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Inflammatory damage to the bowel, as occurs in inflammatory
bowel disease (IBD), is debilitating to patients. In both patients
and animal experimental models, histological analyses of
biopsies and endoscopic examinations are used to evaluate
the disease state. However, such measurements often have
delays and are invasive, while endoscopy is not quantitatively
objective. Therefore, a real-time quantitative method to assess
compromised mucosal barrier function is advantageous.
We investigated the correlation of in vivo changes in
electrical transmural impedance with histological measures
of inflammation. Four platinum (Pt) ball electrodes were
placed in the lumen of the rat small intestine, with a
return electrode under the skin. Electrodes placed within the
non-inflamed intestine generated stable impedances during
the 3 h testing period. Following an intraluminal injection
of 2,4,6-trinitrobenzene sulfonic acid (TNBS), an established
animal model of IBD, impedances in the inflamed region
significantly decreased relative to a region not exposed to TNBS
(p < 0.05). Changes in intestinal transmural impedance were
correlated (p < 0.05) with histologically assessed damage to
the mucosa and increases in neutrophil, eosinophil and T-cell
populations at 3 h compared with tissue from control regions.
This quantitative, real-time assay may have application in the
diagnosis and clinical management of IBD.

1. Introduction
Crohn’s disease and ulcerative colitis, collectively known as
inflammatory bowel disease (IBD), are debilitating episodic
disorders of the gastrointestinal tract. IBD typically develops
in young adulthood and affects patients throughout their lives
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Figure 1. Schematic diagram of the wall of the intestine (a,b), responses to current pulses (c,d) and deduced equivalent circuit diagram
(e). A schematic diagram of the control intestine (a) shows that cells of the epithelial cell layer (ai) are joined by tight junctions to form
a high impedance barrier between the intraluminal space and the tissue of the lamina propria. Within inflamed gut tissue (b), epithelial
cells are lost and/or tight junctions disrupted (bi), thereby allowing charge to flow through these pathwaysmore readily. (c,d) Schematic
examples of voltage transients induced across control (c) and inflamed (d) intestine, in response to a biphasic current pulse (25 µs per
phase). The peak voltage transient (V total) is measured at the end of the first phase and converted into an impedance (Z total) using Ohm’s
Law. (e) The circuit diagram shows that the voltagemeasured in vivo is affected by impedances of the intraluminal electrode, intraluminal
content, mucosal epithelium, body tissues and fluids, and the subcutaneous electrode. During inflammation, the epithelial impedance is
reduced, resulting in a decrease in the peak voltage transient (d).

[1,2]. Annual incidences of IBD are increasing, with 13–17 per 100 000 people being affected in the
USA, and are associated with an annual direct care cost of $6.3 billion and productivity loss due to
absenteeism of $3.6 billion [3]. The severity of the disease in patients is evaluated by symptomology,
histology of biopsies, endoscopy and cytokine measurements [4,5]. Endoscopy is an indispensable
tool for assessing the extent and severity of the inflammation and to determine responses to therapy,
particularly mucosal healing, which is considered a primary indicator of remission from IBD [6,7].
Although endoscopy provides a visual assessment of gut inflammation, it needs to be supplemented
by histological assessment of biopsy samples. Thus, a method that measures mucosal integrity without
biopsy sampling would augment endoscopy findings.

The hallmark of active IBD is an infiltration of innate immune cells (neutrophils, macrophages and
eosinophils) and adaptive immune cells (T cells and B cells) [8] into the intestinal mucosa. These immune
cells secrete pro-inflammatory cytokines, such as interferon-γ [9] and TNF-α [10], activate intracellular
mechanisms leading to the disruption of tight junctions, which regulate paracellular permeability [11].
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Alterations to mucosal permeability are a key characteristic of IBD [12]. Changes in mucosal permeability
can be examined clinically using non-invasive in vivo assays that measure the urinary excretion of large
sugar molecules (e.g. lactulose) that are ingested and usually unable to cross the intestinal epithelium
if the barrier is uncompromised [13]. However, permeability assays are time-consuming, influenced by
confounding factors such as changes in gut transit and altered renal function, and vary considerably
between individual patients, making the test hard to standardize [12,14]. Thus, this technique is seldom
used for the evaluation of the severity of IBD [12].

A number of animal models of IBD have been developed, the most common being rodents inflamed
using 2,4,6-trinitrobenzene sulfonic acid (TNBS) [15–17]. In experiments using animal models of IBD,
changes in ion permeability can be readily measured ex vivo, using explanted segments of intestine in an
Ussing chamber [18–20]. In the Ussing chamber, voltage transients in response to applied currents are
used to measure the transmucosal impedance [18,21]. In the present study, we have applied the principles
of this technique in vivo and hypothesized that the inflammation-induced increase in transmucosal
permeability due to the loss of epithelial cells and disruption of tight junctions would result in a decrease
in gut wall impedance (figure 1). To evaluate the utility of electrical impedance to evaluate mucosal
integrity, we have compared the changes in transmucosal impedance measured in vivo with assessment
of inflammation by histopathology and immune cell infiltration.

2. Material and methods
2.1. Animals and surgical procedures
All experiments used male Sprague–Dawley rats (n = 6; 10 weeks old; weight: 357 ± 17 g; Animal
Resource Centre, Western Australia) and were approved by the Animal Research and Ethics Committee
of the Bionics Institute. The experiments complied with the Australian Code for the Care and Use of
Animals for Scientific Purposes (National Health and Medical Research Council of Australia) as well
as the United States Army Medical Research and Material Command Animal Care and Use Review
Office, protocol SSC-7486.02. Animals were allowed ad libitum access to standard chow, water and
fresh food and were kept on a 12 L : 12 D cycle. Prior to surgery, animals were fasted overnight to
reduce the amount of gut contents. On the day of surgery, rats were anaesthetized (2% isoflurane,
1% oxygen, flow rate of 1–1.5 l min−1; pre-operative analgesia carprofen 50 mg kg−1 subcutaneous),
the abdominal cavity was opened and an 8 cm segment of jejunum was selected approximately 30 cm
proximal to the ileo-caecal junction [22]. Four platinum (Pt) ball electrodes (1.2 mm diameter; exposed
surface area 3.2 mm²), placed 2 cm apart, were inserted into the lumen and secured with sutures
(7-0 silk, Ethicon; figure 2a). An 18 G needle placed subcutaneously acted as a return electrode. A
6 cm segment of the jejunum containing three Pt electrodes (E2–E4) was isolated using ligatures,
while electrode 1 (E1) was placed 2 cm proximal to the ligated area. Following ligation, 30 min of
baseline voltage transient measurements (see the next section for further detail) was generated from
all electrodes (E1–E4). Inflammation was then induced within the ligated region by injecting TNBS
(1 ml of 0.1% dilution in 50% ethanol, Sigma) into the lumen, similar to the procedure previously
described [23,24].

2.2. Gut wall impedance monitoring
Gut wall impedance was monitored using biphasic current pulses passed between the intra- and
extra-luminal electrodes. The peak voltage at the end of the first phase of the current pulse (total
voltage Vtotal, figure 1c,d) was measured as described previously [25]. A 25 μs per phase biphasic
current pulse (7 μs interphase gap) was used to minimize the charging of the electrode–electrolyte
interface. The current used in this study was 931 µA, which was chosen to produce a peak voltage
transient of approximately 500 mV (range: 398–543 mV) when the Pt ball electrodes were placed
in sterile 0.9% saline. The Vtotal value was then used to calculate total impedance (Ztotal) using
Ohm’s Law (Z = voltage/current). Following each acute experiment, the Pt ball electrodes were
explanted, cleaned and retested in saline. There was no significant difference between pre- and
post-experiment in vitro measures (paired T-test; p ≥ 0.05). Triplicate measurements were taken from
each intraluminal electrode at T = −30 min and T = 0 prior to TNBS injection to establish a baseline.
Following TNBS injection, triplicate measurements were taken at T = 30, T = 60, T = 90, T = 120, T = 150
and T = 180 min.
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Figure 2. Effect of TNBS on transmucosal impedance. (a) Experimental arrangement. Electrode 1 (E1) was placed in a region of gut that
did not receive TNBS (control), while the region containing electrodes E2–E4 was isolated using atraumatic ligatures and injected with
TNBS. The voltage transient between each intraluminal electrode and a subcutaneous electrode return was measured. (b) Following
TNBS injection, transmural impedance (normalized at T = 0) from inflamed regions significantly decreased between 60 and 180 min,
compared with control. Data showmean (± s.e.m.), and differences were considered significant for p< 0.05.

2.3. Histology and staining
Rats were euthanized (300 mg kg−1 Lethabarb, intracardial injection) at 3 h post-TNBS injection and
segments of the jejunum adjacent to electrodes E1–E4 were removed, placed into cold PBS (0.15 M
NaCl in 0.01 M sodium phosphate buffer, pH 7.2) and cut longitudinally along the mesenteric border,
pinned out onto balsa boards and divided in half. Intraluminal content was gently removed by washing
with cold PBS. One half was placed in fixative (2% formaldehyde plus 0.2% picric acid in 0.1 M
sodium phosphate buffer, pH 7.4) overnight, embedded in paraffin, sectioned (5 μm), stained with
haematoxylin and eosin (H&E) and mounted with DPX [23]. The other half of the tissue was prepared for
myeloperoxidase (MPO) staining. Tissue was placed in ice-cold 100% ethanol (10 min), washed in cold
0.1 M sodium phosphate buffer (PB; 3 × 5 min) and then cryoprotected overnight (30% sucrose in PBS).
Tissue was immersed overnight in 50% optimal cutting temperature medium and 50% sucrose, frozen
(−20°C) and sectioned (14 µm). Sections were placed in freshly made Hanker–Yates solution (10 min
in 0.003% H2O2 with 0.06 mg ml−1 Hanker–Yates reagent, Polysciences, Warrington, PA, USA, in PBS),
washed then counterstained in methyl green aqueous solution (2% methyl green in distilled water for
30 s; Sigma), dehydrated (100% ethanol) and mounted with DPX.

2.4. Immunohistochemistry
Paraffin sections were dewaxed with xylene, graded ethanol and tap water. The sections underwent
antigen retrieval (10 mM sodium citrate, 0.05% Tween 20, pH 6 and 1% hydrogen peroxide in PBS
heated to 60°C for 10 min). Sections were incubated overnight at 4°C with anti-CD3, a cytotoxic T-cell
marker (1 : 200 in 10% normal horse serum (NHS), Dako Cytomation). Sections were thoroughly washed
(0.1 M PB) and the secondary antibody was applied (biotinylated goat anti-rabbit IgG 1 : 500 in 10%
NHS, Dako E0432) for 1 h at room temperature. Following washing with 0.1 M PB, streptavidin coupled
to horseradish peroxidase (1 : 1000 in 10% NHS, Dako P0397) was applied, and sections were washed
(0.1 M PB) and immersed in 3,3′-diaminobenzidine (DAB) (made as per the instructions, Dako cat. no.
#K3468) for 3 min. Slides were counterstained with Harris haematoxylin (5 s), washed (distilled water),
dehydrated in 100% ethanol and xylene, and mounted in DPX.
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Table 1. Histological scoring table: parameters used to score inflammation on a scale from 0 to 10.

scoring criteria score
extent of mucosal epithelial damage no damage 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

damage affects less than one-third of villi 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

damage affects between one-third and two-thirds of villi 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

damage affects to more than two-thirds of villi 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

degree of mucosal damage no damage 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

swelling and loss of lamina propria matrix 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

loss of surface epithelium from villus tips but bases of villi
and residual villus cores present

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

loss of villi to the level of the crypts 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

leucocyte presence in venules venules have few leucocytes (as in normal tissue) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

venules contain four or more adherent leucocytes 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

venules show numerous intravascular leucocytes 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bleeding within villi no bleeding within villi 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bleeding within villi common; no prominent blood clots
formed

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bleeding within villi substantial; formation of blood clots 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5. Histopathology scoring
Histopathologist (J.B.Fu.), blinded to experimental conditions, used H&E-stained sections to evaluate the
degree of inflammation at each electrode site (E1–E4). Histological changes were on a scale of 0–3 for the
assessment of the extent and the degree of damage to the mucosa, and on a scale of 0–2 for assessment
of the numbers of leucocytes within venules and the extent of haemorrhage within villi [26]. Scores were
out of a total of 10 (table 1).

2.6. Cell counting
Eosinophilic granulocytes were identified morphologically using H&E-stained sections, by their
distinctive nucleus and cytoplasmic staining [23] (identified by arrows in figure 4a,b). MPO activity was
used to identify neutrophils (identified in figure 5a,b by arrows). Cytotoxic T-lymphocytes [27] were
identified using antibodies to CD3 and counted in H&E sections (identified in figure 6a,b by arrows).
With the observer blinded to the tissue identity, positive cells were counted with a ×40 objective, across
10 fields of view at each electrode position (E1–E4), using a Zeiss Axioplan II microscope, within the
following layers: longitudinal smooth muscle, circular smooth muscle, submucosa and mucosa. Images
of the total field of view were generated (Axiovision Software, Zeiss, Germany), the area of the total field
of view for each layer of tissue was measured using ImageJ and the density of cells per square millimetre
was calculated and analysed.

2.7. Statistical analysis
Gut wall impedance values (Ztotal) were normalized to the baseline measurements (average of data from
T = −30 and T = 0 min prior to TNBS injection), set at 100%. A two-way repeated-measures analysis of
variance (ANOVA) (Electrode × Time) was used to test for differences and interactions, and Tukey’s post
hoc test used where appropriate. Infiltration of leucocytes was assessed using a one-way ANOVA and a
Tukey’s post hoc test. Normalized gut wall impedances were correlated using with leucocyte infiltration
and a Pearson’s correlation coefficient (R) and two-tailed p-values generated. A p-value of <0.05 was
accepted as statistically significant, and data are expressed as mean ± standard error of mean (s.e.m.).
GraphPad Prism 4 was used for all analysis (GraphPad Software, USA).
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3. Results
3.1. Decrease in gut wall impedance following intraluminal 2,4,6-trinitrobenzene sulfonic acid
Soon after implantation into the control jejunum, the in vivo impedance (Ztotal) for all electrodes
was significantly elevated (1477 ± 158 Ω, n = 24 electrodes, n = 6 rats) compared with measurements
made in saline (495 ± 37 Ω). Ztotal in vivo is presumed to be dominated by the impedance of the
gut wall, notably the impedance of epithelial cell barrier of the lining of the intestine, including
the impedance provided by the tight junctions between epithelial cells (figure 1). An increase in
transmural permeability is predicted to result in a drop in Ztotal towards values measured in saline
before implantation. Throughout the testing period, gut wall impedance in the non-inflamed region of
the jejunum (at electrode 1) remained stable (p > 0.05; n = 6 rats, figure 2a,b). Following TNBS injection,
gut wall impedances in inflamed regions (at electrodes E2–E4) rapidly decreased and were significantly
less than the impedance measured at E1 at 60 min and remained so for the duration of the experiment
(180 min; figure 2b; p < 0.05; n = 6). There were no significant differences between measurements
recorded at the three electrodes in the inflamed region (E2, E3 and E4) following TNBS injection (p ≥ 0.05;
figure 2b).

3.2. Histological scoring of inflammatory damage
In control tissue, villi were long and covered with intact surface epithelium (figure 3a, indicated by
arrows), while venules had few to no inflammatory cells within them (figure 3b, indicated by ‘ven’).
Three hours after infusion of TNBS, we examined the macroscopic appearance of the jejunum and
observed patchy redness along the length of lumen exposed to TNBS, but not in other regions. Villi
were damaged to various extents. Minimally damaged villi were swollen, and epithelial cells near the
tip were flattened and fewer goblet cells were observed. More extensive damage of villi included loss
of the surface epithelium from the tips and sides, but retention of the villus core (figure 3c, indicated by
arrows). At the highest level of damage, the villus core had detached and the surface epithelium was
lost from villus tips. Sloughed off epithelial cells were found in the lumen. There were many micro-
haemorrhagic foci, consisting of clumps of extravasated red blood cells (figure 3c, indicated by ‘m’).
These haemorrhages extended to the bases of the villi, but were rare in the region of the crypts. The
crypt morphology was similar in samples from control and TNBS-treated jejunum, except in rare cases
in which damage extended into the crypts. Venules in the submucosa and at the base of the mucosa
after TNBS treatment contained numerous neutrophils and eosinophils (figure 3d, indicated by arrows).
Quantitative scoring, based on parameters described in table 1, showed a significant difference between
TNBS-exposed and control regions of the jejunum (p < 0.05; figure 3e). Inflammatory score of histological
damage in the mucosa was significantly correlated to normalized transmural impedance at 3 h post-
TNBS injection (p = 0.0006; R = −0.76; n = 16; figure 3f ). There was no significant correlation between
inflamed normalized gut wall impedance values generated from electrodes E2–E4 and inflammatory
scores from these electrode areas (p = 0.394; R = −0.27; n = 12). No changes were observed in the external
muscle layers. The histopathology reported in this study is similar to that described previously in
experimental animals treated with TNBS [23].

3.3. Decrease in gut wall impedance correlated with immune cell infiltration
Eosinophils were observed in small numbers within the mucosa (81 ± 5 cells mm−2) and submucosa
(75 ± 18 cells mm−2) of control tissue (E1; n = 6 segments of control tissue; figure 4a,c). Very few
eosinophils were observed in muscle layers (circular muscle: 2 ± 2 cells mm−2; longitudinal muscle:
0 cells mm−2). At 3 h following TNBS injection (figure 4b), the density of eosinophils was significantly
greater within the mucosa of the inflamed segments of the jejunum (E2: 151 ± 15 cells mm−2; E3: 184 ± 22
cell mm−2; E4: 165 ± 12 cells mm−2; n = 6 rats; n = 18 pieces of jejunum; p = 0.001; figure 4c). No evidence
of eosinophil infiltration within the submucosa and the longitudinal and circular muscle was found
(p ≥ 0.05; n = 18, data not shown). There was a significant correlation between eosinophil infiltration
into the mucosa and normalized gut wall impedance at 3 h post-TNBS injection (p = 0.006; R = −0.66;
n = 16; figure 4d). However, there was no significant correlation between inflamed normalized gut wall
impedance values generated from electrodes E2–E4 and eosinophil cell counts from these electrode areas
(p = 0.500; R = 0.218; n = 12).
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Figure 3. Inflammation-induced changes in the histological appearance of the jejunum following intraluminal TNBS injection. (a,b)
The mucosa of the jejunum not exposed to TNBS. The surface epithelium was intact at the tips of the villi (arrows in (a)). Lymphatic
vessels (asterisks) were apparent, but there were no red blood cells in the connective tissue spaces. The crypts were of normal
appearance and immune cells were not accumulated in venules (ven). Following TNBS (c,d), the villi were shortened and the base
of the mucosa can be seen in the same field as villus tips. The surface epithelium was lost from the tips of the villi (arrows).
Numerous regions of microhaemorrhage were seen in the villi (m). After TNBS injection, there was marked accumulation of neutrophils
in the venules (ven; indicated by arrows in (d)), which was not seen in control tissue (b). The crypts were intact in both control
and TNBS-treated tissue. Eosinophils (circled) were more numerous in inflamed tissue (d), than in control (b). (e) Histologically,
scored tissue damage was significantly more prevalent within inflamed tissue, than in control. (f ) Inflammatory score of histological
damage in the mucosa and normalized transmural impedance at 3 h post-TNBS injection is significantly correlated (R= −0.76).
Data show mean (± s.e.m.), and differences were considered significant for p< 0.05. Scale bars in (a) and (c): 50 µm; (b) and
(d): 20 µm.

Neutrophils were identified by their MPO activity (MPO+; figure 5a,b; indicated by arrows). MPO+
cells were observed in the smooth muscle layers (6 ± 2 cells mm−2), submucosa (217 ± 43 cells mm−2)
and mucosa (350 ± 53 cells mm−2; figure 5a) of control tissue. Three hours after TNBS injection (n = 6
rats; n = 18 segments of inflamed jejunum), there was no infiltration of MPO+ cells into smooth
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Figure 4. Infiltration of eosinophils into the mucosa correlates with the decrease in gut wall impedance following TNBS injection. (a,b)
Eosinophils (indicated by arrows)were rarely seen in controlmucosa layers (a), butwere substantiallymore prevalent in inflamedmucosa
tissue (b). (c) Quantitative data showing that significant infiltration of eosinophils into themucosa occurred in inflamed tissue compared
with control. (d) Eosinophil infiltration in the mucosa and normalized transmural impedance at 3 h post-TNBS injection is significantly
correlated (R= −0.66). Data in (c) show mean± s.e.m., and in (d) mean eosinophil density and normalized transmural impedance.
Differences were considered significant for p< 0.05. Scale bar for (a) and (b): 20 µm.

muscle (p ≥ 0.05) or submucosa (p ≥ 0.05). However, there was significant infiltration of neutrophils
into the mucosa (E2: 726 ± 60 cells mm−2; E3: 965 ± 98 cells mm−2; E4: 706 ± 52 cells mm−2; p < 0.0001;
figure 5b), with no significant difference between neutrophil densities in different electrode locations
of the region of TNBS infusion (E2, E3 and E4; figure 5c; p ≥ 0.05). The density of neutrophils in the
mucosa was significantly correlated (p = 0.005; R = −0.65; E1: n = 4; E2–E4: n = 12) with normalized gut
wall impedance measurements at 3 h post-TNBS injection (figure 5d). However, there was no significant
correlation between inflamed normalized gut wall impedance values generated from electrodes E2–E4
and MPO+ cell counts from these electrode areas (p = 0.793; R = 0.085; n = 12).

CD3+ T cells were seen in control tissue (figure 6a; E1; n = 6 segments of control tissue; mucosa:
215 ± 36 cells mm−2; submucosa layer: 41 ± 14 cells mm−2; smooth muscle: 2 ± 1 cells mm−2). Following
TNBS injection (figure 6b; n = 18 sections of inflamed jejunum), no changes occurred in numbers of CD3+
cells in the smooth muscle layer or the submucosa (p ≥ 0.05), while a significant increase in numbers of
CD3+ cells was evident in the mucosa (E2: 407 ± 38 cells mm−2; E3: 393 ± 32 cells mm−2; E4: 399 ± 49
cells mm−2; p = 0.008; figure 6c). The densities of CD3+ cells were similar at electrode locations E2,
E3 and E4 (figure 6c; p ≥ 0.05). The density of CD3+ cells in the mucosa was significantly correlated
(p = 0.023; R = −0.57; E1: n = 4; E2–E4: n = 12) with normalized gut wall impedance measurements at
3 h post-TNBS injection (figure 6d). However, no correlation was seen between inflamed normalized gut
wall impedance values (E2–E4) and CD3+ cell counts from these electrode areas (p = 0.087; R = 0.514;
n = 12).
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4. Discussion
Current clinical diagnostic and assessment methods for IBD include subjective, time-consuming and/or
non-specific symptomology, serological, endoscopic and histological scoring, suggesting that there is
value in an additional method to characterize disease activity that is real time and objective. We have
developed transmural impedance as an in vivo technique that provided real-time quantitative data
during experimentally induced inflammation of the jejunum. The decrease in transmural impedance
correlated with the increase in T cells, neutrophil and eosinophil numbers, the quantification of which is
a reliable and accepted measurement of inflammation. Therefore, the change in transmural impedance
reported here can provide an in vivo indicator of mucosal integrity that can be measured in real time.

Stable control impedance values were generated from an electrode in an unchallenged region of
rat small intestine over the entire 210 min experiment. Following TNBS injection, a rapid decrease in
impedance occurred which was correlated with inflammatory damage that was assessed by histology
or immune cell infiltration. The TNBS-induced model of jejunitis is an acute model of inflammation
and does not fully represent the changes that occur in chronic IBD. That aside, our data support the
measurement of transmucosal impedance as a marker for TNBS-induced inflammation.

The technology required to measure the induced voltage transients is standard for many neural
prostheses and has a proven long-term safety record [28]. Moreover, the simplest implementation of
the system requires only two electrodes (one intraluminal and one extraluminal). Such simplicity lends
itself to integration into existing devices such as endoscopes. Thus, quantitative gut wall impedance
data could be generated during endoscopy examinations, an idea that has recently been patented [29],
and related to qualitative physician scoring of inflammation by visual inspection. In future studies, we
aim to evaluate this technology in a clinical setting.

Assessment of mucosal integrity might have diagnostic application in other conditions, such as
non-alcoholic fatty liver disease [30], which is characteristically associated with increased permeability
of the duodenum, in non-erosive reflux disease (NERD) or in coeliac disease, in which a proportion of
patients experience mucosal integrity disruptions and epithelial cell damage without visible signs of
macroscopic alteration [31–33]. Because endoscopic abnormalities are not accurate indicators of NERD
or coeliac disease, an objective measure that is undertaken in real time during the endoscopic procedure,
without introducing additional risk, could augment current clinical assessment. The method may also
have applicability to the assessment of IBD patients who are in endoscopic remission.

A second application for this technology is the longitudinal recording of real-time measurements
of gut inflammation for closed-loop neuromodulation. A number of animal studies demonstrate that
vagal nerve stimulation is a feasible, effective therapy for IBD that could mitigate risks associated
with pharmacological intervention [17,34–36]. Neuromodulation of the vagus nerve may be preferable
in patients who experience adverse side effects to common pharmaceutical therapies such as non-
steroidal anti-inflammatory agents, corticosteroids and/or immunosuppressant drugs [37,38]. Owing
to the episodic nature of IBD, in which patients can experience inflammatory episodes several times
a year to once every 4 years [1], therapy is often administered to patients longer than is clinically
required, thus risking side effects. Precise delivery of stimulation, while minimizing adverse side effects,
is desirable for optimal therapy. The measurement described here is a biomarker of gut inflammation
that can provide real-time information required for closed-loop control of vagal nerve stimulation in the
treatment of IBD.

Other methods of determining tissue impedance exist, including electrochemical impedance
spectroscopy and four-electrode impedance techniques [39,40]. While these techniques can provide rich
data about the conductance of the tissue, they are typically more challenging to implement clinically
and would require additional hardware, either in the form of additional electrodes (for four-electrode
impedance measurements) or dedicated hardware for the generation and recording of sinusoidal
waveforms (for electrochemical impedance spectroscopy). By contrast, the technique described here of
monitoring voltage transients uses technology that is available in contemporary neural stimulators.

In conclusion, we have developed an objective, real-time measure of gut permeability that can be
used to assess gastrointestinal inflammation in vivo. We consider this technology and methodology has
translatable application in the evaluation of IBD.

Ethics. All experiments used male Sprague–Dawley rats (Animal Resource Centre, Western Australia) and were
approved by the Animal Research and Ethics Committee of the Bionics Institute. The experiments complied with
the Australian Code for the Care and Use of Animals for Scientific Purposes (National Health and Medical Research
Council of Australia) as well as the United States Army Medical Research and Material Command Animal Care and
Use Review Office, protocol SSC-7486.02.
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