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ABSTRACT 

In modern society, the number and popularity of autonomous systems are 

increasing, and it seems certain that their importance will grow in the future. As early as 

2017, Amazon was already working with more than 100,000 warehouse robots, and many 

companies have begun shipping with drones or autonomous vehicles around the world. In 

the future, autonomous systems are likely to play a major role not only in the public 

sector but also in the defense sector. In fact, the Republic of Korea Army introduced a 

“drone-bot” force in 2018, for defense applications. 

Nevertheless, the operation of autonomous systems poses several challenges. One 

is deciding how the autonomous system will make decisions in an uncertain situation. 

What if the collected data is scarce, contains extreme values, and follows an unknown 

distribution? In light of these uncertainties, a robust estimation method is needed. 

Autonomous systems should make judgments that lead to decisions that not only yield 

the good results but also, more importantly, avoid catastrophic outcomes. 

In this thesis, we present two fast and conservative estimation methods using 

Fisher information that adapt to the quality and quantity of the data. We compare our two 

methods with parametric estimates and maximum likelihood estimation under normal, 

log-normal, and exponential distributions. Finally, we apply the two methods to predict 

whether an unmanned underwater vehicle can successfully perform a mission. 
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EXECUTIVE SUMMARY 

The use of autonomous systems is likely to increase in the future, and the level of 

autonomy in these systems will also be more sophisticated than it is now. Increasing 

autonomy means that human intervention will be less important and that the autonomous 

system will be able to assess a situation and decide whether to initiate or continue a mission. 

Given collected information, it becomes necessary to calculate the risk of the mission and 

to reflect on whether it is too high. In particular, autonomous systems might want to make 

conservative assessments and decisions when the quantity and quality of the information 

collected is insufficient. In this thesis, we propose two methods to estimate robustly tail-

dependent quantities such as superquantiles and demonstrate how they can be used in 

applications with autonomous systems. 

The thesis is divided into three parts. In the first part, we develop two models 

(minimizing Fisher information, or MFI, and Fisher penalized maximum likelihood 

estimation, or FP-MLE) for estimating probability density functions robustly using a small 

amount of data. Both models find density functions with minimal Fisher information, but 

are distinct in that the first uses a constraint on the proximity to a benchmark density 

function and the second leverages a penalty formulation. Both are convex models that are 

routinely solved in less than one second, even with a data size of 100,000. 

In the second part, we study benchmark problem instances with data from normal, 

log-normal, and exponential distributions and robustly estimate these density functions. 

When the sample size is five, we confirm that both models give more stable values than 

parametric estimation and nonparametric maximum likelihood estimation. Also, by 

adjusting the robustness parameter, the user can adjust the level of conservativeness as 

desired. 

In the third part, we examine the possibility of using the models for decision making 

within autonomous systems. We estimate the probability that an underwater unmanned 

vehicle (UUV) can penetrate an area of interest undetected. Using as little as five, ten, and 

30 data points, obtained, for example, through reconnaissance or intelligence, the models 



xvi 

yield conservative estimates of the probability that the UUV will be detected during the 

penetration. The study provides the insight that more information can reduce the risk 

associated with the mission, even when that information is “bad news” in the sense that the 

adversary has greater capability than originally expected.  

The results of this thesis have the potential to guide autonomous systems to reflect 

more deeply on the risks associated with a mission, help them decide whether additional 

information is required, or whether the mission should simply be abandoned.  
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I. BACKGROUND 

The number of autonomous systems is increasing, and it seems certain that their 

importance will continue to grow in the future. As of 2017, Amazon was already working with 

more than 100,000 warehouse robots named “kiva,” and autonomous vehicles have begun 

shipping to many countries around the world. In the future, autonomous systems will play a 

large role not only in the private sector but also in the defense sector. The Republic of Korea 

Army (ROKA) created the “drone-bot” force on September 28, 2018. As this compound word 

implies, the “drone-bot” is a combination of a drone and a robot, and this force belongs to the 

Territorial Intelligence Unit. In addition, from 2021 onward, from the corps to the battalion 

level, ROKA plans to organize a drone-bot force for the entire army [1]. 

There are challenges that need to be addressed in order to operate an autonomous 

system. One is about how the autonomous system will make decisions in uncertain 

situations. What if the data collected by the autonomous system is limited, contains extreme 

values, or follows an unknown distribution? Under these various uncertainties, a robust 

estimation method is needed. In this thesis, we present two fast and conservative estimation 

methods that adapt to the quality and quantity of the data using Fisher information. We 

apply the methodology in the context of autonomous systems attempting to decide whether 

a mission can be accomplished.  

A. DECISION UNDER UNCERTAINTY 

There are hopes that autonomous systems will be better than humans at making 

decisions [2]. In general, it is difficult to make good decisions because the result of a 

decision is not only uncertain, but also the information on which the decision is based is 

also uncertain. In a setting with uncertainty, it is often prudent to be risk-averse. This holds 

true for an autonomous system, too. It needs to determine whether a mission is too risky or 

difficult. 

Artificial intelligence (AI) has made several advances over the last decades. For 

example, in 2016 Alpha Go, an artificial intelligence developed by Google Deep Mind, 

won a game of GO against Lee Sedol and won the Ke jie in 2017. Alpha Go retired from 
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the game soon afterwards with the goal of mastering the even more complicated game of 

Starcraft. This represents an even greater challenge as the opponents’ positions are hidden 

and a player needs to conduct reconnaissance in order to acquire information. Information 

then becomes uncertain, and it is necessary to make a judgment about whether there is 

sufficient knowledge to process with a task or pause and collect additional information. 

This assessment process is especially difficult for an AI as it requires experience and an 

ability to self-reflect.  

Many methods for making decisions under uncertainty have been explored [3–5]. 

One possibility is to make decisions based on expected values, rather than on risks. If we 

repeat the decision, this may indeed be the best way. Nevertheless, regardless of whether 

or not we make a decision once or several times, it may be important to consider risk. 

B. SUPERQUANTILE RISK 

Risk is inherently one-sided and tied to the likelihood and magnitude of outcomes 

for a random phenomenon. Standard deviations are not well suited for this purpose due to 

their symmetry; values above and below the mean are treated identically. Superquantiles 

give the average of the worst-cases and are therefore asymmetrical and better suited for 

decision making under risk [6–10]. Specifically, the superquantile at level α  of a random 

variable is the average of the (1 )100%α−  worst outcomes. Superquantiles were 

introduced in [11] with the purpose of having an application-independent terminology 

distinctive from the original name Conditional Value at Risk (CVaR) of [9]. 

There are many advantages to using superquantiles. First, they adapt to any level 

of risk-averseness by adjusting α. For example, if a decision maker wants to make decisions 

based on averages, 0α = . If we want to make decisions based on the very worst outcome, 

1α = . Second, superquantiles lead to convex optimization problems with significant 

computational advantages. Third, superquantiles, in contrast to quantiles, account for the 

magnitude of high outcomes. Figure 1 shows two probability density functions (PDFs) with 

the same 0.9-quantile but rather different 0.9-superquantiles. The average after 0.9-quantile 

of the left PDF is greater than the average after 0.9-quantile of the right PDF because of 
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the different tail shapes. Thus, superquantiles are sensitive to the tail of a PDF; see [6] for 

further discussion and background. 

 

Figure 1. Two PDFs with the same quantile, but different 
superquantiles. 

C. FISHER INFORMATION 

In decision making for autonomous systems, it may be important to assess the 

information content in present and future data. A large amount of collected data might not 

have much vital information, and further data collection would be necessary. Conversely, 

if the collected data has a large amount of important information, additional data collection 

will not be required. Thus, the information content in the collected data is central to the 

operation of autonomous systems. Fisher information measures the amount of information 

that a random variable X  carries about an unknown parameter θ  of a distribution that 

models X  and is expressed as  

2

2

( ; )( ) ,l XI E θθ
θ

 ∂
= −  ∂   

where ( ; )l X θ  is the log-likelihood function of X . Precision to which we can estimate θ  

is fundamentally limited by the Fisher information of the corresponding likelihood function 

through the Cramer-Rao bound 

1ˆ( ) ,
( )

Var
I

θ
θ

≥
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i.e., the variance of an unbiased estimator θ̂   of θ  is always greater than or equal to the 

inverse of Fisher information; see [12, 13]. Fisher information is used in [14] to detect 

changing aviation threats; in [15] for selecting the best neighbor node, which can improve 

positioning accuracy; and in [16] to access stability in the performance of public 

transportation systems. 

In this paper, we propose two models to control the robustness of nonparametric 

estimates of PDFs using Fisher information. The basis of both models is a nonparametric 

estimation method based on epi-splines proposed in [17]; see also [7, 18–21]. The first 

model is one in which the Fisher information is minimized subject to a constraint ensuring 

that the resulting PDF is “near” a maximum likelihood estimate or some other nominal 

estimate. In the second model, a maximum likelihood objective function is penalized with 

a weighted Fisher information term.  

D. ESTIMATION WITH SMALL DATA 

There is an immense body of literature on statistical estimation for univariate PDFs. 

Parametric approaches are often viable when one can reasonably assume the form of the 

underlying PDF, with nonparametric alternatives being possible when a sufficient amount 

of data is available [22]. In contrast, if there is little data and limited information about the 

class of PDFs, then both parametric and classical nonparametric approaches are 

problematic. The nonparametric approach based on soft information and epi-splines 

described in [17] becomes interesting in such situations; however, the resulting estimates 

are necessarily associated with large uncertainty and they benefit from being made more 

robust. 

E. THESIS STRUCTURE 

Following this chapter, we lay out the two models for robust estimation of PDFs 

(Chapter II). In the next section, we present empirical studies on benchmark problems 

(Chapter III). Finally, we examine an application related to autonomous systems (Chapter 

IV). Throughout, we concentrate on univariate PDFs.   
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II. FORMULATION OF ESTIMATION PROBLEMS 

The goal of this study is to estimate a PDF robustly using little data. We develop 

two convex optimization models using epi-splines for this purpose. The maximum 

likelihood principle underlies both, and we start by recalling the standard maximum 

likelihood model [23]. 

A. MAXIMUM LIKELIHOOD USING EPI-SPLINES 

A first-order epi-spline defined on a mesh, one segment, 0 1, , , Nm m m  is a 

piecewise affine function as illustrated in Figure 2. Let ka  and kb  be the slope and 

intercept coefficients of the affine function that defines the epi-spline in the kth segment 

1( , )k km m−  and let 1 2( , , , )Na a a a=   and 1 2( , , , )Nb b b b=  . Let N be the number of 

segments and S the number of data points. Then, the maximum likelihood estimation 

(MLE) problem given data 1 2, , , Sx x x  can be formulated as an optimization model over 

the vectors a  and b  as stated next; see [17, 19, 24]. 

 

Figure 2. Example of first-order epi-spline. 
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(MLE) , 1

1min log( ),
i i

S
i

k ka b i
a x b

S =

− +∑   

subject to 

1 0 1a m b+  ≥  0   (1) 

k k ka m b+  ≥  0,  1, ,k N=          (2) 

2 2
1 1

1 1
( ) ( )

2

N N
k

k k k k k
k k

ab m m m m− −
= =

− + −∑ ∑  =  1 (3) 

k k ka m b+  =  1 1,k k ka m b+ ++  1, , 1k N= −  (4) 

ka  ≤  1 ,ka δ+ +  1, , 1k N= −  (5) 

ka  ≥  1 ,ka δ+ −  1, , 1k N= −  (6) 

 

The objective function minimizes the negative log-likelihood and 𝑘𝑘𝑖𝑖 is the segment 

in which 𝑥𝑥𝑖𝑖 is located. Constraints (1) to (3) ensure that the resulting PDF is nonnegative 

and integrates to 1. Constraint (4) ensures it is continuous. Constraints (5) to (6) ensure that 

the PDF is somewhat “smooth,” with δ being a parameter that can be adjusted; see [19, 25–

29]. This optimization problem is convex. 

B. FORMULATIONS USING FISHER INFORMATION 

The model (MLE) tends to produce estimates that underestimate tail probabilities. 

To compensate for this, we formulate two models based on Fisher information. In the 

absence of any constraints, minimizing Fisher information on a bounded interval gives the 

uniform PDF on that interval. Thus, we need to include additional constraints as discussed 

in the following sections.  

1. Minimizing Fisher Information (MFI) 

We assumed that the data are independent with the common distribution function 

( ) ( )f x f xθ θ= − . We recall that the Fisher information of PDF f is given by  

2

2

( ; )( ) (log ( )) ( ) .l XI f E f x f x dxθ
θ

∞

−∞

 ∂ ′′= − = − ∂ 
∫  
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When f  is a first-order epi-spline of the form ( ) k kf x a x b= +  for 1( , ),k kx m m−∈  then the 

expression simplifies to 

1 1

2

1 1
( ) (ln( )) ( ) .

( )

k k

k k

m mN N
k

k k k k
k k k km m

aI f a x b a x b dx dx
a x b

− −
= =

′′= − + + =
+∑ ∑∫ ∫  

The integral is best carried out numerically, and we adopt a Gaussian quadrature 

rule for this purpose. We refer the reader to the Appendix for details. Using the standard 

argument from Chapter 7 in [30], we can establish that the error in the optimal solution is 

due to numerical integration, which can be made arbitrarily small. Using a Gaussian 

quadrature rule, we obtain that  

1

22

1 1 1
,

( ) ( )

k

k

mN N J
j kk

k k jk k k km

w aa dx
a x b a x b

−
= = =

≈
+ +∑ ∑∑∫  

where jw  and jx  are weights given by the quadrature rule and J  is the number of 

integration points in each segment; see the Appendix.   

The Fisher information minimization problem then becomes 

(MIF) 
2

, 1 1
min ,

( )

N J
j k

a b k j k k

w a
a x b= = +∑∑   

subject to (1) to (6) and also 

0( ) ( )k k k ka m b f m ε+ − ≤  1, ,k N=   (7)  

 

where 0f  is a candidate PDF. Without constraint (7), the resulting PDF tends to be uniform 

on [ ]0 , Nm m . Typically, we let 0f  be the estimate obtained by (MLE), but any other PDF 

can also be used. The constraint (7) easily transforms into two sets of linear constraints 

0( ) ( )k k k ka m b f m ε+ − ≤  and 0 ( ) ( )k k k kf m a m b ε− + ≤ . This optimization problem is also a 

convex optimization problem. The size of the problem is 2N decision variables and 

(6 1)N −  constraints.  
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2. Fisher-Penalized Maximum Likelihood (FP-MLE) 

The second model obtains a robust PDF by applying the addition of a penalty term 

to the likelihood expression. The resulting model minimizes a weighted sum of log-

likelihood and Fisher information:  

(FP-MLE) 
2

, 1 1 1

1min log( ) ,
( )i i

S N J
j ki

k ka b i k j k k

w a
a x b

S a x b
ρ

= = =

− + +
+∑ ∑∑   

subject to constraints (1) to (6). 

In the formulation, ρ  is a parameter that determines how much penalty is applied. 

As the value of ρ  increases, a more robust PDF is obtained. The additional penalty term is 

convex. Therefore, this optimization problem is also a convex optimization problem. The 

size of the problem is 2N  decision variables and (4 1)N −  constraints.  
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III. EMPIRICAL RESULTS ON BENCHMARK PROBLEMS 

In this section, we compare the robustness of estimates from MLE, MFI, and FP-

MLE on randomly generated data sets consisting of only five observations from standard 

normal, log-normal, and exponential distributions. 

We solve all optimization problems on an Acer Swift SF314-52 laptop with  

• Intel Core i5-7200U CPU @ 2.50GHz 2.71GHz processor  

• 8GB RAM 

• Windows 10 Home 64-bit operating system 

• Pyomo and solver Ipopt [31] in Python  

The MFI and FP-MLE solve in usually less than one second for up to 100,000 data 

points.  

A. STANDARD NORMAL DISTRIBUTION 

The first benchmark tests are based on data collected from a standard normal 

distribution using five observations. Figure 3 illustrates the data, the actual PDF, and the 

standard parametric estimate.  
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Figure 3. True PDF (blue) and parametric estimate (red). 

1. USING THE MLE MODEL 

The MLE model requires a mesh 0 1, , , Nm m m . The lower bound of the mesh is 

set to the minimum value of the data minus the difference between the maximum and 

minimum values. Similarly, the upper bound of the mesh is defined as the maximum value 

of the data plus the difference between the maximum and minimum values. The number of 

segments 150N = . Using the smoothing parameter 0.01δ = , we obtain the black line in 

Figure 4. 
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Figure 4. True PDF (blue), parametric estimate (red), and MLE 
(black). 

Figures 5 and 6 show how the estimated graph changes as δ  and the number of 

segments vary. A low number of segments and the low values of the smoothing parameter 

induces a seemingly smooth PDF. Conversely, increasing the number of segments or 

increasing the smoothing parameter causes “spikes” in the estimates. This is an indication 

of overfitting to the five observations. Overfitting causes lighter tail than true PDF tail and 

decreases superquantile value. This means that we underestimate the risk. Therefore, we 

used δ  is 0.01 and the number of segments is 150 in this thesis. 
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Figure 5. MLE using 0.01, 0.03, 0.05,δ =  with 150 segments. 

 

Figure 6. MLE using 100, 300, 500,N =  with 0.01δ = . 
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2. USING THE MFI AND FP-MLE MODELS 

We next examine the MFI and FP-MLE models. Figure 7 shows the resulting 

estimates using 0.01ε =  and 0.001ρ = . The models yield similar results, with the 

resulting PDFs having heavier tails than that of MLE. This is an indication of robustness. 

Specifically, if the 0.9-superquantile values of the estimates from the MFI and FP-MLE 

are 1.79 and 1.74, respectively, this is a little higher than the 0.9-superquantile of the MLE 

estimate, which is 1.72. In comparison, the 0.9-superquantile value of the standard normal 

PDF is 1.75. Thus, when concerned about conservatively estimating high values of a 

random quantity, it seems more prudent to use the MFI and FP-MLE rather than MLE. In 

this case, the MLE produces a PDF that underestimates the probability in the tails. On the 

other hand, the MFI and FP-MLE furnish more robust estimates.  

 

Figure 7. MFI with 0.01ε =  and FP-MLE with 0.001ρ = . 

The effect of ε  is depicted in Figure 8. In constraint (7) in Chapter II, ε  allows 

that estimates depart from candidate PDF 0f  to converge in a uniform distribution. When 

we increase ε , MFI produces estimates with increasingly heavy tails and in the limit tends 
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to a uniform distribution. Table 1 shows the values of a 0.9-superquantile when ε is 

increased from 0.01 to 0.30. In all these cases, the MFI produces estimates with heavier 

tails than the true PDF, as quantified by the 0.9-superquantile values. 

 

Figure 8. MFI estimates using 0.01, 0.05, 0.10, , 0.30.ε =   

Table 1.   0.9-superquantiles for MFI estimates using 0.01, 0.05, , 0.30.ε =   The 
true PDF has 0.9-superquantile of 1.75. 

ε  0.01 0.05 0.10 0.15 0.20 0.25 0.30 

0.9-superquantile 1.79 2.06 2.26 2.38 2.45 2.47 2.47 

 

Figure 9 illustrates changes in ρ . When we increase ρ , the FP-MLE becomes more 

robust and produces PDFs with heavier tails. Table 2 shows the value of 0.9-superquantiles 

when ρ  is increased from 0.001 to 0.01. Again, for all values of ρ  examined, FP-MLE 

produces estimates with heavier tails than the true PDF.  
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Looking at the MFI and FP-MLE, when the robust parameter ε  and ρ  were 

increased, we observe that the PDFs are more uniform. Yet, we also find a difference 

between the two methods. MFI was evenly spaced as the changed ε  allowing from the 

PDF obtained by MLE to converge uniform distribution and converging speed was fast. 

On the other hand, early on FP-MLE showed a rapid converging speed, but later the 

converging speed was slow. In addition, FP-MLE tried to maximize the probabilities at the 

data points.  

 

Figure 9. FP-MLE estimates using 0.001, 0.01, 0.02, , 0.06.ρ =   

Table 2.   0.9-superquantiles for FP-MLE using 0.001, 0.01, 0.02, , 0.06.ρ =   
The true PDF has 0.9-superquantile of 1.75. 

ρ  0.001 0.010 0.020 0.030 0.040 0.050 0.060 

0.9-superquantile 1.74 2.16 2.32 2.37 2.39 2.41 2.42 
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The previous results rely on a single sample size of five. Table 3 shows the 

aggregated results across 1,000 replications of a sample size of five. The first column 

shows the mean and the standard deviation. When the robust parameters were increased, 

the mean value of the 0.9-superquantiles of MFI and FP-MLE increased gradually. The 

second column shows how many failures occurred in 1,000 cases. Failure is defined as a 

prediction that is smaller than the actual 0.9-superquantile value 1.75. In other words, it 

tells the probability that an underestimation error will occur. We should try to avoid 

underestimation error. For example, if we underestimate our budget, we would become 

bankrupt. In the cases of the parametric and MLE, the probabilities of underestimation 

error are 58.4% and 56.0%, respectively. On the other hand, the probabilities of 

underestimation error of MFI and FP-MLE are 45.8% and 53.4%, respectively. We are 

able to reduce the probabilities of underestimation error by increasing the robust 

parameters. There is, however, a trade-off relationship between the increasing mean of 0.9-

superquantiles and the decreasing underestimation error.  

In Figure 10, we confirm that the highest points of parametric estimates are higher 

than others. This means that the tails of parametric estimates are lower than others, and 

both MFI and FP-MLE show heavy tails as well. FP-MLE, however, has more peak shapes 

and more rely on MLE in comparison to MFI. Because of this, the means of the 0.9-

superquantile of FP-MLE increase less than those of MFI when the robust parameters are 

increased. In comparison MFI (ε is 0.03) and FP-MLE (ρ is 0.01), we confirm that the mean 

of FP-MLE is smaller than mean of MFI even though the proportion of failure of FP-MLE 

is less than the proportion of failure of MFI. In conclusion, FP-MLE has better 

characteristics despite this trade-off relationship. The reason why some PDFs in Figure 10 

appear abnormally shaped in the black circle is that we have estimated the sample space 

from five samples each time, which occasionally leads to especially poor estimates. 
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Table 3.   The means and standard deviations of 0.9-superquantile values and 
proportion of failure. 

Method ε | ρ Mean ± standard deviation Proportion of failure 

True - 1.75 - 

Parametric - 1.61 ± 0.56 58.4% 

MLE - 1.69 ± 0.63 56.0% 

MFI 

0.01 1.81 ± 0.45 45.8% 

0.03 2.25 ± 0.93 31.5% 

0.05 2.53 ± 1.09 24.4% 

FP-MLE 

0.001 1.73 ± 0.53 53.4% 

0.005 1.87 ± 0.61 42.1% 

0.010 2.15 ± 0.66 25.9% 
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Figure 10. One hundred replications of estimates using five data 
points. 
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B. LOG-NORMAL DISTRIBUTION 

For parametric estimation, the probability density function is obtained by 

substituting the average obtained from the data into the PDF of the known log-normal 

distribution. Figure 11 illustrates the data, the actual PDF, and the standard parametric 

estimate. 

 

Figure 11. True PDF (blue) and parametric estimate (red). 

1. USING THE MLE MODEL 

Nonparametric estimates were obtained using the Epi-spline method, with a 𝛿𝛿 of 

0.01, 150 segments. The lower bound was defined as zero. The upper bound was defined 

as the maximum value plus the difference between the maximum and minimum values. 

The black line in Figure 12 is the probability density function obtained from the MLE. 



20 

 

Figure 12. True PDF (blue), parametric estimate (red), and MLE 
(black). 

Figures 13 and 14 show how the estimated graph changes as δ and the number of 

segments vary. The low number of segments and the low values of the smoothing 

parameter induce a seemingly smooth PDF. Conversely, increasing the number of 

segments or increasing the smoothing parameter causes “spikes” in the estimates. This is 

an indication of overfitting to the five observations. This is similar to the previous normal 

distribution analysis [A.1]. We assumed that the true PDF is a smooth continuous function. 

Because of this, we think the spike shape reflects noise or error. Therefore, we do not use 

large segments and δ, but use proper 150 segments and δ is 0.01. 
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Figure 13. MLE using 𝛿𝛿 = 0.01, 0.03, 0.05, with 150 segments. 

 

Figure 14. MLE using N = 100, 300, 500, with 𝛿𝛿 = 0.01. 
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2. USING THE MFI AND FP-MLE MODELS 

We next examine the MFI and FP-MLE models. Figure 15 shows the resulting 

estimates using 0.01ε =  and 0.01ρ = . The models yield similar results, with the resulting 

PDFs having heavier tails than those of the MLE. This is an indication of robustness. 

Specifically, if the 0.9-superquantile values of the estimates from the MFI and FP-MLE 

are 5.26 and 5.10, respectively, this is quite a bit higher than the 0.9-superquantile of the 

MLE estimate, which is 4.90. The two 0.9-superquantile values are not greater than the 

true 0.9-superquantile value 6.42. This implies that using the MFI and FP-MLE for 

estimating the PDF, which is following log-normal distribution, could underestimate 

outcomes. We can handle this issue by increasing robust parameters ε and ρ. On the other 

hand, the value of the 0.9-superquantile of parametric is 10.28. This is larger than the true 

0.9-superquantile value. In fact, the parametric could overestimate outcomes. 

 

Figure 15. MFI with 0.01ε =  and FP-MLE with 0.01ρ = . 

As shown in Figure 16, we can change ε to control robustness. As ε increases, the 

MFI approximates the uniform distribution. Table 4 shows the values of the 0.9-
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superquantile when ε is increased from 0.01 to 0.30. The value of the 0.9-superquantile 

increased from 5.26 to 8.57. The value when we used ε is 0.01, however, was lower than 

the true value. This implies that the MFI result depends on how close the MLE to the true 

PDF. We need to think about the uncertainty of distribution. If we know the distribution of 

data, we should use a parametric estimate because this method is the best way to estimate. 

We could not, however, be sure which distribution is right considering the small amount 

of data. If the amount of data is sufficient, the MLE is close enough to the true PDF, and 

our methods are good enough for estimating robust superquantile values. 

 

Figure 16. MFI estimates using 0.01, 0.05, 0.10, , 0.30.ε =   

Table 4.   0.9-superquantiles for MFI estimates using 0.01, 0.05, 0.10, , 0.30.ε =   
The true PDF has 0.9-superquantile of 6.42. 

ε 0.01 0.05 0.10 0.15 0.20 0.25 0.30 

0.9-superquantile 5.26 7.55 7.90 8.13 8.32 8.46 8.57 
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Table 5 shows the values of the 0.9-superquantile when ρ is increased from 0.01 to 

0.30. The value of the 0.9-superquantile gradually increased from 5.10 to 8.31. When we 

choose ρ, which is larger than 0.05, the FP-MLE 0.9-superquantile value is greater than the 

true 0.9-superquantile value 6.42. This is similar to the MFI, but the value of the FP-MLE 

is much smaller than the value of the MFI. This implies that the FP-MLE not only depends 

on the MLE but also depends on data. Comparing Figure 16 with Figure 17, we observe 

the FP-MLE tail shape is sharper than the MFI tail shape. This illustrates that the amount 

of data has a greater effect on the FP-MLE than it does on the MFI.  

Table 5.   0.9-superquantiles for FP-MLE using 0.01, 0.05, 0.10, , 0.30.ρ =   The 
true PDF has 0.9-superquantile of 6.42. 

ρ  0.01 0.05 0.10 0.15 0.20 0.25 0.30 

0.9-superquantile 5.10 6.73 7.66 8.00 8.16 8.25 8.31 

 

Figure 17. FP-MLE estimates using 0.01, 0.05, 0.10, , 0.30.ρ =   
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Table 6 shows the mean and standard deviation of the 0.9-superquantile values 

obtained by each method. One hundred simulations were conducted. For these simulations 

the number of segments was 150, δ was 0.01, and both ε and ρ were 0.01, 0.05, and 0.10, 

respectively. Although the parametric 0.9-superquantile value is greater than others, the 

standard deviation of the parametric is 13.08. Other methods’ standard deviations, 

however, range from 3.73 to 4.60. This implies that even though the parametric shows a 

small number of failures, the parametric is too risky with small amounts of data because 

the parametric highly depends on sufficient data. On the other hand, the MFI and FP-MLE 

are less dependent on the amount of data, and they give us more stable results than the 

parametric result. In particular, the difference of failure between the parametric and the FP-

MLE using 0.10ρ =  is only 2. In contrast, the difference of the mean between the 

parametric and the FP-MLE is 3.86. In fact, we can achieve a lower proportion of failure 

even though the mean of the 0.9-superquantile value is lower than the mean of the 0.9-

superquantile value of parametric. 

Table 6.   The means and standard deviations of 0.9-superquantile values. 

Method ε | ρ Mean ± standard deviation Proportion of failure 

True - 6.42 - 

Parametric - 10.71 ± 13.08 55% 

MLE - 5.18 ± 4.52 78% 

MFI 

0.01 5.39 ± 4.60 75% 

0.05 5.95 ± 4.02 69% 

0.10 5.90 ± 3.73 70% 

FP-MLE 

0.01 5.53 ± 4.35 78% 

0.05 6.39 ± 4.35 63% 

0.10 6.85 ± 4.59 57% 
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C. EXPONENTIAL DISTRIBUTION 

For the parametric estimation, the probability density function is obtained by 

substituting the average obtained from the data into the PDF of a known exponential 

distribution. Figure 18 illustrates the data, the actual PDF, and the standard parametric estimate. 

 

Figure 18. True PDF (blue) and parametric estimate (red).  

1. USING THE MLE MODEL 

The MLE model requires a mesh 0 1, , , .Nm m m  The lower bound of the mesh is 

set to zero and minimum values. Similarly, the upper bound of the mesh is defined as the 

maximum value of the data plus the difference between the maximum and minimum 

values. The number of segments 150N = . Using a smoothing parameter 0.01δ = , we 

obtain the black line in Figure 19. 

Figures 20 and 21 show how the estimated graph changes as δ and the number of 

segments are changed. The results are similar to the previous two distributions’ results. In 

particular, changing δ has a more powerful effect on the shape than changing the number 
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of segments, and high complexity tends to bring the overfitting problem. This means that 

the fitting is good at the currently used data, but when the input data was changed, the 

fitting is worse than when we used low complexity. Therefore, we use δ is 0.01 and 150 

segments. 

 

Figure 19. True PDF (blue), parametric estimate (red), and MLE 
(black). 
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Figure 20. MLE using 0.01, 0.03, 0.05,δ = with 150 segments. 

 

Figure 21. MLE using 100, 300, 500,N =  with 0.01δ = . 
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2. USING THE MFI AND FP-MLE MODELS 

We next examine the MFI and the FP-MLE models. Figure 22 shows the resulting 

estimates using 0.01ε =  and 0.001ρ = . The models yield similar results, with the 

resulting PDFs having heavier tails than those of the MLE. This is an indication of 

robustness. Specifically, if the 0.9-superquantile values of the estimates from the MFI and 

the FP-MLE are 3.21 and 3.03, respectively, this is quite a bit higher than the 0.9-

superquantile of the MLE estimate, which is 3.01. The two 0.9-superquantile values are 

not greater than the true 0.9-superquantile value 3.30. This implies that using MFI and FP-

MLE for estimating the PDF, which is following exponential distribution, could 

underestimate outcomes with these robust parameters. However, we can handle this issue 

by increasing robust parameters ε and ρ. In addition, this is still better estimates than MLE 

result and parametric result, which is 2.45. 

 

Figure 22. MFI with 0.01ε =  and FP-MLE with 0.001ρ = . 

The effect of ε is examined in Figure 23. When we increase ε, the MFI produces 

estimates with increasingly heavy tails, and data in the limit tends toward a uniform 
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distribution. Table 7 shows the values of the 0.9-superquantile when ε is increased from 

0.01 to 0.25. The MFI produces estimates with heavier tails than the true PDF when ε was 

greater than 0.05. 

 

Figure 23. MFI estimates using 0.01, 0.05, 0.10, , 0.25.ε =   

Table 7.   0.9-superquantiles for MFI estimates using 0.01, 0.05, 0.10, , 0.25.ε =   
The true PDF has 0.9-superquantile of 3.30. 

ε 0.01 0.05 0.10 0.15 0.20 0.25 

0.9-superquantile 3.21 4.43 4.91 5.08 5.17 5.17 

 

Figure 24 examines changes in ρ. When we increase ρ, the FP-MLE becomes more 

robust and produces PDFs with heavier tails. Table 8 shows the 0.9-superquantiles when ρ 

is increased from 0.001 to 0.06. Again, for all values of ρ examined, the FP-MLE produces 

estimates with heavier tails than the true PDF when ρ was greater than 0.010.  
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Figure 24. FP-MLE estimates using 
0.001, 0.010, 0.020, , 0.060.ρ =   

Table 8.   0.9-superquantiles for FP-MLE using 0.001, 0.010, 0.020, , 0.060.ρ =   
The true PDF has 0.9-superquantile of 3.30. 

ρ 0.001 0.010 0.020 0.030 0.040 0.050 0.060 
0.9-superquantile 3.03 3.57 4.21 4.53 4.71 4.81 4.88 

 

Table 9 shows the mean and standard deviation of the 0.9-superquantile values 

obtained by each method and the number of failures—less than the true 0.9-superquantile 

value 3.30. One thousand simulations were conducted. When we compare the proportion 

of failures of the parametric estimate with MFI (ε is 0.20) and FP-MLE (ρ is 0.030), MFI 

and FP-MLE results are less than parametric result. Despite this, 4.11, the mean of the 0.9-

superquantile of the parametric estimate, is greater than 3.74, the mean of the 0.9-

superquantile of the MFI, and 3.59, the mean of the 0.9-superquantile of the FP-MLE. 

Because the standard deviation of parametric estimate is higher than those of MFI and FP-

MLE. This implies that the MFI and FP-MLE give us better results than parametric 

estimate. 
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Table 9.   The means and standard deviations of 0.9-superquantile values. 

Method ε  | ρ  Mean ± standard deviation Proportion of failure 

True - 3.30 - 

Parametric - 4.11 ± 2.33 43.7% 

MLE - 2.57 ± 1.23 79.9% 

MFI 

0.01 2.68 ± 1.28 76.3% 

0.05 3.23 ± 1.54 56.3% 

0.10 3.45 ± 1.56 48.5% 

0.15 3.62 ± 1.66 44.5% 

0.20 3.74 ± 1.75 43.3% 

0.25 3.83 ± 1.84 42.7% 

0.30 3.91 ± 1.94 41.9% 

FP-MLE 

0.001 2.60 ± 1.20 79.7% 

0.005 2.82 ± 1.13 76.1% 

0.010 3.09 ± 1.15 61.9% 

0.015 3.27 ± 1.22 50.0% 

0.020 3.41 ± 1.30 46.2% 

0.025 3.51 ± 1.37 44.2% 

0.030 3.59 ± 1.44 42.9% 
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IV. ROBUST ESTIMATION IN AUTONOMY 

A. SCENARIO 

Suppose that a commander must decide whether to task an infiltrating unmanned 

underwater vehicle (UUV) to attack an enemy’s aircraft carrier. If a UUV is detected and 

detained by the enemy during penetration, it would be a big loss for friendly forces because 

the enemy could learn some things about the friendly UUV’s technology. Therefore, the 

UUV will have to penetrate where it is least likely to be detected by the enemy, and it is 

better not to infiltrate at all if the probability of being detected by the enemy is high. As a 

matter of course, a friendly force conducts various reconnaissance and intelligence 

operations to determine the enemy’s defense capabilities relative to their aircraft carrier 

allowing friendly force to grasp these activities to some extent. This information, however, 

is usually highly uncertain, and a UUV receiving this information will have to make an 

assessment whether infiltration is simply too risky.  

For robust path planning, two aspects must be considered. First, the UUV must 

utilize an optimization method to calculate the minimum risk path. Second, it must use a 

robust estimation method that takes into account the uncertainty of the collected data to 

assess whether the infiltration mission is viable. The first aspect, the study on the shortest 

path or the minimum risk path, has been performed extensively; see for example [32, 33]. 

Thus, we here concentrate on the second aspect using the model that this thesis has 

presented. 

In the search theory [34], it is common to assume that the probability of detecting 

an object in an area of size A is given by  

 [ ]being detected 1 ,
VWt
AP e

−

= −   (8) 

where V is the speed of the searcher, W is the detection range of the searcher, and t is the 

search time. We use this simple model to illustrate the methodology for robust 

estimation, but any other model is just as easily incorporated.   
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B. TWO-STEP ANALYSIS 

The analysis process that we propose is largely divided into two steps. Step A 

makes decisions using past data or simulation data. Step B acquires current information to 

make a decision. Step B can be dropped if Step A is deemed sufficient. It is possible to 

determine whether to perform Step B by considering the risk of a mission as assessed by 

Step A and the cost and time to obtain current information. 

1. Step A 

In most cases, there will be no exact information about the four variables (speed, 

detection range, search time, and search area) in (8). If correct information were available 

for the four variables, it is possible to obtain the probability that the UUV will be detected 

by substituting the four values into (8). In this scenario, however, the information on all 

four variables is uncertain or partially uncertain. Suppose that the UUV has the following 

information: the speed of the enemy searcher is 150–250 [knots/hour], its detection range 

is 20–40 [nm], the area of search is 10,000–50,000 [nm2], and the time it takes for UUV to 

pass through the search area is 1–3 [hours]. Using these ranges, Monte Carlo simulations 

provide a set of possible probabilities of detection. We use a sample size of 1,000 in these 

simulations, and thus generate 1,000 possible probabilities of detection.  

These simulations can be viewed as data drawn from an unknown PDF, which we 

can estimate robustly by using the two models MFI and FP-MLE of Chapter III. The UUV 

would select the parameters ε and ρ based on prior experience and level of risk averseness. 

We use 0.1 (low), 0.3 (mid), 0.5 (high) as the value of ε and 0.001 (low), 0.005 (mid), 0.01 

(high) as the value of ρ in the following. Figure 25 shows the estimated PDF of the 

probability of detection using the 1,000 data points generated through simulations; the 

black, purple, and green lines correspond to MLE, MFI ( 0.1)ε = , and FP-MLE 

( 0.001)ρ = , respectively. (MLE uses simulation data points with slope change parameter 

𝛿𝛿 = 1 and 150 segments throughout.) We note that the MFI and FP-MLE smooth out the 

humps seen in the estimate using the MLE. Moreover, the MFI and FP-MLE result in 

heavier tails.  
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Figure 25. PDF representing the UUV’s belief about probability of 
detection during infiltration mission. Parametric (red), MLE (black), MFI 

(purple), and FP-MLE (green). 

Table 10 quantifies this effect in terms of superquantiles. Even though we do not 

know what the true value is, the MLE is close to the true value because we use the data of 

1,000 simulations. We can see that parametric estimate using beta distribution have the 

same mean value as the MLE, but possess higher superquantile values than the 

superquantile values of the MLE. This means that parametric estimate overestimates the 

superquantile values because of the heavier tail, as shown in Figure 25. On the other hand, 

the superquantile values of the FP-MLE are less than the superquantile values of the 

parametric and close to the MLE results.  

This problem combines three optimization problems; MLE, MFI, and FP-MLE. 

The runtime to solve this problem is approximately 1.3 seconds.  
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Table 10.   The probability of UUV detected α -superquantile values. 

Method ε  | ρ  
α 

0.00  0.70 0.90 0.95 
Parametric - 0.35 0.64 0.78 0.84 

MLE - 0.35 0.58 0.71 0.78 

MFI 
0.1 0.36 0.60 0.77 0.85 
0.3 0.39 0.68 0.86 0.93 
0.5 0.42 0.74 0.90 0.95 

FP-MLE 
0.001 0.35 0.58 0.71 0.78 
0.005 0.35 0.58 0.72 0.79 
0.010 0.35 0.58 0.73 0.80 

2. Step B 

In Step B, we assumed that the probability value is calculated through the values of 

the variables obtained by actual intelligence operations, and the 0.9-superquantile value is 

estimated by using the probability value. We looked at how the superquantile values 

change when 5, 10, and 30 data are collected, and then how the superquantile values change 

when one of the four variables is obtained. 

Figures 26–28 represent the estimated probability distribution according to the size 

of the collected data with low, medium, and high robust parameters. The interesting thing 

was that there was no change in the robust parameter ε and ρ values, but the FP-MLE 

showed larger fluctuations than the MFI depending on the amount of data. This implies 

that the FP-MLE method could be too conservative when compared to the MFI with a small 

amount of data in a small sample space. In Chapter III, the MFI always yielded more 

conservative results than the FP-MLE did. In this circumstance, however, the FP-MLE is 

always conservative until the sample size is large enough. In other words, we should 

consider both sample size and space when working to find the proper robust parameter ρ. 

In these results, the low conservative level is better than the other conservative levels for 

the FP-MLE. In addition, when the data size becomes 30, the value of the 0.9-superquantile 

with a low conservative level is the closest value among all results. 
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(a) Low conservative 

 
(a) Mid conservative 

 
(c) High conservative 

Figure 26. Probability of UUV detected using five data points.  
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(a) Low conservative 

 
(b) Mid conservative 

 
(c) High conservative 

Figure 27. Probability of UUV detected using 10 data points.  
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(a) Low conservative 

 
(b) Mid conservative 

 
(c) High conservative 

Figure 28. Probability of UUV detected using 30 data points.  
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Table 11 shows the superquantile value according to the change of the α value with 

a different data size. Parametric estimate seems to relate to data quality. The 0.9-

superquantile value of 10 data points 0.74, is closer to 0.71, MLE estimates with 1,000 data 

points, than the 0.9-superquantile value of 30 data points 0.49. On the other hand, when 

data points are 30, the mean and the 0.9-superquantile values of the MFI and FP-MLE are 

closer to the case with 1,000 data points. The superquantile value of MLE was always 

smaller than the superquantile values of MFI and FP-MLE. This means that both MFI and 

FP-MLE have heavier tails than the MLE does. In the case of 30 data points, the MLE 

overestimated the mean as 0.38, which is greater than 0.35 MLE estimates with 1,000 data 

points. By contrast, the MLE underestimated the 0.9-superquantile value as 0.67, which is 

smaller than 0.71 MLE estimates with 1,000 data points.  

Table 11.   The probability of UUV detected α -superquantile values using different 
data sizes. 

Size Method ε  | ρ  α 
0.00 0.70 0.90 0.95 

1000 MLE - 0.35 0.58 0.71 0.78 

5 

Parametric - 0.37 0.58 0.70 0.75 
MLE - 0.38 0.50 0.56 0.58 

MFI 
0.1 0.38 0.51 0.58 0.63 
0.3 0.38 0.53 0.64 0.71 
0.5 0.38 0.56 0.69 0.77 

FP-MLE 
0.001 0.39 0.69 0.87 0.93 
0.005 0.47 0.81 0.94 0.97 
0.010 0.49 0.84 0.95 0.98 

10 

Parametric - 0.36 0.61 0.74 0.80 
MLE - 0.36 0.54 0.63 0.67 

MFI 
0.1 0.37 0.55 0.67 0.76 
0.3 0.38 0.61 0.79 0.88 
0.5 0.39 0.65 0.83 0.91 

FP-MLE 
0.001 0.36 0.63 0.80 0.88 
0.005 0.44 0.78 0.93 0.97 
0.010 0.47 0.82 0.94 0.97 
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Size Method ε  | ρ  α 
0.00 0.70 0.90 0.95 

30 

Parametric - 0.38 0.65 0.79 0.84 
MLE - 0.38 0.57 0.67 0.71 

MFI 
0.1 0.39 0.59 0.72 0.80 
0.3 0.41 0.67 0.84 0.92 
0.5 0.43 0.72 0.89 0.95 

FP-MLE 
0.001 0.38 0.60 0.73 0.80 
0.005 0.40 0.71 0.88 0.94 

 

According to the change of sample size, Table 12 shows the mean and standard 

deviation of the 0.9-superquantile values obtained by each method and the number of 

failures—less than 0.71 which is the MLE estimates 0.9-superquantile value with 1,000 

data points. One thousand simulations were conducted. When the data are small (5 and 10), 

the MFI and FP-MLE results are closer to 0.71. However, when the data becomes 

sufficiently large (30), the MLE estimate approaches 0.71 and the MFI and FP-MLE values 

become more conservative. In conclusion, the MFI and FP-MLE show stable results when 

collected data have less information about true value. 

Table 12.   The means and standard deviations of 0.9-superquantile values. 

Size Method ε  | ρ  Mean ± standard deviation Proportion of failure 

1000 MLE - 0.71 - 

5 

Parametric - 0.78 ± 0.15 31.9% 
MLE - 0.64 ± 0.14 69.5% 

MFI 
0.1 0.68 ± 0.13 60.9% 
0.3 0.77 ± 0.10 26.9% 
0.5 0.83 ± 0.09 16.7% 

FP-MLE 
0.001 0.88 ± 0.04 00.0% 
0.005 0.94 ± 0.01 00.0% 
0.010 0.95 ± 0.003 00.0% 

10 Parametric - 0.78 ± 0.10 25.2% 
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Size Method ε  | ρ  Mean ± standard deviation Proportion of failure 

MLE - 0.68 ± 0.11 63.3% 

MFI 
0.1 0.71 ± 0.09 49.5% 
0.3 0.81 ± 0.07 10.8% 
0.5 0.85 ± 0.06 04.9% 

FP-MLE 
0.001 0.82 ± 0.07 07.7% 
0.005 0.93 ± 0.01 00.0% 
0.010 0.94 ± 0.01 00.0% 

30 

Parametric - 0.78 ± 0.06 15.5% 
MLE - 0.71 ± 0.07 53.2% 

MFI 
0.1 0.73 ± 0.05 34.9% 
0.3 0.82 ± 0.04 01.9% 
0.5 0.87 ± 0.04 00.3% 

FP-MLE 
0.001 0.75 ± 0.07 30.5% 
0.005 0.87 ± 0.02 00.0% 
0.010 0.91 ± 0.01 00.0% 

 

Suppose that in some of the four variables a deterministic value is obtained through 

an additional data collection activity to see how the value changes. First, the search area 

that had the largest variance is found to be 25,000 [nm2]. As with Step A, the other values 

are calculated by 1,000 simulations and are shown in Table 13. Compared to the previous 

results, we can see that the mean increases from 0.35 to 0.37 or 0.38, and the value of 0.9-

superquantile decreases from 0.72 to 0.64 in the MLE, to 0.71 in the MFI ( 0.1ε = ), and 

0.64 in the FP-MLE ( 0.001ρ = ).  

This result is interesting because the expected value of the search area is 30,000 

[nm2]. This means that 25,000 [nm2] is worse than our expected value. The 0.9-

superquantile value, however, is decreased because of the removal of uncertainty in the 

search area. This implies that not only we can estimate much about the data region, but 

also we can estimate more and more accurately about the tail region. In Figure 29, we can 
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confirm that the blue current MLE is moved to the right (worse), but the shape is more 

centered at the mean and the tail becomes lighter than the MLE tail. 

Table 13.   The probability of UUV detected α-superquantile values using search 
area is 25,000 [nm2]. 

Method ε  | ρ  
α 

0.00 0.70 0.90 0.95 
Parametric - 0.37 0.63 0.76 0.82 

MLE - 0.37 0.55 0.64 0.68 

MFI 
0.1 0.38 0.58 0.71 0.79 
0.3 0.40 0.66 0.83 0.91 
0.5 0.42 0.72 0.89 0.95 

FP-MLE 
0.001 0.37 0.55 0.64 0.68 
0.005 0.37 0.55 0.65 0.69 
0.010 0.37 0.56 0.65 0.70 
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(a) Low conservative 

 
(b) Mid conservative 

 
(c) High conservative 

Figure 29. Probability of UUV detected (A = 25,000 [nm2]). 
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Table 14 shows the results obtained by repeating the previous procedure, assuming 

that the other values have also acquired deterministic values (expected value) one by one. 

In all three cases, we can see that the 0.9-superquantile values are not reduced, except for 

the V and W cases in the FP-MLE. Since the three cases used the expected value, this 

means it was a more beneficial to the friendly force, but the 0.9-superquantile value did not 

decrease significantly. In Figures 30–32, we can confirm that the blue current MLE is 

moved to the left (better) and more centered at the mean, but the tail is still heavy. 

Comparing the amount of shrinkage, we observe that the uncertainty of the 

variables was reduced the most when the biggest variance value was found. In conclusion, 

the best solution to reduce the risk of detection is to obtain information on the enemy’s 

search area where the highest degree of uncertainty exists.  

Table 14.   The probability of UUV detected α -superquantile values using one 
deterministic value. 

Variable Method ε  | ρ  
α 

0.00  0.70 0.90 0.95 

V = 200 

Parametric - 0.35 0.62 0.76 0.82 

MLE - 0.35 0.56 0.70 0.76 

MFI 

0.1 0.36 0.58 0.74 0.83 

0.3 0.38 0.66 0.85 0.92 

0.5 0.40 0.71 0.88 0.94 

FP-MLE 

0.001 0.35 0.56 0.70 0.76 

0.005 0.35 0.57 0.70 0.77 

0.010 0.35 0.57 0.71 0.78 

W = 30 

Parametric - 0.35 0.62 0.75 0.81 

MLE - 0.36 0.55 0.68 0.74 

MFI 

0.1 0.36 0.58 0.74 0.83 

0.3 0.38 0.64 0.83 0.91 

0.5 0.39 0.68 0.86 0.93 

FP-MLE 0.001 0.36 0.56 0.69 0.75 
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Variable Method ε  | ρ  
α 

0.00  0.70 0.90 0.95 

0.005 0.36 0.56 0.69 0.75 

0.010 0.36 0.57 0.70 0.76 

t = 2 

Parametric - 0.36 0.64 0.78 0.84 

MLE - 0.36 0.58 0.72 0.78 

MFI 

0.1 0.37 0.60 0.76 0.84 

0.3 0.38 0.66 0.85 0.92 

0.5 0.39 0.69 0.87 0.94 

FP-MLE 

0.001 0.36 0.58 0.72 0.78 

0.005 0.37 0.59 0.72 0.78 

0.010 0.37 0.59 0.73 0.79 
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(a) Low conservative 

 
(b) Mid conservative 

 
                                (c) High conservative 

Figure 30. Probability of UUV detected (V = 200 [knots/hour]). 
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(a) Low conservative 

 
(b) Mid conservative 

 
(c) High conservative 

Figure 31. Probability of UUV detected (W = 30 [nm]). 
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(a) Low conservative 

 
(b) Mid conservative 

 
(c) High conservative 

Figure 32. Probability of UUV detected (t = 2 [hours]). 
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Applying this strategy to the defense decision-making procedure, we can confirm 

that the most volatile information among the variables predicted at present is the priority 

information. When we get the priority information, we can reduce the risk although the 

priority information might not be “good” news. In the game Starcraft, for example, it is 

much more beneficial to identify the opponent’s position and initial strategy through 

reconnaissance rather than to have the worker, who is an important unit, capture resources 

early on. Even though the worker cannot collect resources after being killed by the enemy, 

the worker instead gives us vital information for reducing uncertainty. 
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V. CONCLUSIONS 

The use of autonomous systems is likely to increase in the future, and the level of 

autonomy in these systems will also be more sophisticated than it is now. Increasing 

autonomy means that human intervention will be less important and that the autonomous 

system will be able to assess a situation and decide whether to continue a mission. When 

making decisions based on the collected information, it is necessary to calculate the risk 

and to reflect on whether the mission should be carried out. In particular, autonomous 

systems might want to make conservative decisions when the quantity and quality of the 

information collected is insufficient. 

In the Chapter Ⅱ, we develop two models (Minimizing Fisher Information, or MFI, 

and Fisher-Penalized Maximum likelihood, or FP-MLE) for estimating probability density 

functions robustly using a small amount of data. Both models rely on likelihoods and epi-

splines and find density functions with minimal Fisher information. Both are convex 

models solved in less than one second, even with a data size of 100,000. However, they are 

distinct in that the first uses a constraint on the proximity to a candidate density function 

and the second leverages a penalty formulation. 

In the Chapter Ⅲ, we study benchmark problem instances with data from normal, 

log-normal, and exponential distributions and robustly estimate these density functions. 

Even though the sample size is only five, we confirm that both models give more stable 

estimates in a certain sense than parametric estimation or MLE. For example, the standard 

errors and the proportion of failure of the two models are overall better than those of 

parametric estimation or maximum likelihood estimation. Also, by adjusting the robustness 

parameter, the user can set the level of conservativeness as desired.  

In the Chapter Ⅳ, we also examine the possibility of using the models for decision 

making of autonomous systems. We estimate the probability that an underwater unmanned 

vehicle (UUV) can penetrate an area of interest undetected. Using as little as five, 10, and 

30 data points, obtained, for example, through reconnaissance or intelligence, the models 

yield conservative estimates of the probability that the UUV will be detected during the 
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penetration. The results of this study have the potential to guide autonomous systems to 

reflect more deeply on the risks associated with a mission, help them decide whether 

additional information is required, or whether the mission should simply be abandoned. 

The study also provides the insight that more information can reduce the risk associated 

with the mission, even when that information is “bad news” in the sense that the adversary 

has greater capability than originally expected. For example, if there is a high level of 

uncertainty about the number of enemy tanks in an operation, a plan should be established 

with an emphasis on the amount of corresponding power. On the other hand, if the high 

level of uncertainty is about the attack time of enemy tanks, a plan should be established 

with an emphasis on the reaction time. 

Although both the MFI and the FP-MLE models show robust results, the choice 

between the MFI and the FP-MLE for robust estimating remains an ambiguous issue with 

no clear answer. This is an exploratory thesis; the best method will depend on the context 

in which it is applied. MFI tends to approximate the uniform distribution within the range 

allowed. Even though FP-MLE also tends to approach the uniform distribution, FP-MLE 

is more related to data size and support than for MFI. The FP-MLE model has a tendency 

to be overly conservative if there is little data or the support is small. 

Determining the support and choosing parameters remains an issue throughout this 

thesis. In this thesis, we designate a reasonable range for the support and use it consistently. 

However, other possibilities could be examined. We also leave for future studies the 

extension of the approach to higher dimensions.  
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APPENDIX.  GAUSSIAN QUADRATURE ROLE 

Number of points Points Weights 

1 0 2 

2 ±
1
√3

 1 

3 

0 8
9

 

±�
3
5

 
5
9

 

4 

±�
3
7
−

2
7
�6

5
 

18 + √30
36

 

±�
3
7

+
2
7
�6

5
 

18 − √30
36

 

5 

0 128
225

 

± 
1
3
�5 − 2�

10
7

 
322 + 13√70

900
 

± 
1
3
�5 + 2�

10
7

 
322 − 13√70

900
 

 



54 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



55 

LIST OF REFERENCES 

[1] H. Kim, “S. Korea’s military creates drone combat unit,” Yonhap News, Sept. 28, 
2018. [Online]. Available: 
https://www.yna.co.kr/view/AKR20180928047300014?input=1195m 

[2] N. Kalra and D. G. Groves, “The enemy of good: Estimating the cost of waiting 
for nearly perfect automated vehicles,” RAND Corp., Santa Monica, California, 
USA, Rep. RR-2150-RC, Jan. 18, 2019. [Online]. DOI: 10.7249/RR2150 or 
Available: https://www.rand.org/pubs/research_reports/RR2150.html 

[3] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic 
Programming. New York, NY, USA: Wiley-Interscience, 2005. 

[4] A. Shapiro and D. Dentcheva, Lectures on Stochastic Programming: Modeling 
and Theory, Second Edition. Philadelphia, PA, USA: Society for Industrial and 
Applied Mathematics, 2012. 

[5] W. Powell, Approximate Dynamic Programming. Hoboken, NJ, USA: Wiley, 
2013. 

[6] R. T. Rockafellar and J. O. Royset, “Engineering decisions under risk 
averseness,” ASCE-ASME Journal of Risk and Uncertainty in Engineering 
Systems, Part A: Civil Engineering, vol. 1, no. 2, p. 04015003, 2015. 

[7] J. J. Sabol III. “Dual approach to superquantile estimation and applications to 
density fitting,” M.S. thesis, Dept. of Operations Research, NPS, Monterey, CA, 
USA, 2016. 

[8]  S. Sarykalin, G. Serraino, and S. Uryasev, “Value-at-risk vs. conditional value-at-
risk in risk management and optimization,” Oct. 14, 2014. [Online]. Available: 
https://doi.org/10.1287/educ.1080.0052. 

[9] R. T. Rockafellar and S. Uryasev, "Optimization of conditional value-at-risk," 
Journal of Risk, vol. 2, no. 3, pp. 21–42, 2000.  

[10] R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general loss 
distributions,” Journal of Banking & Finance, vol. 26, no. 7, pp. 1443–1471, 
2002. 

[11] R. T. Rockafellar and J. O. Royset, “On buffered failure probability in design and 
optimization of structures,” Reliability Engineering & System Safety, vol. 95, no. 
5, pp. 499–510, 2010. 

[12] M. H. DeGroot and M. J. Schervish, Probability and Statistics, 4th ed. London, 
UK: Pearson Education, 2011 

https://en.m.wikipedia.org/wiki/New_York_City
https://doi.org/10.1287/educ.1080.0052


56 

[13] A. Ly, M. Marsman, J. Verhagen, R. P. Grasman, and E.-J. Wagenmakers, “A 
Tutorial on Fisher information,” Journal of Mathematical Psychology, vol. 80, pp. 
40–55, 2017. 

[14] A. J. Lee and S. H. Jacobson, “Identifying changing aviation threat environments 
within an adaptive homeland security advisory System,” Risk Analysis, vol. 32, 
no. 2, pp. 319–329, 2011. 

[15] F. Zhou and G. Wang, “Node selection algorithm based on Fisher 
information,” EURASIP Journal on Wireless Communications and Networking, 
vol. 2016, no. 1, 2016.  

[16] N. Ahmad, S. Derrible, and H. Cabezas, “Using Fisher information to assess 
stability in the performance of public transportation systems,” Royal Society Open 
Science, vol. 4, no. 4, p. 160920, 2017.  

[17] J. O. Royset and R. J-B Wets, “Fusion of hard and soft information in 
nonparametric density estimation,” European Journal of Operational Research, 
vol. 247, no. 2, pp. 532–547, 2015. 

[18] D. I. Singham, J. O. Royset, and R. J-B Wets, “Density estimation of simulation 
output using exponential epi-splines,” 2013 Winter Simulations Conference 
(WSC), 2013. [Online]. doi: 10.1109/wsc.2013.6721468 

[19] J. O. Royset, 2018, “Slide for OA4021 APP3,” class notes for nonlinear 
programming, Dept. of Operations Research, NPS, Monterey, CA, USA, summer 
2018. 

[20] J. O. Royset and R. J-B Wets, “Multivariate Epi-splines and Evolving Function 
Identification Problems,” Set-Valued and Variational Analysis, vol. 24, no. 4,| 
pp. 517–545, 2015. 

[21] J. O. Royset and R. J-B Wets, “Erratum to: Multivariate Epi-splines and Evolving 
Function Identification Problems,” Set-Valued and Variational Analysis, vol. 24, 
no. 4, pp. 547–549, 2016. 

[22] B. W. Silverman, Density Estimation for Statistics and Data Analysis. London, 
UK: Chapman and Hall, 1986. 

[23] P. G. Hoel, Introduction to Mathematical Statistics. New York, NY, USA: John 
Wiley & Sons, 1964. 

[24] J. O. Royset and R. J-B Wets, “From data to assessments and decisions: Epi-
spline technology,” Bridging Data and Decisions, pp. 27–53, 2014. 

[25] J. O. Royset and R. J-B Wets, “Variational analysis of constrained M-estimators,” 
arXiv preprint arXiv:1702.08109v4, 2018. 

https://arxiv.org/abs/1702.08109


57 

[26] I. C. Demetriou and M. J. D. Powell, “Least squares smoothing of univariate data 
to achieve piecewise monotonicity,” IMA Journal of Numerical Analysis, vol. 11, 
no. 3, pp. 411–432, 1991. 

[27] E. Mammen and C. Thomas-Agnan, “Smoothing splines and shape 
restrictions,” Scandinavian Journal of Statistics, vol. 26, no. 2, pp. 239–252, 
1999. 

[28] M. C. Meyer, “Constrained penalized splines,” Canadian Journal of Statistics, 
vol. 40, no. 1, pp. 190–206, 2012. 

[29] J. O. Royset and R. J-B Wets, “On univariate function identification 
problems,” Mathematical Programming, vol. 168, no. 1–2, pp. 449–474, 2018. 

[30] R.T. Rockafellar and R. J-B Wets, Variational Analysis. Heidelberg, Germany: 
Springer, 1998. 

[31] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter 
line-search algorithm for large-scale nonlinear programming,” Mathematical 
Programming, vol. 106, no. 1, pp. 25–57, 2005. 

[32] W. M. Carlyle, J. O. Royset, and R. K. Wood, “Lagrangian relaxation and 
enumeration for solving constrained shortest-path problems,” Networks, vol. 52, 
no. 4, pp. 256–270, 2008. 

[33] J. O. Royset, W. M. Carlyle, and R. K. Wood, “Routing military aircraft with a 
constrained shortest-path algorithm,” Military Operations Research, vol. 14, no. 
3, 2009. 

[34] D. L. Stone, J. O. Royset, and, A. R. Washburn, Optimal Search for Moving 
Targets. Cham, Switzerland: Springer, 2016.  



58 

THIS PAGE INTENTIONALLY LEFT BLANK  

  



59 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	19Mar_Ji_Junghoon_First8
	19Mar_Ji_Junghoon
	I. Background
	A. decision under uncertainty
	B. superquantile RISK
	C. fisher infoRmation
	D. Estimation with small data
	E. Thesis structure

	II. formulation of estimation problems
	A. maximum likElihood uSING EPI-SPLINES
	B. formulations USING fisher information
	1. Minimizing Fisher Information (MFI)
	2. Fisher-Penalized Maximum Likelihood (FP-MLE)


	III. empirical results on benchmark problems
	A. standard normal distribution
	1. USING THE MLE MODEL
	2. USING THE MFI AND FP-MLE MODELS

	B. log-normal distribution
	1. USING THE MLE MODEL
	2. USING THE MFI AND FP-MLE MODELS

	C. exponential distribution
	1. USING THE MLE MODEL
	2. USING THE MFI AND FP-MLE MODELS


	IV. robust estimation in autonomy
	A. SCENARIO
	B. TWO-STEP analysis
	1. Step A
	2. Step B


	V. Conclusions
	appendix.  Gaussian quadrature role
	List of References
	initial distribution list




