

$$
\left(\begin{array}{ll}
\text { Case } & A \\
\text { Shelf }
\end{array}\right.
$$

$$
37007 / \mathrm{c}
$$

NII

Molvire

THE
 DOCTRINE O F
 CHANCES: $\mathrm{O}^{\circ} \mathrm{R}$,

A Method of Calculating the Probability: of Events in Play.

By A. De Moivre. F. R. S.

$$
L O N D O N:
$$

Printed by W. Pearfon, for the Author. M DCCXVIII.

To

Sir Ifaac Newton, Kt. Prefident of the Royal Society.
$S I R$
T『HE greateft help I have receiv'd in writing upon this Subject having been from your Incomparable Works, efpecially your Method of Series; I think it my Duty publickly to acknowledge, that the Improvements I have made in the matter here treated of, are principally derived from your felf. The great benefit which has accrued to me in this refpect, requires my fhare in the general Tribute of Thanks due to you from the Learned World: But one advantage, which is more particularly my own, is the Honour 1 have frequently had of being admitted to your private Converfation, wherein the doubts I have had upon any Subject relating to Matbematics, have been refolved by you with the greateft Humanity and Condefcention, Thofe Marks

The Dedication.

Marks of your Favour are the more valuable to me, becaufe I had no other pretence to them, but the earneft defire of underftanding your fublime and univerfally ufeful Speculations. I fhould think my felf very happy, if, having given my Readers a Method of calculating the Effects of Chance, as they are the refult of Play, and thereby fix'd certain Rules, for eftimating how far fome fort of Events may rather be owing to Defign than Chance, I could by this fmall Effay excite in others a defire of profecuting thefe Studies, and of learning from your Philofophy how to collect, by a juft Calculation, the Evidences of exquifite Wifdom and Defign, which appear in the Pbenomena of Nature throughout the Univerfe. I am, with the utmoft Refpect,

Sir,

Your moft Humble, and Obedient Servant,

A. De Moivre.

PREFACE.

T IS now about Seven Years, fince I gave a Specimex in the Philofophical Tranfactions, of what I now more largely treat of in this Book. The oacafion of my then undertaking this Subject was chiefly owing to the Defire and Encouragement of the Honourable Mr. Francis Robartes, who, upon occafion of a French Iract, called, L'Analyfe des jeux de Hazard, which had lately been Publifbed, was pleajed to propose to me fome Problems of much greater difficulty than any he had found in that Book; which baving folved to bis Satisfaction, be engaged me to Methodife thofe Problems, and to lay down the Rules which had led me to their Solution. After I had proceeded thus far, it was enjoined me by the Royal Society, to communicate to them what I had difcovered on this Subject, and thereupon it was ordered to be publifhed in the Iranfactions, not as a matter relating only to Play, but as containing fome general Speculations not unworthy to be confidered by the Lovers of Truth.

I had not at that time read any thing concerning this Subject, but Mr. Huygens's Book, de Ratiociniis in Luudo Aleæ, and a little Englifh Piece (which was properly a tranflation of it) done by a very ingenious Gentleman, who, tho' capable of carrying the matter a great deal farther, was contented to follow his Original; adding oniy to it the computation of the Advantage of the Setter in the Play called Hazard, and Some few things more. As for the French Book, I had run it over but curforily, by reafon I had obferved that the Autbor chiefly i ififted on the Method of Huygens, which I was abfolutely re-
folved to reject, as not feeming to me to be the genuine and natural way of coming at the Solation of Problems of this kind. However, had I allowea my Self a little more time to confder it, I had certainly done the Fuftice to its Author, to have owned that he had not only illuftrated Huygens's Method by a great variety of well chofen Examples, but that he bad added to it feveral curious things of his own Invention.

Tho' I have not folloned Mr. Huygens in his Method of Solution, 'tis with very great pleafure that I acknowledge the Obligations I have to him; his Book having Settled in my Mind the firft Notions of this Doctrine, and taught me to argue about it with certainty.

I had faid in my Specimen, that Mr. Huygens was the fir f t who had Publifhed the Rules of this Calculation, intending thereby to do juftice to that great Man; but what I then faid was mijinterpreted, as if I had defigned to wrong fome Perfons who had confidered this matter befure bim, and a paffage was cited againft me out of Huygens's Preface, in which be faith, Sciendum vero quod jam pridem, inter Præftantiffimos totâ Galliâ Geometras, Calculus hic fuerit agitatus; ne quis indebitam mihi primæ Inventionis gloriam hac in re tribuat. But what follows immediately after, had it been mina'ed, might bave cleared me from any Sufpicion of injuftice. The words are thefe Cæterum illi difficillimis quibufque Quxitionibus fe invicem exercere Soliti, methodum Suam quifque occultam retinuere, adeo ut a primis elementishanc materiam evolvere mihi neceffe fuerit. By which it appears, that tho Mr. Huygens was not the firft who had. applied himfelf to thofe forts of Queftions, be was neverthelefs the firf who had publifhed Rules for their Solution; which is all that I affirmed.

Since the printing of my Specimen, Mr. de Monmort, Auethor of the Analyfe des jeux de Hazard, Publibed a Second Edition of that Book, in which he has particularly given many proofs of his fingubar Genius, and extraordinary Capacity; which Teftimony I give both to Irath, and to the Friendjhip with which be is pleafed 10 Honour me.

Such a Tract as this is may be ufeful to feveral ends; the firft of which is, that there being in the World Several inquifitive Perfons, who are defirous to know what foundation they
go upon, when they engage in Play, whether from a motive of Gain, or barely Divertion, they may, by the help of this or the like Iract, gratifie their curiofity, either by taking the pains to underfand what is here Demonftrated, or elfe making ufe of the conclufions, and taking it for granted that the Demonftrations are right.

Another ufe to be made of this Doctrine of Chances is, that it may Serve in Conjunction with the other parts:of the Mathematicks, as a fit introduction to the Art of Reafoning; it being known by experience that nothing can contribute more to the attaining of that Art, than the confideration of a long Irain of ConSequences, rigbtly deduced from undoubted Principles, of which this Book affords many Examples. To this may be added, that fome of the Problems about Chance having a great appearance of Simplicity, the Mind is eafily drawn into a belief, that their Solution may be attained by the meer Strength of natural good Sence; which generally proving otherwife, and the Miftakes occafioned thereby being not unfrequent, 'tis prefumed that a Book of this. Kind, which teaches to diftinguibl Truth from what Seems fo nearly to refemble it, will be look?d upon as a belp to good Reafoning.

Among the feveral Miflakes that are committed about Chance, one of the moft common and leaft fufpected, is that which relates to Lotterys. Ihus, suppofing a Lottery wherein the proportion of the Blanks to the Prizes is as five to one; ${ }^{\text {'tis }}$ very natural to conclude that therefore five Iickets are requifite for the Chance of a Prize; and yet it may be proved Demonjtratively, that four Tickets are more then Jufficient for that purpofe, which will be confirmed by often repeated Experience. In the like manner, fuppofing a Lottery wherein the proportion of the Bianks to the Prizes is as thirty nine to One, (fuch as was the Lottery of 1710) it may be proved, that in twenty eight Tickets, a Prize is as likely to be taken as not; which tho ${ }^{\circ}$ it may Jeem to contradict the common Notions, is neverthelefs grounded upon infallible Demonftration.

When the Play of the Royal Oak was in ufe, fome Perfons who loft confiderably by it, had their Loffes chiefly occafioned by an Argument of which they could not perceive the Failacy. The Odds againft any particular Point of the Ball were one and Ibirty to One, which intituled the Adventurers, in cafe they

$$
\text { A } 2 \text { were }
$$

acere winners, to bave thirty two Stskes returned, including their own ; inflead of which they having but eight and Twenty, it 2vas very plain that on the Single account of the difadvantage of the Play, they loft one eighth part of all the Money they play'd for. But the Mafter of the Ball maintained that they bad no reafon to complain; fince be would undertake that any particular point of the Ball fbould come up in two and Twenty Throws; of this be would offer to lay a Wager, and actually laid it when required. The feeming contradiction between the Odds of one and thirty to One, and Twenty two Throws for any Chance to come up, fo perplexed the Adventurers, that they begus to think, the Adventage was on their fide; for which reafon they play'd or and continued to lofe.

The Doctrine of Chances may likewife be a belp to cure a Kind of Superfition, which has been of long ftanding in the World, viz. that there is in Play fuch a thing as Luck, good or bad. I own there are a great many judicious people, who witl.out any other Afiffance than that of their own reafon, are fatisfied, that the Notion of Luck is meerly Chimerical; yet I conceive that the ground they have to look upon it as fuch, may fill be farther inforced from fome of the following Confiderations.

If by Saying that a Man has had good Luck, nothing more was meant than that he has been generally a Gainer at play, the Exprefion might be allowed as very proper in a fhort way of Speaking: But if the Word good Luck be underflood to fignifie a certain predominant quality, fo inherent in a Man, that be muft win whenever be Plays, or at leaft win oftner than lofe, it may be denied that there is any fuch thing in nature.

The Afferters of Luck are very fure from their own Experience, that at fome times they have been very Lucky, and that at other times they bave had a prodigious run of ill Luck againft them, which whilft it continued obliged them to be very cautious in engaging with the fortunate; but how Chance ßould produce thofe extraordinary Events, is what they cannot conceive; They would be glad for Infance to be Satisfied, how they could lofe Fifteen Games tngether at Piquet, if ill Luck had not ftrangely prervailed againgt them. But if they will be pleafed. to confider the Rules delivered in this Book, they will See that tho' the Odds againgt their lofing fo many times together be very
great, viz. 32767 to 1 , yet that the Pofibility of it is not deftroy'd by the greatne/s of the Odds, there being One Chance in 32768 that it may 10 happen, from whence it follows, that it was ftill poffible to come to pals without the Intervention of what they call Ill Luck.

Befides, This Accident of lofing Fifteen times together at Piquet, is no more to be imputed to ill Luck, than the Winning with one fingle Ticket the Higheft Prize, in a Lottery of 32768 Tickets, is to be imputed to good Luck, fince the Chances in both Cafes are perfectly equal. But if it be faid that Luck bas been concerned in this latter Case, the Anfwer will be eafy; for let us fuppofe Luck not exifting, or at leaft let us fuppofe its Influence to be fuspended, yet the High. eft Prize muft fall into Some Hand or other, not by Luck, (for by the Hypothefis that has been laid afide) but from the meer Neceffity of its falling fomewhere.

Thofe who contend for Luck, may, if they pleafe, alledge other Cafes at Play, much more unlikely to happen than the Winning or Lofing Fifteen Games together, yet Atill their Opinion will never receive any Addition of Strength from Juch Suppofitions: For, by the Rules of Chance, a time may be computed, in which thofe Cafes may as probably bappen as not; nay, not only So, but a time may be computed in which there may be any proportion of Odds for their So bappening.

But fuppofing that Gain and Lofs were fo fluctuating, as alway's to be diftributed equally, whereby Luck would certainly be annibilated; would it be reafonable in this Cafe to attribute the Events of Play to Chance alone? I think, on the contrary, it would be quite otherwife, for then there would be more reafon to fufpect that fome unaccountable Fatality did Rule in it: Thus, If two Perfons play at Crofs and Pile, and Chance alone be fuppos'd to be concern'd in regulating the fall of the Piece, is it probable that there Jhould be an Equality of Heads and Croffes? It is Five to Three that in form times there will be an inequality; 'tis Eleven to Five in fix, 93 to 35 in Eight, and about 12 to 1 in a bundred times: Wherefore Chance alone by its Nature conftitutes the Inequalities of Play, and there is no need to bave recourle to Luck to explain tbem.

Further, The fame Arguments which explode the Notion of Luck, may, on the other Side, be ufeful in Some Cafes to eftablifh a due comparifon between Chance and Defign: We may imagine Cbance and Defign to be as it were in Competition with each other, for the pro-
ducction of fome forts of Events, and may calculate what Probability there is, that thofe Events Bould be rather owing to one than to the other. To give a familiar Inff ance of this, Let us Suppofe that two Packs of Piquet-Cards being Sent for, it Jhould be perceived that there is, from Top to Bottom, the Same Dijpofition of the Cards in both Packs; Let us likewife fuppofe that, Jome doubt arifing about this Dijpofition of the Cards, it Soould be queftioned whether it ought to be attributed to Chance, or to the Maker's Defign: In this cafe the Doctrine of Combination decides the Quefion, fince it may be proved by its Rules, that there are the Odds of above 26313083 Millions of Milizions of Millions of Millions to One, that the Cards were defignedly fet in the Order in which they were found.

From this laft Confideration we may learn, in many Cafes, how to dijtinguifh the Events wobich are the effect of Chance, from thofe which are produc'd by Defign: The very Doctrine that finds Chance where it really is, being able to prove by a gradual Increafe of Probability, till it arrive at Demonftration, that where Uniformity, Order and Conflancy refide, there allo refide Choice and Defign.
Laftly, One of the Principal Ufes to which this Doctrine of Chances may be apply'd, is the dijcovering of Some Truths, which cannot fail of pleafing the Mind, by their Generality and Simplisity; the Admirable Connexion of its Confequences will increafe the Pleafure of the Difcovery; and the Seeming Paradoxes wherewith it abounds, will afford very great matter of Surprize and Entertainment to the Inquiftive. A very remarkable Inftance of this nature may be feen in the prodigious Advant age which the reptetition of Odds will amount to; Thus, Suppofing I play with an Adverfary who allows me the Odds of 43 to 40, and agrees with me to play sill IOO Stakes are won or loft on either fide, on condition that 1 give him an Equivalent for the Gain I am intitled to by the Advantage of my Odds; the Ruefion is what Equivalent I am to give bim, on Juppofition we play a Guinea a Stake: The Anfwer is 99 Guineas and above 18 sbillings, which will Seem almof incredible, confidering the fmalnefs of the Odds of 43 to 40 . Nowl let the Odds be in any Proportion given, and let the Number of Stakes to be played for be never fo great, yet one General Conclufion will include all the poffible Cafes, and the application of it to Numbers may be wrought in lefs than a Minutes time.

I have explain'd, in my Introduction to the following Treatife, the chief. Rules on which the whole Art of Chances depends; I bazie done
done it in the plaineft manner that I could think of, to the end it might be (as much as poffible) of General Ufe. I flatter my felf that thole who are acquainted with Arithmetical Operations, will, by the help of the Introduction alone, be able to folve a great Variety of Queftions depending on Chance: I wifh, for the Sake of fome Gentlemen who have been pleafed to fubfcribe to the printing of my Book, that I could every where have been as plain as in the Introduction; but this was bardly practicable, the Invention of the greaseft part of the Rules being intirely owing to Algebra; yet I have, as much as poffible, endeavour'd to deduce from the Algebraical Calculation Several practical Rules, the Iruth of which may be depended upon, and which may.be very ufeful to thofe who have contented themfelves to learn only common Arit'smetick.
${ }^{\text {'T }}$ is for the Sake of thofe Gentlemen that I have enlarged my firft Defign, which was to have laid down Juch Precepts only as might be Jufficient to deduce the Solution of any difficult Problem relating to my Subject: And for this reafon I bave (towards the latter end of the Book) given the Solution, in Words at length, of fome eafy Problems, which might elfe have been made Corollaries or Conjequences of the Rules before deliver'd: The fingle Difficulty which may occur from Pag. 155 to the end, being only an Algebraical Calculation belonging to the 49th Problem, to explain whick fully would have required too much room.

On this Occafion, I muft take notice to. Such of my Readers as are well vers'd in Vulgar Axithmetick, that it would not be diff_cult for them to make themfelves Mafters, not only. of all the Practical Rules.in this Book, but alfo of more ufeful Difcoveries, if they would take the fmall Pains of being acquainted. with the bare Notation of Algebra, which might be done in the hundredth part of the Time that is spent in learning to read Short-hand.

One of the Principal Methods I bave made ufe of in the fol: lowing Treatife, has been the Dottrine of Combinations, taken in a Sence fomewhat more extenfive, than es it is commonly underflood. The Notion of Combinations being fo well filted to the Calculation of Chance, that it maturally enters the Mind whenever any At. tempt is made towards the Solution of any Problem of that kind. It was this which led me in courfe to the Confideration of the Degrees of Skill in the Adventurers at Play, and I bave made ufe of it in mooft parts of this Book, as one of the Data that enter the Quefion; it being jo far from perplewing the Culculation, that on the:
the contrary it is rather a Help and an Ornament to it: It is true, that this Degree of Skill is not to be known any other way than from Obfervation; but if the fame Obfervation conflantly recur, 'tis firongly to be prefumed that a near Eftimation of it may be made: However, to make the Calculation more precife, and to avoid catIfing any needlefs Scruples to thofe who love Geometrical Exartnefs, it will be eafy, in the room of the Word Skill, to fublt itute a Greater or Lefs Proportion of Chances among the Adventurers, fo as each of themz may be faid to bave a certain Number of Chances to win one fingle Game.

The General Theorem invented by Sir Ifaac Newton, for raijing a Binomial to any Power given, facilitates infinitely the Metlod of Combinations, reprefenting in one View the Combination of all the Chances, that can bappen in any given Number of Times. 'Tis by the help of that Iheorem, joined with Some other Methods, that I have been able to find practical Rules for the Jolving: a great Variety of difficult Quefions, and to reduce the Difficulty to a fingle Arithmetical Multiplication, whereof Several Inflances may be jeen in the 2 If Page of this Book.

Another Method I bave made ufe of is that of Infinite Series, which in many cafes will Solve the Problems of Cbance more naturally than Combinations. To give the Reader a Notion of this, we may fuppofe two Men at Play throwing a Die, each in their Turns, and that be be to be reputed the Winner who Shall firft throw an Ace: It is plain, that the Solution of this Problem cannot fo properly be reduced to Combinations, wbich ferve chiefly to determine the proportion of Chances between the Gamefters, without any regard to the Priority of Play. 'Tis convenient therefore to bave recourfe to fome other Method, fuch as the following. Let us fuppofe that the firft Man, being willing to Compound with bis Adverfary for the Advantage be is intitled to from bis firft Ibrow, fhould ask bim what Conjideration be would allon to yield it to bim; it may naturally be fuppofed that the Anfwer would be one Sixth part of the Stake, there being but Five to One againft bim, and that this Allowance would be thought a juft Equivalent for yielding his Throw: Let us likewife Suppofe the Second Man to require in his Turn to have one Sixth part of the remaining Stake for the Confideration of his Throw; which being granted, and the firft Man's Right returning in courle, be may claim again one Sixth part of the ,Remainder, and fo on alternately, till the whole Stake be exhaufted:

Sut this not being to be done till after an infinite number of Shares be thus taken on both Sides, it belongs to the Method of Infinite Series to affign to each Man what proportion of the Stake he ought to take at firft, fo as to anjwer exactly that fititious Divifion of the Stake in infinitum; by means of which it will be found, that the Stake ought to be Divided between the contending Parties into two parts, refpectively proportional to the two Numbers 6 and 5. By the like Method it would be found that if there were Three or more Adventurers playing on the conditions above deforibed, each Man, according to the Situation he is in with refpect to Priority of Play, might take as his Due fuch part of the Siake, as is expreflible by the currefponding Term of the proportion of 6 to 5 , continued to fo many Terms as there are Gamefters; which in the cafe of Three Gamefters, for Inftance, would be the Numbers 6, 5 and $4 \frac{1}{6}$, or their Proportionals 36, 30 , and 25.

Anotber Advantage of the Method of Infinite Series is, that every Term of the Series includes Some particular Circumptance wherein the Gamefters may be found, which the otker Methods do not; and that a few of its Steps are fufficient to difcover the Law of its Procefs. The only Difficulty which atterds this Method, being that of Summing up fo many of its Terms as are requifite for the Solution of the Problem propofed: But it will be found by experience, that in the Series refulting from the confideration of mofl Cajes relating to Chance, the Ierms of it will either conflitute a Geometric Progrelfion, which by the Known Methods is eafly Summable; or elfe fome other fort of Progrefion, whole nature confifts in this, that every Term of it has to a determinate number of the preceding Terms, each being taken in order, fome conftant relation; in which cafe I bave contrived Some eafie Theorems, not only for finding the Law of that relation, but allo for finding the Sums required; as may be fees in Several places of this Book, but particularly from page 127 to page 134. I bope the Reader will excule my not giving the Demonftrations of fome few things relating to this Subject, efpecially of the two Theorems contained in page 134 and 154, and of the Method of Approximation contained in page 149 and 150 ; whereby the Duration of Play is eafily determined with the belp of a Table of Natural Sines: Thofe Demon!trations are omitted purpofely to give an occafion to the Reader to exercife his own Ingenuity. In the mean Time, I have depofited them with the Royal Society, in order to be Publifhed when it ghall be thought requifite.

PREFACE.

A Third Advantage of the Method of Infinite Series is, that the Solutions derivedfrom it have a certain. Generality and Elegancy; which fcarce any other Method cans attain to; thofe Methods being always perplexed with Various unknown Quantities, and the Solmtions obtained by them terminating commonly in particular Cajes.

There are other Sorts of Series, which tho' not properly infinite, yet are called Series, from the Regularity of the Terms whereof they are compofed; thofe Terms following one another with a certain uniformity, which is always to bedefined. Of this nature is the Theoxemgiven by Sir Ifaac Newton, in the Fifth Lemma of the third Book of his Principles, for draming a Curve through any given num. ber of Points; of which the Demonftration, as well as of other things. belonging to, the fame Subject, may be deduced from the firft Propofition of his Miethodus Differentialis, printed with fome other of his Tracts, by the care of my Intimate Friend, and very skiffuh Mathematician, Mr. W. Jones. The abovementioned Theorem being very ufeful in Summing up any number of Terms whofe laft Differences are equal (Such as are the Numbers called Trianjular, Pyramidal, \&c. the Squares, the Cubes, or other Powers of Numbers in Arithmetic Progrefflon) I bave (bewn in many places of this Book how it might be applicable to thefe Cafes. I hope it will not be taken amifs that I have afcribed the Invention of it to its proper Author, tho' 'ris polfible fome Perfons may have found Something like it by their omn Sagacity.

After baving dwelt fome time upon Various Queftions depending on: the general Principle of Combinations, as laid down in my Introduction, and upon fome others depending on the Method of Infinite Series, I proceed to treat of the Method of Combinations properly fo called, which. I fiew to be eafly deducible from that more gener al Prine ciple which hath been before explained: Where it may be obferved, that altho' the Cafes it is applyed to are particular, yet the way of reafoning, and the confequences derived from it, are general; that Method of Arguing about generals by particular Examples; being in sny upinion very convenient for eafing the Reader's Imagination.

Having explained the common Rules of Combination, and given a Theorem which may be of ufe for the Solution of Some Problems relat ing to that Subject, 1 lay down a new Theorem, whichis properly a contradtion of the former, whereby feveral Queftions of chance are refolved with wonderful eafe, tho, the Solution might feem at firft fight. to be of infuperable difficulty.

PREFACE

It is by the Help of that Theorem. fo contracted, that I have been able to give a compleat Solution of the Problems of Pharaon and Baffete, which was never done till now: I own that fome great Mathematicians have before me taken the pains of calculating the Advantage of the Banker, in any circumftance either of Cards remaining in his Hands, or of any number of times that the Card of the Ponte is caxtained in the Stock: But fill the curiofity of the Inquifitive remained unfatisfied; The Chief Queftion, and by much the moft difficult, concerning Pharaon or Baffete, being what it is that the Banker gets per Cent of all the Money advextured at thofe Games, which now I can certainly anfwer is very near Three per Cent at Pharaon, and Three fourths per Cent at Baffere, as may be Seen in my xxiii Problem, where the precije Advantage is calculated.

In the $24^{\text {th }}$ and 25 th Problems, I explain a new for of Algebra, whereby Some Queftions relating to Combinations are folved by fo eafy ${ }^{4}$ Procefs, that their folution is made in fome menaure an immediate confequence of the Method of Notation. I will not pretend to Say that this nen Algebra is abfolutely, neeceffary to the Solving of thofe Queftions which 1 make to depend on it, fince it appears by Mr. De Monmort's Book, that botb he and Mr. Nicholas Bernoully have folved, by another Method, many of the cafes therein propofed: But I hope I hall not be thought guilty of too much Conffience, if I affure the Reader, that the Method I have followed has a degree of Simplicity, not to fay of Genexality, wbich well bardly be attained by any other Steps than by thofe I bave taken.

The 2gth Problem, propofed to me, among f Some others, by the Honourable Mr. Francis Robartes, I bad folved in my Tratd De menfura Sortis; It velates, as well as the $24^{\text {th }}$ and 25 th, to the Method of Combinations, and is made to depend on the fame Principle; When I began for the firfl time to attempt its Solution, I bad nothing elfe to guide me but the common Rules of Combinations, fuch as they had been delivered by Dr. Wallis and others; which when I endeavoured to apply, I was Surprized to find that my calculation fwelled by deggrees to an Intolerable bult: : For this reasoon I was forced to turn my Views Another way; and to try whether the folution I was Jeeking for might not be deduced from Jome eafier. confiderations; whereupon I bappily fell apon the Method I have beera. mentioning, which as it led me to a very great Simplicity in the Solution, fo I look upon it to be an Improvement made to the Method of. Combinations?

The ;oth Problem is the reverfe of the preceding; It contains a very remarkable Method of Solution, the Artifice of which confafts in changing an Aritbmetic Progreffion of Numbers into a Geometric one; this being always to be done when the Numbers are large, and their Intervals fmall. I freely acknowledge that I have been indebted long aro for this ufeful Idea, to my much refpected Friend, That Excellent Mathematician Doczor Halley, Secretary to the Royal Society, whom I bave Seen practice the thing on an other occafion: For this and other Inftruftive Notions readdly imparted to me, during an uninterrupted Friend/hip of five and 7wenty years, I return bim my very hearty Thanks.

The 32d Problem, having in it a Mixture of the two Methods of Combinations and Infinite Series, may be propofed for a pattern of Solution, in Some of the mof difficult cafes that may occurr in the Subject of Cbance, and on this occafion I muft do that Guftice to Mr. Nicholas Bernoully, the Wortby Profeffour of Mathematics at Padua, to own he had jent me the Solution of this Problembefore mine was Publifbed; which I had no fooner received, but Icommunicated it to the Royal Society, and reprefented it as a Performance highly to be commended: Whereupon the Society order'd that bis Solution Sbould be Printed; which was accordingly done Some time after in the Philofophical Tranfactions, Numb. 341. where mine was alfo inferted.

The Problems which follon relate chiefly to the Duration of Play, or to the Method of determining nhat number of Games may pro. bably be played out by two Adverfaries, before a certain number of Stakes agreed on between them be woon or loft on either fide. This Subject affording a very great Variety of Curious Quefions, of which every one has a degree of Difficulty peculiar to it felf, 1 thought it heceffary to divide it into feveral difininct Problems, and to illuIrate their Solution with proper Examples.

Tho' thefe Quefions may at firt fight feem to have a very great degree of difficulty, yet I bave fome reafon to believe, that the Steps I bave taken to come at their Solution, will eafly be followed by shofe who have a competent skill in Algebra, and that the chief Method of proceeding therein will be underffood by thofe who are barely acquainted with the Elements of that Art.

When I firft began to attempt the general Solution of the Problem concerning the. Duration of Play, there was nothing ex8ant that could give me any light. into that Subjelf, for .altho․ Mr.

PREFACE.

de Monmort, in the firft Edition of his Book, gives the Solution of this Problem, as limited to three Stakes to be won or loft, and farther linited by the Suppofition of an Equality of Skill between the Adventurers; yet be having given no Demonftration of his Solution, and the Demonftration when difcovered being of very litthe ufe towards obtaining the general Solution of the Problem, I was forced to try what my own Enquiry would lead me to, which having been attended with Succefs, the refult of what I found was afterwards publifhed in my Specimen before mentioned.

All the Problems which in my Specimen related to the Duration of Play, have been kept entire in the following Treatife; but the Method of Solution has received Some Improvements by the new Difcoveries I have made concerning the Nature of thofe Series which refult from the Confideration of the Subject; bowever, the Principles of that Metbod having been laid down in my Specimen I had nothing now to do, but to draw the Conjequences that were naturally deducible from them.

Mr. de Monmort, and Mr. Nicholas Bernoully, have each of them Separately given the Solution of $m y$ xxxixth Problem, in a Method differing from mine, as may be feen in Mr. de Monmort's fecond Edition of his Book. Their Solutions, which in the main agree together, and vary little more than in the form of Expreffion, are extreamly beautiful; for which reafon I thought the Reader would be well pleafed to fie their Method explained by me, in fuch a manner as might be apprehended by thofe who are not fo well werfed in the nature of Symbols: In which matter I have taken Some Pains, thereby to teftify to the World the juft Value I bave for tbeir Performance.

The 43d Problem baving been propojed to me by Mr. Thomas Woodcock, a Gentleman whom I infinitely refpect, I attempted its Solution with a very great defire of obtaining it; and having bad the good Fortune to fucceed in it, I returned bim the Solution a few Days after he was pleafed to propofe it. This Problem is in my Opinion one of the moft curious that can be propos'd on this Subject; its Solution containing the Method of determining, not only that Advantage which refults. from a Superiority of Chance, in a Play confined to a certain number of Stakes to be won or loft by either Party, but alfo that which may refult from an unequality of Stakes; and even compares thofe two Advantages together, when the Odds of Clance being on one fide, the Odds of Money are on the other.

Before I make an end of this Difcourfe, I think my felf obliged to take Notice, that Some Years after my Specimen was printed, there came out a Tract upon the Subject of Chance, being a Pofthumous Work of Mr. James Bernoully, wherein the Author has Shewn a great deal of Skill and Fudgment, and perfectly anfwered the Character and great Reputation be hath So jufly obtained. I wifh I were capable of carring on a Project be had begun, of applying the Doctrine of Chances to Oeconomical and Political UJes, to which I bave been invited, together with Mr de Monmort, by Mr. Nicholas Bernoully : I heartily thank that Gentleman for the good Opinion be bas of me; but I willingly refign my flare of that Task into better Hands, wiJbing that either be himjelf would profecute that Defign, be having formerly publifhed Some fuccefsful Eflays of that Kind, or that bis Uncle, Mr. John Bernoully, Brother to the Deceafed, could be prevailed upon to beftow forne of his Thoughts upon it; be being known to be perfectly well qualified in all Refpects for Juch an Undertaking.

Due Care having been taken to avoid the Errata of the Prefs, we hope there are no other than thefe two,

$$
V I Z
$$

Pag. 35. Lin. 35. for $n-3$ read $n-1$. Pag. 36. Lin. 2. for $n-3$ read $n-2$.

Thè

The DOCTRINE
 OF
 CHANCES.

INTRODUCTION.

HE Probability of an Event is greater, or lefs, according to the number of Chances by which it may Happen, compar'd with the number of all the Chances, by which it may either Happen or Fail.
Thus, If an Event has 3 Chances to Happen, and 2 to Fail ; the Probability of its Happening may be eftimated to be $\frac{3}{5}$, and the Probability of its Failing $\frac{2}{5}$.

Therefore, if the Probability of Happening and Failing are added together, the Surn will always be equal to Unity.

If the Probabilities of Happening and Failing are unequal, there is what is commonly calld Odds for, or againit, the Happening or Failing; which Odds are proportional to the number of Chances for Happening or Failing.

The Expectation of obtaining any Thing, is eftimated by the Value of that Thing multiplied by the Probability of obtaining it.

Thus, Suppoling that A and B Play together; that A has depofited $5 l$, and $B 3 l$; that the number of Chances which A has to win is 4 , and that the number of Chances which B has to win is 2 : Since the whole Sum depofited is 8 , and that the Probability which A has of getting it, is $\frac{4}{6}$; it follows, that the Expectation of A upon the whole Sum depofited will be $\frac{8}{1} \times \frac{4}{6}=5 \frac{1}{3}$; and for the fame reafon, the Expectation of B will be $\frac{8}{1} \times \frac{2}{6}=2 \frac{2}{3}$.

The Risk of lofing any Thing, is eftimated by the Value of that Thing multiplied by the Probability of loning it.

If from the refpective Expectations, which the Gamefters have upon the whole Sum depofited ; the particular Sums they depofit, that is their own Stakes, be fubtracted, there will remain the Gain, if the difference is politive, or the Lofs, if the difference is negative.

Thus, If from $5 \frac{11}{3}$ the Expectation of $A, 5$ which is his own Stake be fubtracted, there will remain $\frac{1}{3}$ for his Gain; likewife if from $2 \frac{1}{3}$ the Expectation of $B, 3$ which is his own Stake be fubtracted, there will remain - $\frac{1}{3}$ for his Gain, or $\frac{1}{3}$ for his Lofs.

Again, If from the refpective Expectations, which either Gamefter has upon the Sum depofited by his Adverfary, the Risk of lofing what he himfelf depofits, be fubtracted, there will likewife remain his Gain or Lofs.

Thus, In the preceding Cafe, the Stake of B being 3, and the Probability which A has of winning it being $\frac{4}{6}$, the Expectation of A upon that Stake is $\frac{3}{5} \times \frac{4}{6}=\frac{12}{6}=2$. Moreover the Stake of A being 5, and the Probability of lofing it being $\frac{2}{6}$, the Risk which A runs of lofing his own Stake is $\frac{5}{1} \times \frac{2}{6}=\frac{10}{6}=1 \frac{2}{3}$. Therefore, if from the

The Doctrine of Chances.

Expectation 2, the Risk $1 \frac{2}{3}$, be fubtracted, there will remain $\frac{1}{3}$, as before, for the Gain of A; and by the fame way of arguing, the Lofs of B will be found to be $\frac{1}{3}$.
N. B. Tho' the Gain of one is the Lofs of the other, yet it will be convenient to look for them feverally, that one Operation may be a Proof of the other.

If there is a certain number of Chances by which the poffeffion of a Sum can be fecur'd; and allo a certain number of Chances by which it may be loft; that Sum may be Infured for that part of it, which fhall be to the whole, as the number of Chances there is to lofe it, to the number of all the Chances.

Thus, If there are I9 Chances to fecure the poffeffion of 1000%, and I Chance to lofe it, the Infurance Money may be found by this Proportion.

As 20 is to 1 , fo is 1000 to 50 ; therefore 50 is the Sum that ought to be given, in this Cafe, to Infure 1000.

If two Events have no dependence on each other, fo that p be the number of Chances by which the firlt may Happen, and q the number of Chances by which it may Pail; and likewife that r be the number of Chances by which the fecond may Happen, and s the number of Chances by which it may Fail: Multiply $p+q$ by $r+s$, and the Product $p r+q r+p s+q s$ will contain all the Chances, by which the Happening, or Failing of the Events may be varied amongit one another.

Therefore, If A and B Play together, on condition that if both Events Happen, A thall win, and B lofe ; the Odds that A thall be the winner, are as $p r$ to $q r+p s+q s$; for the: only Term in which both p and r occur is $p r$; therefore the Probability of $A^{\prime} s$ winning is $\frac{p r}{p r+q r+p^{\prime}+q s}$.

But if A holds that either one or the other will Happen: the Odds of A 's winning are as $p r+q r+p s$ to $q s$; for fome of the Chances that are favourable to A, occur in every one of the Terms $p r, q r, p s$.

Again, If A holds that the firft will Happen, and the fecond Fail; the Odds are as ps to pr $+q r+q s_{0}$.

From what has been faid, it follows, that if a Fraction expreffes the Probability of an Event, and another Fraction the Probability of another Event, and thofe two Evients are independent ; the Probability that both thofe Events will Happen, will be the Product of thofe two Fractions.

Thus, Suppofe I have two Wagers depending, in the firft of which I have 3 to 2 the beft of the Lay, and in the fecond 7 to 4 , what is the Probability I win borh Wagers?

The Probability of winning the firlt is $\frac{3}{5}$, that is the number of Chances I have to win, divided by the number of all the Chances; the Probability of winning the fecond is $\frac{7}{11}$: Therefore multiplying thefe two Fractions together, the Product will be $\frac{21}{55}$, which is the Probability of winning both Wagers. Now this Fraction being fubtracted from I, the remainder is $\frac{34}{55}$, which is the Probability I do not win both Wagers: Therefore the Odds againft me are 34 to 21.
2° If I would know what the Probability is of winning the firft, and lofing the fecond, I argue thus; The Probability of winning the firft is $\frac{3}{5}$, the Probability of lofing the fecond is $\frac{4}{11}$: Therefore multiplying $\frac{3}{5}$ by $\frac{4}{11}$, the Product $\frac{12}{55}$ will be the Probability of my winning the firt, and lofing the fecond; which being fubtracted from \mathbf{I}, there will remain $\frac{43}{55}$, which is the Probability I do not win the firft, and at the fame time lofe the fecond.
3° If I would know what the Probability is of winning the fecond, and at the fame time lofing the firt; I fay thus, the Probability of winning the fecond is $\frac{7}{11}$, the Probability of lofing the firft is $\frac{2}{5}$. Therefore multiplying thefe two Fractions together, the Product $\frac{f_{4}}{59}$ is the Probability I win the fecond, and alfo lofe the firtt.
4° If I would know what the Probability is of lofing both Wagers; I fay, the Probability of lofing the firft is $\frac{2}{5}$, and the Probability of lofing the fecond $\frac{4}{11}$; therefore the Yrrobability of lofing them both is $\frac{8}{55}$, which being fubtracted from $\mathbf{1}$, there remains $\frac{47}{\frac{4}{5}}$; therefore the Odds againft lofing both Wagers is 47 to 8 .

This way of reafoning is plain, and is of very great extent, being applicable to the Happening or Failing of as many Events as may fall under confideration. Thus, if I would know what the Probability is of mifing an Ace 4 times together with a common Die, I confider the mifling of the Ace 4 times, as the Failing of 4 different Events; now the Probability of miffing the firtt is $\frac{5}{6}$, the Probability of miffing the fecond is alfo $\frac{5}{6}$, the third $\frac{5}{6}$, the fourth $\frac{5}{6}$; therefore the Probability of miffing the Ace 4 times together is $\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}=\frac{625}{1226}$; which being fubtracted from 1 , there will remain $\frac{675}{1296}$ for the Probability of throwing it once or oftner in 4 times; therefore the Odds of throwing an Ace in 4 times is 671 to 625 .
But if the flinging of an Ace was undertaken in 3 times, 'tis plain that the Probability of miffing it 3 times would be $\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}=\frac{125}{216}$, which being fubtracted from I , there will remain $\frac{91}{216}$ for the Probability of throwing it once or oftere in 3 times; therefore the Odds againft throwing it in 3 times are 125 to 9 I .

Again, fuppofe we wou'd know the Probability of throw. ing an Ace once in 4 throws and no more: Since the Probability of throwing it the firft time is $\frac{1}{6}$, and the Probability of mifling it the other three times is $\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}$, it follows that the Probability of throwing it the firt time, and miffing it afterwards three times fucceeffively, is $\frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}$ $=\frac{125}{12296}$; but becaufe it is poffible to hit it in every throw as well as the firt, it follows, that the Probability of throwing it once in 4 throws, and miffing the other three times, is. $\frac{4 \times 125}{12266}=\frac{\text { en }}{12450}$; which being fubtracted from I, there will remain $\frac{7 \% 5}{1255}$ for the Probability of not throwing it once and no more in 4 times; therefore if one undertakes to throw an Ace occe and no more in 4 times, he has 500 to 796 the wor't of the Lay, or 5 to 8 very near.

Suppofe two Events are fuch, that one of them las trice as many Chances to come up as the other; what is the Probabio lity that the Event which has the greater number of Cimnees to come up, does not Happen twice before the othice Hf Piens once; which is the Cafe of Aliuging Seven with two Dice, Le-
fore four once ; fince the number of Chances are as 2 to I, the Probability of the firft Happening before the fecond is $\frac{2}{3}$, but the Probability of its Happening twice before it, is but $\frac{2}{3} \times \frac{2}{3}$ or $\frac{4}{9}$; therefore 'tis 5 to 4 , Seven does not come up ${ }^{\mathbf{t}}$ wice, before Four once.

But if it was demanded what mult be the proportion of the Facilities of the coming up of two Events, to make that which has the moft Chances, to come up twice, before the other comes up once; the anfwer is 12 to 5 very near, (and this proportion may be determined yet with greater exactnefs) for if the proportion of the Chances is $\mathbf{1 2}$ to 5 , it follows, that the Probability of throwing the firt before the fecond is $\frac{12}{17}$, and the Probability of throwing it twice, is $\frac{12}{17} \times \frac{12}{17}$ or $\frac{144}{289}$; therefore the Probability of not doing it is $\frac{145}{259} ;$ therefore the Odds againft it are as 145 to 144 , which comes very near a proportion of Equality.

What we have faid hitherto concerning two or more Events, relates only to thofe which have no dependency on each other; as for thofe that have a dependency, the manner of arguing about them will be a little alter'd : But to know in what the nature of this dependency confifts, I fhall propofe the two following eafy Problems.

Suppofe there is a heap of 13 Cards of one colour, and another heap of 13 Cards of another colour; what is the Probability, that taking one Card at a venture out of each heap, I fhall take out the two Aces ?

The Probability of taking the Ace out of the firf heap is $\frac{1}{13}$, the Probability of taking the Ace out of the fecond is alfo $\frac{1}{13}$; therefore the Probability of taking out both Aces is $\frac{1}{13} \times \frac{1}{13}$ $=\frac{7}{169}$, which being fubtracted from I , there will remain $\frac{168^{3}}{169}$, therefore the Odds againft me are 168 to $\mathbf{1}$.
But fuppofe that out of one fingle heap of I_{3} Cards of one colour, I hoould undertake to take out, firft the Ace, fecondly the Two; tho' the Probability of taking out the Ace be $\frac{1}{13}$, and the Probability of taking out the Two be likewife $\frac{1}{13}$, yet the Ace being fuppofed as taken out a'ready, there will remain only 12 Cards in the heap, which will make the Probability
of taking out the Two to be $\frac{1}{12}$, therefore the Probability of taking out the Ace, and then the Two, will be $\frac{1}{13} \times \frac{1}{12}$. And upon this way of reafoning may the whole Doctrine of Combinations be grounded, as will be fhewn in its place.
It is plain that in this laft Queftion, the two Events propofed have on each other a dependency of Order, which dependency confifts in this, that one of the Events being fuppofed as having Happened, the Probability of the other's Happening is thereby alter'd; whereas in the firlt Queftion, the taking of the Ace out of the firft heap does not alter the Probability of taking the Ace out of the fecond ; therefore the Independency of Events confifts in this, that the Happening of one does not alter the degree of Probability of the other's Happening.

We have feen already how to determine the Probability of the Happening of as many Events as may be affigned, and the Failing of as many others as may be affigned likewife, when thofe Events are independent: We have feen alfo how to determine the Happening of two Events, or as many as may be affigned when they are Dependent.

But how to determine in the cafe of Events dependent, the Happening of as many as may be affigned, and at the fame time the Failing of as many as may likewife be affigned, is a difquifition of a higher nature, and will be fhewn afterwards.

If the Events in queftion are n in number, and are fuch as have the fame number a of Chances by which they may Happen, and likewife the fame number b of Chances by which they may Fail, raife $a+b$ to the Power n.

And if A and B play together, on condirion that if either one or more of the Events in queftion do Happen, A fhall win, and B lofe; the Probability of A^{\prime} 's wiuning will be $\frac{\overline{a+b^{n}}-b^{n}}{\overline{a+b^{n}}}$, and that of B 's winning will be $\frac{b^{a}}{a+b n^{n}}$; for when $a+b$ is actually raifed to the Power n, the only Term in which a does not occur is the laft b^{n}; therefore all the Terms but the laft are favourable to A.

Thus, if $n=3$; raifing $a+b$ to the Cube $a^{3}+3 a a b+3 a b b+b^{3}$. all the Tums but b^{3}, will be favourable to A; and therefore
the Probability of A 's winning will be $\frac{a s+3 a b+5+3}{a+b^{3}}$ or $\frac{\overline{a+b} 3-b^{3}}{\overline{a+b} 3}$; and the Probability of $B^{3} s$ winning will be $\frac{b^{3}}{a+b^{3}}$: But if A and B play, on condition that if either two or more of the Events in queftion do Happen, A fhall win; but in cafe one only Happens or none, B fhall win; the Probability of $A^{\prime} s$ winning will be $\frac{\overline{a+b} n-n a b^{n-1}-b^{n}}{\overline{a+b^{n}}}$; for the only two Terms in which aa does nor occur are the two laft, viz, $n a b^{n-1}$ and b^{n}. And fo of the reft.

The

The Solution of Several forts of Problems; deduced from the Rules laid down in the Introduction.

PROBLEM I.

Uppofe A to bold a fingle Die, and to lay with B , that in 8 throws be fball fing Two Aces or more: What is his Probability of winning, or what are the Oda's for or againgt hins?

S OLUTION.

BEcaufe theie is one fingle Chance for A, and five againit him, let a be made $=1$, and $b=5$; again becaufe the number of throws is 8 , let n be made $=8$, and the Probability of A^{\prime} s winning will be $\frac{\overline{a+b}^{n}-b^{n}-n a b^{n-1}}{a^{12}}=\frac{663991}{1679616}$ Therefore the Probability of his lofing will be $\frac{1015625}{16796166}$, and the Odds againft him will be as 10156.25 to 663991 , or as 3 to 2 , very near.

PROBLEM II.

TWO Men A and B playing a Set together, in each Game of the Set the number of Chances which A bas to win is 3, and the number of Chances which B has to win is 2: Now after Some Games are over, A wants. 4 Games of being up, and B.6: It is required in this circumftance to determine the Probabilities which, either bas of winning the Set.

SOLUTION.

BEcaure A wants 4 Games of being up, and $B 6$; it follows, that the Set will be ended in 9 Games at molt, which is the fum of the Games wanting between
them; therefore let $a+b$ be raifed to the 9 th Power, viz. $a^{9}+9 a^{8} b+36 a^{7} b b+84 a^{a^{6}} b^{3}+126 a^{5} b^{4}+126 a^{4} b^{5}+84^{3} b^{6}+$ $3^{6 \pi a b 7}+9 a b^{8}+b^{9}$; take for A all the Terms in which a has 4 or more dimenfions, and for B all the Terms in which b has 6 or more dimenfions; and the Proportion of the Odds will be, as $a^{9}+9 a^{8} b+36 a^{7} b b+84 a^{6} b^{3}+126 a^{5} b^{4}+126 a^{4} b 5$, to $84 a^{3} b^{6}+36 a a b^{7}+9 a b^{8}+b^{9}$. Let now a be expounded by 3 , and b by 2 ; and the Odds that A wins the Set will be found as 1759077 to 194048 , or very near as 9 to 1.

And generally, fuppofing that p and q are the number of Games refpectively wanting; raife $a+b$ to the Power $p+q-I$, then take for A, a number of Terms equal to q, and for B, a number of Terms equal to p.

REMARKS.

1. In this Problem, if inftead of fuppofing that the Chances which the Gamefters have each time to get a Game are in the proportion of a to b, we fuppofe the Skill of the Gamefters to be in that proportion, the Solution of the Problem will be the fame: We may compare the Skill of the Gamefters to the number of Chances they have to win. Whether the number of Chances which A and B have of getting a Game, are in a certain Proportion, or whether their Skill be in that proportion, is the fame thing.
2. The preceding Problem might be folved without Algebra, by the bare help of the Arithmetical Principles which we have laid down in the Introduction, but the method will be longer: Yet for the fake of thofe who are not acquainted with Algebraical computation, I fhall fet down the Method of proceeding in like cafes.

In order to which, it is neceffary to know, that when a Queftion feems fomewhat difficult, it will be ufeful to folve at firft a Queftion of the like nature, that has a greater degree of fimplicity than the cafe propofed in the Queftion given; the Solution of which cafe being obtained, it will be a ftep to afcend to a cafe a little more compounded, till at laft the cafe propofed may be attained to.

Therefore, to begin with the fimpleft cafe, we may fuppofe that A wants 1 Game of being up, and B_{2}; and that
the number of Chances to win a Grame are equal ; in which cafe the Odds that A will be up before B, may be determined as follows.

Since B wants 2 Games of being up and $A \mathbf{x}$, 'tis plain that B mult beat A twice together to win; but the Probability of his beating him once is $\frac{1}{2}$, therefore the Probability of his beating him twice together is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$; fubtract $\frac{1}{4}$ from 1 , there remains $\frac{2}{4}$, which is the Probability which A has of winning once before B twice, therefore the Odds are as 3 to I .

By the fame way of arguing 'rwill be found, that if A wants 1 , and B_{3}, the Odds will be as 7 to 1 , and the Probability of winning, $\frac{7}{8}$ and $\frac{1}{8}$ refpectively. If A wants I , and $B 4$, the Odds will be as 15 to $\mathrm{I}, \& \mathrm{c}$.

Again, fuppofe A wants 2, and B 3, what are the Odds that A is up before B ?

Let the whole Stake depofited between A and B be \mathbf{I}; now confider that if B wins the firt Game, B and A will have an equality of Chances, in which cafe the Expectation of B will be $\frac{1}{2}$; but the Probability of his winning the firf Game is $\frac{1}{2}$, therefore the Expectation of B upon the Stake, arifing from the Probability of beating A the firf time, will be $-\frac{1}{2} \times-\frac{1}{2}=\frac{1}{4}$.

But if B lofes the firft Game, then he will want 3 of being up, and A but 1 ; in which cafe the Expectation of B will be $\frac{1}{8}$, but the Probability of that circumftance is $\frac{1}{2}$, therefore the Expectation of B arifing from the Probability of his lofing the filf time is $\frac{1}{2} \times \frac{1}{8}=\frac{1}{16}$.

Therefore the Expectation of B upon the Stake 1, will be $\frac{1}{4}+\frac{1}{16}=\frac{5}{16}$, which being fubtracted from 1 , there remains $\frac{11}{16}$ for the Expectation of A; therefore the Odds are as 11 to 5 .

And thus proceeding gradually, it will be ealy to compofe the following Table.

A TABLE of the ODDS for any number of Games wanting, from 1 to 6 .

And by the fame way of proceeding, it would be eafy to compofe other Tables, for expreffing the Probabilities which A and B have of winning the Set, when each wants a given number of Games of being up, and when the proportion of the Chances

Chances by which each of them may get a Game is as 2 to $\mathbf{1}$, or varies at pleafure ; but the Algebraic method explained in this Problem anfwering all that variety, 'cis needlefs to infift upon it.

PROBLEM III.

IF A and B play with Songle Bonsls, and Such be the Skill of A that he knows by Experience be can give B 2 Games out of 3: What is the proportion of their Skill, or what are the Odds that A. may get any one Gams affrgned?

SOLUTION.

LET the proportion of the Odds be as \approx to I: Now fince A can give $B 2$ Games out of 3 , therefore A can, upon an equality of Play, undertake to win 3 Games together: Let therefore $z+1$ be raifed to the Cube, viz. $z^{3}+3 z z+3 z+1$; therefore the Probabilities of winning will be, as z^{3} to $3 z z+$ $3 z+1$; but thefe Probabilities are equal, by fuppolition; therefore $z^{3}=3 z z+3 z+1$, or $2 z^{3}=z^{3}+3 z z+3 z+1$. and extracting the Cube Root on both fides, $z \sqrt[3]{2}=z+1$; therefore $z=\frac{1}{\sqrt[3]{2}-1}$, and confequently the Odds that A may get any one Game affigned are as $\frac{1}{\sqrt[3]{2}-1}$ to I, or as I to $\sqrt[3]{2}-1$, that is in this cafe as 50 to 13 very near.

PROBLEM IV.

IF A can without advantage or dijadvantage give B I Game out of 3 ; what are the Odds that A fall take any one Game afligned? Or what is the proportion of the Chances they have to win any one Game affgned? Or what is the proporioin of their Skill ?

SOLUTION.

LET the proportion be as z to \mathbf{x}; now fince A can give B I Game out of 3 ; therefore A can, upon an equality of Play, undertake to get 3 Games before B gets 2 ; let thereE

14

 The Doctrine of Chances.fore $z+r$ be raifed to the 4 th Power, whofe Index 4 is the Sum of the Games wanting between them lefs by \mathbf{I}; this Power will be $z^{4}+4 z^{3}+6 z z+4 z+1$; therefore the Probabilities of winning the Set will be as $z^{4}+4 z^{3}$ to $6 z z+4 z+1$: But thefe Probabilities are equal by Hypothefis, fince A and B are fuppofed to play without advantage or difadvantage; therefore $z^{4}+4 z 3=6 z z+4 z+1$, which Equation being folved, z will be found to be 1.6 very near; wherefore the proportion of the Odds will be as 1.6 to 1 , or as 8 to 5 .

PROBLEM V.

T0 find in how many Trials an Event will Probably Happen, or how many Trials will be requifite to make it indifferent to lay on its Happening or Failing; fuppofing that a is the number of Chances for its Happening in any one 'Irial, and b the number of Chances for its Failing.

SOLUTION.

LE T x be the number of Trials; therefore by what has been already demonftrated in the Introduction $\overline{a+b} b^{x}-b^{x}=b^{x}$, or $\bar{a}^{x}=2 b^{x}$; therefore $x=\frac{\log 2}{\log : a+b-\log : b}$.
Moreover, let us reaffume the Equation $\overline{a+b})^{x}=2 b^{x}$ and making $a, b:: \mathbf{1}, q$, the Equation will be changed into this $\overline{1+\frac{n}{q}}{ }^{*}=2$: let therefore $x+\frac{1}{q}$ be raifed actually to the Power x by Sir IJaac Newton's Theorem, and the Equation will be $1+\frac{x}{q}+\frac{x \times x-1}{1 \times 2 q q}+\frac{x \times x-1 \times x-2}{1 \times 2 \times 3 q^{3}} \& c_{0}=2$. In this $\mathrm{E}-$ quation, if $q=\mathrm{I}$, then will x be likewife $=\mathrm{I}$; if q be infinite, then will x alfo be infinite. Suppofe q infinite, then the Equation will be reduced to $1+\frac{*}{q}+\frac{x x}{2 q 9}+\frac{x^{3}}{6 q 9} \& c_{0}=2:$ But the firft part of this Equation is the number whofe HyperbolicLogarithm is $\frac{x}{q}$, therefore $\frac{\pi}{q}=$ Log: 2: But the Hyperbolic Logarithm of 2 is 0.693 or nearly 0.7; Wherefore $\frac{x}{q}=$. 0.7 , and $x=0.79$ very near.

Thus we have affigned the very narrow limits within which the Ratio of x to q is comprehended; for it begins with
with Unity, and terminates at laft in the Ratio of 10 to 7 , very near.

But x foon Converges to the limit 0.79 , fo that this proportion may be affumed in all cafes, let the Value of q be what it will.

Some ufes of this Propofition will appear by the following. Examples.

EXAMPLEI.

LET it be propofed to find in how many Throws one may undertake, with an equality of Chance, to fling two Aces with two Dice.

The number of Chances upon two Dice is 36 , out of which there is but I Chance for two Aces; therefore the number of Chances againft it is 215 : Multiply 35 by 0.7 , and the product 24.5 will fhew that the number of Throws: requifite to that effect will be between 24 and 25 .

EXAMPLE II.

TO find in how many Throws of three Dice, one may undertake to fing three Aces.
The number of all the Chances upon 3 . Dice is 216 ; out of which there is but 1 Chance for 3 . Aces, and 215 againt it. Therefore let 215 be multiplied by 0.7 , and the product 150.5 will fhew that the number of Chances requifite to that effect will be 150 , or very near it.

EXAMPLE III.

IN a Lottery whereof the number of Blanks is to the number of Prizes as 39 to 1 , (fuch as was the Lottery of 1710 ;) To find how many Tickets one muft take, to make it an equal Chance for one or more Prizes.
Multiply 39 by 0.7 , and the product 27.3 will fhow that the number of Tickets requifite to that effect will be 27 , or 28 at moft.

Likewife, in a Lottery whereof the number of Blanks is to the number of Prizes; as 5 to 1 , multiply 5 by 0.7 and the
product 3.5 will fhow, that there is more than an equality of Chance in 4 Tickets for one or more Prizes, but fomething lefs, than an equality in 3 .

REMARK.

- In a Lottery whereof the Blanks are to the Prizes as 39 to I, if the number of Tickets in all was but 40 , this proportion would be altered, for 20 Tickets would be a fufficient number for the Expectation of the fingle Prize; it being evident that the Prize may be as well among the Tickets which are taken as among thofe that are left behind.

Again, if the number of Tickets was 80 , fill preferving the proportion of 39 Blanks to I Prize, and confequently fuppofing 78 Blanks to 2 Prizes, this proportion would ftill be altered: For by the Doctrine of Combinations, whereof we are to treat afterwards, it will appear that the Probability of taking one Prize or both in 20 Tickets would be but $\frac{139}{316}$, and the Probability of taking none would be $\frac{177}{316}$; Wherefore the Odds againft taking any Prize wou'd be as 177 to 139, or very near as 9 to 7 .

And by the fame Doctrine of Combinations it will be found that 23 Tickets would not be quite fufficient for the Expectation of a Prize in this Lottery; but that 24 would rather be two many; fo that one might with advantage lay an even Wager of taking a Prize in 24 Tickets.

If the proportion of 39 to 1 be ofner repeated, the number of Tickets requifite tor a Prize will ftill increafe with that repetition : Yet let the proportion of 39 to I be repeated never fo many times, nay an infinite number of times, the number of Tickets requifite for a Prize will never exceed $\frac{7}{10}$ of 39 , that is about 27 or 28.

Therefore if the proportion of the Blanks to the Prizes be often repeated, as it ufually is in Lotteries; the number of Tickets requifite for one Prize or more, will always be found by raking $\frac{7}{10}$ of the proportion of the Blanks to the Prizes.

LEMMA.

TO fird how many Chances there are upon any number of Dice, each of them of the fame given number of Faces, to throw any given number of Points.

SOLUTION.

LET $p+1$ be the number of Points given, n the number of Dice, f the number of Faces in each Die: Make $p-f=q ; q-f=r ; r-f=s ; s-f=t$ \&c. and the number of Chances will be

$$
\begin{aligned}
& +\frac{p}{2} \times \frac{p-1}{2} \times \frac{p-2}{3} \& c . \\
& -\frac{q}{2} \times \frac{q-1}{2} \times \frac{q-2}{3} \& c_{1} \times \frac{n}{2} \\
& +\frac{r}{2} \times \frac{r-1}{2} \times \frac{r-2}{3} \& c_{1} \times \frac{n}{2} \times \frac{n-1}{2} \\
& -\frac{s}{3} \times \frac{s-1}{2} \times \frac{s-2}{3} \text { \&.c. } \times \frac{n}{3} \times \frac{n-1}{2} \times \frac{n-s}{3} \\
& +\& c .
\end{aligned}
$$

which Series ought to be continued till fome of the Factors in each Product become either $=0$, or Negative.
N. B. So many Factors are to be taken in each of the Products $\frac{p}{2} \times \frac{p-1}{2} \times \frac{p-2}{3} \& c . \frac{q}{3} \times \frac{q-1}{2} \times \frac{q-2}{3} \& x c$. as there are Units in $n-1$.

Thus, for Example, let it be required to find how many Chances there are for throwing Sixteen Points with Four Dice.

$$
\begin{array}{ll}
+\frac{15}{1} \times \frac{14}{2} \times \frac{13}{3} & =+455 \\
-\frac{9}{1} \times \frac{8}{2} \times \frac{7}{3} \times \frac{4}{1} & =-336 \\
+\frac{3}{1} \times \frac{2}{2} \times \frac{1}{3} \times \frac{4}{1} \times \frac{3}{2} & =+6
\end{array}
$$

But $455-336+6=125$; therefore One Hundred and Twenty Five is the number of Chances required.

18

 The Doctrine of Chances.Again, let it be required to find the number of Chances for throwing feven and Twenty Points with Six Dice.

$$
\begin{array}{ll}
+\frac{26}{1} \times \frac{25}{2} \times \frac{24}{3} \times \frac{23}{4} \times \frac{22}{5} & =+65780 \\
-\frac{19}{1} \times \frac{18}{2} \times \frac{17}{3} \times \frac{16}{4} \times \frac{15}{5} \times \frac{6}{1} & =-93204 \\
+\frac{13}{1} \times \frac{12}{2} \times \frac{11}{3} \times \frac{10}{4} \times \frac{9}{5} \times \frac{6}{1} \times \frac{5}{2} & =+30030 \\
-\frac{8}{5} \times \frac{7}{2} \times \frac{6}{3} \times \frac{5}{4} \times \frac{4}{3} \times \frac{6}{1} \times \frac{5}{2} \times \frac{4}{3} & =-1120
\end{array}
$$

Therefore $65780-93204+30030-1120=1666$ is the number required.

Lct it be required to find the number of Chances for throwing Fifteen Points with Six Dice.

$$
\begin{array}{ll}
+\frac{14}{1} \times \frac{13}{2} \times \frac{12}{3} \times \frac{11}{4} \times \frac{10}{5} & =+2002 \\
-\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3} \times \frac{5}{4} \times \frac{4}{5} \times \frac{6}{1} & =-336
\end{array}
$$

But $2002-336=1666$, which is the number required.

Corol. All the Points equally diftant from the extreams, that is, from the leaft and greateft number of Points that are upon the Dice, have the fame number of Chances by which they may be produced; wherefore if the number of Points given be nearer to the greater Extream than to the lefs, let the number of Points given be fubtracted from the fum of the Extreams, and work with the remainder, and the Operation will be fhorten'd.

Thus, if it be required to find the number of Chances for throwing 27 Points with 6 Dice: Let 27 be fubtracted from 42 the fum of the Extreams 6 and 36, and the Remainder being 15, it may be concluded that the number of Chances for throwing ${ }_{2} 7$ Points is the fame as for throwing 15.

Let it now be required to find in how many throws of 6 Dice one may undertake to throw 15 Points.
The number of Chances for throwing 15 Points being 1666; and the number of Chances for Failing being 44990; divide 44990 by 1666 , the Quotient will be 27 ; Multiply 27

The Doctrine of Chances.
by 0.7 , and the Product 18.9 will fhew that the number of throws requifite to that effect is very near 19 .

PROBLEM VI.

TO find bow many Trials are neceffary to make it Probable, that an Event will Happen twice, Juppofing that a is the number of Chances for its Happening at any one Trial, and b the number of Chances for its Falling.

SOLU̇TION.

LET x be the number of Trials: Therefore by what has been already Demonftrated, it will appear that $\overline{a+b^{x}}=2 b^{x}+2 a x b^{x-1}$; or making $a, b::: 1, q ; 1+\frac{\mathrm{n}}{}_{x}^{q}=$ $2+\frac{2 x}{q}$. Now if q be fuppofed $=1, x$ will be found $=3 ;$ and if q be fuppofed infinite, and alfo $\frac{x}{q}=z$, we Shall have $z=\log : 2+\log : 1+z$; in which Equation the value of z will be found $=\mathbf{I} .678$ very nearly. Therefore the value of x will always be between the Limits $3 q$ and $1.678 q$. But x will foon converge to the laft of thefe Limits; therefore if x be not very fmall, it may in all cafes be fuppofed $=1.678 \%$ Yet if there be any Sufpicion that the Value of x thus taken is too little, fubftitute this Value in the Original Equation $1+\frac{1}{q}{ }^{x}=2+\frac{2 x}{q}$, and note that Errour. If it be worth taking notice of, then-increafe a little the value of x, and fubftitute again this new value in the room of x in the aforefaid Equation; and noting the new Errour, the value of x may be fufficiently corrected by applying the Rule which the Arithmeticians call double Falfe Pofition.

EXAMPLEI.

TO find in how many throws of Three Dice one may undertake to throw Three Aces twice.
The number of all the Chances upon Three Dice being $21 \sigma_{2}$ out of which there is but one Chance for Three Aces, and 215 againft it ; Multiply 215 by 1.678 , and the Product 360.7 will fhew that the number of throws requifite to that effect will be 360 or very near it.

EXAMPLE II.

TO find in how many throws of Six Dice one may undertake to throw Fifteen Points twice.
The number of Chances for throwing Fifteen Points is 1666 , the number of Chances for Miffing 44990; let 44990 be divided by 1666 , the Quotient will be 27 very near: Wherefore the proportion of Chances for Throwing and Miffing Fifteen Points are as 1 to 27 refpectively; Multiply 27 by 1.678 , and the Product 45.3 will fhew that the number of throws sequifite to that effect will be 45 nearly.

E X A MPLE III.

IN a Lottery whereof the number of Blanks is to the number of Prizes as 39 to 1: To find how many Tickets mult be taken, to make it as Probable that two or more Be nefits will be taken as not.

Multiply 3.9 by 1.678 , and the Product 65.4 will fhew that no lefs chan 65 Tickets will be requifite to that effect ; tho 0^{2} one might undertake upon an Equality of Chance to have one at lealt in 28.

PROBLEM VII.

T0 find how many Trials are neceffary to make it Probable that an Event will. Happen Three, Four, Five, \&c. times; fuppofing that a is the number of Chances for its Happening in any one Trial, and b the number of Chances for its Failing.

SOLUTION.

IET x be the number of Trials requifite, then fuppofing, as before $a, b:: 1, q$, we fhall have the Equation $1+\frac{n}{9}{ }^{x}=2 \times 1+\frac{x}{9}+\frac{x}{1} \times \frac{x-1}{299}$, in the cafe of the triple Event; or $1+\frac{1}{9} x=\frac{x}{2 \times 1+\frac{x}{4}+\frac{x}{1} \times \frac{x-1}{29 q}+\frac{x}{1} \times \frac{x-1}{2} \times \frac{x-2}{3 q 9},}$ in the cafe of the quadruple Event: And the Law of the continuation of thefe Equations is manifeft. Now in the firf Equation if q be fuppofed $=1$, then will x be $=5$. If q be fup.
fuppofed infinite or pretty large in refpect to Unity; then the aforefaid Equation, making $\frac{x}{g}=z$, will be changed into this, $z=\log .2+\log .1+z+\frac{1}{2} z z$; wherein z will be found nearly $=2.675$. Wherefore x will always be between $5 q$ and $2.675 q$.

Likewife in the fecond Equation, if q be fuppofed $=\mathrm{r}$, then will x be $=79$; but if x be fuppofed infinite, or pretty large in refpect to Unity, then $z=$ Log. $2+$ Log. $1+z+\frac{1}{2} z z+\frac{1}{6} z^{3}$; whence z will be found nearly $=3.6719$; Wherefore x will be between $7 q$ and $3.6719 q$.

If thefe Equations were continued, it would be found that the Limits of z converge continually to the proportion of two to one.

A TABLE of the Limits.
The Value of x will always be
For a fingle Event, between $1 q$ and 0.693%.
For a double Event, between $3 q$ and $1.678 q$.
For a triple Event, between $5 q$ and 2.6759 . For a quadruple Event, between 79 and 3.6729 . For a quintuple Event, between 99 and 4.670 q . For a fextuple Event, between $11 q$ and 5.668 q .
If the number of Events contended for, as well as the number q be pretty large in refpect to Unity; the number of Trials requifite for thofe Events to Happen n times, will be $\frac{2 n-1}{2} q$ or barely $n q$.

PROBLEM VIII.

THree Gamefters A, B, C, play together on this condition, that be fhall win the Set who bas fooneft got a certain number of Games; the proportion of the Chances which each of them bas to get any one Game affigned, or, which is the fame thing, the proportion of their Skill, being refpectively as a, b, c. Now after they have played fome time, they find themfelves in this circumPance, that A wants One Game of being up, B Two Games, and C Three; the whole Stake between them being fuppofed I: What is the Expectation of each?

SOLUTION.

IN the Circumftance the Gamefters are in, the Set will be ended in Four Games at moft; let therefore $a+b+c$ be raifed to the fourth Power, and it will be $a^{4}+4 a^{3} b+6 a a b b+4 a b^{3}$ $+b^{+}+4 a^{3} c+12 a a b c+4 b^{3} c+6 a a c c+12 a b c c+6 b b c c$ $+4 a c^{3}+12 a c b b+4 b c^{3}+c^{4}$.
The Terms $a^{4}+4 a^{3} b+4 a^{3} c+6 a a c c+12 a a b c+12 a b c c$, wherein the Dimenfions of a are equal to or greater than the number of Games which A wants, wherein alfo the Dimenfions of b and c are lefs than the number of Games which B and C want refpectively, are intirely Favourable to A, and are part of the Numerator of his Expectation.
In the fatne manner the Terms $b^{4}+4 b^{b^{3} c}+66 b c c$ are intirely Favourable to B.
And likewife the Terms $46 c^{3}+c^{4}$ are intirely Favourable to C.

The reft of the Terms are common, as Favouring partly one of the Gamefters, partly one or both of the other: Wherefore thefe Terms are fo to be divided into their parts, that the parts Favouring each Gamefter may be added to his Expectation.

Take therefore all the Terms which are common, viz. $6 a a b b+4^{a b 3}+12 a b c c+4 a c^{3}$, and divide them actually into their parts; that is I°. $6 a a b b$ into $a a b b, a b a b, a b b a, b a a b$, baba, bbaa. Out of thefe Six parts, one part only, viz. bbaa will be found to Favour B, for 'tis only in this Term that two Dimenfions of b are placed before one fingle Dimenfion of a, and therefore the other Five parts belong to A; let therefore 5 aabb be added to the Expectation of A, and $1 a a b b$ to the Expectation of $B .2^{\circ}$ Divide $4 a b^{3}$ into its parts, $a b b b, b a b b, b b a b, b b b a$. Of thefe parts there are two belonging to A, and the other two to B; let therefore $2 a b 3$ be added to the Expectation of each. 3° Divide r 2 abb c into its parts; and eight of them will be found Favourable to A, and four to B; let therefore $8 a b b c$ be added to the Expectation of A, and $4 a b b c$ to the Expectation of B. 4° Divide $4^{a c^{3}}$ into its parts, three of which will be found Favourable to A, and one to C; Add therefore $3 a c^{3}$ to the Expectation of A, and $1 a c^{3}$ to the Expe?tation of C. Hence the Numerators of the feveral Expectations of A, B, C, will be refpectively.

1. $a^{4}+4 a^{3} b+4 a^{3} c+6 a a c c+12 a a b c+12 a b c c+5 a a b b+2 a b^{3}$. $+8 a b b c+3 a c^{3}$.
2. $b_{4}+4 b^{3} c+6 b b c c+1 a a b b+2 a b^{3}+4 a b c c$.
3. $4 b c^{3}+1 c^{4}+1 a c^{3}$.

The common Denominator of all their Expectations being $\overline{a+b+c}{ }^{4}$.

Therefore if a, b, c are in a proportion of equality, the: Odds of winning will be refpectively as $57,18,6$.

If n be the number of all the Games that are wanting, p the number of the Gamefters, $a, b, c, d, \& x c$. the proportion of the Chances which each Gamefter has refpectively to win any one Game affigned; let $a+b+c+d \& c$. be raifed to the Power $n+1-p$, then proceed as before.

PROBLEM IX.

TWWO Gamefters, A and B , each having 12 Counters, play: with three Dice, on condition, that if 11 Points come up, B. Sall give one Counter to A; if 14, A ball give one Countore to B ; and that he Jall be the winner who Jball jooneft get all the Counters of his adverfary: What are the Probabilities that each of them has of winning?

SOLUTION.

LE T the number of Counters which each of them have be $=p$; and let a and b be the number of Chances they: have refpectively for getting a Counter each caft of the Dice: I fay that the Probabilities of winning are refpectively as a? to b^{p}; or becaufe in this cafe $p=12, a=27, b=15$ as 27^{12}. to 15^{12}, or as 9^{12} to 5^{12}, or as 28242953648 r 10244 140625; which is the proportion affigned by M. Huygens, but without any Demonftration :

Or more generally.
Let p be the number of the Counters of A, and q the number of the Counters of B; and let the proportiois of the Chances be as a to b. I fay that the proportions of the Probabilities which A has to get all the Counters of his adverfary. will be as $\overline{a^{q} \times a^{p}-b^{p}}$ to $b^{p} \overline{\times a^{q}-b^{q}}$.

DEMON.

DEMONSTRATION.

LET it be fuppofed that A has the Counters $E, F, G, H \& c$. whofe number is p, and that B has the Counters I, K, L $\& \%$. whofe number is q : Moreover let it be fuppofed that the Counters are the thing play'd for, and that the Value of each of them is to the Value of the following as a to b, in fucli a manner that the laft Counter of A to the firft Counter of B, be Itill in that proportion. This being fuppofed, A and B, in every circumftance of their Play, may lay down two fuch Counters as may be proportional to the number of Chances each has to get a fingle Counter; for in the beginning of the Play A may lay down the Counter H which is the loweft of his Counters, and B the Counter I which is his higheft ; but $H, I:: a, b$, therefore A and B play upon equal Terms. If A win of B, then A may lay down the Counter I which he has juft got of his adverfary, and B the Counter K; but $I, K:: a, b$, therefore A and B fill play upon equal Terms. But if A lofe the firft time, then A may lay down the Counter G, and B the Counter H, which he but now got of his adverfary; but $G, H:$: a, b, and therefore they ftill Play upon equal Terms as before. So that as long as they Play together, they Play without advantage, or difadvantage, and confequently the Probabilities of winning are reciprocal to the Sums which they expect to win, that is, are proportional to the Sums they refpectively have before the Play begins. Whence the Probability which A has of winning all the Counters of B, is to the Probability which B has of winning all the Counters of A, as the Sum of the Terms E, F, G, H whofe number is p, to the Sum of the Terms I, \mathcal{R}, L whofe number is q; that is, as $a^{q} \overline{\times a^{p}-b^{p}}$ to $b^{p} \overline{x^{q}-b^{q}}$: As will eafily appear if thofe Terms which are in Geometric Progreffion are actually fummed up by the known methods. Now the Probabilities of winning are not influenced by the fuppofition here made, of each Counter being to the following in the proportion of a to b; and therefore when thofe Counters are fuppofed of equal Value, or rather of no Value, but ferve only to mark the number of Stakes won or loft on either fide, the Probabilities of winning will be the fame as we have affigned.

R E-

REMARKI.

IF p and q, or either of them are large numbers, 'twill be convenient to work by Logarithms.
Thus, If A and B play a Guinea a Stake, and the number of Chances which A has to win each fingle Stake be 43, but the number of Chances which B has to win it be 40 ; and they oblige themfelves to play till fuch time as 100 Stakes are won and loft.

From the Logarithm of $43=1.6334685$
Subtract the Logarithm of $40=1.6020600$
Difference $=0.031408 \mathrm{~s}$
Multiply this Difference by the number of Stakes to be play'd off, viz. 100; the Product will be 3.1048500 , to which anfwers, in the Tables of Logarithms, the number 1383 ; wherefore the Odds that A dhall win before B are 1383 to 1 .

Now in all circumftances wherein A and B venture an equal Sum; the fum of the numbers exprefling the Odds, is to their difference, as the Money play'd for, is to the Gain of the one, and the Lofs of the other.

Therefore Multiplying $\mathbf{1 3 8 2}$, difference of the numbers expreffing the Odds, by 100 , which is the fum ventured by each Man, and dividing the product by 1384 fum of the numbers expreffing the Odds; the Quotient will be 99 Guineas, and about $8^{\text {sh. }}-42^{\frac{I}{d}}$, which confequently is to be eftimated as the Gain of A.

REMARK II.

IF the number of Stakes which are to be won and loft be unequal, but the number of Chances to win and lofe be equal; the Probabilities of winning will be reciprocally proportional to the number of Stakes to be won.

Thus, If A ventures Ten Stakes to win One; the Odds that he wins One before he lofes Ten will be as 10 to 1 .

But ten Chances to win One, and One Chance to lofe ten, makes the Play perfectly equalo

Therefore he that ventures many Stakes to win but few, has by it neither advantage nor difadvantage.

PROBLEM X.

TWO Gamefters, A and B lay by 24 Counters, and play with Three Dice, on this condition; that if I I Points come up, A Sall take one Counter out of the heap; if 14, B Jball take out one, and be Jball be reputed to win, who fhall jooneft get 12 Counters. What are the Probabilities of their winning?

This Problem differs from the preceding in this, that the play will be at an end in 23 Cafts of the Dice at moft, (that is of thofe Cafts which are favourable either to A or $B:$) Whereas in the preceding cafe, the Counters paffing continually from one Hand to the other, it will often Happen that A and B will be in fome of the fame circumftances they were in before, which will make the length of the play unlimited.

SOLUTION.

TAking a and b in the proportion of the Chances that there are to throw II and I4, let $a+b$ be raifed to the $23 d$ Power, that is to fuch Power as is denoted by the number of all the Counters wanting one: Then fhall the 12 firft Terms of that Power be to the 12 laft in the fame proportion as are the refpective Probabilities of winning.

PROBLEM XI.

T^{\prime}Hree Perfons A, B, C out of a heap of iz Counters, whereof four are White and Eight Black, draw blindfold one Counter at a time in this manner; A begins to draw; B follows A; C follows B; then A begins again; and they continue to draw in the fame order, till one of them, who is to be reputed to win, araws the firgt White one. What are the Probabilities of their winning?

SOLUTION.

LET n be the number of all the Counters, a the number of White ones, b the number of Black ones; and I the whole Stake or the fum play'd for.
I° Since A has a Chances for a White Counter, and b Chances for a Black one, it follows that the Probability of his winning is $\frac{a}{a+b}$ or $\frac{\alpha}{n}$; Therefore the Expectation he has upon the Stake I arifing from the circumftance he is in when he begins to draw is $\frac{a}{n} \times 1=\frac{a}{n}$. Let it therefore be agreed amongft the adventurers that A fhall have no Chance for a White Counter, but that he fhall be reputed to have had a Black one, which thall actually be taken out of the heap, and that he fhall have the fum $\frac{a}{n}$ paid him out of the Stake for an Equivalent. Now $\frac{a}{n}$ being taken out of the Stake, there will remain $\mathrm{I}-\frac{a}{n}=\frac{n-a}{n}=\frac{b}{n}$.
2° Since B has a Chances for a White Counter, and that thie number: of remaining Counters is $n-1$, his Probability of winning will be $\frac{a}{n-1}$. Whence his Expectation upon the remaining Stake $\frac{b}{n}$, arifing from the circumftance he is now in, will be $\frac{a b}{n \times n-1^{\circ}}$. Suppofe it therefore agreed that B. fhall have the fum $\frac{a b}{n \times n-1}$ paid him out of the Stake, and that a Black Counter be likewife taken out of the heap. This being done; the remaining Stake will be $\frac{b}{n}-\frac{a b}{n \times n-1}$; or $\frac{n b-b-a b}{n \times n-1}$; but: $n b-a b=b b$; Wherefore the remaining Sake is $\frac{b \times b-1}{n \times n-i}$.
3° Since C has a Chances for a White Counter, and that the number of remaining Counters is $n-2$, his Probability of winning will be $\frac{a}{n-2}$: And therefore his Expectation upon the remaining Stake, arifing from the circumftance-he is now in, will be $\frac{b \times b-1 \times a}{n \times n-1 \times n-2}$ which we will likewife fuppofe to be paid him out of the Stake.
$4^{\circ} A$ may have out of the remainder $\frac{b \times b-1 \times b-2 \times a}{n \times n-1 \times n-2 \times n-3} j$ and fo of the reft till the whole Stake be exhaufted.

There

Therefore having written the following general Series, viz: $\frac{6}{n}+\frac{b}{n-1} \mathrm{P}+\frac{b-1}{n-2} \mathrm{Q}+\frac{b-2}{n-3} \mathrm{R}+\frac{b-3}{n-4} \mathrm{~S}$ \&c. wherein P, Q, R, $\mathrm{S} \& \mathrm{c}$. denote the preceding Terms, take as many Terms of this Series as there are Units in $b+\mathbf{1}$, (for fince b reprefents the number of Black Counters, the number of drawings cannot exceed $b+1$) then take for A the firt, fourth, feventh \&c. Terms; for B take the fecond, fifth, eighth $\& c$. Terms; for C the third, fixth \&c. and the fums of thofe Terms will be the refpective Expectations of A, B, C; or becaufe the Stake is fix'd, thefe fums will be proportional to their refpective Probabilities of winning.

Now to apply this to the prefent cafe, make $n=12$, $a=4, b=8$, and the general Series will become $\frac{4}{12}+\frac{8}{11} \mathrm{P}+\frac{7}{10} \mathrm{Q}+\frac{6}{9} \mathrm{R}+\frac{5}{8} \mathrm{~S}+\frac{4}{7} \mathrm{~T}+\frac{3}{6} \mathrm{~V}+\frac{2}{5} \mathrm{X}$ $+\frac{1}{4} \mathrm{Y}$: Or multiplying the whole by 495, to take away the Fractions, the Series will be $165+120+84+56+35+20+10+4+1$.

Therefore affign to $A 165+56+10=231$; to $B 120$ $+35+4=159$; to $C 84+20+1=105$, and their Probabilities of winning will be as $2 \dot{3} 1,159,105$, or as $77,53,35$.

If there be never fo many Gamefters $A, B, C, D \& c$. whether they take every one of them one Counter or more; or whether the fame or a different number of Counters; the Probabilities of winning may be determined by the fame general Series.

REMARKI.

THE preceding Series may in any particular cafe be floorten'd; for if a is $=1$, then the Series will be $\frac{1}{n} \times 1+1+1+1+1+1+1$ \&c.

Hence it may be obferved, that if the whole number of Counters be exactly divifible by the number of perfons concerned in the Play, and that there be but one fingle White Counter in the whole, there will be no advantage or difadvantage to any one of them from the fituation he is in, in refpect to the order of drawing.

If $a=2$, then the Series will be
$\frac{2}{n \times n-1} \times \overline{\overline{n-1}}+\overline{n-2}+\overline{n-3}+\overline{n-4}+n-5 ~ \& c: ~$
If $a=3$. then the Series will be
$\frac{3}{n \times n-1 \times n-2} \times \overline{\overline{n-1} \times \overline{n-2}+\overline{n-2} \times \overline{n-3}+\overline{n-3 \times n-4} \text { \&c: }}$
If $a=4$. then the Series will be
$\overline{n \times n-1 \times n-2 \times n-3} \times \overline{n-1 \times \overline{n-2} \times \overline{n-3}+\overline{n-2} \times \overline{n-3} \times n-4} 8 \mathrm{cc}$.
Wherefore rejecting the common Multiplicators; the feveral Terms of thefe Series taken in due order will be Proportional to the feveral Expectations of any number of Gamefters. Thus in the cafe of this Problem where n is $=12$, and $a=b$; the Terms of the Series will be

Hence it follows, that the Probabilities of winning will be refpectively as $1386,954,630$; or dividing all by 18 , as 77 , 53,35 , as had been before determined.

REMARK II.

BUT if the Terms of the Series are many, it will be convenient to fum them up, by means of the following method, whofe Demonitration may be had from the Methodus Differentialis of Sir Ifaac Newton, printed in his Analy/s.
Subtract every Term, but the firft, from every following Term, and let the remainders be called firl Differences; fubtract in like manner every firft difference from the following, and let the remainders be called fecond Differences; fubtract again every one of thefe fecond differences from that which follows, and call the remainders third Differences; and fo on, zill the laft differences become equal. Let the firft Term be called a, the fecond b; the firf of the firft differences \ddot{a}^{\prime}, the
firtt of the fecond differences $d^{\prime \prime}$, the firlt of the third differences $d^{\prime \prime \prime} \& c$. and let the number of Terms which foilow the firft be x, then will the fum of all thofe 'Terms be

$$
\begin{aligned}
& a+x b+\frac{x}{3} \times \frac{x-1}{2} d^{\prime}+\frac{x}{3} \times \frac{x-1}{2} \times \frac{x-2}{3} d^{\prime \prime}+ \\
& \frac{x}{3} \times \frac{x-1}{2} \times \frac{x-2}{3} \times \frac{x-3}{4} d^{\prime \prime \prime} \& x .
\end{aligned}
$$

N. B. If the numbers whofe fums are to be taken are the Products of two numbers, the fecond differences will be equal; if they are the Products of three, the third differences will be equal, and fo on. Therefore the number of Terms, which are to be taken after the firft, is to exceed only by Unity the number of Factors that enter the compofition of every Term.

It may alfo be oblerved, that if thofe numbers are decreafing, it will be convenient to invert their order, and make that the firft which was the laft.

Thus, fuppofing the number of all the Counters to be 100, and the number of White ones 4 : Then the number of all the Terms belonging to A, B, C will be 97 , the laft of which $3 \times 2 \times 1$ will belong to A, fince 97 being divided by 3 , the remainder is \mathbf{x}. Therefore beginning from the loweft Term $3 \times 2 \times 1$, and taking every third Term, as alfo the differences of thofe Terms, we fhall have the following Scheme

From whence the Values of $a, b, d^{\prime}, d^{\prime \prime}, d^{\prime \prime \prime}$, in the general Theorem, will be found to be refpectively $6,120,3^{8} 4$, 432,162 ; and confequently the fum of all thofe Terms will

$$
\begin{aligned}
& 6+x \times 120+\frac{x}{1} \times \frac{x-1}{2} \times 3^{84}+\frac{x}{1} \times \frac{x-1}{2} \times \frac{x-2}{3} \times 432 \\
& + \\
& \frac{x}{1} \times \frac{x-1}{2} \times \frac{x-2}{3} \times \frac{x-3}{4} \times 162, \text { or } \\
& \quad 6+31 \frac{1}{2} x+50 \frac{1}{4} \times x+31 \frac{1}{2} x^{3}+6 \frac{3}{4} \times 4, \quad \text { or } \\
& \\
& \frac{3}{4} \times \overline{\overline{x+1} \times \overline{x+2} \times 3 x+1 \times \overline{3 x+4}}
\end{aligned}
$$

In like manner it will be found, that the fum of all the Terms which belong to B, the laft of which is $5 \times 4 \times 3$ is

$$
\frac{3}{4} \times \overline{\overline{x+1} \times x+2} \times \overline{3 x+5} \times 3 x+8 .
$$

And alfo that the fum of all the Terms belonging to C, the laft of which is $4 \times 3 \times 2$, is

$$
\frac{3}{4} \times \overline{\overline{x+1} \times x+2 \times \overline{9 x x+27 x+16}}
$$

Now x in each cafe reprefents the number of Terms wanting one, which belong feverally to A, B, C; wherefore making $x+1=p$, their feveral Expectations will be refpective ly proportional to

$$
\begin{aligned}
& p \times \overline{p+1} \times \overline{3 p-2} \times \overline{3 p+1} \\
& p \times \frac{p+1}{p+1} \times \frac{3 p+2}{3 p+9 p-5} \\
& p \times \frac{p+1}{9 p+9 p-2}
\end{aligned}
$$

Again, the number of all the Terms which belong to them all being 97 , and A being to take firft, it follows, that p in the firt cafe is $=33$, in the other two $=32$.

Therefore the feveral Expectations of A, B, C will be refpectively proportional to $41225,39592,38008$.

If the number of all the Counters were 500 , and the number of the White ones ftill 4 ; then the number of all the Terms reprefenting the Expectations of A, B, C would be 497 . Now this number being divided by 3 , the Quotient is 165 , and the Remainder 2 : From whence it follows, that the laft Term $3 \times_{2} X_{1}$ will belong to B, the laft but one $4 \times_{3} \times_{2}$ to A, and the laft but two to C; it follows allo, that for B, and A, p mult be interpreted by 166 , but for C by 165 .

The GAME of BASSETE.

$R \cup L E S$ of the PLAY.

TH E Dealer, otherwife called the Banker, holds a Pack of 52 Cards, and having fhuffled them, he turns the whole Pack at once, fo as to difcover the laft Card; after which he lays down by Couples all the Cards.
The Setter, otherwife called the Ponte, has 13 Cards in his hand, one of every fort, from the King to the Ace, which ${ }_{13}$ Cards are called a Book; out of this Book he takes one Card or more at pleafure, upon which he lays a Stake.

The Ponte may at his choice, either lay down his Stake before the Pack is turned, or immediately after it is turned; or after any number of Couples are drawn.

The firt cafe being particular fhall be calculated by it felf; but the other two are comprehended under the fame Rules.

Suppofing the Ponte to lay down his Stake after the Pack is turned, I call $\mathrm{r}, 2,3,4,5$ \&c. the places of thofe Cards which follow the Card in view, either immediately after the Pack is turned, or after any number of Couples are drawn.

If the Card upon which the Ponte has laid a Stake comes out in any odd place, except the firft, he wins a Stake equal so his own.

If the Card upon which the Ponte has laid a Stake comes out in any even place except the fecond, he lofes his Srake.

If the Card of the Ponte comes out in the firlt place, he neither wins nor lofes, but takes his own Stake again.

If the Card of the Ponte comes out in the fecond place, he does not lofe his whole Stake, but only a part of it, viz, a half; which to make the calculation more general we will call γ. In this cafe the Ponte is faid to be Faced.

When the Ponte chufes to come in after any number of Couples are down ; if his Card happens to be but once in the Pack, and is the very laft of all, there is an exception from the general Rule : for tho it comes out in an odd place which fhould intitle him to win a Stake equal to his own, yet he neither wins nor lofes from that circumftance, but takes back his own Stake.

PROBLEM XII.

-OO Eftimate at Baffete the lofs of the Ponte under any ciro cumftances of Cards remaining in the Stock, when he lays his Stake, and of any number of times that bis Card is repeated in it.

The Solution of this Problem containing Four Cafes, wiz. of the Ponts Card being once, twice, three or four times in the Stock; we will give the Solution of all thefe Cafes feverally.

S OL U TION of the firf Cafe.

THe Ponte has the following Chances to win or lofe, according to the place his Card is in.

I	I	Chance for winning	o
2	I	Chance for lofing	y
3	I	Chance for winning	I
4	I	Chance for lofing	I
5	I	Chance for winning	I
6	I	Chance for lofing	I
*	I	Chance for winning	0

It appears by this Scheme that he has as many Chances to win I as to lofe I , and that there are two Chances for neither winning nor lofing, viz. the firft and laft, and therefore that his only Lofs is upon account of his being Faced: From which 'ris plain that the number of Cards covered by that which is in view being called n, his Lofs will be $\frac{y}{n}$, or $\frac{1}{2 n}$ fuppofing $y=\frac{1}{2}$.

SOLUTION of the fecond Cafe.
By the firft Remark belonging to the XIth Problem it appears that the Chances which the Ponte has to win or lofe are proportional to the numbers, $n-1, n-2, n-3$ \&c. Therefore his Chances for winning and lofing may be expreffed by the following Scheme.

Now fetting afide the firft and fecond number of Chances, it will be found that the difference between the $3 d$ and $4^{t h}$ is $=1$, and that the difference between the 5 th and $6 t h$ is $=\mathbf{1}$. The difference between the 7 th and 8 th alfo is $=1$, and fo on. But the number of differences is $\frac{n-3}{2}$, and the fum of all the Chances is $\frac{n}{1} \times \frac{n-1}{2}$. Wherefore the Gain of the Ponte is $\frac{n-3}{n \times n-1}$; but his Lofs upon account of the Face is $\overline{n-2} \times y$ divided by $\frac{n}{1} \times \frac{n-1}{2}$, or $\frac{\overline{2 n-4} \times y}{n \times n-1}$: Hence it may be concluded that his Lofs upon the whole is
$\frac{2 \overline{n-4} \times y-\overline{n-2}}{n \times n-1}$, or $\frac{1}{n \times n-1}$ fuppofing $y=\frac{1}{2}$.
That the number of Differences is $\frac{n-3}{2}$ will be made evident from two confiderations.

Firft, the Series $n-3, n-4, n-5$ \& $\&$ c. decreafes in Arithmetic Progreffion, the difference of its Terms being Unity, and the laft Term al!o Unity, therefore the number of its Terms is equal to the firt Term $n-3$: But the number of Differences is one half of the number of Terms, therefore the number of Differences will be $\frac{n-3}{2}$.

Secondly, It appears by the XIth Problem, that the number of all the Terms including the two firft is always $b+\mathbf{1}$; But b in this cafe is $=2$. Therefore the number of all the Terms is $n-1$, from which excluding the two firft, the number of remaining Terms will be $n-3$, and confequently the number of Differences will be $\frac{n-3}{2}$.

That the fum of all the Terms is $\frac{n}{3} \times \frac{n-1}{2}$, is evident alfo from two different confiderations.

Firf,

Firft, In any Arithmetic Progreffion whereof the firft Term is $n-1$, the difference Unity, and the laft Term alfo Unity, the fum of the Progreffion will be $\frac{n}{1} \times \frac{n-1}{2}$.

Secondly, the Series $\frac{2}{n \times n-1} \times \overline{\overline{n-1}+\overline{n-2}+\overline{n-3}} \& c$. belonging to the preceding Problem, expreffes the fum of the Probabilities of winning, which belong to the feveral Gamefters in the cafe of two White Counters, when the number of all the Counters is n. It therefore expreffes likewife the fum of the Probabilities of winning, which belong to the Ponte or Banker in the prefent cafe: But this fum mult always be equal to Unity, it being a certainty that the Ponte or Banker muft win; fuppofing therefore that $n-1, n-2$, $n-3 \& c$. is $=S$. we fhall have the Equation $\frac{2 s}{u \times n-1}=1$. Therefore $S=\frac{n}{1} \times \frac{n-r}{2}$.

SOLUTION of the third Cafe.

By the firf Remark of the XIth Problem it appears that. the Chances which the Ponte has to win and lofe, may be expreffed by the following Scheme.

| 1 | $n-1 \times n-2$ for winning | 0 |
| :---: | :---: | :---: | :---: |
| 2 | $n-2 \times n-3$ for lofing | y |
| 3 | $n-3 \times n-4$ for winning | 1 |
| 4 | $n-4 \times n-5$ for lofing | 1 |
| 5 | $n-5 \times n-6$ for winning | 1 |
| 6 | $n-6 \times n-7$ for lofing | 1 |
| 7 | $n-7 \times n-8$ for winning | 1 |
| 8 | $n-8 \times n-9$ for lofing | 1 |
| $*$ | $2 \times \quad$ I for winning | 1 |

Setting afide the firft, fecond and laft number of Chances; it will be found that the difference between the 3^{d} and $4^{\text {th }}$ is $2 n-8$; the difference between the 5 th and 6 th $2 n-12$, the difference between the 7 th and 8 th $2 n-16 . \& \mathrm{c}$. Now thefe differences conftitute an Arithmetic Progreffion, wherce of the firft Term is $2 n-8$, the common difference 4 , and the laft Term 6 , being the difference between 4×3 and 3×2 。 Wherefore the fum of this Progreffion is $\frac{n-3}{1} \times \frac{n-5}{2}$, to which adding the laft Term $2 \times \mathrm{I}$, which is favourable to the Ponte

Ponte, the fum total will be $\frac{n-3}{1} \times \frac{n-3}{2}$. But the fum of all the Chances is $\frac{n}{1} \times \frac{n-1}{1} \times \frac{n-3}{3}$; as may be concluded from the firt Remark of the preceding Problem: Therefore the Gain of the Ponte is $\frac{3 \times n-3 \times n-3}{2 \times n \times n-1 \times n-2}$. But his Lofs upon account of the Face is $\frac{6 \times \overline{n-2} \times \overline{n-3} \times y}{2 \times n \times n-1 \times n-2}$. Confequently his Lofs upon the whole will be $\frac{6 \times \overline{n-2} \times \overline{n-3} \times y-3 \times \overline{n-3} \times \overline{n-3}}{2 \times n \times n-1 \times n-2}$ or $\frac{3 n-9}{2 \times n \times n-1 \times n-22}$ Suppofing $y=\frac{1}{2}$.

SOLUTION of the fourth Cafe.

The Chances of the Ponte may be expreffed by the foilowing Scheme.

1	$n-1 \times n-2 \times n-3$	for winning	0
2	$n-2 \times n-3 \times n-4$	for lofing	y
3	$n-3 \times n-4 \times n-5$	for winning	1
4	$n-4 \times n-5 \times n-6$	for lofing	1
5	$n-5 \times n-6 \times n-7$	for winning	1
6	$n-6 \times n-7 \times n-8$ for lofing	1	
7	$n-7 \times n-8 \times n-9$	for winning	1
$*$	$3 \times 2 \times \quad 1$	for lofing	1

Setring afide the firft and fecond numbers of Chances, and taking the differences between the 3^{d} and $4^{t h}, 5^{t h}$ and 6 th; 7 th and 8 th, the laft of thefe differences will be found to be 18 . Now if the number of thefe differences be p, and we begin from the laft 18, their fum, from the fecond Remark of the preceding Problem, will be collected to be $p \times p+1 \times 4 p+5$: And the number p in this cafe being $\frac{n-5}{2}$, the fum of thefe differences will be $\frac{n-5}{2} \times \frac{n-3}{2} \times \frac{2 n-5}{1}$. But the fum of all the Chances is $\frac{n}{2} \times \frac{n-1}{3} \times \frac{n-2}{1} \times \frac{n-3}{4}$; wherefore the Gain of the Ponte is $\frac{n-5 \times n-3 \times 2 n-5}{n \times n-1 \times n-2 \times n-3}$; now his Lols upon account of the Face is $\frac{n-2 \times n-3 \times n-4 \times 4 y}{n \times n-1 \times n-2 \times n-3}$ and therefore his Lofs upon the whole is $\frac{4 \times \overline{n-2} \times \overline{n-4} \times y-\overline{n-5} \times 2 \overline{n-5}}{n \times n-1 \times n-2}$ or $\frac{3 n-9}{n \times n-1 \times n-2}$, making $y=\frac{1}{2}$.

There fill remains the fingle Cafe to be confidered, viz. what the Lofs of the Ponte is, when he lays a Stake before the Pack is turned up ; but there will be no difficulty in it after what we have faid, the difference between this Cafe and the reft being only that he may be Faced by the firt Card difcovered, which will make his Lofs to be $\frac{3 n-6}{n \times n-1 \times n-3}$, that is, about $\frac{1}{866}$ part of his Stake.
Thofe who are defirous to try, by a kind of Mechanical Operation, the truth of the Rules which have been given for determining the Lofs of the Ponte in any Cafe, may do it in the following manner. Suppofe for Inftance it were required to find the Lofs of the Ponte when his Card is twice in the Stock, and there are five Cards remaining in the hands of the Banker befide the Card in View. Let them be difpofed according to this Scheme.

1,	2,	3,	4,	5
$*$	$*$	$*$	\vdots	\vdots
$*$	\vdots	\vdots	$*$	\vdots
$*$	\vdots	$*$	\vdots	\vdots
\vdots	$*$	\vdots	$*$	\vdots
\vdots	\vdots	$*$	$*$	$*$
\vdots	\vdots	$*$	$*$	$*$

Where the places filled with Afterifos fhew all the Various Pofitions which the Ponte's Card may obtain; it is evident that the Ponte has four Chances for neicher winning nor lofing, three Chances for the Face or for lofing $\frac{1}{2}$, two Chances for winning 1, and one Chance for lofing I ; and confequently that his Lofs is $\frac{1}{2}$ to be diftributed into 10 parts, the number of all the Chances being ro, which will make his Lofs to be $\frac{1}{20}$. Likewife if the number of Cards that are covered by the firlt were feven, it would be found that the Ponte would have fix Chances for neither winning nor lofing, five Chances for the Face, four Chances for winning I, three Chances for lofing I, two Chances again for winning \mathbf{I}, and one Chance for lofing \mathbf{r}, which would make his Lofs to be $\frac{1}{42}$. And the like may be done for any other Cafe whatfoever.

From what has been faid, a Table may eafily be compofed, fhewing the feveral Loffes of the Ponte in whatever circumftance he may happen to be.

A TABLE for BASSETE.

N	1	2	3	4
52	* * *	* * *	* * *	866
51	* **	* * *	1735	867
49	98	2352	1602	801
47	94	2162	1474	737
45	90	1980	1351	675
43	86	1806	1234	617
41	82	1640	1122	561
39	78	1482	1015	507
37	74	1332	914	457
35	70	1190	818	409
33	66	1056	727	363
31	62	930	642	321
29	58	812	562	281
27	54	702	487	243
25	50	600	418	209
23	46	506	354	177
21	42	420	295	147
19	38	342	242	121
17	34	272	194	97
15	30	210	151	75
13	26	156	114	57
11	22	110	82	41
9	18	72	56	28
7	14	42	35	17

The Ufe of this Table will be beft explained by one or two Examples.

Exam-

EXAMPLE I .

TET it be propofed to find the Lofs of the Ponte when there are 26 Cards remaining in the Stock, and his Card is twice in it.

In the Column N find the number 25 , which is lefs by one than the number of Cards remaining in the Stock: Over againft it, and under the number 2 , which is at the head of the fecond Column, you will find 600 ; which is the Denominator of a Fraction whofe Numerator is Unity, and which flews that his Lofs in that circumftance is one part in-fix hundred of his Stake.

EXAMPLE II.

TO find the Lofs of the Ponte when there is eight Cards remaining in the Stock, and his Card is three times in it.
In the Column N find the number 7 , lefs by one than the number of Cards remaining in the Stock: Over againtt 7, and under the number 3 in the third Column, you will find 35 ; which denotes that his Lofs is one part in thirty five of his Stake.

Corollary I. 'Tis plain from the conftruction of the Table, that the fewer Cards are in the Stock, the greater is the Lofs of the Ponte.

Corollary II. The leaft Lofs of the Ponte, under the fame circumftances of Cards remaining in the Stock, is when his Card is but twice in it; the next greater when three times; fill greater when four times, but his greateft Lofs when 'tis but once.

If the Lofs upon the Face were varied, 'tis plain that in all the like circumftances, the Lofs of the Ponte would vary accordingly, but it would be eafie to compofe other Tables to anfwer that Variation, fince the quantity y, which has been affumed to reprefent that Lofs may be interpreted at pleafure. For inftance, when the Lofs upon the Face is $\frac{1}{2}$, it has been found in the Cafe of 7 Cards covered remaining in the Stock, and the Card of the Ponte being twice in it, that his Lofs would be $\frac{1}{42}$, but upon fuppofition of its being $\frac{2}{3}$, it will be found to be $\frac{4}{63}$.

The GAME of PHARAON.

THE Calculation for Pbaraon is much like the preceding, the reafonings about it being the fame; therefore I think it will be fufficient to lay down the Rules of the Play, and the Scheme of the Calculation.

R びLES of the PLAY.

Firft, The Banker holds a Pack of 52 Cards.
Secondly, He draws the Cards one after the other, laying them alternately to his right and left hand.

Thirdly, the Ponte may at his choice fet one or more Stakes upon one or more Cards either before the Banker has begun to draw the Cards, or after he has drawn any number of Couples, which are commonly called Pulls.

Fourthly, The Banker wins the Stake of the Ponte, when the Card of the Ponte comes out in an odd place on his right hand; but lofes as much to the Ponte when it comes out in an even place on his left hand.

Fifthly, The Banker wins half the Ponte's Stake, when in the fame Pull the Card of the Ponte comes out twice.

Sixthly, When the Card of the Ponte, being but once in the Stock, happens to be the laft, the Ponte neither wins nor lofes.

Seventhly, The Card of the Ponte being but twice in the Stock, and the two laft Cards happening to be his Cards, he then lofes his whole Stake.

PROBLEM XIII.

TO Find at Pharaon the Gain of the Banker, in any Circumftance of Cards remaining in the Stock, and of the number of times that the Ponte's Card is contained in it.

This Problem, containing four Cafes, that is, when the Card of the Ponte is once, twice, three or four times in the Stock; we fhall give the Solution of thefe four Cafes feverally.

SOLUTION of the firt Cafe:

The Banker has the following number of Chances for win. ning and lofing, viz.

| I | I Chance for winning | i |
| :--- | :--- | :--- | :--- |
| 2 | I Chance for lofing | I |
| 3 | I Chance for winning | I |
| 4 | I Chance for lofing | I |
| S | I Chance for winning | I |
| * | I Chance for lofing | o |

Therefore the Gain of the Banker is $\frac{1}{n}$. Suppofing n to be the number of Cards in the Stock.

SOLUTION of the fecond Cafe.

The Banker has the following Chances for winning and lofing, viz.

Therefore the Gain of the Banker is $\frac{\overline{\frac{x-2 x y}{}}+2}{n \times n-1}$, or $\frac{\frac{1}{2} n+1}{n \times n-1}$ fuppofing $y=\frac{1}{2}$.

The only thing that deferves to be explained here, is this; how it comes to pais that whereas at Baffete the firft number of Chances for winning was reprefented by $n-\mathrm{I}$, here 'ris reprefented by $n-2$. To anfwer this it muft be remember'd, that according to the Law of this Play, if the Ponte's Card comes out in an odd place, the Banker is not thereby encitled to the Ponte's whole Stake: For if it fo happens that his Card comes out again immediately after, the Banker wir's but one half of it. Therefore the number $n-1$ is divided into two parts $n-2$ and I, whereof the firlt is proportional to the Probability which the Banker has for winning the whole Stake of the Ponte ; and the fecond is proportional to the Probability of his winning the half of it.

S OLUTION of the third Cafe.

The number of Chances which the Banker has for winning, and lofing are as follow;

1	$\left\{\begin{aligned} & n-2 \times n-3 \text { Chances for winning } \\ & 2 \times n-2 \text { Chances for winning } \\ & n-2 \times n-3 \text { Chances for lofing } \end{aligned}\right.$	x y I
	$\{n-4 \times n-5$ Chances for winning	I
3	$2 \times n-4$ Chances for winning	y
4	$n-4 \times n-5$ Chances for lofing	1
	$\left\{\begin{array}{l}\text { n-6 }\end{array} \times n-7\right.$ Chances for winning	1
5	$\{2 \times n-6$ Chances for winning	y
6	$n-6 \times n-7$ Chances for lofing ${ }^{\text {d }}$	I
	-8 $\times n-9$ Chances for winning	I
	$\{2 \times n-8$ Chances for winning	y
	$2 \times$ I Chances for lofing	1

Therefore the Gain of the Banker is $\frac{3 y}{2 \times n-1}$, or $\frac{3}{4 \times n-1}$ fuppofing $y=\frac{1}{2}$.

The number of Chances for the Banker to win is divided into two parts, whereof the firf expreffes the Chances he has for winning the whole Stake of the Ponte, and the fecond for winning the half thereof.

Now for determining exactly thefe two parts, it may be confidered, that in the firlt Pull the number of Chances for the firft Card to be the Ponte's is $n-1 \times n-2$; alfo that the number of Chances for the fecond to be the Ponte's but not the firft, is $n-2 \times n-3$: Wherefore the number of Chances for the firft to be the Ponte's and not the fecond, is likewife $n-2 \times n-3$. Hence it follows, that if from the number of Chances for the firft Card to be the Ponte's, viz. from $n-1 \times n-2$ there be fubtracted the number of Chances for the firft to be the Ponte's and not the fecond, viz. $n-2 \times n-3$, there will remain the number of Chances for both firft and fecond Cards to be the Ponte's, viz. $2 \times n-2$ and fo for the reft.

SOLUTION of the fourth Cafe.

The number of Chances which the Banker has for win: ning and lofing, are as follows;

1	$\left\{\begin{aligned} & n-2 \times n-3 \times n-4 \text { Chances for winning } \\ & 3 \times n-2 \times n-3 \text { Chances for winning } \\ & n-2 \times n-3 \times n-4 \text { Chances for lofing } \end{aligned}\right.$	I
3 4	$\left\{\begin{array}{r}n-4 \times n-5 \times n-6 \text { Chances for winning } \\ 3 \times n-4 \times n-5 \text { Chances for winning }\end{array}\right.$ $n-4 \times n-5 \times n-6$ Chances for lofing	I y
5	$\left\{\begin{array}{l} n-6 \times n-7 \times n-8 \text { Chances for winning } \\ 3 \times n-6 \times n-7 \text { Chances for winning } \\ n-6 \times n-7 \times n-8 \text { Chances for lofing } \end{array}\right.$	I y I
7	$\left\{\begin{array}{l} n-8 \times n-9 \times n-10 \text { Chances for winning } \\ 3 \times n-8 \times n-9 \text { Chances for winning } \\ n-8 \times n-9 \times n-10 \text { Chances for lofing } \end{array}\right.$	I y I
	$\left\{\begin{array}{llllll} 2 & \times & 1 & \times & 0 & \text { Chances for winning } \\ 3 & \times & 2 & \times & \text { O Chances for winning } \\ 2 & x & 1 & \times & \text { o Chances for lofing } \end{array}\right.$	I

Therefore the Gain of the Banker is $\frac{2 n-5}{n-1 \times n-3} y$, or $\frac{2 n-5}{2 \times n-1 \times n-3}$ fuppofing $y=\frac{1}{2}$.

A TABLE for PHARAON.

N	I	2	3	4
52	* * *	* **	* * *	50
50	* * *	94	65	48
48	48	90	62	46
46	46	86	60	44
44	44	8.2	57	42,
42	42	78	54	40
40	40	74	52	38
38	38	70	49	36
36	36	66	46	34
34	34	62	44	32
32	32	58	41	30
30	30	54	38	28
28	28	50	36	26
26	26	46	33	24
24	24	42	30	22
22	22	38	28	20
20	20	34	25	18
18	18	30	22	16
16	16	26	20	14
14	14	22	17	12
12	12	18	14	10
10	10	14	12	8
8	8	II	9	6

The numbers of the foregoing Table, as well as thofe of the Table for Bafjete, are fufficiently exact to give at firft view an Idea of the advantage of the Banker in all circumftances: But if an abfolute daegree of exactnefs be required, it will be eafily obtained from the Rules given at the end of each Cafe.

PROBLEM XIV.

IF A, B, C throw in their turns a regular Ball, having fouso White Faces and eight Black ones; and be be to be reputed to win who Jball firft bring up one of the White Faces: It is demanded what is the proportion of their refpective Probabilities of winning?

SOLUTION.

THe method of reafoning in this Problem is exactly the fame with that which we made ufe of in the Solution of the XIth Problem : But whereas the different throws of the Ball do not diminifh the number of its Faces; in the room of the Quantities $b-1, b-2, b-3 \& c \cdot n-1, n-2, n-3 \& c$. employed in the Solution of the aforefaid Problem, we mult fubltiture b and n refpectively, and the Series belonging to that Problem will be changed into the following, viz.

$$
\frac{a}{n}+\frac{a b}{m}+\frac{a b b}{n^{3}}+\frac{a b^{3}}{n^{4}}+\frac{a b^{4}}{n^{5}}+\frac{a b^{5}}{n^{6}} \& c .
$$

which is to be continued infinitely: Then taking every third Term thereof, the refpective Expectations of A, B, C will be expreffed by the three following Series.

$$
\begin{aligned}
& \frac{a}{n}+\frac{a b^{3}}{n^{4}}+\frac{a b^{6}}{n^{7}}+\frac{a b^{9}}{n^{10}}+\frac{a b^{12}}{n^{13}} \& c_{0} \\
& \frac{a b}{m n}+\frac{a b^{4}}{n^{5}}+\frac{a b^{7}}{n^{3}}+\frac{a b^{10}}{n^{11}}+\frac{a b^{13}}{n^{14}} \& c . \\
& \frac{a b b}{n^{3}}+\frac{a b^{5}}{n^{6}}+\frac{a b^{8}}{n^{9}}+\frac{a b^{12}}{n^{12}}+\frac{a b^{4}}{n^{15}} \& c .
\end{aligned}
$$

But the Terms of which each Series is compounded are in Geometric Progreffion, and the Ratio of each Term to the following the fame in each of them; Wherefore the Sums of thefe Series are in the fame proportion as their firf Terms, viz. as $\frac{a}{n}, \frac{a b}{m n}, \frac{a b b}{n^{3}}$ or as $n n, b n, b b$; that is, in the prefent Cafe, as $144,96,64$, or as $9,6,4$. Hence the refpective Probabilities of winning will be likewife as the numbers 9 , 6, 4 .

Corollary I. If there be any other number of Gamefters $A, B, C, D \& c$. playing on the fame conditions as above. N take
take as many Terms in the Ratio of n to b as there are Gamefters, and thofe Terms will refpectively denote the feveral Expectations of each Gamefter.

Corollary II. If there be any number of Gamefters A, B, $C, D \& c$. playing on the fame conditions as above; with this difference only, that all the Faces of the Ball are mark'd by particular Figures, $1,2,3,4 \& c$. and that a certain number p of thole Faces fhall intitle A to be the winner ; and that likewife any other number of them, as $q, r, s, t \& c$. Thall refpeEtively intitle $B, C, D, E \& c$. to be winners: Make $n-p=a$, $n-q=b, n-r=c, n-s=d, n-t=e$ \&c. then in the following Series,

$$
\frac{p}{n}+\frac{q n}{n n}+\frac{r a b}{n^{3}}+\frac{s a b c}{n^{4}}+\frac{t a b c d}{n^{5}} \& c .
$$

the Terms taken in due order thall reprefent the feveral Probabilities of winning.

For if the Law of the Play be fuch, that every Man having once play'd in his turn, fhall begin again regularly in the fame manner, and that continually till fuch time as one of them wins: Then take as many Terms of the Series as there are Gamefters, and thofe Terms thall reprefent the refpective Probabilities of winning.

And if it were the Law of the Play, that every Man fhould play feveral times together, for inftance twice: Then taking for A the two firlt Terms, for B the two following, and fo on; each Couple of Terms thall reprefent their refpeEtive Probabilities of winning; obferving that now p and q are equal, as alfo r and s.

But if the Law of the Play fhould be Irregular, then you muft take for each Man as many Terms of the Series as will anfwer that Irregularity, and continue the Series till fuch time as it gives a fufficient Approximation.

Yet, if at any time the Law of the Play having been Irregular Thould afterwards recover its Regularity, the Probabilities of winning will (with the help of this Series) be determined by finite expreffions.

Thus, if it hould be the Law of the Play, that two Men A and B, having play'd irregularly for ten times together, fhould afterwards play alternately each in his turn: Diftribute the ten firt Terms of the Series between them, accord-

The Doctrine of Chances.

ing to their order of playing; and having fubtracted the fum of thofe Terms from Unity, divide the remainder of it between them, in the proportion of the two following Terms, which add refpectively to the fhares they had before: Then fhall the two parts of Unity which A and B have thus obtained, be proportional to their refpective Probabilities of winning.

Of Permutations and Combinations.

Permutations are the Changes which feveral things can receive in the different Orders in which they may be placed, being confidered as taken two and two, three and three, four and four, \&c.

Combinations are the various Conjunctions which feveral things may receive without any refpect to Order, being taken two and two , three and three, four and four, \&c.

L E M M A.

IF the Probability that an Event Sball Happen be $\frac{1}{r}$, and if that Event being fuppofed to have Happened, the Probability of anothers Happening be $\frac{1}{s}$; the Probability of both Happening will be $\frac{1}{r} \times \frac{1}{s}$ or $\frac{1}{r s}$. This having been already Demonfrated in the Introduction, will not require any fartber proof.

PROBLEM XV.

A$N \Upsilon$ number of Things $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ being given, out of which Two are taken as it happens: To find the Probability that any one of them, as a , Sall be the firft taken, and any other, as b, the fecond.

S OLUTION.

THE number of Things in this Example being Six, it follows that the Probability of taking a in the firft place is $\frac{1}{6}$: Let a be confidered as taken, then the Probability of taking b will be $\frac{1}{5}$; wherefore the Probability of taking firtt a and then 6 is $\frac{1}{6} \times \frac{1}{5}=\frac{1}{30}$.

48 The Doctrine of Chances.

Corollary. Since the taking of a in the firft place and b in the fecond, is but one fingle Cafe of thofe by which Six Things may change their Order, being taken two and two; it follows, that the number of Changes or Permutations of Six Things taken two and two muft be 30.

Generally, Let n be any number of Things; the Probability of taking a in the firft place and b in the fecond, will be $\frac{1}{n \times n-1}$; and the number of Permutations of thofe Things taken two by two will be $n \times n-1$.

PROBLEM XVI.

A$N r$ number n of Things $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ being given, out of which Three are taken as it Happens: To find the Probability that a Sall be the firft taken, b the fecond and c the third.

> SOLUTION.

THe Probability of taking a in the firft place is $\frac{1}{6}$: Let a be confidered as taken; the Probability of taking b will be $\frac{1}{5}$: Suppore both a and b taken, the Probability of taking c will be $\frac{1}{4}$. Wherefore the Probability of taking firft a, then b, and thirdly c, will be $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$. $=\frac{1}{120}$.

Corollary. Since the taking of a in the firft place, b in the fecond, and c in the third, is but one fingle Cafe of thofe by which Six Things may change their Order, being taken three and three; it follows, that the number of Clanges or Permutations of Six Things, taken three and three, mult be $6 \times 5 \times 4=120$.

Generally, If is be any number of Things; the Probability of taking a in the firft place, b in the fecond and c in the third will be $\frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2}$. And the number of Permutations of three Things will be $n \times n-\mathbf{1} \times n-2$.

General COROLLARX.
The number of Permutations of n Things, out of whiclz as many are taken together as there are Units in p, will be $n \times n-1 \times n-2 \times n-3$, \&c. continued to fo many Terms as there are Units in p.

Thus,

Thus, the number of Permutations of Six Things taken four and four, will be $6 \times 5 \times 4 \times 3=360$. Likewife the number of Permutations of Six Things taken all together will be $6 \times 5 \times 4 \times 3 \times 2 \times 1=720$ 。

PROBLEM XVII.

Tome Find the Probability that any number of Things, whereof Some are repeated Several times, (ball all be taken in any Order propofed: For Inftance, that a abbbcccc Jball be takera in the Order wherein they are written.

SOLUTION.

THe Prohability of taking a in the firft place is $\frac{2}{4}$: Sup. pofing one a to be taken; the Probability of taking the other is $\frac{1}{8}$. Let now the two firft Letters be fuppoled to be taken, the Probability of taking b will be $\frac{3}{7}$: Let this alfo be fuppofed taken, the Probability of taking another b will be $\frac{2}{6}$: Let this likewife be fuppofed taken, the Probability of taking the third 6 will be $\frac{1}{5}$; after which there remaining nothing but the Letter c, the Probability of taking it becomes a certainty, and confequently is equal to Unity. Wherefore the Probability of taking all thofe Letters in the Order given is $\frac{2}{9} \times \frac{1}{8} \times \frac{2}{7} \times \frac{2}{6} \times \frac{1}{5}$.

Corollary. Therefore the number of Permutations which the Letters aabbbcccc may receive, being taken all together will be $\frac{9 \times 8 \times 7 \times 6 \times 5}{2 \times 1 \times 3 \times 2 \times 1}$.

Generally. The number of Permutations which any number n of Things may receive, being taken all together, whereof the firlt fort is repeated p times, the fecond q times, the third r times, the fourth s times, \&c. will be the Series $n \times n-1 \times n-2 \times n-3 \times n-4$, \&c. continued to fo many Terms as there are Units in $p+q+r$ or $n-s$, divided by the Product of the following Series, viz. $p \times p-1 \times p-2, \& c$. $x q \times q-1 \times q-2 ; \& \in \times \times \times r-1 \times r-2, \& c$. whereof the firlt muft be continued to fo many Terms as there are Units in p; the fecond, to fo many Terms as three are Units in q; the third, to fo many Terms as there are Units in r \&c.

PROBLEM XVIII.

ANr number of Things $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ being given: To: find the Probability that, in taking two of them as it may Happ: n, both a and b jall be taken independently, or without any regard to Order.

SOLUTION.

THE Probability of taking a or b in the firft place will be $\frac{2}{6}$; fuppofe one of them taken, as for Inftance a, then the Probability of taking b will be $\frac{1}{5}$. Wherefore the Probability of taking both a and b will be $\frac{2}{6} \times \frac{1}{5}$ $=\frac{2}{30}=\frac{1}{15}$.
Corollary. The taking of both a and b is but one fingle Cafe of all thofe by which Six Things may be combined two and two; wherefore the number of Combinations of Six Things taken two and two will be $\frac{6}{1} \times \frac{5}{2}=15$.

Generally. The number of Combinations of n Things, taken two and two, will be $\frac{n}{1} \times \frac{n-1}{2}$.

PROBLEM XIX.

ANr number of Things $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ being given: Ta find the Probability, that in taking three of them as is Happens, they fall be any three propofed, as $\mathrm{a}, \mathrm{b}, \mathrm{c}$; no refpect being had to Order.

SOLUTION.

THE Probability of taking either a, or b, or c in the firlt place will be $\frac{3}{6}$. Suppofe one of them as a to be taken, then the Probability of taking b, or c in the fecond place will be $\frac{2}{5}$. Again let either of them taken, as fuppofe b; then the Probability of taking c in the third place will be $\frac{1}{4}$; wherefore the Probability of taking the three Things propofed, viz. a, b, c will be $-\frac{3}{6} \times \frac{2}{5} \times \frac{1}{3}$. Curol-

Corollary. The taking of a, b, c is but one fingle C afe of all thofe by which Six Things may be combined three and three; wherefore the number of Combinations of Six Things taken three and three will be $\frac{6}{1} \times \frac{5}{2} \times \frac{4}{3}=20$.

Generally. The number of Combinations of n Things com bined according to the number p, will be $\frac{n \times n-1 \times n-2 \times n-3 \times n-4}{p \times p-1 \times p-2 \times p-3 \times p-4}$. $\&$ c. Both Numerator and Denominator being continued to fo many Terins as there are Units. in p.

PROBLEM XX.

T0 find what Probability there is, that in taking as it Hap: pens Seven Counters out of Twebve, whereof four are White and eight Black, three of them Shall be White ones.

SOLUTION.

FIIrft, Find the number of Chances for taking three White ones out of four, which will be $\frac{4}{1} \times \frac{3}{2} \times \frac{2}{3}=4$.
Secondly, Find the number of Chances for taking four Black ones out of eight: Thefe Chances will be found to be $\frac{8 \times 7 \times 6 \times 5}{1^{2} 3^{3}}=70$.
Thirdly, Becaufe every one of the preceding Chances may be joined with every one of the latter, it follows, that the number of Clances for taking three. White ones and four Black ones, will be $4 \times 70=280$.
Fourthly, Find the number of Chances for talking four White ones out of four, which will be found to be $\frac{4}{1} \times \frac{3}{2} \times \frac{2}{3} \times \frac{1}{4}=1$.

Fift thly, Find the number of Chances for taking three Blacis ones out of eight, which will be $\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3}=56$.
Sixtbly, Multiply thefe two laft numbers together, and the Product 56 will fhew that there are 56 Chances for taking. four White ones and three Black ones; which is a Cafe not expreffed in the Problem, yet is implyed: For he who underi= rakes to take three Whire Counters out of eight, is reputed to be a winner tho' he takes four; unlefs the contrary be exprefly ftppulated.

Seventby,

Seventhly, Wherefore the number of Clances for taking three White Counters will be $280+56=33^{6}$.

Eighthly, Seek the number of all the Chances for taking feven Counters out of twelve, which will be found to be $\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6}{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}=792$.
Lajfly, Divide the preceding number 336 by the laft 992 , and the Quotient $\frac{336}{792}$, or $\frac{14}{33}$ will be the Probability required.

Corollary. Let n be the number of all the Counters, a the number of White ones, b the number of Black ones, i the number of Counters to be taken out of the number n; then the number of Chances for taking none of the White ones, or one fingle White, or two White ones and no more, or three White ones and no more, or four White ones and no more, \&c. will be expreft as follows.
$\frac{b}{1} \times \frac{b-1}{2} \times \frac{b-2}{3} \times \frac{b-3}{4} \& c . \times \frac{a}{3} \times \frac{a-1}{2} \times \frac{a-2}{3} \times \frac{a-3}{4} \& c$.
The number of Terms wherein b enters being always equal to $c-a$, and the whole number of Terms equal to c_{0}.

But the number of all the Chances for taking a certain number c of Counters out of the number n, with one or more White ones, or without any, will be

$$
\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5} \times \frac{n-9}{6} \times \frac{n-6}{7} \times \frac{n-7}{8} \& c .
$$

which Series mult be continued to fo many Terms as there are Units in c.

REMARK.

IF the numbers n and c were large, fuch as 40000 and 8000, the foregoing method would feem impracticable, by reafon of the vaft number of Terms to be taken in both Series, whereof the firft is to be divided by the fecond: Tho ${ }^{\circ}$ if thofe Terms were actually fet down, a great many of them being common Divifors, might be expunged out of both Series. However to avoid the trouble of fetting down fo many 'Terms, it will be convenient to ufe the following Theorem, which is a contraction of that Method.

Let therefore n be the number of all the Counters, a the number of White ones, c the number of Counters to be taken
out of the number n, p the number of White Counters to be taken precifely in the number c : Then making $n-c=d$. I fay that the Probability of taking precifely the number p of White Counters will be
$\overline{c \times c-1 \times c-2} \& c . \overline{x d \times d-1 \times d-2} \& c \overline{\times \frac{a}{1} \times \frac{a-1}{2} \times \frac{d-2}{3}} \& c_{0}$
$n \times n-1 \times n-2 \times n-3 \times n-3 \times n-4 \times n-5 \times n-6 \& c$.
Here it is to be obferved, that the Numerator confifts of three Series, which are to be Multiplied cogether; whereof the firft contains as many Terms as there are Units in p, the fecond as many as there are Units in $a--p$, the third as many as there are Units $p:$. And the Denominator as many as there are Units in a_{0}

PROBLEM XXI.

IN A Lottery conjfiting of 40000 Tickets, amorg which are Three particular Benefits: What is the Probability that taking 8000 of them, one or more of the Ihree particular Benefits Shall be among th them ?

SOLUTION.

FIrft in the Theorem belonging to the Remark of the foregoing Problem, having fubftituted refpectively, 8000, $40000,32000,3$ and r, in the room of c, n, d, a and $p ;$ it will appear, that the Probability of taking precifely one of the Three particular Benefits will be

$$
\frac{8000 \times 32000 \times 31999 \times 3}{40000 \times 3999 \times 39998}, \text { or } \frac{4^{3}}{125} \text { nearly. }
$$

Secondly, c, n, d, a being interpreted as before, let us fuppofe $p=2$. Hence the Probability of taking precifely Two of the particular Benefits will be found to be $\frac{8000 \times 4999 \times 32000 \times 3}{40000 \times 39999 \times 39998}$, or $\frac{12}{125}$ very near.
Thirdly, Making $p=3$. The Probability of taking all the Three particular Benefits will be found to be $\frac{8000 \times 7999 \times 7998}{30000 \times 39998 \times 39998}$, or $\frac{1}{125}$ very near.

Wherefore the Probability of taking one or more of the Three particular Benefirs will be $\frac{48+\mathrm{r} 2+\mathrm{I}}{125}$, or $\frac{61}{125}$ very near.
N. B. There three Operations might be contracted into one, by inquiring what the Probability is, that none of the particular Benefits may be taken; for then it will be found to be $\frac{32000 \times 31999 \times 31998}{40000 \times 39999 \times 39998}=\frac{6_{4}}{125}$ nearly; which being fubtracted from I , the Remainder $\mathrm{I}-\frac{6_{4}}{125}$, or $\frac{61}{125}$ will fhew the Probability required.

PROBLEM XXII.

T^{0}O Find how many Tickets ought be taken in a Lottery confifting of 40000, among which there are Three particular Benefits, to make it as Probable that one or more of thofe Ibree may be taken as not.

S OLUTION.

LET the number of Tickets requifite to be taken be x : It will follow therefore from the Theorem belonging to the Remark of the XXth. Problem, that the Probability of not taking amongt them any of the particular Benefits will be $\frac{n-x}{n} \times \frac{n-x-1}{n-1} \times \frac{n-x-2}{n-2}$. But this Probability is $=\frac{1}{2}$, fince the Probability of the contrary is $\frac{1}{2}$ by Hypothefis; whence it follows that $\frac{n-x}{1} \times \frac{n-x-1}{2} \times \frac{n-x-2}{3}=\frac{1}{2}$. This Equation being folved, the value of x will be found to be nearly 8252 .
N. B. The Factors, whereof both Numerator and Denominator are compoled being in Arithmetic Progreffion, and the difference being very fmall in refpect of n; thofe Terms may be confidered as being in Geometric Progreffion, wherefore the Cube of the middle Term $\frac{n-x-1}{n-1}$ may be fuppofed equal to the Product of thofe Terms; from whence will arife the Equation $\frac{\overline{n-x-i}]^{3}}{n-n^{3}}=\frac{1}{2}$ or $\frac{\overline{n-x} n^{3}}{n^{3}}=\frac{1}{2}$ (neglecting Unity in both Numerator and Denominator) and
confequently x will be found to be $n \times \overline{1-\sqrt[3]{\frac{3}{2}}}$, but n is $=40000$, and $1-\sqrt[3]{\frac{1}{2}}=0.2063$; Therefore $x=8252$.
In the Remark belonging to the V th Problem, a Rule was given for finding the number of Tickets that were to be taken to make it as Probable that one or more of the Benefits floould be taken, as not; but in that Rule it is fuppofed that the proportion of the Blanks to the Prizes was often repeated, as it ufually is in Lotteries: Now in the Cafe of the prefent Problem, the particular Benefits being but Three in all. the remaining Tickets are to be confidered as Blanks in refpect of them; from whence it follows, that the proportion of the number of Blanks to one Prize being very near as 1333^{2} to I , and that proportion being repeated but three times in the whole number of Tickets, the Rule there given would nor have been fufficiently exact in this Cafe; to fupply which it was thought neceffary to give the Solution of this Problem.

PROBLEM XXIII.

T^{0} Find at Pharaon, bow much it is that the Banker gets: per Cent of all the Money that is adventured,

> HYPOTHESIS.

ISuppofe, Firft, that there is but one fingle Ponte : Secondly, That he lays his Money upon one fingle Card at a time: Thirdly, That he begins to take a Card in the beginning of the Game: Fourthly, That he continues to take a new Card after the laying down of every Pull: Fifthly, That when there remains but Six Cards in the Stock, he ceafes to take a Card.

SOLUTION.

WHEN at any time the Ponte lays a new Stake upon a Card taken as it Happens out of his Book, let the number of Cards that are already laid down by the Banker be fuppofed equal to x.

Now in this circumflance, the Card taken by the Ponte has eithier palt four times, or three times, or twice, or once, or not at all.
Firff, If it has paffed four times, he can be no lofer upon that account.
Secondly, If it has paffed three times, then his Card is once in the Stock; now the number of Cards remaining in the Stock being $n-x$, it follows by the firlt Cafe of the XIIIth Problem that the lofs of the Ponte will be $\frac{1}{n-x}$: But by the Remark belonging to the XXth Problem, the Probability that his Card has paffed three times precifely in x Card, is $\frac{x \times x-1 \times x-2 \times n-\bar{x} \times 4}{n \times \bar{u}-1} \times \overline{n-2} \times \overline{n-3}$. Now fuppofing the Denominator equal to s, Mulciply the lofs he will fuffer (if he has that Chance) by the Probability of having it, and the Product $x \times \overline{x-1} \times \frac{x}{6-2} \times 4$, will be his ablolute lofs in that circumftance.

Thirdy, If it has paffed twice, his lofs by the recond Cafe of the XIIIt t Problem will be $\frac{\frac{1}{n}-\frac{1}{2} x+1}{n-x \times n-x-1}$, but the Probability that his Card has paffed twice in \boldsymbol{x} Cards, is by the Remark of the $\mathrm{XX} t h$ Problem, $\frac{x \times \overline{x-1} \times \overline{n-x} \times \overline{n-x-1} \times 6}{s}$; wherefore Multiplying the lofs he will fuffer (if he has that Chance) by the Probability of his having it, the Product $x \times \overline{x-1} \times \frac{7}{\frac{T}{2} n-\frac{1}{2} x+1} \times 6$ will be his abfolute lofs in that circumftance.

Fourthly, If it has paffed once, his lofs Multiplyed into the Probability that it has paffed, will make his abfolute lofs to be $\frac{x \times \overline{n-x} \times \sqrt{n-x-2} \times 3}{s}$.

Fifthly, If it has not yet paffed, his lofs Multiplyed into the Probability that it has not paffed, will make his abfolute lofs to be $\frac{\overline{n-x} \times \overline{n-x-2} \times \overline{2 n-2 x-5}}{5}$.

Now the Sum of all thefe loffes of the Ponte's will be $n \frac{n}{}-\frac{?}{2} n n+5 n-3 x-\frac{7}{3} x x+3 x^{3}$, and this is the lofs he fuffers by venturing a new Stake after any number of Cards x are paft.

But the number of Pulls which at any time are laid down, is always one half of the number of Cards that are paft; wherefore calling t the number of thofe Pulls, the Lofs of the Ponte may be expreffed thus, $\frac{n^{3}-\frac{9}{2} n n+5 n-6 t-6 t t+24 t^{3}}{5}$.

Let now p be the number of Stakes which the Ponte adventures; let alfo the Lofs of the Pgnte be divided into two parts, viz. $\frac{n^{3}-\frac{9}{2} n n+5 n}{5}$, and $\frac{-6 t-6 t t+24 t^{3}}{s}$.

And fince he adventures a Stake p times; it follows, that the firlt part of his Lofs will be $\frac{p n^{3}-\frac{?}{2} p m n+s p n}{s}$.

In order to find the fecond part, let t be interpreted fucceffively by $0,1,2,3 \& \mathrm{cc}$. to the laft Term $p-1$; Then in the room of $6 t$ we fhall have a fum of numbers in Arithmetic Progreffion to be Multiplyed by 6 ; in the room of $6 t t$ we fhall have a fum of Squares whofe Roots are in Arithmetic Progreffion to be Multiplyed by 6 ; and in the room of $24^{t^{3}}$ we fhall have a fum of Cubes whofe Roots are in Arithmetic Progreffion to be Multiplyed by 24: Thefe feveral fums being collected, according to the IId Remark on the XIt t Problem, will be found to be $\frac{6 p t-r 4 p^{p}+6 p p+2 p}{5}$, and therefore the whole Lofs of the Ponte will be

$$
p n^{3}-\frac{2}{2} p n n+s p n+6 p^{4}-14 p^{3}+6 p p+2 p .
$$

Now this being the Lofs which the Ponte fuftains by adventuring the fum p, each Stake being fuppofed equal to Unity, it follows, that the Lofs per Cent of the Ponte, or the Gain per Cent of the Banker is $\overline{n^{3}-\frac{9}{2} n n+5 n+6 p^{3}-14 p p+6 p+z} \times 100$, or $\frac{2 n-5}{2 \times n-1 \times n-3}+\frac{\overline{p-1} \times 6 p p-8 p-2}{n \times n-1 \times n-2 \times n-3} \times 100$. Let now n be interpreted by 52 , and p by 23 ; and the Gain of the Banker will be found to be 2.9925 I , that is $2 l .19^{\text {sh. }} 10 \mathrm{~d}$. per Cent.

By the fame Method of arguing, it will be found that the Gain per Cent of the Banker, at Baffete, will be
$\frac{3 n-9}{n \times n-1 \times n-2}+\frac{4 p \times \overline{p-1} \times \overline{p-2}}{n \times n-5 \lambda n-2 \times n-3} \times 100$. Let in be interpreted by 5 I , and p by 23 ; and the foregoing expreffion Q
will become 0.7905^{82}, or $15^{\text {shi }} .9$ d. half-penny. The confideration of the firlt Stake, which is adventured before the Pack is turned, being here omitted as being out of the general Rule: But if that Cafe be taken in, and the Ponte adventures 100 l . in 24 Stakes, the Gain of the Banker will be diminifhed, and becomes only 0.76245 , that is, $15^{\text {sli. }} 3 \mathrm{~d}$. very near: And this is to be egtimated, as the gain per Cent of the Banker when he takes but half Face.

Now whether the Ponte takes one Card at a time or feveral Cards, the Gain per Cent of the Banker continues the fame: Whether the Ponte keeps conftantly to the fame Stake, or fome times doubles or triples it, the Gain per Cent is fill the fame: Whether there be but one fingle Ponte or feveral, his Gain per Cent is not thereby altered. Wherefore the Gain per Cent of the Banker of all the Money that is adventured at Pharaon is $2 / .19^{\text {sh. }} 10 \mathrm{~d}$. and at Bafjete $15^{\text {shl. }} 3$ d.

PROBLEM XXIV.

SUppofing A and B to.play together, the Chances they have reS jpectively to win being as a to b , and B obliging bimjelf to Set to A, Jo long as A wins mithout interruption: What is the Advantage that A gets by his Hand?

SOLUTION.

F^{t}Ir f, If A and B each Stake One, the Gain of A on the firlt Game is $\frac{a-b}{a+b}$.
Secondly, His Gain on the fecond Game will alfo be $\frac{a-b}{a+b}$, provided he fhould happen to win the firft : But the Probability of A 's winning the firlt Game is $\frac{a}{n+b}$. Wherefore his Gain on the fecond Game will be $\frac{a}{a+b} \times \frac{a-b}{a+b}$.

Thirdly, His Gain on the third Game, after winning the two firt, will be likewife $\frac{a-b}{a+b}$: But the Probability of A 's winning the two firt Games is $\frac{a s}{a+b!}$; Wherefore his Gain on the third
third Game, when it is eftimated before the Play begins, is $\frac{a a}{a+b b^{2}} \times \frac{a-b}{a+b} \& c$.

Fourshly, Wherefore the Gain of the Hand of A is an infinite Series, viz. $1+\frac{a}{a+b}+\frac{a a}{a+b^{2}}+\frac{a^{3}}{a+b^{3}}+\frac{a+}{a+b^{4}} \& \mathrm{c}$. to be Multiplyed by $\frac{a-b}{a+b}$. But the fum of that infinite Series is $\frac{a+b}{b}$; Wherefore the Gain of the Hand of A is $\frac{a+b}{b} \times \frac{a-b}{a+b}=\frac{a-b}{b}$.

Corollary I. If A has the advantage of the Odds, and B Sets his Hand out, the Gain of A is the difference of the numbers expreffing the Odds divided by the leffer. Thus if A has the Odds of Five to Three, then his Gain will be $\frac{5-3}{3}=\frac{2}{3}$,

Corollary II. If B has the Difadvantage of the Odds, and A Sets his Hand out, the Lofs of B will be the difference of the number exprefling the Odds divided by the greater: Thus if B has but Three to Five of the Game, his Lofs will be $\frac{2}{5}$.

Corollary III. If A and B do mutually engage to Set to one-another as long as either- of them wins without interruption, the Gain of A will be found to be $\frac{a a-b b}{d b}$: That is the fum of the numbers expreffing the Odds Multiplyed by their difference, the product of that Multiplication being divided by the Product of the numbers expreffing the Odds. Thus if the Odds were as Five to Three, the fum of 5 and 3 is 8 , and the difference 2; Multiply 8 by 2, and the Product 16 being divided by 15 (Product of the number exprefling the Odds) the Quotient will be $\frac{16}{15}$, or $1 \frac{1}{15}$, which therefore will be the Gain of A.

PROBLEM XXV:

A$N r$ given number of Letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ doc. all of thens different, being taken promiccuoulfy, as it Happens: To find the Probability that fome of them forll be found in their places, according.
according to the rank they obtain in the Alphabet; and that others of them Jaall at the fame time be found out of thoir places.

S OLUTION.

LET the number of all the Letters be $=n$; let the num ber of thofe that are to be in their places be $=p$, and the number of thofe that are to be out of their places $=q$. Suppofe for Brevity fake $\frac{1}{n}=r, \frac{1}{n \times n-1}=s, \frac{r}{n \times n-1 \times n-2}$ $=t, \frac{1}{n \times n-1 \times n-2 \times n-3}=v \& c$. then let all the Quantities $\mathbf{I}, r, s, t, v \& c$. be written down with Signs alternately pofitive and negative, beginning at 1 , if p be $=0$; at r, if $p=1$; at s, if $p=2$ \&c. Prefix to thefe Quantities the reSpective Coefficients of a Binomial Power, whofe Index is $=q$: This being done, thofe Quantities taken all together will exprefs the Probability required; thus the Probability that in Six Letters taken promifcuoully, two of them, viz. a and b Shall be in their places, and three of them, viz. c, d, e out of their places, will be
$\frac{1}{6 \times 5}-\frac{3}{6 \times 5 \times 4}+\frac{3}{6 \times 5 \times 4 \times 3}-\frac{1}{6 \times 5 \times 4 \times 3 \times 2}=\frac{11}{720}$;
And the Probability that a fhall be in its place, and b, c, d, e out of their places, will be
$\frac{1}{6}-\frac{4}{6 \times 5}+\frac{6}{6 \times 5 \times 4}-\frac{4}{6 \times 5 \times 4 \times 3}+\frac{1}{6 \times 5 \times 4 \times 3 \times 2}=\frac{53}{720}:$
The Probability that a fhall be in its place, and b, c, d, e, f out of their places, will be
$\frac{1}{6}-\frac{5}{6 \times 5}+\frac{10}{6 \times 5 \times 4}-\frac{10}{6 \times 5 \times 4 \times 3}+\frac{5}{6 \times 5 \times 4 \times 3 \times 2}$
$-\frac{1}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=\frac{44}{720}$, or $\frac{11}{180}$.
The Probability that a, b, c, d, e, f fhall be all difplaced is, $1-\frac{6}{6}+\frac{15}{6 \times 5}-\frac{20}{6 \times 5 \times 4}+\frac{15}{6 \times 5 \times 4 \times 3}-\frac{6}{6 \times 5 \times 4 \times 3 \times 2}$ $+\frac{x}{6 \times 5 \times 4 \times 3 \times 2 \times 1}$, or $x-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}$ $+\frac{1}{720}=\frac{265}{720}=\frac{53}{144}$.

Hence it may be concluded that the Probability that one or more of them will be found in their places is $I-\frac{1}{2}+\frac{1}{6}$ $L \frac{1}{24}+\frac{1}{120}-\frac{1}{720}=\frac{91}{144}$; and that the Odds that one or more of them will be fo found are as 9 r to 53 .
N. B. So many Terms of this laft Series are to be taken as there are Units in n.

DEMONSTRATION.

THE number of Chances for the Letter a to be in the firft place contains the number of Chances, by which a being in the firtt place, 6 may be in the fecond, or out of it: This is an Axiom of common Senfe, of the fame degree of Evidence as that the Whole is equal to all its Parts.

From this it follows, that if from the number of Chances that there are for a to be in the firft place, there be fubItracted the number of Chances that there are for a to be in the firft place, and b at the fame time in the fecond, there will remain the number of Chances, by which a being in the firft place, b may be excluded the fecond.

For the fame reafon it follows, that if from the number of Chances that there are for a and b to be refpectively in the firft and fecond places, there be fubtracted the number of Chances by which a, b and c may be refpectively in the firft, fecond and third places; there will remain the number of Chances by which a being in the firft and b in the fecond, c may be excluded the third place : And fo of the reft.

Let $+a^{\prime}$ denote the Probability that a fhall be in the firft place, and let - a^{\prime} denote the Probability of its being out of it. Likewife let the Probabilities that b fhall be in the fecond place or out of it be refpectively expreft by $+b^{\prime \prime}$ and $-b^{\prime \prime}$.

Let the Probability that, a being in the firft place, b fhall be in the fecond, be expreft by $a^{\prime}+b^{\prime \prime}$: Likewife let the Probability that a being in the firft place, b fhall be excluded the fecond, be expreft by $a^{\prime}-b^{\prime \prime}$.

Generally. Let the Probability there is, that as many as are to be in their proper places, fhall be fo, and at the fame time that as many others as are to be our of their proper places
fhall be fo found, be denoted by the particular Probabilities of their being in their proper places, or out of them, written all together: So that for Inftance $a^{\prime}+b^{\prime \prime}+c^{\prime \prime \prime \prime}-d^{\prime \prime \prime \prime \prime}-e^{\prime \prime \prime \prime \prime \prime}$. may denote the Probability that a, b and c fhall be in their proper places, and that at the fame time both d and e fhall be excluded their proper places.

Now to be able to derive a proper conclufion by vertue of this Notation, it is to be obferved, that of the Quantities which are here confidered, thofe from which the Subtraction is to be made, are indifferently compofed of any number of Terms connected by + and --; the Quantities which are to be fubtracted do exceed by one Term thofe from which the fubtraction is to be made; the reft of the Terms being alike and their figns alike: And the remainder will containall the Quantities that are alike with their own figns; and alfo the Quantity Exceeding, but with its fign varied.

It having been demonftrated in what we have faid of Permutations and Combinations, that $a^{\prime}=\frac{1}{n}, a^{\prime}+b^{\prime \prime}$ $=\frac{1}{n \times n-1}, a^{\prime}+b^{\prime \prime}+c^{\prime \prime \prime}=\frac{1}{n \times n-1 \times n-2}$, let $\frac{1}{n}, \frac{1}{n \times n-1} \& c_{-}$ be refpectively called $r, s, t, v \& c$. This being fuppofed, we may come to the following conclufions.
$\frac{b^{\prime \prime}}{}=r$
$b^{\prime \prime}+a^{\prime}=s$
Therefore $\begin{aligned} & b^{\prime \prime}-a^{\prime}=r=s\end{aligned} b^{\prime \prime}+b^{\prime \prime}=$
$\overline{c^{\prime \prime \prime}+b^{\prime \prime}}=s$ for the fame reafon that $a^{\prime}+b^{\prime \prime}=s$ $c^{\prime \prime \prime}+b^{\prime \prime}+a^{\prime}=t$
20. Theref. $c^{\prime \prime \prime}+b^{\prime \prime}-a^{\prime}=s=t$
$c^{\prime \prime \prime \prime}=a^{\prime}=r-s \quad$ By the firft Conclufion
3° Theref.
$\frac{c^{\prime \prime \prime}-a^{\prime}+b^{\prime \prime}=}{}=s-t$
$c^{\prime \prime \prime}-a^{\prime}-b^{\prime \prime}=r-2 s+t$
$d^{\prime \prime \prime \prime}+c^{\prime \prime \prime}+b^{\prime \prime}$
$d^{\prime \prime \prime}+c^{\prime \prime \prime}+b^{\prime \prime}+a^{\prime}=v$

By the $2 d$:
4° Theref. $\bar{d}^{\prime \prime \prime \prime}+c^{\prime \prime \prime}+b^{\prime \prime}-a^{\prime}=t-v$
$d^{\prime \prime \prime \prime}+c^{\prime \prime \prime}=a^{\prime}=s-t \quad$ By the 2d. Conclufion:
$d^{\prime \prime \prime \prime \prime}+c^{\prime \prime \prime}-a^{\prime}+b^{\prime \prime}=\quad t-v$ By the $4 t \bar{b}$.
5° Theref. $d^{\text {d"II }}+c^{c^{\prime \prime}}-a^{\prime}-b^{\prime \prime} \equiv s-2 t+v$

$$
\begin{aligned}
& d^{\prime \prime \prime \prime}-b^{\prime \prime}-a^{\prime}=r-2 s+t \quad \text { By the } 3 d . \text { Conc, } \\
& d^{\prime \prime \prime \prime}-b^{\prime \prime}-a^{\prime}+c^{\prime \prime \prime}=\quad s-2 t+v \text { By the sth. } \\
& d^{\prime \prime \prime \prime}-b^{\prime \prime}-a^{\prime}-c^{\prime \prime \prime}=r-3 s+3 t-v
\end{aligned}
$$

60 Theref.
By the fame procefs, if no Letter be particularly affigned to be in its place, the Probability that fuch of them as are affigned may be out of their places will likewife be found thus.
7° Theref:

$$
\begin{aligned}
& \begin{array}{l}
\text { - } \left.\begin{array}{l}
a^{\prime} \quad=1-r \quad \text { For }+a^{\prime} \text { and }-a^{\prime} \text { together maket } \\
=a^{\prime}+b^{\prime \prime}= \\
\text { [Unity }
\end{array}\right]=\text { ars }
\end{array} \\
& \begin{array}{l}
-a^{\prime}-b^{\prime \prime}=1-2 r+s \\
-a^{\prime}-b^{\prime \prime} \\
=1-2 r+s \quad \text { By the } 7 t b \text {. Conc: }
\end{array} \\
& =a^{\prime}-b^{\prime \prime}+c^{\prime \prime}=r-2 s+t \text { By the } 3 \text { d. Conc. }
\end{aligned}
$$

Now examining carefully all the foregoing Conclufions, it will be perceived, that when the Queftion runs barely upon the difplacing any given number of Letters without requiring that any other fhould be in its place, but leaving it wholly indifferent, then the vulgar Algebraic Quantities which lie on the right hand of the Equations, begin conftantly with Unity: It will alfo be perceived, that when one fingle Letter is affigned to be in its place, shen thofe Quantities begin with r; and that when two Letters are affigned to be in their places ${ }_{2}$ they begin with s, and fo on. Moreover 'tis obvious, that' thefe Quantities change their figns alternately, and that the Numerical Coefficients which are prefixt to them are thofe of a Binomial Power, whofe Index is equal to the number of Letters which are to be difplaced.

PROBLEM XXVI.

A$N \Upsilon$ given number of different Letters a, b, c, d, e, f 心. being each of them repeated a certain number of times, and taken promijcuoufly as it Happens: To fird the Probability that of Some of thoje Sorts, fome one Letter of each may be found in its proper place, and at the fame time that of fome other Sorts, no one: Letter be found in its pläce.

SOLUTION.

SUppofe n be the number of all the Letters, l the number D of times that each Letter is repeated, and confequently $\frac{\text { in }}{1}$ the number of Sorts: Suppofe alfo that p be the number of Sorts that are to have one Letter of each in its place; and q the number of Sorts of which no one Letter is to be found in its place. Let now the prefcriptions given in the preceding Problem be followed in all refpects, faving that r muft here be made $=\frac{1}{n}, s=\frac{11}{n \times n-1}, t=\frac{1^{3}}{n \times n-1 \times n-2} \& c$. and the Solution of any particular Cafe of the Problem will be obtained.

Thus if it were required to find the Probability that no Letter of any fort fhall be in its place, the Probability thereof would be

$$
I-q r+\frac{q}{1} \times \frac{q-I}{2} s-\frac{q}{1} \times \frac{q-I}{2} \times \frac{q-2}{3} t \& c .
$$

But in this particular $\mathrm{Cafe} q$ would be equal to $\frac{n}{l}{ }^{n}$ wherefore the foregoing Series might be changed into this, viz.
$\frac{1}{2} \times \frac{\overline{n-l}}{n-1}-\frac{1}{6} \times \frac{\overline{n-l \times n-2 l}}{n-1 \times n-2}+\frac{1}{24} \times \frac{\overline{n-l \times n-2 i 2} \overline{n-3 l}}{n-1 \times n-2 \times n-3}$, \&c.

Corollary I. From hence it follows, that the Probability that one or more Letters indeterminately taken may be in their places will be
$\frac{1}{}-\frac{1}{2} \times \frac{\overline{n-1}}{n-1}+\frac{1}{6} \times \frac{\overline{n-l \times n-2 l}}{n-1 \times n-2}-\frac{1}{24} \times \frac{\overline{n-l \times n-2 l \times n-3 l}}{n-1 \times n-2 \times n-3}$ \&c.

Corollary II. The Probability that two or more Letters indeterminately taken may be in their places will be expreft as follows,

$$
\begin{aligned}
& \frac{1}{2} \times \frac{\overline{n-1}}{n-1}-\frac{2}{1 \times 3} \times \overline{\frac{n-2 l}{n-2}} \mathrm{~A}+\frac{2}{2 \times 4} \times \overline{\frac{n-3 l}{n-3}} \mathrm{~B}-\frac{1}{3 \times 5} \times \overline{\frac{n-4 l}{n-4}} \mathrm{C} \\
& +\frac{5}{4 \times 6} \times \frac{\overline{n-51}}{\frac{n-5}{n}} \mathrm{D} \text { \& } .
\end{aligned}
$$

Corollary III. 'The Probability that three or more Letters indeterminately taken may be in their places will be as follows,
$\frac{i}{6} \times \frac{\overline{n-1} \times \overline{n-2 l}}{n-1 \times \overline{n-2}}-\frac{3}{1 \times 4} \times \frac{\overline{n-3 l}}{n-3} \mathrm{~A}+\frac{4}{2 \times 5} \times \overline{\frac{n-4 l}{n-4}} \mathrm{~B}$
$-\frac{5}{3 \times 6} \times \frac{\overline{n-5 l}}{n-5} \mathrm{C}+\frac{6}{4 \times 7} \times \frac{\overline{n-6 l}}{n-6} \mathrm{D} \& \mathrm{c}$.
Corollary IV. The Probability that four or more Letters, indeterminately taken, may be in their places will be thus expreft,
$\frac{1}{24} \times \frac{\overline{n-1}}{n-1} \times \frac{\overline{\frac{n-2 l}{n-2}} \times \frac{\overline{n-3 l}}{n-3}-\frac{4}{8 \times 5} \times \overline{\frac{n-4 l}{n-4}} \mathrm{~A}+\frac{5}{2 \times 6} \times \frac{\overline{n-5 l}}{n-5} \mathrm{~B}}{3}$
$-\frac{6}{3 \times 7} \times \frac{\overline{n-61}}{n-7}$ C \& c.
The Law of the continuation of thefe Series being manifeft, it will be eafy to reduce them all to one general Se ries.

From what we have faid it follows, that in a common Pack of 52 Cards, the Probability that one of the four Aces may be in the firft place; one of the four Duces in the fecond; or one of the four Traes in the third; or that fome one of any other fort may be in its place (making 13 different places in all) will be expreft by the Series exhibited in the firft Corollary.

It follows likewife, that if there be two Packs of Cards, and that the Order of the Cards in one of the Packs be the Rule whereby to eftimate the rank which the Cards of the fame Suite and Name are to obtain in the other; the Probability that one Card or more, in one of the Packs, may be found in the fame Pofition as the like Card in the other Pack, will be expreft by the Series belonging to the firft Coro!lary, making $n=52$ and $l=1$: Whiclı Series will in this Cafe be $1-\frac{1}{2}+\frac{1}{6}-\frac{1}{24}+\frac{1}{120}-\frac{1}{720}$ \&c. whereof 52 Terms ought to be taken.

If the Terms of the foregoing Series are joined by couples, the Series will become,
$\frac{1}{2}+\frac{1}{2 \times 4}+\frac{1}{2 \times 3 \times 4 \times 6}+\frac{1}{2 \times 3 \times 4 \times 5 \times 6 \times 8}+\frac{1}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 10}$ $\& \mathrm{c}$. of which 26 Terms ought to be taken.

But by reafon of the great Convergency of the aforefaid Series, a few of its Terms will give a fufficient approxima-
tion in all Cafes required; as appears by the.following Operation,

$$
\begin{aligned}
\frac{1}{2} & =0.500000 \\
\frac{1}{2 \times 4} & =0.125000 \\
\frac{1}{2 \times 3 \times 4 \times 6} & =0.006944+ \\
\frac{1}{2 \times 3 \times 4 \times 5 \times 6 \times 8} & =0.000174+ \\
\frac{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 10}{} & =0.000002+ \\
\text { Sum } & =0.632 .129+
\end{aligned}
$$

Wherefore the Probability that one or more like Cards in two different Packs may obtain the fame Pofition, will be in all Cafes very near 0.632 ; and the Odds that this will Happen once or oftner, as 632 to 368 , or as 12 to 7 very near.

But the Odds that two or more like Cards in two different Packs will not obtain the fame Pofition, are very nearly as 736 to 264 or 14 to 5 .

Corollary V. If A and B, each holding a Pack of Cards; pull them out at the fame time one after another, on condition that every time two like Cards are pulled out, A fhall give B a Guinea; and it were required to find what confideration B ought to give A to Play on thofe terms: The Anfwer will be, One Guinea, let the number of Cards be what it will.

Corollary VI. If the number of Packs be given, the Probability that any given number of circumftances may Happen in them all, or in any of them, will be found eafily by our method. Thus, if the number of the Packs be k, the Probability that one Card or more of the fame Sute and Name, in every one of the Packs, may be in the fame Pofition; will be expreft as follows.
 \&c.

PROBLEM XXVII.

IF A and B play together, each with a certain number of Bowls $=n$: What are their refpective Probabilities of winning, fuppofing that each of them want a certain number of Games of. being up?

SOL゙UTION:

FIrft, the Probability that fome Bowl of B may be nea. rer the Jack than any Bowl of A is $\frac{1}{2}$.
Secondly, Suppofing one of his Bowls nearer the Jack than ? any Bowl of A, the number of his remaining Bowls is $n-1$, and the number of all the Bowls remaining between them is 2n-1: Wherefore the Probability that fome other of his Bowls may be nearer the Jack than any Bowl of A will be $\frac{n-1}{2 n-1}$, from whence it follows, that the Probability of his winning two Bowls or more is $\frac{1}{2} \times \frac{n-1}{2 n-1}$.

Thirdly, Suppofing two of his Bowls nearer the Jack than any Bowl of A, the Probability that fome other of his Bowls may be nearer the Jack than any Bowl of A wifl be $\frac{n-2}{2 n-2}$; Wherefore the Probability of winning three Bowls or more is $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n-2}{2 n-2}$: The continuation of which procefs is manifeft.

Fourthly, The Probability that one fingle Bowl of B fall be nearer the Jack than any Bowl of A is $\frac{1}{2}-\frac{1}{2} \times \frac{n-1}{2 n-1}$, or $\frac{1}{2} \times \frac{n}{2 n-1}$; For, if from the Probability that one or more of his Bowls may be nearer the Jack than any Bowl of A, there be fubtracted the Probability that two or more may be nearer; there remains the Probability of one fingle Bowl of B being nearer: In this Cafe B is faid to Win is one Bowl at an End.

Fifichly; The Probability that two Bowls of B, and not more, may be nearer the Jack than any Bowl of A, will be found to be $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n}{2 n-2}$, in which Cafe B is faid to win two Bowls at an End.

Sixtbly, The Probability that B may win three Bowls at an End will be found to be $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n-2}{2 n-2} \times \frac{n}{2 n-3}$. The procels whereof is manifeft.

The Reader may obferve, that the foregoing Expreffions might be reduced to fewer Terms; but leaving them unreduced, the Law of the procefs is thereby made more confpicuous.

Let it carefully be obferv'd, when we mention henceforth the Probability of winning two Bowls, that the Senfe of it ought to be extended to two Bowls or more; and that when we mention the winning two Bowls at an End, it ought to be taken in the common acceptation of two Bowls only: The like being to be obferved in other Cafes.

This Preparation being made; fuppofe, Firft, that A wants one Game of being up, and B two; and let it be required, in that circumftance, to determine their Probabilities of winning.

Let the whole Stake between them be fuppofed $=1$. Then either A may win a Bowl, or B win one Bowl at an End, or B may win two Bowls.

In the firf Cafe B lofes his Expectation.
In the fecond Cafe he becomes intitled to $\frac{1}{2}$ of the Stake. But the Probability of this Cafe is $\frac{1}{2} \times \frac{n}{2 n-1}$: wherefore his Expectation arifing from that part of the Stake he will be intitled to, if this Cafe fhould Happen, and from the Probability of its Happening, will be $\frac{1}{4} \times \frac{n}{2 n-1}$.

In the third Cafe B wins the whole Stake r. But the Probability of this Cafe is $\frac{1}{2} \times \frac{n-1}{2 n-1}$: wherefore the Expectasion of B upon that account is $\frac{1}{2} \times \frac{n-1}{2 n-1}$.

From this it follows that the whole Expectation of B is $\frac{1}{4} \times \frac{n}{2 n-1}+\frac{1}{2} \times \frac{n-1}{2 n-1}$ or $\frac{3}{4} n-\frac{1}{2}$, or $\frac{2 n-2}{8 n-4}$; which being fubtracted from Unity, the remainder will be the Expectation of A, viz. $\frac{5 n-2}{8 n-4}$. It may therefore be concluded, that the Probabilities which A and B have of winning are refpectively as $5 n-2$ to $3 n-2$.
${ }^{\circ}$ Tis remarkable, that the fewer the Bowls are, the greater is the proportion of the Odds; for if A and B play with fingle
fingle Bowls, the proportion will be as 3 to 1 ; if they play with two Bowls each, the proportion will be as 2 to 1 ; if with three Bowls each, the proportion will be as 13 to 7 : vet let the number of Bowls be never fo great, that proportion will not defcend fo low as 5 to 3 .

Secondly, Suppofe A wants one Game of being up, and B three; then either A may win a Bowl, or B win one Bowl at an End, or two Bowls at an End, or three Bowls.

In the firft Cafe B lofes his Expectation.
If the fecond Cafe Happens, then B will be in the circumfance of wanting but two to A 's one; in which Cafe his Expectation will be $\frac{3 n-2}{5 n-4}$, as it has been before determined: but the Probability that this Care may Happen is $\frac{1}{2} \times \frac{n}{2 n-1}$; wherefore the Expectation of B, arifing from the profpect of this Cafe, will be $\frac{1}{2} \times \frac{n}{2 n-1} \times \frac{3 n-2}{8 n-4}$.

If the third Cafe Happen, then B will be intitled to one half of the Stake : but the Probability of its Happening is $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n}{2 n-2}$; wherefore the Expectation of B arifing from the Profpect of this Cafe is $\frac{1}{4} \times \frac{n-1}{2 n-1} \times \frac{n}{2 n-2}$, or $\frac{1}{8} \times \frac{n}{2 n-1}$.

If the fourth Cafe Happen, then B wins the whole Stake 1: but the Probability of its Happening is $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n-2}{2 n-2}$, or $\frac{1}{4} \times \frac{n-2}{2 n-1}$; wherefore the Expectation of B arifing from the profpect of this Cafe will be found to be $\frac{1}{4} \times \frac{n-2}{2 n-1}$.
From this it follows, that the whole Expectation of B will be $\frac{9 n n-1 ; n+4}{8 \times 2 n-11^{2}}$; which being fubtracted from Unity, the remainder will be the Expectation of A, viz. $\frac{23 n n-19 n+4}{8 \times \overline{2 n-1}^{2}}$. It may therefore be concluded, that the Probabilities which A and B lave of winning are refpectively as $23 n n-19 n+4$ to $9 n n-13^{n+4}$
N. B. If A and B play only with One Bowl each, the Expectation of B deduced from the foregoing Theorem would be found $=0$. which we know from other principles ought to be $=\frac{\mathrm{r}}{8}$. The reafon of which is that the Cafe of winning Two Bowls at an End, and the Cafe of winning

Three

Three Bowls at an End, enter this conclufion, which Cafes do not belong to the fuppofition of playing with fingle Bowls: wherefore excluding thofe two Cafes, the Expectation of B will be found to be $\frac{\mathrm{I}}{2} \times \frac{n}{2 n-1} \times \frac{3 n-2}{8 n-4}=\frac{1}{8}$, which will appear if n be made $=\mathbf{r}$. Yet the Expectation of B, in the Cafe of two Bow's, would be rightly determined, tho' the Cafe of winning Three Bowls at an End enters it: The reafon of which is, that the Probability of winning Three Bowls at an End is $=, \frac{1}{4} \times \frac{n-2}{2 n-1}$, which in the Cafe of Two Bowls becomes $=0$, fo that the general Exprefion is not thereby difturbed.

After what we have faid, it will be eafy to extend this way of Reafoning to any circumftance of Games wanting between A and B; by making the Solution of each fimpler Cafe fubfervient to the Solution of that which is immediately more compound.

Having given formerly the Solution of this Problem, propofed to me by the Honourable Frances Robarts, in the PbiloJophical Tranfacitions Number 339; I there faid, by way of Corollary, that if the proportion of Skill in the Gamefters were given, the Problem might alfo be Solved; fince which time Mr de Monmort, in the fecond Edition of a Book by him Publifhed upon the fubjeCtof Chance, has thought it worth his while to Solve this Problem as it is extended to the confideration of the Skill, and to carry his Solution to a very great number of Cafes, giving alfo a Method by which it may fill be carried farther: I very willingly acknowledge his Solution to be extreamly good, and own that he has in this, as well as in a great many other things, fhewn himfelf entirely mafter of the doctrine of Combinations, which he has employed with very great Induftry and Sagacity.

The Solution of this Problem, as it is reflrained to an equality of Skill, was in my Specimen deduced from the Method of Combinations ; but the Solution which is given of ir in this place, is deduced from a Principle which has more of fimplicity in it, being that by the help of which I have Demonltrated the Doctrine of Permutations and Combinations: Wherefore to make it as familiar as poffible, and to fhew its vaft extent, I fhall now apply it to the general Solution
of this Problem, taking in the confideration of the Skill of the Gamefters.

But before I proceed I think it neceffary to define what I call Skill: viz. That it is the proportion of Chances which the Gamefters may be fuppofed to have for winning a fingle Game with one Bowl each.

PROBLEM XXVIII.

IF A and B, whofe proportion of Skill is as a to b, play together, each with a certain number of Bowls: What are their refpective Probabilities of winning, Suppofing each of them to want a certain number of Games of being up?

SOLUTION.

FIr f t The Chance of B for winning one fingle Bowl being b, and the number of his Bowls being n, it follows that the fum of all his Chances is $n b$; and for the fame reafon the fum of all the Chances of A is $n a$: wherefore the fum of all the Chances for winning one Bowl or more is $n a+n b$; which for brevity fake we may call s. From whence it follows, that the Probability which B has of winning one Bowl or more is $\frac{n b}{s}$.

Secondly, Suppofing one of his Bowls nearer the Jack than any of the Bowls of A, the number of his remaining Chances is $\overline{n-1} \times b$; and the number of Chances remaining between them is $s-b$: wherefore the Probability that fome other of his Bowls may be nearer the Jack than any Bowl of A will be $\frac{\overline{n-1} \times b}{s-b}$: From whence it follows, that the Probability of his winning Two Bowls or more is $\frac{n b}{s} \times \frac{\overline{n-1 \times b}}{s-6}$.

Thirdly, Suppofing Two of his Bowls nearer the Jack than any of the Bowls of A, the number of his remaining Chances is $\overline{n-2} \times b$; and the number of Chances remaining between them is $s-2 b$: wherefore the Probability that fome other of his Bowls may be nearer the Jack than any Bowl of A will be $\frac{\overline{n-2} \times b}{s-26}$. From whence it follows, that the Proba=

Probability of his winning Three Bowls or more is $\frac{n b}{s} x$ $\frac{\overline{n-1} \times 6}{s-6} \times \frac{\overline{n-2} \times b}{s-26}$; the continuation of which procefs is manifeft.

Fourthly, If from the Probability which B has of winning One Bowl or more, there be fubtratted the Probability which he has of winning Two or more, there will remain the Probability of his winning One Bowl at an End: Which therefore will be found to be $\frac{n b}{s}-\frac{n b}{s} \times \frac{\overline{n-1} \times b}{s-b}$ or $\frac{n b}{s} \times \frac{s-n b}{s-b}$ or $\frac{n b}{s} \times \frac{a n}{s-b}$.

Fifthly, For the fame reafon as above, the Probability which B has of winning Two Bowls at an End will be found to be $\frac{n b}{s} \times \frac{\overline{n-1} \times b}{s-b} \times \frac{a n}{s-26}$.
Sixthly, And for the fame reafon likewife, the Probability which B has of winning Three Bowls at an End will be found to be $\frac{n b}{s} \times \frac{\overline{n-1} \times b}{s-b} \times \frac{\overline{n-2} \times b}{s-2 b} \times \frac{a n}{s-3 b}$. The continuation of which procefs is manifeft.
N. B. The fame Expectations which denote the Probability of any circumftance of B, will denote likewife the Piobability of the like circumftance of A, only changing b into a and a into b.

Thefe Things being premifed, Suppofe Firft, that each of them wants one Game of being up; "cis plain that the Expectations of A and B are refpectively $\frac{a n}{s}$ and $\frac{h m}{s}$. Let this Expectation of B be called P.

Secondly, Suppofe A wants One Game of being up and B Two, and let the Expedtation of B be required: Then either A may win a Bowl, or B win One Bowl at an End, or B win Two Bowls.

If the firlt Cafe Happens, B lofes his Expectation.
If the fecond Happens, he gets the Expectation P; but the Probability of this Cafe is $\frac{n b}{s} \times \frac{a n}{s-6}$: wherefore the Expectation of B arifing from the poffibility that it may fo Happ en is $\frac{n b}{s} \times \frac{a n}{s-b} \times P$.

If the third Cafe Happens, he gets the whole Stake $\mathbf{1}$; but the Probability of this Cafe is $\frac{n b}{s} \times \frac{n-b}{5-b}$, wherefore the Expectation of B arifing from the Probability of this Cafe is $\frac{n b}{s} \times \frac{n-b}{s-b} \times 1$.

From which it follows that the whole Expetation of B will be $\frac{n b}{s} \times \frac{a n}{s-6} P+\frac{n b}{s} \times \frac{n-b}{s-b}$. Let this Expectation be called $?$

Thirdly, Suppofe A to want One Game of being up, and B Three. Then either B may win One Bowl at an End, in which Cafe he gets the Expectation 2 ; or Two Bowls at an End, in which Cafe he gets the Expectation P; or Three Bowls in which Cafe he gets the whole Stake I. Wherefore the Expectation of B will be found to be $\frac{n b}{s} \times \frac{a n}{s-b} \times Q$ $+\frac{n b}{s} \times \frac{\overline{n-1} \times b}{s-b} \times \frac{a n}{s-2 b} \times P+\frac{n b}{s} \times \frac{\overline{n-1} \times b}{s-6} \times \frac{\overline{n-2} \times b}{s-2 b}$.

An infinite number of thefe Theorems may be formed in the fame manner, which may be continued by infpedion, having well obferved how each of them is deduced from the preceding.

If the number of Bowls were unequal, fo that A had m Bowls and $B n$ Bowls; Suppofing $m a+n b=s$, other Theorems might be found to anfwer that inequality: And if that inequality fhould not be conftant, but vary at pleafure; c_{0} ther Theorems might alfo be formed to anfwer that Variation of inequality, by following the fame way of arguing. And if Three or more Gamefters were to play together under any circumftance of Games wanting, and of any given proportion of Skill, their Probabilities of winning might be determined after the fame manner.

PROBLEM XXIX.

T0 find the Expectation of A when with a Die of any given number of Faces be undertakes to fling any determi. nate number of them is any given number of Cafts.

SOLUTION.

LET $p+\mathrm{r}$ be the number of all the Faces in the Die, n the number of Calts, f the number of Faces which he undertakes to Hing.

The number of Chances for an Ace to come up once or more in ary number of Calts n, is $\overline{p+1}{ }^{n}-p^{n}$: As has been proved in the Introduction.

Let the Duce, by thought, be expunged out of the Die, and thereby the number of its Faces reduced to p, then the number of Chances for the Ace to come up will at the fame time be reduced to $p^{n}-\overline{p-1}^{n}$. Let now the Duce be reftored; and the number of Chances for the Ace to come up without the Duce, will be the fame as if the Duce were expunged. But if from the number of Chances for the Ace to come up with or withour the Duce, viz. from $\overline{p+1}{ }^{n}-p^{n}$ be fubtracted the number of Chances for the Ace to come up without the Duce, viz. $p^{n}-\overline{p-1}^{n}$, there will remain the number of Chances for the Ace and Duce to come up once or more, which confequently will be $\overline{p+1^{n}}-2 \times p^{n}+\overline{p-1}^{n}$.
By the fame way of arguing it will be proved, that the number of Chances for the Ace and Duce to come up without the Trae will be $p^{n}-2 \times \overline{p-1}{ }^{n}+\overline{p-2} n^{n}$, and confequently, that the number of Chances for the Ace, the Duce and Trae to come up once or more, will be the difference between $\overline{p+1}^{n}-2 \times p^{n}+\overline{p-1}^{n}$ and $p^{n}-2 \times \overline{p-1}^{n}+\overline{p-2}^{n}$; which therefore is $\overline{p+1^{n}}-3 \times p^{n}+3 \times \overline{p-1^{n}}+p_{p-2^{n}}$.
Λ gain it may be proved that the number of Chances. for the Ace, the Duce, the Trae and Quater to come up, is $\overline{p-1} 1^{n}-4 \times p^{n}+6 \times \overline{p-1}{ }^{n}-4 \times \overline{p-2^{n}}+\overline{p-3}{ }^{n}$; the continuation of which Procefs is manifeft.

Wherefore if all the Powers $\overline{p+1^{n}}, p^{n}, \overline{p-1}^{n}, \overline{p-2}^{n}, \overline{p-3^{n}}$ \&c. with the Signs alternately Pofitive and Negative, be written in Ordar, and to thofe Powers there be prefixt the refpective Coefficients of a Binomial raifed to the Power f; the fum of all thofe Terms will be the Numerator of the Expectation of A, of which the Denominator will be $\overline{p+1 i^{n}}$.

EXAMPLEI.

LET Six be the number of Faces in the Die, and let A undertake in Eight Cafts to fling both an Ace and a Duce: Then his Expectation will be $\frac{6^{8}-2 \times 5^{8}+4^{8}}{6^{8}}$. $=\frac{964502}{1680.16}=\frac{4}{7}$ nearly.
EXAMPLE II.

IF A undertake with a common Die to fling all the Faces in 12 Cafts, his Expectation will be found to be $\frac{6^{22}-6 \times 5^{12}+15 \times 4^{12}-20 \times 3^{12}+15 \times 2^{12}-5 \times 1^{12}}{6^{12}}=\frac{10}{23}$. nearly.

E X A MPLE III.

IF A with a Die of 36 Faces undertake to fling two given Faces in 43 Cafts; or, which is the fame thing, if with two common Dice he undertake in 43 Cafts to fling Two Aces at one time, and Two Sixes at another time, his Expectation will be $\frac{36^{43}-2 \times 35^{43}+34^{43}}{3^{43}}=\frac{49}{100}$ nearly.
N. B. The parts of which thefe Expectations are compounded, are eafily obtained by the help of a Table of Lo garithms.

PROBLEM XXX.

$\square 0$ find in how many Trials it will be probable that A witho a Die of any given number of. Faces foall throw any propofed number of them.
SOLUTION.

LET $p+r$ be the number of Faces in the Die, and f the number of Faces which are to be thrown. Divide the Logarithm of $\frac{1}{x-\frac{f}{\frac{2}{s}}}$ by the Logarithm of $\frac{p+s}{p}$, and । the:
the Quotient will exprefs nearly the number of Trials requifite, to make it as probable that the propofed Faces may be thrown as not.

DEMONSTRATION.

SUppofe Six to be the number of Faces which are to be thrown, and n the number of Trials: Then by what has been demonftrated in the preceding Problem, the Expectation of A will be,
$\overline{p+I^{n}}-6 \times p^{n}+15 \times \overline{p-1^{n}}-20 \times \frac{\overline{p-2}}{\overline{p+1}+15 \times \overline{p-3}}{ }^{n}-6 \times \overline{p-4^{n}}+\overline{p-5^{n}}$
Let it be fuppofed that the Terms $\overline{p+1}, p, p-1, p-2 \& c$. are in Geometric Progreffion (which fuppofition will very little err from the truth, efpecially if the proportion of p to I be not very fmall). Let now r be written inftead of $\frac{p+1}{p}$, and then the Expectation of A will be changed into $I-\frac{6}{r^{n}}+\frac{15}{r^{2 n}}-\frac{20}{r^{3 n}}+\frac{15}{1 r^{4 n}}-\frac{6}{r^{5 n}}+\frac{1}{r^{6 n}}$ or $\overline{1-\frac{1}{r^{n}}}$. But this Expectation of A ought to be made equal to $\frac{r}{2}$, fince by fuppofition he has an equal Chance to win or lofe: Hence will arife the Equation $x-\frac{n}{r^{n}}=\frac{1}{2}$ or $r^{n}=\frac{1}{1-\sqrt{\frac{1}{2}}}$, from which it may be concluded that $n \times \log . r$, or $n \times \log \cdot \frac{p+1}{p}=$ Log. $\frac{1}{1-\sqrt{1}_{\frac{1}{2}}^{2}}$, and confequently that n is equal to the Logarithm of $\frac{:}{x-i \frac{i}{\frac{1}{2}}}$ divided by the Logarithm of $\frac{\sigma}{-5}=\frac{p+r}{p}$. And the fame Demonftration will hold in any other Cate.

> EXAMPLE I.

TO find in how many Trials A may with equal Chance undertake to throw all the Faces of a common Die.

The Logarithm of $\frac{1}{1-\frac{6}{\frac{6}{2}}}=0.9621753$; the Logafithm of $\frac{p+1}{p}$ or $\frac{6}{5}=0.07918 \mathrm{I}_{2}$: Wherefore n $=\frac{0.9621753}{0.0791812}=12+$. From hence it may be concluded that in 12 Cafts A has the worlt of the Lay, and in I_{3} the beft of it .

EXAMPLE II:

TO find in how many Trials, A may with equal Chance, with a Die of Thirty-fix Faces, undertake to throw Six determinate Faces; or, in how many Trials he may with a Pair of common Dice undertake to throw all the Doublets.
The Logarithm of $\frac{1}{x-\frac{6}{\frac{7}{2}}}$ being 0.9621753 , and the Logarithm of $\frac{p+1}{p}$ or $\frac{36}{35}$ being 0.0122345 ; it follows that the number of Cafts requifite to that effect is $\frac{0.9621753}{0.0122345}$ or 79 nearly.

But if it were the Law of the Play, that the Doublets mult be thrown in a given Order, and that any Doublet Happening to be thrown out of its turn fhould go for nothing; then the throwing of the Six Doublets would be like the throwing of the two Aces Six times; to produce which effect the number of Cafts requifite would be found by Multiplying 35 by 5.668 , as appears from our VII $t b$. Problem, and confequently would be about 198 .
N. B. the Fraction $\frac{1}{1-\frac{f}{\frac{1}{2}}}$ may bereduced to $\frac{f}{\sqrt[f]{f}}$ which will Facilitate the taking of its Logarithm.

PROBLEM XXXI.

IF A, B, C Play together on the following conditions; Firf, that they Jball each of them Stake 1. Secondly, that A and B foald begin the Play; Thirdly, that the Lofer Sball yield his place to the third Man, which is to be obferved conflantly afterwards; Fourthby, X
that
that the Lofer Ball be fined a certain Sum p, which is to ferve to increafe the common Stock; Laftly, that he Jhall Win the whole Sum depofited at firt, and increajed by the Several Fines, who Sall firft beat the other two fucceffively: 'T is demanded what is the Advantage of A and B , whom we fuppofe to begin the Play.
S OL UTION.

LEt $B A$ fignifie that B beats A, and $A C$ that A beats C; and let always the firft Letter denote the Winner; and the fecond the Lofer.

Let us fuppofe that B beats A the firlt time: Then let us inquire what the Probability is that the Set fhall be ended in any given number of Games; and alfo what is the Probability which each Gamefter has of winning the Set in that given number of Games:

Firft, If the Set be ended in two Games, B muft neceffarily be the winner; for by Hypothefis he wins the firft time: Which may be expreffed as follows.

$$
\begin{array}{l|l}
1 & \frac{B A}{B C}
\end{array}
$$

Secondly, If the Set be ended in Three Games, C muft be the winner; as appears by the following Scheme.

$$
\begin{array}{l|l}
\mathrm{I} & B A \\
2 & C B \\
3 & C A
\end{array}
$$

Thirdly, If the Set be ended in Four Games, A mult be the winner; as appears by this Scheme.

$$
\begin{array}{l|l}
\mathbf{1} & B A \\
2 & C B \\
3 & A C \\
4 & A B
\end{array}
$$

Fourthly, If the Set be ended in Five Games, B mult be the winner; which is thus expreffed,

The Doctrine of: Chances:

Fifthly, If the Set be ended in Six Games, C muft be the winner; as will appear by ftill following the fame Procefs ${ }_{\text {s }}$. thus,

$\mathbf{1}$	$B A$
2	$C B$
3	$A C$
4	$B A$
5	$C B$
6	$C A$

And this Procefs recurring continually in the fame Oider needs not be profecuted any farther.

Now the Probability that the firft Scheme fhall take place:" is $\frac{1}{2}$, in confequence of the fuppofition that B beats A the firft time; it being an equal Chance whether B beat C, or C beat A.

And the Probability that the fecond Scheme fhall take place is $\frac{1}{4}$: For the Probability of C beating B is $\frac{1}{2}$, and that being fuppofed, the Probability of his beating A will alio be $\frac{1}{2}$; wherefore the Probability of B beating C, and then A, will be $\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$.

And from the fame confiderations the Probability that the Third Scheme fhall take place is $\frac{1}{8}$: and fo on.

Hence it will be eafie to compore a Table of the Probabilities which B, C, A have of winning the Set in any givennumber of Games; and alfo of their Expectations: Which Expectations are the Probabilities of winning Multiplyed by the Stock Three depofited at firft, and increafed fucceffively by the feveral Fines.

TABLE

T A B Le of the Probabilities, \&c.

	B	C	A
2	$\frac{1}{2} \times \overline{3+2 p}$	\cdots	$\cdots \cdots$
3	$\frac{1}{4} \times 3+3 p$	\cdots
4	- . . .	- . . .	$\frac{1}{8} \times 3+4 p$
5	$\frac{1}{16} \times 3+5 p$	1 \times -
6	$\frac{1}{32} \times 3+6 p$	
7	\cdots	-••••	$\frac{1}{64} \times 3+7 p$
8	$\frac{1}{128} \times \frac{}{3+8 p}$	\cdots
9	$\frac{1}{256} \times 3+9 p$	$\cdots \cdots$
10	; . . .	- . . \cdot	$\frac{1}{512} \times 3+10 p$
$\begin{aligned} & 11 \\ & \delta \sigma . \end{aligned}$	$\frac{1}{1024} \times 3+11 p$		

Now the feveral Expectations of B, C, A may be fummed up by the following Lemma.

L E M MA.

$\frac{n}{b}+\frac{n+d}{b b}+\frac{n+=d}{b^{3}}+\frac{n+3 d}{b^{4}}+\frac{n+4 d}{b^{5}}$ \&c. Ad infinitum is equal to $\frac{n}{b-1}+\frac{d}{b-1)^{2}}$.

Let the Expectations of B be divided into two Series, wizo

$$
\begin{aligned}
& \frac{3}{2}+\frac{3}{16}+\frac{3}{128}+\frac{3}{1024} \& c_{0} \\
+ & \frac{2 p}{2}+\frac{5 p}{16}+\frac{3 p}{128}+\frac{11 p}{1024} \& c .
\end{aligned}
$$

The firft Series conftitutes a Geometric Progreffion continually decreafing, whofe fum will be found to be $\frac{12}{7}$.

The fecond Series may be reduced to the form of the Series in our Lemma, and may be thus exprelt,

$$
\frac{p}{2} x
$$

$\frac{p}{2} \times \frac{2}{1}+\frac{5}{8}+\frac{8}{8^{2}}+\frac{11}{8^{3}}+\frac{14}{8^{4}}$ \&c. Wherefore dividing the whole by $\frac{p}{2}$, and laying afide the Term 2, we fhall have the Series $\frac{5}{8}+\frac{8}{8^{3}}+\frac{11}{8^{3}}+\frac{14}{8^{4}}, \& c$. which has the fame form as the Series of the Lemma, and may be compared with it : Let therefore n be made $=5, d=3$ and $b=8$, and the fum of this Series will be $\frac{5}{7}+\frac{3}{49}$, or $\frac{38}{49}$; to this adding the firft Term 2, which had been laid afide, the new fum will be $\frac{136}{49}$; and that being Multiplied by $\frac{p}{2}$, the Product will be $\frac{68}{49} p$, which is the fum of the fecond Series expreffing the Expectations of B : From hence it may be concluded, that all the Expectations of B contained in both the abovementioned Series will be equal to $\frac{12}{7}+\frac{68}{49} p$.

And by the help of the foregoing Lemma it will be found likewife that all the Expectations of c will be equal to $\frac{6}{7}+\frac{43}{49} p$.

It will alfo be found that all the Expectations of A will be $=\frac{3}{7}+\frac{3 t}{49} p$.

Hitherto we have determined the feveral Expectations of the Gamefters, upon the fum by them depofited at firff, as alfo upon the Fines by which the common Stock is increafed : It remains now to Ettimate the feveral Risks of their being Fined; that is to fay, the fum of the Probabilities of their being Fined multiplyed by the refpective Quantities of the Fine.

Now after the fuppofition made of A being beat the firft time, by which he is obliged to lay down his Fine p, B and C have an equal Chance of being Fined after the fecond Game, which makes the Risk of each to be $=\frac{1}{2} p_{0}$; as appears by the following Scheme.

$$
\frac{B A}{C B} \text { or } \frac{B A}{B C}
$$

82 The Doctrine of Chances.

In the like manner, it will be found that both C and A have one Chance in four for their being Fined after the Third Game, and confequently that the Risk of each is $\frac{1}{4} p$, according to the following Scheme.

$$
\frac{B A}{C B} \text { or } \frac{B A}{C B}
$$

And by the like Proces it will be found that the Risk of B and C after the fourth Game is $\frac{1}{8} p$.

Hence it will be eafie to compofe the following Table which expreffes the Risks of each Gamefter.

$$
\text { TABLE of } R I S K S
$$

In the Column belonging to B, if the vacant places were filled up, and the Terms $\frac{1}{4} p, \frac{1}{32} p, \frac{1}{256} p$ \&c. were Interpoled, the Sum of the Risks of B would compofe one uninterrupted Geometric Progreffion, whofe Sum would be $=p$; But the Terms interpoled conftitute a Geometric Progreffion whofe Sum is $=\frac{2}{7} p$: Wherefore, if from p there be fubtra\&ted $\frac{2}{7} p$, there will remain $\frac{5}{7} p$ for the Sum of the Risks of B.

In like manner it will be found that the Sun of the Risks of C will be $\equiv \frac{6}{7} p$.

And the Sum of the Risks of A, after his being Fined the firt time, will be $=\frac{3}{7} p$.

Now if from the feveral Expectations of the Gameefters there be fubtracted each Man's Stake, as alfo the Sum of his Risks, there will remain the clear Gain or Lofs of each of them.

Wherefore, from the Expectations of $B=\frac{12}{7}+\frac{68}{49} p$
Subtracting firft his Stake

$$
=1
$$

Then the Sum of his Risks
There remains the clear Gain of $B=\frac{5}{7}+\frac{33}{49} p$
Likewife, from the Expectations of $C=\frac{6}{7}+\frac{4^{9}}{49} P$
Subtracting firft his Stake $=\mathbf{I}$
Then the Sum of his Risks $=\frac{6}{7} p$
There remains the clear Gain of $C=-\frac{1}{7}+\frac{6}{49} p$
In like manner, from the Expectation of $A=\quad \frac{3}{7}+\frac{31}{49} P$ Subtracting, Firf, his Stake $=\frac{1}{1}$ Secondly, the Sum of his Risks $=\quad \frac{3}{7} p$ Lafly, the Fine p due to the $\}=$ Stock by the Lofs of the firt Game $\}$.
There remains the clear Gain of $A=-\frac{4}{7}-\frac{30}{4} p$
But we have fuppofed in the beginning of the Game thatA was beat; whereas A had the fame Chance to beat B; as B had to beat him: Wherefore dividing the Sum of the Gains of B and A into two equal Parts, each part will be. $\frac{1}{14}-\frac{3}{49} p_{\text {; }}$ which confequently mult be repured to be as the Gain of each of them.

Corollary I. The Gain of c being - $\frac{1}{7}+\frac{6}{49} p$, Let that be made $=0$. Then p will be found $=\frac{7}{6}$. If therefore the Fine has the fame proportion to each Man's Stake as 7 has to 6 , the Gametters play all upon equal Terms: But if the Fine bears a lefs proportion to the Stake than 7
to $6, C$ has the difadvantage: Thus, Suppofing $p=1$, his Lofs would be $\frac{1}{49}$. But if the Fine bears a greater proportion to the Stake than 7 to $6, C$ has the Advantage.

Corollary II. If the Stake were conftant, that is, if there were no Fines, then the Probabilities of winning would be refpectively proportional to the Expectations; whicefore fuppofing $p=0$, the Expectations of the Gamelters, or their Probabilities of winning, will be as $\frac{12}{7}, \frac{6}{7}, \frac{3}{7}$, or, as $4,2,1$: But the increafe of the Stock caules no alteration in the Probabilities of winning, and confequently thofe Probabilities are, in the Cafe of this Problem, as $4,2, \mathrm{I}$; whereof the firft belongs to B after his beating A the firft time; the fecond to C, and the third to A : Wherefore 'tis Five to Two, before the Play begins, that either A or B wins the Set ; and Five to Four that one of them, that fhall be fixt upon, wins it.

Corollary III. If the proportion of Skill between the Gamefters A, B, C be as a, b, c refpectively, and that the refpective Probabilities of winning, in any number of Games after the firft, wherein B is Suppofed to beat A, be denoted by $B^{\prime}, B^{\prime \prime \prime \prime}, B^{V / \prime \prime}, B^{X} \& c, C^{\prime \prime}, C^{V}, C^{V \prime \prime \prime}, C^{X^{\prime}} \& C . A^{A^{\prime \prime \prime}}, A^{V \prime}, A^{\prime X}$, $A^{x \prime \prime}, \&{ }^{\prime}$. it will be found, by the bare infpection of the Schemes belonging to the Solution of the foregoing Problem, that

$$
\begin{aligned}
& B^{\prime}=\frac{b}{b+c} \\
& C^{\prime \prime}=\frac{c}{c+b} \times \frac{c}{c+a} \\
& A^{\prime \prime \prime}=\frac{c}{c+b} \times \frac{a}{a+c} \times \frac{a}{a+b} \\
& B^{\prime \prime \prime \prime}=\frac{c}{c+b} \times \frac{a}{a+c} \times \frac{b}{b+a} \times \frac{b}{b+c} \\
& C^{V}=\frac{c}{c+b} \times \frac{a}{a+c} \times \frac{b}{b+a} \times \frac{c}{c+b} \times \frac{c}{c+a} \\
& A^{\prime \prime \prime}=\frac{c}{c+b} \times \frac{a}{a+c} \times \frac{b}{b+a} \times \frac{c}{a+b} \times \frac{a}{a+c} \times \frac{a}{a+b} . \\
& \text { \&C. }
\end{aligned}
$$

Let $\frac{b}{b+a} \times \frac{c}{c+b} \times \frac{a}{a+c}$ be made $=m$; then it will plainly appear that the feveral Probabilities of winning will compofe each of them a Geometric Progreffion, for

$$
\mathrm{B}^{\prime \prime \prime}=
$$

Hence a Table of Expectations and Risks may eafily be formed as above; and the reft of the Solution carried on by following exactly the fteps of the former.

When the Solution is brought to its conclufion, it will be neceffary to make an allowance for the fuppofition made that B beats A the firft time, which may be done thus,

Let P be the Gain of B, when expreft by the Quantities a, b, c, and \cap the Gain of A, when exprelt by the fame: Change a into b and b into a, in the Quantity 2 ; then the Quantity refulting from this Change will be the Gain of B, in cafe he be fuppofed to bofe the firft Game. Let this Quantity therefore be called R, and then the Gain of B, to be eftimated before the Play begins, will be $\frac{b p+a R}{b+a}$.

PROBLEM XXXII.

IF Four Gamefters A, B, C, D Play on the conditions of the foregoing Problem, and be be to be reputed the Winner, who Fball beat the other Three fuccefively: What is the Advantage of A and B , whom we Suppofe to begin the Play?

SOLUTION.

LET $B A$ denote, as in the preceding Problem, that B beats A, and $A C$ that A beats C; and generally let the firft Letter always denote the Winner and the fecond the Lofer.

Let it be Suppofed alfo that B beats A the firf time: Then let it be inquired what is the Probability that the Play fhall be ended in any given number of Games; as alfo what is the Probability which each Gamefter has of winning the Set in that given number of Games.
86. The Doctrine of Chances.

Firft, If the Set be ended in Three Games, B mult neceff farily be the winner: Since by Hypothefis he beats A the firt Game, which is expreffed as follows,

$$
\begin{array}{l|l}
1 & B A \\
2 & \frac{B C}{B C} \\
3 & B D
\end{array}
$$

Secondly, If the Set be ended in Four Games, C muft be the winner; as it thus appears.

$\mathbf{1}$	$B A$
2	$C B$
3	$C D$
4	$C A$

Thirdly, If the Set be ended in Five Games, D will be the winner; for which he has two Chances, as it appears by the following Scheme.

$$
\begin{array}{l|lll}
1 & B A & & B A \\
\hline 2 & C B & & B C \\
3 & D C & \text { or } & D B \\
4 & D A & & D A \\
5 & D B & & D C
\end{array}
$$

Fourthy, If the Set be ended in Six Games, A will be she winner; and he has three Chances for it, which are thus. collected,

$\mathbf{1}$	$B A$	$B A$	$B A$
2	$C B$	$\frac{B A}{C B}$	$B C$
	$D C$	$C D$	$D B$
4	$A D$	$A C$	$A D$
5	$A B$	$A B$	$A C$
6	$A C$	$A D$	$A B$

Fifthy; If the Set be ended in Seven Games, then B will have three Chances to be the winner, and C will have two: thus,

The Doctrine of Chances.

I	$\frac{B A}{}$	$\frac{B A}{C B}$	$\frac{B A}{C B}$	$\frac{B A}{B C}$	$\frac{B A}{B C}$
2	$C B$	$C B$			
3	$D C$	$D C$	$C D$	$D B$	$D B$
4	$A D$	$D A$	$A C$	$A D$	$D A$
5	$B A$	$B D$	$B A$	$C A$	$C D$
6	$B C$	$B C$	$B D$	$C B$	$C B$
7	$B D$	$B A$	$B C$	$C D$	$C A$

Sixthly, If the Set be ended in Eight Games, then D will have two Chances to be the Winner, C will have three, and: B alfo three, thus

1.	$\frac{B A}{C B}$	$\frac{B A}{B C}$	$\frac{B A}{B C}$	$\frac{B A}{B C}$				
3	$D C$	$D C$	$D C$	$C D$	$C D$	$D B$	$D B$	$D B$
4	$A D$	$A D$	$D A$	$A C$	$A C$	$A D$	$A D$	$D A$
5	$B A$	$A B$	$B D$	$B A$	$A B$	$C A$	$A C$	$C D$
6	$C B$	$C A$	$C B$	$D B$	$D A$	$B C$	$B A$	$B C$
7	$C D$	$C D$	$C A$	$D C$	$D C$	$B D$	$B D$	$B A$
8.	$C A$	$C B$	$C D$	$D A$	$D B$	$B A$	$B C$	$B D$

Let now the Letters by which the winners are denoted be written in Order, prefixing to them the Numbers which: exprefs their feveral Chances for winning; in this manner...

88

 The Doctrine of Chances.Then Examining the formation of there Letters, it will appear; Firft, that the Letter B is always found fo many times in any Rank, as the Letter A is found in the two preceding Ranks: Secoodly, that C is found fo many times in any Rank, as B is found in the preceding Rank, and D in the Rank before that. Thirdly, that D is found fo many times in each Rank, as C is found in the preceding, and B in the Rank before that: And Fourthly, that A is found fo many times in each, as D is found in the preceding Rank, and C in the Rank before that.

From whence it may be concluded, that the Probability which the Gamefter B has of winning the Set, in any given number of Games, is $\frac{1}{2}$ of the Probability which A has of winning it one Game fooner, together with $\frac{1}{4}$ of the Probability which A has of winning it two Games fooner.

The Probability which C has of winning the Ser, in any given number of Games, is $\frac{5}{2}$ of the Probability which B has of winning it one Game fooner, together with $\frac{1}{4}$ of the Probability which D has of winning it two Games fooner.

The Probability which D has of winning the Set, in any given number of Games, is $\frac{1}{2}$ of the Probability which \mathcal{C} has of winning it one Game fooner, and alfo $\frac{1}{4}$ of the Probability which B has of winning it two Games fooner.
The Probability which A has of winning the Set, in any given number of Games, is $\frac{1}{2}$ of the Probability which D has of winning it one Game fooner, and allo $\frac{1}{4}$ of the Probability which C has of winning it two Games fooner.
Thefe things being obferved, it will be eafie to compofe a Table of the Probabilities which B, C, D, A have of winning the Set in any given number of Games; as alfo of their Expectations, which will be as follows.

T A B L E of the Probabilities, \&c.

		B	C	D	A
'	3	$\frac{1}{4} \times \overline{4+3 p}$	-	------	
"	4		$\frac{1}{8} \times \overline{4+4 P}$	-----	
'"'	5			$\frac{2}{16} \times \overline{4+5 p}$	
IIII	6				$\frac{3}{3^{2}} \times \overline{4+6 p}$
v	7	$\frac{3}{64} \times \overline{4+7 p}$	$\frac{2}{64} \times \overline{4+7 p}$	---x-	
$v^{\prime \prime}$	8	$\frac{3}{128} \times \overline{4+8 p}$	$\frac{3}{123} \times \overline{4+8 p}$	$\frac{2}{123} \times \overline{4+8 p}$	
\%'I	9		$\frac{2}{250} \times \overline{4+9 p}$	$\frac{6}{256} \times \overline{4+9 p}$	$\frac{4}{256} \times \overline{4+9 p}$
V'II	10	$\frac{4}{512} \times \overline{4+10 p}$	$\frac{2}{512} \times 4$	$\frac{6}{512} \times 4+101$	$\frac{9}{512} \times \overline{4+10 p}$
'x	I I	$\frac{43}{1024} \times 4$	$\frac{10}{1024} \times 4$ +11p	$\frac{2}{1024} \times \overline{4+1} \underline{p}$	$\frac{9}{1024} \times \overline{4+11 p}$
x	12	$\frac{18}{2048} \times 4+12 p$	$\frac{19}{2043} \times 4+12 p$	$\frac{14}{20+8} \times \overline{4+12 p}$	$\frac{4}{2048} \times \overline{4+12 p}$
*r.	Oc.				

The Terms whercof each Column of this Table is compofed, being not eafily fummable by any of the known Methods, it will be convenient, in order to find their Sums, to ufe the following Analy ${ }^{\text {sis. }}$
L.et $B^{\prime}+B^{\prime \prime}+B^{\prime \prime \prime}+B^{\prime \prime \prime \prime}+B^{V}+B^{\prime \prime \prime} \& c$. reprefent the refpective Probabilities which B has of winning the Set, in any number of Games, anfwering to $3,4,5,6,7,8$ \&c. and let the fum of thefe Probabilities Adinfinitum be fuppofed $=y$.

In the fame manner, let $C^{\prime}+C^{\prime \prime}+C^{\prime \prime \prime}+C^{\prime \prime \prime \prime}+C^{V}+$ $C^{\prime \prime} \& c$. reprefent the Probabilities which C has of winning, which fuppofe $=z$.

Let the like Probabilities which D has of winning be reprefented by $D^{\prime}+D^{\prime \prime}+D^{\prime \prime \prime}+D^{\prime \prime \prime \prime}+D^{V}+D^{V \prime} \& c$. whichs fuppofe $=v$.

Laftly, Let the Probabilities which A has of winning be reprefented by $A^{\prime}+A^{\prime \prime}+A^{\prime \prime \prime}+A^{\prime \prime \prime \prime}+A^{V}+A^{\prime \prime} \& \mathrm{c}$. which fuppofe $=x$.

Now from the Obfervations fet down before the Table of Probabilities, it will follow, that

$$
\begin{aligned}
& B^{\prime}=B^{\prime} \\
& B^{\prime \prime}=B^{\prime \prime} \\
& B^{\prime \prime \prime}=\frac{1}{2} A^{\prime \prime}+\frac{1}{4} A^{\prime} \\
& B^{\prime \prime \prime \prime}=\frac{1}{2} A^{\prime \prime \prime}+\frac{1}{4} A^{\prime \prime} \\
& B^{\prime \prime}=\frac{1}{2} A^{\prime \prime \prime \prime}+\frac{1}{4} A^{\prime \prime \prime} \\
& B^{\prime \prime \prime}=\frac{1}{2} A^{V}+\frac{1}{4} A^{\prime \prime \prime \prime} . \\
& \& c_{0}
\end{aligned}
$$

From which Scheme we may deduce the Equation following, $y=\frac{1}{4}+\frac{2}{4} x$: For the Sum of the Terms in the firt Column is equal to the Sum of the Terms in the other rwo. But the Sum of the Terms in the firft Column is y by Hypothefis; wherefore y ought to be made equal to the Sum of the Teirms in the other two Columns.

In order to find the Sum of the Terms of the fecond Column, I argue thus,

$$
\begin{aligned}
& A^{\prime}+A^{\prime \prime}+A^{\prime \prime \prime}+A^{\prime \prime \prime \prime}+A^{V}+A^{V \prime} \text { is }=x \text { by Hypoth, } \\
& \text { or } A^{\prime \prime}+A^{\prime \prime \prime}+A^{\prime \prime \prime \prime}+A^{V}+A^{V^{\prime \prime}} \text { is }=x-A^{\prime} \\
& \text { and } \frac{1}{2} A^{\prime \prime}+\frac{1}{2} A^{\prime \prime \prime}+\frac{1}{2} A^{\prime \prime \prime \prime}+\frac{1}{2} A^{V}+\frac{1}{2} A^{V \prime} \text { is }=\frac{1}{2} x-\frac{1}{2} A^{\prime}
\end{aligned}
$$

Then adding $B^{\prime}+B^{\prime \prime}$ on both fides of the laft Equation, we fhall have

$$
\begin{aligned}
& B^{\prime}+B^{\prime \prime}+\frac{1}{2} A^{\prime \prime}+\frac{1}{2} A^{\prime \prime \prime}+\frac{1}{2} A^{\prime \prime \prime \prime}+\frac{1}{2} A^{V}+\frac{1}{2} A^{\text {VI }} \& c . \\
= & \frac{1}{2} x-\frac{1}{2} A^{\prime}+B^{\prime}+B^{\prime \prime} .
\end{aligned}
$$

But $A^{\prime}=0, B^{\prime}=\frac{1}{4}, B^{\prime \prime}=0$, as appears from the Ta ble: Wherefore the Sum of the Terms of the fecond Column is equal to $\frac{3}{2} x+\frac{1}{4}$.

The Sum of the Terms of the third Column is $\frac{x}{4} x$ by Hypothefis; and confequently the Sum of the Terms in the fecond and third Columns is $=\frac{3}{4} x+\frac{1}{4}$. From whence it follows that the Equation $y^{4} \equiv \frac{1}{4}+\frac{3}{4}-x$ had been rightly determined.

The Doctrine of Chances;
In the fame manner, if we write

$$
\begin{aligned}
& C^{\prime}=C^{\prime} \\
& C^{\prime \prime}=C^{\prime \prime} \\
& C^{\prime \prime \prime}=\frac{1}{2} B^{\prime \prime}+\frac{1}{4} D^{\prime \prime \prime} \\
& C^{\prime \prime \prime \prime}=\frac{1}{2} B^{\prime \prime \prime}+\frac{1}{4} D^{\prime \prime \prime} \\
& C^{v}=\frac{1}{2} B^{\prime \prime \prime}+\frac{1}{4} D^{\prime \prime \prime} \\
& C^{\prime \prime}=\frac{1}{2} B^{V}+\frac{1}{4} D^{\prime \prime \prime \prime}, \\
& \& C_{0}
\end{aligned}
$$

By a reafoning like the former we fhall at length come at the Equation $z=\frac{1}{2} y+\frac{1}{4} v$.

So likewife if we write

$$
\begin{aligned}
& \boldsymbol{D}^{\prime}=\boldsymbol{D}^{\prime} \\
& \boldsymbol{D}^{\prime \prime}=\boldsymbol{D}^{\prime \prime} \\
& \boldsymbol{D}^{\prime \prime \prime}=\frac{1}{2} \boldsymbol{C}^{\prime \prime \prime}+\frac{1}{4} \boldsymbol{B}^{\prime} \\
& \boldsymbol{D}^{\prime \prime \prime \prime}=\frac{1}{2} C^{\prime \prime \prime}+\frac{1}{4} \boldsymbol{B}^{\prime \prime} \\
& \boldsymbol{D}^{V}=\frac{1}{2} C^{\prime \prime \prime \prime}+\frac{1}{4} \boldsymbol{B}^{\prime \prime \prime} \\
& \boldsymbol{D}^{\prime \prime \prime}=\frac{1}{2} C^{V}+\frac{1}{4} \boldsymbol{B}^{\prime \prime \prime} . \\
& \& c .
\end{aligned}
$$

We fhall deduce the Equation $v=\frac{x}{2} z+\frac{1}{4} y_{0}$
Laftly, if after the fame manner we write

$$
\begin{aligned}
& A^{\prime}=A^{\prime} \\
& A^{\prime \prime}=A^{\prime \prime} \\
& A^{\prime \prime \prime}=\frac{1}{2} D^{\prime \prime}+\frac{1}{4} C^{\prime} \\
& A^{\prime \prime \prime \prime}=\frac{1}{2} D^{\prime \prime \prime}+\frac{1}{4} C^{\prime \prime} \\
& A^{\prime \prime}=\frac{1}{2} D^{\prime \prime \prime \prime}+\frac{1}{4} C^{\prime \prime \prime} \\
& A^{\prime \prime}=\frac{1}{2} D^{\prime \prime}+\frac{3}{4} C^{\prime \prime \prime} . \\
& \& c_{0}
\end{aligned}
$$

We fhall obtain the Equation $x=\frac{1}{2} \boldsymbol{v}+\frac{1}{4} \approx$?

22 The Doctrine of Chances.

Now thefe Four Equations being refolved, it will be found that

$$
\begin{aligned}
& B^{\prime}+B^{\prime \prime}+B^{\prime \prime \prime}+B^{\prime \prime \prime \prime \prime}+B^{V}+B^{V \prime \prime} \& c_{0}=y=\frac{56}{149}, \\
& C^{\prime}+C^{\prime \prime}+C^{\prime \prime \prime}+C^{\prime \prime \prime \prime}+C^{V}+C^{V^{\prime \prime}} \& c_{0}=z=\frac{-36}{149}, \\
& D^{\prime}+D^{\prime \prime}+D^{\prime \prime \prime}+D^{\prime \prime \prime \prime}+D^{V}+D^{V \prime \prime} \& c_{0}=v=\frac{32}{149}, \\
& A^{\prime}+A^{\prime \prime}+A^{\prime \prime \prime}+A^{\prime \prime \prime \prime}+A^{V}+A^{\prime \prime} \& c_{1}=x=\frac{\frac{25}{149}}{149} .
\end{aligned}
$$

Thefe Values being once found, let b, c, d, a, which are commonly employed to denote known Quantities, be refpectively fubftituted in the room of them; to the end that the Letters y, z, v, x may now be employed to denote other unknown Quantities.

Hitherto we have been determining the Probabilities of winning: But in order to find the Expectations of the Gamefters, each Term of the Series expreffing there Probabilities, is to be multiplyed by the refpective Terms of the following Series; $4+3 p, 4+4 p, 4+5 p, 4+6 p, 8 c$.

The firit part of each Product being no more than a Multiplication by 4 , the fums of all the firft parts of thofe Products are only the fums of the Probabilities multiplicd by 4 ; and confequently are $4 b, 4 c, 4^{d}$, and 4^{a} refpectively.

But to find the Sums of the other parts,
Let $3 B^{\prime} p+4 B^{\prime \prime} p+5 B^{\prime \prime \prime} p+6 B^{\prime \prime \prime \prime} p \& c$. be $=p, y$,
$3 c^{\prime} p+4 c^{\prime \prime} p+5 c^{\prime \prime \prime} p+6 c^{\prime \prime \prime \prime} p \& c .=p z$,
$3 D^{\prime} p+4 D^{\prime \prime} p+5 D^{\prime \prime \prime} p+6 D^{\prime \prime \prime \prime} p \& c . \quad=p v$,
$3 A^{\prime} p+4 A^{\prime \prime} p+5 A^{\prime \prime \prime} p+6 A^{\prime \prime \prime \prime} p \& c_{0}=p x_{0}$
Now Since $3 B^{\prime}=3 B^{\prime}$
$4 B^{\prime \prime}=4 B^{\prime \prime}$
$5 B^{\prime \prime \prime}=\frac{5}{2} A^{\prime \prime}+\frac{5}{4} A^{\prime}$
$6 B^{\prime \prime \prime \prime}=\frac{6}{2} A^{\prime \prime \prime}+\frac{6}{4} A^{\prime \prime}$
$7 B^{V}=\frac{7}{2} A^{\prime \prime \prime \prime}+\frac{7}{4} A^{\prime \prime \prime}$
$8 B^{V I}=\frac{8^{2}}{2} A^{V}+\frac{8}{4} A^{\prime \prime \prime \prime}$
\&c.

It follows, that $y=\frac{3}{4}+\frac{3}{4} x+a_{0}$. For the firft CO . lumn is $=y$, by Hypothefis.

Again, $3 A^{\prime}+4 A^{\prime \prime}+5 A^{\prime \prime \prime}+6 A^{\prime \prime \prime \prime}+7 A^{\prime} \& \mathrm{c} .=x$ by $H y-$ potbefis.

But $A^{\prime}+A^{\prime \prime}+A^{\prime \prime \prime}+A^{\prime \prime \prime \prime}+A^{V} \& \mathrm{c}$. has been found $=a$,
Wherefore adding thefe two Equations together, we fhall have $4 A^{\prime}+5 A^{\prime \prime}+6 A^{\prime \prime \prime}+7 A^{\prime \prime \prime \prime}+8 A^{v} \& \mathrm{c}_{0}=x+a_{0}$ or $\frac{4}{2} A^{\prime}+\frac{5}{2} A^{\prime \prime}+\frac{6}{2} A^{\prime \prime \prime}+\frac{7}{2} A^{\prime \prime \prime \prime}+\frac{8}{2} A^{V} \& \mathrm{c}_{0}=\frac{1}{2} x+\frac{1}{2} a$.

Now the Terms of this laft Series, together with $3 B^{\prime}+$ $4 B^{\prime \prime}$, compofe the fecond Column: But $3 B^{\prime}=\frac{3}{4}$, and $4 B^{\prime \prime}=0$, as appears from the Table. Confequently the fum of the Terms of the fecond Column is $=\frac{3}{4}+\frac{1}{2} x$ $+\frac{\mathrm{I}}{2} a$.

By the fame Method of proceding, it will be found, that the fum of the Terms of the third Column is $=\frac{1}{4} x$ $+\frac{1}{2} a$.
From whence it follows that $y=\frac{3}{4}+\frac{1}{2} x+\frac{1}{2} a+\frac{1}{4} x+\frac{1}{2} a_{3}$ or $y=\frac{3}{4}+\frac{3}{4} x+a$.

In the fame manner if we write

$$
\begin{aligned}
& 3 C^{\prime}=3 C^{\prime} \\
& 4 C^{\prime \prime}=4 C^{\prime \prime} \\
& 5 C^{\prime \prime \prime}=\frac{5}{2} B^{\prime \prime}+\frac{5}{4} D^{\prime \prime} \\
& 6 C^{\prime \prime \prime \prime}=\frac{6}{2} C^{\prime \prime \prime}+\frac{6}{4} D^{\prime \prime} \\
& 7 C^{\prime \prime}=\frac{7}{2} B^{\prime \prime \prime \prime}+\frac{7}{4} D^{\prime \prime \prime} \\
& 8 C^{\prime \prime}=\frac{8}{2} B^{V}+\frac{8}{4} D^{\prime \prime \prime} \\
& \& C .
\end{aligned}
$$

We fhall from thence deduce the Equation $z=\frac{1}{2} y+\frac{1}{2} b$ $+\frac{1}{4} v+\frac{1}{2} d$.

So likewife in the fame manner, if we write

$$
\begin{aligned}
& 3 D^{\prime}=3 D^{\prime} \\
& 4 D^{\prime \prime \prime}=4 D^{\prime \prime} \\
& 5 D^{\prime \prime \prime}=\frac{5}{2} C^{\prime \prime}+\frac{5}{4} B^{\prime} \\
& 6 D^{\prime \prime \prime \prime}=\frac{6}{2} C^{\prime \prime \prime}+\frac{6}{4} B^{\prime \prime} \\
& 7 D^{V}=\frac{7}{2} D^{\prime \prime \prime \prime}+\frac{7}{4} B^{\prime \prime \prime} \\
& 8 D^{\prime \prime}=\frac{8}{2} D^{V}+\frac{8}{4} B^{\prime \prime \prime \prime}
\end{aligned}
$$

Laftly, if after the fame manner we write

$$
\begin{aligned}
& 3 A^{\prime}=3 A^{\prime} \\
& 4 A^{\prime \prime}=4 A^{\prime \prime} \\
& 5 A^{\prime \prime \prime}=\frac{5}{2} D^{\prime \prime}+\frac{5}{4} C^{\prime} \\
& 6 A^{\prime \prime \prime \prime}=\frac{6}{2} D^{\prime \prime \prime}+\frac{6}{4} C^{\prime \prime} \\
& 7 A^{\prime}=\frac{7}{2} D^{\prime \prime \prime \prime}+\frac{7}{4} C^{\prime \prime \prime} \\
& 8 A^{\prime \prime}=\frac{8}{2} D^{V}+\frac{8}{4} C^{\prime \prime \prime \prime} \\
& \& c_{0}
\end{aligned}
$$

We fhall deduce the two following Equations, viz. $v=\frac{1}{2} z+\frac{1}{2} c+\frac{1}{4} y+\frac{1}{2} b$. And $x=\frac{1}{2} v+\frac{1}{2} d+\frac{1}{4} z$ $+\frac{1}{2} c$.

Now the foregoing Equations being Solved, and the values of b, c, d, a reftored, it will be found that $y=\frac{45536}{22201}$ $z=\frac{38724}{22201}, v=\frac{37600}{22201}, x=\frac{33547}{22201}$.

From which we may conclude, that the feveral Expectations of B, C, D, A are refpectively, Firft, $4 \times \frac{56}{149}+\frac{45536}{22201} P$. Secondly, $4 \times \frac{36}{149}+\frac{38724}{22201}$ p. Thirdy, $4 \times \frac{32}{149}+\frac{37600}{22205} p$. Fourthly, $4 \times \frac{25}{149}+\frac{33547}{22204} p$.

The

The Expectations of the Gamefters being thus found, it will be neceflary to find the Risks of their being Fined, or otherwife what fum each of them ought juftly to give to have their Fines Infured. In order to which, let us form fo many Schemes for expreffing the Probabilities of the Fines as are fufficient to find the Law of their Procefs.

And Firft, we may obferve, that upon the fuppofition of B beating A the firlt Game, in confequence of which A is to be Fined, B and C have one Chance each for being Fined the fecond Game, as it thus appears

$$
\begin{array}{l|ll}
1 & \frac{B A}{C B} & \frac{B A}{B C}
\end{array}
$$

Secondly, that C has one Chance in four for being Fined the third Game, B one Chance likewife, and D two; according to the following Scheme,

$$
\begin{array}{l|cccc}
\mathbf{1} & \frac{B A}{C B} & \frac{B A}{C B} & \frac{B A}{B C} & \frac{B A}{B C} \\
\mathbf{2} & \frac{B C}{} & C D & D B & B D
\end{array}
$$

Thirdly, that D has two Chances in eight for being Fined the fourth Game, that A has three and C one; according to the following Scheme,

$$
\begin{array}{l|llllll}
\mathrm{I} & \frac{B A}{C B} & \frac{B A}{C B} & \frac{B A}{C B} & \frac{B A}{C B} & \frac{B A}{B C} & \frac{B A}{B C} \\
2 & D C & D C & C D & C D & D B & D B \\
3 & D C & A D & D A & A C & C A & A D
\end{array}
$$

N. B. The two Combinations $B A, B C, B D, A B$, and $B A$, $B C, B D, B A$ are omitted in this Scheme, as being fuperfuous; their difpofition fhewing that the Set muft have been ended in three Games, and confequently not affecting the Gamefters as to the Probability of their being Fined the fourth Game; Yet the number of all the Chances muft be reckoned as being Eight; fince the Probability of any one circum. ftance is but $\frac{\mathrm{T}}{8}$.

There Schemes being continued, it will eafily be perceived that the circumftances under which the Gamefters find themfelves, in refpect of their Risks of being Fined, ftand related to one another in the fame manner as were their Probabilities of Winning; from which confideration a Table of the Risks may eafily be composed as follows.

A TABLE of RISKS \&c.

Wherefore fuppofing $B^{\prime}+B^{\prime \prime}+B^{\prime \prime \prime} \& c . C^{\prime}+C^{\prime \prime}+C^{\prime \prime \prime}$ \&c. $D^{\prime}+D^{\prime \prime}+D^{\prime \prime \prime} \& x c_{0} A^{\prime}+A^{\prime \prime}+A^{\prime \prime \prime} \& c$. to reprefent the feveral Probabilities; and fuppofing that the feveral fums of there Probabilities are refpectively equal to y, x, z, v, we hall have the following Schemes and Equations

$$
\begin{aligned}
& B^{\prime}=B^{\prime} \\
& B^{\prime \prime}=B^{\prime \prime} \\
& B^{\prime \prime \prime}=\frac{1}{2} A^{\prime \prime}+\frac{1}{4} A^{\prime} \\
& B^{\prime \prime \prime \prime}=\frac{1}{2} A^{\prime \prime \prime}+\frac{1}{4} A^{\prime \prime} \\
& B^{\prime \prime}=\frac{1}{2} A^{\prime \prime \prime}+\frac{1}{4} A^{\prime \prime \prime} \\
& B^{\prime \prime \prime}=\frac{1}{2} A^{V}+\frac{1}{4} A^{\prime \prime \prime} \\
& \& \varepsilon_{0} \\
& \text { Hence } y=\frac{3}{4}+\frac{3}{4} x .
\end{aligned}
$$

$$
C^{\prime}=
$$

$$
\begin{aligned}
& C^{\prime}=C^{\prime} \\
& C^{\prime \prime}=C^{\prime \prime} \\
& C^{\prime \prime \prime}=\frac{1}{2} B^{\prime \prime}+\frac{+}{4} D^{\prime} \\
& C^{\prime \prime \prime \prime}=\frac{1}{2} B^{\prime \prime \prime}+\frac{+}{4} D^{\prime \prime \prime} \\
& C^{r}=\frac{i}{2} B^{\prime \prime \prime \prime}+\frac{i}{4} D^{\prime \prime \prime \prime} \\
& C^{\prime \prime}=\frac{1}{2} B^{\prime}+\frac{+}{4} D^{\prime \prime \prime \prime} . \\
& 8 c .
\end{aligned}
$$

Hence $z=\frac{1}{2}+\frac{1}{2} y+\frac{1}{4} v$:

$$
\begin{aligned}
& D^{\prime}=D^{\prime} \\
& D^{\prime \prime}=D^{\prime \prime} \\
& D^{\prime \prime \prime}=\frac{1}{2} C^{\prime \prime}+\frac{1}{4} B^{\prime} \\
& D^{\prime \prime \prime \prime}=\frac{1}{2} C^{\prime \prime \prime}+\frac{1}{4} B^{\prime \prime} \\
& D^{\prime \prime}=\frac{1}{2} C^{\prime \prime \prime \prime}+\frac{1}{4} B^{\prime \prime \prime \prime \prime \prime} \\
& D^{\prime \prime}=\frac{1}{2} C^{\prime \prime}+\frac{1}{4} B^{\prime \prime \prime} \\
& \& c .
\end{aligned}
$$

Hence $v=\frac{1}{4}+\frac{1}{2} \approx+\frac{1}{4} y$.

$$
\begin{aligned}
& A^{\prime}=A^{\prime} \\
& A^{\prime \prime}=A^{\prime \prime} \\
& A^{\prime \prime \prime}=\frac{1}{2} D^{\prime \prime \prime}+\frac{1}{4} C^{\prime} \\
& A^{\prime \prime \prime}=\frac{1}{2} D^{\prime \prime \prime}+\frac{1}{4} C^{\prime \prime \prime} \\
& A^{\prime \prime}=\frac{1}{2} D^{\prime \prime \prime}+\frac{1}{4} C^{\prime \prime \prime} \\
& A^{\prime \prime}=\frac{1}{2} D^{\prime \prime}+\frac{1}{4} C^{\prime \prime \prime} \\
& \& C_{0}
\end{aligned}
$$

Hence $x=\frac{1}{2} v+\frac{1}{4} z$.

The foregoing Equations being refolved, we fhall have $y=\frac{243}{149}, z=\frac{252}{149}, v=\frac{224}{149}, x=\frac{175}{149}$.

Let every one of thofe Fractions be now multiplied by p, and the Products $\frac{242}{149} p, \frac{252}{149} p, \frac{224}{149} p, \frac{175}{149} p$ will exprefs the refpective Risks of B, C, D, A, or the fums they might juftly give to have their Fines Infured.

But if from the feveral Expectations of the Gamefters there be fubtracted, Firft, the fums by them depofited in the beginning of the Play, and Secondly, the Risks of their Fines, there will remain the clear Gain or Lofs of each. Wherefore
From the Expectations of $B=4 \times \frac{56}{149}+\frac{45536}{22201} p$,
Subtracting his own Stake =
and alfo the fum of the Risks $=$
There remains his clear Gain $=-\frac{75}{\frac{75}{149}+\frac{149}{22201} p}$.
From the Expectations of $C=4 \times \frac{36}{149}+\frac{28724}{22201} p$,
Subtracting his own Stake $=$ and alfo the Sum of his Risks =
There remains his clear Gain $=-\frac{5}{149}+\frac{\frac{252}{149} p,}{1176} \frac{1201}{2201}$.
From the Expectations of $D=4 \times \frac{32}{149}+\frac{37600}{22201} p$,
Subtracting his own Stake $=$
and alfo the fum of his Risks $=+\frac{224}{149} p$,
There remains his clear Gain $=-\frac{21}{149}+\frac{4224}{22201} p_{0}$
From the Expectations of $A=4 \times \frac{25}{149}+\frac{23547}{22201} p$,
Subtracting his own Stake $={ }_{1}$ and alfo the Sum of his Risks $=$ Laftly, the Fine due to the Stock $\}=\frac{1,}{19+} P_{3}$ by the lofs of the firlt Game. $\}=$
p,
There remains his clear Gain $=-\frac{49}{149}-\frac{14729}{22201} p$.

The foregoing Calculation being made upon the fuppofition of B beating A in the beginning of the Play, which fuppofition neither affects C nor D, it follows that the fum of the Gains between B and A ought to be divided equally; and their feveral Gains will fand as follows,

If $\frac{13}{149}-\frac{2700}{22201} p$, which is the Gain of A or B, be made $=0$; then p will be found $=\frac{1937}{2700}$: From which ir follows, that if each Man's Stake be to the Fine in the proportion of 2700 to 1937, then A and B are in this cafe neither winners nor lofers; but C wins $\frac{1}{225}$, which D lores.

And in the like manner may be found what the proportion between the Stake and the Fine ought to be, to make C or D play without Advantage or Difadvantage; and alfo what this proportion ought to be, to make them play with any Advantage or Difadvantage given.

Corollary I. A fpectator R might at firt in confideration of the Sum $4+7 p$ paid him in hand, undertake to furnifh the four Gamefters with Stakes, and to pay all their Fines.

Corollary II. If the proportion of Skill between the Gamefters be given, then their Gain or Lofs may be determined by the methods ufed in this and the preceding Problem.
Corollary III. If there be never fo many Gamefters playing on the conditions of this Problem, and the proportion of Skill between them all be fuppofed equal, then the Probabilities of winning, or of being Fined, may be deter mined as follows.

Let $\overline{B^{\prime}}, \overline{C^{\prime}}, \overline{D^{\prime}}, \overline{E^{\prime}}, \overline{F^{\prime}}, \overline{A^{\prime}}$ denote the Probabilities which B, C, D, E, F, A have of winning the Set, or of being Fined, in any number of Games; and let the Probabilities of winning or being Fined in any number of Games lefs by one than the preceding, be denoted by $\overline{B^{\prime \prime}} \overline{C^{\prime \prime}} \overline{D^{\prime \prime}} E^{\prime \prime} F^{\prime \prime} \overline{A^{\prime \prime}}$: And fo on.

Then I fay that,

$$
\begin{aligned}
& \overline{B^{\prime}}=\frac{1}{2} \overline{A^{\prime \prime}}+\frac{1}{4} \overline{A^{\prime \prime \prime}}+\frac{1}{8} \overline{A^{\prime \prime \prime \prime}}+\frac{1}{16} \overline{A^{\prime \prime}} \\
& \overline{C^{\prime}}=\frac{1}{2} \overline{B^{\prime \prime}}+\frac{1}{4} \overline{F^{\prime \prime \prime}}+\frac{1}{8} \overline{E^{\prime \prime \prime \prime}}+\frac{1}{16} \overline{D^{V}} \\
& \overline{D^{\prime}}=\frac{1}{2} \overline{C^{\prime \prime}}+\frac{1}{4} \overline{B^{\prime \prime \prime}}+\frac{1}{8} \overline{F^{\prime \prime \prime \prime \prime}}+\frac{1}{16} \overline{E^{V}} \\
& \overline{E^{\prime}}=\frac{1}{2} \overline{D^{\prime \prime}}+\frac{1}{4} \overline{C^{\prime \prime \prime}}+\frac{1}{8} \overline{B^{\prime \prime \prime \prime}}+\frac{1}{16} \overline{F^{\prime}} \\
& \overline{F^{\prime}}=\frac{1}{2} \overline{E^{\prime \prime}}+\frac{1}{4} \overline{D^{\prime \prime \prime}}+\frac{1}{8} \overline{C^{\prime \prime \prime \prime}}+\frac{1}{16} \overline{B^{\prime \prime \prime}} \\
& \overline{A^{\prime \prime \prime}}+\frac{1}{8} \overline{D^{\prime \prime \prime \prime}}+\frac{1}{16} \overline{C^{\prime \prime}}
\end{aligned}
$$

Corollory IV. If the Terms $A, B, C, D, E, F \& c$. of a Series be continually decreafing, and that the Relation which each Term of the Series has to the fame number of preceding ones be conftantly expreft by the fame number of given Fractions $\frac{1}{p},-\frac{1}{q}, \frac{1}{r}, \frac{1}{s}$ \&cc. For Example, if E be equal to $\frac{1}{p} D+\frac{1}{q} C+\frac{r}{r} B$, and F be alfo equal to $\frac{1}{p} E+\frac{1}{q} D$ $+\frac{1}{r} C$, and fo on: Then I fay that all the Terms $A d$ ianfinitum of fuch Series as this, may be eafily fummed up, by following the fteps of the Analyfis ufed in this Problem; of which feveral Inflances will be given in the Problem relating to the duration of Play.

And if the Terms of fuch Series be multiplyed refpectively by any Series of Terms, whofe laft differences are equal, then the Series refulting fiom this multiplication is exactly fummable.

And if there be two fuch Series or more, and the Terms of one be refpectively mulciplyed by the correfponding Terms of the other, then the Series refulting from this multiplication will be exactly fummable.

Laftly, If there be feveral Series fo related to one another, that each Term in the one may have to a certain number of terms in the other certain given porportions, and that the order of thefe proportions be conftant and uniform, then will all thofe Series be exaally fummable.

The

The Doctrine of Chances.
The foregoing Problem having been formerly Solved by me, and Printed in the Pbilofophical Tranjaitions $\mathrm{N}^{\circ} 34 \mathrm{r}$. Dr. Brook Taylor, that Excellent Mathematician, Secretary to the Royal Society, and my Worthy Friend, foon after communicated to me a very Ingenious Merhod of his, for finding the Relations which the Probabilities of winning bear to oneanother, in the cafe of an equality of Skill becween the Gamefters. The Method is as follows.

Let $B A C D$ reprefent the four Gameffers; let alfo the two firft Letters reprefent that B beats A the firl Game, and the other two the order of Play.

This being fuppofed, the circumfances of the Gamefters will be reprefented in the next Game by $B C D A$ or $C B D A$.

Again, the two preceding Combinations will each of them produce two more Combinations for the Game following, To that the Combinations for that Game will be four in all, viz. $B D A C, D B A C$, and $C D A B, D C A B$; which may be fitly reprefented by the following Scheme.
$B A C D$

It appears from this Scheme, that if the Combination $C B D A$ Happens, which muft be in the fecond Game, then B will be in the fame Circumftance wherein A was the Game before; the conformity of which Circumflances lies in this, that B is beat by one who was juft come into Play when he engaged him. It appears likewife, that if the Combination $D B A C$ Happens, which muft be in the third Game, then B is again in the fame Circumitance wherein A was two Games before.

But the Probability of the firft Circumftance is $\frac{1}{2}$, and the Probability of the fecond is $\frac{1}{4}$.

Wherefore the Probability which B has of winning the Set, in any number of Games taken from the beginning, is $\frac{1}{2}$ of the Probability which A has of winning it in the fame number of Games wanting one, taken from the beginning; as

D d
alfo

102 The Doctrine of Chances.

alfo $\frac{1}{+}$ of the Probability which he has of winning in the fame number of Games wanting two. From which it follows, that if the Probability which B has of winning the Set, in Five Games for inftance, and the Probabilities which A has of winning it in Four and Three, be refpectively denoted by $B^{V}, A^{\prime \prime \prime \prime}, A^{\prime \prime \prime}$, we fhall have the Equation, $B^{V}=\frac{1}{2} A^{\prime \prime \prime \prime}$ $+\frac{1}{4} A^{\prime \prime \prime}$, which is conformable to what we had found before. And from the Infpection of the fame Scheme may likewife be deduced the Relations of the Probabilities of winning, as they lye between the other Gamefters. And other Schemes of this nature for any number of Gamefters may eafily be made in imitation of this, by which the Probabilities of winning or being Fined may be determined by bare Infpection.

PROBLEM XXXIII.

TWO Gamefters A and B, whofe proportion of Skill is as a to b , each having a certain number of Pieces, play together on condition that as often as A Wins a Game, B Ball give him one Piece, and that as often as B Wins a Game, A Jball give him one Piece; and that they ceaje not to Play till fuch time as either one or the other has got all the Pieces of his adverfary. Now let us fuppoje two Spectators R and S to lay a Wager about the Ending of the Play, the firft of them laying that the Play wivill be Ended in a certain number of Games which be affigns; the otber laying to the contrary. What is the Probability that S has of Winning his Wager?

SOLUTION.

$$
C A S E \mathrm{I} .
$$

LET Two be the number of Pieces which each Gamefter has, let alfo Two be the number of Games about which the Wager is laid: Now becaufe two is the number of Games contended for, let $a+b$ be raifed to its Square, $v i z . a a+2 a b+b b$; and it is plain that the Term $2 a b$ favours S, and that the other two are againft him, and confequently that the Probability he has of Winning is $\frac{2 a b}{\overline{a+b^{2}}}{ }^{\circ}$

C ASE IT.

LET Two be the number of Pieces of each Gamefter, but let Three be the number of Games upon which the Wager is laid: Then $a+b$ being raifed to its Cube $v i z . a^{3}+3 a a b+3 a b b+b^{3}$, it is plain that the two Terms a^{3} and b^{3} are contrary to S, fince they denote the number of Chances for winning three times together; 'tis plain alfo that the other Terms $3 a a b+3 a b b$ are partly for him, partly againft him. Let thefe Terms therefore be divided into their proper parts, viz. $3 a a b$ into $a a b, a b a, b a a$, and $3 a b b$, into $a b b, b a b, b b a 0$ Now out of thefe Six parts there are four which are favourable to S; $v i z: a b a, b a a, a b b ; b a b$ or $2 a a b+2 a b b$; from whence it follows that the Probability which S has of winning his Wäger will be $\frac{2 a a b+2 a b b}{a+b b^{3}}$: Or dividing both Numerator and Denominator by $a+b$, it will be found to be $\xlongequal[(a a b]{a+b} \text { ? }$ which is the fame as before.
C ASE III.

LET Two be the number of Pieces of each Gamefter, and Four the number of Games upon which the Wager is laid: Let therefore $a+b$ be raifed to the fourth Power, which is $a^{4}+4 a^{3} b+6 a a b b+4 a b^{3}+b^{4}$. The Terms $a^{4}+4 a^{3} b+4 a b^{3}+b^{4}$ are wholly againft S, and the only Term $6 a a b b$ is partly for him, partly againft him: Let this Term therefore be divided into its Parts, viz. a a $a b, a b a b$, $a b b a, b a a b, b a b a, b b a a$; and Four of thefe Parts $a b a b, a b b a, b a a b$, $b a b a$, or $4 a a b b$ will be found to favours S; from which it follows, that his Probability of winning will be $\frac{4 a a b b}{a+b b^{4}}$.

$$
C A S E \text { IV. }
$$

IF Two be the number of Peices of each Gamefter, and Five the number of Games about which the Wager is laid; the Probability which \mathcal{S} has of Winning his Wager will be found to be the fame as in the preceding Cafe, wiz. $\frac{4 a+b b}{a+64^{4}}$

104 The Doctrine of Chances.

$$
G E N E R A L L Y .
$$

Let Two be the number of Pieces of each Gamefter, and $2+d$ the number of Games about which R and S contend, and it will be found that the Probability which S has of Winning will be $\frac{\frac{2 a b}{}+\frac{1}{2} d}{a+b^{2}+d}$. But if d be an odd Number, fubftitute d - \mathbf{I} in the room of it.

$$
C A S E \mathrm{~V}
$$

LET Three be the number of Pieces of each Gamefter, and $3+d$ the number of Games upon which the Wager is laid; and the Probability which S has of Winning will be $\frac{\overline{3 a b}+\frac{1}{\frac{1}{d} d}}{\overline{a+b^{2}+d}}$. But if d be an Odd Number, you are to fubftitute $d-1$ in the room of it.
C A S E VI.

IF the number of Pieces of each Gamefter be more than Three, the Expectation of S, or the Probability there is that the Play will not be Ended in a given number of Games, may be determined in the following manner.

A General R ULE for Determining what Probability there is that the Play will not be Ended in a given number of Games.

IET n be the number of Pieces of each Gamefter; let alfo $n+d$ be the number of Games given. Raife $a+b$ to the Power n, then cut off the two extream Terms, and multiply the remainder by $a b+2 a b+b b$: then cut off again the two Extreams, and multiply again the remainder by $a a+2 a b+b b$, fill rejecting the two Extreams, and fo on, making as many Multiplycations as there are Units in $\frac{1}{2} d$; Let the laft Product be the Numerator of a Fraction whofe Denominator is $\overline{a+b} b^{n+d}$, and that Fraction will exprefs the

Probability required, or the Expectation of S. Still obferving that if d be an Odd Number, you write $d-1$ in the room of it.

EXAMPLEI.

IET Four be the number of Pieces of each Gamefter, and Ten the number of Games given: In this Cafe $n=4$, and $n+d=10$. Wherefore $d=6$, and $\frac{1}{2} d=3$. Let therefore $a+b$ be raifed to the Fourth Power, and rejecting continually the Extreams, let three Multiplications be made by $a a+2 a b+b b$. thus,
$\begin{aligned}\left.a^{4}\right)+4{ }^{4 a b b} & +6 a a b b \\ a b & +4 a b b 3 \\ & +6 a b\end{aligned}$
$4 a^{a b b}+6 a^{4} b b+4 a^{33 b}$
$+8 a^{4} b b+12 a 3 b 3+8 a a b 4$
$+4 a^{3} b 3+6 a a b 4+4 a b 3$
$14 a 4 b b+20 a^{3} b^{3}+14 a a b^{4}$
$a a+2 a b+b b$
$\left.14 a^{6} b 3\right)+20 a^{5} b^{3}+14 a+b^{4}$
$+28 a^{5} b^{3}+40 a 4 b^{4}+28 a 3 b 5$
$+14 a 4 b^{4}+20 a^{3} b^{5}\left(+14 a a b^{6}\right.$
$48 a a^{3} b+68 a^{4} b^{4}+48 a^{3} b^{5}$
$a a+2 a b+b b$
$\left.48 a^{7} b^{3}\right)+68 a^{6} b^{4}+48 a^{5} b^{5}$
$+96 a^{6} b^{4}+136 a^{5} b^{5}+96 a^{4} j^{6}$
$+48 a 5 b^{5}+68 a 4 b^{6}(+48 a 3 b 7$
$-164^{a^{6}} b^{4}+232 a 3 b^{5}+164 a^{4} b^{6}$.
Wherefore the Probability that the Play will not be ended in Ten Games will be $\frac{164 a^{6} b^{4}+232 a^{5} b^{5}+164 a^{4} b^{6}}{\overline{a+6} b^{\circ}}$, which expreffion will be reduced to $\frac{560}{1024}$ or $\frac{35}{64}$, if there be an equality of Skill between the Gamefters. Now this Fraction being fubtracted from Unity, the remainder will be $\frac{20}{64}$, which will exprefs the Probability of the Play Ending in E e

Ten

106 The Doctrine of Chances.

Ten Games: And confequently it is 35 to 29 , that two equal Gamefters playing together, there will not be Four Stakes loft on either fide in Ten Games.
N. B. The foregoing Operation may be very much contracted by omitting the Letters a and b, and reftoring them after the laft Multiplication; which may be done in this manner. Make $n+\frac{1}{2} d-I=p$, and $\frac{1}{2} d+1=q$: Then annex to the refpective Terms refulting from the laft Multiplication the literal Products $a^{p} b q, a^{p-1} b^{q+1}, a^{p-2} b^{q+2} \& c$. Thus in the foregoing Example, inftead of the firt Mulciplicand $4 a^{3} b+6 a a b b+4 a b^{3}$, we might have taken only $4+6+4$, and inftead of Multiplying Three times by $a a+2 a b+b b$, we might have Multiplyed only by $\mathrm{I}+2+\mathrm{r}$, which would have made the laft Terms to have been $164+$ $232+164$. Now fince that n is $=4$ and $d=6, p$ will be $=6$, and $q=4$; and confequently the literal Products to be annext to the Terms $164+232+164$ will be refpectively $a^{6} b^{4}$, $a^{55} b^{5}, a^{4} b^{6}$, which will make the Terms refulting from the laft Multiplication to be $164 a^{6} 64+232 a^{5} 65$ $+164 a^{4} b^{6}$, as they had been found before.

EXAMPLEII.

LET Five be the number of Pieces of each Gamefter, and Ten the number of Games given. Let alfo the proportion of Skill between A and B be as Two to One.

Since n is $=5$, and $n+d=10$, it follows that d is $=5$. Now d being an odd number muft be leffened by Unity, and fuppofed $=4$, fo that $\frac{1}{2} d=2$. Ler therefore $a+b$ be raifed to the fifth Power; and always rejecting the extreams, Multiply twice by $a n+2 a b+b b$, or rather by $1+2+1$; thus,

1) $+5+10+10+5(+1$

$$
1+2+1
$$

$$
\begin{aligned}
&5)+10+10+5 \\
&+10+20 \\
&+5+10+10(+5 \\
&+10 \\
& \hline 20+35+35+20 \\
& \hline
\end{aligned}
$$

$20+35+35+20$

$$
1+2+1
$$

$$
20)+35+35+20
$$

$$
40+70+70+40
$$

$$
20+35+35(+20
$$

$75+125+125+75$

The Doctrine of Chances.

Now to fupply the literal Products that are wanting, let $n+\frac{1}{2} d-1$ be made $=p$, and $\frac{1}{2} d+x=q$, then p will $\mathrm{be}=6$ and $q=3$. Wherefore the Products to be annext, viz. $a^{p} b 9, a^{p-1} b^{q+1}$ \&c. will become $a^{6} b^{3}, a^{5} b^{4}, a^{4} b^{5}, a^{3} b^{6}$; and confequently the Expectation of S will be found to be $\frac{75 a^{6} b^{3}+125 a^{5} b^{4}+125 a^{4} b^{5}+75 a^{3} b^{6}}{a+b^{9}}$.
N. B. When n is an odd number, as it is in this Cafe, the Expectation of S will always be divifible by $a+b$. Wherefore dividing both Numerator and Denominator by $a+b$, the foregoing Expreffion will be reduced to
$\frac{75 a^{5} b^{3}+\frac{50 a^{4} b^{4}+75 a^{3} b^{5}}{a+b^{8}}}{}$, or $25 a^{3} b^{3} \times \frac{\frac{3 a b+2 a b+36 b}{a+b^{8}}}{\frac{a}{3}}$
Let now a be interprcted by 2 and b by $\mathbf{1}$, and the Expectation of S will become $\frac{3800}{6561}$.

PROBLEM XXXIV.

THE Same Things being givenas in the preceding Problem; to find the Expectation of R, or otherwije what the Probability is that the Play will be Ended in a given number of Games.,

SOLUTION.

FIrft, It is plain that if the Expectation of S, obtained by the preceding Problem, be fubtracted from Unity, there will remain the Expectation of R.

Secondly, Since the Expectation of S decreafes continually as the number of Games increafes, and that the Terms we rejefted in the former Problem being divided by $a a+2 a b+b b$ are the Decrement of his Expectation; it follows, that if thofe rejected Terms be divided continually by $\overline{a+b}{ }^{2}$ they will be the Increment of the Expectation of R. Wherefore the Expectation of R may be expreffed by means of thofe rejected Terms. Thus, in the fecond Example of the preceding Problem, the Expectation of R expreffed by means of the rejected Terms will be found to be

$$
a^{5}+6
$$

$$
\begin{aligned}
& \frac{a^{5}+b^{5}}{a+b^{5}}+\frac{5 a^{6} b+5 a b^{6}}{a+b}+\frac{20 a^{9} b b+=0 a a b^{4}}{\overline{a+b}}{ }^{9} \\
& \frac{a^{5}+b^{5}}{a^{5}+b^{5}} \times 1+\frac{5 a b}{a+b^{2}}+\frac{20 a a b b}{\overline{a+b}} .
\end{aligned}
$$

In the like manner, if Six were the number of the Pieces of each Gamefter, and the number of Games were Fourteen; it would be found that the Expectation of R would be

$$
\frac{a^{6}+b^{6}}{a+b^{6}} \times \overline{1+\frac{6 a b}{a+b^{2}}+\frac{27 a a b b}{a+b^{4}}+\frac{110 a^{3} b^{3}}{a+b^{6}}+\frac{429 a^{4} b^{4}}{a+b^{8}}}:
$$

And if Seven were the number of the Pieces of each Gamefler, and the number of Games given were Fifteen; then the Expectation of R would be found to be

$$
\frac{a^{4}+b^{9}}{a+b)^{7}} \times 1+\frac{7 a b}{a+b b^{2}}+\frac{55 a a b b}{a+b b^{4}}+\frac{154 a^{3} b^{3}}{a+b b^{6}}+\frac{637 a^{4} b^{4}}{a+b 1^{7}}
$$

N. B. The number of Terms of thefe Series will always be equal to $\frac{1}{2} d+I$, if d be an even number, or to $\frac{d+1}{2}$ if it be odd.

Thirdly, All the Terms of thefe Series have to one another certain Relations; which being once difcovered, each Term of any Series refulting from any Cafe of this Problem, may be eafily generated from the preceding ones.

Thus in the firt of the two laft foregoing Series, the Numerical Coefficient belonging to the Numerator of each 'Term, may be derived from the preceding ones, in the following manner. Let K, L, M be the Three laft Coefficients, and let N be the Coefficient of the next Term wanted; then it will be found that N in that Series will conftantly be equal to $6 M-9 L+2 K$. Wherefore if the Term which would follow $\frac{429 a^{4} b^{4}}{a+b^{8}}$, in the Cafe of Sixteen Games given, were defired; then make $M=429, L=110, K=27$, and the following Coefficient will be found 1638 . From whence it appears that the Term it felf would be $\frac{1638 a^{5} b 9}{a+b^{120}}$.

Likewife, in the fecond of the two foregoing Series, if the Luaw by which each Term is related to the preceding ones were
were demanded, it might be thus found. Let K, L, M, be the Coefficients of the three laft Terms, and N the Coefficient of the Term defired ; then N will in that Series, conftantly be equal to $7 M-14 L+7 K$, or to $\overline{M-2 L}+K \times 7$. Now this Coefficient being obtained, the Term to which it belongs is formed immediately.

But if the general Law, by which each Coefficient is generated from the preceding ones, be demanded, it will be expreft as follows. Let n be the number of Pieces of each Gamefter: Then each Coefficient contains
n times the falt,
$-n \times \frac{n-3}{2}$ times the laft but one,
$+n \times \frac{n-4}{2} \times \frac{n-5}{3}$ times the laft but two,
$-n \times \frac{n-5}{2} \times \frac{n-6}{3} \times \frac{n-7}{4}$ times the laft but three,
$+n \times \frac{n-6}{2} \times \frac{n-7}{3} \times \frac{n-8}{4} \times \frac{n-9}{5}$ times the laft but four,
\&c.
Thus the number of Pieces of each Gamefter being Six, the firft Term n would be $=6$, the fecond Term $n \times \frac{n-3}{2}$ would be $=9$, the third Term $n \times \frac{n-4}{2} \times \frac{n-5}{3}$ would be $=2$; the reft of the Terms vanifhing in this Cafe. Wherefore if K, L, M are the three laft Coefficients, the Coefficient of the following Term will be $6 M-9 L+2 K$.

Fourthly, The Coefficient of any Term of thefe Series may be found, independently from any relation they may have to the preceding ones: In order to which it is to be obferved that each Term of thefe Series is proportional to the Probability of the Plays Ending in a certain number of Games precifely : Thus in the Series which expreffes the Expectation of R, when each Gamefter is fuppofed to have Six Pieces, viz.

$$
\frac{a^{6}+b^{6}}{a+b^{6}} \times 1+\frac{6 a b}{a+b^{2}}+\frac{27 a n b b}{a+b^{4}}+\frac{110 a^{3} b^{3}}{a+b^{6}}+\frac{429 a^{4} b^{4}}{a+b^{6}},
$$

the laft Term, being multiplied by the common Multiplicator $\frac{a^{6}+b^{6}}{a+b^{6}}$ fet down before the Series, that is the Pro-

Ending in Fourteen Games precifely. Wherefore if that Term were defired which expreffes the Probability of the Plays Ending in Twenty Games precifely, or in any number of Games. denoted by $n+d$, I fay that the Coefficient of that Term will: be,

$$
\frac{1}{1} \times \frac{n}{1} \times \frac{n+d-1}{2} \times \frac{n+d-2}{3} \times \frac{n+d-3}{4} \text { \&c. continued: }
$$

to fo many Terms as there are Units in $\frac{1}{2} d+\mathrm{r}$.
$-\frac{1}{1} \times \frac{3 n}{1} \times \frac{n+d-1}{2} \times \frac{n+d-2}{3} \times \frac{n+d-3}{4} \& \&$ contionued to fo many Terms as there are Units in $\frac{1}{2} d+1-n$.
$+\frac{1}{1} \times \frac{5 n}{1} \times \frac{n+d-1}{2} \times \frac{n+d-2}{3} \times \frac{n+d-3}{4} \& c$ c continued to fo many Terms as there are Units in $\frac{i}{2} d+1-2 n$. $-\frac{\mathrm{I}}{\mathrm{I}} \times \frac{7 n}{1} \times \frac{n+d-1}{2} \times \frac{n+d-2}{3} \times \frac{n+d-3}{4}$ \&.c. continued to fo many Terms as there are Units in $\frac{1}{2} d+1-3 n$. \&c.

Let now $n+d$ be fuppofed $=20, n$ being already fuppofed $=6$, then the Coefficient demanded will be found from the general Rule to be,

$$
\begin{aligned}
\frac{1}{1} \times \frac{6}{1} \times \frac{19}{2} \times \frac{18}{3} \times \frac{17}{4} \times \frac{16}{5} \times \frac{15}{6} \times \frac{14}{7} & =23256 \\
-\frac{1}{1} \times \frac{18}{8} & =18
\end{aligned}
$$

Wherefore the Coefficient demanded will be 23256-18 $=23238$: And then the Term it felf to which this $\mathbf{C o}$. efficient does belong, will be $\frac{23238 a^{7} b^{7}}{a+b^{14}}$. Confequently the Probability of the Plays Ending in Twenty Games precifely. will be $\frac{a^{6}+b^{6}}{a+b} \times \frac{=3238 a^{7} b^{7}}{a+b^{14}}$.

Fifthly, By the help of the two Methods explained in this Problem (whereof the firft is for finding the relation which any Term of the Series refulting from the Problem, has to a certain number of preceding ones; and the fecond for finding any Term of the Series independently from any other
Term) together with the Method of fumming up any given in its place) ; the Probability of the Plays Ending in any given number of Games, will be found much more readily than can be done by either of the two firf Methods taken fingly.

PROBLEM XXXV.

SUppofing A and B to play together, till Juch time as Four Stakes are Won or Loft on either fide: What muft be their proportion of Skill, to make it as Probable that the Play will be Ended in Four Games, as not ?

SOLUTION.

TH E Probability of the Play Ending in Four Games, is by the preceding Problem $\frac{a^{4}+b^{4}}{a+b b^{4}}$; Now becaufe, by. Hypothefis, it is to be an equal Chance whether the Play Ends or Ends not in Four Games; let this expreffion of the Probability be made equal to $\frac{1}{2}$; And we fhall have this Equation $\frac{a^{4}+b^{4}}{a+b^{4}}=\frac{1}{2}$, which, making $b, a:: I, z$, is reduced to $\frac{z^{4}+1}{z+1^{4}}=\frac{1}{2}$, or $z^{4}-4 z^{3}-6 z z-4 z+1=0^{\text {. }}$. Let $12 z z$ be added on both fides the Equation, then will $z^{4}-4 z^{3}+6 z z-4 z+1$ be $=12 z z$; and extracting the fquare Root on both fides, it will be reduced to this Quadratick Equation $z z-2 z+1=z \sqrt{12}$, whofe double Root is $z=5,274$ and $\frac{1}{5,274}$. Wherefore whether the Skill. of A be to that of B as 5.274 . to I , or as I to 5.274 , there will be an equality of Chance for the Play to be Ended or not Ended in Four Games.

PROBLEM XXXVI.

Suppofing that A and B Play till fuch time as Four Stakes are Won or Loft: What muft be their proportion of Skill, to make it a Wager of Three to One, that the: Play will be. Ended in. Four Games?

SOLUTION.

THE Probability of the Plays Ending in Four Games, arifing from the number of Games Four, from the number of Stakes Four, and from the proportion of Skill is $\frac{a^{4}+b^{4}}{a+b^{4}}$. The fame Probability arifing from the odds of Three to One, is $\frac{3}{4}$: Wherefore $\frac{a^{4}+b^{4}}{a+b^{4}}=\frac{3}{4}$, and fuppofing $b, a:: \pm, z$, the foregoing Equation will be changed into $-\frac{z^{4}+1}{z+11^{4}}=\frac{3}{4}$, or $z^{4}-12 z^{3}-18 z z-12 z+1=0$. Let $56 z z$ be added on both fides the Equation, then we fhall have $z^{4}-12 z^{3}+38 z z-12 z+1=56 z z$. And Extracting the fquare Root on both fides, we fhall have $z z-6 z+1=z \sqrt{ } 6$, the Roots of which Equation will be found 13.407 and $\frac{1}{13.407}$. Wherefore, whether the Skill of A be to that of B as 13.407 to I , or as I to I 3.407 , ${ }^{\text {'tis }}$ a Wager of Three to One, that the Play will be ended in Four Games.

PROBLEM XXXVII.

SUppofing that A and B Play till fuch time as Four Stakes are Won or Lo, I^{\prime}; What muft be their proportion of Skill, to make it an equal Wager that the Play will be Ended in Six Games ?

SOLUTION.

THE Probability of the Plays Ending in Six Games, arifing from the given number Six, from the number of Stakes Four, and from the proportion of Skill, is $\frac{a^{4}+b^{4}}{a+b^{4}} \times \overline{I+\frac{4 a b}{a+b^{2}}}$. The rame Probability arifing from an equality of Chance for Ending or not Ending in Six Games, is equal to $\frac{1}{2}$, from whence refults the Equation $\frac{a^{4}+b^{b}}{a+b b^{4}} \times \overline{I+-\frac{4 a b}{a+b)^{2}}}=\frac{1}{2}$ which by making $b, a:: \mathbf{x}, z$ may be changed into the following, viz. $z^{6}+6 z^{3}-1 z^{4}-20 z^{3}-13 z z+6 z+1=0$.

The Doctrine of Chances.

In this Equation, the Coefficients of the Terms equally diftant from the Extreams being the fame, let it be fuppofed that the Equation is generated from the Multiplication of two other Equations of the fame nature, viz. $z z-y z+1=0$, and $z^{4}+p z^{3}+q z z+p z+1=0$. Now the Equation refulting from the Multiplication of thefe two will be
which being compared with the firft Equation, we fhall have $p-y=6$, I- $p y+q=-13,2 p-q y=-20$.
From hence will be deduced a new Equation, viz. $y^{3}+6 y y$ $-16 y-32=0$, one of whofe Roots will be 2.9644; which being fubftituted in the Equation $z z-y z+\mathbf{1}=0$, we fhall at laft come to the Equation $z z-2.9644 z+1=0$, of which the two Roots will be 2.576 and $\frac{1}{2.576}$. It follows therefore, that if the Skill of either Gamefter be to that of the other as 2.576 to 1 ; there will be an equal Chance for Four Stakes to be Loft, or not to be Loft, in Six Games.

Corollary. If the Coefficients of the Extream Terms of an Equation, and likewife the Coefficients of the other Terms equally diftant from the Extreams, be the fame, that Equation will be reducible to another, in which the Dimenfions of the higheft Term will not exceed half the Dimenfions of the higheft Term in the former.

PROBLEM XXXVIII.

SUppofing A and B, whofe proportion of Skill is as a to b , to SPlay together till Juch time as A either Wins a certain number q of Stakes, or B Some other number p of them: What is the Probability that the Play will not be Ended in a given number of Games?

S OLUTION.

TAKE the Binomial $a+b$, and rejecting continually thofe Terms in which the Dimenfions of the quantity a exceed the Dimenfions of the quantity 6 . by q, rcjecting alfo G g thofe

114 The Doctrine of Chances.
thofe Terms in which the Dimenfions of the quantity b exceed the Dimenfions of the quantity a by p; multiply confantly the remainder by $a+b$, and make as many Multiplications, as there are Units in the given number of Games wanting one. Then fhall the laft Product be the Numerator of a Fraction expreffing the Probability required ; the Denominator of which Fraction always being the Binomial $a+b$ raifed to that Power which is denoted by the given number of Games.
E X A M PLE.

LET p be $=3, q=2$, and let the given number of Games be $=7$. Let the following Operation be made according to the foregoing directions.

$$
\begin{aligned}
& a+b \\
& a+b \\
& \begin{array}{c}
a a)+2 a b+b b \\
a+b
\end{array} \\
& 2 a a b+3 a b b+\left(+b_{3}\right. \\
& a+b \\
& \left.2 a^{3} b\right)+5 a a b b+3 a b 3 \\
& a+b \\
& 5 a 3 b b+8 a a b^{3}+\left(3 a b^{4} .\right. \\
& a+b \\
& \overline{5 a 4 b b)+13 a 3 b 3+8 a a b^{4}} \\
& a+b \\
& 13 a^{4} b^{3}+21 a a^{3} b^{4}\left(+8 a a b^{5}\right. \text {. }
\end{aligned}
$$

From this Operation we may conclude, that the Probability that the Play will not be Ended in Seven Games is equal to $\frac{13 a^{4} b^{3}+25 \pi^{3} b^{4}}{a+b^{7}}$. Now if an Equality of Skill be fuppofed between A and B, the Expreffion of this Probability bility will be reduced to $\frac{13+21}{1: 88}$ or $\frac{17}{64}$: Wherefore the Probability that the Play will End in Seven Games will be $\frac{47}{64}$; from which it follows that 'tis 47 to 17 that in Seven Games, either A wins two Stakes or B wins three.

PROBLEM XXXIX.

THE fame Things being fuppos'd as in the preceding Problem, to find the Probability of the Plays being. Ended in a given number of Games.

SOLUTION.

FIr f, If the Probability of the Plays not being Ended in the given number of Games be fubtracted from Unity, there will remain the Probability of its being Ended in the fame number of Games.

Secondly, This Probability may be expreffed by means of the Terms rejected in the Operation belonging to the preceding Problem; Thus, if the number of Stakes be Three and Two, the Probability of the Plays being Ended in Seven Games may be expreffed as follows.

$$
\begin{aligned}
& \frac{a a}{a+b^{2}} \times \frac{b^{3}}{1+\frac{2 a b}{a+b^{2}}+\frac{5 a a b b}{a+b b^{4}}} . \\
& +\frac{b^{3}}{a+b^{3}} \times 1+\frac{3 a b}{a+b b^{2}}+\frac{8 a a b b}{a+b^{4}}
\end{aligned} .
$$

Suppofing a and b both equal to Unity, the fum of the firt Series will be $=\frac{29}{64}$, and the fum of the fecond will be $=\frac{18}{64}$; which two fums being added together, the aggregate $\frac{47}{64}$ expreffes the Probability that in Seven Games either A fhall win Two Stakes or B Three.

Thirdly, The Probability of the Plays being Ended in a certain number of Games, or fooner, is allways compofed of a double Series, when the Stakes are unequal; which double Series is reduced to a fingle one, in the Cafe of equality of Stakes.

The firt Series always expreffes the Probability there is that A, in a given number of Games, or fooner, may win of B the

116

 The Doctrine of Chances.number q of Stakes, excluding the Probability there is, that B, before that time, may be in a circumftance of winning the number p of Stakes. Both which Probabilities are not inconfiftent together; for A in Fifteen Games, for Inftance, or fooner, may win Two Stakes of B, though B before that time may have been in a circumflance of winning Three Stakes of A.
The fecond Series always expreffes the Probability there is that B, in that given number of Games or fooner, may win of A a certain number p of Stakes, excluding the Probability there is that A, before that time, may win of B the number q of Stakes.

The firft Terms of each Series may be reprefented refpectively by the following Terms.

Each of thefe Series continuing in that regularity, till fuch time as there be a number p of Terms taken in the firt, and a number q of Terms taken in the fecond; after which the Law of the continuation breaks off.

Now in order to find any of the Terms following in either of there Series, proceed thus; let $p+q-2$ be called l; let the Coefficient of the Term defired be T; let allo the Coefficients of the preceding Terms taken in an inverted order be S, R, Q, P \&c. Then will T be equal to $l S-\frac{l-1}{1} \times \frac{l-2}{2} R+\frac{l-2}{1}$ $\times \frac{1-3}{2} \times \frac{1-4}{3} R-\frac{1-3}{1} \times \frac{1-4}{2} \times \frac{1-5}{3} \times \frac{1-6}{4} P$ \&c. Thus if p be $=3$, and $q=2$, then l will be $3+2-2=3$. Wherefore $l S-$ $\frac{1-1}{1} \times \frac{1-2}{2} \times R$ would in this Cafe be equal to $3 . S-R$; which fhews that the Coefficient of any Term defired would be conftantly three times the laft, minus once the laft but one.

To apply this, let it be required to find what Probability there is, that in Fifteen Games or fooner, either A fhall win two Stakes of B, or B three Stakes of A; or which is all one, to find what Probability there is, that the Play fhall end in Fifteen Games or fooner, A and B refolving to Play, till fuch time as A either wins three Stakes, or B two.

Let Two and Three, in the two foregoing Series, be fubfitured refpectively in the room of q and p; then the three firt Terms of the firft Series will be, fetting afide the common Multiplicator, $1+\frac{2 a b}{a+b^{2}}+\frac{5 a a b b}{a+b^{+}}$: Likewife the two firt Terms of the fecond will be $1+\frac{3 a b}{a+b^{10}}$. Now becaufe the Coefficient of any Term defired in each Series, is refpectively three times the laft, minus once the laft but one, it follows, that the next Coefficient in the firft Series will be 13 , and by the fame rule the next to it 34 , and fo on. In the fame manner the next Coefficient in the fecond Series will be found to be 8 , and the next to it 2 I , and fo on. Wherefore, reftoring the common Multiplicators, the two Series will be

$$
\begin{aligned}
& \frac{a^{3}}{a+b^{2}} \times \frac{1+\frac{2 a b}{a+b^{2}}+\frac{5 a a b b}{a+b^{1+}}+\frac{13 a^{3} b^{3}}{a+b^{6}}+\frac{34 a^{4} b^{4}}{a+b^{8}}+\frac{39 a^{5} b^{5}}{a+b^{16}}}{+\frac{233 a^{6} b^{6}}{a+b^{12}}} \\
& \frac{b^{b^{3}}}{a+b b^{3}} \times 1+\frac{3 a b}{a+b^{2}}+\frac{8 a a b b}{a+b^{4}}+\frac{21 a^{3} b^{3}}{a+b^{6}}+\frac{55 a^{4} b^{4}}{a+b^{8}}+-\frac{144 a^{5} b^{5}}{a+b b^{10}} \\
&
\end{aligned}
$$

If we fuppofe an equality of Skill between A and B, the fum of the firft Series will be $\frac{18778}{32768}$, the fum of the fecond will be $\frac{12393}{32768}$, and the aggregate of thefe two fums will be $\frac{31177}{32768}$, which will exprefs the Probability of the Plays Ending in Fifteen Games or fooner. This laft Fraction being fubtracted from Unity, there will remain $\frac{1597}{32760}$, which expreffes the Probability of the Plays continuing for Fifteen Games at leaft: Wherefore 'tis 3 II7I to 1597, or 39 to 2 nearly, that one of the two equal Gamefters, that fhall be pitcht upon, fhall in Fifteen Games, or fooner, either win Two Stakes of his adverfary, or lofe Three to him.
N. B. The Index of the Denominator in the laft Term of each Series, and the Index of the common Multiplicator preHh fixt

118 The Doctrine of Chances.

fixt to ir, being added together, mult either equal the number of Games given, or be lefs than it by Unity. Thus, in the firlt Series, the Index 12 of the Denominator of the lalt Term, and the Index 2 of the common Multiplicator being adned togerher, the fum is I4, which is lefs by Unity than the number of Games given. So likewife in the fecond Series, the Index 12 of the Denominator of the Iaft Term, and the Index 3 of the common Multiplicator being added together, the fum is 15 , which precifely equals the number of Games given.

It is carefully to be obferved, that thefe two Series taken together, exprefs the Expectation of one and the fame Perfon, and not of two different Perfons; that is properly the Expectation of a fpectator who lays a Wager that the Play will be Ended in a given number of Games. Yet in one Cafe they may exprefs the Expectations of two different Perfons: For Inflance, of the Gamefters themfelves, provided that both Series be continued infinitely; for in that Cafe, the firft Series infinitely continued will exprefs the Probability that the Gamefter A may fooner win two Stakes of B, than that he may lofe three to him: Likewife the fecond Series infinitely continued will exprefs the Probability that the Gamelter B may fooner win three Stalses of A, than that he may lofe two to him. And it will be found, when we come to treat of the method of fumming up thefe Series, that the firft Series infinitely continued will be to the fecond infinitely continued, in the proportion of $a a \times \overline{a a+a b+b b}$ to $b^{3} \times \overline{a+b}$; that is, in the Cale of an equality of Skill, as three to two; which is conformable to what we have faid in our IXth. Problem.

Fourthly, Any Term of thefe Series may be found independently from any of the preceding ones: For if a Wager be laid that A flall either win a certain number of Stakes denominated by g; or that B fhall win a certain number of them denominated by p, and that the number of Games given be expreffed by $q+d$; then I fay that the Coefficient of any Term in the firf Series, anfwering to that number of Games, will be

$$
+\frac{1}{1} \times \frac{q}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4} \text { \&c. conti- }
$$ nued to fo many Terms as there are Units in $\frac{1}{2} \lambda+1$.

The Doctrine of Chances,

$-\frac{1}{1} \times \frac{q+2 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4} \& c$. continued to fo many Terms as there are Units in $\frac{1}{2} d+\mathbf{I}-p$.
$+\frac{1}{1} \times \frac{3 q+2 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4} \& c$ continued to fo many Terms as there are Units in $\frac{1}{2} d+1-p-q$:
$-\frac{1}{1} \times \frac{3 q+4 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4}$ \&rc. continued to fo many Terms as there are Units in $\frac{1}{2} d+1-2 p-q$ ' $+\frac{1}{1} \div \frac{5 q+4 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4} \quad \& c$. continued to fo many Terms as there are Units in $\frac{1}{2} d+1-2 p-2 q$.
$-\frac{1}{1} \times \frac{5 q+6 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4} \& c$ continued to fo many Terms as there are Units in $\frac{1}{2} d+1-3 p-2 q$. $+\frac{1}{1} \times \frac{7 q+6 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4} \& c$ continued to fo many Terms as there are Units in $\frac{1}{2} d+1-3 p-3 q$. \&c.

And the fame Law will hold for the other Series, calling $p t^{\delta}$ the number of Games given, and changing q into p, and p into q, as alfo d into δ.

But when it Happens that d is an odd number, fubftitute $d-I$ in the room of it, and the like for δ.

PROBLEM XL.

IF A and B, whofe proportion of Skill is Suppofed as a to b , play together: What is the Probability that one of them, fup. pofe A, may in a number of Games not exceeding a number given, win of B a certain number of Stakes? Leaving it wholly indiffe. rent whether B before the expiration of thofe Games may or may. not have been in a circumftance of winning the fome, or any othes: number of Stakes of A.
S OLUTION.

Quppofing n to be the number of Stakes which A is to win of B, and $n+d$ the given numbe of Games; let $a+b$ be raifed to the Power whole Index is $\mu+d$: Then if d be

120
 The Doctrine of Chances.

an odd Number, take fo many Terms of that Power as there are Units in $\frac{d+1}{2}$; take alfo as many of the Terms next following as have been taken already, but prefix to them, in an inverted order, the Coefficients of the preceding Terms. But if d be an even number, take fo many Terms of the faid Power as there are Units in $\frac{1}{2} d+1$; then take as many of the Terms next following as there are Units in $\frac{\mathrm{r}}{2} d$, and prefix to them, in an inverted order, the Coefficients of the preceding Terms, omitting the laft of them ; and thofe Terms taken all together will compofe the Numerator of a Fraction expreffing the Probability required, its Denominator being $a+b, n+d$

EXAMPLEI.

Suppofing the number of Stakes which A is to win to be Three, and the given number of Games to be Ten; let $a+b$ be raifed to the tenth Power, viz. $a^{10}+10 a^{9} b+45 a^{8} b b$ $+120 a^{7} b^{3}+210 a^{6} b^{4}+252 a^{5} b^{5}+210 a^{4} b^{6}+120 a^{3} b^{7}$ $+45 a a b^{8}+10 a b^{9}+b^{10}$. Then by reafon that n is $=3$ and $n+d \equiv 10$, it follows that d is $=7$, and $\frac{d+1}{2}=4$. Wherefore let the Four firft Terms of the faid Power be taken, viz. $a^{10}+10 a^{9} b+45 a^{8} b b+120 a^{7} b^{3}$, and let the Foul Terms next following be taken likewife, without regard to their Coefficients; then prefix to them, in an Inverted order, the Coefficients of the preceding Terms: Thus the Four Terms following with their new Coefficients, will be $120 a^{6} b^{4}$ $+45 a^{5} b^{5}+10 a^{4} b^{6}+1 a^{3} b^{7}$. And the Probability which A has of winning Three Stakes of B in Ten Games, or foo. ner, will be expreffed by the following Fraction,
$\frac{a^{10}+10 a^{9} b+45 a^{8} b b+120 a^{7} b^{3}+120 a^{8} b^{4}+45 a^{5} b^{3}+10 a 4 b^{6}+a^{3} b 7}{a+b^{10}}$
which, in the Cale of an equality of Skill between A and B, will be reduced to $\frac{352}{1024}$ or $\frac{11}{32}$.

EXAMPLE II.

SUppoling the number of Stakes which A is to win to be Four, and the given number of Games to be Ten; let $a+b$ be raifed to the tenth Power, and by reafon that n is $=4$, and $n+d=10$, it follows, that $d=6$ and $\frac{1}{2} d+1=4$; wherefore let the Four firft Terms of the faid Power be taken, viz. $a^{10}+10 a^{9} b+45 a^{8} b b+120 a^{7} b^{3}$; take alfo Three of the Terms following, but prefix to them, in an in. vefted order, the Coefficients of the Terms already taken, omitting the laft of them. Hence the Three Terms following with their new Coefficients will be $45 a^{6} b^{4}+10 a^{5} b^{5}+1 a^{4} b^{6}$. And the Probability which A has of winning Four Stakes of B, in Ten Games or fooner, will be expreffed by the follow. ing Fraction
$\frac{a^{10}+10 a^{9} b+45 a^{8} b b+120 a^{7} b^{3}+45 a^{6} b^{4}+10 a^{5} b^{5}+1 a^{4} b^{6}}{\overline{a+b^{10}}}$
which, in the Cafe of an equality of Skill between A and B, will be reduced to $\frac{232}{1024}$ or $\frac{29}{128}$.

Another S OL U TION.

SUppofing, as before, that n be the number of Stakes which A is to win, and that the given number of Games be $n+d$ the Probability which A has of winning will be expreffed by the following Series, viz.

$$
\begin{aligned}
& \frac{a^{n}}{a+b^{n}} \times \frac{1+\frac{n a b}{a+b b^{2}}+\frac{n \times n+3 \times a a^{6} b}{1 \times 2 \times a+n^{4}}+\frac{n \times n+4 \times n+5 \times a^{3} b^{3}}{1 \times 2 \times 3 \times a b^{4}}}{\quad+\frac{n \times n+5 \times n+6 \times n+7 \times a^{4} b^{4}}{1 \times 2 \times 3 \times 4 \times a+b)^{8}}} \& c_{0}
\end{aligned}
$$

which Series ought to be continued to fo many Terms as there are Units in $\frac{1}{2} d+1$; always obferving to fubftitute d - I in the room of d, in cafe d be an odd number, or r° which is the lame thing, taking fo many Terms as these are Units in $\frac{d+1}{2}$.

Now fuppofing, as in the firt Example of the preceding Solution, that Three is the number of Stakes, and Ten the given number of Games, as alfo that there is an equality of Skill between A and B, the foregoing Series will become $\frac{1}{5} \times \overline{1+\frac{3}{4}+\frac{9}{10}+\frac{28}{04}}=\frac{11}{32}$, as before.

R E M A R K.

1Onfieur de Monmort, in the Second Edition of his Book of Chances, having given a very handfom Solution of the Problem relating to the duration of Play, (which Solution is coincident with that of Monfieur Nicolas Bernoul$l y$, to be feen in that Book) and the Demonftration of it being very naturally deduced from our firft Solution of the foregoing Problem, I thought the Reader would be well pleafed to fee it transferred to this place.

Let it therefore be propofed to find the number of Chances there are, for A either to win Two Stakes of B, or for B to win Three of A in Fifteen Games.

The number of Chances required is expreffed by two Branches of Series; all the Series of the firlt Branch taken together. exprefs the number of Chances there are for A to win Two Stakes of B, exclufive of the number of Chances there are for B, before that time, to win Three Stakes of A. All the Series of the fecond Branch taken together exprefs the number of Chances there are for B to win Three Stakes of $A_{\text {, }}$ exclufive of the number of Chances there are for A, before that time, to win Two Stakes of B.

Firft Branch of SERIES.

$a^{13} a^{14} b \quad a^{13} b^{2} a^{12} b_{3} \quad a^{11} b_{4} \quad a^{10} b_{5} \quad a 9 b^{6} \quad a^{8} b^{7}$. $a 7 b^{8} \quad a^{6} b^{9} \quad a^{5} b^{10} a 4 b^{18} a^{3} b^{12} a^{2} b^{13}$ $1+15+105+455+1365+3002+5005+5005+3003+1365+455+105+15+1$

$$
\begin{gathered}
-1-15-105-455-455-105-15-1 \\
+1+15+15+1
\end{gathered}
$$

Second Branch of SERIES.

$b^{15} \quad b^{14 a} \quad b^{13} a^{3} \quad b^{12} a^{3} \quad b^{11} a^{4} \quad b^{10} a^{5} \quad b_{9} a^{6} \quad b^{8} a^{7} \quad b 7 a^{8} \quad b^{6} a^{9} \quad b_{5}^{5} a^{10} \quad b^{4} a^{11} \quad b^{3} a^{13}$

$$
\begin{gathered}
1+15+105+455+1365+3003+5005+3003+1365+455+105+15+1 \\
-1-15=105-455-1365-455-105-15=1 \\
+1+15+1
\end{gathered}
$$

The literal Quantities, which are commonly annext to the numerical ones, are here written on the top of them; which is done, to the end that each Series being contained in one line, the dependency they have upon one another, may thereby be made the more confpicuous.

The firlt Series of the firft Branch expreffes the number of Chances there are for A to win Two Stakes of B, including the number of Chances there are for B, before the expiration of the Fifteen Games, to be in a circumftance of winning Three Stakes of A; which number of Chances may be deduced from our foregoing Problem.

The fecond Series of the firft Branch is a part of the firf, and expreffes the number of Chances there are, for B to win Three Stakes of A, out of the number of Chances there are for A in the firlt Series, to win Two Stakes of B. It is to be obferved about this Series, Firft, that the Chances of B expreffed by it are not reftrained to Happen in any Order, that is, either before or after A has won Two Stakes of B. Secondly, that the literal Products belonging to it are the fame with thofe of the correfponding Terms of the firft Series. Thirdly, that it begins and ends at an interval from the firft and laft Terms of the firtt Series equal to the number of Stakes which B is to win. Fourthly, that the numbers belonging to it are the numbers of the firf Series repeated in order, and continued to one half of its Terms; after which thofe numbers return in an inverted order to the end of that Series: Which is to be underfood in cale the number of its Terms fhould Happen to be even, for if it fhould Happen to be odd, then that order is to be continued to the greateft half, after which the return is made by omitting the laft number. Fifthly, that all the numbers of it are Negative.

The Third Series of the firft Branch is a part of the fecond, and expreffes the number of Chances there are for A to win Two Stakes of B, out of the number of Chances there are in the fecond Series, for B, to win Three Stakes of A; with this difference, that it begins and ends at an interval from the firft and laft Terms of the fecond Series, equal to the number of Stakes which A is to win; and that the Terms of it are all Pofitive.

It is to be obferved in general that, let the number of there Series be what it will, the Interval between the beginning of the firft and the beginning of the fecond, is to be equal to the number of Stakes which B is to win; and that the Interval between the beginning of the fecond and the beginning of the third, is to be equal to the number of Stakes which A is to win; and that thefe Intervals recurr alternately in the fame Order. It is to be obferved likewife, that all thefe Series are alternately Pofitive and Negative.
All the Obfervations made upon the firlt Branch of Series belonging alfo to the fecond, it would be needlefs to fay any more of them.

Now the fum of all the Series of the firf Branch, being added to the fum of all the Series of the fecond, the aggregate of thefe fums will be the Numerator of a Fraction expreffing the Probability of the Plays terminating in the given number of Games; of which Fraction the Denominator is the Binomial $a+b$ raifed to a Power, whofe Index is equal to that given number of Games. Thus, fuppofing that, in the Cafe of this Problem, both a and b are equal to Unity, the fum of the Series in the firft Branch will be 18778 , the fum of the Series in the fecond will be 12393; and the aggregate of both 31171 : And the Fifteenth Power of 2 being 32768 , it follows, that the Probability of the Plays terminating in Fifteen Games will be $\frac{3117 \mathrm{t}}{32768}$, which being fubtracted from Unity, the remainder will be $\frac{1597}{32760}$: From whence we may conclude, that' 'is a Wager of 3117 I to 1597 , that either A in Fifteen Games fhall win Two Stakes of B, or B win Three Stakes of A : Which is conformable to what swe had before found in our XXXIXth. Problem.

PROBLEM XLI.

TO. Find what Probability there is, that in a given number of Games, A may be wimner of a certain number q of Stakes; and at fome other time, B may likewife be winner of the number p of' Stakes, fo that both circumflances may Happen.

SOLU.

SOLUTION.

F^{\prime}I ND, by our XL $t b$ Problem, the Probability which A has of winning, without any Limitation, the number q of Stakes: Find alfo by our XXXIV $t b$ Problem the Probability which A has of winning that number of Stakes before B may Happen to win the number p; then from the firft Probability fubtracting the fecond, the remainder will exprefs the Probability there is, that both A and B may be in a circumftance of winning, but B before A. In the like manner, from the probability which B has of winning without any Limitation, fubtracting the Probability which he has of winning before A, the remainder will exprefs the Probability there is, that both A and B may be in a circumftance of winning, but A before B. Wherefore adding thefe two remainders together, their fum will exprefs the Probability required.
Thus, if it were required to find what Probability there is, that in Ten Games A may win Two Stakes, and that at fome other time B may win Three. The firft Series will be found to be,

$$
\frac{a b}{a+b^{2}} \times 1 \overline{1+\frac{2 a b}{a+b^{2}}+\frac{5 a a b b}{a+b^{4}}+\frac{14 a^{3} b^{3}}{a+b b^{6}}+\frac{42 a^{4}+b^{4}}{a+b^{0}}} .
$$

The fecond Series will likewife be found to be

$$
\frac{a a}{a+b_{1}^{2}} \times 1+\frac{2 a b b}{a+b^{2}}+\frac{5 a a b b}{a+b^{4}}+\frac{13 a b^{3}}{a+b^{6}}+\frac{34 a^{4} b^{4}}{a+b^{6}} .
$$

The difference of thefe Series being $\frac{a a}{a+b)^{2}} \times \frac{a^{\frac{a^{3} b^{3}}{a b}}+\frac{8 a^{4} b^{4}}{a+b)^{4}}}{a+\left.b\right|^{3}}$ expreffes the firft part of the Probability required, which, in the Cafe of an equality of Skill between the Gamefters, would be reduced to $\frac{3}{256}$.

The Third Series is as follows,
$\frac{b^{3}}{a+b^{3}} \times \overline{\mathbf{1}+\frac{3 a b}{a+b^{2}}+\frac{9 a a b b}{a+b^{4}}+\frac{28 a^{3 b^{3}}}{a+b^{6}}}$.
The Fourth Series is
$\frac{b^{3}}{a+b^{3}} \times \overline{1+\frac{3 a b}{a+b^{2}}+\frac{8 a a b b}{a+b^{+}}+\frac{21 a^{3} b^{3}}{a+b b^{6}}}$
The difference of thefe two Series being $\frac{b^{3}}{a^{3}+b^{3}} \times \frac{\overline{\frac{a}{2 a b b}} \overline{a+b^{4}}+\frac{7 a^{3} b b}{a+b^{6}}}{\frac{1}{6}}$
K k
exprei-

126 The Doctrine of Chances.

expreffes the fecond part of Probability required, which, in the Cafe of an equality of Skill, would be reduced to $\frac{11}{512}$. Wherefore the Probability required would in this Cafe be $\frac{3}{256}+\frac{11}{512}=\frac{17}{51^{2}}$. Whence it follows, that ' 'is a Wager of 495 to 17 , or of 29 to 1 very nearly, that in Ten Games, A and B may not both be in a circumftance of winning, viz. A the number q, and B the number p of Stakes. But if, by the conditions of the Problem, it were left indifferent whether A or B fhould win the Two Stakes or the Three, then the Probability required would be increafed, and become as follows, viz.

$$
\frac{a+b b}{a+b 1^{2}} \times \frac{a^{3}+b^{3}}{a+b^{3}} \times \frac{a+\frac{8 a^{4} b^{4}}{a+b b^{8}}}{a+b)^{4}}+\frac{7 a^{3} b^{3}}{a+b^{6}}
$$

which, in the Cafe of an equality of Skill between the Gamefters, would be the double of what it was before.

PROBLEM XLII.

$T 0$ Find what Probability there is, that in a given number of Games, A may win the number q of Stakes; with this farther condition, that B, during that whole number of Games, may never have been winner of the number p of Stakes.

SOLUTION.

FRom the Probability that A has to win without any limitation the number q of Stakes, fubtract the Probability there is that both A and B may be winners, viz. A of the number q, and B of the number p of Stakes, and there will remain the Probability required.

But, if the conditions of the Problem were extended to this alternative, viz. that either A fhould win the number q of Stakes, and B be excluded the winning of the number p; or that B thould win the number p of Stakes, and A be excluded the winning of the number q, the Probability that either the one or the other of thefe two Cafes may Happen, will eafily be deduced from what we have faid.

LEM.

The Doctrine of Chances.

LEMMAI.

IN any Series of. Terms, whereof the firf Differences are equal, the Ihird Term will be twice the Second, minus once the Firft; and the Fourth Term likewife will be twice the Third, minus once the Second: Each following Term being alivays related in the Jame manner to the two preceding ones. And as this relation is expreffed by the two Numbers 2-I, I therefore call thofe Numbers the Index of that Relation.
In any Series of Terms, whofe fecond Differences are equal, the Fourth Term will be three times the Third, minus three times the Second, plus once the Firft: And each Term in Juch a Series is always related in the fame manner to the three next preceding ones, according to the Index $3-3-1-1$. Thus, if there be a Series of Squares, fuch as $4,16,36,64,100$, who \int e \int econd differences are known to be equal when their Roots have equal Intervals, as thy bave in this Cafe, it will be found that the Fourth Term 64 is = $3 \times 36-3 \times 16+1 \times 4$, and that the Fifth Term 100 is = $3 \times 64-3 \times 3^{6}+1 \times 16$. In like manner, if there were a Series of Triangular numbers, fuch as $3,10,2 \mathrm{I}, 36,55$, whofe $\rho_{\text {e- }}$ cond Differences are known to be equal, when their fides bave equal Intervals, as they bave in this Cafe, it will be fourd that the Fourth Term is $=3 \times 21-3 \times 10+1 \times 3$, and that the Fifth Term is $=3 \times 36-3 \times 21+1 \times 10$; and f_{0} on.

So likewife, if there were a Series of Terms whole Third Differences are equal, or whofe Fourth Differences are $=0$; fuch as is. a Series of Cubes or Pyramidal numbers, or any other Series of numbers generated by the Quantities $a^{3}+b x x+c x+d$, when a, b, c , d being conftant Quantities, x is interpreted Succefively by the Terms of any Arithmetic Progrefion: Then it will be found that any Term of it is related to the Four next preceding ones, according to the following Index, viz. 4-6+4-1, whole parts are the Coefficients of the Binomial a-b raijed to the fourth Power, the firft Coefficient being omitted.

And generally, if there be any Series of Terms whofe laft Differences are $=0$. Let the number denoting the rank of that difference be n ; then the Index of the Relation of each Term to as many of the preceding ones as there are Units in n , will be exxpreffed by the Coefficients of the Binomial $\mathrm{a}-\mathrm{b}$ raijed to the Power n , omitting the firfo.

E\&8 The Doctrine of Chances.

But if the Relation of any Term of a Series to a conftant number of preceding Terms, be expreffed by any other Indices than thofe which are comprifed under the foregoing general Law; or even if, thofe Indices remaining, any of their Signs + or - be changed, that Series of Terms will brve none of its differences equal to Nothing.

L E M M A H.

IF in any Series, the Terms $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ *c. be continually decreafing, and be fo rebated to one another that each of them may have to the Same number of preceding Terms a certain given Relation, always expreffible by the fame Index; I fay, that the fum of all the Terms of that Series ad infinitum may always be obtained.

Firlt, Let the Relation of each Term to the two preceding ones be expreffed in this manner, viz. Let C be $=\mathrm{mBr}-\mathrm{nArr}$; and let D likewife be $=\mathrm{mCr}-\mathrm{nBrr}$, and fo on: Then will the fum of that Infinite Series be equal to $\frac{A+B-\operatorname{mr} A}{1-\operatorname{mr}+n \mathrm{rr}}$.

Thus, if it be propofed to find the fum of the following Series,
$A \quad B$
C
D
E
F G
viz. $1 r+3 r r+5 r^{3}+7 r^{4}+9 r^{5}+11 r^{6}+13 r^{7} \mathrm{O}^{6} c_{0}$ whofe Terms are related to one another in this manner, viz. $\mathrm{C}=$ $2 \mathrm{rB}-1 \operatorname{rr} \mathrm{~A}, \mathrm{D}=2 \mathrm{r} \mathrm{C}-1 \mathrm{rrB}$ \&c. Let m and n be made refpectively equal to 2 and 1 , and the $\int e$ Numerical Quantities being Subfituted, in the room of the literal ones, in the general Theorem, the fum of the Terms of the foregoing Series will be found to be equal to $\frac{r+3 \mathrm{rr}-2 \mathrm{rr}}{1-2 \mathrm{r}+\mathrm{rr}}$, or to $\frac{\mathrm{r}+\mathrm{rr}}{1-r^{2}}$.

Let it be alfo propofed to find the fum of the following Series

$$
\begin{aligned}
& \text { A B C D E F G } \\
& \mathrm{rr}+3 \mathrm{rr}+4 \mathrm{r}^{3}+7 \mathrm{r}^{4}+1 \mathrm{r} \mathrm{r}^{5}+18 \mathrm{r}^{6}+29 \mathrm{r}^{7} \text { \&r }
\end{aligned}
$$ whofe Terms are related to one another in this manner, viz. $\mathrm{C}=$ $\mathbf{1 B r}+1 \mathrm{Arr}, \mathrm{D}=1 \mathrm{Cr}+\mathbf{1}$ Brr Br_{c}. Let m and n be reSpectively made equal to $\mathbf{1}$ and - 1 , and then that Series will be found equal to $\frac{\mathrm{r}+3 \mathrm{rr}-\mathrm{rr}}{1-\mathrm{r}-\mathrm{rr}}$, or to $\frac{\mathrm{r}+2 \mathrm{rr}}{1-\mathrm{r}-\mathrm{rr}}$.

DEMONSTRATION.

Let the following Scheme be written down, viz:

$$
\begin{aligned}
& A=A \\
& B=B \\
& C=m B r-n A r r \\
& D=m C r-n B r r \\
& E=m D r-n C r r \\
& F=m E r-n D r r
\end{aligned}
$$

\&c.
This being done, if the fum of the Terms A, B, C, D, E, $F \& c$. ad infinitum, compofing the firft Column, be fuppofed equal to x, then the fum of the Terms of the other two Columns will be found thus: By Hypothefs, $A+B+\mathbf{C}+D+E$ $\& \mathrm{c} .=x$, or $B+C+D+E \& c_{0}=x-A$; and Multiplying both fides of this Equation by $m r$, it will follow that $m B r+m C r+m D r+m E r \& c$. is $=m r x-m r A$. Again, adding $A+B$ on both fides, we fhall have the fum of the Terms of the fecond Column, viz. $A+B+m \mathrm{Br}$ $+m C r+m D r \& c$. equal to $A+B+m r x-m r A$. The fum of the Terms of the third Column will be found by bare infpection to be - $n r r x$. But the fum of the Terms contain'd in the firft Column, is equal to the orher two fums contained in the other two Columns. Wherefore the following Equation will be had, viz. $x=A+B+m r x-m r A-n r r x$; from whence it follows that the value of x, or the fum of all the Terms $A+B+C+D+E \& c$. will be equal to $\frac{A+B-m+A}{1-m r+n r r}$

Secondly, Let the Relation of each Term to the three next preceding ones be expreffed as follows, viz. let D be $=m \mathrm{Cr}$ - $n B r r+p A r^{3}$, and let E likewife be $=m D r-n C r r$ $+p B r^{3}$, and fo on: Then will the fum of all the Terms $A+B+C+D+E \& c$. ad infinitum, be equal to
$\frac{A+B+C-m r A+n r r A}{A-m r+n \cdot r-p r_{3}^{3}}$
r3o The Doctrine of Chances.
To apply this Theorem, let it be propofed to find the fum of the following Series,

A	B	C	D	E	F	G

$4 r+16 r r+36 r^{3}+64 r^{4}+100 r^{5}+144 r^{6}+196 r^{7} 3 \mathrm{C}$. whofe Numerical Quantities are related to one another according to the Index $3-3+1$, correfponding to $m-n+p$: Let therefore $3,3, I$ be fubftituted in the room of m, n, p; let alfo $4 r$, - $16 r r, 36 r^{3}$. be fubftituted in the room of A, B, C : Then the fum of the Terms of the foregoing Series will be found equal to $\frac{4 r+16 m+36 r^{3}-12 r-48 r^{3}+12 r^{3}}{1-3 r+3 m-r 3}$, or $\frac{4 r+4 r r}{1-r}{ }^{3}$.

And in like manner the fum of the Terms of the following Series, viz.
$r+2 \cdot r r+5 r^{3}+20 r^{4}+72 r^{5}+261 r^{6}+947 r^{7} \& \mathrm{c}$. whofe Numerical Quantities are related to one another according to the Index $3+2+1$, will by a proper fubftitution, be found to be equal to $\frac{r-r r-3 r^{3}}{3-3 r-2 r-r^{3}}$.

Thirdy, Let the Relation of each Term of a Series to four of the preceding Terms be expreffed by means of the Indea $m-n+p-q$, and the Sum of that Series will be

$$
\begin{aligned}
A+B+C+D & -m r A+n r r A-p r^{3} A \\
& =m r B+n r B^{\prime} \\
& =m r C+q r+n r r-p r^{3}+q r^{4}
\end{aligned}
$$

Fourthly, The Law of the continuation of thefe Theoremsis being manifeft, they may be all eafily comprehended under one general Rule.

Fifibly, If the correfponding Terms of any two or more Series, generated after the manner which we have above defcribed, be multiplyed by one another, the new Series refulting from that multiplication, will alfo be exactly fummable: Thus, taking the two following Series, viz.

$$
\begin{aligned}
& r+2 r r+3 r^{3}+5 r^{4}+8 r^{5}+13 r^{6} \& c . \\
& r+3 r r+4 r^{3}+7 r^{4}+11 r^{5}+18 r_{-}^{6} \& c, \text { in both of } \\
& \text { which }
\end{aligned}
$$

which each Numerical Quantity is the fum of the two preceding ones; the Series refulting from the multiplication of the correfponding Terms will be

$$
r r+6 r r^{4}+12 r^{6}+35 r^{8}+88 r^{10}+234 r^{12} \& c .
$$

in which each Numerical Quantity being related to the three preceding ones, according to the Index $2+2-\mathbf{1}$, the fum of that Series will be found to be $=\frac{r r+4 r^{4}-2 r^{6}}{1-2 r-2 r^{4}+r^{6}}$ as will appear, if in the room of $m-n+p$ there be fubftituted $2+2-1$, and $r r$ be written inftead of r.

When the Numerical Quantities belonging to the Terms of any Series are reftrained to have their laft differences equal to Nothing, then may the fums of thofe Series be alfo found by the following elegant Theorem, which has been communicated to me by Mr. de Monmort.
Let $A r$ be the firlt Term of the Series, and let the firlt, fecond and third differences, \&c. of the Numerical Quantities belonging to the Terms of the Series, be refpectively equal to $d^{\prime \prime} d^{\prime \prime}, d^{\prime \prime \prime}, \& c$. Then will the fum of the Series be equal to

$$
\frac{2 A}{1-r}+-\frac{r d^{\prime}}{1-r^{2}}+\frac{r^{3} d^{\prime \prime}}{1-n^{3}}+\frac{r^{4} d^{\prime \prime \prime}}{1-r^{4}}+\frac{r^{4} d^{\prime \prime \prime \prime}}{1-r^{3}} \& x .
$$

Thus, if it were propofed to find by this Theorem the fum of the following Series, viz.

$$
A r+16 r r+36 r^{3}+64 r^{4}+100 r^{5} \& \mathrm{c}
$$

It is plain that in this cafe A is $=4, d^{\prime}=12, d^{\prime \prime}=8$, $d^{\prime \prime \prime}=0$; and therefore that the fum of this Series is equal to $\frac{4 r}{1-r}+\frac{r 2 r r}{1-r^{2}}+\frac{8 r^{3}}{1-r^{3}}$, which is reduced to $\frac{4 r+4 \pi r}{1-r^{3}}$.

REMARK.

0Ur Method of fumming up all the Terms which in thefe Series are related to one another according to conftant Indices, may be extended to the finding of the fum of any determinate number of thofe Terms. Thus, if A, B, C, D be the firt Terms of a Series, and v, X, Y, Z be the laft, then will the fum of the Series be

$$
\begin{aligned}
& A-m r A+n s r A-p r^{3} A+q r^{4} U \\
&+B-m r B+n r r B-p r^{3} X+q r^{4} X \\
&+ C-m r C+n r r Q=p r^{3} T+q r^{4} X \\
&+D-m r Z+n r Z-p r^{3} Z+q r^{4} Z
\end{aligned}
$$

And if a general Theorem were defired, it might cafily be formed from the infpection of the foregoing.

Thefe Theorems are very ufeful for fumming up readily thofe Series which exprefs the Probability of the Plays being Ended in a given number of Games. For example, fuppofe it be required to find what Probability there is, that in Four and twenty Games, either A, Thall win Four Stakes of B, or B Four Stakes of A. The Series expreffing that Probability is, from our XXXIVth Problem
$-\frac{a^{4}+b^{4}}{a+b^{4}} \times \overline{1+\frac{4 a b}{a+b^{12}}}+\frac{14 a a b b}{a+b^{4}}+\frac{48 a^{3} b^{3}}{a+b^{6}}+\frac{164 a^{4} b^{4}}{a+b^{8}} .8 c$.
or, fuppofing an equality of skill between the two Game. fters, $\frac{1}{8} \times \frac{1+\frac{4}{4}+\frac{14}{16}+\frac{48}{64}+\frac{164}{250}}{2}$ cc. which ought to be continued to eleven Terms independently from the common Multiplicator. Let this Series, whofe Terms are related according to the Index $4-2$, be compared with the Theorem, making $A=1, B=\frac{4}{4}=1, m=4, n=2$. and neglecting the Terms C, D, v, X, the fum of the aforefaid Series will be found $=8+\Upsilon-7 Z$; which being mulsiplied by the common Multiplicator $\frac{1}{8}$ prefixt to it, the Probability required will be expreffed by $1+\frac{1}{8} r-\frac{7}{8} Z$. Wherefore nothing remains to be done but to find the two laft Terms Γ and Z: But thofe two Terms, by our XXXIVth. Problem, will be found to be $\frac{76096}{2^{18}}$ and $\frac{259808}{2^{20}}$, or 0.2902 , and 0.2477 nearly; which numbers being fubftituted refpectively in the room of Y and Z the Probability required will be found to be equal to 0.8193 nearly. Let now this laft number be fubtracted from Unity, and the remainder being 0.1807 , it follows, that 'tis a Wager of 82 to 18 , or of 4 r to 9 nearly, that in Twenty four Games or fooner, either A fhall win four Stakes of B, or B four Stakes of A.

If the number of Stakes were Five, the fum of the Terms of the Series belonging to that Cafe would alfo be exprelt by means of the two laft Terms, fuppofing any given number of Games, or any proportion of Skill. If the number of Stakes were Six or Seven, the fum of the Series belonging to thofe Cafes would be expreft by means of the three laft Terms; If Eight or Nine, by means of the Four lalt Terms, and fo on.

L E M M A III.

IF there be a Series of Numbers, as A, B, C, D, E \&c. whofe Relation is expreft by any conftant Index, and there be another Series of Numbers, as P, Q, R, S, T \&c. whole laft Differences are equal to Notbing; and each Ierm of the firf Series be Multiplied by each correfponding Term of the fecond, I Say that the Products $\mathrm{AP}, \mathrm{BQ}, \mathrm{CR}, \mathrm{DS}, \mathrm{ET}$ \&c. conftitute a Series of Terms, whofe Relation may be expreft by a comftant Index. Thus if we take the Series 1, 2, 8, 28, 100 \&c. whofe Terms are related by the Index $3+2$, and each Term of that Series be refpectively Multiplied by the correfponding Terms of an Arithmetic Progref: fion, Juch as $\mathbf{1}, 3,5,7,9$ \&c. whofe laft Differences are equal to Nothing: Then it will be found that the Products 1, 6, 40, 196,900 \&c. conftitute a Series of Numbers, each Term of which is Related to the preceding ones according to the Index 6-5 I2 - 4. Now the Rule for finding the Index of this Relation is as follows.

Take the Index which expreffes the Relation of the Terms in the firft Series, and Multiply each Term of it by the correfponding Terms of the Literal Progreffon r, rr, $\mathrm{r}^{3} \& \mathrm{c}$. which being done, fubtrait the fum of the fe Products from Unity; then let the remainder be raifed to its Square, if the Second Series be compoled of Terms in Arithmetic Progreffion; or to its Cube, if it be compofed of Terms whole third Differences are equal to Nothing; or to its fourth Power, if it be compofed of Ierms whofe fourth Differences are equal to Nothing; and Jo on. Let that Power be Jubtracted from Unity, and the remainder, baving cancelled the Letter r , will be the Index required. Thus in the foregoing Example, baving taken the Index $3+2$, which belongs to the firft Series, and Multiplied its Terms by r and rr refpectively, let the Product $3^{\circ}+21 \mathrm{r}^{\circ}$ M m

134 The Doctrine of Chances.

be fubtracted from Unity, and the Square of the remainder being $1-6 \mathrm{r}+5 \mathrm{rr}+12 \mathrm{r}^{3}+4 \mathrm{r}^{4}$, let that Square be alfo Subtracted from Unity, then the remainder, baving cancelled the Letter r , will oe 6-5-12-4, which is the Index required.

But in cafe neither of the two firft Series bave any of their laft Differences equal to Nothing, yet if in both of them the Relation of their Terms be expreffed by conftant Indices, the third Series, refulting from the Multiplication of the correfponding Terms of the two firt Series, will allo bave its Terms related to one another according to a conftant Index. Thus, taking the Series I, 3, $5,11,21,43 \& c$. the Relation of whofe Terms is expreffed by means of the Index $\mathrm{x}+2$, and Multiplying its Terms by the correfponding Terms of the Series $1,2,5,13,34,89 \& c$. the Relation of whole Terms is expreffed by the Index $3-\mathbf{1}$, the Products spill compofe the Series $1,6,25,143,714,3827$, whofe Terms are Related to one another according to the Index $3+13-6-4$.
Generally, If the Index exprefing the Relation of the Terms in the firf Series be $\mathrm{m}+\mathrm{n}$, and the Index exprefoing the Relation of the Terms in the fecond Series be $\mathrm{p}+\mathrm{q}$; then will the Index of the Relation, in the Series refulting from the Multiplication of the correfponding Terms of the Two firft Series, be expreffed by the following Ruantities,

$$
\text { viz. } \begin{aligned}
\mathrm{mp} & +\mathrm{npp}+\mathrm{mnpq}-\mathrm{nnqq} . \\
& +2 \mathrm{nq}
\end{aligned}
$$

But if it So Happen that p be equal to m , and q to n ; then the foregoing Theorem may be contrasted, and the Index of the Relio. tion may be expreffed as follows, viz. $\mathrm{mm}+\mathrm{mmn}-\mathrm{n}^{3}$ So that the Relation of each Term to the preceding ones need not be extended, in this Caje, to amy more than three Terms.

And in like mamer other Theorems may be found, which may be extended farther, and at laft be comprized under one general Rule.

PROBLEM XLIII.

SUppofing A and B , whofe proportion of Skill is as a to b , to Play together, till A either wins the number q of Stakes, or lofes the number p of them; and that B Sets at every Game the fum G to the fum L : It is required to find the Advantage, or Difadvantage of A.

SOLUTION.

FIr f, Let the number of Stakes to be won or loft on eio ther fide be equal, and let that number be p; let there be alfo an equality of Skill between the Gamefters: Then I fay, the gain of A will be $p p \times \frac{G-1}{2}$, that is, the Square of the number of Stakes which either Gamefter is to win or lofe, Multiplied by one half of the Difference of the value of the Stakes. Thus, if A and B play till fuch time as Ten Stakes are won or loft, and B Setts a Guinea to Twenty Shillings; then the gain of A will be a hundred times half the Difference between a Guinea and Twenty Shillings, viz. $3^{l-15^{\text {shil. }}}$

Secondly, Let the number of Stakes be unequal, fo that A be obliged either to win the number q of Stakes, or to lofe the number p; let there be alfo an equality of Chance between A and B : Then I fay, that the gain of A will be $p q \times \frac{G-2}{2}$; that is, the Product of the two numbers of Stakes, and one half of the Difference of the value of the Stakes Multiplied together. Thus, if A and B play together till fuch time as either A wins Eight Stakes, or lofes Twelve; then the Gain of A will be the Product of the Three numbers $8,12,9$, which makes 864 pence, or $3 /-12^{\text {shil. }}$
Thirdy, Let the number of Stakes be equal, but let the number of Chances to win a Game, or the Skill of the Gamefters be unequal, in the proportion of a to b. Then I fay, that the gain of A will be $\frac{\overline{p a p-p b^{p}}}{a^{p}+b^{P}} \times \frac{a G-b L}{a-b}$.

136 The Doctrine of Chances.

Fourthly, Let the number of Stakes be unequal, and let al fo the number of Chances be unequal: Then I fay that the gain of A will be $\frac{\frac{q a^{q} \times a^{p}-b p}{a^{p+q}-b^{p} \times a^{q}-b^{p}}}{a^{p+q}} \times \frac{\frac{a G-b L}{a-b}}{a-b}$

DEMONSTRATION.

1N order to form a general Demonftration of thefe Rules, let us refolve fome particular Cafes of this Problem, and examine the procefs of their Solution: Let it therefore be propofed to find the gain of A in the Cafe of Four Stakes to be won or loft on either fide, and of an equality of Chance between A and B to win a Game. There being an equality of Clance for A, every Game he plays, to win G or to lofe L, it follows, that the gain of every Game he plays is to be reputed to be $\frac{G-L}{2}$. But it being uncertain whether any more Games than Four will be play'd, it follows, that the gain of the Tenth Game, for inftance, to be eftimated before the play begins, cannot be reputed to be $\frac{G-L}{2}$; for it would only be fuch provided the Play were not Ended before that Tenth Game: Wherefore the gain of the Tenth Game is the Quantity $\frac{G-x}{2}$ Multiplied by the Probability of the Plays not being Ended in Nine Games, or before, for the fame reafon, the gain of the Ninth Game is the Quantity $\frac{G-L}{2}$ Multiplied by the Probability that the Play will not be Ended in Eight Games: And likewire the gain of the Eighth Game is the Quantity $\frac{G-L}{2}$ Multiplied by the Probability that the Play will not be ended in Seven Games, and fo on. From whence it may be concluded, that the gain of A, to be eftimated before the Play begins, is the Quantity $\frac{G-1}{2}$ Multiplied by the fum of the Probabilities that the Play will not be Ended in $0,1,2,3,4,5,6$, \&c. Games ad infinitum.

Let thofe Probabilities be refpectively called $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, $E^{\prime}, F^{\prime}, G^{\prime}, \& c$. Then, becaufe the Probability of the Plays not being Ended in Five Games is equal to the Probability of its not Ending in Four, and that the Probability of its not Ending in Seven, is equal to the Probability of its not

Ending

Ending in Six, it will follow, that the fum of the Probabilities belonging to all the Even Games is equal to the fum of the Probabilities belonging to all the Odd ones: We are therefore only to find the fum of all the Even Terms, $A^{\prime}+C^{\prime}+$ $E^{\prime}+G^{\prime} \& c$. and to double it afterwards.

Now it will appear, from our XXXIIId Problem, that thefe Terms conflitute the following Series, viz.

$$
\frac{1}{1}+\frac{4}{4}+\frac{14}{16}+\frac{48}{64}+\frac{164}{256}+\frac{560}{1024}+\frac{1912}{4096} \& c .
$$

In which Series, each Numerator being Related to the two preceding ones according to the Index 4-2, and each Denominator being a Power of 4 , it follows, that this Series may be compared with the firlt Theorem of our fecond Lemma; by making the firft and fecond Terms A and B, ufed in that Theorem, to be refpectively equal to I and $\frac{4}{4}$, making alfo the Quantities m, n, r refpectively equal to $4,2, \frac{r}{4}$, Which being done, it will be found that the fum of all thofe Terms ad infinitum will be equal to 8 .

We may therefore conclude that the fum of all the Terms $A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}+E^{\prime} \& c$. is equal to 16 , and that. the gain of A is equal to $16 \times \frac{\frac{\sigma-1}{2}}{}$.

But if the number of Chances which A and B have to win a Game, be in a proportion of inequality, then the fum of the Series $A^{\prime}+C^{\prime}+E^{\prime}+G^{\prime}+I^{\prime} \& c$. will be found thus: Let $\frac{a b}{a+b^{2}}$ be called r, and the Terms of that Series will be Related to one another as follows, viz. $E^{\prime}={ }_{4} C^{\prime} r$ $2 A^{\prime} r r, G^{\prime}=4 E^{\prime} r-2 C^{\prime} r r$, and fo on. Let therefore 4 , $2,1,1$, be refpectively fubflituted, in the firft Theorem of our fecond Lemma, in the room of $m, n, A^{\prime}, B^{\prime}$; and the fum of this Series will be found to be $\frac{2-4 r}{1-4 r+2 r r}$; in which expreffion, reftoring the value of $r, v i z . \frac{a b}{a+\left.b\right|^{2}}$, the fum of the Series will become $\frac{\overline{2 a a+2 b b} \times \overline{a+b b^{2}}}{a^{4}+b^{4}}$, the double of which is the fum of all the Terms $A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}+E^{\prime} \& c$. But becaufe, in every Game, the Gamefter A has the number a of Chances to win G, and the number b of Chances to lofe L; it follows, that his gain in every Game is equal
to $\frac{a G-b_{L}}{a+b}$. From whence it may be concluded, that the Advantage of A, to be eftimated before the Play begins,
will be $\frac{\overline{4 a a+4 b b \times \overline{a+b})^{2}}}{a^{4}+b^{4}} \times \frac{\overline{a G-b L}}{a+b}$.
Before we proceed farther, we muft oblerve, that the Series $A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}+E^{\prime}+F^{\prime} \& x c$. which we have af fumed to reprefent in general the Probabilities of the Plays not being Ended in $0,1,2,3,4,5 \& c$. Games, whether the Stakes be equal or unequal, being divided into two parts, viz. $A^{\prime}+$ $C^{\prime}+E^{\prime}+G^{\prime} \& c$. and $B^{\prime}+D^{\prime}+F^{\prime}+H^{\prime} \& c$. anfwering to $0,2,4,6 \& \mathrm{c}$. and $\mathrm{I}, 3,5,7, \& \mathrm{c}$. each Term of thefe two new Series will be related to the preceding ones, according to the fame Law of Relation; as are the Terms of thofe Series which exprefs the Probabilities of the Plays being Ended in a certain number of Games, under the like circumftances of Stakes to be won or Loft. The Law of which Relation is to be deduced from our XXXIV $t h$, and XXXIX $t b$ Problems.

If the number of Stakes to be won or loft on either fide be equal to Six, and the proportion of Chances to win a fingle Game be as a to b; then the Relation of each Term to the preceding ones, in the Series $A^{\prime}+C^{\prime}+E^{\prime}+G^{\prime} \& c$. will be expreffed by the Index $6-9+2$. Wherefore to find the fum of thefe Terms, let the Quantities $6,9,2,1$, $\mathbf{1}, \mathbf{r}$, be refpectively fubftituted, in the third Theorem of our fecond Lemma, in the room of $m, n, P, A^{\prime}, B^{\prime}, C^{\prime}$, and the fum of thofe Terms will be found to be

$$
\frac{1+1+1-6 r+9 r r}{1-6 r+9 r r-2 r^{3}} \text { or } \frac{3-12 r+9 r r}{1-6 r+9 r r-2 r^{3}} \text {. In which ex- }
$$

preffion fubftituting $-\frac{a b}{a+b)^{2}}$ in the room of r, the fame will become $\frac{\sqrt{3 a^{4}+3 a b b b+3 b^{4}} \times \overline{a+b} b^{2}}{a^{6}+b^{0}}$. From whence we may conclude, that the gain of A will be

```
\frac{6\mp@subsup{a}{}{4}+6aabb+6\mp@subsup{b}{}{4}\timesa+b\mp@subsup{b}{}{2}}{\mp@subsup{a}{}{6}+\mp@subsup{b}{}{6}}\times\frac{aG-bL}{a+b}
```

Again, if the number of Stakes to be won or loft on either fide be Eight, it will be found, that the gain of A will
be

$$
\frac{8 a^{6}+8 a^{4} b b+8 a a^{4}+8 b^{6} \times a+b^{2}}{a^{8}+b^{8}} \times \frac{\overline{a G-b L}}{a+b} .
$$

But the Numerators of the foregoing Fractions being in Geometric Progreffion, if thofe Progreffions be fummed up, the gain of A, in the Cafe of Four Stakes to be won or loft, may be expreffed as follows,
viz. by the Fraction $\frac{\overline{4 a^{4}-a b+} \frac{a+b b^{2}}{a^{4}+b^{4} \times \overline{a b-b b}} \times \frac{\overline{a G-b}}{a+b}}{\text { a }}$; or dividing both Numerator and Denominator by $\overline{a+b}^{2}$, the fame may be expreft by the Fraction $\frac{4 a^{4}-\frac{4 b^{4}}{a^{4}+b^{4}} \times \frac{\overline{a G-b L}}{a-b}}{\text {. }}$ His gain likewife, in the Cafe of Six Stakes to be won or loft, will be expreft by the Fraction $\frac{\overline{6 a^{6}-66^{6}}}{a^{6}+b^{6}} \times \frac{\overline{a G-b L}}{a-b}$; and in the Care of Eight Stakes to be won or loft, it will be expreft by the Fraction $\frac{8 a^{8}-8 b^{8}}{a^{8}+b^{8}} \times \frac{\overline{\sigma G-b L}}{G-b}$: So that we may conclude, that in any Cafe of an Even and equal number of Stakes denominated by p, the gain of A will be expreft by the Fraction $\frac{\overline{p a p}-p b p}{a^{p}+b^{p}} \times \frac{\overline{a G-b L}}{a-b}$.

But if the number of Stakes be Odd and equal, as it is in the Cafe of Five Stakes to be won or loft, then the two Series $A^{\prime}+C^{\prime}+E^{\prime}+G^{\prime}+I^{\prime} \& \mathrm{c}$. and $B^{\prime}+D^{\prime}+H^{\prime}$ $\& c$. will be unequal, and the excefs of the firt above the fecond will be Unity. Wherefore to find the gain of A, in the Cafe of Five Stakes, having fet afide the firft Term of the firft Series, let all other the Terms be added together, by comparing them with thofe that are employed in the firt Theorem of our fecond Lemma; which will be done thus. Since $C^{\prime}=1, E^{\prime}=1$, and $G^{\prime}=5 E^{\prime} r-5 C^{\prime} r r$, let the numbers $\mathbf{I}, \mathbf{I}, 5,5$, be refpectively fubftituted in the aforefaid Theorem, in the room of the Letters $A^{\prime}, B^{\prime}, m, n$; and
and the fum of that Series will be found to be $\frac{2-5 r}{1-s^{2}+5 r r}$:
To the double of which adding Unity, which we had fet afide, it will appear that the fum of the two Series together will be $\frac{5-5 r+5 r r}{1-5 r+5 r r}$; or writing $\frac{a b}{a+b^{2}}$ in the room of r, $\frac{5 a^{4}+5 a^{3} b+5 a a b b+5 a b^{3}+5 b^{4}}{a^{4}-a^{3} b+a a b b-a b^{3}+b^{4}}$. Now by reaion that the Terms of both Numerator and Denominator of this laft Fraction compofe a Geometrick Progreflion, the Numerator will be reduced to $\frac{5 a^{5}-5 b 5}{a-b}$, and the Denominator will be reduced to $\frac{a^{s}+b s}{a+b}$. From whence it follows, that the fum of thefe two Series will be $\frac{\frac{5 a^{5}-b^{5}}{a^{5}+b^{5}} \times \overline{a+b}}{a-6}$, and that the gain of A will be $\frac{\overline{5 a^{5}-5 b^{5}}}{a^{5}+b^{5}} \times \frac{\overline{a G-b L}}{a-b}$. If the gain of A be likewife inquired into, in the Cafe of Seven Stakes to be won or loft, then it will be found to be $\frac{7 a^{7}-7 b T}{a^{7}+b^{7}} \times \frac{\bar{a}-b L}{a-b}$. And the fame form of expreffion being conftantly obferved in all cafes wherein the number of Stakes is Odd and equal, we may conclude that if that number be denominated by p, then the gain of A will be $\frac{\overline{p a^{P}-p b^{p}}}{a^{P}+b^{p}} \times \frac{\overline{a G-b L}}{a-b}$. Now this expreffion of the gain of A having been found to be the fame in the Cafe of an Even number of Stakes, as it is now found in the Cafe of an Odd one; we may conclude, that it is general, and belongs to any equal number of Stakes whether Even or Odd.
If the number of Stakes be unequal, the Inveftigation of the gain of A will be made in the fame manner asit was in the Cafe of an equality of Stakes. Thus, let us fuppofe that the Play be to continue till fuch time as either A wins Two Stakes, or B Three. In order therefore to find the gain of
 be
be divided into two parts, viz. $A^{\prime}+C^{\prime}+E^{\prime}$ \&c. and $B^{\prime}+D^{\prime}+F^{\prime} \& c$. then it will appear, from our XXXIIId, and XXXIXth Problems, that $A^{\prime}=\mathrm{I}, \mathrm{C}^{\prime}=\frac{2 a b+b b}{a+b b^{2}}$, $E^{\prime}=3 C^{\prime} r-I A^{\prime} r r$. Having now obtained the firft Terms of the Series, and the Relation of each Term of it to the preceding ones; it will be eafie to find the fum of all its Terms, by the help of the firft Theorem of our fecond Lemma, making the Quantities, A, B, m, n therein employed to be refpectively equal to $x, \frac{-2 a b+b b}{a+b^{2}}, 3$, I. This done, the fum of that Series will be found to be equal to
$\frac{\frac{a a-a b+2 b b}{a^{4}+\frac{a+b}{a b+~}{ }^{12}}}{\dot{a}^{3} b b+a b^{3}+b^{+}}$. In like manner it will appear, that in the fecond Series B^{\prime} is $=1, D^{\prime}=\frac{2 a a b+3 a b b}{a+b^{3}}$; $F^{\prime}={ }_{3} D^{\prime} r-B^{\prime} r r$; from whence the fum of all its Terms will be found to be $\frac{a a+2 a b+2 b b \times \overline{a+b^{2}}}{a^{4}+a^{3} b+a a b b+a b^{3}+b^{+}}$: And both fums of thofe Series heing added together, the aggregate of them will be $\frac{\frac{2 a^{3}+a a b+6 a b b+3 b^{3}}{a^{4}+a^{3} b+a+b} \text { a } a^{3}+b^{4}}{\text { a }}$: But the Terms of this Denominator compofing a Geometric Progreffion, whofe fum is $\frac{a^{5}-65}{a-b}$, the foregoing Fraction may be reduced to $\frac{2 a^{4}+2 a^{3} b-2 a a b b-3 a b^{3}-3 b^{4}}{4 a^{5}-65}$; which Fraction is Atill capable of a farther reduction; for the three firlt Terms of its Numerator compofe a Geometric Progreffion, and the two laft Terms may be conlidered as being in Geometric Progreffion, and confequently the Fraction may at laft be reduced to $\frac{2 a a \times \overline{a^{3}-b^{3}}-3 b \times \overline{a b-b b} \times \overline{a+b}}{a^{5}-b^{3} \times \overline{a-b}}$, from which expreffion, the gain of A will be found to be $\frac{2 a a \times a^{3}-b^{3}-3 b^{3} \times a a-b b}{a^{5}-b^{5}} \times \frac{a G-b L}{a-b}$

142

 The Doctrine of Chances.By the fame method of Procefs, it will be eafy to determine the gain of A under any other circumftance of Stakes to be won or loft: And.if it be remembred always to fum up thofe Terms which are in Geometric Progreffion, all the various expreffions of the gain of A, calculated for differing numbers of Stakes, will appear to be uniform: From whence it may be collected by bare infpection, that the gain of A is what we have afferted it to be, viz.

$$
\frac{q a q \times a^{p}-b p-p b^{p} \times a q-b^{q}}{a^{p+q}-b^{p+q}} \times \frac{a G-b L}{a-b} .
$$

It is to be obferved, Firf $/$, that if p and q be equal, the foregoing expreffion may be reduced to $\frac{\overline{p a^{p}-p} b^{p}}{a^{p}+b^{p}} \times \frac{a G-b Z}{a-b}$; as will appear if both Numerator and Denominator be divided by $a^{p}-b$, having fiff fubftituted p in the room of q. Secondly, that if a and b. be equal, the fame expreflion may be reduced to $p q \times \frac{\overline{G-I}}{2}$, which will appear if both Numerator and Dênominator be divided by $\overrightarrow{a b}^{2}$.

After I had Solved the foregoing Problem, I wrote word of it to Mr. Nicolas Bernoully, the prefent Profeffour of Mathematics at Padoua, without acquainting him with my Solution: I only let him know in general that it was done by the Method of Infinite Series; whereupon he fent me two different Solutions of that Problem: And as one of them has fome Affinity with the Method of Series ufed all along in this Book, I hall tranfcribe it here in the Words of his Letter, "My Uncle has obferved that this Problem may alfo " be Solved after the fame manner as you have Solved the "Ninth Problem * of your Tract de: Menfara Sortis, it be" ing vifible that the Expectations of the Gamelters will re"ceive no alteration wherher it be fuppofed that the Pieces " which A and B Set every time to each other, are refpective"Iy L and G, or whether it be fuppofed that thofe Pieces " conftitute the following Progreffion, viz.
" $L, G, G+\frac{b}{a} \times \overline{G-L}, G+\overline{\frac{b}{a} \times \frac{h b}{a a}} \times \overline{G-L}, G+\overline{\frac{b}{a} \times \frac{b b}{a a} \times \frac{b \bar{a}}{a^{3}}}$ $\times \overline{G-L} \& c$. the number of whofe Terms is $p+q$. whereof

The Doctrine of Chancrs.

${ }^{66}$ the firft, whofe number is p, denote the Pieces of A; and " the lalt, whofe number is q, denote the Pieces of B : For i_{n} " either Cafe the gain of A will be $\frac{a G-b L}{a+b}$. Now it being "6 poffible to find the fum of any number of Terms of this Pro" greffion, it follows that the different values of all the Pieces " of each Gamefter may be obtained: Let therefore thofe "s values be denored refpectively by S and T; let alfo the "Probabilities of winning the number of Stakes agreed up. " on be called A and B refpectively, which Probabilities are cc.apqq-aqbp$a^{a^{p+q}-b^{p+q}}$ and $\frac{a^{q} b^{p}-b^{p+q}}{a^{p+q}-b^{p+q}}$, fuch as we had feverally

6s derived them, your felf in your aforefaid Problem, and I ${ }^{6}$ in Mr. Montmort's Book. This being fuppofed, the gain of A \because will be found to be $A T-B S$, or $\frac{A G-h L}{a-b} \times \overline{A q-B p}$.
N. B. Tho' I may, accidentally, have given a ufeful Hint for that elegant Method of folving the foregoing Problem, yet I think it reafonable to afcribe it entirely to its proper Auchor ; the Hint having been improy'd much beyond what I could have expected.

R E M A R K.

IT is to be obferved, that the gain of A is not to be regulated by the equal Probability there is that the Play may, or may not be Ended in a certain number of Games. For inftance, If two Gamefters having the fame number of Chances to win a Game, defign only to play untill fuch time only as two Scakes are won or loft; it is as Probable that the Play may be Ended in two Games as nor, yet it cannot be concluded from thence, that the gain of A is to be eftimated by the Product of the Number 2 by one half of the Difference of the Stakes: For it has been Demonftrated that this gain will be Four times that half difference. In like manner, if the Play were to continue, till either A hould win Two Stakes, or B Three; it will be found, that it is as Probable that the Play may End in Four Games as not; and yet the gain of A is not to be eft.mated by the Product of the Number 4 by one half of the Difference of the Stakes; it ha-

144 The Doctrane of Chances.

ving been Demonftrated that it is Six times that half Difference. To make this the more fenfible, let us fuppofe that A and B are to Play till fuch time as A either wins one Stake, or lofes Ten: It is plain, that in this Cafe it is as Probable that the Play may be Ended in One Game as not, and yet the gain of A will be found to be Ten times the Difference of the Stakes. From hence it is plain, that this gain is not to be eftimated, by the equal Probability of the .Plays Ending or not Ending in a certain number of Games, but by the Rules which have been prefcribed in this Problem.

PROBLEM XLIV.

IF A and B, whofe proportion of Skill is as a to b , refolving to Play together till fach time as Four Stakes are won or lof on either fide, agree between themfelves, that the firft Game that is play'd, they foall Set to each other the refpective fums L and G ; that the fecond Game they Shall Set the fums 2 L and 2 G ; the third Game the fums 3 L and 3 G , and fo on; the Stakes increafing continually in an Arithmetic Progreffinn: It is Demanded how the gain of A is to be eftimated in this Cafe, before the Play begins.

SOLUTION.

IE T there be fuppofed a Time wherein the Number p of Games has been play'd; then A having the Number a of Chances to win the fum $\overline{p+1 \times} G$ in the next Game, and B having the Number b of Chances to win the fum $\overline{p+1 x} L$; it is plain, that the gain of A in that circumftance of Time will be $\overline{p+I \times \frac{a G-b L}{a+b}}$. But this gain being to be eftimated before the Play begins, it follows, that it ought to be eftimated by the Quantity $\overline{p+I \times \frac{\overline{a G-b L}}{a+b}}$ multiplied by the refpective Probability there is that the Play will not then be Ended; and therefore the whole gain of A is the fum of the Probabilities of the Plays not Ending in 0, 1, 2, $3,4,5,6 \$ \mathrm{c}$. Games ad infinitum, multiplied by the refpect. ive values of the Quantity $\overline{p+I \times} \frac{a G-b L}{a+b}$, p being Inter-
preted fucceffively by the Terms of the Arithmetic Progreffion, $0,1,2,3,4,5,6 \& c$. Now let thefe Probabilities of the Plays not Ending be refpectively called $A^{\prime}, B^{\prime}, C^{\prime} D^{\prime}$, $E^{\prime}, F^{\prime}, G^{\prime} \& c$. Let alfo the Quantity $\frac{a G-b L}{a+b}$ be called S; and thence it will follow, that the gain of A will be $A^{\prime} S$ $+2 B^{\prime} S+3 C^{\prime} S+4 D^{\prime} S+5 E^{\prime} S+6 F^{\prime} S \& c$. Butin the Cafe of this Problem B^{\prime} is equal to A^{\prime}, and D^{\prime} is equal to C^{\prime}, and fo on. Wherefore the gain of A may be expreffed by the Series $S \times \overline{3 A^{\prime}+7 C^{\prime}+11 E^{\prime}+15 G^{\prime}+19 I^{\prime}} \& c$. But it appears, by our XXXIIId Problem, that the Terms $A^{\prime}, C^{\prime} E^{\prime}, G^{\prime}$ are refpectively equal to the following Quantities, viz. $1,1, \frac{4 a^{3} b+\frac{6 a a b b+4 a b 3}{a+b b^{4}}}{}$,
> $\frac{14 a 4 b b+20 a 3 b^{3}+14 a a b^{4}}{a+b^{6}}$: Whence it follows, that the Terms $3 A^{\prime}+7 C^{\prime}+11 E^{\prime}+15 G^{\prime}$ may be obtained: It appears alfo, from what we have obferved in the preceding Problem, that the Relation of the Terms A^{\prime}, C^{\prime}, $E^{\prime} \& \mathrm{c}$. may be expreffed by the Index 4-2; and by the Third Lemma prefixt to that Problem, that the Relation of the Terms $3 A^{\prime}, 7 C^{\prime}$, II $E^{\prime} \& C$. may be expreffed by the Index 8-20 16 - 4 : And therefore fubftituting the Quantities $3 A^{\prime}, 7 C^{\prime}$, II $E^{\prime}, 15 G^{\prime}$ in the room of the Quantities A, B, C, D, which we make ufe of in the Third Theorem of our fecond Lemma; fubflituting likewife the Quantities, $8,20,16,4$ in the room of m, n, p, q; and lafly fubftituting $\frac{a b}{a+b^{2}}$ in the room of r; the gain of A will be expreft by the following Quantities, viz.

$$
S \times \frac{10 a^{0}+24 a^{5} b+42 a^{4} b b+64 a^{3} b^{3}+42 a a b^{4}+24 a b^{5}+10 b^{6}}{\left.a^{4}+b^{4}\right)^{2}} \times a^{2}
$$

which, in the Cafe of an equal number of Chances to win a Stake, would be reduced to $216 S$; and therefore if the Quantities G and L ftand refpectively for a Guinea and Twenty Shillings, which will make the value of S to be Nine pence, it follows, that the gain of A will in this Care be $81-2^{\text {shili }}$

146 The Doctrine of Chances.

Corollary I. If the Stakes were to Increafe according to the proportion of the Terms of any of thofe Series which we have defrcibed in our Lemma's, and that there were any given inequality in the number of Stakes to be won or loft, the gain of A might ftill be found.

Corollary II. There are fome Cafes wherein the gain of A would be Infinite: Thus, if A and B were to Play till fuch times as Four Stakes were won or loft, and it were agreed between them to double their Stakes at every Game, the gain of A would in this Cafe be Infinite: Which confequence may eafily be deduced from what has been faid before.

PROBLEM XLV.

IF A and B refolve to Play till fuch time as A either wins a certain given number of Stakes, or that B wins the fame, or Some other given number of them: 'Tis required to find in how many Games it will be as Probable that the Play may be Ended as not?

SOLUTION.

LET it be fuppofed that A and B are to play till fuch time as either of them wins Three Stakes, and that there is an Equality of Skill between them. This being fuppofed, it will appear, from our XXXIVth Problem, that the Probability of the Plays continuing for an Indeterminate number of Games may be expreft by the following Series, viz.
$\frac{a^{3}+b^{3}}{a+b^{3}} \times 1+\frac{3 a b}{a+b^{2}}+\frac{9 a a b b}{a+b 4}+\frac{27 a^{3} b^{3}}{a+b b^{6}}$ \&c: which, in
the Cafe of an Equality of Skill between the Gamefters, will be reduced to this Series,
 ly correfponding to the number of Games $3,5,7,9.8 \mathrm{cc}$. Wherefore fo many of thofe Terms ought to be taken, as that their fum being multiplied by the common Multiplica-
sor $\frac{2}{8}$ or $\frac{1}{4}$, the Product may be equal to the Fraction $\frac{1}{2}$: which Fraction denotes the equal Probability of an Events Happening or not Happening : But if two of thofe Terms be taken, and that their fum be Multiplied by $\frac{1}{4}$, the Product will be $\frac{7}{16}$; which being lefs than the Fraction $\frac{1}{2}$, it may be concluded that Five Games are too few to make it as Probable that the Play will be Ended in that number of Games as not; and that the Odds againft its Ending in Five Games are 9 to 7: But if Three of thofe Terms be taken, then their fum being multiplied by the common Multiplicator $\frac{1}{4}$, the Product will be $\frac{37}{64}$; which exceeding the Fraction $\frac{4^{2}}{2}$, it may be concluded that Seven Games are too many; and that the Odds of the Play being Ended in Seven Games, or fooner, are 37 to 27 ; ol 4 to 3 very nearly.
N. B. It would be needlefs to inquire whether Six Games might not bring the Play to an equal Probability of Ending or not Ending; it having been obferved before, that in the Cafe of an equality of Stakes to be play'd for, it is impoffible that the Play fhould End in an Even number of Games, if the number of Stakes be Odd; or that it hould End in an Odd number of Games, if the number of Stakes be Even.

In like manner, if the Play were to continue till Four Stakes be won or loft on either fide: Then taking the following Series, viz.
$\overline{\frac{a^{4}+b^{4}}{a+b^{4}}} \times \overline{I+\frac{4 a b}{a+b^{2}}+\frac{14 a a b b}{a+b!}+\frac{48 a^{3} b^{3}}{a+b^{6}}}$ \&c. which, upon
the fuppofition of an equality of Skill between the GameIters, may be reduced to this, viz.

of its Terms be tried, as will make the Product of their fum multiplied by $\frac{2}{16}$, equal to the Fraction $\frac{1}{2}$, or as near it as polfible. Now Five of thofe Terms being tried, and their fum being multiplied by $\frac{2}{16}$, or $-\frac{1}{8}-$, the Product will Be $\frac{1092}{2048,}$, which not differing much from $\frac{1}{2}$, it may be
concluded that Twelve will be very near that number of Games, which will make the Probabilities of the Plays Ending or not Ending to be equal; the Odds for its Ending being only 1092 to 956 , or 8 to 7 very nearly. But the Odds againft its Ending in Ten Games, will be found to be 39 to 29 , or 4 to 3 nearly.
By the fame method of Procefs, it will be found that Five Stakes will probably be won or loft in about Seventeen Games: It being but the Odds of 1 I to ro nearly, that the Play will not be Ended in that number of Games, and Io to 9 nearly, that it will be Ended in Nineteen.

It will alfo be found that Six Stakes will probably be won or loft in about Twenty Six Games, there being but the Odds of 168 to 167 nearly, that the Play will not be Ended in that number of Games, and 25 to 22 nearly, that it will be Ended in Twenty Eight.

If the fame Method of Trial be applied to any other number of Stakes, whether equal or unequal, and to any proportion of Skill, the number of Games required will always be found.

Yet if the number of Stakes were great, thofe Trials would become tedious, notwithftanding the Help that might be derived from our Second Lemma, whereby any number of Terms of thofe Series which are employed in the Solution of this Problem, may be added together. For which reafon it will be convenient to make fome Trials of another nature, and to fee whether, from the refolution of fome of the fimpleft Cafes of this Problem, any Analogy can be obferved between the number of Stakes given, and the number of Games which determine the equal Probability of the Plays Ending or not Ending.

Now Mr de Monmort having with great Sagacity difcovered that Analogy, in the Cafe of an equal and Odd number of Stakes, on fuppofition of an equality of Skill between the Gamefters, I thought the Reader would be well pleafed to be acquainted with the Rule which he has given for that purpofe, and which is as follows.

Let n be any Odd number of Stakes to be won or loft on either fide; let alfo $\frac{n+1}{2}$ be made equal to p : Then the Quantity $3 p p-3 p+1$ will denote a number of Games, wherein
wherein it will be more than an equal Chance that the Play will be Ended; thus, if the number of Stakes be Nineteen, then p will be 10 , and the Quantity $3 p p-3 p+\mathrm{r}$ will be 27 I , which fhews that 'tis more than an equal Chance that the Play will be Ended in 271 Games.

The Author of this Rule owns that he has not been able to find another like it, for an Even number of Stakes; but I am of opinion, that tho the fame Rule, being applied to that Cafe, may not find the juft number of Games wherein there will be more than an equal Probability of the Plays Ending, yet it will always find a number of Games, wherein it is very near an equal Wager that the Play will be Ended. Wherefore to make the Rule as extenfive as it may be, I would Chufe to exprefs it by the number of Stakes whether Even or Odd, and make it $\frac{3}{4} n n$, which differs from his own, but by the fmall Fraction $\frac{1}{4}$.

If any one has a mind to carry this fecculation fill farther, and to try whether fome general Rule may not be difcovered for determining, by a very near approximation, the number of Games requifite to make it a Wager of any given proportion of Odds, that the Play will be Ended in that number of Games, whether the Skill of the Gamefters be equal or unequal ; let him Solve feveral Cafes of this Problem in the following manner, which I take to be as expeditious as the nature of the Problem can admit of.

Upon a Diameter equal to Unity, if fo be the Skill of the Gamefters be equal; or to the Quantiiy $\frac{4 a b}{a+b^{2}}$, if their Skill be in the proportion of a to b, let a Semicircle be defcribed, which divide into fo many equal parts as there are Stakes to be won or loft on either fide, fuppofing thofe Stakes to be equal. From the Firft, Third, Fifth, Seventh \&c. Points of Divifion, beginning from one extremity of the Diameter, let Perpendiculars fall upon that Diameter, which by their concourfe with it, fhall determine the verfed Sines of fo many Arcs, to be taken from the other extremity thereof. Let the greateft of thofe verfed Sines be called m, the next lefs p, the next to it q, the next $s \& c$. Make alfo

The Doctrine of Chances.

$$
\begin{aligned}
& \frac{\overline{1-p} \times \overline{1-q} \times \overline{1-s}}{\overline{m-p} \times \overline{m-q} \times \overline{m-s}} \& c_{0} \equiv A \\
& \frac{\overline{1-q} \times \overline{1-s} \times \overline{1-m}}{\overline{p-q} \times \overline{p-s} \times \overline{p-m}} \& c_{0}=B \\
& \frac{\overline{1-s} \times \overline{1-m} \times \overline{1-p}}{q-s \times \overline{q-m} \times \overline{q-p}} \& c=c \\
& \frac{\overline{1-m} \times \overline{1-p} \times \overline{1-q}}{s-m} \times \overline{s-p} \times s=q \\
& \text { \&c. }
\end{aligned}
$$

then will the Probability of the Play's not Ending in a number of Games denominated by x, be expreft by the Quantities

$$
m^{\frac{1}{2} x} A+p^{\frac{1}{2} x} B+q^{\frac{1}{2} x} C+s^{\frac{1}{2} x} D \text { \&c. if the }
$$ number of Stakes be Even, or by the Quantities

$$
m^{\frac{x-1}{2}} A+p^{\frac{x-1}{2}} B+q^{\frac{x-1}{2}} C+s^{\frac{x-1}{2}} D \text { \& } C . \text { if the }
$$ number of Stakes be Odd.

EXAMPLE $I_{\text {: }}$.

LET it be required to find what Odds there is, that in 40 Games there will be Four Stakes won or loft on either. fide.

Having divided the Semicircle into Four equal parts, according to the abovementioned directions, the Quantity m. will be the Verfed Sine of 135 Degrees, and the Quantity p will be the Verfed Sine of 45 Degrees, which by the help. of a Table of Sines will readily be found to be 0.85355 and 0.14645 refpectively. Moreover the Quantity A being equal to $\frac{1-p}{m-p}$, and the Quantity B to $\frac{1-q}{p-q}$, will be found to be 1.207 I and - 0.207 I . From whence it follows, that the Probability of the Plays not Ending in Forty Games may be expres'd by the two following Products $0.85355^{30} \times 1.207 \mathrm{I}$ $-0.14645^{20} \times 0.2071$, of which the Second may be en-tirely seglected, as being inconfiderably little in refpect of the

The Doctrine of Chances.

che firft. Now the Logarithm of the firf Product being 2.7063225 , to which anfwers the number 0.05085 , let that number be fubtracted from Unity; and the remainder being 0.94915 , I conclude that the Odds of the Plays Ending in Forty Games are as 94915 to 508 , or very near as 19 to 1.

EXAMPLE II.

LET it be required to find how many Games mult be play'd, to make it a Wager of $\mathbf{x 0 0}$ to 1 ; that Four Stakes will be won or loft on either fide, in that number of Games.

Let x be the number of Games required: Thien by the foregoing Example it will appear that we may have the Equation $0.85355^{\frac{1}{2}=1} \times 1.207 \mathrm{I}=\frac{1}{100}$, in which the value of \boldsymbol{x} may eafily be obtained by Logarithms; it being found by one lingle Divifion to be about 60 .

If the Stakes be unequal, the Solution will confift of two Series, in both which the Quantities $m, p, q \& c$. will be of the fame value, and will be determined likewife by a Table of Sines. In this Cafe the Semicircumference ought to be divided into as many equal parts as there are Units in the number of all the Stakes: Thus, if the Stakes were Four and Five, the Semicircumference ought to be divided into Nine equal parts: But then it is to be obferved that the verfed Sines of thofe Arcs, which, in the Cafe of Nine Stakes for each Gamefter, are alternately omitted, are thofe which, in the Cafe of Four and Five, are to reprefent the Quantities $m, p, q \& c$. It is to be obferved alfo that the Quantities $A, B, C, D \& c$. by which the Terms of the firft Series are to be refpectively Multiplied, will be found to differ from the Quantities $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} \& c c$. by which the Terms. of the fecond Series are alfo to be refpectively Multiplied; and that both thofe Series of Quantities may be determined by proper Theorems contrived for that purpofe.

Before I make an End of this Subject, I fhall propofe an Inquiry to be made by thofe who have fufficient leifure to Try the foregoing Methods; which is, wherher the number of Games, wherein it will be an equal Wager that the Play

152 The Doctrine of Chances.

will be Ended, upon the fuppofition of an equal number n of Stakes to be won or loft on either fide; as allo of the proportion of Skill expreft by a and b, may not be determined very nearly by the following Expreflion, viz.
$\frac{\overline{n a^{n}-n b^{n}}}{a^{n}+b^{n}} \times \frac{\overline{a a+a b+b b}}{a a-b b}$.

PROBLEM XLVI.

IF A and B, whofe proportion of Skill is Juppofed equal, play together till Four Stakes be won or loft on either fide; and that C and D, whofe proportion of Skill is alfo Juppofed equal, play likewife together till Five Stakes be won or loft on either fide : What is the Probability that the Play between A and B will be Ended in fewer Games than the Play between C and D ?

SOLUTION.

THE Probability of the Firft Play's being Ended in any number of Games before the Second, is compounded of the Probability of the Firft Play's being Ended in that number of Games, and of the Second's not being Ended with the Game immediately preceding: From whence it follows, that the Probability of the Firf Plays Ending in an Indeterminate number of Games before the Second, is the fum of all the Probabilities ad Infinitum of the Firft Play's Ending, Multiplied by the refpective Probabilities of the Second's not being Ended with the Game immediately preceding.

But it appears from our XXXIV $t h$ Problem, that the Probability of the firft Play's Ending in an Indeterminate number of Games, may be expreft by the following Series, viz.
IV
$\frac{1}{2^{3}}+\frac{\text { VI }}{2^{5}}+\frac{14}{2^{4}}+\frac{4^{8}}{2^{9}}+\frac{164}{2^{12}}+\frac{560}{2^{83}}$ X 8 C.
It appears alfo, from our XXXIIId Problem, that the Probability of the Second Play's not Ending may be expreft by the following Series, viz.

Now the Correfponding Terms of thofe two Series being Multiplied together, the Products, fuppofing r equal to the Fraction $\frac{1}{15}$, will compofe the following Series, viz.
$2 r+30 r r+385 r^{3}+4800 r^{4}+59400 r^{5} \& c$. in which Series the Index of the Relation of each Numerical Quantity to the preceding ones, may be found by the help of our Third Lemma: For the Index of the Relation in the Numerator of the Firft Series being 4-2, and the Index of the Relation in the Numerator of the Second being 5 - 5, which Relations are deduced from the XXXIV t b Problem, it follows, that if in the Theorem of our Third Lemma, the Quantities $4,-2,5,-5$, be refpectively fubflituted in the room of the Quantities m, n, p, q, the Index of the Relation in the Third Series will be found to be 20-110+200-100; wherefore all the Terms of this Series may be fummed up by the Third Theorem of our Second Lemma, fubftituting the Quantities $20,110,200,100$ in the room of the Quantities m, n, p, q, therein employed; fubftituting alfo the Terms $2 r, 30 r r, 385 r^{3}, 4800 r^{4}$ in the room of the Quantities $A, B, C, D:$ For after thofe Subftitutions, the fum of the Third Series will be found to be $\frac{2 r-10 r+5 r^{3}}{1-20 r+110 r r-200 r^{3}+100 r^{4}}$, which is reduced to $\frac{476}{723}$ by changing the Quantity r into its value $\frac{1}{16} .{ }^{723}$ Now fubtracting the Fraction $\frac{476}{723}$ from Unity, the remainder will be the Fraction $\frac{247}{723}$, the Numerators of which two Fractions exprefs the Odds of the Firft Plays Ending before the Second, which confequently will be as 476 to 247 , or 27 to 14 nearly.

If in the foregoing Problem, the Skill of the Gamefters had been in any proportion of inequality, the Problem might have been Solved with the fame eafe.

When in a Problem of this nature the number of Stakes to be loft by either A or B, does not exceed the number Three, the Problem may be always readily Solved without the ufe of the Theorem inferted in our Third Lemma; tho' the number of Stakes between C or D be never fo great. For which reafon, if any one has the curiofity to try, if from the Solution of feveral Cafes of this Problem, fome Rule may not be difcovered for Solving the fame generally ; it will be

$$
R r
$$

154 The Doctrine of Chances.

convenient he fhould compare together the different Solutions, which may refult from the fuppofition that the Stakes to be loft by either A or B are Two or Three; and thent the Cafe of the foregoing Problem may alfo be compared with all the reft : Yet as thefe Trials might not perhaps be fufficient to difcover any Analogy between thofe Solutions, I have thought fit to add a new Theorem in this place, whereby Four Cafes more of this Problem may be Solved, viz. When the number of Stakes to be loft by A or B, and by C or D, are 4 and 6,4 and 7,5 and 6,5 and 7 : The Theorem being as follows.

If there be a Series of Terms whofe Relation is expreffed by the Index $l+m+n$, and there be likewife another Series of Terms whofe Relation is expreffed by the Index $p+q$; and the Correfponding Terms of thofe two Series be Multiplied together: Then the Index of the Relation in the Third Series, refulting from the Multiplication of their correfponding Terms, will be expreffed by the Quantities.

$$
\begin{aligned}
& \quad+2 m q+l m p q+2 l n q q \\
& l p+l l q+n p^{3}-m m q q-m n p q q+n n q^{3}: \\
& \quad+m p p+3 n p q+l n p p q
\end{aligned}
$$

It is to be obferved, that altho' thefe forts of Theorems might be applicable to the finding of the Relation of thofe Terms, which are the Products of the correfponding Terms of two different Series, both of which confiit of Terms whofe laft Differences are equal to nothing; yet there will be no neceffity to ufe them for that purpofe, that Relation being to be found much fhorter, as follows.

Let e and f denote the rank of thofe Differences which are refpectively equal to nothing in each Series; then the Quantity $e+f-\mathrm{I}$ will denote the rank of that Difference which is equal to nothing, in the Series refulting from the Multiplication of the correfponding Terms of the other two ; and confequently the Relation of the Terms of this New Series will cafily be obtained by our firft Lemma.

AFter baving given the Solution of Several forts of Problems, each of them containing fome degree of Diffculty not to be met with in any of the reft; and baving thereby laid a fufficient foundation for- 0 olving the moft intricate cafes that may occurr in this Subject of Chances, it might almoft feem fuperfluous to add any thing to this Tract: Yet confidering that a Variety of Examples is the propere/t means of making Rules eafy and familiar; and defigning to be as ufeful as pofible to thofe of my Readers, who perhaps may not be Jo well werfed in Algebraical Calculations, I bave chofe to fill up the remaining Pages of this Book, with fome ealy Problems relating to the Games which are moft in ufe, fuch as Hazard, Whisk, Pieuet, V_{c}, and to enlarge a little more upon the Docirine of: Combinations.

PROBLEM XLVII.

T0 find at HAZARD the Advantage of the Setter up. on all Suppofitions of Main and Chance.
SOLUTION.

1ET the whole Money Play'd for be confidered as a common Stake, upon which both the Setter and Cafter have their feveral Expectations; then let thofe Expectations be determined in the following manner.

Firfl, Let it be fuppofed that the Main is vii; then if the Chance of the Cafter be vi or viii, it is plain that the Setter having Six Chances to win and Five to lofe, his Expectation will be $\frac{6}{11}$ of the Stake: But there being Ten Chances

156 The Doctrine of Chances.

our of Thirty-fix for the Chance to be vi or viii, it follows, that the Expectation of the Setter, refulting from the Probability of the Chance being vi or viii, will be $\frac{10}{36}$ multiplyed by $\frac{6}{11}$, or $\frac{60}{11}$ to be divided by 36 .

Secondly, If the Main being vii, the Chance fhould Happen to be v or $i x$; then the Setter having Six Chances to win and Four to lofe, his Expectation will be $\frac{6}{10}$ or $\frac{3}{5}$ of the Stake: But there being Eight Chances in Thirty-fix for the Chance to be v or $i x$, it follows, that the Expectation of the Setter, refulting from the Probability of that Chance, will be $\frac{8}{3^{6}}$ multiplied by $\frac{3}{5}$, or $\frac{24}{5}$ to be divided by 36 .

Thirdly, If the Main being vii, the Chance fhould Happen to be $i v$ or x; then the Setter having Six Chances to win and Three to lofe, his Expectation will be $\frac{6}{9}$ or $\frac{2}{3}$ of the Stake: But there being Six Chances out of Thirty-fix for the Chance to be iv or x, it follows, that the Expectation of the Setter, refulting from the Probability of that Chance, will be $\frac{6}{36}$ multiplied by $\frac{2}{3}$, or 4 divided by 36 .

Fourthly, If the Main being vii, the Cafter fhould Happen to throw $i i$, $i i$, or $x i i$; then the Expectation of the Setter will be the whole Stake, for which there being Four Chances in Thirty-fix, it follows, that the Expectation of the Setter, refulting from the Probability of thofe Cafes, will be $\frac{4}{36}$ of the Stake, or 4 divided by 36 .

Laftly, If the Main being vii, the Cafter fhould Happen to throw vii or $x i$, the Setter lofes his Expectation.

From the Solution of the foregoing particular Cafes it follows, that the Main being vii, the Expectation of the Setter will be expreft by the following Quantities, viz. $\frac{60}{\frac{11}{1}+\frac{24}{5}+\frac{4}{1}+\frac{4}{1}}$ 36
which may be reduced to $\frac{25 \mathrm{r}}{495}$. Now this Fraction being fubtracted from Unity, to which the whole Stake is fuppofed equal, there will remain the Expectation of the Cafter viz, $\frac{244}{495}$.

But the Probabilities of winning being always proportional to the Expectations, on fuppofition of the Stake being fixt, it follows, that the Probabilities of winning for the Setter
and Cafter are refpectively Proportional to the two numbers 251 and 244 , which properly denote the Odds of winning.
Now, if we-fuppofe each Stake to be 1 , or the whele Stake to be 2, the Gain of the Setter will be expref by the Fraction $\frac{7}{495}$, it being the Difference of the Odds divided bytheir Sum, which fuppofing each Stake to be a Guinea, will be about $3 d: 2 \frac{1}{2} f$.
By the fame Method of Procefs, it will be found that the Main being vi or viii, the Gain of the Setter will be $\frac{167}{7128}$, which is about $6 d: \frac{1}{6} f$ in a Guinea.

It will alfo be found that the Main being v or $i x$, the Gain of the Setter will be $\frac{43}{2835}$, which is about $4 d .: 2 \frac{1}{9} f$ in a Guinea.

Coroll. I. If each particular Gain made by the Setter, in the Cafe of any Main, be refpectively Multiplied by the number of Chances there are for that Main to come up, and the Sum of the Products be divided by the number of all thofe Chances, the Quotient will exprets the Gain of the Setter before a Main is thrown: from whence it follows, that the Gain of the Setter, if he be refolved to fet upon the firft Main, may be eftimated to be $\frac{344}{2835}+\frac{1670}{7128}+\frac{42}{495}$ to be divided by 24 ; which being reduced will be $\frac{2}{109}$ very nearly, or about $4 d .: 2 \frac{1}{10} f$.

Coroll. 2. The Probability of no Main is to the Probability of a Main, as $109+2$ to $109-2$, or as 111 to 10%.

Coroll. 3. The Lo's of the Cafter's hand, if each throw be for a Guinea, and he confine himfelf to hold it as long as he wins, will be $\frac{4}{115}$ or about $9 d$. in all, the Demonftration of which may be deduced from our XXIVth Problem.

PROBLEM XLVIII.

IF Four Gamefters play at W HISK; What are the Odds thac any two of the Partners that are pitch'd upon, have not the four Honours?

SOLUTION.

FIrft, fuppofe thofe two Partners to have the Deal, and the laft Card which is turn'd up to be an Honour.
From the fuppofition of thefe two Cafes, we are only to find what Probability the Dealers have of taking Three fet Cards in Twenty five, out of a Stock containing Fifty one. To refolve this the fhorteft way, recourfe muft be had to the Theorem given in the Corollary of our XXth Problem, in which making the Quantities n, c, d, p, a, refpectively equal to the numbers $5,25,26,3,3$, the Probability required will be found to be $\frac{25 \times 24 \times 23}{54 \times 50 \times 49}$ or $\frac{92}{833}$.

Secondly, If the Card which is turn'd up be not an Honour, then we are to find what Probability the Dealers have, of taking Four given Cards in Twenty five out of a Stock containing Fifty one, which by the atorefaid Theorem will be found to be $\frac{25 \times 24 \times 23 \times 22}{51 \times 50 \times 49 \times 49^{2}}$, or $\frac{253^{\circ}}{4998^{\circ}}$.

But the Probability of taking the Four Honours being tobe eftimated before the laft Card is turn'd up; and there being Sixteen Chances in Fifty two, or Four in Thirteen for an Honour to turn up, and Nine in Thirteen againft it; it follows, that the Fraction expreffing the Probability of the Firft Cafe ought to be Multiplied by 4 ; that the Fraction expreffing the Probability of the Second ought to be Multiplied by 9 ; and that the fum of thofe Products ought to be divided by 13 ; which being done, the Quotient $\frac{115}{1666}$, or $\frac{2}{29}$ nearly, will exprefs the Probability required.

Corollary, By the help of the abovecited Theorem, the following Conclufions may eafily be verified.

It is 27 to 2 nearly that the two Dealers have not the Four Honours.

It is 23 , to nearly that the two Eldeft have not the Hour Honours.

It is 8 to I nearly that neither one Side nor the other have the Four Honours...

It is 13 to 7 nearly that the two Dealers do not reckon Honours.

It is 20 to 7 nearly that the two Eldeff do not reckon Honours.

It is 25 to 16 nearly that either one Side or the other do reckon Honours, or that the Hönours are not equally divided.

PROBLEM XLIX. Of RAFFLING.

IF any number of Gamefters $A, B, C, D \& \& c$. Play at Raffles: What is the Probability that the firft of them having got his Chance wins the Money of the Play?
SOLUTION.

I
N order to Solve this Problem, it is neceffary to have a Table ready compos'd, of all the Chances which there are in chree Rafflés, which Table is the following. Wherein

The firft Column conrains the number of Points which are fuppofed to have been thrown by A in three Raffles.

Thie fecond Column contains the number of Clances which A has to win if his Points be above $x x x i$, or the number of Chances he has to lofe if they be either $x x x i$ or below it.

The third Column contains the number of Chances which A has to lofe, if his Points be above $x \% x i$, or to win if shey be either $x x x i$ or below it.
The Fourth Column contains the number of Chances which he has for an equality of Chance.

The Conftruction of this Table eafly flows from the confideration of the number of Chances which there are in a fingle Raffe; whereof suiii or iii, have I Chance $;$ wvii or iv, 3 Chances; svi or $v, 6$ Chances; $x v$ or $v i, 4$ Chances; xiv or vii, 9 . Chances; xiiii or viii, 9 Chances; $x i i$ or $i x, 7$ Chances; $x i$ or $x, 9$ Chances; which number of Chances being duly Combined will afford all the Chances of Three Raffles.

A TABLE of all the CHANCES which are in three Raffles.

Points		Chances to win or lofe.	Chances to win or lofe.	Equality of Chance.
liv?	ix	884735	0	I
liii	x	884726	I	9
.lii	$x i$	884681	10	45
bi	-xii	884534	-55	147
l	xiii	884165	202	369
slaxix	$x i v$	883400	57 E	765
xlviii	$x v$	881954	1336	1446
xlvii	$x v i$	879470	2782	2484
x lvi	xvii	875505	5266	3969
xlv	xviii	869632	9235	5869
xiliv	$x i x$	861199	15104	. 8433
stiiis or	$x \times$	849706	23537	II493
$x l i i$	$x \times i$	834679	35030	15027
$x l i$	xxii	815392	50057	19287
$x l$	x*iii	791506	69344	23886
sxsis	xxiv	762838	93230	28668
sixxuiii	$x \times 2$	72897.1	121898	33867
xxxvii	$x \times v i$	690100	155765	38871
xxxui	xsvii	646929	194636	43171
$x \times 50$	xxviii	. 599472	237807	47457
$\begin{aligned} & x \times x i i i \\ & \times x \times i i \end{aligned}$	xsix	548865	285264	50607
	$x \times x$	496314	335871	52551
	$\times \times \times i$	442368	388422	53946
$\begin{array}{r} \text { Sum } 44^{2} 368 \\ 44^{2} 368 \end{array}$				
				884736

This

This being once fuppofed, let it be required to find the Probability which A has of winning, when the number of his Points being $x l$, there is but one Gamefter B befides himfelf.

Take the number 791506, which in the fecond Column ftands over againft the number $x l$, to be found in the Firft. Take alfo one half of the number which in the Fourth Column ftands over againft the faid Number $x l$, which half is 11943. Let thefe two Numbers viz. 791506 and 11943 be added together, and their Sum 803449 being divided by 884736 , which is the Number of all the Chances, the Quotient, viz. $\frac{803449}{884736}$ will exprefs the Probability required.

Now this Fraction being Subtracted from Unity, and the remainder being $\frac{81287}{884736}$, it follows that the Numerators of thefe two Fractions, viz. 803449 and 81287 do exprefs the Odds of winning, which may be reduc'd to 89 and 9 nearly.
But if the Number of Points which A has thrown for his Chance being $x l$ as above, there be two other Gamefters B and \boldsymbol{C} befides himfelf, the Probability which he has of winning will be found thus.

Take the Square of the Number fet down over againft $x l$ in the fecond Column, which Square is 6264817480360 Take alfo the Product of that Number by the Number fet down over againft $x l$ in the Fourth Column, which Product is 18905912316. Laftly, take the third part of the Square of the Number fet down in the Third Column, which third part will be 19018033^{2}, and let all thofe numbers be added together: Then their Sum being divided by the Square of the whole Number of Chances, viz. by 782757789696 , the Quotient $\frac{645577840684}{782757789696}$ will exprefs the Probability required; from whence it may be concluded that the Odds of winning are nearly as 33 to 7 .
N. B. If fome of the laft figures in the Numbers of the foregoing Table be neglected, the Operation will be flhortned, and a fufficient Approximation obtain'd by help of the remaining Figures.

From what we have faid it follows, that A having $x l$ for the number of his Points, has lefs advantage when he Plays
againft One than when he plays againft Two: For fuppofing each Man's Stake be a Guinea, he has in the firft Cafe 8_{9} Chances for winning $\mathbf{1}$, and 9 Chances for lofing I:

From whence it follows that his Gain is $\frac{89-9}{98}$ or $\frac{80}{98}$ which is about 17 f .6 d.

But in the fecond Care, fuppofing alfo each Man's Stake to be a Guinea, he has 33 Chances for winning 2, and 7 Chances for lofing i:
Whence it appears, that his Gain in this Cafe is $\frac{2 \times 23-7}{40}$ or $\frac{59}{40}$ which is about $\mathbf{1}$. - $12 \mathrm{~J} .-8 \mathrm{~d}$. But Note, that it is not to be concluded from this fingle Inflance, that the Gain of A will always increare with the number of Gamefters.

If the number of Gamefters be never fo many, let p be their number, let a be the number of Chances which A has for winning when he has thrown his Chance, let m be the number of Chances which there are for an Equality of Chance between A and any of the other Gamefters; Laftly, let the whole number of Chances be denoted by s : Then the Probability which A has of winning will be expreffed by the following Series.
$\frac{a^{p-1}+\frac{p-1}{2} m a^{p-2}+\frac{p-1}{2} \times \frac{p-2}{3} m m a^{p-3}+\frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4} m^{3} a^{p-4} s \varepsilon c}{S^{p-1}}$
which Series is compofed of the Terms of the Binomial $\overline{a+m n^{p-1}}$ reduced into a Series, all its Terms being divided by $\mathbf{I}, 2,3,4,5$ ©̛c. refpectively.

The foregoing Theorem may be uffeful, not only for folving any Cafe of the prefent Problem, but alfo an infinite Variety of other Cafes, in thofe Games wherein there is no Advantage in the order of Play: And the Application of it to Numbers will be found eafy, to thofe who underfand how to ufe Logarithms.

PROBLEM L.

T0 find what Probability there is, that ary Number of Cards of each Suit may be contained in a given number of them taken out of a given Stock.

SOLUTION.

FIrft, Find the whole number of Chances there are for taking the given number of Cards out of the given Stock.

Secondly, Find all the particular Chances there are for taking each given number of Cards of each Suit out of the whole number of Cards belonging to that Suit.

Thirdly, Multiply ail thofe particular Chances together; then divide the Product by the whole number of Chances; and the Quotient will exprefs the Probability required.

Thus, If it be propofed to find the Probability of taking Four Hearts, Three Diamonds, Two Spades and One Club, in Ten Cards taken out of a Stock containing Thirty-two.

Find the whole number of Chances for taking ten Cards out of a Stock containing two and Thirty; which is properly Combining two and Thirty Cards Ten and Ten. To do this, write down all the Numbers from 32 inclufively to 22 exclufively, fo as to have as many Terms as there are Cards to be Combined; then write under each of them refpectively all the numbers from One to Ten inclufively; thus,

$$
\frac{32 \times 31 \times 30 \times 29 \times 28 \times 27 \times 26 \times 25 \times 24 \times 23}{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10}
$$

Let all the numbers of the upper Row be Multiplied to gether; let alfo all the numbers of the lower Row be Multiplied together, then the firl Product being divided by the fecond, the Quotient will exprefs the whole number of Chances required, which will be $645 \mathbf{1 2 2 4 0}$.

By the like Operation the number of Chances for taking Four Hearts out of Eight, will be found to be $\frac{8 \times 7 \times 6 \times 5}{1 \times 3 \times 3 \times 5}=70^{\circ}$

The number of Chances for taking Three Diamonds out of Eight will alfo be found to be $\frac{8 \times 7 \times 6}{1 \times 2 \times 3}=56$.

The number of Chances for taking Two Spades out of Eight will in the fame manner be found to be $\frac{8 \times 7}{1 \times 2}=28$.

Laflly, The number of Chances for taking One Club out of Eight will be found to be $\frac{8}{1}=8$.

Wherefore, Multiplying all thefe particular Chances together viz. $70,56,28,8$, the Product will be 878080; which being Divided by the whole number of Chances, the Quotient $\frac{878080}{64512244^{\circ}}$, or $\frac{2}{101}$ nearly, will exprefs the Probability required: From whence it follows, that the Odds againft taking Four Hearts, Three Diamonds, Two Spades and One Club in Ten Cards, are very near 99 to 2.

It is to be obferved that the Operations whereby the Number of Chances is determined, may always be contracted, except in the fingle cafe of taking one Card only of a given Suit. Thus, If it were propofed to fhorten the Fraction $\frac{32 \times 35 \times 30 \times 29 \times 28 \times 27 \times 26 \times 25 \times 24 \times 23}{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10}$, which determines the number of all the Chances belonging to the foregoing Problem : Let it be confidered whether the Product of any two or more Terms of the Denominator, being Multiplied together, be equal to any one of the Terms of the Numerator; if fo, all thofe Terms may be expunged out of both Denominator and Numerator. Thus the Product of the three Numbers 2, 3, 4, which are in the Denominator, being equal to the Number 24, which is in the she Numerator, it follows, that the three Numbers 2, 3, 4 may be expunged out of the Denominator, and at the fame time the Number 24 out of the Numerator. For the fame reafon the Numbers 5 and 6 may be expunged out of the Denominator, and the Number 30 out of the Numerator, which will reduce the Fraction to be

$$
\frac{32 \times 31 \times 30 \times 29 \times 28 \times 27 \times 26 \times 25 \times 24 \times 23}{1 \times 2 \times 3 \times 4 \times 8 \times 6 \times 7 \times 8 \times 9 \times 10}
$$

It ought likewife to be confidered whether there be any of the remaining Numbers in the Denominator that Divide exactly any of the remaining Numbers of the Numerator.

If fo, thofe Numbers are to be expunged out of the Denominator and Numerator, but the refpective Quotients of the Terms of the Numerator divided by thofe of the Deno. minator, are to be fubftituted in the room of thofe Terms of the Numerator. Thus the Terms 7, 8, and 9 of the Denominator dividing exactly the Numbers 28,32 and 27 of the Numerator, and the Quotients being 4, 4 and 3 refpectively, all the Numbers $7,8,9,28,32,27$ ought to be expunged, and the Quotients 4,4 , and 3 fubftituted in the room of 28 , 32,27 refpectively, in the following manner;
$\frac{3^{4} \dot{Z} \times 31 \times 3 \varnothing \times 29 \times 28 \times 27 \times 26 \times 25 \times 24 \times 23}{1 \times 2 \times 3 \times 4 \times 8 \times 6 \times 7 \times 8 \times 10}$.

It ought alfo to be confidered, whether the remaining Terms of the Denominator have any common Divifor with any of the remaining Terms of the Numerator ; if fo, dividing thofe Terms by their common Divifors, the refpective Quotients ought to be fubftituted in the room of the Terms of the Numerator. Thus, the only remaining Term in the Denominator, befides Unity, being IO, which has a common Divifor with one of the remaining Terms of the Numerator, viz. 25, and that common Divifor being 5, let 10 and 25 be refpectively divided by the common Divifor 5, and let the refpective Quotients 2 and 5 be fubftituted in the room of them, and the Fraction will be reduced to the following, viz.

$$
\frac{3^{4} \times 31 \times 36 \times 29 \times 28^{4} \times 27 \times 26 \times 28 \times 24 \times 23}{1} \frac{8}{3} \frac{8}{3} .6
$$

2
Laftly, Let the remaining Number 2 in the Denominator divide any of the Numbers of the Numerator which are divifible by it, fuch as 26, and let thofe two Numbers be expunged; but let the Quotient of 26 by 2 , viz, 13 , be fubftituted in the room of 26 : And then the Fraction, neglecting unity, which is the only Term remaining, may be reduced to $4 \times 31 \times 29 \times 4 \times 3 \times 13 \times 5 \times 23$, the Product of which Numbers is 64512240 , as we have found it before.

The foregoing Solution being well underftood, it will be eafy to enlarge the Problem, and to find the Probability of
taking at leaft Four Hearts, Three Diamonds, Two Spades, and One Club, in Eleven Cards; the finding of which de. pends upon the four following Cafes, viz. taking

5 Hearts, 3 Diamonds, 2 Spades, 1 Club:
4 Hearts, 4 Diamonds, 2 Spades, 1 Club,
4 Hearts, 3 Diamonds, 3 Spades, I Club,
4 Hearts, 3 Diamonds, 2 Spades, 2 Clubs.
Now the number of Chances for the Firt Cafe will be found to be 702464 , for the Second $\mathbf{1 0 9 7 6 0 0}$, for the Third 1756160, for the Fourth 3073280 ; which Chances being added together, and their fum divided by the whole number of Chances for taking Eleven Cards out of Thirty. two, the Quotient will be $\frac{6628504}{120024480^{\circ}}$, which may be reduced to $\frac{5}{97}$ nearly.

From whence it may be concluded, that the Odds againft the taking of Four Hearts, Three Diamonds, Two Spades, and One Club, in Eleven Cards, that is, fo many at leaft of every fort, is about 92 to 5 .

And by the fame Method it would be eafy to folve any other Cafe of the like nature, let the number of Cards be what it will.

PROBLEM LI.

T0 find at PIQUET the Probability which the Dealer has for taking One Ace or more in. Three Cards, baving none in bis Hands.

S OLUTION.

FRom the number of all the Cards, which are Thirty two, fubtracting Twelve which are in the Dealers Han's, there remains T wenty, among which are the FourAces. From whence it follows, that the number of all the Chances for taking any three Cards in the Bottom, are she number of Combinations which Twenty Cards may afford, being taken Three and Three; which, by the Rule given in the preceding Problem, will be found to be. $\frac{20 \times 19 \times 18}{3 \times 2 \times 3}$ or 1140 :

The number of all the Chances being thus obtained, find the number of Chances for taking one Ace precifely, with two other Cards; find next the number of Chances for taking Two Aces precifely with any other Card; Laftly, find the number of Chances for taking Three Aces: Then thefe Chances being added together, and their fum divided by the whole number of Chances, the Quotient will exprels the Probability required.

But by the Directions given in the preceding Problem, it appears, that the number of Chances for taking One Ace precifely are $\frac{4}{1}$ or 4% and that the number of Chances for taking any two other Cards are $\frac{16 \times 15}{1 \times 2}$ or 120: From whence it follows, that the number of Chances for taking One Ace precifely with any two other Cards, is equal to 4×120 or 480 .

In like manner it appears, that the number of Chances for taking Two Aces precifely is equal to $\frac{4 \times 3}{1 \times 2}$ or 6 , and that the number of Chances for taking any other Card is $\frac{16}{1}$ or 16 ; from whence it follows, that the number of Chances for taking Two Aces precifely with any other Card is 6×16 or 96 .

Laftly, It appears that the Number of Chances for taking Three Aces is equal to $\frac{4 \times 3 \times 2}{1 \times 2 \times 3}$ or 4 .

Wherefore the Probability required will be found to be $\frac{480+96+4}{1140}$ or $\frac{580}{1140}$; which Fraction being fubtracted from Unity, the remainder, viz. $\frac{560}{1140}$ will exprefs the Prom bability of not taking an Ace in Three Cards: From whence it follows, that it is 580 to 560 , or 29 to 28 , that the Dealer takes One Ace or more in three Cards.

The preceding Solution may be very much contracted, by inquiring at firt what the Probability is of not taking an Ace in Three Cards, which may be done thus:

The number of Cards in which the Four Aces are contained being Twenty, and confequently the number of Cards out of which the Four Aces are excluded being Sixteen, it follows, that the number of Chances which there are for the taking Three Cards, among which no Ace fhall be found,
is the number of Combinations which Sixteen Cards may afford, being taken Three and Three; which number of Combinations by the preceding Problem will be found to be $\frac{16 \times 15 \times 14}{1 \times 2 \times 3}$ or 560 .
But the number of all the Chances which there are for taking any Three Cards in Twenty, has been found to be 1140; from whence it follows, that the Probability of not taking an Ace in Three Cards is $\frac{560}{114^{\circ}}$; and confequently that the Probability of taking One or more Aces in Three Cards is $\frac{550}{140^{\circ}}$: The fame as before.
In the like manner, if we would find the Probability which the Eldeft has of taking One Ace or more in his Five Cards, he having none in his Hands; the feverall Chances may be calculated as follows.

Firft, The number of Chances for taking One Ace and Four other Cards will be found to be 7280 .

Secondly, The number of Chances for taking Two Aces and Three other Cards will be found to be 3360 .
Thirdly, The number of Chances for taking Three Aces and two other Cards will be found to be 480 .
Fourtbly, The number of Chances for taking Four Aces and any other Card will be found to be 16 .
Lafly, The number of Chances for taking any Five Cards will be found to be 15504 .
Let the fum of all the particular Chances, viz. 7280 $+3360+480+16$ or 11136 , be divided by the fum of all the Chances, viz. by 15504, and the Quotient $\frac{11236}{15504}$ will exprefs the Probability required.

Now the foregoing Fraction being fubtracted from Unity, the remainder, viz. $\frac{4368}{15504}$ will exprefs the Probability of not taking an Ace in Five Cards; wherefore the Odds of taking an Ace in Five Cards are 11136 to 4368 , or 5 to 2 nearly.

But if the Probability of not taking an Ace in Five Cards be at firft inquired into, the Work will be very much Ahortened; for it will be found to be $\frac{16 \times 15 \times 14 \times 13 \times 12}{1 \times 2 \times 3 \times 4 \times 5}$ or 4368 , to be divided by the whole number of Chances, viz. by 15504, which makes it as before, equal to $\frac{4868 \text {, }}{\frac{4554}{1550} \text {, }}$

But fuppofe it were required to find the Probability which the Eldeft has of taking an Ace and a King in Five Cards, he having none in his Hands: Let the following Chances be found,
I For One Ace, One King and Three other Cards.
2 For One Ace, Two Kings and Two other Cards.
For One Ace, Three Kings and any other Card.
For One Ace and Four Kings.
For Two Aces, One King and Two other Cards.
For Two Aces, Two Kings and any other Card.
For Two Aces and Three Kings.
$8 \mid$ For Three Aces, One King and any other Card.
For Three Aces and Two Kings.
10 For Four Aces and One King.
II For taking any Five Cards in Twenty.
Among there Cafes, there being four Pairs that are alike, viz. the Second and Fifth, the Third and Eighth, the Fourth and Tenth, the Seventh and Ninth ; it follows, that there are only Seven Cafes to be Calculated, whereof the Firtt, Sixth and Eleventh, are to be taken fingly; but the Second, Third; Fourth and Seventh, to be doubled. Now the Operation is as follows.
The Firf Cafe has $\frac{4}{1} \times \frac{4}{1} \times \frac{12 \times 11 \times 10}{1 \times 2 \times 3}$ or 3520 Chances.

The Second, $\frac{4}{1} \times \frac{4 \times 3}{1 \times 2} \times \frac{12 \times 11}{1 \times 2}$ or 1584 , the double of which is 3168 Chances.
The Third, $\frac{4}{1} \times \frac{-4 \times 3 \times 2}{1 \times 2 \times 3} \times \frac{12}{1}$ or 192, the double of which is 38_{4} Chances.

The Fourth, $-4 \times \frac{4 \times 3 \times 2 \times 1}{1 \times 2 \times 3 \times 4}$ or 4 , the double of which is 8 Chances.

The Sixth, $\frac{4 \times 3}{1 \times 2} \times \frac{4 \times 3}{1 \times 2} \times \frac{12}{1}$ or 432 Chances.
The Seventh, $\frac{4 \times 3}{1 x_{2}} \times \frac{4 \times 3 \times 2}{1 \times 2 \times 3}$ or 24 , the double of which is 48 Chances.

The Eleventh, $\frac{20 \times 19 \times 18 \times 17 \times 16}{1 \times 2 \times 3 \times 4 \times 5}$ or 15504 , being the number of all the Chances for taking any Five Cards out of Twenty.

From whence it follows, that the Probability which the Eldeft has for taking an Ace and a King in Five Cards, lie having none in his Hands, will be expreft by the Fraction

$$
\frac{3520+3168+384+8+432+48}{15504} \text { or } \frac{7563}{15504}
$$

Let this Fraction be fubtracted from Unity, and the re-mainder being $\frac{7944}{15504}$, the Numerators of thefe two Fractions, viz. 75.60 and 7944 , will exprefs. the proportion of Probability that there is, of taking or not taking an Ace and a King in Five Cards; which two numbers may be reduced nearly to the proportion of 20 to $2 \mathbf{I}$.

By thie fame Method of Proceis, any Cafe relating to W HISK might be Calculated, tho' not fo expeditioufly, as by the Method explained in the Corollary of our XXt \boldsymbol{b} Problem: For which reafon the Reader is defired to have recourfe to the Method therein explained, when any other Cafe of the like nature happens to be propofed.

PROBLEM LII.

$T 0$ find the Probability of taking any number of Suits, in 1 a given number of Cards taken out of a given Stock; witbout fpecifying what number of Cards of each Suit Jhall be taken.

SOLUTION.

Cuppofe the number of Cards to be taken out of the given Stock to be Eight, the number of Suits to be Four, and the number of Cards in the Stock to be Thirty-two.

Let all the Variations that may happen, in taking One Card at leaft of each Suit, be written down in order, as follows;

13	1,	1,	5,
1,	1,	2,	4,
1,	1,	3,	3,
1,	2,	2,	3,
3,	2,	2,	2,

Then fuppofing any particular Suits to be appropriated at pleafure to the Numbers belonging to the Firf Cafe, as if it were required, for Inflance, to take One Heart, Onc Diamond, One Spade and Five Clubs; let the Probability of the fame be inquired into, which, by our Lth Problem, will be found to be $\frac{28672}{10518300}$; but the Problem not requiring the Suits to be confined to any number of Cards of each Sort, it follows, that this Probability ought to be increafed in proportion to the number of Permutations, or Changes of Order, which Four Things may undergo, whereof Three are alike. Now this number of Permutations is Four, and confequently the Probability of the Firft Cafe, that is, of taking Three Cards of three different Suits, and five Cards of a Fourth Suit, in Eight Cards, will be the Fraction $\frac{28672}{10518300}$ multiplied by 4 , or $\frac{114688}{10518300}$.

In the fame manner the Probability of the Second Cafe, fuppofing it were confined to One Hearr, One Diamond, Two Spades, and Four Clubs, would be found to be $\frac{125440}{10518300}$. which being multiplied by $\mathbf{1 2}$, viz. by the number of Permutations which Four Sorts may undergo, whercof Two are alike, and the other Two differing, it will follow, that the Probability of the Second Cafe, taken without any reftriction, will be expreffed by the Fraction $\frac{1505280}{10518300}$.
The Probability of the Third Cafe will likewife be found to be $\frac{1204224}{10518300^{\circ}}$.
The Probability of the Fourth will be found to be $\frac{4214784}{10518300}$
Laftly, The Probability of the Fifth will be found to be $\frac{614656}{10518300}$. Thefe Fractions being added together, their fum, viz. $\frac{7653632}{10518300}$, will exprefs the Probability of taking. the Four Suits in Eight Cards.
Let this laft Fraction be fubtracted from Unity, and the remainder being $\frac{2866668}{10518300}$, it follows that 'tis the Odds of7653632 to 2864668 , or 8 to 3 nearly, that the Four Suits may be taken in Eight Cards, out of a Stock containing Thirty-two.
The only difficulty remaining in this matter, is the finding, readily the number of Permutations which any number:

172 The Doctrine of Chances.

of Things may undergo, when either they be all different, or when fome of them be alike. The Solution of which may be deduced from what we have faid in the Corollary of our XVII $t b$ Problem, and may be explained as follows, in words at length.

Let all the numbers that are from Unity to that number which expreffes how many Things are to be Permuted, be written down in order; Multiply all thofe Numbers together, and the Product of them all will exprefs the number of their Permutations, if they be all different. Thus the number of Permutations which Ten things are capable of, is the Product of all the Numbers $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10$, which is equal to 3628800 .

But if fome of them be alike, as fuppofe Four of One fort, Three of another, Two of a Third, and One of a Fourth, write down as before all the Nnmbers $1 \times 2 \times 3$ $\times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10$; then write under them as many of thofe Numbers as there are Things of the Firft fort that are alike, which in this Cafe being Four, write the Numbers $1 \times 2 \times 3 \times 4$, beginning at Unity, and following in order. Write alfo as many of thofe Numbers as there are Things of the fecond fort that are alike, viz. $1 \times 2 \times 3$, ftill beginning at Unity. In the fame manner write as many more as there are Things of the Third fort that are alike, viz. I $x=2$; and fo on: Which being reprefented by the Fraction

$$
\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10}{1 \times 2 \times 3 \times 4 \times 1 \times 2 \times 3 \times 1 \times 2 \times 1},
$$

let all the numbers of the upper Row he Multiplied together, let alfo all the numbers of the lower Row be Multiplied rogether, and the Firt Product being divided by the Second, the Quotient 12600 will exprefs the number of Permutations required.

By this Method of Permutations, the Probability of throwing any determinate number of Faces of the like fort, with any given number of Dice, may eafily be found. Thus, fuppofe it were required to find the Probability of throwing an Ace, a Two, a Three, a Four, a Five, and a Six with fix Bice. It is plain that there are as many Clances for doing ,it, as there are Changes or Permutations in the

Order or Place of fix different Things, fuppofe of the Six Letters a, b, c, d, e, f, which by the Rule above given would be 720 , viz. the Product of the numbers $\mathrm{r}, 2,3$, 4, 5, 6: For tho' the Dice are not confidered as changing their Places, or as affording any Variation upon the fore of the different Situation they may have in Refpect to one another, being thrown upon a Table; yet they ought to be confidered as changing their Faces, which is equivalent to their changing of Place. Now the number of all the Chances upon Six Dice, being the number 6 Multiplied into it felf, as many times wanting one as there are Dice, viz. $6 \times 6 \times 6 \times 6 \times 6 \times 6$ or, 46656 , it follows, that the Probability required will be expreft by the Fraction $\frac{720}{46656}$, and confequently, that the Odds againft throwing the Faces undertaken, will be $46656-720$ to 720 , or 64 to I nearly.

In the fame manner fuppofe it were required to find the Probability of throwing One Ace, Two Two's and Three Three's with Six Dice. The number of Chances for the doing it being equal to the number of Permutations which there are in the fix Letters abbccc, it follows, by the Rule before delivered, that the number of thofe Chances will be 60 , viz, the Fraction $\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6}{1 \times 1 \times 2 \times 1 \times 2 \times 3}$; and confequently that the Probability required will be $\frac{60}{46656}$, and the Odds againft the doing it $46656-60$ to 60 , or 776 to 1 nearly.

If it were required to find the Probability of throwing Two Aces, Two Two's and Two Three's with 6 Dice, the number of Chances for doing it being $\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6}{1 \times 2 \times 1 \times 2 \times 1 \times 2}$ or 90 , and the number of all the Chances upon Six Dice being 46656 , it follows, that the Probability required will be expreft by the Fraction $\frac{90}{46656^{\circ}}$.

Again, if it were required to find the Probability of throwing Three Aces and Three Sixes, the number of Chances for doing it being $\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6}{1 \times 2 \times 3 \times 1 \times 2 \times 3}$ or 20 , and the number of all the Chances 46656 , the Probability required will be expreft by the Fraction $\frac{20}{46656^{\circ}}$.

PROBLEM LIII.

TO find at HAZARD the Chance of the Cafter, whens Points.
S OL UTION.

THis being eafily reduced to our XLVIIth Problem, is is thought fufficient to exhibit the Solution of its ditferent Cafes in the following Table, which fhews the Odds for or againft the Cafter.

$\left\lvert\, \begin{aligned} & \text { Points } \\ & \text { Thrown }\end{aligned}\right.$ to	$\underset{\text { exactly }}{\text { MAIN }} \quad \text { nearly }$
i	Againft the Cafter 538 to 407 or 37 to 28.
ii	For the Cafter - 989 to 901 or 45 to 4 I .
iii	For the Cafter - 2293 to 1487 or 37 to 24.
iv	For the Cafter-2293 to 1487 or 37 to 24.
	Againft the Cafter 2117 to 1663 or 14 to 11 .
vi.	Againft the Cafter 2467 to 1313 or 62 to 33° MAI N VI.
	Againft the Cafter 2879 to 1873 or 83 to 540°
ii	Againft the Cafter 2483 to 2269 or 58 to 53.
iii	For the Cafter-2621 to 2131 or 16 to 13.
iv	For the Cafter-2621 to 2131 or 16. to 13.
v	Againft the Cafter 2483 to 2269 or 58 to 53.
vi.	Againft the Cafter 2483 to 2269 or 58 to 5.3 .
	$M A I N$ VII.
	Againft the Cafter 629 to 361 or 7 to 4 .
ii	Againft the Cafter 277 to 218 or 14 to 11.
iii	For the Cafter - 251 to 244 or 36 to 350
iv	For the Cafter - 251 to 244 or 36 to 35:
	For the Cafter - 60r to 389 or 20 to 13 d
vi.	For the Cafter = 263 to 232 or 17 to 15 \%

The Doctrine of Chances.

Points Thrown
to

$$
M A I N \text { VIII. }
$$

Againft the Cafter 3275 to 1477 or 51 to 23 .
ii Againt the Calter 2483 to 2269 or 58 to 53 .
iii For the Cafter - 2621 to 2131 or 16 to 13°.
iv For the Cafter - 2621 to 2131 or 16 to 13 .
For the Cafter - 2483 to 2269 or 58 to 53°
vi. For the Cafter - 2665 to 2087 or 83 to 65. MAIN IX.
i Againft the Cafter 2467 to 1313 or 62 to 33 .
ii Againt the Cafter 2117 to 1663 or 14 to 11 .
iii For the Cafter - 2293 to 1487 or 37 to 24.
iv For the Cafter -2293 to 1487 or 37 to 24 .
v For the Cafter - 989 to 901 or 45 to 41 . wi. Againft the Cafter 53^{8} to 407 or 37 to 28.

$F \quad I \quad N \quad I \quad S$

