Elliptische Kurven

Arbeitsblatt 4

Aufgaben

AUFGABE 4.1. Es sei K ein algebraisch abgeschlossener Körper. Zeige, dass eine ebene projektive Kurve mit jeder projektiven Geraden in der projektiven Ebene einen nichtleeren Durchschnitt hat.

Aufgabe 4.2.*

Es sei $C \subseteq \mathbb{P}^2_K$ eine ebene projektive Kurve über einem unendlichen Körper K. Zeige, dass es eine Überdeckung $C = C_1 \cup C_2$ mit zwei affinen, in C offenen ebenen Kurven C_1 und C_2 gibt.

Über einem endlichen Körper gilt die vorstehende Aussage nicht, siehe Aufgabe 4.28 weiter unten.

Aufgabe 4.3. Bestimme den projektiven Abschluss der Hyperbel

$$V(XY-1) \subseteq \mathbb{A}_K^2 \subseteq \mathbb{P}_K^2.$$

Aufgabe 4.4. Bestimme den projektiven Abschluss der Parabel

$$V(Y - X^2) \subseteq \mathbb{A}_K^2 \subseteq \mathbb{P}_K^2.$$

AUFGABE 4.5. Es sei $F \in K[X]$ ein Polynom in einer Variablen über einem Körper K und sei $V(Y-F) \subseteq \mathbb{A}^2$ der zugehörige Graph, aufgefasst als ebene affine Kurve. Bestimme den projektiven Abschluss $\tilde{C} \subseteq \mathbb{P}^2_K$ des Graphen.

AUFGABE 4.6. Es seien $F, G \in K[X], G \neq 0$, Polynome in einer Variablen über einem Körper K und sei F/G die zugehörige rationale Funktion. Es sei $V \subseteq \mathbb{A}^2$ der Graph zu dieser rationalen Funktion, aufgefasst als ebene affine Kurve. Bestimme den projektiven Abschluss $\tilde{C} \subseteq \mathbb{P}^2_K$ des Graphen. Wo finden sich "Asymptoten" im projektiven Abschluss wieder?

Aufgabe 4.7. Es sei $C\subseteq \mathbb{A}^2_{\mathbb{C}}$ eine ebene affine Kurve. Zeige, dass der projektive Abschluss

 $\tilde{C} \subseteq \mathbb{P}^2_{\mathbb{C}}$

zusätzliche Punkte enthält.

Aufgabe 4.8.*

Betrachte die affine Nullstellenmenge

$$V := V(X^4 + Y^2) \subseteq \mathbb{A}^2_{\mathbb{R}}$$

über \mathbb{R} .

- (1) Bestimme die Punkte von V und den projektiven Abschluss von V.
- (2) Zeige, dass der projektive Abschluss von V nicht mit der projektiven Nullstellenmenge zur Homogenisierung von $X^4 + Y^2$ übereinstimmt.

Aufgabe 4.9.*

Betrachte die affine Nullstellenmenge

$$V := V(X^2 + Y^2 + 1) \subseteq \mathbb{A}_K^2$$

über dem Körper $K = \mathbb{Z}/(2)$ mit zwei Elementen.

- (1) Bestimme die Punkte von V.
- (2) Bestimme den projektiven Abschluss von V.
- (3) Zeige, dass der projektive Abschluss von V nicht mit der projektiven Nullstellenmenge zur Homogenisierung von $X^2 + Y^2 + 1$ übereinstimmt.

AUFGABE 4.10. Es sei K ein endlicher Körper und $V(\mathfrak{a}) \subseteq \mathbb{A}^n_K$ eine affine Varietät. Zeige, dass der projektive Abschluss von V mit V übereinstimmt.

Aufgabe 4.11.*

Ist die ebene projektive Kurve $V_+(X^4+Z^3Y+Z^4)\subset \mathbb{P}^2_{\mathbb{C}}$ isomorph zum projektiven Abschluss einer monomialen Kurve?

AUFGABE 4.12. Es sei K ein algebraisch abgeschlossener Körper und sei $F \in K[X,Y]$ ein homogenes Polynom. Zeige: F zerfällt in Linearfaktoren.

AUFGABE 4.13. Es sei $(H) \subseteq K[X_1, \ldots, X_n]$ ein Hauptideal. Zeige, dass die Homogenisierung des Ideals (H) gleich dem von der Homogenisierung von H erzeugten Hauptideal ist.

Aufgabe 4.14. Bestimme den projektiven Abschluss der durch

$$V((X^2+Y^2)^2-2X(X^2+Y^2)-Y^2)$$

gegebenen Kardioide über den komplexen Zahlen und insbesondere die "Punkte im Unendlichen".

AUFGABE 4.15. Es sei $F \in K[X_0, X_1, \dots, X_n]$ ein homogenes Polynom und es sei \tilde{F} die Dehomogenisierung von F bezüglich der Variablen X_n . Zeige die folgenden Aussagen.

- (1) Wenn F irreduzibel ist und $F \neq X_n$ ist, so ist auch \tilde{F} irreduzibel.
- (2) Wenn F kein Vielfaches von X_n ist und \tilde{F} irreduzibel ist, so ist auch F irreduzibel.

AUFGABE 4.16. Es sei $F \in K[X_0, X_1, \dots, X_n]$ ein irreduzibles homogenes Polynom $\neq X_n$ und es sei \tilde{F} die Dehomogenisierung von F bezüglich der Variablen X_n . Zeige die folgenden Aussagen.

- (1) $K[\frac{X_0}{X_n}, \frac{X_1}{X_n}, \dots, \frac{X_{n-1}}{X_n}]/(\tilde{F})$ ist ein Unterring des Quotientenkörpers von $K[X_0, X_1, \dots, X_n]/(F)$.
- (2) Der Quotientenkörper zu $K[\frac{X_0}{X_n}, \frac{X_1}{X_n}, \dots, \frac{X_{n-1}}{X_n}]/(\tilde{F})$ ist ein Unterkörper des Quotientenkörpers von $K[X_0, X_1, \dots, X_n]/(F)$.
- (3) Wenn man F nach einer anderen Variablen dehomogenisiert (und F keine Variable ist), so entsteht in Teil (2) der gleiche Quotientenkörper.

Den gemeinsamen Quotientenkörper der affinen Koordinatenringe nennt man den Funktionenkörper der projektiven Hyperfläche $V_+(F)$.

AUFGABE 4.17. Es sei $F \in K[X_0, X_1, \ldots, X_n]$ ein irreduzibles homogenes Polynom, das keine Variable sei. Es sei $P \in V_+(F)$ ein Punkt, es sei $P \in V_+(F) \cap D_+(X_i)$ eine affine Umgebung und sei \tilde{F} die Dehomogenisierung von F bezüglich X_i . Zeige, dass der im affinen Koordinatenring $K[\frac{X_0}{X_i}, \frac{X_0}{X_i}, \ldots, \frac{X_{i-1}}{X_i}, \frac{X_{i+1}}{X_i}, \ldots, \frac{X_n}{X_i}]/(\tilde{F})$ gebildete lokale Ring zum Punkt P für jedes i mit $P \in D_+(X_i)$ den gleichen Unterring im Funktionenkörper zu $V_+(F)$ ergibt.

AUFGABE 4.18. Es sei $P=(a,b,c)\in V_+(F)\subseteq \mathbb{P}^2_K$ ein Punkt einer ebenen projektiven Kurve über einem Körper K. Zeige, dass man die Glattheit von P in einer beliebigen affinen Umgebung $D_+(X), D_+(Y), D_+(Z)$ (zu der P gehören muss) überprüfen kann.

AUFGABE 4.19.*

Zeige, dass die ebene projektive Kurve

$$V_+(X^4+Y^3Z+Z^4) \subset \mathbb{P}^2_{\mathbb{C}}$$

glatt ist.

Aufgabe 4.20.*

Bestimme, ob die ebene projektive Kurve

$$V_+(X^4+YZ^3+Z^4) \subset \mathbb{P}^2$$

glatt ist.

AUFGABE 4.21. Es sei $P=(a,b,c)\in V_+(F)\subseteq \mathbb{P}^2_K$ ein glatter Punkt einer ebenen projektiven Kurve über einem Körper K. Es sei $P\in D_+(Z)$, also $c\neq 0$. Zeige, dass das lineare homogene Polynom

$$\frac{\partial F}{\partial X}(P)X + \frac{\partial F}{\partial Y}(P)Y + \frac{\partial F}{\partial Z}(P)Z$$

die Homogenisierung des affin-linearen Polynoms ist, das die Tangente in $D_{+}(Z)$ beschreibt, vergleiche Bemerkung 2.4.

AUFGABE 4.22.*

Zeige, dass eine ebene projektive Kurve

$$V_+(F) \subset \mathbb{P}^2_K$$

über einem algebraisch abgeschlossenen Körper K genau dann glatt ist, wenn die partiellen Ableitungen

$$\left(\frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}, \frac{\partial F}{\partial Z}\right)$$

in keinem Punkt der Kurve simultan gleich 0 sind.

AUFGABE 4.23. Es sei F = G + ZH ein homogenes Polynom vom Grad ≥ 3 in drei Variablen mit $G, H \in K[X, Y]$, wobei K einen Körper bezeichnet. Zeige, dass $V_+(F) \subseteq \mathbb{P}^2_K$ nicht glatt ist.

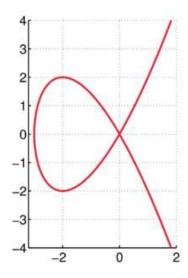
AUFGABE 4.24. Es sei $C\subseteq \mathbb{A}^2_{\mathbb{C}}$ eine glatte Quadrik. Zeige, dass auch der projektive Abschluss

$$\tilde{C} \subseteq \mathbb{P}^2_{\mathbb{C}}$$

glatt ist.

Die Lemniskate von Bernoulli

AUFGABE 4.25. Bestimme für die durch $V\left((X^2+Y^2)^2-X^2+Y^2\right)$ gegebene Lemniskate von Bernoulli die Singularitäten sowie die unendlich fernen Punkte in $\mathbb{P}^2_{\mathbb{C}}$. Berechne in all diesen Punkten die Multiplizität und die Tangenten.



Die Tschirnhausen Kubik

AUFGABE 4.26. Bestimme für die durch

$$V\left(X^3 + 3X^2 - Y^2\right)$$

gegebene *Tschirnhausen Kubik* die Singularitäten unter Berücksichtigung der unendlich fernen Punkte. Bestimme die Tangenten in den Singularitäten und in den unendlich fernen Punkten.

AUFGABE 4.27. Bestimme für das durch $V(X^3 + Y^3 - 3XY)$ definierte Kartesische Blatt die unendlich fernen Punkte in $\mathbb{P}^2_{\mathbb{C}}$ und berechne die Multiplizität und die Tangenten in diesen Punkten.

Aufgabe 4.28.*

Wir betrachten die ebene affine Kurve

$$C = V(X^{2}Y^{4} + X^{4}Y^{2} + X + X^{4} + Y + Y^{4})$$

über $K=\mathbb{Z}/(2)$ und die durch die Homogenisierung gegebene projektive Kurve

$$D = V_{+}(X^{2}Y^{4} + X^{4}Y^{2} + XZ^{5} + X^{4}Z^{2} + YZ^{5} + Y^{4}Z^{2})$$

- (1) Zeige, dass C glatt ist.
- (2) Man folgere, dass das Polynom $X^2Y^4 + X^4Y^2 + X + X^4 + Y + Y^4$ irreduzibel ist.
- (3) Zeige, dass jeder Punkt aus K^2 zu C gehört.
- (4) Zeige, dass jeder K-Punkt aus \mathbb{P}^2_K zu D gehört.
- (5) Zeige, dass D nicht glatt ist.

Aufgabe 4.29.*

Wir betrachten die kubische projektive Kurve

$$V_{+}(X^{3} + Y^{3} + Z^{3} + XY^{2} + YZ^{2} + ZX^{2} + XYZ) \subseteq \mathbb{P}^{2}_{\mathbb{Z}/(2)}$$

über dem Körper $\mathbb{Z}/(2)$.

- (1) Zeige, dass die Kurve keine $\mathbb{Z}/(2)$ -Punkte besitzt.
- (2) Zeige, dass die Kurve nicht glatt ist.
- (3) Bestimme einen Erweiterungskörper

$$\mathbb{Z}/(2) \subseteq \mathbb{F}_{2^k},$$

über dem die Kurve einen singulären Punkt besitzt.

Die folgende Aufgabe beschreibt eine weitere wichtige Charakterisierung von kongruenten Zahlen.

Aufgabe 4.30.*

Es sei $n \geq 1$ eine natürliche Zahl. Zeige, dass n genau dann eine kongruente Zahl ist, wenn es eine rationale Zahl q derart gibt, dass die drei Zahlen q - n, q, q + n Quadrate in \mathbb{Q} sind.

Aufgabe 4.31.*

Finde drei Quadratzahlen

$$u^2 < v^2 < w^2$$

derart, dass der Abstand von u^2 zu v^2 gleich dem Abstand von v^2 zu w^2 ist.

In der folgenden Aufgabe wird unter Verwendung von Satz 10.8 (Zahlentheorie (Osnabrück 2016-2017)) bewiesen, dass 2 keine kongruente Zahl ist.

Aufgabe 4.32.*

Zeige, dass es kein rechtwinkliges Dreieck gibt, dessen Seitenlängen alle rational sind und dessen Flächeninhalt gleich 2 ist.

Aufgabe 4.33. Finde ausgehend vom pythagoreischen Tripel (5,12,13) mit Lemma 4.13 einen Punkt auf der durch $Y^2=X^3-900X$ gegebenen elliptischen Kurve

${\bf Abbildungs verzeichnis}$

Quelle = Lemniscate of Bernoulli.svg, Autor = Benutzer Zorgit auf	
Commons, Lizenz = PD	5
Quelle = Tschirnhausen cubic.svg , Autor = Benutzer Oleg Alexandrov auf Commons, Lizenz = PD	5
Erläuterung: Die in diesem Text verwendeten Bilder stammen aus Commons (also von http://commons.wikimedia.org) und haben eine Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	9
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	9