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Although Arabic numerals (like ‘2016’ and ‘3.14’) are
ubiquitous, we show that in interactive computer applications
they are often misleading and surprisingly unreliable. We
introduce interactive numerals as a new concept and show, like
Roman numerals and Arabic numerals, interactive numerals
introduce another way of using and thinking about numbers.
Properly understanding interactive numerals is essential for all
computer applications that involve numerical data entered by
users, including finance, medicine, aviation and science.

1. Introduction
This paper introduces the new concept of interactive numerals.
Interactive numerals highlight a wide range of hitherto unnoticed
issues with entering and using numbers reliably with interactive
computer systems. The reach of the concept is very broad,
covering calculators, spreadsheets, medical devices, computerized
forms, web sites, airplane cockpits—in fact, all forms of numerical
data entry system.

Interactive numerals highlight common avoidable defects in
many interactive systems where people use numbers. Incorrectly
implemented interactive numerals cause subtle and sometimes
critical problems. A proper understanding of interactive numerals
should help researchers identify related problems and seek
suitable solutions, as well as help practitioners recognize design
problems and to decide on effective responses to problems:
whether re-implementing systems, training users, upgrading or
replacing or even banning the systems.

Understanding interactive numerals makes error management
more reliable: deciding what to do after an error has occurred
requires understanding the root causes of the error. In particular,
until interactive numerals are properly implemented, using data
logs in investigations of alleged user error is unreliable (devices
tend to record what they do, not what the user tells them to do).

This paper shows that poorly implemented interactive
numerals are surprisingly widespread; even systems developed
by the world’s leading programmers are not immune. In
hospitals—to take just one example of a critical application of
interactive numerals—clinicians routinely enter drug doses and
radiation doses into interactive systems, where numerical errors
can be fatal and are often treated as criminal. It is, therefore,
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important to properly understand interactive numerals and any limitations they have in current systems.
Indeed, this paper shows that many numerical errors are caused, not by users, but by the poor design of
the systems. We will present some worrying examples taken from a wide range of systems in the body
of the paper.

The implication is that interactive numerals are not well understood; this paper aims to correct
that. This paper provides an analysis that should help everyone appreciate the causes of the problems
and the limitations of current interactive systems. The aim is to begin to move towards more robust
implementations of numbers in all digital devices, systems and services.

2. Numbers and numerals
We take it for granted that 2016 and 3.14 are numbers, but strictly they are numerals, ways of printing
or writing number values. When we see 2016, we may think of a particular number, but what we see
is not the number but strictly speaking it is just various ink patterns that we interpret to represent a
numerical value. More specifically, the four ink patterns ‘2016’ make up an Arabic numeral, just like
‘two thousand and sixteen’ makes up an English numeral, and MMXVI is a Roman numeral. Note that
the same number can be represented by many different numerals, and even by many different Arabic
numerals (thus 003.14 is equal to 3.14, though 3.1400 is generally not considered exactly the same as the
number represented by 3.14 because it is more precise).

We now think of Roman numerals as being rather awkward. For example, the Romans had no sensible
way of writing 3.14, and Roman numerals seriously limited how people could use and think about
numbers. Nevertheless, after Fibonacci introduced Arabic numerals to Europe around 1200 [1], it still
took centuries for Arabic numerals to become more popular: people were attached to the familiar, and
anyway many people used counting boards and other devices for everyday arithmetic.

Today we are facing a new transition, we argue as dramatic as the move away from Roman numerals
to Arabic numerals. We call the new way of thinking about numbers interactive numerals.

As well as popularizing decimal positional notation, Arabic numerals transformed arithmetic by
introducing the cipher, an explicit symbol for zero. Arabic numerals, however, cannot distinguish
between no number and zero, as ‘no number’ has no valid Arabic representation. It turns out that this
and many other subtle problems are rife in interactive computer systems—and often cause problems that
are hard for users to understand or avoid. Interactive numerals help us think clearly about such issues,
and—properly implemented—directly address such issues, as we will show in this paper.

Arabic numerals, which we are now very familiar with, are written down usually on paper or
displayed on screens and then we read them as numbers. Interactive numerals look much the same but,
unlike Arabic numerals which are only read and used after being written, interactive numerals are read
and processed by a computer that has to represent them (at least on the screen if nowhere else) as they
are being written. Thus interactive numerals consider the process of writing down a numeral, corrections
and all, not just its final form as a full-fledged numeral. As a special case, interactive numerals handle
the case of no numeral yet written. By contrast, nothing yet written is impossible to represent correctly
as an Arabic numeral as it has no digits.

Imagine typing the number −0.5 into a computer; unlike the traditional piece of paper, the computer
has to make sense of each and all of the intermediate steps as we type – , then 0 then • and so on.
This raises many subtle problems. For example, – itself is not a number at all, and −0 is strictly equal to
0. Yet the computer has to decide how to represent the interactive numeral at every step, even before the
user has finished entering it. In many cases, as we will show, the computer makes premature decisions
about the representation that also change the meaning of what is being entered.

Interactive numerals occur everywhere users enter numeric data into computers. Put very briefly,
the problem is that not all interactive numerals are Arabic numerals, but assuming they are—which
is a common conceptual error—leads to problems and use errors that are very hard to recognize, let
alone correct. Indeed, in our early work [2], where we noticed there was a problem but had not fully
grasped its extent, we did not make a sharp distinction between numerals and numbers, and we fell
victim to some confusions ourselves. The new contribution of this paper, then, is not just bemoaning the
problem, but providing a formal framework wherein problems can be identified and solutions can be
worked out.

Unfortunately, as we will show, problems with interactive numerals are widespread. When
mathematicians, programmers and scientists notice and can reason about these problems and hence seek
solutions, every user (and their work) will benefit—even if they do not notice any changes.
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3. Definitions
3.1. Numeral
Numerals are sequences of symbols that follow agreed conventions for interpreting them as number
values. In this paper, we consider digit-based systems of numerals for representing numbers rather than,
say, counters or linguistic word-based numerals like English phrases.

Given a set of symbols S, generally called digits, a numeral is a non-empty string of symbols S+
together with a surjective function N that maps each string to a numeric value. Typically, N can be
expressed explicitly in a simple arithmetical way. Note that special symbols, such as π ∈ S, may or may
not be considered numerals depending on the context.

For example, conventional binary numerals can be defined:
· · · binary digits are the symbols 0 and 1:

S= {0, 1}
· · · binary values are natural numbers {0, 1, 2 . . . }:

V=N

· · · a functionN converts binary numerals of at least one digit to natural number values:
N : S+→V

· · · the value of the numeral st is twice the value of the numeral s plus the value of the final digit t:
For s ∈ S+ and t ∈ S,

N �st�= 2×N �s�+N �t�
· · · the value of the single digit numeral 0 is the natural number zero:

N �0�= 0
· · · the value of the single digit numeral 1 is the natural number one:

N �1�= 1

There are trivial generalizations so S can include signs (+,−), radix points1 and digit block separators
(e.g. the space or comma), and of course generalizing to other bases than 2 is trivial. Further notation
may be used to represent precision, choice of base and so on [3].

� Since N defines an equivalence class, if for two numerals x, y we have N �x�=N �y� we tend to
say x equals y or even that x is y. It is therefore common and very easy, and frequently harmless,
to confuse numerals and numbers.

Now, depending on how N is implemented (programmed) from its specification above, it can
interpret a numeral like 11.1 in different ways:

N �11.1�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (by stopping at the radix point, reading from the right)

3 (by stopping at the radix point, reading from the left)

7 (by ignoring the radix point)

9 (by using ‘subtract ASCII code of 0’ to get values of symbols)

guarded so it cannot occur

undefined

report an exception

excluded by type checking at compile time, since S cannot contain ‘.’

but in no case will it have the ‘obvious’ value of 3.510 (11.1 in binary is 3.5 in decimal), at least if
sensibly refined from our explicit specification above. This is obviously something of a toy example,
but it highlights that any implementation of evaluation on a computer has to make explicit things so the
computer can do them that are not necessarily explicit in the specification.

One fundamental implementation problem that is unavoidable is that computers, being finite, cannot
implement the natural numbers, N (let alone the real numbers, R, etc), correctly. At the very least, any
implementation of numerals must decide how to limit the infinite and, if done well, how to minimize
and manage the impact of the ensuing errors. (Using arbitrary precision numbers would obviously help.)

1‘Radix point’ is the generic term for decimal point, without regard for the base of the numeral. This paper generally uses the term
‘decimal point’ because of its familiarity, but without implying any loss of generality.
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Implementations that neglect the impact of such fundamental problems are, as we will see, likely to cause
severe problems.

3.2. Interactive numeral
The definition of numeral, above, takes a numeral to be a fixed entity that denotes a numerical value.
By contrast, an interactive numeral includes the process intended to create a numeral. In other words, an
interactive numeral additionally specifies the procedural implementation of a numeral, in contrast with
the conventional purely declarative specification of an ordinary numeral, which abstracts away from the
process of construction.

An interactive numeral may therefore be defined by a vector of string buffers bi ∈ B, an initial contents
b0 = d (sometimes called the ‘default,’ possibly the empty string), a set of actions A : B× N→ B to modify
buffers, i.e. the action a on buffer bi gives bi+1 = a(bi, i), together with a surjective function Nint to map
buffer strings to realizable numeric values V ∪ E including exception and other conditions E. Buffers
generally have associated invariants, for instance on their length, e.g. ∀i : 0≤ |bi| ≤ 8.

An implementation will usually optimize buffers into a single object, such as a string, and update it on
each action rather than creating a new buffer each time. In many incorrect implementations of interactive
numerals, buffers are optimized directly to a numeric value, which of course cannot correctly represent
exceptions (such as entering too many digits or numerals with as-yet incorrect syntax).

For example, pressing the digit 1 is an action that will create a buffer bi+1 = bi1 by appending 1 to the
previous buffer bi. However, if bi is too long, then 1 cannot be appended, and some exception condition
will be flagged (or be ignored or be handled inappropriately) and typically we will have bi+1 = bi (for
some i). Interactive numerals may additionally having timed actions, so for instance if there is a timeout
(e.g. when ‘no other action occurs for 1 minute’), then typically bi+1 = d.

A realizable value is an implementable representation of a numeric value; for example, for a cash
machine (ATM) it may be 10n, n ∈N : 1≤ n≤ 25; or it may be an IEEE 754-2008 floating point number,
with or without rounding and exceptions. By contrast, for a conventional numeral, the range of valid
numerals and values are rarely if ever explicitly specified. While IEEE floating point has peculiar
properties that may ‘leak’ into the user interface (we give examples below), arbitrary precision reals
do not avoid problems as the buffer invariants cannot be broken, and in any case buffers are not required
to be real numerals (e.g. because of syntax errors).

Often there are conventional actions, such as an action OK ∈A to ‘submit’ a buffer (and perhaps
leave it unchanged), an action to clear a buffer C (bi, i)= d, and so on. When actions can include mouse
movement, ← , → , UNDO and DEL the buffer is generally refined to include pointers or stacks. In any
case, note that A must include every possible action, not just a small set of conventional digits—the set A
has to cover the possibility that the user can do anything. If the user presses a non-numeral like the space
bar, what should happen? In particular, we cannot rely on type checking (as might forbid the example of
N �11.1� above) because every input is valid—type checking does not control what a user does.

In short, an interactive numeral includes how the numeral is dynamically created, giving it a continual
interpretation, including for all its intermediate representations and exception conditions. In contrast
with numerals, then, Nint for interactive numerals is complex—its definition, even without the algorithm,
is far more complex than a conventional numeral. We therefore do not show a specification of Nint here.

� Since numerals ‘are’ numbers in common thinking (see note in §3.1 above), it is very easy to
turn a blind eye to the daunting complexity of Nint, considering it instead to be effectively N ,
and therefore to gloss over considering all the exception cases. This is a tempting category error,
and one with consequences this paper explores.

3.3. Quasi-numerals
Strings of symbols that look like numerals are frequently used in contexts that might be considered more
strictly to be names or identifiers. We call these quasi-numerals.

Bank account numbers and book numbers (ISBNs) are examples of quasi-numerals. Despite
commonly being called numbers, arithmetical operations (such as doubling or adding one) make little
sense with such numbers. In other respects, however, they behave very like interactive numerals. They
are entered as digits and have a structure, and the value denoted must fall in a particular range to be
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valid. In fact, the range of correct values may be highly constrained by hidden arithmetic operations that
specify a check digit as part of the numeral. (Incorrect check digits should cause exceptions.)

But bank account ‘numbers’ do not denote members of a set of conventional numeric values like N,
despite being countable. Similarly, many strings of symbols that are not just digits, such as passwords or
people’s names and social security numbers, are used in a similar sense of denoting members of sets. The
decision of what is a digit and what is not within any character code is an arbitrary convention (e.g. is 0
a digit or a capital letter?), so inevitably the boundary between numerals and general strings is blurred.

The user interfaces that permit quasi-numerals (bank account numbers, car registration numbers,
personal ID numbers and so on) to be created are very similar to the user interfaces that permit interactive
numerals to be created. Sometimes, and confusingly, the user interfaces are identical. Therefore, there is
considerable and interesting overlap in design issues across the various types of numeral and quasi-
numeral. In this paper, however, we are particularly concerned where, somehow, the user interface must
preserve relevant arithmetical properties of the numbers the interactive numerals are taken to represent.
There is a large area of concern where the natural conception—the user’s natural conception—of N
should be very simple but in fact confusingly fails to be so.

3.4. What interactive numerals are not
Interactive numerals arise in many areas and applications, from web pages, spreadsheets, to handheld
calculators, as well as in special purpose instrumentation, burglar alarms, medical devices and more.
However, it is important not to confuse interactive numerals for the applications that use them. In many
areas the applications blur the distinctions, which plays into our natural tendency to equate numerals
and numbers.

Spreadsheets make the problems particularly acute. A cell in a spreadsheet can certainly allow the user
to enter an interactive numeral. However, the number value it finally denotes depends on the formats
and formulae in its and other cells. For example, if the numeral ‘5.5 kg’ is entered in Microsoft Excel, if
it is subject to the operation SUM it has value 0, but subject to PRODUCT it has value 1.2 Furthermore,
if the numeral entered is ‘1.’ it will typically be displayed as exactly 1, without a decimal point. These
interactions are complex to explain in adequate detail, and can be confusing traps for both spreadsheet
implementors and users.

Another area of confusion is with calculators, which come as basic calculators (left-to-right operator
precedence), so-called ‘algebraic’ calculators that respect conventional operator precedence, and reverse
Polish notation (RPN) calculators. In all forms of calculator the issues of interactive numeral are very
similar; however, the main differences between types of calculator are in arithmetic expression parsing—
which is independent of interactive numeral treatment. In particular, while RPN calculators are popular
among certain communities, they have serious problems that interfere with their otherwise consistent
arithmetic parsing: the RPN stack is generally limited to a small size, and stack overflow has undefined
effects [4]. Such complex and invisible problems, in our opinion, eclipse their alleged benefits.

3.5. Other forms of numeral
There are many generalized types of numeral, ‘things that denote number values’—such as dice, dials,
increase/decrease chevron buttons, speech, clocks, counters, etc. [5], as well as names (such as month
names denoting month numbers)—but the focus of this paper is on the dominant case of left-to-right
sequential typing, canonically typing and entering conventional Arabic numerals to specify numeric
values for interactive devices, computer programs or other applications.

We note that sensors may be considered a broad generalization of numeral for when physical or other
processes rather than humans define numeric values. Clearly, to measure a temperature, either a thermal
sensor can be directly connected to a computer, or a human can use a conventional thermometer and
enter a numeral denoting the temperature that has been ‘read off’ numerals shown on the thermometer.
Sensors, however, often employ numeric transforms such as low pass filters to improve measurement
dependability.

2Excel’s (v. 15.30 for OSX) PRODUCT calculates the product of a set of numbers. Curiously, if the set only contains 5.5 kg, etc., the
product is zero, but if there are ‘conventional’ values as well in the set, like 32, then the PRODUCT operation treats 5.5 kg as 1.0.
The documentation for PRODUCT is incorrect too: ‘You can also perform the same operation by using the multiply (*) mathematical
operator; for example, =A1 ∗A2.’ But * does not implement the same operation, as it gives #VALUE! when PRODUCT behaves as
described above. This suggests that Microsoft has lost track of the semantics of their interactive numerals.
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(a) (b) (c)

Figure 1. Three contemporaneous calculators, all the latest versions as of August 2016. As explained in the paper: (a) the error in the
iOS calculator occurs when the user tries to enter ± under some circumstances when it displays−0; it ought to display 0, not Error.
(b) NaN occurs when the user tries to enter ± under some circumstances when the MacOS calculator displays 0; it ought to display
−0. (c) A 40 digit number entered by the user and displayed in the MacOS app calculator is impossible to read, being about 1 mm high
on the original screen. The calculator displays only some of the least significant digits of the number, so the display is misleading even
when it can be read. (a) Apple iOS, (b) Apple MacOS pane and (c) Apple MacOS app.

4. Problems with interactive numerals
4.1. Ubiquitous examples from calculators
One of the best inventions of computers is the delete key, which allows us to correct mistakes. Suppose
you want to enter 0.5 but you mistakenly enter 0 • • 5 , with two decimal points. You will
want to correct this error. But try this on almost any calculator, and you will find that the calculator has
already ‘corrected’ your error: it has decided you entered 0.5 before you have even started correcting it.
Ironically, that means if you do correct the error, you will make things worse, perhaps entering 5 instead.
The computer decided what you were entering before you had finished entering it; it ignored the second
decimal point, which then made correcting it counter-productive.

The computer (or, rather, the computer’s programmer) wants to ensure syntactically correct numerals
so they can always be represented as simple number values along with allowing you to correct them with
delete. Specifically, the computer is programmed to display a valid number because that is how the value
is represented internally (e.g. as a floating point number). But numbers cannot represent all interactive
numerals: for example, nothing with two decimal points has any number value to represent it, but it can
be corrected to be a valid numeral. It follows that trying to do both leads to unreliable and inconsistent
behaviour. This is a problem, one of ‘premature semantics’: computers generally try to treat the user’s
errors as valid numbers too soon when no sensible numerical meaning can or should be assigned to them
at that point. Premature semantics is explained more fully below, in §5.1.

� It may be argued that a user might have entered 0 • • 5 intentionally, for instance
because they know how the user interface works, and pressing decimal point twice increases
the chance it has been correctly pressed at least once. If so, what is the problem? The problem is
that the programmer has prematurely committed the user’s probable error to be a valid
number, and the error and its consequences are now unknown to the user. The programmer
does not know what a user intends, and an error is usually indicative of a failure to carry out an
action as intended. For example, the user may have intended to enter 0.05, but because the 0

and • keys are close, the • key was pressed accidentally. The programmer has no idea.
Throwing away information on an assumption is dangerous, and avoidable.

If you set out to enter−3 on the Apple MacOS v. 10.11.6 calculator, the key sequence AC ± 3 leads
to the result of 3 (cf. figure 1).3 The change sign is probably ignored because−0 did not seem meaningful
to the designer: −0 is equal to 0, which is what is displayed, so the change sign key had no effect!

3Similar problems are ubiquitous across many devices and applications. In this paper, we present some initial examples from
Apple calculators, though figure 2 shows problems are not limited to Apple. Apple have a leading reputation for high quality user
interfaces, and also develop across several distinct and widely-available platforms. We provide version numbers so results can be
easily reproduced.
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Figure 2. Google’s Android calculator calculating 5
6 = 0.8333 . . .. In the right-hand image, scrolling the answer left/right produces a

bizarre multiplier (E−17, presumably meaning×10−17), and a hidden decimal position (off the left of the screen and out of sight), thus
resulting in ameaningless result. (Comparewith the Apple calculator’s use of reduced font size shown in figure 1c; neither approachworks
correctly for the user.) Screenshots provided by Martin Atkins.

And if you correct some mistakes, say typing ± 3 ± DELETE ± you get NaN (on MacOS),
which means Not a Number. NaN is an internal value representation (e.g. defined in IEEE floating point
standards) that means nothing to non-technical users—clearly, displaying it to general users is a fault in
the calculator itself: it has ignored an error, and its number representation code has failed to display it as
either a number or as an error message.

Typing AC ± DELETE ± DELETE crashes Apple’s iOS v. 9.3.3 calculator (the effect of DELETE on iOS is
achieved by swiping the finger left/right across the numeric display). But the same sequence displays 0
on both Apple’s MacOS calculators (the stand-alone app and the notification pane calculator).

Keying AC 8 9 ± DELETE gives −8 (MacOS pane calculator) or –89 (MacOS app calculator). The
key ± is handled differently too: on iOS, AC ± 8 9 gives −89 but on MacOS it gives 89 on both
calculators, but AC 8 ± 9 gives either −89 or 9.

So three modern calculators from a leading manufacturer that are clearly designed to look the same,
which all have the same ‘look and feel’, and therefore would be expected to be identical in behaviour,
all implement the same actions differently—and all behave incorrectly by any standard interpretation.
Arguably they should be consistent, even if we disagree about what should be correct behaviour.

Evidently, handling interactive numerals properly is problematic. It is surprising that calculators,
which have had their current form for over 40 years, are still implemented inconsistently and incorrectly.
Defects of this sort are rife in all data entry devices, not just calculators.

Cut and paste, like delete, is a basic feature of modern computers: in particular, typing text and
pasting text typed elsewhere should be interchangeable. The Apple calculators, however, respond to
pasting differently. If you type AC then 2 + 3 = , all calculators will display 5 correctly. If instead
you paste 2+ 3=, the calculators respond differently: iOS and MacOS pane give 2, but the MacOS app
calculator gives 23 (though it gives 2 if 2–3 is pasted, so + and − are treated differently). None report
an error or give any indication that keystrokes are being adjusted or discarded. But cut and paste can
be done correctly: in the Windows 7 calculator v.6.1, for instance, pasting ‘2+ 3=’ produces a 5 in the
display.
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body mass index
height (cm): 200.1.5

70.1.2.3.4

your results

your risk of having a heart attack or stroke within the next 10 years is:

10.2%

weight (kg):

(a) (b)

Figure 3. Screen shots from QRISK2, a clinically-validated risk calculator, available at www.qrisk.org. (a) Invalid numerals entered as
data; (b) apparently valid result. Note that no errors are reported by QRISK2, so the user may be unaware of any problems, and then will
act inappropriately. These screen shots were taken in October 2016.

To give another example from Apple’s calculators: typing AC 9999999999999 . . ., a number almost as
large as you like, will display as exactly 999,999,999 (that is, nine digits on the iOS and pane calculators)
and then doing + 1 = will display 1e9 (i.e. meaning 109) which is wrong as the correct answer
is much larger. However, on the Apple MacOS app calculator, as larger numbers are entered they get
displayed in progressively smaller and smaller fonts, and finally become so small they are completely
unreadable. Then pressing + 1 = , as before, the large number is presented in a clear full-size 1E43
(or whatever). In other words, the calculators can display large numbers, but not when the user enters
them directly!

Note that E and e are different notations, and in fact neither are the standard mathematical notation. In
standard notation, 1E43 or 1e43 should be written 1043 or more generally, a number like 2.3E43 (or 2.3e43)
would be written 2.3× 1043, which all of the Apple calculators, with their high-resolution displays, are
technically able to display.

Curiously, when the iOS calculator is turned sideways (to make it landscape) it becomes a scientific
calculator and the user can then enter large numbers directly—except using a key labelled EE , not
E , one speculates because having two very similarly named keys, namely e (the base of natural

logarithms) and E (raising to a power of ten), would have been thought to be too confusing. We would
argue, then, if the key names would be confusing, this is another reason not to use the non-standard
notation E (or e) at all in numerals!4

Although we have used Apple for the concrete examples above, other leading manufacturers, such
as Casio and Microsoft, are not immune to these problems. It seems that before clarifying the concept of
interactive numerals (as we do in the present paper) or equivalent, nobody thought about these details,
probably as numeric data entry seems trivial and does not require much thought to seem to get working.
But interactive numerals are not obvious and there has been a failure to learn and employ rigorous
computational thinking throughout design—apparently nobody considered it necessary! The result is
that there is no standard approach. Swapping one calculator for another will give different results for
exactly the same calculation, and (as we have shown elsewhere) there are also many other bugs in
calculators [4]. It is dangerous.

We note that people use calculators primarily because they do not know or are not certain of the
answers, so bugs in calculators are very hard for them to spot and work around.

� Though these details may sound like nit-picking, they have real effects. For example, two
students narrowly avoided death after an incorrect calculation performed on a mobile
phone [6].

Doing a calculation more than once, and in a different way remains good advice, not just because it
helps protect against user error but it also helps protect against design error.

4.2. Medical examples
We have elsewhere given examples of medical devices with interactive numeral problems [7–11] too.
Another example, shown in figure 3, is taken from a ‘clinically validated risk calculator’. Evidently,
clinical validation is not sufficient to check for the sorts of interactive numeral errors that are shown
in the figure—which of course could undermine any clinical value of using the calculator.

4E and e are commonly used interchangeably in decimal numerals in programming languages to mean power of 10, so programmers
may already be comfortable with the notation, but this does not excuse carrying over a programming notation into a general-purpose
user interface notation, especially when it so obviously creates knock-on problems for the user. Most users are not programmers.
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give 18000020012000 ml in the first 07.54 h

(2278483545822 ml h–1), then 18000020012000 ml in the

next 16.00 h (1125001250750 ml hr–1).
00060 kg from age

(a) (b)

Figure 4. Screen shots fromMersey Burns, amulti-awardwinning app. The app is available frommerseyburns.com. (a)Weight of patient
in kilograms: apparently 60 kg is displayed; (b) calculated dose, from screen shot: the huge dose is clearly incorrect. In this example, no
errors are reported by Mersey Burns so the user may act inappropriately from the advice displayed. Here, the calculated dose looks very
obviously wrong (the first 7.54 h dose is over 109 l h−1, compared with an average adult blood capacity of 5 l): evidently the app does
no or inadequate validation and sanity checking. More generally, less obvious errors may be missed by clinicians using this app, with
potentially harmful effects. Note that Mersey Burns is used for treating burns victims—who may be in considerable pain, and whose
treatment will be urgent—so what may seem obvious to us calmly reading this paper may be easily misinterpreted under real clinical
conditions. Screen shots taken in November 2016.

Fossbakk’s daughter’s account number 71581555022
715815555022 (inserting an extra 5)
71581555502

what Fossbakk keyed
what she saw: numeral truncated to 11 digits

...which has the correct check digit

Figure 5. Fossbakk used her bank’s user interface to transfer money to her daughter’s account. Unfortunately she double-pressed a
key, resulting in a longer account number. The user interface truncated the number, thus obtaining another, but valid, account number.
Thinking she had keyed the correct number, Fossbakk confirmed the transfer, despite it being to a differently-named account, which
apparently was not displayed, checked or confirmed. Details taken from Olsen [13].

Screen shots from an award-winning app are shown in figure 4. The figure shows the problem of
interactive numerals getting too large for their display regions; what is apparently displayed as a patient
weight of 60 kg is much larger, but the value is too large to fit in the small display. The app should not
allow numbers to overflow their input fields, because they are ambiguous when they do. The result will
be confusion, hopefully noticed by the user and before potential patient harm.

It is interesting that despite the obvious programming problems, as illustrated in the figure, the app
not only won prizes but is well known for being the first British ‘CE marked’ medical app. CE marking
is a European legal mark, here meaning that an app is approved for clinical use in Europe, so evidently
the CE approval process failed in this case to adequately check interactive numeral processing. We know
many other problematic medical devices that have CE marks [7–12], so this implies the CE marking
process is flawed as it overlooks serious design defects that may adversely affect patients.

4.3. Banking example
In 2007, Greta Fossbakk lost 500 000 Norwegian Krone (equivalent to about US$ 100 000) due to an
interactive quasi-numeral bug, a problem that still persists in many bank systems [10,13]. Fossbakk keyed
in an extra digit in an account code that, despite making it an invalid account number, was not caught by
the online banking system (figure 5). Her bank argued that she could not prove that she keyed 12 digits—
as with other user interfaces this paper discusses, it seems to be no coincidence that the user interface
does not log what the user does, which is to the bank’s advantage. Olsen’s [13] experiments with users
entering bank account details suggest that 0.2% of all interactive bank transactions will suffer from a
similar (unnecessarily) undetected error: given the scale of internet banking, this is a huge unnoticed
problem.

Apart from not silently truncating numbers, the problem would also be reduced if numerals are
displayed with separators (spaces, dashes, etc.), breaking the digits up into groups thus making them
easier to read and, indeed, easier to type correctly. Thus, because the computer system failed her,
Fossbakk alone had to notice the difference between 71581555022 and 71581555502; this would have
been much easier if the numerals had been displayed as 715-815-555-502 and 715-815-555-022, which are
more obviously different. Indeed, it is concerning that credit card numbers are usually displayed with
account numbers split into chunks, but user interfaces typically delete the gaps thus deliberately making
the numerals much harder to read, type and check.

Problems with interactive numerals are widespread, and users like Fossbakk are often penalized for
design failings. We suspect that manufacturers are in denial for a combination of reasons: they do not
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explore the issues because of an unfortunate interpretation of product liability (they do not want to
discover any problems that may be their fault) and by assuming their ‘competent’ programmers would
never make mistakes over something so ‘trivial’. And of course, logging exactly what users do and
exactly how systems respond to them would expose manufacturers to the truth, which may work against
them in court.

4.4. IP numbers
IP numbers (both IPv4 and IPv6) are made up from blocks of digits. IP version 6 numbers are blocks of
four hexadecimal digits separated by colons. Each block can have leading zeros suppressed, so 0012 and
12, for instance, would be treated as identical.

In 2011, Nigel Lang was arrested for downloading illegal material onto a PC owned by his wife. The
police had added an extra digit onto somebody else’s IP number, obtained his wife’s physical address,
then assumed he had committed an offence (males are more likely to commit internet offences). His
arrest and subsequent stigma ruined Lang’s family life. Fortunately, his efforts to defend his innocence
eventually resulted in a settlement of £60 000 from the police for making the errors [14], that had made
him and his family suffer considerably.

It is alarming that a single digit error in a user interface can have such unchecked consequences—as
well as taking over 6 years to resolve. If nothing else, the design of IP numbers (strictly, IP numerals)
and IP user interfaces used by the police (and others) shows little maturity about human factors, such as
using check digits (which are common on ISBNs, bank account numbers, etc.).

4.5. Forms
Forms often include interactive numerals. In addition to problems with individual interactive numerals
(which are generally as discussed above), forms often impose constraints on the relations between some
or all numerical values they allow, as well as how they can be entered.

For example, dates may be entered on a form as a triple of numerals: the day number, the month
number and the year number. If the user edits the date 12/30/17 (representing 30 December 2017), say,
to 2/28/17 (perhaps starting by deleting the first 1 in 12/30/17) there are possible intermediate values
that are not valid dates (such as 30 February)—yet the user interface must permit editing to allow the
date to be corrected. Many (bad) forms force the user to make a circuitous edit so the date is always valid;
if so, this is a case of premature semantics, which we discuss more generally in §5.1 below.

We note that, as with many interactive numerals, it is rarely possible for a user to save a form before
it is valid. For a single interactive numeral, this may be a useful precaution as ‘saving’ and ‘acting
on’ a single value are closely related and perhaps too easily confused, but with a form the user may
be inhibited from saving many values (such as names and addresses); in this case, the imposition of
premature semantics seems to us to be a serious step backwards from paper forms, which of course save
the user’s work continually regardless of its validity.

4.6. Discussion
Although the examples come from diverse contexts, the problems can fall into one of two types: problems
of construction and problems of representation. Interactive numerals are constructed by the user but
as they are being constructed they are also being interpreted by the system, at the very least so they
can be represented in the display. People, though, make mistakes and so in the process of constructing
interactive numerals they can be expected both to make mistakes and to try to correct those mistakes.
Mistakes are also made by programmers—typically in unconsciously assuming that the input of numbers
is trivial.

In the case of Fossbakk, the mistake was not detected by the computer even though it could have
been. In the calculator examples, unlike bank accounts, it is not possible to know what numbers or sorts
of numbers are intended by users, but it should be expected that users will attempt to correct mistakes
they notice. However, as we showed, the use of standard features like using the delete key, which is
supposed to help can, ironically, lead to confusion.

These are serious problems. In our experiments [15,16], we have found that users regularly enter
numbers incorrectly and nearly 4% of the time they do not notice. (If you think this rate is high, then that
is because you are not noticing your own errors, and you mistakenly think the rate should therefore be
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lower.) Some novel styles of entering numbers can reduce the error rate to experimentally undetectable
levels [17].

We note that standard texts on human factors and error (e.g. Reason’s classic error taxonomy [18])
rarely discuss noticing error, and hence rarely note the important role that computers can have in helping
users notice (and hence correct or manage) numerical and other errors, particularly because computers
could in principle help notice errors and, in particular, help notice many sorts of errors humans are
poor at noticing (such as errors in check digits). Insidious cases like those discussed in Moore [19] about
radiotherapy computer systems show that numerical and calculation errors caused by mixes of poor
programming and innocent use error can persist unnoticed for decades, and hence affect thousands of
people.

Other common methods of construction, such as cut and paste, fail to alert the user to interpretations
of what was constructed that deviate substantially from what was pasted.

The problems of representation are unavoidable for interactive numerals because the numbers must
be represented and are unbounded, but displays are finite. Either a display truncates the interactive
numerals leading to incorrect values or attempts to display them leading to the problems of unreadable
displays as seen in both calculators and medical apps. The representations also fail to match with existing
mathematical notations and moreover do not allow users to use such notations in a consistent way.

The conclusion from these various examples must be that this is not simply manufacturer sloppiness
so much as interactive numerals are deceptively different to standard Arabic numerals; they are a newly
identified and surprisingly complex phenomenon.

Indeed, realizing that interacting with numbers is complex and a serious design challenge [2] (issues
we now recognize as falling within the scope of interactive numerals), we have sought and found various
ways of reducing the error rate [20,21]—ways that would be invaluable in critical applications such as
finance, avionics and medicine. The ability to reduce error rates with improved approaches to interactive
numerals proves that current accepted ways of entering numbers are unnecessarily unreliable.

The science of interactive numerals (and other classes of user interface design issues) has not been
extensively studied, particularly in the HCI (human–computer interaction) field, which one might feel
would be its natural home. By contrast, say, to the widespread activity in security [22], this lack of
attention seems remarkable (CHI+MED is an exception [23]). Why? Although the final outcomes of
security problems and safety problems may be broadly indistinguishable, there are interesting cultural
and economic differences. For security, there are many outsiders who are known to be bad, and therefore
defending against them is expected; investment in security (and hence investment in security research)
makes sense. By contrast, for safety, there are insiders who are expected and often required to be
professional; blaming the user is then an easy option as the user has apparently failed to do a good
job—they are the proverbial bad apple. For safety, then, it often seems the user has failed rather than the
system. Hence little investment or research is demanded for user interface safety.

Since poor interactive numeral design induces use error, we hope accident and other investigators
will consider it as a possible cause of incidents, and thus we hope this paper will stimulate new avenues
of critical investigation and research that will reduce error and its consequences.

5. Analysis
It has long been recognized that computers do not do normal arithmetic. Thus, normal addition satisfies
the associative rule, a+ (b+ c)= (a+ b)+ c, but on a computer this rule fails because of rounding errors.
For example, 0.1 as a decimal number is a recurring binary fraction, so it cannot be represented as a
simple binary value precisely.5

The field of numerical analysis concerns itself with such error analysis, so-called ill-conditioning
and related issues [3]. Good programmers are therefore very careful to do arithmetic in ways that
take numerical problems into account. Some calculators do arithmetic in base 10 (e.g. using binary
coded decimal, BCD), so that users are not surprised by decimal–binary conversions causing unexpected
rounding.

The corresponding problems of interactive numerals have only just been recognized (they are
systematically reported here for the first time), but they are no less serious, as our examples above show.
Unfortunately there has been nothing like ‘a numerical analysis’ for interactive numerals, so we aim to
address that.

5Obviously the decimal value 0.1 can be represented using structured binary values, such as rationals (e.g. as two binary numbers,
representing 1 divided by 10) or as binary coded decimal, and in many other ways.
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The problems of interactive numerals fall into the following categories:

5.1. Premature semantics
Premature semantics is an idea we identify in this paper for the first time.

For a computer program to interpret the user’s data entry, it must impose some semantics. For
example, it may interpret numerals as floating point numbers; this semantics is very easy to implement
and means that as a user enters a number it must be a floating point number at all times. Using the
definition of interactive numerals from §3.2, the program will use Nint to evaluate the numeral bi at each
step i as the user enters it; furthermore, any user action that makes Nint fail (i.e. fail to be a floating point
value) will be ignored. As an interactive numeral is being constructed under this form of premature
semantics, then at every stage it is interpreted as a meaningful number. But this means the program
has prematurely implemented the user’s input as a number before they have finished interacting and
confirmed it. In particular, it means that an erroneous sequence of interactions like 0 • • 5

(and many others) cannot be processed correctly because the program has prematurely implemented the
user’s input as a number and there is no floating point value that represents anything with two decimal
points!

In other words, although the program eventually wants a number, in this case it has prematurely
imposed the semantics of number instead of, for instance, string semantics (which can represent arbitrary
keyed input from a user).

The example NaN given above is a symptom of premature semantics. Here, the computer has been
programmed to prematurely use a number to represent the user’s input, but the user has attempted
some interactive numeral action implemented on a number that the programmer has not correctly
anticipated. This results in the program performing a non-numeric operation on what was prematurely
(and incorrectly) programmed as a number value. The computer itself has responded with the number
turning into an invalid number, namely NaN. Then the bad programming has failed to recognize this,
and NaN (which is a technical term that is meaningless to normal people) is displayed directly to the
user. In other words, displaying NaN proves the program has prematurely implemented something as a
simple number (probably an IEEE float).

Shneiderman describes a common data quality problem [24]: a hospital was analysing the age
distributions of patients and finding statistically significant differences, etc.; but Shniederman found
patients who were 999 years old. Of course, clinicians do not always know a patient’s age but the program
they used prematurely required a number (and nothing else). A patient’s age is certainly a number, but
interactively there is a point before the number is correct or even known, as in this case. But premature
semantics requires a number regardless. The clinicians thus have to find a workaround, such as entering
999, which is a number for the computer but it is not a number for the clinicians—it is an exception
flag denoting ‘unknown.’ Unfortunately, 999 was an exception flag known to the users, but was not
implemented by the programmers.

It is understandable that any such system needs some way of handling missing data but forcing a
semantically correct number value here led to (perhaps well-intentioned) violations, a specific type of
error [18] that can have serious consequences later. Indeed, this 999 violation worked every time, so
it became standard practice. Yet it ruined data analysis, and probably disrupted hospital auditing and
hence the day-to-day efficient operation of the hospital before Shneiderman uncovered the practice.

Now we recognize premature semantics as such, it explains a wide range of familiar problems. Web
forms, for example, often require a user to fill in details they do not yet know: this is because the form
implements the fields as simple values (numbers, dates, etc.), which premature semantics prevents from
being left blank or partly filled in—a routine procedure that is very convenient and indeed trivial on
paper forms.

A special case of premature semantics might be called premature representation—the representation
is a consequence of an internal, premature, semantic choice. Many systems display a numeral even before
anything has been entered, because the display is assumed to always display a number:

— Many interactive systems display 0 if the user has entered nothing: they then cannot distinguish
a user who has entered nothing from one who has explicitly entered zero.

� More generally, interactive systems displaying default values (such as 0) when the user
has entered nothing makes it very difficult to distinguish a user entering a default value
and actually doing nothing—not even recognizing ‘they’ have entered a value, which may
therefore not be what they intended.
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— Some systems display 0 to show that they are switched on, but this creates the ambiguity whether

the user has started to interact or not. Instead, they could display patterns like - - - - rapidly
alternating with - - - so they are obviously on and working.

— Many systems permanently display a decimal point [25], so if a user has entered nothing they
will display 0. with a decimal point. This means that the user cannot tell whether they previously
pressed just 0 or 0 • : they cannot know from the display whether pressing 5 will change
the number to either 0.5 or 5. This lack of predictability is a high price to pay for the ‘simplicity’
of always displaying a decimal point even when one has not been entered.

5.2. Feature interaction
Feature interaction is the name given to unanticipated interactions between system features [26]. Feature
interaction is hard to anticipate because we focus so readily on individual features and think about them
independently: it is much harder to think about features working together. In fact trying to think about
two things at once interferes [27]: we do not do it very well and we tend to avoid doing it.

On calculators one feature is that we want users to be able to enter large numbers, and another feature
is that the display screen can only show up to a fixed number of digits, typically 8 or so. The feature
interaction here happens when a user keys in more than the allowed 8 digits—what should happen? Each
feature separately makes sense, and in fact each feature is so straightforward and obvious it hardly needs
thinking about at all. Yet, put together the two features conflict. Most calculators ignore the resulting
feature interaction, with the result that the users will perform incorrect calculations without warning—
and generally without noticing.

We want to allow users to make and correct errors, but that obviously desirable feature interacts with
the equally obvious feature that only correct numbers are displayed. What should happen when a user
keys in a syntactically incorrect number? How can it be corrected? This is another feature interaction.

Another feature interaction is the way negate works combined with the way delete works. The negate
( ± ) key changes the sign of a number and on most number entry systems it can be pressed at any time
as a numeral is entered, in part because it is always represented as a prefixed minus sign whenever it is
pressed. Thus, on the iOS calculator and many other devices with a change sign key, all of the following
(pressed after AC so they all start in the ‘ground state’): ± 1 2 ; 1 ± 2 ; and 1 2 ± all
result in −12 being displayed.

Delete seems simple, but is an interesting feature. In general, one would expect that a sequence of
keystrokes . . . ki−2, ki−1, ki followed by DELETE would be equivalent to . . . ki−2, ki−1. That is, the most recent
keystroke ki ‘disappears’ when DELETE is pressed. Put into formal terminology, ki DELETE is the identity (for
ki 	= DELETE ), or it should be expected to be.

However, a feature interaction between change sign and delete arises. What happens when DELETE is
pressed is unpredictable—it may or may not delete the sign prefix. The problem, of course, is that change
sign key is implemented to put the negative sign at the left of the numeral, yet the delete key works on
the right-most end of the numeral. After a change sign, the delete key cannot work both at the end and
at the start of a numeral, and that causes an unfortunate feature interaction. A simple solution would be
for the delete key to work on the most recent key pressed, not on the right-most key shown—but this is a
little harder to implement.

The DELETE feature interaction is caused by premature semantics: treating an interactive numeral as a
simple signed number, and then not having any representation of what the user has done so that DELETE

can be disambiguated.

5.3. Illegibility
If a numeral is ambiguous or unreadable (or inaudible if spoken, e.g. by synthesized speech) it is
unreliable.

Legibility seems a self-evident criterion for a good interactive numeral, but as the Apple MacOS
app example shows (figure 1c) it is easy to overlook. Other number entry systems routinely truncate
numerals to fit displays, causing potential problems that are very hard to see. Elsewhere we have
discussed legibility in more detail [25], and in particular, criticized poor choice of numeral fonts, such as
seven segment displays.

Legibility ought to be an obvious requirement, and achieving it (particularly with today’s high-
resolution displays and quality audio outputs) is completely unproblematic. Yet poor legibility continues
to be a factor in accidents and other problems [25]—note that this reference gives brief details of a fatal
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plane crash caused by poor numeral legibility as well as many recommendations for improving numeral
legibility more generally.

5.4. Ignoring error
Sooner or later, users make errors, and they may or may not be aware of their errors [17]. We have shown
elsewhere [20] that if interactive numeral systems detect syntax errors (such as two decimal points) the
effective error rate can be reduced; for instance, the ‘out by 10’ (the number entered is 10 times too large
or too small) error rate can be halved.

In practice, interactive number entry systems rarely detect user error. We gave examples above of
a user entering numbers that are too large: the results are wrong—yet detecting this error is trivial
programming. In some systems, user error is ironically treated as a ‘feature’. For example, on the Graseby
3400 infusion pump (a drug delivery device) the decimal point is treated as a special case of C : it deletes
the decimal part of a number, so 3 • 4 • 5 enters 3.5, whereas many other systems (like the
Apple iOS and MacOS pane but not the MacOS app) will just ignore additional decimal points, even
though they key-click, misleadingly confirming the keys are being processed normally.

Displaying NaN is a simple example of ignoring error. NaN is displayed when the program attempts
to perform an invalid operation on a number: the hardware (or the virtual machine) has detected the
error that the programmer has ignored (figure 1b).

Unlike the other Apple calculators, the MacOS app allows the user to enter arbitrarily large numbers,
which as we explained above get displayed in a smaller and smaller font until they are unreadable.
Continuing using the app eventually makes an erroneous calculation and displays NaN. Presumably, as
each digit, say 9 , is pressed the interactive numeral processing calculates d′ = 10d+ 9, updating the
displayed number d to d′, but eventually 10d or 10d+ 9 is too large for the underlying floating point
representation to handle. A correct program would check d was in range before attempting an invalid
calculation—even better, it would also check d′ would be displayed correctly (which none of the Apple
calculators do). Even displaying the resulting NaN to the user is another ignored error.

All the three Apple calculators allow pasting in a number. For example, 1,2,3.4.5 becomes 123.4 on
the iOS and pane calculators, but 123.45 on the app. None of the calculators detect the errors. Ignoring
the commas ‘makes sense’ only because it is an easy way to handle correct numbers like 10,000. But the
same reasoning also ignores problems with erroneous numerals like 10,00. Ignoring errors, including
discarding digits and decimal points, is very unhelpful—users expect correct answers, not any old
answers.

Many systems, however, do detect use error; for example, one of many studies using ‘smart pumps’
(interactive drug infusion devices with number range error detection) along with other interventions
reduced error rates by 73% with paediatric patients [28]. Given the obvious benefits and effectiveness of
error detection, it is, then, very surprising that interaction error is so widely ignored: it is clearly not a
problem with reporting error as such (which is how so-called smart pumps work), but of bothering to
program systems to detect errors during the process of interactive numeral entry.

Ignoring error is a special case of poor programming, which we discuss next.

5.5. Poor programming
Poor programming explains many problems.

We can describe the programming problem succinctly: user operations on numeral syntax define an
abstract date type for data entry. The continual mapping of that abstract data type to computer number
representations (e.g. floating point numbers) as the user enters and edits numbers becomes a mess if not
programmed correctly.

Type checking helps detect inconsistencies within a program and helps improve program quality
generally, but it does not specifically help improve interaction. To make the point, figure 6 illustrates
problems that can arise without type checking. Clearly, some possible interaction design defects can
be completely prevented by using a typed language, however type checking alone is not sufficient to
correctly manage problems of the user entering ‘numerals’ that are not even parsable, as illustrated in
the figure.

When interacting with programs, users can do anything, and a dependable interactive program has
to respond coherently to all possible user interactions. Interestingly, neither the philosophies of static
or dynamic type checking align well with this requirement: incorrect types cause incorrect programs
to be rejected, and the programmer has to start again after fixing the errors. While that makes sense
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Figure 6. A user might enter the data ‘I don’t know’ into a numeric field on a web site programmed in JavaScript. JavaScript is a very
popular web language but it is not type-checked. JavaScript will happily compare the non-numeric string the user has entered with the
number zero, without any errors at compile time or run time. Since what the user entered is neither negative nor positive, the program
will deduce it must be zero, which of course it is not. The error may then propagate through the program and cause further problems. In a
type-checked language, strings and numbers are not comparable and a program like this would not compile, so the programmer would
have to develop a ‘type correct’ program before it could be used.

and is undeniably a very useful approach for dependable programming, by contrast, in user interface
interaction rejecting the user’s input is rarely a good option—an interactive program has to keep running
despite error, and it has to manage error as the user gradually repairs the input to something acceptable.
Even if it may be a good idea for the user to ‘start again’ (e.g. when entering a quasi-numeral as an
incorrect security code) the program cannot terminate.

Very often there are unhelpful compromises: the user can make an error, but their input will not be
saved (or otherwise processed) until all the data are ‘correct’. This is essentially the type correct part
of the program refusing to allow the user to continue interaction until all detected errors are fixed. If
the user needs to pause while they decide how to proceed, many programs will further aggravate the
situation by timing out and discarding the user’s partial input. Put in other words, the problem is the
‘correct’ program has required numbers prematurely, but the user interface is supporting interactive
numerals—and the program is expecting the user only to save when all interactive numerals are well-
formed numerals (and similarly for other types of data, not just numerals). As explained elsewhere in
this paper (§5.1), this is a premature semantics.

Users learn how to enter numbers on systems and will acquire habits (such as shortcuts and specific
ways to use the correction features). Thus users will internalize the ‘mess’ and if the mess is different
on different systems, this will induce unnecessary errors (so-called transfer errors). The unnecessary
variation, despite their very similar look and feel, between the three Apple calculators is a case in point.

Examples earlier showed large numbers may be accurately displayed when they are the result of
a calculation, but not when the user enters them. Thus, although numbers as such are handled well,
interactive numerals are not. Worse, there is usually no warning to the user that displayed values are
incorrect when numbers entered by the user have been truncated.

The problems with large numbers probably happen because a standard, general-purpose, number
output routine is used to display calculated values, but user-input numbers are displayed differently:
a basic programming inconsistency. Considering the additional inconsistencies over cut and paste
discussed above, it is likely that those calculators do not use standard text entry routines, but handle
button presses in ad hoc ways.

We conclude that correct interactive numeral programming is harder than most people think—poor
programming is deceptively easy. The cognitive effort to program well creates tunnel vision: that is,
programmers make mistakes they are unaware of [29]. Modern software engineering techniques like
formal methods and code review must be used to mitigate these predictable problems, and evaluation
techniques must be used to evaluate whether designs meet their requirements when they are used.

The evidence presented in this paper suggests even major manufacturers are not using such
techniques to help avoid problems. We would argue that any computer system programmed by people
who do not use such techniques [30] should not be used for any critical application.

� Some readers of this paper have pointed out that some programming languages, such as
Haskell and Swift (and more generally, many programming languages that have strong typing),
have built-in mechanisms to help avoid premature semantics. However, the problems this
paper has pointed out can be avoided in any programming language. The issue is not the
programming language used, or the programming language that might have been used, or
even whether the programmer uses data validation. The issue is the lack of knowledge about
interactive numerals.
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6. Conclusion
Interactive numerals are more complex than most programmers think, so they implement them
simplistically. Even the world’s very best programmers are not immune. If programmers are unaware
of premature semantics and feature interaction, they will make mistakes, which will then catch out
users later. Understandably, users are unaware of these issues and they risk being misled, particularly in
situations of error—precisely, then, at the very times when being misled is especially counter-productive.

This paper makes several important points:

(i) Our definition of interactive numerals is essentially equivalent to a high-level specification that
programmers could implement. Variations from this specification would allow programmers to
identify with clarity any design compromises, and so reason about the consequences of their
compromises in their approach to interactive numerals.

(ii) The everyday practice of programming has not yet advanced to the point where interactive
numerals are reliably implemented, nor to a point where users can reliably use them. We have
developed some evaluation tools [21] that can rapidly highlight problems and help select safer
designs, but formal methods should also be used to avoid problems in the first place.

(iii) Premature semantics is a concept describing a common type of defect in programming, and
is particularly prevalent in poor interactive numeral implementations. Now named, it can be
actively managed by programmers.

(iv) Problems with interactive numeral implementations mean that logs of interactive system usage
may record what systems do but do not reliably record what was done by users. This hinders
accurate understanding of any use problems, and may have legal repercussions: logs must not
be naïvely used as evidence of what users have or have not done [31]—they only show what the
system records after premature semantics has over-simplified it. Logs do not give any reliable
insight into what users did (let alone why [31]), unless there is rigorous evidence of correct design
and operation, including appropriate forensic procedures (e.g. digital signatures) to confirm log
data is not contaminated by poor programming or cyber attacks.

(v) Interactive numerals can be discussed rigorously because numeral syntax and number semantics
are familiar and are well-defined, precise concepts. It is, therefore, easy (if one asks the right
questions) to show whether they are implemented correctly. There are, however, many other
forms of interactive features that beg further study. For example, typing letters with accents (e.g.
ï, é, ç, as well as keys that are not on some keyboards like æ, ß, ł, etc.) requires several keystrokes;
what then should key sequences like ¨ u DELETE ı do? Indeed, the synchronization of the
user model and the program’s semantic model at the keystroke level is a topic that has been
excluded from classic research [32].

Being able to buy and use safe interactive numeral systems, let alone assure yourself they are as
dependable as they seem, remains problematic. For the time being, in safety and mission critical areas
users must compensate for poor design by adopting strategies (such as repeating calculations entered
in different ways) to help detect error. It was beyond the scope of the present paper to discuss human
factor mitigations, such as range validation and the user interface redisplaying numbers in contrasting
numeral formats (e.g. spoken words) to help the user confirm that the number they intended to enter
was indeed correctly entered.

With this paper, we hope we have clarified the fundamental role of interactive numerals in numerical
interactive systems—that is, almost all interactive systems. From articulating the design and use errors
around interactive numerals, our examples show that users, designer and procurers need to pay
very close attention to their correct implementation. And implementations more consistent with our
definitions are demonstrably possible. For instance, we can indicate contingent semantic correctness
[10,33] or systematically avoid premature semantics [34–36]. But these are entirely new approaches for
users and designers of number entry systems. They may bring new, different problems and there are most
probably even better, more reliable, more analysable implementations. However, having identified now
the conceptual target of interactive numerals, we are in a better position to work towards the engineering
of more dependable interactive systems. The extra effort needed has a very high leverage because, for
many applications, getting interactive numerals right will help millions of users over the lifetime of the
improved products.

Data accessibility. All experimental data and results are fully described in the paper.
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