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ERRATA TO THE PLANVE TRIGONOMETRY.

Page 10, Line 6, for AP read AP
» Q, for DP read DIP3.
63, ,, 8 from top, for sin2 A read cos 2 A,

10, ror cos :: read /2. con

2
» 11 fur cosec? A read cosec? 2 AL
o 12 Jor =& ~ 1 rrad —  Z1.sinA.
. ¥
%7, Line 24, sur read -—\1‘-——.
<0 . 180
03, . 2, jor24 r—xr,—‘— read 24rsin —.

100, ,, 3, for a- @4 @ read arsin 4 @).
102, PFig. 2, ror C vad D awd for D oread C.
103, Line & from bottowm, or ccos S read ccosy.



PREFACE.

Ix the compilation of this work, the most esteemed writers,
both English and forcign, huve been consulted, but those
most used are De Fourey und Loegendre.

Napier’s Cirenlur Parts have leen treated in a manner
somewhat different to most modern writers, The terms
conjunct und adjunct, used by Kelly and others, are here
retained, s they appear to be more conformuble o the
practical views of Napier himself.

There are many other parts connected with Spheries that
might he treated of, but which nre not adapted to a Rudi-
mentary Treatise like the present; those, however, who wish
to see aull the higher departmonts fully developed, must
consult the writings of that distinguished  mathematician,
Professor Duvies, of the Loyal Military Academy, Woolwich.

Hutton's Course, the Ladies' and Gentloman's  Diaries,
(latterly compriscd in one), Lexbourne’s  Bepository, the
Mechanics' Magazine, and various other periodicals, teem
with the productions of his fertile mind, buth on this and
other kindred subjects.
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SPHERICS.

PRELIMINARY CHAPTER.

1. A spuERE is a solid determined by a surface of which all
the points are equally distant from an interior point, which is
called the centre of the sphere.

2. Fvery section of a sphere »
made by a plane cutting it 1s the o ‘ .
are of a circle. ’

Let O be the centre of the A
sphere, APBA a section made by A
a plane passing through it. draw ¥ fo o' fem
OC to the cutting plane, and pro- 7 . | =7
duce it both ways to D and E, and ™ /
draw the radii of the sphere 0OA, ™
or. S

Now, since OCP and OC A are Te
right angles, 0A? — 0C* = A(C?,
and OP‘ — OC* = PC’, but OA" = OP; . AC* = P(°
or AC = P(; hence the section APBA is a circle.

If the cutting plane pass through the centre, the radius of
the section is evidently equal to the mdiug of the sphere, and
such a section is called a great cirele of the sphere,

3. The poles of any circle are the two extremities of that
dinmeter or axis of the sphere which is perpendicular to the
plane of that circle: and therefore either pole of any circle is
equidistant from every part of its circumference, aud, if it be
a great circle, its pole is 90 from the circumference. A
spherical triangle is the portion of space comprised between
three arcs of intersecting great circles.

4. The angles of a spherical trianglg are those on the surfaco
of the sphere contained by the arcs of the great circles which
form the sides, and are the same as the inclinations of the
planes of those great circles to one another.

5. Any two sides of & spherical triangle arc greater than the
third side.



2 SPITERICS,

Since by Fuelid XT. 20, any two of the plane angles, which
forin the solid angle at O, are together greater than the third,
hence any two of the arcs which muasure those angles must
be greater than the third.

6. Since the solid angle at O (see fig p. 8} is contained by
three plane angles, and by Fuclid XL 21, these are together
Jess than four right angles, henee the three ares of the spheri-
eal triangle which measure those angles must be together less
than the circumference of a great civele, thatis a + b + ¢ >
360, aud since any two sides of u triangle is greater than the
third, we have a + 0> c; b+ e > asa4ce¢> b

ON THE POLAR OR SUPPLEMENTAL

Yo I three ares of great cireles be deseribed from the angular
oty A, B, €, of auy spherieal triangle A B ¢, as poles, the
sides and angles of the new triangle, D F E, so formed will
be the supplements of the opposite augles and sides of the
other, mu‘ viee eersd.

Since Bis the pole of DF, then BD is a quadmnt, and
since s the pole of DE,( Disa quadrant; therefore the
distances of the points Band € fom D being each u quadrant,
they are equal to each other, henee I iy the pole of Be

DE=150 —Ci EF=15'=A; o

FD= 180" <1 and D=1x0"<1( ;

IO
VAN
E=I8) —AC; F=IN1'—AR. 4 N
Also, AB=1%0 —F RBC=130"—=D;
AC=IM) = E; A=1R0—FE; S ‘8
. — g

&t

B= I8 —FD; C=ix0 ] )

The sum of the three angles of a spherical trangle is
greater than two right angles, nnd less than six right angles.

For if @' 4+ & 4 ¢ be the sides of the supplemental or
polar triangle, A= 180 —a’; BR=180'—h'; (= 180" =¢:

hence A+ B4C+a 44 +¢'=6 x 00=0 right angles;
but @’ + ¥ + ¢ is lesshan four right angles, by Fuelid X1
41; thereforo A+ B+ C is greater than two right angles; and
as the sides a’, 1, ¢, of the polar trinugle must have some
magnitude, the sum of the three angles A, B, C must e less
than six right angles.

e
=~



SPHERICAL TRIGONOMETRY.

CHAPTER I.

8. Srnerical Tricoxomerny treats of the varions relations
between the sines, tangents, &, of the known parts of a sphe
rical triangle, and those that are unknown; or, which 1+ the
same thing, it gives the relutions between the part- of a solid
angle formed by the inclination of three

planes which meet in a point, for the sold ¢
angle is composed of siv parts, the incli- (7o«
nations of the three plane faces to cach 35

other, and ulso the inchnations of the | Y/ }3./'-‘"
three edges; in fact, a work might be writ- ’

. : . . A< N /
ten on this subject without using the L)
spherical triangle at all, for the six parts LN
of the spherical triangle are measures of n

the six parts of the solid angle at 0. See fig.

9. If a spherical triangle have one of its nugles a right angle,
it is called a right-angled triangle ; if one of ity sides be a
quadrant, it is called a quadrantal triangle; if two of the sides
be equal. it is called an 1susceles triangle, &c., s in Plane I'ri-
gonometry.

10. To determine the sincs and cosines of a spherical tri-
angle in terms of the sinecs and cosines of the sides.

Let O be the centre of the sphere on which the triangle
ABC is situated, draw the radii OA, OB, OC; from OA
draw the perpendiculars AD and AE, the one in the plane
OAB, ard Y other in the plane OA C, and suppose them tv
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meet the mdii OB and OC produced in D and E. The angle
DAE is equal to the angle A of the spherical triangle, and
taking the radius unity we have AD = tan ¢, OD = sec C,
AE = tan b, OE = sec b.
Then in triangles DAE and DOE we have

O 4 OE'— 20D . OE cos EOD = DE?

AD? + AE'—2AD . AE cos A = DE?
by subtracting the second equation from the first, observing

that OD' — AD' = OE'— AE* = 1, and EOD is measured
by BC or a, we obtain

D4+ 2AD.AFECcos A —20D ., OEcosa=10
or by substituting the above values

l4+tand . tanccos A —secbsecccosa=10

1 sin b
butsec b= ——— , tan b = —-:
con b cos b
sin €
AMC ¢ = e, N ¢ = --—
CON ¢ Cus ¢
1 sin b sin ¢ ens A cos o o
cos b eos ¢ cosbeosc

hience cos a == cos b cos ¢ 481 b sinccos A ....... veenenes (I

whicl is the fundamenta! formula in Spherical Trigonometry.

11. In the figure the sides b and ¢ are less than 907, but itis
easily seen that equation (1) is gene-
ml.  Let us suppose that one of the
sides, A C or b for example, is greater a
than #0°; draw the semicircum. v/l
ferences CAC’, CBC’, and make the Ve A
trinngle ABC’ of which the sides ) AL—7
a'and b, or B¢ and AL, are sup- Y -
plements of a and 4, and the mxgl(- O
BAC’ the supplement of A. Since .
the sides b ang care less than 90°, the equation (1) can be
applied to the triangle A BC’, and gives

c

cos a’ == cos b’ cos ¢ 4 sin b’ sin c cos BAC’ ... (2).
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Nowa' = 180°—a, ' = 180" — b, BAC = 180°—A; theso
values substituted in eq. (2) will give eq. (1), which shows
that it is true for the case where b is greater than 90 |

Let us now suppose that the two

sides b and ¢ are both greater than A
90°; produce AB and AC till they v /1 )
intersect in A’, which forms the ¢ /‘
triangle BCA’ in which the angle A’ WA

is equal to A, and the sides " and ¢’ B gl
the supplements of & and ¢ by .-~ /

making the substitutions in this % =~ - -7
case, we still find that equation (1)
satisfied.

Lastly, we can verify cquation (1) in the case where
b = 90° and ¢ = 90° cither both together or separately.

If we apply equation (1) to cach of the sides of the triangle,
we shall have three equations by means of which we can
always find any three parts whatever of the triungle, when the
three others nre given.  But. for pmetice, it s necessary to
have separately the divers relutions which exist between four
parts of the triangle taken in every possible manner. Thero
are in all four distinct conmibinations, which we proceed to
give.

12. Ist, Relation between the three sides and an angle.

By applying cquation (1) to the three angles, we have

coBa=cos bcosc + sinbsinccos A ...... (1)
cosb =cosacosc+sinasinccos B...... (2)
co8 ¢ = cos acosb + sinasinbeos C ...... (9)

13. 2nd, Relation between two sides and their opposite
angles.
From equation (1) we havo
o8 a — c08 b cos ¢
co8 A = ~—— e ——
sin b sin ¢
(cosa — cos bcosc)!

Hencesin® A =1 ~cos’ A =1 — e
s’ b win® ¢

_ (1 —cos’b) (1 —cos®c) — (cos @ — cos ) cos ¢y
- sin’ b sin’ ¢
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sinA /1 —cos’a — cos*h — cos’c + 2 cosa cos b cosc
0 = - - TR Rt it
sin @ gin a sin b sin ¢

We must take the radical with the positive sign, seeing
that the angles and the sides are less than 180°; their sines
are positive.  As the second member remains constant when
we change A and « into B and b, &c., we have

sin A sinB  8inC

sina  sn b  sine
Henee in any spherical trinngle, the sines of the angles
are to ench other as the sines of their opposite sides.

11, 8rd, Relation between the two sides and their included
ungle, aud the angle opposite one of them.

In considering the combination a, /. A, C; first eliminato
cvs ¢, between the equations (1) and (3) and we have

cosd == co8acos’d + cosbsinasinbcos C 4 sinhsinecosA

transposing cos a cox” b, and ohserving that cos @ — cos a cos® b
== cos a sin”" b and, dividing the whole by sin & sin a, it be-
comes

cos a sin b sin ¢ cos A

et s T2 COB & CO8 € A i ey

sina sl @

sin ¢ winC .
-« = —~—; and consequently we have for the relation
sin a sin A
sought

but

cota 8in b == cos b cos C + sin C cot A.

By permuting the letters, we have in all the following six
cquations

cotasind = cos b cos C + sin C cot A......... ()
cot b sina = cos @ cos C + sin C cot B......... (6)
cotasine = cosccos B + sinBoot A......... (7)
cotcsina = cosa cos B + sin B oot C......... (R)
cotbsine = cosccosA 4+ sin A cotB......... (9)
cotcsind = cosbcos A + sin A cot C......... (10)
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15. 4th, Relation between one of the sides and the three
angles. Eliminate b and ¢ from the equations (1) (2) (3): to
do this we have by the last articlo

cos a sin b 8in ¢ co8 A
S - == cosbeos C + . '
sin a sin a
sinhd  sin B sie  owin

and since —~ = - — and - = ~ .
s sin A YUY s A
we have
cog a 8in B = cos b ~in A cos C 4 cos A sin
and changing @ and A into b and B, and viee versd, we obtain
cos b 8in A == cos a sin B eos C 4 con Bain €.

We have only now to eliminate cos b by the two preceding equa-
tions.  We tind after redustion the relation songht hetween
A BCand a, which, applied to the three angles successively,
will give the three equations

Com A= —cos Beos C 4+ ~tn BainCevsa ....... ()
cos B=—corAcos C 4 sin Asin Ceos b, (12
cos C == — cos . ens B 4 sin A sin Beos ¢ e (18)

16. The analogy of these equations with the fundamental for-
muls is striking, and conducts ug to a remarknble consequenee,
Let us imagine u spherical triangle A" B ¢, of which the
sides a” b ¢ are the supplemonts of the angles A, B, C; then
from equation (1) we :s{ux“ have

cos @’ = cos b con ' 4 ain A sin b cos AL
Nowsina’ =sin A, eo8 a’ = —cos A, sin b’ =nin B, &c., then
— 08 A ==cos Beos €+ sin Bsin € cos AL

From this equation we find for cns A’ « value equal but of
a contrary sign to that which we find for cos « in equation
(11): then a = 180" — A’ similarly b = 150 — B, and » =
180 — €. Hence, having given any spherical triangle, if
we describe another triangle, the sides of which are the sup-
plements of the angles of the first, then the sides of the first
will be the supplements of the angles of the second. From
this property the two triangles are called supplementary, and
sometimes the triangles are said to be polar to each other.
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NAPIER'S ANALOGIES.

17. We now procecd to deduce the formule known by the
name of the analogics of Napicr, which are employed to sim-
plify some of the cases of spherical triangles.

r . .

T'he equations (1) and (%) give

€os a — cos b cos ¢ = sin b sin ¢ cos A ;

€08 b — 08 @ cos ¢ = sin a sin ¢ cos B.

L . sina  sin A

By division, observing that TR TR o
sin b sin B
cos b — cos acos e sin A cos B
we have = . .

cosa — cos b ecos e  gin Beos A

By subtracting and adding unity to both sides of this equa-

tion and again dividing
cosh—cova 1 + cose  sin(A—Bj
cosb 4 eoxa " 1 —cose sin (A +B)
But by P'lane Trigonometry, page 30,
cos b — cos a
= M b Via—
cos b+ cosa tun g fa+ ) tan ., (‘“ I‘)
I+ ense 1
L—cone 7’ }e
and sin (A 4+ By=2sin } (A 4 Bjcos § (A + B)
§in (A — B) = Ysin } (A — B)cos } (A — B).
Substituting these values, the above equation becomes
tan § (o + W) tan § (@ — b) =
in } .
tan® ‘l'c(bfn Y (A = R)cos § (A — B)) - (a)
sin d (A 4 B)eos J (A + B)
m a_sinA
sin b~ s B
gina + sinb __ sin A + sin B,
gina —sinb- sinA —sin B
By Dlane Trigonometry, page 30,
tan § (¢ + #)__sin § (A + B)cos § (A — B)
tan § (@ — b) ws}(:\ + B)sin §{ (A — B)’

but

and since -

we have
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Multiply these two equations together, and then dividing
one by the other and extracting the root, observing that
tan § (@ + b) and cos § (A + B) ought to have the same
sign,

cos } (A — B)
tan | by=tan}c. ¢
Ha+b) s LA+ 1)
sin § (A — B)
sin § (A + By

To apply these to the polar triangle we must replace a. b. ¢,
AB,C, by 180° — A, 1RO’ — B, 180° — ¢, IN0"—a, 180" — b,
and there results,

v (14)

tan {(a —d)=tanjc.

cos Yia — 1)
tan } (A = e, L v 16
n}lA+B)=cotjc. Via 4+ b (16)
sin b ia — b)
tan J(A — By==cotlC . T T 1%
n B) cot sin L ia + b ()

My able and talented fricnd, Mr. Reynolds of Chelsen Hos.
pital, has sent mo the following very neat method of deducing
Napicr's Analogies, which he says was communicated to hum
by er. Adams, the celebrated astronomer of Cambiridge

sin A sin B st A + sin B
letm= - = ~— = . . .
st «a sin b sl a + sin b
Then by the formula (11) page 7,
cos A + cos B cos € = sin Bein Ccona
=msnCsinbcosa,..(l)
cos B+ cos A cos C = sin A sin Ccos b
= m sin C sin a cos b...(2)
Add (1) and (2), then
feos A + cos B} (1 + cos €)= m sin C sin (a + b).
Also sin A + sin B = m (8in a + sin b),
Dividing and reducing we hiave
a—0b

A+ B C o3
wn——-.un—_2-=

veveereersvenes (Anal. ]
2 ( )

2
osa+b
€%

B
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Again, subtracting (2) from (1)
(cos B = cos A) (1l — cos C) =m . sin (@ — b) 8in C
and sin B + sin A = m (sin @ + sin b);
.. dividing

a—b
A—B _ C "
gl = L vveieiiesenness (Anal. 2
tan 2 .tunu = Ca+b ( )
gin )

The other two follow of course from the polar triangle.

ON RIGHT-ANGLED SPHERICAL TRIANGLES,
18. The preceding formulme will apply to right-angled tri-
angles, if we make uny one of the angles = 907,

If A = 90" we have
o8 a = cos b cos ¢ (1)
sin b = smasinB...... () sin ¢ =sinasinC,..... (7)
tan b = tanacos C...... (%) tane =tanacosB...... ")
tan & = sinctan B...... (1) tanc =sinbtanC...... (9)
cos B == 8in € cos boonoo (D) cop C = sin Beos c...... (10)
cos a = cotBeot C...... ("

These six independent formulx are all adapted to logarith-
mic ealeulation,

The first gives a relation between the hypothenuse and the
two gides contnining the right angle; the second, one side
and angle opposite: the third, between the hypothenuse, n
side, and the adjecent angle ; the fourth, between the two
sides and the angle opposite to one of them; the fifth, be-
tween one side and the two oblique angles ; lastly, the sixth,
between the hypothenuse and the oblique angles.

19. ‘The formula (1) requires that cos @ must have the same
sign as the product cos b cos ¢, or that the three cosines must
be positive, or that ouly one must be so. Therefore in any
right-angled spherical triangle the three sides must be less
than 90°; or two of them must be greater than $0°, and the
third less. The formula (4) shows that tan & has the same
sign as tan B, and tan ¢ the same sign as tan €. Therefore
each side containing the right angle 1s of the same kind or
affoction as the angle opposite, that is, the angle and the side
are both less than 00° or both greater.
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NAPIER'S CIRCULAR PARTS.

20. As we have before observed, the above formulwe are simple
and well adapted for logarithmic computation, vet they are
not easily remembered ; therefore it is of importance that we
should have some method which will relieve the memory as
much as possible ; this is supplied by what s termed Napier's
Circular Parts. By committing to memory the two rules
which will be given hereafter, the student will be able to
solve all the cases in right-angled triangles, as well as if he
had all the formula: by heart.

The circular parts of a right-angled spherical triangle ure
five, numely, the two sides. the complement of the hypothe-
nuse, and the complements of the two augles (the right angle
being always omitted).

Three of these circular parts, besides the right angle, enter
every proportion, two of which are giveu, aud the third
sought.

These three parts are pamed from their positions with
respect to one another, that is, according a~ they are juined
or 5i.-_juincd, observing that the right angle does not separato
the sides.

If the three cireular parts join, that which ix in the mididle
is called the middle part, nud the other two ure called er-
iremes conjunct.

If the three circular parts do not juin, two out of the five
must, and that part which is separute or wlone is the middle
part, and the other two are called etremes disjunct b,

These things being understood, the following is the general
rule.

The sine of the middle part is equal to the product of the
tangents of the extremes conjunct.

* Thus, if in figure page 12 we suppose B, the angle B, and the
side A B to be the quantities that are to be used ; now as they lie all toge.
ther, the angle B is the middle part, and the two a:des, BC and A B, are the
extremes conjunct. Also, if the angle B, A Band A € be the quantities,
then since the right angle does not separate the sides, A B is the middle part,
and the other two elements are the extremes conjunct.  But if the quan-
tities be A C, B and the angle B, then the angle  is said to separate A C
from BC, and the side A B i3 said 1o scparate A C from the angle B, that
part A C which 1s separated from both the others, call the middle part, and the
parts which are disjoined from it call extremes disjunct.  This practical me.
thod will be useful to seamen, and requires very little effort of memory.
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The sine of the middle part, is equal to the product of the
cosines of the extremes disjunct.

From these two equations, proportions may be formed, ob-
serving always to take the complements of the angles and
hypothenuse ; and that the cosine of a complement is a sine,
and the tangent of a complement is a co-tangent, and vice
verad.

21. Casr 1. When the hypothenuse B ¢

. . ¢ ... B
and the base A B are given to find the N
remaining parts of the triangle. RN
Let us first proceed to find AC. B __ .

Here the hypothenuse and the two A

sides are the three circular parts.

Tho hypothenuse being separated or disjoined from the
sides it 18 the middle part, and the sides aro the extremes
disjunct.

Then sin BC = cos A B cos A C.

And since wo must always take the complements of the
hypothenuse and angles, this becomes

cos @ = cos b cos .

Now, us this agrees with equation (1), the rule is proved
in this enso.

"T'o find the angle B.

Here the three circular parts all lie together, taking B
to be the middle part, then A B and B¢ arc adjucent parts,
or extremes conjunct.

SsinB=tan BC.tan AB;
taking the complements of B and BC, we have,
cos B = cot a tan ¢,
which corresponds with (8), and therefore tho rule is proved
in this case also.

To find the angle C.

Here the side AB is separated from the hypothenuse by
the angle B, and it is ~separated from the auglo' C by the side
AC, then A B being the middle part, the hypothenuse and the
required angle are the extreme or disjoined parts.

sin AB=cos BCcos C;
taking the complements of BC and C,
8in ¢ == sin a sin C.

This agrees with (7}, and therefore proves the rule.
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22. Case 2. Given the two sides b, and ¢, which include tho
right angle, to find the hypothenuse and the angles.

1. To find the hypothenuse.

As the two sides are separated from the hypothenuse they
will be extremes disjoined, the hypothenuse being the middlo
part;

sin BC =cos AB cos AC;
taking the complement of BC,
cos @ = cos b cos ¢; which is the same as equation (1);

cos a
SLC08C = -y
coy [

To find angle C.

Since the right angle A does not disjoin, the three parts all
lie together, hence A € being the middle part, AB and anglo
¢ are the adjacent parts, or extremes conjunct,

sin AC = tan AB . tan (',
taking the complement of €,
sin & = tan ¢ cot ¢; which agrees with (9);
tan ¢
ortan € = —— .
bin

To find the angle B.

The three circular parts all lie together again, AB being in
the middle; calling it the middle part, then AC und angle B
will be extremes conjunct.

sin AB = tan AC tan B ;
taking the complement of B,
sin ¢ = tan b cot B, which agrees with (4);

tan 4
ortan B = .
) sin ¢

21, Case 3. Given the hypothenuse a and angle B to find
b, ¢, C

1. To find AC or b.

As AC is separated from the hypothenuse by the angle ¢,
and from the angle B hy the side AB; calling AC the middle
part, then BC and angle B are extremes disjunct.

8in AC = cos BCcos B;
taking the complements of BC and C,
sin b = sin a sin B, which is the same as oquation (2).
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2. To find AB or c. .

Here the three circular parts all lie together, and AB in the
middle; calling it the middle part, then AB aud BC will be
udjacent parts, or extremes conjunct.

sin B = tan AB tan BC;
taking the complements of B and BC,
cos B=tanccota,;
cos B . R

. tane = i a =S B tan a, which agrees with equ. (R).

3. To find C.

Here the cireular parts lie all together, the hypothenuse
being in the middle: call it the middle part, and the angles
B and € will be adjacent parts.

sin BC = tan B tau ('
tuking the complements throughout,
cosa = cot Beot C;

Lot C = ;f:——:;: = cos a tan B, which agrees with equ. (6).

24, Case 4. Given the side AC or 4 and the opposite angle
B to find «, ¢, C.

1. To find the hypothenuse BC or a.

Hero b or AC iv sepuruted from the hypothenuse by the
angle €, and from the angle B Ly the side AB: calling then
AC the middle part, the angle B and the hypothenuse are
the extremes disjunct.

8in AC = cos BCcos B;
taking the complements of RC and B,
sin & = sina sin B which agrees with equation (2).
. sin b
sing = -—- .
s B

2. To find e.

As the right angle does not disjoin, ¢ lies in the middle
between 4 and B; calling it the middle part, 4 and B are the
extremes conjunct.

8in C == tan d tan B;

taking the complement of B,
gin ¢ = tan b cot B, which agrees with equation (4).
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3. To find C.

Here the angle B is separated from ¢ by the bypothenuse,
and it is separuted from & by tho side AB; calling it the
middle part,

sinB = cosbcos C;
taking the complcments of B and €,
€08 B = cos b sin C, which agrees with equation (5).
cos B

, sin ¢ = cosb’

There is here an ambiguity, since each quantity is deter-
miued by its sine, and we sce that this really ought to be the
case. In fact, if the triangle BAC (fig. p. 12) nght-angled at
A. satisfy the equation; produce BA and BC till they inter.
sect in D, then take DA’ = BA, and DC” = BC, the triangles
BAC, DA'C’ will be equal in all respects, then the angle A is
a right angle, and ("A” = €A = /A Thus the trinngle BA'C
8 right angled, and contains also the given parts Band 4;
we can therefore take at will a < 90, or A > 4907, but when
the choice is once made the affection or species of ¢ will Lo
determined by the equation cos @ = cos hcone, and that affoc-
tion will be the same as that of €. There will be only vne
triangle which has two right angles when & = B, and none
when we have sin b > sin b

25. Case 5. Given the side 4 and the adjacent angle €, to
find a, ¢, B.

1. To find the hypothenuse a.

Here the parts all lie together, the angle € being in the
middle; call it the middle part, then AC and BC are the
extremes conjunct.

sin C = tan AC tan BC;
taking the complements of € and BC,
08 C == tan & cot a; which agrees with cquation (3);

2. To find AB or c.
As the right angle does not disconnect, AC is the middle

part, and AB and angle ¢ are the extremes conjunct.
sin AC == tan ABtanC;
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taking the complement of C,
ginb = tanc cotc;

inl . . .
. tane = g'—:—é = %in b tan C, which agrees with equ. (9).
)

3. To find the angle B.

Since the angle B is separated from J by the side AB, and
from the angle € by the hypothenuse BC; calling it the
middle part, then AC and the angle C are the extremes
disjunct. .
8in B = cos AC cos C;
taking the complements of B and C,

cos B = cos b sin €, which agrees with equation (5).

Hero a, ¢ and B are found without any ambiguity.

26. Case 6. Given the two oblique angles B and C to find
a, b, c.

1. To find a or BC.

Here a, B and € all Lie together, a or BC being in the
middle; call it the middle part, then B and € are the
oxtremes conjunct.

sin BC = tanBtanC;
taking the complements of the whole,
cos a == cot B cot C, which agrees with equation (6).

2. To find b or AC.

Here B is separuted from € by the hypothenuse BC, and it
is scparated from AC by the side AB: calling it the middle
part, then the angle ¢ and AC are tho extremes disjunct.

8in B = cos C cos AC;
taking the complements of B and ¢,
c0s B = sin C cos b, which agrees with equation (3).

4. To find ¢ or AB.

Here the angle C is separated from AB by the side AC,
and from the angle B by the hypothenuse BC; calling it the
riddle part, then AB aud the angle B are the extremes
digjunct.

sinC =cos ABcosB;
taking the complements of C and B,
c08 C = cos ¢ 8in B, which agrees with equation (10);
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cos C
S CO8C =
sin B

These values leave no ambignity, and if the triangle is
impossible they will show that it is so.

27. When a triangle is isosceles, the two equal sides are only
counted as one element, and the angles which are opposite to
them also as only one element.  Now, if wo draw tl\w are of
a great circle through the vertex of the triangle and the
middle of the base. we divide it into two right-angled tri-
angles, equal in all respects, and in each of which we know
two elements besides the right angle, then the isosceles
triangle can be solved by the formulw for right-angled
triangles.

2R, If ina spherical triungle ABC, in which we have a + b=
180°% produce a and ¢ till they interseet in D, we shall have
a4 CD = 1%0°, hence CD=0h: thercfore,

the solution of the triangle ABC is brought . :’ !
to that of the isosceles triangle ABC. , iy
The same thing may be saud of a A

triangle, in which two angles are the n

spherical supplements of each other, for )
we canuot have A 4+ B=1580 without at the same time having
A+ B=1850"and vice versd. In fuct, in the isosceles trianglo
ACD, the angle CAD=D=B. Now, CAD 4+ CAB= 180"
then also, in the triangle ABC we ought to have A + B==150",
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CHAPTER 1L
BOLUTION OF OBLIQUE ANGLED sPUFRICAL TRIANGLES.

29, Cask 1. Giveu the three sides a, b, ¢ to find the angles
A, B, C.

‘Lo find A, we have by equation (1)

cosa — cosb cos e
COB A == ——— et | e
sinbxsine
hut we obtain an expression better adapted to logarithms by
finding sin } A, cos J A, &c., as in Plane Trigonowmetry.
Since 2Xsin*} A =1 — cos A, we have by substituting the
ubove value of cos A,

cona — cosl cos e

Wil A =1~
v “in b siv ¢

cos b cos ¢ + ‘lll) b smc — cosa

sin b sin ¢
= (‘ni'(b‘— r) — cosa
sin b sin e
(by equation (R) page 30, Plane Trigonometry.,)
2sin(a b —=c)sinl(a—b+e)

.

b sine

. mnlm+h—«nm'(a—-h-{r.
LR = / - R
win § \ sin b sin ¢

Tor the sake of abridgment, put @ + & + ¢ = 23, and the
precoding expression becomes

sin} A = ,\/Si

In the samo way
LA = /sm ssin s — a)
- /\ sinbsine :

/\/sm (8 — blsin(s — ¢)
Lland A= : - .
8in s sin (s — @)

b)\llll‘ - (‘i

sinb sin ¢
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30. Case 2, Given the two sides a, b, and the angle A oppo-
site to one of them. to tind ¢, B. C.
We obtain at first the angle B opposite to b by tho
proportion
sinag : sind :: sinA : sinB;
. sin A 6inb
.mB=—
sMna
It will be best to determine ¢ and € by Napicr's Analogies,
which give
sin J(A + B)
Tein §(A — By
sin 4 (a -+ b)
sin Yo — by

tandc=tan § (a — ¥

cotdC=tan}(A — D).

As the angle B is determined by its sine, it can either be
acute or obtuse. However, for certain values of the given
quantities a, b, A, there will bo only one triangle.  We may
refer back to the similar case of plane triangles, we cnn thus
find C in a direct manner by the equation

Cot A sinC + cosbcosC = cotasinbh.

To effect this, let us at first determine an auxiliary angle 7,

by putting cot A = cos b cot ¢, from whenee we have

. cot A
(Y I e—
T cash

cos b cos D
pin @

then in the equation (o), p. ¢, cot A==cosb cot §=

the equation becomes
cos b (8in C cos 9 + cos C sin 2) = cota sind sin P,
from which we find
tan b sin 9
tana

hence € + ¢ is determined; let C 4 ¢ =m, and we have
C=m—9.

After hating found C, we obtain the side ¢ by the proportion

sinA : sinC :: sine : sinc.

But if we wish to find ¢ directly, we must refer back

equation (1), page b,

cosbcosc + cos A sinbsinc = cos a.

5in(C +¢)=
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This may be reduced in the same way as the equation
above, by using an auxiliary angle ¢, putting cos A sinb =
co8 b cot ¢, from whence we have
cot® = cosAtanb;
consequently, the above equation becomes
cos b (sin ¢ cos ¢ + cos ¢ sin ¢) = cos a sin @, or
. cos a sin @
sin (¢ + ¢) = ~eos b
Having found ¢, we can casily find c.
91. Case 3. Given the two sides a and 4 and the included
angle C to find A, B, c.
The formule (5) (6), pago 6, give for A and B
cot a siu b — cos b cos €
cot A = : .
sin C
cot b sin a — cos a cos C
sin C
By employing nuxiliary angles it is easy to reduce each nu-

merator to o single quantity, but is is more simple to recur
10 Napier's Amlogies.

cot b ==

cog ) (a—14)
cos ) (a + &)
sin } (a —b)
sin § (@ + )

which give § (A + B)and § (A — B), consequently by adding
und subtracting we tind A and B.

The angles being found we obtain ¢ from the proportion
sin A @ 8in C :: sin a @ sin o) but if we wish to have ¢ directly
wo must take the formula, page 5,

cos ¢ =cus 6 cos b + sin a sin & cos C;

tan (A + By=cot } C .

tan j (A—=B)=cot}C.

in which if we make sin b cos ¢ = = & 22
sin @
= cos b cot ¢, then it becomes without any ambiguity
cos b sin (@ + @)
cot ¢==tan lcos C, ~.co8¢c= -- . - -—.
sin P

82, Cask 4. Given the two angles A and B, and the adja-
cent side ¢, to find a, &, €.



We can find @ and by the formule (7) and (9), page 6,
cot A sin B - cos B cos ¢
sin ¢
cos B sin A 4 cos A cos ¢
sin ¢
and better still by Napier's Analogies, .
_ 1, ©0s3(A—B)
tind(a+ V)=tangec . w5l (A D)
. sin}(A—B)
tinl(@—10l)=tan}ec. sin 1 (qu:ii’)'
These equations determine } (e + &) and & (¢ — &), and
from which, by adding and subtracting, we find a and 4.
We can now find C by the proportion
sin @ : 8in ¢ :: sin A : sin C,
or we can find C directly by making use of the formula, equa-
tion (13), page 7, viz.,
cos C = sin A sin B cos ¢ — co8 A cos I3,
If we put sin B cos ¢ == cos B cot ¢, it will become

cot @ =

cot b =

cos B sin (A — ¢)
sin Q '
This case is analogous to the third case, and offers no am
biguity.

cot 9 = tan Bcos ¢, cos C =

33. Case 5. Given the two angles A and B, and the side «
opposite to one of them, to find b, ¢. C.
his case is quite analogous to the second, and is treated
in the same manner, aud has the same ambiguitics.
We deduce & from the proportion
8in A : kin B ::sina:sin b,
and we find ¢ and C by the formulm already cmployed,
sin ) (A + B
sin LA —m)
sin § (a2 + 4)
sin ) {a = 4)
The side ¢ can also be obtained Ly equation (7),
cot a 8in ¢ — co8 B cos ¢ = cot A sin B,
in which we make cot a = cos B cot 9

tan } e=tan } (a—10).

cot } C=tan } (A—B).
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et =28 sin (¢ — ¢)
0L = e 9=

Lastly, we can find €, for sin a :sin ¢ :: sin A : 8in C, o1
better by means of the equation,
co8 a sin B 8in C — cos B cos C =cos A,

we reduce the first member to a monomial by putting
cos a #in B = cos B cot §, from whence we have

cos A 8in 0
cos B
these values determine ¢, C—¢, and consequently the angle C.

34. Casr 8. Given the three angles A, B, C, to find the sides
w, b, e
This enge is solved in a similar way to the first.
By page 7, equation (11)
cos@ + cos B cos C
sin B sin €

and by the same method, as used in the first case,

s :} =a /\/1'1\_M“(A_ T__BE
sin B sin €
sin (B — 8) . sin (€= §)

cos b a / ..... o )
5 = /\r sin B osin ¢

_ :_'uin'fé sin (A:—fﬁ) ‘
tan § a= /\/sin (B —B) siu (C ~8)

By using the polar triangle in Case 1, we have

. /\/ Zcos 8 . cos (8 — A)
sin ) a = o DA T A
sin B sin

vos ) a a/\/cns(s—‘“j“f"f(s—(‘)
310 B s

— 08§ cos (S — A)
cos (8§ — B) cos (8 —C)

The first aud last of these appear under an impossible
form, Lut since 8 is always greater than 90 and less than 270,
the cos 8 is always negative, and therefore makes the quan-
tity under the radical always positive.

cot p =cos a tan B, sin (C —3) =

Cos =

tan § 0 =
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OX THE AMBIGUOUS CASES OF SPHFRICAL TRIANGLES.

35. The only cases in which there is any uncertainty are the
second and fifth.  We proceed to show in this article what
conditions are necessary that there may be two solutions, or
only one, or eveu when the trinngle is impossible,

Let us consider upon a sphere a semicirele DCD perpen
dicular to a whole cirele DHD'; tuhe

’

CD less than 909, and draw the arces of PR

great circles CB, OB, CH . . . frum [

the point € to the ditlerent points of /,,},-« i~
the vircumfereuce DHD'. Produce ¢h, 7 o 3
making C'D = CD, and join ¢'B The AN
wiangles CDB, C DB have a nght angle 00 ™ p »
contmned  between  the  equal  sides, LN

therefore €B = "B, Now we have .

CDCC OB 4+ BC, therefore (D < CR,

Heuce, in the first place, the are €D i< the least that we
can draw from the pomt € to the circumference DHD'; and
consequently €D s the proatest,

fet DB = DB then m the two triangles CDBand €D WY
have the two sides €D, CB aud the nght angle COB of the
one, equal to the two sides €D, DB, and the right angle
COB of the other, hewe CB = B, Therefore, in the
sccond place, the oblique ares c¢ijually distant from €D or C1’
are equal.

Lastly, let DH >DB; draw C'H and produce €B till it
intersects C'H in 1. Then, since the arc CC' is less than &
semicircle, it will meet €B produced beyond the point ¢;
this requires that the intersection I fulls between H and ¢,
We have therefore CB < C'I + 1B, and consequently C'B
+BU < ("I 4+ 1C. Butwe have 1C < IH + HC, and there-
fore ("1 + 1C< C'H + HC; hence, a fortiori, C'B + BC
< CH + HC. Now, ¢'B = BCand C'H = H(, thercfore
we have BC < HC. Consequently. in the third place, the
oblique arcs are greater the farther they are from CD, or the
more they approach C D',

Now, suppose we have to construct a spherical triangle, the
given quantities being a. 4, and the angle A opposite 10 a.

We may at first remark that certain cases of impossibility
are indicated even by the calculation. To show this, maka
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the angle CAB = A and AC = /. produce AC and A B till
they intersect in E, then let fall the perpendicular € D upon
AE.

The arc €D ought to be of the same affection or species as
p

¢TSS bl
AL IR P NES :
Bt ¥
[/;“ul’ ‘\\‘ “ a
A [ p D b

the angle A by Art. 19: then, when A is acute, €D is the
shortest distance from the point € to the semi-circumference
AE, and it is the greatest when A is bbtuse.

In the first hypothesis the trinngle will be impossible if
we have a € €D, which gives sina < sin €D; and in the
wecond it will be impossible if we have a > €D, which gives
agrin sin A > sin €D,

Now, in the right-angled spherical triangle ACD, we have

sin CD = sinbsin A
then, in both hypotheses we shall have sin a < sind sin A.
On the other hand, when we seck the angle B of the unknown
triangle ACB, we have
sinp =" !,' M A H

sin a
then this value of sin B will be > 1, which is impossible.

If we have g = €D, there will be only one night-angled
trinngle. ACD, which will be possible, and it is that which
again indicates the value of sin B, which becomes sinB = 1.
1t is understood that the angle A is not equal to 40,

Let us now examine the different relations of magnitude
which the given quantities a, &, A can present.

Let A < 80 and & < 90 (fig. p. 28). Since A and
are < 00°, ADigalso < 90" by Art. 19 then AD < DE; if
now we have besides a < b, it is clear that we can place
between ¢ A and €D au arc CB = a, and that on the other
side, between € D and C E, we can put another CB'=CB =
a: that is to say, there aro two triangles ACB and ACB’
which have the same quantities given, viz., a b A.

When a =&, the triangle ACB disappears, and there re-
mains only the triangle ACH".

When a + &= 180, or when a+J > 180, the point B’
coincides with E, or passes beyond it, and then no triangle
can exist.
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We can discuss in the same manner the other hy
The results are all contained in the following table.
sign P signifies equal o or greater than; and the sign
signifies equal to or less thau.

thoses.
The

[ a<b two solutions.
b < 90° adpb ono solution.
a+ b} 180° no solution.
5 a + bz two solutions.
A <90°4 t>00°< a + 5> 1%0°  oue solution.
ap b no solution,
o a<bh two solutions.
L b =190 { apd no solution.
j a + b > Ix0° two golutions.
b0l a + b Ix? one solution.
ad b no solution.
o a>b two solutions.
A>90°9 b> 90"{ ad b one solution,
a + 64 150>  no solution.
o a>h two solutions.
l_ b=10 { aqd no solution,
( a>b ona solution,
b < 90° ad h no solution.
a+0ph no solution.
—on a<b one solution,
A=40°4 >0 ‘ adb no solution,
1 a + L4 180°  no solution.
b= 00 a = 9° solutions ad inflnitum.
L a<or> 90’ no solution,

By the properties of the polar triangle, we can apply the
ts to the fifth case, where A, B, a, are given, only takin
care to chunge a, b, Ainto A, B, a, the sign > inte <, ang
the sign < nto >.

When the given Tmntilies fall in & case where we ought
to have only one solution, the caleulation will still indicate
two. But to discern which ought to be taken, it is sufficient
to observe, that the greater angle must be opposite o the

side, and conversely.

Bee Lefebure De Fourcy's Trigonometry.
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Buppose, for example, that we have given A==119°, a==102°,
b==100°. In the preceding table, smong the casos which
correspond to A > 00°, we cousider that where 6 > 90°, and
among these that w}wre a & h. We may observe buldol. that
a + I = 208° therefore a + & > 180°, we conclude from the
table that there is only one solution, and since & is > a, the
ungle B is greater than A, therefore B is obtuse.

TO REDUCE AN ANGLE TO THE HORIZON.

6. Lot BAC be an angle in an inclined plane, and A D the
vertical passing through A.  Draw the horizontal plane meet-
ing the I'mou AB,AC, AD, in K, F, G; the angle EGF is the
horizontal projection of the angle BA €, or, in other words, it
i the angle BAC reduced to the horizon. It is this angle
EFG that we have to caleulate, supposing the angles BAC,
BAD, CAD, to have been determined by an instrument,

The geometrical construction is easy, for the line AG being
arbitrary, we shall have sufficient quantities given to con-
struct at first the right-angled triangle, EA G
and FAG, then the trinngle EAF, aud, lastly,
the triangle EGF. The caleulation of the
anglo EGF is equally ensy. 1 we describe a
sphere from the centre A with any radius, the
lines AB, AC, AD, where thcy meet the
sphere, will determine a sg‘ herical triangle
BCD, of which the sides are known by means
of the given angles, aud of which the angle
BDC o? the triangle is cqual to the required angle EGF

Then by the first case of oblique-angled sphencal triangles,
page 18, wo have

;1_; a-— b) mu (s - c)
sin { A = '\/ sin b sin ¢

where 6 m BAC; 6 = BAD; c= CAD; s = {(a+l+40)

Let am47° 40’ 80”7, b2=00° 40’ 18”7, c=80° 17 86”. We
shall have 2 3=107°02’ 34", s=08° 60’ 17"; s~ bmR9° 6’ 68";
s—c= 1830 417,
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log sin (s—B) ... 08871552

log sin (8—¢) .........  W50O4TH41Q
comp. logeind ... . 0OLTINTR
comp. logsine ... 0-006262!
2logsin A 19-22060003
log ein § A 00198302

S A =710, or AemdBT AL 507,

87, The following properties of spherical triangles we shall
premise before enmtening on the numerical solution of tri-
angles.

Any side of a spherical triangle is lees than a semicirele,
and apy angle is leas than two right angles,

For the limit of uny plane augle s two right nngles, and
this is alsa the limit of any plane face of a solid angle,

The sum of the three angles s graater than two right
angles and less than «ix right angles,

If the three sides of n spherieal trngle be equal, the three
angles will also be equal, and vice rerui.

If the sum of any two sides of 0 spherical trinngle he equal
to 150°, the sum of their opposite angles will ulso be equal to
1507, and vice rersd.

If the three angles of a spherienl trinngle be all nente, all
right. or all obtuse, the three sides will be aecordingly all loss
than 90, all equal to ), or all greater than Y07 and viee
rersd. .

The sum of any two sides is greater than the third side,
and their difference is less than the third side.

The sumn of any two angles is greater than the supplement
of the third angle.

The sum of the three sides is less than the circumference
of a great circle.

If suy two sides of a triangle be equal to coch other, their
opposite angles will be equal, and rice versd.

Since

cos a—con b cos e

COS A ——
sin bsin ¢

cos b —cos a com ¢
€5 B oo e e e e
810« B ¢
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€0: @ — COS G COB ¢
8in a sin ¢

If § = a, theso expressions are each =

‘. cos Az==cos BorA=B;

that is, the angles at tho base of
an isosceles triangle are equal,
and the converse of this bolds
also. From this it is easily shown
that the greater side of a sphe-
rical triangle is opposite the
greater angle, for let ABC be
groater than ¢ A B, and make the angle AB D equnl to the
angle DAB; .. DA=DB.

A(‘.=Al)+DC=DC+DB,butDC+ DB>BC
. AC>BC,

ON THE NUMERICAL SOLUTION OF RIGHT-ANGLED SPHERICAL
TRIANGLES,

88. When the hypothenuse aud one side are given.

Ex. 1. Given the hypothenuse B € = 63° 50’ 7”, and the
sido A B = 40°, to find the remaining parts of the trmngle

To find tho other side, A C.

Here the hypothenuse and the two sides are the three cir-
cular parts.

The hypothenuse being separated or disjoined from the
sidos by the angles is therefore the middle part, and the sides
the extremes digjunct.

8in BC = co8 A B cos AC;
taking the complement of hypothenuse as directed by the
rule,

cos BC=cos ABcns AC;

log cos BC==log cos AB + log cos A C—10
log cos AC =log cos BC — log cos AB+10
= log cos 63° 58’ 7" —log cos 40° 4 10
= 0-0428404 ~ 0-8842540+ 10,

= 9708602 ;
. AC==B4° 59’ 50”6
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The side A C is acute, because the hypothenuse and the
given side have the same affection.

To find the angle B.

This angle connects the hypothenuse and the given wide,
and is therefore the middlo purt, and the other the extremes
conjunct.

. 8in B=tan AB., tan BC;
taking the complements of the angle and hypothenuse,

cos B=tun AB. cot BC:

log cos B = log tan AB + log cot BC — 10
= log tan 407 4 log cot 68 46" 7"
= 9-92U8 185 4 602N — 10
= 0132393 ;

LB =060 46" 57,

The angle B is acute, as the hypothenuse and given side
are of the same aflection.

To find the angle €.

Here the side AB is separated from the hypothenuse by
the angle B, and it is separated from the angle € Ly the side

AC; take it to be the middle part, then BC and the angle A
are extremes disjunct.

sin AB = cos BC ., eos ()
taking the complements of hypothenuse and angle ¢,
sin AB = sin BC sin €
log sin AB =log sin BC + log sin € — 10,
log sin € = log sin AB — log sin BC + 10
= log sin 40” — log sin 63° 56" 77+ 10
== -£08067 + 0:0465794 by taking comp. log.
63° 506" 77;
= 08546409 ;
s C= 40417217,

The angle C is acute, the hypothenuse and given side being
of the same affection.
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When the two sides are given.

Given the side A C = 72°1%, and the side AB = 42° 17,
to find the remaining parts.

To find tho angle B. (See tig. p. 12.)

As tho right angle does not disjoin, AB is the middle
part, aud the angle and side A C are extremes conjunct.

sin Al =tan B . tan AC;

taking the complement of B,
sin AB = cot B tan AC;

log cot B = log sin AB — log tan AC + 10
= (PRLTRRLN 4 10 = 101 INHTRG
= 07173057, which is the log cot 62°277;
LB o= 62727,
which is acute, like its opposite side.
To find the angle €.

Hero AC is the middle part, and the angle € and AB ave
extremes conjunct.

8inAC = tan AB tan (1
taking the complement of €
SiNAC =tan ABcot C:
log cot € = log sin AC — log tan AB + 1)
= PROTEING — 0-0587542 + 10
= 0:0800561, which is the log cot of 49°.
Tho angle is ncute like its opposite side.

To find tho hypothenuse BC.

The hypothenuso being separated from the sides by the
angles, it is the middle part, and the sides are the extremes
disjunct. '

8in BC = cos AB . cos AC;

taking the complement of the hypothenuse,
cos BC = cos AB c0s AC;
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log cos BC = log cos AB + log cos AC — 10
= 'SOOIB0L 4 - TRIWT — 10
=06563613, which is the cosiug 62° 81,
which is Jess than 90, AC and BC being alike,

When a side and its opposite angle are given,

Given the side AC = 55° and its opposite angle B =
65° 46° 5", to tind the remaining parts of the triangle.

To find the other angle C.

Hero B iy the mid(ﬁo art, being separated from AC by
AB, and from the angle ¢ by BC;

. AC and C are the extremes disjunct.

Wil B == cos AC cos C;
taking the complements of B and ¢,
cos B == con AC sin (;
Jog sin € = log cos B ~ lugcos AC -+ 10
= WGLIRNT + comp. log 0L IORT 4 10
= 08080404 = log sin 40" 417 41",
C == 45 417 21"
The angle € is ambignous; as it caunot be determined by

the data alone whether, AB, C, and BC are greater or less than
N’

To find the side AB,
Here AB is the middlo part, AC and B the extremcs
conjunct.
sin AB == tan AC tan B;

taking the complement of B,
fin AB = tan ACcot B;
log sin AB = log tan AC + log cot B — 10
= 101547782 4 2:6532976 — 10
= §'8080708, which is the sin 40°;
. AB == 40°,
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The side AB is also ambiguous for the same reason as
above.

To find the hypothenuse BC.
The side AC is the middle part, and BC and B are the
extremes digjunct.

sin AC == cos BC . cos B;
taking the complements of hypothenuse and angle, B,
sin AC = sin BC sin B;
log »in AC = log sin BC + log sin B — 10
log sin BC = logsin AC — log sin B + 10
= 90139645 + 0°0400568 + 10
= 005634213,
L BC = 03° 30 77,

When a side and its adjacent angle are given.

Given the side AC = 14’ 46, and its adjacent angle 47°56’,
to find the remaining parts,

To find the side AB.

Here the circular parts all lie together, hence AC is the
middle part, and AB and C the extremes conjunct.

8in AC = tan AB tan C;
taking the complement of C.
§in AC = tan AB cot C;
log AC = log tan AB + log cot C — 10
log tan AB = log sin AC — logcot C + 10
= 90121207 —9-0554585 + 10
= 0:0586672 which is the tangent of 42° 8’ 46”;
< AB = 42° 8’ 46"
which is acute, like its opposite angle.
To find the angle B.

Here B is separated from the two given quantities; calling
it the middle part, then AC and C are the extremes disjunct.
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sin B = cos AC cos C;
taking the complements of B and ¢,
cos B = cos AC sin ('}
log cos B = log cos AC + log sin sin C — 10
07611063 4 955006170 — 10
0:6317:242, which is cos 64" 38" 317;
LB =617 8% 817

]

]

To find the hypothenuse BC.

Here the circular parts all lie together, and ¢ being in the
middle, i8 the middle part, and B¢ and A € the extremes dis-
junet.

sin = tan BC tan A ('
taking the complements of the hypothenuse nnd of angle ¢,
cos C = tan AC cot BC,
log cosC = log tun A€ + log cot BC — 10
o log cot BC = log cos € —log tan AC + 10
= YRW0TIH — L 1O10140 10
= 0:6750570, which ix the cotangent of
64 40" 847
LOBC = 647 407 347

QUADRANTAL TRIANGLES.

39. Quadrantal triangles can be solved by the same rules as
right-angled triangles for using the polar triangle; we sce that
since one side is a quadrant, and that in the polar triangle
A'= 180 —a;

s A = 1R0% = 90 = 90,

In the polar triangle, since A’ = 90, we have by the equa
tions, page 10,

cos @ = cos ¥ cos ¢ L
sin /' = sin o’ sin B’ sin ¢ = sin #’ sin C’
tan & = tan a’ cos C’ tan ¢ = tana’ cos B’

L}
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tan ¥’ =sgin ¢ tan B tan ¢’ = gin &’ tan C’
co8 B’ = sin ¢’ cos ¥/ 08 C’ = gin B’ cog ¢
cos & = cot B’ cot ¢,
From theso by substituting these values
A =180°=A; Iy =180°—=B; ¢ =180°—C;
A =180"—a; ' =180 =1b; ' = 180° —¢;
we geot these results,
co8 A = — cos B cos C

sin B = sin A sin 4 sin ¢ = sin A sin &
tan B = — tan A cos ¢ tan C == — tan A cos b
tan B == tan & in ¢ tan C = sin B tan ¢
o8 b =sineccos BB cus ¢ = sin b cos C

cos A = cot heot ¢

Or without using the polar triangle,

cos a—rcos b cos ¢

co$ A = » make ¢ = quadrant,

sin b sin ¢
then cos @ = 0, and we have
cos beos ¢

C08 A = = —u—— == —cotbcotc;
sin b sin ¢
cos h—cos acose  cos h
s = —————— e -
Bl 4 81N ¢ st a
cos e—cosacosh o3¢
008 =2 mmmrme—m e o o
sin g sin b siu b
. . SInA sina
From these equations, and the equation -— = — wo
sin s

can deduce all the cascs of quadrantal triangles.

Given AB=c=8207"0" und A C=0=06>32, to
find B and 4,
008 A = —cot & ot o
log cos A = log cot & + log cot ¢ — 10
= 10" g8IWH0 4+ 00376106 - 10
uws 0-3253950, which is the cosine of 47° 67’ 16",
but since cos A is negative, A must be greater than 90°,
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OBLIQUE-ANGLED TRIANGLES.

40. Case 1. Given the three sides, viz.

AB = 917 W
BC - 110 to find the rest.
AC = b

To find the m;-g-lo A.

sin (a—b) win (s —r)

By page 1R, sin J;' A= /\,/ sin b sin ¢ '

hence we have the following rule :

From half the sum of the thres sides subtract cach of the
two sides which contain the required angle.

Add the log sines of these two remanders, and the com
plement logs of the sines of the sides which contuin the
angle,

Half the sum of these four logarithms will give the loyg
sine of half the required angle.  Thus:

EAUSE Y B i

110

1]
4T 151

128 8% 87 = } sum of the three sildos,

7017 14
44 21 23 first remuinder log sin = 0,8415015
123 83 37
o8
63 38 87 second remainder log sin = 0,9595178
comp log sin H8’ 00715795
comp log sin 70° 177 14" 0,0076:35%
2,19,863:2540)
log sin = 60° 57 28" = G0416420

2
141 54 506 oquals the required angle A.
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By a similar o‘wrntion the angles B and C may be found ;
but when one angle is known, the other two are easily deter-
mined by Art. 1‘3 page 6.

Case 2. Given the angle A = 32° 20" 30”, the side
b= 72" 10' 20”7, and the side a = 78" 50’ 10”, to find B, C
and ¢.

sin A . sind

B= — "
Here by page 0, sin P

log sin B = log sin A + log sin # — log sin a
log sin A = 0-T2R3209
log sin b = 90786283

197060052
log sina = 90919261

log sin B = 07150201
LB = 31715 10",

By page 9, cquation (16)

cot § € =tan } (A + B) ‘:“ 3 {Zi:’)

logeot § € =
log tan } (A + B) + log cos } ta + &) — log cos § (a — &)
log tan } (A + B) = log tan 31° 47" 32" = 0-7217470
log cos 4 (a + &) = log cos 75° 34" 45" = 0-3062727

10-1180197
log cos § (a — &) = log cos 3° 24" 23" = 0 9992318

I

logeot § C = 9:1187879
* § €= 82°30" 39",
or C = 165° 1’ 18",

We might find ¢ from the equation

sin C
fine =g6ina. —
sinA’

but we can find it directly from Napier's Analogies.
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By page 9, equation (14), we have
_ cos } (A + B) .
t&n}c-tnn&(n-{-b).cmi—)-,
]og tan ,1‘ c =
log tan } (a + b) + logcos L (A + B) — log cos } (A—n)
log tan } (@ + b) = log tan 75" 84" 45" = 10-5808286
log cos § (A + B) = logcos 31" 47752 = 0204740

Q5101961
logcos ) (A —B) = logcos I" 515" = 94-099921K

log tan ) e = 10-5102763

Ve =73 10107

e = 146° 207 207,

Case 3. Given € = 30 45 2R, a=R1°14°20"; b =
44° 18" 45”7, the two sides und the included angle, to find
A,B,c.

By Napier's Analogies, page 9. equations (16) and (17),
cos Y(a— 1)
cos Y{a + b)
8in }(a — b)

“sin }la + b)

tan 4 (A + B) =cot } ¢,

and tan §(A — B) = cot } C

4 € = 18°22' 44" log cot = 10-17R5305
§ (a —b) = 20°0° 22" log cos = -4T29690

20:45150R5
$(a+b)=064"14"7"logcos = 9-6381663

.. log tan § (A + B) = 10-8133422
. 4 (A + B) =81° 15 44".41.
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A — B determined.

§ C=s18° 22" 44” log cot = 10:4785%895
Ja=b)=20 0 22 logsin= 05341789

200127184

d(a+ =04 14 7 logsin== 0-054525%
10:05819020
(A —B) = 48" 40" 38",

A and B determined. ¢ determined.
J(A+B)=H1 15" 44741 log sin 80° 45’ 28”= 07770128
4 (A—=B)=4H8 40 I8 ]ng sindd 18 45 = 0-8435629

oA =130 0 29741 19-:6205787

B= 32206 641 logsin 32 26 6 = 07204422

s logsin e = 98011365
." ( = 610 6' 12/l.

¢ may be found directly, without finding A and B, by thq
following method :—

, . ©cosc—008a.cosb .
Since co8 C = -~ . -~ "— page 5,
sih @ . sin b

c.003camco8a.cosd +sina.sind.cosC;
but cos € = 1 =~ ver. sin €,

v Co8 ¢==003 @ . ¢08 b+sin @ . sin b—sina . sin b . ver. sin C,

w008 (4~—0) — sin @ . 6in b . ver. siy C;

.. 1—cos¢, OF 2 gjn'_; =ver.sin (@ —b)+-sina.sinb. ver.sinC,
sing . sin b. ver.sin €
= ver. sin (a — §) ( 1+ o (a=b) )

sina . sin b . ver. sin C _
ver &in (a—8) !

Let tan® 6 =
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which in logarithms is  log tan § =
log 8in @ + log sin & + log ver.sin C—log ver. sin (4 ~b)...[d]

then 2 sin? %— = ver. sin (a—1b) . sc? §, and
log 2+ 2 log sin g:log ver. sin (a—b)+2 log sec §~10...[4]

¢ computed independently of A and B.
Finding the auxiliary angle § by the form lal.

a=84° 14" 207 i sin = 0078028
bex86 13 40 it sin = -R43H0620
C=36 45 28 ...covivnnnnn ,over. sin = 92084762

PAR R HLES K]
a—b =40 0 {l e . VOP. sin = 9 3698RTN

coRlogtanb L, beressecrarioae = 19-7704n41
and log tan 6 ..., = PRSHUT0

Cask 4. Given ¢ = H0? 6" 207 ; A = 1207 H% 407,
B = 34° 20" 30"; to find 4, b, C,
By equations (14) and (15), page .
tan } (o + M) =tan fo. —H—u-
inyA—n
tan } (4 — ) =tan jc. M,n i Sl
= sin } (A + D)
1(A 4 B) =82 10
4 (A = B) =477 44" 80"
le=25" & m"J
logtan § (a + &) =
logtan } ¢ + logcos § (A — B) — logcos ) (A + B)

log tan § ¢ = log tan 25%° %’ 10" = 096697162
logcos § (A — B) = logcos 47° 41" 40" = 98270758

19-4073920
log cos } (A + B) = log cos §2° 14’ = 91307812

log tan § (a + &) 10-3666108
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. 3 (a + b) = 66° 44’ 10”
log tan } (a — b) =
log tan 4 ¢ + logsin 4 (A — B) — logsin } (A + B)
log tan § ¢ = log tan 25° 3" 10” = 96607162
logsin § (A — B) =logsind7° 44’ 30" = 0-8693023

19-53900185

log sin 4 (A + B) = log sin 82° 14/ 9-0059977

logtan § (@ — ) = 95430208
; ((l — )= 10" 11 H0”
sla+ ) +de—b=ua
x&(fl <+ ’l)-— &(u ~[))=’I
("6\) “ l’ l"‘"
19° 147 ho”

BhY 09 07

47° 207 207

©oa =80 50 and b= 47° 29" 07,

To find C.
sin A _ sin ¢

sina sinc

or, sinC = sin ¢, - —-
sih @

log sin € = logsin¢ + logsinA — logsina

log sin A = log sin 120° 58" 30” = 0-8844129
log sin ¢ = log sin 50° 6’ 20" = 0-8840241
19-7698370

log sin a = log sin 85° 54’ = 99989319
log sin C = 97704051

o €= 36° 6' 50"
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Case 5. Given the angles A = 70° 30°; B = 48" 3¢';
= 890° 16’ 53", to find the rest.
sinasin B
3 e 21, we have sin b = —— —
! 7 pag N ! sin A
log sin & = log sina + logsin B — logsin A
log sin @ = log sin 89° 16" 53" = 90000658
log sin B = log sin 48° 3¢’ = RIHIW6
19-RTH001 4

log 8in A = log sin 70° 39’ 00747470

I

log sin b = 00003439
cob =020 307 1

sin b = sin (180 — J) = 8in 127° 20" 56" but since A > B,
a must be greater than 4, hence b cannot be 127 320" 58",

To find .

By Napier's Analogies

; A+ B
tan je=tanj(a + &). cos%( Sl

cos 5(A — B)
logtan } ¢ =

log tan} (a 4 b) + logcos § (A + B) — logcos } (A — B)

log tan } (a + b) = log tan 70” 57° 59”7 = 104822011

log cos § (A + B) = logcos 59° 37" 30" = GT08RH63

2001660074
logcos § (A — B) =logcos 11° 1" 30”7 = 90919097
log tan § ¢ = 10'1741477
S o= 5611 29",
or ¢ = 112° 22’ 5",
By equation (16), page 9, we have

cos } (a + b)

ootgc=un}(4+n)m
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log oot § C log =
log tan } (A + B) + log cos } (a + 8) — logcos  (a — &)

log tan } (A + B) = log tan 50° 37’ 30” = 10-2820208
log cos § (a + ) == log cos 70° 57" §9” = 95133811

————

107454019
log cos § (@ — b) = log cos 18° 18" 54" = 0-0774233

logeot 3 C = 97679780

1 ¢ = 59° 37 807,

or ¢ =119°10,

Case 6. Given tho three angles,
angle A = 120° 1" H6”
angle B = 50 to find the rest.
angle C = 02 34 O

008 (8 —B)oos (8=~ C)

B R2, R ;
v pege o8 5 o= sin BainC

henoe the following rule.

To find the side BC.

From half the sum of the three angles take each of the
angles next the required side.

Add the log cosines of these two remainders, and the comp.
log of the sines of each of the adjoining angles.

Half the sum of these four logarithms will give the cosine
of balf the required side; thus
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121° 54" 56”
50
62 34 6

2)284 20 2
117 11 31
62 34 O

n4 40 25 first rem. cos 9.7621032
67 14 81 second rem. cos 9.087h321
comp. log sin 50 0,1157400
oomp. log sin 03”81’ 07 0,0518018

) 19,5171831

cosing 55H° 0,7080010
‘)

110" = tho required sido BC.

By the same method the other sides may be found; hut
one side being known (with the angles) the rest are most

readily found by Art. 14, page G,
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CHAPTER I11L

41. Tur surfuce of the sphere included between the arcs
D M, D N is proportional to the angle N D M or the arc
MN. Seo fig. page 1.

If the circumference be divided into equal parts as M N,
and great circles be drawn from D through the points M, N,
the portions of the surface, such as N D M, are all similar and
cqual, hence if F M contains N M, n times, or if FM =n
times N M, the surface FD M will be n times ND M.

When D M coincides with D ¢, the angle F D G or its mea-
sure F M G = 180 ; hence il 5 = whole surface of the sphere,
and if A be the angle ND M which is measured by the arc
NM, the surface NDM = & A
o ’ T 4180
circles of the sphere. Hall's Diff. Cal., page 370,

<. 8§ =4 v r’ == 4 = when radius is unity,

, but 8 = area of 4 great

|8
or - =x = 180,
4

The measure of the surface of a spherical
triangle is the difference between the sum
of its three angles and two right angles.

Let the triangle be A BC, a. b, ¢, repre-
senting the magnitudes of the angles at
A, B, C; let P=surface BCmB, Q=mCnm,
Ra=ACunA; produce the arcs Cm, Cn, till
they meet at ¢ (which will be on the he-
misphere oppoeite to that represented by
ABmnA), then each of the angles at Cand h
e equals the angle of the planes in which the arcs Cme, Cne,
lio; therefore the angles at C and ¢ are equal.




SPHERICAL TRIGONOMETRY. 45

in, the semicircles A Cm, Cme; BCn, Cne aro equal ;
or, AC+Cm=Cm+me,and ... AC=me, and BC=ne;
and the triangle m en =the triangle A B C; let z=its area,
then, by last article,
a

» P= o —
£+ 180

¢
.m,undz+l’+Q+R=

b
" 180

consequently, by addition,
8
224+ (x+ P+ Q+ R)or2zx + y=

Wiw v w

b
.

WU

T+ Q=

iR ]

r+ R=

.
’

L4

8 (afln}-r)_

t)'
~

S

8
B = —_—= — 180°;
N 4(180)(a+b+c) B a+b+c )

orr{a + b + ¢ — 180°),

Hence the area of a spherical triangle is equal to the excess
of the sum of its three angles above two right angles, which
is called the spherical excess.

The late Professor Woodhouse, in his able work on Tri-
gonometry, observes that— This expression for the value
of the arca was merely a speculative truth, and continued
barren for more than 150 years, till 1757, when Geueral Roy
employed it in correcting the spherical angles of observation
made in the great Trigonometrical Survey.”

In a biographical sketch of the life of Isaac Dalby, lato
Professor of Mathematics at the lloyal Military College,
Sandhurst, in Leybourne’s Mathematical Kepository, it is
stated that he had sent some years previously to his death
an account of the principal events of his life after reaching
maturity. The following is a quotation from himself given in
the above-named excellent periodical :—

“ General Roy's account of this measurement is in the
Philosophical Transactions ; but it is not altogether what it
ought to have been. His description of the apparatus, de-
tail of occurrences, &c., are all well enough ; but he should
not have meddled with the mathematical part, for Ais know-
ledge did not extend beyond Plans Trigonometry. 1 drew up
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the computations in that form which I thought the most pro-
rr for publication, but he was continually making alterations.
e did not even understand the rule | made use of for finding
the excess of the sum of the three angles of a spherical triangle
above 180° (which since that time has been quoted as GGeneral
Roy's theorem), and would not insert it until he had consulted
the lon. Henry Carvendish.  For conducting the business in
the field, however, few persons could have been better qua-
lified than the Genernl,

*I believe he was the best topographer in Fagland, and
knew the situation of every barrow, cairn, and hillock in
Great Britain.  He had something of an observatory in the
upper part of his dwelling, and could regulate s clock or
watch by means of transits.  In fact, he was ready enough at
calculations which depended merely on the use of the tables.
Dut the rules which he published for measuring the heights of
the barometer all came from Mr. Ramsden.”

A note is given to this extrmet in the Reporitory, which is
as follows:—* It 15 not unul very recently that Mr. Dalby
has had justice done him with regard to this ingenious rule.
At page 198 of the new edition of Vol. 111. of Hutton's
Course of Mathematics, published by Dr. Gregory in 1827,
we find thix note -~ This 14 commonly called General Roy's
rule, and given by him in the Philosophical T'ransactions for
1700, p. 171 it 18, however, due to the late Mr. Isaac Dalby,
who was then General Roy's assistant in the Trigonometrical
Survoy, and for several yoars the entire conductor of the ma-
thematical dopartment ' "

FURTHER DEVELOPMENTS CONCERNING THE SPHERICAL
EXCESS,

42, Let the radius of the sphere be unity, « the semi.
ciroumference of a great circle: a, &, ¢, tbe three sides of a
spherical triangle: A, B, C, the arcs of a great circle that
measure the opposite angles.

Let the spherical excess A + B 4+ C — = = 8.

The area of the spherical triangle is equal to the arc 8
multiplied by the radios, and is therefore represented by 8.

Now, by Napier's Analogive,
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w4 m) ety =

aethonsm 1= SRR el

_ cot } €. %é;+mn$(‘
1—cot}C. w:ti:'—__;g tan } €

cos § (a=— 1)
C ot ¢
ot § cos ) {a + ) +
cos & (a N AN

cos 4 (a+ b

=

cos §ia+ b — cos §la— b

cot ) C. rtm&m—a’)-}-un&( um}m{/n
= - i

1 +con¢ I — coy G
_tons cos J(a—10 + M o g dia+ 2
win C sin C

-

cus } {a+b) — cos § la—b)
(by expanding the cosines and reducing)

] vos}acos}b+sm§amn“:m»(

sin C —-uu}aum}b

—cotfacotyl—enc
= [ S,
8in C

but tan § (A + B 4 C) == tan § (8 4 180) = — cot } 8;

cot jacot § b +emc

Lcot ! 8= .
b sin C

a7
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This equation, which is very simple, enables us to find the
area of & spherical triangle when the two sides and the in-
cluded a.ngre are given.

To find the area of a spherical triangle in terms of the
three sides,

cot acot §+cosC

ot § 8 = .
¢ i sin C
€08 ¢ — €08 a cos b
cos C == . e
sin a sin b
and cot } a = lj-coja' cot § b= l+conb
8in ¢ sin b

l‘_«f- cfosa+conb + cos ¢

o co8 Ccot § @cot § & - .
+eot § ot b= sin a 8in

2 sin tbte sin atl—e

cos e—cos (a+ ¥ 2 Q
| 4+ c08C=—— ~" (+) = ; ;
sin a gin & sin a sin b
(2sina+b4¢)., bt+e—a
, —'gin — = -
cos {a—») —cos ¢ 2 2
] —cos C=

siu a sin & #in a sin &

Multiplying these two equations and extracting the root,

/~ q-!»1»+c shmﬂg—c . a{c—bﬁ"%+cea
sin- -~ Do sy N
gin @ sin b

gin C= 2 e

By substituting these values we have

cot == 2 1+ cos a-cos b4-cos ¢
S N ; e
Catb4c . atb—c  a4+c=d  biya—d
sin —y sin—; — sin—— sin—,—

This solves the problem, but it can be put into a simpler
form, and oue that is adapted to logarithmic computation.
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Resuming the formula

cotbacotyb + cos¢

cot}s= sin ¢

1
? o e
l+cot?}s= o ls

cot’ Jacot’ 3 b 4+ 2eot Jacot Jheos ¢ 4 |
sin’ ¢ '
by multiplying both sides of the value of cos € by 2cot ) a
cot } b, we havo

COR == CON T (0N )

2eotYacot fheosC = -
) ‘ dmnt Jusn® } b

putting in the numerator for cose, cosa, cos b, their values
I—2sm'fe, 1=2sm* L a, 1=2min? } 4, we shall havo

int in? L b — ain? !
'.‘cot%acot%bcos(‘gmw!{a +aint b —win’ ) ¢

e —

) ind h
s asint f b

L—sn"}a 1 —win®}h

Also, cot’ Jacot’ 1 b=~ M Tt o
sin‘ o sin’ b

1 —sin’}a—sin”}}

sin’ jasin’jb
Substituting all thesc values, we have

1 1 —sinfe .
= - - —
s 48 sin’fasin’ Jomin’C ’

sin 4 asin § ¥sinC

i 8
sin§ 8 = cosde

Substituting for sin C its value, we have

SPRER. TRIGONON. 1]
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gind 8=

/\/ . atbdec . a+b—c . a+c—=b . b+c—a
(sm 7 8in ——sin 8in —— )

“ 2 P2

2cosdacos Jheos ke
which expression is adapted to logarithmic computation.
If we multiply this equation by cot 4 8 we have

1 4+ cosa 4+ cosb + cos ¢
cog g §=-—, - -y - =
4cos hacospbeoslc
cos* fa+cost Jb+ceotfe—1
2cos 4 acos dbeos dc ’

I'rom this we have,

1 — ous 48
. - or td y =
sin 4 8 or tan { 8

Catb+e | atbh—c | atec-b | bye—u
s - .8 —- - 8in ) . 810 5 }

The numerator of this expression can be put under the
furm (1 = cos® } @y (L=cos® § 6) = (cos § acos § b—cus § )’
which may be decumposed into the factors

sin d asin § b+ cos facos } b —cos ) cond
sin fasindb—cos Lacos } b+ cos ! e,
"These reduce ultimately, the first to cos (La—} b)—cos ! =

Cate=b . bte—a
2 sin sin

the sccond to cos e — o006 (L a + 18) =

a+4+b+c sin at+b—c,

2 8in H
4 4
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- tan { 8 =

. a+b4ge . a+b . ute—b . biyc—a
4 sin sin sm 8l -

.a+b+c . u+b—~r ate—b  hie—a)
, win —: sin - 8in -om o Nin =y

. mn{s:

\/ u+’»+: T oadb—e wee b [

T BN’ T | I 1Y B F1Y TR
4 ]

This clegant formula iy due o Simon Lhuiller, See
Legendre's Geometry, page 319

GIRARD'S THEORE)M,
44 By page 45,
150 .
a+ b4+ c— 180 = —o s or reducing a, b, ¢ to seconds,
xr :

10" » 6o« O.u

the evcess in seconds = I3

xrt

Now, on the earth’s surface, the length of T taking n
mean measurement = (bUNOY-1) 4 6 feet, and an are =
360
mdius = ~—o H
PR
‘

480 ) .
L {O0EN9 1) x 6 x e = radius of the earth in feet:
) ’ Py 4

} . l PR ‘0“ x ﬁ”
. © CXCC85 1N seconds = & .
th ° ‘ 360 G < (60R59 T

2% x 10
36 % (0S50 17"
log . excess =
logz — {2 (log 6 + log 606591y — log 2w » 10}
= loge — (11-1240536 — 1'70R1799)
= log & — 93207737,
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Hence the following rule :—

From the logarithm of the area of the triangle, considered
88 a plane one, in feet, subtract the constant logarithm
9-3207737, and the remainder is the logarithm of the excess
above 1809, in seconds nearly.

Observed angles.

Fz. Hanger Hill Tower ......... (a) 42° 2% 32"
Hampton Poor-house ......... {h) 67 55 39
King's Arbour...........c.... o {e) 701 48

Distance from («) to () = 3346112 feet,
from (a) to (c) = 24704°7.

Taking the distance from (a) to {¢) for the base of the
triangle, the ln-r]wndimlur on the base will be 3RI61-12 x
sin 427 27 327, and therefore the area of the triangle

base ¥ perpendicular
= e

. ~

= 247087 x 10230756 x sin 427 2 327,
log area = log 247017 + log 19230°56
+ log sin 427 2" 327 — 10
== 4-3027701 4 4£2=30006 4 0-R2ASKG61
= B3020028 = logarithm of the area in feet ;
hence, 85020028 — 03207737 =— 11758501 ;

the corresponding natural number is -14992, the spherical
excess in seconds.

LEGENDRE'S SOLUTION OF SPHERICAL TRIANGLES WHOSE SIDES
ARE VERY SMALL COMPARED WITH THE RADIUS OF THE
SUHERE.

44. When the sides a, b, ¢, are very small with respect to the
radius of tho sphere, the proposed triangle is very little dif-
ferent from a rectilinear tnangle, and, considering it as such,
we can have a first solution approximately, but we neglect in
this manner the excess of the sum of the three angles above
180°. To have a solution more approximate, we must take



SPHERICAL TRIGOXOMETRY. 53

into account this excess, and this we can do very ecasily by
means of a general principle which we procced to demon.
rtrate.

Let r be the radius of the sphere upon which the trianglo
is situated, and if we imagine a sinnlar trinugle upon the
sphere whose rudius is unity, the sides of this triangle will
? . :; and we shall have cos A =

a b c
CO8 = — CO8 - CO8 -
r r r

f, c '

s KN
,

but since r is very great with respect to a, &, ¢, we shall havo
approximately,

a \ a’ al
0§ = == } — - 4 -
r R SRUNH I ¥
[ | A A
cos = | e
r AR SR BT
¢ " ot 4 ~
Cos - = — ST R
r <re PORH I W
b I
L3N ; = - s
.6 ¢ o
bil} T e ———
r r 2.

Substitating these values in the above cquation,
Vi+cd—a? a' == b

Tar YT TS

TR T ““;‘f‘)
(-

. B+
Multiply numerator and denominator by 1 + 57 and

co8 A=

reducing
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co8 A mm
B4+ct—a a4+t —2a2h -~ — 2B
2bc - 24 bert

Let A’ be the angle opposite to the side a in the recti-
linear triangle of which the sides are equal in length to the
arcs a, b, ¢, we shall have

Al A =2 4+2a P+ S —a—b—¢;
, II c Caas
therefore cos A = cos A" — 5o Sin ‘A
)

let A = A"+ x, we shall have rejecting the square of «,

OB A == cos A"— r sin A,

In ¢ .
from whence woe have o = G BN A,

. . . b c .
and since a is of the second order with respect to —and -, it
T T

follows that the result is exact to quantities of the fourth
order, we shall then have

he .,
A=A +‘~_.-:wsmA K
but § & c sin A’ = the area of the rectilinear triangle, of
which the three sides are 4, 4, ¢, do not differ sensibly from
those of the proposed spherical triangle. Then, if either
area be called a, we shall have

' . -
A=A+ —:-’-;,-, or A _A_:-‘T"
«

- , & e
Sumluly,n —B-—-w.( = ( i

henge there results,



SPHERICAL TRIGOKOMETRY. 11

’ o -
A+ B4 Corlf0 =A +B+ c_‘.;',
wo can then consider {:—, as the excess of the three angles of

the spherical triangle above two right angles.

Hence we have the following rule:—

A spherical triangle being proposed, of which the sides are
very small with respect to the rdius of the earth, if from
cach of its angles one-third of the excess of the sum of its
three angles above two right angles be subtracted, the angles
so dimmished may be taken for the angles of a rectibnear
triangle, the sides of which are equal in leugth to those of
the proposed spherical triangle, or in other terms . —The
spherical lrinngL. whose sides are nearly rectilinear, of which
the angles are A. B, ¢, and the opposite sides a, b, ¢, nnswer
always to a rectilinear triangle whose sides are of the same
length. a. L, r. und of which the opposite angles are A ~ } o ;
B—j i €= 4 o0 bemg the exeess of the sum of the angles
of the spherieal tnangle proposed above two right angles.

The excess «, or:;., which is proportional 10 the area of the

triangle, can always be calculated @ priori, by the given parta
of the spherical triangle conmdered as rectilinear. 1f tho
two sides. b, ¢, and the included angle A, are given, we shall
have thearen a = § h¢ sin A : if we have given the side g, and
the two adjacent angles B, ¢, we shall have the area
.8in B rinC
a= {a - -,
s (B4
43, Given the three edges of a
panallelopiped, and the angles be-
tween them, to find the wlidity.
Let the edges SA =1, 5B = 4,
8C = h. and the contained angles
ASB =a, ASC = 8 BS(C =
v, if from the point C we let fall
co perpendit'umly on the plane
ASB then in right-angled triangle
C80; CO =C8san C80=
h sin €80, Lesides the surface of the
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parallelogram ASBP = f gsin a. Therefore, if we call §
the solidity of the parallelopiped 8 T, we shall have 8§ =
f. 9. h. sin a sin €80. We¢ now proceed to find sin CSO.
From the point 8 as a centre and radius unity, describe a
spherical surface meeting the right lines 8A, $B, 8C, 80, in
ints D, E, F, ¢, we shall have a triangle DEF, in
v.hlcgo the arc FG is perpendicular to ED, since the plane
CB8O is porpendicular to ASB. Now, in the triangle DEF,
where the three sides, DE = a, DF = ¢, EF =4, we have

€08 G — €08 a COS ¥

, and

cos E =

sl & s8I 3

sin B \/l—cos’a—cos:‘c—cbg"yﬁ-2cosamC397

81N « sin ¢y

Then in the right-angled triangle EFG,sin GF orsin CSO =
sin E sin EF = sin » sin E.

.

8=f g.h sinasinysin k=
S0k /1= cos*a = cos*€ = cos’y + 2cos  cos & cos 5.

Tho expression under the radical is composed of the two
factors, sin « siny + c08 € — cos & co8 y, and sin « siny —
cos € + co8 & cos ¥, the first = cos € — cos (& + 7) =
Reina+ 64+ 9 . a+y—~C

sin ;

o * ’
~

P

the second == cos (s—y) — co8 S =

— ¢ -
Qsin.__—-————+; Y. sin tr—e

therefore, 8 =

¢y aFy—¢ 8iy=
:lfgk/\/sxn.+§+7 n.+2 7“‘”.+Z > .sin +; 2

~

40. The same things being given as in the above to find
the diagonal.
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Let the diagonal of the base SP = 2, and the required
diagonal ST = w, the triangle ASP, in which cos SAP =
— 06 a, we have 27 == f* 4+ q' + 1 fg cos a, in like manner
in the trinngle TSP, in which cos TPS = — cus C8P;
w =124+ h* 4+ 2hzcos CSP.

We must now find cos CSP, or of the arc FH.

Now, in the ﬂph(‘ncul triangle EFH, we have cos FIl =
cos EF cos EH + sin EF sin EH cus E, substituting the

pnq. — oS a 08y
A u beconies
blll a nill gy

values FF = and cos E =

sin EH
cos FH = cos 4 vos EH + i
a

(Co8 e — cos a cos y) =

sin EHeon & sin (o — EH) cos vy

il a ' s oa

sin E H umC + mn DH cosy

blll @

Therefore 2hzcos FH, or 2hz cos C8P =

z 8in LH z sin l)ll
Qhcone . e A Qhcon gy =
¥ a bl &

but in the trangle BS P we have

SP sin BSP hl' mu BPS

BP= ———— —and BS = :
N SBP i SBD
ssin E ll ~ein DH
which gives — nd e = g
€ sin f s a g

. Qhzcos C8P = 2fhcos® + 2ah cos y.

Hence the square of the required diagonal
W=f14g'+ R+ 2fgcosa+ 2fheusC + 29k cos y.

47. To determine a line on the surfuce of a sphere on which
the vertices of all triangles of the sume base and surface are

situated.
v 3
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Let ABC, be a spherical triangle, (one of those on the com-
mon base AB,=¢); and the given surface A + B + C —» == 8.
Let IPK be an indefinite perpendicular on the middle of A B,
having taken 1P = & quadrant, P will be the pole of the arc
AB, and the arc (D, drawn through the points P C, will be
perpendicular to AB. lLet ID = p, CD a= ¢, the right-
angled triangles, ACD, BCD, in which AC =4, BC m= q,
AD=p + e, BD =p — §¢, will give cos a =
cos g, cos(p—4Ac). cos b = cos geos (p + de). Butit was
found, page 48, that

1 4 cosa + cosh 4 cos e

K
N — A%
cot § 8 =- sin a sin b sin € p\\..
Substituting in this formula the values o ,,}ﬁ'
cos @ + cos b e= 2 co8q cos p cos § e, [ AN
1 —cos e = 2cos® } ¢, sin b sin ¢ = p / N o
sin ¢ sin B = 2sin § ccos } r sin B, "f/L"' n -

there results,
cos § c + co8 pcos g
Kl a sin § c gin B

CO(.}S::

Again, from the right-angled triangle BCD, sin @ sin B=
sin ¢,

cosd e 4 cosp.cosq

oot ) S = . :
s sin § csing

or, cos p cos ¢ = cot } S sin Jesing — cos 4 e. This is the
relation between p and ¢ which will determine the locus of
all the poiuts C.

Produce IP to K, let PK = . Join KC, and let KC = y;
in the triangle PKC where we have PC=4x —g¢, the angle
KPC = » — p, the side KC will be found by the formula

cos KC == cos KPC gin PK 8in PC + cos PK cos PC, or
COS y == BiN ¢ COS X — SiN 2 COS P COS ¢.
Substituting this instead of cos p cos ¢ the value
08 § 8 sin § ¢ sin ¢ — cos } ¢, there results

cosy =sinzcos ¢ + sinq(cosr—sinxcot 1 8sin }e).
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In which, if we take cos # — sin« cot § Ssin J e =10, or
ot 4 Ssin § ¢ = cot @, there will result cos y =sinz cos | ¢,
and thus a constant value of » is determined.

Thercfore, if after having drawn the arc IP perpendicular
to the middle of the base AB, and beyond the pole the part
PK such that cot PK = cot } S sin |} ¢, all the vertices of the
triangles on the same base ¢, and of the same surface 8, will bo
situated on the small circle described from K as a polo at tho
distance KC, such that cos KC = sin PK cos 4 ¢. This is
Lexell's theorem.

48 Given the three sides, BC =a, AC =h AB=c¢ to
find the position of the point I, the pole of the circle cir
cumseribing the triangle ABC.

Let the angle ACI = ., and the arc Al = CI = Bl = ¢,
in the triangles CA X, CBI, we shall have by the equation---

Con @ — con b cos T ‘

COV P = e TN\
Nn b s P o \\\
/
1 — cos/ . L \
- e ot - Lot
sin b 4 A N \
. \\\ \
fin b - -
- o eot P :
1+ cond 7 "
. | — cos (¢ — x)
con (€ — &) 2=~ 00t &1 therefora - mmmen )
win o ) Cos &

(1 4 cosb) tl — cos a)

or, cos C + sin C tan r = .
sin @ sin b

Substituting, in this equation, tho values of cos ¢ and sin ¢, in
terms of the sides a, 4, ¢, and putting for the sake of abridy-
ment, M = /{1 —r08*a — cos* b — cos® ¢ + Lcosacos b cos c).
we have tan 2 = 1+ cosb~—ucosc—coua
the angle ACI. From the isosceles triangles ACI, ABI,
BCI, we have ACI = } (C + A — B); and, n the same man-
ner, BCI= 4§ (B+C—A); BAI={ (A + B ~()
From which results these remarkable formule,

) 1 b— -
tan } (A +C—B) = | +cosb —cosa — cosc

, which determines

[
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1 + cosa — cosb — cosc

tau § (B4+C—A)= -

1 4+ cosc — cosa — cos b
M

tan § (A+B—C) =

To which we may add that which gives cot 3 8, and whict
can be put under the form
— 1 — cosa — cosd — cosc
- .

tan } (A+B+C)=

From the value of the tangent of z, already found, we havc

1 2(14cosh)(1—cose)(1—cos
1 4 tan%e = — - = (14 cosh)( fom)( cosa) _
cos o M:

16 cos® } bsin® § csin® J o
M* '

1 4cosdbsindcsinda )
. = — 4 - d , but from the equation
COS L M

Cos8.x = ———El-—-- cot ¢ = tan } b cot ¢, we find

tang =" _— m‘¢=‘lsin;}asin4bsin;}c
cos & M

2sindasinbsinlc

Ca+b+c  at+b—c . a+c—b _ b4c—a
sin sin Bil — sin
Ch g s s =)

49. The surface of a spherical polygon is measured by the
sum of the angles, minus the product of two right angles, and
the number of sides of the polygon, minus 2.

From A draw the arcs AC and A D, the angles of the poly-
gon; it will then be divided into as many triangles, minus
two, a8 the figure has sides; but the surface of each triangle
is measured by the sum of the angles, minus twu right
angles; and it is clear, that the sum of all the angles of the
triangles is equal to the sum of all the angles of the polygon.

—_—
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Therefore the surface of the polygon
is equal to the sum of the angles
diminished by as many times two
right angles as the figure has sides,
mnus two.

Thus if 8 = sum of the angles
of a spherical polygon, n = the num-
ber of its sides, then the surface of
the polygon is 8 — n«w + R w =
8 —2in—2)ors — An + 4, when
the right angle is taken cqual to unity.

POLYHEDRONS.

50. If 8 be the numbier of solid angles of a polyhedron, N

the number of fuces, A the number of its cdges, then
8 4+ H=A 4

Take a point within the polyvhedron, and from which draw
lines to all the angular points of the polyhedron: magine
from this point, as a centre, we describe n spherieal surfuce
which meets all these lines in as many points, then join theso
points by arcs of great circles, in such w manner as to form,
upon the surface of the sphere, the same number of polygons
as thero are faces of the polyhedron.

Let ABCDE be one of these polygons, and o the number
of its sides, ity surfuce by the Inst article will be & 2n 4 4,
8 being the sum of the angles A, B, C, D, E Similarly if we
find the value of cach of the other spherical polygons, and
udd them all together, we conclude that their sum or the
surface of the sphiere which iy represented by %, is equal w
the sum of all the angles of the polygons, less twice the num-
ber of their sides, plus four times the number of fuces.

Now as all the angles that mect at the sume point, A, is
equal to four right angles, the sum of all the mm‘lcn of the
polygons is equal to four times the number of solid augles,
it is therefore equal to 45, Then double the numbcer of wides
AB, BC, CD, &c., is equal to four times the number of edges,
or equal to 4 A, since the same edge serves for two faces;

L R=48 —4A 4+ 4H; or
Q=8—A+H;or S+ H=A 42
{See Leyendre's Geometry, pp. 228, 220.;
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Cor. Tt follows that tho sum of all the plane angles which
form the solid angles of a regular polyhedrom, is equal to
as many times four right angles as there are units in 8 — 2,
8 being the number of solid angles of the polyhedron.

The plane angles = sum of all the interior angles of each
face, which Prop. 32, of the Ist book of Euclid

=H(n—2).~
= R (A — H)= (8ince nHl = 24)
= (8 =22z (sinco A — He= § — 2).
51, There can be only five regular polyhedrons.
Since every fuce has n plane angles, the number of plane

angles which compose all the solid angles =nH =sm=2a,
and by the last article 8 + H=A 4 2

m mSs L
CH=--8 and A= 5 substituting these,
n
m mK
b - = ’?2"' + Q'v

Ins + AmS =mns + dn,
QS + AmS —mnS = 4n,
82 4+ m)—mn} =4n,

. 4n
S
d(n 4+ m)—mn

Now this must be a positive whole number, and in order
that it may be 80 2(m + n) must be greater than mn; and,

1

therefore.—l-—+—l—>!}. or ——->§-—-—L: but m cannot be
" " n ”

!
less than 3, therefore, - cannot be 80 small as § — 4, or §,

consequently, since » must be an integer and cannot be less
than 3, it can only be 3, 4, or 3. In the same manner m
cannot be less than 8, therefore the values of m can only be
3, 4, or J.
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52. To find the inclination of two adjacent A

faces of a polyhedron to each other. A

Let AB be the edge common to the two

adjacent faces of & polyhedron, € and E the ¢

centres of the faces.  Draw €O, EO, per 1
"

“
| “.‘
* i \\\l‘

I,
/
’l
/
i
i
!

/

pendicular to the fuces meeting each other
m 0; and €D and ED, perpendicular to
AB, the intersection of the planes ABC,
ABE, then the angle CDE is the required

I
ny
y

inclination.

Let n be the number of sides in each Vo
face, m the number of plane augles in ench \‘
solid angle if from the centre O, and "

radius equal to unity, describo a spherical triangle meeting

the lines 0A, OC, OD in p, q. 7. we shall have spherical

triangle pgr, in which we have the angle r & right angle,
x -

the angle p = —, and the angle ¢ = - :
m n

. . cosp

and by right-angled triangles, cos ¢r = 'm,/ :

Nty
but co8 g7 = o8 COD = sin CDO = ain } ¢, ¢ being the anglo
CDE; then

L3
CUR -~
m

Binj(':

.
LIRS
n

This cquation is gencral, and applies successively to the
five polyhedrons, by substituting the values of m and n in
each case.

Tetrahedron m =2 8. n = 3. Hexahedron m =1, n =4,
Octahedron m =4, n = 3. Dodecahedron m = 3, n = 5.

Icosahedron m =0, n = 3.

From the triangle pgr from which we have deduced the
inclination of the two adjacent faces, we have

co - =,
cospg=cotpeoty; or o ==cot-;; oot —;
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therefore, if wo call R the radius of the sphere which cir-
cumscribes the polyhedron, and r the radius of the sphere

. . . R
inscribed in it, we shall hnve7 = um-% tan =
» n

and, by making the side AB = a, we have CA = L

v

. %
sin—
7n

TR L

and, consequently, R* = »* + .

. k3

sin®—

n
These two equations give for each polyhedron, the values
of the radii R and r for the circumscribed and inscribed

sphere.  Woe have, supposing C known,

~ g
r=;acot;l—tnn1 Cand R=} tan — tan } C.
- m

. R
In the dodecahedron and icosahedron, — has the same
T

value for both; viz., tan -

Yy tunl:-. Therefore, if R be the
J

.

same for both, = will also be the same; that is to say, if
theso two solids are inscribed in the same sphere, they will
ulso circumscribe the same sphere, and vice versd.

The same property holds with regard to the hexahedron

. R .
and octahedron, since the value of -- i1s the same for one as
r
. = L 3
the other; viz., tan T tan .

53. To find the inclination of two adjacent faces in the five
regular polyhedrous.*

cos —
m .
-, taking the tetrahedron
. -
»in —
n

I'rom the equation sin § C=

* Legendre, at page 312 of his Geometry, finds the inclination from the
. cos ¢ — cosa cosd
equation cos C =

Frperraaat i 3, page 5.
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where m = £ and n = 8,

sin § C cos 60° 1

JHEP ==, .% 0 = 4
sin 60° — V3 cosC =}

In the hexahedron m = 3 and n = {,

cos 60 1 C=0 ; an
n =——,andcosC=0,; . =0,
sindd '

gin C =

In the octahedron m = { and n = 3,

. cos 45 o
sinfjC=-—-= A/ < and cosC = — |,
sin 60 3

In the dodecahedron m = 3, n =5,

é C cos 60 9 | . ' = \/ X
511 = s — . an -
sin 36 \/),)_ \/ e N - Vo
In the icosahedron m = 5, n =i,
. cos 86 14 VH NS
sin § € =~ g oand s €= —
sin oo 2V 4

54. To find the solid content of a regular polyhedron.

. n -
The area of cach fuce = i a’cot - ; hence the urea of the
‘ n

n ., x .
surface of the polyhedron=H. et and the solid con-
| n

tenta 2T of the surfnceq x by the sltitude = § of the area

of the surface x by radius of inscribed aphere

n T 1
H.-dcot - X r= —-—cot- ..... (1
- x 4a’c L i (1)

. v
(orsmce r=Jacot - tan | (:)

na*H

=
12

0ot Ttan § C v (2)
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From either of thesc equations we can find the solid
content.

Wo shall here use the first. Taking the equations

aﬂ

R L4 '3 .
- =tan—tan- , and R®—r® —~
r m n

40?7
n
we can find 7 and R.
In the tetrghedron m =38, n = 3;
R -
Sz tan b0 . tan by = V38 x Yi=3; .. R=1r
’

2 ¥

» ” a “'
R P == - but R=13,.
4 sm* 60 it}
a? ¢
. (:‘ ,)'.' — = —:UI‘R"" = l.‘- |
2]

: a R
Pt e Alsoo, =
24 2V :

. R* a? Sa
. n.__'__d_a_,:?‘ R‘Q\‘/(:}.

In the hexahedron m = 8, u = 4,

R s o 7] a \/ 3
cztan b tandd = /8 r=-; .. R= .
r v 2 2

Inthe octabedron,m = 4,an0d n = 3,and r —--—a—-; R= _‘j_: .

In the dodecahedron, m =3, n =5,

"/, . VAT 3
r= Va0 + 10 \h R 1 (VT5 +/3).

~

In the icosahedron, m = 8§, n = 3,

a "'"-"—’:—";—. ] .
f=i‘§¢42+‘lbvd, n=z\/ 10+Q\/‘).
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Theso being substituted in equation (1), page 83, wo find
the solidity of cach of the five polyhedrons.

1
. R A
For the tetrahedron the solidity is T2y 2
For the hexahedron ............... a.
T
For the octahedron.................. '—5 N
. o’ s e m—— N
For the dodecahedron ............. RNV TIPS
. , hat g T
For the icosahedron ... ;" N 64

Ezamples.

1. In the obhqueangled spherical triangle ABC. Given
the side AB 73°1%, the side BC 62 12, the side AC 110 0,
required the angles.

A= 41718
Ans. < B = 136 40,
C =48 48’

2. The Iatitudes and lmgitudes of three pluces on the
earth's surfuce, suppose 1 ondon, Moscow, Constantinople, being
given as below: rméuircd the latitude and longitude of that
place which is equidistant from the former three?

The latitude of London is 517 307, the latitude and lon-
gitude of Moscow 557 45 and 55", and those of Constan
tinople 41° 30" and 29 137 respectively.

3. Given the latitude of three places, Moscow ho 807
Vienna 18" 12, Gibraltar 357 307, all Iving dircetly i the
same arc of a great circle.  ‘The difference of longitude be
tween Vienna, (situated in the middle,) and Moscow, casterly,
is equal to that between Vienna and Gibralwr, westerly, It
18 required to find the true bearing and distance of cach pluce
from the other, and the difference of lungitude, according o
the convexity of the globe.

4. Four given equal spheres being placed in close contact
with each other, it 1s required w find the volume of the space
inclosed between them und the three tnangulur planes through
each three centres.
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5. A point P being taken in the surfuce of a sphere, let «, 8
denote its spherical distances from two given points; then if
m cos a 4 n cos B = a constant quantity, m and n being any
given numbers, the locus of P will be a circle.

6. The buse of a spherical triangle is given, and the sum of
the cosines of the angles at the base, to trace the locus of its
vertex.

7. 'The sides of a spherical triangle are produced to meet
again in three more points, thus forming, with the original,
four spherical triangles, which constitute Davies's ** Associated
Triangles ;" (12th edit., Hutton's Course, vol. ii. p. 41,) rr 7,7,
are the radii of the inseribed, and RR, R, R, the radii of the
circumscribed circles.  Prove that

tan® R + tan® R, + tan* R, + tan* R, =

J
cot' r 4+ cot* r; 4 cot’ r, + cot’r,.

8. A person engages to travel from London to Constanti-
nople, and to touch the equator in his journey, required the
lmmt of contact, and the length of his track, admtting it to
w the shortest pogsible, and the earth a sphere.

9. The angular roims of two triangular pyramids being
respectively situated on four converging lines in space, let the
corresponding fuces be produced to meet ; then will the four
lines of section be all situated in the same plane.

10. Given the longitudes of two places, 6° 19, and 54° 85,
their respective Intitudes 487 23 147, and 4° 56" 15" find
their distance, the longitudes being both west, and their lati-
tudes both north.

G. Wood{all aud Som, Printers, Angel Court, Skinner Street, London.






























