on inspection of the annexed Figure 86.

(32.) For any motion ofa point, however complex, the element dt of time which

corresponds to a given element dDa of the hodograph, is found by dividing the latter

element by the vector IT-a. of accelerating force ; if then we denote by dt and dt the

times corresponding to the elements dr and dr (31.), we have the expressions,

Mdx rdx

u(x
- e )

~
(- )

Mdx r dx
&amp;gt;

u (x
-
e}

~
u(x- e )

LXX. . . dt = M. P-. Tdr

LXX . M.
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because, for the motion here considered, the measure or quantity of the force is, by I.

and LIIL,
LXXT. . . TD2a = Afr~8 = Af-ips.

(33.) The times of hodographically describing the two small circular arcs, T/r

and T T/, are therefore inversely proportional to the potentials, or directly propor

tional to the distances in the orbit ; and their sum is,

that is, by LX. and LXIV.,

LXXIII. . . d* -I- d* =
^ _y a

,
* LXXIV. ..p =

(34.) We have also the relations,

LXXV. . . u =
(a:

2 - 1)J# and LXXVI. .. = (!_
a

so that the sum of the two small times may be thus expressed,

or finally,

/ a3(l - e ^ 3 \i Aw
LXXVIII. . . d* + df = 2

7
-

J

} (1-ecosw)*
if LXXIX. . . x sec w, or w&amp;gt;

= MLW in Fig. 86,

in which Figure u w is an ordinate of a semicircle, with the chord MM of the hodo-

graph for its diameter.

(35.) The two near secants (31.), from the pole N of that chord, have been hero

supposed to cut the half chord LM itself, as in the cited Figure 86
;
but if they were

to cut the other half chord LM
,

it is easy to prove that the formulae LXXVIII.

LXXIX. would still hold good, the only difference being that the angle w, or MLAV,

would be now obtuse, and its secant x&amp;lt;
- 1.

(36.) A circle, with u for centre, and u for radius, cuts the hodograph orthogo

nally in the points T and T
;
and in like manner a near circle, with u, for centre,

and u + du for radius, is another orthogonal, cutting the same hodograph in the near

points T, and T/ (31.). And by conceiving a series of such orthogonals, and observ

ing that the differential expression LXXVIII. depends only on the four scalars,

M~ la3
,
e

, w, and dw, which are all known when the mass Af and the five points o,

i,, M, u, u, are given, so that they do not change when we retain that mass and those

points, but alter the radius h of the hodograph, or the perpendicular HL let fall from

its centre u on the fixed chord MM
,
we see that the sum of the times (comp. (33.),

of hodographically describing any two circular arcs, such as T,T and T T/, even if

they be not small, but intercepted between any two secants from the pole N of the

fixed chord, is independent of the radius (/t), or of the height HL of the centre H of

the hodograph.

(37.) If then two circular hodographs, such as the two in Fig. 86, having a com

mon chord MM
,
which passes through, or tends towards, a common centre offorce o,

with a common mass M there situated, be. cut by any two common orthogonals, the

sum of the two times of hodngraphically describing (33.) the two intercepted arct

(small or large) will be the same for those twn hodographs.
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(38.) And as a case of this general result, we have the following Theorem* of

Hodographic Isochronism (or Synchronism) :

&quot;

If two circular hodographs, having a common chord, which passes through, or

tends towards, a common centre offorce, be cut perpendicularly by a third circle,

the times of hodographically describing the intercepted arcs will be
equal,&quot;

For example, in Fig. 86, we have the equation,

LXXX. . . Time of TUT = time O/WMW .

(39.) The time of thus describing the arc TMT (Fig. 86), if this arc be through

out concave^ towards o (so that x&amp;gt;l&amp;gt;e
}

as in LXV.), is expressed (comp.

LXXVIII.) by the definite integral,

LXXXI. . . Time O/TMT = 2 M J Jo (l-e coflw)*
1

and the time of describing the remainder of the hodographic circle, if this remaining

arc T M T be throughout concave towards the centre o of force, is expressed by this

other integral,

LXXXII. . .

jw (1 e cos w;)
2

(40.) Hence, for the case of a closed orbit (e
2

&amp;lt; 1, e
&amp;lt; 1, a &amp;gt; 0), if n denote the

mean angular velocity, we have the formula,

LXXXIII. . . Periodic 2ta. = !=- 2
(

\ (1
_

n \-Jf ) (l-e costt?)2

or LXXXI V. . . M= 3
2, as usuai.

The same result, for the same case of elliptic motion, may be more rapidly obtained,

by conceiving the chord MM through o to be perpendicular to OH
; for, in this posi

tion of that chord, its middle point L. coincides with o, and e by LXIV.

(41.) In general, by LXXVI., we are at liberty to make the substitution,

LXXXV. . . f

a

M f
= T with 9 = half chord of the hodograph ;

supposing then that e -- 1, or placing o at the extremity M of the chord, we have

by LXXXI.,

LXXXVI. . . Parabolic time O/TMT = f_ __
g* J (l + cosu&amp;gt;)

2

for, when the centre offorce is thus situated on the circumference ot the hodographic

circle, we have by (8.) the excentricity e = 1, and the orbit becomes by XV. a para-

* This Theorem, in which it is understood that the common centre of force (o)
is occupied by a common mass (M), was communicated to the Royal Irish Aca

demy on the 16th of March, 1847. (See the Proceedings of that date, Vol. III., page
417.) It has since been treated as a subject of investigation by several able writers,
to whom the author cannot hope to do justice on this subject, within the very short

^pace which now remains at his disposal.

f Compare the Note to page 721.
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lota. For hyperbolic motion (e 2&amp;gt; 1, e&amp;gt; 1, 0&amp;lt;0),
the formula LXXXI. (with or

without the substitution LXXXV.) is to be employed if e &amp;lt; 1, that is, if o be on

LM prolonged; and the formula LXXXIL, if e
&amp;gt;l,

e
&amp;lt;secu&amp;gt;,

that i^, if o be si

tuated between M and u.

(42.) For any law of centralforce, if p, p be the points of the orbit which corre

spond to the points T, T of the hodograph, and if Q be the point of meeting of the

tangents to the orbit at P, P
,
as in the annexed Figure 87, while the tangents to the

hodograph at T, T meet as before in u, we shall have the parallelisms,

Fig. 87.

LXXXVII. . . OP
|| UT, or

||

T U, PQ || ox, QP
||

ox
;

writing then,

LXXXVIII. . .op=a, op = a
,
ox = Da = r, ox = Da = r , ou=y, OQ = O;,

most of which notations have occurred before, we have the equations,

LXXXIX. . .
= Va(r-v) = VaXv-rO = V7-(w-a)=Vr (a -w);

thus XC. . . Vaw = Var = j3
= VaV= Va v, a -a||v, PP

|| ou,

and XCI. . . V = Vra = -/3=Vr a = VrV, r-r ||w, T X||OQ.

Geometrically, the constant parallelogram (16.) under OP, ox, or under OP
,
OT ,

is

equal, by LXXXVII., to each of the four following parallelograms : I. under OP, ou
;

II. under OP
,
ou

;
III. under OQ, ox

;
and IV. under OQ, ox ;

whence PP
|| ou, and

x x
|| OQ, as before.

(43.) The parallelism XC. may be otherwise deduced for the law of the inverse

square, with recent notations, from the quaternion formula?,

rr + r r

XCIL . .

r + r X- v
in which, XCII . . . v =

and which may be obtained in various ways ;
whence it may also be inferred, that

if denote the &quot;length
T (a

-
a) of the chord PP of the orbit, then (comp. Fig. 86),

XCIII. . . ,
= ^T ,

= UT : UL = &c. = sin w ;

r + r T (X
-

u)

w being the same auxiliary angle as in (34.), &c.
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(44.) It is easy to prove that

whence

XCV. . . T^^ = =
-., and XCVI. . . P -(r -X) t/ = K.P-i(r-X) v;

r X -P *

the lines LT, LT are therefore in length proportional to the potentials, P, P ;
and

their directions are equally inclined to that of ou, but at opposite sides of it, so that

the line LU Insects the angle TLT . Accordingly (see Fig. 86), the three points T, L, T

are on the circle (not drawn in the Figure) which has HU for diameter
;
so that the

angles ULT
,
TLU are equal to each other, as being respectively equal to the angles

UTT
,
TT U, which the chord TT of the hodograph makes with the tangents at its ex

tremities : the triangles TLV, T LV are therefore similar, and LT is to LT as TV to

T V
,
that is, by LXL, as P to P

,
or as r to r,

(45.) Again, calculation with quaternions gives,

whence

XCVIII...T&quot; -Tp^, = i
X - T X -r

such then is the common ratio, of the segments TU , U T of the base TT of the tri

angle TLT
,
to the adjacent sides LT, LT ,

which are to each other as r to r (44.) ;

and because this ratio is also that of s to r + r, by (43.), we have the proportion,

XCIX. . . op : OP : PP = r: r : s = LT LT : TT ,

and the formula of inverse similarity (118),

C. . . ALT T a OPP .

Accordingly (comp. the two last Figures), the base angles OPP , OP P of the second

triangle are respectively equal, by the parallelisms (42.), to the angles TUL, T UL,

and therefore, by the circle (44.), to the base angles TT L, T TL, of the first triangle :

but the two rotations, round o from P to P
,
and round L from T to T, are oppo

sitely directed.

(46.) The investigations of the three last subarticles have not assumed any know

ledge of the form of the orbit (as elliptic, &c.), but only the law of attraction ac

cording to the inverse square, or by (6.) the Law of the Circular Hodograph. And
the same general principles give not only the expression LXXVI. for the constant

Ma-\ but also (by LX. LXIV. LXX1V. LXXIX.) this other expression,

Ci. . .
M. e(l-e-eoii0)0: whence OIL . . = 1 ~ e *

r + r 2a 1- e cos w*

which last may be considered as a quadratic in e, assigning two values (real or

imaginary) for that scalar, when the first member of CII. and the angle w are given ;

the sine of this latter angle being already expressed by XCIII.

(47.) Abstracting, then, from any ambiguity* of solution, we see, by the definite

* That there ought to be some such ambiguity is evident from the consideration,

that whri a focus o, and two points P, P of an elliptic orbit are given, it is still
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integrals in (39.), that the time of describing an arc rr of an orbit, with the law

of the inverse square, is a. function (comp. (36.)) of the three ratios,

a* rlr _1_
&quot;

Af IT* r-fr&quot;

which is a form of Lambert s Theorem, but presents itself here as deduced from the

recently stated Theorem of Hodographic Isochronism (38.), without the employment

of any property of conic sections.

(48.) The differential equation I. of the present relative motion may be thus

written (comp. 418, I., and generally the preceding Series 418) :

CIV. . . S.D2aa + P =
0, whence CV. . . T= P+-H&quot;,

as in 418, X., if we now write,

CVI. . . r= - iDa2 = - |r
2

,
and CV1I, . . H = -

;

in fact (by LIII., comp. (20.) (21.)),

CVIII. . . -2ff=2(P-T)=2P + T? = e- -

7
2

=^.

(49.) Integrating CIV. by parts, &c., and writing (as in 418, XII. XXII.),

CIX. . . F= f ( T-f P) df, and CX. . . V= p2 Tdt,
Jo Jo

so that F may again be called the Principal Function and V the Characteristic

Function of the motion, we have the variations,

CXI. . . SF= SrSa - Sr Sa - Hdt
;

CXII. . . d V= Srtfa - Sr a + tSH;

in which a, a (instead of a
, a) denote now what may be called the initial and

final vectors (OP, OP ) of the orbit ; whence follow the partial derivatives,

CXIII. . . DaF = Da F=r ;
CXIIF. - . Da&amp;lt;F= DU/F=- r

;

CXIV. . . (D,F) =-H\ and CXV. . . DaV= t
;

F being here a scalar function of a, a
, t, while V is a scalar function of a, a

, H,

if M be treated as given.

(50.) The two vectors a, a can enter into these two scalar functions, only

through their dependent scalars r, r
,
s (comp. 418, (17.)) ;

but

CXVI. . . r = -r- lSau, Sr = - r^Sa Sa
,

fo = - iS (a
-
a) (So*

-
fla) ;

confining ourselves then, for the moment, to the function F, and observing that we

have by CXII. the formula,

CXVII. . . S (rda
- r fla )

= Dr V. dr + Dr F. flr + D,F. ^,

in which the variations da, da are arbitrary, we find the expressions,

CXVIII. . . r=-ar-iD r F + (a -a)s- 1 D,F;

CXVIII . . . r

permitted to conceive the motion to be performed along either of the two elliptic arcs,

pp
,
P P, which together make up the whole periphery. But into details of this kind

we cannot enter here.

O A
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which give these others,

CXIX. . . DrV= rV(a -
a) r : Vaa

;

CXIX . . . D,/F=r V(a-a )r :Vaa
;

and CXX. . . DsV - s(3 : Vaa
,

because Var = VaV = j8.

(51.) But, by XCII .,

CXXI. . . rr + rV = (r + r ) v \\
v

\\
a -a,

the chord TT of the hodograph, in Figures 86, 87, being divided at u into segments

TU
,
U T

,
which are inversely as the distances r, r

,
or as the lines OP, OP in the

orbit
;
we have therefore the partial differential equation,

CXXII. . . D,-F= D/F, and similarly, CXXIII. . . DrF= D, F;

so that each of the two functions, F and F, depends on the distances r, r
, only by

depending on their sum, r + r .

(52.) Hence, if for greater generality we now treat M as variable, the Principal

Function F, and therefore by CXIV. its partial derivative H = - (D*F), are func

tions of thefour scalars,

CXXIV. . . r + r
, s, t, and M.

(53.) And in like manner, the Characteristic Function (or Action-Function) V,

and its partial derivative (by CXV.) the Time, tDffT, may be considered as

functions of this other system of four scalars (comp. (47.)),

CXXV. ..r + r
, s, H, and M

&amp;gt;,

no knowledge whatever being here assumed, of the form or properties of the orbit,

but only of the law of attraction.

(54.) But this dependence of the time, t, on the four scalars CXXV., is a new

form of Lambert s Theorem (47.) ;
which celebrated theorem is thus obtained in a

new way, by the foregoing quaternion analysis.

(55.) Squaring the equations CXVIII. CXVIII ., attending to the relation

CXXII., and changing signs, we get these new partial differential equations,

r2 _ r 2 4. o2

CXXVI. . . 2P + 2# =
(D,.

CXXVF. . . 2P + 2T= (Dr F)2 + (D, F) 2 +
T * ~

pr F. D, F ;

because CXXVII. . . a2 = - r2
,

a 2 = - r 2
, (a

-
a)

2 = -

by merely algebraical combinations (beca

CXXVIII. . . i ((Dr F)2 + (Ds r)
2
)
= H

Hence, by merely algebraical combinations (because P = Mr~\ and P = Mr
-f), we

find:

r-fr+s r + r s

4Jtf

=Jff-i-- 1\
r + r -* yr + r -s a }
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(56 ) But, by CXII. CXVII. CXXIL, we have the variation,

CXXXI. .. dV-tdH=*(T)r r+D8 V) 3 (r + /+) + |(DrF-D,F) e(r + r -);
and the function V vanishes with

t,
and therefore with s, at least at the commence

ment of the motion
;
whence it is easy to infer the expressions,*

*
cxxxn. . . r=

2

cxxxni. . . ,.|f (

_^L_ + fVi . . , f (
&quot;L_- *&amp;gt;*..4

J. s \r + r + s 2J J-s \ r + r + * J

As a verification, f when t and 5 are small, and therefore r nearly = r, we have

thus the approximate values,

CXXXIV. .. 7=
CXXXV. . . t

in which s may be considered to be a smaZZ arc of the orbit, and (2 T) the velocity

with which that arc is described.

(57.) Some not inelegant constructions, deduced from the theory of the hodo-

graph, might be assigned for the case of a closed orbit, to represent the excentric and

mean anomalies ; but whether the orbit be closed or not, the arc TMT of the hodo-

graphic circle, in Fig. 86, represents the arc of true anomaly described : for it sub

tends at the hodographic centre 11 an angle THT
,
which is equal to the angular mo

tion POP in the orbit.

(58.) We may add that, whatever the special form of the orbit may be, the equa

tions CXVIII. CXVIII . give, by CXXIL,

CXXXVI. . . r - r = (Ua + Ua) Dr V;

from which it follows that the chord TT of the hodograph is parallel to the bisector

of the angle POP in the orbit : and therefore, by XCL, that this angle is bisected by

OQ in Fig. 87, so that the segments PR, RP
,
in that Figure, of the chord PP of the

orbit, are inversely proportional to the segments TU
,
uV of the chord TT ofthe ho

dograph.

(59.) We arrive then thus, in a new way, and as a new verification, at this

known theorem : that if two tangents (QP, QP )
to a conic section be drawn from,

*
Expressions by definite integrals equivalent to these, for the action and time

in the relative motion of a binary system, were deduced by the present writer, but by

an entirely different analysis, in the First Essay, &c., already cited, and will be

found in the Phil. Trans, for 1834, Part II., pages 285, 286. It is supposed that

the radical in GXXXIII. does not become infinite within the extent of the integra

tion ;
if it did so become, transformations would be required, on which we cannot

enter here.

f An analogous verification may be applied to the definite integral LXXXI. ;
in

which however it is to be observed that both r + r and s vary, along with the va

riable w : whereas, in the recent integrals CXXXII. CXXXIII., r + r is treated as

constant.
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any common point (Q), they subtend equal angles at a focus (o), whatever the spe

cial form of the conic may be.

(60.) And although, in several of the preceding sub-articles, geometrical con

structions have been used only to illustrate (and so to confirm, if confirmation were

needed) results derived through calculation with quaternions ; yet the eminently

suggestive nature of the present Calculus enables us, in this as in many other ques

tions, to dispense with its own processes, when once they have indicated a definite

train of geometrical investigation, to serve as their substitute.

(61.) Thus, after having in any manner been led to perceive that, for the motion

above considered, the hodograph is a circle* (5.), of which the radius HT is equal

(7.) to the attracting mass M, divided by the constant parallelogram (16.) under

the vectors OP, OT of position and velocity, in the recent Figures 86 and 87, which

parallelogram is equal to the rectangle under the distance OP in the orbit, and the

perpendicular oz let fall from the centre o of force on the tangent UT to the hodo

graph, we see geomttrically that the potential P, or the mass divided by the dis

tance, for the point P of the orbit corresponding to the point T of the hodograph, is

equal (as in (27.)) to the rectangle under HT arid oz, and therefore, by the similar

triangles HTV, uoz, to the rectangle under ou and TV (as in (29.)).

(62.) In like manner, the three potentials corresponding to the second point T of

the first hodograpb, and to the points w and w of the second hodograph, in Fig. 86,

are respectively equal to the rectangles under the same line ou, and the three other

perpendiculars TV, wx, w x
,
on what we have called (29.) the hodographic axis,

HL
;

so that, for these two pairs ofpoints, in which the two circular hodographs, with

a common chord MM
,
are cut by a common orthogonal with tr for centre, the four

potentials are directly proportional to the four hodographic ordinates (29.).

(63.) And because the force
(J/r&quot;2)

is equal to the square of the potential

(Mr-*), divided by the mass (M), the four forces are directly as the squares of the

four ordinates corresponding ;
each force, when divided by the square of the corre

sponding hodographic ordinate, giving the constant or common quotient,

CXXXVII. . . ou2
: M.

(64.) It has been already seen (31.) to be a geometrical consequence of the two

pairs of similar triangles, NTT,, NT /T ,
and NTV, NT V

,
that the two small arcs of the

first hodograph, near T and T
, intercepted between two near secants from the pole N

of the fixed chord MM
,

or between two near orthogonal circles, with u aud u, for

centres, are proportional to the two ordinates, TV, T V .

(65.) Accordingly, if we draw, as in Fig. 86, the near radius (represented by a

* This follows, among other ways, from the general value XXVI. for the radius

of curvature of the hodograph, with any law of central force ; which value was geo

metrically deduced, as stated in the Note to page 720, compare the Note to page

719, by the present writer, in a Paper read before the Royal Irish Academy in 1846,

and published in their Proceedings. In fact, that general expression for the radius

of hodographic curvature may be obtained with great facility, by dividing the ele

ment fit of the hodograph (in which /denotes the force), by the corresponding-
el-ment cr 2

d&amp;lt; of angular motion in the orbit.
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dotted line from H) of the first hodograpb, and also the small perpendicular UY,
erected at the centre u of the first orthogonal to the tangent UT, and terminated in

Y by the tangent from the near centre u,, the two new pairs of similar triangles, THT,,

UTY, and THV, UU,Y, give the proportion,

CXXXYIII. . . TT, : TV = mi, : ur ;

which not merely confirms what has just been stated (64.), for the case of the first

hodograph, but proves that the four small arcs, of the two circular hodographs in

Fig. 86, intercepted between the two near orthogonals, are directly proportional to the

four ordinates already mentioned.

(66.) But the time of describing any small hodographic arc is the quotient (32.)

of that arc divided by the force; and therefore, by (63.), (65.), the four small times

are inversely proportional to the four ordinates. And the harmonic mean U L be

tween the two ordinates TV, T V of the first hodograph, does not vary when we pass

to the second, or to any other hodograph, with the samefixed chord MM , and the

same orthogonal circles ; it follows then, geometrically, that the sum (33.) of the

two small times is the same, in any one hodograph as in any other, under the condi

tions above supposed : and that this sum is equal to the expression,

2M.uTT _2M.uTJ .ui:
V/.A..A..A.1.A.* *

- ~ .

~?

OU UT U L OU 2 -L,M2
. UT

which agrees with the formula LXXIIT.

(67.) On the -whole, then, it is found that the Theorem of Hodographic Isochro-

nism (38.) admits of being geometrically* proved, although by processes suggested

(60.) by quaternions : and sufficient hints have been already given, in connexion

with Figure 87, as regards the geometrical passage from that theorem to the well-

known Theorem of Lambert, without necessarily employing any property of conic

sections.

420. As a fifth specimen, we shall deduce by quaternions an equa

tion, which is adapted to assist in the determination of the distance

of a comet, or new planet, from the earth.

(1.) Let M be the mass of the sun, or (somewhat more exactly) the sum of the

masses of sun and earth
;
and let a and w be the heliocentric vectors of earth and

comet. Write also,

I. ..Ta =
r, Ta = w, T(w-a) = z, U(w-a) =

p,

so that r and w are the distances of earth and comet from the sun, while z is their

distance from each other, and p is the unit-vector, directed from earth to comet,

Then (comp. 419, I.),

* It appears from an unprinted memorandum, to have been nearly thus that the

author orally deduced the theorem, in his communication of March, 1847, to the

Royal Irish Academy ; although, as usually happens in cases of invention, his own

previous processes of investigation had involved principles and methods, of a much

less simple character.
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II. . . D2a = - Mr-3, D2&amp;lt;&amp;gt;
= - Afw-Sw,

and III. . . D2.zp = D2(a&amp;gt;-a)
= A/(r-3-Hr3)a-Mzr3p,

with IV. . . M&amp;gt;2=_(
a + z

1o)
2 = r2 + z 2

-2zS|0.

(2.) The vector a, with its tensor r, and the mass Af, are given by the theory of

the earth (or sun) ;
and p, Dp, D 2

p are deduced from three (or more) near obser

vations of the comet; operating then on III. with S.pDp, we arrive at the formula,

SpDpDV =
r / M _ M \

SpDpUa
~
z{r* M? 3

,/

which becomes by IV., when cleared of fractions and radicals, and divided by z, an

algebraical equation of the seventh degree, whereof one root is the sought distance* z,

of the comet (or planet) from the earth.

421. As a sixth specimen, we shall indicate a method, suggested

by quaternions, of developing and geometrically decomposing the

disturbing force of the sun on the moon, or of a relatively superior

on a relatively inferior planet.

(1.) Let a, a be the geocentric vectors of moon and sun
; r, s their geocentric

distances (r
= Ta, s =

T&amp;lt;r) ;
Al the sum of the masses of earth and moon

;
and S the

mass of the sun
;
then the differential equation of motion of the moon about the

earth may be thus written (comp. 418, 419),

I. . . D2a = M . (pa + S.
(&amp;lt;pv

-
$ (&amp;lt;r

-
a)),

if D be still the mark of derivation relatively to the time, and

II. .. 0a = 0(a) = a~ 1T- 1

;

so that (pa is here a vector-function of a, but not a linear one.

(2.) If we confine ourselves to the term
M&amp;lt;pa,

in the second member of K, we

fall back on the equation 419, 1., and so are conducted anew to the laws of undisturbed

relative elliptic motion.

(3.) If we denote the remainder of that second member by ?/, then ; may be

called the Vector of Disturbing force ; and we propose now to develope this vector,

according to descending powers of T
(&amp;lt;r

: a), or according to ascending powers of

the quotient r:s, of the distances of moon and sun from the earth.

(4.) The expression for that vector may be thus transformed :

III. . Vector of disturbing Force =
7;
= D2a -

M&amp;lt;f&amp;gt;a

!-(!- a&amp;lt;r&amp;gt;)-i T(l - aa- 1

)
1

}

* Compare the equation in the Mecanique Ctleste (Tom. I., p. 241, new edi

tion, Paris, 1843). Laplace s rule for determining, by inspection of a globe, which

of the two bodies is the nearer to the sun, results at once from the formula V.
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that is, IV. . . t]
=

r]\ + 773 -t- 773 -f &c.,

if V...r)i = -Ss-*ff-i
Q&amp;lt;r-

1 a + fa(T
1)= (a+3c7a&amp;lt;T-i)

= J7i,i+ 771, 2 ;

VI. . . 772
= -r (aaa.-i+ 2(7+ Sffatra 1

*&quot;

1

)
=

772,1 + ?2,2 + ?2,s ; &c.
OS5

the general term* of this development being easily assigned.

(5.) We have thus a. first group of two component and disturbing forces, which

are of the same order as ^ ;
a second group of three such forces, of the same order

as
;
a third group offour forces, and so on.

s*

(6.) The first component of the first group has the following tensor and versor,

it is therefore a purely a&7ati-

tious force MN, acting along the

moon s geocentric vector EM pro

longed, as in the annexed Fi

gure 88,

(7.) The second component
MN

,
of the same first group, has an exactly triple intensity, MN = SMN 5

and its di

rection is such that the angle NMN
,
between these two forces of the first group, is

bisected by a line MS from the moon, which is parallel to the sun s geocentric vector

ES.

(8.) If then we conceive a line EM from the earth, having the same direction as

the last force MN
,
this new line will meet the heavens in what may be called for the

moment & fictitious moon fo, such that the arc ])])i of a great circle, connecting it

with the true moon D in the heavens, shall be bisected by the sun Q, as represented
in Fig. 88.

(9.) Proceeding to the second group (5. ), we have by VI. for ihe first component
of this group,

BSr* __ aU&amp;lt;r

VIII. . . T?72, i
=

-r-r&amp;gt;
U)?2, i

= Uatra 1 = - :

8* 4 a

a line from the earth, parallel to this new force, meets therefore the heavens in what

may \)Qcal\QA a. first fictitious sun, 1, such that the arc of a great circle, Q0i, con

necting it with the true sun, is bisected by the moon J), as in the same Fig. 88.

* Such a general term was in fact assigned and interpreted in a communication

of June 14, 1847, to the Royal Irish Academy (Proceedings, Vol. III., p. 514) ;

and in the Lectures, page 616. The development may also be obtained, although
less easily, by Taylor s Series adapted to quaternions. Compare pp. 427, 428, 430,

431 of the present work
;
and see page 332, &c., for the interpretation of such sym

bols as o-aor 1

, offer 1
,
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(10.) The second component force, of the same second group, has an intensity ex

actly double that of the first (Ti/2,2
=

2T&amp;gt;/o, i) ;
and in direction it is parallel to the

sun s geocentric vector ES, so that a line drawn in its direction from the earth would

meet the heavens in the place of the sun Q.
(11.) The third component of the present group has an intensity which is pre

cisely five-fold that of the first component (T^s = 5T//2, i) ;
and a line drawn in its

direction from the earth meets the heavens in a secondfictitious sun Q 2,
such that

the arc Qi Q^ connecting these two fictitious suns, is bisected by the true sun Q.

(12.) There is no difficulty in extending this analysis, and this interpretation, to

subsequent groups of component disturbing forces, which forces increase in number,

and diminish in intensity, in passing from any one group to the next
; their intensi

ties, for each separate group, bearing numerical ratios to each other, and their direc

tions being connected by simple angular relations.

(13.) For example, the thirdgroup consists (5.) offour small forces, 7/3, i ?3, h

of which the intensities are represented by , multiplied respectively by the four
16s5

whole numbers, 5, 9, 15, and 35
;
and which have directions respectively parallel to

lines drawn from the earth, towards a second fictitious moon Da, the true moon, the

first fictitious moon Jh (8.), and a third fictitious moon ]) 3 ;
these three fictitious

moons, like the two fictitious suns lately considered, being all situated in the momen

tary plane of the three bodies E, M, s : and the three celestial arcs, J)2 D, DDi, JiDs,

being each equal to double the arc JQ of apparent elongation of sun from moon

in the heavens, as indicated in the above cited Fig. 88.

(14.) An exactly similar method may be employed to develope or decompose the

disturbing force ofone planet on another, which is nearer than it to the sun; and it

is important to observe that no supposition is here made, respecting any smallness

of excentricities or inclinations.

422. As a seventh specimen of the physical application of quater

nions, we shall investigate briefly the construction and some of the

properties of FresneVs Wave Surface, as deductions from his princi

ples or hypotheses* respecting light.

(1.) Let p be a Vector of Ray- Velocity, and
/j

the corresponding Vector of
Wave-Slowness (or Index- Vector}, for propagation of light from an origin o, within

a biaxal crystal ;
so that

I. . . Sup = - 1
;

II. .. Sfjidp
=

;
and therefore III. . . Spfyi

= 0,

* The present writer desires to be understood as not expressing any opinion of

his own, respecting these or any rival hypotheses. In the next Series (423), as an

eighth specimen of application, he proposes to deduce, from a quite different set of

physical principles respecting light, expressed however still in the language of the

present Calculus, Mac Cullagh s Theorem of the Polar Plane ; intending then, as a

ninth and final specimen, to give briefly a quaternion transformation of a celebrated

equation in partial differential coefficients, of the first order and second degree, which

occurs in the theory of heat, and in that of the attraction of spheroids.
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if fy and dp be any infinitesimal variations of the vectors p and p, consistent with

the scalar equations (supposed to be as yet unknown), of the Wave- Surface and its

Reciprocal (with respect to the unit-sphere round o), namely the Surface of Wave-

Slowness, or (as it has been otherwise called) the Index*- Surface : the velocity of

light in a vacuum being here represented by unity.

(2.) The variation dp being next conceived to represent a small displacement,

tangential to the wave, of a particle of ether in the crystal, it was supposed by Fres-

nel that such a displacement dp gave rise to an elasticforce, say de, not generally in

a direction exactly opposite to that displacement, but still a function thereof, which

function is of the kind called by us (in the Sections III. ii. 6, and III. iii. 7) linear,

vector, and self- conjugate ; and which there will be a convenience (on account of its

connexion with certain optical constants, a, b, c) in denoting here by &amp;lt;f)~

}

dp (instead

of
0c&amp;gt;p)

: so that we shall have the two converse formulas,

IV. . . dp = $de ,
V. . . de =

(j&amp;gt;-

1

dp.

(3.) The ether being treated as incompressible, in the theory here considered, eo

that the normal component p ^Spdi of the elastic force may be neglected, or rather

suppressed, there remains only the tangential component,

VI. . .

as regulating the motion, tangential to the wave, of a disturbed and vibrating par
ticle.

(4.) If then it be admitted that, for the propagation of a rectilinear vibration,

tangential to a wave of which the velocity is
T/i&quot;

1
,
the tangential force (3.) must be

exactly opposite in direction to the displacement dp, and equal in quantity to that

displacement multiplied by the square (T/*~
2
) of the wave-velocity, we have, by V.

and VI., the equation,

VII. . . -^--iSdt=-td or VIII. . . d=(&amp;gt;- i --* i

combining which with II., we obtain at once this Symbolical Form of the scalar

equation of the Index Surface,

ix. . . o =
s/i-!(0&quot;

1

-/*-)- A*
1

;

or by an easy transformation,

x... i=s/i0-i(0-
1

-/*-&quot;)-
1

/*-
1

;

or finally, XL . . 1 = Sp (p*
- 0)-^ ;

* This brief and expressive name was proposed by the late Prof. Mac Cullagh

(Trans. R. I. A., Vol. XVIII., Parti., page 38), for that reciprocal of the wave-sur

face which the present -writer had previously called the Surface of Components of

Wave- Slowness, and had employed for various purposes: for instance, to pass from

the conical cusps to the circular ridges of the Wave, and so to establish a geometri

cal connexion between the theories of the two conical refractions, internal and exter

nal, to which his own methods had conducted him (Trans. R. I. A., Vol. XVII
,

Part I., pages 125-144). He afterwards found that the same Surface had been

otherwise employed by M. Cauchy (Exercises de Mathematiques, 1830 p. 36), who

did not seem however to have perceived its reciprocal relation to the Wave.

5 B
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while the direction of the vibration dp, for any given tangent plane to the wave, is

determined generally by the formula VIII.

(5.) That formula for the displacement, combined with the expression V. for the

elastic force resulting, gives

XII. . . dp = - QvSpSt, and XIII. . . ce = - vSpdi,

if XIV. . . O -
^2) v = /i,

or XV. . . v = (0
-

ju
2
)-^,

v being thus an auxiliary vector; and because the equation XL of the index surface

gives,

XVI. . . S/it;
= -

1, while XVII. . . Vvfc = 0, by XIII.,

it follows that (he vector v, if drawn like p and
/i

from o, terminates on the tangent

plane to the wave, and is parallel to the direction of the elastic force.

(G.) The equations XIV. XVI. give,

XVIII. . . ju2y
2 _ Svfv = 1, whence XIX. . . 2S/itV

= S/ifo=- Sufy,

because S/iv
=

0, by XVI., and
SSv&amp;lt;f&amp;gt;v

= 2S(0w.^u), by the self-conjugate pro

perty of
(p ; comparing then XIX. with III., we see that + p (as being -L- every fyi)

has the direction of
fj, + ir 1

, and therefore, by I. and XVI., that we may write,

XX. . .p-i
= -/i- w-i; XXI. . . p-z^-tr 2

;
XXII. . . Spv = ;

which last equation shows, by (5.), that the ray is perpendicular (on Fresnel s prin

ciples) to the elastic force de, produced by the displacement fy.

(7.) The equations XX. and XXI. show by XIV. that

XXIII. . . (p-2
-
0) v = p-i, whence XXIV. . . v = (p-

2 -
0)-

1

p~
l

;

we have therefore, by XXII., the following Symbolical Form (comp. (4.)) of the

Equation of the Wave Surface,

XXV. . .
= Sp-

1

(0 -/a-
8

)-&quot; p-i;

or, by transformations analogous to X. and XI.,

XXVI. . . 1 = Sp0 (0
-
p-

2
)-i p-

1

;
XXVII. . . 1 = Sp (p2

-
0-i)-i p ;

and we see that we can return from each equation of the wave, to the corresponding

equation of the index surface, by merely changing p to p, and to
0&quot;

1
: but this

result will soon be seen to be included in one more general, which may be called the

liule of the Interchanges.

(8.) The equation XXV. may also be thus written,

XXVIII. . . Sp (0
-

p-2)-ip
=

;

but under this last form it coincides with the equation 412, XLI.
; hence, by 412,

(19.), the Wave Surface may be derived from the auxiliary or Generating Ellipsoid,

XXIX. . .
Spft&amp;gt;

=
l,

by the following Construction, which was in fact assigned by Fresnel* himself, but

as the result of far more complex calculations: Cut the ellipsoid (abc) by an arbi

trary plane through its centre, and at that centre erect perpendiculars to that plane,
which shall have the lengths of the semiaxes ofthe section ; the locus ofthe extremi-

tiet of the perpendiculars so erected will be the sought wave surface.

* See Sir John F. W. Herschel s Treatise on Light, in the Encyclopaedia Me-

tropolitana, page 545, Art. 1017.
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(9.) And we see, by IX., that the Index Surface may be derived, by an exactly
similar construction, from that Reciprocal Ellipsoid, of which the equation is, on
the same plan,

xxx. . .sP0-v = i.

(10.) If the scalar equations, XXVII. and XI., of the wave and index surface, be

denoted by the abridged forms,

XXXI. . . fp
=

l, and XXXII. .. F/u
=

1,

then the relations I. II. III. enable us to infer the expressions (comp. the notation in

418, (2.)),

xxxiii. . . p=., xxxiv. . . P =
SpDp fp

in which (comp. 412, (36.), and the Note to that sub-article),

XXXV. ..

and XXXVI. . .

v being the same auxiliary vector XV. as before, and o&amp;gt; being a new auxiliary vec

tor, such that (by XXIV. XXVII. and IX. XV.),

XXXVII.. . w=(0-i-p2)-ip = 0w; XXXVIII. . .

Spo&amp;gt;

= -l;
XXXIX. . . S/*w =

;

whence also a;
|| dp by XII., so that (comp. (5.)) if w be drawn (like p, u, and

i&amp;gt;)

from the point O, this new vector terminates on the tangent plane to the index sur

face, and is parallel to the displacement on the wave ; also dp : e = u) : v.

(11.) Hence, by XXXIII. XXXV. XXXVIII.,

XL...=t = = -o&amp;gt;-^-. or XLI... -.-1 = + -i

1 w?
p* or 2

p
2

and similarly, by XXXIV. XXXVI. and XVI.,

XLII. . . p
=^i 2̂

=
jjlle, -(-! + ,0-1, or -p-i=/* + tr&amp;gt;,

as in XX.
;

so that, with the help of the expressions XV. and XXXVII. for v and w, the ray-vec

tor p and the index-vector
fj,

are expressed as functions of each other: which func

tions are generally definite, although we shall soon see cases, in which one or other

becomes partially indeterminate.

(12.) It is easy now to enunciate the rule of the interchanges, alluded to in (7.),

as follows : In any formula involving the vectors p, //, v, w, and the functional

symbol 0, or some of them, it is permitted to exchange p with u, v with w, and
&amp;lt;p

with 0~i; provided that we at the same time interchange dp with &amp;lt;5e (but not* gene

rally with fyi), when either c)p
or Se occurs.

*
It is true that, in passing from II. to III. (instead of passing to XLII I.), we

may be said to have exchanged not only p with
//,

but aho ?p with fy. But u-

ally, in the present investigation, dp represents a small displacement (2.), which

is conceived to have a definite direction, tangential to the wave
;

whereas du



740 ELEMENTS OF QUATERNIONS. [BOOK III.

For example, we pass thus from XX. to XLL, and conversely from the latter

to the former; from II. we pass by the same rule, to the formula,

XLIII. . . Spfo = 0, which agrees by XVII. with XXII. ;

and, as other verifications, the following equations may be noticed,

XLIV. . . dp = pV^Se ;
XLV. . . de = pVpcp ;

XLVI. . . S/ifo
=

SpSp.

(13.) The relations between the vectors may be illustrated by the annexed Fi

gure 89
;

in which,

XLVII. ..OP = P , OQ = AI,

ou = v, ow = W,

and XLVIII. ..OP = - P-I,

OQ = -
/*-*,

ou = -
w&quot;

1

,
ow = w&quot;

1
;

in fact it is evident on inspection,

that

XLIX. . . OP . OP = OQ . OQ
= ou . ou = ow . ow ;

and the common value of these four scalar products is here taken as negative unit) .

(14.) As examples of such illustration, the equation XX. becomes P O=QU ;

XLI. becomes OQ = w p; XXIII. may be written as o&amp;gt; + p~
l =

,cr
2
u, or as

p w : ou = P O : OP
;
&c. And because the lines PQ U and QP W are sections of the

tangent planes, to the wave at the extremity p of the ray, and to the index surface

at the extremity Q of the index vector, made by the plane of those two vectors p and

/f ,
while

&amp;lt;5p

and dt (as being parallel to w and u) have the directions of PQ and QP ;

we see that the displacement (or vibration) has generally, in Fresnel s theory, the

direction of the projection of the ray on the tangent plane to the wave ; and that the

elastic force resulting has the direction of the projection of the index vector on the

tangent plane to the index surface : results which might however have been other

wise deduced, from the formulas alone.

(15.) It may be added, as regards the reciprocal deduction of the two vectors
/j

and p from each other, that (by XLI. XXXVIII., and XX. XVI.) we have the

expressions,
L. . .

-
/r

1 = w^VwjO, and LI. . . p-
1 = V~ I

^VIJL ;

which answer in Fig. 89 to the relations, that OQ is the part (or component) of OP,

perpendicular to ow
;
and that OP is, in like manner, the part of OQ -L- ou.

(16.) We have also the expressions,

LI I. . . -/i-i
= w-iVwv, and LIU. . .

-
p-

1 = ir Vvw,

which may be similarly interpreted ;
and which conduct to the relations,

LIV. . . -(Vuto)
2 = v2p-2=w

2
/i-

2=:
Svfa&amp;gt;.

Hence, the Locus of each of the two Auxiliary Points u and w, in Fig. 89, is a Sur

face of the Fourth Degree ; the scalar equations of these two loci being,

LV. . . (Vi0v)
2 4

Sv&amp;lt;pv
=

0, and LVI. . . (Vo^w)2 + Su^ia = ;

continues, as in (1.) to represent any infinitesimal tangent to the index surface,

while fo still denotes the elastic -force (2.), resulting from the displacement ?p.
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from which it would be easy to deduce constructions for those surfaces, with the help

of the two reciprocal ellipsoids, XXIX. and XXX.

(17.) The equations XII. XXII., combined with the self-conjugate property of

0, give
LVII. . . = S (0-ip . dp), or LVIII. ,. . Q *8pf-&amp;gt;p i

hence (between suitable limits of the constant), every ellipsoid of the form,

LIX. . . Sp^ V = h* = const.,

which is thus concentric and coaxal with the reciprocal ellipsoid XXX., being also

similar to it, and similarly placed, contains upon its surface what may be called a

Line of Vibration* on the Wave ; the intersection of this new ellipsoid LIX. with

the wave surface being generally such, that the tangent at each point of that line (or

curve) has the direction of Fresnel s vibration.

(18.) The fundamental connexion (2.) of the function &amp;lt;p

with the optical con

stants, a, 6, c, of the crystal, is expressed by the symbolical cubic (comp. 350, I.,

and 417, XXV.),
LX. . . (0 + a-2) (0 + 6-2) (0 + c-2)

=
;

from which it is easy to infer, by methods already explained, that if e be any scalar,

and if we write,
LXI. . . E=(e-ar*) (e-b~*} (e-&amp;lt;r

2
),

we have then this/ormwZa of inversion,

LXII. . . E (0 + e)-i
= ^ - e (0 +

- + 6 2 + c 2
)
- (T 2b 2c-20-i.

(19.) Changing then e to -p~
2
,
the equation XXVIII. of the wave becomes,

LXIII. . . =
p-2 + -2 + 6- + c-2 + Sp-i0p-a-

2 6-2 c 2
Sp^-ip:

the Wave is therefore (as is otherwise known) a Surface of the Fourth Degree : and

(as is likewise well known), the Index Surface is of the same degree, its equation

(found by changing p, 0, a, b, c to
ju, tfr

1
,
a- 1

, b~\ &amp;lt;H) being, on the same plan,

LXIV. . . = /i~2+ a* t- 63 + C2 + S/i-i tfry
-

aWc*Sfi&amp;lt;}&amp;gt;}i.

(20.) These equations may be variously transformed, with the help of the cubic

LX. in 0, which gives the analogous cubic in 0-
1

,

LXV. . . (tfri + a2) (tfr
1 + *&amp;gt;

2
) (tfr

1 + c2)
=

i

for instance, another form of the equation of the wave is,

LXVl. . . = Sp0-
2
p + (p

2 + 2 + & 2 + c2) SpfV - -& 2c2
;

in whicli it may be remarked that Sp0-2p
= (0

1
p)

2
&amp;lt;

&amp;gt;

whereas Sp^p &amp;gt; 0.

(21.) Substituting then, for Sp^p in LXVL, its value A1 from (17.), we find

that this second variable ellipsoid, with h for an arbitrary constant or parameter,

LXVII. . . =^-V&amp;gt;)
+ &amp;gt;

4
(p

2 + 2 + 62 + c2)
- 2&2c2

contains upon its surface the same line of vibration as the first variable ellipsoid

LIX., which involves the same arbitrary constant h
;
and therefore that the line in

* Such lines of vibration were discussed by the present writer, but by means of

a quite different analysis, in his Memoir of 1832 (Third Supplement on Systems of

Rays], which was published in the following year, in the Transactions of the Royal

Irish Academv. See reference in the Note to page 737.



742 ELEMENTS OF QUATERNIONS. [BOOK III.

question is a qvartic curve, or Curve of the Fourth Degree, as being the intersection

of these two variable but connected ellipsoids : and that the wave itself is the locus

of all such quartic curves.

(22.) The Generating Ellipsoid (Sp0p =1) has a, b, c for its semiaxes (a &amp;gt; b &amp;gt; c

&amp;gt; 0) ;
and for any vector p, in the plane of be, we have the symbolical quadratic

(comp. 353, (9.)),

LXVIII. . . (0-f & 2)O-f c-2)
= or LXIX. .. -i-2

c-20-i
=

,/&amp;gt;

+ 6-2-1- c-3;

making then this last substitution for +6~2 + c~2 in LXIII., we find, for the sec

tion of the wave by this principal plane of the ellipsoid XXIX., an equation which

breaks up into the two factors,

LXX. . . p-
2 + a-2 = 0, and LXXI. . . 1 - b^c^Sp^p = ;

whereof the^rs^ represents (the plane being understood) a circle, with radius = a,

which we may call briefly the circle (a); while the second represents (with the same

understanding) an ellipse, which may by analogy be called here the ellipse () : its

two semiaxes having the lengths of c and b, but in the directions of b and c, for

which directions + b~z = and $ i c~2 = 0, respectively, so that this ellipse (#) is

merely the elliptic section, (ftc) of the ellipsoid (a&c), turned through a right angle

in its own plane, as by the construction (8.) it evidently ought to be. And an ex-

actly similar analysis shows, what indeed is otherwise known, that the plane of ca

cuts the wave in the system of a circle (6), and an ellipse (6) ;
and that the plane

of ab cuts the same wave surface, in a circle (c), and an ellipse (c).

(23.) The circle (a) is entirely exterior to the ellipse (#) ;
and the circle (c) is

wholly interior to the ellipse (c) ;
but the circle (b) cuts the ellipse (6), in four

real points, which are therefore (in a sense to be soon more fully examined) cusps

(or nodal points) on the wave surface, or briefly Wave- Cusps : and the vectors p,

say + po and + pi, which are drawn from the centre o to thesefour cusps, may be

called Lines of Single Ray- Velocity, or briefly Cusp-Rays.

(24.) It is clear, from the construction (8.), that these lines or rays must have

the directions of the cyclic normals of the ellipsoid (a&c) ;
which suggests our using

here the cyclic forms,

LXXII. . . 0p =gp + VXpX ,
and LXXIII. . . Sp0p = 9p* + SXpX p = 1,

for the function 0, and the generating ellipsoid (8.) ;
X being written, to avoid con

fusion, instead of the
/j.

of 357, &c., to represent the second cyclic normal.

(25.) Changing then
p, to X

,
v to p, and g to g p-

2
, in the expression 361,

XXVII. for Fv or
Sv^&amp;gt;~

lv
; equating the result to zero, and resolving the equation so

obtained, as a quadratic in g ;
we find this newform of the Equation XXVIII. of the

Wave,
LXXIV. . .

&amp;lt;7p

2 = 1+ SXpSX p + TVXpTVX p ;

the upper sign belonging to one sheet, and the lower sign to the other sheet, of that

wave surface. The new equation may also be thus written, as an expression for the

inverse square of the ray-velocity Tp, or of the radius-vector, say r, of the wave,

because, by 405, (2.), (G.), &c.,

LXXVI. ..a 2 = -#-TXX ,
6-2 = _^ + s\X

,
c-* = - g + T\\

;



CHAP.
III.]

CONICAL CUSPS ON WAVE AND INDEX SURFACE. 743

and we have the verification, for a cusp-ray (23.), that

LXXVII. . . r-2 = 6-2, or r = Tp = b, if p ||
\ or \ .

(26.) If we write (comp. XXXI.),

LXXVIII. . . fp=- p-2(l + Sp0p

the equation LXIII. of the wave takes the form,

LXXIX. . . fp
= a-2 + 6-2 -f c-2 = const.

;

and we have the partial derivative (comp. XXXV.),

LXXX. . . iDpfp=p-
3
(l + Sp0p)-

=
p-

3 (l-Vp0p) +

which gives by XXXIII. the expression,

p-3(Vp0p-l)-,LXXXI. . . p =
p
-2 +g-

and therefore a generally definite value (comp. (11.)) for the index vector /, when
the ray p is given.

(27.) If the ray be in the plane of ac, then (comp. LXIX.),

LXXXII. . . 0p +
(&amp;lt;r

2 + c-2
) p + 0-2c-20-ip

=
0,

whence LXXXIII. . . Vp^p = - a^c^Vpp- ip

and therefore by LXXXI.
,

an expression which gives, definitely,

LXXXV. . . fi
= -

p-i, if LXXXVI. . . p-
2 + &~2 = 0,

but not LXXXVII. . . Sptfr p = a2c,

that is (comp. (22.)), if the ray terminate on the circle (b), at any point which is

not also on the ellipse (6); and with equal definiteness,

LXXXVIII. . . fi
=-

&amp;lt;r2c-20-i pj if LXXXVII. but not LXXXVI. hold good,

that is, if the ray terminate on the ellipse (6), at any point which is not also on the

circle.

(28.) The normal then to the wave, in each of the two cases last mentioned, co

incides with the normal to the section, made by the plane of ac
;
and if we abstract

for a moment from the cusps (23.), we see that the wave is touched, along the circle

(6), by the concentric sphere LXXXVI. with radius = b, which we may call the

sphere (&) ;
and along the ellipse (6) by the concentric ellipsoid LXXXVII. which

may on the same plan be called the ellipsoid (6).

(29.) An exactly similar analysis shows that the wave is touched along the cir

cles (a) and (c), by two other concentric spheres, with radii a and c, which may be

briefly called the spheres (a) and (c) ;
and along the ellipses (a) and (c) by two other

concentric and similar ellipsoids, which may by analogy be called the ellipsoids ()
and (c). And by comparing the equation LXXXVII. of the ellipsoid (fc) with the

form LIX., we see that the three elliptic sections (a) (6) (c) of the wave, made by

the three principal planes of the generating ellipsoid (abc\ are lines of vibration

(17.); the constant A 4
receiving the three values, Z 2c2

, c^ 2
fe, for these three

ellipses respectively.
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(30.) But at a cusp the two equations LXXXVI. and LXXXVII. coexist, and

the expression LXXXIV. for
fi

takes the indeterminate form ;
in fact, there is in

this case no reason for preferring either to the other of the two values, within the

plane of etc,

LXXXIX. . . [i
= -

per
1

,
XC. . .

/i
=

jio,
if XCI. . .

/i&amp;lt;&amp;gt;

= - a-V2
0-ipo ;

in which p is the cusp-ray (23.), and theirs* value of
ju corresponds to the circle,

but the second to the ellipse (b).

(31.) The indetermination of
/i,

at a wave-cusp, is however even greater than

this. For, if we observe that the equations LXXIX. and LXXX. give, for this case,

by LXXXin. LXXXVI. LXXXVII.,

XCII. . . fpo
= a 2 + 6-2 + c-2

,
and XCIII. . . D pfp

=
0, for p = p 0f

we shall see that if p be changed to p + p in the expression LXXVIIL for fp, and

only terms which are of the second dimension in p retained, the result equated to zero

will represent a cone of tangents p ,
or a Tangent Cone to the Wave at the Cusp :

which cone is of the second degree, and every normal p to which, iflimited by the con

dition I., is here to be considered as one value of the vector p, corresponding to the

value po of p.

(32.) And it is evident, by the law (12.) of transition from the wave to the in

dex surface, that if 4 vo, + v\ be the Lines of Single Normal Slowness, or the four

values of u which are analogous* to the four cusp-rays 4 po, 4_ pi (23.), then, at the

end of each such new line, there must be a Conical Cusp on the Index Surface, ana

logous to the Conical Cusp (31.) on the Wave, which is in like manner one offour

such cusps.

(33.) In forming and applying the equation above indicated (31.), of the tan

gent cone to the wave at a cusp, the following transformations are useful :

XCIV. . .
-

(p + p )-
2 = -

p-2 ( i 4 p-ip )-i (l + p p-i)-i
= -

p-
2 + 2p-2Sp p-i + p-

4
p

2 -
4p-6(Spp )

2 + &c.,

the terms not written being of the third and higher dimensions in p ,
and p, p being

any two vectors such that Tp &amp;lt;Tp (comp. 421, (4.)) ; also, without neglecting any

terms, the self-conjugate property of gives (comp. 362),

XCV. . . S(p 4 p ) (p 4 p )
= Sp0p 4 2Sp&amp;gt;p 4 Sp ^p ,

with an analogous transformation for the corresponding expression in 0-
1

;
while the

cubic LX. in 0, or LXV. in 0- , gives for an arbitrary p,

XCVI. . .

XCVII. ..

and therefore, among other transformations of the same kind,

XCVIII. . . 4

* This word &quot;

analogous&quot; is here more proper than &quot;

corresponding&quot; ;
in fact,

the cusps on each of the two surfaces will soon be seen to correspond to circles on

the other, in virtue of the law of reciprocity.
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We have also for a cusp, the values,

XCIX. . . 0p =
/*o

-
(&amp;lt;r*

+ c-2) po ; XCIX . , . i + Sp ^p =
(a~* -f- c-2) 62

C. . . U 2 =

(34.) In this way the equation of the tangent cone is easily found to take the

form,
CI. . . = 64

Sp (tf&amp;gt;
+ -2

) (0-h c-2 )p -4Sp p Sp&amp;gt;

and to give, by operating with Dp (comp. (10.) (26.) (31.)),

OIL . .
o:/i

=
64(0 + 0-2) (0 + c-2)p

_
2p Sp&amp;gt;

-
2/ioSp po,

the scalar coefficient # being determined, for each direction of the tangent p to the

wave at the cusp, by the condition I., which here becomes (31.),

GUI. . . Sjwp
=

S/xopo
= - 1

;

also, by GIL, &c., we have after some slight reductions,

CIV. . .

CV. . .

CVI. . . aV
= - 462

(Sp&amp;gt; )
2 + 4(&W -

1) Sp poSp&amp;gt; + 4//
2
(Sp po)

2
;

but this last expression is equal, by CIV. CV., to -r^SjupoSju/Jo; the equation of

the cone ofperpendiculars, let fall from the wave-centre o on the tangent planes at

the cusp, takes then this very simple form,

CVII. . .
jti
+ S/ipoS/^o = ;

so that this cone of the second degree has the two vectors p and
/w

at once for sides

and cvclic normals (comp, 406, (7.)); and it is cut, by thQ plane GUI., in a circle,

of which the diameter is,

CVIII. . . T
(/i + po-

1
)
=

(W - &-8)*
= b (6-2

-
a-2)* (c

-2 _
&-a)l

.

and therefore subtends, at the centre o, and in the plane of ac, the angle,

CIX. . . L - = tan-i . 6* (6-2
_

-*)! (c
- - 6- 2

)i.

(35.) And by combining the equations GUI. CVII., we see that this circle (34.)

is a small circle of the sphere,

CX. . . ^
2 = SiQ, or CX . . . Si-iuo = 1

which passes through the wave-centre, and has the vector ^ for a diameter, passing

also through the extremity of the vector -
po&quot;

1
.

(36.) This circle is, by III., a curve of contact of the plane GUI. with the sur

face of which
fJL

is the vector, because every vector p of the curve corresponds, by

(3 L), to the one vector p of the wave ; it is therefore one of Four Circular Ridges on

the Index Surface, the three others having equal diameters, and corresponding to

the three remaining cusp-rays, p , pi, pi (23.) ;
and there are, in like manner,

Four Circular Ridges on the Wave, along which it is touched by thefour planes,

CXI. .. Spa/o
= -li Spv = + l, Spvi = -l, Spvi = +l,

VCH v\ being the four lines introduced in (32.) ;
also the common length of the

diameters, of these four circles on the wave, is (comp. CVIII.),

CXII. . .
T(&amp;lt;r + v

-
1
)
=

(Tffo
2 -& 2

)i
= -

1
(

2 -* 2
)
i (#-c2)l,

where CXIII. . , &amp;lt;r
= - a2c2^v ,

CXIV. . . T/ = 6&quot;
1
,
and CXV. . . SJ/OTO = - 1

;

5 c
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finally,
-

j\, and aQ are the two values* of p,
in the plane of ac, for the first of the

four new circles : and the angle between these two vectors, or the angle which the

diameter of the circle, in the same plane, subtends at the wave-centre, is (comp.

CIX.),

CXVI. . . L ^-=tairi.&-2 2
-Z&amp;gt;

2
&amp;gt;

1

(P-c*y.
&quot;o

(37.) In the recent calculations (33.) (34.), the circle ofcontact (36.) on the

index surface was deducedfrom the tangent cone at a wave-cusp, as a section of a

certain cone ofnormals CVII. to that tangent cone CL, made by the plane GUI.
;

but the following is a simpler, and perhaps more elegant method, of deducing and

representing the same czYc/eby means of its vector equation (comp. 392, IX. &c.), and

without assuming any previous knowledge of the character, or even the existence, of

that conical wave-cusp.

(38.) In. general, by eliminating the auxiliary vector v between XX. and XXIII. r

we arrive at the following equation,

cxvii. ..^-(OGu + p-iy^p-i;

which holds good for every pair of corresponding vectors p and
//,

of the wave and

index surface. And in general, this relation is sufficient, to determine the index-

rector //,
when the ray-vector p is given : because (9 + e)~ is generally = 0.

(39.) But when e is a root of the equation JE= 0, with the signification LXI. of

E, then, by the formula of inversion LXII., the symbol (0 4 e)~
] takes the indetermi

nate form -
;
and therefore, for every point of each of the three circles () (6) (c) of

the wave, the formula CXVII. fails to determine
ju

: although it is only at a cusp

(23.), that the value of
ju becomes in fact indeterminate (comp. (27.) (28.) (29.)

(30.) (31.)).

(40.) At such a cusp (p
= p ),

the equation CXVII. takes the symbolical form,

CXVIII. . .

/i retaining its recent signification XCI., and the symbol (0 4&~2
)-iO denoting any

vector of theform y(3,
if

j3 be the mean vector eemiaxis of the generating ellipsoid

XXIX., so that

CXIX. . . S/ty/3
=

1, (04 Zr2) |8
=

0, T/3 = 5.

(41.) &quot;Writing then for abridgment (comp. XX.),

CXX. .. v =-(/o + |Oo-
1
)-

1

.

the Vector Equation of the Index Ridge (36.) is obtained under the sufficiently

simple form,

CXXI. . . V/3 (p 4 po-
1

)
1 + V/3vo = ;

and this equation does in fact represent a Circle (comp. 296, (7.)), which is easily

* It is not difficult to show that those are the vectors oftwo points, in which the

circle and ellipse (6), wherein the wave is cut by the plane of ac, are touched by a

common tangent.
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proved to be the same as the circular section (34.), of the cone CVII. by the plane
CIII.

;
its diameter CVIII. being Ihus found anew under the form,

CXXII. . . TvQ
-i = bTV\\ = b(b-*-a-)1 (c-2 -&-*),

with the significations (24.) (25.) of X, V ;
in fact we have now the expressions,

CXXII I. . . p = 4UX,

with the verification, that

CXXIV. . . (p + &-2 )v

(42.) And by a precisely similar analysis, we have first the new general rela

tion (comp. CXVII.), for any two corresponding vectors, p and
ft,

CXXV. ..(?H-^2) (p +/*-!)-! =ju-l;

and then in particular (comp. CXVIIL), for u = j
,

CXXVI. . . (p + v -
1

)
1 =

(0-
1 + 62 )-

1^ 1 =
(ffo + i o-

1

&amp;gt;

1+(^ 1 f 62
)-iO;

so that finally, if we write for abridgment (comp. XLI. CXX.),

CXXVII. . . w
=-(*&amp;lt;, + i

(f 1

)-
1
.

the Vector Equation of a Wave-Ridge is found (comp. CXXI.) to be,

CXXVIII. . . V/3(p -f j/ -i)- + V/3w =
0,

/3 being still (as in CXIX.) the mean vector semiaxis of the generating ellipsoid

(Sp0p = 1) : and the diameter CXIL, of this circle of contact of the wave with the

first plane CXI., is thus found anew (comp. CXXII.), without any reference to cusps

(37.), as the value of Two 1
.

(43.) Several of the foregoing results may be illustrated, by a new use of the

last diagram (13.). Thus if we suppose, in that Fig. 89, that we have the values,

CXXIX. .. OP = p , OQ = JUO ,
ou = v

,
whence CXXX. . . OP = p

-
, &c.,

then the index-ridge (36.), corresponding to the wave-cusp P (23.), will be the cir

cle which has P Q for diameter, in a plane perpendicular to the plane of the Figuro,

which is here the plane of ac; the cone of normals p. (34.), to the tangent cone to the

wave at P, has the wave- centre o for its vertex, and rests on the last-mentioned circle,

having also for a subcontrary section that second circle which has po/for diameter,

and has its plane in like manner at right angles to the plane of POQ ;
also if K and s

be any two points on the second and first circles, such that ORS is a right line, namely
a side p of the cone here considered, then the chord PR of the second circle is per

pendicular to this last line, and has the direction of the vibration dp, which answers

here to the two vectors p (= p ) and
/j,

: because (comp. (14.)) this chord is perpen

dicular to
ju,

but complanar with p and u.

(44.) Again, to illustrate the theory of the wave-ridge (36.), which corresponds to

a cusp (32.) on the index-surface, we may suppose that this cusp is at the point Q

in Fig. 89, writing now (instead of CXXIX. CXXX.),

CXXXI. . . OQ = v ,
OP = &amp;lt;r , ow = w

, OQ = - i/ -i, &c.
;

for then the ridge (or circle of contact} on the wave will coincide with the second circle

(43.), and the cone of rays p from o, which rests upon this circle, will have the first

circle (43.) for a sub-contrary section : also the vibration, at any point R of the ware-
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ri&amp;lt;lge,
will have the direction of the chord RQ ,

for reasons of the same kind as be

fore.

(45.) Let K and K denote the bisecting points of the lines PQ and QP ,
in the

same Fig. 89
;
then K is the centre of the index ridge, in the case (43.); while, in

the case (44.), K is the centre of the wave-ridge.

(46.) In the first of these two cases, the point K is not the centre of any ridge,

on either wave or index-surface ; but it is the centre of a certain subcontrary and

circular section (43.), of the cone with o for vertex which rests upon an index-ridge ;

and each of its chords PR has the direction (43.) of a vibration dp ,
at the wave-cusp

p corresponding : so that this cusp-vibration revolves, in the plane of the circle last

mentioned, with exactly half the angular velocity of the revolving radius KR.

(47.) And every one of those cusp-vibrations dpo, which (as we have seen) are

all situated in one plane, namely in the tangent plane at the cusp P to the ellipsoid

(6) of (28.), has (as by (14.) it ought to have) the direction of the projection of the

cusp-ray po, on some tangent plane to the tangent cone to the wave, at that point P :

to the determination of which last cone, by some new methods, we purpose shortly

to return.

(48.) In the second of the two cases (45.), namely in the case (44.), PQ is a

diameter of a wave-ridge, with K for the centre of that circle, and with a plane (per

pendicular to that of the Figure) which touches the wave at every point of the same

circular ridge ;
and the vibration, at any such point R, has been seen to have the

direction of the chord IRQ ,
which is in fact the projection (14.) of the ray OR upon

the tangent plane at R, to the wave.

(49.) And we see that, in passing from one point to another of this wave-ridge,

the vibration RQ revolves (comp. (46.)) round the fixed point Q of that circle,

namely round the foot of the perpendicularfrom o on the ridge-plane, with (again)

half the angular velocity of the revolving radius KR.

(50.) These laws of the two sets of vibrations, at a cusp and at a ridge upon the

wave, are intimately connected with the two conical polarizations, which accompany

the two conical refractions,* external and internal, in a biaxal crystal ; because, on

the one hand, the theoretical deduction of those two refractions is associated with,

and was in fact accomplished by, the consideration of those cusps and ridges : while,

on the other hand, in the theory of Fresnel, the vibration is always perpendicular

* The writer s anticipation, from theory, of the two Conical Refractions, was

announced at a general meeting of the Royal Irish Academy, on the 22nd of Octo

ber, 1832, in the course of a final reading of that Third Supplement on Systems of

Rays, which has been cited in a former Note (p. 737). The very elegant experi

ments, by which his friend, the Rev. Humphrey Lloyd, succeeded shortly afterwards

in exhibiting the expected results, are detailed in a Paper On the Phenomena pre
sented by Light, in its passage along the Axes of Biaxal Crystals, which was read

before the same Academy on the 28th of January, 1833, and is published in the

same First Part of Volume XVII. of their Transactions. Dr. Lloyd has also given
an account of the same phenomena, in a separate work since published, under the

title of an Elementary Treatise on the Wave Theory of Light (London, Longman
and Co., 1857, Chapter XL).
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to the plane ofpolarization. But into the details of such investigations, we cannot

enter here.

(51.) It is not difficult to show, by decomposing p into two other vectors, pi

and pz, perpendicular and parallel to the plane of#c, that we have the general trans

formation, for any vector p ,

CXXXII. . . &4S + -2 + c-2

the equation CI. of the tangent cone at a wave-cusp may therefore be thus more

briefly written,
CXXXIII. . .

and under this form, the cone in question is easily proved to be the locus of the nor

mals from the cusp, to that other cone CVII., which has
/Ji

for a side, and the wave-

centre o for its vertex : while the same cone CVII. is now seen, more easily than in

(34.), to be reciprocally the locus of the perpendiculars from o on the tangent planes

to the wave at the cusp, in virtue of the new equation CXXXIII., of the tangent

cone at that point.

(52.) Another form of the equation of the cusp-cone may be obtained as fol

lows. The equation LXXIV. of the wave may be thus modified (comp. LXXVL),
by the introduction of the two non-opposite cusp-rays, po = ZUX (CXXIII.), and

CXXXIV. . .

= + (
2 -c2)TVp p.TVp 1p;

where it will be found that the first member vanishes, as well as the second, at the

cusp for which p = po.

(53.) Changing then p to p + p ,
and retaining only terms ofjirst dimension in

p (comp. (31.)), we find an equation of unifocal form (comp. 359, &c.),

CXXXV. . . Sj8 p = + TVaop ,
or CXXXV. . . (V p )

2 + (S/3op )
2 =

;

with the two constant vectors,

CXXXVI. . . a =
(b-

2 - a~2 )* (c-2
-

fc-2)i p ;
CXXXVI . . . /3

=
jw
-

Po&quot;

1
;

and this equation CXXXV. or CXXXV. represents the tangent cone, with p for

side, Sfiop being positive for one sheet, but negative for the other.

(54.) As regards the calculations which conduct to the recent expressions for

a
, j3 ,

it may be sufficient here to observe that those expressions are found to give

the equations,
CXXXVII. . . 2fl262c*a =

(
2 - c2

) poTVp pi ;

CXXXVII . . . 2 262c2/3
= 2 (eft + c2) b*p + (eft

-
c*) (p Sp pi

- 6 2pO 5

and that, in deducing these, we employ the values,

62SXX 6?TVXX&quot;

CXXXVIII. . . Spopi
=

7j^-r&amp;gt;

TVpopi = TXV ;

together with the formula XCIX., and the following,

CXXXIX. . . ^ (po
-

pi)
= - fl~

2
(Po

-
PI) 5 (Po + PI)

= - c
&quot; 2

(Po + Pi)-

(55.) It is not difficult to show that the equation CXXXV. or CXXXV ., of the

tangent cone at a cusp, can be transformed into the equation CXXXIII.; but it
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may be more interesting to assign here a geometrical interpretation, or construction,

of the unifocalform last found (53.).

(56.) Retaining then, for a moment, the use made in (43.) of Fig. 89, as serv

ing to illustrate the case of a wave-cusp at P, with the signification (45.) of the new

point K as bisecting the line P Q, or as being the centre of the index-ridge ;
and

conceiving a parallel cone, with o instead of p for vertex, and with a variable side

ox = p ;
then the cusp-ray OP (=p II

ao) is & focal line of the new cone, and the

line OK (= (^
-

po&quot;

1
)
=

|/3 ) is the directive normal, or the normal to the director

plane corresponding ;
and the formula CXXXV. is found to conduct to the follow

ing,
CXL. . . cos K OT = sin POK sin POT,

which maybe called a Geometrical Equation of the Cusp- Cone : or (more im

mediately) of that Parallel Cone, which has (as above) its vertex removed to the

wave-centre o.

(57.) Verifications of CXL. may be obtained, by supposing the side OT to be

one of the two right lines, pi , p2 ,
in which the cone is cut by the plane of the figure

(or of ac) ;
that is, by assuming either

CXLI. . . OT = pi
=

t
i +p Q

}

|| ou, or CXLI . . . OT = p2 = po + jwo&quot;

1
II
ow

;

and it is easy to show, not only that these two sides, ou, o\v, make (as in Fig. 89)

an obtuse angle with each other, but also that they belong to one common sheet, of

the cone here considered, because each makes an acute angle with the directive nor

mal OK .

(58.) Another way of arriving at this result, is to observe that the equation

CXXXIII. takes easily the rectangular form,

CXLII. .

the internal axis of the cusp-cone has therefore the direction of U/* + Up ,
that is,

of the internal bisector of the angle POQ, while the external bisector of the same

angle is one of the two external axes, and the third axis is perpendicular to the plane

fpo^o; but Sp (U^ + Up )&amp;lt;0,
whether p =

pi , or=p2 : and therefore these

two sides, pi and p2 , belong (as above) to one sheet, because each is inclined at an

acute angle to the internal axis U/Lt + Up .

(59.) It is easy to see that the secondfocal line of the parallel cone (5G.) is
jt/ ,

or OQ ;
and that the second directive normal corresponding is the line OK (45.), in

the same Fig. 89
;
whence may be derived (comp. CXL.) this second geometrical

equation of the cone at o,

CXLIII. . . cos KOT = sin KOQ sin QOT ; with KOQ = POK .

(60.) And finally, as a bifocal but still geometricalform of the equation of the

cusp-cone, with its vertex thus transferred to o, we may write,

CXLIV. . . L POT -t L QOT = const. = {_ wou.

(01.) Any legitimate form of anyone of the four functions, &amp;lt;pp, &amp;lt;p^p, Spipp,

iSpr/) ip, when treated by rules of the present Calculus which have been already
stated and exemplified, not only conducts to the connected forms of the three other

functions of the group, but also gives the corresponding forms of equation, of the

Wave and the Index-Surface.
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(62.) For instance, with the significations (32.) of j/o and v\, the scalar func

tion Sp0-
!

p, which is = 1 in the equation XXX. of the Reciprocal Ellipsoid (9.),

may be expressed by the following cyclic form, with VQ, v\ for the cyclic normals of

that ellipsoid,

CXLV. . . Sp0-ip = - 62
p
2

-f (
2 -

reciprocating which (comp. 361), we are led to a bifocal form of the function

Sp0p, which function was made = 1 in the equation XXIX. of the Generating Ellip

soid (8.), and is now expressed by this other equation (comp. 360, 407),

CXLVI. . .(2 (Sp0p + 6-V) = (Svop) + (Svip)
2 - 2

vo, n being here the two (rea^^beaZ Zmes of the same ellipsoid (8.), or of its (ima

ginary) asymptotic cone.

(63.) Substituting then these forms (62.), of Sp^p and
Sp&amp;lt;f&amp;gt;-*p,

in the equation

LXIII., we find (after a few reductions) this new form of the Equation of the

Wave :

CXLVII. . . (2p
2 - (2 _ C2) SvopSvip + 2 + C2)2

=
(02

_ C2)2 { 1 _
(Sj&amp;gt; p)

2
}

whence it follows at once, that each of the four planes CXI. touches the wave, along

the circle in which it cuts the quadric, with VQ, v\ for cyclic normals, which is found

by equating to zero the expression squared in the first member of CXLVII. For

example, the first plane CXI. touches the wave along that circle, or wave-ridge,

of which on this plan the equations are,

CXLVIII. . . Sa/op +1 = 0, 2pH (
2 - c?) Svip

-
(a

2
-f c2) Si/ p = ;

and because

CXLIX. . .
(l/o + Vl) = -

-2
(V +1/l), (VQ -Vl)=- C-2 (y

-
J/l),

and therefore, with the value CXIII. of (T ,

CL. . . (T = - 2
f201/o

= J ((&amp;lt;l

2 4 C-) J/
- (2 _ c

) Vi),

the second equation CXLVIII. represents (comp. CX.) the diacentric sphere,

CLI. . . p2= So- p, or CLI . . . S^p 1 = 1,

which passes through the wave-centre o, and of which the ridge here considered is a

section. The diameter of that ridge may thus be shown again to have the value

CXII.
;
and it may be observed that the circle is a section also of the cone,

CLII. . . St opSo-op
= -

p
2

,
or CLII . . . Sv pSff p-

1 =- 1.

(64.) It was shown in (17.) that the vibration dp, at any point of the wave-

surface, or at the end of any ray p, is perpendicular to 0- p, as well as to
/* by II. ;

and is therefore tangential to the variable ellipsoid LIX., as well as to the wave itself.

Hence it is easy to infer, that this vibration must have generally the direction of the

auxiliary vector a), because not only S/io&amp;gt;

=
0, by XXXIX., but also Sw^ p

= Sp0- &amp;lt;u
= Spy = 0, by XXII. and XXXVII. Indeed, this parallelism of dp to w

results at once by XXXVII. from XII.

(65.) If then we denote by S p an infinitesimal vector, such as
//&amp;lt;$p,

which is tan

gential to the wave, but perpendicular to the vibration p, the parallelism p ||
&amp;lt;u

will give,
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CLIII. . . S p = pSp ]| pa -J-
p, because CLIII . . . Sp;iw = 0;

whence CLI V. . . Spd p = 0, c&quot;Tp
=

0, or CLV. . . Tp = r = const.,

for this new direction
c&quot;p

of motion upon the wave.

(66.) And thus (or otherwise) it may be shown, that the Orthogonal Trajecto

ries to the Lines of Vibration (17.) are the curves in which the Wave is cut by

Concentric Spheres, such as CLV. ;
that is, by the spheres p

2 + r2 = 0, in which the

radius r is constant for any one, but varies in passing from one to another.

(67.) The spherical curves (r), which are thus orthogonal to what we have

called the lines (h~)
of vibration, are sphero-conics on the wave ; either because each

such curve (r) is, by XXVIIL, situated on a concentric and quadric cone, namely,

CLVI. . . = Sp(0+r-2)-ip;

or because, by XXVII., it is on this other concentric quadric,

CLVII. ..-l = Sp(0-
l

+r2)-ip.

(68.) It is easy to prove (comp. LXXV.)) that, for any real point of the wave,

r2 cannot be less than c, nor greater than at
;
and that the squares of the scalar

semiaxes of the new quadric CLVII. are, in algebraically ascending order, r2 -a2
,

,-s _ 62
}

r2 _ C2
j

so that this surface is generally an hyperboloid, with one sheet or

with two, according as r &amp;gt; or &amp;lt; &.

(69.) And we see, at the same time, that the conjugate hyperboloid,

CLVIII. . . +l = Sp(0-
1

-hr2)-ip,

which has two sheets or one, in the same two cases, r &amp;gt; b, r&amp;lt;b,
and has (in descend

ing order) the values,

CLIX. . . a2 - r9
,
& - r2

,
c2 - r*,

for the squares of its scalar semiaxes, is confocal with the generating ellipsoid

XXIX. : so that the quadric CLVII. itself is the conjugate of such a confocal.

(70). To form a distinct conception (comp. (67.)) of the course of a curve (r)

upon the wave, it may be convenient to distinguish the Jive following cases :

CLX. . . (a)..r = ; (j3)
. .r i, &amp;gt; 6

; (y)..r = 6; (tf)..r&amp;lt;6,&amp;gt;c; (e)..r = e.

(71.) In each of the three cases (a) (y) (e), the conic (r) becomes a circle, in

one or other of the three principal planes : namely the circle (a), for the case (a) ;

(ft)
for (r); and (c) for (0.

(72.) In the case (/3), the curve (r) is one of double curvature, and consists of

two closed ovals, opposite to each other on the wave, and separated by the plane (),

which plane is not (really) met, in any point, by the complete sphero-conic (r) ;
and

each separate oval crosses the plane (6) perpendicularly, in two (real) points of the

ellipse (6), which are external to the circle (6) : while the same oval crosses also the

plane (c) at right angles, in some two real points of the ellipse (c).

(73.) Finally, in the remaining case (5], the ovals are separated by the plane

(c), and each crosses the plane (6) at right angles, in two points of the ellipse (6),

which are interior to the circle (6) ; crossing also perpendicularly the plane (a), in

two points of the ellipse (a).

(74.) Analogous remarks apply to the lines of vibration (/*); which are either

the ellipses (a) (6) (c), or else orthogonals to the circles (a) (6) (c), and generally
to the sphero-conics (r), as appears easily from foregoing results.
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(75.) It may be here observed, that when we only know the direction (U/*),
but not the length (Tju), of an index-vector

/*, so that we have two parallel tangent

planes to the wave, at one common side of the centre, the directions of the vibrations

dp differ generally for these two planes, according to a late which it is easy to as

sign as follows.

(70.) The second values of
/t

and dp being denoted by \i t
and dp t ,

we have, by
the equation IX. of the index-surface, these two other equations :

CLXI. . . =
S/i (0-

1 -
/r

2
)&quot;

1

11 -,
CLX1 . . . =

S/t (0-i
-

j*,-
2
)-V ;

of which the difference gives, suppressing the factor /t/
2

/r
2

,

CLXII. . . o

or CLXII . . . =

because
(0&quot;

1

/t,&quot;

2
)

1

,
as a functional operator, is self-conjugate, so that

/i may be

transferred from one side of it to the other ; just as, if v =
&amp;lt;pp

be such a self-conju

gate function of p, then v * -
Si&amp;gt;&amp;lt;j&amp;gt;p

= Sp0v = Sp02
p, &c.

(77.) But, by VIII., we have the parallelisms,

CLXIII. . . do
|| (0-

1

-/i-
2
)-i/i ; CLXIIF. . . dp, || (0-

- /V
2

)&amp;gt; ;

hence, by CLXII .,
we have the very simple relation,

CLXIV.

that is, the two vibrations, in the two parallel planes, are mutually rectangular,

(78.) The following quite different method has however the advantage of not

only proving anew this known relation of rectangularity, but also of assigning qua

ternion expressions for the two directions separately : and, at the same time, that

of leading easily to what appears to be a new and elegant Geometrical Construction,

simpler in some respects than the known one, which can indeed be deduced from it.

(79.) By the first principles of Fresnel s theory (comp. (3.)), the vibration ($/o),

on any one tangent plane to the wave, is situated in the normal plane (through /t),

which contains the direction (fo) of the elastic force ; that is to say, we have the

Equation of Complanarity,

CLXV. . . SpdpSe^ 0.

(80.) We have then, by II. and V., the system of the two equations,

CLXVI. . . S/ify
=

0, Sfj.dp&amp;lt;j&amp;gt;-

l

dp = ;

comparing which with the equations of the same form,

Svr = 0, SvT$r = Q, 410, V. VI.

we derive at once the following Construction, which may also be expressed as a The

orem :

&quot; At cither of the two points Q of the Reciprocal Ellipsoid XXX., the tangent

plane at which is parallel to that at the given point P of the Wave, the tangents to

the Lines of Curvature on the Ellipsoid are parallel to the tangents to the Lines of

Vibration on the Wave? namely, to one at that given point P itself, and to another

at the other point p
,
on the same side of the centre, at which the tangent plane is

parallel to each of the two others above mentioned.

5 D
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(81.) Thus for each of the two points P, P the line of vibration is parallel to

one of the lines of curvature at Q ;
and it is evident, from what precedes, that the

other of these last lines has the direction of the corresponding Orthogonal (66.) at

p or P : nor is there any danger of confusion.

(82.) As regards quaternion expressions, for the two vibrations on a given zvave-

front, the sub-article, 410, (8.), with notations suitably modified, shows by its for

mula XIX. XXII. that we have here the equations,

CLXVII. . . =
Sju dp v dp Vi

= Su p VQ Si i dp

and CXVIII. . . Sp \\
UV/*r +

if VQ , v\ be, as in earlier formulae of the present Series 422, the cyclic normals of the

reciprocal ellipsoid, which are often called the Optic Axes of the Crystal.

(83.) And hence may be deduced the known construction, namely, that &quot; for

any given direction of wave-front, the two planes ofpolarization, perpendicular

respectively to the two vibrations in Fresnel s theory, bisect the two supplementary

and diedral angles, which the two optic axes subtend at the normal to the front :&quot;

or that these planes of polarization bisect, internally and externally, the angle be

tween the two planes, /^?
and p.v\.

(81.) It may not be irrelevant here to remark, that if p and u
t
be any two in

dex-vectors, which have (as in (76.)) the same direction, but not the same length, the

equation LXIV. enables us to establish the two converse relations:

CLXIX. . . a&cTX = (S/J0/0-1 ?
CLXIX . . . abcTp = (S/i,0/O s-

(85.) Either by changing a, b, c, $, \JL
to a 2

,
b 2

,
c 2

, 0~i, p, or by treating the

form LXIII., in (19.), of the Equation of the Wave, as we have just treated the

form LXIV., of the equation of Index Surface, in the same sub-article
(19-)&amp;gt;

we see

that if p and p, be any two condirectional rays (Up /
= Up), then,

CLXX. . . (a&c)-iTp, = (Sp0 V) A or, abcTp-i = (Sp0-
!

p)* ;

and CLXX . . . (6c)-Tp = S (p,0-p,)-*, or, a&cTp-
1 = (Sp^- p,)i

(86.) A somewhat interesting geometrical consequence may be deduced from

these last formulae, when combined with the equation LIX. of that variable ellipsoid,

Sp0~
J

p = /i4
,
which cuts the wave in a line of vibration (A). For if we introduce this

symbol A 4 for Sp^- p, and write r, instead of Tp, to denote the length of the second

ray p ,
the first equation CLXX. will take this simple form,

CLXXI. . . r
t
=

abch-*,

which shows at once that r
t
and h are together constant, or together variable ; and

therefore, that &quot;a Line of Vibration on one Sheet of the Wave is projected into an

Orthogonal Trajectory to all such Lines on the other Sheet, and conversely the latter

into the former, ItyJLhe Vectors p of the Wave : so that one of these two curves would

appear to be superposed upon the other, to an eye placed at the Wave- Centre o.

(87.) The visual cone, here conceived, is represented by the equation CLVL,
with some constant value of r

;
and as being a surface of the second degree, it ought

to cut the wave, which is one of the fourth, in some curve of the eighth degree ; or in

some system of curves, which have the product of their dimensions equal to eight.
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Accordingly we now see that the complete intersection, of the cone CLVI. with the

wave, consists of two curves, each of the fourth degree ; one of these being, as in

(67.), a complete sphero-conic (r), and the other a complete line of vibration (h~):

a new geometrical connexion being thus established between these two quartic

curves.

(88.) As additional verifications, we may regard the three principal planes, as

limits ofthe cutting cones ; for then, in the plane (a) for instance, the circle (r?) and

the ellipse (), which are (in a sense) projections of each other, and of which the

latter has been seen to be a line of vibration, are represented respectively by the two

equations,
CLXXII. . . ra, and CLXXII . . . 6c= h\

in agreement with CLXXI.
;
and similarly for the two other planes.

(89.) It was an early result of the quaternions, that an ellipsoid with its centre

at the origin might be adequately represented by the equation (comp. 281, XXIX.,
or 282, XIX.),

CLXXIII. . . T (ip + PK) = K 2- i2
,

if Ti &amp;gt; T/c ;

or, without any restriction on the two vector constants, t, K, by this other equa

tion,*
CLXXIII . . . T (tp + pic)

2 =
Oc

2 - i
2
)
2

.

(90.) Comparing this with
Sp&amp;lt;pp= 1, as the equation XXIX. of the Generating

Ellipsoid, we see that we are to satisfy, independently of p, or as an identity, the re

lation (comp. 336) :

CLXXIV. ..(**- i
2
)
2 Sp0p = (tp + PK) (pi + fcp

=
(i
2 i *2

) p + 2Stp Kp ;

which is done by assuming (comp. again 336) this cyclicform for 0,

CLXXV. . .
(f,-

2 = t2)2 p = (jj + K2) p + 2VKpi
= (i-K)

2p+ 2tSKp+2fcSip;

or as in (24.) comp. 359, III. IV.,

0p =0o + VXpX , Sp0p =gp* 4- SXpX p = 1
;

LXXII. LXXIII.

* This equation, CLXXIII . or CLXXII., which had been assigned by the

author as a form of the equation of an ellipsoid, haa been selected by his friend

Professor Peter Guthrie Tait, now of Edinburgh, as the basis of an admirable

Paper, entitled :

&quot;

Quaternion Investigations connected with Fresnel s Wave-Sur

face,&quot;
which appeared in the May number for 1865, of the Quarterly Journul of

Pure and Applied Mathematics; and which the present writer can strongly re

commend to the careful perusal of all quaternion students.
Indeed,

Professor Tait,

who has already published tracts on other applications of Quaternions, mathematical

and physical, including some on Electro- Dynamics, appears to the writer eminently

fitted to carry on, happily and usefully, this new branch of mathematical science:

ani likely to become in it, if the expression may be allowed, one of the chief succes

sors to its inventor.
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with expressions for the constants #, X, X
,
which give, by LXXVI., the following

values for the scalar seraiaxes,*

CLXXVI. . . a =
~

T
. .

whence conversely,

(91.) Knowing thus the form CLXXV. of the function 0, which answers in the

present case to the given equation CLXXIII. of the generating ellipsoid, there

would be no difficulty in carrying on the calculations, so as to reproduce, in connexion

with the two constants
i, K, all the preceding theorems and formula} of the present

Series, respecting the Wave and the Index- Surface. But it may be more useful to

show briefly, before we conclude the Series, how we can pass from Quaternions to

Cartesian Co-ordinates, in any question or formula, of the kind lately considered.

(92.) The three italic letters, ijk, conceived to be connected by the fourfunda
mental relations,

P=j* = k2=ijk = -l, (A), 183,

were originally the only peculiar symbols of the present Calcnlus
;
and although

they are not now .so much used, as in the early practice of quaternions, because cer

tain general signs of operation, such as S, V, T, U, K, have since been introduced,

yet they (the symbols ijk} may be supposed to be stillfamiliar to a student, as links

between quaternions and co-ordinates.

(93.) We shall therefore merely write down here some leading expressions, of

which the meaning and utility seem likely to be at once perceived, especially after

the Calculations above performed in this Series.

(94.) The vector semiaxes of the generating ellipsoid being called a, (3, y (comp.

(40.) (42.)), we may write,

CLXXVIII. . . a = ia, (3 =jb, y = kc;

CLXXIX. . . 0p = a-iSa-ip + /3-
1

S/^
1

p + y-
1Sy-V = 2 ~

ls
~1

(0
= - 2i- 2*

;

CLXXX. . . Sp0p = S (Sa = Va-W
;

CLXXXI. . . Spp-ip

CLXXXII. . . (0 + e) p = Sa (a* + &amp;lt;?)

Sa- p ;

* The reader, at this stage, might perhaps usefully turn back to that Construc

tion of the Ellipsoid, illustrated by Fig. 53 (p. 226), with the Remarks thereon,

which were given in the few last Series of the Section II. i. 13, pages 223-233. It

will be seen there that the three vectors, i, K, i K, of which the lengths are ex

pressed by CLXXVII., are the three sides, CB, CA, AB, of what may be called the

Generating Triangle ABC in the Figure; and that the deduction CLXXVI., of the

three semiaxes, ale, from the two vector constants, t, K, with many connected

results, can be very simply exhibited by Geometry. The whole subject, of the equa
tion T (ip + p/c)

= c2 - i
2 of the ellipsoid, was very fully treated in the Lectures;

and the calculations may be made more general, by the transformations assigned in

the long but important Section III. ii. 6 of the present Elements, so that it seems

unnecessary to dwell more on it in this place.
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CLXXXIII. . . O + e)-ip
= 2a (a

-2 + e
)-&amp;gt; Sa-ip ;

CLXXXIV. . . if r-s = Tp2 = 2^ then v - r-*(0 + r 2)-ip

CLXXXV. . . for Wave, = Spv = 2

or CLXXXVI. . . 1 = - Spw = - Sp^&amp;gt;u

= -

r-2 _

and the Index-Surface may be treated similarly, or obtained from the Wave by
changing ale to their reciprocals.

423. As an eighth specimen of physical application we shall in

vestigate, by quaternions, MacCullagh s Theorem ofthe Polar Plane*

and some things therewith connected, for an important case of inci

dence of polarized light on a biaxal crystal: namely, for what was

called by him the case of uniradial vibrations.

(1.) Let homogeneous light in air (or in a vacuum), with a velocityf taken for

unity, fall on a plane face of a doubly refracting crystal, with such a polarization

that only one refracted ray shall result
;

let p, p , p&quot;
denote the vectors of ray-velo

city of the incident, refracted, and reflected lights respectively, p having the direc

tion of the incident ray, prolonged within the crystal, but
p&quot;

that of the reflected

ray outside ; and let
p,

be the vector of wave-slowness, or the index-vector (comp.

422, (!)), for the refracted light : these four vectors being all drawn from a given

point of incidence o, and
p. ,

like p , being within the crystal.

(2.) Then, by all% wave theories of light, translated into the present notation,

we have the equations,
I. . . pa

=
Sju p =

p&quot;

2 = - 1
;

II. . .
p&quot;

= - vav- 1
,

with II . . . v = p -
p,

where v is a normal to the face ; whence also,

fl
-

p fJL -p
IV. . .

p&quot;
+ p = 2t, if IV. .

and V.

* See pp. 39, 40 of the Paper by that great mathematical and physical philo

sopher,
&quot; On the Laws of Crystalline Reflexion and Refraction&quot; already referred

to in the Note to page 737 (Trans. R. I. A., Vol. XVIII., Part I.).

f Of course, by a suitable choice of the units of time and space, the velocities and

slownessses, here spoken of, may be represented by lines as short as may be thought

convenient.

J These equations may be deduced, for example, from the principles of Huy-

ghens, as stated in his Tractatus de Lnmine (Opera reliqua, Amst., 1728).
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so that the three vectors, p, ju , p&quot;,
terminate on one right line, which is perpendi

cular to the face of the crystal : and the bisector of the angle between the first and

third of them, or between the incident and reflected rays, is the intersection i of the

plane of incidence with the same plane face.

(3.) Let r, r
,

r&quot; be the vectors of vibration for the three rays p, p , p&quot;,
con

ceived to be drawn from their respective extremities
; then, by all* theories of tan

gential vibration, we have the equations,

VI. . .Spr = 0; VII. . . S/iV = ;
VIII. . .

Sp&quot;r&quot;= ;

to which Mac Cullagh adds the supposition (), that the vibration in the crystal is

perpendicular to the refracted ray : or, with the present symbols, that

IX. . . Sp r =
j whence X. . . r

|| V/p ,

the direction of the refracted vibration T being thus in general determined, when

those of the vectors p and
p,

are given.

(4.) To deduce from r the two other vibrations, r and
r&quot;,

Mac Cullagh as

sumes, (6), the Principle of Equivalent Vibrations, expressed here by the formula,

XL . . r -r +r&quot; = 0,

in virtue of winch the three vibrations are parallel to one common plane, and the re

fracted vibration is the vector sum (or resultant} of the other two
; (c), the Principle

of the Vis Viva, by which the reflected and refracted lights are together equal to the

incident light, which is conceived to have caused them
;
and (cT), the Principle of

Constant Density of the Ether, whereby the masses of ether, disturbed by the three

lights, are simply proportional to their volumes : the two last hypothesesf being

here jointly expressed by the equation,

XII. .

(5.) Eliminating p&quot;
and r from XII. by V. and XL, r2

goes off
;
and we find,

with the help of I. and II ., the following linear equation in r,

xm--- 2S ?- 1 +
l?

=^ if * .,/=-,,

a second such equation is obtained by eliminating p&quot;
and T&quot; by III. and XL from

VIIL, and attending to I. VI. VIL, namely,

XIV. . . 2SpvSu r= (p
2
-ji )Spr =- S/iVSpr ;

and a third linear equation in r is given immediately by VI.

* The equations VI. VIL VIIL hold good, for instance, on Fresnel s principles ;

but Fresnel s tangential vibration in the crystal has a direction perpendicular to that

adopted by Mac Cullagh.

f In the concluding Note (p. 74) to this Paper, Professor Mac Cullagh refers to

an elaborate Memoir by Professor Neumann, published in 1837 (in the Berlin Trans

actions for 1835), as containing precisely the same system of hypothetical principles

respecting Light. But there was evidently a complete mutual independence, in the

researches of those two eminent men. Some remarks on this subject will be found
in the Proceedings of the R. I. A., Vol. I., pp. 232, 374, and Vol. II., p. 96.
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(6.) Solving then for r, by the rules of the present Calculus, this system of the

three linear and scalar equations VI. XIII. XIV., we find for the incident vibration

the following vector expression,*

XV. . . r =
;

or XV. . . ZrSpv = r Spv - v Spr ;

and accordingly it may be verified by mere inspection, with the help of VII. and IX.,

that this vector value of r satisfies the three scalar equations (5.). And when the

incident vibration has been thus deduced from the refracted vibration T
,
the reflected

vibration T&quot; is at once given by the formula XL, or by the expression,

XVI.. . r&quot;
= r -r;

(7.) The relation XV. gives at once the equation ofcomplanarity,

XVII. . . SV TT =
0, or the formula XVIII. ../*

-
p \\ \ T, T

;

if then a plane be anywhere so drawn, as to be parallel (4.) to the three vibrations

T, T
, T&quot;,

it will be parallel also to the line
fj,

-
p ,

which connects two correspond

ing points, on the wave and index surface in the crystal : but this is one form of

enunciation of Professor Mac Cullagh s Theorem of the Polar Plane, which theorem

is thus deduced with great simplicity by quaternions, from the principles above sup

posed.

(8.) For example, if we suppose that OP and OQ, in Fig. 89, represent the re

fracted ray p ,
and the index vector /z corresponding, and if we draw through the

line PQ a plane perpendicular to the plane of the Figure, then the plane so drawn

will contain (on the principles here considered) the refracted vibration T
,
and will

be parallel to both the incident vibration r and the reflected vibration T&quot;
;
whence

the directions of the two latter vibrations may be in general determined, as being

also perpendicular respectively to the incident and refected rays, p and
p&quot;

: and then

the relative intensities (Tr
2
,
Tr 2, Tr&quot;

2
) of the three lights may be deduced from the

relative amplitudes (Tr, Tr
, Tr&quot;)

of the three vibrations, which may them-elves be

found from the three complanar directions, by a simple resolution of one line r into

two others, of which it is the vector sum, as if the vibrations \veveforces.

(9.) The equations II . IV. V. and XIII . enable us to express the four vectors, ,

IJi ^=p + v^ i(=p
-
v-iSvp}, p&quot;(=p-2j/-

&amp;gt;S^p), and p (=,o-f r-i/ ), in terms

of the three vectors p, v, v, which are connected with each other by the relation,

XIX. . . i (=p v~ l8vp\ p&quot;(=p
- 2v~ 1Svp), and p (=p + v i/),

XIX. . v3 + 2S^p = S*&amp;gt; (p + v*),
because XIX . .. Srp =S(a/- v^)p,

* The expressions XV. XVI. enable us to determine, not only the directions Ur,

Ur&quot; of the incident and reflected vibrations, but also their amplitudes Tr, Tr&quot;, or

the intensities Tr2
,

Tr&quot;
2 of the incident and reflected lights, for any given or assumed

amplitude Tr of the refracted vibration, or intensity Tr 3 of the refracted light,

after having determined the direction Ur of the refracted vibration by means of the

formula X.
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as in XIII., or because /i
2 -

p
2 = S/iV) by I. and XIII .; and with which T is

connected (VII. and IX.), by the two equations,

XX. . . S(p+v)r =
0, and XXI. . . Si/r = 0;

while T and T&quot; are connected with the same three vectors, and with r
, by the rela

tions VI. VIII. XI. XIII., which conduct, by elimination of
r&quot;,

to the following

system (comp. (5.)) of three linear and scalar equations in r,

XXII. .. Sjor
= 0; 2SypSrr = Si/(p+ r) Sir

;

and therefore to the vector expression,

2rSvp = VpvV, as in XV.

(10.) By these or other transfomations, there is no difficulty in deducing this

new equation, in which w may be any vector,

XXIII. . . Vj/V{(p-w)r-(p -w)r + (p&quot;-to)n&quot;}r
= 0;

and conversely, when w is thus treated as arbitrary, the formula XXIII., with the

relations (9.) between the vectors p, p , p&quot;, v, v
,
u

,
but without any restriction (ex

cept itself} on r, r
, r&quot;,

is sufficient to give the two vector equations,

XI. . . T-T + r&quot;
=

0, and XXIV. . . pr - pV + p V&quot; = xv ] + y,

in which

XXV. . . x = Sv (pr
- pV -f p V&quot;)

= Si/i/r
,
and XXI. . . y = S (pr

-
p r v + p V&quot;) ;

and which conduct to the two scalar equations (among others),

XXVII. . . Sfc (pr
- pV +

p&quot;r&quot;)

=
0, if XXVII . . . SKI/ = 0,

and XXVIII. . . Si/p (Spr
- Sp V&quot;)

=
Si/p S/iV ;

so that if we now suppose the equations VI. VIII. IX. to be given, the equation

VII. will/o//oi0, by XXVIII.
; while, as a case of XXVII., and with the significa

tion IV. or IV. of t, we have the equation,

XXIX. . . St (pr
- pV f p V&quot;)

- 0.

(11.) And thus (or otherwise) it may be shown, that the three scalar equations

*VI. VIII. IX., combined with the one vector formula XXIII., which (on account of

the arbitrary w) is equivalent to five scalar equations, are sufficient to give the same

direction of r
,
and the same dependencies of r and r&quot; thereon, as those expressed by

.the equations X. XV. XVI.
;
and therefore (among other consequences), to the for

mula XII. and XVII.

(12.) But the equations VI. VIII. IX. contain what may be called the Princi

ple of Rectangular Vibrations (or of vibrations rectangular to rays); and the for

mula XXIII. is easily interpreted (416.), as expressing what may be termed the

Principle of the Resultant Couple : namely the theorem, that if the three vibrations

(or displacements), r, r
, r&quot;,

be regarded as three forces, RT, K T
, K&quot;T&quot;, acting at the

ends of the three rays, p, p , p ,
or OR, OR

,
OR&quot; (drawn in the directions (1.) from

the point of incidence o), then this other system of threeforces, RT, - R T
,

R&quot;T&quot; (con
ceived as applied to a solid body), is equivalent to a single couple, of which the plane
is parallel (or the axis perpendicular) to the face of the crystal.
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(13.) It follows then, by (10.) and (11.), that from these two principles,* (I.)
and (II.), we can infer all the following :

(III.) the Principle of Tangential Vibrations (or of vibrations tangential to the

waves) ;

(IV.) the Principle of Equivalent Vibrations (4.) ;

(V.) the Principle of the Vis Viva, as expressed (in conjunction with that of the

Constant Density of the Ether) by the equation XII.
;

(VI.) the Principle (or Theorem) of the Polar Plane;
And (VII.) what may be called the Principle of Equivalent Moments,^ namely

* The word &quot;

Principle&quot; is here employed with the usual latitude, as representing
either an hypothesis assumed, or a theorem deduced, but made a ground of subsequent
deduction. The principle (I.) of rectangular vibrations coincides, for the case of an

ordinary medium, with the principle (III.) of tangential vibrations
; but, for an ex

traordinary medium, except for the case (not here considered) of ordinary rays in an

uniaxal crystal, these two principles are distinct, although both were assumed by
Mac Cullagh and Neumann. The present writer has already disclaimed fin the Note
to page 736) any responsibility for the physical hypotheses ; so that the results given
above are offered merely as instances of mathematical deduction and generalization

attained through the Calculus of Quaternions.

f In a very clear and able Memoir, by Arthur Cayley, Esq. (now Professor

Cayley),
&quot; On Professor Mac Cullagh s Theorem of the Polar

Plane,&quot; which was

read before the Royal Irish Academy on the 23rd of February, 1857, and has been

printed iu Vol. VI. of the Proceedings of that Academy (pages 481-491), thisnawe

&quot;principle of equivalent moments,&quot; is given to a statement (p. 489), that &quot;the-

moment of R t round the axis AH, is equal to the sum of the moments of Rt and

R&quot;t&quot; round the same axis&quot;
;
the line AH being (p. 487) the intersection of the

plane of incidence with the plane of separation of the two media, that is, with the

face of the crystal : while Rt, R t
,

R&quot;t are lines representing (p. 488) the three

vibrations (incident, refracted, and reflected), at the ends ofthethree rays AR, AR
AR&quot;, which are drawn from the point of incidence A, so as to lie, all three (p. 487),
within the crystal. And in fact, if this statement be modified, either by changing

the sign of the moment of R&quot;t&quot; (p. 491), or by drawing the reflected ray AR&quot;, like

the line OR&quot; of the present investigation in the air (or in
vacuo&quot;),

instead ofprolong

ing it backwards within the biaxal crystal, it agrees with the case XXIX. of the

more general formula XXVII., which is itself included in what has been called above

the Principle of the Resultant Couple. In venturing thus to point out, as the sub

ject obliged him to do, what seemed to him to be a slight inadvertence in a Paper of

such interest and value, the present writer hopes that he will not be supposed to be

deficient in the admiration, (long since publicly expressed by him), which is due to the

vast attainments of a mathematician so eminent as Professor Cayley.

Since the preceding Series 423, including its Notes (so far), was copied and sent

to the printers, the writer s attention has been drawn to a later Paper by Mac Cul

lagh (read December 9th, 1839, and published in Vol. XXL, Part I., of the Trans

actions of the Royal Irish Academy, pp. 17-50), entitled &quot;An Essay towards a

Dynamical Theory of crystalline Reflexion and Refraction ;&quot;
in which there is given

at p. 43) a theorem essentially equivalent to the above-stated &quot;Principle of the

5 E
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theorem that the Moment of the Refracted Vibration (R T )
is equal to the Sum of

the Moments of the Incident and Reflected Vibrations (RT and R&quot;T&quot;),
with respect to

any line, which is on, or parallel to, the Face of the Crystal.

[It appears by the Table of Initial Pages (see p. lix.), that the Author had in

tended to complete the work by the addition of Seven Articles.]

Resultant Couple,&quot; but expressed so as to include the case where the vibrations are

not uniradial, so that the double refraction of the crystal is allowed to manifest itself.

Mac Cullagh speaks, in his enunciation of the theorem, of measuring each ray, in the

direction ofpropagation : which agrees with, but of course anticipates, the direc

tion of the reflected ray, adopted in the preceding investigation. The writer believes

that subsequent experiments, by Jamin and others, are considered to diminish much

the physical value of the theory above discussed.
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Dr. E. ZELLER, with the Author s approval,

by OSWALD J. REICHEL, B.C.L. and M.A.
Crown 8vo. [Nearly ready.

The History of Philosophy, from
Thales to Comte. By GEORGE HENRY
LEWES. Third Edition, rewritten and en

larged. 2 vols. Svo. 30s.

The Mythology of the Aryan
Nations. By GEORGE W. Cox, M.A. late
Scholar of Trinity College, Oxford, Joint-

Editor, with the late Professor Brande, of
the Fourth Edition of The Dictionary of

Science, Literature, and Art, Author of
Tales of Ancient Greece, &c.

[In the press.

The English Reformation. By
F. C. MASSINGBERD, M.A. Chancellor of

Lincoln. 4th Edition, revised. Fcp. 7s. Gd.

Egypt s Place in Universal His-
tory ;

an Historical Investigation. By
BARON BUNSEN, D.C.L. Translated by
C. II. COTTRELL, M.A. with Additions by
S. BIRCH, LL.D. 5 vols. Svo. 8 14s. Gd.

Maunder s Historical Treasury ;

comprising a General Introductory Outline

of Universal History, and a Series of
tSepa-

rate Histories. Fcp. 10s. Gd.

Critical and Historical Essays
contributed to the Edinburgh Review_by
the Right Hon. Lord MACAULAY :

CABINET EDITION, 4 vols. 24*.

LIBRARY EDITION, 3 vols. 8vo. 36s.

PEOPLE S EDITION, 2 vols. crown Svo. 8s.

STUDENT S EDITION, crown Svo. 6s.

History of the Early Church,
from the First Preaching of the Gospel to

the Council of Nicsea, A.D. 325. By the

Author of Amy Herbert. Fcp. 4s. Gd.

Sketch of the History of the
Church of England to the Revolution of

1688. By the Right Rev. T. V. SHORT,
D.D. Lord Bishop of St. Asaph. Seventh

Edition. Crown Svo. 10s. Gd.

History of the Christian Church,
from the Ascension of Christ to the Conver

sion of Constantine. By E. BURTON, D.D.

late Regius Prof, of Divinity in the Uni

versity of Oxford. Fcp. 3s. Gd.

Biography and Memoirs.

The Life and Letters of Faraday.
By Dr. BENCE JONES, Secretary of the

Royal Institution. 2 vols. Svo. with Por

trait, 28s.

The Life of Oliver Cromwell,
to the Death of Charles I. By J. R.

ANDREWS, Barrister-ut-Law. 8vo. 1-Js.

A Life of the Third Earl of
Shaftesbury, compiled from Unpublished
Documents ;

with a Review of the Philo

sophy of the Period. By the Rev. W. M.

HATCH, M.A. Fellow of New College, Ox
ford. Svo. [/H preparation.
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Dictionary of General Biography;
containing Concise Memoirs and Notices of

the most Eminent Persons of all Countries,

from the Earliest Ages to the Present Time.

Edited by WILLIAM L. R. CATES. 8vo.

price 21s.

Memoirs of Baron Bunsen, drawn

chiefly from Family Papers by his Widow,
FRANCES Baroness BUXSEN. Second Edi

tion, abridged; with 2 Portraits and 4

Woodcuts. 2 vols. post 8vo. 21s.

The Letters of the late Right
Hon. Sir George. Cornewall Lewis. Edited

by his Brother, the Rev. Sir G. F. LEWIS,
Bart. 8vo. [Nearly ready.

Life of the Duke of Wellington.
By the Rev. G. R. GLEIG, M.A. Popular

Edition, carefully revised ;
with copious

Additions. Crown 8vo. with Portrait, 5s.

Father Mathew : a Biography.
By JOHX FRANCIS MAGUIRE, M.P. Popular

Edition, with Portrait. Crown 8vo. 3s. Gd.

HistoryofmyReligious Opinions .

By J. II. NEWMAN, D.D. Being the Sub

stance of Apologia pro Vita Sua. Post Svo.

price Gs.

Letters and Life of Francis
Bacon, including all his Occasional Works.
Collected and edited, with a Commentary,
by J. SPEDDING, Trin. Coll. Cantab. VOLS.

L& II. 8vo. 24s. VOLS. III. IV. 2is.

Felix Mendelssohn s Letters from
. Italy and Switzerland, and Letters from
1833 to 1847. translated by Lady WALLACE.
With Portrait. 2 vols. crown Svo. 5s. each.

Captain Cook s Life, Voyages,
and Discoveries. 18mo. Woodcuts. 2s. Gd.

Memoirs of Sir Henry Havelock,
K.C.B. By JOHN CLAKK MARSIIMAN.
Cabinet Edition, with Portrait. Crown Svo.

price 5s.

Essays in Ecclesiastical Biogra
phy. By the Right Hon. Sir J. STEPHEN,
LL.D. Cabinet Edition. Cro\vn Svo. 7s. Gd.

The Earls of Granard : a Memoir of

the Noble Family of Forbes. Written by
Admiral the Hon. JOHN FORBES, and Edited

by GEORGE ARTHUR HASTINGS, present
Earl of Grananl, K.P. Svo. 10s.

Vicissitudes of Families. By Sir

J. BERNARD BURKE, C.B. Ulster King of

Arms. NCAV Edition, remodelled and en

larged. 2 vols. crown Svo. 21s.

Lives of the Tudor Princesses,
including Lady Jane Grey and her Sisters.

By AGNES STRICKLAND. Post Svo. with

Portrait, &c. 12s. Gd.

i
Lives of the Queens of England.
By AGNES STRICKLAND. Library Edition,

newly revised
; with Portraits of every

Queen, Autographs, and Vignettes. 8 vols.

post Svo. 7s. Gd. each.

Maunder s Biographical Trea
sury. Thirteenth Edition, reconstructed and

partly re-written, with above 1,000 additional

Memoirs, by W. L. R. CATES. Fcp. 10s. Gd.

Criticism, Philosophy, Polity, $c.

England and Ireland. By JOHN
STUART MILL. Fifth Edition. Svo. Is.

The Subjection of Women. By
JOHN STUART MILL. Xew Edition. Post

Svo. 5s.

On Representative Government.
By JOHN STUART MILL. Third Edition.

Svo. 9s. crown Svo. 2s.

On Liberty. By the same Author. Fourth
Edition. Po.&amp;lt;t Svo. 7s. Gd. Crown 8vo.
Is. 4d.

Principles of Political Economy. By the
same. Sixtli Edition. 2 vols. Svo. 30s. or
in 1 vol. crown 8vo. 5s.

Utilitarianism. By the same. 3d Edit. Svo. 5s.

Dissertations and Discussions. By the
same Author. Second Edition. 3 vols. 8vo.
3Gs.

Examination of Sir W. Hamilton s

Philosophy, and of the principal Philoso

phical Questions discussed in his Writings.
Hy t\\&amp;lt;- same. Third Edition. Svo. IGs.

A System of Logic, Ratiocinative
r.nd Inductive. By JOHN STUART MILL.

Seventh Edition. 2 vols. Svo. 25s.

Inaugural Address delivered to the

University of St. Andrews. By JOHN
STUART MILL. Svo. 5s. Crown Svo. Is.

Analysis of the Phenomena ol
the Human Mind. By JAMES MILL. A
New Edition, with Notes, Illustrative and

Critical, by ALEXANDER BAIX, ANDREW
FINDLATER, and GEORGE GROTE. Edited,

with additional Notes, by Jonx STUAIU
MILL. 2 vols. Svo. price 28s.

The Elements of Political Eco
nomy. By HENRY DUNNING MACLEOD
M.A*. Barrister-at-Law. Svo. IGs.

A Dictionary of Political Economy ;

Biographical, Bibliographical, Historical,

and Practical. By the same Author. VOL,

L roval Svo. 30s.
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Lord Bacon s Works, collected
and edited by R. L. ELI. is, M.A. J. SPED-

DIXG, M.A. and D. D. HKATII. VOLS. I. to

V. Philosophical Works, 5 vols. 8vo. 4 Gs.

VOLS. VI. and VII. Literary and Profes
sional Works, 2 vols. 1 16s.

Analysis of Mr. Mill s System of
Logic. Bv W. STLMHUXG, M.A. New
Edition. 12mo. 3s. Gd.

The Institutes of Justinian ;
with

English Introduction, Translation, and

Notes. By T. C. SANDAIIS, M.A. Barrister-

at-Law. New Edition. 8vo. 15s.

The Ethics ofAristotle ;
with Essays

and Notes. By Sir A. GRANT, Bart. M.A.

LL.D. Second Edition, revised and com

pleted. 2 vols. 8vo. price 28s.

The Nicornachean Ethics of Aris
totle. Newly translated into English. By
II. WILLIAMS, B.A. Fellow and late Lec

turer of Merton College, and sometime

Student of Christ Church, Oxford. 8vo. 12s.

Bacon s Essays,with Annotations.
By R. WIIATELY, D.D. late Archbishop of

Dublin. Sixth Edition. 8vo. 10s. Gd.

Elements Of Logic. By R, WHATJH.Y,
D.D. late Archbishop of Dublin. New
Edition. 8vo. 10s. Gd. crown 8vo. 4s. Gd.

Elsments of Khetoric. By the same

Author. New Edition. 8vo. 10s. Gd. Crown
8vo. 4s. Gd.

English Synonymes. ByE. JAXEWHATELY.
Edited by Archbishop WIIATELY. 5th

Edition. Fcp. 3s.

An Outline of the Necessary
Laws of Thought : a Treatise on Pure and

Applied Logic. By the Most Rev. W.

THOMSON, D.D. Archbishop of York. Ninth

Thousand. Crown 8vo. 5s. Gd.

The Election of Representatives,
Parliamentary and Municipal; a Treatise.

ByTHOMAS HARE, Barrister-at-Law. Third

Edition, with Additions. Crown 8vo. Gs.

Speeches of the Bight Hon. Lord
MACAULAY, corrected by Himself. Library

Edition, 8vo. 12s. People s Edition, crown

8vo. 3s. Gd.

Lord Macaulay s Speeches on
Parliamentary Reform hi 1831 and 1832.

IGmo. price ONE SHILLING.

Walker s Pronouncing Diction

ary of the English Language. Thoroughly
revised Editions, by B. II. SMART. 8vo.

12.S-. 10 mo. Gs.

A Dictionary of the English
Language. By li. G. LATHAM, M.A. M.D.
F.K.S. Founded on the Dictionary of Dr. S.

JOHXSOX, as edited by the Rev. H. J. TODD
with numerous Emendations and Additions.
4 vols. 4to. price 7.

Thesaurus of English Words and
Phrases, classified and arranged so as to

facilitate the expression of Ideas, and assist

in Literary Composition. By P. M. ROGET,
M.D. New Edition. Crown 8vo. 10s. Gd.

The Debater
;

a Series of Complete
Debates, Outlinesof Debates, and Questions
for Discussion. By F. Rowxox. Fcp. Gs.

Lectures on the Science of Lan
guage, delivered at the Royal Institution.

By MAX MULLER, M.A. Fellow of All Souls

College, Oxford. 2 vols. 8vo. FIRST SERIES,
Fifth Edition, 12s. SECOND SERIES, Second

Edition, 18s.

Chapters on Language. By F. W.
FARIJAR, M.A. F.K.S. late Fellow ofTrin.

Coll. Cambridge. Crown 8vo. 8s. Gd.

A Book about Words. By G. F.

GRAHAM. Fcp. 8vo. 3s. Gd.

Manual of English Literature,
Historical and Critical : with a Chapter on

English Metres. By THOMAS ARNOLD, M.A.
Second Edition. Crown 8vo. 7s. Gd.

Southey s Doctor, complete in One

Volume, edited by the Rev. J. W. WARTER,
B.D. Square crown 8vo. 12s. Gd.

Historical and Critical Commen
tary on the Old Testament; with a New
Translation. By M. M. KALISCH, Ph.D.

Vol. I. Genesis, 8vo. 18s. or adapted for the

General Reader. 12s. Vol. II. Exodus, 15s.

or adapted for the General Reader, 12s.

Vol III. Leviticus, Part I. 15s. or adapted
for the General Reader, 8s.

A Hebrew Grammar, with. Exercises.

By the same. Part I. Outlines with Exer-

c taes, 8vo. 12s. Gd. KEY, 5s. Part II. Ex
ceptional forms and Constructions, 12s. Gd.

A Latin-English Dictionary. By
J. T. WHITE, D.D. of Corpus Christi Col

lege, and J. E. RIDDLE, M.A. of St. Edmund
Hall, Oxford. Third Edition, revised. 2

vols. 4to. pp. 2,128, price 42*.

White s College Latin-English Diction

ary (Intermediate Size), abridged from the

Parent Work for the use of University
Students. Medium 8vo. pp. 1,048, price 18s.

White s Junior Student s Complete
Latin-English and English -Latin Dictionary.

Revised Edition. Square 12mo. pp. 1,058,

price 12s.

Senaratelv /ENGLISH-LATIN, 5s. Gd.
-

\LATIX-I-X&amp;lt;;I.I&amp;gt;II,
7s. Gd.
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An English-Greek Lexicon, con

taining all the Greek Words used by Writers

of good authority. By C. D. YONGE, B.A.

New Edition. 4to. 21s.

Mr. Yonge s New Lexicon, En
glish and Greek, abridged from his larger

work (as above). Square 12mo. 8s. Qd.

A Greek-English Lexicon. Com

piled by H. G. LIDDELL, D.D. Dean of

Christ Church, and R. SCOTT, D.D. Master

of Balliol. Fifth Edition. Crown 4to. 31s. Gd.

A Lexicon, Greek and English,
abridged for Schools from LIDDELL and

SCOTT S Greek-English Lexicon. Twelfth

Edition. Square 12ino. 7s. Qd.

A Practical Dictionary of the
French and English Languages. By Pro

fessor LEON CONTANSEAU, many years
French Examiner for Military and Civil

Appointments, &c. New Edition, carefully

revised. Post 8vo. 10s. Qd.

Contanseau s Pocket Dictionary,
French and English, abridged from the

Practical Dictionary, by the Author. New
Edition. 18mo. price 3s. 6d.

I
A Sanskrit-English Dictionary.
The Sanskrit words printed both in the

original Devanagari and in Roman letters
;

with References to the Best Editions of

Sanskrit Authors, and with Etymologies
and comparisons of Cognate Words chiefly
in Greek, Latin, Gothic, and Anglo-Saxon.

Compiled by T. BENFEY. 8vo. 52s. Gd.

New Practical Dictionary of the
German Language; German-English, and

English-German. By the Rev. W. L.

BLACKLEY, M.A. and Dr. CARL MARTIN
FRIEDLANDER. Post 8vo. 7s. Qd.

The Mastery of Languages; or,

the Art of Speaking Foreign Tongues
Idiomatically. By THOMAS PRENDERGAST,
late of the Civil Service at Madras. Second
Edition. 8vo. 6s.

Miscellaneous Works and Popular Metaphysics.

The Essays and Contributions of
A. K. H. B. Author of The Recreations of

a Country Parson. Uniform Editions :

Hecreations of a Country Parson.
FIRST and SECOND SERIES, 3s. Qd. each.

The Commonplace Philosopher in
Town and Country. Crown 8vo. 3s. Qd.

Leisure Hours in Town ; Essays Consola-

tory,^Esthetical, Moral, Social, and Domestic.

Crown 8vo. 3s. Qd.

The Autumn Holidays of a Country
Parson. Crown 8vo. 3s. Qd.

The Graver Thoughts of a Country
Parson. FIRST and SECOND SERIES, crown
8vo. 8s. Qd. each.

Critical Essays of a Country Parson,
selected from Essays contributed to Eraser s

Magazine. Crown 8vo. 3s. Qd.

Sunday Afternoons at the Parish
Church of a Scottish University City.
Crown 8vo. 3s. Qd.

Lessons of Middle Age, with some
Account of various Cities and Men.
Crown 8vo. 3s. Qd.

Counsel and Comfort Spoken from a
City Pulpit, Crown 8vo. 3s. Qd.

Changed Aspects of Unchanged
Truths

; Memorials of St. Andrews Sundays.
Crown 8vo. 3s. 6r7.

Short Studies on Great Subjects.
By JAMES ANTHONY FROUDE, M.A. late

Fellow of Exeter College, Oxford. Third

Edition. 8vo. 12s.

Lord Macaulay s Miscellaneous
Writings :

LIBRARY EDITION, 2 vols. 8vo. Portrait, 21s.

PEOPLE S EDITION, 1 vol. crown 8vo. 4s. Qd.

The Rev. Sydney Smith s Mis
cellaneous Works; including his Contribu

tions to the Edinburgh Review. 1 vol.

crown 8vo. 6s.

The &quot;Wit and &quot;Wisdom of the Rev.
SYDNEY SMITH : a Selection of the most
memorable Passages in his Writings and
Conversation. IGmo. 3s. Gd.

The Silver Store. Collected from
Mediaeval Christian and Jewish Mines. By
the Rev. S. BARING-GOULD, M.A. Crown
8vo. 3s. Qd.

Traces of History in the Names
of Places ; with a Vocabulary of the Roots

out of which Names of Places in England
and Wales are formed. By FLAVELL
EDMUNDS. Crown 8vo. 7s. Gd.

Essays selected from Contribu
tions to the Edinburgh Review. By HENRY
ROGERS. Second Edition. 3 vols. fcp. 21s.

Reason and Faith, their Claims and
Conflicts. By the same Author. New
Edition, revised. Crown 8vo. price 6s. Qd.
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The Eclipse of Faith
; or, a Visit to a

Religious Sceptic. By HENRY ROGERS.
Eleventh Edition. Fcp. 5s.

Defence of the Eclipse of Faith, by its

Author. Third Edition. Fcp. 3s. Gd.

Selections from the Correspondence
of R. E. H. Greyson. By the same Author.
Third Edition. Crown 8vo. 7s. Gd.

Families of Speech, Four Lectures

delivered at the Royal Institution of Great

Britain ;
with Tables and a Map. By the

Rev. F. W. FARRAR, M.A. F.R.S. Post

8vo. [Nearly ready,

Chips from a German Workshop ;

being Essays on the Science of Religion, i

and on Mythology. Traditions, and Customs. ;

By MAX MULLER, M.A. Fellow of All Souls
j

College, Oxford. Second Edition, revised,

with an INDEX. 2 vols. Svo. 24s.

Word Gossip; a Series of Familiar

Essays on Words and their Peculiarities.

By the Eev. W. L. BLACKLEY, M.A. Fcp.
8vo. 5s.

Menes and Cheops identified in His

tory under Different Names
;
with other

Cosas. By CARL Vox RIKART. Svo. with
5 Illustrations, price 10s. 6d.

An Introduction to Mental Phi
losophy, on the Inductive Method. By
J. D. MORELL, M.A. LL.D. 8vo. 12s.

Elements of Psychology, containing the

Analysis of the Intellectual Powers. By
the same Author. Post 8vo. 7s. Gd.

The Secret of Hegel: being the

Hegelian System in Origin, Principle, Form,
and Matter. By JAMES HUTCHISON STIR
LING. 2 vols. 8vo. 28s.

The Senses and the Intellect.

By ALEXANDER BAIN, LL.D. Prof, of Logic
in the Univ. of Aberdeen. Third Edition.

8vo. 15s.

The Emotions and the &quot;Will, by the
same Author. Second Edition. 8vo. 15s.

On the Study of Character, including
an Estimate of Phrenology. By the same
Author. 8vo. 9s.

Mental and Moral Science : a

Compendium of Psychology and Ethics.

By the same Author. Second Edition.
Crown 8vo. 10s. Gd.

Strong and Free; or, First Steps
towards Social Science. By the Author of

My Life and What shall I do with it ?

8vo. 10s. Gd.

The Philosophy of Necessity; or,
Natural Law as applicable to Mental, Moral,
and Social Science. By CHARLES BRAY.
Second Edition. Svo. 9s.

The Education of the Feelings and
Affections. By the same Author. Third
Edition. 8vo. 3s. Gd.

On Force, its Mental and Moral Corre
lates. By the same Author. 8vo. 5s.

Mind and Manner, or Diversities of
Life. By JAMES FLAMANK. Post Svo.
7s. Gd.

Characteristics of Men, Manners,
Opinions, Times. By ANTHONY, Third
Earl of SHAFTESBURY. Published from the

Edition of 1713, with Engravings designed
by the Author

;
and Edited, with Marginal

Analysis, Notes, and Illustrations, by the
Rev. W. M. HATCH, M.A. Fellow of New
College, Oxford. 3 vols. Svo. VOL. I.

price 14s.

A Treatise on Human Nature;
being an Attempt to Introduce the Expe
rimental Method of Reasoning into Moral

Subjects. By DAVID HUME. Edited, with
a Preliminary Dissertation and Notes, by
T. H. GREEN, Fellow, and T. H. GROSE,
late Scholar, of Balliol College, Oxford.

\_ln the press.

Essays Moral, Political, and Li
terary. By DAVID HUME. By the same
Editors. [/n tit e press.

%* The above will form a new edition of

DAVID HUME S Philosophical Works, com

plete in Four Volumes, to be had in Two
separate Sections as announced.

Astronomy
r

, Meteorology,
Outlines of Astronomy. By Sir

J. F. W. HERSCHEL, Bart. M.A. New
Edition, revised

;
with Plates and Woodcuts.

Svo. 18s.

Saturn and its System. By EICH-

ARD A. PROCTOR, B.A. late Scholar of St.

John s Coll. Camb. and King s Coll. London.
Svo. with 14 Plates, 14s.

The Handbook of the Stars. By the same
Author. Square fcp. Svo. with 3 Maps,
price 5s.

Popular Geography,
Celestial Objects for Common

Telescopes. By T. W. WEBB, M.A. F.R.A.S.

Second Edition, revised and enlarged, with

Map of the Moon and Woodcuts. 16mo.

price 7s. Gd.

Navigation and Nautical As
tronomy (Practical, Theoretical, Scientific)

for the use of Students and Practical Men.

By J. MERRIFIELD, F.R.A.S. and H.

EVERS. Svo. 14s.



NKW WORKS PUBLISHED BY LONGMANS AND CO.

A General Dictionary of Geo
graphy, Descriptive, Physical, Statistical,

and Historical j forming a complete !

Gazetteer of the World. By A. KEITH
\

JOHNSTON, F.R.S.E. New Edition. 8vo.

price 31s. Gd.

M Culloch s Dictionary, Geogra
phical, Statistical, and Historical, of the

j

various Countries, Places, and principal i

Natural Objects in the World. Revised

Edition, with the Statistical Information

throughout brought up to the latest returns.

By FREDERICK MARTIN. 4 vols. 8vo. with

coloured Maps, 4 4s.

A Manual of Geography, Physical,

Industrial, and Political. By W. HUGHES,
F.R.G.S. Prof, of Geog. in King s Coll. and in

Queen s Coll. Lend. With 6 Maps. Fcp. 7s. Gd.

The States of the River Plate:
their Industries aud Commerce, Sheep
Farming, Sheep Breeding, Cattle Feeding,
and Meat Preserving ;

the Employment of

Capital, Land and Stock and their Values,
Labour and its Remuneration. By WILFRID
LATHAM, Buenos Ayres. Second Edition.

8vo. 12s.

Maunder s Treasury of Geogra
phy, Physical, Historical, Descriptive, and
Political. Edited by W. HUGHES, F.R.G.S.

With 7 Maps and 16 Plates. Fcp. 10s. Gd.

Physical Geography for Schools
and General Readers. By M. F. HALEY,
LL.D. Fcp. with 2 Charts, 2s. Gd.

Natural History and Popular Science.

Ganot s Elementary Treatise on
Physics, Experimental and Applied, for the

use of Colleges and Schools. Translated and

Edited with the Author s sanction by
E. ATKINSON, Ph.D. F.C.S. New Edition,

revised and enlarged ;
with a Coloured Plate

and 620 Woodcuts. Post 8vo. los.

The Elements of Physics or
Natural Philosophy. By NEIL ARXOTT, |

M.D. F.R.S. Physician-Extraordinary to

the Queen. Sixth Edition, re-writ ten and
|

completed. 2 Parts, 8vo. 21s.

Dove s Law Of Storms, considered in
|

connexion with the ordinary Movements of
i

the Atmosphere. Translated by R. II.

SCOTT, M.A. T.C.D. 8vo. 10s. Gd.

Sound. : a Course of Eight Lectures de

livered at the Royal Institution of Great

Britain. By Professor JOHN TYNDALL,
LL.D. F.R.S. Crown 8vo. with Portrait

and Woodcuts, 9s.

Heat Considered as a Mode of
Motion. By Professor JOHN TYNDALL,
LL.D. F.R.S. Third Edition. Crown 8vo.

with Woodcuts, 10s. Gd.

Light: its Influence on Life and Health.

By Foju .i.s WINSLOW, M.D. D.C.L. Oxon.

(Hon.) Fcp. 8vo. 6s.

A Treatise on Electricity, in
Theory aud Practice. By A. DK LA RIVE,
Prof, in the Academy of Geneva. Trans
lated by C. V. WALKEH, F.R.S. 3 voK
8vo. with Woodcuts, 3 13* .

The Correlation of Physical
Forces. By W. R. GKOVK, Q.C. V.P.R.S.

Fifth Edition, revised, and Augmented by a

Discourse on Continuity. 8vo. 10s. Gd.

The Discourse on Continuity, separatclv,

price 2s. Gd.

Manual Of Geology. By S. HAUGHTON,
M.D. F.R.S. Fellow of Trin. Coll. and Prof.

of Geol. in the Univ. of Dublin. Second

Edition, with 66 Woodcuts. Fcp. 7s. Gd.

A Guide to Geology. By J, PHILLIPS,
M.A. Prof, of Gcol. in the Univ. of Oxford.

Fifth Edition. Fcp. 4s.

The Scenery of England and
Wales, its Character and Origin ; being an

Attempt to trace the Nature of the Geo

logical Causes, especially Denudation, by
which the Physical Features of the Country
have been Produced. By D. MACKINTOSH,
F.G.S. Post 8vo. with 89 Woodcuts, Its.

The Student s Manual of Zoology
and Comparative Physiology. By J. Buu-
NKY YEO, M.H. Resident Medical Tutor
and Lecturer on Animal Physiology in

King s College, London. [Nearly ready.

Van Der Hoeven s Handbook of
ZOOLOGY. Translated from the Second

Dutch Edition by the Rev. W. CLARK,
M.D. F.R.S. 2 vols. 8vo. with 21 Plates of

Figures, 60s.

Professor Owen s Lectures on
the Comparative Anatomy and Physiology
of the Invertebrate Animals. Second

Edition, with 235 Woodcuts. 8vo. 21s.
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The Comparative Anatomy and
Physiology of the Vertebrate Animal;?. By
RICHARD OWEN, F.R.S. D.C.L. With

1,472 Woodcuts. 3 vols. 8vo. 3 13s. Qd.

The Primitive Inhabitants of
Scandinavia. Containing a Description of

the Implements, Dwellings, Tombs, and

Mode of Living of the Savages in the North
of Europe during the Stone Age. By SVKX
XILSSOX. With an Introduction by Sir

JOHN LUBIJOCK, 16 Plates of Figures and

3 Woodcuts. 8vo. 18s.

Homes without Hands : a Descrip
tion of the Habitations of Animals, classed

according to their Principle of Construction.

By Rev. J. G. WOOD, M.A. F.L.S. With
about 140 Vignettes on Wood (20 full size

of page). New Edition. 8vo. 21s.

Bible Animals ; being a Description of

Every Living Creature mentioned in the

Scriptures, from the Ape to the Coral. By
the Rev. J. G. WOOD, M.A. F.L.S. With
about 100 Vignettes on Wood (20 full size

of page). 8vo. 21s.

The Harmonies of Nature and
Unity of Creation. By Dr. G. HARTWIG.
8vo. with numerous Illustrations, 18s.

The Sea and its Living Wonders. By
the same Author. Third Edition, enlarged.

8vo. with many Illustrations, 21s.

The Tropical &quot;World. By the same Author.

With 8 Chromoxvlographs and 172 Wood
cuts. 8vo. 21s.

The Polar &quot;World : a Popular Description of

Man and Nature in the Arctic and Antarctic

Regions of the Globe. By the same Author.

With 8 Chromoxylographs, 3 Maps, and 85

Woodcuts. 8vo. 21s.

A Familiar History of Birds.

By E. STANLEY, D.D. late Lord Bishop of

Norwich. Fcp. with Woodcuts, os. 6d.

Kirby and Spence s Introduction
to Entomology, or Elements of the Natural

Histon^ of Insects. Crown 8vo. os.

Maunder s Treasury of Natural
History, or Popular Dictionary of Zoolvy.
Revised and corrected by T. S. Coimoi.n.
M.D. Fcp. with 900 Woodcuts, 10s. 6c/.

The Elements of Botany for
Families and Schools. Tenth Edition, re

vised by THOMAS MOORE, F.L.S. Fcp.
with 154 Woodcuts, 2s. G&amp;lt;7.

The Treasury of Botany, or
Popular Dictionary of the Vegetable King
dom

;
with which is incorporated a Glos

sary of Botanical Terms. Edited by
J. LINDLEY, F.R.S. and T. MOORK, F.L.S.

assisted by eminent Contributors. Pp.
1,274, with 274 Woodcuts and 20 Steel

Plates. Two PARTS, fVp. 8vo. 20s.

The British Flora ; comprising the

Phajnogamous or Flowering Plants and the

Ferns. By Sir W. J. HOOKER, K.H. and
G. A. WALKER-ARNOTT, LL.D. 12mo.

with 12 Plates, 14s. or coloured, 21s.

The Rose Amateur s Guide.
P&amp;gt;y

TIIOMAS RIVERS. New Edition. Fcp. 4.s%

London sEncyclopaedia ofPlants ;

comprising the Specific Character, Descrip

tion, Culture, History, &c. of all the Plants

found in Great Britain. With upward-. \

12,000 Woodcuts. 8vo. 42s.

Maunder s Scientific and Lite

rary Treasury; a Popular Encyclopaedia ot

Science, Literature, and Art. New Edition,

thoroughly revised and in great part re

written, with above 1,000 new articles, by
J. Y. JOHNSON, Corr. M.Z.S. Fcp. 10s. C.V.

A Dictionary of Science, Litera
ture, and Art. Fourth Edition, re-cditcd

by the late W. T. BRANDE (the Author)
and GEORGE W. Cox, M.A. 3 vols. medium
8vo. price Cos. cloth.

The Quarterly Journal ofScience.
Edited by JAMKS SAMUKLSON and WILLIAM

CROOKES, F.R.S. Published quarterly i i

January, April, July, and October. 8vo.

with Illustrations, price 5s. each Number.

Chemistry, Medicine, Surgery, and the Allied Sciences.

A Dictionary of Chemistry and
the Allied Branches of other Sciences. By
HENRY WATTS, F.C.S. assisted by eminent

Scientific and Practical Chemists. 5 vols.

medium 8vo. price 7 3s.

Handbook of Chemical Analysis,
adapted to the Unitary System of Notation.

By F. T. CONINGTON, M.A. F.C.S. Post

8vo. 7s. Gd.

Conington s Tables of Qualitative

Analysis, to accompany the above, 2s. Gd.

Elements of Chemistry, Theore
tical and Practical. By WILLIAM A.

MILLER, M.D. LL.D. Professor of Chemis

try, King s College, London. Fourth Edi

tion. 3 vols. 8vo. 3.

PART I. CHEMICAL PHYSICS, 15s.

PART II. INORGANIC CHEMISTRY, *21.&amp;lt;.

PART III. ORGANIC CHEMISTRY, 24..

A Manual of Chemistry, De
scriptive and Theoretical. B} WILLIAM
ODLING, M.B. F.R.S. PART I. 8v.-\ to.

PART II. nearly ready.
B
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A Course of Practical Chemistry,
for the use of Medical Students. By
W. ODLING, M.B. F.R.S. New Edition, with

70 new Woodcuts. Crown 8vo. 7s. 6d.

Outlines of Chemistry; or, Brief

Notes of Chemical Facts. By the same

Author. Crown 8vo. 7s. Qd.

Lectures on Animal Chemistry Delivered

at the Royal College of Physicians in 1865.

By the same Author. Crown 8vo. 4s. 6d.

Lectures on the Chemical
Changes of Carbon, delivered at the Royal
Institution of Great Britain. By W.
ODLING, M.B. F.R.S. Reprinted from the

Chemical News, with Notes, by W. CKOOKES,
F.R.S. Crown 8vo. 4s. 6d.

Chemical Notes for the Lecture
Room. By THOMAS WOOD, F.C.S. 2 vols.

crown 8vo. I. on Heat, &c. price 3s. Qd.

II. on the Metals, price 5s.

A Treatise on Medical Elec
tricity, Theoretical and Practical

;
and its

Use in the Treatment of Paratysis, Neu

ralgia, and other Diseases. By JULIUS

ALTHAUS, M.D. M.R.C.P. &c.
;
Senior Phy

sician to the Infirmary for Epilepsy and

Paralysis. Second Edition, revised and

enlarged and for the most part re-written
;

with Plate and 62 Woodcuts. Post 8vo.

price 12s. 6d.

The Diagnosis, Pathology, and
Treatment of Diseases of Women

; including
the Diagnosis of Pregnancy. By GRAILY
HEWITT, M.D. &c. President of the Obste
trical Society of London. Second Edition,

enlarged; with 116 Woodcuts. 8vo. 24s.

Lectures on the Diseases of In
fancy and Childhood. By CHARLES WEST,
M.D. &c. Fifth Edition. 8vo. ICs.

On the Surgical Treatment of
Children s Diseases. By T. HOLMES, M.A.
&c. late Surgeon to the Hospital for Sick
Children. Second Edition, with 9 Plates

and 112 Woodcuts. 8vo. 21s.

A System of Surgery, Theoretical
and Practical, in Treatises by Various
Authors. Edited by T. HOLMES, M.A. &c.

Surgeon and Lecturer on Surgery at St.

George s Hospital, and Surgeon-in-Chief to

the Metropolitan Police. Second Edition,

thoroughly revised, with numerous Illus

trations. 5 vols. 8vo. 5 5s.

Lectures on the Principles and
Practice of Physic. By Sir THOMAS WAT
SON, Bart. M.D. Physician-Extraordinary
to the Queen. New Edition in preparation.

Lectures on Surgical Pathology.
By J. PAGET, F.R.S. Surgeon-Extraordinary
to the Queen. Edited by W. TURNER, M.B.
New Edition in preparation.

Cooper s Dictionary of Practical
Surgery and Encyclopaedia of Surgical
Science. New Edition, brought down to

the present time. By S. A. LANE, Surgeon to

St. Mary s, and Consulting Surgeon to the

Lock Hospitals ;
Lecturer on Surgery at

St. Mary s Hospital ;
assisted by various

Eminent Surgeons. VOL. II. 8vo. com

pleting the work. \_Earhj in 1870.

On Chronic Bronchitis, especially
as connected with Gout, Emphysema, and
Diseases of the Heart, By E. HEADLAM
GREEXHOW, M.D. F.R.C.P.&quot; &c. 8vo. 7s. Gd.

The Climate of the South of
France as Suited to Invalids

;
with Notices

of Mediterranean and other Winter Sta

tions. By C. T. WILLIAMS, M.A. M.D.

Oxon. Assistant-Physician to the Hospital
for Consumption at Brompton. Second

Edition, with Frontispiece and Map. Cr.

8vo. 6s.

Pulmonary Consumption ;
its

Nature. Treatment, and Duration exem

plified by an Analysis of One Thousand

Cases selected from upwards of Twenty
Thousand. By C. J. B. WILLIAMS, M.D.
F.R.S. Consulting Physician to the Hos

pital for Consumption at Brompton; and

C. T. WILLIAMS, M.A. M.D. Oxon.

[Nearly ready.

A Treatise on the Continued
Fevers of Great Britain. By C. MURCHISON.
M.D. Physician and Lecturer on the Practice

of Medicine, Middlesex Hospital. New
Edition in preparation.

Clinical Lectures on Diseases of the
Liver, Jaundice, and Abdominal Dropsy.

By the same Author. Post 8vo. with 25

Woodcuts, 10s. Qd.

Anatomy, Descriptive and Sur
gical. By HENRY GRAY, F.R.S. With
about 410 Woodcuts from Dissections. Fifth

Edition, by T. HOLMES, M.A.Cantab. With
a New Introduction by the Editor. Royal
8vo. 28s.

Clinical Notes on Diseases of
the Larynx, investigated and treated with

the assistance of the Laryngoscope. By
W. MARCET, M.D. F.R.S. Assistant-Phy
sician to the Hospital for Consumption and

Diseases of the Chest, Brompton. Crown
8vo. with 5 Lithographs, 6s.
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The House I Live in ;
or, Popular

Illustrations of the Structure and Functions

of theHuman Body. Edited by T. G. GIRTIN.

New Edition, with 25 Woodcuts. IGmo.

price 2s. Gd.

Outlines of Physiology, Human
and Comparative. By JOHN MARSHALL,
F.R.C.S. Professor of Surgery in University

College, London, and Surgeon to the Uni

versity College Hospital. 2 vols. crown 8vo.

with 122 Woodcuts, 32s.

Physiological Anatomy and Phy
siology of Man. By the late R. B. TODD,

M.D. F.R.S. and W. BOWMAN, F.R.S. of

King s College. With numerous Illustra

tions. VOL. II. 8vo. 25s.

VOL. I. New Edition by Dr. LIONEL S.

BEALE, F.R.S. in course of publication ;

PART I. with 8 Plates, 7s. Gd.

A Dictionary of Practical Medi
cine. By J. COPLAND, M.D. F.R.S.

Abridged from the larger work by the

Author, assisted by J. C. COPLAND, M.R.C.S.

Pp. 1,560, in 8vo. price 36s.

The Theory of Ocular Defects
and of Spectacles. Translated from the

German of Dr. H. SCHEFFLER by R. B.

CARTER, F.R.C.S. Post 8vo. 7s. Gd.

A Manual of Materia Medica
and Therapeutics, abridged from Dr.

PEREIRA S Elements by F. J. FARRE, M.D.
assisted by R. BENTLEY, M.R.C.S. and by
R. WARINGTON, F.R.S. 1 vol. 8vo. with

90 Woodcuts, 21s.

Thomson s Conspectus of the
British Pharmacopoeia. Twenty-fifth Edi

tion, corrected by E. LLOYD BIRKETT, M.D.
18mo. 6s.

Manual of the Domestic Practice
of Medicine. By W. B. KESTEVEN,
F.TLC.S.E. Third Edition, thoroughly

revised, with Additions. Fcp. 5s.

Essays on Physiological Subjects.
By GILBERT W. CHILD, M.A. F.L.S. F.C.S.

Second Edition. Crown 8vo. with Wood
cuts, 7s. Gd.

Gymnasts and Gymnastics. By
JOHN H. HOWARD, late Professor of Gym
nastics, Comm. Coll. Ripponden. Second

Edition, with 135 Woodcuts. Crown 8vo.

10s. Gd.

The Fine Arts, and Illustrated Editions.

In Fairyland ;
Pictures from the Elf-

World. By RICHARD DOYLE. With a

Poem by W. ALLINGHAM. With Sixteen

Plates, containing Thirty-six Designs

printed in Colours. Folio, 31s. Gd.

Life of John Gibson, R.A.
Sculptor. Edited by Lady EASTLAKE.

8vo. 10s. Gd.

Materials for a History of Oil

Painting. By Sir CHARLES LOCKE EAST-

LAKE, sometime President of the Royal

Academy. VOL. II. 8vo. 14s.

Albert Durer, his Life and
Works ; including Autobiographical Papers

and Complete Catalogues. By WILLIAM

B. SCOTT. With Six Etchings by the

Author and other Illustrations. 8vo. 16s.

Half-Hour Lectures on the His

tory and Practice of the Fine and Orna

mental Arts. By. W. B. SCOTT. Second

Edition. Crown 8vo. with 50 Woodcut

Illustrations, 8s. Gd.

The Lord s Prayer Illustrated

by F. R. PICKERSGILL, R.A. and HENRY

ALFORD, D.D. Dean of Canterbury. Imp.

4to. 21s.

The Chorale Book for England;
a complete Hymn-Book in accordance with

the Services and Festivals of the Church of

England : the Hymns Translated by Miss

C. WLXKWORTH; the Tunes arranged by
Prof. W. S. BENNETT and OTTO GOLD-

SCIIMIDT. Fcp. 4to. 12s. Gd.

Six Lectures on Harmony. De

livered at the Royal Institution of Great

Britain. ByG. A.MACFARREN. 8vo. 10s. 6rf.

Lyra Germanica, the Christian Year.

Translated by CATHERINE WINKWOBTH;
with 125 Illustrations on Wood drawn by
J. LEIGHTON, F.S.A. Quarto, 21s.

Lyra Germanica. the Christian Life.

Translated by CATHERINE WINKWORTH ;

with about 200 Woodcut Illustrations by
J. LEIGHTON, F.S.A. and other Artist?.

Quarto, 21s.

The New Testament, illustrated with

Wood Engravings after the Early Masters,

chiefly of the Italian School. Crown 4to.

63s. cloth, gilt top ;
or 5 5*. morocco.

The Life of Man Symbolised by
the Months of the Year in their Seasons

and Phases. Text selected by RICHARD

PIGOT. 25 Illustrations on Wood from

Original Designs by JOHN LEIGHTON,

F.S.A. Quarto, 42s.
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Cats and Farlie s Moral Em-
l.l-jin.*; with Aphorisms, Adages, and Pro

verbs of all Nations: comprising 121 Illus

trations on Wood by J. LEIGIITON, F.S.A.

with an appropriate Text by R. PIGOT.

Imperial 8vo. 31s. Gd.

Shakspeare sMidsummerNight s

Dream, illustrated with 24 Silhouettes or
j

Shadow Pictures by P. KOXEWKA, engraved I

on Wood by A. VOGEL. Folio, 31s. Gd.

Shakspeare s Sentiments and
i

Similes Printed in Black and Gold, and illu-
!

minated in the Missal style by HENRY NOEL
HUMPH RE vs. In massive covers, containing

the Medallion and Cypher of Shakspeare.

Square post 8vo. 21s.
^

Goldsmith s Poetical Works, Il

lustrated with Wood Engravings, from

Designs by Members of the ETCHING CLUB.

Imp. IGino. 7s. Gd.

Sacred and Legendary Art. By
Mrs. JAMESON. With numerous Etchings
and Woodcut Illustrations. 6 vols. square
crown 8vo. price 5 15s. Gd. cloth, or

12 12s. bound in morocco by Riviere. To
be had also in cloth only, in FOUR SERIES,
as follows :

Legends of the Saints and Martyrs.
Fifth Edition, with 19 Etchings and 187

Woodcuts. 2 vols. square crown 8vo.

31s. Gd.

Legends of the Monastic Orders. Third

Edition, with 11 Etchings and 88 Woodcuts.
1 vol. square crown 8vo. 21s.

Legends of the Madonna. Third Edition,

with 27 Etchings and 165 Woodcuts. 1

vol. square crown 8vo. 21s,

The History of Our Lord, as exemplified
in Works of Art. Completed by Lady
EASTLAKE. Revised Edition, with 13

Etchings and 281 Woodcuts. 2 vols.

square crown 8vo. 42s.

The Useful Arts, Manufactures, c.

Drawing from Nature. By GKOEGB
BARNARD, Professor of Drawing at Rugby
School. With 18 Lithographic Plates and
108 Wood Engravings. Imp. 8vo. 25s. or

in Three Parts, royal 8vo. 7s. Gd. each.

Gwilt s Encyclopsedia of Archi
tecture. Fifth Edition, with Alterations

and considerable Additions, by WYATT
PAPWORTH. Additionally illustrated with

nearly 400 Wood Engravings by O. JEWITT,
and upwards of 100 other new Woodcuts.
8vo. 52s. Gd.

Italian Sculptors : being a History of

Sculpture in Northern, Southern, and East
ern Italy. By C. C. PERKINS. With 30

Etchings and 13 Wood Engravings. Im-

peri;d 8vo. 42s.

Tuscan Sculptors, their Lives,
Works, and Times. By the same Author.
With 45 Etchings and 28 Woodcuts from

Original Drawings and Photographs. 2

vols. imperial 8vo. 63s.

Hints on Household Taste in
Furniture, Upholstery, and other Details.

By CHARLES L. EASTLAKE, Architect.

Second Edition, with about 90 Illustrations.

Square crown 8vo. 18s.

The Engineer s Handbook ;
ex-

plaining the principles which should guide
the young Engineer in the Construction of

Machinery. By C. S. LOWNDKS. Post8vo.5s.

Lathes and Turning, Simple, Me
chanical, and Ornamental. By W. HENRY
NOKTIKJOTT. With about 240 Illustrations
on Steel and Wood. 8vo. 18s.

Principles of Meclianism, designed
for the use of Students in the Universities,

and for Engineering Students generally.

By R. WILLIS, M.A. F.R.S. &c. Jacksonian

Professor of Natural and Experimental

Philosophy in the University of Cambridge.
A new and enlarged Edition. 8vo.

[Nearly ready.

Handbook of Practical Tele
graphy, published with the sanction of the

Chairman and Directors of the Electric

and International Telegraph Company, and

adopted by the Department of Telegraphs
for India.

&quot;

By R. S. CULLEY. Third Edi

tion. 8vo. 12s. Gd.

Ure s Dictionary of Arts, Manu
factures, and Mines. Sixth Edition, chiefly

re-written and greatly enlarged by ROBERT

HUNT, F.R.S. assisted by numerous Con
tributors eminent in Science and the Arts,

and familiar with Manufactures. With

2,000 Woodcuts. 3 vols. medium 8vo.

4 14s. Gd.

Treatise on Mills and Millwork.
By Sir W. FAIKBAIRX, F.R.S. With 18

Plates and 322 Woodcuts. 2 vols. 8vo. 32s.

Useful Information for Engineers. By
the same Author. FIRST, SECOND, and

THIRD SERIKS, with many Plates and

Woodcuts. 3 vols. crown 8vo. 10s. Gd. each.

The Application of Cast and Wrought
Iron to Building Purposes. By the same
Author. NCAV Edition, preparing for pub-
lication.
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Iron Ship Building, its History
and Progress, as comprised in a Series of

Experimental Researches on the Laws of

Strain ; the Strengths, Forms, and other

conditions of the Material
;
and an Inquiry

into the Present and Prospective State of

the Navy, including the Experimental
Results on the Resisting Powers of Armour
Plates and Shot at HighA^elocities. By Sir

W. FAIRBAIRX, F.R.S. With 4 Plates

and 130 Woodcuts, 8vo. 18s.

Encyclopaedia of Civil Engineer
ing, Historical. Theoretical, and Practical.

By E. CRKSV, C.E. With above 3,000
Woodcuts. 8vo. 42*-.

The Artisan Club s Treatise on
the Steam Engine, in its various Applica
tions to Mines, Mills, Steam Navigation,

Railways, and Agriculture. By J. Bounxic,
C.E. New Edition

;
with Portrait, 37 Plates,

and 546 Woodcuts. 4to. 42*.

A Treatise on the Screw Pro
peller. Screw Vessels, and Screw Engines,
as adapted for purposes of Peace and War

;

with notices of other Methods of Propulsion,
Tables of the Dimensions and Performance

of Screw Steamers, and Detailed Specifica

tions of Ships and Engines. By JOHN

BOURNE, C.E. Third Edition, with 54 Plates

and 287 Woodcuts. Quarto, G3s.

Catechism of the Steam Engine,
in its various Applications to Mines, Mills,

Steam Navigation, Railways, and Agricul
ture. By JOHN BoritxE, C.E. New Edi

tion, with 89 Woodcuts. Fcp. 6*.

Recent Improvements in the
Steam-Engine in its various applications to

JNlines, Mills, Steam Navigation, Railways,
and Agriculture. By JOHN BOI:HNE, C.E.

being a SUPPLEMENT to his Catechism of

the Steam-Engine. New Edition, in

cluding many New Example.*, among
which are several of the most remarkable

ENGINES exhibited in Paris in 1807
;
with

121 Woodcuts. Fcp. 8vo. Gs.

Bourne s Examples of Modern
Steam, Air, and Gas Engines of the most

Approved Types, as employed for Pumping,
for Driving Machinery, ftr Locomotion,

and for Agriculture, minutely and prac

tically described. Illustrated by Working

Drawings, an I embodying a Critical Ac

count of all Projects of Recent Improve nent

in Furnaces, Boilers, and Engines. In course

of publication, to be completed in Twenty-

four Parts, price 2s. Gd. each, forming One

Volume, with about 50 Plates and 400

Woodcuts.

Handbook of the Steam Engine.
By JOHN BOII;M:, ( .!:. Conning a KEY to
the Author s ( atechi.sm of the Steam Engine.
With G7 Woodcuts. Ecp. 9s.

A History of the Machine-
Wrought Hosiery and Lace Manufactures.
By WILLIAM EEL MX, F.L.S. F.S.S. With
3 Steel Plates, 10 Lithographic Plates of

Machinery, and 10 Coloured Impressions of
Patterns of Lace. Royal Svo. ~2ls.

Mitchell s Manual of Practical
Assaying. Third Edition, for the most part
re-written, with all the recent Discoveries

incorporated. By W. CKOOKKS, F.R.S.
With 188 Woodcut-. 8vo. S8*.

Hoimaiin s Handbook of Aniline
and its Derivatives; a Treatise on the
Manufacture of Aniline and Aniline Colours.
Revised and edited by WILLIAM CUOOKE-S,
F.R.S. Svo. Avith 5 Woodcuts, 10s. Gd.

Practical Treatise on Metallurgy,
adapted from the last German Edition of

Professor KEUL S fili-talluryy by W.
CKOOKES, F.R.S. &o. and E. ROIIRIG,
Ph.D. M.E. In Three Volumes, Svo. with
L o Woodcuts. VOL. I. price 31s. Gd.

VOL. II. price 80s. VOL. III. price 31s. Gd.

The Art of Perfumery ;
the History

and Theory of Odours, and the Methods of

Extracting the Aromas of Plants. By Dr.

PIESSE, F.C.S. Third Edition, with 53
Woodcuts. Crown 8vo. 10s. Gd.

Chemical, Natural, and Physical Magic,
for Juveniles during the Holidays. By the

same Author. Third Edition, enlarged with

38 Woodcuts. Fcp. Gs.

London s Encyclopedia of Agri
culture: comprising the Laying-out, Im

provement, and Management of Landed

Property, and the Cultivation and Economy
of the Productions of Agriculture. With

1,100 Woodcuts. Svo. 21*.

London s Encyclopaedia of Gardening :

comprising the Theory and Practice of

Horticulture, Floriculture, Arboriculture,

and Landscape Gardening. With 1,000

Woodcuts. Svo. 21s.

Bayldon s Art of Valuing Rents
and Tillages, and Claims of Tenants upon

Quitting Farms, both at Michaelmas and

Lady-Day. Eighth Edition, revised by
J. C. Moirrox. 8vo. 10s. Gd.
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Religious and Moral Works.

An Exposition of the 39 Articles,
Historical and Doctrinal. By E. HAROLD

BROWNE, D.D. Lord Bishop of Ely. Eighth

Edition. 8vo. IGs.

Examination-Questions on Bishop
Browne s Exposition of the Articles. By
the Rev. J. GORLE, M.A. Fcp. 3s. Gd.

Archbishop Leighton s Sermons
and Charges. With Additions and Correc

tions from MSS. and with Historical and

other Illustrative Notes by WILLIAM WEST,
Incumbent of S. Columba s. Nairn. 8vo.

price 15s.

Bishop Cotton s Instructions in
the Principles and Practice of Christianity,
intended chiefly as an Introduction to Con
firmation. Sixth Edition. 18mo. 2s. Gd.

The Acts of the Apostles ;
with a

Commentary, and Practical and Devotional

Suggestions for Readers and Students of the

English Bible. By the Rev. F. C. COOK,
M.A. Canon of Exeter, &c. New Edition,
Svo. 12s. Gd.

The Life and Epistles of St.
Paul. By the Rev. W. J. CONYBEARE,
M.A. and the Very Rev. J. S. HOWSON,
D.D. Dean of Chester :

LIBRARY EDITION, with all the Original

Illustrations, Maps, Landscapes on Steel,

Woodcuts, &c. 2 vols. 4to. 48s.

INTERMEDIATE EDITION, with a Selection

of Maps, Plates, and Woodcuts. 2 vols.

square crown 8vo. 31s. Gd.

PEOPLE S EDITION, revised and con

densed, with 46 Illustrations and Maps. 2

vols. crown 8vo. 12s.

The Voyage and Shipwreck of
St. Paul

; with Dissertations on the Ships
and Navigation of the Ancients. By JAMES
SMITH, F.R.S. Crown 8vo. Charts, 10s. Gd.

Evidence of the Truth of the
Christian Religion derived from the Literal

Fulfilment of Prophecy. By ALEXANDER
KEITIT, D.D. 37th Edition, with numerous
Plates, in square 8vo. 12s. Gd.; also the
39th Edition, in post 8vo. with 5 Plates, 6s.

The History and Destiny of the World
and of the Church, according to Scripture.
By the same Author. Square 8vo. with 40
Illustration

, 10s.

Ewald s History of Israel to the
Death of Moses. Translated from the Ger
man. Edited, with a Preface and an Ap
pendix, by RUSSELL MARTINEAU, M.A.
Professor of Hebrew in Manchester New
College, London. Second Edition, continued
to the Commencement of the Monarchy. 2

vols. 8vo. 24s.

|

Five Years in a Protestant Sis
terhood and Ten Years in a Catholic Con
vent

;
an Autobiography. Post 8vo. 7s. Gd.

The Life of Margaret Mary
Hallahan, better known in the reli

gious world by the name of Mother Mar
garet. By her RELIGIOUS CHILDREN.
With a Preface by the Bishop of Birming
ham. Svo. with Portrait, 10s.

The See of Borne in the Middle
Ages. By the Rev. OSWALD J. REICHEL,
B.C.L. and M.A. Vice-Principal of Cuddes-
dou College. Svo. [Nearly ready.

The Evidence for the Papacy
as derived from the Holy Scriptures and
from Primitive Antiquity ; with an Intro

ductory Epistle. By the Hon. COLIN
LINDSAY. Svo. [Nearly ready.

A Critical and Grammatical Com
mentary on St. Paul s Epistles. By C. J.

ELLICOTT, D.D. Lord Bishop of Gloucester
and Bristol. 8vo.

Galatians, Fourth Edition, 8s. 6d.

Ephesians, Fourth Edition, 8s. Gd.

Pastoral Epistles, Fourth Edition, 10s. 6d.

Philippians, Colossians, and Philemon,
Third Edition, 10s. Gd.

Thessalonians, Third Edition, 7s. Gd.

Historical Lectures on the Life of
Our Lord Jesus Christ : being the Hulsean
Lectures for 1859. By C. J. ELLICOTT, D.D.
Lord Bishop of Gloucester and Bristol.

Fifth Edition. Svo. 12s.

The Destiny of the Creature ; and other
Sermons preached before the University of

Cambridge. By the same. Post Svo. 5s.

An Introduction to the Study of
the New Testament, Critical, Exegetical,
and Theological. By the Rev. S. DAVIDSON,
D.D. LL.D. 2 vols. Svo. 30s.

TheGreekTestament; withNotes,
Grammatical and Exegetical. By the Rev.
W. WEBSTER, M.A. and the Rev. W. F.

WILKINSON, M.A. 2 vols. 8vo. 2 4s.

VOL. I. the Gospels and Acts, 20s.

VOL. II. the Epistles and Apocalypse, 24s.
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Rev. T. H. Home s Introduction
to the Critical Study and Knowledge of the

Holy Scriptures. Twelfth Edition, as last

revised throughout. With 4 Maps and 22

Woodcuts and Facsimiles. 4 vols. 8vo. 42s.

Rev. T. H. Home s Compendious In
troduction to the Study of the Bible, being
an Analysis of the larger work by the same
Author. Re-edited by the Rev. JOHN AYRE,
M.A. With Maps, &c. Post 8vo. 6*.

The Treasury of Bible Know
ledge; being a Dictionary of the Books,

Persons, Places, Events, and other Matters

of which mention is made in Holy Scrip
ture ; Intended to establish its Authorit}

1
-

and illustrate its Contents. By Rev. J.

AYRE, M.A. With Maps, 15 Plates, and
numerous Woodcuts. Fcp. 10s. Gd.

Every-day Scripture Difficulties

explained and illustrated. By J. E. PRES-

COTT, M.A. VOL. I. Matthew and Mark
;

VOL. II. Luke and John. 2 vols. 8vo. price

9s. each.

The Pentateuch and Book of
Joshua Critically Examined. By the Right
Rev. J. W. COLENSO, D.D. Lord Bishop of

Natal. Crown 8vo. price 6s.

The Church and the World; Three

Series of Essays on Questions of the Day,

by various Writers. Edited by the Rev.

ORBY SHIPLEY, M.A. 3 vols. 8vo. 15s. each.

The Formation of Christendom.
By T. W. ALLIES. PARTS I. and II. 8vo.

price 12s. each.

Christendom s Divisions ;
a Philo

sophical Sketch of the Divisions of the

Christian Family in East and West. By
EDMUND S. FFOULKES, formerly Fellow and

Tutor of Jesus Coll. Oxford. Post 8vo. 7s. Gd.

Christendom s Divisions, PART II.

Greeks and Latins, being a History of their

Dissensions and Overtures for Peace down
to the Reformation. By the same Author.

Post 8vo. 15s.

The Hidden Wisdom of Christ
and the Key of Knowledge ; or, History of

the Apocrypha. By ERNEST DE BUNSEN.

2 vols. 8vo. 28s.

The Keys of St. Peter ; or, the House of

Rechab, connected with the History of

Symbolism and Idolatry. By the same

Author. 8vo. 14s.

The Power of the Soul over the
Body. By GEO. MOORE, M.D. M.R.C.P.L.

&c. Sixth Edition. Crown 8vo. 8s. Gd.

Tho Types Of O-enesis briefly con
sidered as Revealing the Development of
Human Nature. By ANDREW JUKKS.
Second Edition. Crown 8vo. 7s. Gd.

The Second Death and the Restitution
of All Things, with some Preliminary Re
marks on the Nature and Inspiration of

Holy Scripture. By the same Author.
Second Edition. Crown 8vo. 3s. Gd.

Essays and Reviews. By the Eev.
W. TEMPLE, D.D. the Rev. R. WILLIAMS,
B.D. the Rev. B. POWELL, M.A. the Rev.
H. B. WILSOX, B.D. C. W. GOODWIN, M.A.
the Rev. M. PATTISON, B.D. and the Rev.
B. JOWETT, M.A. 12th Edition. Fcp. 5s.

Religious Republics ;
Six Essays on

Congregationalism. By W. M. FAWCETT,
T.M. HERBERT, M.A. E. G. HERBERT, LL.B.
T. H. PATTISON, P. H. PYE-SMITH, M.D.
B.A. and J. ANSTIE, B.A. 8vo. price 8s. Gd.

Passing Thoughts on Religion.
By the Author of Amy Herbert. New
Edition. Fcp. 5s.

Self-examination before Confirmation.
By the same Author. 32mo. Is. Gd.

Headings for a Month Preparatory to
Confirmation from Writers of the Earlv and

English Church. By tho same. Fcp. 4s.

Readings for Every Day in Lent, com
piled from the Writings of Bishop JEREMY
TAYLOR. By the same. Fcp. 5s.

Preparation for the Holy Communion;
the Devotions chiefly from the works of

JEREMY TAYLOR. By the same. 32mo. 3s.

Thoughts for the Holy Week,
for Young Persons. By the same Author.

New Edition. Fcp. 8vo. 2s.

Principles of Education drawn
from Nature and Revelation, and Applied
to Female Education in the Upper Classes.

By the same Author. 2 vols. fcp. 12s. Gd.

Bishop Jeremy Taylor s Entire
Works: with Life by BISHOP HKBKK.
Revised and corrected by the Rev. C. P.

EDEN. 10 vols. 5 5s.

England and Christendom. By
ARCHBISHOP MANNING, D.D. Post 8vo.

pi-ice 10s. Gd.

The Wife s Manual ; or, Prayers,

Thoughts, and Songs on Several Occasions

of a Matron s Life. By the Rev. W. CAL-

VEUT, M.A. Crown 8vo. 10*. Gd.

Singers and Songs of the Church :

being Biographical Sketches of the Hymn-
Writers in all the principal Collections;

with Notes on their Psalms and Hymns.
By JOSIAII MILLER, M.A. Second Edition,

enlarged. Post 8vo. 10s. Gd.
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Spiritual Songs for the Sundays
and Holidays throughout the Year. By
J. S. B. MOHSBLL, LL.D. Yicar of Egham
and Rural Dean. Fourth Edition, Sixth

Thousand. Fcp. price is. Gd.

The Beatitudes : Abasement before God :

Sorrow for Sin ; Meekness of Spirit ;
Desire

for Holiness
;
Gentleness ; Purity of Heart

;

the Peace-makers
; Sufferings for Christ.

By the same Author. Third Edition, re

vised. Fcp. 3s. Gd.

His Presence not his Memory, 183 5.
|

By the same Author, in memory of his Sox. \

Sixth Edition. IGmo. Is.

Lyra Germanica ;
Two Selections of

j

Household Hymns, translated from the

German by Miss CATHERINE WINKAVORTII.

FIRST SERIKS, the Christian Year, Hymns
for the Sundays and Chief Festivals of the

Church ;
SECOND SERIES, the Christian

Life. Fcp. 8vo. price 3s. Gd. each SERIES.
j

Lyra Eucharistica ; Hymns ami
Verses on the Holy Communion, Ancient
and Modern : with other Poems. Edited by
the Rev. ORBY SHIPLEY, M.A. Second
Edition. Fcp. 5s.

Shipley s Lyra Messianica. Pep. 5s,

Shipley s Lyra Mystica. Fcp. 5s.

Endeavours after the Christian
Life: Discourses. By JAMES MARTINEAT.
Fourth and Cheaper Edition, carefully re

vised
;

the Two Series complete in One
Volume. Post 8vo. 7s. Gd.

Invocation of Saints and Angels ;

for the use of Members of the English Churcli .

Edited by the Rev. ORBY SHIPLEY, M.A .

24mo. 3s. Gd.

Introductory Lessons on the
History of Religious Worship ; being a

Sequel to the same Author s Lessons on

Christian Evidences. By RICHARD
WHATELY, D.D. Xew Edition. 18mo. 2s. Gd

Travels, Voyages, c.

England to Delhi; a Narrative of

Indian Travel. By JOHN MATIIESON,
Glasgow. Imperial 8vo. with very nume
rous Illustrations.

Letters from Australia. By JOHN
MARTINEAU. Post 8vo. price 7s. 6*7.

Travels in the Central Caucasus
and Bash an, including Visits to Ararat and
Tabreez and Ascents of Kazbek and Elbruz.

By DOUGLAS W. FRESIIFIELD. With 3

Maps, 2 Panoramas of Summits, 4 full-page
Wood Engravings, and 1C Woodcuts.

Square crown 8vo. 18s.

Cadore or Titian s Country. F&amp;gt;y

JOSIAII GILBERT, one of the Authors of the

Dolomite Mountains. With Map. Fac

simile, and 40 Illustrations. Imp.8vo.oLs. (\d.

The Dolomite Mountains. Excur
sions through Tyrol, Carinthia, Carniola,
and Friuli. By J. GILBERT and G. C.

CHURCHILL, F.R.G.S. With numerous
Illustrations. Square crown 8vo, 21x.

Pilgrimages in the Pyrenees and
Landes : Their Sanctuaries and Shrines.

By DKNYS SHYNE LAWLOR. Post 8vo.

Pictures in Tyrol and Elsewhere.
From a Family Sketch-Book. By the
Author ef A Voyage en

Zigzag&quot;, &-c.

Second Edition. Uo. with many Illustra

tions, 21s,

How we Spent the Summer; or,
a Voyage en Zigzag in Switzerland and

Tyrol with some Members of the ALPINE
CLUB. Third Edition, re-drawn. In oblong
4to. with about 300 Illustrations, 15s.

Beaten Tracks ; or, Pen and Pencil

Sketches in Italy. By the Authoress of

A Voyage en Zigzag? With 42 Plates,

containing about 200 Sketches from Draw

ings made on the Spot. 8vo. 16s.

The Alpine Club Map ofthe Chain
of Mont Blanc, from an actual Survey in

18631864. By A. ADAMS- REILLY,
F.R.G.S. M.A.C. In Chromolithography on
extra stout drawing paper 28in. x 17in.

price 10s. or mounted on canvas in a folding
case, 12s. Gd.

Pioneering in the Pampas ; cr,

the First Four Years of a Settler s Expe
rience in the La Plata Camps. By R. A.

SEYMOUR. Second Edition. Post 8vo. with

Map, 6s.

The Paraguayan War: with

Sketches of the History of Paraguay, and
of the Manners and Customs of the People ;

and Notes on the, Military Engineering of

the War. By GEORGE THOMPSON, C.E.
With 8 Maps and Plans and a Portrait of

Lopez. Post 8vo. 12s. Gd.

Notes on Burgundy. By CHARLES
RICHARD WELD. Edited by his Widow

;

with Portrait and Memoir. Post 8vo.

price 8s. Gd.
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History of Discovery in our
Australasian Colonies, Australia, Tasmania,
and Xew Zealand, from the Earliest Date to

the Present Day. By WILLIAM HOWITT.
With 3 Maps of the Recent Explorations
from Official Sources. 2 yols. 8vo. 20s.

The Capital of the Tycoon; a

Narrative of a 3 Years Residence in Japan.

By Sir RUTHERFORD ALCOCK, K.C.B.

2 vols. 8vo. with numerous Illustrations, 42s.

Guide to the Pyrenees, for the use

of Mountaineers. By CHARLES PACKE.
Second Edition, with Maps, &e. and Appen
dix. Crown 8vo. 7s. Gd.

The Alpine Guide. By JOHN BALL,
M.R.I.A. late President of the Alpine Club.

Post 8vo. with Maps and other Illustrations.

Guide to tlie Eastern Alps, price 105. GC/,

Guide to the &quot;Western Alps, including
Mont Blanc, Monte Rosa, Zermatt, c.

price 6s. Gd.

Guide to the Central Alps, including
all the Oberland District, price 7s. Gd.

Introduction on Alpino Travelling in

general, and on the Geology of the Alps,

price Is. Either of the Three Volumes or

Parts of the Alpine Guide maybe had with

this INTRODUCTION prefixed, price Is. extra.

Homa Sotterranea; or, an Account

of the Roman Catacombs, especially of the

Cemetery of San Callisto. Compiled from

the Works ofCommendatore G.B. DE Rossi,

\&amp;gt;y
the Rev. J. S. NORTHCOTE, D.D. and the

Rev. W. B. BROWXLOW. With Plans and

numerous other Illustrations. 8vo. 31s. Gd.

Memorials of London and Lon
don Life in the 13th, 14th, and 15th Cen

turies ; being a Series of Extracts, Local,

Social, and Political, from the Archives

of the City of London, A.D. 1276-1419.

Selected, translated, and edited by II. T.

KIKKY, M.A. Royal 8vo. 21s.

Commentaries on the History,
Constitution, and Chartered Franchises of
the City of London. By GEORGE NORTON,
formerly one of the Common Pleaders of the

City of London. Third Edition. 8vo. 1 U.

Curiosities of London ; exhibiting
the most Rare and Remarkable Objects o
Interest in the Metropolis ;

with nearly
Sixty Years Personal Recollections. By
JOHX TIMBS, F.S.A. NCAV Edition, cor

rected and enlarged. 8vo. Portrait, 21s.

The Northern Heights of Lon
don

; or, Historical Associations of Hamp-
stead, Highgate, Muswell Hill, Honisey,
and Islington. By WILLIAM HOWITT.
With about 40 Woodcuts. Square crown
8vo.21s.

The Rural Life of England.
By the same Author. With Woodcuts by
Bewick and Williams. Medium, 8vo. 12s. Gd.

Visits to Remarkable Places:
Old Halls, Battle-Fields, and Scenes illus

trative of striking Passages in English

History and Poetry. By the same Author.

2 vols. square crown 8vo. with Wood En
gravings, 25s.

Narrative of the Euphrates Ex
pedition carried on by Order of the British

Government during the years 1835, 183G,

and 1837. By General F, R. CHESNEV.
F.R.S. With 2 Maps, 45 Plates, and Itf

Woodcuts. 8vo. 24s.

The German Working Man ; being
an Account of the Daily Life, Amusements,
and Unions for Culture and Material Pro

gress of the Artisans of North and South

Germany and Switzerland. By JAM:-:

SAMUELSOX. Crown 8vo. with Frontis

piece, 3s. Gd.

Works of Fiction.

Vikram and the Vampire; or,

Tales of Hindu Devilry. Adapted by
I!n HARD F. BURTON, F.R.G.S. &c. With

Illustrations by Ernest Griset. Crown

8vo. 9s.

Mabeldean, or Christianity Re
versed ; being the History of a Noble

Family : a Social, Political, and Theological

Novel.&quot; By OWEN GOWEI:, of Gaybrook.

3 vols. post 8vo. 31s. Gd.

Through the Night ;
a Tale of the

Times. To which is added ONWARD, or

a SUMMER SKETCH. By WALTER

SWKKTIMAN, B.A. 2 vols. post 8vo. 21s.

Stories and Tales by the Author
of Amy Herbert, uniform Edition, each

Tale or Story a single volume :

AMY HERBERT, 2s. Gd. KATHARINE ASHTOX,
GERTRUDE, 2s. Gd. 3s. Gd.

EARL S DAUGHTER, MARGARET PERCI-
2s. Gd. XAL, 5s.

EXPERIENCE OK LIFE, LANETOX PARSOX-
2s. Gd. AGii, 4s. Gd.

CLEVE HALL, 3s. Gd. URSULA, 4s. Gd.

IVORS, 3s. Gd.

A Glimpse of the &quot;World. rep. Is. 0(7.

Journal of a Home Life. Post 8vo. 9*. C&amp;lt;/.

After Life ; a Sequel to the Journal of a Home
LitV. Poit 8vo. 10s. Gd.

c
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The Warden ;
a Novel. By ANTHONY

TROLLOPK. Crown 8vo. Is. Gd.

Barchester Towers ;
a Sequel to The

Warden. Crown 8vo. 2s.

Uncle Peter s Fairy Tale for the
XlXth Century. Edited by ELIZABETH
M. SKWELL, Author of Amy Herbert, c.

Fcp. 8vo. 7s. Gd.

Becker s Gallus ; or, Eoman Scenes of

the Time of Augustus. Post 8vo. 7s. Gd.

Becker s Charicles : Illustrative of

Private Life of the Ancient Greeks. Post

8vo. 7s. Gd.

Tales of Ancient Greece. By GEORGE
W. Cox, M.A. late Scholar of Trin. Coll.

Oxford. Being a collective Edition of the

Author s Classical Series and Tales, com

plete in One Volume. Crown 8vo. 6s. 6d.

A Manual of Mythology, in the

form of Question and Answer. By the Rev.

GEORGE W. Cox, M.A. late Scholar of

Trinity College, Oxford. Fcp. 3s.

Cabinet Edition of Novels and
Tales by J. G. WHYTE MELVILLE :

THE GLADIATORS, 5s. HOLMBY HOUSE, 5s.

DIGBY GRAND, 5s. GOOD FOR NOTHING, 6s.

KATE COVENTRY, 5s. QUEEN S MARIES, 6s.

GENERAL BOUNCE, 5s.;THE INTERPRETER, 5s.

Doctor Harold s Note-Book. By
Mrs. GASCOIGNE, Author of The Next
Door Neighbour. Fcp. 8vo. 6s.

Our Children s Story. By One of

their Gossips. By the Author of Voyage
en Zigzag, Pictures in Tyrol, &c. Small
4to. with Sixty Illustrations by the Author,

price 10s. Gd.

Poetry and The Drama.

Thomas Moore s Poetical Works,
the only Editions containing the Author s

last Copyright Additions :

Shamrock Edition, price 3s. Gd.

Ruby Edition, with Portrait, 6s.

Cabinet Edition, 10 vols. fcp. 8vo. 35s.

People s Edition, Portrait, &c. 10s. Gd.

Library Edition, Portrait & Vignette, 14s.

Moore s Lalla Rookh, Tenniel s Edi
tion, with 68 Wood Engravings from

Original Drawings and other Illustrations.

Fcp. 4to. 21s.

Moore s Irish Melodies, Maclise s

Edition, with 161 Steel Plates from Original

Drawings. Super-royal 8vo. 31s. Gd.

Miniature Edition of Moore s Irish
Melodies, with Maclise s Illustrations (as
above), reduced in Lithography. Imp.
16mo. 10s. 6d.

Southey s Poetical &quot;Works, with
the Author s last Corrections and copyright I

Additions. Library Edition. Medium 8vo.
j

with Portrait and Vignette, 14s.

Lays of Ancient Rome ;
with Imy

j

and the Armada. By the Right Hon. LORD
|

MACAULAY. 16mo. 4s. Gd.

Lord Macavilay s Lays of Ancient
Rome. With 90 Illustrations on Wood,
Original and from the Antique, from

Drawings by G. SCHARF. Fcp. 4to. 21s.

Miniature Edition of Lord Macaulay s

Lays of Ancient Rome, with Scharfs
Illustrations (as above) reduced in Litho

graphy. Imp. IGmo. 10s. Gd.

Goldsmith s Poetical Works, Illus

trated with Wood Engravings from Designs

by Members of the ETCHING CLUB. Imp.
16mo. 7s. Gd.

Poems. By JEAN INGELOW. Fifteenth

Edition. Fcp. 8vo. 5s.

Poems by Jean Ingelow. A New
Edition, with nearly 100 Illustrations by
Eminent Artists, engraved on Wood by the

Brothers DALZIEL. Fcp. 4to. 21s.

Mopsa the Fairy. By JEAN INGELOW.
With Eight Illustrations engraved on Wood.

Fcp. 8vo. 6s.

A Story of Doom, and other Poems.

By JEAN INGELOW. Third Edition. Fcp.
5s.

Poetical Works of Letitia Eliza
beth Landon (L.E.L.) 2 vols. 16mo. 10s.

Bowdler s Family Shakspeare,
cheaper Genuine Edition, complete in 1 vol.

large type, with 36 Woodcut Illustrations,

price 14s. or in 6 pocket vols. 3s. Gd. each.

Arundines Cami. Collegit atque edidit

II. DRURY, M.A. Editio Sexta, curavit H.
J. HODGSON, M.A. Crown 8vo. price 7s. Gd.

Horatii Opera, Pocket Edition, with

carefully corrected Text, Marginal Refer

ences, and Introduction. Edited by the Rev.

J. E. YONGE, M.A. Square 18mo. 4s. Gd.

Horatii Opera, Library Edition, with

Copious English Notes, Marginal References

and Various Readings. Edited by the Rev.

J. E. YONGE, M.A. 8vo. 21s.
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The JEneid ofVirgil Translated into

English Verse. By JOHN CONINGTON, M.A.

Corpus Professor of Latin in the University
of Oxford. Crown 8vo. 9s.

The Iliad of Homer in English
Hexameter Verse. By J. HENRY DART,
M.A. of Exeter College, Oxford. Square
crown 8vo. 21s.

The Iliad of Homer Translated
into Blank Verse. By ICIIABOD CHARLES
WRIGHT, M.A. 2 vols. crown 8vo. 21*.

Dante s Divine Comedy, translated

in English Terza Rima by JOHN DAYMAN,
M. A. With the Italian Text. 8vo. 21.

Hunting Songs and Miscellane
ous Verses. By R. E. EGERTON WARBUR-
TON. Second Edition. Fcp. 8vo. 5s.

Rural Sports,

Encyclopaedia of Rural Sports ;

a Complete Account, Historical, Practical,

and Descriptive, of Hunting, Shooting,

Fishing, Racing, &c. By D. P. ELAINE.

With above 600 Woodcuts (20 from Designs

by JOHN LEECH). 8vo. 42*.

Col. Hawker s Instructions to

Young Sportsmen in all that relates to Guns

and Shooting. Revised by the Author s SON.

Square crown 8vo. with Illustrations, 18s.

The Dead Shot, or Sportsman s Com

plete Guide ;
a Treatise on the Use of the

Gun, Dog-breaking, Pigvon-shooting, &c.

By MARKSMAN. Fcp. with Plates, 5s.

A Book on Angling: being a Com

plete Treatise on the Art of Angling in

every branch, including full Illustrated

Lists of Salmon Flies. By FRANCIS FRANCIS.

Second Edition, with Portrait and 15 other

Plates, plain and coloured. Post 8vo. 15*.

Wilcocks s Sea-Fisherman: com

prising the Chief Methods of Hook and Line

Fishing in the British and other Seas, a

glance at Nets, and remarks on Boats and

Boating. Second Edition, enlarged, with

80 Woodcuts. Post 8vo. 12s. &d.

The Ply- Fisher s Entomology.
By ALFRED RONALDS. With coloured

Representations of the Natural and Artifi

cial Insect. Sixth Edition, with 20 coloured

Plates. 8vo. 14s.

Elaine s Veterinary Art : a Treatise

on the Anatomy, Physiology, and Curative

Treatment of the Diseases of the Horse,

Neat Cattle, and Sheep. Seventh Edition,

revised and enlarged by C. STEEL. 8vo.

with Plates and Woodcuts, 18s.

Horses and Stables. By Colonel

F. FITZAVYGRAM, XV. the King s Hussars.

Pp. 624
;
with 24 Plates of Illustrations,

containing very numerous Figures en

graved on Wood. 8vo. 15s.

Youatt on the Horse. Eevised and

enlarged by W. WATSON, M.R.C.V.S. 8vo.

with numerous Woodcuts, 12s. 6d.

Youatt on the Dog. (By the same Author.)
8vo. with numerous Woodcuts, 6s.

The Horse s Foot,andhow to keep
it Sound. By W. MILES, Esq. Ninth Edi

tion, with Illustrations. Imp. 8vo. 12s. 6rf.

A Plain Treatise on Horse-shoeing. By
the same Author. Sixth Edition, post 8vo.

with Illustrations, 2s. 6d.

Stables and Stable Fittings. By the same.

Imp. 8vo. with 13 Plates, 15s.

Bemarks on Horses Teeth, addressed to

Purchasers. By the same. Post 8vo. Is. 6d.

Robbins s Cavalry Catechism; or,

Instructions on Cavalry Exercise and Field

Movements, Brigade Movements, Out-post

Duty, Cavalry supporting Artillery, Artil

lery attached to Cavalry. 12mo. 5*.

The Dog in Health and Disease.

By STONEHENGE. With 70 Wood En

gravings. New Edition. Square crown

8vo. 10s. Gd.

The Greyhound. &quot;By
the same Author.

Revised Edition, with 24 Portraits of Grey
hounds. Square crown 8vo. 10s. 6d.

The Ox, his Diseases and their Treat

ment ;
with an Essay on Parturition in the

Cow. By J. R. DOBSON, M.R.C.V.S. Crown

8vo. with Illustrations, 7s. Qd.

Commerce, Navigation, and Mercantile Affairs.

The Theory and Practice of

Banking. By HENRY DUNNING MACLEOD,

M.A. Barrister-at-Law. Second Edition,

entirely remodelled. 2 vols. 8vo. 30?.

The Elements of Banking. By
HENRY DUNNING MACLEOD, M.A. of Tri

nity College, Cambridge, and of the Inner

Temple, Barrister-at-Law. Post 8vo.

[Nearly ready.
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The Law of Nations Considered
as Independent Political Communities. By
Sir TRAVERS Twiss, D.C.L. 2 vols. 8vo.

30s. or separately, PART I Peace, 12s.

PART II. War, 18s.

Practical Guide for British Ship
masters to United States Ports. By PIER-

BEroNT EDWARDS. Post 8vo. 8s. Gd.

M Culloch s Dictionary, Prac
tical, Theoretical, and Historical, of Com
merce and Commercial Navigation. New
Edition, revised throughout and corrected

to the Present Time
; with a Biographical

Notice of the Author. Edited by H. G.

BEID, Secretary to Mr. M Culloch for many
years. 8vo. price 63s. cloth.

Works of Utility and General Information.

Modern Cookery for Private

Families, reduced to a System of Easy
|

Practice in a Series of carefully-tested Re-
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